INTRODUCTION TO AutoCAD 2007
 2D and 3D Design

Introduction to AutoCAD 2007

This page intentionally left blank

Introduction to AutoCAD 2007 2D and 3D Design

Alf Yarwood

Autodesk
Authorised Author

Newnes is an imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
First edition 2007
Copyright © 2007, Alf Yarwood. Published by Elsevier Ltd. All rights reserved
The right of Alf Yarwood to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science \& Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax $(+44)(0) 1865853333$; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
Library of Congress Cataloging in Publication Data
A catalog record for this book is available from the Library of Congress
ISBN-13: 978-0-75-068154-4
ISBN-10: 0-7506-8154-3

For information on all Newnes publications visit our website at http://books.elsevier.com

Typeset by Integra Software Services Pvt. Ltd, Pondicherry, India www.integra-india.com

Printed and bound in Great Britain

07	08	09	10	10	9	8	7	6	5	4	3	2	1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Internationa

Contents

Preface xi
Registered trademarks xii
PART I - 2D Design

1. Introducing AutoCAD 2007 3
Aim of this chapter 3
Opening AutoCAD 2007 3
The mouse as a digitiser 6
Palettes 7
Dialogs 9
Buttons in the status bar 12
The AutoCAD coordinate system 13
Drawing templates 13
Method of showing entries in the command palette 16
Tools and tool icons 17
Another AutoCAD workspace 17
Revision notes 18
2. Introducing drawing 20
Aims of this chapter 20
The 2D Classic AutoCAD workspace 20
Drawing with the Line tool 20
Drawing with the Circle tool 26
The Erase tool 27
Undo and Redo tools 28
Drawing with the Polyline tool 29
Revision notes 33
Exercises 34
3. Osnap, AutoSnap and Draw tools 37
Aims of this chapter 37
Introduction 37
The Arc tool 37
The Ellipse tool 39
Saving drawings 40
Osnap, AutoSnap and Dynamic Input 41
Object Snaps (Osnaps) 42
Using AutoSnap 45
Dynamic Input 47
Examples of using some Draw tools 49
The Polyline Edit tool 52
Transparent commands 54
The set variable PELLIPSE 55
Revision notes 55
Exercises 56
4. Zoom, Pan and templates 61
Aims of this chapter 61
Introduction 61
The Aerial View window 62
The Pan tool 64
Drawing templates 66
Revision notes 74
5. The Modify tools 75
Aim of this chapter 75
Introduction 75
The Copy tool 75
The Mirror tool 77
The Offset tool 78
The Array tool 79
The Move tool 82
The Rotate tool 83
The Scale tool 84
The Trim tool 84
The Stretch tool 86
The Break tool 87
The Join tool 88
The Extend tool 89
The Chamfer and Fillet tools 90
Revision notes 92
Exercises 94
6. Dimensions and Text 99
Aims of this chapter 99
Introduction 99
The Dimension tools 99
Adding dimensions using the tools 100
Adding dimensions from the command line 103
Dimension tolerances 108
Text 112
Symbols used in text 114
Checking spelling 114
Revision notes 116
Exercises 117
7. Orthographic and isometric 120
Aim of this chapter 120
Orthographic projection 120
First angle and third angle 122
Sectional views 123
Isometric drawing 125
Examples of isometric drawings 126
Revision notes 128
Exercises 128
8. Hatching 132
Aim of this chapter 132
Introduction 132
Revision notes 138
Exercises 139
9. Blocks and Inserts 143
Aims of this chapter 143
Introduction 143
Blocks 143
Inserting blocks into a drawing 145
The Explode tool 148
The Purge tool 149
Wblocks 151
Revision notes 152
Exercises 153
10. Other types of file format 155
Aims of this chapter 155
Object linking and embedding 155
DXF (Data Exchange Format) files 159
Raster images 159
External References (Xrefs) 162
Multiple Document Environment (MDE) 164
Revision notes 165
Exercises 165
11. Sheet sets 169
Aims of this chapter 169
Sheet sets 169
Revision notes 174
Exercises 175
12. Building drawing 178
Aim of this chapter 178
Building drawings 178
Floor layouts 182
Revision notes 182
Exercises 182
PART II - 3D Design
13. Introducing 3D modelling 187
Aims of this chapter 187
Introduction 187
The 3D Modeling workspace 187
Methods of calling tools for 3D modelling 188
Examples of 3D drawings using the 3D Face tool 189
2 D outlines suitable for 3 D models 191
The Extrude tool 194
Examples of the use of the Extrude tool 194
The Revolve tool 196
Examples of the use of the Revolve tool 196
3D objects 197
The Chamfer and Fillet tools 200
Constructing 3D surfaces using the Extrude tool 203
The Sweep tool 204
The Loft tool 204
Revision notes 205
Exercises 207
14. 3D models in viewports 212
Aim of this chapter 212
Setting up viewport systems 212
Revision notes 219
Exercises 219
15. The modification of 3D models 223
Aims of this chapter 223
Creating 3D model libraries 223
An example of constructing a 3D model 227
The 3D Array tool 228
The Mirror 3D tool 230
The Rotate 3D tool 232
The Slice tool 232
The Section tool 234
Views of 3D models 237
The Helix tool 239
Using DYN 241
Revision notes 242
Exercises 243
16. Rendering 246
Aims of this chapter 246
Setting up a new 3D template 246
The Render tools 248
The 3D Orbit tool 257
Producing hardcopy 259
Other forms of hardcopy 260
Saving and opening 3D model drawings 261
Exercises 261
17. 3D space 264
Aim of this chapter 264
3D space 264
The User Coordinate System (UCS) 265
The variable UCSFOLLOW 266
The UCS icon 266
Examples of changing planes using the UCS 266
Saving UCS views 271
Constructing 2D objects in 3D space 272
Revision notes 274
Exercises 274
18. 3D surface models 279
Aims of this chapter 279
3D surface meshes 279
Setting the 3D Modeling screen to 2D Wireframe 279
Comparisons between Solids and Surfaces tools 279
The Surface tools 282
Rendering of 3D Surface models 287
Revision notes 287
Exercises 287
19. Editing 3D solid models 291
Aims of this chapter 291
The Solids Editing tools 291
Examples of more 3D models 296
Exercises 300
20. Other features of 3D modelling 306
Aims of this chapter 306
Raster images in AutoCAD drawings 306
Printing/Plotting 308
Polygonal viewports 311
Exercises 313
21. Internet tools 319
Aim of this chapter 319
Emailing drawings 319
The eTransmit tool 322
22. Design and AutoCAD 2007 324
Ten reasons for using AutoCAD 324
The place of AutoCAD 2007 in designing 324
Enhancements in AutoCAD 2007 326
System requirements for running AutoCAD 2007 327
Appendix A Printing/Plotting 328
Introduction 328
An example of a printout 330
Appendix B List of tools 332
Introduction 332
2D tools 332
3D tools 336
Internet tools 338
Appendix C Some of the set variables 339
Introduction 339
Some of the set variables 339
Index 341

Preface

The purpose of writing this book is to produce a text suitable for those in Further and/or Higher Education who are required to learn how to use the CAD software package AutoCAD ${ }^{\circledR}$ 2007. Students taking examinations based on computer-aided design will find the contents of the book of great assistance. The book is also suitable for those in industry who wish to learn how to construct technical drawings with the aid of AutoCAD 2007 and those who, having used previous releases of AutoCAD, wish to update their skills in the use of AutoCAD.

The chapters dealing with two-dimensional (2D) drawing will also be suitable for those who wish to learn how to use AutoCAD LT 2007, the 2D version of this latest release of AutoCAD.

Many readers using AutoCAD 2002, 2004, 2005 or 2006 will find the book's contents largely suitable for use with those version of AutoCAD, although AutoCAD 2007 has enhancements over AutoCAD 2002, 2004, 2005 and 2006 (see Chapter 22).

The contents of the book are basically a graded course of work, consisting of chapters giving explanations and examples of methods of constructions, followed by exercises which allow the reader to practise what has been learned in each chapter. The first 12 chapters are concerned with constructing technical drawing in two dimensions (2D). These are followed by chapters detailing the construction of three-dimensional (3D) solid and surface model drawings and rendering. The two final chapters describe the Internet tools of AutoCAD 2007 and the place of AutoCAD in the design process. The book finishes with three appendices - printing and plotting; a list of tools with their abbreviations; and a list of some of the set variables upon which AutoCAD 2007 is based.

AutoCAD 2007 is a very complex computer-aided design (CAD) software package. A book of this size cannot possibly cover the complexities of all the methods for constructing 2D and 3D drawings available when working with AutoCAD 2007. However, it is hoped that by the time the reader has worked through the contents of the book, they will be sufficiently skilled with methods of producing drawing with the software, will be able to go on to more advanced constructions with its use and will have gained an interest in the more advanced possibilities available when using AutoCAD.

Alf Yarwood

Salisbury 2007

Registered trademarks

Autodesk ${ }^{\circledR}$ and AutoCAD ${ }^{\circledR}$ are registered in the US Patent and Trademark Office by Autodesk Inc.

Windows ${ }^{\circledR}$ is a registered trademark of the Microsoft Corporation.
Alf Yarwood is an Autodesk authorised author and a member of the Autodesk Advanced Developer Network.

PART I

2D Design

This page intentionally left blank

CHAPTER I

Introducing AutoCAD 2007

Fig. I.I The AutoCAD 2007 shortcut icon on the Windows desktop

Fig. I. 2 The right-click menu which appears from the shortcut icon

Aim of this chapter

The contents of this chapter are designed to introduce features of the AutoCAD 2007 window and methods of operating AutoCAD 2007.

Opening AutoCAD 2007

AutoCAD 2007 is designed to work in a Windows operating system. In general, to open AutoCAD 2007, either double-click on the AutoCAD 2007 shortcut in the Windows desktop (Fig. 1.1), or right-click on the icon, followed by a left-click on Open in the menu which then appears (Fig. 1.2).

When working in education or in industry, computers may be configured to allow other methods of opening AutoCAD, such as a list appearing on the computer in use when the computer is switched on, from which the operator can select the program they wish to use.

When AutoCAD 2007 is opened a window appears, depending upon whether a Classic AutoCAD, a 3D Modeling or an AutoCAD Default

Fig. I. 3 The AutoCAD 2007 Classic AutoCAD workspace showing its various parts
workspace has been used previously. In this example the Classic AutoCAD workspace is shown and includes the drop-down menu from which a choice of the AutoCAD workspace to be opened can be made (Fig. 1.3). This Classic AutoCAD workspace shows:

Standard toolbar (Fig. 1.4) docked at the top of the workspace under the Menu bar.

Workspaces toolbar (Fig. 1.5) usually within the workspace.
Styles toolbar docked to the right of the Standard toolbar.
Layers toolbar docked under the Standard toolbar.
Properties toolbar docked to the right of the Layers toolbar.

Fig. I. 5 The Workspace Settings dialog appearing when the Workspace Settings . . . icon of the Workspaces toolbar is clicked

Fig. I. 6 The command palette when dragged from its position at the bottom of the AutoCAD window

Command palette can be dragged from its position at the bottom of the AutoCAD window into the AutoCAD drawing area, when it can be seen as a palette (Fig. 1.6). As with all palettes, an AutoHide icon and a right-click menu are included.

Draw toolbar (Fig. 1.7) docked against the left-hand side of the workspace. Modify toolbar (Fig. 1.7) docked against the right-hand side of the workspace.
Menu bar and menus: The menu bar is situated under the title bar and contains names of menus from which commands can be selected. Fig. 1.8 shows the View drop-down menu which appears with a leftclick on the name. Left-click 3D Views in the drop-down menu and a sub-menu appears, from which other sub-menus can be selected if required.

Fig. I. 7 The tools in the Draw and Modify toolbars

The mouse as a digitiser

Many operators working in AutoCAD will use a two-button mouse as the digitiser. There are other digitisers which may be used - pucks with tablets, a three-button mouse etc. Fig. 1.9 shows a mouse which has two buttons and a wheel.

To operate this mouse pressing the Pick button is a left-click. Pressing the Return button is a right-click. Pressing the Return button usually has the same result as pressing the Enter key of the keyboard.

When the wheel is pressed drawings in the AutoCAD screen can be panned. Moving the wheel forward enlarges (zooms in) the drawing on screen. Moving the wheel backwards reduces the size of a drawing.

The pick box at the intersection of the cursor hairs moves with the cursor hairs in response to movements of the mouse. The AutoCAD window as shown in Fig. 1.3 includes cursor hairs which stretch across the drawing in both horizontal and vertical directions. Some operators prefer cursors hairs

Fig. I. 8 Menus and sub-menus

Fig. I. 9 A two-button mouse
to be shorter. The length of the cursor hairs can be adjusted in the Options dialog (page 10).

Palettes

A palette has already been shown - the Command palette. Two palettes which may be frequently used are the DesignCenter palette and the Properties palette. These can be called to screen from the Tools drop-down menu (Fig. 1.10).
DesignCenter palette: Fig. 1.11 shows the palette showing the Block drawings of metric fasteners from an AutoCAD directory DesignCenter from which the drawing file Fasteners - Metric.dwg has been selected. A fastener block drawing can be dragged from the DesignCenter for inclusion in a drawing under construction.
Properties palette: Fig. 1.12 shows the Properties palette in which the general and geometrical features of a selected polyline are shown. The polyline can be changed by the entering of new figures in the appropriate parts of the palette.

Fig. I.IO Palettes can be called to screen from the Palettes submenu of the Tools drop-down menu

Fig. I.II The DesignCenter palette

Fig. I.I2 The Properties palette

Fig. I.I3 The DASHBOARD palette

The DASHBOARD palette

Click on Tools in the menu bar and from the drop-down menu which appears click Dashboard. The DASHBOARD palette appears (Fig. 1.13). Right-click in the title bar of the palette and a popup menu appears. Click on Control panels and click against all the names which appear in the sub-menu except 2D Draw control panel. Parts of the DASHBOARD disappear leaving only the 2D Draw control panel dashboard. This can be reduced in size by dragging at corners or edges, or hidden by clicking on the Auto-hide icon, or moved by dragging on the Move icon. This panel holds all the tool icons contained in the Draw and Modify toolbars. The other panels in the DASHBOARD are for 3D modelling. These details are shown in Fig. 1.13.

Dialogs

Dialogs are an important feature of AutoCAD 2007. Settings can be made in many of the dialogs, files can be saved and opened and changes can be made to variables.

Examples of the parts of dialogs are shown in Figs 1.14 and 1.15. The first example is taken from the Select File dialog (Fig. 1.14), opened with a click on Open . . . in the File drop-down menu (Fig. 1.16). The second example shows part of the Options dialog (Fig. 1.15) in which many settings can be made to allow operators the choice of their methods of constructing drawings. The Options dialog can be opened with a click on Options . . . in the right-click menu opened in the command window (Fig. 1.17).

Fig. I. 14 The Select File dialog

Fig. I.I5 Part of the Options dialog

Note the following parts in the dialog many of which are common to other AutoCAD dialogs:

Title bar: showing the name of the dialog.
Close dialog button: common to other dialogs.

Fig. I. 16 Opening the Select File dialog from the File drop-down menu

Fig. I.I7 The right-click menu in the command palette

File
New... CTRL+N
New Sheet Set...
Open...
Open Sheet Set...
Goad Markup Set...
Import a DGN File...
Close
Partial Load

Popup list: a left-click on the arrow to the right of the field brings down a popup list listing selections available in the dialog.
Buttons: a click on the Open button brings the selected drawing on screen. A click on the Cancel button closes the dialog.
Preview area: available in some dialogs - shows a miniature of the selected drawing or other feature, only part of which is shown in Fig. 1.15.

Note the following in the Options dialog:
Tabs: a click on any of the tabs in the dialog brings a sub-dialog on screen.
Check boxes: a tick appearing in a check box indicates the function described against the box is on. No tick indicates the function is off. A click in a check box toggles between the feature being off or on.
Radio buttons: a black dot in a radio button indicates the feature described is on. No dot and the feature is off.
Slider: a slider pointer can be dragged to change sizes of the feature controlled by the slider.

Buttons in the status bar

A number of buttons in the status bar can be used for toggling (turning on/off) various functions when operating within AutoCAD 2007 (Fig. 1.18). A click on a button turns that function on, if it is off, a click on a button when it is off turns the function back on. Similar results can be obtained by using function keys of the computer keyboard (keys F1 to F10).

Fig. I.I8 The buttons in the status bar

SNAP: also toggled using the F9 key. When set on, the cursor under mouse control can only be moved in jumps from one snap point to another. See also page 15 .
GRID: also toggled using the F7 key. When set on, a series of grid points appears in the drawing area. See also page 15.
ORTHO: also toggled using the F8 key. When set on, lines etc. can only be drawn vertically or horizontally.
POLAR: also toggled using the F10 key. When set on, a small tip appears showing the direction and length of lines etc. in degrees and units.
OSNAP: also toggled using the F3 key. When set on, an osnap icon appears at the cursor pick box. See also page 41.
OTRACK: when set on, lines etc. can be drawn at exact coordinate points and precise angles.
DUCS: Dynamic UCS. Also toggled by the F6 key. Used when constructing 3D solid models.
DYN: Dynamic Input. When set on, the $\mathbf{x , y}$ coordinates and prompts show when the cursor hairs are moved.
LWT: when set on, lineweights show on screen. When set off, lineweights only show in plotted/printed drawings.

When in Paper Space a button can toggle Model Space and Paper Space and a new button appears for toggling between Maximizing and Minimizing the workspace.

Note the square light-blue button at the right-hand end of the status bar - the Clean Screen button. Left-click this button and a screen clear of all but the menu bar and the command palette appears. When in the Clean Screen workspace another click on the button and the screen reverts to its original state.

Note

When constructing drawings in AutoCAD 2007 it is advisable to toggle between Snap, Ortho, Osnap and the other functions in order to make constructing easier.

The AutoCAD coordinate system

In the AutoCAD 2D coordinate system, units are measured horizontally in terms of X and vertically in terms of Y. A 2D point can be determined in terms of X, Y (in this book referred to as x, y). The coordinate point $x, y=0,0$ is the origin of the system. The coordinate point $x, y=100,50$ is 100 units to the right of the origin and 50 units above the origin. The point $x, y=-100,-50$ is 100 units to the left of the origin and 50 points below the origin. Fig. 1.19 shows some 2D coordinate points in the AutoCAD window.

3D coordinates include a third coordinate (Z), in which positive Z units are towards the operator as if coming out of the monitor screen and negative Z units going away from the operator as if towards the interior of the screen. 3D coordinates are stated in terms of x, y, z. The coordinate point $x, y, z=100,50,50$ is 100 units to the right of the origin, 50 units above the origin and 50 units towards the operator. A 3D model drawing as if resting on the surface of a monitor is shown in Fig. 1.20.

Drawing templates

Drawing templates are files with an extension.dwt. Templates are files which have been saved with predetermined settings - such as Grid spacing, Snap

Fig. I. 20 A 3D model drawing showing the X, Y and Z coordinate directions

Fig. I. 21 A template selected for opening in the Select template dialog

spacing etc. Templates can be opened from the Select template dialog (see Fig. 1.21) called by clicking New . . . in the File drop-down menu. An example of a template file being opened is shown in Fig. 1.21. In this example the template will be opened in Paper Space and is complete with a title block and borders.

When AutoCAD 2007 is used in European countries, the acadiso.dwt template automatically appears on screen. Throughout this book drawings

Fig. I. 22 Setting Grid to 10

Fig. I. 23 Setting Snap to 5

Fig. I. 24 Setting Limits to 420,297
will usually be constructed in an adaptation of the acadiso.dwt template. To adapt this template:

1. In the command palette enter (type) grid followed by a right-click (or pressing the Enter key). Then enter 10 in response to the prompt which appears, followed by a right-click (Fig. 1.22).

Command: grid

Specify grid spacing(X) or [ON/OFF/Snap/Major/aDaptive/Follow/Aspect] <10〉 <Object Snap Tracking of f >
Command
2. In the command palette enter snap followed by right-click. Then enter 5 followed by a right-click (Fig. 1.23).

```
<Object Snap Tracking off>
Command: snap
Specify snap spacing or [ON/OFF/Aspect/Style/Type] <5>:
Command:
```

3. In the command palette enter limits, followed by a right-click. Rightclick again. Then enter 420,297 and right-click (Fig. 1.24).
```
Command: limits
Reset Model space limits:
Specify lower left corner or [ON/OFF] \langle0,0\rangle:
Specify upper right corner <420,297>:
Command:
```

4. In the command window enter zoom and right-click. Then in response to the line of prompts which appears enter a (for All) and right-click (Fig. 1.25).
```
Command: zoom
Specify corner of window, enter a scale factor (nX or nXP), or
[All/Center/Dynamic/Extents/Previous/Scale/Window/Object] <real time>: a
Regenerating model.
Command
```

5. In the command palette enter units and right-click. The Drawing Units dialog appears (Fig. 1.26). In the Precision popup list of the Length area of the dialog, click on $\mathbf{0}$ and then click the $\mathbf{O K}$ button. Note the change in the coordinate units showing in the status bar.

Fig. I. 26 Setting Units to $\mathbf{0}$

6. Click File in the menu bar and click Save As . . . in the drop-down menu which appears. The Save Drawing As dialog appears. In the Files of type popup list select AutoCAD Drawing Template (*.dwt). The templates already in AutoCAD are displayed in the dialog. Click on acadiso.dwt, followed by another click on the Save button.

Notes

1. Now when AutoCAD is opened the template saved as acadiso.dwt automatically loads with Grid set to 10, Snap set to 5, Limits set to 420,297 (size of an A3 sheet in millimetres) and with the drawing area zoomed to these limits, with Units set to $\mathbf{0}$.
2. However if there are multiple users to the computer, it is advisable to save your template to another file name - I have used my_template.dwt.
3. Other features will be added to the template in future chapters.

Method of showing entries in the command palette

Throughout the book, where necessary, details entered in the command palette will be shown as follows:

At the command line:
Command: enter zoom right-click
Specify corner of window, enter a scale factor (nX or $\mathbf{n X P}$), or [All/Center/Dynamic/Extents/Previous/Scale/Window/Object]
<real time>: enter a (All) right-click
Regenerating model.
Command:

Fig. I. 27 Tool icons and a flyout in the DASHBOARD palette

Note

In later examples this may be shortened to:
Command: enter \mathbf{z} right-click
[prompts](_face): enter a right-click
Command:

Notes

1. In the above enter means type the given letter, word or words at the Command: prompt.
2. Right-click means press the Return (right) button of the mouse or press the Return key of the keyboard.

Tools and tool icons

An important feature of Windows applications are icons and tooltips. In AutoCAD 2007, tools are shown as icons in toolbars or in the DASHBOARD palette. When the cursor is placed over a tool icon a tooltip shows with the name of the tool as shown in the tooltips in the Draw and Modify toolbars (Fig. 1.7).

If a small arrow is included at the bottom right-hand corner of a tool icon, when the cursor is placed over the icon and the pick button of the mouse depressed and held, a flyout appears which includes other tool icons (Fig. 1.27). The example given in this illustration shows a flyout from the 2D Draw control panel.

Another AutoCAD workspace

Click the My Workspace icon in the Workspaces toolbar (Fig. 1.28). Click on the Clear screen icon at the bottom right-hand corner of the AutoCAD window. All toolbars and palettes disappear from the screen except for the command window leaving a larger workspace. Open the

DASHBOARD with a click on its name in the Palettes sub-menu of the Tools drop-down menu and change it into the 2D Draw control panel. A new screen appears with an enlarged working area (Fig. 1.29). Tools can be selected from the 2D Draw control panel for the construction of drawings within this enlarged area.

Other workspaces can be designed as the operator wishes. This particular workspace has the advantage that it uses all the area available on the computer screen being used at the time. At any time another click on the Clear Screen icon causes the screen to revert to the AutoCAD Classic

Fig. I. 29 My workspace

screen. When this happens it may be desirable to delete the 2D Draw control panel with a click on its Close button.

Revision notes

1. A double-click on the AutoCAD 2007 shortcut in the Windows desktop opens the AutoCAD window.
2. Or right-click on the shortcut, followed by a left-click on Open in the menu which then appears.
3. There are three main workspaces in which drawings can be constructed the Classic AutoCAD workspace, the 3D Modeling workspace and My Workspace workspace. From now on this part of the book (Part I) which deals with the construction of 2D drawings will show examples constructed mainly in the Classic AutoCAD screen, which opens showing the Draw and Modify toolbars.
4. A left-click on a menu name in the menu bar brings a drop-down menu on screen. In drop-down menus:
(a) A small outward pointing arrow against a name means that a submenu will appear with a click on the name.
(b) Three dots (. . .) following a name means that a click on the name will bring a dialog on screen.
5. All constructions in this book involve the use of a mouse as the digitiser. When a mouse is the digitiser:
(a) A left-click means pressing the left-hand button (the Pick) button.
(b) A right-click means pressing the right-hand button (the Return) button.
(c) A double-click means pressing the left-hand button twice in quick succession.
(d) Dragging means moving the mouse until the cursor is over an item on screen, holding the left-hand button down and moving the mouse. The item moves in sympathy with the mouse movement.
(e) To pick has a similar meaning to a left-click.
6. Palettes are a particular feature of AutoCAD 2007. The Command palette, the DesignCenter palette and the Properties palette will be in frequent use.
7. Tools are shown as icons in the toolbars and panels.
8. When a tool is picked a tooltip describing the tool appears.
9. Dialogs allow opening and saving of files and the setting of parameters.
10. A number of right-click menus are used in AutoCAD 2007.
11. A number of buttons in the status bar can be used to toggle features such as snap and grid. Functions keys of the keyboard can be also used for toggling most of these functions.
12. The AutoCAD coordinate system determines the position in units of any point in the drawing area (Classic AutoCAD) and any point in 3D space (3D Modeling).
13. Drawings are usually constructed in templates with predetermined settings. Some templates include borders and title blocks.

CHAPTER 2

Introducing drawing

Aims of this chapter

The contents of this chapter are designed to introduce:

1. The construction of 2 D drawing in the Classic AutoCAD workspace.
2. The drawing of simple outlines using the Line, Circle and Polyline tools from the Draw toolbar or the 2D Draw control panel.
3. Drawing to snap points.
4. Drawing to absolute coordinate points.
5. Drawing to relative coordinate points.
6. Drawing using the 'tracking' method.
7. The use of the Erase, Undo and Redo tools.

The 2D Classic AutoCAD workspace

Illustrations throughout this chapter will be shown using the AutoCAD Classic workspace. However the methods of construction will be the same if the reader wishes to work in other workspaces. If the 2D Draw control panel is on screen, tools can be selected from the panel. In this chapter illustrations will show tools mainly selected from the Draw toolbar, but a few will show tools selected from the 2D Draw control panel. Whether working with the Draw toolbar or the 2D Draw control panel, the sequences and prompts which appear at the command line will be the same.

Drawing with the Line tool

First example - Line tool (Fig. 2.3)

1. Open AutoCAD. The drawing area will show the settings of the acadiso.dwt template - Limits set to 420,297, Grid set to 10, Snap set to $\mathbf{5}$ and Units set to $\mathbf{0}$.
2. Left-click on the Line tool in the Draw toolbar (Fig. 2.1).

Note
(a) The tooltip which appears when the tool icon is clicked.
(b) The prompt Command:_line Specify first point: which appears in the command window at the command line (Fig. 2.2).
3. Make sure Snap is on by either pressing the F9 key or the SNAP button in the status bar. <Snap on> will show in the command window.

Fig. 2.2 The prompt appearing at the command line in the command palette when Line is 'called'

Fig. 2.3 First example - Line tool

Fig. 2.4 The Close drawing button

Fig. 2.5 The AutoCAD warning window

```
Command:
Command:
Command: _line Specify first point:
```

4. Move the mouse around the drawing area. The cursors' pick box will jump from point to point at 5 unit intervals. The position of the pick box will show as coordinate numbers in the status bar (left-hand end).
5. Move the mouse until the coordinate numbers show $\mathbf{6 0 , 2 4 0 , 0}$ and press the Pick button of the mouse (left-click).
6. Move the mouse until the coordinate numbers show $\mathbf{2 6 0 , 2 4 0 , 0}$ and left-click.
7. Move the mouse until the coordinate numbers show $\mathbf{2 6 0 , 1 1 0 , 0}$ and left-click.
8. Move the mouse until the coordinate numbers show $\mathbf{6 0 , 1 1 0 , 0}$ and left-click.
9. Move the mouse until the coordinate numbers show $\mathbf{6 0 , 2 4 0 , 0}$ and left-click. Then press the Return button of the mouse (right-click).

Fig. 2.3 appears in the drawing area.

Second example - Line tool (Fig. 2.6)

1. Clear the drawing from the screen with a click on the Close drawing button (Fig. 2.4). Make sure it is not the AutoCAD 2007 window button.
2. The warning window Fig. 2.5 appears in the centre of the screen. Click its No button.

3. Left-click on New . . . in the File drop-down menu and from the Select template dialog which appears double-click on acadiso.dwt.
4. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:

Command:_line Specify first point: enter $\mathbf{8 0 , 2 3 5}$ right-click
Specify next point or [Undo]: enter 275,235 right-click Specify next point or [Undo]: enter 295,210 right-click Specify next point or [Close/Undo]: enter 295,100 right-click Specify next point or [Close/Undo]: enter 230,100 right-click Specify next point or [Close/Undo]: enter 230,70 right-click
Specify next point or [Close/Undo]: enter 120,70 right-click Specify next point or [Close/Undo]: enter 120,100 right-click Specify next point or [Close/Undo]: enter 55,100 right-click Specify next point or [Close/Undo]: enter 55,210 right-click Specify next point or [Close/Undo]: enter \mathbf{c} (Close) right-click Command:

The result is as shown in Fig. 2.6.

Fig. 2.6 Second example - Line tool

Third example - Line tool (Fig. 2.7)

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:
Command:_line Specify first point: enter $\mathbf{6 0 , 2 1 0}$ right-click
Specify next point or [Undo]: enter @ 50,0 right-click
Specify next point or [Undo]: enter @ $\mathbf{0 , 2 0}$ right-click
Specify next point or [Close/Undo]: enter @130,0 right-click
Specify next point or [Close/Undo]: enter @0,-20 right-click
Specify next point or [Close/Undo]: enter @ 50,0 right-click Specify next point or [Close/Undo]: enter @0,-105 right-click

Specify next point or [Close/Undo]: enter @ $\mathbf{- 5 0 , 0}$ right-click Specify next point or [Close/Undo]: enter @0,-20 right-click Specify next point or [Close/Undo]: enter $@-\mathbf{1 3 0 , 0}$ right-click Specify next point or [Close/Undo]: enter @ 0,20 right-click Specify next point or [Close/Undo]: enter @ $\mathbf{- 5 0 , 0}$ right-click Specify next point or [Close/Undo]: enter close) right-click Command:

The result is as shown in Fig. 2.7.

Fig. 2.7 Third example - Line tool

Notes

1. The figures typed at the keyboard determining the corners of the outlines in the above examples are two-dimensional (2D) \mathbf{x}, \mathbf{y} coordinate points. When working in 2D, coordinates are expressed in terms of two numbers separated by a comma.
2. Coordinate points can be shown as positive or negative numbers.
3. The method of constructing an outline as shown in the first two examples is known as the absolute coordinate entry method, where the $\mathbf{x , y}$ coordinates of each corner of the outlines are entered at the command line as required.
4. The method of constructing an outline as in the third example is known as the relative coordinate entry method - coordinate points are entered relative to the previous entry. In relative coordinate entry, the @ symbol is entered before each set of coordinates with the following rules in mind:
$+\mathbf{v e} \mathrm{x}$ entry is to the right
-ve x entry is to the left

+ ve y entry is upwards
-ve y entry is downwards.

5. The next example (the fourth) shows how lines at angles can be drawn taking advantage of the relative coordinate entry method. Angles in AutoCAD are measured in 360 degrees in a counter-clockwise (anticlockwise) direction (Fig. 2.8). The $<$ symbol precedes the angle.

Fig. 2.8 The counter-clockwise direction of measuring angles in AutoCAD

Fourth example - Line tool (Fig. 2.9)

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:

Command:_line Specify first point: 70,230
Specify next point: @ 220,0
Specify next point: @0,-70
Specify next point or [Undo]: @ $115<225$
Specify next point or [Undo]: @-60,0
Specify next point or [Close/Undo]: @ $115<135$
Specify next point or [Close/Undo]: @0,70
Specify next point or [Close/Undo]: c (Close)
Command:
The result is as shown in Fig. 2.9

Fig. 2.9 Fourth example - Line tool

Fifth example - Line tool (Fig. 2.10)
Another method of constructing accurate drawings is by using a method known as tracking. When Line is in use, as each Specify next point: appears at the command line, a rubber-banded line appears from the last point entered. Drag the rubber-band line in any direction and enter a number at the keyboard, followed by a right-click. The line is drawn in the dragged direction of a length in units equal to the entered number.

In this example because all lines are drawn in either the vertical or the horizontal direction, either press the F8 key or click the ORTHO button in the status bar.

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:

Command:_line Specify first point: enter $\mathbf{6 5 , 2 2 0}$ right-click Specify next point: drag to right enter $\mathbf{2 4 0}$ right-click Specify next point: drag down enter 145 right-click Specify next point or [Undo]: drag left enter $\mathbf{6 5}$ right-click Specify next point or [Undo]: drag upwards enter $\mathbf{2 5}$ right-click Specify next point or [Close/Undo]: drag left enter $\mathbf{1 2 0}$ right-click Specify next point or [Close/Undo]: drag upwards enter $\mathbf{2 5}$ rightclick
Specify next point or [Close/Undo]: drag left enter 55 right-click Specify next point or [Close/Undo]: c (Close) right-click Command:

The result is as shown in Fig. 2.10.

Fig. 2.10 Fifth example - Line tool

Fig. 2.II The Circle tool from the Draw toolbar

Fig. 2.12 First example - Circle. The command line prompts when Circle is called

Fig. 2.13 First example - Circle tool

Fig. 2.14 Second example - Circle tool - the two circles of radius 50

Fig. 2.15 Second example - Circle tool. The radius-40 circle tangential to the radius- 50 circles

Drawing with the Circle tool
 First example - Circle tool (Fig. 2.13)

1. Close the drawing just completed and open the acadiso.dwt screen.
2. Left-click on the Circle tool icon in the Draw toolbar (Fig. 2.11).
3. Enter numbers against the prompts appearing in the command window as shown in Fig. 2.12, followed by right-clicks. The circle (Fig. 2.13) appears on screen.
```
Command: circle Specify center point for circle or [3P/2P/Ttr (tan tan radius)]: \({ }^{-180,160}\)
Specify radius of circle or [Diameter]: 55
Command
```


Second example - Circle tool (Fig. 2.14)

1. Close the drawing and open the acadiso.dwt screen.
2. Left-click on the Circle tool icon and construct two circles as shown in the drawing Fig. 2.14 in the positions and with the radii shown in Fig. 2.15.
3. Click the Circle tool again and against the first prompt enter \mathbf{t} (the abbreviation for the prompt tan tan radius), followed by a right-click.

Fig. 2.16 The Erase tool icon from the Modify toolbar

Command_circle Specify center point for circle or [3P/2P/Ttr ($\tan \tan$ radius)]: enter \mathbf{t} right-click
Specify point on object for first tangent of circle: pick
Specify point on object for second tangent of circle: pick
Specify radius of circle (50): enter 40 right-click
Command:
The radius-40 circle tangential to the two circles already drawn then appears (Fig. 2.15).

Notes

1. When a point on either circle is picked a tip appears Deferred Tangent. This tip will only appear when the OSNAP button is set on with a click on its button in the status bar, or by pressing the $\mathbf{F 3}$ key of the keyboard.
2. Circles can be drawn through 3 points or 2 points entered at the command line in response to prompts brought to the command line by using 3P and $\mathbf{2 P}$ in answer to the circle command line prompts.

The Erase tool

If an error has been made when using any of the AutoCAD 2007 tools, the object or objects which have been incorrectly constructed can be deleted with the Erase tool. The Erase tool icon can be selected from the Modify toolbar (Fig. 2.16) or by entering \mathbf{e} at the command line.

First example - Erase (Fig. 2.18)

1. With Line construct the outline in Fig. 2.17.

2. Assuming two lines of the outline have been incorrectly drawn, left-click the Erase tool icon. The command line shows:
Command:_erase
Select objects: pick one of the lines
Select objects: pick the other line

Fig. 2.18 First example - Erase

Fig. 2.19 Second example - Erase

Select objects: right-click
Command:
And the two lines are deleted (right-hand drawing of Fig. 2.18).

Second example - Erase (Fig. 2.19)
The two lines could also have been deleted by the following method:

1. Left-click the Erase tool icon. The command line shows:

Command:_erase
Select objects: enter c (Crossing)
Specify first corner: pick Specify opposite corner: pick $\mathbf{2}$ found
Select objects: right-click
Command:
And the two lines are deleted as in the right-hand drawing of Fig. 2.18.

Undo and Redo tools

Two other tools of value when errors have been made are the Undo and Redo tools. To undo the last action taken by any tool when constructing a drawing, either left-click the Undo tool in the Standard toolbar

Fig. 2.20 The Undo tool in the Standard toolbar

Fig. 2.21 The Redo tool in the Standard toolbar

Fig. 2.22 The popup menu from the Redo arrow

Fig. 2.23 The Polyline tool icon in the 2D Draw control panel

Fig. 2.24 First example - Polyline tool
(Fig. 2.20) or type \mathbf{u} at the command line. No matter which method is adopted the error is deleted from the drawing.

Everything done during a session in constructing a drawing can be undone by repeated clicking on the Undo tool icon or by entering u's at the command line.

To bring back objects that have just been removed by the use of Undo's, left-click the Redo tool icon in the Standard toolbar (Fig. 2.21) or enter redo at the command line. Fig. 2.22 shows the popup menu of the Redo tool.

Drawing with the Polyline tool

When drawing lines with the Line tool, each line drawn is an object in its own right. A rectangle drawn with the Line tool is four objects. A rectangle drawn with the Polyline tool is a single object. Lines of different thickness, arcs, arrows and circles can all be drawn using this tool as will be shown in the examples describing constructions using the Polyline tool. Constructions resulting from using the tool are known as polylines or plines.

The Polyline tool can be called from the 2D Draw control panel (Fig. 2.23) or from the Draw toolbar.

First example - Polyline tool (Fig. 2.24)

Note

In this example enter and right-click have not been included.
Left-click the Polyline tool (Fig. 2.23). The command line shows:
Command:_pline Specify start point: 30,250
Current line width is 0
Specify next point or [Arc/Halfwidth/Length/Undo/Width]: 230,250
Specify next point or [Arc/Close/Halfwidth/Length/Undo/Width]: 230,120
Specify next point or [Arc/Close/Halfwidth/Length/Undo/Width]: 30,120
Specify next point or [Arc/Close/Halfwidth/Length/Undo/Width]: c (Close)
Command:

Notes

1. Note the prompts - Arc for constructing pline arcs; Close to close an outline; Halfwidth to halve the width of a wide pline; Length to enter the required length of a pline; Undo to undo the last pline constructed; Close to close an outline.
2. Only the capital letter(s) of a prompt needs to be entered in upper or lower case to make that prompt effective.
3. Other prompts will appear when the Polyline tool is in use as will be shown in later examples.

> Second example - Polyline tool (Fig. 2.25)

This will be a long sequence, but it is typical of a reasonably complex drawing using the Polyline tool. In the following sequences, when a prompt line is to be repeated, the prompts in square brackets ([]) will be replaced by [prompts](_face).

Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 40,250
Current line width is 0
Specify next point or [Arc/Halfwidth/Length/Undo/Width]: w (Width)
Specify starting width $<0>$: 5
Specify ending width $<5>$: right-click
Specify next point or [Arc/Close/Halfwidth/Length/Undo/Width]: 160,250
Specify next point or [prompts](_face): h (Halfwidth)
Specify starting half-width $<2.5>$: 1
Specify ending half-width $<1>$: right-click
Specify next point or [prompts](_face): 260,250
Specify next point or [prompts](_face): 260,180
Specify next point or [prompts](_face): w (Width)
Specify starting width $<1>$: 10
Specify ending width $\langle 10\rangle$: right-click
Specify next point or [prompts](_face): 260,120
Specify next point or [prompts](_face): h (Halfwidth)

Fig. 2.25 Second example Polyline tool

Specify starting half-width $<\mathbf{5 >}$: 2
Specify ending half-width $<2>$: right-click
Specify next point or [prompts](_face): 160,120
Specify next point or [prompts](_face): w (Width)
Specify starting width $<\mathbf{4}>$: 20
Specify ending width $<\mathbf{2 0}>$: right-click
Specify next point or [prompts](_face): 40,120
Specify starting width $<\mathbf{2 0}>$: 5
Specify ending width $<5>$: right-click
Specify next point or [prompts](_face): c (Close)
Command:
Third example - Polyline tool (Fig. 2.26)
Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 50,220
Current line width is 0
[prompts](_face): w (Width)
Specify starting width $<0>$: 0.5
Specify ending width $<0.5>$: right-click
Specify next point or [prompts](_face): 120,220
Specify next point or [prompts](_face): a (Arc)
Specify end point of arc or [prompts](_face): s (second pt)
Specify second point on arc: 150,200
Specify end point of arc: 180,220
Specify end point of arc or [prompts](_face): 1 (Line)
Specify next point or [prompts](_face): 250,220
Specify next point or [prompts](_face): 250,190
Specify next point or [prompts](_face): a (Arc)
Specify end point of arc or [prompts](_face): s (second pt)
Specify second point on arc: 240,170
Specify end point of arc: 250,150
Specify end point of arc or [prompts](_face): 1 (Line)
Specify next point or [prompts](_face): 250,150
Specify next point or [prompts](_face): 250,120
And so on until the outline in Fig. 2.26 is completed.

Fig. 2.26 Third example - Polyline tool

Fourth example - Polyline tool (Fig. 2.27)
Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 80,170
Current line width is 0
Specify next point or [prompts](_face): w (Width)
Specify starting width $<0>$: 1
Specify ending width $<1>$: right-click
Specify next point or [prompts](_face): a (Arc)
Specify end point or arc or [prompts](_face): s (second pt)
Specify second point on arc: 160,250
Specify end point of arc: 240,170
Specify end point of arc or [prompts](_face): cl (CLose)
Command:
And the circle in Fig. 2.27 is formed.

Fig. 2.27 Fourth example Polyline tool

Fifth example - Polyline tool (Fig. 2.28)
Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 60,180
Current line width is 0
Specify next point or [prompts](_face): w (Width)
Specify starting width $<0>$: 1
Specify ending width $<1>$: right-click
Specify next point or [prompts](_face): 190,180
Specify next point or [prompts](_face): w (Width)
Specify starting width $<1>$: 20
Specify ending width $<20>$: 0
Specify next point or [prompts](_face): 265,180
Specify next point or [prompts](_face): right-click
Command:

And the arrow in Fig. 2.28 is formed.

