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Preface

Some people live to age 100 years or more, others become sick and die prematurely.

What factors determine human lifespan? Which biological mechanisms are

involved in the regulation of health span and longevity? Which forces shape the

age pattern and affect the time trend of human mortality? These questions constitute

an emerging high priority research area because of the ever-increasing proportions

of elderly individuals in most countries and the imperative to improve the health of

these populations. Such improvements will require substantially better understand-

ing of the regularities of individual aging-related changes in biological variables

(biomarkers) that take place during the life course and their connections with aging-

related declines in health and survival.

Better understanding can be reached by proper integration of relevant informa-

tion accumulated in the field with newly collected data. The data for such studies

are readily available today. Many informative datasets have been collected in

longitudinal studies of aging, health, and longevity. The dimensions and scope of

such information will continually increase over time—resulting in a supermassive

“Big Data” problem. Dealing with such data requires efficient approaches that

allow the analysis not only of subsets of available data (which practically all

traditional methods do) but also the analysis of the entire dataset within the scope

of a single comprehensive framework. The goal of this monograph is to show how

questions about the connections between and among aging, health, and longevity

can be addressed using the wealth of available accumulated knowledge in the field,

the large volumes of genetic and non-genetic data collected in longitudinal studies,

and advanced biodemographic models and analytic methods.

The distinguishing features of the aging-related declines in health and survival

are the development of comorbidity and multimorbidity involving chronic diseases,

medical conditions, frailties, and physical and cognitive impairments that are

mutually dependent. The dynamic connections among trajectories of aging changes

in biomarkers, risks of diseases, and mortality risks are important for evaluating

long-term consequences of exposures to environmental factors, medical interven-

tions, and other disturbances. This monograph visualizes aging-related changes in
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physiological variables and survival probabilities, describes methods, and summa-

rizes the results of analyses of longitudinal data on aging, health, and longevity in

humans performed by the group of researchers in the Biodemography of Aging

Research Unit (BARU) at Duke University during the past decade.

The process of individual aging involves dynamic relationships among biolog-

ical variables and their connections to health and survival outcomes. These relation-

ships are captured in longitudinal data. Therefore, the focus of this monograph is

studying dynamic relationships between aging, health, and longevity characteristics

using longitudinal datasets. A substantial part of this research is based on the idea of

using a specific stochastic process model (SPM) of longitudinal data. This model

was developed in the 1970s by Max A. Woodbury who worked at the Center for

Demographic Studies, Duke University, together with Kenneth G. Manton and Eric

Stallard. This model was further developed by the current research team during the

past decade to include responses of physiological variables and other biomarkers to

persistent external disturbances, aging-related decline in resistance to stresses,

adaptive capacity, connections between health and mortality, etc.

Another part of this research uses the Grade of Membership (GoM) model also

developed in the 1970s at Duke University by Max A. Woodbury. To our knowl-

edge this was one of the first attempts to address the “Big Data” problem. This

model was also further developed by the current research team during the past two

decades for application to longitudinal data on health and disability among the

general elderly population, as well as for characterization of complex disease

progression among Alzheimer’s disease patients. Recent development has focused

on the relaxation of the GoM model assumptions and a broadening of scope of

application under the Linear Latent Structure (LLS) paradigm.

The research questions and related methods described above belong to the field

of biodemography of aging—or, more narrowly, biomedical demography—

because they link detailed biological and physiological information about aging-

related changes in humans with population health and mortality characteristics.

Demographers have always wanted to have a mortality model whose parameters

could characterize the process of individual aging. Biodemographic concepts,

models, and methods respond to this desire but they also make it clear that

informative descriptions of the connections between and among aging, health,

and longevity require longitudinal data.

In preparing this monograph, we were acutely aware of the needs and interests of

the readers. The monograph is part of the Springer Series on Demographic Methods

and Population Analysis; our focus on biodemography/biomedical demography

meant that we needed to have an interdisciplinary and multidisciplinary

biodemographic perspective spanning the fields of actuarial science, biology,

economics, epidemiology, genetics, health services research, mathematics, proba-

bility, and statistics, among others. We achieved this broad-scaled perspective by

enlisting as contributors the entire group of BARU researchers at Duke University

whose combined areas of expertise spanned the disciplines listed above and who,

most importantly, talked with each other on a daily basis and knew how to

communicate their expertise to other collaborators with differing areas of expertise.
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The author listings for each individual chapter give appropriate credit to the persons

who were primarily responsible for drafting and editing that chapter. The overall

integration of the various chapters into a coherent whole was the responsibility of

the volume authors (Yashin, Stallard, and Land) who participated in the preparation

of the final versions of all chapters and take joint responsibility for the contents of,

and any errors in, the final version.

Our goal was a readable yet challenging presentation of the latest methods and

results in our sub-field of the biodemography of aging. In addition to our strategy of

enlisting multiple contributors, we also endeavored to help the reader by providing

multiple sets of guideposts and way-stations, including Chaps. 1, 10, 11, 19, and

20—all of which were designed to either introduce the material coming up or to

summarize what was previously presented. Thus, the interested reader can focus

directly on the chapters/sections of greatest interest without having to read the

entire volume. On the other hand, we presented some of the more innovative

mathematical and statistical material in its natural form, with extensive verbal

descriptive commentary, so that even the most sophisticated reader would find

the material innovative and challenging. We did so, not because we particularly

wanted to challenge the reader, but because the full resolution of the issues being

considered required this level of treatment. Generally, we avoided derivations of

the mathematical results; they are readily available in the published peer-reviewed

literature. The one exception was the longitudinal GoM model in Chap. 17, which

presented a fully self-contained derivation and explication of the model which

previously did not exist in the literature.

The material in this monograph owes a special intellectual indebtedness to Max

A. Woodbury who within a period spanning just several years during the 1970s

made two seminal contributions that underlie the SPM and GoM modeling

approaches developed and presented herein. Like all good ideas, these can be

explained in just a few sentences:

1. In the SPM with a Gaussian covariate process and individually measured time-

varying biomarkers, the average force of mortality among a cohort of survivors

is represented in terms of variables that satisfy only ordinary differential equa-

tions and these completely describe the connection between individual-level and

cohort-level survival processes.

2. The simple interchange of the order of summation and multiplication in the

likelihood for the standard Latent Class Model yields a whole new powerful

likelihood that forms the framework for GoM and LLS, both of which provide

mechanisms for uncovering the hidden structure of large-scale high-dimensional

highly correlated discretely coded measurement data.

The development of the many ideas, methods, and approaches in this monograph

was motivated by challenging problems needed to be addressed and stimulated by

the creative atmosphere which exists in the entire research field comprising the

biodemography of aging, as well as by valuable comments and critical remarks

obtained in numerous presentations and discussions of the results of analyses at

seminars and local meetings at Duke University, at the semi-monthly meetings of
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the Long Life Family Study’s Research and Development Committee, at the

Population Association of America, at the Gerontological Society of America,

and at other professional meetings. This development has benefitted immensely

from the incredibly supportive and nurturing environment at Duke University,

especially at the Social Science Research Institute, which has continued to enable

our pioneering work in this research area to reach the point now represented in the

present monograph. Financial support for the research presented in this monograph

was primarily through NIA/NIH grants which are individually listed in the

acknowledgements of each chapter. For all of this we are most grateful.

In closing, we acknowledge the work of Debra Fincham, our Program Coordi-

nator, in assembling the chapters in a common format, making our corrections, and

handling a myriad of other issues needed to complete this monograph; and we

appreciate the support and patience of Evelien Bakker at Springer in the process

leading to publication.

Durham, NC, USA Anatoliy I. Yashin

Durham, NC, USA Eric Stallard

Durham, NC, USA Kenneth C. Land
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Chapter 1

Introduction: The Biodemography
of Complex Relationships Among Aging,
Health, and Longevity

Anatoliy I. Yashin, Eric Stallard, and Kenneth C. Land

1.1 Introduction

This monograph summarizes the results of selected studies of aging, health, and

longevity recently conducted by the members of the Biodemography of Aging

Research Unit at the Center for Population Health and Aging, Duke University.

These studies deal with secondary analyses of available cross-sectional and longi-

tudinal data. We endeavored to balance the topics of discussion to make them

useful for researchers interested in better understanding the connections among

aging, health, and longevity, innovative approaches to analyzing available data

capable of integrating the body of knowledge accumulated in the field, as well as

the results of analyses that demonstrate the efficiency of the proposed methods. The

results of analyses of the members of the research group that are methodologically

and historically linked to the topics discussed in this monograph but not included in

corresponding chapters are reviewed in this introductory chapter. Since a compre-

hensive survey of the problems, methods, and research results in the entire field of

biodemography of aging, health, and longevity was not the goal of this monograph,

we acknowledge that many interesting ideas and research topics studied by other

research groups are not reviewed in the chapters of this monograph.

Our interest in the biodemography of human aging was motivated by the desire

to better understand factors and mechanisms responsible for age patterns and time

trends in mortality rates and survival curves. The availability of human longitudinal

and cross-sectional data on populations of study subjects made addressing these

research questions possible and stimulated the development of methodological

ideas on how these data could be used to better understand the forces and mecha-

nisms shaping age patterns of human mortality rates. Substantial progress in

manipulating rates of individual aging to increase active lifespan and longevity in

populations of laboratory animals has encouraged researchers to search for genetic

and non-genetic factors capable of extending life and improving population health

in humans (Sierra et al. 2009). To understand whether and how such goals could be

© Springer Science+Business Media B.V. 2016
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achieved, one has to better understand the biological mechanisms involved in the

regulation of aging-related declines in health, wellbeing, and physiological func-

tioning in human individuals, as well as connections among such declines and

health and survival outcomes.

The biodemographic methods of studying human aging, health, and longevity

allow for integration and efficient use of data and knowledge from relevant research

fields including epidemiology, genetics, sociology, gerontology, environmental

sciences, population genetics, etc. This chapter provides a selective account of

important historical steps in the development of this research field in which

members of the present research team have participated. It also illustrates how

the integration of demographic and biological knowledge and data may contribute

to progress in the field. Then it briefly describes the content and connections among

the chapters of this monograph.

1.1.1 Frailty Models

Biodemographic thinking about mortality and survival started with attempts to

explain the shape of the age trajectories of mortality rates by introducing additional

variables affecting mortality risk. Survival experiments with large populations of

laboratory animals provided evidence that age-specific mortality rates in a number

of species increase exponentially over most of the adult age range (following

Gompertz’s curve) but, at the upper end of the adult age range, the rates decelerate,
level off, or even decline. The results of these analyses were summarized in Vaupel

et al. (1998). The downward deviation from the Gompertz curve has been explained

by the presence of hidden (unobserved) heterogeneity in the chances of death. The

demographic frailty model (Vaupel et al. 1979) employed an unobserved “fixed-

frailty” variable to describe individual differences in susceptibility to death; the

fixed frailty concept provided a convenient tool for analyzing mortality rates over

the entire range of adult ages. The use of such models was a substantial step forward

in understanding the need for going beyond pure demographic parametric descrip-

tions of mortality curves to better understand the forces shaping the age patterns of

cohort mortality rates and in elucidating the roles of compositional changes in such

patterns resulting from processes of mortality selection in heterogeneous

populations. Various versions of frailty and hidden heterogeneity models continue

to be used in survival analyses (e.g., Erickson and Scheike 2015; de Castro

et al. 2015; Sattar et al. 2015; Liu 2014).

Although the use of fixed frailty models created an opportunity for better

description of late age mortality curves, it provided little information about the

biological mechanisms influencing the mortality rates. Moreover, it was found that

the class of fixed frailty models was not distinguishable from a class of models with

randomly changing heterogeneity variables (Yashin et al. 1994). This observation

indicated that additional information was needed to better understand the forces

involved in regulation of the mortality rates. One way of adding such information

2 1 Introduction: The Biodemography of Complex Relationships Among Aging. . .



was to introduce explanatory variables (observed covariates) into the fixed frailty

models. Such models then treated hidden frailty as a random effect and

corresponding studies were focused on estimation of effects of observed covariates

on survival in the presence of hidden frailty. It was shown that the presence of

hidden frailty modifies estimates of the effects of observed covariates on mortality

risks. It was found that, when ignored, the presence of unobserved frailty attenuates

the estimated effects.

An important class of extended frailty models used information on survival of

related individuals (e.g., twins, siblings, and other relatives). These are models of

shared and correlated frailty. For a number of such models (which differ in their

frailty distributions), the multivariate survival function was described in a semi-

parametric form. A remarkable property of such semi-parametric models was that

one did not need to specify a parametric form for the baseline hazard rates. These

hazard rates could be estimated semi-parametrically from bivariate or multivariate

survival data. Multivariate survival models were used in analyses of the heritability

of individual susceptibility to death (Yashin and Iachine 1995a, b), as well as the

heritability of mortality by cause (Wienke 2010). The dependence among biolog-

ically related individuals is responsible for many interesting properties observed in

studies of aging, health, and longevity. In particular, the fact that extreme longevity

tends to run in families is a consequence of positive dependence among life spans of

family members. This property makes multivariate survival models an efficient tool

for studying factors and mechanisms affecting exceptional survival in families

(Yashin and Iachine 1999a, b).

1.1.2 Biodemographic Ideas in Genetic Analyses of Human
Longevity

The genetics of aging, longevity, and mortality has become the subject of intensive

analyses, ranging from studies of candidate genes to genome-wide association

studies (GWAS) (Nebel et al. 2011) that involve hundreds-of-thousands to millions

of genetic variants (SNPs, i.e., single-nucleotide polymorphisms). However, most

estimates of genetic effects on longevity in GWAS have not reached genome-wide

statistical significance (after applying the Bonferroni correction for multiple test-

ing) and many findings remain non-replicated. Possible reasons for slow progress in

this field include the lack of a biologically-based conceptual framework that would

drive development of statistical models and methods for genetic analyses of data,

the presence of hidden genetic heterogeneity, the collective influence of many

genetic factors (each with small effects), the effects of rare alleles, and epigenetic

effects, as well as molecular biological mechanisms regulating cellular functions.

Another reason for slow progress in detecting genetic determinants of human

aging and longevity could be the tendency to underestimate the role of demographic

information in genetic analyses of these traits. The use of demographic data,
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models, and methods helped improve the accuracy of genetic estimates in genetic

centenarian studies (Yashin et al. 1999). These analyses were able to detect

non-monotonic (U-shaped) age trajectories of genetic frequencies corresponding

to intersections of mortality rates for carriers and non-carriers of the respective

genetic variants. The existence of such trajectories was later confirmed in Bergman

et al. (2007). Alternative hypotheses describing possible mechanisms responsible

for such age patterns of genetic frequencies (intersections of mortality rates) were

discussed in Yashin et al. (2001b) and Bergman et al. (2007). The U-shaped

patterns of genetic frequencies indicated that the effects of the corresponding

genetic variants on mortality risk changed from harmful to beneficial during the

life course. This property suggested that some genetic risk factors contributing to

the mortality increase early in life are likely to be found in the genomes of long-

lived individuals. This conclusion has been confirmed in a number of recent studies

of human aging and longevity (Beekman et al. 2010).

The use of demographic information and models in analyses of data on genet-

ically heterogeneous cohorts allowed researchers to compare the age patterns of

mortality rates for carriers and non-carriers of candidate alleles and genotypes

(Yashin et al. 2007b). Such comparisons were not possible using data on genetic

frequencies alone. These methods were further extended in Arbeev et al. (2011).

The improvement in the quality of genetic estimates from the joint analyses of

genetic and demographic data was demonstrated in Yashin et al. (2013a). Recent

genetic analyses of health-related traits revealed that genes affecting lifespan and

healthspan do exhibit pleiotropic effects (Kulminski et al. 2011, 2013, 2015a, b;

Yashin et al. 2012c, 2014, 2015, 2016). In comprehensive review Ukraintseva

et al. (2016) summarized existing evidence and discussed possible mechanisms

responsible for many such other puzzling effects of genetic risk factors.

1.1.3 Evolution of Aging, Health, and Mortality: Many Open
Questions

The possibility of evolutionary origins of common aging-related diseases in situa-

tions where disease susceptibility alleles demonstrate deleterious or slightly dele-

terious effects was discussed in Pritchard (2001) and Reich and Lander (2001).

Their results indicated that alleles affecting lifespan must show pleiotropic associ-

ations with healthspan, duration of unhealthy life, and mortality rates by cause.

Under other population-genetics scenarios (Di Rienzo 2006), neutral genes can also

be involved in the origin of common diseases. Since such genes have little or no

effect on fitness, their associations with health-related traits are likely to be manifest

in various trade-offs. Evidence for negative correlations between select diseases has

been presented in Stallard (2002), Yashin et al. (2009), and Ukraintseva

et al. (2010), among others. The existence of dependencies among diseases suggests

the possibility of common genetic backgrounds for groups of health-related traits,
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and recent studies have confirmed the existence of pleiotropic associations of

certain genes with health traits (Jeck et al. 2012). Thus, in addition to pleiotropic

associations of genes between lifespan and health-related traits, such genetic

associations can also be found among groups of health-related traits.

In parallel with demographic efforts focused on developing and implementing

models of survival in heterogeneous populations, researchers in the field of aging

have recognized the crucial role of aging-related changes in biomarkers in each

individual that influence the chances of death. In contrast to the classical Gompertz

mortality model specification of a rapid exponential decline in the “vitality func-

tion” with increasing age, reviews of physiological studies of aging carried out in

the middle of the last century showed that physiological parameters characterizing

many biological human capacities tended to decline almost linearly with age. To

reconcile a linear decline in biological capacity with exponential increases in the

rate of mortality, Strehler and Mildvan (1960) proposed a model of aging and

mortality (the SM-model).

1.1.4 Strehler and Mildvan’s Model of Aging and Mortality

In this model, mortality is viewed as a result of an interaction of aging-related

decline in each organism’s vitality function with a random process of energy

demands. According to the SM-model, the death rate at a given age is proportional

to “the frequency of stresses which surpass the ability of a subsystem to restore the

initial conditions” at that age. The authors showed that, under such an assumption,

the exponential increase in mortality (Gompertz’s curve) results from the linear

decline in vitality. The model allowed them to explain the negative correlation

between the two parameters of the Gompertz curve (the SM-correlation – the

correlation between the logarithm of the mortality rate of a population at the initial

age of the range of adult ages studied in an analysis, and the slope of the logarithm

of the mortality rates observed in empirical studies of the age patterns of mortality

rates). The rectangularization pattern of survival improvement during the first half

of the twentieth century in developed countries was in accordance with the SM

correlation, as predicted by the SM-model. Recent cross-national SM-model ana-

lyses of mortality rates of both developed and developing countries for 1955–2003

found both heterogeneity among countries in the SM-correlation and increases over

time of expected maximal survival ages (Zheng et al. 2011). These changes were

linked to a decline in the average magnitudes of stresses experienced by successive

population cohorts (Yashin et al. 2001a, 2002). Further developments of the SM

model can be found in Li et al. (2013). Li and Anderson accommodated the later

patterns of survival improvement that corresponded to almost parallel shift of

survival curve to the right (Li and Anderson 2015). The importance of these studies

lies in the fact that survival improvements can be explained by interactions between

external challenges and internal aging-related changes. Several useful insights into

the genetics of human longevity follow from these analyses.
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The rectangularization pattern of survival improvement also is exhibited in

groups of individual members of a cohort ordered by the number of longevity

alleles that they carried (Yashin et al. 2012b). Since the environmental conditions in

each such group remained the same, the SM model linked better survival with

higher initial values of the vitality function, suggesting that exceptional survival

was likely to have a genetic background. The more longevity alleles that were

carried by study participants, the higher was the value of their initial stress resis-

tance. In terms of genetic functions, the resistance to stresses is associated with

repair capacity, redundancy, and other functions that increase an organism’s resil-
ience, or robustness. A useful illustration of how increased resilience may influence

survival can be given by the model of saving lives (Vaupel and Yashin 1987). An

increase in the “number of lives being saved” for individuals in the population can

be interpreted as an increase in redundancy: for each lost life (premature death)

saved, the saved individual has one or more “redundant” lives, depending on the

relevant advances in medical technology (Yashin et al. 2012b). Further extensions

of life saving model are discussed in Finkelstein (2013).

1.1.5 Historical Roots of the Stochastic Process Model

Strehler and Mildvan’s theory (1960) stimulated further research in the direction of

biodemographic analysis of mortality rates (Sacher and Trucco 1962). Woodbury

and Manton (1977) introduced a multivariate stochastic process model of human

mortality and aging. This model has been intensively used in analyses of longitu-

dinal data on aging, health, and longevity (Manton and Stallard 1988; Manton

et al. 1991, 1992, 1994, 1995; Woodbury and Manton 1983). This model was

further extended in Yashin et al. (2008, 2011, 2012a) and Yashin and Manton

(1997) to incorporate state of the art advances in aging research into the model

structure and to link information on individual health histories with individual

changes in physiological variables. In particular, the extended models described

partly observed aging-related changes in physiological variables linked together

with age-dependent unobserved variables that include resistance to stresses, adap-

tive capacities, physiological norms (“optimal” physiological states), stochasticity,

allostatic adaptations, and allostatic load. Together, these extensions represent

biological mechanisms of aging-related changes in humans that are consistent

with existing biological knowledge about aging. The model describes how

age-dependent unobserved variables interact with partly observed physiological

indices and other factors, and links them with health and survival outcomes. This

provides a convenient conceptual framework for comprehensive systemic analysis

of aging-related changes in humans using longitudinal data and for linking these

changes with genotypic profiles, and morbidity and mortality risks. The model has

been used to develop unique efficient statistical methods for analyzing longitudinal

data on aging, health, and longevity. The ideas and approaches briefly described

above are further developed and discussed in detail in the chapters of this
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monograph. The monograph consists of three parts. Part I is motivational. Its goal

is to inform readers about properties of aging-related changes represented by

available data and to provide evidence of connections among diseases of the elderly

and about possible determinants of health and survival outcomes. The chapters in

this part discuss the results of analyses of various types of data using conventional

statistical models. Part II contains chapters focusing on more sophisticated ana-

lyses using methods of advanced statistical modeling. Part III is a short chapter

presenting conclusions.

1.2 Information on Aging, Health, and Longevity
from Available Data: Part I

The process of aging involves changes in biological functioning during the life

course. Data on such changes are collected in a number of longitudinal studies. That

is why particular attention in this monograph is paid to the dynamic aspects of

aging-related changes in biomarkers (e.g., physiological variables, composite indi-

ces, etc.) using data from human longitudinal studies. The individual age trajecto-

ries of such biomarkers show what is changing in human bodies when people get

old, and how these changes develop during the life course. An important motivation

for studying the aging process is to better understand its connections with health

and survival outcomes. Such connections can be evaluated from longitudinal data.

Part I commences with Chap. 2, which presents the results of empirical analyses

of data on age-related changes in physiological variables. These results show that

average age trajectories of physiological variables follow remarkable regularities.

Some of these trajectories are almost monotonic and others are non-monotonic.

They depend on individuals’ health status and gender, as well as on genetic and

non-genetic factors. It is important to note that the shapes of the average age

trajectories of these variables are formed by two major forces. One represents the

biological mechanisms responsible for regulation of aging-related changes acting

during an individual’s life course. The other deals with compositional changes that

take place in heterogeneous populations due to the process of mortality selection

when individuals get older (Yashin et al. 2010). To understand the functioning of

the biological machinery one has to separate the effects of these two forces. Such

separation can be done using more sophisticated approaches to analyses of longi-

tudinal data based on the statistical modeling described in Part II, Chaps. 11, 12,

13, 14, 15, and 16.

In addition to changes in biomarkers, the process of individual aging involves

deterioration of health and developing chronic diseases. The fact that many elderly

people suffer from several chronic conditions indicates that such diseases are likely

to be dependent and have some common genetic or non-genetic risk factors.

Chapter 3 describes age patterns of morbidity and comorbidity from observational

data collected in the U.S. Medicare Files of Service Use (MFSU) for the entire
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Medicare-eligible population of older U.S. adults. These data represent an example

of Big Data analysis of current and historic health of older U.S. adults. The

tremendous research potential of these data for evaluation of current and forecast-

ing of future patterns of aging-related diseases among the older U.S. adults remains

largely unexplored. This chapter presents results of epidemiologic and

biodemographic analyses of these data. These results show how the age patterns

of disease incidence, their time trends, recovery and long-term remission after

disease onsets, interdependence of risks of multiple coexisting diseases, mortality

at advanced ages, and multi-morbidity patterns can be evaluated. Empirical ana-

lyses, regression models, and methods of mathematical modeling are used to

evaluate these health-related characteristics.

Chapter 4 provides additional evidence of dependence among diseases of the

elderly. Traditional demographic calculations evaluating the contribution of disease

to life expectancy reduction usually assume independence among causes of death.

Such an assumption can be justified for some infectious diseases, but not for

diseases of the elderly. The nature of these diseases differs from that of infectious

diseases and deals with the complicated interplay among ontogenetic changes,

senescence processes, and damages from exposures to hazardous environmental

conditions. The determinants of such health disorders often contribute to the

development of many health pathologies and their effects on disease risks may

change with increasing age and time. The presence of such common risk factors

makes diseases of the elderly mutually dependent. This chapter evaluates correla-

tions among mortalities from cancer and other major health disorders, including

heart disease, stroke, diabetes, Alzheimer’s and Parkinson’s diseases, and asthma

using the Multiple Causes of Death (MCD) data. The analyses show significant

negative correlations between cancer and some of the selected diseases. Possible

mechanisms, including pleiotropic effects of genetic factors, are discussed.

Chapter 5 deals with factors increasing both longevity and cancer risk in human

populations. Longevity and overall cancer incidence rates have increased over time

in many countries in parallel with economic progress and the spread of the Western

life style; the rates are also typically higher in more- than in less-developed

countries. Could there be not merely an association but a causal connection here?

This chapter investigates the possibility that some of the factors linked to high

economic development and the Western life style may actually favour both lon-

gevity and vulnerability to cancer. The chapter provides a review of current

evidence in support of this hypothesis and concludes that the higher overall cancer

risk in affluent societies may in part be attributed to the higher proportion of

individuals more susceptible to cancer, rather than to the higher burden of carci-

nogenic exposures in the respective populations. The proportions of susceptible

people may have increased over time due to several key factors, including:

(i) improved medical and living conditions that “relax” environmental selection

and allow for survival of people with less efficient immune systems who may be

more prone to cancer; (ii) novel/unusual exposures that are not carcinogenic

themselves but may increase the body’s vulnerability to established carcinogens

(some new medicines and other agents will be discussed); (iii) several factors linked
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to the Western life style (such as delayed childbirth and food enriched with growth

factors) that may postpone manifestations of physical aging and at the same time

increase the body’s susceptibility to cancer.

In response to aging-related health declines and other health-related challenges

accompanying human lives, human society created, maintains, and continues to

develop a health industry that aims to provide good health to its people. A major

part of the economics of this industry is driven by medical costs. Such costs

accompany each individual’s health history. In Chap. 6, the trajectories of medical

costs associated with the onset of twelve aging-related conditions are evaluated and

analyzed. These conditions include acute coronary heart disease, stroke, ulcer,

breast cancer, prostate cancer, melanoma, lung cancer, colon cancer, diabetes,

asthma, Parkinson’s disease, and Alzheimer’s disease for older U.S. adults. The

medical costs are associated with disease diagnosis and treatment. In the U.S., the

prediction of future Medicare costs is crucial for health care planning, because

almost all residents aged 65 years and older are enrolled in the Medicare system.

The variables investigated in this chapter represent the sum of the medical costs

associated with every person enrolled in the system. Individual costs deal with

expenditures associated with disease onsets, their treatment, and subsequent costs

of acute and chronic conditions. These trajectories were reconstructed using

National Long Term Care Survey (NLTCS) data linked to the Medicare files of

service use (NLTCS-M). A special procedure for selecting individuals with onset of

each geriatric disease was developed and used for identification of the date of the

disease onset. Among interesting research findings was the similarity of the time

patterns of the individual medical cost trajectories for all studied diseases. This new

approach yields a family of forecasting models with covariates. The dynamic

relationships between Medicare expenditures and health indicators used in such

models can lead to improved forecasting of Medicare costs.

Chapter 7 provides the rationale for construction, outlines the properties, and

describes the applications of indices of cumulative deficits (DIs) in the analyses of

data on aging, healthspan, and lifespan. The idea for such indices arose from the

fact that observational studies typically measure not only major changes in health

and well-being captured by well-defined risk factors (e.g., physiological measure-

ments) but also various aging-related changes spread throughout hundreds of

distinct variables that can be informative on longevity when accumulated in a

single index. A DI is constructed as the proportion of failed (e.g., definitive deficits)

or abnormal (e.g., doubtful deficits) health traits manifest by a given age – that is a

summary measure of the average level of an organism’s deterioration at a given age.
A comparison of DI with clinical frailty was performed. The results suggest that

integration of both approaches is highly promising for increasing the precision of

the risk discrimination, especially among the most vulnerable part of the elderly

population.

In Chap. 8 the dynamic properties of individual trajectories of aging-related

changes in eight key physiological variables (body mass index, systolic and dia-

stolic blood pressure, pulse pressure, pulse rate, blood glucose, hematocrit, and total

cholesterol) in the Framingham Heart Study (FHS) participants are investigated,
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and connections between characteristics of these trajectories and human lifespan

and healthspan estimated. It is well known from epidemiology that values of

variables describing physiological states at a given age are associated with human

morbidity and mortality risks. Much less well known are the facts that not only the

values of these variables at a given age, but also characteristics of their dynamic

behavior during the life course are also associated with health and survival out-

comes. This chapter shows that, for monotonically changing variables, the value at

age 40 (intercept), the rate of change (slope), and the variability of a physiological

variable, at ages 40–60, significantly influence both healthspan and longevity after

age 60. For non-monotonically changing variables, the age at maximum, the

maximum value, the rate of decline after reaching the maximum (right slope),

and the variability in the variable over the life course may influence healthspan and

longevity. This indicates that such characteristics can be important targets for

preventive measures aiming to postpone onsets of complex diseases and increase

longevity.

Recently, participants of many longitudinal studies have been genotyped, so that

large datasets of genetic information have become available for analyses together

with phenotypic longitudinal data. Chapter 9 discusses the roles of genes in diseases

in late life. Decades of studies of candidate genes show that they are not linked to

aging-related traits in a straightforward fashion (Finch and Tanzi 1997; Martin

2007). Recent genome-wide association studies (GWAS) have supported this

finding by showing that the traits in late life are likely controlled by a relatively

large number of common genetic variants (e.g., Teslovich et al. (2010)). Further,

GWAS often show that the detected associations are of tiny size (Stranger

et al. 2011). This chapter considers several examples of complex modes of gene

actions including genetic trade-offs, antagonistic genetic effects on the same traits

at different ages, and variable genetic effects on lifespan. The analyses focus on the

APOE common polymorphism.

1.3 Statistical Modeling and Other Advanced Methods
of Analyzing Data on Aging, Health, and Longevity:
Part II

Part II deals with more advanced methods of statistical analyses of data based on

the idea of statistical modeling. As noted above, all of the empirical evidence

indicates that aging is a multidimensional process that involves changes in many

variables (biomarkers). Many biomarkers that play fundamental roles in aging-

related changes remain unmeasured in longitudinal studies, so available longitudi-

nal data are always incomplete. Information about some unobserved variables and

their connections with observed biomarkers can be available from other aging

studies. Mathematical and computer modeling allow for incorporating such infor-

mation into a model’s structure and estimating the model’s parameters from the

10 1 Introduction: The Biodemography of Complex Relationships Among Aging. . .

http://dx.doi.org/10.1007/978-94-017-7587-8_9


data. The use of methods of statistical modeling allows for evaluating age patterns

of many hidden components of aging and their connections with components

represented in longitudinal data and with morbidity/mortality risks. Several chap-

ters of this monograph show how various dynamic models can be constructed and

efficiently used in analyses of longitudinal data. Mathematical and computer

modeling are used to represent available information about phenomena in a way

that is informative for addressing research questions using available longitudinal or

cross-sectional data. Part II starts with Chap. 11, which provides a brief review of

approaches to statistical analyses of longitudinal data on aging that are relevant to

the major topic of this monograph—the Biodemography of Aging. When relevant, it

relates these approaches to the subsequent chapters in Part II of the book. Longi-
tudinal data play a pivotal role in discovery related to aging, health, and longevity.

There is a wide variety of statistical methods for analyzing longitudinal data;

longitudinal data analysis is one of the most prolific areas of statistical science.

This chapter presents the basics of the joint models of longitudinal and time-to-

event outcomes and various extensions in the recent biostatistical literature and

discusses them in the context of biodemographic applications.

Chapter 12 describes an approach to statistical analyses of longitudinal data

based on the use of stochastic process models (SPMs) of human aging, health, and

longevity. A better understanding of processes and mechanisms linking human

aging with changes in health and longevity requires integrative statistical methods

capable of taking into account relevant knowledge accumulated in the field when

extracting useful information from new data. An important advantage of statistical

analyses using SPMs compared to standard statistical methods of analyzing longi-

tudinal data is the possibility of incorporating state of the art advances in aging

research into the model structure and then using this model in statistical estimation

procedures. Specifically, the proposed model incorporates variables characterizing

resistance to stresses, adaptive capacity, and “optimal” (normal) physiological

states. To capture the effects of exposure to persistent external disturbances, vari-

ables describing the effects of allostatic adaptation and allostatic load are also

introduced into the model. These additional variables facilitate the description of

the link between aging-related changes in physiological indices and morbidity and

mortality risks. The approach provides researchers with a powerful conceptual

framework for studying dynamic aspects of aging, and with an appropriate tool

for analysis and systematization of information about aging and its connection with

health and longevity.

Chapter 13 continues the model developments described in Chaps. 11 and 12.

Various approaches that incorporate unobserved or hidden heterogeneity are ubiq-

uitous in different scientific disciplines. Unobserved heterogeneity can arise

because there may be some relevant risk factors affecting the outcome of interest

that are either still unknown or just not measured in the data. The continuing interest

in hidden heterogeneity can be seen in the recent books devoted to frailty models

(Duchateau and Janssen 2008; Hanagal 2011; Wienke 2010), which have extensive

(but not exclusively overlapping) lists of references. The modern era of revolution-

ary advances in genetics provides great opportunities and challenges for the field of
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biodemography and the need to integrate the principles of genetics and genomics

into biodemography is apparent so that this field will continue to be on the forefront

of demographic analyses (Carey 2008; Wachter 2008). The importance of “genetic

biodemography” will continue to grow in the coming years because many studies

that have collected data on biomarkers will include (or already have included)

genetic information. The ongoing incorporation of genetic information into longi-

tudinal studies is considered potentially “the most revolutionary element of the

addition of biological data in large-scale surveys” (Suzman 2010) and such studies

will “increasingly provide analyses of the interactions of genetic, biological, social,

economic, and demographic characteristics” (Crimmins et al. 2010).

This chapter describes new approaches that model both time-to-event and

longitudinal data. This excludes methods focusing on analyses of longitudinal

data alone, where events are generally treated as nuisance factors to be adjusted

for and approaches that do not include time-to-event information (e.g., onset of a

disease), but include, for example, binary indicators such as prevalence of a disease.

We also present a version of the stochastic process model (Yashin et al. 2007a) that

accommodates such hidden heterogeneity, thus extending the earlier model (Yashin

et al. 2008).

Chapter 14 presents results of simulation studies of a longitudinal genetic-

demographic model illustrating that inclusion of biodemographic information in

addition to follow-up data improves statistical power in analyses of genetic effects

on mortality or morbidity risks. It also describes simulation studies of the genetic

SPM, illustrating the increase in power of joint analyses of genotyped and

non-genotyped participants of a longitudinal study compared to analyses of

non-genotyped participants alone in different scenarios to test relevant

biologically-based hypotheses. The results of these analyses and possibilities of

further extensions of the approaches are discussed.

Chapter 15 describes an approach to integrative mortality modeling that repre-

sents mortality rates in terms of parameters describing aging-related changes in

physiological variables and changes in health status with increasing age. In contrast

to traditional demographic and actuarial models dealing with mortality data, such

models can be used in statistical analyses of longitudinal data on aging, health, and

longevity. The models use diffusion-type continuous-time stochastic processes for

describing the evolution of physiological variables over the life course, and finite-

state continuous-time processes for describing changes in health status during this

period. The development of integrative mortality models involves integral-

differential equations for conditional probabilities characterizing changes in phys-

iological states and health status as individuals in a population under study get

older. The approximation of changes in physiological states by a conditional

Gaussian process, given current health state, simplifies the description and yields

efficient methods of statistical modeling.

In Chap. 16, applications of integrated mortality models to the analysis of data

from simulation experiments and from the Framingham Heart Study are described.

The analyses show that model parameters can be evaluated from longitudinal data

(Yashin et al. 2011). The application of these models to Framingham Heart Study
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data reveals important differences in physiological dynamics between healthy and

sick individuals (Yashin et al. 2013b). The models can be successfully used in the

joint analyses of data collected using different observational plans.

The need to efficiently analyze large-scale genetic data and longitudinal data on

aging-related changes as well as data on human health and survival in selected

populations of individuals exemplifies Big Data analysis. Analyses of such data

would benefit from special approaches that take high dimensionality of the

corresponding data into account.

Chapter 17 presents a new longitudinal form of the Grade of Membership (GoM)

model for time-varying covariates. It provides a self-contained description of a new

GoM estimation algorithm and its statistical properties, and illustrates its applica-

tion with a substantively meaningful analysis of the progression of dementia among

NLTCS respondents. The natural history of dementia is modeled as a complex

irreversible multidimensional process governed by a latent three-dimensional

bounded state-space process. Individual dementia cases were found to be initially

widely dispersed in the latent state space. Over time, they moved to state-space

locations associated with severe cognitive and physical impairment and dramati-

cally increased need for care. The rate of progression of the disease was found to be

highly variable over, but predictable from, the initial state-space location. This

latter finding is currently being used to develop an improved prognostic model for

individual Alzheimer’s patients, their physicians, and caregiver teams.

In Chap. 18, the recently developed Linear Latent Structures (LLS) analysis

model and its statistical properties are described. Applications of the LLS model to

analyzing the NLTCS data are discussed. The results of the analyses are compared

numerically and analytically to predictions of the Latent Class model (LCM) and

the Grade of Membership (GoM) model. LLS analysis assumes that the mutual

correlations observed in survey variables reflect a hidden property that can be

described by a low-dimensional random vector. Applying the LLS model to the

1994 and 1999 NLTCS datasets (5,000þ individuals) with responses to over

200 questions on behavior factors, functional status, and comorbidities resulted in

an identified population structure with a basis represented by “pure-type individ-

uals,” e.g., healthy, strongly disabled, having chronic diseases, etc. The estimated

population structure and the score distributions are compared with predictions

given by LCM and GoM analyses. The components of the vectors of individual

LLS scores are used to make predictions of individual lifespans.

1.4 Conclusion

The evolutionary processes involved in forming the genetic structure of human

populations as well as age patterns of human morbidity and mortality curves can be

studied in the framework of Evolutionary Population Genetics. Many questions

about the origin of human chronic diseases, aging-related changes, senescence,

and connections among these traits can be addressed within this discipline.

1.4 Conclusion 13
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The Biodemography of Aging deals with changes in genetically heterogeneous

birth cohorts of individuals over age and time. Distributions of phenotypic traits

within such cohorts change with increasing age. The genetic structure of the

population cohort also experiences changes with increasing age. Biodemographic

ideas, concepts, and methods facilitate the analysis of such changes and the

assessment of their implications, leading to more efficient and informative analyses

of demographic, longitudinal, and genetic data.
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Part I

Information on Aging, Health, and
Longevity from Available Data



Chapter 2

Age Trajectories of Physiological Indices:
Which Factors Influence Them?

Anatoliy I. Yashin, Liubov S. Arbeeva, Konstantin G. Arbeev,

Igor Akushevich, Alexander M. Kulminski, Eric Stallard,

and Svetlana V. Ukraintseva

2.1 Introduction

Physiological variables and other biomarkers reflect the body’s responses to numer-

ous external and internal challenges and its ability to maintain reliable functioning

in a changing environment. Some physiological variables are used for monitoring

patients’ health status, or for evaluating the efficiency of treatments in clinical

trials. Many variables are measured in longitudinal studies of aging, health, and

longevity. The data from these studies provide researchers with the unique oppor-

tunity to investigate how individual organisms change with increasing age, how

these changes modulate risks of disease and death, and how they are influenced by

genetic and non-genetic factors. The patterns of individual aging changes can be

described in terms of characteristics of age trajectories of physiological variables

and other biomarkers. Studying these age trajectories may yield insights into the

nature of biological mechanisms involved in the regulation of aging. Important

questions that can be addressed in this research include: How do the physiological

age trajectories differ among individuals? Are their patterns gender-specific, and if

so, then why? How do genetic and non-genetic factors associated with extreme

longevity modulate the entire trajectories? Are there hidden (unobserved) biolog-

ical mechanisms that regulate the dynamics of aging changes in physiological

markers, and how could their contribution be estimated from available data?

To mediate the influence of internal or external factors on lifespan, physiological

variables have to show associations with risks of disease and death at different age

intervals, or directly with lifespan. For many physiological variables, such associ-

ations have been established in epidemiological studies. These include body mass

index (BMI), diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse

pressure (PP), blood glucose (BG), serum cholesterol (SCH), hematocrit (H), and

ventricular rate (VR).

For example, the effect of BMI on risks of disease and mortality was intensively

studied in connection with metabolic syndrome. Freedman and colleagues (2006)
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showed that the connection between BMI and mortality risk is generally J-shaped
for both genders and various age groups. The authors also found that this risk

function changes with age. Relationships between mortality risk and BMI were also

assessed in other studies (see Gelber et al. 2007; Gu et al. 2006; Klenk et al. 2009,

among others; Zhou 2002).

The connection between diastolic blood pressure (DBP) and all-cause mortality

risk has been investigated to better understand factors and mechanisms of cardio-

vascular diseases (CVD) (Cruickshank 1988, 2003; Staessen 1996). Special atten-

tion has been paid to the J-shape of the risk function (see Alderman 1996;

Cruickshank 2003; Grassi et al. 2010, among others; Isles and Hole 1992; Messerli

and Panjrath 2009). Franklin and colleagues (2001) studied changes in this risk

function with age. Boshuizen and colleagues studied the connection between blood

pressure and mortality risk in the elderly (Boshuizen et al. 1998). Questions of

optimal blood pressure were discussed by Onrot (1993) and Townsend (2005),

among others.

Anderson and colleagues (1987) evaluated the connection between serum cho-

lesterol (SCH) and mortality using 30 years of follow-up data from the Framingham

Heart Study. The authors found that each 1% increase in total cholesterol produced

a 2% increase in coronary heart disease incidence among individuals between

60 and 70 years of age. Kronmal and colleagues (1993) found that the relationship

between total cholesterol level and all-cause mortality was positive at age 40, neg-

ligible at ages 50–70, and negative at age 80. Other researchers (Manolio

et al. 1992; Weverling-Rijnsburger et al. 2003) showed that CVD in old age was

independent of total serum cholesterol levels. Weverling-Rijnsburger and col-

leagues (1997) proposed that this could be a result of selective mortality of those

with the highest cholesterol levels in middle age. Weverling-Rijnsburger and

colleagues (1997) and Schatz (Schatz et al. 2001) showed that low total serum

cholesterol levels are associated with higher all-cause mortality in the oldest old.

The relationship between serum cholesterol and all-cause mortality was also stud-

ied by Chyou and Eaker (2000) and Li et al. (2004a, b) among others.

The effects of resting heart rate (also called ventricular rate, VR) on cardiovas-

cular mortality were described by Kannel and colleagues (1987). Mensink and

Hoffmeister (1997) and Benetos and colleagues (1999) investigated the effects of

resting heart rate on all-cause mortality. The connection between heart rate and

mortality in the elderly also was investigated by Cacciatore and colleagues (2007).

Kuzuya and colleagues (2008) found a J-shaped relationship between resting pulse

rate and all-cause mortality in community dwelling older people with disabilities.

B€ohm and colleagues (2012) showed that resting heart rate in clinical conditions is

associated with all-cause mortality, disability, and cognitive decline.

Taken altogether, the above results indicate that studying the age trajectories of

physiological variables, as well as factors and mechanisms involved in their

regulation, could substantially clarify complex connections among aging, health

decline, and longevity, and provide useful insights into alternative strategies for the

improvement of people’s health (Kristjuhan 2012). None of the cited studies
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performed either systematic analyses of age-patterns of corresponding variables or

of the roles of such patterns in mediating genetic influence on lifespan.

In this chapter, we use longitudinal data from the Framingham Heart Study (FHS)

Original cohort to evaluate the average age trajectories of the eight physiological

variables, including body mass index (BMI), diastolic blood pressure (DBP), systolic

blood pressure (SBP), pulse pressure (PP), blood glucose (BG), serum cholesterol

(SCH), hematocrit (H), and ventricular rate (VR). We show how these trajectories

depend on various genetic and non-genetic factors affecting human lifespan.

2.2 Data: The Framingham Heart Study (FHS)

The longitudinal data on aging, health, and lifespan collected in the FHS include

results of biennial measurements of physiological and health related variables

during the life course of study participants, detailed data on their genetic back-

ground, and data on health and survival outcomes. The FHS (Original cohort) was

launched in 1948 (Exam 1), with 5209 respondents (55% females) aged

28–62 years at baseline and residing in Framingham, Massachusetts, who had not

yet developed overt symptoms of cardiovascular disease (Dawber et al. 1951). The

study has continued to the present with biennial examinations. To date, 31 exams of

the Original Cohort have been conducted; data from exams 1–28 including detailed

medical history, physical exams, laboratory tests, and ages 28–104, were used in

this study.

Phenotypic Traits collected in the FHS cohorts over 60 years and relevant to our

analyses include: life span, ages at onset of diseases (with the emphasis on cardio-

vascular disease (CVD), cancer, and diabetes mellitus), as well as indices charac-

terizing physiological state. The occurrence of diseases (CVD and cancer) and

death have been followed through continuous surveillance of hospital admissions,

death registries, clinical exams, and other sources, so that all these events are

included in the study.

To define the age at onset of unhealthy life in the present study, we used data on
onsets of CVD, cancer (calculated from the follow-up data), and diabetes. CVD was

defined as the first appearance of any one of the following codes for the variable

EVENT in the Sequence of Cardiovascular Events (SOE) file provided by FHS:

1–19, 21–26, 30–49. These codes correspond to major CVD events (or death from

such events) including myocardial infarction, angina pectoris, cerebrovascular

accident (stroke, TIA), intermittent claudication, and congestive heart failure. The

onset of diabetes was defined as the age at the first exam when an individual had a

value of random BG exceeding 140 mg/dl, and/or took diabetes medication (oral

hypoglycemic or insulin). The age of onset of unhealthy life was then defined as the

minimum of ages at onset of these three diseases. If an individual did not contract

any of these diseases during the observation period than then s/he was considered

censored at the age of the last follow-up or death. Individuals who had any of these

2.2 Data: The Framingham Heart Study (FHS) 23



diseases before the first FHS exam were excluded from the analyses of “unhealthy

life.”

Data on eight physiological indices used in this study included: random blood
glucose levels (BG, exams 1–4, 6, 8–10, 13–23, 26–28), body mass index (BMI,

exams 1, 4, 5, 10–28), diastolic blood pressure (DBP, exams 1–28), systolic blood
pressure (SBP, exams 1–28), pulse pressure (PP, exams 1–28), ventricular rate
(VR, exams 4–28), hematocrit (H, exams 4–21), and total cholesterol (SCH, exams

1–11, 13–15, 20, 22–28). Some variables in the data were not measured or excluded

for different reasons. For example, blood glucose was not measured at exams 5, 7,

11, 12, 24, and 25. Also, we used values of BG from the diabetes file and this file

does not contain measurements for exam 28. BMI was calculated only for exams

where both weight and height measurements were available. Hematocrit was

measured at exams 4–21. However, the mean trajectories in exams 10 and 21 devi-

ated substantially from the values recorded for the rest of the exams and the data

from those exams accordingly were excluded from calculations. We created 13 age

groups (<35, 35–39, . . ., 85–89, and 90þ years) and calculated empirical estimates

of the mean values of the physiological indices in each group using pooled data on

measurements from all exams.

The demographic characteristics of the Original FHS cohort are illustrated in

Fig. 2.1. This figure shows a histogram of the age distribution of the participants of

the Original FHS cohort at the first exam for males and females together with

empirical estimates of survival functions for males, females, and males and females

combined.

Fig. 2.1 (a) Age distribution of the participants of the Original Framingham cohort at the first

exam for males and for females. (b) Kaplan-Meier estimates of survival functions for males,

females, and males and females combined from the same cohort. In estimating the survival

functions, it was assumed that the survival chances of individuals of the same gender from all

sub-cohorts of the Original FHS cohort were the same. In this case, estimation of survival

functions is reduced to constructing these functions from left truncated and right censored samples

on life span data from population cohorts of males and females. The procedure for such a

construction is readily available (Tsai et al. 1987)
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Males and females have similar age ranges and comparable age distributions; the

female survival from age 65 was better than that of males. This difference in

survival was highly statistically significant.

2.3 Methods

We calculated empirical estimates of the mean values of the eight physiological

indices (BMI, DBP, SCH, VR, SBP, PP, PR, and H) in age groups <35, 35–39, . . .,
85–89, and 90þ years for all participants of the Original FHS cohort (males and

females) using pooled data on measurements from all exams. We selected groups of

shorter-lived individuals (those dying at ages 75 or earlier; censored individuals

were excluded from this group) and the 100 longest lived individuals (individuals

with lifespans exceeding 92.7 years), and calculated average values of physiolog-

ical indices in the same age groups of these individuals using pooled data on

measurements from all exams. We also calculated the age patterns of physiological

indices for individuals having different smoking statuses, as well as for individuals

with different genetic backgrounds. These longitudinal data provide an opportunity

to reveal some but not all the biological mechanisms involved in regulation of

physiological aging changes. The existence of other mechanisms is supported by

experimental animal studies and other research. For various reasons, all relevant

components are not always measured in longitudinal human studies, including the

FHS. The evaluation of such missing, or hidden, biomarkers is a challenging task;

however, some progress in representing their effects can be achieved using methods

of statistical modeling, as described in Chaps. 12 and 13.

2.4 Results

2.4.1 Average Age Trajectories of Physiological Variables

Empirical estimates of average age trajectories of physiological variables capture

important regularities of aging-related changes and prepare our intuition for ana-

lyses of the dynamic properties of aging-related changes. These trajectories were

generated by two mechanisms. One is responsible for biological aging-related

changes and other involves the process of mortality selection in heterogeneous

populations. These trajectories provide us with useful insights and ideas concerning

linkages of these variables with lifespan and healthy lifespan. The average age

trajectories of the eight physiological indices evaluated from the data on the

Original FHS cohort are shown in Fig. 2.2a for males and females. Although all

age patterns of physiological indices are non-monotonic functions of age, blood

glucose (BG) and pulse pressure (PP) can be well approximated by monotonically
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increasing functions for both genders. The average age trajectories of hematocrit

(H) for males and females have different shapes. The levels of H for males are

higher than for females. For males, they tend to stay nearly constant until age 65 and

then decline with age. For females, the average H values first increase to age 65 and

then decline.

For both genders, the average values of body mass index (BMI) increase with

age (up to age 55 for males and 65 for females), and then decline for both sexes.

These values do not change much between ages 50 and 70 for males and between

ages 60 and 70 for females. The male and female curves for systolic blood pressure

(SBP) intersect around age 55. The female curve was initially lower than that of

males. Both curves reach their maximum values at around age 75 and then decline.

The values of diastolic blood pressure (DBP) for males were higher than those for

females until age 55 and then became about the same. Both curves increase to age

55 and then decline for both sexes. For both genders, pulse pressure (PP) increases

after age 40, reaches its peak at approximately 90 years of age and then shows a

tendency to decline. The serum cholesterol (SCH) curve for males is initially higher

Fig. 2.2 (a) Average age trajectories of eight physiological variables for males and females

evaluated from longitudinal data on the Original FHS cohort. (b) Average age trajectories of

standard deviations of eight physiological variables for males and females evaluated from longi-

tudinal data on the Original FHS cohort
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than that of females. The curves for males and females intersect around age 45.

The female curve reaches its maximum value around age 60, stays at this level until

age 70, and then declines. For males, a gradual rise in SCH levels ceases near age

50, then the level of SCH declines slowly to age 70. After age 70, the decline

accelerates. The values of ventricular rate (VR) for males first increases, reaches a

maximum around age 50 and then declines. For females, the average VR increases

until age 45, and then shows a slight tendency to decline between ages 45 and 60.

After age 60, it declines at a faster rate.

Except for blood glucose, all average age trajectories of physiological indices

differ between males and females. Statistical analysis confirms the significance of

these differences. In particular, after age 35 the female BMI increases faster than

that of males. Both indices reach the same maximum value around age 60 and then

show a similar pattern of decline after age 70. Diastolic blood pressure is higher

among males until age 60, but increases more slowly. The maximum value of DBP

occurs near ages 55–60 for both genders. The age pattern after age 60 is about the

same for males and females. The average level of hematocrit is higher in males than

in females during the entire age range. However, the rate of decline of this variable

after age 70 was about the same for males and females. Average female pulse

pressure tends to increase faster than that of males. Average female pulse

Fig. 2.2 (continued)
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(ventricular) rate always is higher than that of males. Between ages 35 and 50, the

level of serum cholesterol is higher in males than in females. After age 50, the

average values of male SCH are lower than those of females and remain lower for

the remainder of the age range.

2.4.2 Age Trajectories of Standard Deviations
(SD) of Physiological Variables

At each age, the values of physiological variables differ among individuals in the

population. These differences were, however, within ranges that were compatible

with life. Do these ranges change with age? The age trajectories of standard

deviations of physiological indices yield useful insights into this question. These

trajectories are likely to depend on initial differences in values of the physiological

variable among individuals, on the variability acquired during the life course due to

genetic differences in ontogenetic changes, and on random external disturbances

affecting these variables differently in different individuals, as well as on forces

reducing this variability due to mortality selection. The strength of the effects of

mortality selection depends on how much the risk of death was influenced by the

deviation of these variables from their normal values. Figure 2.2b shows how

estimates of standard deviations (SD) of the eight physiological variables described

above changed with ages for males and females.

The values of the standard deviations (SD) of BG for females are about the same

between ages 35 and 40, then they increase monotonically between ages 40 and

80, decline until age 85, and then tend to increase again. For males, these values first

decline until age 40, then increase until age 70, and then decline again. The values

tend to be higher for males than for females until age 80. After age 80, the curves

are about the same. The curves are also close to each other between ages 40 and 60.

The age trajectories of the SD for BMI for the two genders are quite different. The

female SD values are higher than those of males over the entire age interval from

30 to 95. They increase until age 55, remain about the same until age 75, and then

decline. For males, these values tend to decline between ages 30 and 45, increase

until age 65, decline until age 80, and then tend to increase again. The SD curves for

DBP intersect for the two genders. The female’s values of SD are lower than those

of males until age 40 years. After that age, the females’ values of SD are larger than

those of males, without showing noticeable changes until the end of the age

interval. The values of SD for PP remain small for most adult ages for both genders,

with increases for both genders after age 80. The values of SD for SBP for males

and females intersect at age 45. The female values are lower at the beginning and

become higher afterwards. Both trajectories slightly decline between ages 60 and

70, and then slightly increase again. The SCH trajectories of SD for the two genders

intersect at age 45. The female values are lower than those of males until age 45.

Then they become higher and gradually decline until age 70. After age 70, the
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decline accelerates. For males, the values remain about the same until age

70, followed by a faster decline up to age 80. After this age, the SD values become

statistically indistinguishable. The SD values for H increase with age for both

genders, remaining about the same, with a tendency to be larger for males than

for females with a decline after age 85. The VR SD increases with age for both

genders until age 80 for males and until age 75 for females. Then the female SD

declines until age 85 and shows a tendency to increase afterwards. The male SD

continues to decline after age 80. Both curves were close to each other.

The differences in the shapes of male and female age trajectories may be related

to differences in male and female survival distributions (Fig. 2.1c). Differences in

average age trajectories of the physiological indices can be expected for groups of

individuals of the same gender who have different exposures to deleterious risk

factors such as cigarette smoking.

2.4.3 Age Patterns of Survival and Physiological Variables
for Smokers and Non-smokers

That cigarette smoking is a risk factor for all-cause mortality is well known

(Hubbard et al. 2009; Fenelon and Preston 2012; Preston et al. 2014). Figure 2.3a

shows the age patterns of survival functions for smoking and non-smoking female

participants of the Original FHS cohort. It can be seen that female smokers have

worse survival than female non-smokers. Beyond overall survival, the question we

now address is: Which of the eight physiological indices described above mediate

the harmful influences of a smoking on survival? To address this question, Fig. 2.3b

Fig. 2.3 (a) Age patterns of survival functions for smokers and non-smokers among female

participants of the Original FHS cohort. (b) Average age trajectories of eight physiological

variables for female smokers and non-smokers evaluated from longitudinal data on the Original

FHS cohort
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shows the average age patterns of the physiological indices for smoking and

non-smoking females.

The average values of BG are increasing functions of age, and are about the same

for female smokers and non-smokers until age 85. At age 90, the BG levels for

smokers exceed those of non-smokers. However, the standard error at age 90 is

much higher than at earlier ages, so the difference is not statistically significant.

The average values of BMI in female smokers are lower than those of non-

smokers until age 80 at which point the BMI curves for smokers and non-smokers

intersect. The smokers’ BMI curve increases more slowly with age than that of

nonsmokers. The maximum value of non-smokers’ BMI is reached earlier (at age

60 versus age 75 for smokers) and the maximum value for non-smokers is higher

that that of smokers. The smokers’ curve does not change much after reaching its

maximum. The average values of SCH tends to be slightly higher in female smokers

until about age 55. Then these curves intersect and the values for smokers remains

slightly lower than those of non-smokers until the end of the age range. The

smokers’ SCH reaches its maximum value slightly earlier than non-smokers

(at age 50 versus age 55). Both curves decline after reaching their maximum values

at about the same rate, and remain close to each other until the end of the age range.

The average values of DBP are always lower for female smokers than for

non-smokers. The maximum values of DBP are reached at about the same ages –

around age 50. The largest difference between the two curves was at ages around

the maximum point. The curves become closer to each other when age increases.

The age trajectories for H are always higher for female smokers than for

non-smokers, with maximum values around the same age, 65. The average values

of PP are about the same until age 45. Then they become slightly lower for smokers

and remain slightly lower until the end of the age range. The average values of SBP

for female smokers are lower than those of non-smokers for the entire age range and

have similar shapes. The average values of VR are higher for female smokers until

age 65 when the curves intersect; after this age smokers have lower average values

of VR than non-smokers.

The age patterns of average values of the eight physiological indices for smoking

and non-smoking males are shown in Fig. 2.4.

After age 75 the BG values for male smokers become slightly higher than those

for nonsmokers and remain higher until the end of age range. The average values of

BMI are lower for male smokers until age 75. After this age, the BMI curves for

smokers and non-smokers become indistinguishable. The average values of SCH

tend to be slightly higher in male smokers until about age 55. Then these curves

intersect; the curve for smokers becomes slightly lower than that of non-smokers

until the end of the age range. The curves reach their maximum values at about the

same age, 45 years. However, the decline in the SCH levels starts earlier among

smokers (around age 45 versus 65 for non-smokers). The average values of DBP are

slightly lower for male smokers than for non-smokers until about age 70. After age

85, the DBP curve for smokers becomes slightly higher than for non-smokers. The

maximum values of DBP are reached at about the same ages. The average values of

H are always higher for male smokers than for non-smokers, with maximum values

30 2 Age Trajectories of Physiological Indices: Which Factors Influence Them?



reached around the same ages. The average values of PP are about the same for

male smokers and non-smokers for all ages. The average values of SBP for male

smokers are lower than those of non-smokers until age 75. Then the curves

intersect, with SBP for smokers thereafter being slightly higher than for

non-smokers. The average values of VR are higher for male smokers until age

65, then they become closer to the VR curve for non-smokers until age 85. Then at

age 85 the curves intersect and remain close to each other.

2.4.4 Effects of Education on Survival and Average Age
Trajectories of Physiological Indices

Figure 2.5a shows average age patterns of eight physiological indices for the two

groups of females from the Original FHS cohort that differ in their level of

education (higher than 11th grade vs. less than or equal to 11th grade). For

simplicity, we use notations LE and HE for the lower and higher educated groups

respectively.

The average values of BG for both groups are about the same until age 45. Then

the BG curve for the LE females becomes higher than that of the HE females until

age 85 where the curves intersect. After this age, the BG curve for the HE group

exceeds that of the LE group; however the differences between the curves are not

statistically significant. The average values of BMI in the LE group are substan-

tially higher than those among the HE group over the entire age interval. The

maximum value for the LE curve is reached earlier (at age 50 vs. age 70 for the HE

females). The average values of SCH are about the same for the two curves for all

Fig. 2.4 (a) Age patterns of survival functions for smokers and non-smokers among male

participants of the Original FHS cohort. (b) Average age trajectories of eight physiological

variables for male smokers and non-smokers evaluated from longitudinal data on the Original

FHS cohort
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Fig. 2.5 (a) Average age patterns of eight physiological indices for female participants of the

Original FHS cohort that differ in their level of education (higher than 11th grade vs. less than or

equal to 11th grade). (b) Average age patterns of eight physiological indices for male participants

of the Original FHS cohort that differ in their level of education (higher than 11th grade vs. less

than or equal to 11th grade)
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ages. The average values of DBP in the LE males are higher than those of the HE

females for all ages. The largest difference between the two curves is around age 50.

The average values of SBP in the LE females are higher than those of the HE

females for all ages except above age 90 where the they are very similar. The

average values of PP in the LE females are higher than those of the HE females for

all ages except above age 90 where the they are very similar. The average values of

H in the LE females are lower than those of the HE females for all ages. The largest

difference between the two curves is around age 65. The average values of VR for

the two curves are statistically indistinguishable over the entire age interval.

The age patterns of average values of eight physiological indices for the HE and

LE males are shown in Fig. 2.5b.

The average values of BG for the HE and LE males are very similar over the

entire age interval. The average values of BMI in the LE group tend to be higher

than those of the LE group. However, the differences between groups are much

smaller than for females. The average values of SCH are very similar for both

groups over the entire age interval. The average values of DBP in the LE group are

lower than those of the HE group until age 45. After this age, the two curves are

very similar. The values of H for the LE group tend to be lower than for the HE

group for all ages. The PP curves for the two groups are very similar over the entire

age interval. The average values of SBP for the LE group are lower than those for

the HE group until age 50. Then the curves intersect and the values of SBP in the LE

males become higher than those of the HE males until age 80 where the curves

intersect again and become statistically indistinguishable. The average values of

VR are higher among the HE males until age 65 when the curves intersect and are

similar for the next 10 years; however, above age 75 the HE curve is below the LE

curve.

2.4.5 Age Trajectories of Long Lived (LL) and Short Lived (SL)
Individuals

Figure 2.6a shows the average age trajectories of eight physiological indices for

female participants of the Original FHS cohort for individuals having short

lifespans (SL-group) (lifespan <75 years) and 100 individuals having the longest

lifespans (LL-group). One can see that trajectories for the LL females are substan-

tially different from those for the SL females in all eight indices.

Specifically, the average values of BG are higher and increase faster in the SL

females. The entire age trajectory of BMI for the LL females is shifted to the right

(towards an older age) compared to the SL females, and reaches its maximum about

10 years later. The values of BMI for SL females also starts to decline earlier (after

about age 60). The average values of DBP among the SL females are higher than

those of the LL females. The maximum value of the average DBP in the SL group is

higher than that of the LL females and it is more distinct from adjacent values for
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Fig. 2.6 (a) Average age trajectories of eight physiological indices for female participants of the

Original FHS cohort having short lifespan (SL-group) (lifespan <75 years) and 100 individuals

having the longest lifespans (LL-group). (b) Average age trajectories of eight physiological

indices for male participants of the Original FHS cohort having short lifespan (SL-group) (lifespan

<75 years) and 100 individuals having the longest lifespans (LL-group)



the SL than for the LL females. The average values of SBP are higher among SL

females. They increase faster for SL than for LL females until age 60. The average

values of PP for SL females are higher than those of LL females. Both curves

increase at about the same rates. The average values of SCH are higher among the

SL females up to age 65, where they reach their maximum value and then decline.

At age 65, the average age trajectory of SCH for the SL females intersects that of

the LL females. The average values of H are higher among SL females until age

65 when the curves intersect. The SL curve reaches its maximum value earlier (age

60 vs. age 75 for the LL females). The maximum values for the two curves are about

the same. Overall, the H trend is similar to that for BMI. The values of VR for the

SL females are higher until age 65 and then practically coincide with those of the

LL females until age 75.

The average age trajectories of the eight physiological indices for SL and LL

males are shown in Fig. 2.6b.

The average values of BG are higher and increase faster among the SL males

than among the LL males. The average values of BMI are higher among the SL

males. The entire age trajectory of BMI for the LL males is shifted to the right

(towards an older age), compared to the SL, and reaches its maximum at a later age,

similar to that in females. The values of BMI for SL males and females start to

decline earlier (after about age 60 for the SL, while approx. 10 years later for the

LL). The average values of DBP among the SL males are higher than those of the

LL males until age 70. At ages 70–75, the values of DBP are practically indistin-

guishable between the two groups. The maximum value of the average DBP in the

SL group is higher than that of the LL group and it is reached at about the same age,

55 years. The average values of SCH are higher among the SL males until age

50, reach their maximum value at about age 45, and then decline. The SCH curve

for LL males reaches its maximum value at age 55. Between ages 55 and 65, the

two curves are about the same. Then the SL curve becomes lower than the LL

curve. The average values of H are higher among SL males until age 65 when the

curves intersect. The SL curve has a clear maximum value at age 45 vs. two peaks

years for the LL males (at ages 45 and 65). The maximum values for the two curves

are close. The average values of PP for SL males are higher than those of LL males.

Both curves increase at about the same rate. The average values of SBP are higher

among SL males. They increase faster for SL than for LL males until age 60 after

which the SL curve levels off. The values of VR for the SL males are higher than for

the LL males.

Figure 2.7a shows the average age trajectories of eight physiological indices for

female participants of the Original FHS cohort having values of healthy lifespan

<75 years (short healthy lifespans (SHL)) and 100 females having the longest

healthy lifespans (LHL). The average values of BG for SHL females are higher and

increase faster than those of the LHL females. The BMI values for the SHL females

are higher than for the LHL females for all ages. The decline after reaching the

maximum is slower in the LHL females than in the SHL females, so the curves

converge with increasing age up to 95 years. The values of SCH for the SHL

females are slightly higher than for the LHL females until age 50. The curves are
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Fig. 2.7 (a) Average age trajectories of eight physiological indices for female participants of the

Original FHS cohort having short healthy lifespans (HLS <75) and 100 individuals having the

longest healthy lifespans (HLL-group). (b) Average age trajectories of eight physiological indices
for male participants of the Original FHS cohort having short healthy lifespan (HLS <75) and

100 individuals having longest healthy lifespan (HLL-group)



about the same between 50 and 65 years of age. Then the SHL curve becomes lower

than the LHL curve. The curves converge and become indistinguishable at about

age 90. The values of DBP for the SHL females are higher and increase faster than

for the LHL females until age 75. Then the curves cross over with lower SHL values

thereafter. The H curves for the SHL females are higher until about age 70. Then the

curves cross over with lower SHL values thereafter. The values of PP are higher

among the SHL females until age 85. Then the curves converge. The values of SBP

are higher among SHL females until age 85. Then the curves become statistically

indistinguishable. The VR curves for the SHL females are higher until about age 55.

Then the curves cross over with lower SHL values thereafter.

The SHL and LHL curves for males are shown in Fig. 2.7b. The average values

of BG for SHL males are higher and increase faster than those of the LHL males;

the pattern for males is very similar to the pattern for females. The BMI values for

the SHL males are higher than for the LHL males up to age 80. The decline after

reaching the maximum is much slower in the LHL males than in the SHL males.

The SCH curves are about the same at the beginning for both male groups but then

trend upwards for the SHL males with a peak at age 45 and a downward trend

thereafter, with the two curves crossing over near age 60. After this age, the curve

for the SHL males is lower than that of the LHL males through the end of age range.

The values of DBP for the SHL males are higher than those of the HLL males until

age 65 when the two curves intersect. After age 65, the DBP curve in the HLS group

remains lower than that in the LHL group through the end of age range. The H curve

for the SHL males is higher than for the LHL males until age 75. Then the curves

become very similar. Both H curves for males start with higher values than for

females. The PP curves for the SHL and LHL groups have similar patterns for males

as for females. The values of SBP are higher among SHL males until age 75. Then

the curves become very similar. The starting values for males are higher than for

females. The VR curve for the SHL males is higher than for the LHL males until

about age 80. Then the curves cross over with lower values thereafter for the SHL

males.

2.4.6 Effects of Disease on Dynamic Properties
of Physiological Indices

To better understand whether the presence of chronic disease affects the age

dynamics of a physiological state, we distinguished between individuals having at

least one of three major chronic diseases (cancer, CVD, and diabetes) and individ-

uals free of such diseases.

Figure 2.8a shows the average age trajectories for eight physiological indices for

healthy and unhealthy females. The average values of female BMI for the two

groups are statistically indistinguishable until age 50. After this age, the BMI curves

for healthy females are lower than for unhealthy females through the end of the age
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Fig. 2.8 (a) Average age trajectories of eight physiological indices for healthy and unhealthy

female members of the Original FHS cohort. (b) Average age trajectories of eight physiological

indices for healthy and unhealthy male members of the Original FHS cohort
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range. Between ages 40 and 60, the average values of SCH for healthy females are

lower than for unhealthy females. However, after this age, the values of this index

for healthy females become higher than for unhealthy females. The SCH curve for

unhealthy females appears to be characterized by a slight left-shift of the curve for

healthy females. The average values of DBP for both female groups are about the

same until age 45. Then between ages 45 and 65 the curve for unhealthy females

becomes higher than that for healthy females. The curves intersect around age

70 after which the DBP values for unhealthy females becomes slightly lower than

for healthy females. The average H values for the two groups are statistically

indistinguishable at all ages except between 55 and 60 years, where the H values

for unhealthy females are slightly higher than for healthy females. The average

values of PP are about the same at ages 40 and 85, with higher PP values for

unhealthy females in-between.

The SBP curve for unhealthy females is higher than that for healthy females

between ages 45 and 80 with similar values outside this interval. The curve for

unhealthy females increases faster and reaches its maximum earlier (about age 70)

than that for healthy females (about age 75). The maximum value is slightly higher

for unhealthy females. The VR curves are statistically indistinguishable at age 35;

at age 40, the value for unhealthy females is lower than for healthy females. The

curves intersect at age 45 and again at age 65, after which the VR curve for

unhealthy females is lower than for healthy females.

Figure 2.8b shows average age trajectories for eight physiological indices for

healthy and unhealthy males. The average values of BMI between ages 55 and

75 are slightly higher for unhealthy males than for healthy males. The curves are

statistically indistinguishable above this age interval. The values of SCH in the two

male groups are indistinguishable at age 40, but become higher for unhealthy males

between ages 45 and 60. After age 65, the SCH curve for unhealthy males is lower

than for healthy males through the end of the age range. The maximum value for the

unhealthy males is slightly higher and reaches its maximum value earlier (about age

40) than for the healthy males (about age 45). The average values of DBP are

indistinguishable until age 45, but become slightly higher for unhealthy males at

age 50. At age 55, the curves intersect so that DBP for unhealthy males is slightly

lower than for healthy males through the end of the age range. The average H values

for the two groups are statistically indistinguishable from age 50 to 70. After these

ages, the H curve for unhealthy males is slightly higher than for the healthy males

until age 80, where the curves became indistinguishable again. The average values

of PP are about the same at age 40 and at age 90 with higher values of PP for

unhealthy males in-between. The SBP curve for unhealthy males is higher than for

healthy males until age 75. After this age, the curves become indistinguishable. The

curve for unhealthy males reaches its maximum value earlier (about age 70) than

for healthy males (about age 75). The maximum value is slightly higher for

unhealthy males. The VR curve for unhealthy males is higher than for healthy

males until age 75. Then it becomes lower than for healthy males and remains so

through the end of the age range.
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Thus, the physiological states are dynamically connected with morbidity and

mortality risks, and individual health influences the physiological dynamics and

mortality risks. A particularly notable observation is the shift of the entire age

trajectory of BMI for the LL males and females to the right (towards an older age),

as compared with the SL group, and achieving its maximum at a later age. Such a

pattern is markedly different from that for healthy and unhealthy individuals. The

latter is mostly characterized by the higher values of BMI for the unhealthy people,

while it has similar ages at maximum for both the healthy and unhealthy groups.

This indicates that health and extreme longevity can be mediated differently by the
physiological variables, such as BMI, and that longevity may be linked to a

postponement of the physiological aging changes in BMI rather than to its “health-

ier” values.

Physiological aging changes usually develop in the presence of other factors

affecting physiological dynamics and morbidity/mortality risks. Among these other

factors are year of birth, gender, education, income, occupation, smoking, and

alcohol use. An important limitation of most longitudinal studies is the lack of

information regarding external disturbances affecting individuals in their day-to-

day life.

2.4.7 Effects of Genetic Dose on Age Patterns
of Physiological Indices

In a genome-wide association study (GWAS) of human life span using data from

the Original FHS cohort (Yashin et al. 2012a), 27 longevity alleles having positive

associations with life span were identified. These 27 alleles were used to construct

polygenic score indices (Yashin et al. 2012b). One such index, called “the genetic

dose index”, was constructed for each genotyped individual by counting how many

of the 27 longevity alleles were carried by that individual. The estimated influence

of this index on life span was determined to be substantial and highly statistically

significant.

Figure 2.9a shows how this index influences survival of female members of the

Original FHS cohort. Females carrying fewer longevity alleles (<14) had worse

survival than those carrying more longevity alleles (�14).

Figure 2.9b shows how the average age trajectories for females of the eight

physiological indices for carriers of fewer (<14) longevity alleles differs from

carriers of more (�14) longevity alleles. The average values of BG are about the

same until age 75. After that age, the values of BG in the (<14)-group are lower

than for the (�14)-group. The average values of BMI for the (<14)-group are

higher than for the (�14) group until age 65. The curves are about the same until

age 80, after which the values for the (<14)-group are lower than for the (�14)-

group. The average values of SCH are higher for the (<14)-group than for the

(�14)-group until age 85. Then the curves are about the same. The maximum value
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of SCH is higher for the (<14)-group than for the (�14)-group. The average values

of DBP for the (<14)-group are higher than for the (�14)-group for all ages. Both

curves reach their maximum at age 50. The average values of H are higher for the

(<14)-group until age 70. Between ages 70 and 80 the curves are about the same

(the data after age 80 for the (�14)-group are not available). The average values of

PP for the (<14)-group are higher than for the (�14)-group for all ages, except for

the convergence at age 95. The average values of SBP for the (<14)-group are

higher than for the (�14)-group for all ages. The (�14)-curve reaches its maximum

value earlier than the (<14)-curve (age 75 vs. age 80). The average values of VR for

the (<14)-group are higher than for the (�14)-group for all ages.

Figure 2.10a shows how this index influences survival of male members of the

Original FHS cohort. Males carrying fewer longevity alleles (<14) have worse

survival than those carrying more longevity alleles (�14).

The age patterns of the eight physiological indices for males carrying different

numbers of longevity alleles are shown in Fig. 2.10b. This figure shows that the age

patterns for average BG values for the two groups of males are similar to those of

females, i.e., the two males groups are similar up to age 70 years after which the BG

in the (<14)-group was lower than in the (�14) group, except for the convergence

at age 95.

The average values of BMI for the (<14)-group of males are slightly higher than

those of (�14)-group until age 45. Then the curves are about the same until age 55.

After this age, the values of BMI for the (<14)-group are lower than for the (�14)-

group. The (<14)-curve reaches its maximum value earlier at age 55 and then

declines. The maximum for the (�14)-curve is at age 75. The average values of

SCH are higher for the (<14) group than those for the (�14)-group until age 50.

The curves are about the same until age 70 after which the (�14)-curve is lower.

The maximum values of SCH for the two groups are about the same and reached at

Fig. 2.9 (a) Kaplan-Meier estimates of survival functions for two groups of female members of

the Original FHS cohort having different numbers of longevity alleles in their genomes. (b)
Average age trajectories of eight physiological indices for genotyped female participants of the

Original FHS cohort carrying different numbers of longevity alleles
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about the same age, 45 years. The average values of DBP for the (<14)-group are

slightly higher than for the �14)-group until age 65 after which they are about the

same. After age 75, the (�14)-curve is slightly lower again until the end of the age

range. The average values of H are about the same at age 40; between ages 45 and

65, the values of H are higher for the (<14)-group. After age 65, the differences

between curves are statistically insignificant. The average values of PP for the

(�14)-group are about the same between ages 35 and 45, slightly lower between

ages 45 and 60, and slightly higher after age 70. The average values of SBP in the

(<14)-group are higher until age 65, lower until age 80, similar thereafter. The

values of VR for both groups are about the same between ages 35 and 50. After age

50, the values for the (�14)-group decline much faster and farther than for the

(<14)-group.

Comparisons of the age patterns in Figs. 2.9b and 2.10b allow us to conclude that

genetic differences are small for average age patterns of BG and PP in both males

and females, but are, larger and gender-specific for average age patterns of BMI,

SCH, DBP, SBP, H, and VR. The factors responsible for these differences merit

further study.

2.5 Conclusion

In this chapter, we evaluated the average age trajectories of eight physiological

indices (BMI, DBP, SBP, PP, BG, SCH, H, and VR), using longitudinal human data

from the Framingham Heart Study. We showed how these trajectories depend on

Fig. 2.10 (a) Kaplan-Meier estimates of survival functions for two groups of male members of the

Original FHS cohort having different numbers of longevity alleles in their genomes. (b) Average
age trajectories of eight physiological indices for genotyped male participants of the Original FHS

cohort carrying different numbers of longevity alleles
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various genetic and non-genetic factors affecting human lifespan. The empirical

analysis illustrated the underused research potential of the FHS data and, hence, of

other longitudinal panel data for investigating the dynamic aspects of aging, genetic

and non-genetic factors affecting these dynamics, the role of aging in health

deterioration, and the increasing chances of death with age.

Our results revealed that survival functions and average age trajectories of

physiological indices are gender-specific and can be modulated by behavioral,

social, economic, and genetic factors. The age-patterns of physiological changes

differed between groups of short-lived and long-lived individuals, as well as

between groups of individuals having shorter and longer healthspans. The physio-

logical trajectories also depended on individuals’ health status. A particularly

notable finding was that health and extreme longevity can be mediated differently

by the physiological variables, such as BMI, and that longevity may be linked to a
postponement of aging changes in physiological variables rather than to their
“healthier” values.

While our analysis captured dynamic behaviors of physiological variables and

provided some insights into their connections with longevity and health, such as

above, it still cannot fully explain: (1) the driving forces behind the patterns of the

aging-related changes; and (2) the connections between age trajectories of physi-

ological variables and health/survival outcomes. To further uncover such mecha-

nisms and connections from analysis of the longitudinal human data, appropriate

mathematical and computer models need to be developed and applied.

These new models have to link the observed changes in physiological variables

with the anticipated biological mechanisms of aging in the presence of both harmful

and beneficial external factors. This needs to be done in a way that can decompose

the average age trajectories of physiological indices into at least two essential

components: (1) a component that represents biological changes in an aging

human body; and (2) a component that represents the compositional changes in

the study cohort due to the process of differential mortality selection. These two

components are mixed in the average age trajectories of physiological variables

studied in this chapter, as well as in all existing studies of such trajectories.

Additional components may surface when the age-related biological changes are

further decomposed into sub-components dealing with (i) the senescence process

per se, (ii) changes due to ontogenetic programming, (iii) changes occurring in

response to persistent external disturbances, including the effects of compensatory

adaptation to maintain the organism’s functioning in the presence of disturbing and
destructive forces. Several variations of these models will be discussed and applied

to the analyses of longitudinal data in Chaps. 11, 12, 13, 14, 15, and 16.
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Chapter 3

Health Effects and Medicare Trajectories:
Population-Based Analysis of Morbidity
and Mortality Patterns

Igor Akushevich, Julia Kravchenko, Konstantin G. Arbeev,
Svetlana V. Ukraintseva, Kenneth C. Land, and Anatoliy I. Yashin

3.1 Introduction

Determining national trends in health and vital status of the growing sector of older

U.S. adults is a major public health concern and important issue for policymakers

and governmental institutions. To better address the challenge of “healthy aging”

and to reduce economic burdens of aging-related diseases, key factors driving the

onset and progression of diseases in older adults must be identified and evaluated.

An identification of disease-specific age patterns with sufficient precision requires

large databases that include various age-specific population groups. Collections of

such datasets are costly and require long periods of time. That is why few studies

have investigated disease-specific age patterns among older U.S. adults and there is

limited knowledge of factors impacting these patterns. Studies based on observa-

tional data could be a reasonable alternative. The assignment of subjects to a

treatment group vs. a control group is not controlled by the investigator in obser-

vational studies; therefore, special attention has to be paid to the choice of statistical

methodologies and the interpretation of the results obtained.

Information collected in U.S. Medicare Files of Service Use (MFSU) for the

entire Medicare-eligible population of older U.S. adults can serve as an example of

observational administrative data that can be used for analysis of disease-specific

age patterns. These data, as any administrative health data, are generated through

the routine administration of health care programs. Thus, the development of

approaches to analyses of Medicare data and their application for discovery of

substantive health-related results for the U.S. elderly population is well-timed and

largely motivated by the lack of such comprehensive and representative analyses at

a national level. Uncovering the properties of aging-related disease incidence, risk

factors of disease onset and progression, co- and multimorbidities, and recovery/

long-term remission among older adults can yield deep insights into theoretical

aspects of the interrelations between disease incidence and senescence at advanced
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ages. These insights can aid in developing future health improvement strategies and

forecasting the associated future Medicare expenditures.

In this chapter, we focus on a series of epidemiologic and biodemographic

characteristics that can be studied using MFSU. The MFSU datasets provide an

opportunity to investigate the demographic and epidemiologic properties of the

general older U.S. population and cohorts of survivors with a wide spectrum of

chronic and acute diseases.

3.2 Data and Methods

3.2.1 Data: SEER-M and NLTCS-M

Two datasets capable of generating national level estimates for older U.S. adults are

the Surveillance, Epidemiology, and End Results (SEER) Registry data linked to

MFSU (SEER-M) and the National Long Term Care Survey (NLTCS), also linked

to MFSU (NLTCS-M). In the SEER-M and NLTCS-M datasets, the Medicare

records are available for each institutional (inpatient, outpatient, hospice, skilled

nursing facility, or home health agency) and non-institutional (carrier-physician-

supplier and durable medical equipment providers) claim type. The so-called

screener weights released with the NLTCS allow us to produce national population

estimates (for a recent discussion, see Akushevich et al. 2013c). The extensive

detail in these files allows for identification of disease incidence and recovery using

computational algorithms designed to extract these events from administrative

datasets. NLTCS-M represents a weighted random sample of the entire

U.S. elderly population. SEER-M is a registry database and thus has much better

statistical power but it represents the population of SEER areas only; therefore,

SEER-M represents the U.S. general population only approximately. The age and

sex distribution of the total SEER population is similar to non-SEER areas, though

SEER areas have fewer whites, more urban residents, and fewer poor areas com-

pared to non-SEER areas (Warren et al. 2002).

The SEER-M data are the primary dataset analyzed in this chapter. The

expanded SEER registry covers approximately 26% of the U.S. population. In

total, the Medicare records for 2,154,598 individuals are available in SEER-M

including individuals (i) with diagnosed carcinomas of breast (n¼ 353,285), colon

(n¼ 222,659), lung (n¼ 342,961), and prostate (n¼ 448,410), and skin melanoma

(n¼ 101,123); and (ii) from a random 5% sample of Medicare beneficiaries

residing in the SEER areas who had none of the above mentioned cancers. For

the majority of persons, we have continuous records of Medicare services use from

1991 (or from the time the person reached age 65 after 1990) to his/her death. A

small fraction of individuals (e.g., new patients who have been diagnosed with

cancer in 2003–2005) has Medicare records beginning from 1998.
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The NLTCS-M data contain two of the six waves of the NLTCS: namely, the

cohorts of years 1994 and 1999. These two waves were chosen primarily because

high-quality Medicare follow-up data are available since 1991 and also because the

complete 5-year follow-up after the NLTCS interview is accessible only for these

two waves after 1991. In total, 34,077 individuals were followed-up between 1994

and 1999. These individuals were given the detailed NLTCS interview (those from

the subcohorts of 1994 and 1999) which has information on risk factors. More than

200 variables were selected from the 1994 and 1999 surveys and were grouped as

follows (a complete list of all variables used in the analysis is presented in Table 3.1

in the Electronic Supplemental Material in Akushevich et al. 2011a):

A. Demographic characteristics (four variables): sex, race, marital status, urban

vs. rural residence.

B. Self-reported comorbidity (27 major medical conditions).

C. Daily living activities (22 variables): six activities of daily living (ADLs) with

two severity levels, and ten instrumental activities of daily living (IADLs).

D. Range of motion (16 variables): reflecting ability to perform daily activities

such as walking, using fingers to grasp and handle small objects, and climbing

stairs.

E. Physical activity (29 variables, including 25 variables reflecting specific phys-

ical activities such as golf or tennis, measured in 1994 only).

F. Nutrition and social activities (30 variables, 24 of them representing a nutrition

survey, measured in 1999 only).

G. Alcohol consumption and smoking (four variables): reflecting two severity

levels.

H. Other functioning (28 variables): reflecting self-estimates of health, informa-

tion about mood, habits, keeping in touch with friends and relatives, and

satisfaction with individual’s lives.

Table 3.1 Groups of diseases and the associated ICD-9 codes

Group of diseases Disease with ICD-9 codes

Cardio- and

cerebrovascular

Myocardial infarction (410.xx), angina pectoris (413.xx), stroke (431.

xx, 433.x1, 434.x1, 436.xx), heart failure (428.xx)

Malignancies Lung cancer (162.xx), colon cancer (153.xx), breast cancer (females)

(174.xx), prostate cancer (185.xx), skin melanoma (172.xx), kidney

cancer (189.xx), pancreatic cancer (157,xx)

Neurodegenerative Parkinson’s disease (332.xx), Alzheimer’s disease (331.0)

Pulmonary Chronic obstructive pulmonary disease (COPD) (490.xx, 491.xx, 492.

xx, 493.xx, 494.xx, 495.xx, 496.xx), asthma (493.xx)

Bones/skeletal Hip fracture (820.xx, 821.xx)

Endocrine and

metabolic

Diabetes mellitus (250.xx), goiter (240.xx, 241.xx, 242.0x, 242.1x,

242.2x, 242.3x)

Miscellaneous Chronic renal diseases with renal failure (403.xx, 404.xx, 581.xx, 582.

xx, 583.xx, 585.xx, 586.xx, 587.xx, 588.xx, 250.4x, 249.4x), ulcer (531.

xx, 532.xx, 533.xx, 534.xx), arthritis (714.0x, 714.1x, 714.2x, V82.1x)
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I. Characteristics of housing and neighborhood (23 variables): describing the

area, housing and amenities where the individual lives, including information

on whether the individual lives with other household members, and neighbor-

hood characteristics.

J. Health insurance (six variables): containing information on coverage by Medi-

care, Health Maintenance Organization (HMO), Medicaid, etc.

K. Medical providers and prescription medicine (44 variables): providing infor-

mation on the use of health care services and public and private expenditures for

health care services.

L. Cognitive functioning (18 variables): describing cognitive status of individuals,

including 10 variables measured in 1994 and 11 measured in 1999.

M. Income and assets (four variables): representing variables correlated with the

socioeconomic status of individuals.

N. Body mass index (BMI) (five variables): representing BMI and dietary patterns.

3.2.2 Definitions of Dates of Disease Onset and Dates
of Recovery/Remission

Disease incidence and recovery/remission rates were analyzed for aging-related

conditions representing the major groups of diseases in the elderly, including:

(i) circulatory (acute coronary heart disease (ACHD), myocardial infarction, angina

pectoris, heart failure, and stroke), (ii) cancer (breast, prostate, lung, colon, and skin

melanoma), (iii) neurodegenerative (Parkinson’s and Alzheimer’s diseases),

(iv) endocrine and metabolic (diabetes mellitus and goiter), (v) pulmonary (Chronic

Obstructive Pulmonary Disease (COPD), emphysema, and asthma), and (vi) other

chronic conditions such as chronic renal disease, ulcer, and arthritis.

The majority of analyses presented in this chapter are based on identification of

the date of the disease onset using information collected in the Medicare Claims

files. The approach to the identification uses individual medical histories of the

applicable disease reconstructed from Medicare files, combining all records with

their respective ICD-9 codes. Several examples of individual medical histories

reconstructed from MFSU are shown in Fig. 3.1. Also, Fig. 3.1 demonstrates an

existence of periods of absence of MFSU records for certain diseases. Such periods

could be associated with partial or complete long-term remission or even recovery

from an applicable disease and are also subjects for investigation in this chapter.

Ages at onset of all diseases and recovery therefrom were reconstructed from

MFSU using the following scheme. First, the individual medical histories history

related to specific disease were reconstructed using ICD-9 codes (Table 3.1). Then a

special procedure was applied for individuals with a history of the diseases to

separate incident and prevalent cases and to identify the cases of disease onsets

and disease recovery/remission. This procedure was based on two conditions

applied to each medical history. The first condition allowed for identification of

the first appearance of the disease code and the second was required for
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confirmation of disease presence. The individual Medicare history contains all

records with a disease ICD-9 code; however, only records with a primary ICD-9

code and only from so-called base Medicare sources (inpatient care, outpatient care,

physician services, and skilled nursing facilities) were used for the disease onset

identification. This algorithm has been already used by our team to study recovery

after stroke (Yashin et al. 2010), medical cost trajectories before and after

age-related disease onset (Akushevich et al. 2011b), the wide spectrum of geriatric

diseases incidence (Akushevich et al. 2012), and the role of behavior factors in

cancer risk (Akushevich et al. 2011a). Further details about the applied algorithm

are given in Chap. 6 of this monograph.

3.3 Results

Below we discuss the spectrum of results obtained using the MFSU and data linked

with Medicare files.

Fig. 3.1 Individual health trajectories. Four Medicare sources are considered base, i.e., inpatient

(IP), outpatient (OP), carrier-physician-supplier (PHY), skilled nursing facilities (SNF). Other
Medicare sources are hospice (HOS), home health agency (HHA), laboratory (LAB), and durable

medical equipment (DME)
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First, we analyze morbidity and mortality patterns among older U.S. adults. We

discuss the results of calculation of age patterns of disease incidence and compar-

isons with the results from other studies. Then we present the results of the

calculation of age-adjusted disease incidence rates. This allows us to estimate

time trends, comorbidity, and disability patterns of disease incidence with appro-

priate accuracy, as well as to perform detailed sensitivity analysis. Also, we include

a discussion of uncertainties in calculations of mortality at advanced ages

using MFSU.

Second, we investigate the phenomenon of recovery or long-term remission in

patients with acute and chronic diseases. The main research question is whether

patients who stopped visiting physicians are healthier (vs. those who continue

visiting) and, therefore, could be considered recovered patients.

Third, we use multiple self-reported variables from the NLTCS interviews and

individual follow-ups after these interviews up to the time of disease onset. A study

of associations then allows us to identify disease-specific risk factors and describe

high-risk groups based on self-reported measures.

Fourth, we investigate the phenomenon of multimorbidity in older U.S. adults.

We construct a new multimorbidity index, compare its properties with the standard

Charlson comorbidity index, and incorporate the new index into a model to project

cohort-specific health status and mortality. We also describe a forecasting model

that involves submodels of incidence, recovery, and mortality.

3.3.1 Age Patterns of Age-Associated Disease Incidence

Age patterns of incidence rates were assessed by stratifying the sample into relevant

age categories (1 year, or several years). Empirical age-specific risks (λα) were
calculated as a ratio of weighted numbers of cases to weighted person-years at risk:

λa ¼ na=Pa; where na ¼
X

n
wn,Pa ¼

X
i
wi, and wi was the individual weight;

n ran over all disease onsets detected in the age group, and i ran over all individuals
at risk in αth age group. The individual weights (NLTCS weights were calculated

using U.S. Census data and released with the NLTCS data) were necessary to make

the estimates representative of the entire U.S. elderly population, i.e., to take into

account the effects of study design. The effects of study design also influence the

calculation of standard errors (SEs) and confidence intervals of rate estimates. The

formula used for calculating SEs is σE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λa 1� λað Þ=P0a

p
, where P0α is the

number of person-years estimated for unit weights. Thus, the standard errors were

calculated based on the number of actually measured individuals. A generalization

of the formula for SEs based on Wilson’s approach (Brown et al. 2001) was used

when P0α or λα was small.

Age-patterns of acute and chronic disease incidence were evaluated using

NLTCS-M and validated using SEER-M. The results are presented in Fig. 3.2

(Akushevich et al. 2012). As an additional control for the incidence rates, the
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total mortality rate was also estimated. Among studied diseases, incidence rates of

Alzheimer’s disease, stroke, and heart failure increased with age, while the rates of

lung and breast cancers, angina pectoris, diabetes, asthma, emphysema, arthritis,

and goiter became lower at advanced ages. The incidence rates of several

non-cancer diseases (such as myocardial infarction, stroke, heart failure, diabetes,

and ulcer) obtained from NLTCS-M were a little higher than the rates calculated

using SEER-M. Similar differences were observed for total mortality rates at ages

85þ. Both methodological and substantive aspects of these findings were discussed

in (Akushevich et al. 2012).

Several types of age-patterns of disease incidence could be described. The first

was a monotonic increase until age 85–95, with a subsequent slowing down,

leveling off, and decline at age 100. This pattern was observed for myocardial
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Fig. 3.2 Age-specific rates of total mortality and disease incidence calculated using NLTCS-
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dividing the values obtained from the plots by the rescale factor (Color figure online)
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infarction, stroke, heart failure, ulcer, and Alzheimer’s disease. The second type

had an earlier-age maximum and a more symmetric shape (i.e., an inverted

U-shape) which was observed for lung and colon cancers, Parkinson’s disease,

and renal failure. The majority of diseases (e.g., prostate cancer, asthma, and

diabetes mellitus among them) demonstrated a third shape: a monotonic decline

with age or a decline after a short period of increased rates. Melanoma and

emphysema can also be assigned to this pattern, yet their patterns could also be

considered flat.

The occurrence of age-patterns with a maximum and, especially, with a mono-

tonic decline contradicts the hypothesis that the risk of geriatric diseases correlates

with an accumulation of adverse health events (such as genetic mutations, deteri-

oration of vascular system, immunosenescence, etc.) during the life. Two processes

could be operative in the generation of such shapes. First, they could be attributed to

the effect of selection (Vaupel et al. 1998) when frail individuals do not survive to

advanced ages. This approach is popular in cancer modeling and was successfully

applied to SEER data (Kravchenko et al. 2011, 2012; Manton et al. 2009; Trussell

and Richards 1985; Yashin et al. 2009). The second explanation could be related to

the possibility of under-diagnosis of certain chronic diseases at advanced ages (due

to both less pronounced disease symptoms and infrequent doctor’s office visits);

however, that possibility cannot be assessed with the available data (Enright

et al. 1999; Solomon and Murphy 2005).

3.3.2 Incidence Rates: Comparisons with Other Studies

The agreement between the rates obtained from the two datasets (Fig. 3.2) was

predictable, because the datasets have similar designs of data collection and the

same computational approach was used for evaluation of diseases incidence. We

next compared our results with those obtained in studies with different designs and,

possibly, with different computational approaches. We focused on several major

groups of diseases to highlight (1) the age-adjusted incidence rates, (2) the shapes of

age patterns of incidence rates, and (3) sex differences in age patterns of disease

incidence. In general, the datasets used for analysis of incidence rates in older

populations were predominantly disease-specific (i.e., focused on a single rather

than on multiple diseases). Also, they were not specifically oriented toward the

elderly population but included a wide spectrum of age groups, among which the

people aged 65þ years old (and especially 85þ years old) represented only a small

fraction of the data. NLTCS-M data were used for this comparison because of its

better correspondence to the U.S. general elderly population.

Four types of algorithms for identification of disease onset based on disease-

specificmedical histories (i.e., AlgorithmA, B, C, and D)were considered. Algorithm

A is the base algorithm: it is briefly described above in the subsection “Definitions

of dates of disease onset and dates of recovery/remission” and more details are

provided in Chap. 6. In Algorithm B, the confirmation by the second record is not
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required: i.e., only the first condition is valid. In Algorithm C, all codes (that are not

necessary primary) are considered valid and the confirmation is also not required. In

Algorithm D, a death event is not considered as the second, confirmation record.

3.3.2.1 Cancer

The most detailed U.S. data on cancer incidence come from the SEER Registry

(Altekruse et al. 2009). Because age is widely-recognized as the most important risk

factor for developing a cancer (Howlader et al. 2011) and because about 60% of

malignancies are diagnosed in persons aged 65þ years old (Hewitt and Simone

2000), datasets used for evaluating the age patterns of cancer incidence should

focus on older populations. The exceptions to these patterns are breast and ovarian

cancers, for which a higher proportion of diseases occur at ages younger than

65 years old (Parry et al. 2011). In the U.S., the estimated percent of cancer patients

alive after being diagnosed with cancer (in 2008, by current age) was 13% for those

aged 65–69, 25% for ages 70–79, and 22% for ages 80þ years old (compared with

40% of those aged younger than 65 years old) (Trask et al. 2008). In the previous

section, we compared cancer rates obtained using Medicare records from NLTCS-

M and SEER-M. The SEER-M incidence rates obtained using MFSU and SEER

registry did not coincide; therefore, the estimates of the age-specific incidence rates

obtained in the present study using the NLTCS-M data need to be compared with

estimates obtained using the SEER registry. In most studies that compare age

patterns of specific cancers with the patterns predicted from other data, the SEER

Registry data were used as a “gold standard”. In general, studies of algorithms of

cancer incidence identification are rare. Among cancer sites, the most developed

among others was the algorithm for the use of Medicare Claims data to identify

women with incident breast cancer (Nattinger et al. 2004, 2006). In the patterns

shown in Fig. 3.2, we used the basic algorithm (Algorithm A) that identifies cancer

cases in the MFSU as “cancer” (i) when a record with the cancer code is confirmed

by the second record/visit, or (ii) when the death occurred just after the first record/

visit and only one record proving “cancer” existed (i.e., we assumed that in this case

the cancer diagnosis was not confirmed by the second record/visit due to a forth-

coming death). The fractions of confirmed/non-confirmed records in the NLTCS-M

and SEER registry are different. For example, about 95% of diagnosed cancers in

the SEER registry are histologically confirmed, with less than 2% of them coming

from the death certificate or autopsy (Bleyer et al. 2006; Johnson and Adamo 2007;

Ries et al. 2007). Therefore, we used the scheme for disease onset identification

which excluded the second type of events, i.e., Algorithm D (see Fig. 3.3 for five

cancer sites). All cancers, except melanoma, demonstrated good agreement of

age-specific incidence rates. Rates for melanoma do not exceed two SEs from the

SEER estimates. In summary, the results obtained in the present study demon-

strated a good agreement of cancer incidence disease patterns with SEER registry

data. Age patterns of incidence rates calculated using Algorithms A and D are

presented in (Akushevich et al. 2013b).
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3.3.2.2 Heart Diseases and Stroke

There are a number of studies reporting increases in the prevalence of cardio- and

cerebrovascular disease among older persons (Crimmins 2004), although more

recent analyses have demonstrated that the increases were more significant

among those approaching older age rather than among older adults (Freedman

et al. 2007; Martin et al. 2009). Accordingly, updated information on this topic is

very timely. Results on incidence rates of myocardial infarction, angina pectoris,

stroke, and heart failure are presented in Figs. 3.4, 3.5, and 3.6: the results obtained

in the present study are compared with the results obtained from several cohort

studies (summarized in NIH/NHLBI 2006) such as the Atherosclerosis Risk in

Communities (ARIC) study, the Cardiovascular Health Study (CHS), and the

Framingham Heart Study (FHS). We have restricted our comparison of acute

coronary heart disease (ACHD) patterns to myocardial infarction and angina

pectoris, because ACHD is largely represented by these two diseases which are

typically investigated in cohort studies. To obtain age patterns shown in Figs. 3.4,

3.5, and 3.6, we used the base strategy for disease onset identification (i.e.,

Algorithm A). However, the strategy without a requirement for another record

confirming the primary diagnosis can be even more appropriate for acute diseases.

