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Preface

This is the second edition of a book published about 15 years ago. Someone says
that is better to write a new book rather than work on a second edition especially
after such long time. Part of the problem is that the contract for a second edition was
signed just before my hometown was hit by a 6.3 earthquake in 2009. In any case
I think an honorable compromise was reached considering that the book is largely
rewritten.

The first five chapters are an introduction to the general topics of atmospheric
physics, and they deal with thermodynamics, radiation, dynamics with applications,
and chemistry. Then the sixth chapter introduces to remote sensing. However, each
one of these chapters contains one of the main novelties of this book, and that is the
so-called examples. These either show some applications of the matter introduced
in the chapter or represent a much more detailed explanation of the same topic.
Sometimes the examples contain simple programs (MATLAB or FORTRAN) to
solve problems.

The chapter on the origin and evolution of the atmosphere has been canceled
because this theme has advanced so much (especially in connection with the
exoplanets research) that it would require a textbook of its own.

Starting with Chap. 7 the book looks very similar to the previous edition
but contains much more material. This chapter has a quite detailed treatment
of the vorticity and its properties. Chapter 8 gives more details on the oceanic
boundary layer and some introduction to the classical concepts of turbulence.
Chapter 9 contains a complete new paragraph on clouds in planetary atmospheres.
Atmospheric waves are treated in Chap. 10, and the examples contain a rather
complete exposition about mountain waves including simple programs. Chapter 11
is very similar to the previous book with some additional information about the
wave contribution to the general circulation. Chapter 12 is about theories on general
circulation. Here we have rewritten the section on the Hadley circulation with an
explicit calculation based on the work of Sobel and Schneider. Also in the examples
the same problem is solved in the shallow water approximation.

Chapter 13 gives more detailed information about radiative transfer calculations
that are necessary for the introduction to simple climate models. These are treated
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in Chap. 14 and 15. In particular Chap. 14 ends with examples that introduce the
entropy approach to energy balance climate models, and as a preparatory step
the same method is used to calculate the temperature profile of an elementary
atmosphere. In Chap. 15 the section on the performance of GCM has been very
much expanded. It includes the most recent development about metrics and the
Bayesian point of view. This requires an elementary introduction to Bayesian
statistics. Statistics also enter in some of the examples about the evaluation of the
effect of uncertainty in model parameters.

The chemistry of the troposphere is the topic of Chap. 16. This is another chapter
largely rewritten and expanded. The simple models for tropospheric ozone have
been rewritten and used to evaluate the gas isopleth in an urban atmosphere. Chapter
17 about circulation of the middle atmosphere has not changed very much except
for some additional examples on equatorial waves and the Holton model on quasi
biennial oscillation. The same is true for the following chapter about stratospheric
ozone chemistry. In this case the examples are about the calculation of loss rate of
polar ozone and the explicit calculation of the effects of the catalytic cycle, a solved
exercise proposed in the book by Andrews.

Another major difference with the first edition is Chap. 19 that has been extended
to deal not only with chaos but also with nonlinear phenomena. As examples
of nonlinear phenomena, the Stommel model for the thermohaline circulation is
discussed in connection with climate theory, and there is an extensive treatment
of the difference equations made so popular by Edward Lorenz. Then the delayed
differential equations are discussed in connection with the ENSO and the aerosol-
cloud problem seen as predator–prey problem as developed by Koren and Feingold.
The interesting parts of this chapter are the examples with programs that solve most
of the topics described in the chapter.

Finally a new chapter was added on the controversial theme of geoengineering.
This is a huge field now, and we just discussed a few options on carbon capture
and sequestration using what we had learned in Chap. 16 about the carbon cycle.
Then we had an excuse to reintroduce the energy balance model as described by
Kleidon and Renner. Also some additional requirements are treated in the examples
concerning the radiative effects and the role of the aerosol in the cloud albedo
(Twomey effect).

All these took a considerable effort (all the figures were drawn or redrawn by
the author), and I asked many times during these years if the game was worth the
candle especially when there is so much material around. After 14 years the field of
atmospheric physics and chemistry has expanded impressively, and there are many
excellent books published not considering the amount of material available on the
Internet. Our intent is to take the reader through an approach that deepens some
of the most unknown aspect of the field that many times are buried in “historical”
forgotten paper that remains very instructive. A classical example is the problem
of the breezes that most of the books limit to a couple of pages but contain many
useful insights. Similar examples could be found in the tropospheric chemistry and
nonlinear problems. Our ideas were to use very simple arguments wherever possible
that could be translated in simple and comprehensible calculations.
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Preface ix

Other important reasons for a second edition are errors. Reading back the first
edition, I found many mistakes, some of them the results of simple distraction but
others had some deep and wrong roots. Most of them have been corrected, but
nothing guarantees that we have not introduced new ones. On the other hand the
gigantic amount of material referred before contains often errors that went beyond
even the referees (this is the perverse side of the peer review).

As before the contribution of students and friends has been fundamental. Frank
Marzano (who should have been a coauthor) suggested many features of this edition.
Former students, now in the professional lineage, have very much contributed, in
particular Gabriele Curci and Paolo Ruggieri. I have to give them all the credits they
deserve to help out especially with the MATLAB scripts.

The support of my family must be acknowledged considering that we all went
through the stress of a destructive earthquake from which neither the city nor the
university have recovered yet. Their encouragement has been constant, and this is
one of the reasons this work is dedicated to them.

L’Aquila, Italy Guido Visconti
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Chapter 1
Fundamentals: Thermodynamics
of the Atmosphere

In order to introduce even the most simple questions about atmospheric physics, we
need to refresh some basic physics concept. We will start with thermodynamics and
continue with radiation (Chap. 2) and very essential fluid dynamics (Chap. 3). This
scheme will give us the possibility to compare some characteristics of the planetary
atmospheres. We all have studied thermodynamics as a part of general physics and
we may have wondered about the purpose of all those theorems and demonstrations.
Are they of any utility, for example, for changing a tire on our car or talking to the
plumber? Actually one of the most enlightening applications of thermodynamics
is to study the atmosphere or, in general, complex systems. Of course we need to
study more deeply real gases like water vapor because, in a sense, it is the fuel of the
atmosphere. Also the atmosphere is actually a mix of different gases and one should
know under which conditions this mix may be treated as a perfect or real gas. We
will start from the most elementary concepts and then, as always, we will be very
careful about the jargon.

1.1 Simple Laws

The applications we have in mind for those things learned in the early years are not
many. It will be useful to introduce definitions more typical of meteorologists; for
example, we start from the equation of a perfect gas

pV D
�mg

M

�
RT (1.1)
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2 1 Thermodynamics of the Atmosphere

Fig. 1.1 The gas contained
in a cylindrical box closed
with a piston

where p is the pressure, V the volume, and mg and M the mass of the gas and its
molecular mass, respectively. R is the gas constant and T the temperature. Usually,
Eq. (1.1) is simplified introducing the specific volume ˛ and a new gas constant
defined as R0 D R/M. In the case of air, we consider a molecular mass obtained as
a weight average of the two major gases composing the atmosphere (nitrogen and
oxygen). We get M D 0.78 28 C 0.21 32 D 28.9 and the value of the new constant
R0 becomes 8314/28.9D 286.7 J kg�1 K�1. Equation (1.1) becomes

p˛ D RT (1.2)

where R has been substituted for R0.
It is quite interesting to obtain the same law from the kinetic theory of gases that

applies simple mechanics laws to a gas contained for simplicity in a box (Fig. 1.1).
Each molecule that strikes the piston will give up part of its momentum and will

exert a force on the surface that will result in the pressure p. If the component of the
velocity is vx, then it will give up a momentum 2mvx. The number of molecules per
second striking the surface A is the one contained in a cylinder with volume and is
equal to nAvx where n is the number density. The force is then

F D nAmvx2mvx (1.3)

The pressure is obtained by dividing by the surface A. We need also to consider
that only half of the molecules are directed toward the piston and also we need to
consider the average quadratic value for vx. We then get

p D nm
˝
v2x
˛

(1.4)

There is nothing special about the x direction so that we can easily assume that

˝
v2x
˛ D 1

3

�˝
v2x
˛C ˝

v2y
˛C ˝

v2z
˛� D

˝
v2
˛

3
(1.5)

so that the pressure is simply

p D
�
2

3

�
n

�
mv2

2

	
(1.6)

If we multiply this equation by the volume V, we get

pV D
�
2

3

�
N

�
mv2

2

	
(1.7)
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where N is the total number of molecules in the volume. The temptation is too strong
to compare (1.7) with (1.1) and get

�mg

M

�
RT D

�
2

3

�
N

�
mv2

2

	
And we can define the kinetic energy as�

mv2

2

	
D 3

2
kT (1.8)

with k the Boltzmann constant k D R=Na; where Na is the Avogadro number and R
the gas constant.

A very insightful application of (1.8) can be made to find how the pressure
changes with altitude. First of all we write (1.2) in a different way introducing the
Boltzmann constant k defined as k D R=Na. It is easy to show that

p D nkT (1.9)

where n is the number of molecules for unit volume
We consider two parallel planes in the atmosphere separated by a distance dz,

and then the force on each molecule times their density must be balanced by the
change in pressure

Fndz D dp D kTdn

that is equivalent to

F D kT
1

n

dn

dz
D kT

d

dz
Œln.n/� D � d

dz
.PE/ (1.10)

where we have assumed that the force derived from some potential, that is, the
difference in potential energy (PE). Then

d .ln n/ D �d.PE/=kT

that can be integrated to give

n D cos t e�PE=kT (1.11)

This equation gives the number density (pressure) as a function of the potential
energy of a molecule, that is, mgz/kT, but it also constitutes the Boltzmann law, that
is, the probability of finding a molecule in a determined energy state is proportional
to the exponential of that energy divided by kT.



4 1 Thermodynamics of the Atmosphere

The pressure change with altitude is also an application of Equation (1.2). We
start from the equation of hydrostatic equilibrium. The pressure change across a
layer of thickness dz must be equal to the weight for unit surface of the atmospheric
column of the same thickness:

dp D �
gdz (1.12)

The z coordinate is oriented upward from the ground. Equation (2.3) can be easily
integrated to give

p.z/ D
Z 1

z
g
dz0 (1.13)

From this equation we see that the pressure as a function of altitude must depend on
the density and then on the temperature.

1.1.1 The Scale Height

A very important connection can be made between thermodynamic quantities and
a typical meteorological variable like the geopotential. This actually coincides with
the gravitational potential when we take as reference the sea level. We can write

dˆ D gdz D �˛dp (1.14)

whereˆ is the geopotential whose units are m�2s�2. A quantity which is often used
in meteorology is the geopotential height Z defined as

Z D ˆ

g0
D 1

g0

Z 1

z
gdz0 (1.15)

The geopotential height differs from the geometric altitude insofar as the accel-
eration of gravity decreases with altitude. However, in order to find appreciable
differences, we need to consider altitudes of several tens of kilometers. In any case
the introduction of the geopotential gives some useful relations. Starting from the
gas equation and using the hydrostatic equilibrium we get

dp

dz
D � pg

RT
(1.16)

from which we get

dˆ D �RT
dp

p
(1.17)

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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and this can be integrated between pressure levels p1,p2

ˆ1 �ˆ2 D R
Z p2

p1

T
dp

p
(1.18)

If we divide both sides by g0, we obtain

Z2 � Z1 D R

g0

Z p2

p1

T
dp

p
(1.19)

The integral can be easily solved for an isothermal atmosphere to give

Z2 � Z1 D H ln

�
p1
p2

�
(1.20)

which is the same as

p2 D p1 exp Œ� .Z2 � Z1/ =H�

where H D RT/g0 is the scale height. H gives an indication how fast atmospheric
density and pressure decrease with altitude and has been defined only for an
isothermal atmosphere. For example, for a temperature of 290 K, H is about 8 km.
If we consider a layer defined by the pressures p1 and p2 to which correspond the
geopotential heights Z1 and Z2, then we can define an average scale height H through
Eq. (2.11)

Z2 � Z1 D �H ln

�
p2
p1

�
(1.21)

where H is the scale height calculated for T .

1.1.2 The Potential Temperature

Application of the first law of thermodynamics gives the relation between the change
in internal energy du, heat provided to the system ıq, and work done dw

ıq � dw D du (1.22)

Equation (2.13) has some interesting consequences. Using the specific volume, it
can be rewritten as ıq D pd˛C CvdT, where Cp is the specific heat per unit mass at
constant pressure. We notice that pd˛ D �˛dp and we get an expression equivalent
to the first law:

http://dx.doi.org/10.1007/978-3-319-29449-0_2
http://dx.doi.org/10.1007/978-3-319-29449-0_2
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ıq D C�dT C RdT � ˛dp D CpdT � ˛dp (1.23)

It is convenient at this point to define the enthalpy h

h D u C p˛ (1.24)

and we find immediately dh D CpdT. From the definition of geopotential, it follows
another form of the first law of thermodynamics:

dq D d .h Cˆ/ D d
�
CpT Cˆ

�
(1.25)

This very simple equation implies that if the motion of an air parcel is adiabatic
(dq D 0), then the sum of the enthalpy and geopotential is conserved. Actually, we
can get a very useful relation just putting dq D 0 in Eq. (1.25):

�dT

dz
D g

Cp
D �d (1.26)

This represents the dry adiabatic lapse rate, that is, the rate of change of temperature
with altitude when the motion of the air parcel can be considered adiabatic. If we
substitute g D 9.81 ms�2 and Cp D 1004 j kg�1 K�1, we get �d D 9:8 K km�1.
Actually, the average gradient observed in the atmosphere is lower than this value,
being about 6.5 K km�1 and will be denoted by � D �dT=dz. Once we have
introduced the adiabatic gradient, it is very simple to define the potential temperature
	 . This would be the temperature assumed by an air parcel initially at pressure p
brought adiabatically at pressure p0 assumed as reference at 1000 hPa. Using Eq.
(2.14) for an adiabatic and eliminating the specific volume through the gas equation,
we have

Cp

R

dT

T
� dp

p
D 0

which can be integrated from the reference pressure p0 where the temperature is the
potential temperature 	 to the level p where the temperature is T. We get

Cp

R
ln

T

	
D ln

p

P0

and then for the potential temperature

	 D T

�
p0
p

�R=Cp

(1.27)

The exponent R/Cp is about 0.286. The importance of the potential temperature is
that it is a conservative quantity as we will see in the course of the book.

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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Fig. 1.2 The static stability:
on the left negative
stability; on the right
positive stability

1.1.3 Static Stability

Consider an air parcel at some altitude where the measured temperature gradient is
� , with the dry adiabatic gradient being �d. The air parcel does not contain water
vapor and it is lifted from point O to A (Fig. 1.2a). Its temperature will change
according to the dry adiabat and will assume the value TA. This value is lower than
the surrounding atmospheric temperature TB, and at this point the density of the air
parcel is greater than that of the surrounding air and will tend to return to the initial
position. On the other hand, if �d is less than � , the opposite will happen, and, as
shown in Fig. 1.2b, the air parcel will move away from the initial point. The first
case corresponds to a situation of positive static stability, while the second case is an
example of negative static stability. It is interesting to relate the stability to the rate
of change of the potential temperature with altitude. Suppose the air parcel of the
previous examples has a volume dV, density 
0, and temperature T 0. The surrounding
atmosphere, in hydrostatic equilibrium, satisfies the equation dp=dz D �
g. The air
parcel will be subjected to a force per unit volume given by � .
0 � 
/ g and to
acceleration � .
0 � 
/ g=
0. As a function of temperature, we will get

d2ız

dt2
D �g

�d � �
T

ız (1.28)

In writing Eq. (1.28), we have considered that the pressure inside and outside the
air parcel is the same. Also T Š T 0 and T � T 0 D .�d � �/ ız and ız is the vertical
displacement of the air parcel.

The right-hand side of Eq. (2.18) has the dimension of frequency squared and it
can be related to the potential temperature. Using the logarithmic derivative of the
potential temperature

1

	

@	

@z
D 1

T

dT

dz
C R

Cp


g

p
D �d � �

T
(1.29)

and comparing Eqs. (2.18) and (2.19), we get

N2 D g

	

d	

dz
(1.30)

http://dx.doi.org/10.1007/978-3-319-29449-0_2
http://dx.doi.org/10.1007/978-3-319-29449-0_2
http://dx.doi.org/10.1007/978-3-319-29449-0_2
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N is called the Brunt–Väisälä frequency and is a measure of the static stability. From
Eq. (2.18), we have ız D A exp.iNt/, so that for N2 > 0 the air parcel will oscillate
around its equilibrium position (positive stability) and if N2 < 0 the air parcel will
move away from the equilibrium position (negative stability). These two conditions
correspond to

N2 > 0 ! d	

dz
> 0 N2 < 0 ! d	

dz
< 0

In the case of positive stability, the potential temperature will increase with altitude
and the opposite will happen for negative stability.

1.2 The Thermodynamics of Water Vapor

A topic in thermodynamics that is often neglected in general physics courses is that
of the properties of condensable gases. In studying atmospheric physics, the obvious
condensable gas is water vapor, at least for the atmosphere of the Earth. The pressure
and atmospheric conditions on our planet are such as to allow the existence of water
in its three main phases (gas, liquid, and solid). This peculiarity has a fundamental
influence on the weather and the climate of our planet.

We will again start with a brief review of elementary thermodynamics. A good
starting point is the introduction of the equation of Clausius–Clapeyron, which gives
the saturation pressure of water vapor as a function of temperature.

1.2.1 The Equation of Clausius–Clapeyron

Water (just one chemical component) can appear on three different phases, that is,
liquid, gas, and ice (solid). Once we have specified the number of component � and
the number of phases, �, the Gibbs law gives the number of independent variable f
needed to specify the system:

f D � � � C 2 (1.31)

In the particular case of water, � D1, so that f D 3 � �. This means that if the
phase is just one (like gas), we need two variables to specify the state like pressure
and temperature. If the phases are two like liquid and vapor, then we need to specify
only one variable like temperature T. If all three phases are in equilibrium with
f D 0, that means there is only one value for the variables. This is illustrated in
Fig. 1.3 where we have traced the boundaries between the phase in a p, T plane.

We now consider a liquid in equilibrium with its vapor phase and we consider
two isotherms as shown in Fig. 1.4a. When there is only the gas phase, the pressure
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Fig. 1.3 The phase diagram
for water in the p, T plane.
The three curves indicate
those points for which two
phases coexist at equilibrium
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Fig. 1.4 Isothermal lines for water vapor (a, on the left) and the elementary Carnot cycle obtained
by connecting the two isothermal at constant pressure. The liquid volume (VL) and gas volume
(VG) are also indicated

increases as the volume decreases. When the vapor starts to condense and the liquid
and gas phase coexist, then the pressure remains constant up to the point where all
the gas has condensed. After that the pressure increases rapidly. We consider two
isotherms, one at T and the other at T ��T, and connect them with two adiabats
to constitute an elementary Carnot cycle (see Fig. 1.4b). Starting from point A at
pressure es � des (with es being the saturation pressure) and temperature T � �T,
we execute a slight compression to pressure es to which corresponds a volume
VL (point B). In order to increase the saturation pressure, the temperature will
increase to T. At constant temperature the gas expands to volume VG (point C);
from this point a new expansion is carried out to pressure es � des and temperature
T � �T (point D). Finally through adiabatic compression, the gas goes back to
the initial condition. The isothermal expansion from B to C requires that some
heat be provided: this is the latent heat of condensation L (2.5 106 J kg�1). In
the same expansion, the work done is es .VG � VL/. On the other isotherm (D-
A), heat must be subtracted and the work done will be .es � des/ .VG � VL/. If
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the work done along the adiabatic paths is neglected, the total work done will be
des .VG � VL/, and because the efficiency of the Carnot cycle is dT/T, we will have
des .VG � VL/ D LdT=T and then the Clausius–Clapeyron equation

des

dT
D L

T
.VG � VL/ (1.32)

From this equation, we can get an expression which gives the saturation pressure
as a function of temperature. We notice that VG is always larger than VL and in
particular VG is the vapor specific volume, that is, VG D RvT=es

des

dT
D Les

RvT2
(1.33)

where Rv is the gas constant for water vapor (461 J kg�1 K�1). Integrating Eq. (1.33)
we obtain

ln
es

e0
D L

Rv

�
1

T0
� 1

T

�
(1.34)

where the constants e0 and T0 can be obtained from the experimental data of the
phase transition for water vapor. We have e0 D 611 hPa when T0 D 273 K. The
same relation can be obtained for the saturation pressure with respect to ice. The
only thing that changes is the heat of sublimation (2.834 106 jKg�1) so the saturation
pressure with respect to ice is lower than respect to water as shown in Fig. 1.3.
Notice that integration of (1.33) is possible with the assumption that the heat of
condensation or sublimation is independent of temperature. Otherwise, the equation
is a bit more complex (see problem).

1.2.2 About Eutectics

For what we plan to do in the book, we need to talk about thermodynamics of
solution. In the previous pages, we have concentrated on one chemical component
system (i.e., water vapor). Now we consider the simplest example, a solution of salt
(NaCl) that could be used later when we will study cloud formation. For a two-
component system, � D 2. Equation (1.31) gives f D � � ' C 2 D 4 � '. A
complete representation of a two-component system requires three dimensions.

For simplicity, we choose two like temperature and concentration expressed in
practical salinity unit (psu). One psu corresponds to 1 g of salt in 1 kg of water.

This phase diagram is shown in Fig. 1.5. When considering that the variables are
reduced to temperature and concentration, the available phases reduce to f D 3�'.
In this system, three different phases are possible: the pure water ice, the solution
saltwater that we call brine, and pure solid salt written as salt hydrate NaCl 2H2O.
The solid lines separate the three phases according to the phase rule. If we cool
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Fig. 1.5 The water–salt phase diagram

the solution starting from point A (35 psu and a temperature of 5C), we reach
point B where the freezing of the solution starts and we have the coexistence of the
solid phase (ice) with brine. The amount of ice is proportional to the segment DE,
while the amount of liquid (brine) is given by CE. Along the liquidus, both phases
(brine and ice) are in equilibrium so that f D 1. This means we can move along this
line by simply changing temperature with concentration following the rule or vice
versa. The point in which all three phases coexist (F) is called eutectic point. The
temperature for this solution is �21.2 C and the concentration 233 psu. This point
is somewhat similar to the triple point for water when gas, liquid, and ice coexist.
Sea salt (NaCl) is one of main constituents of the condensation nuclei in clouds,
and we will resume the topic later on. However, this introduction is important
because it gives the opportunity to introduce another point related to the formation
of polar stratospheric clouds (PSC) and the stratospheric aerosol that forms after
catastrophic eruptions. Again the simplest case is to deal with a solution of sulfuric
acid (H2SO4) and water. In this case, the phase diagram is more complex because
different hydrates are present beside the simplest one H2SO4 H2O. Figure 1.6a
shows the phase diagram for a sulfuric acid solution in water. On the same figure, we
report the composition of a condensed particle as a function of temperature for an
ambient partial pressure of water vapor of 5 � 10�4 hPa (dashed line) and 6 � 10�4

hPa (6 ppm) (solid line). The line indicated as ice gives the region where simple
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Fig. 1.6 (a) The phase diagram for the solution of sulfuric acid in water is shown. The dotted line
shows temperature as a function of composition for a mixing ratio of 5 ppm and the solid line for
6 ppm. (b) For the same solution, the water vapor pressure is shown as a function of T�1. The
dotted line refers to pressure over pure ice

water ice would form. For this region, it is possible to evaluate the water vapor
pressure as a function of weight percentage of sulfuric acid. In principle a Clausius–
Clapeyron equation can be written also for these solutions as

log Pw D a1 C a2w C a3w
2 C a4w

3 (1.35)

where Pw is the water vapor pressure and w is the weight fraction of sulfuric acid.
The coefficients ai (i D 1, 4) are given in the form ai D A C B=T where A and B

are assigned from experimental measurements. Figure 1.6b (on the right) shows the
results of calculated water vapor pressure as a function of temperature and weight
percentage. Actually, the temperature scale is shown as 1/T, and so the pressures are
linear with this variable. This diagram is rather interesting. For example, if we start
from point A at a pressure of 5 10�4 hPa and cool the solution down to point B, the
composition of the condensate will change from 70 to 30 %. Also if the temperature
falls (point D) to 185 K, the ambient pressure will change from 5 to about 3.1 10�4

hPa, and the difference in the amount of water will be absorbed by the condensate
that will lower further the sulfuric acid content. On the other hand, if water will
freeze out (point B) from this point on, further cooling will force the condensate to
move along the dotted line (BE).

Some of the concept we have just illustrated will be used when we will deal with
cloud formation but also when we will talk about heterogeneous chemistry.
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1.3 Some Effects of Water Vapor

Water vapor is a condensable gas (actually it can also sublimate going from gas
to ice) under the conditions usually found in the troposphere and the stratosphere.
Our conclusions about the thermodynamics of dry air must be modified to take into
account water vapor and its important properties.

The first thing to be defined is the mass mixing ratio w as the ratio between the
mass of water vapor mv and the mass of dry air md in some volume:

w D mv

md
(1.36)

In particular, if we refer to a unit volume, then the mass mixing ratio coincides with
the ratio of densities. If p is the total pressure of the mixture of air and water vapor,
then the density ratio can be expressed through the gas equation

w D e=RvT

.p � e/ =RdT
(1.37)

where e is the partial vapor pressure and Rd and Rv the constants for dry air and
water vapor, respectively. We can also write

w D 0:622
e

p � e
� 0:622

e

p
(1.38)

because the partial pressure is always much smaller than the total pressure.
The presence of water vapor also changes all the previous conclusions about

the vertical temperature gradient. If we consider an air parcel that moves upward
containing water vapor, its temperature will decrease until the physical conditions
are such that condensation occurs. This will happen when the mixing ratio reaches
the saturation value. The elementary heat quantity dq, in the first law, will be
substituted by –Ldws, where ws is the saturation ratio and L the latent heat of
condensation. The minus sign simply means that when water vapor condenses, ws

decreases (dws negative) and heat is provided to the parcel (dq positive). The first
law then becomes

�Ldws D CpdT C gdz (1.39)

Dividing through by dz and writing

dws

dz
D dws

dT

dT

dz
(1.40)
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we obtain for the saturated adiabatic lapse rate

�s D �dT

dz
D �d

1C �
L=Cp

�
.dws=dT/

(1.41)

We see that the saturated lapse rate is lower than the dry adiabatic lapse rate. The
reason is very simple: when water vapor starts to condense in the parcel as it moves
upward, heat is liberated in the condensation process. This heat warms up the parcel.
We will see later that water vapor is more or less present in all the terrestrial planets
so that using Eq. (1.41) we calculate the dry and the saturation lapse rates. It will be
convenient to calculate dws/dT directly from the Clausius–Clapeyron equation and
from Eq. (1.39). We get easily

dws

dT
D Lws

RvT2

From this relation, we see that the value of the saturation mixing ratio is critical
and its evaluation is not straightforward. With the introduction of latent heat, it is
possible to extend the concept of potential temperature to those processes which
include condensation. The starting point is always the first law written in somewhat
different form:

dq

T
D Cp

dT

T
� R

dp

p
(1.42)

From the logarithmic derivative of the potential temperature, we obtain

Cp
d	

	
D Cp

dT

T
� R

dp

p

Combining this equation with Eq. (1.42), with dq D �Ldws, we get

� L

CpT
dws D d	

	

Considering that, as a first approximation, dws/T does not depend on temperature
(see example E.1.2):

� Lws

CpT
D ln 	 C cost (1.43)

The constant can be obtained with the conditions ws ! 0; 	 ! 	e, so that the
equivalent potential temperature 	 e

	e D 	 exp

�
Lws

CpT

�
(1.44)
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Consider now the following process. We start with an air parcel containing water
vapor. This air parcel will behave as dry air until the pressure and temperature
conditions are such that condensation starts. From this point the temperature of
the air parcel will change in such a way to maintain the saturation lapse rate. This
expansion is also called pseudoadiabatic because the heat source is still within the air
parcel. When all the water vapor has condensed out and the water has precipitated,
the parcel will again behave as dry air. We can then define the equivalent potential
temperature as the temperature that would be obtained by expanding the air mass in
a pseudoadiabatic way until all the water vapor is condensed and then compressing
the air parcel following the dry adiabatic lapse rate to the reference pressure of
1000 hPa. Similar to the potential temperature, the equivalent temperature is also
conserved in the pseudoadiabatic processes. This is a quantity that is used frequently
in meteorology and contains an element of complexity. In addition to the potential
temperature, we can characterize further the air parcel containing water vapor. The
parcel can be brought to saturation conditions in two ways: (a) cooling the air at
constant pressure without changing the water vapor content until the saturation
temperature is reached and (b) adding or subtracting water vapor to the parcel
without any contribution from latent heat. In the first case, the temperature at which
the condensation starts coincides with the dew point temperature, Td, which can be
easily evaluated using Eq. (1.38). In the second case, we will reach the wet bulb
temperature Tw, which is less than the temperature of the air parcel but higher
than the dew point temperature. The experimental procedure consists of covering
the bulb with a cloth wick wet with clean water. As the water evaporates, the
temperature decreases to Tw. To understand a little better the meaning of the wet
bulb temperature, we can write Eq. (1.39) at constant pressure

�Ldws D CpdT (1.45)

Consider that we start from an initial temperature T and a mixing ratio w and we
calculate the temperature Tw, that is, the saturation temperature for a mixing ratio
w0. Integrating Eq. (1.45) we obtain

Cp .T � Tw/ D �L
�
w � w0� D L

�
w0 � w

�
which is a simple heat balance. We can then calculate the wet bulb temperature:

Tw D T � L
�
w0 � w

�
=Cp (1.46)

Obviously because w0 is a function of Tw, Eq. (1.46) can be solved, for example,
graphically (as we shall see). Different meanings can be attributed to Tw. As
shown above, when the bulb is at this temperature, the latent heat deposited by
condensation is exactly equal to the heat subtracted by evaporation. We can see also
that the drier the initial air parcel, the larger must be the temperature decrease.

For saturated air there is no net evaporation and the wet bulb temperature is the
same as that of the dry bulb.
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All these processes can be easily grasped if we use graphical methods. The
reason is obviously a historical one because today it is possible to make all these
calculations on a pocket calculator. The calculation in any case is not so easy
because the relation that gives the saturation mixing ratio as a function of the
temperature is an exponential one. We will describe here one of these diagrams,
while in the Appendix we will give details about its construction.

1.3.1 The Tephigram or Thermodynamic Diagram

The first diagram we will illustrate has typically been used by meteorologists
working on daily weather forecasting. This diagram is also known as a tephigram
and it is very instructive because it permits us to visualize concepts we will use often
when dealing with thermodynamic transformations in the presence of water vapor.

The state of an air mass can be defined in terms of temperature and pressure
or alternatively by temperature and potential temperature. The original tephigram
was invented by the English meteorologist Napier Shaw and utilized the potential
temperature as ordinate and the temperature as abscissa. Because the potential
temperature is related to the entropy (which Shaw denoted by �), it was natural
for him to call the diagram T�, tephi. The version we will illustrate first is the
one that uses the pressure as a vertical coordinate (or a function of it), and a
general sketch is given in Fig. 1.7. This diagram is known as the diagram of Stüve
or emagram. We will return later to the Shaw diagram because it offers many
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Fig. 1.7 The tephigram with the history of an air parcel, as described in the text. The thin dotted
lines are saturated adiabats with equivalent potential temperatures in the range 290–350 K. The
thick dotted lines are the dry adiabats. The solid lines are the constant mixing ratio curves
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advantages with respect to the emagram, although the latter is more didactic. In
Fig. 1.7, as ordinate we show the pressure in hPa and as the abscissa the temperature
in degrees centigrade. With respect to these axes, it is possible to draw the curves at
constant potential temperature, which are actually straight lines because the pressure
scale is logarithmic. These are the dry adiabats and in the figure they are represented
by thick dotted lines. We can also draw curves at constant equivalent potential
temperature which are the saturated adiabats. In Fig. 2.3 these are represented by
the thin dotted lines which go from 350 K to 290 K spaced by 10 K. Based on the
definition of saturation mixing ratio, the relative curves can be traced. In the figure
these are the solid lines with smaller slopes and they are indicated by numbers like
10.6, 8.0, 5.7, and 4.7, which are the mixing ratios in units of grams per kilogram.

To show the use of this diagram, we try to solve one of the problems proposed in
Chap. 2 of Wallace and Hobbs. An air parcel with a mixing ratio of 8 g kg�1 has an
initial temperature of 14 ı C at a pressure of 950 hPa. On the diagram, this condition
is indicated with the point A, and it is possible to see that the saturation mixing ratio
at this point is 10.6 g kg�1. The water vapor then is not in saturated condition. At
this point the parcel is lifted up to a pressure of 700 hPa and moves initially along
the dry adiabat (line AB) up to the point where the mixing ratio curve at 8 g kg�1

is intercepted (point B). This happens at a pressure of 890 hPa and from this point
on the parcel will cool following the saturated adiabats with an equivalent potential
temperature of 315 K (line BD). At the pressure of 700 hPa, the total mass of water
vapor condensed is given by 8–4.7 D 3.3 g kg�1. If, for example, 70 % of this water
is lost as rain at the 700 hPa level, we have 1 g kg�1 of liquid water. If we assume
that the maximum altitude corresponds to the top of a hill, we can imagine that after
that the parcel will start to go down to the other side. When the parcel descends to
higher pressure, it heats up and the liquid water evaporates so that the mixing ratio
reaches the value of 5.7 g kg�1. This happens at a level of 760 hPa and a temperature
of 1.8 ıC (point C). If the air parcel reaches 950 hPa, it will follow the dry adiabat
down to point E where its temperature will be 20 ı C. At this point, we state some
definitions: the altitude at which the saturation is reached (point B) is called the
lifting condensation level (LCL). If starting from this point the parcel is brought
to the pressure of 1000 hPa along the saturated adiabat, its temperature would be
	w. This is called the wet bulb potential temperature. The potential temperature
	 at the same altitude is given by continuing along the dry adiabat. On the same
diagram, the dew point temperature is easily determined because from point A we
follow the isobar until we cross the line of the constant mixing ratio, 8 g kg�1.
The wet bulb temperature is obtained from the intersection of the saturated adiabat
through B and the isobar at 950 hPa. If, from the same point B, the air parcel should
have followed a constant mixing ratio line, it would have reached at 950 hPa, the
temperature corresponding to the dew point, Td. The wet bulb potential temperature
is a conservative quantity during the dry and wet adiabatic processes. The final result
of the transformations the air parcel has experienced along the paths A, B, C, D, and
E is a heating from the initial temperature of 14 ıC to the final temperature of about
20 ıC. From a simple examination of a diagram of this kind, it is then possible to
make a forecast for the air parcel and to evaluate, for example, how much liquid
water is available for precipitation.

http://dx.doi.org/10.1007/978-3-319-29449-0_2
http://dx.doi.org/10.1007/978-3-319-29449-0_2
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1.3.2 The Skew T–Log P Diagram (Emagram)

This diagram is used professionally by all meteorologists and is directed to make
the angle between isotherms and adiabats more nearly 90ı. In principle, this can be
done using a coordinate transformation from the p, T (or ˛) space to a generic B
and A space where B and A are new variables related to the usual thermodynamic
variables. It is shown in one of the exercises that with the requirements of equal area
in both spaces implies a condition for A:�

@A

@˛

�
ln p

D � 1
R

�
@p

@ ln p

�
˛

D � p

R
(1.47)

This relation can be integrated by multiplying both sides by d˛ to obtain at constant
pressure

A D �p˛

R
C F .ln p/ D �T C F .ln p/ (1.48)

The function F(ln p) can be chosen in such way that F .ln p/ D �K ln p so that the
new coordinate system will be

A D T C K ln p

B D �R ln p (1.49)

The angle between isotherms and adiabats will depend on the arbitrary constant K.
The isotherm will have an equation with Ti generic temperature:

A D Ti C K ln p D Ti � K

R
B ) B D � R

K
A C R

K
Ti (1.50)

Isotherms will be straight parallel lines whose inclination depends on K and will be
sloping on the right for decreasing pressure.

To obtain adiabats, we simply use the definition to get

ln T D R

Cp
ln p C

�
ln 	i � R

Cp
ln po

�
(1.51)

where the term in the parenthesis is a constant for chosen 	 i. Because T is not a
coordinate curve with constant potential, temperature will not be straight lines but
rather will be concave upward. While the isotherms will be straight lines running
from lower left to upper right (notice the negative coefficient K/B), the adiabats will
be roughly at right angle. We have constructed an emagram as an example and this
is shown in Fig. 1.8a. Detail of this construction can be found in one of the problems
at the end of this chapter. We can see that the ordinate scale is again given by the
log pressure, while the value of the abscissa is simply indicating the intersection
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Fig. 1.8a The skew T–log P
diagram. The vertical
coordinate is still log p, while
the abscissa is related to both
pressure and temperature.
The isotherm at 0, �20, and
�40 ıC is shown together
with dry adiabats at 292 K
and 273 K. Also shown is the
wet adiabat at 293 K and the
saturated mixing ratio of
2.34 g/kg

Fig. 1.8b The same history
shown in Fig. 1.7 is here
traced on the skew T diagram

0 5 10 15 20 25

600

700

800

900

1000
A

B

C

D

10.68 g/Kg
5.74.7

Td . .
Tw

8.65C
10

.5C
14.0C

291.4 K

297.0K

312.85K

23.85C

TEMPERATURE (C)

PR
ES

SU
RE

 (h
Pa

)

of isotherms with the reference pressure of 1000 hPa. The adiabats are now well
separated from the isotherms. The pseudoadiabat at 293 K is also shown and as
expected tends to coincide with the dry adiabat at the same temperature for very
small water mixing ratio. Saturated mixing ratio line at 2.34 g/kg is also shown.
Lower value for qs will be on the left of this line.

Figure 1.8b shows the same parcel history of Fig. 1.7. The particle starts at point
A at a pressure of 950 hPa and 14 C temperature, and it is raised along the dry
adiabat up to 890 hPa where now the temperature has reached 8.65 C. Point B is
where the condensation starts because it is the intersection with the 8 g/kg mixing
ratio. From this point on, the parcel moves along the wet adiabat to reach the 700 hPa
pressure level. At this point the parcel has a water content of 4.7 g/Kg and has lost
8–4.7 D 3.3 g of water. If the parcel should descend from point C, the temperature
at 1000 hPa would be 23.85 C almost 10 C warmer than the initial value.

The wet adiabat corresponds to an equivalent potential temperature of 312.85 K,
and for reference the corresponding dry adiabat is shown.

On the same diagram, we also show how to obtain the initial potential tempera-
ture 	 and the dew point temperature Td and the wet bulb temperature Tw. The latter
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is obtained by pronging the wet adiabat to the 950 hPa pressure level. Td is obtained
by intersecting the initial mixing ratio at constant pressure level.

The advantages of the skew T–log P diagram are due to the fact that the chart
then makes more evident the temperature discontinuities as a function of pressure.
In this diagram, the pressure is on a logarithm scale, and the isotherms and adiabats
are almost normal. As an application of these diagrams, we can discuss a number of
interesting effects that the presence of water vapor have on the atmospheric stability.
In practice, we can repeat the same arguments used to establish the stability of a dry
atmosphere, but we should include the possibility of phase change for water.

1.3.3 The Conditional Convective Instability

We have seen that the static stability in the case of dry air depends on the difference
between the adiabatic lapse rate and the actual lapse rate. In the real atmosphere,
water vapor is always present, so the observed lapse rate will probably between the
dry and wet one given by Eq. (1.41). This calls for reexamination of the discussion
about the stability criteria. We can refer to Fig. 1.9 assuming that the observed lapse
rate (�) is between the saturated lapse rate � s and the dry one �d. The air parcel that
moves from its equilibrium position at O cools along the dry adiabat until the water
vapor it contains starts to condense. This is called the condensation level. At this
point the air parcel is colder than the surrounding atmosphere so that, in the absence
of external forces acting on the mass, it will return to its initial position. If there are
forces acting and these are such to take the parcel beyond A, the temperature will
change according to the saturated adiabat.

Once the parcel is beyond point B, its temperature will be higher than the
surrounding atmosphere, and it will have positive buoyancy and move away freely.
Point B corresponds to the level of free convection. The important thing to notice at
this point is that a temperature profile can be stable with respect to the dry adiabat
(� < �d) but unstable with respect to a saturated adiabat (�s < �). If atmospheric
motions are able to force the air parcel beyond point A, then we have a free motion

Fig. 1.9 Scheme for
conditional instability. See
text for discussion
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Fig. 1.10 Two examples of application of a tephigram. On the left is shown the same case as in
Fig. 1.9. The sloping lines on the bottom are isotherms

that corresponds to a convective instability. This is known as conditional instability.
The same concepts can be illustrated using a tephigram, as illustrated in Fig. 1.10.
Consider an air parcel initially at point O (left part of the figure). At first the parcel
will move along the dry adiabat until the condensation level is reached at point A.
Beyond A, the parcel will follow the saturated adiabat AC. Along the path OAB, the
temperature of the air parcel is lower than the temperature of the surrounding air,
represented by OB, so that the parcel has negative buoyancy and has to be forced.
Beyond B the temperature of the air parcel is higher than the surroundings and the
mass is in a free convection regime.

On the right side of the same figure, we consider now a layer confined between
points A and B and of thickness �p. Initially, this layer is stable because the
temperature in B is higher than in A, which is in a condition of saturation. If this
layer moves upward, point A will remain on the saturated adiabat, while B will move
along the dry adiabat until it reaches the condensation level in B0. At this point, the
temperature lapse rate in the layer is larger than the saturation lapse rate, and the
layer is convectively unstable.

Application of these concepts in a more sophisticated form is useful especially
for meteorological phenomena near the equator. Here, the convergence of the air
masses coming from opposite hemispheres, coupled with the large amount of
water vapor contained in them, is an important energy source for the atmospheric
circulation. In general, however, convective instability can develop in any region
where the low levels of the atmosphere are occupied by humid and warm air, while
the upper layers contain drier air masses. Under conditions in which these masses
are lifted, very violent convective activity (severe thunderstorms) may result. This is
a quite common situation that develops in summer in the region of the USA known
as the Great Plains.
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1.4 The Distribution of Water Vapor in the Atmosphere

The circumstance that water vapor is so abundant on the Earth, and subject to
condensation, suggests a very simple way to treat its distribution with altitude. Air
masses containing water vapor are lifted in convective motion; during ascent they
cool up to the saturation point. As a first approximation, we could imagine that
the water vapor mixing ratio corresponds to the saturated mixing ratio. Actually,
when looking at real data, we note that saturated conditions are met very rarely. An
empirical, global averaged relation gives the relative humidity

e

es
Š 0; 8

�
p

p0

�
(1.52)

where po is the ground pressure. An intuitive explanation of this behavior is that,
when saturated conditions are reached, the condensed water precipitates as ice or
liquid, depending on a rather complicated mechanism. The upper layers are depleted
of water vapor with respect to the saturated value. Starting from Eq. (1.34), it is
possible to find an almost analytical solution to the water vapor distribution. Note
that Eq. (1.52) is valid only in the troposphere because in the stratosphere the
mixing ratio is very small, although it may increase a little with altitude. We start by
rewriting (1.34) with the pressure expressed in Pascals

es D 2; 5049 � 1011 exp

�
�5417

T

�
(1.53)

where T is the temperature at altitude z. The atmosphere is in hydrostatic equilibrium
so pressure will change as p=p0 D exp .�gz=RT/. This can be substituted in Eq.
(1.52) to give

e D eg exp .�z=Hw/ (1.54)

where eg is the vapor pressure at the ground obtained by combining Eqs. (1.52) and
(1.53), while Hw is given by

1

Hw
D 5417

z

�
1

T
� 1

Tg

�
C g

RT
(1.55)

Assuming the temperature lapse rate � D �dT=dz is constant, we obtain

Hw D RT=g

1C 5417R�=gTg
(1.56)

and considering that the scale height is given by H D RT=g; we have

H

Hw
D 1C 5417R�=gTg (1.57)

This relation shows that the ratio of the scale heights is independent of the local T.
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Assuming � D 6:5 km�1 and Tg D 288 K; we have Hw=H � 0:22 and
for water vapor a scale height around 2–3 km. This means that the mixing ratio
decreases rapidly with altitude. We need to make a few points about (1.57). We
have used without restraint the Clausius–Clapeyron equation. Actually, when the
temperature falls below zero degrees, the saturation pressure should be evaluated
not with respect to the liquid phase but with respect to ice. However this would
also be an approximation considering the supercooling of liquid droplets. When the
temperature falls below zero at some altitude, the water could be in the liquid state
(droplets) or present as vapor. In these conditions there is not a spontaneous passage
to the solid phase unless there are condensation nuclei (impurities of very small size
or aerosols). On the other hand, it is very difficult to measure the vapor pressure with
respect to ice because pressures are very small. Recently this problem has received
renewed interest because of the problem of polar stratospheric clouds in connection
with the ozone hole. As a matter of fact, there are now new measurements available
to express the vapor pressure with respect to ice, according to the relation

log e D �2667:4=T C 10:553 (1.58)

This must be compared with the Clausius–Clapeyron equation. Both expressions
include the triple point of water (where all three phases coexist) e D 611:65 Pa,
T D 273:15 K.

The difference between these two relations is shown in Fig. 1.3 where we notice
that above 0 ıC the difference is small, while for low temperatures (which we
often find in the upper troposphere or lower stratosphere), the difference may be
important. In the same figure, the triple point is well evidenced, and also we note
how the melting temperature of the ice is almost independent of pressure. We
will discuss at length this topic when dealing with the heterogeneous chemistry
in the stratosphere. For the time being, we can conclude this part by reporting a
calculation based on the previous equations about the water vapor content of the
lower atmosphere of the Earth. In Fig. 1.11, we show two profiles for the water vapor
volume mixing ratio calculated at saturation or taking into account the observed
data, so that the relative humidity is proportional to the local pressure according
to Eq. (1.52). The mixing ratio by volume is easily converted into mixing ratio by
mass, so that the values range from a few grams per kilogram to a few milligrams
per kilogram going from the surface to the tropopause. The mixing ratio at the
tropopause presents a discontinuity because the temperature in this region is almost
constant or tends to increase slightly. The value of the mixing ratio in this region is
a function of temperature. The main source of water vapor is at the surface, and as a
consequence the tropopause acts as a “cold finger” for water vapor as in the vacuum
apparatus. In practice, what determines the water vapor mixing ratio is the coldest
temperature found in the tropopause. In this sense, the cold finger controlling the
humidity of the stratosphere is actually the tropical tropopause, which is one of the
coldest regions in the Earth’s lower atmosphere. The mixing ratio observed in the
stratosphere is then a little lower than the one given in Fig. 1.11, that is, only a few
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Fig. 1.11 The water vapor
mixing ratio in the
atmosphere of the Earth
calculated at saturation (solid
line) and according to Eq.
(2.35) (dashed line)

parts per million (ppm or 10�6). In principle, clouds will form every time the vapor
pressure exceeds the saturation pressure locally. However, as we will see later, the
problem of cloud formation is much more complex.

It is rather important to note that elementary thermodynamics has taken us far
along the road to study the atmospheres of the planets. It is hoped that this will be
an encouragement not only to students but mainly to teachers.

E.1 Examples

E.1.1 Was the Atmosphere Drier During the Ice Age?

We can carry out now a very simple exercise, based on the work of Wallace
Broecker, a well-known oceanographer and climatologist. Through a number of
experimental methods, it is possible to show that the snow line during the last ice age
was lower by roughly 800 m. The snow line is the altitude where the temperature
falls below zero degrees. Broecker has shown with very simple thermodynamic
arguments that this implies a drier atmosphere, that is, an atmosphere with less
water vapor. In principle, this is obvious because in a colder atmosphere, the
saturation pressure would be reduced and excess water vapor would condense and
rain out. However, the originality of Broecker’s method is that he used simple
thermodynamics to estimate even the temperature structure of the atmosphere
during the last ice age. The known data are the pressure and altitude where the
snow line is located. In the present epoch, an average value for the tropics is
assumed to be 5.3 km at a pressure of 500 hPa, while this value would have been
lowered to 4.5 km at 570 hPa, during the ice age. For the present epoch, we assume
a relative humidity of 65 % and a surface temperature of 26 ıC. The observed
temperature lapse rate is then � D 26=5:3 D 4:9 K km�1. If the dry adiabatic
lapse rate determines the temperature, then at 5.3 km we would have a temperature

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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of 26� 9:8 � 5:3 D �25:9 ıC. In radiative equilibrium we need heating of the same
amount. This heating can be provided by water vapor condensing out. We easily
find that, for each gram mol of water (18 g) that condenses, a mole of air is heated
by 1.55 ıC. A total heating of 25.9 ıC then requires the condensation of 16.7 g mol
of water vapor per mole of air. The assumption of a 65 % relative humidity implies
that at the snow line the saturation pressure is 611 Pa and consequently the partial
pressure is 0.65 � 611 D 397 Pa. We can then assume that at the ground the total
mixing ratio would be 16.7 C 7.94 D 24.64 g mol per mole of air, which implies a
relative humidity at the ground of 72 %, not too far from the 65 % value we assumed
for the entire range of altitude. Exactly the same calculation can be repeated now
for ice age condition assuming that the surface temperature might have been lower.
For a surface temperature colder by 1 ıC, we would find a surface mixing ratio of
water of 19.9 g mol, while for – 5 ıC we would find 22 g mol. We then observe a
reduction of the water vapor at the ground ranging from 81 to 92 %.

Later in this book we will discuss the ice age at length and also global warming,
and we need to keep in mind these very simple arguments. Less water vapor in the
atmosphere means less heat absorbed by the atmosphere and this could be a way to
accelerate the cooling. On the other hand, if the Earth warms, the opposite reasoning
implies that it should have more water vapor in the atmosphere, and this again
could accelerate warming. But things are much more complex than that because
the balance between radiative forcing and condensation may depend on the water
vapor distribution with altitude. We need to slow down a bit and continue on the
learning curve.

E.1.2 More on the Clausius–Clapeyron (C–C) Equation

We obtained a simple way to calculate the saturation pressure of water vapor
integrating Eq. (1.33). The integration assumed that the latent heat is constant. The
most simple dependence of the latent heat on temperature is linear so that we could
write

Lv D Lv0 C �
Cpv � Cpw

�
.T � T0/ (E.1.1)

where Lv0 is a reference value for Lv and Cpv and Cpw refer to the specific heat for
vapor and liquid water, respectively. Substituting Eq. (E.1.1) in Eq. (1.33), we get

1

esw

desw

dT
D Lv0 C �

Cpw � Cpv
�

T0
RvT2

� Cpw � Cpv

RvT

This equation can be integrated by parts to give

ln
esw

es0
D Lv0 C �

Cpw � Cpv
�

T0
Rv

�
1

T0
� 1

T

�
� Cpw � Cpv

Rv
ln

T

T0
(E.1.2)
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Considering that T0 D 273:15 K, es0 D 6:11 hPa, Lv0 D 2:5 � 106 Jkg�1, Cpv D
1850 Jkg�1K�1, and Cpw D 4218 Jkg-1K-1, Eq. (E.1.2) reduces to

esw D 6:11 exp

�
53:49� 6808

T
� 5:09 ln T

�
(E.1.3)

While in case Lv is assumed to be independent from temperature, the saturation
pressure is given by Eq. (1.34). The same procedure can be followed for ice and in
this case for latent heat depending on the temperature the saturation pressure over
ice is given by

esi D 6:11 exp

�
26:16� 6293

T
� 0:555 ln T

�
(E.1.4)

For latent heat independent from temperature, we have Eq. (1.58).

E.1.3 The Equivalent Potential Temperature

The equivalent potential temperature defined by Eq. (1.44) has been obtained with
the approximation that dws/T does not depend on temperature. To show that this is
an acceptable approximation, consider

d
�ws

T

�
D ws

T

�
dws

ws
� dT

T

�
(E.1.5)

We shall show that the first term in the parenthesis on the right is much larger than
the second. Their ratio is given by

T

ws

dws

dT

And considering the definition of ws, we get

T

ws

dws

dT
D T
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dT
� T

p

dp

dT

The first term on the right can be expressed with the Clausius–Clapeyron equation:

T
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dws

dT
D L

RvT
� T

p

dp

dT
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The order of magnitude of both terms on the right along a saturated adiabat gives
around 0 ıC:

T

ws

dws

dT
� 20 � 5 D 15

So that we can neglect the second term in (E.1.5) and obtain

d
�ws

T

�
D dws

T

So that for the equivalent potential temperature, we get

� L

CpT
dws D � L

Cp
d
�ws

T

�
D d	

	

E.1.4 The Saturated Adiabat

We can start from Eq. (1.39) and express dws as

dws

ws
D des

es
� dp

p

So that Eq. (1.39) becomes

�Lws

�
des

es
� dp

p

�
D CpdT C gdz

And dividing by dz and rearranging, we get
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Considering the C–C equation, we have 1
es

des

dT
D L

RvT2
and the saturated lapse rate

�dT
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D �s D �d

1C Lws

RT

1C "L2

CpR

ws
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(E.1.6)
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This equation can be integrated numerically to get a saturated adiabat. When the
saturation mixing ratio goes to 0, the saturated lapse rate coincides with the dry
lapse rate. It is rather interesting to compare this expression with the definition of
equivalent potential temperature given by Eq. (1.44). In this case, when 	 e has been
fixed, the derivation of (1.44) with respect to altitude must be zero:

1

	

d	

dz
C L

Cp

�
1

T

dws

dz
� ws

T2
dT

dz

�
D 0 (E.1.7)

After some algebra, we reach a conclusion very similar to (E.1.6), that is,

�dT

dz
D �s D �d

1C Lws
RT

1C "L2

CpR

ws

T2
� wsL

CpT

(E.1.8)

We see that an additional term in the denominator and the ratio between the two
terms is given by

"L

RT
� 0:622 � 2:5 � 106

287 � 300 � 18

Again we see that the approximation used earlier is reasonable. These results are
shown in Fig. E.1.1. The moist adiabat obtained by using the condition 	e D cos t
is not distinguishable from the one obtained by solving Eq. E.1.6. Although the
construction of these curves is simple, we give below a MATLAB program to
integrate the simple equation dT=dp D �s=
g.

[z,y]Dode45(’gradfun’,[4e4 1e5],[210.21 210.21]);

semilogx(z,y(:,1), z,y(:,2),’r’),xlabel(’p’),

axis([4e4 1e5 210 280])

function ydotDgradfun(z,y)

ydotDzeros(2,1);

rdD287;

cpD1004;

gammadD-rd/cp;

latD2.5e6;

esatD611*exp(19.83-5417/y(1))

epsiD0.622;

wsDepsi*esat/z;

numD1Clat*ws/(rd*y(1));

denD1Cepsi*lat*lat*ws/(cp*rd*y(1)*y(1));

auxDnum/den;

ydot(1)D-aux*gammad*y(1)/z;

ydot(2)D-gammad*y(2)/z;
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Fig. E.1.1 The dry and moist
adiabat obtained with the
program given below. The
potential temperature is
273.15 K
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E.1.5 Constructing an Emagram

In Sect. 1.3.1, we have shown what the emagram is. Here, we want to show how
to construct it. The MATLAB program has been inspired by the one presented
in Kerry Emanuel’s page http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-
Planetary-Sciences/12-811Spring-2005/Tools/index.htm. It is very simple and is
reported below.

function successDtskew(pz,tz,rhz)

%

% pz D pressure (hPa), tz D temperature (C),

rhz D relative humidity (0-1)

%

pzD1000.;

tzD273.;

rhzD0.6;

pD[1050:-50:600];

pplotDtranspose(p);

t0D[0:1:25];

[ps1,ps2]Dsize(p)

psDmax(ps1,ps2);

[ts1,ts2]Dsize(t0);

tsDmax(ts1,ts2);

http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-Planetary-Sciences/12-811Spring-2005/Tools/index.htm
http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-Planetary-Sciences/12-811Spring-2005/Tools/index.htm
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for iD1:ts,

for jD1:ps,

tem(i,j)Dt0(i)C30.*log(0.001.*p(j))

thet(i,j)D(273.15Ctem(i,j)).*(1000./p(j)).ˆ.287

esD6.112.*exp(19.83.*tem(i,j)./(273.15Ctem(i,j)));

q(i,j)D622.*es./(p(j)-es)

thetaea(i,j)Dthet(i,j).*exp(2.5.*q(i,j)

./(tem(i,j)C273.15));

end

end

pDtranspose(p);

t0Dtranspose(t0);

tempDtranspose(tem);

thetaDtranspose(thet);

thetaeDtranspose(thetaea);

qsDtranspose(q);

hDcontour(t0,pplot,temp,[8.65,10.5,14,20],’k’);

hold on

set(gca,’ytick’,[1000:100:600])

set(gca,’yscale’,’log’,’ydir’,’reverse’)

set(gca,’fontweight’,’bold’)

set(gca,’ytick’,[600:100:1000])

set(gca,’ygrid’,’on’)

hold on

hDcontour(t0,pplot,theta,[291.4,297, 312.85],’b’);

hDcontour(t0,pplot,qs,[4.6,5.7,8,10.7],’g’);

hDcontour(t0,pplot,thetae,[312.85],’r’);

hold off

xlabel(’Temperature (C)’,’fontweight’,’bold’)

ylabel(’Pressure (mb)’,’fontweight’,’bold’)

The core of the program is the following instructions:
for iD1:ts,

for jD1:ps,

tem(i,j)Dt0(i)C30.*log(0.001.*p(j))

Here, he builds a matrix for the temperature (tem) expressed in degrees centi-
grade. This expression reproduces the first transformation in (1.49). The reader may
change the coefficient (30) to obtain different inclination for the curves.

thet(i,j)D(273.15Ctem(i,j)).*(1000./p(j)).ˆ.287

esD6.112.*exp(19.83.*tem(i,j)./(273.15Ctem(i,j)));

q(i,j)D622.*es./(p(j)-es)

These instructions simply build matrix for the potential temperature and the
saturated mixing ratio.

thetaea(i,j)Dthet(i,j).*exp(2.5.*q(i,j)

./(tem(i,j)C273.15));



E.1 Examples 31

This instruction simply gives the equivalent potential temperature as a matrix.
Notice that the factor 2.5 before q(i,j) is simply an approximation to L/Cp

end

end

To draw the lines at constant temperature, mixing ratio, etc., the instruction
contour is used in which the specific values to be drawn are specified.

E.1.6 The Equal-Area Requirement

We would like to justify the Eq. (1.47). We start from a transformation from the
system p,˛ to the system A, B. As shown before, A and B are functions of the
initial thermodynamic variable so that each point p, �a corresponds to a point in A,
B. Any closed cycle in one diagram is a closed cycle on the other.

We shall require that the area enclosed in the two diagrams is the same to insure
that the plot is a thermodynamic diagram. ThusI

�pd˛ D
I

AdB

We have I
.pd˛ C AdB/ D 0

This implies that the integrand must be an exact differential like dsI
.pd˛ C AdB/ D ds

where ds could be a function of ˛ and B

ds .˛;B/ D
�
@s

@˛

�
B

d˛ C
�
@s

@B

�
˛

dB

Comparing with the previous expression

p D
�
@s

@˛

�
B

and A D
�
@s

@B

�
˛

If we derive the first term with respect to B and the second with respect to ˛�
@p

@B

�
˛

D @2s

@˛@B
and

�
@A

@˛

�
B

D @2s

@˛@B
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Fig. E.1.2 Representation of
an equal-area transformation
from a .�p, ’ space to a A, B
space

So that �
@p

@B

�
˛

D
�
@A

@˛

�
B

When T is substituted for B, we get (1.47) (Fig. E.1.2).

E.1.7 The Virtual Temperature

Virtual temperature is introduced in connection with saturated air. In a mixture of
dry air and vapor, the equation of state for the mixture reads

.pd C e/V D RT

�
md

Md
C mv

Mv

�
D T .Rdmd C Rvmv/

where “d” refers to dry air and “v” to vapor. We can eliminate the volume through
the definition of specific volume

˛ D V

md C mv

to get

p˛ DD T

�
Rdmd C Rvmv

md C mv

�
D qT

�
md

mv

Rd C Rv

�
where we have introduced the specific humidity

q D mv

mv C md

In practice, the mixture can be treated as a perfect gas with a constant R given by

R D .1 � q/Rd C Rvq D Rd



1C q

�
1

�
� 1

��
D Rd .1C 0:608q/
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Finally, the equation of state can be written as

p˛ D Rd .1C 0:608q/T

or

p˛ D RdTv

where

Tv D .1C 0:608q/T (E.1.9)

is the virtual temperature. Considering the values for q that does not exceed values
of the order of 0.02, the virtual temperature may differ by 2–3 ıC from the
usual temperature. This difference although small may have a large influence on
convection.

E.1.8 Using Diagrams in Forecasting

Suppose now that we have made a sounding whose results can be plotted on a skew
T–ln P diagram like in Fig. E.1.3. This is a common emagram in which we have the
isotherms that slope at right going upward, the dry adiabat sloping to the left and
constant mixing ratio given by the almost straight lines. The sounding is the heavy
line that delimitates the gray area. The other border of the area gives a particular
moist adiabat. Starting from point A, the parcel will move along a dry adiabat
up to intersect the moist adiabat that corresponds to its initial water vapor content
(3.4 g/kg). The intersection point is the so-called lifting condensation level (LCL).
During this ascent, the parcel temperature is lower than the environment so that the
particle must be forced to rise. If this forcing continues, the parcel will reach the
so-called level of free convection (LFC) because after that the temperature of the
parcel will be higher than the environment, and the parcel will move freely. The
parcel starts from 1000 hPa at about 287 K with a content of 10 g/kg of water
vapor and moves along the dry adiabat at 299 K to intersect the moist adiabat
with an equivalent potential temperature of 330 K. We may calculate the energy
necessary to push the parcel from the initial point up to the lifting condensation
level. Considering the density difference �
 between the environment and the
parcel, we get as energy per unit massZ z

0

�




gdz D

Z p

psurf

�T

T

dp



D R

Z p

psurf

�
T 0 � T

�
d ln p
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Fig. E.1.3 A sounding
plotted on the emagram. The
heavy line is the sounding.
The segment from A to LCL
is a dry adiabat, while the
curve from LFC to LOC is
the moist adiabat
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This energy is called convective inhibition energy (CINE). As a matter of fact,
the temperature of the parcel is lower in the environment, and consequently the
parcel must be pushed upward. Considering the example, the temperature difference
between psurf D 1000 hPa and p D 700 hPa is on the average 5 ıC so that the
integral has the value 500 J kg�1. We can relate this energy to the velocity that the
parcel should have initially using the simple relation

CINE D
Z p

psurf

dv

dt
vdt D 1

2

�
v2 � v2surf

�
Assuming v D 0, we get

vsurf D .2CINE/1=2 � 33ms�1

This is the rather large value for the initial value of the parcel velocity in order
to reach the LCL. Between this level and the limit of convection (LOC), the
parcel will accelerate because its temperature is higher than the surrounding. The
corresponding energy is called convective available potential energy CAPE) and
can be evaluated in the same way as CINE:

CAPE D �R
Z LOC

LCL

�
T 0 � T

�
d ln p
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CAPE is the energy that could be released during the convection. CINE and CAPE
are very important numbers for the evaluation of the occurrence and intensity of
thunderstorm. If CINE is positive, it means energy must be spent to raise the parcels
(e.g., by orographic forcing). Once the parcels are beyond LCL, they can release
CAPE energy. The other quantity that can be estimated from a sounding is the
amount of precipitation using the decrease in water mixing ratio with altitude.
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Chapter 2
Fundamentals: Radiation in the Atmosphere

We assume that the most elementary notions about blackbody radiation are already
known. We will use those concepts to find, for example, the average temperature of
a planet. Unfortunately, also in the case of radiation, in general physics courses, the
rule is to go straight from Planck’s law to the second quantization. In this way, it
is simply ignored that Planck’s law has so many applications. The average physics
student confuses “radiative” and “radioactive.” The problem of radiative transfer is
completely neglected to the point that even the simplest notions about absorption
are not mentioned.

At this point, however, we cannot proceed any further without a “baby step”
in treating the radiative processes. A preliminary point is to examine the radiative
field that is surrounding us due to solar radiation and planetary radiation, that is, the
infrared radiation coming from the atmosphere and the Earth’s surface.

2.1 The Definition of Radiometric Variables

Based on our experience, we know that students learn everything about the lens
equation, but very few of them are able to evaluate how much energy impinges
on the film (or chip) of their camera. Some basic definition is then necessary for
the variables related to the energy flux of the electromagnetic waves. Nowadays,
students can quite easily visualize a radiation beam, for example, a laser beam. In
the old days, the nearest thing to a radiation beam was a light of an electric torch.
Both examples have their advantages. A laser beam is characterized by a direction
of propagation, but the divergence is so small that one is not aware of the beam
divergence. A light torch on the other hand makes clear that radiation is emitted
within a finite solid angle. If we refer to Fig. 2.1, we see that the intensity of radiation
is a vector whose direction and orientation are determined by the propagation, with
the magnitude given by

© Springer International Publishing Switzerland 2016
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DOI 10.1007/978-3-319-29449-0_2

37



38 2 Radiation in the Atmosphere

Fig. 2.1 The elements to
define the intensity of
radiation

ds

dΩ
θ

ξ′

ξ

I� D power

unit of surface; unit solid angle; unit of frequency
(2.1)

The intensity is then measured in W m�2 sr�1. The flux of radiation in the � 0
direction is given by

F�
�
� 0� D

Z
I� .�/ cos 	d� (2.2)

The flux calculation requires projection of the radiation intensity on the direction
� 0 and integration over the entire solid angle. The solid angle is justified by the torch
example, but it is also obvious when we consider a receiving system or a detector.
In this case, the solid angle corresponds to the acceptance angle (again, think about
your camera).

A classic example of radiation intensity is given by the Planck function, that
is, the power emitted per unit area, unit frequency, and unit of solid angle by a
blackbody at temperature T:

B�.T/ D 2h�3

c2
�
eh�=kT � 1

��1
(2.3)

where h is the Planck constant, c the speed of light, and k the Boltzmann constant.
Equation (2.3) can also be expressed as power per unit surface, unit frequency, and
unit of wavelength:

B�.T/ D 2hc2

�5

�
ehc=�kT � 1� (2.3a)

The blackbody radiation is isotropic so that if we consider a surface at tempera-
ture T, we can easily evaluate the flux normal to the surface. I�(�), now, is constant
and is the Planck function Bv so that the integral of Eq. (2.2) reduces to

F� D 2�B�

�=2Z
0

sin 	 cos 	 d	 D �B� (2.4)

If this relation is integrated across the frequency, we get B D �T4/� . The intensity
of radiation sometimes is indicated as radiance.
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We have defined all the relevant quantities about radiation in connection with
Planck’s law simply because it is much easier.

2.2 The Solar Radiation

The energy that the Earth and the planets receive from the sun determines the
physical characteristics of the planetary atmospheres together with the emitted
planetary (infrared) radiation. We have seen in Chap. 1 that the power per unit area
at the top of the atmosphere of the Earth, that is, the solar constant, has a value
around 1380 W m�2. The value of this constant is measured today directly outside
the atmosphere from orbiting satellites.

The sun is a star that has a radius of 695,000 km and a surface temperature of
about 5770 K, while the temperature of the nucleus reaches probably 15 million
degrees. The sun can be considered with good approximation as a blackbody, with a
maximum emission occurring at about 0.5 �m (see exercises). This can be seen
from Fig. 2.2 which compares the solar spectrum taken outside the atmosphere
with a spectrum taken at the surface at solar zenith angle of 60ı. We notice
that even in the most external part of the sun, there are absorption phenomena
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Fig. 2.2 The spectrum of the solar radiation outside and below the atmosphere of the Earth. The
spectrum is referred to a 60ı zenith angle. The gases responsible for absorption are indicated. The
dotted line is a blackbody emission at 6000 K
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146.2x106 km
151.0 x 106 km
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( January 1st )

( July 1st )
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Πi

Fig. 2.3 The geometry of the revolution of the Earth around the sun during the seasons. At the
solstices the rotation axis is contained in the plane normal to the ecliptic passing through the
Earth and the sun. At the equinoxes the rotation axis and the normal to ecliptic are contained
in a plane perpendicular to the sun–Earth line. In the figure, the sun–Earth distance at the aphelion
and perihelion is also reported, as is the length of the perihelion, ˘

that change considerably the shape of the emission. The Earth’s atmosphere also
reduces the power reaching the surface due to the absorption by ozone and other
atmospheric gases that are indicated in the figure. Particularly important is the
ozone absorption that blocks the radiation below 300 nm. We will see later that
atmospheric absorption is responsible for the attenuation of about 15 % of the power
reaching the surface. Besides the actual power that reaches the surface, we need to
take into account how this power is distributed during the year, as a function of
latitude. It is something we all learn from physical geography textbooks most of
which contain a figure very similar to Fig. 2.3, where the Earth is shown in its orbit
around the sun. As we have seen before, the rotation axis of the Earth makes an
angle of about 23ı with the normal to the plane of the ecliptic. This implies that the
different regions of the Earth are exposed differently to the solar radiation.

At the winter solstice, the rotation axis at the north pole points in a direction away
from the sun and during the winter the regions of the polar arctic circle are always in
the dark. The winter solstice happens between December 22 and 23, and the Earth
reaches the minimum distance from the sun (perihelion) about 10 days later. The
opposite happens at the summer solstice (June 21–22) when the rotation axis points
toward the sun: in this case, the high latitude regions are always illuminated. At the
equinox, the rotation axis and the normal to the ecliptic are in a plane perpendicular
to the sun–Earth line. At that moment, there is no longer asymmetry between the two
hemispheres, and the night has exactly the same duration as the day (March 20–21,
September 22–23). The modulation introduced in the power received at the different
latitudes causes the seasons, which are symmetrical in the two hemispheres. The
length of the perihelion shown in the figure is the angle between the autumn equinox
and the winter perihelion. It is to note that the Earth is nearer to the sun in the winter
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Fig. 2.4 The geometry of
solar illumination on the
Earth. The thick line indicates
the path of the sun on the
Earth. ı is the declination
with respect the equatorial
plane. � is the latitude, h the
hour angle, and 	 the zenith
angle (Adapted from Sellers
1965)
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than in the summer. However, this does not really influence the heat received in
the season because the dominating effect is the average height of the sun above the
horizon. We will talk at length about this when treating the theory of the ice ages.

To arrive at a more quantitative treatment of distribution of the solar radiation, we
can refer to the scheme given in Fig. 2.4. To understand this figure, the observer must
imagine himself to be at the point P at latitude �. In this case, the local vertical is
given by the direction OZ, and then the zenith angle of the sun (the angular distance
between the vertical and the direction of the sun) is 	 .

As we have seen already, the incident flux is given by

F D F0 cos 	 (2.5)

where with F0 we have indicated the instantaneous flux when the earth is at distance
d from the sun, which is at an average distance dm. Considering that the flux goes as
the inverse of the square of the distance, we can write

F D S0

�
dm

d

�2
cos 	 (2.6)

What is of interest to us is the average value of the flux hFi in some region at latitude
	 , so that

hFi D S0

�
dm

d

�2Z t sunset

t sunrise
F.t/dt= length of the day (2.7)

which represents the average value of the insulation during the daytime. From
Fig. 2.4, we should find a relationship between the solar zenith angle and the hour
angle h, that is, the angle at which the Earth should rotate so that the meridian at P
is just below the sun. From the spherical triangle PDN, we have

cos 	 D sen � sen ı C cos� cos ı cos h
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where ı is the solar declination, that is, the angular distance of the sun with respect
to the equatorial plane, and ' is the latitude.

At this point, it is simple to find a relationship between the hour angle and the
time because if� is the angular velocity of the Earth, then dh D�dt and substituting
in Eq. (2.7) we obtain

hFi D S0
2�

�
dm

d

�2Z H

�H
.sen � sen ı C cos � cos ı cos h/ dh (2.8)

where H indicates hour angle for sunrise and sunset for which the solar zenith is
�/2. Equation (2.8) can be easily integrated to give

hFi D S0
�

�
dm

d

�2
.H sen � sen ı C cos � cos ı sen H/ (2.9)

where H is a function of latitude and is obtained with 	 D 0 in the equation that
gives the zenith angle

cos H D � tan � tan ı (2.10)

that must be substituted in the (2.9) for each latitude. With this relation, it is possible
to evaluate the insulation outside the atmosphere of the Earth, as it is shown in
Fig. 2.5. Actually, this figure shows the W m�2 accumulated in 1 day. We notice an
almost perfect symmetry with respect to the summer solstice (SS). The symmetry

Fig. 2.5 The average power
per unit surface (in W m�2)
incident at the top of the
Earth’s atmosphere as a
function of the season and
latitude. WS, SE, SS, and AE
are in order the winter
solstice, the summer equinox,
the summer solstice, and the
autumn equinox. The average
is carried out on 1 day. The
dark zones correspond to the
polar night
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is not complete, however, with respect to the equinoxes, because in the winter the
Earth is nearer to the sun. This fact implies a slight asymmetry especially for the
highest values.

It is quite surprising that the regions with maximum in the insulation are those
at high latitude in the summer. This happens because the long period of insulation
compensates for the very high zenith angle of the incident radiation. The darkest
zones are those not illuminated during the polar night. It should be noted, however,
that the power indicated refers to the radiation incident at the top of the atmosphere.
The radiation reaching the surface is quite different from that shown in Fig. 2.5.
This will depend on the distribution of the cloudiness and the surface albedo, both
functions of the season and the latitude. Actually, the use of satellite data has
made it possible to obtain average values of the albedo and its distribution. For
the clouds, only recently have statistics been developed that give indications on
their distribution or probability. However, by their intrinsic nature, clouds are a very
complex subject.

Let us return for a moment to the practical evaluation of the hour angle and the
declination of the sun. A good approximation is to refer to a circular orbit of the
Earth around the sun. In this case the declination can be written as

ı D 23:45ı cos



2� .d � dr/

365

�
where d is the day of the year and dr is the day of the summer solstice. For example,
for March 3 and non-leap years, d D 31 C 28 C 3 D 62 and dr D 173 because the
summer solstice is on June 22. In this case, the declination is simply 12.54ı. If for
the same day we want to calculate the solar zenith angle at 3 in the afternoon at
a latitude of 43ı north, we need to evaluate the hour angle. This is defined as a
function of the Coordinated Universal Time (UTC) or GMT, the Greenwich Mean
Time. If we know the longitude of the place �e, the hour angle is given by

h D 2�

�
UTC � 12

td

�
� �e:

In this case, td is the length of the day (24 h), and the longitude is positive if west
and negative if east. If we take my place in Italy, situated at 13ıE, then the simple
formula above gives for h 43ı. Substituting in the expression for the zenith angle,
we get 	 D 47.62ı.

2.3 Scattering and Absorption of Solar Radiation

As we have already seen, the solar radiation entering the atmosphere of the Earth is
absorbed by its gaseous components. At relatively low altitudes, another important
process is the diffusion. In this first part, we will sketch the processes of diffusion
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Fig. 2.6 The electric field E
of an electromagnetic wave
linearly polarized incident on
a charge e at the origin of the
system of axis. 	 is the
direction considered for the
emission of radiation. A layer
with diffuse fluxes is also
shown
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(scattering) and absorption only due to the gases. The same processes can take
place in the presence of particulates (i.e., small particles or aerosol). However, their
complexity is such to suggest postponing their treatment for a few chapters down the
line. As usual, we will start from things that should be known from general physics:
we will only apply them to some specific problem.

2.3.1 Rayleigh Scattering

The simplest way to deal with Rayleigh scattering is to refer to the model given
in Fig. 2.6. In it, the electric field of a linearly polarized electromagnetic wave is
incident on a bound electron. Under the action of the varying electric field, the
charge starts to oscillate around the origin along the field direction. If the incident
field is written in the form E D E0 sen !t, the equation of motion for the charge is

d2z

dt2
C !20z D e E0

m
sen !t (2.11)

where !0 is a typical frequency of oscillation. The solution for Eq. (2.11) is

z D e E0 sen !t

m
�
!20 � !2

� (2.12)

and the dipole moment is given by (see for example Bekefi and Barrett 1977)

p D ez D e2 E0 sen !t

m
�
!20 � !2

� (2.13)

If we use the formula that gives the energy radiated by an oscillating dipole, we get
for the electric field

E D !2p0 sen 	

4�"0c2r
sen ! .t � r=c/ (2.14)
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where r is the distance from the center of the dipole, p0 D e2E0=m
�
!20 � !2

�
,

and the other symbols have the usual meanings. From the definition of energy flux
(Poynting vector), we have, after averaging over the time,

S D !4p20 sen2 	

32 �2"0c3r2
(2.15)

and substituting for the value of p0, we have

S D !4sen2 	

32 �2"0c3r2

 
e2E0

m
�
!20 � !2�

!2
(2.16)

This relation shows a number of things. First of all because!0 �!, the scattered
power is actually proportional to the fourth power of the frequency, that is, to the
inverse of the fourth power of the wavelength. This means that the long wavelengths
(red) are scattered less than the short ones (blue); this may explain the blue color
of the sky. Besides, for a polarized wave, the scattered radiation is not isotropic and
is even zero in the dipole direction and has a maximum in the direction of incident
radiation. At this point, we could find the irradiated power for unit of solid angle,
dP/d�, noting that S D dP/dA D dP/(r2d�) so that

dP

d�
D !4sen2 	

32 �2"0c3

 
e2 E0

m
�
!20 � !2�

!2
(2.17)

To use this equation, it is necessary to put in relation microscopic quantities
appearing in Eq. (2.17) with macroscopic quantities like the index of refraction.
In practice, it is possible to show (see, e.g., Liou) that

e2

m
�
!20 � !2

� D 3"0

N

n2 � 1

n2 C 2
(2.18)

where n is the index of refraction and N the density of the dipoles (i.e., of the
molecules). Substituting in (2.17), we get

dP

d�
D 9�2"0c sin2 	

2N2�4

�
n2 � 1
n2 C 2

�2
E20 (2.19)

where we have explicated the dependence over the wavelength. The equation we
have obtained is valid for a very particular situation because it gives the power
scattered from a polarized wave. The natural light is the superposition of a wave
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polarized in random directions so that we could find a cross section for this process
that should then be generalized. The Poynting vector S D c"0E20=2 is related to the
cross section �m by the equation

dP

d�
D �m .	/ S (2.20)

This shows how the cross section is the fraction of the flux subtracted from the
incident radiation and irradiated in the 	 direction for unit solid angle. From the
definition of the Poynting vector, we find immediately

�m .	/ D 9�2

N2�4

�
n2 � 1

n2 C 2

�2
sen2	 (2.21)

From this cross section, it is possible to obtain the total one integrating over the
solid angle, that is,

�m D
Z 4�

0

�m .	/ d� D 2�

Z �

0

9�2

N2�4

�
n2 � 1

n2 C 2

�2
sen3	d	

which gives

�m D 8�3
�
n2 � 1�2=3N2�4 (2.22)

where we have used the approximation that n2 C 2 � 3. The cross section defined in
this way refers to a single polarization direction and to a single molecule and so must
be measured in m2. More often, it is preferred to use a volume scattering coefficient
that is obtained by multiplying Eq. (2.22) by N. The value of the refraction index
of air for standard conditions of pressure and temperature depends weakly on the
wavelength and ranges from 1.00029668 at 270 nm up to 1.00027269 a 4000 nm.
The corresponding value of the Rayleigh cross section at 270 nm is 8.960ı10�30 m2

which can be easily scaled with the wavelength. When we consider natural light, the
cross section does not change, but it changes the angular dependence of the diffuse
radiation, and Eq. (2.21) must be substituted by (see Examples)

�m .	/ D �2
�
n2 � 1�2
2N2�4

�
6C 3ı

6 � 7ı

� �
1C cos2	

�
(2.23)

In this equation, the quantity appearing in parentheses is the depolarization factor
.6C 3ı/ = .6C 7ı/ D 1:06. This factor arises from the fact that the orientation of
the molecular dipoles is not necessarily the same as the incident field. Equation
(2.23) shows that diffuse radiation is emitted in the case of natural light in all
directions. We can introduce a phase function as the ratio of the energy scattered
in the direction 	 for a unit of solid angle to the average radiation scattered over the
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entire solid angle. This definition implies that the phase function be normalized to
unity and in the particular case of Eq. (2.23) is given byZ 4�

0

P .	/ d� D 1 ) P .	/ D 3
�
1C cos2	

�
4

(2.24)

The Rayleigh scattering simply redistributes the radiation and does not imply any
absorption. The redistribution however gives rise to an attenuation of the radiation
along the propagation direction. It is possible to establish a relation between the loss
of intensity dI of the radiation passing through a layer of thickness dz

dI D ��mNI dz (2.25)

Integrating this equation, we have the result

I D I0 exp

�
�
Z 1

0

�m Ndz

�
D I0e

�� (2.26)

The quantity � D
Z
�mNdz is called the optical thickness or optical depth and for

the atmosphere at a wavelength of 500 nm (in the visible) has a value of about 0.1.
Now we can ask what happens to the solar flux in the presence of Rayleigh

scattering. If we look at the phase function of Eq. (2.24), we can see that most of
the flux is scattered either in the forward or in the backward direction. Essentially,
we may assume that the diffuse flux is reduced to a stream traveling in the
forward direction and another in the opposite direction. If we refer to Fig. 2.6,
we can indicate as F� the flux in the positive y direction and FC the flux in the
opposite direction. To be closer to reality, we will assume that the optical thickness
increases with increasing y. After traversing a layer of thickness d� , the flux F�
will be decreased by the amount F�/2 and increased by FC/2. The first is due
to “absorption,” while the second is due to scattering of the flux traveling in the
negative y direction (following Stephens 2004):

dF�

d�
D 0:5

�
FC � F�� (2.27a)

For the other flux, we will have exactly the same expression

dFC

d�
D 0:5

�
FC � F�� (2.27b)

One very simple reason is that the net flux FC � F� must not change across d�
because this is conservative scattering and energy must not be lost. Then if we sum
and subtract Eqs. (2.27a and 2.27b), we get
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d
�
FC � F��

d�
D 0 (2.28a)

d
�
FC C F��

d�
D �

FC � F�� (2.28b)

The solution to this system is very easy to find, with the fluxes given by

FC D D C C .1C �/

F� D D � C .1 � �/
(2.29)

The integration constants C and D can be found from the boundary conditions. For
simplicity, we will assume that the incident flux F0 coincides with F�(0). We will
also make the case that the medium has a total optical thickness �* (e.g., at the
origin), and the reflectivity at this point is zero so that FC(�*) D 0. From these two
boundary conditions, we get for the constants

C D �F0
.2C ��/

D D F0 .1C ��/
.2C ��/

An interesting quantity is the reflectivity, defined as R D FC.0/=F0 and which can
be easily found to be

R D ��

.2C ��/
(2.30)

We see that the reflectivity increases with increasing optical thickness. However, a
much more interesting property is to derive Eq. (2.30) with respect to wavelength.
The result is that for large values of optical thickness, the reflectivity is independent
of the wavelength, that is, the medium looks white.

Finally, we have found that Rayleigh scattering makes the sky look blue but also
makes the sky look white when we look at the horizon because then the optical
thickness is large. A very easy extension of these concepts may be made for the
clouds, but to be correct we have to wait a few more chapters.

2.3.2 The Absorption of Solar Radiation

In this first approach to absorption, we will take into account only the gases in the
atmosphere and will not consider the absorption due to particles.

Absorption takes place every time radiation impinging on a molecule or an
atom of a gas composing the atmosphere causes a transition, which implies
a loss of energy. We will look more closely at absorption when dealing with
photodissociation. For the moment it is enough to say that absorption takes place
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Fig. 2.7 The flux of solar radiation in units of photons cm�2 s�1 for an interval of 5 nm, and the
absorption cross section in cm2 for a few gases in the atmosphere of the Earth

for wavelengths below 1000 nm. This spectral region can be divided roughly in
the interval of the extreme ultra violet (EUV) up to 120 nm, in the range between
120 and 300 nm, and finally from 300 to 1000 nm. The EUV is absorbed in the
high atmosphere above 100 km from gases like O2 and N2 that have absorption
bands in this spectral region. The intermediate wavelengths are absorbed in the
mesosphere and stratosphere, and the longest are absorbed in the lower stratosphere
and troposphere. In Fig. 2.7, we show the most important absorption cross sections
in the spectral region between 130 and 700 nm. It can be noted that in the ultraviolet,
the most important absorbing gases are molecular oxygen, water vapor, and ozone.
Water vapor however has important absorption bands in the visible region and in
the near infrared that are not shown in this figure. Oxygen has an absorption region
corresponding to the so-called Schumann–Runge bands, between 175 and 200 nm,
that have a very complex structure and are not reported here.

The absorption by a gas can be easily evaluated when the cross section is known.
If at wavelength � the cross section of i-species is � i(�), then the optical thickness
from the top of the atmosphere to the height z is given by

��.z/ D
X

i

�i .�/Ni.z/ (2.31)

where Ni(z) is the so-called columnar density of the i-species, measured in
molecules or atoms per unit surface

Ni.z/ D
Z 1

z
ni.z/dz (2.32)
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where ni(z) is the number or atoms per unit volume. To understand better, we can
make a simple example. In the actual practice, the integral of Eq. (2.32) should be
calculated numerically because the density cannot be expressed analytically. We can
refer to the case of molecular oxygen, which has a constant volume mixing ratio of
about 0.21. Using Eq. (2.32) for oxygen, we find

ni.z/ D finm D fip.z/

kT
D fi
.z/R

k

and as a consequence the integral

Ni.z/ D fiR

k

Z 1

z

.z/dz D � fiR

kg

Z 1

z
dp D fiR

kg
p (2.33)

where R is the gas constant, k is the Boltzmann constant, and fi D 0.2096 is the
mixing ratio for oxygen. This very elementary exercise is also useful to refresh
simple relationships between moles, Avogadro number, and so on.

When the optical thickness is known, we can proceed to the calculation of the
solar flux as a function of the altitude. We can use what we learned with Rayleigh
scattering and the attenuation of the solar flux in that case.

We introduce here a notation that is common in radiative transfer theory. If the
solar zenith angle is 	 , then a more convenient quantity is �0 D cos 	 , and the
monochromatic flux at height z will be

F�.z/ D F� .1/ exp

����.z/
�0

�
(2.34)

where F� .1/ is the monochromatic flux at the top of the atmosphere. This flux
is expressed in W m�2 over a specified range of wavelengths and is represented in
Fig. 2.8 in slightly different units. To convert the photons into watts, it is necessary
to multiply by the energy of a single photon hv. From the figure, we see that the UV
flux is rapidly absorbed in the upper atmosphere first by oxygen and then by ozone.
The absorption of the flux implies that some energy is deposited in the atmosphere.
To evaluate this energy, we simply note that for the j-species with cross section
� j (�), the power absorbed by a single molecule is � i(�)F�(z), so that the total
absorption

A D
X
�

ni.z/�i .�/F�.z/ (2.35)

This relation, however, except for the sign, is simply the derivative with respect to
altitude of Eq. (2.34). The sign comes about because to get the absorbed flux, we
need to subtract Eq. (2.34) from F� .1/ so that the absorption is correctly given by
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1 � exp

����
�0

��
(2.36)

and the absorbed flux increases with decreasing altitude. The power absorbed per
unit volume will then be given by the derivative with respect to height of Eq. (2.36).
If we know the absorbed power per unit volume, it is possible to evaluate the
temperature change in the atmospheric layer of dz simply by noting that the heat
capacity per unit volume is 
Cp. The rate of change of temperature in the layer will
be

@T

@t
D � 1


Cp

@F

@z
(2.37)

This equation expresses the conservation of energy because it states that the rate
of change with altitude of the power density is responsible for heating or cooling
the layer. The importance of the heat capacity in determining the heating in a given
volume can be appreciated from Fig. 2.9. The left part of the figure shows the power
absorbed per unit volume by ozone and molecular oxygen, while the right part shows
the heating rate as a function of altitude. It is quite clear that where the heat capacity
is small (in the upper atmosphere), the heating rate due to oxygen reaches several
tens of degrees per day even if the absorbed power is only a few erg cm-2. It is
interesting to compare this figure with Fig. 1.1 for the Earth. We can see that we are
on the right track to explain the thermal structure of the middle atmosphere. We still
need to know what is the process that balances heating produced by the absorption of
solar radiation, and we may suspect that it could be the long wavelength or infrared
emission.

http://dx.doi.org/10.1007/978-3-319-29449-0_1
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Fig. 2.9 The absorbed power per unit volume (left) and the heating rate (right) as a function of
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2.4 Infrared Radiation

For infrared radiation, as a first approximation, the atmosphere can be considered
as a blackbody emitting according to Planck’s law. On the other hand, we have seen
that the Earth–atmosphere system is not exactly a blackbody because its emissivity
is slightly less than one.

When for the first time a meteorological satellite measured the spectrum of the
infrared radiation emitted by the Earth, we had almost didactic proof that the Earth–
atmosphere system is not a blackbody. Figure 2.10 shows one of these spectra
measured at middle latitudes. Actually, the function shown is not exactly that of
Planck, rather the quantity �B�. The reason is that this function is proportional to
the fraction of the total emitted power up to a certain wavelength. In the figure the
spectra are shown as a function of both the wavelength and the wave number, that is,
the inverse of the wavelength expressed in cm. If we compare the measured spectra
with that of a blackbody at 300 K, we notice that the former has a series of “holes”
due to the gas absorption. It is interesting to note that the base of the absorption
features corresponds to a temperature that is roughly the same as the effective level
of the emission. We notice, at this point, that this level is higher for the ozone bands
(temperatures characteristic of the stratosphere) than for the carbon dioxide or water
vapor bands (temperatures of the tropopause). We can observe a spectral region
free of absorption features between 8 and 12 �m that is called the atmospheric
window. The most interesting thing about this figure is however a “visualization” of
the greenhouse effect. The area of the spectrum represents the total power per unit
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Fig. 2.10 The function œBœ, measured for the Earth (solid line) and calculated for a blackbody
at different temperatures (dotted lines). The gases responsible for the main absorption features are
indicated

surface emitted by the Earth. If the concentration of one of the gases responsible
for the absorption increases, the area of the corresponding hole also increases, and
the total emitted power decreases. In order to maintain equilibrium between power
absorbed from the sun and power emitted from the planet, the surface temperature
must increase. This obviously is a qualitative explanation for the greenhouse effect,
and we will show how this problem may be treated at different levels of complexity.

2.4.1 The Equation of Radiative Transfer

If we consider a medium (e.g., a gas of density 
) traversed by radiation in the z
direction, then in a layer of thickness dz, the radiation absorbed dI will be given by

dI D �Ik
dz (2.38)

where k is the absorption coefficient that is characteristic of a specific gas. The
integration of Eq. (2.38) gives the familiar Beer–Lambert law, I D I0 exp .��=�0/,
already seen when writing Eq. (2.26), where I0 is the intensity of radiation for
z D 0, while the quantity d� D �
kdz is again the optical thickness or optical depth
that we have already seen for the solar radiation. However, in the case of thermal
radiation, beside absorption we need to consider also the emission, which can be
characterized by B (the Planck function) if we assume thermal equilibrium. In the
layer of thickness dz we have, combining emission and absorption,
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Fig. 2.11 The two-stream
approximation assumes that
the intensities IC and I� are
different in two hemispheres
but isotropic in each of them.
On the right the flux changes
within an atmospheric layer
are shown
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dI

d�
D B � I (2.39)

It is to note that in Eq. (2.39), we have specialized the definition for � in the sense
that we have established that the optical thickness increases with decreasing altitude
z, so that d� D �
kdz. In general, the intensity depends, other than � , also on the
zenith angle 	 and the azimuthal angle �. A drastic simplification in the resolution of
Eq. (2.39) is obtained by assuming that the intensity is only a function of the zenith
angle. In this case, if we set � D cos 	 , we can have a more general expression for
Eq. (2.39), referred to a direction s, which makes an angle 	 with the z direction

�
dI .�; �/

d�
D I .�; �/� B (2.39a)

This represents a simplified form of the equation of the radiative transfer. This
equation can be written for the two hemisphere separated by the horizontal plane
at altitude z, as is shown in Fig. 2.11 where with IC and I�, we have indicated
I(� , �) and I(� , ��), respectively. At this point, Eq. (2.39a) can be written for the
two hemispheres (see for example Houghton 1977)

�
dI .�;C�/

d�
D I .�; �/ � B

� �dI .�;��/
d�

D I .�;��/ � B (2.40a,b)

The flux in the two hemispheres will be reminiscent of the definition of flux Eq.
(2.4), F" D �IC and F# D �I�, in the upper and lower hemispheres, respectively.
The two Eq. (2.40a,b) can be written as a function of the fluxes multiplying through
by 2�� and integrating with respect to � between 0 and 1 so that we obtain

.2=3/
dF"

d�
D F" � �B

� .2=3/
dF#

d�
D F# � �B (2.41a,b)
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The solution to this system of equations can be found very easily in the approxi-
mation of radiative equilibrium. In practice, as is outlined on the left of Fig. 2.11,
the net flux absorbed by the layer is given by dF# � dF", so that the divergence is
given by d

�
F# � F"� =dz. We have seen previously that this corresponds to a power

density, which is the absorbed power per unit volume. In the layer we will then have
a heating rate dT/dt

dT

dt
D � 1


Cp

d

dz

�
F" � F#

�
(2.42)

where 
 denotes the atmospheric density. The negative sign can be justified by the
fact that we have heating when the net absorbed flux decreases with altitude and
vice versa. When the temperature of the layer does not change with time, then the
net flux is constant with altitude or with the optical thickness. This corresponds to
the approximation of radiative equilibrium and can be used to solve Eq. (2.41). If
we put for simplicity � D 3�=2 and sum Eqs. (2.41a) and (2.41b)

d

d�

�
F" � F#� D

�
F" C F#� � 2�B D 0I B D 1

2�

�
F" C F#� (2.43a)

Subtracting, we have another relation

d

d�

�
F" C F#

�
D
�

F" � F#
�

D C1 (2.43b)

that can be integrated easily

F" C F# D C1� C C2 (2.44)

The integration constants can be obtained considering that at the top of the
atmosphere (t D 0), the flux F# D 0 so that C2 D F"(0). With the same reasoning
from (2.42), we have also C1 D F#(0) so that the values of the average flux F" C F#
and the net flux F" � F# can be determined:

F" C F# D F".0/ .� C 1/ I F" � F# D F".0/ (2.45)

Subtracting and summing, we obtain

F" D 1

2
F".0/ .� C 2/ I F# D 1

2
F".0/� (2.46)

Using Eq. (1.4), we can write the upward flux at the top as a function of the effective
temperature

�T4e D F".0/

http://dx.doi.org/10.1007/978-3-319-29449-0_1
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and noting that B D �T4=� , the temperature as a function of � is given by

T4 D 1

2
T4e

�
3

2
� C 1

�
(2.47)

where � has been replaced by its effective value. An interesting consequence of this
solution is to discover what happens at the surface, where the optical thickness is �*
and the temperature is Ts; we have

F" ���� D �T4s D 1

2
�T4e

�
3

2
�� C 2

�
(2.48)

The temperature at the bottom of the atmosphere at �* is given by Eq. (2.47), so that
we have a discontinuity between the air temperature and that of the surface

T4s � T
�
��� D 1

2
T4e (2.49)

In the same way for � D 0, we have

T.0/ D T0 D 2�1=4Te

This result is similar to the one obtained for an atmosphere having emissivity ",
as in Eq. (E.2.17). In Fig. 2.12, the temperature as a function of � is shown for
values of the optical thickness that are typical of the atmosphere of the Earth. In
this figure, we do not see any discontinuity at the ground, where the temperature is
around 385 K. The temperature T0 in this case is about 212.8 K, and this solution
corresponds to radiative equilibrium. Near the ground however, the lapse rate arising
from radiative equilibrium is not consistent with the convective stability criteria we

Fig. 2.12 The radiative
equilibrium temperature as a
function of the optical
thickness for a temperature
Te D 254.4ıK
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studied in Chap. 2 when dealing with thermodynamics. At this point, something
must be introduced to maintain a realistic solution.

2.4.2 The Radiative–Convective Atmosphere

We have seen already that the distribution of water vapor in the atmosphere of the
Earth can be approximated with an exponential function that has a scale height of
roughly 2–3 km. On the other hand, the optical thickness in the infrared largely
depends on the water vapor, so that with a good approximation, we can assume

� D �0 exp

��z

Hw

�
(2.50)

where �0 is the maximum optical thickness and Hw the scale height of water vapor,
which we assume to be 2 km. In this way, we can establish a correspondence
between optical thickness and altitude so that we can evaluate the lapse rate as a
function of the optical thickness (Fig. 2.13).

The result of this simple calculation is shown in Fig. 2.12. What we notice
immediately is that the lapse rate around 10 km is much larger than the limit value
of 9.8 K km�1 (i.e., the adiabatic lapse rate). Beyond this point, the atmosphere
is convectively unstable. This means that the radiative equilibrium solution is
not representative of reality below a certain altitude, where the lapse rate should
be maintained lower than the adiabatic lapse rate by convective processes. This
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Fig. 2.13 The temperature and the lapse rate as functions of optical thickness. The value of the
adiabatic lapse rate is indicated by the vertical line

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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conclusion means that the radiative fluxes calculated for the radiative equilibrium
are no longer valid in an atmosphere where convection is present in the layers
near the surface. We can elaborate on the physics by considering that there is a
temperature discontinuity at the surface. This temperature difference establishes a
convective heat flux between the atmosphere and surface that acts to reduce the
discontinuity. We will call this convective flux, and as a consequence of it, the
difference between the upward and downward radiative fluxes will no longer be
constant as in Eq. (2.43b), and the heating rate instead of as in Eq. (2.42) will be

dT

dt
D � 1


Cp

d

dz

�
F" � F# C Fc

�
(2.51)

where we have indicated with Fc the convective flux. To understand a little better
what is happening with the fluxes, we can refer to Fig. 2.14, where the radiative
fluxes are calculated with the previous equations. In the case of an atmosphere in
radiative equilibrium, the difference between the upward flux and downward flux is
constant. At the surface the upward flux equals exactly the sum of the solar absorbed
flux and infrared downward flux. At the top of the atmosphere, the upward flux
must be equal to the net solar flux (i.e., incident less the reflected one). With a
30 % albedo and an incident average flux of 340 W m�2, the net solar flux amounts
to 238 W m�2. In the case of a radiative convective atmosphere, the solution can
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Fig. 2.14 Temperature and radiative fluxes for an atmosphere in radiative equilibrium (left). On
the right the same quantities are drawn for an atmosphere that includes a convective layer that
simulates the troposphere. Notice that the equilibrium temperature at the ground for the radiative
equilibrium is about 373 K while for the radiative convective equilibrium it is only 285 K
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be found integrating Eq. (2.43a, b). In this case, the Planck function depends only
on the optical thickness once the temperature is assigned. The integration, which
could be done numerically, gives at the ground an upward flux of 373 Wm�2 and
a downward flux of 352 Wm�2 that are not in equilibrium with the solar flux.
The constraint on this integration is the upward radiative flux at the top being
in equilibrium with the net solar flux. We must then require the existence of a
convective flux of 352 C 238 � 373 D 217 Wm�2. This quantity includes actually
also what is called latent heat flux. This flux is generated when water in the soil or
at the surface is evaporated, requiring heat. The conclusion is then that the radiative
equilibrium solution at some point is convectively unstable and an adiabatic profile
is established that implies a convective flux that decreases the surface temperature of
about 90 K. Although it may look a little strange, we have learned enough to reach
some important conclusions. We have introduced the radiative equilibrium and the
stability criteria and examined if these are consistent. We have also found that the
gas that contributes mainly to the greenhouse effect is water vapor. The abundance of
this gas depends on the temperature at the least in the troposphere. This corresponds
to the so-called water vapor feedback, that is, the higher the temperature, the greater
the water vapor content, the more efficient the greenhouse effect. But when will
this game end? It is rather intuitive to think that some cold region of the atmosphere
controls the water vapor content, and in our case this region could be the tropopause.
With increasing water vapor, the temperature of the tropopause could be too warm
to maintain a low value for the mixing ratio of water vapor. At this point, without
any “cold trap,” water could evaporate from the oceans and reduce the Earth to
somewhat like Venus. This is called the runaway greenhouse.

2.4.3 The Runaway Greenhouse

We need to point out that the topic we are going to illustrate is actually much
more complex. Strangely enough, however, when Andrew Ingersoll introduced the
runaway greenhouse, in a paper published in 1969 in the Journal of the Atmospheric
Sciences, he used very simple arguments, similar to those we will use here. The
starting point is to relate the optical thickness of the region where the radiative
equilibrium dominates (the lower stratosphere) to the mass absorption coefficient K
of water vapor according to the relation

� D
Z 1

0

K
vdz (2.52)

In the stratosphere we may assume that the mass mixing ratio 
v/
 is constant with
altitude, so that Eq. (2.48) can be easily rewritten with the help of the hydrostatic
equilibrium
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Z 1

z
K

emv

pm

dz D K

emv

pmg

Z 1

z
dp

where with e we have indicated the water vapor pressure and with mv and m the
molecular mass of water vapor and air. This equation can be easily integrated:

� D Kpvmv

mg
(2.53)

At the tropopause, if the relative humidity is r, we can put e D res, where with es

we have indicated the saturation pressure. Combining Eq. (2.53) with Eq. (2.47)
and considering that the downward flux is equal to the net solar flux, we obtain an
explicit equation between solar flux and temperature at the tropopause

.1 � ˛/
Q

2
D �T4



1C es.T/

pc

��1
(2.54)

where pc D 2 mg/3rkmv, which according to Eq. (2.52) is the value of e corre-
sponding to the optical thickness equal to 1. This condition for pc is consistent for
the terrestrial situation for which the optical thickness is about 4. If we assume a
value for the relative humidity of 100 % (i.e., saturation) and an average absorption
coefficient of 0.13 m2 kg�1, pc is about 8 mb and becomes 6 mb for a relative
humidity of 80 %. Once Q is assigned, there are only certain values of T that can be
solutions of Eq. (2.50).

This is shown in Fig. 2.15, where we represent the solutions for the radiative equi-
librium at three different solar fluxes corresponding to the temperatures Te D 206 K
(Mars), 254.5 K (Earth), and 299.3 K (Venus). At the same time, if we assume that

Fig. 2.15 The radiative
equilibrium temperature is
shown for three different
values of the solar constant.
These values correspond to
the orbits of Venus, Earth, and
Mars, with the value of the
albedo constant and equal to
0.2. Dotted line corresponds
to the temperature for which
saturation is reached
according to Eq. (2.50)
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at the tropopause the pressure of water vapor is the saturation pressure given by
Eq. (2.53), we can obtain the corresponding temperature as a function of the optical
thickness. The right-hand side of Eq. (2.52) for temperatures low enough tends to
�T4(0), while for high temperatures, it becomes

�T4pc

es.T/

Between these extremes there is a maximum value of the temperature corresponding
to the maximum infrared flux in equilibrium with the incident solar flux. The max-
imum is due to the fact that the saturation pressure grows faster with temperature
than the fourth power of the same quantity appearing in Eq. (2.54). In the case of
Mars, the maximum flux is around 372.8 Wm�2, for the Earth it is 391 Wm�2, and
for Venus it is 390.5 Wm�2. These values must be compared with the values of
the solar incident flux for the planets, which are, respectively, 102.2, 238, and 455
Wm�2. It is obvious that only for the Earth and Mars can Eq. (2.52) be satisfied and
equilibrium reached. In the case of Venus, the emitted flux is always lower than the
one absorbed so that the temperature of the planet would increase forever.

This effect can also be seen from Fig. 2.15, where the radiative solution is shown
compared with the solution obtained from Eq. (2.47), which is the optical thickness
at saturation. Between the points A and A’, the atmosphere is supersaturated, and
it is reasonable to expect a radiative equilibrium with a saturated lapse rate. The
same curve does not intercept the radiative solution for Venus, and this means
that saturation is never reached. In principle, in these conditions all the water
present on the planet could evaporate: this is the runaway greenhouse. There are
several limitations to this reasoning, but the principle is robust. What should really
happen is that in the region of radiative equilibrium, the outgoing radiation must
be equal to the incident radiation. The lower atmosphere should then be able to
provide the upward net infrared flux. We have already seen that in the lower
atmosphere, the radiative solution is unstable, so that it must be substituted with
a convective atmosphere that is colder and thus gives a lower infrared flux. A
convective troposphere produces a lower infrared flux, because it transports more
water vapor upward, increasing the total optical thickness of the atmosphere. We
have neglected for obvious reasons all the mechanisms that associate clouds with
condensation. The clouds can change drastically all the results of the infrared fluxes.
We will show in the next chapter, which deals with the evolution of the atmosphere,
and in all the chapters dealing with climate, that things are much more complex. We
already know, for example, that convective processes dominate the troposphere and
that moist adiabats should be used to describe the temperature changes with altitude.
However, it is noteworthy that, already in Chap. 3, we can already discuss the most
interesting problems of the planetary atmospheres.

http://dx.doi.org/10.1007/978-3-319-29449-0_3


62 2 Fundamentals: Radiation in the Atmosphere

E.2 Examples

E.2.1 Rayleigh Scattering from Natural Light (Sunlight)

Consider a small homogeneous spherical particle with radius much smaller than
the wavelength of incident radiation. This is assumed to be an electric field E0 that
produces impinging on the particle a dipole moment P0 such that

p0 D ˛E0 (E.2.1)

where ˛ is the polarizability of the mean. Because the impinging field oscillates, the
dipole also will oscillate according to the relation

p D p0 exp Œik .r � ct/� (E.2.2)

and will emit a scattered radiation whose field is given by at distance r and in the
direction � (see Fig. E.2.1)

E D 1

4�"0c2r

@2p
@t2

sin � (E.2.3)

When (E.2.2) is substituted in (E.2.3), we get

E D �E0
exp Œik .r � ct/�

r
k2˛ sin � (E.2.4)

We now consider the scattering of unpolarized sunlight by air molecules. The
unpolarized light can be decomposed in two components parallel to the horizontal
plane, E0l and perpendicular E0r . These two components have a random phase
relationship, and we can consider separately the scattering of the two components.

Then according to t (E.2.4), we have

Fig. E.2.1 Scattering by a dipole
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Er D �E0r
exp Œik .r � ct/�

r
k2˛ sin �1

El D �E0l
exp Œik .r � ct/�

r
k2˛ sin �2 (E.2.5)

The corresponding intensities are proportional to the square roots of the electric
field. The figure gives also sin �1 D 1 and sin �2 D sin .�=2 �‚/ D cos‚. We
have then for the intensities

Ir D I0rk4a2=r2

Il D I0lk4a2cos2Q=r2
(E.2.6)

The total intensity is the sum

I D Ir C Il D �
I0r C I0lcos2Q

�
k4a2=r2

For unpolarized light I0r D I0l D I0=2 so that

I D I0
r2
˛2
�
2�

�

�4
1C cos2‚

2
(E.2.7)

This relation derived for the first time by Rayleigh gives the intensity of scattered
unpolarized light as proportional to the incident radiation and inversely proportional
to the fourth power of the wavelength. The intensity decreases with distance and
depends strongly on the scattering angle‚ (Fig. E.2.2).

An interesting consequence of this approach is that natural light has a degree of
polarization that depends on the direction with respect to direction of incident light.

Fig. E.2.2 The polar diagram of the scattered radiation by a Rayleigh molecule. The dashed lines
illustrate the distribution of the perpendicular component (circle) and the parallel component (lobed
figure). The solid line is the total intensity
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The degree of polarization of natural scattered light can be defined as

LP .‚/ D Ir � Il

Ir C Il
D cos2‚ � 1

cos2‚C 1
D � sin2‚

cos2‚C 1
(E.2.8)

We see that the degree of polarization has a maximum (1) for‚D�/2 that is in the
direction perpendicular to the direction of sunlight. Actually in the real case, there
is no point in which polarization is 100 % due to the presence of multiple scattering
(this example is taken from Liou 1980).

E.2.2 A Simple Way to Evaluate Ozone Absorption

The method presented here has been invented by Richard Lindzen and Douglas Will
and published in 1973 paper on Journal of the Atmospheric Sciences. As we have
illustrated, the intensity as a function of wavelength is given by

I� D I�1 exp .��u/

where u D
Z z

1
ndz= cos	 is the optical thickness, n is the ozone density, 	 is the

zenith angle, and I�1 is the intensity outside the atmosphere.
And the absorbed power per unit volume with �v the cross section for absorption

Q D
Z
�

�� I�nd�

The assumption here is that for ozone, most of the absorption depends only on the
same gas. This also means that the quantity � D Q=n depends only on u. The other
assumption can be summarized as follows:

1. Above 45 km where u < 5:37 �1016cm�2, the atmosphere is almost transparent to
all ozone bands. The only absorption may be due to Huggins and Hartley band.

2. Below 30 km where 4 � 1018 < u < 8 � 1018cm�2, most of the radiation in the
Hartley and Huggins bands has been absorbed, while the atmosphere is almost
transparent to the Chappuis band.

As shown in Fig. E.2.3, the Hartley and Chappuis band can be approximated
simply with the constant absorption cross section and constant flux so that � can
written as

� D IHkH��H exp .�kHu/C ICkC��C exp .�kCu/ (E.2.9)

For the Huggins band, the solar flux is constant, while the absorption cross section
can be approximated by an exponential function (Fig. E.2.3b)
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Fig. E.2.3 The Hartley and Huggins bands

k� D kHu exp .�M�/

The integration over � can be performed to get

�Hu D
Z �long

�short

kHu exp .�M�/IHu exp Œ�kHu exp .�M�/�

to get

�Hu D IHu
Mu

˚
exp

��ukHu exp
��M�long

�
� exp Œ�ukHu exp .�M�short/�g (E.2.10)
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The total heating will be then the sum of (E.2.9) and (E.2.10). The relevant
parameters appearing in these relations are reported as follows: notice that the
absorption coefficient is expressed in cm2, and the ozone column is in molecules
cm�2:

IH D 9 � 10�2w cm�2 nm�1

kH D 9:67 � 10�18 cm2

��H D 37:5 nm

IC D 1:8w cm�2nm�1 kC D 4:40 � 10�21 cm2 ��C D 165 nm M D 0:0126

IHu D 0:53w cm�2nm�1 kHu D 1:99 � 10�17cm2 �short D 275nm �long D 275nm

By fine-tuning some of the parameters, it is possible to obtain an overall error of
less than 5 % with respect to a detailed calculation.

E.2.3 The Radiative Time Constant

The Earth can be considered a black (or gray body) subject to solar forcing.
However, this may change (e.g., the energy absorbed in some place) during the
day. If we denote by m the mass of the atmosphere for unit surface, and by Cp the
specific heat at constant pressure, then for small perturbations of the temperature T 0,
due to changes Q0 of the solar constant Q, we have

mCp
d .T C T 0/

dt
D �

Q C Q0� .1 � ˛/ � ��T C T 0�4 (E.2.11)

At the equilibrium, dT/dt D 0 and the perturbation T 0

mCp
dT 0

dt
D Q0 .1 � ˛/ � 4�T4

�
T 0

T

�
(E.2.12)

The solution of this differential equation in T 0 can be found is given by

T 0.t/ D
Z t

0

Q0 .1 � ˛/ e.t�t0=�/

mCp
dt0 (E.2.13)

where

� D mCp

4�T3
(E.2.14)
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Table E.2.1 The radiative time constant (in terrestrial days for three planets)

Planet
Atmospheric
mass (kg) Surface (m2)

Mass/unit
surface Surface temp. (K)

Constant �
(days) Day length

Venus 4.8 � 1020 4.54 � 1014 1.04 � 106 735 133 233
Earth 5.2 � 1018 5.1 � 1014 1.04 � 104 288 21 1
Mars 2.5 � 1016 1.44 � 1014 1.73 � 102 210 0.9 1

The time constant given by Eq. (E.2.14) is the time it takes for the atmosphere to
react to changes in the radiative forcing; that is, if the sun were to be turned off, the
atmosphere could feel the effects in a time of the order of � .

It is interesting to compare the radiative time constant with the length of the
day for the terrestrial planets with an atmosphere (Venus, Earth, and Mars). This
comparison gives us an idea of what kind of diurnal variation in temperature
we could expect for the planets. Table E.2.1 summarizes some of the planets’
characteristics.

A constant value for the specific heat for three planets (1000 jkg�1K�1) has been
used. We can see from this table that the ratio between the length of the day and the
time constant is short only for Mars. For this planet, we could expect pronounced
diurnal effect that is negligible for the other. For the Earth, the integral (E.2.13) can
be solved to give approximately

�T D Q0 .1 � ˛/ tday

mCp
� 2K

For Venus, because the atmosphere is optically thick, this simple approximation
may not be correct. Also for the Earth, we know that nights are colder than days, but
the temperature difference is not only due to radiation but mainly to the interaction
with the atmospheric boundary layer and the ground. We will return to this problem
later on.

E.2.4 A Simple Model for the Greenhouse Effect

We have then already isolated a few topics of study regarding the interaction of
solar radiation with the clouds and the gases in the atmosphere and the transfer of
infrared radiation. We have also implicitly assumed that an equivalent temperature
Te can be obtained considering the planet as a blackbody and equating the absorbed
solar power to the emitted power

�a2Q .1 � ˛/ D 4�a2�T4e ) Te D



Q .1 � ˛/
4�

�1=4
(E.2.15)
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Fig. E.2.4 A simple model
of the greenhouse effect. The
atmosphere is approximated
as a medium at temperature
T1 and emissivity ". The solar
radiation is not absorbed

So (1-α)/4
(1-ε)σΤs

4

σTs
4

εσT1
4

εσT1
4

A very simple treatment Petty (2006), which should give a useful indication of the
physics of the problem, can be developed if we consider the atmosphere to be made
up of a single layer of temperature T1 and emissivity ", as shown in Fig. E.2.4. If
the surface temperature is Ts, assuming that the transmissivity (i.e., the fraction of
radiation transmitted by the atmosphere) is (1 � "), we can write down the thermal
equilibrium for the atmosphere and the surface–atmosphere system. We set the
energy absorbed by the surface (solar radiation and infrared radiation coming from
the atmosphere) equal to the energy emitted. The same condition is imposed for the
atmosphere. We get then

2"�T41 D "�T4s I S0 .1 � ˛/ =4C "�T41 D �T4s (E.2.16)

Equation (E.2.16) describes a very simple system, which can be solved for the
atmospheric temperature T1 and the surface Ts:

T1 D Ts=2
1=4 < ŒS0 .1 � ˛/ =4��1=2

�T4s D S0 .1 � ˛/ = Œ4 .1 � "=2/� (E.2.17)

The temperature of the atmosphere is then lower than the surface temperature, while
the latter is much higher than that which would result from Eq. (E.2.15): in other
words, the addition of an atmospheric layer warms up the surface. Note that we have
implicitly assumed that the atmosphere does not absorb solar radiation, and we have
also found the existence of a discontinuity between the atmosphere and the surface.
The emissivity, which in this very simple scheme is just the fraction of infrared
radiation absorbed by the atmosphere, is mainly determined by the presence of water
vapor in the troposphere. This means that if the surface temperature changes, then
the atmospheric temperature will also change and, as a consequence, so will its water
vapor content. A higher temperature implies more evaporation and this will result
in a change of emissivity. This mechanism is also known as water vapor feedback,
and it is very efficient in amplifying any initial perturbation to the climatic system.
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Chapter 3
The First Laws of Motion

In planning this book, we thought that, after a short introduction, we would start to
look at the properties of the atmosphere layer by layer going from the lowest up.
Then we realized that such an approach would not justify the title of the book.

A physicist tends to obtain the most general laws, which are then applied
to explain certain data or processes. It seems more logical that, after several
introductions and diversions, we start to treat that part of physics that is regularly
neglected by general physics courses. This part for us is fundamental and is of course
fluid dynamics. This does not mean that we know everything about thermodynamics
or radiative transfer; it is only that, without learning something about dynamics, we
cannot proceed any further in the study of the atmosphere. We will see that this will
be enough to allow us to study the troposphere. On the other hand, to proceed to the
study of the stratosphere, we absolutely need to know something about chemistry
and more about radiation.

The importance of the dynamics is quite obvious even when we watch the
weatherman on TV. He often talks about air masses, fronts, and low-pressure or
high-pressure areas. It seems so easy that sometimes the forecast looks like a simple
extrapolation of the current situation. Actually, this is still the way meteorologists
make the forecast. Whatever the power of the computer they have, you still need
someone with good experience and who sometimes just neglects equations and
dynamics. This is true especially on a relatively small scale, like the Mediterranean
area, and for relatively short times. If you want to forecast the evolution of the
atmospheric circulation on the planetary scale and as far as you may go in time
(we will see about this), you then need dynamics and large computers. In this case
you may be able to know more precisely (i.e., quantitatively) where and when and
how much it will rain, for example. Dynamics is not only important for weather
forecasting, but it is even more so for other regions of the atmosphere. For example,
the well-known “ozone hole” and the fact that you find it only over the south pole
is due to a combination of radiative, chemical, and dynamic effects. A large part of
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72 3 The First Laws of Motion

the uncertainties related to global warming is due to the fact that the atmospheric
circulation changes with the thermal structure and with the circulation are associated
precipitation, deserts, and so on.

3.1 Scales and Orders of Magnitude

Our study must keep in mind that the theories on atmospheric dynamics must
be compared with the events that happen in the only laboratories we have at
hand. These are the atmospheres of Venus, Earth, Mars, Jupiter, Saturn, and all
those planets and satellites which have an atmosphere that can be observed. The
temporal and spatial scales on which the atmospheric motions develop are wide.
They range from the breezes, which have a diurnal period and are of interest for a
few kilometers, to the atmospheric tides which still have a diurnal period but are of
interest on a planetary scale. With longer time scales, we described the atmospheric
circulation and that of the ocean. On a global scale, on an even longer time scale,
we described some of the ocean–atmosphere interactions.

To talk about “scales” in such simple terms may be misleading. For example, a
large spatial scale may not be simply related to the geographical extent. Actually,
the large-scale motions are those influenced by planetary rotation. If we take a
typical length L of an atmospheric perturbation and a typical velocity U of the
corresponding air mass, then the typical time scale of this air mass is L/U. With
L D 1000 km e U D 10 ms�1, we get a characteristic time of about 1 day. This is a
time comparable to the period of rotation for the Earth, so that we can argue that the
motion will be influenced by the rotation itself. We can then use a condition such
that, if � is the angular velocity of the Earth or the planet, then the rotation will
influence the motion if we have

L=U � ��1 (3.1)

which is the same as

R0 D U= .2�L/ � 1 (3.2)

This nondimensional parameter is known as the Rossby number, and we have
mentioned, maybe in a presumptuous way, it in the first chapter. At this point we will
define a large-scale motion such as the one for which the Rossby number is of the
order of 1 or less. We will see later that the meaning of R0 is much more profound,
but in any case, Eq. (3.2) can be misleading because it gives the impression that we
have small Rossby numbers associated with fast-rotating planets. For the Earth and
the data specified above, we have R0 � 0.07. Also, from Eq. (3.2) we cannot see
that what determines the local Rossby number is the local vertical component of the
angular velocity. This means an underestimation of R0 at low latitudes. However, if
the wind velocity (or that of the oceanic current) is small, the motion can still be
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classified as large scale. For example, the characteristic velocity of the Gulf current
is about 0.1 ms�1, so even if the spatial scale is only 100 m, the Rossby number is
still very small. Actually, the circulation in oceans of the Earth is much more similar
to the circulation in the atmosphere of Jupiter, which is a very fast-rotating planet.

The considerations made so far are about kinematics, but the dynamic conse-
quences of a small Rossby number are even more important. A small value for R0

means that the fluid tends to rotate with the solid part of the planet, but for us the
deviations from this rotation are important. To this end we will introduce a reference
system that rotates with the planet in order to make more evident such deviations.
This reference system is not inertial and we expect to find a few apparent forces, like
the Coriolis force. We can see easily that, if the Rossby number is small, then the
Coriolis force is important in determining the motion. Acceleration is of the order
of U/T D U2/L, while the Coriolis acceleration is of the order of

2�� U D 2�U sin �

where ® is the latitude. The motion is steady if the acceleration is small with respect
to the Coriolis acceleration that can then equilibrate all the external “forces” acting
on the fluid element. We will have then

R0 D U=fL � 1 (3.3)

where we define the Coriolis parameter as

f D 2� sin� (3.4)

Equation (3.4) takes now into account correctly the latitude and shows that the
Coriolis acceleration is zero at the equator.

Another characteristic of the large-scale circulation is that the ratio between
the vertical and horizontal scale is quite small. The average depth of the ocean is
about 4 km and of the same order is the thickness of the atmosphere where we
have atmospheric motion. On the other hand, the horizontal scales are hundreds or
thousands of kilometers. The motions then take place in a very thin layer of fluids
and as consequence can be treated as quasi-horizontal.

3.2 The Basic Equations

When we start a new topic, we are always more enthusiastic for the novelty,
probably because the previous one was becoming a bore. With fluid dynamics we
must learn to see things a little bit differently, starting from the concept of derivative
with respect to time. Actually, the rules we are going to give next may have been
studied in calculus courses. However, we are going to give to those rules a very
important physical meaning and show that they are very intuitive.
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3.2.1 The Total Derivative

Think about a little balloon moving in the air and of which we want to study how
its temperature T changes. That temperature will be a function of position and time,
T(x, y, z, t). If the balloon moves to the point with coordinates x C�x, y C�y, and
z C�z in the time �t, its temperature will change by an amount

�T D
�
@T

@x

�
�x C

�
@T

@y

�
�y C

�
@T

@z

�
�z C

�
@T

@t

�
�t (3.5)

Dividing by �t we get for the derivative

DT

Dt
D @T

@x

dx

dt
C @T

@y

dy

dt
C @T

@z

dz

dt
C @T

@t
(3.6)

In a Cartesian system x, y, and z (we will see how it is oriented), we establish once
and for all that the velocity components along the axis are

u D dx

dt
I v D dy

dt
I w D dz

dt
(3.7)

So that Eq. (3.6) becomes, keeping in mind the definition of gradient and scalar
product,

DT

Dt
D @T

@t
C V � rT (3.8)

The total derivative operator D/Dt is distinct from the usual derivative because
the total derivative makes sense only if the quantity to be derived is an exact
differential. For example, temperature, pressure, and velocity can be expressed as
exact differentials but not heat. The total derivative expresses the rate of change
of temperature in a coordinate system that moves with the air parcel (in our case
the balloon). The air parcel is a material element, like the mass in mechanics,
and contains always the same mass of air. The total derivative is made up of two
parts, the first expresses the local derivative @T/@t and V�r expresses the convective
derivative. If the system used to make the measurements is fixed with respect to
the surface, we call it an Eulerian reference frame. If the system moves with the
air parcel, we call it Lagrangian. Normally, we use the first one, but as we will
see, the Lagrangian reference has introduced an appreciable simplification into the
treatment of the stratospheric motions. In the Eulerian reference frame, the change
in temperature will be

@T

@t
D DT

Dt
� V � rT (3.9)
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Fig. 3.1 Isotherms and
temperature advection. In
case (a) the temperature
gradient has the opposite sign
of the velocity (positive
advection). In case (b) we
have the opposite situation
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The second term on the right is called advective and is one of the most important in
meteorology. To understand how this term works, we can refer to Fig. 3.1. Curves
labeled T and T C�T are isotherms on the plane of the figure, so that the arrows
represent the generic direction of the gradient. For the sake of simplicity, we assume
that the component of the wind on that plane is parallel to the gradient. Thus, we
can have two cases: the first one is when the direction of the wind is opposite to the
gradient (case a), and the second one when the wind has the same direction (case
b). In the first case, the advection (i.e., the term �V � rT) is positive, and, as a
matter of fact, the downwind regions heat up. In case b, the advection is negative
and the same regions cool. An example may help us to clarify further the concept.
We assume that a cold front has passed over a meteorological station where the
temperature is 10 ıC and falls at a rate of 3 ıC per hour. The wind arrives from the
north at 40 km hr�1 and the vertical component is zero. At another station 100 km
to the north, the temperature is �2 ıC.

We should be able now to evaluate what is the rate of change of the temperature
for the masses following the cold front. The first thing that interests us is the
advection, which can be easily calculated starting from the temperature gradient –
(2 C 10)/100 km directed from south to north. The wind velocity is directed from
north to south and is then negative. The rate of change of temperature is given
according to Eq. (3.8)

DT

Dt
D �3 ıC

hr
C �40 km

hr
� � .10C 2/ ıC

100 km
D 1:8 ıC hr�1

which represents heating. In practice, what is happening is that the advection warms
the air mass by about 4.8 ıC hr�1, and this heating largely compensates for the local
cooling at the station.

3.2.2 The Continuity Equation

As a first application of the total derivative, we can evaluate the Eulerian change of
the air density 
; thus, we obtain
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D


Dt
D @


@t
C V � r
 (3.10)

This equation assumes a particular form when mass is conserved. We consider an
elementary mass contained in the volume �V, as in Fig. 3.2, with density 
. From
that volume we consider a net outgoing mass flux 
V � ndS, where n is the normal
to the elementary surface and V is the local velocity. The net change of mass inside
the volume is given by the integral of the flux

@

@t

Z
V


 dV D �
Z
S


V � n dS D �
Z
V

r � .
V/ dV (3.11)

and we get another form of the continuity equation

@


@t
C r � .
 V/ D 0 (3.12)

Noting that r � .
V/ D 
r � V C .V � r/ 
, we have

1




D


Dt
D �r � V

It is interesting to give an interpretation of the velocity divergence. Consider an
elementary mass ıM D 
ıV D 
ıxıyız, as shown in Fig. 3.3. The mass is conserved
in the system that moves with the air parcel, so we can write

1

ıM

D

Dt
.ıM/ D 1


ıV

D

Dt
.
ıV/ D 1




D


Dt
C 1

ıV

D

Dt
.ıV/ D 0 (3.13)

where

1

ıV

D

Dt
.ıV/ D 1

ıx
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Dt
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Dt
.ıy/C 1

ız
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Fig. 3.2 The mass flux from
the interior of the elementary
volume dV
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Fig. 3.3 The elementary
volume and the faces normal
to the y axis that moves at
different velocities (a). In (b)
the divergence is associated
with the change of volume:
positive when the volume
increases, negative when it
decreases

To understand better the terms on the right, we can refer to Fig. 3.3. The faces
normal to the y axis at distance ıy have slightly different velocities and the difference
is given by
ıv D v .y C ıy/� v .y/ where ıv D D .y C ıy/ =Dt � Dy=Dt
The same is true for the other components: the final result is

lim
ıx;ıy;ız



1

ıV

D

Dt
.ıV/

�
D @u

@x
C @v

@y
C @w

@z
(3.14)

This equation gives a simple meaning to the velocity divergence. Positive divergence
means that the volume of the parcel increases, and vice versa. This, according to the
continuity equation, has an effect on the density because of the conservation of
mass. If the divergence is positive, the density decreases, while if the divergence is
negative, the density increases. If the density is constant, the divergence is zero and
the fluid is called incompressible.

3.2.3 Pressure Forces

We refer again to our elementary volume, as in Fig. 3.4. The net force along the y
axis is given by Fx.y/� Fx .y C ıy/. The pressure in the y direction

p.y/ D p � @p

@y

ıy

2
p .y C ıy/ D p C @p

@y

ıy

2

The net force is given by�
p � @p

@y

ıy

2
� p � @p

@y

ıy

2

�
ıx ız D �@p

@y
ıxıy ız
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V0 z=l

z=0

V
Fy (y) Fy (y+δy)

δx
δz

δy

Fig. 3.4 Pressure and viscous forces. On the left the forces on an elementary fluid portion are
shown. On the right the drag force is illustrated

The mass of the element is ım D 
ıxıyız and its acceleration
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D �1
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@y

Fz

ım
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(3.15)

and in vectorial terms

F
ım

D �1



rp (3.16)

The acceleration on the air mass has the opposite sign of the gradient. This
conclusion may be obvious because the gas expands from the high to the low
pressure.

3.2.4 Friction Forces

The first contact of the student with the viscous force is a figure like Fig. 3.4. Here,
a raft has to be maintained in uniform motion with velocity v0. Then the force that
must be used on the raft is given by F D �Av0=l, where A is the surface of the raft,
� is the coefficient of dynamic viscosity, and l is the thickness of the fluid. At the
base of the fluid, the velocity is zero. The mechanism through which the raft drags
the rest of the fluid is due to the friction between the surface A and the fluid. The
same friction exists between two adjacent layers of the fluid separated by a distance
dz. The viscous stress, that is, the ratio F/A, is given by

�zy D �
@v

@z
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Fig. 3.5 Some components
of the stress tensor

τyz

τxz

τzz

τxy

τyy

δx

δz

δy

where the subscripts on � zy indicate the stress component in the direction y due to
the change in velocity in the direction z. If we think about it a little more, we see
that actually the viscosity transports momentum in the direction z. The momentum
transported for unit time and unit surface has the dimension of pressure and it is the
stress.

At this point, as already done for the pressure, we can find the net force exerted
on an elementary mass by the viscous stress. In Fig. 3.5 we report some of the
components of what is more properly defined as a tensor. Besides the component
we already defined, we can define normal stresses to the faces

�xx; �yy; �zz

To better understand the definition of the subscripts, we have to remember that the
first subscript indicates the direction of the normal to the face on which the stress is
exerted. The second subscript indicates the direction of the stress itself. If we refer
to � zy, its change with the z direction is

�zy C @�zy

@z

ız

2
�
�
�zy � @�zy

@z

ız

2

�
D @�zy

@z
ız

The total force on the ıxıy will be obtained by multiplying the net pressure for the
surface. The acceleration in the y direction will be

1




@�zy
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@z

�
�
@v

@z

�
The total force per unit mass in the x direction will be the sum of the stresses that
act on the six faces of the volume element

Fx D �
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@x
C @�yx
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C @�zx

@z

�
D �



r2u (3.17a)
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and similarly

Fy D �



r2v Fz D �



r2w (3.17b)

The quantity � D �=
 is called kinematic viscosity. Notice that the scalar
differential operator acts on the components of the velocity. To get a rough idea
of this term, we can use the value of the air cinematic viscosity at sea level that is
roughly
�D 1.5 10�5 m2 s�1. Consider then a wind that changes from 0 to 20 ms�1 for 1

to 2 km and then increases to 30 ms�1 at 3 km. We have

@2u

@z2
�
�
.30� 20/

103
� .20� 0/

103

�
=103 D �10�5m�1s�1

Then the acceleration is of the order of 1.5 10�10 ms�2. This acceleration term, we
will see in a while, is completely negligible with respect to the Coriolis acceleration.
Actually, we have seen in the previous chapter that the molecular viscosity is
important in the upper atmosphere, but in the troposphere, it is important only
for very thin layers. Then why all this fooling around with complicated equations?
The reason is that down the line we will find a viscosity that is different from the
molecular one (we will call it eddy), and, not knowing how to treat it, we will take
as analogy the treatment given for the molecular viscosity. A last point, the way we
have evaluated the second derivative, take it for granted. Somewhere in the next few
chapters, we will talk about numerical methods, and you will see that, in order to
evaluate second derivatives, you need at the least three points.

3.2.5 The Equations of Motion in an Inertial System

Taking into account all the forces acting on a parcel of air (pressure, viscous, and
gravitational), in an inertial reference frame, the second law of the dynamic is
written as

DaVa

Dt
D
X

F (3.18)

where Va is the velocity in the absolute reference frame and the derivative is made
in the same system. The forces appearing on the right are all the external forces
and do not include apparent forces like Coriolis and centrifugal. We, observers,
are in a non-inertial system, and we need to find a relation between our relative
velocity (we call it V) and the absolute velocity. In principle this is a simple thing,
as shown in Fig. 3.6. We have a vector A of constant modulus that rotates with
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Fig. 3.6 Vector of constant
module A rotates with
angular velocity � with angle
� with respect to the rotation
axis

DA

A (t+Dt)

A(t)

Dq

g
g

g

W

angular velocity� and makes an angle � with the axis of rotation. It is very easy to
show that �A D Asen��	 and so

lim
�t!0

�A
�t

D dA
dt

D jAj sin �
d	

dt

� � A
j� � Aj

where j� � Aj D �A sin � ,

DA
Dt

D � � A (3.19)

The conclusion is that an observer rotating with the reference system does not see
any change in A. An observer that is fixed with the inertial reference frame sees a
change different from the one given by Eq. (3.19) for the observer in the inertial
system. Both observers, however, see the same module that remains constant

DjAj2
Dt

D 2A � .� � A/ D 0 (3.20)

Equation (3.19) can now be applied to any vector, and we consider in particular the
distance r between our parcel and the origin of the rotating system with angular
velocity �. In this system we can write

r D xi C yj C zk

where i, j, and k are the unit vectors of the axis and x, y, and z are the vector
components. In the rotating system, the rate of change of vector r is given by�

Dr
Dt

�
R

D Dx

Dt
i C Dy

Dt
j C Dz

Dt
k (3.21)

The inertial observer will see the entire reference frame rotating, with the unit
vectors changing direction with time. At each of them we will apply the derivation
rule of Eq. (3.19), so we get�

Dr
Dt

�
I

D Dx

Dt
i C Dy

Dt
j C Dz

Dt
k C x

Di
Dt

C y
Dj
Dt

C z
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where

Dx

Dt
i C Dy

Dt
j C Dz

Dt
k D x� � i C y� � j C z� � k D � � r

In the inertial system, the rate of change of r will be given by�
Dr
Dt

�
I

D
�

Dr
Dt

�
R

C � � r (3.22)

which is equivalent to a relation between velocities

vI D vR C � � r (3.23)

where with vI and vR, we have indicated the velocity in the inertial system and the
relative velocity, respectively. Again, repeating the derivation rule on the inertial
velocity, we get �

DvI

Dt

�
I

D
�

DvI

Dt

�
R

C � � vI

Substituting from Eq. (3.23), we obtain the inertial acceleration as a function of
measurable quantities in the rotating system.�

DvI

Dt

�
I

D
�

DvR

Dt

�
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C � �
�

Dr

Dt

�
R

C D�

Dt
� r C � � .vR C � � r/

D
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DvR

Dt

�
R

C 2� � vR C � � .� � r/C D�

Dt
� r

(3.24)

In this expression we know all the terms because, except for the relative acceleration,
the second term on the right is simply the Coriolis acceleration, the third is the
centrifugal acceleration, and the last one is zero if the angular velocity is constant.
In order to use Eq. (3.24), for the equation of motion, we remember that in Eq.
(3.18) the absolute derivative of the velocity is now the left-hand side of Eq. (3.24).
The centrifugal force can be expressed as a potential, ˆ, that includes also the
gravitational contribution. If we call V the velocity with respect to the rotating
system, we have




�
DV
Dt

C 2� � V
�

D �rp C 
rˆC Fr (3.25)

where Fr are the friction forces.
Now that we have found an equation for the motion, we are not in a hurry to apply

it. As a matter of fact, we still need to learn a few more things before going to the
dynamics application. For one thing in order to apply Eq. (3.25), we have to specify
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the reference frame, and in atmospheric physics, we have many reference systems
mostly inherited from the meteorologists. We prefer then to wait and enter into
another sector we may call “kinematics,” as a further preparation to the maelstrom
of the fluid dynamics.

3.3 Vorticity and Circulation

We will learn that sometimes it is not possible to solve Eq. (3.25) directly, so as
often happens in physics; we will be looking for more general properties of the fluid
in order to simplify the problem of solving the equation of motion. One of such
quantities is known as vorticity and it is defined as the rotor of the velocity.

¨ D r � V (3.26)

The vorticity will be relative if referred to the relative velocity Vr or absolute if
referred to the absolute velocity Va. The first application of Eq. (3.26) can be made
by referring to the inertial system so that, applying the rotor operation, we have

¨ D r � .Vr C � � r/ D ¨r C 2� (3.27)

The difference between the relative and absolute vorticity is the planetary vorticity,
which is twice the angular velocity. In most of the cases, we are interested in the
vertical component of the relative vorticity given by

 D @v

@x
� @u

@y
(3.28)

while the absolute vorticity is given simply � D C 2� sin�. From the rules of the
vector calculus given a surface A delimited by a curve � , we haveZ

¨ � ndA D
Z
A

.r � V/ �ndA D
I
�

V � dl

with the last integral defining the circulation C. If the elementary ıA is perpendicular
to the vertical component of the relative vorticity (i.e., an element of the Earth’s
surface), then we have the simple formula

ıC=ıA D 

The vorticity can then be defined as the circulation for unit surface. This, among
other things, makes clear why the planetary vorticity is just twice the angular
velocity. If we imagine the surface of disk of radius r, which rotates with angular
velocity �, then the circulation is simply 2�r�r, and dividing by the area of the
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Fig. 3.7 The distortion of a
fluid element for the
definition of vorticity
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disk we obtain the desired result. Actually, this result can be extended to any fluid
that usually has a differential rotation. This means that the angular velocity is a
function of the radial distance of the axis of rotation. We can refer to Fig. 3.7, where
a generic two-dimensional fluid element is shown on the plane x, y. The element is
depicted at two successive instants t and t C�t. At the initial time, the element has
the shape of rectangle ABCD with dimension�x,�y, and after a time�t, it changes
into A0B0C0D0 in a nonrigid motion. The angular velocity around an axis parallel to
z is �

d	

dt

�
z

D lim
�t!0

1

2

�
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D 1

2
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�
where�˛ D EB0=A0E and �ˇ D FD0=A0F. We have also
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From these two equations, we obtain then d˛=dt D dv=dx, and in the same way for
ˇ, we obtain dˇ=dt D du=dy. The equivalent angular velocity is�
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dt
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�
(3.29)

On the right-hand side, we recognize the z component of the vorticity already
defined. In the case of a rigid body, the rotations of the angles are equal with opposite
sign �˛ D ��ˇ so that

d

dt
.�˛ C�˛/ D 2

�
@	

@t

�
and in this case the vorticity is twice the angular velocity.
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3.3.1 Some Properties of Vorticity and Circulation

At this point, before going further, it is a good idea to define the reference system
we will be using most of the time. This is a Cartesian system, as is shown in Fig. 3.8,
with the x axis tangent to a parallel and oriented toward east, the y axis tangent to
the meridian oriented toward north, and the z axis coincident with the local vertical
and oriented upward. The plane xy is then tangent to the surface of the Earth at the
point where the axis originates.

The definition we have given for the vorticity can be very easily interpreted
in physical terms. To establish if the circulation is different from zero, we can
introduce in the fluid a paddle wheel, as shown in Fig. 3.9. This is something like
the “rotometer” introduced in electromagnetism. Here, we represent the horizontal
flow in a channel. The case to the left could be the one in which we have friction
on the walls. If the rotor is zero, the vorticity is zero and then the paddle wheel will
not turn. This happens when the velocity field is uniform (i.e., the case on the right).
If, as for the case on the right, the velocity changes, that is, a shear is present (as
the meteorologists say), then vorticity is different from zero, and the wheel will turn
because there is a net torque acting on it.

From the definition of the circulation, we can find a property of its rate of change
with time. We can write

DC

Dt
D D

Dt

I
V � dl D

I
DV
Dt

� dl C
I

V � D

Dt

�
dl
�

(3.30)

Fig. 3.8 Illustration of the
reference system

Fig. 3.9 The vorticity for two different velocity fields of the fluid. To the left, the velocity shear
introduces a counterclockwise vorticity (positive) in the upper part and clockwise vorticity in the
lower part (negative). To the right, the integration along the path (and then the vorticity) is zero
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The last term is the change with time of the infinitesimal vector that connects
adjacent elements of the fluid. As shown in Fig. 3.12, if �r is such distance then
the infinitesimal change is given simply by�r .t C�t/��r.t/D �V�t so that at
the limit �t ! 0, we have D .Dl/ =Dt D dV. This means that � being a material
contour, the infinitesimal change will depend only on the velocity of the fluid.

We get then for the rate of change of the circulation

DC

Dt
D
I
�

DV
Dt

� dl C
I
�

V�dV D
I
�

DV
Dt

� dl C
I
�

djVj2 D
I
�

DV
Dt

� dl (3.31)

Substituting for DV/Dt and neglecting the friction we have for the rate of change of
the circulation

DC

Dt
D �

I
�

.2� � V/ � dl�
I
�

rp



� dl (3.32)

This equation simply tells us that there are two ways to change the relative
circulation, the first through the Coriolis acceleration and the second because of
the acceleration produced by the pressure gradients. The effect of the Coriolis
acceleration is interesting because the first term on the right-hand side of Eq. (3.32)
is the change of circulation due to the rotation of the planet. This term can be written
following a vector rule as

� .2� � V/ � dl D �2� � .V � dl/

The terms V � dl can be easily interpreted, as shown in Fig. 3.10, as the elementary
area swept by the infinitesimal element dl in the time interval dt. The vector has the
direction normal to the area itself. Then the scalar product of such a vector for the
angular velocity can be written as

�
I
�

.2� � V/ � dl D �2�D†n

Dt

where †n is the area included in the curve � projected on a plane normal to �.
We can easily see that in case the curve is drawn on the surface of the Earth, as in

Fig. 3.10 The infinitesimal
change of vector �r (left).
The contour � goes in the
contour � 0 after the time�t
(right)
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Fig. 3.11 Illustration of the
Bjerknes theorem n

Ω
Σ

Σn

Fig. 3.11, and the area is †, then what counts is the projection on the equatorial
plane that has the value †n D † sin �. The change of the relative vorticity is

DC

Dt
D �2�D†n

Dt
(3.33)

This equation expresses the Bjerknes circulation theorem. If Eq. (3.36) is integrated
from an initial state 1 to a final state 2 to which corresponds the areas †1 and †2 at
the latitudes �1 and �2, respectively, we obtain

C2 � C1 D �2� .†2 sin�2 �†1 sin�1/

which relates the change in the circulation to changes in latitude and area. Actually,
Eq. (3.36) can be read in a different way. Keeping in mind Eq. (3.24), we can easily
find a relation between relative circulation and absolute circulation

DC

Dt
D DCa

Dt
� 2�D†n

Dt

that is essentially Eq. (3.33).
At this point we can discuss the other term appearing in Eq. (3.34), related to the

pressure gradient. We use the Stokes theorem
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The first term on the right-hand side is zero so that the circulation of the pressure
term becomes
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This equation can be simplified when a relation can be established between p and 
,
like 
D 
(p). In this case the fluid is called barotropic, and a typical example is a
liquid inside a container, such as water in the bathtub. At each level at depth h with
respect to the surface, we can write p D 
gh. However, also for an isothermal
atmosphere, pressure is simply proportional to density. In this case the integral
appearing on the left of Eq. (3.37) is zero becauseI

�

rp



� dl D

I
�

dp


.p/
D 0

In general, isobars (constant pressure surfaces) are not parallel to constant density
surfaces (isopycnics). In this case the fluid is called baroclinic and the vector rp �
r
 is not zero and so neither is the integral.

3.3.2 The Vorticity Equation

We can define a current cylinder as the surface formed by the streamlines that
intersect with a closed curve normal to the streamlines, as shown in Fig. 3.12. In a
similar manner, it is possible to define a vortex line or filament as the curve tangent
to the vorticity vector at each point. The corresponding cylinder is a vortex tube.
These elements have some properties that derive from the rules of vector analysis.
For example, if we want to evaluate the flux of the velocity vector, we solve the
integral Z

V � ndA D
Z

r � VdV

For zero divergence, this equation gives a constant flux along the tube defined by the
velocity vector: then, where the section increases, the velocity decreases, and vice
versa.

In the case of a vortex tube, we can evaluate in a similar way the vorticity flux to
obtain

¨1 � ndA1 D ¨2 � ndA2 (3.35)

V

ΔA2 ΔA1 ΔA2

ω

ΔA1

Fig. 3.12 A current tube (left) and a vortex tube (right)
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If the mass contained in the tube is dM, the conservation of the circulation that
is implicit in Eq. (3.35) means that the ratio C/dM is constant, so that if  is the
vorticity component normal to the elementary area, we must have

C=dM D dS=
dldS D =
dl (3.36)

This means that the length of the tube will increase if the vorticity increases, and
vice versa. The consequence of this property is evident if we recur to the equation
of motion written with all its terms�
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We notice that the quantity
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and the advection term in Eq. (3.37) can be substituted by defining the vorticity
vector as ¨ D r � V�
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To find the vorticity tendency, we need only to calculate the curl of the above
equation
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The first term on the left-hand side is simply the local derivative of the vorticity,
while the second can be written as

r � ..2� C ¨/ � V/ D .2� C ¨/r � V C .V � r/ .2� C ¨/� .2� C ¨/ � rV

where we have taken into account that r � .2� C ¨/ D 0. We have then
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Fig. 3.13 The coordinate
system to illustrate the
changes of vorticity (left). On
the right the change in
direction is shown
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The quantity 2� C ¨ D ¨a is the absolute vorticity so that the second term on the
left represents now the advection of the absolute vorticity. The vorticity equation
becomes then
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�
(3.39)

This equation tells us that the vorticity is generated by the baroclinic term (the
non-parallelism between the pressure and density gradients), but it is also influenced
by the two terms on the left-hand side.

To understand how these terms work, we can choose a very peculiar reference
system, such that the z axis is tangent to a vorticity filament (see Fig. 3.13). In this
case the absolute vorticity can be written ¨a D k !a. The second and third term in
Eq. (3.39) become
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The interpretation of these two terms is rather interesting. Starting from the
second and being interested only in the changes of the z component, we obtain

D . C f /
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D � . C f /

�
@u
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C @v

@y

�
(3.41)

This equation indicates that when the divergence is negative, the vorticity
increases, and vice versa. This is the same as saying that if the cross section of a
vortex tube decreases, its rate of rotation increases.
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Fig. 3.14 The change in
inclination of a vortex tube
caused by the horizontal
component of the vorticity in
the presence of a gradient of
the vertical wind

y

x

w

w

z

ω2(t+Δt)

ωx(t)

The first term in Eq. (3.40) gives rise to another interesting effect on one of the
components normal to the z axis, for example, !x. In this case we have for the
change of the component

D.!a/x=Dt D !a@u=@z

and in the time �t the fractional change will be

.�!a/x

!a
D @u

@z
�t D �x

�z
(3.42)

As shown in Fig. 3.14, this corresponds to a rotation of the vortex tubes through an
angle whose tangent is �x/�z.

The conclusion at this point is that the net production of vorticity is due to the
baroclinic term, but its dissipation is due to the effects of stretching and rotation of
the vortex tubes rather than the friction forces.

In the application of Eq. (3.38) to the atmosphere, we only consider the z
component so that it can be rewritten for this component. A complicated term to
write may be

¨a � rV � ¨ar � V

because we need to consider also the horizontal components of the vorticity, that is,

!x D @w

@y
� @v

@z
I !y D @u

@z
� @w

@x

so that the term becomes

.!a � rV � !ar � V/z D � .Cf /
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�
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As we have noted earlier, the ratio w/u < < 1, so that all the products involving w can
be neglected, with the result

.¨a � rV/z D � . C f /

�
@u

@x
C @v

@y

�
C
�
@u

@z

@w

@y
� @v

@z

@w

@x

�
In particular, the second term can be written as

k �
�
@V
@z

� rw

�
Keeping all the pieces together, we have for the rate of change of the absolute
vorticity �D C f

D�

Dt
D ��

�
@u

@x
C @v

@y

�
C k �

�
dV
dz

� rw

�
C k �

�r
 � rp


2

�
C k �

�
Fr




�
(3.43)

This equation, even if written only for z, contains as a particular case the conserva-
tion of the absolute vorticity. This happens when the divergence is zero (first term
on the right), when the motion is horizontal (second term zero), when the fluid is
barotropic (third term zero), and finally when there is no friction (last term).

Equation (3.43) contains a stretching term (first term on the right-hand side) and
rotation of the vortex line (second term). In Fig. 7.6 again the change in direction
of the axis of a vortex tube is shown and is due to a shear of the vertical wind
component. In this case the change in the relative vorticity due only to this term is
given by

D

Dt
D !x

@w

@x

As a consequence there is a vertical component of the vorticity given by

� D !x
@w

@x
�t D !x

�z

�x

It is interesting at this point to proceed with a scale analysis of Eq. (3.43). Again,
if we indicate with L, H, and U as the horizontal scale, the vertical scale, and the
horizontal velocity, respectively, we have

@

@t
� U

L
=

L

U
�
�

U

L

�2
(3.44)

The divergence term needs a careful examination. First of all, we notice that Il
� U/L so that

=f � U=fL � Ro << 1 (3.45)

http://dx.doi.org/10.1007/978-3-319-29449-0_7
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In the divergence term, we can then neglect the relative vorticity with respect to the
planetary vorticity, and because the left- and right-hand sides must be of the same
order, we have

f

�
@u

@x
C @v

@y

�
�
�

U

L

�2
)
�
@u

@x
C @v

@y

�
� Ro (3.46)

This means that the ratio between divergence and vorticity is of the same order
as the Rossby number. Notice that the equilibrium between the rate of change of
vorticity and the divergence term is easily reached, because from the observations
we have U/L � 10�5, so that the divergence must be small. We can also estimate the
order of magnitude of the vertical velocity. We have�

@u

@x
C @v

@y

�
� �@w

@z
) w � H

f

�
U

L

�2
This is because from Eq. (3.46) the horizontal divergence is of the order of

(U/L)2/f. We have then an interesting relation between Rossby number and vertical
velocity

w=U � RoH=L (3.47)

that is more restrictive than the one we found for a thin fluid. We can now proceed to
the evaluation of the second term on the right-hand side of Eq. (3.43), simply noting
that

rw � w

L
I rw

@v

@z
� HU2

fL3
U

H
� 1

f

�
U

L

�3
(3.48)

Finally, we treat the baroclinic term, which needs a little elaboration. From
geostrophic equilibrium and simple thermodynamics, we get

rp=
 � fU I �
=
 � ��T=TI r
=
 � fU=.gH/

the last from thermal wind. Finally,

r
 � rp


2
� f 2U2

gH
(3.49)

If these terms are compared with the divergence term or simply to (U/L)2, we see
that in Eq. (3.43) are at the least one order of magnitude smaller than the divergence
term. As a first approximation, we can assume that the absolute vorticity is balanced
by the stretching of the vortex tubes, so that Eq. (3.43) can be written as

D . C f /

Dt
� � . C f /

�
@u

@x
C @v

@y

�
(3.50)
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Actually, the total derivative contains also the vertical advection term that we
neglect, so that Eq. (3.50) is even simpler, and with the notation

dh=dt D @=@t C u@=@x C v@=@y

we have

dh . C f /

dt
D � . C f /

�
@u

@x
C @v

@y

�
(3.51)

If the total divergence is zero, this becomes

dh . C f /

dt
D � . C f /

@w

@z
(3.52)

We have now laid all the basic stuff about dynamics, and the next chapter will show
some application of the knowledge we gained.

E.3 Examples

E.3.1 The Coriolis Acceleration

The Coriolis acceleration arises when dealing with non-inertial systems (the Earth
is one of them) and can be introduced in different ways.Suppose we set in motion
a point at the pole toward the equator. An observer at rest with the “fixed stars”
looking down at the pole will see a trajectory like the one shown in Fig. E.3.1a. For
an observer at rest on the Earth, the trajectory will be like the one in Fig. E.3.1b.
For an inertial observer there are no forces because the trajectory is a straight line,
while the non-inertial observer will interpret the curved trajectory as produced by
an acceleration to which he can assign a precise value. Based on the deviation,
we see the Coriolis acceleration as due to a centrifugal force associated with the
rotation of the Earth augmented by the rate u/R, where u is the velocity component
along the parallel and R the distance between the point and axis of rotation. If we

Fig. E.3.1 The trajectory
(represented with the heavy
line) of a point moving from
the pole to the equator. (a)
The trajectory for an inertial
system. (b) The trajectory for
a system that is fixed with the
Earth

a b
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Fig. E.3.2 The component
of the Coriolis acceleration
for motion along a parallel

refer to Fig. E.3.2 and considering carefully the different directions, we find for the
centrifugal force

�
�C u

R

�2
R D �2R C 2�uR

R
C
� u

R

�2
R (E.3.1)

The terms on the right can be interpreted (they are all in the same directions and are
oriented as R). The first is the acceleration that results from the rotation of the Earth,
while the third is the same acceleration due to the additional rotation u/R. Usually
for the atmospheric motions juj << �R and so this term is negligible. The term at
the center, on the other hand, is the Coriolis acceleration. From Fig. E.3.2 we see it
has two components, one along the local vertical and one the along the meridional
direction, and this has the value (defined positive toward the north)�

dv

dt

�
Co

D �2�u sin� I
�

dw

dt

�
Co

D 2�u cos� (E.3.2)

This means that an air parcel that moves along the parallel from west to east
undergoes acceleration toward the south, and vice versa. If the motion is along
the meridian, to obtain the Coriolis acceleration we can invoke the conservation of
angular momentum. We assume that the air parcel moves from radius R and latitude
�0 to the radius R C ıR and latitude �0 C ı�, toward the equator. In this case the
air parcel moves toward zones with high angular momentum so that its velocity will
change by ıu in order to conserve the angular momentum. We have

�R2 D
�
�C ıu

R C ıR

�
.R C ıR/2

We write the square as .1C 2ıR=R/, and neglecting higher-order terms, we obtain
ıu D �2�ıR where ıR D �aı�sen�0 with a as the radius of the Earth. We have
then for the acceleration�

du

dt

�
Co

D 2�a
d�

dt
sin �0 D 2�v sin� (E.3.3)

where v D ad�=dt is the velocity component in the north direction.
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When a parcel moves along the meridian, acceleration is generated that acts along
a parallel. The horizontal accelerations are proportional to the quantity 2� sin �,
which is called the Coriolis parameter, denoted by the symbol f. There is a more
elegant way to obtain the Coriolis acceleration using a coordinate transformation.