Fig. 2.28 Fifth example Polyline tool

Revision notes

The following terms have been used in this chapter:
Left-click - press the left-hand button of the mouse.
Click - same meaning as left-click.
Double-click - press the left-hand button of the mouse twice in quick succession.
Right-click - press the right-hand button of the mouse; it has the same result as pressing the Return key of the keyboard.
Drag - move the cursor on to an object and, holding down the right-hand button of the mouse pull the object to a new position.
Enter - type the letters of numbers which follow at the keyboard.
Pick - move the cursor on to an item on screen and press the left-hand button of the mouse.
Return - press the Enter key of the keyboard. This key may also be marked with a left-facing arrow. In most cases (but not always) it has the same result as a right-click.
Dialog - a window appearing in the AutoCAD window in which settings can be made.
Drop-down menu - a menu appearing when one of the names in the menu bars is clicked.
Tooltip - the name of a tool appearing when the cursor is placed over a tool icon from a toolbar.
Prompts - text appearing in the command window when a tool is selected which advise the operator as to which operation is required.
Methods of coordinate entry - Three methods of coordinate entry have been used in this chapter:

1. Absolute method - the coordinates of points on an outline are entered at the command line in response to prompts.
2. Relative method - the distances in coordinate units are entered preceded by @ from the last point which has been determined on an outline. Angles which are measured in a counter-clockwise direction are preceded by $>$.
3. Tracking - the rubber band of the tool is dragged in the direction in which the line is to be drawn and its distance in units is entered at the command line followed by a right-click.
Line and Polyline tools - an outline drawn using the Line tool consists of a number of objects equal to the number of lines in the outline. An outline drawn using the Polyline is a single object no matter how many plines are in the outline.

Exercises

1. Using the Line tool construct the rectangle in Fig. 2.29.

Fig. 2.29 Exercise I

2. Construct the outline in Fig. 2.30 using the Line tool. The coordinate points of each corner of the rectangle will need to be calculated from the lengths of the lines between the corners.

Fig. 2.30 Exercise 2

3. Using the Line tool, construct the outline in Fig. 2.31.

Fig. 2.31 Exercise 3

4. Using the Circle tool, construct the two circles of radius 50 and 30 . Then, using the Ttr prompt, add the circle of radius 25 (Fig. 2.32).

Fig. 2.32 Exercise 4

Fig. 2.33 Exercise 5

Fig. 2.34 Exercise 6

7. Using the Polyline tool, construct the outline given in Fig. 2.35.

Fig. 2.35 Exercise 7

Fig. 2.36 Exercise 8

8. Construct the outline in Fig. 2.36 using the Polyline tool.

9. With the Polyline tool construct the arrows shown in Fig. 2.37.

Draw	
Modeling	-
/ Line \nearrow Ray Construction Line Multiline	
\rightarrow Polyline 3 3D Polyline Polygon Rectangle Helix	
Arc Gircle Donut \sim Spline Ellipse Block	$\stackrel{+}{*}$
Table... Point Hatch...	-
Vradient... Boundary... Region Wipeout Revision Cloud	
Text	-

Fig. 3.1 The tool names in the Draw drop-down menu

Fig. 3.2 The Arc tool icon in the Draw toolbar

CHAPTER 3

Osnap, AutoSnap and Draw tools

Aims of this chapter

1. To describe the use of the Arc, Ellipse, Polygon and Rectangle tools from the Draw toolbar.
2. To describe the uses of the Polyline Edit (pedit) tool.
3. To introduce the AutoSnap system and its uses.
4. To introduce the Object Snap (osnap) system and it uses.
5. To introduce the Dynamic Input (DYN) system and its uses.

Introduction

The majority of tools in AutoCAD 2007 can be called into use in any one of the following four ways:

1. With a click on the tool's icon in the DASHBOARD palette.
2. By clicking on the tool's name in an appropriate drop-down menu. Fig. 3.1 shows the tool names displayed in the Draw drop-down menu.
3. By entering an abbreviation for the tool name at the command line in the Command palette. For example the abbreviation for the Line tool is $\mathbf{1}$, for the Polyline tool it is $\mathbf{p l}$ and for the Circle tool it is \mathbf{c}.
4. By entering the full name of the tool at the command line.

In practice operators constructing drawings in AutoCAD 2007 may well use a combination of these four methods.

The Arc tool

In AutoCAD 2007, arcs can be constructed using any three of the following characteristics of an arc: its Start point; a point on the arc (Second point); its Center; its End; its Radius; Length of the arc; Direction in which the arc is to be constructed; Angle between lines of the arc.

In the examples which follow, entering initials for these characteristics in response to prompts at the command line when the Arc tool is called allows arcs to be constructed in a variety of ways.

To call the Arc tool click on its tool icon in the Draw toolbar (Fig. 3.2), or click on Arc in the Draw drop-down menu. A sub-menu shows the possible methods of constructing arcs (Fig. 3.3). The abbreviation for calling the Arc tool is a.

Fig. 3.3 The Arc sub-menu of the Draw drop-down menu

First example - Arc tool (Fig. 3.4)
Left-click the Arc tool icon. The command line shows:
Command:_arc Specify start point of arc or [Center]: 100,220
Specify second point of arc or [Center/End]: 55,250
Specify end point of arc: 10,220
Command:
Second example - Arc tool (Fig. 3.4)
Command: right-click brings back the Arc sequence
ARC Specify start point of arc or [Center]: c (Center)
Specify center point of arc: 200,190
Specify start point of arc: 260,215
Specify end point of arc or [Angle/chord Length]: 140,215 Command:

Third example - Arc tool (Fig. 3.4)
Command: right-click brings back the Arc sequence
ARC Specify start point of arc or [Center]: 420,210
Specify second point of arc or [Center/End]: e (End)
Specify end point of arc: 320,210
Specify center point of arc or [Angle/Direction/Radius]: r (Radius)
Specify radius of arc: 75
Command:

The Ellipse tool

Ellipses can be regarded as what is seen when a circle is viewed from directly in front of the circle and the circle rotated through an angle about its horizontal diameter. Ellipses are measured in terms of two axes - a major axis and a minor axis; the major axis being the diameter of the circle and the minor axis being the height of the ellipse after the circle has been rotated through an angle (Fig. 3.5).

Fig. 3.5 An ellipse can be regarded as viewing a rotated circle

Fig. 3.6 The Ellipse tool icon in the Draw toolbar

To call the Ellipse tool, click on its tool icon in the Draw toolbar (Fig. 3.6) or click its name in the Draw drop-down menu. The abbreviation for calling the Ellipse tool is el.

> First example - Ellipse (Fig. 3.7)

Left-click the Ellipse tool icon. The command line shows:
Command:_ellipse
Specify axis endpoint of elliptical arc or [Center]: 30,190
Specify other endpoint of axis: 150,190
Specify distance to other axis or [Rotation]: 25
Command:

Fig. 3.7 Examples - Ellipse

Second example - Ellipse (Fig. 3.7)
In this second example, the coordinates of the centre of the ellipse (the point where the two axes intersect) are entered, followed by entering coordinates for the end of the major axis, followed by entering the units for the end of the minor axis.

Command: right-click
ELLIPSE
Specify axis endpoint of elliptical arc or [Center]: c
Specify center of ellipse: 260,190
Specify endpoint of axis: 205,190
Specify distance to other axis or [Rotation]: 30
Command:

Third example - Ellipse (Fig. 3.7)
In this third example, after setting the positions of the ends of the major axis, the angle of rotation of the circle from which an ellipse can be obtained is entered.

Command: right-click
ELLIPSE
Specify axis endpoint of elliptical arc or [Center]: 30,100
Specify other endpoint of axis: 120,100
Specify distance to other axis or [Rotation]: r (Rotation)
Specify rotation around major axis: 45
Command:

Saving drawings

Before going further it is as well to know how to save the drawings constructed when answering examples and exercises in this book. When a drawing has been constructed, left-click on File in the menu bar and on Save As . . in the drop-down menu (Fig. 3.8). The Save Drawing As dialog appears (Fig. 3.9).

Fig. 3.8 Selecting Save As . . . in the File drop-down menu

Fig. 3.9 The Save Drawing As dialog

Unless you are the only person to use the computer on which the drawing has been constructed, it is best to save work to a floppy disk, usually held in the drive A:. To save a drawing to a floppy in drive \mathbf{A} :

1. Place a floppy disk in drive \mathbf{A} :.
2. In the Save in: field of the dialog, click the arrow to the right of the field and from the popup list select $\mathbf{3 1 / 2}$ Floppy [A:].

3. In the File name: field of the dialog type a suitable name. The file name extension .dwg does not need to be typed because it will automatically be added to the file name.
4. Left-click the Save button of the dialog. The drawing will be saved to the floppy with the file name extension . $\mathbf{d w g}$ - the AutoCAD file name extension.

Osnap, AutoSnap and Dynamic Input

In previous chapters several methods of constructing accurate drawings have been described - using Snap; absolute coordinate entry; relative coordinate entry and tracking.

Other methods of ensuring accuracy between parts of constructions are by making use of Object Snaps (Osnaps), AutoSnap and Dynamic Input (DYN).

Snap, Grid, Osnap and DYN can be set from the buttons in the status bar or by pressing the keys F3 (Osnap), F7 (Grid), F9 (Snap) and F12 (DYN).

Object Snaps (Osnaps)

Osnaps allow objects to be added to a drawing at precise positions in relation to other objects already on screen. With osnaps, objects can be added to the end points, mid points, to intersections of objects, to centres and quadrants of circles, etc. Osnaps also override snap points even when snap is set on.

To set Osnaps, at the command line:

Command: enter os

And the Drafting Settings dialog appears. Click the Object Snap tab in the upper part of the dialog and click in each of the check boxes (the small squares opposite the osnap names). See Fig. 3.10.

When osnaps are set $\mathbf{O N}$, as outlines are constructed using osnaps, osnap icons and their tooltips appear as indicated in Fig. 3.11.

Fig. 3.10 The Drafting Settings dialog with some Osnaps set on

It is sometimes advisable not to have Osnaps set on in the Drafting Settings dialog, but to set Osnap off and use osnap abbreviations at the command line when using tools. The following examples show the use of some of these abbreviations.

Fig. 3.1I Three osnap icons and their tooltips

First example - Osnap abbreviations (Fig. 3.12)
Call the Polyline tool:
Command:_pline
Specify start point: 50,230
[prompts](_face): w (Width)
Specify starting width: 1
Specify ending width $<1>$: right-click
Specify next point: 260,230
Specify next point: right-click
Command: right-click
PLINE
Specify start point: end of pick the right-hand end of the pline
Specify next point: 50,120
Specify next point: right-click
Command: right-click
PLINE
Specify start point: mid of pick near the middle of first pline
Specify next point: 155,120
Specify next point: right-click
Command: right-click
PLINE
Specify start point: int of pick the plines at their intersection Specify start point: right-click
Command:
The result is shown in Fig. 3.12. In this illustration the osnap tooltips are shown as they appear when each object is added to the outline.

Fig. 3.12 First example - Osnaps

Fig. 3.13 Second example -

Osnaps

Second example - Osnap abbreviations (Fig. 3.I3)
Call the Circle tool:
Command:_circle
Specify center point for circle: 180,170
Specify radius of circle: 60
Command: enter \mathbf{I} (Line) right-click
Specify first point: enter qua right-click of pick near the upper quadrant of the circle Specify next point: enter cen right-click of pick near the centre of the circle
Specify next point: enter qua right-click of pick near right-hand side of circle
Specify next point: right-click Command:

Note
With osnaps off, the following abbreviations can be used:
end endpoint
int intersection
qua quadrant

ext	extension
mid	midpoint
cen	centre
nea	nearest

Using AutoSnap

AutoSnap is similar to Osnap. To set AutoSnap, right-click in the command window and from the menu which appears click Options . . . The Options dialog appears. Click the Drafting tab in the upper part of the dialog and set the check boxes against the AutoSnap Settings on (tick in boxes). These settings are shown on Figs 3.14 and 3.15.

With AutoSnap set, each time an object is added to a drawing the AutoSnap features appear as indicated in Fig. 3.16.

Part of a drawing showing the features of a number of AutoSnap points is given in Fig. 3.17.

Note

OSNAP must be set ON for the AutoSnap features to show when constructing a drawing with their aid.

Fig. 3.15 Setting the colours of the parts of the AutoSnap features

Fig. 3.16 The features of AutoSnap

Fig. 3.I7 A number of AutoSnap features

Fig. 3.18 The DYN tips appearing when no tool is in action and the cursor is moved

Fig. 3.19 Coordinate tips when DYN is in action

Dynamic Input

When DYN is set on by either pressing the F12 key or with a click on the DYN button in the status bar, dimensions, coordinate positions and commands appear as tips when no tool is in action (Fig. 3.18).

Specify opposite corner: 250

With a tool in action, as the cursor hairs are moved in response to movement of the mouse, DYN tips showing the coordinate figures for the point of the cursor hairs will show (Fig. 3.19), together with other details. To see the drop-down menu giving the prompts available with DYN press the down key of the keyboard and click the prompt to be used. Fig. 3.19 shows the Arc prompt as being the next to be used.

Notes on the use of DYN

1. A click on the Clean Screen icon in the bottom right-hand corner of the AutoCAD 2007 window produces an uncluttered workspace area with only the menu bar (Fig. 3.20). The command palette can also

Fig. 3.20 Example - Polyline Edit

be cleared from screen by entering commandlinehide at the command line. To bring it back press the keys $\mathbf{C t r l}+\mathbf{9}$. Some operators may well prefer working in such a larger than normal workspace. All the tool names or abbreviations can be entered at the keyboard. Thus working with DYN set on can be of benefit to those who prefer doing so.
2. Settings for DYN can be made in the Drafting Settings dialog (Fig. 3.21), brought to screen by entering ds at the command line.

An example of using DYN (Fig. 3.22)
This is a simple example of how DYN can be used to construct drawings in a Clear Screen workspace.

1. Turn DYN on with a click on its button in the status bar.
2. Turn OSNAP off with a click at the status bar.
3. Click the Clear Screen button at the bottom-right of the AutoCAD 2007 screen.
4. Enter commandlinehide to hide the command palette.
5. Enter pl (for Polyline) at the keyboard followed by pressing Return.
6. Enter $\mathbf{1 0 0 , 1 0 0}$ Return.
7. Enter $\mathbf{2 5 0 , 0}$ Return.
8. Enter 0,135 Return.
9. Enter $\mathbf{- 2 5 0 , 0}$ Return.
10. Enter 0,-50 Return.
11. Enter $\mathbf{8 0 , 0}$ Return.
12. Enter 0,-35 Return.
13. Enter $\mathbf{- 8 0 , 0}$ Return.
14. Enter c Return.

Fig. 3.2। Settings for DYN can be made in the Drafting Settings dialog

15. Enter pe (for Polyline Edit) Return.
16. Press the down arrow key of the keyboard.
17. In the menu which appears click Width Return.
18. Click on the pline just drawn and enter 2 Return.

The result is shown in Fig. 3.22.

Examples of using some Draw tools

First example - Polygon tool (Fig. 3.25)

1. Call the Polygon tool - either with a click on its tool icon in the 2D Draw control panel (Fig. 3.23), by entering pol or polygon at the command line. Or it can be called from the Draw drop-down menu (Fig. 3.24). The command line shows:

Command:_polygon Enter number of sides <4>: 6
Specify center of polygon or [Edge]: 60,210
Enter an option [Inscribed in circle/Circumscribed about circle]
$<\mathbf{I}>$: right-click (accept Inscribed)
Specify radius of circle: 60
Command:
2. In the same manner construct a $\mathbf{5}$-sided polygon of centre $\mathbf{2 0 0}, \mathbf{2 1 0}$ and radius 60 .

Fig. 3.22 An example of using DYN - stages in constructing the pline

Fig. 3.23 The Polygon tool icon in the 2D Draw control panel

Draw
Modeling
Line
Ray
Multiline
Polyline
3D Polyline
Polygon
Rectangle

Fig. 3.24 Calling the Polygon tool from the Draw drop-down menu

3. Then, construct an 8 -sided polygon of centre $\mathbf{3 3 0 , 2 1 0}$ and radius 60 .
4. Repeat to construct a 9 -sided polygon circumscribed about a circle of radius 60 and centre $\mathbf{6 0 , 8 0}$.
5. Construct yet another polygon with $\mathbf{1 0}$ sides of radius $\mathbf{6 0}$ and centre 200,80.
6. Finally another polygon circumscribing a circle of radius $\mathbf{6 0}$, of centre 330,80 and sides 12.

The result is shown in Fig. 3.25.

Fig. 3.25 First example Polygon tool

Fig. 3.26 The Rectangle tool icon and tooltip in the Draw toolbar

Second example - Rectangle tool (Fig. 3.27)
Call the Rectangle tool - either with a click on its tool icon in the Draw toolbar (Fig. 3.26) or by entering rec or rectangle at the command line. Or it can be called from the Draw drop-down menu. The command line shows:

Command:_rectang
Specify first corner point or [Chamfer/Elevation/Fillet/Thickness/ Width]: 25,240
Specify other corner point or [Area/Dimensions/Rotation]: 160,160 Command:

Third example - Rectangle tool (Fig. 3.27)
Command:_rectang
[prompts](_face): c (Chamfer)
Specify first chamfer distance for rectangles $<0>$: 15
Specify first chamfer distance for rectangles $<15>$: right-click
Specify first corner point: 200,240
Specify other corner point: 300,160
Command:

Fourth example - Rectangle (Fig. 3.27)

Command:_rectang
Specify first corner point or [Chamfer/Elevation/Fillet/Thickness/ Width]: w (Width)
Specify line width for rectangles $<\mathbf{0}>$: 4
Specify first corner point or [Chamfer/Elevation/Fillet/Thickness/ Width]: c (Chamfer)
Specify first chamfer distance for rectangles $<0>$: 10

Fig. 3.27 Examples - Rectangle tool

Specify second chamfer distance for rectangles <10>: 15 Specify first corner point or [Chamfer/Elevation/Fillet/Thickness/

Width]: 200,120
Specify other corner point or [Area/Dimensions/Rotation]: 315,25 Command:

The Polyline Edit tool

Fig. 3.28 Examples - Edit Polyline - the plines to be edited

Polyline Edit or Pedit is a valuable tool for editing plines.
First example - Polyline Edit (Figs 3.28 and 3.30)

1. With the Polyline tool construct the outlines $\mathbf{1}$ to $\mathbf{6}$ of Fig. 3.28.

2. Call the Edit Polyline tool - either from the Modify drop-down menu (Fig. 3.29), or by entering pe or pedit at the command line. The command line shows:

Command: enter pe
PEDIT Select polyline or [Multiple]: pick pline 2

Fig. 3.29 Calling Edit Polyline from the Modify drop-down menu

Fig. 3.30 Examples - Edit Polyline

Enter an option [Open/Join/Width/Edit vertex/Fit/Spline/Decurve/ Ltype gen/Undo]: w (Width)
Specify new width for all segments: 2
Enter an option [Open/Join/Width/Edit vertex/Fit/Spline/Decurve/ Ltype gen/Undo]: right-click
Command:
3. Repeat with pline $\mathbf{3}$ and pedit to Width $=\mathbf{1 0}$.
4. Repeat with pline $\mathbf{4}$ and enter \mathbf{s} (Spline) in response to the prompt line:

Enter an option [Open/Join/Width/Edit vertex/Fit/Spline/Decurve/ Ltype gen/Undo]:
5. Repeat with pline $\mathbf{5}$ and enter \mathbf{j} (Join) in response to the prompt line:

Enter an option [Open/Join/Width/Edit vertex/Fit/Spline/Decurve/
Ltype gen/Undo]:
The result is shown in pline 6 .
The resulting examples are shown in Fig. 3.30.

Example - Multiple Polyline Edit (Fig. 3.3I)

1. With the Polyline tool construct the left-hand outlines of Fig. 3.31.
2. Call the Edit Polyline tool. The command line shows:

Command: enter pe
PEDIT Select polyline or [Multiple]: m (Multiple)
Select objects: pick any one of the lines or arcs of the left-hand outlines of Fig. $3.31 \mathbf{1}$ found
Select objects: pick another line or arc $\mathbf{1}$ found 2 total
Continue selecting lines and arcs as shown by the pick boxes of the lefthand drawing of Fig. 3.31 until the command line shows:

Select objects: pick another line or arc 1 found 24 total
Select objects: right-click
[prompts](_face): w (Width)
Specify new width for all segments: 2
[prompts](_face): right-click
Command:
The result is shown in the right-hand drawing of Fig. 3.31.

Fig. 3.3I Example - Multiple Polyline Edit

Transparent commands

When any tool is in operation it can be interrupted by prefixing the interrupting command with an apostrophe ('). This is particularly useful when the operator wishes to zoom when constructing a drawing (see page 61). As an example when the Line tool is being used:

Command:_line
Specify first point: 100,120

Specify next point: 190,120
Specify next point: enter ' z (Zoom)
\gg Specify corner of window or [prompts](_face): pick
$\ggg>$ Specify opposite corner: pick
Resuming line command.
Specify next point:
And so on. The transparent command method can be used with any tool.

The set variable PELLIPSE

Many of the operations performed in AutoCAD are carried out under the settings of set variables. Some of the numerous set variables available in AutoCAD 2007 will be described in later pages. The variable PELLIPSE controls whether ellipses are drawn as splines or as polylines. It is set as follows:

Command: enter pellipse right-click
Enter new value for PELLIPSE $<\mathbf{0}>$: enter 1 right-click Command:

And now when ellipses are drawn they are plines. If the variable is set to $\mathbf{0}$, the ellipses will be splines. The value of changing ellipses to plines is that they can then be edited using the Edit Polyline tool.

Revision notes

The following terms have been used in this chapter:
Field - a part of a window or dialog in which numbers or letters are entered or can be read.
Popup list - a list brought in screen with a click on the arrow often found at the right-hand end of a field.
Object - a part of a drawing which can be treated as a single object. For example a line constructed with the Line tool is an object; a rectangle constructed with the Polyline tool is an object; an arc constructed with the Arc tool is an object. It will be seen in Chapter 10 that several objects can be formed into a single object.
Toolbar - a collection of tool icons all of which have similar functions. For example in the Classic AutoCAD workspace the Draw toolbar contains tool icons of those tools which are used for drawing and the Modify toolbar contains tool icons of those tools used for modifying parts of drawings.
DASHBOARD palette - when working in either the Classic AutoCAD workspace, in the 3D Modeling workspace, or in the My Workspace workspace, tool icons are held in the DASHBOARD palette.
Command line - a line in the command palette which commences with the word Command:

Snap, Grid and Osnap can be toggled with clicks on their respective buttons in the status bar.
These functions can also be set with function keys: Snap - F9; Grid - F7 and Osnap - F3.
Osnaps ensure accurate positioning of objects in drawings.
AutoSnap can also be used for ensuring accurate positioning of objects in relation to other objects in a drawing.
Osnap must be set ON before AutoSnap can be used.
Osnap abbreviations can be used at the command line rather than setting it ON in the Drafting Settings dialog.
DYN - Dynamic input. Allows constructions in an enlarged workspace, without having to use the command palette.

Notes on tools

1. Polygons constructed with the Polygon tool are regular polygons - the edges of the polygons are all the same length and the angles are of the same degrees.
2. Polygons constructed with the Polygon tool are plines, so they can be acted upon with the Edit Polyline tool.
3. The easiest method of calling the Edit Polyline tool is to enter pe at the command line.
4. The Multiple prompt of the pedit tool saves considerable time when editing a number of objects in a drawing.
5. Transparent commands can be used to interrupt tools in operation by preceding the interrupting tool name with an apostrophe (').
6. Ellipses drawn when the variable PELLIPSE is set to $\mathbf{0}$ are splines, when PELLIPSE is set to 1, ellipses are polylines. When ellipses are in polyline form they can be modified using the pedit tool.

Exercises

1. Using the Line and Arc tools, construct the outline given in Fig. 3.32.

Fig. 3.32 Exercise I

2. With the Line and Arc tools, construct the outline in Fig. 3.33.

Fig. 3.33 Exercise 2

Fig. 3.34 Exercise 3

3. Using the Ellipse and Arc tools, construct the drawing in Fig. 3.34.

4. With the Line, Circle and Ellipse tools construct Fig. 3.35.

Fig. 3.35 Exercise 4
5. With the Ellipse tool, construct the drawing in Fig. 3.36.

Fig. 3.36 Exercise 5

Fig. 3.37 Exercise 6

6. Fig. 3.37 shows a rectangle in the form of a square with hexagons along each edge. Using the Dimensions prompt of the Rectangle tool construct the square. Then, using the Edge prompt of the Polygon tool, add the four hexagons. Use the Osnap endpoint to ensure the polygons are in their exact positions.

7. Fig. 3.38 shows seven hexagons with edges touching. Construct the inner hexagon using the Polygon tool, then with the aid of the Edge prompt of the tool, add the other six hexagons.
8. Fig. 3.39 was constructed using only the Rectangle tool. Make an exact copy of the drawing using only the Rectangle tool.

Fig. 3.39 Exercise 8

9. Construct the drawing in Fig. 3.40 using the Line and Arc tools. Then, with the aid of the Multiple prompt of the Edit Polyline tool change the outlines into plines of Width=1.

10. Construct Fig. 3.41 using the Line and Arc tools. Then change all widths of lines and arcs to a width of 2 with Polyline Edit.

Fig. 3.41 Exercise 10

Fig. 3.42 Exercise II

CHAPTER 4

Zoom, Pan and templates

Aims of this chapter

1. To demonstrate the value of the Zoom tools.
2. To introduce the Pan tool.
3. To describe the value of using the Aerial View window in conjunction with the Zoom and Pan tools.
4. To update the acadiso.dwt template.
5. To describe the construction and saving of drawing templates.

Introduction

The use of the Zoom tools allows not only the close inspection of the most minute areas of a drawing in the AutoCAD 2007 drawing area, but allows the construction of very small details accurately in a drawing.

The Zoom tools can be called from the Zoom sub-menu of the View drop-down menu (Fig. 4.1). However by far the easiest and

Fig. 4.I Calling the Zoom tools from the Zoom sub-menu of the View drop-down menu

quickest method of calling Zooms is to enter \mathbf{z} at the command line as follows:

Command: enter \mathbf{z} right-click
ZOOM Specify corner of window, enter a scale factor ($\mathbf{n X}$ or $\mathbf{n X P}$) or [All/Center/Dynamic/Extents/Previous/Scale/Window/Object] <real time>:

This allows the different zooms:
Realtime - selects parts of a drawing within a window.
All - the screen reverts to the limits of the template.
Center - the drawing centres itself around a picked point.
Dynamic - a broken line surrounds the drawing which can be changed in size and repositioned to a part of the drawing.
Extents - the drawing fills the AutoCAD drawing area.
Previous - the screen reverts to its previous zoom.
Scale - entering a number or a decimal fraction scales the drawing.
Window - the parts of the drawing within a picked window appears on screen. The effect is the same as using real time.
Object - pick any object on screen and the object zooms.
The operator will probably be using Realtime, Window and Previous zooms most frequently.

Note the following illustrations: Fig. 4.2 - a drawing which has been constructed; Fig. 4.3 - a Zoom Window of part of the drawing allowing it to be checked for accuracy and Fig. 4.4 - a Zoom Extents.

It will be found that the Zoom tools are among those most frequently used when working in AutoCAD 2007.

Fig. 4.2 A drawing constructed using the Polyline tool

The Aerial View window

Left-click on Aerial View from the View drop-down menu and the Aerial View window appears - usually in the bottom right-hand corner of the AutoCAD 2007 window (Fig. 4.6). The Aerial View window shows the whole of a drawing with that part which is within the Limits of the drawing template

Fig. 4.3 A Zoom Window of part of the drawing in Fig. 4.2

Fig. 4.4 A Zoom Extents of the drawing in Fig. 4.2

being used bounded with a thick black line. The Aerial View window is of value when dealing with large drawings - it allows that part of the window on screen to be shown in relation to other parts of the drawing. Fig. 4.5 shows the three-view orthographic projection of a small bench vice shown, in Figs 4.6 and 4.8.

The area of the drawing within a Zoom window in the drawing area is bounded by a thick black line in the Aerial View window.

Fig. 4.5 The drawing used to illustrate Figs 4.6 and 4.8

Fig. 4.6 A Zoom Window of the drawing in Fig 4.5 with its surrounding zoom rectangle showing in the Aerial View window

The Pan tool

The Pan tools can be called from the Pan sub-menu of the View dropdown menu (Fig. 4.7) or by entering \mathbf{p} at the command line. When the tool is called, the cursor on screen changes to an icon of a hand. Dragging the hand across screen under mouse movement allows various parts of the

Fig. 4.7 Calling the Pan tools from the Pan sub-menu of the View drop-down menu

Fig. 4.8 The Pan tool in action showing a part of the drawing, while the whole drawing is shown in the Aerial View window

drawing not on screen to be viewed. As the dragging takes place, the black rectangle in the Aerial View window moves in sympathy (see Fig. 4.8). The Pan tool allows any part of the drawing to be viewed and/or modified. When that part of the drawing which is required is on screen a right-click calls up the menu as shown in Fig. 4.8, from which either the tool can be exited or other tools can be called.

Notes

1. If using a mouse with a wheel both zooms and pans can be performed with the aid of the wheel. See page 6.
2. The Zoom tools are important in that they allow even the smallest parts of drawings to be examined and, if necessary, amended or modified.
3. The zoom tools can be called from the Zoom sub-menu of the View drop-down menu or by entering zoom at the command line. But easiest of all is to enter \mathbf{z} at the command line followed by a right-click.
4. Similarly the easiest method of calling the Pan tool is to enter \mathbf{p} at the command line followed by a right-click.
5. When constructing large drawings, the Pan tool and the Aerial View window are of value for allowing work to be carried out in any part of a drawing, while showing the whole drawing in the Aerial View window.

Drawing templates

In Chapters 1-3, drawings were constructed in the template acadiso.dwt which loaded when AutoCAD 2007 was opened. Now the default acadiso template is amended with Limits set to $\mathbf{4 2 0 , 2 9 7}$ (coordinates within which a drawing can be constructed), Grid set to 10, Snap set to 5, and the drawing area Zoomed to All.

Throughout this book most drawings will be based on an $\mathbf{A 3}$ sheet, which measures 420 units by 297 units (the same as the Limits).

Note

As mentioned on page 16 if there are multiple users to the computer on which drawings are being constructed, it is as well to save the template being used to another file name or, if thought necessary, to a floppy disk. A file name My_template.dwt, as suggested earlier, or a name such as book_template can be given.

Adding features to the template

Four other features will now be added to our template:

1. Text style - set in the Text Style dialog.
2. Dimension style - set in the Dimension Style Manager dialog.
3. Shortcutmenu variable - set to $\mathbf{0}$.
4. Layers - set in the Layer Properties Manager dialog.

Setting Text

1. At the command line:

Command: enter st (Style) right-click
2. The Text Style dialog appears (Fig. 4.9). In the dialog, enter $\mathbf{6}$ in the Height field. Then left-click on Arial in the Font Name popup list. Arial font letters appear in the Preview area of the dialog.
3. Left-click the New . . . button and enter ARIAL in the New Text Style sub-dialog which appears (Fig. 4.10) and click the OK button.
4. Left-click the Close button of the Text Style dialog.

Setting Dimension style
Settings for dimensions require making entries in a number of sub-dialogs in the Dimension Style Manager. To set the dimensions style:

Fig. 4.9 The Text Style dialog

Fig. 4.IO The New Text Style sub-dialog

1. At the command line:

Command: enter d right-click
And the Dimensions Style Manager dialog appears (Fig. 4.11).
2. In the dialog, click the New . . . button. In the Create New Dimension Style sub-dialog which appears, enter my_style in the New Style Name field, followed by a click on the sub-dialog's Continue button.
3. The New Dimension Style sub-dialog appears (Fig. 4.12). In the dialog make settings as shown. Then click the OK button of that dialog.
4. The original Dimension Style Manager reappears. Click its Modify button.
5. In the Modify Dimension Style sub-dialog which appears (Fig. 4.13), click the Text tab at the top of the dialog. Then click the arrow to the right of the Text style field and select Arial from the popup list. Enter a height of $\mathbf{6}$ in the Text height field and 2 in the Offset from dim line field.

Fig. 4.II The Dimension Style Manager dialog

Fig. 4.12 Setting symbols and arrows in the New Dimension Style sub-dialog

6. Then click the Primary Units tab and set the units Precision in both Linear and Angular dimensions to 0, that is no units after decimal point. Click the sub-dialogs OK button (Fig. 4.14). The Dimension Style Manager dialog reappears showing dimensions, as they will appear in a drawing, in the Preview of: my_style box. Click the Set Current button, followed by another click on the Close button (Fig. 4.15).

Fig. 4.13 Setting text style and height in the Text sub-dialog

Fig. 4.14 Setting units in the Primary Units sub-dialog

Setting the shortcutmenu variable

Call the line tool, draw a few lines and then right-click. The right-click menu shown in Fig. 4.16 may well appear. The menu will also appear when any tool is called. Some operators prefer using this menu when constructing drawings. To stop this menu appearing:

Fig. 4.15 Click the Set Current button

Fig. 4.16 The right-click menu

Fig. 4.17 The Layer Properties Manager tool icon in the Layers toolbar

Command: enter shortcutmenu right-click
Enter new value for SHORTCUTMENU <12>: 0 Command:

And the menu will no longer appear when a tool is in action.
Setting Layers (see also page 121)

1. Left-click on the Layer Properties Manager tool icon in the Layers toolbar (Fig. 4.17).
The Layer Properties Manager dialog appears on screen (Fig. 4.18).
2. Click the New Layer icon. A new layer appears. Overwrite the name Layer1 by entering Centre.
3. Repeat step 2 four times and make four more layers titled Construction, Dimensions, Hidden and Text.

4. Click against one of the squares under the Color column of the dialog. The Select Color dialog appears (Fig. 4.19). Double-click on one of the colours in the Index Color squares. The selected colour appears against the layer name in which the square was selected. Repeat until all the five new layers have a colour.
5. Click on the linetype Continuous against the layer name Centre. The Select Linetype dialog appears (Fig. 4.20). Click its Load . . . button and from the Load or Reload Linetypes dialog double-click CENTER2. The dialog disappears and the name appears in the Select Linetype dialog. Click the OK button and the linetype CENTER2 appears against the layer Centre.

Fig. 4.18 The Layer Properties Manager dialog

Fig. 4.20 The Select Linetype dialog

Fig. 4.2I The Lineweight dialog

Fig. 4.22 Saving the template to the name acadiso.dwt
6. Repeat this with layer Hidden - load the linetype HIDDEN2 and make the linetype against this layer HIDDEN2.
7. Click on any of the lineweights in the Layer Properties Manager. This brings up the Lineweight dialog (Fig. 4.21). Select the lineweight 0.3. Repeat the same for all other layers. Then click the OK button of the Layer Properties Manager.

Saving the template file

1. Left-click Save As . . . in the File drop-down menu.
2. In the Save Drawing As dialog which comes on screen (Fig. 4.22), click the arrow to the right of the Files of type field and in the popup

list associated with the field click on AutoCAD Drawing Template (*.dwt). The list of template files in the AutoCAD 2007/Template directory appears in the file list.
3. Click on acadiso in the file list, followed by a click on the Save button.
4. A Template Description dialog appears. Make entries as indicated in Fig. 4.23, making sure that Metric is chosen from the popup list.

The template can now be saved to be opened for the construction of drawings as needed.

When AutoCAD 2007 is opened the template acadiso.dwt fills the drawing area.

Note

Please remember that if there are multiple users to the computer it is advisable to save the template to a name of your own choice.

Another template

A template A3_template.dwt - Fig. 4.26
In the Select Template dialog a click on any of the file names causes a preview of the template to appear in the Preview box of the dialog, unless the template is free of information - as is acadiso.dwt. To construct another template which includes a title block and other information based on the acadiso.dwt template:

1. In an acadiso.dwt template construct the required border, title block etc.
2. Click the Layout1 tab in the status bar (Fig. 4.24). The screen is now in a Paper Space setting.
3. Click the Maximize Viewport icon in the status bar (Fig. 4.25).
4. Zoom to Extents.
5. It is suggested this template be saved as a Paper Space template with the name A3_template.dwt.

Fig. 4.24 The Layoutl button on the status bar

Fig. 4.25 The Maximize Viewport icon in the status bar

Notes

1. The outline for this template is a pline from $\mathbf{0 , 2 9 0}$ to $\mathbf{4 2 0 , 2 9 0}$ to $\mathbf{4 2 0 , 0}$ to $\mathbf{0 , 0}$ to $\mathbf{2 9 0 , 0}$ and of width $\mathbf{0 . 5}$ (Fig. 4.26).
2. The upper line of the title block is a pline from $\mathbf{0 , 2 0}$ to $\mathbf{4 2 0 , 2 0}$.
3. Pspace is two-dimensional.
4. Further uses for Layouts and Pspace are given in Chapter 20.

Revision notes

1. The Zoom tools are important in that they allow even the smallest parts of drawings to be examined and, if necessary, amended or modified.
2. The Zoom tools can be called from the Zoom sub-menu of the View drop-down menu, or by entering \mathbf{z} or $\mathbf{z o o m}$ at the command line. The easiest is to enter \mathbf{z} at the command line followed by a right-click.
3. There are four methods of calling tools for use - selecting a tool icon from a toolbar or from the DASHBOARD palette; entering the name of a tool in full at the command line; entering an abbreviation for a tool; or selecting from a drop-down menu.
4. When constructing large drawings, the Pan tool and the Aerial View window are of value for allowing work to be carried out in any part of a drawing, while showing the whole drawing in the Aerial View window.
5. An A 3 sheet of paper is 420 mm by 297 mm . If a drawing constructed in the template acadiso.dwt is printed/plotted full size (scale 1:1), each unit in the drawing will be 1 mm in the print/plot.
6. When limits are set it is essential to call Zoom followed by a (All) to ensure that the limits of the drawing area are as set.
7. The right-click menu which appears when using tools can be aborted if required by setting the SHORTCUTMENU variable to $\mathbf{0}$.

CHAPTER 5

Modify	
Q Match Properties	
Object	-
Clip	-
2 Erase	
O\% Copy	
$\Delta \triangle$ Mirror	
§ Offset	
枵 Array...	
$\stackrel{4}{*}$ Move	
\bigcirc Rotate	
\square Scale	
$\square \triangle$ Stretch	
Lengthen	
- Trim	
\cdots Extend	
\square Break	
$\rightarrow+$ Join	
1 F Chamfer	
Fillet	
3D Operation	-
Solids Editing	-
Change Space	
激 Explode	

Fig. 5.I The Modify tools in the Modify drop-down menu

Fig. 5.2 The Copy tool in the Modify toolbar

The Modify tools

Aim of this chapter

To describe the uses of tools for modifying parts of drawings.

Introduction

These tools are among the most frequently used tools of AutoCAD 2007. Their tool icons are found in the Modify drop-down menu (Fig. 5.1) or in the Modify toolbar in the 2D Classic AutoCAD workspace (Fig. 5.2) or in the lower set of tool icons in the Draw control panel.

Using the Erase tool was described in Chapter 2. Examples of tools other than the Explode tool follow. See Chapter 10 for Explode.

The Copy tool

Example - Copy (Fig. 5.5)

1. Construct Fig. 5.3 using Polyline. Do not include the dimensions.
2. Call the Copy tool - either left-click on its tool icon in the Modify toolbar (Fig. 5.2), or pick Copy from the Modify drop-down menu, or enter cp or copy at the command line, or left-click its tool icon in the 2D Draw control panel (Fig. 5.4). The command line shows:

Command:_copy
Select objects: pick the cross $\mathbf{1}$ found
Select objects: right-click
Specify base point or [Displacement] <Displacement>: end of pick
Specify second point of displacement or <use first point as displacement>: pick
Specify second point or [Exit/Undo] <Exit>: right-click
Command:
The result is given in Fig. 5.5.

Fig. 5.3 Example - Copy outlines

Fig. 5.4 The Copy tool icon from the 2D Draw control panel

Fig. 5.5 Example - Copy

Example - Multiple copy (Fig. 5.6)

1. Erase the copied object.
2. Call the Copy tool. The command line shows:

Command:_copy
Select objects: pick $\mathbf{1}$ found
Select objects: right-click
Specify base point or [Displacement] <Displacement>: pick
Specify second point of displacement or <use first point as displacement>: pick
Specify second point of displacement or <Exit/Undo>: pick
Specify second point of displacement or <Exit/Undo>: right-click Command:

The result is shown in Fig. 5.6.

Fig. 5.6 Example - Multiple

Copy

Fig. 5.7 First example - Mirror outline

The Mirror tool

First example - Mirror (Fig. 5.9)

1. Construct the outline in Fig. 5.7 using Line and Arc tools.
2. Call the Mirror tool - either left-click on its tool icon in the Modify toolbar (Fig. 5.8), or pick Mirror from the Modify drop-down menu, or enter mi or Mirror at the command line. The command line shows:

Command:_mirror
Select objects: pick first corner Specify opposite corner: pick 7 found Select objects: right-click
Specify first point of mirror line: end of pick
Specify second point of mirror line: end of pick
Delete source objects [Yes/No] < N > : right-click
Command:
The result is shown in Fig. 5.9.

Second example - Mirror (Fig. 5.IO)

1. Construct the outline shown in the dimensioned polyline in the top drawing of Fig. 5.10.
2. Call Mirror and using the tool three times complete the given outline. The two points shown in Fig. 5.10 are to mirror the right-hand side of the outline.

Third example - Mirror (Fig. 5. I I)

If text is involved when using the Mirror tool, the set variable MIRRTEXT must be set correctly. To set the variable:

Command: mirrtext
Enter new value for MIRRTEXT $<1>$: 0
Command:

Fig. 5.10 Second example Mirror

-	\bigcirc	\bigcirc	\square
11	11	II	11
F	๒	-	-
	$\stackrel{\times}{Ш}$	Ш	ய
¢	-	-	-
\simeq	$\underset{\sim}{\square}$	$\underline{\square}$	\cdots
$\bar{\Sigma}$	$\bar{\Sigma}$	$\bar{\Sigma}$	了

Fig. 5.II Third example - Mirror

Fig. 5.12 The Offset tool from the 2D Draw control panel

If set to $\mathbf{0}$ text will mirror without distortion. If set to $\mathbf{1}$ text will read backwards as indicated in Fig. 5.11.

The Offset tool

Examples - Offset (Fig. 5.14)

1. Construct the four outlines shown in Fig. 5.13.
2. Call the Offset tool - either left-click its tool icon in the 2D Draw control panel (Fig. 5.12), or pick the tool name in the Modify dropdown menu, or enter $\mathbf{0}$ or offset at the command line. The command line shows:

Command:_offset
Current settings: Erase source=No Layer=Source OFFSETGAPTYPE=0
Specify offset distance or [Through/Erase/Layer] <Through>: 10
Select object to offset or [Exit/Undo] <Exit>: pick drawing 1
Specify point on side to offset or [Exit/Multiple/Undo] <Exit>: pick inside the rectangle
Select object to offset or [Exit/Undo] <Exit>: right-click

Command:

3. Repeat the same for drawings $\mathbf{2 , 3}$ and $\mathbf{4}$ in Fig. 5.13 as shown in Fig. 5.14.

Fig. 5.13 Examples - Offset outlines

Fig. 5.14 Examples - Offset

Fig. 5.I5 First example - Array drawing to be arrayed

Fig. 5.16 The Array tool icon from the Modify toolbar

The Array tool

Arrays can be in either a Rectangular form or a Polar form as shown in the examples below.

