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Preface

This volume is a textbook on Integration Theory, supplemented by 160 exercises
provided with detailed answers. There are already many excellent texts on this
topic and it is legitimate to ask whether it is worth while to add a new entry in
an already long list of books on Measure Theory.

Nevertheless, the author’s teaching experience has shown that many of these
books were too difficult for a student exposed for the first time to integration
theory. We have tried here to keep a rather elementary level, at least in the way
of exposing our arguments and proofs, which are hopefully complete, detailed,
sometimes at the cost of a lack of concision. Moreover, we hope that the many
exercises (with answers) included at the end of each chapter will represent an asset
for the present book.

A trend present in the contemporary textbook literature on integration the-
ory is simply to omit the not-so-easy construction of Lebesgue measure. We are
strongly opposed to this tendency, and we have made all efforts in our redaction to
provide a complete construction of the mathematical objects used in the book, first
and foremost for the construction of Lebesgue measure. Our point of view here is
not exclusive of some compromises in the reading order which can be used by the
reader trying to learn this material: the chapters of this book are of course ordered
logically (chapter n+1 is using chapters 1, . . . , n and never chapter n+2, . . . ), but
some “construction” chapters, such as Chapter 2, parts of Chapters 4, 5, could be
bypassed at first reading. We expect that a mathematically curious reader will feel
the need of a construction after experiencing some of the most efficient (or more
computational) parts of the theory and then will go back to these construction
chapters.

Last but not least, we hope that this book could serve as a reasonable “en-
trance gate” to Integration Theory for scientists and mathematicians who are
non-experts in measure theory. Another fact of mathematical life, say in the last
thirty years, is that it is more and more difficult to learn some mathematics not
directly connected with your professional area. Where is it possible for an Ana-
lyst to learn the algebraic properties of Theta functions? Where to find a text on
Fourier Analysis accessible to an Algebraic Geometer? Although both questions
above have (many) answers, it remains difficult to find a way to enter a domain
with which you are not a priori conversant. It is the author’s opinion that accessi-

xi



xii Preface

bility is now a rare commodity in the mathematical literature, and we hope that
the present book will provide its share of that good.

Integration Theories

The initial goal of integration theory, founded more than two millennia ago1 is
to compute areas and volumes of various objects. A somewhat simplified mathe-
matical version of this question is to consider a function f : [0, 1] −→ R+ and try
to evaluate the area A between the x-axis and the curve y = f(x). The standard
notation is

A =

∫ 1

0

f(x)dx.

Of course some assumptions should be made on the function f for this area to
make sense.

Riemann’s integral

Greek mathematicians of the third century B.C. were aware of volumes of spheres,
cones, polyhedra, and of many classical geometric objects. Later, in the early
eighteenth century, Gottfried Wilhelm Leibniz (1646–1716) introduced the In-
finitesimal Calculus, whereas Isaac Newton (1642–1727) defined the Calculus of
Fluxions, both inventions (close to each other) closely linked with a notion of in-
tegral calculus. However the first systematic attempt to define the integral of a
function is due to the German mathematician Bernhard Riemann (1826–1866):
cutting the source space (here [0, 1]) into tiny pieces,

[0 = x0, x1], . . . [xk, xk+1], . . . , [xN−1, xN = 1], xj ↑,

you expect A to be close to

SN =
∑

0≤k<N

(xk+1 − xk)f(mk), where mk ∈ [xk, xk+1],

since the area A should resemble the sum of the areas of the vertical rectangles
with base (xk, xk+1) and height f(mk). In fact, assuming for instance f to be a
uniform limit of step functions (a step function is a finite linear combination of
characteristic functions of intervals), you obtain that SN has a limit when

sup
0≤k<N

(xk+1 − xk) goes to zero,

and you define that limit as
∫ 1

0
f(x)dx. It is indeed a simple matter to show directly

that this procedure works for a continuous function on [0, 1]. That theory is quite
elementary but has several downsides. The very first one is a terrible instability

1The Greek scientist Archimedes of Syracuse, who lived in the third century B.C., was able to
provide a quadrature of the parabola.
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with respect to small perturbations: in particular, if you modify the function f (say
f continuous) on a rather small set such as the rational numbers Q, you may ruin
the integrability in the above sense. The rational numbers should be considered
as “small” since it is a countable set {xn}n∈N and thus, for any ε > 0,

Q ⊂ ∪n∈N
(
xn − ε

2n+2
, xn +

ε

2n+2

)
and thus the “length” � of Q is such that for any ε > 0,

� ≤ ε
∑
n∈N

2−n−1 = ε =⇒ � = 0.

In particular, it is easy to show that the integral of 1Q∩[0,1] (a small perturbation
of 0) cannot be defined by the procedure sketched above. Although the latter
function may appear to be quite pathological, the effects of this instability are
disturbing. Other difficulties occur with the Riemann integral, with complications
in integrating unbounded functions and also in developing a comprehensive theory
of multidimensional integrals.

The Lebesgue perspective

A key point in Lebesgue theory of integration (see, e.g., [8]) is that to calculate
the integral of f : X −→ R, one should not cut into small pieces the source space
X (for instance in small subintervals if X is an interval of R) but the target space
should be cut into pieces depending on the function f itself. It is easy to illustrate
this in the (very) simple case where

f : X = {x1, . . . , xm} −→ {y1, . . . , yn} = Y ⊂ R.

We can evaluate
∑

xj∈X f(xj) by sorting out the values taken by f :∑
xj∈X

f(xj) =
∑
yk∈Y

yk card
(
{x ∈ X, f(x) = yk}

)
.

Also, playing around freely with the notation, say for f non-negative on R,
H = 1R+ ,∫

R

f(x)dx =

∫∫
H(f(x) − y)H(y)dydx =

∫ (∫
H(f(x) − y)dx

)
H(y)dy

=

∫
H(y) measure

(
{x ∈ R, f(x) > y}

)
dy.

If we can “measure” the sets {x ∈ R, f(x) > y}, it is thus quite natural to take as
a definition for the integral of f the last expression. Note that this expression is
very simple if f is taking a finite number of values y1, . . . , yN : we have in that case∫

f(x)dx =
∑

1≤k≤N

yk measure
(
{x ∈ R, f(x) = yk}

)
.
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The set {x ∈ R, f(x) = yk} could be quite complicated and we shall see that
many functions could be well approximated by simple functions, i.e., finite lin-
ear combinations of characteristic functions. To overcome the difficulties linked to
the integration of unbounded functions, we may consider f(x) = 1

2x
−1/21(0,1)(x)

(integral 1); we get according to the previous computation,∫ 1

0

1

2
√
x
dx =

∫ +∞

0

measure

({
x ∈ (0, 1),

1

2
√
x
> y

})
dy

=

∫ +∞

0

min

(
1,

1

4y2

)
dy =

∫ 1/2

0

dy +

∫ +∞

1/2

1

4y2
dy =

1

2
+

1

4 1
2

= 1,

and many other examples involving unbounded functions can be dealt with. If we
go back to our stability problem, we may consider the function q = 1Q, f : R → R+,
then the integral of f is equal to the integral of f + q:∫

R

(f + q)(x)dx =

∫ +∞

0

measure
(
{x ∈ R, f(x) + q(x) > y}

)
dy

=

∫ +∞

0

measure
(
{x ∈ R, f(x) > y}

)
dy =

∫
f(x)dx,

since the function q vanishes except on a set with measure 0. Since the reader
may feel skeptical about the perturbation by this function q, let us give a finite
version of it, illustrating the instability occurring with the Riemann approach, an
instability which is not present with Lebesgue’s simple method outlined above.
We consider the interval [0, 1] and for some large integer N the function

f(x) =
∑

0≤k<N

1
[ k
N ,k+2−N

N ]
(x).

Applying Riemann’s method, using the sequence xk = k/N, 0 ≤ k < N , we deal
with

S =
∑

0≤k<N

(
k + 1

N
− k
N

)
f(mk), mk ∈

[
k

N
,
k + 1

N

]
.

We may for instance choose mk = xk = k/N , so that f(mk) = 1 and S = 1. On
the other hand, Lebesgue’s method uses the fact that the function f is taking two
values 0, 1, and the evaluation of the integral by this method gives

I = measure{x ∈ [0, 1], f(x) = 1} =
∑

0≤k<N

2−N/N = 2−N .

Nonetheless this value turns out to be the exact value of the integral, but also it
goes to 0 when N goes to infinity whereas S is stuck at 1, very far from the true
value I. It is of course a scaling problem, since choosing the sequence (xk) such
that supk |xk+1−xk| ≤ 2−N will provide a more accurate value for S. Nevertheless
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this scaling phenomenon is a good illustration of the fact that a perturbation f
with a small integral but with a large sup norm could trigger huge variations of
S, although the Lebesgue calculation remains stable.

There is much more to say in favour of Lebesgue’s point of view and in partic-
ular the fact that we can define a Banach space (complete normed vector space) of
integrable functions, the space L1(Rn), and also spaces Lp(Rn), 1 ≤ p ≤ +∞, other
Banach spaces (L2 is a Hilbert space), is of considerable interest and well tuned to
the developments of functional analysis. Moreover, Lebesgue’s theory provides its
user with a remarkably simple convergence theorem, the so-called Lebesgue’s dom-
inated convergence theorem. The problem at hand is to decide whether

∫
fn(x)dx

is converging with limit
∫
f(x)dx when we have already a (weak) pointwise in-

formation, i.e., limn fn(x) = f(x) for all x. A precise statement can be found in
Chapter 1 (Theorem 1.6.8), but let just say here that a domination condition

sup
n

|fn(x)| = g(x) is such that

∫
|g(x)|dx < +∞,

will ensure nonetheless the sought convergence of integrals but also convergence
of the sequence of functions (fn)n∈N in the functional space L1.

Is there a downside to Lebesgue’s integration theory2? Mathematically speak-
ing, the answer is no, and that theory has been widely used, polished and some-
times generalized to many different situations. However, it is true that Lebesgue’s
theory of integration is not elementary and that its actual construction requires
a significant effort. On the other hand the Instruction Manual for Lebesgue In-
tegration is indeed quite simple and one should encourage the reader to enjoy
the simplicity and efficiency of that theory before going back to the more austere
construction aspects.

We may draw a comparison with the construction and use of the real num-
bers: the real line R is widely used in Calculus and elsewhere as a basic mathemat-
ical object, but few students actually go through a construction of R. In fact, R
is also a very complicated object, as could be seen through the many examples of
the present book (cardinality questions, non-measurable subsets, Cantor ternary
set, Cantor sets with positive measure, category and measure,. . . ), but nobody (?)
is suggesting that getting some familiarity with the real line should not be a part
of a standard mathematical curriculum.

2An utterly pragmatic point of view was defended by Richard W. Hamming (1915–1998), a
computer scientist and mathematician: “ Does anyone believe that the difference between the
Lebesgue and Riemann integrals can have physical significance, and that whether say, an airplane
would or would not fly could depend on this difference? If such were claimed, I should not care
to fly in that plane.” In N. Rose Mathematical Maxims and Minims, Raleigh NC: Rome Press
Inc., 1988. That criticism is surprising, since the norms of the functional spaces provided by
Lebesgue theory are actually used in numerical approximations and their stability is expressed
by inequalities involving those norms.
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Description of the contents of the book

Chapter 1, entitled General Theory of Integration, presents the basic framework for
integration theory, with the notion of measure space. We obtain rather easily the
three classical convergence theorems (Beppo Levi, Fatou, Lebesgue’s dominated
convergence) and we can define the space of integrable functions L1(μ). This ab-
stract presentation of integration is not difficult to follow, but there is obviously a
shortage of significant examples of measure spaces at this stage of the exposition.

The main examples are constructed in Chapter 2, Actual Construction of
Measure Spaces; a first route is following the Riesz–Markov representation theorem
via linear forms on continuous compactly supported functions. We present as well
the more set-theoretic Carathéodory approach. At the end of this chapter, we
introduce the notion of Hausdorff measure. Among the statements in the exercises,
one may single out the construction of a non-measurable set, using the Axiom of
Choice. The parts dealing with the construction of the Lebesgue measure are
quite technical, and while using some earlier version of these notes for teaching
a one-semester course, we always postponed the exposition of the details of the
construction of Lebesgue measure to the very last week of class, after the students
had acquired some familiarity with the scope and means of that integration theory.

Chapter 3 deals with Spaces of Integrable Functions. The important convexity
inequalities (Jensen, Hölder, Minkowski) are studied and the definition of Lp(μ)
spaces (1 ≤ p ≤ ∞) are given along with their main properties, most notably
the fact that they are Banach spaces. We study as well integrals depending on a
parameter, with continuity and differentiability properties; this part is of course
related to many practical examples such as the Gamma function, Zeta function
and many integrals or series depending on a parameter. The Riemann–Lebesgue
Lemma, Egoroff’s and Lusin’s theorems are proven. The last section provides a
survey of various notions of convergence encountered in the text. Some exercises
are related to various explicit computations, others to more abstract questions,
such as examples of non-separable spaces.

The fourth chapter, Integration on a Product Space, constructs integrals on
product spaces, and contains statements and proofs of Tonelli’s and Fubini’s theo-
rems. Some exercises are purely computational (e.g., computation of the volumes
of the Euclidean balls in Rn), others are more abstract, for instance with the study
of the notion of monotone class.

Chapter 5 is entitled Diffeomorphisms of Open Subsets of Rn and Integration.
We deal there with the change-of-variable formula and give some classical exam-
ples, such as polar coordinates. We also define integration on a smooth hypersur-
face of the Euclidean Rn, using implicitly a distribution approach to construction
of the simple layer. The last part of this chapter goes back to the notion of Haus-
dorff measures introduced in Chapter 2 and to the construction of Cantor sets. We
give many details on construction of the classical Cantor ternary set, along with
computation of its Hausdorff dimension and with study of the Cantor function
(a.k.a. as “devil’s staircase”). We study also Cantor sets with positive measure
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and compare the (unrelated) notions of category and measure. We calculate the
cardinalities of the Borel and Lebesgue σ-algebras on Rn: this requires some ef-
fort related to the introduction of cardinals and ordinals and we have devoted a
lengthy appendix to these topics.

Convolution is the topic of Chapter 6, in which the Banach algebra L1(Rn) is
studied, as well as the classical Young’s inequality. Weak Lp spaces are introduced
and we give a proof of the Hardy–Littlewood–Sobolev inequality, following an
explicit argument due to E. Lieb and M. Loss [43]. In the exercises, the reader
will find various computations related to the heat equation and to the Laplace
operator. We give also a study of Lorentz spaces and of the notion of decreasing
rearrangement.

Chapter 7 is entitled Complex Measures and is essentially devoted to the proof
of the classical Radon–Nikodym theorem, as well as to the expression of the dual
of Lp(μ) for 1 ≤ p <∞. We give several examples with the spaces c0, �

p, and study
various possible behaviors of weakly convergent sequences. The decomposition in
absolutely continuous, pure point, singular continuous parts for a Borel measure
on the real line is studied as well as the notion of polar decomposition of a vector-
valued measure.

Basic Harmonic Analysis on Rn is the topic of Chapter 8. Here we have cho-
sen to follow Laurent Schwartz’ presentation of Fourier transformation, first via
the space S (Rn) of rapidly decreasing functions, for which it is truly easy to prove
the Fourier inversion formula. Introducing the space S ′(Rn) of tempered distri-
butions as the topological dual space of the Fréchet space S (Rn) was impossible
to resist, since the Fourier inversion formula follows almost immediately on the
huge space S ′(Rn), by a trivial abstract nonsense argument. We took advantage
of the fact that tempered distributions are much easier to understand than gen-
eral distributions, essentially because the space S (Rn) is simply a Fréchet space,
whose topology is defined by a countable family of semi-norms. Understanding
general distributions is complicated by the fact that the space of test functions is
not metrizable. Anyhow, we recover easily the standard properties of the Fourier
transformation as well as basic properties of periodic distributions. Along the
way, we provide a proof of the Poisson summation formula using Gabor’s wavelet
method (Coherent States Method).