Such a strategy was implemented in Algorithm B and was used for comparison of

the ACHD patterns.
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The absolute values of incidence rates and the shapes of the age patterns of

myocardial infarction are in a very good agreement between all cohort studies and

also in agreement with our results. The rates of angina pectoris vary from study to

study: e.g., the rates observed in the CHS were higher than the NLTCS rates by a

factor of 2; the NLTCS rates were closer to those observed in the FHS. At least in

part, that could be attributable to differences in definitions of angina pectoris

incidence cases (as described in details in the Appendix of ref. NIH/NHLBI

2006), such as inclusion of the incidence events of angina pectoris diagnosed by

a physician together with cases when patients received therapy with nitrates, beta-

blockers, or calcium-channel blockers in the CHS. The estimated incidence rates

for angina pectoris in the present study are between those found in these two prior

studies.
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For stroke, our results are in a good agreement with those obtained in the CHS

and FHS cohort studies, as well as with the results of the Health Cost and Utilization

Project (HCUP) study (Williams 2001) and the Greater Cincinnati-Northern Ken-

tucky Stroke Study (GCNKSS) (Feigin et al. 2003). The estimated gender
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Fig. 3.5 Age-specific incidence rates for stroke
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disparities in stroke incidence could be due to differences in the younger age group,

as Fig. 3.1 shows that the rates at other ages do not differ. Therefore, the compar-

ison study for stoke incidence rates was performed for the total population rather

than for sex-specific subgroups. To calculate the rate for the total population, sex-

or race-specific rates available in the HCUP and GCNKSS studies were combined

with weights representing these population subgroups in the present study. Fig-

ure 3.5 shows that the results are in agreement between our estimated rates and

those obtained in other studies.

Our estimates of age-specific incidence rates of heart failure (HF) also are in

good agreement with the estimates obtained in the ARIC and FHS cohort studies

and are significantly lower than those obtained from the CHS (see Fig. 3.6). That

could be due to differences in disease incidence definitions used in each study (i.e.,

in terms of criteria used for diseases case selection/registration). For example, in the

FHS cohort study, HF incidence was defined by combination of several major and

minor criteria based on disease clinical symptoms; in the ARIC study, HF inci-

dences were selected based on the hospital discharge ICD-9 codes 428 or 518.4; and

in the CHS cohort study, HF incidence events were defined as being diagnosed by

physician plus including the patients receiving specific medications (such as

diuretic plus either digitalis, and vasodilator or angiotensin converting enzyme

inhibitor) (NIH/NHLBI 2006). That can explain, at least in part, that incidence

rates of HF in the CHS cohort study were higher than those obtained from the ARIC

and FHS studies, as well as our estimates (see Fig. 3.6).

3.3.2.3 Diabetes

Diabetes affects about 21% of the U.S. population aged 65þ years old (McDonald

et al. 2009). However, while more is known about the prevalence of diabetes, the

incidence of this disease among older adults is less studied. Our estimated incidence

rates of diabetes mellitus (shown in Fig. 3.7) are in agreement with several studies

performed on cohorts such as the Canadian Study of Health and Aging (Rockwood

et al. 2000), the Zwolle Outpatient Diabetes project Integrating Available Care

(ZODIAC-1, the Netherlands, Ubink-Veltmaat et al. 2003), and the U.K. Pooled

Diabetes Study (Gatling et al. 2001). In these studies, the incidence rates of diabetes

decreased with age for both males and females. In the present study, we find similar

patterns, except for the first and the last points (Fig. 3.7), i.e., for ages 66 and

100 years. In the ZODIAC-1 study, diabetes type II incidence rates in 1998–2000

were slightly higher, and in the U.K. Poole Diabetes Study, the rates were slightly

lower than our estimates.

Generally, the age trends and the absolute incidence rates in all of the studies

considered correspond to our results. Age-specific predicted incidence rates of adult-

onset diabetes were calculated in a population-based retrospective study using

community-based medical records in Rochester, Minnesota (Leibson et al. 1997):

in 1985, the incidence rate per 100,000 person-years was about 600 for ages 70–74,

and about 500 for ages 80–84. These results are in agreement with our estimates for
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these age groups. Another diabetes study (McBean et al. 2004) examined disease

prevalence, incidence, and mortality from 1993 to 2001 among fee-for-service

Medicare beneficiaries aged 67þ years old using a 5% random sample of enrollees:

a rate of 3000 per 100,000 was estimated. The reason for this disagreement could be

different schemes for identification of diabetes onset (Hebert et al. 1999) from the

Medicare data. In that study, it was required that a second record with a diabetes ICD

code must be observed only if the first one was registered as an ambulatory claim

(i.e., a physician/supplier or hospital outpatient claim). That could be the reason for

the excess in incidence rates in McBean et al. (2004). We recalculated diabetes

incidence rates using the approach described in (Hebert et al. 1999; McBean

et al. 2004) and found an almost fivefold increase in the incidence rates compared

to the estimates given by Algorithm A in the present study. The results for

age-adjusted rates found by this approach were about 2700 for males and 2300 for

females, which were close to those obtained by McBean et al. (2004).

3.3.2.4 Asthma

The prevalence of asthma among the U.S. population aged 65þ years old in the

mid-2000s was as high as 7% (Moorman 2007), with new cases occurring in older

adults more frequently than is usually appreciated. However, older patients are

more likely to be underdiagnosed, untreated, and hospitalized due to asthma than

individuals younger than age 65 (Banerjee et al. 1987; Bellia et al. 2003; King and

Hanania 2010). An inverse relationship between asthma prevalence in the older
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population and age was recently reported (Oraka et al. 2012). The inversion can be

due to underdiagnosis of asthma when COPD or other comorbidities with similar

nonspecific symptoms are present, or to undertreatment (also due to comorbidities)

that can contribute to the death of the patients at younger ages which may appear as

lower asthma prevalences at advanced ages. With such age patterns of asthma

prevalence, it becomes important to know the exact age patterns of asthma inci-

dence in this population group in order to understand whether the rates of newly

diagnosed cases could contribute to the decreasing prevalence of this disease at

advanced ages. However, while more is known about asthma prevalence among

older adults, asthma incidence in this population is less studied. There are few

studies of asthma onset among patients aged 65þ years old; moreover, the available

studies are limited by a small number of patients and tend to group all patients older

than 55 or 60 years old into a single category (Braman et al. 1991; Burr et al. 1979;

Ford 1969; Lee and Stretton 1972). Similar to the results of the present study,

asthma incidence rates have been shown to decrease with age in a population-based

Rochester, Minnesota, study that analyzed age- and sex-specific incidence rates of

definite and probable asthma in 1964–1983 (Ballard-Barbash et al. 2006). However,

our results for absolute incidence rates were higher than in the Rochester study in

which rates for males and females, respectively, at ages 65–74 were about 140 and

80 (per 100,000), 110 and 70 at ages 75–84, and about 60 and 50 at ages 85þ. The

higher rates in the present study could be due to an increasing trend of incidence of

asthma in recent decades, as well as to the fact that the data from the Rochester

study were obtained from the medical records retrospectively and predominantly

involved Caucasians from a small Midwestern city. Also, slightly different male/

female ratios in these two studies may also play a role.

Another study of asthma incidence that included data on older individuals was

reported by ARIC (summarized by the NIH/NHLBI in ref. NIH/NHLBI 2006) for

data collected in 1987–2001. Incidence rates (per 100,000) were estimated at

225 for ages 65–74 and 398 for ages 75–84 years old. These rates are in a better

agreement with our results. Female-to-male ratios in age-adjusted rates were

similar in the ARIC and NLTCS-M studies: i.e., 1.49 and 1.27, respectively. A

study conducted in Moscow, Russia, covering a wide range of ages—from birth to

85 years old found that asthma risk declined steadily at ages 55þ in females and at

ages 65þ in males, becoming very small among the oldest old (Ukraintseva and

Sergeev 2000). This trend of declining asthma incidence with age is in agreement

with our results.

3.3.2.5 Neurodegenerative Diseases (NDD)

The most common medical conditions reported in the NDD group are Alzheimer’s
(and other dementias) and Parkinson’s diseases. Their incidence rates and age

patterns in elderly populations have been estimated in several studies and meta-

analyses. The prevalence and incidence of Alzheimer’s disease increase exponen-

tially with age, with the most notable rise occurring through the seventh and eight
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decades of life (Reitz et al. 2011). There are few variations in incidence rates

obtained from the different studies for the population aged younger than 75 years

old, whereas in the older age groups rates vary substantially. In part, methodolog-

ical issues can account for observed variations. However, the variations in esti-

mated rates might also reflect geographic differences associated with different

prevalences of risk and protective factors across the U.S. We compared the results

of our calculations of Alzheimer’s disease incidence rates obtained from applica-

tion of Algorithms A and C to the rates obtained in the meta-analysis (Gao

et al. 1998) and in the CHS study (Fitzpatrick et al. 2004) (Fig. 3.8). The results

obtained from Algorithm C were in agreement with these two studies, whereas the

rates estimated from application of the base algorithm (Algorithm A) were lower

than those from the above-mentioned studies. The findings of another study of

neurodegenerative diseases among the older U.S. population—the Bronx Aging

Study—indicate that whereas dementia incidence continues to increase beyond age

85, the rate of increase slows down (i.e., at ages 85þ vs. 65–84 years old). That

suggests that dementia diagnosed at advanced ages might be related not to the aging

process per se, but associated with age-related risk factors (de La Fuente-Fernández

2006; Hall et al. 2005). A similar pattern for Alzheimer’s disease was observed in a
study based on inpatient claims in the NLTCS-M data for 1984–2001: the decline of

the risk was identified at ages 90þ years old (Ukraintseva et al. 2006). Based on the

results of multiple epidemiological studies of incidence of Alzheimer’s disease in

Europe, North America, Asia, Africa, Australia, and South America, average

annual age-specific incidence rates per 1000 person-years were found to increase

across ages 65–95; i.e., incidence rates were increasing at these ages which is in

agreement with our data, and the absolute rates were in general agreement with our

Algorithm C data (de La Fuente-Fernández 2006).
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65 70 75 80 85 90 95 100

Incidence Rate
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NLTCS/Medicare C

Meta-analysis; Gao et al. (1998)

CHS

Fig. 3.8 Age-specific

incidence rates for

Alzheimer’s disease
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Approximately 1–2% of the population aged 65þ and up to 3–5% aged 85þ
years old suffer from Parkinson’s disease (Fahn 2003). As for Alzheimer’s disease,
there also are substantial variations in reported incidence rates of Parkinson’s
disease, probably due to methodological differences between the studies, in partic-

ular, differences in case ascertainment and use of diagnostic criteria (Alves

et al. 2008). After applying strict diagnostic criteria of Parkinson’s disease,

age-standardized incidence rates in population-based studies in the U.S. and Europe

ranged from 8.6 to 19.0 per 100,000 population, while the surveys and studies based

on broader inclusion criteria have yielded much higher incidence rates (Twelves

et al. 2003; von Campenhausen et al. 2005). Studying incidence rates of Parkinson’s
disease is a challenging task: low incidence and prevalence of the disease, difficul-

ties in establishing diagnosis, and the absence of population-based disease registries

contribute to the lack of epidemiologic characteristics of this disorder (Van Den

Eeden et al. 2003). There are few studies of Parkinson’s disease incidence, espe-

cially in the oldest old, and its age patterns at advanced ages remain controversial

(Mayeux et al. 1995; Morens et al. 1996). One incidence study of Parkinson’s
disease analyzed 1994–1995 data that came from the Kaiser Permanente Medical

Care Program of Northern California: in this study, incidence rates per 100,000

were estimated at 38.8 in age group 60–69, 107.2 at ages 70–79, and 119.0 at ages

80–89 years old, with rates more than twice as high in males than in females aged

70þ years old (Van Den Eeden et al. 2003). Although our estimated rates for ages

above 80 years old are higher by a factor of 1.5–2.0, since the statistical errors are

large we can conclude that generally these results are in agreement with those

observed in our study.

3.3.3 Age-Adjusted Rates: Gender Disparities, Time Trends,
and Sensitivity Analysis

Age-adjusted rates (or directly standardized incidence rates) are weighted averages of

the age-specific (crude) rates, where the weights are the proportions of persons in the

corresponding age groups of a standard population. For the population aged 66þ,

they are calculated as λ ¼
X105þ

a¼66
λaPa

X105þ
a0 ¼66

Pa0
� ��1

. There are many ways to

estimate SEs for age-adjusted rates (Breslow and Day 1987; Dobson et al. 1991; Fay

and Feuer 1997). In this study, we used the simplest approach (in order to avoid

dealing with uncertainties in SE estimation for low and even zero age-specific rates)

based on the approximation suggested by Keyfitz (1966), in which SEs are estimated

as SE ¼ λ=
ffiffiffiffiffi
n0

p
, where n0 is the unweighted sum of the cases.

Age-adjusted disease incidence rates are presented in Fig. 3.9 for all NLTCS-M

cohorts (i.e., for cohorts of years 1994, 1999, and pooled for both time periods) and

genders (i.e., males, females, and total population). The top panel in the figure

shows the rates for circulatory diseases. ACHD (including myocardial infarction
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and angina pectoris) and stoke had the highest rates for males and females,

respectively among the analyzed diseases for cohorts of 1994, 1999, and for both

cohorts pooled. The rate of heart failure is also high (comparable to the rate of

ACHD) especially in males for the 1994 cohort and in the pooled analysis. Prostate

and breast cancer are the cancers with the highest rates for males and females (the

second panel in Fig. 3.9) followed by the lung cancer rates. Diabetes and COPD

were other (i.e., non-circulatory and non-cancer) diseases with high rates. There

were no significant male/female differences detected for them. Because sample

weights were applied, the results for both the age-adjusted rates and standard errors

are valid for the U.S. elderly population.

The results presented in Fig. 3.9 also provide information about time trends in

the age-adjusted incidence rates: there was a significant 5-year decline in the

incidence rates of circulatory diseases (including ACHD, stroke, and heart failure)

and lung cancer for males, and an increase in rates of diabetes and Alzheimer’s
disease.
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Fig. 3.9 Age-adjusted incidence rates per 100,000 of age-associated diseases with standard errors
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The time trends of disease incidence in older U.S. adults were also estimated

from the SEER-M data and compared to those obtained from the NLTCS-M

(Akushevich et al. 2013e). Dramatic increases of incidence rates of melanoma,

goiter, chronic renal, and Alzheimer’s disease were detected from 1992 to 2005.

Besides specifying widely recognized time trends of age-associated diseases, new

information was obtained for trends of asthma, ulcer, and goiter. The trends thus

identified could be associated with changes in the socioeconomic status and demo-

graphic structure of the population, risk factors prevalence (e.g., smoking, obesity,

etc.), as well as changes in prevention, screening, and diagnostic strategies.

3.3.3.1 Sensitivity Analysis

One disadvantage of large administrative databases is that certain factors can

produce systematic over/underestimation of the number of diagnosed diseases or

of identification of the age at disease onset. One reason for such uncertainties is an

incorrect date of disease onset. Other sources are latent disenrollment and the

effects of study design. To evaluate the effects of these uncertainties, we performed

calculations with different definitions of the disease onset and used alternative

censoring schemes to define individual observation periods. Table 3.2 presents

the results of calculation of age-adjusted rates from NLTCS-M data when several

alternative approaches were used. We can conclude that all calculated rates were

relatively stable. Thus, columns V1–V3 represent calculations without age stan-

dardization, using as a standard the population of 1994, (V1) and without using

NLTCS sample weights (V2). In the alternative censoring scheme (V3), the last day

of observation is the latest day among (i) part B coverage; (ii) Medicare record in

Part A or Part B; and (iii) response on interview in the next NLTCS wave (while in

the basic calculation, the final date of observation is the earliest date among dates of

disease onset or death, and the last date of cohort observation). Only minor changes

in incidence rates obtained within V1–V3 strategies were detected. The results of

calculations V4 and V5 reflect the effect of removing individuals from the cohort

with different levels of additional coverage by a HMO (by different fractions of

months covered by a HMO denoted by δ). Other calculations represent less (V6–
V11) or more conservative (V12) approaches to the definition of the date at onset.

Model V11 for the calculation of the diabetes age pattern is the same as that used by

McBean et al. in their study (McBean et al. 2004). And model V12 is Algorithm D

(as described in detail above in the subsection on age patterns of cancer incidence

rates).

3.3.4 Disability and Comorbidity Patterns of Incidence Rates

Disability and comorbidity patterns were evaluated using the NLTCS-M data

(Table 3.3). For this analysis, individuals were stratified by a disability index
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(with outcomes nondisabled, IADL only, 1–2 ADLs, 3–4 ADLs, 5–6 ADLs, and

institutionalized) measured at the date of interview, i.e., at the beginning of the

follow-up, and by the Charlson comorbidity index (according to the specifications

described in Charlson et al. 1987; Quan et al. 2005) that was also measured at the

date of interview (using the Medicare records for the period of a year prior to the

date of interview). Comorbidity- and disability-specific rates are age-adjusted

incidence rates calculated using the same equations applied for the stratified

population.

The disability and comorbidity patterns were analyzed for selected diseases (see

Table 3.3). For several diseases (e.g., myocardial infarction, stroke, heart failure,

diabetes, asthma, and Parkinson’s disease), the incidence rates were higher among

individuals with severe disabilities, while for breast and prostate cancers the higher

rates were registered among people with minor disabilities. Interestingly, for many

diseases institutionalized individuals had lower incidence rates, and for several

diseases (such as melanoma, lung cancer, colon cancer, and asthma) they had the

lowest rates among all other disability groups, including non-disabled individuals.

For all the diseases considered (except Alzheimer’s disease), institutionalized

individuals had lower disease rates. However, for neurodegenerative diseases

such as Parkinson’s (for females only) and Alzheimer’s diseases, the rates among

institutionalized individuals were the highest. Among individuals with high comor-

bidity indices (i.e., Charlson index), higher rates were observed for heart failure,

melanoma, and Alzheimer’s disease, while incidence rates of breast and prostate

cancers, as well as diabetes, decreased with increasing comorbidity indices. More

detailed analyses of comorbidity and disability patterns for circulatory diseases are

presented in (Akushevich et al. 2013c).

3.3.5 Mortality Age Patterns and Medicare Data

The information available in Medicare data allows for more detailed analyses of

uncertainties in estimates of mortality rates at advanced ages. We use all NLTCS

data from 1982 to 2004/2005 and evaluate uncertainties in calculations of

age-specific mortality rates using several scenarios. In this example, we follow

Akushevich and Manton (2011).

The strategy for analysis of the mortality age patterns consists of the following

steps. First, individuals were selected for analysis (27 deaths reported as occurring

before 1982 were excluded). Second, a weight for each individual was assigned to

project the results for the entire U.S. population and a time period when this weight

was valid for an individual was defined. Several approaches using base weights and

screener weights were used. Two ages were defined for each individual, namely, the

age at enrollment and the age of death/censoring. The age of death was obtained

from the Vital Statistics file for deceased persons. For individuals not marked as

dead in the file, it is possible that some could be deceased, but information about

their deaths was missing from the file. To resolve the issue, a set of approaches was

developed to assign the censoring date (or the date of the end of follow-up) for these
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individuals using available information on these individuals from other sources.

Specifically, we determined if one of three types of the event occurred: (i) service

event in Medicare Part A (e.g., hospitalization); (ii) a payment to Medicare Part B

(i.e., monthly premiums); and (iii) a payment of a monthly premium to HMO or

other managed care plan.

We detected 90 persons paying Part B premiums that had no other (Part A)

service use and who did not respond to the survey. The detailed analyses and

comparison of mortality rates calculated for different approaches were important,

because they can result in different age patterns of mortality rates. A specific

analysis focused on the effects of non-responders: information on them was col-

lected using the question “Reason for non-response in NLTCS”, with the possible

outcomes such as “deceased” and “gone abroad”. Careful consideration of specific

groups (e.g., 90 suspected non-responders who did not appear in Medicare Part A,

but paid monthly Part B premiums) is important for several reasons. First, their

contribution is significant, and therefore, if neglected it would significantly con-

tribute to systematic uncertainty in mortality patterns at advanced ages. Second,

such a small fraction of individuals is plausible because roughly 2% of Part B

enrolled persons do not participate in Part A benefits. Some small number of

eligible individuals was not, however, covered by Medicare Part B (about 2%).

Additionally, a small proportion of persons would pay Part B premiums but would

not be eligible for Part A (about 3%). A third type of program eligibility would

involve enrollment in managed care plans (e.g., HMOs) when the death was

recorded. All these benefit categories involve positive actions to be recorded in

the Medicare claims files. The final records are for persons who have responded to

the survey which provides a direct confirmation of age reported on the Medicare

claims data. All these persons should be enrolled in the Medicare program in some

way, with enrollment necessary for being selected for NLTCS sample.

Figure 3.10a presents empirical estimates of mortality rates which suggest that

there is a decline with age in hazard rates at extreme ages. Figure 3.10b presents

various hazard functions estimated under the different alternative assumptions

about data selection. The Basic Approach (marked by 0) is specified as having a

censoring date as the date of the latest appearance in Medicare Part A (in records) or

in Part B (in payments). Note that information about payments comes from the

Denominator Files, and, therefore, can be less accurate. In our basic approach, the

non-responses, gone abroad non-responders, and deceased non-responders were

removed. Approaches 1–5 described below are defined as modifications of the basic

approach:

• Approach marked by 1: no cut of the 90 suspected non-responses, i.e., those

individuals who are (i) alive according to vital statistics, (ii) have no Medicare

histories, and (iii) have premium payments till 2005.

• Approach marked by 2: censoring date is calculated according to Vital Statistics.

• Approach marked by 3: if a reason for non-responding (according to the NLTCS

questionnaire) is “deceased” then this is a death case.

• Approach marked by 4: same as in #3, but this is censored, not a death case.

• Approach marked by 5: the moved abroad non-responders are not removed.
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Analyses of mortality patterns at old ages conducted on these data included

empirical methods and applied demographic models of mortality. The empirical

results showed that the increase in mortality rates with age stops at age 95 for males

and at age 100 for females. Whether the decline in mortality rate above these ages is

detected for the total population is still an open question, because there are multiple

uncertainties accompanying estimates of mortality rates at advanced ages using

Medicare data.

3.3.6 Recovery or Long-Term Remission

In this section, we use the two Medicare-linked datasets to investigate demographic

and epidemiologic properties of the cohorts of survivors after certain chronic

diseases were diagnosed. Analyzing individual trajectories, we found a subgroup

of patients who had stopped using medical services after a certain period of time

following the diagnosis. Who are these individuals? Are they a healthier or sicker

subgroup of patients? If they are healthier, then they could be those who (i) have

entered into a stable condition/long-term remission of chronic disease (in some

cases such remission could be long enough so that a “recovery” term could be

used); or (ii) have undergone a successful rehabilitation from acute diseases (e.g.,

myocardial infarction and stroke) without obvious complications affecting their

quality of life. If they are a sicker group, then they could be the patients who (i) do

not believe anymore in doctors’ recommendations after medical treatment failed to

improve their health and/or did not improve their quality of life (as substitution,
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Fig. 3.10 (a) Results of base calculations (49,123 individuals were selected, i.e., 49,240 (total in

the NLTCS) minus 27 with death before 1982 and minus 90 (nonresponders, not appearing in

Medicare records, alive according to vital statistics, paid premiums until 2005) and (b) results of
calculation of incidence rates using base (marked by 0) and five alternative approaches (see text for

details)
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they could rely on a treatment with naturalists, chiropractors, etc.); or (ii) were not

able to pay the treatment expenses; or (iii) have moved to areas (e.g., rural) where

they lacked transportation to reach the doctor’s office for visits.
The formal definition of the recovery rate is as follows. An individual was

considered to be recovered (or entered a sustained remission) at a given date if

he/she did not have a Medicare record containing the respective ICD code during a

period of time τd (e.g., 1, 2, or 3 years) after this date (Yashin et al. 2010). All

Medicare records from the individual medical histories (i.e., records appearing in

any Medicare sources and not necessary being primary) are used for the definition

of recovery. The time periods τd are referred to as recovery times. An individual

was censored at a date if that date plus the recovery time exceeded the date of the

end of follow-up (i.e., in this case an individual does not have sufficient time for

recovery). Note that since the identification of the date at onset requires confirma-

tion by a record in another day, recovery on the day of diagnosis is not possible even

if the length of service is 1 day. Another property of the recovery rate is that a

recovery event within the 3-year strategy (i.e., for τd¼ 3 years) implies a recovery

event within a 1- or 2-year strategy, but not otherwise.

Kaplan-Meier estimates of not-yet-recovery probabilities for predetermined

disease-specific recovery times are presented in Fig. 3.11. A comparison of curves

for different time periods shows that the time trend was positive (remission chance

increases) for the majority of acute and several chronic diseases, excluding cancers.

To test the hypothesis about health status of recovered individuals (i.e., whether

they are sicker or healthier), we used the Cox proportional hazards model with age

at diagnosis and time after remission (equal to zero before remission). The esti-

mates in Akushevich et al. (2013d) showed that the “recovered” patients (those who

did not have medical care for 1, 2, or 3 years, depending on the corresponding

scenario analyzed) had better survival. Therefore, they are (i) a “healthier” sub-

group of elderly—they started feeling well enough to discontinue the use of medical

services, or (ii) people who at the moment of diagnosis likely had a functional

disorder rather than a serious disease, but similarity of disease symptoms led to their

misinterpretation and “overdiagnosis”. Also, the subcohort of “recovered” individ-

uals can include patients who were disappointed in treatment results and stopped

the therapy, turning instead to chiropractors, homeopaths, or herbal medicine, or

patients who began experiencing difficulties with transportation to a physician’s
office. However, this subcohort is indistinguishable from the healthier (and much

larger) fraction of recovered individuals.

An example of sensitivity analysis involving recovery rates was performed by

Yashin et al. (2010) for time trends of recovery after stroke. The authors considered

the following effects: (i) several different operational definitions of recovery and

incidence rates; (ii) explicit representation of observed heterogeneity effects strat-

ifying individuals by age, comorbidity, or disability; and (iii) other approaches to

censoring strategies, selection of individuals, and study design effects. The results

of these analyses indicated that positive trends in the recovery rate from stroke took

place in all cases, independent of the definition of such rates.
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Thus, Medicare data allow us to evaluate recovery rates from common acute and

chronic diseases in older U.S. adults at the national level, using a new approach

developed for quantitative analyses of individuals with recovery/long-term remis-

sion after onset of chronic diseases.

3.3.7 Risk Factors for Disease Incidence

Most chronic diseases are associated with multiple risk factors, and many of these

factors are measurable and modifiable. If known, many of these risk factors are
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preventable: e.g., about 80% of cancer risk factors, including behavioral/lifestyle-

associated, are considered preventable. Combining information from several

datasets, such as demographic surveys (e.g., NLTCS) and the MFSU, allows for

testing of hypotheses about the contributions of specific risk factors to risks of

aging-related chronic diseases. The primary purpose of the present analysis is to

develop an approach to estimation of the contributions of measurable risk factors,

including behavioral/lifestyle risk factors, to mortality and diseases incidence risks

and to apply this approach to population data to find associations clarifying the role

of behavioral/lifestyle risk factors to these risks in the U.S. elderly population.

Associations were investigated for each demographic, health, social, economic,

and behavioral lifestyle variable (213 for the 1994 survey and 219 for the 1999

survey) for 26 types of outcomes (total mortality, seven non-cancer and five cancer

incidences, for both the 1994 and 1999 NLTCS surveys). In total, 5616 associations

were empirically estimated by comparison of age-adjusted incidence rates condi-

tional on a specific outcome (i.e., a specific answer to a specific question). Relative

risks were estimated as the ratios of the rates for alternative outcomes. Note that

age-adjusted risks were calculated for subpopulations with different responses for

certain questions/variables (e.g., current smokers and nonsmokers) using the same

population weights for both outcomes. Therefore, the rates conditional on a specific

outcome of each variable were adjusted for the total population age structure, thus

taking into account a possible effect of age dependence of certain outcome preva-

lences. For example, lung cancer rates in smokers and non-smokers were adjusted

for the age structure of the total population to include smokers, non-smokers, and

individuals with missing information on smoking status.

Table 3.4 shows the results for hazard ratios of the variables that were most

significantly associated with mortality. The selected variables included demo-

graphic characteristics, self-reported comorbidities, activities of daily living infor-

mation, other activities including social factors, and medical care factors. The

estimates for the 1994 and 1999 cohorts are in good agreement.

The following factors were found to be predictive of incidence of circulatory

diseases:

• For ACHD: male (RR¼ 1.8); comorbidities such as diabetes (RR¼ 1.9), circu-

latory diseases (RR¼ 1.3–2.0), needs some additional devices in house

(RR¼ 2.5), thinks that grocery and drug stores are not conveniently located

(RR¼ 1.6), losing temper (RR¼ 1.6); for angina pectoris: low BMI (RR¼ 4.9),

poor social contacts (RR¼ 2.2), financial or transportation problems (RR¼ 4.0),

and for myocardial infarction: living in rural area (RR¼ 2.0) and smoking

(RR¼ 2.7).

• For stroke: comorbidity such as diabetes (RR¼ 2.0); disability (ADL/IADL

(RR¼ 1.6)) and other functionality, e.g., difficulties in washing hair

(RR¼ 1.9) and/or lifting a 10-lb package like a bag of groceries and holding it

for a few minutes (RR¼ 1.8); high BMI (RR¼ 2.4), not keeping in touch with

relatives (RR¼ 2.0), disturbed memory (RR¼ 2.0); poverty characterized by

food stamps receiving (RR¼ 2.2), and Medicaid coverage (RR¼ 2.0).
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• For heart failure: being male (RR¼ 1.9), unmarried (RR¼ 2.2), feeling unhappy

(RR¼ 2.5), having such comorbidities as diabetes (RR¼ 1.9) or cancer

(RR¼ 1.9); disability (ADL/IADL (RR¼ 1.8)) and other functional disorders

(RR¼ 1.9).

Table 3.4 Hazard ratios of lifestyle risk factors for mortality. Only variables with highly

significant effects were selected (p< 0.000002)

Variable Outcome 1994 1999 Variable Outcome 1994 1999

Sex Male 1.35 1.31 Healthy compared

with others

Fair/

poor

1.93 2.14

Race Nonwhite 1.3 1.23 Lose temper Not at all 0.69 0.71

Marital status Not marr. 1.44 1.33 Work on hobby No 1.56 1.71

Parkinson’s
disease

No 0.43 0.47 Attend meeting of a

club

No 1.68 1.64

Diabetes No 0.69 0.65 Keep in touch with

relatives

No 1.84 1.46

Cancer No 0.57 0.45 Hospital overnight

(last year)

No 0.59 0.56

Arteriosclerosis No 0.77 0.67 Medical care in doc-

tor’s office
No 0.73 0.78

Heart attack

(last year)

No 0.48 0.5 How many

prescriptions

2þ 1.45 1.55

Stroke (last

year)

No 0.55 0.61 Medicine

Emphysema

(last year)

No 0.54 0.41 What is your street

address

Not

correct

2.04 3.05

Broken hip (last

year)

No 0.46 0.54 What day of the week

is this

Not

correct

1.9 2.02

ADL eating Can’t 2.94 3.23 Walking for exercise Yes 0.66 n/a

ADL getting

in/out of bed

Can’t 2.38 2.98 Gardening or yard

work

Yes 0.6 n/a

ADL getting

around inside

Can’t 2.23 2.77 Vigorous activities 10þ min 0.64 0.54

ADL dressing Can’t 2.72 3.01 Avoid doing things

because

Rarely 0.6 0.5

ADL bathing Can’t 2.38 2.72 Doesn’t have enough
energy

ADL getting to

bathroom

Can’t 2.47 2.75 Satisfaction with life Not

satisfied

1.56 2.42

Currently

smoke

No 0.63 0.57 Have a Medicaid

card

No 0.72 0.65

How difficult to

climb one flight

of stairs

Can’t 2.01 2.89 Processed meats such

as frankfurters/lun-

cheon meats?

Often n/a 1.32
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For neurodegenerative disease the identified factors were as follows:

• For Parkinson’s disease: comorbidities such as cancer (RR¼ 4.3), frequent

headaches (RR¼ 4.0), emphysema (RR¼ 5.5); needs some additional devices

in house (RR¼ 6.0)), not satisfied with his/her life (RR¼ 5.4); having mental/

emotional problems (ever hospitalized (RR¼ 5.0), could not sleep like usual

(RR¼ 4.0), forgets to do important things (RR¼ 4.0)); rarely drink coffee/tea

(RR¼ 5.1).

• For dementia and Alzheimer’s disease: comorbidities such as bronchitis

(RR¼ 3.3); memory problems (forgets to do important things (RR¼ 3.2));

difficulties in making phone calls (RR¼ 4.0); difficulties with going outdoors

(RR¼ 6.5); covered by any other public assistance program that pays for health

care (RR¼ 9.8).

Several examples on other diseases:

• For ulcer: comorbidities such as permanent numbness (other besides paralysis

and arthritis (RR¼ 3.5)), frequent severe headaches (RR¼ 5.0), bronchitis

(RR¼ 3.0), trouble sleeping (RR¼ 4.2); depression (takes respective medicine

(RR¼ 3.5)), being not satisfied with his/her life (RR¼ 4.9); having mental and

emotional problems (such as losing temper (RR¼ 2.2)); disability (ADL/IADL

(RR¼ 2.2)); using a hearing aid (RR¼ 3.2) and other devices (RR¼ 6.4).

• For diabetes: high BMI (RR¼ 3.2), self-reported overweight (2.0); poverty

(Medicaid card (RR¼ 2.0), public assistance program that pays for health care

(RR¼ 3.5)); disability (ADL/IADL (RR¼ 2.7)), cannot do everyday activities

around the house (RR¼ 2.5), using hearing aid (RR¼ 2.5).

• For asthma: being female (RR¼ 3.7); self-reported obesity or overweight

(RR¼ 2.7)); comorbidities such as heart attack (RR¼ 3.5), pneumonia

(RR¼ 4.0), bronchitis (RR¼ 2.3); needs some additional devices in house

(RR¼ 5.0), being not happy with his/her life (RR¼ 5.3); rarely eat fortified

breakfast cereals (RR¼ 5.0).

The detected associations (i.e., relative risks) of selected factors with risks of

breast, prostate, lung and colon cancers were discussed in Akushevich

et al. (2011a). An overall view of the results of association analyses allowed the

researchers to describe population groups of higher and lower risks of these cancers.

For example, being a smoker was the main characteristic of elderly population

group at higher risks of lung cancer, with comorbidity (e.g., emphysema), lower

BMI, and poor functional status also each playing a role. Note that the most

influential of potentially preventable risk factors can be detected with this approach

using the NLTCS-Medicare linked dataset and for further deeper analyses

employing other datasets with detailed risk factors.

The results of this analysis can be reformulated as a description of higher risk

groups of major geriatric diseases in terms of variables measured in the NLTCS and

the aggregated indices constructed from these variables.
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3.3.8 Mutual Dependence in Disease Risks: Age-Patterns

Although multi-morbidity is common among older adults, for many aging-related

diseases there is no information for the U.S. elderly population on how earlier-

manifested diseases affect the risk of another disease manifested later during a

patient’s lifespan. Therefore, we investigated the phenomenon of multimorbidity in

the U.S. elderly population by analyzing mutual dependence in disease risks, i.e.,

we calculated disease risks for individuals with specific pre-existing conditions

(Akushevich et al. 2013a). In total, 420 pairs of diseases were analyzed. For each

pair, we calculated age patterns of unconditional incidence rates of the diseases,

conditional rates of the second (later manifested) disease for individuals after onset

of the first (earlier manifested) disease, and the hazard ratio of development of the

subsequent disease in the presence (or not) of the first disease. The most interesting

(selected) results are presented in Fig. 3.12. Synergistic and antagonistic depen-

dences in geriatric disease risks were observed among older U.S. adults confirming

known and detecting new associations among a wide spectrum of age-associated

diseases. More specifically, three groups of interrelations were identified:

(i) diseases whose risk became much higher when patients had a certain

pre-existing (earlier diagnosed) disease; (ii) diseases whose risk became lower

than in the general population when patients had certain pre-existing conditions

(a so called “trade-off” effect between earlier and later occurring diseases); and (iii)

diseases for which “two-tail” effects were observed: i.e., when the effects are

significant for both orders of disease precedence; both effects can be direct (either

one of the diseases from a disease pair increases the risk of the other disease),

inverse (either one of the diseases from a disease pair decreases the risk of the other

disease), or controversial (one disease increases the risk of the other, but the other

disease decreases the risk of the first disease from the disease pair). In general, the

majority of disease pairs with increased risk of the later diagnosed disease in both

orders of precedence were those in which both the pre-existing and later occurring

diseases were cancers, and also when both diseases were of the same organ.

The existence of inverse associations for the later-in-life diagnosed disease risk

may provide important insights into disease mechanisms and new opportunities for

disease prevention and therapy that focuses on increases in healthy lifespan rather

than concentrating efforts on reduction of risk for each particular disease alone.

Generally, the effect of dependence between risks of two diseases diminishes

with advancing age. This could be because senescence itself becomes a leading risk

factor of death in the oldest old, so that at the very old ages it matters less if a person

is healthy or sick, because her/his vulnerability to death is high anyway due to a

dramatic decline in the body’s overall resistance to stresses attributed to aging.

Identifying mutual relationships in age-associated disease risks is extremely

important since they indicate that development of seemingly very different cancer

and non-cancer diseases may involve common biological mechanisms. This knowl-

edge could help to develop disease prevention as an integrated field that targets an

increase in healthy lifespan rather than a simple reduction in the risk of a particular

health disorder. Moreover, a better understanding of the biological links between

different diseases/groups of diseases can open new therapeutic horizons. The
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observed mutual dependence of cancer and non-cancer disease onset could be used

for improvement of current models for forecasting future morbidity and mortality,

for planning medical expenditures, and for optimization of screening and preven-

tive strategies among older adults with multi-morbid conditions.

3.3.9 Comorbidity and Multimorbidity

The standard tool for measuring individual comorbidity is the Charlson comorbid-
ity index (CCI) (Charlson et al. 1987; Diederichs et al. 2011). The CCI has been

0

500

1000 Lung cancer HR=2.01
for Melanoma
1.5

Lung cancer HR=0.60
for Parkinson dis.
0.8

Lung cancer HR=0.64
for Alzheimer dis.
0.8

Lung cancer HR=1.43
for Myocardial Inf.
1.5

0

500

1000 Colon cancer HR=0.76*
for Arthritis
1

Breast cancer HR=1.87
for Melanoma
2

Breast cancer HR=0.54
for Alzheimer dis.
1.1

Prostate cancer HR=0.91*
for Diabetes
2.5

0

500

1000 Kidney cancer HR=3.28
for Renal
0.5

Pancreas cancer HR=2.17
for Diabetes
0.2

Alzheimer dis. HR=1.58
for Stroke
2

Myocardial Inf. HR=1.94
for Diabetes
3.7

0

500

1000 Myocardial Inf. HR=2.26
for Renal
3.7

Stroke HR=1.55
for Lung cancer
5.2

Heart Failure HR=1.34
for Hip Fracture
4

COPD HR=1.14
for Hip Fracture
2.5

0

500

1000

75 100

Asthma HR=2.83
for Lung cancer
2

75 100

Hip Fracture HR=2.60
for Parkinson dis.
6.5

75 100

Renal HR=1.40
for COPD
1.4

75 100

Ulcer HR=1.67
for Arthritis
1.5

Age

Unconditional and Conditional Incidence Rates

Fig. 3.12 Age-specific rates of disease incidence conditional on the onset of another disease

calculated using SEER-Medicare (squares) and the corresponding unconditional rates (dots).
Values on the plots are rescale factors. Rates for different diseases are rescaled to use the same

scale on all plots to facilitate comparison of rates for different diseases: the original rate can be

calculated by dividing the values obtained from plot by the rescale factor (Color figure online)

3.3 Results 79



described as a “valid method of estimating risk of death from comorbid disease for

use in longitudinal studies”. It is the most frequently applied index among other

health-related indices. However, the CCI has certain limitations with respect to the

prediction of health state and mortality in an elderly population (Testa et al. 2009;

Zekry et al. 2010). Specifically, the CCI does not take into account the severity of

major diseases, overestimates heavily weighted conditions (such as AIDS) rarely

encountered in the elderly, and underestimates some highly prevalent conditions

(such as heart failure and Alzheimer’s disease). In addition, since the mid-1990s,

active screening strategies and new approaches to cancer treatment (e.g., prostate,

breast, and cervical cancers) and changes in prevention and treatment of cardio and

cerebrovascular diseases have changed the contributions of diseases to mortality in

the U.S. elderly population. Therefore, the development of a high-precision tool for

the prediction of health status and mortality of older persons is required. The MFSU

data have the necessary information for developing such a tool. This new index is

referred to as the Adjusted for elderly population Multi-Morbidity Index (AMMI).

This index, like the CCI, is calculated by use of disease-specific weights, wd,

summed over all contributing diseases: C tð Þ ¼
X

d
wdId tð Þ, where the term Id(t)

indicates the presence or absence of the d condition in a patient, i.e., Id tð Þ ¼ 1when

a patient has the condition, and Id tð Þ ¼ 0 when he/she does not. The weights wd are

defined by considering the effect of individual diseases on the mortality rate. What

is new compared to the CCI is the set of contributing diseases and disease-specific

weights wd that are made specific to the elderly population. We selected 48 disease

conditions based on analysis of disease prevalence in the elderly population and

causes of death using Multiple Cause of Death data. Then we used the Cox

proportional hazard model with multivariate time-dependent predictions (i.e., indi-

vidual disease prevalence estimated from Medicare data) to estimate the weights

wd. As in the majority of approaches for construction of co- and multimorbidity

indices, disease-specific weights are simply rounded logarithms of hazard ratios of

the respective conditions on mortality. This computation requires evaluated indi-

vidual disease prevalence at all times of individual follow-up; therefore we used

several additional specifications: (i) 1 year was used as the time period before the

time point of interest to search for diagnosis codes, (ii) in the definition of the

incidence rate calculated using Medicare histories four base sources (inpatient,

outpatient, carrier-physician-supplier) were used, and (iii) both base and secondary

diagnosis codes were used. Two basic properties of the index need to be verified:

(i) variations across age, race, and gender strata; and (ii) associations between the

shape of the index, i.e., slope or curvature in its age pattern, and mortality. The

distributions of the indices for population subgroups are presented in Fig. 3.13. The

CCI and AMMI were empirically evaluated for specific birth cohorts and their age

patterns show that variation in the Charlson index over periods and cohorts are not

reflected in the corresponding plots for total mortality (Fig. 3.14). In contrast, the

AMMI fits much better.
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3.3.10 Predictive Population Models

Standard approaches for probabilistic forecasting of the age pattern of human

mortality, including the Lee-Carter method (Lee and Carter 1992) and its numerous

generalizations and improvements (Booth 2006), are based on quite clear and

simple assumptions and have been successfully applied in analyses of mortality

data of different countries. However, these approaches do not take into account that,

in population cohorts, trends in prevalence result from combinations of trends in

incidence, population at risk, recovery, and patients’ survival rates. Trends in the

rates for one disease also may depend on trends in concurrent diseases, e.g.,

increasing survival from CHD contributes to an increase in the cancer incidence
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rate if the individuals who survived were initially susceptible to both diseases. An

approach capable of resolving these limitations could focus on describing the

dynamics of health status for individuals in sub-cohorts with hazard functions of

morbidity and mortality dependent on health status. Below we consider two exam-

ples of such models. The first is a simple model in which the health state is

conditioned on age and the multimorbidity index discussed in the previous section.

The second describes health status in terms of disease prevalence.

The first approach has two components: the mortality model and the dynamic

model for AMMI. The mortality model incorporates AMMI as a covariate:

logit Prob death ¼ 1 C0;C3;Age; Ybjð Þð Þ ¼ uþ β0 � C0 þ β1 � C3 þ βAge

� Age� 70ð Þ þ βb � Yb � 1930ð Þ

In this model, C0, the comorbidity index in the last month, is the major predictor of

mortality. Its effect is linear in this logit regression model which yields an expo-

nential relation of mortality to C0. The exponential relation is expected because of

the way C0 is constructed with the HR evaluated using the Cox proportional hazard

model. This was also confirmed by two separate models we analyzed: (i) with

categorical AMMI (in which case the estimated pattern was close to linear) and

(ii) with individual diseases as predictors (in which the estimated weights were

close to those estimated using the Cox model). Second, C3 is the multimorbidity

index AMMI measured 3 months before the current month. Conditioning on

previous values of the index is important, because it captures the effect of increas-

ing comorbidity before death. Third, the effect of age is linear corresponding to a

gamma-Gompertz model of mortality. Fourth, Yb reflects the cohort effect. The

linear form for this effect is justified by preliminary modeling analyses with a

categorical cohort index that yielded an estimated pattern close to linear. The

second model component, a dynamic model for AMMI, is of the form:

Δ01 ¼ C0 � C1 ¼ uþ β1 � C1 þ βΔ � Δ13 þ βAge � Age� 70ð Þ þ βb � Yb � 1930ð Þ

with the same notation as in the mortality model. What is new here compared to the

mortality model is: (i) the outcome variable difference between AMMIs measured

in the current and last months; and (ii) one of the predictors difference between

AMMIs measured in previous months (ΔC ¼ C1 � C3 ). Parameter estimates for

these two models using the NLTCS-M data are presented in Table 3.5. It can be

seen that the estimated parameters for the multimorbidity index show an increasing

time trend as indexed by birth cohort. One explanation of this is an increasing

prevalence of diagnoses at earlier stages.

The model described above uses the multimorbidity index as an aggregated

characteristic of individuals’ health statuses. If the data are extensive (e.g., SEER-

M data), the health status can be described more precisely, e.g., using the set of

disease-specific indicator functions indicating the time-dependent prevalence of

selected diseases. Three dynamic models are required to describe the changes in
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individual health status during individual follow-up: models to predict mortality,

incidence, and recovery (or long-term remission). They are given by the equations:

logit Prob death ¼ 1 It; It�1
�� a,Yb
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which, respectively, model the probability of death in the next month, the incidence

of the k disease, and recovery/remission from the kth disease. Age and birth cohort

effects can also be incorporated (possibly non-linearly) into these models.

Table 3.5 Parameter

estimates for mortality and

dynamic models involving

AMMI

Parameter

NLTCS-medicare

Estimate p-value

Mortality model

Intercept –7.31 <0.0001

Recent AMMI 0.437 <0.0001

3-month-prior AMMI –0.154 <0.0001

Age 0.067 <0.0001

Birth cohort �0.004 0.37

Dynamic model for AMMI

Intercept 0.067 <0.0001

Recent AMMI �0.042 <0.0001

Difference of recent AMMI 0.079 <0.0001

Age 0.0068 <0.0001

Birth cohort 0.002 <0.0001
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This probability-of-death model was estimated using the NLTCS-M data.

As expected, the majority of diseases had positive effects on mortality. For exam-

ple, the odds ratio (OR) of heart failure was 2.33 (CI¼ 2.13–2.54), for myocardial

infarction—3.07 (CI¼ 2.70–3.48), for cardiac arrhythmia—2.14 (CI¼ 1.98–2.32),

for stroke—1.61 (CI¼ 1.47–1.77), for COPD—1.66 (CI¼ 1.52–1.81), for

Alzheimer’s disease—2.27 (CI¼ 1.99–2.6), and for metastatic cancer—6.86

(CI¼ 6.00–7.84). More than 100 significant interactions were found, which dem-

onstrated the non-additive effects of co-occurrence of diseases, with some effects

negative (antagonistic), e.g., diseases of peripheral veins and stroke, heart failure

and MTS; and some effects positive (synergistic), e.g., inflammatory bowel disease

and non-solid cancer, diabetes and alcohol abuse, cardiac arrhythmia and hyper-

tension, emphysema and diabetes, and chronic liver disease and chronic peptic

ulcer.

The effect of history was more important for acute than for chronic diseases, e.g.,

for myocardial infarction, estimates for each of the 3 months before death were: OR

(t� 1)¼ 5.96 (CI¼ 4.64–7.65), OR(t� 2)¼ 0.59 (CI¼ 0.41–0.84), and OR

(t� 3)¼ 0.69 (CI¼ 0.48–1.01), while for solid cancers with fast progression,

estimates were, respectively: OR(t� 1)¼ 2.48 (CI¼ 1.98–3.10), OR(t� 2)¼ 1.32

(CI¼ 1.01–1.73), and OR(t� 3)¼ 1.32 (CI¼ 1.06–1.64). Age (in single years) also

had a significant contribution: OR¼ 1.07 (CI¼ 1.065—1.075). The effect of time

was nonlinear, but quadratic with a maximum at 1999–2000.

Estimation of the incidence and recovery models showed that comorbidity (i.e.,

the presence and absence of comorbid diseases) was the main predictor of incidence

and recovery. For incidence, the ORs of the effects of comorbid diseases were in the

1.6–1.9 range. For recovery, the ORs of the effects of comorbid diseases were in the

0.6–0.8 range. Examples of specific effects of disease incidence and recovery are

given in Table 3.6. Note that no strong predictors were found for neoplasms

(non-strong predictors were low weight and anemia).

Table 3.6 Examples of the effects on disease incidence and recovery

Disease incidence Effect (OR)

Myocardial infarction Heart failure (1.81), Angina pectoris (1.70), age (1.03), time (0.97)

COPD Asthma (3.7), emphysema (4.4), heart failure (1.87)

Alzheimer’s disease Time (1.09), dementia (9.4), Parkinson’s (2.2), Cerebro (1.4)

Nephritis/nephrosis Time (1.08), age (1.02), renal (6.6), diabetes (2.0)

Anemia Age (1.04), time (1.04), low weight (1.77), cancer (2.0), IBD (2.7)

Osteoporosis/hip fracture Metastatic cancer (1.8), time (1.12), age (1.04), RA (2.1)

Disease recovery Effect (OR)

Cerebrovascular Plegia (0.38), time (1.02), age (0.98), dementia (0.71), hyperten-

sion (0.89)

Chronic liver disease/

cirrhosis

Alcohol abuse (0.59)

Anemia Heart failure (0.88), low weight (0.81), nonsolid cancer (0.74),

MTS (0.63)
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To validate the three-equation model, we divided the NLTCS-M cohort into two

subcohorts of equal size, thus yielding estimation and validation datasets. The

validation procedure consisted of two steps. First, we estimated the model using

the estimation dataset and then tested how well the fitted model predicts mortality

outcomes in the validation dataset. This procedure can be formalized in terms of

receiver operating characteristic (ROC) curves and the areas under the curves. The

plots in Fig. 3.15 provide the ROC curves and area under curve (AUC) estimates for

several models that differ by the set of predictors of mortality: (i) current disease

prevalences (i.e., individual indicators of all diseases used in the analysis),

(ii) disease prevalences and all paired interactions among them, (iii) current and

last month prevalences (i.e., 1-level history), and (iv) current and two previous-

month prevalences (two-level history). One can see that in all cases AUC> 0.88,

therefore we can conclude that the quality of prediction is excellent. As a second

step, we simulated individual trajectories using the estimated model using measures
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Fig. 3.15 ROC curves for the validation dataset
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at the initial wave of the validation cohort. These simulations show excellent

predictive performance for mortality outcomes in the first year (85–90%). For

longer time periods such as 5-years, the predictive accuracy deteriorates

(68–75%). This indicates that the incidence and recovery models could be

improved.

3.4 Conclusion

In this chapter, we presented a spectrum of analyses of many important aspects in

the biomedical demography of the U.S. population of older adults. All these

analyses were based on Medicare data, a powerful and largely underexplored

source of information about the health of the elderly population. Medicare data

represent the collection of individual records of health-related information about

established diagnoses and administrated medical procedures. In addition, Medicare

data represent the U.S. population of older adults. Our analyses demonstrated how

nonparametric and simple regression statistical methods allow researchers to ana-

lyze and evaluate many important health-related epidemiologic characteristics

valid at the national level. Specifically, the topics discussed in this chapter included

patterns of morbidity and mortality, recovery (or long-term remission), comorbidity

and multimorbidity, risk factors of disease incidence and mortality, and projection

modeling of health and mortality.

First, we analyzed the age-patterns of acute and chronic diseases in the elderly

using the NLTCS-M and SEER-M data. The results of our comparative analyses of

the age patterns evaluated from Medicare data with those obtained in other studies

suggested that the national age-specific incidence patterns can be adequately

evaluated from the Medicare data. We also discovered a series of new substantive

findings regarding the shape of age-patterns of the diseases and their time trends.

For example, males had higher rates of ACHD, heart failure, Parkinson’s disease,
skin melanoma, lung, and colon cancers, while females had higher rates of stroke

and asthma. Another example is that a significant 5-year decline was observed for

incidence rates of ACHD, stroke, heart failure, and prostate, lung (male) and colon

(female) cancers, while the rates of diabetes, ulcer, and Alzheimer’s disease

increased. Note that the estimates of time trends become especially important in

populations with increasing proportions of the elderly, for which maintaining good

health at advanced ages is important. While mortality trends have been studied

extensively, studies of morbidity trends are rare.

The dates of onset in these studies were identified using information collected in

the MFSU with specific assumptions corresponding to specific calculation algo-

rithms. Note that the date of onset of a certain chronic disease is a quantity which is

not defined as precisely as mortality. This uncertainty makes difficult the construc-

tion of a unified definition of the date of onset appropriate for population studies.

We compared several alternative definitions of the date of onset and identified the

computational approach that most closely describes data collected in other studies
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on incidence of diseases. What is important is that this issue is not purely method-

ological. Different approaches to disease onsets can be used in clinical practice for

different diseases. For example, the clinical criteria for circulatory disease onsets

used in other studies are quite different which could result in different incidence

rates. The diagnostic criteria of different heart studies are reviewed in the appendix

of ref. (NIH/NHLBI 2006). We have briefly discussed this in our recent paper

(Akushevich et al. 2012).

Analysis of the effects of comorbidity on disease onset showed that patients with

higher comorbidity had higher rates of ACHD, stroke, heart failure, Alzheimer’s
disease, and melanoma. In this approach, comorbidity is represented in the form of

the Charlson comorbidity index, a tool that allows the representation of comorbidity

by a single variable combining disease indicators with weights evaluated from their

effects on mortality. This representation of comorbidity is traditional, but it is only

one possible approach. The richness of the Medicare data motivated us to search for

more precise and detailed approaches for descriptions of co- and multimorbidity in

U.S. elderly population.

A first approach to the analysis of multimorbidity in the U.S. elderly population

developed in this chapter is based on the idea of dependent risks among geriatric

diseases. We considered the risks of new disease onsets for population groups with

a pre-existing condition. The risks of development of a new condition could be

higher or lower than those in the general population for many reasons. For example,

the effects of treatment of a prior disease can increase or decrease the risk of a later

disease; shared behavioral risks and pleotropic effects of genes could also increase

the risks of the later-developing diseases. A unified computational approach applied

to all diseases considered within the same analysis allowed us to create a unified

view of mutual interrelationships among the risks of cancer and non-cancer aging-

associated diseases. Direct and inverse dependences in geriatric disease risks were

observed among the U.S. elderly, confirming known and detecting new associations

for a wide spectrum of diseases. A better understanding of biological links between

different diseases (or between the groups of diseases—etiological or organ-specific)

to which this research contributes can provide new therapeutic approaches for

diseases with the shared pathological pathways.

Our second approach is based on the development of a new multimorbidity

index for the U.S. older adult population and estimated using information from

Medicare data. The stages of AMMI development included: (i) identification of

multimorbidity patterns (or disease clusters) most often occurring for older adults;

(ii) estimates of weights of specific diseases/disease clusters; and (iii) evaluating

disease indicators during individual follow-up.

Two predictive models for mortality and dynamics of health status then were

developed, estimated, and validated using Medicare data. The first model uses the

AMMI as a characteristic of health status and predicts mortality and changes in

AMMI in terms of their past values, age, and cohort. The second model includes

three components: conditional models for mortality, incidence, and recovery. The

models demonstrate excellent capabilities for predicting mortality rates. These

models can be used for short-term predictions of the health and mortality of the
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U.S. elderly population and for the analysis of “what-if” scenarios by consideration

of specific interventions, e.g., the strategies of secondary prevention, new thera-

peutic approaches, and projected Medicare policy changes.

Medicare data also can be used for evaluating the epidemiologic characteristics

of patient recovery via analysis of Medicare information during individual follow-

up for the cohorts of patients with a specific disease onset. Specifically, we analyzed

the rate of recovery of long-term remission by identifying patients who stopped

visiting doctors during a 5-year follow-up after disease onset. We found that these

patients (i.e., recovered individuals) had lower death rates than non-recovered

patients; therefore, patients who stopped visiting doctors are a healthier subcohort.

We also found that these patients had higher death rates than the general population

for all diseases considered; thus implying that complete recovery does not occur. To

our knowledge, this type of analysis has never been done before. The approach

opens new opportunities for developing predictive models with time-dependent

covariates representing health status. Such models could be further used to better

quantify the contribution of age-related diseases to healthy life expectancy and to

improve forecasts of health and mortality.

Medicare data are often linked to demographic surveys, thus allowing for joint

analyses of survey and claims data. Using information about ADLs and IADLs in

the NLTCS-M data, we identified cohorts of individuals with specific disabilities

and found that, among individuals with severe disabilities, there were higher rates

of stroke, heart failure (males), diabetes, asthma, and Parkinson’s disease, while

rates of breast and prostate cancers were higher for nondisabled or moderately

disabled individuals. Another possible approach considers variables measured in a

survey as potential risk factors of disease onsets (accessed from Medicare data) and

mortality. These effects can be evaluated within association studies between the

variables measured in the NLTCS-M and risks of all-cause mortality and morbidity

extracted from the MFSU. Each of the variables (representing daily living activi-

ties, physical activities, smoking, alcohol consumption, social activities, self-

reported comorbidity, health insurance, and medical providers and other groups

of variables) was tested for association with the risks of all-cause mortality and

morbidity extracted from the MFSU data. From this analysis, we identified the main

factors predicting disease incidence and obtained a description of higher risk groups

of major geriatric diseases in terms of variables representing distinct features of

human aging. Groups of parameters for physical activity, tobacco consumption,

comorbid conditions, demographic characteristics, health insurance, and medical

care providers showed significant contributions to increasing or decreasing risk of

incidence of the diseases considered. The most influential of potentially preventable

lifestyle risk factors can be detected using this approach and applied to further

deeper analyses, including other data sets with detailed risk factors. Potentially, the

approaches developed, and results obtained, can be applied to developing more

individualized forecasts and more individualized prevention strategies.

The utility of the Medicare data as demonstrated in our study is important

because there are few data sources to study health effects at advanced ages in the

national population. For example, heart disease and stroke account for more than
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40% of all deaths among persons aged 65–74 years and almost 60% of those aged

85 years and older. However, there are no nationally representative data available

on incidence, severity, or recurrence of acute coronary or stroke events in either the

inpatient or outpatient settings. Therefore, Medicare-based datasets could be very

useful for studying the epidemiology and biodemography of aging-related diseases

and associated medical costs in the U.S. elderly population.
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Chapter 4

Evidence for Dependence Among Diseases

Anatoliy I. Yashin, Svetlana V. Ukraintseva, Igor Akushevich,

Alexander M. Kulminski, Konstantin G. Arbeev, and Eric Stallard

4.1 Introduction

Understanding demographic and public health consequences of advances in med-

ical technology and health care, climate change, industrial development, and other

large-scale factors, is important for maintaining good population health. Interaction

of these external factors with age-changes in the human body (e.g., due to ontoge-

netic programming or physical senescence) may affect susceptibility to complex

diseases and generate dependence among them. Studying mechanisms of such

dependence opens new opportunities for improving population health by develop-

ing adequate preventive measures and treatment strategies which could minimize

the chances of harmful side effects. Indeed, factors associated with increased

vulnerability to one disease may not always promote development of another

disorder, but sometimes may be protective against it, or even favor overall survival

and longevity, if the protective effect outweighs the detrimental one. If so, then a

reasonable prevention strategy might include targeting the risk of death from all

causes combined rather than the risks of separate diseases independently of each

other, as implied in most today’s preventive programs. A better understanding of

the occurrence and consequences of trade-offs between major health disorders/

causes of death may therefore have important health care implications.

To compare the effects of public health policies on a population’s characteris-
tics, researchers commonly estimate potential gains in life expectancy that would

result from eradication or reduction of selected causes of death. For example,

Keyfitz (1977) estimated that eradication of cancer would result in 2.265 years of

increase in male life expectancy at birth (or by 3% compared to its 1964 level).

Lemaire (2005) found that the potential gain in the U.S. life expectancy from cancer

eradication would not exceed 3 years for both genders. Conti et al. (1999) calcu-

lated that the potential gain in life expectancy from cancer eradication in Italy

would be 3.84 years for males and 2.77 years for females.
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All these calculations assumed independence between cancer and other causes

of death. The use of such an assumption would be completely justified more than a

century ago when the leading causes of death were infectious diseases. However,

for today’s populations in developed countries, where deaths from chronic

non-communicable diseases are in the lead, this assumption might no longer be

valid. An important feature of such chronic diseases is that they often develop in

clusters manifesting positive correlations with each other. The conventional view is

that, in a case of such dependence, the effect of cancer eradication on life expec-

tancy would be even smaller. As Keyfitz (1977) wrote: “since the most common

kind of dependence must be a positive one, people saved from cancer would be

more susceptible to heart and other diseases”. The directions (positive or negative)

of correlations among diseases can be empirically estimated using data on multiple

causes of death.

The correlation between causes of death can be evaluated using the U.S. Data on

Multiple Causes of Death (http://www.cdc.gov/nchs/products/elec_prods/subject/

mortmcd.htm#1999-2002). The importance of such analyses was first demonstrated

in Stallard (2002) wherein associations between diseases and their secular trends

were evaluated by examining statistics on the joint distributions of causes of death

for the years 1980, 1990, and 1998. Estimating ratios of the observed to the

expected age-standardized joint frequencies of each pair of 15 selected conditions,

Stallard found 57 associations or positive correlations of the disease indicator

variables. He also demonstrated that Alzheimer’s disease accompanies cancer

deaths significantly less frequently (up to five times less) than expected. Stallard

argued that any analysis of cause-specific mortality that does not account for the

joint occurrence of multiple diseases among elderly decedents, as well as the

difficulties inherent in selecting one of these diseases as the underlying cause,

will be incomplete.

In this chapter, we investigate dependencies among major complex health

disorders of the elderly using the Multiple Cause of Death (MCD) data, with

emphasis on potential trade-offs between cancer and other diseases. We evaluate

frequencies and associations among the specific diagnoses that appear most often in

death certificates and are overall responsible for the majority of deaths in the U.S. to

explore the magnitudes of correlations among causes of death, evaluate their

temporal trends, and suggest plausible interpretations. Then we review experimen-

tal findings about connections between cancer and aging, as well as evidence of

trade-off like relationships between cancer and longevity, and between cancer and

other diseases in humans, to support our results with potential biological

explanations.

4.2 Data and Methods

The Multiple Cause of Death (MCD) data files contain information about underly-

ing and secondary causes of death in the U.S. during 1968–2010. In total, they

include more than 65 million individual death certificate records. The information
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available in death certificates includes the date of death, geographic location

(region, state, county, division) of death, place of residence (region, state, county,

city, and population size), sex, race, age, marital status, state of birth, and origin of

descent. In the present study, we used data for the period 1979–2004. The cause of

death fields were coded using the ICD-9 for 1979–1998, and the ICD-10 for 1999

and later. The data were collected from death certificates filed in the vital statistics

offices of each state and the District of Columbia.

The list of diseases of interest includes acute coronary heart disease (CHD),

stroke (acute cerebrovascular accident, CVA), cancer (malignant neoplasm), dia-

betes mellitus, asthma, Parkinson’s disease (PD) and Alzheimer’s disease (AD).

These are represented by the following ICD-9 and ICD-10 codes: Cancer, for all

sites combined: ICD-9 (140–208) and ICD-10 (C00–C97); acute CHD: ICD-9

(410, 411, 413) and ICD-10 (I20–I24); Stroke (CVA): ICD-9 (431, 436) and

ICD-10 (I61, I64); Diabetes mellitus (excluding gestational): ICD-9 (250, 648.0,

V77.1) and ICD-10 (E10–E14); Asthma: ICD-9 (493) and ICD-10 (J45–J46); PD:

ICD-9 (332) and ICD-10 (G20, F02.3); AD: ICD-9 (331.0 and 290.1) and ICD-10

(F00.x, G30.x).

Note that stroke (CVA) can also be represented by a broader number of ICD-9

and ICD-10 codes. For example, in the ICD-10, the whole group of I63.x codes

refers to a cerebral infarction (WHO 2007; Kokotailo and Hill 2005). We, however,

deliberately omitted this group to maintain better correspondence between the

ICD-9 and the ICD-10 based on the available codes. That is, ICD-10 codes I63.x

generally correspond to ICD-9-CM (an extended version of ICD-9) codes 433.x1

and 434.x1 (when the fifth digit is 1), both representing cerebral infarction. The fifth

digits were, however, unavailable in the MCD data, so the use of the ICD-9 codes

without the fifth digit allows only approximate correspondence between the two

coding systems (e.g., using ICD-9 (431, 436, 433, 434) and ICD-10 (I61, I63, I64)

for stroke).

The frequencies of diseases as well as joint disease frequencies are calculated as

ratios of (1) the total numbers of the corresponding ICD codes or their selected

combinations that appeared on death certificates of the selected population to

(2) the total numbers of deaths. Since several diseases can appear on the same

death certificate as underlying or contributory causes of death, the frequencies are

summed to n� 100% where n is the mean number of diseases per death certificate.

Frequencies defined in this way take into account the contribution of secondary

causes of death and illustrate the relative burden of each disease.

Bivariate correlations for the extent of co-occurrence/non-co-occurrence of two

of the diseases listed above were calculated in terms of the above frequencies

(denoted f1 and f2) and joint frequencies ( f12) which reflect patterns of

co-occurrence/non-co-occurrence of each pair of diseases. The correlation coeffi-

cient was calculated using the formula

r ¼ f 12 � f 1f 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1 1� f 1ð Þf 2 1� f 2ð Þp :
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This coefficient varies between�1 andþ1. The border value r¼þ1 corresponds to

a case in which the codes of the two conditions appear only together, then f12¼f1¼f2
and r¼ 1; The correlation is equal to �1 when in each death record there is a code

from one (and only one) of two considered conditions, in which case f12¼ 0,
f1¼ 1� f2, and r¼�1. The correlation is equal to 0 when codes of two groups

appear independently. Then f12¼ f1f2 and r¼ 0.

4.3 Results

4.3.1 Empirical Analyses Reveal Negative Correlations
among Major Causes of Death

Results of the analyses of the MCD data are shown in Figs. 4.1, 4.2, and 4.3.

Figure 4.1 shows the temporal trends in the proportion of deaths from the nine ICD

diseases identified above for the years 1979–2009.
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Fig. 4.1 Time trends in proportions of deaths from nine diseases from 1979 to 2009 (Note:

Because the numbers are large, all standard errors are close to zero)
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It can be seen from this figure that the frequency of deaths from acute CHD

declined dramatically during the 31-year period, and the decline was relatively

steady for the entire interval. The proportion of deaths from stroke (CVA) began to

decline later, in the late-1990s. By contrast, the proportions of deaths from diabetes

and AD increased over time, and those of cancer, asthma, and PD did not show

substantial trends during this time period.

Figure 4.2 displays, for each year from 1979 to 2009, the estimated negative

correlations between deaths from cancer and the co-occurrence/non-co-occurrence

of selected diseases together with their time trends for the entire time period. It can

be seen from this figure that there is a negative dependence for asthma, PD, AD,

diabetes, CVA, and CHD. For asthma and diabetes, this correlation remained

relatively constant during the entire time interval. For CVA, this correlation was

relatively constant until 1998. Then its absolute value started to decline. For PD, its

absolute value increased slightly but steadily during the entire period. A much

faster increase in the absolute value of the correlation is evident for AD. The

correlation between CHD and cancer has the highest absolute value. It also shows

a substantial decline during the observational period.
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Fig. 4.2 Time trends in (negative) correlations between deaths from cancer and a number of other

diseases between 1979 and 2009 (Note: Because the numbers are large, all standard errors are

close to zero)
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Figure 4.3 shows estimates of joint frequencies of cancer and other diseases, as

well as their time trends. One can see from this figure that among six diseases

negatively correlated with cancer, diabetes most frequently appears together with

cancer in the death certificates, and this frequency has a stable increasing time

trend. The joint frequency of cancer and AD was close to zero in 1998. Then it

increased steadily for the entire time interval, reaching 0.25 in 2004. The joint

frequencies of PD/cancer and asthma/cancer show slight increases but remained

small for the entire time interval. The frequency of CHD/cancer declined and

CVA/cancer first increased and then declined.

4.3.2 A Dependent Competing Risk Model Capturing
Negative Correlations Between Causes of Death

The simplest model describing negative correlations between competing risks is the

multivariate lognormal frailty model. We illustrate the properties of such model for

the bivariate case. The outline of this model is as follows.
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Fig. 4.3 Time trends in joint frequencies of deaths from cancer and selected diseases between

1979 and 2009 (Note: Because the numbers are large, all standard errors are close to zero)
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Let μi Zi; xð Þ ¼ Ziμ0i xð Þ, i¼ 1, 2, be two random hazards in the dependent

competing risk problem with two risks. Here μ0i(x) are the baseline hazards at

age x and Zi, i¼ 1, 2, are frailties, which are correlated random variables having the

bivariate lognormal distribution:

Z1

Z2

� � � BVLogN
m1

m2

� �
;

σ21 ρzσ1σ2
ρzσ1σ2 σ22

� �� �
:

Here m1, m2, σ21, σ
2
2, and ρz are the means, variances, and correlation coefficient for

the logarithms of the two frailties (i.e., they specify the associated bivariate normal

distribution). The means, variances, and correlation coefficient for the frailties Zi,
i¼ 1, 2, are calculated from these parameters as follows:

mzi ¼ EZi ¼ emiþ
σ2
i
2 , s2i ¼ Var Zið Þ ¼ e2miþσ2i eσ

2
i � 1

� �
, ρz ¼ corr Z1; Z2ð Þ

¼ eρzσ1σ2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ

2
1 � 1

� �
eσ

2
2 � 1

� �q , i ¼ 1, 2:

Traditionally, it is assumed in frailty models that the life spans are conditionally

independent given the frailties and mz ¼ mz1 ¼ mz2 ¼ 1. Simulation studies com-

paring different estimation strategies for such bivariate lognormal models are

presented in Wienke et al. (2005). Bivariate lognormal frailty models, in contrast

to the widely used gamma-frailty models (Yashin et al. 1995), allow for negative

correlations between frailties as well as between life spans. Examples of positive

and negative correlations between frailties and between life spans are presented in

Fig. 4.4 (using Gompertz baseline hazard ratesμ01 xð Þ ¼ μ02 xð Þ ¼ μ0 xð Þ ¼ aebxwith
numerical values of the parameters a and b typical for human mortality data).

In this figure, when there is a positive correlation between frailties (graphs on the

right side of the figure), the bivariate distributions of both frailty and life spans are

spread along the main diagonal. However, when the correlation is negative (graphs

on the left side of the figure), these distributions are spread in the directions

opposite from the main diagonal. These effects are more pronounced in the frailty

distributions than in the distributions of life span.

Even in this simple case there are several alternative ways to affect the marginal

distribution of life span (which will further affect mortality from a specific cause).

One alternative deals with a reduction of the baseline hazard. Another involves

transformation of frailty distribution. These two strategies of reducing the mortality

rate from one cause will produce different effects on the mortality rate from the

other cause (Yashin and Iachine 1996). This model may be appropriate for illus-

tration of the effects of dependence between competing risks. However, it is too

simplified to be used for evaluation of consequences of disease prevention and

treatment for which more sophisticated models of dependent competing risks that

include the effects of changes in physiological and other variables affecting risks of

diseases are necessary.
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4.4 Discussion

The twentieth century was characterized by persistent increases of survival rates in

the populations of the developed world. These changes resulted from improvements

in the quality of nutrition, living conditions, and progress in medical technology and

health care. The effects of these improvements on population health were, however,

complicated. For example, the mortality rate from CHD substantially declined

(about threefold) during the second half of the last century. The overall cancer

mortality rate, however, increased until the 1990s and only slightly declined

afterwards in the U.S. (CDC 2007). The decline in the incidence rate for CHD

first appeared in the 1950s. Only several decades later did a decline become visible

for the incidence rate of cancer (Sytkowski et al. 1996; IARC 1965–2003).

Despite substantial progress in understanding factors and mechanisms respon-

sible for such differences in trends among diseases, many important details remain

unclear. The discordance of time trends in characteristics describing the two major

human health disorders, cancer and CHD, was initially explained by the existence

of common susceptibility factors. In particular, it was hypothesized that individuals
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spans (LS) in the bivariate lognormal frailty model with different frailty distributions
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whose lives were saved from cardiovascular death remained more susceptible to

cancer than other individuals in the population. Although it has long been recog-

nized that existing trends and dependence between other diseases and cancer can

affect trends in cancer morbidity and mortality, no detailed analyses of cancer

trends have been conducted that account for this possibility.

Studying these trends epidemiologically requires a dependent competing risk

model. Using such a model, Rothenberg (1994) established that the contribution of

the CHD mortality decline to the increase in cancer mortality has been small and

does not account for the increasing age-specific risk of cancer among older persons.

Llorca and Delgado-Rodriguez (2001) used a Markov chain model to analyze

interrelations between CVD, CHD, and cancer in Spanish females. They found

that declines in CVD and CHD mortality did not have an impact on cancer

mortality. Although the absence of positive correlations between cancer and other

selected diseases did not explain time trends in cancer rates for the old and oldest-

old adults, it suggested a possible negative correlation between deaths from cancer

and from other causes. The results of available studies of connections between

cancer and aging, as well as between cancer and other diseases, suggest that such a

negative correlation may have a strong biological basis.

4.4.1 Evidence of Trade-Offs Between Cancer and Aging

Studying the role of the p53 gene in the connection between cancer and cellular

aging, Campisi (2002, 2003) suggested that longevity may depend on a balance

between tumor suppression and tissue renewal mechanisms. Tyner et al. (2002) and

Donehower (2002) showed that mice carrying the p53 mutation with a phenotypic

effect analogous to the up-regulation of this gene have a lower risk of cancer

development but their life span is reduced and accompanied by early tissue atrophy.

Interestingly, the reduction of cancer mortality in super p53 mice was not accom-

panied by a decline in longevity in contrast to Donehower’s p53 mutant mice

(Garcia-Cao et al. 2002). This problem, typical of dependent competing risks,

emphasizes the importance of studying various pathways of reduction of cancer

mortality. Long-living mutant mice, p66Shc�/�, have shown an impaired p53
apoptotic response (Migliaccio et al. 1999). Introducing the null p53 allele has

been shown to protect Ku80�/� and mTR�/� mice from premature aging (Vogel

et al. 1999; Chin et al. 1999), indicating that the senescence phenotypes were p53-
dependent (Lim et al. 2000). Garcia-Cao et al. (2002) examined properties of “super

p53mice”. This type of mice was produced by transgenic introduction of one or two

copies of p53. The mice were tumor resistant and did not exhibit any traits

consistent with accelerated aging. Bauer et al. (2005) and Bauer and Helfand

(2006) found that a reduction of p53 activity in flies leads to lifespan extension.

Although the mechanism by which p53 regulates lifespan remains to be determined,

these findings highlight the possibility that careful manipulation of p53 activity

during adult life may result in beneficial effects on healthy lifespan. Other tumor
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suppressor genes are also involved in regulation of longevity. Golubovski

et al. (2006) examined survival in populations of Drosopila with a mutated lgl
gene. Its ortolog, Hugl-1, is found in humans where it is mutated in 75% of gut and

prostate tumors. In addition to tumor suppression, the product of the lgl gene is an
important part of the cytoskeleton and membranes. It participates in regulation of

cycline E in the cell cycle, and plays an important part in the system transporting

macromolecules. The study showed that animals heterozygous on the loss-of-

function lgl tumor suppressor gene display a clear pre-adult viability advantage

under stressful conditions (high 29 �C and low 16 �C temperatures). The survival

and longevity advantage effect of the lgl loss-of-function is also observed in

temperature stress conditions. One possible explanation of this stress-adaptive

effect of reduced tumor suppressor dose might be a better resistance of Drosophila
post-mitotic cells to a stress-associated apoptosis at old ages. The opposite mani-

festation of apoptotic and growth signaling pathways in cancer and aging was also

reviewed in Ukraintseva and Yashin (2003a, b, 2004).

In humans, Dumont et al. (2003) demonstrated that a replacement of arginine

(Arg) by proline (Pro) at position 72 of human p53 decreases its ability to initiate

apoptosis, suggesting that these variants may differently affect longevity and

vulnerability to cancer. Van Heemst et al. (2005) showed that individuals with

the Pro/Pro genotype of p53 corresponding to reduced apoptosis in cells had

significantly increased overall survival (by 41%) despite a more than twofold

increased proportion of cancer deaths at ages 85þ, together with a decreased

proportion of deaths from senescence related causes such as COPD, fractures,

renal failure, dementia, and senility. It was suggested that human p53 may protect

against cancer but at a cost of longevity. Orsted et al. (2007) examined survival

among carriers Arg/Pro and Pro/Pro versus Arg/Arg genotypes of p53. The authors

found an increase in median survival of 3 years for Pro/Pro versus Arg/Arg

homozygotes which was not due to a decreased risk of cancer, but rather to

increased survival after a diagnosis of cancer or other life-threatening disease,

which may reflect a better ability to cope with stress in individuals with reduced

apoptosis.

Other biological factors may also play opposing roles in cancer and aging and

thus contribute to respective trade-offs (Ukraintseva et al. 2016). E.g., higher levels

of IGF-1 were linked to both cancer and attenuation of phenotypes of physical

senescence, such as frailty, sarcopenia, muscle atrophy, and heart failure, as well as

to better muscle regeneration (Vasan et al. 2003; Renehan et al. 2004; Vinciguerra

et al. 2010; Werner and Bruchim 2012; Sonntag et al. 2012; Ungvari and Csiszar

2012).

4.4.2 Trade-Offs Between Cancer and Other Diseases

The connection between cancer and longevity may potentially be mediated by

trade-offs between cancer and other diseases which do not necessarily involve
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any basic mechanism of aging per se. In humans, it could result, for example, from

trade-offs between vulnerabilities to cancer and AD, or to cancer and CVD

(Ukraintseva et al. 2010; Tabares-Seisdedos et al. 2011; Kulminski et al 2011,

2013; Tabares-Seisdedos and Rubenstein 2013; Yashin et al. 2015; Ukraintseva

et al. 2016). There may be several biological mechanisms underlying the negative

correlation among cancer and these diseases. One can be related to the differential

role of apoptosis in their development. For instance, in stroke, the number of dying

neurons following brain ischemia (and thus probability of paralysis or death) may

be less in the case of a downregulated apoptosis. As for cancer, the downregulated

apoptosis may, conversely, mean a higher risk of the disease because more cells

may survive damage associated with malignant transformation. It was shown that

neurons die from apoptosis in oxygen-deprived brains, and a lower activity of the

apoptotic signal leads to better survival of neurons after the stroke-induced ische-

mia (Barinaga 1998). Results of experimental studies suggest that medicated

suppression of apoptosis may improve survival and recovery after stroke (Rosen-

berg et al. 2005; Harrison 2007; Kim et al. 2007; Fisher et al. 2006). On the other

hand, the reduced apoptotic activity was shown to increase resistance of malignant

tumors to anti-cancer therapy (Haffty and Glazer 2003). The trade-offs between

cancer and various forms of CVD also may in part be related to the use of

medications (Messerli et al. 2013). Also, the role of the apoptosis may be different

or even opposite in the development of cancer and Alzheimer’s disease (AD).

Indeed, suppressed apoptosis is a hallmark of cancer, while increased apoptosis is

a typical feature of AD (Lee et al. 2012; Hanahan and Weinberg 2011). If so, then

chronically upregulated apoptosis (e.g., due to a genetic polymorphism) may

potentially be protective against cancer, but be deleterious in relation to AD.

4.4.3 Time Trends in Negative Correlations Between Cancer
and Other Diseases

The differential activity of apoptosis might be one factor contributing to the

negative correlation between cancer and CHD or stroke. The observed weakening

of this negative correlation over time could also be explained with the same

concept. It is possible that those who survived stroke or MI are generally more

resistant to apoptosis than those who didn’t, and as such they may be relatively

more vulnerable to cancer, as compared to those who died from MI or stroke. If so,

then improvements in survival from stroke and MI may potentially contribute to a

decline (in the absolute value) of the correlation between deaths from cancer and

CHD over time shown in Fig. 4.2. It may happen as well that cancer treatment,

which commonly induces apoptosis (e.g., with chemo or radiation therapy),

increases the risk of stroke and CHD among cancer survivors and thus contributes

to the weakening of the negative correlation between the diseases. The decline in

absolute value of the negative correlation may also be the result of increased
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survival. This is because when individuals live longer, the chances of acquiring the

additional co-morbidity increase.

Besides the pairs, cancer-CHD and cancer-CVA, the most prominent temporal

trend in the analyses reported above was that for the correlation between cancer and

AD. A strengthening of this negative correlation over time could occur, for exam-

ple, if cancer treatment (e.g., with cytostatic drugs) is somehow protective

against AD.

Additional analyses show that mortality from cancer may have a positive

correlation with some diseases as Keyfitz (1977) expected. The presence of such

a correlation may mask the effects of reducing mortality from cancer on total

mortality and life expectancy for certain treatment strategies. However, as we

mentioned above, the presence of a positive correlation between causes of death

does not exclude the possibility of a treatment that will reduce mortality from both

causes. The search for common susceptibility factors of external or internal origin

could be the key for development of such a treatment strategy.

It is likely that, during the life course, the human organism undergoes the

influence of factors capable of promoting both positive and negative correlation

among diseases. Which way the co-morbidity pattern will develop probably

depends on duration and levels of exposure to these factors during certain periods

of an individual’s life course. Studying these factors and the mechanisms of their

action will help to better understand the regularities of aging-related declines in

human health/well-being/survival status, and leading to more accurate evaluations

of the consequences of interventions aiming to improve it.

4.4.4 Cancer and Anti-aging Interventions

Increased longevity can be associated not only with increased but also with

decreased chances of cancer. Although the possibility that the rate of physiological

aging can be significantly modified with some treatment is still being debated,

several experimental studies demonstrated the possibility of simultaneous shifts of

trajectories of cancer incidence and survival rates to the right under some interven-

tions (Anisimov et al. 1987, 1998, 2000, 2001; Yashin et al. 2001). Treatment with

L-DOPA (3,4-dihydroxy-L-phenylalanine) of female C3H/Sn mice increased their

maximal life span together with a significant increase in tumor latency (Dilman and

Anisimov 1980). The monoamine oxidase inhibitor Deprenyl (an anti-Parkinson’s
treatment) increased the life span of experimental mice, rats, and dogs (Ivy

et al. 1994; Kitany et al. 1994; Piantanelli et al. 1994) and also inhibited the

development of spontaneous and induced tumors (Kitani et al. 1994; ThyagaRajan

et al. 1995; ThyagaRajan and Quadri 1999). Synthetic pineal tetrapeptide

ALA-GLU-ASP-GLY (Epithalon) increased the life span of CBA mice and

suppressed spontaneous neoplasm development (Anisimov et al. 2000). The most

popular to-date “anti-aging” intervention, caloric restriction, often results in

increased maximal life span along with reduced tumor incidence in laboratory
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rodents (Weindruch and Walford 1982; Blackwell et al. 1995). In Sheldon

et al. (1995), an increase in lifespan of the food restricted animals was achieved

primarily by a decrease in incidence and delay of onset of fatal tumors, of which

lymphoma was the most prominent. Because the rate of apoptosis was significantly

and consistently higher in food restricted mice regardless of age, James et al. (1998)

suggested that caloric restriction may have a cancer-protective effect primarily due

to the upregulated apoptosis in these mice.

4.5 Conclusion

Results of empirical analyses of MCD data revealed negative temporal correlations

between deaths due to cancer and other complex diseases that are also major causes

of death in the elderly. The negative correlations between deaths due to cancer and a

number of other diseases indicate that individuals susceptible to cancer may be less

susceptible to these diseases. These associations suggest the possibility of getting

an additional (indirect) contribution to longevity increase from eradication or

reduction of mortality from cancer. Indeed, those individuals whose lives were

saved from cancer deaths could be more resistant to other diseases, which will

ultimately result in additional longevity increases. The reality, however, is much

more complicated, because the features of survivors after treatment depend on how

the cancer treatment has been performed. The problem is well known to specialists

in dependent competing risks: the effect of reduction or elimination of a selected

risk on other risks depends on how such reduction or elimination was performed.

The connection between cancer and longevity may be modified by trade-offs

between cancer and aging, or between cancer and other common diseases, such as

AD, CHD, and stroke, among others. One potential biological mechanism under-

lying the negative correlation among cancer and other diseases could be related to

the differential role of apoptosis in the development of these diseases.
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Chapter 5

Factors That May Increase Vulnerability
to Cancer and Longevity in Modern Human
Populations

Svetlana V. Ukraintseva, Konstantin G. Arbeev, Igor Akushevich,
Alexander M. Kulminski, Eric Stallard, and Anatoliy I. Yashin

5.1 Introduction: Economic Prosperity, Longevity,
and Cancer Risk

According to the IARC (International Agency for Research on Cancer, WHO) data,

SEER, and other epidemiological sources, the overall cancer incidence rate is

generally higher in the more developed regions of the world (Figs. 5.1a, 5.1b,

5.1c, 5.2a, 5.2b and 5.3).1 It has also increased during the second half of the

twentieth century around the globe in association with economic progress and the

spread of the Western lifestyle (Figs. 5.2 and 5.4) (CI5 1966–2013; Ferlay

et al. 2013; Howlader et al. 2014; Ries et al. 2000; Jemal et al. 2008, 2011;

Ukraintseva et al. 2008). The higher cancer risk in more developed countries is

largely attributed to the higher incidence rates of many common cancer sites

(especially, lung, male prostate, female breast, colon, melanoma, kidney, pancreas,

1 By “cancer risk” in this chapter, we refer to the risk for all cancers combined, if not stated

otherwise. In this regard, one needs first to explain why we believe that it is appropriate to discuss

common risk factors for overall cancer, considering that “cancer” is the generic term for more than

100 diseases, each characterized by specific etiology, pathogenesis, and tissue localization. The

development of cancer has multiple causes, including genetic predisposition, infectious agents,

and exposure to chemical or physical carcinogens. If so, then how could we discuss the risk factors

for overall cancer? As far as cancer is concerned, this is justified because most cancers share

common key features or hallmarks. They include uncontrolled abnormal growth of cells, their

potential immortality due to evasion of apoptosis, de-differentiation, and capacity for invasion and

metastasis (Ukraintseva and Yashin 2003b; Hanahan and Weinberg 2000, 2011). These common

features suggest that there may exist common risk factors for the different cancers. For example,

chronic inflammation might be one such factor, because it facilitates almost all cancer features

described above (Coussens and Werb 2002; Coussens et al. 2013). In this chapter, we mainly

discuss common risk factors for cancer, especially those linked to economic prosperity and the

Western lifestyle and those that may influence both individual vulnerability to cancer and aging/

longevity in humans.

© Springer Science+Business Media B.V. 2016
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leukemia, non-Hodgkin lymphoma (NHL), male bladder, and female thyroid and

uterus) in these countries (Fig. 5.1) (CI5 1966–2013; GLOBOCAN 2012).

After a long-term increase, the incidence rates for all cancer sites combined

showed a deceleration or a decline starting in the 1990s in some developed

countries, especially in the U.S., and mostly in males (CI5 1966–2013; Ries

et al. 2000; Ferlay et al. 2013; Howlader et al. 2014; Edwards et al. 2014)

(Fig. 5.2a and Fig. 5.2b). In the U.S., the decline was largely due to decreasing

rates of some of the common cancer sites (male lung and prostate, female breast and

cervix, and colon and stomach in both sexes) (Howlader et al. 2014; Edwards

et al. 2014; Jemal et al. 2008, 2013). The reference is usually made to declining

exposure to tobacco smoking for lung cancer, use of screening with removal of

precancerous polyps for colorectal cancer, controlling the H. pylori for stomach
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Fig. 5.1a Age-standardized cancer rates (per 100,000): all cancers but skin. More vs. less

developed regions GLOBOCAN 2012 (Ferlay et al. 2013), http://globocan.iarc.fr, Section of

Cancer Surveillance (accessed 9/15/2014)
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Fig. 5.2a Trends in all-cancer incidence rates in selected countries: age-standardized rate (world)

per 100,000: (a) men, (b) women. GLOBOCAN 2012 (Ferlay et al. 2013), http://globocan.iarc.fr,

Section of Cancer Surveillance (accessed 9/15/2014)
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cancer and papilloma virus infection for cervix cancer, reduced HRT use for breast

cancer, and decreased detection due to recent leveling off of the screening for breast

and prostate cancers. However, for the majority of other common cancer sites the

incidence rates continued to increase in the U.S., for which explanations have not

been fully elucidated (CI5 1966–2013; Jemal et al. 2008, 2013; Ukraintseva

et al. 2008; Edwards et al. 2014).

The overall cancer risk has continued to increase in most countries, especially in

quickly developing ones, and in countries with a relatively recent history of rapid

economic growth and adoption of the Western lifestyle (e.g., Japan, Singapore, and

some East European Countries). This increase involved multiple cancer sites, such

as thyroid, melanoma, kidney, pancreas, leukemia, liver, myeloma, male NHL,

female uterus, and childhood cancer, among others (CI5 1966–2013; Ukraintseva

et al. 2008; Jemal et al. 2011; Ferlay et al. 2013; Edwards et al. 2014).

Currently, the overall cancer incidence rate (age-adjusted) in the less developed

world is roughly half that seen in the more developed world (Fig. 5.1a, 5.1b, 5.1c)

(Jemal et al. 2011; Ferlay et al. 2013). The age curves of the cancer incidence rates

displayed in Fig. 5.3 suggest that factors linked to economic prosperity may

be more important contributors to the differences in cancer risk between more

and less developed regions than ethnic, geographic, and climate related factors.

Fig. 5.3 Age-patterns of cancer incidence rate (all sites, but skin), males and females, 1988–1992,

average annual (CI5 1966�2013). More developed regions in comparison with less developed

ones
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For countries with similar levels of economic development but different climate

and ethnic characteristics (e.g., West Germany vs. Australia), the cancer rate

patterns look much more similar than for the countries that share the same geo-

graphic location, climate, and ethnic distribution, but differ in the level of economic

development (e.g., East vs. West Germany before reunification). This suggests that

different countries may share common factors linked to economic prosperity that

could be primarily responsible for the modern increases in overall cancer risk. What

are these factors?

Traditional explanations of the higher overall cancer incidence rates in the more

developed world involve population aging, improved cancer diagnostics, and

elevated exposure to carcinogens. Population aging (increases in the proportion

of older people) may indeed partly explain the rise in the global cancer burden

(Jemal et al. 2011); however, it cannot explain increases in age-specific cancer

incidence rates over time (Fig. 5.4). Improved diagnostics and elevated exposures

to carcinogens may explain increases in rates for selected cancer sites, but they

cannot fully explain the increase in the overall cancer risk, nor incidence rate trends

for most individual cancers (Jemal et al. 2008, 2013).

Could life in affluent societies make people more susceptible to cancer, so that

the increased overall cancer risk there would be a result of, on average, higher
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individual vulnerability to cancer rather than merely the result of improved diag-

nostics and a higher carcinogenic burden?

Human longevity (measured both by increases in life expectancy and increases

in proportions of the longest lived people) also dramatically increased during the

second half of the twentieth century, along with economic progress and the spread

of the Western lifestyle, with a dominance of adult and oldest-old mortality

reduction (Vaupel et al. 1998; Canudas-Romo 2010). Typical explanations of the

modern rise in human longevity and in the proportion of centenarians, especially in

developed countries, include saving lives due to better medical and living condi-

tions (Finch et al. 2014), as well as a possible increase in the fraction of people who

biologically age slower (Yashin et al. 2001).

Longevity and the overall cancer risk are thus both higher in affluent societies.

Could it be that the same factors linked to economic prosperity and Westernization

actually promote both? And could some of these factors also intervene in physio-

logical aging processes in humans? Answering these questions is vital for under-

standing the mechanisms of both aging and cancer development.

Here we propose that the association between the overall cancer risk and the

economic progress and spread of the Western lifestyle could in part be explained by

the higher proportion of individuals more susceptible to cancer in the populations

of developed countries, and discuss several mechanisms of such an increase in the

proportion of the vulnerable. We also hypothesize that some of the factors that may

enhance susceptibility to cancer in affluent societies may also favor longevity,

possibly through beneficial effects on physical and reproductive aging. Below we

discuss current evidence in support of this view.

5.2 The Proportion of People Who Are More Susceptible
to Cancer May Be Higher in the More Developed
World

Improved diagnostics and increased exposure to carcinogenic factors do not appear

to fully explain the observed association between cancer risk and economic pros-

perity. An alternative explanation could be that people in more developed countries

may be on average more susceptible to cancer, so that at the same level of a

carcinogenic exposure, the more susceptible individuals would end up with a higher

risk of cancer than the less susceptible ones. There are epidemiological, demo-

graphic, and biological indicators of the possibility of such a scenario, and we will

discuss relevant examples in this section. We will combine these examples into

several categories according to potential mechanisms connecting economic pro-

gress/Westernization with the increase in the proportion more susceptible to cancer

in the respective populations. These mechanisms include but are not limited to:

(i) Improved survival of frail individuals. Better medical and living conditions in

developed countries contribute to “relaxation” of environmental selection and
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allow for survival of individuals with less efficient immune systems, who

would otherwise have died in the past. The less efficient immune systems may

in turn be less capable of controlling cancer, making these individuals more

vulnerable to it.

(ii) Avoiding or reducing traditional exposures. Excessive disinfection and

hygiene typical of the developed world can diminish exposure to some factors

that were abundant in the past, such as dirt, unsanitary conditions, and diverse

microbial communities. Such exposures can be essential for proper training of

the immune system, especially in youth, and for forming adequate immune

responses later in life. Insufficiently or improperly trained immune systems

may be less capable of resisting cancer.

(iii) Burden of novel exposures. Some new medicines, cleaning agents, foods, etc.,

that are not carcinogenic themselves may still affect the natural ways of

processing carcinogens in the body, and through this increase a person’s
susceptibility to established carcinogens. Also, organismal resources are not

unlimited, so that the increased burden of novel, even individually harmless,

exposures on the xenobiotic processing system may reduce its capacity to

address real threats and thus increase the body’s vulnerability to cancer.

(iv) Some of the factors linked to economic prosperity and the Western lifestyle

(e.g., delayed childbirth and food enriched with growth factors) may antago-
nistically influence aging and cancer risk. That is, such factors may attenuate

some phenotypes of physical and reproductive aging, and, at the same time,

increase the body’s vulnerability to cancer. The latter suggests a trade-off

between cancer and aging that may contribute to concurrent increases in

cancer risk and longevity in modern populations.

5.2.1 Improved Survival of Frail Individuals

More developed countries have higher living standards and quality of medical care.

These achievements, however, may lead to a “relaxation” of environmental selec-

tion, thereby facilitating the survival of individuals with various genetic and

immune deficiencies, who would likely have died in the past. These survivors

may contribute to a higher proportion of people who are more vulnerable to

diseases (including cancer) in the populations of developed countries. Below are

several epidemiological indicators of the possibility of such a scenario.

Improved Survival During Childhood There was a dramatic decline in infant

and childhood mortality in developed countries during the last century. For exam-

ple, the infant mortality rate in the United States was about 6% of live births in

1935, 3% in 1950, 1.3% in 1980, and 0.6% in 2010. That is, it declined tenfold

over the course of 75 years (Singh and van Dyck 2010; Health U.S. 2013). Most

newborns in developed countries now reach reproductive age. This decline in

mortality was largely due to radical improvements in the survival of infants with

birth defects and infectious diseases, particularly with severe respiratory and
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intestinal infections (Singh and van Dyck 2010). Contrarily, childhood mortality

(up to 5 years of age) in some regions of the less developed countries such as India

was until recently nearly 20%. This indicates that the pressure of environmental

selection could be much higher in the least developed countries compared to the

most developed ones. However, the better survival in the more developed world has

its shadowy side. Because almost all children (including those with immunity

deficiencies) survive, the proportion of the children who are inherently more

vulnerable could be higher in the more developed countries. This is consistent

with a typically higher proportion of children with chronic inflammatory immune

disorders such as asthma and allergy in the populations of developed countries

compared to less developed ones (Pearce and Douwes 2006). People with such

disorders may be more susceptible to some cancers (Ukraintseva et al. 2010;

Josephs et al. 2013).

Cancer Incidence in Countries with Shorter and Longer Histories of Economic

Growth If improved living conditions do facilitate survival of people who are

more susceptible to cancer, then developed countries with shorter histories of

economic prosperity should have lower overall cancer incidence rates than coun-

tries with a longer history of economic growth, particularly at old ages. This is

because the older individuals in the rapidly developing countries have experienced

an improved quality of life only recently, whereas they faced more difficult living

conditions earlier in their life. In such circumstances, robust individuals were more

likely to survive the environmental selection and reach old age. This should result

in a lower proportion of individuals who are susceptible to cancer among the elderly

in recently developed countries compared to countries with longer histories of

economic growth. Figure 5.5 supports this prediction. It shows that the
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age-specific cancer incidence rates in Japan, Singapore, and Kuwait (the “younger”

developed countries) are lower than in the United States, the United Kingdom, and

Switzerland (the “older” developed countries), especially at older ages, despite the

similar quality of cancer diagnostics in these countries nowadays.

5.2.2 Avoiding or Reducing Traditional Exposures

The better living conditions in developed countries have a downside in excessive

hygiene and body cleansing. Excessive disinfection and hygiene may prevent or

diminish some exposures that were abundant in the past, such as dirt, unsanitary

conditions, or diverse microbial communities, among others. Until recently, these

exposures were an inherent part of human living and our immune system learned to

develop by interacting with them (Sing and Sing 2010). Over-reduction of such

traditional exposures may result in an insufficiently/improperly trained immune

system early in life, which could make it less able to resist diseases, including

cancer later in life, thus contributing to the increased proportion of vulnerable

individuals in adult populations of developed countries. There is accumulating

evidence of the important role of these effects in cancer risk.

An earlier study by a National Cancer Institute team suggested that improved

public hygiene conditions, as measured by a decreased prevalence of hepatitis A

virus infection, were also associated with higher incidence rates of acute lympho-

blastic leukemia (ALL) in children (Smith et al. 1998). More recently, it was shown

that long-term exposure to microbial endotoxins can stimulate an anti-cancer

immune response and reduce the risk of lung cancer by 40% (with a 20-year lag

time), while the lack of such exposure increases the risk (Mastrangelo et al. 2005;

Astrakianakis et al. 2007). Excessive body cleansing during childhood also

decreases exposure to helminths (traditional in the past) that is important for the

proper development of immunoregulatory mechanisms (Oikonomopoulou

et al. 2013). The excessive cleansing and avoiding contact with dirt and dust may

lead not only to reduced exposure to particular microorganisms, but also to reduced

exposure to a diversity of molecules found in dirt and dust, some of which may play

a role in immune priming and immune system development in the long term (Sing

and Sing 2010).

A number of studies have connected excessive disinfection and lack of antigenic

stimulation (especially in childhood) of the immune system in Westernized com-

munities with increased risks of both chronic inflammatory diseases and cancer

(Krämer et al. 1999; Lange et al. 2003; Hajdarbegovic et al. 2012;

Oikonomopoulou et al. 2013; Francescone et al. 2014; Sheflin et al. 2014). For

example, it was shown that some changes in traditional exposures may lead to

microbial dysbiosis in the human body, which in turn may promote chronic

inflammation (e.g., in the gut) and favor cancer development (Sheflin et al. 2014).

Since chronic inflammation plays an important role in cancer development

(Coussens and Werb 2002; Coussens et al. 2013), these studies warrant deeper
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research towards understanding the impact of reduced traditional exposures on

cancer development through inflammatory mechanisms.

Differences in cancer rates among migrants to the same country provide addi-

tional epidemiological indicators of the importance of early environmental expo-

sures in shaping susceptibility to cancer later in life. The IARC data on migrants to

Israel (CI5I 1966–2013) allow for comparison of the age trajectories of cancer

incidence rates between adult Jews who live in Israel but were born in other

countries (Fig. 5.6).

The age curves of cancer incidence in Fig. 5.6 show that Jews born in less

developed regions (Africa and Asia) have overall lower cancer risk than those born

in the more developed regions (Europe and America). The discrepancy is unlikely

to be due to differences in cancer diagnostics because at the moment of diagnosis all

these people were citizens of the same country with the same standard of medical

care. These results suggest that surviving childhood and growing up in a less

developed country with diverse environmental exposures might help form resis-

tance to cancer that lasts even after moving to a high risk country.