First example - Rectangular Array (Fig. 5. I7)

1. Construct the drawing in Fig. 5.15.
2. Call the Array tool - either left-click the Array tool icon in the Modify toolbar (Fig. 5.16), or pick Array . . . from the Modify drop-down menu, or enter ar or array at the command line. No matter which method is used the Array dialog appears (Fig. 5.17).
3. Make settings in the dialog:

Rectangular Array radio button set on (dot in button).
Rows field - enter 5
Columns field - enter 6

Fig. 5.17 First example - the Array dialog

Row offset field - enter - $\mathbf{5 0}$ (note the minus sign)
Column offset field - enter 50
4. Click the Select objects button and the dialog disappears. Window the drawing. The dialog reappears.
5. Click the Preview< button. The dialog disappears and the array appears with a warning dialog in the centre of the array (Fig. 5.18).
6. If satisfied click the Accept button. If not click the Modify button and make revisions to the Array dialog fields.

Fig. 5.18 First example - Array

Fig. 5.19 Second example Array - drawing to be arrayed

Fig. 5.20 Second example Array - settings in the dialog

Second example - Polar Array (Fig. 5.22)

1. Construct the drawing in Fig. 5.19.
2. Call Array. The Array dialog appears. Make settings as shown in Fig. 5.20.

3. Click the Select objects button of the dialog and window the drawing. The dialog returns to screen. Click the Pick Center Point button (Fig. 5.21) and when the dialog disappears, pick a centre point for the array.

4. The dialog reappears. Click its Preview < button and when the array appears with its warning dialog, if satisfied with the result, click the Accept button of this dialog (Fig. 5.22).

Fig. 5.22 Second example Array

Fig. 5.23 Example - Move drawing

Fig. 5.24 The Move tool from the Modify toolbar

The Move tool

Example - Move (Fig. 5.25)

1. Construct the drawing in Fig. 5.23.

2. Call Move - either click the Move tool icon in the Modify toolbar (Fig. 5.24), or pick Move from the Modify drop-down menu, or enter \mathbf{m} or move at the command line, which then shows:

Command:_move
Select objects: pick the shape in the middle of the drawing $\mathbf{1}$ found
Select objects: right-click
Specify base point or [Displacement] <Displacement>: pick
Specify second point or <use first point as displacement>: pick Command:

The result is given in Fig. 5.25.

Fig. 5.25 Example - Move

Fig. 5.26 The Rotate tool icon from the Modify toolbar
object which has
been moved

The Rotate tool

When using the Rotate tool remember that the default rotation of objects within AutoCAD 2007 is counterclockwise (anticlockwise).
Example - Rotate (Fig. 5.27)

1. Construct drawing 1 of Fig. 5.27 with Polyline. Copy the drawing 1 three times - shown as drawings 2, 3 and $\mathbf{4}$ in Fig. 5.27.
2. Call Rotate - either left-click its tool icon in the Modify toolbar (Fig. 5.26), or pick Rotate from the Modify drop-down menu, or enter ro or rotate at the command line. The command line shows:

Command:_rotate
Current positive angle in UCS: ANGDIR=counterclockwise ANGBASE=0
Select objects: window the drawing $\mathbf{3}$ found
Select objects: right-click
Specify base point: pick
Specify rotation angle or [Copy/Reference] <0>: 45
Command:
And the first copy rotates through the specified angle.
3. Repeat for drawings $\mathbf{3}$ and $\mathbf{4}$ rotating through angles as shown in Fig. 5.27.

The Scale tool

Examples - Scale (Fig. 5.29)

1. Using the Rectangle and Polyline tools, construct drawing 1 of Fig. 5.29. The Rectangle fillets are R10. The line width of all parts is $\mathbf{1}$. Copy the drawing three times to give drawings 2,3 and 4.
2. Call Scale - either left-click its tool icon in the 2D Draw control panel (Fig. 5.28), or pick Scale from the Modify drop-down menu, or click its tool icon in the Modify toolbar, or enter sc or scale at the command line, which then shows:

Command:_scale

Select objects: window drawing 25 found
Select objects: right-click
Specify base point: pick
Specify scale factor or [Copy/Reference] <1>: 0.75 Command:
3. Repeat for the other two drawings $\mathbf{3}$ and $\mathbf{4}$, scaling them to the scales given with the drawings.
The results are shown in Fig. 5.29.

base point
Fig. 5.29 Examples - Scale

The Trim tool

This tool is one which will be frequently used for the construction of drawings.

Fig. 5.30 The Trim tool icon from the Modify toolbar

Fig. 5.3I First example - Trim

First example - Trim (Fig. 5.3I)

1. Construct the drawing Original drawing in Fig. 5.31.
2. Call Trim - either left-click its tool icon in the Modify toolbar (Fig. 5.30), or pick Trim from the Modify drop-down menu, or enter tr or trim at the command line, which then shows:

Command:_trim
Current settings: Projection UCS. Edge=None
Select cutting edges: pick the left-hand circle 1 found
Select objects: right-click
Select objects to trim or shift-select to extend or [Fence/Project/
Crossing/Edge/eRase/Undo]: pick one of the objects
Select objects to trim or shift-select to extend or [Fence/Crossing/
Project/Edge/eRase/Undo]: pick the second of the objects
Select objects to trim or shift-select to extend or [Project/Edge/
Undo]: right-click
Command:
3. This completes the First stage as shown in Fig. 5.31. Repeat the Trim sequence for the Second stage.
4. The Third stage drawing of Fig. 5.31 shows the result of the trims at the left-hand end of the drawing.
5. Repeat for the right-hand end. The final result is shown in the drawing labelled Result in Fig. 5.31.

Second example - Trim (Fig. 5.32)

1. Construct the left-hand drawing of Fig. 5.32.
2. Call Trim. The command line shows:

Command:_trim
Current settings: Projection UCS. Edge=None

Fig. 5.32 Second example - Trim

Select cutting edges . . .
Select objects or <select all>: pick the left-hand arc $\mathbf{1}$ found
Select objects: right-click
Select objects to trim or shift-select to extend or [Fence/Crossing/ Project/Edge/eRase/Undo]: e (Edge)
Enter an implied edge extension mode [Extend/No extend] <No extend >: e (Extend)
Select objects to trim: pick
Select objects to trim: pick
Select objects to trim: right-click

Command:

3. Repeat for the other required trims. The result is given in Fig. 5.32.

The Stretch tool
 Examples - Stretch (Fig. 5.33)

As its name implies the Stretch tool is for stretching drawings or parts of drawings. The action of the tool prevents it from altering the shape of circles in any way. Only crossing or polygonal windows can be used to determine the part of a drawing which is to be stretched.

1. Construct the drawing labelled Original in Fig. 5.33, but do not include the dimensions. Use the Circle, Arc, Trim and Polyline Edit tools. The resulting outlines are plines of width=1. With the Copy tool make two copies of the drawing.

Note

In each of the three examples in Fig. 5.33, the broken lines represent the crossing windows required when Stretch is used.
2. Call the Stretch tool - either click on its tool icon in the 2D Draw control panel (Fig. 5.34), or left-click on its tool icon in the Draw toolbar, or pick its name in the Modify drop-down menu, or enter \mathbf{s} or stretch at the command line, which then shows:

Fig. 5.33 Examples - Stretch

Fig. 5.34 The Stretch tool icon from the 2D Draw control panel

Fig. 5.35 The Break tool icon from the Modify toolbar

Command:_stretch
Select objects to stretch by crossing-window or crossing-polygon . . .
Select objects: enter c right-click
Specify first corner: pick Specify opposite corner: pick 1 found
Select objects: right-click
Specify base point or [Displacement] <Displacement>: pick beginming of arrow
Specify second point of displacement or <use first point as displacement>: drag in the direction of the arrow to the required second point and right-click
Command:

Notes

1. When circles are windowed with the crossing window, no stretching takes place. This is why, in the case of the first example in Fig. 5.33, when the second point of displacement was picked, there was no result - the outline did not stretch.
2. Care must be taken when using this tool as unwanted stretching can occur.

The Break tool

Examples - Break (Fig. 5.36)

1. Construct the rectangle, arc and circle (Fig. 5.36).
2. Call Break - either click its tool icon in the Modify toolbar (Fig. 5.35), or click Break from the Modify drop-down menu, or enter br or break at the command line, which then shows as given below.

For drawings I and 2

Command:_break Select object pick at the point Specify second break point or [First point]: pick Command:

For drawing 3

Command:_break Select object pick at the point
Specify second break point or [First point]: enter \mathbf{f} right-click Specify first break point: pick
Specify second break point: pick Command:

The results are shown in Fig. 5.36.

Fig. 5.36 Examples - Break

Note
Remember that the default rotation of AutoCAD 2007 is counterclockwise. This applies to the use of the Break tool.

The Join tool

The Join tool can be used to join plines providing their ends are touching; to join lines which are in line with each other; to join arcs; and to convert arcs to circles.

Examples - Join (Fig. 5.38)

1. Construct a rectangle from four separate plines - drawing 1 of Fig. 5.38; construct two lines - drawing 2 of Fig. 5.38 and an arc - drawing $\mathbf{3}$ of Fig. 5.38.

Fig. 5.37 The Join tool icon from the 2D Draw control panel
2. Call the Join tool - either click the Join tool icon in the 2D Draw control panel (Fig. 5.37), or left-click its tool icon in the Modify toolbar, or enter join or \mathbf{j} at the command line. The command line shows:

Command:_join Select source object:
Select objects to join to source: pick a pline $\mathbf{1}$ found
Select objects to join to source: pick another 1 found, 2 total
Select objects to join to source: pick another 1 found, 3 total
Select objects to join to source: right-click
3 segments added to polyline
Command: right-click
JOIN Select source object: pick one of the lines
Select lines to join to source: pick the other $\mathbf{1}$ found
Select lines to join to source: right-click
1 line joined to source
Command: right-click
JOIN Select source object: pick the arc
Select arcs to join to source or [cLose]: enter I right-click Arc converted to a circle.
Command:
The results are shown in Fig. 5.38.

Fig. 5.38 Examples - Join

2 \qquad
\qquad
Result 2

The Extend tool
Examples - Extend (Fig. 5.39)

1. Construct plines and a circles as shown in the left-hand drawings of Fig. 5.39.
2. Call Extend - either click the Extend tool icon in the Modify toolbar (Fig. 5.40), or pick Extend from the Modify drop-down

Fig. 5.39 Examples - Extend

Fig. 5.40 The Extend tool icon from the Modify toolbar

menu, or enter ex or extend at the command line, which then shows:

Command:_extend
Current settings: Projection=UCS Edge=Extend
Select boundary edges . . .
Select objects or <select all>: <Snap off> pick 1 found
Select objects: pick
Select objects: right-click
Select object to extend or shift-select to trim or [Fence/Crossing/ Project/Edge/Undo]: pick

Repeat for each object to be extended. Then:
Select object to extend or shift-select to trim or [Project/Edge/ Undo]: right-click

Command:

Note
Observe the similarity of the Extend and No extend prompts with those of the Trim tool.

The Chamfer and Fillet tools

There are similarities in the prompt sequences for these two tools. The major difference is that two settings (Dist1 and Dist2) are required for a chamfer, but only one (Radius) for the fillet. The basic prompts for both are given below.

Chamfer

Command:_chamfer

(TRIM mode) Current chamfer Dist1=1, Dist2=1

Fig. 5.4I The Chamfer tool icon from the 2D Draw control panel

Select first line or [Undo/Polyline/Distance/Angle/Trim/mEthod/ Multiple]: enter \mathbf{d} (Distance) right-click
Specify first chamfer distance $<\mathbf{1}>$: 10
Specify second chamfer distance $<10>$: right-click
Command:

Fillet
Command:_fillet
Current settings: Mode=TRIM, Radius=1
Select first object or [Polyline/Radius/Trim/mUltiple]: enter \mathbf{r} (Radius) right-click
Specify fillet radius $<\mathbf{1}>$: 15
Command:
Examples - Chamfer (Fig. 5.42)

1. Construct three rectangles 100 by 60 using either the Line or the Polyline tool.
2. Call Chamfer - either click its tool icon in the 2D Draw control panel (Fig. 5.41), or left-click on its tool icon in the Modify toolbar, or pick Chamfer from the Modify drop-down menu, or enter cha or chamfer at the command line which then shows:

Command:_chamfer
(TRIM mode) Current chamfer Dist1 = 1, Dist2=1
Select first line or [Undo/Polyline/Distance/Angle/Trim/mEthod/
Multiple]: d (Distance)
Specify first chamfer distance $<\mathbf{1}>$: 10
Specify second chamfer distance $<10\rangle$: right-click
Select first line or [Undo/Polyline/Distance/Angle/Trim/mEthod/
Multiple]: pick the first line for the chamfer
Select second line or shift-select to apply corner: pick
Command:
The other two rectangles are chamfered in a similar manner except that the No trim prompt is brought into operation with the bottom left-hand example (Fig. 5.42).

Dist1=10
Dist2=10

Dist1=10
Dist2=15

Fillet
Fig. 5.43 The Fillet tool icon from the Modify toolbar

Examples - Fillet (Fig. 5.44)

1. Construct three rectangles as for the Chamfer examples.
2. Call Fillet - either click its tool icon in the Modify toolbar (Fig. 5.43), or pick Fillet from the Modify drop-down menu, or left-click its tool icon in the 2D Draw control panel, or enter \mathbf{f} or fillet at the command line which then shows:

Command:_fillet
Current settings: Mode=TRIM, Radius=1
Select first object or [Polyline/Radius/Trim/mUltiple]: r (Radius)
Specify fillet radius $<1>$: 15
Select first object or [Undo/Polyline/Radius/Trim/Multiple]: pick
Select second object or shift-select to apply corner: pick
Command:
Three examples are given in Fig. 5.44.

Revision notes

1. The Modify tools are among the most frequently used tools in AutoCAD 2007.
2. The abbreviations for the Modify tools are:

Copy - cp or co
Mirror - mi
Offset - o
Array - ar
Move - m
Rotate - ro
Scale - sc
Stretch - s
Trim - tr
Extend - ex
Break - br
Join - j
Chamfer - cha
Fillet - f
3. There are two other tools in the Modify toolbar or the 2D Draw control panel: Erase - some examples were given in Chapter 2 and Explode - further details of this tool will be given in Chapter 10.

A note - selection windows and crossing windows

In the Options dialog, settings can be made in the Selection sub-dialog for Visual Effects. A click on the Visual Effect Settings . . . button brings up another dialog. If the Area Selection Effect settings are set on, a normal window from top left to bottom right will be coloured in a chosen colour (default blue). A crossing window - bottom left to top right - will be coloured red (default colour). Note also the highlighting - Selection Preview Effect allows objects to highlight if this feature is on. These settings are shown in Fig. 5.45.

4. When using Mirror, if text is part of the area to be mirrored, the set variable MIRRTEXT will require setting - to either $\mathbf{1}$ or $\mathbf{0}$.
5. With Offset the Through prompt can be answered by clicking two points in the drawing area - the distance of the desired offset distance.
6. Polar Arrays can be arrays around any angle set in the Angle of array field of the Array dialog.
7. When using Scale, it is advisable to practise the Reference prompt.
8. The Trim tool in either its Trim or its No trim modes is among the most useful tools in AutoCAD 2007.
9. When using Stretch, circles are unaffected by the stretching.

Exercises

1. Construct the drawing in Fig. 5.46. All parts are plines of width $=0.7$ with corners filleted R10. The long strips have been constructed using Circle, Polyline, Trim and Polyline Edit. Construct one strip and then copy it using Copy.

2. Construct the drawing in Fig. 5.47. All parts of the drawing are plines of width=0.7. The setting in the Array dialog is to be $\mathbf{1 8 0}$ in the Angle of array field.

Fig. 5.47 Exercise 2

3. Using the tools Polyline, Circle, Trim, Polyline Edit, Mirror and Fillet, construct the drawing in Fig. 5.48.
4. Construct the circles and lines shown in Fig. 5.49. Using Offset and the $\mathbf{T t r}$ prompt of the Circle tool, followed by Trim, construct one of the outlines arrayed within the outer circle. Then with Polyline Edit change the lines and arcs into a pline of width $=0.3$. Finally array the outline 12 times around the centre of the circles to produce Fig. 5.50.

Fig. 5.48 Exercise 3

Fig. 5.49 Exercise 4 - circles and lines on which the exercise is based

Fig. 5.50 Exercise 4

5. Construct the arrow (Fig. 5.51). Array the arrow around the centre of its circle eight times to produce the right-hand drawing of Fig. 5.51.

Fig. 5.51 Exercise 5

Fig. 5.52 Exercise 6

Fig. 5.53 Exercise 7
6. Construct the left-hand drawing of Fig. 5.52. Then, with Move, move the central outline to the top left-hand corner of the outer outline. Then with Copy make copies to the other corners.

7. Construct the drawing in Fig. 5.53 and make two copies using Copy. With Rotate, rotate each of the copies to the angles as shown.

8. Construct the dimensioned drawing of Fig. 5.54. With Copy, copy the drawing. Then with Scale scale the drawing to a scale of $\mathbf{0 . 5}$, followed by Rotate to rotate the drawing through an angle as shown. Finally scale the original drawing to a scale of 2:1.

Fig. 5.54 Exercise 8
9. Construct the left-hand drawing of Fig. 5.55. Include the dimensions in your drawing. Then, using the Stretch tool, stretch the drawing, including its dimensions to the sizes as shown in the right-hand drawing. The dimensions are said to be associative (see Chapter 10).

Fig. 5.55 Exercise 9

10. Construct the drawing in Fig. 5.56. All parts of the drawing are plines of width=0.7. The setting in the Array dialog is to be $\mathbf{1 8 0}$ in the Angle of array field.

CHAPTER 6

Dimensions and Text

	Dimension	
	W QuickSimension	
	$1-1$ Linear Fy Aligned if Arc Length Iz Ordinate	
	© Radius 3) Jogged (3.) Diameter Angular	
	\ddagger Baseline \| + H	continue
	答 Leader 㭵 Iolerance... † Center Mark	
	H obligue Align Text	
	Dimension style... $1 / 40$ Override Update Reassociate Dimensions	

Fig. 6.I The Dimension drop-down menu

Aims of this chapter

1. To describe the variety of methods of dimensioning drawings.
2. To describe methods of adding text to drawings.

Introduction

We have already set a dimension style (My_Style) in the acadiso.dwt template, so we can now commence adding dimensions to drawings using this dimension style.

The Dimension tools

There are several ways in which the dimension tools can be called.

1. Click Dimension in the menu bar. Tools can be selected from the drop-down menu which appears (Fig. 6.1).
2. See Fig. 6.2.
(a) Click Tools in the menu bar, then click Palettes in the drop-down menu.
(b) The TOOL PALETTES - ALL PALETTES palette appears. Click the Command Tools label.
(c) Drag the resulting palette upwards from its bottom edge to produce a mini-palette containing the dimension tool icons.
(d) Dimension tools can be selected from the flyout from the Linear Dimension icon in this palette.
3. From the Dimension toolbar (Fig. 6.3). The toolbar can be called to screen with a right-click in any toolbar on screen, followed by a click on Dimension in the popup menu which appears.
4. By entering an abbreviation for a dimension tool at the command line.

Any one of these methods can be used when dimensioning a drawing, but some operators may well decide to use a combination of the four methods.

Fig. 6.2 Selecting a palette with dimension tool icons from the Tools drop-down menu

Fig. 6.3 The Dimension toolbar

Adding dimensions using the tools

First example - Linear Dimension (Fig. 6.4)

1. Construct a rectangle 180×110 using the Polyline tool.
2. Left-click on the Linear Dimension tool icon in the Command Tools palette or on Linear in the Dimension toolbar (Fig. 6.3). The command line shows:

Fig. 6.4 First example - Linear Dimension

Command:_dimlinear
 Specify first extension line origin or [select object]: pick Specify second extension line origin: pick
 Specify dimension line location or [Mtext/Text/Angle/Horizontal/ Vertical/Rotated]: pick
 Dimension text $=\mathbf{1 8 0}$
 Command:

Fig. 6.4 shows the 180 dimension. Follow exactly the same procedure for the 110 dimension.

Notes

1. If necessary use Osnaps to locate the extension line locations.
2. The prompt Specify first extension line origin or [select object]: also allows the line being dimensioned to be picked.

Second example - Aligned Dimension (Fig. 6.6)

1. Construct the outline in Fig. 6.6 using the Line tool.
2. Left-click the Aligned Dimension tool icon (Fig. 6.5) and dimension the outline. The prompts and replies are similar to the first example.

Fig. 6.5 The Aligned Dimension tool icon

Fig. 6.6 Second example - Aligned Dimension

Fig. 6.7 The Radius dimension tool icon

Fig. 6.8 Third example - Radius

Third example - Radius Dimension (Fig. 6.8)

1. Construct the outline in Fig. 6.8 using the Line and Fillet tools.
2. Left-click the Radius Dimension (Fig. 6.7). The command line shows:

Command:_dimradius

Select arc or circle: pick one of the arcs
Dimension text $=30$
Specify dimension line location or [Mtext/Text/Angle]: pick Command:
3. Continue dimensioning the outline as shown in Fig. 6.8.

Fig. 6.9 A radius dimension at an angle of 45°

Notes

1. At the prompt:
[Mtext/Text/Angle]:
If a \mathbf{t} (Text) is entered, another number can be entered, but remember if the dimension is a radius the letter \mathbf{R} must be entered as a prefix to the new number.
2. If the response is a (Angle), and an angle number is entered, the text for the dimension will appear at an angle. Fig. 6.9 show a radius dimension entered at an angle of 45°.
3. If the response is \mathbf{m} (Mtext) the Text Formatting dialog appears together with a box in which new text can be entered. See page 141.
4. Dimensions added to a drawing using other tools from the Command

Tools palette or from the Dimensions toolbar should be practised.

Adding dimensions from the command line

In the flyout from the Linear tool icon (Fig. 6.2) it will be seen that there are some dimension tools from this flyout which have not been described in examples. Some operators may prefer entering dimensions from the command line. This involves abbreviations for the required dimension such as:

For Linear Dimension - hor (horizontal) or ve (vertical)
For Aligned Dimension - al
For Radius Dimension - ra
For Diameter Dimension - d
For Angular Dimension - an
For Dimension Text Edit - te
For Quick Leader - I
And to exit from the dimension commands - e (Exit).
First example - hor and ve (Horizontal and vertical) Fig. 6. II

1. Construct the outline in Fig. 6.10 using the Line tool. Its dimensions are shown in Fig. 6.11.
2. At the command line enter dim. The command line will show:

Command: enter dim right-click
Dim: enter hor (horizontal) right-click

Fig. 6.10 First example - outline for dimensions

Fig. 6.II First example - horizontal and vertical dimensions

Specify first extension line origin or <select object>: pick Specify second extension line origin: pick
Specify dimension line location or [Mtext/Text/Angle]: pick
Enter dimension text <50>: right-click
Dim: right-click
HORIZONTAL
Specify first extension line origin or <select object>: pick
Specify second extension line origin: pick
Specify dimension line location or [Mtext/Text/Angle/Horizontal/
Vertical/Rotated]: pick
Enter dimension text <140>: right-click
Dim: right-click
And the 50 and 140 horizontal dimensions are added to the outline.
3. Continue to add the right-hand 50 dimension. Then when the command line shows:

Dim: enter ve (vertical) right-click
Specify first extension line origin or <select object>: pick
Specify second extension line origin: pick
Specify dimension line location or [Mtext/Text/Angle/Horizontal/
Vertical/Rotated]: pick
Dimension text <20>: right-click
Dim: right-click
VERTICAL
Specify first extension line origin or <select object>: pick
Specify second extension line origin: pick
Specify dimension line location or [Mtext/Text/Angle/Horizontal/
Vertical/Rotated]: pick
Dimension text $<100>$: right-click
Dim: enter \mathbf{e} (Exit) right-click
Command:
The result is shown in Fig. 6.11.

$$
\text { Second example - an (Angular) - Fig. 6. } 13
$$

1. Construct the outline in Fig. 6.12 - a pline of width $=1$.
2. At the command line:

Fig. 6.12 Second example outline for dimensions

Fig. 6.13 Second example - an (Angle) dimension

Command: enter dim right-click
Dim: enter an right-click
Select arc, circle, line or <specify vertex>: pick
Select second line: pick
Specify dimension arc line location or [Mtext/Text/Angle]: pick
Enter dimension <90> : right-click
Enter text location (or press ENTER): pick
Dim:
And so on to add the other angular dimensions.
The result is given in Fig. 6.13.

Third example - I (Leader) - (Fig. 6.15)

1. Construct Fig. 6.14.
2. At the command line:

Command: enter dim right-click
Dim: enter I (Leader) right-click
Leader start: enter nea (osnap nearest) right-click to pick one of the chamfer lines
To point: pick
To point: pick

Fig. 6.14 Third example - outline for dimensioning

Fig. 6.I5 Third example - I
(Leader) dimensions

To point: right-click
Dimension text $<\mathbf{0}>$: enter CHA $\mathbf{1 0} \times \mathbf{1 0}$ right-click Dim: right-click

Continue to add the other leader dimensions - Fig. 6.15.

Fourth example - te (Dimension Text Edit) - (Fig. 6. I7)

1. Construct Fig. 6.16.
2. At the command line:

Command: enter dim right-click
Dim: enter te (tedit) right-click
Select dimension: pick the dimension to be changed
Specify new location for text or [Left/Right/Center/Home/Angle]: either pick or enter a prompt's capital letter
Dim:

Fig. 6.16 Fourth example dimensioned drawing

Fig. 6.17 Fourth example dimensions amended with tedit

Fig. 6.18 The Arc Length tool

Fig. 6. 19 Fifth example - Arc Length tool

The results as given in Fig. 6.17 show dimensions which have been moved. The $\mathbf{2 1 0}$ dimension changed to the left-hand end of the dimension line, the 130 dimension changed to the left-hand end of the dimension line and the 30 dimension position changed.

Fifth example - the Arc Length tool (Fig. 6.19)

1. Construct two arcs of different sizes as in Fig. 6.19.
2. Call the Arc Length tool with a click on its tool icon (Fig. 6.18), or with a click on Arc Length in the Dimension toolbar, or by entering dimarc at the command line. The command line shows:
Command:_dimarc
Select arc or polyline arc segment: pick an arc

Fig. 6.20 The Jogged tool icon

Fig. 6.2I Sixth example - the Jogged tool

Dimension tolerances

Before simple tolerances can be included with dimensions, new settings will need to be made in the Dimension Style Manager dialog as follows:

1. Open the dialog. The quickest way of doing this is to enter \mathbf{d} at the command line followed by a right-click. This opens up the dialog.
2. Click the Modify . . . button of the dialog, followed by a left-click on the Primary Units tab and in the resulting sub-dialog make settings as shown in Fig. 6.22. Note the changes in the preview box of the dialog.
3. Click the Tolerances tab and in the resulting sub-dialog, make settings as shown in Fig. 6.23. Left-click the OK button, then in the

Fig. 6.23 The Tolerances sub-dialog of the Dimension Style Manager
main dialog, click the Set Current button, followed by a left-click on the Close button.

Example - simple tolerances (Fig. 6.25)

1. Construct the outline in Fig. 6.24

2. Dimension the drawing using tools from the Dimension toolbar or by entering abbreviations at the command line. Because tolerances have been set in the Dimension Style Manager dialog, the toleranced dimensions will automatically be added to the drawing (Fig. 6.25).

The dimensions in this drawing show tolerances

Example - Geometric Tolerance (Fig. 6.30)

1. Construct the two rectangles with circles as in Fig. 6.26.
2. Add dimensions to the two circles.

Fig. 6.26 Example - Geometric Tolerance dimensions to be toleranced

Fig. 6.27 The Tolerance tool icon

Fig. 6.28 The Geometric Tolerance dialog and the Symbol sub-dialog

Fig. 6.29 The Material Condition dialog

Fig. 6.30 Enter 0.05 in the Tolerance I field

Fig. 6.3I Example-Geometric Tolerances
3. Click the Tolerance tool icon (Fig. 6.27). The Geometric Tolerance dialog (Fig. 6.28) appears.
4. In the dialog click the black box under Sym. The Symbol sub-dialog appears (Fig. 6.28) with a click on the top left-hand square.

5. Still in the dialog click the left-hand black square under Tolerance 1. The Material Condition dialog appears (Fig. 6.29). Click L. The letter appears in the top-right hand square of the dialog.
6. Enter 0.05 in the Tolerance 1 field (Fig. 6.30), followed by a click on the dialog's OK button. The geometric tolerance appears. Move it to a position near the R10 dimension in the drawing (Fig. 6.31).
7. Now add a geometric tolerance to the $\mathbf{1 5}$ dimension as shown in Fig. 6.31.

The meanings of the symbols

The Material Condition letters have the following meanings:
\mathbf{M} - maximum amount of material
\mathbf{L} - least amount of material
\mathbf{S} - size within the limits.
Fig. 6.32 shows the meanings of the geometrical symbols.

Fig. 6.32 The meanings of the symbols

Text

There are two main methods of adding text to drawings - Multiline Text and Dynamic Text.

Example - Dynamic Text (Fig. 6.25)

1. Open the drawing from the example on tolerances - Fig. 6.25.
2. At the command line enter $\mathbf{d t}$ (Dynamic Text) followed by a right-click:

Command: enter dt right-click
TEXT
Current text style "ARIAL" Text height: 8
Specify start point of text or [Justify/Style]: pick
Specify rotation angle of text <0>: right-click
Enter text: enter The dimensions in this drawing show tolerances press the Return key twice
Command:
The result is given in Fig. 6.25 on page 110.

Notes

1. When using Dynamic Text, the Return key of the keyboard is pressed when the text has been entered and NOT a right-click
2. At the prompt:

Specify start point of text or [Justify/Style]: enter s (Style) right-click Enter style name or [?] <ARIAL>: enter ? right-click
Enter text style(s) to list <*>: right-click

Fig. 6.33 The AutoCAD Text Window

Fig. 6.34 Some text styles

And an AutoCAD Text Window (Fig. 6.33) appears listing all the styles which have been selected in the Text Style (see page 67).

3. In order to select the required text style its name must be entered at the prompt:

Enter style name or [?] <ARIAL>: enter Romand right-click

And the text entered will be in the Romand style of height 9. But only if that style was previously selected in the Text Style dialog.
4. Fig. 6.34 shows some text styles from the AutoCAD Text Window.

```
This is the TIMES text
This is ROMANC text
This is ROMAND text
This is STANDARD text
This is ITALIC text
This is ARIAL text
```

5. There are two types of text fonts available in AutoCAD 2007 - the AutoCAD SHX fonts and the Windows True Type fonts. The ITALIC, ROMAND, ROMANS and STANDARD styles shown in Fig. 6.34 are AutoCAD text fonts. The TIMES and ARIAL styles are Windows True Type fonts. Most of the True Type fonts can be entered in Bold, Bold Italic, Italic or Regular styles, but these variations are not possible with the AutoCAD fonts.
6. In the Font name popup list of the Text Style dialog, it will be seen that a large number of text styles are available to the AutoCAD 2007 operator. It is advisable to practise using a variety of these fonts to familiarise oneself with the text opportunities available with AutoCAD 2007.

Fig．6．35 The Multiline Text tool icon from the 2D Draw control panel

Fig．6．36 Example－Multiline Text entered in the text box

Example－Multiline Text（Fig．6．37）
1．Either left－click on the Multiline Text tool icon in the 2D Draw control panel（Fig．6．35）or click on Multiline Text ．．．in the Draw toolbar or enter \mathbf{t} at the command line：

Command：＿mtext

Current text style：‘ARIAL＇Text height： 8
Specify first corner：pick
Specify opposite corner or［Height／Justify／Line spacing／Rotation／ Style／Width］：pick

As soon as the opposite corner is picked，the Text Formatting dialog appears and the box changes as in Fig．6．36．Text can now be entered as required within the box as indicated in this illustration．When all the required text has been entered left－click the OK button at the top right－ hand corner of the Text Formatting dialog．

Text Formatting																		
Alial	\checkmark T Arial	$\checkmark 8$		\checkmark	B	I	$\underline{\square}$	n	c		\square	\checkmark	䛛		OK		$\stackrel{\square}{\circ}$	
哐淦	衰宣 豆		3 A	AB	$\overline{0}$	＠					a．b					－	1	，

> This is the text I wish to enter at the base of a drawing. It is in the style Arial of height 8 . I can change the style and the height: of the text at the command line if I wish.

2．Changes may be made to various aspects of the text being entered making choices from the various popup lists in the Text Formatting dialog．These popups are shown in Fig．6．37．

Symbols used in text

When text has to be added by entering letters and figures as part of a dimension，the following symbols must be used：
To obtain Ø75 enter \％\％c75
To obtain $\mathbf{5 5 \%}$ enter $\mathbf{5 5 \%} \% \%$
To obtain $\mathbf{\pm} \mathbf{0 . 0 5}$ enter $\mathbf{\%} \% \mathbf{p 0 . 0 5}$
To obtain $\mathbf{9 0}^{\circ}$ enter $\mathbf{6 0 \% \%} \mathbf{~ d}$ ．

Checking spelling

There are two methods for the checking of spellings in AutoCAD 2007.

Fig. 6.37 The popups from the Text Formatting dialog

First example - the Spelling tool (Fig. 6.39)

1. Enter some badly spelt text as indicated in Fig. 6.39.
2. Left-click on Edit . . . from the Text sub-menu in the Modify drop-down menu (Fig. 6.38) or enter ddedit at the command line.
3. Left-click on the text. The text is highlighted. Edit the text as if working in a word processing application and when satisfied click the Return key of the keyboard (Fig. 6.39).

Fig. 6.38 Selecting Edit . . . from the Text sub-menu of the Modify drop-down menu

Fig. 6.39 The three stages in checking spelling using Text Edit

Fig. 6.40 Spelling in the Tools drop-down menu

Fig. 6.4I Second example - the Check Spelling dialog

There are erors in this teckt wheich need checking

1. Text is selected

There are erors in this teckt wheich need checking

2. Text is corrected

There are errors in this text which need checking

3. The resulting text after correcting

Second example - the Spelling tool (Fig. 6.43)

1. Enter some badly spelt text as indicated in Fig. 6.41.
2. Either click Spelling in the Tools drop-down menu (Fig. 6.40) or enter spell or sp at the command line.
3. Click the badly spelt text and right-click. The Check Spelling dialog appears (Fig. 6.41). Wrongly spelt words appear in the Current work field with words to replace them in the Suggestions field. Select the appropriate spelling as shown. Continue until all text is checked.

Ther ar eroors in thit teckt

Revision notes

1. In the Line and Arrows sub-dialog of the Dimension Style Manager dialog, Lineweights were set to $\mathbf{0 . 3}$ (page 72). If these lineweights are
to show in the drawing area of AutoCAD 2007, the LWT button in the status bar must be set $\mathbf{O N}$.
2. Dimensions can be added to drawings using the tools from the Command Tools palette, from the Dimension toolbar, or by entering dim, followed by abbreviations for the tools at the command line.
3. It is usually advisable to use osnaps when locating points on a drawing for dimensioning.
4. The Style and Angle of the text associated with dimensions can be changed during the dimensioning process.
5. When wishing to add tolerances to dimensions it will probably be necessary to make new settings in the Dimension Style Manager dialog.
6. There are two methods for adding text to a drawing - Dynamic Text and Multiline Text.
7. When adding text to a drawing, the Return key must be used and not the right-hand mouse button.
8. Text styles can be changed during the process of adding text to drawings.
9. AutoCAD 2007 uses two types of text style - AutoCAD SHX fonts and Windows True Type fonts.
10. Most True Type fonts can be in bold, bold italic, italic or regular format. AutoCAD fonts can only be added in the single format.
11. When using Multiline Text, changes can be made by selection from the popup lists in the Text Formatting dialog.
12. To obtain the symbols $\boldsymbol{\emptyset}$; $\pm{ }^{\circ} ; \%$ use $\% \% \mathbf{c} ; \% \% \mathbf{p}$; \% \%d; $\% \% \%$ respectively, before or after the figures of the dimension.
13. Text spelling can be checked with by selecting Text/Edit . . . from the Modify drop-down menu or by entering spell or sp at the command line.

Exercises

1. Open any of the drawings previously saved from working through examples or as answers to exercises and add appropriate dimensions.
2. Construct the drawing in Fig. 6.42 but in place of the given dimensions add dimensions showing tolerances of 0.25 above and below.
3. Construct the two polygons in Fig. 6.43 and add all the diagonals. Then set the two osnaps endpoint and intersection and using the lines as in Fig. 6.43 construct the stars as shown using a polyline of width $=3$. Next erase all unwanted lines. Finally dimension the angles labelled $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.
4. Construct and dimension the drawing in Fig. 6.44.
5. Using the text style Sans Serif of height 20 and enclosing the wording within a rectangle of Width $=5$ and Fillet $=10$, construct the drawing in Fig. 6.45.

Fig. 6.42 Exercise 2

Fig. 6.43 Exercise 3

Fig. 6.44 Exercise 4

Fig. 6.45 Exercise 5

CHAPTER 7

Orthographic and isometric

Fig. 7.I Example - orthographic projection - the solid being drawn

Fig. 7.2 The front view of the solid

Aim of this chapter

To introduce methods of constructing drawings of two types - orthographic projection and isometric drawings.

Orthographic projection

Orthographic projection involves viewing an article being described in a technical drawing from different directions - from the front, from a side, from above, from below or from any other viewing position. Orthographic projection often involves:

1. The drawing of details which are hidden, using hidden detail lines.
2. Sectional views in which the article being drawn is imagined as being cut through and the cut surface drawn.
3. Centre lines through arcs, circles, spheres and cylindrical shapes.

An example of an orthographic projection

Taking the solid shown in Fig. 7.1, construct a three-view orthographic projection of the solid:

1. Draw what is seen when the solid is viewed from its left-hand side and regard this as the front of the solid. What is drawn will be a front view (Fig. 7.2).
2. Draw what is seen when the solid is viewed from the left-hand end of the front view. This produces an end view. Fig. 7.3 shows the end view alongside the front view.
3. Draw what is seen when the solid is viewed from above the front view. This produces a plan. Fig. 7.4 shows the plan below the front view.
4. Draw centre and hidden detail lines:
(a) Click the arrow to the right of the Layers field to show all layers set in the acadiso.dwt template on which the drawing has been constructed (Fig. 7.5).
(b) Left-click the Centre layer name in the layers list, making it the current layer. All lines will now be drawn as centre lines.
5. In the three-view drawing add centre lines.
6. Make the Hidden layer the current layer and add hidden detail lines.

Fig. 7.3 Front and end views of the solid

Fig. 7.4 Front and end views and plan of the solid

Fig. 7.5 Making the layer Centre current

Fig. 7.6 The completed working drawing of the solid

Fig. 7.7 The solid used to demonstrate first and third angles of projection
7. Make the Text layer current and add border lines and a title block.
8. Make the Dimensions layer current and add all dimensions.

The completed drawing is shown in Fig. 7.6.

First angle and third angle

There are two types of orthographic projection - first angle and third angle. Fig. 7.7 is a pictorial drawing of the solid used to demonstrate the two angles. Fig. 7.8 shows a three-view first angle projection and Fig. 7.9 the same views in third angle.

Fig. 7.9 A third angle projection

Fig. 7.10 A sectional view

Fig. 7.II The Hatch tool icon from the 2D Draw control panel

In both angles the viewing is from the same direction. The difference is that the view as seen is placed on the viewing side of the front view in third angle and on the opposite side to the viewing in first angle.

Sectional views

In order to show internal shapes of a solid being drawn in orthographic projection, the solid is imagined as being cut along a plane and the cut surface then drawn as seen. Common practice is to hatch the areas which then show in the cut surface. Note the section plane line, the section label and the hatching in the sectional view in Fig. 7.10.

Adding hatching

To add the hatching as shown in Fig. 7.10:

1. Call the Hatch tool - either left-click on its tool icon in the 2D Draw control panel (Fig. 7.11), or click the tool in the Draw toolbar, or enter \mathbf{h} at the command line. Note - do not enter hatch as this gives a different result. The Hatch and Gradient dialog (Fig. 7.12) appears.
2. Click in the Swatch field. The Hatch Pattern Palette appears. Left-click the ANSI tab and from the resulting pattern icons double-click the ANSI31 icon. The palette disappears and the ANSI31 pattern appears in the Swatch field.

Fig. 7.12 The Hatch and Gradient dialog and the ANSI Hatch Pattern Palette

Fig. 7.13 The Pick an internal point button of the Boundary Hatch and Fill dialog

Fig. 7.14 The result of hatching

3. In the dialog left-click the Pick an internal point button (Fig. 7.13). The dialog disappears.
4. In the front view pick points as shown in the left-hand drawing of Fig. 7.14. The dialog reappears. Click the Preview button of the dialog and in the sectional view which reappears, check whether the hatching is satisfactory. In this example it may well be that the Scale figure in the dialog needs to be entered as 2 in place of the default 1. Change the figure and Preview again. If satisfied click the OK button of the dialog.

Isometric drawing

Isometric drawing must not be confused with solid model drawing, examples of which are given in Chapters 13 to 20. Isometric drawing is a 2D method of describing objects in a pictorial form.

Setting the AutoCAD window for isometric drawing

To set the AutoCAD 2007 window for the construction of isometric drawings:

1. At the command line:

Command: enter snap
Specify snap spacing or [On/Off/Aspect/Rotate/Style/Type] <5>: s (Style)
Enter snap grid style [Standard/Isometric] $<\mathbf{S}>$: i (Isometric)
Specify vertical spacing <5> : right-click
Command:
Note the cursor hair lines which are set in an Isometric Left angle (Fig. 7.15).

Fig. 7.15 Cursor hair lines set in an Isometric Left angle

Fig. 7.16 The three isoplanes

2. There are three isometric angles - Isoplane Top, Isoplane Left and Isoplane Right. These can be set either by pressing the F5 function key or by pressing the $\mathbf{C t r l}$ and \mathbf{E} keys. Repeated pressing of either of these 'toggles' between the three settings. Fig. 7.16 is an isometric view showing the three isometric planes.

Fig. 7.I7 The three isocircles

Fig. 7.18 First example - isometric drawing - the model

The isometric circle
Circles in an isometric drawing show as ellipses. To add an isometric circle to an isometric drawing, call the Ellipse tool. The command line shows:

Command: _ellipse
Specify axis endpoint of ellipse or [Arc/Center/Isocircle]: enter i (Isocircle) right-click
Specify center of isocircle: pick or enter coordinates
Specify radius of isocircle or [Diameter]: enter a number Command:

And the isocircle appears. Its isoplane position is determined by which of the isoplanes is in operation at the time the isocircle was formed. Fig. 7.17 shows these three isoplanes containing isocircles.