E.3.2 The Inertial Oscillation

It is rather interesting to study the motion of a parcel in the atmosphere subjected
only to the Coriolis acceleration. Equation (3.25) in this case simplifies as

Du

Dt
� fv D 0

Dv

Dt
C fu D 0 (E.3.4)

The first equation can be derived with respect to time, while the second can be used
to eliminate Dv=Dt so to obtain

D2u

Dt2
C f 2u D 0

which has the solution

u .t/ D u0 cos ftI v .t/ D v0 sin ft

with initial conditions u .0/ D u0I v .0/ D 0. If the air parcel is located at the
origin that follows the inertial circle trajectory

x.t/ D .u0=f / cos ftI y.t/ D .u0=f / .cos ft � 1/ (E.3.5)

The trajectory is a circle of radius u0/f and the particles move anticlockwise. It is
interesting to note that the main role in producing the inertial oscillation is due to
gravity. This can be understood by referring to Fig. E.3.3. The composition of the
true gravity (g) with the centrifugal force (� � � � R) gives rise to an apparent
gravity (ga). The normal at each latitude to the apparent gravity defines a new oblate
equipotential surface called geoid. On the geoid the equator is “uphill” and the
mass will tend to fall over the pole. The balance between the components of the
centrifugal force and the true gravity keeps the mass in place.

It can be easily shown that from the right of Fig. E.3.3, the component of the true
gravity tangent to the geoid is simply

g sin ı � gı D �2a sin' cos' (E.3.6)

which has a maximum at 45ı where the angle ı is only 6 min or arc. As a
consequence the tangent component is only 0.017 m s�2.
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Fig. E.3.3 The figure of the terrestrial geoid (left). The solid line represents the surface normal at
each point to the apparent acceleration of gravity. The geometry of the two gravity accelerations

It is rather interesting to consider now the trajectory in a nonrotating reference
frame. We use the plane tangent to the north pole and write the absolute acceleration
in the fixed reference frame

dVf

dt
D dVr

dt
C 2� � Vr C � � .� � R/ (E.3.7)

In the rotating system, the Coriolis acceleration equilibrates the relative accelera-
tions so that the first two terms on the right-hand side are zero and we get �

dVf

dt
D � � .� � R/ (E.3.8)

The term on the right cannot be an apparent force because we are in the inertial
frame and actually is the component of the centrifugal force normal to the apparent
gravity shown in Fig. E.3.3. Equation (E.3.8) can be projected on the two horizontal
axis x and y to obtain

d2x

dt2
C�2x D 0I d2y

dt2
C�2y D 0 (E.3.9)

The fixed coordinate trajectory for a parcel leaving the north pole with initial
velocities u D u0I v D 0 is

x D 2u0
f

sin

�
ft

2

�
I y D 0 (E.3.10)

where we have used the condition � D f=2. The trajectory described by (E.3.10)
is a straight line along which the parcel oscillates with a period 4�f �1. On the
other hand the trajectory in the rotating coordinate system is described by (E.3.5).
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Fig. E.3.4 Relative position of the fixed and rotating coordinate trajectories. The parcel position is
shown by the open square. The north pole position by the heavy dot (Adapted from Durran 1993)

Figure E.3.4 shows the two trajectories. The linear oscillation happens along the
dotted line with the parcel starting from the north pole (heavy dot). The rotating
coordinate trajectory is given by the solid circle which moves in counterclockwise
movement around the north pole.

E.3.3 The Rossby Adjustment Problem (Nonrotating)

We consider a fluid of constant density that presents some discontinuity at the
surface. Our intention is to show how those discontinuities are smoothed out. The
first step is to consider a nonrotating fluid so that the acceleration is determined only
by the pressure gradient. We have then

@u=@t D � .1=
/ @p=@x

@v=@t D � .1=
/ @p=@y
(E.3.11)

To simplify things we assume that the total height of the fluid is H C�with � << H
where H is a constant. Equation (E.3.11) becomes

@u=@t D �g@�=@x

@v=@t D �g@�=@y
(E.3.12)
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where we have assumed p D 
g�. Equation (E.3.12) shows that currents are
independent of depth so that the continuity equation can be integrated with respect
to z to obtainZ HC�

0

.@u=@x C @v=@y C @w=@z/ dz D @�=@t C H .@u=@x C @v=@y/ D 0

Deriving the first of Eq. (E.3.11) with respect to x and the second with respect to y,
we obtain

@2�=@t2 D gH
�
@2�=@x2 C @2�=@y2

� D c2r2� (E.3.13)

where c2 D gH is the square of the phase velocity. The solution of this equation
when there is no y dependence is given by

� D 1
2 ŒG .x � ct/C G .x C ct/�

that is, a form of progressive and retrograde wave. The velocity can be obtained
using the first of (E.3.12). Then we have

@u=@t D �g 1
2 @=@x ŒG .x C ct/C G .x � ct/�

With a simple integration with respect to time, we get the result

u D � 1
2c

�1g ŒG .x C ct/ � G .x � ct/� (E.3.14)

This can be easily understood if we assume G .x ˙ ct/ D exp .x ˙ ct/. A very
interesting initial condition can be obtained using

� D �0 sgn.x/ where sgn.x/ D
�

1 for x > 0
� 1 for x < 0

(E.3.15)

The solution is illustrated in Fig. E.3.5 where the initial condition is shown together
with the time evolution. The initial discontinuity propagates in opposite direction
with velocity c leaving the fluid surface unperturbed but with a steady motion from
left to right with velocity g�0/c.

E.3.4 The Rossby Adjustment Problem (Rotating Case)

In the rotating case, we should consider the conservation of potential vorticity, so
we will start with a simplified version of Eq. (3.41) (Gill 1982)

@=@t C f .@u=@x C @v=@y/ D 0 (E.3.16)
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Fig. E.3.5 The evolution of
the initial perturbation of the
surface of a nonrotating fluid

The horizontal divergence is eliminated with the continuity equation, so we get

@u=@x C @v=@y D � .1=H/ @�=@t

@

@t

�


f
� �

H

�
D 0 (E.3.17)

This equation expresses a particular case of the conservation of potential vorticity,
and the quantity

Q0 D =H � f�=H2 (E.3.18)

may be called perturbation potential vorticity that remains constant for every instant
of time that is

Q0 .x; y; t/ D Q0 .x; y; 0/ (E.3.19)

And in particular for initial conditions u D v D 0, we have

=f � �=H D .�0=H/ sgn.x/ (E.3.20)

At this point the same as Eq. (E.3.13) can be obtained starting from

@u=@t � fv D �g@�=@x

@v=@t C fu D �g@�=@y
(E.3.21)

We obtain substituting the horizontal divergence for the rotating case

@2�=@t2 � c2
�
@2�=@x2 C @2�=@y2

�C fH D 0 (E.3.22)
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And again, substituting the potential vorticity from (E.3.20), we obtain

@2�=@t2 � c2
�
@2�=@x2 C @2�=@y2

�C f 2� D �f 2�0 sgn.x/ (E.3.23)

We can work out a steady-state solution of this equation by rewriting it:

�c2
�
@2�=@x2 C @2�=@y2

�C f 2� D �f 2�0 sgn.x/

And in case there is no dependence on y, we get

�c2@2�=@x2 C f 2� D �f 2�0 sgn.x/ (E.3.24)

A solution for this equation can be found for the two half space

�

�0
D
� �1C exp

��x=L

�

for x > 0
1 � exp

�
x=L


�
for x < 0

where

L
 D c= jf j D .gH/1=2=f (E.3.25)

is the Rossby radius of deformation. It is quite interesting to find the solution for the
velocity that can be done considering that zero acceleration in (E.3.21) is obtained
when the Coriolis balances the pressure gradient. It is found that the velocity along
y is given by

v D .g=f / @�=@x D � �g�0=fL

�

exp
�� jxj =L


�
(E.3.26)

It is to note that the motion of the fluid is not along the direction of the pressure
gradient but is perpendicular to it. As we will see this is a characteristic of
the geostrophic motion the simplest approximation when the pressure gradient is
balanced by the Coriolis acceleration. The consequence is a strong jet perpendicular
and out of the page. The initial discontinuity is smoothed out with a characteristic
length given by the Rossby radius of deformation (Fig. E.3.6).

E.3.5 Energetics of the Adjustment

In the nonrotating case, the initial perturbation potential energy is given byZ �0

0


gzdz D 1
2
g�20 (E.3.27)
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Fig. E.3.6 The stationary solution of the adjustment for a rotating fluid. The initial condition
is shown by dashed line. The upper figure represents the elevation, while the bottom shows the
velocity normal to x

After the wave has passed, the kinetic energy has reached a value

1
2H
u2 D 1

2H
.g�0=c/2 D 1
2 
g�20 (E.3.28)

All the potential energy has been converted in kinetic energy. In the rotating case,
however, the potential energy released per unit length is given by

P:E: D 2 12
g�20

Z 1

0

h
1� �

1� e�x=L

�2i

dx D 3
2 
g�20L
 (E.3.29)

On the other hand, the kinetic energy per unit length in the equilibrium solution is
given by

K:E: D 2 12
H
�
g�0=fL


�2Z 1

0

e�2x=L
dx D 1
2 
g�20L
 (E.3.30)

This represents only one third of the potential energy. The remaining energy could
be taken into account only if the transient problem is worked out that is how the
steady state is reached.
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Chapter 4
Dynamics: Few Simple Applications

The plan for this book is to make a very rapid introduction to the very basic topic
(thermodynamics, radiation, etc.) so that we could start as soon as possible to get
serious. On the other hand, Chap. 3 was already too heavy with dynamics, and we
thought that something in between very serious applications and simple exercises
would be a little bit relaxing. We then start with a scale analysis of the equation of
motions and then proceed to the most simple application of what we learned in the
previous chapter.

4.1 The Geostrophic Motion

The simplest approximation to solve the equation of motion, Eq. (3.25), is known
as geostrophic. This means in practice that the balance occurs between the pressure
and the Coriolis forces. The reason for that is again based on the scale analysis, as
we have seen before. We refer to a characteristic length L that sets the horizontal
scale of the motion and to a dimension D that sets the depth of the fluid. We can find
the order of magnitude of the acceleration with respect to the Coriolis term:

jDV=dtj
j2� � Vj D O



U2=L

�U
;

U

�L

�
(4.1)

This means that the ratio between acceleration and Coriolis term is of the same order
of magnitude of the Rossby number and can be neglected as a first approximation.
With the same argument, we can establish that the accelerations produced by the
friction forces are negligible. Referring to Eq. (3.17), we have
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The ratio between the acceleration due to the friction and the Coriolis term is
known as the Ekman number E

E � vU=L2

�U
D v

�L2
(4.2)

We have seen that viscosity is of the order of 10�5 m2 s�1; thus with L D 103 km,
we have E D 10�13, that is, a very small number indeed. Carrying out further the
scale analysis, it is clear that the ratio between vertical velocity w and the horizontal
components u; v is of the order

w

u
� O



D

H

�
	 1 (4.3)

At this point, Eq. (3.25) can be simplified drastically and reduces to


2� � V D �rp C rˆ (4.4)

If this equation is applied to a thin fluid of thickness D on the surface of the Earth,
as in Fig. 4.1, then the same surface can be assumed at constant potential so that rˆ
gives exactly the acceleration g. In the surroundings of L the surface can be assumed
flat. This actually is not just a geometrical approximation but has to do with the
Coriolis parameter which is a function of latitude. The flat Earth approximation at
this stage corresponds to keeping the Coriolis parameter constant with latitude. In
this case, we can write Eq. (4.4) as

�2�v sin ' C 2�w cos' D �1



@p

@x

2�u sin' D �1



@p

@y

2�u cos' D �1



@p

@z
C g

(4.5)

Fig. 4.1 The approximation
used for the geostrophic
equilibrium. The thickness of
the atmosphere has been
exaggerated
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At this point, we can assume that in the absence of motion, the pressure is a function
only of z so we can write

p D ps.z/C p0 .x; y; z/ 
 D 
s.z/C 
0 .x; y; z/

where ps(z) and 
s(z) are density and pressure when the atmosphere is at rest, while
p0 and 
0 are the perturbation values with respect to this state. For the atmosphere in
hydrostatic equilibrium, we put @ps=@z D �
sg, so Eq. (4.5) becomes

�2�v sin ' C �2�w cos' D � 1

.
s C 
0/
@p0

@x

� 2�u sin' D 1

.
s C 
0/
@p0

@y

2�u cos' D � 1

.
s C 
0/
@p0

@z
C 
0g
.
s C 
0/

(4.6)

We have seen that the vertical velocity can be neglected with respect to the
horizontal components, so that the second left-hand term in the first part of Eq.
(4.6) can be canceled. The order of magnitude of the horizontal pressure gradient is
p0/L, and if the Coriolis force must balance, the acceleration due to pressure must be

p0

L
� O Œ
�U� (4.7)

so we can estimate the vertical pressure gradient

@p0

@z
D O
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D

�
D O





�UL

D

�
(4.8)

In turn, we can now evaluate the ratio between the vertical components of the
Coriolis acceleration and the pressure gradient acceleration:



2�u cos'
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D O
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D O
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�
	 1 (4.9)

We see that even in this case, in the last part of Eq. (4.6), the Corio-
lis acceleration can be neglected. The conclusion is that the background
atmosphere is in hydrostatic equilibrium as well as the deviations from it.
The magnitude of these deviations can also be evaluated from Eq. (4.8):


0 D O





�UL

gD

�
) 
0



D O



U

�L

�
�2L2

gD
(4.10)
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We notice that the ratio between densities depends only on the Rossby number and
the geometrical characteristics of the fluid. In case of meteorological motions with
L D 103 km; D D 10 km, �2L2=gD D 0:1, so that 
0=
 � 0:1Ro 	 1. We have
finally

fvg D 1




@p

@x
I fug D �1




@p

@y
I 
g D �@p

@z
I (4.11)

Again these are diagnostic relations through which we can determine the
wind once we know the pressure gradient or simply the pressure field. After
manipulating a little, we can put Eq. (4.11) in a synthetic vector form:

Vg D 1

f

k � rzp (4.12)

where with Vg we have denoted the horizontal component of the wind and with k
the vertical unit vector. The third part of Eq. (4.11) simply says that the fluid is at
rest in the vertical direction.

We can change Eq. (4.19) as a function of the geopotential we have defined as
' D gz. We have then r2

z ' D 0 and substituting into Eq. (4.4) gives

rxp D � @p

@ˆ
rp' D 
rp'

Equation (4.12) can then be rewritten as a function of the geopotential:

f Vg D k � rp' (4.13)

The last two relations simply tell us that the geostrophic wind is normal to the
pressure or geopotential gradient. As shown in Fig. 4.2, in the northern hemisphere,
the wind velocity leaves the high on the right. Both equations can be used in the
calculations.

As a simple, practical example, referring to Fig. 4.2, we put p D 454 hPa and
p C�p D 458 hPa and assume that the isobars are separated by a distance of

Fig. 4.2 The equilibrium in
the geostrophic motion
between the pressure gradient
�rp and the Coriolis force
Fco

p

p+Δp
− ∇p

FcoVg
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300 km with an average temperature of 250 K. We can calculate the density

D p/RT D 4.56 104/(287 250) D 0.635 kg m�3, and for the geostrophic wind, we
have V D 400/(0.635 1.08 10�4 300 103) D 20.5 ms�1 where the Coriolis parameter
has been calculated for a 45ı latitude and has the value 1.028 10�4 s�1. The direction
of the geostrophic wind is parallel to the isobars and rotates clockwise around high-
pressure zones and counterclockwise around low-pressure zones.

Actually we can see some problem with this geostrophic approximation. First of
all, at the equator f D 0 and we cannot attain any balance there. Another point is
that, when we calculated the velocity divergence from Eq. (4.11), we found that it
is zero in case of uniform rotation, f D cost. This means that geostrophic motion
does not allow any space for vertical motions. Actually these considerations have
much more profound implications, but to appreciate that, we need to introduce the
geostrophic streamfunction.

4.1.1 The Geostrophic Streamfunction

The most important difference between the geostrophic motion (i.e., the motion
in a fluid in rotation) and the motion in a fluid at rest is that in the former it
develops along isobars, while in the latter it develops along the pressure gradient.
In the geostrophic approximation, once there is a pressure map, the motion can be
immediately determined. This by the way may spell trouble for those who believe
they can become weathermen without adequate training.

An important property of a geostrophic fluid can be found by considering
Fig. 4.3, where a geostrophic flow along three isobars, separated by a small pressure
difference, is sketched. We want to evaluate the mass flux through the surface of
unitary height delimited by curve C, assuming also the fluid to be thin. We consider
the elementary vector dl tangent to the curve C, while the unit vector n indicates the
normal direction to the same curve. To evaluate the mass flux M we start from the
elementary flux


s
�
Vg � ndl

�
Fig. 4.3 The evaluation of
the mass flux through the line
between Q1 and Q2 (From
Pedlosky 1987)

p1

p2

p3

Vg
Vg

Q2

Q1

C
n

dl
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that we integrate along the curve between points Q1 and Q2 which remain on the
isobars p1 and p2, respectively. Vg is the geostrophic wind and 
s is the density.

M D
Z Q2

Q1


s
�
Vg � ndl

�
and substituting the value of the geostrophic wind, we obtain

M D
Z Q2

Q1


s
�
Vg � ndl

� D
Z Q2

Q1




�
k � rp

f

�
� ndl

that gives the result

M D
Z Q2

Q1

Œrp � .n � k/�
f

dl D �
Z Q2

Q1

rp

f
dl (4.14)

because n and k are normal. This relation can be simplified when the performed
Coriolis parameter is held constant along the integration path. In this case, we have

M D p .Q1/

f
� p .Q2/

f
(4.15)

which shows how the mass flux is independent of the integration path C. From a
simple comparison between Eqs. (4.15) and (4.12), we see that, if we define  D
M=
, we obtain

ug D �@ 
@y

I vg D @ 

@x
(4.16)

The function M, which is called the mass streamfunction, is equivalent to the mass
flux through the points Q1 and Q2 and is measured in kg m�1 s�1. The function �
measured in m2 s�1 is called the streamfunction.

The result we have obtained is very elegant but has some limitations that we can
understand. Because any geostrophic solution satisfies the continuity equation, this
implies that the three in Eq. (4.11) are somewhat redundant. We can actually write
Eq. (4.16) as


f
@ 

@x
D @p

@x
I 
f

@ 

@y
D @p

@y

If the pressure is eliminated from these two equations (by deriving the first with
respect to y and the second with respect to x and subtracting), we have the trivial
solution “zero equal zero.” As a matter of fact, the definition of the streamfunction

f D p



(4.17)
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means that, given a pressure field, it is always possible to find the corresponding
geostrophic streamfunction. In mathematical terms, this indicates a degeneracy of
the solutions and so we talk about geostrophic degeneracy. This implies that the
geostrophic solution cannot determine the fluid motion. To accomplish this, we need
to take into account small deviations from geostrophy, and a very good example of
this is the isallobaric wind.

4.1.2 The Quasi-geostrophy: The Isallobaric Wind

If we maintain the acceleration term and neglect the friction term, the equation of
motion can be written as

DV
Dt

D �f k � V � 1



rzp (4.18)

and the wind velocity can be separated into the geostrophic and ageostrophic parts:

V D Vg C Va

Substituting this relation in Eq. (4.18) and expressing the geostrophic wind as in Eq.
(4.12), we have

DV
Dt

D �f k � Va (4.19)

This relation shows that the ageostrophic component is always perpendicular and
“at the left” of the acceleration in the northern hemisphere. This equation can be
solved for Va:

Va D 1

f
k � DV

dt

Remembering the decomposition, we have

Va D �1
f

k �


@

@t

�
1


f
rzp

�
C DVa

Dt

�
(4.20)

As a first approximation, we can neglect the second term in parentheses so that the
deviation from the geostrophic wind in terms of components is given by

u � ug � � 1

f 2


@2p

@t@x
I v � vg � � 1

f 2


@2p

@t@y
(4.21)

The ageostrophic component of the wind depends from the rate of change of
the pressure gradients, the so-called tendency, and the lines connecting points with
the same value for the tendency are called isallobars. The direction is normal to
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the isobars and oriented toward the isallobaric minimum. The total wind is then
composed of the geostrophic component blowing parallel to the isobars and the
isallobaric component. It is extremely interesting to calculate, at this point, the
divergence of the total wind starting from Eq. (4.21). Considering the divergence
of the geostrophic wind to be zero, we have

@u

@x
C @v

@y
D � 1

f 2


@

@t

�
@2p

@x2
C @2p

@y2

�
D �1

f

@

@t

�
@vg

@x
� @ug

@y

�
(4.22)

We notice that in this case the divergence is not zero and the contribution is from the
isallobaric terms. Also, we see that the divergence is proportional to the tendency of
the geostrophic vorticity. It is easy to show that the relative vorticity is determined
only by the geostrophic terms:

@v

@x
� @u

@y
Š � 1

f 2
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@t

�
@2p
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� @2p

@y@x

�
C
�
@vg
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� @ug

@y

�
(4.23)

Comparing Eqs. (4.22) and (4.23), we see that if the time scale of the motion is T,
then the ratio between divergence and vorticity is of the order of the Rossby number.
Again for fast-rotating planets, the vorticity plays a major role in the determination
of the motion.

We cannot resist at this point the temptation of a further step, obtained by
eliminating the pressure between Eqs. (4.22) and (4.23):

@

@t

�
@v

@x
� @u

@y

�
C f

�
@u

@x
C @v

@y

�
D 0 (4.24)

This represents a particular form of the vorticity equation that will be discussed at
length in the next chapters. The equation shows that the rate of change of vorticity is
proportional to the horizontal divergence. If the divergence is positive, the horizontal
section increases and the rotation of the fluid slows down and vice versa. Actually
this is similar to the conservation of the angular momentum for a fluid. Equation
(4.32) contains information on the ageostrophic components and could be used
to solve for the motion in the fluid. The explicit dependence from the horizontal
divergence gives information on the vertical motion.

4.2 The Thermal Wind

We will start by considering again Eq. (3.25) at steady state (DV=Dt D 0) so we get

2� � V C 1



rp C r' D 0 (4.25)

http://dx.doi.org/10.1007/978-3-319-29449-0_3
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If we take the r� of this equation, we obtain

.2� � r/V D 1



rp � 1



r
 (4.26)

Again as in the case if we have a barotropic atmosphere, the pressure and density
gradient are parallel and in this case

.2� � r/V D 0 (4.27)

because� � r is the gradient operator in the direction of � (i.e., z); we get

@V
@z

D 0 (4.28)

This equation expresses the Taylor–Proudman theorem that implies that in a
barotropic fluid, the velocity field cannot vary in the direction of the rotation. On
the other hand, for a baroclinic fluid, (4.26) applies and the only simplification is
that the fluid may be in hydrostatic equilibrium so that .1=
/rp D �gk so that

2�
@V
@z

D � g



k � r
 (4.29)

In the atmosphere, density is related to pressure and temperature so that taking the
components of (4.29) with 2� ! f k; we get
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�
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�
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(4.30)

where the derivatives are made at constant pressure. We have used the geostrophic
components because we started from the equilibrium.

The thermal wind equation relates the temperature field to the wind field and
there is another simple way to obtain the same equations. Writing the components
of Eq. (4.13), we have the components of the geostrophic wind as a function of the
geopotential:

ug D �1
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�
I vg D 1

f

�
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@x

�
Now we write one of these equations at two different pressure levels, and subtract-
ing, we obtain

ug .p1/� ug .p0/ D �1
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(4.31)
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where ıˆ is the difference between the geopotential at the two levels given by

ıˆ D RT ln .p0=p1/

where T is the average temperature of the layer. Substituting into Eq. (4.31), we
obtain

ug .p1/� ug .p0/ D �R

f
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�
p0
p1

� 
@T

@y

!
p

Operating with the same procedure on the other component, we have

vg .p1/� vg .p0/ D R

f
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�
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� 
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@x

!
p

and the vector form of the thermal wind equation is given by

V .p1/� V .p0/ D VT D
�

R

f

�
ln

�
p0
p1

� �
k � rpT

�
(4.32)

The thermal wind equation is a unique occasion to introduce a coordinate system
we will use often in the following chapters and it is known as log pressure. In
practice, the coordinate z is substituted with a new coordinate z* defined as

z� D �H ln

�
p

p0

�
(4.33)

where H is the scale height. The derivative with respect to pressure can be expressed
as @=@p D .@z�=@p/ @=@z� and the thermal wind equation becomes
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that appear in a very much simplified form.
The formal derivation of the thermal wind equation needs to be complemented

with some more intuitive arguments as shown in Fig. 4.4. If we assume a tem-
perature gradient in the positive x direction, then the surfaces at constant pressure
are increasingly separated with increasing x. The figure shows constant pressure
surfaces at p; p � ıp; p � 2ıp separated by ız D RTıp=p. This implies that
a horizontal pressure gradient is established, oriented as shown in the figure. A
Coriolis acceleration that in turn requires a wind directed along the positive y
direction must balance the acceleration produced by such a gradient. The reason
why the wind increases with altitude is because the horizontal pressure gradient
increases with altitude.
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Fig. 4.4 Change of the wind with altitude. On the right the case of a barotropic atmosphere where
the pattern introduced by an obstacle is maintained at all altitudes (Taylor–Proudman theorem).
The Taylor column is depicted in dashed lines. Left the thermal wind increases with altitude in the
presence of a temperature gradient in the x positive direction (Adapted from Marshall and Plumb
2008)

a b

Fig. 4.5 Temperature advection due to the thermal wind. This is parallel to isotherms (thick solid
lines) and can be obtained as difference of the geostrophic wind at two pressure levels. In (a) the
average geostrophic wind has a component oriented as the temperature gradient. In (b) the situation
is opposite. Cold or warm advection is related to the direction of rotation of the wind

In the case we have just seen, the direction of the geostrophic wind does
not change with altitude. This is not true in general because the temperature
gradient may change with altitude. However, an interesting aspect is that, as shown
in the figure, the thermal wind is parallel to the isotherms. This can be seen
from Eq. (4.26) which shows how the wind is always normal to the temperature
gradient and then parallel to the isotherms or the lines of equal geopotential
thickness.

Equation (4.26) is also useful to predict the temperature advection (and then the
arrival of cold or warm front) by looking at the behavior of the winds with altitude.
Figure 4.5 shows qualitatively the behavior of the isotherms on the two isobaric
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surfaces at p0 and p1. The thermal wind is parallel to the isotherms and can be
obtained as a difference, as shown in the figure. In case (a), the average value of
the geostrophic wind between the two pressure levels has a component oriented as
the temperature gradient, so that the advection defined as Vg�rT is negative and the
temperature in the layer tends to decrease. In case (b), the advection is positive and
the temperature in the layer tends to increase.

Observing the behavior of the wind with altitude, we can outline these two
situations. If the wind turns in the anticlockwise (clockwise) fashion, going from the
higher to the lower pressure, then we have cold (warm) advection. This conclusion
can be also obtained by considering a different expression for the thermal wind.
Actually we can find the change of the geostrophic wind with height. After some
algebra and using the hydrostatic equilibrium, we find

@Vg

@z
D g

fT
k � rpT (4.34)

The change of the geostrophic wind can be then approximated for a rotation ı	 as

ıVg D ˇ̌
Vg
ˇ̌
ı	n

where n is the unit vector normal to Vg that stays “to the left” with respect to it. As
a consequence, it is easy to see after some algebra that the advection

�Vg� � rpT D f

g

ˇ̌
Vg
ˇ̌2

T
@	

@z
(4.35)

In this way, we relate the change in the wind direction with height with the sign of
the advection. The sign of the derivative of the angle will be taken as positive for a
clockwise rotation and vice versa.

4.2.1 Thermal Wind in the Atmosphere

Now that we have discussed at length the thermal wind, we ask if we can apply it
to some real problem. Our first approach with the atmospheric data will be just to
see when and where the thermal wind equation can be applied. Figure 4.6 shows in
the upper part a latitude–altitude section of the annual mean of zonal temperature
in the northern hemisphere. Actually usually the temperature is reported in degrees
Kelvin. The figure is based on the work of A.H. Oort e E.M. Rasmussen. As we
would expect, the surface temperature decreases with latitude and at each latitude
decreases with altitude. The qualitative reasons are well known: the high latitudes
receive less solar radiation and emit almost the same amount of infrared radiation
as the low-latitude regions. The result, at least below 10 km, is a regular gradient
of the temperature with latitude. If the gradient in the y direction is negative, then
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Fig. 4.6 In the upper figure
are shown the average yearly
isotherms as a function of
latitude and altitude. The
interval is 5 ıC. When the
equation of the thermal wind
is applied, the figure at the
center is obtained which
gives the isopleths of the
zonal wind. This must be
compared with the real data
shown in the bottom figure.
The wind is in m s�1 and the
positive values (westerly) are
in gray. The interval is 5 m
s�1 (positive) and 2 m s�1

(negative)
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based on Eq. (4.34) the zonal wind velocity must increase with height. If we apply
the thermal wind equation to the temperature field of Fig. 4.6, we obtain the figure
in the middle. The real data are shown in the figure at the bottom.

What we notice is that the characteristics of the measured and the calculated
zonal wind are similar but with significant differences. In particular the equatorial
belt shows the largest differences. The rather spectacular closure of the isopleths
of the zonal wind (isotachs) shows the so-called jet stream, that is, the large flow
of air that blows from west to east (westerly). The reason for the closure is that
some-where the gradient of temperature changes sign because the high tropical
troposphere and low tropical stratosphere are very cold regions. These are even
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colder than the high latitude regions at the same altitude. There are many reasons
for the discrepancies between the observed and calculated zonal wind. First of all,
not all the wind is geostrophic as we well know. Also, the Coriolis parameter tends
to be zero at the equator, so that in those regions there should be other processes
that contribute to the dynamical equilibrium. Finally in our equation we have so far
neglected the friction term and this may be non-negligible at the surface and in the
upper troposphere.

4.3 More About Geostrophic Wind

The applications of geostrophy will be available along the book. Here we will point
out some necessary expansion of what we have studied so far.

4.3.1 Margules Formula

Following our method of using what we have learned for solving some real problem,
we may proceed immediately to study a very important meteorological structure,
called a front. This is actually a surface that separates two regions of the atmosphere
that have different characteristics. Figure 4.7 shows a very idealized front. In
one case, the isotherms are represented, while in the other case, the surface of
discontinuity separates just two regions at different temperatures.

In these figures, the slope of the discontinuity surface is exaggerated, and to show
this, we can do a simple calculation, outlined in the figure. In practice, we can follow
two paths (ABD and ACD) to calculate the temperature difference between A and
D which should be the same. If we call �w the lapse rate for the warm side of the
front and �F the lapse rate in the frontal zone and with ˇ the absolute horizontal
temperature gradient, we have for the temperature difference

�z�w D �z�F C ˇ�x

T

T- δT

T+ δT A

B C

D

FrontalWarm  air
zone

V2, T2

V1, T1

Fig. 4.7 Schematic illustration of a front. At left the isothermal is shown with dashed lines. Notice
that moving on a horizontal surface, there is a temperature discontinuity through the thick line. At
right the two sides of the front are approximated as having the same temperature and wind velocity
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where�z is the vertical distance between A and B and�x is the horizontal distance
between B and D. The slope can be easily found to be

dz

dx
D ˇ

.�w � �F/
(4.36)

Assuming a vertical gradient in the warm zone of 7 ıC km�1 and zero in the frontal
zone and a horizontal gradient of 10 ıC per 100 km, we have a slope of about
14.3 m km�1 that is an angle less than 1 ıC.

If we stay within the frontal zone, there will be an average temperature gradient
and consequently a thermal wind. If we assume the intersection of the front with
the ground is at x D 0, then the 300 hPa level will be approximately at 8.5 km and
at a horizontal distance of more than 500 km. With these data, we get a very large
thermal wind at the upper level that depends strongly on the horizontal gradient.

However, although these large numbers are unrealistic, this shows that at the
upper levels above a front, we may have the situation analogous of the jet stream
we have found before. In a more realistic situation, we may assume that the wind
velocity in the frontal zone is v1 and v2 in the warm front both oriented in the y
direction, normal to the plane z, x. We can assume that at the boundary the warm air
and the cold air exert the same pressure:

p1 .x; y; z; t/ D p2 .x; y; z; t/

and the changes in pressure on the two sides of the discontinuity surface are the
same, that is, dp1 D dp2. We can then evaluate the pressure difference on the two
sides through the use of the hydrostatic and geostrophic equilibrium:

fv1;2 D 1
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We have then

�
1gdz C fv1
1dx D �
2gdz C fv2
2dx

from which we can easily find the slope of the front (Houghton 1977):

g
dz

dx
D f .T1v2 � T2v1/

T1 � T2
(4.37)

This expression shows that the slope is a function of latitude through the
Coriolis parameter and increases with increasing latitude. The slope decreases with
increasing temperature difference. We see also that at the equator the air masses are
stratified because the Coriolis parameter is zero there. Slopes vary between 1/50 and
1/300. Equation (4.37) is also known as Margules relation from the meteorologist
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Max Margules. This relation can be changed a little considering that density goes
like the inverse of temperature so that (4.37) can be written as a function of densities:

v2 � v1 D g

f

�



1
tan � (4.38)

where we have assumed 
1 � 
2 and tan � D dz=dx. This equation can be expressed
in terms of the Rossby radius of deformation. We recall that
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where we introduced the reduced gravity g0 D g�
=
 and (4.38) can be written as

�v D N2H

f
tan � D NL
 tan � (4.40)

where L
 D NH/f is the Rossby radius of deformation. It can be shown that rotating
fluid relaxes on scale which has this characteristic length. In particular, it can be seen
that if f tends to zero, L
 tends to infinity, indicating that for scales smaller compared
with the radius of deformation, rotation effects are negligible. On the other hand, for
scales larger than L
, the rotation effects are important. According to our definition,
we could also write

L
 D .g0H/1=2

f

and we will see that the square root is the velocity of shallow water waves, and so
the Rossby radius can be regarded also as the scale where the stratification effects
balance the rotational effects.

Figure 4.8 shows in a cartoon how the Margules formula could explain the
localization of the subpolar jet. In this case, the polar front is creating a discontinuity
in the density.

4.3.2 Inertial Instability

Another straightforward application of the geostrophic wind deals with a rather
important instability in the motion of the atmosphere. We refer to Fig. 4.9 and
assume a geostrophic flow that changes with latitude.

To this zonal flow corresponds a negative vorticity given by –@ug/@y. We then
consider an air parcel located in A that moves at higher latitude of quantity ıy its
zonal velocity will change according to

u .y0 C ıy/ D ug .y0/C
�

du

dt

�
ıt D ug .y0/C fvıt (4.41)
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Fig. 4.8 A cartoon indicating
the generation of the subpolar
jet at the discontinuity
associated with the polar front

Fig. 4.9 Illustration of the
inertial instability. The
geostrophic flow corresponds
to a negative vorticity shown
by the rotation arrow. A
indicates the initial position
of the air parcel
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where we have assumed that the zonal acceleration is balanced by the Coriolis force.
The geostrophic wind will change according to

ug .y0 C ıy/ D ug .y0/C
�
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@y

�
ıy D ug .y0/ � gıy (4.42)

where g is the geostrophic vorticity. Subtracting (4.41) from (4.42), we have

ug � u D �
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On the other hand, the equation of motion along the y direction is given by
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Substituting in (4.43) and rearranging,

dv
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D �
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@y
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f ıy

The acceleration in the y direction is then

d2v
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@y

�
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The condition for instability will be

�
f � @ug

@y

�8<:
> 0 stable
D 0 neutral
< 0 unstable

(4.45)

In the case of instability, the parcel will keep moving to higher latitudes
(trajectory A–C). The opposite will happen when the absolute value of relative
vorticity is larger than the planetary vorticity and the parcel will move toward lower
latitude (trajectory A–B). This is one of the instabilities to which a fluid motion is
subject and is called inertial instability. We will return to it when treating the general
circulation of the atmosphere.

4.4 The Natural Coordinate System

We have already introduced the geostrophic streamfunction in Sect. 4.1.1, and now
we want to illustrate the relationship between the streamfunction and the motion. A
streamline is defined as the curve whose tangent gives the direction of the velocity
at that point. This should not be confused with the trajectory, which is the curve
that connects the different positions of the air parcel during the motion. Only in
a few cases do the two things coincide. The streamlines can be traced on a plane
(in the two-dimensional case) in such a way that their density gives an idea of the
velocity: the denser the lines, the higher is the velocity. The concept of streamline
is important because among other things it defines the natural coordinate system as
shown in Fig. 4.10. The direction of the tangent defines an axis so that the other axis
is normal to the tangent and remains to the left of motion direction. The absolute
acceleration in this reference system is found by expressing first the velocity vector
in terms of the unit vector s in the direction of the tangent:

DV
Dt

D D

Dt
.Vs/ D V

Ds
Dt

C s
DV

Dt
(4.46)
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Fig. 4.10 The natural
coordinate system (Holton
1992)

n s

It is then easy to see that

Ds
Dt

D V

Rt
n

where n is the unit vector of the normal to s and Rr is the radius of curvature of the
streamline. If the acceleration is decomposed in the directions s and n, we have
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(4.47)

The pressure gradient along s has an effect only on the magnitude of the velocity
while if the normal components balance, we obtain

V2

Rt
C fV � 1
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@n
D 0I V2

Rt
� fV C 1




@p

@n
D 0 (4.48)

the first for low pressure. The wind that results from these equilibrium equations is
called gradient wind. It can be obtained by solving the second of Eq. (4.48) for V.
We notice that V is real if

f 2 >
4

Rt

1




@p

@n
(4.49)

We see that for anticlockwise motion, that is, around a low-pressure center,
condition (4.49) is always satisfied and the pressure gradient may be arbitrarily high.
For an anticyclonic situation, the pressure gradient has a maximum value toward the
center, and the Coriolis force will act in such a way to return to the normal situation.
The opposite happens around a high-pressure center with the rising pressure at the
center. If the wind velocity is very high (like around a tornado), then the Coriolis
term can be neglected and the equilibrium is between centrifugal and pressure force:

1
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@n
D �V2
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(4.50)
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Fig. 4.11 Possible equilibrium around low- and high-pressure centers. For the cyclonic cases, the
normal situation is shown at the upper left (a): the pressure force is balanced by the Coriolis force
(Co) and the centrifugal force (Ce). At the lower left (b) the anomalous situation is shown. The
possible cases for high pressure are shown at the right

This relation corresponds to the cyclostrophic equilibrium. In general, this equilib-
rium may be found in all those cases where the curvature radius is small, but also
for slow-rotating planets (e.g., Venus).

As a matter of fact, an interesting application of Eq. (4.50) gives an estimation of
the latitudinal temperature gradient for Venus. If we refer to Fig. 4.11, we see that
the cyclostrophic equilibrium reduces to the expression

u2 tan'

a
D �1




@p

@y
(4.51)

and expressing the pressure gradient as a function of the geopotential, we get

!2r a sin' cos' D @'

@y
(4.52)

where !r D u=a cos' and a is the radius of the planet. Differentiating with respect
to pressure and keeping in mind @'=@p D �RT=p; we have

2!rd!r D � R

a sin' cos'

@T

@y
d ln p

which may be integrated, giving an expression for the thermal wind relation for a
slowly rotating planet:

!2r .p1/� !2r .p0/ D � R ln .p0=p1/

a sin' cos'

@T

@y
(4.53)
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To simplify further, we may assume that the temperature gradient as a function of
latitude is such that !r depends only on pressure and thus will be of the form

@T

@y
D Ty sin 2'=2

where T0 is a constant. Substituting this in Eq. (4.53), we obtain

!2r .p1/ � !2r .p0/ D �R ln .p0=p1/

a
Ty (4.54)

Venus has a jet at about 60 km with velocities around 100 m s�1 so that if we
assume p1 D 3�105 Pa and p0 D 9.5�106 Pa, we have Ty D 2.5 K m�1. Integrating this
gradient, we obtain a difference between the pole and equator given by

!r D u

a cos'
D 7:7 K

Notice that Venus’ atmosphere is composed of carbon dioxide so that
R D 187 J kg�1 K�1 while the radius is a D 6100 km.

The natural system also gives an interesting view of the vorticity. If R is the
radius of curvature of the streamline in Fig. 4.10, we can assume a local instant
angular velocity ! and write the velocity as V D!R. The x axis on this coordinate
system corresponds to the direction of the tangent, while the y axis corresponds to
the normal direction (Fig. 4.12). The only component of the velocity is along x, so
that from the definition of vorticity, we have

 D @V

@R
D R

@!

@R
C ! (4.55)

It can be easily shown that R@!=@R D @V=@n, so we obtain

 D @V

@n
C ! D @V

@n
C V

R
(4.56)

Fig. 4.12 The cyclostrophic
equilibrium in a slowly
rotating planet
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This equation tells us that the vorticity has two components, one related to the
shear of the fluid and the other to the curvature. The sign will be positive for cyclonic
vorticity and negative for anticyclonic vorticity.

4.5 Some Application of Circulation and Vorticity

We have just mentioned circulation and vorticity and we will find many interesting
applications of this concept. In the following chapter, we will find a more rigorous
formulation of these concepts.

4.5.1 The Sea Breeze

We have now some knowledge of the dynamics that enable us to study apparently
simple phenomena like the sea breeze. Whoever is familiar with vacations on the
beach knows that baking in the sun is more easily bearable during a light, cool wind
that blows from the sea toward the shore. During the night, the situation is reversed,
with cool winds that now blow from the land to the sea.

A baroclinic fluid is exactly the cause of the sea breeze, as shown in Fig. 4.13.
During the day, the surface of the sea warms up slowly because of the large heat
capacity of the water. The surface of the land heats up faster and so a temperature
difference results. To simplify things, we assume that the atmospheric column over
the land has a temperature T2, while over the sea the temperature is T1 D T2 �
�T. We also assume that the pressure at the surface is p0, while at altitude h is
p1. Then it can be easily seen that the lines of constant density are inclined, as
shown in the figure. If the cold column has density 
 at pressure p, then on the

Fig. 4.13 The sea breeze.
The isobars are represented
by solid lines, while the
constant density lines are
dashed (Adapted from Dutton
1976)
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warm column, we will find the same density at pressure p0 D pT2=T1. The vector
representing the pressure and density gradients will form an angle, and their vector
product will be oriented normal to the vertical plane. To evaluate the circulation, it
is more convenient to use Eq. (3.32), so that we can write

DC

Dt
D �

I
�

dp



D
I
�

dp

p
RT

where the integration path is extended to the rectangle shown in the figure on the
vertical plane with height h and length L. On this path, the pressure does not change
on the horizontal, while for the vertical we have

DC

Dt
D R ln

�
p0
p1

�
.T2 � T1/ (4.57)

From this relation, it is possible to obtain the average acceleration on the path. This
can be simply obtained by dividing Eq. (4.57) by the total length 2 .h C L/, so thatˇ̌̌̌

DV

Dt

ˇ̌̌̌
D R ln

�
p0
p1

�
.T2 � T1/

2 .h C L/

We can assume some typical value like T2 � T1 D 10 C, p0 D 1000 hPa and the
upper level at an altitude of 1 km corresponding to a pressure of 900 hPa and finally
L D 20 km. With such values, we obtain acceleration around 25 ms�1 h�1. That is
much too large. The problem is that we have neglected friction which should slow
down considerably the motion. It looks then that we have made a lot of effort just
to get a wrong result. This is not completely true, as we will see in the next chapter,
where we will show some more applications of what we have learned up to now.

4.5.2 Some Other Local Winds

Sea breezes are just an example of what we call local winds. These actually are
very important because they are determined mainly by the interaction of large-
scale motions with local topography. This is the occasion, as an exercise, to talk
about other motions in the atmosphere that can be treated with the few things
about dynamics we know at this point. The first example is the motion produced
by the buoyancy of air masses, which has a temperature Tp, while the ambient
temperature is T. This corresponds to the thermal updraft. We have seen already
that the acceleration in this case is simply

g
�
T � Tp

�
T

http://dx.doi.org/10.1007/978-3-319-29449-0_3
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The motion of the air parcel is opposed by a drag that can be assumed proportional
to the square of the vertical velocity. The net acceleration is then

dw

dt
D g

�
T � Tp

�
T

� Cw
w2

zi
(4.58)

In this equation, Cw is a drag coefficient and zi is the depth of the convective layer,
which is the layer where the motion is taking place. The reason for writing the drag
term in that particular form will be clear when we will talk about the boundary layer.
From Eq. (4.58), we can estimate at the steady state (dw=dt D 0) the average vertical
velocity. With an ambient temperature of 20 ıC, a difference of 2 ıC, and a depth of
1 km, we get w D 3:65 ms�1. This value has been obtained with a drag coefficient
Cw D 3. The temperature difference and the depth of the convective layer are more
representative of the common thermal you normally see on a road on a hot summer
day. For a convective cloud in a thunderstorm, the temperature difference may be
even 5 ıC, and the depth is of the order of the entire troposphere, that is, 10 km. In
this case, the velocity may reach 20 m s�1. This is the reason why it is harmful to
fly in a thunderstorm cloud.

Another interesting motion is the katabatic wind. As shown in Fig. 3.15, this
motion is originated when a cold air mass (colder than the environment) slides
downhill under the action of negative buoyancy. To study this problem, we will
assume a local coordinate system, as shown in the figure. The x, y plane is coincident
with the hill slope with the z axis normal. The velocity components will be oriented
in the usual way. The accelerations are then

Du

Dt
D g

T � Tkat

T
sin˛ C fv � Cd

u2

h
I Dv

Dt
D �fu � Cd

v2

h
(4.59)

We can solve this problem neglecting any effect of the Coriolis term and assuming
that the equilibrium is between the buoyancy term and the drag. This approximation
can be useful when the length of the valley is such that the v component does
not reach too large values (Fig. 4.14). Actually, we could find a solution at the
beginning, when the acceleration cannot be neglected, so that the first part of Eq.
(4.59) becomes

@u

@t
C u

@u

@x
D g

�T

T
sin˛

that has the solution

u D
�

g
�T

T
x sin ˛

�1=2
(4.60a)

http://dx.doi.org/10.1007/978-3-319-29449-0_3
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Fig. 4.14 The geometry of
the katabatic wind. On the
vertical plane (in gray), the
behavior of T and u with
height is shown
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Fig. 4.15 Thermodynamic of a foehn wind. At left is shown the trajectory of the air mass. The
corresponding tephigram is shown at right

When the buoyancy equilibrates the drag term, we have

u D
�

g
�T

T

h

Cd
sin˛

�1=2
(4.60b)

We use typical values 4T D 10 ıC, T D 10 ıC, h D 20 m, and Cd D 0.005 and we
find that after 4 km the velocity has reached a value of 13.5 ms�1 with a slope of
10ı. The limit velocity given by Eq. (4.60b) is 18.9 ms�1.

With the intensified studies of the Antarctic region, katabatic winds have become
of increasing interest. Part of the continent can be the slope and velocities may reach
values up to 30 ms�1.

One last local wind we can mention with our limited knowledge is the winds
generated by air parcels going over the mountains. These winds are called either
foehn in Europe or chinook in North America. Their generation is schematically
illustrated in Fig. 4.15, where an air mass is forced to pass over the mountain. The
thermodynamic conditions of the mass are those of point 1 and are represented on
the tephigram on the right. When the mass reaches the saturation point 2, it moves
along the wet adiabat 3 until it reaches the highest elevation point 4. We can assume
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that the air mass will lose all its water as rain along the upwind slope, so that after the
top it will behave as a dry mass. In particular, descending from 4 to 5, the mass will
warm following the dry adiabat 5, and finally it will reach a much higher temperature
than the initial one.

The example shown starts with similar conditions as in Fig. 2.3, that is, a
temperature of 14 ıC at a pressure of 950 hPa and 8 g kg�1 water vapor content.

Starting at about 900 hPa, the saturation point is reached, and the mass will follow
the saturated adiabat up to 700 hPa to a mixing ratio of 4.7 g kg�1. The difference
of 3.3 g kg�1 may be lost as rain and, if an additional 3.7 g kg�1 are lost at the top,
when the air descends, it will have a temperature of 26 ıC at 1000 hPa and a relative
humidity of 5 %. The net result of the entire process is rain on the windward side of
the mountain and warm dry air on the lee valley.

4.5.3 The Rossby Waves

A first, simple approach to the study of some of the properties of vorticity can
be made starting from the equation of vorticity conservation (3.55) when the total
divergence is zero:

D

Dt
. C f / D 0 (4.61)

The quantity in parentheses is called absolute vorticity and Eq. (4.61) tells us that
for an incompressible fluid, this is a conserved quantity. Another limitation of
Eq. (4.61) is that it neglects friction forces. Even so the equation can be used for
an interesting application. Actually the equation of the conservation of absolute
vorticity has been used in the first attempt to forecast the weather, around 1948.
A very qualitative examination of this equation gives some indication about the
solution, which happens to be something resembling a wave.

We consider an air parcel initially at A, as shown in Fig. 4.16. If the parcel moves
south, the planetary vorticity will decrease (it goes like the sine of latitude), so that
the relative vorticity must increase, that is, the curvature of the trajectory will be
positive and the parcel will reach a minimum in latitude and then move toward
north. At this point, the cycle will start again and the trajectory will have a wavelike
appearance.

This conclusion can be put in mathematical terms if we solve Eq. (4.61) with
some approximation. We consider a channel along a latitude circle. Its width in
latitude must be such that the Coriolis parameter f can be considered to change
linearly with latitude, that is, y. In this case, we can write

f D f0 C ˇy

http://dx.doi.org/10.1007/978-3-319-29449-0_3
http://dx.doi.org/10.1007/978-3-319-29449-0_2
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Fig. 4.16 Trajectory of a
fluid parcel conserving
vorticity
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where f0 is some initial value and the parameter ˇ can be easily determined by the
derivative of the Coriolis parameter

@f

@y
D 2� cos'

@'

@y
D 2� cos'

a
D ˇ (4.62)

where we have used dy D ad' with a the Earth’s radius.
This approximation is called the ˇ-plane and if the value for ˇ is substituted in

Eq. (4.61), we have

@

@t
C u

@

@x
C v

@

@y
C vˇ D 0 (4.63)

Such an equation has a very simple aspect, but the solution is not so obvious.
To simplify things further, we assume that in our channel there is a constant

velocity current ū (it could be the jet stream); then the components of the wind
velocity can be written as

u D u C u0I v D v0

where the primes indicate quantities that are small deviations from ū. Actually we
are representing the wind field as a sum of a basic flow and a perturbation. The same
vorticity is a function only of perturbed quantities, and substituting in Eq. (4.63) and
neglecting all those terms containing products of primed quantities, we obtain

@ 0

@t
C u

@ 0

@x
C ˇv0 D 0 (4.63a)

where

 0 D @v0
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At this point, we recur to the streamfunction already defined such that

u0 D �@ 
@y

I v0 D @ 

@x

This, substituted into the definition of vorticity, will give

’ D r2 (4.64)

so that Eq. (4.63) becomes

@r2 

@t
C u

@r2 

@x
C ˇ

@ 

@x
D 0 (4.65)

We seek solutions for this equation that have wave characteristics. We then assume
a solution of the type

 D Aei.kxCly�!t/ (4.66)

This is in general a complex quantity of which we will take only the real part. The
solution of Eq. (4.66) is actually a wave that propagates in the direction determined
by the wave vectors k and l and with a frequency !. Taking only the real part, the
function has the form

 D A cos .kx C ly � !t/ (4.67)

This function is sketched in Fig. 4.17. The streamlines in this case are straight lines
that slope toward the west according to the wave vectors. They become more dense
near the flexure points of the surface and more sparse near the maxima and minima.
The wind velocity can be found from Eq. (4.67) so that

u0 D lA0 sin .kx C ly � !t/ I v0 D �kA0 sin .kx C ly � !t/ (4.68)

y

x

Fig. 4.17 A Rossby wave in two dimensions. The curved surface is the streamfunction described
by Eq. (7.9). On x, y, the projection of the streamlines (the intersection of the surface with the
planes  D cos t) with the orientation of the velocities. The large gray arrow gives the phase
propagation

http://dx.doi.org/10.1007/978-3-319-29449-0_7
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If we take a picture of the situation at some particular time t D 0, it is easy to see that
the velocity changes sign following the maxima and minima of the streamfunction.
The wave vectors are related to the wavelength by the relations

k D 2�

Lx
I l D 2�

Ly

If the propagation happens in the x direction (l D 0), a very simple solution is
obtained v0 D �kAsin (kx�!t). The wind field can then be obtained as a sum of the
current ū and v0, as shown in Fig. 4.17.

We now substitute Eq. (4.67) into Eq. (4.68) to find which conditions the
streamfunction  must satisfy to be a solution. We have immediately for the
different terms

r2 D � �k2 C l2
�
 I @ 

@t
D �i! I @ 

@x
D �ik 

that substituted in Eq. (4.65) result in the condition

! D uk � kˇ

.k2 C l2/
(4.69)

This represents the dispersion relation for the wave. This relation shows that the
Rossby wave is dispersive, meaning that the frequency is not a linear function of
the wavelength. A wave is characterized by the phase speed (we will talk at length
about this later on) which is the velocity of the propagation of the perturbation (i.e.,
ridges and crests). This is given by

c D !

k
D u � ˇ

.k2 C l2/
(4.70)

From this equation, we notice that the phase speed is regressive with respect
to the basic wind (i.e., ū): an observer moving with the wind sees the wave
moving in the opposite direction. If we use Lx D 6000 km and Ly D 3000 km and
we adopt a 45ı latitude (ˇD 1.61 10�11 m�1 s�1), we have for the difference
c � u � 18 ms�1 so that the phase velocity is usually a few meters per second.
With similar arguments, it is possible to show that the frequency of the wave is of
the same order of magnitude as the rotation frequency for the Earth, as would be
expected for a small Rossby number. Equation (4.70) also tells us that the phase
velocity increases with the wavelength, and this has some important implications
for meteorology. In this case, the increase means that the phase velocity becomes
more and more retrograde; in other words, in the present example, the long waves
tend to move toward west.

The physical reason behind this behavior can be understood by looking at
Fig. 4.18 and Eq. (4.63). According to this equation, the rate of change of vorticity
depends on two terms, the advection of relative vorticity u@=@x and planetary



134 4 Dynamics: Few Simple Applications
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Fig. 4.18 The composition of the velocity field given by Eq. (4.68) with the basic flow. The
sinusoidal lines are isopleths of the streamfunction. Region A corresponds to a high-pressure area
and B to a low-pressure one. The amplitude of the component v’ is the maximum in correspondence
with the flexure point of the streamline. Also shown are the gradients of planetary and relative
vorticity (Dutton 1976)

vorticity v@f=@y. The same figure shows that, around the region of the maximum
negative vorticity, flow is anticyclonic, as around a high-pressure zone, and vice
versa for the positive maximum. In the region between high and low, the advection
of relative vorticity is negative [remember that also for the vorticity the advection
must be taken with the negative sign –(u@=@x)], while the advection of planetary
vorticity is positive. The advection of relative vorticity will move the streamline
pattern downwind (as a meteorologist would say), while the planetary vorticity will
move then upwind. The net result will depend on which of these two tendencies
prevail. We can see that in this case (dependence on x only) the advection of relative
vorticity will increase as the cube of the wavelength. The long waves then will slow
down the phase speed or even make retrograde the streamfunction and consequently
the high and low pattern.

We have mentioned a few things about this solution, and some of them may
also be of practical utility. Also we hope that this has been an occasion to learn
about streamfunctions and streamlines. We have also appreciated the advantages of
an approach based on the conservative properties of the absolute vorticity, and we
would like to see if there is something more profound about conservation principles.
This may help us to be even more synthetic (reductionists, they would say today).
To try this road, we need to better understand vorticity.

In this chapter, we gained territory step by step, one bite of theory and another of
the applications. We finally extended the thermal wind equation to a slowly rotating
planet, but to go further, we need to abandon the geostrophic stuff and try to have a
more general vision through the vorticity concept.



E.4 Examples 135

E.4 Examples

E.4.1 The Sea Breeze Circulation

The theory given in 3.3.2 on sea breeze is correct but is limited to the case in which
friction is absent. Also we have not mentioned that the direction of the sea breeze
does change during the day and this may be attributed to the effect of Coriolis
acceleration. We will refer to an old paper by Haurvitz published in 1947 and to
Rotunno (1983).

In this paper, the reference system assumes the x axis oriented perpendicular to
the shoreline while the y axis is parallel. The forcing function is obtained assuming
that the sun shines only for half a day so that in principle the forcing function G(t)
should be of the form

G.t/ D A cos!t for � 1

2
� � !t � 1

2
� (E.4.1)

and vanishing for the other half of the period. To make this function continuous, we
assume the first two terms of its Fourier expansion:

F.t/ D A=� C 1

2
A cos!t (E.4.2)

Then the equation of motion can be written as

du

dt
� fv C ku D �fvg

dv

dt
C fu C kv D �fug

(E.4.3)

where we have added a friction term in its simplest form (linear with velocity).
Equation (E.3.13) can be solved very easily by introducing the complex variable:

W D u C iv

Summing the two equations, we get

dW

dt
C .if C k/W D �fvg C if ug � F .t/ (E.4.4)

W D � f
�
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�
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�

1

if C k

� A

2

! sin!t C .if C k/ cos!t

.if C k/2 C !2
C Ce�.if Ck/t

(E.4.5)

The first term on the rhs represents the motions caused by the constant part of
the pressure gradient force. In case of absence of friction, the term reduces to

http://dx.doi.org/10.1007/978-3-319-29449-0_3
http://dx.doi.org/10.1007/978-3-319-29449-0_3
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Fig. E.4.1 The two odographs for the breezes with and without friction. See text for details

the geostrophic motion. The second and third terms are the effect of that part of
pressure gradient due to the temperature difference between land and water. In
the fourth term, C is an arbitrary integration constant. This constant is determined
by considering that in the absence of forcing (i.e., A D 0 and vg � iug D 0), W
should vanish and then C D 0. In case friction is absent, the solutions to (E.3.15)
are particularly simple and are obtained by putting k D 0 and equating real and
imaginary part:

u D ug � A

2

!

!2 � f 2
sin!t

v D vg C A

f!
� A

2

f

!2 � f 2
cos!t

(E.4.6)

We see that, superimposed to the geostrophic motion, there is a diurnal motion
which has the period of the forcing. This diurnal motion goes to infinity at a latitude
of 30ı where f D !. In Fig. E.4.1, we compare the two cases with and without
friction.

E.4.2 The Circulation Around Lows and Highs

We have mentioned the possible circulations resulting around low- and high-
pressure zones. We will try to be a little bit more analytic. Referring to Fig. E.4.2,
we consider the equilibrium around the two pressure zones. We use the notation

http://dx.doi.org/10.1007/978-3-319-29449-0_3
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Fig. E.4.2 Equilibrium around high- and low-pressure centers
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as the acceleration due to pressure gradient, Coriolis, and centrifugal forces. Then
we get at the equilibrium
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for the high pressure center (E.4.8)
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for the low-pressure center (E.4.9)

If we solve for the velocity, we get

VL D fr
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for low-pressure and high-pressure centers, respectively, where we have used the
notation Vg D .1=f
/ @p=@r as the geostrophic velocity; if we put Roc D Vg=fr; we
obtain

VL D
�
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�
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� h
1 � .1 � 4Roc/
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i (E.4.11)

We see that around low-pressure centers, the gradient wind is always smaller
than the geostrophic value, while the opposite happens for high-pressure centers.
Besides, for the latter, it must be Roc � 1=4. This means that around high pressure
the gradient must be more gentle because the relation holds:ˇ̌̌̌

@p

@r

ˇ̌̌̌
� 0:25
f 2r
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Fig. E.4.3 The distribution
of divergence due to the
curvature effect of a pattern
of sinusoidal isobars. East is
on the right (Hess 1979)

This means that around a high-pressure center, the gradient cannot exceed a certain
value which depends on the latitude and distance from the center.

E.4.3 Effects on the Propagation of Long Waves

There is a consequence of what we just saw on the propagation of long waves in
the atmosphere. Consider as shown in Fig. E.4.3 a series of isobars which have
a sinusoidal pattern. The ridges of the upper wave can be associated with high-
pressure zones and consistently the circulation there is anticyclonic. The trough
on the other hand can be associated with a low-pressure center with cyclonic
circulation. The velocity around this center is influenced by two effects, the first
being that associated with (E.4.10), that is, the velocity around high pressure is
larger than the geostrophic values, while the opposite is true around low-pressure
centers. This difference will result in a convergence of the flow between the ridge
and the trough, while there is divergence between the trough and the ridge. This is
shown in Fig. E.4.3 as darker- and lighter-filled circles. The tendency for this wave
will be then to move toward east because the high-pressure zone and low-pressure
zone will tend to move toward east as shown by the gray arrow. Opposite to this
effect, there is the one related to the change with latitude of the Coriolis parameter.
We write the second of (E.4.9) as (equation is always correct with the appropriate
sign for the pressure gradient)

V D 1

f

�
1




@p

@r
� V2

r

�
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The centrifugal term may be neglected and we see that the velocity decreases with
increasing latitude (i.e., f increases). The latitudinal effect is shown in the bottom
portion of Fig. E.4.3 where now the situation is reversed. We have divergence
between ridge and trough and convergence between trough and ridge. The results are
a tendency for the wave to move westward. It is clear that such effect will dominate
when the wind speeds are low and for long wavelengths because there are conditions
to neglect the centrifugal term. However, we can put all this in clear mathematical
terms.

We may assume a streamfunction of the form

 D  0 � Uy C A sin kx cos ly

where U is the background zonal wind. We need to calculate the advection of
planetary and relative vorticity:

�u
@

@x
� v

@

@y
I ˇv

where

 D r2 D � �k2 C l2
�

A sin kx cos ly D g

u D �@ 
@y

D U � lA sin kx sin ly D U C ug

v D @ 

@x
D kA cos kx cos ly D vg

It can be easily verified that

ug@=@x C vg@=@y D �
�
@ 

@y

�
@r2 =@x C .@ =@x/ @r2 =@y D 0

so that for the advection of relative and planetary vorticity, we get

�u@=@x � v@=@y D �U@=@x D kU
�
k2 C l2

�
A cos kx cos ly (E.4.12)

ˇv D ˇkA cos kx cos ly (E.4.13)

We notice that keeping the amplitude constant for long waves (small k), the
advection of planetary vorticity dominates, while for short waves (large k), the
advection of relative vorticity is the dominant term. We can easily find the
wavelength separating the two processes by equating (E.4.12) and (E.4.13); we get

�
k2 C l2

� D ˇ

U
(E.4.14)

Using k � l, U � 10ms�1; and ˇ D 1:6 � 10�11m�1s�1; we get a wavelength of
roughly 10.000 km.
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Chapter 5
Atmospheric Chemistry

Our plan is to introduce in the first six chapters most of the topics that will be
studied in much more detail in the book. It is practically impossible to talk about
atmospheric chemistry without going in some detail about the structure of the
atmosphere of the Earth. For completeness but also for the sake of comparison,
we will report some data also on other planets. Every once in a while, we will
mention planetary atmospheres; this perspective we have indicated before may be
strange: Why spend all that money to see expensive toys roving on the Martian
surface when we have plenty of problems (as we will see) on Earth? The answer
is that the environmentalist slogan “we have only one Earth” is a great handicap
for the atmospheric physicist because it means having only one laboratory in which
to acquire data, which are obtained from experiments we cannot control. In this
framework, even expenses to send probes into Titan’s atmosphere (which not only
transmit beautiful pictures back to the Earth) are justified because some of those
data may be useful to understand how the atmosphere of the Earth works at the least
from a chemical point of view. Of all this, we hope, we will become aware in the
course of this book.

5.1 Characteristics of the Atmospheres

We will start looking at those parameters which could determine the environment of
the terrestrial planets (Venus, Mars, and the Earth), as listed in Table 5.1. Some of
the quantities which appear in the table are obvious, and others already show some
serious sign of jargon. The solar constant is the power received at the orbit of the
planet for unit surface and its value should be related to the average temperature of
the planet.

Another important parameter is the albedo, the fraction of the incident energy
that is reflected back by the planet and its atmosphere. The albedo is in part due
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Table 5.1 Some atmospheric parameters for the terrestrial planets

Quantity Venus Earth Mars

Solar constant (kW m�2) 2.62 1.36 0.59
Albedo 0.77 0.3 0.14
Cloud cover (%) 100 50 Variable
Cloud chemical composition H2SO4 H2O H2O, CO2

Orbit eccentricity 0.007 0.017 0.093
Inclination of the axis 2ı36’ 23ı27’ ˙ 1ı 25ı12’ ˙ 13ı

Orbital period (days) 225 365 687
Length of the day (days) 243 1 1.03
Solar day (days) 117 (retrograde) 1 1.03
Gravity acceleration (m s�2) 8.87 9.81 3.72
Radius (km) 6051 6378 3394
Surface pressure (105 Pa) 95 1 0.007–0.01
Vertical temperature gradient (K km�1) 7.5 6 3
Surface temperature (K) 737 288 220
�T (equator-pole) (K) 5–15 45 90
�h (topography) (km) 13 9 25
Rossby number 20 0.1 0.1

to the cloud cover of the planet, that is, to what fraction of the surface is covered
on the average: we can see that there is a direct connection between reflectivity and
cloud cover. Venus is completely covered with clouds and has a very high albedo,
while for Mars, which always has a clear sky, the albedo is essentially that of the
surface. Mars however experiences worldwide dust storms and in this case its albedo
increases drastically.

The chemical composition of the clouds of the different planets gives important
indications as to the processes which take place in the atmosphere. Venus has clouds
made of sulfuric acid and thus the atmosphere is very dry. On the other hand, the
Earth is rich in water and its clouds are the proof, as may be the case for Mars. In this
last case, it is interesting to note that the clouds may also be made of dry ice (i.e.,
solid carbon dioxide), and the process of sublimation, that is, the phase change from
gas to ice, is very important on Mars during the summer. In the Martian northern
hemisphere, the passage of carbon dioxide from the polar cap to the atmosphere
increases the total atmospheric pressure, as shown in the table.

The orbital characteristics of a planet may be important for the long-term climatic
variations. Everyone remembers having studied the Milankovitch theories of the ice
age, based on the fact that some of the Earth’s orbital parameters change slowly
with time. In this way, the solar radiation absorbed especially at high latitude
is modulated. Venus looks very stable, while both on the Earth and Mars, the
inclination of the rotation axis changes within the indicated limits. On the same
planets, the axis also has a precession motion, that is, the planets behave like a
spinning top. On the Earth, the precession has a period of about 26,000 years, while
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the inclination completes a cycle every 42,000 years. For Mars, the situation is even
more complex because the amplitude of the inclination change is about 13ı, while
the period has different components, of the order of hundreds of thousands of years.
The precession has a period of 165,000 years. Incidentally it appears that the greater
orbital stability of the Earth with respect to Mars is due to the presence of a large
moon.

The other parameters shown in Table 5.1 require some explanation. One of these
is the Rossby number, which we will encounter again and again. For the moment,
it is sufficient to say that if the wind velocity in the atmosphere has a typical value
U, then an air mass will be transported to a distance L in the time interval L/U. The
rotation of the planet will influence the motion only if this time is of the same order
(or longer) than the rotation period, T. The Rossby number is just the ratio between
these two times and is given by

R0 D UT

L

On those planets where this number is small, rotation has a great influence on
atmospheric motions through the Coriolis acceleration. We should then expect that
both on Mars and on Earth (but not on Venus), the motion of air masses will be
strongly influenced by rotation. The significance of other data in the table, like the
average level difference in the orography, the average pole to equator difference in
temperature, and the vertical temperature gradient, will be explained later.

We turn now to the chemical composition of the atmospheres, shown in Table 5.2.
The chemical composition is reported in terms of the volume mixing ratio, which
is the ratio of the number density of a gas in the atmosphere to the atmospheric
number density; in other words, it is the ratio between the number of molecules of
that gas present in a given volume with respect to the total number of molecules
present in the same volume. The first thing to notice is the drastic difference in
the composition between the Earth’s atmosphere and the atmospheres of Mars
and Venus. The explanation of these differences is one of the topics we will deal
with when discussing the origin of planetary atmospheres. However, it is clear that
the composition of the Earth’s atmosphere is influenced by the biological activity
which is present only on this planet. The presence of oxygen is the most evident
proof of this influence. There are a few calculations indicating that if life should
disappear on Earth, then thermodynamic equilibrium would bring its atmosphere to
a composition very similar to those of Mars and Venus.

Many processes that appear in the table may seem obscure at the moment, but
they will become clearer as we proceed into the book. The Earth’s atmosphere
is composed mostly (99 %) of nitrogen and oxygen, which are completely inert
gases. The remaining 1 % is made up of argon, a noble gas, and then, in even
smaller quantities, carbon dioxide, water vapor, ozone, etc. However, it is just
those gases with mixing ratios less than 1 % that are responsible for some of
the most important properties of the Earth’s atmosphere and the climate of the
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Table 5.2 The chemical composition of the atmospheres of the Earth, Venus, and Mars. Also
reported are the processes which are thought to be responsible for the sources and sinks

Gas Mixing ratio(*) Source Sink

Earth
N2 (nitrogen) 0.781 Biologic Biologic
O2 (oxygen) 0.209 Biologic Lithosphere-bio
Ar (argon) 0.0093 Degassing
H2O (water vapor) <0.04 Evaporation Condensation
CO2 (carbon dioxide) 0.0034 Combustion, biologic Biologic
36.38 Ar 0.000037 Degassing
20.22 Ne (neon) 0.0000182 Degassing
CH4 (methane) 1.7–3 � 10�6 Biologic Photooxidation
N2O (nitrous oxide) 3.1 � 10�7 Biologic Photodissociation
CO (carbon monoxide) 0.4–2 � 10�7 Photochemical Photochemical
O3 (ozone) 0.1–1 � 10�7 Photochemical Photochemical
NO, NO2 (nitrogen oxides) 0.2–5 � 10�10 Combustion, biologic Photooxidation
SO2 (sulfur dioxide) 3 � 10�10 Combustion Photooxidation
Venus
CO2 0.965 Degassing Carbonates for
N2 0.035 Degassing
CO 0.00002 Photochemical Photooxidation
SO2 0.00015 Photochemical Formation

CaSO4

H2O 0.0001 Degassing Hydrates
Mars
CO2 0.953 Degassing, evaporation Condensation
N2 0.027 Degassing Escape
40 Ar 0.016 Degassing
O2 0.0013 Photochemical Photoreduction
H2O 0.0003 Evaporation desorption Condensation

adsorption
O3 Photochemical Photochemical
NO 7 � 10�5 (120 km) Photochemical Photochemical

(*) See Example E.5

planet. In turn, the climate and the environment determined by the tiny amount
of these gases make life possible on our planet. For example, ozone is a gas that
absorbs ultraviolet radiation of solar origin at wavelengths shorter than 300 nm, thus
shielding biological tissues from potentially dangerous radiation. The stability of
the environment during billions of years has contributed to the widespread diffusion
of different life forms. The foregoing appears to be a circular argument, since the
presence of oxygen (hence ozone) and the level of CO2 in the Earth’s atmosphere
are due to the presence of life itself. On the other hand, the abundance of some of
these trace gases is influenced by human activity (e.g., carbon dioxide and nitrogen
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Fig. 5.1 Temperature as a function of pressure and altitude on Venus, the Earth, and Mars. Notice
the difference in surface temperature and the pressure scale

oxides) so that the environment will be influenced not only by biological activity but
also by industrial activity. The atmospheric composition, that is, the mixing ratios of
the different gases, determines the temperature at the surface and its rate of change
with altitude. Figure 5.1 shows the temperature profile as a function of pressure for
the three planets we have considered so far. The main feature of the profiles is that,
neglecting the very different surface temperature, there is a constant decrease of
temperature with altitude. This is not generally true for the Earth and presumably
not for the thermospheres of Mars and Venus either. It is only in some lower layer of
different gases that determines the temperature at the surface and its rate of change
with altitude.

This behavior can be easily explained by noting that the bottom of the atmosphere
is heated by the surface of the planet and very much less by the direct effect of solar
radiation. In fact the surface absorbs solar radiation and infrared radiation coming
from the atmosphere and heats up to the values shown in the figure. The atmosphere
in contact with the surface is then heated and the warm air masses lift and expand,
cooling adiabatically. We will see in a while that it is possible to evaluate rather accu-
rately the temperature change with altitude, at least in the lower layer known as the
troposphere, which is dominated by convective movements. Above the troposphere,
the temperature change depends on the chemical composition of the atmosphere and
on the distribution of clouds. The troposphere of Venus, which actually reaches up
to 60 km, is filled with clouds at different altitudes whose chemical composition
is very similar to a solution of sulfuric acid in water. In the case of the Earth, the
troposphere also contains the highest clouds found in the atmosphere. Actually, very
thin clouds like polar stratospheric clouds and noctilucent clouds are found at higher
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altitudes. Equatorial clouds can reach altitudes up to 15 km (very exceptionally, up
to 18–20 km). At the top of the troposphere (tropopause), the temperature reaches a
minimum and then shows a constant increase up to about 50 km in the layer known
as the stratosphere. These two regions, troposphere and stratosphere, are actually
the most important from a practical point of view, because all human activities take
place in the troposphere (including intercontinental airline flights) and the most
important weather phenomena also occur in this region. On the other hand, the
stratosphere is where most of the ozone gas resides. Its concentration is regulated
by a very delicate equilibrium that can be perturbed by human activities.

Above the stratosphere, there is a layer, the mesosphere, where the temperature
again decreases with altitude. Above this layer, the temperature increases up to
values of 1000–1500 K around 300 km altitude in the regions known as the
thermosphere and the exosphere. The high temperature and low density in these
outermost regions give the molecules such high velocities and make the collision
frequency so low that a very slow evaporation of the lightest gases occurs (the same
effect we called escape in Table 5.2). For some planets and even for the Earth, the
escape of light gases has a very important influence on the chemical evolution of the
atmosphere.

In a very qualitative manner, we have explained the temperature variation in the
troposphere. However, the atmosphere contains gases, like water vapor and ozone,
that absorb solar radiation and warm the atmosphere locally; other gases, like ozone
and carbon dioxide, emit infrared radiation and cool the atmosphere. When these
two processes balance each other, radiative equilibrium is established; above the
troposphere, these are the prevailing conditions. The maximum of temperature is
observed around 50 km and is actually determined mainly by the UV absorption by
ozone below 300 nm. At even higher altitudes, in the lower thermosphere, oxygen
and nitrogen absorb the most energetic part of the UV spectrum (below 100 nm).
The energy deposited amounts only to a few tens of erg cm�2, which is nonetheless
enough to heat the atmosphere to very high temperatures. The reason is that, above
100 km, the principal heat transport mechanism is the molecular conduction which
is very inefficient; this implies that the very small amount of heat deposited on
such low-density atmosphere is poorly dissipated and as a consequence very high
temperatures result.

5.2 Atmospheric Composition and Chemistry

As shown in Table 5.2, the composition of the Earth’s atmosphere is controlled
mainly by biological processes at the least for the most abundant gas, nitrogen. On
the other hand, in the case of oxygen, the biological control is negligible. The other
gases like water vapor are controlled by evaporation/condensation processes. For all
the other minor gases, their mixing ratio and distribution result from a number of
complex chemical and physical processes.
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Fig. 5.2 A simplified nitrogen cycle (Adapted from Jacob)

We start just to give an example from nitrogen. Most part of the nitrogen is
contained in the atmosphere the total amount being 4 � 1021 g, while the next larger
reservoir is the land biota and soil with an amount ranging between 0.8 � 1016 and
1 � 1017 g. Other reservoirs include ocean and sediments (3 � 1021 g). Figure 5.2
shows the main processes that exchange nitrogen between reservoirs. A distinction
must be made between the N2 molecules which are highly stable and biological
available nitrogen called fixed nitrogen. This process called fixation is produced by
a class of bacteria which can reduce atmospheric N2 to ammonia NH3. Ammonia
is assimilated as organic nitrogen by bacteria and plants and then consumed by
animals. The nitrogen excreted by these animals can be mineralized to ammonium
(NH4

C). Ammonium can be used as energy source by bacteria and converted either
to nitrite (NO2

�) or nitrate (NO3
�). In case of absence of oxygen in deep soil

(anaerobic conditions), bacteria may use nitrates to convert organic carbon to CO2

and in the process produce nitrogen. A familiar scheme (called denitrification)
could be

6NO�
3 C 5CH3OH ! 2N2 C 5CO2 C 7H2O C 6OH

In this case, the organic carbon source is CH3OH. Denitrification returns nitrogen
to the atmosphere from the biosphere. Nitrogen can be also fixed through a quite
different path. At high temperature (combustion) or in discharge (lightning), N2 can
form nitrogen oxide (NO) that can be further oxidized to nitric acid (HNO3) which
is also water soluble. In industrial regions of the world, fixation by combustion
exceeds the natural fixation of N2 contribution to fertilization.
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On the other end, even these apparently nonbiological processes actually depend
on biology. For example, combustion depends on organic material but also efficiency
of lighting depends on the amount of oxygen present like O2 and CO2, and both
of these gases are controlled in large part by biology. It is interesting to get
some number on residence time for nitrogen. We ask what would happen if all
the biological processes were removed. Then the only removing process would
be lighting and combustion which account for about 30 � 106 ton/year. It would
take then roughly 130 million years to remove all the atmospheric nitrogen. On the
other hand, if we stop only denitrification and leave all the other fixation processes
(industrial, biofixation, combustion), then it would take 13 � 106 years to deplete all
the nitrogen. These times are so long that human activity hardly can have effect on
the amount of nitrogen. Even if all the nitrogen contained in the lithosphere could
be transferred to the atmosphere, the concentration would increase by 50 %.

Is this an occasion to demystify something about oxygen that most people believe
is being controlled by biological activity? Actually the total amount of oxygen in the
atmosphere is about 1.2 � 1021 g while the total amount of organic carbon present in
the biosphere is about 4 � 1018 g. If this carbon would be oxidized (e.g., in case all
the photosynthesis stops), it would consume only 1 % of the atmospheric oxygen.
Actually oxygen in the atmosphere is controlled by very complex processes which
involve the lithosphere. These processes are not completely abiotic but involve plate
tectonics so they act on a time scale of a hundred million years. We will examine in
more detail these processes when dealing with the cycle of carbon.

Going back to Table 5.2, we see however that on Earth most of the processes
controlling atmospheric composition are biological while on other planets the
processes are mostly chemical cycles independent from biology. However, on Earth,
some of the processes may have changed in the course of its geological history.

5.3 Chemical Kinetics

Later in the book, we will present some detailed chemical mechanisms that require
the knowledge of some elements of chemical kinetics. Although chemistry is one of
the major courses for any physics student, it is surprising to see how few of them
are familiar with this topic. For most of the gas phase reactions, the chemical rates
can be grouped in three major forms:

d Œi�

dt
D

8̂̂<̂
:̂

�Ji Œi�

�kij Œi� Œj�

�lij Œi� Œj� ŒM�

(5.1)

In this expression, the square brackets indicate the number density of chemical
species i, j, or M (M any atmospheric molecule). ki,j and li,j are the chemical
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rate constants for the bimolecular and three-body reactions, respectively. The rate
constant for first-order reaction J is called the photodissociation coefficient and may
depend both from space and time. This rate depends on the amount of absorbed solar
radiation (mostly in the UV). The calculation of J is very simple and we can refer
to Sect. 2.2. If we express the actinic flux I� as the number of photons per unit
surface, unit time, and wavelength, the number of photons absorbed by a single
molecule will be � i,�I� where � i,� is the absorption cross section at the wavelength
�. The quantum yield qi,� is defined as the probability that the absorption of a single
photon will produce a photodissociation event and then the photolysis rate constant
is given by

Ji;� D qi;�I��i;�

Summing over the wavelength, we obtain the photodissociation coefficient:

Ji D
Z
�

qi;�I��i;�d� (5.2)

If we remember from Sect. 2.2, we always talk about energy fluxes while in this case
we have the number of photons. Conversion is not so straightforward because the
photon flux may contain scattering effects. Figure 5.3 shows the photodissociation
coefficient for some common species in the atmosphere. It also shows that scattering
effects can have a large influence on the photodissociation coefficient.

http://dx.doi.org/10.1007/978-3-319-29449-0_2
http://dx.doi.org/10.1007/978-3-319-29449-0_2
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The simple expression for the chemical rates in the case of photolysis gives the
occasion to introduce the concept of lifetime. We consider molecule X which is
photodissociated according to the mechanism

X C h� ! Y C Z (5.3)

And the rate of reaction according to the rule (5.1) is given by

d ŒX�

dt
D �J ŒX� (5.4)

where the unit of J is s�1. If we consider a specific altitude and an hour of the
day, we may use a constant value for J so that from (5.4) we can get the molecular
number density as a function of time:

ŒX� D ŒX�0 exp .�Jt/ (5.5)

where [X]0 is the initial value for the density. The concentration decay is then with
a characteristic time:

� D 1

J
(5.6)

This is a rather important parameter because it weights the photolysis against other
processes.

A practical example could be the hydrogen peroxide H2O2 that may photodisso-
ciate or react with a hydroxyl radical:

H2O2 C h� ! OH C OH

H2O2 C OH ! HO2 C H2O (5.7)

We assume that the photolysis rate can be calculated and results as
JH2O2 D 9.6 � 10�6 s�1. The rate of reaction for the second process in (5.7) is

k ŒOH� fH2O2g (5.8)

where k D 1.7 � 10�12 molecule cm�3 is the rate constant. The loss rates associated
with reactions (5.7) are then

JH2O2 ŒH2O2� k ŒOH� ŒH2O2�

This means that a characteristic time for the reaction with hydroxyl radical is given
by k[OH]. If we use typical concentration for [OH] D 2 � 106 radicals cm�3 we
get (k[OH])�1. D 2.94 � 105 s D 3.4 days that must be compared with (9.6 � 10�6

s�1)�1 D 1.2 days, for the photodissociation. This means that the residence time is
shorter for photodissociation which is the dominant loss process.
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5.4 Chemistry and Transport

We rewrite the conservation equation (3.10) for the mass density of a generic
component [i] when in the volume we consider there are production and loss
processes. It is straightforward to show that

D Œi�

Dt
D Pi � Li ) @ Œi�

@t
D Pi � Li � r � .Œi�V/ (5.9)

where Pi and Li are the chemical production and loss rates of species i and V is the
velocity vector. If we introduce the volume mixing ratio Xi D [i]/[M], Eq. (5.9) can
be rearranged for nondivergent flow:

@Xi

@t
D Pi � Li

ŒM�
� V � rXi (5.10)

or in Lagrangian terms

DXi

Dt
D Pi � Li

ŒM�
(5.11)

This form is quite interesting because it shows that for an inert tracer (like dust or
a noble gas), Pi�Li D 0; the mixing ratio is constant in the air mass following the
motion.

As an example, consider a case in which we have a constant wind in the x
direction, u and a chemical source for x � 0, and a chemical sink with a rate
Li D [i]/� i for x > 0. The continuity equation is then from (5.9):

@ Œi�

@t
D � Œi�

�i
� @

@x
.u Œi�/ D � Œi�

�i
� u

@ Œi�

@x
(5.12)

For steady-state conditions (@[i]/@t D 0), we have

d ln Œi�

dx
D � 1

u�i

equivalent to

Œi.x/� D Œi.0/� exp


�x

u�i

�
The number density decreases exponentially with a scale length given by u� i; note
that if the transport time x/u is much less than � i, then the concentration stays
constant with x and the species can be considered almost inert. A simple application
of this concept can be found for the conversion of SO2 and NO2, respectively, in the
acids H2SO4 and HNO3 by OH. The conversion time in this case is about 3 days so
that the e-folding distance u� i is about 800 km for an average velocity of 3 ms�1. On

http://dx.doi.org/10.1007/978-3-319-29449-0_3
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Fig. 5.4 Spatial and temporal scales of variability for atmospheric species (Adapted from Brune
2007)

the other hand, the conversion of CO by OH into CO2 takes about 3 months so that
the distance is more than 20,000 km. This gives a clear significance to “regional”
or “local” pollutants like SO2 and NO2 with respect to a “hemispheric” pollutant
like CO.

It is rather interesting to examine these criteria of pollutants on different spatial
and temporal scales for a number of gases present in the atmosphere. Figure 5.4
shows the temporal and associated spatial scale of variability for a number of
atmospheric species. Although we do not know their name, the short-lived ones
are radicals present in the lower atmosphere, while in the moderately long-lived
species, we found familiar gases like ozone or carbon monoxide. The long-
lived species are mostly industrial products like methyl chloroform (CH3CCl3) or
chlorofluorocarbons (CFC). Others are long-lived gases like nitrous oxide (N2O) or
methane (CH4) whose mixing ratio is strongly perturbed by the human activity. We
will examine in detail the effects of these gases both on the climate of the Earth and
the tropospheric and stratospheric chemistry.

To integrate the continuity equation for the various chemical species, we can
generally express equations in finite difference form (see Examples). The spatial
grid will have three dimensions with space�x,�y, and�z, while the time step will
be �t. We rewrite Eq. (5.10) in finite form so that

pi D li C V � rXi C @Xi

@t
D�

1

�i
C V � r C @

@t

�
Xi �

�
1

�i
C u

�x
C v

�y
C w

�z
C 1

�t

�
Xi

(5.13)
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where pi and li are the production and chemical loss divided by the number density
of the atmosphere. This expression is very useful in comparing the chemical time
scale � i with transport time scales (u/�x, v/�y, w/�z) and the time step itself. If the
chemical time scale is small with respect to all the other terms in parenthesis, then
expression (5.13) reduces to the chemical steady-state equilibrium for which pi � li
and then

pi � Xi

�i
; i:e: Xi � pi�i

The condition for chemical steady state reduces the number of equation to be
integrated. We will see later that a useful concept in chemistry is the grouping of
a number of components into a single family. Exchanges between members of the
family can be very short while the family as such may have longer time scales
comparable or longer than transport times.

A very simple example will clarify this point. The maximum simplification of
the NOx family includes NO and NO2, that is, [NOx] D [NO] C [NO2]. The two
components are subject to the following reactions:

NO C O3 ! NO2 C O2 .rate constant k/
NO2 C h� ! NO C O .rate constant J/
O2 C O C M ! O3 C M

The conversion of NO in NO2 and vice versa happens in a very short time much less
than the transport time for NOx. On the other hand, NOx is removed by the reaction

NO2 C OH C M ! HNO3 C M .rate constant l/

We can assume a chemical steady state between NO and NO2 and equating
production and loss. From Fig. 5.3, we see that the lifetime of NO2 against
photolysis is only a few minutes, while for NOx lifetime will be several days.
Equating production and loss,

k ŒNO� ŒO3� D J ŒNO2�

so that we get the ratio

XNO

XNO2
D ŒNO�

ŒNO2�
D 1

J ŒO3�

On the other hand, we must use the full continuity equation for NOx:

@XNOx

@t
D pNOx � l ŒOH� ŒNO2� � V � rXNOx D pNOx � ŒNOx�

�NOx

� V � rXNOx
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where

�NOx D
�
1C ŒNO�

ŒNO2�

�
= .l ŒOH� ŒM�/ �

�
1C 1

J ŒO3�

�
= .l ŒOH� ŒM�/

can be calculated to be roughly 3 days.
There is another simple way to account for transport and that is the use of box

models. The simplest is one dimensional and consider a column of height h where
we can specify an emission rate E, a production P, a loss rate L, and a deposition
rated D. The change with time of component X is then

d ŒX�

dt
D E

h
C P � L � D (5.14)

This equation can be changed if we introduce a deposition velocity vd and consider
that the total derivative contains the advection term. We have

@ ŒX�

@t
D E

h
C P � lX ŒX� � vd

h
ŒX� � U

@ ŒX�

@x
(5.15)

where we have assumed the loss rate to be proportional to the concentration [X].
Passing the finite approximation, Eq. (5.15) becomes

@ ŒX�

@t
D E

h
C P � lX ŒX�� vd

h
ŒX�� U

.ŒX0� � ŒX�/
�x

(5.16)

A very simple application of this equation is for a case where P D D D 0 in the
region between x and x C L, while also E D 0 for x > L. If we consider the steady-
state case, for 0 � x � L, Eq. (5.15) reduces to

E

h
� lX ŒX�� U

@ ŒX�

@x
D 0

This can be easily integrated with the condition [X(0)] D 0 to give

ŒX� D E
hlX U

�
1 � e� lXX

U

�
0 � x � L

ŒX� D ŒX.L/� e� lX .x�L/
U 0 � x � L

This could be the case of linear source of length L in a steady wind of intensity U.

E.5 Examples

E.5.1 Units for Chemical Abundance

The most common unit for expressing the chemical abundance of a gas is the mixing
ratio by volume, that is, the fraction of volume of air occupied by that gas. This unit



E.5 Examples 155

is very convenient because the volume occupied by a gas at the same temperature
and pressure is proportional to the number of moles. The ratio between volumes
gives then the ratio between moles, that is, the mole fraction. For example, the
mixing ratio of carbon dioxide (CO2) is 380 � 10�6, and this means that for every
106 molecules of air, there are 380 molecules of CO2. However, the same number
expresses the ratio between partial pressure of the gas and total pressure of the air.
For the same example, the partial pressure of CO2 would be roughly 38 Pascal or
0.38 mb. Often the same mixing ratio is expressed as 380 ppm (part per million),
that is, 380 molecules for each million (106) molecules of air. Other times the unit
ppb (part per billion, 109) or ppt (part per trillion, 1012) is used.

Another unit may be the mixing ratio by mass which is defined as the ratio
between the densities of a gas and the density of air. If we indicate by pi and pa

the pressure of gas and air and by 
i and 
a the corresponding density, we have

pi D 
i

Mi
RTI pa D 
a

Ma
RT

Making the ratio, we found the relation between the mass mixing ratio and the
volume mixing ratio:

� D 
i


a
D piMa

paMi
(E.5.1)

If we apply this simple formula to the oxygen and nitrogen in the atmosphere, we
have a mass mixing ratio for N2 of 80.8 % and 19.03 % for O2. Remember that the
volume mixing ratios are 78 % and 21 %, respectively.

The mass mixing ratio is very convenient to find the total mass of specific
constituents with constant altitude mixing ratio. Consider, for example, carbon
dioxide with a volume mixing ratio of 380 ppm. This corresponds according to
(E.5.1) to a mass mixing ratio of

�CO2 D 380 � 10�628:9=44 D 249:6 � 10�6

The total mass of CO2 in the atmosphere is then

mCO2 D �CO2matm D 4�r2p0�CO2=g

where r is the radius of the Earth (6370 km), p0 the surface pressure 1.013 � 105 Pa,
and g the acceleration of gravity (9.81 ms�2). The mass is then 1.31 � 1015 kg.

E.5.2 The Chapman Model for Atmospheric Ozone

The model presented here for the atmospheric ozone was proposed in 1930 by
Sydney Chapman. The great geophysicist was a pioneer also in the theory of ozone
destruction. He actually noted that because ozone being an absorber of UV could
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create some problem to astronomers observing stars in the spectral region, he then
suggested that it would be useful to create a “hole” in the ozone layer to facilitate
the observations.

The Chapman mechanism considers only four reactions:

O2 C h� ! O C O J1
O C O2 C M ! O3 C M k2
O3 C h� ! O2 C O J3
O3 C O ! 2O2 k4

(E.5.2)

J1 and J3 are the photodissociation coefficients for molecular oxygen (below
240 nm) and ozone (below 320 nm), while k2 and k4 are the rate coefficients for
the formation of ozone and recombination with oxygen atoms. M is a third-body
reaction. It can be recognized that the second (k2) and third reactions (J3) are much
faster than the other two. This means that there is a fast interchange between O
and O3 and a slower one between O2 and (O C O3). It is convenient to introduce
a chemical called odd oxygen Ox D O C O3 which is formed by J1 and consumed
by k4.

The ratio between O and O3 is fixed by chemical equilibrium between the odd
oxygen family:

k2 ŒO� ŒO2� ŒM� D J3 ŒO3� ) ŒO�

ŒO3�
D J3

k2 ŒO2� ŒM�
D J3

k2fO2n2a
(E.5.3)

where we have assumed that the air density na is the same as [M] and the [O2] is
simply the mixing ratio of molecular oxygen (fCO2) by na.

The other balance is for the entire odd oxygen family:

d ŒOx�

dt
D 2J1 ŒO2� � 2K4 ŒO� ŒO3� (E.5.4)

And at the equilibrium d ŒOx� =dt D 0, we have

J1 ŒO2� D k4 ŒO� ŒO3� ) ŒO3� D
�

J1k2
J3k4

�1=2
fO2na

3=2 (E.5.5)

This expression gives a qualitative picture of the ozone layer. The last term
gives the number density decreasing with altitude (na

3/2). The change with altitude
depends mainly by the ratio in parenthesis. The photodissociation coefficient for
oxygen is really independent from the ozone concentration, while the J3 coefficient
depends essentially on the ozone concentration. Constant k2 has a rather complicated
expression and k4 has a simpler expression but depends on temperature decreasing
while the temperature increases. The way to proceed to evaluate [O3] is to start from
high altitude with a small ozone quantity and proceeds to lower altitudes.
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Fig. E.5.1 Qualitative illustration of the Chapman model. On the left the photolysis rates for ozone
(J3) and oxygen (J1) are reported. The J1 scale is at the top. On the right the ozone number density
calculated (solid) and observed (dashed) are depicted

Qualitatively the results look like Fig. E.5.1. At high altitude, ozone decreases
according to the atmospheric density. At low altitude however, the photolysis rate
for oxygen goes rapidly to negligible values cutting the source of odd oxygen and
consequently reduces the ozone formation.

When the first ozone measurements become available (before the Second World
War), they showed that the Chapman theory overestimated the ozone concentration
as shown. Besides, this theory was unable to explain the ozone in the troposphere
because apparently there was no source for odd oxygen there. This will be one of
the problems we will confront in one of the next chapters.

E.5.3 Calculation of Photolysis Rate

We make an example based on the hydrogen peroxide that photodissociates
according to

H2O2 C h� ! 2OH � < 550 nm

Table E.5.1 reports the data for the calculation of the photolysis rate that includes
the actinic flux at intervals of 10 nm and the cross section. At this point, it is very
simple to calculate the photolysis rate.

It reduces to the summation of the products between fluxes and cross section:

JH2O2 D
X
�

I��� D 9:6 � 10�6s�1
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Table E.5.1 Photolysis data for hydrogen peroxide

Wavelength (nm) I(�) (photon cm�2 s�1) � (cm�2 molecule�1)

295–305 2.66 � 1013 0.71 � 10�20

305–315 4.20 � 1014 0.42 � 10�20

315–325 1.04 � 1015 0.25 � 10�20

325–335 1.77 � 1015 0.14 � 10�20

335–345 1.89 � 1015 0.08 � 10�20

345–355 2.09 � 1015 0.05 � 10�20

The flux reported in the table is referred at the ground. Usually the calculation must
be made at different levels, and in that case, the flux must be calculated taking into
account the gas absorption (only gaseous absorption is considered) according to the
method outlined in Sect. 2.2. In particular, we have to use the relationship (2.34)
converting the flux in watt m�2 in photons s�1m�2. The conversion is very simple:

I� D F�c

h
�

where c is the speed of light and h is the Planck constant.

E.5.4 Photodissociation and Vertical Transport

In the old days when three-dimensional chemical transport models were not so
popular, people used very simple one-dimensional models in which transport was
confined to the vertical direction. The parameterization of this transport was very
simple (we will find more about in the boundary layer chapter) so that if we had
a species with mixing ratio f, the flux associated to the distribution was simply
proportional to the gradient of the mixing ratio. This approximation assumes that
molecules diffuse according to the same law used in molecular diffusion. We would
get for the flux (in molecules m�2 s�1)

ˆ D �Kna
df

dz
(E.5.6)

where K is called the eddy diffusion coefficient (m2s�1), na is the atmospheric
number density (molecules m�3), and f is the mixing ratio. It is convenient to rewrite
(E.5.6):

ˆ D �Kna
d

dz

�
ni

na

�
D �Kna

�
1

na

dni

dz
� ni

n2a

dna

dz

�
D �K

�
dni

dz
C ni

Ha

�
D �Kni

�
� 1

Hi
C 1

Ha

�
(E.5.7)

where we have used the definition of scale height for the atmosphere and the species

http://dx.doi.org/10.1007/978-3-319-29449-0_2
http://dx.doi.org/10.1007/978-3-319-29449-0_2
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1

Ha
D � 1

na

dna

dz
I 1

Hi
D � 1

ni

dni

dz

The formulation (E.5.7) is rather instructive because if Hi < Ha, then the flux is
positive upward; that is, if the species mixing ratio decreases with height, its
tendency is to mix until Hi D Ha. On the other hand, if the mixing ratio increases
with height Hi > Ha, then the flux is negative (downward) and again the species has a
tendency to mix with the atmosphere. These considerations were evident in (E.5.6).

Now that we have a correct expression for the flux, consider a species photodis-
sociated with a constant J. From the continuity equation, we should have

r �ˆ D Jni ) �K
d

dz



ni

�
� 1

Hi
C 1

Ha

��
D Jni (E.5.8)

where the divergence has been reduced only to the vertical direction. (E.5.8) can
be integrated assuming for ni a constant scale height so that the right-hand side
becomes

1Z
0

Jnidz D JniHi

And the integration gives

�K

�
� 1

Hi
C 1

Ha

�
D JHi ) 1

H2
i

� 1

HaHi
� J

K
D 0 (E.5.9)

The solution for the scale height of the species results as

2

Hi
D 1

Ha
C
�
1

H2
a

C 4J

K

�1=2
(E.5.10)

Again we see that for a large K the species is completely mixed (Hi D Ha), while
for small K the mixing ratio decreases with height. We have taken only the positive
sign for obvious reasons.

E.5.5 A Time-Dependent Case

If we want to calculate more accurately the concentration of species i, we need to
recur to the complete continuity equation:

dni

dt
C d

dz



�K

�
dni

dz
C ni

Ha

��
D �Jni (E.5.11)
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When the derivative is performed, we get a diffusion equation:

dni

dt
D K

d2ni

dz2
C K

dni

dz
� Jni (E.5.12)

This is a completely new differential equation whose solution depends on time and
space ni(z, t) and it is known as the diffusion equation. We will learn how to solve it
later on in the book.
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Chapter 6
Introduction to Remote Sensing

In this chapter, we will introduce what is essentially new for this book and that these
are the principles of remote sensing techniques. Remote sensing in general includes
all the techniques that can obtain information about the nature of the surface and the
atmospheres of the Earth and planets. The most ancient techniques are visual and
telescopic observations on other planets well before sophisticated instrumentation
would be orbited around them. In this chapter, we will concentrate on observations
of the atmosphere considering that they can be made either from space or from the
ground. It is very instructive to go through this introduction because in practice it
applies most of the things we introduced in the earlier chapters. We will omit in this
first, preliminary approach many of the technicalities and details that the interested
reader could find in books on remote sensing.

6.1 Observations of the Atmosphere

The atmosphere can be observed either from the ground or space. These techniques
may determine several characteristics like profiles of temperature and atmospheric
composition and properties of clouds and aerosols, winds, water vapor pressure, and
in general precipitation.

Figure 6.1 shows schematically the main techniques used in remote sensing.
Besides the spaceborne measurements, there are a few ground-based techniques
like radars and lidar that are shown schematically in the insert. The space-based
measurements refer to three different geometries. The nadir observations look
directly underneath the satellite to obtain information about the characteristics of
the radiation coming from the atmosphere. The radiation can be thermal (IR) giving
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Fig. 6.1 A synthesis of a few remote sensing techniques

information about the atmospheric composition and its thermal structure (see Fig.
2.10). However the instruments could also record backscattered solar radiation and
in that case again can get information about the distribution and total gas amount.
The limb observations on the other hand look again at radiation emitted along the
relatively long path in such a way to enhance absorption by gases. This technique
requires a correct alignment and can be used also from an aircraft or balloon
platform. Finally if a radiation source is used like a star or the sun, the absorption of
the radiation from that source can be used to obtain information on the composition
and structure of the atmosphere. This corresponds to the occultation technique and a
variation of that using microwave radiation is the radio occultation (RO). In the case
depicted, a signal is emitted by a satellite that can be measured from another satellite
that may be of the ground positioning system (GPS). The signal in this case may be
subjected to refraction and the path can be curvilinear. The signal processed may
give information about the refractive index of the atmosphere which is a function of
both pressure and temperature.

The ground-based measurements shown in the figure are the radar and lidar
techniques. Radar is an acronym for radio detection and ranging and consists of
the emission of a pulsed beam of microwave radiation whose return can be analyzed

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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to have information about the characteristics of the hydrometeors. Lidar uses the
same principle as radars, but in this case, the radiation emitted is a light pulse.

6.2 Thermal Emission Measurements

Before proceeding, we must recall the equation of radiative transfer (2.39) written
in the monochromatic form:

dI�
d��

D B� � I� (6.1)

A formal solution of this equation gives the monochromatic intensity of the radiation
received from the sensor on the satellite (Liou 1980):

I� .z1/ D B� .Ts/ e�.�� .0/���.z1// C
z1Z
0

B� .T.z// e�.�� .z/���.z1//d�� (6.2)

In this equation, Ts is the surface temperature, and T(z) is the temperature at height
z. ��(0) is the total optical thickness and ��(z) is the optical thickness at height z.

The exponential defines the transmission function T .z; z0/ D e
�
�
�
�
�

z
�

�
�
�
�

z0
�

where �(z) > �(z0). Equation (6.2) can now be rewritten at the satellite altitude (1):

I� D B� .Ts/T� .0;1/C
1Z
0

B� .T�.z//
@T� .z;1/

@z
dz (6.2a)

A simple solution of this equation is for the case in which the transmission function
is constant and equal to unity T�(z, z1) D 1. In such case, because the optical
thickness is zero, the satellite “sees” the surface so that we have

I� .z1/ D B� .Ts/

And the temperature can be obtained by simply inverting the Planck function:

Ts D h�



k ln

�
1C 2h�3

c2I�

���1
(6.3)

Another simple case is when an isothermal atmosphere at temperature T0 overlies
on a surface at the temperature Ts. We assume now that the atmosphere has an
absorption line centered at �o that cannot be neglected. However we may assume
that the change with frequency of the Planck function is slow (negligible) with

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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respect to the change around the absorption line. In this case, the integral in (6.2a)
can be written as

1Z
0

B� .T�.z//
@T� .z;1/

@z
dz �

1Z
0

B� .T�.z// dT� .z;1/

D B� .T�.0// .T� .1;1/� T� .0;1//C
1Z
0

T� .z; z1/dB� .T�.z//

The integral is zero because the Planck function is constant with altitude so that Eq.
(6.2a) becomes

I� D B� .T�.0// Œ1 � T� .0;1/�C B� .Ts/ T� .0;1/ (6.4)

It is worth to introduce the absorptance as

A� .0;1/ D 1 � T� .0;1/ (6.5)

so that (6.5) can be rewritten as

I� D B� .Ts/C ŒB� .T.0// � B� .Ts/�A� .0;1/ (6.6)

This simple formula says that the signal observed by the instrument will be the
Planck function at the surface temperature except for the spectral range where the
absorptance is significantly different from zero. In this region, if the temperature
of the atmosphere is greater than the surface temperature (B�(T(0) > B�(Ts)), we
will observe a “bump.” While if the atmosphere is colder than the surface, we will
observe an absorption dip.

A situation like that may be exemplified as in Fig. 6.2 where the spectra obtained
from the Nimbus 4 are shown. In all the three spectra, the atmosphere is transparent
in the 800–1250 cm�1 (8–12 �m) so that the emission is the corresponding
blackbody at 320 K, 280 K, and 180 K. In the Antarctica region, the absorption
feature at 15 �m due to CO2 absorption appears in emission because there the
atmosphere is warmer than the surface. These spectra show that a qualitative picture
of the thermal structure could be easily obtained. We will show in one of the
examples (E.6.1) that in principle a much more detailed picture of the thermal
structure of the atmosphere could be obtained.

6.3 Ozone Measurements from Satellite

There are different methods to measure ozone from a satellite. In what follows, we
will illustrate just two of them. One is based on the scattering of solar ultraviolet
radiation and the other is a simple absorption method. Both these techniques
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Fig. 6.2 Spectra taken by the Nimbus 4 for different regions of the Earth. The upper part shows a
spectrum taken over in North Africa, the Mediterranean, and Antarctica

exploit the characteristic that the ozone is a strong absorber of radiation in the
ultraviolet region.

The first method is illustrated in Fig. 6.3 where the atmosphere is reduced
essentially to two layers: the upper one is identified with the stratosphere and will in
essence be responsible for the absorption of UV radiation by O3, while the lower and
denser troposphere is responsible for the reflection of the incoming solar radiation.
In this simple geometry, the radiance measured by the satellite is given by

I .�/ D Esun .�/ TO3 .�/R .	sun; 	sat;Rsurf;Rair/ (6.7)

where TO3 (�) is the transmittance of the atmosphere at wavelength � and R is the
reflectance of the atmosphere and the surface. The transmittance along the slant path
can be written as

TO3 .�/ D exp

�
�
Z

kads

�
D exp

�
�
Z

ka

dz

cos 	

�
D �

Tvert
O3 .�/

sec	
(6.8)
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Fig. 6.3 The geometry of the UV backscattering techniques used to measure the ozone total
amount

The transmission for the vertical path can be related to the total ozone in a vertical
column in the following way:

�
Tvert

O3 .�/
 D exp

�
�
Z

kadz

�
D exp

�
�
Z

kadu

�
D exp .�kau/ (6.9)

where u is total ozone quantity (molecules cm�2) and ka is now expressed in cm2.
We can rewrite (6.8) in principle like

N1 D � log
I .�1/

Esun .�1/
D � log ŒTO3 .�1/R .�1/�

N2 D � log
I .�2/

Esun .�2/
D � log ŒTO3 .�2/R .�2/� (6.10)

for two nearby wavelengths �1 and �2. Also we have indicated only the dependence
on wavelength of the reflectance. The difference between these two quantities gives

N1 � N2 D � log



R .�1/

R .�2/
exp f� Œka .�1/� ka .�2/� u�g

�
(6.11)
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where have substituted the transmittance given in (6.9) and where � is given by

� D sec 	sun C sec 	sat

As a first approximation, we can assume R(�1) D R(�2) and we would get

N1 � N2 D � log Œexp f� Œka .�1/ � ka .�2/� u�g�
D log.e/ Œka .�1/ � ka .�2/� u� (6.12)

Knowing the absorption coefficient u could be determined. Actually the reflectance
could be different at the two wavelengths so a third measurement at wavelength l3 is
used to determine the reflectance at the surface (Rsurf(�1) � Rsurf(�2)); calculate then
the Rayleigh scattering Rair and then determine the exact values of R(�1) D R(�2).
This method can be adapted to obtain ozone profiles by using the fact that the
absorption coefficient really depends on the pressure so that weaker absorption will
sample higher pressure or lower altitude.

The methods illustrated here have been used historically on Nimbus 4 in the
early 1970s and in instruments like TOMS (Total Ozone Mapping Spectrometer)
and GOME (Global Ozone Monitoring Experiment) on ESA satellites.

Another way for measuring the ozone profile is the limb extinction method. As
shown in Fig. 6.4, in this case, the satellite observes the radiation from the sun during
sunrise and sunset with respect to the motion of the satellite. The radiation absorbed
through the horizontal path is called limb radiation. The intensity of radiation for
zero extinction (i.e., the highest altitude) is indicated with I�0, and the intensity

Fig. 6.4 Geometry of the limb extinction measurement (Stephens 1994)
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for the tangent altitude zi is Il(zi) and the ratio between these two intensities is the
transmittance:

I0�
I� .zi/

D T� .zi/ D exp

0@�
1Z

�1
�ext;�.s/ds

1A (6.13)

where

�ext;�.s/ D kozo
a .�/ 
ozo

is the volume extinction coefficient for ozone in the simplest case. Usually the
extinction in the same wavelength range is contributed by other processes like
Rayleigh scattering, aerosol, and other gas absorption. In the simplified case, we
get

T� .zi/ D exp

24�
1Z

�1
kozo

a .�/ 
ozo.s/ds

35 D exp
��kozo

a .�/ u .zi/


(6.14)

where u(zi) is the total ozone amount along the horizontal path. The total ozone
column is contributed by different spherical layers with each one responsible for the
portion�sij as shown in Fig. 6.4. Actually then the integrand in (6.15) is given by

� i
� D

1Z
0

�ext;�.s/ds D 1

2

jDNX
jD1

�ext;k;j�si;j (6.15)

where j is the layer index and N is the highest layer to be considered. The procedure
is then to obtain the optical thickness for each altitude by (6.14) and then inverting
(6.16) the extinction for each layer. Knowing the absorption coefficient for each gas
as a function of wavelength, it is possible to obtain the vertical profile.

6.4 Atmospheric Properties from Radio Occultation (RO)

The radio occultation technique has been introduced in 1965 when the signal from
the Mars probe Mariner IV was analyzed to get information about the atmosphere
of that planet. This technique is based on deriving the refractivity index of the
atmosphere from perturbations of the radio signal transmitted by the probes. Thirty
years later, the same technique was applied to obtain properties of the atmosphere
of the Earth and use those data for meteorological purposes.
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Fig. 6.5 Radio occultation geometry

The most simple way to illustrate the method is the calculation of the bending
angle ˛ as illustrated in Fig. 6.5. Considering that the sum of the inner angle of a
quadrilateral is 2� , we have for the bending angle

˛ D 	LEO C 	GPS C  � � (6.16)

where LEO refers to low Earth orbit and GPS to global positioning system being the
satellite in geostationary orbit. The GPS observable is expressed as a function of the
radial velocity between the emitter (i.e., the LEO satellite) and the transmitter (i.e.,
the GPS satellite):

D D �fev
=c (6.17)

where fe is the nominal transmitter frequency, c is the speed of light, and v
 is the
radial velocity. Always referring to the figure, the velocity can be expressed as a
function of the unit vectors of the rays and the velocities so that we get

D D fe

c
.vGPS � kGPS � vLEO � kLEO/

which is equivalent to

D D fe

c
ŒvGPS cos .�GPS � 	GPS/ � vLEO cos .�LEO � 	LEO/� (6.18)

From the figure, looking at the two segments normal to the rays, we get easily the
Bouguer relation:

nGPSrGPS sin 	GPS D nLEOrLEO sin 	LEO D cos t (6.19)
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The angles �GPS and �LEO are obtained from the dot product of the velocity and
position vectors and after that the other angles can be obtained using (6.19) and
(6.20): at this point, the bending angle can be evaluated.

We now observe that in the absence of any refracting media, we would get a
relation between radius and refracting angle a little bit different from that of the
Bouguer formula:

straight line ) r sin 	s D as

true ray ) nr sin 	 D a (6.20)

Differentiating both equations and subtracting, we get

dnr sin 	 C ndr .sin 	 � sin 	s/C nr .cos 	d	 � cos 	sd	s/ D 0

Because the bending angle at the highest layers does not exceed 0.03ı, it is possible
to approximate the previous expression as

dnr sin 	 C nr cos 	 .d	 � d	s/ D 0

The differential of the bending angle is just d	–d	 s so we get

d˛ D � sin 	

cos 	
d .ln.n// D � ap

n2r2 � a2
d .ln.n//

where we have expressed the trigonometric functions using (6.21). The bending
angle ˛ is obtained integrating the previous expression for the path toward GPS and
the path toward LEO:

˛.a/ D �a


Z xGPS

a
C
Z xLEO

a

�
1p

x2 � a2
d ln.n/

dx
dx (6.21)

where x D nr. Assuming that the contribution from LEO is negligible and consider-
ing the spherical symmetry, the bending angle is obtained as

˛.a/ D �2a
Z 1

0

1p
x2 � a2

d ln.n/

dx
dx (6.22)

Using the Abel transform, this integral can be inverted to obtain

ln .n.x// D 1

�

Z 1

0

˛.a/p
a2 � x2

d˛ (6.23)

Once the refractive index is determined, it is possible to obtain profiles of pressure
and density according to the following scheme. The refractivity is defined as

N D 106 .n � 1/ D k1
Pd

T
C k2

Pv
T

C k3
Pv
T2

D ˛
P

T
C k3

Pv
T2

(6.24)
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where Pd and Pv are the partial pressures of dry air and water vapor, T is the
absolute temperature, and ki, i D 1,2,3 are the refractivity constants. Two cases can
be illustrated, the dry air case and the general case.

For the first case, where the moist term can be neglected (above 10 km) so that
(6.25) reduces to

N D k1
Pd

T

the equation of state gives the density:


 D PdM

RT

which has the same dependency of refractivity index. Next, from hydrostatic
equilibrium, Pd can be obtained knowing 
:

@Pd

@z
D �g


Finally the temperature can be obtained from pressure and air density. In the
general case, the main difference with the previous approach is to take into account
the presence of water vapor. There are algorithms that may help to retrieve the water
vapor partial pressure.

6.5 A Few Things About Radar

Without being too detailed, we can describe radar as a transmitter of a pulse of
electromagnetic waves which is scattered by the target. A receiving antenna, as
shown in Fig. 9.8, then captures the scattered power. Actually most of the time, the
receiver and the transmitter antennas are the same. In this case, the radar is called
monostatic, in contrast to the bistatic radar.

If we refer to Fig. 9.8, we can see that, if the radar emits isotropically a power Pt

at a distance Rt, it will produce a power flux given by

St D Pt

4�R2t

As we know, however, the power is actually emitted along a narrow beam, so that
the flux will be increased by an amount that we call G, the gain of the antenna. Then
a target having an area At will intercept a power:

Pt D G
PtAt

4�R2t

http://dx.doi.org/10.1007/978-3-319-29449-0_9
http://dx.doi.org/10.1007/978-3-319-29449-0_9
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The target will radiate this power back to the receiver at distance Rr where the
antenna of area Ae will gather a power (there is no gain in this case):

Pt D G
PtAtAe

16�2R2t R2t

It is possible to see that the receiving area and the gain are related by

G D 4�Ae=�
2

where � is the wavelength. The received power is then

Pr D Pt
G2�2

.4�/3RtRr

At

Actually the area of the target is really a too simplistic approximation because the
target does not scatter isotropically. It is convenient then to introduce a scattering
cross section � such that

Pr D Pt
G2�2

.4�/3R4
� (6.25)

where we have also considered a more common monostatic radar. Equation (9.49)
corresponds to the so-called radar equation for a single target of cross section �
(Fig. 6.6).

When the radar is used in meteorology or in general to study the atmosphere,
it is no longer possible to talk about single or hard targets. In this case, we have a

Fig. 6.6 The geometry for
the radar equation

Rt
Rr

Receiver

Transmitter

cτ/2

θ

http://dx.doi.org/10.1007/978-3-319-29449-0_9
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distributed target that consists of many particles (like raindrops) that are illuminated
at the same time. The simplest thing is then to substitute in Eq. (9.49) the sum of the
cross sections of the single particles with the provision to average the return signal
over a time interval long enough to smooth out the fluctuations in the target. It is
convenient at this point to introduce a scattering cross section per unit volume � i

for each i – particle. As shown in Fig. 9.8, the volume sampled by the radar beam is
given by

Vm D �

4

c�

2
R2	2

where � is the pulse length. Then the cross section will be

� D Vm

X
�i

The radar equation will become

Pr D Pt
G2�2

.4�/3R2
�c�

8
	2
X

�i (6.26)

Again the real world is rather different and the radar beam, rather than having a
conical shape, has rather a Gaussian shape, so that Eq. (6.27) changes again to
become

Pr D Pt
G�2c�

1024 .ln 2/R2
X

�i (6.27)

When the radar wavelength is large with respect to the diameter D of a scattering
particle, the cross section can be assumed as that corresponding to Rayleigh
scattering:

�i D �5Di
6

�4
jKj2 (6.28)

where

jKj2 D �
m2 � 1

�
=
�
m2 C 2

�
and m is the complex refractive index. This quantity is a function of wavelength
and temperature. Actually the sum performed on the diameters is substituted with a
measurable quantity that is called Z, the radar reflectivity factor defined as

Z D
X

D6
i D

Z 1

0

N.D/D6dD (6.29)

http://dx.doi.org/10.1007/978-3-319-29449-0_9
http://dx.doi.org/10.1007/978-3-319-29449-0_9
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The reflectivity can be put in relation with the precipitation rate r, usually through
a power law:

Z D arb (6.30)

The radar equation can be expressed directly in terms of the reflectivity by
substituting Eqs. (9.52) and (9.53) in Eq. (9.51) so that the reflectivity becomes

10 log Z D 10 log Pr C 20 log R C C (6.31)

where C is a constant determined by the radar characteristics. Sometimes the
reflectivity is then expressed in decibel as

dBz D 10 log Z (6.32)

This is calculated when the reflectivity is measured in mm6/m3. For example, widely
accepted constants for Eq. (9.54) give

Z D 200r1:6 (6.33)

with the rate expressed in mm/h. Considering a heavy rain of about 20 mm/h, we
would have a reflectivity of 2.4 104 or dBz 43.8. The sensitivity of radars is such that
at a range of 15 km, they can detect a rainfall rate of about 0.1 mm/h. This means
that weather radar can detect rain but not clouds; to accomplish this, radar operating
at short wavelengths must be used (1 cm or less).

Different relationships can be found for other forms of precipitation like snow.
However, a much more efficient way to discriminate the different precipitation types
is to use a polarized radar signal. Polarized radar can send out an electromagnetic
pulse that is polarized either in the vertical or the horizontal direction. Two
reflectivities are obtained and their ratio can be formed, denoted as differential
reflectivity:

ZDR D 10 log .ZHH=ZVV/ (6.34)

where ZHH is the reflectivity from the horizontal polarized signal and echo and ZVV is
the same for the vertical signal. It is rather obvious to think that the geometrical form
of the raindrops is influenced by their vertical motion, and especially large drops
may be flattened. The depolarization factor will be then around unity for small drops
(1 mm) and will grow larger for drops of several mm. For large ice particles like
hail or graupel, the differential reflectivity will be roughly zero because they have
the tendency to tumble and so give the same signal in the two directions. Figure 9.9
shows what is possible to obtain using modern radar. The top panel shows normal
radar echo which is reflectivity that can be related to the precipitation rate. The
middle panel shows the ZDR quantity defined before and the bottom panel takes into
account the phase of the polarized signal (Fig. 6.7).

http://dx.doi.org/10.1007/978-3-319-29449-0_9
http://dx.doi.org/10.1007/978-3-319-29449-0_9
http://dx.doi.org/10.1007/978-3-319-29449-0_9
http://dx.doi.org/10.1007/978-3-319-29449-0_9
http://dx.doi.org/10.1007/978-3-319-29449-0_9
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Fig. 6.7 Three different radar images from the same thunderstorm cloud. At the top is shown the
dBz echo, while at the center the ZDR is shown. At the bottom, the most sophisticated technique
shows directly the different phases or physical component of the cloud (Images courtesy of
J. Keeler, National Center for Atmospheric Research)

Although it is not possible to show the color code, the bright region at the top of
the cloud is made by ice crystals that change gradually to hail, graupel, and different
kinds of snow. In particular, the bright core at the center is essentially graupel, while
the darker zones near the ground are heavy rain. The kind of data shown in the figure
is obtained from a class of radar known as NEXRAD (Next-Generation Radar) that
is now extensively used in a network in the USA and has dramatically improved the
forecast capabilities.

6.6 Lidar Measurements

If the microwave beam is substituted with a light beam (possibly a laser), we have
an instrument for remote sensing called lidar (light detection and ranging). In this
case, a beam of light is sent in the atmosphere and the scattering medium sends back
a signal that when analyzed can give information on some atmospheric parameter.
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Fig. 6.8 The layout of a lidar
system (Visconti et al. 2007)

A general scheme for a lidar is given in Fig. 6.8. The transmitter usually is a laser
whose characteristics (wavelength, pulse length, etc.) depend on the

specific type of measurement. The receiver is usually a telescope or a Fresnel
lens that collects the light, while the acquisition system actually operates the firing
of the source and maintains the timing with the received data.

The lidar equation relates the received photon counts (or signal in general) to the
transmitted signal. In an interval �t from range interval between s and s C�s with
�s D c�T/2 (c is the speed of light), we have for the number of photons received

NS .�0; �; s/ D N0 .�0/ T .�0; s/ Œˇ .�0; �; s/ �s�T .�; s/
d�

4�
� .�; �0/G.s/ (6.35)

where s is the range; �0 is the emitted wavelength; � is the received wavelength;
T(�0, s) and T(�, s) are the transmission functions on the way up and down,
respectively; b(�,�0,s) is the backscattering function; �(�, �0) is the efficiency in the
collecting system; G(s) is the geometry factor; and d� is the solid angle subtended
by the telescope.

The transmission functions are assumed to follow the Beer–Lambert law so they
may be written as

Tmol.s/ D exp

�
�
Z s

0

��molnmol.s/ds

�
Taer.s/ D exp

�
�
Z s

0


Z 1

0

dr�r2Qext .r;m�/ naer .s; r/

�
ds

�
Tabs.s/ D exp

�
�
Z s

0

� i
absn

i
abs.s/ds

�
(6.36)
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where the s refers to the absorption cross sections for molecular scattering and
absorption, while for the aerosol the transmission function depends on the total
extinction cross section (the quantity in square bracket) where r is the radius of
the particle.

The volume backscattering coefficient (ˇ) can be defined in general as

ˇ .�; �0; s/ D
X

i

d�i .�0; �/

d�
ni.s/ (6.37)

And in case the scatterers are aerosols:

ˇ�aer.s/ D 1

4�

Z 1

0

dr�r2Qbck .r;m; �/ naer .s; r/ (6.38)

where Qbck is the Mie backscattering efficiency of aerosol particle with radius r and
refractive index m and naer (s, r) is the size distribution of the particles. As for the
geometrical collecting efficiency if the telescope has surface A then the solid angle
in (6.36) it is simply

s2d� D 4�A (6.39)

Notice that the collecting angle is proportional to the collecting area while it
decreases with the distance squared.

The physical processes which determine the signal are either elastic or inelastic
scattering processes (Rayleigh, Mie, or Raman) that may interact with absorption
processes or may relate to the properties of the absorption line. Also resonant
fluorescence may be important.

E.6 Examples

E.6.1 Refractive Index of Air

We have worked out this problem at microscopic level in Chap. 2, but here we
would like to explain how to arrive to Eq. (2.18). We start by considering that inside
a dielectric the effective electric field is given by

E0 D E C P=3"0 (E.6.1)

where P is the polarization vector and "0 is the dielectric constant. We then have for
the polarization vector

P D ˛NE0 D ˛N .E C P=3"0/

http://dx.doi.org/10.1007/978-3-319-29449-0_2
http://dx.doi.org/10.1007/978-3-319-29449-0_2
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where N is the number of molecules per unit volume and ˛ is the polarizability. And
then it follows that

P D ˛N"0E= .1 � ˛N=3/ (E.6.2)

To define the refractive index, we have to find the dielectric constant " using the
electric displacement vector:

D D "0"rE D "0E C P ) "r D 1C P � E="0E2 (E.6.3)

The index of refraction n is then

n D c

v
� p

"r D
s
1C P � E

"0E2
(E.6.4)

Substituting for P obtained from (E.6.2), we obtain

N˛ D 3
n2 � 1
n2 C 2

� 2 .n � 1/ (E.6.5)

considering that n is close to unity. This is called the Clausius–Mossotti equation.
We get immediately

n D 1C N˛=2

This means that the refractive index of a gas depends on the volume concentration
of the gas. For a gas mixture, it follows that

n � 1 D 1

2
N
X

i

yi .ni � 1/ (E.6.6)

where yi is the mole fraction of species i and mi is its refractive index. The quantity
n � 1 is known as refractivity. For air, (E.6.6) can be written as

n � 1 D k1
p

T
z�1

a C k2
e

T
z�1

w C k3
e

T2
z�1

w

where e is the partial pressure of water vapor, p is the partial pressure of dry air, T
is the absolute temperature, ki are constants, and za,w are deviations from the ideal
gas law.

E.6.2 The Abel Transform

The Abel transform can be introduced as the projection of a circularly symmetric
object as shown in Fig. E.6.1. Suppose the different shades of gray represent density



E.6 Examples 179

Fig. E.6.1 The observation
geometry of an object with
spherical symmetry

which is a function only of the distance from the center of the circles, r. An observer
in O will see

F.y/ D
Z 1

�1
f .r/dx D

Z 1

�1
f
��

x2 C y2
�1=2�

dx (E.6.7)

where

dx D rdr=
�
r2 � y2

�1=2
Being f (r) symmetric, (E.6.7) can be written asZ 1

�1
f .r/dx D2

Z 1

0

f .r/dx

Again substituting the expression for dx as a function of r, we obtain the definition
of the Abel transform:

F.y/ D
Z 1

y

f .r/rdr

.r2 � y2/
(E.6.8)

The inverse Abel transform can be obtained from

f .r/ D � 1

�

Z 1

r

dF

dy

dy

.y2 � r2/1=2
(E.6.9)

A verification of this relation can be obtained by integrating by parts (E.6.8). We
have

F.y/ D �2
Z 1

y
f 0.r/

p
.r2 � y2/dr
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where f 0(r) is the derivative of f(r). Differentiating we get

dF

dy
D 2y

Z 1

y

f 0.r/p
r2 � y2

dr

that can be substituted in (E.6.9) to have

� 1

�

Z 1

r

dF

dy

dy

.y2 � r2/1=2
D 1

�

Z 1

y

Z 1

r

�2y

Œ.y2 � r2/ .s2 � y2/�1=2
f 0.s/dsdy

The last integral can be solved with Fubini’s theorem:Z 1

r

Z s

r

�2y

�Œ.y2 � r2/ .s2 � y2/�1=2
dyf 0.s/ds D

Z 1

r
.�1/ f 0.s/ds D f .r/
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Chapter 7
The Atmospheric Motions

In Chap. 3 we introduced the concept of circulation and vorticity, and we discovered
the baroclinic atmosphere and the “production of vorticity.” In Chap. 4 we saw that
even the thermal wind can be obtained as a consequence of vorticity generation. It
looks like the vorticity will be a long-term companion, so it may be worth it to go
deeper in to its physical meaning.

Another peculiarity we need to explore in depth is its conservative properties.
Just like the potential temperature, also the vorticity, under some special conditions,
may become a tracer for the atmospheric motion. We naturally think vorticity as
a property related to rotation of the fluid. Actually we can regard vorticity as an
extension of the angular momentum concept introduced for rigid body rotation. This
extension should take into account the fact that not all points within the fluid have the
same angular velocity. We must then talk about differential rotation, which becomes
quite familiar when we deal with the rotation of tea or coffee in a cup (a small one
for espresso).

7.1 The Thermodynamic Equation

What is called the thermodynamic equation is simply a rewriting of the first principle
of thermodynamics taking into account the atmospheric motions.

The starting point is then

�Q D Cv�T C p�˛ (7.1)
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We have dealt with this equation and the symbols before. The same equation can be
rewritten as a function of the specific heat at constant pressure and becomes

�Q D Cp�T � ˛�p

Dividing through�T and going to the limit, we have

dQ

dt
D Cp

DT

Dt
� ˛! (7.2)

where ! is the vertical velocity in pressure coordinates. Notice that the Q derivative
is not total because, as we know, �Q is not an exact differential. In this coordinate
system, the total derivative of the temperature can be expressed in terms of the
horizontal advection:

@T

@t
D �V � rpT C !

�
˛

Cp
� @T

@p

�
C 1

Cp

dQ

dt
(7.3)

This equation shows that the local temperature change is contributed to by the
advection, the vertical motion, and the heat delivered to the system. If the motion is
upward (! < 0), the first term in parentheses is the expansion work and so also the
cooling of the air parcel; the second term is the vertical temperature advection. If !
@T/@p < 0 and the temperature decreases with altitude, then the contribution to the
local change is a warming. The opposite happens if the motion is downward. The last
term (also called diabatic) is the energy exchange due to processes like absorption
and emission of radiation and condensation or evaporation of water vapor.

A very interesting simplification of Eq. (7.3) can be obtained rewriting the
term in parentheses as a function of the potential temperature simply noting that
ln T D ln 	 C (R/Cp) ln (p/p0) and differentiating

1

T

@T

@p
D 1

	

@	

@p
C R

Cpp
) @T

@p
D T

	

@	

@p
C ˛

Cp

Substituting in Eq. (7.3) we have

@T

@t
D �V � rpT C !Sp C 1

Cp

dQ

dt
(7.4)

where Sp D �T@ ln 	=@p. For convenience we introduce a static stability parameter
� defined as

� D R

p
Sp D �˛

	

@	

@p
(7.5)
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This is somewhat related to the consideration we made in Chap. 1, so that when
the potential temperature does not change with altitude (and then with pressure) the
atmosphere has a neutral stability. We have for the temperature

@T

@p
D ˛

Cp
) @T

@z
D � g

Cp
D ��d (7.6)

It is interesting at this point to write the first principle in another form by deriving
Eq. (7.1) with respect to time:

:

Q D Cv
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Dt
(7.7)

where
:

Q D dQ=dt is the net heating rate. The specific volume can be eliminated
using the gas equation:

p
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that, substituted in Eq. (7.7), gives

:
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where we have divided through by the temperature. The left-hand side represents
now the entropy (s) change, so we write
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D Cp

T

DT

Dt
� R

p

Dp

Dt
D Cp

D ln T
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� R
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Dt
(7.8)

Notice again that we now write the total derivative for the entropy because it is
an exact differential. This expression can be compared with the rate of change of
the potential temperature an exact differential.

Cp
D ln 	

Dt
D Cp

D ln T

Dt
� R

D ln p

Dt
D Ds

Dt
(7.9)

From this equation we can define the specific entropy (per unit mass):

s D Cp ln 	 (7.10)

This is simply another way to express the thermodynamic equation.
These results have been obtained by simply working on the first principle,

playing around with the total derivative; nevertheless, they give us a rather different
perspective on the thermodynamics of a fluid in motion.

http://dx.doi.org/10.1007/978-3-319-29449-0_1
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7.2 The Isentropic Coordinate System

In the isentropic coordinate system, the potential temperature 	 substitutes for the
vertical coordinate z. The advantages of such a system are many and can be seen
when we represent the data of Fig. 4.6 in this new system (see Fig. 7.1).

Some algebraic work is necessary to rewrite the equations of motion in this new
system. However, all this work is worth the trouble because we will use this new
system a lot, especially when dealing with stratospheric dynamics. We can start by
calculating in this system the elementary mass

ıM D 
ıAız D ıA

�
�ıp

g

�
D ıA

g

�
� @p

@	

�
ı	 D �ıAı	 (7.11)

In this case � is the equivalent density, so that multiplied by the equivalent volume
ıAı	 gives the mass

� D �
�
1

g

�
@p

@	
(7.12)

In this reference system, the vertical velocity corresponds to the vertical movement
of the isentropic surfaces, that is,
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Fig. 7.1 The potential temperature as a function of the altitude and latitude (top). Notice how the
isentropes slope toward the equator in the troposphere. Below the zonal wind is represented as a
function of latitude and potential temperature. Positive value is shaded and the data are the same
used to draw Fig. 4.6

http://dx.doi.org/10.1007/978-3-319-29449-0_4
http://dx.doi.org/10.1007/978-3-319-29449-0_4
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:
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(7.13)

so that the total derivative is given by
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In order to write the equations of motion in this coordinate system, we need to
express the pressure gradient which for a generic component is given by�
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so that the acceleration is given by
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It is interesting to note that the pressure gradient can be greatly simplified if we
obtain the derivative of the pressure from the definition of potential temperature�
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This expression, substituted in Eq. (7.16), gives for the pressure gradient
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The quantity

‰ D �
CpT C gz

�
	

(7.19)

is denoted as the Montgomery streamfunction, while the quantity gz may be
substituted by the geopotential. The equations of motion in this system can be
written as

@V
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C V � r	V C
:

	
@V
@	

D �f k � V � r	‰ (7.20)

We can obtain a very interesting relation between the Montgomery streamfunc-
tion and the hydrostatic equilibrium. Deriving the just-defined‰ with respect to the
equilibrium temperature, we have
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Substituting the derivative of T, we obtain

@‰
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D Cp
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(7.22)

In the same system, we can find the continuity equation starting from the
definition Eq. (7.12). The conservation of mass requires that
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where ıxıy is the surface of the base. We have then
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and dividing through by ıxıyı	
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so that
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and the equation of continuity becomes
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One of the reasons we insist so much on these isentropic coordinates is that they
are very useful in the study of the dynamics of the stratosphere. For the same reason,
it is worthwhile to introduce the vorticity equation in the same coordinate system,
because it is another occasion to present a new definition for the potential vorticity,
which we will use a lot in the study of the stratosphere.

7.2.1 The Vorticity Equation in Isentropic Coordinates

The vorticity equation can be obtained formally by taking the curl of the Eq. (7.20)
so that after some laboring we get
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We need to note that in this equation, the relative vorticity is defined a little
differently because the derivative must be calculated on isentropic coordinates:
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D k � r 	 � V (7.25)

In the case of an adiabatic atmosphere without friction, the vorticity equation
assumes a very simple form because the derivative involving the potential tempera-
ture goes to zero:

@ . C f /

@t
C r	 � . C f /V D 0 (7.26)

Equation (7.26) is rather interesting because it has the form of a continuity
equation in which the local change of the absolute vorticity is balanced by the
divergence within the volume in isentropic coordinates.

This analogy can be exploited further. In the adiabatic case, the continuity
equation can be written as

@�

@t
C r	 � .�V/ D 0 (7.27)

and after some manipulation Eq. (7.58) becomes
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Keeping in mind the definition for � , we can find a new definition for the potential
vorticity:

P D � .	 C f /
@	

@p
(7.29)

where 	 is the relative vorticity defined on an isentropic surface. Equation (7.60)
can be the interpreted as a conservation law

DP

Dt
D 0 (7.30)

This equation has a rather simple interpretation with the help of Fig. 7.2. We can
figure out a vortex tube contained within two isentropic surfaces at 	 and 	 C�	

separated by a pressure difference�p. The conservation of vorticity requires that if
the pressure difference between the isentropic surface increases, then the absolute
vorticity must also increase and vice versa.
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Fig. 7.2 The conservation of
potential vorticity for an
elementary fluid element. The
basis of the cylinder is at
constant potential
temperature (Pedlosky 1987)

Fig. 7.3 The computation of absolute circulation on an isentropic surface

7.3 The Ertel Potential Vorticity

Until now we have developed different conservation laws for different forms
of potential vorticity, which are based on the Helmholtz criteria that we have
mentioned at the beginning of this chapter. Also, we have discussed the potential
vorticity mainly for a barotropic fluid.

The generalization of the conservation law can be made with the example
illustrated in Fig. 7.3. We consider an isentropic surface, and on it we take a closed
curve C. The vorticity equation allows us to write

D

Dt

Z
A
¨ � ndA D

Z
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 � rp=
2
� � ndA (7.31)

where A is the area within the curve. For an adiabatic atmosphere, the potential
temperature is conserved; thus, the surface defined by 	 D 	0 always contains the
same fluid elements and as a consequence is a material surface. This means that also
curve C is a material curve and remains on the surface. Now because the potential
temperature is only a function of pressure and density, the gradient for 	 can be
written as

r	 D @	

@p
rp C @	

@

r
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Fig. 7.4 The elementary
mass ım between two
isentropic surfaces

θ + Δθ

θ

δA

δl

ωa

This means the gradient of potential temperature is always normal to the vector
product r
 � rp. This vector remains always on the isentropic surface so that the
right-hand side of Eq. (7.31) is zero. We obtain then a result very similar to the
conservation of absolute circulation.
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If the curve C is small enough, Eq. (7.32) can be written as

D

Dt
.¨a � nıA/ D 0 (7.33)

where ıA is the area of the surface included by curve C and ¨a is the average
value of the vorticity in the elementary volume contained within the two isentropic
surfaces, as shown in Fig. 7.4. The mass of the element is given by ım D 
ıAıl, so
that ıA D ım/
ıl, and expressing ıl as a function of the gradient
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and substituting into Eq. (7.33) we have
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where ım and �	 are constant along the motion. We also notice that

r	 D n j�	 j

and Eq. (7.33) becomes
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The quantity between parentheses is known as Ertel potential vorticity. If we
think about it a little more, we understand that Eq. (7.35) is actually a generalization
of Eq. (7.30) because there we have only considered the vertical component for the
vorticity. Equation (7.35) does not require, as we will see in a while, a barotropic
atmosphere but has a meaning very similar to Eq. (7.30): every time the isentropic
surfaces get nearer the potential, vorticity must decrease, and vice versa.

Equation (7.35) can be obtained with a formal derivation (see, e.g., Pedlosky’s
textbook), and it is possible to show that Eq. (7.35) can be generalized to any scalar
quantity � that substitutes for the potential temperature. The only condition is that
� is only a function of pressure and density and has a conservation law similar to
the potential temperature for adiabatic motion. The formal derivation also assures
that the atmosphere does not need to be barotropic. It is convenient to write the Ertel
potential vorticity in a more familiar form:

… D r � V C f k



� rs (7.36)

where we have used the entropy as an exact differential, function of pressure, and
temperature. The Ertel vorticity will have important applications for stratospheric
dynamics, and we will try to anticipate the reasons for that by introducing ozone
gas as a tracer. We will start however with some more familiar examples.

7.3.1 The Application of the Potential Vorticity

If we open a well-known textbook, like J. Holton’s, we find, since the first edition,
that a possible application of the conservation of potential vorticity is the study of the
geophysical flux over mountain ranges. In practice we are interested in what happens
when a zonal current interacts with an obstacle like a mountain. This problem is
illustrated by recurring to another popular textbook (by Robert Brown), where the
most frequently used figure is one like Fig. 7.5, where the case of a westerly current
is shown. The hypothesis is that the airflow, even if incompressible, is deformed only
on the lower surface. To understand better the situation, we may think of a river:
then we see that the surface of the river is rather flat, and we do not know, looking
at the surface, what is the river bottom. However, on a closer look, we can discover
this by studying the circulation. It is then clear that, as the current approaches the
mountain barrier, the thickness of the fluid decreases and, consequently, also the
absolute vorticity must decrease. If the fluid initially has a positive relative vorticity,
as shown in the figure, the required decrease will take place if the current deviates
to the south. In this way there are two effects: the relative vorticity will decrease
together with the planetary vorticity f, because the fluid is moving to lower latitudes.
At this point the situation is quite similar to the one we have studied in Fig. 7.1 for
the generation of the Rossby waves, so that the current will behave like a giant
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H1

H1
H2

H2

H1

H1

Fig. 7.5 The flow of a zonal current over a mountain barrier. In the upper part the current is
westerly and in the lower part it is easterly. The evolution of a vortex cylinder is shown. The
initial depth, H1, is reduced to H2 over the mountain so that absolute vorticity must reduce before
returning to its initial value (Brown 1991)

snake downstream. Among other things, this implies the generation of low- and
high-pressure regions in the downwind region of the mountain barrier.

The situation for the current coming from the east (easterly) is completely
different. Also in this case the vorticity must decrease but the problem now is how.
Actually if the current moves north, the relative vorticity will decrease, while the
planetary vorticity will increase. The flux will continue to be deflected north to the
point that the current will be “reflected” by the mountain barrier.

If the current moves south, the relative vorticity and the planetary vorticity will
increase so that again the current will be reflected. At this point, according to many
textbooks, we have a miracle, and, that is, for some mysterious reason, the current
will “feel” the obstacle before arriving at it. In this way, deflecting very carefully
to the south, the planetary vorticity will decrease more rapidly than the relative
vorticity, with the net result of an overall decrease of the absolute vorticity C f.
In this way the vorticity will have just about the right value south of the mountain,
and from that it can go back to the initial condition, that is, pure zonal flow. It is
reasonable to ask how an air mass can feel at a distance the presence of an obstacle.
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One possible way to explain this unusual behavior is that, based on what we learned
in Sect. 7.2, the Rossby waves are generated on a westerly flow but not on an easterly
flow, for the simple reason that in this case the absolute vorticity is not conserved.
For an easterly flux then, the flux will simply “go over” the barrier, making a little or
negligible bump on its surface. But even for the westerly flux, this simple analysis
may have pitfalls. Actually it is not sure that a stationary situation could be reached,
as the figure and various considerations would imply. To understand a little better,
we need to reconsider the Rossby waves, but before that we want to give an example
of the conservation of Ertel potential vorticity.

7.3.2 Ozone and Vorticity

We will talk about ozone later on in this book; however, it is worth to show that one
simple application of Ertel vorticity was known long before the stratosphere and
ozone would become topics for newspapers. Actually ozone was studied before and
after the Second World War because meteorologists thought it could give indications
on the “upper air level” circulation, as they said at that time. The first measurements
showed that high ozone levels were correlated with low-pressure zones, while low
ozone levels would occur in high-pressure zones. These correlations have been
confirmed by more sophisticated measurements, and we can give here a simple
explanation based on what we have learned so far.

We start by defining the ozone columnar density N which is the total number of
molecules contained in a vertical column of unit section above a certain height z and
which is measured in molecules per unit surface:

N.z/ D
Z 1

z
n.z/dz (7.37)

where n(z) is the ozone density measured in molecules per unit volume. This
expression can be rewritten as a function of the mass mixing ratio ¦ between ozone
density and atmospheric density:
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where 
 is the air density and M the ozone molecular mass. Using the hydrostatic
equilibrium, we can write
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The total ozone is now referred to the level above the surface pressure p. The
pressure increment can now be expressed as a function of the potential temperature
	 so that we obtain
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From Eq. (7.67) the Ertel potential vorticity is given by
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that substituted into Eq. (7.40) gives
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This is the equation that relates the total ozone to the vorticity. In the adiabatic
motion, the Ertel potential vorticity is conserved, and in any case the residence
time for ozone below 20 km is very long. The residence time is the average time
spent by an ozone molecule in the atmosphere before being destroyed. If this time
is long with respect to the characteristic time of the circulation, the ozone may be
considered a tracer for the motion like one of those radioactive substances injected
in the bloodstream to study the circulation in the human body. Data show also that
the ratio �/˘ is roughly constant also below 20 km and that most of the ozone is
found below the same altitude with no large variation with latitude. If the correlation
between mixing ratio and vorticity is valid below a certain potential temperature 	p,
the (7.42) can be written as

N �
� �
…

�Z 	p

	t

	d	 C NT C NU (7.43)

where the over bar is indicating the average value, 	 t the value at the tropopause,
NT the ozone contained in the troposphere, and NU the ozone above the level of 	p

where the mixing ratio and the vorticity are no longer correlated.
For a low-pressure zone in the lower stratosphere (10–15 km), vorticity increases,

and the vortex tubes must stretch, and the contribution of the integral will increase
the total ozone. At the same time, the tropopause height will lower; conversely, a
ridge in the flow near the tropopause will show a lower value for the total ozone.
What remains to be shown is what relation exists between surface and upper level
low (or ridge): that is just too early.
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Fig. 7.6 A schematic
representation of the channel
in which there is zonal flow.
Indicated in the coordinate
system are the width and the
length of the channel
(Kasahara 1966)
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7.3.3 More on Rossby Waves

Our starting point is the equation for the conservation of potential vorticity, but this
time it is specialized to a very particular situation as shown in Fig. 7.6. This is
actually a channel of width W in which there is fluid with an average depth h. At the
center of this channel, we put a barrier of a specified shape. The obstacle will be at
the center in order to reduce the influence of the boundaries. In these conditions, the
equation for the conservation of the vorticity becomes

D

Dt

�
 C f
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�
D 0 (7.44)

The depth of the fluid h can be then considered proportional to the geopotential
height so that the components of the geostrophic wind are
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Without the central barrier, the flows has a zonal velocity ū so that integrating the
first of the (7.45), we obtain the depth of the fluid at the geostrophic equilibrium
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The surface of the fluid is then a plane sloping along y. When the fluid is above the
obstacle, we can think that h is perturbed by a small quantity so h D h C h0. From
now on we neglect the prime and rewrite the Eq. (7.44) as
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If we now calculate the relative vorticity, it will be contributed only by the
perturbed term because

 D gr2h=f

Developing (7.79) we neglect all terms of higher order. The coefficient of the total
derivative on the second term of Eq. (7.47) is a constant and has the value

. C f /

.h C h � H/
D f

h

because we assume that at the entrance of the channel, the relative vorticity is zero.
The ratio f=h can then be substituted by f0/h0. Equation (7.47) can be written as
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If we use Eq. (7.47) and neglect small terms, we have

@

@t

�
 � f0

h0
h

�
C u

@

@x

�
 � f0

h0
h

�
C v

�
ˇ C u

f0
g

�
D � f0

h0
u
@H

@x

where we have neglected terms like u@H=@x and v@H=@y. Now the vorticity can be
expressed as a function of the depth to obtain

@

@t

�r2 � �2
�

h C u
@

@x

�r2 � �2� h C @h

@x

�
ˇ C u�2

� D �u�2
@H

@x
(7.48)

where

� D f0p
gh0

(7.49)

This equation as it stands cannot be solved immediately, but it can be instructive to
put it in a form similar to Eq. (4.64), neglecting for the moment the obstacle with
the right-hand side equal to zero. In this case the solution is again a Rossby wave of
the form

h D Re
n
Aei.kxCly�!t/

o
(7.50)

That substituted in the “homogeneous form” of Eq. (7.81) gives the dispersion
relation

c D u � ˇ C �2u

k2 C l2 C �2
(7.51)

http://dx.doi.org/10.1007/978-3-319-29449-0_4
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This equation is very similar to Eq. (4.70) but with an important difference
because it behaves normally for a westerly flux (u > 0). In this case the phase
velocity of the wave can be positive, negative, or zero according to the conditions

ˇ C �2 < k2 C l2 C �2I ˇ C �2 > k2 C l2 C �2I ˇ C �2 D k2 C l2 C �2

In the case of easterly flux (u < 0), the phase velocity is always negative (i.e., we
have a retrograde wave). However, stationary waves are not possible because if we
put in Eq. (7.51), c D 0; we arrive at the condition

k2 C l2 D �ˇ
u

This means that at the least one of the wave number must be imaginary and then the
wave amplitude will decrease in a distance of the order ofr

ˇ

u

This conclusion remains true also when the obstacle is present. Westerly flux may
produce stationary waves but not easterly flux. It is worth to spend a few more
words for the parameter �. The inverse is called Rossby deformation radius that
we have already mentioned in the first chapter. If we look better, it is the product
of a fall velocity for the characteristic time related to the rotation. It represents
then the maximum distance for which the Coriolis force balances the effects of the
gravitational adjustment (or of pressure).

We have left the solution of Eq. (7.48) up in the air and it is time to proceed.

7.4 The Non-stationary Solutions

Discussing the stationary solutions, we have learned more about what happens when
a flow of air goes over an obstacle. For the discussion to be complete, we need to
examine the non-stationary case. For this we start from the equation of motion by
referring to Fig. 7.6. The continuity equation can be written immediately just by
invoking the conservation of mass
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http://dx.doi.org/10.1007/978-3-319-29449-0_4
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For the accelerations along x and y, we have
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For the numerical integration, these equations can be cast in a slightly different form
that can be obtained by using the zero divergence. Then Eq. (7.52) can be written
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If we take into account that the mass flux in the channel is constant, we have
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so that the left-hand side of Eq. (7.53) can be written as

Du

Dt
D 1

h � H

D

Dt
Œu .h � H/� D

1

h � H

�
@

@t
Œu .h � H/�C u

@

@x
Œu .h � H/�C v

@

@y
Œu .h � H/�

�
And again using the divergence of the velocity, the first part of Eq. (7.53) becomes
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u2 .h � H/C g
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i
C @
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g .h � H/C fv .h � H/ (7.55)

In synthetic form the equations of motions can then be written as
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D Q (7.56)

where
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�
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(7.57)
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and

m D u .h � H/ ; n D v .h � H/ ; � D h � H (7.58)

In this case we notice that m and n are the components of the momentum and ® is
the thickness of the fluid above the mountain.

The system of Eq. (7.57) is solved in an Appendix and below we will discuss
those solutions. These equations are also known as shallow water. For the above
treatment, we have been inspired by the work of Akira Kasahara.

7.4.1 Numerical Solutions of a Flow Above an Obstacle: The
Stationary Case

At this point the question may have come to mind that problems in atmospheric
physics very seldom can be solved analytically in detail, and this suspicion may be
true. On the other hand, it may have some advantage in the sense that, early on,
an atmospheric physicist has to learn how to live with computers and numerical
analysis. In this specific case, Eq. (7.81) can only be solved numerically not only
for the time-dependent case h(x, y, t) but even for the stationary case. This solution
corresponds to making the time derivative zero and in this case

r2h C ˇ

u
h D ��2H (7.59)

This is what is called an elliptic partial differential equation, and it can be solved
with a standard numerical program. However, the solution makes sense only in case
of easterly flux, because a westerly flux produces waves and nobody assures us that
those are stationary. We have taken a program from a text of numerical analysis
and have solved the equation. We have used the same orography as that illustrated
in Fig. 7.6, with a radius b D 1800 km and a channel of 60ı � 150ı (latitude per
longitude). The zonal current has a velocity of 20 m s�1. The boundary conditions
are such that the function h(x, y) is zero at the northern and southern boundaries and
small at the eastern and western boundaries.

The result of the integration is shown in Fig. 7.7, and at first sight it is quite
surprising because the isopleths of h(x, y) are circular, that is, the same as the
isopleths of the obstacle H. The reason for this is to be found in the conservation of
potential vorticity that we write for an element following the fluid

V � r
�

f C 

h � H

�
D 0 (7.60)

where V is the vector representing the perturbation to the velocity field. Equation
(7.60) tells us that far from the obstacle, the relative vorticity is zero. In this case the



7.4 The Non-stationary Solutions 199

Fig. 7.7 The height contours expressed in km for an easterly flux over the obstacle depicted in
Fig. 7.6. The wind is clockwise

vector V is always normal to the gradient of h – H and so to the obstacle. Physically
we could easily understand that the isopleths of the obstacle are impenetrable and
then the fluid can only go around it.

Actually such a show of mathematical culture was not necessary because we
could reach the same conclusion using paper and pencil. This however is a proof
that our numerical method is giving us the correct results.

The same case can be worked out when we keep the Coriolis parameter constant
with latitude. In this case ˇD 0 and we have a Poisson equation. It can be seen
that also in this case, the isopleths follow the obstacle but they change considerably
near the boundaries. In the case of a constant Coriolis parameter, the conservation
of potential vorticity can be obtained only at the expenses of the relative vorticity,
so that the absolute change of this quantity must be larger. The atmospheric column
coming from the east is compressed, and to maintain the potential vorticity, we must
assume an anticyclonic relative vorticity moving toward south. Once over the top of
the mountain, we have the inverse process, with a column that is stretched and a
vorticity that becomes cyclonic.

The last problem left at this point is the non-stationary case.