5.2.3 Burden of Novel and Nontraditional Exposures

Many behavioral and dietary habits, new medicines, foods, and chemicals, are

typical of economically prosperous countries but not common in the less developed

ones. Some of the novel and non-traditional exposures associated with the eco-

nomic prosperity and Western lifestyle, not being formally carcinogenic, might

affect the natural ways of processing carcinogens in the body, or favor chronic

inflammation, and through this increase a person’s susceptibility to cancer. Other

factors that are not carcinogenic when considered individually, together might

Fig. 5.6 Comparison of

age trajectories of the

overall cancer incidence

rate among Jews born in

more and less developed

regions of the world (CI5

1966–2013)
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create an excessive burden on the body’s xenobiotic processing system. This

burden may reduce the capacity of this system to address real threats, and thus

increase the body’s susceptibility to cancer. Here we present some recent evidence

in support of this view. Many of the relevant examples are provided by the IARC

Monographs on the Evaluation of Carcinogenic Risks to Humans (IARC Mono-

graphs 1972–2014), a valuable WHO resource.

Western Pattern of Food Consumption The Western pattern of food consump-

tion is characterized by a high content of animal protein (from meat, eggs, milk,

cheese, etc.), fat, and purified sugar, as well as a low content of crude plants and

grains in the everyday diet. A number of human and animal studies suggest a causal

connection between the spread of Western dietary habits and changes in vulnera-

bility to some cancers (Watson and Collins 2011; Mosby et al. 2012). For example,

individuals with relatively high consumption of animal protein may face a signif-

icantly increased risk of colon cancer (Willett 1989; Ananthakrishnan et al. 2015;

Carr et al. 2015). Kagawa et al. (1978) described the traditional pattern of food

consumption in Japan in the past as characterized by a high proportion of crude

grain (barley) and a low proportion of any kind of animal protein. Since the 1950s,

this diet has been gradually replaced by one that includes a high proportion of

protein and a low proportion of barley. Other components of the Japanese diet (e.g.,

vegetables) did not change much during the same period. The colon cancer inci-

dence rate has been increasing in Japan since then, while the rate of stomach cancer

has been decreasing (CI5 1966–2013). The mechanism could involve a trade-off

between reduced damage to the stomach and increased microbial dysbiosis. That is,

on the one hand, an excessive amount of crude fibers in food can harm the

stomach’s mucous membrane and promote inflammation, thus potentially increas-

ing the stomach’s vulnerability to cancer. On the other hand, a decreased fiber

intake may diminish this particular harm, but at the same time it may suppress

intestinal motility and thus elevate the risk of colon cancer. This is because the

motility prevents the intestine from festering, and the festering creates an environ-

ment conducive to the development of microbial dysbiosis in the intestine. The

dysbiosis, in turn, may favor carcinogenic production by the colon bacteria, such as

E.coli (Falk et al. 1998; Parsonnet 1999). An increased intake of meat promotes

food festering in the intestine accompanied by the bacterial imbalance and respec-

tive increase in internal carcinogenic exposure (Parsonnet 1999). A number of

recent studies strongly support the idea that changes in the traditional pattern of

food consumption may lead to microbial dysbiosis (both on the skin and in the gut),

which in turn may favor cancer development through inflammatory and other

mechanisms (Francescone et al. 2014; Sheflin et al. 2014).

New Medicines and Other Chemicals Some pharmaceuticals and dietary sup-

plements that are prevalent in developed but not in developing countries may

influence vulnerability to cancer, although they have not been individually shown

to be carcinogenic. The following illustration shows how it could happen. A well-

studied chemical, benzpyrene, is a non-direct carcinogen. It needs to be metabol-

ically processed in the body before it can become harmful. First, oxidative enzymes
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(e.g., cytochrome P450) decompose benzpyrene into intermediate products of the

metabolism. Several of these products (e.g., phenol) are already carcinogenic.

Other substances (e.g., glutathione) bind these carcinogenic products to deactivate

them and take them out of the metabolism. If there is the right balance between

cytochrome P450 and glutathione in a cell, then the carcinogen is quickly

deactivated without harming the organism. However, if the amount of glutathione

is not in the right balance with the amount of cytochrome P450, the carcinogen

deactivation process is delayed or incomplete. As a result, carcinogenic metabolites

may accumulate in the body and increase the chances of developing cancer. The

right balance of chemical players in the processing of carcinogens could, therefore,

be an important factor in vulnerability to cancer (Diggs et al. 2013). The high

burden of new substances on the body’s systems processing xenobiotics may

disturb the delicate balance of events and processes leading to neutralization of

carcinogens and through this to increased vulnerability to cancer. Research on the

simultaneous exposures to carcinogenic and non-carcinogenic compounds provides

support for this mechanism.

Paracetamol (Acetaminophen, Tylenol, Contac) is a non-prescription antipyretic

which has been used extensively in developed countries since 1946. The drug is not

classifiable by the IARC for carcinogenicity to humans. However, animal experi-

ments have shown that paracetamol increases the incidence of renal adenomas

induced by an established carcinogen, N-nitrosoethyl-N-hydroxyethylamine (IARC

Monographs, Vol. 50). That is, paracetamol, being not harmful on its own, may

enhance the body’s susceptibility to an established carcinogen, so that a lower level
of carcinogenic exposure may be required to induce tumor growth in the more

susceptible individual.

Antibiotics People who are frequently treated with antibiotics may have decreased

diversity of microbial community, especially in the gut and on the skin. The

decreased microbial diversity itself was shown to be associated with increased

risks of several cancers, most notably with colon cancer (Modi et al. 2014; Ahn

et al. 2013). The mechanism could be that the decreased microbial diversity after

treatment with antibiotics creates the conditions for bacterial imbalance in the

colon. As mentioned above, this imbalance (dysbiosis) may result in the suppres-

sion of the bifidobacteria and the promotion of E.coli bacteria (Falk et al. 1998).

The latter have a propensity to transform normal metabolic products (e.g., bile

acids) into internal carcinogens, thereby increasing the risk of colon cancer

(Parsonnet, 1999). Antibiotics may also influence the metabolism of external

carcinogens. Metronidazole, an antibiotic which can destroy H. pylori and decrease
the risk of stomach cancer, also increases the incidence of colon cancer in rats,

induced by the administration of an established carcinogen (Sloan et al. 1983;

IARC Monographs, Suppl. 7). Chloramphenicol, an antibiotic broadly used since

the 1950s, increased the incidence of lymphomas induced by an established car-

cinogen in mice, while the drug alone did not show clear carcinogenic effect (IARC

Monographs, Vol. 50).
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On the other hand, antibiotics may sometimes reduce cancer risks. This may be

particularly relevant to stomach cancer, whose risk is typically lower in the more

developed world. A number of studies discussed in the IARC Monographs on the

Evaluation of Carcinogenic Risks to Humans (1972–2014) established an associa-

tion between seropositivity for the H. pylori bacteria and stomach cancer. An

estimate of the relative risk was about four times the natural risk of this cancer

(IARC Monographs, Vol. 61). A possible mechanism involves the cancer promot-

ing effects of chronic inflammation which accompanies the infection. The preva-

lence of H. pylori infection is substantially lower in developed countries than in

developing ones. In both, the prevalence is higher in the lower socioeconomic

classes. A progressive reduction in the rate of this infection in successive birth

cohorts in the developed countries (IARC Monographs, Vol. 61) is held to be the

result of improved hygiene and the spread of antibiotics which can destroyH. pylori
bacteria. Antibiotic treatment may therefore decrease the risk of stomach cancer.

So, the increase in colon cancer and the decrease in stomach cancer risks, which

occurred along with economic progress, could in part be explained not only by the

change in food patterns, but also by the population-wide exposure to antibiotics.

Hormone Replacement Therapy (HRT) Menopausal and early postmenopausal

HRT with various combinations of estrogen and progestin is more common in

developed than in developing countries. At the peak of its use in 1999, approxi-

mately 20 million women in the developed world used HRT, including about half of

all women aged 50–65 years in the U.S. HRT is thought to be in part responsible for

differences in incidence rates of female hormone-dependent cancers between more

and less developed countries (IARC Monographs, Vol. 72, Vol. 91). Postmeno-

pausal HRT use in the U.S. has dropped since 2002, particularly for continuous

HRT, following the report of adverse effects by the Women’s Health Initiative’s
estrogen plus progestin trial. Prescriptions for HRT declined from 61 million pre-

scriptions in 2001 to 21 million in 2004. This was followed by a decline in the risk

of estrogen-receptor-positive breast cancer. For example, the age-adjusted inci-

dence rate of breast cancer in women who were 50 years of age or older fell 6.7% in

the United States in 2003 (IARC Monographs, Vol. 91; Ravdin et al. 2007;

Ukraintseva et al. 2008).

Oral Contraceptives Another female hormonal treatment, oral contraception for

pregnancy prevention, is even more prevalent than postmenopausal therapy. Oral

contraceptives usually include both estrogen and progesterone. This treatment has

been popular in developed countries since the 1960s. Today, worldwide, more than

100 million women, an estimated 10% of all women of reproductive age, use

combined hormonal contraceptives. Current use of these drugs is greatest in

developed countries (16%) and is lower in developing ones (6%). They have

been shown to increase the risk of breast and liver cancer, while being protective

against endometrial and ovarian cancers in women (IARC monographs, Vol. 91).

Starting in the 1970s, the decline in female endometrial and ovarian cancer inci-

dence rates, as well as the increase in incidence rates of breast and liver cancers in
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the United States, could in part be related to the nationwide exposure of American

women to hormonal contraceptives.

The mechanism of the effect of estrogen, alone and in combination with pro-

gestin, on the female organism is very complex and depends on age, stage of

ontogeny, and target tissue. Cancer promoting properties could in part be related

to the estradiol-associated stimulation of growth hormone release (Veldhuis

et al. 2004), which could potentially lead to excessive cell proliferation, while

cancer protective properties could be linked to increased regenerative potential and

competitive ability of normal host cells surrounding a transformed cell or latent

tumor (Ukraintseva and Yashin 2003b, 2005) or to other mechanisms. What is clear

is that HRT and the estrogen-progestogen contraceptives are not simply carcino-

gens but may differentially influence susceptibility to cancer in different tissues and

periods of life.

Household Chemicals Chemicals used at home or in small businesses, such as

components of plasticware, cleaning agents, flame retardants, and others, are

normally tested for carcinogenic properties before market introduction, and there-

fore are unlikely to be directly carcinogenic. However, the pre-market testing

usually does not take into account that the products may occasionally be consumed

with drink or food, or through the skin. The problem is that the clearance of such

chemicals from surfaces (e.g., glasses, plates, or clothes from washing detergents)

can be poor, and their residuals may enter the body and potentially accumulate in

amounts sufficient to harm it. Research on this important topic is emerging though

still rather limited. It is increasingly recognized that many household chemicals that

are common in developed countries may have “endocrine-disrupting” effects,

meaning that they may interfere with hormonal processes in the body and conse-

quently increase an organism’s susceptibility to various health disorders, including

cancer, especially in people who lack detoxifying enzymes (e.g., De Coster and van

Larebeke 2012; The 2013 Berlaymont Declaration on Endocrine Disrupters).

Examples of relevant chemicals that are currently discussed as having endocrine-

disrupting properties with possible health consequences, include (but are not

limited to): Bisphenol A (BPA), some flame retardants, phthalates, pesticides,

solvents, household cleaning products, air fresheners, hair dyes, cosmetics, and

sunscreens (e.g., Travier et al. 2002; Zota et al. 2010; De Coster and van Larebeke

2012; The 2013 Berlaymont Declaration on Endocrine Disrupters).

Quantity Versus Quality There may be several biological mechanisms by which

exposure to large numbers of new, individually harmless chemicals may increase

susceptibility to cancer. Some may involve cumulative effects, “cocktail effects”,

and synergistic interactions of chemicals (Cedergreen 2014). For example, BPA

and estrogen may both interact with estrogen receptors (Gao et al. 2015), so their

cumulative effect on these receptors may be more “endocrine-disrupting” and

influential to cell proliferation and migration than when they act alone. There

may also be less specific mechanisms, in which variety and quantity of the

chemicals rather than their qualities play a major role. Indeed, in developed
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countries, people are typically exposed to many new chemicals at once. When these

chemicals end up in the body all together, they may create an excess burden on the

body’s xenobiotic processing system. We speculate that the unusually large num-

bers of unfamiliar compounds entering the xenobiotic processing system may

reduce its efficiency to respond to real threats, and thus potentially increase the

body’s vulnerability to cancer, even in absence of particular oncogenic effects of

individual compounds. This potential mechanism deserves further investigation.

5.3 Some of the Factors Associated with Economic
Development and the Western Lifestyle May
Antagonistically Influence Aging and Vulnerability
to Cancer

5.3.1 Cancer and Aging: A Trade-Off?

One paradoxical feature of economic progress is the concurrent increase in longev-

ity and overall cancer risk in affluent societies. As discussed above, some factors

linked to economic development and the Western lifestyle may contribute to

increased vulnerability to cancer. Here we show that some of such factors may

influence both cancer and aging/ontogeny related traits (e.g., growth, reproductive

period, and physical senescence), sometimes antagonistically. Those factors that

increase vulnerability to cancer but also attenuate some phenotypes of physical and

reproductive aging might contribute to increases in both cancer risk and longevity

in modern human populations. Below we provide evidence from human and animal

studies supporting such a possibility.

5.3.2 Increased Exposure to Growth Factors

People in developed countries have virtually unlimited access to dense nutritious

food, such as meat, fat, and sweets, which may promote growth (increase in height

and weight) and affect the metabolism of internal growth factors (Kaklamani

et al. 1999; Giovannucci et al. 2004; Larsson et al. 2005; Bujnowski et al. 2011;

TeMorenga et al. 2012). Increased height, weight, and levels of internal growth

factors are in turn considered to play an important role in cancer development and

have been associated with risks of several common cancers (Giovannucci

et al. 2004; Renehan et al. 2004; Pollak2008; Batty et al. 2009; Moore

et al. 2009; Key et al. 2010; Yoshimoto et al. 2011; Kabat et al. 2013; Mellemkjær

et al. 2012; Davis et al. 2011). Potential mechanisms may involve enhanced cell

growth and proliferation, and the anti-apoptotic effects of growth factors favoring
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survival of transformed cells and latent tumors (van der Veeken et al. 2009;

Bruchim et al. 2009; Arnaldez and Helman, 2012).

As for aging, the higher levels of internal growth factors, such as IGF-1,

estrogens, and some others, have been linked to attenuation of phenotypes of

physical senescence, including elderly frailty, sarcopenia, muscle atrophy, heart

failure, hip fractures, as well as to better muscle regeneration and healing (e.g.,

Ruiz-Torres and Soares de Melo Kirzner 2002; Vasan et al. 2003; Roubenoff

et al. 2003; Vinciguerra et al. 2010; Conti et al. 2011; Musaro 2012; Thornton

2013; Yeap et al. 2013; Locatelli and Bianchi 2014; Levine et al. 2014).

In rodent models, a reduction in growth factors/IGF-I signaling is often corre-

lated with increased longevity (e.g., Bartke et al. 2003). This increase in longevity

is largely attributed to reduced cancer risk in the laboratory animals (Ikeno

et al. 2009). At the same time, the overexpression of IGF-1 was shown to attenuate

the aging-associated cardiac, cerebrovascular, and cognitive decline in older ani-

mals (Torella et al. 2004; Trejo et al. 2007; Sonntag et al. 2013). Mouse studies

have shown that high protein intake and upregulated GHR-IGF-1 signaling favor

the incidence and progression of several cancers (e.g., breast and melanoma

tumors); however, a low protein diet had detrimental effects in the very old (Levine

et al. 2014).

Overall, data support the possibility of trade-offs between the effects of growth

factors on certain cancer and aging-related phenotypes. The pro-cancer properties

of growth factors could be related to upregulated growth and proliferation, and anti-

apoptotic effects. Anti-aging properties could be related to decelerated muscle loss,

better tissue regeneration, and cell survival. Growth factors may especially con-

tribute to cancer risk and mortality before the oldest old age, when the incidence

rate reaches its peak in the population for most cancers (Ukraintseva and Yashin

2003a; Ukraintseva et al. 2008; Akushevich et al. 2012). They may also contribute

to extreme longevity because higher levels of growth factors can be particularly

beneficial for survival at very old ages (90þ), when physical senescence and related

disorders (e.g., heart failure due to muscle atrophy) become leading contributors to

mortality risk. Also, several major diseases that could potentially benefit from

higher levels of growth factors (such as stroke and AD) reach maximal incidence

risk at oldest old ages (90þ), when cancer risk is already declining (Ukraintseva

and Yashin 2003a; Johnsen et al. 2005; Ukraintseva et al. 2008, 2010; Akushevich

et al. 2012; Duron et al. 2012; Dong et al. 2014). This suggests that the timing of

exposure may be important for the pro-cancer or pro-longevity effects of growth

factors.

5.3.3 Later Menopause

The median age of menopause is generally higher in more developed countries.

This age typically varies from 44–49 years in less developed regions (e.g., Mexica,

India, Africa) to 50–54 years in more developed ones (e.g., the UK, the
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United States) (MacMahon and Worcester 1966; McKinaly et al. 1972; Garrido-

Latorre et al. 1996; Kriplani and Banerjee 2005; Dratva et al. 2009). It also tends to

be higher in upper socio-economic groups within the same country (e.g., Hardy and

Kuh 2005).

Later menopause has been associated with elevated risks of female hormone-

related cancers in postmenopausal women, especially with breast, ovarian, and

endometrial tumors (Franceschi et al. 1991; Ossewaarde et al. 2005; Mondul

et al. 2005; Collaborative group, 2012).

At the same time, later menopause was linked to increased overall survival and

longevity in several large studies. For example, the natural menopause that

occurred at ages 50–54 vs. 40–44 years was associated with longer survival in

large cohorts of Dutch and American women (Ossewaarde et al. 2005; Mondul

et al. 2005). This longer survival was accompanied by significantly increased

mortality from breast, endometrial, and ovarian cancers, as well as reduced mor-

tality from pneumonia, influenza, and falls (which are common causes of death in

the very old). Later menopause was linked to a lower total mortality risk, and to

reductions in cardiovascular deaths and heart failure, in several other studies

(Snowdon et al. 1989; Jansen et al. 2002; de Kleijn et al. 2002; Rahman

et al. 2015). The postponed menopause can also be accompanied by signs of slower

physiological aging. For example, it was significantly associated with slower

cognitive aging, especially with better memory in naturally postmenopausal elderly

women (McLay et al. 2003; Tierney et al. 2013).

5.3.4 Giving Birth at Later Age

Age at childbirth has increased across world populations along with economic

progress and adoption of the Western lifestyle. This age is typically higher in

younger compared to older generations in developed countries (Morabia and

Costanza 1999; Savage et al. 2013; Baghurst et al. 2014).

Older age at childbirth (first, last, and average) has been associated with elevated

risks of several human cancers in mothers, especially with breast cancer and

melanoma (Ewertz et al. 1990; Wohlfahrt and Melbye 2001; Li et al. 2014). For

example, women who gave their first birth after age 35 had a risk increase for breast

cancer by 40% compared to mothers who experienced their first birth before age

20. And the relative risk for melanoma was 1.47 in women of the oldest versus

youngest age at first birth in a meta-analysis (Ewertz et al. 1990; Li et al. 2014).

On the other hand, an older age at birth, especially that of the last child, shows a

positive association with mother’s survival toward very old age (Helle et al. 2005;

McArdle et al. 2006; Sun et al. 2015). For example, women who had their last child

after age 33 had twice the odds for survival to the top 5th percentile of survival for

their birth cohorts compared with women who had their last child by age 29 years

(Sun et al. 2015). Our unpublished study of 2,401 Danish Twins aged 75þ (LSADT

1995–2000) also revealed that women who were in their 40s at the time of birth of
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their last child had about 22% lower death rates after age 75 compared to women

who had their last child before age 40. In line with these data, experimental animal

studies found that selection for late reproductive ability results in increased lon-

gevity of Drosophila flies after just a few generations of such selection (e.g., Rose

and Charlesworth 1981).

Older parental age (both maternal and paternal) was also linked to increased

cancer risks in the offspring, especially of leukemia, brain tumors, and breast and

prostate cancers (Hemminki et al. 1999; Zhang et al. 1999; Hodgson et al. 2004).

Increasing parental age in developed countries may therefore also contribute to a

higher vulnerability to cancer in these countries. Notably, in laboratory rodents, a

higher father’s age was associated with increased susceptibility to an established

carcinogen in mice offspring (Anisimov and Gvardina 1995). It is not clear so far if

having an older parent carries anti-aging/pro-longevity benefits for the offspring.

One potential mechanism of how the late birth may do both (i.e., increase vulner-

ability to cancer and attenuate physical aging in offspring) might involve trade-off-

like effects of internal growth factors, such as estrogens and IGF-1, on the cancer

and aging phenotypes (Yang et al. 2005; Levine et al. 2014). It was shown that

children of mothers who were 30–35 years of age at childbirth were taller and

displayed a 19% increase in IGF-I concentrations compared to offspring of mothers

who gave birth prior to age 30 (Savage et al. 2013). An association has also been

found between older paternal age at birth and longer leukocyte telomere length in

the offspring which may indicate postponed replicative senescence (Prescott

et al. 2012), but supportive studies are rather limited.

5.4 Conclusion

In this chapter, we discussed factors responsible for the higher cancer risk in the

more developed world, and for concurrent increases in cancer risk and longevity in

association with economic progress and a Western lifestyle. We suggested that in

populations of developed countries, the proportion of individuals more susceptible

to cancer may be higher than in less developed regions of the world, and that this

may contribute to the typically higher overall cancer risk in such countries.

We provided evidence from human and animal studies suggesting that several

factors associated with advanced economic development and a Western lifestyle

could favor an increase in the proportion of individuals who are more susceptible to

cancer in the respective populations. Such factors include (but are not limited to)

dramatic improvements in medical care and living conditions, which may lead to a

“relaxation” of environmental selection and improved survival of frail individuals

in affluent societies. They may also lead to an insufficiently/inadequately trained

immune system early in life, which may make an individual more vulnerable to

cancer later in life. Other factors (e.g., some new foods, medicines, and other

chemicals) may also increase a person’s susceptibility to cancer. Not being directly
or individually carcinogenic, these factors may affect the metabolism of established
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carcinogens, or act synergistically, and through this influence cancer risks. Quan-
tities and variety of the chemicals rather than their individual qualities may also

play an important role. People in developed countries are exposed to many new

chemicals. We hypothesized that the large number of unfamiliar compounds may

reduce the efficiency of the xenobiotic processing system, and through this increase

the body’s vulnerability to cancer, even in the absence of particular oncogenic

effects of individual compounds. This potential mechanism deserves further

investigation.

Some of the factors associated with economic prosperity and a Western lifestyle

may influence both aging and vulnerability to cancer, sometimes oppositely. Cur-

rent evidence supports a possibility of trade-offs between cancer and aging-related

phenotypes (Ukraintseva et al. 2016), which could be influenced by delayed

reproduction and exposures to growth factors (Levine et al. 2014; Li et al. 2014;

Sun et al. 2015). The latter may be particularly beneficial at very old age. This is

because the higher levels of growth factors may attenuate some phenotypes of

physical senescence, such as decline in regenerative and healing ability, sarcopenia,

frailty, elderly fractures and heart failure due to muscles athrophy. They may also

increase the body’s vulnerability to cancer, e.g., through growth promoting and

anti-apoptotic effects (Pollak 2008; Ukraintseva et al. 2016). The increase in

vulnerability to cancer due to growth factors can be compatible with extreme

longevity because cancer is a major contributor to mortality mainly before age

85, while senescence-related causes (such as physical frailty) become major con-

tributors to mortality at oldest old ages (85þ). In this situation, the impact of growth

factors on vulnerability to death could be more deleterious in middle-to-old life

(~before 85) and more beneficial at older ages (85þ).

The complex relationships between aging, cancer, and longevity are challeng-

ing. This complexity warns against simplified approaches to extending longevity

without taking into account the possible trade-offs between phenotypes of physical

aging and various health disorders, as well as the differential impacts of such trade-

offs on mortality risks at different ages (e.g., Ukraintseva and Yashin 2003a; Yashin

et al. 2009; Ukraintseva et al. 2010, 2016).
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Chapter 6

Medical Cost Trajectories and Onset
of Age-Associated Diseases

Igor Akushevich, Julia Kravchenko, Konstantin G. Arbeev,

Svetlana V. Ukraintseva, Kenneth C. Land, and Anatoliy I. Yashin

6.1 Introduction

The proportion of older adults in the U.S. population is growing. This raises

important questions about the increasing prevalence of aging-related diseases,

multimorbidity issues, and disability among the elderly population. Aging-related

declines in health, in turn, raise questions about the medical costs associated with

treatment and rehabilitation and how these can be minimized, thus making evalu-

ation of national trends in the burden of disease and associated health expenditures

a major public health concern and an important issue for policymakers and gov-

ernmental institutions. To forecast such trends, it is important to understand the key

factors driving the progression of aging-related diseases and how such progression

could result in changes of associated medical costs of governmental health insur-

ance programs such as Medicare and Medicaid. In 2009, 46.3 million people were

covered by Medicare: 38.7 million of them were aged 65 years and older, and 7.6

million were disabled (HI and SMI 2010). By 2031, when the baby-boomer

generation will be completely enrolled, Medicare is expected to reach 77 million

individuals (HI and SMI 2009). Because the Medicare program covers 95% of the

nation’s aged population (Klees et al. 2009), the prediction of future Medicare costs

based on these data can be an important source of health care planning.

Detailed and comprehensive analyses have been performed to evaluate aggre-

gate spending on Medicare Part A and B programs for the U.S. elderly population in

their final years of life (Lubitz 2005; Lubitz and Riley 1993; Miller 2001). The

relationships between Medicare costs and disability and morbidity were investi-

gated by Goldman and colleagues (Goldman and RAND Corporation 2004): they

developed the Future Elderly Model (FEM) that predicts medical costs and health

status for the elderly. However, they did not investigate the characteristics of

individual histories of changing health status and the relationships of such changes
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to the dynamics of Medicare expenditures as individuals become older. To open

new possibilities for forecasting population health and medical costs, studies of the

effects of disease onset on individual medical cost trajectories and of the behavior

of individual health trajectories in the presence of comorbid and concurrent disor-

ders are required. The results of such studies can help estimate the extent to which

cumulative individual medical costs can determine future changes in the elderly

patient’s health status. New results in this area will open new possibilities for

population health and medical cost forecasting, allowing for the development of

an empirical base for assessing the impact of new biotechnologies on increasing the

years of minimally disabled life (Pardes et al. 1999).

Three essential components (which could be also referred as sub-models) need

to be developed to construct a modern model of forecasting of population health

and associated medical costs: (i) a model of medical cost projections conditional on

each health state in the model, (ii) health state projections, and (iii) a description of

the distribution of initial health states of a cohort to be projected (Goldman

et al. 2006; Goldman and RAND Corporation 2004; Goldman et al. 2005, 2009).

In making medical cost projections, two major effects should be taken into account:

the dynamics of the medical costs during the time periods comprising the date of

onset of chronic diseases and the increase of medical costs during the last years of

life. In this chapter, we investigate and model the first of these two effects. Note that

the latter component has been intensively investigated in prior literature (Lubitz

2005; Lubitz and Riley 1993; Miller 2001). In part, we follow our paper

(Akushevich et al. 2011b) and use a much more statistically powerful dataset for

estimates, perform several new analyses, and extend the discussion of possible

forecasting approaches based on our previously developed modeling approach.

Patterns of Medicare expenditures for the entire U.S. elderly population and for

disability- and comorbidity-specific subpopulations can be estimated from analyses

of medical cost trajectories for the time period of health change (e.g., at the date of

an onset of a chronic disease). In addition, the approach developed in this chapter

generalizes the approach known as “life tables with covariates” (Akushevich

et al. 2005; Manton et al. 1992), resulting in a new family of forecasting models

with covariates such as comorbidity indexes or medical costs.

In sum, this chapter develops a model of the relationships between individual

cost trajectories following the onset of aging-related chronic diseases. The model

has demographically interpretable parameters and thus can serve as a building

block in constructing a precise and comprehensive forecasting model of medical

costs (including Medicare spending) at the population level. The underlying meth-

odological idea is to aggregate the health state information into a single (or several)

covariate(s) that can be determinative in predicting the risk of a health event (e.g.,

disease incidence) and whose dynamics could be represented by the model assump-

tions. An advantage of such an approach is its substantial reduction of the degrees

of freedom compared with existing forecasting models (e.g., the FEM model,

Goldman and RAND Corporation 2004).
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6.2 Data and Methods

6.2.1 Data

Two datasets from which statistical estimates for older adults at the national level

can be made are the Surveillance, Epidemiology, and End Results (SEER) Registry

data linked to the Medicare Files of Service Use (SEER-Medicare), and the

National Long Term Care Survey (NLTCS-Medicare) which is also linked to the

MFSU. These extensive data sources facilitate identification of disease incidence

and long-term remission/recovery events through the development and validation

of specific computational algorithms.

The SEER-Medicare data is the primary dataset analyzed in this chapter. The

expanded SEER registry covers approximately 26% of the U.S. population. In total,

the Medicare records for 2,154,598 individuals are available in the SEER-M

including individuals (1) with diagnosed cancers of breast (n¼ 353,285), colon

(n¼ 222,659), lung (n¼ 342,961), prostate (n¼ 448,410), and skin melanoma

(n¼ 101,123); and (2) from a random 5% sample of Medicare beneficiaries

residing in the SEER areas who had none of the above mentioned cancers. For

the majority of persons, we have continuous records of use of Medicare services

since 1991 (or from the time the person passed age 65 after 1990) to the patient’s
death. A small fraction of individuals (e.g., new patients diagnosed with cancer in

2003–2005) had Medicare records from 1998. Medicare records are available for

each institutional (MedPAR, outpatient, hospice, or home health agency HHA) and

non-institutional (carrier-physician-supplier and durable medical equipment pro-

viders) claim type.

The second dataset used for analysis––the NLTCS-Medicare data––contains two

of the six NLTCS waves: namely, the cohorts of 1994 and 1999. These specific

waves were chosen because high quality Medicare follow-up data are available

only since 1991 and the complete 5-year follow-up after the NLTCS interview for

years later than 1991 is available only for these two waves. The NLTCS contains

data on hundreds of variables including age, sex, and (instrumental) activities of

daily living (ADL/IADL) allowing for disability measurements. The same data

collection agency, the U.S. Census Bureau, was employed for conducting the

NLTCS interviews over all of the waves. Hence, the training methods and mate-

rials, survey administration and management procedures, field operations, com-

puter processing, and editing procedures were consistent across the surveys. Also,

the high response rate (95%) across all NLTCS waves minimizes the bias in trend

estimates. As was found in Akushevich et al. (2011b), the results of interest (i.e.,

parameters describing medical cost trajectories) are similar for cohorts formed in

1994 and 1999 (this will be discussed further in the Discussion section). The

NLTCS uses a sample of individuals drawn from the national Medicare enrollment

files. The 1982–2004 NLTCS files include information on 49,258 different indi-

viduals, and 34,077 of them were in the 1994–2004 waves. The national population

estimates were produced using screener weights released with the NLTCS (for a

recent discussion, see Akushevich et al. (2013a)).
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6.2.2 Date of Disease Onset Definitions

Unlike mortality, the onset time of chronic disease is difficult to define with

high precision due to the large variety of disease-specific criteria for onset/incident

case identification (e.g., changing criteria of diagnosis of incidence of acute coro-

nary heart disease or stroke (NIH/NHLBI 2006)) used in clinical practice and

epidemiological and population-based analyses. Therefore, there is always some

arbitrariness in defining the date of chronic disease onset, and a unified definition of

date of onset is necessary for population studies with a long-term follow-up. In this

study, the date of disease onset was identified based on information from the

Medicare Claims files. The scheme used in this chapter was based on an overview

of several approaches to the definition of the disease onset (Nattinger et al. 2004,

2006; Sloan et al. 2003). This unified scheme was applied to all of the diseases

considered herein and is useful for comparative analyses of the effects of different

diseases on medical costs and appropriate for prediction purposes.

To reconstruct the ages at onsets of all diseases from the Medicare service use

data, we began by reconstructing individual medical histories of each of the

diseases to be studied using the Medicare files: all records were combined with

their respective ICD-9 codes. Twenty diseases representing the major groups of

chronic diseases in the elderly were considered: (i) circulatory (myocardial infarc-

tion, angina pectoris, heart failure, and stroke), (ii) cancer (breast, prostate, pancre-

atic, kidney, lung, and colon cancers, and skin melanoma), (iii) neurodegenerative

(Parkinson’s and Alzheimer’s diseases), (iv) endocrine and metabolic (diabetes

mellitus), (v) pulmonary (emphysema, and asthma), and (vi) several others (hip

fracture, chronic renal diseases, ulcer, and arthritis). The diagnostic ICD-9 codes

for these diseases are presented in Table 3.1 of Chap. 3 of this monograph. We

excluded from analysis all individuals who had a history of one of the 20 diseases

before the date of interview in 1994 or in 1999. The detailed individual records in

the Medicare files are available since 1991; therefore, we had a sufficient period of

time prior to 1994 or 1999 to reject the prevalence cases. The date of a Medicare

record (referred to as “this record” below in (i) and (ii)) is identified with the date of

onset of an applicable diseases when both conditions listed below are met:

(i) This record is the earliest record with one of the ICD codes as a primary

diagnosis in one of four Medicare sources (inpatient care, outpatient care,

physician services, and skilled nursing facilities);

(ii) In addition to this record, there is another record with the same ICD code as the

primary diagnosis from one of the four Medicare sources listed in (i), which

appeared with a date different from the date of this record and no later than

0.3 years after this record.

The first condition allows for identifying the first occurrence of a disease code,

and the second condition is required for confirmation of the disease presence. This

algorithm was used in several prior studies such as a study of recovery after stroke

(Yashin et al. 2010), a study of age patterns of age-related (Akushevich et al. 2012)
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and circulatory (Akushevich et al. 2013a) diseases, a study of medical cost trajec-

tories before and after disease onset (Akushevich et al. 2011b), and a study of the

role of behavior factors in cancer risk (Akushevich et al. 2011a). The algorithm was

implemented using SAS (SAS Institute, Inc., Cary, NC).

This definition of the age at disease onset completes our operational definition of

disease incidence. Since the date of onset of a chronic disease is a quantity not

defined as precise as mortality, some assumptions are required to identify the date

of onset from individual records collected in administrative data. The specifications

used in this chapter (e.g., choice of the four Medicare sources in item (i) and time

period of 0.3 year in item (ii)) are in accordance with the general practice of

reconstruction of the date at onset fromMedicare data (Nattinger et al. 2004, 2006).

6.2.3 Medical Cost Trajectories

For each disease, individuals whose date of disease onset occurred during the

follow-up period (i.e., during the 5-year period after the date of interview for

NLTCS-Medicare, and until the end of 2005 from the date of enrollment for

SEER-Medicare) were selected. Information about two types of cost-related vari-

ables is available in Medicare data: the total costs of medical procedures that have

been performed and the total Medicare payments for these procedures. The first

variable (i.e., total costs) better describes the costs of medical services, and the

second variable (i.e., total Medicare payments) is free from biases that could be

potentially caused by multiple counting of costs for the same procedure when

several bills were submitted but only one bill was paid by Medicare. In this

study, we focus on the total Medicare payment. Trajectories of the costs of medical

procedures were analyzed by Akushevich et al. (2011b).

For each of the 20 diseases, means and standard errors of the distributions of

medical cost spending per month per capita were estimated within 20 months before

and after disease onset. The empirical estimates demonstrated that 20 months is a

sufficient period of time for disease “stabilization” after disease onset by reaching a

plateau in the mean of the medical cost trajectories. These month patterns

(or medical cost trajectories) were subject to analysis, mutual comparison, and

modeling. All costs were presented in terms of the dollar value from year 2000,

adjusted for inflation using the Medical Care Consumer Price Index provided by the

Bureau of Labor Statistics (BLS 2009).

6.3 Results

Empirical estimates of the cost trajectories are presented in Fig. 6.1. The shapes of

the majority of medical cost trajectories in the time range of 20 months before and

after the date of onset of a focal disease have the same structure. They can be
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described in terms of the four components sketched in Fig. 6.2. The first one is the

cost of the pre-diagnosis period/pre-focal-disease treatment cost: this variable

likely reflects an initial comorbidity (De Groot et al. 2003). The second component

is the cost of the disease onset/cost peak associated with onset of the focal-disease
and its treatment. The third variable characterizes the rate of the reduction of
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Fig. 6.1 Empirical estimates (dots) and model predictions (solid lines) of costs per month per

capita obtained using SEER-Medicare data. The diseases are ordered according to the cost of

onset. Note that the scale of the vertical axes is not the same for different rows of plots
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medical expenses associated with a focal disease during the period after the

diagnosis was made, that is, the reduction of medical costs during the period
after diagnosis; this variable could be interpreted as a population recovery rate.
And, finally, the fourth variable is the difference between the post- and

pre-diagnosis cost levels that characterizes an acquired comorbidity cost due to a

focal disease, that is, the cost of continuing/follow-up care.
Based on these empirical patterns, a model for the monthly patterns of the

medical cost trajectories with four parameters was constructed as follows. Before

the month of disease onset, all trajectories demonstrated a plateau; therefore, this

region can be described by a single parameter c associated with the comorbidity of

the studied population group. In the month of onset, the trajectories had a sharp

peak associated with the cost of onset, which was modeled by a single parameter P.
During the months after onset, medical costs decreased and the decline was

relatively exponential; therefore, this decline was modeled by an exponential

function with a slope r characterizing population recovery in terms of medical

costs. The level to which the trajectories converge by leveling-off could also be

associated with comorbidity; this level differs from the initial one, c, by a quantity δ
that reflects the contribution of the focal disease to an elevated comorbidity level.

Thus, the analytical expression for medical cost per month per capita C(m) could be
presented as

C mð Þ ¼ cþ δþ P� δð Þexp �rmð Þð ÞI m � 0ð Þ ð6:1Þ

where m is the time (in months) since onset of the focal disease (i.e., time before the

onset m is negative), and is the indicator function (I¼ 1 for m� 0 and I¼ 0

otherwise). The four model parameters correspond exactly to the components

presented in Fig. 6.2. Three of them––i.e., the pre- and post-diagnosis costs
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associated with initial and acquired comorbidity (c and δ), and the cost of the focal

disease onset P are all denominated in dollars, while the metric of the slope of the

population recovery rate r is months�1.

The model was applied to the data for each of the 20 diseases identified above

and estimated by non-linear least squares for the U.S. elderly population of patients

who had an onset of a considered disease during the period of observation. The

resulting curves are shown in Fig. 6.1. Estimates of the model parameters with the

standard errors for all diseases using NLTCS-Medicare and SEER-Medicare are

shown in Fig. 6.3. Comparisons of the model estimates allowed us to reveal the

properties of the model components described below.

The first component, the pre-disease treatment cost level associated with initial

comorbidity, c, describes the plateau in the cost trajectories that appeared before the
disease onset. In the majority of trajectories, this is truly a plateau without a

significant time trend. Since only individuals with disease onset for 1 of the

20 diseases were selected for constructing cost trajectories, the magnitude of the

plateau (i.e., the value of the cost per month per capita) reflects the mean comor-

bidity index measured in terms of medical costs associated with the diseases. In

other words, the magnitude of the estimates of the initial comorbidity depends on

how strongly the risk of a focal disease is determined by comorbidity. The stronger

this association, the higher the mean comorbidity index is. In Akushevich

et al. (2011b), this hypothesis was tested directly by using a separate analysis of

each subpopulation with the Charlson comorbidity index (Charlson et al. 1987;

Quan et al. 2005) which was estimated for a specific month using Medicare

information for the previous 12 months. A positive correlation between the

Charlson index and the initial comorbidity was found for all diseases. The strongest

associations were detected for stroke, ulcer, lung cancer, and diabetes. Overall, the

estimates of the initial comorbidities for trajectories generated by different diseases

are similar and, on average, represent mean comorbidity level measured by medical

costs.

The second component, P, measures the cost peak at the date of disease onset

(i.e., for month zero in Fig. 6.1): its height reflects the disease-specific cost at onset.

The diseases shown in Fig. 6.1 are ordered by the decline of this component. High

variability of P for a specific disease results from different medical procedures

performed at the time of onset (to make a diagnosis and to treat a disease).

Therefore, the variability of this component likely reflects variability of disease

severity. This hypothesis is tested in the next section. Note that although for some

diseases (e.g., asthma, Alzheimer’s disease, diabetes, and renal disease) an incre-

ment in cost for several months before disease onset is visible (likely due to

expenses for pre-diagnosis procedures), in the model this effect is neglected. In

further refinements of the model, the cost of onset can be modeled using a normal

distribution with a finite variance rather than the single parameter P.

The third component, r, characterizes the rate of reduction of medical expenses

associated with a disease during the period after diagnosis (the population recovery

rate). This quantity is defined as positive, i.e., the larger the estimate for this
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Fig. 6.3 The model parameters (as sketched in Fig. 6.2) were estimated using SEER-Medicare

(closed dots) and NLTCS-Medicare (open dots) within the 20-month period before and after onset

of each of the 12 chronic conditions (four lower plots): (i) cost of initial comorbidity in

U.S. dollars, i.e., the mean cost per month per capita before onset, (ii) cost of onset in

U.S. dollars, i.e., the mean expenditures in the month of onset, (iii) population recovery rate in

1/month, i.e., the speed of approach to a new steady-state in medical expenditures, and (iv) cost of

acquired comorbidity in U.S. dollars, i.e., the excess in expenditures in a new steady-state

compared to those before disease onset. Horizontal bars denote the standard errors of the nonlinear

least squares parameter estimates. The diseases are ordered according to the cost of onset
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component the higher the population recovery, or, in other words, the faster the

decline in medical expenses associated with the disease. Statistically significant

estimates of this component were obtained for all of the 20 diseases (see Fig. 6.3).

From a clinical point of view, there are certain diseases (e.g., diabetes, Alzheimer’s
disease) for which complete clinical recovery cannot be observed at the individual

level. For these diseases, a reduction of the medical costs (i.e., positive moderate

effect of r) could be explained by the costs of medical procedures around the time of

diagnosis and the partial contribution of acute events at the disease onset that

required specific treatment. A high variability in estimates of the component

r was detected for asthma, arthritis, diabetes, Parkinson’s disease, and Alzheimer’s
disease: these diseases are primarily chronic and can be defined as “permanent

conditions with nonreversible pathologic alterations” that generally cannot be cured

but rather can have periods of short- or/and long-term remission (CDC 2004).

The fourth component, δ, represents the cost of continuing/followup care, which
we termed the acquired comorbidity cost resulting from the onset of a focal disease

(measured by the difference between post- and pre-diagnosis cost levels). As can be

seen in Fig. 6.3, this component is disease-specific. For some diseases (e.g., renal

disease), the estimate of δ can exceed the pre-disease cost level by a factor 2. For the
majority of the other diseases, the costs of the initial and acquired comorbidities are

comparable. For some diseases (e.g., melanoma), the estimate of δ is small. As

expected and shown in Akushevich et al. (2011b), for all diseases the acquired

comorbidity was larger for those who died during the first 2.5 years after disease

onset. These associations were strongly significant.

Figure 6.3 shows that estimates obtained from the two datasets used in the

present analyses are consistent. For several diseases (e.g., kidney cancer, renal

disease, diabetes, and melanoma), the differences between the estimates of the

pre-disease cost levels from the two datasets are statistically significant. Estimates

of the costs of disease onset are similar for both datasets, except for hip fracture and

emphysema, for which the difference is not dramatic. Also, there are no strong

differences detected for the population recovery rate. The differences for hip

fracture, stroke, and pancreatic cancer were at the level of p� 0.05. Similarly, the

estimates of acquired comorbidity costs also are compatible for the two datasets,

except for kidney and lung cancers, Alzheimer’s disease, and diabetes. The differ-

ences obtained for certain parameters and certain diseases can be caused by the

different structure of populations represented by the two datasets: NLTCS-

Medicare represents the entire U.S. elderly population, while the SEER-Medicare

represents the population of the SEER areas only. The age and sex distribution of

the total SEER population is similar to the non-SEER areas, though the SEER areas

have fewer whites, more urban residents, and fewer areas with low socioeconomic

status compared to the non-SEER areas (Warren et al. 2002). Also, a difference in

circulatory disease incidence has been found for the NLTCS-Medicare and SEER-

Medicare datasets (Akushevich et al. 2012).
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6.3.1 Medical Cost as Measure of Disease Severity

Medical costs correlate with comorbidity patterns; they have been used to construct

comorbidity indices: e.g., the Shwartz comorbidity index was constructed using a

regression model to predict costs (de Groot et al. 2003; Shwartz et al. 1996). The

best way to measure comorbidity or multimorbidity from Medicare data is based on

analyses of individual Medicare trajectories constructed using the ICD-9 diagnosis

codes, e.g., using an approach described in Sect. 6.2.2. However, such measures do

not provide information about the severity of diagnosed diseases. Therefore, we

investigated whether medical costs could serve as a surrogate of severity of

comorbid disease(s) which cannot be captured when comorbidity measures are

derived traditionally––i.e., only from ICD-9 diagnostic codes. We used the Cox

proportional hazard model for survival of patients with onsets of a given disease. In

this model, the predictor was the disease-specific cost at onset. If the costs reflect

the disease severity, then we expect a positive association between disease-specific

costs at onset and death. The results in Table 6.1 show estimates of hazard ratios for

total and disease-specific costs (i.e., the part of the total costs resulting from the

records containing the diagnostic code of the given disease) per $1,000. All hazard

Table 6.1 Mortality hazard ratios (HRs) for total and disease specific costs (per $1000) estimated

using Cox proportional hazard ratios for cohorts of patients with a disease onset. All estimates are

statistically significant except four HRs for disease-specific costs for Alzheimer’s disease and

female breast cancer (marked by italics)

Disease Total cost Disease-specific costs

Follow-up: 1 year 3 year 5 year 1 year 3 year 5 year

Myocardial infarction 1.010 1.009 1.009 1.009 1.008 1.007

Hip fracture 1.012 1.011 1.010 1.012 1.012 1.011

Colon cancer 1.010 1.009 1.008 1.012 1.010 1.009

Stroke 1.029 1.027 1.027 1.041 1.045 1.046

Pancreatic cancer 1.036 1.038 1.038 1.074 1.065 1.056

Kidney cancer 1.093 1.088 1.084 1.157 1.174 1.155

Heart failure 1.011 1.009 1.008 1.013 1.011 1.010

Lung cancer 1.016 1.015 1.015 1.014 1.013 1.013

Ulcer 1.017 1.017 1.018 1.029 1.026 1.024

Angina pectoris 1.019 1.020 1.020 1.081 1.060 1.054

Chronic renal 1.036 1.033 1.032 1.053 1.048 1.042

Emphysema 1.046 1.033 1.030 1.042 1.032 1.030

Breast cancer 1.003 1.002 1.001 1.003 1.001 1.000

Alzheimer’s disease 1.014 1.013 1.012 1.010 1.006 1.005

Parkinson’s disease 1.023 1.022 1.022 1.022 1.021 1.021

Prostate cancer 1.010 1.010 1.010 1.008 1.008 1.008

Asthma 1.009 1.009 1.009 1.011 1.011 1.010

Diabetes 1.006 1.005 1.006 1.002 1.002 1.003

Melanoma 1.047 1.039 1.030 1.054 1.066 1.052

Arthritis 1.007 1.006 1.007 1.008 1.009 1.009
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ratios are greater than one, thus supporting the hypothesis that medical costs in the

month when a diagnosis was made reflect the severity of the diagnosed diseases.

6.3.2 Forecasting Models

The approach for modeling cost trajectories presented above allows for developing

comprehensive forecasting models based on microsimulation of individual trajec-

tories. Also, in certain cases, the model developed for cost trajectories results in

simple forecasting models that provide projections in an analytical form. Indeed, in

many specific cases, an averaging over individual trajectories can be performed

analytically by reducing the results to aggregated characteristics observed at the

population level. As an example, consider a cohort of individuals under a risk of a

certain disease. Let the disease survival function S(x) be known from other studies.

This survival function (or corresponding hazard rate h xð Þ ¼ � log S xð Þ½ �x
0
or density

function f xð Þ ¼ h xð ÞS xð Þ or probability distribution F xÞ ¼ 1� S xð Þð Þ can be

estimated from Medicare data as well (Akushevich et al. 2013b) (reviewed in a

Chap. 3 of this monograph). Assume also that during the follow-up the individuals

are not subject to another health event, including death. The medical costs for the

cohort of individuals at age x can be predicted by summing (or integrating over)

individual cost trajectories given by Eq. 6.1:

CtotðxÞ ¼ cSðxÞ þ ðcþ δÞFðxÞ þ ðP� δÞ
ðx

0

expð�rðx� uÞÞ f ðuÞdu: ð6:2Þ

The first term on the right hand side of Eq. (6.2) reflects the contribution of healthy

individuals, i.e., those that have not yet developed this disease. The mean of their

costs is characterized by initial comorbidity c, and their fraction equals S(x). The
last two terms characterize the contribution of unhealthy people. These terms

involve integration of individual trajectories C(u) over different times of onsets

denoted by u. The second term in Eq. (6.2) describes the acquired comorbidity and

the third term reflects the costs of treatment after onset. Below we consider three

specific models for which the integration can be performed analytically.

The first model has a constant hazard rate (μ0). Many chronic diseases have an

age pattern (e.g., melanoma, (Akushevich et al. 2012)) which can be considered

approximately constant. The model is a representation of the contribution of this

disease to total costs. In this case, the cost is

CtotðxÞ ¼ cþ δð1� expð�μ0xÞÞ þ ðP� δÞμ0
expð�μ0xÞ � expð�rxÞ

r � μ0
�

cþ δð1� expð�μ0xÞÞ þ ðP� δÞμ0
1� expð�rxÞ

r
ð6:3Þ
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The last approximation is obtained assuming that the hazard rates μ0 are much

lower than the disease burden rates (or, in other words, the population recovery

rates), r. This assumption is justified by their numerical values: i.e., μ0 � 0:000001
�0:01 year�1 for the diseases we are studying, while r� 7–15 year�1.

A second model represents the situation in which individuals in a cohort were

exposed to a specific risk factor (e.g., antigen or ionizing radiation) and part of the

cohort develops a disease after a latent period. Examples include: (i) contact with

infected individuals and forthcoming onset of infection disease, e.g., hepatitis B or

C; and (ii) acute exposure to ionizing radiation and a subsequent increased rate of

leukemia. The density function can be chosen as f ðxÞ ¼ p0f Gðx; x, σÞwhere p0 is the
probability of developing the disease and f G x; ; x; σð Þ is the Gaussian distribution

with mean x and variance σ2. The Gaussian distribution was chosen to characterize

the typical situation where the lag period represented by x is known and the variance
of the lag in population is not large. The cost when the peak incidence is passed is

estimated as:

Ctot xð Þ ¼ cþ p0δþ p0 P� δð Þexp �r x� xð Þ þ 1

2
r2σ2

� �
ð6:4Þ

The third model deals with the situation where the survival function for a disease is

known from empirical analysis, e.g. is represented by the Kaplan-Meier estimator.

In this case, it can be characterized by the set of its decrements ΔS(xi) that occurred
at times xi. After integration by parts, Eq. (6.2) can be rewritten in terms of the

survival function as:

CtotðxÞ ¼ cþ δð1� SðxÞÞ � ðP� δÞðSðxÞ � expð�rxÞ

� r

ðx

0

expð�rðx� uÞÞSðuÞduÞ: ð6:5Þ

The integral can be calculated analytically and presented in terms of the

decrements:

Ctot xð Þ ¼ cþ δ 1� S xð Þð Þ � P� δð Þ
X

i
ΔS xið Þexp �r x� xið Þð Þ: ð6:6Þ

The base model (6.1) as well as the models for which analytical solutions (6.2, 6.3,

6.4, 6.5 and 6.6) exist might be further generalized to describe the entire chain of

health events describing the evolution of individual health from a healthy state at

younger ages to multimorbidity and death at older ages. A useful property of these

models is that they have inputs and outputs represented by the same single quantity:

comorbidity measured by medical costs of continuing care. This property allows

researchers to use the base model as a building block in the construction of more
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detailed models. This property also allows different chronic diseases to be incor-

porated into the same approach without increasing the dimensionality of the model.

At a certain stage of model development, analytic solutions may no longer be

possible. Instead, a microsimulation approach might be used. Several further

generalizations might also be required to generate a more comprehensive

microsimulation model. One important generalization is a model of mortality

risks based on assumptions other than those used in model (6.1). For example, the

assumptions could allow changing costs as the main predictive variable. Given the

model estimated, the simulation of individual trajectories is naturally generalized

by considering two competing risks (i.e., the risk of disease onset and the risk of

death) which can be dependent or, more specifically, conditionally independent

given the value of a covariate (i.e., the medical cost level). Other directions for

model generalization could include (i) adjustment to the effect of a second health

event that occurred before complete recovery from the previous one, (ii) adjustment

to possible recurrence of the disease diagnosed earlier, (iii) implementation of

period and cohort effects, (iv) implementation of generalized models of the risks

of the health events with dependence on covariates incorporated in addition to age

dependence, (v) incorporation of the effects of increasing medical expenditures

before death, (vi) modeling and implementation of the distribution of the covariate,

including the distribution conditional on a specific value in the previous time

period. This approach will produce population projections of health and associated

medical costs under the assumption that current conditions (i.e., those which can be

captured by available data) will continue during the projection period. Specific

scenarios regarding the future healthcare environment developed by panels of

experts (Goldman and Rand Corporation 2004) can also be incorporated into the

simulation model. In all these developments, models (6.1) and (6.2) serve as

baselines that must be reproduced numerically or analytically with simplified

versions of more comprehensive forecasting models.

6.4 Discussion

In this chapter, a model of the relationships between individual cost trajectories

around the onset of aging-related diseases was developed and applied empirically.

In total, 20 diseases were analyzed. The main methodological idea was to develop a

mathematical model to predict medical care costs for these diseases for the time

period around the date of the disease onset (identified from data on the medical care

costs associated with treatment of the disease) and create a methodological back-

ground for development of forecasting models of dynamic changes of the health

state and associated medical costs. The empirical results obtained are important for

the U.S. elderly population, because the diseases included in the analyses have high

prevalence and are associated with high medical costs. An innovative approach was

developed for selecting individuals with disease onset and used for identification of

the age at onset. We found that the time patterns of medical cost trajectories were
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similar for all diseases considered and can be described in terms of four components

having the meanings of (i) the pre-diagnosis cost associated with initial comorbidity

represented by medical expenditures, (ii) the cost peak associated with the onset of

each disease, (iii) the decline/reduction in medical expenditures after the disease

onset, and (iv) the difference between post- and pre-diagnosis cost levels associated

with an acquired comorbidity. The description of the trajectories was formalized by

a model which explicitly involves four parameters reflecting these four

components.

The results of these analyses extend those presented earlier in Akushevich

et al. (2011b), which were on analysis of the effect of costs of medical procedures

(not of Medicare payments as in this chapter), and used stratified subgroups of

patients by certain indices such as Charlson’s comorbidity index (calculated using

Medicare data), a disability index (measured in screener interviews, see (Manton

and Gu 2001)), survival status in a 2.5 year follow-up period, and age at diagnosis.

The Charlson comorbidity index was calculated according to specifications

described in Charlson et al. (1987) and Quan et al. (2005), as a weighted sum of

chronic conditions that appeared in individual medical records during the year prior

to the date of interview. These parameters were evaluated for the entire

U.S. population as well as for stratified subgroups of patients. The most important

conclusions from the analyses of the stratified populations were the following:

(1) pre-disease cost levels can be associated with initial comorbidity/disease treat-

ment; (2) there are no strong dependences of the disease-specific costs at onset

among the studied strata, except survival status (i.e., for 2.5-year survivors the cost

was significantly lower for a majority of diseases); (3) the associations of popula-

tion recovery with comorbidity/continuing care and disability showed no essential

dependences on these indices; and (4) for all diseases the acquired comorbidity was

significantly higher for those who died during the first 2.5 years after disease onset.

The patterns of medical expenditures evaluated in this chapter could help clarify

which of the model components is responsible for the effects of medical costs on

health and mortality and which of them is more (or less) sensitive to subpopulation

specifications. All medical cost trajectories were considered for the U.S. elderly

population, as well as for subgroups stratified by disability, comorbidity, age, and

survival (for 2.5 years after the onset). The model of medical cost trajectories was

applied to all empirically verified patterns, and parameters of the model were

statistically estimated and compared. These analyses revealed the basic properties

of the medical cost trajectories. The most important were the following. The

differences in estimates of pre-disease cost level for different diseases were mod-

erate but not identical (Fig. 6.3); since the medical cost trajectories were considered

to be conditional on disease-specific incidence, the detected differences likely

reflected variations in disease risk depending on comorbidity. In contrast, the cost

of disease onset was essentially disease-specific, and the diversity was likely due to

disease-specific diagnostic procedures and initial therapies at the disease onset. The

diseases considered in our study included (i) those with possible clinical recovery

(e.g., ACHD, stroke, and ulcer) and (ii) those with unlikely clinical recovery (e.g.,

diabetes and Alzheimer’s disease). Estimates of population recovery (i.e., the rate
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of reduction of post-diagnosis cost level) reflected potential opportunities for

recovery from aging-related diseases. Positive estimates were detected for all

diseases; however, the statistical significance of the estimates for diseases with

unlikely recovery (e.g., for diabetes mellitus or Alzheimer’s disease) was lower

(or non-significant), especially in subpopulations stratified by disability or comor-

bidity (Fig. 6.3). The acquired comorbidity/continuing care cost (i.e., the difference

between pre- and post-diagnosis cost levels) was disease-specific and strongly

dependent on the survival status of the patients after disease onset (Fig. 6.3, and

Table 6.5 of Akushevich et al. (2011b)). Parameter estimates (Fig. 6.3) confirmed

that the model parameters are chosen so that the effects of multiple diseases on their

estimates are minimal. The first parameter measures comorbidity before disease

onset/pre-disease treatment costs and represents the effects of multiple

comorbidities. The costs of disease onset and acquired comorbidity/followup care

are defined as the cost level above the mean level of comorbidity. The rate of

population recovery, i.e., the rate of reduction of medical expenses after a diagno-

sis, is reflected by reduction of costs for the focal disease, while changes in costs

due to other diseases (i.e., comorbid conditions) are less essential (at least in the first

approximation).

Typically, medical costs associated with specific chronic diseases are analyzed

and projected for a certain period of time after disease onset or health-related event

(e.g., hospitalization) (Yabroff et al. 2009). Often, analyses are performed for

specific population groups such as a subpopulation of disabled or comorbid indi-

viduals (Goldman and Rand Corporation 2004; Noyes et al. 2008; Yabroff

et al. 2008). Recently, the Episode Treatment Group (ETG) approach has been

adopted by Medicare for estimation of disease episode-based medical costs

(Forthman et al. 2000): detailed information is collected for each disease episode

for about 600 clinically homogeneous groups adjusted for patient’s severity, age,
complications, comorbidities, and major surgeries. Despite being a very useful tool

for direct comparison of treatment patterns among providers within the ETG, this

approach was not intended to be the basis for population-level analysis. Compared

to this approach, the method developed in this chapter has fewer details on each

disease episode, but allows for inclusion in the analysis of all patient-related

information on comorbidities (i.e., information not related to only one specific

disease) and disabilities. That makes the whole model more flexible and

non-dependent from the pre-selected diseases in the ETG episode-related condi-

tions. In our approach, only data-driven information was incorporated into the

model, and “human factor”-related issues, such as episode-specific information

on disease-specific procedures, disabilities, and comorbidities were avoided.

Models of medical cost projections usually are based on regression models

estimated with the majority of independent predictors describing demographic

status of the individual, patient’s health state, and level of functional limitations,

as well as their interactions (Goldman and Rand Corporation 2004; Pope

et al. 2004). If the health states needs to be described by a number of simultaneously

manifested diseases, then detailed stratification over the categorized variables or

use of multivariate regression models allows for a better description of the health
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states. However, it can result in an abundance of model parameters to be estimated.

One way to overcome these difficulties is to use an approach in which the model

components are demographically-based aggregated characteristics that mimic the

effects of specific states.

The model developed in this chapter is an example of such an approach: the use

of a comorbidity index rather than of a set of correlated categorical regressor

variables to represent the health state allows for an essential reduction in the

degrees of freedom of the problem. The medical costs of both the first months

and the last months of the trajectories are associated with comorbidity. Since the

complete individual trajectory of health changes can be simplified in terms of

subsequent incidence events, this model of medical costs before and after an

incident event can serve as a building block for constructing the complete individ-

ual trajectory. Many uncertainties typical for existing models are overcome with

such an approach. Thus, this model of the dynamics of medical costs before and

after the onset of a chronic disease can serve as a key component of a model for

projecting medical expenditures.

The results obtained are new and important, both substantively and methodo-

logically. Substantively, the trajectories of medical costs evaluated at the disease

onset in the U.S. elderly population provide new information of potential interest

for planning public health expenditures. Our analysis showed that these trajectories

could be well described by a model with four well-defined and interpretable

components which were estimated for each of the studied diseases. Interestingly,

all of the aging-related diseases studied had very similar structures of cost trajec-

tories. The model was validated for several population groups and demonstrated a

good ability to describe cost trajectories for different levels of disability and

comorbidity (Akushevich et al. 2011b). This model could be extended to a level

of even higher practical importance, such as forecasting health/incidence, mortal-

ity, and associated medical costs in the U.S. elderly population using this limited set

of parameters (and with a great potential for improvements when more detailed data

become available).

Methodologically, the model leads to a general comprehensive microsimulation

forecasting model of medical expenditures that can be formulated as follows. The

population dynamics are represented by random trajectories in a covariate space.

The end of each trajectory is associated with individual death. To simulate an

individual trajectory means to evaluate covariates for all time points between the

beginning of a follow-up period (e.g., at age 65 years old) and the age of death. At

each time point, an individual is at risk of a disease onset and death. The model can

be Markov and non-Markov. In the former case, the risks and dynamics are defined

by the current health status represented by covariates and age. The model developed

in this chapter (or its generalizations) can be used to simulate the dynamics of the

covariate (i.e., the comorbidity index represented by medical costs aggregated

during a certain time period) before and after disease onset. An auxiliary model

of the risks of disease onset and mortality associated with the covariate and age

(e.g., the model described in Chaps. 15 and 16) can then be used to simulate these

events. An important property of the model (6.1) is that it has an input and output
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represented by the same single quantity: comorbidity measured by medical cost,

and this property allows the researchers to use the base model (6.1) as a building

block in simulating a life history as a sequence of such blocks associated with

disease onsets. This property also allows for including different age-related diseases

within the same approach without increasing the dimensionality of the model. Note

that the risks of the diseases as well as the associations of these risks with potential

covariates such as comorbidity, disability indices, and age groups can be roughly

estimated using the numerical estimates presented in Table 6.1 (a detailed investi-

gation of the model for health state projections estimated with Medicare data will be

presented in a separate publication).

If the general comprehensive microsimulation model is specified as a Markov

model, the past history of an individual does not contribute to the probabilities of

future events or, in other words, current covariates and age are taken to represent

sufficient information for the description of health states and future event proba-

bilities. By reducing the dimensionality of the model, we are able to better estimate

the covariate-specific effects; however, the model becomes less precise. Therefore,

a model with a specific set of covariates always represents an approximation to

reality. This is a limitation of all Markov models. Specifically, model (6.1) needs to

be improved when a second disease onset occurs almost immediately after the first

one. Partly, this can be accommodated by using the comprehensive

microsimulation model: if the simulation is performed on a month-by-month

basis, the onset of the second disease can be simulated for any time after onset,

including the time period when recovery is not completed. Greater values of the

covariate then will be associated with higher probabilities of such an event. The

approach’s precision can be estimated by developing individual trajectories for a

pair of disease onsets using an approach close to that described in this chapter.

Another limitation of the modeling approach is that the model (6.1) is not capable of

describing all types of diseases equally well: for example, several months before

their onset, asthma, Alzheimer’s and Parkinson’s diseases, and melanoma are not

described very well by the model. This effect could be explained by diagnostic

tests/procedures performed before the actual clinical diagnoses, and, therefore, this

effect was not deemed critical for the modeling approach.
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Chapter 7

Indices of Cumulative Deficits

Alexander M. Kulminski, Kenneth C. Land, and Anatoliy I. Yashin

7.1 Introduction

Despite broad interest in the mechanisms responsible for human aging and numer-

ous efforts to identify factors contributing to morbidity, biological senescence, and

longevity, these processes still remain elusive. This makes the systemic description

of aging-related changes embedded in data from different studies a difficult task.

Indeed, observational studies typically measure not only major changes in health

and well-being captured by well-defined risk factors (e.g., physiological measure-

ments), but also various aging-related changes spread throughout hundreds of

distinct variables. The connection between such variables as well as between

each of these variables and health or survival outcomes is unclear and often cannot

be evaluated statistically with acceptable accuracy. This is due to the fact that the

number of these variables is typically large, while the effect of each on health and

survival is small, so most estimates of effect parameters in corresponding statistical

models are statistically non-significant. This chapter describes a line of analysis that

is based on the premise that, by taking such “mild-effect” variables into account, the

description of aging-related deterioration in health and well-being in humans can be

substantially improved without costly investments in collecting new data. To

realize this potential, new statistical methods are required.

One promising approach was suggested by Rockwood and Mitnitski (Mitnitski

et al. 2004; Rockwood et al. 2004). These authors developed a cumulative index

(called a frailty index) arguing that health and well-being disorders (e.g., signs,

symptoms, impairments, abnormal lab tests, diseases, etc.) accumulated by indi-

viduals during their life course can be considered as indicators of physiological

frailty. The rationale behind this concept is that degradation and decline of neuro-

endocrine, immune, and other functions of an organism can result in a wide

spectrum of adverse health and well-being disorders (Ferrucci et al. 2003; Goggins

et al. 2005; Vanitallie 2003). On the cellular level, frailty can be associated with a

process of gradual accumulation of damage in cellular tissues (Kirkwood 2002).
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This approach can be generalized to characterize the overall process of health

deterioration with age that can be extended to younger ages. The level of health

deterioration can then be described by a composite index, called an index of
cumulative deficits or deficits index (DI). The DI is based on the Rockwood and

Mitnitski (Mitnitski et al. 2004; Rockwood et al. 2004) premise that mild-effect

traits, which individually have small impacts on risks of adverse health, can

collectively substantially impact morbidity and survival chances. Accordingly,

DIs can become reliable predictors of health and survival as well as the level of

aging-related health deterioration (Goggins et al. 2005; Kulminski et al. 2007a, b, c;

Mitnitski et al. 2002; Yashin et al. 2007a, b).

7.2 Conceptualization of the Deficits Index

The DI is conceptualized as the proportion of failed (e.g., definitive deficits) or

abnormal (e.g., doubtful deficits) health traits an individual has experienced by age

x—that is, as a summary measure of the average level of deterioration at age x.
Thus, an empirical estimate of this proportion in a given individual, i.e., the DI(x),
can be calculated by selecting a sub-set of M units out of a full set of N such units.

Specifically, by summing the number of failed or abnormal units from the selected

set by age x,m(x), an empirical estimate of the DI can be calculated asDI(x)¼m(x)/
M. For example, if an individual has been administered 30 questions and responded

positively (there is a deficit) to five and negatively (no deficit) to 21, then her/his DI

is 5/26. Thus, based on a large and diverse array of deficits, the DI is a quasi-

continuous quantity ranging theoretically between 0 (no deficits or perfect health)

and 1 (pure ill-health) or, equivalently, between 0% and 100%. An important

property of the DI is that it is weakly sensitive to the specific array of deficits for

which responses are obtained as long as a wide spectrum is considered (Kulminski

et al. 2011; Rockwood et al. 2006; Searle et al. 2008).

7.3 Cross-Sectional Age Patterns of the Deficits Index
as Characteristics of Aging-Related Processes

Deficits Indices have being intensively studied for their utility in characterizing

aging-related processes in various populations and settings. One of the important

characteristics of DIs is that they are robustly associated with age; despite the

specifics of a given population or setting, clear trends of increase of DIs with age are

observed in different settings (e.g., Gu et al. 2009; Kulminski et al. 2011; Mitnitski

et al. 2005; Yu et al. 2012).

Figure 7.1 displays examples of cross-sectional patterns of the DI in three

qualitatively different populations. The DI in the National Long Term Care Survey
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(NLTCS) sample is comprised of 32 deficits characterizing disabilities (e.g., diffi-

culty with eating, dressing, walking around), diseases (e.g., arthritis, Parkinson’s
disease, glaucoma, diabetes), and problems with vision, hearing, and teeth

(Kulminski et al. 2007a). The NLTCS sample represents a selected population of

ages 65þ individuals who are mostly of less than average health, characterized by

the presence of chronic disability. The DI in the Framingham Heart Study (FHS)

was constructed using 37 deficits covering milder deficits than those in the NLTCS

(e.g., abnormal laboratory tests and mild health traits) because of the younger ages

of individuals in this sample (Kulminski et al. 2008a). The DI in the FHS charac-

terizes an unselected population of individuals developing health problems

according to a “normal” life course. The DI in the Long Life Family Study

(LLFS) includes 85 deficits covering milder and heavier deficits including disabil-

ities, morbidities, mental health, depression, abnormal laboratory tests, etc.

(Kulminski et al. 2011). The LLFS sample represents a population of individuals

selected for long life, their children, and spouses. Despite substantial differences in

the population settings, all DIs show increases with age, implying that these

patterns capture systemic changes during the life course of an aging body

(Kulminski et al. 2006).

7.4 Deficits Indices and Age as Indicators of Aging-Related
Processes

To better understand the potential of Deficits Indices for characterizing aging-

related processes, we investigate to what extent DIs are distinct from age and

whether they are a better indicator of aging-related processes than age. We conduct

Fig. 7.1 Age patterns of DIs in population samples characterized by differential success in aging.

The NLTCS sample includes 24,213 person-observations at five examinations conducted in 1982,

1984, 1989, 1994, and 1999. The FHS sample represents 3833 individuals examined at the ninth

examination in 1964. The LLFS sample includes 4954 subjects comprising long-living parents and

their children, as well as their spouses, examined in 2010
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systematic comparative analyses of DI- and age-specific patterns for a number of

statistics including frequency distributions, correlations, time to death patterns,

mortality rates, and relative risks of death. Because one of the key characteristics

of aging is mortality, we consider to what extent a DI can discriminate the

population at risk of death, compared to age. The results are presented for a DI

constructed in the NLTCS sample using 32 deficits characterizing disabilities,

diseases, and problems with vision, hearing, and teeth (Kulminski et al. 2007a).

7.4.1 Frequency Distributions

Summary statistics (samples sizes, means, standard deviations, kurtosis, and skew-

ness) of the marginal distributions of the DI (Panel A) and age (Panel B) along with

bar charts are shown in Fig. 7.2 for two groups of NLTCS individuals: (1) those

who survived 1 year and (2) those who died within 1 year after interview.

Figure 7.2 shows that the NLTCS sample is relatively old and unhealthy, as

evidenced by the relatively large mean values of age and the DI in this sample

(Fig. 7.2, insets). Decedents are older and have larger mean DI levels compared to

survivors. Similarly, the DI and age frequency patterns of the survivors have larger

skewness (shape) parameters than decedents. That is, compared to decedents,

survivors are less likely to have large DI values and to be at the oldest ages. This

implies that the frequency patterns for survivors are closer in shape to a gamma

distribution, while those for deceased individuals are bell-shaped being closer to a

normal distribution (Fig. 7.2). The kurtosis parameters of the frequency

Fig. 7.2 The DI (Panel a) and age (Panel b) frequency patterns for NLTCS participants who were

examined in 1982, 1984, 1989, 1994, and 1999 and either survived 1 year (Al) or died within 1 year
(D) after the date of the interview. Insets show characteristics of the population marginal

distributions, including the number of person-observations (N ), mean DI (MDI), mean age

(MA), standard deviation (SD), Kurtosis, and Skewness
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distributions show that the DI- and age-specific patterns for decedents are flatter

than those for survivors.

7.4.2 Correlation of the DI and Age

The correlation between the DI and age is small. Specifically, the Pearson

correlation coefficient between the DI and age in the entire NLTCS sample is

rDI-Age¼ 0.193 ( p< 0.01). It is even smaller for decedents, rDI-Age¼ 0.127

( p< 0.01) and of the same magnitude for survivors, rDI-Age¼ 0.183 ( p< 0.01).

These weak correlations between the DI and age imply that a small DI is not

necessarily found only in younger individuals and that a large DI is not necessarily

found only among the oldest members of the sample. This important result shows

that deficits can be accumulated in a person independently of age.

7.4.3 DI-Specific Age Patterns for Decedents and Survivors

If individuals can accumulate deficits at any age, this measure can be used as a

health index, implying that accumulation of deficits is associated with higher

chances of death. Then decedents should have larger DI values than survivors at

any age. Figure 7.3 shows that this is the case; the entire pattern for decedents is

shifted up toward larger DI values, i.e., individuals with smaller numbers of deficits

live longer regardless of age. By contrast, having a large DI can be predictive of

death regardless of age as well. Figure 7.3 also shows that the DI age pattern for

decedents is flatter than that for survivors. This is likely caused by a saturation

Fig. 7.3 Five-year age

patterns of the DI for

NLTCS participants who

either survived or died

within 1 year after the

respective interview. Bars

showing 95% confidence

intervals ensure that

differences in DI levels for

survivors and deceased

individuals are highly

significant in each age

group
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effect, given the limited abilities of an organism to cope with multiple health

problems, that is compatible with the existence of an upper limit in deficit accu-

mulation (Rockwood and Mitnitski 2006). This is further supported by the finding

that the average number of 15 major causes of death in multiple cause of death

mortality data for decedents aged 65 years or older is relatively constant (~1.9–2.1)

across 5-year age groups up to age 99 (Stallard 2002, Table 7).

7.4.4 The DI and Age Patterns of Time to Death

To empirically evaluate the relationship of the DI and age with survival, we

considered the distribution of time to death (TTD) among NLTCS participants of

different ages or levels of accumulated deficits. Figure 7.4 shows the mean TTD

(the number of years individuals stay alive after interview) for individuals in

different age groups and DI levels. Obviously, younger individuals have longer

life spans. A striking result is that the DI-specific distribution of the TTD resembles

that for the age despite the small correlation of the DI with age. This finding

provides further evidence that individuals have longer life spans when they have

smaller DI values, virtually independent of age.

Figure 7.5a displays the mean values of the DI and age (vertical axis) for

individuals who survive the indicated number of years after interview (horizontal

axis). These patterns suggest that the DI can better characterize the chances of

death, especially during a short follow-up period, than age. Indeed, Fig. 7.5b shows

that correlation of DI with TTD (rDI-TTD) is much stronger than that of age with

TTD (rAge-TTD) within shorter follow-up periods. For longer follow-up periods, this
difference diminishes and the correlation coefficients rAge-TTD and rDI-TTD become

similar.

Fig. 7.4 Time to death

(TTD) distributions by DI

levels and age groups for

NLTCS participants. Bars
show 95% confidence

intervals

168 7 Indices of Cumulative Deficits

http://dx.doi.org/10.1007/978-94-017-7587-8_#Tab7


7.4.5 The DI and Age Specific Mortality Rates

To ascertain whether the foregoing conjecture is manifested in mortality patterns,

we calculated 1-year age- and DI-specific mortality rates. Figure 7.6a explicitly

shows that the DI is associated with mortality. Individuals having small DIs also

have smaller chances of death within 1 year after interview. These chances increase

in an accelerated pattern as the DI increases. At large DIs (about 50% and larger),

the increase in the mortality rates decelerates likely reflecting a limit in the deficit

accumulation (Rockwood and Mitnitski 2006).

The accelerated increase in mortality rates with increasing DI (Fig. 7.6a) is

exponential up to the 51–60% level and then flattens, which, as indicated, likely

reflects a limit in deficit accumulation. By comparison, the accelerated increase in

the age-specific mortality rates (Fig. 7.6b) is exponential up to the oldest age

interval (100þ), which is consistent with the Strehler-Mildvan model of mortality

and age (Strehler and Mildvan 1960). Note that because the NLTCS sample has an

Fig. 7.5 Panel a Time to

death (TTD) patterns of the
DI (left axis) and age (right
axis) for NLTCS
participants. Bars show
95% confidence intervals.

Panel b Pearson correlation

coefficients among DI and

TTD (rDI-TTD) and age and

TTD (rAge-TTD) for
individuals who survive at

least the number of years

after respective interview

shown in the x axis
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over-representation of disabled individuals, the age-specific mortality rates are

larger than those for the general U.S. elderly population aged 65–85 years

(Akushevich et al. 2005).

7.4.6 Relative Risks of Death

To better assess the potential of the DI for characterizing the chances of death

compared to age, we evaluated the relative risk (RR) of death for the DI and age.

The analyses were conducted using univariate (i.e., either the DI or age were

included as predictors) and multivariate (both the DI and age were included as

predictors) Cox regression models. Table 7.1 shows the results of the analyses for

the occurrence of death within 1–4 years of follow-up. Univariate analyses using

either the DI or age as a predictor variable show that the RRs resemble those from

multivariate analyses with both the DI and age included (Table 7.1). In other words,

the DI and age are largely independently associated with mortality risks.

Table 7.1 shows that the RR of death associated with a 1% increment in the DI

(RRDI) is larger than that associated with the 1-year increment in age (RRAge) for a

1-year follow up in the multivariate model. For the longer follow-up times, the

RRAge increases whereas the RRDI declines. These opposite dynamics imply a

diminishing contribution of specific health factors to the risk of death compared

to the non-specific ones which are likely associated with the inherent process of

biological senescence.

Because the range of variation in the DI and age are different, we also evaluated

the cumulative risk of death due to accumulated deficits (CRDI) and age (CRAge).

Specifically, while the DI theoretically ranges between 0% and 100%, we defined

the range of the DI as zero to the empirical maximum for the DIs in our data and

elsewhere (Rockwood and Mitnitski 2006), i.e., 70%. The range of age in the

Fig. 7.6 The DI-specific (Panel a) and age-specific (Panel b) patterns of the mortality rate for

NLTCS participants. Bars show 95% confidence intervals
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NLTCS was from 65 years to about 105 years, a span of 40 years. The cumulative

risk was calculated for a 70% DI increment as, e.g., CRDI¼ exp(70� 0.039)¼ 15.3

for the 1-year follow-up. Similarly, we have for the 40-year age span, e.g.,

CRAge¼ exp(40� 0.033)¼ 3.7 for the 1 year follow-up. Table 7.1 shows that the

DI predicts the cumulative chances of death better than age, especially within a

short-time horizon when the ratio CRDI/CRAge is particularly large. These obser-

vations support our conclusion from the analyses in Fig. 7.5, that the DI can better

characterize the chances of death than can age.

Given a possible nonlinear effect of the DI on the risk of death (see Fig. 7.3), we

evaluated the RRs of stratified DI and age groups for death events occurring within

the 4-year follow-up. The risks of death were contrasted to the lowest (0–10%) DI

level and the youngest (65–69) age group (Fig. 7.7). The RRDI increases in a

nonlinear fashion similar to that of the RRAge. At smaller DI levels and younger

ages, there is an accelerated growth of the risks which decelerates at large DIs and

old ages.

The results of these comparative analyses of the roles of the DI and age as

indicators of the aging-related processes provide evidence in support of the follow-

ing three major conclusions. First, the DI can be a useful summary of the aging

phenotype in models of mortality, aging, and survival. Second, the DI can charac-

terize aging-related processes independently of age. Third, the DI is a better

indicator of these processes than age.

7.5 Longitudinal Analyses: The DI as an Indicator
and Predictor of Long Life

Analyses using cross-sectional data can be biased by differential exposures of

different birth cohorts to changing environments. More precise information on

the role of the DI as a characteristic of the aging-related processes and chances of

Fig. 7.7 Relative risks of death within 4 years of follow up for NLTCS participants stratified by

DI levels (Panel a) and age (Panel b). Dashed lines show 95% confidence intervals
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living long lives is available in longitudinal data collected on the same individuals

as they age. The connections of the DI with aging-related processes in longitudinal

settings were analyzed using the sample of the U.S. elderly individuals who

participated in four waves of the NLTCS conducted in 1984, 1989, 1994, and

1999. The problem addressed in this section is the ability of the DI to differentiate

long- and short-life phenotypes in this longitudinal context.

7.5.1 Construction of Long- and Short-Life Phenotypes

Three cohorts of NLTCS respondents with distinct survival profiles were selected.

The first cohort comprised individuals who lived short lives and died when they

were between 65 and 74 years of age; the short-lived cohort, denoted SL. The SL

cohort was between 65 and 74 years of age at baseline in the 1984 survey with mean

age and standard deviation (MA � SD) equal to 68.4� 2.4. The second cohort

consists of respondents who lived long lives but died when they were 85þ years of

age; the long-lived and deceased cohort, denoted LLD. The LLD cohort was

between 66 and 110 years of age (MA� SD¼ 82.5� 6.5) at baseline. The third

cohort comprises individuals who lived long lives and were alive at the end of the

observation in August, 2003; the long-lived and alive cohort, denoted LLA. The

LLA cohort was between 65 and 92 years of age (MA� SD¼ 70.6� 4.4) at

baseline. The choice of the age cutoffs distinguishing these cohorts is flexible –

an analysis of different age cutoffs adjusted to available sample sizes showed that

the results are consistent across these methodological decisions.

7.5.2 Longitudinal Changes of the Mean DI in the SL, LLD,
and LLA Cohorts

Figure 7.8 shows the longitudinal changes in mean DI in the SL, LLD, and LLA

cohorts across the subsequent examinations. These analyses included individuals

who were alive in a given NLTCS wave and had no missing information on DI. It

can be seen that the DIs for individuals from the SL cohort are larger than those for

individuals from the LLD cohort, and the DIs for the LLD cohort are substantially

larger than the DIs for individuals from the LLA cohort.

Because individuals with higher DI levels are more likely to die (Fig. 7.6a), the

longitudinal patterns of the DI for the SL and LLD cohorts in Fig. 7.8 represent a

superposition of two major processes. One is selective survival of robust individ-

uals (i.e., those with low DI levels) who have a greater chance of surviving to older

ages. This selection process lowers the mean DI of the surviving members of the

cohorts over time. The second process is an accumulation of aging-related health

deficits in members of the cohorts. This process increases the mean DI of the cohort
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members over time. To delineate compositional (e.g., due to death) and aging-

related changes in the DI over time, we followed the same individuals longitudi-

nally. For these analyses, we selected individuals from the SL and LLD cohorts who

had no missing observations and were alive in the 1984 and 1989 waves (for the SL)

and in the 1984, 1989, and 1994 waves (for the LLD). By construction, all members

of the LLA cohort were living in each wave. Figure 7.9a shows that to live long

lives individuals should have low DIs and keep this low level over time.

Given the admixture of various birth cohorts in the SL, LLD, and LLA samples

and the potential sensitivity of different cohorts to changing social, economic, and

health care environments, we examined the dynamics of the mean DI in more

homogeneous 10-year birth cohorts. Figure 7.9b shows that the DI patterns for the

1910–1919 birth cohort resemble those in the entire samples shown in Fig. 7.9a,

implying no substantial non-additive modulation by non-overlapping birth cohorts.

Further, the DI patterns in Fig. 7.9b ensure that long life is indeed characterized by

low DI levels over time in relatively homogeneous birth cohorts. Figure 7.9b also

shows that older individuals from early birth cohorts from the LLD and LLA

samples tend to accumulate deficits with more acceleration than younger individ-

uals from the later birth cohorts.

The results of the longitudinal analyses of the DI variation over time presented in

this section confirm our inferences from the cross-sectional analyses that the DI is a

sensitive summary of aging-related processes in older individuals. These results

show that the DI can robustly differentiate individuals with respect to their chances

of living long lives.

7.5.3 The DI as an Indicator of Frailty

Because the DI can characterize aging-related processes and lifespan in humans, it

can be used as a reliable indicator of frailty. Indeed, frailty is traditionally

Fig. 7.8 Longitudinal

changes of the mean DI

among NLTCS respondents

in the SL, LLD, and LLA
cohorts since the 1984-wave

baseline. Bars show 95%

confidence intervals
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considered as a physiological state that results from the general decline of an

organism’s reserves and deregulation of multiple physiologic systems which is

likely associated with biological aging. Frail individuals are believed to have

increased non-specific vulnerability and are more susceptible to various adverse

health outcomes including death, disability, and hospitalization (Ferrucci

et al. 2003; Fried et al. 2001; Mitnitski et al. 2005; Newman et al. 2001; Puts

et al. 2005; Woo et al. 2006). The problem is how to define frailty (Bergman

et al. 2007; Bortz 2002; Fisher 2005; Lally and Crome 2007; Levers et al. 2006;

Rockwood and Mitnitski 2011; Rothman et al. 2008).

One widely-used operational definition of frailty proposed by Fried et al. (2001)

distinguishes phenotypic frailty as a clinical syndrome, i.e., a set of signs and

symptoms that tend to occur together thus characterizing a specific medical condi-

tion. This phenotypic frailty definition rests on selected indicators of physical

frailty, i.e., unintentional weight loss, exhaustion, weakened grip strength, slow

walking, and low physical activity. It is believed that physical frailty is due to

physiological aging (the basic cause) and disease (serving as a risk factor) and

results in an inability to cope with everyday stresses of life and, thus, in an increased

Fig. 7.9 Aging-related

dynamics of the mean DI

among NLTCS respondents

in the SL, LLD, and LLA

cohorts who were alive and

examined in the 1984 and

1989 waves (for the SL

cohort) and in the 1984,

1989, and 1994 waves (for

the LLD and LLA cohorts).

Panel a Dynamics for all

birth cohorts combined.

Panel b Dynamics for

10-year birth cohorts when

applicable (shown in the

inset along with the sample

sizes)
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vulnerability to adverse health outcomes (Bergman et al. 2007; Fisher 2005; Fried

et al. 2001).

Another widespread approach, that articulated by Rockwood and Mitnitski

(Mitnitski et al. 2004; Rockwood et al. 2004), is based on the characterization of

frailty as a non-specific multifactorial state that is better characterized by the
quantity rather than the quality of deficits accumulated by individuals during
their life courses, i.e., by the DI. According to the DI approach, frailty reflects the

impact of physiological aging and results in increased vulnerability to adverse

health outcomes, including death. Deficits, however, are considered as

non-specific and equally weighted markers of frailty rather than as risk factors.

To better understand the rationale behind this (at first glance, oversimplified)

approach, let us assume that the impact of physiological aging on the risk of

death outweighs the impact of a particular disease at advanced ages. Indeed,

while the total and some cause-specific (particularly acute) mortality risks continue

to increase among the oldest-old, the relative risks of deaths due to particular causes
(e.g., fractures, heart disease, cancer, etc.) seem to decline (see, e.g., Center

et al. 1999; Forsen et al. 1999; Horiuchi and Wilmoth 1997; Richmond

et al. 2003). That is, aging-associated increases in mortality may happen regardless

of the specific health disorders yet be accompanied by increasing numbers of

deficits (of diverse nature) in individuals.

What is the potential of each of these two approaches for characterizing

non-specific vulnerability to death? To address this question, we focused on

comparative analyses of the DI approach and the originally defined phenotypic

frailty (Fried et al. 2001) in the same dataset: the main cohort of the Cardiovascular

Health Study (CHS) (Kulminski et al. 2008b).

7.5.4 The Phenotypic Frailty Index (PFI) and the DI

The PFI was defined using five components: weight loss, exhaustion, low activity,

slowness, and grip strength following Fried et al. (2001) as described in Kulminski

et al. (2008b). According to this criterion, Fried et al. (2001) defined three frailty

phenotypes: robust (no positive components for frailty), pre-frail (1–2 positive

components), and frail (3þ positive components) arguing that groups “with three

components positive for frailty had significantly worse survival than those with two

components, or the “no frailty” groups.”

The DI was defined based on counts of 48 deficits including pulmonary diseases;

nervous/emotional disorder; high blood pressure; hearing problems; vision prob-

lems; heart disease; diabetes; arthritis; cancer; difficulty walking; feeling about life;

life satisfaction; people to talk to when lonely; walking for exercise; household

chores; mowing lawn; raking lawn; gardening; exercise cycle; dancing; calisthenic

exercises; pulmonary embolus; sleep on 2þ pillows to help breathe; awakened by

trouble breathing; swelling of feet/ankles; pain in leg; pneumonia; asthma; cough;

shortness of breath; palpitations; dizziness; fatigue; weakness; nausea; indigestion;
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diarrhea; groggy; trouble falling asleep; walking 0.5 mile, ten steps; difficulties

lifting, reaching out, gripping; bleeding; problems staying; hypotension, and major

ECG abnormality (Kulminski et al. 2008b).

7.5.5 The PFI and DI as Predictors of Death

Because the DI is a quasi-continuous index ranging theoretically from 0% to

100%, whereas the PFI is categorical one, we need an appropriate strategy for

comparing their effects on survival. One approach is to categorize the DI into three

categories (Kulminski et al. 2008b) which have to be similar to those for the PFI. To

do so, the following strategy was adopted. A preliminary categorization was

performed arbitrarily. Then it was refined in order to have the same estimates of

the relative risks of death in the Cox regression model when it includes both the

3-level PFI (PFI3) and 3-level DI (DI3). This procedure yields the estimates for the

DI3 and PFI3 shown in Table 7.2 (column “RR”) and results in the DI categoriza-

tion as shown in Table 7.2 (column “Cut-offs”) with the frequency of subjects

shown in column “N”.

The sample then was stratified by categories of the PFI3 and DI3 into nine

sub-groups as shown in Table 7.3. Table 7.3 and Fig. 7.10, respectively, show the

relative risks of death and survival functions for each subgroup evaluated using the

Cox proportional hazard regression model within a 5 year follow-up period after the

baseline examination. Individuals who were recognized as frail by both the pheno-

typic frailty and deficit definitions (Table 7.3; N¼ 274) have the lowest survival

prospects and die faster than those in the other sub-groups. For sub-groups 6 and

8, the RRs and survival are nearly the same. Sub-group 8 is recognized as frail by

the PFI and as pre-frail by the DI (Table 7.3; N¼ 69). Individuals in this sub-group,

however, have the same risk of dying as in group 6 (pre-frail by the PFI; N¼ 879).

Thus, the PFI underestimates risks of mortality for 879 individuals, while the DI

underestimates the risk for 69 persons. The PFI also recognizes 18 persons

Table 7.2 Relative risks (RR) of death according to the three-level deficit index (DI3) and three-

level phenotypic frailty index (PFI3) in the sample of CHS participants

Index Condition Cut-offs N RR 95% CI

PFI3 Robust 0 of 5 2008 Reference

Prefrail 1–2 of 5 2352 1.55 1.26–1.90

Frail 3þ of 5 361 2.46 1.85–3.26

DI3 Robust DI �22% 1764 Reference

Prefrail 20% < DI �31% 1528 1.51 1.19–1.91

Frail DI >31% 1429 2.50 1.97–3.15

CI denotes confidence interval

The models were adjusted for sex and age. To balance the follow-up period and the number of

deceased persons, a 5-year follow-up period for survival was used in these analyses
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(sub-group 7) as frail, while only one of them died within at least 5 years and this

group is recognized as robust by the DI.

The results of the comparative analyses of the roles of the DI and PFI as a

characteristic of frailty and their ability to discriminate chances of death suggest the

following:

1. The PFI has clear advantages for clinical operationalization, since only five

substantive characteristics for each person are considered. This is also a weak

point of this measure, because this operationalization considerably restricts the

flexibility of the approach. Specifically, the foregoing analyses show that, for the

proposed scale of robust, pre-frail, and frail phenotypes (Fried et al. 2001), the

PFI underestimates the chances of death for 879 persons (who are defined by the

PFI3 as pre-frail; ID¼ 6), while the DI does so for 69 persons (who are defined

by the DI3 as pre-frail; ID¼ 8) under the same categorization. Clearly, the DI

can be categorized more finely to more precisely evaluate chances of death.

2. The DI identifies 274 individuals (ID¼ 9) as frail out of 361 individuals

(ID¼ 7þ 8þ 9) recognized as frail by the phenotypic frailty definition. This

observation, along with possible connection of the PFI with a frailty syndrome

(Fried et al. 2001), indicates that the DI is also frailty-related.

3. The foregoing results suggest that an integration of both approaches is highly

promising for increasing the precision of mortality risk discrimination, espe-

cially among the most vulnerable part of the elderly. This means that from the

health and well-being history of an individual, the survival chances of elderly

individuals can be evaluated more precisely by using both a measure of health/

well-being and a more specific measure. This conclusion seems to be intuitively

Fig. 7.10 Survival curves smoothed by Cox regression for each of the nine selected sub-groups

defined on the basis of categorization of the phenotypic frailty index (PFI) and the deficit index

(DI) into three categories (see Table 7.3) as robust, pre-frail, and frail: (1) PFI3robust and DI3robust;

(2) PFI3robust and DI3pre-frail; (3) PFI3robust and DI3frail; (4) PFI3pre-frail and DI3robust; (5) PFI3pre-frail
and DI3pre-frail; (6) PFI3pre-frail and DI3frail; (7) PFI3frail and DI3robust; (8) PFI3frail and DI3pre-frail;

and (9) PFI3frail and DI3frail
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clear, especially for clinicians, but it has not been formally stated and demon-

strated. The DI provides a reasonable alternative for operationalizing this intu-

itive understanding using an appropriate measure of health/well-being and

linking it to the aging-associated processes in an organism (Kulminski

et al. 2006, 2007a; Yashin et al. 2007b). A possible disadvantage of the DI

associated with problems with its clinical translation is mitigated by wide-spread

informational technologies used in clinical practice. From these, the whole-life

health and well-being history of an individual can be readily made available to

clinicians. Linked with standardized procedures for construction of cumulative

indices (Searle et al. 2008), this approach may become a powerful alternative to

the phenotypic frailty approach.

7.5.6 Mid-to-Late Life DIs and Physiological Indices
as Characteristics of Long-Term Survival

Historically, studies of the properties of the DI were largely limited to elderly

individuals. Contemporary priorities of aging research include the identification of

the most important factors contributing to a long and healthy life throughout the

entire life course. Consequently, a focus on a wide spectrum of potential determi-

nants of long and healthy life, as well as on early-life conditions is of importance

(Hadley and Rossi 2005). Does the DI retain its predictive power for younger (e.g.,

middle-aged) individuals? How efficiently can the DI predict survival? Can the DI

compete with traditional (e.g., physiological) risk factors? Answers to these ques-

tions can contribute greatly to understanding aging-associated processes because

the underlying tool, the DI, has the potential of bringing into the analysis additional

health dimensions typically ignored due to their small, inconsistent or

non-significant effects on survival.

To address these questions, we focus on the DI and a set of five physiological

indices (termed endophenotypes) that are among traditional cardiovascular risk

factors consistently assessed and documented in the Framingham Heart Study

(FHS) (Gagnon et al. 1994; Wilson et al. 1998), namely, systolic blood pressure

(SBP, mm Hg), total cholesterol (TC, mg/100 ml), blood glucose (BG, mg/100 ml),

body mass index (BMI, kg/m2), and hematocrit (Htc, %). The analyses are based on

data from two representative examinations in the FHS performed in 1964 (9th) and

1974 (14th) using the same 39 deficits (Kulminski et al. 2008b) with comparable

diagnostic procedures across time. We use the Cox regression model with a

backward likelihood ratio elimination technique to examine the contributions of

the DI and the endophenotypes, measured in mid-to-late-life, to long-term survival

of the FHS participants. Long-term survival was defined by the currently maximal

time horizon available for participants of the 14th examination, i.e., 34 years (the

last known vital status assessment was in 2008).

Analyses were initially performed for each examination separately to ensure that

the estimates were not affected by possible secular trends. Since the results were
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comparable across these examinations, we pooled the data to increase the statistical

power. We selected 10-year birth cohorts of the same chronological age in the 9th

and 14th examinations which did not overlap between the examinations (because

they were 10-years apart). Excluding individuals with missing values for either

covariate, the sample comprised five birth cohorts with participants aged: (1) youn-

ger than 50 years (N9th¼ 448, N14th¼ 0), (2) 50–59 years (N9th¼ 1301,

N14th¼ 449), (3) 60–69 years (N9th¼ 995, N14th¼ 1234), (4) 70–79 years

(N9th¼ 463, N14th¼ 708), and (5) 80 years and older (N9th¼ 0, N14th¼ 215) at

the 9th and 14th examinations. The models were adjusted for sex, age, and smoking

status.

7.5.7 The DI, Endophenotypes, and Long-Term Survival
in the FHS

The analyses of the risks of survival within the entire 34-year follow up period show

that the DI and each endophenotype can characterize the risk of death individually,

i.e., in a univariate model with one predictor variable (i.e., the DI or

endophenotype) included (Table 7.4). However, these effects are sensitive to age.

For example, the DI and all five endophenotypes confer significant risks of death

only for the 50–59 age group. Multivariate analyses show that the most significant

predictors of death are the DI, SBP, and BG. They confer risks of death virtually

independently, i.e., additively. The SBP outperforms the DI in terms of significance

of the estimates in younger age group (<50 years), whereas the DI is the only highly

significant predictor in the oldest group (80þ years). To ensure that deaths that

occurred within a shorter follow-up period do not alter inferences for long-term

survival, we estimated the models with subjects who died within first 10 years of

follow-up excluded. The estimates resemble those for the multivariate models

(Table 7.4).

The analyses of the role of the DI and five traditional cardiovascular risk factors

(i.e., SBP, BG, BMI, TC, and Htc) measured in mid-to-late life as predictors of

long-term survival show that DI, SBP, and BG are the most significant. Further,

these three factors show additive effects implying that they characterize

non-overlapping health dimensions contributing to mortality through different

pathways. This finding is in agreement with additive effects of major physiological

risk factors evidenced in prior studies (e.g., Grundy et al. 1999; Wilson et al. 1998).

The highly significant effect of the DI on long-term survival of the oldest-old study

participants (i.e., 80þ years) suggests that the DI can be a sensitive and particularly

informative predictor of longevity for the oldest-old.
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7.6 Conclusion

The results of the analyses presented in this chapter help in conceptualizing a new

instrument for measuring aging-related processes in humans, the DI, which is

promising for applications in population and clinical settings. Specifically, com-

parative analyses of statistical properties of various age- and DI-specific outcomes,

including frequency distributions, time to death, and mortality, strongly support the

role of the DI as a tool to characterize aging-related processes in the elderly

independently of age. Accordingly, the DI is not merely a substituent for age, but

an alternative summary of the aging-related processes. The ability of the DI to

robustly characterize aging-related processes and disentangle phenotypes of short

and long lives is confirmed in the analyses using longitudinal data on the same

individuals. The DI appears to be a better measure of phenotypic frailty in elderly

individuals than an alternative tool developed by Fried and colleagues (2001). An

important finding is that the DI can robustly predict longevity and long-term

survival of mid-aged individuals which is of inherent concern in public health

applications. Our analyses show that the DI in this context outperforms many

conventional characteristics such as BMI, lipids, and hematocrit.
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Chapter 8

Dynamic Characteristics of Aging-Related
Changes as Predictors of Longevity
and Healthy Lifespan

Anatoliy I. Yashin, Konstantin G. Arbeev, Svetlana V. Ukraintseva,
Liubov S. Arbeeva, Igor Akushevich, Julia Kravchenko,

Alexander M. Kulminski, Irina Culminskaya, Deqing Wu,

and Kenneth C. Land

8.1 Introduction

Individual age trajectories of physiological indices are the product of a complicated

interplay among genetic and non-genetic (environmental, behavioral, stochastic)

factors that influence the human body during the course of aging. Accordingly, they

may differ substantially among individuals in a cohort. Despite this fact, the

average age trajectories for the same index follow remarkable regularities. As an

illustration, Fig. 8.1a shows the age trajectories of the mean values for selected

physiological indices using the data on the original cohort of the Framingham Heart

Study (FHS).

It can be seen from Figs. 8.1a and 8.1b that some indices tend to change

monotonically with age: the level of blood glucose (BG) increases almost mono-

tonically; pulse pressure (PP) increases from age 40 until age 85, then levels off

and shows a tendency to decline only at later ages. The age trajectories of other

indices are non-monotonic: they tend to increase first and then decline. Body mass

index (BMI) increases up to about age 70 and then declines, diastolic blood

pressure (DBP) increases until age 55–60 and then declines, systolic blood

pressure (SBP) increases until age 75 and then declines, serum cholesterol

(SCH) increases until age 50 in males and age 70 in females and then declines,

ventricular rate (VR) increases until age 55 in males and age 45 in females and

then declines. With small variations, these general patterns are similar in males

and females.

The shapes of the age-trajectories of the physiological variables also appear to be

similar for different genotypes. For example, Fig. 8.1b shows the effect of the

APOE e4 allele on average age trajectories of eight physiological indices. While the

mean values of BMI and cholesterol differ for e4 and non-e4 carriers (at ages above

55), the pattern of the age-related changes per se remains stable. Figures 8.1a and

8.1b also shows that gender influences the age trajectories of physiological vari-

ables more substantially than genetic differences in the APOE allele. This may

© Springer Science+Business Media B.V. 2016
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indicate that factors regulating changes in gene and protein expression during

ontogeny may play a more significant role in shaping physiological trajectories

than pure genetic variability.