The last chapter is the ninth, Classical Inequalities, which begins with Hada-
mard’s three-lines theorem and the Riesz–Thorin interpolation. Although this
technique is useful to provide natural generalizations of Young’s inequality, it falls
short of dealing with natural operators such as the Hilbert transform: for that
purpose, we give a proof of the Marcinkiewicz Theorem. We introduce the notion
of maximal function, and prove the Lebesgue differentiation theorem. In order to
study Sobolev spaces, we start with a classical inequality due to Gagliardo and
Nirenberg. It turns out that this inequality is a perfect tool to handle Sobolev em-
bedding theorems. We would have liked to expand that chapter to study Fourier
multipliers and Hörmander–Mikhlin theorems as well as more general Sobolev
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spaces, including the homogeneous ones. The best way to do this would have been
to introduce various tools of harmonic analysis, such as Calderón–Zygmund oper-
ators and pseudodifferential techniques: this would have been obviously too much
and we refer the reader to [5] for these developments.

Let us go through our Appendix, essentially intended to reach a reasonable
self-containedness for the present book. The first section is concerned with set
theory, cardinals, ordinals: these notions are important for the understanding of
many problems related to measure theory, and we have chosen a rather lengthy
and elementary presentation of this topic. Section 2 deals with various topologi-
cal questions, including the notion of filter, useful for the Tychonoff theorem. A
proof of the Baire theorem is given and some classical consequences are recalled
(Banach–Steinhaus, Open Mapping Theorem): these questions are important for
the understanding of duality, which is also related to measure theory and Lp

spaces. The last three sections of the appendix are concerned with basic formulas
and classical computations related to integration. Although it might seem prepos-
terous to provide again this widely available material in such a book, the author
would like to point out in the first place that some of these formulas are not so
easy to derive. But above all, it seems that the true absurdity would be to teach
Lebesgue measure to people while ignoring basic formulas of integral calculus.
These elementary computational aspects are here as a gentle reminder that Math-
ematics is also about computation, and that refined concepts and tools often find
their motivations in intricate calculations.



Chapter 1

General Theory of Integration

1.1 Measurable spaces, σ-algebras

Definition 1.1.1. Let X be a set and M ⊂ P(X) be a family of subsets of X . M
is called a σ-algebra on X whenever

(1) A ∈ M =⇒ Ac ∈ M,
(2) (An ∈ M)n∈N =⇒ ∪n∈NAn ∈ M
(3) X ∈ M.

We shall say that (X,M) is a measurable space.

Definition 1.1.2. Let (X1,M1), (X2,M2) be two measurable spaces and f : X1 →
X2. The mapping f is said to be measurable if for all A2 ∈ M2, f

−1(A2) ∈ M1.
That property will be symbolically denoted by f−1(M2) ⊂ M1.

Properties (1), (2) in Definition 1.1.1 imply readily that a σ-algebra is stable
by countable intersection. Moreover (3) follows from (1), (2) provided M �= ∅.

We call countable any set equipotent to a subset of N, i.e., such that there
exists an injection from D into N. If D is a non-empty finite set, there exists
a bijective mapping from D onto {1, . . . , n} where n is the cardinal of D. If D
is infinite (i.e., not finite) countable, then it is equipotent to N: we may in fact
consider D as a subset of N. We define

d1 = minD, d2 = minD\{d1}, . . . , dk+1 = minD\{d1, . . . , dk}.

Since D is infinite and N is well ordered (i.e., every non-empty subset of N has
a smallest element) this definition makes sense for all k ≥ 1. If d ∈ D, we may
find k ∈ N such that dk ≤ d < dk+1 since the sequence dk is strictly increasing
and we cannot have dk < d < dk+1 (that would contradict the very definition of
dk+1), so that we get d = dk and D is {dk}k∈N, equipotent to N. It is easy to show
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2 Chapter 1. General Theory of Integration

that N∗ = N\{0}, 2N, 2N+ 1,Z,N×N are equipotent to N. To get the latter, it is
enough to note that

(p, q) ∈ N× N �→ 2p(2q + 1) ∈ N∗

is bijective1. Since the set Q of rational numbers can be injected in Z×Z, we get
from the preceding remark that Q is equipotent to N as well as Qd (d integer ≥ 1).
We shall see that the set R of real numbers is not countable since it is equipotent
to P(N) (see Exercise 1.9.5). It is easy to show that for any set X , there is no
surjection from X onto P(X) (see Exercise 1.9.2).

Let us give a couple of examples of σ-algebras. Let X be a set; {∅, X} is a
σ-algebra on X as well as P(X). Moreover, if {Ak}1≤k≤n is a partition of X (each
Ak is a non-empty subset of X , Ak ∩ Al = ∅ for k �= l, X = ∪1≤k≤nAk), the set

M = {∪k∈JAk}J⊂{1,...,n}

is a σ-algebra on X . In fact, defining B(J) = ∪k∈JAk, we get B(J)c = B(Jc), so
that the stability by complement is fulfilled (stability by reunion is obvious). Let
us note also that cardM is 2n since there is a bijection from M onto the subsets
of {1, . . . , n}. Exercise 1.9.3 deals with a countable partition.

We can also note that for (Mi)i∈I a family of σ-algebras on X , M = ∩i∈IMi

is also a σ-algebra on X : let (An)n∈N be a sequence of M, thus of Mi for each
i ∈ I, then ∪n∈NAn belongs to Mi for each i ∈ I, thus to M. Property (1) about
the complement can be checked similarly (and X ∈ M since X ∈ Mi for all i ∈ I).
Since a σ-algebra on X is included in P(X), we can give the following definition.

Definition 1.1.3. Let X be a set and F ⊂ P(X). We define

M (F) =
⋂

M σ-algebra on X
M⊃F

M.

We shall say that M (F) is the σ-algebra generated by F (or the smallest σ-algebra
on X containing F).

Lemma 1.1.4. Let (X1,M1), (X2,M2) be measurable spaces with M2 = M (F)
and f : X1 → X2 be a mapping. For f to be measurable, it is sufficient (and also
necessary) that f−1(F) ⊂ M1, i.e., ∀F ∈ F , f−1(F ) ∈ M1.

Proof. We set N = {B ∈ M2, f
−1(B) ∈ M1}. This is a σ-algebra on X2: if

B ∈ N , f−1(Bc) =
(
f−1(B)

)c ∈ M1. Moreover for a sequence (Bn)n∈N of N ,
we have f−1(∪n∈NBn) = ∪n∈Nf

−1(Bn) ∈ M1. Finally, X2 ∈ N , since f−1(X2) =
X1 ∈ M1. As a result, N is a σ-algebra containing F if f−1(F) ⊂ M1. This
implies

M2 = M (F) ⊂ N ⊂ M2 =⇒ M2 = N . �
1see Exercise 1.9.1.
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Lemma 1.1.5. Let (X,M) be a measurable space and f : X → Y be a mapping.
Then the set N = {B ⊂ Y, f−1(B) ∈ M} is a σ-algebra on Y . It is the largest
σ-algebra on Y making f measurable.

Proof. For B,Bn ∈ N , we have f−1(Bc) = (f−1(B))c ∈ M and

f−1(∪nBn) = ∪nf
−1(Bn) ∈ M.

Since Y ∈ N , we get the first result. N is the largest σ-algebra on Y such that
f is measurable: if (Y, Ñ ) is a measurable space such that f is measurable, then

for B ∈ Ñ , the measurability of f implies f−1(B) ∈ M, so that B ∈ N and thus

Ñ ⊂ N . �
Lemma 1.1.6. Let (X,M), (Y,N ), (Z, T ) be measurable spaces and

f g
X −→ Y −→ Z

be measurable mappings. Then g ◦ f is measurable.

Proof. For C ∈ T , we have (g ◦ f)−1(C) = f−1
(
g−1(C)

)
∈ M since g−1(C) ∈ N

(g is measurable) and f measurable. �

We have used above a simple property of the inverse image:

(g ◦ f)−1(C) = {x ∈ X, g
(
f(x)

)
∈ C}

= {x ∈ X, f(x) ∈ g−1(C)} = f−1
(
g−1(C)

)
.

(1.1.1)

Lemma 1.1.7. Let (X,M) be a measurable space and let A ⊂ X. The set

MA = {M ∩ A}M∈M (1.1.2)

is a σ-algebra on A, the so-called σ-algebra trace on A of M. It is the smallest
σ-algebra on A such that the canonical injection ιA of A into X is measurable.
Moreover, if A ∈ M, MA = {M ∈ M,M ⊂ A}.

Proof. The properties in Definition 1.1.1 are obviously verified in both cases (A
in or not in M). We note also that a σ-algebra on A such that ιA is measurable
must contain ι−1

A (M) = M ∩ A, for any M ∈ M, proving the second statement.
The last statement is obvious. �

1.2 Measurable spaces and topological spaces

Definition 1.2.1. Let X be a set. A family O of subsets of X is a topology on X
whenever the following conditions are satisfied,

(1) Oi ∈ O for i ∈ I =⇒ ∪i∈IOi ∈ O,
(2) O1, O2 ∈ O =⇒ O1 ∩O2 ∈ O,
(3) ∅, X ∈ O.
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In other words, O is stable by union and by finite intersection2. We shall say that
(X,O) is a topological space.

Let (X,O) be a topological space. A set F ⊂ X is said to be closed whenever
F c is open. Of course, the intersection of a family of closed sets is closed as well as
a finite union of closed sets. The interior of a set A ⊂ X is defined as the union of
the open sets included in A: the interior of A is open. The closure of a set A ⊂ X
is defined as the intersection of the closed sets containing A: the closure of A is
closed. Denoting by Ā the closure of A and by Å its interior, we have

(Å)c =

[ ⋃
Ω open ⊂A

Ω

]c
=

⋂
Ω open ⊂A

Ωc =
⋂

F closed ⊃Ac

F = Ac, (1.2.1)

so that, defining the boundary of A as ∂A = Ā\Å, we have

∂A = Ā ∩ (Å)c = Ā ∩ Ac (in particular, a closed set). (1.2.2)

It is also easy to verify from the very definitions that

interior(A ∩B) = Å ∩ B̊, closure(A ∪B) = Ā ∪ B̄. (1.2.3)

In fact Å ∩ B̊ is open included in A ∩ B, thus included in the interior of A ∩ B.
Conversely the interior of A ∩ B is open included both in A and B so both in Å
and B̊ and we get the first equality. To obtain the second one, we use the first and
(1.2.1) with(
closure(A ∪B)

)c
= interior(Ac ∩Bc) = interior(Ac)∩ interior(Bc) = (Ā)c ∩ (B̄)c.

The following inclusions are satisfied whereas the equalities are not fulfilled in
general3,

interior(A ∪B) ⊃ Å ∪ B̊, closure(A ∩B) ⊂ Ā ∩ B̄.
Let V be a subset of a topological space X and x ∈ X . We shall say that V is a
neighborhood of x if x ∈ V̊ , i.e., if V contains an open set containing x. The set
of neighborhoods of a given point x will be denoted by Vx. We can note that for
x ∈ X ,

V ⊂W, V ∈ Vx =⇒W ∈ Vx, (1.2.4)

Vj ∈ Vx, j = 1, 2 =⇒ V1 ∩ V2 ∈ Vx, (1.2.5)

∅ /∈ Vx, X ∈ Vx. (1.2.6)

2We may note that stability by union implies for I = ∅ that ∅ ∈ O. Moreover stability by
finite intersection implies for a set of empty indices that X ∈ O. Condition (3) is somehow a
consequence of (1) and (2).
3Taking in C the intersection of half-spaces ±Re z > 0, we find a counterexample to the second
equality with A ∩ B = ∅, Ā ∩ B̄ = iR. To violate the first it is enough to use ±Re z ≥ 0 with
A ∪ B = C, Å ∪ B̊ = {z,Re z �= 0}.
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These properties define filters, a notion studied more extensively in Section 10.2 of
our Appendix. Metric spaces are very important examples of topological spaces: a
metric space is a set X equipped with a distance function d, i.e., d : X ×X → R+

such that

d(x, y) = 0 ⇐⇒ x = y (separation), (1.2.7)

d(x, y) = d(y, x) (symmetry), (1.2.8)

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality). (1.2.9)

We define the topology Od associated to the metric d as the family of sets which
are unions of “open balls”

B(x, r) = {y ∈ X, d(y, x) < r} (x ∈ X, r ≥ 0 given). (1.2.10)

Stability by union follows from the definition and to show the stability by fi-
nite intersection, it is enough to note that for x ∈ B(x1, r1) ∩ B(x2, r2) we have
B(x, r) ⊂ B(x1, r1) ∩B(x2, r2) with r = min

(
r1 − d(x, x1), r2 − d(x, x2)

)
since

d(y, x) < r =⇒
{
d(y, x1) ≤ d(y, x) + d(x, x1) < r + d(x, x1) ≤ r1,
d(y, x2) ≤ d(y, x) + d(x, x2) < r + d(x, x2) ≤ r2.

As a result, a finite intersection of open balls is a union of open balls, implying
that Od is a topology. For x ∈ X, r ≥ 0, the “closed ball” Bc(x, r) is defined as

Bc(x, r) = {y ∈ X, d(y, x) ≤ r}, (1.2.11)

and we note thatB(x, r) ⊂ B(x, r) ⊂ Bc(x, r) since Bc(x, r) is closed
4 and contains

B(x, r).

Rd is a metric space for the topology defined by the Euclidean distance. More
generally, a vector space E on C or R equipped with a norm, i.e., a mapping

N : E −→ R+, so that

⎧⎪⎨⎪⎩
N(x) = 0 ⇐⇒ x = 0,

N(αx) = |α|N(x), for α ∈ C, x ∈ E,
N(x+ y) ≤ N(x) +N(y),

(1.2.12)

is a metric space for the distance N(x − y). (E,N) is called a normed vector
space. For instance, we may consider the space C0([0, 1],R) of real-valued functions
defined on [0, 1] equipped with the norm

‖f‖∞ = sup
x∈[0,1]

|f(x)|.

4
(
Bc(x, r)

)c
= ∪y,d(x,y)>rB(y, d(x, y) − r) since if d(z, y) < d(x, y)− r and d(x, y) > r, we get

d(z, y) + r < d(x, y) ≤ d(x, z) + d(z, y) =⇒ r < d(x, z).

This implies that (Bc(x, r))c contains the above union and the inclusion is obvious.
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Figure 1.1: Sequences fn and gn.

Let us recall that on Rd, all the norms are equivalent (see Exercise 1.9.8). The
normed vector space C0([0, 1],R) equipped with the norm ‖ · ‖∞ defined above is
complete5. A complete normed vector space is called a Banach space.

We may notice that all the norms on C0([0, 1],R) are not equivalent (see Ex.
1.9.8). We may consider the norm (Axioms (1.2.12) are easy to check)

‖f‖1 =
∫ 1

0

|f(t)|dt.

The sequence fn is bounded for the norm ‖ · ‖1 and unbounded for ‖ · ‖∞. On the
other hand the sequence of continuous functions gn is a Cauchy sequence for ‖ · ‖1
and converges for ‖ · ‖1 towards the discontinuous function 1[1/2,1] (see Ex. 1.9.8).
Of course, a topology fails in general to be stable by complement: on the Euclidean
R, the complement of the open set ]0,+∞[ is ] − ∞, 0] which is not open since it
does not contain an open ball containing 0. In fact a topological space is said to
be connected (intuitively made of a single piece) whenever the only sets which are
both open and closed are the whole space and the empty set (see Appendix 10.2
on connectedness of topological spaces).

Lemma 1.2.2. Let (X,O) be a topological space and let A be a subset of X. The
set

OA = {Ω ∩ A}Ω∈O (1.2.13)

is a topology on A, the so-called induced topology on A by the topology of X, or
the subspace topology. It is the smallest (coarsest, weakest) topology on A such that

5A normed vector space is said to be complete whenever all Cauchy sequences are convergent.
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the canonical injection ιA : A → X is continuous. The closed sets of A for that
topology are CA = {F ∩A}Fclosed in X , i.e., the “traces” of closed sets of X on A.

Proof. The properties of Definition 1.2.1 are obviously verified. The canonical
injection is indeed continuous since ι−1

A (O) = OA and if Õ is a topology on A

making ιA continuous, this implies ι−1
A (O) ⊂ Õ. Let Φ be a closed set of A for this

topology: we have, with complements in X , Φc ∩A = Ω∩A for some Ω ∈ O: as a
consequence, since Φ ⊂ A, we get Φ = A∩ (Φ∪Ac) = A∩ (Ωc∪Ac) = A∩Ωc. �

In a topological space, it is interesting to examine the σ-algebra generated
by the topology.