7.4.2 Numerical Solutions of a Flow Above an Obstacle: The
Non-stationary Case

The numerical solutions of the equations in the non-stationary case are not very
simple, and there are no programs available in books or elsewhere. For this reason
we report in the examples the listing of a program with a minimum of explanation.
After about 30 years, we have solved the same problem as Kasahara and among
other things, we have found that at that time, draftsmen did their part in the process
of solving equations. Today the same solutions are plotted without any pity by one
of the several available software programs you can find in any laptop computer
(Fig. 7.8).
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Fig. 7.8 The non-stationary solution of a flow above an obstacle. The changes of the fluid level
(in m) with respect to the initial conditions are shown. The four maps show the situation after 2, 8,
24, and 20 days from the start of the simulation. The flux is westerly at 20 m s�1 and in this case
the Coriolis parameter is constant with latitude

The problem has been solved for a channel centered at a latitude of 45ı with a
width of 7100 km. The dimensions of the obstacle are the same as in the stationary
case. In Fig. 7.6 the changes in the fluid levels are shown at different times after the
beginning of the simulation. In the case depicted, the Coriolis parameter is constant
with latitude.

We notice that the level of the fluid corresponding to the obstacle starts to have
a bulge and, even with some variability, maintains in that region a high-pressure
zone. Downstream from the maximum altitude of the obstacle, a low-pressure zone
is established (a negative bulge). This low pressure slowly tends to migrate eastward
to the point that, after the fourteenth day, it reappears on the western side. The drift
velocity of this low-pressure zone is then the same as the basic flow.

Figure 7.9 shows what happens when the Coriolis parameter is variable with
latitude. In this case it is rather difficult to give a simplistic explanation, as given in
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Fig. 7.9 The same as Fig. 7.8 but in this case the Coriolis parameter is a function of latitude

the Holton textbook. The solution shows actually an initial drift of the low-pressure
zone toward southern latitudes and the formation of waves. These however do not
show any stationary behavior, and their wavelength is roughly one third of the length
of the latitude circle (wave number 3). With these waves we may associate pressure
features that move with the fluid. In this case also the high-pressure zone near the
obstacle seems rather stationary.

At this point we have done enough work with our meager knowledge on a
problem that has great importance for meteorology in general. Now we are almost
ready to tackle a central problem of atmospheric dynamics, that is, the explanation
of the general circulation of the atmosphere. We still need to learn some more about
boundary layers and gravity waves.
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7.5 Quasi-Geostrophic Vorticity

We have introduced in Chap. 3 many concepts regarding the vorticity and its
conservation. In particular we can rewrite Eq. 3.50 considering that the total
divergence is zero. We have then

D

Dt
. C f / D . C f /

@w

@z
(7.61)

To solve this equation, we have to eliminate the vertical velocity. Again we write
a perturbation form of the (7.61) by putting, u D u C u0; v D v0; w D w0, so that�

@

@t
C u

@

@x

�
 0 C v0 @f

@y
� f

@w0

@z
D 0 (7.62)

We then consider the thermodynamic Eq. (7.9)

D

Dt
ln 	 D

�
@

@t
C u

@

@x

�
	 C w

@	

@z
D 0 (7.63)

The perturbation form of this equation with u D u C u0; w D w0 and 	 D 	 C 	 0

�
@

@t
C u

@

@x

�
	 0

	
C w0

	

@	

@z
D 0 (7.64)

The ratio between the perturbation and the average value of the potential
temperature can be expressed as

	 0

	
D 
0




This is tantamount to assuming that the only changes in temperature arise from
buoyancy effects, and this is known as Boussinesq approximation. By substituting

in the Eq. (10.33), we get considering that N2=g D 	
�1 �

@	=@z
�

�
@

@t
C u

@

@x

�

0



� N2

g
w0 D 0 (7.65)

This equation can be used to eliminate the vertical velocity although as a further
assumption we need to consider that the density fluctuations are also in hydrostatic
equilibrium.

http://dx.doi.org/10.1007/978-3-319-29449-0_10
http://dx.doi.org/10.1007/978-3-319-29449-0_3
http://dx.doi.org/10.1007/978-3-319-29449-0_3
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1




@p0

@z
C 
0



g D 0 (7.66)

We can now differentiate (7.65) with respect to z and substitute the result in the
Eq. (7.62), while to eliminate density we use (7.66)�

@

@t
C u

@

@x

��
 0 C f


N2

@2p0

@z2

�
C v0ˇ D 0 (7.67)

where ˇ is the latitudinal gradient of the Coriolis parameter. Introducing the
streamfunction  D p0=f
 and substituting in the Eq. (7.67), we get�

@

@t
C u

@

@x

��
r2 C f 2
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@2 

@z2

�
C ˇ

@ 

@x
D 0 (7.68)

This expression is known as the quasi-geostrophic vorticity equation because,
except for the divergence term, we use the value of the geostrophic wind in the
definition of  . Actually the meaning of this equation is far more reaching. We can
define a potential vorticity as

q D q C q0 D r2 C f C f 2

N2

@2 

@z2
(7.69)

so that, because of (7.68), we have @q=@y D ˇ and obtain the conservation equation
with Vg, the geostrophic wind�

@

@t
C Vg � r

�
q D 0 (7.70)

We had already defined the potential vorticity. We can see that this definition is
equivalent because it can be shown to be a particular form of the Ertel potential
vorticity

. C f / @	

@z

Actually when the difference in potential temperature is fixed, the potential vorticity
will change as the distance between the corresponding isentropic surfaces changes.
Consider now a perturbation of the potential temperature such that 	 D 	 C 	 0; we
have then for the Ertel potential vorticity

. C f / 	z D 	 z . C f /
�
1C 	 0

z=	 z

�
(7.71)
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where subscripts indicate derivatives. At this point we notice that 	 z D N2	=g and
also 	 0

z=	 z D �
0
z=
. Substituting in (7.71) we have

	 z . C f /
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1C 	 0
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�
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�
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0
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�
And using hydrostatic equilibrium we have the equivalent of Eq. (7.68)
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�
If we consider that at middle latitudes 	 f we have a form similar to (7.69)

	 z . C f /

�
1C 1
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�
� 	 z

�
 C f C f 2
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�
Equation (7.69) will be used when dealing with the stratosphere.

7.5.1 The Equation of Quasi-Geostrophic Potential Vorticity

In the log–pressure coordinate system in addition to the vertical coordinate

z� D �H ln

�
p

ps

�
we also assume that the density changes according to the relation


o
�
z�� D 
s exp

�
� z�

H

�
where 
s and H are the average surface density and average scale height, respec-
tively. The pressure changes also in the same way. A few variables need to be
redefined like the vertical velocity

w� D Dz�

Dt

which we write as follows:

w� D �H
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�
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p
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p
(7.72)
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In the same coordinate system, the continuity equation becomes
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Because we have
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At this point we note that the total derivative becomes

D
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(7.74)

and the derivative, with respect to the geometric height z, need to be transformed as
follows

@
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D @z�

@z

@

@z� D H
0g

p

@

@z� (7.75)

From Eq. (7.75) we see how the derivative with respect to z or z* is the same only for
an isothermal atmosphere at a temperature that coincides with the global averaged
value. In particular we can redefine the Brunt–Väisälä frequency, which we indicate
as N2

* in this coordinate system:

N2� D g
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H
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(7.76)

The interested reader may go to the Appendix for the formal derivation where
we show that once the quasi-geostrophic potential vorticity is defined as

q D q C q0 (7.77)

where
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we have �
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That is equivalent to the conservation equation:

Dq

Dt
D 0 (7.80)

This equation, even if more general, assumes that the Coriolis parameter f is
constant with latitude. The effects of a variable f are felt for distances of the order
of 1000 km. On the same horizontal scales, we will assume ū to be a weak function
of x and z so that we can write

 D �u .x; z/C  0

and from the definition of quasi-geostrophic potential vorticity, we have
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(7.81)

These quantities satisfy the conservation equation�
@

@t
C u@

@x

�
q0 C v0@q=@y D 0 where v0 D @ 0

@x
(7.82)

7.6 Potential Vorticity Inversion

A problem arises in considering the conservation of potential vorticity. If h is the
depth of the fluid, this can be defined as a/h. The conservation is expressed as

D

Dt
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f C @v

@x
� @u

@y

��
D 0 (7.83)

If we indicate the potential vorticity with q D a=h, the conservation can be
expressed as

Dq

Dt
D @q

@t
C u � rq D 0 (7.84)
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If the geostrophic approximation is valid (i.e., the Rossby number is small), we have

u D �@ 
@y

I v D @ 

@x

And Eq. (7.83) becomes
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h

�
f C r2 

�� D 0I (7.85)

where  D r2 is the relative vorticity. Given the vorticity the streamfunction can
be obtained by solving the Poisson equation, and then the velocity components are
determined. This is called vorticity inversion. The integration of Eq. (7.83) is then a
process of time stepping plus inversion: Equation (7.84) may be integrated for one
time step, and the velocity component can be obtained. A very simple example due
to D.J. Raymond can help to clarify the matter. Consider a fluid of thickness h over
a base of variable thickness d. The two components of the velocities are

u D �g
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so that Eq. (7.83) becomes
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We assume now that thickness changes are small so that we can write h D
h0 .1C �/, and putting q0 D f=h0 we get

q D q0
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(7.87)

where

L
 D
p

gh0
f

is the Rossby deformation radius. If we define a perturbation potential vorticity
q0 D q � q0, we have

q0

q0
D L2
r2

�
�C d

h0

�
� � (7.88)

Within the limits of this linearized version, we can proceed using the following
steps. (1) For a given initial distribution of vorticity q, obtain the distribution of
thickness � solving the Eq. (7.88). (2) Use Eq. (7.86) to obtain the velocities. (3)
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Use these velocities to advect the vorticity using (7.84). This procedure should be
repeated until a satisfactory convergence is achieved. One example of inversion will
be given in the following paragraph.

7.6.1 A Periodic Potential Vorticity Anomaly

We assume that the potential vorticity perturbation is given by

q0 D "q0 sin.kx/ (7.89)

with " and k constants. We also assume that the bottom of the fluid is flat, d D 0, so
that Eq. (7.88) becomes

L2
r2�� � D " sin.kx/ (7.90)

We assume a solution of the form � D �0 sin.kx/, and upon substitution we have

�0 D � "�
1C k2L2


�
And the thickness becomes

h D h0

 
1 � " sin.kx/

1C k2L2


!
(7.91)

And the geostrophic velocities are

u D 0I v D � fkL2
� cos .kx/

1C k2L2

(7.92)

And the absolute vorticity becomes

a D f

 
1C k2L2
" sin.kx/

1C k2L2


!
(7.93)

The potential vorticity can be then calculated as a/h, and we get

q D a
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D q0
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k2L2


1C k2L2
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" sin.kx/

!
(7.94)
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Fig. 7.10 The generation of a Rossby wave from the displacement of a parcel of air in north south
direction. The wavy lines indicates the propagation of the Rossby waves

The perturbation potential vorticity is then

q0 D q � q0 D q0

 
k2L2


1C k2L2

C 1

1C k2L2


!
" sin.kx/ D q0" sin.kx/ (7.95)

This demonstrates that the initial perturbation is completely recovered. The two
terms on the right-hand side of (7.95) represent a perturbation in the potential
vorticity and a perturbation in the thickness of the fluid. As a consequence if
k2L2
 � 1 (the horizontal scale of the vorticity perturbation much longer than the
Rossby radius), the second term will dominate. On the other hand if k2L2
 	 1 (the
horizontal scale of the vorticity perturbation much shorter than the Rossby radius),
the first term will dominate.

7.6.2 Rossby Waves and Vorticity Inversion

We have studied Rossby waves for several pages now. The inversion of potential
vorticity gives us the occasion to discuss Rossby waves from a very original point
of view. Consider as in Fig. 7.10 a channel of width w with the bottom tilted in
such a way that the fluid at rest is thinner at the north rim and thicker at the south.
When a parcel moves from north to south in order to keep the potential vorticity
constant, it must acquire positive relative vorticity (anticlockwise rotation), while
the opposite happens when it moves northward. A northward flow between the gaps
tends to reduce the potential vorticity while the opposite happens for southward
flow. Examination of Fig. 7.10 shows that both negative and positive anomalies will
move to the left. This is actually the generation of a Rossby wave.



210 7 The Atmospheric Motions

We assume then that starting from the south .y D 0/, the bottom will rise linearly
with y according to

d D h0�y (7.96)

Because the surface is at rest, we impose that h C d D h0 .1C �/C h0�y D h0 so
that � D ��y at rest. In general the level at rest will be perturbed so that

� D ��y C �� (7.97)

In order to maintain the linearization condition j�j 	 1 so that �w 	 1. We have

h C d D h0
�
1C ���

So that the velocities are
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And the potential vorticity takes the form

q D f

h0 .1 � �y/
� f

h0
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To which we must add a perturbation q�

q D q0 .1C �y/C q� (7.98)

The Eq. (7.84) becomes
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@��
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D 0 (7.99)

While Eq. (7.88) becomes

L2
r2�� � �� D q�

q0
(7.100)

Solution to Eqs. (7.99 and 7.100) can be assumed to be wavy in character and limited
at the boundaries y D 0, w. A possible solution is of the form

�� D ��
0 sin .�y=w/ exp Œi .kx � !t/�

q� D q�
0 sin .�y=w/ exp Œi .kx � !t/� (7.101)
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Substituting in (7.99 and 7.100) we have a homogeneous linear system

� !q� C kg��� D 0

q�

q0
C
h
1C L2


�
k2 C �2=w2

�i
�� D 0

The only nontrivial solutions exist when the determinant is zero. We have

! D � kL2
f�

1C L2
 .k
2 C �2=w2/

(7.102)

This dispersion relation can be understood better if the quantities are normalized to
the Rossby radius and the Coriolis parameter according to

k D L
k ! D !

f
w D w

L

� D �L


And the dispersion relation becomes

! D � k�

1C k
2 C �2=w2

(7.103)

As expected the phase velocity !/k is negative (directed in the negative x direction)
while the group velocity @!=@k stays negative up to a critical value k D kc � 1.5
and then becomes positive. This means that in the short wavelength limit, the group
velocity is opposite to the phase velocity.

7.7 Scaling of the Shallow Water Equations

In Chap. 4, we have given some argument to simplify the equations of motion based
on the so-called scale analysis, that is, compare the order of magnitude of different
terms. This is a rather powerful method and gives a very interesting physical insight
about the equation of motion.

7.7.1 Scaling of the Equations of Motion

The simplest case is the shallow water system that can be written as

DV
dt

C r� C f k � V D 0 (7.104)

http://dx.doi.org/10.1007/978-3-319-29449-0_4
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where � D gh and we also assume that the Coriolis parameter is constant. We also
write the continuity equation

Dh

Dt
C h

�
@u

@x
C @u

@x

�
D 0

which translate into

@�

@t
C V � r� C �rV D 0 (7.105)

Now we let a time scale T D L/V and the order of magnitude of the different terms
in Eq. (7.104) are

@V

@t
C V � rV C r� C f k � V D 0

V2

L

V2

L
fV

RofV RofV fV (7.106)

where we have used the definition of Rossby number Ro D V/fL. If the Rossby
number is small, the first two terms can be neglected, and the equilibrium is between
the Coriolis term and the pressure gradient force:

r� 
 fV (7.107)

Equation (7.105) can be analyzed if we assume the � field to be decomposed as

� D � C �0 (7.108)

With � a constant. Substituting in Eq. (7.107) gives

�0 
 fLV (7.109)

If we carry out the scaling for Eq. (7.105), we get
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where we have introduced the rotational Froude number F D f 2L2=� that can also
be written as

F D f 2L2

�
D
�

L

L


�2
(7.110)

where L
 D p
gh=f is the Rossby radius of deformation.

Assuming F � 1 and neglecting terms of the order of Ro in (7.106), we have the
geostrophic equilibrium

r� C k � V D 0 ) V D f �1k � r� (7.111)

And zero divergent velocity

�r � V D 0 (7.112)

The last two equations are simply diagnostic and they do not contain time-dependent
fields.

7.7.2 Scaling of the Vorticity and Divergence Equations

The divergence equation can be obtained by simply taking the divergence of the
equation of motion (7.104) and putting ı D r � V. We get

@ı

@t
C r � .V � rV/C r2� � f  D 0 (7.113)

While the vorticity equation

@

@t
C V � r C .f C /r � V D 0 (7.114)

We have shown in several places that the geostrophic wind is a good approximation
so that it is useful to develop a set of equations which use this result. We divide the
wind velocity in the rotational and divergent part as follows:

V D V C V� V D k � r V� D r� (7.115)

where  is the streamfunction for the nonrotational part of the wind, and � is the
velocity potential for the divergent part of the wind. Then we get

 D k � r � V D r2 ı D r � V D r2� (7.116)
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We will scale the velocity as follows:

V 
 V V� 
 R1V (7.117)

We start from the continuity equation:

@�0

@t
C V � r�0 C V� � r�0 C �0r � V� C �r � V� D 0

RoF�
V

L
RoF�

V

L
R1RoF�

V

L
R1RoF�

V

L
R1�

V

L
(7.118)

For the last term to be balanced, it must be

R1 � Ro (7.119)

The vorticity equation scaled can be written as

@

@t
C V � r C V� � r C f ı C ı D 0

V2

L2
V2

L2
R1

V2

L2
R1
Ro

V2

L2
R1

V2

L2
(7.120)

where we have used  
 V=L and ı 
 R1V=L. The divergence equation it is scaled
as

@ı

@t
C r � �V � rV 

�C r � �V � rV�

�C r � �V� � rV 

�
R1

V2

L2
V2

L2
R1

V2

L2
R1

V2

L2

C r � �V� � rV 

�C r2�0 � f  D 0

R21
V2

L2
1

Ro

V2

L2
1

Ro

V2

L2
(7.121)

From Eq. (7.120) we see that

R1 � Ro (7.122)

The ratio between divergence and vorticity can now be written as

jDj
jj D R1 (7.123)

In the examples these results will be shown to be compatible with the Rossby wave
solution. Finally we can arrive at the simplified solution. We assume F 
 1 and
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Ro 	 1 so that based on (7.122) and (7.11) we have R1 D Ro. Now in the scaled
equations, we drop all terms of the order Ro or smaller and we get the simplified
equations:

@�0

@t
C V � r�0 C �ı D 0 (7.124)

@

@t
C V � r C f ı D 0 (7.125)

r2�0 � f  D 0 (7.126)

The last of these equations gives the solution for the streamfunction  D �0=f ,
 D r2 , and consequently the rotational part of the wind:

V D k � r D .1=f /k � r�0 (7.127)

which is the geostrophic wind. Equations (7.124, 7.125, 7.126, and 7.127) are called
the quasi-geostrophic equations because they use the quasi-geostrophy in all terms
except in the divergence which is zero. If the divergence is eliminated between
(7.124) and (7.125), we get�

@

@t
C V � r

�

 �

�
f

�

�
�0
�

D 0 (7.128)

This is the quasi-geostrophic potential vorticity equation and it will show that this
coincides with Eq. (7.44).

A diagnostic equation for the divergence can be obtained from Eqs. (7.124 and
7.125); this equation becomes

r2ı �
�

f 2

�

�
ı D

�
1

f�

�
k � r�0 � r �r2�0� (7.129)

A reasonable value for F for cyclone scale motions is L D 106m, f D 10�4s�1

and �
1=2 
 300 ms�1 is F D 0:1. However if F 
 Ro 	 1, then (7.119) gives

R1 D Ro2, and the vorticity Eq. (7.120) becomes

@

@t
C V � r D 0 (7.130)

which is the nondivergent barotropic vorticity equation. The result is again the
geostrophy of the wind.
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E.7 Examples

E.7.1 Ertel Potential Vorticity in a Barotropic Fluid

Suppose we have a two-dimensional motion in x and y, while the vertical motions
are absent

w D Dz

Dt
D 0 (E.7.1)

When the fluid is barotropic we are free to choose � (Eq. (7.35)) to be the
coordinate z in which case the potential vorticity is simply

!a � r�



D !a � rz



D !a � k



D a



D  C f



(E.7.2)

And the quantity will be conserved as absolute vorticity.

E.7.2 Conservation of Potential Vorticity

We now consider a shallow layer of a homogeneous fluid. Because the density is
constant, the total divergence is zero:

r � V D 0 (E.7.3)

At the upper surface (z D h), we have

w D Dh

Dt
(E.7.4)

While at the bottom (h D hb), the velocity must be zero:

w D Dhb

Dt
D u

@hb

@x
C v

@hb

@y
(E.7.5)

The ratio between the vertical and horizontal velocity will be of the same order of
magnitude of H/L, with H and L vertical and horizontal scale, respectively. In this
approximation we can assume the horizontal velocity to be independent of z so that
Eq. (E.7.3) can be integrated to give

w D �z

�
@u

@x
C @v

@y

�
C A .x; y; t/ (E.7.6)
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where A(x, y, t) is a function to be determined. This can be done by applying the
boundary condition at the bottom (E.7.5)

w D � .z � hb/

�
@u

@x
C @v

@y

�
C u

@hb

@x
C v

@hb

@y
(E.7.7)

And at the top (E.7.4)

w D Dh

Dt
� .h � hb/

�
@u

@x
C @v

@y

�
C u

@hb

@x
C v

@hb

@y
(E.7.8)

And with H D h � hb we have

Dh

Dt
D �H

�
@u

@x
C @v

@y

�
C u

@hb

@x
C v

@hb

@y

Dh

Dt
� Dhb

Dt
D �H

�
@u

@x
C @v

@y

�
) DH

Dt
C H

�
@u

@x
C @v

@y

�
D 0 (E.7.9)

The last equation is equivalent to

@H

@t
C @

@x
.uH/C @

@y
.vH/ D 0 (E.7.10)

Equation (E.7.9) combined with (E.7.7) gives

w D .z � hb/

H

DH

Dt
C v � rhb (E.7.11)

We now introduce the scalar quantity:

� D z � hb

H
(E.7.12)

The rate of change of this quantity is zero:

D�

Dt
D w

H
� 1

H

Dhb

Dt
� 1

H2
.z � hb/

DH

Dt
D 0

So that is actually a “tracer.” The relative vorticity can be written explicitly:

! D i
�
@w

@y
� @v

@z

�
C j

�
@u

@z
� @w

@x

�
C k

�
@v

@x
� @u

@y

�



218 7 The Atmospheric Motions

The hypothesis is that the horizontal velocities are independent of z so that the first
two terms can be neglected because they involve only horizontal derivative of w.
The conservation of Ertel potential voracity becomes

Q D ak � r z � hb

H
D a

H
D  C f

H

This is actually the potential vorticity we have introduced before.

E.7.3 Scaling and Vorticity Inversion

Consider the conservation of potential vorticity in the shallow water equation written
in the form

Q D  C f

H C h
(E.7.13)

where H and h are the mean and perturbation fluid depth, respectively. Considering
that h=H 	 1 we may write

Q D  C f

H .1C h=H/
� . C f /

H

�
1 � h

H

�
And if we expand the Coriolis parameter

f D fo C ˇy

we get

QH D  C f0 C ˇy � f0h=H (E.7.14)

The inversion can be obtained introducing a streamfunction  so that

u D �@ 
@y

D �g

f

@h

@y
v D @ 

@x
D g

f

@h

@x

so that  D gh=f and  D r2 and Eq. (E.7.14) becomes

QH D r2 C f0 C ˇy � f0 =H

The quantity

q D QH � f0 D r2 C ˇy � f0 =H (E.7.15)



E.7 Examples 219

is materially conserved, that is,

D

Dt

�r2 C ˇy � f0 =H
 D 0

Different assumptions go in to this equation. First of all we have neglected the
relative vorticity with respect to f (small Rossby number). We have also assumed
that h 	 H, that is, the deformation scale is the same as the scale of the motion.

E.7.4 Rossby Waves in Shallow Water

Consider the equation of motions and the continuity equation (Gill 1982)

@u

@t
C u

@u

@x
C v

@u

@y
� fv C g

@h

@x
D 0

@v

@t
C u

@v

@x
C v

@v

@y
C fu C g

@h

@y
D 0

@h

@t
C u

@h

@x
C v

@h

@y
� h

�
@u

@x
C v

@u

@y

�
(E.7.16)

We assume that the basic state provides a velocity ū from a deformation of the
height H:

u D �g

f

@H

@y
(E.7.17)

We also assume that the velocity is perturbed as well as the height, h:

u D u C u0; v D v0 h D H C h0

And this perturbation depends only on y. We get easily

@u

@t
C u

@u

@x
� fv C g

@h

@x
D 0

@v

@t
C u

@v

@x
C fu D 0

@h

@t
C u

@h

@x
C H

@u

@x
C v

@H

@y
D 0 (E.7.18)



220 7 The Atmospheric Motions

where we have dropped terms of second order together with the (0). We may assume
a solution of the form

u D u0 exp ik .x � ct/ ; v D v0 exp ik .x � ct/ ; h D h0 exp ik .x � ct/

Substituting in (E.7.17) we get a linear homogeneous system:

.u � c/ iku0 � fv0 C gikh0 D 0

fu0 C ik .u � c/ v0 D 0

ikHu0 C
�
@H

@y

�
v0 C ik .u � c/ h0 D 0 (E.7.19)

whose determinant put to zero gives the equation

.u � c/3 �
�

gH C f 2

k2

�
.u � c/� fg

k2
@H

@y
D 0

In case the current velocity is zero then according to (E.7.18) also @H=@y D 0 and
the solutions are

c D 0; c D ˙
p

gh C f 2=k2 (E.7.20)

When the Earth is not rotating, the phase velocity of the wave is the same of the
shallow water gravity wave. An interesting case is when in the first Eq. (E.7.17) we
assume geostrophic equilibrium. In this case applying the same method, we obtain
a solution for the phase velocity:

c D u C .f=H/ @H=@y

k2 C .f 2=gH/
(E.7.21)

This velocity can be related to the potential vorticity gradient because q D f=H so

@q

@y
D � 1

H2

@H

@y
D f 2U

gH2

And the phase velocity is given by

c D u � H@q=@y

k2 C .f 2=gH/
(E.7.22)

An interesting conclusion is to find in this case the ratio between the divergence and
the vorticity. In this case the ratio of these two quantities is very easy to compute:
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jDj
jj D

ˇ̌̌̌
@u=@y

@v=@x

ˇ̌̌̌
For the inertial gravity waves with u D 0, we have from the second of (E.7.18) that

v D � ifu

kc

And using the appropriate expression for c, we getˇ̌̌̌
D



ˇ̌̌̌
D
p
1C k2gHf �2 (E.7.23)

This quantity is always greater so that in inertial gravity waves divergence dominates
the vorticity.

For the Rossby solution we assume geostrophic equilibrium so that

v D g

f

@h

@x

@v

@x
D g

f

@2h

@x2
D �gk2

f
h (E.7.24)

To get the expression for the derivative of the u component, we get over the last two
Eqs. (E.7.18)

u

H

@h

@x
C @u

@x
C v

H

@H

@y
D 0

Deriving with respect to x and substituting @v=@x from the second of (E.7.17) and
@H=@y from (E.7.17), we get

@2u

@x2
�
�

f 2

gH

�
u D u

H

@2h

@x2
(E.7.25)

And again writing a wave solution, we have

@u

@x
D ikugh

gH C .f 2=k2/

The ratio of divergence to vorticity is thenˇ̌̌̌
D



ˇ̌̌̌
D .uk=f /

.k2gH=f 2/C 1
(E.7.26)

The numerator of this expression is the Rossby number so that in a Rossby wave the
ratio between divergence to vorticity is less than the Rossby number as shown by
(7.123).
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E.7.5 Flow Over an Obstacle: The Numerical Solution

The program that follows solves the potential vorticity equation in the non-
stationary case. The program refers to a domain 3200 � 1600 km centered at 45ı
latitude north with an obstacle at the center that has a form of a spherical dome with
a radius of 400 km and a height of 2 km. The equation to be solved is of the form

@U
@t

C @F .U/
@x

D 0 (E.7.27)

where the quantities U and F(U) are matrices as we have seen in the shallow water
equation. The first step in solving (E.7.27) is to transform it in a difference equation
that means to introduce a spatial grid and a difference in time. To simplify the
notation, we will forget about the vector form and indicate with Un

i the variable
calculated at the n-th time in the i-th point. A similar notation will be used also for
F. Equation (E.7.27) becomes

UnC1
i � Un

i

�t
D �Fn

iC1 � Fn
i�1

2�x

And from this equation the value of the variables at the time step n C 1 can be
calculated explicitly

UnC1
i D Un

i � �t

2�x

�
Fn

iC1 � Fn
i�1
�

(E.7.28)

It can be shown that such an equation needs a very short time step to be solved
and in any case may be unstable. For example, if U is a concentration, it may
become negative. A quite efficient method, known as Lax–Wendroff, is based on
approximating the solution to Eq. (E.7.28) with a Taylor series stopped to the second
order:

UnC1
j D Un

j C�t

�
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@t

�n

j

C �t2

2

�
@2U

@t2

�n

;

C � � � (E.7.29)

The time derivative can be replaced with space derivative using Eq. (E.7.27):

@2U

@t2
D � @

@t

@F

@x
D � @

@x

@F

@t

In particular we may assume the flux to be of the form F D AU so that we obtain

@2U

@t2
D � @

@x

@F
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D � @

@x
A
@U

@t
D @

@x
A
@F

@x
(E.7.30)
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So that in the case of A constant

UnC1
j D Un

j � 1
2
A �t
�x

�
Un

jC1 � Un
j�1
�

C 1
2

�
A �t
�x

�2 �
Un

jC1 � 2Un
j C Un

j�1
� (E.7.31)

This equation actually is equivalent to a two-step program that can be generalized
also in the case that A is not constant. The starting point is the calculation of the
intermediate value in the x, t space, that is,

UnC1=2
jC1=2 D 1

2

�
Un

jC1 C Un
j

�
� �t

2�x

�
Fn

jC1 � Fn
j

� (E.7.31a)

The values obtained for U are used to calculate the intermediate flux values

FnC1=2
jC1=2 ; FnC1=2

jC1=2

that are used to obtained the final values for the variable U

UnC1
j D Un

j � �t

�x

�
FnC1=2

jC1=2 � FnC1=2
j�1=2

�
(E.7.31b)

We can easily see that in case F D AU, substitution of Eq. (E.7.31a) in Eq. (E.7.31b)
gives back Equation (E.7.31).

This method suggested in the original paper by Kasahara is used in the program
that is in the attached CD. For the notation the interested reader may go back to the
original paper which does not have the program.
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Chapter 8
The Planetary Boundary Layer

It is natural to think that the atmosphere rotates with the same velocity as the
solid Earth although it is not at all obvious why this should happen. In general,
we could say that the Earth drags the atmosphere because of the friction between
the surface and the atmospheric layers near it. A very important role is accomplished
by the orography with the mountain chains which constitute one of the major points
of resistance. Again, it is not possible to make any generalizations because, as
we have seen already, the mountain range may be where high- and low-pressure
zones are located on the opposite sides, so that the drag must take into account the
meteorological situation. The layer that directly interacts with the surface is called
the planetary boundary layer and, except for the “planetary” part, is a very familiar
concept for people interested in fluid dynamics.

8.1 Turbulence and Diffusion

For those students interested in starting from scratch, we recommend reading the
second volume of The Feynman Lectures on Physics, where the last chapter is The
Flow of Wet Water. Actually, when the molecules of a fluid interact with a solid
surface, those directly in contact are “at rest,” and mathematically this translates
into the “no-slip condition.” At some distance from the surface, the fluid will move
freely, and the region where the transition takes place from zero velocity to free
movement is called the boundary layer. To go to zero on the surface, the velocity
must decrease from the upper limit of the boundary layer downward; the surface
acts as a sink for the momentum. As we have seen in Sect. 5.2.4, the viscous stress
has the dimension of pressure and is proportional to the velocity gradient according
to the relation

� D �
@v

@z
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The viscosity that appears in this relation is the molecular viscosity and thus we
talk about the laminar boundary layer. In the scale analysis we have performed in
Sect. 6.3, we have neglected the viscous forces, but now we can examine things with
a little more detail. The force per unit mass is given by

�
@2v

@z2

so that the ratio between the acceleration and the viscous resistance is given by the
so-called Reynolds number. In terms of scale analysis, we have

Re D U2

L

L2

�U
D UL

�
(8.1)

According to the Feynman book (even if in a different context), this number
establishes a transition between laminar and turbulent flow. It is rather difficult to
give a definition for turbulence and it is simpler to describe what looks like. For
example, the fundamental characteristic is that the fluid motion is rather irregular
and the deterministic methods are no longer applicable. From this derives the use
of statistical methods, and the most recent approach is based on the chaos theories.
Another characteristic of the turbulence is its capability to diffuse and to transport
in this way momentum, heat, and mass. Based on these transport characteristics,
it is possible to give a more physically based interpretation of the passage from
the laminar to the turbulent regime. To accomplish this, we need to make again a
temporary detour and talk about heat diffusion.

In a gas, heat can be transported only by the molecular diffusion. In that case
a diffusion law, obtained from the energy conservation, regulates the temperature
distribution within the gas

@

@t

�

CpT

� D �r � Fh (8.2)

where Fh indicates the heat flux that in case of molecular diffusion is simply
proportional to the temperature gradient through a diffusion coefficient D0

Fh D �D0rT (8.3)

This substituted into Eq. (8.2) gives the diffusion equation

@T

@t
D �r2T (8.4)

where the cinematic viscosity � has been substituted by the molecular diffusivity.
The substitution is justified by the fact that the coefficients have the same order of
magnitude.

http://dx.doi.org/10.1007/978-3-319-29449-0_6
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We follow now an example reported by Tennekes and Lumley. Suppose we are
in a room with dimension of the order of L. In this room we have a heat source (like
a radiator), and, when the air in the room is at rest, heat is transferred only by the
molecular diffusion. A simple dimensional analysis of Eq. (8.4) gives

rT

tm
D �

rT

L2
(8.5)

So we have a characteristic time for diffusion

tm D L2

�
(8.6)

which is the time it would take for the heat to be transported across the room.
If we assume L be of the order of 5 m and v D 2�10�5 m2 s�1, we obtain a
characteristic time of 10 days, which is rather disappointing (ah! Physics applied
to home appliances!) so that some faster mechanism must exist to transport heat.

A possible alternative mechanism is that the radiator may heat the air in contact
with it by conduction. This air for buoyancy, in turn, will produce a circulation in the
room that for a characteristic velocity U and dimension L will have a characteristic
time

tt D L

U
(8.7)

The evaluation of U can be made in a very simple way. For a temperature change
�T, the acceleration of the air parcel is of the order of g�T/T, and if the heated layer
has a thickness, then the energy gained per unit mass in the layer will be gh�T/T. We
assume �T D 10 ıC e h D 10 m and we have an energy of the order of 0.03 m2 s�2

from which we get a velocity of about 0.24 m s�1. The average velocity actually
may be only a few centimeters per second, and nevertheless the characteristic time
will be only a few minutes. It is easy to see then how the Reynolds number is just
the ratio between the diffusion time due to the turbulence and the time due to the
molecular diffusion:

Re D tm
tt

D UL

�
(8.8)

In the example just made, this number is of the order of 60,000. The transition
between laminar and turbulent flux happens when the Reynolds number becomes
larger than unity.

The reason for this can be seen in another way. The gas in contact with the
surface due to the no-slip condition is at rest. The molecules reach gradually the
velocity of the fluid through a shear in a condition of free flux. The velocity shear is
a source of vorticity and is diffused in the fluid only if the molecular diffusion time



228 8 The Planetary Boundary Layer

is shorter than the turbulent time (tm < tt). When this condition is no longer satisfied,
the vorticity remains confined in the shear layer that then detaches and generates
turbulence

In analogy we can introduce at this time a turbulent diffusion coefficient K,
such that the Reynolds number is the ratio between the two coefficients. In this
approximation

K D UL (8.9)

It is rather interesting at this point to translate all these dimensional consider-
ations to the atmosphere, where we need to consider the effects of the Coriolis
acceleration. The characteristic time in this case is of the order of f�1. If the
molecular diffusion were responsible for the boundary layer, the thickness of it
would be

H2
m � �

f
(8.10)

which corresponds at middle latitudes to Hm � 0.4 m. On the other hand, if v is
substituted by K we get

H2
t � K

f
� LU

f
(8.11)

where L � U/f, so that

Ht �
�

U

f

�
(8.12)

At this point we need to establish the value for U, that is, the average velocity
generated by the turbulence. Usually it is assumed that such velocity is about 1/30
of the wind velocity, so that for a wind of 10 m s�1 we obtain a thickness of about
3 km. The observed value is about 1 km and so we are roughly in the right range.
We need to consider however the uncertainties in the diffusion coefficient. As we
will see in a while, the estimation for the coefficient 1–5 m2 s�1 so that the lower
limit for the thickness of the layer is about 200 m.

The thickness of the boundary layer is somewhat related to the altitude where
the wind coincides with the geostrophic value. We can imagine that if there is
a resistance to the motion, the Coriolis force is no longer able to equilibrate the
pressure gradient. The wind direction will no longer be parallel to the isobars but
will tend to rotate toward the low-pressure center. This tendency will be more
definite near the surface and will attenuate near the top of the boundary layer. It
is time then to apply the things we learned on the friction at Sect. 5.2.

http://dx.doi.org/10.1007/978-3-319-29449-0_5
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8.2 Turbulent Friction

The acceleration due to friction is given by

Fr D �
@2V
@z2

(8.13)

The first thing we notice from this relation is that, if the shear is constant (i.e.,
the velocity changes linearly with height), the friction acceleration is zero. The
coefficient has been taken to coincide with the cinematic viscosity, but actually it
must be substituted with something more complex like K. This is what we plan to
do now: to elaborate a simple theory on how to determine the coefficient based on
an elementary vision of the turbulence.

We start from the notion that the velocity vector can be separated in a time-
averaged value hVi and a fluctuation from this value V0 that should represent the
small-scale turbulence. Without going too deep we can assume that the characteristic
times on which hVi changes are very long with respect to those on which V0 is
averaged. So we have

V D hVi C V0 with
˝
V0˛ D 0 (8.14)

The quantities representing deviation from the temporal average in meteorology
are indicated with a prime and are called “eddy.” We will discuss them a great deal in
Chap. 10. The simplest way to see how eddies have some relation with the viscous
stresses is to write the equations of motion taking into account the fact that each
component of the velocity can be written as an averaged value to which we add a
fluctuation. The net effect on the acceleration term will depend on the correlation
that results between eddy quantities of the different components:


@

@t
C �hui C u0� @

@x
C �hvi C v0� @

@y
C �hwi C w0� @

@z

� �hui C u0�
� f

�hvi C v0� D �1



@ hpi
@x

� 1




@ hp0i
@x

C Fx (8.15)

where with Fx we have indicated the component of the viscous forces along x. We
can now average (8.15) to obtain

@ hui
@t

C hui @ hui
@x

C hvi @ hui
@y

C hwi @ hui
@z

� f hvi

D �1



@ hpi
@x

C vr2 hui � u0 @u0

@x
� v0 @u0

@y
� w0 @u0

@z
(8.16)

http://dx.doi.org/10.1007/978-3-319-29449-0_10
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Fig. 8.1 Illustration of a
correlation term. With the air
parcel shown, we can
associate a momentum flux of
the u0 component in the
direction y (Pedlosky 1987)
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In this operation, we have eliminated all terms in which an eddy appears isolated,
and we have suspended any judgment on the last three terms that we can write as

�@u0u0

@x
C u0 @u0

@x
� @u0v0

@y
C u0 @v0

@y
� @u0w0

@z
C u0 @w0

@z
(8.17)

So that considering that the divergence must be zero also for the eddy components,
Eq. (8.16) becomes, carrying out the average on the last three terms,

@ hui
@t

C hui @ hui
@x

C hvi @ hui
@y

C hwi @ hui
@z

� f hvi

D �1



@ hpi
@x

C vr2 hui � @ hu0u0i
@x

� @ hu0v0i
@y

� @ hu0w0i
@z

(8.18)

To understand how the correlation terms must be interpreted, we may refer to
Fig. 8.1. The quantity hu0v0i represents the momentum flux in the y direction (i.e.,
the x component of momentum is transported in the normal direction). If this flux
increases with y, then, in the region between y1 and y2, the average velocity will
decrease in the same region, that is, if the result is

@ hu0v0i
@y > 0

then
@ hui
@t

< 0

We see then that the function of the correlation terms is the same as the friction
terms because they can actually slow down the motion. The real difference is that
the same terms can also accelerate the motion if they provide momentum, so that
we are in presence of a negative viscosity.

The eddy terms present a problem that is known as closure. In practice, we have
written equations for the changes of average quantities expressed as a function
of eddy terms. To solve these equations, we have to find a relation between the
correlation terms and the average quantities. Figure 8.1 gives a hint as this is where
we have also shown the shear of the zonal wind. If the air parcel moves in the
positive y direction (v0 > 0) and the wind shear is positive
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@ hui
@y

> 0

the air parcel will end in a region with higher zonal velocity so that u0 < 0. The
opposite happens for v0 < 0, and this means that the term hu0v0i is always negative,
so that in the presence of a shear, we always have

hu0v0i @ hui
@y

< 0 (8.19)

If we change the sign of the wind shear, it is easy to see hu0v0i > 0, and the shear
being negative, the sign of Eq. (8.19) does not change. We can then assume that the
momentum transport is essentially proportional to the wind shear and, remembering
the notation for the stress, we have

�zx D �
 ˝u0w0˛ D �e
@ hui
@z

�zy D �
 ˝v0w0˛ D �e
@ hvi
@z

(8.20)

So that the accelerations will be

Fx D1




@�zx

@z
D 1




@

@z


˝
u0w0˛ D 1




@

@z
�ex

@ hui
@z

Fy D1




@�zy

@z
D 1




@

@z


˝
v0w0˛ D 1




@

@z
�ey

@ hvi
@z

(8.21)

where with �ex and �ey we have indicated the eddy viscosities which are analogous
to the molecular viscosity, only with much higher values. At this point, before going
to the applications of the above relations, we have to understand a little better this
viscosity.

8.2.1 The Mixing Length

An eddy can be imagined as a region of the fluid with roughly the same properties
as the momentum, for example. After drifting for some distance, this region of the
fluid will mix with another region and will exchange some properties with it. At
this point the analogy with the molecular diffusion is complete, considering that the
molecules exchange momentum through collisions and the diffusion coefficient is
somewhat related to the average velocity and the mean free path.

Suppose then, for analogy, that an eddy moves upward by a certain amount � 0
before mixing. We can expect that the deviations on the velocity are given by

u0 D �� 0 @ hui
@z

v0 D �� 0 @ hvi
@z

(8.22)
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where � 0 > 0 is for upward movements and vice versa for downward movements.
Based on these relations the flux of zonal momentum in the vertical direction is
given by

˝
u0w0˛ D � ˝w0� 0˛ @ hui

@z
(8.23)

The problem remains for the estimation of w0 in terms of averaged quantities. One
hypothesis in this case is that the turbulence is isotropic, meaning that the deviations
from the mean of the three components are of the same order of magnitude:

u0 � v0 � w0 (8.24)

Also we assume that they are of the same order of the average value. These
assumptions allow us to write the vertical component w0 as in Eq. (8.22) so that

w0 � �� 0
ˇ̌̌̌
@ hVi
@z

ˇ̌̌̌
where with jVj we have indicated the average of the horizontal total wind.
Substituting in Eq. (8.23), we have

˝
u0w0˛ D �

D
� 02E ˇ̌̌̌@ hVi

@z

ˇ̌̌̌
@ hui
@z

D �Ke
@ hui
@z

(8.25)

which is of the same form as Eq. (8.20). The coefficient Ke has the same function as
a cinematic viscosity and can be expressed as

Ke D
D
� 02E ˇ̌̌̌@ hVi

@z

ˇ̌̌̌
D ˝

l2
˛ ˇ̌̌̌@ hVi

@z

ˇ̌̌̌
where l is called the mixing length and is given by

l D
�D
� 02
E�1=2

(8.26)

This derivation, which may look too formal, does not give any clue as to how to
calculate Ke, but simply says that the larger the dimension of the eddy and the wind
shear, the greater the diffusion coefficient.

Before closing this part it is worthwhile to mention how we expect the turbulence
to be generated in the boundary layer. Mainly responsible is the vertical shear,
which produces vorticity and then mixing, at least on the vertical plane. This mixing
implies energy dissipation at the expense of the horizontal flux. A criterion to
establish under what conditions the turbulence may arise is to compare the potential
and kinetic energy gained by the parcel due to the vertical acceleration. For a
deviation w0 we associate a kinetic energy per unit mass given by



8.3 The Surface Layer 233

1

2
w02 � 1

2
l2
�

d hui
dz

�2
If the parcel moves an altitude interval �z, the energy gained due to the buoyancy
acceleration is

g
�	

	
�z

These two energies will be equal when

1

2

�
l

�z

�2
� g

	

d	

dz
=

�
du

dz

�2
(8.27)

The left-hand side of this equation represents the Richardson number:

Ri D g

	

d	

dz
=

�
du

dz

�2
(8.28)

We notice that the Richardson number is always positive for a stable atmosphere.
Comparing Eqs. (8.27) and (8.28), we see that turbulence will be likely when the
change in altitude is larger than the mixing length. The condition is then Ri < 1

and from empirical data the onset of turbulence is assumed when the Richardson
number is less than 0.25.

8.3 The Surface Layer

We generically talked about the planetary boundary layer and gave the impression
that it is a relatively simple structure. Actually it is a rather complicated object
and to understand this we may refer to the thermal structure of the boundary layer.
Figure 8.2 shows qualitatively the time evolution of the boundary layer in terms
of changing temperature profile. We start at noon when the heating of the surface
is such that the convective mechanism has invaded all the boundary layer, so that
the mixed layer is a well-mixed region. It may grow by entraining air from the
region above the boundary layer, that is, the free atmosphere. This layer reaches
the maximum extension at noon. In the afternoon the strength of the convection
decreases, and after sunset the turbulence in the mixed layer decays, giving rise
to the residual layer which is a somewhat weakened version of the mixed layer.
As the night progresses, the bottom part of the residual layer is transformed into a
stable layer. This is characterized by a stable temperature inversion that suppresses
the turbulence. The wind may grow from negligible to geostrophic values at the
top of the boundary layer and the resulting strong shear may produce an occasional
turbulence burst in the residual layer.
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Fig. 8.2 The top of the figure shows the qualitative evolution of the boundary layer. At the bottom
two temperature profiles are shown, representative of the conditions at noon and at night (From
Stull 1988)

The bottom part of Fig. 8.2 shows two schematic temperature profiles referring
to daytime (early afternoon) and to the nighttime. One thing we can notice is that
the atmospheric temperature at the bottom of the layer is strongly influenced by the
surface temperature. During the day, the surface is warmer than the atmosphere, so
that the first layer is heated by conduction and the temperature reaches gradually the
mixed layer values. During the night, the surface cools and again by conduction the
atmospheric temperature decreases toward the surface. In the first case the bottom
layer is rather unstable, while at night we may have a temperature inversion and then
a very stable situation. It is assumed that the bottom 10 % of the mixed layer may be
involved in to these phenomena and to this region the namesurface layer is given.
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For this layer at the surface, we can assume a scale velocity u*, simply defined on a
dimensional basis and given by

u� D
�
�




�1=2
(8.29)

This velocity is also called friction velocity and � is the appropriate stress. From the
definition in Eq. (8.20) we have

u2� D ˇ̌˝
u0w0˛ˇ̌

so that

u2� D Ke
@ hui
@z

(8.30)

At this point we need the mixing length theory to estimate the diffusion
coefficient. The simplest assumption is to take the mixing length proportional to
the height according to l � kz. In this case we have

Ke D .kz/2
@ hui
@z

Substituting in Eq. (8.30), we have

@ hui
@z

D u�
kz

(8.31)

which can be integrated to give a logarithmic law for the change of the velocity with
height

hui D
�u�

k

�
ln

�
z

z0

�
(8.32)

The quantity z0 is called the roughness length and depends on the height where hui
is zero, while k is called the von Karman constant, from the name of one of the
founding fathers of aerodynamics. The value of the roughness length depends on
the roughness of the surface and may change from 0.0002 for the sea surface to
values greater than 2 at the center of large cities.

The relation of Eq. (8.31) can be very useful for calculating the wind at higher
altitude when it is known at the height of the anemometer. For example, if we
imagine to measure a wind 5 m s�1 at 10 m over a field with roughness length
0.5 m, we can find from Eq. (8.32) a wind of 6.5 m s�1 at 250 m which is a typical
height of a smokestack. We will see in a while that such simple calculations are
rather important in a first rough calculation, of the distribution of the effluents from
a smokestack: again very earthly matters for the atmospheric physicist.
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A very interesting consequence of Eq. (8.31) is that if we multiply both sides by
u* and take into account Eq. (8.30), we get for the stress

� D 
 .ku�z/
@ hui
@z

This is actually a flux of the horizontal momentum per unit volume in the vertical
direction. This relation can be extended to the sensible heat flux simply substituting
for the mass per unit volume the heat content per unit volume, so we get

H D �
Cp .ku�z/
@	

@z
(8.33)

This equation can be understood on the basis that the quantity in parenthesis
is actually the diffusion coefficient and we are simply writing that the heat flux is
proportional to the temperature gradient. Similar to the momentum flux, also the
heat flux is constant across the surface layer, so that from Eq. (8.33) we can get the
temperature difference between a layer extending between z1 and z2:

�	 D H


Cpku�
In

�
z2
z1

�
(8.34)

We can have an idea of the temperature difference across a layer 1.5 m thick.
Assuming H D 100 W m�2 and u* D 0.3 m s�1 we get a difference of about 5 ıC.

In a similar way we can obtain the latent heat flux by writing first the water vapor
flux:

F D � .ku�z/
@
v

@z

with 
v the density of water vapor. If we multiply this by the latent heat L, we get
the latent heat flux LH :

LH D �L .ku�z/
@
v

@z
(8.35)

We define then the Bowen ratio between the sensible and latent heat flux that we
denote with ˇ:

ˇ D H

LH
D 
Cp

L

�
@	

@z
=
@
v

@z

�
(8.36)

The latent and sensible heat fluxes are very important in determining the surface
energy budget, as we will see later, because they help to dissipate the excess heat
of the surface. To simplify matters, the fluxes are parameterized in terms of easily
measurable quantities and drag coefficient that can be defined as
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CD D k2



ln

�
z

z0

���2
(8.37)

This corresponds to the assumption of a direct proportion between the velocity and
the friction velocity like ˝

u2
˛ D CDu2�

This relation is assumed to be true only at 10 m so that Eq. (8.37) can be used
to calculate the drag coefficient once the von Karman constant and the roughness
length are known.

We will treat in detail the surface heat balance later. We simply note that without
the contribution of the sensible and heat fluxes the surface of the Earth would be
much hotter.

8.4 The Ekman Layer

Above the surface layer we find a mixed layer where the wind should go from
the values we have just found to the geostrophic values. This region is also called
the Ekman layer. To study this layer, we can start from Eq. (8.21) and write again
the condition for zero acceleration, when the acting forces are due to the pressure
gradients, the Coriolis term, and the friction. We have immediately

fv � 1




@p

@x
C Ke

d2u

dz2
D0

fu C 1




@p

@y
� Ke

d2v

dz2
D0 (8.38)

where for simplicity we have omitted the average parentheses. The pressure
gradients can be substituted by the values of the geostrophic wind so we obtain

Ke
d2u

dz2
C f

�
v � vg

� D0

Ke
d2v

dz2
� f

�
u � ug

� D0 (8.39)

We may assume the wind does not change with altitude (barotropic atmosphere),
and multiplying the second by i D p�1 and then adding, these equations can be
solved. We get

Ke
d2 .u C iv/

dz2
� if .u C iv/ D �if

�
ug C ivg

�
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This has the solution

.u C iv/ D A exp
h
.if =Ke/

1=2z
i

C B exp
h
�.if=Ke/

1=2z
i

C ug C ivg (8.40)

The integration constants can be determined by imposing the conditions

u D v D 0 for z D 0

u ! ugI v ! vg for z ! 1

For simplicity we may assume the geostrophic wind only in the x direction so that
vg D 0 and we have

.u C iv/ D �ug exp

"
�
�

f

2Ke

�1=2
.1C i/ z

#
C ug (8.41)

We can then equate real and imaginary parts on both sides:

u D ug .1 � e��z cos �z/ I v D uge��zsen�z (8.42)

with � D .f=2Ke/
1=2. This solution is known as the Ekman spiral and can be

understood by referringto Fig. 8.3. This figure shows the curve that connects all
the tips of the velocity vector whose components are given by Eq. (8.42). The
vector rotates clockwise until it coincides with the geostrophic wind at the top of
the boundary layer. What is happening is that, for a constant pressure gradient, the
friction slows down the air parcel so that the Coriolis acceleration no longer balances

u/ug

v/
u g

0 0,2 0,4 0,6 0,8 1
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0
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π/6
π/3

2π/3

π/2

Fig. 8.3 The Ekman spiral. The velocity vector is shown at different altitudes that can be obtained
by the argument of the trigonometric functions in Eq. (8.42). Altitude is decreasing from the larger
to the smaller arguments
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Fig. 8.4 The equilibrium in
the boundary layer between
pressure rp, Coriolis Fco,
and friction forces Fr
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p-δp

p-2δp
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the acceleration due to pressure. This balance is shown in detail in Fig. 8.4, where
we see that now the resultant between the friction and the Coriolis forces balances
the pressure gradient force. The result, quite evident from Figs. 8.3 and 8.4, is that
within the Ekman layer there is a wind component in the direction of the pressure
gradient and this means that the wind is no longer geostrophic. In these conditions,
we can estimate the vertical extension of the Ekman layer. From Eq. (8.42), we see
that the conditions u D ug and v D 0 are satisfied when the altitude has as a value De

such that

De� D De

�
f

2Ke

�1=2
D �

that gives the thickness of the Ekman layer De. With typical values for f at middle
latitude and with Ke � m2 s�1 we obtain De D 1 km. The value of the diffusion
coefficient is consistent with Eq. (8.26) because for a vertical shear of 5 m s�1 km�1

we obtain a mixing length of l � 30 m that is small with respect to the depth of the
boundary layer.

The simple theory we have illustrated however does not take into account the
surface layer or the layer that extends from the surface to the anemometer level,
where the wind velocity is given by Eq. (8.32). We may interpret (8.42) in a slightly
different way, that is, that at the anemometer level, the wind has two components,
the geostrophic one and the ageostrophic component:

ua D �uge��z cos �z

This must be the total wind velocity at the top of the surface layer. The general
solution for the entire boundary layer can be obtained by introducing a complex
notation for the velocity vector:

W D .u C iv/ � �
ug C ivg

�
(8.43)

With this notation, Eq. (8.39) reduces to

Ke D @2W

@z2
� ifW D 0 (8.44)
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with the general solution

W D C1e
�.1Ci/�z C C2e

.1Ci/�z (8.45)

If we denote with h the thickness of the surface layer and with W(h) the velocity at
the top of it, then

W D W.h/ exp Œ� .1C i/ � .z � h/� (8.46)

For continuity, the stress at the base of the Ekman layer must be equal to the surface
stress. At the base of the Ekman layer, the stress is parallel to the wind shear:

@ .u C iv/

@z
D @W

@z

so that it must be parallel to .u C iv/ at the top of the surface layer. Differentiating
Eq. (8.46) and putting W.h/ D Wh, we have�

@W

@z

�
h

D �Wh� .1C i/ D Wh�2
1=2e�3i�=4 (8.47)

This relation shows that at the base of the Ekman layer the angle between the shear
and the wind is 135ı. The meaning of the relation between the geostrophic wind and
the wind in the surface layer can be clarified by looking at Fig. 8.5. In this figure the
geostrophic wind is directed along the x axis. According to Eq. (8.43) the wind W is
the difference between the wind in the surface layer and the geostrophic wind. The
direction of the wind in the surface layer is then constant and its intensity changes
according to Eq. (8.32). We need to determine now the value for ˛s. We refer to
Fig. 8.4 and apply a simple trigonometric rule we find

jWhj
sin ˛s

) ju C ivjh D 21=2Vg sin
��
4

� ˛s

�
D Vg .cos˛s � sin ˛s/

From the same figure and the previous relations we have

Wh D 21=2Vg sin ˛s exp i

�
3�

4
C ˛s

�

Fig. 8.5 The vector
relationship between the
geostrophic wind and the
wind in the surface layer.
Symbols are the same as used
in the text (Bluestein 1992)
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3π/4
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that, once substituted in Eq. (8.43), gives the solution

u C iv D Vg

�
1C 21=2 sin ˛se

��.z�h/eiŒ.3�=4/C˛��.z�h/�
�

z � h (8.48)

It is evident that this equation coincides with the one found for the Ekman spiral
when ˛s D �3�/4. In the surface layer we must have, according to Eq. (8.33)

u C iv D u�
k

ln
z

z0
ei˛s z � h (8.49)

The complex exponential has been introduced to take into account the phase.
Because the two vectors must coincide for z D h, we must have

u�
k

ln
h

z0
D Vg .cos˛s � sin ˛s/ (8.50)

Also the diffusion coefficients must be the same at z D h

Ke D ku�h (8.51)

And the last condition to be satisfied is that the stress must be the same at the
boundary:

j� j D
ˇ̌̌̌

Ke

@ .u C iv/

@z

ˇ̌̌̌
D
ˇ̌̌̌

Ke

@W

@z

ˇ̌̌̌
D 21=2
Ke jWhj � (8.52)

Substituting for

jWhj D 21=2Vg sin ˛s

and for � and putting j� j D 
u2�, we have the relation

.2fK2/
1=2Vg sin ˛s D u2� (8.53)

The quantities that characterize the boundary layer are now

Vg; u�; h; ˛s;Ke; z0

However, the equations are not enough to determine all of these. It is clear that Vg, h,
and z0 are obtained from observations or from specific characteristics of the surface.
Once these data are known, Eqs. (8.50), (8.51), and (8.53) can be used to determine
the remaining quantities.
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8.5 The Secondary Circulation

One of the most important results of the previous section is that the wind within the
boundary layer has a component that remains to the left of the geostrophic wind.
That means that, if the geostrophic wind is caused by a pressure difference, the
circulation in the boundary layer is roughly that shown in Fig. 8.6. We notice that
there is a divergence around the high-pressure zone and the convergence around the
low-pressure zone. These motions on the horizontal plane correspond to a vertical
motion, like the one shown in Fig. 8.7. It is clear that the divergent part corresponds
to upward motion in the boundary layer and vice versa. For continuity reasons we
will find divergence above the low-pressure zone and convergence above the high-
pressure zone.

As it is schematically shown in the figure normal to the geostrophic wind, there
will be a mass flux that we can evaluate through the integral extended to the
boundary layer:

Fig. 8.6 A sketch of the
circulation in the boundary
layer around high- and
low-pressure zones; notice
the difference with respect to
the geostrophic wind

B A

L

Divergence Convergence

Ekman
Layer

H
Pressure

Fig. 8.7 A sketch of the circulation in the boundary layer around high- and low-pressure zones, in
the vertical plane. The pressure is shown schematically below. A convergence (divergence) in the
Ekman layer corresponds a divergence (convergence) in the free atmosphere (From Holton 1992)
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M D
Z De

0


v dz D
Z De

0


uge��z=De sin

�
�z

De

�
dz (8.54)

We have substituted for the y component of the velocity its value in the Ekman
layer. This equation can be put in relation with the vertical velocity if we recur to
the continuity equation:

@

@z
.
w/ D � @

@x
.
u/� @

@y
.
v/

In this relation, u is independent from x so that substituting in Eq. (8.54) and noting
that w D 0, for z D 0 we obtain, assuming a constant density

.
w/De
D � @

@y

Z De

0


uge��z=De sin .�z=De/ dz D �@M

@y
(8.55)

The vorticity in the Ekman layer

@ug

@y
D �g

is assumed constant so that the integral of Eq. (8.54) has the value .1C e��/De=2�

and the vertical velocity at the top of the boundary layer becomes

wDe D g.Ke=2f /1=2 (8.56)

where we have assumed .1C e��/ � 1.
From Fig. 8.7, we can see that in the Ekman layer a secondary circulation is

generated that damps the vorticity around the lows and highs. This can be easily
seen if we conserve the divergence term in the vorticity equation:

D . C f /

Dt
D �f

�
@u

@x
C @v

@y

�
D �f

@w

@z

This equation can be easily integrated from the top of the boundary layer to the top
of the tropopause keeping f constant:Z H

De

�
D

Dt

�
dz D f .w.H/ � w .De// � fw .De/

where H is the altitude of the tropopause. Substituting the vertical velocity of
Eq. (8.56) and assuming the rate of vorticity change constant, we have

Dg

Dt
D � f

.H � De/
w .De/ D �

�
fKe

2H2

�1=2
g (8.57)
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This relation gives a decaying time for the vorticity:

�e D H

�
2

fKe

�1=2
(8.58)

With H D 10 km, f D10�4 s�1, and Ke D 10 m2 s�1, we obtain a characteristic time
of about 4 days. That is roughly the lifetime of a cyclone.

The secondary circulation is also a well-known classical problem, like the
problem of the leaves in a teacup (or little foam in an espresso), and it useful to
clarify further the meaning of the secondary circulation.

8.5.1 Spin-Down in a Teacup

To put in the proper framework this problem, we consider the equation of motion
written in vector form:

DV
Dt

C 2�� V D �
�
1




�
rp C �r2V (8.59)

In this case, the pressure takes into account all the forces and these are

p D P C � C 
�2r2

2

where P is the pressure within the fluid. The reference system that we choose is such
that the z axis coincides with the rotation axis, while x and y are normal to it. We may
assume that at time t D 0, the angular velocity on the lateral wall of the cup changes
by a small quantity "�, either in acceleration (spin-up) or deceleration (spin-down).
At this point, the pressure forces are no longer balanced by the centrifugal forces
so that the fluid starts to move in the radial direction with a velocity of the order of
"�r. This motion happens within a boundary layer whose thickness can be found
by equating the Coriolis acceleration to the one produced by viscous forces:

2�u D �

�
@2v

@z2

�
I �2�v D �

�
@2u

@z2

�
(8.60)

where � is the cinematic viscosity. To satisfy these equations and considering that
in the boundary layer we must have u � v, the thickness will be of the order

d �
� �

2�

�1=2
An estimation of the time it takes to establish the boundary layer can be made
through a scale analysis of the equation of motion:
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H

vΙ

vΙ

ωI

Fig. 8.8 The secondary circulation in a teacup (Baker 1966, 1968)

�
dv

dt

�
C 2�u D �

�
@2v

@z2

�
vr � ��r

from which we easily find the time to be of the order of ��1.
If we consider a teacup, as in Fig. 8.8, using the continuity equation on a radial

plane we have

@w

@z
D �@vr

@r

where vr is the radial velocity. Integrating the above equation across the thickness
of the boundary layer, we have

w Š �
dZ
0

�
@vr

@r

�
dz � ��

� �

2�

�1=2
Within the fluid the velocities can be found using the continuity equation with the
boundary conditions existing at the top and the bottom of the fluid:

wI D �
�
@vr

@r

�
z C cos t
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We assume that the fluid is contained between the free surface where z D H and the
bottom (z D 0); thus we have

wI D 0 at z D H; wI D "

�
��

2

�1=2
at z D 0

from which we can get the constant of integration and the radial velocity gradient:

wI D �

�
��

2

�1=2 �
1 � z

H

�
vI

r D �

�
��

2

�1=2 � r

H

�
(8.61)

This result shows that the vertical velocity seems to be independent from the radius
The spin-down time can be obtained from another consideration. If we refer to

Fig. 8.8, we can see that the secondary circulation transports fluid with low angular
momentum to regions of high angular momentum. If we now consider a ring of
fluid of radius R and mass ım, the angular momentum is J D ım�r2. Neglecting the
friction within the fluid, the conservation of the angular momentum requires that

��

�
D �2�r

r
� "�

�

In the spin-down time, the radial distance traveled will be

�r � "r

2
� vI

r �spin�down � "

�
v�

2

�1=2 � r

H

�
�spin�down

so that the spin-down time will be

�spin�down D H

.2��/1=2
(8.62)

This relation is very similar to that of Eq. (8.58) but has been obtained in a
way that can be understood also by students in a general physics course. Naturally,
everything we said is valid for an ideal cup where the radial dimension must be much
larger than the vertical dimension so that the effect of the friction on the lateral wall
can be neglected.

8.6 Turbulent Diffusion from Discrete Sources

It may look a bit strange to go from a classical problem like the tea leaves in a cup
to a very ugly problem like the plume from a smoke stack. However, as atmospheric
physicists, we should not be ashamed by such a variety of interests because this
simply confirms as important is our role in society.
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A plume of pollutants is formed any time a source, like a chimney, emits
continuously. The plume may have different forms and behaviors depending on
the environmental conditions of the atmosphere. In the absence or in light winds,
the plume is dispersed vertically, while with the wind blowing horizontally, the
pollutants are mainly dispersed downwind. Although the problem is not simple,
engineers (mainly) have found simple ways to evaluate the concentration of
pollutants in the presence of a discrete source. We are going to justify in the next
few paragraphs this approach.

8.6.1 The Characteristics of Smoke Plumes

The shape of a smoke plume is very much related to the temperature gradient of
the atmosphere and the stability. We can have a very rough idea of the problem
simply by looking at Fig. 8.9. In this figure we have on the right the profile
of the ambient temperature (that we denote Tair) as compared to the lapse rate
(presumably adiabatic) of a parcel that is freely moving in the atmosphere. The
situations depicted in the figure assume that a constant wind is blowing from left to
right. In case (a), the two temperatures coincide and we are in a neutral situation. In
this case, the plume is dispersed almost symmetrically downwind and assumes the
characteristic form of a cone. In (b), the situation is that of a stable atmosphere. We
must remember that we are in the boundary layer and the temperature may increase
all the way up to the top of the layer. The smoke from the stack will not diffuse in
the vertical direction and will move essentially in the horizontal direction and this
corresponds to fanning. In case (c) the atmosphere may be unstable below a certain

Fig. 8.9 The various shapes
of a smokestack plume. The
right side of the figure shows
the behavior of the
temperature in the
background atmosphere
(solid line) and that of the air
parcel according to an
adiabatic lapse rate (dashed
line). Case (a) corresponds to
coning, case (b) to fanning,
case (c) to fumigation, case
(d) to looping, and case (e) to
lofting
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altitude and stable above. The level of inversion indicates the thickness of the mixed
layer. In this case the diffusion will be inhibited above the mixed layer, while it will
be very energetic below it and the effluent will reach the ground. This is the situation
that corresponds to fumigation which is the most dangerous of all because large
concentrations of pollutants may result at ground level. Case (d) is in some sense
opposite to case (b) because the atmosphere is now unstable in the entire boundary
layer. In this case the typical size of an eddy is larger than the width of the plume,
with the result that the plume will be moved up and down, assuming the shape of
a snake: this is what is called looping. Finally, in case (e), which corresponds to
lofting, the inversion is at the ground up to some level, so that the plume cannot
diffuse below and will grow mainly above the inversion. The shape of the plume
is important because it may give a rough idea of the concentration of pollutant we
should expect. It would be very complicated to evaluate the shape illustrated in
Fig. 8.9 because it may depend on stability parameters and on the winds. Also, the
boundary layer structure and the wind change during the day, and this adds some
more complications. We can, however, calculate some average situation that may
not give the exact distribution of the concentration from the sources but would be
enough to estimate whether we are within prescribed limits. This average situation
may refer also to different environmental conditions.

We may start from a simple one-dimensional problem and assume that the
x direction coincides with the downwind direction. Thus, we consider a particle
leaving the source and moving in the x direction under the action of turbulence and
wind. We may define the probability density function F(x) such that the probability
of finding the particle between point x and x C dx is given by F(x)dx. If the particle
does not disappear, it must be Z C1

�1
F.x/dx D 1 (8.63)

In the same way, we may assume a probability density in the lateral direction
y as G(y) and in the vertical direction z, H(z) and because the probabilities are
independent, we haveZ C1

�1

Z C1

�1

Z C1

�1
F.x/G.y/H.z/dxdydz D 1 (8.64)

We define at this point the concentration of the pollutant as �(x, y, z) measured, for
example, as mass per unit volume, so that if the strength of the source is Q, we have

� .x; y; z/ D QF.x/G.y/H.z/ (8.65)

because the amount of mass in the elementary volume is �(x, y, z)dxdydz. Conse-
quently, the integral of Eq. (8.74) becomes

Q D
Z C1

�1

Z C1

�1

Z C1

�1
� .x; y; z/ dxdydz (8.66)
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This is the case of an instantaneous point source that may not look very realistic, but
actually it may correspond to the case in which a pollutant is released accidentally
or, for example, from a ruptured vehicle. In this case, the source is not point-like but
at the least is of finite size.

Another class of problems has to do with a continuous point source, this being
the most common case, like a chimney that emits fumes. This problem can still be
included in the previous framework by substituting for the continuous point source
a number of discrete instantaneous sources, each one of strength Qdt, where now Q
must have different dimensions. We may further assume that in the wind direction
there is no spread due to diffusion and the probability function at a distance from
the source ut (with u the wind velocity) is simply given by

F.x/ D 1

udt
(8.67)

And using Eq. (8.75), we have

� .x; y; z/ D QdtF.x/G.y/H.z/ D QG.y/H.z/

udt
dt D Q

u
G.y/H.z/ (8.68)

At this point, in order to solve the problem, we need to find an explicit dependence
of the probability functions. This may be very simple if we assume that the spread of
the plume is due to a process of Fickian diffusion which we have found in previous
chapters (Fig. 8.10).

8.6.2 The Gaussian Plume

When the diffusion flux can be assumed to be proportional to the gradient of the
concentration for a constant wind in the x direction, we have from the continuity
equation
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(8.69)

Fig. 8.10 The approximation
of a continuous source with a
succession of point sources
(From Blackadar 1997)
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u t
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For a reference system moving with the wind, we have
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(8.70)

that can be simplified when the eddy diffusion coefficients Kx, Ky , Kz are constant:
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This equation has an analytical solution for the case of an instantaneous point
source that releases a total mass Q at time t D 0 and at the origin x D y D z D0. In
this case, the solution has a form of a Gaussian:

� D Q
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(8.71)

where

�2x D 2KxtI �2y D 2KytI �2z D 2KztI (8.72)

It is easy to see that Eq. (8.81) is in the form of Eq. (8.65) if we put
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H.z/ D 1p
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2�2z

�
Once we now have the single probability functions, we can use Eq. (8.68) to find
the solution for a continuous source in a mean wind u. We have

� D Q
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G.y/H.z/ D Q

2�u�y�z
exp
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2�2y
C z2

2�2z

!#
(8.74)

This equation does not contain explicitly the x dependence. However, it is clear that
the width of the plume increases with increasing time and then the corresponding x
coordinate is simply given by x D ut.

Equation (8.74) is very simple and it can be extended without any particular
precaution to the real world: it is actually used by engineers to calculate how much
pollutant one may expect from a smokestack. The equation may look the same as
Eq. (8.71) but the calculation for � ,s is a little bit different. The analytical solution
gives time dependence for � as tn where n D 0:5. Observations give a range for
n between 0.75 and 1. An empirical approach is adopted such that, although the
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form of the equation is the same, �x and �y are related to the stability of the
atmosphere. This is because the � coefficients are proportional to the standard
deviation of the horizontal wind direction and this in turn is related to stability.
Again, there are empirical approaches that assume a number of stability classes, for
the atmosphere according to the wind values and insolation parameters. Once the
class is established, tables are used to find the standard deviation as a function of
the downwind distance x.

We really do not want to spend too much time on this topic, but we need to
mention that the source in reality is not at the ground but at the height of the
smokestack, hc. To obtain the right formula, we simply change the origin of the
z coordinate so that Eq. (8.74) becomes

� D Q

u
G.y/H.z/ D Q

2�u�y�z
exp

"
�
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2�2y
C .hc � z/2

2�2z

!#
(8.75)

This opens another problem because this formula cannot be used for z < 0, but it
is not clear if it can be used for z > 0. Actually, it depends on what we assume is
the fate of the particles that reach the ground. If the particles are reflected by the
surface, then the vertical flux at z D 0 is zero. Then the solution in this case is
equivalent to adding a virtual source symmetric with respect to the real one at the
point of coordinates 0, 0, � hc. Then Eq. (8.75) becomes

� D Q
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2�u�y�z
exp
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(8.76)

It is then clear that the concentration above the ground is larger in case the particles
are reflected.

A last detail is that fumes from smokestacks may be considerably warmer than
the surrounding air so that they have positive buoyancy. This may have the effect
of lifting the height of the source, and actually, in Eq. (8.76) to the quantity hc, we
should add a term like

�h D 1:6F�1=3u�1x2=3f

Again, this is an empirical formula where F is called the buoyancy parameter and
is related to the heat released from the stack, the exhaust velocity of the fumes, and
the radius of the stack tip. Simple calculations based on this formula show that the
effect of buoyancy may be important and even double the height of the stack. A very
comprehensive treatment of these problems may be found in the book by G. Kiely.

Once more we have concluded a chapter with everyday-life examples. This is
exceptionally good because it means we are dealing with reality. However, we
should not get too euphoric because the problem of transport and transformation of
pollutants is much more complex than can be contained in an engineering manual.
Gradually, but determined, we will try to open the way to a complete treatment of
this very important problem.
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E.8 Examples

E.8.1 Boundary Layer in the Ocean

In the ocean, there exists a boundary layer where currents are forced by the winds.
In this case, we solve the same equations (8.3) with somewhat different boundary
conditions. We impose in the atmosphere ocean interface some stress, while at the
bottom of the layer where friction is negligible, we impose the velocity of the current
to coincide with the “geostrophic” value:

z D 0I Ke
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D �x; Ke

@v

@z
D �y

z ! �1I u D ug; v D vg (E.8.1)

The solutions with these boundary conditions can be found in a similar way as
illustrated before, and they are (Vallis 2006)
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(E.8.2)

These relations have a very interesting interpretation. When z D 0 the value of v
is negative (with � y D 0) and this means the initial current is deviated to the right
according to the Coriolis force. This is quite different from the atmospheric case
when the direction of the wind is determined by a balance between the Coriolis
force and the pressure gradient force. In that case the deviation is toward a low-
pressure zone. The Ekman spirals in the atmosphere and the ocean are quite
symmetric although the values of the winds and currents are obviously not the same
(Fig. E.8.1).

When z goes to infinity (toward the bottom of the ocean) the terms in parenthesis
go to zero so that the values of the current coincide with the deep current.

E.8.2 The Transfer of Sensible and Latent Heat

After a nostalgic plunge into classical physics we will make an attempt to combine
the practice with the theory to see which mechanisms should be able to transfer
energy and water from the surface to the atmosphere and vice versa. Robert
Dickinson has been a pioneer in this field.

The first step may be to find more practical formulas than Eq. (8.35) and then to
evaluate the fluxes. Eq. (8.33) can be read as
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Fig. E.8.1 The Ekman layer in the atmosphere (top) and the ocean (bottom). Notice that at the top
of the atmosphere the wind coincides with the geostrophic value and goes to zero at the surface.
For the ocean the difference between the actual current and its geostrophic value is plotted

H D 
CpCDHV .Ts � Ta/

E D 
CDEV .qs � qa/ (E.8.3)

where, beside the known symbols CDH , is the drag coefficient for the heat transfer
and CDE is the correspondent for water vapor. V is the wind velocity while Ta and
Ts are the air temperature near the surface and the surface temperature; qa and qs

are the correspondent values for the humidity. As we have shown in (8.37), CDH V
is the same as ku� ln .z1=z2/. The second part in Eq. (8.63) is actually the flux of
water vapor, so that in order to get the latent heat flux, we need to multiply it by the
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latent heat. The difference between the soil and air humidity can be assumed to be
heat saturation:

qs � qa �
�
@qSAT

@T

�
.Ts � Ta/

To have a rough idea on the numbers we assume CDH � CDE D 2.75 � 10�3 so that
with a velocity of 6 ms�1 we get


CpCDHV � 20 Wm�2K�1

We put also

B�1
e D L

�
@qSAT

@T

�
=Cp

and show that this is just the inverse of the Bowen ratio that is equal to 1 when
T D 7 ıC. The value for Be

�1 changes from 5 for tropical hot days to 0.1 for the
polar regions.

The total contribution of the latent and sensible fluxes is given by

LH C H D 
CpCDHV
�
1C B�1

e

�
.Ts � Ta/ D �s .Ts � Ta/ (E.8.4)

where

�s D 
CpCDHV
�
1C B�1

e

�
:

Through Eq. (E.8.4) we can evaluate in a more realistic way the difference between
the temperature of the surface and that of the air. In Chap. 3 we mentioned that
the temperature of the surface is determined by the radiative and convective fluxes.
At this point, we can specify the convective fluxes to be the sum of the latent and
sensible fluxes so that the equilibrium reads

LH C H D FRn (E.8.5)

where FRn is the net radiative flux given by

FRn D Fsol C F#
IR � �T4s

with symbols that are self-explanatory.
For a temperature of 25 ıC we have Be

�1 D 3 and then �s D 80 W m�2 K�1.
The maximum values of the net flux (at mid-latitudes and at the summer solstice)
are of the order of 600 W m�2 so that from Eqs. (E.8.5) and (E.8.4) we have
Ts � T0 � 7.5 ıC. At night the net flux depends on many other parameters like the

http://dx.doi.org/10.1007/978-3-319-29449-0_3
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surface temperature, cloudiness, and humidity. For a clear summer night, a typical
value may be

FRn � �0:2�T4s � �80 W m�2

Thus, the surface is losing energy and the surface temperature then is lower than the
atmospheric temperature Ts � T0 � �1 ıC.

It is interesting at this point to consider another term in the energy budget of the
surface and that is the heat lost due to the heat conduction in the soil. The heat flux
entering the soil (in W m�2) is given by

FSOIL D �
sCsks
@T

@z

ˇ̌̌̌
zD0

(E.8.6)

where 
s and Cs are the density and thermal capacity of the soil while ks is the
thermal diffusivity measured in m2 s�1. Solving the diffusion equation it is possible
to obtain the temperature gradient

@T

@t
D ks

@2T

@z2

We assume a forcing (i.e., the time dependence for the temperature) proportional to
exp(i�t) and we obtain the solution

T.z/ D Ts C �
Ts � Ts

�
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h
.�i�=ks/

1=2z
i

(E.8.7)

where Ts is the diurnal averaged value. The flux is then

FSOIL D �
sCs.ks�/
1=2
�
Ts � Ts

�
exp .i�=4/ (E.8.8)

The meaning of the complex exponential in Eq. (E.8.8) is that the heat flux in the
soil leads the temperature maximum by about 3 h. The soil flux has values that
depend very much on the soil humidity, which may be between 4 and 20 W m�2 for
temperature difference of the order of 1 ıC.

E.8.3 The Fluxes in the Presence of Vegetation

We cannot resist the temptation to show how wide must be the knowledge of the
atmospheric physicist: he must know even about plant physiology.

We can generalize Eq. (E.8.3) by referring to Fig. E.8.2, where the transfer
of sensible and latent heat between the soil and the atmosphere happens through
“resistances.” Actually, the first part of Eq. (E.8.3) can be written as
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H D Ts � Tr

ra

Cp (E.8.9)

where Ts and Tr are the soil and the air temperature, respectively. We also set

r�1
a D CDHV

which is a real aerodynamic resistance and is actually the same term as in
Eq. (E.8.4). As for the latent heat transfer, the potential difference is again
proportional to the difference between the saturation pressure at the soil temperature
and the vapor pressure of the air er. However in this case, the resistance is taken to
be variable so that the latent heat flux becomes

LH D ˇ
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(E.8.10)

where � is an appropriate dimensional conversion . The function of ˇ is that of
establishing what portion of the soil humidity is actually available. If we refer
to Fig. E.8.2 we notice that in this case we adopt the so-called bucket model. In
practice, we assume that the soil contains a certain amount of water (measured
as mass for unit surface) corresponding to Wmax. If, for example, the quantity of
water coming from precipitation W is larger than this maximum value, the difference
results as runoff. The variation introduced with ˇ is such that it is zero for W D 0
and increases linearly with increasing W up to the value 1 for W D Wmax. Actually
this model does not take into account the vegetation that may cover the soil. In
Fig. E.8.3 the vegetation canopy is sketched as an enlarged stomata. The idea is that
now the transfer is a two-step process, from soil to canopy and from canopy to the
atmosphere. In this way it is possible to take into account a number of factors that
include the specific type of vegetation and the fraction of the soil covered by it. The
conductance gs of a single leaf to the water or vapor passage is a rather complicated
function that can be written as

Fig. E.8.2 Transfer of latent
and sensible heat between soil
and atmosphere (Dickinson
1983; Sellers 1992)

Tr er

ra
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Fig. E.8.3 The transfer of
water and heat between the
soil and the atmosphere in the
presence of vegetation
(Dickinson 1983; Sellers
1992)
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gs D gs .PAR/ Œf .ıe/ f .T/f .‰l/� (E.8.11)

In this equation gs(PAR) is the only part of the conductance that is a function of
the quantity of light received for photosynthesis (PAR D photosynthetically active
radiation), while the other term depends on the vapor deficiency, the temperature
of the leaf and the hydraulic potential. The dependence of the conductance on the
amount of light is easily understood because it must be somewhat obvious that the
transfer of water vapor is facilitated in the presence of radiation.

There are few experiments to establish the validity of an empirical formula like
Eq. (E.8.11). However actually the procedure is to find an average value for the
canopy conductance gc D rc

�1 in such a way that in Eq. (E.8.10) the aerodynamic
effects can be completely separated from those of the water vapor transfer through
the vegetation. The simplest way is to write

LE D ˇ



e�

s .Ts/ � er

ra C rc

�

Cp

�
(E.8.12)

Typical values are ra � 10 s m�1 and rc � 100 s m�1 so that in normal conditions
and in the presence of vegetation, the latent heat fluxes are much smaller than those
given by Eq. (8.70). This simply states something we knew and that is the vegetation
holds the humidity of the soil. The total resistance increases as we have seen before
because now the transfer of water is a two-step process.

We have simply made a very short introduction to the complex problem of the
fluxes between the surface and the atmosphere. We have completely neglected the
role of carbon dioxide which is important for the radiative transfer but also for the
photosynthetic processes. We need also to think about all the problems related to
the capture of rain by the vegetation and the transfer of solar radiation within the
canopy.
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Naturally there are many scientists now that are interested in the interaction of
the vegetation with the atmosphere. Thus we hope than during springtime, when you
look at those beautiful green hills, you will have the impression that the vegetation it
is just the skin through which the Earth breathes. This could be the most rewarding
result after reading this chapter.

E.8.4 The Kolmogorov Spectrum

We have already mentioned the parallelism between eddies and colliding molecules
in a gas with the difference that eddies play the same role much more efficiently. The
example is the mixing of sugar in a cup of coffee. If we let the sugar melt and mix
only by molecular motions, it may take forever, while if we use a spoon to agitate
the coffee, the mixing will be much faster. The Kolmogorov idea is that the energy
of the stirring is “cascaded” to smaller and smaller eddies until the molecular scale
is reached. The energy is indicated with " so that it has the dimension of

Energy

Time
D m2s�3 (E.8.13)

This apparently is independent of time because " could be defined as the energy per
unit mass and unit time.

Then we want to study how the energy is distributed at different scales so we
assume that the energy spectrum take the form

E.k/ D g ."; k/ (E.8.14)

With k being the wave number with the condition thatZ
E.k/dk D E (E.8.15)

We see E(k) must have the dimension of m3s�2 being energy per unit wave number.
From (E.8.14), it follows that because k has no time dependence, the only way to
represent the time dependence of E(k) is a term like (")2/3. Then it is very simple to
get (Fig. E.8.4):

E.k/ D K"2=3k�5=3 (E.8.16)

An equivalent way to derive the same result is to introduce the turnover � k defined
as the time it takes for a parcel with velocity vk to traverse a distance 1/k. From
dimensional considerations

vk D ŒE .k/ k�1=2
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Fig. E.8.4 The qualitative
Kolmogorov spectrum.
Energy is supplied at rate e
and is cascaded at the smaller
scales

so we get

�k D Œvkk��1 D �
k3E .k/

�1=2 D k�2=3��1=3 (E.8.17)

The dissipation rate is then

" ∼ v2k=�k D kE .k/ =�k (E.8.18)

And using (E.8.17) we get (E.8.16).
With the same qualitative argument, it is possible to establish at which spatial

scale the viscosity dissipation becomes important. The viscosity dissipation term is
of the order of (with � viscosity)

�r2u � �U=L2 � �Uk2 � U=��k

And we get for the characteristic turnover time

��k 
 1

k2�
(E.8.19)

Equating this value to Eq. (E.8.17), we get the dissipation wave number k�

k� 
 �
"=�3

�1=4
; L� 
 �

�3="
�1=4

(E.8.20)

It is interesting to find the energy dissipation rate given by

:

E D 1

V

Z
�v� r2vdV � �k2�v

2
k�

(E.8.21)
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where the velocity v2k ∼ "2=3k�2=3 is from vk D ŒE .k/ k�1=2. We get

:

E 
 �k2�"
2=3k�2=3

� 
 " (E.8.22)

One we have substituted k� from (E.8.20). The surprising result is that the
dissipation rate is independent of the viscosity. This means that even if viscosity
tends to zero, the dissipation rate remains constant. However, if we look at the
dissipation length scale given by (E.8.20), we see that this decreases with decreasing
viscosity so that the scale at which dissipation becomes important becomes smaller
and smaller. In the atmospheric boundary layer, the horizontal scale is of the order of
100 m and the velocity fluctuations are of the order of 10�2 m so that the dissipation
rate is roughly U3/L and that is 10�6/102 � 10�8 m2s�3. If we use (E.8.20), we
have a dissipation scale of roughly 3 mm with a viscosity of 10�6 m2s�1. We have
followed Vallis (2006).
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Chapter 9
Aerosols and Clouds

Through this entire book, we will discuss aerosols and clouds. We started in Chap. 2
when we dealt with condensation or supersaturation. The water vapor, in order
to condense, has to find a support that may be wettable and on which an initial
raindrop can grow. In the absence of such a support, condensation is very unlikely
to occur. Most of the time, the support is provided by a tiny particle that may
have a different chemical composition and to which we refer to as condensation
nuclei. These particles are so small as to be invisible and represent the lower end
in terms of dimension of the atmospheric aerosols. Strictly speaking, these include
also raindrops and other liquid (or ice) particles. A good point to start then is to
consider the entire population of aerosols and drops, as shown in Fig. 9.1.

9.1 Sources of Atmospheric Aerosols

Aerosols are a very important component of the atmosphere. Besides the strong
interaction they have with clouds, they may influence atmospheric chemistry and
the amount of radiation absorbed by the atmosphere and reaching the ground.

It is interesting to know which are the main sources of aerosols in the atmosphere,
as summarized in Table 9.1 taken from Hobbs. This table refers only to tropospheric
aerosols and groups the sources in two large classes. The spatial source refers mainly
to particles produced in the atmosphere.

The principal mechanism for producing aerosols from the oceans is through
sea sprays, and consequently, they have a composition that is very similar to sea
salt. Aerosols of this origin may contain NaCl (sodium chloride), KCl (potassium
chloride), CaSO4 (calcium sulfate), and (NH4)2 SO4 (ammonium sulfate) and they
are very hygroscopic. From the table, it can be seen that also freshwater may produce
aerosol, but with negligible strength with respect to oceans.

© Springer International Publishing Switzerland 2016
G. Visconti, Fundamentals of Physics and Chemistry of the Atmospheres,
DOI 10.1007/978-3-319-29449-0_9

261

http://dx.doi.org/10.1007/978-3-319-29449-0_2


262 9 Aerosols and Clouds

large aerosols

10–1
10–4

10–2

100

102

104

106

108

100 101 102

RADIUS (μm)

N
U

M
B

E
R

 C
O

N
C

E
N

T
R

A
T

IO
N

 (
cm

–3
)

103 104 105

drizzle small

large

large cloud
drops

average cloud
drops

small aerosols

medium
aerosols

fog drops

medium

raindrops

Fig. 9.1 The distribution in terms of number concentration and radius for atmospheric aerosols
and cloud particles (Figure Adapted from Jacobson 1999)

Table 9.1 Global strengths
of the aerosol particles in the
troposphere

Source Strength (Tg year�1)

Surface sources
Oceans and freshwater bodies �1000–2000
Crust and cryosphere �2000
Biosphere and biomass burning �450
Volcanoes �15–90

Spatial sources
Gas to particle conversion �1300
Clouds �3000
Extraterrestrial �10

Crust and cryosphere production (i.e., ice in the polar region) includes mainly
dust from the deserts. Other sources include soils but also snow. These aerosols
have a typical mineral composition.

Aerosols originating from the biosphere include all the organic particles, even
pollen or microorganisms and spores. The origin of such particles may be natural
and industrial or anthropogenic. One of the main sources is again the ocean.
Aerosols originating from burning biomass are soot and fly-ash particles, their com-
position being very near to that of elemental carbon. In this case, it is very difficult to
separate the natural (i.e., spontaneous or wildfires) from the anthropogenic source.

Volcanic eruptions may contribute in different ways to the aerosol population.
Solid particles include silicates and metallic oxides and gases like sulfur dioxide
(SO2) that can be converted to aerosol particles. The solid particles may have a very
short lifetime in the atmosphere, while in order to have a substantial production of
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sulfate particles (gas to particles conversion GPC), the eruption must be quite large
and sent gases directly above the tropopause. Sulfur dioxide has a very short lifetime
in the troposphere because of chemical processes in gaseous and aqueous reactions.

Among the spatial sources, one of the most important is GPC.
We will study this process in some detail, especially in connection with

stratospheric chemistry. In this case, as we have mentioned before, sulfur dioxide
is converted through a series of chemical reactions into sulfuric acid which can be
dissolved into water drops, forming a very important class of aerosols.

The aerosol source related to clouds has been only recently recognized. In the
precipitation process, the clouds can be both a source and a sink for aerosols.
During the evaporation process, the clouds can leave behind a considerable amount
of aerosols.

The extraterrestrial source due to the influx of meteorites or dust can be easily
neglected.

9.2 The Size Distribution of Atmospheric Aerosols

Starting from Fig. 9.1, we have implicitly assumed that their number concentration
and their dimension characterize aerosols. Actually these properties can be defined
by introducing the size distribution. If we denote with ni the number of particles per
unit volume with radius ri, then the total number of particles will be

N D
X

i

ni .ri/ (9.1)

Assuming a continuous distribution, we can introduce a density n(r) that represents
the number of particles per unit volume with radius between r and r C dr so that

n.r/ D dN

dr
(9.2)

The function n(r) is called the size distribution and in this case the total density
is obtained by integrating Eq. (9.2) with respect to the radius. The concept of size
distribution is extremely useful because it can be used to find the average quantities
related to the distribution, like the average radius:

r D

Z 1

0

rn.r/drZ 1

0

n.r/dr
D

Z 1

0

rn.r/dr

N
(9.3)

Each quantity related to the distribution, like the total surface or the total volume
occupied by the particles, can be treated in the same way.
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The size distributions are very different. Usually, however, because of the range
of variation of both density and radius, logarithmic scales are preferred. One of the
simpler distributions relates linearly to the logarithms of number concentration and
the radius:

log



dN

d log r

�
D c � ˇ log r ) dN

d log r
D Cr�ˇ (9.4)

After some manipulation, it is very easy to show that this is equivalent to the
distribution:

n.r/ D Cr
�.1Cˇ/

(9.5)

Another distribution that is often used both for tropospheric and stratospheric
aerosols is called lognormal and is given by

dN

d ln r
D N0p

2� ln �
exp

("
.ln r � ln R/2

2.ln �/2

#)
(9.6)

This expression can be put in another form using � D ln R and � 0 D ln � and
remembering that dN=d ln r D rn.r/ we get

n.r/ D N0

r� 0p2� exp

"
� .ln r � �/2

2� 02

#
(9.6a)

where N0, � , and R are the total number of particles, the semidispersion, and
the mean radius characterizing the distribution. This expression shows that the
distribution is Gaussian except for the r at the denominator which introduces an
asymmetry in the distribution. This distribution, as shown in Fig. 9.2, is used to
describe several kinds of tropospheric aerosols. For each type of aerosol shown,
the distribution is a superposition of three different lognormal distributions. For
each size distribution, only the distribution for particles with radiuses larger than
0.001 �m is shown.

The most abundant are urban aerosols and their source is pollution or, more
specifically, industry, traffic, and so on. Their total density is about 1.5�105 cm�3,
with the smaller mode being the most abundant. Rural aerosols are the next
most abundant type. The shape of their size distribution reveals that the main
contribution to them may come from urban aerosols. Their total density is of the
order of 104 cm�3. Again the shape shows that continental aerosols may also be a
source of rural aerosols. Their total density is roughly half that of the rural type,
and they characterize the lowest layers of the atmosphere in remote continental
regions.
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Fig. 9.2 The size distribution of different types of tropospheric aerosols

Background aerosols refer usually to the population found above clouds. Their
total density is rather small and does not exceed 200 cm�3. Finally, maritime (or
marine) aerosols are given by the sum of background and sea salt. The total number
is again of the order of 200 cm�3.

Once the size distribution is known, it is possible to obtain the surface or volume
distribution with radius. For example, if we consider particles with radius r, the
surface of a number dN is given by

dS D 4�r2dN

so that the surface distribution is given by

dS

d .log r/
D 4�r2

dN

d .log r/
D 4�Cr�.ˇ�2/ (9.7)

And in a similar way for the volume

dV

d .log r/
D 4�r3

3

dN

d .log r/
D 4�

3
Cr�.ˇ�3/ (9.8)

for the size distribution (9.5). The effect of the multiplication by the square or
the cube of the radius is to enhance the influence of the large particles on the
distribution. For example, the secondary peaks in the distributions of Fig. 9.2 will
now be the highest. A lognormal distribution can be approximated with Eq. (9.5)
for very large radiuses.
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9.3 Nucleation and Growth

Before we can proceed to study aerosols in some detail, we must introduce the
concept of nucleation and growth. This can be done in a simple way by starting out
with pure water (or water vapor for that matter) and then extending these ideas to
more complicated processes. The nucleation or the initial aggregation can result in
either drops or ice crystals.

All the processes related to aerosol formation are studied in the realm of micro-
physics, as if physics should change names according to the dimension of the objects
under study. The germination of an aerosol particle may start with nucleation, that is,
the condensation of two or more chemical species (heteromolecular nucleation) or
of a single species (homomolecular nucleation). The germ can form on an existing
particle (heterogeneous) or in a saturated environment.

As shown in Fig. 9.3, the processes that form aerosols however are much more
complex. If we limit to the process of gas to particle conversion, we will start
from condensable gases that may nucleate and give rise to ultrafine aerosols. This
may coagulate and grow to a somewhat larger size until much complex processes
enter the game. Dust and sea salt may provide condensation nuclei which may
facilitate nucleation and further grow until the aqueous phase chemistry determines
the interaction between aerosol and clouds.

We need to keep the discussion at a very simple level, and this can be done by
starting with water vapor and its possible transformation.

Fig. 9.3 A cartoon summarizing the processes which form aerosols (Jacob 1999)
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9.3.1 Nucleation from Water Vapor Condensation

A very simple theory can be formulated for water vapor. If we consider a droplet of
radius r, then in order to grow we need to provide energy in two different ways. If
the droplet grows in size, then we must spend some work to overcome the surface
tension which is proportional to the surface of the drop. Also we need to compress
(or expand) the water vapor from the ambient pressure to the saturation. So we have

�E D A� � nVkT ln .e=es/ (9.9)

Here A is the surface of the droplet, � is the work required to increase the surface
of a unit, n is the molecular density of the drop, and k is the Boltzmann constant.
Notice that the work of compression can be either positive or negative depending on
the saturation ratio. This relation (some call it the change in Gibbs free energy) may
be written as a function of the droplet radius:

�E D 4�r2� � .4�=3/ r3nkT ln .e=es/ (9.10)

The sign convention can be understood by considering that, if the saturation ratio
is less than one, then the energy change is positive: in this case, we must provide
energy to the system. On the other hand, if the saturation ratio is greater than one,
the droplet will grow spontaneously if the radius is greater than a critical value rc

which we find by putting @�E=@R D 0, giving

rc D 2�=nkT ln .e=es/ (9.11)

A very simple calculation with this relation gives, for a droplet of 0.01�m radius,
a saturation ratio of 1.125 which is a relative humidity of 112.5 %. Unfortunately,
these are not routine values of relative humidity found in the atmosphere, and
consequently even small embryos cannot grow. Droplets that have reached the
critical radius may capture an additional molecule and become supercritical. If we
invert relation (9.11), we get

es .r/ D es .1/ exp .2�=rnkT/ D es .1/ exp .2�=r
LRvT/

This result shows that if the particle grows in size, the saturation pressure decreases
and the rate of growth (which depends on the difference between e � es) increases
so that supercritical droplets grow spontaneously. From statistical thermodynamics,
the nucleation rate per unit volume is given approximately by

J D 4�r2c
ep

2�mkT
Zn exp

�
�4�r2c�

3kT

�
(9.12)
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The nucleation rate is defined as the rate at which supercritical droplets are
formed. In Eq. (9.12), k is the Boltzmann constant, n is the number density of
water molecules, and Z is a numerical factor of the order of 10�2. As reference, a
significant rate of homogeneous nucleation is 1 cm�3 s�1. Saturation ratio measured
experimentally for this nucleation rate ranges around 3–6 increasing with decreasing
temperature. This confirms the simple calculation made before.

The situation changes considerably if we consider heterogeneous nucleation. In
this case, water vapor condenses on a preexisting particle. The simplest case is when
the constituents of this particle are soluble in water. In this case, the saturation
pressure on the surface of the particle is lowered because the number of water
molecules on the droplet surface is reduced. The fractional reduction of the vapor
pressure is given by

f D e0=e (9.13)

We now consider a solution droplet of radius r that contains a mass ms of dissolved
salt with molecular weight Ms. If each molecule of the salt dissociates into i ions,
the effective moles of the salt in the droplet will be ims/Ms. If the density of the
solution is 
0 and the molecular mass of water Mw, then the number moles of pure
water in the droplet is �

4�r3
0 � ms
�
=Mw

And the mole fraction of pure water is

f D
�
4
3�r3
0 � ms

�
=Mw

. 43�r3
0 � ms/ =Mw C ims=Ms
(9.14)

If we substitute from Eq. (9.12) the vapor pressure in Eq. (9.13) and then equate the
quantity obtained in Eq. (9.14), we have

e0

es
D



exp
2� 0

n0kTr

� 

1C imsMw

Ms . 43�r3
0 � ms/

��1
(9.15)

Now we have put primes on everything because we refer to the quantity in solution.
This equation can be used to calculate the relative humidity needed to grow small
drops that may have a condensation nucleus inside and should be compared directly
with Eq. (9.12). The comparison can be simplified if we consider that both the
exponential term and the fraction within parentheses are very small. If we neglect
the solute mass with respect to the mass of the droplets, we get


1C imsMw

Ms . 43�r3
0 � ms/

��1
Š


1C 3imsMw

4�r3Ms
0

��1
D 1 � b

r3
(9.16)
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where b D 3imsMw=4�Ms

0. On the other hand, the exponential can be written as

exp
2� 0

n0kTr
Š 1C 2� 0


0RvTr
D 1C a

r
(9.17)

where a D 2� 0=
0RvT. These terms can be expressed numerically as

a D 3:3 � 10�5T�1 .cm/ b D 4:3ims=Ms
�
cm3

�
and it is rather obvious that they are quite small. As a consequence, Eq. (9.15) can
be expressed as

e0

es
D 1C a

r
� b

r3
(9.18)

The term on the right, proportional to the inverse of the radius, is referred to as the
“curvature effect” and expresses the decrease of the saturation ratio with increasing
radius of the droplet. The last term is referred to as the “solution effect” and shows
the decrease of the saturation ratio with the increasing mass of the solution.

A graphic representation of Eq. (9.18) or (9.15) is given in Fig. 9.4, and the
curves shown are known as Köhler curves. From Eq. (9.18), it can be easily worked
out that the maximum for the curves are given by

r D
�
3b

a

�1=2 e0

es
D 1C

�
4a3

27b

�1=2
(9.19)

Fig. 9.4 Variation of the
relative humidity and
supersaturation for droplets of
ammonium sulfate and salt.
The upper curve shows the
relative humidity for a droplet
of pure water. The other
curves (1) and (3) are
ammonium sulfate with
10�16 and 10�17 g of solute,
respectively; (2) and (4) are
the same for salt. Notice the
expansion of the scale of the
relative humidity above
100 %
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As an example, we consider a NaCl salt with i D 2, Ms D 58.44, and ms D 10�19

kg at 0 ıC and then we get a D 1.2 10�7 cm and b D 1.47e�17 cm3. Then
r D 0.19 �m and the saturation ratio 1.00417 which is a relative humidity of
100.4 %. Figure 9.4 shows that the lowering of the saturation ratio is much more
evident for the small droplets that can nucleate now at reasonable values of the
relative humidity. In the atmosphere, the relative humidity rarely exceeds by a few
percent the 100 % limit.

The droplets forming in conditions represented by the left-hand side of the Kohler
curve are in equilibrium with the ambient air. As a matter of fact, if a droplet with
a 0.05 mm radius and 1 % supersaturation should grow a little, the vapor pressure
on their surface would grow above the vapor pressure of the ambient air and they
would evaporate back to the initial size. Conversely, if the droplet should decrease
in size, the vapor pressure would be below the saturation of the ambient air and the
particle would grow back to the original size. Droplets on the left side of the Köhler
curves are stable and correspond to haze particles. Droplets at the maximum of the
Kohler curve, or on the right side, are in an unstable equilibrium. If they increase a
little in size, the vapor pressure on them will decrease below that of the ambient air
and they will continue to grow.

It appears that a droplet that goes beyond the top of the curves may grow
indefinitely by condensation, but we can easily see that there are a few problems
that prevent this from happening.

9.3.2 The Growth by Condensation

The simplest way for the droplets to grow is apparently through condensation. This
happens when the vapor pressure in the environment of the droplet is greater than
the saturation pressure. However, it is a very interesting exercise to show that it is
very unlikely that rain can be produced through condensation.

We assume that the water vapor flow to the particle is due to diffusion. Then the
mass M of the droplet will change at the rate

dM=dt D 4�x2Dd
w=dx (9.20)

where 
v is the water vapor density at distance x from the center of the spherical
droplet and D is the diffusion coefficient. The mass flux responsible for the growth
is independent from the distance so that Eq. (9.20) can be integrated from the surface
of the droplet up to a very large distance. We obtain

dM=dt

1Z
r

dx=x2 D 4�D


� .1/Z

� .r/

d
w ) dM=dt D 4�rD Œ
� .1/� 
�.r/� (9.21)

Equation (9.21) can be easily written as the rate of change of the droplet radius as a
function of the saturation pressures and the density of liquid water 
l
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dr

dt
D 1

r
D

� .1/


le .1/
Œe .1/ � e.r/� (9.22)

This relation shows that the rate of growth is proportional to the inverse of the
radius so that the small particles will grow faster than the large ones. Rearranging
Eq. (9.22) and defining the supersaturation S of the ambient air as

S D e .1/� e.r/=e .1/ Š e .1/� es=es;

we have

r
dr

dt
D D


� .1/


l
S D GlS with Gl D D


� .1/


l
(9.23)

The factor Gl can be considered constant for a given environment so that Eq. (9.23)
can be easily integrated to give

r D .2GlSt/1=2

The diffusion coefficient is of the order of 2 10�5 m2 s�1 at the pressure of 1000 kPa,
and the density of water vapor may be expressed as a function of the mass mixing
ratio w. With a mixing ratio of 0.002, we have Gl Š 5�10�11 m2s�1. With a
supersaturation of 1 %, the droplet will reach 1 �m in 1 s and will take about 1 h to
reach 60 �m. Figure 9.1 shows that raindrops could never be formed in a reasonable
time with the condensation mechanism. There are other considerations that hint that
condensation is not responsible for the formation of raindrops. Given a mixing ratio
w and the number of condensation nuclei for unit volume (nCCN), it is easy to show
that the maximum radius for droplets growing by condensation is simply

r D .3w
=4�
lnCCN/
1=3

With the observed range for the variables, this expression gives droplets in the size
range of tens of microns which are still too small. Also, the distribution of the
droplets would be essentially monodisperse with all the droplets having the same
radius.

9.3.3 Droplet Growth by Collision and Coalescence

We have seen that condensation will hardly produce droplets large enough to initiate
rain. A much more efficient mechanism can be related to the fact that, if a droplet
gets large enough, the forces that keep it from falling (electrical or aerodynamic)
are overcome by the gravitational force. During the fall, the droplet may collide
with smaller droplets and capture them and grow in size (the old story about the big
fish eating the smaller one).
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First of all, we need to refresh our memory about the terminal fall speed which
is reached when the viscous force on the droplet is equilibrated by the weight of the
particle. The drag force on a droplet of radius r is given by

FR D �CDr2w2
=2 (9.24)

where Cd is the drag coefficient, 
 is the density of air, and w is the vertical velocity.
The drag coefficient can be expressed in terms of the Reynolds number Re:

Re D 2
wr=� (9.25)

with � as the dynamic viscosity. Then Eq. (9.24) becomes

FR D 6��rw .CDRe=24/ (9.26)

Equating this force to the gravitational force acting on the particle, we have for the
terminal velocity

w D 2

9

r2g
l

� .CDRe=24/
(9.27)

When the Reynolds number is small, we can use the formula we learned in school
(Stokes’ solution) which corresponds to having the terms in parentheses in Eq.
(9.26) or (9.27) put to one. Then we have

w D 2

9

r2g
l

�
D k1r

2 (9.28)

where k1 Š 1.2 106 cm�1 s�1. This relation (also known as Stokes’ law) shows that
the terminal velocity is proportional to the square of the radius and can be applied
up to particles with about a 30 mm radius. For large spheres and high Reynolds
number, the drag coefficient becomes about 0.45 and the dependence on the radius
is now on the square root according to

w D 2:2 � 103.
0=
/1=2r1=2 (9.29)

with the velocity expressed in cm s�1. To have an idea of the numbers, a spherical
raindrop of 0.1 mm will fall to about 0.3 m s�1 with a Reynolds number of 3.6,
while a 5 mm drop will fall at 9 m s�1 with a Reynolds number of 6000.

At this point, we should be convinced that particles with different radiuses fall
at different velocities, the larger going faster. The capture geometry looks like that
in Fig. 9.5, where a drop of radius R will overtake, and possibly capture, a smaller
drop of radius r. Actually, even if geometry does not give the smaller drop a chance,
if it is within the range of the larger radius, physics gives a different result.
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Fig. 9.5 The geometry for
collision between two drops
with the impact parameter y
shown

R

y

r

The air will slipstream around the larger drop and the capture will depend on the
critical distance, called the impact parameter. All the drops falling within the drop
parameters will collide with the larger drop but will not necessarily be captured.

The collision efficiency will be the ratio between the area swept by the impact
parameter and the possible total area swept by the droplets:

E D y2=.R C r/2 (9.30)

The collision efficiency is not easy to calculate and has very small values for
small ratios r/R and values greater than unity for droplets of the same size. However,
even if one would be able to calculate E exactly, then it would still be uncertain
if after the collision there is coalescence. We need to introduce another quantity,
called coalescence factor, that is actually the fraction of collision that results in
coalescence. The product of the coalescence factor and the collision efficiency is
called the collection efficiency Ec. The coalescence factor is unity for a very small
r/R ratio and then falls off rapidly.

We can now proceed to a very simple calculation, assuming that a drop of radius
R falls at terminal speed through a population of smaller droplets. The volume swept
per unit time will be proportional to the relative speed of the droplets:

�.R C r/2 Œu.R/� u.r/�

where u is the terminal velocity for the droplets. If n(r) is the number of droplets,
with radius between r and r C dr, they will be captured at a rate

�.R C r/2 Œu.R/� u.r/� n.r/Ec .R; r/ dr

The total change of volume of the larger drop is obtained by integrating all over the
drop sizes

dV

dt
D
Z R

0

�.R C r/2
4

3
�r3 Œu.R/� u.r/� n.r/Ec

�
R; r

�
dr
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This expression is very much simplified if we assume that r << R so that for the
velocities u.R/ >> u.r/. We can easily obtain in this approximation the increase in
the radius of the collecting drop as a function of liquid water content wl (in kg m�3):

dR

dt
D u.R/wlE

4
l
(9.31)

where we have substituted E for Ec. This equation shows that the size increases
linearly with the radius of the collecting drop (the terminal velocity is linear with
the radius). We may then expect that, up to a certain size, growth by condensation
will dominate and after that the coalescence will pick up.

We have assumed that the relative velocity coincides with the terminal velocity
of the larger drop. However, the relative velocity can be decreased if an updraft (i.e.,
a vertical current) is present. If we assume w to be the value of the vertical velocity,
the change in altitude of the collecting drop will be

dh

dt
D w � u

so that, writing dR=dt D .dR=dh/ .dh=dt/, we have from Eq. (9.31)

dR

dh
D uwlE

4
l .w � u/
(9.32)

This expression can be integrated between the base and the top of the cloud:Z H

0

wldh D 4
l

Z RH

R0

w � u

uE
dR

From this, we can obtain the altitude H for which the drop has an assigned value for
the radius RH when the liquid water content is constant:

H D 4
l

wl

Z H

0

w

uE
dR �

Z rH

R0

dR

E
(9.33)

This equation gives a rather clear idea of the growth process by collision within
a cloud. When the drops are small (w >> u), the first integral dominates the second
and H increases with RH which means the drop grows by being carried upward.
When the drop is large enough, then w < u and the altitude H decreases with
increasing RH, meaning the size of the drops will increase by falling. If it gets large
enough, it will pass through the base of the cloud and become rain; otherwise it can
break up in smaller drops. Each one of the fragments can start the process anew
either by going up or down.

We assumed implicitly that falling drops encounter a constant and uniform
population of smaller drops. However, dealing with collisions, we should know that
this problem must be treated statistically.
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9.3.4 The Statistical Growth

We start by noting that a proper way to see the growth through collisions is to think
that a drop spectrum (i.e., size distribution) initially determined by condensation and
diffusion changes its shape by random collision between droplets. Consider again
that the volume swept by a drop of radius R will be �R2u(R) and similarly for a drop
of radius r. In order for the drops to collide, they must be contained in the volume
�.R C r/2 Œu.R/ � u.r/�. The aerodynamic effect, the collision efficiency,

will reduce this volume to an amount:

K .R; r/ D �.R C r/2 Œu.R/� u.r/�E .R; r/ (9.34)

that we will denote the coagulation coefficient. All the previous treatments for
continuous growth could be reformulated in terms of probability, interpreting Eq.
(9.34) as the probability that a drop of radius R will coalesce with a drop of radius r.
Actually the formulation based on the volumes is simpler than the one based on the
radius. The coagulation coefficient is then reformulated as

H .V; v/ D K
h
.3V=4�/1=3; .3v=4�/1=3

i
(9.35)

Consider now a drop spectrum described by n(v) that is the average number of
drops with volumes between v and v C dv. According to the definition of coagulation
coefficient, the rate of coalescence is given for drops included in the size interval by

n .v/ dv
Z 1

0

H .V; v/ n .V/ dV

Actually this rate will decrease the number of drops in the size interval because
it accounts for the capture by both large particles and small particles. However,
an increase may be attributed to all the pairs of smaller particles with volumes
amounting to v. The rate will be

@

@t
n .v/ dv D 1

2
dv
Z v

0

H
�
ı; v0� n

�
v0� n .ı/ dv0 � n .v/ dv

Z 1

0

H .V; v/ n .V/ dV

(9.36)

where ı D v � v0 and the factor ½ is to prevent any capture to be counted twice.
Equation (9.36) can be solved numerically (i.e., with a computer program), but also
analytical solutions for simple cases are known. One simple solution refers to a
monodisperse initial population (particles with the same radius) and is known as
the Smoluchowski solution. It shows that the final state corresponds to a spreading
of the initial Dirac-ı distribution. An analytical solution can be found also for the
case of preserving size distribution. Here, the final state shows a drift of the initial
population toward larger sizes.
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The coagulation mechanism is quite general and of great importance in studying
stratospheric aerosols. Sometimes the coagulation coefficient is also called the
kernel because it is the quantity appearing in the integral of Eq. (9.36) and
establishes the interactions between different size distributions.

9.4 Formation and Growth of Ice Crystals

When the temperature within a cloud is colder than 0 ıC, then in theory freezing
can take place. Actually the phase transition into ice may happen either by direct
freezing of a liquid drop or by a direct sublimation from the vapor phase to the solid.
Both these processes, which may be regarded as homogeneous nucleation, are very
unlikely and can take place only at very low temperatures (less than �40 ıC) or
extreme supersaturation or both.

As in the case of liquid droplets, the nucleation is much easier if a substrate exists.
Usually the presence of condensation nuclei may raise the temperature threshold
for ice formation. Among the pure substances, the highest temperature refers to ice
(0 ıC), while all the other substances start ice nucleation between �4 and �12 ıC.
This is the reason why some of these substances (like silver iodide) are used to seed
clouds in the hope that they will facilitate ice formation and then rain.

Once ice crystals are formed, they may grow initially by condensation and much
faster than the liquid drops, because at the same temperature the saturation pressure
for ice is lower. The saturation ratio with respect to the ice can be written as

Si D e=ei D .e=es/ .es=ei/ D S .es=ei/ (9.37)

where S indicates the saturation with respect to water. As we have shown in Chap.
1, the saturation pressure over ice can be approximated as

ei D Ae�B=T

where A D 3.41�109 kPa and B D 6.13�103. The difference with respect to water
is that we have to use the heat of sublimation L D 2.83�106 J kg�1. Then a direct
comparison can be made with the saturation pressure over water and we obtain

es

ei
D exp



Ls � L

RvT0

�
T0
T

� 1

��
(9.38)

where the symbols are the same used in Chap. 2. This expression shows that the
saturation pressure over water exceeds that over ice for temperatures below 273 K.
The quantity .es=ei/�1 is shown in Fig. 9.6. Although the values on which the figure
is based do not take into account the temperature dependence of the latent heat, it is
clear that the supersaturation with respect to ice is quite large. We can then imagine
that inside the clouds the ice deposition will continue as long as there are droplets
that, by evaporating, maintain a vapor pressure in equilibrium with respect to water.

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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Fig. 9.6 The supersaturation with respect to ice in an environment at equilibrium saturation with
respect to water

Growth by diffusion is not so simple as in the case of liquid droplets because we
cannot use the spherical symmetry. There is however a simple argument based on
the fact that the diffusion equation at steady state is similar to the Poisson equation
for the electrostatic potential:

r2V D �
="0 (9.39)

In this case, the electric field is given by the Gauss theorem

4�R2"0 .�rV/ D Q (9.40)

where R is the radius of the region that includes the charge Q. If we refer to a
conducting sphere of the same radius, we can relate the capacitance C to the electric
field and the potential:

4�R2"0 .�rV/ D CV

In complete analogy, we assume that, in case of diffusion flux, the left-hand side
coincides with the total current of water molecules with number density n:

4�R2 .�Drn/ D 4�CD .ns � n1/

where D is the diffusion coefficient ns and n1 is the number density on the surface
of the crystal and far away from it. The capacitance must then be expressed in units
of length. In terms of the mass densities, the growth equation can be written as

dm

dt
D 4�CD .
v � 
vr/ (9.41)
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Here 
v and 
vr are the density of water vapor far away and at the surface of the
crystal. The release of the heat of sublimation during crystal growth implies that the
surface is warmer. The heat released during sublimation is given by Lsdm/dt and this
must be equal to the heat taken away by conduction:

4�CDLs .
v � 
vr/ D 4�CK .T � Tr/

so that we have for the difference in density

.
v � 
vr/ D K .T � Tr/ = .LsD/ (9.42)

In this equation, the environmental conditions are represented by T and 
v, while the
conditions on the surface of the crystal are unknown. However, density and pressure
are related by the equation of gases so that the coupled system could be integrated in
principle starting from some initial conditions. A possible alternative is to linearize
the dependence of the saturation pressure on the temperature. Using

d
vs


vs
D des

es
� dT

T
D Ls

Rv

dT

T2
� dT

T

it is possible to obtain, after a few manipulations, that


vs � 
vrs


vrs
D
�

T � Tr

T

��
Ls

RvT
� 1

�
(9.43)

The temperature difference can be expressed in terms of heat lost by the crystal and
then the mass increase:

Ldm=dt D 4�rK .Tr � T/ (9.44)

This substituted in Eq. (9.43) gives an expression for the saturation densities:


vs � 
vrs


vrs
D
�

Ls

4�krT

��
Ls

RvT
� 1

�
dm

dt
(9.45)

We can get a similar expression for the vapor density from Eq. (9.41)


v � 
vr


vr
D .4�CD
vr/

�1 dm

dt
(9.46)

Subtracting and assuming that


vr � 
vrs Si D 
=
s
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Fig. 9.7 The growth of an ice crystal at different values of the ambient pressure (Rogers and Yau
1989)

Table 9.2 Ice crystal shapes that form at various temperatures

Temperature (ıC) Habit Crystal form

0 to �4 Platelike Thin hexagonal plates
�4 to �10 Prismlike Needles (�4 to �6 ıC). Hollow columns (�4 to �10 ıC)
�10 to �22 Platelike Sector plates (�10 to �12 ıC). Dendrites (�12 to �16 ıC).

Sector plates (�16 to �22)
�22 to �50 Prismlike Hollow columns

we have

dm

dt
D 4�C .Si � 1/


�
Ls

RvT
� 1

�
Ls

KT
C RvT

ei .T/D

��1
(9.47)

In Fig. 9.7, the growth rate of an ice particle is normalized to the factor 4�C. It is
clear that the growth rate is a function of the pressure, while the maximum growth
is obtained for a temperature around �15 ıC.

After the growth has been initiated by condensation, the ice crystal may assume
a number of shapes that are called habits. The most simple forms are platelike
hexagonal or needle, that is, hexagonal prisms with a long aspect ratio. Starting
from these basic forms, there is a variety of other shapes that seem to depend on the
water vapor pressure and temperature. Table 9.2, taken from Wallace and Hobbs,
lists the different habits and shapes we may expect as a function of temperature.

Once the crystal is formed, it may grow further with mechanisms that are similar
to those seen for liquid drops. A very important factor is the different saturation
pressure with respect to ice and water. An environment saturated with respect to
water is supersaturated with respect to ice. This implies that, as the crystal grows
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by deposition of vapor, it depletes the environment of vapor so that at some point
the vapor pressure may fall below the saturation with respect to water. The water
droplets will evaporate and replenish the environment of vapor which will be used
for further growth of the ice crystal.

While the mechanisms for growth are similar to those seen for water droplets, a
different vocabulary is used in the case of ice crystals. The term accretion indicates
the capture of supercooled droplets by ice particles. Aggregation describes the
clumping of ice crystals to form snowflakes.

Accretion is a process very similar to coalescence in that a crystal large enough
may fall through a population of supercooled droplets, colliding and capturing them.
As they hit the surface of the crystal, the droplets freeze, causing an ice deposit to
form that is called rime. Because the process is very similar to coalescence, we may
use a similar relationship for the growth of a mass mi:

dmi

dt
D
Z 1

0

Ai .vi � vc/E .rr; r/ n .r/ dr (9.48)

where Ai is the geometrical cross section of the crystal, vi,c are the terminal velocities
of the ice particle and the droplet, E is the collection efficiency, and n(r) is the
size distribution of cloud droplets. Equation (9.48) assumes that the droplets are
spherical; otherwise we must use functions that describe the spectral density of
the droplets. Each one of the variables in Eq. (9.48) is dependent on the growth
habit of the crystal and, because during the riming process the shape changes, these
parameters also change (Fig. 9.8).
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Fig. 9.8 A very simple scheme of the interaction between different phase and water substances
(Adapted from Houze 1993)
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The growth of the ice crystal can be so efficient that soon the particle loses
its original shape. In this case, we talk about a graupel particle. The density of a
graupel particle is usually smaller than that of water but can be enough to make the
particle fall and tumble and the shape may become quite irregular. Graupel may also
function as embryos for hailstone if there is enough liquid water in the cloud and a
strong updraft. The heat deposited on the hailstones surface due to sublimation may
be large enough to heat the surface and limit the rate of ice formation. In this case,
it is said that the hailstone grows in a wet regime.

Another way for an ice crystal to grow is aggregation, during which snowflakes
are formed. Actually, snowflakes are a cluster or aggregate of ice crystals, and
these may have formed through a previous process of collision or coalescence. The
study and parameterization of the aggregation process are quite complex because
snowflakes may assume a variety of forms and then influence terminal velocities
and collection efficiency.

This section on microphysics cannot be exhaustive and the interested reader
should see more specialized texts. However, the topic of precipitation is strictly
connected to the weather forecast which nowadays is very much related to radar
observation. Actually, recent advances in radar techniques give such nice results that
they have a didactic value, that is, they illustrate very clearly the way precipitation
can form and how water phase changes in the different cloud regions.

9.5 Stratospheric Aerosols

Until a few years ago, interest in stratospheric aerosols was confined to what was
called the Junge layer. This was a thin aerosol layer in the lower stratosphere that
was replenished each time a volcanic eruption would be large enough to inject
appreciable quantities of sulfur dioxide directly above the tropopause.

This background aerosol layer was studied starting from the 1960s using optical
radar (lidar). Beginning in 1978, first with SAM (stratospheric aerosols monitoring)
and then with SAGE (stratospheric aerosols and gas experiment), the layer was
studied mainly through observations with orbiting satellites. The advantage was that
data from space could provide a global picture of the distribution of the aerosol load.
“Luckily” enough, there were three large eruptions in a few years, Mt. St. Helens in
1980, then El Chichon in 1982, and Pinatubo in 1991. The last one happened just
before the launch of the UARS (Upper Atmosphere Research Satellite).

Large eruptions, by perturbing the stratospheric aerosol layer, were thought to
perturb Earth’s climate. This question as of today is still unresolved, at the least
for the eruptions we have known directly. New interest in stratospheric aerosols
was stimulated by the hypothesis that their presence could influence stratospheric
chemistry and in particular the ozone. This idea was a spin-off from the explanation
of the ozone depletion in the polar region. The implications of the stratospheric
aerosols are many and cannot be exhausted in a paragraph of a general textbook.
We will review only a few aspects and invite to read specific papers and report on
the subject, especially the ASAP, SPARC report.
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9.5.1 The Sulfate Aerosol Layer

The stratospheric sulfate aerosol (SSA) is the main component of the background
aerosol layer in the stratosphere. These particles are liquid and composed of
sulfuric acid (H2SO4) and water (H2O) which is the same composition as the
Venus clouds. The way to get the sulfur above the troposphere is through oxidation
of long-lived sulfur-bearing species like carbonyl sulfide (COS). Sulfur dioxide
can also reach the stratosphere but only when there is a strong convection within
cumulonimbus clouds. In this way, the transport is fast enough with respect to
chemical processes that it destroys the troposphere. The remaining way to get sulfur
in the stratosphere is through explosive eruptions. There is strong evidence that most
of the stratospheric aerosols actually originate from these eruptions, and most of
the time we are simply looking at the remnants of what is produced during these
sporadic events. Figure 9.9 shows a possible budget for the sulfur species which
contributes to the aerosol population. A major volcanic eruption (like Pinatubo)
would inject a sulfur amount around 10 Tg S in the form of SO2 that is about 100
times all the sources in quiescent condition. Once injected in the stratosphere, SO2

is converted into sulfuric acid (H2SO4) vapor by two mechanisms:

SO2 C OH C M ! HOSO2 C M
HOSO2 C O2 ! HO2 C SO3

(9.49)

Fig. 9.9 A rough budget (Rasch et al. 2008) of the sulfur compounds contributing to form the
stratospheric sulfate layer. Numbers inside the boxes indicate the sulfur amount (in Tg D 1012 g)
of S. The boxes also report the lifetime for the major sink. The numbers beside the arrows are the
net sources or sink (Adapted from Rasch et al. 2008)
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Sulfur trioxide (SO3) is converted to sulfuric acid by

SO3 C H2O ! H2SO4 (9.50)

The conversion of sulfuric acid gas into liquid can occur by two mechanisms. The
first involves the combination of sulfuric acid and water molecule (homogeneous,
bimolecular nucleation) or the combination of H2SO4, H2O, and HNO3 molecules
(homogeneous, heteromolecular nucleation) to form mainly sulfuric acid droplets.
Also vapor condensation of H2SO4, H2O, and HNO3 can occur on preexisting parti-
cles with radius greater than 0.15 �m (heterogeneous, heteromolecular nucleation).
The second mechanism is the most likely with the conversion taking about 1 month.

SSA particles have a density of the order of 10 cm�3 and their size distribution
changes considerably after an eruption. Figure 9.10 shows a possible size distribu-
tion before and after the eruption with a density of 1 cm�3. The total area density
normalized to this density is around 0.086 �m2 cm�3 and 1.9 �m2 cm�3. The area
density is then proportional to N.

As can be seen from Fig. 9.10, a typical dimension of the SSA particles is less
than 0.1 �m, but a more important parameter for stratospheric particles is rather
the area density, that is, the surface area per unit volume. This is because most

Fig. 9.10 The size distribution of sulfate aerosol during quiescent condition and after a major
volcanic eruption. Notice the change in both the standard deviation and the node radius. The
distribution refers to a density N D 1 cm�3
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of the aerosol particles are the site for chemical reactions to occur. Typical values
measured range between 1 and 10 �m2 cm�3.

We can refer to Fig. 1.6 to see that, for typical stratospheric conditions, that is,
pressure between 100 hPa and 20 hPa and temperature between 200 and 240 K,
the partial pressure of water vapor may range between 5.10�2 and 1.10�3 Pa. That
figure would give sulfate particles with 70–80 % of sulfuric acid mass fraction. SSA
particles are supercooled solutions, but if the temperature goes below 220 K, they
may freeze and produce hydrates, the most likely being sulfuric acid tetrahydrate
(SAT, H2SO4 • 4H2O). Recent data and laboratory experiments show however that
freezing is very unlikely, and at low temperature, the aerosol particles may switch
completely in composition to NAT (nitric acid trihydrate).

9.5.2 Polar Stratospheric Clouds

Polar stratospheric clouds of type 1 (PSC-1) have the chemical composition of
NAT (HNO3 • 3H2O). Actually, the chemical composition of such particles is not
very well known and is mainly based on the measurement of their size distribution
and on the fact that, in the lower polar stratosphere (i.e., between 20 and 24 km),
there exist environmental conditions that may be favorable to their formation,
with temperatures lower than 200 K. Typical dimensions of these particles are
around 1 �m, while their chemical compositions reflect roughly, but not exactly,
the stoichiometric ratio (54 % mass fraction of nitric acid).

Polar stratospheric clouds of the second kind (PSC-2) are formed when the
temperature goes below 188 K so that water can freeze. These particles are very
large, with a radius of the order of 10 �m, and their residence time in the strato-
sphere is only a few hours. The size distribution can be assumed to be lognormal
with the following parameters. For PSC-1, we have N0 D 0.1 cm�3, rm D 0.9 �m,
and e � D 1.8 �m while for PSC-2 we have N0 D 0.008 cm�3, rm D 4.5 �m, and
� D 1.7 �m. It is to note that the distributions are well differentiated and that the
aerosol density decreases with increasing average radius.

It is rather easy to show that for a lognormal distribution the surface density is
proportional to the average radius squared:

S D 4�N0r
2
m exp

h
2 ln .�/2

i
(9.51)

Based on that formula, PSC-1 are those with the larger surface density followed
by PSC-2 and then SAA. It is to note however that these particles act in different
regions with the SAA that are found mainly in midlatitude regions, while PSC are
more frequent at high latitudes.

In recent times, the study of such particles has made important progress so that
we know that the surface is not the only parameter important for heterogeneous
reactions but also composition and temperature must be taken into account. Also

http://dx.doi.org/10.1007/978-3-319-29449-0_1
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progress has been made on the formation of stratospheric aerosols. Initially, it was
thought that PSC could form on SSA. As we have seen, SAA particles may freeze
when the temperature falls below 215 K and form SAT particles. However, when
the temperature decreases, also the gas solubility must be taken into account. It
is possible to show that the solubility of sulfuric acid decreases drastically below
195 K so that below this temperature, more precisely in the range 192–197 K, NAT
may form as a coating on preexisting sulfate particles. If the temperature decreases
further, below 188–190 K, water ice may form.

Actually, the processes involved are more complex, as shown schematically in
Fig. 9.11, where the stability regions for SAT, NAT, and water ice are shown. This
figure is drawn for stratospheric conditions that refer to 50 hPa and 5 ppm of water
vapor. In this figure, slightly different abbreviations are used, so that SAT is H2SO4

• 4H2O, SAX is the generic name for sulfuric acid hydrates, SAM is H2SO4 • H2O,
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Fig. 9.11 Stability regions of sulfuric acid and nitric acid. See text for explanation. Notice that the
temperature scale is not linear. Scientific assessment of ozone depletion: (From WMO report n. 44,
Scientific Assessment of Ozone Depletion)
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and SAH is H2SO4 • 6.5 H2O. NAT is for HNO3 • 3H2O, NAX is again the generic
nitric acid hydrate, NAD is HNO3• 2H2O, and NAP is HNO3 • 5H2O.

MIX indicates a mixture of nitric and sulfuric acid according to H2SO4 HNO3

H2O. The (l) indicates a liquid phase. All the solid arrows indicate equilibrium
phases and the dashed nonequilibrium phases.

The temperature scale is delimited by values where the different hydrates should
form, starting from the highest (213 K) for SAT down to the colder 189 K for water
ice. The scheme given in this figure is taken from a recent NASA report and is
still very speculative. We will meet stratospheric aerosols again when dealing with
stratospheric chemistry.

9.6 Clouds in Planetary Atmospheres

We will dedicate a later chapter to the planetary atmosphere, but it is worth to
anticipate a few things about clouds in the atmospheres of the planet using some
of the thermodynamics we have learned so far.

A good starting point is superimposing the phase diagram for water to the
environmental conditions of the planets in the solar system as it appears in Fig. 9.12.
From this, we get the indication that water clouds are in vapor phase on Earth, Venus,
and Mars and mostly in the liquid phase on Earth, Jupiter, and Saturn.

To enter the detail, we will assume the general condition that clouds will form
when the partial pressure of the condensing gas will be greater than the saturation
pressure. We could use a more accurate form of the Clausius–Clapeyron equation
studied in Chap. 1 (Eq. (1.34)). Equation (1.33) has to be integrated using a latent
heat of condensation which depends on temperature. This can be obtained by a
simple series expansion like

L D L0 C�˛T C �ˇ

2
T2 C O

�
T3
�

(9.52)

Equation (1.33) can be easily integrated:

des

es
D 1

Rv

�
L0

dT

T2
C�˛

dT

T
C �ˇ

2
dT

�
Giving the saturation pressure dependence from temperature,

ln es � ln es0 D 1

Rv

�
�L0

T
C�˛ ln T C �ˇ

2
T

�
(9.53)

http://dx.doi.org/10.1007/978-3-319-29449-0_1
http://dx.doi.org/10.1007/978-3-319-29449-0_1
http://dx.doi.org/10.1007/978-3-319-29449-0_1
http://dx.doi.org/10.1007/978-3-319-29449-0_1
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Fig. 9.12 The phase diagram of water with the temperature–pressure range adequate for some
planet of the solar system. V (Venus, surface), E (Earth surface and cloud level), M (Mars, surface
and cloud level), J Jupiter, S Saturn, U Uranus, N Neptune (From Sanchez-Lavega et al. 2004)

Table 9.3 Saturation vapor pressure and latent heat coefficient for some of the condensable gases
in planetary atmospheres (From Sanchez-Lavega)

Component ln(es0) L0 (J kg�1) �˛ (J kg�1 K�1) �ˇ/2 (J kg�1 K�2)

H2SO4 16.256 8.65 106

H2O 25.096 3.148 106 �8.7
CO2 26.1 639.6 �1.7
NH3 27.863 2016 �8.88 10�2

(*)es0 in bar

The coefficients appearing in this equation are listed in Table 9.3 only for a few
gases, that is, H2SO4 (Venus), CO2 (Mars), NH3 (Jupiter), and H2O for all the
planets. Based on this equation, we have considered the atmosphere of Venus, Earth,
Mars, and Jupiter. For each planet, we have assigned a mass mixing ratio for the gas
and used the simple formula which relates the mass mixing ratio � with the volume
mixing ratio e/p:

� D Mv

Ma

e

p
(9.54)
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Fig. 9.13 Condensation levels on four planets oft he solar system. See text for explanation
(Adapted from Sanchez-Lavega)

where Mv and Ma are the molecular masses of the vapor and the atmosphere,
respectively. For an assigned mixing ratio, the condensation level could be obtained
for each planet as shown in Fig. 9.13. For each planet, the figure shows the
temperature profile (solid line). For Venus, the condensation temperatures at two
different mixing ratios for sulfuric acid (2�10�3, 2�10-6) are given. The resulting
condensation levels are at about 30 and 50 km, respectively, which are consistent
with observed altitude range for clouds on Venus. For Earth, we have plotted
the results for two different mixing ratios; the higher (15 g/kg) gives a very
low condensation altitude. For Mars, besides water, we have plotted the possible
condensation for carbon dioxide ice with a mixing ratio of 0.95. Apparently
clouds of this kind will not form in the common environmental conditions of the
atmosphere but may form in the polar atmosphere. For Jupiter, calculations have
been performed for ammonia (NH3) and again this will form at pressure lower than
1 hPa.
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This calculation can be further extended to have some idea about the thickness of
the clouds. This can be done easily if we assume the simplified form of the Clausius–
Clapeyron equation written for the cloud base:

es D es;cl exp

�
�Li .Tcl � T/

RvTTcl

�
where e s,cl is the saturation pressure at the cloud base, Tcl is the temperature at the
cloud base, and Li is the latent heat of the generic compound. If the temperature
changes adiabatically, then we have

Tcl � T D �
g=cp

�
.zcl � z/

Combining the last two expressions, we have

es D es;cl exp

 
�Li

�
g=cp

�
.z � zcl/

RvT2cl

!
(9.55)

so that we can define a vertical scale height for the cloud and its ratio with the
atmospheric scale height:

Hcl D RvT2clcp

gLi
) Hcl

H
D cp

Rv
R

Tcl

Li
(9.56)

From the data of Table (9.3), for the different planets, this ratio changes between
0.12 and 0.2 so that the vertical extent of the clouds is thin with respect to scale
height. These are very simple considerations and refer to simple stratified clouds
without taking into account any dynamical process. The mass per unit surface in the
clouds can now be evaluated as


clHcl D �clpcl

g
(9.57)

where pcl is the atmospheric pressure at the condensation level and pcl/g is the
atmospheric mass which, multiplied by the mass mixing ratio � cl, gives the total
condensed mass. From (9.57), the density of the cloud can be obtained.

Finally, we can return to the saturated adiabat as calculated in (E.1.4) and readapt
the formula (E.1.6) for a generic component:

�s D g

cp

.1C .Liws=RT//�
1C �

L2i ws=cpRvT2
�� (9.58)

Table 9.4 gives some data based on these simple calculations. These results will be
reexamined when dealing with radiative transfer in the atmosphere.

http://dx.doi.org/10.1007/978-3-319-29449-0_1
http://dx.doi.org/10.1007/978-3-319-29449-0_1
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Table 9.4 Some cloud characteristics on the planets. �vv, mixing ratio (s D ice, l D liquid); Pcl,
pressure at the condensation level; Hcl/H, scale height ratio; ¡cl, density of the cloud; � s/�d, ratio
of the saturated to the dry adiabat

�vv Pcl (105 Pa) Hcl/H ¡cl(gcm�3) �s/�d

Venus

H2SO4(l) 2 10�6 1.0 0.15 4.5 10�8 1
H2SO4(l) 2 10�3 11.3 0.22 2.4 10�4 0.88
Earth

H2O (s) 2.5 10�4 0.30 0.13 5.3 10�7 0.957
H2O (l) 0.015 0.96 0.18 5.9 10�5 0.508
Mars

CO2(s) 0.95 2 10�4 0.17 4.6 10�6 0.17
H2O(s) 3 10�4 1 10�3 0.14 2.5 10�9 0.87
Jupiter

NH3 (s) 2 10�4 0.75 0.13 1.6 10�6 0.967
H2O 5 10�5 3.2 0.12 1.2 10�6 0.990
H2O 1.7 10�3 5.7 0.17 4.4 10�5 0.867

E.9 Examples

E.9.1 The Lognormal Size Distribution

We start out with the expression for the lognormal distribution

dN

d ln r
D N0p

2� ln �
exp

("
.ln r � ln R/2

2.ln �/2

#)
(E.9.1)

that can be easily written as

dN

dr
D n.r/ D N0p

2�r ln �
exp

("
.ln r � ln R/2

2.ln �/2

#)
(E.9.1a)

and wish to understand the meaning of the two parameters R and � . We start out by
integrating with respect to r to find the cumulative size distribution N(r):

N.r/ D N0p
2� ln �

Z r

0

exp

(
1

r0

"
.ln r � ln R/2

2.ln �/2

#)
dr0 (E.9.2)

To evaluate the integral, we make the substitution:

y D .ln r � ln R/ =
p
2 ln �
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And the integral becomes

N.r/ D N0p
�

Z yD.ln r�ln R/=
p
2 ln �

�1
e�y2dy (E.9.3)

If we define the error function,

erfz D 2p
�

Z z

0

e�y2dy (E.9.4)

The integral (E.9.3) can be written as

N.r/ D N0p
�

Z 0

�1
e�y2dy C N0p

�

Z yD.ln r�ln R/=
p
2 ln �

0

e�y2dy

We get

N.r/ D N0
2

C N0
2

erf

�
ln .r=R/p
2 ln �

�
(E.9.5)

If we put r D R, we get

N.R/ D N0=2 (E.9.6)

so that the average radius is such that half of the particles have a radius less than
the average and the other half have a radius larger than the average. To understand
the significance of � , we consider a radius r� such that �g D r� =R. For this radius,
(E.9.5) becomes

N .r� / D N0
2



1C erf

�
1p
2

��
D 0:841N0

Thus �g is the ratio of the radius below which 84 % of the particles lie to the median
radius and is called the geometric standard deviation. For a monodisperse aerosol
distribution, the median radius coincides with r� and so �g D 1. Equation (E.9.5)
also shows that N0 D N .1/, that is, the total number of particles.

It is interesting to calculate the mean radius r for a lognormal distribution.
According to the definition, we get

r D 1

N0

Z 1

0

n.r/rdr



292 9 Aerosols and Clouds

where n(r) is given by (E.9.1a). We have

r D 1p
2� ln �

Z 1

0

exp

"
� .ln r � ln R/2

2.ln �/2

#
dr

The integral can be evaluated with the result

r D R exp

 
ln2�

2

!
(E.9.7)

We see that mean radius of a lognormal distribution depends on both the average
radius and the standard deviation.

E.9.2 A Few Things More About the Köhler Curve

We have shown that Eq. (9.15) can be approximated by

e0

es
� exp .a=r/

�
1 � b

r3

�
�
�
1C a

r

��
1 � b

r3

�
� 1C a

r
� b

r3
(E.9.8)

If we call this ratio supersaturation S, then the value of r which maximizes it is given
by

dS=dr D �a=r2 C 3b=r4 D 0 (E.9.9)

from which we get the value for r� D p
3b=a. Substituting this value in (E.9.8), we

get

S� � 1C a

r� � b

r�3 D 1C 1

r�

�
a � b

r�2

�
D 1C

�
4a3

27b

�
(E.9.10)

Figure E.9.1 shows an analysis of the Kőhler curve which reports also the values
for r* and S*. The curve shown refers to a solution of 10–16 mass of ammonium
sulfate.

In this case, the values are S* D 1.0051 (0.51 %) and r* D 0.156 �m. The figure
shows that the solution effect dominates up to the supersaturation values. For radius
smaller than r*, the solution droplet is in equilibrium with the environment so that if
the relative humidity increases by a small amount, the droplet will grow to a larger
radius. This process continues up to a relative humidity of 100 % or slightly over. If
the particle grows beyond the critical radius, the saturation ratio starts to decrease
and the particle will increase in size thanks to the diffusion of water vapor toward
the drop.
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Fig. E.9.1 Equilibrium
saturation ratio of a solution
droplet formed on a nucleus
of ammonium sulfate with a
mass 10–16 g. The values
with asterisk are maximum
saturation ratio (S*) and the
corresponding radius. The
dotted line curves are the two
terms in Eq. (E.9.8)
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E.9.3 Sedimentation of Particles

Particle sedimentation is treated very rarely because this process takes care of the
removal of about 10 % of the atmospheric particles. The sedimentation velocity
depends on two numbers; one is the Reynolds number:

Re D 2
rv=� (E.9.11)

where r is the particle radius, 
 is the atmospheric density, v is the velocity, and � is
the dynamic viscosity of the atmosphere. The other is the Knudsen number:

Kn D �=r (E.9.12)

where � is the gas mean free path. Kn establishes whether the fluid can be treated as
a continuum (Kn << 1) or by the statistical mechanics (Kn >> 1). We already know
that the Reynolds number gives the difference between the laminar (Re << 1) and a
turbulent regime (Re >> 1).

It may be convenient to introduce the time it takes for a particle to fall a scale
height. We may start with the terminal velocity for a rigid sphere:

V D 2
pgr2=9� (E.9.13)
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this being valid for Re << 1 and Kn << 1. The sedimentation time for the fall is
written as

�fall D H

V
D RT

g

9�

2
pg2r2
(E.9.14)

For the regime with Re >> 70 and Kn << 1, we have

�fall D H

�
3


40
pgr

�1=2
(E.9.15)

And finally for Kn >> 1, we have

�fall D 27�

.2kT=�m/3=2

16
pg2r
(E.9.16)

In this case, k is the Boltzmann constant and m the mass of a single molecule. Notice
that low Reynolds numbers correspond to small particle diameters (<20 �m), while
moderate Reynolds numbers correspond to size between 20 �m and 1 mm, and
large Reynolds numbers refer to particles between 1 and 5 mm. Drops up to 1 mm
behave like rigid spheres, while for a larger dimension, the atmospheric resistance
may modify the shape.

Most of the atmospheric aerosols have sizes comprised between 0.1 and 1 mm,
and these particles have a time between 36 years and 3.28 days to fall 1 km. Typical
volcanic particles have a diameter smaller than 5 mm and they will take about 2
weeks to fall 1 km.
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Chapter 10
Waves in the Atmosphere

In the previous chapters, we have already found wavelike dynamical manifestations
in the atmosphere such as Rossby waves. These waves are a consequence of the
conservation of absolute vorticity in the sense that we have considered the effect of
Earth’s rotation but not the presence of gravity.

Here, we will start from the other extreme and will consider a fluid in the gravity
field but subject it to no rotation, and we will find a different class of waves. We are
naturally interested in those waves whose frequency is comparable to the Brunt–
Väisälä frequency that we found since Chap. 1 and which we may call buoyancy
frequency. We neglect in this treatment the sound waves, a subject that should be
familiar from elementary physics courses. In any case, sound waves usually have
much higher frequencies.

Waves for which the “spring” or restoring force is buoyancy are called gravity
waves. In contrast, Rossby waves are due to the existence of a vorticity gradient
along the latitude. Another approximation we will employ is the linearization that
we have already used to find a solution to the Rossby wave problem.

Everything will become clear as we go along, but for the moment we need to
slow down a little and refresh our ideas on some of the properties of the waves.

10.1 Some Properties of the Waves

Phase and group velocities are the joy and nuisance of every physics student,
although phase velocity may seem a simple thing. We know actually that for a
wave propagating in x direction, the phase can be expressed as .kx � !t/ so that the
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t=0

C(t)

t=2

t=4

vgΔt

Fig. 10.1 The graphic representation of a function given by (10.1) when the radio between high
and low frequency is 10. The function is represented at regular time interval so that the movement
can be related to the group velocity. The inset shows the envelope C(t) (Adapted from Lindzen
1990)

surface at constant phase will propagate with a velocity !/k. The group velocity can
be introduced in a very simple way, for example, when studying the transmission of
a low-frequency signal (a song on the radio) using a high-frequency carrier wave.
We have for the signal

S D cos!ct C 1

2
cos .!c C !m/ t C 1

2
cos .!c � !m/ t (10.1)

A visual representation of the signal (10.1) is given in Fig. 10.1 where the ratio
between the two frequencies is 10. It can be clearly seen that the sinusoidal signal
contains the highest frequency, while its amplitude is modulated at the lowest
frequency. Actually, if a Fourier analysis of the signal (10.1) is carried out, we can
see that it is composed of three frequencies, the carrier and two lateral bands that are
at frequencies (.!m � !c/) and (.!m C !c/) with intensity (1/2)2. We now consider
the sum of two waves with different frequencies and wave numbers

cos .k1x � !1t/C cos .k2x � !2t/ D 2 cos Œ0:5 .!1 � !2/ t � 0:5 .k1 � k2/ x�

� cos Œ0:5 .!1 C !2/ t � 0:5 .k1 C k2/ x�
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We also assume that !1 � !2 D �! << !1 and .!1 C !2/ =2 � !1 the same for k

cos .k1x � !1t/C cos .k2x � !2t/ D 2 cos



.�!t ��kx/

2

�
cos



.!t � kx/

2

�
(10.2)

This may be interpreted as a wave propagation with a phase velocity c D !=k and a
modulated amplitude with maxima and minima that moves at the group velocity vg

�g D �!

�k
) d!

dk
(10.3)

This very simple argument can be applied to a more general function. For
example, the envelope of the wave in Fig. 10.1 is given by cos .!c � !m/ t which
can be represented by a Fourier transform

cos .!c � !m/ t D
C1Z
�1
ı .! .!c � !m// ei!td!

where ı .! .!c � !m// is the Dirac function. The envelope function can then be
written as

C.t/ D
Z C1

�1
B .!/ ei!td! (10.4)

so that the modulated function (or signal) can be written as in (10.1)

S .t; x/ D
Z C1

�1
B .!/ eiŒ.!C!0/t�k.!C!0/x�d! (10.5)

If the function B(!) is narrow enough, it can be shown (see, e.g., Lindzen)

S .t; x/ D exp fi Œ!0t � k .!0/ x�g
Z C1

�1
B .!/ exp

�
i



!t � dk

d!
!xC

��
d!

D exp fi Œ!0t � k .!0/ x�g C

�
t � dk

d!
x

�
(10.6)

so that the envelope (i.e., C(t)) travels at the group velocity.



300 10 Waves in the Atmosphere

10.2 Gravity Waves in Shallow Water

As a first example of gravity waves, consider the waves produced in a shallow pond
as sketched in Fig. 10.2. In this case, there are two incompressible fluids of different
density, 
1 and 
2, one on top of the other and confined on a semi-infinite plane.
The requirement of incompressibility eliminates the presence of sound waves.

Because the densities 
1 and 
2 are constant, the horizontal pressure gradient is
independent from the depth so that we can write (Holton 1992)

@

@z

�
@p

@x

�
D �@


@x
g D 0 (10.7)

If we limit ourselves to the study in the x, z, we can write the equation of motion in
the lower layer of the form when we also assume no horizontal pressure gradient in
the upper layer:

� 1


1

@p

@x
D @u

@t
C u

@u

@x
C w

@u

@z
(10.8)

The horizontal pressure gradient arises as can be seen from Fig. 10.2 because of the
different weight of fluid columns. For the lowest two points at the same height

p C ıp1 D p C 
1g�zI p C ıp2 D p C 
2g�z

so that the horizontal gradient is given by

.p C ıp1/� .p C ı
2/

�x
D .
1 � 
2/ g

�z

�x
) g�


@h

@x
(10.9)

that gives immediately the equation of motion

Du

Dt
D �g

�



1

@h

@x
(10.10)
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Fig. 10.2 Waves in a two-layer fluid system
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The equation of continuity on a vertical plane

@u=@x C @w=@z D 0

when integrated between 0 and h with the assumption that u is only a function of x

w.h/ � w.0/ D �h@u=@x

and assuming that the vertical velocity to be zero at the bottom

w.h/ D Dh

Dt
D @h

@t
C u

@h

@x
D �h

@u

@x
(10.11)

that can be differentiated with respect to x to obtain

D

Dt

@h

@x
D � @

@x

�
h
@u

@x

�
D � 
1

g�


D2u

Dt2

At this point, we resort again to the perturbation method. Setting h D H C h0,
u D u C u0 and then neglecting second order terms, we have

D2u0

Dt2
D �gH

�



1

D2h0

Dx2
(10.12)

This equation describes a wave that propagates with a velocity c D .gH�
=
1/
1=2.

This should be added to the zonal background velocity ū so that

c D u � .gH�
=
1/
1=2 (10.13)

is the phase speed with respect an observer at rest in the coordinate system. In the
case where the upper layer is air and the lower layer water, we can put �
 D 
1 so
that

c D u ˙ .gH/1=2 (10.14)

This should be the velocity of propagation of an ocean wave. If we assume an
average depth of 4 km for this ocean, we have propagation velocities of the order of
200 ms�1 which are really too high. The explanation of this rather strange result is
that we have worked out a perturbation solution, that is, the vertical wavelength
should be much larger than H, and this happens only for waves triggered by
earthquakes (the famous tsunami). However, waves can also be produced when
the density differences are produced by differences in temperature as in the case
of the thermocline. In this case, �¡=¡1 Š 0:001 and the velocity is much more
reasonable.
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So far, we have neglected rotation, and the previous serves merely to illustrate the
nature of gravity waves. Another point to stress is that gravity waves have nothing
to do with gravitational waves. These are part of another sector of physics; it costs
a lot more to detect them (actually, nobody has done that yet), and it does not cause
as much damage as gravity waves, either marine or atmospheric.

10.3 Orographic Waves

One of the most striking examples of atmospheric waves is given by the alignment
of clouds that give the impression of being the foam produced by waves breaking
on the shore. This kind of wave is generated by a current flowing over a mountain
range, as illustrated in Fig. 10.3.

The upper part of this figure shows how a westerly current flowing over a
mountain range could trigger waves. The oscillations move the air upward and
downward so that in the ridges there could be condensation and then formation
of clouds on the wave ridges. Clearly, we are dealing with stationary waves, and in
the reference system that moves with the wind, the surfaces of constant phase move
away from the observer.

Fig. 10.3 A general scheme
of the generation of waves
over orography. It is to note
that the phase of the wave
moves in the opposite
direction of the wind. The
dashed line limits the
boundary layer. In the lower
panel, lines at constant phase
are shown when the
corrugated profile moves with
a velocity equal to the phase
velocity c (Lindzen 1970)
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Another way to approach the problem is to consider the corrugated surface
moving below the atmosphere. This is equivalent to studying the process in the
reference system at rest with the wind. If we consider a parcel along one of the
lines at constant phase, this will oscillate with a frequency that is proportional to
the Brunt–Väisälä frequency N because the restoring force along the vertical will be
F D �N2ız so that the force in a direction forming the angle ‚ with the vertical is

F D �N2ız cos‚

where •z D •s cos‚ Along the direction s, we have the equation of motion

D2ıs

Dt2
D �N2cos2‚ıs

which represents an oscillation with frequency .kc/2 D .N cos‚/2 that determines
the angle ‚. On the other hand, the same angle can be related to the horizontal
and vertical wavelength considering that tan‚ D LH=Lv D l=k. From these simple
relations, it is possible to obtain the dispersion relation

tan2‚ D 1 � cos2‚

cos2‚
D
�

l

k

�2
D 1 � .kc=N/2

.kc=N/2

l2 D �
N2=�2 � 1

�
(10.15)

and � D kc. Vertical propagation is possible if the vertical wave number is real
which implies N > ¢ ; otherwise, the buoyancy force is not enough to maintain the
oscillation, and the amplitude of the wave decreases with altitude. At this point, the
components of the phase and group velocities are easily obtained. First of all, we
calculate �

� D ˙Nk
�
k2 C l2

��1=2
(10.16)

then applying the rules we learned previously

cpx D �=k D ˙N
�
k2 C l2

��1=2
cpy D �=l D ˙Nk

h
l
�
k2 C l2

�1=2i�1

cgx D d�=dk D ˙Nl2
�
k2 C l2

��3=2
cgz D d�=dl D ˙Nkl

�
k2 C l2

��3=2 (10.17)

Before we examine in detail these relations, it is useful to remember that the
phase velocity is not a vector while the phase propagation is determined by the
wave vector whose components in this case are k and l. Also, the phase velocity we
have obtained is relative to the air, that is, in the presence of wind ū, we just add the
background wind.