The effects of these physiological indices on mortality risk were studied in

Yashin et al. (2006), who found that the effects are gender and age specific. They

also found that the dynamic properties of the individual age trajectories of physi-

ological indices may differ dramatically from one individual to the next. The fact

that their age dependence affects the shape of the mortality risk function also

provides important insights into the mechanisms by which the aging process affects

the decline in stress resistance in individuals (Ukraintseva and Yashin 2003; Yashin

et al. 2007, 2008, 2009, 2010b).

Researchers continue to study the determinants of the aging rate and the possible

contribution of this rate to life span and healthy life span (Arbeev et al. 2005;

Austad 2005; Colman et al. 2009; De Martinis et al. 2005; Doubal and Klemera

1990; Nakamura and Miyao 2007, 2008; Nussey et al. 2007; Ruiz-Torres

et al. 1994; Ukraintseva and Yashin 2001; Vasto et al. 2010). Since the rate of

Fig. 8.1a Mean values (� s.e.) of physiological indices among participants of the original cohort

of the Framingham Heart Study (FHS) (pooled data of available measurements from exams 1–28)
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aging literally means the rate of change with age, it is reasonable to assume that

individual differences in the aging rate are manifested in the variability of the

dynamic properties of individual age trajectories of the physiological indices. And,

if the individual aging rate affects life span and healthy life span, then one can

expect that the dynamic characteristics of such trajectories will affect morbidity and

mortality risks. A number of studies also highlight the importance of using dynamic

properties of individual age-associated changes in physiological indices as charac-

teristics of the aging process that predict morbidity and mortality risks, in addition

to the use of the age-specific baseline measurements (Andres et al. 1993; Kerstjens

et al. 1997; Pekkanen et al. 1994; Rantanen et al. 2003; Ryan et al. 1999; Sircar

et al. 2007; Zureik et al. 1997).

In this chapter, we investigate the effects of parameters describing the dynamic

relationships of the age trajectories of eight physiological indices to subsequent

morbidity and mortality risks among participants of the FHS Original Cohort.

Fig. 8.1b Mean values (� s.e.) of physiological indices (males and females combined) in carriers

versus non-carriers of APOE e4 allele, in the FHS original cohort
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8.2 Data and Methods

The FHS data and phenotypes of interest are described in Chap. 2. We investigate

the dynamic properties of individual age trajectories for the eight physiological

indices described above with the objective of identifying “dynamic” risk factors

capable of affecting mortality risk and the onset of an unhealthy life. BG was

excluded from the list of indices for analyses of the onset of unhealthy life because

in the FHS data the onset of diabetes is specifically defined from the values of

BG. In the analyses performed in this chapter, we use longitudinal data from the

Original Cohort of the Framingham Heart Study (FHS).

8.2.1 Definitions and Evaluation of Dynamic Risk Factors

We first evaluate the effects of the rate of change in physiological indices at ages

40–60 on mortality risk and risk of onset of unhealthy life at ages 60þ. For this

purpose, we approximated the individual trajectories of those physiological indices

that show nearly linear dynamics (for females and/or males) at ages 40–60 (BG,

BMI, H, SBP, and PP) by a linear function of the form

y xð Þ ¼ a40�60 þ b40�60 x� 40ð Þ, where x is age and y is the value of the physiolog-
ical index at age x. Individuals having less than five observations of an index at ages
40–60 were excluded from the analyses. Consequently, we have estimates of three

risk factors for each individual and each index: an initial value of the index at age

40 (i.e., a40�60, referred to as “Intercept40�60” in Tables 8.1 and 8.2 and the text

below), the rate of change in the physiological index at ages 40–60 (b40�60,

“Slope40�60”), and the mean of the absolute values of the residuals, i.e., deviations

of observed values of an index from those approximated by a linear function at ages

40–60 (“Variability40�60”). The joint effects of these risk factors on mortality and

the incidence of unhealthy life were estimated (separately for each physiological

index) by a Cox proportional hazards model with delayed entry (the left truncation

time was defined as the maximum of the age at the first FHS exam and 60).

Individuals with ages at death (onset of unhealthy life)/censoring below age

60 were excluded from the analyses. Note that although the use of linear functions

for describing individual aging-related changes is a rough approximation to mono-

tonic changes, it captures an important dynamic risk factor – the average rate of

change of each individual index during the age interval between 40 and 60 years.

Second, we evaluated the effects of dynamic characteristics of physiological

indices with non-monotonic age trajectories on mortality risk and risk of onset of

“unhealthy life.” For this purpose, we approximated the age trajectories of such

indices (BMI, DBP, SBP, VR, H, and SCH) by two linear functions. The first

approximates the increase in the trajectory at the initial interval

xL; xmax½ � : y xð Þ ¼ aL þ bL x� xLð Þ, where x is age and y is the value of a physio-

logical index at age x. The second approximates the subsequent decline in the
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trajectory at the interval [xmax, xR] after reaching the maximum value ymax ¼ aL
þbL xmax � xLð Þ at age xmax : y xð Þ ¼ aR þ bR x� xmaxð Þ. The intervals [xL, xR] for
the fit were defined empirically for each index and sex as follows: [35, 55] for VR

(females); [40, 60] for VR (males) and SCH (males); [45, 65] for BMI (males) and

DBP (females and males); [50, 70] for SCH (females); [55, 75] for BMI (females);

[65, 85] for SBP (females and males), and [55, 75] for H. Note that the following

restrictions on parameters were used in the estimation procedures: bL > 0, bR >
0, and aR ¼ aL þ bL xmax � xLð Þ, to ensure the appropriate shape of the fit. Individ-

uals having less than six observations of the index at ages xL � 5, xR þ 5½ � and those
having estimates of bL, bR at the boundary of allowable values (i.e., nearly zero)

were excluded from the analyses. As a result, we have estimates of six risk factors

for each individual and each index: an initial value of an index at age xL (i.e., aL,
referred to as “Intercept2L” in Tables 8.3, and 8.4 and the text below), the rate of

Table 8.1 Effects of “dynamic” risk factors calculated from individual trajectories of physiolog-

ical indices at ages 40–60 on mortality risk at ages 60þ in the Framingham Heart Study (Original

Cohort) estimated by Cox proportional hazards regression models

Physiological

index Risk factor (RF)

Mean RF

(St. Dev.)

Cox regression model

Parameter

(S.E.)

Hazard ratio (95%

C.I.)

BG

(N¼ 2135,

Ne¼ 1946,

Nc¼ 189)

Intercept40�60 77.750 (19.789) 0.005* (0.002) 1.081 (1.010, 1.157)

Slope40�60 0.552 (1.953) 0.068# (0.026) 1.103 (1.025, 1.188)

Variability40–60 8.529 (6.826) 0.017§ (0.005) 1.083 (1.035, 1.133)

Sex 0.453 (0.498) 0.500{ (0.046) 1.648 (1.505, 1.804)

BMI

(N¼ 742,

Ne¼ 600,

Nc¼ 142)

Intercept40�60 25.382 (4.149) 0.014 (0.012) 1.071 (0.952, 1.206)

Slope40�60 0.071 (0.173) �0.161 (0.267) 0.973 (0.889, 1.064)

Variability40�60 0.639 (0.466) 0.279# (0.092) 1.125 (1.042, 1.215)

Sex 0.439 (0.497) 0.453{ (0.088) 1.573 (1.324, 1.870)

SBP

(N¼ 3025,

Ne¼ 2800,

Nc¼ 225)

Intercept40�60 127.201 (22.004) 0.013{ (0.001) 1.331 (1.259, 1.408)

Slope40�60 0.553 (1.242) 0.147{ (0.021) 1.209 (1.146, 1.275)

Variability40�60 6.358 (2.884) 0.042{ (0.007) 1.141 (1.091, 1.194)

Sex 0.433 (0.496) 0.513{ (0.039) 1.671 (1.549, 1.802)

PP (N¼ 3025,

Ne¼ 2800,

Nc¼ 225)

Intercept40�60 44.377 (12.927) 0.022{ (0.002) 1.304 (1.236, 1.375)

Slope40�60 0.512 (0.851) 0.274{ (0.032) 1.284 (1.213, 1.359)

Variability40�60 4.820 (2.038) 0.038§ (0.011) 1.094 (1.041, 1.151)

Sex 0.433 (0.496) 0.535{ (0.039) 1.707 (1.582, 1.842)

H (N¼ 2027,

Ne¼ 1813,

Nc¼ 214)

Intercept40–60 45.208 (4.634) 0.073{ (0.010) 1.511 (1.353, 1.688)

Slope40�60 0.004 (0.285) 0.876{ (0.141) 1.300 (1.197, 1.413)

Variability40�60 1.447 (0.629) 0.102# (0.038) 1.084 (1.022, 1.150)

Sex 0.455 (0.498) 0.229§ (0.062) 1.257 (1.113, 1.419)

Notes: *0.01� p< 0.05, #0.001� p< 0.01, §0.0001� p< 0.001, {p< 0.0001, for other estimates:

p� 0.05; Sex: 1 male, 0 female; the otherRisk Factors are continuous and calculated as described
in the “Data and Methods” section (Sect. 8.2); N denotes the total number of individuals; Ne is the

total number of events (deaths); Nc is the total number of censored individuals;Hazard Ratios for
continuous risk factors are for an increase from the first quartile to the third quartile of respective

empirical distributions
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increase in the physiological index at ages [xL, xmax] (bL, “Left Slope”), the

maximal value of the index approximated by two linear functions describing the

increase and decline in the respective individual indices (ymax, “Max Index”), age

at reaching the maximal value of the index (xmax, “AgeMax”), the rate of decline in

the index at ages [xmax, xR] (bR, “Right Slope,” see also Fig. 8.2 for an illustration),
and the mean of the absolute values of residuals, i.e., the deviations of the observed

values of an index from those approximated by two linear functions at ages [xL, xR]
(“Variability2L”). The joint effects of these risk factors on mortality and incidence

of unhealthy life were estimated (separately for each physiological index) by the

Cox proportional hazards model with delayed entry (the left truncation time was

defined as the maximum of the age at the first FHS exam and xR). Individuals with
ages at death (onset of unhealthy life) or censoring below xR were excluded from

the analyses. If xR was different for females and males for some index, then the

maximum of the two values was used in the (sex-adjusted) model applied to that

index. Note that all calculations were performed for individual age trajectories of

the indices. As a result, each individual was characterized by a vector of dynamic

parameters.

Table 8.2 Effects of “dynamic” risk factors calculated from individual trajectories of physiolog-

ical indices at ages 40–60 on risk of onset of unhealthy life at ages 60þ in the Framingham Heart

Study (Original Cohort) estimated by Cox proportional hazards regression models

Physiological

index Risk factor (RF)

Mean RF

(St. Dev.)

Cox regression model

Parameter

(S.E.)

Hazard ratio (95%

C.I.)

BMI

(N¼ 545,

Ne¼ 464,

Nc¼ 81)

Intercept40�60 25.159 (3.987) 0.030* (0.015) 1.147 (1.003, 1.311)

Slope40�60 0.079 (0.165) 0.426 (0.318) 1.071 (0.969, 1.185)

Variability40�60 0.599 (0.438) �0.030 (0.122) 0.989 (0.901, 1.085)

Sex 0.421 (0.494) 0.548{ (0.103) 1.729 (1.413, 2.116)

SBP

(N¼ 2318,

Ne¼ 1929,

Nc¼ 389)

Intercept40�60 125.695 (20.931) 0.009{ (0.002) 1.221 (1.142, 1.305)

Slope40�60 0.552 (1.189) 0.137{ (0.026) 1.184 (1.112, 1.260)

Variability40�60 6.127 (2.727) 0.039{ (0.009) 1.120 (1.061, 1.182)

Sex 0.409 (0.492) 0.567{ (0.047) 1.762 (1.607, 1.933)

PP (N¼ 2318,

Ne¼ 1929,

Nc¼ 389)

Intercept40�60 43.871 (12.501) 0.014{ (0.003) 1.181 (1.108, 1.260)

Slope40�60 0.480 (0.818) 0.251{ (0.039) 1.250 (1.169, 1.337)

Variability40�60 4.668 (1.953) 0.049§ (0.013) 1.120 (1.055, 1.189)

Sex 0.409 (0.492) 0.591{ (0.047) 1.805 (1.646, 1.979)

H (N¼ 1519,

Ne¼ 1278,

Nc¼ 241)

Intercept40�60 44.898 (4.633) 0.063{ (0.011) 1.417 (1.254, 1.602)

Slope40�60 0.012 (0.286) 0.894{ (0.163) 1.308 (1.188, 1.439)

Variability40�60 1.441 (0.637) 0.100* (0.045) 1.083 (1.009, 1.162)

Sex 0.425 (0.495) 0.371{ (0.070) 1.449 (1.262, 1.663)

Notes: *0.01� p< 0.05, #0.001� p< 0.01, §0.0001� p< 0.001, {p< 0.0001, for other estimates:

p� 0.05; Sex: 1 male, 0 female; the otherRisk Factors are continuous and calculated as described
in the “Data and Method” section (Sect. 8.2); N denotes the total number of individuals; Ne is the

total number of events (onset of unhealthy life); Nc is the total number of censored individuals;

Hazard Ratios for continuous risk factors are for an increase from the first quartile to the third

quartile of respective empirical distributions
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Table 8.3 Effects of “dynamic” risk factors calculated from individual trajectories of physiolog-

ical indices with non-monotonic patterns on all-cause mortality risk in the Framingham Heart

Study (Original Cohort) estimated by Cox proportional hazards regression models

Physiological

index

Risk factor

(RF)

Mean RF

(St. Dev.)

Cox regression model

Parameter

(S.E.)

Hazard ratio (95%

C.I.)

BMI (N¼ 1428,

Ne¼ 1231,

Nc¼ 197)

Age max 65.722 (7.457) �0.006 (0.005) 0.911 (0.790, 1.050)

Max index 27.724 (4.439) �0.035 (0.019) 0.835 (0.690, 1.011)

Intercept2L 25.953 (4.068) 0.041* (0.020) 1.224 (1.012, 1.481)

Left slope 0.229 (0.413) �0.023 (0.100) 0.994 (0.946, 1.045)

Right slope �0.327 (2.076) �0.097{ (0.011) 0.977 (0.972, 0.982)

Variability2L 0.733 (0.436) 0.360{ (0.072) 1.177 (1.105, 1.254)

Sex 0.384 (0.486) 0.396{ (0.061) 1.486 (1.319, 1.674)

DBP (N¼ 2982,

Ne¼ 2774,

Nc¼ 208)

Age max 55.045 (7.104) �0.002 (0.003) 0.974 (0.893, 1.063)

Max index 86.958 (10.530) 0.016{ (0.004) 1.229 (1.118, 1.352)

Intercept2L 81.001 (11.704) 0.002 (0.004) 1.020 (0.936, 1.111)

Left slope 0.855 (1.787) �0.009 (0.019) 0.991 (0.958, 1.026)

Right slope �1.114 (2.732) �0.031{ (0.005) 0.963 (0.951, 0.975)

Variability2L 3.994 (1.388) 0.100{ (0.015) 1.181 (1.125, 1.239)

Sex 0.424 (0.494) 0.459{ (0.039) 1.582 (1.466, 1.707)

SBP (N¼ 1316,

Ne¼ 1124,

Nc¼ 192)

Age max 77.113 (6.781) �0.003 (0.006) 0.964 (0.831, 1.117)

Max index 152.515 (17.810) �0.002 (0.004) 0.958 (0.814, 1.127)

Intercept2L 137.922 (16.383) 0.007 (0.004) 1.173 (0.996, 1.382)

Left slope 1.481 (1.469) 0.007 (0.030) 1.011 (0.925, 1.104)

Right slope �3.007 (7.775) �0.024{ (0.003) 0.930 (0.915, 0.946)

Variability2L 8.323 (2.979) 0.022 (0.011) 1.086 (0.996, 1.184)

Sex 0.305 (0.461) 0.367{ (0.066) 1.444 (1.269, 1.643)

VR (N¼ 1479,

Ne¼ 1280,

Nc¼ 199)

Age max 47.705 (7.207) �0.001 (0.005) 0.994 (0.882, 1.119)

Max index 81.312 (10.886) 0.019{ (0.004) 1.299 (1.184, 1.426)

Intercept2L 68.735 (20.786) �0.006# (0.002) 0.901 (0.832, 0.975)

Left slope 1.635 (3.135) �0.025 (0.016) 0.957 (0.905, 1.013)

Right slope �1.064 (2.126) 0.006 (0.017) 1.007 (0.964, 1.052)

Variability2L 5.027 (2.001) 0.035* (0.015) 1.091 (1.014, 1.173)

Sex 0.546 (0.498) 0.569{ (0.064) 1.766 (1.558, 2.001)

SCH (N¼ 2182,

Ne¼ 2082,

Nc¼ 100)

Age max 55.736 (8.264) 0.003 (0.004) 1.037 (0.941, 1.143)

Max index 261.990 (42.515) 0.001 (0.001) 1.057 (0.955, 1.170)

Intercept2L 231.096 (51.812) �0.000 (0.001) 0.977 (0.891, 1.071)

Left slope 4.683 (6.591) 0.001 (0.006) 1.006 (0.949, 1.067)

Right slope �4.609 (10.450) �0.003 (0.002) 0.984 (0.966, 1.003)

Variability2L 13.711 (6.309) 0.011# (0.004) 1.081 (1.025, 1.140)

Sex 0.390 (0.488) 0.466{ (0.065) 1.593 (1.402, 1.810)

H (N¼ 2193,

Ne¼ 2004,

Nc¼ 189)

Age max 65.879 (7.058) �0.013§ (0.004) 0.837 (0.762, 0.919)

Max index 46.740 (3.235) 0.016 (0.011) 1.069 (0.975, 1.172)

Intercept2L 44.200 (4.013) 0.016 (0.009) 1.073 (0.991, 1.162)

Left slope 0.369 (0.697) 0.032 (0.039) 1.012 (0.983, 1.042)
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We also evaluated empirical (Kaplan-Meier) estimates of survival functions

(and probabilities of staying free of the diseases defining the onset of unhealthy

life) for individuals with different values of the dynamic risk factors based on the

indices with non-monotonic trajectories (separately for females and males). For

each physiological index and each dynamic risk factor (“Age Max,” “Max Index,”

“Intercept2L,” “Left Slope,” “Right Slope,” and “Variability2L”), we calculated

the values of the risk factor for all eligible individuals from the sample using the

procedure described above. Then we evaluated the medians of the resulting empir-

ical distributions of risk factors, separately for females and males. These median

values were used to define the sex-specific strata for estimation of survival curves.

We assigned individuals of each sex to one of two strata depending on whether the

value of the risk factor for this individual was below (this stratum is denoted as

“lower half” in Figs. 8.3, 8.4, 8.5, and 8.6) or above (denoted as “upper half” in

Figs. 8.3, 8.4, 8.5, and 8.6) the (sex-specific) median value. In case of an odd

number of individuals, the individual with the value of the risk factor equal to the

median was assigned to the upper stratum. Then we calculated the Kaplan-Meier

estimates of the survival curves (conditional on the sex- and index-specific ages xR)
for individuals in these two strata. Note that individuals with ages at death (onset of

unhealthy life) or censoring below xR were excluded from the analyses, as

described above.

The graphs resulting from these calculations are shown in Figs. 8.3, 8.4, 8.5, and

8.6. For example, the median value of the right slopes calculated for BMI in females

equals �0.485. Hence, individuals from the stratum denoted as “lower half” in the

upper left graph of Fig. 8.3 are females with values of the right slope of BMI smaller

than �0.485. Individuals belonging to the stratum named “upper half” in the upper

left graph of Fig. 8.3 are females with values of the right slope of BMI larger than

�0.485. The conditional survival curves for the two strata presented in this figure

deal with individuals who survived to age 75 years or older, which is the value of xR
for BMI in females, as described above.

Table 8.3 (continued)

Physiological

index

Risk factor

(RF)

Mean RF

(St. Dev.)

Cox regression model

Parameter

(S.E.)

Hazard ratio (95%

C.I.)

Right slope �0.520 (2.041) �0.028§ (0.008) 0.989 (0.983, 0.995)

Variability2L 1.370 (0.541) 0.126# (0.043) 1.084 (1.027, 1.145)

Sex 0.413 (0.492) 0.325{ (0.055) 1.385 (1.242, 1.543)

Notes: *0.01� p< 0.05, #0.001� p< 0.01, §0.0001� p< 0.001, {p< 0.0001, for other estimates:

p� 0.05; Sex: 1 male, 0 female; the otherRisk Factors are continuous and calculated as described
in the “Data and Method” section (Sect. 8.2); N denotes the total number of individuals; Ne is the

total number of events (deaths); Nc is the total number of censored individuals;Hazard Ratios for
continuous risk factors are for an increase from the first quartile to the third quartile of respective

empirical distributions
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Table 8.4 Effects of “dynamic” risk factors calculated from individual trajectories of physiolog-

ical indices with non-monotonic patterns on risk of onset of unhealthy life in the Framingham

Heart Study (Original Cohort) estimated by Cox proportional hazards regression models

Physiological

index

Risk factor

(RF)

Mean RF

(St. Dev.)

Cox regression model

Parameter

(S.E.)

Hazard ratio (95%

C.I.)

BMI (N¼ 642,

Ne¼ 461,

Nc¼ 181)

Age max 65.530 (7.377) 0.006 (0.008) 1.095 (0.873, 1.373)

Max index 27.131 (4.081) 0.061* (0.031) 1.383 (1.001, 1.911)

Intercept2L 25.289 (3.797) �0.042 (0.032) 0.824 (0.621, 1.094)

Left slope 0.251 (0.506) �0.185 (0.150) 0.953 (0.883, 1.029)

Right slope �0.193 (0.556) 0.137 (0.111) 1.025 (0.986, 1.067)

Variability2L 0.707 (0.441) 0.091 (0.126) 1.040 (0.936, 1.154)

Sex 0.286 (0.452) 0.478{ (0.106) 1.614 (1.310, 1.988)

DBP (N¼ 1984,

Ne¼ 1588,

Nc¼ 396)

Age max 55.312 (7.084) 0.004 (0.005) 1.054 (0.936, 1.187)

Max index 85.795 (10.039) 0.006 (0.005) 1.074 (0.954, 1.209)

Intercept2L 79.737 (11.383) 0.009 (0.005) 1.109 (0.991, 1.241)

Left slope 0.817 (1.441) 0.050 (0.030) 1.048 (0.992, 1.106)

Right slope �0.964 (1.882) �0.011 (0.013) 0.988 (0.959, 1.017)

Variability2L 3.892 (1.321) 0.029 (0.020) 1.047 (0.983, 1.115)

Sex 0.388 (0.487) 0.504{ (0.052) 1.655 (1.495, 1.833)

SBP (N¼ 378,

Ne¼ 188,

Nc¼ 190)

Age max 77.962 (6.693) �0.032* (0.016) 0.696 (0.489, 0.991)

Max index 152.156 (17.512) 0.023# (0.009) 1.757 (1.156, 2.670)

Intercept2L 135.743 (16.885) �0.007 (0.008) 0.861 (0.591, 1.254)

Left slope 1.529 (1.446) �0.030 (0.068) 0.959 (0.796, 1.156)

Right slope �3.065 (9.409) 0.001 (0.008) 1.002 (0.956, 1.050)

Variability2L 8.028 (2.899) �0.013 (0.030) 0.956 (0.782, 1.167)

Sex 0.214 (0.410) 0.350 (0.179) 1.000 (1.000, 1.000)

VR (N¼ 1087,

Ne¼ 937,

Nc¼ 150)

Age max 47.356 (7.273) 0.011 (0.006) 1.151 (0.984, 1.345)

Max index 80.437 (10.362) 0.005 (0.005) 1.067 (0.948, 1.200)

Intercept2L 67.857 (18.848) 0.004 (0.003) 1.071 (0.956, 1.201)

Left slope 1.642 (2.434) 0.029 (0.024) 1.056 (0.967, 1.154)

Right slope �0.897 (1.381) 0.002 (0.030) 1.002 (0.936, 1.073)

Variability2L 4.997 (2.054) 0.006 (0.018) 1.016 (0.933, 1.106)

Sex 0.521 (0.500) 0.479{ (0.075) 1.615 (1.395, 1.869)

CH (N¼ 1241,

Ne¼ 961,

Nc¼ 280)

Age max 56.754 (8.208) �0.004 (0.006) 0.949 (0.809, 1.113)

Max index 262.260 (42.990) 0.001 (0.001) 1.029 (0.889, 1.190)

Intercept2L 229.538 (49.338) 0.000 (0.001) 1.017 (0.890, 1.163)

Left slope 4.882 (6.869) �0.002 (0.007) 0.991 (0.914, 1.075)

Right slope �4.602 (10.158) �0.002 (0.003) 0.990 (0.960, 1.021)

Variability2L 13.490 (6.290) 0.007 (0.006) 1.051 (0.968, 1.141)

Sex 0.314 (0.464) 0.549{ (0.099) 1.732 (1.428, 2.101)

H (N¼ 1054,

Ne¼ 749,

Nc¼ 305)

Age max 65.735 (7.040) �0.000 (0.006) 0.995 (0.853, 1.160)

Max index 46.176 (3.164) 0.024 (0.016) 1.108 (0.967, 1.269)

Intercept2L 43.672 (3.760) �0.000 (0.014) 0.999 (0.895, 1.116)

Left slope 0.396 (0.919) 0.014 (0.044) 1.005 (0.973, 1.039)

(continued)
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8.2.2 Statistical Analyses

Statistical analyses and graphic output were performed with SAS/STAT (© SAS

Institute Inc.) and MATLAB (© MathWorks Inc.) software packages. P-values for
the regression parameters in the tables were calculated using the Wald chi-square

statistic with respect to a chi-square distribution with one degree of freedom using

SAS/STAT PROC PHREG. The log-rank test was used to test the null hypotheses

about the equality of the empirical survival curves in the strata. The p-values are
shown in Figs. 8.3, 8.4, 8.5, and 8.6 (SAS/STAT PROC LIFETEST was used for

these purposes).

Table 8.4 (continued)

Physiological

index

Risk factor

(RF)

Mean RF

(St. Dev.)

Cox regression model

Parameter

(S.E.)

Hazard ratio (95%

C.I.)

Right slope �0.485 (1.590) �0.021 (0.025) 0.993 (0.976, 1.010)

Variability2L 1.363 (0.544) 0.109 (0.071) 1.072 (0.981, 1.171)

Sex 0.338 (0.473) 0.360{ (0.088) 1.434 (1.207, 1.704)

Notes: *0.01� p< 0.05, #0.001� p< 0.01, §0.0001� p< 0.001, {p< 0.0001, for other estimates:

p� 0.05; Sex: 1 male, 0 female; the otherRisk Factors are continuous and calculated as described
in the “Data and Methods” section (Sect. 8.2); N denotes the total number of individuals; Ne is the

total number of events (onset of unhealthy life); Nc is the total number of censored individuals;

Hazard Ratios for continuous risk factors are for an increase from the first quartile to the third

quartile of respective empirical distributions

Fig. 8.2 Dynamic characteristics of a hypothetical non-monotonically changing physiological

index (denoted here “DBP”) considered as potential risk factors: (1) Maximum value; (2) Age at

which the maximum has been reached; (3) Average rate of decline after reaching the maximum.

The figure illustrates evaluation of average rates of decline in two individuals having the same

pattern of increase until reaching the maximum, and different patterns of decline after reaching the

maximum: (a) the thick solid line for a rapidly declining index and the thin solid line for its

approximation by a straight line; (b) the thick dotted line for a slowly declining index and the thin

dotted line for its linear approximation. The slopes of respective straight lines are considered as

risk factors for mortality and onset of “unhealthy life”
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Fig. 8.3 Kaplan-Meier estimates of survival functions for females (left columns) and males (right
columns) having the average rate of decline of different physiological indices after reaching the

maximum (“right slope,” see “Data and Methods” section (Sect. 8.2)) from the lower and upper

halves of the empirical distributions of this risk factor for the respective indices; p denotes p-value
for the null hypotheses about the equality of the survival curves in the strata evaluated by the

log-rank test
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Fig. 8.4 Kaplan-Meier estimates of survival functions for females (left columns) and males (right
columns) having “variability” of different physiological indices (the mean of absolute values of

residuals, i.e., deviations of observed values of an index from those approximated by two linear

functions at respective age intervals, see “Data and Methods” section (Sect. 8.2)) from the lower

and upper halves of the empirical distributions of this risk factor for the respective indices;

p denotes p-value for the null hypotheses about the equality of the survival curves in the strata

evaluated by the log-rank test

198 8 Dynamic Characteristics of Aging-Related Changes as Predictors. . .



75 80 85 90 95 100 105
0

0.2

0.4

0.6

0.8

1
p=0.0274

ages

su
rv

iv
al

 fu
nc

tio
n

age at maximum of BMI, females

lower half
upper half

70 80 90 100
0

0.2

0.4

0.6

0.8

1
p=0.4796

ages

su
rv

iv
al

 fu
nc

tio
n

age at maximum of BMI, males

lower half
upper half

70 80 90 100
0

0.2

0.4

0.6

0.8

1
p<0.0001

ages

su
rv

iv
al

 fu
nc

tio
n

maximum of DBP, females

lower half
upper half

70 80 90 100
0

0.2

0.4

0.6

0.8

1
p<0.0001

ages

su
rv

iv
al

 fu
nc

tio
n

maximum of DBP, males

lower half
upper half

60 70 80 90 100

0.2

0.4

0.6

0.8

1

p=0.0022

ages

su
rv

iv
al

 fu
nc

tio
n

maximum of VR, females

lower half
upper half

60 70 80 90 100

0.2

0.4

0.6

0.8

1
p<0.0001

ages

su
rv

iv
al

 fu
nc

tio
n

maximum of VR, males

lower half
upper half

Fig. 8.5 Kaplan-Meier estimates of survival functions for females (left columns) and males (right
columns) having ages at reaching the maximum and the estimated maximal value (see “Data and
Methods” section (Sect. 8.2)) of different physiological indices from the lower and upper halves

of the empirical distributions of these risk factors for the respective indices; p denotes p-value for
the null hypotheses about the equality of the survival curves in the strata evaluated by the log-rank

test
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Fig. 8.6 Kaplan-Meier estimates of probabilities of staying free of the diseases defining the onset

of unhealthy life for females (left columns) and males (right columns) having initial values of

diastolic blood pressure (DBP) at age 65, initial values of ventricular rate (VR) at age 55 (females)

and 60 (males), the estimated maximal values of DBP, and the average rates of decline in total

cholesterol (CH) after reaching the maximum (“intercepts,” “maximum,” and “right slope,”

respectively, see “Data and Methods” section (Sect. 8.2)) from the lower and upper halves of

the empirical distributions of these risk factors; p denotes p-value for the null hypotheses about the
equality of the survival curves in the strata evaluated by the log-rank test
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8.3 Results

8.3.1 Effects of Individual Dynamics of Physiological
Indices at Ages 40–60 on Mortality Risk and Risk
of Onset of “Unhealthy Life” at Ages 60þ

As described in the “Data and Methods” section (Sect. 8.2), we evaluated the

effects of individual dynamics of physiological indices at ages 40–60 on mortality

risk and risk of onset of unhealthy life at ages 60þ for those indices that have a

nearly linear pattern of change during the age interval 40–60 for both females and

males. Table 8.1 shows the estimates of the joint effects of these risk factors on

mortality as evaluated by Cox proportional hazards models. The variability around

the average linear trajectory (“Variability40�60”) is a significant risk factor for

mortality for all indices and the average rate of change between ages 40 and

60 (“Slope40�60”) is a significant risk factor for BG, SBP, and PP. The significance

is highest ( p< 0.0001) for the slopes of SBP and PP. The initial value of the index

at age 40 (“Intercept40�60”) is also a highly significant ( p< 0.0001) risk factor for

mortality for SBP and PP (i.e., higher values of the index at age 40 correspond to

higher risk of death compared to smaller values of this index) but not significant

for BMI.

The effect of these dynamic characteristics on the incidence of unhealthy life is

similar (see Table 8.2). However, the variability is not significant for BMI. The

effect of “Sex” on both mortality and risk of onset of unhealthy life is highly

significant and that the risks for males are higher than those for females.

8.3.2 Effects of Dynamic Characteristics of Physiological
Indices with Non-monotonic Age Trajectories
on Mortality Risk and Risk of Onset
of “Unhealthy Life”

For indices with non-monotonic age trajectories, we evaluated the maximum value

of each index, the age at which this maximum is reached, the intercept, and the left

and right slopes of the linear functions approximating the increase and decline of

the index, as described in the “Data and Methods” section (Sect. 8.2). Tables 8.3,

and 8.4 show the estimates of the joint effects of these risk factors on mortality and

incidence of unhealthy life as evaluated by the Cox proportional hazards model.

The effect of the rate of decline in the index after reaching the maximum (“Right

Slope”) on mortality risk is highly significant (p< 0.0001) for mortality for BMI,

DBP, and SBP, but not significant for SCH and VR. In this case, a faster decline in

an index after reaching the maximum corresponds to a significant increase in

mortality risk (note that the values of “Right Slope” are negative by definition,
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see “Data andMethods” section (Sect. 8.2)). By comparison, the rate of increase in

the index before reaching the maximum (“Left Slope”) is not a significant risk

factor for mortality for any variable, and the initial value from which the increase

commenced is not significant for DBP, SBP, and CH, but highly significant for

VR. The estimated maximal value of an index is also a significant risk factor for

mortality for DBP and VR (both have p< 0.0001). This means that larger

(sex-adjusted) maximal values of these indices (reached at “Age Max”) correspond

to significant increases in mortality risk. The variability in all indices except SBP

significantly affects mortality risks (larger variability corresponds to higher mor-

tality risks).

The effects of these dynamic characteristics on the risk of onset of unhealthy life

are less pronounced than their effects on mortality risks. Table 8.4 shows that the

rate of decline after reaching the maximum (“Right Slope”) and the variability are

non-significant for all variables. The maximal value reached is significant only for

SBP ( p< 0.0101) and BMI ( p< 0.05). The effect of “Sex” on both mortality and

risk of onset of unhealthy life is significant for all variables except SBP and the risk

for males is higher than for females.

8.3.3 Effects of Dichotomized Dynamic Characteristics
of Physiological Indices with Non-monotonic Age
Trajectories

We also evaluated Kaplan-Meier estimates of survival functions for individuals

with different values of the dynamic risk factors based on the indices with

non-monotonic trajectories by dividing the entire sex-specific samples into strata

consisting of individuals with values of each index in the lower and upper halves of

the empirical distribution of the index (see “Data and Methods” (Sect. 8.2)).

Figure 8.3 shows the estimates of survival functions for females and males

having the average rate of decline of different physiological indices after reaching

the maximum (“Right Slope”) from the lower and upper halves of the empirical

distributions of each index. It can be seen from this figure that the lower absolute

values of the slope (i.e., the lower rates of the post-maximum decline) in individuals

from the upper half of the distribution are associated with better survival for all

indices except SBP for males (non-significant results for VR for both sexes are not

shown). The highest level of statistical significance ( p< 0.0001) is observed for

BMI and SBP in females.

Figure 8.4 presents the corresponding estimates for the “variability” of the

different physiological indices (the mean of the absolute values of the residuals,

(i.e., the deviations of observed values of the index from those approximated by the

two linear functions at the two age intervals; see the “Data and Methods” section

(Sect. 8.2)). The higher variability of the trajectories of BMI, DBP, and SCH for

individuals from the upper half of the distribution are associated with worse
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survival for both females and males (non-significant results for SBP and VR are not

shown). The highest level of statistical significance ( p< 0.0001) is observed for

DBP for both females and males.

Later ages at reaching the maximal value of BMI in females from the upper half

of the distribution are associated with better survival (Fig. 8.5); however this was

not observed for males. The higher estimated maximal values of DBP and VR in

individuals from the upper half of the distribution correspond to worse survival for

both females and males. No other indices produced any significant results and none

are shown in Fig. 8.5.

Similar calculations for the probabilities of staying free of diseases defining the

onset of unhealthy life revealed a more mosaic picture. The most consistent results

were observed for DBP (see Fig. 8.6).

Higher initial values of DBP at age 45 and VR at ages 35 (females) and

40 (males) from the upper halves of the distributions are associated with worse

chances of staying free of unhealthy life for both sexes. Higher estimated values of

DBP reached in individuals from the upper halves of the distributions are associated

with worse chances of staying free of unhealthy life for both sexes. Lower rates of

post-maximum declines of SCH in males, but not females, from the upper half of

the distribution correspond to better chances of staying free of unhealthy life

(Fig. 8.6). In addition, lower rates of the post-maximum declines in individuals

from the upper half of the distribution of DBP in females ( p¼ 0.0477), smaller

estimated maximal values of SCH ( p¼ 0.0054) and VR ( p¼ 0.0010) for males,

and a smaller initial value of BMI at age 55 ( p¼ 0.0107) for females and a smaller

initial value of SCH at age 40 ( p¼ 0.0100) for males are associated with better

chances of staying free of unhealthy life. Higher “variability” of the trajectories of

BMI ( p¼ 0.0187) and SBP ( p¼ 0.0075) for females, and DBP ( p¼ 0.0256) for

males in individuals from the upper half of the distribution result in worse chances

of staying free of unhealthy life.

8.3.4 Sensitivity Analyses

Questions about the effects of the robustness of the estimates are important given

that at most 11 observations for the monotone indices or 15 observations for the

non-monotone indices were used (note that for non-monotone indices data from the

30-year intervals xL � 5, xR þ 5½ �, where xR – xL ¼ 20, were used for calculating the

dynamic risk factors). These observations were used to estimate two parameters

(those of the linear regression) for monotone indices and four parameters (age at

reaching the maximal value of the index, intercept and two slopes) for

non-monotone indices. To reduce the effect of a poor fit due to a small number of

longitudinal observations, we removed those individuals having fewer than five

(fewer than six for non-monotone indices) observations from the analyses. The

empirical findings could change if different numbers were used for the minimal

allowable numbers of observations. However, our sensitivity analyses (Yashin
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et al. 2010a) showed that the choice of the minimal allowable number of observa-

tions does not affect the conclusions.

8.4 Discussion

An increase in the mortality rate with age is traditionally associated with the process

of aging. This influence is mediated by aging-associated changes in thousands of

biological and physiological variables, some of which have been measured in aging

studies. The fact that the age trajectories of some of these variables differ among

individuals with short and long life spans and healthy life spans indicates that

dynamic properties of the indices affect life history traits. Our analyses of the FHS

data clearly demonstrate that the values of physiological indices at age 40 are

significant contributors both to life span and healthy life span (as shown by the

estimates of Intercept40�60 in Tables 8.1 and 8.2), suggesting that normalizing

these variables around age 40 is important for preventing age-associated morbidity

and mortality later in life. Two dynamic parameters, Slope40�60 and

Variability40�60, also have significant effects on mortality risks (the former

being a more important predictor in case of healthy life span).

These results suggest that keeping physiological indices stable over the years of

life could be as important as their normalizing around age 40. If so, then a more
advanced dynamic phenotype combining information on both the initial value of an
index and the rate and variability of its changes afterwards could potentially be a
better predictor of longevity and healthspan. In Yashin et al. (2009), we provided

indirect support for using a combination of dynamic and static aging phenotypes for

predicting longevity. In that study, FHS participants who survived to the oldest-old

age (>¼ 90) had not only better (lower) average levels of random blood glucose

(BG) at the intercept (circa age 45), but their levels also changed at a slower rate

over the life course. Those who nearly reached the oldest-old age (lifespan (LS) ¼
80–89 years) but did not survive to extreme old age (>¼ 90) had similarly good

(low) BG levels; however, they changed these levels faster compared to the longest-

living individuals. If the average BG levels are compared between the LS > ¼90

and LS ¼ 80–89 groups at circa age 45, almost no differences are evident; thus,

information on BG levels at the intercept alone did not predict longevity. However,

combining information on both the initial value of BG circa age 45 and the rate of

change afterwards could form a better predictor.

The results of that earlier study and the current study, taken together, also

indicate that, in the quest of identifying longevity genes, it may be important to

look for candidate genes with pleiotropic effects on more than one dynamic

characteristic of the age-trajectory of a physiological variable, such as genes that

may influence both the initial value of a trait (intercept) and the rates of its changes

over age (slopes).

Table 8.3 shows that dynamic properties of indices that change

non-monotonically with age contribute significantly to mortality risks and further
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demonstrates the importance of maintaining the stability of physiological states in

aging humans: a slower rate of decline in an index after reaching the age at

maximum has a more beneficial effect on all-cause mortality.

The finding that the effects of the dynamic characteristics of non-monotonic

trajectories of physiological indices on the risk of onset of unhealthy life (Table 8.4)

are less significant than on all-cause mortality risks (Table 8.3) indicates that these

dynamic characteristics may reflect aging-related processes in the body that result

in increasing non-specific vulnerability to death with age rather than in increasing

vulnerability to a particular disease.

Findings from prior studies are consistent with the findings reported in this

chapter with respect to the importance of taking into account longitudinal changes

in physiological indices when evaluating/predicting morbidity and mortality risks.

There are, however, few prior studies of the impact and comparative contributions

of the dynamic parameters (left and/or right slopes, variability, intercept) on

mortality risks.

As mentioned above, in our earlier publications we demonstrated that individ-

uals who have different rates of aging-related changes in BG levels also differ in

longevity (Yashin et al. 2009, 2010b). In Arbeev et al. (2011) and Yashin

et al. (2012), we evaluated how hidden processes accompanying human aging

(such as declines in resistance to stresses and adaptive capacity, age dependent

physiological “norms”) can be evaluated from longitudinal data. We showed how

these components of the aging process can lead to an increase in the risk of death

and the risk of onset of unhealthy life with age. Our findings (Arbeev et al. 2012;

Yashin et al. 2013) strongly indicate the presence of a genetic component in aging-

related mechanisms. Such differences may contribute to the patterns of allele- and

sex-specific mortality and incidence rates.

Van Vliet and colleagues (2010) described the dynamics of traditional metabolic

risk factors in association with mortality in old age in the Leiden 85-plus Study, a

prospective population-based study of 599 participants initially aged 85 years.

Participants were annually assessed during a 5-year follow-up period and observed

for mortality for 10 years. The authors found that larger declines in BMI, total

cholesterol, and diastolic blood pressure, and weaker increases in HDL cholesterol

levels, between ages 85 and 90 years, were all associated with increased mortality.

The effects of aging-associated changes in serum cholesterol on coronary and

all-cause mortality were evaluated in the Finnish Cohorts of the Seven Countries

Study (Pekkanen et al. 1994). Men with the greatest declines in cholesterol levels

had increased cardiovascular and all-cause mortality compared with men with the

least change in the levels. In the Paris Prospective Study (Zureik et al. 1997), it was

shown that not only a low baseline total cholesterol level, but also its decline over

time, was associated with a higher cancer mortality.

A study of two independent French male cohorts (Benetos et al. 1999) found that

longitudinal changes in systolic and diastolic BP may be more accurate determi-

nants of cardiovascular risks than baseline BP measures. In both cohorts, the group

with a long-term increase in systolic and a decrease in diastolic BP (i.e., with an

increase in pulse pressure) had the highest relative risk of mortality from CVD
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compared to the group with no changes in either systolic or diastolic BP, indepen-

dently of absolute values of BP or other risk factors. Since this study included only

males, it is important to note that changes in pulse pressure may have different

effects on mortality risks in males and females (Cooper et al. 1994; Hall 1990).

The prognostic importance of baseline values of the heart rate (HR) as well as its

variability during 24-h HR monitoring in patients with heart disease and in the

general population is generally recognized (Bigger et al. 1992; Huikuri et al. 1998;

Kleiger et al. 1987). However, the prognostic role of the long-term and age-related

dynamics of HR is not sufficiently investigated and the existing studies are limited.

Research on the effects of HR at baseline, final HR, and HR change during follow-

up, on the survival of patients attending the Glasgow Blood Pressure Clinic

revealed that the highest risk of all-cause mortality was in patients who had

increased their HR by �5 bpm at the end of the follow-up, as compared with

those who had a consistently high (high-high) or low (low-low) HR. Paul and

colleagues (Paul et al. 2010) found that the change in HR during the follow-up is

a better predictor of mortality risk in hypertensive patients than the baseline or

final HR.

Body mass index (BMI) is, probably, the most intensively studied index in

connection with health and survival. Over recent decades, many studies have

addressed the effect of BMI dynamics on morbidity and mortality, especially the

effect of losing body weight in overweight/obese people on risk factors for CVD

and diabetes. It was shown that overweight adults who lost weight over 9 years had

more favorable (lower) total and LDL cholesterol levels compared to normal-

weight controls, but less favorable BG levels (Truesdale, Stevens and Cai 2005).

In other studies, weight loss was associated with excess mortality (when compared

with weight stability), even when controlled for confounding due to diseases known

to cause both weight loss and increased mortality (Ostergaard et al. 2010; Sorensen

2003). Weight stability was associated with a lower mortality risk as compared with

weight change (gain or loss) in Lee and Paffenbarger (1992) and Somes

et al. (2002). Nilsson et al. (2002) showed that, for men with decreasing BMIs

during 16 years of follow-up, the non-cancer mortality risk was higher than for

BMI-stable men. The authors hypothesized that involuntary weight loss in other-

wise healthy people could be a sign of premature aging, which in turn causes a

non-specific increase in mortality risk. In other studies, baseline weight and weight

change had independent effects on total mortality, with both associations exhibiting

U-shaped relationships (Kulminski et al. 2008; Mikkelsen et al. 1999).

The eight physiological indices used in this chapter do not exhaust the list of all

possible physiological risk factors for mortality and morbidity. Therefore, the

dynamic characteristics calculated from these particular indices cannot explain

the entire variability of human life span and healthy life span. The association of

other indices and risk factors with mortality/morbidity risk can be explored if

measurements of such indices are available in a longitudinal study for a substan-

tially long time period. See, for example, Willcox et al. (2006) where midlife risk

factors were investigated for a cohort of Japanese American men with 40 years of

follow-up.
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8.5 Conclusion

Our results indicate that the dynamic characteristics of age-related changes in

physiological variables are important predictors of morbidity and mortality risks

in aging individuals.

We showed that the initial value (intercept), the rate of changes (slope), and the

variability of a physiological index, in the age interval 40–60 years, significantly

influenced both mortality risk and onset of unhealthy life at ages 60þ in our

analyses of the Framingham Heart Study data. That is, these dynamic characteris-

tics may serve as good predictors of late life morbidity and mortality risks. The

results also suggest that physiological changes taking place in the organism in

middle life may affect longevity through promoting or preventing diseases of

old age.

For non-monotonically changing indices, we found that having a later age at the

peak value of the index (age max), a lower peak value (max index), a slower rate of
decline in the index at older ages (right slope), and less variability in the index over
time, can be beneficial for longevity. Also, the dynamic characteristics of the

physiological indices were, overall, associated with mortality risk more signifi-

cantly than with onset of unhealthy life. This was especially true for the rate of old

age decline in the indices (right slope), and their variability. The results of this

study also indicate that dynamic risk factors, such as slopes, might be even better

predictors of longevity and healthspan if they would be considered together with the

indices describing the age-specific physiological state (such as intercept) in the

framework of a single index.

Previously published epidemiological findings are generally consistent with our

results, which indicate the need for further detailed studies of the dynamic param-

eters of aging-related changes in the human body with further application of these

principles to prevention strategies.

Senescence is a key player in physiological changes observed in aging humans.

The dynamic properties of these changes are likely to contain important informa-

tion about individual aging processes. This information, however, can be masked

by other factors, such as the effects of compensatory adaptation and remodeling that

develop in response to the primary aging process. Studying mechanisms of such

adaptation and their connection to morbidity and mortality risks is important for a

better understanding of factors shaping the age trajectories of physiological indices

as well as incidence and mortality rates.
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Chapter 9

The Complex Role of Genes in Diseases
and Traits in Late Life: An Example
of the Apolipoprotein E Polymorphism

Alexander M. Kulminski, Anatoliy I. Yashin, Irina Culminskaya,
Kenneth C. Land, and Svetlana V. Ukraintseva

9.1 Genes and Diseases in Late Life

Decades of studies of candidate genes show that they are not linked to aging-related

traits in a straightforward manner (Finch and Tanzi 1997; Martin 2007). Recent

genome-wide association studies (GWAS) have reached fundamentally the same

conclusion by showing that the traits in late life likely are controlled by a relatively

large number of common genetic variants (e.g., Teslovich et al. 2010). Further,

GWAS often show that the detected associations are of tiny effect (Stranger

et al. 2011).

The primary reason for complex actions of genes on traits in late life is the lack

of evolutionary-programmed direct mechanisms linking genes, which are inherited

from parents at conception, to aging-related traits, which occur in the post-

reproductive period (Di Rienzo and Hudson 2005; Vijg and Suh 2005). Therefore,

the complexity of gene actions on traits in late life appears to be inherent. For

example, recent studies have demonstrated that genes could show antagonistic

pleiotropy (postulated by Williams 1957) whereby the same gene could be advan-

tageous for fitness traits in early life but became detrimental for diseases at old ages

(Alexander et al. 2007; Kulminski et al. 2010; Martin 2007; Schnebel and

Grossfield 1988; Summers and Crespi 2010; Williams and Day 2003). Another

example is that the effect of the same allele on the same trait in late life can be

different at different ages (Bergman et al. 2007; De Benedictis et al. 1998;

Ilveskoski et al. 1999; Martin 2007; Ukraintseva 2005; Yashin et al. 2001).

The inherent complexity of gene actions on traits in late life can well explain

why many genetic signals appear to be weak. Indeed, the weak effect of genes on

traits in late life can be not only because they confer small risks having small

penetrance but because they confer large risks but in a complex fashion (Kulminski

et al. 2010). Accordingly, aging-related processes can be the key to a better

understanding of the nature of weak genetic effects, and, consequently, the genetic

origin of traits in late life.
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In this chapter, we consider several examples of complex modes of gene actions,

including genetic tradeoffs, antagonistic genetic effects on the same traits at

different ages, and variable genetic effects on lifespan. The analyses focus on the

APOE common polymorphism.

The Study Population We focus on the participants of the original FHS cohort

and the FHS offspring (FHSO) cohort (Cupples et al. 2009; Dawber 1980; Gail and

Johnson 1989; Govindaraju et al. 2008; Splansky et al. 2007). In short, the FHS

includes N¼ 5209 respondents aged 28–62 years at baseline who have been

biennially followed for about 60 years. The FHSO respondents (N¼ 5124) aged

5–70 years at baseline were the biological descendants (N¼ 3514), their spouses

(N¼ 1576), and adopted offspring (N¼ 34) of the FHS participants, who have been

followed for about 36 years. The FHS/FHSO participants have been monitored for

the onset of CVD, cancer, and death through regular examinations at the FHS clinic,

surveillance of hospital admissions, and death registries (Govindaraju et al. 2008;

Splansky et al. 2007), currently through 2008. Biospecimens were mostly collected

in the late 1980s and through 1990s from surviving participants (Lahoz et al. 2001;

Myers et al. 1996). These genotyped FHS and FHSO participants represent demo-

graphically unbiased samples of aged populations (Kulminski et al. 2013). The

procedure used for the APOE genotyping is described by Lahoz et al. (2001). The

data available for this study include information on the APOE e2/3/4 polymorphism

for the 1258 FHS and 3924 FHSO participants.

Genotypes Following Kulminski et al. (2011), the analyses focus on the effect of

the APOE e4 (risk; e2/4, e3/4, and e4/4) allele contrasted to the non-e4 allele (e2/2,

e2/3, and e3/3) genotypes.

Phenotypes To better understand the age-related complexity of the effects of the

APOE gene, we focus on ages at onset of major diseases in humans, i.e., cardio-

vascular disease (CVD) and cancer as well as on age at death. We consider all

CVDs, including diseases of heart and stroke. For cancer, we consider all sites

except skin.

Methods Associations of the APOE polymorphism with survival and risks of CVD

and cancer in genotyped survivors are characterized by the Kaplan-Meier estimator

and the Cox proportional hazards regression model. Age at event (i.e., death or

onset of the disease) or age at censoring in 2008 is a time variable in these analyses.

Because the genotyped FHS and FHSO participants represent demographically

unbiased samples of aged populations (Kulminski et al. 2013), the analyses focus

on the baseline FHS/FHSO participants to maximize the sample size. The Cox

regression model was adjusted for age at baseline and sex, when applicable, if not

explicitly stated. We use the robust sandwich estimator of variances in the Cox

model to account for potential clustering (e.g., familial) (Lee et al. 1992).
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9.2 The Antagonistic Role of the APOE Gene and Two
Types of Sexually Dimorphic Tradeoffs: The Case
of CVD and Cancer

9.2.1 The FHSO: Tradeoffs in the Effects of the APOE
Polymorphism on the Ages at Onset of CVD
and Cancer

Survival/Time-to-Event Analyses The results of survival/time-to-event analyses

of the probability of remaining free of either CVD or cancer for carriers and

non-carriers of the e4 allele in the FHSO cohort are shown in Fig. 9.1. These results

show that the same e4 allele can confer an increased risk of CVD but also be

protective of cancer, particularly of cancer with onset at older ages.

Sex stratification shows that the CVD-conferring effect mostly occurs among

women, whereas the cancer-protective effect mostly occurs among men (Fig. 9.2).

Relative Risks of Diseases To quantify the descriptive observations in Figs. 9.1

and 9.2, we conducted Cox regression analyses. These analyses show that e4 allele

carriers have significantly larger relative risks (RRs) of CVD, i.e., RR¼ 1.22,

p¼ 0.01 (Table 9.1). The RR is significant in women (RR¼ 1.35, p¼ 0.011). The

e4 male carriers are also at increased risk of CVD, although the RR does not attain

statistical significance.

Contrary to CVD, the e4 allele carriers have smaller risks of cancer. This effect

occurs mostly among men, although the RR does not attain statistical significance

(Table 9.1).

Fig. 9.1 Descriptive age patterns of the probability of remaining free of a CVD and b cancer for

the FHSO carriers (E4) and non-carriers (NoE4) of the APOE e4 allele. The numbers in the insets
show the total number of genotyped subject with non-missing information and the number of CVD

or cancer cases among them
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Risks of Diseases: The Role of Aging-Related Processes Survival/time-to-event

analyses (Fig. 9.2) suggest that the effect of the e4 allele is disproportionally shifted

to onsets at older ages, i.e., the effect of the e4 allele is sensitive to aging-related

processes. As a result, the Cox regression model with proportional hazards likely

provides underpowered estimates in Table 9.1. The most effective way to address

the observed disproportionality in the framework of the Cox proportional hazards

Fig. 9.2 Descriptive age patterns of the probability of remaining free of (a, b) CVD and (c, d)
cancer for the FHSO (a, c) men and (b, d) women carrying (E4) and not carrying (NoE4) the

APOE e4 allele. The numbers in the insets show the total number of genotyped subject with

non-missing information and the number of CVD or cancer cases among them

Table 9.1 Relative risks of CVD and cancer in the genotyped participants of the FHSO cohort

Sample

CVD Cancer

RR p 95% CI RR p 95% CI

Men and women 1.22 0.010 1.05–1.41 0.88 0.129 0.74–1.04

Men 1.14 0.170 0.94–1.39 0.83 0.114 0.66–1.05

Women 1.35 0.011 1.07–1.71 0.91 0.447 0.71–1.17

The number of subjects is shown in Figs. 9.1 and 9.2

RR denotes relative risk, CI denotes Confidence Interval

214 9 The Complex Role of Genes in Diseases and Traits in Late Life. . .



T
a
b
le
9
.2

R
el
at
iv
e
ri
sk
s
o
f
C
V
D
an
d
ca
n
ce
r
in

m
o
re

h
o
m
o
g
en
eo
u
s
“y
o
u
n
g
er
”
(�

6
0
y
ea
rs
)
an
d
“o
ld
er
”
(>

6
0
y
ea
rs
)
g
ro
u
p
s
o
f
th
e
g
en
o
ty
p
ed

p
ar
ti
ci
p
an
ts
o
f

th
e
F
H
S
O
co
h
o
rt

S
am

p
le

G
ro
u
p

C
V
D

C
an
ce
r

N
to
t/
N
C
V
D

R
R

p
9
5
%

C
I

N
to
t/
N
c
a
n
c

R
R

p
9
5
%

C
I

M
en

an
d
w
o
m
en

�6
0
y
ea
r

9
6
4
/4
0
4

1
.0
4

0
.7
4
7

0
.8
3
–
1
.3
0

8
0
2
/2
5
9

1
.0
9

0
.5
2
2

0
.8
3
–
1
.4
4

M
en

�6
0
y
ea
r

5
1
8
/2
6
3

1
.0
3

0
.8
4
0

0
.7
8
–
1
.3
5

3
7
9
/1
1
1

1
.1
2

0
.6
0
3

0
.7
3
–
1
.7
1

W
o
m
en

�6
0
y
ea
r

4
4
6
/1
4
1

1
.0
7

0
.7
1
3

0
.7
4
–
1
.5
7

4
2
3
/1
4
8

1
.1
0

0
.6
0
5

0
.7
7
–
1
.5
6

M
en

an
d
w
o
m
en

>
6
0
y
ea
r

2
9
2
5
/5
3
9

1
.2
1

0
.0
6
2

0
.9
9
–
1
.4
8

3
1
0
0
/5
8
5

0
.7
8

0
.0
1
9

0
.6
4
–
0
.9
6

M
en

>
6
0
y
ea
r

1
3
3
0
/3
1
0

1
.0
7

0
.6
3
3

0
.8
2
–
1
.3
9

1
4
8
9
/3
5
1

0
.7
6

0
.0
4
5

0
.5
9
–
0
.9
9

W
o
m
en

>
6
0
y
ea
r

1
5
9
5
/2
2
9

1
.4
4

0
.0
1
6

1
.0
7
–
1
.9
4

1
6
1
1
/2
3
4

0
.7
9

0
.1
7
0

0
.5
7
–
1
.1
1

R
R
d
en
o
te
s
re
la
ti
v
e
ri
sk
,
C
I
d
en
o
te
s
C
o
n
fi
d
en
ce

in
te
rv
al
,
N
to
t
an
d
N
C
V
D
o
r
N
c
a
n
c
d
en
o
te
th
e
to
ta
l
n
u
m
b
er

o
f
g
en
o
ty
p
ed

in
d
iv
id
u
al
s
an
d
th
e
n
u
m
b
er

o
f
C
V
D
o
r

ca
n
ce
r
ca
se
s
am

o
n
g
th
em

,
re
sp
ec
ti
v
el
y

9.2 The Antagonistic Role of the APOE Gene and Two Types of Sexually Dimorphic. . . 215



regression model is to stratify the sample according to ages at onset of diseases

(note that stratification by age at baseline does not solve this problem).

Accordingly, we defined two more homogeneous groups in the FHSO as:

• “younger”, those developing CVD or cancer in early life or being censored at

younger ages (representatively, 60 years and younger at the end of follow up in

2008);

• “older”, those developing CVD or cancer in late life or being censored at older

ages (60 years and older at the end of follow up in 2008).

Analyses of the “younger group” show no effect of the e4 allele either on onset

of CVD or on onset of cancer. On the other hand, analyses of the “older group”

reveal a significant effect of the e4 allele on risk of CVD in older women. They also

show significant protective effects of the same allele in decreasing the risks of

cancer in men and women combined and in men only at older ages (Table 9.2).

9.2.2 The FHS: The Antagonistic Role of the APOE
Polymorphism in CVD and Its Tradeoffs with Cancer

Survival/Time-to-Event Analyses The results of survival/time-to-event analyses

of the probabilities of remaining free of either CVD or cancer for carriers and

non-carriers of the e4 allele in the FHS original cohort are shown in Fig. 9.3. The

pattern for ages at onset of cancer resembles that in the FHSO (Fig. 9.1a); it tends to

be protective at older ages. The pattern for onset of CVD is, however, more

complex – showing antagonistic effects on risks of CVD at younger and older ages.

Fig. 9.3 Descriptive age patterns of the probability of remaining free of (a) CVD and (b) cancer
for the FHS carriers (E4) and non-carriers (NoE4) of the APOE e4 allele. The numbers in the insets
show the total number of genotyped subject with non-missing information and the number of CVD

or cancer cases among them
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Sex-specific analyses show that the protective effect for cancer is more prevalent

among men, whereas the complex antagonistic CVD pattern is more prevalent

among women (Fig. 9.4).

Relative Risks of Diseases The descriptive analyses of Figs. 9.3 and 9.4 were

quantified using the Cox regression model. Traditional analysis disregarding aging-

related complexity results, at best, in small and non-significant associations of the

e4 allele with onsets of CVD and cancer in the FHS sample of men and women

combined and in each sex (Table 9.3). Descriptive patterns clearly show, however,

that the effects are small, not because of small penetrance of the e4 allele, but

because this allele exhibits aging-related complexity.

Risks of Diseases: The Role of Aging-Related Processes To address the problem

of differential roles of the same allele over the life course, we again stratified the

sample by ages at onset of diseases. Specifically, we defined more homogeneous

groups in the FHS original cohort as:

Fig. 9.4 Relative risks of CVD and cancer in more homogeneous “younger” (�60 years) and

“older” (>60 years) groups of the genotyped participants of the FHS cohort
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• “younger”, those developing CVD or cancer in early life or being censored at

younger ages (representatively, 65 years and younger at the end of follow up in

2008);

• “older”, those developing CVD or cancer in late life or being censored at older

ages (representatively, 65 years and older at the end of follow up in 2008).

Analyses of risks of CVD in the “younger group” reveal a significant effect of

the e4 allele on risks of CVD in younger women (Table 9.4). The adverse effect

of the e4 allele in men in this group is less pronounced than in women and it does

not attain significance. Given the same direction of the effect in men and women,

the adverse effect of this allele in the “younger group” of men and women

combined is also significant. Non-significant protective effects of the e4 allele

are seen for cancer in the younger group of men and women combined and for

women only.

Analyses of risks of CVD in the “older group” (Table 9.4) reveal a highly signif-

icant protective effect of the e4 allele in older women and, as a consequence, in men

and women combined. No effect is seen in men in this group. The protective effect

for the e4 allele for cancer attains marginal significance in men and women

combined in the older group. Unlike the younger group, the major contribution in

the older group is due to the protective effect in men.

9.2.3 The FHS and the FHSO: Aging-Related Heterogeneity
in a Changing Environment

Relative Risks of Diseases An attempt to improve power by pooling data from the

FHS original and the FHSO cohorts and disregarding aging-related heterogeneity

may not help because this procedure also increases heterogeneity of the sample in

parallel. Specifically, Table 9.5 shows no significant effect of the e4 allele on the

onset of CVD. The protective effect of this allele for cancer attains only marginal

significance in the sample of men and women combined and in the sample of men

only.

Table 9.3 Relative risks of CVD and cancer in the genotyped participants of the FHS original

cohort

Sample

CVD Cancer

RR p 95% CI RR p 95% CI

Men and women 0.92 0.387 0.77–1.10 0.85 0.203 0.67–1.09

Men 1.08 0.547 0.83–1.41 0.83 0.333 0.57–1.21

Women 0.84 0.143 0.66–1.06 0.87 0.382 0.63–1.20

The number of subjects is shown in Figs. 9.3 and 9.4

RR denotes relative risk, CI denotes Confidence Interval
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Risks of Diseases: The Role of Aging-Related Processes in a Changing

Environment Clearly (see Figs. 9.2 and 9.4 and Tables 9.2 and 9.4), the lack of

an effect for CVD and the weak association signal for cancer are the results of

complex aging-related heterogeneity of the sample. Given the same direction of the

effect for the e4 allele on onset of cancer at older ages, we can safely pool the FHS

and FHSO data to increase power. By selecting more homogeneous groups with

onset of cancer at older ages (older than 65 years), the role of the e4 allele in the

etiology of cancer becomes much more compelling (Table 9.6). It is also clear that

the differential effect of the e4 allele on onset of CVD across generations (e.g.,

protective effect in the FHS and detrimental effect in the FHSO at older ages, see

Tables 9.2 and 9.4) makes attempts to improve power of the estimates by pooling

the FHS and FHSO samples in this case useless (Table 9.6).

Conclusions on the Antagonistic Role of the APOE Gene in Diseases Careful

analyses addressing the role of aging-related heterogeneity help to better charac-

terize the puzzling complexity of gene actions on risks of CVD and cancer and their

sensitivity to gender, ages, and environment associated with differences in human

generations.

The analyses reported in this chapter suggest that the e4 allele can be protective

against cancer with a more pronounced role in men. This protective effect is more

characteristic of cancers at older ages and it holds in both the parental and offspring

generations of the FHS participants.

Unlike cancer, the effect of the e4 allele on risks of CVD is more pronounced in

women. The analyses suggest that the role of this allele in the etiology of CVD can

be sensitive to age and generation. In the parental generation of the FHS partici-

pants, we observe the antagonistic action of the e4 allele on onset of CVD in women

across the ages: the e4 allele can confer risks of CVD in younger women but protect

against CVD in older women. In the offspring generation, the e4 allele can confer

risks of CVD primarily in older women.

These results provide two important insights on the role of genes in traits in late

life. First, they explicitly show that the same allele can change its role on risks of

Table 9.5 Relative risks of CVD and cancer in the genotyped participants of the FHS original and

the FHSO cohorts

Sample

CVD Cancer

Ntot/NCVD RR p 95% CI Ntot/Ncanc RR p 95% CI

Men and

women

5142/1750 1.08 0.217 0.96–1.21 5157/1267 0.87 0.051 0.76–1.00

Men 2300/895 1.12 0.170 0.95–1.31 2324/646 0.83 0.066 0.68–1.01

Women 2842/855 1.03 0.706 0.87–1.22 2833/621 0.89 0.266 0.73–1.09

The models are adjusted for inter-cohort difference

RR denotes relative risk, CI denotes Confidence interval, Ntot and NCVD or Ncanc denote the total

number of genotyped individuals and the number of CVD or cancer cases among them,

respectively
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CVD in an antagonistic fashion from detrimental in women with onsets at younger

ages to protective in women with onsets at older ages.

Second, the analyses suggest two modes of sexually-dimorphic genetic

tradeoffs. One mode is observed in the FHSO generation, wherein the e4 allele

confers risk of CVD primarily in women and this allele can protect against cancer

primarily in men of the same age. The other mode is highlighted in the FHS

generation. The genetic tradeoff is seen in different age groups: a protective role

of the e4 allele against cancer is observed in older men (as well as in men and

women combined) from the FHS and FHSO cohorts, whereas the e4 allele shows a

detrimental role in CVD in younger FHS women.

Both of these insights suggest the key role of aging-related processes and a

changing environment in genetic susceptibility to traits in late life.

9.3 Tradeoffs in the Effects of APOE on Risks of CVD
and Cancer Influence Human Lifespan

9.3.1 The FHS and FHSO: Survival

Time-to-Event Analyses The results of descriptive survival analyses of the FHS

and FHSO participants for carriers and non-carriers of the e4 allele are shown in

Fig. 9.5. These results suggest that e4 allele carriers have worse survival compared

to non-e4 carriers in each cohort. The detrimental role of the e4 allele is more

pronounced in older FHSO participants. However, the longest-living individuals

aged about 95 years and older in the FHS cohort show no e4-specific survival

differences.

Fig. 9.5 Descriptive survival age patterns for genotyped participants of (a) FHS and (b) FHSO
cohorts who carry (E4) and do not carry (NoE4) APOE e4 allele. The numbers in the insets show
the total number of genotyped subject and the number of deaths among them
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Sex stratification shows sexual dimorphism in the effect of the e4 allele on survival

(Fig. 9.6) with the e4 female carriers, particularly, being more exposed to worse

survival. Of note is that the role of the e4 allele diminishes in both the longest living

men and women, i.e., it is sex insensitive.

Relative Risks of Death Cox regression analyses of risks of death of either FHS or

FHSO participants shows that female e4-allele carriers are at higher risk of death

(i.e., they have significantly shorter lifespan) compared to the non-e4-allele female

carriers (Table 9.7). No significant effects are seen for men in these cohorts. The

statistically significant RRs in the sample of men and women combined are largely

attributed to women.

Because the FHS and FHSO participants were exposed to risks of death differ-

entially at different ages (Figs. 9.5 and 9.6), we evaluated the relative risks in more

homogeneous samples. Based on the foregoing empirical evidence (Fig. 9.5), these

samples were defined in:

Fig. 9.6 Descriptive survival age patterns for (a, c) men and (b, d) women genotyped in (a, b)
FHS and (c, d) FHSO cohorts who carry (E4) and do not carry (NoE4) the APOE e4 allele. The

numbers in the insets show the total number of genotyped subject and the number of deaths among

them
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• the FHS as being younger than 95 years at death or the end of follow up in 2008;

• the FHSO as being 75 years and older at death or the end of follow up in 2008.

Table 9.8 shows substantial improvement in the estimated risks of death and

their significance in these more homogeneous samples as compared to the entire

samples shown in Table 9.7.

Because the e4 allele is associated with risks of CVD and cancer in complex

ways and because these diseases are major causes of death in the U.S., the

associations with survival in Table 9.8 can be modulated by those diseases.

Accordingly, we next evaluated the risks of death for all genotyped participants

of the FHS or FHSO cohorts in the regression models adjusted for CVD and

cancer (Table 9.9). This analysis shows that neither CVD nor cancer explain the

observed associations of the e4 allele with death (see Table 9.7), i.e., that they do

not mediate the genetic effect on lifespan. On the contrary, they even improve the

estimates in women and in men and women combined (Table 9.9). This implies

that CVD and cancer modulate the effect of the e4 allele on survival rather than

mediate it. Both CVD and cancer play seemingly minor modulating roles in men’s
survival.

Taking into account both the modulating role of CVD and cancer in the effect

of the e4 allele on risks of death and aging-related heterogeneity (see the discus-

sion of Table 9.8), we find that more realistic excesses of the risk of death in the

female e4 carriers (Table 9.10) are even larger than in the case when either the

aging-related heterogeneity (Table 9.8) or the modulating role of CVD and cancer

(Table 9.9), or both of them (Table 9.7) are disregarded. This refinement of the

analyses also reveals increasing risks of deaths in men and women combined and

in men only.

Given the same direction of the effects for the e4 allele in each cohort, we pooled

samples of genotyped participants of the FHS and FHSO cohorts. Table 9.11 shows

that traditional analyses based on pooling samples from the different studies

and cohorts and disregarding aging-related specifics can improve the statistical

significance of the estimates in this case (compare Tables 9.7 and 9.11, FHSþFHSO).

It is also clear that taking into account aging-related heterogeneity (Table 9.11,

FHSþFHSO, <95 years) or the modulating role of CVD and cancer (Table 9.12,

FHSþ FHSO) helps in unraveling stronger genetic effects. Refinement of the

Table 9.7 Relative risks of death in the genotyped participants of the FHS and FHSO cohorts

Sample

FHS FHSO

RR p 95% CI RR p 95% CI

Men and women 1.22 1.1� 10�2 1.05–1.42 1.26 5.8� 10�3 1.07–1.48

Men 1.16 0.239 0.91–1.48 1.08 0.492 0.87–1.33

Women 1.25 2.7� 10�2 1.03–1.52 1.59 2.4� 10�4 1.24–2.05

The numbers of subjects are shown in Figs. 9.5 and 9.6

RR denotes relative risk, CI denotes Confidence interval
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analyses by taking into account both of these factors (i.e., aging-related heteroge-

neity and the modulating role of CVD and cancer) reveals impressively large and

significant detrimental effects of the e4 allele on death in women only and in men

and women combined, as well as marginally significant effects in men (Table 9.12,

FHSþFHSO, <95 years).

Conclusions on the Role of the APOE Gene in Lifespan The results of these

analyses provide two important insights into the role of genes in lifespan. First, they

provide evidence on the key role of aging-related processes in genetic susceptibility

to lifespan. For example, taking into account the specifics of aging-related pro-

cesses gains 18% in estimates of the RRs and five orders of magnitude in signif-

icance in the same sample of women (i.e., RR¼ 1.61, p¼ 1.2� 10�9 (Table 9.12,

FHSþFHSO,<95 years) vs. RR¼ 1.36, p¼ 1.4� 10�4 (Table 9.11, FHSþFHSO))

without additional investments in increasing sample sizes and new genotyping. The

second is that a detailed study of the role of aging-related processes in estimates of

the effects of genes on lifespan (and healthspan) helps in detecting more homoge-

neous subsamples at excessive risks, such as those of death in women with shorter

lifespan (i.e., less than 95 years) in the case of lifespan.

Table 9.10 Health-adjusted relative risks of death in more homogenous groups of the genotyped

participants of the FHS and FHSO cohorts

Sample

FHS, <95 years FHSO, 75þ years

RR p 95% CI RR p 95% CI

Men and women 1.34 2.5� 10�4 1.15–1.57 1.60 2.1� 10�4 1.25–2.05

Men 1.21 0.133 0.94–1.56 1.22 0.247 0.87–1.69

Women 1.47 7.6� 10�5 1.21–1.78 2.28 4.0� 10�6 1.61–3.24

Model is adjusted for the prevalence of CVD and cancer

The number of subjects is shown in Table 9.8

RR denotes relative risk, CI denotes Confidence interval

Table 9.9 Health-adjusted relative risks of death in the genotyped participants of the FHS and

FHSO cohorts

Sample

FHS FHSO

RR p 95% CI RR p 95% CI

Men and women 1.27 3.2� 10�3 1.08–1.48 1.34 7.3� 10�4 1.13–1.58

Men 1.18 0.201 0.92–1.51 1.16 0.172 0.94–1.44

Women 1.35 2.9� 10�3 1.11–1.64 1.63 2.1� 10�4 1.26–2.11

Model is adjusted for the prevalence of CVD and cancer

The numbers of subjects are shown in Figs. 9.5 and 9.6

RR denotes relative risk, CI denotes Confidence interval
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9.4 Conclusion

The results of the analyses presented in this chapter are indicative of the complex

role of genes in healthspan and lifespan. Accordingly, adequate methods are

necessary to disentangle this role and gain further insights into genetic origin of

such complex traits. An important immediate consequence of such analyses is that

their results are crucial for the efficient translation of genetic discoveries into

strategies aiming to improve population health.
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Chapter 10

Conclusions Regarding Empirical Patterns
of Aging, Health, and Longevity

Alexander M. Kulminski, Anatoliy I. Yashin, Irina Culminskaya,

Kenneth C. Land, and Svetlana V. Ukraintseva

Age is a major risk factor for phenotypes characterizing human health, well-being,

and survival in late life. The risks of these phenotypes expressed in forms of

pathological dysregulation of physiological functions, incidence or prevalence of

diseases, case fatality, or mortality also change with age. This change integrates all

challenges occurring in a human organism during the life course by a given age.

Accordingly, the age patterns of various age-related phenotypes are a valuable

source of information about health-related processes in human organisms.

Chapter 2 focused on phenotypes that are considered critical markers of phys-

iological processes in an organism—including blood glucose, body mass index,

blood pressure, lipids, hematocrit, and ventricular rate. Changes in these bio-

markers (also called endophenotypes) are routinely monitored in clinical practice

in order to detect premature dysregulation of the respective processes in an organ-

ism with age. It is believed that such dysregulation is a manifestation of patholog-

ical changes causing diseases later in life (e.g., cardiovascular diseases).

Longitudinal studies collecting information on endophenotypes during long periods

of human life are a unique source of such information available to the research

community. In many cases, these studies have important advantages over clinical

observations because they often collect information on initially healthy individuals.

Having a clear understanding of the research goals and the data supporting the

analyses, an array of fundamental questions regarding health-related processes with

age can be addressed. Specifically, Chap. 2 investigated whether age patterns of

endophenotypes exhibit some regularity patterns, whether these patterns are

gender-specific, whether they differ between the specific population of the Fra-

mingham Heart Study and the general U.S. population, whether genetic and

non-genetic factors associated with lifespan can modulate these patterns, whether

there are hidden (unobserved) components of biological mechanisms regulating the

dynamics of age-related changes, and how they are linked to observed

endophenotypes.

The results of the empirical analyses in Chap. 2 showed that gender-specific age

patterns of endophenotypes can be modulated by behavioral, socio-economic, and
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genetic factors. Analyses of groups of short-lived and long-living individuals

showed apparent differences in age patterns of endophenotypes between these

groups. These patterns are also different between groups of individuals having

short and long healthspans. These patterns are affected by events characterizing

individuals’ health status (such as the presence or absence of certain age-related

diseases) and, eventually, they can pinpoint groups of individuals at excess risk of

death.

However, these analyses make it clear that a better understanding of the biolog-

ical mechanisms for coping with deleterious influences of aging and harmful

external factors requires more rigorous analyses and the development and applica-

tion of sophisticated mathematical and computer models. These models are useful

for delineating the effects of fundamental process of biological aging from those

associated with compositional changes due to the process of mortality selection.

The biological aging-related processes, in turn, can be decomposed into compo-

nents dealing with the senescence process per se, changes due to the ontogenetic

program, changes in response to persistent exogenous stresses, and the effects of

compensatory mechanisms that try to maintain an organism’s functioning despite

all these forces.

The analyses of age patterns of endophenotypes in Chap. 2 were further

extended by the analyses of age patterns of major human diseases and mortality

in Chap. 3. The importance of these analyses is twofold. First, they are important for

gaining insights into key factors driving the onset and progression of age-related

chronic diseases. Second, they inform policymakers and governmental institutions

how to better address the health demands of the elderly and to reduce the associated

economic burdens on society. Identification of disease age patterns with sufficient

precision requires large population-based databases that are costly to collect.

However, there is an important and readily-available resource in the form of

administrative health data which is routinely generated through the administration

of health care programs. This resource is the Medicare Standard Analytic Files for

service use for the entire Medicare-enrollee population of adults aged 65 years and

older. Analysis of age patterns of health and survival risks using administrative data

requires appropriate analytic strategies adapted to such data.

Chapter 3 focused on a series of epidemiologic and biodemographic measures

that can be studied using Medicare data. The topics discussed included age patterns

of morbidity and mortality, recovery or long-term remission (when appropriate),

comorbidity and multimorbidity, risk factors of disease incidence and mortality,

and projection modeling of health and mortality. The analyses were performed

using Medicare data linked to the Surveillance, Epidemiology, and End Results

(SEER) Registry (SEER-M), and the National Long Term Care Survey (NLTCS-

M) data.

The results of the analyses showed that the administrative data can be used to

adequately evaluate the national age patterns of incidence of a large array of

diseases in late life including cardiovascular diseases, cancers at different sites,

neurodegenerative diseases, and asthma, among the others. It was also concluded

that remission/recovery rates for age-related diseases and their time trends were
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detectable using Medicare data; the patients for whom there were large periods

without reported ICD-9 diagnoses were the healthier subcohort. The date of onset of

a disease can be identified using information collected in the Medicare data with

specific assumptions used to define the associated calculation algorithm.

Chapter 3 also discussed methodological and substantive issues of the analyses

of associations between hundreds of variables measured in the NLTCS-M and risks

of all-cause mortality and morbidity extracted from the Medicare data. The chapter

presented a new multimorbidity index—AMMI—for the U.S. older adult popula-

tion which reflected recent innovations in prevention and treatment and which was

estimated using information from the Medicare data.

The substantive results of the analyses in Chap. 3 consisted of estimated

statistical associations between different risks and characteristics representing

distinct features of human aging. Methodological results included evaluation and

comparison of several popular approaches of dealing with high dimensional cate-

gorical measurements and investigation of their power in predicting associations

with the considered risks. These analyses highlighted a number of factors predicting

disease incidence including physical activity, smoking, comorbidity, demo-

graphics, health insurance, and medical care providers. The same approach can

be used to detect the most influential preventable behavioral risk factors using data

from other studies with more detailed description of the risk factors. These

approaches can be used to develop individualized forecasts and prevention

strategies.

Despite the common understanding that age is a risk factor of not just one but a

large portion of human diseases in late life, each specific disease is typically

considered as a standalone trait. Independence of diseases was a plausible hypoth-

esis in the era of infectious diseases caused by different strains of microbes. Unlike

those diseases, the exact etiology and precursors of diseases in late life are still

elusive. It is clear, however, that the origin of these diseases differs from that of

infectious diseases and that age-related diseases reflect a complicated interplay

among ontogenetic changes, senescence processes, and damages from exposures to

environmental hazards. Studies of the determinants of diseases in late life provide

insights into a number of risk factors, apart from age, that are common for the

development of many health pathologies. The presence of such common risk

factors makes chronic diseases and hence risks of their occurrence interdependent.

This means that the results of many calculations using the assumption of disease

independence should be used with care.

Chapter 4 argued that disregarding potential dependence among diseases may

seriously bias estimates of potential gains in life expectancy attributable to the

control or elimination of a specific disease and that the results of the process of

coping with a specific disease will depend on the disease elimination strategy,

which may affect mortality risks from other diseases. Therefore, any strategy for the

reduction of the burden of a disease or its complete eradication has to take the

underlying mechanisms of disease dependence into account.

The chapter provided evidence of dependence among various diseases consid-

ering a large microlevel dataset on Multiple Causes of Death (MCD). MCD data
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were used to evaluate correlations among mortalities from cancer and other major

health disorders, including heart disease, stroke, diabetes, Alzheimer’s and

Parkinson’s diseases, and asthma. The types of dependence that were uncovered

included a form of antagonism (trade-off) with significant negative correlations,

e.g., as found between cancer and other selected diseases. Consideration was given

to possible mechanisms, including pleiotropic effects of genetic factors, as well as

appropriate mathematical methods of dealing with dependence among diseases in

the analyses of data on aging, health, and longevity. The study of mechanisms of

dependence opens new opportunities for improving population health by develop-

ing proper preventive measures and adequate treatment strategies which minimize

the chances of harmful side effects.

Chapter 5 dealt with the facts that the cancer incidence rate for all sites combined

and life expectancy have increased over time in many countries around the world.

These increases are concurrent with the economic progress and spread of the

Western lifestyle. What caused this global increase in cancer risk, beyond known

carcinogenic exposures? Could life in affluent societies make people more suscep-

tible to cancer? And could an increase in cancer risk and longevity be favored by the

same factors linked to economic prosperity? This chapter reviewed the global

epidemiological evidence and results of human and animal studies to show that

the higher overall cancer risk in the more developed world might be a result of a

higher proportion of individuals in the populations more susceptible to cancer,

rather than merely the result of a higher carcinogenic burden. This proportion could

increase over time under the influence of several factors linked to the high eco-

nomic development and Western lifestyle, including: improved medical and living

conditions that allow for survival of people with less efficient immune systems;

novel exposures that are not carcinogenic themselves but may increase one’s
vulnerability to established carcinogens; and others. Some of the factors associated

with the Western lifestyle (e.g., food enriched with growth factors and delayed

childbirth) may favor both longevity and vulnerability to cancer. This suggests that

trade-offs between cancer and aging may contribute to concurrent increases in

longevity and cancer risks in modern human populations.

A complex array of problems of increasing risks of various health traits with age

along with possible dependencies among some of them in aging populations

worldwide leads to increasing governmental concerns on how to achieve further

compression of morbidity in the most efficient manner. This objective highlights an

important economic component: i.e., medical costs associated with treatment and

rehabilitation to improve well-being and reduce the burden on the economies. This

problem requires evaluation of trends in disease burden and associated health

expenditures. To forecast such trends one needs to understand the key factors

driving the progression of age-related diseases and how such progression could

result in changes in associated medical costs. In the U.S., this is a primary concern

for the two main governmental health insurance programs, Medicare and Medicaid.

To open new possibilities for forecasting population health and medical costs,

studies of the effects of disease onset on individual medical cost patterns and of the

behavior of individual health patterns in the presence of comorbid and concurrent
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disorders are required. The results of such studies can help to estimate to what

extent cumulative individual medical costs can determine future changes in elderly

patients’ health status.

Chapter 6 focused on developing a model capable of generating a quantitative

description of the relationships between individual cost patterns accompanying the

onset of age-related diseases. The model is designed to have demographically

interpretable parameters and to serve as a building block in constructing a precise

and comprehensive forecasting model of medical costs (including Medicare spend-

ing) at the population level. The underlying methodological idea is that one can

aggregate health state information into a small number of covariates which can be

pivotal in predicting the risk of a health event (e.g., disease incidence) and whose

dynamics can be determined within the model constraints.

The new model was applied to 20 diseases. The results are important for the

whole U.S. elderly population because the list of diseases includes those with high

prevalence and with high medical costs associated with their treatment. It was

found that the time patterns of the medical cost trajectories were similar for all

selected diseases and could be described in terms of four components: (i) the

pre-diagnosis costs associated with initial comorbidity represented by medical

expenditures, (ii) the costs associated with the onset of each disease, (iii) the rate

of reduction in medical expenditures after the disease onset, and (iv) the difference

between post- and pre-diagnosis cost levels associated with an acquired comorbid-

ity. The description of the trajectories was formalized by a model which explicitly

involved four parameters reflecting these four components. The model was vali-

dated for several population groups and demonstrated the ability to describe cost

trajectories for different levels of disability and comorbidity. This model could be

further extended to forecast health/incidence, mortality, and associated medical

costs in the U.S. elderly population using more limited sets of parameters derived

from more broadly available data sources.

Physiological changes in the aging human body are manifested in changes in

various biomarkers which are routinely collected in clinical settings. Some studies

of human health, aging, and lifespan also collect that information, often, over

relatively long time periods. The other major phenotypes accompanying aging are

the various diseases. It is apparent that these two types of phenotypes (biomarkers

and diseases) do not exhaust all possible changes in an aging human organism

because human life is also accompanied by small and moderate changes occurring

with age, e.g., signs, symptoms, minor impairments, etc. Many studies of human

health, aging, and lifespan collect this information. However, it is rare that this

information is used for published analyses. This is mainly because important

information about age-related processes in an organism is spread through hundreds

of mild-effect phenotypes. The connections among such phenotypes, as well as

between each of them and diseases and/or survival, are unclear. To effectively use

this information, either substantially larger samples or new methods are needed. A

cost-efficient solution would be attained if one could improve the methods for

working with existing information.

10 Conclusions Regarding Empirical Patterns of Aging, Health, and Longevity 235

http://dx.doi.org/10.1007/978-94-017-7587-8_6


A promising approach would be to construct a measure which would aggregate

such mild-effect phenotypes. This idea was suggested in the literature in 1990s and

was promoted in studies presented Chap. 7. Following those ideas, an index of

cumulative deficits (DI) was constructed using information on mild-effect traits

available from several surveys and studies in the U.S., including the National Long

Term Care Survey, the Framingham Heart Study, and the Long Life Family Study.

The importance of this index is twofold. First, it can characterize health condi-

tions with elusive expressions such as the geriatric syndrome of frailty. Second,

given its inherent nature of gathering mild-effect phenotypes, it can characterize the

general process of age-related health decline which is believed to be associated with

aging. The results of the analyses were presented in Chap. 7 where they provided

strong evidence that the DI should be considered as a promising tool for applica-

tions in population and clinical settings. An important finding was that the DI could

be considered as a tool to characterize age-related processes in the elderly, inde-

pendently of age. This result characterized the DI not merely as a substituent of age

but as an alternative to age in the summary of age-related processes. Another

important result was that the DI could be a better tool for geriatricians working

with old-aged patients to measure phenotypic frailty than an alternative tool

developed by L. Fried and colleagues.

Endophenotypes characterizing the physiological state of an individual are a

product of a complicated interplay between genetic and non-genetic (environmen-

tal, behavioral, or stochastic) factors. Because the effects of these factors may

change during the life course, endophenotypes may differ substantially at different

ages in different individuals. Despite these intra- and inter-individual differences,

the average age trajectories for the same endophenotype follow remarkable regu-

larities. Epidemiology suggests that the endophenotypes may influence the risks of

morbidity and mortality. However, most studies in the field are focused on the

connections of the risks of events with endophenotypes at a given age. The dynamic

nature of endophenotypes is often ignored. If, however, static endophenotypes may

influence risks of morbidity and mortality, it is also logical to expect that the

dynamics of these endophenotypes may also influence those risks. This is reason-

able because the dynamic properties of individual trajectories of physiological

biomarkers over calendar age may reflect the rate of individual aging. And, if that

aging rate affects lifespan and healthspan, then one can expect that the dynamic

characteristics of such trajectories will affect morbidity and mortality risks.

Chapter 8 analyzed individual trajectories of aging changes in key physiological

biomarkers measured in participants of the FHS and focused on establishing

connections between characteristics of dynamic trajectories (across time) and

human lifespan and healthspan. They considered a broad range of such dynamic

characteristics including, e.g., the rate of change, the rate of increase or decrease,

the mean of residuals, the maximal value, etc. They found that these dynamic

variables may influence longevity and exceptional health more substantially than

the variables describing static physiological states. The major conclusion of the

analyses was that such dynamic variables can be important targets for prevention

aiming to postpone onsets of complex diseases and increase lifespan. In order to see
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a clearer picture of the relationships between physiological biomarkers, healthspan,

and lifespan, the dynamic variables should be more actively employed in aging and

health research, and routinely used together with the variables describing static

physiological states.

The aging of populations in developed countries requires effective strategies to

extend healthspan. A promising solution could be to yield insights into the genetic

predispositions for endophenotypes, diseases, well-being, and survival. It was

thought that genome-wide association studies (GWAS) would be a major break-

through in this endeavor. Various genetic association studies including GWAS

assume that there should be a deterministic (unconditional) genetic component in

such complex phenotypes. However, the idea of unconditional contributions of

genes to these phenotypes faces serious difficulties which stem from the lack of

direct evolutionary selection against or in favor of such phenotypes. In fact,

evolutionary constraints imply that genes should be linked to age-related pheno-

types in a complex manner through different mechanisms specific for given periods

of life. Accordingly, the linkage between genes and these traits should be strongly

modulated by age-related processes in a changing environment, i.e., by the indi-

viduals’ life course. The inherent sensitivity of genetic mechanisms of complex

health traits to the life course will be a key concern as long as genetic discoveries

continue to be aimed at improving human health.

Given this rationale, Chap. 9 presented the results of detailed analyses of the

effect of the APOE common polymorphism on age patterns of risks of major human

diseases such as CVD and cancer, as well as on survival. The analyses were focused

on two generations of humans participating in the FHS. The results provided

examples of complex modes of APOE actions including genetic trade-offs, antag-

onistic genetic effects on the same traits at different ages, and changes in genetic

effects on lifespan at different ages.

The results on the antagonistic roles of APOE in diseases provided two impor-

tant insights. First, they explicitly showed that the same allele can change its role in

the risks of CVD in an antagonistic fashion across age. Second, these genetic trade-

offs can be strongly affected by sex. Both of these insights underscore the key role

of the life course in genetic susceptibility to age-related phenotypes.

The results of the analyses of the role of APOE in lifespan provided additional

evidence about the key role of age-related processes in genetic susceptibility to

phenotypes in late life. They also showed that detailed ascertainment of the role of

age-related processes in estimating the effects of genes on lifespan and healthspan

could help in detecting more homogeneous subsamples at excess risks.
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Part II

Statistical Modeling of Aging, Health,
and Longevity



Chapter 11

Approaches to Statistical Analysis
of Longitudinal Data on Aging, Health,
and Longevity: Biodemographic Perspectives

Konstantin G. Arbeev, Igor Akushevich, Alexander M. Kulminski,
Kenneth C. Land, and Anatoliy I. Yashin

11.1 Introduction

Longitudinal data play a pivotal role in discovering different aspects of knowledge

related to aging, health, and longevity. There are many statistical methods for the

analysis of longitudinal data, which is one of the most prolific areas of statistical

science. Different types of research questions require different analytic approaches:

for example, a researcher would apply different approaches depending on the type

of longitudinal data at hand (categorical or continuous) and whether the primary

research interest is in the longitudinal outcomes alone or in combined analyses of

longitudinal data and survival (or, generally, time-to-event) outcomes. The goal of

this chapter is not to give a comprehensive overview of various approaches that can

be used in such analyses, because it is impossible to cover all of them in any

substantial detail in a single chapter. Details on a broad range of state-of-the-art

statistical methods of longitudinal data analysis can be found in recent books aimed

at a general audience (e.g., Fitzmaurice et al. 2009, 2011) or specifically for

researchers in aging, health, and social sciences (Newsom et al. 2012). Rather,

the focus of this chapter is narrower: to provide a brief discussion of approaches to

statistical analyses of longitudinal data on aging relevant to the major topic of this

monograph, Biodemography of Aging, and relate this discussion to the subsequent

chapters in Part II.

Biodemography is a multidisciplinary branch of science that unites under its

umbrella various analytic approaches aimed at integrating biological knowledge

and methods and traditional demographic analyses to shed more light on variability

in mortality and health across populations and between individuals.

Biodemography of aging is a special subfield of biodemography that focuses on

understanding the impact of processes related to aging on health and longevity.

Although it is a relatively young discipline, biodemography in general, and

biodemography of aging in particular, have quickly evolved into the one of the

most innovative and fastest growing areas of demography with substantial
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achievements to date and with great opportunities and new challenges for the future

(Carey 2008; Carey and Vaupel 2005; Christensen 2008; Crimmins et al. 2010;

Kaplan and Gurven 2008; Vasunilashorn and Crimmins 2008; Vaupel 2010;

Wachter 2008). The rapid progress of this field is fueled in particular by the rapid

increase in the number of large-scale studies that collect various biomarkers that

can be incorporated into demographic analyses (Crimmins et al. 2008, 2010;

Weinstein et al. 2007).

Aging, as this word connotes, is a process that develops with age. Therefore, data

on various relevant biomarkers measured at different ages for the same individuals

are necessary to develop knowledge about the mechanisms and dynamics of the

process of aging. The potential and value of biodemographic approaches is now

realized due to the availability of longitudinal biomarkers in existing studies and in

those that will develop multiple waves with longitudinal biomarker data in the

foreseeable future (Crimmins et al. 2010).

Mortality rates as a function of age are a cornerstone of many demographic

analyses. The longitudinal age trajectories of biomarkers add a new dimension to

the traditional demographic analyses: the mortality rate becomes a function of not

only age but also of these biomarkers (with additional dependence on a set of socio-

demographic variables). Such analyses should incorporate dynamic characteristics

of trajectories of biomarkers to evaluate their impact on mortality or other outcomes

of interest. Traditional analyses using baseline values of biomarkers (e.g., Cox

proportional hazards or logistic regression models) do not take into account these

dynamics. One approach to the evaluation of the impact of biomarkers on mortality

rates is to use the Cox proportional hazards model with time-dependent covariates;

this approach is used extensively in various applications and is available in all

popular statistical packages. In such a model, the biomarker is considered a time-

dependent covariate of the hazard rate and the corresponding regression parameter

is estimated along with standard errors to make statistical inference on the direction

and the significance of the effect of the biomarker on the outcome of interest (e.g.,

mortality). However, the choice of the analytic approach should not be governed

exclusively by its simplicity or convenience of application. It is essential to

consider whether the method gives meaningful and interpretable results relevant

to the research agenda. In the particular case of biodemographic analyses, the Cox

proportional hazards model with time-dependent covariates is not the best choice.

This is due to features of the analyses and data being analyzed, as discussed below.

Longitudinal studies of aging present special methodological challenges due to

inherent characteristics of the data that need to be addressed in order to avoid biased

inference. The challenges are related to the fact that the populations under study

(aging individuals) experience substantial dropout rates related to death or poor

health and often have co-morbid conditions related to the disease of interest. The

standard assumption made in longitudinal analyses (although usually not explicitly

mentioned in publications) is that dropout (e.g., death) is not associated with the

outcome of interest. While this can be safely assumed in many general longitudinal

studies (where, e.g., the main causes of dropout might be the administrative end of

the study or moving out of the study area, which are presumably not related to the
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studied outcomes), the very nature of the longitudinal outcomes (e.g., measure-

ments of some physiological biomarkers) analyzed in a longitudinal study of aging

assumes that they are (at least hypothetically) related to the process of aging.

Because the process of aging leads to the development of diseases and, eventually,

death, in longitudinal studies of aging an assumption of non-association of the

reason for dropout and the outcome of interest is, at best, risky, and usually is

wrong. As an illustration, we found that the average trajectories of different

physiological indices of individuals dying at earlier ages markedly deviate from

those of long-lived individuals, both in the entire Framingham original cohort (see,

e.g., Chap. 2 and Yashin et al. (2012b)) and also among carriers of specific alleles

(Arbeev et al. 2012). In such a situation, panel compositional changes due to

attrition affect the averaging procedure and modify the averages in the total sample.

Furthermore, biomarkers are subject to measurement error and random biolog-

ical variability. They are usually collected intermittently at examination times

which may be sparse and typically biomarkers are not observed at event times. It

is well known in the statistical literature that ignoring measurement errors and

biological variation in such variables and using their observed “raw” values as time-

dependent covariates in a Cox regression model may lead to biased estimates and

incorrect inferences (Prentice 1982; Sweeting and Thompson 2011). For example,

as Sweeting and Thompson (2011) showed, the Cox regression model with time-

dependent covariates severely underestimates associations between the current

underlying longitudinal value and the event hazard. When biomarkers are measured

at sparse examinations or with a long time interval before an outcome event such

bias can worsen. This is because the Cox model must have values of such variables

at different time points, which is usually achieved in software implementations by

assuming that the values of the time-dependent covariates are constant between

observations (exams) and that the hazard at some future point is associated with the

extrapolated value of the covariate at this time point.

That said, it is clear that standard methods of longitudinal data analyses such as

mixed-effects models (Laird and Ware 1982) or generalized estimating equations

(Liang and Zeger 1986) are not appropriate in analyses of longitudinal data on

aging because they assume non-informative dropout. Standard methods of survival

analysis such as the Cox proportional hazards model (Cox 1972) with time-

dependent covariates should be avoided in analyses of biomarkers measured with

errors because they can lead to biased estimates.

The need to use appropriate statistical methods to take into account challenges

associated with analyses of longitudinal data on aging is recognized in the geron-

tological literature (Murphy et al. 2011). Which statistical methods are then appro-

priate for analyses of longitudinal data on aging depends on the actual research aims

(Kurland et al. 2009). Although, as noted above, the field of biodemography

encompasses a diverse research agenda, we will specifically focus in this chapter

on analyses of mortality (or, generally, time-to-event) data and longitudinal mea-

surements of biomarkers. That is, we will focus on approaches that include models

for both the time-to-event and longitudinal outcomes (thus omitting methods that

concentrate on the longitudinal outcome and treat the time-to-event data as a
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nuisance factor to be adjusted for, and approaches that do not include time-to-event

information, e.g., onset of a disease, but, say, include instead binary indicators such

as prevalence of a disease in logistic regression). Our choice of joint analyses of the

time-to-event and longitudinal outcomes is consistent with keeping the narrative

focused on specific applications to biodemography of aging. There is a considerable

literature on advanced methods of analyses of longitudinal data summarized, for

example, in a recent book by Fitzmaurice et al. (2009).

Statistical methods aimed at analyses of time-to-event data jointly with longitu-

dinal measurements have become known in the mainstream biostatistical literature

as “joint models for longitudinal and time-to-event data” (“survival” or “failure

time” are often used interchangeably with “time-to-event”) or simply “joint

models.” This is an active and fruitful area of biostatistics with an explosive growth

in recent years. Reviews of some earlier approaches to joint modeling of longitu-

dinal and time-to-event data can be found in Hogan and Laird (1997), Troxel

(2002), Tsiatis and Davidian (2004), and Yu et al. (2004). Recent developments

are summarized in reviews by Diggle et al. (2008), Ibrahim et al. (2010), Sousa

(2011), Wu et al. (2012), McCrink et al. (2013), Proust-Lima et al. (2014), and

Gould et al. (2015). We refer readers to the references cited above and the book by

Rizopoulos (2012) for a detailed and comprehensive overview of the theory and

applications of joint models. In our recent paper (Arbeev et al. 2014) we reviewed

both joint models and stochastic process models (see Chap. 12) with a particular

focus on applications to prediction of health and survival. In the next section, we

briefly present the basics of joint models and their various extensions suggested in

the recent biostatistical literature and discuss them in the context of

biodemographic applications.

11.2 Statistical Approaches to Joint Analysis
of Longitudinal and Time-to-Event Outcomes

11.2.1 Standard Joint Models and Their Extensions

The standard joint model consists of two parts, the first representing the dynamics

of longitudinal data (which is referred to as the “longitudinal sub-model”) and the

second one modeling survival or, generally, time-to-event data (which is referred to

as the “survival sub-model”). The standard paradigm in this class of models

postulates the dynamics of the “true” (unobserved) longitudinal process in terms

of a vector of subject-specific random effects. The observed longitudinal data are

the values of this “true” process that are collected intermittently at some time points

(possibly different for different individuals) and are subject to measurement error.