Definition 1.2.3. Let (X,O) be a topological space. The Borel σ-algebra on X is
the σ-algebra generated by O (according to Definition 1.1.3).

Although the definition above is clear-cut, it does not give a very precise
indication of what a Borel set is (an element of the Borel σ-algebra). For instance,
a countable union of closed sets, called an Fσ, is a Borel set (the set Q of rational
numbers, as a countable union of singletons is an Fσ). Its complement is a count-
able intersection of open sets (called a Gδ set): the set of irrational numbers on
the real line is a Gδ set. Some subsets of R can be at the same time Fσ and Gδ

such as [0, 1], a closed set (thus Fσ) and Gδ since

[0, 1] = ∩n≥1

]
− 1

n
, 1 +

1

n

[
.

However Qc (a Gδ set, according to the above argument) is not an Fσ . Otherwise,
we could find a sequence of closed sets Fn such that R\Q = ∪nFn; since R\Q does
not contain any interval (Q is dense in R) the interior of each Fn is empty. Finally,
it would be possible to write R as a countable union of closed sets with empty
interiors. The Baire theorem (see Section 10.2 in the Appendix) ensures that, in a
complete metric space, a countable union of closed sets with empty interiors has
also an empty interior. The previous equality describing Qc as an Fσ set is thus
absurd.

Lemma 1.2.4. Let (X1,O1), (X2,O2) be topological spaces and let f : X1 → X2 be
a mapping. The following properties are equivalent.

(i) The mapping f is continuous on X1.

(ii) f−1(O2) ⊂ O1, i.e., ∀O2 ∈ O2, f
−1(O2) ∈ O1.

Proof. Note that the continuity of f at a given point x1 means that for all V2
neighborhood of f(x1), there exists a neighborhood V1 of x1 such that f(V1) ⊂ V2.
Using the notation introduced in Section 10.2, it means

f̃(Vx1) ⊃ Vf(x1).
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Since a neighborhood of a point contains an open set containing that point, we
may replace in the previous definition the word neighborhood by open neighborhood.
Continuity on the wholeX1 means continuity at each point ofX1. If f is continuous
on X1 and V2 is an open subset of X2, for x1 ∈ f−1(V2), there exists V1 � x1 such
that f(V1) ⊂ V2, implying V1 ⊂ f−1

(
f(V1)

)
⊂ f−1(V2). As a result, f−1(V2) is

open since it is a neighborhood of all its points. Conversely, assuming f−1(O2) ⊂
O1, for x1 ∈ X1, x2 = f(x1) and V2 an open neighborhood of x2, the set V1 =
f−1(V2), is an open subset of X1 containing x1. We get f(V1) = f

(
f−1(V2)

)
⊂ V2,

providing the continuity of f . �
Proposition 1.2.5. Let (X1,O1), (X2,O2) be topological spaces and Bj, j = 1, 2,
their Borel σ-algebras. If f : X1 → X2 is continuous, then it is measurable.

Proof. Continuity means f−1(O2) ⊂ O1. Since B2 is generated byO2 and O1 ⊂ B1,
Lemma 1.1.4 proves that f is measurable. �

Note that there exist functions which are continuous at only one point, such as

f : R → R, f(x) =

{
x for x ∈ Q,

−x for x /∈ Q,
continuous only at 0.

One can show (Exercise 1.9.9) that the discontinuity set of a function f from
R to itself is an Fσ, and that for any Fσ set A, there exists a function whose
discontinuity set is A. In particular, there is no function from R into itself whose
discontinuity set is Qc. On the contrary, the following function is continuous at
Qc, discontinuous at Q:

f(x) =

⎧⎪⎨⎪⎩
1 for x = 0,

1/q for x = p/q, p ∈ Z∗, q ∈ N∗, irreducible fraction,

0 for x /∈ Q.

(1.2.14)

On the other hand, an open subset of R is an Fσ set, as a countable union of closed
intervals: let U be a non-empty open subset of R and let x ∈ U ; there exists ρ > 0
so that ]x − ρ, x + ρ[⊂ U and since Q is dense in R, this implies the existence of
p, q ∈ Q so that x − ρ < p < x < q < x + ρ, and thus [p, q] ⊂ U . The open set U
is thus a union of compact intervals with rational endpoints. Now the mapping

[p, q] �→ (p, q)

is one-to-one from the set Q of compact intervals with rational endpoints into
Q × Q which is equipotent to N. As a result Q is (infinite) and equipotent to a
subset of N, thus equipotent to N, proving the sought result. More generally, we
have in any dimension the following result. We shall say that a compact rectangle of
Rd is a set

∏
1≤j≤d[aj , bj ] and that an open rectangle of Rd is a set

∏
1≤j≤d]aj , bj [.

Of course, compact rectangles are compact (even if for one j, aj > bj, since the
empty set is compact) and open rectangles are open (even if for one j, aj ≥ bj ,
since the empty set is open).
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Lemma 1.2.6. Let d ≥ 1 be an integer. We define

Q =

⎧⎨⎩ ∏
1≤j≤d

[aj , bj ]

⎫⎬⎭
(aj ,bj)∈Q2

aj<bj

.

Q is a countable family of compact rectangles of Rd such that any open set is a
union (necessarily countable) of a subfamily of these compact rectangles.

Proof. First of all Q is infinite and can be injected into Q2d, and is thus equipotent
to N. As any neighborhood of x = (x1, . . . , xd) ∈ Rd contains a cube{

y ∈ Rd, max
1≤j≤d

|yj − xj | < ρ
}

with ρ > 0, we may find pj , qj ∈ Q such that xj − ρ < pj < xj < qj < xj + ρ. As
a result, for any neighborhood U of x, there exists Px,U ∈ Q with x ∈ Px,U ⊂ U .
Let Ω be an open subset of Rd: for each x ∈ Ω, there exists a neighborhood Ux of
x, included in Ω. We have thus

Ω = ∪x∈ΩUx ⊃ ∪x∈ΩPx,Ux ⊃ ∪x∈Ω{x} = Ω =⇒ Ω = ∪x∈ΩPx,Ux ,

so that Ω is a union of a subfamily of elements of Q and since Q is countable, that
union is necessarily countable. �

Let B be the Borel σ-algebra of Rd and Rc,Ro be the families of compact
rectangles, open rectangles of Rd. We have, following Definition 1.1.3 and the
previous discussion

O ⊂ M (Rc) ⊂ B =⇒ B = M (Rc).

Moreover, since [p, q] = ∩n≥1]p−1/n, q+1/n[, any compact rectangle is a countable
intersection of open rectangles and thus

Rc ⊂ M (Ro) =⇒ B = M (O) = M (Rc) ⊂ M (Ro) ⊂ B,

so that eventually
B = M (Rc) = M (Ro). (1.2.15)

We note that, for p, q ∈ R,

[p, q] = [p,+∞[∩] − ∞, q] = [p,+∞[∩]q,+∞[c= ∩n≥1]p− 1/n,+∞[∩]q,+∞[c,

so that the Borel σ-algebra on R is generated by the intervals (]a,+∞[)a∈R and
thus also by the intervals (] − ∞, a])a∈R or (since ]a,+∞[= ∪n≥1[a + 1/n,+∞[)
by the intervals ([a,+∞[)a∈R and thus also by the intervals (] − ∞, a[)a∈R. Using
Lemma 1.1.4 to check the measurability of f : X → R, it suffices to verify the
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measurability of f−1(]b,+∞[). For instance if X is a Borel subset of R and f is
monotonic on X , then f is Borel-measurable. In fact if f is increasing, b ∈ R with
A = f−1(]b,+∞[) �= ∅, we have

A = ∪a∈A
(
[a,+∞[∩X

)
, (1.2.16)

since if X � x ≥ a ∈ A, we obtain f(x) ≥ f(a) > b and thus x ∈ A (the other
inclusion is trivial). As a result, we get

] inf A,+∞[∩X ⊂ A ⊂ [inf A,+∞[∩X, (1.2.17)

since the second inclusion follows from (1.2.16) and the first is true if inf A = −∞,
also from (1.2.16); if inf A > −∞, inf A ∈ R since A �= ∅ and for all ε > 0, we can
find aε ∈ A so that,

inf A ≤ aε < inf A+ ε =⇒ ] inf A,+∞[∩X ⊂ ∪ε>0[aε,+∞[∩X ⊂ A,

where the last inclusion follows from (1.2.16). Whatever happens with inf A, be-
longing or not to A, we find from (1.2.17) that

A = [inf A,+∞[∩X or A =] inf A,+∞[∩X,

Borel-measurable in both cases.

Theorem 1.2.7. Let (X,M), (Y,N ) be measurable spaces and Rd equipped with
its Borel σ-algebra. Let u1, . . . , ud be measurable mappings from X in R and let
Φ : Rd → Y be measurable. Then the mapping

X → Y
x �→ Φ

(
u1(x), . . . , ud(x)

)
is measurable. In particular, f : X → C is measurable if (and only if) Re f, Im f
are measurable and then |f | is also measurable. If f, g : X → C are measurable,
then f + g, fg are also measurable. Moreover, if A ∈ M, the indicator function of
A is measurable.

Proof. From the composition Lemma 1.1.6, it is enough to check the measurability
of x �→ V (x) =

(
u1(x), . . . , ud(x)

)
from X to Rd. From Lemma 1.2.6 and Lemma

1.1.4, it suffices to verify that the inverse image by V of a compact rectangle of
Rd belongs to M. For that purpose, we note that

V −1

⎛⎝ ∏
1≤j≤d

[aj, bj ]

⎞⎠ =
⋂

1≤j≤d

u−1
j ([aj , bj ]) ∈ M,

since the uj are measurable. The other statements in the theorem follow immedi-
ately (the very last assertion is obvious since 1−1

A (J) ∈ {∅, A,Ac, X}). �
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The following generalization of the previous theorem can be useful.

Theorem 1.2.8. Let (X,M), (Y,N ) be measurable spaces and let T be a separable
metric space equipped with its Borel σ-algebra. Let u1, . . . , ud be measurable map-
pings from X into T and let Φ : T d → Y be a measurable mapping. Then the
mapping

X → Y
x �→ Φ

(
u1(x), . . . , ud(x)

)
is measurable.

Proof. According to Lemma 1.1.6, it is enough to check the measurability of x �→
V (x) =

(
u1(x), . . . , ud(x)

)
from X in T d. From Lemma 1.1.4 it suffices to check

that the inverse image by V of an open set of T d belongs to M. Moreover for
Ω an open subset of T d and x = (x1, . . . , xd) ∈ Ω, there exist r1, . . . , rd positive
numbers (that we may suppose rational numbers) so that the product of open
balls

B(x1, r1) × · · · ×B(xd, rd) � x

is included in Ω. With D a countable dense subset of T , we may find y1, . . . , yd ∈ D
so that dist(xj , yj) < rj/2. Then the ball B(yj , rj/2) is such that

xj ∈ B(yj , rj/2) ⊂ B(xj , rj),

since dist(z, yj) < rj/2 implies dist(z, xj) ≤ dist(z, yj)+dist(yj , xj) < rj/2+ rj/2
so that z ∈ B(xj , rj). As a result, the open set Ω is a union of products

B(y1, ρ1) × · · · ×B(yd, ρd), yj ∈ D, ρj ∈ Q.

There is a surjection from Dd × Qd (which is countable) onto the set P of these
subsets and thus P is countable. We have

V −1

⎛⎝ ∏
1≤j≤d

B(yj , ρj)

⎞⎠ =
⋂

1≤j≤d

u−1
j (B(yj , ρj)) ∈ M,

since the uj are measurable. �

Lemma 1.2.9. Let (X,O) be a topological space and A ∈ BX , the Borel σ-algebra
on X. The Borel σ-algebra BA on A is

BA = {M ∈ BX ,M ⊂ A} = M (OA), (1.2.18)

where OA is the topology on A, given in Lemma 1.2.2.

Proof. From (1.2.13) and Definition 1.2.3, we have BA = M (OA). Since

B̃ = {M ∈ BX ,M ⊂ A}
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is (obviously) a σ-algebra on A containing OA, it contains M (OA). Moreover B̃
makes the canonical injection ιA measurable since ι−1

A (BX) = B̃. Also B̃ is the
smallest σ-algebra on A making ιA measurable since any σ-algebra making ιA
measurable must contain ι−1

A (BX). We note now from Lemma 1.1.4 that the σ-
algebra M(OA) on A is such that ιA is measurable since ι−1

A (O) = OA: as a result,

we get that M (OA) contains B̃, proving the lemma. �

Definition 1.2.10. The extended real line R is the set obtained by adjoining two
non-real distinct elements to the real line; it is the topological space R∪{−∞,+∞},
where the topology contains the open subsets of R and the sets

]a,+∞[∪{+∞}, {−∞}∪]− ∞, a[

(denoted respectively by ]a,+∞] and [−∞, a[). The order relation on R makes
−∞ the smallest element and +∞ the largest. This order relation is compatible
with the topology since the open sets are unions of intervals.

R is easily shown to be homeomorphic to [−1, 1] (i.e., there exists a bi-
continuous bijective mapping ψ0 from R onto [−1, 1]), for instance by extending
continuously

R � x �→ x√
1 + x2

= ψ0(x) ∈ (−1, 1), ψ0(±∞) = ±1,

(−1, 1) � y �→ y√
1− y2

= ψ−1
0 (y) ∈ R, ψ−1

0 (±1) = ±∞.
(1.2.19)

That homeomorphism is compatible with the order relation, i.e., is increasing.
We note also that any monotone sequence (xn) in R converges since ψ0(xn) is
monotone in [−1, 1] thus converging (since it is either increasing bounded from
above or decreasing bounded from below) and since ψ−1

0 is continuous, we get the
result. Since R is compact, for any A ⊂ R, there exists a

least upper bound, or supremum, supA = inf{M ∈ R, ∀a ∈ A, a ≤M}, (1.2.20)

greatest lower bound, or infimum, inf A = sup{m ∈ R, ∀a ∈ A, a ≥ m}. (1.2.21)

If A = ∅, following the definition, we get supA = −∞, inf A = +∞, the only case
where the infimum is strictly larger than the supremum.

Definition 1.2.11. Let (xn)n∈N be a sequence in R. The sequences (infk≥n xk)n∈N,
(supk≥n xk)n∈N, are monotone (the first is increasing, the next one decreasing).
We define

lim inf xn = lim
n→+∞

(
inf
k≥n
xk
)
= sup

n∈N

(
inf
k≥n
xk
)
,

lim supxn = lim
n→+∞

(
sup
k≥n
xk
)
= inf

n∈N

(
sup
k≥n
xk
)
.
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Proposition 1.2.12. Let (xn)n∈N be a sequence in R. Then lim inf xn is the smallest
accumulation point of the sequence and lim supxn the largest. We have

lim inf xn ≤ lim supxn

and equality holds if and only if the sequence is converging to this value.

Proof. Using the homeomorphism ψ0 defined above (cf. (1.2.19)) we can assume
that (xn)n∈N is a sequence in [−1, 1]. If y is an accumulation point of the sequence,
i.e., a limit point of subsequence, (xnk

)k∈N, (n0 < n1 < n2 < · · · < nk < nk+1 <
· · · ), then

y ←−
k→+∞

xnk
≤ sup

l≥nk

xl −→
k→+∞

lim supxn,

where the second limit comes from a subsequence of a converging sequence. We
get thus y ≤ lim supxn and similarly y ≥ lim inf xn. Moreover, lim supxn is an
accumulation point of the sequence since for all ε > 0, N ≥ 1, we may find nε ≥ N
with

lim supxn = inf
n
(sup
k≥n
xk) ≤ sup

k≥nε

xk < lim supxn + ε,

so that, for η > 0, ∃n(ε, η) ≥ nε with

lim supxn−η = inf
n
(sup
k≥n
xk)−η ≤ sup

k≥nε

xk −η < xn(ε,η) ≤ sup
k≥nε

xk < lim supxn+ ε.