The positive sign is intended for eastward propagating waves with respect to the
average wind. A reason for this choice of sign is that if the waves are stationary,
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WEST EAST

Fig. 10.4 The relation between phase and group velocity and the air movement. The phase
propagation is shown with the thick arrow. The shade zones are those in which parcels move
away from the ground creating the alternating high (H) and low (L) pressures. The composition of
the group velocity is also shown

then the phase velocity must be zero with respect to the orography so that the phase
propagates toward the west with respect to the wind. At this point, things start to
be interesting because we see that constant phase lines are tilted westward (see
Fig. 10.3), and this requires that k < 0 and l < 0. We notice that the phase is
simply � D kz C ly so that increasing x means to decrease z in order for � to remain
constant. This means the phase propagates downward as shown in Fig. 10.4. The
energy on the other hand must propagate from below because the energy source is
at the surface. It can be seen that the same choice of wave vectors implies that the
group velocity vector lies along the lines of constant phase. Therefore, the group
velocity is normal to the direction of propagation of the phase. However, it can be
seen from Fig. 10.4 that with respect to an observer at rest with respect to the surface
the group, velocity forms a small angle with respect to the horizontal.

10.4 Internal Gravity Waves

Everything we have introduced so far, based on intuitive considerations, can be
obtained through analytical method by recurring to the equation of motions that
give a generalization of the solution at what is known as internal gravity waves.

When we have introduced the shallow water waves, we should have noticed that
those are a particular type of waves known as surface waves, and these waves cannot
propagate vertically. A more general class of waves is the so-called internal waves
whose phase may propagate vertically. However, we will also study these waves on
the vertical plane, and the starting point will be the component of the equations of
motion in the horizontal and vertical directions and the continuity equation. Again,
we write the equation of motion

@u

@t
C u

@u

@x
C w

@u

@z
D �1




@p

@x



10.4 Internal Gravity Waves 305

This can be linearized by putting u D u C u0I p D p C p0I 
 D 
 C 
0I w D w0
so that by neglecting higher order terms, we get (in this case, ū does not depend on
height) �

@

@t
C u

@

@x

�
u0 D �1




@p0

@x
(10.18)

The vertical equation of motion is obtained considering that while there is hydro-
static equilibrium on the average values, fluctuations in the potential temperature 	 0
may produce buoyancy accelerations of the order of g	 0/	 so that the net vertical
acceleration is given by�

@

@t
C u

@

@x

�
w0 C 1




@p0

@z
� g

	 0

	
D 0 (10.19)

We are then bound to a rather inevitable complication, that is, the appearance
of the potential temperature. The only way to get rid of it is to recur to the
thermodynamic equation. This is particularly simple for adiabatic motions so that
we have D ln 	=Dt D 0 and then�

@

@t
C u

@

@x

�
	 0 C w0 @	

@z
D 0 (10.20)

where we have taken into account that D	=Dt D 0 for adiabatic motions. At this
point, we can eliminate two variables, that is, pressure and u0. We differentiate
(10.18) with respect to z and (10.19) with respect to x and subtract. We then use
the continuity equation and obtain�

@

@t
C u

@

@x

�2 �
@2w0

@x2
C @2w0

@z2

�
C N2 @

2w0

@x2
D 0 (10.21)

where we have used N2 D
�

g=	
�
@	=@z. We seek a solution of the form

w0 D Re
�bwei'


(10.22)

where ŵ is a complex quantity and where the phase is given by ' D kx C lz � !t.
In this case, the horizontal wave number is real, while we should require that l be

complex in order to study the vertical propagation. In any case, by substituting Eq.
(10.22) into (10.21), we obtain the dispersion relation

b! D ! � uk D ˙Nk
�
k2 C l2

��1=2
(10.23)

The quantity b! is the wave frequency with respect to the average wind so that the
phase velocities relative to the wind in the two directions are given by cpx D b!=k
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and cpx D b!=l that coincide with those given before. In the same way, we could find
the expressions for the group velocities.

It is interesting to note that the solution just found includes also the orographic
waves. Considering that they are stationary waves, Eq. (10.21) becomes�

@2w0

@x2
C @2w0

@z2

�
C N2

u2
w0 D 0 (10.24)

Assuming a phase like � D kx C lz, the dispersion relation becomes

k2 C l2 D N2=u2 (10.25)

which is the same relation that can be obtained from (10.17) when cpx D 0 or from
(10.23) by putting! D 0. Equation (10.25) can be useful for another reason because
in some cases, we may have l2 < 0, that is, there is no vertical propagation of the
wave because l is imaginary. The solution then becomes

w0 D bweikxe�lz (10.26)

This equation confirms that the energy propagates upward, and the amplitude
can be found by imposing a forcing on the ground. For a sinusoidal forcing, we
have h D hm cos kx so that

w0 .x; 0/ D .Dh=Dt/zD0 � u@h=@x D ukhm sin kx (10.27)

The real part in (10.26) evaluated at z D 0 (considering that ŵ is a complex
quantity) is given by

w0 .x; 0/ D bwr cos kx �bwi sin kx (10.28)

compared with Eq. (10.27) gives

bwi D �ukhmI bwr D 0

so that the solution becomes

w0 D �ukhme�lz sin kx (10.29)

Similarly for the vertical propagation, we may write

w0 D �ukhm sin .kx C lz/ (10.30)

A vertical trapped wave is found when uk > N as can be easily seen from
Eq. (10.25) because in that case the vertical wave number is imaginary. Vertical
propagation is obtained for the opposite condition. The propagation of the wave
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z

x

Fig. 10.5 Example of net transport due to wave breaking. A tracer is transported upward (clear
shadow) or downward (dark shadow) so that in an even number of cycles, there is no net transport.
This happens only when the wave breaks (Adapted from Lindzen 1970)

is then determined by the characteristics of the topography once the wind and the
frequency are fixed.

Up to now, we have learned a number of nice things concerning mainly the phase
and group velocity, but we are still stuck with the old question: what do we do with
gravity waves? We will see later on that these are so ubiquitous that we will need
means to rule them out, and mainly gravity waves or waves in general are very
important when dealing with transport processes.

To fix the ideas, let us consider waves in the sea. Far away from the shore, these
are quite regular and of the same amplitude. When they approach the shore because
they move in less and less water, their amplitude grows to the point that the wave
becomes unstable and breaks, forming a billow. Until the wave is regular, a passive
tracer (like junk) is simply moved around, for example, in the vertical direction as
shown in Fig. 10.5. However, when the wave breaks, we have net transport.

In the case of the atmosphere, a gravity wave may produce oscillation in the
temperature so that the lapse rate is also changed. If the amplification of the wave
occurs, such a gradient may become unstable and cause the wave to break.

Another important property of gravity waves is that they can transport momen-
tum (i.e., the correlation u0w0 ¤ 0) and so explain a few things about the motion
in the upper atmosphere or in the boundary layer. However, to take into account
all these effects, we need to introduce a vertical shear for the zonal velocity and
the rotation. Some of this work can be done through the introduction of the three-
dimensional Rossby waves.

10.5 Three-Dimensional Rossby Waves

The starting point for the introduction of the three-dimensional Rossby waves is the
quasi-geostrophic vorticity (Eq. 7.61). In that equation, the horizontal divergence
has been replaced by the change of the vertical velocity with height so that

D

Dt
. C f / D . C f /

@w

@z
(10.31)

http://dx.doi.org/10.1007/978-3-319-29449-0_7
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To solve this equation, we have to eliminate the vertical velocity. Again, we write
a perturbation form of the (10.31) by putting u D u C u0; � D � 0; w D w0, so that�

@

@t
C u

@

@x

�
 0 C � 0 @f

@y
� f

@w0

@z
D 0 (10.32)

We then consider the thermodynamic Eq. (10.20) and divide it through 	�
@

@t
C u

@

@x

�
	 0

	
C w0

	

@	

@z
D 0 (10.33)

The ratio between the perturbation and the average value of the potential
temperature can be expressed as

	 0=	 D 
0=


This is tantamount to assuming that the only changes in temperature arise from
buoyancy effects, and this is known as Boussinesq approximation. By substituting
in Eq. (10.33), we get �

@

@t
C u

@

@x

�

0



� N2

g
w0 D 0 (10.34)

This equation can be used to eliminate the vertical velocity, although as a further
assumption, we need to consider that the density fluctuations are also in hydrostatic
equilibrium:

1




@p0

@z
C 
0



g D 0 (10.35)

We can now differentiate (10.34) with respect to z and substitute the result in Eq.
(10.32), while to eliminate density, we use (10.34)�

@

@t
C u

@

@x

��
 0 C f


N2

@2p0

@z2

�
C � 0ˇ D 0 (10.36)

where ˇ is the latitudinal gradient of the Coriolis parameter. Introducing the
streamfunction  D p0=f
 and substituting in Eq. (10.36), we get�

@

@t
C u

@

@x

��
r2§C f 2

N2

@2§

@z2

�
C ˇ

@§

@x
D 0 (10.37)

This expression is known as the quasi-geostrophic vorticity equation because,
except for the divergence term, we use the value of the geostrophic wind. Actually,
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the meaning of this equation is far more reaching. We can define a potential
vorticity as

q D q C q0 D r2§C f C f 2

N2

@2§

@z2
(10.38)

so that, because of (10.37), we have @q=@y D ˇ and obtain the conservation equation�
@

@t
C Vg � r

�
q D 0 (10.39)

We had already defined the potential vorticity in Eq. (7.36). We can see that this
definition is equivalent because it can be shown to be a particular form of the Ertel
potential vorticity:

. C f / @	=@z

Actually, when the difference in potential temperature is fixed, the potential vorticity
will change as the distance between the corresponding isentropic surfaces changes.
Consider now a perturbation of the potential temperature such that 	 D 	 C 	 0. We
have then for the Ertel potential vorticity

. C f / 	z D 	 z . C f /
�
1C 	 0

z=	 z

�
(10.40)

where subscripts indicate derivatives. At this point, we notice that 	 z D N2	=g and
also 	 0

z=	 z D �
0
z=
. Substituting in (10.40), we have

	 z . C f /
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1C 	 0

z=	 z

�
D 	 z . C f /

�
1 � g

N2


0
z




�
And using hydrostatic equilibrium, we have the equivalent of Eq. (10.37)
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�
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@z2

�
If we consider that at middle latitudes  << f we have a form similar to (10.38)

	 z . C f /

�
1C 1

N2


@2p0

@z2

�
� 	 z

�
 C f C f 2

N2

@2§0

@z2

�
Equation (10.39) will be used when dealing with the stratosphere. For the moment,
we are interested to find a solution for (10.37) that we may assume to be given by

§ D Re Œ§0 exp i .!t C kx C ly C mz/�

http://dx.doi.org/10.1007/978-3-319-29449-0_7
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which upon substitution in Eq. (10.37) gives the dispersion relation

! D �uk C ˇk=
��

k2 C l2
�C f 2m2=N2


(10.41)

For stationary waves .!=k D 0/, vertical propagation occurs only if m2 > 0

m2 D N2

f 2
�
ˇ=u � �

k2 C l2
�
> 0

that is equivalent to

0 < u < ˇ=
�
k2 C l2

�
(10.42)

This means that propagation of stationary waves is possible only for westerly
winds less than a certain value. During summer, winds are easterly in the strato-
sphere, and Eq. (10.42) is not satisfied. During winter, however, winds are westerly
and they can be weak enough to allow propagation of the longest waves (wave
number 1 and 2).

This result was found for the first time by Jule Charney and Peter Drazin at the
beginning of the 1960s and suggested an answer to a very important question. The
very low probability of such events saves the Earth’s atmosphere from a very fast
evaporation. As stated in the introduction of the paper by Charney and Drazin:

If the large – scale tropospheric motions were to propagate in this manner, then, because of
their vastly greater energy, an atmospheric corona would be in all likelihood be produced.
The kinetic energy density of the lower troposphere is of the order of 103 erg cm�3. If this
energy were to travel upward with little attenuation and be converted into heat by friction
or some other means at, say 100 km were the density is diminished by a factor of 10�6, it
would raise the air temperature at 100,000 K. At such temperatures most of the atmosphere
would escape the earth’s gravitational field : : : .

Since that paper, more realistic calculations have shown that the effect is much
less dramatic. These calculations refer to propagation in two-dimensional space
(latitude–height) where the zonal wind is now also a function of the two variables.
Also, starwarms (as they are called) must be intended as a rearrangement of potential
vorticity and temperature, while the effect of energy dissipation is manifested at high
latitude.

Even in such rare events, conditions are such that some energy penetrates
the stratosphere, warming the region even by 40 ıC in a few days. When this
happens, we say we have a sudden stratospheric warming. Stratospheric warmings
have a strong influence on the dynamics of the lower stratosphere and even some
relationship with the occurrence of the ozone hole in the southern hemisphere. We
will discuss these phenomena in some length in later chapters.

The energy absorption from propagating waves requires a few more consider-
ations. In our calculations, in order to keep things simple, we have considered
the density independent of altitude. However, a very simple correction can be
introduced though a term like exp (z/2H).



10.6 The Physics of Gravity Waves 311

This takes into account the fact that kinetic energy of the waves is proportional
to the product of the density for the square of the velocity. Energy conservation then
requires that the amplitude of the wave grow exponentially with height. We plan to
explore matters further concerning wave absorption. In the process, we will discover
that this will help us understand more about turbulence in the upper atmosphere, and
at the end we will be very near to explaining why the major gases are well mixed
through all the atmosphere up to about 100 km. This requires we go deeper in the
physics of gravity waves.

10.6 The Physics of Gravity Waves

For what we have to say in the following paragraphs, it will be more convenient
to write the equation of quasi-geostrophic potential vorticity in the log-pressure
coordinate system that was introduced in Chap. 6 when dealing with the thermal
wind equation. We will start by giving some more details on this coordinate system
that is very convenient when studying the dynamics of the stratosphere and the
physics of the waves.

10.6.1 The Equation of Quasi-geostrophic Potential Vorticity

We will not repeat here Sect. 7.5.1 up to the point where we define

q D q C q0 (10.43)

where

q0 D r2 C 1
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where the latter obeys to the equations
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and �
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C u
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q0 C @q

@y
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D 0 (10.46)

Equivalent to the conservation equation

Dq=Dt D 0 (10.47)

http://dx.doi.org/10.1007/978-3-319-29449-0_7
http://dx.doi.org/10.1007/978-3-319-29449-0_6
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we have shown (Eq. 7.82) that this is equivalent to the conservation equation

.@=@t C u@=@x/ q0 C � 0@q=@y D 0 (10.48)

for which we assume a solution of the form

 D ‰
�
z�� exp

�
z�=2H

�
exp Œi .kx C ly � !t/� (10.49)

which is a wave propagating in the direction x with an amplitude that depends on
height. Substituting this solution in Eq. (10.48), we obtain the “vertical structure”
equation

@2‰=@z�2 C m2‰ D 0 (10.50)

Where

m2 D .N�=f /2
h
.u � c/�1@q=@y � �

k2 C l2
�i � 1=4H2 (10.51)

The vertical wave number gives conditions for propagation that are a little bit
different from those of the stationary three-dimensional Rossby waves. In this case,
we have propagation if m2 > 0 but at the level for which u D c, the solution has
a singularity and the wave tends to be absorbed: the altitude where this occurs is
called the critical level. The reason for the absorption is that through this level, m2

goes from positive to negative values and then the amplitude of the wave decays
exponentially. This is a preliminary illustration of the interaction between waves
and zonal flow. We will return to this point later in the chapter because we need to
introduce now one of the most important concepts of atmospheric dynamics.

10.6.2 The Eliassen–Palm Flux

When a wave is absorbed, as we will see, there may be momentum transfer and the
wave may be dissipated. In this case, heat can also be produced through friction. To
fix the ideas, we can multiply Eq. (10.48) through q 0 to obtain

.@=@t C u@=@x/
�
q02=2� C

�
q0v0@q=@y

�
D 0

Averaging this equation zonally and assuming a stationary solution and @q=@y ¤ 0

we must have

q0� 0 D 0 (10.52)

http://dx.doi.org/10.1007/978-3-319-29449-0_7
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that is, without friction and for stationary waves, the meridional flux of the potential
vorticity is zero. This is a different way to express the famous Eliassen and Palm
first theorem: that is, in case of stationary waves in the absence of dissipation, there
is no interaction between waves and zonal flow. It can be shown through a number
of manipulations (which we show in the Appendix) that Eq. (10.52) can also be
expressed as


0q0� 0 D @Ey

@y
C @Ez

@z� (10.53)

where we have let
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and where we have utilized u0 D �@ =@y; � 0 D @ =@x. It can also be shown that

@ =@z� D 	 0g=
�

f	
�

, Ey, and Ez are the component of the Eliassen–Palm (EP)

flux. Equation (10.59) states that the meridional flux of the potential vorticity is zero
when the divergence of the EP flux is zero, and this happens when the waves are
stationary and the background flux is purely zonal:


oq0� 0 D r � E D 0 (10.55)

This equation can be actually generalized including the case when the divergence
is not zero. The most obvious way is to write a general form of the conservation
equation

@A=@t C r � E D D (10.56)

where A is a quantity called wave action and D is a term of net production that
includes dissipation and adiabatic effects. Equation (10.56) can now be compared
with (10.52) which we can write in a more general form�
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where q
0

y indicates the derivative of the average value and Z 0 is a source term. We
multiply (10.64) by 
0q0=qy to obtain
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In the zonal averaging, the second term disappears so that
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0 � 0q0 D 
0 Z0q0=qy

with the second term representing the divergence of the EP flux. A comparison with
(10.56) gives

A D 1

2

0

q02
qy

I D D 
0Z0q0=qy (10.58)

We will have other occasions to talk about wave action or wave activity, and for
the moment we want to concentrate a little more on the physical meaning on the EP
flux. Going back to Eq. (10.53) and assuming q D q C q0, we can write

@ .q C q0/
@t

C u
@ .q C q0/

@x
C u0 @ .q C q0/

@x
C � 0 @ .q C q0/
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D 0

and zonally averaging, we get

@q

@t
C @ .q0� 0/

@y
D 0 (10.59)

In Eq. (10.56), we can substitute for the action the definition (10.65) and for the
divergence of the EP flux (10.55). We get with D D 0

q0� 0 D � 1

2qy

@
�
q02�
@t

(10.60)

If we now consider a wave whose amplitude is changing (i.e., q02 changes), this
implies a meridional flux of potential vorticity according to (10.60). For example,
at high latitude, the zonally averaged gradient of the potential vorticity is positive,
while the gradient of the flux is negative because the flux of potential vorticity must
vanish at the pole. For a growing wave, this means, based on (10.60), a negative
potential vorticity flux (directed toward the equator) so that according to Eq. (10.60),
the zonally averaged potential vorticity decreases in time which means the zonally
averaged westerly flow must decrease in time.

These considerations show that the EP flux acts directly on the zonal flux. We
will return to this topic when dealing with the general circulation of the atmosphere,
but we will see that the interaction between waves and mean flow is of primary
importance in the stratosphere. Another very important point is that the zonal mean
potential vorticity is influenced by the divergence of the EP flux and not by its
absolute value. This means the EP flux could be very large and yet have no influence
on the background state. For this reason, it would be very convenient to have a
reference system where the effects of the eddies could be minimized. By the way,
the system we have used so far is called the Eulerian mean reference system.
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10.6.3 Energetics of Gravity Waves

So far, most of the concepts we have introduced like the Eliassen–Palm flux
or the wave action remain rather remote from the physical point of view. A
good starting point to grasp the physics underlying these concepts is through the
energy transported by the waves. Before considering the energy of the waves, we
rewrite again the equation of motion in our log-pressure coordinate system in the
perturbation form. We drop all the asterisks and assume that u D u.z/ and restrict
everything in the x, z plane (assuming � 0 D 0). We have for the equation of motion

@u0

@t
C u

@u0

@x
C w0 @u

@z
C @ˆ0

@x
D 0 (10.61)

In this equation, the pressure gradient has been replaced by the geopotential
gradient. The geopotential ˆ0 is related to the streamfunction  0 by the relation
ˆ0 D f 0. The zonal wind is forced by the divergence of the EP flux.
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�

0u0w0� (10.62)

We have not treated this particular term, although it represents vertical transport of
zonal eddy momentum (as in the boundary layer).

The thermodynamic equation (obtained in the Examples) is given by
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@x
C N2w0 D 0 (10.63)

where the asterisk has been dropped on both N2 and w 0. Finally, we have the
continuity equation
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D 0 (10.64)

Energy is introduced in the form of energy density (per unit volume) E. We show
in the Appendix we can write a kind of conservation equation
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.u � c/ D 0 (10.65)

where Dg indicates total derivative using the group velocity ug while c is the phase
velocity. This equation is equivalent to
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and this implies the conservation law
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The wave action can then vibe defined as (see Appendix)

A D 
0
u02 C �

ˆ0
z=N2

�
2 .u � c/

D E

.u � c/
(10.67)

and this is a conservative quantity.
This detailed derivation is given here (more precisely the Appendix) because the

result is always mentioned but never shown or, if it is shown, it is through very
complex arguments. Our derivation is simply adapted from an old paper of Francis
Bretherton. In the presence of dissipation D, Eq. (10.66) can be generalized as

@A=@t C r � �ugA
� D D (10.68)

From Eq. (10.56), considering only the vertical component of the EP flux, it can
be easily shown that


0 u0w0 D Awg

so that the vertical eddy momentum flux is actually proportional to the wave action
flux through the group velocity wg. Comparing Eq. (10.56) and Eq. (10.69), we
obtain


0u D A (10.69)

In this particular case, the action is equivalent to the zonal mass flux induced by the
wave action.

A final consideration is that in the absence of dissipation and in the stationary
case, we have from Eq. (10.68)

r � �ugA
� D 0 (10.70)

which is a different form of the EP theorem in that, in the absence of dissipation,
there is no interaction between zonal flow and the wave.

This section may have seemed quite boring but has been necessary to increase our
insight into the physics and to give a correct formulation of the wave processes. This
knowledge enables us to make an application to the problem of turbulent diffusion
that we have mentioned even in Chap. 4 when dealing with the diffusion of gases in
the upper atmosphere. Most of this application will be based on the concept that a
vertically propagating wave is amplified to the point that it breaks down generating
turbulence like breaking waves on a beach.

http://dx.doi.org/10.1007/978-3-319-29449-0_4
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10.7 Breaking, Saturation, and Turbulence in the Upper
Atmosphere

After thinking about the problem for a few years, in 1981, Richard Lindzen
formulated a theory on the turbulence induced by the gravity wave breaking. We
base this section on that paper except for a few minor modifications.

We may begin by looking at Fig. 10.6 which shows what may happen to a
material surface (like an isentropic surface) under the influence of a vertically
propagating wave. The amplitude of the wave grows to the point that in some
region, the temperature gradient becomes adiabatic or superadiabatic so that the
potential temperature becomes constant with height or even decreases. Under such
conditions, there is a convective instability and consequently, the breaking of the
wave. Another way to look at this problem is to consider the turbulence as a way of
dissipating the energy of the wave and then limiting its growth. The breaking may
also derive from nonlinear interactions between the different spectral components
of the wave.

The phenomena we have described is very similar to a saturation process (that
is why we talk about wave saturation) which is intrinsically nonlinear. This creates
the first difficulty because to maintain a simple treatment, there will be the need to
reduce it to a linear problem.

The assumptions we make to formulate our theory is that the frequency of the
gravity wave ! is such that f << ! << N and also we will treat only two-
dimensional waves so that the phase can be written as .kx C mz � !t/. The potential
temperature gradient is the sum of the zonally averaged gradient and the deviation
from it

	 z C 	 0
z

Fig. 10.6 A scheme for the
breaking of a vertically
propagating gravity wave.
The instabilities are shown.
The curves are successive
stages of a material surface
(From Andrews et al. 1987)
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The second term can be easily related to the geopotential gradient through the
hydrostatic equilibrium ˆ0z D �	 0g=	 so that the gradient of the potential
temperature will be 	 0z D �ˆ0zz	=g. The total gradient becomes

	z D �ˆ0zz	=g C 	 z D �ˆ0zz	=g C N2	=g (10.71)

And this will be zero when

ˆ0zz D N2 (10.72)

A saturation condition can also be obtained through thermodynamic Eq. (10.34)
which can be written as

ik .u � c/ˆ0z D N2w0

This equation is differentiated with respect to z after multiplying it through 
0

k
�
k � c

�
ˆ0zz D N2mw0

The vertical velocity can be eliminated by the continuity equation ku0 D mw0, and
saturation will be reached when

u0 D .u � c/ (10.73)

At this point, we need to make a minor detour because we are calculating deviations
from the zonal mean. We are actually interested in the zonal mean value of the
square of these quantities, and for that we will use the relation

�02 D j�j2=2

This simple relation comes from the fact that the deviation from the zonal mean can
be expressed as

�0 D Re
˚
�eikx

�
Our aim at this point is to find the action for the saturated wave, and so we need

both the kinetic energy and the potential energy related to the eddy value of the
geopotential. To this end, we eliminate ˚ 0 and w0 between Eqs. (10.59), (10.72),
and (10.73). We assume

w0 .x; z; t/ D W.z/ exp Œk .x � ct/C z=2H� (10.74)

so the derivative with respect to height is

w0
z D w0 .x; z; t/ =2H C Wz exp .kx � ct C z=2H/
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We are actually interested in the dependence of the amplitude on height so we
will take into account only the second term on the right. Substituting u0 from Eq.
(10.68), we obtain from the continuity and thermodynamic equation

� .u � c/w0z C w0uz Cˆ0x D 0 I ik .u � c/ˆ0z C N2w0 D 0

Differentiating the first with respect to z and the second with respect to x and
taking into account only the deviations from the zonal means (our assumption about
linearity), we obtain

.u � c/Wzz � Wzuz C WN2= .u � c/ D 0

The term in the middle is negligible because the vertical shear of the zonal wind is
small with respect to the changes in W. We obtain the vertical structure equation

Wzz C ŒN= .u � c/�2W D 0 (10.75)

In principle, the quantity squared should depend on height, and the solution to
this equation can only be obtained using the WKB approximation as shown in the
Appendix. Using these results, we can find the vertical component of the group
velocity. The frequency of the wave is given by

� D k.u � c/2 D kN=m

so that the group velocity will be

@�=@m D �kN=m2 D k.u � c/2=2 (10.76)

At this point, we can find the other term that makes up the wave action because
in the relation between u0 and w0, we substitute for m

w0 D k.u � c/2=N

This can be substituted in the thermodynamic equation to give

ˆ0z D i .u � c/N

so that at saturation, we have

ˆ0z D .u � c/2N2=2

Finally, the wave action according to Eq. 10.69 is given by

A D 
 .u � c/ =2 (10.77)
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Before we proceed, it is important to understand what is happening to a breaking
wave. In particular, we consider the acceleration on the zonal wind. We can now
calculate this term explicitly according to Eq. 10.62 because we have the eddy
contribution which is


0u
0w0 D �k
0.u � c/3=N ) u0w0 D �k.u � c/3=.2N/

The mean acceleration of the zonal wind is then

ut D �k.u � c/2

2N



.u � c/

H
� 3uz

�
(10.78)

And if the zonal mean velocity changes slowly with altitude, we have

ut D u0w0
H

D �k.u � c/3

2NH
(10.79)

These considerations are valid only above the saturation altitude because below
that the EP theorem holds. Above the saturation level, the acceleration on the zonal
wind is such as to bring ū closer to the phase velocity. From Eq. 10.79, we see that
if u > c, the acceleration is negative and so ū decreases; the opposite happens when
u < c. The situation can be represented as in Fig. 10.7 where we have shown a
vertically propagating monochromatic wave. The wave with a growing amplitude is
saturated at level zs and is completely absorbed at zc.

z

^(u - c)|u'|=|c - u |^

z

|u'| ~ m1/2ez/2H

zc

s

–ρ u w
__

δ u

Fig. 10.7 A schematic representation of growth and saturation of a vertically propagating gravity
wave. After the saturation level zs has been reached, the wave amplitude decreases and is
completely absorbed at zc. The momentum flux (shown on the right) produces an acceleration
of the zonal mean wind that makes it coincide with the phase velocity (Fritts 1984)
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At this point, we can obtain the diffusion coefficient induced by wave breaking.
The hypothesis is that once saturated, the energy of the wave is dissipated by a term
proportional to the action itself. Based on Eq. 10.68, we can write

r � �ugA
� D �2ıA (10.80)

where ı is the dissipation rate. The reason for the factor 2 is that the action is
proportional to the square of quantities like the potential temperature for which the
dissipative term is proportional simply to ı. Substituting in Eq. 10.79 the values for
the action and the group velocity, we obtain

@
�
cgzA

�
=@z D � �cgzA

�
=H D �2ıA ) ı D cgz=2H (10.81)

where we have exploited the condition that saturation A is constant except for the
density factor that varies as 
 D 
0 exp .�z=H/. At this point, substituting the group
velocity in Eq. 10.81, the dissipation rate becomes

ı D cgz=2H D k.u � c/2=.2HN/ (10.82)

The diffusion coefficient is obtained assuming that above the saturation height
the velocity is regulated by a diffusion equation

Kzz
@2u0

@z2
D �m2Kzzu

0 D �ıu0 (10.83)

And from this, we derive easily

Kzz D k.u � c/4

2HN3
(10.84)

At this point, we can relax a bit our assumptions and allow at least the
zonal velocity and N to change slowly with altitude. The new expression for the
dissipation rate may be obtained with the help of Eq. 10.79

ı D k.u � c/2

N



1

2H
� 3

2

uz

.u � c/
C 1

2N

@N

@z

�
(10.85)

And dividing by m2, we obtain the diffusion coefficient. We can substitute
in (10.85) typical values of the variables. For a horizontal wavelength of
200 km

�
k D 1:57 10�5m�1� and an intrinsic velocity .u � c/ D 30 ms�1, with

N D 0:02 s�1 and H D 6 we obtain Kzz D 265 m2s�1. This value is much larger
than the one found for the troposphere or in the boundary layer.

A typical example of what happens when a gravity wave propagates vertically is
shown in Fig. 10.8 which is based on the results of a computer program reproduced
in the Appendix. The cases shown in the figure refer to an atmosphere that has
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Fig. 10.8 The vertical velocity as a function of height for a gravity wave without absorption (left)
and with absorption (right). The critical level is at 12 km. The dashed line represents the forcing
of the wave. Notice the different scales for the velocity and the forcing

a decreasing temperature from 280 K at the surface down to 200 K at 12 km
constant up to 15 km and then increasing up to 270 K at 50 km. The zonal wind
has a maximum of 40 ms�1 at 12 km and then decreases until it becomes easterly��40 ms�1� at 50 km. The wave is forced by a Gaussian centered at 10 km with a
half width of 6 km.

With an assigned phase velocity of 50 ms�1, the amplitude of the wave grows
with altitude because the wind velocity never reaches the phase velocity. When the
phase velocity is 40 ms�1 the wave is absorbed at 12 km where the phase velocity
is equal to the wind velocity.

We can see that compared to what is shown in Fig. 10.7, the decrease with altitude
is much faster, although this could be a numerical effect. The wave amplitude below
the critical level is not affected by the absorption. Details of this problem can be
found in the Examples.

E.10 Examples

E.10.1 Is the Phase Velocity a Vector?

We discuss here a topic neglected in most elementary physics books and shows
that what is called phase velocity does not have the characteristics of a vector. We
refer to Fig. E.10.1 where we depict two wave crests for a two-dimensional wave
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Fig. E.10.1 Geometry for the propagation of a plane wave

propagating in x, y plane. We remember that the phase velocity along the x and y
directions is simply

cx D !=kI cy D !=l

where k and l are the wave numbers along the x and y directions.
The wave propagates normally to the crest, and the distance�s may be found by

observing that

�s D �x sin ˛ D �y cos˛

so that

1

�s2
D 1

�x2
C 1

�y2

From the definition of the phase velocities, we have

�x D cx�t D !�t=kI �y D cy�t D !�t=lI

so that

�s D !�t
�
k2 C l2

��1=2
and the propagation speed

c D �s=�t D !
�
k2 C l2

��1=2
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It can be easily verified that c2 ¤ c2x C c2y that is, the phase velocity, is not a physical
vector.

It is interesting to show at this point that energy is transported by the group
velocity. To achieve this, we write the flux of energy, F, integrated over depth

F D
Z 0

�h
p0u dz D

Z 0

�h

gh0u dz (E. 10.1)

where we have dropped the prime for the velocity. We assume a perturbation of the
form

h0 D A cos .kx � !t/ (E.10.2)

The velocity u can be obtained from the continuity equation

@h0

@t
C h

@u

@x
D 0

Substituting for h0, we have

u D �!A

kh
cos .kx � !t/ (E.10.3)

so that the energy flux becomes

F D
Z 0

�h

gh0u dz D 
g!A2

kh

Z 0

�h
cos2 .kx � !t/ dz D 1

2

gA2

!

k
(E.10.4)

The factor ½ is the average value for the cosine, while it can be easily shown that
the quantity 
gA2/2 is just the average energy density of the wave. As a result, the
energy flux is the product of the energy density by the group velocity !/k.

The energy density is the sum of the kinetic energy, K, and the potential energy,
U

K D 1
2


�
u2 C w2

� I U D
Z 0

�h

gz dz

We need to find the vertical component of the velocity

w D @h0

@t
D �h

@u

@x
D �!A sin .kx � !t/

we get then by summing

K D 1

4

!2A2

�
1C 1

.kh/2

�
� 1

4


!2A2

.kh/2
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where we have used the fact that .kh/�2 � 1. Integrating this over depth, we have

hKi D 1

4


!2 A2

k2h
D 1

4


c2 A2

h
D 1

4


ghA2

h
D 1

4

gA2

In the same manner, the potential energy integrated over depth becomes

hUi D 1

2

gh2 D 1

2

gA2cos2 .kx � !t/ D 1

4

gA2

And the total energy density is what we have used before

E.10.2 The Quasi-geostrophic Potential Vorticity in Log P
Coordinates

Taking into account the continuity, Eq. 10.32 becomes�
@

@t
C u

@

@x

�
 0 C � 0 @f

@y
� f

1


0

@

@z�
�

0w

�� (E.10.5)

while Eq. 10.34 becomes �
@

@t
C u

@

@x

�

0


0
� N2�w�

g
D 0 (E.10.6)

and the equation of hydrostatic equilibrium is

H

p

@p0

@z� C 
0


o
g D 1


o

@p0

@z� C 
0


o
g D 0

As we did in Sect. 10.5, we can write the thermodynamic equation in the form�
@

@t
C u

@

@x

�
1


0

@p0

@z� C N2�w� D 0

And using  D p0=f
0, we get

f

�
@

@t
C u

@

@x

�
@ 

@z� C N2�w� D 0 (E.10.7)

From this equation, we can get w* which can be derived and substituted in Eq. 10.32
to obtain the quasi-geostrophic vorticity equation in log-pressure coordinates.
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E.10.2 The Eliassen–Palm Flux Terms

In Eq. 10.59, the values for the perturbation velocity and vorticity can be substituted
to obtain

q0� 0 D @2 

@x2
@ 

@x
C @2 

@y2
@ 

@x
C 1


0

@ 

@x

@

@z�

�
f 2
0
N2�

@ 

@z�

�
(E.10.8)

The zonal mean of this equation can be obtained by manipulating the different terms.
We can write


oq0� 0 D 
o

2

@

@x

�
@ 

@x

�2
C 
o

@

@y

�
@ 

@y

@ 

@x

�
� 
o

@ 

@y

@2 

@x@y

C @

@z�



@ 

@x

�
f 2
o

N2�
@ 

@z�

��
� @2 

@z�@x

@

@z�

�
f 2
o

N2�
@ 

@z�

�
(E.10.9)

The zonal mean of the first term is zero, as are the third and the fifth. For example,
the zonal mean for the third term is given by

Z L

0


0
@ 

@y

@2 

@x@y
dx D 
0

@ 

@y

@ 

@y

ˇ̌̌̌L
0

�
Z L

0


0
@ 

@y

@2 

@x@y
dx

which is obtained by integrating by parts. The result is that the integral and the mean
are zero. The same thing is obtained for the last term.

E.10.3 Energy and EP Flux

To obtain an equation that relates the EP flux to the energy of the wave, we multiply
Eq. 10.68 by 
0u 0 to obtain (Holton 1975)


0
1

2

 
u
@u02

@t
C @u02

@x

!
C @ .
0uu0w0/

@z
� u

@ .
0u0w0/
@z

C 
0
@ .u0ˆ0/
@x

� 
0ˆ
0 @u0

@x
D 0

The last term of this equation can be substituted by Eq. 10.71 while the fourth from
Eq. 10.69. After performing a zonal mean, we obtain


0
1

2
u
@u02

@t
C @ .
0uu0w0/

@z
C 
0u

@u

@t
C @ .
0w0ˆ0/

@z
� 
0ˆ0zw0 D 0

Multiplying Eq. 10.70 by 
0ˆ
0
z/N2 it is possible to eliminate 
0ˆ

0

zw
0 to obtain after

the zonal mean
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0
1

2

@u02

@t
C 
0

N2

1

2

@ˆ0
z
2

@t
C 
0

1

2

@u2

@t
C d

dz

�

0uu0w0 C 
0w0ˆ0� D 0 (E.10.10)

Integrating over altitude, we have

1

2

@

@t

Z 1

0


0

h
u02 C �

ˆ0
z=N2

�C u2
i

dz D �
Z 1

0

d

dz

�

0uu0w0 C 
0w0ˆ0 dz

And using the condition that w0 D 0 for z D 0 and 1, we get the conservation of
total energy

1

2

@

@t

Z 1

0


0

h
u02 C �

ˆ0
z
2=N2

�C u2
i

dz D 0 (E.10.11)

This relation indicates that the total energy is in part the kinetic energy of the zonal
current and the eddies and in part the oscillation energy N2ı* 2/2, where ız* is the
amplitude of the oscillation. This can be easily obtained by considering that 	 0 D
	 zız�, where 	 0 is related to the vertical acceleration of the parcel given by

ˆ0
z D �	 0g=	 D 	 0N2=	z

The second term in Eq. C.7 is then obtained easily. Equation (10.71) can be rewritten
in a different form considering that

1

2

@

@t
u2 D u

@u

@t
D � u


0

d

dz

�

0u

0w0�
1

2

@

@t
u2 D u

@u

@t
D � u


0

d

dz

�

0u

0w0�
And deriving the last term in Eq. 10.69, we have


0
1

2

@u02

@t
C 
0

N2

1

2

@ˆ0
z
2

@t
C du

dz

�

0u0w0�C d

dz

�

0w0ˆ0� (E.10.12)

This equation tell us that the change of energy per unit volume in the wave is in
part due to the eddy transport term, similar to what we found in the boundary
layer, and in part to the power flux divergence due to the pressure forces (last
term). Equation E.10.12 can be written in the form that puts in evidence the energy
conservation if we recur to Eq. 10.66 and assume that all the variables have a phase
like k .x � ct/. We obtain

u0w0 D �ˆ0w0= .u � c/
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that can be substituted in Eq. E.10.10 to give


0
1

2

@u02
@t

C 
0

N2

1

2

@ˆ02
@t

� 
0
du

dz

w0ˆ0
u � c

D � d

dz

�

0w0ˆ0�

The quantity 
0w 0ˆ 0 can be regarded as power flux that can be written as the
product of the energy density (E) for the vertical component of the group velocity.
We obtain then

@E

@t
� du

dz

wgE

u � c
D @E

@t
� E

u � c

Dg

Dt
.u � c/ D � d

dz

�

0w0ˆ0�

where Dg indicates the total derivative where the velocity components are substi-
tuted by the group velocity.

E.10.4 The WKB Approximation

This approximation is used to solve a differential equation of the form

Wzz C m2W D 0 (E.10.13)

where m is a function of z. If m changes slowly, the local solution may be of the
form exp .˙imz/. The extension of the solution to a greater domain was made by
Liouville (and attributed to Wentzel, Kramers, and Brillouin 100 years later) by
introducing the variables

' D
Z

m dz # D m1=2W (E.10.14)

so that Eq. C.7 becomes

d2#=d'2 C .1C ı/ # D 0 I ı D m�3=2d2
�
m�1=2� =dz2 (E.10.15)

and if d << 1 the approximate solution for Eq. C.9 is of the form # D exp .˙i�/
which is equivalent to a solution for Eq. 9.81 of the form

W D m�1=2 exp

�
˙i
Z

m dz

�
(E.10.16)

If m changes slowly, the solution becomes

W.z/ / exp.imz/ ) w0 D Am�1=2 exp Œz=2H C i .kx C mz � ct/� (E.10.17)

where m D N= .u � c/

http://dx.doi.org/10.1007/978-3-319-29449-0_9
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E.10.5 The Numerical Solution to the Wave Equation

The starting point is an equation similar to Eq. 10.82 that contains also the nonlinear
terms

Wzz C Q2W D 0 (E.10.18)

where

Q2 D N2

.c � u/2
C uzz C u=H

.c � u/
� 1

4H2
(E.10.19)

In Eq. E.10.18, we put

W D W 0�e�z=2H

where W 0* is the perturbation to the vertical velocity. The perturbation may arise
from a forcing F(z) function of the altitude so that Eq. E.10.18 becomes

Wzz C Q2W D F.z/ (E.10.20)

The forcing is assumed to be an attenuated Gaussian

F.z/ D
8<: e�z=2A

�
e�.z�zf =zw/

2 � e�4
�
=H2

ˇ̌
z � zf

ˇ̌
< 2zw

0
ˇ̌
z � zf

ˇ̌
> 2zw

To solve Eq. E.10.20 numerically, we follow a method suggested by Lindzen so
that we assume a vertical grid such that

zk D k�; k D 1; 2; ::::; K

where the grid spacing is given by

� D ztop= .K C 1/

Equation C.3 is transformed in the finite difference form

WkC1 C �
�2Q2

k � 2
�

Wk C Wk�1 D �2Fk (E.10.21)

for k D 2; : : : ; K � 1. For k D 1 we have

W2 C �
�2Q2

1 � 2
�

W1 D �2F1 � Wbot (E.10.22)
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where Wbot is the condition on the velocity at the lower boundary. For the upper
boundary k D K we can have two conditions, the rigid lid

Wk�1 C �
�2Q2

k � 2�Wk D �2Fk (E.10.23)

and the radiation condition

2WkC1 C �
�2Q2

k � 2i�Qk � 2
�

Wk D 0 (E.10.24)

The first condition reflects the condition that the velocity is zero at the top while
the second assumes a solution of the form

W
�
ztop
� / exp

��iQ
�
ztop
�

z
�

The system that results from Eqs. (E.10.21), (E.10.22), (E.10.23), and (E.10.24)
is tridiagonal and can be inverted with standard methods. The program included in
the CD written by one of my students uses the method suggested by Lindzen and
calculates also the geopotential and momentum fluxes.

E.10.6 A Few More Things About Mountain Waves

We may consider following Durran (1990) the two-dimensional flow which satisfies
the linearized governing equations

@u

@t
C @p

@x
D 0

@w

@t
C @p

@z
D b

@b

@t
C N2w D 0

@u

@x
C @w

@z
D 0

(E.10.25)

In these equations, b represents the buoyancy given by b D g .	 � 	0/ =	s and
the pressure p D cp	s .� � �0/ and N2 D .g=	s/ d	0=dz. All the values with the
subscript (s) are the reference value, while � D .p=ps/

R=cp and the quantities with
subscript (0) are hydrostatically equilibrium values.

To obtain a single equation for w, we derive the first with respect to z and the
second with respect to x to eliminate pressure

@

@t

�
@u

@z
� @w

@x

�
D @b

@x
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This equation is then derived with respect to t while the third in (E.10.25) with
respect to x to eliminate b

@2

@t2

�
@u

@z
� @w

@x

�
C N2 @w

@x
D 0

We derive this equation with respect to x and eliminate u with the continuity
equation to get

@2

@t2

�
@2

@x2
C @2

@z2

�
w C N2 @

2w

@x2
D 0 (E.10.26)

We look for the solution of the form

w D w0 cos .kx C mz � !t/ (E.10.27)

And from the continuity equation, we have

u D �m

k
w0 cos .kx C mz � !t/ (E.10.28)

We can also easily get the buoyancy and the pressure

b D N2

!
w0 sin .kx C mz � !t/ (E.10.29)

p D �!m

k2
w0 cos .kx C mz � !t/ (E.10.30)

The dispersion relation can be found by forcing (E.10.27) in (E.10.26) to get

!2 D N2k2

k2 C m2
D N2cos2� (E.10.31)

This is the same as (10.16). Also, (E.10.27) and (E.10.28) imply that u=w D �m=k
meaning that air parcel motions are parallel to wave front.

E.10.7 Waves Forced by Sinusoidal Ridges

Some other properties for mountain waves can be obtained assuming a forcing at
the lower boundary given by a sinusoidal profile

h.x/ D hm sin kx (E.10.32)
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and the condition of a steady state. In this case, all the time derivatives could be
reduced to @=@t ! u0@=@x where u0 is the background wind along the x direction.
In this case, (E.10.26) reduces to

u20
@2

@x2

�
@2

@x2
C @2

@z2

�
w C N2 @

2w

@x2
D 0

that can be integrated twice with respect to x, giving

@2w

@x2
C @2w

@z2
C N2

u20
w D 0 (E.10.33)

We can integrate this equation assuming a solution of the form

w .x; z/ D w1.z/ cos kx C w2.z/ sin kx (E.10.34)

that can be substituted into (E.10.33), giving the equations

@2wi

@z2
C
�

N2

u20
� k2

�
wi D 0 (E.10.35)

where wi is either w1 or w2. We can put m D �
N2=u20 � k2

�1=2
and �2 D �m2

and the equation can have two possible solutions, one varying exponentially with
altitude and the other freely propagating with height

wi.z/ D
(

Aie�z C Bie��z k > N=u0

Ci cos mz C Di sin mz k < N=u0
(E.10.36)

The first condition happens when the intrinsic frequency Nk > u0 and of it we need
to take only the solution decaying with altitude having the form

w .x; z/ D Be��z cos kx

And the constant is determined in such a way that

w .x; 0/ D B cos kx D u0
@h

@x
D u0hmk cos kx

so that the solution is given by

w .x; z/ D u0hmke��z cos kx (E.10.37)
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Fig. E.10.2 Streamlines of stationary waves above the sinusoidal profile. On the left, the
amplitude attenuates with height. On the right, freely propagating waves upward and westward.
The constant phase is indicated by the broken line (Durran 1990)

The dispersion relation obtained forcing a solution of the form R �
ei.kxCmz�!t/

�
is

! D u0k ˙ Nk

.k2 C m2/
1=2

(E.10.38)

In order to have ! D 0 we need to take into account only the negative roots, and the
vertical group velocity is given by

@!

@m
D Nkm

.k2 C m2/
3=2

(E.10.39)

Vertical propagation of energy requires that k and m have the same sign. So for the
second solution of (E.10.36), we should have

w .x; z/ D u0hmk cos .kx C mz/ (E.10.40)

The first of the two solutions is shown on the left of Fig. E.10.2 where u0 D 10ms�1
and hm D 500 m. The propagating solution shown on the right has u0 D 5 ms�1.

What Happens Over an Isolated Mountain

We have treated a similar problem as an application of the conservation of potential
vorticity. We go back on the same problem using the formalism we have developed
for gravity waves. The idea is to reconstruct the isolated mountain in trends
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of Fourier components so that even the vertical velocity we have found can be
written as

w .x; z/ D Re
Z 1

0

bw .k; z/ e�ikzdk (E.10.41)

that can be substituted in (E.10.23) to give

@2bw
@z2

C �
l2 � k2

�bw D 0 (E.10.42)

where we have put l2 D .N=u0/
2. The boundary condition becomes

bw .k; 0/ D u0ikbh.k/ (E.10.43)

where ĥ(k) is the Fourier transform of the mountain profile

bh.k/ D 1

�

Z 1

�1
h.x/e�ikxdx

Then the solutions to (E.10.42) will be for k2 > l2

bw .k; x/ D bw .k; 0/ exp
h
��k2 � l2

�1=2
z
i

(E.10.44)

while for k2 > l2

bw .k; x/ D bw .k; 0/ exp
h
i
�
l2 � k2

�1=2
z
i

(E.10.45)

From the definition of streamfunction �(x, z) we get

w=u0 D @�=@x (E.10.46)

And integrating with respect to x

� .x; z/ D 1

u0

Z x

0

w .�; z/ d D 1

u0

Z x

0

dxRe
Z 1

0

w .k; z/ eikxdk

so we get

� .x; z/ D 1

iku0
Re
Z 1

0

w .k; z/ eikxdk

We can substitute the values for w(k, z) and obtain
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eikxdk

C
Z 1
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bw .k; 0/ exp

h
��k2 � l2
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Substituting (E.10.43), we have
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Z 1
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eikxdx

�
(E.10.47)

Just to make an example, we use e simple profile

h.x/ D hma2=
�
x2 C a2

�
(E.10.48)

whose Fourier transform is given by

bh.k/ D hmae�ka (E.10.49)

We may consider two different cases to obtain an analytic solution which corre-
sponds to the case al � 1 or al 	 1. The parameter a gives an idea of the width of
the ridge, while from the definition of 1(N/u0) we notice that the quantity al is the
ratio between the time it takes for a particle to traverse the ridge and the period of
an oscillation. So for strong wind and narrow ridge and weak stability al 	 1 and
the first integral becomes small so we have

� .x; z/ D Re

�Z 1

0

hmae�kae�kzeikxdx

�
D hmaRe

�
1

� .a C z/C ix

�
D hm .a C z/

.a C z/2 C x2

(E.10.50)

Notice that when z ! 0; � .x; z/ ! h.x/. In the opposite case, when al 	 1

buoyancy effects dominate and mathematically, ĥ(k) is small in the range l < k < 1
so that the second integral in (E.10.47) makes no contribution and we have

� .x; z/ D Re

�
hma

Z 1

0

e�kaeilzeikzdk

�
D hmaRe

� �1
�a C i .lz C kx/

�
D hma

.a cos lz � x sin lz/

a2 C x2

(E.10.51)
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Fig. E.10.3 Streamlines over an isolated obstacle. On the left is shown the approximation al < < 1,
while on the right is the case when al > > 1. Notice that the different vertical scale and the
streamline are plotted at 1 km interval (Durran 1990)

Results in (E.10.50) and (E.10.51) are illustrated in Fig. E.10.3. In particular, the
second case corresponds to vertical propagating nondispersive waves. The flow is
periodic in the vertical so that at z D �=l the streamline shape is the inverted h(x)
profile. The parameters for the figure on the left are hm D 1000m; a D 10km. For
the figure on the right, hm D 1000m; a D 10km; N D 0:01=s, and u0 D 10m=s.
This implies a period z D �=l D � .u0=N/ � 3146m. In the figure, the ground
profile is repeated every 6 km.
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Chapter 11
The Data on the Atmospheric Circulation

What we have learned so far can be applied to understanding the general circulation
of the atmosphere. With this term, we mean all the large-scale motions that
charaterize the atmosphere of the Earth. We already know the general features of
motions, in the sense that we expect them to be geostrophic or quasi-geostrophic.
Also we know that they are quasi-horizontal and that in general we can neglect
vertical motions.

The theory of the general circulation of the atmosphere is not an academic matter
because weather forecast and its improvement are based on it. At this point we do
not want to make any attempt to review the ideas or the history on atmospheric
circulation. The interested reader may look at the references given at the end of
the book. We would rather start from the observed data and after a qualitative
assessment of them we will present some of the theories in the next chapter.

11.1 The General Features

The main difference with respect to the old days is that today we have a wealth of
data on atmospheric circulation. Data obtained through ground-based methods have
been complemented with those obtained from satellite observations. A qualitative
image of the circulation could then be that represented in Fig. 11.1. This figure
refers to the situation found in the northern hemisphere in summer.

At the subsolar point located at about 20ı latitude north, the intense heating
produced by the absorption of solar radiation determines an almost convective circu-
lation, with air rising to the top of the troposphere. This air has a considerable water
vapor content that through condensation produces even more positive buoyancy.
As in the case of a convective cell, the “hot plume” at the top of the troposphere
separates in two branches directed to the north and south. If we follow the northern
branch, the air, under the Coriolis force, will move toward east reaching a latitude
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Fig. 11.1 The general characteristics of the atmospheric circulation referred to the summer in
the northern hemisphere. In this figure, the meridional character of the circulation in emphasized
(Adapted from Washington and Parkinson 1986)

belt around 30–35ı. At this point, the air has cooled to the point that it starts to
subside along a “cold plume” and, closing the cell, moves near the ground toward
west. The easterly component of this motion corresponds to the trade winds. One
of the first questions we have to ask about the general circulation of the atmosphere
is why these convective cells (known as Hadley cells) are limited in latitude and if
there is any reason why they do not extend from the equator to the pole.
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The figure shows how the circulation on the meridional plane, at middle latitudes,
is dominated by a cell that is not produced by differential absorption and must have
its origin in non-thermal processes. For this reason, it is called an indirect cell and
it is also referred as a Ferrell Cell. One of the effects of these indirect cells is to
produce the westerly winds that at middle latitudes drive the zonal circulation. The
changes with altitude of these winds are due to the temperature latitudinal gradient
(i.e. the thermal wind). In Fig. 11.1, “solid” arrows represent the zonal winds. As
we will see shortly except for the tropical region (that is between the Hadley Cells),
winds are always westerly although they reach a maximum in the high troposphere
in the tropical region.

Labels attached to the different jets are meant to indicate the region and not
a change in direction. In this figure we mainly show the meridional circulation,
although there is also some indication about local or regional circulations like the
monsoons.

Everything depicted in Fig. 11.1 actually can be represented by a meridional
mass stream function as shown in Fig. 11.2. The units of mass/time refer to the
atmospheric mass crossing a latitude circle at the altitude and latitude indicated
in the figure. The polar fluxes are not represented because they are lower than
1010 kg s�1. The data to which this figure refer represent a 10-year average and
it clearly shows that there is no symmetry between the two hemispheres.

A quite general picture for the zonal winds is given in Fig. 11.3. As in the
previous case, this is an annual mean and again the situation is not exactly symmetric
between the two hemispheres. The structure of the trade winds is quite clear, as
is the presence of the equatorial jet, as already shown in Fig. 11.1. A simple
consideration can be made regarding the zonal winds and their contribution to the
angular momentum of the Earth–atmosphere system, where the zonal winds are

Fig. 11.2 The mean annual meridional circulation of the atmosphere. The isopleths of the mass
stream function are in units of 1010 kg s�1 and are plotted at intervals of 1 unit for the anticlockwise
circulation (dashed lines) and at interval of 2 for the clockwise cells (shaded). The flatness of the
curves at the top is due to lack of data. The Hadley and Ferrell cells show up clearly. The figure is
based on the data by Oort and Rasmussen. Southern latitudes are indicated with negative values
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Fig. 11.3 The average zonal winds over a period of 10 years. The isopleths are reported at intervals
of 3 m s�1. Although the maximum values are reached at the tropics, the zonal winds remain
westerly even in the high altitude polar regions. The easterly winds (dashed) are the trade winds in
the lower tropical troposphere. The westerly winds are shaded (All data are taken from Oort 1973;
Peixoto and Oort 1992; Oort and Peixoto 1983)

westerly they “push” the Earth and the atmosphere transfers angular momentum
to the solid Earth. On the other hand, when the winds are easterly (that is at the
tropics) the atmosphere slows down the Earth and gains angular momentum. One
would argue that the angular momentum lost by the solid planet at the tropics must
be regained in other regions. However, this is a too generic argument to give useful
results.

However the energy budget looks more promising from this point of view. We
will start then to look at some energetics of the atmosphere: a very interesting and
fundamental topic.

11.2 The Energy Budget of the Atmosphere

As we have seen since the first chapter, the main source of energy for the atmosphere
is solar radiation. The power incident at one point of the Earth’s surface depends on
astronomical parameters (season and latitude). By contrast, the radiation absorbed
depends mainly on the albedo and in that we include everything: the effects of the
atmosphere, the clouds, the soil, etc. Nowadays satellite data can be used to make
a quite accurate budget of the net zonally averaged solar radiation (that is incident
minus reflected). In the same fashion, the emitted infrared radiation can also be
measured. These two terms are plotted in Fig. 11.4, and they actually represent
the net energy gain from the solar radiation and the net energy loss by the Earth
due to planetary radiation. What is rather evident from this figure is that there is
a net gain of energy in the tropical region and a net loss in the high latitude and
polar regions. The reason for this behavior is because the solar radiation absorbed
decreases toward the pole due to a geometrical factor but also to the increasing
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Fig. 11.4 The upper part of the figure shows the zonally averaged absorbed solar radiation (solid
line) and the emitted infrared radiation (dashed line). The lower part shows the net radiation
absorbed that is the sum of the two previous terms

albedo of the polar regions. On the other hand, the infrared radiation is emitted
mainly at the tropopause and depends on its temperature. This does not change very
much with latitude because the tropopause height decreases going from the equator
to the pole. The net radiation, that is the difference between the absorbed and emitted
radiation, is positive approximately between 40 ıN and 40 ıS and negative at higher
latitudes both north and south. The earth-atmosphere system must be in thermal
equilibrium and this means that its temperature must be stationary, and consequently
the integral of the net radiation on its surface must be zero. If FA is the net radiation
we must have Z �=2

��=2
2�a2FA cos�d� D 0 (11.1)

where a is the Earth’s radius and ® the latitude. It is interesting then from the data
of Fig. 11.4 to calculate the same integrals starting from the north pole to find the
net radiation up to some latitude, as shown in Fig. 11.5.
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Fig. 11.6 The energy budget
in a semi-infinite box
delimited by two walls at
latitudes y and y C�y

However as a first result we found that the energy at the South Pole is not zero
(dashed line). Several reasons can explain this result, although the question is really
that the albedo of the Earth–atmosphere system is poorly known in detail. The
albedo strongly influences the calculation of the absorbed and reflected radiation.
A few tricks are then used to correct this result and the one adopted in this case is
to multiply the absorbed radiation by 1.025, which is a very small factor indeed but
enough to correct the calculation. Actually the curve shown is the integral multiplied
by the cosine of the latitude.

The fact that the sign is positive in the northern hemisphere and negative in the
other has no special significance except for the assumption made on the coordinate
system. This is shown in Fig. 11.6, where the energy fluxes are represented, as if
they were only a function of latitude. We can imagine two walls extending from the
surface to the top of the atmosphere. The energy fluxes across the walls (due to the
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atmosphere and ocean circulation, for example) are directed toward the poles. If the
total flux is indicated with FAO then we have

FAO .y C�y/� FAO.y/ > 0

This means that in that particular latitude interval, the net radiation is absorbed so
that at the equilibrium it must be

FAO .y C�y/� FAO.y/ D 2�a2FA cos���

or equivalently

�FAO=�y D 2�aFA cos� (11.2)

It is clear then that the curve shown in Fig. 11.5 gives the change of the total flux
with latitude. In the northern hemisphere, in regions with net absorption (FA > 0),
the total flux must increase with increasing latitude and vice versa for FA < 0.

The calculation of FAO is simple. We have

FAO.y/ D
Z 1

0

dz
Z 2�a cos�

0

ad�FD .y; �; z/ D 2�a cos�
Z 1

0

FD .y; z/dz (11.3)

where FD .y; z/ is the zonally averaged flux at altitude z and latitude y in W m�2. If
the result of the integral over altitude is FE we have

FAO.y/ D 2�a cos�FE

which substituted in Eq. (11.2) gives

1

a cos�

@

@�
.cos�FE/ D FA (11.4)

This relation expresses the conservation of energy because it gives the divergence
of the total energy flux equal to net radiative flux. The problem we have at this point
is to see whether the observations can justify Eq. (11.4). We start by rewriting the
same equation as

2�a2 cos�FE D 2�a2
Z �

��=2
cos�FAd� (11.5)

where the right-hand side is just the curve shown in Fig. 10.5. The relevance this may
have on the study of the atmospheric circulation should be emphasized. Equation
(11.5) gives the constraints that any theory on the mechanism for energy transport
must obey.

http://dx.doi.org/10.1007/978-3-319-29449-0_10
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11.2.1 Forms of Energy

The energy (per unit surface) for the atmosphere can be divided into internal energy
EI , potential EP and kinetic EK . They are given by the following integrals

E1 D
Z 1

0


CvT dz (11.6a)

EP D
Z 1

0


gz dz D �E1 D
Z 1

0

z dp (11.6b)

Ek D
Z 1

0


 dz
�
u2 C v2

�
=2 (11.6c)

In the last expression we have neglected the vertical velocity. The potential energy
can be written in a slightly different form

�
Z 0

p0

z dp D
Z 1

0

p dz D R
Z 1

0


T dz (11.7)

which added to Eq. (11.6a) gives

E1 C Ep D
Z 1

0


CvT dz C R
Z 1

0


T dz D
Z 1

0


CpT dz D CpE1=Cv (11.8)

This is a rather interesting conclusion because it says that the sum of the internal
and potential energy (also called total potential energy) is about 1.4 times the
internal energy. Assuming a linear lapse rate � for the temperature, we can evaluate
the average value for Eq. (11.8)

E1 D CvT0p0=g .1 � R�=g/

which, with appropriate numerical values, gives an energy of about 5 � 1014 J m�2

corresponding to 6.7 � 1032 J for the globe. Of all this energy, only a tiny amount is
available for motion. Before trying to understand why, we like to consider the kinetic
term. From the equations of motion, we can easily evaluate the rate of change of the
kinetic energy. We start from the equations of motion in terms of the geopotential

Du=Dt � fv D �@ˆ=@x

Dv=Dt C fu D �@ˆ=@y
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multiplying the first by u and the second by v and adding

DK

Dt
D �


�
u
@ˆ

@x
C v

@ˆ

@y

�
(11.9)

In this case K is the kinetic energy per unit volume. In the same way we can find the
rate for the potential energy per unit volume P

DP

Dt
D D

Dt

�

CpT

� D 

dQ

dt
C Dp

Dt
D 


�
dQ

dt
� wg

�
(11.10)

The right-hand side of Eq. (11.9) can be written as�
u
@ˆ

@x
C v

@ˆ

@y

�
D r � .ˆV/� w

@ˆ

@z
D r � .ˆV/ � wg

And the rate of change of the total energy E is given by

DE

Dt
D DK

Dt
C DP

Dt
D �


�
r � .ˆV/ � dQ

dt

�
(11.11)

This equation expresses the fact that the total energy increases with heating and
is dissipated by the geopotential flux. The same can be cast in a Eulerian form much
more simply. From the definition of total derivative, we have

@E

@t
D �r � .KV/ � 
r � �.gzV/C �

CpTV
�C 


dQ

dt
(11.12)

The first term on the right-hand side represents the flux of kinetic energy which is
usually negligible. In this way, Eq. (11.12) can be put in a conservative form

@E

@t
C r � FE D 


dQ

dt
(11.13)

where

FE D 
 .gzV/C 

�
CpTV

�
We can perform the divergence (neglecting the vertical terms) and make a time and
a zonal average

@
�
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D � @
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�
pg Œzv�C 
Cp

�
vT
�C 


d
�
Q


dt
(11.14)

The zonal mean in this case is indicated with the brackets, while the time average
is indicated with the overbar. This is the rate of change of energy per unit volume,
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and if we want the total change it is necessary to integrate Eq. (11.14) with respect
to volume. This operation is more convenient in spherical coordinates, so we get for
the total change of energyZ
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The diabatic term includes both the radiative heating and the latent heat
contribution. In stationary conditions the right-hand-side integral can be related to
Eq. (11.5) if we put
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d
�
Q
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dz (11.16)

Actually in Eq. (11.5), the quantity FA included only the radiative contribution
which in this case is extended also to the latent heat. This distinction is not important
in any case. We have expressed the simple fact that diabatic heating (radiative and
latent heat) must be balanced by the sensible heat flux and the geopotential flux. This
can be easily verified using data similar to those reported by Oort and Rasmussen.
However, we have used at length concepts like zonal average, or time average, and
we are at the point that we need to think about them a little.

11.2.2 Decomposition of Transport

Equation (11.14) gives the zonally average flux of the sensible heat and the
geopotential. Actually, the quantities appearing in that equation are quite variable
in time and in space. It is then convenient to resort to averages and the relative
deviations.

We consider, for example, a quantity A and for it we can define the time average
over the interval �

A D 1

�

Z �

0

A dt (11.17)

And the deviation from the mean A0 will be such that

A D A C A0 (11.18)
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We have talked a lot about zonal mean which we remember is given by

ŒA� D 1

2�

Z 2�

0

Ad� (11.19)

while the deviations A* will be such that

A D ŒA�C A� (11.20)

Knowing these simple rules we can proceed with more complex operations like

AB D �
A C A0� �B C B0� D AB C A0B0 (11.21)

or

ŒAB� D ŒA� ŒB�C �
A�B� (11.22)

We are mainly interested in zonal averages of time averages like the quantities
appearing in Eq. (11.14). To accomplish this we consider first the zonal mean

AB D �
ŒA�C A�� �ŒB�C B�� D ŒA� ŒB�C ŒA�B� C ŒB�A� C A�B�

ŒAB� D ŒA� ŒB�C �
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Then we know that
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And substituting we have for the zonal mean of a product
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while the time average
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It is instructive to evaluate the same quantity starting from the time average
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so that the zonal mean

ŒAB� D ŒA� ŒB�C
h
A

�
B

�iC ŒA0B0� (11.24)

Equations (11.23) and (11.24) are the same so that also the right-hand side must be
the same as can be easily shown.

A first conclusion is that any quantity can be written as a function of its spatial
and time averages

A D �
A
C A

� C ŒA�0 C A0� (11.25)

The first term ([A]) represents the zonal mean of the time-averaged value. For
example in Fig. 10.1, this term could be appropriate for the trade winds or, even
better, the westerlies shown in Fig. 10.3. The second term A

� D A � ŒA� represents
the time-averaged of the deviations from the zonal mean and so may refer to the
asymmetric part of time average quantities, like the monsoon circulation. The third
term [A]0 D [A]�[A] represents the temporal deviations from the zonal mean and
then the fluctuations with respect to the zonal mean. Finally, the last quantity is the
instantaneous value of the deviation from the zonal mean and consequently the lows
and highs. The meaning of these terms will be more clear when we apply them to
the energy budget of the Earth–atmosphere system.

11.2.3 The Details of the Energy Budget

We apply immediately what we have illustrated in the previous section. The average
quantities appearing in Eq. (11.14) can be written�

vT
 D Œv�

�
T
C �

v� T�
C �

v0T 0 (11.26)

This relation says that the total sensible heat transport is due to the mean zonal
meridional circulation (first term), to the mean zonal stationary eddies (that is the
time average of the deviations from the zonal mean) and to the mean zonal transient
eddies (deviations from the time average). This last term takes care of the correlation
between the time deviations. In the way we can also write the geopotential and the
latent heat term

L Œvq� D L Œv� Œq�C L Œv� q� �C L
�
v0q0 (11.27)

where L is the latent heat of condensation and q is the mass mixing ratio for
water vapor. The data for calculating the quantities (11.26), (11.27) and (11.15)
can be obtained from the Oort and Rasmussen statistics. One first result is shown
in Fig. 11.7, where the different terms of the budget are shown as a function of

http://dx.doi.org/10.1007/978-3-319-29449-0_10
http://dx.doi.org/10.1007/978-3-319-29449-0_10
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Fig. 11.7 The flux of the different components that contribute to the energy flux. The values are
referred to the flux crossing a circle of latitude

latitude. We can notice a number of interesting things. First of all, if we look at the
behavior of the latent heat meridional flux, we may note a first positive maximum
at about 10ı south and a negative one at 10ı north. This means that in the narrow
equatorial region precipitation is much higher than evaporation so that the region
is a sink for water vapor. The water vapor flux in this region in both hemispheres
is toward the equator where it condenses and rains out. Tropics, on the other hand,
are a source for water vapor because the flux is positive in the northern hemisphere
(from the tropics to higher latitudes) and negative in the southern hemisphere (from
the tropics toward the south pole). A rather similar situation is obtained for the
sensible heat, for which the equatorial region is actually a sink. At first sight this
may look contradictory because the equator should be a region of heat production.
Actually, if we look at the meridional circulation (Fig. 11.2) below 5 km, there is a
region where cold air in the Hadley cell returns from high latitude moving toward
the equator. The region where heat is exported from the equator is located at high
altitude, where density and temperature are low enough to have a negligible effect
on the flux. At these latitudes, the mean circulation dominates transport. At middle
latitudes transient eddies are dominating the transport, and the tropics and middle
latitudes are the main sources. In the case of the geopotential flux the situation is the
opposite because the source is located at the equator. The reason is that the values
of the mean circulation are high but opposite in sign both at high and low altitude.
The tropics in this case are a sink for the fluxes arriving from the high latitudes.
An interesting point is the opposite sign of the geopotential and sensible heat. The
detailed explanation for that will be found in the discussion of the energy cycles.
However an intuitive explanation is found considering that the geopotential flux is
related to the kinetic energy while the sensible heat flux is related to the change in
potential energy.

It should be obvious that when the kinetic energy increases, the potential energy
decreases and vice versa, while their sum must be equal to the net diabatic flux. This
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Fig. 11.8 The budget between the diabatic (thick line) and dynamic terms. The atmospheric
contribution is shown with the thin line while that of the ocean with the dashed line

sum is shown in Fig. 11.8, and we notice immediately a problem: apparently the two
fluxes are not able to balance the diabatic term. We assume that the missing term is
due to the oceanic heat flux which is obtained as a difference. Both the oceanic and
atmospheric fluxes are directed toward the respective poles in the two hemispheres
and are approximately of the same order of magnitude. Dealing here only with
the atmospheric part we will require that any theory on the general circulation
be constrained to explain the behavior of the energy fluxes with latitude and in
particular the fact that they have a maximum around middle latitudes.

11.3 The Mean Zonal Circulation

The debate about what keeps the atmospheric circulation going can be reduced to
the bone by saying that, while for the tropics there are few doubts about the engine
(a kind of convective cell or direct cell), for the middle and high latitudes the eddies
could be responsible.

The data in the previous paragraph are consistent with a simple theory (more like
a diagnostic theory) taken from a series of lectures given by John Wallace in 1978
at the National Center for Atmospheric Research.

The starting point again is the local forcing due to the pressure gradients are
balanced by the Coriolis acceleration.

Du

Dt
D @u

@t
C u

@u

@x
D �f

�
v � vg

�
(11.28)

Again we notice that the quantity with the overbar denotes time averages. In the Eq.
(11.28) we have kept the most important terms. The zonal acceleration resulting
from this equation can be easily calculated so that, because the advective term
is about 30 m s�1 day�1, the difference between the meridional velocity and its
geostrophic component is about 3 m s�1. We are interested in the zonal mean values
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and it may be useful to consider local equilibrium. We consider the deviation from
the time average so that u D u C u0 and, v D v C v0. With these substitutions, Eq.
(11.29) becomes, adding the meridional advective term,
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@x
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@y
� @

@x
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u0v0 C f

�
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� D 0 (11.29)

This is the equation that describes the equilibrium for the zonal wind. From the
data, it is possible to establish that the transient terms (third and fourth on the right-
hand side) are about three times smaller than the first so that Eq. (11.29) is valid
locally. Then if Eq. (11.29) is zonally averaged we should write each term like u D
Œu�C u0. We obtain from Eq. (11.29)
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The terms that appear as derivative with respect to x when averaged zonally
disappear, as happens for, because it is proportional to the pressure gradient in the x
direction. The third term on the right can be written as
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Assuming that the wind has zero divergence we obtain
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Considering these simplifications Eq. (11.29) becomes
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In this equation we notice how the momentum budget is determined by both mean
quantities, like the first term on the right-hand side which are the meridional
vorticity net flux and eddy terms. These are of stationary types (due to deviations
from zonal mean quantities) and transient (due to deviations from time mean
quantities). In particular, the second term on the right represents the divergence of
the momentum flux. If we indicate with G the divergence of the eddy fluxes and
with F the force per unit mass due to friction we obtain
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Fig. 11.9 The left panel shows the annual mean values of the zonal momentum flux (units of
m2 s�2) while the right panel shows the divergence (units of m s�1 day�1)

This relation can be used to establish the order of magnitude of the meridional
circulation and its direction. In particular both G and F can be obtained from the
data (i.e. Oort and Rasmusson). For example, the transport of the zonal momentum˚

Œu�v� �C �
u0v0�

and its divergence (G). Both quantities are shown in Fig. 11.9. From this figure we
notice that the momentum flux is always positive for latitudes lower than 50ı and
presents a maximum at about 30ı at an altitude of about 12 km. Above 50ı N the
flux becomes negative, at least up to 75ı N, so that for this latitude range the Earth
is “pushed” by the wind.

The divergence of this flux actually represents the acceleration on the mean
zonal wind which is then negative up to 30ı N and then becomes positive. The
maximum value of this acceleration (annual mean is of the order of 1.7 m s�1day�1)
can reach even 5 m s�1day�1 in winter. These data show that there must exist a
source of momentum at middle latitudes, as is shown schematically in Fig. 11.10.
In this figure is also shown the position of the jet and the F term. The friction is
essentially confined to the planetary boundary layer and will accelerate the motion
in the tropical region. In that region, the zonal wind is negative and the friction
will give a positive acceleration. The middle and high latitudes are dominated by
westerlies, and in this case the zonal wind is positive and the Earth is pushed by the
winds. In the regions where it is possible to neglect friction (for example at the jet
level) Eq. (11.32) has a very simple form that gives the order of magnitude for the
meridional velocity

Œv� D �G= .f � @ Œu� =@y/ (11.33)

For middle latitude f D 10�4 s�1, while from the previous figure G is about 5 m s�1

day�1 and @[u]/@y � 0.2 10�4 s�1. The upper branch of the Ferrel cell has then a
velocity around 0.4 m s�1 directed toward south because G is positive.
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Fig. 11.10 A schematic illustration of the meridional circulation (right). On the left are shown
the regions of positive and negative divergence for the momentum flux. The positive and negative
signs near the surface indicate the action of friction

The rate of change of temperature can be obtained directly from the thermody-
namic equation so that
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We can proceed in the same way as in the case of the acceleration of the mean flux
to obtain
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From this equation, we can see that the temperature change is determined not
only by the diabatic term but also by the eddy heat flux divergence. For stationary
conditions, we obtain for the vertical velocity

Œw� D .P C Q/ = .�d � �/ (11.36)

where we have put

P D �@ �v0T 0 =@y Q D
h
:
q
i
=Cp:

In Fig. 11.11, the term P C Q of Eq. (11.36) is shown as the annual mean. The
diabatic heating is maximum at the equator while for the eddy flux the divergence
is negative below 30ı N and positive at higher latitudes. This means that because
the term (�d��) is always positive, there will be upward motions in the equatorial
region and downward motions near the tropics. The motion will be again positive
upward around 60ı N. These estimations are then consistent with the previous one
under the provision of non-acceleration of the zonal mean flux.
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Fig. 11.11 Annual mean values of the divergence of the eddy heat flux (left) in ıC day�1 and of
the diabatic heating (right). Notice the prevalence of the diabatic heating near the equator and of
the eddy term at middle and high latitudes

The conclusion we may drawn is that almost all the characteristics of the mean
meridional circulation can be obtained from the condition of zero acceleration on
the zonal wind and thermal equilibrium. From Fig. 11.9, we see that at 45ı N the
zonal wind acceleration due to the eddy flux is such that the zonal wind increases at
high altitude more than at low altitude and consequently the tendency is to increase
the wind shear. On the other hand, from Fig. 11.11, at the same latitude the eddies
tend to decrease the latitudinal temperature gradient heating the atmosphere at high
latitude and cooling it at low and middle latitudes, thus reducing the temperature
latitudinal gradient. Reducing the temperature gradient will reduce the thermal
wind.

The Ferrel cell in a sense is the consequence of these tendencies because, as
it can be seen from Fig. 11.10, the meridional velocity is negative at the jet level
and so slows down the zonal wind while the same meridional velocity at the lower
level speeds up the zonal wind. Also the vertical branches of the cell are responsible
for a cooling in the region of 60ı N (adiabatic expansion of the ascending air) and
a heating around 30ı N (compression of descending air). The Ferrel cell is then
generated by the eddies, although this qualitative approach needs to be justified by
a mechanism that should be sound also from an energetic point of view.

The Hadley cell can be justified in the same way because from Fig. 11.9 we notice
that in the equatorial region the eddies slow down the wind at high altitude (reducing
the shear), but at the same time the eddies also increase the latitude temperature
gradient. In reality, the Hadley cell is so direct that it does not need the presence of
the eddies; rather as we will see in a moment, the eddies reduces the intensity of the
zonal winds.

All these are diagnostic considerations. They simply tell us that the observations
are consistent with the circulation, that is, the physics is sound. However physics is
more than that and we should be able to find a theory that would explain why the
direct cell breaks before reaching the pole, and why the eddies are responsible of
the Ferrel cell and find a meaning for all the other data.
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A possible idea is the following: The latitudinal thermal gradient it is established
for geometrical reason and it is enough to produce a convective cell where the zonal
wind increases with altitude to balance the pressure gradient that is a consequence
of the thermal gradient. The zonal currents that arise from this situation are
unstable in the sense that the minimum wiggle is enough to make them grow and
eventually break. This instability generates eddies that can provide the engine for the
circulation at middle latitude. We will start on this road with the Hadley circulation
which for obvious reasons we will assume to be symmetric.

E.11 Examples

E.11.1 Waves and Momentum Flux

We will anticipate some of the theory on the general circulation that we will report
on the next chapter but in simpler terms. This is based mainly on the lectures given
by Held (2000). In particular we refer to the fact that poleward eddy momentum
flux is the consequence of Rossby wave propagation toward the equator. Rossby
waves can be thought of as being stirred at mid latitudes by baroclinic instability
and then propagating to the subtropics. The waves may approach critical latitudes
where their phase velocity equals the background zonal flows. At those latitudes
waves may grow in amplitude and breaks irreversibly, resulting in the absorption
of wave activity. Randel and Held (1991) introduced the concept of phase speed
spectrum which decomposes eddy fluxes as a function of phase speed wavenumber.

We may start by noting that the thermal wind equation gives

f
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@y
(E.11.1)

Because the gradient @T=@y is always negative in the troposphere this implies that
U > 0 throughout the troposphere. At the surface, the situation could be a little more
tricky. There the pressure gradient is constantly directed toward the tropics and the
geostrophic balance can be achieved only with a zonal easterly wind.

Some interesting consideration can be made for the momentum flux. We start by
writing the vorticity equation
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where  indicate the relative vorticity. By linearizing this equation (u D U; v D v0)
we have
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where

� D ˇ � @2U

@y2

In case U D cost � D ˇ and we have the usual plane wave solution

 D A cos .kx C ly � !t/

with the dispersion relation
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We can evaluate the meridional transport of zonal momentum by eddies
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(E.11.4)

This shows that if kl > 0 we have southward momentum flux while if kl < 0 we have
northward momentum flux. We can now evaluate the meridional group velocity

Gy D @�

@l
D 2ˇkl

.k2 C l2/2
(E.11.5)

If we compare (E.11.5) with (E.11.14), we find that meridional flux of zonal
momentum is positive when kl < 0 and vice versa. We now consider a source and
north of the source the meridional group velocity must be positive so we chose
kl > 0 while south of the source we choose kl < 0 so that Gy is negative.

Meaning that the meridional momentum flux is opposite to the group velocity.
This argumentation can be seen also from another point. We assume that there is
small amount of damping in the propagation and the addition implies an imaginary
part to the frequency that is

! C i� D �.k; l/

We can compute l by assuming that the new solution is close to the inviscid solution
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And this substituted in the original wave solution gives
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Fig. E.11.1 Propagation of Rossby waves with respect to source shown as the elliptical shadow

Where we have assumed l D l0 C l1 and ! D �.k; l0/. We have then

Q D Re



exp

�
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Gy

��
In the presence of damping, the solution must decay away from the source and this
requires that Gy to be positive north of the source.

Vice versa south of source Gy must be negative.
The situation is illustrated in Fig. E.11.1, where the source is shown as and

elliptical shadow. The constant phase lines to the north and south of the source are
illustrated to the left of the figure. On the left, the grey arrows show the propagation
of momentum which is coherent with the direction of the group velocity.

E.11.2 Waves and Vorticity Flux

The angular momentum flux and the vorticity flux are related. Consider the
meridional vorticity flux
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When averaged zonally (over x)
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so that the average vorticity flux is the divergence of the momentum flux. The
equation of motion in the x direction is given by
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Obtained using the continuity equation. Then zonally averaging we obtain
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Equating (E.11.6) and (E.11.7) we have
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Relating the acceleration of the zonal flow to the vorticity eddy flux. We now
consider a more general form of the vorticity equation
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where S is the stirring and D is some unspecified damping. If this equation is
linearized about the zonal flow we have
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We now multiply (E.11.10) by  0/� and average over x. We obtain
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One can think of � D  0=� being the ratio of vorticity (dimension s�1) and �
dimension (m�1s�1) as the meridional parcel displacement that would create the
perturbation vorticity. P is referred as pseudomomentum density of the waves. Based
on (E.11.12) and (E.11.8) we can write

@u
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@t

P is always defined positive so that in a region P increase with time in the same
region the mean zonal velocity will decrease with time. P is then a measure of wave
amplitude.

E.11.3 More on Pseudomomentum

There is another way to understand P. Suppose we consider a fluid parcel at latitude
y0 at time t. Consider now a previous time t D 0 and locate the same particle which
trace a curve y � y0 D �.x/. If this curve behaves normally and that is a single value
curve in x. The vorticity flux through this latitude can be calculated as

Z y0C�

y0

Œ.0/C �y�dy D �

2
�2 (E.11.14)

If we assume

u D �@ =@y v D @ =@x

 0 D A cos .kx C ly � !t/ )  0 � � �k2 C l2
�
 0

An from the definition of pesudomomentum and averaging over cosine we get

P D 1

4�

�
k2 C l2

�2
A2 (E.11.15)

At this point we have from (E.11.5)

GyP D ˇklA2=2�

In our case ˇ D � and from (E.11.4) we get

GyP D �u0v0 (E.11.16)
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In general in presence of forcing and dissipation we have

@P

@t
D �@ ��u0v0� =@y C sources � sinks

The conclusion is that in statistically steady state the eddy momentum flux conver-
gence @

��u0v0� =@y is determined by the sources and sinks of pseudomomentum.
It is interesting to note that eddy energy is not conserved in this simple model but

the waves can exchange energy with the mean flow. If we use (E.11.7) and multiply
by u and then integrate over y

@

@t

Z
1

2
u2dy D

Z
u0v0 @u

@y
dy

The term on the left is the change in kinetic energy of the flow that must be
conserved, so changes in zonal kinetic energy must be compensated by changes
in eddy energy

@

@t

Z
1

2
u02 C v02dy D �

Z
u0v0 @u

@y
dy

The global integrated eddy kinetic energy decays as eddies propagates from regions
of large zonal flow to region of weaker flow.
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Chapter 12
Theories on the General Circulation
of the Atmosphere

It would have been too much to have introduced in the previous chapter the theory
(or the theories) on the general circulation of the atmosphere. In this chapter, we
will try to understand the mechanisms that are important to general circulation.
We will start with a rather ambiguous division between tropical and extra-tropical
circulation, but this may be justified due to the fact that the physical processes that
determine the circulation are quite different and can thus be treated differently. One
thing to notice is that such theories, discussed since the seventeenth century, are far
from being definitive, but as usual our purpose is to hope that the reader become
so interested and involved as to try to formulate a theory by himself (i.e., a very
arduous proposition).

12.1 The Equatorial Circulation

With this name, we will indicate all the circulations that may explain the Hadley
cell, and the simplest example is that of a circulation that is perfectly symmetric
with respect to the equator. This example is from A. Gill and although, as we will
see, it does not have many points in common with reality, it may be helpful to
understand the point.
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12.1.1 Gill’s Symmetric Circulation

We will start by using the motion and thermodynamic equations. The heating
produced by the solar radiation is assumed to be symmetric with respect to the
equator. We will write the thermodynamic equation including the diabatic heating
term which is expressed in s�1 because it has been normalized by dividing for the
average temperature: �

@

@t
C u

@

@x

�

0



� N2

g
w0 C q0 D 0 (12.1)

The heating term q0 represents the net heating, that is, the sum of the solar q
and infrared components. The planetary component is approximated by a relaxation
term –˛T 0/T where T 0 represents the temperature perturbation. We can obviously
write T 0/T D �
0/
 and the net heating becomes

q0 D q C ˛
0=
:

In this specific case, we will assume that the variables are independent of longitude
(i.e., x) so that Eq. (12.1) becomes�

@

@t
C ˛

�

0



� N2

g
w0 C q D 0 (12.2)

When writing the equations of motion, we should introduce also a viscous term
proportional to the velocity. It is to note that such a term has nothing to do with the
friction between the atmosphere and the surface but is rather a manifestation of the
viscous stress we treated in Chap. 8. The reason for this term (also called Rayleigh
friction) is that without it we could not have stationary solutions. Indicating with r
the friction coefficient, we have for the equations of motion�

@

@t
C r

�
u � fv D 0I

�
@

@t
C r

�
v C fu D �1




@p

@y
(12.3)

A stationary solution is possible only in the case when the temperature merid-
ional gradient is balanced by a meridional circulation (i.e., v and w), and this is
possible only if the equilibrium is established between the Coriolis force and the
friction, as is clearly shown in the first part of Eq. (12.3).

To eliminate pressure between Eqs. (12.2) and (12.3), we recur to the hydrostatic
equilibrium and obtain

N2

g

@w

@y
� ˛

rg

�
f 2 C r2

� @v
@z

� @q

@y
(12.4)
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Fig. 12.1 The normalized
heating function given by Eq.
(12.6). Positive values
indicate heating

where we have assumed the Coriolis parameter to be constant with latitude. We can
now introduce a streamfunction � on the y, z plane such that

v D �@ 
@z

I w D @ 

@y

Substituting in Eq. (12.5), we have

N2

g

@2 

@y2
� ˛

rg

�
f 2 C r2

� @2 
@z2

� @q

@y
D 0 (12.5)

This equation is solved in a domain defined in latitude by the equator (y D 0) and
y D L. In altitude, it goes from the surface z D 0 to z D D, y D L. In this region, the
heating is described as

q D q0 cos.ly/ sin.mz/ (12.6)

where l D�/L and m D�/D. Figure 12.1 shows this function and the heating effect
near the equator and the cooling at the tropics are evident.

The solution for the streamfunction can be guessed by the boundary conditions.
At the top (z D D), the vertical velocity must be zero (rigid lid condition), and this
implies � to be constant with latitude. We then assume that for both the top and the
surface � D 0. We look for a solution of the form

 D  0 sin.ly/ sin.mz/ (12.7)
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Fig. 12.2 The streamfunction (in m2 s�1) for the symmetric Gill circulation (left). Contours are
at intervals 1.5 � 103. The latitude scale in km corresponds to amplitude from 0ı to 30ı. Notice
that the condition of a vertical velocity at the lower boundary implies a discontinuity in the bottom
contours. (right) The circulation. The solid and dashed lines represent the easterlies and westerlies,
respectively. Notice that the contours are traced at intervals of 30 m s�1 so that the maximum
velocity is 180 m s�1. Arrows (not in scale) represent the meridional circulation

that substituted in Eq. (12.5) gives for the amplitude:

 0 D lrgq0
ŒN2l2r C ˛m2 .f 2 C r2/�

(12.8)

It is very instructive to see how the velocity field behaves. We have

v D �m 0 sin .ly/ cos .mz/I w D l 0 cos .ly/ sin .mz/ (12.9)

From the stationary condition of the first part of Eq. (12.3), we can obtain the zonal
velocity u D fv/r which gives the zonal wind proportional to the meridional wind.
This means, as is shown in Fig. 12.2, a positive meridional velocity (northward) for
D/2 < z < D and a negative (southward) one in the half of the region near the equator.
As a further consequence, the zonal velocity will be positive in the high troposphere
(westerly) and negative in the lower troposphere (trade winds).

The solution seems to work at least qualitatively but can be further implemented.
The condition of zero vertical velocity at the ground is not realistic. As we have seen
in Chap. 8, the velocity at the top of the boundary layer is given by

w D .K=2f /1=2

This condition changes the boundary conditions and we now look for a different
solution:

 D  0 sin.ly/Z.z/ (12.10)

http://dx.doi.org/10.1007/978-3-319-29449-0_8
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that substituted in Eq. (12.5) gives a vertical structure equation for Z:

Z00.z/ � �2Z D �2 sin.mz/ (12.11)

where

�2 D N2l2r=
�
˛
�
f 2 C r2

�I �2 D �lrgq0=
�
 0˛

�
f 2 C r2

�
(12.12)

The solution of Eq. (12.11) has the form

Z D A sinh .�z C a/C B sin.mz/

where A and B are constants to be determined and the streamfunction

 D  0 sin.ly/ ŒC sinh .�z C a/C sin.mz/� (12.13)

the condition that for z D D, Y D 0 gives a D –�D at the lower boundary:
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@y
D �@ug

@y

�
K

2f

�1=2
)  D ��ugI � D

�
K

2f

�1=2
We remember that

ug D � .1=
f / .@p=@y/

and, expressing everything as a function of v, we have

� .1=
f / .@p=@y/ D �
r2 C f 2

�
v=r

so that we have for the boundary condition

 jzD0 D ��
�
r2 C f 2

�
v

fr

This condition gives immediately the constant C in Eq. (12.13) so that we have for
the streamfunction

 D  0 sin.ly/ Œsin.mz/C C sinh� .D � z/� (12.14)

where

C D m

r.2=Kf /1=2 sinh�D C � cosh�D
(12.15)

We can see now if this simple theory has some relation with reality. We can
specify the domain to be L D 3000 km (i.e., about 30ı) and D D 10 km and assume
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for f an average latitude such that f 
 2 � 10�5. The coefficients ˛ and r are assumed
of the order of 1/20 day (d) Š 5 � 10�7 s�1 and the calculated value for � results
in 2.2 � 10�2 m�1 so that �D Š 5 and C Š 3.5 � 10�3. The amplitude � 0 can be
obtained through the boundary conditions and assuming a vertical velocity upward
from the boundary layer of a few mms�1. With 1 mm s�1, we obtain � 0 Š 1.5 � 104

m2s�1, and with this value, we can proceed to the calculation of the zonal and
meridional velocities. We have v D m � 0 Š 4.5 m s�1 and u D fv/r Š 180 m s�1.
These velocities are really too high and of course we could try to tune the parameters
to get closer to the truth, but the game is not worth the effort. As a matter of fact,
we see a number of problems with this solution. Zonal winds reach values up to
180 m s�1 although they show the right sign: westerlies at altitude and easterlies
near the surface. As shown by Eq. (12.3), the equilibrium in the zonal direction is
achieved between the Coriolis force and friction. At the surface, the condition on the
vertical velocity is such that w is positive (upward) near the equator and negative on
the opposite side, and this again is consistent with the zonal velocity gradient.

Although we have not obtained a realistic result, the example has been useful to
work out a direct circulation, which is not exactly a convective circulation. We will
be a little closer to reality in the next section.

12.1.2 The Nonlinear Symmetric Circulation

We will now report a simple model for the axisymmetric circulation as published
a few years ago by Adam Sobel and Tapio Schneider. The model calculates the
circulation in a thin layer of thickness ı at the top of the troposphere assumed to be
of constant height H. We start out by writing down the thermal wind equation

�f
@u

@z
D g

T

@T

@y

Integrating from the surface to altitude H, we get

�fu D gH

T0

@T

@y
(12.16)

where u is the velocity in the top layer and the temperature gradient is the average
in the troposphere. Assuming the beta plane approximation, this equation can be
written as

�ˇyu D gH

T0

@T

@y
(12.17)

We then write the momentum equation

@u

@t
C u

@u

@x
C v

@u

@y
D fv � 1
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@x
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The zonal average cancels the x-derivatives, and at the steady state, we have

v

�
@u

@y
� f

�
D 0 (12.18)

The last equation we need is the thermodynamic equation

D	

Dt
D 	E � 	

�

That is a “Newtonian cooling” approximation, with the potential temperature
	 relaxing to the equilibrium value 	E with characteristic time � . When the
Lagrangian derivative is written explicitly, we get

ı�z

H

@v

@y
D 	E � 	

�
(12.19)

In this formulation, we assume that heat is transported in a top layer of thickness
ı in the upper troposphere. Here the temperature T and the potential temperature 	
are related by the usual formula:

T D 	.pt=ps/
R=Cp

where pt and ps are the pressure of the tropopause and the surface, respectively,�z

is the potential temperature difference between surface and the top of the layer, and
T0 is the reference temperature at the surface.

Equation (12.18) can be integrated immediately:

u D 1

2
ˇy2 C cost (12.20)

It can be recognized that this is simply the conservation of angular momentum when
we use ˇD 2�cos®/a 
 2�/a and y 
 a sin ®. We get easily

u D 1

2

2�

a
.a sin'/2 D �asin2' (12.21)

This is very similar to the requirement of angular momentum conservation:

�a2 D a cos' .�a cos' C u/

from which the zonal wind can be obtained:

u D �asin2'= cos' (12.22)

When ® is small, (12.22) coincides with (12.21).
We now assume that the equilibrium potential temperature is prescribed, and fol-

lowing the original formulation of Held and Hou (1980), we assume a dependence
of the form
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	E .'; z/

	0
D 1 � 2

3
�yP2 .sin �/C�z

�
z

H
� 1

2

�
(12.23)

The meaning of this expression is very simple. It can be easily shown that

P2 .sin '/ D �
3sin2' � 1

�
=2

For z D H/2 and small angle approximation y D a®, we get

	E

	0
D 1C 2

3
�y � 2�y

� y

a

�2
And when vertically averaged,

	E

	0
D 1C 1

3
�y ��y

� y

a

�2
(12.24)

The difference in potential temperature between the equator (y D 0) and the pole
(y D a�/2 is simply 	0�y(�/2)2

, while for fixed latitude, the difference between
altitude H and the surface is 	0�z. The solution (12.24) can also be written in the
form

	E D 	E0 ��	
� y

a

�2
	E0 D 	0

�
1C�y=3

�
�	 D 	0�y (12.25)

We now assume that beyond some latitude yH, there is no meridional circulation
which corresponds to v D 0. For such latitude according to (12.19), 	 D 	E. Now
we can integrate (12.17), and substituting for u the expression (12.20), we obtain

�1
2
ˇ2y3 D gH

T0

@T

@y
) @T

@y
D � T0

2gH
ˇ2y3 D � T0

2L4

y3

where L
 D �p
gH=ˇ

�1=2
is the equatorial Rossby radius. The integration over y

gives

T D C0 � T0
8L4


y4

Substituting for the potential temperature, we have

	 D C �
�

ps

pt

�R=Cp T0
8L4


y4 D C � Dy4

where

D D
�

ps

pt

�R=Cp T0
8L4


(12.26)
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Notice that the definition for L
 is a bit different from the previous L
 D p
gH=f

because in this case the equator f is zero.
The determination of C is straightforward because for y D yH , 	 D 	E. So we

have

	 D 	E .yH/C D
�
y4H � y4

� D 	E0 ��	
�yH

a

�2 C D
�
y4H � y4

�
(12.27)

We can then use this expression with (12.19) and (12.24) to find the dependence of
the meridional velocity on latitude:

v D H

ı�z�



�	
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�
y2Hy � y3

3

�
C D

�
y5

5
� y4Hy

��
(12.28)

The constant of integration has been set to zero because symmetry requires v D 0 at
the equator. To determine the boundary of the Hadley cell, yH , we require that v D 0

for y D yH so we get

yH D
�
5�	

6a2D

�1=2
(12.29)

Equation (12.27) can be put in another form that can be handled more easily:

v D H

ı�z�

y5HD
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y
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�3
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y
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�5#
(12.30)

Beyond the latitude of the Hadley cell, we may assume that the zonal velocity
corresponds to equilibrium temperature 	E so that, from (12.17) and (12.24), we
have

uE D gH�y

�	0a
(12.31)

Beyond yH, because of (12.19), we assume v D 0 and u D uE.
At this point, it is interesting to proceed with some arithmetic and calculate the

values of the different quantities. From the paper of Sobel and Schneider, we get the
following numbers:

� D 37dI H D 16 kmI ı D 4 kmI T0 D 300KI
�z D 60KI �y D 100KI 	0 D 330K

And we have then

L4R � 4 � 1026m4I D D 1:3 � 10�25Km�4I yH D 2690km



374 12 Theories of the General Circulation

The latitude of the Hadley cell is roughly 24ı in the “small angle” approximation.
This is quite important in evaluating, for example, (2.31) because we can easily
neglect terms with power larger than 1. We can then assume a linear behavior of the
meridional velocity with attitude.

We can now evaluate the momentum transport vu as preliminary to evaluate the
zonal velocity at the surface. Using (12.20) and (12.27), we obtain

uv D 5H2�2
yy3Hˇ

72�z�y41D
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y

yH
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� 2

�
y

yH
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C
�

y

yH
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(12.32)

This actually represents the meridional transport of zonal momentum. To obtain the
zonal velocity at the surface, we must write the complete zonal momentum equation
(see E.12 examples) that we rewrite for convenience:

Du

Dt
� uvtan'

a
� fv D �1
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(12.33)

When averaged zonally, the pressure term disappears and the equation can be written
in a different form:
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�
where again the zonal average has been applied. The transport of zonal momentum
can be outlined by writing this equation in the form (with r� u D 0)

r� .uu/� uvtan'

a
� fv � @

@z

�
K
@u

@z

�
D 0 (12.34)

At the surface (z D 0), the condition for the stress becomes K@u=@z D Cu where C
is the appropriate constant. With the definition of angular momentum,

M D �a2cos2' C ua cos' (12.35)

Equation (12.32) can be written as (see E.12)

r� .uM/ D K
@2M

@z2
(12.36)

We have worked up to this moment with vertical integrated quantities so that the last
equation one integrated vertically becomes (U is now the integrated velocity)

r� .UM/ D K
@M

@z
(12.37)

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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Nevertheless Eq. (12.34) is useful to introduce what is known as Hide’s theorem
(from Raymond Hide), and in this, we will follow the argument given by Lindzen
(1990). Suppose that M has a local maximum in the fluid. Around this maximum, a
contour can be found where M is constant. Integration of (12.34) gives the left-hand
side always zero (the integral can be split in one containing the divergence of u and
the other containing the gradient of M), while the right-hand side gives a negative
contribution (the viscous flux is down gradient). This situation is not consistent and
M cannot have a maximum at the interior. With a similar argument, we can rule out
the presence of a maximum at the surface. The only possibility is that the surface
wind is easterly, and only in this case, the contribution of the right-hand term can
be zero (see E.12). An upper bound for M is when at the equator the zonal wind is
zero and in this case

Mmax < �a2

To obtain the zonal velocity at the surface, we still use the Eq. (12.35) in the small
angle approximation which becomes

@

@y
.vM/ � @

@y
.uva/ D K
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@z
D K

@ua

@z
D �aCu .0/

where we have used the boundary condition at the surface and at the top, respectively
(zero zonal velocity). We can then obtain the velocity at the surface by deriving Eq.
(12.30), that is,

u.0/ D � 5
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(12.38)

This expression shows that the zonal velocity corresponds to easterlies for latitude
below about 15ı and to westerlies above that limit.

The last quantity to evaluate is the meridional heat flux. This can be accomplished
by integrating Eq. (12.19) using (12.26) for the potential temperature. We get simply

ı�z

H
v D 5

36

H�2
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(12.39)

It is convenient when plotting Eqs. (12.38), (12.37), (12.31), (12.29), and (12.26)
to normalize with an appropriate factor. The zonal velocity is normalized with the
uE value given by (12.30). At the surface, the zonal velocity is normalized by the
factor

5 H2�2
yy2Hˇ=

�
24�z�y41DC

�
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The momentum transport is normalized with the factor

5H2�2
yy3Hˇ=

�
72�z�y41D

�
and finally the heat transport by the factor

5H�2
yyH=

�
36�y41D

�
The theory we have illustrated is quite simple and does not take into account any
kind of viscosity, and this can be done much more easily if we look at the problem
from the vorticity point of view.

12.1.3 The Vorticity Equation and Viscosity

We can use the expression (12.36) together with the hypothesis that the vertical flux
of angular momentum is simply proportional to the velocity:

K@M=@z D kaU cos'

where k is related to viscosity. Equation (12.36) then becomes (Fig. 12.3)

V

a2 cos'

@M

@'
D kU (12.40)

where V and U are the vertical integrated velocities (meridional and zonal). It is
easy to show that

1

a2 cos'

@M

@'
D 1

a

@u

@'
� u tan'

a
� f

If near the equator the Coriolis term is redefined as to include the centrifugal term,
we obtain f D f C u tan'=a, and considering that all the quantities depend only on
®, we have for the relative vorticity  D � .1=a/ .@u=@'/ so that (12.40) becomes

kU D � .& C f /V (12.41)

This equation has very important consequences, and if we derive it with respect to
y, we obtain a corresponding equation for the vorticity:

�k D @

@y
Œ. C f /V� (12.42)
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Fig. 12.3 The latitudinal
behavior of the temperature
(top), the zonal wind
(middle), and the heat and
momentum flux (bottom).
The shaded area in the top
panel are equal and give a
criteria to obtain the limit
latitude for the Hadley cell.
Notice the different scale
(even if normalized) for the
zonal wind at the surface
(Sobel and Schneider 2009)
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The same equation can be obtained following a paper by Polvani and Sobel (2002),
starting from primitive equations. In this particular form, these equations are derived
in the examples and can be written as

@u

@t
C v

@u

@y
� v D �˛u

@v

@t
C v

@v

@y
C u D �@h

@y
� ˛v

@h

@t
C v

@h

@y
C h

@v

@y
D Q (12.43)

Here h is the depth of the atmosphere, ˛ is the internal friction, and Q is the heating
rate or thermal forcing that is parameterized according to

Q D �E � �
�

(12.44)

where � is a related to h by the relation h D 1 C � and this is an indication of
“temperature,” while � is a time constant. In the steady-state condition @=@t D 0,
we derive the first of (12.42) with respect to y and the second with respect to x and
then subtract to obtain

@

@t
C @

@y
Œv . C 1/� D �˛

That is the same as (12.41). The system (12.42) can be solved numerically (see the
examples) and the results are shown in Fig. 12.4. The main effect of the friction
introduction is to smooth out the discontinuity in the different parameters, and
consequently, the latitudinal delimitation of the Hadley cell is not so well defined.
Again this is an exercise which has the function to have further insight in the
physical aspect of the problem.

12.2 The Middle Latitude Circulation

The Hadley circulation, as we have shown, is unable to transport heat beyond a
certain latitude. The zonal currents created by this direct cell however are unstable
with respect to small perturbations. This characteristic allows, through a completely
different mechanism, the heat to be transported up to the middle and high latitudes.
In this section, we will illustrate the mechanism at first qualitatively and then in
a more accurate and quantitative way. The dynamic instability (called baroclinic)
resulting from the amplification of small perturbations of the zonal current is not
easy to visualize because it is intrinsically three dimensional. But again, as always
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Fig. 12.4 The numerical
solution for the system
(12.42). The solid curve
shows the solution for the
inviscid case for the zonal
velocity (top), the meridional
velocity (middle), and the
parameter ˜. The dotted lines
show the same solutions for
different values of friction ’
(Polvani and Sobel 2002)
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in physics, the mathematics does not give any particular insight if first we do not try
to understand the physical process. We will follow once more the beautiful textbook
by Wallace and Hobbs and then we will go to something that looks more original
and that will already give quantitative indications.
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Fig. 12.5 The geopotential lines (solid) and the isotherms (dashed) in a growing baroclinic wave
on a constant pressure surface (shown above). L and H indicates low and high pressure

12.2.1 The Baroclinic Instability: Qualitative Treatment

We consider a westerly current that is slightly perturbed as shown in Fig. 12.5.
Such a current implies that the geopotential decreases slowly northward. For sake
of simplicity, we assume that the phase velocity of the wave is the same as the
wind in such a way that an observer fixed with the wave sees only the meridional
movements. As shown in the figure, the wind taken parallel to the geopotential
brings cold air to low latitudes and warm air to high latitudes (area C and W). Area A
will tend to cool and area W to warm. The net result is that the isotherms will assume
a wave character similar to the geopotential although the temperature wave will be
shifted by one fourth of the wavelength. This is because the meridional velocity will
be maximum at the points of inflection of the geopotential wave. The condition for
the wave to grow further is not only the increase in the temperature perturbation
but also the increase in the kinetic energy. This can be obtained only if the cold air
that moves from north to south sinks during its meridional motion. The potential
energy lost in this way is replenished if the air that moves northward (half a wave
downwind) rises at the same time.

This mechanism for the amplification of kinetic energy can be understood a little
better if we refer to Fig. 12.6 which shows the trajectories of an air parcel on the
meridional plane and compares their slopes with that of the isentropes. If we indicate
with ˛D dz/dy the slope of the isentropes with respect to the horizontal plane and
noting that d	 /dy < 0 and d	 /dz > 0 with 	 potential temperature,

˛ D � .d	=dy/ = .d	=dz/ (12.45)

On the other hand, if we denote with � the slope of the trajectories and with w’
and v’ the vertical and meridional components of the velocity of the air parcel, we
should have

w0=v0 D tan� (12.46)
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Fig. 12.6 Possible trajectories of an air parcel with respect to the isentropes on the meridional
plane. The slope of the trajectories is ”, while that of the isentropes is ’

It is quite evident then that if 	 0 indicates the deviation from the mean of the
potential temperature, we could have the following cases:

� > ˛ w0 > 0 	 0 < 0 w0	 0 < 0
� < ˛ w0 > 0 	 0 > 0 w0	 0 > 0 (12.47)

The first of these conditions refers, for example, to a mass that moves from
C to D and, being adiabatic, the motion conserves the potential temperature. The
second condition corresponds to the case in which the parcel moves from A to
B. Similar conclusions can be reached for parcels moving southward. From these
considerations, we understand that the amplification is possible only in the second
case, when the slope of the trajectory is smaller than the slope of the isentropes
(Fig. 12.6).

We can now find which angles maximize the instability. Again with reference to
Fig. 12.6, the deviation in the potential temperature can be expressed as

	 0 D 	1 � 	2 D 	 C H1@	=@n � .	 � H2@	=@n/ (12.48)

where with n we have indicated the direction normal to the isentrope 	 . Because the
angles ˛ and � are small, we can write

@	=@n Š @	=@z

so that

	 0 Š .H1 C H2/ @	=@z D .L1 C L2/ tan .˛ � �/ @	=@z (12.49)

and the heat transport along the vertical

w0	 0 D �v0 .L1 C L2/ .˛ � �/ @	=@z (12.50)
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which is maximum when � D˛/2. At this point, we can use Eq. (12.48) to relate the
angles with the average values of the variables and establish under what conditions
the instability may arise. Based on the thermal wind equation, we write

f
@u

@z
D � R

H

@T

@y
Š � R

H

�
T

	

@	

@y
� RT

CP

@p

@y

�
Š � g

	

@	

@y

And with H the scale height, we have

f
u

H
Š � g

	

@	

@y
) u � �gH

f	

@	

@y
(12.51)

This rough evaluation for u is necessary to express the condition for instability:

w0=v0 � w0=u0 D � < ˛ (12.52)

At this point, we need to express the vertical velocity as a function of u. This can be
done by recurring to a scale analysis of the vorticity equation

D

Dt
. C f / D � . C f /

�
@u0

@x
C @v0

@y

�
D . C f /

@w0

@z

Thus we have immediately

D

Dt
. C f / D O

�
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�
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��
I f

�


f
C 1

�
@w0

@z
� f

@w0

@z

because

=f D O . C f / D O << 1

so that we can write

@w

@z
D O

�
1

f
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�
D O

�
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U
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�
) w D O

�
R0Hu
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�
(12.53)

By combining Eqs. 12.50, 12.51, and 12.52, we obtain the condition for instability:

H

fL2

�
�gH

f	

@	

@y

�
< �d	=dy

d	=dz

from which we have the typical horizontal length for the instability to occur:

LR D H

f

�
� g

	

@	

@z

�1=2
D H

f
N D H

f

� g

H

�1=2 D
p

gH

f
(12.54)
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with N as the Brunt–Väisälä frequency. We already know this number as the Rossby
deformation radius which with the typical values for N, f, and H are of the order
of 3000 km. The baroclinic instability is then possible only for wavelengths greater
than LR. At this point, intuition and order of magnitude calculation cannot give us
much more, so we have to go to a more analytical approach if we want to find more
precise numbers.

12.2.2 The Baroclinic Instability: The Eady Problem

The most important developments on the theory of general circulation at middle
latitudes were reached around the time of the Second World War. This was probably
stimulated by the need to provide the allied bombers with more precise weather
forecast in their raids over Germany. In the years following the war, between 1945
and 1950, this progress was made firm with the formal contributions of J. Charney
in 1947 and E.T. Eady in 1949.

Eady solved the problem by considering the vorticity equation in the z* coordi-
nate system introduced in Chap. 10. In his approach, the Coriolis parameter was
considered constant with latitude (ˇD 0). The quasi-geostrophic potential vorticity
equation is then written as�

@

@t
C u

@

@x

��
r2 C f 20

N2

@2 

@z�2
�

D 0 (12.55)

and the thermodynamic equation can be written in a more general form as�
@

@t
C u

@

@x

�
	 0 C v0 @	

@y
C w0 @	

@z� D 0 (12.56)

In (E.12.2), we show that this can be written as�
@

@t
C u

@

@x

�
@ 

@z� � @ 

@x

@u

@z� C w0 N2�
f

D 0 (12.57)

In order to solve Eq. (12.55), we consider the following conditions, which are the
same that were used by Eady. We assume the atmosphere is confined between two
surfaces at z* D ˙ H and a constant vertical shear for the zonal velocity such that

u D z�@u=@z�

On the two rigid lids that limit the atmosphere, we assume w0 D 0 so that Eq.
(12.70) becomes �

@

@t
C u

@

@x

�
@ 

@z� � @ 

@x

@u

@z� D 0

http://dx.doi.org/10.1007/978-3-319-29449-0_10
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We look now for a solution of the form

 
�
x; y; z�; t

� D ‰
�
z�� cos ly exp Œik .x � ct/�

that can be substituted in Eq. (12.54) to give

d2‰=dz�2 � ˛2‰ D 0 (12.58)

where

˛2 D N2
�
k2 C l2

�
=f 2

We notice that we have omitted the asterisk from the Brunt–Väisälä frequency.
We can obtain another equation for � using Eq. (12.56) written for the boundaries
at z* D ˙ H:

.u � c/ d‰=dz� � �
du=dz��‰ D 0 (12.59)

The solutions for (12.57) must satisfy Eq. (12.58) at the boundaries so that the
solution for � has the form

‰
�
z�� D A sinh˛z� C B cosh˛z�

We will have two equations in the coefficients A and B

cA � du=dz� .tanh .˛H/ � 1=˛H/B D 0

cB � du=dz� .coth .˛H/ � 1=˛H/A D 0 (12.60)

First of all, we could find the phase velocity:

c D ˙du=dz�HŒ.tanh .˛H/ � 1=˛H/ .coth .˛H/ � 1=˛H/�1=2 (12.61)

We find that the phase velocity has an imaginary component ci that determines
the growth of the wave amplitude with time with a time constant (kci)�1.
Equation (12.60) shows that we will have instability when

tanh .˛H/ < 1=˛H;

that is, when ˛H < 1.1997. Figure 12.7 shows the growth rate as a function of
˛H, and we notice that the maximum (the minimum time constant) happens for
˛H D 0.8031 so that

kci D 0:3098 .f=N/ du=dz�
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Fig. 12.7 The growth rate of a baroclinic wave in the Eady problem as a function of a quantity
proportional to the wave number

The conditions expressed for realistic data give for l D 0, kNH/f < 1.1997 which
correspond to a length of 5200 km. We can also find the ratio A/B from Eq. (12.60):

A

B
D
�
1=˛H � tanh˛H

coth˛H � 1=˛H

�1=2
(12.62)

For the value ˛H that maximizes the growth rate, this ratio is 1. 502.
Based on this, we can now calculate the geopotential, the temperature, and the

vertical velocity which are useful to understand the instability mechanism. The
geopotential can be easily calculated because it is proportional to the solution of
Eq. (12.57) so that substituting for the values of A and B and taking the real part

ˆ0 D cos kx
sinh .˛z�/
sinh˛H

C sin kx
cosh .˛z�/
cosh˛H

(12.63)

This is the part of the solution that depends on altitude and longitude and it is only
the perturbed part. To obtain the total for the geopotential at each altitude, we need
to add the part proportional to the zonal current –uy. The temperature is obtained
through (12.55):

T D H˛

R

�
cos kx

cosh .˛z�/
sinh˛H

C sin kx
sinh .˛z�/
cosh˛H

�
(12.64)

The vertical velocity is more complicated to obtain, although we should use
Eq. (12.66). In practice, after substituting ˆ0 and obtaining w0 to solve for the
streamfunction, we integrate with respect to x:
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the streamfunction in the vertical plane (Calculation and figure based on Gill 1982)

 0 D fN�2k
�
du=dz�� ��C0 � C

�
sin kx C �

D � D0z
�

cos kx


C D sinh
�
˛z�� = sinh˛HI D D cosh

�
˛z�� = cosh˛H

C0 D ˛ cosh
�
˛z�� = sinh˛HI D0 D ˛ sinh

�
˛z�� = cosh˛H (12.65)

In Fig. 12.8, some of these quantities are shown to emphasize the phase relation-
ship. The upper part of the figure shows the behavior with latitude and longitude of
the geopotential and the temperature at the upper boundary. The same quantities for
the lower boundary are shown in the bottom part of the figure. Notice the phase shift
of �/2 so that the lines connecting the high and the low are tilted westward about
48ı. The temperature has a phase shift of about 48ı eastward between the upper and
lower level. The figure part in the middle shows the streamfunction on the x-z plane,
and from it, we see that warm air rises east of the low as the surface slopes slightly
toward west to subside finally east of the high pressure.

In the same figure, the isentropes are shown (dashed lines) which give the warm
and cold regions. Notice that the potential temperature increases with height. This
figure shows the fastest-growing mode. A careful study of the sign of the meridional
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Fig. 12.9 Geopotential lines (solid) and temperature (dashed) for an Eady wave at the steering
level. Notice the two currents, one from north to south and downward and the other from south to
north and upward. The net result is a northward transfer of heat and transformation of potential in
kinetic energy (Redrawn from Gill 1982)

velocity (obtained differentiating the geopotential with respect to x) gives an idea of
the direction of the current which is mainly easterly. The most interesting results
on the x-z plane are a number of “convective cells” sloping slightly to the west that
bring warm air from the lower to the upper level. This scheme is then very similar
to that illustrated qualitatively at the beginning of this section. Another interesting
aspect is the advection at the steering level (z* D 0). This can be seen from Fig. 12.9
where we show the geopotential together with the temperature lines. These actually
are the intersections of the isentropes with the horizontal surface. Currents that move
mainly in the north–south direction at the same time move upward and downward.
The result is the net transfer of heat to the north according to what we have seen in
the latest section. In particular, we can establish that the heat flux is proportional to
the quantity:

v	 D 1

f

@ˆ0
@x

@ˆ0
@z�

which can be shown to be always a positive quantity by using Eqs. (12.66) and
(12.67).

The previous analysis, although it has some limitations, is useful to understand
the structure of a growing baroclinic wave. The main limitation of the Eady solution
is that it neglects that the Coriolis parameter is a function of latitude. These
limitations are removed in the Charney theory.

12.2.3 The Baroclinic Instability: The Charney Problem

We can have an idea of the ˇ effect looking first of all at the vertical velocity which
can be obtained from Eq. (12.62). It can be shown that the vertical velocity decreases
with increasing wavelength (i.e., with decreasing k). This explains the existence of
a minimum wavelength for the instability because for k ! 0 then �! 1 and the
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vertical velocity goes to zero, that is, the motion is horizontal. We can make a scale
analysis of the vorticity equation

D=Dt C vˇ � fdw=dz (12.66)

that becomes

O
�
U2=L2

�C ˇO.U/ � fO .w=H/

As a consequence of L ! 1, the advection of planetary vorticity balances the
stretching of the vortex tubes. The fact that the motion is quasi-horizontal means
that the term on the right-hand side can be assumed to be zero so that using —D r2 

we have as a first approximation

.u � c/ ˛2 D ˇ

where ˛2 D k2 C l2. For stationary waves (c D 0), we have for the zonal velocity

u D ˇ=˛2 � Hdu=dz

so we get

du=dz � ˇL2=H (12.67)

This quantity is shown in Fig. 12.10 together with the other limit conditions
obtained for short wavelengths. It should be noted that the maximum instability in
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Fig. 12.10 The relation between the vertical shear and the most unstable wavelength for the
baroclinic instability. The vertical line refers to the wavelength given by Eq. (12.41), while the
curve is the effect of a variable Coriolis parameter
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this case is obtained for a wavelength reduced by a quantity 21/2. The figure is drawn
for ˇD 1.67 � 10�11 m�1 s�1 and an atmospheric thickness of 10 km.

What is known as the Charney effect includes the ˇ effect, and in this case, it
is most appropriate to use the quasi-geostrophic potential vorticity of Eq. (9.58) in
which we neglect the horizontal shear. We obtain

qy D ˇ C "

H

@u

@z

with " D f 2=N2. In case the solution is of the same kind as in Eq. (12.65), we have
the vertical structure equation

.u � c/
�
.‰zz �‰z=H/� ˛2‰C qy‰ D 0 (12.68)

This equation cannot be solved in a simple way so that in a sense the most
straightforward way to arrive at a solution is through a numerical method. The
effect of ˇ gives us the possibility to consider only long waves and in particular
Rossby waves for which it is not necessary to consider a lid, as in the case of
the Eady problem. After Charney solved the problem analytically, Roger Phillips
worked out a solution using a two-level model that gives a lot of physical insight
into the problem.

12.2.4 The Baroclinic Instability: Two-Level Model

This model is based on the vorticity and thermodynamic equations written in
pressure coordinates. The first should be manipulated a bit to make it easier to
use. The first step is to divide the wind vector into geostrophic and ageostrophic
components. The relative vorticity is due only to the geostrophic component, while
the divergence is due to the ageostrophic component so that we have

 � gI
�
@u

@x
C @v

@y

�
D
�
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@x
C @va

@y

�
D �@w

@p
(12.69)

Also we may use Eqs. (7.28) and (7.29) and neglect the relative vorticity with respect
to planetary vorticity and the equation becomes

@g

@t
C Vg � r �

g C f
� D f0

@!

@p
(12.70)

where we have set f D f0 Cˇy. This is also called (we have already seen this) quasi-
geostrophic vorticity equation because it considers geostrophy only in the advection
term. The thermodynamic equation is written in the well-known form

@T

@t
C Vg � rT D

��p

R

�
! (12.71)

http://dx.doi.org/10.1007/978-3-319-29449-0_7
http://dx.doi.org/10.1007/978-3-319-29449-0_7
http://dx.doi.org/10.1007/978-3-319-29449-0_9
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where

� D �RT0p
�1d ln 	0=dp

is the static stability as shown in Chap. 5.
Equations (12.70) and (12.71) are the basis of our model, and they can be

connected if we introduce a streamfunction such that  Dˆ/f0 so that

Vg D k � r g D r2 I

And from the definition of geopotential,

T D � f0
R

p
@ 

@p
(12.72)

And considering all the derivatives are calculated at constant pressure, we have
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@t
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� D f0
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@p
(12.72a)
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�
�

f0

�
! (12.72b)

These two equations are coupled through ! and can be solved using a model that
assumes the atmosphere to be a two-layer channel. The Coriolis parameter in the
channel changes linearly. The model is sketched in Fig. 12.11.

The vorticity equation is solved at levels 1 and 3, while the thermodynamic
equation is solved only at the separation plane 2. The prediction of the vertical
velocity is made only at this level, while rigid lids are assumed at levels 0 and at the
surface, meaning !D 0.

We again assume that the streamfunction describes a basic state (a zonal current
U function of pressure) perturbed by a time-dependent term:

 D �U.p/y C  0 .x; p; t/ (12.73)

Fig. 12.11 The general
layout of the pressure levels
and the variables in the
two-layer model
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Equations (12.72a) and (12.72) become�
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At this point, these equations are converted to finite difference equations so that
we can write, referring to Fig. 12.11,

@!0

@p

ˇ̌̌̌
1

� !0
2 � !0

0

p2 � p0
� !0

2

�p
I @!0

@p

ˇ̌̌̌
3

� !0
4 � !0

2

p4 � p2
� � !0

2

�p
I

@ 

@p

ˇ̌̌̌
2

�  3 �  1

�p
I @U

@p

ˇ̌̌̌
2

� U3 � U1

�p
I  2 D  3 C  1

2
I U2 D U3 C U1

2

and the finite difference equations corresponding to Eq. (12.73) become�
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while the thermodynamic equation is�
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2 D 0 (12.77)

Um D .U1 C U3/ =2I UT D .U1 � U3/ =2

The solution of this system follows a standard procedure that consists in
eliminating !’2 between the two equations and obtaining two new equations in the
variables  0

1 C  0
3 D  0

mI  0
1 �  0

3 D  0
T

The first of these quantities is proportional to the temperature at level 2, while
the second is proportional to the geopotential (Fig. 12.12). Through a number
of manipulations, it is possible to arrive at two different equations for the above
quantities:�

@
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@x
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Fig. 12.12 The wind shear as a function of the reciprocal of the wavelength. The vertical
asymptote corresponds to the minimum wavelength for instability. The curves are given for
different growth rates from n D 1 to 0. Units are 10�5 s�1

where

�2 D f 2=
�
��p2

�
We can now assume the two functions to be of the form

 m D Aeik.x�ct/I  T D Beik.x�ct/ (12.80)

Substituting these expressions in Eqs. (12.78) and (12.79), we have an algebraic
linear system in the two unknowns A and B:

UT
�
k2 � 2�2�A � �

.c � Um/
�
k2 C 2�2

�C ˇ


B D 0�
.c � Um/ k2 C ˇ


A � k2UTB D 0

(12.81)

that has solutions when the determinant of the coefficient is zero. This condition
gives a quadratic equation in the phase velocity c that has the solution

c D Um � ˇ
�
k2 C �2

�
k2 .k2 C 2�2/

˙
"
ˇ2�4 � U2

Tk4
�
4�4 � k4

�
k4.k2 C 2�2/

2

#1=2
(12.82)

The phase velocity has an imaginary part, that is, the quantity between parenthe-
ses is negative. When this happens, the solution to Eq. (12.80) is unstable, and the
neutral condition (i.e., the quantity is zero) is given by
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U2
T D ˇ2�4=k4

�
4�4 � k4

�
This equation has an asymptote that gives the lower limit for the wavelength of
instability:

Lc D p
2�=� D ��p

p
2�=f0 (12.83)

At this point, we can define a growth rate for the wave given as a product of the wave
number and the imaginary part of the phase velocity, n D kci. The imaginary part is
given by the square root of the quantity in parentheses in Eq. (12.67) which is the
inverse of the time constant for the wave growth. This time is shown in Fig. 12.14
as a function of the shear and the reciprocal of the wave number. This figure refers
to ˇD 1.67 � 10�11 m�1 s�1 and �D 1.76 � 10�6 m�1.

We notice that the neutrality curves (the vertical asymptote and the curve)
are similar to those shown in Fig. 12.10, obtained on the basis of very simple
considerations. These curves delimitate the stability from the instability area.

It is rather instructive to examine at this point these results in terms of the
air parcel’s motion on the vertical plane (p–x). The first step is to show that
the streamfunctions at the two levels also give information on the middle-level
temperature. Relation between geopotential and streamfunction gives fd D dˆ D
�RTdp=p

Integrating between levels 1 and 3 and assuming that the temperature at level 2
is the average between levels 1 and 3, we obtain

T 0
2 D f

�
 0
1 �  0

3

�
= ŒR ln .p3=p1/� (12.84)

In this way, Eq. (12.81) has a very simple meaning because�
@

@t
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@

@x

�
T 0
2 ŒR ln .p3=p1/ =f � � 2UTv

0
2 �

�
�p�

f0

�
!0
2 D 0 (12.85)

If we zonally average and use stationary conditions, we get an omega equation
reduced to the bone: this is a diagnostic equation for the vertical velocity

!0
2 ∝ �UTv

0
2 D v0

2@T=@y (12.86)

where we have used the relation between the thermal wind and the meridional
temperature gradient UT / (@T/@y). Equation (12.86) tells us that the motion is
downward (!’2 > 0) when we have cold advection (v0

2@T/@y > 0) and vice versa. If
we refer to Fig. 12.13, this means having downward motion in correspondence to
the negative temperature perturbation and upward motion for the warm perturbation.
Also the maximum of the southward component of the velocity corresponds to the
inflection point of the streamfunction at the upper level. The opposite can be said
for the  3 function at the lower level.
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Fig. 12.13 Phase relationship and circulation on the p–x plane in the two-level model. The
streamfunctions at the two levels are out of phase by about 64ı and the constant phase lines are
tilted westward. Vertical velocity has a phase of about 116ı with respect to the streamfunction at
level 3. The temperature has a phase of 108ı. C and W indicate cold and warm sectors, respectively.
Upward motions correspond to the maximum of the vertical velocity (Haltiner and Williams 1980)

Another point deals with the vorticity. Actually the divergent motion shown in
Fig. 12.13 is distributed between the horizontal planes at 400 and 800 hPa. The
convergence appearing at 400 hPa in the downward columns is such that the vorticity
increases at those points while decreasing at the divergent points at the lowest level.
This can also be obtained from Eq. (12.80) where at level 1 the vorticity tendency,
without advection terms, is proportional to !0

2, while the opposite happens at level
3. This circumstance keeps the perturbation growing. Figure 12.13, redrawn from
the Haltiner and Williams textbook, shows the solutions for a two-level model with
the following characteristics: p0 D 200 hPa, �p D 400 hPa, and ˇD 1.67 � 10�11

m�1 s�1.
The analytical solutions are, with cr as the real component of the phase velocity,

 0
1 D .14:2=k/ cos

�
k .x � crt/C 64ı ent

 0
3 D .10=k/ cos Œk .x � crt/� e

nt (12.87)

so that the vertical velocity and the temperature are

!0
2 D �1; 36 � 10�3 cos

�
k .x � crt/C 116ı ent

T 0
2 D 4; 35 cos

�
k .x � crt/C 108ı ent (12.88)

The units are m2 s�1 for and hPa s�1 for the vertical velocity, and the temperature
is given in C. Notice that the phases of !0

2 and T 0
2 are almost the same with the

temperature lagging slightly. The barotropic component is given by

 0
1 C  0

3 D .20:6=k/ cos
�
k .x � crt/C 38ı ent
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so that the vorticity advection UT (@3/@x) is proportional to the quantity –
sin[k(x � crt) C 38ı] and the effect of the vertical motion on the vorticity is not
exactly in phase with !0

2; it can be shown that this effect is due to ˇ.
We have now talked enough about the baroclinic instability, and it is now time to

go back to the question that brought us here in the first place. The Hadley circulation
cannot export heat beyond the tropical latitudes, while the eddies generated by the
baroclinic instability should be able to do that. We can now go back to our energetic
consideration that we introduced on Chap. 11.

12.3 Energetics of the Baroclinic Waves

As we have seen in Chap. 11, the total energy of the atmosphere is of the order of
3 109 j m�2. The mass per unit surface is of the order of 104 kg m�2; if only 10 %
of this energy could be available for the atmospheric motions, we would have an
average wind of 200 m s�1 which is very unrealistic. In order to make available all
the potential energy, the temperature of the atmosphere should be at absolute zero
and the atmosphere itself should be squeezed very near the ground. It is much more
reasonable to think about the existence of a minimum energy state (corresponding to
a stratified atmosphere at rest) and refer to it when calculating the energy available
for the motion. This energy is called the available potential energy (APE).

To have a more precise idea of what we are talking about, we refer to Fig. 12.14,
taken from an example reported by Gill. We can imagine a fluid divided by a vertical
sector that separates two fluids at density 
1 and 
2. If the separation is removed,
the two fluids will stratify with the one with higher density at the bottom.

The potential energy of the initial configuration can be written as

Ep D
Z H

0


gzdz D
Z H

0

.
1 C 
2/ gzdz D .
1 C 
2/ gH2=4

and similarly the final energy as

Ep D .3
1 C 
2/ gH2=8

ρ
1

ρ
2

ρ
1

ρ
2

θ 1 θ2

θ 1

θ 2

H

p = 0

p

p

0

/ 20

Fig. 12.14 A simple scheme for the calculation of available potential energy (APE): at the left two
fluids of different density and to the right with different potential temperatures

http://dx.doi.org/10.1007/978-3-319-29449-0_11
http://dx.doi.org/10.1007/978-3-319-29449-0_11
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The available energy is then given by the difference:

APE D .
2 � 
1/ gH2=8 (12.89)

If all the APEs should transform into kinetic energy, we would have an average
velocity for the fluid:

U2 D .
2 � 
1/ gH= Œ2 .
2 C 
1/�

A very similar calculation can be done in the case that the conservative quantity
is the potential temperature (in the previous case, it was the mass). Then we must
assume that the upper surface extends to zero pressure. From the definition of total
energy, we obtain

Ep C EI D Cp

Z 1

0


Tdz DCp

g

Z pr

0

Tdp D Cp	

g .k C 1/ pk
0

pkC1
0 (12.90)

where with p0 we intend the maximum pressure and k D R/Cp. Using this equation
for the initial and final energy, we obtain for APE

APE D CpPr .	1 � 	2/

2g .1C k/

"
1 �

�
1

2

�k
#

(12.91)

Actually the atmosphere is much nearer to this second case because it can be
assimilated to a number of layers, each with its own potential temperature. The total
energy can then be written as (Fig. 12.14)

Ep C EI D Cp

Z �
p=p0

�
k	dM (12.92)

where dM D –dpdxdydz/g. When the atmosphere reaches the status of minimum
energy, the mass of the single layer is conserved and so also the average pressure p,
because this depends only on the mass above that layer.

The total potential energy (TPE) per unit surface is then given by

TPE D Cpp�k
0

g

Z
	pkdp (12.93)

Integrating by parts between the surface pressure (p0) and zero, we obtain

TPE D Cpp�k
0

g .1C k/

Z
pkC1d	 (12.94)
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The available potential energy becomes then

APE D Cpp�k
0

g .1C k/

Z �
pkC1 � pkC1� d	 (12.95)

This equation can be put in a simpler form if we assume as usual that p D pCp0so
that we have�

p C p0�kC1 D pkC1 C .k C 1/ pkp0 C k .k C 1/ pk�1p02=2C � � �

When we average, the second term goes to zero and the APE becomes

APE D R

2gp0

Z
pkC1.p0=p/2d	 (12.96)

This same relation can be expressed with an integral over pressure:

APE D 1

2

Z p0

0

T

�d � �

�
T 0

T

�2
dp (12.97)

Based on this equation, we can calculate the order of magnitude for the ratio

between TPE and APE. Considering T
02 D .15C/2and comparing with Eq.

(12.107), we have

APE=TPE � �
T 0=T

�2 � .15=200/2 � 1=200

The ratio between average kinetic energy and TPE can be found by putting

K D 1

2

Z
V2dp TPE D cv

gR

Z
c2dp

where

c2 D CpRT=Cv

is the square root of the sound velocity so that because V/c Š 0.05 we have

K=TPE � 1=2000I K=APE � 1=10

With all these nice things in mind, we are ready to see how energy changes and
transforms in the baroclonic instability.
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12.3.1 Energy in the Two-Level Model

We start by writing the perturbation kinetic energy per unit mass K0. In the two-level
model, this is given by

K0 D 1

2

"�
@ 0

1

@x

�2#
C 1

2

"�
@ 0

3

@x

�2#
(12.98)

where, in this case, the brackets indicate the zonal mean. The perturbation APE can
be calculated by using the definition of the previous paragraph with Eq. (12.87). We
assume that the temperature perturbation coincides with T0

2; then the integral can
be evaluated with the condition to change it as energy per unit mass. We obtain

P0 D gT 02
2

2 .�d � �/T
(12.99)

From the definition of � , we obtain easily

� D �RT
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@ ln 	

@p
D
�

R

p

�2 T

g
.�d � �/ D
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f

��p

�2
(12.100)

We now put ln(p3/p1) ��p/p in Eq. (12.90) and substitute for T 0
2 in Eq.

(12.104). We get

P0 D �2
h�
 0
1 �  0

3

�2i
=2 (12.101)

We multiply now the first part of Eq. (12.75) by – 0
1 and the second by – 0

3

and then sum and average zonally. We have
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From Eq. (12.76), if we multiply through by –( 0
1 � 0

3) and averaging again
zonally,
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 (12.103)

This equation shows first of all how the change in the perturbation APE is partly
due to the change of the perturbation kinetic energy. The conversion is negative
(i.e., the kinetic energy increases at the expense of the potential energy) for upward
motion (!0

2 < 0) and the perturbation thickness is positive (( 0
1 –  0

3) > 0). In this
case, warm air rises from low levels to replace cold air at the upper level, a situation
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in which the potential energy decreases. The first term to the right of Eq. (12.103) is
the net generation of the total energy of the perturbation as can be seen by summing
Eqs. (12.102) and (12.103):�

dP0 C dK0� =dt D 4�2UT Œ T .@ m=@x/� (12.104)

The growth of the total energy depends on the phase relationship between  T

and  m. It can be shown that if kx0 is the phase difference between the two
streamfunctions, then �

dP0 C dK0� =dt / sin .kx0/

This means that the phase difference between temperature and geopotential must
be 0 < kx <� and the maximum generation of energy happens when the phase
difference is just �/2. This conclusion is the same to the one we have introduced
in a qualitative way in Sect. 12.1, and it is also clear at this point why the ridge and
through axis must slope westward.

At this point, our understanding of the circulation at middle latitudes is much
better. The average potential energy [P] generated by the temperature differences
(as given by Eq. (12.97)) created by the differential heating is converted into
perturbation potential energy P’ as shown by the term in Eq. (12.104). This
energy is then converted in kinetic energy K’ through the lowering of the center
of mass, as implicitly expressed in Eq. (12.102). This continuous process would
deplete completely the APE of the mean flux if this were not replenished through
the absorption of the solar radiation. A very simplified scheme is presented in
Fig. 12.15, as taken from Wallace and Hobbs. What drives the system is the
absorption of solar and planetary radiation which heats the lower troposphere
and cools the upper troposphere, which is “adjusted” by the convective instability
through the development of small-scale turbulence that also dissipates energy. The
differential heating generates a latitudinal temperature gradient that is responsible
for the buildup of APE. The Hadley circulation is a typical direct circulation (warm
air rises and cold air sinks) that transforms APE into kinetic energy of large-scale
motions. At middle latitude, responsible for this transformation is the baroclinic
instability through a rather complex mechanism. In both cases, the planetary
boundary layer (PBL) is where these motions are dissipated, while the final sink
is the small-scale turbulence that through a cascade of energy goes down to the
molecular scale.

It is not strictly necessary that part of the kinetic energy is converted back in
APE (actually fluxes are rather small) because the energy from the sun is, for all
effects, infinite. The atmosphere is like an engine that transforms thermal energy
into motions that are dissipated by “friction” processes. The efficiency of such an
engine can be easily evaluated as the ratio between the rate of change of kinetic
energy and the energy received by the sun:�

dK0=dt
�
=Q .1 � ˛/ D 2:2=240 D 0:009
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Fig. 12.15 A simplified
scheme of the energy cycle of
the atmosphere. The sink is
the final dissipation of energy
(Adapted from Wallace and
Hobbs 1977)
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which is less than 1 %. On the other hand, the same order of magnitude for the
efficiency can be obtained as the ratio between the temperature difference between
pole and equator and the average temperature of the troposphere (250 K).

We can now make some considerations as to what we learned in Sect. 11.2.3
about geopotential and sensible heat flows. Equation (12.118) gives as the merid-
ional flux of sensible heat simply the term (dP0 C dK0)/dt and the changes of kinetic
and potential energy are of opposite sign. At this point, a good conclusion for this
chapter could be an introduction to the transport problem. This is not a very popular
topic for the troposphere, while it is quite hot for the stratosphere. In this case,
for transport, we mean all the processes that contribute to transport, mainly across
latitude, heat, chemical, and scalar tracers like the potential temperature.

12.3.2 The Parameterization of Transport

The considerable amount of work on the baroclinic instability should give us some
indication about the transport mechanisms at middle latitude. Green, in the early
1970s, tried to exploit the theory to calculate large-scale transport. He started from
the theory of the mixing length so that a generic term for the eddy transport like u’s’
(with s some generic quantity) can be written as

u0s0 D �u0l@s=@x D �K@s=@x (12.105)

http://dx.doi.org/10.1007/978-3-319-29449-0_11
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where K is a diffusion coefficient and s is the zonal mean value of the quantity being
transported. If we consider only transport in the meridional plane, we have

v0s0 D �Kvy@s=@y � Kvz@s=@z (12.106)

where s is a function of y and z, Kvy D v0ly; Kvz D v0lz. Similarly, for the vertical,
we can write

w0s0 D �Kwy@s=@y � Kwz@s=@zI Kwy D w0lyI Kwz D w0lz (12.107)

If we assume that the baroclinic instability is responsible for the eddies, then

Kvz

Kvy
� v0lz
v0ly

� lz
ly

� � � 1

2
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2

@	=@y

@	=@z
(12.108)

and the heat flux can be written as

v0	 0 D �Kvy
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@y
� 1

2

@	=@y
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@z

!
D �1

2
Kvy

@	

@y
(12.109)

Again we have a closure problem because we need to express the diffusion
coefficient as a function of average quantities. Some help can be found in the
discussion about energy and baroclinic instability. The perturbation kinetic energy
and APE can now be written as

K0 D 1

2

Z
dydxdzp

�
u02 C v02�

APE D 1

2

Z
dydxdp

T 02

T@	=@z

(12.110)

Notice that the first part of the equation expresses the total kinetic energy, while in
the second ones, we have assumed 	 D T. Assuming average values for the velocities
V D jv0j and U D ju0j and putting

M D
Z

dxdydp

g
T 0 � L

2

@	

@y

with L some characteristic length, we obtain

K0 D MV2 APE D 1
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� (12.111)
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If all the APEs are transformed into kinetic energy, from this equality, we can get
the velocity

V2 D g

T

L2

8

�
@	=@y

�2
�
@	=@z

�
and using the definition for the Rossby deformation radius, we get

V D uL=
�
2
p
2LR

�
(12.112)

where u is the thermal wind given by Eq. (12.52). We can now assume that the
characteristic length L is the one for which we have the fastest growth rate and
this is about five times the Rossby radius so that at least for the sake of order of
magnitude, we write Kvy � VLR and we have

Kvy � � g

T
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(12.113)

and the heat fluxes are then
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(12.114)

These equations may be validated by experimental data. However, a very
interesting thing is that the meridional heat flux is not a simple diffusion process
because it is not proportional to the meridional temperature gradient. Also from Eq.
(12.114), we can see the existence of some feedback mechanism. For example, if
the temperature meridional gradient should increase for some reason, then the heat
flux would increase even faster thus increasing the heat exchange along latitudes
with the result of bringing the temperature gradient back to the unperturbed value.
Then we are in the presence of a negative feedback. The same increase would
lead to an increase of the vertical flux (remember that @	 /@y is negative) so the
static stability would also increase and again this would contribute to bringing the
meridional gradient back to its initial value.

These considerations are quite important because based on them we can simplify
greatly the heat transport in two-dimensional climate models.
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12.4 The General Circulation: A Reductionist Approach

We cannot embark here on a contribution to the reductionism debate, although
in the past there have been reductionist temptations even in atmospheric physics.
At the time (we were in the 1970s), it was called the similitude theory. It was
originally formulated by G. Golitsyn (1970) and exposed in a slightly different form
by Conway Leovy, in the preprint that was never published anywhere but continues
to inspire us. The basic idea is to find some general law to which all the planet
atmospheric circulations could be reduced. We have attempted something like that
for the thermal structure, and we will try to do something like that now for the
circulation.

A good starting point is to consider the potential energy for unit mass in the
atmosphere, given by gH, as shown already in Chap. 11. If this energy would be
emitted as radiation, then the average emitted power would be

gH=�r (12.115)

where � r is the radiative time constant given by (see Chap. 1)

�r D peCp="g�T3e

with Te and pe as values of temperature and pressure at the emission level and
" as the emissivity. Equation (12.115) can be made nondimensional using as
normalization constants the Earth’s angular velocity and the radius a so that

A D 1

��r

gH

.�a/2
(12.116)

Consider now the Hadley cell as shown in Fig. 12.16, with the assumption that
the heat transported by the circulation in the upper branch is dissipated as radiation.
We will have at the upper branch


eCpw .T1 � T2/ � "�T4e

Fig. 12.16 Heat transport in
the Hadley cell
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which is equivalent to


ewıT=T � "�T3e =Cp

Comparing this equation with the definition of radiative relaxation time, we have

wıT=T � RTe= .g"�r/ � H= ."�r/ (12.117)

This is a very important link between the temperature difference across the Hadley
cell, the vertical velocity, and the dissipated power.

Another important relation can be found directly from Eq. (12.22) which gives
the zonal velocity for the constant angular momentum. However, we use the Rossby
number, Ro D u/(�a), to write

Ro D ˛sin2's= cos's (12.118)

In this case, ®s is the Hadley cell’s northern limit where air starts to subside. The
coefficient ˛ is just an adjustment term that takes into account the non-perfect
conservation of the angular momentum. Using the notation

r2s D sin2's= cos's

we can transform Eq. (12.17) in a slightly different form:

ıT

T
D u�a

2gH
r2s D Ro.�a/2

2gH
r2s (12.119)

Equations 12.116,12.117,12.118, and 12.119 should allow us in principle to eval-
uate the Hadley cell extension (Fig. 12.16); however we need an additional relation
that links the vertical velocity to the Rossby number. The vorticity conservation can
be written as

�v=a � fw=H

and considering that f D 2� sin�, we have v=a � .w=H/ sin � � .w=H/ rs so that

v= .�a/ � rs .w=�H/

At this point, we can assume the ratio between meridional and zonal velocity to
be of the order of the local Rossby number

Ros � u= .a� sin'/ � Ro=rs

With the approximation that rs � sin®, that is, v D uRos, we have

v= .�a/ � rs .w=�H/ � RosRo � Ro2=rs
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and taking into account Eq. (12.47)

w=�H � ˛Ro (12.120)

We can now introduce the normalized quantities

W D w=�HI G D
h
gH=.�a/2

i
.ıT=T/ (12.121)

so as to define all the relevant quantities for the circulation to two constants, A
(already defined) and an adjustable constant � :

Ro D .�A/1=3 I rs D ˛�1=2.�A/1=6

G D .2˛/�1.�A/1=2 I v= .�a/ D rsW D ˛1=2.�A/1=2
(12.122)

These equations determine the main characteristics of the circulation on each
planet, and they can be completed by another equation concerning the fractional
change of the potential temperature across a scale height, ı	 /(H	).

To do this simple thing, we need to introduce the inertial instability, the first
dynamical instability in a very long line.

12.4.1 The Inertial Instability

We will repeat here the details about the inertial instability given in Chap. 4. We
proved that the acceleration of the parcel displaced by its initial position is

Dv=Dt D D2 .ıy/ =Dt2 D �f
�
f � @ug=@y

�
ıy (12.123)

This has the form of an “oscillator” equation and will give different motions
according to the sign of the terms in parentheses:

�
f � @ug

@y

� 8<:
> 0 stable
D 0 neutral
< 0 unstable

(12.124)

When the third condition is satisfied, a parcel displaced normally to the zonal
current will move farther away from its initial position. The condition for instability
can also take into account also the stratification of the fluid beside the latitudinal
shear of the wind. In this case, it is necessary to make the derivative along isentropic
surfaces, that is, the condition to be satisfied is the following:

f � .@u=@y/	 < 0:

http://dx.doi.org/10.1007/978-3-319-29449-0_4
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And if we apply the rules learned in Chaps. 5 and 7, we have�
@u

@y

�
	

D
�
@u

@z

�
y

�
@z

@y

�
	

C
�
@u

@y

�
z

so that the condition for instability becomes

f � @u

@y
C
�
@u

@z

�
.@	=@y/

.@	=@z/
< 0 (12.125)

From the thermal wind equation, we have

f@u=@z D � .g=	/ @	=@y

which can be substituted in Eq. (12.125) for the meridional gradient of 	 :

f � @u

@y
� 1

g

�
@u

@z

�2 f	

.@	=@z/
< 0

From the definition of Eq. 8.28 of the Richardson number, we have

1 � 1

f

@u

@y
� 1

Ri
< 0 (12.126)

For the stability, we should then have

1 � Ro > 1=Ri

so that in the case Ro < 1 it must be Ri > 1. Again, using the definition of the
Richardson number, we have for the stability condition

g

	

@	

@z

�
@u

@z

��2
� g

H

ı	

	

H2

u2
� 1

Ro2
gH

.a�/2
ı	

	
> 1 (12.127)

And we get

1

.�A/2=3
gH

.a�/2
ı	

	
> 1 (12.128)

12.4.2 A Comparison Among the Planets

An application of the above equations can be made on the Hadley cells of the
different planets. In Fig. 12.17, the relationship between the northern limit of the

http://dx.doi.org/10.1007/978-3-319-29449-0_8
http://dx.doi.org/10.1007/978-3-319-29449-0_7
http://dx.doi.org/10.1007/978-3-319-29449-0_5
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Fig. 12.17 The relation between the Rossby number and the latitudinal extension of the Hadley
cells for a few planets of the solar system (top): V Venus, E Earth, M Mars, J Jupiter, S Saturn.
At the left the parameter rs is given. For the same planets, the bottom figure gives the temperature
change across the scale height. In both figures, the black circles are the observed data and the white
circles the calculated values

Hadley cell and the Rossby number is shown. We notice that, except for Venus,
the agreement with the real data is quite good. We have not attempted to evaluate
the meridional velocity because this is a quite complicated quantity to measure. For
Venus, the poor agreement may be due to the high Rossby number. The extension of
the cell up to polar latitude may be the reason for some of the instability. The good
agreement for the other planets is a temptation to “push the envelope” of the theory.
Mars, for example, is sometime shrouded with planetary dust storms that change the
emissivity of the atmosphere. Reasonable values could be 0.15 for a normal situation
to 0.5 in case of a storm so that the relaxation time reduces from 9 to 1.5 days. This
implies a change in the zonal wind velocity on the planet that may go from about
60 m s�1 to 100 m s�1 and a corresponding increase in the amplitude of the Hadley
cell. This behavior is what is observed during dust storms on Mars.
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The predictions of the theory about static stability are given in the lower part of
Fig. 12.17, and we notice immediately how the agreement is good in this case. In
the case of Jupiter, the data and theory in practice overlap.

The most interesting result of this theory is that knowledge of the Rossby number
does not imply a linear relation between this same number and the zonal wind.

The most obvious approach would be to assume that the potential energy (gH),
transformed in available energy through the efficiency (ıT/T), was proportional to
the square of the zonal velocity. However, the temperature difference across the
Hadley cell depends itself on the zonal velocity and then on the Rossby number.

E.12 Examples

E.12.1 The Thermodynamic Equation

We start from (12.70) �
@

@t
C u

@

@x

�
	 0 C v0@	

@y
C w0 @	

@z� D 0

And using the thermal wind relation

@u

@z� D �g

f

1

	

@	

@y

The equation becomes�
@

@t
C u

@

@x

�
	 0
	

� v0 f

g

@u

@z�
C w0
	

@	

@z� D 0 (E.12.1)

Introducing the streamfunction

 D �

f
(E.12.2)

where f is the geopotential, we have�
@

@t
C u

@

@x

�
	 0

	
� f

g

@ 

@x

@u

@z� C w0

g
N2� D 0 (E.12.3)

where the Brunt–Väisälä frequency is defined as

N2� D g

	

@	

@z�
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Using the relation between streamfunction and geopotential, we have

T 0 D H

R

@ˆ

@z� D f
H

R

@ 

@z� (E.12.4)

And then we may assume

	 0

	
' T 0

T
D f

T

H

R

@ 

@z� D f

g

@ 

@z�

Substituting in (E.12.17), we have�
@

@t
C u

@

@x

�
@ 

@z� � @ 

@x

@u

@z� C w0

f
N2� D 0

which is the form we need.

E.12.2 The Hadley Circulation as a Shallow Water Case

The equations of a shallow water system can be written as a function of the
perturbation height h:

@u=@t C u@u=@x C v@u=@y � fv D �g@h=@x

@v=@t C u@v=@x C v@v=@y C fu D �g@h=@y
(E.12.5)

When averaged zonally and adding the friction term, they become

@u=@t C v@u=@y � fv D �˛u

@v=@t C v@v=@y C fu D �g@h=@y � ˛v

These equations can now be normalized using the Rossby radius ((gH)1/2/f as length
scale and the Coriolis parameter as the inverse of the time scale. The result is simply

@u=@t C v@u=@y � v D �˛u

@v=@t C v@v=@y C u D �@h=@y � ˛v (E.12.6)

where now all the variables are nondimensional. To write the continuity equation in
the same quantities, we need to start from the full continuity:

1

H

@h

@t
C @

@x


�
1C h

H

�
u

�
C @

@y


�
1C h

H

�
v

�
D 0 (E.12.7)
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We can then introduce a normalized thickness �D h/H and write the equation

@�

@t
C @

@x
Œ.1C �/ u�C @

@y
Œ.1C �/ v� D 0 (E.12.8)

The thickness h can be interpreted as geopotential thickness:

h C H D RT=g D .RT0=g/ .1C T=T0/ (E.12.9)

so that

1C h=H D 1C T=T0 (E.12.10)

In this way, Eq. (E.12.7) can be interpreted as describing the temperature of the
fluid, and if we include the forcing and average zonally, we get

@�

@t
C @

@y
Œ.1C �/ v� D Q (E.12.11)

where the forcing may be represented as a Newtonian cooling term

Q D �E � �
�

(E.12.12)

where �E is an assigned equilibrium temperature. Equations E.12.6, E.12.7, E.12.8,
E.12.9, E.12.10, and E.12.11 can be solved numerically.

E.12.3 The Hadley Circulation: Numerical Solution

We consider the time-independent solution so that the system to be solved is given
by

v@u=@y � v D �˛u

v@v=@y C u D �@h=@y � ˛v

@

@y
Œ.1C �/ v� D Q

(E.12.13)

where h D 1 C �. To simplify things further, the quantity hE is specified as follows:

�E.y/ D
�

HE for jyj < yE

0 for jyj > yE
(E.12.14)
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The first of Eq. E.12.9 is simply

@u

@y
D 1 � ˛ u

v
(E.12.15)

The second and third equations can be written as

v@v=@y C u D �@�=@y � ˛v

v
@�

@y
C .1C �/

@v

@y
D Q

(E.12.16)

This system can be solved for the derivatives @�=@y and @v=@y so that

@v

@y
D � �uv C ˛v2 C Q

 �
v2 � .1C �/

�1
(E.12.17)

@�

@y
D Œ.1C �/ .˛v C u/C Qv�

�
v2 � .1C �/

�1
(E.12.18)

The system (E.12.11), (E.12.13), and (E.12.14) can be solved using MATLAB, for
example; the appropriate boundary conditions and the results are given in Fig. 12.14.
A possible MATLAB script follows:

function xdotDhadley(t,x);

xdotDzeros(3,1);

alfaD1.0;

xdot(1)D1-alfa*x(1)/x(2);

if(t<0.1)

qD1-x(3);

else

qD-x(3)

end

auxDx(2)*x(2)-(1Cx(3));

aux1D1/aux;

xdot(2)D-(x(1)*x(2)Calfa*x(2)*x(2)Cq)*aux1;

xdot(3)D((1Cx(3))*(alfa*x(2)Cx(1))Cq*x(2))*aux1;

The following instructions run the program and plot the results

[t,x]Dode45(’hadley’,[0 0.95],[0,0.001,0.17]);

plot(t,x(:,1),t,x(:,2),t,x(:,3)), axis([0 1 0 1])

E.12.4 The Hadley Circulation on Slow-Rotating Planet?

An approach similar to the Held and Hou model can be applied to a slow-rotating
planet like Venus. We can simplify the expression for the equilibrium temperature:
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	E D 	E0 � 2

3
�	P2 .sin'/ � 	E0 � �	

a2
y2 (E.12.19)

where a is the radius of the planet and sin' � y=a. The zonal velocity which
conserves the angular momentum is given by

uM D �a2sin2'

a cos'
� �y2

a

The average wind shear is obtained simply by dividing by the scale height and then
the cyclostrophic thermal wind equation.