The survival sub-model typically assumes that the risk of an event at some age

t depends on the value of the “true” longitudinal process at that age in a Cox

proportional hazards context. For example, the standard model for continuous
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longitudinal data can be formulated using a linear mixed-effects (LME) model with
normally distributed errors and random effects (Faucett and Thomas 1996;

Rizopoulos 2012; Tsiatis and Davidian 2004; Wulfsohn and Tsiatis 1997):

Yi tð Þ ¼ XT
i tð Þβ þ ZT

i tð Þbi þ εi tð Þ; ð11:1Þ

where Yi(t) denotes the longitudinal outcome for individual i at age t, XT
i (t) and Z

T
i (t)

are design vectors of fixed effects β and random effects bi (“T” denotes transposi-
tion; here and below we will use column vectors if not stated otherwise), and εi(t) is
the error term. The error terms εi(t) are assumed independent and normally distrib-

uted, εi tð ÞeN 0; σ2ð Þ Random effects bi are assumed to be independent of the error

terms and also normally distributed, bieN 0;Bð Þ. The expression for the hazard rate

for the time-to-event outcome represents dependence of the risk of the event on the

current “true” value of the longitudinal outcome:

μi t Yi

�

� tð Þ,wi

� � ¼ μ0 tð Þexp wT
i γ þ αYi tð Þ

� �

; ð11:2Þ

where μ0(t) is the baseline hazard, wi is a vector of baseline covariates with

associated vector of regression coefficients γ, Yi tð Þ stands for the “true”

(unobserved) value of the longitudinal outcome:

Yi tð Þ ¼ XT
i tð Þβ þ ZT

i tð Þbi; ð11:3Þ

and α is the respective regression coefficient.

The model (11.1, 11.2 and 11.3) represents the joint model in its simplest form.

Numerous extensions of this basic model have appeared in the joint modeling

literature in recent decades, providing great flexibility in applications to a wide

range of practical problems. The extensions involve different characteristics of both

the longitudinal and the time-to-event sub-models, such as specification of trajec-

tories, distribution of random effects, type of longitudinal data (continuous or

categorical), alternative expressions for hazard rates, etc., as described in the

remainder of this section.

In the longitudinal sub-model, more flexible specification of the individual

trajectories, such as splines (Brown 2009; Brown et al. 2005; Ding and Wang

2008; Rizopoulos and Ghosh 2011; Rizopoulos et al. 2009; Yao 2007) or stochastic

processes (Chiang 2011; Henderson et al. 2000, 2002; Struthers and McLeish 2011;

Wang and Taylor 2001; Xu and Zeger 2001b), have been suggested. We will

discuss the latter approach in more detail in the next section on the use of stochastic

processes to model biological variation and heterogeneity in individual longitudinal

trajectories. Another type of model with more flexible specification of longitudinal

trajectories that allows for testing relevant biological hypotheses is change-point

joint models (Dantan et al. 2011; Faucett et al. 2002; Garre et al. 2008; Ghosh

et al. 2011; Jacqmin-Gadda et al. 2006; Pauler and Finkelstein 2002; Tapsoba

et al. 2011b; Yu and Ghosh 2010). Change-point joint models extend the random
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effects specification of the longitudinal data by adding an unknown change-point

which represents the time when the longitudinal age trajectory experiences a

change in its pattern (e.g., an increase in the slope, or a change from a linear to a

non-linear pattern). Biologically, such change-points may correspond to some

internal processes in an organism that ultimately manifest themselves in the

changes in behavior of the longitudinal trajectories. The change-points typically

are assumed to be random variables with distributions (means) depending on

observed covariates, thus allowing the investigation of their impact on the change

in behavior of the longitudinal trajectory. The change-points can also be thought of

as representing an onset of a pre-disease or pre-diagnosis state in the joint multistate

model context (Dantan et al. 2011).

Incorrect specification of the distribution of random effects in joint models can,

in principle, lead to biased inference. Several authors have considered relaxing the

assumption of normality of random effects or making no parametric assumptions

about the random effects distribution (Brown and Ibrahim 2003b; Song et al. 2002a;

Song and Wang 2008; Tapsoba et al. 2011a; Tsiatis and Davidian 2001). Hsieh

et al. (2006) showed in simulation studies that maximum likelihood estimates

(MLEs) of parameters in joint models are robust against the violation of the

normality assumption of random effects if information from the longitudinal data

is rich enough. Rizopoulos et al. (2008) proved that the effect of misspecification of

the random effects distribution diminishes as the number of longitudinal measure-

ments per individual increases. However, as Huang et al. (2009) noted, “a relevant

question is whether or not the available longitudinal information in a particular data

set is rich enough to yield an MLE insensitive to model misspecification.” They

developed a diagnostic tool to reveal misspecification in the random effects model

and provided a graphical method and test statistics to quantitatively assess the

robustness of parameter estimators.

Standard joint models utilize LME models for longitudinal data. Nonlinear
mixed effects (NLME) models in which more sophisticated nonlinear processes

generating the longitudinal data are assumed (Davidian and Giltinan 1995) can be

useful, and generalized linear mixed models (GLMM) (Diggle et al. 2002) can

accommodate both continuous and categorical longitudinal outcomes (such as

Gaussian, binomial or Poisson variables). Joint models incorporating NLME and

GLMM have appeared recently in the literature (Huang et al. 2011; Rizopoulos and

Ghosh 2011; Wu et al. 2008, 2010; Yao 2008). Such nonlinear models may be

useful in many applications, but they are more computationally demanding and the

nonlinearity of the longitudinal models may require special approaches to reduce

computation time.

The most widely used approach in the joint models literature applies the Cox
proportional hazards (regression) model to represent the relationship between the

longitudinal outcomes and failure times. The distinct feature of the Cox model is a

completely unspecified baseline hazard. Although such a specification is possible in

the joint modeling context, it can result in underestimated standard errors of

parameters (Hsieh et al. 2006), thus necessitating an explicit characterization of

the baseline hazard. Models with flexible specifications of the baseline hazard
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include the use of piecewise constant hazards or approximations by splines, e.g., as

implemented in the R package JM (Rizopoulos 2010, 2012).

There can be many situations in real-world applications in which the propor-

tionality of hazards assumption does not hold and can be hard to justify biologi-

cally. In these cases, the use of models that assume the proportionality of hazards to

capture the relationship between failure times and longitudinal outcomes can be

misleading. The accelerated failure time (AFT) model (Cox and Oakes 1984) is

considered an appealing alternative to the Cox model in aging research (Swindell

2009), often providing more intuitive interpretations of the effects of a covariate

(e.g., treatment) on the survival outcome. Joint models with the AFT survival

sub-model were considered in the literature (Hanson et al. 2011; Huang

et al. 2011; Rizopoulos et al. 2010; Tseng et al. 2005; Vonesh et al. 2006; Wu

et al. 2010). Another possible alternative with more flexible models for effects of

covariates on survival data is the time-varying coefficient proportional hazards

model (Zucker and Karr 1990) in which the regression coefficients may vary over

time. Song and Wang (2008) applied the time-varying coefficient proportional

hazards model in the joint model context.

The standard joint model (11.1, 11.2 and 11.3) is formulated for a single

longitudinal outcome. Often several longitudinal markers that can be related to

the time-to-event outcome are available in the study. Such biomarkers can represent

different manifestations of underlying biological processes that work in concert so

their joint analysis in the framework of a multidimensional model that would take

dependence between the markers into account can be advantageous. Joint models

for multiple longitudinal markers have been considered in the literature (Brown

et al. 2005; Chi and Ibrahim 2006, 2007; Ibrahim et al. 2004; Lin et al. 2002;

Rizopoulos and Ghosh 2011; Song and Wang 2008; Song et al. 2002b; Xu and

Zeger 2001a). However, this advantage can be offset by computational difficulties

related to the need for numerical integration over the random effects. In the case of

several longitudinal outcomes, the dimensionality of the random effects can

become prohibitively large for practical implementations.

Model (11.1, 11.2 and 11.3) focuses on a single failure type such as death or

onset of a disease. Extensions of joint models to work with multiple failure times

(competing risks) have been discussed in the literature. This literature is described

in more detail in Chap. 13 which also reviews modifications of joint models,

including an additional random variable in the time-to-event sub-model (typically

referred to as “frailty”) and joint models that accommodate latent subpopulations

(latent classes) called “joint latent class models.”

A special case of joint models is the class of models with a cure fraction or joint
cure models (Abu Bakar et al. 2009; Brown and Ibrahim 2003a; Chen et al. 2004;

Chi and Ibrahim 2007, 2006; Law et al. 2002; Song et al. 2012; Taylor et al. 2005;

Yu and Ghosh 2010; Yu et al. 2004, 2008). Such models are relevant, for example,

in applications to cancer research where they represent the natural setting of events

(treatment and subsequent cure or recurrence of cancer). When such a “cured”

group (not susceptible to the risk of the event) is present in the data, there will be a

plateau in the survival function when there is a substantial follow-up period, i.e., the
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survival function will never reach zero. That is, standard models with proper

survival functions are not appropriate in such applications, because they assume

that every individual would eventually experience the event. Joint cure models also

represent an interesting example of the incorporation of biological theories and

concepts into statistical models.

As discussed in Chap. 6, modeling and analysis of medical cost trajectories in

relation to the onset of aging-related diseases and death are important topics in

research on aging. These are especially relevant nowadays when the population is

aging and medical costs are increasing rapidly. For example, joint analyses of

trajectories of medical costs and survival can be important in cost-effectiveness

studies. Joint models provide an approach to performing such joint analyses of

individual trajectories of medical costs and time-to-event data. Liu et al. (2007)

suggested a joint model for monthly medical costs and survival time that takes into

account the possible correlation between the medical costs trajectory and survival

time and possible differential patterns of medical costs close to death. Such a

correlation is introduced through a common random effect in the sub-models for

survival and medical costs. This random effect in the survival sub-model represents

“frailty” (see Chap. 13). Specification of a sub-model for medical costs takes into

account the possibility of a changing pattern of costs at some time period before

death which makes it similar to the change-point models discussed above. As Liu

et al. (2007) showed in their simulation studies, ignoring the dependence of death

times on medical costs results in biased estimates of the longitudinal model for

medical costs, whereas the joint model produces correct estimates. Another point to

consider in such applications is the assumption of non-informative observation

times, i.e., that observation times do not carry information on the longitudinal

measures (medical costs). This is the usual assumption in the joint models literature

and it is relevant in most applications, but it is at least questionable in analyses of

medical costs data. For example, patients at a more severe disease stage visit

hospitals more often (i.e., have more densely distributed observation points), accrue

medical costs faster, and have worse survival chances than those having a milder

form of disease or no disease at all. Therefore, joint model for analyses of such data

should account for both informative observation times and a dependent terminal

event simultaneously. Liu et al. (2008a) proposed such a joint model that includes

three components: a frailty model for the intensity of recurrent events (hospital

admissions), a random effects model for repeated observations (costs) collected at

these recurrent visits, and a proportional hazards model for the failure time. The

model includes correlated random effects in all three sub-models to introduce

dependence between the respective processes. Liu (2009) extended the approach

to apply it to a more realistic situation with monthly medical costs, which are

characterized by the presence of a large proportion of zero values and right

skewness of non-zero values.

The standard parameterization of the joint model (11.2) assumes that the risk of

the event at age t depends on the current “true” value of the longitudinal biomarker

at this age. While this is a reasonable assumption in general, it may be argued that

additional dynamic characteristics of the longitudinal trajectory can also play a role
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in the risk of death or onset of a disease. For example, if two individuals at the same

age have exactly the same level of some biomarker at this age, but the trajectory for

the first individual increases faster with age than that of the second one, then the first

individual can have worse survival chances for subsequent years. We showed in

analyses of the Framingham data that, indeed, the dynamic characteristics of

individual trajectories (e.g., slopes, variability) are related to mortality risk and

risk of onset of major aging-related diseases (Yashin et al. 2010, 2012b); see

Chap. 8. Therefore, extensions of the basic parameterization of joint models

allowing for dependence of the risk of an event on such dynamic characteristics

of the longitudinal trajectory can provide additional opportunities for comprehen-

sive analyses of relationships between the risks and longitudinal trajectories.

Several authors have considered such extended models. For example, Yu

et al. (2008) considered a joint cure model with the current value of a biomarker

and its current slope included as time-dependent covariates in the specification of

the hazard. Ye et al. (2008) proposed a semiparametric joint model with the hazard

rate depending on both the current value of the underlying subject-specific trajec-

tory and its rate of change (slope). Brown (2009) extended the semiparametric

approach of Brown et al. (2005) to include the slope and integral of the cubic

B-spline of the longitudinal trajectory as time-varying covariates in the hazard

model. Gao et al. (2011) relaxed the standard assumption of a common (homoge-

neous) variance-covariance structure of random effects used in joint models assum-

ing a linear mixed-effects model with individual-specific variances of random

effects. Their model includes the random intercept and slope, as well as the

logarithm of the individual-specific variance of random effects as covariates in

the survival sub-model. This allows for testing hypotheses of the effects of

individual-level differences in variability of longitudinal biomarkers on the time-

to-event outcomes. Rizopoulos and Ghosh (2011) developed a semiparametric

multivariate joint model with a flexible parameterization that, among other ele-

ments, includes derivatives of the longitudinal profile functions, thus permitting the

risk of an event to depend not only on the true value of the longitudinal outcome but

also on the dynamic characteristics (e.g., the slope and the curvature) of the true

longitudinal trajectory at that time. This specification along with other generaliza-

tions of joint models such as those involving cumulative effects (integrals) or

lagged effects are implemented in the R package JM (Rizopoulos 2010) and are

thoroughly discussed in the book by Rizopoulos (2012).

One particular advantage of joint models is that they provide a natural frame-

work for performing individual predictions of longitudinal and time-to-event out-

comes that takes into account the dependence of the risk of an event on the

longitudinal observations. Applications of joint models to make dynamic individual

predictions (of both longitudinal and time-to-event outcomes) and the development

of predictive accuracy measures have recently been discussed in the literature

(Commenges et al. 2012; Garre et al. 2008; Hanson et al. 2011; Hatfield and Carlin

2012; Proust-Lima et al. 2014; Proust-Lima and Taylor 2009; Rizopoulos 2011;

Sweeting and Thompson 2011; Taylor et al. 2005; Yu et al. 2008); see also Chap. 7

in the book by Rizopoulos (2012).
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As this section illustrates, there is great variability in the specifications of joint

models that may be suitable in different applications. Since joint models are

computationally intensive and are sometimes prone to convergence problems so

that the estimation algorithm requires “attendant nursing,” as Wang and Taylor

(2001) termed the required close monitoring of the iterative processes, their prac-

tical use depends critically on the implementation of the algorithms in available

software packages. Different authors have used different software packages to fit

specific versions of joint models. This includes implementations in both commer-

cial software such as SAS (see, e.g., Gueorguieva et al. 2012; Guo and Carlin 2004;

Liu 2009; Liu et al. 2008a; Vonesh et al. 2006; Ye et al. 2008), Stata (Crowther

et al. 2013), and Mplus (Muthén and Muthén 1998–2012)—see Wang

et al. (2012)—as well as implementations in freely available software such as

WinBUGS (Lunn et al. 2000)—see Gao et al. (2011), Guo and Carlin (2004),

Hatfield et al. (2011), Huang et al. (2011), Rizopoulos and Ghosh (2011), and

Sweeting and Thompson (2011),—aML (Lillard and Panis 2003)—see Liu

et al. (2008b)—and several packages in R (JM (Rizopoulos 2010), JMbayes,
JMLSD, joineR, and lcmm). Although not all published papers on joint models

provide software code for their estimation algorithms, which hinders their use in

practical applications, the recent development of a flexible R package JM covering

a wide range of joint models and the availability of a book providing comprehen-

sive practical guidance on the use of the R packages (JM and lcmm) to fit joint

models (Rizopoulos 2012) should facilitate their widespread application in differ-

ent research areas.

We should also note one more advantage of joint models. They provide more

efficient estimates of the effect of a covariate (e.g., treatment) on time-to-event

outcomes in the case in which there is an effect of the covariate on the longitudinal

trajectory of a biomarker. This means that joint analyses of longitudinal and time-

to-event data in joint models may require smaller sample sizes to achieve compa-

rable power with analyses based on time-to-event data alone and ignoring the

longitudinal process can lead to biased estimates of the effect of a covariate and a

potential loss of power (Chen et al. 2011). There is also an additional possibility for

increasing the power of joint analyses of longitudinal and survival data related to

the application of recent biodemographic methods (for more details, see Chap. 14).

11.2.2 The Use of Stochastic Processes to Capture Biological
Variation and Heterogeneity in Longitudinal Patterns
in Joint Models

The previous section outlined a wide spectrum of models that provide great

flexibility in joint analyses of longitudinal and time-to-event outcomes that may

be relevant in applications to various research questions in different scientific

disciplines including biodemography. When it comes to biodemographic
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applications, however, one additional important point to consider is how to inte-

grate biological knowledge and methods and statistical models used in joint ana-

lyses of longitudinal and survival data. The basic joint models (11.1, 11.2 and 11.3)

have “standard” specifications of their components traditionally used in modern

survival and longitudinal data analysis (such as the Cox proportional hazards model

for the survival sub-model and the linear mixed-effects model for longitudinal

data). These are motivated mostly by convenience of estimation and availability

of statistical software. Such specifications of the models have a rather limited utility

for investigating biological mechanisms leading to the observed dynamics of

longitudinal biomarkers and the outcomes of interest (e.g., survival, onset of a

disease, etc.) because they are not based on any substantive knowledge accumu-

lated in prior research. To be useful for such applications, the models need to be the

“biologically-based” ones. That is, they should take into account the complex

dynamics of underlying biological processes, thus providing the possibility of

estimating parameters that can be meaningfully interpreted from a biological

point of view.

One possibility for incorporating individuals’ biological backgrounds into joint

models is to provide a more flexible form of longitudinal trajectories of biomarkers

that would be more plausible and interpretable than just a linear function of age in

the respective applications. For example, in applications to prostate cancer data, the

longitudinal dynamics of prostate-specific antigen (PSA), which is an important

disease progression marker, can be represented by a nonlinear exponential decay—

an exponential growth model where the parameters have natural interpretations,

e.g., the initial decline in PSA after radiation (Law et al. 2002; Taylor et al. 2005;

Yu et al. 2008, 2004). Similarly, alternative specifications of the hazard rate can be

more biologically interpretable in specific applications than the standard exponen-

tial proportional hazards used in the basic joint models. For example, the stochastic

model of tumor recurrence by Yakovlev et al. (1993) formulates the hazard rate in

terms of the mean number of clonogens (i.e., the surviving neoplastic cells that are

capable of propagating into a newly detectable tumor) surviving the treatment and

the probability density function of the distribution of progression times (i.e., the

times for clonogens to produce a detectable tumor). The stochastic model of

spontaneous carcinogenesis (Yakovlev and Tsodikov 1996) also expresses the

hazard rate in a biologically-motivated fashion as a function of the intensity of

non-repaired lesion formation (which can lead in the long run to an observable

tumor) and the cumulative distribution function of progression times. These models

can be incorporated into the joint modeling framework to provide an appealing

possibility for a biological interpretation of the impact of observed covariates on the

respective characteristics. Implementations and adaptations of Yakovlev’s models

to the joint models context have been discussed in the literature (Abu Bakar

et al. 2009; Brown and Ibrahim 2003a; Chen et al. 2004; Chi and Ibrahim 2006,

2007; Song et al. 2012).

Standard joint models of the form (11.1, 11.2 and 11.3) specify some simple

(e.g., linear) age patterns of longitudinal trajectories of biomarkers. This is a

convenient approximation justifiable from a computational point of view. However,
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it ignores the biological variability of individual trajectories over time, a simplifi-

cation that may be biologically implausible in specific applications. For example,

longitudinal data on CD4 counts are widely used in applications of joint models to

AIDS studies. The basic joint model with a linear growth curve (Tsiatis et al. 1995)

assumes that individual trajectories of “true” (unobserved) CD4 counts are straight

lines. While this may be true on average, as CD4 counts tend to decline over the

course of HIV infection, it is known that the CD4 count is a highly variable immune

system marker and its individual age trajectory cannot be captured by a simple

linear function. Note that such variability of longitudinal biomarkers within indi-

viduals is different from measurement errors (which are given by the i.i.d. random

variables), because the values of biomarkers are typically correlated over time. It

has been proposed in the literature to use stochastic processes to better capture

biological variation and heterogeneity in longitudinal trajectories of biomarkers in

individuals. In this case, Eq. 11.1 includes an additional term representing a

stochastic process modeling the correlation between measurements:

Yi tð Þ ¼ XT
i tð Þβ þ ZT

i tð Þbi þWi tð Þ þ εi tð Þ; ð11:4Þ

where Wi(t) denotes a mean zero stochastic process which is assumed to be

independent of the error terms εi(t) and random effects bi. When such a stochastic

process is included in the model, individual longitudinal trajectories of biomarkers

are considered as realizations of a stochastic process. Specifications of the process

Wi(t) differ in applications. One choice for modeling the longitudinal trajectories

includes an integrated Ornstein-Uhlenbeck process (LaValley and DeGruttola

1996; Wang and Taylor 2001) as suggested in applications to modeling longitudinal

CD4 counts by Taylor et al. (1994). Another option for representing longitudinal

trajectories is to use the semiparametric stochastic mixed model by Zhang

et al. (1998) that includes a zero mean integrated Wiener stochastic process, as in

Ye et al. (2008). Henderson et al. (2000) proposed modeling the joint distribution of

longitudinal measurements and events via an unobserved (latent) stationary bivar-

iate Gaussian process, so that the correlation between the two components of the

process induces dependence between the longitudinal data and event times. A zero-
mean stationary Gaussian process specification of the longitudinal model also was

used in Xu and Zeger (2001b) in the framework of generalized linear models.

Chiang (2011) generalized the correlation mechanism in the joint latent model of

Henderson et al. (2000), considering it in a varying-coefficient model (Chiang

et al. 2001; Hoover et al. 1998). Struthers and McLeish (2011) used a generalized

Ornstein-Uhlenbeck process with observed covariates included in parameters of

this process.

The Ornstein-Uhlenbeck (OU) process (Uhlenbeck and Ornstein 1930) is one

type of stochastic processes that can be used to represent the longitudinal trajecto-

ries of biomarkers. It is widely used in physics and financial mathematics and it is

also of a particular interest from the biodemographic perspective, because it has

some appealing properties especially relevant for biological interpretation. The OU

process is stationary, Gaussian, and Markovian (the only nontrivial process having
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these three conditions). The stochastic differential equation of the OU process has

the form:

dY tð Þ ¼ a f 1 � Y tð Þð Þdtþ σdW tð Þ; ð11:5Þ

where W(t) is the Wiener process, and a> 0, f1, and σ> 0 are parameters. The

parameter f1 corresponds to the long-term mean value of the OU process Y(t), σ is

the diffusion coefficient representing the degree of volatility around the mean, and

the parameter a controls the rate at which the process reverts to the mean. The

current value of the OU process defines the direction of the drift of the process. If

the current value of the process is less than the mean value f1 then the drift will be

positive (i.e., towards the mean) and if the current value of Y(t) is greater than f1
then the drift will be negative (i.e., again towards the mean f1). That is, in the long

run, the OU process tends to drift towards its long-term mean f1. This remarkable

“mean-reverting” property of the OU process has a natural biological interpretation

in terms of homeostatic regulation of an organism, and it makes this process the

method of choice for modeling age trajectories of biomarkers. This process natu-

rally models homeostatic regulation, a fundamental property of living organisms

that tends to maintain stability by returning or restoring a biological subsystem to an

“equilibrium state” in case of disturbances of various kinds. The use of such

stochastic processes in the specification of statistical models provides a vivid

example of how biological knowledge can be incorporated into statistical analysis.

This is a key feature of biodemographic models that will be discussed in the next

section and subsequent chapters of this monograph.

11.3 Bringing Biology to Statistics: Biodemographic
Models for Analysis of Longitudinal Data on Aging,
Health, and Longevity

An important challenge to consider in the context of biodemographic analyses is

that such analyses aim at integrating biological knowledge and theories with

demographic analyses. In particular, for the biodemography of aging, this means

incorporating knowledge and theories about the processes of aging into analytic

approaches. Substantial knowledge about mechanisms of aging-related changes has

been accumulated in the prior research literature and different concepts of aging

have been formulated. Individual measurements of biomarkers represent a “snap-

shot” of an individual’s physiological state at a particular age. Longitudinal data on
aging, health, and longevity that contain measurements of biomarkers observed in

the same individual at different ages along with his/her health and survival status

are especially valuable for biodemographic analyses. Such data contain information

not only about one’s physiological state at a given age, but also about its dynamics,
which may be associated with the process of aging which leads to the development
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of aging-related diseases and, eventually, death. However, a conceptual analytic

framework is necessary that incorporates available knowledge about mechanisms

of aging-related changes that may be hidden in the individual longitudinal trajec-

tories of biomarkers in order to analyze their indirect impact on the risks of diseases

and death. The joint models reviewed in the previous sections are of limited use in

this respect. Although some of them are based on sound biological theories relevant

to specific applications, e.g., cancer studies, they typically lack specific parameters

or components of the models that can be biologically interpreted in the context of

aging. However, standard joint models can be useful at the initial stages of analysis

when the presence of specific effects has to be identified (for example, the effect of

the values of a biomarker on the risk of death).

One possibility for bringing biological knowledge into statistical models is the

use of stochastic processes that model the complex dynamics of underlying mech-

anisms (such as the Ornstein-Uhlenbeck process described above). This provides a

structure for estimating parameters that can be meaningfully interpreted from the

biological point of view. Such “biologically-based” models are more appropriate

for understanding the biological mechanisms leading to the observed longitudinal

dynamics of biomarkers and the outcomes of interest (e.g., survival, onset of a

disease, etc.) than standard models based on conventional assumptions (e.g., pro-

portionality of hazards or linearity of individual age trajectories of biomarkers).

Biodemographic analyses of mechanisms and regularities of aging in relation to

mortality (or other time-to-event outcomes of interest) can be performed using a

special type of statistical model which is known as the stochastic process model of
aging. The specific version of this model that incorporates substantive knowledge

about different aging-related concepts has been developed recently by the research

team contributing to this monograph (Yashin et al. 2007) and has been extended in

various ways and applied in different contexts; see, e.g., our recent review paper

(Yashin et al. 2012a). This model incorporates a generalized version of the

Ornstein-Uhlenbeck process of Eq. 11.5 with parameters depending on age (Yashin

et al. 2007) and observed covariates (Yashin et al. 2012a), including genetic

markers (Arbeev et al. 2009; Yashin et al. 2013). For specification of the hazard

rate, the model uses a biologically plausible quadratic function of the value of each

biomarker as justified by numerous epidemiological observations for different

biomarkers (hence its alternative name, the quadratic hazard model).
There is one historical aspect related to the stochastic process model which is

rarely recognized in the mainstream biostatistical literature on joint models. This

model has its roots in the random walk model of Woodbury and Manton (1977).

This conceptually important model with an elegant mathematical development

(Aalen et al. 2008) has several important advantages (Martinussen and Keiding

1997). But the model, as well as its applications and extensions, remained rather

unnoticed in the literature on joint models. Nevertheless, these works by Wood-

bury, Manton, Stallard, Vaupel, and Yashin (see, e.g., Woodbury and Manton 1977;

Woodbury et al. 1979; Yashin et al. 1985, 1986a, b) predated the “classical”

developments of joint models (those reviewed in Sect. 11.2) by several years.
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The stochastic process model will be further discussed in more detail in Chap. 12

and its generalizations will be the topics of Chaps. 13, 14, 15, and 16.
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Chapter 12

Stochastic Process Models of Mortality
and Aging

Anatoliy I. Yashin, Konstantin G. Arbeev, Liubov S. Arbeeva,

Igor Akushevich, Svetlana V. Ukraintseva, Alexander M. Kulminski,

Eric Stallard, and Kenneth C. Land

12.1 Introduction

Studying biodemographic aspects of human aging, health, and longevity involves

analyses of dynamic biological mechanisms dealing with regulation and manifes-

tation of aging-related changes in biomarkers (e.g., physiological indices), and of

connections of these biomarkers with morbidity and mortality risks. The individual

aging-related processes are modulated by genetic factors and external disturbances.

These processes and interactions, occurring in populations of individuals during the

life course, form the shape of the age patterns of human population mortality rates.

Such shapes demonstrate remarkable regularities in different populations: they

decline in childhood, exponentially increase in the adult ages, and tend to decelerate

and even level off at the oldest-old ages (Vaupel et al. 1998). Demographers and

actuaries have developed a number of parametric descriptions of mortality curves

capturing all aspects of their variation with age (Gage 1991; Heligman and Pollard

1980; Mode and Busby 1982; Siler 1983). Such descriptions are not intended to

explain detailed features of the age patterns but are designed to provide a good fit to

the overall mortality data. In contrast, biodemographers and gerontologists aim to

explain observed features of mortality curves using emerging theoretical concepts

and accumulated biological information (Charlesworth 2001; Gavrilov and

Gavrilova 2001; Lee 2003; Strehler and Mildvan 1960; Yashin et al. 2000,

2001a, 2002; Zheng et al. 2011). Since the chances of death are affected by internal

and external stresses that challenge defense mechanisms deteriorating in aging

human bodies, the shape of the age trajectories of mortality curves is likely to

reflect the average pattern of such deterioration, modulated by external distur-

bances. To go beyond such population average patterns and make conclusions

about individual aging processes by investigating the age pattern of the mortality

curve requires the development of a description of this curve in terms of parameters

characterizing the internal (biological) and external (environmental) processes that

contribute to the shape of this curve. Such a description can be formulated using
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models of aging-related changes recorded in longitudinal data merged with

corresponding data on health and survival events.

A number of statistical methods for joint modeling of longitudinal and survival

(time-to-event) data have been developed during the past several decades using

both frequentist and Bayesian approaches (Ibrahim et al. 2010; Sousa 2011; Tsiatis

and Davidian 2004; Yu et al. 2004). Traditionally, time-to-event data are analyzed

using the proportional hazards regression model. A basic approach to modeling

longitudinal panel data embeds a hazards regression model in a mixed (fixed and

random) effects model (Laird and Ware 1982) with the assumption that the random

effects or individual-specific parameters are normally distributed (Faucett and

Thomas 1996; Ibrahim et al. 2004; Wulfsohn and Tsiatis 1997; Xu and Zeger

2001a). More flexible semi-parametric approaches that do not rely on an assumed

normal distribution of the random effects or individual parameters have also been

developed (Brown and Ibrahim 2003; Song et al. 2002a, b; Song and Wang 2008;

Tsiatis and Davidian 2001). As discussed in Chap. 11, longitudinal data have also

been modeled using either an (integrated) Ornstein-Uhlenbeck or Wiener process.

These approaches allow for a more flexible description of individual longitudinal

dynamics and provide a better fit compared to random effects models (Henderson

et al. 2000; LaValley and DeGruttola 1996; Taylor et al. 1994; Wang and Taylor

2001; Xu and Zeger 2001b; Ye et al. 2008).

To be useful as a tool for biodemographers and gerontologists who seek biolog-

ical explanations for observed processes, models of longitudinal data should be

based on realistic assumptions and reflect relevant knowledge accumulated in the

field. An example is the shape of the risk functions. Epidemiological studies show

that the conditional hazards of health and survival events considered as functions of

risk factors often have U- or J-shapes (Allison et al. 1997; Boutitie et al. 2002;

Kulminski et al. 2008; Kuzuya et al. 2008; Mazza et al. 2007; Okumiya et al. 1999;

Protogerou et al. 2007; Troiano et al. 1996; van Uffelen et al. 2010; Witteman

et al. 1994; Yashin et al. 2001b), so a model of aging-related changes should

incorporate this information. In addition, risk variables, and, what is very important,

their effects on the risks of corresponding health and survival events, experience

aging-related changes and these can differ among individuals. Since risk variables

are measured periodically in longitudinal studies of aging, health, and longevity,

estimates of age trajectories of these variables as well as their effects on health and

mortality risks can be studied if the total period of observation is long enough.

An important class of models for joint analyses of longitudinal and time-to-event

data incorporating a stochastic process for description of longitudinal measure-

ments uses an epidemiologically-justified assumption of a quadratic hazard (i.e.,

U-shaped in general and J-shaped for variables that can take values only on one side

of the U-curve) considered as a function of physiological variables. Quadratic

hazard models have been developed and intensively applied in studies of human

longitudinal data (Manton and Yashin 2000; Woodbury and Manton 1977; Yashin

1985; Yashin and Manton 1997; Yashin et al. 1985). The prototype of a model

discussed in this chapter was introduced in Woodbury and Manton (1977) where its

Gaussian properties were initially characterized. Yashin (1980, 1985) investigated
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conditions for preserving a Gaussian distribution property of the stochastic

covariates under the operation of conditional averaging, and found that the qua-

dratic hazard model described in Woodbury and Manton (1977) satisfied these

conditions. An important property of this model is that the age trajectory of the total

mortality rate can be explicitly represented in terms of the first two moments of the

conditional distribution of the process describing aging-related changes and

influencing the conditional mortality risk. The advantage of this approach is that

it allows for incorporation of new insights and ideas from research on aging into the

model structure. These properties, together with flexibility in describing age tra-

jectories of biomarkers (e.g., physiological variables) affecting conditional risk,

make this model a valuable tool for studying aging, health, and longevity using

longitudinal data.

Progress in the study of human aging, health, and longevity would be substan-

tially facilitated if researchers had a tool for analyzing the wealth of available data

in an integrative systemic framework having the ability to incorporate important

facts, relevant research findings, and emerging theoretical concepts in the analyses

of new data. Several such concepts capturing fundamental features of aging-related

changes are currently emerging. They are related to: (a) the notion of allostatic load

(Seeman et al. 2001), (b) aging-related changes in adaptive capacity

(homeostenosis) (Hall et al. 2000; Lund et al. 2002; Rankin and Kushner 2009;

Troncale 1996), (c) changes in resistance to stresses with age (Semenchenko

et al. 2004; Strehler 1962; Strehler and Mildvan 1960; Ukraintseva and Yashin

2003), and (d) age dependence of physiological norms (Yashin et al. 2009, 2010).

In this chapter, we outline a mathematical model for analyzing longitudinal data

on aging, health, and mortality that incorporates these four concepts of aging-

related changes. We also review applications of this model to analyses of longitu-

dinal data, and investigate its potential for performing more comprehensive ana-

lyses of such data.

An initial version of this model was suggested in Yashin et al. (2007a). Its

various extensions have been developed and applied in different contexts to inves-

tigate mechanisms of aging-related changes and their connection with morbidity/

mortality risks. These include: (1) analyses of age trajectories of different physio-

logical indices (such as blood glucose, body mass index, cholesterol, diastolic blood

pressure, hematocrit, pulse pressure, and pulse rate) in relation to mortality/mor-

bidity risks (Arbeev et al. 2011; Yashin et al. 2009, 2010, 2011c); (2) studies of the

aging process using “indices of cumulative deficits” (Kulminski et al. 2007;

Mitnitski et al. 2001; Rockwood et al. 2005; Yashin et al. 2007b) which have

proved useful for analyses of a wide spectrum of information in relation to health-

and aging-related changes and better characterize the aging phenotype than chro-

nological age (Yashin et al. 2007c); and (3) analyses of age trajectories of medical

costs in relation to mortality risks (Yashin et al. 2008b). Extended versions of

this model have been also used in analyses of dependent competing risks

(Akushevich et al. 2011; Yashin et al. 1986a), heterogeneity in longitudinal data
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(Yashin et al. 2008a), analyses of genetic effects on age trajectories of physiological

indices (Arbeev et al. 2009), joint analyses of individual health histories and

physiological aging (Yashin et al. 2011a), and joint analyses of data collected

using different observational plans (Yashin et al. 2011b).

12.2 Models

12.2.1 General Description

To specify the algebraic form of a dynamic model describing the age trajectories of

individual physiological variables and their influence on mortality risks, which

have J- or U-shapes considered as a function of the risk factors, and which exploits

the theory of stochastic processes, with sampling paths that can be stopped at

random times (Manton et al. 1994), let Yt (where t is age) be a k-dimensional

stochastic process describing a continuously changing vector of risk factors/

covariates (e.g., physiological variables), and let Z be a vector of time-independent

observed covariates (e.g., a person’s genetic background). The risk function or

conditional hazard of death is specified in the form:

μ t; Yt; Zð Þ ¼ μ0 t; Zð Þ þ Yt � f 0 t; Zð Þð ÞTQ t; Zð Þ Yt � f 0 t; Zð Þð Þ: ð12:1Þ

Here μ0(t,Z ) is a background hazard characterizing the nonzero mortality rate that

would remain if the vector of covariates Yt followed the optimal trajectory (the

minimum value of the risk function at each age t), f0(t,Z), “T” denotes the matrix or

vector transposition, and the matrix Q(t,Z ) is a non-negative-definite symmetric

matrix of dimension k� k. We use column vectors throughout; thus, the transposi-

tion to row vectors in (12.1) is needed to produce a scalar quadratic term in the

hazard rate. The one-dimensional version of (12.1) is

μ t; Yt; Zð Þ ¼ μ0 t; Zð Þ þ μ1 t; Zð Þ Yt � f 0 t; Zð Þð Þ2; ð12:2Þ

where μ1(t,Z ) is a non-negative function of age, t, characterizing the effects of

physiological variables on mortality risk. Changes in μ1(t,Z ) influence the U-shape
of the risk function. This is important because the narrowing of the U-shape for

some risk factor with age captures the age-related declines in resistance to stresses

associated with changes in this factor.

The age trajectory of a physiological variable, for which the minimum value of

the risk function is reached, is called the physiological norm. The model (12.1)

specifies that this norm is a function of age. The need for a constructive definition of

such a norm is widely discussed, e.g., in Yashin et al. (2010).
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Temporal changes in the vector of risk factors Yt are described by a diffusion-

type stochastic differential equation:

dYt ¼ a t; Zð Þ Yt � f 1 t; Zð Þð Þdtþ b t; Zð ÞdWt; ð12:3Þ

with initial value Y0. HereWt is specified as a k-dimensional vector Wiener process

with independent components, which describes exogenous challenges affecting

these covariates. The process Wt is assumed to be independent of the initial vector

Y0 and covariates Z with normally distributed components. Note that such a model

preserves the Gaussian property of the distribution of a vector of physiological

variables among survivors to a given age: in the case of an initial Gaussian

distribution for Y0, the distribution of Yt among survivors is also Gaussian (Yashin

1980, 1985; Yashin et al. 1985). The initial Gaussian assumption includes the

important special case of zero variance which occurs when the vector Y0 is

measured without error. Thus, our assumption of an initial Gaussian distribution

and the linearity of Eq. (12.3) define the structure of the entire process Yt. The
strength of disturbances of Wt is characterized by a k� k matrix of diffusion

coefficients b(t,Z ). In the case of a non-Gaussian initial distribution, the model

can be considered as a Gaussian approximation thereto.

The trajectory of Yt describes aging-related changes in an individual’s physio-
logical functioning in response to the complicated interplay among processes

induced by the ontogenetic program, senescence, and environmental stresses. The

body’s response to persistent external or internal disturbances affects the age

trajectories of the physiological indices, producing allostatic adaptation. Allostasis
is the process of individual adaptation to persistent external disturbances aimed at

achieving stability in key metabolic variables, through physiological or behavioral

changes affecting other variables. This process is especially important in analyses

of longitudinal data in which measurements of external disturbances are absent or

limited. The vector-function f1(t,Z ) (with the same dimension as the vector Yt)
describes a trajectory of physiological states that organisms subjected to allostasis

(McEwen and Wingfield 2003) are forced to follow by the process of adaptive

regulation at age t. Allostatic adaptation produces deviations from the norm in the

trajectories of the process Yt. The magnitudes of such deviations for each physio-

logical index will be associated with components of the allostatic load defined as

f1(t,Z)�f0(t,Z).
Homeostatic regulation plays a fundamental role for living organisms and

this regulation needs to be included in the equation describing physiological

changes. The dynamic model (12.3) includes a description of negative feedback

mechanisms with coefficients of homeostatic regulation given by a matrix a(t,
Z ). According to (12.3), the age trajectory of physiological variables Yt will tend
to follow the function f1(t,Z ), i.e., adapt to changes in f1(t,Z ) (the absence of

such negative feedback mechanism would allow the trajectories to deviate from

f1(t,Z ) indefinitely, which is biologically implausible). The ability to adapt

depends on the absolute values of the coefficients that are components of the
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matrix a(t,Z ). Age-related changes in these coefficients characterize changes in

adaptive capacity with age. Specifically, the elements of the matrix a(t,Z )
regulate the age trajectories of the components of the physiological state

approximated by the vector Yt, i.e., they characterize the rate of the adaptive

response for any deviation of a physiological index from the state f1(t,Z ) which
an organism tends to follow. An important feature of aging – the decline in
adaptive capacity – has never been measured directly in longitudinal studies of

aging, health, and longevity before. The use of the matrix a(t,Z ) in our model

allows us to evaluate this effect. For example, in a simplified one-dimensional

case, when b(t,Z )¼ 0, for all t, in Eq. (12.3), and constant negative a(t,Z )¼ a for

all t, the parameter a is the coefficient of negative feedback in the equation for

Yt, which keeps the trajectory Yt close to f1(t,Z ). When f1(t,Z ) ¼ f1, constant for
all t and Z, the value of Yt asymptotically approaches f1. In the case of non-zero

disturbances, the higher the absolute value of a, the closer on average Yt is to f1,
and for any given deviation the faster Yt tends to f1. That is why the value a(t,Z )
characterizes adaptive capacity. When the absolute value of the coefficient a(t,
Z ) declines with age, more time is needed for the trajectory of Yt to approach

f1(t,Z ) at older ages compared to younger ages. The estimation of changes in

adaptive capacity with age involves maximization of the likelihood function

(12.6) below, in which coefficients of matrix a(t,Z ) are described as parametric

functions of age.

The vector-function f0(t,Z ) in (12.1) (or, correspondingly, the scalar function

f0(t,Z) in (12.2)) is introduced to explicitly characterize age-related changes in the

“optimal” physiological state corresponding to the minimum hazard at a given age.

It represents the age-dependent norm for a given functional state. It may differ from

f1(t,Z) since the process of allostatic adaptation does not necessarily result in the

optimal physiological state.

12.2.2 Estimation Procedure

The parameters of the model described above can be estimated using the maximum

likelihood method. The survival function associated with the conditional distribu-

tion of lifespan, X, is P X > t Zjð Þ ¼ exp �
Z t

0

μ u; Zð Þdu
� �

, where the observed

(unconditional) hazard μ uð Þ has the form (Yashin and Manton 1997; Yashin

et al. 1986a, b):

μ u; Zð Þ ¼ μ0 u; Zð Þ þ m u; Zð Þ � f 0 u; Zð Þð ÞTQ u; Zð Þ m u; Zð Þ � f 0 u; Zð Þð Þ
þ Tr Q u;Zð Þγ u; Zð Þð Þ: ð12:4Þ

268 12 Stochastic Process Models of Mortality and Aging



Here, Tr(·) denotes the matrix trace operator and m(u,Z) and γ(u,Z) satisfy the

following system of ordinary nonlinear differential equations:

dm t; Zð Þ
dt

¼ a t;Zð Þ m t; Zð Þ � f 1 t; Zð Þð Þ � 2γ t; Zð ÞQ t; Zð Þ m t; Zð Þ � f 0 t; Zð Þð Þ,
dγ t; Zð Þ

dt
¼ a t; Zð Þγ t; Zð Þ þ γ t;Zð Þa t; Zð ÞT þ b t; Zð Þb t; Zð ÞT � 2γ t; Zð ÞQ t; Zð Þγ t;Zð Þ;

ð12:5Þ

with m(0,Z) and γ(0,Z ) being the vector of means and the variance/covariance

matrix of the conditional normal distribution of the initial vector Y0, given Z. Note
that in such a model the conditional distribution of Yt among survivors is also

Gaussian at any age t (Yashin 1980, 1985; Yashin et al. 1985). The mean vector and

the variance/covariance matrix of this distribution at age t are given by m(t, Z ) and
γ(t, Z ), respectively.

Let the sequence y i
t i
0

, y i
t i
1

, . . . , y it ini
τi represent the results of measurements of the

process Yt and the life span (which may be censored) related to the ith individual.

The likelihood function for N individuals is (Yashin and Manton 1997; Yashin

et al. 1986a, b):

YN

i¼1
μi τi; Zð Þδiexp �

Z τi

0

μi u; Zð Þdu
� �Yni τið Þ

j¼0
2πð Þ

�k
2
γi t ij �, Z
� ���� ����1

2

�exp �1

2
y it ij

� mi t ij �, Z
� �� �T

γi t ij �, Z
� ��1

y it ij
� mi t ij �,Z

� �� �� �
:

ð12:6Þ

Here, the superscript “i” denotes the ith individual, δi ¼ (0,1) is a indicator that

individual i was at risk (i.e., not censored) at time τi, m
i(t,Z ) and γi(t,Z ) satisfy

Eq. (12.5) at the intervals t i0; t
i
1

	 

; t i1; t

i
2

	 

; . . . ; t ini�1; t

i
ni

h �
; t ini ; τi
h �

with the initial

conditions y i
t i
0

, y i
t i
1

, . . . , y it ini
, respectively; and γi t ij ; Z

� �
¼ 0, 8j, assuming that the

vectors y i
t i
0

, y i
t i
1

, . . . , y it ini
are measured without error, except for the case of randomly

missing measurements at time tij, in which the values of mi(tij,Z ) and γi(tij,Z ) are

obtained frommi t ij � ,Z
� �

and γi t ij � ,Z
� �

by conditioning (i.e., regressing) on the

observed measurements. Here mi t ij � ,Z
� �

¼ lim
t"t ij

mi t, Zð Þ, and

γi t ij � ,Z
� �

¼ lim
t"t ij

γi t, Zð Þ, and t ini is the age of the latest measurement of a

functional state before death/censoring at τi.
The procedure of maximization of this likelihood function is computationally

extensive, because it involves the solution of the systems of ordinary differential
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equations (ODE) (12.5) for each measurement, for each individual, and at each step

of the likelihood optimization procedure. Our experience with these models is that

such solutions are feasible using modern statistical and technical software, e.g.,

MATLAB’s Optimization Toolbox and ODE solvers, or SAS OPTMODEL,

implementing different optimization algorithms (such as the Newton-Raphson or

trust-region methods) and the Runge-Kutta method for the ODE solution. The

parameter estimates then characterize the dynamics of the stochastic process Yt
describing the trajectories of physiological aging, as well as changes in mortality

risk over age.

Note that the observed values y i
t i
0

, y i
t i
1

, . . . , y it ini
are used as initial conditions for the

differential Eq. (12.5) at the beginning of subsequent intervals between the obser-

vation times. Therefore, the individual trajectories of mi(t,Z ) and γi(t,Z) differ even
for individuals having the same values of Z. Consequently, the estimates of the

chances of death for individuals having different observed values of the covariates

also differ.

Treating the observed values y i
t i
0

, y i
t i
1

, . . . , y it ini
as initial conditions for Eq. (12.5)

provides a simple and natural way of handling missing data beyond the first

examination of a longitudinal study when, conditionally on the observed covariates,

the data for the missing covariates can be assumed to be missing at random. The

assumption that the data are missing at random could be reasonably applied when

specific measurements are missing for a given study subject at a particular exam-

ination but are present for other examinations, without a specific health-related

reason being provided. This assumption could also be applied for a specific

covariate that is missing for all subjects at a particular examination due to a study

design decision not to collect that covariate at that examination. This source of

missing data occurs frequently in long-term longitudinal studies like the Framing-

ham Heart Study, where covariates were added, deleted, or restored over time as

their predictive utility for cardiovascular disease events was established. This

assumption could also be applied for a specific subject that is missing all covariates

at a particular examination due to their lack of participation in the study at that

examination, without a specific health-related reason being provided for such lack

of participation. In this latter case, linkage to external data files such as Medicare

diagnosis and billing files may be used to determine if the lack of participation was

due to hospitalization, death, or another health-related reason that may not have

been recorded on the study data records. Missing examinations that were scheduled

shortly before the time of hospitalization or death are unlikely to be missing at

random, and instead are much more likely to be missing due to health-related

reasons; if this occurs, the source of missingness should be taken into account in

defining the study endpoints.

We assume that the observations y i
t i
0

, y i
t i
1

, . . . , y it ini
do not contain measurement

errors. This assumption is not a serious problem when the model’s parameters are

used to characterize the entire population of study participants. In this case, one
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random process describes a probability distribution function of physiological vari-

ables in the population. The individual trajectories are just sampling paths of this

process, so the differences among individuals are generated by the Wiener process,

values of Z, and differences in values of the physiological indices at the age of entry

into the study. This rough approximation is appropriate for evaluating and

predicting population characteristics (e.g., changes in distributions of aging, health,

and survival indices in the population in response to changes in health care policy,

modification in Medicare services, etc.).

The model can, however, be extended to the case where measurement errors are

explicitly taken into account. To do so would require that the observed values y i
t ij
no

longer be treated as known initial conditions at time tj
i for Eq. (12.5). Instead,

computation of the values of mi(tj
i,Z ) and γi(tj

i,Z ) would require specification of a

measurement error sub-model with corresponding extensions to Eq. (12.6) to reflect

the increased variance of y i
t i
j

; but such extensions are not necessary for our current

applications.

We also recognize that neglecting measurement errors may be a suboptimal

strategy in applications dealing with “personalized” analyses, where one is more

concerned about the response of individual characteristics to preventive measures

or medical interventions. In this situation, individual age trajectories of physiolog-

ical state have to be “tracked,” i.e., different model parameters have to be used to

describe the age trajectories of the functional states for different individuals. In such

individualized applications, taking measurement error into account could be an

important issue.

The model can be extended to handle this case using the measurement error

procedures indicated above. In addition, the random process described by Eq. (12.3)

can be further personalized, i.e., (ideally) each individual can be characterized by

his/her own stochastic differential equation independent of the equations describing

aging-related changes in the other individuals. Development of such personalized

forms of the stochastic process model, with and without the measurement error

procedures, represents the next logical step in applications of these models, which

will lead to new opportunities for using these models in individual-level forecasting.

As is the case for any mathematical description of an empirical phenomenon, the

model discussed above has a number of limitations. The Gaussian property of the

conditional distribution of Yt among survivors yields a positive probability for nega-

tive values of Yt. Since physiological indices measured in longitudinal studies are

positive, and because the model’s characteristics have to be biologically interpreted,
the use of appropriate constraints on the parameters of the model is necessary in the

estimation procedure. In particular, (a) the distribution of Y0 should guarantee a

negligible probability of negative values; (b) the functions f1(t,Z) and f0(t,Z) should
have non-negative values for each age; (c) the absolute values of feedback coefficients

in the matrix a(t,Z) in (12.3) should not become too small for the trajectories of Yt to
tend to f1(t,Z)); (d) the background hazard μ0(t,Z) should have non-negative values for
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each age and a non-decreasing age pattern; and (e) the matrix Q(t,Z) should remain

non-negative definite for each age. Applications of these models to the analysis of

longitudinal data indicate that such constraints do not reduce the quality of the

parameter estimates obtained from the proposed ML estimation procedure.

12.2.3 Simulation Studies

In a simulation experiment, we generated 100 datasets with data on life spans and a

hypothetical physiological index (mimicking pulse pressure) for 5000 individuals

in each dataset. We followed individuals for 56 years with 28 biennial observations

of physiological indices, with ages at entry to the study uniformly distributed over

the age interval [30, 60]. Individuals with life spans exceeding the age at entry plus

duration of the follow-up period (56 years) were considered censored at this age.

Such a data structure is similar to the Framingham Heart Study Original Cohort data

(Dawber 1980; Dawber et al. 1951). We estimated a one-dimensional version of the

model (Eqs. 12.2 and 12.3) with:

1. A constant diffusion coefficient, σ1 (replacing the function b in Eq. 12.3);

2. Linear functions of age (t) for the quadratic hazard term (the function μ1 in

Eq. 12.2), the adaptive capacity term (the negative feedback coefficient a in

Eq. 12.3), and the physiological “norm” (the function f0 in Eq. 12.2):

μ1 tð Þ ¼ aμ1 þ bμ1t,
a tð Þ ¼ aY þ bY t� 30ð Þ,
f 0 tð Þ ¼ af 0 þ bf 0 t� 30ð Þ;

3. A Gompertz function for the baseline hazard: 1n μ0 tð Þ ¼ 1n aμ0 þ bμ0 t� 30ð Þ.
For simplicity, all of these characteristics were assumed to be independent of the

covariates, Z. In addition:

4. The “allostatic trajectory” term (function f1 in Eq. 12.3) was assumed to depend

on age and a dichotomous covariate Z (Z ¼ (0, 1); P(Z¼ 1) ¼ 0.5):

f 1 t; Zð Þ ¼ af 1 þ bf 1 t� 30ð Þ þ βf 1Z:.

5. The initial value of the diffusion process for Yt, Y0, was assumed normal,

Y0eN f 1 t0; Zð Þ, σ0ð Þ, where t0 is the age at the baseline exam for the respective

individual.

The results of the simulations are summarized in Table 12.1 and Fig. 12.1. The

true values of the parameters are given in Table 12.1 in the row labeled True
Values. The simulations confirm that the parameters of the models can be estimated

with reasonable accuracy for a sample size of this magnitude.

272 12 Stochastic Process Models of Mortality and Aging



T
a
b
le

1
2
.1

M
ea
n
s,
st
an
d
ar
d
d
ev
ia
ti
o
n
s
(S
t.
D
ev
.)
an
d
m
in
im

al
an
d
m
ax
im

al
v
al
u
es

o
f
p
ar
am

et
er

es
ti
m
at
es

in
1
0
0
si
m
u
la
te
d
d
at
a
se
ts

ln
a
μ 0

b μ
0

a
μ 1
�1
0
4

b
μ 1
�1
0
5

a
Y

b
y
�1
0
3

σ 0
σ 1

a
f 1

b
f 1

a f
0

b f
0

β f
1

M
ea
n

�8
.0
4
0

0
.0
9
1

1
.0
1
1

0
.3
0
0

�0
.2
0
0

1
.0
0
0

6
.0
0
3

4
.9
9
8

5
5
.0
0
1

0
.2
0
0

5
0
.0
4
3

0
.0
9
9

2
.9
9
4

S
t.
D
ev
.

0
.2
0
5

0
.0
0
4

0
.3
2
1

0
.0
5
4

0
.0
0
4

0
.1
3
3

0
.0
5
6

0
.0
1
6

0
.1
3
0

0
.0
0
6

0
.4
1
0

0
.0
1
3

0
.1
2
0

M
in

�8
.6
4
1

0
.0
8
1

0
.2
4
3

0
.1
5
6

�0
.2
0
9

0
.6
1
8

5
.8
7
2

4
.9
5
2

5
4
.6
9
7

0
.1
8
8

4
8
.9
7
5

0
.0
6
6

2
.6
3
9

M
ax

�7
.6
2
1

0
.1
0
2

1
.9
4
6

0
.4
3
4

�0
.1
8
9

1
.3
1
7

6
.1
3
7

5
.0
3
7

5
5
.3
0
1

0
.2
1
2

5
1
.1
1
1

0
.1
3
4

3
.3
3
5

T
ru
e
v
al
u
es

�8
.0

0
.0
9

1
.0

0
.3

�0
.2

1
.0

6
.0

5
.0

5
5
.0

0
.2

5
0
.0

0
.1

3
.0

12.2 Models 273



t
40 60 80 100

-8

-6

-4

-2

logarithm of baseline hazard

t
40 60 80 100

10-4

2

3

4

5
quadratic hazard term

t
40 60 80 100

55

60

65

70

"allostatic" trajectory (f
1
(t,Z)) for Z=0

t
40 60 80 100

ln
0(
t)

m m 1
(t
)

f 1
(t
,Z

)

f 0
(t
)

50

52

54

56

58

"optimal" trajectory (f
0
(t))

t
40 60 80 100

|a
(t
)|

0.12

0.14

0.16

0.18

0.2

"adaptive capacity" ( a (t ) )

Fig. 12.1 Estimated (solid grey lines) and true (dashed black lines) trajectories in 100 simulated

data sets
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12.3 Discussion

12.3.1 To What Extent Can Mortality Rates Characterize
Aging?

In many experimental studies of aging using populations of laboratory animals, the

sensitivity of the individual aging process to external disturbances (e.g., medical

interventions) or genetic manipulations is often evaluated by comparing empirical

survival or mortality rate functions/curves constructed for populations in the exper-

imental and control groups. Similarly, the slope of the logarithm of the mortality

curve at the adult and old ages is often interpreted as the aging rate (Economos

1982). The limitations of such an interpretation have been discussed in a number of

papers. Yashin et al. (2002b) argued that the use of such a measure of the aging rate

may be misleading: changes in the slope of the mortality curve may occur for many

other reasons having little to do with the aging process. For example, the slope

could change as a result of changes in the heterogeneity distribution (e.g., distri-

bution of frailty Vaupel et al. 1979; Vaupel and Yashin 1985), saving individuals’
lives by providing adequate medical help in emergencies, etc. Analyzing changes in

mortality rates in developed countries, Rozing and Westendorp (2008) came to the

conclusion that recent progress in mortality reduction does not affect the slope of

the logarithm of the mortality curves (see Yashin et al. (2002) and references

therein for similar observations). Koopman et al. (2011) criticized the use of the

slope of the logarithm of the mortality curve as a measure of the aging rate and

proposed, instead, the use of the age derivative of the mortality rate as such a

measure. Although the use of the derivative overcomes some limitations of the

slope measure, it could also be seriously criticized because it does not link changes

in mortality with biological changes progressing in the aging human body. Infor-

mation on many such changes affecting health and survival events in humans is

available in the data collected in longitudinal studies of aging, health, as well as in

other sources accessible to interested researchers. That is why studies of human

aging with a focus solely on the properties of the mortality curve, ignoring other

relevant information accumulated in the field, often look scientifically unjustified.

12.3.2 The Strehler and Mildvan Model

Taking into account that individual chances of death depend on aging-related

declines in an individual’s ability to withstand the stresses of life and the random

process of external disturbances, Strehler and Mildvan (1960) proposed a mortality

model (SM-model) that includes two fundamental components shaping the age

pattern of the mortality curve: the aging-related decline in vitality and the process

of external stresses. The authors showed that each parameter of the Gompertz

mortality curve is a function of both components, so it would be erroneous to
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interpret, for example, changes in the rate of increase in the Gompertz curve as

changes in the individual aging rate. Strehler and Mildvan also showed that the two

Gompertz parameters were strongly negatively correlated. They explained the

origin of this correlation in terms of the parameters of the two fundamental

components of their model. Yashin et al. (2012) showed that differences in

Gompertz parameters for populations sharing the same environmental conditions

may have a genetic background, that is, populations of individuals having different

numbers of longevity genes in their genomes have different values of their respec-

tive Gompertz parameters, confirming that longevity genes are responsible for

organisms’ resistance to stresses.

The SM model made an important conceptual contribution to the

biodemography of aging by emphasizing the importance of the two fundamental

components (internal and external) in the shape of the observed mortality curve.

However, this model could not be used (in its original form) in the analyses of

longitudinal data to clarify additional issues important for a better understanding of

the factors and mechanisms involved in regulating human aging and longevity.

12.3.3 Comparing Two Versions of the Stochastic Process
Model

The need for the development of new models of aging, health, and mortality and for

describing their connection with traditional demographic models was emphasized

by Manton and Yashin (2000). The connection between the Gompertz model of the

mortality curve with a model describing longitudinal data played an important role

in better understanding of the forces and mechanisms shaping the age pattern of the

demographic mortality rate; see Manton and Yashin (2000) and references therein.

This connection is described by the conditional mortality rate in the form of a

generalized Gompertz model:

μ t; Ytð Þ ¼ eY T
t
eQeYte

θt; ð12:7Þ

where eY T
t ¼ 1; Y T

t

� 

is a vector of covariates Yt (e.g., physiological indices), t is age,eQ is a (constant) matrix, and θ is the Gompertz exponential growth parameter

(Manton and Yashin 2000). In applications of this model to longitudinal data,

estimated values of the parameter θ have always been smaller than the

corresponding parameter in a Gompertz model that does not include information

on covariates. The reduction of the exponential growth parameter has been

interpreted as an effect of measurements: the new (reduced) value of the parameter

θ characterized the unexplained component of aging-related increase in the mor-

tality rate. Versions of this model have been applied to the analyses of aging-related

changes in a number of biomarkers and their connection with mortality risks.
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For example, Manton et al. (1994) applied the generalized Gompertz model in

(12.7) to longitudinal data from the first 18 biennial examinations of the Framing-

ham Heart Study (FHS) and compared the results with those obtained from the first

three waves of the National Long Term Care Survey (NLTCS: 1982, 1984, and

1989). The use of ten cardiovascular covariates in the FHS model reduced the θ-
parameters from 9.4% to 8.1% for males and from 10.0% to 8.1% for females. The

FHS study population ranged from 30 to 60 years at the start of the 34-year

observation period; hence, the reduced θ-parameters implied that the FHS mortality

rates would double every 8.6 years for males and 8.5 years for females if one were

to hold the observed covariates constant at their age-30 values. This compares with

the actual doubling times of 7.4 years for males and 6.9 years for females when the

covariates were allowed to follow their “natural” trajectories.

The use of 27 ADL, IADL, and physical performance covariates in the NLTCS

model reduced the θ-parameters from 8.2% to 5.3% for males and from 9.1% to

4.8% for females. The NLTCS study population was 65 years or older at each

wave; hence, the reduced θ-parameters implied that the mortality rates would

double every 13.1 or 14.6 years (males, females) if one were to hold the observed

disability covariates constant at their age-65 values. The relative reductions in θ and
the corresponding increases in the doubling times were larger for the NLTCS

model, indicating that the NLTCS disability covariates explained more of the

age-dependence of mortality than the FHS cardiovascular covariates explained.

The differences were attributable, in part, to the age patterns of several FHS

cardiovascular covariates which reached peak values near age 60, followed by

declines at older ages (Yashin et al. 2011c). This contrasted markedly with the

age patterns for the disability covariates which exhibited strong monotonic

increases with age. Indeed, the exercise of holding the disability covariates constant

at their age-65 values is purely hypothetical, given our current state of knowledge

about how this might be done.

The conditional hazard rate (12.7) in the one-dimensional version of the original

model can be represented as follows:

μ t; Ytð Þ ¼ μ0 þ μ1 Yt � cð Þ2
� �

eθt ¼ μ0e
θt þ μ1e

θt Yt � cð Þ2; ð12:8Þ

where μ0, μ1 and c are constants. The term μ0 þ μ1 Yt � cð Þ2
� �

in (12.8) describes

one of the parameters of the Gompertz mortality model explained by observations

Yt. Thus, Eq. (12.8) can be interpreted as providing a more detailed description of

the Gompertz mortality curve widely used in demography. In another interpreta-

tion, the term μ0e
θt is interpreted as the “optimal” Gompertz mortality rate which

would be observed in an ideal situation when Yt ¼ c. This representation clearly

shows two limitations of the original version: (i) the exponential multipliers in both

components of the risk function are the same; and (ii) the minimum of the second

(quadratic hazard) term is reached at a constant level of the observed covariates.
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In the generalized hazard model (12.1) described above, the covariates’ values
minimizing the risk function can change as a function of age. This is a more realistic

assumption since in epidemiologic and medical practice specialists often use the

notion of physiological “norm”, specific to a given age. This age-dependent norm is

explicitly included in the description of age trajectories of mortality risk (compare

Eqs. 12.1, 12.2, and 12.8). This allows one to statistically test hypotheses about age

dependence of physiological norms and verify such dependence from available

data. The modified hazard model (12.1) includes the earlier version (12.8) as a

particular case.

In the generalized model, the term μ0(t) can differ from the multiplier of the

quadratic hazard μ1(t) (we omit dependence of these functions on Z to make this

case comparable with (12.8)), which results in a completely new interpretation of

these coefficients. The hazard rate μ0(t) is associated with death from unmeasured

factors. The risk μ0(t) must be smaller than the total (demographic) mortality risk

μ tð Þ calculated in the absence of observations on risk factors. Therefore, μ0(t)
characterizes the mortality remaining after all observed covariates follow the

“optimal” trajectory and its interpretation remains similar to that used in the

original model. In the case of a Gompertz specification, both Gompertz parameters

in μ0(t) can be evaluated and compared with their values in μ tð Þ. This model allows

for evaluating the gain in life expectancy when observed covariates follow normal

age trajectories.

The term μ1(t) clarifies the connections between senescence, longevity, and

stress-resistance. Indeed, the increasing pattern of μ1(t) indicates that the branches
of the corresponding U-shaped risk function become steeper with increasing age,

and the range of tolerable deviations of the resultant risk factor from its “optimal”

value becomes narrower with age, reflecting the decline in stress resistance with

age. Although many aspects of such connections have been investigated in exper-

imental animal studies (Semenchenko et al. 2004), they have never been adequately

addressed in studies of human longitudinal data. Since the decline in stress resis-

tance is an important indicator of aging (senescence), the rate of increase in μ1(t)
(not the slope of the logarithm of the mortality curve) may characterize the rate of

aging. More generally, the increasing role of senescence in mortality risk with

increasing age could be captured by the widening pattern of changes in the U-shape

of the relative risk, which would indicate a faster increase in μ0(t) compared to μ1(t).

In this case the ratio
μ1 tð Þ
μ0 tð Þ is the declining function of age. An important methodo-

logical advance of the extended model is that it is transformed to a form wherein

effects of senescence on survival, longevity, and disease development may be

evaluated from longitudinal data.

Taking into account the age dependence of the functions f1(t,Z ), f0(t,Z ), and a(t,
Z ) allows for testing hypotheses about factors and mechanisms affecting the

dynamic properties of the age trajectories of physiological states. For example,

one could test whether f1(t,Z ) coincides with f0(t,Z ). Differences in these functions

would mean that the processes of allostatic adaptation in response to persistent

external disturbances do not tend to minimize mortality risk. One can also test a
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hypothesis of declines in “adaptive capacity” in the aging human body and evaluate

patterns of such declines. All such hypotheses can be tested using the likelihood

ratio test. For example, to test the hypothesis of a decline in adaptive capacity with

age, one needs to compare the model with a decline (say, a linear decline with age in

a(t,Z )) with the model without such a decline (i.e., a(t,Z ) is independent of age),
where all other functions (except a(t,Z )) are specified similarly in both models,

using a likelihood ratio test.

12.3.4 Modeling Personalized Aging Changes

The use of observed fixed covariates Z in the functions f0(t,Z ), Q(t,Z ), a(t,Z), b(t,Z),
and f1(t,Z ) makes the model more personalized. The notion of the “norm” may

differ for individuals carrying different alleles or genotypes, or having different

histories of events and processes experienced by an individual during the life course

(e.g., diseases, environmental exposures), etc. These indicate the need for devel-

oping a more general methodology, which could incorporate individualized notions

of “norms” and adaptive responses.

An important feature of the model discussed above is the preservation of the

Gaussian property in the operation of conditional averaging. If the distribution of

risk factors at the initial wave of observations, Y0, is Gaussian, the distribution of Yt
among survivors is also Gaussian. This facilitates descriptions of the probability

distributions of dynamic covariates in terms of the first two moments which satisfy

ordinary non-linear differential equations. Note that the Gaussian distribution

allows for negative values of the risk factors to occur with positive probability.

Our studies show that in practice this property does not limit the analyses. The

model can also be used as two-moment approximation for the age trajectories of

covariates which follow non-Gaussian dynamics. In non-Gaussian cases, the model

could also be extended to include higher order moments (e.g., conditional semi-

invariants).
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Chapter 13

The Latent Class Stochastic Process Model
for Evaluation of Hidden Heterogeneity
in Longitudinal Data

Konstantin G. Arbeev, Kenneth C. Land, and Anatoliy I. Yashin

13.1 Introduction

Various approaches to statistical model building and data analysis that incorporate

unobserved heterogeneity are ubiquitous in different scientific disciplines.

Unobserved heterogeneity in models of health and survival outcomes can arise

because there may be relevant risk factors affecting an outcome of interest that are

either unknown or not measured in the data. Frailty models introduce the concept of

unobserved heterogeneity in survival analysis for time-to-event data. In demo-

graphic applications, the term “frailty” first appeared in a seminal paper by Vaupel

et al. (1979) and since then a considerable body of literature with various extensions

and applications of frailty models has been generated. The breadth and “heteroge-

neity” of this literature can be seen in recent books devoted to frailty models

(Duchateau and Janssen 2008; Hanagal 2011; Wienke 2010), which have extensive

(but not exclusively overlapping) lists of references.

As discussed in more detail in Chap. 11, biodemography integrates biological

knowledge and methods with traditional demographic analyses. One particularly

valuable feature of biodemographic approaches is that they can incorporate longi-

tudinal observations of physiological variables (biomarkers) to elucidate the impact

of aging on health and longevity. Longitudinal data provide an additional source of

heterogeneity that can contribute to differences in risks of time-to-event outcomes.

Individual age trajectories of biomarkers can differ due to various observed as well

as unobserved (and unknown) factors and such individual differences propagate to

differences in risks of related time-to-event outcomes such as the onset of a disease

or death. In this chapter, we briefly review recent biostatistical approaches to deal

with such heterogeneity. As in Chap. 11, we focus on approaches that model both

time-to-event and longitudinal data. This excludes methods focusing on analyses of

longitudinal data alone where events are generally treated as a nuisance factor to be
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adjusted for and approaches that do not include time-to-event information (e.g.,

onset of a disease) but include, for example, binary indicators such as prevalence of

a disease.

13.2 Approaches to the Incorporation of Hidden
Heterogeneity in Analyses of Longitudinal
and Time-to-Event Data

The joint analysis of longitudinal and time-to-event data is the realm of a special

area of biostatistics named “joint models for longitudinal and time-to-event data” or

simply “joint models”; see Chap. 11. Such models can also be viewed as extensions

of traditional frailty models in survival analysis, see, e.g., the brief discussion in

Chapter 7.3 of the book on frailty models by Duchateau and Janssen (2008). A

standard approach in joint modeling is to include the “true” (unobserved) value of a

longitudinal outcome represented by a linear mixed-effects model as a covariate in

the time-to-event sub-model (typically, the Cox proportional hazards model)

(Faucett and Thomas 1996; Wulfsohn and Tsiatis 1997). In this case, the random

intercept from the longitudinal sub-model that enters the time-to-event sub-model

can be thought of as the (log-normal) frailty term.

Some papers on joint modeling specifically introduce an additional random

variable in the time-to-event sub-model referred to as “frailty.” This term accom-

modates any heterogeneity in the risk of events that is not explained by the shared

random effects in the longitudinal and time-to-event sub-models. For example,

Henderson et al. (2000) (see also Guo and Carlin 2004) model the joint distribution

of longitudinal measurements and events via an unobserved (latent) zero-mean

bivariate Gaussian process, with correlation between the two components of the

process inducing dependence between the longitudinal data and event times. Spec-

ification of a component of the Gaussian process in the time-to-event sub-model

(which is a Cox proportional hazards model) contains a Gaussian random variable

representing a (log-normal) frailty term which is assumed independent of the

random variables in the longitudinal sub-model. Lin et al. (2002a) suggested a

joint model with a mixed-effects model for the multivariate longitudinal data and a

proportional hazards model with a gamma-distributed frailty term in the time-to-

event sub-model. Ratcliffe et al. (2004) developed a joint model with frailty for

analysis of data with clustering (e.g., hospitals or enrollment sites, or any other type

of grouping such that ignoring this clustering is thought to be a possible source of

bias in statistical inference). The longitudinal data are modeled using a random

effects model with subject- and cluster-level random effects. The survival data are

modeled using a Cox proportional hazards model with the same cluster-level

random effect acting multiplicatively on the baseline hazard. Thus, this cluster-

level random effect links the two types of data (survival and longitudinal), and it

represents frailty in the context of frailty models in survival analysis. This two-level
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(subject- and cluster-level) modeling of random effects adds flexibility and effi-

ciency in modeling data where such “informative clustering” occurs. Liu

et al. (2008) extended the joint model by Ratcliffe et al. (2004) assuming that

each individual’s survival depends not only on random effects at the cluster (i.e.,

medical center) level, but also on the individual-level random effects. The model is

implemented in the freely available software aML (Lillard and Panis 2003) and uses

Gaussian quadrature for numerical calculation of integrals over normally distrib-

uted random effects which is important for practical applications as it improves the

computation time. Yet the formulation of the model in the multi-level settings

makes it very comprehensive and suitable for applications in different circum-

stances where such multi-level repeated measurements and dependent failure times

arise. Ko (2010) extended the joint models with a zero-mean Gaussian process

described by Henderson et al. (2000, 2002), incorporating a frailty term in the

survival sub-model. In contrast to Ratcliffe et al. (2004), Ko (2010) specified a

gamma-distributed frailty acting multiplicatively on the hazard in line with the

gamma-frailty models extensively used in demographic applications since their

introduction to demography by Vaupel et al. (1979).

Another area of application of joint frailty models is analysis of competing risks

(Elashoff et al. 2007, 2008; Hu et al. 2009; Huang et al. 2010, 2011; Li et al. 2009).

Such models can also accommodate informative censoring, treating it as a compet-

ing risk for the event of interest. Competing risks can be modeled using a mixture

sub-model (Larson and Dinse 1985; Ng and McLachlan 2003), as in Elashoff

et al. (2007), or adopting a cause-specific hazards model (Prentice et al. 1978)

with frailty. The mixture model approach produces estimates of the effects of risk

factors on the marginal probabilities of occurrence of different risks. The approach

with a cause-specific hazards frailty sub-model allows one to account for correlated

competing risks and dependent censoring. In the latter approach, it is assumed that

the joint distribution of random effects from the longitudinal and cause-specific

hazards sub-models is multivariate normal. These random effects (“frailties”) in the

survival sub-model induce a correlation between different failure types. Simulation

studies in Elashoff et al. (2007) showed that the efficiency of estimates of frailty in

the time-to-event sub-model improves when information on the longitudinal out-

come is included in the model (provided that the two outcomes are correlated and

this correlation is modeled correctly). Simulations also showed that this joint model

has more power in statistical tests for effects of factors on the time-to-event

endpoint compared to separate analyses using the time-to-event data alone, which

is valuable in practical applications.

Approaches that incorporate heterogeneity in populations through random vari-

ables with continuous distributions (as in the standard joint models and their

extensions cited above) assume that the risks of events and longitudinal trajectories

follow similar patterns for all individuals in a population (e.g., that biomarkers

change linearly with age for all individuals). Although such homogeneity in

patterns can be justifiable for some applications, generally this is a rather strict

assumption not applicable in all circumstances. A population under study may

consist of subpopulations with distinct patterns of longitudinal trajectories of
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biomarkers that can also have different effects on the time-to-event outcome in each

subpopulation. When such subpopulations can be defined on the base of observed

covariate(s), one can perform stratified analyses applying different models for each

subpopulation. However, observed covariates may not capture the entire heteroge-

neity in the population in which case it may be useful to conceive of the population

as consisting of latent subpopulations defined by unobserved characteristics. Spe-

cial methodological approaches are necessary to accommodate such hidden hetero-

geneity. Within the joint modeling framework, a special class of models, joint latent

class models, was developed to account for such heterogeneity in a population (Lin

et al. 2002b; Proust-Lima et al. 2009; Proust-Lima and Taylor 2009). A recent

review of joint latent class models can be found in Proust-Lima et al. (2014).

The joint latent class model has three components. First, it is assumed that a

population consists of a fixed number of (latent) subpopulations. The latent class

indicator represents the latent class membership and the probability of belonging to

the latent class is specified by a multinomial logistic regression function of

observed covariates. It is assumed that individuals from different latent classes

have different patterns of longitudinal trajectories of biomarkers and different risks

of event. The key assumption of the model is conditional independence of the

biomarker and the time-to-events given the latent classes. Then the class-specific

models for the longitudinal and time-to-event outcomes constitute the second and

third component of the model thus completing its specification. The longitudinal

sub-model is typically modeled in the mixed-effects context and the time-to-event

component can be represented by a Cox proportional hazards model (Proust-Lima

et al. 2009; Proust-Lima and Taylor 2009) or the gamma-frailty model (Lin

et al. 2002b). Computationally, joint latent class models are more feasible than

standard joint models with shared random effects because the former do not require

numerical integration in the likelihood (although there can still be many challenges

related to fitting such models, see Discussion). The R package lcmm (Proust-Lima

et al. 2012) can be used to fit joint latent class models (see also Chapter 5.4 in

Rizopoulos 2012). One particular area of applications of joint latent class models is

to develop dynamic prognostic tools that can be updated according to the observed

values of the longitudinal outcome (Commenges et al. 2012; Garre et al. 2008;

Proust-Lima et al. 2014; Proust-Lima and Taylor 2009).

The stochastic process model (Yashin et al. 2007, 2012) represents a special

class of models for joint analysis of longitudinal and time-to-event data that is

especially relevant for biodemographic applications as discussed in Chaps. 11 and

12. This model allows for indirect estimation of hidden components of aging that

are manifested in individual age trajectories of physiological variables measured for

participants of a longitudinal study, which helps to advance our understanding of

the impact of processes related to aging on health and longevity. Such hidden

components include adaptive capacity, resistance to stresses, physiological

norms, and effects of allostatic adaptation which are known from the literature to

be characteristics of the processes of aging. The original stochastic process model

(Yashin et al. 2007) assumes that all such characteristics follow similar patterns in

all individuals in a population. However, as noted above, a population may consist

288 13 The Latent Class Stochastic Process Model for Evaluation of Hidden. . .

http://dx.doi.org/10.1007/978-94-017-7587-8_11
http://dx.doi.org/10.1007/978-94-017-7587-8_12


of latent subpopulations with distinct patterns of longitudinal trajectories with

different effects on the time-to-event outcome in each such subpopulation. The

presence of such heterogeneity is a realistic scenario which cannot be simply

ignored in statistical analyses of longitudinal data. For example, carriers of some

alleles or genotypes can have distinct patterns of aging-related characteristics. If the

corresponding genetic marker is not available in the data, then there is no way to

evaluate the true characteristics from the data unless we can incorporate such

hidden heterogeneity into the model. If this latent structure in a population is

ignored, then the results can be biased and erroneous conclusions can be made.

For example, suppose that carriers of a (unobserved in the data) “longevity” allele

have a survival advantage relative to non-carriers of the allele because carriers

have, say, no age-related decline in adaptive capacity or resistance to stress whereas

these effects are prominent in non-carriers of such an allele. Then, if the proportion

of carriers of this “longevity” allele in a population is small, estimates of these

characteristics in a population will be dominated by those of non-carriers so that

conclusions will be made about the presence of an aging-related decline in adaptive

capacity and stress resistance in the general population without realizing that the

conclusions are wrong for both carriers and non-carriers. For carriers, the analysis

will fail to identify the absence of declines in these characteristics with age and for

non-carriers the corresponding true values will be underestimated.

The extension of the stochastic process model (Yashin et al. 2007) to accom-

modate such hidden heterogeneity was suggested in Yashin et al. (2008). In this

chapter, we present a version of this extended model, which we call the “latent class

stochastic process model,” modified to include dependence of the probability of the

latent class membership as well as other components of the model on observed

covariates. The model was briefly introduced in Arbeev et al. (2014). Here we

elaborate it in more detail and present the likelihood estimation procedure and

simulation studies to illustrate the approach.

13.3 The Latent Class Stochastic Process Model

13.3.1 Specification of the Model

Consider a population consisting of a finite number G of latent subpopulations or

latent classes. One example could be that these subpopulations represent carriers of

alleles/genotypes at some gene or single nucleotide polymorphism (SNP) when the

corresponding genetic information is not available in the data (note that if such

genetic data are available for some subsample of a longitudinal study, then this

leads to the methods presented in Chap. 14). Denote by K the random indicator

variable identifying the latent class membership for an individual, that is, K ¼ g if

an individual belongs to the class g¼ 1. . .G (e.g., he/she has the unobserved allele/

genotype g). Then we can specify the probabilities of the latent class membership,
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pg, conditional on observed covariates. Following conventional specifications in

joint latent class models (Lin et al. 2002b; Proust-Lima et al. 2009, 2014; Proust-

Lima and Taylor 2009), we represent this probability using a multinomial logistic

regression:

pg ¼ PðK ¼ g j XÞ ¼ eβ0gþβ T
1gX

1þ
XG�1

c¼1

eβ0cþβ T
1cX

, ð13:1Þ

for g¼ 1. . .G � 1, and

pG ¼ PðK ¼ G j XÞ ¼ 1�
XG�1

g¼1

PðK ¼ g j XÞ ¼ 1

1þ
XG�1

g¼1

eβ0gþβ T
1gX

: ð13:2Þ

Here β0g is the intercept for the latent class g, β1g is the vector of class-specific

regression parameters, and X is the corresponding vector of time-independent

covariates (“T” denotes transposition; here and below we will use column vectors

if not stated otherwise).

For each latent class g, we then specify a stochastic differential equation for the

age dynamics of anM-dimensional vector of biomarkers, Yt (t is age), similar to the

original stochastic process model by Yashin et al. (2007):

dYt ¼ a t; g;Xð Þ Yt � f 1 t; g;Xð Þð Þdtþ B t; g;Xð ÞdWt; ð13:3Þ

with initial condition Yt0 . We omit the dependence of Yt on the latent class g and

covariates X for conciseness of notation. Here Wt is an M-dimensional vector

Wiener process independent of the vector of initial values Yt0 and the latent class

indicator. It describes unobserved disturbances affecting the trajectory of bio-

markers, and it incorporates stochasticity into the model. The strength of such

disturbances is characterized by the M � M matrix of diffusion coefficients

B(t, g,X). The vector-function f1(t, g,X) (with the same dimension as Yt) introduces
the notion of allostasis into the model as a representation of the age trajectories of

biomarkers that organisms are forced to follow by the process of allostatic adapta-

tion. The M � M matrix a(t, g,X), the negative feedback coefficient in Eq. (13.3),

describes the adaptive (homeostatic) capacity in an aging organism. The elements

of this matrix correspond to the rate of adaptive response to any deviation of

trajectories Yt from the trajectories f1(t, g,X) “prescribed” by the processes of

allostatic adaptation.

The time-to-event sub-model specifies the latent class-specific expressions for

the hazard rates conditional on the vector of biomarkers Yt and the vector of

observed covariates X:
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μ t Yt; g;Xjð Þ ¼ μ0 t; g;Xð Þ þ Yt � f 0 t; g;Xð Þð ÞTQ t; g;Xð Þ Yt � f 0 t; g;Xð Þð Þ: ð13:4Þ

Here μ0(t, g,X) is the baseline hazard characterizing the risk that would remain if

the vector Yt followed the trajectory f0(t, g,X) and Q(t, g,X) is a non-negative-

definite symmetric M � M matrix. The M-dimensional vector-function f0(t, g,X)
introduces the concept of an age-dependent physiological norm into the model—it

corresponds to the values of the biomarkers that minimize the risk at each age t. The
matrix Q(t, g,X) in the quadratic hazard term can be associated with the decline in

resistance to stresses with age, as discussed in Yashin et al. (2007, 2012) and

Arbeev et al. (2011).

The model in Yashin et al. (2008) is formulated for two latent classes with the

latent class membership probability and other components of the model not depen-

dent on the observed covariates. The model presented in this chapter thus naturally

generalizes the model in Yashin et al. (2008). More details on the biological

interpretation of different components of the stochastic process model can be

found in Chap. 12 and in Yashin et al. (2007, 2012). The dependence of all

components in the specification of the longitudinal and time-to-event sub-models

on the latent class indicator g allows the corresponding aging-related mechanisms

to work differently in the different latent subpopulations (for example, in the

carriers of some alleles/genotypes). In practice, one can estimate the restricted

models with some parameters in the different classes equated in order to test

hypotheses about the differences of the respective characteristics in the latent

subpopulations using the likelihood ratio test.

13.3.2 Likelihood Estimation Procedure

For simplicity of presentation and following Yashin et al. (2008), we describe the

likelihood estimation procedure for the model with two latent classes g¼ 1, 2. Gen-

eralizations for more latent classes are straightforward.

Let eY t
0 ¼ Yt0 ,Yt1 , . . . Ytið Þ, ti � t < τ, where τ is a random stoppage time

(denoting age at death/censoring) of the process Yt and Yti is the observation of

this process at age ti. Denote by πðt jXÞ ¼ PðK ¼ 1jeY t
0, τ > t,XÞ the conditional

probability that an individual belongs to latent class 1, given that he/she has a vector

of longitudinal measurements ~Yt
0, survived until age t, and has a vector of observed

covariates X. The evolution of π t
��X� �

starts at the initial age t0 and continues first

until age t1. The age dynamics of π t
��X� �

at the interval follows the nonlinear

differential equation (Yashin 1985):
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dπ t Xjð Þ
dt

¼ π t Xjð Þ μ t Xjð Þ � μ t; 1;Xð Þð Þ; ð13:5Þ

with initial condition (see Eq 13.1):

πðt0 jXÞ ¼ p1 ¼ PðK ¼ 1 jXÞ ¼ eβ0þβ T
1 X

1þ eβ0þβ T
1 X

: ð13:6Þ

Here μðt jXÞ is expressed through π t
��X� �

and μ t; g;Xð Þ, g¼ 1, 2, as follows:

μ t Xjð Þ ¼ π t Xjð Þμ t; 1;Xð Þ þ 1� π t Xjð Þð Þμ t; 2;Xð Þ ð13:7Þ

and μ t; g;Xð Þ is given by:

μ t; g;Xð Þ ¼ μ0 t; g;Xð Þ þ m t; g;Xð Þ � f 0 t; g;Xð Þð ÞTQ t; g;Xð Þ
� m t; g;Xð Þ � f 0 t; g;Xð Þð Þ þ Tr Q t; g;Xð Þγ t; g;Xð Þð Þ; ð13:8Þ

where Tr(·) is the matrix trace operator and m(t, g,X), γ(t, g,X) denote the

mean and variance/covariance matrix of the conditional distribution

P Yt � y
��K ¼ g, τ > t,X

� �
(Yt � y means this inequality holds for each compo-

nent of the vector) satisfying the ordinary differential equations for the age

interval t0 � t < t1 (see the formulae for the model without latent classes in

Yashin and Manton (1997)):

dm t; g;Xð Þ
dt

¼ a t; g;Xð Þ m t; g;Xð Þ � f 1 t; g;Xð Þð Þ � 2γ t; g;Xð ÞQ t; g;Xð Þ
� m t; g;Xð Þ � f 0 t; g;Xð Þð Þ; ð13:9Þ

dγ t; g;Xð Þ
dt

¼ a t; g;Xð Þγ t; g;Xð Þ þ γ t; g;Xð Þa t; g;Xð ÞT

þB t; g;Xð ÞB t; g;Xð ÞT� 2γ t; g;Xð ÞQ t; g;Xð Þγ t; g;Xð Þ;
ð13:10Þ

with initial conditionsm(t0, g,X), γ(t0, g,X) representing the mean and the variance/

covariance matrix of the conditional normal distribution of the initial vector Y0 in
the latent class g, given X. Parameters in the specifications of these quantities need

to be estimated along with all other parameters of the model.

The above expressions describe the dynamics of π t
��X� �

for the interval

t0 � t < t1. At age t ¼ t1, the process Yt is observed and this new observation yields

new information about the latent class membership that modifies π t
��X� �

. The

relationship between π t1
��X� �

and πðt1 � jXÞ ¼ limt"t1πðt jXÞ is given by the Bayes
rule (for conciseness, we present these equations for the one-dimensional case):
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πðt1 jXÞ
¼ πðt1 � jXÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γðt1 �, 2,XÞp
Vðt1, 1,XÞ

πðt1 � jXÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðt1 �, 2,XÞp

Vðt1, 1,XÞ þ ð1� πðt1 � jXÞÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðt1 �, 1,XÞp

Vðt1, 2,XÞ
,

ð13:11Þ

where V t; g;Xð Þ ¼ exp � Yt � m t�, g, Xð Þð Þ2=2γ t�, g, Xð Þ
n o

.

The value π t1
��X� �

is an initial condition for π t
��X� �

that evolves according to

Eq. (13.5) for the interval t1 � t < t2. This process continues for all subsequent age
intervals until the last one before the death/censoring time. The expressions for the

age interval ti � t < tiþ1 are as in Eq. (13.11) with t1 replaced by ti and the dynamics

of m(t, g, X) and γ(t, g, X) at this interval are given by Eqs. (13.9) and (13.10) with

initial conditions m ti; g;Xð Þ ¼ Yti , and γ ti; g;Xð Þ ¼ 0.

At t ¼ τ, we have

P K ¼ 1 eY τ
0

�� , τ ¼ t,X
� �

¼ π τ � Xjð Þ μ τ; 1;Xð Þ
μ τ Xjð Þ ; ð13:12Þ

where πðτ � jXÞ ¼ limti"t πðti jXÞjt¼τ. Let eπðt jXÞ ¼ PðK ¼ 1jeY t
0, Zt,XÞ, where

Zt ¼ I τ � tð Þ. Then the trajectory of eπ t
��X� �

during the interval ti � t � τ can be

described by the stochastic differential equation with one jump:

deπðt jXÞ ¼ eπðt� jXÞ μðt, 1,XÞ
μðt jXÞ � 1

� 	�
dZt � μðt jXÞdt

�
: ð13:13Þ

Here μðt jXÞ ¼ eπðt jXÞμðt, 1,XÞ þ ð1� eπðt jXÞÞμðt, 2,XÞ (note also thateπðt jXÞIðτ > tÞ ¼ πðt jXÞIðτ > tÞÞ.
The likelihood function is the product of two terms:

L ¼ LYLτ; ð13:14Þ

where

LY ¼
YN
j¼1

YnðjÞ
i¼0

πj
�
t ji � jXj

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πγjðt ji �, 1,XjÞ

q e�ðyjðt ji Þ�mjðt ji�, 1,XjÞÞ2=2γjðt ji�, 1,XjÞ

0
B@

þ
�
1� πjðt ji � jXjÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πγjðt ji �, 2,XjÞ

q e�ðyjðt ji Þ�mjðt ji �, 2,XjÞÞ2=2γjðt ji �, 2,XjÞ

1
CA

ð13:15Þ
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and

Lτ ¼
YN
j¼1

μjðτj jXjÞδj e
�
Z τj

0

μjðujXjÞdu
: ð13:16Þ

Here the subscript j refers to the characteristics for the jth individual, N is the

number of individuals, δj is the at-risk indicator (δj¼ 1 if jth individual died at age τj
and δj¼ 0 if he/she was censored at that age), n( j) is the number of measurements

of the process Yt for the jth individual (with measurement at age tji denoted by yj(t
j
i)).

13.4 Simulation Studies

13.4.1 Simulation Study for Latent Class Stochastic Process
Model

We performed a simulation study to illustrate the approach using the discrete-time

one-dimensional version of the model (13.1–13.16). The following specifications of

the model’s components were used for two latent classes, g¼ 1, 2:

1. Gompertz baseline hazards:μ0 t; g;Xð Þ ¼ ln μ0 t; gð Þ ¼ ln aμ0 gð Þ þ bμ0 gð Þ t� tminð Þ,
where tmin¼ 30;

2. Linear functions of age for multipliers in the quadratic hazard terms:Q(t, g, X)¼
Q(t, g) ¼ aQ(g) þ bQ(g)t;

3. Linear functions of age for the “optimal trajectories”: f 0 t; g;Xð Þ ¼ f 0 t; gð Þ ¼ af 0
gð Þ þ bf 0 gð Þ t� tminð Þ;

4. Linear functions of age for feedback coefficients in (13.3) (“adaptive capaci-

ties”): a(t, g, X)¼ a(t, g)¼ aY(g)þ bY(g)(t–tmin), where aY(g)< 0 and bY(g)� 0;

5. Linear functions of age for the “mean allostatic trajectories”: f 1 t; g;Xð Þ ¼ f 1
t; gð Þ ¼ af 1 gð Þ þ bf 1 gð Þ t� tminð Þ;

6. Constant diffusion coefficients: B(t, g, X) ¼ σ1(g);
7. Normally distributed initial values of the process Yt with means f1(t

j
0, g,X)

(where tj0 is age at the first exam for the jth individual) and variances σ20(g); and
8. Probability of the latent class 1 membership:

p1 ¼ eβ0þβ1X1þβ2X2= 1þ eβ0þβ1X1þβ2X2
� �

, where X1¼ 0, 1 with P(X1¼ 1)¼ 0.5,

and X2 has standard normal distribution.

Thus, the parameters to be estimated in this model are: aμ0 gð Þ, bμ0 gð Þ, aQ gð Þ,
bQ gð Þ, aY gð Þ, bY gð Þ, af 1 gð Þ, bf 1 gð Þ, af 0 gð Þ, bf 0 gð Þ, σ0 gð Þ, σ1 gð Þ, β0, β1, and β2:
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To make the simulations more realistic, we generated a structure resembling that

of the Framingham Heart Study data (Dawber et al. 1951) with parameters selected

to produce reasonable mortality rates close to those observed in modern human

populations. Pulse pressure was used as a prototype for the process Yt. Age at entry
into the study was simulated as a discrete random variable uniformly distributed

over the interval [30, 60]. The interval between observations of Yt is 2 years. The

number of observations (exams) is 30. We simulated 100 data sets with 5200

individuals in each, and estimated the likelihood function of the model (13.1–

13.16) for each data set. Table 13.1 shows mean values, standard deviations, and

minimal and maximal values of the estimated parameters in these 100 data sets.

Figure 13.1 displays estimated trajectories of different components of the model

(logarithms of baseline hazard, multipliers in the quadratic hazard terms, mean

allostatic trajectories, optimal trajectories, and adaptive capacity) in two latent

classes for 100 simulated data sets. The results show that the model correctly

evaluates all model components for two latent classes. The next section illustrates

what happens if we ignore the latent structure in the data and apply the original

stochastic process model (Yashin et al. 2007) to these data sets.

13.4.2 Simulation Study for Stochastic Process Model That
Ignores Latent Classes

We estimated the parameters of the original stochastic process model (Yashin

et al. 2007) which does not take into account the latent structure of the simulated

data. This model is essentially given by Eqs. (13.3) and (13.4) without dependence

on the latent class g:

dYt ¼ a t;Xð Þ Yt � f 1 t;Xð Þð Þdtþ B t;Xð ÞdWt; ð13:17Þ
μ t Ytj ,Xð Þ ¼ μ0 t;Xð Þ þ Yt � f 0 t;Xð Þð Þ TQ t;Xð Þ Yt � f 0 t;Xð Þð Þ: ð13:18Þ

We estimated a one-dimensional version of this model, applying it to the same

simulated data from Sect. 13.4.1. We used specifications of the model’s compo-

nents similar to those described in Sect. 13.4.1, but without dependence on the

latent class g. Thus, the estimated parameters in this case are:aμ0 ,bμ0 , aQ, bQ, aY, bY,

af 1 , af 0 , bf 0 , σ0, and σ1 (note that we do not have parameters β0, β1, and β2 here
because we do not model the probability of the latent class membership).

The results of these estimates are shown in Table 13.1 (see the “No LC” panel of
the table) and Fig. 13.2. It is clear from the table that this model, which ignores the

latent structure of the data, produces parameter estimates that deviate from the true

values in the two latent classes. Correspondingly, the resulting “population”
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trajectories of the logarithm of the baseline hazard (ln μ0(t, X)), multipliers in the

quadratic hazard terms (Q(t, X)), mean allostatic trajectories ( f1(t, X)), optimal

trajectories ( f0(t, X)), and adaptive capacity (a(t, X)) deviate from the actual

trajectories in both latent classes (see Fig. 13.2). Thus, ignoring latent classes can

lead to incorrect estimates and wrong conclusions. For example, using the estimates

of the model (13.17–13.18) leads to the inference that the estimated “population”

trajectory ( f0(t, X)) is a universal optimal trajectory for all individuals. However,

such an “optimal” trajectory will actually be not optimal for any individual in terms

of minimizing mortality risk: if an individual belongs to the latent class g and

his/her trajectory Yt follows the function ( f0(t, X)) then his/her risk of death will be

higher than it would be had he/she followed the truly optimal trajectory f0(t, g, X)
(the risk of death is μ0(t, g, X)þ ( f0(t, X)� f0(t, g, X))

TQ(t, g, X) ( f0(t, X)� f0(t, g,
X)) in the former case, whereas in the latter case the risk reduces to the baseline

level μ0(t, g, X)).
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Fig. 13.1 Simulation study for latent class stochastic process model: estimated trajectories of

logarithms of baseline hazard (ln μ0(t, g)), multipliers in the quadratic hazard terms (Q(t, g)), mean

allostatic trajectories ( f1(t, g)), optimal trajectories ( f0(t, g)) and adaptive capacity (a(t, g)) in two
latent classes (g¼ 1 and g¼ 2) for 100 simulated data sets. The true trajectories in two latent

classes are denoted by thick lines
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13.5 Discussion and Conclusion

In this chapter, we have described approaches for dealing with unobserved hetero-

geneity in joint analyses of longitudinal and time-to-event outcomes. Special

attention has been paid to a specific class of such approaches that accommodates

hidden heterogeneity in the population due to the presence of latent subpopulations

with distinct longitudinal patterns with different relations to the risk of an event. We

also presented a latent class stochastic process model that takes into account such

hidden heterogeneity and allows for indirect estimation of hidden components of

aging that are manifested in individual age trajectories of physiological variables

measured in participants of a longitudinal study. These hidden components of aging

and their impact on the risk of events can be evaluated for latent subpopulations.

This can help to unravel hidden effects in the data that otherwise can remain

masked if a model that ignores this structures is applied to such data.
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Fig. 13.2 Simulation study for stochastic process model that ignores latent classes: estimated

trajectories of logarithms of baseline hazard (ln μ0(t)), multipliers in the quadratic hazard terms (Q
(t)), mean allostatic trajectories ( f1(t)) optimal trajectories ( f0(t)) and adaptive capacity (a(t)) for
100 simulated data sets containing latent classes (same as in Fig. 13.1). “No LC” denotes no latent

classes. The corresponding true trajectories in two latent classes g¼ 1 and g¼ 2 are denoted by

thick lines
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Several computational challenges should be mentioned here as a caution

concerning the practical implementation of the latent class stochastic process

model. These challenges are similar to those encountered by the joint latent class

models that have been discussed in the literature on such models (and, generally, in

the mixture models literature). Since the joint latent class models and latent class

stochastic process model have many characteristics in common, and as our practical

experience with our model suggests, careful attention to these matters is necessary.

First, it is well known in mixture models that the likelihood functions may have

local maxima. Therefore, calculating the estimation algorithm from different initial

values is a safeguard measure for ensuring convergence to the global maximum,

although at the price of additional computation time, and defining good initial

values becomes practically important in latent class models (Han 2009). In our

experience, parameter estimates obtained from fitting the data using the original

stochastic process model generally provide a good starting point for initial values

for the latent class stochastic process model. Second, the number of latent classes

for a given set of data generally is not known prior to estimation of latent class

models. Therefore, it is necessary to estimate models with different numbers of

latent classes and select the model with the number of classes that gives the best fit

to the data. The Bayesian information criterion (BIC) is recommended for selecting

the optimal number of latent classes (Proust-Lima et al. 2014; Proust-Lima and

Taylor 2009). Third, the conditional independence assumption (i.e., that the longi-

tudinal biomarker and the time-to-events are assumed to be conditionally indepen-

dent given the latent classes) is crucial in the formulation of latent class models and

derivation of the likelihood functions. This assumption is difficult to test in practice

because the latent classes are unobserved. However, several statistical approaches

for evaluating the conditional independence assumption have been suggested in the

literature on joint latent class models (Jacqmin-Gadda et al. 2010; Lin et al. 2004;

Proust-Lima et al. 2009). Fourth, in the latent class stochastic process model,

similarly to joint latent class models, permutations of the latent class parameters

between latent classes produces the same likelihood. However, this does not cause

problems in the estimation procedure, because it is based on maximum likelihood

estimation. The only inconvenience arises in simulation studies where one must

always check whether the latent classes were estimated in the same order in all

datasets to report the correct average values of parameters in the simulated datasets.

With all these considerations taken into account, the latent class stochastic

process model nevertheless provides a useful tool for dealing with unobserved

heterogeneity in joint analyses of longitudinal and time-to-event outcomes and

taking into account hidden components of aging in their joint influence on health

and longevity. This approach is also helpful for sensitivity analyses in applications

of the original stochastic process model. We recommend starting the analyses with

the original stochastic process model and estimating the model ignoring possible

hidden heterogeneity in the population. Then the latent class stochastic process

model can be applied to test hypotheses about the presence of hidden heterogeneity

in the data in order to appropriately adjust the conclusions if a latent structure is

revealed. Such an approach can be implemented not only with the original model

13.5 Discussion and Conclusion 299



described in Chap. 12 but also with its extensions, for example, with the genetic

stochastic process model described in Chap. 14.

Acknowledgements This chapter was partly supported by the National Institute on Aging of the

National Institutes of Health under Award Numbers R01AG030198, R01AG032319,

R01AG030612, R01AG046860, P01AG043352, and P30AG034424. The content is solely the

responsibility of the authors and does not necessarily represent the official views of the National

Institutes of Health.