Examples of isometric drawings

First example - isometric drawing (Fig. 7.20)

1. Work to the shapes and sizes given in the orthographic projection in Fig. 7.18. Set Snap on (press the F9 function key) and Grid on (F7).
2. Set Snap to Isometric and set the isoplane to Isoplane Top using F5.
3. With Line, construct the outline of the top of the model (Fig. 7.19) working to the dimensions given in Fig. 7.18.
4. Call Ellipse tool and set to isocircle, and add the isocircle of radius 20 centred in its correct position in the outline of the top (Fig. 7.19).
5. Set the isoplane to Isoplane Right and, with the Copy tool, copy the top with its ellipse vertically downwards three times as shown in Fig. 7.19.

Fig. 7.19 First example - isometric drawing - items 3, 4, 5 and 6

6. Add lines as shown in Fig. 7.19.
7. Finally using Trim remove unwanted parts of lines and ellipses to produce Fig. 7.20.

Second example - isometric drawing (Fig. 7.22)

Fig. 7.21 is an orthographic projection of the model from which the isometric drawing is to be constructed. Fig. 7.22 shows the stages in its construction. The numbers refer to the items in the list below.

1. In Isoplane Right construct two isocircles of radii 10 and 20.
2. Add lines as in drawing 2 and trim unwanted parts of isocircle.
3. With Copy, copy three times as in drawing 3.
4. With Trim, trim unwanted lines and parts of isocircle as in drawing 4.

Fig. 7.21 Second example isometric drawing - orthographic projection of model

Fig. 7.22 Second example isometric drawing - stages in the construction

Fig. 7.23 Exercises I, 2 and 3 - an isometric drawing of the three parts of the slider on which these exercises are based
5. In Isoplane Left add lines as in drawing 5 .
6. In Isoplane Right add lines and isocircles as in drawing 6.
7. With Trim, trim unwanted lines and parts of isocircles to complete the isometric drawing - drawing 7 .

Revision notes

1. There are mainly two types of orthographic projection - first angle and third angle.
2. The number of views included in an orthographic projection depend upon the complexity of what is being drawn - a good rule to follow is to attempt fully describing the object being drawn in as few views as possible.
3. Sectional views allow parts of an object which are normally hidden from view to be more fully described in a projection.
4. When a layer is turned OFF all constructions on that layer disappear from the screen.
5. If a layer is locked, objects can be added to the layer but no further additions or modifications can be added to the layer. If an attempt is made to modify an object on a locked layer the command line shows:

Command:_erase

Select objects: pick $\mathbf{1}$ found 1 was on a locked layer
And the object will not be modified.
6. Frozen layers cannot be selected, but note that layer 0 cannot be frozen.
7. Isometric drawing is a 2 D pictorial method of producing illustrations showing objects. It is not a 3D method of showing a pictorial view.
8. When drawing ellipses in an isometric drawing, the Isocircle prompt of the Ellipse tool command line sequence must be used.
9. When constructing an isometric drawing Snap must be set to isometric mode before construction can commence.

Exercises

Fig. 7.23 is an isometric drawing of a slider fitment on which exercises $\mathbf{1 , 2}$ and $\mathbf{3}$ are based.

1. Fig. 7.24 is a first angle orthographic projection of part of the fitment shown in the isometric drawing in Fig. 7.23. Construct a three-view third angle orthographic projection of the part.
2. Fig. 7.25 is a first angle orthographic projection of the other part of the fitment. Construct a three-view third angle orthographic projection of the part.

Fig. 7.24 Exercise I

3. Construct an isometric drawing of the part shown in Fig. 7.25.

Fig. 7.25 Exercises 2 and 3

Fig. 7.26 Exercises 4 and $5-$ an isometric drawing of the tool holder on which the two exercises are based

Fig. 7.27 Exercises 4 and 5 orthographic projections of the three parts of the tool holder

4. Construct a three-view orthographic projection in an angle of your own choice of the tool holder assembled as shown in the isometric drawing in Fig. 7.26. Details are given in Fig. 7.27.

Fig. 7.28 An isometric drawing of the angle plate on which exercises 6 and 7 are based

Fig. 7.29 Exercises 6 and 7 - an orthographic projection of the angle plate

Fig. 7.30 Exercises 8 and 9 - an isometric drawing of the component for the two exercises
5. Construct an isometric drawing of the body of the tool holder as shown in Figs 7.26 and 7.27.
6. Construct the orthographic projection given in Fig. 7.29.
7. Construct an isometric drawing of the angle plate shown in Figs 7.28 and 7.29.

8. Construct a third angle projection of the component shown in the isometric drawing in Fig. 7.30 and the three-view first angle projection in Fig. 7.31.

9. Construct the isometric drawing shown in Fig. 7.30 working to the dimensions given in Fig. 7.31.

CHAPTER 8

Hatching

Aim of this chapter

To describe further examples of the use of hatching in its various forms.

Introduction

In Chapter 7 an example of hatching a sectional view in an orthographic projection was given. Further examples of the use of hatching will be described in this chapter.

There are a large number of hatch patterns available when hatching drawings in AutoCAD 2007. Some examples from the Other Predefined set of hatch patterns (Fig. 8.1) in the Hatch Pattern Palette sub-dialog are shown in Fig. 8.2.

Other hatch patterns can be selected from the ISO or ANSI hatch pattern palettes, or the operator can design their own hatch patterns and save them to the Custom hatch palette.

Fig. 8.I The Other Predefined Hatch Pattern Palette

Fig. 8.2 Some hatch patterns from Predefined hatch patterns

Fig. 8.3 First example Hatching

First example - hatching a sectional view (Fig. 8.3)
Fig. 8.3 shows a two-view orthographic projection which includes a sectional end view. Note the following in the drawing:

1. The section plane line, consisting of a centre line with its ends marked A and an arrow showing the direction of viewing to obtain the sectional view.

2. The sectional view labelled with the letters of the section plane line.
3. The cut surfaces of the sectional view hatched with the ANSI31 hatch pattern, which is in general use for the hatching of engineering drawing sections.

Second example - hatching rules (Fig. 8.4)

Fig. 8.4 describes the stages in hatching a sectional end view of a lathe tool holder. Note the following in the section:

1. There are two angles of hatching to differentiate in separate parts of the section.
2. The section follows the general rule that parts such as screws, bolts, nuts, rivets, other cylindrical objects, webs and ribs and other such features are shown within sections as outside views.

Third example - Associative hatching (Fig. 8.5)
Fig. 8.5 shows two end views of a house. After constructing the left-hand view, it was found that the upper window had been placed in the wrong position. Using the Move tool, the window was moved to a new position. The brick hatching automatically adjusted to the new position. Such Associative hatching is possible only if the check box against Associative in the Options area of the Hatch and Gradient dialog is $\mathbf{O N}$ - a tick in the check box (Fig. 8.6).

Fourth example - Colour gradient hatching (Fig. 8.9)
Fig. 8.8 shows two examples of hatching from the Gradient sub-dialog of the Hatch and Gradient dialog.

Fig. 8.5 Third example Associative hatching

Fig. 8.6 Associative hatching set ON in the Hatch and Gradient dialog

Fig. 8.7 The Gradient Hatch tool icon from the 2D Draw control panel

Fig. 8.8 The Hatch and Gradient dialog

1. Construct two outlines each consisting of six rectangles (Fig. 8.9).
2. Click the Gradient . . .tool icon in the 2D Draw control panel (Fig. 8.7) or in the Draw toolbar. In the Hatch and Gradient dialog which appears (Fig. 8.8) pick one of the gradient choices, followed with a click on the Pick an internal point button. Click one of the color panels in the dialog and when the dialog disappears, pick a single area of one of the rectangles in the left-hand drawing, followed by a click on the dialog's OK button when the dialog reappears.
3. Repeat in each of the other rectangles of the left-hand drawing, changing the pattern in each of the rectangles.

Fig. 8.9 Fourth exampleColour gradient hatching

Fig. 8.10 The More Options arrow of the Hatch and Gradient dialog

Fig. 8.II The Island display
style selections in the expanded Hatch and Gradient dialog

4. Click the button (. .) to the right of the Color field, select a new colour from the Select Color dialog which appears and repeat steps $\mathbf{3}$ and 4.

The result is shown in Fig. 8.9.

Note

If the Two color radio button is set on (dot in circle) the colours involved in the gradient hatch can be changed by clicking the button marked with three dots (. . .) on the right of the colour field. This brings a Select Color dialog on screen, which offers three choices of sub-dialogs from which to select colours.

Fifth example - Advanced hatching (Fig. 8.I2)

If the arrow at the bottom right-hand corner of the Hatch and Gradient dialog is clicked (Fig. 8.10) the dialog expands to show the Island display selections (Fig. 8.11).

1. Construct a drawing which includes three outlines as shown in the lefthand drawing of Fig. 8.12 and copy it twice to produce three identical drawings.
2. Select the hatch pattern HONEY at an angle of $\mathbf{0}$ and scale $\mathbf{1}$.
3. Click in the Normal radio button of the Island display style area.
4. Pick a point in the left-hand drawing. The drawing hatches as shown.
5. Repeat in the centre drawing with the radio button of the Outer style set on (dot in button).
6. Repeat in the right-hand drawing with Ignore set on.

Sixth example - Text in hatching (Fig. 8. I3)

1. Construct a pline rectangle using the sizes given in Fig. 8.13.
2. In the Text Style Manager dialog, set the text font to Arial and its Height $=25$.
3. Using the Dtext tool enter the text as shown central to the rectangle.

Fig. 8. 12 Fifth example -
Advanced hatching

Fig. 8.13 Sixth example - Text in hatching

Fig. 8.14 Seventh example - the layers setup for the advanced hatch example

4. Hatch the area using the HONEY hatch pattern set to an angle of $\mathbf{0}$ and scale of $\mathbf{1}$.

The result is shown in Fig. 8.13.

Note

Text will be entered with a surrounding boundary area free from hatching providing the Advanced Normal radio button is set on.

Seventh example - Advanced hatching (Fig. 8.20)

1. Open the Layer Properties Manager with a click on the Layer ... icon in the Layer toolbar.

2. Make an extra layer (HATCH) as shown in Fig. 8.14.
3. With the layer $\mathbf{0}$ current construct the outline as given in Fig. 8.15.
4. Make layer Text current and construct the lines as shown in Fig. 8.16.

Fig. 8.15 Seventh example construction on layer 0

Fig. 8.16 Seventh example construction on layer Text

5. Make the layer HATCH current and add hatching to the areas shown in Fig. 8.17 using the hatch patterns ANGLE at scale 2 for the roof and BRICK at a scale of $\mathbf{0 . 7 5}$ for the wall.
6. Finally turn the layer Text off. The result is given in Fig. 8.18.

Revision notes

1. A large variety of hatch patterns are available when working with AutoCAD 2007.
2. In sectional views in engineering drawings it is usual to show items such as bolts, screws, other cylindrical objects, webs and ribs as outside views.

Fig. 8.I7 Seventh example construction on layer HATCH

Fig. 8.18 Seventh example - the finished drawing

Fig. 8.19 Exercise I - a pictorial view

3. When Associative hatching is set on and an object is moved within a hatched area, the hatching accommodates to fit around the moved object.
4. Colour gradient hatching is available in AutoCAD 2007.
5. When hatching takes place around text, a space around the text will be free from hatching.

Exercises

1. Fig. 8.19 shows a pictorial drawing of the component shown in the threeview orthographic projection in Fig. 8.20. Construct the three views, with the front view as a sectional view based on the section plane A-A.
2. Construct the three-view orthographic projection in Fig. 8.21 to the given dimensions with the front view as the sectional view A-A.

Fig. 8.20 Exercise I

Fig. 8.21 Exercise 2

3. Construct the drawing in Stage 5 following the descriptions of stages given in Fig. 8.22.
4. Fig. 8.23 is a front view of a car with parts hatched. Construct a similar drawing of any make of car, using hatching to emphasise the shape.
5. Working to the notes given with the drawing in Fig. 8.24, construct the end view of a house as shown. Use your own discretion about sizes for the parts of the drawing.
6. Working to dimensions of your own choice, construct the three-view projection of a two-storey house as shown in Fig. 8.25.

Fig. 8.22 Exercise 3

Fig. 8.23 Exercise 4

Fig. 8.24 Exercise 5

Fig. 8.25 Exercise 6

7. Construct Fig. 8.26 as follows:
(a) On layer Text, construct a circle of radius 90 .
(b) Make layer $\mathbf{0}$ current.
(c) Construct the small drawing to the details as shown and save as a block with a block name shape (see Chapter 9).
(d) Call the Divide tool by entering div at the command line:

Command: enter div right-click
Select object to divide: pick the circle
Enter number of segments or [Block]: enter \mathbf{b} right-click
Enter name of block to insert: enter shape right-click Align block with object? [Yes/No] < Y > : right-click Enter the number of segments: enter 20 right-click Command:
(e) Turn the layer Text off.

Fig. 8.26 Exercise 7

CHAPTER 9

Blocks and Inserts

Aims of this chapter

1. To describe the construction of blocks and wblocks (written blocks).
2. To introduce the insertion of blocks and wblocks into other drawings.
3. To introduce the use of the DesignCenter palette.
4. To explain the use of the Explode and Purge tools.

Introduction

Blocks are drawings which can be inserted into other drawings. Blocks are contained in the data of the drawing in which they have been constructed. Wblocks (written blocks) are saved as drawings in their own right, but can be inserted into other drawings if required.

Blocks

First example - Blocks (Fig. 9.3)

1. Construct the building symbols as shown in Fig. 9.1 to a scale of $1: 50$.
2. Left-click the Make Block tool (Fig. 9.2). The Block Definition dialog (Fig. 9.3) appears. To make a block from the Double bed symbol drawing:
(a) Enter double bed in the Name field.
(b) Click the Select objects button. The dialog disappears. Window the drawing of the double bed. The dialog reappears. Note the icon of the double bed in the top right-hand corner of the dialog.

Fig. 9.I First example - Blocks symbols to be saved as blocks

Make Block in the 2D Draw control panel

Make Block in the Draw toolbar

Fig. 9.2 Click the Make Block tool icon in either the 2D Draw control panel or the Draw toolbar

Fig. 9.3 The Block Definition dialog with entries for the double bed
(c) Click the Pick point button. The dialog disappears. Click a point on the double bed drawing to determine its insertion point. The dialog reappears. Note that the coordinates of the insertion point appears in the Base point area of the dialog.
(d) If thought necessary enter a description in the Description field of the dialog.
The drawing is now saved as a block in the drawing.

3. Repeat steps $\mathbf{1}$ and $\mathbf{2}$ to make blocks of all the other symbols in the drawing.
4. Open the Block Definition dialog again and click the arrow on the
right of the Name field. The blocks saved in the drawing appear in a
4. Open the Block Definition dialog again and click the arrow on the
right of the Name field. The blocks saved in the drawing appear in a popup list (Fig. 9.4).

Fig. 9.4 The popup list in the Name field showing all blocks saved in the drawing

Inserting blocks into a drawing

There are two methods by which symbols saved as blocks can be inserted into another drawing.

Example - first method of inserting blocks

Ensuring that all the symbols saved as blocks using the Make Block tool are saved in the data of the drawing in which the symbols were constructed, erase the drawings of the symbols and in their place construct the outline of the plan of a bungalow to a scale of 1:50 (Fig. 9.5). Then:

Fig. 9.7 The Insert dialog with its Name popup list displaying the names of all blocks in the drawing

Fig. 9.5 First example - inserting blocks. Outline plan

Fig. 9.6 The Insert Block tool icon in the Draw toolbar

1. Left-click the Block tool icon in the 2D Draw control panel or the Insert Block tool in the Draw toolbar (Fig. 9.6). The Insert dialog appears on screen (Fig. 9.7). From the Name popup list select the name of the block which is to be inserted, in this example the 2.5 window.

2. Make sure the check box against Explode is off (no tick in box). Click the dialog's OK button, the dialog disappears. The symbol drawing appears with its insertion point at the intersection of the cursor hairs ready to be dragged into its position in the plan drawing.
3. Once all the block drawings are placed, their positions can be adjusted. Blocks are single objects and can thus be dragged into new positions as required under mouse control. Their angle of position can be amended at the command line, which shows:

Command:

INSERT
Specify insertion point or [Basepoint/Scale/X/Y/Z/Rotate/PScale/
PX/PY/PZ/PRotate]: enter \mathbf{r} (Rotate) right-click
Specify insertion angle: enter 180 right-click
Specify insertion point: pick

Command:

Selection from these prompts allows scaling, stretching along any axis, previewing, etc. as the block is inserted.
4. Insert all necessary blocks and add other details as required to the plan outline drawing. The result is given in Fig. 9.8.

Example - second method of inserting blocks

1. Save the drawing which includes all the blocks to a suitable file name (building_symbols.dwg). Remember this drawing includes data of the blocks in its file.
2. Left-click DesignCenter in the Palettes sub-menu of the Tools dropdown menu (Fig. 9.9). The DesignCenter palette appears on screen (Fig. 9.10).

Fig. 9.9 Selecting DesignCenter from the Palettes sub-menu of the Tools drop-down menu

Fig. 9.10 The DesignCenter with the double bed block dragged on screen

3. With the outline plan (Fig. 9.5) on screen the symbols can all be dragged into position from the DesignCenter.

Notes about DesignCenter palette

1. As with other palettes, the DesignCenter palette can be re-sized by dragging the palette to a new size from its edges or corners.
2. Clicks on one of the three icons at the top-right corner of the palette (Fig. 9.11) have the following results:
(a) Tree View Toggle - changes from showing two areas - a Folder List and icons of the blocks within a file - to a single area showing the block icons.

Fig. 9.1। The icons at the topright corner of the DesignCenter palette

Fig. 9.12 The results of clicks on Tree View Toggle and Preview

\square Explode	Explode not set
\square Explode	Explode set ON

Fig. 9.14 The Explode tool icon in the DASHBOARD palette

(b) Preview - a click on the icon opens a small area at the base of the palette showing an enlarged view of the selected block icon (Fig. 9.12).
(c) Description - a click on the icon opens another small area with a description of the block.

The Explode tool

A block is a single object no matter from how many objects it was originally constructed. This enables a block to be dragged about the drawing area as a single object.

A check box in the bottom left-hand corner of the Insert dialog is labelled Explode (Fig. 9.13). If the check box is ticked, Explode will be set on and when a block is inserted it will be exploded into the objects from which it was constructed.

Another way of exploding a block would be to use the Explode tool from the DASHBOARD palette (Fig. 9.14). A click on the icon or entering ex at the command line brings prompts into the command line:

Command:_explode
Select objects: pick a block on screen $\mathbf{1}$ found.
Select objects: right-click
Command:
And the picked object is exploded into its original objects.

The Purge tool

The Purge tool can be called by entering pu at the command line or from the Drawing Utilities sub-menu of the File drop-down menu (Fig. 9.15). When the tool is called the Purge dialog appears on screen (Fig. 9.16).

Drawing L Ltilities	Audit
Send... Drawing Properties...	Recover...
	Drawing Recovery Manager...
	Update Block Icons
	Purge...

The Purge tool can be used to remove the data of blocks within a drawing thus saving file space when a drawing which includes blocks is saved to disk.

To use the tool, in its dialog click the Purge button and a sub-dialog appears naming a block to be purged. A click on the Yes button clears the data of the block from the drawing. Continue until all blocks that are to be purged are removed.

Take the drawing in Fig. 9.8 (page 146) as an example. If all the blocks are purged from the drawing, the file will be reduced from 145 Kbytes to 67 Kbytes when the drawing is saved to disk.

Example using the DesignCenter (Fig. 9.19)

1. Construct the set of electric/electronic circuit symbols shown in Fig. 9.17 and make a series of blocks from each of the symbols.

Fig. 9.17 Example using the DesignCenter - a set of electric/electronic symbols

Fig. 9.18 Example using the DesignCenter
5. Close the DesignCenter palette with a click on the \mathbf{X} in the top left-hand corner.
6. Complete the circuit drawing as shown in Fig. 9.19.

Note

Fig. 9.19 does not represent an authentic electronics circuit.

Fig. 9.19 Example using the DesignCenter - the completed circuit

Wblocks

Wblocks or written blocks are saved as drawing files in their own right and are not part of the drawing in which they have been saved.

Example - wblock (Fig. 9.20)

1. Construct a light emitting diode (LED) symbol and enter \mathbf{w} at the command line. The Write Block dialog appears (Fig. 9.20).

2. Click the button marked with three dots (. . .) to the right of the File name and path field and from the Browse for Drawing File dialog which comes to screen select an appropriate directory. The directory name appears in the File name and path field. Add LED.dwg at the end of the name.
3. Make sure the Insert units is set to Millimeters in its popup list.

Fig. 9.21 An example of a drawing dragged from the DesignCenter
4. Click the Select objects button, window the symbol drawing and when the dialog reappears, click the Pick point button, followed by selecting the left-hand end of the symbol.
5. Finally click the OK button of the dialog and the symbol is saved in its selected directory as a drawing file LED.dwg in its own right.

Note on the DesignCenter

Drawings can be inserted into the AutoCAD window from the DesignCenter by dragging the icon representing the drawing into the window (Fig. 9.21).

When such a drawing is dragged into the AutoCAD window, the command line shows a sequence such as:

Command:_INSERT Enter block name or [?] <Fig26>: ‘Chapter07\insertsLFig25.dwg'
Specify insertion point or [prompts](_face): pick
Enter \mathbf{X} scale factor $<\mathbf{1}>$: right-click
Enter Y scale factor <use \mathbf{X} scale factor>: right-click
Specify rotation angle $<0>$: right-click
Command:

Revision notes

1. Blocks become part of the drawing file in which they were constructed.
2. Wblocks become drawing files in their own right.
3. Drawings or parts of drawings can be inserted into other drawings with the Block tool.
4. Inserted blocks or drawings are single objects unless either the Explode check box of the Insert dialog is checked or the block or drawing is exploded with the Explode tool.
5. Drawings can be inserted into the AutoCAD drawing area using the DesignCenter.
6. Blocks within drawings can be inserted into drawings from the DesignCenter.

Exercises

1. Construct the building symbols in Fig. 9.22 in a drawing saved as symbols.dwg. Then using the DesignCenter construct a building drawing of the first floor of the house you are living in, making use of the symbols. Do not bother too much about dimensions because this exercise is designed to practise using the idea of making blocks and using the DesignCenter.

Fig. 9.22 Exercise I
2. Construct drawings of the electric/electronics symbols in Fig. 9.17 (page 150) and save them as blocks in a drawing file electronics.dwg.
3. Construct the electronics circuit given in Fig. 9.23 from the file electronics.dwg using the DesignCenter.

4. Construct the electronics circuit given in Fig. 9.24 from the file Fig. 17.dwg using the DesignCenter.

Fig. 9.24 Exercise 4

Other types of file format

Aims of this chapter

1. To introduce Object Linking and Embedding (OLE) and its uses.
2. To introduce the use of Encapsulated Postscript (EPS) files.
3. To introduce the use of Data Exchange Format (DXF) files.
4. To introduce raster files.
5. To introduce Xrefs.

Object linking and embedding

First example - copying and pasting (Fig. I 0.3)

1. Open any drawing in the AutoCAD 2007 window (Fig. 10.1).
2. Left-click Copy Link in the Edit drop-down menu (Fig. 10.1).
3. Click the AutoCAD 2007 Minimize button and open the Clipboard viewer. The copied drawing appears in the clipboard (Fig. 10.2).
4. Open Microsoft Word and click on Paste in the Edit drop-down menu (Fig. 10.3). The drawing from the Clipboard appears in the Microsoft Word document (Fig. 10.3).
5. Add text as required.

Fig. I0.I A drawing in the AutoCAD 2007 window showing Copy Link selected from the Edit drop-down menu

Fig. 10.2 The drawing from AutoCAD copied to the Clipboard

Fig. 10.3 Example - copying and pasting

Notes

1. It is not common practice to have a Clipboard window showing on screen, since it usually works in the background. It is shown opened here to display its use in acting as an agent for transposing drawings, etc. from one application to another.
2. Similar results can be obtained using the Copy and Copy with Base Point tools from the Edit drop-down menu of AutoCAD 2007.
3. The drawing could also be pasted back into the AutoCAD window not that there would be much point in doing so, but anything in the Clipboard window can be pasted into other applications.

Second example - EPS file (Fig. I0.5)

1. With the same drawing on screen click on Export ... in the File drop-down menu. The Export Data dialog appears (Fig. 10.4). Pick Encapsulated PS (*.eps) from the Files of type popup list, then enter a suitable file name (building.eps) in the File name field and click the Save button.

2. Open a desktop publishing application. That shown in Fig. 10.5 is PageMaker.
3. From the File drop-down menu click Place . . . A dialog appears listing files which can be placed in a PageMaker document. Among the files named will be building.eps. Double-click that file name and an icon appears, the placing of which determines the position of the *.eps file drawing in the PageMaker document (Fig. 10.5).
4. Add text as required.
5. Save the PageMaker document to a suitable file name.
6. Go back to the AutoCAD drawing and delete the title.
7. Make a new *.eps file with the same file name (building.eps).
8. Go back into PageMaker and click Links Manager . . . in the File drop-down menu. The Links Manager dialog appears (Fig. 10.6). Against the name of the building.eps file name is a dash and a note at the bottom of the dialog explaining that changes have taken place in

Fig. I0.5 An EPS file placed in position in a PageMaker document

Fig. I0.6 The Links Manager dialog of PageMaker

Status: The linked file has been modified since the last time it was placed. However, updates have not been requested.
the drawing from which the *.eps had been derived. Click the Update button and when the document reappears the drawing in PageMaker no longer includes the erased title.

Notes

1. This is Object linking and embedding. Changes in the AutoCAD drawing saved as an *.eps file are linked to the drawing embedded in another application document, so changes made in the AutoCAD drawing are reflected in the PageMaker document.
2. There is actually no need to use the Links Manager because if the file from PageMaker is saved with the old *.eps file in place, when it is reopened the file will have changed to the redrawn AutoCAD drawing, without the erased title.

DXF (Data Exchange Format) files

The *.DXF format was originated by Autodesk (publishers of AutoCAD), but is now in general use in most CAD software. A drawing saved to a *.dxf format file can be opened in most other CAD software applications. This file format is of great value when drawings are being exchanged between operators using different CAD applications.

Example - DXF file (Fig. I0.8)

1. Open a drawing in AutoCAD. This example is shown in Fig. 10.7.
2. Click on Save As... in the File drop-down menu and in the Save Drawing As dialog which appears, click AutoCAD 2007 DXF [*.dxf].

Fig. I0.7 Example - DXF file. Drawing to be saved as a dxf file

3. Enter a suitable file name. In this example this is Fig 07. The extension .dxf is automatically included when the Save button of the dialog is clicked (Fig. 10.8).
4. The DXF file can now be opened in the majority of CAD applications and then saved to the drawing file format of the CAD in use.

Note

To open a DXF file in AutoCAD 2007, select Open . . . from the File drop-down menu and select AutoCAD 2007 DXF [*.dxf] from the popup list of the Files of type field.

Raster images

A variety of raster files can be placed into AutoCAD 2007 drawings from the Select Image File dialog brought to screen with a click on Raster Image . . . in the Insert drop-down menu. In this example the selected raster file is a bitmap (extension *.bmp) of a rendered 3D model drawing

Fig. I0.8 The Save Drawing As dialog set up to save drawings in DXF format.

Fig. 10.9 Selecting Raster Image Reference . . . from the Insert drop-down menu

Fig. I0.10 The Select Image File dialog

constructed to the views in an assembly drawing of a lathe tool post (see Chapter 16 about rendering 3D models).

Example - placing a raster file in a drawing (Fig. IO.I3)

1. Click Raster Image Reference . . . from the Insert drop-down menu (Fig. 10.9). The Select Image File dialog appears (Fig. 10.10). Click the file name of the image to be inserted, in this example rendering01.bmp. A preview appears in the Preview area of the dialog.
2. Click the Open button of the dialog. The Image dialog appears (Fig. 10.11).
3. In the Scale field enter a suitable scale figure. The size of the image that will appear in the AutoCAD window can be seen with a click on the Details button which brings down an extension of the dialog which shows details about the resolution and size of the image.

Fig. I0.1I The Image dialog

Fig. IO. 12 Example - placing a raster file in a drawing

? \times

4. Click the OK button, the command line shows:

Command:_imageattach

Command:

And the raster image appears at the picked point (Fig. 10.12).

Specify insertion point $<\mathbf{0 , 0}>$: an outline of the image attached to the intersection of the cursor cross hairs appears pick a suitable point on screen

Notes
As can be seen from the Insert drop-down menu (Fig. 10.9) a variety of different types of raster and other images can be inserted into an AutoCAD drawing. Some examples are:

Blocks - see Chapter 9.
External References (Xrefs) - see later in this chapter.
Field name - a click on the name brings up the Field dialog. Practise inserting various categories of field names from the dialog.
Layout - a wizard appears allowing new layouts to be created and saved for new templates.
3D Studio - allows the insertion of images constructed in the Autodesk software 3D Studio from files with the format *.3ds.
OLE Objects - allows raster images to be placed as OLE images from a variety of other applications.

External References (Xrefs)

If a drawing is inserted into another drawing as an external reference, any changes made in the original Xref drawing are automatically reflected in the drawing into which the Xref has been inserted.

Example - External References (Fig. IO.I9)

1. Construct the three-view orthographic drawing in Fig. 10.15. Dimensions of this drawing will be found on page 263. Save the drawing to a suitable file name.
2. As a separate drawing construct Fig. 10.16. Save it as a wblock with the name of Fig16.dwg and with a base insertion point at one end of its centre line.
3. In the Insert drop-down menu click External References . . . The EXTERNAL REFERENCES palette appears (Fig. 10.13).
4. Click its Attach button and select Attach DWG from the popup list which appears when a left-click is held on the button. Select the

drawing of a spindle (Fig16.dwg) from the Select Reference File dialog which appears followed by a click on the dialog's Open button. This brings up the External Reference dialog (Fig. 10.14) showing Fig16 in its Name filed. Click the dialog's OK button.

Fig. I0.14 The External Reference dialog

Fig. 10.15 Example - External References - original drawing

Fig. 10.16 The spindle drawing saved as Figl6.dwg

Fig. 10.17 The spindle in place in the original drawing

Fig. 10.18 The revised spindle.dwg drawing

Fig. I0.19 Example - Xrefs

Fig. 10.20 Four drawings in the Multiple Document Environment
5. The spindle drawing appears on screen ready to be dragged into position. Place it in position as indicated in Fig. 10.17.
6. Save the drawing with its Xref to its original file name.
7. Open the drawing Fig16.dwg and make changes as shown in Fig. 10.18.
8. Now reopen the original drawing. The external reference within the drawing has changed in accordance with the alterations to the spindle drawing (Fig. 10.19).

Note

In this example, to ensure accuracy of drawing, the external reference will need to be exploded and parts of the spindle changed to hidden detail lines.

Multiple Document Environment (MDE)

1. Open several drawings in AutoCAD, in this example four separate drawings have been opened.
2. In the Window drop-down menu, click Tile Horizontally. The four drawings rearrange as shown in Fig. 10.20.

Note

The names of the drawings appear in the Window drop-down menu, showing their directories, file names and file name extensions.

Revision notes

1. The Edit tools Copy with Base Point, Copy and Copy Link enable objects from AutoCAD 2007 to be copied for Pasting onto other applications.
2. Objects can be copied from other applications to be pasted into the AutoCAD 2007 window.
3. Drawings saved in AutoCAD as DXF (*.dxf) files can be opened in other CAD applications.
4. Similarly drawings saved in other CAD applications as *.dxf files can be opened in AutoCAD 2007.
5. Raster files of the format types *.bmp, *.jpg, *.pcx, *.tga, *.tif among other raster type file objects can be inserted into AutoCAD 2007 drawings.
6. Drawings saved to the Encapsulated Postscript (*.eps) file format can be inserted into documents of other applications.
7. Changes made in a drawing saved as an *.eps file will be reflected in the drawing inserted as an *.eps file in another application.
8. When a drawing is inserted into another drawing as an external reference, changes made to the inserted drawing will automatically be updated in the drawing into which it has been inserted.
9. A number of drawings can be opened in the AutoCAD 2007 window.

Exercises

1. Fig. 10.21 shows a pattern formed by inserting an external reference and then copying or arraying the external reference.

Fig. I0.2I Exercise I - original pattern

Fig. 10.22 Exercise I

Fig. 10.23 Exercise 2 - a rendering of the holders and roller

The hatched parts of the external reference drawing were then changed using a different hatch pattern. The result of the change in the Xref is shown in Fig. 10.22.

Construct a similar Xref drawing, insert as an Xref, array or copy to form the pattern, then change the hatching, save the Xref drawing and note the results.
2. Fig. 10.23 is a rendering of a roller between two end holders. Fig. 10.24 gives details of the end holders and the roller in orthographic projections.

Construct a full size front view of the roller and save to a file name roller.dwg. Then as a separate drawing construct a front view of the two end holders in their correct positions to receive the roller and save to the file name assembly.dwg.

Insert the roller drawing into the assembly drawing as an Xref. Open the roller.dwg and change its outline as shown in Fig. 10.25. Save the drawing. Open the assembly.dwg and note the change in the inserted Xref.
3. Click Raster Image . . . in the Insert drop-down menu and insert a JPEG image (${ }^{*} . j p g$ file) of a photograph into the AutoCAD 2007 window. An example is given in Fig. 10.26.
4. Using Copy from the Insert drop-down menu, copy a drawing from AutoCAD 2007 into a Microsoft Word document. An example is given in Fig. 10.27. Add some appropriate text.
5. The plan in Figs 10.1, 10.2 and 10.3 is incorrect in that some details have been missed from the drawing. Can you identify the error?

Fig. I0.24 Exercise 2 - details of the parts of the roller and holders

Fig. I0.26 Exercise 3 - example
Fig. I0.25 The amended Xref drawing

Fig. 10.27 Exercise 4 - an example

CHAPTER II

Sheet sets

Aims of this chapter

1. To introduce sheet sets.
2. To describe working in the Sheet Layout and Publishing workspace.
3. To give an example of a sheet set based on the design of a two-storey house.

Sheet sets

When anything is to be manufactured or constructed, whether it be a building, an engineering design, an electronics device or any other form of manufactured artefact, a variety of documents, many in the form of technical drawings, will be needed to convey to those responsible for constructing the design information necessary to be able to proceed according to the wishes of the designer. Such sets of drawings may be passed between the people and the companies responsible for the construction, enabling all those involved to make adjustments or suggest changes to the design. In some cases there may well be a considerable number of drawings required in such sets of drawings. In AutoCAD 2007 all the drawings from which a design is to be manufactured can be gathered together in a sheet set. This chapter shows how a much reduced sheet set of drawings for the construction of a house at 62 Pheasant Drive can be formed. Some other drawings, particularly detail drawings, would be required in this example, but to save page space, the sheet set described here consists of only four drawings and a subset of another four.

Example - a sheet set for 62 Pheasant Drive

1. Construct a template 62 Pheasant Drive.dwt based upon the acadisco.dwt template, but including a border and a title block. Save the template in a Layout1 format. An example of the title block from one of the drawings constructed in this template is shown in Fig. 11.1.

Fig. I I.I The title block from Drawing number $\mathbf{2}$ of the sheet set

Fig. II. 2 The eight drawings in the 62 Pheasant Drive sheet set
2. Construct each of the drawings which will form the sheet set in this drawing template. The whole set of drawings is shown in Fig. 11.2. Save the drawings in a directory - in this example this has been given the name 62 Pheasant Drive.

3. Click New Sheet Set in the File drop-down menu (Fig. 11.3). The first of a series of Create Sheet Set dialogs appears - the Begin dialog (Fig. 11.4). Click the radio button next to Existing drawings, followed

Fig. II. 3 Selecting New Sheet Set... from the File drop-down menu

Fig. II. 4 The first of the Create Sheet Set dialogs - Begin

Fig. II. 5 The Sheet Set Details dialog
by a click on the Next button and the next dialog Sheet Set Details appears (Fig. 11.5).

4. Enter details in the dialog as shown in Fig. 11.5. Then click the Next button to bring the Choose Layouts dialog to screen (Fig. 11.6).
5. Click its Browse . . . button and from the Browse for Folder list which comes to screen, pick the directory 62 Pheasant Drive. Click the OK button and the drawings held in the directory appears in the

Fig. 11.7 The Confirm dialog

Fig. II. 8 The Sheet Set Manager palette for 62 Pheasant Drive

Fig. II. 9 The Publish to DWF icon in the Sheet Set Manager

Choose Layouts dialog (Fig. 11.6). If satisfied the list is correct, click the Next button. A Confirm dialog appears (Fig. 11.7). If satisfied click the Finish button and the Sheet Set Manager palette appears showing the drawings which will be in the 62 Pheasant Drive sheet set (Fig. 11.8).

Notes

1. The eight drawings in the sheet set are shown in Fig. 11.8. If any of the drawings in the sheet set are subsequently amended or changed, when the drawing is opened again from the 62 Pheasant Drive Sheet Set Manager palette, the drawing will include any changes or amendments.
2. Drawings can only be placed into sheet sets if they have been saved in a Layout screen. Note that all the drawings shown in the 62 Pheasant Drive Sheet Set Manager have Layout1 after the drawing names because each has been saved after being placed in a Layout1 screen.
3. Sheet sets in the form of DWF (Design Web Format) files can be sent via email to others who are using the drawings or placed on an intranet. The method of producing a DWF for the 62 Pheasant Drive Sheet Set follows.

62 Pheasant Drive DWF

1. In the 62 Pheasant Drive Sheet Set Manager click the Publish to DWF icon (Fig. 11.9). The Select DWF File dialog appears (Fig. 11.10).

Fig. II.IO The Select DWF File dialog

Fig. II.II The Processing Background Job dialog

Enter 62 Pheasant Drive in the File name field followed by a click on the Select button. The Processing Background Job dialog appears (Fig. 11.11). Click its OK button. The Publish Job in Progress icon at the bottom right-hand corner of the AutoCAD 2007 window starts fluctuating in shape showing that the DWF file is being processed (Fig. 11.12). When the icon becomes stationary right-click the icon

Fig. II.I2 The Publish Job in Progress icon

Fig. II.I3 The right-click menu of the icon

Fig. II.I4 The Autodesk DWF
Viewer showing details of the $\mathbf{6 2}$ Pheasant Drive.dwf file

and click View DWF file ... in the right-click menu which appears (Fig. 11.13).
2. The Autodesk DWF Viewer window appears showing the 62 Pheasant Drive.dwf file (Fig. 11.14). Click in any of the icons of the thumbnails of the drawings in the viewer and the drawing appears in the right-hand area of the viewer.

3. If required the DWF Viewer file can be sent between people by email as an attachment, opened in a company's intranet or, indeed, included within an Internet web page.

Revision notes

1. To start off a new sheet set, click New Sheet Set . . . in the File drop-down menu.
2. Sheet sets can only contain drawings saved in Layout form.
3. Sheet sets can be published as Design Web Format (*.dwf) files which can be sent between offices by email, published on an intranet or published on a web page.
4. Sub sets can be included in sheet sets.
5. Changes or amendments made to any drawings in a sheet set are reflected in the sheet set drawings when the sheet set is opened.

Exercises

1. Fig. 11.15 is an exploded orthographic projection of the parts of a piston and its connecting rod. There are four parts in the assembly. Small drawings of the required sheet set are shown in Fig. 11.16.

Fig. II.I5 Exercise I - the exploded orthographic projection

Fig. II.I6 Exercise I - the five drawings in the sheet set

Construct the drawing in Fig. 11.15 and also the four drawings of its parts. Save each of the drawings in a Layout1 format and construct the sheet set which contains the five drawings.

Construct the DWF file of the sheet set. Experiment sending it to a friend via email as an attachment to a document, asking them to return the whole email to you without changes. When the email is returned, open its DWF file and click each drawing icon in turn to check the contents of the drawings.

Note

Fig. 11.17 shows a DWF for the sheet set from exercise 1 with the addition of a sixth drawing which is a 3D exploded model drawing of the five parts of the piston and connecting rod which has been Gouraud shaded - see Chapter 16. This illustration has been included here to show that such shaded 3D models can be included in a sheet set.

Fig. II.I7 The DWF for exercise I

2. Construct a similar sheet set as in the answer to exercise $\mathbf{1}$ from the exploded orthographic drawing of a Machine adjusting spindle given in Fig. 11.18.

Fig. II.I8 Exercise 2

CHAPTER 12

Building drawing

Aim of this chapter

To show that AutoCAD 2007 is a suitable CAD software package for the construction of building drawings.

Building drawings

There are a number of different types of drawings related to the construction of any form of building. As fairly typical examples of a set of building drawings, in this chapter, seven drawings are shown related to the construction of an extension to an existing two-storey house (44 Ridgeway Road). These show:

1. A site plan of the original two-storey house, drawn to a scale of $\mathbf{1 : 2 0 0}$ (Fig. 12.1).
2. A site layout plan of the original house, drawn to a scale of $\mathbf{1 : 1 0 0}$ (Fig. 12.2).

Fig. I2.I A site plan

Fig. I2.2 A site layout plan

3. Floor layouts of the original house, drawn to a scale of $\mathbf{1 : 5 0}$ (Fig. 12.3).

Fig. 12.3 Floor layouts drawing of the original house

Fig. I2.4 Views of the original house

4. Views of all four sides of the original house drawn to a scale of $\mathbf{1 : 5 0}$ (Fig. 12.4).
5. Floor layouts including the proposed extension, drawn to a scale of 1:50 (Fig. 12.5).

6. Views of all four sides of the house including the proposed extension, drawn to a scale of $\mathbf{1 : 5 0}$ (Fig. 12.6).
7. A sectional view through the proposed extension, drawn to a scale of 1:50 (Fig. 12.7).

Fig. I2.6 Views including the proposed extension

Fig. 12.7 A section through the proposed extension

Notes

1. Other types of drawings will be constructed which show the details of parts such as doors, windows, floor structures, etc. These are often shown in sectional views.
2. Although the seven drawings related to the proposed extension of the house at 44 Ridgeway Road are shown here as having been constructed on either A3 or A4 layouts, it is common practice to include several types of building drawings on larger sheets such as A1 sheets of a size 820 mm by 594 mm .

Floor layouts

When constructing floor layout drawings it is advisable to build up a library of block drawings of symbols representing features such as doors, windows, etc. These can then be inserted into layouts from the DesignCenter. A suggested small library of such block symbols is shown in Fig. 12.8.

Revision notes

There are a number of different types of building drawings - site plans, site layout plans, floor layouts, views, sectional views, detail drawings. AutoCAD 2007 is a suitable CAD program to use when constructing building drawings.