Now the same approach could be used for a slow-rotating planet where the
thermal wind equation is now substituted by the cyclostrophic relation:

u2 tan'

a
D �1




@p

@y
� �R

@T

@y

so that

@
�
u2
�

@z
� u2M

H
D Ra

Hy

@T

@y
D ga

Ty

@T

@y
D ga2

y	0

@	M

@y
(E.12.20)

We can obtain @	=@y from this equation

@	M

@y
D �u2My	0

Hga2
D ��

2y5	0
Hga4

that can be easily integrated to give

	M D 	M0 � �2	0

a4gH

y6

6
(E.12.21)

Calling ˙YH as the limits of the Hadley cell, the condition for the net heating reads
as Z YH

o
	Mdy D

Z YH

o
	Edy

A second equation is obtained by imposing that

	M .YH/ D 	E .YH/



E.12 Examples 413

The condition on the integration gives

	M0 � �2	0

a4gH

Y6H
42

D 	E0 � �	0

a2
Y2H
3

(E.12.22)

while the equivalence of the temperature as

	M0 � �2	0

a4gH

Y6H
6

D 	E0 � �	0

a2
Y2H (E.12.23)

Equating the difference 	E0 � 	M0, we obtain

YH D
�
14gHa2�	

3�2	0

� 1
4

(E.12.24)

To obtain the difference 	E0 � 	M0, we subtract (E.12.22) and (E.12.23) to get

	E0 � 	M0 D 2

9

�
14gH�	3

3�2a2	0

� 1
2

For Venus, we may use H D 15:9kmI � D 2�=224:7d�1I a D 6051km g D
8:87ms-2 and get easily YH > a, that is, the Hadley cell would be larger than the
hemisphere.

E.12.4 Transport by Eddies (James 1994, p. 125)

Consider a disturbance geostrophically and hydrostatically balanced as shown in
Fig. E.12.1 where three isobaric surfaces are shown at p C�p, p, and p��p. As we
have seen before, the streamfunction is related to the geopotential height Z0 by

 D g

f
Z0 (E.12.25)

The wind component is given by

u0 D �@ 
@y

D �g

f

@Z0

@y
I v0 D @ 

@x
D g

f

@Z0

@x
I (E.12.26)

The temperature of the middle level (at pressure p) is given by

T0 D pog

R

Z0
pC�p � Z0

p��p

2�p
(E.12.27)
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Fig. E.12.1 Schematic illustration of a wavelike disturbance with westward phase tilt with altitude
(James 1994)

We assume that the disturbance is sinusoidal and has a constant amplitude with
altitude but has a phase shift with height:

Zp D ZRp C A sin .kx C iı/ ; i D �1; 0; 1 (E.12.28)

The difference in geopotential height is given by

Z0
pC�p � Z0

p��p D A Œ.sin kx C ı/� .sin kx � ı/� D A cos.kx/ sin .ı/

so that the temperature

T 0
0 D pog

�pR
A cos.kx/ sin .ı/ (E.12.29)

There is no eddy fluctuation of temperature without phase shift. According to
(E.12.20), the poleward wind is given by

v0 D kg

f
A cos .kx/ (E.12.30)

and the poleward temperature flux is given by

�
v0T 0 D 1

2

p0g2A2k

fR�p
sin ı (E.12.31)
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Inspection of Fig. E.12.1 makes this result obvious. The westward phase tilt means
that thickness, and then temperature, is a maximum where the poleward wind is a
maximum. Thus there must be a poleward temperature flux.
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Chapter 13
Radiation for Different Uses

In Chap. 2, we introduced the problem of radiative transfer in the atmosphere. After
that, we were able to make some simple calculations. However, in order to go on,
we need to introduce some more sophisticated algorithms. For example, for the solar
radiation, the method we suggested is not fast enough to do practical calculations.
Also the treatment for the diffuse radiation developed for the molecular component
(Rayleigh scattering) must be extended also to aerosol particles. This, for example,
will enable us to calculate how much radiation goes through a very thick cloud
(optical thickness larger than 10).

Regarding infrared radiation, we need to learn how a single gas with specific
spectroscopic characteristics contributes to the emission and absorption of radiation.
Also, in this case, we may use a method that takes hours on a computer or one that
can be solved in a few seconds. The latter may look more like engineering solutions,
but as always, we prefer to allow the reader to practice because we are convinced
that a theory can be corrected and improved only through exercise.

We will start with the solar radiation and its interaction with aerosols. In the
process, we will make a pass at the Mie theory on light scattering by spherical
particles. We will end up with the treatment of the IR radiation based on the band
approach developed by Robert Cess.

13.1 Parameterization of Gaseous Absorption

We have seen that for ozone there are no major problems in calculating the
absorption if the cross sections are known. However, if we consider water vapor,
we will start to have some major problems because in the near infrared, this gas has
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10.1007/978-3-319-29449-0_13) contains supplementary material, which is available to
authorized users.
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Fig. 13.1 The scheme to evaluate the combined reflectivity of the atmosphere and the surface

lines that are not resolved. Also the absorption coefficient may depend on pressure.
In this first part, we will limit the discussion to gas absorption although we know

there are a few objections, because in the case of water vapor, it is not easy to
separate the gas from the liquid phase, that is, without clouds.

We can start by calculating the albedo which results as a combination between
the effect of the atmosphere and the surface. We assume that the atmosphere is a
single reflecting layer over a surface that has a reflectivity Rg. The reflectivity of the
atmosphere depends on the zenith angle of the sun and is given by Ra(�0) where
�0 D cos	 . We also assume the atmosphere has an internal reflectivity R*

a that
coincides with the average of the reflectivity over all the zenith angles (Fig. 13.1):

R�
a D 2

Z 1

0

Ra .�0/ �0 d�0

The reason that justifies this approach is that the radiation reflected by the surface
is completely diffuse so that the internal reflectivity may well be the average of
Ra(�0). Referring to the figure, we can easily calculate the total reflectivity:

R .�0/ D Ra .�0/C Œ1 � Ra .�0/�
�
1� R�

a

� h
1C RgR�

a C R2gR�
a
2 C : : :

i
D Ra .�0/C Œ1 � Ra .�0/�

�
1� R�

a

�
Rg=

�
1 � RgR�

a

� (13.1)

As we will see in a while, the value of the atmospheric reflectivity is a function
of the wavelength because it is determined by the Rayleigh scattering, meaning that
it will be comparatively higher in the ultraviolet than in the near infrared. It can be
shown that in the region where the ozone absorption is important, the reflectivity is
given by

Ra .�0/ D 0:219= .1C 0:816�0/ ) R�
a D 0:144 (13.2)

with typical values of the order of 10–15 %.
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Fig. 13.2 The ozone absorption as a function of the column density of the same gas. At the left,
the solar spectrum (in kW m�2 s�1�m�1) is shown after passing through increasing amounts of
gas, indicated in cm SPT. At the right, the percentage absorption of the solar flux is shown (Lacis
and Hansen 1974)

We will find the explanation for these relations only later. For the time being, we
will act like those strategists who isolate pockets of strenuous resistance, having in
mind only the final target which in our case is to learn how the atmosphere heats up
when absorbing the solar radiation.

13.1.1 The Ozone Absorption

With the method introduced in Chap. 2, we can divide the spectral region in two
parts (ultraviolet and visible) and for each of them establish an empirical formula
that gives the absorption as a function of the ozone total amount.

As shown in Fig. 13.2, this method is easily justified because the two spectral
regions are very well separated and the modalities of absorption are rather different.
In this figure, the ozone total content is expressed in cm at standard temperature
and pressure conditions (STP) and this requires a little explanation. As already said
for the columnar density, the units are molecules cm�2. The unit of cm is easily
connected to that because it represents the height of the gas column at STP. Knowing
that a mole of gas occupies 22.42 l, it is easy to find that 1 cm is equivalent to a
number of molecules given by

1 cm D 6:023 � 1023=22:42� 103 D 2:687 � 1019molecules (13.3)

The same unit multiplied by 1000 has the name of Dobson unit (DU). In the case
of the Earth’s atmosphere, the total ozone amount is around 0.3–0.4 cm, that is,
300–400 DU. The amounts shown in the figure are justified because the ozone
traversed by the solar radiation depends on the sun’s zenith angle. At sunrise and
sunset, the solar radiation may easily go through 10 cm SPT of ozone, not only in

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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the UV but also in the visible in the spectral region known as the Chappuis band.
This considerable absorption takes place in the yellow region of the spectrum and
explains the red color of the sky at sunset and sunrise. On the right of the same
figure, the ozone absorption (expressed as percentage) is shown in the two different
spectral regions as a function of the total ozone amount. The absorption in the visible
is almost linear because the cross sections are small, while in the ultraviolet there
are clear signs of saturation.

Approximating these curves with analytical functions can parameterize the
absorption. In this way, it is possible to avoid the long calculation over the cross
sections. A. Lacis and J. Hansen, in a rather famous paper of 1974, gave the
following parameterization for the visible:

Avis
oz .x/ D 0:02118x

1C 0:042x C 0:000323x2
(13.4)

where Avis
oz (x) is the fraction of the incident solar flux absorbed by an amount x of

ozone given in cm. This relation is valid for an ozone amount that goes from 10�4

up to 10 cm of ozone. For the ultraviolet, the upper limit is 1 cm and the absorption
is given by

Auv
oz .x/ D 1:082x

.1C 138:6x/0:805
C 0:0658x

1C .103:6x/3
(13.5)

The total absorption is given by the sum of Eqs. (13.4) and (13.5). As shown
in Fig. 13.2, the absorption is both of the direct and the diffuse radiation. The
absorption path in the two cases is different because for the direct beam, it is enough
to divide the geometrical path by the cosine of the zenith angle, while in the case of
the diffuse radiation, both refraction and diffusion tend to increase the geometrical
path. If we imagine dividing the atmosphere in a number of layers and ul is the total
ozone in the lth layer at the angle �0, the effective ozone amount is given by

xl D ulM (13.6)

where

M D 35=
�
1224�20 C 1

�1=2
(13.7)

is an effective amplification factor that takes into account the effects mentioned
above. The direct radiation goes straight to the ground where it is reflected and
scattered back to the lth layer this time from below. The total amount of ozone
traversed is then the direct and the diffuse path:

x�
l D utM C M .ut � ul/ (13.8)
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where ut is the total ozone and M is an amplification factor taking into account the
longer path for the upward diffuse radiation; we assume M � 1:9. If we consider
two adjacent layers l and l C 1, the fraction of the total flux absorbed between the
two layers is given by the difference between the direct and diffuse absorption:

Al;oz D �0
˚�

A0z .xlC1/� R .�0/A0z
�
x�

lC1
� � �

A0z .xl/� R .�0/A0z
�
x�

l

��
(13.9)

Here the reflectivity is given by Eq. (13.3). This equation gives the net flux absorbed
between two contiguous layers separated by a height interval �z and a pressure
difference�p. The net heating is then given by

�T

�t
D F0gAl

Cp�p
(13.10)

where F0 is the solar flux at the top of the atmosphere.

13.1.2 The Water Vapor Absorption

The parameterization of the absorption by water vapor is much more complicated
than that of ozone. The absorption coefficient for water vapor is highly dependent
on frequency and values with enough resolution are not available. The absorption
coefficient also depends on pressure. The water vapor absorption is important in the
lower troposphere where diffusion and absorption have the same weight so that it is
difficult to separate the two effects as in the case of ozone. We will deal here only
with gaseous absorption that refers to clear sky conditions and will postpone the
treatment of the cloudy sky case until after we introduce the diffusion in the clouds.

We use a similar approach for parameterization as in the case of ozone. The data
we use are shown in Fig. 13.3. They show the absorptivity (what an ugly word!) as
a function of a quantity that is related to the total vapor amount. The absorptivity
in this case is the fraction of the total solar flux absorbed and can be parameterized
in terms of the precipitable water. We can have a parameterization for each fitting
formula, and two examples are those suggested by G. Yamamoto

Awv .y/ D 2:9y=
h
.1C 141:5y/0;635 C 5:925y

i
(13.11)

and the older one suggested by F. Fowler

Awv .y/ D 0:0946y0:303 (13.12)

In both cases, y indicates the precipitable water, defined as follows. We need to
remember the definition of specific humidity given in Chap. 2, w D 
w/
, where 
w

is the water vapor density. Then, if we want to evaluate the total content of water
vapor in a column (mass per unit surface), we calculate the integral

http://dx.doi.org/10.1007/978-3-319-29449-0_2
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Fig. 13.3 Absorptivity of
water vapor as a function of
the precipitable water (cm).
The two curves refer to the
different parameterizations
given by Eqs. (13.11) and
(13.12). Dashed line refers to
the Yamamoto
parameterization
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where we have used the hydrostatic equilibrium approximation. The two curves
corresponding to Eqs. (13.11) and (13.12) are presented in Fig. 13.3, and we can
see there is a sensible difference between the two. Notice that the precipitable water
is now expressed in cm, and this is because of the obvious fact that the 1 g cm�2

corresponds to 1 cm of water. The relation of Eqs. (13.11) and (13.12) refers to
standard conditions for pressure and temperature, so the extension to the different
conditions found in the troposphere requires some correction or the introduction of
an equivalent value for y given by

yeff D y

�
p

p0

�n�T0
T

� 1
2

(13.14)

where p0 and T0 are reference values and n is an exponent that may vary between
0 and 1. From the definition of Eq. (13.13), we can find the effective water vapor
traversed by the solar radiation up to the lth layer:

yl D M

g

Z pl

0

w

�
p

p0

�n�T0
T

�1=2
dp (13.15)

where M is given by Eq. (13.7). For the radiation reflected from the surface, we use
an expression similar to Eq. (13.8) for the effective water vapor quantity:

y�
l D yt C 5

3M
.yt � yl/ (13.16)
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where we assume the amplification factor for the diffuse radiation to be 5/3. The
fraction of the flux absorbed by the lth layer will be

Al;wv D Awv .ylC1/ � Awv .yl/C Rg
�
Awv

�
y�

l

� � Awv
�
y�

lC1
�

(13.17)

It is interesting to note how in this relation the contribution of the diffuse
radiation is simply multiplied by the reflectivity of the surface and not the combined
reflectivity of the atmosphere and surface as in Eq. (13.9). This is because in the
spectral region where the water vapor absorption is significant (i.e., in the near
infrared), the effect of Rayleigh diffusion is negligible. It is instructive at this point to
evaluate how much radiation reaches the ground. If we assume that the atmospheric
absorption is due only to ozone and water vapor, then we can divide all the energy
flux that reaches the ground in two regions, one containing 64.7 % of the radiation
(the visible and the ultraviolet) and the remaining the region significant to the water
vapor absorption. We will start from the last one because we can neglect diffusion.
We have then

Ag;wv D �0 Œ0:353� Awv .yt/�
�
1 � Rg

�
(13.18)

where yt is the total content. In practice, from all the available flux, we subtract the
portion absorbed along the atmosphere and that reflected by the surface.

For the region, where the ozone absorption is important, we have a more
complicated relation:

Ag;oz D �0 Œ0:647� Rr .�0/ � Aoz .Mut/�
�
1 � Rg

�
=
�
1 � R�

a Rg
�

(13.19)

In this case, we subtract the ozone absorption, the part reflected on the whole
atmosphere, while the factor in the denominator takes into account all the multiple
reflections between the ground and the atmosphere. As a consequence, Rr(�0) in
this case is given by

Rr .�0/ D 0:28= .1C 6:43�0/ (13.20)

with an average value around 6 %. Referring to Figs. 13.3 and 13.4, we see that for
a value of y 
 2, we have an absorptivity of � 0.12 so that water vapor is actually
responsible for most of the solar radiation absorption.

This absorption produces, as shown in Fig. 13.4, a diurnally averaged heating rate
of about 0.5 ıC day�1. This calculation refers to middle altitude average conditions,
while the maximum heating rate for H2O may even reach 1 ıC day�1.

We are now in a condition to evaluate the heating rate in the entire atmospheres
However, although we have taken into account molecular scattering, we still have
neglected the effects of aerosols (or more generally atmospheric particulates) on the
solar radiation. We need to take these into account now.
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Fig. 13.4 The equivalent water vapor amount (g cm�2) above a certain altitude is shown at the left.
This refers to the average conditions at midlatitude. At the right, we represent the corresponding
diurnal averaged heating rate

13.2 The Interaction of Solar Radiation with Particulates
in the Atmosphere

Since Chap. 3, we have considered the absorption by molecules and atoms. We
dedicated the entire Chap. 9 to the atmospheric particulates and know that solar
radiation interacts strongly with the cloud particles, for example. Anybody that has
taken a decent general physics course must remember that a beautiful example of
such an interaction is the rainbow which can be treated either with the geometrical
or wave optics approximation.

In this case, the raindrop dimensions are large with respect to wavelength. When
the particle dimensions become comparable to those of the wavelength, then it is
necessary to recur to another classical treatment of radiation scattering. This one was
introduced by a German physicist, Gustav Mie, who wrote, among other things, a
seminal book on this topic. Curiously, this is another example of a problem that was
well ahead of the possibility to solve it. As a matter of fact, computers fast enough
to make all the calculations were made available only at the time of Mie’s death (in
1957). There are different “regimes” where different approximations for treating the
scattering of radiation must be applied, and these are illustrated in Fig. 13.5, inspired
by the Wallace and Hobbs’ textbook. The quantity that separates these regimes is
related to the ratio between the wavelength and the radius and is called the size
parameter �:

� D 2�r=� (13.21)

http://dx.doi.org/10.1007/978-3-319-29449-0_9
http://dx.doi.org/10.1007/978-3-319-29449-0_3
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Fig. 13.5 The different regimes applicable to radiation scattering fixed by the ratio between
particle dimensions and wavelength. As a reference, typical wavelengths (solar, IR, etc.) are
indicated; particle dimensions are to the right (from Wallace and Hobbs 1977)

where the meaning of the symbols is clear. The Mie scattering is predominant when
this ratio is roughly one. This means, for example, that smoke or dust particles
with the radius of about 0.1�m must be treated within the Mie theory, while
for very large values of � (
50), the geometrical optics approximation becomes
important. Figure 13.5 shows that raindrops can be treated in the geometrical optics
approximation, while for the IR even relatively small particles (1�m) may fall in
the Mie regime. These dimensions are typical of the volcanic stratospheric particles
and of the now famous polar stratospheric particles. Diffusion becomes negligible
when size parameters are very small so that in this case neither Rayleigh nor Mie
scattering is important nor everything reduces to pure absorption.

The fact that the interaction of radiation depends on the particle radius may
complicate many calculations, considering, for example, that, within a cloud,
particles have different radii. We have treated extensively the subject of size
distribution in Chap. 9, and we will assume that everyone has read and learned
something from that chapter.

13.2.1 Optical Properties of the Particles

We cannot undertake a complete theory of radiation scattering from small particles,
so we will assume that the reader already knows a few things and others will be
justified on the basis of intuition. We need to clarify in any case the problem on
which we are supposed to be working by referring to Fig. 13.6.

http://dx.doi.org/10.1007/978-3-319-29449-0_9
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Fig. 13.6 The diffusion and
absorption processes for a
beam of light incident on a
cloud of particles
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We have a parallel beam of light of intensity Ii falling on a medium that contains
a number of particles that scatter and absorb radiation. Even if absorption is absent
(like in the case of Rayleigh scattering), the detector will measure an energy or
power that is less than the incident radiation. The incident power in this case would
be redistributed in space and the detector will capture only part of it. The power
absorbed and scattered is, respectively,

Wabs D IiCabs

Wsca D IiCsca
(13.22)

where Cabs and Csca are the cross sections for absorption and scattering that have the
dimensions of an area and are usually normalized to the geometrical cross section,
so that we can define an absorption (Qabs) and scattering (Qsca) efficiency:

Qabs D Cabs=�r2

Qsca D Csca=�r2
(13.23)

These quantities depend on the size parameter defined by Eq. (13.21) and the
refractive index that may be complex m D n C ik. The sum of the two efficiencies is
called the extinction efficiency Qext D Qabs C Qsca. Figure 13.7 shows an example
of extinction efficiency for a raindrop as a function of �.

Although we still do not know how to calculate this efficiency, a first question
to ask is whether changing � is equivalent to changing the wavelength or radius.
Figure 13.7 is obtained by keeping the wavelength constant, and this is because
in this way we use always the same refractive index and change only the radius.
When the wavelength is changed keeping the radius constant, then at some point the
particle would become completely opaque at the radiation, and Qext would remain
fixed at 2. We can see that this limit in Fig. 13.7 is reached asymptotically. This
looks like a paradox because the cross section tends to be twice the geometrical
cross section. However, we will see later how this fact could be explained on the
basis of wave optics.

A good starting point is to consider the interaction of an electromagnetic wave
with a dielectric sphere with a relative dielectric constant "r. The sphere is immersed
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Fig. 13.7 The extinction
efficiency as a function of the
size parameter for a raindrop
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in a uniform electric field of intensity E0, as shown in Fig. 13.8. This is a rather
classical problem in electrostatics, and it can be shown that the resulting external
field is given by the sum of the preexisting field plus a dipole field oriented in the
same direction as the field E0. The intensity of the dipole moment is

p D "0˛E0 (13.24)

where the polarizability ˛ is given by

˛ D 4�a3 ."r � 1/ = ."r C 1/ (13.25)

The dipole is oriented along x and the angle shown in the figure is complementary
to the one used normally for the dipole. The situation shown corresponds to an
incident wave that travels in the z direction polarized in the x direction, that is, iE0

exp i(kz �!t). The dipole will oscillate with the same frequency of the incident
field, that is,

p D i"0˛E0 exp .�i!t/ ;
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and will emit electromagnetic radiation according to

Wsca.t/ D p2!4

6�"0c3
e2i!t D p2k3!

6�"0
e2i!t (13.26)

Keeping in mind the value for p and that of the Poynting vector S D c"0E0
2,

Wsca.t/ D k4Sj˛j2=6� (13.27)

And according to the definition for the scattering cross section, we have

Csca D k4j˛j2=6� (13.28)

Until now, the approximation for small spheres, or that comparable with the
wavelength, has been used implicitly when we have assumed the sphere to be
uniformly polarized. In practice, Eq. (13.33) is similar to Eq. (3.21), obtained with
the same method for the Rayleigh scattering. In Eq. (13.33), the polarizability
appears squared because it could be a complex quantity, which means we could
also have some absorption effect. However, to obtain the value for the absorption,
we need to recur to a more sophisticated procedure based on what happens to the
scattered component of the electric field, as shown in Fig. 13.9. The electric field
vector is decomposed in two components:

Ei
== Ei

?I (13.29)

Fig. 13.9 The scattering
geometry with the polarized
wave traveling along z. The
scattering plane is shadowed
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parallel and perpendicular to the scattering plane. This is defined as the plane which
contains the propagation and the r directions. At large distances (kr >> 1) from the
origin, where the sphere is located, the electric field is given by

Es D � k2

4�"0

eikr

r
er � .er � p/ (13.30)

where er is the unit vector in the r direction. From Eq. (13.30), we can find the single
components parallel and normal to the scattering plane:

Es
== D �e�ikrCikz

4�r
k2˛ cos 	 I Es

? D �e�ikrCikz

4�r
k2˛ (13.31)

while the component of the incident field can be written as

Ei
== D E0 cos' e�ikzI Ei

== D E0 sin' e�ikz (13.32)

The relation between the two fields is written in more synthetic form:"
Es
==

Es
?

#
D e�ikrCikz

ikr



S2 .	/ 0

0 S1 .	/

�"
Ei
==

Ei
?

#
(13.33)

where

S1 .	/ D � ik3˛

4�
I S2 .	/ D � ik3˛

4�
cos 	 (13.34)

Equation (13.37) is quite important for the scattering theory. The particular diagonal
form of the matrix is valid only in the case of the homogeneous sphere, and the
two functions S1 and S2 give simply the angular dependence of the scattered field
with respect to the incident one. In order to find the cross section, we consider the
z direction where the field is given by the superposition of the incident and the
scattered fields. To simplify further the situation, we assume that the incident field
is polarized in the normal direction and use the far field approximation (z >> x, y).
We have then

r D �
x2 C y2 C z2

�1=2 � z C �
x2 C y2

�
=2z

and also

Es
? D e�ik.r�z/

ikr
S1 .	/Ei

? (13.35)
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so that in the direction z, 	 
 0 the resultant field

Ei
? C Es

? � Ei
?
�
1C S1.0/

ikz
e�ik.x2Cy2/=2z

�
(13.36)

The square of this quantity is proportional to the Poynting vector so that retaining
terms of the order of 1/z

ˇ̌
Ei

? C Es
?
ˇ̌2 � ˇ̌

Ei
?
ˇ̌2 �

1C 2

kz
Re



S1.0/

i
e�ik.x2Cy2/=2z

��
(13.37)

To evaluate the absorbed power and then Cext, we normalize Eq. (13.37) to the
incident amplitude and integrate over a sphere of cross section �a2 to get

1ˇ̌
Ei

?
ˇ̌2 Z ˇ̌

Ei
? C Es

?
ˇ̌2

dxdy D �a2 C Cext (13.38)

The integral appearing in Eq. (13.38) is explained, for example, in Feynman’sZ
e�ik.x2Cy2/=2zdxdy D 2�z=ik

with the result

Cext D �
4�=k2

�
Re ŒS1.0/� D kIm Œ˛� (13.39)

We have found a relation between the extinction and the polarizability so that if
this does not have complex components, there is no absorption either. The theory
we have illustrated is however valid only in the case when the diffusion from the
particles is negligible and then the absorption coincides with the extinction. We are
now in the condition to explain the paradox shown in Fig. 13.7 which for large
dimensions with respect to the wavelength, Cext becomes twice the geometrical
cross section. We consider the dielectric sphere as in Fig. 13.10 with refractive
index n. The optical path difference between a ray passing at distance acos from

Fig. 13.10 The geometry of
anomalous diffraction

ψ a
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the center and one that passes outside is given by 2a(n � 1) sin and the phase
difference 4�a(n � 1)sin /�. The amplitude of the wave on the screen on the right
side of the figure at a large distance is

Eq D E0e
�i
 sin (13.40)

where we have put 
D 4�(n � 1)/�. The amplitude of the diffuse ray will be given
by the difference between E0 and Eq so that

Esca D E0
�
1 � e�i
 sin � (13.41)

Operating in the same way as in Eq. (13.37), we have

S.0/ D k2

2�

Z �
1 � e�i
 sin � dxdz (13.42)

The elementary area on which to perform the integral is given by the circular
shadow, that is, 2�a2 cos sin d , and the integral is then

S.0/ D k2a2
Z �=2

0

�
1 � e�i
 sin 

�
cos sin d D k2a2K .i
/ (13.43)

K .i
/ D 1

2
C e�i


i

� e�i
 � 1


2
(13.44)

with the final result

Cext D 4�a2

x2
Re ŒS.0/� D 4�a2Re ŒK .i
/� (13.45)

This result attributes the extinction mainly to a diffraction phenomenon and, as
shown in Fig. 13.11, is not a bad approximation when compared with the exact
calculation already shown in Fig. 13.7. The case is again a water sphere with a
real refractive index of 1.33. We can see that both the phase and the amplitude are
well reproduced except for small values of the size parameter where the error is not
negligible. Notice that the scale is not exactly the same as the one used in Fig. 13.7
because it is also a function of 
.

The paradox can now be explained in the following way: the geometric cross
section removes part of the light beam and a similar quantity is removed by the
diffraction that fills out the “void” left by the geometrical shadow of the sphere.
This cannot be applied to the shadow of your geranium pot on the window (as van de
Hulst explained) because the angles must be small. So the most obvious application
is when you look at asteroids through a telescope or, most simply, when you see
dust grains illuminated by the sun.
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Fig. 13.11 The cross section for extinction as a function of a quantity proportional to the size
parameter. The solid line is the same shown in Fig. 13.7, while the dashed line is the approximation
of Eq. (13.45)

13.2.2 Phase Functions and Mie Scattering

We have introduced the phase function when we dealt with the Rayleigh scattering,
and on that occasion, we saw that it was rather isotropic. If we consider a
large number of molecules, the isotropy increases because the scattering among
molecules is incoherent.

The forward scattering direction is rather special because, as shown in Fig. 13.9,
if we indicate with k and er the unit vectors for the incident and scattering directions,
respectively, while l is the separation between the two scattering elements, then the
forward phase difference is given by

�' D 2� Œl � .k � er/� =�

In this way, when the incident and the scattering directions coincide, we have a
reinforcement of the intensity. This is quite evident in Fig. 13.12, where the phase
functions are shown together with the distribution of the diffuse radiation on the
scattering plane (and sometimes on the one normal to it) for water spheres at a
wavelength of 0.55�m.

This figure shows a few interesting things. For small particles (�
 1), the
radiation is scattered almost isotropically around the axis normal to the direction of
incidence so that it looks like Rayleigh scattering. As the dimension of the particle
increases, the forward scattering becomes increasingly important, and for large
particles, the forward-scattered radiation is about a thousand times the radiation
scattered backward. This effect seems to contradict what you see (or do not see)
when driving in the rain or fog. When you drive in the fog, knowing that most of
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Fig. 13.12 The phase function vs. the scattering angle and the angular distribution of the radiation
(inserts). The solid line is the phase function for radiation polarized normally to the scattering
plane, while the dashed line refers to parallel polarization. For each figure, the size parameter is
also shown

the radiation is scattered forward does not help you to find the way. On the contrary,
even the small amount that is scattered backward gives you a lot of trouble.

13.3 Radiative Transfer in the Presence of Scattering

When scattering is present, the equation for radiative transfer gets more complicated
and, among other things, must be considered in three dimensions. We refer to
Fig. 13.13 and consider that the radiation beam arrives from some direction �0

which is characterized by the azimuth angleˆ0 and zenith angle � C‚0, where the
factor � is due to the downward direction of the beam. Such radiation interacts with
an atmospheric portion of thickness dz and follows different paths. If we consider
just the direction �, we can see that the radiation is simply attenuated:

dI .z;�/ D CextNI .z;�/ dz= cos	 (13.46)

where N is the number of particles per unit volume. The quantity Cext that appears in
this relation must be intended as an average over the different sizes of the particles.
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Fig. 13.13 Radiative transfer
in an infinitesimal part of the
atmosphere. The z axis is the
local vertical
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In the same direction, we will find the contribution of the diffuse radiation in the
direction �0 which following another scattering event has been diffused in the
direction �. In order to consider this effect, we must carry out an integration on
all the events of this sort, that is, �0 is completely generic. We obtain

dI .z;�/ D CscaNdz= cos 	
Z
4�

I
�
z�0�P

�
�;�0�
4�

d�0 (13.47)

Notice that P(�, �0) is the phase function that establishes which portion of the
intensity I(z, �) goes in the direction �. Finally, another contribution may arise
from the radiation attenuated down to the altitude z and diffused in the direction �:

dI .z;�/ D CscaNdz

cos 	
F.z/

P .� � �0/

4�
(13.48)

where the flux at altitude z is given by

F.z/ D �F0 exp

�
� 1

cos 	0

Z 1

z
CextN

�
z0� dz0

�
(13.49)

and the sum of all contributions gives

��dI .z;�/

d�
D I .z;�/ � !

4�

Z
4�

I
�
z;�0�P

�
�;�0�
4�

d�0

� !
4�
�F0P .�;�0/ e��=�0

(13.50)

where the quantity

! D Csca=Cext (13.51)
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Fig. 13.14 The relation
between incident and diffuse
radiation. The incidence and
scattering planes are
shadowed (Liou 1980)
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is called the single scattering albedo and has the value of 1 for conservative
scattering (i.e., no absorption). Also we have for the optical thickness

�.z/ D
Z 1

z
CextN

�
z0� dz0 (13.52)

Equation (13.50) is not really easy to handle so we need to make it simpler. The
first step in this direction can be made by referring to Fig. 13.14 to find a relation
between the scattering angle and the azimuth and zenith angles. Using the rule of
spherical geometry and referring to the triangle determined by the local zenith and
the incident and exit directions, we have

cos‚ D ��0 C �
1 � �2�1=2�1 � �02�1=2 cos

�
' � ' 0�

scattering. Substituting Eq. (13.55) in Eq. (13.50) and integrating over �, we obtain

�
d .I0 C �I1/

d�
D � .I0 C �I1/C ! .I0 C �gI1/C 1

4
!F0e

��=�0 .1C 3g�0�/

(13.53)

With the same method used in Chap. 3, we can find the other two equations from
Eq. (13.53), integrating first with respect to � and second by multiplying through�
and integrating. In this way, we can separate the two quantities I0 and I1.

The phase function and the intensity of radiation are then functions of the zenith
and azimuth angles. A first approximation to solve Eq. (13.50) is to assume that the
intensity is only a function of the zenith angle. However, this time, unlike what we
used in Chap. 3 (double stream), the series expansion stops at the first order in the
zenith angle:

I .�; �/ D I0 .�/C �I1 .�/ (13.54)

http://dx.doi.org/10.1007/978-3-319-29449-0_3
http://dx.doi.org/10.1007/978-3-319-29449-0_3
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Similarly, the phase function can be developed in terms of Legendre polynomials:

P .‚/ D 1C$ .�/ cos‚ (13.55)

At this point, the integral that appears in Eq. (13.50) can be drastically simplified:Z 2�

0

d' 0
Z 1

�1
P
�
�; 'I�0; ' 0� I

�
�0; ' 0� d�0 D 4� .I0 C �gI1/ (13.56)

where a new quantity appears known as asymmetry factor g:

g D $

3
D 1

2

Z 1

�1
P .‚/ cos‚d .cos‚/ (13.57)

This factor gives an idea of how symmetric the scattering is with respect to the
scattering plane. It ranges then between 0 for Rayleigh scattering and 1 for total
forward scattering:

dI1
d� D �3 Œ1 � ! .�/� I0 C 3

4
! .�/F0e��=�0

dI0
d� D � Œ1 � ! .�/ g .�/� I1 C 3

4
! .�/ g .�/ �0F0e��=�0 (13.58a, b)

From these two equations, we can determine the intensities and then the fluxes:

F .�/ D 2�

Z ˙1

0

�
I0 C �I1

�
�d� D �



I0 .�/˙ 2

3
I1 .�/

�
(13.59)

where � > 0 corresponds to F# .�/ and �< 0 to F" .�/. Again such fluxes are only
for the diffuse radiation so that the total downward flux will be

S D �0�F0e
��=�0 C F# (13.60)

The net flux at some height or at some optical thickness will be

F D �0�F0e
��=�0 C F# � F" D �0�F0e

��=�0 C 2H (13.61)

where we have put G D �I0 and H D 2�I1=3. It is interesting to obtain from Eq.
(13.60) a relation for the absorbed flux:

dF

d�
D ��F0e

��=�0 C 2
dH

d�
D � .1 � !/

�
�F0e

��=�0 C 4G
�

(13.62)

from which we see that in the case !D 1 there is no energy absorption. As we will
see, (13.62) is useful when we work with discrete layers because it is possible to
avoid numerical derivatives which always have some degree of approximation.
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The absorbed flux is proportional to the derivative of the flux with respect to
height which is related to the optical thickness by

d� D �

X

i

�iKidz

where �i and Ki are the mixing ratio and the absorption coefficient of the ih

component. To obtain the derivative with respect to height, we need to multiply
Eq. (13.62) by d� /dz.

Equation (13.58a, b) constitutes a first-order system that requires boundary
conditions. The first is to have the diffuse flux at the top of the atmosphere to be zero:

F#.0/ D 0 at � D 0

The second condition has to do with the reflectivity of the surface to which we
assign an albedo A. The upward diffuse flux at the surface is then given by the total
downward flux there multiplied by the albedo. The two conditions translate as

I0.0/C 2I1.0/=3 D 0

I0 .��/ � 2I1 .��/ =3 D A
h
I0 .��/C 2I1 .��/ =3C �0F0e���=�0

i (13.63)

where �* is the total thickness of the atmosphere.
The system of Eq. (13.58a, b) does not have a simple solution if the single

scattering albedo and the asymmetry factor are a function of height. This is what
happens in the real case so that the method to solve Eq. (13.58a, b) is to divide the
atmosphere in N homogeneous layers where ! and g have constant values !i and gi

for the ith layer. For each layer, we find the solutions

I0 .�/ D Ii
0 .�/ D Ci

1e
�ki� C Ci

2e
Cki� � ˛ie��=�0

I1 .�/ D Ii
1 .�/ D Pi

�
Ci
1e

�ki� � Ci
2e

Cki�
� � ˇie��=�0 (13.64)

that are valid for the interval �i�1 < � < �i and where the coefficients are

ki D Œ3 .1 � !i/ .1 � !igi/�
1=2I Pi D Œ3 .1 � !i/ = .1 � !igi/�

1=2

˛i D 3!iF0�20 Œ1C gi .1 � !i/� =4
�
1 � ki

2�20
�

ˇi D 3!iF0�0
�
1C 3gi .1 � !i/ �

2
0


=4
�
1 � ki

2�20
�

(13.65)

At this point, we have two unknowns for each layer (Ci
1, Ci

2). Imposing the
continuity between adjacent layers, we find 2 N � 2:

Ii
0 .�i/ D IiC1

0 .�i/ I Ii
1 .�i/ D IiC1

1 .�i/ ; i D 1; 2 : : : ;N � 1 (13.66)

The remaining two equations are provided by the conditions at the top and at the
surface. This way to proceed is called the Eddington approximation, and there is
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also a slight variant that takes into account a pronounced forward scattering. In this
case, the phase function is approximated by a Dirac ı:

�
P
�
�;�0� D 2f ı

�
� � �0�C .1 � f /P

�
�;�0� (13.67)

It can be shown that this function enables us to obtain an equation similar to Eq.
(13.57) where � , !, and g are scaled according to

! D �
1 � g�2�!�=

�
1 � !�g�� I g D g�=

�
1C g�� I � D

�
1 � !�g�2� ��

(13.68)

where !�, g�; and �� are the real values. We have also assumed f D g2.
What we have sketched here is a rather simple and elegant theory that has the

advantage of being easily adapted to computers because it reduces a continuum to
a discrete system and then to a system of linear equations. It is worth then to look
at some solutions just to appreciate its power. By the way, when the scaling is used,
the approximation becomes the ı-Eddington approximation.

13.3.1 Few Simple Applications of the ı-Eddington
Approximation

At this point, we can finally justify a number of things that simply have been
taken for granted starting from the reflectivity of the atmosphere. If we reduce the
atmosphere to a single layer with optical thickness ��; then its reflectivity is

R
�
�0; �

�� D F".0/=�0�F0 (13.69)

This calculation is particularly simple in the case of conservative scattering, that is,
when !D 1. In this case, Eq. (13.58a, b) simplifies further and the solution is

I0 .�/ D B1 � 3

4
�0

2F0e
��=�0 � B2T .�/ I I1 .�/ D B2 � 3

4
�0F0e

��=�0 (13.70)

T .�/ D
Z �

0

�
1 � g

�
� 0� d� 0 (13.71)

has the role of an equivalent optical thickness. The constants B1 and B2 can be easily
found:

B2 D 3�0F0 .1 � A/
h
2C 3�0 C .2 � 3�0/ e���=�0

i
f4 Œ4C 3 .1 � A/T .��/�g�1

B1 D �
3�0

2=4C �0=2
�

F0 � 2B2=3
(13.72)
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Fig. 13.15 The reflectivity of
a Rayleigh atmosphere (solid
line) compared to the Lacis
and Hansen (1974)
approximation, Eq. (13.2)
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And the reflectivity is given by

R
�
�0; �

�� D 1 � .4B2=3�0F0/ (13.73)

In the case of a Rayleigh atmosphere, we have g D 0 so that the function in Eq.
(13.71) coincides with the optical thickness. We can then build reflectivity curves
like those shown in Fig. 13.15, where Eq. (13.73) is compared with the reflectivity
given by Eq. (13.2), indicated as in Lacis and Hansen. We notice that the behavior
with the zenith angle is quite different especially for large angles. The reason is that
we have neglected the absorption. Equation (13.2) has been obtained by fitting a
function to data that take into account the atmospheric absorption. This may explain
why the reflectivity decreases for large solar zenith angles when the absorption
is greater. Equation (13.73) can also be interpreted as the reflectivity of a cloud
with conservative scattering (something not at all impossible). Then we can use
larger values for optical thickness and not isotropic scattering. In this case, it is
rather interesting to calculate the reflectivity as a function of T rather than �*.
We obtain then what is shown in Fig. 13.16, where the reflectivity is plotted as a
function of T. This means that reflectivity measurements do not give information
about � when we do not have information about g. Something we are learning is
that, at least for conservative scattering, the larger the optical thickness, the larger
the reflectivity. For example, if we refer to Fig. 13.16, we find that for �* D 16
the reflectivity for g D 0.7 is about 73 %, which means a transmission of 27 %.
(Keep in mind that for conservative scattering the sum of the reflectivity and the
transmission must be one.) This is rather surprising because the direct transmission
would be exp(�� /�0) � 1.2 � 10�7, so that the effect of the diffuse radiation is very
important. This is the reason why we have enough light even when it is very
cloudy. Thunderstorm clouds (for which the conservative scattering is not a good
approximation) have a thickness of the order of 10 and so reduce the direct radiation
practically to zero.

A further consideration can be made for the albedo in the presence of a cloudy
sky. In this case, we see that for conservative scattering the reflectivity depends only
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Fig. 13.16 The reflectivity as
a function of the asymmetry
factor for different values of
the equivalent optical
thickness T. Also included are
two curves for the real values
of 2 and 16 (Shettle and
Weinman 1970)
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on the equivalent optical thickness. Curves shown in Fig. 13.16 can be fitted by a
function like

aT
�
��� = �b C cT

�
���

The coefficients could be found, for example, by averaging over the zenith angle.
However, in their paper, Lacis and Hansen have a D c D 0.13, b D 1.

We have frequently mentioned conservative scattering that does not correspond
to practical cases. In general, nonconservative scattering is also important in the
slicing of the atmosphere mentioned before. In this process, we can easily find layers
that are heterogeneous in composition, containing absorbing gases and particles.
Suppose, for example, that in a particular layer there are particulates with optical
thickness��p with albedo and asymmetry factor !p and gp, respectively. The same
layer may contain an absorbing gas of thickness �� a, and everything will be in an
atmosphere of optical thickness ��R due to Rayleigh extinction. We can introduce
equivalent values for the optical thickness, single scattering albedo, and asymmetry
factor defined as follows:

�� D ��p C��a C��R

! D �
!p��p C��R

�
=��

g D !p��pg=�� (13.74)

With these parameters, the procedure illustrated above can be repeated.
The influence of the nonconservative scattering is in any case clear because it

tends to decrease the reflectivity with respect to the conservative case for the same
value of the optical thickness. We now may understand why cloudy planets have
such large albedo values, because their clouds are pretty good mirrors.

We are in good shape for what concerns solar radiation, but to go on, we must
make some progress also on the IR side.
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13.4 The Transfer of Infrared Radiation

Formally the computation with the IR radiation may look simpler. Among other
things, wavelengths are such that in many case they are larger than the dimension of
the particles and scattering can be neglected. The complication arises from the fact
that the absorption and emission terms are due to a very large number of spectral
lines. We are again facing the problem that, because our models have to treat many
other processes, we cannot afford to reserve so much computer time only for the IR.
A similar problem is also present for the solar UV, for so-called Schumann–Runge
bands, although this is a quite limited problem with respect to the infrared.

In the following paragraphs, we will illustrate the formal solution to the problem
of radiative transfer in the infrared together with very simple shortcuts. We will use
a few spectroscopic notions just to show that in geophysics nothing is enough.

13.4.1 The Formal Solution

The starting point could be Eq. (3.32), whose solution can be written formally:

I� .�; �/ D I� .�1; �/ e�.�1��/=� C
Z �1

�

B�
�
� 0�C e�.� 0��/=� d� 0

�
(13.75)

where the significance of the various terms is obvious. This same equation can be
separated in two parts referring to the upper (�> 1) and bottom (�< 1) hemispheres,
respectively (Fig. 13.17):

I� .�; �/ D I� .�1; �/ e�.�1��/=� C
Z �1

�

�B�
�
� 0� e�.� 0��/=� d� 0

�

I� .�;��/ D I� .0;��/ e��=� C
Z �1

0

�B�
�
� 0� e�.��� 0/=� d� 0

�
(13.76)

Fig. 13.17 The scheme to
calculate monochromatic
intensity
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The monochromatic Planck function that appears in these equations must be
calculated for the temperature corresponding to the respective optical thickness.
These equations have a very simple meaning. The first part of Eq. (13.76) simply
says that the intensity of radiation at some level � is given by the intensity at
the surface (where optical thickness is �1) attenuated for the absorption term and
increased by the contribution of each layer of thickness � 0 comprised between � and
�1. This process is shown schematically in Fig. 13.18. An integration of Eq. (13.76)
over the angle gives the corresponding monochromatic fluxes measured as power
per unit surface. We have

F" .�/ D 2� B� .Ts/

Z 1

0

e�.�1��/=�� d�C 2

Z 1

0

d�
Z �1

�

�B�
�
� 0� e�.� 0��/=�d� 0

F# .�/ D 2

Z 1

0

d�
Z �

0

�B�
�
� 0�e�.��� 0/=�d� 0

(13.77)

The simplification of the second part of Eq. (13.77) is due to the fact that at the top
of the atmosphere (t D 0) we have I� (0, ��) D 0 because above that level there are
no sources of infrared radiation.

DIATOMIC LINEAR (O2,N2,CO, NO)

TRIATOMIC LINEAR (CO2,N2O, NO2)

ASYMMETRIC TRIATOMIC (H2O,O3)

ν2

ν1
ν3

Fig. 13.18 A qualitative scheme of the degree of freedom for the vibrational motion of a few
molecules of atmospheric interest. At the left, the geometrical arrangement is shown, while at the
right the vibrational motions
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The formal solutions we have found are not very useful in practice because
the absorption lines there are made up of thousands of lines that contribute to the
optical thickness. This means that it is very time consuming to integrate line by line
although every once in a while for reference this is done. There are other solutions
that may approximate the effects of the line structure with appropriate averages. The
most efficient of these methods is based on the parameterization of the absorption in
terms of the total gas content. We need however to talk about the molecular spectra
or more generally about infrared spectroscopy.

13.5 Molecular Spectra

The molecules we will deal with are mostly biatomic and linear like O2 (oxygen),
N2 (nitrogen), NO (nitrogen oxide), and CO (carbon monoxide). In this case, the
molecules are symmetric and have two principal momenta of inertia. The same
is true for the linear triatomic molecules like carbon dioxide (CO2), nitrous oxide
(N2O), and nitrogen dioxide (NO2). Finally, we have asymmetric molecules like
H2O and ozone (O3) with three distinct principal momenta of inertia.

Some of these molecules have zero dipole moment (those with perfect symme-
try), and this is important in the interaction with the external electromagnetic field.

The total energy of the molecules is given by the sum of the electronic state
energy Ee, the vibrational energy Ev, the rotational energy Er, and the one due to the
translational motion:

E D Ee C Ev C Er C Et (13.78)

Except for the last term, all the other energies are quantized thus giving rise to
transitions and spectral lines that are classified based on their energy or frequency:

Electronic transition � 10:000� > cm�1 .E > 1:24 eV/ visible;UV
Vibrational transition � 500� 2000 cm�1 .0:06 < E < 0:25 eV/ IR
Rotational transition � 1 � 500 cm�1 .0:0001 < E < 0:06 eV/ microwave

It is interesting to note that the energy range for the last two transitions is of the
order of the thermal energy kT � 0.025 eV so that both the vibrational and rotational
energy are compatible with the temperature that we find in the atmosphere.

Let us consider what happens for the carbon dioxide molecules. In Fig. 13.18,
we can see that these molecules, beside the rotational motion around the axis,
have also three vibration modes at the frequencies �2 D 667 cm�1 (15�m) and
�3 D 2349 cm�1 (4.3�m). The symmetric vibration mode has a zero net dipole
moment so that it does not interact, at least at the first order, with the external
electromagnetic field. The vibrational energy in the different modes is quantized
according to the relation

Ev D
X
iD1;3

.�i C 1=2/h�i (13.79)
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where ¤i and � i are the vibrational quantum number and frequency, respectively.
For the rotational transition, the quantum number is given by

I! D �

p
J .J C 1/ (13.80)

and the energy of rotation

Er D I!2=2 D �
2J .J C 1/ =2I D hcBJ .J C 1/ (13.81)

where B D h/8�2cI. The transition rules are �J D ˙ 1 so that for �J D 1, the
absorption lines are equally spaced at 2B. In practice, the knowledge of the spectrum
gives us the dependence of the absorption coefficient on frequency.

The absorption coefficient k� itself is determined by two factors, the line strength
Si and the shape as a function of frequency f (�, � i):

k� D Sif .�; �i/ (13.82)

If the absorption cross section is � , the line strength is given by

Si D
h
�i

�
1 � e�h.vu��l/=kT

�
e�h�l=kT

i
=Z .T/ (13.83)

where �u and � l are the frequencies of the upper and lower state, respectively, while

Z.T/ D
X

n

e�En=kT (13.84)

is the factor that gives the Boltzmann distribution. This means that in writing Eq.
(13.84), we have assumed the thermodynamic equilibrium.

13.5.1 Spectral Line Shape

The theory of the spectral line shape is a quantum theory and not simple at all. We
will try to follow a classical approach that assumes the molecule to be a harmonic
oscillator of frequency !0 that emits electromagnetic radiation. The same molecule
collides with other molecules and between collisions travels in straight lines. In the
absence of other processes besides the finite lifetime for emission, the shape of the
line is given by (see again Feynman)

f .� � �0/ D 1

�

˛N

.� � �0/2 C ˛N
2

(13.85)
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where ˛N D 1/4�� with � as the lifetime of the transition. For a typical transition
in the infrared, the lifetime is of the order of 0.1 s so that ˛N � 1 s�1 or in units
of wave number 3 � 10�11 cm�1 which is a very small width when compared with a
typical IR wavelength.

We now take into account when we consider the Doppler shift due to the
molecular motion. If the frequency at rest is �0, for a molecule moving at speed
u, the Doppler shift will be

� � �0 D u�0=c

and for a Maxwellian velocity distribution

exp
��mu2=kT

�
the line width will be proportional to

exp

"
�mc2.� � �0/2

2kT�02

#
D exp

h
�.� � �0/2=˛2D

i
(13.86)

where

˛2D D 2kT�0
2=mc2 D v20v

2
rms=c2

is the half width of the line and v2
rms is the mean square velocity. However, because

it must hold the condition Z C1

�1
f .�/ d� D 1;

Eq. (13.86) can be normalized as

f .� � �0/ D 1p
�˛D

exp
h
.� � �0/2=˛2D

i
(13.87)

It can be easily calculated that for carbon dioxide the line width at 250 K is
˛D � 7 � 10�4 cm�1, much higher than the natural lifetime.

The line shape can be also determined by the collision and in this case is called
Lorentzian. Here we consider that the oscillator may change phase at each collision.
We also assume that such collisions have a probability distribution of the type

P(t) D exp(�t/�) where � is the interval between two collisions and is given by
the mean free path divided by the mean square velocity. In practice, the incoherent
sum of all the phase shifts implies that the time for the emission is just � so that the
line shape is similar to the natural one:

f .� � �0/ D 1

�

˛L

.� � �0/C ˛L
2

(13.88)
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Fig. 13.19 The comparison
between a Doppler and a
Lorentz line for different
values of pressure
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where ˛L is now the Lorentzian half width given by

˛L D p
�

c

�
1

mkT

�1=2
(13.89)

The half width depends now on pressure and temperature (and on the cross
section �). Again, for a gas like carbon dioxide, at a temperature of 300 K and
at pressure of 100 hPa, ˛L � 0.07 cm�1 which is about 100 times larger than the
Doppler width. In Fig. 13.19, a comparison between the Lorentz and Doppler shapes
is shown for a temperature of 300 K, while the two Lorentz lines refer to two
different pressure values. We notice that the pressure broadening is much larger
than that of the Doppler. However, the former scales linearly with pressure, and so
we may argue that the Doppler broadening becomes important for pressure lower
than 10 hPa which is for altitudes higher than 30 km.

13.6 Models for the Line Absorption

As shown by Eq. (13.79), what interests us most in the radiative transport of IR
radiation is not the monochromatic absorption, but rather the integrated value over
a certain frequency domain. If u indicates the total amount of a gas along the
absorption path, we can define the total absorption due to a single line as

A.u/ D
Z �2

�1

�
1 � e�k�u

�
d� (13.90)

This quantity is sometimes indicated through an equivalent width W(u), meaning a
rectangular absorption line with the absorption given by Eq. (13.90). We may have
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a regime of linear absorption when the exponent in Eq. (13.90) is much less than 1.
In this case, we have, keeping in mind Eq. (13.83),

A.u/ D Su
Z �2

�1

f .�/ d� D Su (13.91)

We may also have a strong absorption regime when, for example, for a Lorentzian
line we have jv � v0j >> ˛L, so that the absorption coefficient becomes

k� � S˛L=�.� � �0/
2

and the absorption

A.u/ D
Z �2

�1

n
1 � exp

h
�Su˛L=�.� � �0/2

io
d� (13.92)

This approximation is possible on every frequency range if the amount of
absorbing gas makes the exponential small enough. The integral in Eq. (13.92) can
be solved using the substitution:

y D Su˛L=�.� � �0/
2

so that

A.u/ D 2.Su˛L=�/
1=2

Z 1

0

y�1=2e�ydy D 2.Su˛L=�/
1=2� .1=2/ D 2.Su˛L/

1=2

(13.93)

The conclusion is that in the linear regime, the absorption is independent from
the line shape and is simply proportional to the amount of the absorbing gas. In the
strong absorption regime, the absorption itself is proportional to the square root of
the gas amount but depends on the line shape (i.e., the square root of its half width).
The half width however depends on pressure so that the strong regime becomes less
important at high altitudes.

At this point, the concept of equivalent width becomes useful. As shown in
Fig. 13.20, we notice that the absorption given by Eq. (13.93) is equivalent to that
of a rectangular line shape with a width given by Eq. (13.93). The same concept of
equivalent can be introduced for the Doppler lines. It can be easily shown that, in
the strong limit corresponding to the conditions,

k�u >> 1 and j� � �0j 	 ˛DŒlog .Su=˛D/�
1=2;

we obtain an equivalent width

W.u/ � ˛DŒlog .Su=˛D/�
1=2
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Fig. 13.20 The equivalent
width W. The absorption of
the line is equivalent to that
of a rectangular line of
appropriate width
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We have now clarified (at least we hope) many things about spectral lines in the
infrared, while the problem of the line-by-line integration is still there. We will treat
this problem directly by an application to the calculation of the infrared fluxes that
are relevant to the climate.

13.6.1 A Formulation of the Infrared Flux

A drastic simplification for the infrared flux was obtained by Robert Cess in 1971,
and then implemented by V. Ramanathan, by assuming that the main contribution to
the IR radiative flux is due to the vibrational and rotational bands of carbon dioxide,
water vapor, and ozone. Also, this approach substituted the line-by-line calculation
with a fitting of analytical functions to the total absorption of IR radiation by the
different gases.

The starting point again is Eq. (13.78) which can be reformulated in the following
way. First of all, we define a transmissivity

T
�
z; z0� D 2

Z 1

0

e�.� 0��/=�� d� (13.94)

between altitudes z e z0 so that the fluxes can be written as

F".z/ D �Bi.0/Ti .z; 0/C
Z z

0

�Bi .z0/ dTi .z; z0/

F#.z/ D
Z 1

z
�Bi .z0/ dTi .z; z0/ (13.95)
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where the optical thickness has been substituted with height and the integration has
been performed on the frequency in such a way

�Bi.z/ D 1

��i

Z
��i

�B�
�

z
�

d�

for the appropriate band

F#
i .z/ D �Bi .z0/ ŒTi .z; z0/ � Ti .z;1/�C

Z z

z0

�Bi
�
z0� dT

�
z; z0� (13.96)

With the altitude z0, we indicate the base of an isothermal region that is at the top of
our atmospheric model so that Bi(z0) D Bi(1). We then introduce the definition for
the absorptivity or absorptance:

Ai
�
z; z0� D 1 � Ti

�
z; z0� (13.97)

so that the expression for the fluxes becomes

F"
i .z/ D �Bi.0/C �

Z z

0

Ai
�
z; z0� dBi .z0/

F#
i .z/ D �Bi .z0/Ai .z;1/C �

Z z

z0

Ai
�
z; z0� dBi

�
z0� (13.98)

These equations can be expressed as a function of the emissivity defined for a
thin layer:

"
�
z; z0� D

X
i

Ai
�
z; z0�Bi

�
z0� =B

�
z0� ; Q" �z; z0� D

X
i

Ai
�
z; z0� dBi

�
z0� =dB

�
z0�

so that Eq. (13.98) becomes

F"
i .z/ D �Bi.0/C �

Z
o
Q" �z; z0� dBi .z0/

F#
i .z/ D �Bi .z0/ " .z;1/C �

Z z

z0

Q" �z; z0� dBi
�
z0� (13.99)

These relations could simplify the computation of the infrared flux because for
each band (e.g., the CO2 15�m) the absorptance can be expressed with empirical
functions and the integrals in Eq. (13.106) rapidly computed. When many years ago
I discovered this method, I was amazed: it was so simple!
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13.6.2 The Band Absorptivities According to Cess
and Ramanathan

For carbon dioxide, we take into account the 15�m band, including all the isotopes.
To arrive at a simple formulation for the absorptance, we must consider the
two regimes for the weak and strong line limit. Although the two cases were
introduced for single lines, their extension to the a band should be considered a
linear dependence with the absorbed amount in the weak limit and a square root
dependence in the strong limit. The simplification to be adopted is then

A.U/ D A0U D SuI U << 1

A.U/ D 2A0
p
ˇUI ˇ << 1; ˇu << 1; u=ˇ >> 1

A.U/ D 2A0 ln UI U >> 1 (13.100)

The first of the equations is obvious and contains again the parameter A0 which
is called the band parameter (cm�1) and is related to the band strength S by the
formula

A0 D Su=U

Considering the dimension for S (cm g�1) and u (g cm�2), it is clear that U must
be a normalized optical path. The reason for introducing this quantity is that the
atmosphere is not homogeneous, so that the optical path for radiation is weighted
with the pressure if U is defined as

U D
Z 1

z

�
Spc=A0

�
dz (13.101)

where pc is the partial pressure of the gas in consideration.
The second equation of Eq. (13.100) introduces a new parameter ˇ, called the

line width parameter, defined as

ˇ D 4 Q̨=ı

where Q̨ has the function of a mean line width. If ˇ << 1, then the lines within the
band are well spaced (i.e., do not overlap) so that the absorptivity of the single lines
can be added. This condition is essential because it can be shown that even for the
strong line we have, in case Su >> 1,

T D 1 � A.u/ D exp
h
�.Su�˛/1=2=ı

i
) A.u/ � .Su�˛/1=2=ı
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and the last approximation can only be true if ˛ << ı. The ˇ parameter must also
be weighted so that

ˇ D 4˛0

Uı

Z U2

U1

PdU (13.102)

where ˛0 is the half width of the line at some reference pressure.

13.7 ı-Eddington in the Infrared

We have developed the ı-Eddington approximation in connection with the scattering
of the ultraviolet and visible radiation. We have mentioned that the IR scattering is
not important especially in the presence of particulates. However, the processes of
absorption and emission from the particulates are important. In such cases, it may
be useful to evacuate the emissivity and the absorptivity of the particles.

The way we proceed is to consider a single layer of optical thickness �* at
temperature T emitting as a blackbody. Fluxes in the two hemispheres can be
evaluated using Eqs. (13.61) and (13.66):

F" .�/ D �
�
C1
�
1 � 2

3
P
�

e�k� C C2
�
1C 2

3
P
�

ek� C B


F# .�/ D �
�
C1
�
1C 2

3
P
�

e�k� C C2
�
1� 2

3
P
�

ek� C B


(13.103)

Constants may be determined by supposing that the diffuse flux is zero at the
layer boundaries F" .��/ D F#.0/ D 0, so that we have

C1 D B
b1ek�� � b2

b22e�k�� � b12ek��
I C2 D B

b1 � b2e�k��

b22e�k�� � b12ek��
(13.104)

where b1 D 1 C 2P/3 and b2 D 1�2P/3. The net flux is then

Fe
�
��� D � .C1b2 C C2b1 C B/ (13.105)

For each wavelength, the emitted flux can be calculated as a function of the
optical properties of the particles (g, !, Qext), so that the emissivity is given by

" .�/ D �
�T4

��1Z
��

Fe
�
��� d� (13.106)



452 13 Radiation for Different Uses

The contributions of the particles to the fluxes at the height z are given by

F".z/ D
Z z

0

�T
�
z0�4d" �z; z0�C Œ1 � " .z; 0/��T4s

F#.z/ D
Z 1

z
�T
�

z0
�
4d" .z; z0/ (13.107)

These equations need to be made discrete and we shall see that we have some
applications for stratospheric aerosols.

E.13 Examples

E.13.1 Color for Nonabsorbing Spheres

If we look at Fig. 13.11, we notice that up to � � 5 the extinction cross section
increases with the radius parameter. Then if we assume a constant refractive index
with wavelength increasing � correspond to decrease wavelength and this means
that for a fixed radius particle population the shorter wavelength will be attenuated
more than the longer ones. This is what is called reddening and this phenomenon is
responsible for red color at sunset. On the other hand, the same figure shows that
for � between 5 and 10, the opposite happens and in this case we talk about blueing.
This is a very rare phenomenon and we can detail the reasons on the following way.
If we plot the extinction efficiency as a function of wavelength as in Fig. E.13.1,
we see that for particle dimension between 0.1 and 0.3 �m (typical for small haze
droplets), the extinction is a strong function of wavelength with shorter wavelength
(i.e., blue) being extinguished far more than longer ones. This is again the reddening
observed when haze is present. For larger particle (radius 1 �m), the behavior is
more complex. In this, the near-infrared wavelength is strongly absorbed, while
between 0.5 and 0.6 �m, there is a minimum which may hint to the appearance of
green light in some severe thunderstorm. Finally, for much larger particles (10 �m),
there is no pronounced wavelength dependence of the absorption, and this may
explain that the sunlight does not experience any change in color when passing
through thin clouds.

E.13.2 A Simple Model for Scattering

We borrow this example from Andrews and we consider a plane-parallel atmosphere
simplifying the two stream approximations with the assumption that of the down-
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Fig. E.13.1 The extinction efficiency as a function of wavelength for water droplets of assigned
size (Petty 2006)

ward incident radiation, a fraction f is scattered forward, while a fraction 1 � f is
scattered backward. These fractions result from the integration of all hemispheres.

We start by considering the downward penetration of the radiative flux irradiance
F#
� at the frequency �. We could write the change of the flux with altitude as

dF#
�

d .�z/
D �a�
F#

� � s�
 .1 � f /F#
� C s�
 .1 � f /F"

� (E.13.1)

This equation says that the downward flux decreases for absorption (the first
term) and for the backscattered radiation (second term) and increases for the
backscattering of the upward flux (last term). The terms a� and s� are the absorption
and scatter coefficients. The extinction can be defined as k� D a� C s� so that the
optical depth is given by d�� D �k�
dz with the albedo for single scattering

!� D s�= .a� C s�/ D s�=k�

And making the substitution, we obtain

dF#
�

d�
C F#

� D !
h
fF#
� C .1� f /F"

�

i
(E.13.2a)
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while for the upward flux

�dF"

d�
C F" D !

h
fF" C .1 � f /F#i (E.13.2b)

The simplest case is if ! D 1; that is, no absorption but scattering, then the two
equations become

dF#

d�
C .1 � f /

�
F# � F"

�
D 0

� dF"

d�
C .1 � f /

�
F" � F#

�
D 0 (E.13.3)

Summing the two equations, we obtain that the net flux is constant:

�Fz D F# � F" D constant

Now we can establish some boundary condition. We indicate with Finc the incident
flux at £D 0 and assume that at the bottom of the layer (£D £*), the downward flux
is the transmitted flux Ftrans. In summary

F#.0/ D Finc F".0/ D Frefl F# ���� D Ftrans F" ���� D 0

We define a transmission coefficient T D Ftrans=Finc and a reflection coefficient
R D Frefl=Finc. The result is �Fz D Finc � Frefl D .1 � R/Finc D Ftrans � 0 D TFinc

where we have used the constancy of Fz which at the bottom is just Ftrans � Frefl. We
then have

R C T D Frefl

Finc
C Ftrans

Finc
D Finc

Finc
D 1

meaning the conservation of irradiance.
We now can solve the first of the Eq. (E.13.3) by using

F# � F" D �Fz D TFinc (E.13.4)

We have

dF#

d�
C .1 � f /T Finc D 0 ) F# D � .1 � f /T Finc� C cos t

and the constant can be determined imposing that for £D 0, F# D Finc

F# D Finc Œ1 � .1 � f /T �� (E.13.5)
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while using (E.13.4) we have

F" D Finc ŒR � .1 � f /T �� (E.13.6)

At this point, the reflection and transmission coefficients can be found. First we use

F" ���� D 0 ) R D .1 � f /T��

Then, from R C T D 1, we get

T D 1

1C .1 � f / �� R D .1 � f / ��

1C .1 � f / �� (E.13.7)

We can see that for �� ! 1 reflection coefficient goes to 1 (perfect reflector) and
transmission goes to 0.

E.13.3 Reflectivity and Transmission from Nonconservative
Scattering

Consider now the case in which ! < 1. Then Eqs. (E.13.2a, and E.13.2b) becomes

dF#

d�
C F# D !

h
fF# C .1 � f /F"

i
� dF"

d�
C F" D !

h
fF" C .1 � f /F#

i
(E.13.8)

We now put ! .1 � f / D b and 1 � !f D a and then the equations become�
d

d�
C a

�
F# D bF"

�
d

d�
� a

�
F" D �bF# (E.13.9)

If we derive the second equation with respect to � and eliminate F#;we obtain

�
d2

d�2
� ˛2

�
F" D 0

where ˛2 D a2 � b2

The solution of the differential equation is of the form

F" D A sinh˛� C B cosh˛�
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Subject to the boundary condition F" .��/ D 0; the solution becomes

F" D A sinh˛� � A
sinh˛��

cosh˛�� cosh˛�

D A

cosh˛��
�
sinh˛� cosh˛�� � cosh˛� sinh˛���

And absorbing all in the new constant

F" D A sinh˛
�
�� � �

�
This equation can be now substituted in second of (E.13.9) to have

A

�
d

d�
� a

�
sinh˛

�
�� � �

� D �bF#

with the downward flux

F# D A

b

�
˛ cosh

�
�� � ��C a sinh˛

�
�� � ���

We can obtain easily

F#.0/ D Finc D A

b

�
˛ cos˛�� C a sinh˛���

and also

F".0/ D Frefl D A sinh˛�� F# ���� D Ftrans D A˛

b

and from the definition of coefficients

R D Frefl

Finc
D b sinh˛��

˛ cosh˛�� C a sinh˛�� T D Ftrans

Finc
D ˛

˛ cosh˛�� C a sinh˛��

For very large value of the optical thickness (Fig. E.13.2),

R ! b

.a2 � b2/1=2 C a
T ! 0

Note also that in this case R C T < 1.

E.13.4 A MATLAB Program for the Delta-Eddington

We present an example for a single layer for the delta-Eddington approximation.
We just use the simple formula seen in the chapter and calculate the albedo as a
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Fig. E.13.2 Albedo as a
function of the incident sun
angle for two different values
of the albedo of single
scattering and g D 0.786

function of the incident zenith angle for a fixed and large optical thickness. The
calculations refer to a case of conservative scattering (!D 1) and nonconservative
scattering (!D 0.95). We can see the albedo increases with the zenith angle and the
conservative case shows a much larger albedo:

MATLAB listing
muD0.1:0.01:1.0

for iD1:length(mu)

xmuDmu(i)

omega D 0.95

gD0.786

tauD16.0

albD0.0

xkDsqrt((3*(1-omega)*(1-omega*g)))

alfaD3*omega*xmu*xmu*(1Cg*(1-omega))/(4*(1-(xk*xmu)ˆ2))

betaD(3*omega*xmu*(1C3*g*(1-omega)*xmu*xmu))

/(4*(1-(xk*xmu)ˆ2))

pDsqrt((3*(1-omega)/(1-omega*g)))

a11D1C(2/3.)*p

a12D1-(2/3.)*p

a21D(1-alb-(2/3.)*p*(1Calb))*exp(-tau*xk)

a22D(1-albC(2/3.)*p*(1Calb))*exp(Ctau*xk)

c1DalfaC2*beta/3

c2D(alfa*(1-alb)-(2*beta/3)*(1Calb)Calb*xmu)*exp(-tau/xmu)

AD[a11 a12;a21 a22]

bD[c1;c2]

xDinv(A)*b

I0Dx(1)*exp(-xk*tau)Cx(2)*exp(xk*tau-alfa*exp(-tau/xmu)
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I1D(x(1)*exp(-xk*tau)-x(2)*exp(xk*tau))

*p-beta*exp(-tau/xmu) I00Dx(1)Cx(2)-alfa

I10D(x(1)-x(2))*p-beta

fdDpi*(I0C2*I1/3.)

fuDalb*(fdCxmu*pi*exp(-tau/xmu))

Fu0Dpi*(I00-2*I10/3.)

R(i)DFu0/(xmu*pi)

fdirDxmu*pi*exp(-tau/xmu)

photoDfdir/xmuCfuCfd

tD(1-g)*tau

work1D3*xmu*(1-alb)*(2C3*xmuC(2-3*xmu)*exp(-tau/xmu))

work2D4*(4C3*(1-alb)*t) b2rDwork1/work2 b1r

D(3*xmu*xmu/4C0.5*xmu)-2*b2r/3.

rr(i)D1-4*b2r/(3*xmu)

teta(i)Dacos(xmu)

end

plot(teta,R), axis([0 1.5 0 1])

hold

plot(teta,rr),axis([0 1.5 0 1])

E.13.5 Infrared Flux from Methane

It is interesting to understand the power of the absorptance method by giving an
example for methane. This gas has an absorption band at 1306 cm�1 (7.65 �m) and
the parameters for this band are

S D 185 .273=T/ cm�1.cm atm/�1

A0 D 52.T=300/1=2 cm�1
ˇ D 0:17 .p=p0/ .300=T/

We can notice that these parameters depend on both pressure and temperature.
The band strength, but in practice the unit of (cm atm)�1, substitutes for the cm2

g�1. At this point, we could easily evacuate the integral, but we are interested
only in averaging quantities and order of magnitude. Most methane resides in the
troposphere so that we can adopt a pressure-weighted average for the temperature
around 263 K and an average value for pressure p/p0 D 0.514. The amount of gas in
the requested unit can be easily calculated through the molecules per cm2:

NCH4 D
fMCH4

Z 1

0


dz

mCH4M
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where the Ms are the molecular mass, while m is the mass of a single molecule.
To obtain the requested unit, this number must be divided by the Loschmidt number
2.687 �1019. The total methane amount is 1.4 cm atm, so that the normalized optical
path is given by

U D Su=A0 D 5:40

while the total absorptivity

A D 2A0
p
ˇU � 69 cm�1

And with the data, we can evaluate how much flux is absorbed by methane:

�F"
CH4

.1/ D �ACH4 .0;1/ � ŒBCH4 .1/� BCH4 .0/�

The Planck function must be evaluated at the center of the band and its units will
be W m�2/cm�1. These units are very strange in a sense because usually the Planck
function is expressed as W m�2 cm�1. To obtain the units that we require (power per
unit wave number), it is necessary to multiply the Planck function for the square of
the wavelength. After that, we find that our Planck function for methane is given by

�B� D 83:25= Œexp .�1878=T/� 1� W m�2cm

We can now substitute for T(0) D 290 K and T(1) D 250 K so that

�F"
CH4

.1/ D �69 � 0:0825 � 5:7W m�2

This result, although we made a number of approximations, is quite good and
represents the outgoing infrared flux absorbed by the methane

We were then right when we thought that these are back-of-the envelope calcu-
lations. When we need to compute the heating rate or when we have a gas whose
mixing ratio changes with altitude, we need to go to something more complex.
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Chapter 14
Simple Climate Models

So far we have introduced the different ways in which solar radiation and planetary
radiation interact with the atmosphere and the surface. We have not fixed any
particular number, and also we have been rather vague on how the vertical or
latitudinal distribution of temperature is determined. We have the means now to
do that and will start by looking at what we know about the radiative balance of
the Earth–atmosphere system. We can refer to a classic figure like Fig. 14.1 which
appears in different disguises in most of textbooks.

14.1 Energy Budget

We notice a few things from this globally averaged picture. First of all the solar
radiation is depleted by almost 50 % when traversing the atmosphere by processes
like scattering and absorption from both gases and clouds. As far as the infrared
radiation is concerned, we can see that the “gray” approximation is really not valid
because there are gases that absorb selectively and the same gases also contribute to
emission. To complicate things, further, the planetary radiation also interacts with
the clouds. In Fig. 14.1 there are two terms that we have especially mentioned in
the chapter on the boundary layer, the latent and sensible heat. The surface could
hardly be in radiative equilibrium and the excess of absorption at the surface is
compensated by the presence of such fluxes.

All the processes shown in the figure are responsible for the temperature structure
of the atmosphere and also determine the temperature at the surface. At a textbook
level we must limit ourselves to simple things like asking the question how
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Fig. 14.1 The interaction of solar and infrared radiation with the Earth–atmosphere system. The
incident solar radiation outside the atmosphere is normalized to 100 units

altering one of those processes could change, for example, the globally averaged
temperature. The answer to this question may be attempted at different levels
of complexity. We are smart enough now to know that the atmosphere is rather
complex and the dynamic processes should also be taken into account. We will show
that the first level answer could be based on simple climate models that consider
just the average properties of a planet or the parameterization of its atmospheric
circulation. These models have different names like radiative–convective models or
energy balance climate models. They do not give you any details on how climate
may change in your hometown (who does?), but are important to understand the
basic processes that determine the climate. For example, they may give you a
good understanding of most of the feedback mechanisms like ice–albedo or water
vapor feedback. To do that we need to use everything we have learned up to
Chap. 13, including of course, the beautiful simplifications introduced by Cess and
Ramanathan. We will start out at the zero dimension and go up just one step to
one-dimensional energy balance models and then illustrate the radiative–convective
models.

14.2 Zero-Dimensional Models and Feedback

We have encountered this kind of model already in Chap. 1 when we simply
calculated the global average temperature of the Earth by equating the absorbed
solar radiation and the infrared emitted radiation. The first realistic change we
will introduce deals with the fact that the Earth–atmosphere system does not emit
like a blackbody, using a parameterization based on experimental data. We can
then assume that the emitted power in the infrared is linear with the temperature
according to the relation

http://dx.doi.org/10.1007/978-3-319-29449-0_1
http://dx.doi.org/10.1007/978-3-319-29449-0_13
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I D A C BT (14.1)

where I is the emitted power in W m�2, A and B are constants, and T is the
temperature expressed in degrees Celsius. This relation was found by M. Budyko
well before the satellite data could confirm it. It is interesting to note how Eq. 14.1
can be obtained by linearization of the blackbody emission law:

�.273; 15C T/4 D �.273; 15/4 C 4�.273; 15/3T

where A D � (273.15) D 315.58 W m�2 and B D 4�(273.15)2 D 4.62 W m�2 C�1.
Actually, the values of the same coefficients found for Eq. 14.1 are A D 203.3 Wm�2

and B D 2.09 Wm�2 C�1, and the reason is that, for the same surface temperature,
because of the greenhouse effect, the outgoing flux is less than the corresponding
blackbody flux. However the empirical relation like Eq. 14.1 takes into account a
number of effects including cloudiness. Using Eq. 14.1 we can write the thermal
equilibrium of the Earth in a slightly different way from what we saw in Chap. 1,
that is,

A C BT0 D S0
�
1 � ˛p

�
4

(14.2)

where T0 is the average global temperature, S0 D 1360 W m�2 and is the solar
constant, and ˛p is the average planetary albedo. We obtain from this expression
T0 D 14.9 ıC which is the global average temperature that takes into account the
greenhouse effect.

We can now evaluate the climate sensitivity which we define as the global
temperature change for a 1 % change of the solar constant. We have then

4�T3�T D �S0
�
1 � ˛p

�
4

so that

ˇ0 D S0
100

dT0
dS0

(14.3)

In this relation ˇ0 is the sensitivity parameter that corresponds to the previous
definition. For a blackbody we find easily

ˇ0 D T

400
D 0:63ıC

If we use for the IR radiation the approximation Eq. 14.1, we obtain

ˇ0 D .A C BT0/

100B
D 1:12ıC

http://dx.doi.org/10.1007/978-3-319-29449-0_1
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The conclusion is that the greenhouse effect increases the climate sensitivity,
something that we had seen already in Chap. 1.

The formulation we have adopted is useful to study one of the most important
feedback mechanisms, referred to as ice–albedo feedback. This is based on a
very simple consideration. A lower global temperature implies an increase in ice-
or snow-covered areas and consequently albedo increases. Any perturbation that
produces an initial decrease in temperature will be amplified by this mechanism and
vice versa for a temperature increase. It is reasonable, based on this feedback, to
assume that the albedo is a function of temperature. We may adopt a very simple
dependence between two extremes: an ice-covered Earth with albedo 0.62 and an
Earth free of ice with albedo 0.3. To these albedo values correspond, according
to Eq. 14.2, the temperatures of �36.4 ıC and 15 ıC, respectively. We need to
also make an assumption about the temperature dependence of the geographical
extension of ice. Denoting with xs the sine of the lowest latitude reached by the ice
sheets, we assume the following dependence:

xs D 1 T0 > 15 ıC
xs D 0 T0 < 15 ıC

xx D 1C .T0 � 15/

30
� 15 ıC < T0 < 15

ıC (14.4)

In order to determine the temperature dependence of the albedo we have to
use a more general definition than the one given in Chap. 1. The definition was
based on the assumption that the distribution of the solar radiation with latitude
was determined only by the geometrical factor. Actually we saw in Chap. 3 that the
distribution is given by some function S(x) (with x the sine of the latitude) so that
the albedo must be defined:

˛p D 1

2

Z 1

�1
dx S.x/ ˛.x/ (14.5)

where the function S can be expanded in a series of Legendre polynomials

S.x/ D 1C S2P2.x/

where P2(x) D (3x2 � 1)/2 is the second Legendre polynomial with S2 D �0.477.
The planetary albedo is then

˛p D
Z xs

0

Œ1C S2P2.x/� ˛f dx C
Z 1

xs

Œ1C S2P2.x/� ˛idx (14.6)

In Eq. 14.5 we have assumed that in the ice-free region ˛(x) D˛f D 0.3, while in the
region covered with ice ˛(x) D ˛i D 0.62. We have then

a D 1 � ˛p D ai C �
af � ai

� "
xs C S2

�
xs � x3s

�
2

#
D H0 Œxs .To/� (14.7)

http://dx.doi.org/10.1007/978-3-319-29449-0_3
http://dx.doi.org/10.1007/978-3-319-29449-0_1
http://dx.doi.org/10.1007/978-3-319-29449-0_1
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Fig. 14.2 The solutions for
Eq. (14.8) are shown. The
three straight lines represent
the function 4(A C BT)/S0:
the solid line is for a solar
constant of 1.36 kW m�2 and
the others are for a ˙2 %
change. Solutions are
indicated with I, II, and III
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where with ā we have indicated the co-albedo so that ai D 1 �˛I, af D 1 �˛f . Now
the solution for the temperature T0 is still given by Eq. 14.2 with the right-hand side
substituted by H0[xs (T0)] so that

A C BT0 D H0 Œxs .T0/�
S0
4

(14.8)

The solution of this equation can be found graphically as shown in Fig. 14.2.
Surprisingly enough it looks like the climatic system we have invented has three

different solutions, one around 15 ıC corresponding to the present climate with a
planet almost free of polar ice. The second solution is around 0 ıC and the third one
has a temperature of about �35 ıC with a planet almost completely covered with
ice. It is quite interesting to consider what happens by changing the solar constant
as is shown qualitatively in the same figure for a variation of 2 %.

When the solar constant decreases, the temperature interval between the different
solutions is also reduced. The opposite happens if the solar constant increases. This
means that the solution marked as II is unstable. If for some reason (a perturbation)
climate II should warm, then in order for that state to be a new equilibrium, the solar
constant should decrease. However if the solar constant has remained constant, the
climate will move further away from its initial state. The opposite will happen if the
perturbation initially cools the planet. In this case the climate will move toward solu-
tion III and the Earth will be completely covered with ice. On the other hand points I
and III represent stable solutions. If we consider the present climate and a perturba-
tion that warms it, then in order to find a new equilibrium, the solar constant should
increase. Remaining at a constant value, the planet will cool back to its initial state.

This rather complicated argument may be better understood if we refer to
Fig. 14.3 where the global temperature is plotted as a function of the ratio between
the solar constant q and its reference value q0. We notice how the curve is actually
composed of two lines, an upper one near the solution I for an ice-free Earth and
the other for solution III that corresponds to an ice-covered Earth. Along these
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Fig. 14.3 The global
temperature in the
zero-dimensional model as a
function of the ratio between
the solar constant and the
reference value. The dashed
line refers to the solution
given in Fig. 14.2
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two lines, because the albedo is constant, the temperature is linear with the solar
constant. The middle tract is where the albedo is a function of the temperature.
Starting from a value greater than one for the ratio q/q0, the temperature decreases
with the solar constant until the ratio becomes a little less than one. At this point
the temperature would decrease even if the solar constant should increase; that is a
clear sign for instability. The concept of climate sensitivity becomes rather useless
in the presence of discontinuity in the temperature, so we need to further discuss
this aspect. We consider now a time-dependent equation to the thermal equilibrium,
Eq. 14.8, which is given by (assuming a unit thermal capacity)

@T0=@t D S0
�
1 � ˛p

�
=4 � .A C BT0/ (14.9)

From this equation we notice that the infrared term has the function of a
relaxation term with a time constant equal to the inverse of B. We now apply the
familiar perturbation method to study what happens around equilibrium points by
assuming a temperature perturbation such that

T0.t/ D T00 C T 0.t/

so that Eq. 14.9 becomes

@T 0=@t C BT 0 D q .dH0=dT0/T 0 (14.10)

where we have put for simplicity

q D S0
�
1� ˛p

�
=4

and used the condition for the solution

A C BT00 D qH0 .T0/
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Deriving this equation with respect to q

B
@T00
@q

D H0 C q

�
@H0

@T00

�
@T00
@q

Using this equation B can be eliminated from Eq. 14.10 to obtain (see E.14.1)

@T 0

@t
D �H0

�
@T00
@q

��1
T 0 (14.11)

This equation shows that in order to have stability it must be

@T00
@q > 0

and vice versa. This criterion can be used to analyze Fig. 14.3.
This stability criterion can also be put in more familiar terms using the potential

concept which is used in mechanics. We consider the function

F .T0/ D AT0 C 1

2
BT20 � q

Z T0

0

H0

�
T 0
0

�
dT 0

0 (14.12)

(where we have substituted the double zero with a simpler notation) that is shown in
Fig. 14.4. The minima and maxima of this function are calculated with the condition
dF/dT0 D 0 and are just the solutions I, II, and III that we found previously. We can
also establish through Eq. 14.9 that

:

T0 D �dF=dT0

Fig. 14.4 The potential
function for the
zero-dimensional model. The
solutions found before are
marked
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so we have

dF

dt
D
�

dF

dT0

�
:

T0 D �
� :

T0
�2 � 0 (14.13)

This means that F always decreases with time while the derivative of T0 is
proportional to the slope of F at the point T0. This again shows that solutions I and
III are stable while solution II is unstable. We will see in the next Chap. 15 how these
considerations, which may look like exam traps for the student, have very important
implications because the climate seems to have two stable states, one corresponding
to a planet covered with ice and the other to the present status.

It would seem possible that a small temperature perturbation could bring the
system from one state to the other. As we will see it is not necessary that the
perturbation be of the order of �20 ıC, because even the classical theory of
Brownian motion gives a finite probability for the escape from a potential well. The
corresponding exit time will be a function of the height of the barrier. The theory of
the ice age could be a nice application for this idea considering that the main period
for it is of the order of 100,000 years.

14.3 One-Dimensional Energy Balance Climate Models

The next step in the improvement of the energy balance model is the introduction
of the temperature dependence on the latitude. In this case the budget is established
on a box delimited by two latitude bands as in Fig. 14.5. This box exchanges energy

Fig. 14.5 The energy budget
within a box delimited by two
latitude bands. T is the
temperature of the surface,
SH and LH the sensible and
latent heat fluxes,
respectively, and O the
oceanic flux

T

SOLAR IR

SH

LH

O

SH

LH

O

φ

δφ

http://dx.doi.org/10.1007/978-3-319-29449-0_15
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through the atmospheric latent heat flux (LH) and sensible heat flux (SH) and from
the ocean (O). Also the box absorbs and emits radiation. All these fluxes can be
parameterized as we have seen in the previous chapters.

At the end of the 1960s almost at the same time, W. Sellers in the US and M.
Budyko in the URSS proposed different parameterizations for the fluxes along the
latitude. Budyko decided to assume that all the fluxes could be treated as a diffusive
process, while Sellers calculated diligently all the different components appearing
in Fig. 14.5. The first approach is much simpler especially after G. North found a
very elegant way to solve the model.

We will report here both methods; in the Appendix the appropriate FORTRAN
programs are listed. This could be an amusement, but as in the other cases we
will show that models are useful to understand processes and the sensitivity of the
system without going to the extreme and becoming convinced that they are more
real than nature.

14.3.1 North’s Model

The simplest hypothesis that we can adopt is to assume that the latitudinal heat flux
is proportional to the temperature gradient. This corresponds to assuming that the
diffusion coefficients we found in Chap. 12 are constant. Indicating with x the sine
of latitude, we have for the flux in spherical coordinates

�D
�
1 � x2

�1=2 dT

dx

However, looking at Fig. 14.5, we can see that the temperature change is instead
proportional to the flux difference, that is, to the flux divergence:

� d

dx
D
�
1 � x2

� dT

dx
(14.14)

As for the radiative term we need to establish a parameterization for the albedo
that will be a function of temperature and then latitude. We can assume that the
albedo will be at a constant value 0.62 for a temperature lower than �10 ıC and this
will correspond to the ice-covered portion of the Earth for latitude higher than xs.
For the ice-free portion, albedo will be an assigned function of latitude:

a .x; xs/ D 1 � ˛ D
�

b0 x > xs

a0 C a2P2.x/ x < xs
(14.15)

where b0 D 0.38, a0 D 0.697, and a2 D �0.0779. On the other hand if we use the
parameterization for the IR radiation I(x) D A C BT(x), we obtain at the latitude xs

Is D I(xs) D 182.4 W m�2, and the thermal equilibrium gives

I.x/� d

dx
D
�
1 � x2

� dT.x/

dx
D qS.x/a .x; xs/ (14.16)

http://dx.doi.org/10.1007/978-3-319-29449-0_12
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From this relation the temperature can be eliminated using the fact that it is
proportional to I(x) and defining D to include also B. We have

I.x/� d

dx
D
�
1 � x2

� dI.x/

dx
D qS.x/a .x; xs/ (14.17)

The solution to this equation can be obtained in a very elegant way (due to G. North)
using the fact that the Legendre polynomials are an eigenfunction of the diffusion
spherical operator

d

dx

�
1 � x2

� dPn.x/

dx
D �n .n C 1/Pn.x/ (14.18)

Some restrictions can be used on terms like Pn(x), because if we consider an
annual mean and perfectly symmetrical hemispheres, then the solutions should not
change when x changes sign. This means that each variable developed in a series of
Legendre polynomials should contain only even terms. For example, for the IR

I.x/ D
X

n pari

InPn.x/ (14.19)

Substituting in Eq. 14.17 we have

X
n pari

�
InPn.x/ � In

d

dx
D
�
1 � x2

� dPn.x/

dx

�
D qS.x/a .x; xs/ (14.20)

which is equivalent toX
n pari

fInPn.x/
h
1C n .n C 1/D

io
D qS.x/a .x; xs/ (14.21)

We can now use the orthogonality and normalization properties of the polynomials:Z 1

0

Pn.x/Pm.x/dx D ımn

.1C 2n/
(14.22)

Then if we multiply Eq. 14.21 by Pm(x) and integrate, we will be left only with those
terms for which m D n. We have

In Œ1C Dn .n C 1/� D .1C 2n/ q
Z 1

0

Pn.x/S.x/a .x; xs/ dx (14.23)

Putting

Hn .xs/ D .1C 2n/
Z 1

0

Pn.x/S.x/a .x; xs/ dx (14.24)
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we can write

In Œ1C Dn .n C 1/� D qHn .xs/ (14.25)

Let us try to write this relation for the first few values of n:

I0 D qH0 .xs/ D q
Z 1

0

S.x/a .x; xs/ dx n D 0

I2 .1C 6D/ D qH2 .xs/ n D 2 (14.26)

The first relation is just the one that gives the global average temperature. The
second equation gives an indication of the temperature difference between the pole
and the equator and may depend on the diffusion coefficient. Through this equation
we can determine the value of D. The procedure is to calibrate the model with the
present climatic conditions so that we put in Eq. 14.26 xs D 0.95 which corresponds
to a latitude of about 72ı. We also have H0(0.95) D 0.698, and with q D 340 W m�2,
we obtain I0 D 237.3 W m�2. Because the temperature at x D xs is �10 ıC, we have
an emitted power of I(xs) D I0 C I2P2(xs) D A – 10B D 182.4 W m�2, from which
we can get I2 D �54.8 W m�2. This value, inserted in the second part of Eq. 14.26,
gives the value for D D 0.65. We now have

T0 D .I0 � A/

B
T2 D I2

B

and the temperature as a function of latitude can be written as

T D T0 C T2P2.x/ (14.27)

The behavior of temperature obtained in this way can be compared with the
experimental data in Fig. 14.6 which shows a satisfactory agreement for such a
simple model.

It is possible now to test how sensitive is the ice line (i.e. xs) to the value of the
solar constant. The radiation emitted at the ice line can be expanded

Is D
X

n pari

InPn .xs/ (14.28)

and the coefficients In can be obtained from Eq. 14.25

In D qHn
.xs/

Œ1C Dn .n C 1/�

So that Eq. 14.28 can be written as

Is D
q
X

n pari

Hn .xs/Pn .xs/

Œ1C Dn .n C 1/�
(14.29)
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Fig. 14.6 The temperature as a function of latitude at the left is compared with annual mean
values (circles) for the northern hemisphere. At the right are shown the absorbed solar radiation
(solid line) and the IR emitted radiation (dashed). This figure may be compared with Fig. 11.4
which shows the experimental data

This equation can be read in a slightly different way. Because Is is constant, then
changing the solar constant implies the change of latitude xs. This means that q may
be intended as a function of xs according to the relation

q .xs/ D Is

24X
n pari

Hn .xs/Pn .xs/

1C Dn .n C 1/

35�1

(14.30)

This relation gives a value of the solar constant that is consistent with the
assigned latitude of the ice line, and in Fig. 14.7 this function is shown including
three terms of the summation. We notice that, starting from the present conditions
and decreasing the solar constant, the latitude of the ice line decreases as expected.
However beyond the “knee” of the curve even an increase of the solar constant
brings about a decrease of the latitude xs and this is a clear sign of instability. Also
in this case, as in the zero-dimensional models, we have a transition from a warm
Earth to a planet covered with ice. The same figure shows that to return to the present
conditions the solar constant must increase more that 40 %. The reason is that when
the Earth is ice covered, its albedo is quite high (0.7) so that even a solar constant of
1.42q0 will produce a global mean temperature of �30 ıC and a temperature at the
equator of �10 ıC.

This model has three different solutions; like the zero-dimensional model, two of
them are stable (ice-covered Earth and the present climate) and one is unstable.
The figure also shows the dependence of the solution on the adopted diffusion
coefficient. We should expect that a higher diffusion coefficient would reduce the

http://dx.doi.org/10.1007/978-3-319-29449-0_11
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Fig. 14.7 The latitude of the ice line as a function of the fractional change of the solar constant.
Notice the stability of the present climate for a change in the solar constant up to 4 % of the present
value. Also shown is a curve for a different value of the diffusion coefficient

temperature gradient along the latitude and then increase instability. When the solar
constant decreases in such conditions, the global temperature is lowered and because
of the reduced gradient, the temperature will change little with latitude and ice
could form everywhere. The diffusion coefficient however cannot be changed at will
because it must be constrained by the conditions observed for the present Earth.

The stability of the solution for the one-dimensional model can be carried out
with the same approach used in the previous section. However in this case the
analytical treatment is more complex, because the minima have to be found not
with respect to a single variable but to a distribution of that variable with latitude.
We will need to make another little detour, regarding mathematical analysis.

14.3.2 The Stability of the One-Dimensional Model

We would like to extend here the considerations on the potential introduced for
the zero-dimensional model. In that case we need to find minima and maxima of
a function for certain values of the temperature. In this case the temperature is a
function of latitude so that our process of minimization should give us a function.

The potential function is then a function of a function and in mathematical
terms this is called a functional. A function may be regarded as an operation that
establishes a correspondence between a certain value of a variable x with the result
of the operation y(x). The variable can be constituted by a series of values (like
a vector x) so that the function becomes y(x). If this vector becomes of infinite
dimension (i.e., a function), then we have a functional:

z D z Œy.x/�
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In our case the function is just T(x). In the theory of the functionals, as we do
for functions, we can find maxima and minima, which being functions are called
stationary functions. The condition dy(x)/dx D 0 is given by an equation from Euler.
We define a functional of the form

F Œy.x/� D
Z b

a
f
�
x; y; y0� dx (14.31)

where y0 is indicative of a derivation with respect to x; then the Euler condition is

d

dx



@f .x; y; y0/

@y0

�
� @f .x; y; y0/

@y
D 0 (14.32)

Doing a simple substitution x ! x; y ! T; y0 ! @T=@x, we obtain with Tx D
@T=@x

d

dx



@f .x;T;Tx/

@Tx

�
� @f .x;T;Tx/

@T
D 0

By comparing this with Eq. 14.18 a good candidate for our functional should satisfy
the condition

@f .x;T;Tx/

@Tx
D D

�
1 � x2

�
Tx I @f .x;T;Tx/

@T
D I.x/� qS.x/a .x; xs/

so that we can argue that the required functional will be

F ŒT.x/� D
Z

dx



1

2
D
�
1 � x2

�
T2x C R.T/� qSA.T/

�
(14.33)

where R(T)

R.T/ D
Z T

I
�

T 0
�

dT 0 A.T/ D
Z T

a
�

T 0
�

dT 0 (14.34)

The manipulation of these equations is quite complicated but can be simplified in
the case that we consider a spectral solution with only two modes T D T0 C T2P2(x).
We can then evaluate the integral of Eq. 14.33 so that we haveZ

dxT22



1

2
D
�
1�x2

�
.dP2=dx/2

�
C
Z

dx
Z �

ACBT 0�dT 0�q
Z

dx
Z

S.x/a .x; xs/ dT 0

The first and the second term giveZ
dxT22



1

2
D
�
1 � x2

� dP2
dx

dP2
dx

�
C
Z

dx
�
AT C BT2=2

�
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The first integral can be solved by parts

1

2
T22D

�
1 � x2

� dP2
dx

P2

ˇ̌̌̌1
0

�
Z

dxT22



1

2
P22

d

dx
D
�
1 � x2

� dP2
dx

�
At this point it is easy to show that using Eqs. 14.18 and 14.22 and using in the
second integral the spectral expression for the temperature

F .T0;T2/ D AT0 C B

2
T0
2 C 6D C B

10
T2
2 � M .T0;T2/ (14.35)

where

M .T0;T2/ D q
Z

dT 0
Z

S.x/a
�

x; xs

�
dx (14.36)

This integral is not simple at all because xs is a function of temperature. Instead
of using Eq. 14.15 we may use a simplification based on the original Budyko idea
which is to write the absorption as a step function

a.T/ D a0	 .Ts � T/C a1	 .T � Ts/ (14.37)

where 	(Z) is a step function that is zero if Z < 0 and is unity if Z � 0. In this way
the ice-covered fraction of the Earth’s surface has absorption a0 and the ice-free one
has a1. With this simplification Eq. 14.36 becomes

M .T0;T2/ D q
Z 1

0

S.x/
�

T � Ts

�
Œa0	 .Ts � T/C a1	 .T � Ts/� dx (14.38)

The stationary values of the function T are obtained by putting to zero the derivative
@F=@T0; @F=@T2 resulting in the condition

A C BT0 D q
Z 1

0

S.x/ Œa0	 .Ts � T/C a1	 .T � Ts/� dx

.6D C B/T2 D 5q
Z 1

0

S.x/P2.x/ Œa0	 .Ts � T/C a1	 .T � Ts/� dx (14.39)

which is identical to Eq. 14.26
The functional found is actually a surface above the plane T0, T2 and is

represented in Fig. 14.8. We notice the points of the minima (solutions I and
III) separated by a saddle point corresponding to the unstable solution II. We can
understand a little better the nature of this instability if we write the rate of change
of temperature:

C
@Tn

@t
D � @F

@Tn
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Fig. 14.8 The potential function as a function of the global mean temperature T0 and the second
mode amplitude T2. The values on the isopleths are normalized. Notice the minima, solutions I
(lower right) and III (upper left), and the saddle point corresponding to solution II (center)

We have also

@F

@t
D @F

@Tn

@Tn

@t
D �C

�
@Tn

@t

�2
(14.40)

As in the case of the zero-dimensional model, the rate of change for F is always
negative, so that a perturbation moving the system away from its equilibrium value
will cause the system itself to go to lower values of F until it reaches a new extreme.
From this point of view the saddle point is clearly unstable.

14.3.3 The Sellers Model

The solution obtained by North for the energy balance model is very elegant but
has limitations because it includes all the fluxes in one single component. The
model proposed by Sellers on the other hand separates the fluxes in to the different
components. Again referring to Fig. 14.5, we obtain for the balance equation:

Rs D L�c C�C C�F (14.41)

where Rs is the net radiative flux, L the latent heat, �c the net flux of water vapor,
and �C and �F the net flux of sensible heat and of the oceans, respectively. If l0
indicates the length of the northernmost latitude circle and l1 the same length for the
southernmost boundary, the quantities appearing in Eq. 14.41 can be written as

�Fi D �
l0F0

i � l1F1
i
�
=A0 (14.42)
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where Fi indicates the generic flux and A0 the surface between two latitude circles.
The parameterization of the radiative term is rather simple because

Rs D q .1 � ˛s/� Is (14.43)

where the albedo is a function of the surface temperature

˛s D b � 0:009Tg Tg < 10C
˛s D b � 2:548 Tg > 10C (14.44)

where Tg is the surface temperature and b is a parameter that is given in the program
listed in the Appendix. The surface temperature is not the same as that of the
corresponding latitude belt but takes into account the average elevation Z of the
land of that belt according to

Tg D T0 � 0:0065Z (14.45)

The parameter b is chosen in such a way as to satisfy the experimental data. The
infrared radiation on the other hand is a function of the temperature with a more
complicated expression than the linear one by Budyko:

Is D �T40
�
1 � m tanh

�
1:9 � 10�16T60

�
(14.46)

where � is the Stefan–Boltzmann constant and m is a quantity that takes into account
the atmospheric transparency, equal to 0.5 for the present climate.

The flux parameterization takes into account the diffusion processes (due to the
eddies) and the advection processes so that

c D .vq � Kw�q=�y/�p=g

C D .vT0 � Kh�T=�y/
�
�pCp

�
=g (14.47)

The quantity �p/g is an indication of the thickness of the atmosphere, while the
velocities are parameterized based on the observed data:

v D �a
�
�T C�T

�
northof 5ıN

v D �a
�
�T ��T

�
south of 5ıS

where the average value of the temperature difference is defined as

�T D
lD17X
lD1

Œ.li�T C liC1�T/ = .li C liC1/� (14.48)
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The quantity q is the average specific humidity at sea level q D "e/p where
"D 0.622 and p D 1000 hPa, so that the transport term for the latent heat can be
expressed directly through the Clausius–Clapeyron equation:

�q D "2Le0�T

pRdT02
(14.49)

with e0 the saturation pressure at the sea level
Finally we can express the sensible heat flux from the ocean given by

F D �K0
�z�T

�y

l0

l1
(14.50)

The ratio l’/l1 is the fraction of the latitude circle covered by the ocean and �z is
the average depth, while �y D 1.11 � 108 m. All the data that appear in the model
formulation are given in the table at the Appendix together with the program listing.

The results of the Sellers model are given in Figs. 14.9 and 14.10. In the first
one we notice that a difference with North’s model is the asymmetry of the two
hemispheres with respect to the albedo and temperature values. This asymmetry
could be conserved also in North’s model keeping the odd terms in Legendre
polynomials. One of the characteristics of the Sellers model is to use a constant
albedo when it becomes greater than 0.85. This happens in the southern hemisphere
where the albedo in any case has larger values than in the northern hemisphere.
This is an effect of the Antarctic continent having a larger extension than the Arctic
ice. Figure 14.10 shows the sensible, latent, and oceanic heat fluxes. Although the
behavior is rather similar to the data, the model underestimates the ocean flux and
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Fig. 14.9 Albedo (dashed line) and temperature (solid line) as a function of latitude in the Sellers
model. The negative value of the latitudes is for the southern hemisphere
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Fig. 14.10 The sensible, latent, and oceanic fluxes as a result of the Sellers model. This figure can
be compared with Fig. 11.8, although the units are not the same

this can be easily seen though a comparison with Fig. 11.8. This underestimation
can be somewhat adjusted by changing the model parameters, but in any case it
points out the intrinsic limitation of these models. Also, with the Sellers model, it
is possible to estimate the sensitivity to changes in the solar constant, although in a
way that is much less elegant than in North’s model.

14.3.4 The Time Dependence of EBM

If one maintains the Eq. 14.9 in its original form, we have

@T=@t D S0
�
1 � ˛p

�
=4 � .A C BT/ (14.51)

Redefining the temperature in degrees Kelvin and calling the solar term simply Q

CdT=dt D Q � ŒA C B .T � 273/� (14.51a)

where C is the thermal capacity per unit area of the system. If we assume the model
over land C could be assumed to coincide with that of the atmospheric column
C ' 
CpH ' 1 �103 �104 ' 107JK�1m�2. Over the ocean we must consider a much
larger value. If we assume the ocean to be 100 m deep we have the corresponding
capacity C ' 
C0100 ' 103 � 4:18 � 103 � 100 ' 4:18 � 108JK�1m�2 that is about
40 times as large. From Eq. 14.51 the equilibrium temperature is simply

Teq D 273C .Q � A/ =B

http://dx.doi.org/10.1007/978-3-319-29449-0_11
http://dx.doi.org/10.1007/978-3-319-29449-0_11
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If we assume that at time t D 0 the temperature differs from the equilibrium T(0) the
solution for a generic time t is given by

T.t/ D Teq C �
T.0/� Teq


et=�0 (14.52)

The constant �0 is the ratio C/B and for land would be �0 ' 107=2:1 ' 5 � 106s
that is about 55 days. If the initial temperature is warmer than the equilibrium, then
the system will emit more radiation than absorbed from the sun Q < [A C B(T-273)],
and the system will cool.

Equation (14.51a) could be put in a quite different form if we assume the
temperature to be given by the equilibrium value plus the small deviation T. Then
the equation can be put in the form

C
dT

dt
D Qnet C BT

where Qnet is just the difference between the absorbed flux and the emitted flux.
In this relation the time constant would be the ratio C/B, and if we use the value
for the ocean, the constant would be very long. We prefer then to use a value that
corresponds to the one observed �D 15 w m�2K-1 and rewrite the equation as

CO
dT

dt
� �T D Qnet (14.53)

where CO is the ocean heat capacity for unit area. This equation has a solution
similar to (14.52) where the time constant is given by �0 D CO=� which is of the
order of 300 d � 10 months. A rather interesting application of (14.53) is to evaluate
the frequency response of the climatic system. The idea is to compare the ocean
response to short-term fluctuations of the atmosphere. We may imagine that those
fluctuations are provided by the weather and assume that Qnet in (14.53) is of the
form

Qnet D RebQ!ei!t

where bQ! is the amplitude of the stochastic component of the energy flux at
frequency ! associated with the atmosphere (weather). We further assume that bQ!

is independent of frequency so that can be assimilated to a “white noise” when the
amplitude is the same at all the frequencies. To solve the equation we assume a
solution of the form T D RebT!ei!t so that we have

CObT! i! � �bT! D bQ! ) bT! D bQ!

COi! � �
and the solution gives the variance of the temperature.
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Fig. 14.11 Scheme for a
simple ocean-atmosphere
energy balance model (From
Vallis 2010)

bT2! D
 bQ!

CO

!2
1

!2 C .�=CO/
2

(14.54)

The quantity (�/CO) has the dimension of a frequency and the value of the constant
is about 15/1.2 � 107 D 0.1 days�1. We may consider the same model from another
point of view following Vallis (2010). This mimics an energy balance model we saw
as an example of the greenhouse effect and illustrated schematically in Fig. 14.11.
We can write down the equation for the time dependence of the surface temperature
and the atmospheric temperature

Cs
@Ts

@t
D S .1 � ˛/C .Ad C BdTa/ � .As C BsTs/

Ca
@Ta

@t
D As C .Bs � C/ Ts � .Ad C BdTa/� .Au C BuTa/ (14.55)

In this equations Ca and Cs are the heat capacities of the atmosphere and the surface,
while constants A’s and B’s are somewhat determined empirically. If we assume an
ocean mixed layer of 60 m depth, its Cs � 25 Ca. The temperatures can be grouped
to obtain

Cs
@Ts

@t
D A1 C BdTa � BsTs

Ca
@Ta

@t
D A2 C B2Ts � B3Ta (14.56)

where A1 D S(1 � a) C Ad � As, A2 D As � Ad � Au, B2 D Bs � C and B3 D Bd C Bu.
If we take into account the fluctuations, we can write Ts D Ts C T 0

s and Ta D
Ta C T 0

a where Ts and Ta are the stationary solutions and we introduce a random

forcing �
:

W on the right-hand side of the second of (14.56) representing the weather
the equations becomes
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Cs
@T 0

s

@t
D BdT 0

a � BsT
0
s Ca

@T 0
a

@t
D B2T

0
s � B3T

0
a C �

:

W (14.57)

These equation can be solved with simplifying assumption. As first hypothesis we
could keep the sea surface temperature fixed so that T 0

s D 0. In this case the equation
for Ta is simply

Ca
@T 0

a

@t
D �B3T

0
a C �

:

W (14.58)

Another way to couple the atmosphere and the ocean is to assume an ocean with
zero heat capacity so that the ocean is slaved to the atmosphere. This is equivalent
to assume the first of (14.57) to be zero and that BdT 0

a D BsT 0
s. This model may

represent an atmosphere overlying a surface with small heat capacity so that T
0

s can
be substituted with T 0

s D BdT 0
a=Bs and the second Eq. 14.57 becomes

Ca
@T 0

a

@t
D B2

�
BdT 0

a

Bs

�
� B3T

0
a C �

:

W D �B4T
0
a C �

:

W (14.59)

with B4 D B3 � B2Bd=Bs. This is the same as Eq. 14.58 but B4 being larger than B3

the damping is reduced. As a matter of fact we have

B4 D B3 � B2Bd=Bs D Bd C Bu � .Bs � C/Bd=Bs D Bu C CBd=Bs

which is positive and assures the system is always damped. Values for the
parameter are C D 0.54 wm�2 K�1, Bu D 2.83 wm�2 K�1, Bs D 10.4 wm�2 K�1,
and Bd D 11.3 wm�2 K�1 so that B3/B4 � 4.

The power spectrum of (14.58) can be calculated as we made before and obtain

PU
a D �2

B23 C C2
a!

2
(14.60)

where Pa
U stands for the atmosphere uncoupled . This expression shows for high

frequencies the spectrum is white (independent of frequency) and the transition from
white to red spectrum happens for !D B3/Ca D 10�6 s�1 � 0.1 days�1. This means
that for time scales longer than a week, the spectrum is expected to be white. The
power spectrum for (14.59) has the same form

PC0
a D �2

B24 C C2
a!

2
(14.61)

The superscript C0 is indicating zero-capacity ocean. In this case the shoulder
spectrum occurs for a time longer than 40 days.

Figure 14.12 illustrates these results.
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Fig. 14.12 Power spectra of the model atmosphere obtained for atmosphere only (PU
a ) and a zero-

capacity ocean (PCO
a ). The spectra are the same and only the variance scale is changed from linear

to logarithm (Vallis 2010)

14.4 The Radiative–Convective Models

From the energy balance models, we have learned a few things, especially about
the ice–albedo feedback. Actually, the Sellers model introduces a dependence of
the water vapor content on the surface temperature that corresponds to another
important feedback mechanism known as water vapor feedback. This mechanism
can be better explored with a new class of models that include a rather detailed
treatment of the infrared radiation.

In this case the passage from zero to one dimension is obtained by considering the
vertical dimension. The approach is to divide the atmosphere roughly in two regions:
the upper one, in radiative equilibrium, and the troposphere, with an assigned
temperature profile consistent with the energy fluxes. As we have seen in Chap. 3
and in the budget sketched in Fig. 14.1, the radiative balance of the stratosphere is
not consistent with the condition of nonthermal equilibrium at the ground

In the stratosphere the divergence of the radiative flux is zero so that the
radiative flux is constant. Because at the top of the atmosphere there is perfect
balance between the net solar flux and the outgoing infrared flux, the net flux
(solar and longwave) through the whole stratosphere must be zero. At the surface
however the net radiative fluxes are not zero because to keep the surface at thermal
equilibrium latent and sensible heat must be considered. The net rate of the change
of temperature is then given by (as we have seen in Chap. 3)

@T

@t
D � 1


Cp

d

dz
.Fr C Fc/ (14.62)

where Fr and Fc indicate the radiative and convective flux, respectively.
The way in which the convective term is treated is model dependent and is

completely parameterized. For example, we may assume that the flux is different

http://dx.doi.org/10.1007/978-3-319-29449-0_3
http://dx.doi.org/10.1007/978-3-319-29449-0_3
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Fig. 14.13 The infrared
fluxes contributed by different
gases. For water vapor the
downward and upward fluxes
are shown. For ozone and
carbon dioxide, only the net
fluxes are shown
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from zero only when the lapse rate becomes larger than the adiabatic one. In this
case the flux is assumed to be diffusive, that is, proportional to the difference
between the two lapse rates (real and adiabatic):

S D
Z z2

z1


sdz D Cp

g

Z p1

p2

ln 	dp (14.63)

Again, the diffusion coefficient K can be taken as a function of the lapse rate.
Clearly we cannot expect that Eq. 14.62 could be solved analytically because the
radiative flux divergence is a very complex term. The procedure is then to evaluate
both the solar and the radiative flux following the method we outlined in the
Chap. 13.

The result for the infrared fluxes is given in Fig. 14.13, where both the upward
and downward fluxes are shown for water vapor together with the net fluxes for
carbon dioxide and ozone. Notice that the net flux has a very rapid variation in
the troposphere followed by an almost constant value. Notice also that most of the
absorbed flux is due to water vapor. Although the absolute value of the CO2 and
O3 fluxes are small with respect to H2O, their contribution to the net flux and the
heating rate is relevant. The net flux is evaluated as

Frad
net D F"

H2O � F#
H2O � FCO2 � FO3 C Fsw

net D Flw
net C Fsw

net (14.64)

where Fsw
net and Flw

net indicate the solar flux and the net IR flux, respectively. From
Equation 14.64 it is possible to obtain the radiative heating rate, given by�

dT

dt

�
rad

D � 1


Cp

dFrad
net

dz
(14.65)

http://dx.doi.org/10.1007/978-3-319-29449-0_13
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This quantity expressed in degrees per day is shown in Fig. 14.12, where also
the heating due to the absorption of solar radiation is shown. The latter has been
calculated using the method of Lacis and Hansen illustrated in the Chap. 13.
The numerical results of these calculations are illuminating. They show that even
if the absolute values of the ozone and carbon dioxide fluxes are small, they
actually determine the heating rates (of the order of a few deg/day) in most of the
stratosphere. The same figure shows that the heating and cooling rates balance in the
stratosphere (radiative equilibrium), while in the troposphere the dominant effect is
the cooling induced in the infrared by the water vapor. As we have said earlier, in
this region there is no radiative equilibrium and the excess cooling must be balanced
by the transport of latent and sensible heat from the surface. Integrating Eq. 14.65,
we obtain

Cp

g

Z ps

0

.@T=@t/raddp D �
Z 1

0

�
@Frad

net=@z
�
dz D � �Flw

net .1/C Fsw
net .1/


C �

Flw
net.0/C Fsw

net.0/


where we have again used the hydrostatic approximation. Because at the top the net
flux must be zero, at the ground we have

Cp

g

Z ps

0

.@T=@t/raddp D �
Flw

net.0/C Fsw
net.0/


(14.66)

This means that at the surface the absorbed solar flux, decreased by the outgoing net
IR flux, must be equal to the integral of the net heating of the entire atmosphere. We
know however that the integral on the left-hand side is zero in the region in radiative
equilibrium, so that the limit of integration may simply include the convective
region. In this region we assume that the lapse rate has a fixed value that is denoted
as critical lapse rate

.@T=@z/tC1 D critical lapse rate (14.67)

and for each layer the temperature will be calculated explicitly

TtC1 D Tt C .@T=@t/tnet�t (14.68)

The net heating rate .@T=@t/tnet is determined in such a way that for a layer in
contact with the surface and delimited at the bottom by pressure ps and at the top by
pressure pt, we have (Fig. 14.14)Z ps

pt

.@T=@t/netdp D
Z ps

pt

.@T=@t/raddp C g
�
Flw

net.0/C Fsw
net.0/


=Cp (14.69)

This means that, at least in this layer, the radiative flux in excess is compensated
by the convective flux

http://dx.doi.org/10.1007/978-3-319-29449-0_13
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Fig. 14.14 The contributions
to the net radiative heating
rate of the atmosphere. Notice
that the IR contributes mostly
to the cooling and the solar
radiation mostly to the
heating. Ozone in the IR
warms the lower stratosphere
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(14.70)

For a layer not in contact with the surface we must have the divergence of the
total flux (convective and radiative) be zero. Based on Eq. 14.70 we haveZ pt

pb

.@T=@t/netdp D
Z pt

pb

.@T=@t/raddp

Finally, for a layer with a lapse rate lower than the critical one, the net heating
rate coincides with the radiative heating rate.

This procedure (also called convective adjustment), when implemented on a
numerical model, gives results like those shown in Fig. 14.15. This figure also shows
the effects of a doubling of a CO2 mixing ratio in the atmosphere. We notice that the
calculations reproduce quite well the average temperature profile in the atmosphere.
In particular we notice that the temperature maximum in the stratosphere is due to
the ozone absorption, because the temperature will increase until the IR emission
does not compensate for the solar radiation absorbed in the UV region.

When the carbon dioxide concentration increases, there is a corresponding
increase of the infrared flux in the troposphere (and consequently a temperature
increase), but also an increase of the infrared flux emitted in the stratosphere with an
associated cooling. In practice, in that region the absorbed UV flux is compensated
at a lower temperature.

The stratospheric cooling also implies another interesting feedback mechanism.
A cooler stratosphere absorbs more infrared radiation coming from the troposphere
so that the radiative compensation at the top requires a further increase of the surface
temperature.
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Fig. 14.15 Temperature as a
function of height calculated
with a radiative–convective
model for the present content
of carbon dioxide and for
twice the same value. Notice
the warming of the
troposphere and the cooling
of the stratosphere
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The origin of the radiative–convective models may be dated to the seminal work
by Manabe and Strickler in 1967. For the first time, a quantitative estimation of the
different feedback mechanisms was possible.

14.4.1 The Radiative–Convective Models and the Greenhouse
Effect

One of the striking results obtained with satellite observations concerns the proof
of water vapor feedback and the amplification it has on the greenhouse effect. We
should know by now that any effect that increases the temperature (like the increase
in the concentration of CO2) increases the saturation pressure for water vapor.
Thus more water can evaporate into the atmosphere and increase the absorption
of infrared radiation.

This mechanism was conceived or invented through the radiative–convective
models but was never proved experimentally. The first measurement of this effect
was reported by Raval and Ramanathan 1989 using the data of the ERBE (Earth
radiation budget experiment) spaceborne experiment. The greenhouse effect G was
defined as the difference between the >> longwave flux at the surface E and the
outgoing flux at the top of the atmosphere F. Measurements were made over the
ocean because the emissivity in that case is within 1 % of that of a blackbody. The
surface flux is given by E D �T4, while the flux leaving the atmosphere is given by

F D B .Ts/ �
Z 1

0

A.x/ ŒdB=dx� dx (14.71)
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In this equation x indicates the ratio between the pressure p and the pressure at
the surface ps, and A(x) is the absorptivity between the top of the atmosphere and
pressure p, while B is the Planck function such that

�T4 D
Z

B�.T/d�:

Keeping in mind the definition of greenhouse effect, we obtain

G D E � F D �Ts
4 � B .Ts/C

Z 1

0

A.x/ ŒdB=dx� dx D 4�

Z 1

0

A.x/T.x/3 ŒdT=dx� dx

(14.72)

The main contribution to this integral is from the troposphere, where the
condition is that the temperature decreases with altitude, that is, dT/dx > 0. The
experimental data show that the global mean annual average greenhouse effect is
about 146 W m�2 for clear sky conditions, while for a cloudy sky the average is
about 179 W m�2 of which 33 W m�2 are due to the clouds. The outgoing flux for
clear sky conditions can be approximated by a linear relationship similar to the one
used for the energy balance models:

F D 229:36C 2:31 .Ts � 273:15/ (14.73)

We can normalize then the greenhouse effect in Eq. 14.72 and obtain a relation
linear with the temperature:

g D G=�T4s D 4

T4s

Z 1

0

A.x/ ŒdT=dx� dx D �0:658C 3:42 � 10�3Ts (14.74)

At this point we need to establish that dependence of the greenhouse effect on the
temperature must be attributed to an increase in the absorptivity that in turn results
from an increase in the water vapor content of the troposphere. Actually the integral
Eq. 14.74 does not depend explicitly on the temperature, and assuming an adiabatic
gradient we have

ŒT.p/=Ts� D x˛

where ˛ D �R=ga so that the integral becomes

g D 4˛

Z 1

0

A.x/xˇdx (14.75)

where ˇD (4˛� 1). Written in this form the temperature dependence can arise
either from the lapse rate or the absorptivity. However, using different values of the
lapse rate coming from different regions of the Earth gives for g a range of variability
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of only 10 %, while for fixed values of the water vapor content, the absorptivity may
change only 5 %. The only viable explanation for the increase of the greenhouse
effect with temperature is because the water vapor increases.

We can easily see this effect if we consider that the saturation pressure changes
with the temperature according to exp[�(L/RT)], where L is the latent heat. Thus, it
is possible to calculate the change in the total water vapor content W (kg m�2) as a
function of the temperature and the result is a linear relation between the logarithm
of W and the temperature

d ln W=dTs D 6:7 � 10�2K�1

The amount of water vapor can be measured with other satellites (ERBE unfor-
tunately could not gather the data) so that a very similar relation is found:
dlnW/dTs D 5.5 � 10�2 K�1. This relation enables us to write the dependence of the
greenhouse effect on the water vapor, considering that both A(x) and the lapse rate
have a weak dependence on the surface temperature:

dg

dTs
D @g

@ ln W

@ ln W

@Ts
(14.76)

from which we get @g/@lnW D 6.2 10�2. This is actually determined experimentally
and may give us an indication of how to evaluate the water vapor feedback in case
of an increase of carbon dioxide concentration.

The models and spectroscopic calculations show that for a doubling of CO2

from 345 ppm to 690 ppm the net outgoing IR flux would decrease by 4 W m�2

so the greenhouse effect would increase by an equivalent amount. In the absence
of the water vapor feedback, the surface temperature should increase as to keep
the outgoing flux from the atmosphere at its present mean value 240 W m�2.
The relation between the fractional change of the flux and the temperature for a
blackbody

�F=F D 4�Ts=Ts

so that for �F D 4 w m�2 we have �Ts D 1.2 K. The experimental data show
�F/�Ts D 2.3 Wm�2 K�1 (see Eq. 14.74) so that we have now for the temperature
increase �Ts D 1.7 K. The inclusion of the water vapor feedback gives a further
increase of 0.5 K in the temperature.

As for the greenhouse effect, if its value should remain constant at g D 0.327,
then the absorbed radiation would increase by

�G D 4g�T3s�Ts D 2:1wm�2

Keeping in mind the change of g with the surface temperature, the greenhouse effect
would increase by 3.1 W m�2 which should be added to the 4 W m�2 due to the
initial CO2 forcing. This comparison is made in Fig. 14.16 both with a spectroscopic
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Fig. 14.16 The comparison between the measured greenhouse effect and the calculations. The
band model extends to temperatures that do not make sense for the ocean (Raval and Ramanathan
1989)

model and the flux calculated with a general circulation model. We notice a rather
good agreement although the general circulation model shows an underestimation of
about 10 W m�2 which is mainly due to the fact that in this model the contribution of
nitrous oxide is not included. The agreement with the experimental data is confirmed
by a comparison with 13 GCM (see also next Chap. 15) which gives dF=dTs D
2:3˙ 0:2Wm�2K�1.

14.4.2 Can We Put Together the Radiative–Convective
and Energy Balance Climate Models?

Sure we can. As we have seen, a radiative–convective model uses global average
values for both the albedo and the lapse rate. Such a model can incorporate not only
the water vapor feedback but also the ice–albedo feedback. To this end it would
be enough to have a relation that connects the global averaged temperature to the
albedo value and the latitude of the ice line. In the practical application during the
time marching integration we will change the albedo value.

The relation between global temperature and albedo is given by Eq. 14.24, so that
the only difficulty is to find a function that gives the dependence of H0(xs) on the
temperature. This can be done by approximating this function with a second degree
polynomial

H0 .xs/ D 0:3763C 0:5021xs � 0:1706x2s (14.77)

http://dx.doi.org/10.1007/978-3-319-29449-0_15
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The procedure is to start with some value of the albedo and then calculate the
global temperature through a radiative–convective model. This temperature enables
us to evaluate the albedo through Eq. 14.23 and with Eq. 14.77 also the latitude. We
need to notice however that the albedo in the two kinds of models is a little different.
In the energy balance models, the albedo refers to the total surface–atmosphere
value. In the radiative–convective models the surface reflectivity is fixed, and the
total results mainly from the clouds used in the model. At this point things get a little
confusing. The ice–albedo feedback is based on the relation between the average
global temperature and albedo: the lower the temperature, the higher the albedo.
However the albedo depends very strongly on the cloudiness and it is intuitive to
think that a colder Earth should imply less atmospheric water vapor and then clouds.
On the other hand it is also obvious that for the ice to grow it is necessary to have
precipitation and then clouds.

The inescapable conclusion is that our simple climate models are much too
simple to study such complex problems.

E.14 Examples

E.14.1 Stability of North’s Model

We start from Eq. (14.10) and consider the additional equation

B
@T00
@q

D H0 C q

�
@H0

@T00

�
@T00
@q

(E.14.1)

From this equation, we obtain B

B D H0

�
@T00
@q

��1
C q

�
@H0

@T00

�
which is substituted in the Eq. (14.10) to get

@T 0

@t
C H0

�
@T00
@q

��1
T 0 C q

�
@H0

@T00

�
T 0 D q

�
@H0

@T00

�
T 0

and then

@T 0

@t
C H0

�
@T00
@q

��1
T 0 D 0 (E.14.2)

There is an alternative way to reach the same conclusion and then this to express
again the temperature as the solution plus a small deviation:
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T0.t/ D T00 C T 0.t/

then from the (14.10) we get

@T 0

@t
D


�BT 0 C q

�
dH0

dT00

��
T 0 (E.14.3)

From the equilibrium equation differentiating q with respect to T0
0, we obtain

�
H0

�
T00
�

q D �
A C BT00

� ) �
H0

�
T00
� @q

@T00
C q

dH0

dT00
D B

Substituting in (E.14.3)

@T 0

@t
D


�
��

H0

�
T00
� @q

@T00
C q

dH0

dT00

�
T 0 C q

�
dH0

dT00

��
T 0 D �H0

@q

@T00
T 0

That is the same as (E.14.2).

E.14.2 Time-Dependent Solution of North’s Model

We start from the time-dependent equation for the model

C
@T

@t
D aQ.x/� .A C BT/C D

@

@x


�
1 � x2

� @T

@x

�
(E.14.4)

redefining the quantities

q.x/ D aQ.x/=C A D A=C B D B=C D D D=C

we have

@T

@t
D q.x/� .A C BT.x//C D

�
1 � x2

� @2T
@x2

� 2Dx
@T

@x

This equation can be transformed in finite difference equation

TkC1
j � Tk

j D qj�t � �
A C BTj

�
�t C D

�
1 � x2j

� TkC1
jC1 � 2TkC1

j C TkC1
j�1

�x2
�t

� D
TkC1

jC1 � TkC1
j�1

�x
�t

(E.14.5)
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And grouping the different terms

TkC1
jC1

h
�t
�x2

D
�
1 � x2j

�
� Dxj

�t
�x

i
� TkC1

j

h
1C 2 �t

�x2
D
�
1 � x2j

�
C B�t

i
� TkC1

j�1
h
�t
�x2

D
�
1 � x2j

�
C Dxj

�t
�x

i
D Tk

j C qj�t � A�tC

That can be written in the standard form

�AjTj�1 C BjTj � CjTjC1 D Rj (E.14.6)

where

Aj D �t
�x2

�
1 � x2j

�
D C Dxj

�t

�x
Bj D 1C 2

�t

�x2
D
�
1 � x2j

�C B�t

Cj D �t
�x2

D
�
1 � x2j

�
C Dxj

�t

�x
Rj D Tk

j C qj�t � A�t

Difference equations like (E.14.6) can be solved with standard method (see, e.g.,
Richtmyer and Morton), and the attached program uses a standard routine (tridag).
Below we report a possible FORTRAN program with routine inversion taken from
Numerica Recipes:

dimension b(41),c(41),r(41),xs(41),qs(41),p2(41)

dimension q(41),an(41), bn(41), cc(41)

dimension u(41), ppm(14),ppmac(131)

data ppm/325,337,353,369,391,420,454,491,532,491,454,420,

391,369/

itimeD0.0

iwriteD0.0

sD1366.

awD206.85

bwD1.95

diffD.445

cpD1.046e9

dtD3.15e7

dxD0.05

do iD1,41

xs(i)D1.0-(i-1)*dx

end do

do iD1,41

p2(i)D(3*xs(i)*xs(i)-1)/2.

u(i)D14.5-28.4*p2(i)

qs(i)D0.25*s*(1.-0.482*p2(i)

b(i)Ddiff*(1-xs(i)*xs(i))*dt/(cp*dx*dx)

c(i)Ddiff*xs(i)*dt/(cp*dx)
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end do

do kD1,13

ind1D(k-1)*10C1

ind2Dind1C9

dppmD(ppm(kC1)-ppm(k))/10.

do jDind1, ind2

ppmac(j)Dppm(k)Cdppm*(j-ind1)

end do

end do

ppmac(131)Dppm(14)

20 continue

if(itime.lt.200)then

goto 211

else

itempoDitime-199.

ppmco2Dppmac(itempoC1)

write(6,*) ppmco2,itempo

phiDalog(ppmco2/300)

preaD-326.4C9.161*phi-3.164*phi*phiC0.5468*phi*phi*phi

prebD1.953-0.04866*phiC0.01309*phi*phi-0.002577*phi*phi*phi

aw Dpreb*273.15Cprea

bwDpreb

end if

211 continue

do iD1,41

an(i)D-b(i)Cc(i)

bn(i)D1C2.*b(i)Cbw*dt/cp

cc(i)D-(b(i)Cc(i))

end do

cc(1)D-(an(1)/1000Ccc(1))

an(41)D-(an(41)Ccc(41)/1000)

an(1)D0.

cc(41)D0.

open(10,fileD’geoengdata’, statusD’unknown’)

101 format(5f12.3)

do iD1,41

if(u(i).lt.-10.) then

q(i)Dqs(i)*0.38

else

q(i)Dqs(i)*(0.697-0.0779*p2(i))

end if

r(i)Du(i)C(q(i)-aw)*dt/cp

end do

1012 format(5e12.4)

1013 format(1e12.3)
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call tridag(an, bn, cc, r,u, 41)

itimeDitimeC1

iwriteDiwriteC1

if(itime.lt.200) goto 1001

if(iwrite.lt.10) goto 1001

write(10,21)

21 format(10x, ’iwrite, itempo, aw, bw, ppmco2 ’/)

write(10,2100) iwrite, itempo, aw, bw, ppmco2

2100 format(2i10, 3f10.4)

write(10,100)(xs(i),u(i),q(i), iD1,41)

iwriteD0.0

1001 if(itime.lt.331) goto 20

100 format(2f10.5,f12.3)

166 format(2f10.5)

stop

subroutine tridag(a,b,c,r,u,n)

integer n,nmax

real a(n),b(n),c(n),r(n),u(n)

parameter (nmaxD500)

integer j

real bet,gam(nmax)

if(b(1).eq.0.)pause ’tridag: rewrite equations’

betDb(1)

u(1)Dr(1)/bet

do 11 jD2,n

gam(j)Dc(j-1)/bet

betDb(j)-a(j)*gam(j)

f(bet.eq.0.)pause ’tridag failed’

u(j)D(r(j)-a(j)*u(j-1))/bet

11 continue

open(66, fileD’routine’, statusD’unknown’)

do 12 jDn-1,1,-1

u(j)Du(j)-gam(jC1)*u(jC1)

12 continue

return

end

E.14.3 Temperature Profile from Maximum Entropy Principle

We want to mention here a rather unknown approach about the calculation of
temperature profile of the atmosphere. It assumes that the atmosphere will settle
to the state of maximum entropy production. The approach used by Verkley and
Gerkema (2004) starts by considering the entropy calculation for an atmospheric
layer between levels z1 and z2 given by
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S D
Z z2

z1


s dz D Cp

g

Z p1

p2

ln 	dp (E.14.7)

Then we evaluate the total mass

M D
Z z2

z1


 dz D 1

g

Z p1

p2

dp D p1 � p2
g

The total energy (internal plus potential energy)

E D
Z z2

z1


 .CvT C gz/ dz D p1z1 � p2z2 C Cp

g

Z p1

p2

T dp (E.14.8)

If we change the limit of the layer by amounts ız1, ız2 without changing the
pressure levels, the work done by the system will be ıW D p2ız2 � p1ız1 and so

ıE C ıW D Cp

g

Z p1

p2

T dp (E.14.9)

Note that ıE C ıW D ıQ is the heat added to the atmospheric column. If in the
variational process no heat is added or subtracted to the column, the enthalpy

H D Cp

g

Z p1

p2

T dp (E.14.10)

will stay constant. Further we assume that the quantity

L D Cp

g

Z p1

p2

	 dp (E.14.11)

We can now formulate a variation principle such as to maximize S keeping M, L,
and H fixed. We write the equation for the Lagrangian multipliers � and � so that

ıS C �ıH C �ıL D 0 (E.14.12)

We may express all the quantity appearing terms of T and p. We have

S D Cp

g

Z p1

p2

ln T dp C Cp

g

Z p1

p2

ln

�
ps

p

�k

dp ) ıS D Cp

g

Z p1

p2

ıT

T
dp

ıH D Cp

g

Z p1

p2

ıTdp
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ıL D Cp

g

Z p1

p2

ı	dp D Cp

g

Z p1

p2

�
ps

p

�k

ıTdp

and the variation will beZ p1

p2

"
ıT

T
C �ıT C �

�
ps

p

�k
#

dp D 0

Putting ˛ D �=� we have

1

�

1

T
C ˛ C

�
ps

p

�k

D 0 ) �T D
"
�

 
1C ˛

�
ps

p

�k
!#�1

To determine � we impose that T D Ts for p D ps so that

T D Ts
1C ˛

1C ˛.ps=p/k
(E.14.13)

The temperature profile goes from isothermic (˛ D 0) to the isentropic for (˛ !
1).

E.14.4 Entropy Production and Energy Balance Models

The atmosphere and the ocean of the Earth can be considered as part of a heat
machine that uses a high temperature source (tropics) and release it in region at
lower temperature (middle latitudes and polar regions). We can assume a system
like the one shown in Fig. E.14.1 where we consider two boxes, one extending to
latitude of 30ı at temperature T0 and the other of the same horizontal surface at
temperature T1. Between the two boxes, a diffusive flux is established proportional
to the temperature difference between the two boxes (Lorenz et al. 2001).

F D 2D .T0 � T1/ (E.14.14)

Where D is the diffusion coefficient measured in w m�2 K�1. In North’s model
the diffusion coefficient is of the order of 0.6 w m�2 K�1. In the same model the
flux is written in spherical coordinates:

F D �D
�
1 � x2

�1=2 dT

dx
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Fig. E.14.1 The simple box
model

Assuming the distance between the two boxes to be �x D 0:5, we obtain
(E.14.14). If we write the same expression as a function only of latitude we get

F D �D
dT

d'
(E.14.15)

The flux of sensible heat is given by

Fs D � @

@y

�

cpvT

�
(E.14.16)

We have the flux in w m�2

F D �H
@

a@'

�

cpvT

� � �
cpvH

a

@T

@'
(E.14.17)

When compared with (E.14.15), it gives us the diffusion coefficient:

D � �
cpvH

a
(E.14.18)

Using v � 1ms�1; 
 D 1:25kgm�3; cp D 1000Jkg�1K�1 ; H D 8 km; a D
6370km

we have D � 1:56 w m�2 K�1 in the right range.
If the two boxes absorb energy from the sun I0 and I1 and emits infrared radiation

E0 and E1, the energy balance requires

I0 � E0 � F D 0 I1 � E1 C F D 0 (E.14.19)

Now we can discuss the entropy production and we can write the change in
entropy:

dS

dt
D F

�
1

T1
� 1

T0

�
(E.14.20)
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If the flux is zero the entropy production is zero and the planet is in radiative
equilibrium. If the heat flux is maximized, then T1 D T0, and the planet is isothermal,
and the entropy production is still zero. Between these two states there is the
possibility that the entropy production is not zero and has a single, maximum value.

In order to apply the principle of maximum entropy production (MEP), we need
to express the emission fluxes as a function of temperature:

Ei D A C BTi (E.14.21)

Where the B coefficient can be calculated with the Eddington approximation.
With � indicating the optical thickness we have

T4 D T4e
2

�
3

2
� C 1

�
(E.14.22)

where Te is the emission temperature and gives the outgoing flux

E.0/ D �T4e

The outgoing flux is related to the upward flux by the following relation

F" .�/ D 1

2
�T4e

�
3

2
� C 2

�
D E.0/

2

�
3

2
� C 2

�
(E.14.23)

And from this it is possible to obtain E(0) as

E.0/ D F" .�/
.�3

4
� C 1

�
D �T4= .0:75� C 1/

And then from the definition of B we have

B D 4�T3= .0:75� C 1/ (E.14.24)

We can now determine the value for D maximizing the entropy production.
Subtracting (E.14.15) we have

I0 � I1 � B .T0 � T1/ D 2F D 4D�T (E.14.25)

From which we get the temperature difference�T D T0 � T1

�T D �I= .4D C B/ (E.14.26)
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We now combine (E.14.20) with the definition of flux to obtain

dS

dt
D 2D�T

�
1

T1
� 1

T0

�
D 2D�T2= .T1T0/

And substituting�T from (E.14.22) obtain

dS

dt
D 2D�I2=

h
.T1T0/ .4D C B/2

i
(E.14.27)

Which derived with respect to D gives the maximum of entropy production for
D � B=4

Before this model was formulated, G .W. Paldridge demonstrated that based on
the minimum entropy production, he could obtain the temperature as a function of
latitude. If we indicate with Fs(x) the absorbed solar flux as a function of latitude
and with Fl(x) the emitted longwave flux, the total entropy production could be
assumed as

dS

dt
/

1Z
�1

Fs.x/ � Fl.x/

Tl.x/
dx

where Tl(x) is the temperature as a function of latitude (with x sin(latitude)). Because
the emitted radiation is related to temperature, the minimization process could
simply involve the quantity

1Z
�1

Fs.x/� Fl.x/

Fl.x/
dx D

1Z
�1

�
Fs.x/

Fl.x/
� 1

�
dx (E.14.28)

Using the Lagrange calculator the minimization process is equivalent to

@

@Fl



Fs.x/

Fl.x/
� 1 � � .Fs.x/ � Fl.x//

�
D 0 (E.14.29)

with a Lagrange multiplier. After performing the derivative we get

� Fs.x/

Fl.x/
2

C � D 0 (E.14.30)

With the solution

Fs.x/

�
D Fl.x/

2 (E.14.31)
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the global radiative balance requires that

1Z
�1
ŒFs.x/ � Fl.x/� dx D 0

after substituting (E.14.27) we have

1Z
�1

Fs.x/dx D
1Z

�1



Fs.x/

�

�1=2
dx

and defining the averages with h i we have

hFs.x/i�1=2 D
D
Fs.x/

1=2
E

) hFl.x/i D
D
�1=2Fs.x/

1=2
E

(E.14.32)

From the first equivalence when Fs is known it is possible to obtain � and then Fl

from (E.14.31). This conclusion could have been reached using Eqs. E.14.19 and
E.14.20 with the assumption that E / T. The second could be rewritten

dS

dt
D
�

E1 � I1
E1

� I0 � E0
E0

�
D 2 � I1

E1
� I0

E0

If this is derived with respect to E1 and maximized we get

dE1
dE0

D � I0
I1

�
E1
E0

�2
And the derivative could be obtained from I0�E0 D E1�I1 and that dE1=dE0 D �1
so that

I1
I0

D
�

E1
E0

�2
This result is easily verified. The results of the MEP approach are impressive, but a
more accurate discussion shows that the extension to other planets other than Earth
poses some problem. For a critical discussion, the work of Goody (2007) is very
useful.
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Chapter 15
The Application of Climate Models

The actual title of this chapter could be the application of simple climate models
to the great climatic events. In the previous chapters, we have acquired tools that
should enable us to study the evolution of climate on the Earth (and also on the
other planets), at least for the most important features. A typical example is the ice
age problem, which helps us to understand the complexity of the climate system
and the nature of the different forcing and feedback. However, considering the
ongoing debate on global warming, some attention is also given to main tool of
the practitioners that is General Circulation Models (GCM).

15.1 The Climate System

The climate is defined normally as an average of weather in one particular region.
The average must be performed for periods long enough with respect to the time
of predictability of the weather, for which two weeks may be taken as an upper
limit. The characteristics of the climate of a particular region (or at the global level)
are determined by a number of factors and mechanisms that constitute what we
call the climatic system. In a very simplistic way, we can imagine that the main
components of this system are the atmosphere, the ocean, the land, the cryosphere,
which includes the polar ice, and the high altitude regions. All these components
interact strongly and may determine the weather and its variability.

The climate has temporal scales that, based on its definition, are of the order of
several years to thousands of years. A climatic change may be meaningful only if
it is statistically consistent with respect to “past normality”. In order to define such
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a reference period, usually a time average of at least 30 years is used. Strangely
enough, this interval roughly coincides with a generation and is likely the cause of
all the jokes and stories of our parents and grandparents that tell us how things were
different during their time. Actually this is such a long period that it is very hard to
make an average based only on memory.

To circumvent such semantic difficulties, there is a different way (and probably
more rigorous) to define the climate. We may think of a number of “Earth”
planets that have all the same physical characteristics and are also subject to the
same external influences, like the same solar radiation or the same atmospheric
composition. The atmosphere, the ocean, and the other elements of the climate
system, although they have the same characteristics, are turbulent media so that
we may expect for example that the weather in June on these planets, although
not identical, will have the typical summer characteristics. This means that in the
Mediterranean basin of these planets the weather will be more or less warm or
more or less dry, but in none of them (or on a very few) will there be snow. This
corresponds to an average weather that is called “ensemble average” in statistics.
This concept of ensemble average implies at least two others, that is meteorological
noise and external influences. The noise is responsible for the uncertainties in the
average due to the daily fluctuations of the weather system. The external influence
terms include actually both external and internal factors. What separates an internal
from an external cause is very often the time scale. For example, a clear external
cause is the solar radiation reaching the Earth; on the other hand, the snow cover
could be an external cause on a short time scale (on an interannual basis) and an
internal factor on a long time scale. If the snow cover lasts for such a long time
as to grow into ice sheets then it can change the local orography (as happened in
the case of the ice age) and the ice mass may influence the rotational regime of the
Earth. In Fig. 15.1, the main components of the climate system are shown and also
their main paths of interaction. We will deal here only with those forcings that may
change the global climate, and these normally have to do with changes in the energy
fluxes within the climatic system. This will be clarified along the way. One of the
external causes we have mentioned is the energy coming from the Sun, that is, the
solar constant. Time scales for changes in the solar constant are very long, while the
shortest (of the order of days and years) refers to change in the flux of UV radiation
and microwave. At the moment, there are no definite proofs that the solar constant
may change on time scales of the order of one thousand years. Similarly, it is not
possible to establish any cause–effect relation between the sunspot frequency and
the climate variations. Changes in the solar constant between 0.05 and 0.1 % have
been observed during periods of several years but these do not seem to produce any
climatic changes. The Sun, on the other hand, has typical periodicities such as the
11–year cycle, which again does not produce any appreciable effects on the climate.

It is quite interesting to compare the effects of increasing greenhouse gases with
the changes of the solar constant. The Earth-atmosphere system absorbs about 240
Wm�2 so that a 1 % change in the solar constant corresponds to a change of 2.4
Wm�2. On the other hand, a doubling of the CO2 content implies an extra forcing
of about 4 Wm�2 so that a 2 % change in the solar constant is equivalent to the
change of all greenhouse gases. Accurate measurements of the solar constant are
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Fig. 15.1 A simple illustration of the main components of the climatic system. The external
influences are indicated with black arrows, while gray arrows indicate the interactions between
internal variables

not available for the last century. However, there are very precise measurements for
the period 1978–1997 obtained with two satellites, Nimbus 7 and Solar Maximum.
During this period, the solar constant changed only 0.1 % so that the forcing changed
by 0.24 Wm�2. Also it is possible to reconstruct with different methods the power
output from the Sun during the last 300 years, and these results show deviations of
only a few percent with respect to the average.

The explosive volcanic eruptions may inject into the stratosphere considerable
amounts of dust and sulfate aerosols. These particles are very efficient in reflecting
the solar radiation and may cause surface cooling that may be of the order of 0.5–
1 ıC. It has been argued that major eruptions like Tambora (1815) and Krakatoa
(1883) and, more recently, Agung (1963), El Chichon (1982), and Pinatubo (1991)
may have produced short-term perturbations to the global climate. Actually for any
one of these events but especially for the oldest is very hard to prove anything.

Variations in the orbital parameters of the Earth (eccentricity, obliquity, and
the precession of the equinoxes) may influence the amount of solar radiation
reaching the high latitude regions. Locally these changes may even reach 10 %. The
changes in the eccentricity cause a modulation of the Earth–sun distance producing
variations in the radiation flux of less than 1 %.
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The obliquity of the rotation axis varies between 22ı and 25ı, and this produces
a modulation in the seasonal differences between summer and winter. In practice,
when the obliquity increases, winters are colder and summers are warmer and so the
difference is enhanced. The opposite happens when the obliquity decreases.

This last effect due to the equinox precession determines changes in the dates of
the equinoxes with a period of about 22,000 years, so that about 11,000 years ago
the spring equinox happened on the 21st of October. The most important modulation
in the amount of solar radiation received by the Earth is due to the coupling between
the obliquity changes and the precession of the equinoxes.

All these things are quite interesting but refer only indirectly to the greenhouse
effect, which depends on the atmospheric composition. The concentration of some
of the gases contributing to the greenhouse effect has changed drastically. For
example, carbon dioxide during the ice age had a concentration of about 190 ppm
compared to the present one of 345 ppm. This change may be explained by the
complex mechanisms that regulate the concentration of this gas in the atmosphere
and which involve also the biosphere. It is rather unlikely however that simply the
lower concentration of CO2 may have caused the ice age.

A number of techniques have been used to reconstruct the climatic history of
the Earth. It is quite evident that the farther we go in the past, the less precise is
the climatic picture. We have direct temperature measurements only for the last 300
years, and in any case, it is only in the last 100 years that these data have been taken
by a sufficient number of stations to establish, for example, a temperature trend.

From written documents, it is possible to reconstruct in a qualitative way
(sometimes we know that mood can change depending on the weather and not
vice versa) the climate in the last millennium. To go farther in time, it is necessary
to use climate proxy which is a series of ordinate parameters that somehow may
be related to meteorological parameters. One of these is the measurement of the
ratio between isotopes 16 and 18 of oxygen in ice cores. A preliminary analysis of
the ratio 16O/18O can give an estimate of the ice sheets volume and of the surface
temperature of the ocean. Different proxies can be used for different time intervals.
For example, the tree rings method may be useful to reconstruct climate in the
last thousand years. This method (called also dendroclimatology) is based on the
fact that each year trees adds a layer of cortex to their trunks. The thickness of
this layer may depend on the available humidity in the semi-arid regions and on
the temperature in the temperate and alpine regions. Similarly, the flora of some
mountain regions is controlled by the climate so that study of the fossil pollen may
be useful in analyzing the last 10,000 years. The ice cores, on the other hand, may
be useful for the last 100,000 years or more. Cores of the ocean floor may help
reconstruct the climate of the last hundred million years. Finally, some sedimentary
rocks may give information regarding up to a billion years ago.

Data obtained from climate reconstruction includes the global temperature
behavior as a function of time. Some of the data, for example, refer to the last
million years, and they show clearly the glacial and interglacial period, that is, the
build up of the ice age and its waning. The temperature difference between these
periods is of the order of 3–5 ıC less than the seasonal variation that we may have
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at high latitude. However, such temperature changes imply changes in the physical
appearance of extended geographical regions, with the appearance of the continental
ice sheets and the lowering by tens of meters of the sea level.

In the most recent times (the post-glacial period), the temperature changes have
remained within a 1 ıC range which may have caused significant effects on the
length of the growing season for plants or in the precipitation regime.

All these nice facts can be found in any popular book on climate (except for those
that claim that Christmas may arrive in August because of the equinox precession).
However, in the most recent years, a new approach has been used in the study of
the climatic system. The suggestion may have arrived from the evident oscillation
in the volume of the ice sheets. Actually geochemistry enables the reconstruction
of at least four or five complete glacial cycles that are very similar and have
a dominant period of 100,000 years. Oscillations usually are a clear sign of at
stability of a system, but in the case of the climatic system the extremes of such
oscillations correspond either to a comfortable climate (the present one) or to the
tough environment of an ice age.

Also, in this case there is a report, written by Edward Lorenz, which is rather
unknown because it appeared in 1976 in a journal (Quaternary Research) that is not
very popular. Here is what Lorenz wrote in the Abstract.

A basic assumption in some climatic theories is that, given the physical properties of the
atmosphere and the underlying ocean and land, specified environmental parameters (amount
of solar heating, etc.) would determine a unique climate and that climatic changes therefore
result from changes in the environment. The possibility that no such climate exists and that
nondeterministic factors are wholly or partly responsible for long period fluctuations of
the atmosphere-ocean earth system, is considered. A simple difference equation is used to
illustrate the phenomena of transitivity, intransitivity and almost – intransitivity. Numerical
models of moderate size suggest that almost – intransitivity might lead to persistence of
atmospheric anomalies for a whole season. The effects of this persistence could be to allow
substantial anomalies to build up in the underlying ocean or land, perhaps as abnormal
temperatures or excessive snow or ice: these anomalies could subsequently influence the
atmosphere, leading to long period fluctuations. The implications of this possibility for the
numerical modeling of climate, and for the interpretation of the output of numerical models,
are discussed.

Now except for some slang terms like intransitivity, the Lorenz thought is quite clear.
In practice, he showed in one of the examples that a long series of frigid winters (an
unlikely but not impossible event) could push the climatic system toward a cold
equilibrium state. This is because such a series would imply an accumulation of
snow and so extensive changes in the albedo.

Now we have introduced almost everything we would like to treat in this chapter,
including mentioning non-deterministic theories. Lorenz’s great achievement is to
have shown that it is possible to have aperiodic (that is, without any apparent regu-
larity) behavior of the climate system even if we know the equations of the system.

We will start by applying the simple climate models to the study of the ice ages.
However in order to do that we need to go back to study in detail the solar radiation
and how this is modulated by the motion of the Earth in its orbit around the sun. We
will assume that the Kepler laws are known.
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15.2 The Solar Radiation and the Orbital Parameters

We can refer to Fig. 3.3, where we assumed that the distance of the Earth from the
sun at time t makes an angle � with the longitude of the perihelion. The Earth orbit
is described by the law of mechanics

r2
d�

dt
D a2

�
1 � e2

�1=2
(15.1)

where e is the eccentricity of the orbit and a is the semi-major axis, while

r.t/ D a
�
1 � e2

�
f1C e cos Œ�.t/�g (15.2)

is the instantaneous distance of the Earth from the sun. In this case, the unit for the
time is (1 year)/2p. If we define !D �C…, for a fixed value of the longitude of the
perihelion… we have

dt D r2d!

a2.1 � e2/1=2
(15.3)

The solar flux incident at the top of the atmosphere is then

S .t; �; i; e;…/ D S0a2

4r2
QS Œ! .t; e;…/ ; �; i� (15.4)

where � is the latitude, i is the obliquity, that is, the angle between the normal to the
ecliptic plane and the rotation axis of the Earth. S0 is the solar constant while the
quantity �

S0
4

�
QS .!; �; i/

can be considered as the flux relative to a circular orbit with r D a and !D t. We
already know that

1

2

Z �=2

��=2
QS .!; �; i/ cos�d� D 1 (15.5)

The quantity S (!, ', i D 23.3ı) is shown in Fig. 3.5. The issue now is that the
obliquity changes between 22.1ı and 24.5ı (the present value is 23.5ı) with a period
of about 40,000 years. The eccentricity changes between 0.00 and 0.04 (present
value 0.0167) with a period of about 100,000 years, and finally the longitude
of the perihelion returns to the same value roughly every 20,000 years (present
value 102ı). These quantities are shown schematically in Fig. 15.2 as a function

http://dx.doi.org/10.1007/978-3-319-29449-0_3
http://dx.doi.org/10.1007/978-3-319-29449-0_3


15.2 The Solar Radiation and the Orbital Parameters 509

Fig. 15.2 Plot of the
longitude of the perihelion
(top), the obliquity and the
eccentricity for the Earth as a
function of the time before
the present (in thousands of
years)

0

90

180

270

360

LO
N

G
. O

F
 P

E
R

IH
E

LI
O

N
 

22

23

24

25

0

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120 140
YEARS ( x1000)

O
B

LI
Q

U
IT

Y
E

C
C

E
N

T
R

IC
IT

Y

of time. It is interesting to evaluate the annual average of the solar flux that for an
eccentric orbit is given by

S0
4

Z 2�

0

QS a2

r2
dt D S0

4.1 � e2/1=2

Z 2�

0

QS d!

The annual average is then proportional to the quantity (1–e2)�1/2 and does not
depend either on the obliquity or on the longitude of the perihelion. However,
the annual average radiation at a given latitude other than the eccentricity also
depends weakly on the obliquity (it changes like sin(i)) but again does not depend
on the longitude of the perihelion; this, as a matter of fact, only determines the flux
distribution during the year at a fixed latitude. If we want to evaluate the absorbed
radiation we need to introduce the albedo ˛ so that the radiation absorbed at some
latitude is given by

S0

4.1 � e2/1=2

Z 2�

0

QS ˛d! (15.6)
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Fig. 15.3 The difference (in %) with respect to the average value of the solar radiation between
two different epochs. At left are shown the differences between 10,000 and 30,000 years ago, and
on the right between 75,000 and 85,000. Negative values (less radiation at the most recent epoch)
are indicated with dashed lines while the positive differences are shaded. WS and SS indicate
winter and summer solstice respectively. SE and AE are summer and autumn equinox

This means that for the absorbed flux to change the albedo must depend on
the season (!). This is the reason why it is so important to have models that can
calculate the albedo as a function of the season and not just energy balance models
because they must include seasonal effects.