References

Arbeev, K. G., Ukraintseva, S. V., Akushevich, I., Kulminski, A. M., Arbeeva, L. S., Akushevich,

L., Culminskaya, I. V., & Yashin, A. I. (2011). Age trajectories of physiological indices in

relation to healthy life course. Mechanisms of Ageing and Development, 132(3), 93–102.
Arbeev, K. G., Akushevich, I., Kulminski, A. M., Ukraintseva, S., & Yashin, A. I. (2014). Joint

analyses of longitudinal and time-to-event data in research on aging: Implications for

predicting health and survival. Frontiers in Public Health, 2, article 228.
Commenges, D., Liquet, B., & Proust-Lima, C. (2012). Choice of prognostic estimators in joint

models by estimating differences of expected conditional Kullback-Leibler risks. Biometrics,
68(2), 380–387.

Dawber, T. R., Meadors, G. F., & Moore, F. E. (1951). Epidemiological approaches to heart

disease: The Framingham Study. American Journal of Public Health, 41(3), 279–286.
Duchateau, L., & Janssen, P. (2008). The frailty model. New York: Springer.

Elashoff, R. M., Li, G., & Li, N. (2007). An approach to joint analysis of longitudinal measure-

ments and competing risks failure time data. Statistics in Medicine, 26(14), 2813–2835.
Elashoff, R. M., Li, G., & Li, N. (2008). A joint model for longitudinal measurements and survival

data in the presence of multiple failure types. Biometrics, 64(3), 762–771.
Faucett, C. L., & Thomas, D. C. (1996). Simultaneously modelling censored survival data and

repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine, 15(15),
1663–1685.

Garre, F. G., Zwinderman, A. H., Geskus, R. B., & Sijpkens, Y. W. J. (2008). A joint latent class

changepoint model to improve the prediction of time to graft failure. Journal of the Royal
Statistical Society, Series A (Statistics in Society), 171(1), 299–308.

Guo, X., & Carlin, B. P. (2004). Separate and joint modeling of longitudinal and event time data

using standard computer packages. American Statistician, 58(1), 16–24.
Han, J. (2009). Starting values for EM estimation of latent class joint model. Communications in

Statistics-Simulation and Computation, 38(7), 1519–1534.
Hanagal, D. D. (2011). Modeling survival data using frailty models. Boca Raton: Chapman &

Hall/CRC.

Henderson, R., Diggle, P., & Dobson, A. (2000). Joint modelling of longitudinal measurements

and event time data. Biostatistics, 1(4), 465–480.
Henderson, R., Diggle, P., & Dobson, A. (2002). Identification and efficacy of longitudinal

markers for survival. Biostatistics, 3(1), 33–50.
Hu, W., Li, G., & Li, N. (2009). A Bayesian approach to joint analysis of longitudinal measure-

ments and competing risks failure time data. Statistics in Medicine, 28(11), 1601–1619.
Huang, X., Li, G., & Elashoff, R. M. (2010). A joint model of longitudinal and competing risks

survival data with heterogeneous random effects and outlying longitudinal measurements.

Statistics and Its Interface, 3(2), 185–195.

300 13 The Latent Class Stochastic Process Model for Evaluation of Hidden. . .

http://dx.doi.org/10.1007/978-94-017-7587-8_12
http://dx.doi.org/10.1007/978-94-017-7587-8_14


Huang, X., Li, G., Elashoff, R. M., & Pan, J. (2011). A general joint model for longitudinal

measurements and competing risks survival data with heterogeneous random effects. Lifetime
Data Analysis, 17(1), 80–100.

Jacqmin-Gadda, H., Proust-Lima, C., Taylor, J. M. G., & Commenges, D. (2010). Score test for

conditional independence between longitudinal outcome and time to event given the classes in

the joint latent class model. Biometrics, 66(1), 11–19.
Ko, F.-S. (2010). Using frailty models to identify the longitudinal biomarkers in survival analysis.

Communications in Statistics Theory and Methods, 39(18), 3222–3237.
Larson, M. G., & Dinse, G. E. (1985). A mixture model for the regression analysis of competing

risks data. Journal of the Royal Statistical Society, Series C (Applied Statistics), 34(3),
201–211.

Li, N., Elashoff, R. M., & Li, G. (2009). Robust joint modeling of longitudinal measurements and

competing risks failure time data. Biometrical Journal, 51(1), 19–30.
Lillard, L., & Panis, C. W. A. (2003). aML, multilevel multiprocess statistical software. Release

2.0. Los Angeles: EconWare.

Lin, H. Q., McCulloch, C. E., &Mayne, S. T. (2002a). Maximum likelihood estimation in the joint

analysis of time-to-event and multiple longitudinal variables. Statistics in Medicine, 21(16),
2369–2382.

Lin, H. Q., Turnbull, B. W., McCulloch, C. E., & Slate, E. H. (2002b). Latent class models for joint

analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-

specific antigen readings and prostate cancer. Journal of the American Statistical Association,
97(457), 53–65.

Lin, H. Q., McCulloch, C. E., & Rosenheck, R. A. (2004). Latent pattern mixture models for

informative intermittent missing data in longitudinal studies. Biometrics, 60(2), 295–305.
Liu, L., Ma, J. Z., & O’Quigley, J. (2008). Joint analysis of multi-level repeated measures data and

survival: An application to the end stage renal disease (ESRD) data. Statistics in Medicine,
27(27), 5679–5691.

Ng, S. K., & McLachlan, G. J. (2003). An EM-based semi-parametric mixture model approach to

the regression analysis of competing-risks data. Statistics in Medicine, 22(7), 1097–1111.
Prentice, R. L., Kalbfleisch, J. D., Peterson, A. V., Flournoy, N., Farewell, V. T., & Breslow, N. E.

(1978). Analysis of failure times in presence of competing risks. Biometrics, 34(4), 541–554.
Proust-Lima, C., & Taylor, J. M. G. (2009). Development and validation of a dynamic prognostic

tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint

modeling approach. Biostatistics, 10(3), 535–549.
Proust-Lima, C., Joly, P., Dartigues, J.-F., & Jacqmin-Gadda, H. (2009). Joint modelling of

multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach.

Computational Statistics and Data Analysis, 53(4), 1142–1154.
Proust-Lima, C., Diakite, A., & Liquet, B. (2012). lcmm: Estimation of latent class mixed models,

joint latent class mixed models and mixed models for curvilinear outcomes. R package, version

1.5.8, http://cran.r-project.org/web/packages/lcmm/index.html

Proust-Lima, C., Sene, M., Taylor, J. M., & Jacqmin-Gadda, H. (2014). Joint latent class models

for longitudinal and time-to-event data: A review. Statistical Methods in Medical Research,
23(1), 74–90.

Ratcliffe, S. J., Guo, W. S., & Ten Have, T. R. (2004). Joint modeling of longitudinal and survival

data via a common frailty. Biometrics, 60(4), 892–899.
Rizopoulos, D. (2012). Joint models for longitudinal and time-to-event data with applications in R.

Boca Raton: Chapman & Hall/CRC.

Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). Impact of heterogeneity in individual frailty

on the dynamics of mortality. Demography, 16(3), 439–454.
Wienke, A. (2010). Frailty models in survival analysis. Boca Raton: Chapman & Hall/CRC.

Wulfsohn, M. S., & Tsiatis, A. A. (1997). A joint model for survival and longitudinal data

measured with error. Biometrics, 53(1), 330–339.

References 301

http://cran.r-project.org/web/packages/lcmm/index.html


Yashin, A. I. (1985). Dynamics in survival analysis: Conditional Gaussian property vs. Cameron-

Martin formula. In N. V. Krylov, R. S. Lipster, & A. A. Novikov (Eds.), Statistics and control
of stochastic processes (pp. 446–475). New York: Springer.

Yashin, A. I., & Manton, K. G. (1997). Effects of unobserved and partially observed covariate

processes on system failure: A review of models and estimation strategies. Statistical Science,
12(1), 20–34.

Yashin, A. I., Arbeev, K. G., Akushevich, I., Kulminski, A., Akushevich, L., & Ukraintseva, S. V.

(2007). Stochastic model for analysis of longitudinal data on aging and mortality. Mathemat-
ical Biosciences, 208(2), 538–551.

Yashin, A. I., Arbeev, K. G., Akushevich, I., Kulminski, A., Akushevich, L., & Ukraintseva, S. V.

(2008). Model of hidden heterogeneity in longitudinal data. Theoretical Population Biology,
73(1), 1–10.

Yashin, A. I., Arbeev, K. G., Akushevich, I., Kulminski, A., Ukraintseva, S. V., Stallard, E., &

Land, K. C. (2012). The quadratic hazard model for analyzing longitudinal data on aging,

health, and the life span. Physics of Life Reviews, 9(2), 177–188.

302 13 The Latent Class Stochastic Process Model for Evaluation of Hidden. . .



Chapter 14

How Biodemographic Approaches Can
Improve Statistical Power in Genetic
Analyses of Longitudinal Data on Aging,
Health, and Longevity

Konstantin G. Arbeev and Anatoliy I. Yashin

14.1 Introduction

The modern era of revolutionary advances in genetics provides great opportunities

and challenges for the field of biodemography. The imperative to integrate the

principles of genetics and genomics into biodemography is so evident that this

problem will continue to be at the forefront of demographic analysis for decades

into the future (Carey 2008; Wachter 2008). The importance of “genetic

biodemography” will continue to grow in the coming years, because many studies

that have collected data on biomarkers will include (or already have included)

genetic information. The ongoing incorporation of genetic information into longi-

tudinal studies is considered potentially “the most revolutionary element of the

addition of biological data in large-scale surveys” (Suzman 2010) and such studies

will “increasingly provide analyses of the interactions of genetic, biological, social,

economic, and demographic characteristics” (Crimmins et al. 2010).

To realize the full potential of such rich data, special attention should be paid to

approaches to the analysis of the diverse information contained therein. Consider,

for example, the case in which the research objective is the evaluation of genetic

effects on some time-to-event outcome, e.g., risk of death or onset of a disease.

Comparison of the age patterns of incidence or mortality rates for carriers of

different alleles/genotypes can contribute to an understanding of the role of genetic

factors in survival or the development of aging-associated diseases. To simplify, let

us set aside for a moment research questions involving longitudinal measurements

of biomarkers (which require special consideration, see Chap. 11) and assume that

only socioeconomic and demographic covariates are involved in analyses. Tradi-

tional methods for estimation of the effect of genetic markers in such cases can be

enhanced if we complement them with a demographic approach that takes into

account the demographic structure of the population under study. Specifically,

when genetic data are included in longitudinal studies of aging, we have several

relevant sources of information for analyses of genetic influences on lifespan

© Springer Science+Business Media B.V. 2016

A.I. Yashin et al., Biodemography of Aging, The Springer Series on Demographic

Methods and Population Analysis 40, DOI 10.1007/978-94-017-7587-8_14

303

http://dx.doi.org/10.1007/978-94-017-7587-8_11


(or onset of diseases), in addition to the genetic data themselves and socioeconomic

and demographic covariates.

The first is follow-up data on the outcome of interest (e.g., mortality). Second,

genetic data are usually collected in longitudinal studies from participants at

different ages. This provides information on the age structure of the population at

the time of biospecimen collection. Along with follow-up data, the population age

structure also contains information about the effect of genetic variants on lifespan,

and the full potential of the data is underused when this information is ignored in

analyses, especially when genotyping is performed at advanced ages with notice-

able attrition due to mortality. Indeed, in order to be genotyped, an individual has to

survive until the age at biospecimen collection. Hence, if the proportion of carriers

of some genetic variant increases with age (here we mean the age at biospecimen

collection) then this variant should favor longevity. This implies that we can

associate genetic variants with lifespan even without follow-up data by using the

“gene frequency” method (Yashin et al. 1999, 2000). We can expect therefore that,

if we use both follow-up data and data on population age structure, this will provide

us with more accurate estimates of parameters and additional power compared to

the use of follow-up data alone. Such data can be analyzed jointly using appropriate

methods (Arbeev et al. 2011b; Yashin et al. 2007b).

The third source of information in longitudinal studies of aging that is relevant

for genetic analyses stems from the history of incorporation of genetic information

into such studies. While in some modern longitudinal studies the genetic data can

be collected at the baseline, it is a common situation that many older long-

established longitudinal studies commenced before genetic data collection began.

Hence, in such studies genetic data are available only for a sub-sample of partic-

ipants of the longitudinal study (i.e., for those who survived until the time of

biospecimen collection). It is also possible that genetic data were collected only

for a sub-sample of participants due to, for example, budgetary restrictions. How-

ever, in such cases information on the outcome of interest (e.g., follow-up on

mortality) can be available for all (genotyped and non-genotyped) participants of

the longitudinal study. This information should not be neglected in genetic analyses

because it provides an additional source for increasing power and improving the

accuracy of the estimates. Indeed, the group of non-genotyped individuals is a

mixture of carriers/non-carriers of the same alleles/genotypes collected in the

genetic data and a similar age-specific form of the mortality rate can be assumed

for the entire sample. Therefore, this information can be appropriately combined in

the likelihood function with information for genotyped individuals (see Arbeev

et al. 2011b).

Incorporation of genetic information in studies that collect longitudinal mea-

surements of biomarkers along with follow-up data offers new opportunities for

analyses of genetic influences on aging, health, and longevity. As discussed in

Chap. 11, joint analysis of time-to-event outcomes and longitudinal measurements

of biomarkers requires special methodological considerations to take into account

measurement errors and biological variability of biomarkers and to avoid biased

estimates. Joint models provide a setting for performing such analyses involving
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genetic data, longitudinal measurements, and follow-up data. Joint models, in

particular, permit evaluating the effect of a covariate (i.e., a genetic marker in

these applications) on both the longitudinal trajectories and times-to-events, so that

it is possible to distinguish genetic effects on these two outcomes. Joint models

provide more efficient estimates of the effect of a covariate (such as a genetic

marker) on the time-to-event outcome in the case in which there is also an effect of

the covariate on the longitudinal trajectory of a biomarker. This means that analyses

of longitudinal and time-to-event data in joint models may require smaller sample

sizes to achieve comparable statistical power with analyses based on time-to-event

data alone (Chen et al. 2011).

As mentioned above, participants of a longitudinal study for whom genetic

information was not collected, but for whom other outcomes (longitudinal mea-

surements of biomarkers, follow-up data, and possibly other relevant covariates)

are available, provide an additional source for increasing the accuracy and statis-

tical power in analyses of genetic effects on longitudinal and time-to-event out-

comes. However, following similar arguments as in Chap. 11, longitudinal

measurements of biomarkers cannot be simply incorporated as time-dependent

covariates in joint analyses of genotyped and non-genotyped participants of longi-

tudinal studies (Arbeev et al. 2011b). An approach for jointly analyzing longitudi-

nal measurements of biomarkers and time-to-event outcomes for genotyped and

non-genotyped participants of longitudinal studies has been developed recently

within the framework of the stochastic process model (SPM) of aging discussed

in detail in Chap. 12 (see Arbeev et al. 2009, 2012). Such a model, named the

“genetic stochastic process model,” or the “genetic SPM,” is especially relevant in

the context of biodemographic research. Biodemography of aging aims at integrat-

ing demographic and biological theory and methods to advance our understanding

of the impact of processes related to aging on health and longevity. Genetic

biodemography aims at elucidating genetic components in such processes and

their influence on health and longevity. Therefore, the particular advantages of

the genetic SPM for biodemographic applications are that it is based on biological

theory, it incorporates several essential mechanisms of aging-related changes in

organisms, and it allows for evaluating genetic effects on such characteristics and

their influence on mortality or onset of a disease. Such “hidden components” of

aging-related changes incorporated into this model include: adaptive capacity,

resistance to stresses, physiological norms, and effects of allostatic adaptation

(for more details, see Chap. 12). As is known from the literature, all these variables

play important roles in aging processes. Therefore, their inclusion in the model is

crucial for a better understanding of regulatory mechanisms driving observed

aging-related changes in physiological variables and their influence on risks of

death or getting a disease, as well as for evaluating the genetic component in such

processes. However, relevant variables associated with such “hidden components

of aging” are typically not directly measured in longitudinal data and, hence, they

cannot be directly estimated from the data using, for example, joint models. The

genetic SPM thus provides a useful approach for working with such “hidden

components of aging” indirectly. Importantly, it also provides an additional
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possibility for improving the power of genetic analyses by joint analysis of data for

genotyped and non-genotyped sub-samples of the study (Arbeev et al. 2009).

The remainder of this chapter is organized as follows. Section 14.2 presents

results of simulation studies of the longitudinal genetic-demographic model

(Arbeev et al. 2011b) which illustrate that inclusion of information on ages at

biospecimen collection in addition to follow-up data improves power in analyses

of genetic effects on mortality or morbidity risks (see also Yashin et al. 2013b).

Section 14.3 describes simulation studies of the genetic SPM (Arbeev et al. 2009)

which show the increase in statistical power of joint analyses of genotyped and

non-genotyped participants of a longitudinal study compared to analyses of

genotyped participants alone in different scenarios to test relevant biologically-

based hypotheses. Section 14.4 discusses the results and possible generalizations of

the approaches.

14.2 Simulation Studies of the Longitudinal
Genetic-Demographic Model

The longitudinal genetic-demographic model (or the genetic-demographic model

for longitudinal data) is described in Arbeev et al. (2011b). The full model com-

bines three sources of information in the likelihood function: (1) follow-up data on

survival (or, generally, on some time-to-event) for genotyped individuals;

(2) (cross-sectional) information on ages at biospecimen collection for genotyped

individuals; and (3) follow-up data on survival for non-genotyped individuals. In

the simulation study presented in this section, we utilize only the first two sources.

Of course, follow-up information for non-genotyped individuals provides an addi-

tional source for improving the power of genetic analyses but this simulation study

illustrates that, even for the studies where genetic data are collected for all partic-

ipants, the use of information on ages at biospecimen collection still makes a

difference for the power of genetic analyses.

Let x0k , k¼ 1,. . ., K, be the ages at baseline (entry to the study) of individuals

from the genotyped subsample of the data and let xm,x0
k
, m¼ 1,. . .,Mk, be their ages

at the time of biospecimen collection. Denote by

N xm,x0
k

� �
¼ N1 xm,x0

k

� �
þ N0 xm,x0

k

� �
the number of individuals in the genotyped

subsample who were aged xm,x0
k
at the time of biospecimen collection and aged x0k at

baseline. Here Ng xm,x0
k

� �
denotes the number of non-carriers (g¼ 0) and carriers

(g¼ 1) of a specific allele/genotype. Let τ denote the life span (it may be censored).

Denote by μ(x|G¼ g) the hazard rate for carriers/non-carriers and by π xm,x0
k
x0k
��� �

¼ P G ¼ 1
��τ > xm,x0

k
, x0k

� �
the proportion of carriers at age xm,x0

k
given that the

individuals were aged x0k at baseline. Denote by Sg xð Þ ¼ P τ > x
��G ¼ g

� �
the
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survival functions for carriers/non-carriers and by P1¼P(G¼ 1) the initial propor-

tion (at birth) of carriers of the allele/genotype in a population, which is assumed

here to be the same for different birth cohorts represented in the study. The total

(population) survival function is then S xð Þ ¼ P1S1 xð Þ þ 1 � P1ð ÞS0 xð Þ. Condi-
tional survival functions for the individuals aged x0k at the baseline are

Sg x
��xk0

� � ¼ P τ > x
��G ¼ g, xk

0
� �

. The hazard rates for carriers/non-carriers

can be of any parametric form, e.g., the Gompertz curves, as in our simulations

presented below. The proportions π xm,x0
k
x0k
��� �

are:

π xm,x0
k
x0k
��� �

¼
P G ¼ 1 x0k

��� �
S1 xm,x0

k
x0k
��� �

P G ¼ 1 x0k
��� �

S1 xm,x0
k
x0k
��� �

þ 1� P G ¼ 1 x0k
��� �� �

S0 xm,x0
k
x0k
��� � ;

ð14:1Þ

where P G ¼ 1
��xk0

� � ¼ P1S1 xk
0ð Þ=S xk

0ð Þ.
The likelihood function of the data on the ages at biospecimen collection (LA)

and the likelihood function of the follow-up data (LFU) are (Arbeev et al. 2011b):

LA �
YK
k¼1

YMk

m¼1

π xm,x0
k
x0k
��� �N1

x
m,x0

k
ð Þ

1� π xm,x0
k
x0k
��� �� �N0

x
m,x0

k
ð Þ ð14:2Þ

and

LFU �
YK
k¼1

YMk

m¼1

Y1
g¼0

YNg
x
m,x0

k
ð Þ

i¼1

μ τi G ¼ gjð Þδi Sg τi
��xm,x0

k

� �
; ð14:3Þ

where δi is an at-risk indicator (δi¼ 1 if τ is a death time; δi¼ 0 if τ is a censoring
time). The total likelihood function of the data relevant for genetic analyses of the

genotyped subsample is the product of these two likelihood functions:

LFUþA � LFULA: ð14:4Þ

In our simulation studies, we compared two methods of estimating parameters of

the allele- or genotype-specific hazard rates: (1) a method that uses only follow-up

data, i.e., the likelihood function LFU (14.3); and (2) a method that uses both data on

the ages at biospecimen collection and follow-up data, i.e., the likelihood function

LFUþA (14.4).

We assumed that carriers and non-carriers of the allele in a population have

mortality rates μðxjGÞ ¼ μ0ðxÞeγG, where the variable G denotes carriers (G¼ 1) or

non-carriers (G¼ 0), the baseline mortality μ0(x) is the Gompertz function, i.e.,

ln μ0ðxÞ ¼ ln aþ bx, with ln a¼� 10.0 and b¼ 0.09, and the proportion of carriers
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at birth P1¼ 0.25. We varied the parameter γ from�0.5 to 0.5 with the interval 0.05

to simulate scenarios with different effect sizes.

We generated a “general population” of 10,000,000 individuals, assigning the

genetic status (i.e., variable G) to individuals in accordance with the initial propor-

tion P1. Then we generated life spans for all individuals from the corresponding

probability distributions (i.e., those corresponding to the hazard μ0(x)e
γG for car-

riers and μ0(x) for non-carriers, with the parameters defined above). Then we

assigned a hypothetical “age at entry” into the study to each individual in the

population generated as a discrete random variable uniformly distributed over the

interval 40–100 years. We assumed that individuals were genotyped at the baseline,

i.e., their age at biospecimen collection coincided with age at entry. We collected a

sample of 4500 individuals whose life spans exceeded their hypothetical “age at

entry.” We considered two scenarios: a short follow-up period (6 years) and a long

follow-up period (60 years). Individuals with simulated life spans exceeding “age at

entry” plus the follow-up period were considered censored at that age in the

scenario. In the scenario with a long follow-up period almost all individuals

experienced the event under study, whereas in the scenario with a short follow-up

period a substantial proportion of individuals are censored. This procedure was

repeated 1000 times (in each scenario with a different γ and follow-up period) to

generate 1000 datasets whose parameters were estimated using the likelihoods

(14.3) and (14.4).

Figure 14.1a illustrates the empirical power (i.e., the proportion of datasets in

which the null hypothesis H0: γ¼ 0 was rejected at α¼ 0.05) in the scenario with a

short follow-up for different effect sizes (i.e., values of the parameter γ). We also

fitted these empirical values with the power curves of a one-sample Z-test of the
mean and found the values of the standard deviations that produced the best fit to

the empirical power curves for each method (0.059 for “FUþA” (14.4) and 0.088

for “FU” (14.3)). Figure 14.1b shows the level of the test (shown as � log 10(α) for
better visibility) that yields power w¼ 0.8, as a function of the effect size in both

methods (the curves were calculated using the above mentioned values of standard

deviations). Figure 14.1c, d display similar quantities for the scenario with a long

follow-up period.

Figure 14.1a, b show that, in the case of a short follow-up period, the use of

information on ages at biospecimen collection in addition to follow-up data sub-

stantially increases the power compared to the traditional approach that uses the

follow-up data alone. For example, Fig. 14.1b shows that for effect size γ¼ 0.3 the

p-value decreases approximately from 10�2 to 10�5 and for effect size γ¼ 0.4 the p-
value drops approximately from 10�4 to 10�9. This means that many genetic

variants which would not reach genome-wide significance in genome-wide associ-

ation studies (GWAS) using the traditional approach of analyzing the follow-up

data alone could become highly significant if the data on ages at biospecimen

collection were also used. Figure 14.1c, d reveal that this effect diminishes for a

long follow-up period. In the case of a long follow-up period, information from the

long follow-up makes a more substantial contribution compared to information

hidden in the distributions of ages at biospecimen collection. Conversely, in the
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case of a short follow-up period, the distribution of the ages at biospecimen

collection plays a more important role in differentiating the allele- or genotype-

specific survival patterns compared to the follow-up data (for the case of a sub-

stantial proportion of censored individuals, as in our simulations).

Our simulations thus illustrate that the use of information on ages at biospecimen

collection may have important implications for GWAS of longevity or onset of

diseases for studies with short follow-up periods (which are the majority of datasets

currently available).
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Fig. 14.1 Simulation studies in longitudinal genetic-demographic model: (a) Power in two

methods (with follow-up only, “FU”, and follow-up and ages at biospecimen collection,

“FUþA”) for different effect sizes (i.e., values of the regression parameter γ) and α¼ 0.05 in

the scenario with a short follow-up period (6 years). The lines denote the fit of the empirical curves

by the power curves of a one-sample Z-test of the mean (the standard deviations that produced the

best fit are 0.059 for “FUþA” and 0.088 for “FU”). (b) The level of the test (shown as � log 10(α)
for better visibility) that yields power w¼ 0.8, as a function of the effect size in both methods (the

curves are calculated using the above mentioned values of standard deviations) in the scenario with

a short follow-up period (6 years). (c) Is same as (a) but for a long follow-up period (60 years). The
standard deviations that produced the best fit are 0.032 for “FUþA” and 0.035 for “FU.” (d) Is
same as (b) but for a long follow-up period (60 years)
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14.3 Simulation Studies in Genetic Stochastic Process
Model

The genetic stochastic process model was originally developed in Arbeev

et al. (2009). In Arbeev et al. (2014) we briefly introduced its version modified to

include the dependence of the model’s components on a vector of observed (time-

independent) covariates available at baseline. In this section, we elaborate this

modification in more detail and also describe simulation studies to illustrate the

increase in the power of joint analyses of genotyped and non-genotyped partici-

pants in a longitudinal study compared to analyses of only genotyped participants in

different scenarios to test relevant biologically-based hypotheses.

Let g, g¼ 1,. . ., G, denote the presence of allele/genotype g in the genome of an

individual. We can specify the probabilities of having this allele/genotype, pg,
conditional on some vector of time-independent covariates X. One possibility, for

example, is to specify this probability using a multinomial logistic regression:

pg ¼
eβ0gþβ T

1gX

1þ
XG�1

c¼1

eβ0cþβ T
1cX

; ð14:5Þ

for g¼ 1,. . ., G–1, and

pG ¼ 1

1þ
XG�1

g¼1

eβ0gþβ T
1gX

: ð14:6Þ

Here “T” denotes transposition (we will use column vectors if not stated otherwise).

Let Yt (where t is age) be the stochastic process representing the age dynamics of

an M-dimensional vector of biomarkers in carriers of allele/genotype g with the

following stochastic differential equation:

dYt ¼ a t; g;Xð Þ Yt � f 1 t; g;Xð Þð Þdtþ B t; g;Xð ÞdWt; ð14:7Þ

with initial condition Yt0 . Here Wt is an M-dimensional vector Wiener process

independent of the vector of initial values Yt0 which represents unobserved

disturbances affecting the trajectory of biomarkers. The strength of such

disturbances is characterized by the M�M matrix of diffusion coefficients

B(t, g,X). The vector-function f1(t, g,X) (having the same dimension as Yt) intro-
duces the notion of allostasis into the model representing the age trajectories of

biomarkers that organisms are forced to follow by the process of allostatic adapta-

tion (see detailed description of the meaning of different components of the

stochastic process model in Chap. 12 and Arbeev et al. (2009)). The negative

feedback coefficient in Eq. (14.7), the M�M matrix a(t, g, X), describes the
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adaptive (homeostatic) capacity in an aging organism. The elements of this matrix

correspond to the rate of adaptive response to any deviation of trajectories Yt from
the trajectories f1(t, g, X).

The hazard rates for carriers of allele/genotype g conditional on the vector of

biomarkers Yt and the vector of observed covariates X are given as:

μ t Ytj , g,Xð Þ ¼ μ0 t; g;Xð Þ þ Yt � f 0 t; g;Xð Þð ÞTQ t; g;Xð Þ Yt � f 0 t; g;Xð Þð Þ: ð14:8Þ

Here μ0(t, g, X) is the baseline hazard for carriers of allele/genotype

g characterizing the risk that would remain if the vector Yt followed the trajectory

f0(t, g, X), and Q(t, g, X) is a non-negative-definite symmetric M � M matrix. The

M-dimensional vector-function f0(t, g, X) introduces the concept of an

age-dependent physiological norm into the model which corresponds to the values

of biomarkers which minimize the risk at each age for carriers of allele/genotype g.
The matrixQ(t, g, X) in the quadratic hazard term can be associated with the decline

in resistance to stresses with age, as discussed in Yashin et al. (2007a, 2012) and

Arbeev et al. (2011a).

Although the model (14.5), (14.6), (14.7) and (14.8) looks similar to the latent

class stochastic process model presented in Chap. 13, there is one important

distinction: in the model presented in this chapter information on g (i.e., the

presence of some allele/genotype) is assumed to be available for genotyped partic-

ipants in the longitudinal study, whereas information on the latent class g is not

available for any individual in the model in Chap. 13 (hence its name). Therefore,

the likelihood estimation procedure is different from that presented in Chap. 13.

The likelihood function for the model (14.5), (14.6), (14.7) and (14.8) is a straight-

forward modification of the likelihood for the original model in Chap. 12 (see

Arbeev et al. (2009)) and is not presented here. Note that the likelihood function

contains parts for the genotyped and non-genotyped sub-samples and that both parts

contain the same parameters of the model. Hence, the use of available information

from the non-genotyped participants (i.e., the longitudinal measurements of bio-

markers and time-to-event data) provides an opportunity for increasing the statis-

tical power compared to analyses based on the genotyped sample alone. The

advantage of the genetic stochastic process model is that it has different compo-

nents which represent specific biological concepts and aging-related mechanisms

for which the respective parameters have clear biological interpretations. Depen-

dence of the model’s components on variable g allows for formulating and testing

different hypotheses about the genetic effect of the alleles/genotypes on aging-

related characteristics (such as stress resistance, adaptive capacity, age-dependent

physiological norms, etc.). Below we present the results of a simulation study that

compares the power for tests of several such hypotheses using two approaches:

(1) using only information from the genotyped participants; and (2) in joint analyses

of genotyped and non-genotyped individuals.

We used the following specifications of the model’s components in the

simulations:

14.3 Simulation Studies in Genetic Stochastic Process Model 311

http://dx.doi.org/10.1007/978-94-017-7587-8_13
http://dx.doi.org/10.1007/978-94-017-7587-8_13
http://dx.doi.org/10.1007/978-94-017-7587-8_13
http://dx.doi.org/10.1007/978-94-017-7587-8_12


T
a
b
le
1
4
.1

S
im

u
la
ti
o
n
st
u
d
ie
s
o
f
th
e
g
en
et
ic
st
o
ch
as
ti
c
p
ro
ce
ss

m
o
d
el
:
P
ar
am

et
er
s
u
se
d
to

g
en
er
at
e
d
at
a
(p
ar
am

et
er
s
u
se
d
to

d
efi
n
e
th
e
n
u
ll
h
y
p
o
th
es
es

to
b
e

te
st
ed

in
ea
ch

si
m
u
la
ti
o
n
ar
e
h
ig
h
li
g
h
te
d
)

S
im

u
la
ti
o
n

G

B
a
se
li
n
e
h
a
za
rd

(μ
0
(t
,
g
,
X
))

Q
u
a
d
r.
h
a
za
rd

(Q
(t
,
g
,
X
))

A
d
a
p
ti
v
e
ca
p
a
ci
ty

(a
(t
,
g
,
X
))

M
ea
n
a
ll
o
st
a
ti
c

tr
a
je
ct
o
ry

(
f 1
(t
,
g,

X
))

P
h
y
si
o
lo
g
ic
a
l
n
o
rm

(
f 0
(t
,
g
,
X
))

O
th
er

p
a
ra
m
et
er
s

ln
a
g μ 0

b
g μ 0

βg X
a
g Q

bg Q
a
g Y

b
g Y

a
g f 1

b
g f 1

a
g f 0

b
g f 0

σ
g 0

σ
g 1

p
1

1
1

�9
.0

0
.0
8
0

0
.5

0
.1

�0
.2
5

1
.0

4
5
.0

0
.2
0

4
5
.0

0
.1

5
.0

4
.0

0
.2
5

2
�8

.5
0
.0
8
2

0
.3

0
.1

�0
.2
0

1
.0

5
0
.0

0
.2
5

4
0
.0

0
.1

5
.0

4
.0

2
1

�9
.0

0
.0
8
0

�0
.0
1
4

0
.5

0
.1

�0
.2
5

1
.0

4
5
.0

0
.2
0

4
5
.0

0
.1

5
.0

4
.0

0
.2
5

2
�8

.5
0
.0
8
2

�0
.0
1
4

0
.3

0
.1

�0
.2
0

1
.0

5
0
.0

0
.2
5

4
0
.0

0
.1

5
.0

4
.0

3
1

�9
.0

0
.0
8
0

0
.5

0
.1

�0
.2
5

1
.0

4
5
.0

0
.2
0

4
5
.0

0
.1

5
.0

4
.0

0
.2
5

2
�8

.5
0
.0
8
2

0
.5

0
.4

�0
.2
0

1
.0

5
0
.0

0
.2
5

4
0
.0

0
.1

5
.0

4
.0

4
1

�9
.0

0
.0
8
0

0
.5

0
.1

�0
.2
2

1
.0

4
5
.0

0
.2
0

4
5
.0

0
.1

5
.0

4
.0

0
.2
5

2
�8

.5
0
.0
8
2

0
.3

0
.1

�0
.2
0

1
.0

5
0
.0

0
.2
5

4
0
.0

0
.1

5
.0

4
.0

5
1

�9
.0

0
.0
8
0

0
.5

0
.1

�0
.2
5

1
.0

4
5
.0

0
.2
0

4
5
.0

0
.1

5
.0

4
.0

0
.2
5

2
�8

.5
0
.0
8
2

0
.3

0
.1

�0
.2
0

1
.0

4
6
.0

0
.2
0

4
0
.0

0
.1

5
.0

4
.0

6
1

�9
.0

0
.0
8
0

0
.5

0
.1

�0
.2
5

1
.0

4
5
.0

0
.2
0

5
0
.0

0
.1

5
.0

4
.0

0
.2
5

2
�8

.5
0
.0
8
2

0
.3

0
.1

�0
.2
0

1
.0

5
0
.0

0
.2
5

4
0
.0

0
.1

5
.0

4
.0

N
o
te
s:

(1
)
S
o
m
e
p
ar
am

et
er
s
ar
e
re
sc
al
ed

fo
r
b
et
te
r
v
is
ib
il
it
y
in

th
e
ta
b
le
:
a
g Q
is
m
u
lt
ip
li
ed

b
y
1
0
4
;
b
g Q
is
m
u
lt
ip
li
ed

b
y
1
0
5
;
b
g Y
is
m
u
lt
ip
li
ed

b
y
1
0
3

312 14 How Biodemographic Approaches Can Improve Statistical Power in Genetic. . .



1. Gompertz baseline hazards: ln μ0ðt, g,XÞ ¼ ln ag
μ0
þ bg

μ0
tþ β g

XX, where g¼ 1,

2 for carriers and non-carriers of a hypothetical allele (genotype), X¼ c� c0, c is
year of birth (cohort), c0 ¼ 1890, in simulation #2 (see Table 14.1) and ln μ0ðt,
g,XÞ ¼ ln ag

μ0
þ bg

μ0
t in the other simulations;

2. Linear functions for the multipliers in the quadratic hazard:

Q t, g, Xð Þ ¼ ag
Q þ bg

Qt;

3. Linear functions for the mean allostatic trajectories: f 1 t; g;Xð Þ ¼ ag
f 1
þ bg

f 1
t;

4. Linear functions for physiological norms: f 0 t; g;Xð Þ ¼ ag
f 0
þ bg

f 0
t;

5. Linear functions for the negative feedback coefficient in (14.7) representing the

adaptive capacity of an organism: a t; g;Xð Þ ¼ a
g
Y þ b

g
Y t, with a

g
Y � 0 and b

g
Y �

0;

6. Constant diffusion coefficients: B t; g;Xð Þ ¼ σ g
1 ;

7. Normally distributed initial values of the process Yt with means f1(t0
j, g, X)

(where t0
j is age at the first exam for the jth individual) and standard deviations

σ0
g; and

8. Initial probability of carrying the allele/genotype ( p1) is independent of

covariates X.

The values of the parameters were chosen to provide realistic samples resem-

bling real data on mortality in the Framingham Original Cohort data (Dawber

et al. 1951) and with longitudinal dynamics Ytmimicking pulse pressure. Table 14.1

contains a summary of the parameters used in the simulation studies.

We performed six simulation studies for testing different biological hypotheses

of genetic effects on aging-related characteristics (see the “Null Hypothesis” and

“Interpretation of Null Hypothesis” columns in Table 14.2). In each scenario, we

simulated 100 datasets with data on age at death/censoring and the longitudinal

dynamics of Yt for 2500 individuals followed-up for 60 years with ages at baseline

uniformly distributed over the interval 30–60 years and with 30 biennial exams

measuring Yt. Year of birth c for simulation #2 was defined as 1950 minus age at

baseline. We assumed that 500 individuals were genotyped and genetic data were

not available for the rest of the sample. Power was estimated as the proportion of

datasets in which a null hypothesis was rejected at the 0.05 significance level by the

likelihood ratio test (see Table 14.2). For these purposes, we estimated original/

unrestricted models and restricted models that assume that the parameters

highlighted in Table 14.1 are equal for carriers and non-carriers (simulation #2

assumes the restriction βgX ¼ 0). The column “Gen. Only” in Table 14.2 corre-

sponds to the likelihood that used only information from the genotyped participants

and column “Gen. þ Non-Gen.” displays the power for the likelihood with joint

analyses of the genotyped and non-genotyped individuals. The table shows that

joint analysis of the genotyped and non-genotyped individuals allows for a sub-

stantial increase in the power compared to analyses based on information from the

genotyped participants alone, thus making it possible to detect genetic effects on

aging-related characteristics that would remain non-significant in analyses of the

genotyped subsample.
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14.4 Discussion

In this chapter, we presented different approaches that can be applied in genetic

biodemography to work with data available in modern longitudinal studies of aging,

health, and longevity that collect genetic information in addition to follow-up data

on events and longitudinal measurements of biomarkers.

The longitudinal genetic-demographic model described in Sect. 14.2 (see also

Arbeev et al. 2011b) provides a method for enhancing genetic analyses of time-to-

event outcomes from longitudinal data combining several sources of information:

follow-up data on the outcome of interest (e.g., mortality) for genotyped individ-

uals, information on the age structure of the population at the time of biospecimen

collection, and follow-up data on the outcomes for non-genotyped participants.

Such joint analyses of genotyped and non-genotyped individuals can result in

substantial improvements in statistical power and accuracy of estimates compared

to analyses of the genotyped subsample alone if the proportion of non-genotyped

participants is large. Situations in which genetic information cannot be collected for

all participants of longitudinal studies are not uncommon. They can arise for several

reasons: (1) the longitudinal study may have started some time before genotyping

was added to the study design so that some initially participating individuals

dropped out of the study (i.e., died or were lost to follow-up) by the time of genetic

data collection; (2) budget constraints prohibit obtaining genetic information for the

entire sample; (3) some participants refuse to provide samples for genetic analyses.

Nevertheless, even when genotyped individuals constitute a majority of the sample

or the entire sample, application of such an approach is still beneficial in terms of

estimation accuracy and power because it takes into account the population

Table 14.2 Simulation studies of the genetic stochastic process model: Power (for α¼ 0.05 and

effect sizes defined by the parameters from Table 14.1) for estimation of the likelihood only using

data on genotyped individuals (column “Gen. Only”) and data on both genotyped and

non-genotyped individuals (column “Gen. þ Non-Gen.”)

Simulation Null hypothesis Interpretation of null hypothesis

Power

Gen.

only

Gen. þ
Non-gen

1 μ0 t; g;Xð Þ ¼ μ0 t;Xð Þ No genetic effect on baseline

hazard

0.42 0.85

2 μ0 t; g;Xð Þ ¼ μ0 t; gð Þ No cohort changes in baseline

hazard

0.25 0.89

3 Q t; g;Xð Þ ¼ Q t;Xð Þ No genetic effect on stress

resistance

0.41 0.90

4 a t; g;Xð Þ ¼ a t;Xð Þ No genetic effect on adaptive

capacity

0.40 0.82

5 f 1 t; g;Xð Þ ¼ f 1 t;Xð Þ No genetic effect on mean

allostatic trajectory

0.71 0.89

6 f 0 t; g;Xð Þ ¼ f 0 t;Xð Þ No genetic effect on physiological

norm

0.44 0.91
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structure at the time of biospecimen collection which has additional information on

genetic effects on the risk of death complementing the follow-up data (Yashin

et al. 2013b). Clearly, any statistical model is just an approximation of reality and

the use of even the most advanced models does not replace the need to collect large-

scale genetic data in longitudinal studies. The genetic-demographic model

presented in Sect. 14.2 and in Arbeev et al. (2011b) uses parametric specifications

of allele- or genotype-specific survival functions. More flexible specifications, such

as semiparametric and non-parametric models or methods that correct for

unobserved heterogeneity effects, can be formulated and estimated (see Yashin

et al. 1999).

The genetic stochastic process model presented in Sect. 14.3 adds a new

dimension to genetic biodemographic analyses, combining information on longitu-

dinal measurements of biomarkers available for participants of a longitudinal study

with follow-up data and genetic information. Such joint analyses of different

sources of information collected in both genotyped and non-genotyped individuals

allow for more efficient use of the research potential of longitudinal data which

otherwise remains underused when only genotyped individuals or only subsets of

available information (e.g., only follow-up data on genotyped individuals) are

involved in analyses. Similar to the longitudinal genetic-demographic model

presented in Sect. 14.2, the benefits of combining data on genotyped and

non-genotyped individuals in the genetic SPM come from the presence of common

parameters describing characteristics of the model for genotyped and

non-genotyped subsamples of the data. This takes into account the knowledge

that the non-genotyped subsample is a mixture of carriers and non-carriers of the

same alleles or genotypes represented in the genotyped subsample and applies the

ideas of heterogeneity analyses (Vaupel and Yashin 1985). When the

non-genotyped subsample is substantially larger than the genotyped subsample,

these joint analyses can lead to a noticeable increase in the power of statistical

estimates of genetic parameters compared to estimates based only on information

from the genotyped subsample. This approach is applicable not only to genetic data

but to any discrete time-independent variable that is observed only for a subsample

of individuals in a longitudinal study.

The genetic stochastic process model enhances biodemographic analyses by

allowing for hidden components of aging (such as age-specific physiological

norms, allostasis and allostatic load, decline in adaptive capacity, and stress resis-

tance with age) that are typically not directly measured in longitudinal data and,

hence, can be estimated only indirectly. Different components and mechanisms

characterizing the same process of aging should be mutually dependent and work in

concert. Therefore, unification of such concepts in a comprehensive model of aging

is an important step forward in the development of a systemic methodology in aging

research. As in the original stochastic process model, the genetic SPM allows

working with several mechanisms of aging-related changes under the overarching

framework of one statistical model. In addition, the genetic SPM evaluates genetic

effects on such mechanisms, thus providing deeper insights into genetic determi-

nants of the processes of aging affecting mortality and morbidity risks. It permits
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one to address new questions in biodemographic analyses concerning genetic

influences on aging-related changes in humans, questions that cannot be studied

using conventional approaches, for example, joint models (see Chap. 11) or stan-

dard demographic methods. Simulations in Sect. 14.3 provided several examples of

hypotheses that can be tested using the genetic SPM and illustrated the differences

in statistical power resulting from the addition of information on non-genotyped

individuals to the analyses.

Several practical considerations should be mentioned about applications of the

genetic SPM to real data. As with any parametric model, the genetic SPM relies on

the description of its components as specific parametric functions. Although the

basic components of the model (such as the quadratic shape of the hazard, physi-

ological norm, average allostatic trajectory, negative feedback coefficient) are all

based on solid biological theories that justify their presence in the model, the

specific parametric forms of these components are unknown and may be hard to

justify biologically. Moreover, the parametric forms of these components generally

cannot be empirically evaluated, because they model hidden components of the

aging process not directly associated with any measurable variables in the data (one

exception might be the baseline hazard rate which, with some degree of confidence,

can be assumed to have the same shape as the hazard rate in the total population,

e.g., Gompertz, Weibull, gamma-Gompertz, or gamma-Weibull baseline rates can

be chosen depending on the application). Therefore, it is advisable to perform

sensitivity analyses with different parametric specifications of the components of

the model, e.g., linear, quadratic, or higher order polynomial functions, and select

the best fitting model using formal criteria such as the likelihood ratio test for nested

models or the Akaike Information Criterion for non-nested models.

In brief, the specific types of genetic influences on the hidden components of

aging are not known a priori. Thus, versions of the model with different types of

genetic influences should be tested in applications. For example, dominant, reces-

sive, or additive form of action of the minor allele on the outcome characteristics

can be investigated. Similarly, joint analyses of two or more genetic markers might

be of interest in applications. The genetic SPM can be straightforwardly extended to

work with multiple genetic markers. However, this results in a larger number of

parameters and a smaller number of individuals in different groups that can reduce

the reliability of estimates.

The computational burden should always be taken into account in practical

implementations of statistical methods, especially in large-scale problems involv-

ing studies with large sample sizes and/or extensive amounts of genetic data. For

example, genome-wide association studies (GWAS) data are collected in different

longitudinal studies that can contain millions of single nucleotide polymorphisms

(SNPs) for thousands of participants (see the dbGaP website, http://www.ncbi.nlm.

nih.gov/gap?db¼gap). For such data, the computational burden of parameter esti-

mation in the genetic SPM suggests that its routine application to each SNP in the

dataset is not feasible for modern computers, especially in high dimensional cases.

At the present time, a more relevant application of this model is to work with a

much smaller set of SNPs pre-selected according to some criterion (Yashin
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et al. 2013a). The likelihood estimation procedure in the longitudinal genetic-

demographic model is considerably faster and, therefore, it is suitable for large-

scale applications. Our experience with the version of the model by Arbeev

et al. (2011b) indicates that estimation of GWAS data on thousands of individuals

and more than a hundred thousand SNPs can be performed in a reasonable time.

Nevertheless, both the genetic SPM and longitudinal genetic-demographic models

can be used in studies with candidate genes or SNPs to investigate their connections

with mortality risk and risks of diseases and to evaluate genetic contributions to

hidden components of aging that affect these risks.

Several further generalizations of the methods to evaluate genetic influences on

hidden components of aging can be considered. As discussed in Chap. 13 and

Yashin et al. (2008), ignoring hidden heterogeneity in a population due to the

presence of latent subpopulations defined by some unobserved characteristics can

lead to erroneous conclusions concerning biological regularities of aging-related

processes estimated by the stochastic process model. The same, of course, is true for

the genetic SPM. Therefore, the generalization of the genetic SPM to include latent

classes can be useful for sensitivity analyses to test the presence of hidden hetero-

geneity that can affect the results of the genetic SPM.

Another direction for possible extension of the genetic SPM is the “individual-

ization” of longitudinal trajectories. In its present form, all individuals in the model

have the same (“population”) parameters of the adaptive capacity and the allostatic

trajectory. The parameters of these components can be specified as random vari-

ables or realizations of some stochastic process to describe individual patterns of

adaptive capacity and the allostatic load. Since such additional random effects and

the “original” random process (i.e., the Wiener process Wt in the equation for the

dynamics of the longitudinal biomarker Yt (14.7)) may “compete” for the same

correlation structure in the longitudinal data, the feasibility of such an approach

needs careful investigation. See also relevant discussions of the use of complicated

random effects structures vs. the use of stochastic processes in the joint models

literature (Rizopoulos 2012; Tsiatis and Davidian 2004).

Investigation of genetic effects on hidden components of aging and their relation

to risks of death and onset of diseases can also be performed in the framework of

extended versions of the stochastic process model aimed at analyses of dependent

competing risks (Akushevich et al. 2011; Manton et al. 1992; Yashin et al. 1986),

using longitudinal data on individual health histories and mortality (Yashin

et al. 2011a), which may be collected using different observational plans (Yashin

et al. 2011b). Such analyzes would allow addressing many new problems that

cannot be investigated using standard approaches. For example, the role of genetic

factors in competing risks of death can be detected without the traditional assump-

tion of independent risks for different causes of death, how genes affect hidden

mechanisms of aging manifested in the longitudinal dynamics of physiological

variables can be investigated, and their relation to these dependent competing risks

can be explored. The introduction of jumping components describing health states

in the model allows for comprehensive analyses of genetic effects on both fast

changes in health status and slower changes in the physiological state of an
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organism associated with aging processes, and their effects on mortality. This

can help in uncovering pre-disease physiological pathways and differences

in aging-related characteristics among carriers of different alleles or genotypes.

Generalized stochastic process models with jumping components are discussed in

Chaps. 15 and 16.
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Chapter 15

Integrative Mortality Models
with Parameters That Have Biological
Interpretations

Anatoliy I. Yashin, Igor Akushevich, Konstantin G. Arbeev,
Alexander M. Kulminski, and Svetlana V. Ukraintseva

15.1 Introduction

Mortality rates are important characteristics of life span distributions that integrate

the influences of many external and internal factors affecting individuals during

their life course. These include the ontogenetic program, individual aging pro-

cesses, exposure to external (environmental) and internal (biological) factors, and

changes in health status, as well as effects of compensatory adaptation to damages

and changes induced by all these processes. Various parametric models of human

mortality rates are used in analyses of survival data in demographic and epidemi-

ological applications, experimental studies of aging and longevity using laboratory

animals, etc.

Despite an existing tradition of interpreting differences in the shapes or param-

eters of the mortality rates (survival functions) resulting from the effects of expo-

sure to different conditions or other interventions in terms of characteristics of

individual aging, this practice has to be used with care. This is because such

characteristics are difficult to interpret in terms of properties of external and internal

processes affecting the chances of death. An important question then is: What kind

of mortality model has to be developed to obtain parameters that are biologically

interpretable? The purpose of this chapter is to describe an approach to mortality

modeling that represents mortality rates in terms of parameters of physiological

changes and declining health status accompanying the process of aging in humans.

In contrast to traditional demographic and actuarial models dealing with mortality

data, the proposed model is appropriate for analyses of longitudinal data on aging,

health, and longevity. We use a diffusion-type continuous-time stochastic process

for describing the evolution of physiological states over the life course, and a finite-

state continuous-time process for describing changes in health status during this

period. We derive equations for the resulting mortality models, and approximate

changes in physiological states by a Gaussian process conditional on health status.
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These equations will be used in Chap. 16 in the joint analyses of data collected

using different observational plans.

Could a demographic mortality model be developed whose parameters can

characterize aging-related declines in health status and physiological/biological

functioning? To address this question, we specify the conditional mortality rate as

a function of health status and physiological/biological state, describe age-related

changes in health and physiological variables, and perform averaging with respect

to all unobserved characteristics. A traditional (demographic) description of

changes in individual health/survival status is performed using a continuous-time

randomMarkov process with a finite number of states, and age-dependent transition

intensity functions (transitions rates). Transitions to the absorbing state are associ-

ated with death, and the corresponding transition intensity is a mortality rate.

Although such a description characterizes connections between health and mortal-

ity, it does not allow for studying factors and mechanisms involved in the aging-

related health decline. Numerous epidemiological studies provide compelling evi-

dence that health transition rates are influenced by a number of factors. Some of

them are fixed at the time of birth (e.g., genetic background). Others experience

stochastic changes over the life course. Examples include variables describing

physiological states, behavioral, or socio-economic factors, etc. The presence of

such randomly changing influential factors violates the Markov assumption, and

makes the description of aging-related changes in health status more complicated.

The age dynamics of influential factors (e.g., physiological variables) in con-

nection with mortality risks has been described using a stochastic process model of

human mortality and aging (Woodbury and Manton 1977; Yashin 1985; Yashin and

Manton 1997). Recent extensions of this model have been used in analyses of

longitudinal data on aging, health, and longevity, collected in the Framingham

Heart Study (Akushevich et al. 2005; Arbeev et al. 2009, 2011; Yashin et al. 2008,

2007b). This model and its extensions are described in terms of a Markov stochastic

process satisfying a diffusion-type stochastic differential equation. The stochastic

process is stopped at random times associated with individuals’ deaths. The qua-

dratic hazard assumption about the form of the conditional mortality function,

given covariates values and certain regularity conditions, guarantees the Gaussian

property of the conditional distribution of the covariates value at any given age.

This yielded a description of the aging-related changes in terms of the first two

moments of a multidimensional Gaussian distribution. When an individual’s health
status is taken into account, the coefficients of the stochastic differential equations

become dependent on values of the jumping process. This dependence violates the

Markov assumption and renders the conditional Gaussian property invalid. So the

description of this (continuously changing) component of aging-related changes in

the body also becomes more complicated.

Since studying age trajectories of physiological states in connection with

changes in health status and mortality would provide more realistic scenarios for

analyses of available longitudinal data, it would be a good idea to find an appro-

priate mathematical description of the joint evolution of these interdependent

processes in aging organisms. For this purpose, we propose a comprehensive
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model of human aging, health, and mortality in which the Markov assumption is

fulfilled by a two-component stochastic process consisting of jumping and contin-

uously changing processes. The jumping component is used to describe relatively

fast changes in health status occurring at random times, and the continuous com-

ponent describes relatively slow stochastic age-related changes of individual phys-

iological states.

15.2 Conditional Risk of Death and Demographic
Mortality Rate

Let μθt Yt; Z;G; tð Þ be the risk of death conditional on the values of the stochastic

processes θt and Yt and random variables (observed covariates) Z, G, and age t. Let
T be a non-negative random variable describing the life span. In our applications,

the processes θt and Yt describe health status and physiological state, respectively,

and the variables Z and G correspond to static (age independent) covariates and

fixed genetic factors, respectively. Let μ tð Þ be the demographic mortality rate in the

population cohort whose individuals experience the influences of dynamic θt, Yt,
and static factors Z, G, and age t. The correspondence between μθt Yt; Z;G; tð Þ and
μ tð Þ extends the relationship well known in analyses of heterogeneous populations,
see Vaupel et al. (1979), Vaupel and Yashin (1985), and Yashin and Manton

(1997), among others:

μ tð Þ ¼ E μθt Yt; Z;G; tð Þ T > tj� �
: ð15:1Þ

Here the symbol E denotes the operation of mathematical expectation and

E μθt Yt; Z;G; tð Þ T > tj� �
is the result of this operation applied to μθt Yt; Z;G; tð Þ

conditional on the event {T> t} (life span is larger than t). Such conditioning means

that the average mortality rate at age t in the population cohort is defined for only

those individuals who survived to this age. Practical implementation of Eq. (15.1)

involves three steps. First, the stochastic processes θt and Yt, the random variables

Z and G, and the functionμθt Yt; Z;G; tð Þ have to be described. At this step, available
information about aging, health, and longevity accumulated in the research field

and relevant to the research problems of the study can be incorporated into the

mortality model. Second, a parametric description of the demographic mortality

rate μ tð Þ has to be obtained by performing the conditional averaging in (15.1). This

procedure depends on the specification of the components θt and Yt of the stochastic
process, random variables Z and G, as well as the function μθt Yt; Z;G; tð Þ, and may

require the use of approximation techniques. Third, the model parameters are

estimated using available data and statistical hypotheses about strength of the

specified relationships and the effects of corresponding variables on risks of disease

and death are tested. The parameter estimation procedure is performed using
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maximization of the likelihood of the observed data. The procedure allows for

testing statistical hypotheses about parameter values using likelihood ratio tests.

The product of the first two steps is a representation of the mortality model (15.1)

in terms of parameters characterizing the stochastic processes θt and Yt, the random
variables Z and G, as well as the dependence of the conditional hazard rate μθt
Yt; Z;G; tð Þ on these factors and age t. When these processes and variables describe

each person’s health status, physiological state, and genetic and non-genetic risk

factors, then the parameters of the model have a biological interpretation. The

possibility of such an interpretation opens a unique opportunity for obtaining new

insights into mechanisms connecting health and survival outcomes with aging-

related changes in biomarkers. It also allows for further integration of the research

findings obtained in related disciplines. The third step allows one to make conclu-

sions about dynamic aspects of aging-related changes, the contribution of each

component of the model to risks of disease and death, and other key issues related to

the regulation of aging, health, and longevity from available data.

15.3 Description of the Processes θt and Yt and Their
Connections to t

In addition to the demographic mortality rate, interest centers on estimating param-

eters of mortality rates conditional on observed covariates Z and G:

μ Z;G; tð Þ ¼ E μθt Yt; Z;G; tð Þ T > tj ,Z,G
� �

: ð15:2Þ

In this case, one has to further specify the processes θt (health status) and Yt
(physiological states) conditional on Z (fixed covariates) and G (fixed genetic

factors). Let θt,t� 0 be the finite-state (jumping) continuous-time stochastic process

(i.e., θt 2 {1,2,. . .,M}, where M is the number of states), and let Yt,t� 0 be a K-
dimensional stochastic process with continuous components, where K is the number

of physiological states that are monitored. We assume that Yt satisfies a stochastic
differential equation with coefficients depending on θt:

dYt ¼ Aθt Yt; Z;G; tð Þdtþ Bθt Z;G; tð ÞdWt, Yt0 : ð15:3Þ

Here Aθt Yt; Z;G; tð Þ is a K-dimensional vector function, Bθt Z;G; tð Þ is a matrix of

corresponding dimension, Yt0 is a random vector of initial conditions, andWt is a p-
vector Wiener process with independent components that is independent of the

initial value, Yt0 .

The finite-state continuous-time process θt,t � 0, describing jumping changes in

health/well-being status is characterized by a conditional transition intensity matrix

(from state k to state r) with elements:
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λkr Yt; θt; Z;G; tð Þ, k, r ¼ 1, 2, . . .M; and λkk Yt; θt; Z;G; tð Þ ¼
�
XM

r¼1,y 6¼k
λkr Yt; θt; Z;G; tð Þ ð15:4Þ

with initial probabilities P θt0 ¼ j Z,G,T > t0jð Þ, j¼ 1,2,. . .M.

Let Τ be a non-negative random variable describing life span. Its distribution

characterizes the variability in life span among individuals in human cohorts

observed in longitudinal data. An individual’s death at time T means that the

trajectories of θt and Yt are stopped at time Τ. The conditional distribution of Τ
given trajectories of θu, Yu,0� u� t, as well as values of Ζ, G, is completely

characterized by the conditional hazard (mortality) rate μθt Yt; Z;G; tð Þ. The triple

θt, Yt, T describes the joint evolution of individual health/survival status and

physiological variables over age during a person’s life course.
The use of stochastic differential equations for random continuously changing

covariates has been studied intensively in the analysis of longitudinal data, see

Arbeev et al. (2009) and Yashin et al. (2007a, 2008) and references therein. Such a

description is convenient since it captures the feedback mechanism typical of

biological systems reflecting regular aging-related changes and takes into account

the presence of random noise affecting individual trajectories. It also captures the

dynamic connections between aging-related changes in health and physiological

states, which are important in many applications.

15.4 Evolution of the Conditional Distribution of θt and Yt

Among Those Who Survived to Age t

To calculate μ tð Þ in (15.1) one needs f y, j tjð Þ ¼ ∂
∂y P Yt � y, θt ¼ j Z;Gj ,T > tð Þ

which is the joint conditional probability density function (p.d.f.), with respect to Yt,
and the probability with respect to θt, given {T > t}, Z,G and the functional form of

the conditional mortality rate μθt Yt; Z;G; tð Þ. Using standard Bayesian arguments

similar to that used in Yashin et al. (1985, 1995), the following partial differential

equation for f(y, j, |t) can be derived:

d

dt
f y, j tjð Þ ¼

XM
i¼1

λij y; tð Þf y, i tjð Þ � ∂
∂y

Aj y; tð Þf y, j tjð Þ� �þ 1

2

∂2

∂y2
B∘Bj tð Þf y, j tjð Þ� �

þ f y, j tjð Þ μ tð Þ � μi y; tð Þð Þ, f y, j t0jð Þ: ð15:5Þ

For simplicity, we omit the dependence of coefficients in (15.5) on the variables Z,

G. Here the functions Aj(y,t) are defined in (15.1) and B∘Bj tð Þ ¼ Bj tð ÞBj tð Þ*, where
the symbol * denotes transposition, and the transition intensities λkr(y,t), k,r ¼
1,2,. . .,M are defined by (15.4). Since f(y, j |t) multipliesμ tð Þ in (15.5), andμ tð Þ is the
result of integration of μθt Yt; Z;G; tð Þ with respect to f(y, j |t) the relationship (15.5)
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is a nonlinear partial integral-differential equation with respect to f(y, j |t). Note that

the mortality rate μ tð Þ in (15.5) can also be represented as follows:

μ tð Þ ¼
XM
j¼1

μj tð Þπj tð Þ ð15:6Þ

where πj tð Þ ¼ P θt ¼ j T > t, Z,Gjð Þ, and

μj tð Þ ¼ E μθt Yt; tð Þ θtj ¼ j, Z,G,T > t
�� �
: ð15:7Þ

To calculate (15.6) and (15.7), one needs πj tð Þ ¼ P θt ¼ j Z,G,T > tjð Þ and the

conditional p.d.f. f y j; tjð Þ ¼ ∂P Yt � y θt ¼ j,Z,G,T > tjð Þ=∂y for each t� 0. An

equation for πj(t) can be derived by integrating f(y,j|t) in (15.5) with respect to y:

dπj tð Þ=dt ¼
XM

k¼1
λjg tð Þπk tð Þ þ πj tð Þ μ tð Þ � μj tð Þ

� �
, πj t0ð Þ j ¼ 1, 2, . . .M:

ð15:8Þ

Here μ tð Þ and μj tð Þ are given by (15.6) and (15.7), and λij tð Þ is defined as follows:

λij tð Þ ¼ E λij Yt; tð Þ θt ¼ i, Z,G,T > tj� � ¼
Z
RK

λij y; tð Þf y i; tjð Þdy: ð15:9Þ

Integration in (15.7) and (15.9) requires f y j; tjð Þ, j ¼ 1, 2, . . . ,M. The equations for

this conditional p.d.f. follow from Bayes’ rule and Eqs. (15.5) and (15.8):

∂
∂t

f y j; tjð Þ ¼
XN
i¼1

λij y; tð Þf y i; tjð Þ � λij tð Þ; f y j; tjð Þ� � πi tð Þ
πj tð Þ

� ∂
∂y

Aj y; tð Þf y j; tjð Þ� �
þ1

2

∂2

∂y2
Bj tð Þf y j; tjð Þ� �

þ f y j; tjð Þ μj tð Þ � μj y; tð Þ� �
, f y j; t0jð Þ: ð15:10Þ

Note that (15.8) and (15.10) constitute a system of nonlinear (partial and ordinary)

differential equations that must be solved together. Calculation of μ Z;G; tð Þ and

μj Z;G; tð Þ in (15.8) and (15.10) will require a parametric description of

μθt Yt; Z;G; tð Þ. A special form of such a description—the quadratic hazard—is

used in a Gaussian approximation as follows.
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15.5 Gaussian Approximation

To solve Eqs. (15.8) and (15.10), the functional forms for the conditional mortality

rate μθt Yt; tð Þ in (15.1) and the elements of the conditional transition intensities

matrix λkr(Yt,t) in (15.9), as well as the coefficients, Aθt y; tð Þ and Bθt tð Þ in (15.5) and
(15.10) have to be specified, and the integrations have to be performed to obtain

μ tð Þ, μj tð Þ and λij tð Þ. It is convenient and epidemiologically justified to describe the

conditional hazard functions as quadratic forms of Yt:

λkr Yt, tð Þ ¼ λ0 kr tð Þ þ Yt � g0 k tð Þð Þ*Λkr tð Þ Yt � g0k tð Þð Þ ð15:11Þ
μθt Yt; tð Þ ¼ μ0θt tð Þ þ Yt � f 0θt tð Þ

� �*
Qθt tð Þ Yt � f 0θt tð Þ

� �
: ð15:12Þ

Here Λkr(t) and Qj(t) are symmetric non-negative-definite K�K matrices, g0k(t)
and f 0θt tð Þ are K-vector functions, and λ0kr(t) and μ0r(t) are parametric functions of

t for k, r, j¼ 1, 2,. . .,M; t � t0. It is convenient to modify Eq. (15.1) to explicitly

describe the mechanism of physiological regulation in the presence of external

disturbances. This mechanism can be described in terms of linear stochastic differ-

ential equations with feedback loops:

dYt ¼ aθt tð Þ Yt � f 1θt tð Þ
� �

dtþ bθt tð ÞdWt, Yt0 : ð15:13Þ

Here aθt tð Þ and bθt tð Þ are matrices of appropriate dimensions, Yt0 is a random vector

of initial conditions, and Wt is a vector Wiener process with independent compo-

nents, which is independent of the initial value, Yt0 . The components of the vector

function f 1θt tð Þ characterize the effects of allostatic adaptation on the physiological
state (Yashin et al. 2007a, 2012). Equation (15.13) includes negative feedback

loops, which reflect basic regularities of an organisms’ biological functioning.

The strength of feedback regulation depends on the absolute values of the elements

of the matrix aθt tð Þ. The dependence of these elements on θt indicates that strength
of the feedback regulation at age t may depend on an individual’s health status at

this age.

Conditions (15.12) and (15.13) together with the assumptions about normality of

the distribution for Yt0 and the absence of the jumping process yield a Gaussian

conditional probability distribution of the process Yt among survivors to age

t (Yashin and Manton 1997; Yashin et al. 1985). The presence of the jumping

process, θt, affecting the coefficients of Eq. (15.13) for Yt, and hence its age

dynamics, violates the Gaussian property of this distribution. However, the qua-

dratic forms for the conditional transition intensity functions (15.11) and mortality

risks (15.12), as well as the linear structure of (15.13), suggest the possibility of a

Gaussian approximation of the conditional p.d.f.

f y j; tjð Þ ¼ ∂P Yt � y θtj ¼ j,Z,G,T > tð Þ=∂y.
The conditional mortality risk and conditional transition intensity functions

given {T> t},{θt¼ j}, Z, G, can be represented as follows:
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μj tð Þ ¼ μ0j tð Þ þ mj tð Þ � f 0j tð Þ
� �*

Qj tð Þ mj tð Þ � f 0j tð Þ
� �

þ Tr Qj tð Þγj tð Þ
� � ð15:14Þ

λjk tð Þ ¼ λ0jk tð Þ þ mj tð Þ � g0j tð Þ
� �*

Λjk tð Þ mj tð Þ � g0j tð Þ
� �

þ Tr Λjk tð Þγj tð Þ
� � ð15:15Þ

where

mj tð Þ ¼ E Yt θtj ¼ j, Z,G,T > tÞð Þ

and

γj tð Þ ¼ E Yt � mj tð Þ
� �� Yt � mj tð Þ

� �*
θtj ¼ j,Z,G,T > t

� �
:

These conditional moments satisfy the following ordinary differential equations:

dmj tð Þ
dt

¼
X
i

πi tð Þ
πj tð Þ mij tð Þλij tð Þ � 2γi tð ÞΛij tð Þĝ 0i tð Þ

� �� aj tð Þ

� f̂ 1j tð Þ þ 2yj tð ÞQj tð Þf̂ 0j tð Þ;
ð15:16Þ

dγj tð Þ
dt

¼
X
i

πi tð Þ
πj tð Þ γi tð Þ � γj tð Þ þ mij tð Þ � m*

ij
tð Þ

� �
λij tð Þ

h
þ2 γi tð ÞΛij tð Þγi tð Þ

�

� γi tð ÞΛij tð Þĝ 0i tð Þ � m*
ij
tð Þ � mij tð Þ � ĝ *

0i
tð ÞΛij tð Þγi tð ÞÞ� þ aj tð Þγi tð Þ

þ γj tð Þa*j tð Þ þ Bj tð Þ � 2γj tð ÞQi tð Þγj tð Þ ð15:17Þ

Here λij tð Þ is given by (15.16), mij tð Þ ¼ mi tð Þ � mj tð Þ, and the “hat” variables are

defined as f̂ 0 j tð Þ ¼ f 0 j tð Þ � mj tð Þ, f̂ 1 j tð Þ ¼ f 1 j tð Þ � mj tð Þ, ĝ i tð Þ ¼ gi tð Þ � mi tð Þ.

15.6 Conclusion

Researchers in experimental studies of aging often use mortality curves or survival

functions for comparing the effects of external exposures or genetic manipulations

on the aging process and life span. Although such a practice is efficient for detecting

effects of interventions on survival, it does not allow for addressing more sophis-

ticated research questions about biological mechanisms regulating changes in

survival distributions in response to such interventions. This is because observing

changes in mortality and survival has limited utility for understanding the biolog-

ical machinery of aging and disease development (Yashin et al. 2002). In this

chapter, we showed that, to better understand how people lose health and functional

capacities during the aging process and how these changes influence survival
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outcomes, integrative mortality models can be developed, the parameters of which

have a biological interpretation in terms of aging-related declines in health status

and changes in physiological or other indices affecting health and survival

outcomes.

These integrative mortality models have more sophisticated mathematical

descriptions than those conventionally used in demography, actuarial science, and

biostatistics. These descriptions include stochastic differential equations of aging-

related changes in biomarkers, and their effects on health and survival across the

life course. Mathematically, such descriptions involve stochastic processes with

continuous and jumping sampling paths. A corresponding parametric representa-

tion of the all-cause mortality rate involves the operation of conditional mathemat-

ical expectation of the mortality risk given the event {T > t}, where T is the death

time and t is current age. Such conditioning indicates that averaging has to be

performed among only those individuals who survived to age t. The models include

partial differential/integral equations for conditional probability distributions of the

values of biomarkers and health status at a given age among survivors.

Although integrative mortality models look more complex and cumbersome

compared to demographic models, their research potential exceeds that of demo-

graphic models. The models derived above open up opportunities for investigating

how people age by analyzing changes in biological variables that take place in

aging human bodies, how these changes influence health, and how aging and health

affect survival outcomes. The proper interpretation of modeling results requires

identification of the model’s parameters using appropriate longitudinal data.

Many longitudinal datasets are now available to researchers. These datasets are

collected by distinct research groups, using different study designs, different (also

possibly overlapping) sets of biomarkers, and different time intervals between

subsequent examinations. They also may use different health characteristics. In

other words, each dataset is collected in accordance with the unique observational

plan specific to a given study, and different datasets may have distinct structures

because of that. The integrative mortality models developed in this chapter have

important features that make them promising tools in analyses of fundamental

problems of aging for which large amounts of comprehensive information are

required. These models allow for joint analyses of several dataset collected using

different observational plans. In the next chapter, we explain how these analyses

can be performed. The use of the Gaussian approximation allows for substantial

facilitation of numerical calculations involved in maximization of the likelihood

function of the data.
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Chapter 16

Integrative Mortality Models for the Study
of Aging, Health, and Longevity: Benefits
of Combining Data

Anatoliy I. Yashin, Igor Akushevich, Konstantin G. Arbeev,
Alexander M. Kulminski, and Svetlana V. Ukraintseva

16.1 Introduction

In a number of longitudinal studies, individual health and physiological/biological

variables are repeatedly measured for a relatively large number of study subjects.

These data capture aging-related changes in biomarkers as well as health and

survival outcomes that take place during these individuals’ life courses. Such data

have good potential for investigating properties of dynamic mechanisms involved

in the regulation of aging-related changes, as well as in evaluating roles of genetic

and non-genetic factors affecting them.

Despite the relatively large sample sizes of each longitudinal dataset, the number

of study subjects is often not enough to guarantee either high quality statistical

estimates of dynamic characteristics in multidimensional models or of tests of

statistical hypotheses related to fundamental research questions on causes and

mechanisms of aging and disease development. Partly, these desirable goals depend

on the complexity of the model, number of model parameters, prevalence of

diseases under study, etc. Often it happens that measurements of some important

variables or health outcomes that are omitted in one dataset were measured in

another dataset. In such cases, combining data would be a promising alternative for

comprehensive analyses of mechanisms of aging-related changes, health decline,

and life span. These analyses can be performed within the framework of a compre-

hensive model of human aging, health, and mortality. In this chapter, we describe a

method of statistical modeling for joint analyses of longitudinal data on aging,

health, and longevity collected using different observational plans. The method is

based on the mathematical model described in Chap. 15. Observational plans

corresponding to each dataset play a crucial role in specifying the likelihood

functions of observed components of the data. The results of our analyses indicate

that parameters of both continuous and jumping components of the model can be

identified from the combined data, and jointly estimated using the method of

maximum likelihood.
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16.2 Observational Plans and Combining Data

16.2.1 Likelihood Function of Life Span Data

The concept of an observational plan is used to characterize differences in the

structures of data in different datasets. The simplest observational plan relevant to

the mortality model described in Chap. 15 includes measurements of values of

variables Z, G, and life spans of study subjects with no observation of components

θt and Yt. Let T1, T2,. . ., TN, be life span data (possibly censored), Z1, Z2,. . ., ZN be

data on non-genetic covariates, and G1, G2,. . ., GN be genetic data on N individuals.

Letμ tð Þbe a parametrically specified conditional mortality rate given Z and G. Then

the likelihood function of the life span data conditional on Z and G is:

L T1,T2, . . . TNð Þ ¼
YN
i¼1

μi Tið Þδiexp �
ZTi

0

μi uð Þdu
8<:

9=; ð16:1Þ

where δi is a censoring variable (i.e. an at-risk indicator): δi¼ 1 if Ti is the life span
of the i-th individual and δi¼ 0 if the lifespan of the i-th individual is censored at

age Ti. The likelihood function (16.1) must be maximized with respect to the

parameters describing the mortality risk μi tð Þ ¼ μi Zi;Gi; tð Þ. As these parameters

are involved in the characterization of the process θt, Yt and variables Z, G, their
interpretation has biological and physiological meaning. As in Chap. 15, we omit

writing the variables Z and G in coefficients of the corresponding equations for

brevity. Note that the difference of μi tð Þ ¼ μi Zi;Gi; tð Þ , from a parametric demo-

graphic mortality model or epidemiologic model of mortality risk is that, in

modeling μi tð Þ ¼ μi Zi;Gi; tð Þ we assume that it is generated by the processes θt
and Yt in accordance with Eqs. 15.11, 15.12, and 15.13 in Chap. 15. These processes

are not observed in this observational plan. To calculate mortality models μi tð Þ in
(16.1), a conditional averaging procedure given {T> t}, Z,G, ((15.2), Chap. 15) has
to be performed. In most cases, such a procedure cannot be done analytically, and

hence μi tð Þ usually is not represented as an explicit function of the model param-

eters. Therefore, maximization of the likelihood function (16.1) involves intensive

computations that include solving non-linear partial differential or ordinary differ-

ential equations at each step of the likelihood maximization procedure. Such

calculations can be performed using modern optimization software packages.

An important feature of the integrative mortality models described in Chap. 15 is

that the data on life spans alone are usually not enough to identify all model

parameters. The problem could be resolved if data from longitudinal studies of

aging, health and longevity were used in the analyses. Since many datasets cur-

rently used for aging studies in humans were initially designed to address issues

related to specific chronic diseases, and were collected by different research groups,

they often measure different biological variables, record different health outcomes,
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and use different timings for making repeated observations of biomarkers. The

likelihood functions of the data, the parameter estimation algorithms, as well as

parameter estimates, will reflect these differences in the observational plans. At

first, it may not seem possible to combine the data collected according to different

observational plans. It turns out, however, that the use of comprehensive mortality

models allows such analyses to be performed. Here we describe the likelihood

functions of the data corresponding to several different observational plans and

show how these data can be jointly analyzed to estimate the model parameters.

16.2.2 Longitudinal Data on Physiological Variables: Health
Changes Are Not Observed: Observational Plan #1

In a number of longitudinal studies of aging and longevity, the values of physio-

logical variables are measured repeatedly during the life course. The age trajecto-

ries of physiological variables for each individual are described by (15.3) of

Chap. 15. The parameters of this equation characterize the dynamics of aging-

related changes in a population or in a group of study participants. Individual

variations in age trajectories of these variables are assumed to be generated by

differences in the initial conditions and by a random Wiener process. The longitu-

dinal data on physiological states consist of the results of measurements of indi-

vidual physiological variables in a group of individuals at a series of subsequent

time (age) points during the individuals’ life courses. These data play a key role in

estimating the model parameters using the likelihood maximization procedure. In

such a description, the model parameters characterize the population under study.

To form the various likelihood functions, assume that the continuously changing

variables are measured at age points t0, t1, t2, . . . , tn; tn � T. Let eY t
0 ¼ Yt0 ,Yt1 , Yt2 ,

. . . ,Ytn ; tn � T be a random vector of observations of the process Yt at these age

points. It follows that eYtk�
0 ¼ eYtk�1

0 and eY t
0 ¼ eYtk

0 , if tk � t < tkþ1. Here

tk� ¼ limu"tkþ1
tu. Denote by

eπ j tð Þ ¼ P θt ¼ j eY t
0, Z,G,T > t

��� �
ð16:2Þ

the conditional probability of having health/well-being status j, given ~Yt
0, Z,G, {T>

t}. Let

ef y j; tjð Þ ¼ ∂
∂y

P Yt � y eY t
0; θt

�� ¼ j, Z,G,T > t
� �

ð16:3Þ

be the conditional probability density function of Yt. The evolution of eπ j tð Þ andef y j; tjð Þ starts at age t0, and continues at the intervals

16.2 Observational Plans and Combining Data 333

http://dx.doi.org/10.1007/978-94-017-7587-8_15
http://dx.doi.org/10.1007/978-94-017-7587-8_15


t0 � t < t1; t1 � t < t2; . . . ; tn�1 � tn; t < T. At each such interval, these functions

satisfy Eqs. (15.8) and (15.10) of Chap. 15, respectively.

An important property of the age trajectories of eπ j tð Þ andef y j; tjð Þ is that they both
experience jumps at the observation times t1, t2, . . . tn; tn � T. The values of these
functions immediately after the jumps follow from standard Bayes’ arguments:

eπ j tkð Þ ¼ eπ j tk�ð Þ
ef Ytk j, tk�jð ÞXM

r¼1
eπ r tk�ð Þef Ytk r, tk�jð Þ

;ef y j; tkjð Þ ¼ δ y� Ytkð Þ; ð16:4Þ

respectively. Here eπ j tk�ð Þ ¼ lim
t"tk
eπ j tð Þ and

ef Ytk j, tk�jð Þ ¼ ∂
∂y P
�
Yt � y eYt�

0 ,θt ¼
�� j,T > t:

�
t¼tk ,y¼Ytk

, and δ y� Ytkð Þ is the

delta-function. Thus eπ j tð Þ and ef y j; tjð Þ are solutions of Eqs. (15.8) and (15.10) of

Chap. 15 at the interval tk�1; tk½ Þ with λkj tð Þ, μi tð Þ, μi tð Þ replaced byeλkj eY t
0; t

� �
,eμkj eY t

0; t
� �

, eμj
eY t
0; t

� �
, respectively. Here

eλkj eY t
0; t

� �
¼ E λkj Yt; tð Þ eY t

0, θt ¼ k, Z,G,T > t
��� �

; ð16:5Þ

eμ eY t
0; t

� �
¼
XM
j¼1

eμj
eY t
0; t

� �eπ j tð Þ; ð16:6Þ

and

eμj
eY t
0; t

� �
¼ E μ θt; Yt; tð Þ eY t

0, θt ¼ j,Z,G,T > t
��� �

: ð16:7Þ

The values (16.4) serve as initial conditions for eπ j tð Þ and ef y j; tjð Þ satisfying

Eqs. (15.8) and (15.10) of Chap. 15 at the intervals tk; tkþ1½ Þ, k¼ 0,1,2,. . ..
This notation allows us to form likelihood functions for the data collected in such

examinations. They include data on the sequences of discrete-time measurements

of continuously changing component (e.g., physiological state) for each study

participant, plus survival data. The component of the likelihood function dealing

with discrete-time measurements involves the conditional p.d.f.:eϕ y tjð Þ ¼ ∂P Yt � y eY t
0, Z,G,T > t

��� �
=∂y, which may be represented aseϕ y tjð Þ ¼

XM

r¼1
ef y r; tjð Þeπ r tð Þ. The second component describes survival data and

involves the conditional mortality rate eμj
eY t
0; t

� �
. Thus, the component of the

likelihood function for the i-th individual having measurements y i
t i
1

, y i
t i
2

, . . . y i
t i
n ið Þ
,

Ti is:
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Li y i
t i
1

, y i
t i
2

, . . . y i
t i
n ið Þ
, Ti

� �
¼

eϕ y i
t i
n ið Þ

t i
t i
n ið Þ
�

����� �eϕ y i
t i
n ið Þ�1

t i
t i
n ið Þ�1

�
����� �

:: . . . eϕ yt i
1
t i
t i
1

�
���� �eμi Tið Þδiexp �

ZTi

0

eμi uð Þdu
8<:

9=;:

ð16:8Þ

Here eϕ yt i
k
t ik
�� �

� �
¼
XM

r¼1
ef yt i

k
r; t ik
�� �

� �
πr t ik�
� �

, and δi is the at-risk indicator for

the i-th individual. Maximization of the likelihood function (16.8) requires solving

the modified Eqs. (15.8) and (15.10) from Chap. 15 for different values of inter-

mediate parameters at each step of the likelihood maximization procedure. Solving

a system of non-linear partial differential equations at each iteration step may be

computationally extensive. To reduce the computational load, a Gaussian approx-

imation of the conditional probability density function ef y j; tjð Þ could be used. Such

an approximation allows one to replace numerical solutions of the partial differen-

tial equations by numerical solutions of the ordinary differential equations for the

first two moments of this distribution.

16.2.3 Gaussian Approximation of the Model
of Physiological Variables

The use of the Gaussian approximation described in Chap. 15 transforms the

likelihood function (16.8) into (16.9). In this case, the likelihood becomes a

function of parameters determining the dynamic properties of Eqs. (15.8),

(15.16), and (15.17) of Chap. 15:

Li y i
t i
0

; y i
t i
1

; . . . ; y it ini
; Ti

� �
¼ eμi yTi�

0 ; Ti

� �δi
exp �

ZTi

0

eμi eyiu0 ; u� �
du

8<:
9=;

�
Yni ið Þ
j¼0

XM

k¼1
eπ i
k t ij�
� �

2π eγ i
k t it ij

�
� ���� ���� �� ��K

2

exp �1

2
y it ij

� em i
k t ij�
� �� �*eγ i

k t it ij
�

� ��1

y it ij
� em i

k t ij�
� �� �	 


ð16:9Þ

where eμ eY t
0; t

� �
is defined by (16.6), and eμj

eY t
0; t

� �
is represented as:
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eμj
eY t
0; t

� �
¼ μ0j tð Þ þ emj tð Þ � f j tð Þ

� �*
Qj tð Þ emj tð Þ � f j tð Þ

� �
þ Tr Qj tð Þeγ j tð Þ� � ð16:10Þ

with

emk tð Þ ¼ E Yt
eY t
0

�� , θj ¼ k,Z,G,T > tÞ
� �

;

eγ k tð Þ ¼ E Yt � emk tð Þð Þ* Yt � emk tð Þð Þ eY t
0

�� , θj ¼ k,Z,G,T > tÞ
� �

: ð16:11Þ

The transition intensities eλkj eY t
0; t

� �
in 15.8, Chap. 15 for eπ j tð Þ are:

eλkj eY t
0; t

� �
¼ λ0kj tð Þ þ emk tð Þ � gk tð Þð Þ*Λkj tð Þ emk tð Þ � gk tð Þ � gk tð Þð Þ

þ Tr Λkj tð Þeγk tð Þ� �
: ð16:12Þ

Above, δi is an at-risk indicator, K is the dimension of the vector Yt, em i
k tð Þ and eγ i

k tð Þ
satisfy Eqs. (15.16) and (15.17) of Chap. 15 at the intervals t i0; t

i
0

� �
; t i1; t

i
2

� �
; . . . ;

t ini�1; t
i
ni

h �
; t ini ; Ti

h �
with the initial conditions y i

t i
0

, y i
t i
1

, . . . , y i
t itn ið Þ

, for em i
k t ij

� �
¼ y i

t i
j

,

and eγ i
k t ij�
� �

¼ y i
t ij
, respectively, em i

k t ij�
� �

¼ limt"t ij em i
k tð Þ, and

eγ i
k t ij�
� �

¼ limt"t ij eγ i
k tð Þ, and tinðiÞ is the age of the latest measurement of the phys-

iological index before death at Ti for the i
th individual. Note that using the index i ineπ i

k tð Þ, em i
k tð Þ, and eγ i

k tð Þ in these equations is necessary because the values of these

estimates depend on the individual histories of the process Yt observed in discrete

times.

The conditions (16.4) can now be represented in the form:

eπ j tið Þ ¼ eπ j ti�ð Þ
2π eγ j ti�ð Þ�� ��� ��K

2exp �1
2
Yti � emj ti�ð Þ� �*eγ�1

j ti�ð Þ Yti � emj ti�ð Þ� �n o
XM
k¼1

eπ k ti�ð Þ 2π eγk ti�ð Þj jð Þ�K
2exp �1

2
Yti � emk ti�ð Þð Þ*eγ�1

k ti�ð Þ Yti � emk ti�ð Þð Þ
n o

;

ð16:13Þ

emj tið Þ ¼ Yti and eyj tið Þ ¼ 0.

The dynamics of eπ j tð Þ follow Eq. (15.8) of Chap. 15 witheλkj eY t
0; t

� �
used instead

of λkj tð Þ at the intervals t0 � t < t1; t1 � t < t2; . . . ; tn�1 � t < tn; t < T. The initial
values of eπ j tð Þ at the beginning of the ith interval ti � t < tiþ1½ Þ are given by the

relationship which involves values of eπ j ti�ð Þ, emj ti�ð Þ, and eγ j ti�ð Þ which are the
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solutions of Eqs. (15.8), 15.16, and (15.17) of Chap. 15 at the end of the interval

ti�1�t < ti½ Þ.

16.2.4 Data on Health Transitions Without Measurements
of the Physiological State: Observational Plan #2

Let f
_

y; tð Þ ¼ ∂
∂yP Yt � y θ t

0,Z,G,T > t
��� �

, with τ1, τ2,. . ., τm, denoting ages at which
changes in an individual’s health status took place (i.e. times of jumps of the

process θt). Then for the conditional probability density function of Yt, given age

trajectories of health history θt0, variables Z, G and {T > t}, the following equation

is operative:

∂
∂t

f
_ðy, tÞ ¼ �∂

∂t

�
Aθtðy, tÞ f

_ðy, tÞ
�
þ 1

2

∂2

∂y2

�
BθtðtÞ f

_ðy, tÞ
�
þ f

_ðy, tÞ

� ð
XM

k¼1, k 6¼θt�

λ
_

θt�,kðtÞ �
XM

k¼1, k 6¼θt�

λθt�,kðy, tÞ
�
þ f

_ðy, tÞ
�
μ
_
θt�ðtÞ

� μθt�ðy, tÞ
�

ð16:14Þ

The presence of two selection terms on the right side of Eq. (16.14) is easy to

understand because the probability density function

f
_

y; tð Þ ¼ ∂
∂yP Yt � y θ t

0,Z,G, τ1 > t, T > t
��� �

is conditional on the events that neither

the first transition of the process θt, nor death, happened before age t. Similarly, the

function f
_

y; tð Þ ¼ ∂
∂yP Yt � y θ t

0,Z,G, τk > t,T > t
��� �

is conditional on neither the k-

th transition of the process θt, nor death, happening before age t. This equation has

to be solved at the intervals [t0, τ1), [τ1, τ2), [τ2, τ3), . . ., [τm,T ), i.e., between subse-

quent jumps of the process θt. To avoid multiple hierarchical indexing, we will use

notation θt� θ(t). The initial conditions at the beginning of each interval [τ0, τ1),
[τ1, τ2), [τ2, τ3), . . ., [τm, T ) are

f
_

y; τp
� � ¼ f

_

y, τp�
� � λθ τp�ð Þ,θ τpð Þ y, τp�

� �
λ
_

θ τp�ð Þ,θ τpð Þ y, τp�
� � : ð16:15Þ

Here f
_

y, τp�
� � ¼ ∂

∂yP Ytp � y θ
τp�1

0 ,Z,G, T > τp
��� �

is the solution of Eq. (16.14)

at the interval τp�1; τp
� �

at the time just before the p-th jump of the process θt at
time τp:
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λ
_

θ τp�ð Þ,θ τpð Þ τp
� � ¼ E λθ τp�ð Þ,x Yτp ; τp

� �
θ
τp�
0 ,Z,G, T > τp

��� �
x¼θ τpð Þ
��� ð16:16Þ

μ
_
θ tð Þ tð Þ ¼ E μθ tð Þ Yt; tð Þ θ t

0,Z,G,T > t
��� �

ð16:17Þ

16.2.5 The Likelihood of the Data on Health Transitions

The component of the likelihood corresponding to the data on ages (times) of

change in the health status (age at onset of diseases) for the i-th individual with m

(i) changes in health status occurring at the time points τi1, τ
i
2, . . .., τ

i
mðiÞ and death

(censoring) at age Ti is:

L
_

i θi τ i1
� �

, θi τ i2
� �

, . . . θi τ i
m ið Þ

� �
, Yi

� �
¼ p θi t0ð Þ� �

�
Ym ið Þ

p¼1

λ
_

θi τ i
p�ð Þ,θi τ ipð Þ t ip

� �
exp �

Zt ip
t i
p�1

XM
k¼1, k 6¼θi t�ð Þ

λ
_

θi t�ð Þ,k tð Þ þ þμ
_

θi t�ð Þ tð Þ
0@ 1A dt

8>><>>:
9>>=>>;

� μ
_

θi τ i
m ið Þ

� � Tið Þδiexp �
ZTi

τ i
m ið Þ

XM
k¼1, k 6¼θi t�ð Þ

λ
_

θi t�ð Þ,k tð Þþμ
_

θi t�ð Þ tð Þ
0@ 1Adt

8>><>>:
9>>=>>;

ð16:18Þ

Here p(θi(t0)) is the initial distribution of health status, and θ τ i1�
� � ¼ θ t0ð Þ by

definition.

16.2.6 Gaussian Approximation of the Model with Health
Transitions

Since health transitions are observed, the equations for the first two moments are:

dm
_
j tð Þ
dt

¼ �a tð Þf̂ 1j tð Þ þ
X
k 6¼j

2γ
_
j tð ÞΛjk tð Þĝ j tð Þ þ 2γj tð Þf̂ j tð Þ; ð16:19Þ
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dγj tð Þ
dt

¼ aj tð Þγ_j tð Þ þ γ
_
j tð Þa*j tð Þ þ Bj tð Þ

�
X
k 6¼j

2γ
_
j tð ÞΛjk tð Þγ_j tð Þ � 2γ

_
j tð ÞQj tð Þγ_j tð Þ ð16:20Þ

Here we use the index j to indicate dependence of these moments on the process θt,
when θt� ¼ j. Strictly speaking, these moments depend on the entire trajectory of θt
at the interval [t0, t). These equations have to be solved at the intervals [τ1, τ2),
[τ2, τ3), . . ., [τm, T ), i.e., between subsequent jumps of the process θt. When θ τp�

� �
¼ k and θi τp�

� � ¼ j, and λkj(Yt,Z,G, t) is as described by Eq. (15.15) of Chap. 15,

we have for the initial values m
_
j τp
� �

and γ
_
j τp
� �

:

m
_
j τp
� � ¼ m

_
k τp�
� �� 2γ

_
k τp�
� �

Λkj τp
� �

ĝ 0k τp�
� �

λ
_

kj τp�
� � ð16:21Þ

γ
_
j τp
� � ¼ γ

_
k τp�
� �� 2γ

_
k τp�
� �

Λkj τp
� �

γ
_
k τp�
� �

λ
_

kj τp�
� � ð16:22Þ

with

g
_
0k τp�
� � ¼ g0k τp

� ��m
_
k τp�
� � ð16:23Þ

and

λ
_

kj tð Þ ¼ λ0kj tð Þ þ m
_
k tð Þ � g0k tð Þ

� �*
Λkj tð Þ m

_
k tð Þ � g0k tð Þ

� �
þ Tr Λkj tð Þγ_k tð Þ

� �
ð16:24Þ

16.2.7 Discrete Time Observations of the Physiological State
and Health Transitions: Observational Plan #3

Let us assume that the physiological state is repeatedly measured at a sequence of

discrete times, and all health transitions are also observed. In this case, the changes

in information about the i-th individual take place at times of discrete observation of

the process Yt : y
i
t i
1

, y i
t i
2

, . . . , y i
t i
n ið Þ

or the values of the jumping process θt right after

the jumps: θi(τi1), θ
i(τi2), . . ., θ

i(τimðiÞ). Here τ
i
mðiÞ is the last observation of the health

transition, and tinðiÞ is the last measurement of the physiological state for individual
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i, τ im ið Þ < Ti. and t
i
n ið Þ < Ti. Each individual is characterized by the ordered sequence

of ages at which different measurements took place. For example, the sequence (t1,
t2, τ1, t3, τ2, τ3, t4, . . ., τm) indicates that the first health transition happened between

the second and third measurements of the physiological state, the second and third

health transitions occurred between the third and fourth physiological measure-

ments, etc. Such sequences could be different for different study participants. Note

that in our model P τk ¼ trð Þ ¼ 0 for any k and r.

Let f
_
_

y; tð Þ ¼ ∂
∂yP Yt � y eY t

0, θ
t
0,T > t

��� �
be the conditional probability density

function of Yt given observations ~Yt
0, θ

t
0 and {T > t}. This function satisfies

Eq. (15.10) of Chap. 15 with λ
_

θt�,k tð Þ and μ
_
θt� tð Þ replaced by λ

_
_

θt�,k tð Þ and μ
_
_

θt� tð Þ where

λ
_
_

θt�, k tð Þ ¼ E λθt�, k Yt; tð Þ eY t
0

�� , θt�0 , T > t
� �

ð16:25Þ

and

μ
_
_

θt� tð Þ ¼ E μθt� Yt; tð Þ eY t
0

�� , θt�0 ,T > t
� �

ð16:26Þ

at each interval resulting from combining and ordering t1, t2,. . .., tn and τ1, τ2,. . ..,
τm. If an interval starts with tk, then modified forms of Eq. (15.10, Chap. 15) for

f
_
_

y; tð Þ have to be used with the initial condition:

f
_
_

ytk ; tk
� � ¼ δ y� ytk

� �
:

If an interval starts with τp, then these equations have to be used with initial

conditions:

f
_
_

y; τp
� � ¼ f

_
_

y, τp�
� � λθ τp�ð Þ,θ τpð Þ y; τp

� �
λ
_
_

θ τp�ð Þ,θ τpð Þ
τp
� � ð16:27Þ

where

λ
_
_

θ τp�ð Þ,θ τpð Þ τp
� � ¼ E λθ τp�ð Þ,x Yτp ; τp

� � eY τp
0

�� , θ
τp�
0 , T > τp

� �
x¼θ τpð Þ
��� : ð16:28Þ

An example of the likelihood function for the i-th individual with observations

occurring at the sequence of times ti1, t
i
2, τ

i
1, t

i
3, τ

i
2, τ

i
3, . . ., τ

i
mðiÞ, t

i
nðiÞ,T

i is:
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L
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, θi τ i2
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� �

,Ti
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_
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θi τ ip�ð Þ,θi τ ipð Þ τ ip

� �
μ
_
_

θi Tið Þ Tið Þδi

exp �
ZTi

t i
0

XM
k¼1, k 6¼θi t�ð Þ

λ
_
_

θi t�ð Þ,k tð Þ þ μ
_
_

θi t�ð Þ tð Þ
0@ 1Adt

8><>:
9>=>;: ð16:29Þ

Here si ¼ max t in ið Þ; τ
i
m ið Þ

n o
, � f

_
_

y, t ik�
� � ¼ ∂

∂yP Yt i
k
� y Y

t i
k
�

0

��� θ
t i
k
�

0 ,T > t ik

� �
is the

solution of the modified forms of equations Eq. (15.10, Chap. 15) either at the

interval [τp, tik), or at the interval t ik�1; t
i
k

� �
, assuming that these intervals do not

contain other observations; and f
_
_

y, τ ik�
� � ¼ ∂

∂yP Yt i
k
� y Y

t ik�
0

��� θ
t ik�
0 ,T > t ik

� �
is the

solution of the modified forms of equations Eq. (15.10, Chap. 15) either at the

interval τk�1; τk½ Þ, or at the interval t ik�1; t
i
k

� �
, also assuming that these intervals do

not contain other observations.

16.2.8 Gaussian Approximation of the Model
of Longitudinal Data on Physiological Variables
and Health Transitions

The Gaussian approximation facilitates analyses of combined data. Let m
_
_

tð Þ ¼ E

Yt
eY t
0

�� , θ t
0,T > t

� �
and γ

_
_

tð Þ ¼ E Yt �m
_
_

tð Þ
� �

Yt �m
_
_

tð Þ
� �* eY t

0

�� , θ t
0, T > T

 !
be

the first two moments of the conditional probability density function f
_
_

y; tð Þ ¼ ∂
∂yP

Yt � y eY t
0

�� θ t
0,T > t

� �
: These moments satisfy Eqs. (15.16) and (15.17) of Chap. 15

at each interval resulting from combining and ordering the observation times t1,
t2,. . . tn and times of health transitions τ1, τ2,. . .,τm.
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If an interval starts with tk, then equations Eq. (15.16, Chap. 15) for m
_
_

tð Þ starts
with the initial conditionm

_
_

tkð Þ ¼ ytk and, for γ
_
_

tð Þ;with the condition γ
_
_

tkð Þ ¼ 0. If

an interval starts with τp, then equations Eq. (15.16, Chap. 15) starts with the initial

condition (16.21) with m
_

τp�
� �

and γ
_

τp�
� �

replaced by m
_
_

τp�
� �

and γ
_
_

τp�
� �

.

The likelihood function of the data for the i-th individual when both physiolog-

ical variables and health transitions are measured is:
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i y i
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, y i
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_
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_
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0@ 1Adt

8><>:
9>=>;:

ð16:30Þ

Here ui
k, k ¼ 1, 2, . . . n ið Þ þ m ið Þ is the element of an ordered sequence combined

from ti1, t
i
2, . . .., t

i
nðiÞ and τi1, τ

i
2, . . .., τ

i
mðiÞ. If an interval starts with tik, then

Eqs. (15.16) and (15.17) of Chap. 15 start with the initial conditions mt i
k
¼ yt i

k
, γt i

k

¼ 0: If an interval starts with τip, then Eqs. (15.16) and (15.17) of Chap. 15 start with

the initial conditions (16.21) and (16.22):

μ
_
_

tð Þ ¼ μ0 tð Þ þ m
_
_

tð Þ � f j tð Þ
� �*

Qj tð Þ m
_
_

tð Þ � f j tð Þ
� �

þ Tr Qj tð Þ γ_
_

tð Þ
� �

: ð16:31Þ

The transition intensities λ
_
_

kj tð Þ are:

λ
_
_

kj tð Þ ¼ λ0kj tð Þ þ m
_
_

tð Þ � gk tð Þ
� �*

Λkj tð Þ m
_
_

tð Þ � gk tð Þ
� �

þ Tr Λkj tð Þ γ_
_

tð Þ
� �

: ð16:32Þ

The likelihood function (16.30) can be used for combining data, as shown below.
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16.3 A Simulation Study

When the mortality model is specified in terms of the processes θt and Yt and
random variables G and Z, its parameters can be identified from the data only if the

observational plan is detailed enough. For example, using one of Observational

Plans #1 or #2 alone is not enough to identify the model parameters. However,

when the parameters of the health transition process θt are known (say, from some

other study), the use of longitudinal data provided by the Observational Plan #1

allows one to evaluate the parameters of the biomarker process Yt. Similarly, when

the parameters associated with the biomarker process Yt are known (from some

other study), the use of longitudinal data provided by the Observational Plan #2

allows one to evaluate the parameters of the health transition process θt. This
situation suggests that if one has two datasets for the two groups of individuals,

one collected using Observational Plan #1 and another collected using Observa-

tional Plan #2, then combining these two datasets and performing their analyses

jointly may result in identifying the parameters of a comprehensive model. To

confirm the feasibility of such identification, we performed the following simula-

tion/estimation experiment.