Exercises

1. Fig. 12.9 is a site plan drawn to a scale of $1: 200$ showing a bungalow to be built in the garden of an existing bungalow.

Construct the library of symbols shown in Fig. 12.8 and by inserting the symbols from the DesignCenter construct a scale 1:50 drawing of the floor layout plan of the proposed bungalow.

Fig. 12.9 Exercise I
2. Fig. 12.10 is a site plan of a two-storey house to be built on a building plot.

Design and construct to a scale 1:50, a suggested pair of floor layouts for the two floors of the proposed house.

3. Fig. 12.11 shows a scale $1: 100$ site plan for the proposed bungalow at 4 Caretaker Road. Construct the floor layout for the proposed house shown in the drawing in Fig. 12.12.

PART II

3D Design

This page intentionally left blank

CHAPTER 13

Introducing 3D modelling

Aims of this chapter

1. To introduce the tools used for the construction of 3D solid models.
2. To introduce the use of the 3D face tool.
3. To give examples of the construction of 3 D solid models using tools from the Modeling toolbar or the 3D Make control panel.
4. To give examples of 2 D outlines suitable as a basis for the construction of 3D solid models.
5. To give examples of constructions involving the Boolean operators Union, Subtract and Intersect.

Introduction

As shown in Chapter 1 the AutoCAD coordinate system includes a third coordinate direction \mathbf{Z}, which, when dealing with 2D drawing in previous chapters, has not been used. 3D model drawings make use of this third \mathbf{Z} coordinate.

The 3D Modeling workspace

It is possible to construct 3D model drawings in the AutoCAD Classic workspace, but in this part of the book we will be working in the 3D Modeling workspace. To set this workspace left-click the 3D Modeling icon in the Workspaces toolbar and the AutoCAD screen changes as shown in Fig. 13.1. In this example the four main 3D modelling toolbars have been shown on screen, together with the 3D Make control panel. It is not necessary to have the toolbars or control panel on screen. It is up to the operator to decide which of the available methods for calling tools for 3D modelling they wish to use. Toolbars can be called to screen with a right-click in any toolbar on screen, followed by selecting the required toolbar from the menu which then appears.

To bring the 3D Make control panel from the DASHBOARD, right-click in the title bar (blue area to the right of the palette) and make sure a tick is in place only against the 3D Make control panel (Fig. 13.2) and not against any of the other control panel names in the sub-menu. In Fig. 13.1 the 3D Navigate control panel is shown in the DASHBOARD with the Parallel Projection icon selected.

Fig. 13.1 The 3D Modeling workspace showing four toolbars and the 3D Make control panel

Fig. I3.2 Ensuring only the 3D
Make control panel is showing from the DASHBOARD palette

Methods of calling tools for 3D modelling

When calling the tools for the construction of 3D model drawings, the four same methods apply as can be used when constructing 2D drawings:

1. A click on a tool icon in the Modeling toolbar or in the appropriate 3D Make control panel brings the selected tool into action (Fig. 13.3).
2. A click on the name of a tool from a drop-down menu brings the tool into action.

Fig. I3.3 The tool icons in the Modeling toolbar and 3D Make control panel

3. Entering the tool name at the command line in the command window, followed by pressing the Return button of the mouse or the Return key of the keyboard, brings the tool into action.
4. Some of the 3D tools have an abbreviation which can be entered at the command line instead of its full name.

Notes

1. As when constructing 2 D drawings no matter which method is used and most operators will use a variety of these four methods, the result of calling a tool results in prompts sequences appearing at the command prompt as in the following example:

Command: enter box right-click
Specify corner of box or [CEnter]: enter $\mathbf{9 0 , 1 2 0}$ right-click Specify corner or [Cube/Length]:

Or, if the tool is called from its tool icon or from a drop-down menu:
Command:_box
Specify corner of box or [CEnter]: enter $\mathbf{9 0 , 1 2 0}$ right-click Specify corner or [Cube/Length]:
2. In the following pages, if the tool's sequences are to be repeated, they may be replaced by an abbreviated form such as:

Command: box
[prompts](_face): 90,120
[prompts](_face):

Examples of 3D drawings using the 3D Face tool

The following two examples demonstrate the construction of 3D faces using the 3D Face tool from the Surfaces toolbar (Fig. 13.4). A 3D face is a triangular or quadrilateral flat (planar) or non-planar surface - i.e. a surface with either three or four edges in 3D space. Lines or other surfaces behind 3D faces can be hidden by using the Hide tool (Fig. 13.5).

First example - 3D Face tool (Fig. I3.6)

1. At the command line:

Command: enter 3dface right-click
Specify first point or [Invisible]: enter $\mathbf{6 0 , 2 3 0}$ right-click
Specify second point or [Invisible]: enter $\mathbf{6 0 , 1 1 0}$ right-click
Specify third point or [Invisible] <exit>: enter 190,110,150 rightclick
Specify fourth point or [Invisible] <create three-sided face>: enter 190,230,150 right-click
Specify third point or [Invisible] <exit>: right-click Command:
2. Call the Mirror tool and mirror the 3D face about 190,110 and 190,230.
3. Click on View in the menu bar and on 3D Views in the dropdown menu which appears, and click again on Southwest Isometric in the sub-menu which comes on screen alongside the drop-down menu.
4. Click on the Hide tool from the Render toolbar (Fig. 13.5) or from the View drop-down menu.

After HIDE, part of the right-hand 3D face has been hidden behind the left-hand face (Fig. 13.6).

Note

3D Views can be called from the 3D Navigate control panel (Fig. 13.7). Open the panel in the DASHBOARD (see Fig. 13.2, page 188) and leftclick on the arrow to the right of the popup list name.

> Second example - 3D Face tool (Fig. I3.8)

It is assumed in this example that the reader understands how to enter 3D coordinates and how to place the screen in various 3D Views from the View drop-down menu.

Fig. I3.8 Second example - 3D Face tool

1. Click on View in the menu bar and again on 3D Views in the dropdown menu. Click again on Front in the sub-menu which appears.
2. Call Zoom and zoom to $\mathbf{1}$.
3. Call the 3D Face tool:

Command: 3dface
[prompts](_face): 130,0
[prompts](_face): 250,0
[prompts](_face): i (for Invisible)
[prompts](_face): 250,110
[prompts](_face): 130,110
[prompts](_face): 190,250
[prompts](_face): 250,110
[prompts](_face): right-click
Command:
4. Click on View in the menu bar and again on 3D Views in the dropdown menu. Click again on Right in the sub-menu which appears.
5. Call Zoom and zoom to 1 .
6. With Mirror, mirror the face about the line $\mathbf{3 2 0 , 0}$ and $\mathbf{3 2 0 , 1 6 0}$.
7. Click on View and on 3D Views and select SW Isometric from the sub-menu. Zoom to 1.
8. Call 3D Face and with the aid of the osnap endpoint construct four 3dfaces linking the two previously constructed faces.
9. Call Hide.

2D outlines suitable for 3D models

When constructing 2D outlines suitable as a base for constructing some forms of 3D model, use the Line or the Polyline tools. If constructed with the Line tool, before being of any use for 3D modelling, the outline must be changed to a region using the Region tool. Polylines can be used without change.

First example - Line outline and Region (Fig. I3.9)

1. Construct the left-hand drawing of Fig. 13.9 using the Line tool.

2. Left-click on Region tool in the Draw drop-down menu, or enter reg at the command line. The command line shows:

Command:_region

Select objects: window the drawing $\mathbf{1 2}$ found
Select objects: right-click
1 loop extracted
1 Region created
Command:
And the Line outline is changed to a region.
Second example - Union, Subtract and regions (Fig. I3.II)

1. Construct drawing 1 of Fig. 13.11 and with the Copy tool, copy the drawing three times to produce drawings 2,3 and 4.
2. With the Region tool change all the outlines into regions.
3. Drawing 2 - call the Union tool from the 3D Make control panel (Fig. 13.10). The command line shows:

Command:_union

Select objects: pick the left-hand region $\mathbf{1}$ found
Select objects: pick the circular region 1 found, $\mathbf{2}$ total
Select objects: pick the right-hand region 1 found, $\mathbf{3}$ total Command:
4. Drawing 3 - with the Union tool form a union of the left-hand region and the circular region.

Fig. I3.10 The Union, Subtract and Intersect tool icons in the 3D Modeling control panel

Fig. I3.II Second example Union, Subtract and regions

Fig. I3.12 Third example Intersection and regions

5. Drawing 4 - call the Subtract tool (Fig. 13.10). The command line shows:

Command:_subtract Select solids and regions to subtract from . . .
Select objects: pick the region just formed $\mathbf{1}$ found
Select objects: right-click
Select solids and regions to subtract: pick the right-hand region 1 found
Select objects: right-click
Command:

Third example - Intersection and regions (Fig. I3.I2)

1. Construct drawing $\mathbf{1}$ of Fig. 13.12.
2. With the Region tool, change the three outlines into regions.
3. With the Copy tool, copy the three regions.

4. Drawing 2 - call the Intersect tool from the 3D Modeling control panel (Fig. 13.10). The command line shows:
Command:_intersect
Select objects: pick one of the circles $\mathbf{1}$ found Select objects: pick the other circle $\mathbf{1}$ found, $\mathbf{2}$ total

Select objects: right-click
 Command:

And the two circular regions intersect with each other to form a region.
5. Drawing 3 - repeat using the Intersect tool on the intersection of the two circles and the rectangular region.

The Extrude tool

The Extrude tool can be called with a click on its tool icon in the Modeling toolbar (Fig. 13.3), from the 3D Make control panel, by entering extrude or its abbreviation ext at the command line.

Note

In this chapter, 3D models are shown in illustrations as they appear in the 3D Modeling workspace. From Chapter 14 onwards, such 3D models are sometimes shown in outline only. This is to allow the reader to see the parts of 3D models in future chapters more clearly in the illustrations.

Examples of the use of the Extrude tool

The three examples of forming regions given in Figs 13.9, 13.11 and 13.12 are used here to show the results of using the Extrude tool.
First example - Extrude (Fig. I3.I3)

From the first example of forming a region:

1. Call the Extrude tool. The command line shows:

Command:_extrude
Current wire frame density: ISOLINES $=4$
Select objects to extrude: pick region 1 found
Select objects to extrude: right-click
Specify height of extrusion or [Direction/Path/Taper angle] <45>: enter 50 right-click

Fig. I3.13 First example -
Extrude

Command:
2. Click View in the menu bar, followed by a click on 3D Views in the drop-down menu which appears, followed by another click on SW Isometric in the 3D Views sub-menu. The extrusion appears in an isometric view.
3. Call Zoom and zoom to $\mathbf{1}$.

Notes

1. In the above example we made use of one of the isometric views possible using the 3D Views sub-menu of the View drop-down menu or from the 3D Navigate control panel (Fig. 13.7). These views will be
used frequently in examples to show 3D solid model drawings in a variety of positions in 3D space.
2. Note also the use of the Hide tool. Extruded polylines or regions are made up from 3D faces (3D meshes). When Hide is called, lines behind the 3D meshes become invisible on screen.
3. Hide can also be called from the View drop-down menu, but the quickest method of calling the tool is to enter hi at the command line, followed by a right-click.
4. Note the Current wire frame density: ISOLINES $=\mathbf{4}$ in the prompts sequence when Extrude is called. The setting of $\mathbf{4}$ is suitable when extruding plines or regions consisting of straight lines, but when arcs are being extruded it may be better to set ISOLINES to a higher figure as follows:

Command: enter isolines right-click
Enter new value for ISOLINES $<4>$: enter 16 right-click
Command:

Second example - Extrude (Fig. I3.14)

From the second example of forming a region:

1. Set ISOLINES to 16.
2. Call the Extrude tool. The command line shows:

Command:_extrude Current wire frame density: ISOLINES $=16$
Select objects to extrude: pick the region 1 found
Select objects to extrude: right-click
Specify height of extrusion or [Direction/Path/Taper angle]: enter \mathbf{t} right-click
Specify angle of taper for extrusion: enter 5 right-click
Specify height of extrusion or [Direction/Path/Taper angle]: enter 100 right-click
Command:
3. Click SW Isometric in the 3D Views sub-menu of the View dropdown menu.
4. Zoom to 1 .

Third example - Extrude (Fig. I3.16)
From the third example of forming a region:

1. Place the screen in the 3D Views/Front view from the View dropdown menu (Fig. 13.15).
2. With the Move tool, move the arc to the centre of the region.
3. Place the screen in the 3D View/SW Isometric view.
4. Set ISOLINES to 24.
5. Call the Extrude tool. The command line shows:

Fig. I3.15 Calling Front from the 3D Views sub-menu of the View drop-down menu

Fig. I3.16 Third example -
Extrude

Command:_extrude
Current wire frame density: ISOLINES=24
Select objects to extrude: pick the region 1 found
Select objects to extrude: right-click
Specify height of extrusion or [Direction/Path/Taper angle] <100>: enter \mathbf{p} right-click
Select extrusion path or [Taper angle]: pick the path Command:

The Revolve tool

The Revolve tool can be called with a click on its tool icon in the Modeling toolbar, or by a click on its tool icon in the 3D Make control panel, or by a click on its name in the Modeling sub-menu of the Draw dropdown menu, or by entering revolve, or its abbreviation rev, at the command line.

Examples of the use of the Revolve tool

Solids of revolution can be constructed from closed plines or from regions.

Fig. 13.17 First example -
Revolve. The closed pline

Fig. I3.18 Calling Revolve from its tool icon in the 3D Make control panel

Fig. I3.19 First example - Revolve

Semi-ellipse based on 180×100 axes

Fig. I3.20 Second example Revolve. The pline outline

First example - Revolve (I3.19)

1. Construct the closed polyline in Fig. 13.17.
2. Set ISOLINES to 24.

3. Call the Revolve tool either from the Modeling toolbar or from the 3D Make control panel (Fig. 13.18). The command line shows:

Command:
Command:_revolve
Current wire frame density: ISOLINES=24
Select objects to revolve: pick the polyline $\mathbf{1}$ found
Select objects to revolve: right-click
Specify axis start point or define axis by [Object/X/Y/Z] <Object>: pick
Specify axis endpoint: pick
Specify angle of revolution or [STart angle] <360> : right-click Command:
4. Place in the 3D Views/SW Isometric view.

Second example - Revolve (Fig. I 3.2 I)

1. Place the screen in the 3D Views/Front view. Zoom to $\mathbf{1}$.
2. Construct the pline outline (Fig. 13.20).
3. Set ISOLINES to 24.
4. Call the Revolve tool and construct a solid of revolution.
5. Place the screen in the 3D Views/SW Isometric view.

Third example - Revolve (Fig. I3.23)

1. Construct the pline in Fig. 13.22. The drawing must be either a closed pline or a region.
2. Call Revolve and form a solid of revolution through 180°.
3. Place the model in the NE Isometric view.

3D objects

At the command line:
Command: enter 3d right-click
Enter an option [Box/Cone/Dlsh/DOme/Mesh/Pyramid/Sphere/ Torus/Wedge]:

Fig. I3.2I Second example Revolve

Fig. I3.22 Third example Revolve. The outline to be revolved

Fig. I3.23 Third example Revolve

And the 3D objects' names appear. Any one of the 3D objects can then be called by entering the capital letter of the name of the 3D object. The 3D objects can also be called from the Modeling toolbar, from the 3D Make control panel, or by entering the name (e.g. box) at the command line.

First example - 3D objects (Fig. I3.24)

1. Place the screen in the 3D Views/Front view.
2. Click the Box tool icon in the Modeling toolbar or in the 3D Make control panel. The command line shows:

Command:_box
Specify first corner or [Center]: enter $\mathbf{9 0 , 9 0}$ right-click
Specify other corner or [Cube/Length]: enter 110,-30 right-click
Specify height or [2Point]: enter $\mathbf{7 5}$ right-click
Command: right-click
BOX Specify first corner or [Center]: 110,90
Specify other corner or [Cube/Length]: 170,70
Specify height or [2Point]: 75
Command: right-click
BOX Specify first corner or [Center]: 110,-10
Specify other corner or [Cube/Length]: 200,-30
Specify height or [2Point]: 75
Command:
3. Place in the 3D Views/SE Isometric View and Zoom to $\mathbf{1}$.
4. Call the Union tool from the Modeling toolbar or from the 3D Make control panel. The command line shows:

Command:_union

Select objects: pick one of the boxes 1 found
Select objects: pick the second box 1 found, 2 total
Select objects: pick the third box $\mathbf{1}$ found, $\mathbf{3}$ total
Select objects: right-click
Command:
And the three boxes are joined in a single union.
Second example - 3D objects (Fig. 13.25)

1. Set ISOLINES to 16.
2. Click the Sphere tool icon in the Modeling toolbar or 3D Make control panel. The command line shows:

Command:_sphere
Specify center point or [3P/2P/Ttr]: 180,170
Specify radius or [Diameter]: 50
Command:
3. Click the Cylinder tool icon in the Modeling toolbar or 3D Make control panel. The command line shows:

Fig. I3.24 First example - 3D Objects

Fig. I3.25 Second example-3D Objects

Fig. I3.26 Third example-3D Objects

Command:_cylinder
Specify center point of base or [3P/2P/Ttr/Elliptical]: 180,170
Specify base radius or [Diameter]: 25
Specify height or [2Point/Axis endpoint]: 110 Command:
4. Place the screen in the 3D Views/Front view and Zoom to $\mathbf{1}$.
5. With the Move tool, move the cylinder vertically down so that the bottom of the cylinder is at the bottom of the sphere.
6. Click the Subtract tool icon in the Modeling toolbar or 3D Make control panel. The command line shows:

Command:_subtract Select solids and regions to subtract from . . . Select objects: pick the sphere $\mathbf{1}$ found Select objects: right-click
Select solids and regions to subtract
Select objects: pick the cylinder $\mathbf{1}$ found
Select objects: right-click
Command:
7. Place the screen in the 3D Views/SW Isometric view and Zoom to $\mathbf{1}$.

Third example - 3D objects (Fig. I3.26)

1. Call the Cylinder tool and with a centre $\mathbf{1 7 0 , 1 5 0}$ construct a cylinder of radius 60 and height 15.
2. Click the Cone tool icon in the Modeling toolbar or 3D Make control panel. The command line shows:

Command:_cone
Specify center point of base or [3P/2P/Ttr/Elliptical]: 170,150
Specify base radius or [Diameter]: 40
Specify height or [2Point/Axis endpoint/Top radius]: 150 Command:
3. Call the Sphere tool and construct a sphere of centre $\mathbf{1 7 0 , 1 5 0}$ and radius 45.
4. Place the screen in the 3D Views/Front view and, with the Move tool, move the cone and sphere so that the cone is resting on the cylinder and the centre of the sphere is at the apex of the cone.
5. Place in the 3D Views/SW Isometric view and Zoom to $\mathbf{1}$ and with Union form a single 3D model from the three objects.

Fourth example - 3D objects (Fig. I3.27)

1. Click the Box tool icon in the Modeling toolbar or 3D Make control panel and construct two boxes - the first of corners $\mathbf{7 0 , 2 1 0}$ and $\mathbf{2 9 0 , 1 2 0}$ and of height $\mathbf{1 0}$, the second of corners $\mathbf{1 2 0}, \mathbf{2 0 0}, 10$ and $\mathbf{2 4 0 , 1 3 0 , 1 0}$ and of height $\mathbf{8 0}$.
2. Place the screen in the 3D Views/Front view and Zoom to $\mathbf{1}$.

Fig. I3.27 Fourth example - 3D Objects

Fig. I3.28 Fifth example-3D Objects

Fig. I3.29 The Chamfer tool in the 2D Draw control panel
3. Click the Wedge tool icon in the Modeling toolbar or 3D Make control panel. The command line shows:

Command:_wedge
Specify first corner or [Center]: 120,160,10
Specify other corner or [Cube/Length]: 80,170,10
Specify height or [2Point]: 70
Command: right-click
WEDGE
Specify first corner of wedge or [Center]: 240,170,10
Specify corner or [Cube/Length]: 280,160,10
Specify height or [2Point]: 70

Command:

4. Place the screen in the 3D Views/SW Isometric view and Zoom to $\mathbf{1 0}$.
5. Call the Union tool from the Modeling toolbar or 3D Make control panel and in response to the prompts in the tool's sequences pick each of the four objects in turn to form a union of the four objects.

Fifth example - 3D objects (Fig. I3.28)

1. Using the Cylinder tool from the Modeling toolbar or 3D Make control panel, construct a cylinder of centre 180,160 , radius 40 and height 120 .
2. Click the Torus tool icon in the Modeling toolbar or 3D Make control panel. The command line shows:

Command:_torus
Specify center point or [3P/2P/Ttr]: 180,160,10
Specify radius or [Diameter]: 40
Specify tube radius or [2Point/Diameter]: 10
Command: right-click

TORUS

Specify center point or [3P/2P/Ttr]: 180,160,110
Specify radius or [Diameter] $<40>$: right-click
Specify tube radius or [2Point/Diameter] <10> : right-click Command:
3. Call the Cylinder tool and construct another cylinder of centre 180,160 , radius 35 and height 120.
4. Place in the 3D Views/SW Isometric view and Zoom to 1.
5. Click the Union tool icon in the Modeling toolbar or 3D Make control panel and form a union of the larger cylinder and the two torii.
6. Click the Subtract tool icon in the Modeling toolbar or 3D Make control panel and subtract the smaller cylinder from the union.

The Chamfer and Fillet tools

The Chamfer and Fillet tools from the Modify toolbar or 2D Draw control panel (Fig. 13.29), which are used to create chamfers and fillets in 2D drawings in AutoCAD 2007, can just as well be used when constructing 3D models.

Example - Chamfer and Fillet (Fig. I3.32)

1. Using the Box and Cylinder tools, construct the 3D model in Fig. 13.30.

Fig. I3.30 Example - Chamfer and Fillet - the model before using the tools

Fig. I3.3I Example - isometric view - Chamfer and Fillet the model before using the tools

2. Place in the 3D Views/SW Isometric view (Fig. 13.31). Union the two boxes and with the Subtract tool, subtract the cylinders from the union.

Note

To construct the elliptical cylinder:
Command:_cylinder
Specify center point of base or [3P/2P/Ttr/Elliptical]: enter e rightclick
Specify endpoint of first axis or [Center]: 130,160
Specify other endpoint of first axis: 210,160
Specify endpoint of second axis: 170,180
Specify height or [2Point/Axis endpoint]: 50
Command:
3. Click the Fillet tool icon in the Modify toolbar or 2D Draw control panel. The command line shows:

Command:_fillet
Current settings: Mode = TRIM. Radius = 1

Specify first object or [Undo/Polyline/Radius/Trim/Multiple]: enter \mathbf{r} (Radius) right-click
Specify fillet radius $<1>$: 10
Select first object: pick one corner
Select an edge or [Chain/Radius]: pick a second corner
Select an edge or [Chain/Radius]: pick a third corner
Select an edge or [Chain/Radius]: pick the fourth corner
Select an edge or [Chain/Radius]: right-click
4 edge(s) selected for fillet.
Command:
4. Click the Chamfer tool icon in the Modify toolbar. The command line shows:

Command:_chamfer
(TRIM mode) Current chamfer Dist1 = 1, Dist2 $=1$
Select first line or [Undo/Polyline/Distance/Angle/Trim/mEthod/ Multiple] enter \mathbf{d} (Distance) right-click
Specify first chamfer distance $<1>$: 10
Specify second chamfer distance $<10>$: 10
Select first line: pick one corner One side of the box highlights
Base surface selection . . . Enter surface selection [Next/OK (current)] <OK>: right-click
Specify base surface chamfer distance $<10>$: right-click
Specify other surface chamfer distance $<10\rangle$: right-click
Select an edge or [Loop]: pick the edge again Select an edge: pick he second edge
Select an edge [or Loop]: right-click
Command:
And two edges are chamfered. Repeat to chamfer the other two edges (Fig. 13.32).

Note on the tools Union, Subtract and Intersect

The tools Union, Subtract and Intersect found in the Solids Editing toolbar are known as the Boolean operators after the mathematician Boolean. They can be used to form unions, subtractions or intersections between extrusions, solids of revolution or any of the 3D Objects.

Note on using Modify tools on 3D models

As was seen above while using the Move, Chamfer and Fillet tools from the Modify toolbar, so also can other tools like Copy, Mirror, Rotate and Scale from the toolbar be used in connection with the construction of 3D models.

Constructing 3D surfaces using the Extrude tool

In this example of the construction of a 3D surface model the use of the DYN (Dynamic input) method of construction will be shown.

1. Place the AutoCAD drawing area in the SW Isometric view.
2. Click the DYN button in the status bar to make dynamic input active.

Example (Fig. I3.34)

1. Using the line tool construct the outline in Fig. 13.33.
2. Call the Extrude tool and window the line outline.
3. Extrude to a height of $\mathbf{1 0 0}$.

Fig. I3.33 Example - constructing the Line outline

The stages of producing the extrusion are shown in Fig. 13.34. The resulting 3D model is a surface model.

Fig. I3.34 Example - constructing a 3D surface using the Extrude tool

Fig. 13.35 The Sweep tool icon in the 3D Make control panel

Fig. I3.36 Example Sweep - the outline to be swept

The Sweep tool

The modelling tool Sweep is new to AutoCAD 2007. To call the tool click on its tool icon in the Modeling toolbar or 3D Make control panel (Fig. 13.35).

Example - Sweep (Fig. 13.38)

1. Construct the pline outline in Fig. 13.36 in the 3D Views/Top view.
2. Change to the 3D Views/Front view, Zoom to $\mathbf{1}$ and construct a pline as shown in Fig. 13.37 as a path central to the ellipse.
3. Place the window in the 3D Views/SW Isometric view and click the Sweep tool icon. The command line shows:
Command:_sweep
Current wire frame density: ISOLINES $=4$
Select objects to sweep: pick the ellipse 1 found
Select objects to sweep: right-click
Select sweep path or [Alignment/Base point/Scale/Twist]: pick the pline
Command:
The result is shown in Fig. 13.38.

The Loft tool

The modelling tool Loft is new to AutoCAD 2007. To call the tool click on its tool icon in the Modeling toolbar or 3D Make control panel (Fig. 13.39).

Fig. I3.37 Example Sweep - the pline path

Fig. I3.38 Example - Sweep

Example - Loft (Fig. I3.42)

1. Construct the seven circles shown in Fig. 13.40 at vertical distances of 30 units apart.
2. Place the drawing area on the 3D Views/SW Isometric view (Fig. 13.40).
3. Call the Loft tool with a click on its tool icon in the Modeling toolbar or 3D Make control panel (Fig. 13.39).
4. The command line shows:

Command:_loft
Select cross-sections in lofting order: <Snap off> pick the bottom circle 1 found
Select cross-sections in lofting order: pick the next circle $\mathbf{1}$ found, 2 total
Select cross-sections in lofting order: pick the next circle $\mathbf{1}$ found, $\mathbf{3}$ total
Select cross-sections in lofting order: pick the next circle $\mathbf{1}$ found, $\mathbf{4}$ total
Select cross-sections in lofting order: pick the next circle $\mathbf{1}$ found, $\mathbf{5}$ total
Select cross-sections in lofting order: pick the next circle $\mathbf{1}$ found, $\mathbf{6}$ total
Select cross-sections in lofting order: pick the next circle $\mathbf{1}$ found, 7 total
Select cross-sections in lofting order: right-click
And the Loft Settings dialog appears (Fig. 13.41).
5. Click the Smooth Fit button, followed by a click on the OK button. The loft appears.
The result is shown in Fig. 13.42.

Revision notes

1. In the AutoCAD 3D coordinate system, positive Z is towards the operator away from the monitor screen.
2. A 3D face is a mesh behind which other details can be hidden.
3. The Extrude tool can be used for extruding closed plines or regions to stated heights, to stated slopes or along paths.
4. The Revolve tool can be used for constructing solids of revolution through any angle up to 360°.
5. 3D models can be constructed from the 3D objects Box, Sphere, Cylinder, Cone, Torus and Wedge. Extrusions and/or solids of revolutions may form part of models constructed using the 3D objects.
6. Tools such as Chamfer and Fillet from the Modify toolbar can be used when constructing 3D models.

Fig. 13.39 The Loft tool icon in the 3D Make control panel

Fig. I3.40 Example Loft - the cross sections

Fig. I3.4I The Loft Settings dialog

Fig. I3.42 Example - Loft

7. The tools Union, Subtract and Intersect are known as the Boolean operators.
8. When outlines which are not closed polylines or regions are acted upon by the Modeling tool Extrude the resulting models will be 3D Surface models and not 3D solid models.

Exercises

The first three exercises given below give practice in the use of the 3D Face and Hide tools. A variety of 3D viewing positions selected from Views/3D Views will need to be used when constructing the 3D model drawings in answer to these three exercises.

1. Construct the four steps shown in Fig. 13.43, working to the given sizes.

2. Construct the 3D model given in Fig. 13.44, working to the sizes given with the drawing.
3. Construct the 3D model drawing of a V block shown in Fig. 13.45, working to the sizes given in the right-hand drawing. The V block is 100 deep.

Fig. 13.45 Exercise 3

The exercises which follow require using the 3D objects tools and the tools Revolve, Extrude, Union and Subtract.
4. Fig. 13.46 shows the outline from which a solid of revolution can be constructed. Using the Revolve tool construct the solid of revolution.

Fig. 13.46 Exercise 4

Fig. I3.47 Exercise 5

5. Construct the 3D model of a wine glass, working to the dimensions given in the outline drawing in Fig. 13.47.

You will need to construct the outline and change it into a region before being able to change the outline into a solid of revolution using the Revolve tool. This is because the semi-elliptical part of the outline has been constructed using the Ellipse tool, resulting in part of the outline being a spline, which cannot be acted upon by Polyline Edit to form a closed pline.
6. Construct a 3D solid model of a bracket, working to the information given in Fig. 13.48.
7. Working to the dimensions given in Fig. 13.49, construct an extrusion of the plate to a height of $\mathbf{5}$ units.
8. Working to the details given in the orthographic projection in Fig. 13.50 , construct a 3D model of the assembly.

After constructing the pline outline(s) required for the solid(s) of revolution, use the Revolve tool to form the 3D solid.
9. Working to the polylines shown in Fig. 13.51, construct the Sweep shown in Fig. 13.52.
10. Construct the cross sections as shown in Fig. 13.53, working to suitable dimensions. From the cross sections construct the lofts shown in Fig. 13.54. The lofts are topped with a sphere constructed using the Sphere tool.

Fig. 13.50 Exercise 8

Fig. I3.5I Exercise 9 - profile and path dimensions

Profile outline

Path

Fig. I3.53 The cross sections for Exercise 10

Fig. 13.54 Exercise 10

CHAPTER I4

3D models in viewports

Aim of this chapter

To give examples of 3 D solid models constructed in multiple viewport settings.

Setting up viewport systems

One of the better methods of constructing 3D models is in different viewport settings. This allows what is being constructed to be seen from a variety of viewing positions. To set up a new viewport system:

1. Click View in the menu bar and from the drop-down menu which appears click Viewports and in the sub-menu which then appears click New Viewports . . . (Fig. 14.1). The Viewports dialog appears (Fig. 14.2).
2. Click the New Viewports tab and a number of named viewports systems appear in the Standard viewports list in the dialog.

Fig. I4.I Selecting New
Viewports . . . from the View drop-down menu

Fig. I4.2 The Viewports dialog

3. Click the name Four: Equal, followed by a click on 3D in the Setup popup list. A preview of the Four: Equal viewports screen appears showing the views appearing in each of the four viewports.
4. Click the OK button of the dialog and the AutoCAD 2007 drawing area appears showing the four viewport layout (Fig. 14.3).

Fig. I4.3 The Four: Equal viewports layout

First example - Four: Equal viewports (Fig. I4.7)

Fig. 14.4 shows a first angle orthographic projection of a support. To construct a Scale 1:1 3D model of the support in a Four: Equal viewport setting:

1. Click View in the menu bar, followed by a click on Viewports in the drop-down menu, followed by another click on New Viewports . . . in the Viewports sub-menu. Make sure the 3D option is selected from the Setup popup list and click the OK button of the dialog. The AutoCAD 2007 drawing area appears in a Four: Equal viewport setting.
2. Click in the Top viewport (bottomright-hand corner viewport) to make it current.
3. Set ISOLINES to 4.
4. Using the Polyline tool, construct the outline of the plan view of the plate of the support, including the holes (Fig. 14.5). Note the views in the other viewports.
5. Call the Extrude tool from the Solids toolbar and extrude the plan outline and the circles to a height of $\mathbf{2 0}$.
6. With the Subtract tool from the Solids Editing toolbar, subtract the holes from the plate (Fig. 14.6).
7. Call the Box tool and in the centre of the plate construct a box of Width $=\mathbf{6 0}$, Length $=\mathbf{6 0}$ and Height $=\mathbf{3 0}$.
8. Call the Cylinder tool and in the centre of the box construct a cylinder of Radius $=\mathbf{2 0}$ and Height $=\mathbf{3 0}$.
9. Call Subtract and subtract the cylinder from the box.
10. Click in the Right viewport and with the Move tool, move the box and its hole into the correct position with regard to the plate.
11. With Union, form a union of the plate and box.

Fig. 14.4 Orthographic projection of the support for the first example

Fig. I4.5 The plan view drawn

Fig. 14.6 The four views after using the Extrude and Subtract tools

12. Click in the Front viewport and construct a triangle for one of the webs attached between the plate and the box. With Extrude, extrude the triangle to a height of $\mathbf{1 0}$. With the Mirror tool, mirror the web to the other side of the box.
13. Click in the Right viewport and with the Move tool, move the two webs into their correct position between the box and the plate. Then, with Union, form a union between the webs and the 3D model.

Fig. 14.7 First example - Four: Equal viewports

Fig. I4.8 Working drawing for the second example

14. While in the Right viewport, construct the other two webs and in the Front viewport, move, mirror and union the webs as in steps $\mathbf{1 2}$ and 13.

Fig. 14.7 shows the resulting four-viewport scene.

Second example - Four: Left viewports (Fig. 14.9)

1. Open the Four: Left viewport layout from the Viewports dialog.
2. In the Top viewport construct an outline of the web of the Support Bracket shown in Fig. 14.8. With the Extrude tool, extrude the parts of the web to a height of $\mathbf{2 0}$.

3. With the Subtract tool, subtract the holes form the web.
4. In the Top viewport, construct two cylinders central to the extrusion, one of radius 50 and height $\mathbf{3 0}$, the second of radius $\mathbf{4 0}$ and height 30. With the Subtract tool, subtract the smaller cylinder from the larger.
5. Click in the Front viewport and move the cylinders vertically by 5 units. With Union form a union between the cylinders and the web.
6. Make the Front viewport active and at one end of the union, construct two cylinders, the first of radius $\mathbf{1 0}$ and height $\mathbf{8 0}$, the second of radius $\mathbf{1 5}$ and height 80 . Subtract the smaller from the larger.
7. With the Mirror tool, mirror the cylinders to the other end of the union.
8. Make the Top viewport current and with the Move tool, move the cylinders to their correct position at the ends of the union. Form a union between all parts on screen.
9. Make the SE Isometric viewport current. At the command line enter 3dorbit. Right-cick in the viewport and select Visual Styles/Conceptual from the right-click menu (see Chapter 16 about 3D Orbit).

Fig. 14.9 shows the result.

Fig. I4.9 Second example - Four: Left viewports

Third example - Three: Right viewports (Fig. I4.II)

1. Open the Three: Right viewport layout from the Viewports dialog. Make sure 3D setup is chosen.
2. Click in the Top viewport (top left-hand viewport) and change it to a 3D Views/Right view from the View drop-down menu.
3. In what is now the Right viewport construct a pline outline to the dimensions in Fig. 14.10.

Fig. 14.10 Third example outline for solid of revolution

Fig. 14.II Third example Three: Right viewports
4. Call the Revolve tool from the Solids toolbar and revolve the outline through 360°.
5. Make the SE Isometric viewport current. At the command line enter 3dorbit. Right-click in the viewport and select Visual Styles/Conceptual from the right-click menu.
The result is shown in Fig. 14.11.

Notes

1. When working in viewport layouts such as in the above three examples, it is important to make good use of the Zoom tool, mainly because the viewports are smaller than the single viewport when working in AutoCAD 2007.
2. As in all other forms of constructing drawings in AutoCAD 2007 frequent toggling of SNAP, ORTHO and GRID will allow speedier and more accurate working.

Revision notes

1. Outlines suitable for use when constructing 3 D models can be constructed using the 2D tools such as Line, Arc, Circle and Polyline. Such outlines must be changed either to closed polylines or to regions before being incorporated in 3D models.
2. The use of multiple viewports can be of value when constructing 3D models in that various views of the model appear enabling the operator to check the accuracy of the 3D appearance throughout the construction period.

Exercises

1. Using the Cylinder, Box, Sphere, Wedge and Fillet tools together with the Union and Subtract tools and working to any sizes thought suitable, construct the 'head' in the Three: Right viewport as shown in Fig. 14.12.
2. Using the tools Sphere, Box, Union and Subtract and working to the dimensions given in Fig. 14.13, construct the 3D solid model as shown in the isometric drawing in Fig. 14.14.

Fig. 14.13 Exercise 2 - working drawing

Fig. 14.14 Exercise 2

3. Each link of the chain shown in Fig. 14.15 has been constructed using the Extrude tool, extruding a small circle along an elliptical path. Copies of the link were then made, half of which were rotated in a 3D Views/Right view and then moved into their positions relative to the other links. Working to suitable sizes, construct a link and from the link construct the chain as shown.
4. A two-view orthographic projection of a rotatable lever from a machine is given in Fig. 14.16 together with an isometric drawing

Fig. 14.15 Exercise 3

Fig. 14.16 Exercise 4 orthographic projection

of the 3D model constructed to the details given in the drawing in Fig. 14.17. Construct the 3D model drawing in a Four: Equal viewport setting.
5. Working in a Three: Left viewport setting, construct a 3D model of the faceplate to the dimensions given in Fig. 14.18. With the Mirror tool, mirror the model to obtain an opposite facing model. In the Isometric viewport call the Hide tool (Fig. 14.19).

Fig. I4.I7 Exercise 4

Fig. 14.18 Exercise 5 dimensions

Fig. 14.19 Exercise 5

CHAPTER I5

The modification of 3D models

Aims of this chapter

1. To demonstrate how 3D models can be saved as blocks for insertion into other drawings via the DesignCenter.
2. To show how a library of 3D models in the form of blocks can be constructed to enable the models to be inserted into other drawings.
3. To give examples of the use of the tools from the Operations sub-menu from the Modify drop-down menu:

3D Array - Rectangular and Polar 3D arrays

Mirror 3D
Rotate 3D.
4. To give examples of the use of the following tools from the Solids toolbar:

Slice
Section.
5. To give examples of the use of the Helix tool.
6. To give a further example of construction involving the DYN method.
7. To show how to obtain different views of 3D models in 3D space using:

3D Views from the View drop-down menu
Viewpoint Presets.

Creating 3D model libraries

In the same way as 2D drawings of parts such as electronics symbols, engineering parts, building symbols and the like can be saved in a file as blocks and then opened into another drawing by dragging the appropriate block drawing from the DesignCenter, so can 3D models.

First example - inserting 3D blocks (Fig. 15.4)

1. Construct individual 3 D models of the parts for a lathe milling wheel holder to the dimensions given in Fig. 15.1 on layers of different colours.
2. Save each of the 3D models of the parts to file names as given in the drawing in Fig. 15.1 as blocks using the Make Block tool from the Draw toolbar. When all seven blocks have been saved, the drawings on

Fig. I5.I The components of a lathe milling wheel holder

the screen can be deleted. Save the drawing with its blocks to a suitable file name. In this example this is Fig01.dwg.
3. Set up a Four: Equal viewports setting.
4. Open the DesignCenter with a click on its name in the Palettes sub-menu in the Tools drop-down menu (Fig. 15.2), or by pressing the $\mathbf{C t r l}$ and $\mathbf{2}$ keys of the keyboard.
5. In the DesignCenter click the directory Chapter 15, followed by another click on Fig03.dwg and yet another click on Blocks. The saved blocks appear as icons in the right-hand area of the DesignCenter.

Fig. I5.2 Calling the DesignCenter to screen
6. Drag and drop the blocks one by one into one of the viewports on screen Fig. 15.3 shows the Nut block ready to be dragged into position in the Front viewport. As the blocks are dropped on screen, they will need moving into their correct positions in relation to other parts of the assembly by using the Move tool from the Modify toolbar in suitable viewports.
7. Using the Move tool, move the individual 3D models into their final places on screen and render the SE Isometric viewport. Shade using 3D orbit/Visual Styles/Realistic (Fig. 15.4).

Fig. I5.4 First example inserting 3D blocks

Fig. I5.3 First example inserting 3D blocks

Fig. I5.5 Second example - the five fastenings

Fig. I5.6 Second example - a library of fastenings

Notes

1. It does not matter which of the four viewports any one of the blocks is dragged and dropped into - The part automatically assumes the view of the viewport.
2. If a block destined for layer $\mathbf{0}$ is dragged and dropped into the layer Centre (which in our acadiso.dwt is of colour red and linetype CENTER2), the block will take on the colour (red) and linetype of that layer (CENTER2).
3. In this example, the blocks are 3D models and there is no need to use the Explode tool option.

Second example - a library of fastenings (Fig. I5.6)

1. Construct a number of engineering fastenings. The number constructed does not matter. In this example only five have been constructed - a 10 mm round head rivet, a 20 mm countersunk head rivet, a cheese head bolt, a countersunk head bolt and a hexagonal head bolt together with its nut (Fig. 15.5). With the Make Block tool save each separately as a block, erase the original drawings and save the file to a suitable file name - in this example this is Fig05.dwg.
2. Open the DesignCenter, click on the Chapter 15 directory, followed by a click on Fig05.dwg. Then click again on Blocks in the content list of Fig05.dwg. The five 3D models of fastenings appear as icons in the right-hand side of the DesignCenter (Fig. 15.6).
3. Such engineering fastenings can be dragged and dropped into position in any engineering drawing where the fastenings are to be included.

An example of constructing a 3D model

(Fig. I5.9)
A three-view projection of a pressure head is shown in Fig. 15.7. To construct a 3D model of the head:

1. From 3D Views select the Front view.
2. Construct the outline on a layer colour magenta to be formed into a solid of revolution (Fig. 15.8) and with the Revolve tool, produce the 3D model of the outline.
3. Place the screen in the 3D Views/Top view and with the Cylinder tool, construct cylinders as follows:
(a) In the centre of the solid already constructed - radius $\mathbf{5 0}$ and height 50.
(b) With the same centre - radius 40 and height 40. Subtract this cylinder from that of radius $\mathbf{5 0}$.
(c) At the correct centre - radius 10 and height 25.
(d) At the same centre - radius 5 and height $\mathbf{2 5}$. Subtract this cylinder from that of radius 10 .
4. With the Array tool, form a 6 times polar array of the last two cylinders based on the centre of the 3D model.
5. Place the drawing in the Front view.
6. With the Move tool, move the array and the other two cylinders to their correct positions relative to the solid of revolution so far formed.
7. With the Union tool form a union of the array and other two solids.