The present value of the obliquity is 23.5ı so that the axis is roughly in the middle
of its oscillation. On the other hand, the eccentricity is around its minimum value.
To have a more precise idea of how the solar flux is influenced by the astronomical
parameters we can refer to Fig. 15.3, where the flux difference between two distinct
epochs is reported as a function of the latitude and the season. The values shown
in the figure are normalized to S0/4. The left part of the figure shows the difference
between 10,000 and 30,000 years ago. If we consider Fig. 15.2, we see that the
most recent epoch corresponds to the maximum value of the obliquity while the
most distant epoch corresponds to the minimum. This implies that 10,000 years ago
the northern hemisphere in the summer was receiving roughly 12 % more solar flux
than 30,000 years ago. The two hemispheres are not completely symmetric because
the difference has not been chosen to be exactly the period of the equinox precession
(23,000 years).

The figure on the right shows the same difference between 75,000 and
85,000 years ago. In this case, the obliquity has an opposite effect (the most remote
epoch receives more radiation) but now the most important effects are the precession
of the equinox and the eccentricity of the orbit. As a matter of fact, the eccentricity
increases and so the average annual flux increases, while the 10,000 years difference
enhances the effects of the equinox precession.
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An interesting conclusion of this rather superficial examination is that the
seasonal effects are predominant. For thousands of years, some regions of the
Earth received a very different quantity of radiation during winter and summer.
The simplest mechanism is that the temperature changes that result may change
the albedo which amplifies the initial temperature effect (ice-albedo feedback).

15.3 Some Experimental Data on the Ice Ages

The detailed history of the ice ages can be obtained from studying the ocean floor
sediments. Here the calcareous shells of the organisms that lived in the surface
waters may give a clear indication of the sea temperature.

One of the methods is based on measuring the ratio of the oxygen isotopes in
the sediments. Oxygen has three stable isotopes 16O (99.7 %), 17O (0.04 %), and
18O (0.2 %). The ratio between 18O and 16O is not constant and, for example,
the water vapor contains about 7 %� more 18O with respect to the water from
which it originated. The reason is that when a water molecule contains the lighter
isotope (H2

16O) because of its higher thermal velocity, it has a greater probability
to evaporate. By contrast, in the condensation process, the heavier isotope will be
lost preferentially. The net result for a humid air mass that moves from low to high
latitudes and that loses some of the water as rain is that it becomes progressively
enriched in the 16O isotope. This implies that Greenland ice contains about 30 %�
more 16O than seawater. During the ice age, we may expect the continental ice
sheets to have been enriched in the lighter isotope, while the seawater may have
been enriched in the heavier isotope (by about 1 %�). Related to this phenomenon is
the effect of the temperature, in the sense that the colder the seawater the higher is
the 18O content in calcareous shells with respect to the seawater. These two effects
during an ice age add up in the shells so that they contain about 1 %� more of the
heavier isotope because of the “heavier water” and about 1 %� more because of the
colder water.

Differences of about 2 %� can be measured with mass spectrometry in ice cores
or in the sediments. Today, it is possible to obtain “pistons” 20 m long, and assuming
a deposition velocity of the order of 2.5 cm every 1000 years, we can obtain the ice
volume until 800,000 years ago. The change in isotopic composition is represented
with the symbol ı18O %�, which gives the deviation with respect to a standard value
for seawater. If this deviation is positive, the ice volume increases and vice versa. A
typical record of this kind is plotted in Fig. 15.4 up to 0.5 million years ago. It is
quite clear from this figure that the rapid warming in the last 20,000 years follows
a slow cooling initiated about 100,000 years ago. Also evident from the figure is
the prevalence of the 100,000 year period, while the terminal phase of the ice age
(deglaciation) is always very fast.

When the signal is Fourier analyzed a spectrum is obtained as is illustrated in
Fig. 15.5. In this case, we have reported the power density which is an indication
of the energy contained in the different frequencies. Except for the details, which
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Fig. 15.4 The change in the
isotopic ratio for oxygen in an
ice core. In this case, the
change is plotted as standard
deviation with respect to the
mean. This particular sample
can go back up to 750 k
years, although here only the
first half million years are
reported. 0 on the time scale
is the present epoch

–3

–2

–1

0

1

2

0 100 200 300 400 50018
δO

 (
S

T
A

N
D

A
R

D
 D

E
V

IA
T

IO
N

)

Colder

Warmer

TIME (103 years )

Fig. 15.5 The power
spectrum for the signal of
Fig. 15.4. Notice how the
peaks coincide with the
periods of astronomical
modulation of the solar
radiation

0

10

20

30

40

50

60

70

80

0 0.02 0.04 0.06 0.08 0.1

P
O

W
E

R
 D

E
N

S
IT

Y

FREQUENCY (10-3 years-1)

105 years

4.1x104 years

2.3x104 years

may depend on the particular sample or ice core, the dominant frequencies are very
similar to those mentioned in connection with orbital motion and that is obliquity,
eccentricity, and equinox precession. It is quite surprising that most of the energy
is contained in the 100,000 year period considering that the modulation of the
absorbed radiation introduced by the eccentricity is very small. This is a common
characteristic of all the samples. This characteristic may indicate the existence of
some mechanisms capable of amplifying the small forcing. In the following pages,
we will see a couple of them of a very different nature.

The first of these mechanisms could be an example of how the Earth system may
work because it involves a component of the climatic system like the Earth’s crust
(i.e. the lithosphere) that is very different from the atmosphere. The idea is that
once the continental ice sheets reach the “mature stage” their weight could force
the lithosphere to subside on the underlying elastic mantle. In this way, the top of
the ice would be exposed to a warmer environment so that it could melt. While the
initial forcing for the growth of the ice sheets could be the insolation, the dominant
period would be determined by the time constant for the deformation of the crust,
which can be measured.
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The other class of theories has to do with a quite new concept in physics,
stochastic resonance. If a dynamic system has a number of equilibrium states
corresponding, for example, to the minima of potential curves, then the system
may oscillate between these states. The most interesting part, however, is that
even statistical physics gives us a finite probability for the system to escape the
potential well even if its energy is below the height of the well. This is because
a thermodynamic system (like a gas) may have components (like the molecules)
distributed along a certain range of energy. We have seen this in the case of Jean’s
escape. The climatic system can be described by a potential function, and the role
of the thermal energy in this case is played by noise. The states of the system could
be the glacial (cold solution) and interglacial (warm solution) climate and the noise
would be the vagaries of the weather. The passage between the two states (or we
may call it the transition) could be facilitated if on the strong noise we superimpose
a weak signal at some fixed frequency: then the transition will be mostly at this
frequency. This in short is what we call stochastic resonance. We will talk at length
later on about these theories but we would like to give now a glimpse of other
interesting data extracted from the ice cores. When the group of Hans Oeschger, in
the early 1980s, developed a technique to extract the gas that was contained in little
bubbles in the ice cores, another enigma started. This was actually a way to obtain
the atmospheric composition during the ice ages, with the result that is shown in
Fig. 15.6, where the content of two greenhouse gases (CH4 and CO2) is shown up
to 150,000 years ago together with the temperature difference with respect to the
present epoch. The figure is based on much more detailed data and it is smoothed at
5,000 years. The variations of the temperature follow almost perfectly those of the
two gases. This is not a proof of the greenhouse effect but something that is much
more complex and includes the interactions between biosphere, atmosphere, and
the climatic system: a quite good example of the Earth system at work. If a section
of the curve is enlarged (like that of the last 20,000 years) during the deglaciation,
sudden cooling can be observed that in a few years causes the climate of entire
regions to go back to glacial conditions. This is accompanied by covariant changes
of the greenhouse gas content. The explanation in this case may involve the deep
ocean circulation, and for the time being, we just do not have the ways and means
to go ahead on this road. We may try later on.

15.4 The 100 Kyear Cycle and the Lithosphere–Atmosphere
Coupling

The model (due to J. Weertman) used in this case is sketched in Fig. 15.7. The shape
of the ice sheet remains fixed as it grows and adapts as a perfect plastic material.
The shape is fixed with a relation between the height of the ice sheet and its length
according to

h D Œ� .L � y/�1=2 (15.7)
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Fig. 15.6 The content of
methane (top) and carbon
dioxide (bottom) as a function
of time before the present (in
thousands years) compared
with the temperature
difference with respect to the
present epoch
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where, always referring to the figure, the height of the ice sheet is given by

H D .�L/1=2

The quantity hR is the buried height, while 2 L is the latitudinal extension of the ice
sheet. The other quantities relevant to the problem must be introduced in connection
with the isotherm shown in the figure. This isotherm actually is the snow line: above
this line we will assume an accumulation of ice, while below we will have ablation.
The north in this figure is on the left so that going to the left we will have lower
temperatures. Considering that the temperature decreases also with altitude, it is
clear that the snow line will slope upward on the right side. Once the slope is
fixed, the position of this line can be obtained by fixing the distance between the
intersection (P) of the snow line and the surface to the north. We would expect that
if the global temperature decreases, the point P will move to the south so that the
surface available for the growth of the ice sheet will increase.

The portion of the ice sheet above and to the north of the snow line is denoted
as accumulation zone and the portion to the south ablation zone. Other than the
mentioned contribution by J.Weertman, these models are also due to J. Oerlemans
and recently to C. J. Van der Veen. In 1983, R. G. Watts and E. Hayder added to the
ice model a simple energy balance model. From observations (and also from a bit
of intuition), the rate of growth for the ice sheet can be written as

A D a ŒH � s .2L � p/� L � bŒH � s .2L � p/�2L H � s .2L � p/ < a=2b

A D a2L=4b H � s .2L � p/ > a=2b
(15.8)

The growth rate of the ice sheet is actually the rate of increase of the ice sheet
(assumed to have a unit width) cross section.

Equation (15.8) needs some comment. The quantity H – s(2L – p) is the
difference between the top of the ice sheet and the ice line measured on the southern
edge. The net ice accumulation increases with this difference until we have

H � s .2L � p/ D a

2b

This maximum accumulation rate corresponds to the southernmost position of the
ice line (that starts from the southern edge of the ice sheet) so that beyond this point
the growth rate can only be given by the second part of Eq. (15.8).

The Earth’s crust bends under the weight of the ice sheet as it grows. We may
assume that the crust adjusts to this weight with a time constant ˛�1 according to

dhB

dt
D ˛

�
h

3 � hB

�
(15.9)
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so that at steady state hR D h/3. We also assume that hR has the same form of h so
that the ratio

hB

h
D �.t/

is only a function of time. The rate of change of the volume for a unit width of the
part of the ice sheet that results toward the equator is

d

dt

Z L

0

.h C hB/ dy D 2�1=2

3

d

dt

�
.1C �/L3=2


(15.10)

To simplify the discussion is convenient to normalize the variables following the
rules

R2 D 4s2L=� p D 2s2P=� � D at=2
� D b�=2as � D 2˛=a � D �R

(15.11)

so that Eq. (15.8) becomes

1

3R2
d

d�


�
1C �

R

�
R3
�

D �
R � R2 C p

� �
1 � �

�
R � R2 C p

�
1

3R2
d

d�


�
1C �

R

�
R3
�

D 1

4�

(15.12)

The first is valid for (R�R2 C p) < 1/2 k and the second for (R�R2 C p) < 1/2 k.
Equation for � becomes

d�

d�
D �

�
R

3 � �
�

(15.13)

In this case, we need to assume R > 0
Now we can verify that the model works by supposing that the position of the

climate point P changes periodically with the law

P D P0 C�P sin

�
2�t

T

�
And by putting

ˇ0 D 2s2P0=� ˇ1 D 2s2�P=� ! D 4�=aT (15.14)

we obtain the non-dimensional form of the forcing

p D ˇ0 C ˇ1 sin!� (15.15)
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Now we can integrate numerically Eqs. (15.12) and (15.13), once the values
of the different parameters are fixed. As usual, these are the result of accurate
extrapolations of the growth rate of the ice sheets but also of some degree of fine
tuning, in this case

s D 10�3 � D 7m P0 Š �150km �P Š 300km

a Š 7:3 � 10�4 year�1 b D 2:7 � 10�7m�1year�1 T D 2 � 104year ˛�1 D
5 � 103year

When these values are inserted in Eq. (15.14), we have

ˇ0 D �0:0429 ˇ1 D 0:0714 � D 1:29 ! D 0:938 � D 0:55

Regarding these numbers we can make some considerations. First of all, the
slope of the isotherm is simply the ratio between the temperature lapse rate and its
horizontal gradient and can be easily determined. In this way, the maximum growth
is for a/2b D 1350 m.

To obtain the real time from the normalized one, we need to multiply by 2740
years. We may ask with all the approximations we have made if it makes any sense
to write down numbers to the fourth decimal digit but we will discover the reason
for this in a while. Figure 15.8 shows the results of the integration. In the figure are
shown as a function of time, the maximum height of the glacier for two different
values of the forcing function that corresponds to a change in the middle position
of the climate point of only 8.4 km. We notice clearly a bifurcation because a small
change in P0 corresponds to the growth or the decay of the ice sheet. The initial
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Fig. 15.9 The phase space
diagram for the growth of the
ice sheet. On the axis is the
position of climate point p
and the dimension R. Both
are normalized
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growth is rather slow and the modulation due to the solar radiation (that in this case
has a period of 20,000 years) is quite evident.

Further insight in to the mechanism can be obtained by building a diagram in the
phase space defined by the dimension of the glacier and the climate point, as shown
in Fig. 15.9. Starting from an initial value p(�) zero as the climate point moves
toward south (that is, the Earth cools), the glacier will grow. Once the maximum
value of p(�) is reached, the growth slows down even when p becomes negative. If
p stays negative long enough, the ice sheet will melt completely and in order to start
to grow again p must become positive again. In this way, we enter a limit cycle and
the ice sheet grows but not to a large size.

In the case that p becomes positive before the ice sheet is completely melted
the size will increase even when p again becomes negative. Then the ice sheet will
grow to a maximum size and a new limit cycle will begin. This bifurcation does
not depend only on the value of ˇ0, which corresponds to the initial position of the
climate point, but also on ˇ1 which corresponds to the amplitude of the oscillation.

To understand this point we may consider the case in which the crust can adapt
instantaneously to the ice sheet weight (�D 1). We can then study the system near
its equilibrium point for small values of R. Equation (15.12) will give

4

3

dR

d�
D R C p (15.16)

With the initial condition R D 0, when p D 0 we have

�1 D !�1 arcsin

��ˇ0
ˇ1

�
I �2 D 2� C !�1 arcsin

��ˇ0
ˇ1

�
while a particular solution of Eq. (15.16) is of the form

R D A sin!� C B cos!� C C
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that substituted in Eq. (15.16) gives the equations for the determination of the
constants

A! � 3B=4 D 0I �B! � 3A=4 D ˇ1I �3C=4 D ˇ0

And considering R D 0, we obtain

�ˇ0
ˇ1

D 1=
h
1C .4!=3/2

i1=2
(15.17)

As a consequence, if ˇ0/ˇ1 is larger than the right-hand side, then the ice sheet
will remain small. On the other hand, if ˇ0/ˇ1 is smaller, then R(�2) > 0 and the ice
sheet will grow reaching a limit cycle around R D 1. To understand how this second
limit cycle works we put R D 1 C ", with " a small quantity, so that we can write a
linearized form for Eq. (15.12)

d"

d�
D 3 .p � "/

4

And a steady state solution for this equation is given by

" D ˇ0 C ˇ1 sin



!� � arctan

�
4!

3

��
=



1C

�
4!

3

��1=2
(15.18)

From this we see that the center of the limit cycle is given by R D 1 Cˇ0 � 1 so that
the maximum dimension of the ice sheet is given by L � l/4 s2.

The theory then says that in order for the ice sheet to grow the cooling is not
enough (i.e. ˇ0). This could, for example, explain why until 2.4 billion years ago
there is no trace of glaciation on the Earth, because the climate was too warm.
When further cooling produced a colder climate, a threshold was reached for the
bifurcation to occur and consequently the ice sheets grew.

This theory does not explain the sudden termination of the ice ages. However, a
variation of the same theory, from D. Pollard, suggests a mechanism for the sudden
warming. In practice, when the ice sheet starts to melt on its southern edge, it may
form a glacial lake that may accelerate its ablation or calving.

Let us face the truth: we are a little bit tired of ad hoc theories and so we would
like to turn to a more general approach. We will resume some of the chaotic aspect
of climate in the last chapter of this book, when we will learn a little more about
limit cycle and all the technical jargon of the dynamic systems.

15.5 Stochastic Resonance

The stochastic resonance is a concept introduced in connection with the problem of
explaining the timing and periodicity of the ice ages. To learn how it works we can
refer to Fig. 15.10, which shows the results of a very simple mechanism.
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Fig. 15.10 An illustration of the mechanism for stochastic resonance. The noise (grey) added to
the small sinusoidal signal produces the spikes at the top of the figure each time the signal exceeds
the threshold. The spikes have a frequency that is a multiple of that of the periodic signal

We imagine having a periodic signal that is electronically added to a white noise
that in this case is actually given by a random number generator. The maximum
amplitude (actually the mean square value) is about ten times the amplitude of the
periodic signal. Every time the resulting signal is greater then a fixed threshold a
spike is produced. Only the noise will be marginal in producing any spike, while
the periodic signal, because of its small amplitude, never goes above the threshold.
The spike occurrence will happen preferentially when the periodic signal reaches its
maximum positive value so that the resulting frequency of the spikes will be tuned
to the frequency of the sinusoidal signal. The net result is the possibility to use the
noise energy to go over some potential barrier at a frequency that is basically that of
a small periodic signal.

One would think that a larger noise would increase the production of spikes but
that would be no longer at the frequency of the periodic signal. In a sense there is
an optimum ratio between noise and signal that produces a tuned response.

This concept can now be applied to the climatic system. Earlier in Chap. 14, we
mentioned that the ice ages might have been produced by oscillations of the climatic
system between two equilibrium states that we found studying the simple climate
models. In particular if we use Eq. (14.9), we can write a relation like

http://dx.doi.org/10.1007/978-3-319-29449-0_14
http://dx.doi.org/10.1007/978-3-319-29449-0_14
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C
dT

dt
D g .t;T/ (15.19)

where g (t, T) D �dF/dt, with F given, for example, by Eq. (14.12). Actually the
right-hand-side term can be written as

Q .1 � ˛.T// � A � BT

This function is represented in Fig. 14.4 and is equivalent to a potential having two
equilibrium points (warm and cold climate) and one unstable point. This is not a
very realistic situation because the temperature interval separating the two states is
too large. Only for the sake of an exercise we can think of a very simple form of
the potential that again has two minima that are symmetrical. A possible candidate
would be of the form

c C 0:5˛T2
�

T2

2 � 1

�
If the potential is treated as in mechanics we could write out of this potential an
“equation of motion” for the temperature given by

d2T

dt2
C k

:

T C ˛
�
T3 � T

� D f cos!t (15.20)

The term proportional to dT/dt is the damping due to the emission of infrared
radiation, while the term proportional to ˛ is in fact the potential gradient (in
mechanics term is the acceleration). The potential has two minima that are located
at T D ˙1 and a maximum located at T D 0, while the depth of the minima is ˛/4.
The right-hand-side term in Eq. (15.20) is the forcing and if its amplitude is large
enough the system may oscillate between the two potential wells. Following what
we have learned before about stochastic resonance, even if the forcing is not large
enough we still could expect a transition provided that we add a noise to the forcing
term

d2T

dt2
C k

:

T C ˛
�
T3 � T

� D f cos!t C q2A.t/ (15.21)

where A(t) is the stochastic forcing that has the characteristics of a white noise

hA.t/i D 0 and
˝
A.t/A

�
t0
�˛ D "2ı

�
t � t0

�
with " being the variance. Usually the system will tend to oscillate in one of the
wells unless the sum of the deterministic forcing (i.e. the periodic term) and the
noise is greater than the potential barrier. In this case, the system will jump from
one well to another.

http://dx.doi.org/10.1007/978-3-319-29449-0_14
http://dx.doi.org/10.1007/978-3-319-29449-0_14


522 15 Application of Simple Climate Models

–2

0

2

–1

0

1

dT
d/

t

–2

0

2

–1

0

1

dT
d/

t

0 2000 4000 6000 8000
TIME

–2

0

2

-2 0 2
–1

0

1

TEMPERATURE
dT

d/
t

Fig. 15.11 The amplitude of a non-linear oscillator forced by a deterministic signal and white
noise. The three cases (from top to bottom) are for q2 D 0.2, 0.5, and 0.8. On the right, the
corresponding phase space diagrams are shown

This is shown in Fig. 15.11, where three case are reported for the parameters
in Eq. (15.21), given by k D 0.15, ˛D 0.5, !D 10�3� and f D 0.14. We notice that
when q2 is small, starting from arbitrary initial conditions, the system will be trapped
in one of the two potential wells. The amplitude of the oscillation is always positive
(or negative) with a value around 1(or �1). Increasing the value of q2 the system
will occasionally jump to the other well, but as is clearly shown in the phase space
diagram, it will stay mostly in the well where the system is initialized. Increasing
further the value of the variance, the transitions become regular and the frequency
is just about that of the deterministic signal.

If we look carefully at the phase space diagrams, we see that the transitions
happen when the “velocity” (i.e. dT/dt) is almost zero because the system is then
on the edge of the well. If we start from T D 1, the transition can then happen only
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if dT/dt < 0 so that in the phase space diagram the system goes toward where both
dT/dt and T are positive. The opposite happens when we start from T D �1.

Transitions between the two states occur only when noise is present and when
its variance is large enough. Actually it is possible to notice two frequencies that
correspond to the deterministic forcing and to the frequency due to the fact that the
system oscillates in one of the potential wells. Around the minimum, the potential
can be written as �(T � 1)2 so that the frequency for small oscillations is of the
order of ˛1/2 so that in our case it is about hundred times larger than the frequency
of the deterministic forcing

The relevance of stochastic resonance for the ice age problem is rather evident.
In this case, the forcing could be related to the astronomical modulation of the

solar radiation. The signal itself is unable to produce any effect but when coupled
to a “climatic noise” it could produce transitions between the different climatic
states. This could be a manifestation of a quasi-intransitive system and the origin
of the noise could be in the seasonal variations. If one of the climatic regimes were
to correspond to a frigid winter, then once this state is reached it could be self
maintained because at the beginning of summer there could be still an appreciable
snow cover.

The scheme we have adopted is extremely simple and its only justification is to
illustrate that one of the climatic mechanisms which might have been responsible
for the ice ages has to do simply with the non-linearity of the climatic system. The
origin of the non-linear characteristics is much harder to locate although it could be
traced to the ice-albedo feedback and ice sheet dynamics.

A very simple system of this kind is reported in the Appendix for this chapter
and reproduces the original work of Sutera et al. The results shown in Fig. 15.12
are obtained from that model and are compared with the general behavior of the ice
volume obtained from ice core data analysis.

15.6 The Global Warming: A Simple Exercise

Nothing is more annoying than to see disguised as a very sophisticated problem
something that any second year physics student can do as an exercise. In the realm
of climate models, there are many things like that. For example, one of the simplest
problems is to apply the energy balance concept to the calculation of the average
global temperature. In this case, the Earth is reduced to something like a box that
receives additional heat from the so-called greenhouse gases that warm the surface
of the planet. In this case, the feedback mechanisms are also very important. The
deep ocean and the continental crust also absorb heat so that the Earth in a sense
behaves like a capacitor. This may explain our mentioning second year in physics,
because we will try to imitate the IPCC (Intergovernmental Panel for Climatic
Change) through an electrostatic exercise and very elementary electronics.
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Fig. 15.12 The results of the simulation of ice age occurrence with a stochastic resonance model.
The top figure shows the data (same as in Fig. 15.3), while the panel below shows the results with
an increasing amount of noise

15.6.1 The Near Future Climate of the Earth as a Problem
of Electrical Engineering

It is now time to analyze with some detail the feedback concept by refreshing what
we learned in some elementary theory of electrical circuits. We refer to Fig. 15.13
which is a typical feedback arrangement. In this case, Vs is the initial input signal.
The effective input signal is V1 so that the gain G is given as the ratio between the
output signal V2 and the effective input signal

G D V2
V1

(15.22)
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Fig. 15.13 The feedback
circuit. See text for the
meaning of the symbols

Vs V1
V2 V2

V2VF

Σ G

H

If a fraction of the output signal (VF) is summed in the input, we can define a
feedback factor H as

H D VF

V2
(15.23)

The input signal is now V1 D VS C VF and the output signal becomes

V2 D GV1 D G .VS C VF/ D G .VS C HV2/ (15.24)

The gain with the feedback is then

GF D V2
VS

(15.25)

and eliminating V2 between Eqs. (15.23) and (15.24), we get

GF D G

1 � GH
D G

1 � f
(15.26)

where f D GH is the feedback of the system.
The connection with the climatic system is quite simple. We assume a change

in the net radiative flux at the top of the atmosphere �Q so that the corresponding
temperature change at the surface, taking into account all the feedback mechanisms,
will be

�T D GF�Q (15.27)

In this case, the role of �Q is the same as Vs while �T substitutes for V2. The
corresponding quantity to V1 will be a change in the flux �Q0 given by

�Q0 D �Q C
�
†
i
Hi

�
�T (15.28)

This flux may be written in the form

�Q0 D
X

e

@Q0

@xe
�xe C

 X
i

@Q0

@xi

@xi

@T
C @Q0

@T

!
�T (15.29)
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where it is assumed that the variations of the flux depend on external variables (xe)
like the solar radiation and internal variables (xi) like the albedo and directly on the
temperature. Comparing Eqs. (15.28) and (15.29), we obtain

X
i

Hi D
X

i

@Q0

@xi

@xi

@T

As done previously Eq. (15.27) can be written as

�T D G

1 �†fi
�Q (15.30)

where G is the gain in the absence of feedback. Actually the quantity GF is what we
have previously called climate sensitivity �.

A simple example of the feedback factor can be made with the greenhouse effect.
We have seen that for an initial forcing of 4 Wm�2 and a climate sensitivity of 0.3
(in absence of any feedback), we have a temperature change of 1.2 ıC that may go
to 1.7 ıC when the water vapor feedback on the IR radiation is considered and to
1.9 ıC when the feedback is extended to the solar radiation. If we apply Eq. (15.25),
we get Hir D 0.98 and Hsol D 0.248, and these values imply a climate sensitivity

� D 0:3

Œ1 � 0:3 .0:248C 0:98/�
� 0:48

The feedback factor can be converted in the perturbation of infrared or solar flux so
that we have

�Fir

�T
D 0:98 Wm�2 K�1 �Fsol

�T
D 0:248 Wm�2 K�1

Other types of feedback (ice–albedo, clouds, etc.) can be treated in the same way,
keeping track of the sign.

A very simplified picture of the climate system is shown in Fig. 15.14, where the
changing atmospheric composition produces a change �Q of the radiative forcing.
This additional energy implies a temperature change �T of the ocean surface. The
surface layer is well mixed and reacts much more rapidly than the underlying ocean
through which the heat diffuses with a flux �F. The surface of the Earth is heated
directly by the atmosphere but also through the energy exchanged with the oceans.
We may assume a change in the equilibrium temperature �T D� �Q, and in this
case, the land temperature could be found by assuming a balance between the
energy received by the atmosphere and that lost (or gained) to the ocean through
conduction. Indicating with f the portion of the earth surface occupied by land
(0.29), we obtain

f�Q C k .�TO ��Tl/ D f�Tl

�
(15.31)
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Fig. 15.14 A very simple
sketch of the
land–atmosphere–ocean
system. The radiative forcing
acts both on the land and the
ocean. Heat is transported in
the ocean and land through
diffusive processes (arrows)

where �T0 is the temperature change of the atmosphere over the ocean that can be
assumed to be the same as the ocean surface layer. �Tl denotes the temperature
change over land and k is the exchange coefficient between the solid earth and the
ocean. From Eq. (15.31), we obtain easily

�Tl D .f��Ti C k�TO/

.f=�C k/
(15.32)

The evaluation of the temperature change of the mixed layer is a little bit more
complicated because the heat capacity of the ocean (even of a relatively thin layer) is
much larger than a corresponding layer of solid earth. For this, we may assume that
the layer of interest has a 6 m thickness with a density of about 1.8 103 kg m�3 and
a specific heat of 0.34 103 J kg K�1 so that the heat capacity per unit surface is 3.7
106 J m�2. The corresponding heat capacity for 100 m depth is 4.2 108 J m�2, about
two orders of magnitude higher. We can obtain an average heat capacity through
a weighted mean that takes into account the relative surface of the ocean and land
and we arrive at a value that is about 70 % of the heat capacity of the ocean. The
consequence is that the time constant for the temperature change is of the same order
of magnitude as the characteristic time for the forcing (that is, the increase of the
greenhouse gases). This implies that to calculate the temperature change we must
recur to a time-dependent equation. As shown in Fig. 15.14, the input term is again
the radiative forcing �Q produces a temperature change �T in the mixed layer.
From this layer, heat is lost via diffusion to the deep ocean so that the temperature
change in the layer becomes

Cm
dT

dt
D �Q � �T

�
��F (15.33)
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where Cm is the equivalent heat capacity and �F the diffusive flux. If the
temperature gradient at the interface mixed layer-deep ocean is @T0/@z and � is the
diffusion coefficient in m2 s�1 the diffusive flux will be

�F D 
cO�
@T0
@z

(15.34)

where 
 and co are the density and specific heat of the ocean respectively. This
equation shows that it is necessary to obtain not only the surface temperature but also
the distribution with depth T0(z, t). The temperature is determined by the diffusion
equation

@�T0
@t

D �
@2�T0
@z2

(15.35)

where z is the vertical coordinate with the origin at the bottom of the mixed layer.
Solutions to this equation are obtained with boundary conditions such that at the

bottom of the ocean the temperature perturbation must be zero all the time while at
the surface the change is instantaneous

z ! 1I �T0 .1; t/ D 0I �T0 .0; t/ D �T.t/:

This is a classical problem that has a rather well-known solution

�T0 .z; t/ D 1 � erf
h
z=2.�t/1=2

i
(15.36)

where the error function (erf) is defined as

erf.x/ D �
2=�1=2

� Z x

0

e��2d�

The flux into the deep ocean is then

�F D �
c0�.@T0=@z/zD0; (15.37)

which may be expressed as a function of the temperature perturbation

�F D �
c0�
�Tp
��t

We introduce a characteristic time for diffusion given by

�d D �h2

�

where h is the thickness of the mixed layer and Eq. (15.33) becomes

�
d�T

dt
C�T

�
1

�f
C ��p

�dt

�
D �Q


c0h
(15.38)
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Fig. 15.15 The response of the climatic system to a constant forcing (step function) and a linear
forcing. The temperature in the first case is normalized to its asymptotic value, while the linear
forcing amounts to 0.015 tWm�2 years�1. The solid line takes into account only the mixed layer,
while the dashed line considers the effect of the deep ocean

where

�f D 
c0h

�

and � is the ratio between the effective thermal capacity and that of the ocean 
coh.
Equation (15.38) presents a little surprise which is the appearance of the factor �.

Actually we have used only an approximate method to solve Eq. (15.33) because
we have treated the diffusion as a separate process. The factor � is then a simple
correction to this solution and its value ranges between 1.4 and 2.7 according to
the different forcing. The determination of the time constants is one of the many
uncertainties in this game. We have �D (1  3) 10�4 m2s�1 so that with h D 100 m
we have �d D 3  10 years. Even more vague is the value for � f because it depends
on the climate sensitivity � and changes linearly with it. For an accepted value of
0.5 w m�2 K�1, we have � f D 6.5 years. Equation (15.38) is similar to that of a
charging capacitor with a time constant that depends on time. To understand better
the time dependence we can solve two cases, first using a step function for the
forcing that starts at t D 0 and then a forcing that increases linearly with time.

Figure 15.15 show the results of this exercise, and it is clear that when the
diffusion in the ocean is neglected, the response time of the system is quite short
and is equal to the time constant chosen, that is, 7.5 years.

The introduction of the ocean diffusion changes drastically the result because
now the time constant increases with time. In the case shown in the same figure, we
have an “equivalent” constant that is of the order of 50 years. Always working with
the capacitor analogy, we see that the two capacitors (deep ocean and mixed layer)
are in parallel so that it is the largest capacity that determines the total value.
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Fig. 15.16 The total
greenhouse gases forcing
(solid line on the top) and the
corresponding temperature
change (solid line below).
The experimental data
referred to the 1880–1920
period are shown by the full
circles. Dotted line shows the
temperature change when the
effect of the ocean is taken
into account. Dashed line
includes the aerosols effect
whose radiative forcing is
shown on the top with the
dashed line
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We can now introduce a more realistic forcing like those used in IPCC scenarios,
that take into account, besides the carbon dioxide, also the other greenhouse gases.
This is shown in the upper part of Fig. 15.15, while the lower part shows the
corresponding temperature change. Comparing this result with the experimental
data, we see that our model gives a much larger warming. It should be noted that in
this case warming starts in 1765 so that in 1850 it is already much different from
zero. Also here we have both cases with and without the ocean (Fig. 15.16).

To reconcile the experimental data with the model results, in the last few years
a negative forcing has been added to the scenario that is attributed to the presence
of aerosols. When fossil fuels are burned sulfur dioxide is produced and this can
form (we will see in the next chapter) sulfuric acid which goes into solution in the
raindrops. The resulting aerosol has very nice reflective properties. Solar radiation
is then reflected and this process could compensate for the increasing greenhouse
forcing. In the upper part of Fig. 15.15, this negative forcing is also shown and the
relative temperature simulations look very much like the experimental data.

We can play around with these things, but besides the different constants and
the simplicity of the model, a very important point is to decide the period that
corresponds to the average. This has different implications. As we have remarked
before going too far in the past implies a comparison with data that are quite
different in quality. On the other hand, an indication may be good enough, but still it
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will depend on the period chosen for the average. In our case, the deviations refer to
the average between 1880 and 1920. To change this period and repeat the simulation
for it may require some adjustment in the forcing. In any case it may be encouraging
to know that such simple calculations are confirmed by more complex simulations,
like those performed by the general circulation models (GCM) of the atmosphere,
which are the most sophisticated tools for the simulation of climate.

A good way to close this chapter is to talk about them. Of course, we will not be
able (due to their complexity) to be very detailed and so we will report only some
of their results. These evaluations may be a little outdated but it does not seem that
in recent years too much improvement has been made.

15.7 The General Circulation Models

The most complete approach to the study of climate dynamics can be identified with
the general circulation models (GCM). These can simulate the circulation of the
atmosphere and the ocean and in principle should be able to reproduce the climates
of the different regions of the Earth and their evolution with time.

We must say that GCMs in a sense are a spin-off from something that is supposed
to be more rigorous which is the numerical forecast models. These models are used
in completely different way (as we already said) because they solve an initial value
problem. Once initialized with roughly observed data, they are able to forecast
the weather for several days. When used in the climate mode, the GCMs solve a
boundary value problem and may produce reasonable results only when some kind
of steady state is reached; this may take forever for the grid resolution of weather
forecast models. For this reason in a GCM used as a climate model, the resolution
usually is degraded and most of the physical processes are highly parameterized.

To have a rough idea of how many processes must be taken into account we
can refer to Fig. 15.17, which is already impressive without going in to any
further detail. Usually the atmosphere is treated as an adiabatic gas in hydrostatic
equilibrium. We can refer to a single variable like the surface temperature and see
how this is determined by the radiative flux (solar and IR). In turn the temperature
may influence these same fluxes. Another important component of surface energy
balance is the sensible heat which is determined by the winds and how these interact
with the small-scale characteristics of the surface.

What is not apparent from this scheme are the different temporal and spatial
scales involved in these processes. We go from the planetary scale for the Rossby
waves to the microphysical scale for the growth processes of droplets in the clouds.
This large span in the scales sometimes requires that these processes be simplified to
the point that they can be described by very few variables. For example, the growth
of clouds is not treated in detail, but rather each time that the relative humidity
reaches a threshold, it is decided that a cloud is formed with an appropriate amount
of liquid water and particles of specified size distribution. Another example is the
treatment of the soil water content. In this case, a very crude approach is the bucket
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Fig. 15.17 A schematic illustration of the processes included in a general circulation model. The
arrows gives the direction of the process and their thickness is proportional to the importance of
the different processes (From Simmonds and Bengtsson 1984)

model. It is assumed that a certain type of soil can only absorb a finite amount of
water with the excess going as run off. In most cases, the function of the vegetation
is neglected. This approach is what before we have called parameterization.

The GMC is then more like a numerical machine made of different parts that
are called codes or packets. Each of these parts deals with a different process and
its interaction with the others. These codes simply translate the equations we have
studied (radiative transfer, thermodynamics, etc.) in to numerical equations. The
solution of these equations, the flow of input and output data is such a large amount
of work that it can be carried out only by the most powerful computers.
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15.7.1 The Model Equations

The equations on which most of the models are based are called primitive, and we
have used them in different and simplified forms. The variables that are solved in
the models are usually the horizontal velocity v(u, v), the temperature T, the specific
humidity q, and the surface pressure ps. The vertical coordinate system used in most
cases is denoted sigma, and in this case, the vertical coordinate for the pressure level
p is given by

� D p

ps

In this coordinate system, the relevant equations are the momentum

Dv
Dt

C f k � v C r' C RTr ln ps D Pv C Kv (15.39)

the thermodynamic equation

DT

Dt
� RT!

Cpps�
D PT C KT (15.40)

the conservation of water vapor

Dq

Dt
D Pq C Kq (15.41)

the conservation of mass

Dps

Dt
C ps

�
r � v C @

:
�

@�

�
D 0 (15.42)

and the equations of hydrostatic equilibrium

@'

@�
D �RT

�
(15.43)

The total derivative is also calculated in the sigma system. Besides all the other
variables already defined, Px is the generalization of the force due to all parameter-
ized processes while Kx is a diffusion coefficient. Diffusion is introduced in order to
smooth out the small-scale perturbations or those due to numerical integration. The
surface pressure is obtained by integrating Eq. (15.42) from � D 0 to � D 1 so that
we get

:
� D 0

! D Dp

Dt
D �v � rps �

Z �

0

r � .psv/ d� (15.44)
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Fig. 15.18 The vertical
coordinates system in a
general circulation model
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The solution to these equations is obtained by transforming them into finite
difference equations in the same way as was done for the two levels model.
As shown in that case, the vertical coordinate system refers to layers delimited
by pressure levels, as shown in Fig. 15.18. The forecast for all the variables is
performed at the center of the layer.

For the horizontal grid, the choice is possible between the rectangular grid and
the so-called spectral method. By referring to Fig. 15.18, we see that a rectangular
grid just covers the space with grid points (where the variables are predicted) along
latitude and longitude.

The spectral method in a sense is more obvious because any variables are
developed in spherical harmonics

X .�; �; �; t/ D
mDMX

mD�M

LX
lDjmj

Xm
l Pm

l .sin �/ eim� (15.45)

where � and ' are the longitude and the latitude and Pm
l (sin �) are the Legendre

associated polynomials. With this method, the prediction is performed on the
coefficients Xm

l . One of the advantages of this method is that it does not produce
singularity at the poles or at the equator. Also the use of the FFT (fast Fourier
transform) makes this method particularly efficient from the point of view of
computer time. The truncation is one of the critical points of the spectral method
because it can be seen from Eq. (15.45) that for each number m two different
summations can be performed and consequently two different truncations can be
adopted. The first truncation is represented in the upper part of Fig. 15.19 and is
called romboidal truncation (R). In it, for each zonal number m an equal number of
zonal terms are summed, that is L D �m�C M. In the triangular truncation, we have



15.8 The Performances of GCMs 535

Δlong

Δl
at

u

u

v v

T

T

T

T
ps

ps

ps

q

ps

q

qq

l

l

M

M

I m I

I m I

Fig. 15.19 The grid for solving the equation with a finite difference scheme is shown at the left,
while at the right the region in wave number space is shown for the rhomboidal (up) and triangular
truncation (bottom)

simply L D M and normally the models are indicated for example as T21, which
means a spectral model with triangular truncation with M D 21.

15.8 The Performances of GCMs

As is customary in physics, theories are compared with experimental data. It must be
stated that GCMs do not represent the expression of any theory on how the climate
system works. Models are “engineering” construction used mainly to simulate past
present and future climate. In the last application, the appropriate world is not
forecast but rather but rather projection. The simulation of past (recent) climate
is called hindcast and it not very popular among the practitioners. In any case, there
are different problems related to test the GCM projection. One is the comparison
with the data and the other is the comparison among models. In both cases because
we are talking about the field of variables, methods must be found to assess globally
the model results. We report a few methods suggested recently in the literature.

15.8.1 The Taylor Diagram

The Taylor diagram can easily summarize the degree of correspondence between
simulated and observed field. In this diagram, the correlation coefficient and the
root–mean–square (RMS) difference between the two fields, along with the ratio of



536 15 Application of Simple Climate Models

the standard deviations of the two patterns, are all indicated by a single point on a
two-dimensional plot. We should give now some statistical definition.

Consider two variables fn and rn which are defined at N discrete points (in time
and/or in space). The correlation coefficient R is defined as

R D

NX
nD1

�
fn � f

�
.rn � r/

N�r�f
(15.46)

where f and r are the mean values, and � r and � f are the standard deviations for
r and f. Weight could be used to taken into account the different grid cell area or
vertical pressure spacing. Another quantity of importance is the RMS difference E,
which for the two fields f and r is defined as

E D
"
1

N

NX
nD1

.fn � rn/
2

#1=2
(15.47)

Again weights can be used for cells of different areas.
To isolate difference in the patterns from the difference in the mean of the two

fields, E can be resolved in two components. The overall “bias” is defined as

E D f � r (15.48)

and the centered pattern RMS difference is defined as

E0 D
(
1

N

NX
nD1

��
fn � f

� � .rn � r/
2) 1=2

(15.49)

If we sum the square of (15.49) and (15.48), we obtain the square of (15.46)

E2 D E
2 C E02

The correlation coefficient and the RMS difference provide complementary infor-
mation about the correspondence between the two patterns. However, a more
complete characterization requires the standard deviations of the fields. All these
quantities can be displayed in a single diagram, if we recognize from (15.49) that

E02 D �2f C �2r � 2�f�rR

This relation is the same used to calculate the sides of the rectangle shown in
Fig. 15.20. So that the geometric representation of Fig. 15.20.
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Fig. 15.20 Geometric
relationship between the
correlation coefficient R, the
centered pattern RMS error
E’, and the standard deviation
on the test and reference field

Fig. 15.21 Diagram for displaying pattern statistics. The radial distance from the origin is
proportional to the standard deviation of a pattern. The centered RMS difference between the test
and the reference field is proportional to their distance apart (in units of the standard deviation).
The correlation between the two fields is given by the azimuthal position of the test field (Adapted
from Taylor 2001)

It is now possible to construct a diagram that statistically quantifies the degree
of similarity between the filed f and r. One is defined as the “reference” filed and
represents some observed state. The other will be called the “test” field and refer
usually to some model simulation. The purpose is to quantify how the test field
resembles to the reference field. In Figure 15.21, this kind of diagram is outlined.
This diagram refers to the precipitation so that the polar axis report the standard
deviation of the precipitation.
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Fig. 15.22 Taylor diagrams of the twentieth century CMIP3 annual cycle climatology (1980–
1999). On the left, data are shown for the Northern Hemisphere for the variables, 850 hPa air
temperature (black dots) and total precipitation. On the right, the same data are shown for the
tropical region (Adapted from Taylor 2001)

The observed data is represented by the black circle on the horizontal axis. The
radial distance from the origin is proportional to the standard deviation of a pattern.
The centered RMS difference between the test and the reference filed is proportional
to their distance apart (in units of the standard deviation). The correlation between
the two fields is given by the azimuthal position of the test field. The dashed lines
circle represent the distance from the reference point and then based on Fig. 15.20
indicates the RMS error. On the same diagram labeled as A, B, C : : : .are represented
a number of models. For example, if we take model F we found that the correlation
with the reference is 0.65 with a standard deviation of 3.2 mm/day and a RMS of
2.60 mm/day.

A possible application of this method is reported in Fig. 15.22. In this case,
the diagram shows two different variables, the air temperature at 850 hPa and the
total precipitation rate. These variables are taken from the collective exercise called
CMIP3 (Coupled Model Intercomparison Project) and compared with the data set
ERA40 (ECMWF Re-Analysis). The latter is a reanalysis of the global atmosphere
and surface conditions for 45 years, over the period from September 1957 to August
2002. The only difference with respect to what said before is that the data are
normalized around the standard deviation of the reference. It can be seen that for the
northern hemisphere that the dispersion of the different models, there are seven of
them and the correlation especially for precipitation is quite poor. The temperature
shows a much better agreement with data with a lower dispersion. On the other
hand, the tropical region shows for both temperature and precipitation a quite poor
agreement and again especially for precipitation.

The difference between models is of the same order of magnitude as what
is expected from a carbon dioxide doubling and so is not a good characteristic
allowing these models to simulate anything. However even the poor agreement
may be misleading. In the past, the capability of these models to reproduce the
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Fig. 15.23 The Equilibrium Climate Sensitivity (ECS) as a function of Global Mean Surface
Temperature (GMST) on the left and as a function of the Transient Climate Response (TCR) on
the right. The small symbols are from the pre-industrial control runs. Data are from 23 GCMs

transport along the latitude has been studied. It was found that, although they show
differences of a factor of 2 in the heat fluxes, they still give a rather good agreement
in predicting the temperature as a function of latitude. The reason for this apparent
paradox is that the models are not equal because they omit any process that may alter
the reproduction of the experimental temperature profile. GCMs are then subject by
their authors to a certain amount of fine tuning. Following the work of pioneers
like Robert Cess, now the model evaluation is carried out by armies of researcher
with final products like the IPCC reports. From the latest assessment (2013), we
take Fig. 15.23 where the Equilibrium Climate Sensititivity (ECS) is shown as a
function of the Global Mean Surface Temperature (GMSAT) and the same ECS
as a function of the Transient Climate Response (TCR). The ECS is defined as the
equilibrium change in global and annual mean surface air temperature after doubling
the atmospheric concentration of carbon dioxide. The TCR, on the other hand, is
the change in the same temperature when the concentration of CO2 is increased by
1 % a year and calculated using the difference between the start of the experiment
and a 20 years period centered on the time of CO2 doubling. TCR is smaller than
ECS because ocean heat uptake delays surface warming. It can be noticed that
the sensitivities range between 2 and more than 4.5 ıC and the amplitude has not
decreased in the last 20 years. The ECS being larger than TCR it is evident from the
straight line that fit the data.

15.8.2 The Feedback Factor

Another important parameter that can be obtained from the models is the feedback
factor defined earlier. Equation (15.30) can written as

�T D �T0
1 � f

(15.50)
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Fig. 15.24 The relation between the uncertainty in the feedback factor and the resulting uncer-
tainty in the climate sensitivity. To a gaussian distribution in f corresponds a skewed distribution
in the sensitivity (Adapted from Roe et al.)

Figure 15.24 shows the behavior of �T as a function of the feedback factor for
a �T0 D 1.2 ıC. Values of f beyond unity are not meaningful. As shown in the
figure, an uncertainty in the feedback factor (ıf) will produce an uncertainty in
the temperature (ıT) whose amplitude will depend on the values of f. The same
uncertainty will produce a larger ıT for feedback factor near 1. This can be easily
shown for a Gaussian distribution hf (f )

hf .f / D 1

�f

p
2�
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24�1
2

 �
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�
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!235 (15.51)

Then we can obtain the distribution of the sensitivities hT (�T) using the relation
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As shown in Fig. 15.24, the skewness in the sensitivity distribution is a result of
the non-linear dependence of the sensitivity on the feedback factor. The possible
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Fig. 15.25 The feedback factors as determined by a number of models (See text) (Roe 2009)

uncertainty in the feedback factor is shown in Fig. 15.25, where f is reported for
the different mechanisms. We remember that the water vapor feedback (WV) is
related to the increase of the water vapor as the temperature increase which in
turn intensifies the greenhouse effect. The lapse rate feedback can be explained
as follows. Suppose there is an enhanced warming in the upper troposphere of
tropical regions in response to an increase in the concentration of greenhouse gases.
Because of this change in the lapse rate, the outgoing longwave radiation will be
more than in a homogenous temperature change over the vertical. The system will
then lose more energy, so inducing a negative feedback. On then other hand, a
larger low-level warming projected as a response to the positive radiative warming
will provide a positive feedback. Figure 15.25 shows that most of the models will
give a negative lapse rate feedback. As for the cloud feedback, the mechanism is
mostly related to the height of the clouds. Low clouds usually have a greater albedo
and higher temperature so they will reflect more solar radiation and increase the
emitted long-wave radiation. The net result will be a decrease of the downward
radiative flux at the top of the atmosphere. High cloud will have a lower albedo
and will emit less long-wave radiation, and the net results will be an increase in
downward radiation. The cloud feedback is the major uncertainty in climate models
but this is not apparent in Fig. 15.25 that shows a positive feedback factor for this
process.

Although the conclusions may look a bit discouraging, the role of the GCMs in
predicting global change has been very important because they have given a warning
at the political level and have promoted a debate at the global level about ways and
means to reduce the impact of the greenhouse gases.
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15.8.3 The Bayesian Point of View

There is a statistics that is not very well known and goes under the name of Bayes
statistics. It is rather different from the classical frequentist approach because it
change the probability based on the accumulation of data. The basic rule of the
Bayesian statistics can be summarized as follows

prob
�

hypothesis
ˇ̌̌
data; I

�
D prob

�
data

ˇ̌̌
hypothesis; I

�
� prob

�
hypothesis

ˇ̌̌
I
�

(15.53)

The various terms in Bayes’ theorem have formal names. The quantity on the far
right, prob(hypothesisjI), is called the prior probability; it represents our state of
knowledge (or ignorance) about the truth of the hypothesis before we have analyzed
the current data. This is modified by the experimental measurements through the
likelihood function, or prob(datajhypothesis, I), and yields the posterior probability,
prob(hypothesisjdata,I), representing our state of knowledge about the truth of the
hypothesis in the light of the data. In a sense, Bayes’ theorem encapsulates the
process of learning.

There is a very simple interpretation of (15.53). We can represent the sample
space where a certain number of microscopic events (N) appear as a circle
(Fig. 15.26). The different microscopic possibilities results in a macrosco events
like A and B, and the number A is represented by the fraction of the circle area
NA and the number B by the area NB. The number of possibilities resulting from
both the events A and B is NAB and is represented by the common area of the two
portions of the circle. The probability of the different events is then

Fig. 15.26 The sample space
of microscopic events that
occupies the entire circle as
N. Events of type A and B
occupy the indicated sector.
The superposition of the two
types of events is indicated by
the common space NAB (Sivia
2006)
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Pr .A/ D NA=NI Pr .B/ D NB=NI Pr .A jB / D NAB=NBI Pr .B jA / D NAB=NAI

Then the probability Pr(A, B) that both A and B happen is given by

Pr .A; B/ D NAB=N D .NAB=NB/ .NB=N/ D Pr .A jB / Pr .B/ D Pr .B jA / Pr .A/

From which we obtain the Bayes theorem

Pr .A jB / D Pr .B jA / � Pr .A/ = Pr .B/ (15.54)

There are a number of entertaining applications of this theorem.
We can make a number of examples on the application of this formula. We can

evaluate the probability of extracting a figure (J, Q or K) of hearts from a deck of
cards. The probability to extract a specific color (heart) is given by

Pr .heart/ D 13

52
D 1

4

To evaluate that the card is also a heart, we have

Pr .figure jheart/ D 3

13

So that the probability that our card be a figure of heart based on (15.54) is given

Pr .figure jheart/ D Pr .figure jheart/ Pr .heart/ D
�
3

13

�
�
�
1

4

�
D 3

52

Actually there are 3 cards over 52 that are hearts. The same result could be obtained
determining the probability to extract a figure (12/52) and then that such a figure
being a heart (3/12). We have the same result

Pr .figure jheart/ D Pr .heart jfigure/Pr .figure/ D
�
3

12

�
�
�
1

52

�
D 3

52

A more adequate example comes from medicine because based on Bayes it is
possible to establish the probability of a patient to have a particular disease based
on the results of clinical test. We take as an example one of the most terrible
diseases, AIDS applied to Italian citizens. If the test is positive, the probability to
be infected is 100 %. However, there is the possibility for the test to be positive
even if one is not infected. Let’s imagine that such a probability is just 0.2 %
than the probability to be infected based on a positive test is now 1–0.002D 0.98.
Suppose now that based on epidemiology data, the incidence of the disease is 1
over 600 (0.1666 %) and imagine to test all the 60 million Italians so that about 6
107/600 D 105 Italian will result positive. The remaining people (59.9 million) will
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give 59.9 � 0.0002 D 119.800 false positive. The percentage of the solid infected is
then 105/(105 C 1.19 105) D 45.6 %. This calculation can be put in a Bayesian form
if we start by defining the percentage of false positive and true positive

P .pos/ D P .pos;AIDS yes/C P .pos;AIDS no/

And as conditional probability

P .pos/ D P .pos jAIDS yes/ P .AIDS yes/C P .pos jAIDS no/ P .AIDS no/

This result can be used in the Bayes formula

P .AIDS yes jpos/ D P .pos jAIDS yes / P .AIDS yes/ =P .pos/

Substituting the numerical values P(posjAIDS yes) D 1 (100 %), P(AIDS yes) D
1/600, P(posjAIDS no) D 0.002 (0.2 %) e P(AIDS no) D 0.998 (1–0.002)D 99.8 %
we obtain

P .AIDS yes jpos/ D 45 %

The final result tells us that being positive to a test means to have a 45 %
probability to be infected (instead of 100 %) and this important decrease is due to
the 0.2 % uncertainty.

Several other applications of the Bayes theorem could be mentioned and some
of them is given as exercise but for the time being let us concentrate on how Bayes
could impact the evaluation of models.

15.8.4 The Bayesian Evaluation of Models: Part 1

We have already found Bayes even if we did not knew it when discussing climate
sensitivity and feedback factor. We could assume that hpost(�T) is the posterior
probability for the climate sensitivity and then based on the Bayes theorem

hpost .�T/ D
p
�

fobs

ˇ̌̌
�T

�
p.f /

hprior .�T/ (15.55)

where p
�

fobs

ˇ̌̌
�T

�
=p.f / is the normalized probability that a observation yielding

fobs is consistent with a climate sensitivity �T. We can assume a Gaussian

distribution for p
�

fobs

ˇ̌̌
�T

�
similar to what we assumed for h(f ) and for any the

prior distribution can be converted as hprior.z/dz D hprior .� T/ dT. A natural choice
is that all the feedback are equally likely (z D f, hprior(f ) is a constant). Now we
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have f D 1 ��T0=�T then hprior .�T/ D df=d�T D �T0=.�T/2. If we compare
(15.55) with (15.52), we have that
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!235 (15.56)

The most promising application of the Bayes statistics has to do with classification
of the models and we will proceed with two examples. The first one is to find
evidence for the models when applied to find the change in temperature in a number
of region. We can think about the Global Historical Climatology Network (GHCN)
of the Goddard Institute for Space Studies (GISS). The historical data cover the
period 1951–2010. We have used three geographical domains, Mediterranean, USA,
and China and for each model (we consider 5 of them); the time average of the
deviation between 1981–2010 and 1951–1980 was evaluated

bx D 1

m

mX
jD1

xj (15.57)

where m is the number of run fort he model. Then to describe the width of the
distribution, we calculate the covariance matrix

†x D 1

m � 1
mX

jD1

�
xj �bx��xj �bx�T

(15.58)

where ()T indicate the transpose matrix. The vector x has N D 3 dimension
corresponding to the geographical regions. In one of the exercises of this chapter,
we show that the prior for this problem could be written as

p
�

x
ˇ̌̌
Mi

�
D .2�/�1=2j†xj�1=2 exp



�1
2

�
xj �bx�T

†�1
x

�
xj �bx�� (15.59)

in this case j˙xj is a matrix determinant. We now need to determine the likelihood
function. The best way is to imagine that it is associated with the observing
instrumentation alone and not at all with any model. We could indicate it as p(djx),
where both x and d represent a vector of regional temperature change that is the
1981–2010 average to the 1951–1980 average. However, x is the simulated change
while d is the measured change. The likelihood function answer the question, if the
true regional temperature changes were x, what is the probability that we obtained
the measurement d? The only way the two data could differ is that because the data
set could have an uncertainty s. The likelihood function would then be

p
�

d
ˇ̌̌
x
�

D �
2��2

��N=2j†xj�1=2 exp



� 1

2�2
jd � xj2

�
(15.60)
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The Bayesian evidence function is then given by
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�
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x
�

p
�

x
ˇ̌̌
Mi

�
dx (15.61)

where we have been using (15.53) or (15.54). Now we assume that all the
distributions are Gaussian so that we get a nice analytical solution to the integral

p
�

d
ˇ̌̌
Mi

�
D .2�/�N=2

ˇ̌
†x C �2I

ˇ̌�1=2
exp



�1
2

�
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†x C �2I
��1 �

d �bx��
(15.62)

where I is the unit matrix. Properly speaking, this is the probability of having
obtained data d on the condition that model i is the true model. Each model will
have its own bx and †x corresponding to its mean simulation of historical change
and that model uncertainty is that estimate due to natural variability. It is possible to
use this evidence to rank the models if you assume that the prior on each model is
the same (Fig. 15.27). As a matter of fact, we have
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� (15.63)

Sometime the ratio is called Bayes Factor, if the denominator is the model that
performs better.

15.8.5 The Bayesian Evaluation of Models: Part 2

In the exercise section, we have made some simple example about the application
of Bayes statistics. Now starting from that we can say something more about
climate models evaluation. We need to fix some variables of the problems, which
are summarized in Table 15.1 (taken from Leroy 1998). We then define based on
(E.15.5) a normal distribution generalized to n dimension

N .x;X/ D .2�/�n=2jXj�1=2 exp

�
�1
2

xTX�1x
�

(15.64)

To obtain the prior p(E), we use the fact that it consists of the predicted signal
amplitude with an associated uncertainty determined by the errors in the parameters
of the model. The error covariance matrix for the signal amplitude (˛) is the
matrix A. The prior most probable value for the signal amplitude is ’p so that the
prior distribution is

p .E/ D P .˛ jMi/ D N
�
˛ � ˛p;A

�
(15.65)



Fig. 15.27 Figure labeled with models show the average temperature deviation between the 2010–
1981 and 1980–1951 for six different regions. The last figure shows the value of the evidence,
inaccuracy, and precision computed with the same data. The black dots are the average from the
real data, and the black diamond refers to different run of the model

Table 15.1 Description of the algebraic notation

Variable Dimensions Description

d N A set of post-processed observed data
N N � N The covariance matrix of natural climate variability and measurement error
S N � m Sij is the normalized amplitude of signal j at data coordinate i
˛ m A variable array of signal amplitudes
˛p m The model prior for climate signal amplitudes
A m � m The covariance matrix of the uncertainties in the signal amplitude

prediction ˛p

˛m m The posterior “most probable” estimate of the signal amplitudes
Am m � n The uncertainty covariance of the posterior estimate of the signal

amplitude
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The likelihood for the data P(DjE) where the event E represents a possible set of
signal amplitudes ˛ and the data D represents a set of measurements d. The relation
between the signal amplitudes and the data is given by

d D S˛ C n

where n is the sum of natural variability and measurement errors. This is a random
with zero mean and a covariance matrix N. The probability of obtaining the
measurements d given the signal amplitudes ˛ is then

p .D jE / D P .d j˛/ D N .d � S˛;N/ (15.66)

The posterior probability is obtained by multiplying the prior (15.65) for the
likelihood (15.66) to obtain

p .E jD / D P .˛ jd;Mi/ ∝ N .d � S˛;N/N
�
˛ � ˛p;A

� (15.67)

The most probable posterior estimate for the signal amplitudes is the ˛ which
maximizes the distribution. By varying ˛, the most probable signal amplitude is
found

˛m D �
ST N�1S C A�1��1 �STN�1d C A�1˛p

�
(15.68a)

with the associated uncertainty covariance

Am D �
STN�1S C A�1��1 (15.68b)

The last two equations could be used to find the signal-to-noise ratio of a possible
signal detection. For example, the signal-to-noise ratio of the detection of signal i
is simply j˛ij/(Am)1/2

i,i . Given the uncertainty matrix in the prior A, the precision of
the prediction is proportional to jAj1/2. Likewise the precision of the detection is
proportional to jAmj1/2.

The evidence for the model given the data, P(MijD) is obtained by multiplying
the evidence of the data given the model P(DjMi) by the prior of the model p(Mi).
We assume a flat prior [p(Mi) D 1]. The evidence for the data is then obtained by
integrating the data likelihood and the signal prior over all the possible events. This
amounts to integrating the right side of Eq. (15.67) over all signal amplitudes ’ with
the result

P .D jM/ D P .d jMi/ D .2�/�N=2
� jAmj

jAj jNj
�1=2

exp

�
�A

2

�
(15.69a)
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where the accuracy A of the prediction is given by

A D .d � S˛m/
TN�1 .d � S˛m/C �

˛m � ˛p
�T

A�1 �˛m � ˛p
�

(15.69b)

The first term on the right describes the mismatch between the data and the posterior
signal, and the second term describes the mismatch between the prediction and
the posterior signal. The ensemble average of the first term on the right is the
number of data points, or the rank of N if the variability accurately describes
the properties of the real atmosphere. When the accuracy A is less or equal than
the data points, it is said that the model prediction and the data agree with each
other.

The relative probability of a model can be evaluated given a dataset and that it
depends on the precision and the accuracy of the model prediction. The prediction
of the accuracy is given by jAj1/2. Because this quantity appear in the denominator
of (15.69a) that means that a model that cannot give a precise prediction is less
probable that the one it does. The accuracy of the model is A and if that is small the
model is said to be accurate.

E.15 Examples

E.15.1 100 Kyear Glacial Cycle: Details

The numerical solution of Eqs. (15.12) and (15.13) is quite simple but requires
some further elaboration. In the two Eq. (15.12), we can perform the derivative and
obtain

dR

d�



3R C 2�

3R

�
D �

R � R2 C p
� �
1 � � �R � R2 C p

� � 1

3
�

�
R

3
� �

�
dR

d�



3R C 2�

3R

�
D 1

4�
� 1

3
�

�
R

3
� �

� (E.15.1)

where we have substituted for the � derivative Eq. (15.13).
These equations can be readily integrated with standard routine or (as in the

following FORTRAN program) with a simple incremental method.
program 100kyr

real p, r, tau, gamma, aux, k, mu, cost, dtau, h

parameter (beta0D-0.0426)

parameter (beta1D0.0714)

parameter (omegaD0.938)

parameter (kD1.29)

parameter (muD0.55)
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parameter (dtauD0.005)

open (20,statusD’unknown’,fileD“icesheet.dat ”)

c initial conditions:

gammaD0.0

rD0.02

tauD0.0

pDbeta0

hD(7*r)/(2*0.001)

c solving the equations:

do while (tau.le.75)

write (20,*) tau*2740, r, h/1000,p

tauDtauCdtau

pDbeta0Cbeta1*sin(omega*tau)

gammaDmu*(r/3-gamma)*dtauCgamma

auxDr-r**2Cp

costD(3*r)/(3*rC2*gamma)

if (aux<1/(2*k)) then

rDcost*(aux*(1-k*aux)-mu/3*(r/3-gamma))*dtauCr

else

rDcost*(1/(4*k)-mu/3*(r/3-gamma))*dtauCr

end if

hD(7*r)/(2*0.001)

end do

stop

end

E.15.2 A Multi-state Climate Model for the Timing
of Glaciations

Didier Paillard in 1998 proposed a simple model to explain the timing of the
glaciations. The basic hypothesis is that climate could assume three different states
as shown in Fig. E.15.1. The three distinct states are indicated as i (interglacial), g
(mild glacial), and G (glacial). Among these three states, transitions are regulated
by the insolation and the ice volume according to the following rules
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Fig. E.15.1 Schematic
structure of the three state
systems in the Paillard model.
The climate is assumed to
have three distinct regimes i,
g, and G. The i G transition is
triggered when the insolation
falls below the threshold i0,
the g G transition occurs
when the ice volume exceeds
vmax and G i transition
occurs when the insolation
increases above the level i1

(Paillard 1998)

Transition from i to g if the insolation goes below i0
Transition from g to G if the ice volume becomes greater than vmax

Transition from G to i if the insolation becomes greater than i1

The status g is localized between i and G only when the ice volume is low. That
volume will be low at the end of regime i and high at the end of regime G. This
mean that the direct transitions i-G and g-G are not permitted.

Without any explicit control on the ice volume, the only requirement for the
volume to become greater that vmax is the growth time tg (that is the duration
of regime g is longer than tg) beyond the fact that the maximum value for the
insolation must remain below i3 before a possible transition g-G. The transition
g-G is permitted only when the insolation decreases below i2.

This simple model is made a little more sophisticated by allowing a continuous
change of ice volume. This is given by the simple relationship

dv

dt
D .vR � v/

�R
� F

�F
(E.15.2)

Where vR is the ice volume in one of the three regimes (i, g, G), v is the current
volume, F is the forcing, and �R and �F are time constant. The volume is normalized
to unity so that

vg D vG D vmax D 1; vi D 0

The equation for the ice volume is solved numerically in a very simple way.
Using the index i C 1 for the successive time, the difference equation becomes

v .i C 1/� v .i/ D vR .i/� v .i/

�R
� F

�F
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Fig. E.15.2 A typical result of the program simulating the ice ages. The figure at the bottom gives
the most simple models where the system is simply triggered among the three states, i, g, and G

From which we obtain the ice volume at the previous time

v .i/ D Œv .i C 1/C vR .i/ =�R � F .i/ =�F� �R= .1C �R/

And this is the expression used in the program. In the original paper by Paillard,
there are all the details concerning the choose of the time and the forcing. In the
program reported below, the file insolam.dat has been obtained with a separate
program also reported below (iceinso). A typical result of this program is reported
in Fig. E.15.2 and shows many of the features observed in the ice core data.

%program paillard

load insolam.dat

xDinsolam(:,1);

instDinsolam(:,3);

i0D-0.75;

i1D0;

vmaxD1;

tFD23;

stato(1001)D0;
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v(1001)D0.75;

vR(1001)D1;

tR(1001)D50;

for iD1000:-1:1,

if(inst(i)<i0 & stato(iC1)DD1)

stato(i)D0;

vR(i)D1;

tR(i)D50;

v(i)D(v(iC1)CvR(i)/tR(i)-inst(i)/tF)*tR(i)/(1CtR(i));

elseif (inst(i)>i1 & stato(iC1)DD-1)

stato(i)D1;

vR(i)D0;

tR(i)D10;

v(i)D(v(iC1)CvR(i)/tR(i)-inst(i)/tF)*tR(i)/(1CtR(i));

elseif (stato(iC1)DD0 & v(iC1)>vmax)

stato(i)D-1;

vR(i)D1;

tR(i)D50;

v(i)D(v(iC1)CvR(i)/tR(i)-inst(i)/tF)*tR(i)/(1CtR(i));

else

stato(i)Dstato(iC1);

vR(i)DvR(iC1);

tR(i)DtR(iC1);

v(i)D(v(iC1)CvR(i)/tR(i)-inst(i)/tF)*tR(i)/(1CtR(i));

end

end

subplot(3,1,1)

plot(x,inst,’r’);

hold on

a D[0 1000];

b D[i0 i0];

plot(a,b,’k’)

hold on

cD[i1 i1];

plot(a,c,’k’)

hold on

axis([0 1000 -4 4])

hold off

title(’insolation forcing’)

ylabel(’normalized insolation’)

subplot(3,1,2)

plot(v,’c’)

axis([0 1000 -1 2])

title(’model results’)

ylabel(’ice volume’)
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subplot(3,1,3)

plot(stato,’b’)

axis([0 1000 -2 2])

title(’moldel results’)

xlabel(’age (kyr)’)

ylabel(’model states’)

% Program ICEINSO

clear all

close all

s D 1440*1.92;

lat D 65*pi/180;

for l D 0:1000

t D l*1000;

dmax D (23.35C1.15*sin(2*pi*t/41000. C 7.5*pi/180.))

*pi/180.;

if (t < 45000)

e D 0.0165C0.0035*sin(((360.*t/64000.)C8.21)*pi/180.);

else

e D 0.0165C0.0135*sin(((360.*(t-45000)/140000.)-90.)

*pi/180.);

end

gD2*t*pi/23000;

t D 181;

delta D dmax*sin(360*pi*(t-89)/(365*180));

theta D (360*pi*(t-13)/(365*180))Cg;

r D (1-eˆ2)/(1Ce*cos(theta));

f D rˆ-2;

c D tan(lat)*tan(delta);

a D pi/2-(abs(delta));

if (abs(lat) > a)

bDdelta*lat;

if (b > 0)

qs D s*f*sin(lat)*sin(delta);

else

qsD0.;

end

else

h D acos(-c);

d D cos(lat)*cos(delta);
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qs D (s/pi)*f*(h*sin(lat)*sin(delta)Cd*sin(h));

qst D 0.5*(qsCsqrt(4.Cqs*qs));

end

% Output variables

qsn(lC1) D qs;

qstn(lC1) D qst;

end

% Mean and std of output variables

qm D mean(qsn);

qmt D mean(qstn);

devq D std(qsn);

devqt D std(qstn);

% WRITE OUT

[fid,msg] D fopen(’insolam.dat’,’wt’);

if (fid<0), error(msg), end

fprintf(fid,’%d %f %f\n’,[(0:length(qsn)-1)’,((qsn-qm).

/devq)’,((qstn-qmt)./devqt)’]’);

fclose(fid);

% FIGURES

figure

plot((qsn-qm)./devq)

title(’(qsn-qm)/devq’)

E.15.3 The Wigley – Schlesinger Model (15.6.1)

We report below also the program for the model by Wigley and Schlesinger
described in paragraph 15.6.1. The program is made of two section a runwigley,
which drives the simple program that integrates the simple differential Eq. (15.38)
(Figs. E.15.3 and E.15.4).
% runwigley

gammaD0.71;

y0D0.01;

CpD4.18e3;

kD0.0003;

hD100;

rhoD1000;

lamdaD0.6;

muD2.2;
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Fig. E.15.3 Some result from the Wigley–Schlesinger model

taudDpi*h*h/(3.15e7*k)

taufDrho*Cp*h/(3.15e7*lamda)

[t,y]Dode23(@(t,y) wigley(t,y,gamma,tauf,taud,mu),

[1 20000],y0);

subplot(2,1,1)

plot(t,y)

set(gca,’xlim’,[1,500])

title(sprintf(’y vs time ’))

subplot(2,1,2)

semilogx(t,y)

set(gca,’xlim’,[1,10000])

title(sprintf(’y vs time log’))

[fid,msg] D fopen(’runwig.txt’,’wt’);

fprintf(fid,’%12.3e %12.3\n’,[t,y]’);

fclose(fid);

%function wigley

function ydotDwigley(t,y,gamma,tauf,taud,mu)

QfD4;

hD100;

rhoD1000;

kD0.0003;
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Fig. E.15.4 Schematic model to evaluate the climate sensitivity

wD2.0;%in metri all’anno

CpD4.13e3;

CCDrho*h*Cp;

CCgDrho*h*Cp*gamma;

QDQf*3.15e7/CCg;

ydeepD5000;

etaD0.5*ydeep/(sqrt(3.15e7*k*t));

tdeepDy*erfc(eta);

taudtDtaud*t;

deepfDw*(y-tdeep)/(h*gamma);

%ydotDQ-(y/gamma)*(1/taufCmu/sqrt(taudt));

ydotDQ-(y/gamma)*(1/taufCmu/sqrt(taudt))-deepf;

E.15.4 A Model to Explore Climate Sensitivity

Baker and Roe (2009) have studied the climate sensitivity with a very simple model
illustrated in Fig. E.15.4. It is made up by a oceanic mixed layer above a semi
infinite ocean. The mixed layer has depth, density 
, specific heat Cp and thermal
conductivity ›. The transport in the ocean below the mixed layer is dominated by
diffusivity � (in m2 s�1) and upwelling velocity w. We assume a uniform, time
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dependent T(t) temperature in the mixed layer and a temperature at depth Tth(z,t).
The mixed layer temperature obeys to the following energy balance equation


Cph
dT

dt
D �

dTth

dz

ˇ̌̌̌
zD0

� T .1 � fa/

�0
C�RF.t/ (E.15.3)

In this equation fa is the sum of all feedback factors and �0 is the climate sensitivity,
that is �T0 D �0�RF, while the real change in temperature is given by

�T D �0 .�RF C C�T/ ) �T D �0�RF

.1 � C�0/

If we assume fa D �0C we get easily (E.15.3). For the deep ocean we assume that
transport is due to advection and diffusion so that the equation is the following

@Tth

@t
D �

@2Tth

@z2
� w

@Tth

@z
(E.15.4)

where w is the upward advection velocity. The last two equations can be solved
numerically by dividing the entire ocean region in layers of assigned thickness plus
the mixed layer. As done with problems of the same kind we assume that for each
layer the temperature will be a function of time and z, Tth(z,t). The index i will
indicate the layer while the index j will indicate the time. The novelty here is that we
will calculate the right-hand side of (E.15.4) as an average between time j and j C 1.
Equation (E.15.3) it is changed a little bit remembering that G D 1= .1 � fa/ D
�=�0

�T D ��t


Cph

�Tth

�z
� �t


Cph�
T C �RF.t/�t


Cph

now we call

� D ��t


Cph�z
I ı D �t

�
Cph
T

An the difference equation between layer 1 (mixed layer) and the first layer of deep
ocean (layer 2) becomes

T1jC1
�
1C ı

2
C �

2

�
� T2jC1

��
2

�
D T1j

�
1 � ı

2
� �

2

�
C �

2
T2j C �RF.t/�t


Cph
(E.15.5)

This is the first line of a tridiagonal matrix. Notice that the left-hand side has been
evaluated as an average between time j and j C 1. In the same way equation (E.15.4)
can be transformed in a difference equation
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Table E.15.1 Parameters
appearing in the model by
Baker and Roe and their
standard deviation

Parameter Average value Standard deviation

h 75 m 25 m
w �1.3 10�7ms�1 0.5 10�7ms�1

� 1.5 10�4 m2 s�1 0.5 10�4 m2 s�1

fa 0.65 0.13

Ti
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j D ˛

2

h�
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C
�
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j C Ti�1
j

�i
� ˇ

4

h�
TiC1

jC1 � Ti�1
jC1
�

C
�

TiC1
j � Ti�1

j

�i
where ˛ D ��t=�z2 and ˇ D w�t=�z. Then we have
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(E.15.6)

We can see that the left-hand side of the matrix has the value at time j C 1 while the
right-hand side has values at time j. This is then a linear system which can be solved
at each time step. The last equation for i D N � 1, where N is the number of layers,
will be solved using the boundary condition either zero flux of null value for T.

The above scheme can be solved with a Matlab program but more interesting is
the characterization of the uncertainty of the results. This depends on the fact that
some of the parameters are know with some standard deviation. The Table E.15.1
summarizes the situation.

The problem now is to sample them in a normalized Gaussian way. A possible
method is known as Box Muller approach. If X and Y are independent unit normal
random variables, their polar coordinates R D p

X2 C Y2 and ‚ D tan�1 .Y=X/
are independent with R2 being exponentially distributed with mean 2 and ‚ being
uniformly distributed on (0, 2�). It can be shown that if U1 and U2 are random
numbers then we can set

R D .�2 ln U1/
1=2

‚ D 2�U2

from which it follow that

X D R cos‚ D .�2 ln U1/
1=2 cos .2�U2/

‚ D R sin‚ D .�2 ln U1/
1=2 sin .2�U2/ (E.15.7)

are independent unit normals.
The following program gives the ways to construct such variables. The program

generates initially pseudorandom variables that are transformed in gaussian with
average 0 and variance 1 with Box Muller method.
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%% Box-Muller

%-----------------------------------------------------------------

%Generator

%-----------------------------------------------------------------

clear all;

clc;

n D 4;%number of samples

num_iterD5e3; %number of iterations

num1 D zeros(n,num_iter);

num2 D zeros(n,num_iter);

sigmaD1; %standard deviation

j D 1;

for iD1:num_iter

u1Drand(n,1); %~U[0,1]

u2Drand(n,1); %~U[0,1]

% Box-Mueller Transformation

w1Dsqrt(-2*log(u1)).*cos(2*pi*u2); %~N(0,1)

w2Dsqrt(-2*log(u1)).*sin(2*pi*u2); %~N(0,1)

num1(:,j) D w1;%matrix put in column w1

num2(:,j) D w2;

j D jC1;

end

pl D zeros(n,num_iter);

out D zeros(n,num_iter);

check D out;

%-----------------------------------------------------------------

%Plot test

%-----------------------------------------------------------------

%shows n normal distribution

%blue line D estimate

%red line D effective gaussian with the same mean and standard

deviation

figure(1),clf

for jD1:n

p D num1(j,:);%write a vector for each n with all random w1

m D mean(p);%mean

st D std(p);% standard deviation

[f,x] D ksdensity(p,linspace(m-4*st,mC4*st,num_iter));%ksdensity

calculates the distribution dist D 1./sqrt(2*pi*stˆ2)*
exp(-(x-m).ˆ2./(2*stˆ2));

% dist _e is a gaussian input for the plot

pl(j,:) D f;

check(j,:) D dist;

limit D [m-4.1*st mC4.1*st 0 0.5];

subplot(4,2,j)
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plot(x,pl(j,:),’linewidth’,1.5) %plot function of f

hold on

plot(x,check(j,:),’r’) %variable plot as a function of

distribution

axis(limit)

end

%-----------------------------------------------------------------

%Modifies mean and std in relation to the variables of the problem

%-----------------------------------------------------------------

figure(2),clf

m2 D [75,-1.3e-7,1.5e-4,0.65];

st2 D [25,0.5e-7,0.5e-4,0.13];

%Choice of the distribution

choose D [1,2,3,4];

k D 1;

for jD1:n

p D num1(j,:); %write a vector w1 for each n

m D mean(p);

st D std(p);

if any(choose DD j) %if element of choose is j

m D m2(k);

st D st2(k);

p D p*st C m;

k D k C1;

end

[f,x] D ksdensity(p,linspace(m-4*st,mC4*st,num_iter));

dist D 1./sqrt(2*pi*stˆ2)*exp(-(x-m).ˆ2./(2*stˆ2));

%output

out(j,:) D p;

%input for the plot

pl(j,:) D f;

check(j,:) D dist;

limit D [m-4.1*st mC4.1*st 0 max(f) C 0.1/st];

subplot(4,2,j)

plot(x,pl(j,:),’linewidth’,1.5) %variable plot as a function of f

hold on

plot(x,check(j,:),’r’) % variable plot as a function of

distribution

axis(limit)

xlabel(’Variable’,’fontsize’,14)

ylabel(’PDF’,’fontsize’,14)

%%%

% check on the normalization

if abs(sum(f)*(x(2)-x(1)) -1) > 0.01

disp(’distribution:’)
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disp(j)

disp(’non normalised’)

end

end

traspDout’;

%Skewness e Kurtosis

sDskewness(trasp);

krDkurtosis(trasp)-3;

An example of the results is shown in Fig. E.15.5 for two different value of the
gain G D 2.5 and 10 and a fixed forcing of 4 w m�2

E.15.5 Properties of Two-Dimensional Gaussian Distribution

For two independent variables (x, y) the joint probability distribution P(x, y) it is just
the product of the two distributions

P .x; y/ D P.x/P.y/ D 1

.2�/1=2�x

exp

"
� .x � x/2

2�2x

#
1

.2�/1=2�y

exp

"
� .y � y/2

2�2y

#

P .x; y/ D 1

2��x�y
exp

(
�1
2

"
.x � x/2

�2x
C .y � y/2

�2y

#)
(E.15.8)
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Fig. E.15.5 The change in temperature for a fixed forcing switched at time 0 of 4 W m�2
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Now suppose we have two variables X and Y are expressed as rotation with respect
the x and y axis

X D cx C sy Y D �sx C cy

Then the correlation between these quantities

hXYi D ˝
scy2 � scx2 C �

c2 � s2
�

xy
˛ D sc

�
�2y � �2x

�
:

In this case we have assumed averages to be zero and consequently �2x D ˝
x2
˛
,

�2y D ˝
y2
˛

and hxyi D 0. Then we remember the relation between covariance and
correlation coefficient 


cov .X;Y/ D 
XY�X�Y

So we have


XY�X�Y D sc
�
�2y � �2x

�
(E.15.9)

We can find the standard deviations using

�2X D ˝
X2
˛ D

D
.cx C sy/2

E
D c2�2x C s2�2y

�2Y D ˝
Y2
˛ D

D
.cy � sx/2

E
D c2�2y C s2�2x

So that we have

�2X�
2
Y D s2c2

�
�4x C �4y

�C �
c4 C s4

�
�2x �

2
y (E.15.10)

While from (E.15.2), we have


2�2X�
2
Y D s2c2

�
�4y C �4x � �2x �

2
y

�
We readily obtain by subtracting�

1 � 
2� �2X�2Y D �2x �
2
y

�
c4 C 2s2c2 C s4

�
Remembering now the transformation c and s are just the cosine and sine of the
rotational angle, and we get �

1 � 
2� �2X�2Y D �2x �
2
y (E.15.11)
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Now we rewrite (E.15.1) with zero averages and obtain

P .x; y/ D 1

2��x�y
exp

(
� x2

2�2x
� y2

2�2y

)

and substitute for the quantities

x D cX � sYI y D sX C cYI P .x; y/ dxdy D P .X;Y/ dXdY

we get

P .X;Y/ D 1

2��x�y
exp

(
� .cX � sY/2

2�2x
� .cY C sX/2

2�2y

)

D 1

2��x�y
exp

(
�X2

2

"
c2�2y C s2�2x
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2
y

#
� Y2

2
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2
y

#

C2XY

2
sc

"
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�2x �

2
y

#)

Substituting the identities˝
X2
˛ D �2X D c2�2x C s2�2y

˝
Y2
˛ D �2Y D c2�2y C s2�2x

�
1 � 
2

�
�2X�

2
Y D �2x �

2
y

We obtain

P .X;Y/ D 1

2�
p
.1 � 
2/�X�Y

exp

�
�1
2

1

1 � 
2



X2

�2X
C Y2

�2Y
C 2
XY
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��
And for the correlated quantities

P .x; y/ D 1

2�
p
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2
"
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This joint probability can be put in a more general form defining the error matrix

M D
� ˝

x2
˛ hxyi

hxyi ˝y2˛
�

M D
 

�2x 
�x�y


�x�y �2y

!
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and the discrepancy vector

x D
�

x � x
y � y

�
and again

M�1 D 1

1 � 
2

0BB@
1

�2x
� 


�x�y

� 


�x�y

1

�2y

1CCA det M D �
1 � 
2

�
�2x �

2
y

we can write

P .x; y/ D 1

2�jMj1=2 exp

�
�1
2

xTM�1x
�

(E.15.12)

E.15.6 A Simple Example (Leroy 1998)

Assume that a model M predicts an ocean temperature to be yp ˙ �p with the
standard deviation obtained by varying the parameters of the model. The result that
can be considered a prior can be written

P .y jM / D 1

�p

p
2�

exp

 
�
�
y � yp

�2
2�2p

!
(E.15.13a)

This means that the modeler believes the probability that an experiment will find a
value between y and y C dy will be P(yjM)dy. On the other hand, the measurement
will give a different result with a Gaussian statistics

P .ym jM / D 1

�m

p
2�

exp

 
� .y � ym/

2

2�2m

!
(E.15.13b)

This can be considered the likelihood and the posterior distribution can be consid-
ered to be the product of the two

P .y jym;M / / 1

2��m�p
exp

 
�
�
y � yp

�2
2�2p

� .y � ym/
2

2�2m

!
(E.15.14)
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The posterior distribution is normal in y, and the center of the distribution can be
found by maximizing with respect to y

yc D
 

yp

�2p
C ym

�2m

! 
1

�2p
C 1

�2m

!�1
(E.15.15)

An the variance associated with it

�c D
 
1

�2p
C 1

�2m

!�1=2
(E.15.16)

The posterior probability distribution is then a temperature of the ocean yc ˙ �c. In
Bayesian statistics, it can be determined the probability that this data is obtained
given that the model is true. This is obtained by integrating (E.15.14) over y with
the result for the evidence function

P .ym jM / D �
2�
�
�2m C �2p

��1=2
exp

�
�A

2

�
(E.15.17a)

In which the “accuracy” A is

A D
�
yp � ym

�2�
�2p C �2m

� (E.15.17b)

In orthodox statistics, the accuracy is used to make decision on the quality of
the data. If it is significantly greater than unity means then either the model or
the data are discarded. In Bayesian statistics, the multiplier of the exponential in
(E.15.10a) must be considered. Assuming a flat prior probability for all the models
[P(Mi) D constant] and �m 	 �p, then the posterior evidence for the model P(Mjym)
can be written as

�2 log .�mP .Mj ym// ' A C log

�
�p

�m

�
(E.15.17c)

The smaller this quantity is, the more probable the model is in light of the data.
A better accuracy means a smaller A. The second term on the right rewards
smaller value of the prediction error �p meaning a more precise prediction. In fact
log(sp/sm) approximately counts the number of parameters needed to describe the
data given the prediction. This number approximates the model of free parameters
of model M, penalizing models with more free parameters. This is the equivalent of
the Occam’s razor.
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Chapter 16
Chemistry of the Troposphere

In the last few chapters, we have seen that an important factor for climatic change
is the composition of the atmosphere. This is something we actually learned at
the beginning of the first chapter, when it was evident that the differences in the
planetary environment were determined both by the distance from the sun and the
chemical composition of the atmosphere. It is then written in the stars that an
atmospheric physicist must deal with atmospheric chemical processes. In the last
20 years or so, the problems related to the ozone hole and the pollution of our cities
have made this topic extremely popular.

16.1 Introduction

We need to distinguish immediately what happens in troposphere, which contains
most of the atmospheric mass, from what happens in the stratosphere. In the
troposphere, chemical processes have a strong interaction with the soil and the
oceans, and the main sources (either anthropic or natural) are located in the same
region. On the other hand, in the stratosphere, some of these gases, which may be
inert in the troposphere, can be activated by the ultraviolet radiation and become the
main contributors to the chemistry of this region of the atmosphere.

Figure 16.1 shows the main processes that determine the composition of the
troposphere. The gases may be emitted as a natural process from volcanoes (like
carbon dioxide), as a result of human activities or the activity of the biosphere (like
methane and nitrous oxide). Gases are then subject to quite complex processes in
which sometimes the atmosphere has a secondary role. For example, carbon dioxide
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authorized users.
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Fig. 16.1 An illustration of the processes that influence the atmospheric composition. Besides
chemical processes, also physical processes like condensation, evaporation, and sublimation must
be considered

can be dissolved in the oceans or fixed by photosynthesis, a process that takes place
both in the oceans and on land but is almost completely inert in the atmosphere. CO2

in the ocean may be converted in carbonates that constitute the shells of a number of
small animals that populate the surface waters. Once these organisms die, they sink
to the bottom of the oceans where they accumulate as sediments that are recycled
through the very slow processes of the Earth’s crust. At the end of these processes,
carbon dioxide may be reemitted in the atmosphere through volcanism.

The hydrological cycle is another important and complex process for the
troposphere, and this involves almost all the components of the Earth system. To
study the complex behavior of the chemical compounds requires a good knowledge
of the general chemistry, and our experience is that some physics students do not
like chemistry at all. However, we have introduced most of the relevant materials
for chemistry in Chap. 5 so that we can move on rapidly.

16.2 The Minor Gas Inventory

As in the case of the major gases (oxygen and nitrogen), minor gases also have a
roughly constant mixing ratio in the troposphere. Many of the species are destroyed
through chemical processes both in the troposphere and in the stratosphere.

http://dx.doi.org/10.1007/978-3-319-29449-0_5
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A typical example may be chlorofluorocarbons (CFCs), famous for being the
main culprit in ozone destruction in the stratosphere. One of the most important is
CFCl3 which in the stratosphere is photodissociated at a rate JCFC

CFCl3 C hv D CFCl2 C Cl JCFC

The rate of destruction of this CFC is thenZ 1

0

JCFC ŒCFCl3� dz

We can then introduce a lifetime for this gas that is simply given by the ratio between
the columnar content and the rate of destruction

� D
Z 1

0

ŒCFCl3� dz=
Z 1

0

JCFC ŒCFCl3� dz

This is a very important parameter for a gas because it tells us if its influence is
global or rather regional. The longer the lifetime, the larger the geographical region
affected by the gas. Large-scale dynamics will be more relevant for those gases that
have a long atmospheric lifetime.

Not always is the destruction process as simple as in the case of CFC, and in
the following table, we have listed not only the lifetime values but also the main
processes responsible for the production and the loss of the species. In Table 16.1,
first of all we notice those gases whose concentration has been changed by human
activity because the change can be found in a very few generations or from the
preindustrial epoch.

Of some interest is the fact that all the sources of chlorine, except methyl
chloride, have an industrial origin. In this table, the sources for NOx and the sulfur
species are not listed and will be reported later.

The table lists the concentration before the industrial revolution, when this is
known. The zero listed for the CFCs actually means that these gases were not present
at that time, being of a totally anthropogenic origin. Also reported in the same table
is the total burden of the gas expressed in teragram (1Tg D 1012 g).

Table 16.1 The present concentration of some minor gases in the atmosphere

Gas ppb (2014) ppb (preindustrial) Amount (Tg) Lifetime (years)

CO2 (carbon dioxide) 395,400 280,000 3120.000 See text
CH4 (methane) 1.800 720 4.850 11–17
N2O (nitrous oxide) 270 325 2.325 120
CFC-11 0.236 0 6.2 50
CFC-12 0.527 0 10.3 102
CFC-113 0.074 0 2.6 85
CH3CCl3 (m-chloroform) 0.160 0.007 3.5 5
CH3Cl (methyl chloride) 0.60 0.60 5 1
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Table 16.2 Sources and
sinks for methane

Sources Fluxes (Tg/year)

Natural

Wetlands 177–284
Termites 2–22
Oceans 5–20
Hydrates 2–9

Anthropogenic

Carbon and gas extraction 85–105
Rice production 33–40
Ruminants 87–94
Waste treatment and landfills 67–90
Biomass combustion 32–39

Sinks

Reaction with OH 470–700
Soil removal 9–47
Atmospheric increase 8–26

We will examine with some detail the different gases except for carbon dioxide.
This gas has a number of interactions with the ocean and the biosphere and will be
treated separately.

16.2.1 Methane

Table 16.2 gives a rough idea of the sources and sinks for methane. These data are
still very uncertain, and it does not make sense to know them with an approximation
better than the first decimal digit.

Methane has anthropogenic sources that are roughly one and half times
larger than the natural sources. The latter are due to fermentation processes and
metabolism of some insects. When animals (that produce methane as a result of their
metabolism) are raised in breeding facilities, this source becomes anthropogenic as
in the case of cows. This is part of the food industry to which in a sense must be
also attributed rice production.

Another important anthropogenic source is the treatment of waste. Dumps or
similar facilities are a large producer of methane through fermentation processes.

The destruction processes are dominated by the reaction in the atmosphere with
the hydroxyl radical OH

CH4 C OH ! CH3 C H2O

This is the first step of the methane oxidation process that produces carbon dioxide,
and we will talk about this mechanism in detail. We may conclude that the main
methane sources are at the surface, while the main sinks are in the atmosphere.
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16.2.2 Nitrous Oxide

For nitrous oxide, sources are not well known, while the lifetime has been measured
with a good approximation, as is listed in Table 16.1 together with the trend in the
atmospheric mixing ratio. It is possible then to determine with some precision the
net source (production minus loss). The evaluation of the natural sources can be
made on the basis of the change in mixing ratio between the preindustrial epoch
and the present. This gives a source of 8.1–8.7 Tg (N) per year. This particular
notation indicates that we are referring to the flux of nitrogen atoms. In order to
obtain the flux of nitrous oxide, we need to multiply by the stoichiometric ratio
(Tg (N2O) D Tg (N)(44/28)). Destruction of N2O is mainly due to photodissociation
in the stratosphere and to the reaction with metastable oxygen O(1D). This species
originates from the ozone photodissociation for wavelengths less than 300 nm

O3 C hv .� < 300nm/ ! O2 C O
�
1D
�

This form of excited oxygen is extremely reactive and destroys nitrous oxide mainly
in the stratosphere where it is more abundant

N2O C O
�
1D
� ! NO C NO

In this way, destruction of N2O becomes a net source for nitrogen oxides in
the atmosphere. This loss process can be evaluated with great precision because
it depends only on the nitrous oxide mixing ratio at the ground and the ozone
concentration. The value obtained compares well with the natural sources.

The principal natural mechanism for the production of N2O is denitrification,
through which the nitrates present in the soil and the oceans are transformed into
nitrogen or nitrogen oxides. The results of recent measurements made in the ocean
and on land have given the value shown in Table 16.3.

A relatively good estimate of the stratospheric loss process and the present
increase of the N2O concentration in the atmosphere give in turn an estimate of the
total sources. The increase may be due to a net source of the order of 3–4.5 Tg/year,
while the stratospheric destruction can be estimated at 14.3 Tg/year. The sources to
balance these two processes must be in the range 17.3–19.8 Tg/year.

Table 16.3 Sources and
sinks for nitrous oxide

Process Fluxes (Tg N/year)

Natural sources 1.2 (0.4–3.1)
Oceans 4.0 (1.9–9.8)
Land 6.6 (3.3–9)

Present sources 5.6–21.9
Stratospheric loss 14.3 (4.3–27.2)
Yearly increase 3.6
Anthropogenic sources 5.70 (2.2–7.90)
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The anthropogenic contribution to nitrous oxide is both the biomass combustion
and the soil fertilization for agricultural purpose. The latter is important because
it accelerates the denitrification process. The final numbers are summarized in
Table 16.3. Also for N2O, the sources are essentially at the ground, and the gas is
destroyed through atmospheric chemical processes. The uncertainties in its budget
make it difficult to indicate measures to control N2O production.

16.2.3 Atmospheric Chlorine

In Table 16.1, we have listed as the only sources of atmospheric chlorine the CFCs
and another natural compound. The sources actually are much larger in number
and go from volcanoes to industrial products to the sea aerosols produced by the
breaking of waves. The contribution of these sources is even more important, but
chlorine produced from them remains in the troposphere and consequently is very
rapidly removed. Our interest in the chlorofluorocarbons is that they are able to put
chlorine directly in the stratosphere where they can destroy ozone, as we will see in
a while. In any case, the study of CFC in the troposphere may be important because
their main sink is in the stratosphere, so that just watching how their concentration
evolves with time may give indications on the strength of this sink.

This approach can be readily understood with an example based on a box model
of the atmosphere that reproduces the one used by D. Cunnold et al. several years
ago and which is sketched in Fig. 16.2. In this model, the atmosphere is divided into
nine boxes, eight for the troposphere and one for the stratosphere. The tropospheric
boxes extend symmetrically from the equator to 30ı latitude and from 30 to 90.
In altitude, they range from 1000 to 500 hPa and from 500 to 200 hPa. In the
stratosphere, there is only one box, between 200 and 0 hPa.
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Fig. 16.2 The box model used for the calculation of the lifetime for chlorofluorocarbons (CFC).
Arrows indicate the connection between boxes but not necessarily the direction. Emission of CFCs
is in boxes 1, 3, 5, 7



16.2 The Minor Gas Inventory 575

The air mass contained in the boxes of the lower troposphere is then 5/3 of
the mass in the upper troposphere. It is assumed that two processes regulate the
transfer between boxes: diffusion and meridional advection. The diffusive flux is
proportional to the difference in concentration between two adjacent boxes, while
the advection is proportional to the mean meridional wind. If we indicate with �1

the mixing ratio in the box number 1, we can write down a continuity equation

d�1
dt

D V13�13 � V21�21 � ��13

t13
C ��21

t21
C I1

M1

�ij D 0:5
�
�i C �j

�
��ij D �

�i � �j
�

(16.1)

where tij and Vij are the characteristic times for diffusion and the time constant for
the meridional transport. Finally, I1 is the rate (in kg year�1) at which the component
is added to the box M1. A typical equation for the box in the upper troposphere is a
little different because it must take into account the difference in mass

d�2
dt

D 5

3
V24�24 C 5

3
V21�21 � ��24

t24
� 5

3

��21

t21
� 2

3

�u � �s

�s
� �2

�t
(16.2)

where in this case

�u D 0:25 .�2 C �4 C �6 C �8/

and �s is the average stratospheric mixing ratio. The factor that takes into account
the volume is understood because the same flux produces a larger change in mixing
ratio in a smaller mass. Finally, for the stratospheric box we have

d�s

dt
D �u � �s

ts
� �s

�s
(16.3)

In Eqs. (16.2) and (16.3), ts and � s are, respectively, the exchange time between
troposphere and stratosphere and the residence time due to the photodissociation; tt
is the residence time in the troposphere.

Equations similar to Eqs. (16.1) and (16.2) can be written for all boxes so that the
mixing ratio in each box can be obtained by integrating the differential equations.
The details of this calculation may be found at https://code.google.com/p/agage-
box-model, and here we will give simply some of the results. The objective was
to measure the lifetime of chlorofluorocarbons and nitrous oxide. We can find the
average mixing ratio in the troposphere using the relation

�t D 5=3 .�1 C �3 C �5 C �7/C .�2 C �4 C �6 C �8/

20=3C 4

D 5

32
.�1 C �3 C �5 C �7/C 3

32
.�2 C �4 C �6 C �8/

https://code.google.com/p/agage-box-model
https://code.google.com/p/agage-box-model
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Fig. 16.3 The increase of the
mixing ratio of CFC with
time in the four boxes of the
lower troposphere. The
oscillations are due to the
seasonal transport variations
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And then the lifetime is given by

� D �s .1C �s=4�t/ = Œ.�s=�t/C �s=4�t� (16.4)

Figure 16.3 shows the behavior of one of the most important CFCs (trichloroflu-
oromethane CFCl3) starting from 1971 and obtained from the model cited above.

The release rates have varied between 200 and 300 million kg per year with a
maximum around 1978.

Notice that the concentration is not the same at all latitudes because most of the
compounds are released in the first box of the northern hemisphere (about 78 %).
Notice also that the release rate is not the same as the annual production due to the
different uses to which CFCs are subjected. When they are used as propellant for
spray cans, they are released instantaneously. On the other hand, if they are used as a
fluid in a refrigerator, they may be released only when the refrigerator is destroyed,
which means a delay of the order of 10 years.

The knowledge of the release rate is quite uncertain, and to this data are related
all the errors in the determination of the lifetime for CF-11 which is around 50 years.

16.3 The Biogeochemical Cycle for Carbon

On one side, the simplicity in the treatment of the carbon dioxide cycle derives from
the fact that it is almost an inert gas in the atmosphere even if it is produced in small
quantities by chemical reactions. On the other hand, the same gas has quite complex
chemical interactions with both the biosphere and the ocean.

A rather simplified scheme of the CO2 cycle is given in Fig. 16.3. The cycle
is made up of a number of reservoirs that exchange carbon through a number of
processes. Again, the units are based on the amount of carbon rather than on the
amount of carbon dioxide. Knowing the fluxes, it is possible to find the residence
time of a particular reservoir which is simply the content divided the flux. Starting
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from the atmosphere, carbon dioxide is fixed by photosynthetic processes and
released with the opposite processes of respiration and decay. A small part of the
carbon fixed by photosynthesis however is subtracted from the respiration process
because it may be buried (e.g., forests that are flooded or covered during landslides)
so that the fluxes of respiration and photosynthesis are not exactly equal. In this
way, a little oxygen is gained, and in this imbalance atmospheric oxygen originates.
Things are more complex than this because the oxygen cycle involves other elements
like nitrogen, phosphorous, and sulfur.

The buried carbon is released in the atmosphere when fossil fuels are burned or
through weathering processes.

The role of the ocean in the carbon cycle is important because CO2 may
be dissolved in carbonic acid and bicarbonate ions. The dissolved carbon will
form carbonates that precipitate to the bottom of the ocean and contribute to the
sediments. The dead organic matter will contribute with a similar process to organic
sediments.

A cycle like that shown in Fig. 16.4 can be solved with appropriate software. A
typical result is shown in Fig. 16.5 where the model has been run for about 900 years
to reach the steady state when a source is activated that amounts to 20 gT year�1 of
carbon dioxide, equivalent to the burning of the fossil fuels. The sudden increase is
unrealistic because actually the source has been introduced gradually. However, the
most interesting thing about this result is that a source 1000 times smaller than the
smallest natural flux is able to perturb considerably the content of the atmospheric
gases, thus affecting climate on a global scale.

Fig. 16.4 A simple illustration of the carbon biogeochemical cycle. Reservoirs are represented
with boxes with their content expressed in 109 tons (gTn) of carbon. The fluxes are indicated with
the arrows, and the units are gTn year�1. Residence times in years are in parentheses (from Goody
and Walker 1972)
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Fig. 16.5 Carbon dioxide before in the atmosphere (unit of Tg of C) after a source is turned on
equivalent to the initial content of the atmosphere (655 Tg). This content is equivalent to about
300 ppm of CO2

The biosphere and the ocean are the components of the climate system that may
absorb in the short term most of the carbon dioxide. The ocean in particular has the
shortest response time, and it is worth to examine with some detail the interactions
between carbon dioxide and the ocean.

16.3.1 Carbonate/CO2 System: A Bit of Marine Chemistry

As rookie scientists of Earth system science, we are not afraid to cope with the
chemistry of the ocean also because for the moment it is still quite simple. If you
want to learn more, use the Broecker and Peng bible.

We start by looking at Fig. 16.6, where the ocean is simply reduced to the surface
water and the deep ocean. In the upper part, carbon dioxide is dissolved. The weak
acids that are formed make carbon available for both photosynthesis, responsible for
the formation of organic matter, and the carbonates that form the shells of organisms
that populate the surface waters.

The reaction scheme starts with the dissolution of carbon dioxide

CO2 .gas/C H2O .acq/ () H2CO3 .acq/ (16.5)

so that at the equilibrium, carbonic acid is formed that in turn is in equilibrium with
bicarbonate ion HCO3

� and hydrogen ion
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Fig. 16.6 A rough scheme of
a two-reservoir ocean
(surface and deep water). The
organic particles of biological
origin sink to the bottom of
the ocean. Carbonates are in
equilibrium in the surface
water, and they determine the
atmospheric pressure of CO2

(Walker 1991)

H2CO3 () HCO-
3 C HC

The main source of bicarbonate ions in the sea is the rocks that, although they have a
very limited solubility, produce a certain amount of carbonate ions CO2�

3 that are in
equilibrium with the bicarbonate ions. If we denote with ka the equilibrium constant
(or more precisely the dissociation constant) for carbonic acid, we have

ka D �
HC �HCO�

3


= ŒH2CO3� (16.6)

On the other hand, from the reaction

HCO�
3 () CO2�

3 C HC (16.7)

with equilibrium constant kb, we have

kb D �
HC �CO2�

3


=
�
HCO�

3


(16.8)

And eliminating the concentration of the hydrogen ions, we get

ŒH2CO3� D kb
�
HCO�

3

2
=ka

�
CO2�

3


(16.9)

For dissolved gases, the concentration is given by

pCO2 D ŒCO2� =˛ (16.10)
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where ˛ is the solubility constant. Because the carbon dioxide concentration is
proportional to that of carbonic acid, we have

pCO2 D kb
�
HCO�

3

2
=˛ka

�
CO2�

3

 D kCO2

�
HCO�

3

2
=
�
CO2�

3


(16.11)

where

kCO2 D kb=˛ka

The determination of the different forms of carbons depends on the total
dissolved carbon, indicated by dissolved inorganic carbon (DIC), and this can be
approximated as

DIC D ŒH2CO3�C
�
HCO�

3

C �
CO2�

3


(16.12)

The concentration of the different forms of carbon can be obtained from the
condition that the sea is electrically neutral. Considering the variety of the ions
present in the seawater, this is not a simple condition. In particular, ions from
strong acids and bases give an excess positive charge that is called alkalinity and
is indicated with Alk. Actually, it corresponds to the total charge carried by the
carbon compounds

Alk D �
HCO�

3

C 2
�
CO2�

3


(16.13)

Comparing the last two equations and keeping in mind that the contribution of the
dissolved carbon dioxide is negligible, we obtain

Alk � DIC D �
CO2�

3


(16.14)

At this point, it is possible to determine the concentration of the bicarbonate ion
as a function of the alkalinity and DIC. From Eqs. (16.13) and (16.14), we have�

HCO�
3

 D 2DIC � Alk

Eliminating in Eq. (16.12) the carbonic acid (the carbon dioxide concentration)
using Eqs. (16.9) and (16.14), we get�

HCO�
3

 D
n
DIC � �

DIC2 � Alk .2DIC � Alk/ .1 � 4kCO2 /
1=2o

= .1 � 4kCO2 /

(16.15)

At this point, we should be able to calculate the partial pressure of carbon dioxide
in the atmosphere. We assume that the equilibrium between the dissolved carbon
dioxide and the atmosphere is established with a characteristic time given by �dis so
that
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d .pCO2/ =dt D ŒpCO2 � .pCO2/s� =�dis (16.16)

where pCO2 and (pCO2)s indicate the atmospheric and surface water partial
pressures, respectively. In the surface water, the photosynthesis produces organic
matter through the reaction

106CO2 C 16NO�
3 C H2PO2�

4 C 122H2O

! .CH2O/106.NH3/16 .H3PO4/C 138O2 (16.17)

In the organic matter, carbon, nitrogen, and phosphorus are in a fixed ratio called
the Redfield ratio (so that we talk about the Redfield ocean).

Respiration is the opposite of Eq. (16.17). It is quite obvious that in the surface
waters, there is a photosynthetic surplus with respect to respiration because a
fraction of the material produced sinks to deep waters so that a flux of carbon dioxide
is established between the surface and deep ocean. An opposite flux of nutrients is
established between the bottom of the ocean and the surface. Surface waters will
be impoverished in DIC and enriched in Alk with the opposite happening for deep
waters. Nitrates are fixed during photosynthesis and released during respiration.

The result of this process (also denoted biological pump) is a depletion of the
surface water in carbon dioxide and so of the atmosphere: the higher the biological
activity in the ocean, the more severe is the depletion of the surface water. Based
on Fig. 16.7, we can establish that the change in surface DIC (that we will call
DICs) is determined by the sedimentation of organic and inorganic carbon and by
the exchange between the surface and deep waters due to the circulation. We have
then

Vs
dDICs

dt
D Œ.pCO2/� .pCO2/s�

�s
Cm � .1C Ccarb/P C .DICd � DICs/Fw

(16.18)

where with Vs we have indicated the volume of the upper ocean and with Cm a
conversion factor between the units of pressure and mass. Ccarb is the ratio between
organic and inorganic carbon, and P is the sedimentation rate of the inorganic
carbon. The units for DIC used here are mole m�3 so that the units for P are mole
year�1. In analogy, DICd is the carbon content in deep waters, and Fw is the water
flux for the exchange between the surface and deep waters. It is quite easy then to
write an equation similar to Eq. (16.18) for deep waters

Vd
dDICd

dt
D .1C Ccarb/P � .DICd � DICs/Fw (16.19)

Exactly in the same manner, we can write two equations for Alks and Alkd

considering that, beside the exchange between surface and deep waters, for each
mole of carbonate that may end as sediment, there is a change of two equivalent
moles of alkalinity due to the term Ca

2C which has two positive charges. Each
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Fig. 16.7 A schematic diagram of the carbon cycle in the ocean. Curved arrows indicate the
circulation (From Najjar 1992)

carbon mole is associated, according to Eq. (16.17), with 16/106 � 0.15 mol of
nitrogen so that we have

Vs
dAlks

dt
D .Alkd � Alks/Fw � .2Ccarb � 0:15/P

Vd
dAlkd

dt
D � .Alkd � Alks/Fw C .2Ccarb � 0:15/P (16.20)

Equations (16.19, 16.20, and 16.21) are solved in the Examples so that once the
alkalinity and the dissolved carbon are calculated, it is possible using Eq. (16.15) to
calculate the bicarbonate ion and then the carbon dioxide pressure using Eq. (16.11).
The pressure is referred to the present value and is then calculated as preexisting
atmospheric level (PAL), while the other data are as follows: DICs D 2.01 mol m�3,
DICd D 2.23 mol m�3, Alks D 2.2 mol m�3, Alkd D 2.26 mol m�3 � s D 8.64 years,
Cm D 4.95 1016 mol,Vs D 1.2 1017 m3, Vd D 1.23 1018 m3, P D 1.75 1014 mol
year�1, Ccarb D 0.25, and Fw D 1015 m3 years�1 D 31.64 Sverdrup. The Sverdrup
is a unit used by oceanographers and corresponds to a flux of 106 m3 s�1.

An early experiment assumed that initially the mixing ratio of carbon dioxide
is about 5 � 280 ppm. The results is show that in the first thousand years or so,
the concentration of carbon dioxide decreases quite rapidly but does not return
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Fig. 16.8 The change in the carbon dioxide mixing ratio with respect to the preindustrial value
due to the burning of fossil fuels according to two scenarios. The preindustrial value is taken as
280 ppm (Broecker and Peng 1984)

to the preindustrial mixing ratio. The important fact is that after a few thousand
years (the characteristic time for transport between deep and surface waters), a
new equilibrium is reached. This can also be noticed from the fact that the carbon
increases in the deep water and decreases in the surface waters, although the changes
are not dramatic. In this case, we have considered only the carbon dioxide changes
due to the interactions with the ocean. The biosphere should have a very important
role, as has been shown previously (see Fig. 16.5).

This is much more evident if we let our model make an incursion into the political
world. In Fig. 16.8, the changes in the carbon dioxide mixing ratio due to the burning
of fossil fuels are shown. The figure is drawn based on two different scenarios, the
first refers to the historical production up to the year 2000 and then by a sudden
stops in the production. This goes to show that it will take centuries before the
mixing ratio goes back to preindustrial values.

The second hypothesis is based on a constant increase in production by 1.5 % per
year up to 2040. After that, there is global and gradual reduction by 10 % per year.
No matter how political leaders discuss the moral of the story is the sooner the better.
Lifetime of carbon dioxide is so long that needs very urgent actions. Except for these
amenities, the important thing is that now the reader can build his own scenario for
the buildup of carbon dioxide, and this can be done with a tablet (or laptop).
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Fig. 16.9 The links between
the variables that control the
environment for the
biosphere. Arrows indicate
positive influence and circles
negative (from Kasting)
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What we have seen until now is actually our immediate future or the recent past,
but it is interesting to ask what will happen in a more distant time horizon. We are
talking here about hundreds of million years, and the role of carbon dioxide will still
be fundamental. In the process of answering this question, we can appreciate even
more the role of the biosphere.

16.3.2 How Long Will the Biosphere Survive?

James Lovelock (the inventor of Gaia) asked this question for the first time, several
years ago, in the following terms. If the sun will evolve, as does any star of its
class, in the future, it will emit more and more energy that will heat up the Earth to
the point that any kind of life form will be sterilized. Recently, James Kasting has
revisited such a question arriving at more optimistic conclusions.

With the help of Fig. 16.9, we can try to set up the terms on the problem. In the
figure, arrows indicate a positive influence among variables, while circles indicate
a negative influence. For example, if the solar luminosity (S) increases, the average
global temperature T also increases. To a warmer planet corresponds a larger amount
of water vapor in the atmosphere so that precipitation will be more abundant. This
may enhance the erosion of silicate rocks, and consequently, there will be a larger
consumption of atmospheric carbon dioxide than is necessary to form carbonates.
As a matter of fact, this mechanism has been invoked as a way to stabilize the carbon
dioxide amount in the atmosphere. A higher temperature will also increase the loss
of hydrogen gas from the upper atmosphere.

The decrease in carbon dioxide will affect negatively the biological productivity
because the efficiency of the photosynthetic processes will be less. The temperature
could become so high that CO2 could be depleted to the point as to inhibit
photosynthesis completely. The result would be the complete cessation of biological
activity that implies turning off the mechanism that regulates the temperature
through erosion processes. Then we may ask based on such premises how long
life on Earth could endure.
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The block diagram in Fig. 16.9 is used to solve everything through a simple
computer program. The first step however is to parameterize some of the processes
in very simple terms. We can start from the solar radiation, assuming it increases
with time according to the data we have on stellar evolution

S.t/ D .1 � 0:38t=�0/
�1S0 (16.21)

In this relation, we assume that S0 D 1368 Wm�2 and the constant is �0 D 4.55 Gyr.
The average global temperature is obtained by calculating first the effective

temperature (see Chap. 3) and then the increase at the surface due to the greenhouse
effect.

.1 � ˛/ S=4 D �T4e

where ˛ denotes the albedo. The global average temperature is given by the effective
temperature (Te) increase by the amount�T due to the greenhouse effect

T D Te C�T (16.22)

The problem now is to establish how the greenhouse warming depends on
the carbon dioxide content. Kasting has used a radiative convective model to
parameterize the temperature increase �T in terms of the temperature and the
carbon dioxide partial pressure,  D log Patm

�T D 815:17C �
4:895 � 10�7� T�2 � �

3:9787 � 105�T�1

� 6:7084 �2 C 73:221 �1 � 30:882T�1 �1 (16.23)

�T also depends on the temperature through the water vapor feedback, and the
albedo depends on the temperature through the ice–albedo feedback

˛ D 1:4891� 6:5979 � 10�3T C �
8:567 � 10�6�T2 (16.24)

The erosion of siliceous rocks is a function of the ground water pH. A typical
erosion reaction will include hydrolysis and the combination with carbon dioxide

Mg2SiO4 C 4CO2 C 4H2O ! 2Mg2C C 4HCO�
3 C H4SiO4

that is proportional to the activity of the hydrogen ions (aHC) and so the carbon
dioxide pressure. Experimental data suggest a dependence like

Fwr

Fwr;0
D
�

Patm

Patm;0

�0:3
exp

�
T � T0
13:7

�
(16.25)

where T0 D 15 ıC is a reference temperature.

http://dx.doi.org/10.1007/978-3-319-29449-0_3
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The biological activity in the soil has then a very important function in the
weathering processes because it maintains in the soil a pressure that can be 30–40
times higher than the atmospheric pressure. For our model, it is very important to
establish the dependence of the CO2 pressure in the soil (Psoil) on the biological
activity. The relationship we will use represents a very rough global average and is
based on very sparse data. It is then necessary to use a good deal of imagination
when using these data. Following Kasting, we can write

Psoil

Psoil;0
D …

…0

�
1 � Patm;0

Psoil;0

�
C Patm

Psoil;0
(16.26)

where again with … we have indicated the biological productivity. The final link
in the model must be between the productivity and the temperature because we
see from Eq. (16.26) that if productivity falls below some threshold than the CO2,
pressure in the soil will become equal to the atmospheric pressure, and from that
point, the photosynthetic activity will be reduced drastically.

The link between productivity and temperature is given by

…

…max
D
"
1 �

�
T � 25
25

�2#
 Patm � Pmin

P1=2 C .Patm � Pmin/

�
(16.27)

This relation points out that the productivity is controlled by pressure and temper-
ature. If the temperature is higher than 50 ıC, then the productivity goes to zero.
The same thing happens if the atmospheric pressure falls below a threshold (Pmin)
that in our case, we have assumed as 10 ppm. Actually, this limit is reasonable
for a particular kind of plants, called C4 (e.g., sugar cane, corn), that utilize a
photosynthetic process quite different from that of other plants (C3). A few C4
plants may survive even at lower pressure. In Eq. (16.28), P1/2 is the pressure at
which…0 D… when T D T0 and Patm D Patm,0.

It is a little surprising that the ocean apparently is not present in this model.
Actually, things are a little different. Most of the photosynthetic activity takes
place in the ocean surface waters. Over the long term, the carbon dioxide added
to the atmosphere by the volcanic activity must be balanced by the deposition
of carbonates in the sediments. The weathering processes transport in the ocean
calcium and magnesium ions that contribute to the alkalinity of the surface waters
and consequently to the dissolution of carbon dioxide from the atmosphere.

The model is usually solved for steady-state conditions using an iteration method.
If we want to solve it as a function of time, we should take into account that the
atmospheric CO2 pressure is regulated on a global scale by volcanic emissions that
are long-term source and destroyed by weathering processes. We have

dMCO2

dt
D V � Fwr (16.28)
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where MCO2 is the carbon dioxide total mass per unit surface, V is the emission rate
by the volcanic activity, and Fwr is the weathering rate. In order to use the relations
written earlier, we multiply and divide through by the quantities with the subscript
0 to obtain

MCO2;0

V0

d

dt

�
MCO2

MCO2;0

�
D
�

V

V0

�
� Fwr;0

V0

�
Fwr

Fwr;0

�
(16.29)

The ratio between the present CO2 mass (5.7 � 1016 mol) and the emission rate
from volcanoes (5 � 1012 mol year�1) gives a time constant of the order of 10 kyr. In
the present condition, also the ratio of weathering/volcanoes is unity. We introduce
a normalized time as

Qt D tV0=MCO2;0

so that Eq. (16.30) becomes

d

dQt
�

MCO2

MCO2;0

�
D
�

V

V0

�
�
�

Fwr

Fwr;0

�
(16.30)

which is the nondimensional equation we may integrate. We make the assumption
that the planet temperature will adapt instantaneously to the changing carbon
dioxide partial pressure.

In the original work by James Walker, the weathering rate depends on the partial
pressure in the atmosphere because the idea is that the hotter the planet, the more
abundant the precipitation. In the present work, the weathering rate depends on
the partial pressure of carbon dioxide in the soil. This assumption ensures the
interaction between the biosphere and the atmospheric pressure. We do not expect
very much difference because if the partial pressure in the atmosphere and the soil
are in equilibrium, then the ratios will not change too much. The results for this
integration are given in Figs. 16.10 and 16.11. The first shows the partial pressure
of CO2 in the soil and the atmosphere (in ppm). As the solar constant increases (and
then the temperature), both pressures decrease because on one side the biological
productivity decreases and on the other the weathering increases.

When the atmospheric pressure falls below 10 ppm, the photosynthetic activity
ceases, and then we may assume the death of the biosphere.

To interpret a little better these results, it is useful to examine the behavior of the
biological productivity and temperature as shown in Fig. 16.11. The most evident
result is a rapid temperature increases when the weathering or the biological activity
is absent. One of the cases shown in the figure is when the atmospheric pressure
is maintained constant at 320 ppm. The weathering has the effect of stabilizing
the temperature because the reduction in the partial pressure of CO2 compensates,
with a lower greenhouse warming, for the increase in the solarconstant. It is quite
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Fig. 16.10 Carbon dioxide partial pressure in the soil and in the atmosphere as a function of time
(or solar constant)

Fig. 16.11 The behavior of the biological productivity and temperature for the model of the
previous figure

interesting in any case how the biological activity can stabilize more efficiently the
temperature, at least in the short term, because it may accelerate the weathering rate
through a higher pressure in the soil.

Our exercise on the Earth system may be assumed completed so that we can
proceed to the chemistry of the troposphere.
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16.4 Chemistry of the Troposphere

The gases that are emitted in the atmosphere as a result of the different biogeochem-
ical cycles have a certain degree of reactivity so that the most important passage
in the cycle may be what happens in the atmosphere. Very important reactions in
the troposphere are those that increase the oxidation state of different compounds.
The more interesting are then carbon monoxide (CO), hydrocarbons, sulfur dioxide
(SO2), nitrogen oxides (NOx), hydrogen sulfide (H2S), ammonia (NH3), and so on.

Once the oxidation is completed, the species formed are removed more rapidly
than the precursor gases. In the gas phase, this process of oxidation and removal is
dominated by the reactions with the hydroxyl radical OH (also called the “sweeper”
of the atmosphere). The average hydroxyl concentration during the daytime is of
the order of 1.5 � 106 cm�3. The reactivity of OH is such that it may form or can be
destroyed in time frames of the order of seconds.

The primary sources for this radical is a dissociative reaction of water with
metastable oxygen that in turn is produced in very small quantities in the troposphere
by the ozone photodissociation

O3 C hv ! O2 C O
�
1D
�

O
�
1D
�C H2O ! OH C OH

net O3 C hv C H2O ! O2 C 2OH (16.31)

The hydroxyl radicals, once formed, are converted into members of the same
odd hydrogen family (HOx) which includes H, OH, HO2, and H2O2. As we have
mentioned before, the family approach is quite convenient because enables us to
calculate very rapidly the mixing ratio of the different components.

The main processes that determine the tropospheric chemistry are shown in
Fig. 16.12. From it, we see that, once formed, the OH radical is transformed
into hydroperoxy (HO2) through a reaction that involves the conversion of carbon
monoxide in carbon dioxide

OH C CO ! CO2 C H

H C O2 C M ! HO2 C M

net OH C CO C O2 ! CO2 C HO2 (16.32)

HO2 is converted back into OH through a reaction that involves ozone and nitrogen
oxide

HO2 C NO ! OH C NO2

HO2 C O3 ! OH C 2O2 (16.33)
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Fig. 16.12 The main reactive processes in the gas phase in the troposphere. The gray arrows
indicate the sources, while the thin arrows indicate the reactions between the single components
(Adapted from Prinn 1992)

The first of these reactions (but also the other) is very important in the continental
regions where the abundance of nitrogen oxide is considerable. In the remote ocean
areas, the conversion utilizes radicals indicated with R represents either hydrogen or
alkyl radicals (e.g., deriving from methane)

RO2 C HO2 ! ROOH C O2

ROOH C hv ! RO C OH (16.34)

The primary sources for OH dominate in the areas with low NOx abundance.
Hydroxyl radicals have a very important role in the oxidation of methane and

other hydrocarbons. The process has such implications that are worth to study them
in detail. It implies the transformation of methane into carbon monoxide and the
further oxidation into carbon dioxide as shown by Eq. (16.33). The role of nitrogen
oxide is very important in this process so that we need to know something more
about it. The sources in the lower troposphere are the combustion processes and
lightning, while in the upper troposphere, an important source is direct injection
from commercial and military air traffic. Also important is the intrusion from the
stratosphere. The main sink is the formation of nitric acid that can be dissolved in
the raindrops.

16.4.1 Methane Oxidation

The main sources of the atmospheric methane can be attributed to both natural and
anthropogenic processes, as shown in Table 16.2, which also lists as the main sink
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the reaction with hydroxyl radicals, although nitrogen oxides play an important role.
The chemical chain starts with the reaction that forms the methyl radical CH3

CH4 C OH ! CH3 C H2O (16.35)

The methyl radical forms a peroxy radical CH3OO

CH3 C O2 ! CH3OO

that may react with a nitrogen oxide radical, starting a process that has as end
products of ozone and hydroxyl radicals following the system of reactions listed

CH3OO C NO ! CH3O C NO2

CH3O C O2 ! H2CO C HO2

HCHO C hv .� � 330nm/ ! HCO C H

H C O2 C M ! HO2 C M

HCO C O2 ! CO C HO2

3 ŒHO2 C NO ! HO C NO2�

4 ŒNO2 C hv .� � 410nm/ ! NO C O�

4 ŒO C O2 C M ! O3 C M�

net CH4 C 8O2 C 5hv ! CO C 4O3 C 2OH C H2O

(16.36)

Through the formation of formaldehyde (HCHO) and its subsequent photodisso-
ciation, for each molecule of methane, four molecules of ozone and two hydroxyl
radicals are formed, while carbon is oxidized to carbon monoxide. CO may react, as
we have seen already, with HO2, but the result of this new oxidation cycle depends
critically on the content of nitrogen oxide

CO C HO ! H C CO2

H C O2 C M ! HO2 C M

HO2 C NO ! HO C NO2

NO2 C hv .� � 410nm/ ! NO C O

O C O2 C M ! O3 C M

net CO C 2O2 C hv ! CO2 C O3 (16.37)

If the concentration of NOx is not high enough, ozone is destroyed by the odd
hydrogen cycle. The first two steps of the sequences in Eqs. (16.37 and 16.38) are
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identical, and they are faster by a factor of 4000 than the third part of Eq. (16.38)
which destroys ozone. Ozone will be produced when the NOx concentration

CO C HO ! H C CO2

H C O2 C M ! HO2 C M

HO2 C O3 ! HO C 2O2

net CO C O3 ! CO2 C O3 (16.38)

is higher by the same factor with respect to the ozone concentration in the
troposphere, 5–10 pptv (10�12).

To understand a little better the importance of the nitrogen oxides, we may return
to the reaction of Eq. (16.37). In the case of a low NOx concentration, the first
reaction becomes so slow that the following process is favored

CH3OO C HO2 ! CH3O2H C O2

CH3O2H C h( ! CH3O C OH

CH3O C O2 ! HCHO C HO2 (16.39)

Also, in this case, in principle, formaldehyde is formed; however, the dissociation
of CH3O2H is so slow that it is more rapidly dissolved in water and then rained out.
In this process, two radicals are lost (OH and HO2), and carbon monoxide is not
formed. More accurate calculations show that there is the loss of 3–4 radicals for
poor NOx air and a gain of 1–2 in situations of high mixing ratio.

The reactions we have examined are in practice the same that dominate the urban
air, where methane is substituted by other hydrocarbons. In this case, the processes
are much more complex, but the interaction between hydrocarbons, nitrogen oxides,
and light is still responsible for the ozone production.

In the reaction scheme, we have seen that nitrogen oxides would never be
destroyed if not for the reaction with hydroxyl radical, through which nitric acid
is formed and rained out with a time constant of a few days. This time is enough for
the mixing ratio of NOx to decrease by 10 % every 1000 km away from urban areas.

Another important conclusion we can draw from the study of methane oxidation
is that of the central role played by hydroxyls. These are able to eliminate most
of the trace gases (NOx in our case), and without them, the residence time of the
same gases would be so long that the result would be a chemical composition
of the troposphere quite different from the present one. The problem is that the
concentration of methane together with NOx and carbon monoxide is increasing
in the atmosphere. This implies in the long term a reduction of the global
hydroxyl concentration and consequently a reduction of the oxidizing capacity of
the atmosphere.
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16.4.2 The Chemistry of Urban Air

One of the most serious problems in the chemistry of urban areas is still ozone
formation. The process starts with the production of atomic oxygen from the
photodissociation of nitrogen dioxide. This atomic oxygen is then used for ozone
O3 production but can be destroyed by the reaction

O3 C NO ! NO2 C O2 (16.40)

The role of HO2 in converting nitrogen oxide into dioxide in the urban atmosphere
is taken by the peroxy radical RO2 which forms from the reaction between
hydrocarbon and hydroxyl. These convert the nitrogen oxide into NO2

RO2 C NO ! NO2 C RO (16.41)

where the peroxy radical RO2 is produced by

RH C OH ! R C H2O

R C O2 C M ! RO2 C M (16.42)

The result of these processes is that in urban, air rich in hydrocarbons and NOx

ozone is formed in considerable quantities. This chemical mechanism was known a
few years ago as “Los Angeles atmosphere,” but today it could very well be known
as the atmosphere of every city, even small ones.

To be more precise regarding the mechanism for the formation of radicals from
hydrocarbons, we can refer to Fig. 16.13, where the ethylene (C2H4) structure is
shown. In some cases, one or more hydrogen atoms may be substituted by a radical
CH3 – that is denoted with R. In general, one hydrocarbon may assume the form
RHC D CHR so that the reaction proceeds like in the upper part of Fig. 16.13. The
radical formed on the right reacts then with oxygen to give a peroxy radical that in
turn will oxidize NO into NO2. This may clarify the different significances of R that
appear in the simplified chemical formulae.

We are now ready to examine in detail the ozone production so that we can
go on to solve a simple model for its evolution. We will start from the reaction

Fig. 16.13 A scheme for the
formation of peroxy radicals
from hydrocarbons (From
Baird 1995)
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scheme (16.43). It is very crude and neglects some reactions but teaches how these
models are used. From what we have seen earlier, the most important reaction for the
formation of ozone is the production of atomic oxygen from nitrogen dioxide. This
in turn is produced in the presence of hydrocarbons that are first converted in RO2

NO2 C hv ! NO C O J2

O C O2 C M ! O3 C M k1

NO C O3 ! NO2 C O2 k2

RH C O ! R C products k3

RH C O3 ! products k4

NO C R ! NO2 C R k5

NO2 C R ! products .incl:PAN/ k6 (16.43)

This repeats a very crude scheme proposed by Friedlander in 1969. We can
assume photochemical equilibrium and write for the odd oxygen

ŒO� D J2 ŒNO2�

k1 ŒO2� ŒM�C k3 ŒRH�
(16.44)

ŒO3� D k1 ŒM� ŒO2� ŒO�

k2 ŒNO�C k4 ŒRH�
(16.45)

Then we may use the fact that k1 ŒO2� ŒM� >> k3 ŒRH� and k2 ŒNO� >> k4 ŒRH� so
that the above equations simplify to

ŒO� D J2 ŒNO2�

k1 ŒO2� ŒM�
D � ŒNO2� (16.46)

ŒO3� D J2 ŒNO2�

k2 ŒNO�
D ˇ

ŒNO2�

ŒNO�
(16.47)

We also assume photo equilibrium between all radicals so we get

k3 ŒRH� ŒO�C "k5 ŒR� ŒNO� D k5 ŒR� ŒNO�C k6 ŒR� ŒNO2� (16.48)

This is because in reaction (5) part of the radicals R are used to destroy NO, and
others are regenerated. " is then the number of free radicals generated in reaction k5.
We get the concentration of radicals

ŒR� D k3 ŒRH� ŒO�

k6 ŒNO2� � ." � 1/ k5 ŒNO�
(16.49)
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We can assume the denominator to be roughly constant so that

ŒR� D k0
3 ŒRH� ŒO� (16.50)

where

k0
3 D k3= fk6 ŒNO2� � ." � 1/ k5 ŒNO�g

the rate equation for NO2, NO, and RH can be then written

d ŒNO2�

dt
D ŒNO2� ŒRH� f˛ ŒNO� � � ŒNO2�g (16.51)

d ŒNO�

dt
D �˛ ŒNO2� ŒNO� ŒRH� (16.52)

d ŒRH�

dt
D ŒNO2� ŒRH� f	 C �= ŒNO�g (16.53)

where

˛ D �k5k
0
3I � D �k6k

0
3I 	 D �k3I � D ˇk4

Equations (16.51), (16.52), and (16.53) can be easily integrated, and the results are
shown in Fig. 16.14. In some of the exercises at the back, we report the simple
program and the justification for the numbers. The integration was carried out for
two different initial conditions. In the case shown on the left, [RH] D 1.15 ppm,
[NO2] D 0.2 ppm, and [NO] D 0.68 ppm. For the case on the right, [RH] D 2 ppm,
[NO2] D 0.2 ppm, and [NO] D 1.0 ppm. Although the photodissociation coefficient
was held constant, the results clearly show the delay in the ozone formation with
respect to the hydrocarbons and nitric oxide. This then could be a classical situation
for the morning traffic with concentration of hydrocarbons and NOx rising from the
traffic and ozone reaching the maximum a few hours later.

16.4.3 Can We Control Air Quality?

From the previous chapter, we have learned that the amount of ozone produced is
strictly related to the NOx and RH amount. There is a classical way to assess this
dependence which is no longer very popular but still quite instructive for a student.
We start by considering the following reactions (Jacob 1999)

O3 C h� ! O2 C O
�
1D
�

JD

O
�
1D
�C M ! O C M kM

O
�
1D
�C H2O ! 2OH k3
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Fig. 16.14 The results of integration of Eqs. (16.51), (16.62), and (16.53). Mixing ratios in ppm
are shown for RH, NO2, NO, and O3. The photodissociation coefficient for NO2 was held constant
(Sillman et al. 1990; Sillman 1999)

This basically is the same as (16.31) and this results in the net production of OH

POH D 2JDk3
kM ŒM�

ŒO3� ŒH2O� (16.54)

The loss of odd hydrogen is due to the following reactions

HO2 C HO2 ! H2O2 C O2 ! k8

NO2 C OH C M ! HNO3 C M ! k9

So the loss is given by

LHOx D k8ŒHO2�
2 C k9 ŒNO2� ŒOH� ŒM� (16.55)

Equating (16.54) and (16.55), we have

k8ŒHO2�
2 C k9 ŒNO2� ŒOH� ŒM� D 2JDk3

kM ŒM�
ŒO3� ŒH2O� (16.56)

At this point, we need to express everything as a function of total odd hydrogen and
total odd nitrogen. The ratio between OH and HO2 is easily found based on

HO2 C NO ! OH C NO2 ! k7

RH C OH C O2 ! RO2 C H2O ! k4

so that

ŒOH� D k7 ŒO3� ŒH2O�

k4 ŒRH�
(16.57)
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In the same way, the set of reactions

NO2 C h� ! NO C O ! JN

NO C HO2 ! NO2 C OH ! k7

NO C O3 ! NO2 C O2 ! k10

NO C RO2 ! NO2 C RO ! k11

gives the ratio of NO2 to NOx

ŒNO�

ŒNO2�
D JN

k10 ŒO3�C k7 ŒHO2�
� JN

k10 ŒO3�
(16.58)

Now (16.57) and (16.58) can be substituted in (16.56); in terms of total odd
hydrogen [HOx] D [HO2] C [OH] and odd nitrogen [NOx] D [NO2] C [NO], we get
a second degree equation for [HO2]

k8ŒHO2�
2 C k7k9kN ŒNOx�

2 ŒM�

k4 ŒRH�
ŒHO2� � 2JDk3

kM ŒM�
ŒO3� ŒH2O� D 0 (16.59)

Once HO2 is calculated, the ozone production is obtained by

PO3 D ŒNO� fk5 ŒRO2�C k7 ŒHO2�g (16.60)

where

ŒRO2� D k4 ŒOH� ŒRH� ŒO2� =k5 ŒNO� (16.61)

The details are given in one of the exercises. Figure 16.15 shows the results for the
ozone isopleths as a function of the RH and NOx abundance. The gray thick curve
separates two regions, the upper left where ozone production is controlled by the
NOx concentration and the lower right where ozone production is controlled by the
RH concentration.

There are a number of approximations in tracing a figure like Fig. 16.15. The
main one is the lack of consistency between the ozone production rate and the ozone
concentration. In order to calculate the chemical compounds, we have adopted an
ozone mixing ratio of 0.05 ppm. This may not be consistent with the production
reported in the figure. The reader may refer to the simple MATLAB program
attached and evaluate the figure for other mixing ratio or even write a better self
consistent program.

16.4.4 The Atmospheric Sulfur Cycle

Sulfur, as shown in Fig. 16.16, is emitted in the Earth’s atmosphere mainly as sulfur
dioxide SO2 from combustion processes and volcanoes (in much less amounts).
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Fig. 16.15 Qualitative ozone production rate (in units of 108 molecules/cm3 s) as a function of
the NOx and RH mixing ratio. The gray lines separate the region where production is controlled
by NOx (upper left corner) from the region where production is controlled by the RH

Also, reduced forms of sulfur are important, like dimethyl sulfide (CH3)2S, hydro-
gen sulfide H2S, carbonyl sulfide COS, and carbon disulfide CS2. These species in
most cases are of natural origin and are produced during decomposition processes,
from algae and in general through microbiological processes in the sea and swamps.
Once in the atmosphere, these species are oxidized either through reaction with
hydroxyl OH and the radical nitrogen trioxide NO3 or through photodissociation.
The conversion happens on time scales that range from a few hours to a few days.

In particular, the conversion of carbonyl sulfide is a very slow process because
photodissociation rate is low and the reaction with atomic oxygen is quite slow. The
lifetime in this way is long enough for COS to reach the stratosphere, where the
photodissociation is much faster so that it can be readily oxidized to sulfuric acid
which may dissolve in the very dry stratospheric environment and form a highly
concentrated solution.

The same fate follows for the sulfur dioxide in the troposphere, and it is quite
interesting to look in detail at such processes

SO2 C OH ! HSO�
3

HSO�
3 C O2 ! SO3 C HO2

SO3 C H2O ! H2SO4 .g/

H2SO4.g/
H2O! H2SO4 .aq/ (16.62)
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Fig. 16.16 The scheme for the atmospheric sulfur cycle. The large arrows indicate the main fluxes
(sinks and sources). The clouds indicate those processes that happen in aqueous phase. The gray
arrows indicate the atmospheric chemical processes

where (g) and (aq) mean that the reaction is in the gas phase or aqueous phase. The
sulfuric acid formed in this way is, together with nitric acid, the main component of
acid rain. Sulfur dioxide can be dissolved in water giving directly sulfurous acid

SO2 C H2O ! H2SO3 .aq/

This acid may form a bisulfite ion and give a very weak acidity to the rain so that
the main contribution to the acidification of rain remains the formation of sulfuric
acid. It is interesting to note that even in this case, there is a relationship between the
presence of nitrogen oxides and the production of sulfuric acid because the radical
formed in the second part of Eq. (16.48) can then form a hydroxyl in the presence
of the nitrogen oxide

HO2 C NO ! NO2 C OH

so that the net effect is a catalytic reaction that forms sulfuric acid

SO2 C NO C O2

H2O! H2SO4 .acq/C NO2 (16.63)
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In a couple of chapters, we will talk about the formation of stratospheric aerosols
from the sulfur species. For the troposphere, a very important product is acid rain,
whose effect on the ecosystem will depend very much on the composition of soil
or rocks. It may seem a paradox but the oldest and, in a sense, noblest rocks like
granite or quartz are those which suffer the greater damage from acid rain. These
minerals have no way to neutralize the acid. On the other hand, rocks containing
chalk or clay can neutralize the acid because they contain calcium carbonate

CaCO3.s/C HC .acq/ ! Ca2C .acq/ ! HCO�
3 .acq/

HCO�
3 .acq/C HC .acq/ ! H2CO3 .acq/ ! CO2.g/C H2O .acq/ (16.64)

This implies that lakes with a granite bed are strongly acidified.
The very same reactions are responsible for the weathering of monuments or

marble statues.
A very important effect of acid rain is the mobilization of metals in the soil. The

combined effect of the acidity of water and the presence of metals like aluminum
is the main cause for the damage to the fish population in lakes. It is likely that
the same agents are also the cause for the extended damage to the North European
forests (although other complex mechanisms may be at work).

16.5 Modes of a Chemical System

We have previously defined the lifetime for a gas. There is actually a way to
generalize this concept that may be useful in a number of applications.

We will consider the same methane oxidation mechanism which may be reduced
to only three reactions

d ŒCH4� =dt D SCH4 � k1 ŒCH4� ŒOH�

d ŒCO� =dt D SCO C k1 ŒCH4� ŒOH� � k2 ŒCO� ŒOH�

d ŒCO� =dt D SOH � k1 ŒCH4� ŒOH� � k2 ŒCO� ŒOH�� k3 ŒX� ŒOH� (16.65)

where the three sources are indicated with Si, while X is any sink much faster than
any reaction with OH. Equation (16.65) shows that, while the production terms can
be assigned, the loss terms depend on all three species involved in the system. If the
net production is indicated with Pi(Xi) where i D 1,3 we can write

dXi=dt D Pi .Xi/

We now assume that we have found a stationary solution to this system with
values Xi

0; then for a perturbation Di, we will have

d
�
X0i C Di


=dt D Pi

�
X0i C Di

�
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that can be written as

d
�
X0i

=dt C d ŒDi� =dt D Pi

�
X0i
�C Œ@Pi .Xi/ =@Xk�Dk C O

�
D2
�

from which we obtain

d ŒDi� =dt D JikDk C O
�
D2
�

(16.66)

where

Jik D Œ@Pi .Xi/ =@Xk�

The eigenstates of the matrix J describe the behavior of the system for small
perturbations around the equilibrium state. If A is an eigenvector of J with
eigenvalue –c, then we have

dA=dt D JA D �cA

so that the perturbation will relax as A / exp (�ct) with a characteristic time 1/c. If
the chemistry is linear and the system completely decoupled, then the matrix would
be diagonal with the diagonal elements as eigenvectors. When for the system of Eq.
(16.52) we adopt the right values for the constants, we get

k1 D 5:0 � 10�15cm3s�1 SCH4 D 1:6 � 105cm�3s�1

k2 D 2:0 � 10�13cm3s�1 SCO D 2:4 � 105cm�3s�1

k3 ŒX� D 1:0s�1 SOH D 1:12 � 106cm�3s�1

while the steady-state solutions are

ŒCH4� D 5:714 � 1013cm�3 ŒCO� D 3:571 � 1012cm�3 ŒOH� D 5:6 � 105cm�3

The matrix elements can be easily calculated as

J11 D �k1 ŒOH� J12 D 0:0 J13 D �k1 ŒCH4�

J21 D k1 ŒOH� J22 D �k2 ŒCO� J32 D �k1 ŒCH4�C k2 ŒCO�

J31 D �k1 ŒOH� J32 D �k2 ŒCO� J32 D �k1 ŒCH4� � k2 ŒCO� � k3 ŒX�

It is to notice that the diagonal elements of this matrix represent the lifetime of the
single species and correspond to the times

�CH4 D 1=J11 D 11:32 year �CO D 1=J22 D 0:283year �OH D 1=J33 D 0:5 s
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Using the rules for the calculation of the eigenvectors, we find (in s�1)

c1 D �1:7691� 10�9 c1 D �8:8630 � 10�8 c3 D �2:0

which correspond to 17.9 years, 0.358 years, and a half second, respectively. The
first result to notice is that the methane lifetime is much longer when we consider the
coupled system compared to just the single species. This is interesting because we
must consider terms like J31 and J32 that if neglected would make the eigenvalues to
coincide with the diagonal elements and the lifetimes to that of the single species.
Once the eigenvalues are known, we can calculate the eigenvectors that are (in units
of molecules cm�3)

C0:999 �0:182 �0:138
C0:039 C0:983 �0:208
�3:6 � 10�9 �5:5 � 10�8 �0:968

To understand better the significance of the eigenvectors, it is more convenient
to normalize them to a 100 % perturbation. This does not seem logical because for
such a perturbation, the system would not be linear. For example, for methane (the
first column), we obtain the perturbation normalized to the carbon monoxide as�

5:714 � 1013=0:999�� �0:039=3:571� 1012� D 0:624

and in the same way for the others. We obtain in this way a very interesting table

100:0 �1:2 0:00000

C62:4 100:0 0:000003

�36:8 �35:6 100:0

From these results, we see that a 100 % perturbation in methane implies a 63 %
change in carbon monoxide and a 37 % change in the hydroxyl in the opposite
direction.

Another consideration should be made about the sensitivity of the lifetime to
the strength of the sources. This is quite important especially for methane which
has a source that changes with time. A changing source implies a change in the
equilibrium values and then the lifetime. The simplest case is that of an excess
source for the hydroxyl OH. At equilibrium, we have

SCH4 D k1 ŒOH� ŒCH4�

SCO C SCH4 D k2 ŒOH� ŒCO� (16.67)

If we consider the third equation for the equilibrium (relative to OH), we have

k3 ŒX� ŒOH� D SOH � .2SCH4 C SCO/
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In order to have a solution for OH, we have a condition on the sources

SOH > .2SCH4 C SCO/

that is, the OH source must be strong enough to oxidize the combined sources of
methane and carbon monoxide. If the lifetime is defined simply as the inverse of J11,
we have

J11 D k1 ŒOH� D k1
SOH � .2SCH4 C SCO/

k3 ŒX�
D k1 .2SCH4 C SCO/

k3 ŒX�
E

where with

E D SOH= .2SCH4 C SCO/� 1

we have defined the excess source. It is clear at this point that the lifetime changes as
the inverse of E. If we want the lifetime for the coupled system, we need to calculate
the eigenvalues for each value of the excess source. For example, if the concentration
of OH increases, then those of methane and carbon monoxide decrease. The result
of this calculation is shown in Fig. 16.17, where the lifetime obtained with the
two methods is reported. We notice that the lifetime taken as the inverse of the
diagonal term scales as the inverse of the hydroxyl source. The lifetime obtained
by considering the coupled system tends to the previous one for E > 0, while it is
very long for small values of the source, that is, for very low OH concentrations.
The ratio between the time constants can be interpreted in a different way. From the
definition of eigenvalue, we get

c1�CH4 D J11�CH4 C J13�OH
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Fig. 16.17 The methane lifetime compared with that calculated with the eigenvalue
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from which we obtain easily

c1� .ln CH4/ D J11� .ln CH4/C J13 fŒOH� = ŒCH4�g�.ln OH/

Considering the ratio between concentrations at the steady state, we have

c1� .ln CH4/ � J11 f�.ln CH4/C�.ln OH/g

This means that the ratio between the eigenvalue and the diagonal element gives
the sensitivity of the methane mixing ratio to a change in the hydroxyl concentration.
This approach is based on the modes of a chemical system and can be extended to
models that are function of height and latitude. It has the advantage that isolates the
mechanism that can potentially perturb the chemical system.

We have neglected in this case the dynamic transport of the chemical species
because this complicates considerably the treatment of the modes. Those interested
may read the bibliography (look for Prather) after they have read the next section.

ŒNO2� ŒOH� ŒM�

For sake of simplicity, we will assume that the family is composed only of NO and
NO2 so that if R is the ratio

R D ŒNO� = ŒNO2�

we have for the residence time

�NOx D .1C R/ =k ŒM� ŒOH�

which gives the result of a few days compared to the few minutes for a single
component. In the model, the transport equation will be integrated for the families,
while the single components will be calculated at photochemical equilibrium.

All this will be examined in greater detail in the next two chapters which deal
with the stratosphere.

E.16 Examples

E.16.1 The Simple Carbon Cycle

The simple carbon cycle given in Fig. 16.6 can be solved with the following
MATLAB program

[t,x]Dode45(’carbonsim’,[0 100],

[2*655 3.55e4 8.19e7 1.6e7 2.7e3]);
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plot(t,x(:,1),t,x(:,5),’--’)

function xdotDcarbonsim(t,x)

xdotDzeros(5,1);

xdot(1)Dx(5)/100Cx(2)/325-x(1)*(1/24C1/6);

xdot(2)Dx(1)/6Cx(3)/3e8-x(2)*(1/325C1/1.3e5);

xdot(3)Dx(2)/1.3e5-x(3)/3.e8;

xdot(4)Dx(5)/3.3e4-x(4)/2e8;

xdot(5)Dx(1)/24-x(5)*(1/3.3e4C1/100);

The program is made up of two parts, the run (run_carbonsim) and the function
that specifies the derivatives. The five reservoirs are in the order: x(1), atmosphere;
x(2), ocean; x(3), sedimentary rocks; x(4), sedimentary rocks and organic; and
x(5), biosphere and soil. For each reservoir, the input and output are given by
the appropriate fluxes. These are obtained dividing the reservoir by the relative
residence time. Notice that for the atmosphere, the quantity of carbon here specified
corresponds to the situation in which the mixing ratio of CO2 was 300 ppm, that is,
the situation of the mid-1950s. It is actually a good occasion to establish the relation
between the mixing ration of CO2 and its mass in the atmosphere. 1 Tg of carbon
corresponds to 1 � 1015 (44/29) D 3.66 � 1015 g of CO2. These with respect to the total
mass of the atmosphere (5.2 � 1021 g) correspond to a mass mixing ratio of 7 � 10�7,
and to a volume mixing ratio of 4.6 � 10�7 .1 ppm of CO2 corresponds to 7.90 Tg of
the gas.

With this simple model, we can do the most elementary simulation like going to
add to the volcanic source the “human” source and reproduce the historical behavior
of the industrial contribution to the increase in the CO2 mixing ratio.

E.16.2 The Carbon Cycle with the Ocean

This refers now to the other more sophisticated cycle, given in Fig. 16.7. Also in
this, we use a MATLAB program composed of run and the function.

[t,x]Dode45(’oceancarb’,[0 500],[2.26 2.2 1. 2.247 2.03]);

plot(t,x(:,3)*280,’--’)

function xdotDoceancarb(t,x)

%alkdDx(1)

%alksDx(2)

%pco2Dx(3)

%sigdDx(4)

%sigsDx(5)

xdotDzeros(5,1);

watemD288;

volsD1.2e17;

voldD1.23e18;

coratD0.25;
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kcarbD5.75e-4C6.e-6*(watem-278);

kco2D0.035C0.0019*(watem-278);

matmco2D5.02 e16;

prodD1.75e14

prodaD(2*corat-0.15)*prod;

prodsD(1Ccorat)*prod;

dstimeD8.64;

if t<250

antr1D3e12*exp(t/26.9);

antrDantr1/(44*matmco2);

else

antrD0

end

dalkD(x(1)-x(2))*wflux;

dsigD(x(4)-x(5))*wflux;

hco3D(x(5)-sqrt(x(5)ˆ2-x(2)*(2*x(5)-x(2))*(1-4*kcarb)))/

(1-4*kcarb);

co3D(x(2)-hco3)/2.;

pco2sDkco2*hco3*hco3/co3;

xdot(1)D(proda-dalk)/vold;

xdot(2)D(dalk-proda)/vols;

xdot(3)D(pco2s-x(3))/dstimeCantr;

xdot(4)D(prods-dsig)/vold;

xdot(5)D((-(pco2s-x(3))*matmco2/dstimeCdsig)-prods)/vols;

In this case, the variables are just those listed to solve Eqs. (16.19, 16.20,
and 16.21), and we only need to clarify how the carbon dioxide mixing ratio
is evaluated. The present atmospheric level (PAL) is assumed to be 280 ppm,
and so according to what we had calculated before, this corresponds to
280 � 7.90 � 1015 g D 5.02 � 1016 mol. This represents the matmco2 parameter in
the program. The anthropogenic source has been fitted to the experimental data of
emission since the year 1750 (t D 0). The term antr1 for the year 2000 corresponds
to 3.26 � 1016 g of CO2/year and then 7.40 � 1014/year mole of CO2. To obtain “antr,”
we need to divide again by matmco2.

E.16.3 The Oxygen Cycle Is Connected with the Carbon Cycle

In the book by Jacob, the connection is quite clear. The total oxygen contained in the
atmosphere amounts to 0.21 � (32/28.96) 5.2 � 1021 D 1.2 � 106 Pg. (1 Pg D petagram
1015 g). If all the carbon contained in the biosphere would be oxidized, it would
consume 7.2 � 1018 g of oxygen, that is, only 0.06 % of the atmospheric oxygen.
The conclusion is that the biosphere hardly controls the atmosphericoxygen, and
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this control must be found somewhere else. Actually, as we learned long ago in the
school, the main source of oxygen should be photosynthesis

CO2 C H2O ! CH2O C O2 (E.16.1)

The reverse of this reaction is respiration or decay. However, the two reactions
are not perfectly in balance because some of the organic material produced by
photosynthesis is subtracted by burial to oxidation. Respiration and decay are on
a time scale of roughly 100 years, and the fraction subtracted to oxidation is
around 0.1–0.2 %. However, there are other sinks for atmospheric oxygen that works
on time scale shorter than burial. Also there are other redox-sensitive elements
buried with carbon the most important being sulfur and iron. During weathering,
O2 dissolved in water oxidizes sulfur within continental pyrite (FeS2), making
soluble sulfate (SO4

2�) which is carried out by rivers to the ocean. In the ocean,
bacteria reduce sulfate and ferric ions (Fe 3C) to pyrite. The reducing power of
photosynthesized organic carbon is transferred to pyrite so that pyrite buried in
sediments is balanced by O2 production.

15CO2 C 15H2O ! 15CH2O C 15O2

15CH2O C 2Fe2O3 C 16HC C 8SO2�
4 ! 4FeS2 C 23H2O C 15CO2

net 2Fe2O3 C 16HC C 8SO2�
4 ! 4FeS2 C 8H2O C 15CO2 (E.16.2)

We see then that for each carbon atom, a molecule of O2 is consumed, while each
sulfur atom as FeS2 consumes 19/8 O2 molecules (30 atoms from CO2 and 8 from
H2O are consumed by 8 S atoms as FeS2). The organic carbon in sedimentary rocks
and pyrite is estimated to be 1.2 � 107 Pg and 5 � 106 Pg, respectively, and the time it
takes for plate tectonics to recycle is about 100 million years. The corresponding
weathering rates are 0.12 Pg C/year and 0.05 Pg S/year. The resulting loss for
oxygen is then 2(0.12 C 0.05(19/8))� 0.4 Pg O/year. This would give a lifetime
for oxygen of 1.2 � 106/0.4 � 3 million year.