16.3.1 The Model with Repeated Measurements of a
Physiological Variable and Changes in Health State:
Observational Plan #3

First, we estimated parameters of a model in which each individual could be

characterized by a continuously changing physiological index Yt, whose dynamics

are described by the stochastic differential equations Eq. (15.13, Chap. 15), and

possible transitions from healthy (“H”), to unhealthy (diseased “D”) states. In this

model, the process Yt represented diastolic blood pressure will hypertension used as
the unhealthy state. We assumed: (i) time independence of parameters describing

the age dynamics of physiological variables in each of two states, i.e.,

aH,aD,bH,bD,f1H and f1D, (ii) a Gompertz type function for μ0i tð Þ ¼ μ0iexp αitð Þ, i
¼ H,D; and for λ0HD tð Þ ¼ λ0HDexp αHDtð Þ, and (iii) time independence of other

parameters describing transition probabilities, i.e., QH, QD, fH, fD, ΛHD and gHD.
The mortality rates from healthy and unhealthy states and transition intensity

functions (Eqs. (15.12) and (15.13), Chap. 15) are specified as:

μH tð Þ ¼ μ0H tð Þ þ mH tð Þ � f H tð Þð Þ2QH tð Þ þ QH tð ÞγH tð Þ,
μD tð Þ ¼ μ0D tð Þ þ mD tð Þ � f D tð Þð Þ2QD tð Þ þ QD tð ÞγD tð Þ; ð16:33Þ

λHD tð Þ ¼ λ0HD tð Þ þ mH tð Þ � gH tð Þð Þ2ΛHD tð Þ þ ΛHD tð ÞγH tð Þ: ð16:34Þ
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The differential equations for the conditional moments become:

dmH

dt
¼ 2γHΛHDĝ H � aHf̂ 1H þ 2γHQHf̂ H; ð16:35Þ

dmD

dt
¼ πH

π
mHDλHD � 2γHΛHDĝ H

� �� aDf̂ 1D þ 2γDQDf̂ D; ð16:36Þ
dγH
dt

¼ �2γ2HΛHD þ 2aHγH þ b2H � 2γ2HQH: ð16:37Þ
dγD
dt

¼ πH
πD

γH � γD þ m2
HD

� �
λHD þ 2 γ2HΛHD � 2γHΛHDĝ H � mHD

� �� �
þ 2aDγD þ b2D � 2γ2DQD:

ð16:38Þ

Finally, the equations for the conditional probabilities of being in the healthy and

unhealthy states are:

dπH
dt

¼ �πHλHD þ πH πHμH þ πDμD � μHð Þ,
dπD
dt

¼ πHλHD þ πD πHμH þ πDμD � μDð Þ:
ð16:39Þ

For simplicity, we omitted the dependence on t in the variables in the right hand

side of these equations. The initial values form
_
_

τp
� �

and γ
_
_

τp
� �

for the case of a time

interval starting by a jump are

m
_
_

τp
� � ¼ m

_
_

τp�
� �� 22 γ

_
_

τp�
� �

ΛHDĝ j τp�
� �

λ
_
_

HD τp�ð Þ and γ
_
_

τpð Þ¼ γ
_
_

τp�ð Þþ2 γ
_
_

2 τp�ð ÞΛHD

λ
_
_

HD τp�ð Þ:

ð16:40Þ

The purpose of these analyses is to get a set of realistic model parameters appro-

priate for use in data simulation. Several parameters estimates were rounded to

simplify the description. The following set of parameters was finally used: aH ¼
�0.05, aD ¼ �0.03, b2H ¼ 10, b2D ¼ 15, f1H ¼ 80, f1D ¼ 90, μ0H ¼0.00002, αH ¼
0.08, μ0D ¼ 0.002, αD ¼ 0.045, QH ¼ 0.00001, QH ¼ 0.00007, ΛHD ¼ 0.00005,

λ0HD ¼ 0.00005, αHD ¼ 0.065, f0H ¼ 80, f0D ¼ 80, and gH ¼ 72. Here f1H,
f1D,f0H,f0D,gH,bH, and bD are measured in the units of the selected covariate (e.g.,

mmHg for blood pressure), aH and aD are dimensionless, μ0H,αH,μ0D,αD,λ0HD, and
αHD are in units of year�1, and, finally, QH,QD and ΛHD are in units of year�1

multiplied by the reciprocal of the covariate unit squared.

To test the quality of the simulation procedure, we simulated data on ten cohorts

using these parameters. The starting age for individuals in these cohorts was
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50 years with 25% of the individuals initially unhealthy. The starting values for the

covariate (diastolic blood pressure) were 80 mmHg for healthy and 85 mmHg for

unhealthy individuals. Mortality and transitions to the unhealthy state were simu-

lated for each month. Information about the vital status, the health state, and the

covariate value was recorded annually. Then reconstructed characteristics of the

simulated cohorts were compared with the theoretical two-stage model, which can

be specified for these two stages as described below.

Figure 16.1 illustrates the quality of the data simulation. It compares the

theoretical curves, corresponding to the equations derived above and calculated

with the parameters used in the data simulation procedure, and the age patterns of

the respective characteristics in the simulated cohorts empirically averaged over

5000 individuals.

It can be seen from this figure that the simulated data are in good correspondence

with the theoretical model. The results of the simulation studies are similar to those

presented in Yashin et al. (2011) where f1D¼ 85 was used for simulation. The plots

are qualitatively similar, which shows the stability of the model predictions.

Next, we use the simulated data and the estimation scheme based on maximi-

zation of the likelihood (16.30) (Observational Plan #3) to estimate the model

parameters again. The likelihood function for the case of two discrete states can

be represented as a product of terms whose functional form depends on the types of

observational events forming the respective age intervals. These events are associ-

ated with: (i) measurements of physiological state, (ii) changes in health status, and

(iii) transitions to death/censoring. There are five types of such interval-specific

contributions shown in Table 16.1 below.

Measurement ! measurement
f
_
_

c ytk ; tk�1;�
� �

Sc tk�1; tkð Þ for c ¼ H,D

Measurement ! jumping (HD)
λ
_
_

HD τð ÞSH tk; τð Þ
Measurement ! death/censoring

μ
_
_

k Tð Þδi Sk tk; Tð Þ for k ¼ H,D

Jumping ! measurement
f
_
_

D ytk , τ, tk�
� �

SD τ; tkð Þ
Jumping ! death

μ
_
_

D Tð Þδi SD τ;Tð Þ

where f
_
_

G ytk , u, tk�
� � ¼ 2π γ

_
_

tk�ð Þ
���� ����� ��1

2

exp �1
2

ytk � m
_
_

tk�ð Þ
� �*

γ
_
_

tk�ð Þ�1

(

ytk �m
_
_

tk�ð Þ
� �

, where m
_
_

tð Þ and γ
_
_

tð Þ, obtained as solutions of (16.35 and 16.36)

and (16.37 and 16.38) with initial condition (16.40) if u¼ τ, and initial condition

(16.13) if u¼ tk; where
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Fig. 16.1 Age patterns of dynamic characteristics in the simulation analysis. Solid lines represent
the “true” age trajectories constructed by solving the differential equations with model parameters

used in the data simulation. The dots with error bars represent the age trajectories of the mean

values of these characteristics evaluated from empirical analyses of longitudinal data on aging,

health, and mortality from 10 simulated cohorts with 5000 individuals each. The following

characteristics are presented: (1) Top left panel: First moments of the hypothetical variable

describing the physiological state of the simulated cohort of healthy and unhealthy individuals,

mH(t) andmD(t). (2) Top right panel: Age trajectories of second central moments of the probability

distributions of the hypothetical variable describing the physiological state for the simulated

cohort of healthy and unhealthy individuals, γH(t) and γD(t). (3) Bottom left panel: Age patterns

of the survival function and prevalence of unhealthy individuals in the simulated cohort. (4) Bottom
right panel. Age patterns of mortality rates for the healthy and unhealthy states and the transition

rate from the healthy to unhealthy states
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SH t1; t2ð Þ ¼ exp �
Z t2

t1

λ
_
_

HD tð Þ þ μ
_
_

H tð Þ
 !

dt

( )
and SD t1; t2ð Þ

¼ exp �
Z t2

t1

μ
_
_

D tð Þ
� �

dt

	 

:

Figure 16.2 presents the characteristics of the simulated cohorts calculated using the

estimated parameter values and compares them with the trajectories obtained using

the original data.

Some bias in the empirical and reconstructed parameters is likely to be due to

“doublings” of the subsequent events (healthy!unhealthy transition and death)

occurring at the same time interval that are interpreted in Observational Plan #3 as

death from the healthy state.

16.3.2 Combining Data with Observational Plans #1 and #2

To confirm the benefits from such analyses, we considered two subsets of simulated

datasets. One subset deals with data collected according to Observational Plan #1,

i.e., these data represent a cohort of individuals for whom the measurements of

physiological variables have been performed during each individual’s life course.

Table 16.1 Results of the simulation experiment for Observational Plan #3 with ten datasets

True Mean SD SE

aH �0.05 �0.051 0.002 0.001

aD �0.03 �0.03 0.002 0.001

bH [C] 10 9.97 0.06 0.02

bD [C] 15 15 0.07 0.02

f1H [C] 80 80.1 0.25 0.08

f1D [C] 85 84.8 0.55 0.18

μ0H� 105 Year�1 2 1.96 0.33 0.1

μ0D� 105 Year�1 200 201.3 24.3 7.7

αH Year�1 0.08 0.082 0.002 0.001

αD Year�1 0.045 0.045 0 0

QH � 105 Year�1[C]�2 1 1.23 0.21 0.07

QD� 105 Year�1[C]�2 7 7.14 0.5 0.16

λ0HD � 105 Year�1 20 23.5 4.77 1.51

αHD Year�1 0.065 0.063 0.002 0.001

ΛHD � 105 Year�1[C]�2 5 4.66 0.62 0.2

fH [C] 80 79.3 1.3 0.4

fD [C] 80 80 0.96 0.3

gH [C] 72 71.7 1.01 0.32

[C] denotes dimensionality of a covariate
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Another dataset consists of records of health transitions for another group of

individuals who do not have records of measurements of physiological indices.

We used the estimation scheme based on the likelihood (16.30) in which each

component of the likelihood represents the corresponding dataset. Note that the use

of data collected in Observational Plan #1 alone does not allow for evaluating all

parameters characterizing health transitions and physiological age trajectories.

Similarly, having data collected in Observational Plan #2 alone does not allow

for evaluating all parameters characterizing changes in physiological age trajecto-

ries. However, maximization of the joint likelihood function for the two

sub-cohorts of individuals allows for reliable estimation of model parameters for

both components of the model.

78

80

82

84

86

88

90

92

60 80 100

mH(age)

mD(age)

0

20

40

60

80

100

120

140

160

180

60 80 100

γH(age)

γD(age)

0

0.2

0.4

0.6

0.8

1

60 80 100

πD(age)

S(age)

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

60 80 100

μD(age)

λHD(age)

μH(age)

age

age age

age

Fig. 16.2 Age patterns of physiological and life history characteristics calculated from the

theoretical model (solid lines), and using parameter estimates obtained by maximization of the

likelihood for observational plan #3 for ten simulated cohorts with 5000 individuals each (dashed
lines). The same characteristics as in Fig. 16.1 are presented in the four panels
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The approach described above opens remarkable opportunities for joint analyses

of incompatible data collected using different observational plans. In this section,

we implement this idea in the joint analysis of data corresponding to Observational

Plans 1 and 2. An important property of the model is that it can be used for

constructing likelihood functions of the data for each of the plans (see Eqs. (16.9)

and (16.18). These functions depend on the same parameters and represent different

data on independent individuals; therefore, the likelihood of combined data is the

product of these two likelihood functions. Table 16.2 presents results of such

parameter estimates for five simulation experiments.

The parameter estimation procedure based on maximization of this likelihood

improves the accuracy of estimates for parameters which could be estimated from

one of the two datasets. However, the main advantage of such joint analyses of

several datasets is the possibility of estimating new parameters which could not be

estimated by analyzing the two datasets separately. This means that combining

incompatible data in joint analyses allows for addressing new research questions

and obtaining new findings, which will contribute to a better understanding of the

nature of the processes under study.

Table 16.2 The results of the five simulation experiments of the 18-parameter model for joint

analyses of data with Observational Plans #1 and #2 (1000 persons for Plan 1 and 10,000 persons

for Plan 2)

True 1 2 3 4 5

aH �0.05 �0.056 �0.050 �0.053 �0.051 �0.044

aD �0.03 �0.026 �0.049 �0.034 �0.034 �0.055

bH [C] 10 10.0 10.1 10.0 10.2 9.8

bD [C] 15 14.9 14.9 14.6 15.0 15.7

f1H [C] 80 81.9 81.3 82.4 78.5 79.4

f1D [C] 85 76.1 86.3 82.6 83.5 86.2

μ1H � 105 Year�1 2 3.2 0.7 2.8 4.2 2.1

αH Year�1 0.08 0.076 0.091 0.076 0.071 0.078

QH � 105 Year�1[C]�2 1 <0.1 3.1 0.4 <0.1 1.4

μ0D � 105 Year�1 200 188.9 213.0 156.5 205.4 185.7

αD Year�1 0.045 0.045 0.044 0.047 0.045 0.047

QD � 105 Year�1[C]�2 7 8.0 10.1 10.6 9.5 5.0

λ0HD � 105 Year�1 20 11.1 15.9 8.1 28.5 19.9

αHD Year�1 0.065 0.071 0.067 0.074 0.061 0.065

ΛHD � 105 Year�1[C]�2 5 6.2 4.5 6.6 2.9 5.2

fH [C] 80 78.6 78.8 75.2 80.0 79.9

fD [C] 80 78.9 83.5 79.7 82.9 80.0

gH [C] 72 72.3 70.2 71.7 69.9 71.8

[C] denotes dimensionality of a covariate
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16.4 Discussion and Conclusion

The results of recent studies of aging and longevity in laboratory animals motivate

studying the possibility of postponing or slowing down aging processes in humans.

The beneficial consequences of such postponement for health and survival have

been widely discussed in the literature (Blagosklonny 2012; Butler et al. 2004;

Cevenini et al. 2013; Hefti and Bales 2006; Kirkland and Peterson 2009; Kristjuhan

2012; Le Bourg 2009; Olshansky et al. 2007; Rattan 2008; Vijg and Wei 1995;

Yang et al. 2012; Yashin 2009). To study the connections between human aging and

chronic conditions, data collected in longitudinal studies of aging, health, and

longevity can be used. A good example of such a longitudinal dataset is the

Framingham Heart Study. The data on the original cohort of this study contain

the results of biennial examinations of physiological states, biological indicators,

and ages at onset of a number of chronic conditions, such as cardiovascular disease,

cancer, and diabetes, performed during more than 60 years of follow-up.

Progress in understanding aging processes depends to a large extent on the

possibility of evaluating properties of complicated mechanisms that link aging

and development of chronic diseases. The quality of such an evaluation, as well

the possibility of addressing fundamental research questions about aging, health,

and longevity, depend on the amount of information that can be used in the

analyses. For these reasons, the joint analyses of large amount of data describing

various aspects of aging-related changes and disease development looks promising.

Such analyses require appropriate mathematical description of aging mechanisms

and their connections to available data, as well as efficient statistical methods for

estimating parameters of the corresponding processes from the data. The results of

this chapter indicate that comprehensive analyses of available longitudinal data on

human aging, health, and longevity can be successfully performed.

The use of a diffusion-type continuous-time stochastic process for describing the

evolution of physiological states over the life course allows us to take recent

findings in the area of aging into account, and incorporate them into the model of

aging-related changes in physiological states. The use of a finite-state continuous-

time stochastic process with transition rates depending on current values of phys-

iological variables for describing changes in health status during this period cap-

tures important connections between aging-related changes, morbidity, and

mortality risks. We derived equations for integrative mortality models, and approx-

imate changes in physiological state in terms of the first two moments of a

conditional Gaussian process, given the health state. The simulations showed that

the model parameters can be successfully estimated from the data.

Different longitudinal studies of aging, health, and longevity have different

designs, use different systems of measurements (observational plans), and measure

different biological variables and health outcomes. In this chapter, we showed

(Table 16.2) that data with different observational plans describing the same

basic phenomena (aging-related changes) can be jointly analyzed successfully.

Although such analyses are computationally extensive, the reward is clear: more
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sophisticated research questions can be addressed in joint analyses of combined

data. This is because separate analyses of each dataset are not able to estimate all

links among aging-related changes and health and survival outcomes. This means

that separate analyses can be performed only with simplified models of aging,

health, and longevity which have lower scientific value.

In sum, this chapter has illustrated how the study of aging, health, and longevity

using comprehensive mortality models may require the use several longitudinal

datasets to estimate important features of the aging mechanisms. The parameters of

such models can be interpreted in terms of aging-related declines in physiological

functions and deterioration in health/well-being status. The parameter estimation

procedures become computationally more extensive, compared to those used in

traditional analyses of survival or demographic data. The analyses, however, can be

successfully performed using currently available computational equipment and

software. The parameters of the proposed model can also be identified in the joint

analyses of two or more incomplete datasets. The reward for these efforts is a better

understanding of how changes, developing in the aging human body, affect the risks

of diseases and survival. The approach described above can be extended to evaluate

properties of individualized dynamic mechanisms involved in the regulation of

aging-related changes in each study participant. These types of analyses will

contribute to scientific knowledge promoting the development of personalized

preventive and treatment strategies.

Acknowledgements The research reported in this chapter was supported by the National Institute

on Aging grants R01AG027019, R01AG030612, R01AG030198, 1R01AG046860, and

P01AG043352. The content is solely the responsibility of the authors and does not necessarily

represent the official views of the National Institute on Aging or the National Institutes of Health.

The Framingham Heart Study (FHS) is conducted and supported by the National Heart, Lung and

Blood Institute (NHLBI) in collaboration with the FHS Investigators. This chapter was prepared

using a limited access dataset obtained from the NHLBI and does not necessarily reflect the

opinions or views of the FHS or the NHLBI.

References

Blagosklonny, M. V. (2012). Rapalogs in cancer prevention: Anti-aging or anticancer? Cancer
Biology and Therapy, 13(14), 1349–1354.

Butler, R. N., Warner, H. R., Williams, T. F., Austad, S. N., Brody, J. A., Campisi, J., Cerami, A.,

Cohen, G., Cristofalo, V. J., Drachman, D. A., Finch, C. E., Fridovich, I., Harley, C. B., Havlik,

R. J., Martin, G. M., Miller, R. A., Olshansky, S. J., Pereira-Smith, O. M., Smith, J. R., Sprott,

R. L., West, M. D., Wilmoth, J. R., & Wright, W. E. (2004). The aging factor in health and

disease: The promise of basic research on aging. Aging Clinical and Experimental Research,
16(2), 104–111; discussion 111–102.

Cevenini, E., Monti, D., & Franceschi, C. (2013). Inflamm-ageing. Current Opinion in Clinical
Nutrition and Metabolic Care, 16(1), 14–20.

Hefti, F. F., & Bales, R. (2006). Regulatory issues in aging pharmacology. Aging Cell, 5(1), 3–8.

References 351



Kirkland, J. L., & Peterson, C. (2009). Healthspan, translation, and new outcomes for animal

studies of aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences,
64(2), 209–212.

Kristjuhan, U. (2012). Postponing aging and prolonging life expectancy with the knowledge-based

economy. Rejuvenation Research, 15(2), 132–133.
Le Bourg, E. (2009). Hormesis, aging and longevity. Biochimica et Biophysica Acta, 1790(10),

1030–1039.

Olshansky, S. J., Perry, D., Miller, R. A., & Butler, R. N. (2007). Pursuing the longevity dividend:

Scientific goals for an aging world. Annals of the New York Academy of Sciences, 1114, 11–13.
Rattan, S. I. (2008). Principles and practice of hormetic treatment of aging and age-related

diseases. Human and Experimental Toxicology, 27(2), 151–154.
Vijg, J., & Wei, J. Y. (1995). Understanding the biology of aging: The key to prevention and

therapy. Journal of the American Geriatrics Society, 43(4), 426–434.
Yang, Y., Li, T., & Nielsen, M. E. (2012). Aging and cancer mortality: Dynamics of change and

sex differences. Experimental Gerontology, 47(9), 695–705.
Yashin, A. I. (2009). Hormesis against aging and diseases: Using properties of biological adap-

tation for health and survival improvement. Dose-Response: A Publication of International
Hormesis Society, 8(1), 41–47.

Yashin, A. I., Akushevich, I., Arbeev, K. G., Kulminski, A., & Ukraintseva, S. (2011). Joint

analysis of health histories, physiological states, and survival. Mathematical Population
Studies, 18(4), 207–233.

352 16 Integrative Mortality Models for the Study of Aging, Health, and Longevity. . .



Chapter 17

Analysis of the Natural History
of Dementia Using Longitudinal
Grade of Membership Models

Eric Stallard and Frank A. Sloan

17.1 Introduction

Continuing increases in longevity have long been expected to produce dramatic

increases in the incidence and prevalence of mental disorders and associated

chronic diseases and disabilities (Kramer 1980). This expectation is now a reality

for Alzheimer’s disease and related dementias (Alzheimer’s Association 2016); the
resulting challenge for biodemographers is to extend their analytic repertoire to

adequately describe the complex multidimensional long-term progressive array of

cognitive, functional, behavioral, and clinical characteristics of dementia cases to

facilitate the analysis of longitudinal panel data on these subpopulations.

This chapter presents a promising solution to this challenge based on a longitu-

dinal form of the Grade of Membership (GoM) model (Woodbury et al. 1993;

Kinosian et al. 2000; Stallard 2007; Stallard et al. 2010; Razlighi et al. 2014). The

presentation of the model is self-contained—providing sufficient mathematical

details that the reader can fully understand the concepts and methodology—and

the application is realistic—addressing the complexities of the dementia process

and the difficulties in such analysis. The specific formulation of the dementia model

presented in this chapter has been independently validated for Alzheimer’s disease
(a subset the dementia syndrome) in Stallard et al. (2010) and Razlighi et al. (2014).

Dementia is the primary cause of cognitive impairment and subsequent deteri-

oration in functioning among older persons, leading to long-term care (LTC),

nursing home admission, and death. The disease is progressive, generally fatal,

and characterized by substantial heterogeneity in etiology, symptomatology at

diagnosis, and rates of progression post-diagnosis. The absence of well-defined

biomarkers complicates the diagnosis and contributes further to the apparent

heterogeneity of cases due to differences in the manifestations of the disease at

the time of diagnosis (Grossberg and Desai 2003).

Much of the literature on the progression of dementia is based on samples of

patients selected through contacts with medical providers or recruited into clinical
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A.I. Yashin et al., Biodemography of Aging, The Springer Series on Demographic

Methods and Population Analysis 40, DOI 10.1007/978-94-017-7587-8_17

353



trials after meeting specified protocols (Kinosian et al. 2000). Alzheimer’s disease
(AD), the primary component of dementia, has been described as exhibiting three

stages—mild, moderate, and severe—with each stage lasting 2–3 years and the

overall process lasting 5–8 years, on average, but with substantial individual

variation in overall duration ranging from 2 to 20 years (Grossberg and Desai

2003).

Stern et al. (1996) used a growth curve model to show that declines in cognitive

and physical functioning due to AD were nonlinear and multidimensional with an

estimated overall average duration of 15–18 years, with initial losses in cognition

preceding losses of independence in instrumental activities-of-daily-living (IADLs)

and basic activities-of-daily-living (ADLs), on average, by 5 and 7 years, respec-

tively. The process was nonlinear because the rates of loss for each of the three

types of functioning (cognition, IADL, and ADL) differed over time. The process

was multidimensional because the three types of functioning exhibited different

patterns of time-dependent rates of loss. The following patterns were found:

• Loss of cognitive functioning was slow for the first 5 years, then rapid for years

5–15, beyond which it was slow again.

• IADL loss started at 5 years, was initially rapid, and was effectively finished at

12 years.

• ADL loss started later, at 7 years, increased more slowly and for a longer time,

and was effectively finished at 17 years.

The above results indicated that improved descriptions of the onset and progres-

sion of dementia from the first manifestation of cognitive impairment to death

would require (1) multiple indicators of cognitive and functional impairment in

longitudinally followed cohorts with at least 15 years of follow-up and (2) multi-

variate models of changes in those indicators capable of representing health state

transitions that underlie the losses in the various types of functioning.

When analyzing survey data with large numbers of questionnaire items,

researchers are increasingly relying on the Grade of Membership (GoM) model—

a flexible nonparametric model designed to analyze large numbers of categorical

variables with a minimum number of assumptions (e.g., Berkman et al. 1989;

Wachter 1999; Portrait et al. 2001; Seplaki et al. 2006; Wieland et al. 2013). The

GoM model readily deals with substantial amounts of “missing data”, a common

and pervasive problem in longitudinal data due to death or early withdrawal from

the study, to the use of different questionnaires for different types of respondents

(e.g., one questionnaire for community residents, another for institutional resi-

dents), and to the presence of different “skip patterns” depending on the answers

to specific questions. This can be done without strong distributional assumptions

such as joint multivariate normality of observed and unobserved variables. The

GoM model is a latent state model that produces, as a direct outcome of its

estimation algorithm, vectors of “intensity” or “severity” scores for each individual

person (i.e., study subject) that can be interpreted as parsimonious multivariate

summaries of each individual’s array of measurements. With longitudinal data on

general population samples, these intensity scores (which are more generally
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referred to as “GoM scores”) can be tracked over time and used to describe the

natural history of the targeted disease process.

The GoM model has been applied to the analysis of longitudinal data with

repeated time-varying measures by treating each observation of the same person

as if it were that of a new person, i.e., as a statistically independent observation

(Manton et al. 1991, 1992). Under this approach, the resulting estimated GoM

scores are used to form a new longitudinal dataset which can be analyzed separately

in an independent longitudinal model. A limitation of this approach is that the

estimation of the GoM scores neither explicitly recognizes nor exploits the infor-

mation contained in the assumed form of GoM-score changes represented in the

independent longitudinal model. This limitation produces a loss of efficiency in

estimation.

We present an optimized longitudinal form of the GoM model for the analysis of

initial and subsequent patterns of cognitive and functional impairment in longitu-

dinal cohort data in which each follow-up observation of the same person is linked

to all prior observations through a set of transition matrices that use the initial GoM

scores for that person to generate all subsequent values of those scores. Duration-

specific rates of transition from more to less healthy states within the GoM model

are consistent with reports of the rates of progression of dementia described in the

literature (e.g., Stern et al. 1996; Stallard et al. 2010). The linkage of each follow-up

vector of GoM scores to the immediately prior vector of GoM scores through the

corresponding transition matrix generalizes the growth curve model used by Stern

et al. (1996) in which the change in each test score over a follow-up interval is

assumed to be a function of the test score at the start of that interval. Our

generalization allows more complex forms of transition from one observation to

the next and allows the transitions to change with the time since onset of the

disease.

Earlier versions of this model were employed in analyzing the natural history of

AD (Kinosian et al. 2000, 2004) and in analyzing the age-dependence of disability

and mortality in the general population (Stallard 2007). The current version tests the

assumption that dementia is a complex irreversible multidimensional process

governed by a latent three-dimensional bounded state-space process with upper-

triangular transition matrices. Maximum likelihood parameter estimation is based

on a modified Newton-Raphson algorithm that meets the Kuhn-Tucker conditions

(Kuhn and Tucker 1951).

The model was estimated using longitudinal panel data from the National Long

Term Care Survey (NLTCS) of 1984, 1989, 1994, and 1999. All respondents

included in the model were determined to have been cognitively intact prior to

the interview at which dementia was first detected. Longitudinal follow-up

extended up to 15 years for those with onset detected in 1984, with shorter

follow-up for those with onset detected in 1989 and 1994, and no follow-up for

those with onset detected in 1999. All cases meeting the criteria for recent onset of

dementia had at least one interview; 33% had at least two interviews; 7% had three

or four interviews; and 1% had four interviews. Data from all completed interviews

were used in model estimation.
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Cognitive measures included individual items in the Short Portable Mental

Status Questionnaire (SPMSQ; Pfeiffer 1975) and the Mini-Mental State Exam

(MMSE; Folstein et al. 1975); and self-reported and physician-reported diagnostic

codes for AD and related dementias.

Functional performance measures included individual items from standard

scales of basic activities of daily living (ADLs; Katz and Akpom 1976), instrumen-

tal activities of daily living (IADLs; Lawton and Brody 1969), and physical

performance (Nagi 1976).

The remainder of the chapter contains four sections:

• Section 17.2 (Methods) describes the longitudinal GoM model and the

constrained Newton-Raphson estimation procedures.

• Section 17.3 (Data) describes the NLTCS and related administrative files from

Medicare used to select cases with recent onset of dementia.

• Section 17.4 (Results) presents and interprets the parameter estimates.

• Section 17.5 (Discussion) considers the implications of the analyses and poten-

tial future applications of the model.

The chapter describes the specification and estimation of the longitudinal GoM

model and provides a substantively meaningful application to the natural history of

dementia from the time of initial clinical symptoms to death. The methodology and

the application are mutually reinforcing and both are necessary to motivate the

model for the study of individual level processes based on generalizations of

standard biodemographic methods. The substantive results indicated that the natu-

ral history of dementia was highly variable over individuals with respect to their

cognitive and physical functioning at onset and the subsequent rates of loss of such

functioning. Estimates of life expectancy ranged from 2 to 12 years, depending on

cognitive and physical functioning at onset. This range is so large that the use of

population averages may be highly misleading when used as prognosticators for

subgroups of dementia cases with similar characteristics at onset. The results

showed that the dementia population was continuously distributed on the derived

GoM-score dimensions indicating that there was no evidence for the existence of

clusters of homogeneous subgroups that could be modeled using more traditional

demographic procedures—consistent with the findings in Stallard et al. (2010),

based on similar analyses of AD in the Predictors Study (Stern et al. 1996).

17.2 Methods

17.2.1 Model

The basic form of the GoM model as a fuzzy-set representation of disease states

based on discrete clinical variables (i.e., categorical data) was introduced in Wood-

bury and Clive (1974). Modifications to the basic model that facilitated estimation
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were presented in Woodbury et al. (1978). Manton et al. (1994) presented a

comprehensive review of statistical properties and applications of the GoM

model. Wachter (1999) provided an alternative derivation of the GoM model

based on concepts of dimensionality reduction similar to those used in Principal

Component Analysis (PCA).

Applications of the GoM model to longitudinal data were introduced in

(1) Manton et al. (1991)—using an approach in which the transition matrices

were estimated separately from the basic GoM model—and (2) Woodbury

et al. (1993) and Kinosian et al. (2000)—using an approach in which the transition

matrices were estimated simultaneously with the basic GoM model using either

maximum likelihood procedures based on the fixed-point iteration algorithm or

approximations to such maximum likelihood procedures based on the faster

Newton-Raphson iteration algorithm. Limitations of the separate estimation

approach were discussed in Stallard (2007) and will not be considered further

herein. For the simultaneous estimation approach, the primary limitation was that

the Newton-Raphson iteration algorithms could be applied to the approximating

likelihood function, but not to the exact likelihood function. This chapter introduces

new estimation procedures for the exact likelihood function based on three linked

sets of Newton-Raphson iteration algorithms that satisfy the Kuhn-Tucker condi-

tions for convergence and that, depending on the specific estimation problem, are

one to three orders of magnitude faster than existing procedures based on fixed-

point iteration algorithms.

The basic GoM model is specified in terms of a K-element vector of “GoM-

scores,” gi, defined for each individual i in a study population of size N, where i¼ 1,

. . ., N. Each GoM-vector (of GoM-scores) must satisfy “convexity constraints”

such that all K elements are nonnegative and their sum is exactly equal to 1. The

convexity constraints combine a “summation constraint”, i.e.,
X
k

gik ¼ 1, with

K “boundary constraints”, i.e., gik � 0, k ¼ 1, . . . ,K. Given the summation con-

straint, it follows that the GoM-vectors generate a (K� 1)-dimensional space with

all points falling within or on the boundaries of a regular (K� 1)-simplex with

K vertices. Geometrically, these objects are a point for K¼ 1, a line for K¼ 2, an

equilateral triangle for K¼ 3, a regular tetrahedron for K¼ 4, etc.

The longitudinal GoMmodel is specified by adding a time subscript t to the basic
GoM vector gi, yielding git, with initial values gi � gi0, by convention, which are

updated using a sequence of transition matrices, Ut, t¼ 0, . . ., T – 1, governing the

changes in git from time 0 to time T. It follows that:

g
0
it ¼ g

0
i0

Yt�1
r¼0

Ur

( )
¼ g

0
iV0, t ð17:1Þ

where g
0
it is the transpose of git and, in general,
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Vs, t ¼
Yt�1
r¼s

Ur: ð17:2Þ

V0,t is the cumulative transition matrix from time 0 to time t. To preserve the

convexity constraints on the GoM-vectors over time, each row of each U-matrix

must satisfy convexity constraints such that all K elements are nonnegative

(a boundary constraint) and their sum is exactly equal to 1 (a summation constraint).

We refer to the GoM vector git as the vector of “adjusted” GoM-scores to

distinguish it from the basic “unadjusted” GoM vector gi. This distinction becomes

important when considering the impact of the V-matrices on the GoM-score

distribution at time t> 0 (e.g., see Figs. 17.2a, 17.2b, 17.2c, and 17.2d below).

The GoM-scores are unobserved latent state-space variables hypothesized to

explain the associations among observed measurements (Woodbury and Clive

1974; Wachter 1999; Stallard et al. 2010). Precise connections between

GoM-scores and observed measurements are as follows.

Let xit denote the J-element vector of responses to J categorical variables

obtained for individual i at time t. The elements of xit are indexed by j, j¼ 1, . . .,
J, and are denoted xijt. Because the variables are categorical, it is convenient to

index the response outcomes by l, l¼ 1, . . ., Rj, where Rj is the number of response

outcomes for variable j. The responses are further characterized by defining a vector
of auxiliary variables, yit, where the elements of yit are binary coded using the

following convention:

yijlt ¼
1, if xijt ¼ l
0, if xijt 6¼ l:

�
ð17:3Þ

The second condition includes the case where xijt is missing at random or missing

because of planned survey skip patterns including the case where a person is lost to

follow-up due to withdrawal or mortality. Informative missing data can be

represented by coding appropriate supplementary indicator variables.

The fundamental equation of the longitudinal GoM model is a bilinear form that

describes the probability of each observed outcome m, m¼ 1, . . ., M, in terms of a

K-element vector of probabilities, denoted λm, in which each element is associated

with one of K latent states or pure types:

Prob yijlt ¼ 1
� �

�pijlt ¼ g
0
i

Yt�1
r¼0

Ur

( )
λmjl
¼ g

0
iV0, tλmjl

; ð17:4Þ

where the subscript t indexes time and the subscript m is a known function of the

combination ( j, l ) of variable and outcome indexes, which implies thatM ¼
X
j

Rj.

For each variable j, there are Rjλ-vectors which can be arranged to form the

columns of a K�Rj matrix Λj; to conform to the convexity constraints on the

GoM-vectors, each row of Λj must satisfy convexity constraints such that all Rj

358 17 Analysis of the Natural History of Dementia Using Longitudinal Grade. . .



elements are nonnegative (a boundary constraint) and their sum is exactly equal to

1 (a summation constraint).

The characterization of GoM as a fuzzy-set model is based on the bilinear form

of the probability of each observed outcome as a weighted average of the pure-type

probabilities for that outcome, using the same set of GoM scores as weights for all

outcomes for a given individual. To the extent that the pure types can be described

as discrete classes in a Latent Class Analysis (LCA; Lanza et al. 2007), the

“fuzziness” introduced by GoM represents the capacity of the model to describe

individuals who are not exactly like any of the pure types, or equivalently, who do

not unambiguously fall into any of the standard categories used to classify the

progression of the disease (Eisdorfer et al. 1992).

Fuzziness is an important aspect of GoM. It allows one to generalize a discrete

latent class process to a fuzzy-set latent membership process with intermediate

state-space locations that are specified as abstractions from a more complex

multidimensional process. If the fuzzy-set generalization is in fact unnecessary,

then the model will revert to the standard form of a discrete latent class process. For

the analysis in this chapter, where 17% of the cases were exactly like one of the

four pure types, and 83% were not (see Figs. 17.1a, 17.1b, 17.1c, and 17.1d), the

fuzzy-set generalization was essential to the specification of an adequate model.

The fuzziness in GoM induces the close connections with PCA noted by

Wachter (1999). One remaining difference between PCA and GoM is that the

PCA scores are unrestricted whereas the GoM scores are restricted by the convexity

constraints. This difference is less restrictive than commonly recognized: the PCA
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scores can be transformed to meet the convexity constraints using a suitably defined

homeomorphic mapping from the Euclidian space R(K� 1) used in PCA onto the

interior of the (K� 1)-simplex S(K� 1) used in GoM. The mapping will be homeo-

morphic if it is bijective (i.e., one-to-one and onto), continuous, and open.

Such a mapping from PCA to GoM will yield GoM scores that are interior to the

(K� 1)-simplex, with extreme PCA scores mapping to locations arbitrarily close to

the simplex boundaries. For maximum likelihood estimation of the GoMmodel, the

directly estimated GoM scores for these extreme cases are allowed to fall on the

boundaries, even though the “true” GoM scores are near, but not precisely on, the

boundaries. As noted by Birch (1964), the possibility that some maximum likeli-

hood estimates may lie on the boundaries presents no special problems for the

asymptotic theory as long as the true values are in the interior of the parameter

space. The large sample properties of longitudinal GoM are considered in

Sect. 17.2.9.

17.2.2 Likelihood

The likelihood is the product over i, j, l, and t of the set {Prob(yijlt ¼ 1)}:

L ¼
Y
i

Y
j

Y
l

Y
t

g
0
i

Yt�1
r¼0

Ur

( )
λmjl

 !yijlt

: ð17:5Þ
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The product form of the likelihood expresses the assumption of statistical indepen-

dence of the i¼ 1, . . ., N sample persons over the t¼ 0, . . ., T observation times and

the j¼ 1, . . ., J variables. The product over the l¼ 1, . . ., Rj response levels reflects

the binary coding of yit, not an independence assumption.

The assumption that different individuals are statistically independent is stan-

dard in biodemographic analysis. The assumption that different variables are

statistically independent is the defining assumption of the GoM model. That is,

the GoM-score vectors are precisely the vectors of latent variables required to

generate conditional distributions of the observed variables that are statistically

independent. By treating the GoM-scores as unknown parameters, we can ensure

that the fitted model best matches this conditional independence assumption

(Wachter 1999).

The assumption that repeated observations of the same individuals are statisti-

cally independent over time was implicit in prior applications of the GoM model to

longitudinal data analysis (Manton et al. 1991, 1994; Woodbury et al. 1993). We

assume that the U-matrices are precisely the set of transition matrices required to

transform the GoM-score vectors so that the resulting conditional distributions of

the observed variables are statistically independent over time. By treating both the

GoM-score vectors and the U-matrices as unknown parameter sets, we can ensure

that the fitted model best matches the independence assumption over variables

and time.

The product form of the likelihood over the set of J variables readily accommo-

dates the coding of survey skip patterns and missing responses. Skip patterns occur

when the interrogatories for given questions depend on specific responses to prior

questions. For example, the SPMSQ and MMSE questions were asked only to self-

respondents in the NLTCS. If the relevant screening variable was coded to indicate

a proxy interview, then all SPMSQ and MMSE questions would be coded as

missing (i.e., by setting yijlt¼ 0, for all values of l associated with the relevant

indexes j and t). Similarly, because all NLTCS surveys used either the SPMSQ or

MMSE, but not both, the complementary questions were coded as missing. More

fundamentally, if the person was not alive at a given survey or if the T-year follow-
up survey had not yet been conducted, all of the survey responses would be coded as

missing. Occasionally, a respondent’s record failed to provide an answer to a

question that should have been provided. These cases were coded as missing in

the current analysis.

The effect of coding variable responses as missing (by setting yijlt¼ 0) is to

replace the corresponding terms in the likelihood with the value 1. This is equiv-

alent to integrating over the conditional distributions of missing responses, given

the vectors of GoM scores, git, assuming that the missing responses are missing at

random (MAR; see Rubin 1976). This is fully consistent with Orchard and

Woodbury’s (1971, p. 699) missing information principle under which “the missing

data tells you nothing.”
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17.2.3 Log-Likelihood

Parameter estimation is facilitated by maximizing the natural logarithm of the

likelihood function, rather than the likelihood function itself. The log-likelihood is:

lnL ¼
X
i

X
j

X
l

X
t

yijltlnpijlt; ð17:6Þ

where pijlt is the predicted probability that yijlt¼ 1.

To establish notation for the derivative expressions, we introduce three equiva-

lent factorizations of pijlt to isolate the g-parameters and the λ-parameters as

follows:

pijlt ¼ g
0
iV0, t

� �
λmjl
¼ g

0
itλmjl

ð17:7Þ

pijlt ¼ g
0
i V0, tλmjl

� � ¼ g
0
iλmjlt ð17:8Þ

pijlt ¼ g
0
iV0, s

� �
Vsþ1, tλmjl

� � ¼ g
0
isλmjl sþ1ð Þt ð17:9Þ

where

λmjlt ¼ V0, tλmjl
ð17:10Þ

λmjl sþ1ð Þt ¼ Vsþ1, tλmjl
: ð17:11Þ

Thus, time indexes can be attached to the λ-vectors as well as to the g-vectors. The
subscript mjl will be reserved for use with K-element λ-vectors, which may have

0, 1, or 2 time indexes as indicated above.

We refer to the λ-vector λmjlt as the vector of “adjusted” λ-parameters to

distinguish it from the basic “unadjusted” λ-vector λmjl
This distinction becomes

important when considering the impact of the V-matrices on the λ-vectors at time

t> 0 (e.g., see Figs. 17.3a, 17.3b, 17.3c, and 17.3d below).

17.2.4 Derivatives of Log-Likelihood

We need the following first- and second-order derivatives of the log-likelihood

function:

∂lnL
∂gik

¼
X
j

X
l

X
t

yijltλkjlt=pijlt ð17:12Þ
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∂lnL
∂λkjl

¼
X
i

X
t

yijltgikt=pijlt ð17:13Þ

∂lnL
∂ukct

¼
X
i

X
j

X
l

X
s¼tþ1

yijlsgiktλcjl tþ1ð Þs=pijls ð17:14Þ

∂2
lnL

∂gik∂gik0
¼ �

X
j

X
l

X
t

yijltλkjltλk0jlt=p
2
ijlt ð17:15Þ

∂2
lnL

∂λkjl∂λk0jl0
¼

�
X
i

X
t

yijltgiktgik0t=p
2
ijlt if l ¼ l0

0 if l 6¼ l0

(
ð17:16Þ

∂2
lnL

∂ukct∂uk0c0t
¼ �

X
i

X
j

X
l

X
s¼tþ1

yijlsgiktgik0tλcjl tþ1ð Þsλc0jl tþ1ð Þs=p2ijls: ð17:17Þ

17.2.5 Constrained Log-Likelihood

Under Lagrange’s method, the summation constraints on the g-, λ-, and u-param-

eters can be represented by adding an appropriately defined set of “side conditions”

(additive terms) to the log-likelihood function. The specification of the side condi-

tions must be such that the additional terms sum to zero when the summation

constraints are satisfied. Such a constrained log-likelihood can be defined as

follows:

lnL* ¼ lnLþ
X
i

ρi 1�
X
k

gik

 !
þ
X
k

X
j

θkj 1�
X
l

λkjl

 !

þ
X
k

X
t

φkt 1�
X
c

ukct

 !
; ð17:18Þ

where ρi, θkj, and φkt are “Lagrange multipliers” (i.e., unknown constants). To avoid

confusion, we refer to ln L as the unconstrained log-likelihood in the following.

17.2.6 Kuhn-Tucker Conditions

Kuhn and Tucker (1951: Lemmas 1 and 2) provided necessary and sufficient

conditions for maximum likelihood estimation under the convexity constraints of

the GoM model:
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1. Each parameter must be zero or positive (a boundary constraint).

2. The derivative of the constrained log-likelihood with respect to each Lagrange

multiplier must be zero (equivalent to the summation constraint).

3. The derivative of the constrained log-likelihood with respect to each parameter

must be zero or negative.

4. The product of each parameter and the derivative of the constrained

log-likelihood with respect to that parameter must be zero (ensuring that only

parameters on the boundary can have negative derivatives).

5. The log-likelihood function must be concave.

Conditions 1–4 are necessary; Conditions 1–5 are sufficient. Conditions 1 and

2 restate the convexity constraints. Conditions 2–4 require consideration of the first-

order derivatives. Condition 5 requires consideration of the second-order

derivatives.

If Conditions 1–5 are met for all parameters, then the entire set of estimates may

constitute a global maximum likelihood solution. If Conditions 1–4 are met and

Condition 5 is met for the subset of all parameters with 0-valued derivatives (i.e.,

excluding one or more parameters with negative derivatives), then the entire set of

estimates constitutes a local maximum likelihood solution. The global maximum

likelihood solution can be found by solving for all local maxima and selecting the

one with the largest value of the log-likelihood function.

17.2.7 Derivatives of Constrained Log-Likelihood

The first-order derivatives of the constrained and unconstrained log-likelihood

functions are related as follows:

∂lnL*

∂gik
¼ ∂lnL

∂gik
� ρi ð17:19Þ

∂lnL*

∂λkjl
¼ ∂lnL

∂λkjl
� θkj ð17:20Þ

∂lnL*

∂ukct
¼ ∂lnL

∂ukct
� φkt: ð17:21Þ

The second-order derivatives of the constrained and unconstrained log-likelihood

functions with respect to the g-, λ-, and u-parameters, respectively, are identical. It

follows from Kuhn-Tucker Conditions 2 and 4 that the Lagrange multipliers are

weighted averages of the derivatives of the unconstrained log-likelihood function

with weights equal to the associated parameter values:

ρi ¼
X
k

gik
∂lnL
∂gik

¼
X
j

X
l

X
t

yijlt ð17:22Þ
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θkj ¼
X
l

λkjl
∂lnL
∂λkjl

ð17:23Þ

φkt ¼
X
c

ukct
∂lnL
∂ukct

: ð17:24Þ

It follows from Kuhn-Tucker Condition 3 that the derivatives of the unconstrained

log-likelihood in each weighted average corresponding to 0-valued derivatives of

the constrained log-likelihood are equal.

Kuhn-Tucker Condition 4 requires that:

gik
∂lnL*

∂gik
¼ gik

∂lnL
∂gik

� gikρi ¼ 0; ð17:25Þ

with similar expressions for the λ- and u-parameters. Although this equation does

not allow one to solve for the value of each g-parameter, it does allow one to

express each g-parameter as a function of itself and the λ- and u-parameters:

gik ¼ gik �

X
j

X
l

X
t

yijltλkjlt=pijltX
j

X
l

X
t

yijlt
: ð17:26Þ

Except for the addition of the time dimension, this expression matches Eq. (3.11) in

Woodbury and Clive (1974). The numerator and denominator of the factor to the

right of the “�” are the first and second terms, respectively, of the derivative of the

constrained log-likelihood with respect to gik in Eq. (17.19). The second term in

Eq. (17.19) is preceded by a minus sign: hence, when the derivative is zero the

factor is 1; when the derivative is positive the factor is greater than 1, and, when

negative, less than 1. Moreover, gik is functionally independent of gi’k’, when i
0 6¼ i.

Similarly, one obtains

λkjl ¼ λkjl �

X
i

X
t

yijltgikt=pijltX
l0

X
i

X
t

yijl0tgiktλkjl0t=pijl0t
; ð17:27Þ

which corrects and adds a time dimension to Eq. (4.6) in Woodbury and Clive

(1974; see Eq. (1.22) in Erosheva 2002); and

ukct ¼ ukct �

X
i

X
j

X
l

X
s¼tþ1

yijlsgiktλcjl tþ1ð Þs=pijlsX
c0

X
i

X
j

X
l

X
s¼tþ1

yijlsgiktukc0tλc0jl tþ1ð Þs=pijls
; ð17:28Þ

λkjl is functionally independent of λk’j’l’, when j0 6¼ j or k0 6¼ k, and ukct is function-
ally independent of uk’c’t when k0 6¼ k.
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Woodbury and Clive (1974) used their Eqs. (3.11) and (4.6) as the basis of a

fixed-point iteration procedure operating independently and sequentially on each

set of g- and λ-parameters. Each set was conditionally optimized given the current

values of the other parameters. Once a given set was optimized, the focus shifted to

the other set which was then conditionally optimized given the latest values of the

given set. This process was repeated as long as the parameters continued to change.

At each iteration, the fixed-point update equations yield parameter estimates that

satisfy the convexity constraints, and hence Kuhn-Tucker Conditions 1 and 2. Infin-

itesimally small positive values are treated as true zeroes at convergence which

allows the solution to satisfy Kuhn-Tucker Condition 4. At convergence, the fixed-

point factors are less than or equal to 1, which satisfies Kuhn-Tucker Condition

3. Kuhn-Tucker Condition 5, however, is not explicitly considered.

The most significant limitation of the fixed-point iteration procedure is that it has

great difficulty moving infinitesimally small positive values away from 0 when the

fixed-point factors are close to 1 (Stallard 2007). This can lead to problems where

Kuhn-Tucker Conditions 3 and 4 are not satisfied but the iterations are unable to

improve the log-likelihood to reach even a local maximum. Use of a Newton-

Raphson procedure bypasses these problems by using additive rather than multi-

plicative updates.1 An added benefit is the relatively much faster convergence of the

Newton-Raphson procedure in cases where both procedures lead to the same

solution.

17.2.8 Constrained Newton-Raphson Procedures

Maximum likelihood estimation can be conducted via three linked sets of Newton-

Raphson procedures operating independently and sequentially on g-vectors, Λ-
matrices, and U-matrices. Each vector or matrix of parameters is conditionally

optimized given the current values of the other parameters. Once a given set of

1Woodbury et al. (1978) implemented a set of Newton-Raphson procedures for the cross-sectional

GoM model but found it necessary to change the equation for pijl (without a time index) to the

form:

pijl ¼ g
0
iλmjl

=
X
l0

g
0
iλmjl0

which allowed the g- and λ-parameters to be estimated without Lagrange side conditions by

removing the summation constraints on the λ-parameters.

Although this modification facilitated the estimation of g- and λ-parameters, it constituted a

fundamental change in the parametric specification of the model in which the λ-parameters were

no longer interpretable as probabilities. An alternative approach is to modify the Newton-Raphson

procedure to be consistent with all of the convexity constraints.
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parameters is optimized, the focus shifts to the next vector or matrix which is then

conditionally optimized given the latest values of the other parameters. This

process is repeated until Kuhn-Tucker Conditions 1–4 are met and Condition 5 is

met for the subset of all parameters with 0-valued derivatives. We guard against

local maximum likelihood solutions by (1) re-estimating each model with multiple

sets of “start values” for the parameter estimates and (2) using multiple sets of

perturbations on the tentatively accepted global solutions to confirm that each

perturbation returns to the same solution.

We implemented three linked sets of Newton-Raphson procedures where each

vector of K g-parameters was estimated separately over person i, i¼ 1, . . ., N; each
matrix of K�Rjλ-parameters was estimated separately over variable j, j¼ 1, . . ., J;
and each matrix of K�K u-parameters was estimated separately over time t, t¼ 0,

. . ., T – 1. The procedures are essentially identical across the different parameter

sets. Thus, we present the general form of the algorithm, indicating special condi-

tions as needed.

Let b denote a Q-element vector of parameters with Q ¼ K, K�Rj, K�K, or
fewer elements depending on whether the iterations involve the g-, λ-, or u-
parameters, and whether one or more of these parameters are excluded from the

current iteration due to the boundary constraints; let d denote the corresponding Q-
element vector of first-order derivatives of the constrained log-likelihood function

and H the corresponding Q�Q (Hessian) matrix of second-order derivatives mul-

tiplied by �1. Kuhn-Tucker Condition 5 requires that H be positive definite; this

can be verified during the computation of H�1.
The standard form of the Newton-Raphson update is:

b bþ αH�1d; ð17:29Þ

where α� 1 is an iteration control parameter that is typically set to 1 when the

log-likelihood function is quadratic. One may set α< 1 if the log-likelihood is not

quadratic or if the parameters are bounded, such as in the GoM model. One can

maintain the boundary constraints in the GoM model by setting

α ¼ min 1; α1; . . . ; αQ
� �

, where

αn ¼
1� bn
Δbn

if Δbn > 0

�bn
Δbn

if Δbn < 0

8><
>: ð17:30Þ

and Δbn is the nth element of the Newton-Raphson change vector, Δb, where

Δb ¼ H�1d: ð17:31Þ

In this case, a boundary has been reached for parameter bn if αn ¼ α < 1 and bn¼ 0

or 1 after the Newton-Raphson update. The corresponding derivative, dn, is
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evaluated in each subsequent iteration to determine if the log-likelihood will

increase if the parameter moves away from the boundary. If so, the parameter is

included in the subsequent update equation; if not, the parameter is held fixed at its

boundary value and excluded from the calculation of the subsequent update. If the

parameter is excluded, the number of parameters in the subsequent iteration

decreases from Q to Q� 1. To simplify notation, we let Q be the number of

parameters included in the current iteration, recognizing that Q might change

from one iteration to the next.

In contrast to the fixed-point update equations which always satisfy the summa-

tion constraints, the Newton-Raphson update equations generally do not satisfy

them, nor is it intuitively obvious how one might impose such constraints on them.

To solve this problem, we first consider the case where the initial estimates of the

parameters satisfy the convexity constraints. Hence the summation constraints will

be satisfied on each subsequent iteration if the Newton-Raphson change vectors are

constrained to sum to zero. To motivate our treatment of these constraints, we

observe that the Lagrange multipliers appear as offsets in the derivatives of the

constrained log-likelihood in Eqs. (17.19), (17.20), and (17.21), and hence in the

Newton-Raphson change vectors in Eqs. (17.29) and (17.31). Given that these

offsets are generally unknown, we further constrain the Newton-Raphson change

vectors by introducing appropriately specified additional offsets, as follows:

Δb* ¼ H�1 d�Wδð Þ; ð17:32Þ

whereW is a Q�C design matrix with as many rows as there are parameters within

the current set of g-, λ-, or u-parameters and as many columns as there are

summation constraints; and δ is a C-element vector containing “correction” terms

(defined below) for the current estimates of the Lagrange multipliers. For the g-
parameters, C¼ 1; for the λ- and u-parameters, C¼K.

The elements of W indicate whether (wnc¼ 1) or not (wnc¼ 0) parameter bn is
part of constraint c. Thus, the columns of W are in a one-to-one correspondence

with the Lagrange multipliers in the constrained log-likelihood. For the g-param-

eters with C¼ 1, δ is a scalar. Kuhn-Tucker Condition 3 implies that δ will

converge to zero as convergence of the parameters is achieved, which explains

why δ is described as a “correction” vector.

It follows from the convexity of the current set of parameter estimates that

W0b ¼ 1, a C-element vector of 1’s. To maintain the summation constraint at the

next iteration, we require thatW0Δb* ¼ 0, a C-element vector of 0’s. This condition
is satisfied by defining δ as:

δ ¼ W0H�1W
� ��1

W0H�1d: ð17:33Þ

Moreover, it follows immediately that δ ! 0 as d ! 0, as required. Thus, the

modified Newton-Raphson change vectors satisfy the summation constraints, and

hence Kuhn-Tucker Condition 2, at each iteration.
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To better understand the mathematical properties of the modification in

Eq. (17.32), consider a Q�Q orthogonal projection matrix P which projects any

Q-element vector onto the subspace spanned by the columns of W, where

P ¼W W0H�1W
� ��1

W0H�1; ð17:34Þ

with properties P2 ¼ P, H�1P ¼ P0H�1 and W0 I� P0ð Þ ¼ 0, a C�Q matrix of

0’s. Using these properties, we can rewrite Eq. (17.32) as follows:

Δb* ¼H�1 d�Wδð Þ
¼H�1 I�W W0H�1W

� ��1
W0H�1

� �
d

¼H�1 I� Pð Þd
¼ I� P0ð ÞH�1d
¼ I� P0ð ÞΔb;

ð17:35Þ

from which we immediately obtain W0Δb* ¼ 0, as required. This latter condition

implies that the modified change vector (Δb*) is an orthogonal projection of the

standard change vector (Δb) onto the nullspace ofW0, a subspace of dimension Q –

C. It follows that the modified change vector is the unique vector within the

nullspace of W0 that is closest to (i.e. has the highest correlation with) the standard

change vector.

The boundary constraints in Kuhn-Tucker Condition 1 can be imposed via the α-
multipliers defined in Eq. (17.30), yielding the final constrained update equation:

b bþ α I� P0ð ÞH�1d: ð17:36Þ

Zero-valued parameters are held fixed at their boundary values in a given iteration if

they have negative derivatives; they are excluded from the current update equation.

Parameters with values of 1 are necessarily associated with a set of K – 1 or Rj –

1 other 0-valued parameters; they are excluded only when all of the 0-valued

parameters are excluded.

Thus, the modified Newton-Raphson procedure satisfies the convexity con-

straints without resort to ad-hoc adjustments. This allows the overall search to

switch between sets of parameters prior to convergence, which is attained only

when Kuhn-Tucker Conditions 1–4 are met and Condition 5 is met for the subset of

all parameters with 0-valued derivatives.

17.2.9 Consistency and Asymptotic Normality

Bradley and Gart (1962, Theorem 2) provided general conditions for the consis-

tency and asymptotic normality of maximum likelihood estimators that are
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applicable to the longitudinal GoM model in Eq. (17.5) if two additional assump-

tions are met: 2

1. The GoM transition matrices (U-matrices) can be represented by a finite number

of parameters; and

2. The true values of the g-, λ-, and u-parameters lie in the interior of the respective

parameter spaces.

Asymptotic theory considers the behavior of a model as the number of measure-

ments is increased to infinity. Bradley and Gart’s (1962) conditions allow the

infinite increase in the number of measurements to occur along the temporal

dimension of the longitudinal GoM model. The frequency of measurement is

increased without limit by scheduling the longitudinal observations closer and

closer together.

Assumption 1 ensures that the total number of parameters is finite for fixed N and

J. The restriction to a finite number of u-parameters is implemented by assuming

that the transition matrices for measurement intervals below some threshold length

are fractional powers of the transition matrices for the threshold interval, i.e., the

transition intensity matrices are assumed to be piecewise constant. This is reason-

able for the proposed biodemographic applications.

Assumption 2 is required to avoid technical difficulties that arise when the true

values of one or more parameters fall on the boundaries of the parameter space.

Given that the admissible parameter values can be arbitrarily close to the bound-

aries of that space, this does not represent a serious restriction. The parameter

estimates can fall on the boundaries of the parameter space; when this happens,

however, up to half of each approximating normal distribution will be replaced by a

point mass. Assumption 2 ensures that such occurrences will become increasingly

rare as the number of longitudinal observations increases.

Our applications to date have been for problems in which the ratio of number of

data points per parameter was in the range 20–80, with the lower end of the range

typical of NLTCS applications (Stallard 2007 and this chapter) and the upper end

typical for Predictors 1 and 2 applications (Stallard et al. 2010). Asymptotic theory

indicates that higher values of this ratio are preferable. Further investigation is

needed to determine for practical applications how large (or small) these ratios need

to be for the large sample approximations to be reasonably accurate.

Comment 1 Our appeal to Bradley and Gart (1962, Theorem 2) in combination

with Assumptions 1 and 2 effectively responds to Haberman’s (1995) comment that

2 Bradley and Gart’s (1962) proof of uniqueness of the consistent estimator in their Theorem 2 (iii)

follows that of Chanda’s (1954) Theorem 2 and, hence, suffers from the deficiency noted by

Tarone and Gruenhage (1975) who provided a corrected proof in their Theorem 20. This means that

Bradley and Gart’s (1962) result on uniqueness can be proven following Tarone and Gruenhage’s
(1975) Theorem 20, but not Chanda’s (1954) Theorem 2. Our appeal to Bradley and Gart’s (1962)
Theorem 2 assumes that Tarone and Gruenhage’s (1975) correction has been made, even though

Bradley and Gart did not actually do it.

17.2 Methods 371



existing asymptotic theory does not apply to GoM because the number of g-
parameters becomes increasingly large as N becomes large. In the case of longitu-

dinal GoM, N is fixed so the number of g-parameters is likewise fixed. N may

become arbitrarily large and this will accelerate the asymptotic convergence of the

estimators of the λ- and u-parameters. Nonetheless, we do not assume that N will

become infinite. Instead, the required infinite increase in the number of data points

occurs along the temporal dimension of the model. Assumption 1 is employed to

avoid having an infinite number of u-parameters. With this assumption, the model

becomes a finite parameter model and this allows Bradley and Gart (1962, Theorem

2) to resolve the critical issue that the observations in Eq. (17.5) are not identically

distributed, or even approximately so. Indeed, identification of the differences in

these distributions over individuals and times of measurement is the focus of the

longitudinal GoM model; the ability to deal with population and process heteroge-

neity is what makes the model attractive for biodemographic analysis.

Comment 2 The standard proof of consistency of the general (i.e., cross-sectional)

GoM model was provided by Tolley and Manton (1992) for fixed J and increasing

N using a marginal likelihood formulation in which, using an assumed mixing

distribution for the GoM scores, the g-parameters were integrated out of the final

expression, which yielded a consistent estimator of the λ-parameters. While this

formulation yielded the desired consistency result for the marginal GoM likelihood,

it did not prove that the conditional GoM likelihood (i.e., the expression inside the

integral obtained by removing the time index from Eq. (17.5)) was likewise

consistent—as noted by Haberman (1995).

We comment on this limitation in the Appendix, where: (1) we present a new

synthesis indicating that the large sample behavior of the conditional GoMmodel is

not consistent except, possibly, for the special case that N and J both go to infinity;

(2) we describe a generalization of conditional GoM in which the empirical

GoM-score mixing distribution is used to create an empirical marginal likelihood

with the same set of λ- and g-parameters; (3) we conjecture that the empirical

marginal GoM estimator is optimal in the sense of minimizing the Kullback-Leibler

divergence (i.e., relative entropy; a distance measure) between the estimated and

the true model (Kullback and Leibler 1951); and (4) we observe that the conditional

GoM likelihood is approximately proportional to the empirical marginal GoM

likelihood and that the accuracy of the approximation increases with increasing J;
hence it is also conjectured to be optimal in the sense of minimizing (approxi-

mately) the Kullback-Leibler divergence. Further investigation is needed: (1) to

prove/disprove our conjecture; and (2) to determine for practical applications how

large (or small) J needs to be for the conditional GoM approximation to be

acceptable for given sizes of N and configurations of the empirical GoM-score

mixing distribution.

We note that the concepts of relative entropy and Kullback-Leibler divergence

were fundamental to Akaike’s (1973, 1974) development of the AIC information

criterion which is widely used for model selection in practical applications (e.g., see

below).
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17.2.10 Model Testing

Model testing is based on likelihood ratio chi-squared statistics using the conven-

tional chi-squared approximation (Wilks 1938) for the difference in the logarithms

of the likelihood functions for testing pairs of nested models. The log-likelihood for

the longitudinal GoM model with K� 1 is:

lnL ¼
X
i

X
j

X
l

X
t

yijltlnpijlt; ð17:37Þ

where pijlt is the predicted probability that yijlt¼ 1. This model contains the baseline

or null model (Model 0) with K¼ 1 as a special case in which the likelihood

simplifies to the standard multinomial form for J independent variables, with log

likelihood:

lnL 0ð Þ ¼
X
i

X
j

X
l

X
t

yijltlnμjl; ð17:38Þ

which is maximized by setting the μ-parameters equal to the observed proportions

for each response l within each variable j. With these specifications, the Wilks

chi-squared statistic is

χ2 Lð Þ ¼ �2� lnL 0ð Þ � lnL
h i

: ð17:39Þ

The number of degrees of freedom (d.f.) in each model is equal to the number of

parameters minus the number of constraints. The d.f. for the Wilks chi-squared

statistic is equal to the difference in d.f. for the two models being compared.

More generally, longitudinal GoM models with different K-values may be

compared using Akaike’s (1973, 1974) information criterion (AIC), defined for

each likelihood function L as

AICL ¼ �2� lnLþ 2� d:f: Lð Þ; ð17:40Þ

where d.f.(L ) denotes the total number of unconstrained parameters in the

corresponding model, with the “best” model among a set of alternatives being the

one having the smallest value of AICL. The difference in values of AICL for the null

model and the model with K pure types can be written as

ΔAIC ¼AICL 0ð Þ � AICL

¼ χ2 Lð Þ � 2� d:f: Lð Þ � d:f: L 0ð Þ� �� �
¼ χ2 Lð Þ � 2� d:f: χ2 Lð Þð Þ;

ð17:41Þ

17.2 Methods 373



showing that ΔAIC is a chi-squared statistic reduced by twice its d.f. If ΔAIC is

positive, the null model is rejected. For d.f. >7, the AIC test is more conservative

than the Wilks test.

An even more conservative alternative is provided by the Bayesian information

criterion (BIC; Schwarz 1978), defined for each likelihood function L as

BICL ¼ �2� lnLþ d:f: Lð Þ � lnN*; ð17:42Þ

where lnN* is the weighted arithmetic mean of lnNr, r is an index that distinguishes
each subset of g-, λ-, or u-parameters in Eqs. (17.12), (17.13), and (17.14), Nr is the

number of responses for the rth parameter subset, and each such subset comprises

only those g-, λ-, or u-parameters that share the same summation constraint. The

weights are the number of unconstrained parameters within each subset of g-, λ-,
and u-parameters (Stallard et al. 2010).3N* is interpreted as the effective sample

size for the given model (Raftery 1995). The “best” model among a specified set of

alternatives is the one having the smallest value of BICL. The difference in values of

BICL for the null model and the model with K pure types can be written as

ΔBIC ¼ BICL 0ð Þ � BICL

¼ χ2 Lð Þ � d:f: Lð Þ � d:f: L 0ð Þ� �� �� lnN*
¼ χ2 Lð Þ � d:f: χ2 Lð Þð Þ � lnN*;

ð17:43Þ

showing that ΔBIC is a chi-squared statistic reduced by its d.f. times the logarithm

of N*. If ΔBIC is positive, the null model is rejected. For N* � 8, the BIC test is

more conservative than the AIC test, which will almost always be the case.

When a model with K> 1 pure types is accepted over the null model, one then

needs to consider the significance of the different variables. The Bayesian infor-

mation criterion approach also provides a suitable metric for rank ordering the

variables according to their significance in the model.

BICj is defined for variable j as

BICj ¼ �2�
X
l

X
i

X
t

yijltlnpijlt þ K Rj � 1
� �

� ln
X
l

X
i

X
t

yijlt

 !
; ð17:44Þ

where the second term is the product of the d.f.(L) (for the λ-parameters) and the

logarithm of the (actual) sample size. The difference in BICj’s for the null model

and the model with K pure types is

3N* was denoted as N** and the corresponding BIC measure as BIC2 in Stallard et al. (2010).
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ΔBICj ¼ 2�
X
l

X
i

X
t

yijltln pijlt=μjl
� �� K � 1ð Þ Rj � 1

� �

� ln
X
l

X
i

X
t

yijlt

 !
: ð17:45Þ

The first term is the component of the Wilks chi-squared approximation associated

with variable j. The second term “adjusts” the chi-squared statistic for the d.f. and

sample size, conditional on the g- and u-parameters which are now assumed to be

held fixed. The sample-size adjustment provided by BIC was judged important for

our application because the sample sizes for variables introduced at the later waves

of the NLTCS were substantially smaller than for variables measured at all waves.

WhenΔBICj> 0, the model with K sets of λj-parameters is “more probable” than

the null model with one set (i.e., for K¼ 1, the marginal probabilities). ΔBICj

values in the ranges 0–2, 2–6, 6–10, and 10–14, and 14+ are considered “weak,”

“positive,” “strong,” “very strong,” and “conclusive” evidence, respectively, in

favor of the model with K sets of λj-parameters (Kass and Raftery 1995; Raftery

1995). Moreover, it follows from the Bayesian decision rule (Schwarz 1978) that

the ΔBICj’s can be rank-ordered across the J variables such that the largest ΔBICj

identifies the variable j for which the non-null model is the most probable. This is

the most significant or most informative variable. Similar interpretations apply to

the other rank-ordered variables. Thus, ΔBICj provides a metric that controls for

differences in d.f. and sample size, assuming that the addition or deletion of

variable j would not impact the estimates of the g- and u-parameters for the

remaining J – 1 variables, a reasonable assumption with J¼ 94 variables in our

application.

17.3 Data

17.3.1 National Long Term Care Survey

The primary data source was the National Long Term Care Survey (NLTCS; 1982,

1984, 1989, 1994, and 1999) which contains both longitudinal and cross-sectional

data on a nationally representative sample of 41,947 U.S. elderly persons aged

65 years or older at some point during 1982–1999, with 17,286–22,139 age-eligible

survivors at each of the five waves of whom 3112–5552 were classified as disabled

with 1036–1946 in institutional residence. A sixth round of the survey, fielded in

late 2004 with mortality follow-up through 2009, will be used in future work in

this area.

The initial 1982 sampling frame for the NLTCS was a list of aged persons

enrolled in Medicare on April 1, 1982. This sampling frame was extended in

subsequent years to include about 5000 new Medicare enrollees reaching age
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65 between surveys to replace deaths occurring since the prior survey and to ensure

that each survey sample was cross-sectionally representative of the entire elderly

population aged 65+. The response rates were excellent for all five waves of the

survey (approximately 95%: Manton et al. 1997; Manton and Gu 2001).

The sampling frame covered both institutionalized and non-institutionalized

persons. Institutionalized persons received face-to-face institutional interviews

except in 1982. A telephone screener interview targeted non-institutionalized

disabled persons for further study using face-to-face community interviews. The

screener interview was designed to minimize the risk of false negative assessments

of ADL and IADL impairments.

A person “screened-in” as disabled if he or she had a problem performing at least

one of seven ADLs or one of eight IADLs without the help of another person or

special equipment, where the expected duration of the problem was 3 months or

longer; except for outdoor mobility, the IADL problems were counted only if they

were due to a disability or health problem. A person also screened-in as disabled if

he or she was institutionalized in a long-term care facility at the time of the survey.

Once a person screened-in for any round of the NLTCS, that person was

designated for automatic follow-up in all subsequent rounds of the NLTCS, receiv-

ing the detailed face-to-face community or institutional interviews, as appropriate.

The NLTCS established special procedures to sample nondisabled persons.

Altogether, a total of 4207 distinct persons received the detailed community

interview who were classified as nondisabled at least one time during the 1984,

1989, 1994, and 1999 surveys.

The NLTCS detailed interviews provided data on age, sex, race, residence type

(community vs. institutional, 1982–1999; and assisted living, 1999), cognitive

status (SPMSQ 1982–1994, MMSE 1999; see Lee et al. 1998), and seven ADLs.

The community-resident questionnaire provided additional data on 9 IADLs,

30 major medical conditions, 7 physical performance items (Nagi 1976), subjective

health status, aberrant behaviors, number and relationship (to respondent) of care-

givers, and caregiver hours/days and type of activity for which help was provided.

Height, weight, alcohol and cigarette use, and exercise questions were added to the

community-resident questionnaire in 1994 and 1999. The institutional-resident

questionnaire provided limited additional data on one IADL and, in 1999, three

major medical conditions.

Four characteristics of the NLTCS made it well-suited for use in the current

analysis.

First, all respondent records were linked to Medicare vital statistics and beneficiary

claims data for calendar years 1982 and later, with ongoing periodic updating to

allow tracking of mortality, Medicare claims, and enrollment/disenrollment in a

managed care plan (e.g., a health maintenance organization [HMO] or similar

arrangement with fixed monthly costs). The Medicare claims data records

contained information on dates and costs of service, types of providers, and

ICD-9-CM diagnosis and procedure codes.

376 17 Analysis of the Natural History of Dementia Using Longitudinal Grade. . .



Second, the sampling frame provided large sample sizes at ages 85 and older—a

population for which it is often difficult to sample effectively because of its

small relative size. The NLTCS included at least 2400 people aged 85+ and at

least 825 people aged 90+ in each survey; the 1994 and 1999 surveys included

additional oversampling of the population aged 95+ (537 respondents in 1994;

598 in 1999).

Third, the same core set of disability and medical condition questions was asked in

each round of the NLTCS using essentially the same field procedures executed

by the same survey organization (U.S. Census Bureau). The stability of the

methods and procedures minimized bias in disability trend estimates and other

parameters (Freedman et al. 2002). This stability also made these data suitable

for longitudinal analysis using models such as longitudinal GoM that required

repeated measurements of the same variables on the same persons.

Fourth, the inclusion of 4207 functionally nondisabled persons in the detailed

interviews allowed these data to be used to analyze both cognitive and functional

impairments. Although the two types of impairment are correlated, our analytic

subsample of 3290 cases was not restricted to persons with functional impair-

ment; it also included 433 persons (13%) with no impairment in ADLs or IADLs

at onset of dementia.

17.3.2 Sample Selection

Identification of respondents with recent onset of dementia within the NLTCS was

accomplished using modifications of the two-stage procedure for identifying AD

cases developed in Kinosian et al. (2000, 2004), as shown in Table 17.1:

I. Two sets of “inclusion criteria” were used to establish a sample of respondents

with any form of dementia, either (A) in the NLTCS interviews or (B) in the

linked Medicare diagnostic files; and

II. Five sets of “exclusion criteria” were used to reject respondents meeting the

inclusion criteria because the cases were not clearly dementia (A–C) or not

clearly of recent onset (D, E).

The inclusion criteria employed a broad set of indicators of dementia (Taylor

et al. 2002; Kinosian et al. 2004).

The exclusion criteria retained cases that had forms of dementia other than

AD. Exclusion criteria A and B excluded respondents with mental retardation and

Parkinson’s disease at any time during the NLTCS follow-up, but did not exclude

respondents with arteriosclerosis, atherosclerosis, stroke, other cerebrovascular

disease, or certain ICD-9-CM non-AD dementia codes (290.4, 291.2, 294.0, and

294.1). Exclusion criterion C was designed to ensure that respondents with a

documented lack of deterioration would be excluded from the sample. Exclusion

criteria D and E rejected dementia cases whose onset was not clearly determined to

be recent.
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Table 17.1 Inclusion and exclusion criteria used to identify older persons with recent onset of

dementia

I. Inclusion criteria

A. National Long Term Care Survey

1. Cognitive impairment as assessed by the Short Portable Mental Status Questionnaire

(SPMSQ) or the Mini-Mental State Exam (MMSE):

SPMSQ criteria are 3+ mistakes for individuals without a high school education or 2+

mistakes for those with a high school education

MMSE criteria are 9+ mistakes for individuals without a high school education or 7+

mistakes for those with a high school education

2. Alzheimer’s disease by caregiver report

3. Senility by caregiver report

B. Medicare Part A and B claims (at least two claims with any of the following ICD-9-CM

codes; timing is based on the first such code)

1. Alzheimer’s disease (331.0)

2. Uncomplicated senile dementia (290.0)

3. Presenile dementia (290.1)

4. Senile dementia with delusional or depressive features (290.2)

5. Senile dementia with delirium (290.3)

6. Unspecified senile psychotic condition (290.9)

7. Other chronic organic brain syndromes (chronic) (294.8)

8. Pick’s disease (331.1)

9. Senile degeneration of brain (331.2)

10. Cerebral degeneration in diseases classified elsewhere (331.7)

11. Senility without mention of psychosis (797)

II. Exclusion criteria

A. National Long Term Care Survey

1. Mental retardation

2. Parkinson’s disease

B. Medicare part A and B claims (at least two claims with any of the following ICD-9-CM

codes)

1. Mental retardation (317–319)

2. Parkinson’s disease (332)

C. Cognitively intact

Reject case if at the time of first inclusion any concurrent or future application of SPMSQ or

MMSE indicates no cognitive impairment using the NLTCS inclusion criteria listed in item

I.A.1

D. Unsure if case is new inclusion

Reject case if the included person does not have a prior NLTCS survey in which he or she

did not meet the inclusion criteria

E. Institutional resident at time of first inclusion

Reject case if institutionalized during the NLTCS survey given at the time of first inclusion

(or at the next NLTCS survey if the inclusion is based on Medicare diagnoses provided

between NLTCS surveys)

378 17 Analysis of the Natural History of Dementia Using Longitudinal Grade. . .



Kinosian et al. (2000, 2004) attempted to minimize false positive AD-selections

by use of their exclusion criteria. The narrower set of exclusion criteria in Table 17.1

identified 1526 additional cases of non-AD dementia, all of whom met the inclusion

criteria, increasing our sample size by 87% (from 1764 to 3290 cases).

Table 17.2 displays the results of the case sampling using the criteria in

Table 17.1. The number of retained cases ranged from 756 to 887 per year, with

a total of 3290 cases over the four surveys, representing a weighted population

count of 4.7 million incident cases. The sources of the inclusions were as follows:

58% were selected based on information in the NLTCS alone; 14% were selected

based on information in the Medicare files alone; and 28% were selected based on

information that was corroborated in both files. Among the latter group, however,

74% met the NLTCS criteria prior to or in the same year as meeting the Medicare

criteria (labeled “NLTCS+Medicare”), suggesting that the NLTCS criteria may

detect milder forms of dementia than the Medicare criteria. Consistent with these

results, Pressley et al. (2003) recommended use of multiple data sources for case

identification because each source uniquely identified substantial numbers of cases

that could not be identified from the other sources while no single data source

identified all cases.

Prior to 1991, Medicare diagnostic codes were reported on Part A (Hospital

Insurance) but not on Part B (Supplementary Medical Insurance) claim records.

Taylor et al. (2004) reported marked increases in AD prevalence during 1991–1999

using linked NLTCS-Medicare data. These two observations may explain the

increase in Medicare inclusions between 1984 and 1994. Table 17.2 shows that

the number of inclusions based on Medicare alone, but not the total number of

Medicare inclusions (i.e., using both NLTCS and Medicare data), increased from

1994 to 1999.

The case counts in Table 17.2 reflect recent onset of dementia. These cases were

a subset of all cases of onset of dementia occurring within each 5-year period. The

Table 17.2 Distribution of dementia by year of onset and source of information meeting inclusion

criteria

Onset

year

Sources and order of information

Total

NLTCS

alone

Medicare

alone

NLTCS

+Medicare

Medicare

+NLTCS

Unweighted

count

1984 659 – 141 – 805

1989 475 27 231 23 756

1994 394 145 238 110 887

1999 385 289 66 102 842

Total unweighted count 1913 – 676 – 3290

Weighted

Count

1984 768,860 – 175,623 – 950,734

1989 640,906 42,462 316,412 31,764 1,031,544

1994 588,550 220,365 349,034 168,171 1,326,120

1999 634,883 468,959 108,344 157,726 1,369,911

Total weighted count 2,633,199 – 949,413 – 4,678,310

Note: “–“ denotes cells suppressed due to Medicare data-suppression rules for small sample sizes
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difference was substantial. Among those who met all criteria in Table 17.1, 2.2

million weighted cases (1384 unweighted cases) were alive in 1999; if exclusion

criteria D and E (recent onset) were deleted from Table 17.1, then we would have

estimated that 3.3 million weighted cases (2260 unweighted cases) were alive in

1999. Thus, about one-third of dementia cases were dropped from our analysis due

to exclusion criteria D and E.

17.4 Results

17.4.1 Model Selection

Longitudinal GoM models were independently estimated for 1033 males and 2257

females with recent onset of dementia using the criteria in Table 17.1 to identify

such cases in the NLTCS. Ninety-four covariates were included in the analysis;

however, each case provided a maximum of 84 covariates per wave, not 94, because

the SPMSQ was replaced with the MMSE in 1999. The total over all waves for all

respondents was 81,774 data items for males (averaging 79.2 per case) and 194,758

data items for females (averaging 86.3 per case). Survival status was assessed for

5-year periods following each wave, ending with the survival assessment in 2004,

during which 892 male deaths and 1832 female deaths were recorded (representing

86% and 81%, respectively, of the total sample of 1033 males and 2257 females).

The 94 covariates included 7 ADLs, 9 IADLs, 7 physical performance measures,

vision, 28 medical conditions (after dropping mental retardation and Parkinson’s
disease), institutionalization (after initial wave), subjective health status, cognitive

functioning (10 SPMSQ items or 11 MMSE items supplemented with two memory

tests, proxy interview, and four behaviors), alcohol use, cigarette use, race, height,

three exercise measures, three measures of body mass index (BMI¼ ratio of weight

[in kilograms] to height-squared [in meters2]; at interview, age 50, and 1 year prior

to interview), and two variables encoding 5-year survival (one based on GoM

scores at the start of the interval, the other based on GoM scores at the end of the

interval). Survey skip patterns and modest amounts of missing data were coded as

described in Sect. 17.2.2.

Three models were estimated separately by sex as shown in Table 17.3; the

designations M0, M1, M2, F0, F1, and F2 identify combinations of sex (M and F)

and model number. Model 0, the null model, assumed that each sex was homoge-

neous with no differences between cases or over time. These assumptions implied

that K¼ 1 and pijlt ¼ μjl, the marginal probability for response l to variable j, for

every pair of indexes i and t.
Model 1, the primary model, assumed that each sex was described by a longi-

tudinal GoM model with K¼ 4 pure types corresponding to the extreme states of a
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latent irreversible three-dimensional process that was sufficiently rich to represent

individual differences in measures of ADL, IADL, and cognitive functioning, both

at onset and during the subsequent progression of the disease.

These assumptions, implying that the 4� 4 U-matrices are upper-triangular in

form, were based on prior research showing that the clinical course of AD has at

least three irreversible stages—mild, moderate, and severe—with substantial indi-

vidual variability in the durations of each stage (Eisdorfer et al. 1992; Stern

et al. 1996; Grossberg and Desai 2003) and on prior GoM analyses showing that

K¼ 4 was the best value for the sex-specific AD models (Fillenbaum and Wood-

bury 1998; Kinosian et al. 2004; Stallard et al. 2010). Stallard et al. (2010) tested

sex-specific models for AD cases in the Predictors Study data with K¼ 1, 2, 3 and

rejected them in favor of K¼ 4 using AIC, BIC, and related measures. Kinosian

et al. (2004) tested sex-specific models for the AD subset of the NLTCS data with

K¼ 4 vs. K¼ 5; the models with K¼ 4 were rejected by the Wilks chi-squared test

but were favored by the AIC and BIC measures. Fillenbaum and Woodbury (1998)

tested combined-sex GoM models with K¼ 1, . . ., 7 for AD cases using clinical

measures obtained at entry to the CERAD study (i.e., with one observation per

case). Based on comparisons of models with K vs. K + 1, the Wilks test indicated

that K¼ 6 was the smallest acceptable K-value. Examination of the λ-parameters

showed that two of the six pure types were predominantly male and four were

predominantly female.

Thus, given the close connection between AD and other dementias, these prior

analyses supported our selection of K¼ 4 as the best value for the sex-specific

dementia models. This selection maximizes the comparability of the current

dementia analysis with prior and ongoing AD analyses. A more comprehensive

investigation into the use of alternative K-values will be a topic for future research.
Model 2 differed from Model 1 in that the irreversibility assumption was

relaxed, allowing the U-matrices to have an unrestricted form. Model 2 was

included primarily to confirm our assumption that dementia, as defined in

Table 17.1, was irreversible.

For both sexes, the Wilks chi-squared test statistics were highly statistically

significant for Model 1 vs. Model 0 and statistically non-significant for Model 2 vs.

Model 1, indicating that Model 1 was the best. For both sexes, Model 1 had the

smallest value of the three AIC measures, indicating that Model 1 was also best

under Akaike’s (1974) decision rule, with identical conclusions reached using the

BIC measures.

Differences between the sexes were tested by interchanging the u- and λ-
parameters with the g-parameters re-estimated to match the new sets of u- and λ-
parameters. The Wilks chi-squared statistics (each with 750 d.f.) were highly

statistically significant, indicating that the u- and λ-parameters were significantly

different between the sexes. The results were confirmed by the AIC and BIC

measures.

382 17 Analysis of the Natural History of Dementia Using Longitudinal Grade. . .



17.4.2 Model Description

In describing Model 1, we present the λ-parameters first, followed by the u- and g-
parameters, an ordering that corresponds to describing the characteristics of the

pure types, their changes over time, and the distribution of the population across the

pure types. Nonetheless, the parameters were jointly estimated and must be

interpreted as a linked set.

Because the number of λ-parameters in Model 1 was large (i.e., 4� 277¼ 1108

for each sex), we used the Bayesian information criterion (ΔBICj) to rank the

variables according to their significance in the model (Schwarz 1978) and we

grouped the variables into 19 sets (11 of which contained 2 or more logically

related variable). The results are displayed in Table 17.4 separately by sex using

the average values of ΔBICj per variable as representative values for each group.

The top six and bottom five groups were the same for males and females, but

there were several differences in the order as well as in the number of groups with

ΔBICj> 0 indicating support for differential effects across the four pure types for

14 groups for males and 15 groups for females. Among these 14 ΔBICj’s for males,

BMI’s ΔBICj provided positive evidence, race’s ΔBICj, strong evidence, SPMSQ’s
ΔBICj, very strong evidence, and the 11 top ranked ΔBICj’s conclusive evidence of
differential effects. For females, all 15 ΔBICj provided conclusive evidence of

differential effects.

For both sexes, ADLs were the first group and IADLs the second. The 5-year

survival variable was third for males and fifth for females. The proxy interview

variable was fourth and the physical performance variables were fifth, for males.

For females the same groups were one rank higher. Subjective health status was

sixth for both sexes. LTC institutionalization was eighth for females and ninth for

males. Race was 7th for females and 13th for males.

Because race was fixed, however, its impact on the longitudinal GoMmodel was

more difficult to interpret than for the remaining variables which clearly change

over time. One resolution would stratify the model by race and sex, rather than just

by sex. An alternative would modify the likelihood function to use only the initial

observation of race (and other fixed variables). We are assessing these options in

our ongoing work.

Perhaps the most surprising finding in Table 17.4 was the relatively low ranking

of the cognitive variables SPMSQ, MMSE, and memory. However, these items

were asked only of self-respondents, not proxy respondents. Proxy respondents

were asked if the sample person currently had senility or AD. Among the medical

conditions, senility’s ΔBICj (not shown) was 890.90 for females and 329.34 for

males, which would be ranked sixth for both sexes in Table 17.4; and AD’s ΔBICj

(not shown) was 373.75 for females and 116.60 for males, which would be ranked

eighth for females and seventh for males in Table 17.4. Moreover, the proxy

interview variable was ranked third for females and fourth for males in Table 17.4.

The proxy interview variable and the senility and AD variables were more signif-

icant and informative than the SPMSQ, MMSE, and memory variables.
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Table 17.5 displays the sex-specific λ-parameters and summary measures for the

19 groups of variables in the same order as shown in Table 17.4.

Berkman et al. (1989) noted that the patterns of sex-specific λ-parameters can be

used to characterize each pure type based on the relative sizes of ratios of individual

λ-parameters to the corresponding marginal probabilities. The λ-parameters and

summary measures in Table 17.5 were coded such that large values generally

reflected “less healthy” responses; boldface fonts indicate values that are greater

than the corresponding marginal values.

Type IV exceeded the marginal values on 11 of the top 12 ranked variables/

variable-groups, the exception being for race for females. This was consistent with

the expectation that Type IV would represent severe cognitive impairment with

significant impact on ADLs, IADLs, physical performance, health status, institu-

tionalization, and survival. At the other extreme, Type I exceeded the marginal

values only for variables ranked 13th or lower, which were the least significant in

the model.

Based on Stallard et al. (2010), Types II and III were expected to provide a more

diverse set of outcomes for mild and moderate manifestations of dementia than

would be possible by restricting these manifestations to be intermediate between

Types I and IV. This was confirmed in Table 17.5 where Type II exceeded the

marginal values on 6–7 (M–F) of the top 12 ranked variables/variable-groups, with

Type III below the marginal values on 11 of the top 12, the exception being the

5-year death rate for females (75%). For males, the 5-year death rate was high

(50%), but not above the marginal death rate (66%). The 5-year death rates for

Type II were 54% and 46%, respectively, for males and females. Thus, Type III

appears “healthier” than Type II for both sexes; for females, however, Type III had

a higher death rate. In addition, Type III had more rapid progression to Type IV (see

below).

Type II had higher than average BMI levels, with the probability of exceeding

28 kg/m2 being 70% for males and 65% for females. The probability of exceeding

32 kg/m2 was 26% for males and 30% for females. At age 50, the corresponding

probability was 24% for males and 48% for females. The Type II probability of

self-reported obesity (or being medically overweight; one of the 28 medical con-

ditions—not shown) was 37% for males and 54% for females, which more closely

corresponded to the age-50 BMI values than to the BMI values at the time of the

survey.

Table 17.6 displays the 5-year transition and cumulative transition matrices Ut

and V0,t. All of the matrices are upper triangular. The u-transitions from Type I

were predominantly to Type III, an exception being for males transitioning to Type

II at 5–10 years after onset of dementia. The u-transitions from Type II were

predominantly to Type IV. The diagonals of the V-matrices show that the persis-

tency rates in Type I were 37% for males and 7% for females 15 years after onset

of dementia. The corresponding persistency rates in Type II were 20% and 85%,

respectively, and 0% (both sexes) in Type III. Thus, the healthier set of initial

symptoms for Type III deteriorated rapidly; all had progressed to Type IV within

5 years.
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Figures 17.1a, 17.1b, 17.1c, and 17.1d display the univariate GoM-score distri-

butions for the four pure types for both sexes separately at the time of onset of

dementia. Other than the spikes at 0, the distributions for Types I and III were

relatively uniform. In contrast, the frequencies for Type II declined with increasing

GoM scores, dropping below 1% above GoM-score values of 80%; the frequencies

for Type IV declined with increasing GoM scores up to 40%, after which they were

relatively uniform. For each of the four pure types, the GoM scores were distributed

such that only 0–9% of cases had GoM scores of 100%, with the 0%-frequencies

occurring for Type II. Considering all pure types together, we found that 19% of

males and 16% of females had some GoM score equal to 100%. Thus, 81% of

males and 84% of females had partial membership in at least two pure types.

Figures 17.2a, 17.2b, 17.2c, and 17.2d display the mean GoM scores for the four

pure types for both sexes separately, for survivors at each of four durations (i.e.,

0, 5, 10, and 15 years) after onset of dementia, in a 100%-stacked-line format with

and without adjustments for the changes over time since onset of dementia. The

means of the unadjusted GoM scores exhibited the following patterns:

• Type I means increased from 22% initially to 74% of the total mean GoM score

(100%) for males at 15 years duration. The corresponding increases for females

were from 23% to 55%.

• Type II means were relatively stable for males in the range 17–19% at all

durations and increased for females from 21% to 29% at 15 years duration.

• Type III means declined for both sexes over 15 years, from 38% to 1% for

males and from 35% to 10% for females.
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Fig. 17.2a Unadjusted GoM score distribution, male survivors
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Fig. 17.2c Unadjusted GoM score distribution, female survivors
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• Type IV means declined a similar amount for both sexes over 15 years, from

21% to 6%.

Because the unadjusted GoM scores were fixed for individuals, the temporal

increases in the Type I means and decreases in the Type III and IV means were

solely due to mortality selection on a heterogeneous population sample (see Vaupel

et al. 1979; Stallard 2007).

The time-varying (adjusted) GoM scores were generated by applying the V-

matrices to the basic GoM scores, i.e.,g
0
it ¼ g

0
iV0, t. The means of the adjusted GoM

scores for the four pure types exhibited the following patterns:

• Type I means increased from 22% to 28% for males and decreased from 23% to

4% for females over 15 years. The corresponding unadjusted means at 15 years

duration were 74% and 55%, respectively.

• Type II means decreased from 19% to 15% for males and increased from 21%

to 26% for females over 15 years. The corresponding unadjusted means at

15 years duration were 18% and 29%, respectively.

• Type III means decreased for both sexes, from 38% to 19% for males and from

35% to 25% for females over 15 years. The corresponding unadjusted means at

15 years duration were 1% and 10%, respectively.

• Type IV means increased for both sexes, from 21% to 38% for males and from

21% to 45% for females over 15 years. The corresponding unadjusted means at

15 years duration were 6% for both sexes.
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Fig. 17.2d Adjusted GoM score distribution, female survivors
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The application of the V-matrices increased the combined means of Types III–

IV at 15 years duration from 7% to 57% for males and from 16% to 70% for

females. Over 15 years, this produced relatively stable combined means of Types

III–IV in the range 57–62% for males and increasing combined means in the range

56–70% for females.

17.4.3 Ancillary Analysis: Mortality

With the basic and time-varying GoM scores in hand, one can conduct a range of

ancillary analyses using the GoM scores as the independent variables. To explore

this type of application, we used the Medicare vital statistics data linked to the

NLTCS to refine our analysis of the 5-year survival rates used in the main analysis.

The mortality data were recorded using 1-year intervals beginning with the date

of onset of dementia and continuing to the corresponding anniversary date in 2004,

yielding a maximum of 20 years of follow-up data for any one person. Linear

interpolation was used to generate estimates of the time-varying GoM scores at the

start of each 1-year follow-up interval. Conditional maximum likelihood proce-

dures, with the g- and u-parameters fixed, were used to obtain 20 sets of λ-parameter

estimates for the conditional survival probability of being alive after 1 year for a

person alive at the start of each 1-year interval (i.e., equivalent to px in standard life
table notation). The 20 sets of estimated conditional survival probabilities were

chain-multiplied to produce estimates of the marginal survival function at each

anniversary of onset of dementia from 1 to 20 years (i.e., equivalent to lx in standard
life table notation).

The results for 0–15 years since onset of dementia are displayed in Figs. 17.3a,

17.3b, 17.3c, and 17.3d separately by sex and by pure type, with and without

adjustments for the impact of the V-matrices over time. The observed and predicted

marginal survival functions, which are virtually identical, are displayed for com-

parison. For both sexes, Type I had the highest survival and Type IV the lowest.

Types II and III initially declined at rates close to the marginal survival function.

The adjusted survival functions for Types II and III continued their decline after

3 years while the unadjusted survival functions declined more slowly.

The survival functions for the time-varying (adjusted) pure types were obtained

by application of the V-matrices to the 20 sets of basic λ-vectors for the conditional
survival probabilities. In this case, the basic λ-vectors required an additional time

index to indicate that a distinct vector, denoted as λmjl
tð Þ, was estimated for each

time t. The V-matrix adjustments were accomplished using λmjlt tð Þ ¼ V0, tλmjl
tð Þ,

where the time subscript on λmjlt tð Þ indicates adjustment by V0,t. For times

0< t< 15 (except t¼ 5 or 10 years), V0,t was generated by linear interpolation

from the two adjacent V-matrix estimates; for t> 15, V0,15 was used.

The 20 sets of adjusted conditional survival probabilities were chain-multiplied

to produce estimates of the adjusted marginal survival function at each anniversary
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of onset of dementia from 1 to 20 years. The plots for Type IV and the observed and

predicted marginal survival functions were unchanged. The greatest changes were

for Type III, followed by Type II, and then Type I. For both sexes, the adjusted

survival functions for Type III dropped below the observed and predicted marginal

survival functions.

One can integrate the survival functions to compute the marginal and pure-type–

specific life expectancies, assuming that the maximum survival time is 20 years; see

Table 17.7. The marginal life expectancy was 4.54 years for males and 5.85 years

for females. The range of life expectancies based on the adjusted lambdas was

1.90–11.50 years for males and 2.66–11.77 years for females, where the lowest

values correspond to initial GoM assignment to Type IV and the highest to Type

I. The ranges of life expectancies for Types II–III were substantially narrower:

3.08–6.10 years for males and 4.30–7.99 years for females. These restricted ranges

are relevant to the 58% of the sample whose GoM score on Type I was less than 0.1

(see Figs. 17.1a, 17.1b, 17.1c, and 17.1d).

The life expectancies based on the unadjusted lambdas are counterfactual

because they do not account for the transitions during the 20-year follow-up

interval. Alternatively, they may be interpreted as estimates of the life expectancies

that would result from interventions designed to halt the progression of the demen-

tia process. The largest benefits would accrue to persons initially like Type III,

where the increase in life expectancy would be 7.2 years for males and 6.2 years for

females. No benefit would accrue to persons initially like Type IV because Type IV

is the endpoint of the process.

17.4.4 Ancillary Analysis: Acute and Long-Term Care

Conditional maximum likelihood procedures, with the g- and u-parameters fixed,

were used to estimate λ-parameters for additional sets of covariates which were

coded to reflect the use and costs of various types of acute care and LTC services,

conditional on status as an institutional or community resident, on enrollment in the

Medicare fee-for-service program, and on using various types of acute care or LTC

Table 17.7 Life expectancy (in years) following onset of dementia, by sex and adjustment

Source and sex

Pure type

Observed Predicted DifferenceI II III IV

Unadjusted lambdas

Males 11.33 8.46 10.27 1.90 4.54 4.49 0.06

Females 13.95 8.40 10.52 2.66 5.85 5.84 0.01

Adjusted lambdas

Males 11.50 6.10 3.08 1.90 4.54 4.49 0.06

Females 11.77 7.99 4.30 2.66 5.85 5.84 0.01

Note: Boldface fonts denote values greater than the observed marginal value
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services. Covariate coding for such conditional estimation was implemented by

ensuring that all observations not meeting the indicated criteria were coded as

“missing;” in some cases, this conditional estimation procedure required validly

measured covariates for persons not meeting the indicated criteria to be recoded to

“missing.”

Tables 17.8 and 17.9 summarize the utilization rates and costs for males and

females, respectively, for services based on data collected in the NLTCS instru-

ments and in the linked Medicare billing records. Statistical tests of costs were

performed using the Wilks chi-squared test of the non-parametric distributions of

costs, using variable-sized categories covering the range of costs with cutpoints

based on multiples of 10 and $2, $5, and $10, with the null hypothesis being no

difference in category-probabilities (λ-parameters) over the four pure types. Aver-

age costs were computed as λ-weighted averages of the means of the individual

cost-categories. The differences between the observed and predicted mean costs

indicated that the errors induced by this procedure were relatively small (i.e.,

generally 1% or less). All costs were converted to 2004 dollars using the CPI-U.

Tables 17.8 and 17.9 show that the institutionalization rates (also reported in

Tables 17.4 and 17.5) for 5–15 years duration were significantly elevated for both

sexes for Type IV, whereas the rates for Types I–III were zero. Exclusion criterion

E in Table 17.1 ensured that all cases of dementia in our sample were

non-institutionalized at the time of onset. Hence, institutionalization was only

assessed at 5, 10, and 15 years after onset of dementia.

The zero rates for Types I–III in Tables 17.8 and 17.9 do not mean that an

individual with non-zero GoM scores on Types I–III had a zero probability of being

institutionalized. Instead, they imply that the institutionalization probability was

proportional to the individual’s GoM score on Type IV. For example, Figs. 17.1a,

17.1b, 17.1c, and 17.1d show that 43% of the male sample had Type IV GoM

scores of 0.1 or higher, implying institutionalization probabilities of 7% or higher,

based on the 66.5% value for Type IV in Table 17.8.

The estimated annual costs per institutional resident were available in the

NLTCS only for 1994 and 1999 and were coded as 12 times the current monthly

rates for institutional respondents. The costs did not differ significantly for either

sex over the four pure types.

LTC services among community residents were modeled by estimating

individual-specific probabilities that each one was currently being assisted by one

or more personal helpers, and among those with such assistance, by individual-

specific conditional probabilities that the personal helpers were paid. For those

using one or more personal helpers, and separately for the subset using paid helpers,

the intensity of care was modeled by estimating individual-specific values of the

average annual hours of help per user, estimated as 52.18 times the corresponding

estimate of the number of hours of help in the week prior to the NLTCS community

interview (available for 1989 and later). For those using paid helpers, a second

representation of the intensity of care was the individual-specific estimate of the

annual cost of such care, estimated as 12 times the corresponding estimate of the
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monthly payment rate in the month prior to the NLTCS community interview

(available for 1994 and 1999).

The λ-parameters, or λ-weighted averages of the means of the individual hour- or

cost-categories, are shown in the second panel of Tables 17.8 and 17.9, with the row

labels indicating increasing levels of conditioning relative to preceding rows. The

Wilks chi-squared tests indicated that the pure-type differences were statistically

significant for females for all measures and for males for all measures except the

hours and costs of care for paid helpers. Types II and IV had helpers in 99–100% of

the cases for both sexes; in contrast, Types I and III had helpers in 20% and 43%,

respectively, of the cases for males and 12% and 53%, respectively, for females.

Among those who had helpers, the average annual hours of help for Type IV was

about two FTE’s (i.e., 3967 h for males and 4370 h for females). For Type II, males

had 1564 h and females had 1103 h, on average. The averages for Type I were larger

for males (1151 h vs. 386 h).

Pure-type differences in the fractions who had paid helpers, among those with

one or more helpers, were statistically significant for both sexes. Type IV had the

highest fractions: 40% for males and 55% for females. Pure-type differences in

hours and costs of paid care were statistically significant for females, but not males.

Moreover, the observed hours and costs of paid care for females were more than

double those for males. The average number of paid hours for Type IV was 3314 h

for females—2.8 times the 1202 h for males; and the average cost for Type IV was

$29,153 for females—2.9 times the $10,131 cost for males.