As a result, for all ε, η positive, for all N ≥ 1, we can find n(ε, η) ≥ nε ≥ N with

lim supxn − η < xn(ε,η) < lim supxn + ε,

proving the result. If lim supxn = lim inf xn = l, then

l ←−
n→+∞

inf
k≥n
xk ≤ xn ≤ sup

k≥n
xk −→

n→+∞
l,

implying limxn = l. On the contrary, if lim inf xn < lim supxn, the sequence has
at least two different accumulation points and cannot converge. �

Proposition 1.2.13. Addition and multiplication of real numbers can be extended
continuously respectively to6

(R× R)\{(+∞,−∞), (−∞,+∞)} and to (R × R)\{(0,±∞), (±∞, 0)}.
6In other words, x + y is meaningful for x ∈ R, y ∈ R, provided we avoid the “undetermined
expression” +∞ − ∞. Same thing for the product and 0.∞. The adjective “undetermined” is
justified by the fact that there is no continuous extension of the addition in R to R: if such
an extension were existing, for xn = −n + l, yn = n, we would have for all values of the real
parameter l, l = lim(xn + yn) = limxn + lim yn = +∞ − ∞. Somehow worse than this, with
xn = −n+ (−1)n, yn = n, +∞−∞ would be the limit of the non-converging sequence (−1)n.
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Let (xn)n∈N, (yn)n∈N be sequences of R such that xn + yn, lim inf xn + lim inf yn
and lim supxn + lim sup yn are meaningful. Then, the following inequalities hold:7

lim inf xn + lim inf yn ≤ lim inf (xn + yn)

≤ lim sup (xn + yn) ≤ lim supxn + lim sup yn.

Proof. Let us first assume that both sequences (xn), (yn) are bounded in R. For
k ≥ n, we have xk + yk ≤ supl≥n xl + supl≥n yl so that supk≥n(xk + yk) ≤
supl≥n xl + supl≥n yl. As a result, taking limits for n→ +∞, we get

lim sup (xn + yn) ≤ lim supxn + lim sup yn.

Noticing that

lim inf(−xn) = sup
n
( inf
k≥n

(−xn)) = sup
n
(− sup

k≥n
xn) = − inf

n
(sup
k≥n
xn) = − lim supxn,

we get the result. We leave for the reader to check the remaining cases when at
least one sequence is not bounded in R. �

The following result will be useful in the sequel.

Lemma 1.2.14. Let (ak,l)k∈N,l∈N be a double sequence of R+. Then∑
k

(∑
l

akl

)
=
∑
l

(∑
k

akl

)
. We shall write

∑
k,l

akl for that sum.

Proof. We have seen above that series of elements of R+ converge towards their
supremum8. Thus, for all K,L, we have

σ =
∑
k

(∑
l

akl

)
=
∑
k

sup
L≥0

( ∑
0≤l≤L

akl

)
= sup

K

∑
0≤k≤K

[
sup
L≥0

( ∑
0≤l≤L

akl

)]

≥
∑

0≤k≤K

[
sup
L≥0

( ∑
0≤l≤L

akl

)]
≥
∑

0≤k≤K

[ ∑
0≤l≤L

akl

]
=
∑

0≤l≤L

[ ∑
0≤k≤K

akl

]
,

and for all L, σ ≥
∑

0≤l≤L

[∑
k akl

]
, which implies σ ≥

∑
l

(∑
k akl

)
, and the

result by exchanging k and l. �

Remark 1.2.15. Addition of real numbers can be extended continuously to R+ ×
R+; it is thus associative, commutative, with neutral element 0. Multiplication of

real numbers cannot be extended continuously to R+ ×R+ but only to R
∗
+ ×R

∗
+.

7Equalities are not true in general: check for instance xn = (−1)n/2, yn = (−1)n+1, for which
lim inf xn + lim inf yn = −1/2 − 1 < lim inf (xn + yn) = −1/2 < lim sup (xn + yn) = 1/2 <
lim supxn + lim sup yn = 1/2 + 1.
8In particular, the infinite sums in the statement are meaningful.
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We could use the (discontinuous9) convention 0 · ∞ = 0 and10 it is easy to verify
that this new multiplication is associative, commutative, with neutral element 1,
distributive with respect to the addition. The reader may also check Remark 1.3.4
below.

1.3 Structure of measurable functions

Proposition 1.3.1. Let (X,M) be a measurable space and let (fn)n∈N be a se-
quence of measurable functions from Xinto R. Then the functions sup fn, inf fn,
lim sup fn, lim inf fn are measurable. In particular, the pointwise limit of a se-
quence of measurable functions is measurable.

Proof. Let us set g = sup fn, i.e., g(x) = supn∈N fn(x). For a ∈ R, we have

g−1(]a,+∞]) = ∪n∈Nf
−1
n (]a,+∞]),

since supn∈N fn(x) = g(x) > a ⇐⇒ ∃n0 ∈ N, such that fn0(x) > a. Consequently,
we get g−1(]a,+∞]) ∈ M. According to Lemma 1.1.4, this proves the measura-
bility of g since the Borel σ-algebra B

R
of R is equal to the σ-algebra generated

by the intervals ]a,+∞] (see (1.2.15), the discussion on page 9 and the increas-
ing homeomorphism of R with [−1, 1] displayed in (1.2.19)). Thus g = sup fn is
measurable. Moreover the identities

inf fn = − sup(−fn), lim sup fn = inf
n
(sup
k≥n
fk), lim inf fn = sup

n
( inf
k≥n
fk)

give the other results. �
Definition 1.3.2. Let (X,M) be a measurable space. A measurable function s :
X → [0,+∞) is said to be simple if it takes only a finite number of values.

Let {α1, . . . , αm} be the image of s. Defining Ak = s−1({αk}), we get that
{Ak}1≤k≤m is a partition of X and

s(x) =
∑

1≤k≤m

αk1Ak
(x),

where 1Ak
is the indicator function of Ak.

9Considering the sequences in (0,+∞), (xn, yn) ∈ {(1/n, n2), (1/n2, n), (l/n, n), ( 2+(−1)n

n
, n)},

we see in each case limxn = 0, limyn = +∞ and that the limit of xnyn could be anything in
R+ or that the sequence xnyn is not converging. A somehow worse behaviour is given by the
sequences

xn = qn/(n(1 + qn)), yn = n(1 + qn), where Q+ = {qn}n≥1.

We have limxn = 0, lim yn = +∞ and the sequence (xnyn) is dense in R+.
10That commonly used convention refers to a “potential” vision of infinity: infinity is seen as
something that can be reached by some limiting process. Looking at the product 0n = 0 for
all n, that convention looks natural. That potential vision is opposed to an “actual” viewpoint
where infinity is there from the beginning. In measure theory, that convention is justified by
the fact that integrating the zero function on any set, even of infinite measure, will give 0. Also
integrating a function which is identically +∞ on a set of measure 0 will give 0.
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Theorem 1.3.3. Let (X,M) be a measurable space and let f : X −→ R+ = [0,+∞]
be a measurable mapping. There exists a sequence (sk)k≥1 of simple functions such
that

(1) 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ sk+1 ≤ · · · ≤ f,
(2) ∀x ∈ X, limk sk(x) = f(x),

(3) For f bounded, the limit is uniform: limk

(
supx∈X |f(x) − sk(x)|

)
= 0.

Proof. Let us first assume that 0 ≤ f ≤ 1. We define11

sk(x) = 2−kE(2kf(x)). (1.3.1)

The function sk takes finitely many values since 0 ≤ 2kf ≤ 2k. We have also

2ksk ≤ 2kf < 2ksk + 1 =⇒ 0 ≤ f − sk < 2−k, (1.3.2)

so that sk converges uniformly towards f . Moreover, multiplying (1.3.2) by 2 and
writing (1.3.2) for k + 1, we find

N � 2k+1sk ≤ 2k+1f, 2k+1sk+1 = E(2k+1f).

Using the definition of the integer value, we obtain

2k+1sk ≤ 2k+1sk+1, i.e., sk ≤ sk+1,

proving that (sk) is an increasing sequence. Every function sk is measurable, as
the composition of measurable functions12. If 0 ≤ f ≤ M , for some positive real
number M , we can apply the previous result to f/M . Let us go back to the case
0 ≤ f ≤ 1 and set

s̃k = sk − 2−kE(f).

If f(x) < 1, we have sk(x) = s̃k(x). If f(x) = 1, we have 1− 2−k = s̃k(x). In both
cases, the sequences (s̃k(x))k∈N are increasing with limit f(x) and 0 ≤ s̃k(x) < 1.
Using the homeomorphism ψ0 defined in (1.2.19), which identifies R+ to [0, 1], we
may consider

f ψ0 ψ−1
0

X −→ R+ −→ [0, 1] −→ R+.

Using the previous arguments, we find a sequence of simple functions tk valued
in [0,1[, increasing with limit ψ0 ◦ f . As a result, ψ−1

0 ◦ tk is a simple function (in
particular with finite values since tk has values < 1) with limit f . The sequence
ψ−1
0 ◦ tk is increasing as tk is and ψ−1

0 is increasing. The proof of the theorem is
complete. �
11E(t) stands for the integer value of t ∈ R, also called floor function or greatest integer function:
E(t) is the unique integer such that E(t) ≤ t < E(t) + 1.
12The integer value is measurable since E−1([a,+∞[) = [a,+∞[ if a ∈ Z and if a /∈ Z,
E−1([a,+∞[) = [E(a) + 1,+∞[.
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Remark 1.3.4. Let f, g be measurable functions from X into R+; then f + g is
well defined and measurable. It follows from Theorem 1.2.8 and the measurability
of the (continuous) mapping

R+ × R+ −→ R+

(α, β) �→ α+ β.

Analogously, the symmetric (discontinuous) mapping M

R+ × R+ −→ R+

(α, β) �→ α · β

extending continuously to R
∗
+ × R

∗
+ the multiplication on R∗+ × R∗+ and defining

0.∞ = 0 is Borel-measurable: for a ∈ R+, the set

Ea = {(x, y) ∈ R+ × R+,M(x, y) > a}

is included in R
∗
+×R

∗
+on whichM is continuous. As a result, Ea is an open subset

of R
∗
+ ×R

∗
+, thus a Borel set of R+ × R+. Using Theorem 1.2.8, we get that f · g

is measurable.

1.4 Positive measures

Definition 1.4.1. Let (X,M) be a measurable space. A positive measure on (X,M)
is a mapping μ : M → R+ satisfying μ(∅) = 0, and such that, for any sequence
(Ak)k∈N in M of pairwise disjoint sets (k �= l =⇒ Ak ∩ Al = ∅),

μ(∪k∈NAk) =
∑
k∈N
μ(Ak). (1.4.1)

That property is called σ-additivity13 and the triple (X,M, μ) is called a measure
space (where μ is a positive measure). When μ(X) = 1, we shall say that μ is a
probability measure and the triple (X,M, μ) is called a probability space.

N.B. We shall define later in this text (Definition 7.1.1 in Chapter 7) the notion
of complex measure.

Let us give a few simple examples.

(1) Let X be a finite set, equipped with the σ-algebra P(X), and let us define the
counting measure μ0 by μ0(A) = cardA.

(2) LetX be a non-empty finite set, (σ-algebra P(X)), and let μ1 be the probability
measure μ1 defined by

μ1(A) = cardA/ cardX.

13or countable additivity.
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(3) Let X be a set, (σ-algebra P(X)). We define the counting measure on X by

μ(A) =

{
cardA, when A is finite,

+∞, when A is infinite.

To check that it is indeed a measure, we consider a sequence of pairwise disjoint
subsets (Ak)k∈N: if one of them is infinite, (1.4.1) is obvious as well as when they
are all finite with a finite union. If they are all finite with an infinite union, (1.4.1)
follows from the inequalities

card(∪0≤k≤NAk) =
∑

0≤k≤N

cardAk ≤
∑
0≤k

cardAk

and limN→+∞ card(∪0≤k≤NAk) = +∞.
(4) Let X be a set (σ-algebra P(X)). For a ∈ X we define δa, the Dirac measure
at a by

δa(A) =

{
1 if a ∈ A,
0 if a /∈ A.

(5) Series of positive measures on the same measurable space.

Lemma 1.4.2. Let (X,M) be a measurable space and let (μj)j∈N be a sequence of
positive measures on (X,M). For A ∈ M, we define μ(A) =

∑
j∈N μj(A). Then

μ is a positive measure on (X,M).

Proof. Let (Ak)k∈N be a pairwise disjoint sequence in M. We have

μ(∪k∈NAk) =
∑
j∈N
μj(∪k∈NAk) =︸︷︷︸

σ-additivity
of each μj

∑
j∈N

(∑
k∈N
μj(Ak

)

=︸︷︷︸
Lemma 1.2.14

∑
k∈N

∑
j∈N
μj(Ak) =

∑
k∈N
μ(Ak). �

(6) We want to construct a positive measure on (R,BR), where BR is the Borel
σ-algebra on R, such that, for a ≤ b real numbers,

μ([a, b]) = b− a = μ(]a, b]).

It is easy to construct μ on finite unions of pairwise disjoint intervals. Although
BR is generated by the intervals in the sense of Definition 1.1.3, extending μ to
BR is a difficult task which is one of the main goals of this book.

(7) Measure with density ν with respect to the Borel measure on R. Let ν be a
continuous non-negative function on R; we want to construct a positive measure
defined on BR such that for a ≤ b real numbers, we have

μν([a, b]) =

∫ b

a

ν(t)dt,
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where the integral of ν is the Riemann integral. It is also easy to construct μν
on finite unions of pairwise disjoint intervals (this is the density version of the
previous example in which ν ≡ 1). Also a difficult construction to be performed in
the sequel.

(8) Borel measure on Rd. With BRd standing for the Borel σ-algebra on Rd, one
of the goals of this book is to provide a construction of a positive measure defined
on BRd , such that, for aj ≤ bj real numbers, we have

μ

( ∏
1≤j≤d

[aj , bj ]

)
=
∏

1≤j≤d

(bj − aj).

It is the d-dimensional version of the example (6) on page 18.

(9) Cauchy probability on R with parameter α > 0. It is the positive measure with
density

1

π

α

α2 + t2
.

We note that
∫
R

1
π

α
α2+t2 dt =

[
1
π arctan(t/α)

]+∞
−∞

= 1. We define the repartition

function of the probability μ on R as

F (t) = μ
(
(−∞, t[

)
.

The function F is increasing, tends to 0 (resp. 1) when t goes to −∞ (resp. +∞),
and is left-continuous (see Exercise 1.9.25). In the specific case of the Cauchy
probability, the repartition function is

F (t) =
1

π
arctan

(
t

α

)
+

1

2
.

(10) The Laplace–Gauss probability with mean (or expectation) m, variance σ2

(σ > 0 is the standard deviation), has density

1

σ
√
2π

exp− (x−m)2

2σ2
.

We note that
∫
R
exp− (x−m)2

2σ2 dx = σ
√
2π and∫

R

x exp− (x−m)2

2σ2
dx

σ
√
2π

= m,

∫
R

(x−m)2 exp− (x−m)2

2σ2
dx

σ
√
2π

= σ2.

(11) Bernoulli probability with parameter p ∈ [0, 1]: pδ0 + (1 − p)δ1 on the set
X = {0, 1}.
(12) Binomial probability with parameters n ∈ N∗ and p ∈ [0, 1],

μ =
∑

0≤k≤n

Ck
np

k(1 − p)n−kδk,
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where

Ck
n =

n!

(n− k)!k! =
(
n

k

)
. (1.4.2)

We can consider μ as a positive measure on {0, 1, . . . , n − 1, n} so that μ(A) =∑
k∈A C

k
np

k(1 − p)n−k.

(13) The Poisson probability with parameter λ > 0 is given by

e−λ
∑
k∈N

λk

k!
δk,

which is meaningful, e.g., from Lemma 1.4.2. We may consider μ as defined on the

subsets of N by μ(A) = e−λ
∑

k∈A
λk

k! .

Lemma 1.4.3. Let (X,M, μ) be a measure space where μ is a positive measure
and let f : X −→ Y be a mapping. The set N = {B ⊂ Y, f−1(B) ∈ M} is a σ-
algebra on Y : it is the largest σ-algebra on Y making f measurable. The so-called
pushforward measure f∗(μ) is a positive measure defined on N by

f∗(μ)(B) = μ
(
f−1(B)

)
.

If g : Y −→ Z is another mapping, we have (g ◦ f)∗ = g∗ ◦ f∗.