Fig. 15.7 Orthographic drawing for the example of constructing a 3D model

Fig. I5.8 Example of constructing a 3D model - outline for solid of revolution

$\boxed{\varnothing 90}$

Fig. I5.9 Example of constructing a 3D model

Fig. I5.I0 Example - 3D Array the star pline

Fig. I5.II Selecting 3D Array from the Modify drop-down menu
8. Place the screen in the 3D Views/Right view.
9. Construct a cylinder of radius $\mathbf{3 0}$ and height $\mathbf{2 5}$ and another of radius 25 and height 60 central to the lower part of the 3D solid so far formed.
10. Place the screen in the 3D Views/Top view and with the Move tool move the two cylinders into their correct positions relative to the 3D solid.
11. With Union, form a union between the radius 30 cylinder and the 3D model and with Subtract, subtract the radius $\mathbf{2 5}$ cylinder from the 3D model.
12. Call 3D Orbit and click Visual Styles/Conceptual in the right-click menu of the tool (Fig. 15.9).

Note

This 3D model could equally as well have been constructed in a three or four viewports setting.

The 3D Array tool

First example - a Rectangular Array (Fig. I5.I2)

1. Construct the star-shaped pline on a layer colour green (Fig. 15.10) and extrude it to a height of $\mathbf{2 0}$.
2. Click on Modify in the menu bar and in the drop-down menu which appears click on 3D Operation, followed by another click on 3D Array in the sub-menu which appears (Fig. 15.11). The command line shows:

> Command:_3darray
> Select objects: pick the extrusion $\mathbf{1}$ found
> Select objects: right-click
> Enter the type of array [Rectangular/Polar] <R>: right-click
> Enter the number of rows (-) <1>: enter $\mathbf{3}$ right-click
> Enter the number of columns (III): enter $\mathbf{3}$ right-click
> Enter the number of levels (...): enter $\mathbf{4}$ right-click
> Specify the distance between rows (一): $\mathbf{1 0 0}$
> Specify the distance between columns (III): 100
> Specify the distance between levels (...): $\mathbf{3 0 0}$
> Command:
3. Place the screen in the 3D views/SW Isometric view.
4. Shade using 3D Orbit/Visual Styles/Realistic (Fig. 15.12).

Second example - a Polar Array (Fig. I5.I3)

Fig. 15.12 First example - a Rectangular Array

1. Use the same star-shaped 3D model.
2. Call the 3D Array tool again. The command line shows:

Command:_3darray
Select objects: pick the extrusion 1 found
Select objects: right-click
Enter the type of array [Rectangular/Polar] $<\mathbf{R}>$: enter \mathbf{p} (Polar) right-click
Enter number of items in the array: 12
Specify the angle to fill ($+=\mathbf{c c w},-=\mathbf{c w}$) $<360>$: right-click
Rotate arrayed objects? [Yes/No] <Y>: right-click
Specify center point of array: $\mathbf{2 3 5}, \mathbf{1 2 5}$
Specify second point on axis of rotation: 300,200
Command:
3. Place the screen in the 3D Views/SW Isometric view.
4. Call 3D Orbit and click Visual Styles/Conceptual in the right-click menu of the tool (Fig. 15.13).

Third example - a Polar Array (Fig. I5.I5)

1. Working on a layer of colour red, construct a solid of revolution in the form of an arrow to the dimensions as shown in Fig. 15.14.
2. Call 3D Array from the Modify drop-down menu. The command line shows:

Command:_3darray
Select objects: pick the arrow $\mathbf{1}$ found
Select objects: right-click
Enter the type of array [Rectangular/Polar] $<\mathbf{R}>$: enter \mathbf{p} rightclick
Enter the number of items in the array: enter 12 right-click
Specify the angle to fill $(+=\mathbf{c c w},-=\mathbf{c w})<360>$: right-click
Rotate arrayed objects? [Yes/No] <Y>: right-click

Fig. I5.I3 Second example-a Polar Array

Fig. 15.14 Third example-a Polar Array - the 3D model to be arrayed

Specify center point of array: enter 40,170,20 right-click Specify second point on axis of rotation: enter $\mathbf{6 0 , 2 0 0 , 1 0 0}$ right-click Command:
3. Place the array in the 3D Views/SW Isometric view and shade to 3D Orbit/Visual Styles/Realistic. The result is shown in Fig. 15.15.

The Mirror 3D tool

First example - Mirror 3D (Fig. I5.I8)

1. Working on a layer colour blue, construct the array of ellipses and circle as shown (Fig. 15.16).
2. Change the 11 objects into regions, form a union of the ellipses and subtract the circle from the ellipses.
3. Extrude the region to a height of $\mathbf{5}$ and render. A 3D Orbit/Conceptual style shading is shown in Fig. 15.17.
4. Click on Mirror 3D in the 3D Operation sub-menu of the Modify drop-down menu. The command line shows:

Command:_mirror3d
Select objects: pick the extrusion 1 found
Select objects: right-click

Specify first point of mirror plane ($\mathbf{3}$ points): $\mathbf{8 0 , 1 3 0 , 1 0 0}$
Specify second point on mirror plane: 170,220,50
Specify third point on mirror plane: $\mathbf{1 8 0 , 1 6 0 , 2 0}$
Delete source objects? [Yes/No] < $\mathbf{N}>$: right-click Command:

The result is shown in Fig. 15.18.

Fig. I5.I8 First example - Mirror 3D

Fig. I5.19 Second example Mirror 3D - the 3D model

Second example - Mirror 3D (Fig. I5.20)

1. Construct a solid of revolution in the shape of a bowl in the 3D Views/Front view (Fig. 15.19).
2. Click Mirror 3D in the 3D Operations sub-menu of the Modify drop-down menu. The command line shows:

Command:_mirror3d
Select objects: pick the bowl 1 found
Select objects: right-click
Specify first point on mirror plane (3 points): pick
Specify second point on mirror plane: pick
Specify third point on mirror plane: enter .xy right-click (need Z): enter 1 right-click
Delete source objects? [Yes/No] <N>: right-click
Command:

Note

The line in the illustration shows the top edge of an imaginary plane vertical to the plane on which the drawing is being constructed.
3. Place in the 3D Views/SW Isometric view.
4. Call 3D Orbit and click Visual Styles/Conceptual in the right-click menu of the tool. The result is shown in Fig. 15.20.

Fig. I5.20 Second example Mirror 3D - the result in a front view

The Rotate 3D tool

Example - Rotate 3D (Fig. I5.2I)

1. Use the same 3D model of a bowl as for the last example. Call the Rotate 3D tool from the 3D Operations sub-menu of the Modify drop-down menu.
2. The command line shows:

Command:_3DROTATE

Current positive angle in UCS: ANGDIR=counterclockwise ANGBASE=0
Select objects: pick the bowl $\mathbf{1}$ found
Select objects: right-click
Specify base point: pick the centre bottom of the bowl
Specify rotation angle or [Copy/Reference] <0>: enter 60 right-click Command:
3. Place in the SW Isometric view and call 3D Orbit and click Visual Styles/Conceptual in the right-click menu of the tool.

The result is shown in Fig. 15.21.

The Slice tool

First example - Slice (Fig. I5.25)

1. Construct a 3D model of the rod link device shown in the two-view projection (Fig. 15.22).
2. Place the 3D model in the 3D Views/Top view.
3. Call the Slice tool from the Modify/3D Operation sub-menu (Fig. 15.23). The command line shows (Fig. 15.24 shows the picked points):

Fig. I5.22 First example - Slice the two-view drawing

Fig. I5.23 The Slice tool icon from the Modify toolbar

Fig. I5.24 First example - Slice the pick points

Command:_slice
Select objects: pick the 3D model
Select objects: right-click
Specify first point on slicing plane <3points>: pick
Specify second point on slicing plane <3 points $>$: pick
Specify third point on slicing plane <3points>: enter .xy right-click of pick first point again (need Z): enter 1 right-click
Specify a point on desired side of the plane or [keep Both sides]: enter b (Both) right-click

Command:

Fig. I5.25 First example - Slice
4. With the Move tool, move the lower half of the sliced model away from the upper half.
5. Place the 3D model(s) in a SW Isometric view.
6. Call 3D Orbit and click Visual Styles/Conceptual in the right-click menu of the tool (Fig. 15.25).

Second example - Slice (Fig. I5.26)

1. Construct the closed pline (Fig. 15.26) and with the Revolve tool, form a solid of revolution from the pline.

Fig. I5.26 Second example Slice

2. With the Slice tool and working to the same sequence as for the first Slice example, form two halves of the 3D model and render.

The Section tool

First example - Section (Fig. I5.29)

1. Construct a 3D model to the information given in Fig. 15.27 on layer $\mathbf{0}$. Note there are three objects in the model - a box, a lid and a cap.
2. Place the model in the 3D Views/Top view.
3. Click in the layer field of the Layers toolbar (Fig. 15.28) and click again on Construction to make it the current layer. Its colour is cyan.
4. Click the Section tool icon in the 3D Make control panel. The command line shows:
Command:_section
Select objects: window the 3D model $\mathbf{3}$ found
Select objects: right-click

Fig. I5.27 First example Section - orthographic projection

Fig. I5.28 Making layer Construction current

Specify first point on Section plane <3 points $>$: pick Specify second point on plane: pick Specify third point on plane: enter .xy right-click of pick first point (need Z): enter $\mathbf{1}$ right-click

Command:

And a cyan line showing the top edge of the section plane appears in the view.

Note

The three points picked above are similar to those given in the previous examples of using the Slice tool.
5. Turn Layer 0 (on which the 3D model was constructed) off, leaving only the cyan line showing on screen.
6. Place the screen in the 3D Views/Front view and Zoom to $\mathbf{1}$. The outlines of the section appear.

Note

The sectional view as given in the outlines (Fig. 15.29) will not be a correct view as required in general engineering drawing practice for the following reasons:

Fig. I5.29 First exampleSection

(a) There are no hatch lines. This is usually acceptable because in some circumstances hatching of sections is not expected, but in this example hatch lines are to be included.
(b) In engineering sectional views, parts such as the pins holding the cap onto the lid would usually be shown by outside views in a sectional view.
7. Amend the drawing by adding lines as necessary and hatching using the ANSI31 hatch pattern as shown in the lower drawing of Fig. 15.29.

> Second example - Section (Fig. I5.3I)

1. Open the drawing of the lathe tool holder constructed in answer to the first example in this chapter (Fig. 15.4). The drawing is in a Four: Equal viewports setting. Click in the Top viewport and from the View drop-down menu click 1 Viewport in the Viewports sub-menu (Fig. 15.30). The assembly appears in a full size single viewport.
2. Make the layer Construction current.
3. At the command line:

Command: enter section
Then proceed as in the First example - section.
4. Turn off all layers other than Construction. The resulting section is shown in Fig. 15.31.

Fig. 15.30 Calling I Viewport from the View drop-down menu

Fig. I5.3I Second example Section

Views of 3D models

Fig. 15.32 is a two-view projection of a model of an arrow.
Some of the possible viewing positions of a 3D model which can be obtained by using the 3D Views positions have already been seen in this book. The views in Fig. 15.33 show all of the viewing positions of the
3D model of the arrow using the viewing positions from the 3D Views book. The views in Fig. 15.33 show all of the viewing positions of the
3D model of the arrow using the viewing positions from the 3D Views sub-menu of the Views drop-down menu.

Fig. 15.32 Two views of the arrow

Fig. I5.33 The views from 3D Views

Fig. I5.34 Calling the Viewpoint Presets dialog

Note

The Relative to UCS radio button must be checked to allow the 3D model to position along the two angles.

Example - Viewpoint Presets

1. With the 3D model of the arrow on screen, click Viewpoint Presets . . . in the 3D Views sub-menu of the Views drop-down menu. The dialog appears.
2. Enter 330.0 in the From X Axis and -30.0 in the From XY Plane fields and click the OK button of the dialog.
3. The 3D model takes up the viewing position indicated by the two angles (Fig. 15.35).

The Helix tool

The Helix tool can be called with a click on its tool icon in the extension of the 3D Make control panel (Fig. 15.36).

Fig. I5.35 Example - Viewpoint Presets

Click arrows to open

Click arrows to close
Fig. I5.36 The extension of the 3D Make control panel

First example - Helix (Fig. I5.39)

1. Construct the triangular outline shown in Fig. 15.37 using the Polyline tool. Make sure the pline outline is placed at right angles to the bottom end of the helix as shown in Fig. 15.37. This may mean moving and rotating the outline in a selection of the 3D Views.
2. Call the Helix tool from the 3D Make control panel (Fig. 15.38) or from the Modeling toolbar. The command line shows:

Command:_Helix

Number of turns $=3$ Twist $=$ CCW
Specify center point of base: enter $\mathbf{1 6 0}, 160$ right-click
Specify base radius or [Diameter] <1>: pick 160, 200
Specify top radius or [Diameter] $<40>$: right-click
Specify helix height or [Axis endpoint/Turns/turn Height/tWist] $<\mathbf{1}>$: enter \mathbf{t} (Turns) right-click
Enter number of turns $<3>$: enter 10 right-click
Specify helix height or [Axis endpoint/Turns/turn Height/tWist]
$<1>$: enter 100 right-click

Command:

Fig. I5.37 First example Helix the polyline outline and the helix

Fig. I5.38 The Helix tool icon in the extension of the 3D Make control panel

Fig. I5.39 First example Helix the resulting helix

Fig. I5.40 First example - Helix

3. Call the Extrude tool from the 3D Make control panel and extrude the outline along the path of the helix. The command line shows:

Command:_extrude
Current wire frame density: ISOLINES=4
Select objects to extrude: pick the outline 1 found
Select objects to extrude: right-click
Specify height of extrusion of [Direction/Path/Taper angle]: enter \mathbf{p} (path) right-click
Select extrusion path or [Taper angle]: pick the helix
Command:
The result is shown in Fig. 15.39.
4. Add three cylinders, one to fit inside the helix, the second to form the shank of the screw, the third for the head of the screw. Subtract a box from the head for the screw slot. Then union the four parts of the screw.
5. Call 3D Orbit and shade the screw using the Visual Style/Conceptual form of shading.

The result is shown in Fig. 15.40.

Second example - Helix (Fig. I 5.4 I)

Fig. 15.41 shows a 3D hidden view model of a helix formed from a circle of 5 units radius extruded along a helical path of 6 turns and a radius of 40 and height of $\mathbf{1 0 0}$.

Using DYN

As with all other tools (commands) in AutoCAD 2007, a helix can be formed working with the DYN (Dynamic Input) system. Fig. 15.42 shows the stages $(\mathbf{1}$ to $\mathbf{5})$ in the construction of the helix in the second example.

Set DYN on with a click on its button in the status bar.

Fig. I5.4I Second example Helix

Fig. I5.42 Constructing the helix for the second example with the aid of DYN

1. Click the Helix tool icon in the 3D Make control panel or the Modeling toolbar. The first of the prompts in DYN form appears. Enter 160,160 at the command line or drag the cursor until $\mathbf{1 6 0 , 1 6 0}$ appears in the DYN tip and right-click.
2. Move the cursor until the dimension 40 shows and right-click.
3. Press the down arrow key of the keyboard and click Turns in the menu which appears.
4. Enter 6 and right-click.
5. Press the down arrow key of the keyboard and enter $\mathbf{1 0 0}$ in the menu as shown.

Revision notes

1. 3D models can be saved as blocks in a similar manner to the method of saving 2D drawings as blocks.
2. Libraries can be made up from 3D model drawings.
3. 3D models saved as blocks can be inserted into other drawings via the DesignCenter.
4. Arrays of 3D model drawings can be constructed in 3D space using the 3D Array tool.
5. 3D models can be mirrored in 3D space using the Mirror 3D tool.
6. 3D models can be rotated in 3D space using the Rotate 3D tool.
7. 3D models can be cut into parts with the Slice tool.
8. Sectional views can be obtained from 3D model using the Section tool.
9. Helices can be constructed using the Helix tool. The helices so formed can be used as paths for extruding outlines.

Fig. I5.43 Exercise I - a shaded view

Fig. I5.44 Exercise I - three-view projection
10. Both 3D Views viewing positions and Viewpoint Presets can be used for the placing of 3D models in different viewing positions in 3D space.
11. The DYN (Dynamic Input) method of construction can be used equally as well when constructing 3D model drawings as when constructing 2D drawings.

Exercises

1. Fig. 15.43 shows a shaded view of the 3D model for this exercise. Fig. 15.44 is a three-view projection of the model. Working to the details given in Fig. 15.44, construct the 3D model.

2. Construct a 3D model drawing of the separating link shown in the two-view projection (Fig. 15.45). With the Slice tool, slice the model into two parts and remove the rear part. Place the front half in a suitable isometric view from the 3D Views sub-menu. Shade the resulting model.
3. Working to the dimensions given in the two orthographic projections (Fig. 15.47), construct an assembled 3D model of the one part inside the other.

With the Slice tool, slice the resulting 3D model into two equal parts, place in an isometric view and call the Hide tool as indicated in Fig. 15.46.

Fig. I5.45 Exercise 2

Fig. I5.46 Exercise 3

Fig. I5.47 Exercise 3 orthographic projections

4. Construct a solid of revolution of the jug shown in the orthographic projection (Fig. 15.48). Construct a handle from an extrusion of a circle along a semicircular path. Union the two parts. Place the 3D model in a suitable isometric view and render.

Fig. 15.48 Exercise 4

CHAPTER 16

Rendering

Aims of this chapter

1. To construct a template for 3D Modelling to be used as the drawing base for further work in 3D in this book.
2. To introduce the use of the Render tools in producing photographic like images of 3D solid models.
3. To show how to illuminate a 3D solid model to obtain good lighting effects when rendering.
4. To give examples of the rendering of 3D solid models.
5. To introduce the idea of adding materials to 3 D solid models in order to obtain a realistic appearance to a rendering.
6. To demonstrate the use of the forms of shading available while using the 3D Orbit tool.
7. To demonstrate methods of printing rendered 3D solid models.

Setting up a new 3D template

So far in the earlier chapters of this book, we have been constructing both 2D and 3D drawings in the acadiso.dwt template. Now we will be constructing 3D model drawings in the acadiso3D.dwt template. To prepare this template for the remaining drawings in this book:

1. Click New . . . in the File drop-down menu, followed by a click on acadiso3D in the file list (Fig. 16.1).
2. When the template appears on screen, ensure the following control panels are showing in the DASHBOARD - 3D Make, 3D Navigate and Visual Styles.
3. Click the arrow to the right of the Visual Styles field in the Visual Styles control panel and select 3D Wireframe from the icons which appear in a popup (Fig. 16.2).
4. Open the Options dialog with a right-click in the command window. Click the Display tab followed by a click on the Colors . . . button and then set all the background colours to White (Fig. 16.3).
5. The AutoCAD window should appear as in Fig. 16.4.
6. In the Options dialog click the Files label and click Default Template File Name for QNEW (Fig. 16.5), followed by a click on the Browse ... button which brings up the Select template dialog, from which the acadiso3D.dwt can be selected. Now when

Fig. I6.I Selecting acadiso3D from the Select template dialog

Fig. 16.2 Selecting 3D
Wireframe from Visual Styles

AutoCAD 2007 is opened from the desktop, the acadiso3D.dwt template will open.
7. Set Snap to 5, Grid to $\mathbf{1 0}$ and Units to no figures after the decimal point.
8. Set up five layers of different colours. In the author's template these have been named after the colours.
9. Save the template to the name acadiso3D and then enter a suitable name in the Template Definition dialog.
10. Note (Fig. 16.4) that the screen is in Perspective projection. In later chapters it will often be set to Parallel projection.

Fig. I6.3 Set all background colours to White

The Render tools

The tools in the Render toolbar are shown in Fig. 16.6. Note that a click on the arrow below the Lights tool icon brings down a flyout showing the light tools available for lighting a 3D model (Fig. 16.7).

Fig. I6.5 Setting the default window in the Options dialog

Fig. I6.6 The tools in the Render toolbar

Fig. 16.7 The Light tools in the flyout from the Lights tool icon in the Render toolbar

Render lights

There are four types of lights available when using AutoCAD 2007 Ambient lights, Point lights, Distant lights and Spotlights.

1. Ambient lighting is taken as the general overall light that is all around and surrounding any object.
2. Point lights shed light in all directions from the position in which the light is placed.
3. Distant lights send parallel rays of light from their position in the direction chosen by the operator.
4. Spotlights illuminate as if from a spotlight. The light is in a direction set by the operator and is in the form of a cone, with a "hotspot" cone giving a brighter spot on the model being lit.

Placing lights to illuminate a 3D model

Any number of the three types of lights - Point, Distant and Spotlight can be positioned in 3D space as wished by the operator.

In general reasonably good lighting effects can be obtained by placing a Point light high above the object(s) being illuminated, with a Distant light placed pointing towards the object at a distance from the front and above the general height of the object(s) and with a second Distant light pointing towards the object(s) from one side and not as high as the first Distant light. If desired, Spotlights can be used either on their own or in conjunction with the other two forms of lighting.

Setting rendering background colour

The default background colour for rendering in AutoCAD 2007 is usually black. In this book, all renderings are shown on a white background in the viewport in which the 3D model drawing was constructed. To set the background to white for renderings:

1. At the command line:

Command: enter view right-click
The View Manager dialog appears (Fig. 16.8). Click Model Views in the Views list, followed by a click on the New . . . button.
2. The New View dialog (Fig. 16.9) appears. Enter current in the View name field and model in the View category field. Then click the Override default background check box. The Background dialog appears (Fig. 16.10).
3. In the Background dialog click in the Color field. The Select Color dialog appears (Fig. 16.11).
4. In the Select Color dialog drag the Red, Green and Blue sliders as far as possible to the right to change the colour to white $(\mathbf{2 5 5}, \mathbf{2 5 5}, \mathbf{2 5 5})$. Then click the dialog's OK button. The Background dialog reappears showing white in the Color field (Fig. 16.12). Click the dialog's OK button.
5. The New View dialog reappears showing the background as white. Click the dialog's OK button (Fig. 16.13). The View Manager dialog reappears. Click its OK button.
6. In the Render control panel of the DASHBOARD click the Advanced Render Settings . . . icon (Fig. 16.14). The ADVANCED RENDER SETTINGS palette appears (Fig. 16.15).

Fig. I6.8 The View Manager dialog

Fig. I6.9 The New View dialog

7. In the palette click in the Destination field and select Viewport as the rendering destination (Fig. 16.15).
8. Close the palette and save the screen with the new settings as the template 3dacadiso.dwt. This will ensure renderings are made in the viewport in which the 3D model was constructed - on a white background.

Fig. 16.10 The Background dialog

Fig. I6.II The Select Color dialog

First example - rendering a 3D model (Fig. I6.2 I)

1. Construct a 3D model of the wing nut shown in the two-view projection in Fig. 16.16.
2. Place the 3D model in the 3D Views/Top view, Zoom to $\mathbf{1}$ and with the Move tool, move the model to the upper part of the AutoCAD drawing area.
3. Click the New Point Light tool icon in the Lights flyout from the Render toolbar (Fig. 16.7). The Viewport Lighting Mode warning window appears (Fig. 16.17). Click its Yes button.
4. A New Point Light icon appears and the command line shows:

Fig. 16.12 The Background dialog

Fig. 16.13 The New View dialog

Command:_pointlight

Specify source location $\langle\mathbf{0 , 0 , 0}\rangle$: enter $\mathbf{. x y}$ right-click of click at centre of model (need Z): enter $\mathbf{5 0 0}$ right-click Enter an option to change [Name/Intensity/Status/shadoW/

Attenuation/Color/eXit] <eXit>: enter \mathbf{n} (Name) right-click Enter light name $<$ Pointlight1 $>$: right-click

Fig. 16.14 The Advanced
Render Settings . . . icon in the Render control panel

Fig. I6.15 The ADVANCED RENDER SETTINGS palette

Fig. 16.16 First example Rendering - two-view projection

Fig. 16.17 The Viewport
Lighting Mode warning window

Enter an option to change [Name/Intensity/Status/shadoW/
Attenuation/Color/eXit] <eXit>: right-click

Command:

5. Click the New Distant Light tool icon in the flyout from the Lights tool icon. The command line shows:

Command:_distantlight
Specify light direction $\mathbf{F R O M}<\mathbf{0 , 0 , 0}>$ or [Vector]: enter 5,0,400 right-click
Specify light direction $\mathbf{T O}<1,1,1>$: enter $\mathbf{1 5 0 , 2 0 0 , 7 0}$ right-click
Enter an option to change [Name/Intensity/Status/shadoW/Color/ eXit] <eXit>: enter \mathbf{n} right-click
Enter light name < Distantlight1>: right-click
Enter an option to change [Name/Intensity/Status/shadoW/Color/ eXit] <eXit>: right-click
Command:
6. Place another Distant Light (Distantlight2) in the same position TO and FROM - 80, - 20,300.

Note

The Intensity of the lights can be set, Shadow can be set off or on in a Sharp or Soft setting, the Color of a light can be changed as needed in response to the prompts appearing when a light is added to a view.
7. When the model has been rendered if a light requires to be changed in intensity, shadow, position or colour, click the Light List icon in the Render toolbar and the LIGHTS IN MODEL palette appears. Click a light name and the PROPERTIES palette for the light appears in which modifications can be made (Fig. 16.18). Make amendments as thought necessary.

Fig. I6.18 The LIGHTS IN MODEL and PROPERTIES palettes

Fig. 16.19 The MATERIALS palette

IFig. I6.20 The Apply Material to Objects button in the MATERIALS palette

Fig. I6.21 First example -

Rendering

Fig. 16.22 Second example Rendering - projections of the two parts

Adding a material to the model

1. Click the Materials . . . tool icon in the Render toolbar. The MATERIALS palette appears (Fig. 16.19). Click the Diffuse box and from the Select Color dialog which appears, choose a colour most suited to a brass finish.
2. Adjust the sliders Shininess and Self-Illumination until satisfied, the desired material appears in the Swatch Geometry box at the top of the palette.
3. Click the Select . . . button next to the Textures field and from the Select Image File dialog which appears (not illustrated) select a suitable metal texture. Adjust the slider to amend as needed in the Swatch geometry box.
4. Continue making adjustments until satisfied, the material appears as wished.
5. Click the Apply Material to Objects button (Fig. 16.20) and click the objects in the 3D model drawing to which the material is to be applied.
6. Click the Render tool icon in the Render toolbar and the 3D model renders (Fig. 16.21).

Notes

The limited descriptions of rendering given in these pages do not show the full value of different types of lights, materials and rendering methods. The reader is advised to experiment with the facilities available for rendering.

Second example - rendering a 3D model (Fig. I6.23)

1. Construct 3D models of the two parts of the stand and support given in the projections in Fig. 16.22 with the two parts assembled together.

Fig. 16.23 Second example Rendering

Fig. I6.24 The 3dorbit right-click menu
2. Place the scene in the 3D Views/Top view and add lighting.
3. Add two materials to the parts of the assembly and render the result. Fig. 16.23 shows the resulting rendering.

The 3D Orbit tool

At the command line enter 3dorbit. The command line shows:

Command: 3dorbit

Press ESC or ENTER to exit, or right-click to display shortcut-menu.
Right-click anywhere on screen and the 3dorbit right-click menu appears (Fig. 16.24). Click Free Orbit and a circle appears surrounding a 3D model on screen. The position and angle of the model can be adjusted by either clicking in one of the four outer small circles or by clicking outside the main circle and moving the mouse.

Example-3D Orbit (Fig. I6.25)

This is another tool for the manipulation of 3D models into different positions within 3D space.

1. Open the file of the second example of rendering (Fig. 16.23).
2. Enter 3dorbit at the command line.
3. With the cursor outside the circle move the mouse. The 3D model rotates within the circle.
4. With the cursor inside the circle move the mouse. The 3D model rotates around the screen.
5. With the cursor inside any one of the small quadrant circles the 3D model can be moved vertically or horizontally as the mouse is moved.
6. Right-click anywhere in the screen. A right-click menu appears. Click on Visual Styles and again on Realistic in the sub-menu which appears. The parts of the 3D model are shaded in the materials which
have been applied to the parts of the model. The result is given in Fig. 16.25.

Fig. 16.25 The 3dorbit Visual Styles menu

7. Fit the 3D model into a Four: Equal viewports setting. Note that the Realistic Visual Style mode still shows in each of the four viewports (Fig. 16.26).

Fig. 16.26 The Realistic Style 3D model in a Four: Equal viewports setting

Producing hardcopy

Printing or plotting a drawing on screen using AutoCAD 2007 can be carried out from either the Model Space or the Paper Space. In versions of AutoCAD before AutoCAD 2004, it was necessary to print or plot from PSpace.

First example - printing a single copy (Fig. I 6.28)

Fig. I6.27 The Plot tool icon in the Standard toolbar

Fig. 16.28 First example -
Printing a single copy

1. With a drawing to be printed or plotted on screen click the Plot tool icon in the Standard toolbar (Fig. 16.27).
2. The Plot dialog appears. Set the Printer/Plotter to a printer or plotter currently attached to the computer and the Paper Size to a paper size to which the printer/plotter is set.
3. Click the Preview button of the dialog and if the preview is OK, right-click and in the right-click menu which appears, click Plot. The drawing plots producing the necessary 'hardcopy' (Fig. 16.28).

Second example - multiple view copy (Fig. 16.29)
A 3D model to be printed is a Realistic view of a 3D model which has been constructed on three layers - Red, Blue and Green in colour. To print a multiple view copy:

1. Place the drawing in a Four: Equal viewports setting.
2. Make a new layer vports of colour cyan and make it the current layer.
3. Click the Layout button in the status bar. The drawing appears in Pspace. A view of the 3D model appears within a cyan coloured viewport (Fig. 16.29).
4. Click the Plot tool icon in the Standard toolbar. Make sure the correct Printer/Plotter and Paper Size settings are selected and click the Preview button of the dialog.
5. A preview of the 3D model appears.

Fig. 16.29 Second example Multiple view copy - the print Preview

6. If the preview is satisfactory (Fig. 16.29), right-click and from the
right-click menu click Plot. The drawing plots to produce the required
6. If the preview is satisfactory (Fig. 16.29), right-click and from the
right-click menu click Plot. The drawing plots to produce the required four-viewport hardcopy.

Other forms of hardcopy

When working in AutoCAD 2007, several different forms of hardcopy can be printed or plotted determined by the settings in the 3D Orbit/Visual Styles settings (Fig. 16.29). As an example a single view plot preview of the same 3D model is shown in the Hidden shading form (Fig. 16.30).

Fig. 16.30 An example of a Hidden Style plot Preview

Saving and opening 3D model drawings

3D model drawings are saved and/or opened in the same way as are 2D drawings. To save a drawing click Save As ... in the File drop-down menu and save the drawing in the Save Drawing As dialog and enter a file name in the File Name field of the dialog before clicking the Save button. To open a drawing which has been saved click Open . . . in the File drop-down menu, and in the Select File dialog which appears select a file name from the file list.

There are differences between saving a 2D and a 3D drawing, in that when a 3D model drawing is shaded by using a shading mode from the 3D Orbit/Shading Modes sub-menu, the shading is saved with the drawing.

Exercises

1. A rendering of an assembled lathe tool holder is shown in Fig. 16.31. The rendering includes different materials for each part of the assembly. Working to the dimensions given in the parts orthographic drawing (Fig. 16.32), construct a 3D model drawing of the assembled lathe tool holder on several layers of different colours, add lighting and materials and render the model in an isometric view.

Shade with 3DOrbits/Hidden and print or plot a SW Isometric view of the model drawing.

Fig. I6.3I Exercise I-a rendering

2. Working to the sizes given in Fig. 16.33, construct a 3D model drawing of the drip tray from an engine. Add lighting and a suitable material, place the model in an isometric view and render (Fig. 16.34).
3. A three-view drawing of a hanging spindle bearing in third angle orthographic projection is shown in Fig. 16.35. Working to the dimensions in the drawing, construct a 3D model drawing of the bearing.

Add suitable lighting and a suitable material, place in an isometric view and render the model.

Fig. I6.32 Exercise I - parts drawing

Fig. 16.33 Exercise 2 orthographic projection

Fig. 16.34 Exercise 2

Fig. 16.35 Exercise 3

CHAPTER I7

3D space

Aim of this chapter

To show in examples the methods of manipulating 3D models in 3D space using tools from the UCS toolbars or from the command line.

3D space

So far in this book, when constructing 3D model drawings, they have been constructed on the AutoCAD 2007 coordinate system which is based upon three planes: the XY Plane - the screen of the computer; the $\mathbf{X Z}$ Plane at right angles to the XY Plane and as if coming towards the operator of the computer; and a third plane $(\mathbf{Y Z})$ is lying at right angles to both the other two planes (Fig. 17.1).

Fig. 17.1 The 3D space planes

In earlier chapters in order to view 3D objects which have been constructed on these three planes at other angles, we have used presets from the 3D Views sub-menu of the Views drop-down menu and have indicated other methods of rotating the model in 3D space and placing the model in other viewing positions using the View point Presets dialog.

Note

The XY plane is the basic UCS plane, which in terms of the ucs is known as the *WORLD* plane.

The User Coordinate System (UCS)

The UCS allows the operator to place the AutoCAD coordinate system in any position in 3D space using a variety of UCS tools (commands). Features of the UCS can be called either by entering ucs at the command line, or by selection from the Tools drop-down menu (Fig. 17.2), or from the two UCS toolbars - UCS and UCS II (Fig. 17.3).

Fig. I7.2 The New UCS submenu from the Tools drop-down menu

Fig. I7.3 The tools from the two UCS toolbars

If ucs is entered at the command line, it shows:
Command: enter ucs right-click
Current use name: *WORLD*
Enter an option [New/Move/orthoGraphic/Prev/Restore/Save/Del/ Apply/?/World] <World>: enter \mathbf{n} (New) right-click
Specify origin of UCS or [ZAxis/3point/OBject/Face/View/X/Y/Z] $<0,0,0>$:

And from these prompt lines a selection can be made.

The variable UCSFOLLOW
UCS planes can be set from either of the two UCS toolbars (Figs 17.2 and 17.3). For the UCS to operate from the command line, the variable UCSFOLLOW must first be set on as follows:

Command: enter ucsfollow right-click
Enter new value for UCSFOLLOW <0>: enter 1 right-click Command:

The UCS icon

The UCS icon which indicates the direction of the three coordinate axes \mathbf{X}, \mathbf{Y} and \mathbf{Z} is by default shown in the AutoCAD drawing area as arrows pointing in the directions of the axes. When working in 2D, only the \mathbf{X} and \mathbf{Y} axes are showing, but when the drawing area is in a 3D view all three coordinate arrows are showing, except when the model is in the XY plane. The icon can be turned off as follows:

Command: enter ucsicon right-click
Enter an option [ON/OFF/Noorigin/ORigin/Properties] <ON>:
To turn the icon off, enter off in response to the prompt line and the icon disappears from the screen.

The appearance of the icon can be changed by entering \mathbf{p} (Properties) in response to the prompt line. The UCS Icon dialog appears in which changes can be made to the shape, line width and colour of the icon if wished.

Types of UCS icon
The shape of the icon can be varied partly when changes are made in the UCS Icon dialog but also according to whether the AutoCAD drawing area is in 2D, 3D or Paper Space (Fig. 17.4).

Examples of changing planes using the UCS

First example - changing UCS planes (Fig. I7.6)

1. Set UCSFOLLOW to $\mathbf{1}(\mathrm{ON})$.
2. Place the screen in 3D Views/Front and Zoom to $\mathbf{1}$.
3. Construct the pline outline in Fig. 17.5 and extrude to a height of $\mathbf{1 2 0}$.

Fig. 17.4 Types of UCS icon

Fig. 17.5 First example Changing UCS planes - pline for extrusion

4. Set UCSFOLLOW to 1 .
5. Place in the SW Isometric view and Zoom to $\mathbf{1}$.
6. With the Fillet tool, fillet corners to a radius of 20.
7. At the command line:

Command: enter ucs right-click
Current ucs name: *WORLD*
Enter an option New/Move/orthoGraphic/Prev/Restore/Save/Del/
Apply/?/World] <World>: enter n (New) right-click
Specify origin of new UCS or [ZAxis/3point/OBject/Face/View/
$\mathbf{X} / \mathbf{Y} / \mathbf{Z} /]$: enter \mathbf{f} (Face) right-click
Select face of solid object: pick the sloping face - its outline highlights
Enter an option [Next/Xflip/Yflip] <accept>: right-click
Command:
And the 3D model changes its plane so that the sloping face is now on the new UCS plane. Zoom to $\mathbf{1}$.
8. On this new UCS, construct four cylinders of radius 7.5 and height -15 (note the minus) and subtract them from the face.
9. Enter ucs at the command line again and right-click to place the model in the *WORLD* UCS - that being the plane in which the construction commenced.

Fig. I7.6 First example changing UCS planes

Fig. 17.7 Second example UCS - the orthographic projection of a steam venting valve

Fig. I7.8 Second example UCS - construction up to step II + rendering
10. Place four cylinders of the same radius and height into position in the base of the model and subtract them from the model.
11. Place the 3D model in the SW Isometric view and call Hide (Fig. 17.6).
Second example - UCS (Fig. I 7.9)

The 3D model for this example is a steam venting valve from a machine, the two-view third angle projection of which is shown in Fig. 17.7.

1. Make sure that UCSFOLLOW is set to $\mathbf{1}$.
2. The UCS plane is the *WORLD* plane. Construct the $\mathbf{1 2 0}$ square plate at the base of the central portion of the valve. Construct five cylinders for the holes in the plate. Subtract the five cylinders from the base plate.
3. Construct the central part of the valve - a filleted $\mathbf{8 0}$ square extrusion with a central hole.
4. Place the models in the UCS orthoGonal/Front plane.
5. With the Move tool, move the central portion vertically up by $\mathbf{1 0}$.
6. With the Copy tool, copy the base up to the top of the central portion.
7. With the Union tool form a single 3D model of the three parts.
8. Make the layer Construction current.
9. Place the model in the UCS *WORLD* plane. Construct the separate top part of the valve - a plate forming a union with an hexagonal plate and with holes matching those of the other parts.
10. Place the scene so far in the UCS/orthoGonal/Front plane and move the parts of the top into their correct positions relative to each other and with Union and Subtract tools, complete the part. This will be made easier if the layer $\mathbf{0}$ is turned off.
11. Turn layer $\mathbf{0}$ on and move the top into its correct position relative to the main part of the valve. Then with the Mirror tool, mirror the top to produce the bottom of the assembly (Fig. 17.8).

Fig. 17.9 Second example UCS - steps $\mathbf{I} \mathbf{2}$ and $\mathbf{1 3}+$ rendering

Fig. 17.10 Second example UCS - pline for the bolt

Fig. I7.II Second example UCS
12. While in the *FRONT* UCS construct the three parts of a 3D model of the extrusion to the main body.
13. In the UCS *WORLD* move the parts into their correct positions relative to each other and with Union form a union of the two filleted rectangular extrusions and the main body. Then with Subtract, subtract the cylinder from the whole (Fig. 17.9).
14. In the UCS *FRONT* plane, construct one of the bolts as shown in Fig. 17.10, forming a solid of revolution from a pline. Then add a head to the bolt and with Union add it to the screw.
15. With the Copy tool, copy the bolt seven times to give eight bolts. With Move, and working in the UCS *WORLD* and *FRONT* planes, move the bolts into their correct positions relative to the 3D model.
16. Add suitable lighting and attach materials to all parts of the assembly and render the model.
17. Save the model to a suitable file name.
18. Finally move all the parts away from each other to form an exploded view of the assembly (Fig. 17.11).

> Third example - UCS (Fig. I7.I5)

1. Set UCSFOLLOW to 1 .
2. Place the drawing area in the UCS FRONT view.
3. Construct the outline in Fig. 17.12 and extrude to a height of $\mathbf{1 2 0}$.
4. Either click the $\mathbf{3}$ Point UCS tool icon in the UCS toolbar (Fig. 17.13) or at the command line:

Command: enter ucs right-click
Current ucs name: *RIGHT*
Enter an option [prompts](_face): enter \mathbf{n} (New) right-click
Specify origin of UCS or [prompts](_face): enter 3 (3point) right-click
Specify new origin point: pick
Specify point on positive portion of X-axis: pick
Specify point on positive-Y portion of UCS XY plane:
enter .xy right-click
of pick (need \mathbf{Z}): enter $\mathbf{- 1}$ (note the minus sign) right-click
Regenerating model.
Command:
And the model regenerates in this new 3point plane.

Note

Fig. 17.14 shows the three UCS points.
5. On the face of the model construct a rectangle $\mathbf{8 0} \times \mathbf{5 0}$ central to the face of the front of the model, fillet its corners to a radius of $\mathbf{1 0}$ and extrude to a height of $\mathbf{1 0}$.
6. Place the model in the SW Isometric view and fillet the back edge of the second extrusion to a radius of $\mathbf{1 0}$.
7. Subtract the second extrusion from the first.
8. Add lights and a suitable material, and render the model (Fig. 17.15).

Fig. I7.12 Third example UCS outline for 3D model

Fig. 17.13 The $\mathbf{3}$ Point UCS icon in the UCS toolbar

Fig. I7.14 Third example UCS the three UCS points

Fig. 17.15 Third example UCS

Fig. 17.16 The \mathbf{Z} Axis Vector UCS icon in the UCS toolbar

Fig. 17.17 Fourth example UCS

Fourth example - UCS (Fig. I7.I7)

1. With the last example still on screen, place the model in the UCS *WORLD* view.
2. Click the \mathbf{Z} Axis Vector UCS tool icon in the UCS toolbar (Fig. 17.16). The command line shows:

Command:_ucs
Current ucs name: *WORLD*

Enter an option [prompts](_face) <World>:_zaxis
Specify a new origin point: enter 40,60 right-click
Specify point on positive portion of Z-axis $<\mathbf{4 0}, \mathbf{6 0}, 0>$:
enter $\mathbf{x y}$ right-click
of enter $\mathbf{1 7 0 , 2 2 0}$ right-click (need Z): enter $\mathbf{1}$ right-click
Regenerating model.

Command:

3. Render the model in its new UCS plane (Fig. 17.17).

Fig. 17.18 The UCS icon in the UCS toolbar

Fig. I7.19 The Named UCS ... tool icon in the UCS II toolbar

Saving UCS views

If a number of different UCS planes are used in connection with the construction of a 3D model, each can be saved to a different name and recalled when required. To save the UCS plane in which a 3D model drawing is being constructed, either click the UCS tool icon in the UCS toolbar (Fig. 17.18) or enter ucs at the command line:

Command:_ucs
Current ucs name: NW Isometric
Enter an option [prompts](_face): enter s (Save) right-click
Enter name to save current UCS or [?]: enter SW Isometric right-click Regenerating drawing.

Command:

Now click the Named UCS . . . tool icon in the UCS II toolbar (Fig. 17.19) and the UCS dialog appears (Fig. 17.20) showing the names of the views saved in the current drawing.