E.16.4 The Simple Polluted Atmosphere

From Eq. (16.43), we can write the rate equations

d ŒNO2�

dt
D k5 ŒNO� ŒR� � k6 ŒNO2� ŒR� (E.16.3)

d ŒNO�

dt
D �k5 ŒNO� ŒR� (E.16.4)

d ŒRH�

dt
D � ŒRH� fk3 ŒO�C k4 ŒO3�g (E.16.5)
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[R], [O], and [O3], in favor of [RH], [NO], and [NO2], to obtain

d ŒNO2�

dt
D ŒRH� ŒNO2�

˚
�k0

3k5 ŒNO� � �k0
3k6 ŒNO2�

�
d ŒNO�

dt
D ��k5k

0
3 ŒNO2� ŒNO� ŒRH�

d ŒRH�

dt
D � ŒNO2� ŒRH�

n
k4 .J2=k3/ ŒNO2� =ŒNO�2 C �k3

o
With the notation

˛ D �k5k
0
3I � D �k6k

0
3I 	 D �k3I � D ˇk4

we obtain (16.61, 16.62, and 16.63)
These equations again can be solved with a simple matlab program as follows

[t,x]Dode45(’chem’,[0 60*6],[0.2 0.68 1.15]);

betaD0.001;

o3Dbeta*x(:,1)./x(:,2);

plot(t/60,x(:,1),t/60,x(:,2),t/60,x(:,3),t/60,o3,’--’)

function xdot D chem(t,x)

% x(1) NO2

% x(2) NO

% x(3) RH

alfaD0.1;

thetaD1.83e-3;

muD2.45e-4;

lamdaD0.02;

xdotDzeros(3,1);

xdot(1)Dx(1)*x(3)*(alfa*x(2)-lamda*x(1));

xdot(2)D-alfa*x(1)*x(2)*x(3);

xdot(3)D-x(1)*x(3)*(thetaCmu/x(2));

The program is self-explanatory, and the ozone is calculated in the run program.
With a slight change, this program could be used to evaluate the pollution during
rush hour just assigning a source function for RH and NO.

E.16.5 The Isopleth Diagram for Ozone

The program we wrote simply follows paragraph 16.5.3, and we have indicated the
relevant reaction rates and the constant like density (rho) and so on. As we have
explained in the text, there could be some inconsistency between the calculated
isopleth and the assumed ozone mixing ratio. But again this is something that can
be tested.
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%program o3isopleth

clear all

close all

r1D1.86e-5; % o3 C uv

r2D3.e-11; % o1dCm

r3D2.2e-10; % o1dCh2o

r4D2.3e-29; % rhCohCo2

r5D2.5e-12; % noCro2

r7D8.1e-12;% ho2Cno

r8D1.7e-12; % ho2Cho2

r9D2.5e-11; % no2CohCm

r10D1.9e-14; % noCo3

jno2D0.0081;

rhoD2.5e19;

h2oD1.e-2*rho;

o3D0.5e-7*rho/4;

nioxD[0:0.5:8];

rhxD[1:10:125];

for iD1:length(niox)

for jD1:length(rhx)

nox(i)Dniox(i)*rho*1.e-9;

no2(i)Dr10*o3*nox(i)/(r10*o3Cjno2);

no(i)Djno2*no2(i)/(r10*o3);

rh(j)D1*rhx(j)*rho*1.e-9;

rnDjno2*r10*o3/((r10*o3Cjno2)*(r10*o3Cjno2));

aDr8;

bDr9*r7*rn*(nox(i).ˆ2)./(r4*rh(j)*rho);

cD2*r1*r3*h2o*o3/(r2*rho);

werkeDb.*bC4*a*c;

ho2(i,j)D(-bCsqrt(werke))/(2*a);

oh(i,j)Dr7*ho2(i,j)*no(i)/(r4*rh(j)*rho);

ro2(i,j)Dr4*oh(i,j)*rh(j)*0.21*rho/(r5*no(i));

pro3(i,j)Dno(i)*(r5*ro2(i,j)Cr7*ho2(i,j));

end

end

[x,y]Dmeshgrid(nox/2.5e10,rh/2.5e10);

[C,h]Dcontour(x,y,pro3’/1.e8);

set(h,’ShowText’,’on’,’TextStep’,get(h,’LevelStep’)*0.5)

E.16.6 The Lifespan of the Biosphere

The program we have used in this case is a slight variation with respect to the one
illustrated in the previous paragraphs. The main difference is that we have used the
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approximation that the right-hand side of Eq. (16.25) is unity, and this will give
immediately the dependence of pressure from temperature

Patm D Patm;0 exp

�
T � T0
4:11

�
The rest of the program remains the same (calculation of temperature and so on).
The MATLAB program is quite straightforward.

%program lifespan1

clear all

close all

temp(1)D288.15;

time(1)D0.;

p0D320;

patm(1)Dp0;

for iD1:1599

time(i)D(i-1)*10;

solar(i)D1368/(1-0.38*time(i)/4.55e4);

albedoD1.4981-0.0065979*temp(i)C8.567e-6*temp(i)*temp(i);

teff1D((1-albedo)*solar(i)/(4*5.669e-8));

teff2Dsqrt(teff1);

teffDsqrt(teff2);

psiDlog10(1.e-6*patm(i));

dtemp1D4.895e7/(temp(i)*temp(i))-3.9787e5/temp(i)-6.7084/

(psi*psi);

dtempD815.17Cdtemp1C73.221/psi-30882/(temp(i)*psi);

temp(iC1)DteffCdtemp;

pco2(i)Dp0*exp(-(temp(iC1)-288.15)/4.11);

if pco2(i)>0.003125

patm(iC1)Dp0*pco2(i);

else

patm(iC1)D1;

end

tcelsD1-(((temp(iC1)-273.15)-25)/25)ˆ2;

if tcels<0 j patm(iC1)<10

productivity(i)D0;

else

productivity(i)D2*tcels*(p0-10)/(300Cp0-10);

end

if patm(iC1)<10 j (temp(iC1)-273.15)>50

productD0;

else

productDproductivity(i);

end

psoil0D3200;
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psoil(i)Dproduct*(psoil0-320)Cpatm(iC1);

end

patm(end)D[];

temp(end)D[];

plotyy(time(5:end),[log10(patm(5:end))’,log10(psoil(5:end))’],

time(5:end),solar(5:end)/1368)

figure

plotyy(time(5:end),productivity(5:end),time(5:end),temp(5:end))

E.16.7 An Example on Chemical Modes

We will follow Prather (2007) by studying the Chapman reaction for an oxygen
atmosphere.

O2 C photon ! O C O R1 D J1 ŒO2� J1 D 1:8 � 10�10s�1
O C O2 C M ! O3 C M R2 D k2 ŒO� ŒO2� k2 D 5:26 � 10�17cm3s�1
O3 C photon ! O2 C O R3 D J3 ŒO3� J3 D 1:4 � 10�3s�1
O C O3 ! O2 C O2 R4 D k4 ŒO� ŒO3� k2 D 3:0 � 10�15cm3s�1

The set of reactions can be written as

d ŒO3�

dt
D R2 � R3 � R4

d ŒO�

dt
D 2R1 C R3 � R2 � R4

d ŒO2�

dt
D 2R4 C R3 � R1 � R2

The elements of the Jacobian can be easily calculated as

J11 D @ .R2 � R3 � R4/

@ ŒO3�
D �J3 � k4 ŒO�

J12 D @ .R2 � R3 � R4/

@ ŒO�
D k2 ŒO2� � k4 ŒO3�

J13 D @ .R2 � R3 � R4/

@ ŒO2�
D k2 ŒO�

With the same method, the other Jacobian elements are

�J3 � k4 ŒO� k2 ŒO2� � k4 ŒO3� k2 ŒO�
J3 � k4 ŒO� �k2 ŒO2� � k4 ŒO3� 2J1 � k2 ŒO�
J3 C 2k4 ŒO� �k2 ŒO2�C 2k4 ŒO3� �J1 � k2 ŒO�
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We can easily determine from the inverse of diagonal elements the relevant lifetimes

T .O3/ D .J3 C k4 ŒO�/
�1 D 12 min

T .O/ D .k2 ŒO2�C k4 ŒO3�/
�1 D 1:4 s

T .O2/ D .J1 C k2 ŒO�/
�1 D 176 yr

Beside these time constants, we can derive one for odd oxygen (O C O3) by noticing
that

d ŒO�

dt
C d ŒO3�

dt
D �2R4 C 2R1

and time constant is just

T .ŒO�C ŒO3�/ D ŒO�C ŒO3�

2R4
D 1:5 day

With the same method, it can be shown that the total oxygen (O C 2O2 C 3O3) is
constant, and its lifetime is infinity. At this point, we ask which of these time scales
characterizes the system. It is easy to find the eigenvalues of the Jacobian matrix
that consist of one zero eigenvalues and two nonzero corresponding to �1/1.4 s and
�1/0.74 day. The zero eigenvalue corresponds to the infinite time scale for oxygen;
the second largest coincides with the time scale for odd oxygen, and the smallest
is the one of atomic oxygen. The eigenvector for the smallest time is ([O3], [O],
[O2]) D (�0.995,C1.000, C0.992), and the one for 0.74 day is (C1.000, C0.0019,
�1.5010). In the odd oxygen family, the ratio [O]:[O3] D 0.0019 corresponds to the
steady-state solution. It is to notice that the characteristic time for the system does
not coincide with the photodissociation of ozone.
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Chapter 17
Dynamics of the Middle Atmosphere

We have now all the necessary tools to study the region that has generated in a sense,
most of the popularity to the atmospheric sciences. In this region, we find the ozone
which has given a lot of trouble at the international political level.

The middle atmosphere, until a few years ago of mere academic interest, refers
to that portion of the atmosphere in the altitude range between the tropopause
(10–15 km) up to the homopause (about 100 km). Actually the most interesting
region of the middle atmosphere remains the stratosphere which goes up to about
50 km. The stratosphere interacts very strongly with the troposphere because from
it is source of most of the energy that determines the circulation and also most of
the chemical species that determine the ozone concentration.

In principle, the study of the circulation of the middle atmosphere should be
simpler than for the troposphere because, as we often said, this region is roughly in
radiative equilibrium so that the temperature should be very easily determined and
so the circulation. Actually we will see in a while that the circulation of the middle
atmosphere is in part due to the departure from radiative equilibrium.

On the other hand, it is almost impossible to study the dynamics of this region
without recurring to the chemistry. This is the real difference with the troposphere,
where thermodynamic exchanges of energy are as much important as absorption
of solar and planetary radiation by minor gases. In any case in the troposphere,
the mixing ratio of the main absorbers (carbon dioxide and water vapor) does not
depend very much on the atmospheric chemical processes. The temperature of the
stratosphere by contrast results from emission and absorption processes due to gases
whose mixing ratio is determined by chemical processes.

Another important difference with the troposphere is that we do not have markers
of the circulation like the clouds and we do not have real statistics for the circulation,
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like those of Oort and Rasmussen of the old days. This is particularly true for the
Eulerian circulation. The Lagrangian circulation (this is a new concept), we will
show, can be obtained with enough accuracy from radiative data.

We will start then from what is known better about the middle atmosphere, that
is, the temperature.

17.1 Thermal Structure of the Stratosphere

In Fig. 17.1, the observed temperature of the stratosphere is compared with the one
resulting from the radiative equilibrium. We notice immediately that the summer
hemisphere is much colder than what we would expect from radiative equilibrium
and the winter hemisphere is warmer. In practice, if the region around 50 km should
be in radiative equilibrium the temperature should be as low as 160 K. In the same
figure, the radiative equilibrium temperature for the troposphere does not make any
sense. It is clear, however, that the temperature around 50 km has a considerable
seasonal variation, as it is most of the middle atmosphere. The reason for the
temperature to be higher in summer is that it receives more solar radiation, which
increases with latitude so that the warmest region is at the summer pole. A more
precise idea of the difference between radiative equilibrium and the real case is given
in Fig. 17.2. These differences have an immediate consequence if we remember the
Newtonian cooling approximation. If we denote with Trad the radiative equilibrium
temperature and with T the observed temperature we have for the heating rate Q
(measured in degrees per unit time)

H
E

IG
H

T
 (

km
)

LATITUDE (°)

Fig. 17.1 The radiative equilibrium temperature (left) and the observed one (right) as a function
of latitude and height. The isotherms are at 10 ıC intervals
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Fig. 17.2 The difference in
degrees between the observed
and the calculated radiative
equilibrium temperature. The
data are those in Fig. 17.1
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Q D � .T � Trad/

�r
(17.1)

where � r is a time constant for the radiative relaxation. This equation is written in
such a way that the atmosphere relaxes toward the radiative equilibrium, so that
if T < Trad the atmosphere will heat up and vice versa. This implies that if the
winter hemisphere has a tendency to radiative equilibrium, actually it will have a
positive heating rate while the summer hemisphere will have a negative heating
rate (cooling). This behavior has a very simple physical explanation. If the winter
hemisphere is warmer than the radiative equilibrium, it will emit more infrared
radiation than what it absorbs (solar plus infrared) and thus it will tend to cool.
The opposite will happen for the summer hemisphere.

At this point, it is not obvious that cooling air will subside and heating air will rise
as often we read in books. The vertical motion is due only to buoyancy effects that
depend rather on the temperature difference between air parcels and surrounding
air. The explanation must be more complex and is related the momentum budget of
the atmosphere. For the time being then we would rather explore why the observed
temperature is so different from the radiative equilibrium values.

Before doing that it is worth mentioning another consequence of the radiative
equilibrium. Once the Trad values are known, the zonal wind can be calculated using
the thermal wind equation, and the results are shown in Fig. 17.3. We can see that
these winds are completely unreasonable. These high winds are not reduced even
when we use the gradient wind equation (that is, we take into account the centrifugal
force). The reason why, in both figures, the values below 20 km are not shown is
because there the radiative equilibrium, as we said before, does not make any sense.
The interesting thing is that in the middle atmosphere the winds have a pronounced
seasonal variation, with those in the summer hemisphere blowing in the opposite
direction to the winds in the winter hemisphere. This is a consequence of the
temperature gradient that in summer is directed mainly from the equator to the pole.
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Fig. 17.3 Zonal wind velocities for an atmosphere in radiative equilibrium (left) and the real
atmosphere (right). The westerly winds are shaded and the seasons are the same as in Fig. 17.1

Now we must recur to the dynamics to understand why the summer hemisphere
is colder than the radiative equilibrium and the winter hemisphere is warmer. This
may imply some new concepts about the dynamics and the abstract Eulerian and
Lagrangian definitions will be much more clear (we hope).

17.2 The Eulerian Mean Circulation

This is a good occasion to go over what we have learned about dynamics in the
previous chapters. We have introduced, among other things, a coordinate system
called logpressure that in the vertical had the coordinate

Z D �H ln

�
p

p0

�
where H is the scale height. We can rewrite the equations of motion, hydrostatic
equilibrium, continuity, and thermodynamics

Du

Dt
C fv C @ˆ

@x
D X (17.2a)

Dv

Dt
C fu C @ˆ

@y
D Y (17.2b)
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@ˆ

@Z
D RT

H
(17.2c)

@u

@x
C @v

@y
C 1


0

@ .
0w/

@Z
D 0 (17.2d)

DT

Dt
C N2H

R
w D J

Cp
(17.2e)

In particular for the thermodynamic equation, we can refer to Chap. 11. In this
case, J is the power absorbed per unit mass and Y forces of every nature other
than pressure. We remember that N2 is the Brunt–Vaisala frequency and the total
derivative is given by

D

Dt
D @

@t
C u

@

@x
C v

@

@y
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while the density is given by
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At this point for each variable, we introduce the zonal mean so that we can write
u D u C u0 is zero. Substituting in Eq. (17.2), we obtain
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In Chap. 11, we have obtained similar equations and the approximation is that
the vertical motions can be neglected with respect to the horizontal, and among
these the zonal motion is prevalent. The first part of Eq. (17.3) in particular has a
very interesting interpretation. First of all, there is no longer the forcing term due
to the geopotential because the zonal mean of the gradient is zero. This implies
that the zonal mean motion can only be accelerated by the Eliassen and Palm
flux divergence. The third equation shows that the temperature change is due not
only to the local heating but also to the advection. A very simple consequence
of these equations is that, if the flux divergence is negative (positive), there is a
positive acceleration of the zonal flux. For continuity, the meridional velocity must
increase (decrease) and consequently there will be a change in the vertical velocity.

http://dx.doi.org/10.1007/978-3-319-29449-0_11
http://dx.doi.org/10.1007/978-3-319-29449-0_11
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In the same manner we notice that from the last equation, in the presence of a
heating flux (but in absence of an eddy flux), the vertical velocity must increase
and for continuity the meridional velocity will change. Similar equations have
been developed in Chap. 10 to explain qualitatively the atmospheric circulation.
As for the zonal mean value for u, it can be shown that it satisfies the geostrophic
equilibrium

f u D �@ˆ
@y

(17.4)

If this is used in Eq. (17.2c), we have the thermal wind equation

f
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@Z
C RH�1 @T

@y
D 0 (17.5)

The thermal wind relation is actually a constraint on the meridional circulation
that tends to change independently because of the divergence of the eddy, heat, or
momentum flux. Actually, if for any reason the geostrophic equilibrium of the zonal
wind is changed, the pressure gradient forces produce a meridional circulation that
maintains the thermal wind equilibrium. This mechanism is so efficient that the
zonal wind changes very little even in the presence of large changes of the heat,
momentum, and eddy flux. Further insight into the role of the meridional circulation
can be found by introducing a coordinate transformation.

17.2.1 The Transformed Eulerian Mean

In Eq. (17.3) but also in the experimental data we notice that the change in mean
quantities (u;T) results from small differences between mean quantities and eddies.
This suggests that an adequate transformation could isolate the smallest terms.
Andrews and McIntyre suggested such a transformation in the form

v� D v � R
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These are called residual velocities and the transformation corresponds to introduc-
ing a streamfunction for the residual velocities given by

X� D X C 
0
R

H

v0T 0
N2

(17.7)

http://dx.doi.org/10.1007/978-3-319-29449-0_10
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where X is such that
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(17.8)

If the transformation of Eq. (17.6) is substituted in Eq. (17.3) to eliminate v;w; we
have
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where

E D jEy C kEz

is the Eliassen and Palm flux that we have found in Chap. 10 and that we define here
in a slightly different way

Ey D �
0u0v0 Ez D 
0fRv0T 0=
�
N2H

�
(17.10)

The residual circulation in a sense unifies the role of the eddy momentum and heat
fluxes because the zonal mean circulation is forced by the divergence of the Eliassen
and Palm flux.

Of particular interest are Eqs. (17.9a, 17.9b) because at the steady state Eq.
(17.9a) tells us that the circulation is determined by the convergence of eddy
momentum and heat fluxes. Equation (17.9b) shows that in stationary conditions
the vertical velocity is determined totally from the diabatic heating. In principle
knowing the net heating of the atmosphere, it is possible to obtain the value of the
vertical velocity and through the continuity equation to obtain also the meridional
velocity. This circulation is known as diabatic and is actually a first approximation
to the residual circulation.

In Fig. 17.4, the diabatic circulations for the equinox and solstice are shown.
We see that for the equinox we have roughly a single cell that rises from the
summer hemisphere and subsides at the winter hemisphere. At the equinox, the
warmest region is at the equator so that we have two cells that originate there and
subside at the poles. This residual circulation disappears when the divergence of the
Eliassen and Palm flux is zero, which means that the waves are linear, steady, and
conservative. In this case, the net heating is zero so that the atmosphere is in radiative
equilibrium. The essential condition for the existence of the residual circulation is
that the atmosphere must not be in radiative equilibrium.

http://dx.doi.org/10.1007/978-3-319-29449-0_10
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Fig. 17.4 The residual circulation for the equinox (left) and solstice (right). Shaded areas indicate
circulation toward the southern hemisphere. The mass streamlines refer to a mass flux in Mt s�1

of �0, �20, �10, �5, �2, �0,2 e 0,2, 2, 5, 10, 20, 40, 80, 120

17.2.2 An Attempt to Understand the Origin of the Residual
Circulation

We must ask now what keeps the atmosphere away from radiative equilibrium. We
can start from the steady state solutions of Eq. (17.9)

�fv� D G (17.11a)

N2Hw�

R
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Cp
(17.11b)

Substituting the residual velocities obtained in this way we obtain
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This equation again shows the relation between the forcing term due to the eddies
and the diabatic heating. In case the net heating can be approximated by a Newtonian
cooling, we have
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A first interesting conclusion can be obtained substituting this equation in Eq.
(17.9), which can be used to eliminate u; v�;w� using the thermal wind equation
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We can see from Eq. (17.14) that the rate of change of the zonal temperature depends
on the relaxation of the temperature deviation from the radiative equilibrium value.
This deviation is “diffused” because of the elliptic term that appears in the left-hand
side of the same equation.

If we consider time scales of the order of the season, the temperature difference
with respect to radiative equilibrium is small and then Eq. (17.12) may be considered
valid so that
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where ıT D �
T � Trad

�
is the difference between the zonal mean and the radiative

equilibrium temperature. The almost equal sign is due to the fact that the continuity
equation is satisfied only for seasonal averages. The temperature difference ıT can
be directly related to the horizontal term of the eddy divergence. With �r D 1=˛;we
have
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This shows that the atmosphere is kept away from radiative equilibrium by the
convergence of the eddy term. In practice, this means that the energy absorption
that follows the breakdown of planetary waves is actually the term that heats up
or changes the temperature of the atmosphere. This argument may be convincing
for the winter pole but is reasonable to ask how the eddies can cool the summer
stratosphere. In this case the explanation must be a little more complex and this
is something we will see in the next section studying a very old friend of the
stratospheric dynamicist: the sudden stratospheric warming.

17.2.3 The Sudden Stratospheric Warming

A very interesting application of what we have learned so far are the sudden strato-
spheric warmings (SSW or stratwarms). From Fig. 17.3b, we can see that the winter
stratosphere around 20 km altitude and 60ı north latitude shows a westerly wind that
increases rapidly with height. On the other hand, the temperature decreases toward
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North South
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Fig. 17.5 The interaction between wave and zonal flow in the case of a stratwarm. At left, the
dashed line shows the EP flux that propagates upward and is absorbed at Z0. The flux divergence
at left is represented by the narrow Gaussian and at right by the shaded area. The zonal flow under
this forcing is slowed down, and the deceleration isopleths are represented at right like ellipses and
at left by the wider gaussian. The arrows indicate the induced circulation with the warm (W) and
cold (C) regions (Adapted from Andrews et al. 1987)

the pole after reaching a maximum around 45ı latitude. Sporadically in the winter it
happens that such a situation changes completely in 1–2 weeks so that the wind
changes direction and the temperature increases up to 40 C. Other observations
confirm that responsible for this heating is the upward propagation of planetary
waves, especially the long ones (wave number 1 and 2). These waves produce an EP
flux that drives the mean circulation in the stratosphere.

To understand a little better, we refer to Fig. 17.5, where we assume an EP flux
that propagates upward until it is absorbed at level Z0. Around this altitude, the
divergence of the EP flux is negative so that based on Eq. (17.9a) the zonal flow is
slowed down. In the same way as we have seen for the temperature, the atmosphere
response is not local so that the negative acceleration produces effects on a region
that is wider than the narrowest Gaussian shown in the figure. Because of this slow
down of the zonal flux, the Coriolis acceleration also decreases so that a residual
circulation is established made up of a double cell in the meridional plane. In the
region where the motion is downward, there is compression and the atmosphere
heats up, while in the region where the motion is upward there is expansion and then
cooling. Exactly as in the case of the temperature perturbation, the flux divergence
acts as a heat source for the region. In quantitative terms, the diffuse response can
be understood by looking at Eq. (17.9) together with the thermal wind equation.
Following exactly the same procedure, we have used to obtain Eq. (17.14) for the
temperature, we may obtain an equation for the deceleration of the zonal wind
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where the subscripts indicate the partial derivatives. We see that in this case the
deceleration does not correspond exactly to the forcing but again the presence of an
elliptic operator produces a diffuse response. We must also notice the presence of
the radiative term. In a similar way, we obtain the meridional velocity
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where "D (f /N)2. In both cases, the forcing deriving from the divergence of the EP
flux or the radiation corresponds to an operator for the zonal acceleration or for the
residual meridional velocity that, because of the presence of the height derivative of
the density, is not symmetrical with respect to height and latitude. This may explain
why in Fig. 17.5, the isopleths for the acceleration are moved upward.

We have examined another way to deal with the interaction between zonal flux
and eddies in Chap. 10. In that case we found the way to obtain the meridional flux
of the eddy potential vorticity using Eq. (10.67)

q0v0 D �1
2
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�

q02
�
=@t

@q=@y

If the gradient of mean zonal vorticity is positive then for a growing wave, the
eddy vorticity will increase with time so that the meridional flux will be negative,
that is, directed toward low latitudes. On the other hand, the rate of change of the
mean zonal vorticity is related to the flux by (see Eq. (10.66))

@q

@t
D �@ �q0v0�

@y

so that because the flux is zero at the pole, the term on the right is positive (negative
flux gradient) and the mean zonal vorticity decreases with time and so the zonal
velocity.

Through the eddy terms, the dynamics can change the mean circulation of the
atmosphere and keep it away from radiative equilibrium. In particular in the case
of sudden warming, the circulation is disrupted by the propagation of energy from
the troposphere. The break down occurs mainly for the zonal current which in the
winter is found in the low polar stratosphere between 15 and 20 km. Wave activity
is much more pronounced in the northern hemisphere with respect to the southern
hemisphere because of the more complex orography. This means that the polar
vortex will break more often around the north than the south pole. This implies
that the Antarctic polar vortex is more stable and will break only at the onset of
spring.

This pronounced asymmetry between the two poles has a very important role in
explaining the ozone depletion in Antarctica, as we will see in the next chapter.

http://dx.doi.org/10.1007/978-3-319-29449-0_10
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17.3 Tracers Transport in the Stratosphere

The introduction of the residual circulation, in principle, has greatly simplified the
treatment of how a tracer (that is an inert chemical compound) is transported in the
stratosphere. In the years following this minor revolution, there was the illusion that
finally we could get rid of the eddy terms. Actually the residual circulation would
have absorbed such terms. However, the first attempts to directly use the residual
circulation made clear that there was still a long way to go before the closure of the
problem could be achieved.

To better understand this point we can refer to Fig. 17.6, where the main
processes that determine the transport in the stratosphere are shown. The residual
circulation is represented here by the thick lines and may be responsible for the
rising of air at the tropics and its subsidence at the poles. This implies that the lines
of constant mixing ratio are forced to slope toward the pole causing a horizontal
gradient in the mixing ratio. This gradient is smoothed out by the large-scale eddy
mixing processes.

We consider the continuity equation for a species with a mass mixing ratio �
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where S is the net chemical source. Again the quantities appearing in this equation
can be written as the sum of the zonal mean and a small deviation from it

� D �C �0; u D u C u0; v D v C v0; w D w C w0; S D S C S0

Fig. 17.6 A simple scheme
of the processes responsible
for the transport in
stratosphere. The thin solid
lines are isopleths for the
mixing ratio ¦. The heavy
arrows indicate the residual
circulation around the
jetstream core J. The large
scale mixing processes are
represented by the dashed
lines (Adapted from Holton
1992b)
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If we use log pressure as the vertical coordinate system, we have W D dZ=dt so that
on the sphere
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where � is the latitude and y D a sin �. At this point, we can introduce the residual
circulation defined by Eq. (17.6) keeping in mind the spherical geometry
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where a is the radius of the Earth and � D N2H=R is the static stability. With these
substitutions Eq. (17.19) becomes
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where the components of the flux F* are
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We can see very easily that we are again confronting a closure problem with the
changes of the average mixing ratio related to eddy quantities that in this case are
deviations from the zonal mean. This problem arises because we are interested in
average quantities considering that in a general circulation model, the model itself
produces the eddy terms.

Equation (17.20) is a different way of writing the continuity equation, and it is
called flux form because just those terms are put in evidence. Another interesting
characteristic is that the eddy flux does contain not only the correlation between
velocity and mixing ratio but also the one between velocity and temperature.

Expressing the eddy terms as a function of the average quantities again solves this
closure problem. This opens for the stratosphere one of those constructs of which
nobody knows the origin but which everybody uses: the diffusion coefficients.

17.3.1 The Two-Dimensional Diffusion Coefficients

In Chap. 10, we mentioned that the gravity wave breakdown may be accompanied
by the generation of turbulence whose effects can be parameterized in terms of a
diffusion coefficient (see Eq. (10.103)). For simplicity, we will write the continuity

http://dx.doi.org/10.1007/978-3-319-29449-0_10
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equation in a Cartesian coordinate system that uses Z as the vertical coordinate. In
the flux form, our equation becomes
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At this point, we introduce a new average that we will call isobaric, defined for a
generic quantity � as

h‰ .Z; t/i D
Z

globo
‰ .x; y;Z; t/ dx dy (17.24)

that when applied to Eq. (17.23) gives
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The quantity h�Wi is the globally averaged vertical flux, and Eq. (17.25) has a
closure problem itself because it relates an average mixing ratio to an average flux.
Following a linear theory, the flux can be written in the form

h�Wi D �K.z/
@ h�i
@Z

(17.26)

In this case, the average mixing ratio is determined by a simple diffusion equation
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Assuming that K(z) D Kzz is determined only by the gravity waves breakdown, an
expression similar to Eq. (10.103) can be adopted for it. This very simple approach
was used in the old days simply to evaluate the effects of the very complex system
of reactions on the source term and to calculate the vertical distribution. Most of the
time, the real exercise was to find an appropriate form for K(z) in order to explain
the very sparse data on the distribution.

The same problem can be treated in a two-dimensional space (latitude–altitude)
using Eq. (17.21), when again the relation between eddy flux and mean concentra-
tion is known. When the eddies are attributed to steady or dissipative waves, the
first step is to consider the passage of a stationary wave on a parcel located at the
initial position x0, y0, as shown in Fig. 17.7. If the wave is steady then there is no
net transport and the parcel undergoes an oscillatory motion in the two directions
so that its trajectory is elliptical. Amplitude and tilting of the ellipse depend on the
amplitude and phase of the motion in height and latitude. If we are dealing with a
tracer, we will not observe changes in the chemical composition. On the other hand,
if we consider a highly reacting species its concentration will adapt very fast to that

http://dx.doi.org/10.1007/978-3-319-29449-0_10
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Fig. 17.7 The trajectories in
the z, y plane (ellipses) of an
air parcel at the passage of a
steady wave. The thin solid
lines represent qualitatively
the isopleths of ozone mixing
ratio (ppm) and dashed lines
the chemical lifetime in days
(From Garcia and Solomon
1983)
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of the other species along the trajectory. The most interesting case is that of a species
with a lifetime comparable with the dynamic, time scale, that is the time it takes for
the particle to go around the elliptical trajectory.

This time is of the order of a few days so that at the end, the concentration will
be an average along the trajectory. This kind of average is known as Lagrangian
and will be extremely important for what we are going to say in a while. The
displacements along the Z() and y(�) coordinates can be linearly related to the
velocity by
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The displacements are linearly related to the deviations of the mixing ratio �0
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so that the flux components of Eq. (17.22) can be written as
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and in more compact form can be written as

F� D � .Ks C Ka/r� (17.31)
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where Ks and Ka indicate a symmetric and anti-symmetric matrices whose elements
are given by
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Comparing Eqs. (17.31) and (17.30), we obtain
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The tensor Ks represents the effects of dispersion due to the correlation between
velocities and displacements. The interpretation of the anti-symmetric part is more
complex but it can be shown that it is related to the meridional advection.

This quite elegant theory has taken us back to the starting point. In the old days
(in the 1970s), people simply used the symmetric tensor, tuning its value to fit the
observed species distributions, although the data were really limited. At this point, it
should be necessary to know the displacements and the eddy velocities to calculate
the coefficients. Actually some attempt has been made in this direction using either
observations or data produced by models, but the scarcity of the former and the
imperfections of the latter have frustrated all the attempts.

In any case, a basic difficulty with this approach is really the residual circulation.
If we should use Eq. (17.6) again, we are going nowhere because we still need
to know the eddy terms. This difficulty can be apparently resolved because it is
possible to show that the residual circulation can be approximated by the diabatic
circulation obtained from Eq. (17.9b) by putting @T/@t D 0 so that we have for the
vertical velocity

W
� D J

�Cp

The meridional component is obtained through the continuity equation. Again we
are fooling around because the net heating depends on the temperature which cannot
be determined without taking into account the dynamics, as clearly shown by Eq.
(17.14). Thus if we want to insist on the two-dimensional models we have to make
a drastic decision and follow the hard road. We will follow the approach R. Garcia
has invented that brings us back to gravity and planetary waves.

17.3.2 Self Consistent Transport in Two Dimensions

As we have seen before, dynamics affects directly the temperature which feeds
back into the dynamics determining the diabatic circulation. To fix the problem,
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we start from the Eq. (17.7) referring to the streamfunction for the Transformed
Eulerian Mean (TEM) circulation that can be used to reduce Eq. (17.9) to one elliptic
equation
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In this equation, the radiative term (J) and the dynamic forcing term (G) are inde-
pendent so that only explicating those terms we may determine the streamfunction.

The method used by Garcia starts from the equation for the zonal wind
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and for the average temperature
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with the subscripts indicating the partial derivatives. There are important differences
with respect to what we have discussed before. In Eq. (17.34), there is a term
for the momentum advection �v�uy and a term for the viscous stress, known as
Rayleigh friction, �KRu due mainly to the turbulence introduced by the gravity
wave breakdown. Actually the Eliassen and Palm flux already contains terms due
to the gravity waves that are of the form 
0u0w0. In (17.36) the main novelty is the
presence of the temperature T(z, ') that actually is the deviation with respect to a
globally averaged distribution T0(z). The net radiative heating is now decomposed in
a solar heating term Qs, and a Newtonian cooling term linear with the temperature.
We introduce now a streamfunction X
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so that we arrive at an elliptic equation like Eq. (17.34)
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where the coefficients at left are a function only of mean quantities while the forcing
term at the right-hand side is given by
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In the divergence of the EP flux, there are terms like u0v0 or u0w0 due to the
planetary and gravity waves respectively. In Chapter 10, we have found for the
gravity waves

u0w0 D �k.u � c/3

2N

that is equivalent to a diffusion coefficient

Kzz D k.u � c/4

2HN3

For planetary waves, things are a little more complicated. First of all, it is simpler
to express directly the divergence of the EP flux like in (10.60)

r � Ep D q0v0

instead of correlating the zonal and meridional velocity. As a matter of fact, the
potential vorticity can be obtained as a solution of Eq. (10.55)�

@

@t
C u

@

@x

�
q0 C v0qy D D

where D is some dissipative process. Actually to determine the potential vorticity we
must determine the streamfunction and then the velocity. An example may clarify
everything. If the dissipative term is taken as a time constant 1/ı then the equation
of the potential vorticity becomes�

@

@t
C u

@

@x

�
q0 C v0qy D �ıq0

and assuming for q0 a behavior like exp Œik .x � ct/� we obtain

ik .u � c/ q0 C v0qy D �ıq0 (17.40)

from which it is possible to obtain q0 so that

q0v0 D � v0v0

Œı C ik .u � c/�
qy

and averaging and taking the real part

q0v0 D � v0v0ıh
ı2 C k2.u � c/2

iqy (17.41)

http://dx.doi.org/10.1007/978-3-319-29449-0_10


17.3 Tracers Transport in the Stratosphere 633

If we assume a diffusive flux of the form q0v0 D �Kyyqy, we can write the horizontal
diffusion coefficient as

Kyy D v0v0ıh
ı2 C k2.u � c/2

i (17.42)

With this approach we need to solve both the elliptic equation and the potential
vorticity equation specifying the horizontal wave number. The solution for the
potential vorticity gives also the phase and thus the phase velocity and the other
two wave numbers l and m. The meridional eddy velocity can also be found and
through the equation of continuity Kzz can also be determined.

The coefficients determined in this way can then be used in the continuity
equation for a chemical species with mixing ratio �

@�

@t
C v�

@�

@y
C w� @�

@Z
D S C D� (17.43)

In this D� is the divergence of the eddy flux with components

�0w0 D �Kzz�z �0v0 D �Kyy�y:

We can also write an equation for the deviation from the zonal mean�
@

@t
C u

@

@x

�
�0 C v0�y C w0�z D ��

0

�
(17.44)

where � is the chemical lifetime. Solving Eq. (17.44) as we did for Eq. (17.40), we
can obtain the horizontal diffusion coefficient for each species

Kc
yy D v0v0=�h

��2 C k2.u � c/2
i (17.45)

This confirms that for those species that have a very short lifetime (and can be
considered at photochemical equilibrium), the diffusion coefficient is small and the
diffusion is negligible.

17.3.3 Eddies and the Troposphere–Stratosphere Flux

If we know the residual circulation
�
v�;w�� then the vertical mass flux from some

latitude �0 to the pole is given by

Fm D 2�a2
�=2Z
�0


0w
� cos�d� (17.46)
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Expressing the velocities through the mass streamfunction, we get

a�1 @X

@�
D 
0w

� cos�
@X

@Z
D 
0v

� cos�

So that Eq. (17.46) becomes, with the condition that X(�/2) D 0

Fm D ˙2�aX.�0/ (17.47)

where the positive sign is for the northern hemisphere and vice versa. We need to
remember that Eq. (17.47) expresses the total flux poleward of some latitude, so
that the total extratropical flux will be obtained by finding the latitude for which Eq.
(17.47) is maximum. Indicating with �N and �S these two latitudes

Fm.N/ D C2�aX.�N/ Fm.S/ D �2�aX.�S/

At the steady state, the net extratropical flux of the two hemispheres must be equal
to the tropical flux Fm(T) so that

Fm.T/ D 2�a ŒX.�N/� X.�S/� (17.48)

To obtain the streamfunction in terms of the eddies, we write Eq. (17.9) as

ut �



f � 1

a cos�

@

@�
.u cos�/

�
v� D 1

a cos�
r � E

where, as we have seen before, the Coriolis term is substituted by the zonal mean
absolute vorticity to obtain a better approximation at middle latitudes. At the steady
state ut D 0, so that from the definition of streamfunction we geth

f � .a cos�/�1.u cos�/�
i @X

@Z
D r � E

Substituting the definition of the EP flux and integrating from the altitude ZT to the
top of the atmosphere, we get

X.�;ZT/ D �

0 cos�v0T 0=�

�
ZT
.�a cos�/�1

1Z
ZT

@

@�

�
� 
0cos2�u0v0

�
dZ (17.49)

where

� D
h
f � .a cos�/�1.u cos�/�

i
According to this relation, the mass flux at the height of the tropopause, for example
is proportional to the vertical component of the EP flux plus the integral of the
horizontal divergence of the same flux. An intriguing aspect of this equation is that
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apparently the flux at some altitude depends only on the eddy dissipation above that
level. This conclusion in the literature is called “downward control” and was found
by Michael McIntyre. The intriguing part is that the integral could be made just
as well from the altitude ZT to the bottom, so that we could talk about “upward
control”. A very simple explanation for the previous choice is that it would be
very much complicated to calculate the integral of Eq. (17.55) from the ground
up because in that case we should consider the eddies in the boundary layer: a very
complicated matter indeed. That this is the case can be appreciated by writing Eq.
(17.35) as a function of the mass streamfunction and the angular momentum per
unit mass

m D a cos� .u C a� cos�/

At the steady state, it can be shown that

@X

@�

@m

@Z
� @X

@Z

@m

@�
D a2r � Ecos2� (17.50)

We can see that the left-hand side is the Jacobian

@ .X;m/

@ .�;Z/

It can also be shown that

@m

@�
D @ .m;Z/

@ .�;Z/
D @m

@�
� @m

@Z

@Z

@�

Dividing (17.56) by m� D @m=@�; we get

@ .X;m/

@ .�;Z/

@ .�;Z/

@ .m;Z/
D @ .X;m/

@ .m;Z/
D �

�
@X

@Z

�
m

D a2r � Ecos2�

m�

(17.51)

where the derivative of the streamfunction with respect to Z is calculated keeping
the angular momentum constant. Equation (17.51) can be easily integrated to give

X.�;Z/ D
1Z
Z

�
a2r � Ecos2�=m�

�
�D�.Z0/

dZ0

Again the integral must be made along a contour at m constant. We can the obtain
easily the vertical velocity

w� D 1


0 cos�

@

@�

241Z
Z0

�
a2r � Ecos2�=m�

�
�D�.Z0/

dZ0
35
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If we keep in mind that in the quasi-geostrophic approximation, we have

u << a� cos�

so that

m� � �2a2� sin� cos�

is only a function of latitude we get

w� D 1


0 cos�

@

@�

241Z
Z0

.r � E cos�=2� sin�/
�Dcos t

dZ0
35 (17.52)

From this equation, we see how the integral over Z is the same if made at
constant latitude or at constant angular momentum. This confirms that the angular
momentum isopleths, at least at extratropical latitudes, are vertical lines (Fig. 17.8).

In case only gravity waves contribute to the EP flux in Eq. (17.52). We have

r � E D @
�

0u0w0� =@Z

and the residual vertical velocity becomes

w� D � 1

a cos�

@

@�

 
u0w0 cos�

2� sin�

!
(17.53)
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Fig. 17.8 The isopleths for the angular momentum (left) for the winter season in the northern
hemisphere. Units are 108 m2 s�1. Notice the almost vertical lines in the extratropical regions. At
right, a schematic circulation cell is shown produced by a zonal force corresponding to the shaded
region
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Fig. 17.9 The correlation between mixing ratios of CF12 (left) and CF11 (right) with nitrous
oxide. Notice that the units are different, ppt for CFC and ppb for N2O

This means that at some height the value of the residual velocity is only a function
of the latitudinal gradient of the vertical flux of momentum. The most interesting
thing comes from the solution of Eq. (17.50) when the EP divergence is zero. The
solution for the streamfunction is given by @X=@Z D 0, and in case that m is only
function of the latitude we have v� D 0, so that the streamlines are parallel to the
isopleths of the angular momentum. As shown in Fig. 17.9, this implies that in a
steady state situation the momentum gained at some altitude must be dissipated in
the boundary layer at the surface. The resulting circulation cell will be below the
accelerated region.

This result can be seen as the asymptotic situation of Fig. 17.5 in the sense that,
just at the beginning of the forcing, the circulation assumes the shape of a double
cell. As the time progress, the upper branch of the cell disappears while the lower
branch is extended until it hits the surface, where the momentum gained above is
dissipated.

We see actually that downward control is more a mathematical convenience
rather than a physical concept. As a matter of fact, the calculation of the circulation
with this method may be more difficult than the one based on the heating.

Actually the initial idea was to calculate with the downward control the residual
circulation in the region that separates troposphere and stratosphere, where the
diabatic terms are small (because the atmosphere is almost in radiative equilibrium)
and difficult to calculate. On the other hand, the eddy statistics in the same region
are also very sparse. The other disadvantage is that the evolution of the circulation
forced by a change in angular momentum is not very intuitive and the moment can
only be explained by the fact that Fig. 17.5 is described by an elliptic equation and
Fig. 17.9 by an hyperbolic equation: however, we usually try to understand things
first and then write down the mathematics.



638 17 Dynamics of the Middle Atmosphere

17.4 Transport in Isentropic Coordinates

In what follows we want to refer to some alternative way to formulate the transport
problem. This analysis should have some advantages especially when in presence
of a strong zonal current like the polar vortex. The starting point is to write the
continuity equation in the isentropic coordinate system as we did in Chap. 7 and in
particular Eq. (7.55) which we write in the extended form

�t C r	 � .�V/C
�
�
:

	
�
	

D 0

We notice that the equivalent density is

� D g�1
�
@p

@	

�
Also we have

:

	 D D	

Dt
D J	

CpT
D Q

so that the continuity equation becomes

�t C r	 � .�V/C .�Q/	 D 0 (17.54)

and for a generic tracer with a mass mixing ratio �

�t C u�x C v�y C Q�	 D S (17.55)

where S is the net chemical source. If we multiply Eq. (17.54) for � and Eq. (17.55)
by � and add, we get the flux form of the continuity equation

.��/t C .�u�/x C .�v�/y C .�Q�/	 D �S (17.56)

At this point, each variable is written as the sum of the zonal mean and the deviation
from it so that Eq. (17.56) becomes

� �t C .�v/ �y C �
�Q
�
�	 D �S � �

� 0�0�
t �

h
.�v/0�0

i
y

�
h
.�Q/0�0

i
	

(17.57)

Also in this case we have a closure problem to express the eddy terms as a function
of average quantities. The first step is to write Eq. (17.57) as a function of weighted
means like

A
� D

�
�A
�

�

http://dx.doi.org/10.1007/978-3-319-29449-0_7
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where A is a generic quantity. Equation (17.57) becomes in this case

�t C v��y C Q
�
�	 D S

� � ��1
��
� 0�0�

t
�
h
.�v/0�0

i
y

�
h
.�Q/0�0

i
	

�
(17.58)

To close the problem at this point we write the deviation of the mixing ratio as

.@=@t C u@=@x/ �0 C v0�y C Q0�	 D S0 (17.59)

so that putting

.@=@t C u@=@x/ �0 D v0; .@=@t C u@=@x/ q0 D Q0; .@=@t C u@=@x/ � 0 D S0

We obtain for the deviation of the mixing ratio

�0 D ��0�y � q0�	 C � 0 (17.60)

A drastic simplification at this point can be obtained if we consider adiabatic
motions so that Q0 D q0 D 0, and if we neglect the terms containing � 0 so that Eq.
(17.58) becomes

�t C v��y C Q
�
�	 D S

� C ��1
h
.�v/0�0

i
y

substituting Eq. (17.66) and performing the zonal means we get

�t C v��y C Q
�
�	 D S

� � ��1��v0� 0�
y

C ��1


�
1

2
�02�y

�
y

(17.61)

with the notation

S
) D S

� � ��1��v0� 0�
y

D D
�
1

2

�
�02I

Using for the horizontal, the spherical coordinates we get

�t C v��y C Q
�
�	 D S

) C .� cos�/�1
�
�D�y cos�

�
y

(17.62)

This is the same as in Eq. (17.42) but for the transport on isentropic coordinates. If
the motion is adiabatic, we may expect the tracer to move along isentropic surfaces
with diffusion that is mainly in the same direction. The big news for the moment is
the absence of a vertical diffusion coefficient, while the horizontal component has
been defined in the same way as before, that is, based on the deviations of the air
parcels with respect to an average position.
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17.4.1 Stratospheric Dynamics and Ertel Potential Vorticity

The most interesting thing now is to relate the diffusion coefficient to other concepts
we have found like downward control, but in an isentropic coordinate system the
Ertel vorticity should play an important role. Until now, the application of this
concept has been rather limited and before we show its importance we need to
introduce some further consideration. We may start simply by the equation of
motion in x direction

Du

Dt
D fv � 
�1 @p

@x

We simply expand the Lagrangian derivative, and keeping in mind that

@u

@y
D � C @v

@x

we obtain

ut � v C �
u2 C v2

�
x
=2� fv D �
�1px

With zonal mean we obtain the result

ut � v � fv D 0

that relates the acceleration of the zonal wind to the meridional vorticity advection.
The quantity v can be expressed as a function of the eddy terms to obtain

ut � v � v0 0 � fv D 0

so that substituting for the zonal mean value of the vorticity  D �@u=@y, we get

ut � v .f � @u=@y/ � v0 0 D 0 (17.63)

The same procedure can be applied to the equations of motion written in the
isentropic system and in this case the starting point will be Eq. (7.50), written in the
form

QDV
Dt

D �f k � V � r	‰ (17.64)

where

QD
Dt

D @

@t
C u@

@x
C v@

@y
C Q@

@	

http://dx.doi.org/10.1007/978-3-319-29449-0_7
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while � is the Montgomery streamfunction. The analog of Eq. (17.63) will then be

ut � v� f ) C Qu	 D �.v0P0/� C M (17.65)

where

f ) D f � .u cos�/�=a cos�

P is the Ertel potential vorticity with the index that gives the deviation from
the weighted zonal mean previously defined, and M is any other kind of zonal
acceleration At this point, the eddy term can be written in the usual form P0 D ��Pv

so that the flux of the Ertel potential vorticity can be written as .v0P0/� D �DPy

that can be substituted in Eq. (17.65) to obtain

ut � v� f ) C Qu	 D ��DPy C M (17.66)

The relation between the vorticity eddy flux and the mean gradient has been
used sometime to determine the diffusion coefficient. This is in any case an
approximation that can be justified only for time intervals shorter than the average
lifetime of a planetary wave. The heating term that appears in Eq. (17.66) can be
related to the potential vorticity flux through the downward control. The steady
state form of Eq. (17.66) in the absence of external acceleration and neglecting the
vertical advection gives

v� D �DPy=f ) (17.67)

From this expression, we can still find the downward control principle if we
define a streamfunction such that

Q� D � y=� cos� v� D  	=� cos�

Integrating Eq. (17.66) with respect to 	 and putting  .1/ D 0; we have

 .	0/ D �
1Z
	0

�
�2DPy=f )

�
cos�d	

that can be differentiated with respect to the latitude to obtain Q
�

Q
�
.	0/ D .� cos�/�1

1Z
	0

�
�DPy=f )

�
yd	 (17.68)
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This is similar to Eq. (17.58) and says that the diabatic heating is controlled by
the meridional flux of the Ertel potential vorticity. This is a further confirmation of
the “radiative spring” and that the eddies are responsible for keeping the atmosphere
away from radiative equilibrium particularly at high latitudes. At middle latitudes,
the atmosphere is near radiative equilibrium and the eddy activity is negligible.

17.4.2 The Slope of the Tracers

In Fig. 17.6, we have seen how the circulation may determine the slope of the
isopleths of the mixing ratio. This is not an academic discussion because we will
see that it will have important implications.

We may start to consider a tracer that has no source in the sense that it may be
released at some instant and allowed to spread around. In this case, the change in
the mixing ratio will be

@�

@t
D �v @�

@y
� w

@�

@z
C @

@y

�
Kyy
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@y
C Kyz

@�

@z

�
C @

@z

�
Kzz
@�

@z
C Kyz

@�

@y

�
D 0

In case the mean gradients of the mixing ratio are assumed to be constant, we obtain
easily, keeping in mind the definition of streamfunction
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Usually the vertical diffusion is negligible and we have also
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�
so that at the equilibrium we have
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Kyy
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@y
C �

Kyz �  � @�
@z

�
D 0

And the ratio of the gradients gives the slope

�z=�y Š �@�=@y

@�=@z
D Kyz �  

Kyy
(17.69)

In a situation like that of Fig. 17.6, starting from the equator toward the northern
hemisphere, we will have a negative vertical gradient for the mixing ratio and since
it is the meridional gradient the slope will be positive. This argument is quite
similar to that of Reed and German, to which the previously discussed invention
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of the diffusion coefficients must be attributed. The only change is that now also the
streamfunction play a role. If we go to an isentropic coordinate system, the situation
is quite different. Here we assume that the mixing ratio is given by a global average
value �0 that is only a function of the potential temperature plus a small quantity
�)so that � D �0 C �). In this case, we have

�
)
t C Q

�
�0	 D S

� C .� cos�/�1
�
�D�)y cos�

�
y

(17.70)

From this equation it is possible to obtain a slope with respect to an isentrope

S
� D tan�1 ��y=�	

� � tan�1 ��)y=�0	 �
And the way to proceed is that to integrate the steady state solution for Eq. (17.70)
with respect to y again recurring to the definition of streamfunction

� y�
0
	 D S

�
� cos� C �

�D�)y cos�
�

y

Thus because �0
	 is only a function of 	 , we get

S D tan�1 h� .�D cos�/�1
i

C S0 (17.71)

From this equation as result also from Eq. (17.70), we notice how all the tracers
that lay on isentropic surfaces have the same slope. It is very interesting to substitute
Eq. (17.68) for the streamfunction because we get

S D tan�1

264��1
1Z
	0

�
Py�

2=f )
�
d	

375C S0

that shows how the slope does not depend on the diffusion coefficient at the least
when this is constant. This is not surprising because D controls both the net heating
and the mixing. If the diffusion coefficient increases then the slope decreases while
the net heating increases and so this will increase again the slope.

A rather interesting case is to calculate the slope for two tracers with mixing
ratios �1 and �2 that we define as Sr D @�1/@�2.

The fact that the two tracers may have different slopes is not ruled out by Eq.
(17.71) because the integration constant depends on the net chemical source. We
can start from a global mean of Eq. (17.56) defined as

h: : : i D 1

4�

2�Z
0

�=2Z
��=2

.: : : / cos� d� d�
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where ( : : : ) indicates the quantity on which the average is performed

@

@t
h��i C @

@	
h�Q�i D h�Si (17.72)

We may now approximate the heating rate with its zonal mean Q
�

and also substitute
� D �0 .	/ so that Eq. (17.72) becomes
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�0

@

@	

D
�0Q

�
�
E

D hSi (17.73)

The diabatic term can be evaluated from Eq. (17.62) assuming that the last three
terms are at the equilibrium and that the diffusive and chemical terms may be
parameterized in terms of time constants

Q
� @�
@	

D ��
�
1

�c
C 1

�d

�
(17.74)

From this equation � may be obtained which can be substituted in Eq. (17.72) to
give
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��1
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��1 @�
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This notation is equivalent to the introduction of a diffusion coefficient given by

Kzz D
��

Q
��2�

��1
c C ��1

d

��1	
(17.75)

In case of long-lived tracers, we have ��1
d >> ��1

c so that the vertical diffusion
coefficient becomes

Kzz �
�

Q
��2

�d:

and at the steady state we could write

� @

@	

�
�0Kzz

@ h�i
@	

	
D �0 hSi D ��0 �

�c

We see how the gradient of the mixing ratio is a function of the chemical lifetime of
the species. For two species having mixing rations �1,�2 and relative mixing ratios,
we have

d�1
d�2

D �1

�2

�2;c

�1;c
(17.76)
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This relation shows that if we know the correlation between two long-lived
species it is possible to determine from one species the lifetime of the other. An
example is shown in Fig. 17.9 for the most important chlorofluorocarbons. In this
case, the tracer with the longest lifetime is the nitrous oxide (N2O), and we notice
that the correlation is almost linear for CF12 but not for CF11. This may derive
from the origin of the different points. In the second case, it appears that we should
have two different lifetimes, and this could happen if the points taken are from the
high troposphere or the stratosphere, where the lifetimes can be different and give
raise to a different slope of the correlation curve. Notice that the mixing ratios of
the species shown are very much different, being ppb for N2O and ppt in the case of
CFCs. In the case of CF12, the correlation may be expressed as (Fig. 17.10)

�CF12 .ppt/ D �59:4C 1:6�N2O .ppb/

Assuming a lifetime for nitrous oxide of 130 years, we get for Eq. (17.76) a lifetime

�CF12 D 420:6 � 130= .1:6 � 300/ D 113 year

where as reference concentration we have taken 300 ppt for N2O. We will see that
N2O could be used as a “coordinate”, being an almost conservative quantity.
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Fig. 17.10 The path of air parcel to a sample point. Parcels leaving from the same point arrive
at the same time at the sample point with a different content of the tracer. This situation could
represent N2O with the shaded zone representing regions with different loss rates (in years�1)
(From Schoeberl et al. 2000)
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17.4.3 The Tracer Correlation: Age of Air and Transport

A paper by M. Schoeberl gives a very nice picture of the tracer correlation method
in relation to the age of the air. This is defined as the time elapsed for an air
parcel since it left the troposphere. In practice, if x0 indicates the position that
initially is occupied by the air parcel and xs the location where the same parcel
is sampled, the age of the air parcel is just the time it takes to go between the
two points. Figure 17.11 shows in a very qualitative way how age can be related
to photochemical process. Air parcels leaving the tropopause at the same time and
from the same point may reach the sample point at the same time (having the same
age), although they go through a quite different path. One of the parcels penetrates
a region where the loss rate for a generic species is very high, while the other stays
in a region where the loss is limited. As a result parcel having the same age have a
different content of the species. This case could refer for example to nitrous oxide.
The sample will be made up of a number of irreducible (that is they do not mix along
the path) parcels that have taken many different paths to reach the sample point. The
amount of constituent measured in the sample will be the average over the different
parcels. The parcels will have a distribution of age so we talk about age spectrum,
and this implies that within the sample there will be a distribution in composition
that we will call tracer spectrum.

For a parcel that is released at point x0 and it is sampled at xs, we can define
the quantity G0 (T, xs. x0) as the probability that the transit time is in the range T,
T C dT and we will have Z 1

0

G
�

T; xs; x0
�

dT D 1 (17.77)

G can also be identified as the Green function for an inert tracer with a source B0(t,
x0) such that the concentration of the tracer at the sample point Bs will be

Bs .xs; x0; t/ D
Z t

0

B0 .T; x0/G
�

t � T; xs; x0
�

dT

We can then define the mean age for the sample

� D
Z 1

0

G
�

T; xs; x0
�

TdT D 1

For inert tracers, the mean age and the constituent mixing ratio are directly related
so that because B0(T, x0) � T then the mixing ratio will be proportional to the mean
age. However, if we consider a constituent that is subject to a loss process, things
may be a little different. We consider that all the air parcels are released at the
tropical tropopause with a mixing ratio B0 that we may normalize to unity. The
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Fig. 17.11 This figure, taken from Schoeberl et al. (2000), illustrates the atmospheric sampling.
The aircraft (top) measure air sample with different ages that give rise to the correlation plot just
below the top panel. The age spectrum for two samples is also shown. The panel at the bottom
shows qualitatively the single path photochemistry curve (SPPC) and the case of two constituents
with ages T1 and T2. The dotted lines represent the relative values A1, A2 and B1, B2 for which the
chord gives the air sample concentration

parcel i follows a path xi(t) with a chemical loss rate ˇ[xi(t), t] so that the parcel
amount of the constituent will be given by

DBi=Dt D �ˇ Œxi.t/; t� Bi (17.78)
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Integrating this equation over the time Ti (the age of the parcel) it takes for the parcel
to arrive at the sample point we have

log .Bi/ D �
Z Ti

0

ˇ
h
xi.t/; t

i
dt D �Tiˇi .Ti/ (17.79)

where

ˇi .Ti/ D 1

Ti

Z Ti

0

ˇ
h
xi.t/; t

i
dt

The overbar indicates the average on a single path. As shown in Fig. 17.11, parcels
starting from the same place will arrive at the sample point with different amounts
of tracer so that a tracer spectrum can be introduced like counting the parcels that
have mixing ratios between B and B C dB. We assume that P(B) represents such a
distribution so that the sample concentration will be

Bs D
Z 1

0

P.B/BdB (17.80)

We considernow Fig. 17.12. An aircraft samples air with different ages and different
tracer amount as indicated by the dots. Isochrons, that is isopleths of age, are the
solid lines. Based on a tracer–tracer correlation, the different samples are plotted

Fig. 17.12 Two models for
diffusion and transport of
chemical constituents in the
stratosphere. The global
diffuser model is at the top
and the tropical pipe model at
the bottom
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and each of them is characterized by an age spectrum G(t). The amount of tracer
contained in each of the irreducible parcels depends on their exposure to the
photochemical loss process. If this process is simple photodissociation, the loss rate
will be simply proportional to the photodissociation coefficient

JB D ˇB

Z
�Fd�

where the meaning of the symbols should be well known. The photochemical
exposure n is defined in such a way that

dn D
�Z

�Fd�

�
dt

which is simply the energy absorbed, so that we have for parcel (i) an expression
similar to Eq. (17.83)

log .Bi/ D �ˇBn (17.81)

If we now consider another trace gas A, we will have n D �log(Ai)/ˇA so that
eliminating n we get

Ai D Bi
ˇA=ˇB (17.82)

This equation is valid only when the functional form of the photodissociation
coefficient is the same. In the more general case, the sample concentration will
depend of the spectrum G0(T) and it can be shown that

As D
Z 1

0

Ai.T/G0.T/dT D
Z 1

0

B
hˇA.T/i=hˇB.T/i
i G0.T/dT (17.83)

Equation (17.88) or (17.89) represents the amount of tracer A as a function of B
and the photochemical exposure. On a A-B correlation plane, they represent a single
path photochemistry curve (SPPC) on which the constituents moves as they wander
through the stratosphere. To illustrate the point, we may consider two equal number
of irreducible parcels that have ages T1 and T2. Then we will have

G0.T/ D Œı .T � T1/C ı .T � T2/� =2I � D .T1 C T2/ =2I Bs D .B1 C B2/ =2I
As D

�
B1

ˇA.T1/=ˇB.T1/ C B2
ˇA.T2/=ˇB.T2/

�.
2

The sample point As, Bs will be at the midpoint of a chord that intersects the SPPC
curve at point A1, B1 and A2, B2. The effect of mixing will be to spread the sample
points below the limit chord with intercept (1,1) and (0,0).
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The data plotted in Fig. 17.9 have been produced with a model and are reported
only as an example. In practice, when real data are plotted with the same system,
we notice that the slope of the correlation curve is different depending on the
region where data are taken. For example, for CFCl3, the slope tends to increase
drastically for data taken in the intertropical region. If the mechanism for transport
were the same for all latitudes, we should get the same correlation. We know that the
circulation maintains a mixing ratio gradient against the effect of isentropic mixing.

This consideration, together with other experimental data, suggested to Alan
Plumb to elaborate two transport models, sketched in Fig. 17.12. The “global
diffuser” model considers that transport is due to a single cell that covers from
equator to the poles and is responsible for the tracer advection. In this case, the
mixing due to diffusion processes is present from the tropics to high latitudes. In
the other hypothesis, the tropical region corresponds to some kind of containment
vessel from which tracers are advected to the high latitude and the mixing is limited
to the extra-tropical regions. In the figure, the advection is indicated with the gray
arrows while the diffusion is represented with the black arrows.

These two models give a correlation between long-lived tracers that are very
much different. In the first model, the isopleths of the mixing ratio are much higher
at the equator and slope gently toward the poles. In the second model (called also
tropical pipe), the vertical mixing is inhibited within the tropical pipe so that the
mixing ratio is independent on latitude. At middle latitudes, there is not too much
difference between the models. The second scheme may depend very much from the
season because the position of the pipe is actually determined by the subsolar point.

We make Eq. (17.75) very intuitive, if we neglect the mixing due to the Kyx

component and assume that the advective flux at some latitude is balanced by the
vertical diffusive flux. Then we may write

K
@�

@y
� �@�

@z

Z
wdy (17.84)

If we consider that the slope is very small (that is quasi-horizontal), we may assume
it to be independent of latitude. Equation (17.84) can be integrated to give

K
@�

@y
D @�

@y

Z yp

y
.w � hwi/dy C K� .yt/

yp � y

yp � yt
(17.85)

where � now indicates the slope and the condition is that at the pole � D 0. We
have denoted with yp, yt the latitude of the pole and the tropics. With hwi we have
indicated the velocity averaged between the pole and the equator

hwi D
Z yp

yt

wdy
.�

yp � yt

�
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It is possible to show that the second term on the right-hand side of Eq. (17.84)
is negligible so that the equation becomes

K
@�

@y
D @�

@z

Z yp

y

�
w � hwi

�
dy (17.86)

relating the slope to transport.
Within the tropical pipe we may assume that the vertical diffusion is negligible

while the mixing ratio is constant with latitude so that the source is balanced only
by the vertical advection


W
@�T

@z
� S

This is equivalent to saying that the correlation between mixing ratio is the ratio
between the sources �

d�1
d�2

�
D
�

S1
S2

�
(17.87)

In the tropical pipe, species have a constant mixing ratio with latitude and the
correlation depends on the intensity of the sources.

17.4.4 The Conservative Coordinates

The same equation that describes the mixing ratio for a long-lived tracer (like nitrous
oxide) could be used for any other tracer, that is, for a conservative quantity like the
Ertel potential vorticity P. In this case, the isopleths for the vorticity will follow a
similar equation with zero source

…
)
t C Q

�
…0
	 D .� cos�/�1

�
�D…y cos�

�
y

(17.88)

We should expect the isopleths of the vorticity to follow the constant mixing
ratio lines for N2O so that for all practical purposes we could substitute one
conservative quantity with the other. The advantage is that potential vorticity is
defined by dynamic data so that when these are not available the mixing ratio data
will do the job. Unfortunately, as we shall see in the next chapter, the chemical
data are very sparse so that it is very difficult to distinguish between dynamic
and chemical contributions in the determination of a tracer distribution. In other
occasions, measurements taken at the same time in two atmospheric regions cannot
be compared because the dynamical connection between the two is not known.
There is also a more general question related to the definition of zonal mean, which
should have a very precise physical meaning rather than a simple reduction in the
number of dimensions.
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Some of these problems can be solved with an appropriate coordinate transfor-
mation. As an example we may consider the continuity equation for a tracer

@�

@t
C V � r� D S

With the appropriate choice of three independent quantities (i.e. ˛ ¤ f .ˇ; �/ etc.)
in the region of interest, we can write

@�

@t
C :
˛
@�

@˛
C

:

ˇ
@�

@̌
C :
�
@�

@�
D S (17.89)

where

S .˛; ˇ; �/ � S Œ� .˛; ˇ; �/ ; � .˛; ˇ; �/ ;Z .˛; ˇ; �/�
� .˛; ˇ; �/ � � Œ� .˛; ˇ; �/ ; � .˛; ˇ; �/ ; Z .˛; ˇ; �/�

and �,�, Z are latitude, longitude, and height. We can choose the new coordinates
in such a way that their derivative with respect to time is zero, that is, their value is
conserved within the air parcel

:
˛ D

:

ˇ D :
�

In this new reference system, the changes in the mixing ratio are only a function
of the source and the Lagrangian and Eulerian derivative coincide

@�=@t D S

A first candidate for the coordinate transformation is the potential temperature
because for the adiabatic motion we have d	 /dt D 0 so that 	 could substitute for
the height. For latitude, the candidate could be the Ertel vorticity, as is quite evident
in Fig. 17.14. Here are reported the zonal mean values for the potential vorticity and
the potential temperature. We notice that especially at middle latitude, the surfaces
with constant vorticity are almost parallel to the potential temperature surfaces so
that both quantities change very little with latitude. On the other hand, if we use the
modified potential vorticity (like the one shown at the bottom of the same figure)
then we notice a nice improvement because now the vorticity changes with latitude
once the potential temperature is fixed. Another important point is that the polar
vortex is much more evident in this case. So we may assume the modified potential
vorticity (MPV) to be our candidate to substitute for the latitude.

To understand a little better the origin of the MPV, we start from the vorticity
equation in isentropic coordinates in the case in which the potential temperature
surface are perfectly horizontal. Here the equation can be written as (see Chap. 7)

. C f /t C r	 � . C f /V D �Q	 C u	Qy � v	Qx (17.90)

http://dx.doi.org/10.1007/978-3-319-29449-0_7
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Using the definition of potential vorticity, we get

D…

Dt
D 1

�

D . C f /

Dt
� . C f /

�2
D�

Dt

For an isentropic system, we have

D=Dt D @

@t
C u@

@x
C v@

@y
C Q@

@	

so that the vorticity equation becomes

D…

Dt
D …Q	 C ��1 �Qyu	 � Qx�	


(17.91)

which corresponds to the conservation of Ertel potential vorticity in the adiabatic
case (Q D 0). An intuitive interpretation of this equation may be obtained when the
second term on the right is negligible. In this case, the conservation can be written
in the flux form

@

@t
.�…/C r � J D 0

where

J D V�… � Q . C f /

and considering the mass conservation we obtain again Eq. (17.97). The conserva-
tive coordinate are then Ertel vorticity and potential temperature because we have
for these variables

:

	 D Q
:

… D …Q	 C M (17.92)

where M represents all the extra terms including the friction. The conservative
coordinates correspond then to a region of the atmosphere where the derivatives
appearing in Eq. (17.92) are negligible and that means a negligible heating as well
as its change with potential temperature.

To make Eq. (17.91) more useful, we specialize the Ertel vorticity by writing it
in the form

… D . C f / =� � �g . C f / @	=@p

From the definition of potential temperature, we get

… D �g . C f /


�
p0
p

��
@T

@p
� �

p0T1=�
	.�C1/=�

�
(17.93)
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where � D R=Cp � 2=7 and .� C 1/ =� � 9=2. In case of an isothermal
atmosphere, we have

… D g�

p0T
1=�

0

. C f / 	.�C1/=� (17.94)

so that in the vertical … changes as 	9/2. At this point, we remember that the Ertel
vorticity is defined for any scalar �

… D 
�1a � r�

We could then take any monotonic function of the potential temperature � D S .	/.
This property can be used to make the vorticity more appropriate to represent the
meteorological fields. From Eq. (17.94), the vorticity changes too rapidly with
altitude because the potential temperature varies as 	 –7/2. A more appropriate choice
would be

h D S .	/ D � .2=11/ 	�11=2

so that

@h

@p
D
�
@S

@	

��
@	

@p

�
and the Ertel vorticity is given by

…m D ….	=	0/
�9=2 (17.95)

For this new variable, we can write the equation similar to Eq. (17.91)

D…m

Dt
D 1

� cos�

�
	

	0

��9=2 �
Q�u	 cos� � Q��	

�C…Q	 � 9

2

Q

	
(17.96)

A scale analysis shows that the dominant term is …Q	 together with the last term
on the right. At the bottom of Fig. 17.13, the isopleths for…m are shown and we see
that isopleths for …m change very nicely with latitude. With these approximations
the points, defined now on the 	 ,…m grid, satisfy the condition that a tracer amount
depends only on the chemical source along the longitude. Fixing the value of the
vorticity and the temperature correspond to following a tube along a latitudinal
“circle” with a section defined by �	 ��…m.

Figure 17.14 shows a possible application of this coordinate system with the
isopleths of the ozone mixing ratio in the two reference system. The new system
completely destroys the intuition that was in the old system but gives something
more useful, because we may assume now that along the tubes defined above the
ozone mixing ratio remains the same. A very nice implication is the possibility now
to compare measurements at distant points with the help of meteorological data
(vorticity and temperature). This may be very important in treating the experimental
data.
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Fig. 17.13 At the top, the
isopleths (solid lines) for the
Ertel potential vorticity (units
10�6 m2kg K s�1) and the
potential temperature
(dashed) are shown. At the
bottom, the isopleths are for
the modified potential
vorticity. Negative values for
the latitude refer to the
southern hemisphere
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Fig. 17.14 The ozone mixing ratio in the latitude pressure reference system (left) and in the
potential temperature, modified potential vorticity system (right)
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As a conclusion of this excursion into the new reference system, we come back to
the possibility of using nitrous oxide as the vertical coordinate. The thermodynamic
equation can be written

@	

@t
C un @	

@x
C vn @	

@y
C :

N
@	

@N
D Q (17.97)

where un is now the zonal velocity calculated along a line of constant N2O mixing
ratio, while vn is normal to that direction. The quantity

:

N plays the same role as the
vertical velocity, and because the mixing ratio is conserved along the line, we have
:

N D 0. Using the usual perturbation method, we have

	t C u0	 0
x C v0	 0

y C v	 y D Q (17.98)

And with good approximation, equilibrium is established between the last term of
the left-hand side and the right-hand side

v D Q=	 y (17.99)

These relations allow us to obtain a very simple picture, at least in the polar
region, based on the mixing ratio of nitrous oxide, as shown in Fig. 17.15. The
polar vortex is indicated by the isopleths of the zonal velocity, while the mixing
ratio isopleths are the thick lines. These lines are bent downward by the meridional
circulation. The meridional gradient inside the vortex increases because in that
region the mixing is negligible, or at least weaker than, outside the vortex. The
subsidence inside the vortex means the existence of a strong cooling in that region.

Fig. 17.15 The dynamical
processes that are present in
the polar vortex (Adapted
from Schoeberl et al. 1992)
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In practice, we can establish that velocities are of the order of 0.05 cm s�1,
corresponding to a cooling rate of a few degrees per day.

The polar region is then a dynamically isolated region and this will be a reason
for the existence of the ozone hole as we shall see in the next chapter.

E.17 Examples

E.17.1 Troposphere–Stratosphere Exchange

A rather interesting application of what we have said so far is the evaluation of the
atmospheric residence time of some species. This approach is taken from Holton
in the reference list of this chapter. In Fig. 17.8, we show two types of box models
similar to the one we have studied in the previous chapter to evaluate the lifetime of
chlorofluorocarbons. These models are specific for studying the exchange between
troposphere and stratosphere. We assume then MN to be the mass of a particular
species in the northern hemisphere and MS the corresponding mass in the southern
hemisphere. We also indicate with FN and FS the flux exchanged between north and
south and vice versa. The species is also destroyed at a rate ˛ in both hemispheres.
Similarly, EN and ES are the rate of emission in the two hemispheres. We have

dMN

dt
D EN C FS � ˛MN

dMS

dt
D ES C FN � ˛MS (E.17.1)

The fluxes FN,S can be expressed as a function of the masses as

FN;S D ˇMN;S

where b is the atmospheric flux through the equator divided by the mass of air in
one hemisphere. In steady state conditions, we have

EN � ˇ .MN � MS/� ˛MN D 0

ES C ˇ .MN � MS/� ˛MS D 0 (E.17.2)

For the sake of illustration, we can take a specie that is emitted only in the
northern hemisphere so that ES D 0. Eliminating a between the (E.17.2), we have

ˇ�1 D �
M2

N � M2
S

�
=ENMS (E.17.3)

We can refer now to ethane for which

MN D 2MS D 9 � 1010 EN D 1:2 � 1011mole year�1
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Fig. E.17.1 Box models for the tropospheric exchange (left) and between troposphere and
stratosphere (right). For the meaning of the symbols see text (From Holton 1992a, b)

In this case, we can calculate that the time for exchange is ˇ�1 D 1.125 years. This
data could be evaluated also from Oort and Rasmussen taking the average mass flux
through the equator in a year.

For the box model relative to the troposphere stratosphere exchange we could
write (Fig. E.17.1)

dMS

dt
D Fu � Fd � ˛MS

dMT

dt
D S � Fu C Fd (E.17.4)

In this case, the fluxes are given by

Fu D �TW Fd D �SWI

where W is the mass flux through the tropopause expressed in kg m�2 s�1, and �T

and �S are the mixing ratios in the troposphere and stratosphere, respectively. The
mass per unit surface can be easily calculated

MT D �pT�T=g MS D �pS�S=g

so that (E.17.4) can be written as a function of the mixing ratio

d�S

dt
D �ˇS .�S � �T /� ˛�S

d�T

dt
D Sg

�pT
� ˇT .�S � �T/ (E.17.5)
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where the exchange times in stratosphere and troposphere are defined by

ˇ�1
S D �pS=gW ˇ�1

T D �pT=gWI

At the steady state, the system (E.17.5) gives

�T D S
�
g�p�1

S

� �
˛�1 C ˇ�1

S

�
�S D S

�
g�p�1

S

�
˛�1 (E.17.6)

The most important thing in these relations is that the tropospheric mixing ratio
depends on the exchange time in stratosphere. As a matter of fact, these exchange
times will depend on latitude, height, and season and their accurate evaluation bring
us directly to an important form of control that eddies have on the circulation or in
general on the exchange between troposphere and stratosphere.

E.17.2 Equatorial Waves

We have treated extensively the waves in Chap. 10 and then we have all the tools to
develop some new application in particular on the equatorial waves. We would like
that because we want to talk about the quasi biennal oscillation (QBO) where these
kinds of waves seem to have a very important influence. In the equatorial region, the
Coriolis parameter will be approximated as f D ˇy so that the momentum equations
will be

@u0

@t
� ˇyv0 D �@ˆ0=@x

@v0

@t
C ˇyu0 D �@ˆ0=@y (E.17.7)

And the continuity equation

@u0

@x
C @v0

@y
C 
�1

0 @
�

0w

0� =@z D 0 (E.17.8)

The buoyancy equation can be obtained from the (E.10.24) or simply imposing
equilibrium between buoyancy and pressure force


�1
0 @p0=@z D �g�	=	0

Substituting for the geopotential dˆ0 D dp0=
0 and�	 D �z .@	=@z/

@ˆ0=@z C N2�z D 0

where N2 D .g=	0/ @	=@z. Deriving with respect to time, we get

@2ˆ0=@t@z C w0N2 D 0 (E.17.9)

http://dx.doi.org/10.1007/978-3-319-29449-0_10
http://dx.doi.org/10.1007/978-3-319-29449-0_10


660 17 Dynamics of the Middle Atmosphere

We assume at this point that the perturbation propagates zonally but also
vertically with wave number m. The amplitude growth in height proportionally to



�1=2
0 and the typical form for the perturbation will be

u0 .x; y; z; t/ D ez=2Hbu.y/ exp Œi .kx C mz � �t/� (E.17.10)

Substituting these forms into (E.17.7), (E.17.8), and (E.17.9), we get a set of
ordinary differential equations

�i�bu � ˇybv D �ikb̂ (E.17.11)

�i�bv C ˇybu D �@b̂=@y (E.17.12)

.ikOu C @ Ov=@y/C i .m C i=2H/ Ow D 0 (E.17.13)

� .m � i=2H/ b̂ CbwN2 D 0 (E.17.14)

E.17.2.1 Kelvin Waves

The first case we can work out refers to Kelvin waves. At the equator, these can
propagate only zonally and vertically. We put then Ov D 0 and eliminate ŵ in the last
two equations

i�bu D ikb̂ (E.17.15)

ˇybu D �@b̂=@y (E.17.16)

�� �m2 C 1=4H2
� b̂CbukN2 D 0 (E.17.17)

These are equivalent to two equations

�@bu=@y D �kˇybu (E.17.18)

� �m2 C 1=4H2
�
.�=k/2 C N2 D 0 (E.17.19)

In these equations, the phase velocity is c D �=k so that the first gives the simple
solution

bu D u0 exp
��ˇy2=2c

�
(E.17.20)
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In order for the solution to be limited, the phase velocity must be positive that is the
wave propagates eastward. As for (E.17.19), this represents the dispersion relation

c2 D N2=
�
m2 C 1=4H2

�
(E.17.21)

for m2 � 1=4H2 this reduces to c D ˙N=m that is the same as internal gravity
waves. This can be generalized for a gravity wave having a wavenumber k with
component k and m that is

c D ˙N= jkj ) � D ˙Nk= jkj

The plus sign is taken for eastward propagation and jkj D �
k2 C m2

�
. If we assume

k > 0 and m < 0, then the lines of constant phase must tilt eastward with increasing
height. This because for the phase � D kx C mz to remain constant as x increase
also z must increase.

E.17.2.2 Rossby Gravity Waves

With no restrictions Eqs. (E.17.11), (E.17.12), (E.17.13), and (E.17.14) can be
solved by eliminating û and ŵ with the approximation that m2 >> 1/4H2. In this
case, we get easily

bv �ˇ2y2 � �2 D ikˇyb̂ C i�@b̂=@y (E.17.22)

b̂ ��2 � ghek
2
C ighe� .@bv=@y � ˇkybv=�/ (E.17.23)

where ghe D N2=m2. Now (E.17.23) can be substituted in (E.17.22) to eliminate b̂
and obtain a second order differential equation in Ov

d2 Ov
dy2

C

�
�2

gh e
� k2 � k

�
ˇ

�
� ˇ2y2

ghe

�
Ov D 0 (E.17.24)

Before discussing this equation, we can examine some special case for example
when he ! 1 that is m ! 0 that is the motion in non divergent. In this case,
(E.17.24) reduces to

d2 Ov
dy2

C

�

�k2 � k

�
ˇ

��
Ov D 0

solutions of the form Ov ∼ exp .ily/ do exist if the following dispersion relation holds

�l2 � k2 � k

�
ˇ D 0 ) � D �ˇk

.�
l2 C k2

�



662 17 Dynamics of the Middle Atmosphere

On the other hand, if rotation is eliminated (ˇ D 0) equation becomes

d2 Ov
dy2

C

�
�2

gh e
� k2

��
Ov D 0

and with a solution of the form Ov ∼ exp .ily/ ; we get a dispersion relation

� D ˙�ghe
�
k2 C l2

�1=2
which corresponds to the shallow water gravity model. In the most general case with
the condition Ov D 0 per y ! ˙1; the problem reduces to an eigenvalue case and
the solution to (E.17.24) exists only when the coefficient in square brackets satisfies
the relationship

p
ghe

ˇ

�
�2

gh e
� k2 � k

�
ˇ

�
D 2n C 1I n D 0; 1; 2; :::: (E.17.25)

For the n D 0 mode, the dispersion relation gives�
�2

gh e
� k2 � k

�
ˇ

�
D ˇp

ghe

That can be written as �
�p
ghe

� ˇ

�
� k

��
�p
ghe

C k

�
D 0

this implies that
�
�=

p
ghe � ˇ=� � k

� D 0 and then

jmj D N��2 .ˇ C �k/ (E.17.26)

For no rotation (ˇ D 0) again we find the hydrostatic gravity waves. However, we
see that ˇ ¤ 0 introduces an asymmetry between westward propagating modes
(� < 0) and eastward propagating modes (� > 0) because eastward propagating
waves have shorter vertical wavelengths.

From (E.17.26) we see that in order to have vertical propagation (m > 0) must be

.ˇ C �k/ > 0

so that the phase velocity

c D �=k > �ˇ=k2
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The westward n D 0 propagating mode is referred as Rossby-gravity wave mode.
For upward energy propagation, this mode must have downward phase propagation.

We have then found two possible tropical wave: Kelvin eastward waves and
westward Rossby gravity wave. We will find an application for then in studying
the quasi biennial oscillation (QBO).

E.17.3 The Simplest Theory on Quasi-Biennial Oscillation

The quasi-biennial oscillation is a quasi-periodic phenomenon that interests the
stratosphere. We have seen in this chapter that the zonal winds in the stratosphere
have a periodic behavior being easterly in the summer hemisphere and westerly in
the winter. However, when the long terms means are subtracted there remains an
oscillatory regimes for zonal winds. In particular, zonally symmetric easterly and
westerly winds regimes alternate regularly with a period varying from about 24–30
months. Successive regimes first appear above 30 km, but propagate downward at
a rate of 1 km month�1. These oscillations are symmetric about the equator with
a half width of about 12ı and an amplitude of roughly 20 ms�1 at the equator.
Figure E.17.2 shows the behavior of the QBO for the last 30 years.

Fig. E.17.2 Time-height section of monthly mean zonal winds (m/s) at equatorial stations: Canton
Island, 3ıS/172ıW (Jan 1953 – Aug 1967), Gan/Maledive Islands, 1ıS/73ıE (Sep 1967 – Dec
1975) and Singapore, 1ıN/104ıE (since Jan 1976). Isopleths are at 10 m/s intervals; westerlies are
shaded (Updated from Naujokat 1986)
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The theory has received contribution from Plumb (1977) and Lindzen and Holton
(1978), and we will refer to a simplified two-level model by Yoden and Holton
(1988). All the theories refer to the interaction between waves and the mean
flow.

A good starting point for the theory is to consider the acceleration of the mean
flow due to the convergence of the eddy wave flux and the upward diffusion.

@u

@t
D �@F

@z
C K

@2u

@z2
(E.17.27)

where K is equivalent to a diffusion coefficient.
The EP flux for each wave evolves according to the relation

Fn.z/ D F0n exp

�
�
Z z

0

ƒn
�
z0� dz0

�
(E.17.28)

whereƒn is the attenuation rate for the nth component

ƒn D ˛

.@!=@m/n
D ˛N2

mnk.u � cn/
3

Š ˛N

k.u � cn/
2

(E.17.29)

where ˛ is the thermal damping rate. This means that in westerly flow (u > 0) a
wave of westerly phase speed is selectively absorbed and gives enhanced westerly
forcing of the mean flow. Actually (E.17.29) refers to Kelvin wave which do have
westerly phase speed. For Rossby gravity waves, the coefficient is very much
different

ƒn D ˛N

k.u � c/2

�
ˇ

k .u � c/
� 1

�
(E.17.30)

Using (E.17.29) with the same k, the same zonal velocity and just the oppo-
site phase speed, we deduce that the wave with easterly phase speed is not
very much attenuated and may give rise to a easterly acceleration of the mean
flow. This represents the basic mechanism of the QBO explanation as shown in
Fig. E.17.3.

The figure shows a zonal flow slightly perturbed in presence of two waves with
equal and opposite phase speed Cc and –c. According to what just we said the Cc
wave will be attenuated and give rise to an acceleration of the zonal flow, while the –
c wave will penetrate to a higher altitude and generate an easterly flow there. This
process will continue until all the westerly flow will be destroyed and the process
could start again to create and initial westerly flow high up.
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Fig. E.17.3 Wave propagation as an explanation for QBO

Fig. E.17.4 The two-level
model. Bottom (U0) and top
(U3) are governed by
boundary conditions

E.17.3.1 The Detailed Two Level Model

We will follow the method outlined by Yoden and Holton (1988) where the
atmosphere is reduced to four levels where the wind is defined. According to Eqs.
(E.17.27), (E.17.28), and (E.17.29), we have

@u .z; t/

@t
D

NX
nD1

Fn.0/ƒn .z; t/ exp



�
Z z

0

ƒn
�
z0; t
�

dz0
�

C K
@2u .z; t/

@z2
(E.17.31)

with the top and bottom boundary conditions given by

@u .z; t/

@t
D 0 at z D zT I u D 0 at z D 0

In general, the evaluation of the integral is made with a simple trapezoidal rule while
the second order derivative is reduced to a difference equation. So, in general, we
have for the j level Uj.t/ D u .j�z; t/ and then Fig. E.17.4
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@Uj

@t
D

NX
nD1

Fn.0/Gnj

� exp

"
�
(
1

2

�
Gn0 C Gnj

�C
j�1X
kD1

Gnk

)
�z

#

CK
UjC1 � 2Uj C Uj�1

�z2
(E.17.32)

where

Gnj D ˛

kn
�
Uj � cn

�2
and the boundary conditions

UJ D UJ�1 U0 D 0

We can now apply Eq. (E.17.32) and get

@U1

@t
D

NX
nD1

Fn.0/
˛

kn.U1�cn/
2

� exp



�˛�z

2kn

�
1

.U1 � cn/
2

C 1

c2n

��
CK

U2 � 2U1

�z2
(E.17.33)

@U2

@t
D

NX
nD1

Fn.0/
˛

kn.U2 � cn/
2

� exp



�˛�z

2kn

�
1

.U2 � cn/
2

C 2

.U1 � cn/
2

C 1

c2n

��
CK

U1 � U2

�z2
(E.17.34)

These are the equation that will be used in the model implemented with a Matlab
code. Figure E.17.5 shows the results obtained with the code build around Robinson
(2001) Stella program.
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Fig. E.17.5 The behavior of upper (U(high)) and lower level (U(low)) wind obtained with the
Matlab code for the Quasi Biennial Oscillation

E.17.3.2 The Matlab Code for the QBO

run.qbo

[t,x]Dode45(’qbo’,[0 4000],[0.01 0.0]);

plot(t,x(:,1)C1,t,x(:,2),’--’)

%program qbo

function xdotDqbo(t,x)

xdotDzeros(2,1);

alfaD0.5;

deltazD1;

kD1;

taudiffD33;

fD0.08;

alfadz2kDalfa*deltaz/(2*k);

ceastD1;

cwestD-ceast;

falfadkDf*alfa/k;

uhighminceastD(x(1)-ceast)ˆ2;

uhighmincwestD(x(1)-cwest)ˆ2;

ulowminceastD(x(2)-ceast)ˆ2;

ulowmincwestD(x(2)-cwest)ˆ2;

work1Dfalfadk/uhighminceast;

work2Dexp(-alfadz2k*(1/uhighminceastC2/ulowminceastC1/ceastˆ2));

inputhDwork1*work2;
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help1D(x(1)-x(2))/taudiff;

help2Dfalfadk/uhighmincwest;

help3Dexp(-alfadz2k*(1/uhighmincwestC2/ulowmincwestC1/cwestˆ2));

outhDhelp1Chelp2*help3;

werk1Dfalfadk/ulowminceast;

werk2Dexp(-alfadz2k*(1/ulowminceastC1/ceastˆ2));

inputlDwerk1*werk2C(x(1)-x(2))/taudiff;

holp1Dx(2)/taudiff;

holp2Dfalfadk/ulowmincwest;

holp3Dexp(-alfadz2k*(1/ulowmincwestC1/cwestˆ2));

outlDholp1Cholp2*holp3;

xdot(1)Dinputh-outh;

xdot(2)Dinputl-outl;
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Chapter 18
Stratospheric Chemistry

The basis for studying the stratospheric chemistry has been laid out in the chapter
on tropospheric chemistry (Chap. 16). In that case, we dealt mainly with the gas
sources, but we have introduced the main tools that are used in the photochemical
studies of the atmosphere. In the troposphere, some of the gases have a quite short
lifetime because, for example, they are dissolved in water or are rapidly oxidized so
that they hardly can penetrate the stratosphere.

As shown in Fig. 18.1, these gases are dissociated to produce radicals of
chlorine, nitrogen, and hydrogen (not shown in the figure). The chlorine radicals
are produced from the photodissociation of chlorofluorocarbons (CFC) but also
from natural compounds. Nitrogen oxides are emitted directly in the atmosphere
from combustion processes (in the upper troposphere by the aircraft) or may be
produce by the nitrous oxide decomposition. The production of hydrogen radical is
due mainly to the decomposition of water vapor through dissociative reaction with
metastable oxygen (1O).

The great interest for ozone is because it absorbs most of the ultraviolet solar
radiation and so may protect living things from damage to their DNA. In the last
10 years or so, this has been a very hot topic because we now understand that the
anthropically produced CFCs are responsible for the ozone depletion.

Ozone is produced in the tropical stratosphere and from there transported to high
latitude in the lower stratosphere. Radicals have a very important role in the ozone
chemistry because they accelerate its recombination with atomic oxygen and so
facilitating ozone destruction. In the last few years and in the context of the ozone
problem, a great interest has been growing about heterogeneous chemistry when
the chemical reactions may happen between different phases, like gas and liquids
or solids. Some of the reactions develop on the surface of sulfate particles that are
part of the Junge layer, a thin aerosol layer present in the lower stratosphere. This
layer is refurbished in a sporadic manner by the catastrophic volcanic eruptions that
produce large amount of sulfur dioxide. The dynamical isolation of the polar region
on the other hand determines such low temperatures there in the winter stratosphere

© Springer International Publishing Switzerland 2016
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Fig. 18.1 A cartoon showing the main chemical processes in the stratosphere. In this case the
main attention is to the ozone problem. Figure is not in scale

that cause the condensation of nitric acid or even water vapor, that is, the formation
of polar stratospheric clouds (PSC). These clouds have a fundamental role in the
ozone destruction in the polar regions.

The scientific research on the ozone problem has never been academic, and even
in the 40s it had a great relevance in meteorology. Looking at Eq. (16.8) in the simple
Chapman model, the ozone lifetime is given by (2k1[O])�1 that because of the very
low atomic oxygen concentration in the 20–30 km region is of the order of several
weeks. Ozone could then be used as a tracer to study the dynamics of the lower
stratosphere. The interest of the meteorologist of the time was then anticipating the
important role that would later be recognized to this topic as we have shown in the
previous chapter.

18.1 The Ozone Distribution

Our starting point could be the study of the ozone distribution as shown in Fig. 17.2.
In this figure, we report the ozone columnar density as a function of latitude and
season. The columnar density is defined as

N.z/ D
1Z
z

h
O3

i
dz (18.1)

http://dx.doi.org/10.1007/978-3-319-29449-0_17
http://dx.doi.org/10.1007/978-3-319-29449-0_16
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Fig. 18.2 The columnar
ozone distribution as a
function of season and
latitude. The units are Dobson
and the negative latitudes
refer to the southern
hemisphere
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so that N(z) is the number of molecules for unit surface above a certain altitude. In
the case of ozone, a unit is used to measure the columnar density called Dobson
(in name of the English physicist George M. Dobson, a pioneer of the ozone
studies) that corresponds to 2.68 � 1016 molecules cm�2. Because at STP we have
2.68 � 1019 molecules cm�3, this means that 1 cm – atm of ozone corresponds to 1000
Dobson. As shown in Fig. 18.2, in the atmosphere there is only 0.3–0.4 cm of ozone.
The first impression we have from Fig. 18.2 is that the columnar density of ozone
has a quite marked variation during the season that is not symmetric between the
two hemispheres. The maximum amount of ozone occurs in winter at high latitudes.
This is followed by a minimum in spring that is much more evident in the southern
hemisphere. The fact that the maximum amount of ozone is found in winter is not
surprising because in this season there is a very small amount of atomic oxygen so
that the ozone lifetime is quite long.

To have an idea of the role of the dynamics in determining the ozone amount, we
can refer to Figs. 18.3 and 18.4. The first of these figures shows that at high latitude
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Fig. 18.4 The production (left) and the net source for ozone at the equinox. Units are
105 molecules cm�3 s�1. Shaded areas indicated positive values, while the dashed lines show
net loss

the isopleths of ozone tend to be lower in altitude as we go to higher latitudes.
This means that the ozone maximum at high latitudes is due in large part to the
density increase in the lower stratosphere. This data is quite surprising especially if
we compare it with Fig. 18.4 that shows the ozone production at the equinox. The
production rate of ozone is easy to calculate because as we have seen in Chap. 16,
the main mechanism is oxygen photodissociation so that the production depends on
the amount of oxygen and solar radiation. From Fig. 18.4 we see that the production
has a maximum in the tropical stratosphere while decreases considerably at high
latitude and in the lower stratosphere. This suggests that ozone is transported from
the “production” region at the tropics to the “reservoir” regions at high latitudes. The
dynamics of the stratosphere is responsible for such transport. Actually dynamics
redistributes ozone also in regions where it can be more easily destroyed.

18.2 The Ozone Homogeneous Chemistry

Time has come to see what are the chemical processes that determine the production
and destruction of ozone in the stratosphere. As illustrated in Fig. 18.1, the species
that contribute to stratospheric chemistry have their source at the surface like the
CFCs.

Once in the stratosphere, these species release the reacting gases through a
number of photochemical processes. The solar radiation remains the most important

http://dx.doi.org/10.1007/978-3-319-29449-0_16
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Fig. 18.5 A cartoon showing
the ozone chemistry in the
stratosphere. Arrows
indicated the conversion of
sources in reactive or
reservoir species (Adapted
from Brune 1992)
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factor in the activation of the stratospheric chemistry. The main species contributing
to the ozone chemistry are either produced directly by the source gases or through
intermediate compounds called reservoirs. The release of reactive species may be
the results of either photodissociation or some heterogeneous process. A schematic
view of these processes is given in Fig. 18.5.

The most surprising thing about stratospheric chemistry is that the concentrations
of the reacting gases are extremely small and in any case much smaller than the
source gases that we find in the troposphere. Figure 18.6 shows with more detail this
aspect. We notice that with respect to the most abundant atmospheric components
(oxygen and nitrogen), the source gases have already very small mixing ratios that
are even smaller in the stratosphere. In particular, the bromine and chlorine sources
produce species that have a great efficiency in destroying ozone present with mixing
ratios of the order of part per billion (ppb) or even part per trillion (ppt).

Another observation on this figure is about the grouping of the species in
families, that is, odd oxygen, odd hydrogen, nitrogen, chlorine, and bromine. The
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Fig. 18.7 A simple scheme
of the most important gas
phase reactions for the
stratospheric chemistry. The
ellipses include the nitrogen,
chlorine, and hydrogen
families (From Brune 1992) NO

NO2 N2O5

ClONO2 HNO3

ClO

BrO
HOCl

Cl HCl OH

HO2

O2

O3

O

O2

H2O2

SUN

most important components of these families are shown in Fig. 18.7 where also
the most important gas phase reactions are shown. The photodissociation is the
main mechanism through which the radicals are released from the reservoir species
(HCl, N2O5, ClONO2, HNO3, HOCl). The different families have some “common
member” like chlorine nitrate (ClONO2) for the chlorine and nitrogen families,
hydrogen chloride (HCl), and hypochlorous acid (HOCl) that relate hydrogen and
chlorine families. The nitric acid (HNO3) is common between the nitrogen and
hydrogen families. In the chlorine families, we also include bromine that interacts
strongly with the chlorine radicals.

The figure does not show that all the reactions are mediated somehow by other
species, and this is quite important because one of the species is just ozone. The
final result is that when ozone enters the cycles shown in the figure, it is released
as molecular oxygen. We will see this in detail in the next paragraph where we will
also understand the meaning of the double arrows shown in the Fig. 18.7.

18.2.1 The Catalytic Cycles in the Gaseous Phase

We have already seen in Chap. 16 that ozone is formed in the reaction between
molecular and atomic oxygen that may form itself from the oxygen photodissocia-
tion. The complete path is given by

O2 C h� ! O C O
O2 C O C M ! O3 C M

(18.2)

O3 formed can be destroyed through photolysis or recombination with O

O3 C h� ! O2 C O
O3 C O ! 2O2

(18.3)

http://dx.doi.org/10.1007/978-3-319-29449-0_16
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As we mentioned before the first of these reactions does not corresponds to the
ozone destruction because atomic oxygen is actually a different form of odd oxygen.
The second reaction converts actually an ozone molecule and an oxygen atom in
molecular oxygen, and this actually corresponds to a net loss of odd oxygen. The
interesting thing is that such a process can be accelerated by some species that act
as catalysts. The general scheme is given by

X C O3 ! XO C O2

XO C O ! X C O2

net W O C O3 ! 2O2

(18.4)

The first and second reactions are always very fast so that if k indicates the reaction
rate, the odd oxygen destruction rate can be taken as 2k[O][X] so that the model for
the pure oxygen atmosphere studied before gives

d ŒOx� =dt D 2J2 ŒO2� � 2 ŒO� fk ŒO�C k3 ŒO3�g (18.5)

The ratio between oxygen and ozone does not change in presence of the catalyst

ŒO� = ŒO3� D J3=k2 ŒO2� ŒM�

that substituted in (18.5) gives a relation similar to the one found before

ŒO3� D ŒO2� fJ2k2 ŒM� =k3J3 .1C A/g (18.6)

where A D rk/k3 with r ratio between atomic oxygen and ozone. The net effect of
the catalyst is to accelerate the recombination by a factor given by k3(1 C A). It is to
notice that normally k/k3 � 104 so that even in regions where the oxygen abundance
is low, the effect on ozone may be important. This simple discussion emphasizes
that the cycle (18.4) in order to close needs atomic oxygen that is not very abundant
in the lower stratosphere. Actually this has been one of the main difficulties that
have been encountered in the explanation of the ozone hole.

18.2.2 The Odd Hydrogen Catalytic Cycle

Historically, the first cycle to be proposed was based on the hydrogen radicals OH
an HO2 according to the reactions

OH C O3 ! HO2 C O2

HO2 C O ! OH C O2

net O C O3 ! 2O2

(18.7)
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The second reaction may also acts directly on ozone

OH C O3 ! HO2 C O2

HO2 C O3 ! OH C 2O2

net O3 C O3 ! 3O2

(18.8)

The second cycle does not depend on the atomic oxygen so that it will be particularly
efficient below 25 km. At higher altitudes also the cycle based on atomic hydrogen
could be important

H C O3 ! OH C O2

OH C O ! H C O2

net O C O3 ! 2O2

(18.9)

Sources for the hydrogen radicals are water vapor, methane, and molecular
hydrogen that are subject to the dissociative reaction with metastable oxygen O1(D):

O
�
1D
�C H2O ! OH C OH

O
�
1D
�C CH4 ! CH3 C OH

O
�
1D
�C H2 ! OH C H

(18.10)

Photodissociation on the other hand may be important for hydrogen peroxide and
hydroxyl radical production from nitric acid:

HNO3 C h� ! NO2 C OH
H2O2 C h� ! OH C OH

(18.11)

The peroxyl radicals form from the reaction

H C O2 C M ! HO2 C M

A first consideration to make about catalytic cycles is that in principle a single
catalyst molecule could destroy all the ozone. This does not happen because the
radicals may react with species that may sequester them and consequently slow
down their effect. In the case of hydrogen radicals, the main reaction is the formation
of nitric acid according to the scheme

OH C NO2 C M ! HNO3 C M (18.12)

This reaction has the effect of destroying both the nitrogen oxides and the
hydroxyl although both species reform through the first of (18.9). Actually the
hydrogen radicals are removed because the nitric acid transported down in the
troposphere is dissolved in the raindrops and is rained out. A similar process



18.2 The Ozone Homogeneous Chemistry 679

happens also in the polar atmosphere where nitric acid may form iced crystals or
hydrates. In this case the process is called denitrification.

Radicals may also react between themselves and are destroyed. The most
important reactions are besides (18.12)

OH C OH ! H2O C O
OH C HO2 ! H2O C O2

OH C HNO3 ! H2O C NO3

OH C HO2NO2 ! H2O C NO2 C O2

HO2 C HO2 ! H2O2 C O2

H2O2 C OH ! HO2 C H2O

(18.13)

The odd hydrogen concentration is given by [HOx] D [H] C [OH] C [HO2]. As
we said earlier, [HOx] can be treated as a specie, while its components can be
calculated at photochemical equilibrium.

18.2.3 The Odd Nitrogen Catalytic Cycle

The effect of nitrogen radicals on ozone is essentially that seen in Chap. 16 for the
troposphere:

NO C O3 ! NO2 C O2

NO2 C O ! NO C O2

net O C O3 ! 2O2

(18.14)

The second reaction competes with the photodissociation of nitrogen dioxide:

NO2 C h� ! NO C O
O C O2 C M ! O3 C M

(18.15)

Without atomic oxygen, the ozone loss can be attributed to the cycle

NO C O3 ! NO2 C O2

NO2 C O3 ! NO3 C O2

NO3 C h� ! NO C O2

net O3 C O3 ! 3O2

(18.16)

Sources of nitrogen oxides are at the surface (combustion processes) or in the
atmosphere (lightning and aircraft) and in the dissociation of nitrous oxide

N2O C O
�
1D
� ! NO C NO (18.17)

http://dx.doi.org/10.1007/978-3-319-29449-0_16
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The main sink is again reaction (18.12) with the formation of nitric acid. The odd
nitrogen concentration however includes also species we have not mentioned so far
so that the total concentration is given by

NOx D NO2 C NO C NO3 C N2O5 C HNO4 C ClONO2 C BrONO2

Nitrogen pentoxide (N2O5), nitrous acid (HNO4), chlorine nitrate (ClONO2), and
bromine nitrate form from the reactions

NO2 C NO3 C M ! N2O5 C M
HO2 C NO2 C M ! HO2NO2 C M
NO2 C ClO C M ! ClONO2 C M
NO2 C BrO C M ! BrONO2 C M

(18.18)

Some of these species are rapidly dissociated so that they are present only at night.
A few important reactions must be also noted between nitrogen oxides, chlorine,
and peroxyl radicals:

NO C HO2 ! NO2 C OH
NO C ClO ! NO2 C Cl

(18.19)

Actually in the lower stratosphere, the ratio between NO2 and NO is given by

ŒNO2� = ŒNO� D fkNOCO3 ŒO3�C kNOCClO ŒClO�C kNOCHO2 ŒHO2�g =JNO2 (18.20)

The nitrogen radicals are also responsible for the partition in the odd hydrogen
family, that is, reactions (18.8) and (18.19). We have

ŒHO2� = ŒOH� � kOHCO3 ŒO3� =kNOCHO2 ŒNO�C kHO2CO3 ŒO3� (18.21)

The coupling between nitrogen and chlorine cycle is through the third of
reactions (18.18) and the photodissociation of chlorine nitrate:

ŒClO� D JClONO2 ŒClONO2� =kNOCHO2 ŒNO2� (18.22)

Together with the odd hydrogen, it is convenient to introduce a large family
known as NOy D NOx C HNO3. The convenience of this notation is that the new
family has essentially only one production term given by the dissociation of nitrous
oxide and a loss term that is the nitric oxide rain out. The net production of NOy is
then

d
�
NOy


=dt D kN2OCO.1D/ ŒN2O�

�
O
�
1D
� � .rainout/ (18.23)
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In this way is possible to solve two continuity equations (for NOy and HNO3) and
obtain NOx as a difference. As we have seen, the nitrogen oxides have a primary
importance in the heterogeneous chemistry because some species like nitrogen
pentoxide can be hydrolyzed so they can be dissolved in the water contained, for
example, in volcanic aerosols.

18.2.4 The Bromine and Chlorine Catalytic Cycles

Chlorine is produced from the photodissociation of industrial gases like chlo-
rofluorocarbons (CFCs) or also from natural gases like methyl chloride (CH3Cl).
Processes are the following:

CH3Cl C h� ! CH3 C Cl
CH3Cl C OH ! Cl C products
CFCl3 C h� ! CFCl2 C Cl

(18.24)

Other industrial compounds like carbon tetrachloride or methyl chloroform may
produce free chlorine with similar mechanisms. Other compounds may produce
bromine. Chlorine atoms may be very efficient catalysts for the ozone destruction
according to the process

Cl C O3 ! ClO C O2

ClO C O ! Cl C O2

net O C O3 ! 2O2

(18.25)

Once again this cycle needs atomic oxygen to close so that in the lower stratosphere
the prevailing cycles are

Cl C O3 ! ClO C O2

OH C O3 ! HO2 C O2

ClO C HO2 ! HOCl C O2

HOCl C h� ! OH C Cl
net 2O3 ! 3O2

(18.26)

or based on the NOx radicals

Cl C O3 ! ClO C O2

NO C O3 ! NO2 C O2

ClO C NO2 C M ! ClONO2 C M
ClONO2 C h� ! Cl C NO3

NO3 C h� ! NO C O2

(18.27)

that has the same result of the previous cycle.
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Bromine may have a similar scheme as (18.25), but actually the main loss
for ozone is determined by an interaction between bromine and chlorine radicals
according to the following scheme:

BrO C ClO ! Br C Cl C O2

Br C O3 ! BrO C O2

Cl C O3 ! ClO C O2

net 2O3 ! 3O2

(18.28)

The efficiency of these cycles again may be limited by the formation of acids
(hydrogen chloride and bromide, HCl and HBr) that can be dissolved in the
raindrops. The formation is through the scheme

CH4 C Cl ! HCl C CH3 (18.29)

Hydrogen chloride can also be reactivated as chlorine by the reaction

HCl C OH ! Cl C H2O (18.30)

Bromine can be used to show how to proceed with the photochemical calculation
of the family and its components. The bromine family is given by

Brx D Br C BrO C HOBr C BrONO2

Bry D Brx C HBr

The net chemical production is given by

d
�
Bry

=dt D fkOHCCH3Br ŒOH�C JCH3Brg ŒCH3Br�

C
n
JCF2ClBr C kO.1D/CCF2ClBr

�
O
�
1D
�C kOHCCF2ClBr ŒOH�

o
ŒCF2ClBr�

C
n
JCF3Br C kO.1D/CCF3Br

�
O
�
1D
�o

ŒCF3Br� � rainout

(18.31)

And from the Bry definition, we get

�
Bry
 D ŒBr�

�
1C ŒBrO�C ŒHOBr�C ŒBrONO2�C ŒHBr�

Br

�
D ŒBr�



1C ŒHBr�

ŒBr�
C ŒBrO�

ŒBr�

�
1C ŒHOBr�C ŒBrONO2�

ŒBrO�

�� (18.32)
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Fig. 18.8 Concentrations and mixing ratios of some important species for stratospheric chemistry.
The figures are based on a two-dimensional model of the stratosphere

Bromine concentration is then

ŒBr� D �
Bry

= f1C C1 C C2 .1C C3 C C4/g (18.33)

where the coefficients are

C1 D ŒHBr� = ŒBr� I C2 D ŒBrO� = ŒBr�
C3 D ŒBrONO2� = ŒBrO� I C4 D ŒHOBr� = ŒBrO�

These coefficients are evaluated through iteration, and after that we can obtain the
bromine nitrate concentration as

ŒBrNO3� D �
Bry
 � ŒBr� � ŒBrO�� ŒHOBr�� ŒHBr� (18.34)

It is to notice that like all the radicals, the concentration found with (18.34) depends
strongly on the solar zenith angle.

Figure 18.8 shows concentrations and mixing ratios for the different families.
These figures are based on two-dimensional model and refer to 45ı and the spring
season, and they give a fair idea of the number we should expect. Again to have
a comparison term we notice that the ozone concentration reported in the figure
corresponds to about 8 ppm. The radical concentrations are then really small with
respect to ozone. Another important data is that below 40 km the odd oxygen is
almost all in the ozone form about 8 ppm. The radical concentrations are then really
small with respect to ozone. Another important data is that below 40 km the odd
oxygen is almost all in the ozone form.
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18.2.5 The Effects of the Catalytic Cycles

Figure 18.9 shows the loss rates that can be attributed to the different cycles as
calculated by a two-dimensional model of the stratosphere. Although the number
may change, this figure gives a good idea of the distribution of loss rates as a
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Fig. 18.9 The destruction rates of the catalytic cycles of odd oxygen (Ox), odd hydrogen (HOx),
odd nitrogen (NOx), and chlorine (Clx). Units are 103 odd oxygen molecules cm�3 s�1 and the
data based on a two-dimensional model calculated at the equinox
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function of latitude and height. Figure refers to the equinox (this is the reason for the
symmetry) and represents the net loss of odd hydrogen in units of 1000 molecules
per second and cubic centimeter.

We notice how the cycles that dominate at high altitude are those of oxygen
and hydrogen, while at low altitude the nitrogen and chlorine cycles are important.
What counts more in the lower stratosphere is the interaction between cycles. Recent
results obtained in connection with measurement campaigns have found that in
the lower stratosphere between 30 and 50 % of the ozone loss may be attributed
to the hydrogen cycle, about 20 % to the nitrogen cycle and the rest to bromine
and chlorine. These percentages can change drastically in the presence of large
perturbations in the chlorine and nitrogen oxide concentrations.

This is because nitric acid will form while the concentration of HO2 will
decrease. The net result is that in the regions where the odd hydrogen cycle is
prevalent, the ozone loss will decrease and this will happen mainly in the lower
stratosphere. The same thing appears in the region where the loss may be attributed
mainly to halogens in the sense that to an odd nitrogen, increase will correspond
a decrease in the ozone loss. Increasing further the NOx concentration, a point is
reached where the loss due to the other cycles will be equal to the one due to the
odd nitrogen. Beyond this point the loss is dominated by the nitrogen oxides and
will increase with their concentration. The ozone loss is then a nonlinear process as
shown qualitatively in Fig. 18.10, and this feature will be very important when we
will talk about the ozone perturbations.

Measurements made during the campaigns mentioned before put the data in the
regions where the ozone loss decreases with increasing nitrogen oxides. The same
measurements have shown that for a range of HO2 mixing ratio between 0.5 and
0.25 ppb, the OH concentration remains almost constant, while the HO2 increases
in such a way that roughly [HO2][NO] � const. The same thing happens between
NO2 and ClO when the mixing ration of the first is between 200 and 400 ppt.

Quite an interesting parameter is the ozone loss frequency that represents the
inverse of its lifetime referred to all loss processes. The result of this calculation
always based on the two-dimensional model is given in Fig. 18.11 where for
practical reasons the residence time is reported. This figure is useful because it gives
indications in which regions of the mixing ratio are controlled by the transport with
respect to photochemistry. We have mentioned several times that the separation can
be put at 1 day because for shorter times the diurnal variation becomes important.

Fig. 18.10 The qualitative
behavior of the ozone loss as
a function of NOx mixing
ratio
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HOxO
3 
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NOx
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Fig. 18.11 The ozone
lifetime at the equinox. When
not indicated the units
are days
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From this figure it can be argued that below 30 km the ozone does not have
diurnal variations and so can be considered as a perfect tracer. Dynamics is
important in the upper stratosphere. Another interesting point is that at the equinox
the ozone lifetime increases with latitude, and especially in the lower stratosphere,
the effect of the autumn can be felt with a longer lifetime. We can see also that in
the equatorial troposphere, lifetime decreases again, and this is due mainly to the
odd hydrogen and odd nitrogen cycles where the abundance of these compounds
increases with increasing solar radiation.

18.3 Heterogeneous Chemistry

Until now we have been interested in gaseous phase chemistry. If aerosols are
present in the atmosphere, molecules may collide with them and react with the
gases on the surface or that are inside the particle. In this case we are dealing with
a heterogeneous process. These processes were well known for the troposphere
and were introduced for the stratosphere in 1986 to explain the ozone hole by S.
Solomon, S. Rowland, and R. Garcia e D. Wuebbles. The idea is that molecules that
collide with the aerosol surface may stick on it a little longer so that the probability
of reacting increases. A sticking coefficient is defined as

� D number of molecules that reacts
�
molecules-1

�
number of collisions on the surface

�
molecules-1

�
If the average velocity of the molecules is v and the total available surface is A,
the flux of molecules is given by niv where ni is the gas number density. The total
number of collisions is then nivA=4. It is convenient to express this number in terms
of the total surface per unit volume, S. We obtain the total number of collisions per
molecule and the equivalent reaction rate is given by

ki D � vS=4 (18.35)
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Actually this constant has the unit of frequency so that it is equivalent to
the product reaction constant � molecules cm�3. To obtain the kinetic term for a
heterogeneous reaction, it is enough to multiply (18.36) by the concentration of the
gaseous reactant. The coefficient � is not easy to evaluate considering that in the lab
it is already difficult to measure the rate of a homogeneous reaction.

The aerosol surface density is measured usually in �m2 cm�3 and may change
between 1 and 102 with the largest values occurring during catastrophic eruptions
and the lowest referring to the background. Knowing the size distribution for the
aerosol n(r), the surface density is given by

S D
1Z
0

4�r2n.r/dr (18.36)

In the lower stratosphere, the reaction rate may be evaluated considering that the
average velocity is given by

v D .8kT=�m/1=2

For a temperature of 200 K and for a molecule like nitrogen pentoxide, we have
v� 200 ms�1 so that for a surface of 10 �m2 cm�3 and a coefficient � D 0.01,
we have k � 6 � 10�6 s�1 that is a time constant of about 50 h. This is an order
of magnitude evaluation because the information about these coefficients are still
sparse and they depend on temperature and the composition of the aerosols.
However, since the heterogeneous hypothesis has been formulated, considerable
progress has been made in the understanding of these processes. The main reactions
to be considered are the following:

N2O5 C H2O .aerosol/ ! 2HNO3

ClONO2 C H2O .aerosol/ ! HOCl C HNO3

ClONO2 C HCl .aerosol/ ! Cl2 C HNO3

N2O5 C HCl .aerosol/ ! ClNO2 C HNO3

HOCl C HCl .aerosol/ ! Cl2 C H2O

(18.37)

The first reaction is clearly hydrolysis if the water is in the liquid phase. This
may happen, for example, in the volcanic aerosol particles that are essentially a
solution of sulfuric acid in water. The same reaction (as well as the second) may
occur on the surface of ice particles as in the case of polar stratospheric clouds. In
the last three reactions, the hydrogen chloride possibly is adsorbed at the surface of
the aerosol particle so that the reaction actually is between the molecules of the two
gases although one type is trapped in the solid matrix of the particle. In the chemical
reaction scheme (18.37), a notation is added to indicate whether the phase is solid
or gaseous as follows:

ClONO2.g/C HCl.s/ ! Cl2.g/C HNO3.s/
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Fig. 18.12 A cartoon of the
heterogenous reaction
between chlorine nitrate and
hydrogen chloride on a
surface of water ice PSC
(Adapted from Turco 1997)
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where (g) is for gas and (s) for solid. This however is a rather controversial point
because we can only say that the reactions are there and their probability is of the
same order of that calculated theoretically. It remains hard to know if the nitric acid
is formed as solid or is liberated as a gas. Another important point is to establish
what is the role of solubility and what is the effective reaction that takes place
among the gas components. For example, the first attempts to determine the reaction
probability have given very different results because in some case the concentrations
used were so high that the saturation pressure was reached on the particle surface so
that the gaseous components would sublimate directly.

A possible interpretation of the third of reactions (18.37) is given in Fig. 18.12
(adapted from a beautiful figure by Turco). In this case, the aerosol particle is made
of nitric acid trihydrate (NAT) or water ice, and the nitric acid formed remain
embedded in the particle. The molecular chlorine Cl2 can then escape the crystal
matrix.

Reactions (18.37) have different effects. In general, they transform inert chlorine
compounds in active form, that is, chlorine nitrate, hypochlorous acid, and hydrogen
chloride in active chlorine. Another effect is to shift the partition inside the NOy

family from NOx toward nitric acid. This process is called with an ugly word
denoxfication and has as consequence the fact that nitric acid embedded in the solid
particles is deposited with them causing a depletion of the stratosphere in nitrogen
oxides. When the nitrogen oxide mixing ratio decreases, the formation of chlorine
nitrate (or bromine) is slowed down, and a larger amount of active halogens will
result that will accelerate the ozone destruction.

These processes have a different importance according to the aerosol type
involved whether it is of volcanic origin or in a polar stratospheric cloud. The reason
is that the probability changes according to the chemical composition of the aerosol
surface. A qualitative summary of these effects is given in Fig. 18.13 where the
partitions inside the odd chlorine and odd nitrogen families are compared. We see
that the sulfate aerosol will reduce the ratio of nitrogen oxide/nitric acid mainly
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Fig. 18.13 The partition of
nitrogen and chlorine
compounds as influence by
heterogenous chemistry on
sulfate aerosols and PSC
(Adapted from Brune 1992)
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through the first of reactions (18.37). The reduced availability of nitrogen oxide will
increase slightly the abundance of chlorine nitrate.

The chlorine nitrate increase is due to the fourth of reactions (18.37) so that the
fraction of hydrogen chloride will decrease. In the presence of polar stratospheric
clouds, the heterogeneous reactions are activated and particularly the last three
because the hydrogen chloride is more easily soluble in the PSC. A very large
quantity of nitric acid may form with a consequent reduction in the nitrogen oxides
and a conversion of chlorine in chlorine oxide and dichloroperoxide (ClOOCl).
Among other things, the first of (18.37) decrease drastically the efficiency of the
odd nitrogen catalytic cycle while enhancing the hydrogen and chlorine cycles.

The proofs about the role of heterogeneous chemistry are rather indirect and gath-
ered during dedicated measurement campaign like Airborne Arctic Stratospheric
Expedition II (AASE II) in the 1991–1992 winter and Stratospheric Photochemistry
Aerosol and Dynamics Experiment (SPADE) at middle latitude in 1992–1993.
The two campaigns came after the Pinatubo eruption and have shown through
contemporary measures of the compounds of the different families the importance of
the heterogeneous chemistry in determining the lower stratosphere composition. We
recommend the interested reader to go back to Chap. 9 where we have encountered
the stratospheric particles.

18.4 The Perturbations to the Ozone Layer

The comprehension of the natural behavior of the ozone layer is really fundamental
to recognize the role of some chemical species that determine its concentration.
Some of these compounds are a product of human activities so that in principle
their abundance may change with time and in turn the ozone amount could also be
affected.

http://dx.doi.org/10.1007/978-3-319-29449-0_9
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Sydney Chapman historically was the first theoretician of the ozone layer and
also the one who suggested the possibility to artificially make a hole in it although
with good intentions. He noticed that astronomical observations in the ultraviolet
are somewhat impeded by the ozone absorption in that spectral region. He suggested
that to create an “ozone hole” (his words) using “ : : : a catalyst that without further
transformations could have produced the destruction of a large number of ozone
molecules : : : .” About 50 years later, this compound is finally found, but it does
not facilitate much the ultraviolet astronomical observations because after all it is
much less efficient than the one supposed by Chapman. At the beginning of the
1970s, J. Lovelock (the author Gaia) discovers for the first time the presence of
chlorofluorocarbons in the atmosphere, and almost at the same time Paul Crutzen
and Harold Johnson suggest that the construction of a civil fleet of supersonic
transport (SST) could harm the ozone layer because of the large quantities of
nitrogen oxide produced by their engines. In 1975, the Climatic Impact Assessment
Program (CIAP) report is published, and during the development of this program in
1974, Sherry Rowland and Mario Molina discover that chlorofluorocarbons can be
photodissociated in the stratosphere and produce chlorine that at that time had all
the numbers to look like the compound requested by Chapman. At this point as we
said today “history becomes chronicle.” However, nobody even in the ponderous
WMO report on 1985 (the Blue Bible) makes any guess about the possibility of
an ozone hole. It takes two scientists of the British Antarctic Survey (J. Farman
and J. Shanklin) to discover that the seasonal minimum on the Antarctic continent
has deepened between 1955 and 1985, but the real stuff has manifested itself at the
end of the 1970s. What was promptly called ozone hole is a phenomenon of such
proportions that the world governments promoted a politics of emission control
that produced the Montreal Protocol. Since the discovery of the ozone hole, the
available records were carefully checked to discover that the ozone was decreasing
also at the global level. Perturbations can actually be reduced to those introduced
by the nitrogen oxides and chlorine. In Fig. 18.14 the relative importance of the
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Fig. 18.14 The sources of chlorine and nitrogen oxide in the atmosphere. Notice the presence of
difluorochloromethane (HCFC-22)
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Fig. 18.15 A possible
scenario for the substitution
of some chlorine compounds.
Notice the different units with
methyl chloride multiplied
by 10
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different sources for such gases is shown. In the case of chlorine, the anthropogenic
sources amount to about 82 % of all the chlorine production. However, it is to notice
that not all the compounds shown in the figure have the same capacity to release
chlorine and so have the same effects on ozone. Among the compounds listed,
we found the difluoromethane (CFC-22) that has the chemical formula CHClF2

that is part of the hydrochlorofluoromethanes (HCF) that are the substitutes for
CFCs. For what concern the NOx also in this case a more accurate calculation is
necessary to assess the importance of the different sources for the stratosphere.
The international agreements that we have mentioned before imply the substitution
of some products with others that are less dangerous for the ozone layer. The
substitution program actually is expressed in terms of prescribing the mixing ratio
of the different species at the surface as it is shown in Fig. 18.15. We see that by the
middle of the 1990s, the mixing ratio of the main chlorofluorocarbons (CF-11, CF-
12) and methyl chloroform (CH3CCl3) decreases as they are gradually substituted
by the HCF family. This implies that the total chlorine concentration for that period
will reach a value 3[CFC-11] C 2[CFC-12] C 3[CH3CCl3] � 2.3. This is an order
of magnitude evaluation because we have neglected some minor gas, and also the
total mixing ratio will depend on latitude and altitude. In the preindustrial epoch,
the only compound that could produce chlorine was the methyl chloride (CH3Cl)
with a concentration of about 0.6 ppb.

In the following paragraphs, we will try to understand what is happening (or
already happened) in the stratosphere from a chemical point of view. Some of them
will be really qualitative, but we need simply to fix the nature of the problem.

18.4.1 The Global Ozone Trend

The most dated ozone measurements are taken with optical instruments that are
essentially spectrometers. Since the 1960s, such measurements have been integrated
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Fig. 18.16 The global ozone amount between 1978 and 1995 and the average between 80S and
90S latitude band

by satellite data with the result of a quite large record that spans several decades.
This long record refers mainly to the total ozone (the columnar density) and is
reliable enough that on it we can base the estimation of the ozone trend.

A first example of the data to which we refer is given in Fig. 18.16 where the
total ozone is shown and the total content between the latitudinal band 80S–60S
that include the depletion of the Antarctic ozone. It is to note that the data are
only indicative because they do not take into account the different extension of the
latitude bands. Ozone shows a characteristic oscillation that is dominated by the
annual cycle. It is noted that at the global level, the ozone has a maximum in spring
(of the northern hemisphere), a minimum in summer, and a secondary maximum in
winter.

Because we are dealing with global quantities, such variations can only be
attributed to the chemistry and not to the transport. A possible reason for the summer
minimum is that the catalytic cycles need the radicals that are more abundant in the
summer when there is plenty of sun. The maxima are not the same because even if
the destruction process is only chemical in nature, the transport modalities between
the production and destruction regions are not the same for the two hemispheres so
that winters are not symmetrical.

The analysis of Fig. 18.16 shows clearly a decreasing trend that not necessarily
should be attributed to an anthropogenic cause. There are a few natural forcing that
need to be removed when analyzing the trend. One is the 11-year solar cycle that
changes the amount of solar UV radiation and the ozone. Another semi-periodic
forcing is the quasi biennial oscillation (QBO) that in stratosphere may change the
transport on a time scale of about 2 years. When all these influences are removed
from the record, it is possible to obtain data such that shown in Fig. 18.17. This
figure illustrates the decadal trend as a function of latitude for the different season.
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Fig. 18.17 The ozone
decadal trend (in %) as a
function of latitude for the
years 1979–1994

The data shows that ozone decreases at all latitudes with a tendency for the depletion
to be more severe in the winter season. It is quite evident that the southern latitudes
are those with the greater weight and the “ozone hole” effect shows up clearly. This
was also clear in Fig. 18.16 where the depletion in the polar region is much larger
that the global mean.

This ozone behavior can be simply modeled if we assume that the total density
Noz has a total loss L0 expressed in year�1 and a production P. We have for the trend

dNoz=dt D P � LNoz (18.38)

If we indicate with L0 D L � L0; the perturbation to the loss due to the chlorine
increase and with P0 the unperturbed production, we get

d QNoz=dQt D .P=P0/ � �
1C L0=L0

� QNoz (18.39)

where

QNoz D Noz=Noz;0 and Qt D L0t with Noz;0 D P0=L0

The perturbation to the ozone loss can be related linearly with the fractional
change in the chlorine content

L0=L0 / �Cly=Cly;0

If we use the previous scenario, it is possible to estimate the ozone depletion
as shown in Fig. 18.18 where the percentage change for ozone is shown together
with the total chlorine change. This very simple calculation is only indicative of
the ozone trend although it gives roughly the same values obtained with more
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Fig. 18.18 The total ozone percent change as a function of the absolute change in chlorine content

complex models. It shows also the ozone response without delay to changes in the
chlorine mixing ratio. On the other hand, if the ozone changes at the global level
are attributed chemical effects, its response time must be of the order of the month
that is consistent with the values given previously for the residence time. Times of
the same order of magnitude are found in the lower stratosphere where the ozone
depletion is more severe.

It is meaningful to ask about the role of the heterogeneous chemistry for the
depletion at a global level. With the aerosol at the background level, heterogeneous
processes do not have much influence on the ozone depletion at the middle latitude.
On the other hand, either we consider perturbation in the NOx mixing ratio or the
stratospheric aerosol load the heterogeneous chemistry may play a very important
role. Perturbations of the first kind may be introduced by jet aircraft traffic, and the
second may be important in case of catastrophic volcanic eruptions.

18.4.2 Natural and Anthropic Perturbations: Volcanic
Eruptions

The hypothesis about heterogeneous chemistry, first formulated for PSC, has
received a first indirect confirmation from volcanic eruption and stratospheric sulfate
aerosols. Since the measurements taken by the satellite instrument Limb Infrared
Monitor of the Stratosphere (LIMS), there was an apparent contradiction between
the data on nitric acid and the model predictions with the latter giving values much
lower than the experimental data.
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After the eruption of the volcano El Chichon in 1982, S. Solomon and D.
Hoffman made the assumption that the hydrolysis of nitrogen pentoxide could take
place at the surface of sulfate stratospheric aerosols originating from the volcanic
eruption. The first of (18.37) convert nitrogen oxides in nitric acid

N2O5 C H2O ! 2HNO3

In this way nitrogen oxide is subtracted to the formation of chlorine nitrate ClONO2
so that more free chlorine is available to destroy the ozone. This hypothesis may
imply two things. On one side reconciles the data with the model prediction and
on the other hand predicts that in case of catastrophic eruption, we may expect an
ozone reduction. This data was around since the Agung eruption in 1963, but at the
time the very sparse measurements taken would not be enough to give a solid proof.
In 1991, there was another large eruption (Pinatubo) that was followed closely this
time even by a satellite (Upper Atmosphere Research Satellite (UARS)), and the
data similar to those shown in Fig. 18.16 would confirm that after the eruption the
ozone was reduced for a year or so.

The volcanic eruptions are a very good example of the interactions between cat-
alytic cycles. Besides the pentoxide hydrolysis, chlorine nitrate may also react on the
sulfate aerosols producing active forms of chlorine according to the heterogeneous
reaction

ClONO2 C H2O ! HOCl C HNO3

The result is an enhancement of the chlorine cycle with respect to the odd hydrogen
cycle. However some attention should be used when comparing the effects of
volcanic eruptions. An eruption of the same characteristics of Pinatubo about
100 years ago could have caused an increase in ozone. At that time the chlorine
mixing ratio was about 0.6 ppb and was too low to compensate for the loss of
nitrogen oxide. Today (about 10 years later) the same eruption would cause a net
ozone loss because the chlorine concentration is now about 3 ppb.

This topic of the heterogeneous chemistry on sulfate aerosol can be pursued
further to explore the possibility that for an eruption large enough, an ozone hole
could be produced anywhere in the Earth’s atmosphere and not just in the polar
stratosphere. Michael Prather suggested this idea a few years ago.

The starting point is again the heterogeneous reactions (18.37) and in particular
those that convert the nitrogen oxides in nitric acid. The effects of these reactions are
different. The first effect is the conversion of NOx (NO C NO2 C N2O5 C ClONO2)
in NOy (NOx C HNO3), and because less NO2 is available, less ClONO2 will form,
and this will result in an enhancement of the chlorine monoxide ClO. In the odd
chlorine family, the main specie will be ClO rather than Cl because the formation of
the latter is somewhat inhibited by the slowdown of the reaction

ClO C NO ! Cl C NO2
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However, less chlorine will also decrease its destruction that is due to the reaction

Cl C CH4 ! HCl C CH3

The increase in the nitric acid concentration will also produce an increase in the
hydroxyl abundance through the reaction

HNO3 C h� ! OH C NO2

that is a very important source for these radicals.
We assume the reaction probability for the first two reactions (18.37) �1 and �2,

respectively, and we also consider a limited chemical system that is made by few
reactions. This represents an obvious simplification but we will get some reasonable
results anyway. We consider the following scheme:

NO2 C NO3 C M ! N2O5 C M k1
N2O5 ! NO2 C NO3 k2
N2O5 C h� ! NO2 C NO3 J5
NO2 C O3 ! NO3 C O2 k3

(18.40)

The NO3 concentration is important only at night because during the day it is
very rapidly photodissociated, and from the scheme (18.40), we can calculate its
average concentration during the night:

ŒNO3� D k3 ŒO3� =k1

where k1 includes also the pressure dependence. Assuming for simplicity the same
duration of the day and night, we get

ŒN2O5� D k1 ŒNO2� ŒNO3� =J5

In the presence of heterogeneous processes, the nitrogen pentoxide will be
influenced by the system (18.37) so that

ŒN2O5� D k1 ŒNO2� ŒNO3� =
�
J5 C � 0

1S
�

where �
0

1 takes into account the collision velocity and S is the surface density.
Substituting for NO3, we obtain

ŒN2O5� D 0:5 k3 ŒNO2� ŒO3�

0:5 J5 C � 0
1S

(18.41)

The factor 0.5 has been added to take into account the fact that both the formation
and destruction of N2O5 take place during the daytime. We notice how the
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concentration decreases with increase surface density. To complete the interaction
with nitric acid, we need to consider two more reactions

NO2 C OH C M ! HNO3 C M k4
HNO3 C OH ! NO3 C H2O k5

We get for the nitric acid concentration

ŒHNO3� D k4 ŒNO2� ŒOH�C � 0
1S ŒN2O5�

k5 ŒOH�C JAC

where JAC is the nitric acid photodissociation coefficient. Expressing everything as
a function of [NO2], we get

ŒHNO3� D
ŒNO2�

�
k4 ŒOH�C � 0

1S
0:5 k3 ŒO3�

0:5 J5 C � 0
1S

�
k5 ŒOH�C JAC

(18.42)

From this expression, we see that with the increase of the surface density, the nitric
acid mixing ratio will increase to the asymptotic value

ŒHNO3� D ŒNO2� fk4 ŒOH�C 0:5 k3 ŒO3�g = fk5 ŒOH�C JACg

While for small values of the surface

ŒHNO3� D k4 ŒNO2� ŒOH� = fk5 ŒOH�C JACg

The saturation effect is shown in Fig. 18.19 where actually we have represented
the ratio between the nitric acid abundance in the case of the heterogeneous reaction
with respect to the case in which the acid is formed only in the homogeneous phase.
It is quite evident that as the aerosol surface density increases, the nitric acid mixing
ratio saturates as shown in Fig. 18.19. Calculations refer to an altitude of 24 km,
a temperature of 220 K at an average latitude of 45ı with �1 D 0.01. In practice,
heterogeneous chemistry increases by 50 % the abundance of HNO3 and depletes
the total concentration of NOx. It is to notice that the nitric acid saturation mixing
ratio is not influenced by the value of the reaction probability. In order to make
things simpler, we have neglected the second reaction in (18.37) although at this
point it should be clear that its effect should be to increase further the nitric acid
mixing ratio. The system must be completed by some other reactions that can be
grouped in photodissociation reactions

HNO3 C h� ! NO2 C OH JAC

NO2 C h� ! NO C O JN

HCl C h� ! H C Cl JH

ClONO2 C h� ! products JCN

(18.43)
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Fig. 18.19 The ratio between
the HNO3 mixing ratio with
heterogeneous chemistry with
respect the homogeneous
phase
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and in the homogeneous phase between other minor constituents

HCl C OH ! H2O C Cl k6
CH4 C Cl ! CH3 C HCl k7
Cl C O3 ! ClO C O2 k8
ClO C NO ! Cl C NO2 k9
ClO C NO2 C M ! ClONO2 C M k10
NO C O3 ! NO2 C O2 k11

(18.44)

From these additional reactions, the ratio [NO2]/[HNO3] can be obtained by
assuming the photochemical equilibrium. In particular when all the nitrogen
pentoxide is consumed

ŒNO2�

ŒHNO3�
D JAC C k5 ŒOH�

k7 ŒOH�C k10 ŒClO�
(18.45)

The ratio depends then other than the chlorine oxide concentration also
on the hydroxyl abundance. We assume initially [OH] D 2.1 � 106 cm�3 and
[ClO] D 8.7 � 107 cm�3 so that we have [NO2]/[HNO3] D 0.035. To have a more
precise idea of the value of this ratio for large surface density, we need to have
a more realistic value for chlorine oxide. The reaction that converts chlorine in a
reservoir in active chlorine is characterized by k6. At photochemical equilibrium,
we have

ŒHCl� fJH C k6 ŒOH�g D k7 ŒCH4� ŒCl� (18.46)

Assuming [CH4] D 1.12 � 1012 cm�3 (1.1 ppm) and [Cl] D 0.07 ppt, we have
[HCl] D 1.2 ppb. We may expect actually as is also shown in Fig. 18.19 that nitric
acid may double so that the same thing happen for the hydroxyl while the HCl
abundance will be halved at 0.06 ppb. We may then assume that the decrease in
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hydrogen chloride mixing ratio 1.76�0.6 ppb D 1.26 ppb implies a correspondent
increase of chlorine monoxide with the result that the ratio given by (18.45) is now
0.004.

To evaluate the nitric acid mixing ratio, we need to know the nitrogen oxide that
for a large surface density reduces to the sum NO C NO2. Again at photochemical
equilibrium, we get

ŒNO�

ŒNO2�
D JN

k11 ŒO3�C k9 ŒClO�
(18.47)

Considering that [O3] D 4.3 � 1012 cm�3, we have [NOx] D 1.1 [NO2]. From the
definition of NOy, we express everything as a function of nitrogen dioxide
mixing ratio with [NO2] D 4.1 � 10�2 ppb and [NO] D 4 � 10�3 ppb. We have
[HNO3] D 10.6�0.045D 10.55 ppb. To obtain these results, we need to make
some assumptions on the hydroxyl and chlorine abundance. However, the same
conclusion can be obtained with a number of iterations.

Concerning the chlorine nitrate concentration, we can make the safe assumption
that for large surface densities, we have the total conversion of chlorine nitrate
into hypochlorous acid according to the second of (18.37) so that we have for the
heterogeneous case

ŒClONO2� D k10 ŒClO� ŒNO2� =
˚
JCN C 5:4 � 10�7S

�
(18.48)

while in the homogeneous case we had

ŒClNO2� D k10 ŒClO� ŒNO2� =JCN

Again for large values of the surface density, the heterogeneous case dominates
so that for S D 10�5 cm�1, we have [ClONO2] D 0.035 ppb. The final result is that
we have a corresponding increase in HOCl mixing ratio to the chlorine nitrate
decrease. Starting from an initial value [ClONO2] D 0.9 ppb, we get for large
surfaces values for HOCl that are of the order of 1 ppb. Both the hypochlorous acid
and the chlorine monoxide may contribute to the ozone loss through the processes

HOCl C h�
Cl2O2 C h�
ClO C O

(18.49)

The first of these reactions produces only chlorine, while the second one, negligible
when the chlorine abundance is low, becomes one of the main destruction mecha-
nisms for ozone when the abundance is large.

However, when dealing with ozone loss, we should not limit our attention
to chlorine because heterogeneous chemistry causes an increase in the hydrogen
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Fig. 18.20 The ozone loss
rate as a function of the
aerosol surface density. For
comparison typical values
found in Antarctica are
shown. Also shown are the
background and Pinatubo
values for the surface density
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radicals and a decrease in nitrogen oxides. The hydrogen radicals may increase the
ozone production through HO2 C NO or the destruction through HO2 C O3. The
nitrogen oxides may increase the loss mainly through the reaction NO2 C O. The
net effect is that the ozone destruction increases by a factor of 35 with respect to the
case of homogeneous chemistry. This is shown in Fig. 18.20 where the loss rate for
ozone is shown in ppb per day as a function of the aerosol surface density. We notice
that also in this case we have some kind of saturation that corresponds to the fact
that not all the chlorine may be converted in reactive form. Two cases are shown for
different values of the reaction probabilities.

A few conclusions can be drawn by this exercise. First of all, we have seen
that it is possible to slide through a quite complex chemistry. Instead of solving
systematically a complex kinetic system, it is much more amusing and instructive
to learn the process that counts. It should also be clear that a volcanic eruption
of the proportions similar to the Pinatubo should produce ozone loss rates that are
comparable to those observed for the ozone hole. We see that while the loss rate may
depend linearly on the aerosol surface, its dependence is very nonlinear on chlorine
abundance. For example, a decrease of 25 % in the total amount of chlorine gives
a reduction of the order of 45 % in the loss rate. This means how the effect of
the volcanic eruption of El Chichon in 1983 may have been negligible considering
that chlorine was much lower (2.1 ppb vs. 2.8 ppb), and the surface density was
2–3 times smaller.

The paper by Prather was published about a year later the Pinatubo eruption but
nothing serious happened to the ozone layer. This may be due to the fact that the
large surface requirements were not reached even in the tropical stratosphere. We
know however that until the chlorine level remains above 2 ppb, important volcanic
eruptions may represent a real ranger for the ozone layer.
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18.4.3 Natural and Anthropic Perturbations: The Effect
of Aviation

The assessment of the effects of the aviation on atmospheric ozone actually initiated
the entire ozone debate. In the early 1970s, a specific study of the US Department
of Commerce addressed the issue of the effect of a projected fleet of supersonic
transport (SST). The CIAP conclusions remained rather uncertain, but in the process
the chlorine chemistry was discovered and that appeared as a more immediate
danger to the ozone layer considering that in any case the SST construction never
materialized. Since then the progress in the understanding of the atmospheric
chemistry has been impressive with the most important being the introduction of the
heterogeneous processes initially in connection with the polar stratospheric clouds
and later with the sulfate stratospheric aerosols. The possibility of hydrolysis of
nitrogen pentoxide and chlorine nitrate on sulfate aerosol has drastically changed
the perspectives of the aviation effects. The primary cause affecting ozone amount in
the lower stratosphere is the emission of nitrogen oxides (NOx) from the jet engines.
Whether this results in ozone increase or decrease depends on the local atmospheric
composition. On the other hand, heterogeneous processes introduce an additional
sink for NOx with a consequent decrease of the importance of these compounds on
the ozone chemistry. Through heterogeneous processes part of the injected NOx is
converted into nitric acid thus affecting also the odd hydrogen and chlorine catalytic
cycles. Because of the enhancement in the NOy (NOx C HNO3) abundance, less
nitrogen is available for the formation of chlorine nitrate, and as a consequence
more free chlorine is available for ozone destruction. The lower NOx amount also
implies a reduction in the odd hydrogen sink and this results in an enhancement in
the efficiency of the relative catalytic cycle. It can be shown that in the presence of
the heterogeneous chemistry, the effect of additional injection of NOx as those due
to air traffic will be strongly damped.

At the beginning only the impact of a fleet of supersonic transport was con-
sidered. The reasons being that for fuel consumption optimization, these aircraft
must fly in the lower stratosphere, and the injection of nitrogen oxides results
directly in the region which is more chemically sensitive. Most recently however
attention has been paid to the effect of subsonic aircraft that flies mainly in the
upper troposphere. In this case the effects should have been observable because it
is estimated that the air traffic may contribute as much as 20 % in the global NOx

production in the troposphere, and this contribution started with the beginning of
commercial jet aviation dated almost 40 years ago. In this case, the chemistry is
very similar to the one encountered in the urban air with the result that the NOx

injection corresponds normally an ozone increase. The opposing effects, namely,
a decrease in the stratosphere and increase in the troposphere, give in most of the
published simulations an almost null result on the ozone column, that is, the total
ozone amount integrated on a vertical column.

Attention has been paid also to the climatic effects related to the ozone and other
environmental changes introduced by air traffic. The change in the atmospheric
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composition refers, other than to ozone, also to carbon dioxide and water vapor,
both products of the engine combustion. In the last two cases, the changes are so
small that they can be really neglected, while a few problems remain in connection
with ozone. In this case there is a local radiative forcing related to both the infrared
and the absorption of solar radiation. Also the climatic effect (i.e., forcing of surface
temperature) can be related to changes in the column content because ozone is a
minor greenhouse gas.

Another more subtle climatic effect may be due to changes in cloudiness that
again may be influenced in different way by the aircraft. The frequency and
extension of the condensation trails (contrails) may have been increasing with time
and associated to that an increase in global cloudiness could be envisaged. The
knowledge of the physical and chemical mechanisms that produce contrails is so
poor that a specific measurement campaign has been recently.

The problem of the effects of aviation on the atmosphere and climate is rather
complex, but the research effort which is being dedicated to it seems rather
disproportionate especially after some extensive work has appeared in the literature.
We show that most of these effects can be treated in the framework of a simple
perturbation approach and that there should be no justification for a large-scale
research work unless new and rather unexpected data or processes are discovered.
The aim is to reevaluate a more physical approach to environmental problems
that may show that some or all the impacts are really minor. If this is the case,
there should be no need to produce more detailed studies to assess for local or
seasonal changes because these effects are in any case negligible. Also in most of
the cases, these detailed studies are conducted with tools which are rather primitive
and with built-in uncertainties which have never been assessed properly. A typical
example is the use of two-dimensional or three-dimensional numerical models of
the atmosphere. At the present time, the model which is used most is known as
chemical transport model (CTM). These are numerical models that use a fixed
dynamics derived either by general circulation models (GCMs) or observations and
a simplified chemistry. Most of the time the parameterizations included in CTMs
are adjusted to reproduce the current situation, and the degree of reliability of these
models is not known exactly although they are used to predict changes that in many
cases are a fraction of percent.

A simple evaluation of the expected effects may be useful to decide whether the
same effects can be observed experimentally and if the degree of precision of the
modeling tools is appropriate to predict the perturbation.

We will start considering the upper troposphere. In this region the ozone net
production rate can be approximated as a difference between production of atomic
oxygen via photodissociation of NO2 and destruction through the reaction with NO:

NO2 C h� ! NO C O JNO

NO C O3 ! NO2 C O2 k1

where JNO and k1 are the appropriate rate constant. The net production for ozone is
then JNO[NOx] – k1[NO][O3]. It can be easily shown that this term is related to the



18.4 The Perturbations to the Ozone Layer 703

NOx photochemical equilibrium which contains the additional reactions

NO2 C O ! NO C O2 k2
NO C HO2 ! NO2 C O2 k3

The production rate can then be written simply in terms of total NOx

PO3=JNO D ŒNOx� fRk3 ŒHO2� � k2 ŒO� =J1g = .1C R/ (18.50)

In this equation R D ŒNO� = ŒNO2� remains rather constant for different levels of NOx

in the upper troposphere. In order to evaluate properly (18.50), we need to know
also the concentrations of atomic oxygen and of the hydroperoxy radical. This can
be done with enough accuracy using about twenty reactions that include the main
terms of the odd hydrogen and odd nitrogen cycle. Then the production rate can be
evaluated for different levels of total NOx, and it is shown that PO3 has a maximum
around 100–200 ppt of NOx. The reason for that is quite simple because for low NOx

mixing ratio, the production is roughly proportional to the NO2 amount. However,
as the odd nitrogen increases, the concentration of HO2 is very much affected and
actually for large value of NO2 decrease as the inverse of the square of odd nitrogen
mixing ratio. There are different degrees of approximation in calculating (18.50)
as we have shown in the previous paragraph. However the maximum production is
going to be around the local upper tropospheric mixing ratio of odd nitrogen. This is
rather important because it facilitates the analysis of the perturbation. Actually in a
very general way, it is possible to show that if the concentration of NOx is perturbed
around the maximum by an amount �NOx, the resulting perturbation in the ozone
production is approximated simply by

�Poz=Poz � .�NOx=NOx/
2 (18.51)

It has been shown already that local perturbation in the odd nitrogen for the
subsonic traffic may be around 15–20 % and as a consequence �Poz/Poz � 4–5 %.
Notice that the figure for the NOx can be obtained as an upper limit simply because
the present contribution of subsonic aircraft to the global odd nitrogen production
is around 20 %. It can be argued that such small changes are very hard to detect
mainly because of the intrinsic variability of ozone, and in any case their impact on
the climate and the UV radiation absorption are negligible as we will show later.

We now consider what will happen in the lower stratosphere. A very clear
account of the effect of the heterogeneous chemistry and the effluent of the aircraft
is given using two-dimensional models.

Although some refinements have been introduced since the publication of these
papers, their basic conclusions are still valid. In the case of unperturbed atmosphere
and gas phase chemistry in the region between 14 and 23 km, the average
contribution of the different catalytic cycles to the ozone destruction in winter is
58 % for NOx, 8 % for Clx, 18 % for HOx, and 12 % for Ox, and the rest is due
to bromine chemistry 9. When the heterogeneous chemistry is introduced limited
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to the hydrolysis reaction for nitrogen pentoxide, the role of the different cycles
becomes in the same order 8 %, 41.5 %, 36.5 %, 10 %, and 4 %, but the overall
destruction rate increases by roughly 26 %. This effect can very easily explained
because the hydrolysis reaction is an additional sink for the NO besides the dominant
loss process OH C NO2 C M ! HNO3 C M. The hydrolysis rate is comparable to
the rate of formation of nitric acid in the gas phase but really depends on the aerosol
surface density available. The additional sink means a lower NOx mixing ratio and
as a consequence a decrease in the rate of formation of chlorine nitrate, that is,
NO2 C ClO C M ! ClONO2 C M. As seen from the above percentages, the increase
in the efficiency of chlorine cycle is not exactly proportional to the decrease of NOx

cycle. The reason is that less nitrogen oxide slows down the conversion of ClO to
Cl. The gas phase formation of nitric acid is also one of the main sinks for odd
hydrogen in the stratosphere so we expect for a NOx reduction an increase in the
efficiency of the HOx cycle.

The key to the relatively small impact, which supersonic aircraft flying the
stratosphere will introduce, is the heterogeneous processes. Most of the worst
scenarios show a maximum local change of NOy around 60 % in the lower
stratosphere due to the injection of a fleet of supersonic aircraft. If we assume in
gas phase chemistry a corresponding increase in the odd nitrogen cycle, we end
up with a 34 % increase in overall destruction rate of which now the NOx cycle is
responsible for about 65 %. Actually, the number will be a little different considering
that the odd hydrogen will be affected by the change in odd nitrogen, but the change
in ozone destruction is quite large. When the hydrolysis reaction is included, we can
still assume conservatively that the NOx will be enhanced, but due to the reduced
importance of the odd nitrogen cycle, the total destruction will only be slightly
affected, that is, 4 %. In this case however, the increase in nitrogen oxide will affect
through heterogeneous chemistry both the chlorine cycle (which will decrease its
effects) and the HOx that will increase slightly.

These simple considerations are confirmed by the complex calculations made
with two-dimensional and three-dimensional models which show even smaller
numbers. The ozone decrease in the stratosphere however is somewhat compensated
by the increase in the troposphere due to subsonic traffic with the net results showing
increases or decreases less that 1 % on the column. The expected changes in the total
ozone (but also local) are small, and however the published results still show an
effort to calculate climatic and other radiative effects. It is possible to demonstrate
not only that these effects are small, but again they may be calculated in a very
simple way.

Nitrogen oxides injected in the atmosphere may change the ozone content.
However, the jet exhaust also contains carbon dioxide and water vapor that are
greenhouse gases. The water cycle is so poorly understood that there is no way
to estimate the impact of the aircraft emission that must be negligible in any case
considering the entity of this source. Carbon dioxide emitted by aircraft is about
2–3 % of the global emission, and its impact on climate forcing may be neglected.
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18.5 Polar Ozone

A paragraph on its own must be reserved to polar ozone and in particular to the
Antarctic ozone. The reason for this interest is that polar ozone has dramatically
revealed the human influence on our atmosphere. The reason for this quite different
behavior of the Antarctic polar regions is partly found in Chap. 17 where we have
shown how the polar vortex actually is responsible of a physical isolation between
the polar and the middle latitude regions. This has as consequence the lowering of
polar temperatures to such a degree to allow the formation of polar stratospheric
clouds (PSC). On their surface heterogeneous processes may take place that are
responsible of the rapid ozone loss during the Antarctic spring.

The marked difference between the two hemispheres is again attributable to the
different dynamic styles. The stability of the two polar vortexes is quite different
because the wave activity in the northern hemisphere is more vigorous so that during
the winter the vortex may break a few times. This implies that air can be exchanged
between polar and middle regions, and temperature is not low enough for the PSC
to form.

The first example of polar ozone depletion is then found in Antarctica as shown
in Fig. 18.21 averaged at the measuring station of Halley Bay (76ıS). We notice
a constant decrease of the seasonal ozone minimum that this halved with respect
to its value in 1955. It is quite interesting to know what is the geographical region
where the depletion is observed as shown in Fig. 18.22. From the last two figures,
we notice how not only the ozone minimum decreases constantly but that the region
where this depletion occurs also expand.

Fig. 18.21 The ozone behavior (in Dobson unit) in the northern and southern hemispheres

http://dx.doi.org/10.1007/978-3-319-29449-0_17
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1979 1986 1991

Fig. 18.22 The extension of the region interested to the Antarctic ozone depletion since 1979

Fig. 18.23 The ozone partial
pressure in 2 days before and
after the Antarctic spring
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Another impressive data refer to the ozone loss as a function of altitude. A typical
example of these phenomena is shown in Fig. 18.23 that shows the results of ozone
sounding in 1987. August 25 refers to a period in which large part of the Antarctic
stratosphere is still in the dark, while November 15 is within the period in which the
minimum in the ozone amount is recorded. During the following years, this behavior
has been confirmed so that the altitude region where the ozone depletion occurs is
between 14 and 20 km and where most of the PSC clouds are observed.

What we have shown in a sense summarize the observation data on the Antarctic
ozone depletion. The theory that still lacks some important detail requires a vision
of both the dynamics and the chemistry.

18.5.1 The Theory on the Polar Ozone

Some detail on the explanation of the ozone hole is still missing, but the theory must
be right because it has been confirmed by so many data gathered during several
measurement campaigns that have involved airborne, ground-based, and satellite
instrumentation. Some of these measurements have given results as those shown
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Fig. 18.24 The mixing ratios for chlorine monoxide and ozone as measured by the airborne
instrumentation on a ER-2 plane

in Fig. 18.24 obtained with an instrument flown on the ER-2 that has participated
to the 1987 campaign and invented by James Anderson. The data compare ozone
and chlorine monoxide measurements, while the aircraft was flying through the
polar vortex at about 20 km altitude. We notice that when passing the vortex at
latitude of about 68S, there is a sudden increase of the mixing ratio of chlorine
monoxide and a corresponding ozone decrease. It is quite surprising that even the
smaller fluctuations are perfectly anticorrelated: to a decrease in one concentration
corresponds the increase in the other. The most interesting data is the sudden
increase in the chlorine concentration that indicates how within the polar vortex
all the chlorine is converted into chlorine monoxide to the point that while outside
the vortex the mixing ratio is a few ppt inside the vortex it reaches mixing ratios of
the order of 1 ppb. This kind of data may be interpreted as a sequence of events like
the one shown in Fig. 18.25 where the evolution of the different chemical species is
correlated to the temperature evolution.