Proof. The first statements follow from Lemma 1.1.5. To check that f∗(μ) is a
positive measure defined on N , we consider a sequence (Bk)k∈N of pairwise disjoint
elements of N and we note that

(
f−1(Bk)

)
k∈N is a pairwise disjoint sequence of

M and thus

f∗(μ)
(
∪k∈NBk

)
= μ
(
f−1(∪k∈NBk)

)
= μ
(
∪k∈Nf

−1(Bk)
)

=
∑

k
μ
(
f−1(Bk)

)
=
∑

k
f∗(μ)(Bk).

Also we have trivially f∗(μ)(∅) = μ(f−1(∅)) = μ(∅) = 0. The last “functorial”
property14 is obvious and follows from the other functorial property (see (1.1.1))
(g◦f)−1(C) = f−1

(
g−1(C)

)
: with P = {C ⊂ Z, g−1(C) ∈ N}, we have for C ∈ P ,(

(g ◦ f)∗(μ)
)
(C) = μ

(
(g ◦ f)−1(C)

)
= μ
(
f−1
(
g−1(C)

))
= f∗

(
μ)(g−1(C)

)
=
(
g∗(f∗(μ))

)
(C) =

(
(g∗ ◦ f∗)(μ)

)
(C). �

Proposition 1.4.4. Let (X,M, μ) be a measure space where μ is a positive measure.

(1) For A,B ∈ M, A ⊂ B =⇒ μ(A) ≤ μ(B).
(2) Let (Ak)k∈N be an increasing sequence of M and A = ∪k∈NAk; then μ(Ak) ↑
μ(A) in R+.

(3) Let (Ak)k∈N be a decreasing sequence in M, such that μ(A0) < +∞ and
A = ∩k∈NAk; then μ(Ak) ↓ μ(A) in R+.

14This covariance property following from the contravariance property for inverse images explains
also the notation with a ∗ at the bottom for the covariant pushforward and a −1 at the top for
the contravariant inverse images.
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Moreover the properties of Definition 1.4.1 are equivalent to μ(∅) = 0, (2) above
and μ(A ∪B) = μ(A) + μ(B), for disjoint A,B ∈ M.

Proof. The disjoint union of elements of M, B = (B\A) ∪ A, implies μ(B) =
μ(B\A) + μ(A) ≥ μ(A) and thus (1). To get (2), we define A−1 = ∅, and prove
inductively that15

Ak = ∪0≤l≤k(Al ∩Ac
l−1),

so that A = ∪k≥0Ak = ∪k≥0(Ak ∩ Ac
k−1). For k �= l (say k > l ≥ 0), since (Aj) is

increasing, we have

(Ak∩Ac
k−1)∩(Al∩Ac

l−1) = Ak∩Al∩Ac
k−1∩Ac

l−1 = Al∩Ac
k−1 ⊂ Ac

k−1∩Ak−1 = ∅.

As a result, using (1.4.1), we obtain

μ(A) =
∑
k≥0

μ(Ak ∩ Ac
k−1) = lim

n→∞

∑
0≤k≤n

μ(Ak ∩ Ac
k−1) = lim

n→∞
μ(An), i.e., (2).

We check now (3). We have

A0\A = A0 ∩ (∪k≥0A
c
k) = ∪k≥0 (A0 ∩ Ac

k)︸ ︷︷ ︸
increasing of k

.

Applying the already proven property (2), we get μ(A0 ∩Ac
k) ↑ μ(A0\A). For each

k, we have
+∞ > μ(A0) = μ(Ak) + μ(A

c
k ∩ A0),

so that μ(A0), μ(Ak), μ(A
c
k ∩ A0) are real numbers16, and thus

μ(Ak) = μ(A0) − μ(Ac
k ∩ A0) ↓ μ(A0) − μ(A0\A) = μ(A),

proving (3). If μ is a positive measure, the properties mentioned in the last state-
ment of Proposition 1.4.4 are fulfilled, as proven above. Conversely, we need to
prove (1.4.1). Let (Ak)k∈N be a pairwise disjoint sequence in M: from property
(2) in Proposition 1.4.4, using finite additivity17, we get∑

0≤k≤n

μ(Ak) = μ(∪0≤k≤nAk) ↑ μ(∪k≥0Ak), i.e.,
∑
k≥0

μ(Ak) = μ(∪k≥0Ak).

The proof of Proposition 1.4.4 is complete. �

15True for k = 0; moreover Ak+1 = (Ak+1 ∩ Ac
k) ∪

=Ak, since Aj↑︷ ︸︸ ︷
(Ak+1 ∩Ak) = (Ak+1 ∩Ac

k) ∪Ak.
16At this very point, we are using the assumption μ(A0) < +∞, which is necessary as shown
by the counting measure (Example (3) on page 18) on N with the decreasing sequence Ak =
[k,+∞[∩N: for each k, μ(Ak) = +∞ and μ(∩k≥0Ak) = μ(∅) = 0.
17Trivial inductively from the additivity for two disjoint sets:

μ(∪0≤k≤n+1Ak) = μ(∪0≤k≤nAk) + μ(An+1) =
∑

0≤k≤n

μ(Ak) + μ(An+1).
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Remark 1.4.5. Let (X,M, μ) be a measure space where μ is a positive measure,
let (An)n∈N be a sequence in M. Then

μ(∪n∈NAn) ≤
∑
n∈N
μ(An). (1.4.3)

In fact, checking the increasing Bn = ∪0≤k≤nAk, we may apply property (2) in
Proposition 1.4.4 so that

μ(∪n∈NAn) = μ(∪n∈NBn) = sup
n∈N
μ(Bn) ≤ sup

n∈N

∑
0≤k≤n

μ(Ak) =
∑
n∈N
μ(An),

since the inequality μ(Bn) ≤
∑

0≤k≤n μ(Ak) holds trivially (inductively on n). See
Exercise 1.9.19 for the Sieve Formula.

1.5 Integrating non-negative functions

We want now to define the “integral with respect to a measure μ” of simple
functions as defined in Definition 1.3.2: let s =

∑
1≤k≤m αk1Ak

, where the αk are
positive, distinct and each Ak belongs to M. The integral will be defined as∫

X

sdμ =
∑

1≤k≤m

αkμ(Ak),

which is a quite natural definition. We have to pay attention to the fact that
since all αk > 0, although μ(Ak) could be +∞, the product αkμ(Ak) is de-
fined without ambiguity in R+. We should also keep in mind that the elements of
M could be awfully complicated: think for instance of the Borelian sets of type
Fσ, Gδ, Gδσ, Fσδ , . . .

18.

Lemma 1.5.1. Let (X,M, μ) be a measure space where μ is a positive measure and
let s be a simple function, that is a measurable function s : X → [0,+∞[ taking a
finite number of real non-negative distinct values α1, . . . , αm, in such a way that
s =

∑
1≤j≤m αj1Aj , Aj = s

−1({αj}). We define19

I(s) =
∑

1≤j≤m
αj>0

αjμ(Aj), (1.5.1)

18An Fσ is a countable union of closed sets, a Gδ is a countable intersection of open sets, a
Gδσ is a countable union of Gδ sets, a Fσδ a countable intersection of Fσ sets, and so on. That
terminology was introduced by the German mathematician Felix Hausdorff (1868–1942). The
letter σ is a symbol for countable union (Summe in German) and δ is a symbol for countable
intersection (Durchschnitt).
19We have only to handle products of positive real numbers αj with elements of R+. Moreover
the consistency of our definition relies on the fact that the decomposition of s as such a sum is
canonical since the αj and thus the Aj are functions of s. The condition I(0) = 0 follows in fact
from (1.5.1) since for s = 0, the summation takes place on an empty set of indices. We could
have written I(s) =

∑
1≤j≤m αjμ(Aj ) using the convention 0.∞=0. We have preferred to avoid

that discontinuous convention, at a price of heavier notation.
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and I(0) = 0. For s, t simple functions and λ > 0, we have

I(s) = sup
σ simple
0≤σ≤s

I(σ), I(s+ t) = I(s) + I(t), I(λs) = λI(s). (1.5.2)

Proof. 20 Let σ, s be simple functions such that σ ≤ s (i.e., ∀x ∈ X, σ(x) ≤ s(x)).
We have the canonical decomposition

σ =
∑

1≤k≤n

βk1Bk
, s =

∑
1≤j≤m

αj1Aj ,

where {Bk}1≤k≤n and {Aj}1≤j≤m are partitions of X . The definition gives

I(σ) =
∑

1≤k≤n
βk>0

βkμ(Bk) =
∑

1≤k≤n,1≤j≤m
βk>0,Bk∩Aj �=∅

βkμ(Bk ∩ Aj).

Noticing that Bk ∩ Aj �= ∅ implies βk ≤ αj (since for x ∈ Bk ∩ Aj , βk = σ(x) ≤
s(x) = αj), and thus αj > 0 when βk > 0, we get

I(σ) ≤
∑

1≤k≤n,1≤j≤m
αj>0

αjμ(Bk ∩ Aj) =
∑

1≤j≤m
αj>0

αjμ(Aj) = I(s),

proving the first result. To prove the next one, we note first that for s, t simple
functions, the function s+ t is measurable as a sum of measurable functions and
also simple since it takes only a finite number of non-negative real values. Using
the canonical decomposition of s and t, we have

s =
∑

1≤j≤m

αj1Aj , t =
∑

1≤k≤n

βk1Bk
, so that s+ t =

∑
1≤j≤m
1≤k≤n

(αj + βk)1Aj∩Bk
.

The sets Aj ∩ Bk are measurable and pairwise disjoint (Aj ∩ Bk ∩ Aj′ ∩ Bk′ = ∅
when j �= j′ or k �= k′), and since

X = ∪1≤j≤mAj = ∪1≤j≤m
1≤k≤n

(Aj ∩Bk),

we get that {Aj ∩ Bk}1≤j≤m,1≤k≤n
Aj∩Bk �=∅

makes a partition of X . Since 1∅ = 0, we

obtain

s+ t =
∑

1≤j≤m,1≤k≤n
Aj∩Bk �=∅

(αj + βk)1Aj∩Bk
. (1.5.3)

20This proof is simple, but quite tedious, and could probably be omitted at first reading.
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Whenever the αj +βk are distinct, Formula (1.5.3) provides the canonical decom-
position of s+ t and we find

I(s+ t) =
∑

1≤j≤m,1≤k≤n
Aj∩Bk �=∅,αj+βk>0

(αj + βk)μ(Aj ∩Bk). (1.5.4)

When the αj + βk are not distinct and take the distinct positive values γ1, . . . , γp,
we need to rewrite (1.5.3) as

s+ t =
∑

1≤l≤p

γl
∑

1≤j≤m,1≤k≤n
Aj∩Bk �=∅,αj+βk=γl

1Aj∩Bk
.

We get

I(s+ t) =
∑

1≤l≤p

γlμ
(
∪ 1≤j≤m,1≤k≤n
Aj∩Bk �=∅,αj+βk=γl

(Aj ∩Bk)
)

=
∑

1≤l≤p

γl
∑

1≤j≤m,1≤k≤n
Aj∩Bk �=∅,αj+βk=γl

μ(Aj ∩Bk) =
∑

1≤j≤m,1≤k≤n
Aj∩Bk �=∅,αj+βk>0

(αj + βk)μ(Aj ∩Bk),

so that (1.5.4) always hold. On the other hand, we have

I(s) + I(t) =
∑

1≤j≤m
αj>0

αjμ(Aj) +
∑

1≤k≤n
βk>0

βkμ(Bk)

=
∑

1≤j≤m,1≤k≤n
αj>0

αjμ(Aj ∩Bk) +
∑

1≤j≤m,1≤k≤n
βk>0

βkμ(Aj ∩Bk),

and using the notation μjk = μ(Aj ∩Bk), we have∑
αj>0

αjμjk +
∑
βk>0

βkμjk

=
∑

αj>0,βk>0

αjμjk +
∑

αj>0,βk>0

βkμjk +
∑

αj>0,βk=0

αjμjk +
∑

αj=0,βk>0

βkμjk

=
∑

αj>0,βk>0

(αj + βk)μjk +
∑

αj>0,βk=0

(αj + βk)μjk +
∑

αj=0,βk>0

(αj + βk)μjk

=
∑

αj+βk>0

(αj + βk)μjk,

implying indeed

I(s) + I(t) =
∑

1≤j≤m,1≤k≤n
αj+βk>0, Aj∩Bk �=∅

(αj + βk)μ(Aj ∩Bk) = I(s+ t).
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Finally, with λ > 0 and s a simple function, we have

I(λs) = I(λ
∑

1≤j≤m

αj1Aj ) =
∑

1≤j≤m
αj>0

λαjμ(Aj) = λI(s),

completing the proof of the lemma. �

Thanks to this lemma, we can now define the integral of a measurable func-
tion f : X → [0,+∞] = R+.

Definition 1.5.2. Let (X,M, μ) be a measure space where μ is a positive measure
and let f : X → [0,+∞] be a measurable function. We define21∫

X

fdμ = sup
s simple
0≤s≤f

I(s)

Note that from Lemma 1.5.1, for f simple, we have
∫
X
fdμ = I(f). Also

∫
X
0dμ =

0 since I(0) = 0.

Remark 1.5.3. Going back to the list of examples starting on page 17, we can
check how the integral of a non-negative measurable function is obtained from the
measure of sets.

• Let X = {x1, . . . , xn} (σ-algebra P(X)) with μ0(A) = cardA. We have∫
X

fdμ0 =

∫
X

∑
1≤j≤n

f(xj)1{xj}dμ0 = f(x1) + · · ·+ f(xn).

• Let X = {x1, . . . , xn} with the probability measure μ1(A) = cardA/ cardX . We
have ∫

X

fdμ1 =
f(x1) + · · ·+ f(xn)

n
.

• Let X = {x1, . . . , xn} and μ be the measure with density ν with respect to μ0:
we have ∫

X

fdμ =
∑

1≤j≤n

f(xj)νj .

In particular, if the non-negative real numbers νj are such that
∑
νj = 1, the

measure μ is a probability measure on X .

• Let (X = {xi}i∈I ,P(X)) be equipped with the counting measure. We have∫
X

fdμ =
∑
i∈I
f(xi) = sup

J finite ⊂I

∑
i∈J
f(xi).

21The notation

∫
X

f(x)dμ(x),

∫
X

f(x)μ(dx) is also commonly used in the literature.
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• Let X be a non-empty set and a ∈ X . With μ the Dirac mass at a, we have∫
X

fdμ = f(a).

• For the Borel measure m on Rd (yet to be constructed), we shall use the same
notation as for the Riemann integral

∫
Rd f(x)dx and we shall see that this integral

coincides with the Riemann integral for f ∈ C0
c (R

d). We shall have also∫
R

1Q(x)dx = m(Q) = 0.

• Let μ be a measure with density ν with respect to the Borel measure: we have∫
Rd

fdμ =

∫
Rd

f(x)ν(x)dx

so that dμ(x) = ν(x)dx and we may consider symbolically that μ′(x) = ν(x),
explaining the notation

∫
f(x)dμ(x) =

∫
f(x)ν(x)dx. It is also tempting to use

that notation, say for the Dirac mass at 0 ∈ R: awfully abusing the notation,
making also a formal integration by parts, with H = 1R+(Heaviside function) we
have, say for f ∈ C1

c (R),

f(0) = −
∫
R

f ′(x)H(x)dx =

∫
R

f(x)H ′(x)dx =

∫
R

f(x)δ(x)dx.

Distribution theory is necessary to handle properly these calculations, but the
intuition given by the previous formula is not so bad: the Dirac mass at 0 appears
as the “derivative” of the Heaviside function, is supported at 0, somehow +∞ at
0 and 0 elsewhere.

• Let (X,M, μ) be a measure space where μ is a positive measure and Φ : X →
Y be a mapping. We have seen in Lemma 1.4.3 the construction of a measure
space (Y,N , ν) where ν = Φ∗(μ) is the pushforward of μ. Let g : Y → R+ be a
measurable function: then g ◦ Φ is also measurable and∫

Y

gdν =

∫
X

(g ◦ Φ)dμ

since for g = β1B,∫
Y

gdν = βν(B) = βμ(Φ−1(B)) =

∫
X

β1(Φ−1(B))dμ

=

∫
X

β(1B ◦ Φ)dμ =

∫
X

(g ◦ Φ)dμ,

and is the result by linearity for simple functions (see Exercise 1.9.23 for the
general case).
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Proposition 1.5.4. Let (X,M, μ) be a measure space where μ is a positive measure,
let f, g : X → R+ be measurable functions, A,B ∈ M and α > 0 a real number.
We define

∫
A

fdμ =

∫
X

f · 1A︸ ︷︷ ︸
fA

dμ, with fA(x) =

{
f(x) when x ∈ A,
0 when x /∈ A.