Constructing 2D objects in 3D space

In previous chapters of this book there have been examples of 2D objects constructed with the Polyline, Line, Circle and other 2D tools to form the outlines for extrusions and solids of revolution. These outlines have been drawn on planes set either from the 3D Views sub-menu of the Views drop-down menu, or in UCS planes such as the UCS *RIGHT*, *FRONT* and *LEFT* planes.

First example - 2D outlines in 3D space (Fig. I7.23)

1. Construct a 3point UCS to the following points:
origin point: $\mathbf{8 0 , 9 0}$
X-axis point: 290,150
positive-Y point: .xy of $\mathbf{8 0 , 9 0}$
(need Z): enter 1.
2. On this 3point UCS construct a 2 D drawing of the plate to the dimensions given in Fig. 17.21, using the Polyline, Ellipse and Circle tools.

Fig. 17.21 First example - 2D outlines in 3D space

Fig. I7.22 First example - 2D outlines in 3D space - the outline in a SW Isometric view

Fig. I7.23 First example - 2D outlines in 3D space

All chamfers are 10×10
3. Save the UCS plane in the UCS dialog to the name 3point.
4. Place the drawing area in the SW Isometric view (Fig. 17.22).
5. With the Region tool form regions of the six parts of the drawing and with the Subtract tool, subtract the circles and ellipse from the main outline.
6. Extrude the region to a height of $\mathbf{1 0}$ (Fig. 17.23).

Fig. I7.24 Second example - 2D outlines in 3D space - outline to be extruded

Fig. I7.25 The Face UCS icon from the UCS toolbar

Fig. I7.26 Second example - 2D outlines in 3D space - the circles in the new UCS face

Second example - 2D outlines in 3D space (Fig. I7.26)

1. Place the drawing area in the UCS *FRONT* view, Zoom to $\mathbf{1}$ and construct the outline in Fig. 17.24.

2. Extrude the outline to a height of $\mathbf{1 5 0}$.
3. Place in the 3D Views/SW Isometric view and Zoom to $\mathbf{1}$.
4. Click the Face UCS tool icon in the UCS toolbar (Fig. 17.25) and place the 3D model in the ucs plane shown in Fig. 17.26, selecting the sloping face of the extrusion for the plane and again Zoom to 1 .

5. With the Circle tool draw five circles as shown in Fig. 17.26.
6. Form a region from the five circles and with Union form a union of the regions.
7. Extrude the region to a height of $\mathbf{- 6 0}$ (note the minus) - higher than the width of the sloping part of the 3D model.
8. Place the model in the SW Isometric view and subtract the extruded region from the model.

Fig. 17.27 Second example - 2D outlines in 3D space

Fig. I7.28 Exercise I-a rendering
9. With the Fillet tool, fillet the upper corners of the slope of the main extrusion to a radius of $\mathbf{3 0}$.
10. Place the model into another UCS FACE plane and construct a filleted pline of sides $\mathbf{8 0}$ and $\mathbf{5 0}$ and filleted to a radius of $\mathbf{2 0}$. Extrude to a height of $\mathbf{- 6 0}$ and subtract the extrusion from the 3D model.
11. Place in the SW Isometric view, add lighting and attach a material and render (Fig. 17.27).

Revision notes

1. The UCS (User Coordinate System) tools can be called from the two toolbars UCS and UCS II or from sub-menus from the Tools drop-down menu or by entering ucs at the command line.
2. The variable UCSFOLLOW must first be set on (to $\mathbf{1}$) before operations of the UCS can be brought into action.
3. There are several types of UCS icon - 2D (different types), 3D (different types) and Pspace.
4. The position of the plane in 3D space on which a drawing is being constructed can be varied using tools from the UCS.
5. The different planes on which drawings are constructed in 3D space can be saved in the UCS dialog.

Exercises

1. The two-view projection in Fig. 17.29 shows an angle bracket in which two pins are placed in holes in each of the arms of the bracket.

Construct a 3D model of the bracket and its pins.
Add lighting to the scene and materials to the parts of the model and render (Fig. 17.28).
2. The two-view projection (Fig. 17.31) shows a stand consisting of two hexagonal prisms. Circular holes have been cut right through each

Fig. I7.29 Exercise I - details of the shapes and sizes

Fig. 17.30 Exercise 2 - a rendering

Fig. I7.3I Exercise 2 - details of the shapes and sizes

Fig. I7.32 Exercise 3 - details of the shapes and sizes
face of the smaller hexagonal prism and rectangular holes with rounded ends have been cut right through the faces of the larger.

Construct a 3D model of the stand. When completed add suitable lighting to the scene. Then add a material to the model and render (Fig. 17.30). 3. The two-view projection in Fig. 17.32 shows a ducting pipe. Construct a 3D model drawing of the pipe. Place in a SW Isometric view, add lighting to the scene and a material to the model and render.

Fig. I7.33 Exercise 4 - details of the shapes and sizes
4. A point marking device is shown in the two-view projection in Fig. 17.33. The device is composed of three parts - a base, an arm and a pin.

Construct a 3D model of the assembled device and add appropriate materials to each part. Then add lighting to the scene and render in a SW Isometric view (Fig. 17.34).

5. Fig. 17.35 shows the rendering of a 3D model drawing of the connecting device shown in the orthographic projection in Fig. 17.36. Construct the 3D model drawing of the device and add a suitable lighting to the scene.

Fig. I7.36 Exercise 5 - two-view drawing

Then place in a SE Isometric view, add a material to the model and render.
6. A fork connector and its rod and are shown in a two-view projection in Fig. 17.37. Construct a 3D model drawing of the connector with its rod in position. Then add lighting to the scene, place in an Isometric viewing position, add materials to the model and render.
7. An orthographic projection of the parts of a lathe steady are given in Fig. 17.39. From the dimensions shown in the drawing, construct an assembled 3D model of the lathe steady.

Fig. 17.37 Exercise 6

Fig. 17.38 Exercise 7 - a rendering

Fig. I7.39 Exercise 7 - details

When the 3D model has been completed, add suitable lighting and materials and render the model as shown in Fig. 17.38.

CHAPTER I8

3D surface models

Aims of this chapter

1. To introduce the idea of 3 D surfaces.
2. To compare 3D surface models with 3D solid drawing models.
3. To give examples of 3 D surface models.

3D surface meshes

3D surface models will be introduced in this chapter. The 3D models described in earlier chapters have all been constructed using the tools from the 3D Make control panel or the Modeling toolbar. 3D surface models are constructed using the surface commands. 3D surface model drawings are constructed from 3D surface meshes. In some instances it appears as if 3D solid models are the same as 3D surface models, but in fact there are distinct differences.

1. The surface meshes of 3D solid models are controlled by the settings of the variable ISOLINES.
2. The surface meshes of 3D surface models are controlled by either the number of segments or the two variables SURFTAB1 and/or SURFTAB2.
3. The Boolean operators Union, Subtract and Intersect can be used to join, subtract or intersect 3D model objects, but have no action when used with 3D surface objects.

Setting the 3D Modeling screen to 2D Wireframe

All the surface model drawings in this chapter have been constructed in a 2D Wireframe format on a Parallel grid system which can be set up as indicated in Fig. 18.1.

Comparisons between Solids and Surfaces tools
 First example - comparing 3D solid and 3D surface models (Fig. I8.2)

The three 3D cubes shown in the upper drawing of Fig. 18.2 have been constructed as follows:

Fig. I8.1 Setting 2D Wireframe and Parallel Projection

Left-hand cube: using the Line tool
Central cube: using the Box tool from the Modeling toolbar
Right-hand cube: a box constructed using the surface command ai_box.
The lower three drawings of Fig. 18.2 show the results of calling the Hide tool on each of the three upper drawings.

Fig. I8.2 First example comparing 3D solid and 3D surface models

Second example - Surfaces - Cone (Fig. I8.3)

The three cones were all constructed using the surface command ai_cone. When using the Cone tool, the last prompt line is:

Enter number of segments for surface of cone: enter a figure rightclick

The upper three cones show the number of segments entered in response to this prompt line.

Note that when Hide is called, the upper surface of the cones do not have surface meshes and so are open.

Fig. I8.3 Second example Surface command - ai_cone

Surface segments

16

After Hide

48

Ater

32

Third example - Solids tool - Cylinder (Fig. I8.4)
The upper three cylinders in this example were constructed using the Cylinder tool from the Modeling toolbar.

The lower three drawings show the results of calling Hide to the three cylinders in the upper drawings.

Note that the upper surface of the three cylinders hide the rest of the lines behind the top and that all three cylinders assume the same mesh appearance when Hide is called.
Fourth example - Surfaces tool - Edgesurf (Fig. I 8.5)

When constructing 3D surface models using tools such as the Edge Surface tool, both the Surftab1 and Surftab2 variables may need resetting.

The upper three drawings of Fig. 18.5 show 3D edgesurf models with a note under each stating the Surftab settings; the lower three models show the three surface models after Hide has been called.

Fig. I8.4 Third example - Solids tool - Cylinder

Fig. I8.5 Fourth exampleSurfaces tool - Edgesurf

The Surface tools

The following examples show the use of many of the tools in the Surfaces toolbar.

First example - 3D Surfaces model (Fig. I8.6)

1. Make the layer Magenta current.
2. Enter ai_cone at the command line which then shows:

Command:_ai_cone
Specify centre point for base of cone: enter $\mathbf{1 9 0 , 1 7 0}$ right-click
Specify radius for base of cone: enter 30 right-click
Specify radius for top of cone: enter $\mathbf{3 0}$ right-click
Specify height of cone: enter 80 right-click
Enter number of segments for surface of cone $<16>$: right-click Command:

Fig. I8.6 First example-3D Surfaces model. The model was constructed on layer magenta
3. Enter ai_box at the command line which then shows:

Command:_ai_box
Specify corner point of box: enter $\mathbf{1 6 0 , 1 4 0 , 8 0}$ right-click
Specify length of box: enter 60 right-click
Specify width of box: enter $\mathbf{6 0}$ right-click
Specify height of box: enter 30 right-click
Specify rotation angle of box about the \mathbf{Z} axis: enter $\mathbf{0}$ right-click Command:
4. Enter ai_dome at the command line which then shows:

Command:_ai_dome
Specify centre point of dome: enter $\mathbf{1 9 0 , 1 7 0 , 1 1 0}$ right-click
Specify radius of dome: enter 30 right-click
Enter number of longitudinal segments for surface of dome $<16>$: right-click
Enter number of latitudinal segments for surface of dome $<8>$: enter 16 right-click
Command:
5. Place the model in the SW Isometric view.

The resulting 3D surfaces solid is shown in the upper illustration of Fig. 18.6. The lower illustration of Fig. 18.6 shows the surface model in a Perspective setting shaded in Conceptual mode.

Note

Try forming a union of the three 3D surface objects by clicking the Union tool from the Solids Editing toolbar.

> Command:_union
> Select objects: pick the cylinder $\mathbf{1}$ found
> Select objects: pick the box 1 found, 2 total
> Select objects: pick the dome 1 found, 3 total
> Select objects: right-click

At least 2 solids or coplanar regions must be selected.
Command:
It will be seen that the three surface models will not form a union. Test by moving any one of the three surface models.

Second example - Surfaces model (Fig. I8.7)

1. Construct the same cylinder (using the Cone tool from Surfaces) as for the first example.
2. Enter ai_torus at the command line which then shows:

Command:_ai_torus
Specify center point of torus: enter $\mathbf{1 9 0}, 170,25$ right-click
Specify radius of torus: enter $\mathbf{3 5}$ right-click
Specify radius of tube: enter 5 right-click

Enter number of segments around the tube circumference $<16>$: right-click
Enter number of segments around torus circumference $<16\rangle$: right-click

Command:

3. Construct a similar torus at a height of $\mathbf{5 5}$ above the $\mathbf{X Y}$ plane.
4. Add a Dome of radius $\mathbf{3 0}$ at a height of $\mathbf{8 0}$ above the XY plane.
5. Place the model in the SW Isometric view. Zoom to $\mathbf{1}$.
6. Call Hide.

Third example - Surfaces model (Fig. I8.9)

1. Make a new layer of colour 30 .
2. Construct the plines as shown in Fig. 18.8.

Fig. 18.8 Third example Surfaces model - pline outline

3. Set SURFTAB1 to 24.
4. Set SURFTAB2 to 6.
5. Enter revsurf at the command line which then shows:

Command:_revsurf
Current wire frame density: SURFTAB1=24 SURFTAB2=6
Select object to revolve: pick the curved pline
Select object that defines the axis of revolution: pick
Specify start angle $<0>$: right-click
Specify included angle $<\mathbf{3 6 0}>$: right-click
Command:

Fig. I8.9 Third example Surface model
6. Erase the axis of revolution pline.
7. Place in a SW Isometric view, Zoom to $\mathbf{1}$ and set the Visual Style to Realistic.

Fourth example - Surfaces model (Fig. I8.I0)

1. Set Surftab1 to 2.
2. In the UCS *WORLD* construct a hexagon of edge length 35.
3. In the UCS *FRONT* and in the centre of the hexagon construct a pline of height 100.
4. Place the drawing in the SW Isometric view.
5. Enter tabsurf at the command line which then shows:

Command:_tabsurf

Current wire frame density: SURFTAB1=6
Select objects for path curve: pick the hexagon
Select object for direction vector: pick the pline Command:

Fig. I8.10 Fourth example -

Fig. I8.II Fifth exampleSurfaces model - pline outline

Fifth example - Surfaces model (Fig. I8.I2)

1. In the UCS *FRONT* construct the pline as shown in Fig. 18.11.
2. In the UCS *WORLD*, Zoom to $\mathbf{1}$ and copy the pline to a vertical distance of $\mathbf{1 2 0}$.
3. Place in the SW Isometric view and Zoom to $\mathbf{1}$.
4. Set SURFTAB1 to 32.
5. Enter rulesurf at the command line which then shows:

Command:_rulesurf
Current wire frame density: SURFTAB1=32
Select first defining curve: pick one of the plines
Select second defining curve: pick the other pline Command:
6. Call Hide.

Sixth example - Surfaces model (Fig. I8.I5)

1. Place the drawing area in the UCS *RIGHT*. Zoom to $\mathbf{1}$.
2. Construct the polyline to the sizes and shape as shown in Fig. 18.13.

Fig. 18.13 Sixth example Surfaces model - pline outline

Fig. I8.14 Sixth exampleSurfaces model - adding lines joining the outlines
3. Place the drawing area in the UCS *WORLD*. Zoom to $\mathbf{1}$.
4. Copy the pline to the right by 250.
5. Place the drawing in the SW Isometric view and Zoom to $\mathbf{1}$.
6. With the Line tool, draw lines between the ends of the two plines using the endpoint osnap (Fig. 18.14). Note that if polylines are drawn they will not be accurate at this stage.
7. Set SURFTAB1 to 32 and SURFTAB2 to 64.
8. Enter edgesurf at the command line which then shows:

Command:_edgesurf
Current wire frame density: SURFTAB1=32 SURFTAB2=64
Select object 1 for surface edge: pick one of the lines (or plines)
Select object 1 for surface edge: pick the next adjacent line (or pline)
Select object 1 for surface edge: pick the next adjacent line (or pline)
Select object 1 for surface edge: pick the last line (or pline) Command:
9. Call Hide.

The result is shown in Fig. 18.15.

Fig. I8.15 Sixth example -

Rendering of 3D Surface models

As with 3D solid model drawings, 3D surface model drawings can be rendered if thought necessary. By adding lights and materials to the surfaces, surface models can be rendered as effectively as can 3D solid models.

Revision notes

1. To follow the construction of the examples given in this chapter the screen should be set to 2D Wireframe in Parallel Projection mode.
2. The density of 3D surface meshes of surface models are controlled by the two set variables SURFTAB1 and SURFTAB2.
3. The Modeling tools Union, Subtract and Intersect (the Boolean operators) cannot be used with surface models.
4. When constructing a surface 3D cylinder use the Cone tool command.
5. Surfaces formed with the Ruled Surface tool require two outlines from which the surface can be obtained.
6. Surfaces formed with the Edge Surface tool require four edges from which to form the surface. The edges must meet each other at their ends for the surface to form.
7. 3D surface models can be rendered using the same methods as are used when rendering 3D solid models.

Exercises

1. In the UCS *WORLD* construct the polyline outline as shown in Fig. 18.16.

With the Tabulated Surface tool create a girder of length $\mathbf{2 0 0}$ from the outline (left-hand drawing of Fig. 18.17). Using the Edge Surface

Fig. I8.16 Exercise I - the outline from which the surface model is formed

Fig. 18.17 Exercise I - the Tabulated Surface and the rendering

Fig. 18.18 Exercise 2 - the arcs on which the exercise is based

Fig. 18.19 Exercise 2 - semicircles as end of arcs

Fig. 18.20 Exercise 2 - a surface

Fig. 18.21 Exercise 2
tool, construct a surface to cover the top end of the girder. Render the girder after adding suitable lights and a material.
2. Using the Polyline tool construct arcs as shown in Fig. 18.18. Using the UCS 3point option construct semicircles joining both ends of the arcs as shown in Fig. 18.19.

With the Edge Surface tool and with the SURFTAB variables set to suitable sizes, construct a surface from the four arcs (Fig. 18.20).

Using the Mirror tool, mirror the surface twice to obtain the hook shape. Render the hook after adding lighting and a material (Fig. 18.21).
3. Construct a surface of revolution from the polyline outline given in the left-hand drawing of Fig. 18.22. Add lighting and a suitable material and render.

Fig. 18.22 Exercise 3

Fig. 18.23 Exercise 4 - the two semi-ellipses

Fig. I8.24 Exercise 4

Fig. 18.25 Exercise 5 - sizes of the parts of the model
4. In the UCS *WORLD* plane construct two semi-ellipses to the sizes as given in Fig. 18.23. Place in the UCS *FRONT* plane and move the smaller semi-ellipse vertically upwards by $\mathbf{2 0 0}$ units.

Using the Ruled Surface tool form a surface between the two semiellipses. Add suitable lighting and a suitable material and render the surface (Fig. 18.24).
5. Using the Pyramid and Box tools from the Surfaces toolbar construct the 3D model in Fig. 18.25. Then place the model in the SW Isometric view and using the Realistic shading from the 3D Orbit right-click menu, hide lines behind the front faces (Fig. 18.26).
6. Working to the sizes given in the front view in Fig. 18.27, construct the 3D surface model shown in the rendering in Fig. 18.28. (Note: the base is $\mathbf{6 0}$ deep).

Fig. 18.26 Exercise 5

Fig. 18.27 Exercise 6 - front view

Fig. I8.28 Exercise 6

CHAPTER 19

Editing 3D solid models

Aims of this chapter

1. To introduce the use of tools from the Solids Editing toolbar.
2. To give examples of the use of the tools from the Solids Editing toolbar.
3. To show examples of a variety of 3D solid and 3D surface models.

The Solids Editing tools

Examples of the results of using some of the tools from the Solids Editing toolbar are shown in this chapter. These tools are of value if the design of a 3D solid model requires to be changed (edited), although some have a value in constructing solids which cannot easily be constructed using other tools. The Solid Editing tools have no effect when used on 3D surface models.

First example - Extrude faces tool (Fig. 19.3)

1. Set ISOLINES to 24.
2. In the UCS *RIGHT* plane construct a cylinder of radius $\mathbf{3 0}$ and height 30 (Fig. 19.1).

Fig. 19.1 First example Extrude faces tool - first stages

Solid Editing

Fig. 19.2 The Extrude faces tool icon

3. In the UCS *FRONT* view construct the pline in Fig. 19.1. Mirror the pline to the other end of the cylinder.
4. In the UCS *WORLD* move the pline to lie central to the cylinder.
5. Place the screen in the SW Isometric view.
6. Click the Extrude faces tool icon in the Solids Editing toolbar (Fig. 19.2). The command line shows:

Command:_solidedit
Solids editing automatic checking: SOLIDCHECK=1

Fig. 19.3 First example - Extrude faces tool

Fig. 19.4 Second example Extrude faces tool - pline for path

Fig. 19.5 Second example Extrude faces tool

Enter a solids editing option [Face/Edge/Body/Undo/eXit]<eXit>: _face
Enter a face editing option
[Extrude/Move/Rotate/Offset/Taper/Delete/Copy/coLor/mAterial/ Undo/eXit] <eXit>:_extrude
Select faces or [Undo/Remove]: <Snap off> pick a face $\mathbf{2}$ faces found.
Select faces or [Undo/Remove/ALL]: enter \mathbf{r} right-click
Remove faces or [Undo/Add/ALL]: 2 faces found, 1 removed.
Remove faces or [Undo/Add/ALL]: right-click
Specify height of extrusion or [Path]: enter \mathbf{p} right-click
Select extrusion path: pick the path
Path was moved to the center of the profile.
Solid validation started.
Solid validation completed.
7. Repeat the operation using the plane at the other end of the cylinder.
8. Render the resulting edited 3D model (Fig. 19.3).

Notes

1. Note the prompt line which includes the statement SOLIDCHECK=1. If the variable SOLIDCHECK is set on (to 1) the prompt lines include the lines SOLIDCHECK=1, Solid validation started and Solid validation completed. If set to 0 these two lines do not show.
2. When a face is picked other faces become highlighted; using the Remove option of the line Select faces or [Undo/Remove/ALL] allows faces which are not to be extruded to be removed from the operation of the tool.

Second example - Extrude faces tool

1. Construct a hexagonal extrusion just $\mathbf{1}$ unit high in the UCS *WORLD* plane.
2. Change to the UCS *FRONT* plane and construct the curved pline in Fig. 19.4.
3. Back in the UCS *WORLD* move the pline to lie central to the extrusion.
4. Place in the SW Isometric view and extrude the top face of the extrusion along the path of the curved pline.
5. Add lighting and a material to the model and render (Fig. 19.5).

Note

This example shows that a face of a 3D solid model can be extruded along any suitable path curve. If the polygon on which the extrusion is based had been turned into a region, no extrusion could have taken place. The polygon had to be extruded to give a face to a 3D solid.

Solid Editing

Fig. 19.6 The Move faces tool icon

Fig. 19.7 Third example - Move faces tool

Fig. 19.8 The Offset faces tool icon

Third example - Move faces tool (Fig. 19.7)

1. Construct the 3D solid drawing shown in the left-hand drawing of Fig. 19.7 from three boxes which have been merged using the Union tool.
2. Click on the Move faces tool in the Solids Editing toolbar (Fig. 19.6).

The command line shows:
Command:_solidedit
[prompts](_face)_face
Enter a face editing option
[prompts](_face):_move
Select faces or [Undo/Remove]: pick face $\mathbf{1}$ face found
Select faces or [Undo/Remove/ALL]: right-click
Specify a base point or displacement: pick
Specify a second point of displacement: pick
[further prompts]:
And the picked face is moved - right-hand drawing of Fig. 19.7.

Before Move Faces

After
Move Faces

Fourth example - Offset faces (Fig. 19.9)

1. Construct the 3 D solid drawing shown in the left-hand drawing of Fig. 19.9 from a hexagonal extrusion and a cylinder which have been merged using the Union tool.
2. Click on the Offset faces tool icon in the Solids Editing toolbar (Fig. 19.8). The command line shows:

Command:_solidedit

[prompts](_face)
[prompts](_face):_offset
Select faces or [Undo/Remove]: pick the bottom faces of the 3D model 2 faces found.
Select faces or [Undo/Remove/AII]: enter \mathbf{r} right-click

Fig. 19.9 Third example - Offset faces tool

Fig. 19.10 Fifth example - Taper faces tool

Select faces or [Undo/Remove/All]: pick highlighted faces other than the bottom face 2 faces found, 1 removed
Select faces or [Undo/Remove/AlI]: right-click
Specify the offset distance: enter 30 right-click
3. Repeat by offsetting the upper face of the cylinder by $\mathbf{5 0}$ and the righthand face of the lower extrusion by 15.

Fifth example - Taper faces tool (Fig. I9.10)

1. Construct the 3D model as in the left-hand drawing of Fig. 19.10. Place in the SW Isometric view.

2. Call Taper faces. The command line shows:

Command:_solidedit
[prompts](_face):_face
[prompts](_face)
[prompts](_face):_taper
Select faces or [Undo/Remove]: pick the upper face of the base $\mathbf{2}$ faces found
Select faces or [Undo/Remove/All]: enter \mathbf{r} right-click

Fig. I9.II The Copy faces tool icon from the Solids Editing toolbar

Fig. 19.12 Sixth example - Copy Faces tool - details of the 3D solid model

Select faces or [Undo/Remove/All]: pick highlighted faces other than the upper face 2 faces found, 1 removed
Select faces or [Undo/Remove/All]: right-click
Specify the base point: pick a point on left-hand edge of the face
Specify another point along the axis of tapering: pick a point on the right-hand edge of the face
Specify the taper angle: enter 10 right-click
And the selected face tapers as indicated in the right-hand drawing (Fig. 19.10).

Sixth example - Copy faces tool (Fig. I9.I3)

1. Construct a 3D model to the sizes as given in Fig. 19.12.
2. Click on the Copy faces tool in the Solids Editing toolbar (Fig. 19.11).

The command line shows:
Command:_solidedit
[prompts](_face):_face
[prompts](_face)
[prompts](_face):_copy
Select faces or [Undo/Remove]: pick the upper face of the solid model 2 faces found
Select faces or [Undo/Remove/AII]: enter \mathbf{r} right-click
Select faces or [Undo/Remove/All]: pick highlighted face not to be copied 2 faces found, 1 removed
Select faces or [Undo/Remove/AII]: right-click
Specify a base point or displacement: pick anywhere on the highlighted face
Specify a second point of displacement: pick a point some 50 units above the face

Fig. 19.13 Sixth example - Copy faces tool

Fig. 19.14 The Color Faces tool icon from the Solids Editing toolbar

Fig. 19.15 Seventh example Color faces tool - details of the 3D model
3. Add lights and a material to the 3D model and its copied face and render (Fig. 19.13).

Seventh example - Color faces tool (Fig. I9.16)

1. Construct a 3D model of the wheel to the sizes as shown in Fig. 19.15.
2. Click the Color faces tool icon in the Solids Editing toolbar (Fig. 19.14). The command line shows:

Command:_solidedit

[prompts](_face)
[prompts](_face):_color
Select faces or [Undo/Remove]: pick the inner face of the wheel $\mathbf{2}$ faces found
Select faces or [Undo/Remove/All]: enter \mathbf{r} right-click
Select faces or [Undo/Remove/AII]: pick highlighted faces other than the required face $\mathbf{2}$ faces found, 1 removed
Enter new color <ByLayer>: enter $\mathbf{1}$ (which is red) right-click

3. Add lights and a material to the edited 3D model and render (Fig. 19.16).

Examples of more 3D models

These 3D models can be constructed in the acadiso3D.dwt screen. The descriptions of the stages needed to construct these 3D models have been reduced from those given in earlier pages, in the hope that readers have already acquired a reasonable skill in the construction of such drawings.

Fig. 19.16 Eighth example - Color faces tool

Fig. 19.17 First example of 3D models

Fig. 19.18 First example 3D models - details of sizes and shapes

First example (Fig. I9.I7)

1. *FRONT* plane. Construct the three extrusions for the back panel and the two extruding panels to the details given in Fig. 19.18.
2. *WORLD* plane. Move the two panels to the front of the body and union the three extrusions. Construct the extrusions for the projecting parts holding the pin.
3. *FRONT* plane. Move the two extrusions into position and union them to the back.
4. *WORLD* plane. Construct two cylinders for the pin and its head.
5. *FRONT* plane. Move the head to the pin and union the two cylinders.
6. *WORLD* plane. Move the pin into its position in the holder. Add lights and materials.
7. SW Isometric view. Render. Adjust lighting and materials as necessary (Fig. 19.17).

8. Enter re to regenerate the model back to its 3D wireframe state.
9. Press and hold the Ctrl key. The Selecting Subobjects on Solids warning window (Fig. 19.19) appears. Click its Close button. Then

while still holding the $\mathbf{C t r l}$ key down pick the top centre point of the back of the holder. The command line shows:

Command:

STRETCH
Specify stretch point or [Base point/Undo/eXit]: pick a point to the rear of the holder

Command:

The 3D model can again be rendered and then appears as shown in Fig. 19.20.

Note

When using this method of holding down the Ctrl key when a 3D model is on screen, and if the Return key of the keyboard is pressed repeatedly, the command line shows:

```
**MOVE**
Specify move point or [Base point/Undo/eXit]:
**ROTATE**
Specify rotation angle or [Base point/Undo/Reference/eXit]:
**SCALE**
Specify scale factor or [Base point/Undo/Reference/eXit]:
**MIRROR**
Specify second point or [Base point/Undo/eXit]:
```

This allows the operator to use any of these modify commands on the 3D model.

Second example (Fig. 19.22)

1. *WORLD* (Fig. 19.21). Construct polyline outlines for the body extrusion and the solids of revolution for the two end parts. Extrude the body and subtract its hole and using the Revolve tool form the two end solids of revolution.

2. *RIGHT*. Move the two solids of revolution into their correct positions relative to the body and union the three parts. Construct a cylinder for the hole through the model.
3. *FRONT*. Move the cylinder to its correct position and subtract from the model.
4. *WORLD*. Add lighting and a material.
5. Render (Fig. 19.22).

Third example (Fig. 19.24)

1. *FRONT*. Construct the three plines needed for the extrusions of each part of the model (details in Fig. 19.23). Extrude to the given heights. Subtract the hole from the $\mathbf{2 0}$ high extrusion.
2. *WORLD*. Move the $\mathbf{6 0}$ extrusion and the $\mathbf{1 0}$ extrusion into their correct positions relative to the $\mathbf{2 0}$ extrusion. With Union form a single 3D model from the three extrusions.

Fig. 19.23 Third example of 3D models - details of shapes and sizes

3. Add suitable lighting and a material to the model.
4. SW Isometric. Render (Fig. 19.24).

Fourth example (Fig. 19.25)

1. *FRONT*. Construct the polyline - left-hand drawing of Fig. 19.25.
2. With the Revsurf tool form a surface of revolution from the pline.
3. *WORLD*. Add suitable lighting and a coloured glasslike material.
4. SW Isometric. Render (right-hand illustration of Fig. 19.25).

Exercises

1. Construct suitable polylines to sizes of your own discretion in order to form the two surfaces to form the box shape shown in Fig. 19.26 with the aid of the Rulesurf tool. Add lighting and a material and render the surfaces so formed.

Fig. 19.25 Fourth example of 3D models

Fig. 19.26 Exercise I - first part
Construct another three Edgesurf surfaces to form a lid for the box. Place the surface in a position above the box, add a material and render (Fig. 19.27).

Fig. 19.27 Exercise I - second part

Fig. 19.28 Exercise 2

Fig. 19.29 Exercise 2 - details of shapes and sizes
2. Working to the dimensions given in the orthographic projections of the three parts of the 3D model in Fig. 19.29, construct the assembled part as shown in the rendered 3D model in Fig. 19.28.

Add suitable lighting and materials, place in one of the isometric viewing positions and render the model.

3. Construct the 3D model shown in the rendering in Fig. 19.30 from the details given in the parts drawing in Fig. 19.31.

Fig. 19.30 Exercise 3

Fig. 19.3I Exercise 3 - the parts drawing

4. A more difficult exercise.

A rendered 3D model of the parts of an assembly are shown in Fig. 19.35.
Working to the details given in the three orthographic projections in Figs 19.32, 19.33 and 19.34, construct the two parts of the 3D model, place them in suitable positions relative to each other, add lighting and materials and render the model.

Fig. 19.32 Exercise 4 - first orthographic projection

Fig. 19.33 Exercise 4 - second orthographic projection

Fig. 19.34 Exercise 4 - third orthographic projection

Fig. 19.35 Exercise 4

Other features of 3D modelling

Aims of this chapter

1. To give a further example of placing raster images in an AutoCAD drawing.
2. To give examples of methods of printing or plotting not given in previous chapters.
3. To give examples of polygonal viewports.

Raster images in AutoCAD drawings
 Example - Raster image in a drawing (Fig. 20.5)

This example shows the raster file 12.bmp of the 3D model constructed to the details given in the drawing in Fig. 20.1.

Fig. 20.1 Example - Raster image in a drawing - details

Fig. 20.2 Selecting Raster
Image Reference ... from the Insert drop-down menu

Raster images are graphics images such as those taken from files ending with the file extensions *.bmp; *.pcx; *.tif and the like. The types of graphics files which can be inserted into AutoCAD drawings can be seen by first clicking on Raster Image Reference . . . in the Insert drop-down menu (Fig. 20.2), which brings the Select Image File dialog (Fig. 20.3) on screen. In the dialog click the arrow to the right of the Files of type field and the popup list appears which lists the types of graphics files which can be inserted into AutoCAD drawings. Such graphics files can be used to describe in 3D the details shown in 2D by a technical drawing.

1. Construct the 3D model to the shapes and sizes given in Fig. 20.1, working in four layers each of a different colour.

Fig. 20.3 The Select Image File dialog

2. Place in the $\mathbf{S W}$ Isometric view.
3. Shade the 3D model using Realistic shading from Visual Styles.
4. Zoom the shaded model to a suitable size and press the Print Scr key of the keyboard.
5. Open the Windows Paint application and click Edit in the menu bar, followed by another click on Paste in the drop-down menu. The whole AutoCAD screen which includes the shaded 3D assembled model appears.
6. Click the Select tool icon in the toolbar of Paint and window the 3D model. Then click Copy in the Edit drop-down menu.
7. Click New in the File drop-down menu, followed by a click on No in the warning window which appears.
8. Click Paste in the Edit drop-down menu. The shaded 3D model appears. Click Save As . . . from the File drop-down menu and save the bitmap to a suitable file name - in this example - 12.bmp.
9. Open the orthographic projection drawing in AutoCAD.
10. Open the Select Image File dialog and from the Look in field select the raster file 12.bmp from the file list (Fig. 20.3). Another dialog (Image) opens (Fig. 20.4) showing the name of the raster image file. Click the OK button of the dialog and a series of prompts appear at the command line requesting position and scale of the image. Enter appropriate responses to these prompts and the image appears in position in the orthographic drawing (Fig. 20.5).

Notes

1. It will normally be necessary to enter a scale in response to the prompt lines otherwise the raster image may appear very small on screen. If it does it can be zoomed anyway.

Fig. 20.4 Example - Raster image in a drawing - the Image dialog

Fig. 20.5 Example - Raster image in a drawing

2. Place the image in position in the drawing area. In Fig. 20.5 the orthographic projections have been placed within a margin and a title block has been added.

Printing/Plotting

Hardcopy (prints or plots on paper) from a variety of AutoCAD drawings of 3D models can be obtained. Some of this variety has already been shown on pages 259-260 in Chapter 16.

First example - Printing/Plotting (Fig. 20.8)

If an attempt is made to print a multiple viewport screen with all viewport drawings appearing in the plot, only the current viewport will be printed. To print or plot all viewports:

Fig. 20.6 First example Printing/Plotting - renaming the Layoutl tab

Fig. 20.7 The Plot tool icon from the Standard New toolbar

1. Make sure UCSFOLLOW is set off (to $\mathbf{1}$).
2. Open a four-viewport screen of the assembled 3D model shown in the first example (page 306).
3. Make a new layer vports of colour yellow. Make this layer current.
4. Right-click on the Layout1 tab and click Rename in the menu which appears. Then in the Rename Layout dialog which comes to screen, enter a new name in the Name field. Click the OK button and the Layout1 tab is renamed (Fig. 20.6).

5. Click the renamed Layout tab. The screen changes to a PSpace layout.
6. The Paper Space layout appears with the current viewport outlined in yellow (the colour of the vports layer). Using the Erase tool, erase the viewport with a click on its boundary line. The viewport and its contents disappear.
7. At the command line:

Command: enter mv (Mview) right-click MVIEW
Specify corner of viewport or [ON/OFF/Shadeplot/Lock/Object/
Polygonal/Restore/2/3/4]: enter 4 right-click
Specify first corner of viewport or [Fit] < Fit>: right-click
Regenerating model.
Command:
And four viewports reappear with the 3D model drawing in each.
8. Turn the layer vports off with a click on its Turn a layer On or Off icon.
9. Click the Plot tool icon in the Standard New toolbar (Fig. 20.7). A Plot dialog appears.
10. Check that the printer/plotter is correct and the paper size is also correct.
11. Click the Preview button. The full preview of the plot appears (Fig. 20.8).
12. Right-click anywhere in the drawing and click on Plot in the rightclick menu which then appears.
13. The drawing plots (or prints).

Fig. 20.8 First example -
Printing/Plotting

Second example - Printing/Plotting (Fig. 20.9)

1. Open the orthographic drawing with its raster image (Fig. 20.5).
2. While still in Model Space click the Plot tool icon. The Plot dialog appears. Check that the required printer/plotter and paper size have been chosen.
3. Click the Preview button.
4. If satisfied with the preview (Fig. 20.9), right-click and in the menu which appears click the name Plot. The drawing plots.

Third example - Printing/Plotting (Fig. 20.10)

1. Open the 3D model drawing of the assembly shown in Fig. 20.8 in a single SW Isometric view.
2. While in MSpace, click the Plot tool icon. The Plot dialog appears.
3. Check that the plotter device and sheet sizes are correct. Click the Preview button.
4. If satisfied with the preview (Fig. 20.10), right-click and click on Plot in the menu which appears. The drawing plots.

Fig. 20.9 Second example Printing/Plotting

Fig. 20.10 Third example Printing/Plotting

Polygonal viewports (Fig. 20.1I)

The example to illustrate the construction of polygonal viewports is based upon exercise 7 (page 318). When the 3D model for this assignment has been completed in Model Space:

1. Make a new layer Yellow of colour yellow and make this layer current.
2. Click the Layout 1 tab.
3. Erase the viewport with a click on its bounding line. The outline and its contents are erased.

Fig. 20.11 Polygonal viewports - plot preview

4. At the command line:

Command: enter mv right-click
[prompts](_face): enter 4 right-click
[prompts](_face): right-click
Regenerating model.
Command:
And the model appears in a four-viewport layout.
5. Make sure the variable UCSFOLLOW is OFF (set to 0).
6. Click the PAPER button in the status bar to turn it to MODEL. With a click in each viewport in turn and using the 3D Views settings, set viewports in Front, Right, Top and SW Isometric views respectively.
7. Zoom each viewport to All.
8. Click the MODEL button to go back to PAPER.
9. Enter $\mathbf{m v}$ at the command line, which shows:

Command: enter mv right-click
MVIEW
[prompts](_face): enter \mathbf{p} (Polygonal) right-click
Specify start point: In the top-right viewport pick one corner of a square
Specify next point or [Arc/Close/Length/Undo]: pick next corner for the square
Specify next point or [Arc/Close/Length/Undo]: pick next corner for the square
Specify next point or [Arc/Close/Length/Undo]: enter c (Close) right-click

Regenerating model.

Command:

Fig. 20.12 Polygonal viewports - plot preview after turning the layer Yellow off

And a square viewport outline appears in the top-right viewport within which is a copy of the model.
10. Repeat in each of the viewports with different shapes of polygonal viewport outlines (Fig. 20.11).
11. Click the PAPER button to change to MODEL.
12. In each of the polygonal viewports make a different isometric view. In the bottom-right viewport change the view using the 3D Orbit tool.
13. Turn the layer Yellow off. The viewport borders disappear.
14. Now plot the drawing. The Preview appears (Fig. 20.12).

1. Fig. 20.13 shows a polyline for each of the four objects from which the surface shown in Fig. 20.14 was obtained. Construct the surface and shade with Realistic shading.
2. Working to the sizes given in Fig. 20.16, construct an assembled 3D model drawing of the spindle in its two holders and render (Fig. 20.15).
3. A partial front view of a stand is shown by an isometric drawing (Fig. 20.17). From the details given in the drawing in Fig. 20.18, construct a 3D model drawing of the stand.

Using appropriate lighting and material, construct a rendering of the 3D model which has been constructed.

Exercises

Fig. 20.13 Exercise I - the pline for each of the four objects

Fig. 20.14 Exercise I

Fig. 20.15 Exercise 2

Fig. 20.16 Exercise 2 - details of shapes and sizes

Fig. 20.17 Exercise 3 - isometric drawing

4. Construct an assembled 3D model drawing, working to the details given in Fig. 20.19.

When the drawing has been constructed disassemble the parts as shown in the given isometric drawing (Fig. 20.20).
5. The surface model for this assignment was constructed from three edgesurf surfaces, working to the suggested objects for the surface as shown in Fig. 20.23. The sizes of the outlines of the objects in each case are left to your discretion. Fig. 20.21 shows the completed surface model. Fig. 20.22 shows the three surfaces of the model separated from each other.
6. Working to the details shown in Fig. 20.24, construct an assembled 3D model, with the parts in their correct positions relative to each

Fig. 20.18 Exercise 3

Fig. 20.19 Exercise 4 - details of shapes and sizes

other. Then separate the parts as shown in the isometric drawing in Fig. 20.25. When the 3D model is complete add suitable lighting and materials and render the result.
7. Working to the details shown in Fig. 20.26, construct a 3D model of the parts of the wheel with its handle.

Two renderings of 3D models of the rotating handle are shown in Fig. 20.27 - one with its parts assembled and the other with the parts in an exploded position relative to each other.

Fig. 20.20 Exercise 4 - an exploded isometric drawing

Fig. 20.21 Exercise 5

Fig. 20.22 Exercise 5 - surfaces separated

Fig. 20.23 Exercise 5 - objects for edgesurf surface model

Fig. 20.24 Exercise 6 - details drawing

Fig. 20.25 Exercise 6 - exploded isometric drawing

Fig. 20.26 Exercise 7 - details drawing

Fig. 20.27 Exercise 7 - renderings

CHAPTER 21

Internet tools

Aim of this chapter

The purpose of this chapter is to introduce the tools which are available in AutoCAD 2007 which make use of facilities available on the Word Wide Web (www).

Emailing drawings

As with any other files which are composed of data, AutoCAD drawings can be sent by email as attachments. If a problem of security of the drawings is involved they can be encapsulated with a password as the drawings are saved prior to being attached in an email. To encrypt a drawing with a password, click Tools in the Save Drawing As dialog and from the popup list which appears click Security Options ... (Fig. 21.1). Then in the Security Options dialog which appears (Fig. 21.2) enter a password in the Password or phrase to open this drawing field. After entering a password click the OK button and enter the password again in the Confirm Password dialog which appears. The drawing then cannot be opened until the password is entered in the Password dialog which appears when an attempt is made to open the drawing by the person receiving the email (Fig. 21.3).

There are many reasons why drawings may require to be password encapsulated in order to protect confidentiality of the contents of drawings.