For both sexes, the cost of paid LTC among community residents was substan-

tially less than the cost of institutional care, even in the case of Type IV which had

significantly elevated community costs for females.

Annual Medicare costs were based on tabulations of reported Medicare pay-

ments to health care providers for service periods with ending dates occurring

within the month of the NLTCS interview or within one of the following 11 months.

Persons enrolled in HMOs during any of these 12 months were coded as “missing”

on the associated Medicare utilization and cost variables. Medicare billing records

were grouped into four mutually exclusive service categories: home health care,

hospice care, skilled nursing care, and a residual “acute care” category for all other

medical care.

The first three categories represent services that are generally provided in

non-hospital settings, which may overlap with LTC services reported by NLTCS

respondents in the categories of institutional and home/community care. The acute

care category includes both inpatient and outpatient services that are generally

provided by medical doctors, physician assistants, and allied health professionals,

with no overlap with LTC services reported by NLTCS respondents.

The Medicare utilization measures refer to fee-for-service (FFS; i.e., non-HMO)

cases with billed services. Tables 17.8 and 17.9 (third panel) show that the observed

average fraction of FFS cases utilizing billed services ranged from 1.6% (female

hospice) to 92% (female acute care). Pure-type differences in the Medicare utili-

zation rates were statistically significant for females for all five measures and for
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males for the three LTC categories (home health, hospice, and skilled nursing care)

but not for acute care or total Medicare.

Pure-type differences in the costs per user of Medicare services were significant
for both sexes for acute care, home health care, and total Medicare, but not for

hospice and skilled nursing care. For male users, the highest total Medicare costs

were for Type IV ($16,051) and the lowest for Type I ($5227); for female users, the

highest total Medicare costs were for Type II ($12,123) and the lowest for Type I

($3419). For both sexes, the Type III costs for acute care were substantially higher

than for Type I: for males, the Type III costs were comparable to the Type II costs;

for females, the Type III costs were lower than the Type II costs but were still above

the Type IV costs. The high costs for acute care for Type III were consistent with

the high mortality rates for Type III; they help to distinguish Type III from Type I.

Pure-type differences in the costs per Medicare enrollee (Tables 17.8 and 17.9,

fourth panel) were significant for females for all services except hospice care and

for males for all services except hospice and skilled nursing care. The costs per

Medicare enrollee were based on a marginal cost model in which a $0-category was

appended to the variable-sized categories in the conditional cost model based on

multiples of 10 and $2, $5, and $10. For male enrollees, the highest total Medicare

costs were for Type IV ($15,095) and the lowest for Type I ($4456); for female

enrollees, the highest total Medicare costs were for Type II ($11,185) and the

lowest for Type I ($3077).

The fifth panel (Tables 17.8 and 17.9) presents an alternative set of estimates of

the costs per Medicare enrollee, based on pairwise multiplication of the utilization

probabilities and costs per user shown in the third panel. The entries under the

heading “chi-squared loss” in the fourth panel show that the chi-squared statistics in

the fourth panel were from 0.23 to 8.08 less than the sum of the chi-squared

statistics from the corresponding utilization and conditional cost variables in the

third panel. Similarly, the entries under the heading “chi-squared loss” in the fifth

panel show that the chi-squared statistics from the fifth panel (except hospice care)

were from 0.05 to 10.85 lower than those in the fourth panel Together these results

indicate that the models in the fourth and fifth panels were effectively equivalent.

17.5 Discussion

This chapter had two goals, one methodological and the other substantive.

Methodologically, our goal was to present a longitudinal form of the GoMmodel

and associated Newton-Raphson iteration procedures. The resulting model

describes the natural history of dementia as a complex irreversible

multidimensional process occurring within a three-dimensional state space

bounded by a regular tetrahedron. Individuals can be located at any point in the

state space at the time of onset of dementia. The dementia process can move them to

other points in the state space over time. Longitudinal changes are governed by

upper-triangular transition matrices which ensure that all changes are irreversible.
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The results indicated that the description of the natural history of dementia as a

multistage process with three discrete stages (Grossberg and Desai 2003), equiva-

lent to a three-class LCA model (Lanza et al. 2007) with an ordered progression

from Class I to Class II to Class III, was an oversimplification that could be resolved

using the fuzzy-set conceptualization provided by GoM. The estimated GoMmodel

identified four distinct pure types that bounded the range of variation between mild,

moderate, and severe forms of dementia, and did so using a three–dimensional state

space that provided a more diverse set of initial and intermediate outcomes for mild

and moderate manifestations of dementia than would be otherwise possible. More-

over, the primary transitions from Types I to III, Types II to IV, and Types III to IV,

were consistent with the hypothesized fuzzy-set latent membership process.

The need to generalize the discrete three-stage or three-class LCA process to the

three-dimensional fuzzy-set latent membership process was supported by the find-

ing that the optimal estimates of the GoM scores had only 17% of cases exactly

described by one pure type; 83% of cases were best described by weighted

combinations of two or more pure types, implying that the four pure types cannot

be interpreted or treated as discrete stages or classes in the dementia process.

The fuzzy-set latent membership process is consistent with the use of multiple

sets of rating scales for the staging of the dementia (e.g., Hughes et al. 1982;

Reisberg et al. 1982; Dooneief et al. 1996), supporting the conclusions of Eisdorfer

et al. (1992) and Stern et al. (1996) that simplified descriptions of dementia as

having mild, moderate, and severe stages with ordered progression from one stage

to the next may be highly misleading. It follows that mathematical models of this

process may be seriously flawed if they assume that the stages are discrete when in

fact they are abstractions from a more complex and heterogeneous continuous-state

process (Green 2007; Green et al. 2011).

Substantively, our goal was to model the natural history of the loss of cognition

and functioning following the onset of dementia using data from the NLTCS. The

NLTCS and the linked Medicare files jointly covered a broad range of acute and

long-term care services that were expected to differ according to the progression of

the decline in cognitive and functional status. We expected that the natural history

of dementia would be highly variable both within and between sexes with respect to

cognitive and physical functioning at onset and the subsequent rates of loss of such

functioning.

The results confirmed these expectations and provided numerical estimates of

the different rates of decline in cognitive and functional status conditional on the

initial profile of GoM scores, and of the utilization and costs of the associated acute

and long-term care services. Substantial and statistically significant sex differences

were found in the λ–probabilities describing the distributions of responses to the

variables used in calibration of the model and in the u-parameters governing the

rates of change of the GoM scores over time.

Significant sex differences involved the higher persistency of Type II for

females, the association of Type II with high BMI among females, the pattern of

increasing combined prevalence of Types III–IV with increasing disease duration,
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the dependence of acute care and paid community care on the pure types for

females, and the substantially greater use of paid community care among females.

Patterns of use and costs of acute care and LTC services were as follows. For

females, but not males, the use of acute care services varied by pure type. For both

sexes, the costs of acute care services varied by pure type. For both sexes, the use of

LTC services varied by pure type. Once nursing home and hospice services were

received, however, their costs were independent of pure type. Among community

residents using paid helpers for LTC services, the costs for females, but not males,

varied by pure type. For both sexes, the cost of paid LTC services among commu-

nity residents was substantially less than the cost of institutional care.

Estimates of life expectancy ranged from 1.9 to 11.8 years, and depended

strongly on cognitive and physical functioning at onset, as summarized by the

GoM scores on the four pure types.

The relatively short life expectancy of Type III was noteworthy (males,

3.1 years; females, 4.3 years), given that their initial healthy presentation at the

time of onset was similar to Type I (with life expectancies of 11.5 and 11.8 years,

respectively), and that they were, on average, only 3 years older at the time of onset.

The primary characteristic distinguishing Type III from Type I was their relatively

high acute care costs in the 12-month period following the onset interview.

Based on the Cox proportional hazard analyses (Cox 1972) of the Predictors

Study in Stern et al. (1994, 1997), we expect that extrapyramidal (motor) signs and

psychotic symptoms (delusions and hallucinations) could be important additional

characteristics for distinguishing Type III from Type I at the onset interview. While

these characteristics were not assessed in the NLTCS, they were found to be

important in the Predictors Study GoM models (Stallard et al. 2010; Razlighi

et al. 2014). The choice of the GoM model for the more recent and extensive

analyses of the Predictors Study was motivated, in part, by the fact that the Cox

model provides no mechanism for determining or describing how the time-varying

covariate values change over time.

Thus, the longitudinal GoM model permits one to analyze cohort data with large

numbers of time-varying covariates measured at multiple waves of follow-up.

Applications of the model could be developed using data from other longitudinal

studies of the general population, including persons with dementia, or from clinical

data specifically focusing on dementia patients. This was done using data for AD

from the Predictors Study in Stallard et al. (2010), with further data collection and

development of that model now ongoing. The model could be used to better

characterize the natural histories of other complex chronic diseases (e.g., cardio-

vascular disease or diabetes) where there are substantial differences between

individuals in manifest disease symptoms, intensity, and rates of progression.

Preliminary analyses based on application of this approach are being conducted

at Duke University. Alternatively, the model could be used to better characterize

the aging process in the general population using chronological age as the time

dimension rather than time since onset of specific diseases or time since meeting

specific diagnostic criteria, extending the model initially presented in Stallard

(2007). Such data are becoming increasingly accessible to the research community
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and the longitudinal GoM model provides a potentially powerful tool for their

analysis.
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Appendix

Synthesis of Known Results Regarding the Consistency
of the General (Cross-Sectional) Empirical GoM Model

Haberman’s (1995) challenge was to identify conditions under which the condi-

tional GoM likelihood estimator is or is not consistent; he cautioned that this would

be “very difficult” to do (Haberman 1995, p. 1132). Wachter (1999) responded to

this challenge by recasting the conditional GoM model in a framework based on

concepts of dimensionality reduction; he commented that the theorems needed to

respond directly to Haberman’s consistency challenge were not “readily available”

so that a direct response would take one “quickly into uncharted territory”

(Wachter 1999, p. 441).

We agree with Haberman about the challenge being very difficult but we

disagree with Wachter that the territory is almost completely uncharted. Indeed,

our review of the statistical literature indicates that the existing theorems are highly

informative. They allow unambiguous determination of consistency/inconsistency

for most forms of GoM and they provide substantial insight into the issues to be

resolved in such determinations. We emphasize that, for cases where the maximum

likelihood estimator is inconsistent, the existing theorems (e.g., Huber 1967, The-

orem 1) indicate that the resulting maximum likelihood estimates are likely to be

optimal (or approximately so) in the sense that they are the closest possible to the

true parameter values using the Kullback-Leibler information criterion (i.e., rela-

tive entropy, or divergence) as the distance measure (Kullback and Leibler 1951).

As explained below, we conjecture that a generalization of Huber’s (1967) Theo-
rem 1 could apply to a form of GoM in which the empirical GoM-score mixing

distribution is used to create an empirical marginal likelihood with the same set of

λ- and g-parameters as in conditional GoM. If proven true, this would move the

empirical cross-sectional GoM model into the mainstream statistical literature,

thereby extending the range of applications far beyond the dimensionality-

reduction applications considered by Wachter (1999).

We summarize the relevant literature, existing theorems, and implications for

consistency in the form of 15 observations. Our goal is to document the findings in

one accessible location and to stimulate further work on proving our conjecture:
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1. Wald (1948, Theorem 2.1) provided necessary and sufficient conditions for the

existence of a uniformly consistent estimator of a parameter (like λ; but scalar
in Wald’s case) in the presence of a set of vectors of incidental parameters (like

the g-parameters). Tolley and Manton’s (1992) proof of consistency for the

marginal GoM likelihood for fixed J implies that conditional GoM meets

Wald’s existence conditions. Thus, marginal GoM was shown to be consistent;

the consistency of conditional GoM was not addressed.

2. Tolley and Manton’s (1992) marginal GoM likelihood is difficult to use in

practice because it requires one to specify the form of the mixing distribution

and this is generally unknown. Indeed, one major reason for performing a GoM

analysis is to discover the form of this mixing distribution.

3. Kovtun et al. (2007) commented that an empirical estimator of the mixing

distribution of the g-parameters can be formed directly from the estimates of

the GoM scores with each individual providing a unit contribution to the

histogram of the mixing distribution; in this case, they claimed that the empir-

ical distribution converges to the true mixing distribution as J, along with N,
goes to infinity. However, they did not provide a proof of convergence for this

case. We refer to the marginal GoM likelihood using the empirical estimator in

place of the true mixing distribution as the empirical marginal GoM likelihood.
4. Mak (1982, Theorem 2.1) implies that conditional and empirical marginal

GoM likelihoods with fixed J and increasing N will yield estimators that

converge to points in the λ-parameter space that generally differ from the true

λ-parameter values; hence the associated estimators are not consistent.

5. Mak (1982, Theorem 2.1) also implies that conditional and empirical marginal

GoM likelihoods with increasing J but fixed N will yield estimators that

converge to points in the g-parameter space that generally differ from the

true g-parameter values. Thus, the associated estimators are also not consistent

for this case.

6. It follows that N and Jmust both go to infinity for consistency to be established
for the conditional and empirical marginal GoM estimators; in this case, if the

empirical mixing distribution converges to the true mixing distribution, then

the empirical marginal GoM likelihood estimator will yield consistent esti-

mates of the λ- and g-parameters, without prior specification of the form of the

mixing distribution.

7. Substantial insight into the empirical marginal GoM model can be gained by

letting J go to infinity first, and then considering the behavior of the model as

N goes to infinity. Letting J go to infinity means that each observed data vector,

xi, follows a multinomial distribution with an uncountably infinite number of

cells representing all combinations of response outcomes for a countably

infinite number of variables (see Feller 1971, p. 123, Theorem 1). Hence,

under the general GoM model, each cell, c, will have a probability πic ¼ lim
J!1YJ

j¼1

XK
k¼1

gikλkjljc for each individual i and a marginal probability π0c ¼ E πicð Þ in

the population, where the expectation is taken with respect to the GoM-score
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distribution. Thus, as J goes to infinity the set {π0c} defines a multinomial

distribution with a countably infinite number of λ- and g-parameters and an

uncountably infinite number of cells (i.e., “points”). The presence of an

uncountably infinite number of cells introduces several technical problems in

defining countably additive probability measures for this distribution, but

standard solutions are well-known (e.g., see Billingsley 1986). Three properties

of this distribution are relevant: (1) the observed frequency distribution pro-

vides a consistent unrestricted (i.e., nonparametric) maximum likelihood esti-

mator of {π0c} (by a generalization of the Glivenko-Cantelli Theorem; Wellner

(1981, Theorem 1)—see Gaenssler and Wellner (1981) for discussion); (2) the

entropy of {π0c} becomes infinite (because variable-specific entropies are addi-

tive over j, and J becomes infinite) (Cover and Thomas 1991, Theorem 2.6.6);

and (3) the distribution {π0c} becomes continuous (because, at the limit, no cell

c carries positive probability mass; see Feller 1971, p. 137–138).

8. The conditional GoM likelihood is an “empirical estimator” in the sense that

the GoM scores are directly represented via the g-parameters without consid-

eration of a mixing distribution, and more importantly, without prior specifi-

cation of the form of the mixing distribution. It can be shown that the empirical

marginal GoM likelihood for fixed N and increasing J converges to a form

proportional to the conditional GoM likelihood. Hence, the estimates under the

conditional GoM likelihood will converge to a limit point as J goes to infinity

that is the same as that of the estimates under the empirical marginal GoM

likelihood: if the empirical marginal GoM likelihood estimator is consistent for

infinite J, then the conditional GoM likelihood estimator will be likewise

consistent. This convergence property implies that the conditional GoM like-

lihood estimator will provide a good approximation to the empirical marginal

GoM likelihood estimator for large J.
9. Rao (1958, Assumption A1) provided a sufficient condition for the uniform

consistency of the restricted (i.e., parametric) maximum likelihood estimator

for the infinite multinomial distribution as N goes to infinity: the entropy of the

distribution {π0c} must be finite. Rao (1958) emphasized that while this condi-

tion is not necessary for consistency, it is sufficient. Unfortunately, as noted in

Observation 7, this condition does not hold for GoM. Nonetheless, given that

the unrestricted maximum likelihood estimator is known to be consistent for

the infinite multinomial distribution as N goes to infinity, it at least seems

plausible that the restricted maximum likelihood estimator may also be

consistent.

10. To complete our synthesis, we refer again to Mak (1982, Theorem 2.1), from

which it follows that the restricted maximum likelihood estimator for GoM will

converge to some point in the λ-,g-parameter space. What point is that? Mak’s
(1982) Theorem 2.1 does not provide an answer, but it is highly likely that

Huber’s (1967) Theorem 1 does, and if it does, then: it will converge to the

unique point in the λ-,g-parameter space that minimizes the relative entropy
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(i.e., Kullback-Leibler divergence) between the restricted and unrestricted

models.

11. See McCulloch (1988) and Freedman (2006) for non-technical discussion of

this result. Note that the use of relative entropies resolves the “problem” in

Observations 7 and 9 that the entropy of {π0c} becomes infinite for both the

restricted and unrestricted models. If the restricted GoM model is true (i.e., is

the correct model), then the proof of a generalized form of Huber’s (1967)

Theorem 1 will need to identify the conditions under which the parameter

estimates for the restricted model converge to the true values as N and J go to

infinity.

12. These must be the same values as obtained for the unrestricted model.

13. As written, Huber’s (1967) assumptions for his Theorem 1 require that a

sequence of maximum likelihood estimators can be formed for each N as

N goes to infinity: any sequence will do. No consideration, however, was

given to forming a second asymptotic sequence for J as J goes to infinity.

Such consideration would clearly require some generalization of Huber’s
assumptions, which is what is needed to prove our conjecture. This would

only work if, in fact, such sequences exist. Thus, we need to consider how at

least one sequence of maximum likelihood estimators could be formed for

combinations of N and J such that both N and J could go to infinity.

14. Before doing so, we first need to note that Wald (1948, Theorem 3.1) provided

an additional condition for consistency which implies that the total amount of

Fisher information in the empirical marginal GoM model must go to infinity as

N and J go to infinity. Second, Kovtun et al. (2014, Theorem 5.4) provided

additional conditions that restrict the set of admissible variables to those that

yield identifiable mixture distributions with a property that they term

“1-stability.” Intuitively, this restricts the set of admissible variables to

some well-defined measurement domain, which should not be a serious restric-

tion for most substantive applications. We assume that these conditions can be

met, in theory, by selecting cases and variables such that the associated Hessian

matrices (i.e., the “observed” Fisher information matrices) converge to block

diagonal form with unbounded positive-definite diagonal blocks as N and J go
to infinity. Hence, we assume that a sequence of maximum likelihood estima-

tors that satisfy the requirements of Observation 13 can be formed using the

algorithm in Sect. 17.2.8, which is justified by the convergence property in

Observation 8, by letting N and J increase in fixed ratios with variables selected
so that the diagonal terms of the Hessian matrices are unbounded. Convergence

to block diagonal form as N and J increase follows from the structure of

Eqs. (17.12) and (17.13): the only nonzero terms outside the diagonal blocks

correspond to the cross-derivatives of the λ- and g-parameters and these contain

only one additive term, independent of N and J. Hence, the relative sizes of

these cross-derivatives will tend to zero as N and J go to infinity. Convergence

to positive-definite diagonal blocks will satisfy Kuhn-Tucker Condition 5; the

inverse Hessian matrices will be used in eqn. (17.36). Akaike (1973,
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p. 269–270) showed the close connections between the Hessian matrix, the

Fisher information matrix, and the relative entropy measures used to develop

the AIC and Kullback-Leibler statistics.

15. The method described in Observation 14 allows one to construct a sequence of

joint λ- and g-estimators for N and J that permit the conditions of Huber’s
(1967) Theorem 1 to be extended from one to two sequences. If needed, one

can ensure by setting N ¼ J that the terms of the paired sequences use just a

single index, say N, which would most closely match the existing form of

Huber’s assumptions. It remains to provide a precise specification of conditions

for the asymptotic convergence of these joint sequences and to rigorously

determine the changes needed in each step of Huber’s proof. Given that the

unrestricted maximum likelihood estimator is known to be consistent (Wellner

1981), we expect that it will be possible to specify such conditions; this

expectation forms the basis of our conjecture. An essential part of Huber’s
proof is the assumption that the restricted maximum likelihood estimates are

unique; Mak (1982, Theorem 2.1) provides conditions that justify this assump-

tion for the GoM model and these could be incorporated into the generalized

Huber theorem. Then, if the GoM model is true, the uniqueness of the limit

point would ensure that the restricted and unrestricted maximum likelihood

estimators would both tend to the same limit as N and J go to infinity, in which
case consistency would be proven. The Kullback-Leibler divergence would

converge to zero under these same conditions. For the case where the GoM

model is true but one of N or J is not infinite, it would follow from the original

Huber argument that the Kullback-Leibler divergence would be minimized,

confirming our conjecture in its entirety.

The above synthesis clarifies Manton et al.’s (1994, p. 24) statement that the

parameters obtained using the conditional GoM likelihood estimator “asymptoti-

cally maximize” the marginal GoM likelihood. Further work is needed to general-

ize Huber’s (1967) Theorem 1 to a form directly applicable to the empirical

marginal GoM estimator and to determine for practical applications how large

(or small) J needs to be for the approximation in Observation 8 to apply to

conditional GoM for given sizes of N and configurations of the empirical mixing

distribution. Chapter 18 (Sect. 18.4.3) discusses alternative approaches based on

linear latent structure (LLS) analysis to establishing conditions for consistent and

asymptotically normal estimators of the λ- and g-parameters for the conditional

GoM likelihood—suggesting that the consistency issue can best be completely

resolved by several modes of attack. Kovtun et al. (2007) showed that J-values in
the range 250–1000 were sufficient to obtain good estimates of the empirical

mixing distributions for the generalized GoM scores used in the LLS model for

N¼ 10,000. This suggests that J-values substantially below this range may have

acceptable performance characteristics when considered in the context of the

associated Kullback-Leibler divergences.
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Chapter 18

Linear Latent Structure Analysis: Modeling
High-Dimensional Survey Data

Igor Akushevich, Mikhail Kovtun, Julia Kravchenko,

and Anatoliy I. Yashin

18.1 Introduction

Survey data typically are in the form of sample-based collections of measurements

made with discrete outcomes for individuals. Common properties of such datasets

are high dimensionality and highly correlated measured variables. A class of

methods for dealing with such properties is known as latent structure analysis.

The typical assumption in such methods is that the observed structure of multiple

categorical variables is generated by a small number of latent (i.e., unobserved)

variables. The task of latent structure analysis is to find these latent variables,

estimate parameters of their distribution, and describe their properties using a

sample of high-dimensional categorical variables. Generally speaking, it is neces-

sary to find the properties of a population associated with the latent variables and

properties of the sampled individuals, based on those multiple categorical measure-

ments. It appears that both goals may be achieved simultaneously. To increase the

precision of population and individual estimates, one has to increase both the

sample size (i.e., the number of individuals) and the number of measurements

(i.e., questions asked for each individual).

One of the best known of methods of latent structure analysis is the latent class

model (LCM), which can be characterized as a statistical method for finding

discrete subtypes of related cases (latent classes) from multivariate categorical

data. Other models of this type (known as latent variable models), such as item

response theory and Rasch models, differ with respect to the assumptions made

about the latent variable(s) (reviewed by Clogg (1995) and Collins and Lanza

(2010)). One method for identifying the latent structure in large categorical data

sets with a simultaneous evaluation of individual scores in a state space is Grade of

Membership (GoM) analysis, initially developed by Woodbury and Clive (1974).

Manton et al. (1994) provided a detailed exposition of different versions of this

approach and reviewed its properties. Additional characterization of a longitudinal

form of the model was provided in Chap. 17 (Stallard and Sloan 2016).

© Springer Science+Business Media B.V. 2016

A.I. Yashin et al., Biodemography of Aging, The Springer Series on Demographic

Methods and Population Analysis 40, DOI 10.1007/978-94-017-7587-8_18

419

http://dx.doi.org/10.1007/978-94-017-7587-8_17


Recently Linear Latent Structure (LLS) analysis has been developed to model

high-dimensional categorical data (Kovtun et al. 2006, 2007; Akushevich

et al. 2009). The LLS model assumption is that the support (i.e., the set of possible

values or, formally, the smallest closed set that has probability 1) for the latent

variable occupies a polyhedron of low dimensionality. The LLS model was formu-

lated using mixing distribution theory. The specification that the latent variable

occupies a polyhedron is another way of saying that the support is linear, which

differs from the specifications of other latent structure models, e.g., the LCM is

characterized by a mixing distribution concentrated at several isolated support

points. Similar to other latent structure analyses, the goal of LLS analysis is to

derive simultaneously the properties of a population and individuals, using discrete

measurements. The estimation of the LLS model, however, does not use maximi-

zation of the likelihood for parameter estimation. Instead, it uses an estimator in

which the LLS parameter estimates are solutions of a quasilinear system of

equations.

18.2 Linear Latent Structure Analysis

18.2.1 Structure of Datasets and Population Characteristics

The typical dataset analyzed by methods of latent structure analysis can be

represented by the I� J matrix constituted by categorical outcomes Xj
i of

J measurements on I individuals, where i¼ 1,. . .,I and j¼ 1,. . .,J index the indi-

viduals and measurements, respectively. Each row in the matrix corresponds to an

individual and contains an individual response pattern, i.e., a sequence of J numbers

with the jth number ranging from 1 to the number of responses Lj for that variable.
In most cases Lj ranges from 2 to 5–10, and rarely exceeds several dozen. Thus, the

results of a survey are represented by I measurements of random variables X1,. . .,
XJ, with the set of outcomes of the jth measurement being {1, . . ., Lj}. The joint

distribution of random variables X1,. . .,XJ can be described by the elementary

probabilities,

p‘ ¼ Pr X1 ¼ ‘1 and � � � andXJ ¼ ‘Jð Þ; ð18:1Þ

where ‘¼ (‘1, . . ., ‘J) is an individual response pattern and ‘j2{1, . . ., Lj}. To
represent marginal probabilities, we allow some components of ‘ to be 0’s. For
example, for three binary variables,

p 2;0;1ð Þ ¼ Pr X1 ¼ 2 and X3 ¼ 1ð Þ ¼ p 2;1;1ð Þ þ p 2;2;1ð Þ:

420 18 Linear Latent Structure Analysis: Modeling High-Dimensional Survey Data



Values of these probabilities p‘ (and only these) are directly estimable from the

observations. If I‘ is the number of individuals with pattern ‘, consistent estimates

for p‘ are given by the frequency f‘¼ I‘/I.

18.2.2 LLS Task: Statistical, Geometrical, and Mixing
Distribution Points of View

The analytical problem in LLS analysis is to evaluate the dimension of a hidden

space, identify its location in a space of larger dimension, and to evaluate individ-

uals’ hidden characteristics (coordinates in the latent subspace) from the data. The

LLS analysis is based on two assumptions. The first is the assumption of “local

independence”, which is common for all methods of latent structure analysis. The

second is specific for LLS analysis. It assumes the existence of a low-dimensional

linear subspace associated with the latent structure. We present LLS in terms of the

theory of mixing distributions, and then discuss its specific assumptions from

statistical and geometrical points of view.

Population characteristics are completely described by the joint distribution of

random variables X1,. . .,XJ represented by probabilities (18.1). Among all possible

joint distributions, one can distinguish independent distributions, i.e. distributions

satisfying

p‘ ¼ Pr X1 ¼ ‘1 and � � � andXJ ¼ ‘Jð Þ ¼
Y

j
Pr Xj ¼ ‘j
� �

: ð18:2Þ

The description of an independent distribution law requires only knowing

Pr(Xj¼l) which is denoted below as βjl. Vectors of probabilities

β ¼ β11; . . . ; βJLJ
� �

belong to a vector space R|L|, where Lj j ¼
X

j
Lj. Indexes of

the vector components run over all possible pairs of jl, i.e., corresponding to

probabilities of the first outcome to the first variable, of the second outcome to

the first variable, and so on. Requirements for βjl to be probabilities restricts their

domain in the vector space by

XLj

l¼1
βjl ¼ 1 and βjl � 0 : ð18:3Þ

This domain represents the direct product of J unit simplexes, each of dimensions Lj.
Since variables X1,. . .,XJ are not independent in general, the observed distribu-

tion {p‘} cannot be described by the product of independent distributions, but it can
be exactly described as a mixture of independent distributions. This means that each

set of independent probabilities contributes to the observed distribution with a

weight function. This weight function is called a mixing distribution. It is defined

in the space of independent distributions, i.e., for each vector of probabilities β
satisfying (18.3). Let F(β) be the cumulative distribution function of the mixing

distribution. The probabilities p‘ can be represented as:
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p‘ ¼
Z

dF βð Þ
Y J

j¼1
βj‘j : ð18:4Þ

Thus, latent structure analysis searches for a representation of the observed distri-

bution as a mixture of independent distributions.

Any distribution {p‘} can be represented as a mixture, so the representation

(18.4) does not restrict the family of distributions and further specifications are

required. They are formulated as restrictions on the support of the mixing distribu-

tion or, equivalently, on a set of mixed independent distributions. The LLS specific

assumption is that this set is restricted to be a K-dimensional linear subspace of the

space of independent distributions, i.e., the mixing distribution is supported by the

linear subspace spanned by K basis vectors λ1,. . .,λK. Below, this LLS assumption is

considered from the point of view of pure statistical analysis and the geometry of

the task.

Individual characteristics are described by individual probabilities

β i
jl ¼ Pr X i

j ¼ l
� �

of specific outcomes (i¼ 1,. . .,I runs over individuals).

The LLS assumption of the existence of a low-dimensional linear subspace

supporting the mixing distribution is essentially equivalent to the assumption that

there exists a K-dimensional random vector G such that for every j a regression of

Yjl (random variable Yjl equaling 1 if Xj¼ l and 0 otherwise) on G is linear. The

regression equation relates the expectation of Yjl, which is βjl, to the random vector

G. If a specific value of G is associated with individual i (the so-called LLS scores,

gik), then the regression takes the form,

β i
jl ¼

XK

k¼1
gikλ

k
jl : ð18:5Þ

The sense of the regression coefficients λkjl and model restrictions is clarified by

analyzing the geometry of the LLS task.

Vectors of individual probabilities βi ¼ β i
jl

n o
, of individual responses Yi ¼

Y i
jl

n o
and the regression coefficients λk ¼ λ kjl

n o
lie in the permitted domain (18.3)

of the space of independent distributions. From a geometric point of view, LLS

searches a K-dimensional subspace (represented by λkjl) in this space, which is the

“closest” to the set of I points representing individual outcomes Yijl. This linear

subspace is defined by its basis λ1,. . .,λK, so to find the K-dimensional subspace

means finding a basis, λkjl, (k¼ 1,. . .,K). Every basis λ1,. . .,λK defines a family of

regression coefficients and vice versa. The complete set of restrictions in the LLS

(which allows us to consider βijl and λkjl to be probabilities), is

XLJ
l¼1

λ kjl ¼ 1, λ kjl � 0,
XK
k¼1

gik ¼ 1 and
X
k

gikλ
k
jl � 0: ð18:6Þ
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The LLS scores, or gik
0s, characterizing an individual i are then estimated as the

expectation of vector G, conditional on the respondent’s answers. Basis vectors of
the subspace can be interpreted as probabilities and can define “pure types”

(Manton et al. 1994). In this sense, the model decomposition (18.5) has the

interpretation of a decomposition over pure types or over “ideal persons” whose

individual probabilities are basis vectors of the subspace. Note that (18.6) does not

contain the restriction gik� 0, k¼ 1,. . .,K, which is a fundamental restriction of the

GoM model; hence, LLS is a generalization of GoM.

Summarizing, one can say that the LLS model approximates the observed

distribution of X1,. . .,XJ by a mixture of independent distributions with a mixing

distribution supported by a K-dimensional subspace of the space of independent

distributions. To specify such a model distribution, it is sufficient to define the

following LLS parameters:

1. A basis λ1,. . .,λK of the space that supports the mixing distribution.

2. Conditional moments E(G
��X¼ ‘).

This set of model parameters is not the only set possible. We chose it because of

a number of useful properties listed below.

Property 1 The mixing distribution can be estimated in the style of an empirical

distribution, i.e., when the estimator is a distribution concentrated at points E(G
��

X¼ ‘) with weights f‘.

Property 2 The conditional expectations E(G
��X¼ ‘) provide knowledge about

individuals. These conditional expectations can be considered as coordinates in a

phase space, to which all individuals belong. The ability to discover the phase

space and determine individual positions in it is a valuable feature of LLS

analysis.

Property 3 When the number of measurement, J, tends to infinity, the individual

conditional expectations gi ¼ E G
��X ¼ ‘ ið Þ

� �
, where ‘(i) is the vector of

responses of individual i, converge to the true value of the latent variable for

this individual, and estimates of the mixing distribution converge to the true one,

provided some regularity conditions are satisfied (Kovtun et al. 2011).

18.2.3 Moment Matrix and the Main System of Equations

Parameter estimation is based on two properties (Kovtun et al. 2006, 2007) formu-

lated in terms of the conditional and unconditional moments of the mixing
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distribution. The first is that columns of the moment matrix belong exactly to the

desired linear space. The second is that they obey the main system of equations.

18.2.3.1 Unconditional Moments and the Moment Matrix

The first set of values in which we are interested consists of the unconditional

moments of the mixing distribution F(β):

M‘ ¼
Z

dF βð Þ
Y

j:‘j 6¼0
βj‘j ¼ p‘: ð18:7Þ

Note an important fact regarding the above equation. The value on the left-hand-

side, M‘, is a moment of a mixing distribution, while the value on the right-hand-

side, p‘, comes from the joint distribution of X1,. . .,XJ; the equality of these values is

a direct corollary of the definition of a mixture. The existence of this connection

between two distinct distributions is crucial for LLS analysis.

The first corollary of Eq. (18.7) is that some moments are directly estimable from

data and, therefore, the frequencies f‘ of response patterns ‘ observed in a sample

are consistent and efficient estimators for the moments M‘.

Recall that we allow some components of response pattern ‘ to be 0. In this case,
the p‘ are marginal probabilities. In the definition of the M‘, the multipliers,

corresponding to 0 components of ‘, are excluded from the product. Thus, the

order of moment M‘ is equal to the number of non-zero components in ‘.
All moments defined in (18.7) are estimable by frequencies; however, this

definition does not cover all moments of a certain order. For example, moments

of the second order with βjl1 and βjl2 (i.e., with the same j) are not estimable. This

arises because the data do not include double answers to the same question. It

follows that (i) all moments of first order are estimable, (ii) the proportion of

estimable moments decreases with the increase of order, and (iii) no moments of

order Jþ 1 and higher are estimable.

The moment matrix is constructed from moments of order up to J using the

following formal rules:

1. Rows of the moment matrix are indexed by response patterns containing exactly

one non-zero component or, equivalently, by pair indexes jl. Thus, the moment

matrix contains |L| rows, and their columns can be considered as vectors in R|L|.

2. Columns of the moment matrix are indexed by all possible response patterns,

including a response pattern containing all 0’s. The first column is indexed by

the response pattern (0,. . .,0); the next |L| columns are indexed by response

patterns containing one non-zero component, and so on.

3. The element at the intersection of row ‘
0
and column ‘

00
isM‘0þ‘00, if ‘

00
has 0 at the

position of the only non-zero component of ‘
0
(in this case, ‘

0 þ ‘
00
is a meaningful

response pattern; otherwise, a question mark is placed on the position of the
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intersection of row ‘
0
and column ‘

0 0
). For example, the element of the moment

matrix in row (1,0,0) and column (0,2,2) isM1,2,2, and the element in row (1,0,0)

and column (1,0,2) is inestimable and denoted by a question mark.

Equation 18.8 gives an example of a portion of the moment matrix for the case of

J¼ 3 dichotomous variables, i.e., L1¼ L2¼ L3¼ 2.

M 100ð Þ ? ? M 110ð Þ M 120ð Þ M 101ð Þ M 102ð Þ ? � � �
M 200ð Þ ? ? M 210ð Þ M 220ð Þ M 201ð Þ M 202ð Þ ? � � �
M 010ð Þ M 110ð Þ M 210ð Þ ? ? M 011ð Þ M 012ð Þ ? � � �
M 020ð Þ M 120ð Þ M 220ð Þ ? ? M 021ð Þ M 022ð Þ ? � � �
M 001ð Þ M 101ð Þ M 201ð Þ M 011ð Þ M 021ð Þ ? ? M 111ð Þ � � �
M 002ð Þ M 102ð Þ M 202ð Þ M 012ð Þ M 022ð Þ ? ? M 112ð Þ � � �

0
BBBBBB@

1
CCCCCCA

ð18:8Þ

In this example, places for inestimable moments are filled by question marks. The

first column of the moment matrix contains moments of the first order, when only

one specific outcome of one specific variable is taken into account. There are no

inestimable moments in the first column. Elements of this column can be denoted as

components of vectors in R|L|, i.e., as Mjl. The next six (|L| in general) columns

correspond to second-order moments. Blocks of diagonal elements are not estima-

ble. Second-order moments can be also denoted via the pair jl of indexes as Mjl;j0l0.

The last column shown corresponds to third order moments. The notations Mjl and

Mjl;j0l0 are used below for specific columns of the moment matrix.

The part of the moment matrix consisting of second-order moments (which is an

|L|� |L| square matrix) together with the column of first-order moments is of special

interest. A well-known fact is that if a distribution in an n-dimensional Euclidean

space is carried by a k-dimensional linear manifold, then the rank of the covariance

matrix is equal to k, and the position of the manifold can be derived from the

covariance matrix. This fact is the cornerstone of Principal Component Analysis

(PCA). Our method is based on similar ideas, adapted to having an incomplete set

of second-order moments. For a small J (as in the example), there is a relatively

large fraction of non-estimable components in the second-order part of the moment

matrix. For increasing J, this fraction rapidly decreases.

For a moment matrix M, let its completion M be a matrix obtained from M by

replacing question marks with arbitrary numbers. The main fact with respect to the

moment matrix is that the moment matrix always has a completion in which all

columns belong to the supporting planeΛ. Thus, if the estimable part of the moment

matrix has sufficient rank (which is the case in non-degenerate situations), a basis in

Λ may be obtained from this matrix. As we have a consistent estimator of the

moment matrix in the form of a frequency matrix, the supporting plane may be

consistently estimated.
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18.2.3.2 Unconditional Moments and Main System of Equations

Another set of values of interest are the conditional moments E(Gk|X¼ ‘), which
express knowledge of the state of individuals based on measurements. They are not

directly estimable from observations. The goal of LLS analysis is to obtain esti-

mates for these conditional moments. Explicit expressions for those of the lowest

order are obtained using Bayes theorem (Kovtun et al. 2007):

E Gn

��X ¼ ‘
� � ¼ Z dF gð Þgn

Q
j:‘j 6¼0

X
k
gkλ

k
jl

M‘ μβ
� � : ð18:9Þ

Analogously, higher-order conditional moments, including products of compo-

nents of G, can be constructed. As can be seen explicitly from (18.9), the relation of

conditional and unconditional moments in LLS analysis can be described as

X
k
λ kjlE Gk

��X ¼ ‘
� � ¼ M‘þlj

M‘
; ð18:10Þ

where the vector ‘ contains 0 in position j, and ‘þ lj contains l in this position.

Similar equations can be written for conditional moments of higher orders. We refer

to the system of equations relating conditional and unconditional moments as the

main system equations. Kovtun et al. (2007) proved the following properties of

solutions of the main system of equations: (i) any basis λkjl of Λ together with the

conditional moments E(Gk

��X¼ ‘) calculated on this basis yields a solution of the

main system of equations; and (ii) under regularity conditions, every solution of the

main system of equations gives a basis ofΛ and the conditional moments calculated

on this basis. Note, that Eq. (18.10) is linear with respect to the conditional

moments.

The properties of the moment matrix and solutions of the main system of

equations suggest an efficient algorithm for calculating LLS estimates. First, a

basis of the supporting plane can be obtained from the moment matrix, and second,

the conditional moments can be found by solving a linear system of equations.

18.2.3.3 Two Illustrative Examples

Before going into the details of the algorithm and addressing the practical tasks

of data analysis, we consider two simple illustrative examples. For both of

them, assume K¼ 2, three dichotomous variables (J¼ 3), and the basis vectors

are λ1¼ (1,0;1,0;1,0) and λ2¼ (1/2,1/2;0,1;0,1). Then the independent distribu-

tions being mixed are defined by the vectors:

β ¼ g1λ
1 þ g2λ

2 ¼ g1λ
1 þ 1� g1ð Þλ2, 0 � g1 � 1: ð18:11Þ
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Thus, a mixing distribution can be represented by a one dimensional p.d.f. ρ(g1).
For the first task, we assume that the mixing distribution is uniform

ρ g1ð Þ ¼ 1θ g1ð Þθ 1� g1ð Þð Þ. In the second case, we assume the mixing distribution

is concentrated at two points with g1¼ 0.1 and g1¼ 0.4

ρ g1ð Þ ¼ 1=2 δ g1 � 1=10Þ þ δ g1 � 2=5Þð Þð Þðð . Unconditional moments are calculated

using (18.7). Moment matrices for both cases are:
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and

5

8

317

800

183

800

451

1600

549

1600

67

400

183

800
3

8

183

800

117

800

249

160

351

1600

33

400

117

400
7

16

451

1600

249

160

653

3200

747

3200

101

800

249

800
9

16

549

1600

351

1600

747

3200

1053

3200

99

800

351

800
1

4

67

400

33

400

101

800

99

800

17

200

33

200
3

4

183

400

117

400

249

800

351

800

33

200

117

200

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð18:12Þ

Since these matrices were constructed from mixing distributions known a priori,

diagonal blocks in the sub-matrix of the second order are calculable (marked by the

italic font in (18.12)). As can be seen, the rank of both matrices is 2. Conditional

moments are calculated for an outcome pattern. Choose ‘¼ (001) and ‘þ l1(101).
Using (18.9), we have

E G1

��X ¼ 001ð Þ� � ¼ 23 and E G2

��X ¼ 001ð Þ� � ¼ 13 ð18:13Þ

for the first example, and

E G1

��X ¼ 001ð Þ� � ¼ 1750 and E G2

��X ¼ 001ð Þ� � ¼ 3350 ð18:14Þ
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for the second. Using corresponding elements of M‘ in (18.12), we can see that the

l.h.s. and r.h.s of Eq. (18.10) are equal to 5/6 for first example and 67/100 for the

second:

1 �2
3
þ 1

2
� 1
3
¼ 5=12

1=2
and 1 �17

50
þ 1

2
� 33
50

¼ 67=400

1=4
: ð18:15Þ

External indexes in this example are j¼ 1 and l¼ 1.

18.3 Computational Algorithm for Estimating LLS Model

Parameter estimates in LLS models are based on the properties of the moment

matrix and the main system of equations. These properties allow us to reduce the

problem of estimating the model parameters to a sequence of linear algebra

problems. The algorithm based on linear algebra methods assures a low computa-

tional complexity.

Data to be analyzed are represented by a set of measurements Xi
j (See

Sect. 18.2.1).

We need to find the linear space and the individual LLS scores. Estimation of the

model requires four steps: (i) estimating the rank of the frequency matrix,

(ii) finding the supporting plane, (iii) choosing a basis in the plane that was

found, and (iv) calculating the individual conditional expectations and estimating

mixing distribution. The second and fourth steps are the essence of the LLS

parameter estimation problem. The first step is separable, because sometimes the

desired dimensionality of the LLS model may be provided by a researcher, and this

step may be skipped. The third step requires using prior information about the

processes studied, so it is also examined separately.

18.3.1 Moment Matrix Calculation

An important initial step that deserves special attention is calculation of the moment

matrix. The elements of the moment matrix given by M‘ are approximated by

observable frequencies defined as f‘¼ I‘/I, where I‘ is the number of individuals

with outcome pattern ‘, and I is the total number of individuals having certain (not

missing) outcomes for nonzero elements in ‘. Columns of a different order have

different normalizations, e.g., the sum of first-order moments corresponding to

variable j is one (e.g., M(010)þM(020)¼ 1), while sums of columns for this j of
the second-order sub-matrix are equal to the corresponding first-order moments
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(e.g., M(110)þM(120)¼M(100)). General conditions of summations of the second

order moments written in terms of the notation defined after Eq. (18.8) are:

XL
j
0

l
0 ¼1

M
jl;j

0
l
0 ¼ Mjl: ð18:16Þ

Because of missing data, the property of normalization can be violated. This

property, with or without the renormalization setting the sums equal to one, is

required for the analysis. The renormalization could provide the property in the

presence of missing data; this approximation can be true, however, only if the

missing data are random.

In addition, a matrix containing standard errors (or confidence intervals) of

estimates of frequencies is calculated for each element of the frequency matrix.

Standard errors for a binomial distribution, i.e., σ‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ‘ 1� f ‘ð Þ=I‘

p
, require a

generalization for patterns with small I‘ as discussed in Brown et al. (2001).

18.3.2 Computational Rank of the Frequency Matrix

The frequency matrix can be represented as a sum of the moment matrix with rank

K and a matrix with a stochastic component. To define the dimensionality of the

LLS problem, we have to estimate the rank of the frequency matrix eliminating the

stochastic component. Specifically, we take the greatest minor of the frequency

matrix that does not contain question marks. Then we calculate the singular value

decomposition (SVD) and take K equal to the number of singular values that are

greater than a maximum of the total standard deviation estimated as the quadratic

sum of standard errors of frequencies involved in the minor.

The choice of a minor does not essentially influence the computational rank of

the frequency matrix. Indeed, the geometrically specific choice of a minor (e.g. an

n-dimensional minor of maximal size in the lower left corner of the moment matrix)

corresponds to the projection of part of the vectors onto an n-dimensional linear

subspace. If the real rank of the moment matrix is much less than n, it is clear that
the rank of the projection will not change.

18.3.3 Finding the Supporting Plane

All columns of the moment matrix belong to the supporting plane, and as the

frequency matrix is an approximation of the moment matrix, a natural way to

search for the supporting plane is to search for a plane that minimizes the sum of

distances from it to the columns of the frequency matrix. In our case, however, this

approach is complicated by three obstacles: (a) the frequency matrix is incomplete;

(b) the statistical inaccuracy of the approximation of moments M‘ by frequencies f‘
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varies considerably over elements of the frequency matrix; and (c) the basis we seek

should exactly satisfy the conditions
XLJ

l¼1
λ kjl ¼ 1 for every k and j. These obstacles

are overcome by heuristic methods: (a) An iterative procedure for completion of the

frequency matrix is used: after a basis of the supporting plane is obtained, it is used

to recalculate the completion of the frequency matrix. A new frequency matrix is

used for adjusting the basis calculation, etc. (b) Only the first- and second-order

moments are examined, so statistical errors of different columns in this matrix are

compatible. (c) Rotation of each simplex (corresponding to each variable) to the

hyperplane to eliminate one degree of freedom. Rotation, but not a simple projec-

tion, is required to provide the same distances between points in a simplex. Items

(a) and (c) require explicit consideration.

18.3.3.1 Completion of the Moment Matrix

We consider the second-order moment matrix where, for every j; there are

undefined elements corresponding to repeated responses to the same variable.

The intent of the completion procedure is to approximate these elements, assuming

that the supporting subspace Λ is found. Since only the completed frequency matrix

is used for finding the subspace Λ, and since the completion procedure uses a basis

in the subspace Λ, it can be done by an iteration algorithm. For one iteration step,

we need to find a symmetric matrix Bj of Lj � Lj -dimension with positive elements

such that the sum of elements in each column (or row) equals the corresponding

moment of the first order, i.e.,
X

l
B
j, ll

0 ¼ M
jl
0 . Since we know the first- and second-

order frequencies ( fjl and f jl, j0 l0 ; j 6¼ j
0
), which only approximate exact moments (Mjl

and M
jl, j

0
l
0 ), special efforts are required to satisfy the properties of Bj. Columns of

the second-order sub-matrix corresponding to variable j are presented using the

known frequencies f jl, jl; j 6¼ j and the inestimable elements Bj, ll,

f 11;j1 . . . f 11;jL
j

. . . . . . . . .
f 1L1;j1 . . . f 1L1;jLj
. . . . . . . . .
Bj, 11 . . . Bj, 1L

j
. . . . . . . . .
Bj,L

j
1 . . . Bj;L

j
L
j

. . . . . . . . .
f 11;j1 . . . f J1;jL

j
. . . . . . . . .
f JLJ ;j1 . . . f JLJ ;jLj

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

: ð18:17Þ
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The completion procedure is based on the fact that the rank of the moment

matrix is K, which is much smaller than the dimension of the moment matrix, |L|.
Therefore, only K columns are linearly independent. Each column of the moment

matrix, being a vector in a K-dimensional vector space, can be expanded over the

basis vectors λ1,. . .,λK available after finding the subspace Λ. The known elements

f jl;jl (l ¼ 1, . . . , Lj and j 6¼ j
�
of the columns of the moment matrix corresponding to

variable j are expanded:

f jl;jl ¼
X

k
Cjl
kλ

k
jl j 6¼ j
� �

: ð18:18Þ

If the coefficients Cjl
k are found, the matrix Bj can be constructed as

B
j, l

0
l
¼
X
k

Cjl
kλ

k

jl
0 . The number of known components of the vector f jl;jl is greater

than the number of basis vectors, so the coefficients Cjl
k can be calculated by

ordinary least squares with restrictions: Cjl
k � 0,

X
k
Cjl
k ¼ 1, andX

k
Cjl
kλ

k

jl
0 � Cjl

0

k λ
k
jl

� 	
¼ 0. The functional to be minimized is:

X
jl:j 6¼j

f jl;jl �
X
k

Cjl
kλ

k
jl

 !2

: ð18:19Þ

18.3.3.2 Removing Restrictions

The restrictions
XLJ

l¼1
λ kjl ¼ 1 are removed by reducing the number of rows by

J (one for every group of indexes j1,. . .,jLj). Specifically, we use a linear map

from R|L| to R|L|�J represented by a block-diagonal matrix A with J blocks of size

Lj� (Lj – 1):

Aj ¼
�

ffiffiffiffi
Lj

p � 1

Lj � 1
1 0 . . . 0

:::::::::::::::::::::::::::

�
ffiffiffiffi
Lj

p � 1

Lj � 1
0 0 . . . 1

0
BBBBB@

1
CCCCCA: ð18:20Þ

Geometrically, such a map provides an isometric rotation λ
k ¼ Aλk

� �
to the

hyperplane with zero first coordinate, i.e., every block Αj defines a rotation of a unit

simplex in an Lj-dimensional space around a hypersurface opposite to the first
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vertex; the angle of this rotation is such that the first vertex moves to the point

where the first coordinate equals 0. Explicitly, this rotation is λ
k

jl�1 ¼ Ajλ
k
jl in matrix

form or λ
k

jl�1 ¼ λ kjl �
ffiffiffi
Lj

p
�1

Lj�1
λ kj1 for l¼ 2,. . .,Lj. New vectors λ

k
do not possess any

ties. It is easy to verify that such a transformation conserves distances between

points in a simplex. The reverse transformation is:

λ kj1 ¼
1�

XLj

l¼2
λ
k

jl�1ffiffiffiffi
Lj

p , λ kjl ¼ λ
k

jl�1 þ
ffiffiffiffi
Lj

p � 1

Lj � 1
λ kjl : ð18:21Þ

18.3.3.3 Algorithm for Identifying the Subspace

The initial completion of the moment matrix is constructed in an arbitrary way, e.g.,

by the unitary diagonal matrix or by completing frequencies as fij¼ fifj. The next

step is the rotation of each simplex (corresponding to each variable as described

above) to the hyperplane to eliminate one degree of freedom. This produces n points
c1,. . .,cn (images of the columns of the frequency matrix) in m¼ (|L| – J )-dimen-

sional space. The problem is to find an affine plane that minimally deviates from

these points in the space of individual probabilities. First, we find the center of

gravity of this system

c0 ¼ 1

n

X
i
ci; ð18:22Þ

and then consider a new set of points ci ¼ ci � c0 that corresponds to shifting the

point of origin. Then we need to find a K-dimensional linear subspace in Rm that

minimally deviates from this set of points. The solution of this problem is well-

known: one has to consider an m�m matrix X with components Xrs ¼
X

i
c irc

i
s;

this matrix is symmetric and positive definite and thus its normalized eigenvec-

tors are composed of an orthonormal basis in Rm. Let γ1 � γ2 � � � � � γm > 0

be the eigenvalues of the matrix X, and let Z1,. . .,Zm be the corresponding

eigenvectors. The plane of dimensionality K that minimizes the sum of squared

distances from points c1, . . . , cn is spanned by z1,. . .,zm, and the sum of squared

distances is trX �
X k

k¼1
γk. Vectors c

0,c0þ z1,. . .,c0þ zk�1 give us an affine basis

of the required affine plane. Finally, we apply inverses of the transformation

(18.21) to c0,c0þ z1,. . .,c0þ zk�1 to obtain the basis λ1,. . .,λk of the subspace Λ.
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18.3.4 Choice of a Basis

The basis cannot be defined uniquely, and any convex combination of basis vectors

satisfying the LLS restrictions can be considered as an alternative. A choice may be

made using prior information about the process of interest. The appeal of prior

information at this stage is reasonable, because of the evident fact that the same

dataset can be used for analyzing different (say, disability or CVD) substantive

issues.

How this information is used and how the specific choice of the basis is defined

is up to the researcher. Here we describe two possible schemes used in our analyses.

A researcher specifies the characteristics of “ideal” individuals based on his/her

experience in the research domain. Then he/she can construct vectors of probabil-

ities βjlj for such ideal individuals or take these individuals from the sample under

consideration. The vectors of probabilities for these individuals are taken as the

basis vectors. If the probability vectors are constructed by hand, they could extend

beyond the polyhedron Pg, so they should be projected to Pg. The individual

coordinates in this basis would represent the “proximity” of the individual to the

“ideal” ones.

In another scheme, the basis is obtained using assignment of LLS scores (calcu-

lated on some arbitrary basis) to K clusters, and then the basis vectors λ1,. . .,λk

are calculated as the means of the probabilities βijl over each cluster.

A researcher can develop his/her own scheme of basis selection. For example,

he/she can simply use vectors already known from previous studies or construct a

basis purely mathematically, e.g., from the condition of maximal linear indepen-

dence of the vectors, or choose it from the set of supportive polyhedron vertexes.

18.3.5 Calculation of Individual Conditional Expectations

When a basis of the supporting plane is found, the conditional expectations can be

calculated from the main system of Eq. (18.10), which is a linear system after

substituting the basis. The system, however, relates conditional expectations E

Gk

��X ¼ ‘
� �

for a pattern ‘ with at least one 0th outcome. Thus, the exact system of

Eq. (18.10) can be written for all patterns ‘ except patterns where all outcomes are

known. For complete patterns, we can calculate J conditional expectations, subse-
quently excluding one of the J variables (i.e., obtaining patterns ‘[j], where ‘[j]

denotes the vector ‘ with the jth coordinate set equal to 0), solving the exact system
of equations for the selected patterns, and defining the LLS score for the complete

pattern as a mean over J solutions for the conditional expectations for the ‘[j]

patterns. This approach can be formalized by considering a system of J equations:

X
k
λ
k

jl
� g‘k �

f ‘
f ‘ j½ �

: ð18:23Þ
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This is a sparse overdetermined system that is solved by minimizing the

functional

X
j

X
k

λ kjl � glk �
f ‘

f
j½ �
‘

 !2

ð18:24Þ

using least squares with the restrictions
X

k
g‘k ¼ 1 and

X
k
λ kjl � g‘k � 0. The

estimation procedure is implemented using SAS Proc NLP (SAS, Cary NC).

18.3.6 Mixing Distribution

The mixing distribution for a given set of data is approximated by an empirical

distribution, where an individual provides a unit contribution to the histogram of the

distribution. The support of this distribution is a set of I points. The probabilities of
the joint distribution (18.4) are estimated as the sum over sample individuals or as

the sum over possible outcome patterns:

p*‘ ¼
X

i

Y
j:‘j 6¼0

β i
j‘j

¼
X

‘
0 f ‘0
Y

j:‘j 6¼0

X
k
g
‘
0
k
λ kj‘j : ð18:25Þ

18.3.7 Properties of LLS Estimator

Kovtun et al. (2007) proved identifiability and consistency of the LLS model. The

LLS model is identifiable if and only if the moment matrix has a completion with

the rank equal to the maximal rank of its completed minors. This property holds for

almost all (with respect to Lebesgue measure) mixing distributions; thus, LLS

models are identifiable almost surely. The parameters of the LLS model are the

exact solutions of the main system of equations, whose coefficients are true

moments of the mixing distribution. The solutions of this system depend continu-

ously on its coefficients; thus, consistency of the LLS estimates obtained by the

above algorithm is a direct corollary of the known statistical fact that the frequen-

cies are consistent and efficient estimators of the true moments.

Stronger results were obtained for infinite families of random variables in

Kovtun et al. (2014) who described a class of mixtures with an identifiable mixing

measure. This class is interesting from a practical point of view as well, as its

structure clarifies the principles of selecting a “good” finite family of random

variables to be used in applied research.

One domain of application of LLS analysis is the analysis of surveys, where

individuals from a sample are asked multiple questions in order to obtain a
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description of a relatively simple (but directly unobservable) underlying phenom-

enon. In this context, the mixing distribution can be thought of as a description of a

latent variable that characterizes the underlying phenomenon. The dimensionality

of the mixing distribution corresponds to the “complexity” of the underlying

phenomenon.

Another useful notion is the stability of a questionnaire. The questionnaire is

stable (or, k-stable) if the dimensionality of the problem does not change after

removing any k variables. Stability is a characteristic of how well a questionnaire is

“balanced.” A small (in comparison to the number of questions in a survey) level of

stability means that a questionnaire is poorly balanced: many questions are devoted

to discover one “side” of the underlying phenomenon, while only a few of them are

devoted to discover another “side.” From this perspective, the stability of the LLS

model can be considered as a mathematical measure of the “quality” of a question-

naire. On the other hand, application of LLS analysis (as of any statistical method)

is an attempt to infer something from a number of imprecise bits of data. One has to

avoid inferences that are supported by a single bit of (or very few bits of) data. Thus,

stability characterizes the reliability of an inference. The above arguments suggest

that it is very natural to restrict consideration to stable cases.

The notion of k-stability was formally introduced in Kovtun et al. (2014) and its

properties were rigorously studied. We say that a distribution of rank K is k-stable
if, after removing an arbitrary k random variables from consideration, its visible

rank is still K. Similarly, a supporting subspace is k-stable if its dimensionality does

not decrease after removing an arbitrary k random variables. In the other words, k-
stability essentially means that any dimension of a supporting subspace is con-

firmed by most random variables—not just one variable or a few of them. The point

that we want to stress is the importance of k-stability for the reliability of LLS

inferences. To give the reader a sense of numbers, let us assume that we have an

observed distribution P of 100 binary random variables, which is stable, the rank of

the mixing distribution is K¼ 5, and the system of variables is 90-stable (i.e.,

k¼ 90). In this situation (Theorem 4.12 of Kovtun et al. (2014)), there exists a

five-dimensional model for P. But one may ask the question: Granted that a five-

dimensional model exists does there exist a six-dimensional model that is much-

much better than the five-dimensional model in a sense that was not taken into

account so far? Theorem 4.18 in Kovtun et al. (2014) gives quite a strong answer to

this question: There are no stable mixing measures of rank 6, 7, . . ., 90. One may

find a mixing measure of rank 91. However, it is hard to believe that a

91-dimensional model would be better, in any sense, than a five-dimensional one.

18.3.8 Clustering

Clustering LLS scores is not necessary for finding the subspace or calculation of

LLS scores; however, it is helpful in selecting a basis and cross-checking in

simulation studies. Two types of clustering procedures are implemented in the
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algorithm. The first is the k-means algorithm for the situation where the number of

clusters is fixed a priori. The second is a hierarchical procedure that sequentially

joins clusters with minimal distance between them. Several distance definitions are

possible: distance between centers of mass in clusters or between closest and the

most outlying cluster members. Numerical comparisons show that the most reliable

results are obtained for the center-of-mass scheme.

18.3.9 Missing Data

Missing data often create difficulties in statistical analyses. Missing data are

generated by the absence of responses of an individual to specific questions. The

properties of the LLS model make this type of missing data relatively easy to

handle. Two main sources of missing data (e.g., responses in sample survey data)

could be considered: first, when the failure to answer the question is random; and

second, when the failure to answer the question correlates with answers to other

questions. In the first case (missing data are random), a solution can be based on the

fact that the input to the LLS algorithm consists of frequencies of partial response

patterns (like the frequency of giving response C to the second question and

response A to the fifth question). With missing data, such frequencies can be

calculated by relating the number of individuals with a particular response pattern

to the number of individuals who gave answers to the questions covered by the

response pattern (rather than to the total number of individuals). The only drawback

of this method is the decreased precision of the frequency estimators. As LLS

scores are expectations of latent variables conditional on the arbitrary part of the

response pattern for an individual, the available part of the response pattern can be

used to estimate the value of the latent variable. In the second case (missing data are

not random), the absence of an answer can be considered an additional alternative

answer to a multi-choice question; in this case, the standard LLS analysis can be

applied.

18.4 Applications

18.4.1 Simulation Studies

Three types of simulation experiments were performed to test the predictive power

of the LLS model and its ability to detect and to quantitatively reconstruct a hidden

latent structure. Specifically, the simulations focused on analyzing the quality of

reconstruction of: (i) the linear subspace; (ii) the LLS mixing distribution; and (iii)

the clustering properties. The results demonstrated an acceptable quality of
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reconstruction. Details of the design of these studies and results were described in

Akushevich et al. (2009).

18.4.2 LLS and Latent Class Models

The geometric approach, which considers independent distributions as points in a

finite-dimensional linear space and mixing distributions as measures in this space,

allows us to clarify the relationships among various branches of latent structure

analysis. Here we consider the relation between the LLS model and latent class

models (LCM).

In geometric language, latent classes are points in the space of independent

distributions. If an LCMwith classes c1,. . .,cm exists for a particular dataset, then an

LLS model also exists, and its supporting subspace is the linear subspace spanned

by the vectors c1,. . .,cm. Thus, the dimensionality of the LLS model never exceeds

the number of classes in LCM. These numbers are equal if and only if the LCM

classes are points in a general position (n points are said to be in a general position,
if they do not belong to any linear manifold of dimensionality smaller than n� 1).

If the LCM classes are not in a general position, however, the dimensionality of

the LLS model may be significantly smaller. For example, it is possible to construct

a mixing distribution such that (a) it is supported by a line (i.e., the dimensionality

of the LLS model is 2); (b) there exists an LCM with J (number of variables)

classes; and (c) there is no LCM with a smaller number of classes. If, however, the

mixing distribution is supported by an infinite set (as in example 1 above), a latent

class model does not exist at all, while an LLS model performs well. On the other

hand, LLS can be used to evaluate the applicability of the LCM: if the mixing

distribution in the LLS model has pronounced modality, then a LCM is more likely

to exist (with the number of classes equal to number of modes). When both LCM

and LLS models are applicable, the LLS model may still be the model of choice,

due to its lower computational complexity.

18.4.3 LLS and Grade of Membership (GoM) Models

The parameters of the GoM model are conventionally estimated by maximizing the

conditional likelihood function:

Y
‘

Y
j

X
k

g‘kλ
k
j‘j

 !f ‘

: ð18:26Þ

Proof of the consistency of the maximum likelihood estimator (MLE) has not been

done for this form of the GoM model. Tolley and Manton (1992) presented a proof
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of consistency, but only for the marginal likelihood obtained by integrating (18.26)

over the distribution of the g‘k’s, subject to the additional constraint that g‘k� 0,

k¼ 1,. . .,K. Nevertheless, there are arguments in favor of the position that a

solution of the conditional GoM likelihood should provide consistent estimates.

Roughly speaking, the maximum of (18.26) converges to the true values when both
the size of the sample, N, and the number of measurements, J, tend to infinity. The

idea of the proof is to show that when both N and J tend to infinity, then at the

point where the maximum of (18.26) is achieved: (i) the λ1,. . .,λK converge to a

basis Λ
	 ¼ fλ	kg of the support of the measure μβ, and (ii) the g‘ converge to

conditional expectations E G
��X ¼ ‘

� �
, calculated with respect to the basis Λ

	
.

The most important question is how to define the properties that an infinite

system of measurements should satisfy. The following useful property follows from

Mak (1982, Theorem 2.1), for fixed N: “For sufficiently large J, at the point of the
maximum of (18.26), g

‘
0 is very close to g

‘
00 for every choice of ‘

0
, ‘

00
that differ only

in one component.” The property was rigorously specified for LLS using the notion

of stability defined in Kovtun et al. (2014). Now rewrite (18.26) as

Y
‘

X
k

g‘kλ
k
1‘1

 !f ‘

:...:
Y
‘

X
k

g‘kλ
k
J‘J

 !f ‘

: ð18:27Þ

Then take the jth factor of (18.27) and rewrite it as

Y
‘
02L j½ �

X
k

g
‘
0 þ1j,k

λ kj1

 !f
‘
0 þ1j

:...:
X
k

g
‘
0þ Ljð Þ

j
,k
λ kjLj

 !f
‘
0 þ Ljð Þ

j

0
@

1
A: ð18:28Þ

Recall that the vector ‘ contains 0 in position j, and ‘þ lj contains l in this position.
Due to the above property, we can use the equality g

l
0þl

0
j ,k

¼ g
l
0 þl

00
j ,k

valid for every

l
0
j, l

00
j 2[1,. . .,Lj] for J!1. From this, we obtain the identity:

XLj
l¼1

X
k

g
‘
0þlj,k

λ kjl ¼
X
k

g
‘
0
,k

X
l

λ kjl ¼
X
k

g
‘
0
,k
� 1 ¼ 1: ð18:29Þ

Thus, in (18.28) we have a product of positive factors whose sum tends to a constant

for sufficiently large J. Such a product reaches a maximum when its factors are

proportional to their powers, yielding the following system of equations:

X
k
g
‘
0þlj,k

λ kjl ¼
f
‘
0 þlj

f
‘
0

(
, lj2 1; . . . ; Lj


 �
: ð18:30Þ
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It follows that the sets of g‘k and λkjl that produce the maximum of (18.26) also

satisfy the system of Eq. (18.10) and consequently, by Theorem 5.1 of Kovtun

et al. (2007) that, when the size of the sample, N, and the number of measurements,

J, tend to infinity, the conditional MLEs of the g- and λ-parameters are consistent.

18.4.4 Application to the NLTCS Data

The National Long Term Care Survey is a longitudinal survey designed to study

the changes over time in the health and functional status of older Americans (aged

65þ). The analytic dataset used for the present application is described in

Akushevich et al. (2013c).

The first 10 singular values of the frequency matrix of the analytic dataset

(σE¼ 0.292) are:

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10
39.112 3.217 1.464 0.652 0.363 0.310 0.243 0.220 0.198 0.148

When the dimensionality of the LLS-problem is fixed, we can complete the

moment matrix using the algorithm described in Sect. 3.3. The sub-matrix

corresponding to the first four dichotomous variables is:

0:094 0:513 0:051 0:0328 0:011 0:258 0:012 0:518 0:014
0:906 0:487 0:949 0:672 0:989 0:742 0:988 0:482 0:986
0:264 0:918 0:196 0:633 0:128 0:688 0:051 0:846 0:153
0:736 0:082 0:804 0:367 0:872 0:312 0:949 0:154 0:847
0:335 0:916 0:275 0:872 0:142 0:664 0:164 0:888 0:230
0:665 0:084 0:725 0:128 0:858 0:336 0:836 0:112 0:770
0:160 0:879 0:085 0:514 0:034 0:424 0:027 0:640 0:069
0:840 0:121 0:915 0:486 0:966 0:576 0:973 0:360 0:931

0
BBBBBBBBBB@

1
CCCCCCCCCCA

On the basis of cluster analysis, we chose K¼ 3 clusters corresponding to

(i) individuals with minor chronic diseases without disability (k¼ 1, ii) individuals

with medium to severe chronic diseases, severely disabled (k¼ 2), and (iii) indi-

viduals with medium chronic diseases and minor to medium disability (k¼ 3). For

the K¼ 4 case, an additional cluster k¼ 4 intermediate between (k¼ 1) and (k¼ 3)

was added. An extended set of variables (J¼ 230) allowed us to identify two

additional groups out of group i with similar sets and severity of chronic diseases:

(a) physically and socially very active individuals without disabilities, psycholog-

ically healthy, and (b) moderately physically and socially active individuals with

minor disabilities and minor to moderaSte psychological disorders.
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Polyhedrons defined by the LLS constraints for K¼ 3 (a) and K¼ 4 (c,e) and

their filling by the LLS scores of NLTCS individuals can be illustrated (see

Fig. 18.1 for K¼ 3). The plot on the left shows the 2D-polyhedron for K¼ 3. The

case of K¼ 4 was considered by Akushevich et al. (2009). The polyhedron was

defined by the LLS restrictions. In this case, the LLS scores were restricted by

130 inequalities
X

k
gikλ

k
jl � 0

� �
and one equality

X
k
gik ¼ 1

� �
. Basis vectors

produced unit simplexes labeled by numbers. Plots on the right demonstrate how

the polyhedrons were filled by the population. For the filling, we assigned all

individuals to 1,000 clusters. Each point in a plot represents one cluster. The area

of each point is proportional to the number of individuals assigned to the

corresponding cluster. An exception is the point marked by open circles with a

closed point inside. About half of the total population was assigned to this cluster.

An extended set of variables (J¼ 230) allowed us to identify two additional

groups of individuals: (i) individuals with high physical and social activities

without disabilities and psychologically healthy, and (ii) individuals with moderate

physical and social activities with minor disabilities, and minor to moderate

psychological disorders.

Mortality was modeled via Cox regression with vectors of predictors chosen as

g2,g3 for K¼ 3, and g2,g3,g4 for K¼ 4, i.e., μ 3ð Þ ¼ μ0 3ð Þexp b2g2 þ b3g3ð Þ and

μ 4ð Þ ¼ μ0 4ð Þexp b2g2 þ b3g3 þ b4g4ð Þ. For both models the healthy component (g1)

was not used as a mortality predictor. This allowed us to ignore the restrictionX
k
gk ¼ 1

� �
and to consider the remaining components as predictors. The esti-

mates are b2¼ 0.36
 0.06, b3¼ 1.71
 0.06 for K¼ 3, and b2¼ 0.28
 0.07,

b3¼ 1.26
 0.07, and b4¼ 0.01
 0.03 for K¼ 4. All estimates for b2 and b3 were
statistically significant with p-values less than 0.0001. Estimate for b4 did not show
a statistically significant effect. This is the expected result because of the original

meaning of the fourth group of individuals as a group with intermediate state in

health and disability status and because the existence of fourth component was less

motivated by the above dimensionality analysis.

3

12

Fig. 18.1 Polyhedrons

defined by LLS constraints

for K¼ 3 and their filling by

LLS scores for NLTCS

individuals
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18.5 Discussion

LLS is a model describing high-dimensional categorical data assuming the exis-

tence of a latent structure represented by K-dimensional random vectors gi. These
vectors are interpreted as explanatory variables which can shed light on mutual

correlations observed in measured categorical variables. The vectors play the role

of a random variable mixing independent distributions such that the observed joint

distribution is maximally close to the data. Mathematically, LLS analysis considers

the observed joint distribution of categorical variables as a mixture of individual

joint distributions, which are assumed to be independent. This is the standard “local

independence” assumption of latent structure analysis. The specific LLS assump-

tion is that the mixing distribution is supported by a K-dimensional subspace Λ of

the space of all independent distributions or, equivalently, of the space of individual

probabilities. The mixing distribution can be considered as a distribution of random

vectors G, which take values in Λ. The vectors of gi (LLS scores) are the hidden

states of the individuals in which we are interested. They can be estimated as

conditional expectations of G, E G
��X1 ¼ ‘1, . . . ,XJ ¼ ‘J

� �
, where ‘¼ (‘1,. . .,‘J)

is a response pattern. The support of this random vector is a K-dimensional space,

the dimension of which is defined by the dataset. A distinctive feature of LLS is the

linearity of the support as compared to that of other latent structure models. For

example, LCM is characterized by a mixing distribution concentrated at several

isolated points. Note that the specification of the space of mixed distributions as a

linear space leads to fruitful developments, resulting in a new method as well as in a

better understanding of existing methods.

An important distinction is the existence of an algorithm capable of estimating

an LLS model for large numbers of variables and individuals. When the basis

λ1,. . .,λK of the linear subspace supporting the mixing distribution is known,

conditional expectations g‘ can be calculated by solving a linear system of equa-

tions. A basis λ1,. . .,λK, in turn, can be identified by applying Principal Component

Analysis to the moment matrix. As the choice of a basis is not unique, one has to

apply substantive knowledge derived from the applied domain to make the most

appropriate choice. This algorithm, being a sequence of linear algebra methods,

does not use maximum likelihood methods. This is an advantage of the method,

because individual information is represented via nuisance parameters, which

creates difficulties in the marginal maximum likelihood approach. The LLS algo-

rithm for parameter estimation is based on two theorems which are due to the

assumption of linearity of the support of the mixing distribution. The first theorem

identifies properties of the moment matrix. The second theorem presents the main

system of equations. Just the existence of the system of equations that describes

parameters of the model is a significant advantage of the LLS method, as it allows

us to avoid using maximum likelihood estimators, which may not be consistent in

the presence of nuisance parameters (see Sect. 4.3 of this chapter and Sect. 2.9 of

Chap. 17 for further discussion).
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As compared to other methods of latent structure analysis, LLS reduces the

problem of estimating the LLS model parameters to a sequence of linear algebra

problems. This assures a low computational complexity and an ability to handle

large scale data that involve thousands of variables. The overall computational

scheme and its components were discussed in detail in this chapter, and simulation

experiments demonstrating the excellent performance of the algorithm in

reconstructing model parameters were described. The technique is useful for the

analysis of high-dimensional categorical data (e.g., demographic surveys or gene

expression data) where the detection, evaluation, and interpretation of an underly-

ing latent structure are required.

The estimators of the parameters may be used for construction of second-level

models (for example, when the application domain justifies an assumption about the

parametric structure of the mixing distribution). For such estimators, it is possible to

prove consistency, to formulate conditions for identifiability, and to formulate a

high-performance algorithm for the analysis of datasets involving thousands of

categorical variables.

LLS can be used to analyze data where a high-dimensional measurement vector

represents a hidden structure affecting the results of measurements. The most

natural area for applying LLS analysis is (high-dimensional) survey data that

represent sample-based collections of measurements made with discrete outcomes

for individuals. Moreover, such data recently have appeared in numerous genetic

studies of biological systems, where the expression of thousands of genes in cells

taken from different organs and tissues of humans or laboratory animals is mea-

sured. Such measurements are performed to find appropriate regularities in biolog-

ical functioning of organs and tissues of respective organisms and to detect changes

in hidden biological structure due to disease, exposure to external factors, aging-

related changes, etc. These analyses will help us to better understand mechanisms

of genetic regulation, by identifying genes playing key roles in organizing response

to changes in internal or external milieu.

In summary, Linear Latent Structure (LLS) analysis assumes that the mutual

correlations observed in survey variables reflect a hidden property of subjects that

can be described by a low-dimensional random vector. The statistical properties of

the LLS model, the algorithm for parameter estimation and its implementation,

simulation studies, and application of the LLS model to the National Long Term

Care Survey (NLTCS) data were described in this chapter. The simulation studies

demonstrated the high quality of reconstruction of the major model components and

demonstrated its potential to analyze survey datasets with 1,000 or more questions.

Step-by-step analysis of a demographic survey was presented as an empirical

example: applying the LLS model to the 1994 and 1999 NLTCS datasets

(5,000þ individuals) with responses to over 200 questions on behavioral factors,

functional status, and comorbidities resulted in an identified population structure

with a basis representing pure-type individuals, e.g., healthy, highly disabled,

having chronic diseases, etc. The components of the vectors of the individual

LLS scores were used to make predictions of individual lifespans.
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Chapter 19

Conclusions Regarding Statistical Modeling
of Aging, Health, and Longevity

Alexander M. Kulminski, Igor Akushevich, Kenneth C. Land,

and Anatoliy I. Yashin

The analyses conducted in Part I did not exhaust all factors affecting age patterns

of age-related changes in health and mortality. They actually provided a strong

rationale for conducting more detailed analyses which require advanced methods of

mathematical and statistical modeling. Development and implementation of such

state-of-the-art methods is driven by two major factors. The first reflects systemic

effects of various behavioral, physiological, and environmental processes on human

aging and the related phenotypes. The second is that not all such processes can be

readily measured and quantified in studies of human health, aging, and lifespan. In

this regard, longitudinal data play a pivotal role in discovering different aspects of

knowledge related to aging, health, and lifespan. A variety of statistical methods

can be used to analyze longitudinal data.

Chapter 11 summarizes and discusses approaches to statistical analyses of

longitudinal data on aging which are relevant to the major topic of this book,

Biodemography of Aging, and relates this discussion to the subsequent chapters.

This chapter also discusses the most essential concepts in biodemography and how

they are related to longitudinal and cross-sectional data on health, aging, and

lifespan.

The current situation in the study of aging, health, and lifespan is characterized

by rapid accumulation of data in the relevant research areas. A better understanding

of processes and mechanisms linking human aging with changes in health and

survival requires integrative methods capable of taking into account relevant

knowledge accumulated in the field when extracting useful information from the

new data. Chapter 12 describes an approach to statistical analyses of longitudinal

data based on the use of stochastic process models of human aging, health, and

longevity. An important advantage of this approach compared to standard statistical

methods of analyzing longitudinal data is the possibility of incorporating state-of-

the-art advances in aging research into the model structure for use in statistical

estimation procedures. To describe changes due to aging, the model incorporates

several specific concepts characterizing resistance to stresses, adaptive capacity,

and “optimal” (normal) physiological states. These concepts are incorporated in the
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model structure through the model coefficients. To capture the effects of exposure

to persistent external stresses, variables in the model describing the effects of

allostatic adaptation and allostatic load were also introduced. These variables

facilitate the description of linkages between age-related changes in

endophenotypes and morbidity or mortality risks. The model was tested in simula-

tion experiments and applied to the analyses of the FHS data. The results of these

analyses indicate that the proposed approach allows for addressing research ques-

tions important for a better understanding of the mechanisms of age-related changes

that could not be addressed before. The approach provides researchers with a

convenient conceptual framework for studying dynamic aspects of aging, and

with an appropriate tool for analyses and systematization of information about

aging and its connection with health and longevity.

The specific concepts in aging research discussed in Chap. 12 may not neces-

sarily characterize all aspects of age-related changes in the human body. What can

be done with other, unobserved information that may not yet be in the research

agenda of today’s science? Such information can still be included in the analyses by

taking greater advantage of the power of mathematical modeling. Further insights

can be gained because processes affecting age-related changes may result in

population changes such as, for example, hidden or unobserved heterogeneity.

Unobserved heterogeneity can arise because there may be some relevant risk

factors affecting the outcomes of interest that are either unknown now or just not

measured in the data. Frailty models introduce the concept of unobserved hetero-

geneity in survival analysis for time-to-event data. It should be noted again that the

concept of demographic frailty is, in general, not the same as frailty syndrome

discussed in geriatric or gerontological settings and in Chap. 7 of this book.

Chapter 13 focuses on latent class stochastic process models dealing with

unobserved heterogeneity in time-to-event and longitudinal data. This discussion

excludes methods focusing on analyses of longitudinal data alone where events are

generally treated as a biasing factor to be adjusted for and approaches that do not

include time-to-event information (e.g., onset of a disease) but include, for exam-

ple, binary indicators such as prevalence of a disease. Special attention is paid to a

specific class of such models that accommodates hidden heterogeneity in the

population due to the presence of latent subpopulations with distinct longitudinal

patterns with different relations to the risk of an event. The chapter also described

the latent class stochastic process model which takes into account such hidden

heterogeneity and also allows for indirect estimation of hidden components of

aging that are manifested in individual age trajectories of endophenotypes mea-

sured in participants of a longitudinal study. Such hidden components of aging and

their impact on the risk of events can be evaluated for latent subpopulations. This

can help to unravel hidden effects from data with such a latent population structure

that otherwise can remain masked if the original form of the stochastic process

model which ignores this structure is applied to the data.

Despite the challenges of practical implementation of the latent class stochastic

process model, it is a useful tool for researchers. This approach is also helpful for

sensitivity analyses in applications of the original stochastic process model. We
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recommend starting the analyses with the original stochastic process model and

estimating the parameters ignoring the possible hidden heterogeneity in the popu-

lation. Then the latent class stochastic process model can be applied to test the

hypothesis regarding the presence of hidden heterogeneity in the data, with appro-

priate adjustment to the conclusions if such latent structure is detected. Such an

approach can be implemented not only with the original model described in

Chap. 11 but also with its extensions, for example, with the genetic stochastic

process model described in Chap. 14.

The field of biodemography integrates biological knowledge and methods with

traditional demographic approaches. Recent revolutionary advances in genotyping

of the human genome open an opportunity to greatly accelerate the progress in

understanding the biology of various human health traits and lifespan. However,

those phenotypes that are of primary interest from the viewpoint of improving

human healthspan occur in late life. No single human study has the ability to follow

large cohorts of humans from their birth to death. This implies that any study,

including those of genetic origin, will face challenges including those of demo-

graphic origin as discussed in Chap. 9. Integration of genetics and demography

leads to “genetic biodemography” which will continue to grow in the coming years

because many studies that collected data on endophenotypes will also include

genetic information.

To appreciate the rich potential of such data, special attention should be paid to

the analytic approaches available to work with this diverse information. Chapter 14

discusses how genetic biodemography can advance the analyses of genetic effects

on age-related phenotypes given data on health, aging, and lifespan collected in

longitudinal human studies. The chapter specifically presents a longitudinal

genetic-demographic model which provides a method for enhancing genetic ana-

lyses of time-to-event outcomes from longitudinal data combining several sources

of information including: (i) follow-up data on the outcomes of interest (e.g.,

mortality) for genotyped individuals, (ii) information on the age structure of the

population at the time of biospecimens collection, and (iii) follow-up data on

respective events for non-genotyped participants. Such joint analysis of genotyped

and non-genotyped individuals can result in substantial improvements in the power

and accuracy of estimates compared to analyses of the genotyped subsample alone

if the proportion of non-genotyped participants is large.

Chapter 14 also presents a genetic stochastic process model which adds a new

dimension to genetic biodemographic analyses combining information on longitu-

dinal measurements of endophenotypes with follow-up data and genetic informa-

tion. Such joint analyses of different sources of information collected in both

genotyped and non-genotyped individuals allow for more efficient use of the

research potential of longitudinal data which otherwise would remain underused

if only genotyped individuals or only subsets of available information (e.g., only

follow-up data on genotyped individuals) were involved in the analyses.

In both of these models, the benefits of combining data on genotyped and

non-genotyped individuals derive from the presence of common parameters

19 Conclusions Regarding Statistical Modeling of Aging, Health, and Longevity 447

http://dx.doi.org/10.1007/978-94-017-7587-8_11
http://dx.doi.org/10.1007/978-94-017-7587-8_14
http://dx.doi.org/10.1007/978-94-017-7587-8_9
http://dx.doi.org/10.1007/978-94-017-7587-8_14
http://dx.doi.org/10.1007/978-94-017-7587-8_14


describing the characteristics of the model for genotyped and non-genotyped sub-

samples of the data. Further generalizations of these methods were also considered.

Mortality rates are important characteristics of lifespan distributions because

they integrate the influences of many external and internal factors affecting indi-

viduals in the population during their life course. The life-course accompanying

processes may be manifested through several broad classes of phenotypes charac-

terizing the ontogenetic program, individual aging processes or senescence,

responses on exogenous and endogenous exposures, changes in health status, as

well as effects of compensatory adaptation to damages and changes induced by all

these factors. Various parametric models of human mortality rates are used in the

analyses of survival data in demographic and epidemiological applications and in

experimental studies of aging and longevity using laboratory animals as discussed

in Chap. 11.

There is a long tradition of using patterns (shapes or parameters) of mortality

rates resulting from the effects of exposures to different conditions or other

interventions to characterizing aging-related processes in humans. In Chap. 15,

the authors argue that this tradition has to be used with great care. This is because

such characteristics are difficult to interpret in terms of properties of external and

internal processes affecting the chances of death. An important question then is

what kind of mortality model has to be developed to make their parameters

biologically interpretable? Chapter 15 describes an approach to mortality modeling,

which allows for representing mortality rates in terms of parameters of physiolog-

ical changes and declining health status developing in aging human organisms. In

contrast to traditional demographic and actuarial models dealing with mortality

data, this model is appropriate for the analysis of longitudinal data on aging, health,

and lifespan. The chapter uses a diffusion-type continuous-time stochastic process

to describe the evolution of physiological states over the life course, and a finite-

state continuous-time process to describe changes in health status during this

period. The equations for the corresponding mortality models, and approximate

changes in the physiological state by a conditional Gaussian process, given health

state, were presented and discussed.

Chapter 16 describes a method of statistical modeling for joint analyses of

longitudinal data on aging, health, and longevity collected using different observa-

tional plans. The method is based on the mathematical model of Chap. 15. The need

for joint analyses of several longitudinal data sets arises when the number of study

subjects in each dataset is not large enough to guarantee either high quality

statistical estimates of dynamic characteristics in multidimensional models or of

tests of statistical hypotheses related to fundamental research questions on causes

and mechanisms of aging and disease development. In such cases, combining data

represents a promising alternative for comprehensive analyses of mechanisms of

aging-related changes, health decline, and life span. It often happens that the sets of

longitudinal data available for analyses are collected using different observational

plans, e.g., measurements of some important variables or health outcomes that were

omitted in one dataset were measured in another dataset. It turns out that these

analyses can be performed within the framework of a single comprehensive model
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of human aging, health, and mortality, as described in Chap. 15. Observational

plans corresponding to each dataset play a crucial role in specifying the likelihood

functions of the observed components of the data. The results of these analyses

indicate that parameters of both continuous and jumping components of the model

can be identified and estimated from the data.

Patterns of endophenotypes and risks of diseases and survival provide valuable

information on integrated characteristics of human health, aging, and lifespan.

Nevertheless, as discussed in Chap. 7, they do not exhaust all information collected

in longitudinal studies of health and aging. An important methodology aimed to

help in extracting information on age-related processes in humans was presented in

Chap. 17. This chapter describes a new longitudinal form of the Grade of Mem-

bership (GoM) model which can model the dynamics of multiple time-varying

factors. This chapter had two goals, one methodological and the other substantive.

Methodologically, the goal was to present a longitudinal form of the GoM model

and associated Newton-Raphson iteration procedures in a self-contained exposition

of its estimation. The resulting model describes the natural history of dementia as a

complex irreversible multidimensional process occurring within a three-

dimensional bounded state space. Individuals can be located at any point in this

bounded state space at the time of onset of dementia. The dementia process can

move them to other points in the state space over time.

Substantively, Chap. 17 presented the results of modeling the natural history of

the loss of cognition and functioning following the onset of dementia using data

from the NLTCS. The NLTCS and the linked Medicare files jointly covered a broad

range of acute and long-term care services that were expected to differ according to

the progression of the decline in cognitive and functional status. The natural history

of dementia was found to be highly variable both within and between sexes with

respect to cognitive and physical functioning at onset and the subsequent rates of

loss of such functioning.

The chapter shows that the GoM model permits one to analyze longitudinal

cohort data with large numbers of time-varying covariates measured at multiple

waves of follow-up. Applications of the model could be developed using data from

other longitudinal studies of the general population, including persons with demen-

tia, or from clinical data specifically focusing on dementia patients. The model

could be used to better characterize the natural histories of other complex chronic

diseases (e.g., cardiovascular disease or diabetes) where there are substantial

differences between individuals in manifest disease symptoms, intensity, and

rates of progression. Alternatively, the model could be used to better characterize

the aging process in the general population using chronological age as the time

dimension rather than time since onset of specific diseases or time since meeting

specific diagnostic criteria.

Chapter 18 describes another model that is specifically designed to work with the

large classes of data frequently collected in various surveys. Such surveys typically

collect data representing a sample-based set of measurements made with discrete

outcomes for individuals. A common property of such datasets is their high

dimensionality with highly correlated measured variables. Methods dealing with
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such problems are known as latent structure analysis. The typical assumption in the

latent structure analysis method is that the observed structure of various categorical

variables is generated by a small number of unobserved factors. The goal of latent

structure analyses is to find these latent factors, estimate parameters of their

distribution, and describe their properties using a sample of high dimensional

categorical variables. Generally speaking, it is necessary to find the properties of

a population associated with the latent factors and the properties of individuals,

based on those multiple categorical measurements. It was shown that both goals

may be achieved simultaneously.

Within this context, Chap. 18 discusses existing latent structure models and

describes the recently developed Linear Latent Structure (LLS) model for the

analysis of high dimensional categorical data. The LLS specific assumption is

that the support for the latent factors occupies a polyhedron of lower dimensional-

ity. The LLS model was formulated using mixing distribution theory. Similar to

other latent structure analyses, the goal of LLS analysis is to derive simultaneously

the properties of a population and individuals, using discrete measurements. The

LLS, however, does not use maximization of a likelihood for parameter estimation.

Instead, it uses an estimator in which the parameter estimates are solutions of a

quasilinear system of equations.

The LLS analysis assumes that the mutual correlations observed in survey

variables reflect a hidden property of subjects that can be described by a

low-dimensional random vector. The statistical properties of LLS analysis, the

algorithm for parameter estimation and its implementation, simulation studies,

and application of LLS model to the NLTCS data were discussed in the chapter.

The results of the analyses were compared analytically to predictions of the Latent

Class and GoM analyses. Simulation studies demonstrated the high quality of the

reconstruction of the major model components and the potential of LLS to analyze

survey datasets with 1000 or more variables. Step-by-step analysis of a demo-

graphic survey was presented as an example: applying the LLS model to the 1994

and 1999 NLTCS datasets (5000þ individuals) with responses to over 200 questions

on behavioral factors, functional status, and comorbidities resulted in an identified

population structure with a basis represented by either three or four sets of pure-

type individuals, e.g., healthy, highly disabled, having chronic diseases, etc. The

components of the vectors of individual LLS scores were used to make predictions

of individual lifespans.
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Chapter 20

Continuing the Search for Determinants
of Healthy Life Span and Longevity

Alexander M. Kulminski, Anatoliy I. Yashin, Konstantin G. Arbeev,

Svetlana V. Ukraintseva, Igor Akushevich, Kenneth C. Land,

and Eric Stallard

Life expectancy in humans worldwide has been experiencing dramatic increases for

the past two centuries (Oeppen and Vaupel 2002). In most countries, the extension

of lifespan is associated with a transition from a long historical period of high

fertility and high mortality (particularly infant mortality (Singh and Yu 1995)) to

low fertility and low mortality. This demographic trend leads to rapidly growing

populations of the elderly (e.g., the United Nations projects a nearly twofold

increase in the proportion of the 60+ population from about 10–21% over the

next five decades (UN. 2007)) which raises serious concerns about a possible

accompanying expansion of morbidity and disability, especially in developed

countries (Olshansky et al. 2007; Robine 2003; Sierra et al. 2009). Because

morbidity is in a causative pathway to disability (Verbrugge and Jette 1994),

reducing the burden of morbidity could lead to compression of years of

unhealthy life.

Analyses of various geriatric traits show that they tend to cluster in families

(Cournil and Kirkwood 2001; Sebastiani et al. 2009) implying that they are

heritable (Brown et al. 2003; Herskind et al. 1996; Iachine et al. 1998; Matteini

et al. 2010) and, thus, that they can have genetic origins (Finch and Tanzi 1997;

Martin et al. 2007; Vijg and Suh 2005). Studies of health in people with long life

indicate that it is possible to avoid major diseases for long periods of human life

(Barzilai et al. 2003; Evert et al. 2003; Kulminski et al. 2008b; Perls 2006; Willcox

et al. 2008a, b). It is, therefore, possible that a basis for major breakthroughs in

addressing the problem of extending the years of healthy life could be to pinpoint

the role of genes in regulating health at older ages leading to longer lifespans.

Understanding the genetic origins of healthspan would meet urgent health care

needs in the U.S. and other developed countries. This would address the key

research goals proposed in Strategic Directions for Research in Aging by the

National Institute of Aging (Aging 2010), namely, to “. . .define the link between

genes and lifespan, . . .improve our understanding of healthy aging and disease and

disability among older adults, and . . . develop our understanding of how cardio-

vascular disease, cancer, and diabetes interface with the basic processes of aging
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which may soon . . .open doors for personalized approaches to preempt, prevent, or

treat these diseases across the lifespan.”

Technological breakthroughs and cost-effective solutions in genome-wide

genotyping of large samples of humans have raised hopes for major progress in

discovering new genes associated with better health at older ages and longer

lifespans. Given these technological advances, recent genome-wide association

studies (GWAS) have been conducted that shed light on genes and molecular

pathways that could be involved in regulation of different traits.

The optimism is tempered, however, because studies using genome-wide

resources face serious difficulties related to important limitations in currently

prevailing GWAS strategies (Eichler et al. 2010; Gibson 2011; MacRae and

Vasan 2011). A fundamental source of difficulties in the genetics of complex health

traits in modern societies is the elusive role of evolution in these traits. Specifically,

from the evolutionary viewpoint, complex geriatric diseases are a new phenome-

non; they also occur mostly in late, i.e., post reproductive, life when the force of

natural selection is not as strong as in the reproductive period.

This problem is strengthened by recent findings that genetic variants

predisposing to geriatric traits discovered by GWAS may not be involved in the

regulation of longevity (Beekman et al. 2010; Deelen et al. 2011). These findings

question whether GWAS can help to effectively address the problem of extending

healthspan (Bloss et al. 2011). On the other hand, various non-genetic studies show

that long-living individuals typically experience better health compared to individ-

uals having shorter lifespans (Barzilai et al. 2003; Evert et al. 2003; Kulminski

et al. 2008b; Willcox et al. 2008a, b). Furthermore, candidate-gene studies docu-

ment that the same genes can affect diseases and lifespan (Koropatnick et al. 2008;

Kulminski et al. 2011). These studies underscore the need for gaining insights into

the mechanisms of genetic influence on complex traits. An important property of

these mechanisms should be their plasticity because they should accommodate the

dynamic nature of the connections of genes with complex traits over age and time in

varying environments (Kulminski 2013).

Currently, there is no broad consensus on directions for further progress in the

field (Eichler et al. 2010; Visscher et al. 2012). One view is that further break-

throughs can be achieved by refocusing from GWAS to other genetic strategies

(e.g., rare variants, epigenetics, copy number variants, microRNA), or to –omics

(e.g., proteomics, metabolomics), or to other sources of genetic variation (e.g.,

stochasticity (Kirkwood et al. 2011)).

All such views on further progress for discovering the genetic origins of complex

traits in late life should be in line with major empirical findings on health deteri-

oration with aging accumulated in diverse disciplines. In this monograph, we

summarized a diverse array of findings on the complex behavior of physiological

markers and risks of health events and mortality over individuals’ life courses.

These findings suggest that biodemography may not only suggest strategies for

genetic analyses and improve the quality of genetic estimates (Arbeev et al. 2011;

Yashin et al. 2007c, 2013b, 2014) but may also guide genetic analyses of healthspan

and lifespan. Indeed, biodemography tells us that neither the levels of physiological
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markers nor the risks of health/mortality events are constant over individuals’ life
courses. Accordingly, biodemographic processes are key factors that can modulate

genetic predisposition to health, aging, and longevity phenotypes. For example,

these processes imply that genetic factors have to be linked with phenotypes (e.g.,

physiological variables and other biomarkers) that experience age-related changes.

Information about such changes and their connections with health and survival

outcomes is available from longitudinal studies of individuals for whom genetic

information is also collected. The use of genetic versions of dynamic stochastic

process models of human aging, health, and longevity could facilitate analyses of

such data (Arbeev et al. 2009).

Although the role of biodemographic processes in the expression of genetic

effects is generally recognized (Gibson 2011; Kulminski 2013; MacRae and Vasan

2011), large-scale GWAS rarely address these problems (Graff et al. 2013). The

importance of biodemographic processes is, however, appreciated in candidate

gene studies (Atzmon et al. 2006; Kulminski et al. 2013b; Yashin et al. 1999).

The conventional GWAS research design assumes that part of the phenotypic

variance of complex traits can be explained by pure genetic determinants. This

assumption often is supported by estimates of narrow-sense heritability, wherein a

trait is considered as an additive superposition of pure genetic factors and pure

environmental factors. However, this approximation was developed for the specific

circumstances of reproduction-related phenotypes used in breeding experiments

with plants in a controlled environment (Lewontin 1974). These conditions gener-

ally are not met for complex traits in humans. Accordingly, the classical model

which specifies an additive contribution of genes and environment to complex traits

appears to be problematic (Rose 2006). This implies that the expectation of an

unconditional (deterministic) set of fixed connections of genes with complex traits

also appears to be problematic (Corella and Ordovas 2014; Gibson 2011; Kulminski

2013). As a result, the roles of other factors, such as those of biodemographic

origin, in phenotypes of health, aging, and longevity become much more important

than previously believed (Yashin et al. 2013a).

Conventional GWAS research strategies also are based on the premise that large

samples are needed to robustly detect genetic associations with complex pheno-

types (Locke et al. 2015; Willer et al. 2013). This makes sense in some situations if,

for example, one hypothesizes unconditional connections of genes with such

phenotypes. This hypothesis, however, has a limited theoretical and experimental

basis (Gibson 2011; Kulminski 2013; MacRae and Vasan 2011). Assuming rather

that the connections of genes with complex phenotypes are conditional, the tradi-

tional sample-size-centered GWAS strategy becomes inherently problematic. To

improve it, the specific biodemographic characteristics of the studied populations

should be addressed. Traditionally, GWAS addresses ancestry-related demographic

structures, whereas those of biodemographic origin are typically not addressed.

Thus, developing methods of uncovering heterogeneity in genetic susceptibility to

complex traits could contribute to increases in the efficiency of genetic analyses.

When the assumption of the unconditional role of genes in part of the phenotypic

variance is found to be problematic, the possibility that genes confer risks of these
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phenotypes in a complex manner through different mechanisms should be consid-

ered. One fundamental mechanism, which is the most studied to date, is associated

with the biochemical genetic basis of a specific trait (Martin et al. 2007). Another

mechanism, which is substantially less studied, is associated with the systemic

decline in the functioning of an organism with age (Franco et al. 2009; Martin

et al. 2007). A substantial evidentiary basis for this systemic mechanism comes

from observations of changes in the expressions of various phenotypes, regardless

of their specific details, with age, e.g., levels of physiological markers (Hershcopf

et al. 1982; Scheen 2005; Yashin et al. 2006), bone mineral density (Sheu

et al. 2011), or risks of aging-related diseases (Akushevich et al. 2012). Accord-

ingly, this systemic mechanism can be associated with aging and, thus, explain

genetic susceptibility to not just one, but perhaps to a major portion of health, aging,

and longevity phenotypes (Franco et al. 2009; Martin et al. 2007; Yashin

et al. 2007a, b). The discovery of genetic susceptibility to this systemic mechanism

could lead to major breakthroughs in the extension of healthspan and lifespan

(Finch and Tanzi 1997; Jazwinski 2002; Sierra et al. 2009).

Key properties of the systemic, aging-related biogenetic mechanism of

healthspan and lifespan are its broad, inherently pleiotropic nature (Ukraintseva

et al. 2004; Ukraintseva and Yashin 2003; Goh et al. 2007; Sivakumaran

et al. 2011) and its sensitivity to age. Pleiotropy in genetic susceptibility to complex

phenotypes is becoming increasingly recognized (Sivakumaran et al. 2011; Yashin

et al. 2013c). Studies also provide examples of its complex forms, such as genetic

trade-offs (Barnes et al. 2001; Crespi 2010; Frazer et al. 2009; Kulminski

et al. 2008a, 2010b, 2011c; Wang et al. 2010; Yashin et al. 2009) and antagonistic

pleiotropy (Williams 1957; Alexander et al. 2007; Kulminski et al. 2011; Martin

2007; Schnebel and Grossfield 1988; Summers and Crespi 2010; Williams and Day

2003). The concept of genetic trade-offs is a broader concept than antagonistic

pleiotropy, because it refers to antagonistic effects of the same allele on different

phenotypes, which may not necessarily include fitness traits. Studies also provide

evidence of age-sensitive genetic effects, i.e., that the same alleles could confer

different risks of the same traits at different ages (Bergman et al. 2007; De

Benedictis et al. 1998; Ilveskoski et al. 1999; Jarvik et al. 1997; Kulminski

et al. 2013a; Lasky-Su et al. 2008; Martin 2007; Yashin et al. 1999, 2001).

All of the above suggests a huge potential for biodemography (and related

disciplines, e.g., gerontology, sociology) to advance the study of life course genet-

ics, with the explicit goal of uncovering the mechanistisms of genetic susceptibility

to phenotypes of health, aging, and longevity over individuals’ life courses.
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