(1.5.5)

The following properties hold.

(1) 0 ≤ f ≤ g =⇒
∫
X fdμ ≤

∫
X gdμ, A ⊂ B =⇒

∫
A fdμ ≤

∫
B fdμ.

(2)
∫
X αfdμ = α

∫
X fdμ.

(3) μ(A) = 0 =⇒
∫
A
fdμ = 0, even for f ≡ +∞.

(4) Let s be a simple function, E ∈ M, we define λs(E) =
∫
E
sdμ. Then λs is a

positive measure defined on M.

Proof. Property (1) follows from Definition 1.5.2 (the second part from fA ≤ fB)
and (2) follows from Definition 1.5.2 and the last property in (1.5.2):∫

X

αfdμ = sup
s simple≤αf

I(s) = sup
s simple≤αf

I(
αs

α
) = α sup

s
α simple≤f

I(
s

α
) = α

∫
X

fdμ.

To get (3), we consider s simple ≤ fA. We have Ac ⊂ {s = 0}, so that with

s =
∑

1≤j≤m
αj>0

αj1Aj

as the canonical decomposition of s and αi �= 0, we have Ai ⊂ A and thus μ(Ai) =
0, implying I(s) = 0 and

∫
A
fdμ = 0. Let us check (4): we note that λ(∅) =∫

∅ sdμ = 0 from the already proven (3) and μ(∅) = 0. Let (Ej)j≥0 a sequence of
pairwise disjoint sets in M and let s =

∑
1≤k≤m αk1Ak

be a simple function. With
E = ∪j≥0Ej , from Lemma 1.5.1, Definition 1.5.2 and Lemma 1.2.14, we get

λs(E) =

∫
X

sEdμ =
∑

1≤k≤m

αkμ(Ak ∩ E) =
∑

1≤k≤m

αk

(∑
j≥0

μ(Ak ∩ Ej)
)

=
∑
j≥0

∑
1≤k≤m

αkμ(Ak ∩ Ej) =
∑
j≥0

λs(Ej).

The proof of the proposition is complete. �
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1.6 Three basic convergence theorems

In the previous section, we were able to define
∫
X fdμ, the integral with respect

to a positive measure μ on X for a measurable function f : X → R+. We shall
soon see that for f : X → C measurable such that

∫
X

|f |dμ < ∞, it is easy to
define

∫
X fdμ.

We are now reaching the most interesting part of Integration Theory (es-
sentially elaborated by Henri Lebesgue in his 1902 Ph.D. thesis defended at the
University of Nancy, under the directorship of Emile Borel, see, e.g., [8] for more
references and a historical perspective) and in particular, we shall state and prove
a couple of convergence theorems. Typically, it is our goal to prove that, under a
rather mild convergence assumption of a sequence fn towards f , we obtain as well
the convergence of the sequence

∫
X
fndμ towards

∫
X
fdμ (at any rate, our con-

vergence assumption on the fn will be much weaker than uniform convergence). It
is also certainly a great achievement of Lebesgue theory of integration to provide
a vector space of integrable functions which is actually a Banach space. Our first
convergence theorem is due to Beppo Levi.

Theorem 1.6.1 (Monotone Convergence Theorem, a.k.a. Beppo Levi Theorem).
Let (X,M, μ) be a measure space where μ is a positive measure. Let (fn)n≥0 be a
sequence of measurable functions X → R+. Let us assume that

∀x ∈ X, fn(x) ↑ f(x), i.e., fn converges pointwise increasingly towards f.

Then the function f is measurable and

lim
n→∞

∫
X

fndμ = sup
n≥0

∫
X

fndμ =

∫
X

fdμ.

We can note that the convergence assumption is reduced to pointwise con-
vergence. Of course, without the additional hypothesis of monotonicity, the result
is not true in general22.

Proof. From Proposition 1.3.1 we get that sup fn is measurable and (1) in Proposi-
tion 1.5.4 implies that the sequence (

∫
X
fndμ)n∈N is increasing and bounded from

above by
∫
X fdμ. As a result, we have

lim
n→∞

∫
X

fndμ = sup
n∈N

∫
X

fndμ ≤
∫
X

fdμ. (1.6.1)

We are left with the proof of the reverse inequality. Let 1 > ε > 0 and let s be a
simple function such that 0 ≤ s ≤ f . We check the set

En = {x ∈ X, (1 − ε)s(x) ≤ fn(x)},

22We may consider on [0, 1], fn(x) =

⎧⎪⎨
⎪⎩
xn3, for 0 ≤ x ≤ 1/n,

2n2 − xn3, for 1/n ≤ x ≤ 2/n,

0 elsewhere.

The sequence of con-

tinuous functions (fn) converges pointwise towards 0, nevertheless
∫ 1
0 fn(x)dx = n → +∞.
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which is measurable since s and fn are both measurable and thus

f − (1 − ε)s (meaningful since s takes finite values)

is also measurable. We have En = (fn − (1 − ε)s)−1(R+). Moreover, since the
sequence (fn) is increasing, we get En ⊂ En+1. Also we have X = ∪n∈NEn since
if we could find x0 ∈ Ec

n for all n ∈ N, we would have

+∞ > (1 − ε)s(x0) > fn(x0)(≥ 0)

so that s(x0) ∈]0,+∞[ and

f(x0) = sup
n
fn(x0) ≤ (1 − ε)s(x0) < s(x0) ≤ f(x0)

which is impossible. As a result, from (4) in Proposition 1.5.4 (λs is a measure),
Proposition 1.4.4 (increasing convergence for the measure of sets) and (2) in Propo-
sition 1.5.4 (homogeneity), we obtain∫

En

(1− ε)sdμ = λ(1−ε)s(En) ↑ λ(1−ε)s(X) =

∫
X

(1− ε)sdμ = (1− ε)I(s). (1.6.2)

But we have (1− ε)s ·1En ≤ fn ·1En ≤ fn, so that (1) in Proposition 1.5.4 implies∫
En

(1 − ε)sdμ ≤
∫
En

fndμ ≤
∫
X

fndμ. (1.6.3)

We have thus (1 − ε)I(s) =︸︷︷︸
(1.6.2)

limn

∫
En

(1 − ε)sdμ ≤︸︷︷︸
(1.6.3)

supn
∫
X
fndμ, so that

(1 − ε)
∫
X

fdμ = (1 − ε) sup
s simple ≤f

I(s) ≤ lim
n

∫
X

fndμ ≤
∫
X

fdμ, (1.6.4)

for all ε ∈ (0, 1). Taking the supremum on ε > 0, yields the result23. �
Corollary 1.6.2. Let (X,M, μ) be a measure space where μ is a positive measure.
Let (fn)n≥0 be a sequence of measurable functions from X −→ R+. We set S(x) =∑
n≥0

fn(x). Then S is non-negative measurable and

∫
X

Sdμ =
∑
n≥0

∫
X

fndμ.

Proof. The measurability of S follows from Proposition 1.3.1 since in the first
place

Sn(x) =
∑

0≤k≤n

fk(x) ↑ S(x),

23It is true even if
∫
X fdμ = +∞ since, in that case, all the terms in inequality (1.6.4) are +∞.
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and the measurability of a finite sum of measurable functions valued in R+ follows
from the measurability (due to the continuity) of

R+ × R+ −→ R+

(α, β) �→ α+ β
.

We can then apply Theorem 1.6.1 to get∫
X

Sdμ = sup
n≥0

∫
X

Sndμ. (1.6.5)

But we have ∫
X

Sndμ =

∫
X

∑
0≤k≤n

fkdμ =
∑

0≤k≤n

∫
X

fkdμ, (1.6.6)

where the second equality follows from Lemma 1.6.3 below. Assuming provision-
nally the results of this lemma, we see that (1.6.5)–(1.6.6) imply our corollary. �
Lemma 1.6.3. Let (X,M, μ) be a measure space where μ is a positive measure.
Let f1, . . . , fN be measurable functions from X −→ R+. Then f1 + · · · + fN is
measurable and

∫
X(f1 + · · ·+ fN )dμ =

∫
X f1dμ+ · · ·+

∫
X fNdμ.

Proof. Using induction on N , it is enough to prove the lemma for N = 2. Let

f1, f2 as in the lemma and, using Theorem 1.3.3, let s
(1)
k , s

(2)
k be simple functions

0 ≤ s(j)k ↑ fj , j = 1, 2. From Theorem 1.6.1, we get∫
X

s
(j)
k dμ ↑

∫
X

fjdμ. (1.6.7)

As a result, from Lemma 1.5.1, Theorem 1.6.1 we obtain∫
X

s
(1)
k dμ+

∫
X

s
(2)
k dμ =

∫
X

(s
(1)
k + s

(2)
k )dμ ↑

∫
X

(f1 + f2)dμ,

providing along with (1.6.7) the result of the lemma. �
Lemma 1.6.4 (Fatou’s Lemma). Let (X,M, μ) be a measure space where μ is a
positive measure. Let (fn)n≥0 be a sequence of measurable functions from X → R+.
The following inequality holds:∫

X

(lim inf
n
fn)dμ ≤ lim inf

n

(∫
X

fndμ

)
.

Proof. We note first that the statement is meaningful since Proposition 1.3.1 im-
plies the measurability of lim inf fn (valued in R+). Recalling that lim inf fn =
supn∈N (infk≥n fk), we set gn = infk≥n fk, and find that gn is measurable and
such that 0 ≤ gn ↑ lim inf fn. Applying then Beppo Levi’s theorem 1.6.1, we get∫

X

gndμ ↑
∫
X

(lim inf fn)dμ. (1.6.8)
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From Property (1) in Proposition 1.5.4, we obtain∫
X

gndμ =

∫
X

( inf
k≥n
fk)dμ ≤

∫
X

fndμ,

implying24 lim inf
∫
X
gndμ ≤ lim inf

∫
X
fndμ and from (1.6.8) the result of the

lemma. �
Proposition 1.6.5. Let (X,M, μ) be a measure space where μ is a positive mea-
sure. Let ν : X −→ R+ be a measurable mapping. For E ∈ M, we define
λν(E) =

∫
E
νdμ. Then λν is a positive measure defined on M. For f : X −→ R+

measurable, we have ∫
X

fdλ =

∫
X

f ·ν dμ

where f ·ν is the measurable function25 defined by the convention 0.∞ = 0. We
shall write dλ = νdμ and say that λ is the measure with density ν with respect
to μ.

Proof. We have trivially λν(∅) =
∫
∅ νdμ = 0 from Property (3) in Proposition

1.5.4. Moreover, for (Aj)j∈N a pairwise disjoint sequence of M, Corollary 1.6.2
implies

λν(∪j≥0Aj) =

∫
∪j≥0Aj

νdμ =

∫
X

∑
j≥0

ν · 1Ajdμ =
∑
j≥0

∫
X

ν · 1Ajdμ =
∑
j≥0

λν(Aj),

proving the first statement in the proposition. For a simple function f , we have
f =

∑
1≤j≤m αj1Aj and we may assume that the αj are positive real numbers.

We get then ∫
X

fdλν =
∑

1≤j≤m

αjλν(Aj) =
∑

1≤j≤m

αj

∫
X

ν · 1Ajdμ,

and using Lemma 1.6.3, we obtain∫
X

fdλν =

∫
X

∑
1≤j≤m

αj1Aj · νdμ =

∫
X

f · νdμ,

which is the sought result when f is a simple function. In the general case, we use
the approximation Theorem 1.3.3 and Beppo Levi’s theorem 1.6.1, providing with
simple functions (sk) converging pointwise increasingly to f ,∫

X

fdλν =
B. Levi

sup
k

∫
X

skdλν =
sk simple

sup
k

∫
X

sk · νdμ =
B. Levi

∫
X

f · νdμ.

24We are using here that for sequences (xn), (yn) in R, the inequalities ∀n, xn ≤ yn imply
lim inf xn ≤ lim inf yn. This is obvious since for l ≥ n, infk≥n xk ≤ xl ≤ yl so that infk≥n xk ≤
infk≥n yk and limn(infk≥n xk) ≤ limn(infk≥n yk).
25See Remark 1.3.4.
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The reader may have noticed that we have used supk(sk ·ν) = (supk sk) ·ν, indeed
obvious except if ν(x) = +∞, supk sk(x) = 0 or ν(x) = 0, supk sk(x) = +∞. In
the latter case, we obtain 0 as well as in the first case since all the sk(x) are
necessarily 0. �

Definition 1.6.6. Let (X,M, μ) be a measure space where μ is a positive measure.
Let f : X → C be a measurable mapping. We shall say that f belongs to L1(μ) if∫
X |f |dμ < +∞. We set then26∫

X

fdμ =

∫
X

(Re f)+dμ−
∫
X

(Re f)−dμ+ i

∫
X

(Im f)+dμ− i
∫
X

(Im f)−dμ,

which is meaningful since the integrals
∫
X
(Re f)±dμ ,

∫
X
(Im f)±dμ are bounded

above (Proposition 1.5.4 (1)) by
∫
X |f |dμ, a finite quantity.

Proposition 1.6.7. Let (X,M, μ) be a measure space where μ is a positive measure.
Then L1(μ) is a vector space on C and f �→

∫
X fdμ is a linear form on that space.

Proof. Let f, g be in L1(μ) and α, β be complex numbers. Then αf +βg is a mea-
surable function (Theorem 1.2.7) and since |αf +βg| ≤ |α||f |+ |β||g|, Proposition
1.5.4 (1)(2) and Lemma 1.6.3 imply αf + βg ∈ L1(μ). If f = f1 + if2, g = g1 + ig2
is the decomposition in real and imaginary part, we have from Definition 1.6.6,

Re

∫
X

(f + g)dμ =

∫
X

(f1 + g1)+dμ−
∫
X

(f1 + g1)−dμ. (1.6.9)

But we have

Re (f + g) = (f1 + g1)+ − (f1 + g1)− = f1 + g1 = (f1)+ − (f1)− + (g1)+ − (g1)−,

so that (f1 + g1)+ + (f1)− + (g1)− = (f1)+ + (g1)+ + (f1 + g1)−. Applying now
Lemma 1.6.3, we get∫

X

(f1 + g1)+dμ+

∫
X

(f1)−dμ+

∫
X

(g1)−dμ

=

∫
X

(f1)+dμ+

∫
X

(g1)+dμ+

∫
X

(f1 + g1)−dμ,

and using (1.6.9) (we manipulate here only real numbers and not ±∞),

Re

∫
X

(f + g)dμ =

∫
X

(f1)+dμ+

∫
X

(g1)+dμ−
∫
X

(f1)−dμ−
∫
X

(g1)−dμ

=

∫
X

Re fdμ+

∫
X

Re gdμ.

26For x ∈ R, x+ = max(x, 0), x− = max(−x, 0) so that x± ≥ 0 and x = x+−x−, |x| = x++x−.
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Since we obtain analogously

Im

∫
X

(f + g)dμ =

∫
X

(f2)+dμ+

∫
X

(g2)+dμ−
∫
X

(f2)−dμ−
∫
X

(g2)−dμ

=

∫
X

Im fdμ+

∫
X

Im gdμ,

we get∫
X

(f + g)dμ =

∫
X

Re fdμ+

∫
X

Re gdμ+ i

∫
X

Im fdμ+ i

∫
X

Im gdμ. (1.6.10)

But from Definition 1.6.6, we have∫
X

fdμ =

∫
X

Re fdμ+ i

∫
X

Im fdμ,

so that (1.6.10) implies
∫
X
(f + g)dμ =

∫
X
fdμ +

∫
X
gdμ. On the other hand if

α = α1 + iα2 is a complex number, we get from our reasoning above∫
X

αfdμ =

∫
X

α1f1dμ−
∫
X

α2f2dμ+

∫
X

iα1f2dμ+

∫
X

iα2f1dμ.