Once the vortex is formed in late autumn, the temperature starts to decline as
the altitude of the vortex. The temperature decreases to the point that PSC form. At
this point heterogeneous processes on their surface transform inert chlorine forms
(hydrogen chloride and chlorine nitrate) in active chlorine like hypochlorous acid
and molecular chlorine:

ClONO2 C HCl ! Cl2 C HNO3

ClONO2 C H2O ! HOCl C HNO3

HOCl C HCl ! Cl2 C H2O
(18.52)
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Fig. 18.25 The evolution of the chemical composition in the Antarctic region and of the
stratospheric temperature (Adapted from Jacob 1999)

These reactions may take place in the polar night. At the spring sunrise, the
molecular chlorine is photodissociated in chlorine that reacts rapidly with ozone
to form chlorine monoxide that starts a cycle that works without atomic oxygen
and is based on the dimer ClOOCl that is called dichloroperoxide (also known as
Cl2O2):

ClO C ClO ! ClOOCl
ClOOCl C h� ! ClOO C Cl
ClOO ! Cl C O2

2 .Cl C O3 ! ClO C O2/

net 2O3 ! 3O2

(18.53)

For the first of reactions (18.53) to start, we need very high chlorine monoxide
concentrations. A similar cycle may also start with one chlorine monoxide substi-
tuted by bromine monoxide. The ozone loss due to this cycle is of the order of 1 %
per day, and the calculations are in reasonable agreement with the experimental data.

If we go back to Fig. 18.25, we see that almost all hydrogen chloride is converted
into active chlorine. The mixing ratio of chlorine nitrate on the other hand is higher
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with respect to initial conditions because after the breakdown of the polar vortex,
both nitrogen oxides originating from nitric acid and that coming from middle
latitude air become available. The result is that not all the chlorine nitrate can be
converted in acid also because with the vortex breakdown also the PSC of water
ice disappear. The photodissociation of ClONO2 in this phase may contribute to the
formation of active chlorine and then to ozone destruction.

Once the polar region “warms” and the air can mix again, the “chemical reactor”
as it was formed is destroyed and the gas concentrations rapidly return to the
background values.

The ozone hole even if it has been cured by the international agreement has not
gone away, and it will take several years (the middle of this century) before it will
be a thing to remember.

We have not very much updated this section because in the intervening year since
the first edition, there have been very few changes in the ozone hole theory. Some
additional interesting detail will be treated in the Examples.

E.18 Examples

E.18.1 The Equivalent Effective Stratospheric Chlorine
(EESC)

The equivalent effective stratospheric chlorine (EESC) is a convenient parameter to
quantify the effects of chlorine and bromine on ozone depletion in the stratosphere.
We will refer here to the most recent formulation by Newman et al. (2007). The
sources of these halogen gases (chlorine and bromine) are mainly in the troposphere
and they are released in the stratosphere. EESC was developed to relate this halogen
evolution to the tropospheric sources in a simple matter.

EESC, as a function of time t is defined as

EESC.t/ D a

 X
Cl

nifi
i C ˛
X

Br

nifi
i

!
(E.18.1)

where n is the number of chlorine or bromine atoms of a particular source gas i,
f represents the efficiency of stratospheric halogen release of the source gas, and

 is the source gas mixing ratio in the stratosphere. The summations extend to
all chlorine- and bromine-containing halocarbons. a can be an arbitrary constant
or could be the fractional release for CFC-11 so that EESC represents accurately
the amount of inorganic chlorine (Cly) and bromine (Bry) in some region of the
stratosphere. In the classic EESC, 
i is calculated assuming a time lag � from the
surface observations


i D 
i;entry .t � �/ (E.18.2)
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where 
i,entry(t) is the surface observation at time t. Studies assume a value for
� of 3–5 years which represent the time it takes for the compound to reach the
stratosphere. The factor a appearing in (E.18.1) takes into account that bromine is
much more efficient in destroying ozone. Although this factor should be a function
of the specific location, its value is assumed to be roughly 60. Finally in (E.18.1), f
represents the fraction of the species that has been dissociated during its movement
through the stratosphere. It is defined as

fi D 
i � 
i;�;	


i
(E.18.3)

where � is the latitude and 	 represents the potential temperature (and then altitude).
To apply now the relations (E.18.1), (E.18.2), and (E.18.3), it is necessary to know
the mean age of the air. Details of these calculations can be found in the paper by
Newman et al. (2007) from which we report some example. In a previous paper
(Newman et al. 2007), 
i was taken time dependent according to the relation


i.t/ D
Z t

�1

i;entry

�
t0
�
G
�
t � t0

�
dt0

In this case, G(t) is the so-called aged spectrum and the fraction release is time
dependent, fi D fi(�). This formulation reduces to the classical formulation if G.t/ D
ı .t � �/ and �D 3 years. Figure E.18.1 shows the results of some calculation made
for CF-11. The highest solid line curve refers to the ground concentration as a
function of time according to the scenario selected. The two dashed lines refer to the
same quantity but with two different age spectrum (3 and 5.5 years), and the lower
curve represents the released chlorine after applying a 47 % fractional release. The
figure on the right represents the EESC calculation for all the halogens with the old
formulation (dashed lines) and the new formulation. Largest values of EESC refer
to 5.5 and 3 years mean age of air.
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(See text for explanations)



E.18 Examples 711

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.0

Weight fraction H2SO4

W
eight fraction H

N
O

3

H
N

O
3 .H

2 O

H
2 SO

4 .4H
2 O

H
2 SO

4 .2H
2 O

H
N

O
3 .3H

2 O

W
ei

gh
t f

ra
ct

io
n 

H 2
O

H2SO4H2O

0.1

0.2

0.3

0.4

0.5

a

b

c

Ice

19
4

19
2

20
0

0.6

0.7

0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.9

1.0

0.8
Fig. E.18.2 Ternary diagram for the system nitric acid/sulfuric acid/water. See text for explanation
(Adapted from Molina et al. 1993)

E.18.2 Few More Things About Polar Stratospheric Clouds

We have already treated some points on polar stratospheric clouds (PSC) in the first
jter with phase diagram and in paragraph 9.5.2. It is the case then to complete a
little bit the topic discussing what physical chemists call a ternary diagram. This is
given in Fig. E.18.2 for the system H2SO4/HNO3/H2O. Now with respect to binary
systems, we already know the axis is three and on each of them, the weight fraction
of the condensable gas is shown. Starting from the water axis, we go from pure
water (weight fraction equal to unity) to a weigh fraction of 0.2. The same thing
can be noted for the other axis. The heavy dashed curves are the eutectic separating
the identities of the various solids that at equilibrium crystallizes first upon cooling
liquids with composition bounded by the eutectic lines.

The figure and the example we discuss are taken from the classical paper by
Molina et al. appearing on science in 1993. Superimposed to the ternary diagram
are the dilution curves for a parcel of air at 100 hPa ( � 16 km) with 5 ppm of water
vapor and with (a) 10 ppbv of HNO3, (b) 5 ppbv HNO3, and (c) 2.5 ppbv of HNO3.
The dotted lines show the equilibrium temperature.

Several things can be studied from this diagram. Following one of the cooling
curves, we notice that changing the temperature from 196.5 K to 193.5 K increases
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the weight fraction of HNO3 from roughly 10 % to more than 40 % increasing the
supersaturation for nitric acid trihydrate.

E.18.3 How to Calculate the Loss Rate of Ozone Over
Antarctica

We start out remembering the main reactions of the chlorine cycle:

ClO C ClO
M! ClOOCl

ClOOCl C h� ! ClOO C Cl

ClOO
M! Cl C O2

2 .Cl C O3 ! ClO C O2/

Net W 2O3 ! 3O2

(E.18.4)

At this point, we may evaluate the destruction rate for ozone making some simplify-
ing assumptions. First we neglect the interaction with NOx (ClO C NO ! Cl C NO2).
This can be justified because of the almost complete denitrification of the Antarctic
atmosphere. Then we neglect the bromine cycle and assume because of the very
rapid reaction of Cl C O3 that all the reactive chlorine [(ClO C 2(ClOOCl))] is
partitioned between chlorine peroxide and ClO. We also assume that all the
inorganic chorine has been converted into reactive form ([Clx] D [Cly]) considering
the very low concentrations of HCl and ClNO3. We finally assume that the air is
cold enough for the decomposition of ClOOCl to be neglected. Then the equilibrium
between the first two reactions (E.18.4) gives

kŒClO�2 D J ŒClOOCl� (E.18.5)

we the assume that

ŒClx� D ŒClO�C 2 ŒClOOCl� (E.18.6)

we can then substitute in (E.18.5) to obtain

kfŒClx� � 2 ŒClOOCl�g2 D J ŒClOOCl�

and solve for [ClOOCl]

ŒClOOCl� D ˛

8

"�
1C 4

ŒClx�

˛

�
�
�
1C 8

ŒClx�

˛

�1=2#
(E.18.7)

where ˛ D J=k ŒM�. If we refer to October 1 at 75S latitude, we have for this a
coefficient value of 8.5 ppbv. Then for the second and fourth equations (E.18.4), we
have for the ozone loss

@ ŒO3�

@t
D �2J ŒClOOCl� D �2kŒClO�2
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Fig. E.18.3 Destruction rate
of ozone as a function of total
chlorine content. Roughly
1 ppbv corresponds to 1960
while 3 ppbv to mid-1990s
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This destruction rate can be shown as a function of the total chlorine content as in
Fig. E.18.3.
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Chapter 19
Chaos and Nonlinearities

The conclusion of this book cannot escape the aspect of atmospheric physics that
is most debated nowadays, that is, the chaotic character of the climatic system and
the atmosphere. In the previous chapters we have not questioned the deterministic
character of this system, and most of the time we have worked with equations
for which analytical solutions existed that enabled us to predict at each instant of
time the status of the system. These were relatively simple systems that implied
a total predictability. Sometimes more complex systems do not give rise to the
same conclusions or to regular solutions. The atmosphere could be such a system
and, according to Edward Lorenz, it may be intrinsically unpredictable. You may
think about a cloud: today there is no theory that could predict the evolution of a
cloud in the presence of updraft, wind, humidity, advection, etc. There are no two
identical clouds; nonetheless, we know that at the base of cloud evolution, there are
processes that could be described and understood. If we think a little, this is not a
novel situation in physics. In a completely different context, the kinetic theory of
gases solves another impossible problem because it avoids the question of how to
describe the exact position of each molecule in a gas. Instead it gives their collective
properties, describing their statistical behavior.

For complex dynamic systems, in recent years, a method has been developed
that is known as chaos theory which tries to find a logic behind apparently irregular
phenomena. It is not surprising that such a theory could be originated in the realm
of meteorology with the genius of Edward Lorenz. At the beginning of the 1960s,
studying convecting fluids, he discovered that sometimes they could give rise to
very irregular behavior. After Lorenz, the developments have been so fast that they
cannot be summarized in one chapter only even for those aspects relative to the
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atmosphere and climate. On the other hand, it would be a pity to omit from the book
a topic so important. We will thus start giving the most important definitions.

19.1 Simple Examples from the Theory of Dynamic Systems

The evolution of a dynamic system in general can be described by a number of rules
that can be written as differential equations. The most obvious dynamic system is a

pendulum. By referring to Fig. 19.1 and indicating with 	 the position and with
:

	

its angular velocity, we have the equations

d	=dt D
:

	 I d
:

	=dt D � .g=l/ 	 � ˇ
:

	 (19.1)

And with respect to the simple pendulum we have added a damping term. The
description of the motion of such a system can be made in phase space correspond-

ing to represent the function
:

	 D f .	/, which in this case assumes the form of a

spiral that goes toward the origin of the axis in the phase space 	 D
:

	 D 0. In
Fig. 19.1 these two trajectories are qualitatively shown. The solution of the dynamic
system is such that, whatever the initial conditions, the system ends up either at the
origin or is “stranded” in the orbit shown at right. These two geometrical objects in
the phase space are called attractors. An attractor that assumes the form of a closed
curve is representative of a periodic motion and indicates a limit cycle.

Another form of the attractor is the torus, as shown in Fig. 19.2. This attractor
is characteristic of quasi-periodic motions. An example is a pendulum in which the
amplitude of the oscillation is modulated at a different frequency. In the phase space
this mode is confined on the surface of the torus. A property of such a system is
that if the ratio of the characteristic frequencies is not commensurable (i.e., 1 and
2½), then two points that enter the surface at a distance arbitrarily small will stay
near. These attractors are also called “well behaved” and are a particular case of
systems that are predictable. Often they are also called non-chaotic attractors and
mathematically speaking are characterized by an integer dimension that belongs to
a submanifold of the relative phase space. For example, the attractor for the simple

q
q q

q
.

q
.

Fig. 19.1 The phase space trajectories for a simple pendulum (right) and a damped one (center)
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Fig. 19.2 The surface of the
torus as an attractor.
Trajectories entering the
surface arbitrarily close will
stay near to each other
(Tsonis and Elsner 1989)

Fig. 19.3 Illustration of the
Poincarè section. The phase
space trajectory intersects at
point P1 and P2 planes
parallel at the 	 and d	 /dt
plane at time intervals equal
to the period of the motion
(Tsonis and Elsner 1989)

pendulum is a point (zero dimensions) with respect to two-dimensional phase space.
The attractor of the damped force pendulum has one dimension with respect to
a two-dimensional or three-dimensional phase space. In order to deal with more
complex attractors we need to introduce two other concepts, the Poincarè section
and the fractal dimension.

19.1.1 The Poincarè Section

The system of Eq. (19.1) can be modified with the introduction of a third coordinate
' D !t that corresponds to the equation

:
' D !. In this way the forced pendulum

in a three-dimensional phase space (	;
:

	; ') will have a trajectory very similar to a
helix, as shown in Fig. 19.3. If we make a cross section of this trajectory at a fixed
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Fig. 19.4 The Poincarè
section in the plane angle; the
angular velocity for a
nonlinear pendulum.
Abscissa is the angle (Baker
and Gollub 1990)
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time interval corresponding to a period T D 2�=!, we will have in the 	;
:

	 plane
a point with the same coordinates. On the other hand, if we consider a nonlinear
pendulum (for which we do not use the small amplitude approximation), it will be
governed by the equations

d	=dt D
:

	

d
:

	=dt D � sin 	 �
:

	=q C F cos!t

d'=dt D !

where the symbols are self-explanatory. It is possible to show that such a system
does not always give periodic solutions while the parameter that controls mainly
the results is the forcing term F. We now calculate the Poincarè section for this
nonlinear case and obtain a rather surprising result, shown in Fig. 19.4. The pattern
in the figure is composed of about 200 intersections of the kind shown in Fig. 19.3,
with the pattern more and more defined as the number of points increases. All these
points taken together form the attractor, to which we may now give a different
interpretation.

We actually could think of solving the nonlinear system starting from different
initial conditions (chosen, e.g., with a random number generator). After a certain
time we would find that the system is actually in one of the points that make up
the attractor or in any case in the general area occupied by the attractor. It is quite
interesting at this point to pose the question of the dimension for the attractor which
in this particular case is not an integer number. The attractor dimension is important
because it is somewhat related to the minimum number of variables required to
describe the dynamic system. The evaluation of these dimensions can only be made
through the introduction of the fractal concept.
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Fig. 19.5 Examples of
different fractal dimensions.
In (a) the line has dimension
1. In (b) the scrawl has
dimensions between 1 and 2.
In (c) the fractal dimension
has been reduced by one unit
with respect to (b). Points
have dimensions between 0
and 1 (Stull 2000)

a b c

19.1.2 Fractal Dimension

Fractals can be defined as patterns made up from the superposition of similar
shapes but on different scales. Typical examples are the dendrites, snowflakes, or
tree branches. In meteorology, lightning, clouds, and turbulence (to name a few)
may exhibit a fractal behavior. The fractal dimension is a measure of the space
filling capability of a particular object. In Euclidean geometry the dimensions are
expressed by integer: a point has D D 0 dimensions, a line D D 1, and so on. Fractal
geometry allows also decimal dimensions. Consider, for example, drawings made

by children, as shown in Fig. 19.5. In part (a) of this figure the simple line has
an Euclidean dimension D D 1. In part (b) the wiggly line has a fractal dimension
between 1 and 2 with the larger dimension corresponding only to that the case the
line should completely fill the plane. There are different methods to determine the
fractal dimension. The simplest one is based on the fact that when we add a spatial
dimension the fractal dimension increases by one unit. As a matter of fact, we may
imagine the line in Fig. 19.5 as a cross section of a newspaper sheet that has been
crinkled. When the sheet is flat on the table, it has dimension D D 2. When it is
folded or wadded, its dimension is between 2 and 3 and may approach D D 3 when
it is well compressed into a perfect ball. If the folded or crinkled newspaper is cut
along a plane, the cross section of the cut has a dimension between 1 and 2. For
example, if its dimension in three-dimensional space was 2.3, now the cut will have
a dimension 2.3 � 1 D 1.3, and its aspect could be that of Fig. 19.5b. If this section
is now cut with a line, as in Fig. 19.5c, the intersection points will generate a pattern
with dimension 1.3 � 1 D 0.3.

Reducing the dimension makes it easier to measure it. As an example we could
take the “cloud” of points shown in Fig. 19.6. In this case the plane is divided in
elementary squares each of size " and the number of squares N(") necessary to
cover all the points is counted. Now the dimension of the square size is decreased
and the count is repeated so that a plot can be made of the number N(") as a function
of 1/". The slope of the resulting line will be defined as fractal dimension dc (c is
for “capacity”), that is,

dc D lim
"!0

log N ."/

1="
(19.2)
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Fig. 19.6 The measurement
of the attractor dimension
using the box system
(Alligood and Sauer 1997)

If the attractor has been obtained from Poincarè sections, as those of the
pendulum, its fractal dimension must be increased by one unit because we reduced
one dimension at the beginning. There are several other methods to determine the
fractal dimension, and in the specific case of the pendulum, it can be found to be
about 2.3. In three-dimensional phase space, the volume of the attractor is zero
because it can be shown that trajectories never intersect so they actually constitute
surfaces that do not fill out all the space. If the dimension of the attractor is not
an integer we are in the presence of a strange attractor. This is a rather limiting
definition because the most important characteristic is that the strange attractors,
to repeat Lorenz’s definition, are “an infinite number of curves, surfaces or higher
dimension manifolds – generalization of surfaces to multidimensional space – often
occurring in parallel set, with a gap between two members of the set.”

19.2 The Climate

Again, to repeat Lorenz’s words, “ : : : for a very complicated chaotic system – the
global weather- the attractor is simply the climate, that is the set of weather patterns
that at least have some chance of occasionally occurring.”

In Chap. 14 we illustrated some important features of the climatic system and
we also discussed that the possibility to detect anthropogenically induced climatic
changes is based in large part on the capacity to recognize natural from forced
variations. In practice we have been asking how deterministic is the climatic system.

As we said earlier, the equations that describe the climate are the same describing
the weather. However they are used in a very different way. The forecast is made
starting from a set of initial conditions on a number of variables (wind, humidity,
and so on). The equations are then integrated for a period of several days so that a
forecast can be released within the same time frame. When the equations are used
to predict climate, the boundary conditions are fixed instead (solar constant, carbon
dioxide content of the atmosphere, and so on) and the equations are integrated until
a steady state is reached.

Slowly changing variables like sea surface temperature or ice coverage are of
very little interest in the case of weather forecasting yet they could be very important
in determining the climate.

http://dx.doi.org/10.1007/978-3-319-29449-0_14
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The equations that describe either the weather or the climatic system are
nonlinear. This implies that, starting from different initial conditions, after some
time the same solution is reached: in this case the system is called transitive. More
correctly, we could say that after an infinite time, the system tends to a set of
solutions that have the same statistical properties. On the other hand, it may happen
that different initial conditions imply at least two sets of different solutions, and in
this case we are in the presence of an intransitive system. Finally, the system can
be such that it goes from one state to the other after a finite time and we will call it
quasi-intransitive.

To understand such definitions Edward Lorenz derived a system of equations
from the simplest form of the equation of motion. The starting point is the
vorticity equation written in a slightly different form with the introduction of the
streamfunction § such that u D �@ =@y and v D �@ =@x

@

@t
r2 C k � r � r �r2 

� D 0 (19.3)

The solution of this barotropic vorticity equation can be found with a two-
dimensional Fourier series

r2 D X cos ly C Y cos kx C 2Z sin ly sin kx (19.4)

Integrating we find the streamfunction to be

 D �X

l2
cos ly � Y

k2
cos kx � 2Z

k2 C l2
sin ly sin kx (19.5)

Substituting in the Eq. (19.3) we obtain the equations for the amplitudes

dX

dt
D �

�
1

k2
� 1

k2 C l2

�
klYZ

dY

dt
D
�
1

l2
� 1

k2 C l2

�
klXZ

dZ

dt
D �1

2

�
1

l2
� 1

k2

�
klXY (19.6)

A possible estimation of the coefficients can be made by assuming 2�/l D 104 km,
2�/k D 5 � 103 km so that

:

X D �0:1YZI :

Y D 1:6XZI :

Z D �0:75XY (19.7)

In Eq. (19.5) the first term is independent of the longitude and represents then the
zonal velocity. The other two terms are the eddies and are superimposed on the zonal
motion. The system Eq. (19.6) is nonlinear, but to have something that resembles
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the atmospheric circulation, it must be completed by a friction term (proportional to
-X, -Y, and -Z, like damping terms). Also, the eddies represented in Eq. (19.5) are
advective and we need to add terms that result from the direct interaction between
eddies. The forcing of the system could be assured, for example, by a temperature
difference between pole and the equator and can be represented by an explicit
forcing term. For the eddies only one component will be explicitly forced. More
reasonable, phenomenological equations could be

dX

dt
D �Y2 � Z2 � aX C aF

dY

dt
D XY � bXZ � Y C G

dZ

dt
D bXY C XZ � Z (19.8)

where aF and G are the forcing terms for the zonal wind and the eddies, respectively.
The terms bXZ and bXY represent the eddy advection, while XZ and XY represent
the amplification of the zonal wind due to the interaction of the eddies with the zonal
wind. From these equations it is clear that the eddies grow at the expense of the zonal
wind. The value of b establishes the relative role of the advection with respect to the
eddy amplification: if it is greater than 1, advection is faster than amplification. The
genesis of Eq. (19.8) is still controversial, and actually we think the best trail for it
is a work that Lorenz published in the Journal of the Atmospheric Sciences in 1981.

From this simple system of equations, we obtain the total energy

1

2

d

dt

�
X2 C Y2 C Z2

� D aX .F � aX/C Y .G � Y/ � Z2

that is conserved in the absence of eddy terms and damping. A steady-state solution
for Eq. (19.8) is easily obtained and is given by

Y D .1 � X/G=
�
1 � 2X C �

1C b2
�

X2
�

Z D bXG=
�
1 � 2X C �

1C b2
�

X2
�

(19.9)

in the absence of eddies and the forcing G this solution gives

Y D Z D 0 and X D F

This solution simply says that the mean zonal flux is established as the equilib-
rium between the Coriolis term and the zonal friction so that we are speaking about
a Hadley-type circulation. It is possible to analyze the stability of such a solution
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using the perturbation method so that each variable is perturbed for a small quantity
around the steady-state solution X D FCx;Y D y;Z D z. These must be substituted
in the last two equations of Eq. (19.8) to find

1

2

d

dt

�
y2 C z2

� D .F � 1/
�
y2 C z2

�
which means a growth for the eddies if F > 1 and vice versa.

To integrate Eq. (19.8), we need to assign numerical values to the quantities a,
b, F, and G. We choose to normalize the amplitudes to the value of the vorticity
at middle latitude (10�4 s�1) because this should be the order of magnitude for the
quantities X, Y, and Z. The damping time for the eddies could be 5 days (remember
the damping time in the boundary layer for spin down). For the damping time of the
zonal current we use 20 days. As zonal mean velocity we assume 10 m s�1 with the
forcing F being of the same order of magnitude. The normalized value would then
be 10 m s�1 x 5 d/107 D 0.4. Distances are then normalized to 104 km.

The study of the steady-state solutions shows that other solutions can be obtained
with G being between �2 and 2. Our first integration will use the values a D 0.25, b
D4, F D 8, and G D0.2. The results of this integration are shown in Fig. 19.7 where
the three variables exhibit an almost perfect periodic behavior. It should be noted
however that the amplitude of the zonal wind is small with respect to the amplitude
of the eddies and the period is of the order of 10 days, while there is a �/2 phase
difference between the two eddy components. If G is interpreted as a parameter that
introduces an asymmetry between the X and Y eddy components, we can conclude
that this particular solution in its regularity reproduces quite well the Hadley
regime.

If the asymmetry factor grows we notice a number of things as a result of
Fig. 19.8. In this case G D 0.8 and the oscillation is much less regular while the
current and the eddy amplitudes are comparable. The minima and maxima however
have very different amplitudes.

Fig. 19.7 The results of the
numerical integration for the
system of Eq. (19.8) with
a D 0.25, b D 4, F D 8, and
G D 0.2
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Fig. 19.8 The same as
Fig. 19.7 with G D 0.8. The
dashed line refers to different
initial conditions for X
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We notice in any case that both in the zonal current and the eddies, two different
regimes seem to be present: in X there are two waves of different amplitudes that
are not the same, while in the other two variables, there are periods of time in which
either the low frequency or the high frequency dominates. High frequency is more
common in the periods in which the zonal flux is high. These two distinct regimes
suggest that we are in the presence of a case of intransitivity, that is, in climatic
terms we could say that the system, without any external influence, gives rise to two
completely different types of climate. A confirmation of this characteristic is that by
changing only the initial condition of the first variable, the system gives completely
different solutions which in the figure are represented by the dashed line. In any case
the existence of the two regimes does not mean that we have identical variations in
them and it is more like a season in different years (e.g., two winters): there may be
snow and low temperatures, but they are far from identical. Even more interesting is
the case shown in Fig. 19.9, where the asymmetry has been increased further. In this
case the only zonal component is shown and we notice that the very long periods
of time dominated by large differences between minima and maxima correspond to
periods with smaller differences.

Calculating the attractor of the system (that turns out to be strange) enables us to
make a more objective analysis of this behavior. This is shown in Fig. 19.10, which
is composed of about 1250 points that represent the intersections of the trajectories
with the plane Y D 0. In a three-dimensional space, the trajectories enter the plane
of the sheet on the right, then exit, and reenter from behind on the left side. Lorenz
made an extensive analysis of this attractor.

Some important considerations can be made starting with the examination of
Fig. 19.7. We may assume that a weather forecast model shows a similar sensitivity
to the initial conditions. In this case the initial values for the variables have a
finite precision (like 5 m s�1 for the wind and 1 ıC for the temperature). These
initial errors double about every 5 days so that after some time we are no longer
sure of the forecast’s reliability, because its present status could result from data
different with respect to those used. This suggests the conclusion that the intrinsic
nonlinearity of the system implies a limitation in the forecast capability that at the
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Fig. 19.9 The X component for three consecutive periods of 6 months each. The parameters are
the same as in Fig. 19.7 except for G D 1

Fig. 19.10 The attractor for
the system of Eq. 19.8
includes about 1250 points
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present time is of the order of 5 days. In order to improve this limit, the precision
of the measurements must be improved by various orders of magnitude, with the
obvious financial implications. It is possible to show that the doubling time for the
error is linear with the logarithm of the precision, so that a significant increase
in the forecast time implies considerable investment in the improvement of the
instrumental techniques. This would not guarantee a better precision because we
are not sure whether the forecast models include all the relevant nonlinear processes
in the correct way.

19.3 Is El Niño Chaotic?

Each epoch invents its culprits and ours seem to have found one in El Niño. To
this still quite unknown phenomena are attributed most of the weather troubles and
anomalies. El Niño involves a very complex interaction between the tropical ocean
and the atmosphere; this for that reason is also called ENSO (El Niño Southern
Oscillation). The southern oscillation is a phenomenon referring mainly to the
pressure behavior over the ocean. El Niño begins with an anomalous warming of
the tropical Pacific Ocean that starts from the Peruvian coast and moves westward.
The warming of the ocean increases the local convection so that the warmer regions
correspond to intense precipitation while regions with subsidence have conditions
of pronounced drought.

The theory of El Niño is still fundamentally the one suggested by Bjerknes which
assumed that the trigger for El Niño is a weakening of the trade winds. These usually
blow from east to west and force the ocean water westward, thus forcing a rising of
cold water to the east of the Peruvian coast. When the trade winds weaken, the cold
water updraft is blocked and the ocean starts to warm to the east. This warming
reinforces the convection and consequently the trade winds so that the cycle starts
again. Actually the most interesting data on the El Niño is the fact that the cycle does
not have a fixed period and the intensity is not related to the frequency. It is these
data that make El Niño a perfect candidate to be explained as chaotic phenomena.
Another important consideration is that the ocean and the atmosphere have very
different response times, with the atmosphere reacting in a few weeks and the ocean
in months.

Considering the very unpleasant effects produced by El Niño on the regions that
are on the tropical oceans, the predictability and the possible forecast of ENSO has
considerable importance. However for a chaotic system the predictability has a quite
different meaning.

As an exercise we can illustrate some of these points using a very simplified
model, suggested by Geoffrey Vallis and shown in Fig. 19.11. In this model the
ocean is divided in two regions, the upper and deep water. The latter is assumed to
have a constant temperature T , while the upper ocean has a horizontal temperature
gradient resulting from the difference between the temperature on the eastern side
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Fig. 19.11 The model for El
Niño. The ocean is assumed
to be divided in two regions,
one at constant temperature
and the other in which the
temperature is determined by
the dynamics Upper Ocean 

Deep Ocean 

Δx

Δz

u*

u

T
–

TW TE

w W

TE and the western side TW . The ocean surface current is determined largely by the
wind u* whose direction is determined by the temperature gradient

.TE � Tw/ =�x

The acceleration of the oceanic current u will be

du=dt D B .TE � TW/ =2�x � C
�
u � u�� (19.10)

In practice it is assumed that the ocean current is due to the wind stress and to the
damping term – C(u � u*). For the ocean temperature we assume that there is an
advective term due to the oceanic current

u
�
T � TE

�
=�x

and again a relaxation term proportional to the difference .TW � T�/. We have then

dTW=dt D u
�
T � TE

�
=2�x � A .TW � T�/ (19.11)

dTE=dt D u
�
TW � T

�
=2�x � A

�
TE � T�� (19.12)

The temperature T* is the relaxation value in the absence of currents.
The system of Eqs. (19.10, 19.11, and 19.12) has a nonlinear character, and

before going to its solution, it is interesting to find the equilibrium values. These
may be obtained by putting for simplicity T D 0 and u� D 0 and making Eqs.
(19.10, 19.11, and 19.12) zero. It is convenient to make a change in the variables
according to

u D u=2A�xI t D AtI y D .TE � TW/ =2T�I y D .TE C TW/ =2T�
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to obtain

du=dt D by � cuI dy=dt D uz � yI dz=dt D �uy � .z � 1/ (19.13)

where we have put

b D T�B=A2.2�x/2 and c D C=A

and also u* D 0 and T D 0. The system of Eq. (19.13) at the steady state has real
solutions only if

c=b D AC.2�x/2=T�B < 1

In some sense this solution is valid until c � b so that u D 0 and TE D TW D T 0.
The limit is due to the fact that when c � b, the possible solutions for the variables
become two that are stationary until b does not reach the value

bc D c2 .4C c/ = .c � 2/

Beyond this value the behavior of the system is chaotic. An equilibrium or stable
solution means that small perturbations around the equilibrium points decay with
time, while in a chaotic solution the initial perturbation will be amplified. In
these conditions the behavior may be exemplified by looking at Fig. 19.12 which
shows the behavior of the velocity u and the temperature difference for the
values of the different parameters of the system C D 0.25 month�1, A D 1 year�1,
u* D �0.45 m s�1, and T* D 12 ıC. B in this case has a value 2 m2 s�2 and
the chaotic behavior occurs when this parameter is large enough to influence the
wind.

The study of the chaotic behavior is much easier if we observe the trajectories
in the phase space TE – TW , u, shown in Fig. 19.12. The thing we notice is that the
system stays much longer in the region where the wind velocity is negative so that
this represents the “normal” situation that is stationary but unstable. The El Niño
state on the other hand is much less frequent.

19.4 Dimensions of Weather and Climate Attractors

One of the most ambitious ideas of the chaos theorist is to find how many variables
are needed to describe complex nonlinear systems like the one that regulates weather
and climate.

At the end of the 1980s, a number of papers were published in which people
claimed with some surprise that the number of variables could be as low as 3 and
no larger than 8. This was obtained by analyzing experimental data on climate or
meteorological variables. The method used was quite ingenious and circumvented
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Fig. 19.12 At the top is
shown the behavior of the
velocity u and the
temperature difference
TE � TW between 100 and
125 years of integration time
of the system. The bottom
shows the trajectory of the
system on the phase space
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the difficulty that nobody knows all the equations (or the right equations?) that
govern weather and climate. The idea is that if we have a single record x(t) of
some variable x as a function of time, from this we should be able to extract the
information about the other variables. The physics behind the approach is that x(t)
should contain this information because it is the result of all interacting variables.
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We may try to use some mathematics to explain the method. The evolution of the
system may be described by a set of first-order differential equations:

:
x1 D f1 .x1; x2; :::::xn/
:
x2 D f2 .x1; x2; :::::xn/

:

:
:
xn D fn .x1; x2; :::::xn/

It is well known that such a system can be reduced to a differential equation of
the nth order that is

x.n/1 D f
�

x1;
:
x1; :::::; x

.n�1/�
This corresponds to substituting the state space coordinates (x1, x2, : : : ..xn) with
the first

�
x1;

:
x1; Rx1; :::::x1.n�1/� or second

� :
x1; Rx1; :::::x1.n/

�
derivatives with respect to

time. In a rather famous paper, Ruelle, one of the pioneers of nonlinear physics,
suggested in 1981 that rather than using the continuous variable x(t) and its
derivative, the discrete time series x(t) and its successive shift by a delay parameter
� could be used.

In practice it should be possible to reconstruct a trajectory in a p-dimensional
phase space by taking as coordinates x(t), x(t C �), x(t C 2�) : : : x(t C (p � 1)�). The
shifting in time is actually equivalent to differentiation of a continuous-time series
and it is quite evident for a periodic function like sine or cosine. The procedure is
shown in Fig. 19.11 and is drawn for a three-dimensional space. In a chaotic regime
the points along the same trajectory but far apart in time are uncorrelated. We can
characterize however the correlation between points by introducing a function C(r)
such that

C.r/ D lim
m!1

1

m2

�
number of pairs i; j whose distance

ˇ̌
xi � xj

ˇ̌
< r


(19.14)

where i and j, as shown again in Fig. 19.13, are the indices ordering the points along
a trajectory containing a total of m points. The form of C(r) could be a power law
of the form

C.r/ / rd.m/

where d(m) may well be considered the correlation dimension for the attractor. As
m increases d will approach a limit dG that should be the correlation dimension
for the attractor of the reconstructed system. A very simple example will clarify
the approach. We start with the generation of a white noise signal using a random
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Fig. 19.13 The recon-
struction of a trajectory in
phase space starting from a
simple variable x(t) using the
method of delays. In this case
a 3D space is used with
coordinates x(t), x(t C � ), and
x(t C 2� ) (Bergè et al. 1984)

X(t)

X(t +2τ)

X(t +3τ)
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number generator. We then apply, starting from the first value, the second coordinate
x(t C �), the third x(t C 2�), and so on. We can calculate the distance between two
points in the p-dimensional space by using

ˇ̌
rij
ˇ̌ D

h�
x1i � x1j

�2 C �
x2i � x2j

�2 C � � � �x.p/i � x.p/j
�2i1=2

(19.15)

where x1 D x(t), x2 D x(t C �), : : : : At this point we can calculate the number of
“pairs” for which the distance is less than r, and the result can be plotted as shown
in Fig. 19.12. For each value of p the slope of the curve can be determined and from
it the exponent d. It is noted that as the number of dimension increases the slope
also increases so that for large p we find d p. The same procedure could be applied
in principle to any signal with the difference that, while for white noise there is no
saturation, that is, the slope increases with the number of dimensions, it is possible
that for the signal we will observe a saturation. This would indicate that the process
from which the signal results has an attractor embedded in a space with a dimension
corresponding to that of the saturation.

This procedure was applied, for the first time, by Nicolis to climatic data that
refer to the oxygen isotopes we studied in connection with the ice ages. He found,
surprisingly, a dimension for the attractor around 3.1. Again the procedure was
applied to weather data (geopotential, pressure, and wind), and the dimension again
was found to be within 3 and 8.

Edward Lorenz became a little suspicious about these estimates and used a model
similar to the one describing the atmospheric circulation but for which the variables
could be expanded according to the rule (3x(2L � 1)) with L D 1 or L D 3. The
complete system looks like this
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dXj=dt D �qj

�
Y2j C Z2j

�
� aj

�
Xj � Fj

�C Uj

dYj=dt D Xj
�
qjYj � bjZj

� � pj
�
Yj � Gj

�C Vj

dZj=dt D Xj
�
bjYj C qjZj

� � pjZj C Wj (19.16)

for j D1, : : : .,2L � 1 and where

U2j D �cpjYj

U2jC1 D �cpjZj

Vj D cpj
�
X2j � h2j

�
Wj D cpj

�
X2jC1 � h2jC1

�
(19.17)

for j D 1, : : : ., (2 L�1 � 1).
The only difference between Eqs. (19.16) and (19.8) is the coupling terms U,

V, and W. The values used for the other quantities were pj D qj D 1, aj D 0.25, bj

D4.0, Fj D 8.0, Gj D1.0, and hj D 1.0 for all j. The real coupling is through c which
is taken as 0.1 for a weak coupling and 1 for a strong coupling. The procedure
adopted by Lorenz was to estimate the attractor dimension dc from the box counting
procedure we have illustrated earlier and also from reconstructing the trajectory and
calculating C(r). For the low-order system, the result found by Lorenz was that for
L D 1, when the new model reduces to Eq. (19.8), the dimensions dc and dG roughly
coincide. For L D 3 there are 21 variables and in this case the difference between the
two dimensions depends on both the coupling coefficient c and the variables chosen
for the evaluation. For weak coupling (c D 0.1) the capacity dimension is 17 while
the correlation dimension dG is roughly 5. For strong coupling (c D 1) the capacity
remains around 17 with dG about half of that.

The conclusion is that the procedure of delays gives a systematic underestimation
of the attractor dimension so that when dealing with a natural signal, one could get
the wrong impression of a low number of variables. The reason found by Lorenz is
that, as shown in Fig. 19.14, the power law should be particularly good for a large
number of points and “small enough r.” However although it is not particularly
difficult to find a large number of data, there are no indications about the smallness
of r. Lorenz suggested that the atmosphere–climate system may consist of a number
of low-order subsystems loosely coupled. The real data analysis reporting the low
dimension for the attractor was probably sampling one of these low-order systems.

Few doubt that in considering the complexity of the Earth system, chaos theory
is the way to go, but the road is still quite unclear, especially because the models
used until now are quite far from reality.
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Fig. 19.14 The function C(r)
for white noise. Notice the
increasing slope with
increasing embedding
dimension n
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Fig. 19.15 A loop oscillator
for the haline circulation: a
tube filled with salty water.
The freshwater is passed
through the skin of the tube
(Huang 2009)

19.5 A Bridge to Nonlinearities: The Loop Oscillator

This is an example due to Dewar and Huang. We assume to have a loop (as in
Fig. 19.15) where the difference between precipitation (p) and evaporation (q) is
given by

p � e D E cos 	 (19.18)
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We use a cylindrical coordinate system with tangential components denoted by
subscript 	 , so we write the continuity equation as divergence equal to freshwater
flux:

@u=@	 D 2RE cos 	=r (19.19)

define the angular velocity as

! D u=R (19.20)

Integrating (19.19) we have

u D 2RE sin 	=r C C ) ! D 2E sin 	=r C C

Defining the average angular velocity as

� D
Z 2�

0

!d	=2�

we have C D � and then

! D �C 2E sin 	=r (19.21)

For the salt concentration S, we can write the continuity equation

@S

@t
C @ .!S/

@	
D K

R2
@2S

@	2
(19.22)

where K is the diffusivity coefficient for salt.
The momentum balance for an infinitely small sector of the water tube is given

by


0

�
@u

@t
C u

@u

@l

�
D �@P

@l
� 
g sin 	 � "
u

where l is the direction along the tube, P is the pressure, and the first term is just a
viscous term. Again integrating the momentum equation along the entire loop,

@�

@t
D �"� � g

2�R

Z 2�

0





0
sin 	d	 (19.23)

Using the density relation 
 D 
0 .1C ˇS/, with “ salinity coefficient the equation
becomes

@�

@t
D �"� � gˇ

R
hS sin 	i (19.24)
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Equations (19.22) and (19.24) can be normalized according to

S D SS0I t D Tt0I ! D !0=T

where S is the average salinity and T D
q

R=gˇS. Equation (19.24) becomes

@�0

@t0
D �"T�0 � gˇT2

R
S
˝
S0 sin 	

˛
T can be determined by imposing that the coefficient of the second term on the right
equal to unity. We have after dropping the primes

:

� D �˛� � hS sin 	i (19.25)

where ˛ D "T D "

q
R=gˇS. Equation (19.22) becomes after being normalized

:

S D kS		 � Œ.�C � sin 	/ S�	 (19.26)

where

� D 2ET=r � D KT=R2

In the most general case, solution to the set (19.25 and 19.26) can be obtained by
expanding the solution for the salinity in a Fourier series:

S D 1C
1X
1

.2an sin n	 C 2bn cos n	/ (19.27)

The simplest case is to retain only the sin 	 and cos 	 mode so that the set of equation
reduces to

:

� D �˛� � a1
:
a1 D �b1 � �a1
:

b1 D ��a1 � �b1 � �=2

This system can be reduced to the classical Lorenz equation with the linear
transformation

x D �I y D �a1
˛

I z D b1

˛
C �

2�˛
(19.28)
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and the system becomes

:
x D ˛ .x � y/
:
y D x .r � z/ � �y
:
z D xy � �z (19.29)

where r D �=2˛�: This system coincides with the Lorenz system with b D 1 when
� D 1.

19.6 The Thermohaline Circulation According to Stommel

19.6.1 The Model

To illustrate further some properties of the nonlinear system, we leave for a moment
the atmosphere and again go into the ocean. The oceanic circulation is largely
determined by the interaction with atmospheric wind (we mention that for El Niño)
but also by buoyancy effects due to different salinity and temperature. Salinity is
expressed as the grams of salt dissolved in a kg of water. In the ocean this number
changes between 32 and 37. The equation of state for ocean water in its simplest
form is written as


 D 
0 Œ1 � ˛ .T � T0/C ˇ .S � S0/� (19.30)

where ˛ and ˇ are two constants with value of 5.26 � 10�5 K�1 and 7.86 � 10�4 psu�1.
The other constants are ¡0 D 1028.1 Kgm�3 and S0 D 35 psu (practical salinity
units). The simplest model of the oceanic circulation due to difference in density can
be the one illustrated in Fig. 19.15. The two boxes represent the high-latitude ocean
at temperature T1 and salinity S1 which loses salinity because of the precipitation,
while the low-latitude ocean at temperature T2 and salinity S2 gains salinity because
of evaporation. The two boxes exchange water at the surface and at the bottom with
a flux q (measured in s-1) with following convention. At the surface poleward flow
is when q > 0 that implies equatorward bottom flow. Conversely at the surface q < 0
means equatorward flow and poleward bottom flow. We simply assume that the flux
is given by

q D k .
1 � 
2/ =
0 (19.31)

So that according to (19.30) we have

q D k Œ˛ .T2 � T1/ � ˇ .S2 � S1/� (19.32)
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We further assume that the temperature is fixed, so we need to worry only about
salinities with conservation equations:

:

S1 D �HS C jqj .S2 � S1/
:

S2 D CHS � jqj .S2 � S1/ (19.33)

where HS is the virtual salinity flux defined as S0E/D with S0 reference salinity, E
freshwater flux (measured in ms�1), and D depth. We further define

�T D .T2 � T1/ �S D .S2 � S1/ 
 D .
1 � 
2/

Implying that

q D k .
=
0/ D k Œ˛�T � ˇ�S�

Under normal conditions we expect salinity and temperature to be both higher at low
latitudes and both lower at high latitude. When the temperature difference dominates
the salinity difference, high-latitude density will be higher than low-latitude density.
Therefore q > 0 and the surface flow is poleward. In this case

q > 0 W jqj D q D k Œ˛�T � ˇ�S�

So that in this case temperature difference drives the circulation and salinity breaks
it. The opposite happens when salinity difference dominates temperature difference.
In this case q < 0 the surface flux is equatorward

q < 0 W jqj D �q D k Œˇ�S � ˛�T�

To solve the system we add and subtract (19.33) to obtain

:

S1 C :

S2 D 0 (19.34)

That is the conservation of salinity. And

:

S D 2HS � 2k Œ˛�T � ˇ�S��S (19.35)

The equilibrium solutions can be found by putting

HS � k j˛�T � ˇ�Sj�S D 0

We must distinguish between the two cases in which the argument of the modulus
is positive or negative. In the first case

q > 0I ˛�T > ˇ�S
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We then have

Hs � k
�
˛�T � ˇ�S

�
�S ) �

ˇ�S
�2 � ˇ�S .˛�T/C ˇHS=k D 0

which has the roots

2ˇ�S D ˛�T ˙
h
.˛�T/2 � 4ˇHS=k

i1=2
(19.36)

Then for poleward surface flow when

.˛�T/2 > 4ˇHS=k ) ˇHS=k.˛�T/2 < 1=4

we have two solutions. In the other case it is easy to show that

q < 0I ˛�T < ˇ�SI �ˇ�S
�2 � �

ˇ�S
�
.˛�T/ � ˇHS=k D 0

with the single root

ˇ�S D ˛�T

2
C 1

2



.˛�T/2 C 4

ˇHS

k

�1=2
(19.37)

In this case we have to discard the negative root because in this case ˇ�S < 0 in
contradiction with the condition ˛�T < ˇ�S. Of the three solutions we can show
that only two are stable. We just perturb the quantities

�S D �S C S0I q D q C q0

where q D k
�
˛�T � ˇ�S


. We can easily obtain

:

S0 D 2 jqj S0 ˙ kˇS0 ��S C S0� I C W q > 0I � W q < 0

This expression cab be linearized if we assume S0 << �SI q0 << q and in that
case

:

S0 D �2 jqj S0 ˙ kˇS0�SI C W q > 0I � W q < 0

Now assuming the perturbation evolves as S0 D S0e�t we obtain

� D �2 jqj ˙ 2kˇ�S D �2k
ˇ̌
˛�T � ˇ�S

ˇ̌˙ 2kˇ�S

It is convenient at this point to introduce the dimensionless salinity difference
defined as

ı D ˇ�S=˛�T
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so that the normalized flux becomes

q D q

k˛�T
D k

�
˛�T � ˇ�S

�
k˛�T

D 1 � ı (19.38)

The condition for instability is when � > 0 so when we use the plus sign (q > 0) the
condition for instability is satisfied if

2ˇ�S > ˛�T ) ˇ�S=˛�T D ı > 1=2

That coupled with the condition q > 1 gives the instability region when 0:5 < ı < 1
while in case q < 0 we have stability for ı > 1. In terms of ı, we have the
solutions

ı1 D 1

2

�
1 � p

1 � 4E
�

0 < ı < 0:5

ı2 D 1

2

�
1C p

1 � 4E
�

0:5 < ı < 1

ı3 D 1

2

�
1C p

1C 4E
�

ı > 1 (19.39)

The first two solutions are further constrained by the fact that E < 0.25. These
conditions are summarized in Fig. 19.16.

Fig. 19.16 Graphical representation of the box model. Curves show the equilibrium solutions,
while the arrows show the tendencies. Notice that for E < 0.25 there are three possible equilibrium
states
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19.6.2 Stability of the Solutions

We start out from Eq. (19.35) normalized:

1

2k˛�T

d

dt

�
ˇ�S

˛�T

�
D ˇHS

k.˛�T/2
�
ˇ̌̌̌
1 �

�
ˇ�S

˛�T

�ˇ̌̌̌ �
ˇ�S

˛�T

�
At this point we need to introduce a normalized time:

t0 D t .2k˛�T/

So that the previous equation becomes

:

ı D E � j1 � ıj ı (19.40)

This equation tells that on the equilibrium curve the time derivative is zero. However

on the left of that curve E is less than that required by equilibrium so that
:

ı is
negative and the salinity difference decreases with time. This is indicated by the

arrows. The opposite happens on the right of the equilibrium curve where now
:

ı is
positive and the salinity difference increase with time. This means that if we start
from a point at ı < 0:5; the system will return to the equilibrium curve as indicated
by the arrows. The same happens if we start from a point with ı > 1. However, if
we start from a point where 0:5 < ı < 1, then the system will not return to the
initial point but will move toward the stable region with ı > 1. Notice that based
on the definition of ı, when this parameter is larger than unity ˇ�S > ˛�T and the
regime will be dominated by salinity difference. On the other hand when ı < 0:5,
then ˇ�S < 0:5 .˛�T/ and the regime will be determined by thermally strong flow.
This implies that the stable region ı > 1 will be dominated by salinity differences.
In particular the point E D 0:25; ı D 1 beyond which no thermally direct
steady state is possible in language of dynamical systems is called a saddle node
bifurcation.

These instabilities can be interpreted in real terms referring to Fig. 19.17. Starting
from a point that would correspond to the present climate if the freshwater flux is
increased (e.g., by melting the ice polar caps), the system will move toward the
bifurcation point and then will “fall” to the southward-directed surface flux. The
system will not recover by simply decreasing the freshwater flux because the new
transition to the present climate will occur when the freshwater flux is stopped. This
simple model has been used by many to make some interesting observation on the
occurrence of glacial cycles. Reaching the bifurcation point would correspond to
the collapse of the North Atlantic Deep Water (NADW) formation. Considering the
catastrophic character of the collapse, the transition could happen only in a few
decades, something like the movie “The day after tomorrow.”
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Fig. 19.17 The hysteresis
cycle produced by the
Stommel 2 box model. This
figure is the same as the
previous one with the scales
changed. Notice that the flux
is southward for the lowest
branch

19.7 The Difference Equations

As usual it was Edward Lorenz that started the business in a paper published in 1964.
As we have seen in many instances, the resolution of a differential equation (or a
system of differential equation) must go through a transformation in the difference
equation. We report exactly the words of Lorenz:

When the original equations are nonlinear, the equivalent difference equations generally
cannot be written in finite form in term of familiar analytic functions. The existence of the
difference equations is assured, however, by the existence of the solutions of the differential
equations.

We therefore lose no generality in choosing an arbitrary system of equation to illustrate the
problem of deducing the climate, if we choose a system of difference equations instead of
differential equations.

In that paper Lorenz was interested in the definition of climate (something we
have done before) as “long-term statistical properties of the atmosphere.” He was
mostly concerned with climatic changes which “are of necessity changes in statistics
taken over finite intervals” and refer mainly to intervals from decade to centuries.
The interest is concentrated on the fact that even if the environmental conditions do
not change, the statistics may change. If the fluctuations of the atmosphere are of
short period (i.e., the weather), the separate sample may be hardly distinguishable
from one another. Sometime it could happen that the fluctuations have a duration
comparable to that of the sample and the separate sample may have different
statistics: this is more like climatic change. The interest is then to find very long
period fluctuations when the environmental conditions do not change.

It is relatively easy to explain the weather fluctuations (periods from 1 day
to 1 year) in terms of instability, while it is much more complex to explain
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low-frequency variability in the presence of a constant environment. In mathe-
matical terms climate may be expressed in a set of differential equations with the
property that the long-term statistics of certain time-dependent solutions are not the
same as those of other time-dependent solutions. In practice some systems have
the properties that there are two or more sets of statistics, any one of which could
constitute the climate of the system. The particular climate which prevails depends
upon the particular conditions that prevail when the system first was established.
Such systems are called intransitive according to Lorenz. Systems in which only one
climate is physically possible are called transitive. We do not know if our climatic
system is either transitive or intransitive. In particular for the intransitive system, the
transition from one state to another could result from a change in the environmental
conditions (i.e., changes in the solar constant), and the return to the initial state
could happen when the previous conditions are reestablished. Two particular time-
dependent solutions of the system may appear to have different statistics if the
solutions are considered only in a moderate time span and the system may appear
to be intransitive. However, if the time interval is sufficiently extended, the statistics
may look quite similar. This means that a solution will exhibit different statistical
properties within different intervals of a long time span. This system is called almost
intransitive. Figure 19.18 exemplifies such a definition. In a transitive system two
initial states A and A’ evolve into the single equilibrium state B. An intransitive

Fig. 19.18 Diagram showing a transitive (upper), intransitive (middle), and almost intransitive
(bottom) climate system from an initial state A (Adapted from Peixoto and Oort 1992)
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system may have two or more equilibrium state A and B for the same boundary
conditions. An almost intransitive system may behave as if were intransitive up to a
time t1 shifting to an alternative state B where it could remain up to a time t2.

19.7.1 Examples for Transitive and Intransitive System

Following the previous considerations, we lose no generality if we consider a
system of nonlinear difference equations capable of generating a stable climate.
The simplest one could be of the form

XnC1 D f .Xn/ (19.41)

where f is continuous and single valued in X. If X0 is an arbitrary chosen initial
condition, Eq. (19.41) will generate a series fXg D fX0;X1;X2; :::::g, and the long-
term statistics of this series constitute the climate determined by Eq. (19.41). Lorenz
observed that if (19.41) has not a steady-state solution, that is, X0 D X1 D X2 : : : ;
then in view of the continuity, either X0 < X1 < ::; or X0 > X1 > : : : ;. This means
that Xn ! 1 or Xn ! �1 as n ! 1 since any finite limit would correspond to
a steady state. The series fXg then possesses no climate and we shall require that
f .X/ D X for at the least a finite value of X.

The simplest continuous nonlinear function would appear to be a quadratic
function. The most general quadratic equation with at least a steady-state solution
can written as

XnC1 D aXn � X2n (19.42)

with a � 0. It can be easily verified that if a > 4, the choice X0 D 1
2a implies X1 > a

and X2 < 0 after which Xn ! �1 as we shall then require that 0 � a � 4 and that
0 � X0 � a.

Using Eq. (19.42) we will derive a “climate” defined with the mean

X D lim
N!1

1

N

nDN�1X
nD0

Xn (19.43)

Noting in particular how X varies with a.
For some, the value of a in equation (2) may have shown to be transitive, that is,

to determine a stable climate. For all other values between 0 and 4 we will make the
hypothesis that Eq. (19.42) is transitive and speak of the value of X corresponding to
a. There is no proof of transitivity, but the many numerical solutions do not indicate
any suggestion for intransitivity.
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Fig. 19.19 Numerically determined solutions of Eq. (19.42). Notice the periodicity of the first
solution

Fig. 19.20 The mean X for
values of a from 3.74 to 4

Figure 19.19 shows the results obtained by solving numerically Eq. (19.42) for
three different values of a. The initial value X0 D a/2. We can see that for a D 3.74,
the solution is periodic with period of 5, while for all the other values there is
nonapparent periodicity. In any case to obtain a reasonable mean, we may use a
large number for n. We have used n D 1024 and have evaluated the mean for values
of a going from 3.74 to 4 with steps of 0.005 and the results are shown in Fig. 19.20.
The most striking characteristic of this graph is its irregularity so that we can hardly
find any possible definition of this climate.
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A proposal for a similar equation to (19.42) for an almost intransitivity climate
was formulated by Lorenz in 1976. He considered the following single first-order
cubic difference equation:

XnC1 D aXn
�
3 � 4X2n

�
(19.44)

This equation as the previous one may not have any connection with reality except
for the fact that as we have seen before in a few problems, we have a quadratic
term (i.e., Eq. 19.8) and in many other instances the results of transforming a
differential equation in a difference equation may give rise to quadratic terms. We
will use then Eq. (19.44) to show some mathematical properties of a transitive
or intransitive system. If a > 1, solution of Eq. (19.44) will blow up. However, if
a � 1 and jXnj � a, then jXnC1j � a. A choice of an initial value jX0j � a will
determine an infinite sequence X0, X1, X2 : : : , with each term lying between �a
and a. Based on the previous considerations, the term

�
3 � 4X2n

�
in (19.44) is the

one that will change the sign of XnC1 with respect to Xn, and this will happen when
X2n � 3=4. As a consequence if a2 � 3=4; then Xn and XnC1 must have the same
sign so that a sequence consists entirely of positive or entirely of negative numbers.
Since the positive and negative sequences have different means the system is clearly
intransitive. If on the other hand a2 � 3=4, change of sign within a sequence is
possible. For example, if Xn is close enough to 0.5, then X2n > 3=4 and XnC2
and XnC1 have opposite sign. For entrain values of a2 � 3=4, the sequence will
contain mostly positive terms and other mostly negative terms, and so we have two
“climates.” However for most of the values of a2 � 3=4 the system is transitive.
When a2 exceeds ¾ only slightly, the range of value of Xn, about ½, is very small.
It may be anticipated that most sequences will be characterized by large numbers of
successive terms of one sign and transitions will be relatively rare. Examination of
a few short segments might not reveal any changes and the system qualify as almost
intransitive (Fig. 19.21).

19.8 Nonlinearity and Delayed Differential Equations

A simple example will clarify the purpose of this paragraph. We consider the
so-called continuous logistic equation that deals with the population growth as a
function of the carrying capacity, K, and the growth rate r:

dN

dt0
D rN

�
1 � N

K

�
(19.45)

In the exercise we will treat the discrete form of this equation, and we will see why
it has been used to study chaos. There are two steady-state solutions, one with N D 0
and the other with N D K. The continuous logistic equation assumes that the birth
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Fig. 19.21 Solutions for Eq. (19.44) for initial conditions of 0.0999 (upper), 0.1000 (middle), and
1.001 lower

rate depends instantaneously on the population size, while it seems obvious that
there should be a delay that can be incorporated in the terms between brackets:

dN

dt0
D rN



1 � N .t0 � �/

K

�
(19.46)

This means that the loss term is not based on the instantaneous population but on
the one at time .t0 � �/. Equation (19.46) can be normalized using the variables

y D N=K t D t0=�

and we arrive to the nondimensional equation (Shampine et al. 2003)

dy

dt
D ˛y Œ1 � y .t � 1/� (19.47)

where ˛ D r� . A particular aspect of the delay equation is that initial conditions
need to be specified over the time interval from 0 to 1 (the so-called history).
Typically this is assumed to be a constant. Equation (19.47) is clearly nonlinear and
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Fig. 19.22 The solutions of the logistic equation for two values of the parameter ˛

Fig. 19.23 A schematic picture of the delayed oscillator mechanism (Adapted from Suarez and
Schopf (1988) and Tzipermann)

the solution can be obtained with a standard MATLAB program. Solutions depend
on the value of ˛ and are depicted in Fig. 19.22, where it is shown that for ˛ D 1,
the solution is a damped oscillation, while for ˛ D 2, the solution is a sustained
oscillation. This behavior will be clarified is some of the examples.

Now that we are equipped with this additional knowledge, we can apply the delay
differential equation to atmospheric problems.

19.8.1 ENSO as a Delay Oscillator

We have modeled ENSO previously as a possible example of chaotic system.
However Suarez and Schopf in a 1988 paper made the hypothesis that ENSO could
be treated as a delayed oscillator. The idea is based on the complex interaction
between ocean and the atmosphere in which Kelvin and Rossby waves play a
fundamental role. We may refer to Fig. 19.23 to fix the ideas. A weakening of the
wind (1) creates an equatorial (downwelling) Kelvin wave (2) that travels to the east
Pacific within 1–2 months where the thermocline deepening induces an SST heating
and starts the El Niño event. The SST heating further weakens the central Pacific
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winds, and the event is therefore amplified by the ocean–atmosphere instability. The
initial wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(3) that are reflected from the western boundary as cold Kelvin waves (4) arrive at
the eastern boundary and terminate the event.

To obtain some numbers, we call �K and �R the basin crossing times for Kelvin
and Rossby waves. If we call heq(xc) the positive deep anomaly at the central Pacific
that happens at time t� 1

2 �K excites an eastward-propagating Kelvin wave that arrives
after about 1

2 �K to the eastern Pacific and deepens the thermocline there within �K �
1�3months. Similarly, a negative off-equatorial deep anomaly in the central Pacific
(hoff �eq .xc/) at time t � Œ 12 �R C �K � excites a westward propagating Rossby wave at
the central Pacific that is reflected off the eastern boundary as an equatorial Kelvin
wave arrives at the eastern boundary at time, shallows the thermocline there, and
cools the SST. We may the write the change of temperature at the time t:

dT.t/

dt
D a0heq .xc; t � 1

2 �k/C b0hoff�eq .xc; t � Œ 12 �R C �K �/ (19.48)

To this equation we must add a dissipative term that stabilizes the system propor-
tional to the cube of the temperature:

dT.t/

dt
D a0heq .xc; t � 1

2 �k/ � b0hoff�eq .xc; t � Œ 12 �R C �K �/ � cT.t/3 (19.48a)

If we assume that the wind stress in the central Pacific is a pretty much simultaneous
response to the east Pacific SST, we can write

dT.t/

dt
D aT .t � 1

2 �k/ � bT .t � Œ 12 �R C �K �/ � cT.t/3 (19.49)

where a, b, and c are positive constants. We have seen that the first term is delayed
by roughly 1 month, while the second term has a delay of roughly 6 months. This
equation constitutes the delayed oscillator model for El Nino.

Equation (19.49) can be simplified neglecting the delay due to the Kelvin wave
and in that case becomes

dT.t/

dt
D T.t/ � ˛T .t � ı/� T.t/3 (19.50)

This is however in nondimensional form where the temperature has been scaled by
(a/c)1/2 and the time by c�1. This can be interpreted as measure of the influence of
the returning signal relative to that of the local feedback.

Before we proceed to the integration of Eq. (19.50), we may consider some
linear stability analysis. Besides the stationary solution T D 0, the equation has two
additional stationary states:

T0 D ˙.1 � ˛/1=2 for ˛ < 1



19.8 Nonlinearity and Delayed Differential Equations 749

If we perturb the solution around T0 an linearize the equation we have for
T D T0 C T 0

dT 0

dt
D .3˛ � 2/T 0 � ˛T 0 .t � ı/ (19.51)

And we look for solution of the form

T 0 D T exp .� t/

where � D �r C i�i so that substituting in (19.51)

.�r C i�i/ D .3˛ � 2/� ˛ exp Œ� .�r C i�i/ ı�

From which we obtain

�r D .3˛ � 2/� ˛ cos .�iı/ e��rı �i D ˛ sin .�iı/ e��rı

The neutral curves (�r D 0) gives immediately

ı D cos�1 f.3˛ � 2/ =˛g =�i

�i D
h
˛2 � .2 � 3˛/2

i1=2
(19.52)

For each value of ˛ in the interval 0:5 < ˛ < 1; there are infinite neutral curves,
but for ı < 10 there are only a few neutral curves, and the neutral solutions indicate
a period given by 2�/� i. Solutions to Eq. (19.50) have been obtained with a simple
MATLAB script and are illustrated in Fig. 19.24. The behavior of the nonlinear
oscillator is depicted as a function of time divided the delay that changes between
2 and 10. The coefficient ˛ is kept constant at 0.75. The solutions indicated that
as the delay grows the wave tends to become square with a period twice the delay.
For smaller delay the period is much longer and the solutions are more sinusoidal.
For example, for the neutral solution, the parameter ˛ gives a � i of 0.7 which
implies a period of about 8.9 rather than 10 as given in the upper part of the
figure.

The question now is if this simple model can mimic some characteristic of El
Niño. If the period is twice the delay in order to have a period around 5 years, we
see that near the neutral curve, we need a delay of 2.5 years. This is roughly twice
the time waves employed to go back and forth, but nonetheless we cannot pretend
that such a simple model could give such precision. While the delayed oscillator
model is useful in providing us with an idea of what could be the mechanism of
ENSO, it represents a limit for a fuller dynamics. The simple program for ENSO is
given in the example.
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Fig. 19.24 On the left are the oscillations obtained for three different values of the delay. On the
right (top) the stability curves for the neutral solution with stable modes below the lower curve and
unstable modes to the right of the same curves. The lower figure on the right shows the period for
the neutral solution always higher than 2ı shown by the dotted line

19.8.2 Aerosol–Cloud–Precipitation as the Predator–Prey
Problem

The predator–prey is a classical problem for the application of mathematics to
biological systems. If we imagine in a desert island populated only by rabbits and
foxes the species numbers will result by the strong interactions between the two. As
the foxes hunt rabbits, the latter population will decrease to the point that foxes will
start to starve and die and the rabbit population will then increase again to initiate a
new cycle. The two populations will follow each other with some phase delay. This
system is regulated by the so-called Lotka–Volterra equation:

dC

dt
D C .a � bR/ I dR

dt
D R .eC � f / (19.53)

where C is the population of prey (rabbits), R the population of predator (foxes),
and a, b, e, and f are system-dependent constants. The C population will grow
exponentially in the absence of R, but it is reduced by R preying on C. As for the
predator its population depends on C and will decrease exponentially in the absence
of C.
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For the cloud we can imagine that the role of predator is assumed by the rain,
while the prey is the liquid water path, that is, the amount of liquid water per unit
area in the cloud (g cm�2). The rain will increase at the expense of LWP and as the
latter is depleted, the rain will start to decrease until the cloud will reform.

Actually in the model of Koren and Feingold (2011), the two variables are the
cloud depth H and the concentration of aerosol Nd. Rain is parameterized as a
function of aerosol density and cloud depth.

We start defining LWP

LWP D
Z H

0

q.z/dz D c1
2

H2

where q is the cloud water content and c1 is a function of cloud-base temperature
and pressure; c1 ' 2 � 10�6 mm m�2. The balance equation for H

dH

dt
D H0 � H

�1
C :

Hr .t � T/ (19.54)

The first term on the right is a relaxation term toward the asymptotic value H0 that
would be the depth reached by the cloud in the absence of water sinks. The second
term represents the loss of liquid water due to rain, a stochastic process that converts
small cloud droplets to raindrops in a relatively short time T � 15 min. The delay
term (t � T) accounts for the time dependence of rain production, which is a function
of the state of the cloud some period before the current time step.

To the first order, rain rate R can be diagnosed from cloud depth H and Nd

R D ˛H3=Nd (19.55)

based on theory and observations and where ˛ D 2 mm m�6 d�1. In this way the
cloud depth controls the precipitation much more than Nd.

The loss term for H can be obtained by

:

Hr D dH

dt
D dH

dLWP

dLWP

dt
(19.56)

where dLWP=dt D �R. Using (19.53) we obtain

:

Hr � R
dH

dLWP
D � R

c1H
D � ˛H2

c1Nd
(19.57)

A similar equation to (19.54) is obtained for Nd

dNd

dt
D N0 � Nd

�2
C :

Nd .t � T/ (19.58)
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In this case N0 corresponds to the background aerosol concentration. The loss term
for Nd results from the conversion of cloud water to rain via drop collection and is
calculated on a simple expression:

:

Nd D �c2NdR (19.59)

where c2 ' 3 � 10�1m�1
To simplify the delay term we notice that both H and Nd are continuous functions

and assume that there is an equivalent delay time T0 that represents the mean value
in the interval.

:

Hr is expressed as ˛H2 .t � T 0/ =c1Nd .t � T 0/ and Nd is calculated
at time (t � T0). Finally R is written based on (19.55)

R.t/ D ˛H3 .t � T 0/
Nd .t � T 0/

Now we can rewrite (19.54) and (19.58) as a system using (19.57) and (19.59)

dH

dt
D H0 � H

�1
�
˛H2

�
t � T 0

��
c1Nd .t � T 0/

dNd

dt
D N0 � Nd

�2
� ˛c2H

3
�
t � T 0� (19.60)

Steady-state solutions are easily found to be

H D
�
N2

d C 4��1NdH0
� 1
2 � Nd

2��1
(19.61)

and this shows that for low values of Nd (<30 cm-3), H strongly depends on Nd while
for greater value depends mainly on H0.

Time-dependent solutions are shown in Fig. 19.25. The data used to draw
this diagram are H0 D 670 m, N0 D 515 cm�3, �1 D 80 min, �2 D 84 min, and
T0 D 21.5 min. The behavior predator–prey is quite evident. The solution in the
first 10 h that the amount of rain follows the maxima of the cloud depth by about
5 h while the aerosol density precedes the cloud depth by about one and half
hour comparable to the �1 and �2 times. The “phase diagram” on the other hand
shows a behavior very similar to the predator–prey diagram with closed loops that
decrease in amplitude with time due to the damping. The latter is not visible in the
upper figure because the short integration time (10 h with respect to a week). The
MATLAB script to solve this problem is given in the examples.
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Fig. 19.25 Oscillating, limit cycle response of the H, R, and Nd system. The upper figure shows
the first 600 min. Solid thin line, Nd; solid heavy line, H; dashed line, Rain
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E.19 Examples

E.19.1 The Lorenz System: The Mother of All Chaotic Systems

We consider a vertical loop as in Fig. E.19.1 (filled with a fluid) of radius a while
the tube radius is negligible. The external temperature changes linearly with height:

TE D T0 � T1z=a (E.19.1)

The quantities inside the loop depend only on the angle� and time. Then for velocity
q and temperature T we have

q D q .�; t/
T D T .�; t/

(E.19.2)

We then assume incompressibility (@
=@t D 0) so that divergence of velocity is
also zero (@q=@� D 0). This means that velocity is only a function of time (solid
body rotation), while for temperature we must assume a more complex behavior:

T � T0 D T2 cos� C T3 sin � (E.19.3)

According to this relation the temperature difference between the top (� D �) and
the bottom (� D 0) is 2 T2. The difference between the two sides (� D �=2 and
� D 3�=2) is 2T3. Both T2 and T3 vary with time.

Fig. E.19.1 The convective
loop oscillator
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We now have to find the equations of motion starting with the Navier–Stokes
equation:

@u

@t
C u � ru D �1



rp � g˛�T C �r2T

Consider now that the divergence is zero and also we substitute the viscous term
with something just proportional to the velocity:

@q

@t
D � 1


a

@p

@�
� g˛ .T � T0/ sin � � �q (E.19.4)

The only term to interpret here is that the vertical component of the buoyancy
force has been projected along the tangent to the loop. Substituting the temperature
difference from (E.19.3), we obtain

@q

@t
D � 1


a

@p

@�
� g˛ .T2 cos� C T3 sin �/ sin � � �q

To eliminate the pressure term, we integrate along the loop

2�
@q

@t
D g˛

Z 2�

0

�
T2 cos� sin � C T3sin2�

�
d� � 2��q

Evaluating the integral, we get

dq

dt
D ��q C g˛T3

2
(E.19.5)

To obtain the temperature equation we start out with the equation of diffusion

@T

@t
C u � rT D �r2T

Then we assume that the diffusion within the tube is negligible and that the heat
is transferred through the walls at a rate K .TE � T/ so that the above equation
becomes

@T

@t
C q

a

@T

@�
D K .TE � T/ (E.19.6)

Remembering that the external temperature changes with height we have

TE D T0 C T1 cos�I T � T0 D T2 cos� C T3 sin �I

TE � T D .T1 � T2/ cos� � T3 sin�
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When we substitute in the temperature equation, we have

dT2
dt

cos� C dT3
dt

sin� � q

a
.T2 sin� � T3 cos�/ D K Œ.T1 � T2/ cos� � T3 sin��

equating the terms containing sin� and cos� we have

dT3
dt

� qT2
a

D �KT3I dT2
dt

� qT3
a

D K .T1 � T2/

We introduce the variable T4(t) D T1 � T2(t) to obtain

dT3
dt

D �KT3 C qT1
a

� qT4
a

I dT4
dt

D �KT4 C qT3
a

These equations together with (E.19.5) define the Lorenz system

dq

dt
D ��q C g˛T3

2

dT3
dt

D �KT3 C qT1
a

� qT4
a

dT4
dt

D �KT4 C qT3
a

The variable can be normalized as follows

X D q

aK
I Y D g˛T3

2a�K
I Z D g˛T4

2a�K
I t0 D tK

So finally we get

:

X D �PX C PY
:

Y D �Y C rX � XZ
:

Z D �Z C XY (E.19.7)

That is the Lorenz system and that is clearly a nonlinear system. The parameters r
and P are the Rayleigh number and the Prandtl number

r D g˛T1

2a�K
I P D �

K
(E.19.8)

The real Lorenz system differs from the one above because the damping term of the
Z component contains a constant b.

We will then discuss the stability of such a system. The steady solutions
correspond to put the derivative to zero. We have two possible sets of solutions:



E.19 Examples 757

X� D Y� D Z� D 0

X� D Y� D ˙p
r � 1I Z� D r � 1

The first solution corresponds to quiet (there is no motion), while the second exists
only if r > 1. We called r “Rayleigh number,” but actually it can be seen that it
is the ratio between the real Rayleigh number and the “critical Rayleigh number”
that happens when the convection starts. The stability analysis is carried out by
perturbing the solution and linearizing the equations. If the perturbations are ıX, ıY,
and ıZ, then the equations become

ı
:

X D �PıX C PıY

ı
:

Y D �ıY C rıX � X�ıZ � Z�ıX

ı
:

Z D �ıZ C X�ıY C Y�ıX

Assuming the perturbation of the form ıX D ıY D ıZ / e� t, the above system is
reduced to a linear system:

ıX0 .� C P/� PıY0 D 0

ıX0 .r � Z�/� ıY0 .1C �/ � X�ıZ0 D 0

Y�ıX0 C X�ıY � ıZ0 .1C �/ D 0

Nontrivial solutions are obtained when the determinant is zero. For the rest solution
we have

.� C 1/
�
�2 C � .P C 1/� P .r � 1/ D 0

which has three roots

�1 D �1I �2;3 D � .P C 1/˙
q
.P C 1/2 C 4P .r � 1/

2

And we see that in order to have instability (� > 1) r > 1. For the second set of
solution, we have a cubic equation:

�3 C A�2 C B� C C D 0

where

A D .P C 2/ B D P C r C D 2P .r � 1/



758 19 Chaos in the Atmosphere

Fig. E.19.2 The phase diagram of the Lorenz system (left) and the Poincarè section on the plane
z D 0

It can be shown that instability occurs when

r > rc D P .P C 4/ = .P � 2/

The Lorenz model with
:

Z D �bZ C XY gives instability for r > rc when

r > rc D ŒP .P C 3C b/� = .P � 1 � b/

and with P D 10 and b D 8/3, rc D 24.74. Figure E.19.2 gives an example of the
behavior of the Lorenz system in phase space. The appearance of the famous
butterfly is quite evident.

E.19.2 The Logistic Map as an Example of Difference
Equation

In the previous paragraph, we have already the equation for the population growth
(Eq. 19.45). We can now recast that equation in another form

dN

dt
D rN



1 � N

K

�
D rN � rN2

K
D aN � bN2 (E.19.9)
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as a difference equation becomes

NiC1 � Ni D a0Ni � b0NiNi ) NiC1 D Ni
�
a0 C 1

�� b0NiNi

With appropriate choice of a0 and b0 this equation becomes

NiC1 D aNi .1 � Ni/ (E.19.10)

This recursive relation is also called logistic map because it maps out the sequence
N0, N1, N2 : : : .

Developing in detail the difference equation we notice that

a0 D r�tI b0 D r�t=Ki

And the recursive relation becomes

NiC1 D Ni .1C r�t/

�
1 � r�tNi

K .1C r�t/

�
And in order to satisfy (E.19.10) must be

a D .1C r�t/ I b D r�t

K .1C r�t/
D 1

Which impose some condition on ten variables. Most important is that Ni be always
less than 1.

Equation (E.19.10) can be solved for different values of a and some initial results
are shown in Fig. E.19.3. We can see that increasing a corresponds to having
asymptotic values for x that goes from 1 to 2 to 4 and then for some values we
have a sequence of number that represents the so-called route to chaos. This can be
seen more clearly in a diagram which gives the solution as a function of a as shown
in the same figure.

The points where the solutions has two values or four values, etc. are called
bifurcation point. An interested reader could find more on many books on chaotic
dynamics.

E.19.3 The Lyapunov Exponent

Chaotic behavior can be quantified in terms of the Lyapunov exponent � which is
defined as

dxn D dx02
�n (E.19.11)



760 19 Chaos in the Atmosphere

Fig. E.19.3 The solution to the logistic map (upper panel) and the solution as a function of a
(lower panel)
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Fig. E.19.4 Lyapunov
exponent for the logistic map
as a function of the
parameter a

where dxn is the incremental difference after n iterations and dx0 is the incremental
difference in the initial value. According to this definition, if the Lyapunov exponent
is negative, adjacent solutions converge and deterministic solutions are obtained.
On the other hand if Lyapunov exponent is positive, adjacent solution will diverge
exponentially and chaos will follow. In order to calculate the Lyapunov exponent,
we consider the incremental difference in a single iteration. So we write based on
(E.19.10):

xnC1 C dxnC1 D f .xn C dxn/ D f .xn/C
�

df

dxn

�
dxn (E.19.12)

where for the logistic map we have

xnC1 D f .xn/ ) dxnC1 D
�

df

dx

�
n

dxn (E.19.13)

And for the logistic map

f .x/ D ax .1 � x/ ) df

dx
D a .1 � 2x/ ) dxnC1 D a .1 � 2xn/ dxn

And from the definition (E.19.11) we have

� D lim
m!1

1

m

mX
nD0

log2

ˇ̌̌̌�
df

dx

�
n

ˇ̌̌̌
(E.19.14)

The Lyapunov exponent for the logistic map is represented in Fig. E.19.4. It is
clearly shown that in the region 3.5699 < a < 4, the Lyapunov exponent assumes
positive values and is then responsible for chaos.
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E.19.4 MATLAB Program for El Niño Delayed Oscillator

function ensodde

lagsD10;tspan D [0 250],

%sol1Ddde23(@dde, lags,@history, tspan);

sol1Ddde23(@dde, lags,1, tspan);

tplotDlinspace(0,250);

T1Ddeval(sol1,tplot);

%T2Ddeval(sol2,tplot);

tplotD[-2 tplot];

T1D[1 T1];%T2D[2 T2];

plot(tplot/lags, T1)

%sunfunction-------

function dydtDdde(t,T,Z)

dydtDT-3*Tˆ3-0.75*Z;

function s D history(t)

sD1-t;

E.19.5 MATLAB Program for the Predator–Prey Problem

TT D 21.5;

len D 600;

%options D ddeset(’MaxStep’,1e-1)

options D ddeset(’RelTol’,1e-4);

sol D dde23(’num_lv’,[TT, TT],[200,50*1000000]’,[0,len], options);

R D 2*sol.y(1,:).*sol.y(1,:).*sol.y(1,:)./sol.y(2,:);

%plot

figure(1),clf

plot(sol.x,sol.y(1,:),’g’);

title(’H’)

xlabel(’time t’);

ylabel(’y(t)’);

figure(2),clf

plot(sol.x,sol.y(2,:)*1e-6,’r’);

title(’N in cmˆ-3’)

xlabel(’time t’);

ylabel(’y(t)’);

figure(3),clf

plot(sol.x,R)

title(’R in mm/day’)

xlabel(’time t’);

ylabel(’y(t)’);

del D find(sol.x-TT DDmin(abs(sol.x-TT)));
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Rnew D R;

for tD delC1:length(R)

Rnew(t)D R(t-del);

end

R D Rnew;

%size(R)

figure(4),clf

[ax,p1,p2] D plotyy(sol.y(1,:), sol.y(2,:)*1e-6,sol.y(1,:),R);

title(’verde D N, Rosso D R’)

figure(5),clf

plot(sol.y(1,:),R)

function dydt D num_lv(t,y,Z)

ylag1 D Z(:,1);

ylag2 D Z(:,2);

alfaD2*6.944*0.0000001;

c1D0.000002*0.001;

c2D0.3*100000;

%c1 D 2e-6;

%alfa D 2/1440.0;

%c2 D 0.3;

%tau1D60;

tau1D80;

%tau2D60;

tau2D84;

%h0D530;

h0D670;

%n0D1.80e8;

n0D5.15e8;

dydt D [h0,n0]’;

dydt(1) D (h0-y(1))/tau1-alfa*(ylag1(1))ˆ2/(c1*ylag2(2));

dydt(2) D (n0-y(2))/tau2-alfa*c2*(ylag1(1))ˆ3;
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Chapter 20
Geoengineering

In the last few years, atmospheric physics had been invaded by a growing large
number of researchers that got very excited about the possibility of changing
artificially the environment to correct what the human beings (consciously or not)
are doing to the climate. This very arduous task goes with the name geoengineering.
It was invented many years ago in the science fiction literature and was known as
terraforming. It was Jack Williamson that first mentioned that word in a science
fiction novel of 1942. Then in 1995, Martyn Fogg published a book on terraforming
where he gave the term geoengineering for planetary engineering applied to the
planet Earth. Planetary engineering is the application of technology for the purpose
of influencing the global properties of a planet. In 1992, the National Research
Council published a report (Public Implications of Greenhouse Warming) that had
a chapter on geoengineering and that could be considered as the institutionalization
of the science. A very original consideration for the times was the sentence:

It is important to recognize that we are at present involved in a large project of inadvertent
“geoengineering” by altering atmospheric chemistry, and it does not seem inappropriate
to inquire if there are countermeasures that might be implemented to address the adverse
impacts.

This is a matter of debate other than a good occasion for research money but also
a very good opportunity to apply what we have learned before in this book.

First of all, we will describe some of the proposed technologies for geoengineer-
ing the planet and then we will describe in detail a few of them. Geoengineering
acts on the main cause that presumably is changing the climate, and that is the
carbon dioxide. There are a number of techniques suggested to remove and store
CO2, and these go under the acronym CCS (carbon capture and sequestration).
Other techniques are directed to correct the warming, reducing the amount of
solar radiation absorbed by the planet. These techniques refer to the solar radiation
management (SRM).

© Springer International Publishing Switzerland 2016
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20.1 A Short Inventory of Geoengineering Technologies

We refer to the scheme reported in Fig. 20.1 (redrawn from Lenton and Vaughn
2009) and start with the simplest (in theory) methods to modulate the solar radiation
entering the atmosphere. The idea is to have sunshades placed somewhere out of the
Lagrange point L1. These would be essentially mirrors that could also be place in
Earth’s orbit. If the radiation enters the atmosphere, it could be reflected back to
space by an artificial stratospheric aerosol layer with composition similar to the
volcanic layer produced by violent eruptions, and so particles would be sulfate.
Doing the same thing for the troposphere would be dangerous to your health.
Another possibility to increase the atmospheric albedo would be the introduction
or brightening of clouds. Finally, the albedo of the Earth could be increased by
changing the reflectivity of the surface, using a number of different technologies.

The CCS techniques can be roughly classified as those that suck carbon dioxide
from the atmosphere and store it somewhere and those that increase the capacity of
the Earth system to absorb carbon dioxide. These include then afforestation and

Fig. 20.1 Overview of the geoengineering proposals. The gray arrow indicates the shortwave
radiation and the white arrows the carbon disposal (Adapted from Lenton and Vaughan 2009)
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reforestation, air capture through some chemical process, and transformation of
biological products in charcoal. Also included in this category is the change of the
ocean capacity to absorb CO2. The oldest suggestion deals with the iron fertilization
where the surface water is added with iron or other nutrients that enhance the carbon
fixation. In the opposite way, the enhancement of upwelling of nutrient-rich waters
would do the same job (the cylinders depicted in the figure should do the job). Other
proposals would increase the deepwater formation or through carbonate addition
would increase the alkalinity of the ocean.

Following the review by Lenton and Vaughan (2009), in Fig. 20.1, the black
arrows indicate engineered flow of carbon, while the white arrows indicate the
enhancement of natural flows of carbon. Following the same paper, we will compare
the different geoengineering techniques with respect to the radiative forcing (RF)
they would produce. RF is linearly related to the global temperature change (�T)
through the climate sensitivity parameter �, that is, �T D � RF. Because of the
linearity, we will not fuss around with strange numbers and assume for a standard
RF corresponding roughly with a doubling of CO2 the value of 4 w m�2. This would
give, with an average value of 0.86 Cw�1 m�2 for �, a change in temperature of
3.44 ıC.

20.2 Carbon Sequestration and Storage

In this paragraph, we will not deal with the technical details on how it is possible
to suck carbon dioxide from the air or capture it directly at the source. Rather, we
will make some general observation on the feasibility of such an intervention. We
will follow the paper by Lenton and Vaughn (2009) and the very insightful piece by
Stocker (2013).

First of all, we ask how much reduction can we obtain in the radiative forcing
by subtracting a certain amount of CO2, and this can be simply evaluated using the
approximation that the radiative forcing (RF) is roughly a logarithm function of the
amount of carbon dioxide

RF D ˇ1 ln

�
CO2

CO2;0

�
(20.1)

where CO2,0 is a reference concentration taken as 278 ppm (the value it had in
1800) and ˇ1 D 5:35 wm�2. This means that at the present time for a mixing ratio
of 400 ppm, the radiative forcing amounts to 1.94 wm�2. If we derive (20.1), we
obtain the sensitivity of the radiative forcing with respect to CO2 mixing ratio

dRF

dCO2

D ˇ1

CO2

(20.2)
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The present sensitivity would then be 0.0133 wm�2 ppm�1 while the preindus-
trial value would be 0.0193 wm�2 ppm�1. If a certain amount �Catm of carbon
is subtracted to the atmosphere by the geoengineering activity, the effect on the
radiative forcing will be

RF.t/ � �Catm

k

ˇ1

CO2.t/
(20.3)

If �Catm is measured in Pg (1Pg D 1015 g), then k D 2:14 Pg C ppm�1. This
represents the conversion factor between carbon amount and ppm of CO2. The
relation (20.3) can be used directly expressing the amount subtracted in ppm. The
relation (20.3) assumes that all the emitted C ends up in the atmosphere. If the
emitted quantity is Ce and all the carbon ends up in the atmosphere, then the increase
in CO2 in ppm would be

�CO2 .ppm/ D Ce .matm=mC/

Matm

where matm and mc are the molecular mass of the atmosphere and the carbon and
Matm is the mass of the atmosphere (5.2 � 1018 kg). For 1Pg of Ce, the expression
gives an increase of 0.467 ppm.

However, if we want to base our evaluation on the emitted carbon, we need to
make some simplification. In this, we will follow the clear ideas of Wallace Broecker
and his CO2 arithmetic. The airborne fraction must be taken into account, and just
to make memorizing easier, we assume that if the emitted carbon corresponds to
4 Pg of carbon, this would give 1.85 ppm of carbon dioxide. Then, assuming an
airborne fraction of 0.54, we have the proportion that 4 Gt of C corresponds to an
increase of 1 ppm in the atmosphere. At the present time, each year 10 Gt of carbon
is produced that would imply an increase of 2.5 ppm/year. The Broecker arithmetic
is very simple. If we want to double the preindustrial CO2 concentration of CO2

(560 ppm), we must burn up to 4 � (560–400)D 640 Gt of carbon and so on. This is
what he calls the size of the pie. At the present time, 25 % of the carbon is produced
by the USA and Europe and 35 % from India and China. If we assume that the
“rich countries” maintain the 30 % share, their slice of the pie (192 Gt) would be
consumed in 32 years. A drastic reduction would be obtained if we assume that
each country limits their share to 20 %. In this case, their slice would be 128 Gt that
would be consumed in just 21 years. At the time Broecker wrote his note (2007),
the situation was summarized by a diagram like the one in Fig. 20.2. A scenario
is shown in which the pie of C to be consumed amounts to 150 Gt. This wedge is
utilized, decreasing linearly the rate of consumption which starts with 6 Pg of C and
decreases linearly to zero after 50 years. The hypothesis is that the real consumption
is much higher and is depicted with darker gray. The excess is what must be disposed
of with carbon sequestration technology. This seems to show that sequestration
technology must be a priority and a problem that must be solved urgently.
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Fig. 20.2 Hypothetical scenario for a 150 Pg wedge pie. The real production is limited by the
curve while the wedge is the straight line. All the excess carbon must be captured (Adaped from
Broecker 2007)

The urgency has been shown very clearly in another note by Thomas Stocker
(2013). He assume a very simple analytical scenario for the emissions

E.t/ D
�

E0er.t�t0/ t0 < t � t1
E0er.t1�t0/e�s.t�t1/ t > t1

(20.4)

E(t) is the emission at time t, and E0 D 9.3 Gt C/year is the emission at time t D 0
taken at the year 2009, while r is the rate of emission increase until the time t1.
The cumulative emission at time t0 is taken as C0 D 530 GtC. Time t1 is when the
mitigation starts with emission reduction at the constant rate s. It is to notice that
there is simply a reduction in the rate of emission but not a “negative” emission
that would mean removal of carbon dioxide from the atmosphere. The cumulative
emission is given by

C1 D C0 C
Z 1

t0

E.t/ dt D C0 C E0

�
1

r
C 1

s

�
er.t1�t0/ � 1

r
E0 (20.5)

At this point, we assume there is a linear relationship between warming and
cumulative emission

�T D ˇC1 (20.6)

To find the minimum peak warming in Eq. (20.5), we use the limit s ! 1 and get

�Tmin D ˇ

�
C0 C 1

r
E0
�

er.t1�t0/ � 1
��

D ˇC1 (20.7)
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Fig. 20.3 Contours of peak warming as a function of the starting date of emission reduction and
for fixed parameters C0, E0, ˇ, and r (Adapted from Stocker 2013)

This represents the best case because it refers to zero emissions after time t1 and
also the minimum peak warming. Achievable climate target is then determined by
the cumulative emission at time t1, C1.

From Eqs. (20.6) and (20.5), it is possible to evaluate the peak warming that will
depend (once ˇ is assigned) on the current rate of emission increase, the starting
time of the mitigation, and the rate of emission reduction. This can be seen from
Fig. 20.3 adapted from the paper by Stocker. To draw the figure, we have used
C0 D 530GtC, E0 D 9.3 Gt C year �1, ˇD 2ıC (TtC) �1, and r D 1.8 % per year.
The figure shows that a delay in a year of mitigation increases the peak warming,
while for a fixed date of mitigation, the peak warming decreases with increasing
rate of reduction. The first conclusion is that already we are almost out of business
because to contain the peak warming below 2ıC, we need the mitigation to start
around 2020 with a reduction rate of 3.2 % per year. If the starting date is moved to
2030, the reduction rate jumps to almost 6 % per year.

The starting date could be important for another reason because according to
the relation (20.7), the minimum peak warming depends on the quantity of carbon
emitted until time t1. We must also remember that the relation has been obtained
with the hypothesis of zero emission after time t1. Stocker calls this minimum peak
warming climate target, and the lowest values are progressively lost as we move the
date of reduction. Figure 20.4 shows the possibility to reach the climate target as a
function of the starting date and the rate of reduction. In (A), it is shown that there is
an area of unachievability of climate target that grows as we move the starting year.
On the other hand, for low values of the emission reduction rate s, the lowest values
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Fig. 20.4 In (a) are shown the contours of required reduction emission rates (%) as a function of
the starting date of reduction and the climate target. In (b), the achievable minimum climate target
is explained in the text (Adapted from Stocker 2013)

of climate target are not achievable yet. In (B) of the same figure, the climate target
is shown as a function of three values of the peak response to cumulative emission ˇ
and for single value of the rate of increase r D 1.8 % per year (solid lines) compared
to the average rate of increase in the last decade (1.5 % per year). This shows that a
larger rate of increase implies greater warming.

Economic models estimate that feasible maximum rate of reduction may not
exceed 5 %. Under this assumption, the 1.5 ıC target has been lost in 2012, the
2 ıC would be lost after 2027, and the 2.5 ıC target will be lost after 2040.

20.3 What Geoengineering Can Do

The previous section has shown that at the present time, there are very few chances
to reduce future concentrations of CO2 by simply reducing the emission. Actually,
in Chap. 16, we have shown that using a very simple model, the only way to achieve
stabilization and then a slow reduction was to just stop the emission (see Fig. 16.11).
This result can be obtained using the same analytical model of Stocker. Integrating
the emission (20.4), we can obtain the total carbon content of the atmosphere after
a time t:

C.t/ D C0 C 1
r E0

�
er.t�t0/ � 1

�
for t0 < t < t1

C.t/ D C1 C 1
s E0er.t1�t0/

�
1� e�s.t�t1/

�
for t > t1

(20.8)

where C1 is evaluated from the first of (20.8) for t D t1. It is clearly seen that the
stabilization is already achieved very rapidly with a reduction rate of 10 %. We see
clearly that for s ! 1 the total burden stabilizes at C1. Notice that the amount
of carbon does not decrease with time because the model is lacking the action of
the ocean. Also, the number appearing on the figure may look puzzling. Based on

http://dx.doi.org/10.1007/978-3-319-29449-0_16
http://dx.doi.org/10.1007/978-3-319-29449-0_16
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Fig. 20.5 The total content of carbon in the atmosphere as a function of time according to the
simple model by Stocker. The percentage indicated on the curves is the parameter s in Eq. 20.8

what we said in the previous paragraph, 530 Gt (C0) would correspond to a mixing
ratio of 247 ppm, and for 2009, that would give a mixing ratio in the atmosphere of
527 ppm when added to preindustrial concentration (280 ppm). To get reasonable
numbers again, we have to take into account the airborne fraction that would reduce
the increase in the atmosphere by roughly 50 %.

A similar calculation can be done with the model used in Chap. 16 with the
results shown in Fig. 20.5. The curve labeled “no sequestration” refers to the base
case where a grow rate of 1.5 % year�1 was used from 2000 to 2040 and then
a negative growth rate of 2 % year�1 was adopted. The maximum concentration
of around 800 ppm is obtained followed by a slow decline. This result could be
compared with the 1 % curve of Fig. 20.6 where after 200 years, a concentration
of roughly 1200 ppm resulted. Then, we make the hypothesis to absorb carbon
dioxide from the atmosphere at a rate of 3.2 and 6.4 Gt CO2 year�1. These values
correspond roughly to 10 and 20 % of the present rate of emission. We can see that
the geoengineering effort decreases the maximum value of the mixing ratio and has
the effect of reducing effectively the amount of carbon dioxide in the atmosphere.

It is not our intention to detail the way this could be done, but rather we would
like to do some very general consideration. First of all, let us look at the energy
requirements if we consider that CO2 must be subtracted from the atmosphere,
compressed, and stored geologically. The minimum energy required to extract CO2

from a mixture of gases in which the partial pressure of carbon dioxide is p0 and
delivered as a pure CO2 stream at final pressure p is given by net enthalpy of
mixing kT ln(p/p0), where k is the Boltzmann constant (8.3 J mol�1K�1) and T is

http://dx.doi.org/10.1007/978-3-319-29449-0_16
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Fig. 20.6 The change with time of the mixing ratio of carbon dioxide in the presence of pumping
from the atmosphere. The upper curve has a growth of 1.5 %/year up to 2040 and a negative growth
of 2 %/year after that time. In the other two curves, CO2 is subtracted from the atmosphere at the
rates indicated

the ambient temperature. If we use p D 1 atm, p0 D 4 � 10�4, and T D 300 K, we get
about 20 kJ/mol or 1.6 GJ/tC. To this energy, we must add that required to compress
CO2 to 100 atm. This adds something like 11 kJ/mol that must be doubled to take
into account efficiency. We arrive at a total of 4 GJ/tC. This must be compared with
the energy densities of the most common fossil fuels, that is, coal, oil, and natural
gas, which are 40, 50, and 70 GJ/tC, respectively. In principle, if the energy for air
capture is provided by fossil fuels, then the carbon captured is much larger than the
carbon content of the fuels used to capture it.

There is however another requirement for land. An air capture system is limited
by the amount of CO2 transported to the absorber by the atmospheric motions.
It is possible to estimate (see Examples) that the limit in the boundary later is
about 400 GtC/ha-year. We can require then zero net CO2 emission and divide
the energy content of the fossil fuels by the area required to capture carbon
dioxide. As an example, we can refer to coal so that the energy density would
be 40 � 109 � 400 D 1.6 � 1013 J/ha-year D 50 Wm�2. This is an energy flux that
would produce no net CO2 emissions. This result would scale with the energy
content of other fuels. As a comparison, biomass-based systems produce roughly
1 Wm�2, while wind power reaches something like 20 Wm�2. This shows that land
requirements are not a major problem. The other way in which CO2 can be removed
is captured directly from power plants. This is rather an economic comparison, and
it is not within the purpose of this book.
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Table 20.1 The radiative
forcing potential for air
capture for the two scenarios
shown in Fig. 20.5

Year �CO2 (ppm) �C (Pg C) RF (Wm�2)

2100 44 89 94.2 190.6 �0.12 �0.62
2150 85 161 182 256 �0.56 �1.05
2200 120 227 256 486 �0.79 �1.5
2250 147 286 314 612 �1.98 �1.92

A final consideration has to do with the application of Eq. (20.3) to evaluate
the radiative forcing potential of this particular geoengineering option. Table 20.1
reports the radiative forcing potential of geoengineering reduction starting 100 years
after 2000. The adoption of the second scenario would imply a considerable change
in the radiative forcing.

20.4 Shortwave Options

In this paragraph, we will examine some of the suggestions to modify the solar
radiation arriving on the Earth’s surface and known collectively as solar radiation
management (SRM). As usual, the discussion will be quite general, while for the
details, the reader may want to get to the original work. In this respect, the work of
Lenton and Vaughan (2009) is very much recommended.

20.4.1 Increase Albedo

We will follow in this paragraph the work of Lenton and Vaughan (2009) that is
focused essentially in reducing the amount of solar radiation absorbed by the Earth.
If the planetary albedo is ˛p, the change in amount of solar radiation �S necessary
to obtain a radiative forcing RF is simply

RF D �S
�
1 � ˛p

�
(20.9)

On the other hand, if we change the planetary albedo by �˛p, then the resulting
radiative forcing will be

RF D �S0�˛p (20.10)

where S0 is the solar constant. To simplify the problem, S0 is not constant in our
case but differs if we refer to the intervention to change the land albedo and in that
case is 330 Wm�2 or the oceans 345 Wm�2. It is not so simple to relate the change
in the albedo of clouds or land �˛ to the change in planetary albedo. A possible
relationship is

�˛p D fafEarth�˛ (20.11)
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where fEarth is the fraction of the Earth’s surface affected by the intervention and fa
is a factor which takes into account the effects of absorption and reflection of the
other layers.

In the previous chapters, we have discussed at length some of these questions
and found, for example, that for clear sky conditions, fa could be intended as a two-
way transmittance of the atmosphere fa D T2a where Ta is the transmittance of the
atmosphere.

Cloudy skies are the most interesting case if we want to find simple ways to treat
them and also because one of the most popular geoengineering proposals deals with
the whitening of clouds. This could be obtained by adding aerosols to the clouds and
increasing the number density of the cloud droplets, which follows the so-called
Twomey effect. Aerosol number concentration Na can be related to cloud droplet
number density, Nd, by

Nd D N
�

a (20.12)

where � ranges between 0.06 and 0.48. An empirical relation is used to link the
number density to the effective radius re

re D k.Nd/
�1=3 (20.13)

where k is a constant derived from observation. As shown by Twomey (see
Examples), the cloud optical thickness can be related to the liquid water content
l, the cloud height h, and the water density 
w

� D 3lh

2
wre
(20.14)

If we assume that the Twomey effect requires that the product l � h stay constant,
then using (20.13) we have

� D K.Na/
�=3 (20.15)

The cloud albedo can be calculated using the Eddington approximation (see
Examples) as

˛c D 0:866 .1 � g/ �c

1C 0:866 .1 � g/ �c
(20.16)

where g is the asymmetry factor 0.85. The numerical factor depends on the
diffusivity factor used. We stick to the expression given by Lacis and Hansen (1974).
Differentiating (20.16), we have the change in cloud albedo

�˛c D 0:866 .1 � g/

Œ1C 0:866 .1 � g/ �c�
2
��c (20.17)
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This expression can be used to evaluate Nd once ˛ and � have been fixed.
The effect of the clouds on the planetary albedo is taken into account in a simple

way. We assume a transmittance to the top of the clouds Ta D 0:925 and correct this
value, taking into account the reflection from the ocean surface to the clouds and the
transmittance to and through the clouds Tc 
 0:5 and then we have

fa D T2a
�
1 � T2c˛s

�
(20.18)

where ˛s is ocean albedo. Using ˛s D 0.09, fa without cloud D 0.856, we got
fa D 0.84.

These simple calculations can be used to evaluate some basic requirement for
geoengineering. For example, suppose we want to offset the radiative forcing for
CO2 doubling (3.7 Wm�2), increasing the cloud albedo. From (20.10), we calculate
the change in planetary albedo �˛p with S0 D 345 Wm�2 and we find �˛p D 0.01.
Then from (20.11), we evaluate the change in cloud top albedo to obtain such a
change in planetary albedo once we have fixed the fraction of interested area fEarth.
Taking 17.5 %, we obtain a change in cloud albedo of 0.075, and this value can be
used through (20.15) and (20.17) to get the change in aerosol number density

��

�
D �

3

�Na

Na
(20.19)

where �� is given by (20.17). We get a change in number density of the order of
30 % well within reasonable limit. There are many other possibilities to change the
albedo of the Earth that go from changing the color of cropland to modifying the
reflectivity of buildings, and all of these can be worked out with some detail.

20.4.2 Stratospheric Aerosol or How to Create a Volcanic
Eruption

We have mentioned in the previous chapters that volcanic eruptions may somewhat
cool the Earth. The massive amount of sulfur compounds emitted by catastrophic
volcanic eruptions directly in the stratosphere condenses in sulfate aerosol with
very high reflectivity and so may reduce the amount of solar radiation reaching
the surface of the Earth. Hansen (2005) claims to have found a relationship between
optical thickness measured at 0.55 �m and radiative forcing, and that is

RF
�
Wm�2� � 25� (20.20)

This is an “empirical” relation obtained using general circulation models. However,
following a very old paper by Harshvardan and Cess (1976), we can model the
influence of the aerosol layer as a reflecting layer with reflectivity R over the surface
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of the Earth with reflectivity a. We just neglect all the absorption and we get that the
net radiation absorbed at the ground is

F D .Q=4/ .1 � a/ .1 � R/
h
1C .aR/C .aR/2 C : : :

i
and that is

F D F0 .1 � R/ = .1 � aR/ (20.21)

where F0 D (Q/4) (1 � a) is the absorbed flux in the absence of aerosol. The radiative
forcing is then

F0 � F D �F � F0R .1 � a/ .1C aR/ � F0R .1 � a/ (20.22)

where we have assumed (1 C aR) 
 1. Then, we get �F 
 324 R (Wm�2), and
following the estimate of Lacis et al. (1992), we may get a relation between �
and the reflectivity R 
 4.5 � 10�2 £, that is, �F 
 14.5 £(Wm�2). This is less than
the estimate (20.20) but gives an idea where the proportionality between optical
thickness and radiative forcing may originate.

Once we have the above relation, we may adopt a climate sensitivity and get
the expected change in temperature. Optical thickness for large volcanic eruption
may be slightly larger than 0.1 and may get a radiative forcing around 2.5 Wm�2 to
which corresponds a temperature change of the same order or larger.

We have then the example from nature, and the idea is then why we do not
reinforce the aerosol’s presence in the stratosphere artificially. We may inject
some Gt of sulfur in the stratosphere and create an artificial volcanic eruption.
Calculations are easily made using models, and it turns out that 1.5–5 Tg of S per
year would do the job.

The central problem of this geoengineering effort is how to pump such large
amount of sulfur in the stratosphere, considering that the lifetime is around 1 or
2 years. This means that there must be ways to inject such large amount of sulfur
on a continuous basis. At present, there is no aircraft capable of transporting this
mass of sulfur. The only option left is to build new planes or devise new ways to
refurbish the stratosphere with sulfur. The development of a new aircraft capable
of transporting 1 Mt/year could be around 1–2 billion dollars that would increase
to 5–10 billion dollars for 5 Mt/year. The development time is another problem as
shown by experience in the last few years; it could take between 10 and 20 years.
The operative costs could correspond to that of a small airline company (1 billion
dollar), while the acquisition cost of the new aircrafts could be around 10 billion.
These are very rough estimations and could be in error by a factor 5 or 10.

Such large expenses could be justified on the ground that the mitigation cost for
global warming could be in the range of 0.2–2.5 of the gross global product that is
between 20 and 250 billion dollars.
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It must be clear that the direct injection in the stratosphere is essential for the
generation of a stratospheric cloud. The simple cycle outlined by Rasch (2008) has
been used to evaluate the sulfate stratospheric burden, its stratospheric deposition,
and the tropospheric scavenging. The total tropospheric source has been 65 Mt/year,
while the natural quiescent volcanic source is 0.1 Mt/year. The reference quantities
are a scavenging of 50 Mt/year and a sedimentation of 0.24 Mt/year with a sulfate
burden in the stratosphere of 0.24 Mt. If the tropospheric source is perturbed by
1 Mt/year, the scavenging flux increases on the same amount and the sedimentation
rises to 0.25 Mt/year. For a perturbation of 5 Mt/year, the scavenging increases up
to 54.8 and the sedimentation to 0.26 Mt/year, and as expected, the perturbation is
completely absorbed in the troposphere.

On the other hand, if the same perturbation is operated in the stratosphere, then
for 1 Mt/year, the scavenging does not change, while the sedimentation arrives
to 1.14 Mt/year. If the perturbation is for 5 Mt/year, the scavenging flux stays
practically the same, while the sedimentation is up to 5.14 Mt/year, and the sulfate
burden has the same value. With respect to the basic tropospheric flux of 65 Mt/year,
5 Mt/year could be negligible, but if the perturbation is applied directly to the
stratosphere, the effects could be very important.

The claim usually is that if compared with the natural flux (roughly 100 Mt/S),
the perturbation is only 5 %, but this is true only if the perturbation is performed in
the troposphere but not when the sulfur is injected directly into the stratosphere.

The other topics usually neglected in this kind of proposal are the effects of
deposition. A recent paper by Sigl et al. (2014) reports some data on the sulfate
deposition. For the Samalas eruption (1257) for a total emission of 170 Mt/s, we
have a deposition of 73 k/m2 in the Antarctic region. For the 1458 Kuwae (Vanuatu
island in the Coral Sea) with a possible emission of 100 Mt, the deposition amounted
to 64 kg/km2. Finally, for the Tambora, the emission was 40 Mt and the deposition
of 46 kg/km2.

Based on the study on a number of eruptions, it is possible to establish a relation
between the total hemispheric mass of aerosol and the sulfate flux in the atmosphere.
The relation is linear

M ' 1:25S

where M is the mass in Mt and S is the injected SO2 mass. For the arctic area, we
found a slightly nonlinear relation

F ' 0:3S1:3

These relations say that if we double the injection of sulfur, the sulfate mass
deposition increases by a factor 2.5. These results confirm what other models have to
say. For a volcanic source ranging between 10 and 14 %, the wet sulfate deposition
is not proportional but changes between 30 and 36 %.

Only a few papers detail the data on the deposition, and typically for a 5 Mt
annual source, we have a production of 7.5 Mt of SO2 that if distributed uniformly
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would give a flux of 1.45 � 10�5 kg SO4/m2 and using the nonlinear relation could
be as low as a 1.20 � 10�5 kg SO4/m2. This flux would impact on the acidity of the
soil and ocean.

The most interesting data in this case are those published by the National
Atmospheric Deposition Program (NADP) (http://nadp.isws.illinois.edu) which
show that in 2012, most of the fluxes over the USA were lower than 8 � 10�4 kg
SO4/m2, with the Middle West regions having larger fluxes up to 20 � 10�4 kg
SO4/m2, while northern regions have fluxes of the order of 1 and 3 � 10�4 kg
SO4/m2. The geoengineering approach would then produce acidic fluxes at the least
comparable or higher than the natural fluxes.

Another possible negative effect of an artificial volcanic eruption is the ozone
depletion. The formation of a stable stratospheric aerosol layer may favor the
heterogeneous chemistry over the H2SO4 particle as we have seen in the previous
chapters.

20.5 Space Shields

The most futuristic approach to geoengineering is the proposal to limit the amount
of solar radiation reaching the Earth by putting “sunshades” directly in space. The
original idea was formulated by Early in 1989 but made popular by Roger Angel in
2006. We repeat here some of the simple considerations done with energy balance
climate models where the equilibrium temperature results from the equivalence
between the incoming solar radiation and the outgoing longwave radiation

T D Q .1 � ˛/ � A

B

where A and B are the usual coefficient relating the IR flux to temperature

I D A C BT

If the solar constant Q is perturbed by an amount ıQ, then the resulting temperature
change is

T.t/ D T C ıQ

B
.1 � ˛/

h
1 � exp

�
� t

�

�i
(20.23)

where t D C/B with C as the heat capacity of the ocean mixed layer. The change in
temperature for a change ıQ in the solar constant will then be ıT D ıQ .1 � ˛/ =B.

Assuming for B a value of 2.17 W/m2, we have that for a change of 2 K, we need
a change of 1.7 % in solar constant in the case of artificial volcanic eruption that was
obtained with the volcanic cloud.

The idea beyond the space shield is to put a blind directly on the sun. In principle,
that could be obtained by putting a disk in a place in the solar system, which requires

http://nadp.isws.illinois.edu/
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Fig. 20.7 Occulting solar disk positioned at an artificial equilibrium point. Points L1 and L2 are
the classical Lagrange points (Adapted from McInnes 2010)

the least energy to control. The most obvious place could be one of the equilibrium
points in the solar system called the Lagrange points. We can refer to Fig. 20.7 and
suppose to have a disk of radius Rs at a distance rs from the Earth. The sun on the
other hand will have a radius R0 at a distance r0. The solid angles subtended by the
two are�S D �R2S=r2S and�O D �R2O=r2O, respectively, and the fractional reduction
of the solar constant would just be the ratio of the two solid angles

ıQ

Q
D �S

�O
D
�

RS

RO

�2� rO

rS

�2
(20.24)

From this relation, we obtain the disk radius once its distance from Earth and the
solar constant reduction are specified. We get

RS D RO

�
rS

rO

��
ıQ

Q

�1=2
(20.25)

Actually, the disk radius is important because the disk mass depends on it. On
the other hand, the distance rs is now determined not only by the gravitational force
but also by the radiation pressure. We have at the equilibrium

GME

r2S
� GMO

.rO � rS/
2

C !2 .rO � rS/C aS D 0 (20.26)
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where ! D �
GMO=r3O

�1=2
, that is, the angular velocity of the Earth relative to the

sun, and aS is the acceleration due to the radiation pressure. If PE is the radiation
pressure at the distance of 1 astronomical unit, the acceleration aS would be

aS D 2kPEAS

MS

�
rO

rO � rS

�2
(20.27)

where AS is the disk area, MS its mass, and k a coefficient that takes into account
the optical properties of the disk. The coefficient k is a very complicated function of
the specular reflectivity � and the emissivity of the sun facing side "F and the Earth
facing side of the disk "B

k D 1

2



.1C �/C 2

3
.1 � �/

"F � "B

"F C "B

�
(20.28)

Now, we get MS from (20.27) and substitute for AS the expression we get from
(20.24). We have for the mass of the disk

MS .rS/ D 2�kPER2O
aS .rS/

�
ıQ

Q

��
rO

rO � rS

�2
(20.29)

The mass of the disk is a function of the distance and so can be minimized by
finding the minimum of the function

f .rS/ D 1

aS .rS/

�
rO

rO � rS

�2
which gives a disk located at rS D 2.56 � 106 km from Earth a little closer to the
sun than the classical Lagrange point. The results for the radius that would reduce
the solar constant by 1.7 % are about 1450 km, and its mass would be in the range
2.6 � 108 tons. This would be quite a fit if you consider that the concrete used to build
the Chinese Three Gorges Dam is around 6 � 107 tons. You can only imagine how
many rockets you need to build such a disk and how much it would cost!

20.6 Can Solar Radiation Management Work?

We have assumed so far that reducing the absorbed solar radiation has the opposite
sign of increasing the greenhouse effect. There are few people that think differently
based on some elementary thermodynamic constraints. That does not mean that
a lowering of the absorbed solar radiation does not decrease the temperature but
simply that the amount of reduction must be calculated differently, and besides,
there could some additional unpleasant consequences.
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Bala et al. (2008) have used a GCM to evaluate the sensitivity of the climate
system to a CO2 doubling (from 315 to 630 ppm) and a reduction in solar flux
of 1.8 %. They have found that for the CO2 doubling, the temperature increased by
2.42 K while decreased by 2.4 K for solar reduction. The same happens for the water
vapor content that rises by 15 % in the first case and decreases of the same amount in
the second case. The surprise comes from the global precipitation that increases by
3.7 % for a CO2 doubling and decreases by 5.8 % for the solar radiation reduction.
Apparently then, while the geoengineering could “cure” the warming, it would then
produce a tendency to make the world drier. The same tendency was noted with
similar experiments.

This effect can be explained qualitatively in the following way: at the surface of
the Earth, the flux differences between the control and perturbed case must be zero,
that is,

�R C�S ��L ��H D 0 (20.30)

where �R,�S,�L,�H are the differences in longwave radiation, shortwave radi-
ation, latent heat flux, and sensible heath flux. It is important to distinguish
the radiative flux between “response” and “forcing” where the forcing is the
instantaneous impact of some perturbation on radiation. Then, (20.30) becomes

F C�Rr C�Sr ��L ��H D 0 (20.31)

where F is the sum of shortwave and longwave radiative forcing and the subscript r
represents the response component of the change in radiation.

In the model used, the surface forcing is roughly �3 Wm�2 for the solar
experiment, but it is only a few tens of a Wm�2 for the CO2 doubling. Now, the
response is independent of the forcing mechanism, and �Rr has then the same
magnitude but opposite sign in the two experiments (solar and 2 � CO2). The same
happens for the solar radiative response�Sr. The radiative response on (20.31) can
be neglected so that the forcing must be equal to the sensible and latent heat

F D �L C�H (20.32)

Now, the solar forcing causes a negative radiative forcing at the surface, and
considering that latent heat is about five times the sensible heat, it will dominate
the response. This is the primary cause of the large decrease in precipitation for the
solar engineering.

This qualitative argument has been substantiated, recently, using a simple energy
balance model by Kleidon and Renner. The model detailed in the example assumes
the energy balance at the surface given by

Rl � S � �E � H D 0 (20.33)
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Dove Rl is the longwave contribution, S is the absorbed solar radiation, H the
sensible heat, and �E the latent heat flux with � the latent heat of vaporization.
All the fluxes are linearized and written as

Rl D kr .TS � Ta/

H D cp
w .TS � Ta/

E D 
w
�

qsat

�
TS

�
� qsat .Ta/

� (20.34)

where Ts and Ta are the surface and atmospheric temperatures, qsat is the saturation
pressure at the indicated temperature, w is the velocity which describes the vertical
mass exchange, and kr is an exchange coefficient. The dependence of qsat from
temperature is also linearized so that the latent heat flux is written as

�E D cp
w
s

�
.TS � Ta/ (20.35)

where � D cpp= .0:622�/� 65 PaK�1 is the psychrometric constant and s is the
slope of the saturation curve s D .@esat=@T/. It is assumed that the system works
as a Carnot engine in which the net source of heat is given by the sensible heat
flux utilized according to the efficiency of the Carnot engine H .TS � Ta/ =TS. This
energy is used to generate the convective motions, and when is maximized, the
velocity is obtained as

w D �

� C s

S

2cp
 .TS � Ta/
(20.36)

At this point, we have all the elements (almost) to evaluate the hydrologic
sensitivity defined as follows:

1

E

dE

dTS
D 1

E

@E

@s

ds

dTS
C 1

E

@E

@S

dS

dTS
(20.37)

This can also be written as

1

E

dE

dTS
D 1

E

@E

@s

ds

dTS
C 1

E

@E

@S

�
dTS

dS

��1
(20.38)

The two terms on the right side represent the change in evaporation (E) to the surface
temperature for a change in s and can be written (see Examples) as

1

E

@E

@s

ds

dTS
D �

� C s

1

s

ds

dTS
(20.39)

This term can be evaluated and it can be shown as

1

E

@E

@s

ds

dTS
� 2:2%K�1 (20.40)
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The second term is the sensitivity to change in solar radiation (S)

1

E

@E

@S

�
dTS

dS

��1
D 4kr�

1=4

2�1=4S C krS1=4
� 1%K�1 (20.41)

This means that the total sensitivity to a change in solar radiation is
1 % C 2.2 % D 3.2 %. Now, suppose we change the greenhouse forcing so that the
surface temperature increases by 2 K. Then the percentage change in evaporation
would be�E=E D 4:4% and positive. If this increase in temperature is counteracted
using SRM, the change would be �E=E D �6:4% and negative. The net
effect would be a reduction in the evaporation by 2 % and consequently on the
precipitation.

As shown by the simulation with GCM and by these simpler models, the solar
radiation management is somewhat unsymmetrical, and while compensating, the
warming would produce a reduction in precipitation. A similar conclusion can be
reached for the mass exchange.

20.7 A Cure for the Ozone Hole with Geoengineering

Many years ago, well before geoengineering became popular, there was a proposal
to do something about the ozone hole. The paper appearing on science in 1991
proposed to inject several thousands of ethane (or propane) into the Antarctic
stratosphere to reduce the quantity of free chlorine and then to favor the ozone
recover. We will follow here the approach proposed by Jacob as exercise and then
we will correct the proposal and show that it was quite wrong. The interesting thing
is that it was corrected basically by the same people who had proposed it. This is a
rare example of the power of scientists: you make a mistake and correct it and you
get published twice. We will follow an excercise by Jacob (1999).

We start out with the reactions taking place in the Antarctic atmosphere

HCl C ClNO3

aerosol! Cl2 C HNO3

HCl C N2O5

aerosol! ClNO2 C HNO3

N2O5 C H2O
aerosol! 2HNO3

Cl2 C hv ! 2Cl

ClNO2 C hv ! Cl C NO2

Cl C O3 ! ClO C O2

ClO C NO2 C M ! ClNO3 C M

ClO C ClO ! 2Cl C O2

(20.42)
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If we assume initial values of 1.5 ppbv for HCl, 0.3 ppbv for ClNO3, and 1.8 ppbv
for N2O5, it is easy to show that after completion of the above reaction, we end up
with zero HCl, 0.6 ppbv of (Cl C ClO), and 1.2 ppbv of ClNO3. This can be as
follows. From the first reaction, only 0.3 ppbv of Cl2 can be formed because of
the limited quantity of ClNO3. The remaining 1.2 ppbv of HCl may form the same
amount of ClNO2 from the second reaction, consuming only 1.2 ppbv of N2O5.
Then, the photodissociation reactions will produce 0.6 ppbv of Cl and 1.2 ppbv of
Cl and the same amount of NO2. The Cl will be consumed in the reaction with ozone
forming 1.8 ppbv of ClO. Of these, 1.2 ppbv will be consumed in the reaction with
NO2 producing the same amount of ClNO3.

When ethane is added we must consider the reaction

Cl C C2H6 ! HCl C C2H5 (20.43)

followed by

HCl C ClNO3

aerosol! Cl2 C HNO3

Cl2 C hv ! 2ClI Cl C C2H6 ! HCl C C2H5

HCl C ClNO3

aerosol! Cl2 C HNO3I Cl2 C hv ! 2Cl

Adding 3 ppbv of ethane, we have

0:6 Cl C 3 C2H6 ! 0:6 HCl C 0:6 C2H5 C 2:4 C2H6

where the numbers are the mixing ratios in ppbv. These will be followed by

0:6 HCl C 1:2 ClNO3 ! 0:6 Cl2 C 0:6 ClNO3 C 0:6 HNO3

0:6 Cl2 C hv ! 1:2 ClI
1:2 Cl C 2:4 C2H6 ! 1:2 HCl C 1:2 C2H5 C 1:2 C2H6

1:2 HCl C 0:6 ClNO3 ! 0:6 Cl2 C 0:6 HNO3 C 0:6 HClI
0:6 Cl2 C hv ! 1:2 Cl

1:2 Cl C 1:2 C2H6 ! 1:2 HCl C 1:2 C2H5

It can be easily seen that any lesser amount of 3 ppbv of C2H6 would bring an
increase in (Cl C ClO) and consequently an increase in ozone destruction.

Before going on examining the pitfalls of the above proposal, let us see how much
ethane we should have used to damp the ozone hole. We assume a total surface of
the ozone hole of about 20 � 106 km2, that is, 2 � 1013 m2. This area extends from
15 to 20 km with a pressure difference of 150 hPa. We get a total mass of about

�m D S�p=g D 2 � 1013 � 1:5 � 104=9:8 � 2 � 1016 kg
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Given the molecular weight of ethane (30) being very similar to the one of the
atmosphere, we can use the volume mixing ratio to evaluate the mass to be injected

C2H6 .mass/ � 2 � 1016kg � 3 � 10-9 D 6 � 107kg D 60; 000 tons

This amount of ethane should be injected above 15 km. At the present time, there is
no aircraft capable of such a feat. Even the most modern of aerial tankers (Boeing
KC 46) would carry about 90 tons of fuel per flight which means you need roughly
1000 flight of a nonexistent plane to do the job. However, even considering this
“minor problem” 3 years later, the same authors published a paper that admitted
they had neglected something so important to make the entire proposal useless if
not dangerous.

The main point of the consideration of the heterogeneous reaction is

HCl C HOCl
aerosol! Cl2 C H2O (20.44)

with the main source for hypochlorous acid being the reaction

ClO C HO2 ! HOCl C O2

Actually, you need some hydroxyl that in polar stratosphere can be produced by
methane oxidation and then similarly by oxidation of ethane. The paper showed
that considering only ethane the chlorine cycle would sum to the reaction

C2H6 C 2O3 ! C2H4O C H2O C O2

or starting with the hydroxyl

C2H6 C OH C HCl C 2O3 ! C2H4O C 2H2O C Cl C 2O2

The production of acetaldehyde (C2H4O) means that the subsequent reactions would
imply further ozone reduction. Again, with the chlorine

C2H4O C 3O3 ! CH2O C CO2 C H2O C 3O2

or the hydroxyl

C2H4O C OH C HCl C 3O3 ! CH2O C CO2 C 2H2O C 3O2

and finally, with photodissociation

C2H4O C 2HCl C 3O3 ! CH2O C CO C 2H2O C 2Cl C 3O2

In each of these cases, the ozone destruction is increased.
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E.20 Examples

E.20.1 Back to Radiative Transfer

We simplify somewhat what we have done in Chap. 13 and try to obtain directly an
expression for the downward and upward intensity of radiation. We start by defining
the intensity-only function of the zenith angle

I .�/ D 1

2�

Z 2�

0

I .�; '/ d' (E.20.1)

Then, the upward and downward intensities are defined by

I .�/ D
�

I" � > 0

I# � < 0
(E.20.2)

Then, we may write directly the expression for the change of I"

1

2

dI"

d�
D I" � !I" C !bI" � !bI# (E.20.3)

On the rhs, the first term is attenuation, the second is the intensity lost because of
backscattering, and the third term is the fraction of the scattered radiation diffused
in the same direction of the incident radiation. The last term is the same but for
the downward intensity. In this relation, ! is the single-scattering albedo and is the
backscattering fraction. Similar expressions can be written for the forward intensity

�1
2

dI#

d�
D .1 � !/ I# � !b

�
I" � I#

�
(E.20.4)

We can find a simple relation between the backscattered fraction and the asymmetry
factor g considering that if the scattering is isotropic, then g D 0, so b D 1/2. If g D 1,
then all the radiation is scattered in the same incident direction and b D 0. Finally, if
g D �1, all the radiation is scattered back and b D 1. Then, we have the relation

b D .1 � g/ =2 (E.20.5)

Substitution in (E.20.3) and (E.20.4) gives

1

2

dI"

d�
D .1 � !/ I" C ! .1 � g/

2

�
I" � I#

�
� 1

2

dI#

d�
D .1 � !/ I# � ! .1 � g/

2

�
I" � I#

�
(E.20.6)

http://dx.doi.org/10.1007/978-3-319-29449-0_13
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If we consider the case of conservative scattering ! D 1, then the sun of the last
two equations becomes

1

2

d

d�

�
I" � I#

�
D 0 (E.20.7)

then corresponds to �
I" � I#� D constant D Fnet

�
(E.20.8)

If we subtract Eq. (E.20.6), we get

d

d�

�
I" C I#� D 2 .1 � g/

�
I" � I#� D 2Fnet

�
.1 � g/

which integrates to �
I" C I#� D 2Fnet�

�
.1 � g/C cost (E.20.9)

This can be solved with the help of (E.20.8) to give

I" D Fnet
2�
Œ1C 2� .1 � g/�C 1

2 cos t
I# D � Fnet

2�
Œ1 � 2� .1 � g/�C 1

2 cos t
(E.20.10)

The boundary conditions for a cloud of optical thickness �� are I" .��/ D 0 and
I#.0/ D I0. The solution becomes

I" D I0 .1 � g/ .�� � �/

1C .1 � g/ �� I I# D I0 Œ1C .1 � g/ .�� � �/�

1C .1 � g/ �� (E.20.11)

The albedo and the transmittance are then

r D I".0/
I#.0/

D .1 � g/ ��

1C .1 � g/ �� I t D I# .��/
I#.0/

D 1

1C .1 � g/ �� (E.20.12)

E.20.2 The Twomey Effect

We would like to explain the relation (20.14) following the paper by Brenguier et al.
(2011). However, we will start from the simple and short note by Sean Twomey that
gave origin to all. The optical thickness is defined as

� D �

Z H

0

Z 1

0

QE.x/n .r; z/ r2drdz (E.20.13)
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where n is the size distribution of water droplets with radius r having extinction
coefficient QE for the size parameter x. H is the depth of the cloud. Assuming a
constant value for the extinction � 2, we arrive at the simple formula

� D 2�Nr2H (E.20.14)

where N is now the number of droplets per unit volume. On the other hand, the
water content is given by in unit of mass per unit area

W D 4=3�
wNr3H (E.20.15)

Keeping the W constant, we can obtain r from the last relation so that the optical
thickness will scale as N1/3. We have just seen (E.20.12) that the albedo increases
with increasing optical thickness and so with the number densities of particles. This
approach can be detailed a little bit. Again, start by calculating the optical thickness
of a cloud following the relation

� D �

Z H

0

Z 1

0

QE.x/n .r; z/ r2drdz

D
Z H

0

�QE .x/N.z/r22.z/dz D
Z H

0

�Qext .x/M2.z/dz
(E.20.16)

In this case,

r22 D .1=N/
Z 1

0

n .r; z/ r2dr

is the mean surface radius, and M2.z/ D N.z/r22.z/ is the second moment of the
droplet spectrum. In the same manner, the water content can be defined as

W D
Z H

0

qc.z/dz D 4=3�
w

Z H

0

N.z/r33.z/dz

D 4=3�
w

Z H

0

M3.z/dz
(E.20.17)

where qc D 4=3�
wNr33 is the liquid water content, r3 the mean volume droplet
radius, and M3 the third momentum. (E.20.16) and (E.20.17) can be treated as in
Twomey, so we get

� D �QEM2H D �QEN1=3M2=3
3 H D A.NH/1=3W2=3 (E.20.18)

where A D �QE=.4=3�
w/
2=3. This relation can be obtained considering that M2 D

r2NH; M3 D r3NH. We get r D .M3=N/1=3 and M2 D N1=3M2=3
3 . This expression
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is valid for a monodisperse droplet spectrum and in this case, r2 D r3, while in the
most general case, the bias between r3 and r2 could be taken into account with a
correction factor

k D
�

r3
re

�3
D
�

r2
r3

�6
where re is the droplet effective radius re D r33=r22. In this case, M2 D .kN/1=3M2=3

3

and (E.20.18) becomes

� D A.kNH/1=3W2=3 D A

�
r3
re

�
ŒNH�1=3W2=3 (E.20.19)

where

.NH/1=3 D W1=3�
4
3�
wr33

�1=3
Substituting in (E.20.19), we get

� D 3

2
w

W

re
(E.20.20)

E.20.3 Energy Balance Model

For the illustration of this model, the interested reader may go back to the original
paper by Kleidon and Renner (2013), and here, we will give only some useful detail.

The atmospheric temperature is obtained as a balance between the solar radiation
and the emitted infrared radiation

Ta D .S=�/1=4 (E.20.21)

To obtain the surface temperature, we assume that solar radiation is split between
atmosphere and surface, so we get

kr .TS � Ta/ D S=2 ) TS D Ta C S=2kr (E.20.22)

The evaluation of the optimum values for the variables must be found starting by
linearizing all the fluxes as a function of the temperature difference .TS � Ta/, and
this must be done mainly for the latent heat flux

E D 
w
�

qsat

�
TS

�
� qsat .Ta/

�
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Notice that the q’s are the specific humidity and we may want to express them as a
function of the saturation pressure. We can write

qsat .TS/ � qsat .Ta/C
�

dqsat

dT

�
TDTa

.TS � Ta/

Then E can be written as

E D 
w

�
dqsat

dT

�
TDTa

.TS � Ta/

However,

q D 
v



D e

p

Mv

Ma
D 0:622

e

p

and the derivative

dq

dT
D 0:622

p

de

dT

We easily obtain for the latent heat flux expression (20.35)

�E D cp
ws .TS � Ta/ =�

with s and � defined in the text. At this point, we require the equilibrium

�E C H C kr .TS � Ta/ D .TS � Ta/



cp
w

�
1C s

�

�
C kr

�
D S

And the temperature difference

.TS � Ta/ D S
�
cp
w .1C s=�/C kr

�1
(E.20.23)

To obtain the maximum strength of the hydrologic cycling drive by the sensible
heat, we simply calculate the power of a thermodynamic engine

G D H .TS � Ta/ =TS (E.20.24)

substituting (E.20.23) and the expression for H, we have

G D S2

TS

cp
w�
cp
w .1C s=�/C kr

2 (E.20.25)
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This expression can be maximized with respect to w and can obtain the optimum
values

wopt D �

� C s

kr

cp

I Hopt D �

� C s

S

2
�Eopt D s

� C s

S

2
(E.20.26)

At the maximum power, the latent heat flux

E D s

s C �

S

2�
(E.20.27)

that can be derived to obtain

1

E

dE

ds
D �

s C �

1

s
(E.20.28)

The same expression (E.20.26) can be derived with respect to S to obtain

dE

ds
D 1

2�

s

s C �
(E.20.29)
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Chemical composition

atmospheres planets, 142, 144
kinetics 134, 148–150

Chemistry and transport, 151–154
Chemistry in the troposphere, 569–612
Chlorofluorocarbons (CFC)

lifetime, 571, 574, 575, 657
numerical program for, 690

CIAP. See Climatic impact assessment program
(CIAP)

Circulation
absence of viscosity, 376
Bjerknes, 87
definition, 71–72, 85
diabatic, 621, 630
equatorial, 365–378
mean zonal, 352–357
meridional, 341, 350, 351, 355, 356, 366,

368, 372, 620
middle latitude, 378–395
non linear symmetric, 370–376
residual, 621, 622, 626, 630, 633
secondary, 242–246
symmetric, 366–370
theorem, 87
transformed eulerian mean, 620–622

Clausius Clapeyron equation, 10, 12, 14, 23,
26, 286, 478

Climate
ensemble average, 504, 549
stability, 507

Climatic impact assessment program (CIAP),
690, 701

Climatic models
one-dimensional, 468–483
potential, 467, 468, 473, 476
stability, 473–475
zero-dimensional models, 462–468, 472,

473, 476
Climatic system

components, 503–505, 512, 578
external and internal influences, 504
transitivity, intransitivity and almost-

intransitivity, 507
Clouds in planetary atmospheres, 286–290
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Columnar density
atmosphere, on, 673
definition, 49

Conditional convective instability, 20–21
Conservation of the angular momentum, 112,

246, 404
Conservation of the vorticity

Ertel, 192, 194
potential, 194

Continuity equation
isobaric coordinates, 115–116

Coordinate
conservative, 651–657
continuity equation on, 75–77, 205
isentropic, 184–188, 638–657
vorticity equation on, 90, 186–188

Coordinate system
Cartesian, 74, 628
isentropic, 184–188, 638, 640, 643
isobaric, 628
natural, 122–126
sigma, 533

Coriolis
acceleration, 73, 80, 82, 86, 94–97, 101,

107, 114, 143, 238, 244, 352, 624
parameter, 73, 96, 106, 109, 110, 118, 119,

130, 131, 138, 199–201, 203, 206, 211,
212, 218, 308, 367, 383, 388, 390, 409,
659

Critical level, 312, 322
Crutzen, P., 690
Cyclostrophic, equilibrium, 124, 125

D
Delayed differential equations

aerosol cloud, 750–753
ENSO, 747–750

Derivative
convective, 74
in isentropic coordinate, 185, 187
local, 74, 89
total, 74–75, 94, 154, 182, 183, 185, 205,

315, 328, 347, 533
Dew point temperature, 15, 17, 19
Diabatic, warming, 182
DIC. See Dissolved inorganic carbon (DIC)
Difference equations, 222, 391, 492, 507, 534,

551, 558, 665, 741–745, 759
Diffusion

in the atmosphere, scattering, 43
climate models, 470, 477, 527–529, 558
eddy coefficient, 158, 250
Mie theory, 425

Rayleigh, 423
solar radiation, 43
stationary functions, 474
turbulent, 228, 246–251, 316

Diffusion coefficient, 158, 226, 228, 231,
232, 236, 241, 250, 270, 271, 277, 321,
401, 469, 471, 473, 484, 497, 498,
527, 533, 627–630, 632, 633, 639–644,
664

Diffusion equation, 160, 226, 255, 277, 321,
628

Dissolved inorganic carbon (DIC), 580–582
DNA and ultraviolet radiation, 165, 504, 602,

671, 703
Dobson unit, 419, 705
Downward control, 635, 637, 640, 641
Dynamical systems, 740
Dynamic forcing, 631

E
Eady, E. T.

problem, 383–387
Earth

atmosphere composition, 142, 144, 146,
148, 504

temperature, 22, 464, 469
volatile elements, 523

Earth radiation budget experiment (ERBE)
and greenhouse effect, 487–489

Eccentricity of the orbit, variations, 508, 510
Eddies

stationary, 350
transient, 350, 351
turbulence, 229

Eddington, approximation, 437–440, 451, 456,
499, 775

• Eddington, approximation
application, 438–440
in the infrared, 451–452

Efficiency
absorption, 426
extinction, 426, 427, 453
reaction, 689
scattering, 176, 177

Ekman
layer, 237–243, 253
spiral, 238, 241, 252

El Chichon, eruption, 695
Electric field

incident, 44, 62, 429
Electronic transition

rotational, 443
vibrational, 443
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Eliassen-Palm, flux, 312–315, 326, 619, 621,
631

El Niño, 726–728, 736, 747, 748
Emagram, 16, 18–20, 29, 33, 34
Emissivity, 52, 56, 68, 403, 407, 449, 451, 483,

487
Energetic of waves

baroclinic, 395–402
gravity, 315–316

Energy
available potential, 34, 395, 397
conservation, 51, 226, 311, 345
forms of, 346–348
internal, 5, 346
kinetic, 3, 102, 232, 310, 311, 318, 324,

327, 346, 347, 351, 362, 380, 387, 396,
399–402

potential, 3, 34, 101, 102, 318, 324, 325,
346, 347, 351, 395–397, 399, 400, 403,
408, 496

rotational, 443
total potential energy (TPE), 346, 396,

397
in two levels model, 398–400
vibrational, 443

Energy-balance, models, 462, 468–483, 488,
491, 497–501, 510, 515, 779, 790–792

Energy budget
atmospheric, 342–352
earth-atmosphere, 343, 344, 350, 462
zonal, 342, 343, 347, 350

Equal area requirement, 31–32
Equilibrium

cyclostrophic, 124, 125
hydrostatic, equation, 4, 7, 22, 59, 107,

113, 116, 119, 171, 185, 192, 202, 204,
308, 309, 318, 325, 330, 366, 422, 531,
533, 618

photochemical, 594, 604, 633, 679, 698,
699, 703

Equinox
definition, 40

Equivalent density, 184, 638
Ertel vorticity, 190, 192, 640, 652–654
Eutectics, 10
Exit time 421, 468

F
Farman, J., 690
Feedback

factor, 525, 526, 539–541, 544, 558
ice-albedo, 462, 464, 483, 490, 511, 523,

526, 585

mechanisms, 402, 462, 464, 483, 486, 523,
525, 541

water vapour, 59, 483, 487–491, 526, 541,
585

Flux
diffusive in ocean, 497, 527
geopotential mean zonal, 347, 348, 351
latent heat, 59, 236, 253, 256, 257, 351,

468, 469, 782, 783, 790–792
over an obstacle, 222–223
in presence of vegetation, 255–258
sensible heat (SH), 236, 256, 348, 351, 469,

476, 478, 498, 782, 783
zonal, 232, 313, 314, 348, 355, 358, 619,

624, 625, 722, 724
Fractal dimension, 717, 719–720
Friction

force, 78–80, 82, 91, 105, 130, 239
Rayleigh, 366, 631
turbulent, 229–233

Friction velocity, 235, 237

G
Garcia, R., 269, 630, 631, 668, 686
GCM. See General circulation model (GCM)
General circulation model (GCM)

equations, 540
global warming, 503
physical processes, 531

General circulation models
Bayesian, 567
performances, 535–549
Taylor diagrams, 535–539

Geoengineering
energy balance models, 790–792
extinction, 789
ozone hole, 784–786
space shields, 779–781
technologies, 766–767

Geometrical cross section
extinction, 177, 432, 452

Geopotential
definition, 6
height, 4, 5, 194, 413, 414

Geostrophic
approximation, 105, 106, 109, 116, 207,

213
degeneracy, 111
stream function, 341

Geostrophic motion
definition, 105

Geostrophy, quasi, 111, 202–206, 215, 307,
308, 311–312, 325, 383, 389, 636
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Gibbs, free energy, 267
Glaciers

ablation, 515
accumulation, 515
limit cycle, 518

Global warming, 25, 72, 503, 523–531, 777
Gravity waves

absorption, 322
breaking, 317–322
diffusion coefficient, 321
energetics, 315–316
internal, 304–307
orographic, 302–304
physics, 311–316
saturation, 317–322
shallow water, 220, 300–302
transport, 307, 315, 324, 327

Greenhouse effects
runaway, 59–61

Group velocity, 211, 297–299, 303, 304, 306,
307, 315, 316, 319, 321, 324, 328, 333,
358, 359

Growth rate
baroclinic instability, 387

H
Hadley

cell, 340, 341, 351, 356, 365, 373, 374,
377, 378, 403, 404, 406–408, 412, 413

circulation, 357, 378, 395, 399, 409–413
Halley Bay, 705
Hansen, J., 420, 439, 440, 459, 485, 775, 776
Hartley band, 64
HCFC. See Hydrochlorofluoromethanes

(HCFC)
Heterogeneous chemistry, 12, 23, 671, 681,

686–689, 694, 695, 697–699, 701,
703–704, 779

Hoffman, D., 695
Holton, J., 103, 190, 201, 223, 336, 626, 657,

658, 664, 665, 668
Huggins band, 64, 65
Hydrocarbon and urban air, 593
Hydrochlorofluoromethanes (HCFC), 691
Hydroxyl (OH radical), 589

I
Ice ages

CO2 content, 504
lithosphere-atmosphere coupling, 513–519
oscillation of the climate systems, 520
stochastic resonance, 513, 519–524

temperature and CO2 correlations, 506, 513
theories, 519

Ice latitude, 464, 469, 472, 473, 490
Inertial

instability, 120–122, 405–406
oscillation, 96–98

Infrared radiation
absorbance, 53, 55, 58, 61
transport, 441–443

Intergovernmental Panel for Climatic Change
(IPCC), 523, 530, 539

IPCC. See Intergovernmental Panel for
Climatic Change (IPCC)

Isallobaric, wind, 111–112
Isallobars, 111
Isotopic, ratio for O, 512

J
Jetstream, 626

K
Karman, von

constant, 235, 237
Kasting, J., 584–586
Kelvin waves, 660, 664, 747, 748

L
Lacis, A., 42, 439, 440, 459, 485, 775, 777
Laminar layer, 226
Latent heat flux, 59, 236, 253, 256, 257, 468,

469, 782, 783, 790–792
Legendre, polynomials

albedo expansion, 464, 478
in North’s model, 469–473, 478

Lidar, 161–163, 175–177, 281
Lifetime

definition, 150
ozone, 673, 686

Limb infrared monitor of the stratosphere
(LIMS), 694

Limb measurement, 167
LIMS. See Limb infrared monitor of the

stratosphere (LIMS)
Log-pressure, coordinate system, 204, 311,

315, 325, 627
Longitude of the perihelion, variation, 509
Loop oscillator, 733–736, 754
Lorentz, E.

system, 445, 446
Los Angeles atmosphere, 593
Lyapunov exponent, 759–761
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M
Margules formula, 118–120
Marine chemistry

CO2 concentration, 578–584
Mars

atmosphere, 72, 141–144, 287
composition, 143, 144
dust storms, 142, 407
radiative constant, 60
temperature, 14, 60

McIntyre, M., 620, 635, 668
Mean

deviation, 232, 292, 348, 353, 381, 536
temporal, 350
transformed eulerian mean, 620–622
zonal, 350, 352–357, 361, 625, 663, 722

Methane (CH4)
lifetime, 571
oxidation, 572

Mie, G.
scattering, 417, 425, 432–433

Minor gas inventory, 570–576
Mixing length, 231–233, 235, 239, 400
Mixing ratio, 14–17, 19, 20, 22–25, 28, 30, 31,

33, 35, 50, 59, 130, 143–145, (BAL)
Molecular spectra, 443–446
Molina, M., 690, 711
Montreal, protocol, 690
Motion equation

primitive, 533

N
NAT. See Nitric acid trihydrate (NAT)
Newtonian cooling, 371, 410, 616, 622, 631
Nitric acid (HNO3), 147, 151, 153, 283–286,

590, 592, 596, 599, 671–672, 676,
678–681, 685, 688–689, 694–699, 701,
704, 708–709, 711–714, 784, 785

Nitric acid trihydrate (NAT), 284–286, 688,
711–712

Nitrogen compound, partition
chlorine, partition, 675, 676, 680, 685, 689,

690
Nitrogen oxide (NOx)

sources, 144, 572
Noise

climatic, 523
white, 480, 520–522, 730–731, 733

North, G.
model, 469–473, 476–479, 491–495, 497

Nucleation
heterogeneous, 266, 268, 283
heteromolecular, 266, 283

homogeneous, 268, 276, 283
homomolecular, 266

O
Ocean, thermal capacity, 479, 529
Odd oxygen (Ox), 156, 157, 594, 612, 675,

677, 683, 684, 703
Oerlemans, J., 515
Oeschger, H., 513
Optical thickness, 47–50, 53–57, 59–61, 64,

163, 168, 417, 435–440, 442, 443,
448–449, 451, 456–457, 499, 775–777,
788–789

Orbital parameters of the earth
and solar radiation, 142, 508–511

Orbital variation, 142, 505
Ozone

catalytic cycles, 677, 678, 681, 682
destruction rate, 677, 684, 700, 704, 712,

713
global ozone trend, 691, 694
hole, 23, 52, 53, 71, 155–156, 310, 569,

657, 677, 686, 690, 693, 695, 700, 706,
709, 784–786

homogeneous chemistry, 674–686, 700
lifetime, 672, 673, 686
net chemical production, 682
perturbations to the ozone layer, 689–704
polar, 705–709

Ozone measurement from satellite, 164–168,
691–692

P
Phase function in scattering, 46–47, 432–433,

437–438
Phase velocity, 99, 133, 196, 211, 220, 297,

299, 302–304, 320, 322–325, 357, 380,
384, 392–394, 633, 660–662

Photodissociation
coefficient, 149, 156, 595, 596, 649, 697

Photolysis, 149, 150, 153, 157–158, 676
Pinatubo, eruption, 281, 282, 505, 689, 695,

700
Planets

chemical composition, 142–145, 286–290,
569

clouds on, 288, 776
Poincaré, H.

section, 717–720, 758
Polarizability, 44–46, 62–64, 174, 177–178,

427–430, 433
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Polar stratospheric clouds (PSC)
one and two, 284
size distribution, 284

Polar vortex, 625, 638, 656, 705, 707–709
Potential temperature

equivalent, 16, 19, 26–28, 31, 33
Prandtl

laminar boundary layer, 226
Precipitable water, 421, 422
PSC. See Polar stratospheric clouds (PSC)

Q
QBO. See Quasi-biennal oscillation (QBO)
Quasi-biennal oscillation (QBO), 659,

663–665, 667–668, 692

R
Radar 156, 161–163, 171–175, 281
Radiation

flux, 505
infrared, 37, 39, 52–61, 67, 68, 116, 145,

146, 342, 343, 417, 441–443, 462, 477,
483, 486, 487, 498, 790

intensity, 37–38, 47, 53, 63, 163, 167–168,
435, 442, 787

solar, 37, 39–53, 67, 68, 116, 142, 145,
146, 162, 165, 257, 339, 342–343, 366,
399, 417, 419–420, 422–433, 440, 461,
462, 464, 472, 485, 486, 504–512,
517–518, 523, 525–526, 530, 541, 585,
616, 674–675, 686, 702, 765, 766, 774,
776, 779, 781–784, 790

Radiative
equilibrium, 25, 55–61, 146, 461, 483–485,

615–618, 621–623, 625, 637, 642
forcing, 25, 67, 526, 527, 530, 562, 702,

767–768, 774, 776, 777, 782
Radiative convective

atmosphere, 57–59
Radiative-convective models

CO2 increase, 487–488
convective adjustment, 487
energy balance, 462, 491
greenhouse effect, 487–490
heating rate, 484–487
ice-albedo feedback, 483, 491
net flux, 484, 485

Radiative, time constant, 66–67, 404
Radiative transfer

equation of, 53–57
in presence of scattering, 433–440

Radical
alkyl, 590

methyl, 591
OH, 589
and tropospheric chemistry, 589, 671

Radiometric, variables definition, 37–39
Radio occultation (RO), 162, 168–171
Radius parameter, 452
Rainbow, 424
Ramanathan, absorbance, 450–451
Rate constant, 148–150, 153, 702
Rayleigh

friction, 631
natural light, 46, 62–64
scattering, 44–48, 62–64, 167, 168, 417,

418, 426, 428, 432, 436
Reactive chemical species

reservoirs, 675, 676, 698
stratospheric, 615

Redfield, ocean, 581
Reference system, equation of motion

inertial, 73, 81
rotating, 244

Reflectivity
of the atmosphere, 418, 423, 438
total, 418

Refractive, index, 162, 170–171, 173, 177–178,
426, 430, 431, 452

Remote sensing, 161–180
Reynolds, number of, 226–228, 272, 293, 294
RO. See Radio occultation (RO)
Rossby

dispersion relation, 133, 211, 661
number, 72, 73, 93, 105, 108, 112, 133,

142, 143, 207, 212, 219, 221, 397, 405,
407, 408

waves, 130–134, 190–192, 194–196,
209–211, 214, 219–221, 297, 307–312,
357, 359, 388, 747, 748

Rowland, S., 686, 690

S
SAT. See Sulphuric acid tetrahydrate (SAT)
Saturation, ratio, 14, 267–270, 276, 292, 293
Scale height, 4–5, 22, 23, 57, 114, 158, 159,

204, 289, 290, 381, 397, 406, 412, 618
Scattering, angle, 63, 433, 435
Sea breeze, 126–127, 135–136
Sellers, W.D.

fluxes, 468, 479
model, 477–479, 483

Sensible heat
flux, 236, 348, 350, 351, 401, 461, 468,

477, 478, 484, 485, 498, 531, 782, 783
zonal flux, 348
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Shallow water vorticity
Rossby waves, 219–221

Solar constant, 39, 60, 66, 141, 142, 463, 465,
466, 471–473, 479, 504, 505, 508, 587,
588, 720, 742, 774, 779–781

Solomon, S., 629, 686, 695
SPADE. See Stratospheric Photochemistry

Aerosol and Dynamics Experiment
(SPADE)

Spectral line shape
Doppler, 445–447
Lorentzian, 445–447

Spherical harmonics, 534
Spin down in a tea cup, 244–246
Static stability, 7–8, 20, 182, 390, 402, 408,

627
Stratosphere

eddy flux, 353, 355–357, 360, 620, 627,
633, 641

radiative equilibrium, 25, 55–61, 146, 461,
483, 485, 615–618, 621–623, 625, 637,
642

thermal structure, 51, 72, 122, 162, 164,
233, 616–618

troposphere-stratosphere exchange, 67–659
zonal wind, 117–118, 139, 184, 230, 310,

315, 319, 320, 322, 341–342, 353, 354,
356, 368, 370, 371, 375, 377, 407, 408,
617, 618, 620, 624, 631, 640, 656, 683,
722, 723

Stratospheric Photochemistry Aerosol and
Dynamics Experiment (SPADE), 689

Stream function
geostrophic, 109–111
meridional, 341
Montgomery, 185, 641
stochastic resonance, 513, 519–524

Sudden stratospheric warming, 310, 623–625
Sulphur cycle

and acid rain, 599–600
Sulphuric Acid

clouds, 711
solution, 11

Sulphuric acid tetrahydrate (SAT), 284–286
Surface density, 204, 284, 687, 696–700, 704
Sverdrup, unit, 582

T
Taylor Proudman theorem, 113, 115
Themohaline circulation

stability, 740–741
Stommel model, 736–739, 741

Thermal emission measurement, 163–164

Thermal wind, 93, 112–118
Thermodynamic

atmospheric, 1–35
equation, 181–183, 305, 315, 319, 325,

366, 371, 383, 389, 391, 408–409, 533,
619

water vapour, 8–13
Tracers

slope, 642–645
transport in the stratosphere, 626–637

Trade winds, 340–342, 350, 368, 726
Transport

chemical compounds, 626
and diffusion coefficient, 401
in isentropic coordinates, 184–188,

638–656
parameterization, 400–402
tracers in the stratosphere, 626–637

Two levels model, 534
Twomey effect, 775, 788
Two stream, approximation, 54, 452

U
Upward control, 635
Urban air, chemistry, 593–595

V
Van de Hulst, H.C., 431
Venus

atmosphere, 67, 72, 125, 143, 144, 287
composition, 143, 144, 282
cyclostrophic equilibrium, 124, 125
greenhouse effect, 52, 53, 59, 67–68, 463,

464, 481, 487–490, 506, 513, 526, 541,
585, 781

Hadley cell, 340, 341, 351, 356, 373, 374,
377, 378, 403, 407–408, 412, 413

radiative constant, 60
temperature, 124, 145
volatile elements, 523

Vibrational motion of a molecule, 442
Virtual temperature, 32–33
Viscosity

cinematic, 80, 226, 229, 244
dynamic, 78, 272, 293

Volatile elements, 523
Volcanic eruptions and climate, 262, 671,

694–700, 766, 776
Vortex lines, 88, 92
Vorticity

absolute, 83, 90, 92, 93, 130, 134, 187,
190–192, 208, 216, 297, 634

application, 83, 126–134, 190–192
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and circulation, 83–94
definition, 84, 85, 125, 132, 186, 187, 203,

206, 212
equation, 88–94
Ertel potential, 188–196
geostrophic, 112, 121, 202–206, 307, 308,

325, 389
horizontal divergence, 93, 100, 112, 307,

634
interpretation, 252, 507, 542, 619, 630, 653
inversion, 206–211, 218
modified potential, 652, 655
potential, 99–101, 186, 190–194, 198, 199,

203, 206, 208–210, 218, 220, 222, 309,
311, 313, 314, 325, 383, 389, 625, 632,
633, 640–642, 651–655

quasi geostrophic, 204–206
Vorticity equation

and gravity waves, 317
in isentropic coordinates, 652

W
Wallace, J.M., 17, 35, 279, 352, 379, 394, 399,

424, 425

Water vapour
distribution planetary atmospheres, 22–24
effective quantity, 13–21
thermodynamics effects, 8–13

Wave action, 313–316, 319
Waves

atmospheric, 302
baroclinic, 385, 387
dispersion relation, 133, 211, 303, 305,

306, 310, 311, 333, 358, 661, 662
orographic, 302–304, 306
over an obstacle, 196, 222–223
properties, 297–299
Rossby, 130–134, 190, 192, 194–196,

209–211, 214, 219–221, 297, 307–312,
357, 359, 389, 747, 748

surface, 304
three dimensional Rossby waves, 307–312

Weathering, rate, 587–588
Wet bulb temperature, 15, 17, 19

Y
Yamamoto, G., 421, 422
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