Fig. 21.I Selecting Security Options in the Save Drawing As dialog

Example - creating a web page (Fig. 2 I.5)
To create a web page which includes AutoCAD drawings left-click Publish to Web . . . from the File drop-down menu. A series of Publish to Web dialogs appear, the second of which is shown in Fig. 21.4. After making entries in the dialogs which come on screen after each Next button is clicked, the resulting web page such as that shown in Fig. 21.5 will

Fig. 21.2 Entering and confirming a password in the Security Options dialog

Fig. 21.3 The Password dialog appearing when a password encrypted drawing is about to be opened

Fig. 21.4 One of the Publish to Web dialogs

Fig. 21.5 The web page resulting from completing the Publish to Web series of dialogs

be seen (which can be saved as an *.htm file). A double-click in any of the thumbnail views in this web page and another page appears showing the selected drawing in full (Fig. 21.6).

In this example the drawings are the same as those which were included in a DWF file for the set of drawings shown in the sheet set for 62 Pheasant Drive. The drawings from the DWF file are shown in Fig. 21.7 as seen in the Autodesk DWF Composer.

Fig. 21.6 The web page resulting from a double-click on a thumbnail

Fig. 21.7 The DWF file opened in the AutoCAD DWF

Composer

The eTransmit tool

Click eTransmit... in the File drop-down menu and the Create Transmittal dialog appears (Fig. 21.8). The transmittal shown in this example is the drawing on screen at the time. Fill in details as necessary and click the OK button and a zip file is formed from the drawing file (Fig. 21.9). This zip file is easier and quicker to email than the drawing file. The AutoCAD drawing can be obtained by unzipping the zip file at the receiving end.

Fig. 21.8 The Create Transmittal dialog

Fig. 21.9 The zip file created from the Create Transmittal dialog

CHAPTER 22

Design and AutoCAD 2007

Ten reasons for using AutoCAD

1. A CAD software package such as AutoCAD 2007 can be used to produce any form of technical drawing.
2. Technical drawings can be produced much more speedily using AutoCAD than when working manually - probably as much as ten times as quickly when used by skilled AutoCAD operators.
3. Drawing with AutoCAD is less tedious than drawing by hand - features such as hatching, lettering, adding notes, etc. are easier, quicker and indeed more accurate.
4. Drawings or parts of drawings can be moved, copied, scaled, rotated, mirrored and inserted into other drawings without having to redraw.
5. AutoCAD drawings can be saved to a file system without necessarily having to print the drawing. This can save the need for large drawing storage areas.
6. The same drawing or part of a drawing need never be drawn twice, because it can be copied or inserted into other drawings with ease. A basic rule when working with AutoCAD is: Never draw the same feature twice.
7. New details can be added to drawings or be changed within drawings without having to mechanically erase the old details.
8. Dimensions can be added to drawings with accuracy reducing the possibility of making errors.
9. Drawings can be plotted or printed to any scale without having to redraw.
10. Drawings can be exchanged between computers and/or emailed around the world without having to physically send the drawing.

The place of AutoCAD 2007 in designing

The contents of this book are designed to help only those who have limited (or no) knowledge and skills in the construction of technical drawing using AutoCAD 2007. However it needs to be recognised that the impact of modern computing on the methods of designing in industry has been immense. Such features as analysis of stresses, shear forces, bending forces and the like can be carried out more quickly and accurately using computing methods. The storage of data connected with a design and the ability to recover the data speedily are carried out
much easily using computing methods than it had been, prior to the introduction of computing.

AutoCAD 2007 can play an important part in the design process because technical drawings of all types are necessary for achieving welldesigned artefacts whether it be an engineering component, a machine, a building, an electronics circuit or any other design project.

In particular, 2D drawings which can be constructed in AutoCAD 2007 are still of great value in modern industry. AutoCAD 2007 can also be used to produce excellent and accurate 3D models, which can be rendered to produce photographic like images of a suggested design. Although not dealt with in this book, data from 3D solid model drawings constructed in AutoCAD 2007 can be taken for use in computer-aided machining (CAM).

At all stages in the design process, either (or both) 2D or 3D drawings can play an important part in aiding those engaged in designing to assist in assessing the results of their work at various stages. It is in the design process that drawings constructed in AutoCAD 2007 play an important part.

In the simplified design process chart shown in Fig. 22.1 an asterisk $(*)$ has been shown against those features where the use of AutoCAD 2007 can be regarded as being of value.

The design chart (Fig. 22.1)

The simplified design chart in Fig. 22.1 shows the following features:
Design brief: A design brief is a necessary feature of the design process. It can be in the form of a statement, but it is usually much more. A design brief can be a written report which not only includes a statement made of the problem which the design is assumed to be solving, but includes preliminary notes and drawings describing difficulties which may be encountered in solving the design and may include charts, drawings, costings, etc. to emphasise some of the needs in solving the problem for which the design is being made.
Research: The need to research the various problems which may arise when designing is often much more demanding than that shown in the chart (Fig. 22.1). For example the materials being used may require extensive research as to costing, stress analysis, electrical conductivity, difficulties in machining or in constructional techniques and other such features.
Ideas for solving the brief: This is where technical and other drawings and sketches play an important part in designing. It is only after research that designers can ensure the brief will be fulfilled.
Models: These may be constructed models in materials representing the actual materials which have been chosen for the design, but in addition 3D solid model drawings such as those which can be constructed in AutoCAD 2007 can be of value. Some models may also be made in the materials from which the final design is to be made so as to allow testing of the materials in the design situation.

Fig. 22.1 A simplified design chart

Chosen solution: This is where the use of drawings constructed in AutoCAD 2007 are of great value. 2D and 3D drawings come into their own here. It is from such drawings that the final design will be manufactured.
Realisation: The design is made. There may be a need to manufacture a number of the designs in order to enable evaluation of the design to be fully assessed.
Evaluation: The manufactured design is tested in situations such as it is liable to be placed in use. Evaluation will include reports and notes which could include drawings with suggestions for amendments to the working drawings from which the design was realised.

Enhancements in AutoCAD 2007

AutoCAD 2007 contains major enhancements over previous releases, particularly when working in a 3D environment. Please note that not all the enhancements in AutoCAD 2007 are described in this book. Among the most important enhancements are the following:

1. The introduction of Workspaces. The AutoCAD window can be in either a 2D or a 3D workspace. The acadiso.dwt template is the basis for a 2D workspace and the acadiso3D.dwt is the basis for a 3D workspace.
2. The introduction of the DASHBOARD palette which can be configured to show one, some or all of the control panels in which
the various 2D and 3D tools are held, allowing all tools in use to be held in one palette.
3. Control panels include 2D Draw, 3D Make, 3D Navigate, Light, Visual Styles, Materials and Render.
4. Radical changes to methods of rendering 3D solid model drawings, with the introduction of new tools, new methods of lighting, adding materials, shading and rendering. Changes in methods of applying materials and lighting, including sun lighting.
5. New sub-dialogs in the Options dialog.
6. The introduction of some new Solids tools - Helix, Sweep, Loft, Planesurf and 3D Polylines.
7. Changes in the 3D solids tools Extrude and Revolve, allowing either solids or surface to be extruded from 2D outlines.
8. Changes in the Solids tool Pyramid, allowing a pyramid of a chosen number of sides to be created.
9. Surfaces can be extruded from outlines which are not closed.
10. Enhancement of the DYN (Dynamic Input) system, particularly with respect to working in 3D.
11. The introduction of DUCS (Dynamic UCS) which allows workspaces to be switched automatically when working in 3D.
12. Enhancements in the 3D Orbit command.
13. The introduction of the Camera command, allowing the creation of cameras for taking views of a solid model.
14. The introduction of the 3Dwalk command, allowing a walkthrough of a 3D model.
15. Advanced rendering methods.
16. Parallel and Perspective layouts are easily changed.
17. Drawings can be exchanged between MicroStation *.dgn formats and AutoCAD *.dwg formats.
18. The Sheet Set Manager has been updated.
19. Many new 3D commands introduced.
20. Changes to the Slice and Section tools, allowing slicing and sections along planes other than flat planes.
21. Introduction of animations.
22. The *.dwg format has been updated.

System requirements for running AutoCAD 2007

Graphics card: An AutoCAD certified graphics card. Details can be found on the web page AutoCAD Certified Hardware XML Database.
Operating system: Windows XP Professional, Windows XP Home, Windows 2000 or Windows XP Tablet PC Edition.

Microsoft Internet Explorer 6.0.

Processor: Pentium III 800 Mhz.
Ram: At least 128 MB.
Monitor screen: 1024×768 VGA with True Colour as a minimum.
Hard disk: A minimum of 300 MB .

APPENDIX A

Printing/Plotting

Introduction

Some suggestions for printing/plotting of AutoCAD drawings have already been given (pages 259-260). Plotters or printers can be selected from a wide range and are used for printing or plotting drawings constructed in AutoCAD 2007. The example given in this appendix is from a print using one of the default printers connected to the computer used by the author. However if another plotter or printer is connected to the computer, its driver can be set by first opening the Windows Control Panel, and with a double-click on the Autodesk Plotter Manager icon the Plotters dialog appears (Fig. A.1).

Double-click on the Add-A-Plotter Wizard icon and the first of the Add Plotter series of dialogs appears (Fig. A.2). Click the Next button and the second of the dialogs (Begin) appears (Fig. A.3). Click in the radio button My Computer (in this case), followed by a click on the dialog's Next button.

The third of the dialogs appears - the Plotter Model dialog (Fig. A.4). Select names in the Manufacturers list and a selection can be made from the Models list associated with the chosen manufacturer's name.

Fig. A. 2 The first of the series of Add Plotter dialogs

Add Plotter - Introduction Page
This wizard provides you with the ability to configure either an existing Windows system plotter, or a new non-Windows system plotter. The configuration information will be saved in a PC3 file. The PC3 file will be added as a plotter icon that can be selected from the Autodesk Plotter Manager.

You can choose to import configuration information from a PCP or PC2 file, then add that information to the new plotter configuration file you are creating.

There are several more dialogs in the series in which selections have to be made before completing the setting up of a printer or plotter for the printing of AutoCAD drawings.

Notes

1. AutoCAD drawings can be printed from the default printers already installed in the Windows system of the computer on which AutoCAD 2007 is loaded.
2. Plots or prints from drawings constructed in AutoCAD 2007 can be made from either Model Space or Paper Space.

Fig. A. 4 The Add Plotter Plotter Model dialog

Fig. A. 5 The Plot tool icon in the Standard New toolbar

Fig. A. 6 The Plot dialog

An example of a printout

1. Either select Plot . . . with a click on its tool icon in the Standard New toolbar (Fig. A.5) or from the File drop-down menu. The Plot dialog appears (Fig. A.6).
2. There are two parts in the Plot dialog. Fig. A. 6 shows both the parts. A click on the arrow at the bottom right-hand corner of the dialog closes to reveal only the left-hand part and vice versa.
3. Select an appropriate printer or plotter from the Printer/Plotter list. In this example this is a colour printer. Then select the correct paper size

from the Paper size popup list. Then select what is to be printed/plotted from the What to plot popup list - in the example shown this is Display. Make sure the Landscape button is showing a dot (on). Then click the Preview button.
4. A preview of the drawing to be printed/plotted appears (Fig. A.7). If satisfied with the preview, right-click and in the menu which appears click Plot. If not satisfied click Exit. The preview disappears and the Plot dialog reappears. Make changes as required from an inspection of the preview and carry on in this manner until a plot can be made.

APPENDIX B

List of tools

Introduction

AutoCAD 2007 allows the use of over 300 tools. Some operators prefer using the word 'commands', although command as an alternative to tool is not in common use today. The majority of these tools are described in this list. Many of the tools described here have not been used in this book, because this book is an introductory text designed to initiate readers into the basic methods of using AutoCAD 2007. It is hoped the list will encourage readers to experiment with those tools not described in the book. The abbreviations for tools which can be abbreviated are included in brackets after the tool name. Tool names can be entered in upper or lower case.

A list of 2D tools is followed by a list of 3D tools. Internet tools are described at the end of this listing.

2D tools

About - Brings the About AutoCAD bitmap on screen
Appload - Brings the Load/Unload Applications dialog to screen
Adcenter (dc) - Brings the DesignCenter palette on screen
Align (al) - Aligns objects between chosen points
Arc (a) - Creates an arc
Area - States in square units the area selected from a number of points
Array (ar) - Creates Rectangular or Polar arrays in 2D
Ase - Brings the dbConnect Manager on screen
Attdef - Brings the Attribute Definition dialog on screen
Attedit - Allows editing of attributes from the Command line
Audit - Checks and fixes any errors in a drawing
Bhatch (h) - Brings the Boundary Hatch dialog on screen
Block - Brings the Block Definition dialog on screen
Bmake (b) - Brings the Block Definition dialog on screen
Bmpout - Brings the Create Raster File dialog
Boundary (bo) - Brings the Boundary Creation dialog on screen
Break (br) - Breaks an object into parts
Cal - Calculates mathematical expressions
Chamfer (cha) - Creates a chamfer between two entities
Chprop (ch) - Brings the Properties window on screen
Circle (c) - Creates a circle

Copytolayer - Copies objects from one layer to another
Copy (co) - Creates a single or multiple copies of selected entities
Copyclip $(\mathrm{Ctrl}+\mathrm{C})$ - Copies a drawing or part of a drawing for inserting into a document from another application
Copylink - Forms a link between an AutoCAD drawing and its appearance in another application such as a word processing package
Customize - Brings the Customize dialog to screen, allowing the customisation of toolbars, palettes, etc.
Dashboard - Brings the DASHBOARD palette to screen
Dashboardclose - Closes the DASHBOARD palette
Dblist - Creates a database list in a Text window for every entity in a drawing
Ddattdef (at) - Brings the Attribute Definition dialog to screen
Ddatte (ate) - Edits individual attribute values
Ddatext - Brings the Attribute Extraction dialog on screen
Ddcolor (col) - Brings the Select Color dialog on screen
Ddedit (ed) - The Text Formatting dialog box appears on selecting text
Ddim (d) - Brings the Dimension Style Manager dialog box on screen
Ddinsert (i) - Brings the Insert dialog on screen
Ddmodify - Brings the Properties window on screen
Ddosnap (os) - Brings the Drafting Settings dialog on screen
Ddptype - Brings the Point Style dialog on screen
Ddrmodes (rm) - Brings the Drafting Settings dialog on screen
Ddunits (un) - Brings the Drawing Units dialog on screen
Ddview (v) - Brings the View dialog on screen
Del - Allows a file (or any file) to be deleted
Dim - Starts a session of dimensioning
Dimension tools - The Dimension toolbar contains the following tools: Linear, Aligned, Arc Length, Ordinate, Radius, Jogged, Diameter, Angular, Quick Dimension, Baseline, Continue, Quick Leader, Tolerance, Center Mark, Dimension Edit, Dimension Edit Text, Update and Dimension Style
Dim1 - Allows the addition of a single dimension to a drawing
Dist (di) - Measures the distance between two points in coordinate units
Distantlight - Creates a distant light
Divide (div) - Divides an entity into equal parts
Donut (do) - Creates a donut
Dsviewer - Brings the Aerial View window on screen
Dtext (dt) - Creates dynamic text. Text appears in drawing area as it is entered
Dxbin - Brings the Select DXB File dialog on screen
Dxfin - Brings the Select File dialog on screen
Dxfout - Brings the Save Drawing As dialog on screen
Ellipse (el) - Creates an ellipse
Erase (e) - Erases selected entities from a drawing
Exit - Ends a drawing session and closes AutoCAD 2007
Explode (x) - Explodes a block or group into its various entities
Explorer - Brings the Windows Explorer on screen

Export (exp) - Brings the Export Data dialog on screen
Extend (ex) - To extend an entity to another
Fillet (f) - Creates a fillet between two entities
Filter - Brings the Object Selection Filters dialog on screen
Gradient - Brings the Hatch and Gradient dialog on screen
Group (g) - Brings the Object Grouping dialog on screen
Hatch - Allows hatching by the entry responses to prompts
Hatchedit (he) - Allows editing of associative hatching
Help - Brings the AutoCAD 2007 Help: User Documentation dialog on screen
Hide (hi) - To hide hidden lines in 3D models
Id - Identifies a point on screen in coordinate units
Imageadjust - (iad) Allows adjustment of images
Imageattach (iat) - Brings the Select Image File dialog on screen
Imageclip - Allows clipping of images
Import - Brings the Import File dialog on screen
Insert (i) - Brings the Insert dialog on screen
Insertobj - Brings the Insert Object dialog on screen
Isoplane (Ctrl/E) - Sets the isoplane when constructing an isometric drawing
Join (j) - Joins lines which are in line with each other or arcs which are from the same centre point
Laycur - Changes layer of selected objects to current layer
Laydel - Deletes and purges a layer with its contents
Layer (la) - Brings the Layer Properties Manager dialog on screen
Layout - Allows editing of layouts
Lengthen (len) - Lengthen an entity on screen
Limits - Sets the drawing limits in coordinate units
Line (1) - Creates a line
Linetype (lt) - Brings the Linetype Manager dialog on screen
List (li) - Lists in a text window details of any entity or group of entities selected
Load - Brings the Select Shape File dialog on screen
Ltscale (lts) - Allows the linetype scale to be adjusted
Measure (me) - Allows measured intervals to be placed along entities
Menu - Brings the Select Menu File dialog on screen
Menuload - Brings the Menu Customization dialog on screen
Mirror (mi) - Creates an identical mirror image to selected entities
Mledit - Brings the Multiline Edit Tools dialog on screen
Mline (ml) - Creates mlines
Mlstyle - Brings the Multiline Styles dialog on screen
Move (m) - Allows selected entities to be moved
Mslide - Brings the Create Slide File dialog on screen
Mspace (ms) - When in PSpace changes to MSpace
Mtext (mt or t) - Brings the Multiline Text Editor on screen
Mview (mv) - To make settings of viewports in Paper Space
Mvsetup - Allows drawing specifications to be set up
New $(\operatorname{Ctrl}+\mathrm{N})$ - Brings the Select template dialog on screen

Notepad - For editing files from the Windows 95 Notepad
Offset (o) - Offsets selected entity by a stated distance
Oops - Cancels the effect of using Erase
Open - Brings the Select File dialog on screen
Options - Brings the Options dialog to screen
Ortho - Allows ortho to be set ON/OFF
Osnap (os) - Brings the Drafting Settings dialog to screen
Pagesetup - Brings either the Page Setup Model or Page Setup - Layout1
dialog to screen for setting print/plot parameters
Pan (p) - Drags a drawing in any direction
Pbrush - Brings Windows Paint on screen
Pedit (pe) - Allows editing of polylines. One of the options is Multiple allowing continuous editing of polylines without closing the command.
Pline (pl) - Creates a polyline
Plot $(\mathrm{Ctrl}+\mathrm{P})$ - Brings the Plot dialog to screen
Point (po) - Allows a point to be placed on screen
Polygon (pol) - Creates a polygon
Polyline (pl) - Creates a polyline
Preferences (pr) - Brings the Options dialog on screen
Preview (pre) - Brings the print/plot preview box on screen
Properties - Brings the Properties palette on screen
Psfill - Allows polylines to be filled with patterns
Psout - Brings the Create Postscript File dialog on screen
Purge (pu) - Purges unwanted data from a drawing before saving to file
Qsave - Saves the drawing file to its current name in AutoCAD 2007
Quickcalc (qc) - Brings the QUICKCALC palette to screen
Quit - Ends a drawing session and closes down AutoCAD 2007
Ray - A construction line from a point
Recover - Brings the Select File dialog on screen to allow recovery of selected drawings as necessary
Rectang (rec) - Creates a pline rectangle
Redefine - If an AutoCAD command name has been turned off by Undefine, Redefine turns the command name back on
Redo - Cancels the last Undo
Redraw (r) - Redraws the contents of the AutoCAD 2007 drawing area
Redrawall (ra) - Redraws the whole of a drawing
Regen (re) - Regenerates the contents of the AutoCAD 2007 drawing area
Regenall (rea) - Regenerates the whole of a drawing
Region (reg) - Creates a region from an area within a boundary
Rename (ren) - Brings the Rename dialog on screen
Replay - Brings the Replay dialog on screen from which bitmap image files can be selected
Revcloud - Forms a cloud-like outline around objects in a drawing to which attention needs to be drawn
Save (Ctrl+S) - Brings the Save Drawing As dialog box on screen
Saveas - Brings the Save Drawing As dialog box on screen
Saveimg - Brings the Save Image dialog on screen
Scale (sc) - Allows selected entities to be scaled in size - smaller or larger

Script (scr) - Brings the Select Script File dialog on screen
Setvar (set) - Can be used to bring a list of the settings of set variables into an AutoCAD Text window
Shape - Inserts an already loaded shape into a drawing
Shell - Allows MS-DOS commands to be entered
Sketch - Allows freehand sketching
Solid (so) - Creates a filled outline in triangular parts
Spell (sp) - Brings the Check Spelling dialog on screen
Spline (spl) - Creates a spline curve through selected points
Splinedit (spe) - Allows the editing of a spline curve
Stats - Brings the Statistics dialog on screen
Status - Shows the status (particularly memory use) in a Text window
Stretch (s) - Allows selected entities to be stretched
Style (st) - Brings the Text Style dialog on screen
Tablet (ta) - Allows a tablet to be used with a pointing device
Tbconfig - Brings the Customize dialog on screen to allow configuration of a toolbar
Text - Allows text from the Command line to be entered into a drawing
Thickness (th) - Sets the thickness for the Elevation command
Tilemode - Allows settings to enable Paper Space
Tolerance - Brings the Geometric Tolerance dialog on screen
Toolbar (to) - Brings the Toolbars dialog on screen

Type - Types the contents of a named file to screen
UCS - Allows selection of UCS (User Coordinate System) facilities
Undefine - Suppresses an AutoCAD command name
Undo (u) (Ctrl+Z) - Undoes the last action of a tool
View - Brings the View dialog on screen
Vplayer - Controls the visibility of layers in Paper Space
Vports - Brings the Viewports dialog on screen
Vslide - Brings the Select Slide File dialog on screen
Wblock (w) - Brings the Create Drawing File dialog on screen
Wmfin - Brings the Import WMF File dialog on screen
Wipeout - Forms a polygonal outline within which all crossed parts of objects are erased
Wmfopts - Brings the Import Options dialog on screen
Wmfout - Brings the Create WMF dialog on screen
Xattach (xa) - Brings the Select Reference File dialog on screen
Xline - Creates a construction line
Xref (xr) - Brings the Xref Manager dialog on screen
Zoom (z) - Brings the zoom tool into action

3D tools

3darray - Creates an array of 3D models in 3D space
3dface (3f) - Creates a 3- or 4-sided 3D mesh behind which other features can be hidden
3dmesh - Creates a 3D mesh in 3D space

3dcorbit - Allows a continuous movement and other methods of manipulation of 3D models on screen
3ddistance - Allows the controlling of the distance of 3D models from the operator
3dfly - Allows walkthroughs in any 3D plane
3dforbit - Controls the viewing of 3D models without constraint
3dmove - Shows a 3D move icon
3dorbit (3do) - Allows methods of manipulating 3D models on screen
3dorbitctr - Allows further and a variety of other methods of manipulation of 3D models on screen
3dpan - Allows the panning of 3D models vertically and horizontally on screen
3drotate - Displays a 3D rotate icon
3dsin - Brings the 3D Studio File Import dialog on screen
3dsout - Brings the 3D Studio Output File dialog on screen
3ddwf - Brings up the Export 3D DWF dialog
3dwalk - Starts walk mode in 3D
Align - Allows selected entities to be aligned to selected points in 3D space
Ameconvert - Converts AME solid models (from Release 12) into AutoCAD 2000 solid models
anipath - Opens the Motion Path Animation dialog
Box - Creates a 3D solid box
Cone - Creates a 3D model of a cone
convertoldlights - Converts lighting from previous releases to AutoCAD 2007 lighting
convertoldmaterials - Converts materials from previous releases to AutoCAD 2007 materials
convtosolid - Converts plines and circles with thickness to 3D solids
convtosurface - Converts objects to surfaces
Cylinder - Creates a 3D cylinder
Dducs (uc) - Brings the UCS dialog on screen
Edgesurf - Creates a 3D mesh surface from four adjoining edges
Extrude (ext) - Extrudes a closed polyline
Flatshot - Creates a flattened view
Helix - Constructs a helix
Interfere - Creates an interference solid from selection of several solids
Intersect (in) - Creates an intersection solid from a group of solids
Light - Brings the Lights dialog on screen
Lightlist - Opens the Lights in Model Space palette
Loft - Activates the Loft command
Materials - Opens the Materials palette
Matlib - Brings the Materials Library dialog on screen
Mirror3d - Mirrors 3D models in 3D space in selected directions
Mview (mv) - When in PSpace brings in MSpace objects
Pface - Allows the construction of a 3D mesh through a number of selected vertices
Plan - Allows a drawing in 3D space to be seen in plan (UCS World)

Planesurf - Creates a planar surface
Pointlight - Creates a Point light
Pspace (ps) - Changes MSpace to PSpace
Pyramid - Creates a pyramid
Renderpresets - Opens the Render Presets Manager dialog
Renderwin - Opens the Render window
Revolve (rev) - Forms a solid of revolution from outlines
Revsurf - Creates a solid of revolution from a pline
Rmat - Brings the Materials dialog on screen
Rpref (rpr) - Brings the Rendering Preferences dialog on screen
Rulesurf - Creates a 3D mesh between two entities
Scene - Brings the Scenes dialog on screen
Section (sec) - Creates a section plane in a 3D model
Shade (sha) - Shades a selected 3D model
Slice (sl) - Allows a 3D model to be cut into several parts
Solprof - Creates a profile from a 3D solid model drawing
Sphere - Creates a 3D solid model sphere
Spotlight - Creates a spotlight
Stlout - Saves a 3D model drawing in ASCII or binary format
Subtract (su) - Subtracts one 3D solid from another
Sunproperties - Opens the Sun palette
Sunstudywizard - Creates a sun study through a wizard
Sweep - Creates a 3D model from a 2D outline along a path
Tabsurf - Creates a 3D solid from an outline and a direction vector
Torus (tor) - Allows a 3D torus to be created
Ucs - Allows settings of the UCS plane
Union (uni) - Unites 3D solids into a single solid
Visualstyles - Opens the Visual Styles palette
Vpoint - Allows viewing positions to be set from x, y and z entries
Vports - Brings the Viewports dialog on screen
Wedge (we) - Creates a 3D solid in the shape of a wedge
Xedges - Creates a 3D wireframe for a 3D solid

Internet tools

Browse the Web - Brings Autodesk home page from the Internet on screen Etransmit - Brings the Create Transmittal dialog to screen
Publish - Brings the Publish to Web dialog to screen

APPENDIX C

Some of the set variables

Introduction

AutoCAD 2007 is controlled by a large number of variables (over 440 in number), the settings of many of which are determined when making entries in dialogs. Others have to be set at the command line. Some are read-only variables which depend upon the configuration of AutoCAD 2007 when it was originally loaded into a computer (default values).

A list of those set variables follows which are of interest in that they often require setting by entering figures or letters at the command line. To set a variable, enter its name at the command line and respond to the prompts which arise.

To see all set variables, enter set (or setvar) at the command line:
Command: enter set right-click
SETVAR Enter variable name or ?: enter?
Enter variable name to list $<^{*}>$: right-click
And a Text window opens showing a first window with a list of the first of the variables. To continue with the list press the Return key when prompted and at each press of the Return key another window opens.

Some of the set variables

ANGDIR - Sets angle direction. $\mathbf{0}$ counterclockwise; $\mathbf{1}$ clockwise
APERTURE - Sets size of pick box in pixels
BLIPMODE - Set to $\mathbf{1}$ marker blips show; set to $\mathbf{0}$ no blips
COMMANDLINE - Opens the command line palette
COMMANDLINEHIDE - Closes the command line palette

Note
DIM variables - There are over 70 variables for setting dimensioning, but most are in any case set in the Dimension Style dialog or as dimensioning proceeds. However one series of the Dim variables may be of interest:

DMBLOCK - Sets a name for the block drawn for an operator's own arrowheads. These are drawn in unit sizes and saved as required
DIMBLK1 - Operator's arrowhead for first end of line
DIMBLK2 - Operator's arrowhead for other end of line

DRAGMODE - Set to $\mathbf{0}$ no dragging; set to $\mathbf{1}$ dragging on; set to $\mathbf{2}$ automatic dragging
DRAG1 - Sets regeneration drag sampling. Initial value is 10
DRAG2 - Sets fast dragging regeneration rate. Initial value is 25
FILEDIA - Set to 0 disables Open and Save As dialogs; set to $\mathbf{1}$ enables these dialogs
FILLMODE - Set to $\mathbf{0}$ hatched areas are filled with hatching. Set to $\mathbf{0}$ hatched areas are not filled. Set to $\mathbf{0}$ and plines are not filled
GRIPS - Set to $\mathbf{1}$ and grips show. Set to $\mathbf{0}$ and grips do not show
MBUTTONPAN - Set to $\mathbf{0}$ no right-click menu with the Intellimouse. Set to 1 Intellimouse right-click menu on
MIRRTEXT - Set to $\mathbf{0}$ text direction is retained; set to $\mathbf{1}$ text is mirrored
PELLIPSE - Set to $\mathbf{0}$ creates true ellipses; set to $\mathbf{1}$ polyline ellipses
PICKBOX - Sets selection pick box height in pixels
PICKDRAG - Set to $\mathbf{0}$ selection windows picked by two corners; set to $\mathbf{1}$ selection windows are dragged from corner to corner
RASTERPREVIEW - Set to $\mathbf{0}$ raster preview images not created with drawing. Set to $\mathbf{1}$ preview image created
SHORTCUTMENU - For controlling how right-click menus show:
$\mathbf{0}$ all disabled; $\mathbf{1}$ default menus only; $\mathbf{2}$ edit mode menus; $\mathbf{4}$ command mode menus; $\mathbf{8}$ command mode menus when options are currently available. Adding the figures enables more than one option
SURFTAB1 - Sets mesh density in the M direction for surfaces generated by the Surfaces tools
SURFTAB2 - Sets mesh density in the N direction for surfaces generated by the Surfaces tools
TEXTFILL - Set to $\mathbf{0}$ True Type text shows as outlines only; set to $\mathbf{1}$ True Type text is filled
TILEMODE - Set to 0 Paper Space enabled; set to $\mathbf{1}$ tiled viewports in Model Space
TOOLTIPS - Set to $\mathbf{0}$ no tooltips; set to $\mathbf{1}$ tooltips enabled
TPSTATE - Set to $\mathbf{0}$ and the Tool Palettes window is inactive. Set to $\mathbf{1}$ and the Tool Palettes window is active
TRIMMODE - Set to $\mathbf{0}$ edges not trimmed when Chamfer and Fillet are used; set to $\mathbf{1}$ edges are trimmed
UCSFOLLOW - Set to $\mathbf{0}$ new UCS settings do not take effect; set to $\mathbf{1}$ UCS settings follow requested settings
UCSICON - Set OFF UCS icon does not show; set to ON it shows

Index

*.bmp, 159
*.htm file, 321
2D Classic AutoCAD workspace, 20
2D coordinates, 13
2D Draw control panel, 9, 17, 20
2D objects in 3D space, 272
2D outlines for 3D models, 191
2D wireframes, 279
3D Array, 223
3D Array tool, 228
3D coordinates, 13, 187
3D Face tool, 187, 189
3D Make control panel, 187
3D model libraries, 223
3D Modeling workspace, 3, 187
3D modelling, 187
3D Navigate control panel, 187
3D Objects, 197
3D Operation, 228
3D orbit shading styles, 225
3D Orbit tool, 228, 246, 247
3D polar array, 229
3D space, 264
3D Studio, 162
3D surface models, 279
3D surfaces, 203
3D Views, 190, 237, 264

Abbreviations for dimensions, 103
Abbreviations for Modify tools, 92
Abbreviations for tools, 37
Absolute coordinate entry, 23
Acadiso.dwt template, 14
Acadiso3D.dwt, 246
Advanced hatching, 136
Advanced Render Settings palette, 250
Aerial View, 61
Aerial View window, 62
Aligned Dimension tool, 101
Aligned dimensions, 104

All zoom, 62
Ambient light, 249
Arc Length tool, 107
Arc tool, 37
Array dialog, 81
Array tool, 79
Associative hatching, 134
Auto-hide icon, 9
AutoCAD 2007 DXF file type, 159
AutoCAD coordinate system, 13
AutoCAD default workspace, 3
AutoCAD drawing template, 16
AutoCAD SHX fonts, 113
Autodesk DWF Composer, 321
Autodesk DWF Viewer, 174
Autodesk Plotter Manager icon, 328
AutoSnap, 37, 45
AutoSnap settings, 45
Bitmap file, 159
Block Definition dialog, 143
Block saved, 144
Blocks, 143
Boolean operators, 187, 203
Box tool, 198
Box tool (Surfaces), 283
Break tool, 87
Building drawing, 178
Building views, 180
Buttons, 11
Calling 3D tools, 188
Center zoom, 62
Centre lines, 120
Chamfer tool, 90, 200
Check boxes, 11
Check Spelling dialog, 116
Checking spelling, 114
Circle tool, 26
Classic AutoCAD workspace, 3
Clean Screen button, 12

Clean Screen icon, 47
Clipboard, 155
Close dialog button, 10
Color faces tool, 296
Colour gradient hatching, 134
Command line, 55
Command palette, 5, 16
Command Tools palette, 99, 117
Commandlinehide, 48
Conceptual shading, 228
Cone tool, 199
Cone tool (Surfaces), 282
Coordinate entry, 23
Coordinates, 13
Copy faces tool, 295
Copy Link tool, 155
Copy tool, 75, 156
Copy with Base Point tool, 156
Copying, 155
Counter-clockwise direction, 24
Create Sheet Set dialogs, 170
Create Transmittal dialog, 322
Crossing window, 86, 93
Current wire frame density, 195
Cylinder tool, 198
Dashboard, 9, 37, 55, 187
Ddedit, 115
Deferred Tangent, 27
Design and AutoCAD, 324
Design brief, 325
Design Center, 150
Design chart, 325
Design models, 325
DesignCenter palette, 7, 146
Detail drawings, 182
Dialog, 9, 33
Digitiser, 6
Dimension style, 66
Dimension Style Manager dialog, 66, 109
Dimension tolerances, 108
Dimension tools, 99
Dimensions, 99
Dimensions from command line, 103
Distant light, 249
Dome tool, 283
Double-click, 19
Drafting Settings dialog, 42
Dragging, 19

Draw toolbar, 5, 26, 37
Draw tools, 37
Drawing templates, 13, 66
Drawing Units dialog, 15
Drop-down menu, 33
DUCS, 12
DWF files, 172
DXF files, 159
DYN, 12, 37, 47, 241
Dynamic input, 47
Dynamic Text, 112
Edgesurf tool, 286
Edit drop-down menu, 155
Edit tool, 115
Editing dimensions, 106
Ellipse tool, 39
Emailing drawings, 319
Emailing DWF Viewer files, 174
Encapsulated Postscript file, 157
End view, 120
Enhancements in AutoCAD 2007, 326
Entering commands, 16
Eps files, 157
Erase tool, 27
eTransmit tool, 322
Explode, 146
Explode tool, 75, 148
Export Data dialog, 157
Export in File drop-down menu, 157
Extend tool, 89
Extents zoom, 62
External references, 162
External References palette, 162
Extrude tool, 194
F3 key, 42
F7 key, 42
F8 key, 25
F9 key, 20, 42
F12 key, 42
Field, 55
File drop-down menu, 9
Fillet tool, 90, 200
First angle projection, 122
Floor layout, 179, 182
Floppy disk, 41
Four Equal viewports, 213
Four Left viewports, 216
Front view, 120

Frozen layers, 128
Function keys, 19
Geometric dimension tolerances, 110
Gradient tool, 135
Grid, 12, 15
Hardcopy, 259, 308
Hatch and Gradient dialog, 123
Hatch Pattern Palette, 123, 132
Hatch tool, 123
Hatching, 123, 132
Hatching rules, 134
Hatching with text, 136
Helix tool, 239
Hidden lines, 120
Hide tool, 189, 205
Horizontal dimensions, 103
Image dialog, 160
Insert Block tool, 145
Insert drop-down menu, 160
Inserting 3D blocks, 223
Inserting blocks, 145
Inserts, 143
Intensity of lights, 255
Internet tools, 319
Intersect tool, 193
Isolines, 195
Isometric angles, 125
Isometric circles, 126
Isometric drawing, 120, 125
Jogged tool, 108
Join tool, 88
Layer Properties Manager dialog, 66
Layers, 70
Layers toolbar, 4, 70
Layout tab, 309
Layouts, 172
Leader dimensions, 105
Left-click, 18
Library of 3D fastenings, 226
Lighting a model, 250
Lighting shadows, 255
Lights flyout, 252
Lights in Model palette, 255
Lights tool icon, 248
Limits, 15

Line and Polyline tools, 23
Line tool, 20
Linear Dimension tool, 100
Lineweight, 72
Locked layers, 128
Loft tool, 204
LWT, 12

Major axis, 39
Make Block tool, 143
Materials palette, 256
Materials tool icon, 256
MDE, 164
Menu bar, 4
Menus, 5
Methods of calling tools, 37
Microsoft Word application, 155
Minor axis, 39
Mirror 3D tool, 230
Mirror tool, 77, 190
Mirrtext variable, 77
Model Space, 12
Modeling toolbar, 187
Modify drop-down menu, 75
Modify tool abbreviations, 92
Modify toolbar, 5, 75
Modify tools, 75
Modifying 3D models, 223
Mouse, 6
Mouse wheel, 6
Move faces tool, 293
Move tool, 82
Multiline Text, 114
Multiple Copy, 76
Multiple Document Environment, 164
Multiple Polyline Edit, 54
Mview, 309
My Workspace, 17
New Distant Light icon, 254
New Point Light icon, 252
New Point Light tool, 252
New View dialog, 250
Object, 55
Object Linking and Embedding, 155
Object Snaps, 42
Object zoom, 62
Offset faces tool, 293
Offset tool, 78

Open from the File drop-down menu, 159
Opening 3D model drawings, 261
Opening AutoCAD, 3
Options dialog, 9, 45, 93, 246
Ortho, 12
ORTHO button, 25
Orthographic projection, 120
Osnap, 12, 37
Osnap abbreviations, 44
OSNAP button, 27
Otrack, 12

PageMaker application, 157
Paint application, 307
Palettes, 7, 19
Pan, 61
Pan tool, 64
Paper Space, 12
Parallel projection, 187, 247
Password dialog, 319
Paste, 307
Pasting, 155
Pedit, 56
Pellipse, 55
Perspective projection, 247
Pick, 19
Pick button, 6
Plan, 120
Plines, 29
Plot tool, 259, 309
Plotter Model dialog, 328
Plotters dialog, 328
Point light, 249
Polar, 12
Polar 3D arrays, 223
Polar Array, 81
Polygon tool, 49
Polygonal viewports, 311
Polygonal window, 86
Polygons, 49
Polyline Edit tool, 52
Polyline tool, 29
Popup list, 11, 55
Preview area, 11
Previous zoom, 62
Printing multiple viewports, 308
Printing/plotting, 308, 328
Processing Background Job icon, 173
Prompts, 23
Properties palette, 7, 255

Properties toolbar, 4
Pspace, 74
Publish to DWF icon, 172
Publish to Web dialogs, 319
Purge tool, 149
QNEW, 246

Radio buttons, 11
Radius Dimension tool, 102
Raster file types, 165
Raster Image Reference, 160
Raster images, 159, 306
Realisation of design, 326
Realistic shading, 257
Realtime zoom, 62
Rectangle tool, 51
Rectangular 3D arrays, 223
Rectangular Array, 79
Redo tool, 28
Regions, 192, 272
Regular polygons, 56
Relative coordinate entry, 23
Rename Layout dialog, 309
Render control panel, 250
Render lights, 249
Render tool icon, 256
Render toolbar, 190
Render tools, 248
Rendering, 246
Rendering 3D surfaces, 287
Rendering background colour, 250
Research, 325
Return button, 6
Revolve tool, 196
Revolved surface tool, 284
Right-click, 18
Right-click menus, 19
Rotate 3D tool, 232
Rotate tool, 83
Rubber-band, 25
Rulesurf tool, 285
Save Drawing As dialog, 16, 40
Saving 3D model drawings, 261
Saving a template file, 70
Saving blocks, 144
Saving drawings, 40
Saving UCS views, 271
Scale tool, 84
Scale zoom, 62
Section tool, 234

Sectional views, 123
Security Options, 319
Select DWF File dialog, 172
Select File dialog, 9
Select Image File dialog, 160, 256, 306
Select template dialog, 14
Selecting Subobjects on Solids dialog, 298
Selection windows, 93
Self-illumination slider, 256
Set variable, 55
Setting layers, 70
Sheet Set Manager palette, 172
Sheet sets, 169
Shininess slider, 256
Shortcutmenu variable, 66
Simple dimension tolerances, 110
Site layout plan, 178
Site plan, 178
Slice tool, 232
Slider, 11
Snap, 12
Snap settings, 125
Solids Editing tools, 291
Solving a brief, 325
Spelling checks, 114
Spelling tool, 115
Sphere tool, 198
Spotlight, 249
Standard toolbar, 4, 28, 259
Standard viewports
list, 212
Status bar, 12
Stretch tool, 86
Styles toolbar, 4
Subtract tool, 192
Surface meshes, 279
Surftab1 variable, 279
Surftab2 variable, 279
Sweep tool, 204
Symbols used in text, 114
System requirements for
AutoCAD 2007, 327
Tabs, 11
Tabulated Surface tool, 285
Tan tan radius, 26
Taper faces tool, 294
Template Definition
dialog, 247

Template Description
dialog, 73
Text, 112
Text Formatting dialog, 114
Text in hatching, 136
Text Style dialog, 66, 113
Text sub-menu of Modify drop-down menu, 115
Text window, 113
Third angle projection, 122
Three Right viewports, 217
Title bar, 10
Toggling, 12
Toggling isometric angles, 125
Tolerance symbols, 112
Tool abbreviations, 37
Tool icons, 17
Toolbar, 55
Tools, 17
Tooltip, 17, 23
Torus tool, 200
Tracking, 23
Transparent commands, 54
Trim tool, 84
UCS, 265
UCS dialog, 271
UCS icon, 266
UCS Icon dialog, 266
UCS toolbar, 265
UCS II toolbar, 265
Ucsfollow variable, 266
Undo tool, 28
Union tool, 192
Units, 15
User Coordinate System, 265
Vertical dimensions, 104
View command, 250
View drop-down menu, 61, 190
View DWF file, 174
View Manager, 250
Viewpoint Presets dialog, 238
Viewport Lighting Mode warning window, 252
Viewports, 212
Viewports dialog, 212
Visual Effects settings, 93
Visual Styles, 257
Visual Styles control
panel, 246

Wblocks, 143, 151
Web pages, 319
Wedge tool, 200
Window zoom, 62
Windows Control Panel, 328
Windows True Type fonts, 113
Workspaces, 18
Workspaces toolbar, 4
WORLD plane, 264
Write Block dialog, 151

X,Y coordinates, 23
Xrefs, 162
XY plane, 264
XZ plane, 264

YZ plane, 264

Zip file, 322
Zoom, 61
Zooms, 15