But for α1, f1 real-valued, Definition 1.6.6 and Proposition 1.5.4 (2) provide (with
a discussion on the sign of α1)

∫
X α1f1dμ = α1

∫
f1dμ. We are left with the proof

of
∫
X if1dμ = i

∫
f1dμ, which follows immediately from Definition 1.6.6. The proof

of the proposition is complete. �
Theorem 1.6.8 (Lebesgue dominated convergence theorem).27 Let (X,M, μ) be a
measure space where μ is a positive measure. Let (fn)n∈N be a sequence of mea-
surable functions from X into C such that the following properties hold.

(1) Pointwise convergence: ∀x ∈ X, limn→∞ fn(x) = f(x).

(2) Domination: ∃g : X → R+ measurable, with
∫
X
gdμ < +∞, so that

∀n ∈ N, ∀x ∈ X, |fn(x)| ≤ g(x).

Then f is measurable and
∫
X |f |dμ < +∞; moreover we have

lim
n→∞

∫
X

|f − fn|dμ = 0, implying lim
n→∞

∫
X

fndμ =

∫
X

fdμ.

Proof. The measurability of f follows from Proposition 1.3.1. Moreover, Proposi-
tion 1.5.4 (1) implies ∫

X

|fn|dμ ≤
∫
X

gdμ < +∞.

27We shall give later a slightly more general version taking into account negligible sets.
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Fatou’s lemma 1.6.4 entails then∫
X

|f |dμ =

∫
X

lim inf
n

|fn|dμ ≤ lim inf
n

∫
X

|fn|dμ ≤
∫
X

gdμ < +∞.

On the other hand, the inequality |fn − f | ≤ 2g and the Fatou’s lemma imply∫
X

2gdμ =

∫
X

lim inf
n

(
2g − |fn − f |

)
dμ ≤ lim inf

n

∫
X

(
2g − |fn − f |

)
dμ

≤
∫
X

2gdμ < +∞.

From Lemma 1.6.3, we obtain thus∫
X

(
2g − |fn − f |

)
dμ+

∫
X

|fn − f |dμ =

∫
X

2gdμ ≤ lim inf
n

∫
X

(
2g − |fn − f |

)
dμ.

As a result, we get

lim sup
n

∫
X

|fn − f |dμ

≤ lim inf
n

∫
X

(
2g − |fn − f |

)
dμ+ lim sup

n
−
[∫

X

(
2g − |fn − f |

)
dμ

]
= 0,

since the numerical sequence
∫
X

(
2g − |fn − f |

)
dμ is bounded. �

1.7 Space L1(μ) and negligible sets

The next proposition introduces the notion of a property true almost everywhere in
a measure space (X,M, μ). We shall write for short μ-a.e. for μ-almost everywhere.

Proposition 1.7.1. Let (X,M, μ) be a measure space where μ is a positive measure
and let f, g : X → R+ be measurable mappings.

(1)
∫
X fdμ = 0 is equivalent to f = 0, μ-a.e., i.e., μ

(
{x ∈ X, f(x) �= 0}

)
= 0.

(2) If f ≤ g, μ-a.e., i.e., μ
(
{x ∈ X, f(x) > g(x)}

)
= 0, then∫

X

fdμ ≤
∫
X

gdμ.

(3) If f = g, μ-a.e., i.e., μ
(
{x ∈ X, f(x) �= g(x)}

)
= 0, then

∫
X
fdμ =

∫
X
gdμ.

(4) If
∫
X fdμ < +∞, then f < +∞, μ-a.e., i.e., μ

(
{x ∈ X, f(x) = +∞}

)
= 0.

Proof. Let us prove (1): if
∫
X
fdμ = 0, we define for any integer k ≥ 1,

Fk = {f ≥ 1/k}.
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The sequence Fk is increasing measurable and ∪k≥1Fk = {f > 0}. From Proposi-
tion 1.4.4, we obtain μ(Fk) ↑ μ({f > 0}) when k → +∞. But we have

μ(Fk) =

∫
X

1(f ≥ 1/k)dμ

Proposition 1.5.4(1)︷︸︸︷
≤

∫
X

k · fdμ

=︸︷︷︸
Proposition 1.5.4(2)

k

∫
X

fdμ = 0 =⇒ μ({f > 0}) = 0.

Conversely, if μ(E) = 0 with E = {f > 0}, since f = f · 1E , we obtain∫
X

fdμ =

∫
X

f · 1Edμ =

∫
E

fdμ = 0, from Proposition 1.5.4(3).

In particular, for f ∈ L1(μ), we have∫
X

|f |dμ = 0 =⇒ f = 0, μ-a.e. (1.7.1)

Let us prove (2). We consider the set E with measure 0 defined by E = {x ∈
X, f(x) > g(x)}. We have

f = f · 1E + f · 1Ec , g = g · 1E + g · 1Ec , (1.7.2)

and f · 1Ec ≤ g · 1Ec . From Proposition 1.5.4 and Lemma 1.6.3, we see that it is
enough to prove ∫

X

f · 1Edμ = 0 =

∫
X

g · 1Edμ,

which is indeed fulfilled since
∫
X f ·1Edμ =

∫
E fdμ = 0, from Proposition 1.5.4(3).

Using (1.7.2) for E = {x ∈ X, f(x) �= g(x)}, Lemma 1.6.3 and Proposition 1.5.4,
we obtain (3). To prove (4), we define E = {f = +∞}, and we note that μ(E) > 0
implies for all integers n ≥ 1, that∫

X

fdμ ≥
∫
E

fdμ ≥ n
∫
E

dμ = nμ(E),

entailing
∫
X fdμ = +∞. �

Definition 1.7.2. Let (X,M, μ) be a measure space where μ is a positive measure.
The space L1(μ) is defined as the quotient of L1(μ) (cf. Definition 1.6.6) by the
equivalence relation of equality μ-a.e. (f ∼ g means μ({x ∈ X, f(x) �= g(x)}) = 0).

Remark 1.7.3. We note that L1(μ) is a complex vector space as the quotient of the
vector space L1(μ) by the subspace {f ∈ L1(μ), f ∼ 0}.28 On the other hand, the

28For f1, f2 ∈ L1(μ) vanishing respectively on Nc
1 , N

c
2 with μ(Nj ) = 0, then for α1, α2 ∈ C, we

have α1f1 + α2f2 = 0 on (N1 ∪N2)c thus μ-a.e. since μ(N1 ∪N2) = 0.
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linear mapping f �→
∫
X fdμ defined on L1(μ) is compatible with the equivalence

relation, i.e., depends only on the equivalence class of f : if f ∼ 0, we have∫
X

fdμ =

∫
X

(Re f)+dμ−
∫
X

(Re f)−dμ+ i

∫
X

(Im f)+dμ− i
∫
X

(Im f)+dμ = 0,

from Proposition 1.7.1(1). Similarly, for f, g ∈ L1(μ) real-valued and

f ≤ g μ-a.e., then
∫
X

fdμ ≤
∫
X

gdμ. (1.7.3)

This follows immediately from Proposition 1.6.7 and from

g − f ∼ (g − f)1Nc ≥ 0, with μ(N) = 0,

providing (1.7.3) using Proposition 1.7.1.

Theorem 1.7.4. Let (X,M, μ) be a measure space where μ is a positive measure.

(1) The mapping from L1(μ) into C defined by f �→
∫
X fdμ is a linear form.

(2) The mapping from L1(μ) into R+ defined by f �→
∫
X |f |dμ = ‖f‖L1(μ) is a

norm and for f ∈ L1(μ) ∣∣∣∣∫
X

fdμ

∣∣∣∣ ≤ ∫
X

|f |dμ. (1.7.4)

N.B. We postpone to Section 3.2 in Chapter 2 the introduction of spaces Lp(μ)
along with the proof that these spaces are complete.

Proof. Property (1) follows from Remark 1.7.3, and for the same reason, the map-
ping defined in (2) makes sense on the quotient space L1(μ). If f ∈ L1(μ) is such
that ‖f‖L1(μ) = 0, Proposition 1.7.1(1) implies f ∼ 0, i.e., f = 0 in L1(μ). Propo-
sition 1.5.4(2) provides the homogeneity of this mapping, whereas the triangle
inequality follows from

‖f + g‖L1(μ) =

∫
X

|f + g|dμ ≤
∫
X

(|f | + |g|)dμ = ‖f‖L1(μ) + ‖g‖L1(μ).

Finally, let us prove (1.7.4). We define the complex number

z =

∫
X

fdμ = |z|eiθ,

and using Proposition 1.6.7, Definition 1.6.6 and (1.7.3), we get∣∣∣∣∫
X

fdμ

∣∣∣∣ = Re

(
e−iθ

∫
X

fdμ

)
= Re

∫
X

e−iθfdμ

=

∫
X

Re(e−iθf)dμ ≤
∫
X

|e−iθf |dμ =

∫
X

|f |dμ. �
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Theorem 1.7.5 (Lebesgue dominated convergence theorem). Let (X,M, μ) be a
measure space where μ is a positive measure. Let (fn)n∈N be a sequence of mea-
surable functions from X into C such that the following properties hold.

(1) Pointwise convergence: limn→∞ fn(x) = f(x), μ-a.e.
29

(2) Domination: ∃g : X → R+ with
∫
X
gdμ < +∞, such that ∀n ∈ N, |fn| ≤ g,

μ-a.e.30 Then the function f is 31 measurable,
∫
X

|f |dμ < +∞ and

lim
n→∞

∫
X

|f − fn|dμ = 0, implying lim
n→∞

∫
X

fndμ =

∫
X

fdμ.

Proof. Taking into account our footnotes, we set

B = N ∪ ∪n∈NMn, (we have B ∈ M and μ(B) = 0), f̃(x) = lim
n
fn(x)1Bc(x).

The sequence f̃n = 1Bcfn satisfies the assumptions of Theorem 1.6.8, so that
f̃ ∈ L1(μ) and

lim
n→+∞

∫
X

|f̃n − f̃ |dμ = 0.

Since |f − fn| = |f̃ − f̃n| + |f − fn|1B and f = f̃ + f1B with μ(B) = 0, we get
from Proposition 1.5.4(3) that f ∈ L1(μ) and the result

lim
n→+∞

∫
X

|fn − f |dμ = 0. �

Remark 1.7.6. We may reformulate this theorem in a more concise and elegant
way by saying that whenever (fn)n∈N is a sequence of L1(μ) converging pointwise
to f with a domination condition |fn| ≤ g ∈ L1(μ), then fn converges towards f
in the space L1(μ). To sum-up, for a sequence (fn) in L

1(μ),

fn
pointwise

convergence
�� f

and

|fn| ≤ g ∈ L1(μ)

⎫⎪⎪⎬⎪⎪⎭ =⇒ fn
L1(μ)

�� f . (1.7.5)

The following lemma is taken from [16] (and has also an Lp version).

Lemma 1.7.7. Let (X,M, μ) be a measure space where μ is a positive measure.
Let (fn)n∈N be a sequence of measurable functions from X into C such that the
following properties hold.

(1) Pointwise convergence: limn→∞ fn(x) = f(x), μ-a.e.,

(2) supn
∫
X

|fn|dμ < +∞.

Then f ∈ L1(μ) and ‖fn − f‖L1(μ) + ‖f‖L1(μ) − ‖fn‖L1(μ) −→ 0.

29∃N ∈ M, such that μ(N) = 0 and ∀x ∈ Nc, (fn(x))n∈N is convergent with limit f(x).
30∀n ∈ N,∃Mn ∈ M with μ(Mn) = 0 such that ∀x ∈ Mc

n, |fn(x)| ≤ g(x).
31We define f(x) = 1Nc(x) limn fn(x).
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Proof. Fatou’s lemma implies∫
X

|f |dμ =

∫
X

lim inf |fn|dμ ≤ lim inf

∫
X

|fn|dμ ≤ sup
n

∫
X

|fn|dμ < +∞.

On the other hand, we have |fn| ≤ |fn − f |+ |f | ≤ |fn|+ 2|f |, so that

0 ≤ |fn − f |+ |f | − |fn| ≤ 2|f |.

The Lebesgue dominated convergence theorem yields the result. �

An important consequence is the following result.

Proposition 1.7.8. Let (X,M, μ) be a measure space where μ is a positive measure.
Let f be in L1(μ) and let (fn)n∈N be a sequence of functions in L1(μ) such that
the following properties hold.

(1) Pointwise convergence: limn→∞ fn(x) = f(x), μ-a.e.,

(2) limn ‖fn‖L1(μ) = ‖f‖L1(μ).

Then limn ‖fn − f‖L1(μ) = 0.

Remark 1.7.9. To sum-up, for a sequence (fn) in L
1(μ), f ∈ L1(μ),

fn
pointwise

convergence
�� f

and

limn ‖fn‖L1(μ) = ‖f‖L1(μ)

⎫⎪⎬⎪⎭ =⇒ fn
L1(μ)

�� f . (1.7.6)

The following proposition is an important consequence of the Lebesgue dom-
inated convergence theorem.

Proposition 1.7.10. Let (X,M, μ) be a measure space where μ is a positive mea-
sure. Let f : X −→ R+ be a measurable mapping such that

∫
X
fdμ <∞.

(1) The set N = {x ∈ X, f(x) = +∞} ∈ M and μ(N) = 0.

(2) For any ε > 0, there exists α > 0 such that for all E ∈ M satisfying μ(E) ≤
α, we have

∫
E
fdμ < ε. In other words, limμ(E)→0

E∈M

∫
E
fdμ = 0.

In particular, for u ∈ L1(μ), we have

lim
μ(E)→0
E∈M

∫
E

|u|dμ = 0. (1.7.7)

Proof. (1) The set N = {x ∈ X, f(x) = +∞} belongs to M as the inverse image
of the closed set {+∞} by the measurable f . For all integers k, k1N ≤ f , so that
kμ(N) ≤

∫
X fdμ < +∞. The non-negative sequence (kμ(N))k∈N is bounded so

that μ(N) = 0.
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(2) Let E ∈ M and n ∈ N: since μ(N) = 0, we have

(�)

∫
E

fdμ =

∫
E∩Nc

fdμ =

∫
E∩Nc∩{f≤n}

fdμ+

∫
E∩Nc∩{f>n}

fdμ

≤ nμ(E) +
∫
f1E∩Nc∩{f>n}dμ ≤ nμ(E) +

∫
f1n<f<+∞dμ.

The sequence gn = f1{n<f<+∞} is such that gn(x) = 0 for n ≥ f(x), which is
verified for x ∈ N c if n is large enough. Since gn(x) = 0 for x ∈ N , we find

(�) ∀x ∈ X, gn(x) → 0.

Moreover

(�) 0 ≤ gn ≤ f1Nc and f1Nc ∈ L1(μ).

The Lebesgue dominated convergence Theorem 1.7.5 shows that (�) and (�) imply
the convergence of gn towards 0 in L1(μ). From (�),we get

0 ≤
∫
E

fdμ ≤ nμ(E) + θn, with θn −→
n→+∞

0+.

Let ε > 0 be given: ∃N ∈ N such that θN < ε/2. Defining α = ε
2N+1 (we have

indeed α > 0), we get for μ(E) ≤ α,

0 ≤
∫
E

fdμ ≤ Nε

2N + 1
+ θN < ε/2 + ε/2 = ε, qed.

A slightly shorter reasoning from (�) would be

∀n ∈ N, 0 ≤ lim sup
μ(E)→0

∫
E

fdμ ≤ θn =⇒ 0 ≤ lim sup
μ(E)→0

∫
E

fdμ ≤ lim
n
θn = 0. �

1.8 Notes

Let us follow alphabetically the names of mathematicians encountered in our text
above. Much more details can be obtained on the web and in particular at the
very complete http://www-groups.dcs.st-andrews.ac.uk/history/BiogIndex.html

RenéBaire (1874–1932) was a French mathematician; the Baire category theorem
is certainly the most basic and important theorem in Functional Analysis.

Stefan Banach (1892–1945), a Polish mathematician who set the basis of Func-
tional Analysis.

Bernoulli (The reader will have certainly noted the spelling of the name with
only a single “i”.) The brothers Jacques (1654–1705) and Jean (1667–1748)
Bernoulli as well as Daniel (1700–1782), son of Jean, lived in Basel and

http://www-groups.dcs.st-andrews.ac.uk/history/BiogIndex.html
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contributed to the development of Integral Calculus (Jacques), Mechanics
(Jean), Kinetic Theory of Gas (Daniel). Jacques Bernoulli (quoted in the
example page 19) contributed also to the calculus of probabilities with the
Law of large numbers (see a simple version in Exercise 1.9.21(3)).

Emile Borel (1871–1956), a French mathematician and politician, one of the
creators of measure theory.

Augustin Cauchy (1789–1857), a French mathematician, is one of the founders
of Analysis.

Paul Dirac (1902–1984) was a British physicist, one of the creators of Quantum
Mechanics.

Pierre Fatou (1878–1929) was a French mathematician, author of the lemma
bearing his name, a cornerstone of measure theory.

Carl-Friedrich Gauss (1777–1855) was the most important German mathemati-
cian of his times.

Felix Hausdorff (1869–1942) was a German mathematician, founder of General
Topology.

Pierre-Simon Laplace (1749–1827) was a French astronomer and mathematician.

Henri Lebesgue (1875–1941) created modern measure theory in 1901, generalizing
Riemann theory of integration.

Beppo Levi (1875–1961) was an Italian mathematician, professor at the university
of Genova, also an expert in algebraic geometry; he was forced into exile in
1938 by the antisemitic persecutions of the Mussolinian regime. There is now
a Mathematics Research Institute named after Beppo Levi in the Argentinian
town of Rosario, where he found refuge.

Denis Poisson (1781–1840) was a French mathematician.

Bernhard Riemann (1826–1866) was a German mathematician who contributed
to many different areas of mathematics, ranging from Number Theory to
Mathematical Analysis.

Lebesgue’s dominated convergence theorem was first proven by Lebesgue
on probability spaces, before B. Levi proved his monotone convergence theorem
for non-negative functions. The latter result implies Fatou’s lemma, from which
follows easily the more general version of Lebesgue’s dominated convergence.
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1.9 Exercises

Elementary set theory

Exercise 1.9.1. Show that the mapping (p, q) ∈ N×N �→ 2p(2q+1) ∈ N∗ is bijective.

Answer. Let m ∈ N∗. Then m can be written as 2p × an odd integer with p ∈ N,
proving surjectivity. Moreover, if pj, qj are natural integers and 2p1(2q1 + 1) =
2p2(2q2 + 1), assuming as we may p1 ≤ p2, we get that the odd number

2q1 + 1 = 2p2−p1(2q2 + 1),

implying that p2 = p1 and thus q2 = q1, proving injectivity.

Exercise 1.9.2. Let X be a set and P(X) the set of its subsets. Let f : X → P(X)
be a mapping. Show that f cannot be onto.

Answer. Let us consider A = {x ∈ X,x /∈ f(x)}. Let us assume that there exists
a ∈ X such that A = f(a). If a ∈ f(a) = A, then a /∈ A, which is impossible. If
a /∈ f(a) = A, then a ∈ A, which is also impossible. As a result there does not
exist a ∈ X such that A = f(a) and f is not onto.

Comment. We have proven more than what was actually required, since we pro-
duced an explicit construction. Let f be a mapping from X into P(X), then the
set A is not in the image of f . This example is a version of the liar’s paradox,
already known in the ancient Greek civilization. Does somebody claiming “I lie”
speak the truth? If yes, then he is indeed lying and thus does not speak the truth.
If not, he is lying in saying that he lies and thus speaks the truth. . .

Back to mathematics, a very important consequence of this exercise is the
so-called Russell’s paradox32 after which there is not a set of all sets. In fact,
if such a “universe” U existed, it would contain its powerset and the inclusion
P(U) ⊂ U would imply the existence of a surjection from U onto P(U). We could
also consider

Y = {x ∈ U , x /∈ x},
and note that if Y ∈ Y , from the definition of Y we would have Y /∈ Y . If Y /∈ Y
then from the definition of Y , we would get Y ∈ Y , reaching a contradiction in both
cases. Note that for finite sets, it is trivial to prove directly that ∀n ∈ N, n < 2n

(induction works with n+ 1 ≤ 2n).

32 Bertrand Russell (1872–1970) is a British logician, co-author of the monumental treatise
Principia Mathematica, a joint work with A.N. Whitehead (1861–1947), elaborated between
1910 and 1913. In 1895, Georg Cantor (1845–1918) did create Set Theory, “a paradise from
which we cannot be expelled” according to the words of David Hilbert. Seven years later, it was
clear that serious difficulties occurred in Cantor theory, in particular with the very notion of
set. Russell was an extraordinary character: Nobel prize winner for literature in 1950, he fought
with great energy against the development of nuclear weapons and founded the very influential
Russell Tribunal. For more on B. Russell: http://www-history.mcs.st-and.ac.uk/history/

Mathematicians/Russell.html http://www.nobel.se/literature/laureates/1950 and on liar’s
paradox: http://www.utm.edu/research/iep/p/par-liar.htm

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Russell.html
http://www.nobel.se/literature/laureates/1950
http://www.utm.edu/research/iep/p/par-liar.htm
http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Russell.html
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Exercise 1.9.3.

(1) Let X be a set and A1, . . . , An be a finite partition of X. What is the σ-algebra
generated by A1, . . . , An and what is its cardinal?

(2) Let X be a set and (Ak)k∈N be a partition of X. What is the σ-algebra gen-
erated by (Ak)k∈N? Show that it is equipotent to P(N).

Answer. Question 1 is dealt with on page 2: the cardinal of that σ-algebra is 2n.

(2) We define T = {∪j∈JAj}J⊂N. For all j ∈ N, Aj ∈ T and every σ-algebra A
such that all Aj ∈ A will contain T . Moreover T is stable by reunion since

∪i∈I ∪j∈Ji Aj = ∪j∈∪i∈IJiAj , and ∪i∈IJi ⊂ N.

It is also stable by complement since (Ak)k∈N is a partition:
(
∪j∈JAj

)c
= ∪j∈JcAj .

T contains also X = ∪j∈NAj and thus is the σ-algebra generated by the Aj . Let
us now check the mapping

P(N) � J �→ ∪j∈JAj ∈ T ,

which is obviously onto. This mapping is also one-to-one since, for J,K subsets of
N such that

∪j∈JAj = ∪k∈KAk,

we get for j0 ∈ J , Aj0 = ∪k∈K
(
Aj0 ∩Ak

)
= ∅ if j0 /∈ K. Since Aj0 �= ∅, we obtain

J ⊂ K and similarly K ⊂ J , i.e., J = K and a one-to-one mapping. We can write
symbolically

cardT = 2ℵ0

since we have proven that T is equipotent to P(N) and the cardinal of N is denoted
by ℵ0, pronounced aleph null (first letter in the 22-letters Hebrew alphabet).

This symbolic notation is justified by the general notation Y X for the set of
all mappings from a set X to a set Y and the fact that P(X) is equipotent to
{0, 1}X: the mapping

Φ : {0, 1}X � f �→ f−1({1}) ∈ P(X)

is a bijection since it is one-to-one (f−1({1}) = g−1({1}) implies f−1({0}) =(
f−1({1})

)c
=
(
g−1({1})

)c
= g−1({0}) and f = g) and onto since for A ⊂ X , 1A

the indicator function of A (which is 1 on A, 0 elsewhere), we have

Φ(1A) = A.

As a result, P(X) is equipotent to {0, 1}X and cardP(X) = 2cardX , as we have
defined

(cardY )cardX = card(Y X).

The reader will find more on set theory and cardinals in Section 10.1 of our ap-
pendix.
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Exercise 1.9.4. Let X be a set and let M be a countable σ-algebra on X.

(1) Show that for x ∈ X, A(x) =
⋂

M∈M
x∈M

M belongs to M.

(2) Show that for x, x′ ∈ X, we have either A(x) ∩A(x′) = ∅ or A(x) = A(x′).

(3) Show that M is a σ-algebra generated by a countable partition. Show that M
is finite (hint: use Exercise 1.9.3).

Answer. (1) A(x) is a countable intersection (since M is countable) of elements
of M, and thus belongs to M.

(2) Let x, x′ be elements of X . If x ∈ A(x′), we get A(x) ⊂ A(x′) and thus
A(x) = A(x′) ∩A(x). Consequently, if x ∈ A(x′) and x′ ∈ A(x), we find

A(x) = A(x′) ∩ A(x) = A(x′).

If x /∈ A(x′) then A(x′)c belongs to M and contains x so that A(x) ⊂ A(x′)c,
entailing A(x) ∩ A(x′) = ∅ (same result if x′ /∈ A(x)).
(3) We define

N = {B ⊂ X, ∃x ∈ X,B = A(x)}.

It is a subset of M and thus it is a countable set. Moreover, from (2) if B �= B′ ∈
N , we have B∩B′ = ∅. With D countable, we note N = {Bk}k∈D and find that N
is a partition of X : if X �= ∅ (if X = ∅,M = {∅}) no Bk is empty and Bk ∩Bl = ∅
for k �= l ∈ D. We have also ∪k∈DBk = X since for x ∈ X , there exists k ∈ D,
such that A(x) = Bk. The σ-algebra M contains the σ-algebra generated by N ,
which is uncountable when D is infinite from Exercise 1.9.3. This implies that D
is finite as well as the σ-algebra generated by N . Moreover, if C ∈ M, we find

C = ∪x∈CA(x)

since for x ∈ C, C ⊃ A(x) and x ∈ A(x); as a result C is a (countable) union of
elements of N . The σ-algebra M is thus the σ-algebra generated by N , which is
finite.

Exercise 1.9.5. Show that R is equipotent to P(N) (hint: use dyadic expansions).
Show that R is not countable.

Answer. The last assertion follows from the first and Exercise 1.9.2. The mapping
ψ0 defined in (1.2.19) is bijective from R onto (−1, 1), which is equipotent to (0, 1)
(x �→ (x+1)/2). We have seen in the previous exercise that P(N) is equipotent to
{0, 1}N, the set of mappings from N into {0, 1}. We have thus to prove that {0, 1}N
is equipotent to (0, 1).

Let x be in (0, 1). With E standing for the floor function (see the footnote
on page 16), we define for any integer k ≥ 1,

xk = E(2kx) − 2E(2k−1x) = pk(x).
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Note that E(t) = max{n ∈ Z, n ≤ t} = min{n ∈ Z, t < n+ 1}. We have

E(2kx) ≤ 2kx < E(2kx) + 1,

E(2k−1x) ≤ 2k−1x < E(2k−1x) + 1,

and thus 2E(2k−1x) ≤ 2kx < 2E(2k−1x) + 2, which implies

2E(2k−1x) ≤ E(2kx) ≤ 2kx < E(2kx) + 1 ≤ 2E(2k−1x) + 2.

This gives

0 ≤ xk = pk(x) = E(2
kx) − 2E(2k−1x) < E(2kx) + 1 − 2E(2k−1x) ≤ 2.

Since xk is an integer, we get xk ∈ {0, 1} and the series
∑

k≥1
xk

2k
converges. We

note that for any integer n ≥ 1,∑
1≤k≤n

xk
2k

=
∑

1≤k≤n

E(2kx) − 2E(2k−1x)

2k
=
∑

1≤k≤n

E(2kx)

2k
−
∑

1≤k≤n

E(2k−1x)

2k−1

=
∑

1≤k≤n

E(2kx)

2k
−

∑
0≤k≤n−1

E(2kx)

2k
=
E(2nx)

2n
− E(x) = 2−nE(2nx).

Since 2−nE(2nx) ≤ x < 2−nE(2nx) + 2−n, this implies limn 2
−nE(2nx) = x and

thus
x =

∑
k≥1

xk
2k

with xk ∈ {0, 1}. We have just constructed a mapping Ψ (dyadic expansion)

Ψ : (0, 1) −→ {0, 1}N∗

x �→
(
xk = pk(x)

)
k≥1

.

This map is one-to-one since for x, y ∈ (0, 1) such that for all k ≥ 1, xk = yk, then
x =

∑
k≥1 xk2

−k =
∑

k≥1 yk2
−k = y. The mapping Ψ is not onto (e.g., the zero

sequence has no preimage), however we shall prove that the complement of the
image of Ψ is countable. Let (xk)k≥1 ∈ Dc, with

D = {(xk)k≥1 ∈ {0, 1}N∗, ∃N, ∀k ≥ N, xk = 1} ∪ {0}, (1.9.1)

so that (xk)k≥1 is a sequence in {0, 1} which is not the zero sequence nor identically
1 for k large enough. We note that D is countable since it can be injected into

{0} ∪N≥1 {0, 1}N−1.

Let us set X =
∑

k≥1 xk2
−k. We have 0 < X <

∑
k≥1 2

−k = 1. Then

x1
2

≤ X ≤ x1
2

+
∑
k≥2

xk
2k
<
x1
2

+
∑
k≥2

2−k =
x1
2

+
1

2
,
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so that x1 ≤ 2X < x1 + 1 and thus E(2X) = x1 with x1 = p1(X). We prove
similarly

pk(X) = E(2kX)− 2E(2k−1X) = xk.

In fact assume that for an integer n ≥ 1, we know that ∀k ∈ {1, . . . , n}, xk =
pk(X); then∑

1≤k≤n+1

xk2
−k ≤ X <

∑
1≤k≤n+1

xk2
−k +

∑
n+2≤k

2−k =
∑

1≤k≤n+1

xk2
−k + 2−n−1,

entailing∑
1≤k≤n

pk(X)2−k + xn+12
−n−1 ≤ X <

∑
1≤k≤n

pk(X)2−k + xn+12
−n−1 + 2−n−1,

i.e., 2−nE(2nX) + xn+12
−n−1 ≤ X < 2−nE(2nX) + xn+12

−n−1 + 2−n−1, that is

2E(2nX) + xn+1 ≤ 2n+1X < 2E(2nX) + xn+1 + 1,

so that xn+1 ≤ 2n+1X − 2E(2nX) < xn+1 + 1, implying

xn+1 = E
(
2n+1X − 2E(2nX)

)
= E(2n+1X)− 2E(2nX) = pn+1(X), qed.

As a result Ψ is bijective from (0, 1) onto Ψ((0, 1)) and Ψ((0, 1)) ⊃ Dc where D
is a countable set (thus as well as D0 = Ψ

(
(0, 1)

)c
). It suffices now to prove that

{0, 1}N\D0 is equipotent to {0, 1}N. Let us consider C equipotent to N disjoint of
D0 in {0, 1}N (such a C exists since {0, 1}N is not countable),

{0, 1}N =
(
{0, 1}N\D0

)
∪ D0 =

(
{0, 1}N\(D0 ∪ C)

)
∪
(
D0 ∪ C

)
.

But D0∪C is countable infinite, thus equipotent to N and thus to C. Consequently,
{0, 1}N is equipotent to

(
{0, 1}N\(D0 ∪ C)

)
∪ C = {0, 1}N\D0, qed.

Exercise 1.9.6. Let f : X → Y be a mapping.

(1) Show that for a family (Bi)i∈I of subsets of Y ,

f−1(
⋃
i∈I
Bi) =

⋃
i∈I
f−1(Bi), f−1(

⋂
i∈I
Bi) =

⋂
i∈I
f−1(Bi).

(2) Show that for a family (Ai)i∈I of subsets of X, f(
⋃

i∈I Ai) =
⋃

i∈I f(Ai).

(3) Show that if f is one-to-one, f(
⋂

i∈I Ai) =
⋂

i∈I f(Ai). Prove that the previ-
ous equality is not true in general (without the injectivity assumption).

Answer. (1) x ∈ f−1(
⋃

i∈I Bi) means f(x) ∈
⋃

i∈I Bi, equivalent to

∃i ∈ I, f(x) ∈ Bi ⇐⇒ ∃i ∈ I, x ∈ f−1(Bi) ⇐⇒ x ∈ ∪i∈If
−1(Bi).
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Similarly, x ∈ f−1(
⋂

i∈I Bi) means f(x) ∈
⋂

i∈I Bi, equivalent to

∀i ∈ I, f(x) ∈ Bi ⇐⇒ ∀i ∈ I, x ∈ f−1(Bi) ⇐⇒ x ∈ ∩i∈If
−1(Bi).

(2) y ∈ f(
⋃

i∈I Ai) means ∃x ∈ ∪i∈IAi such that y = f(x), that is

∃i ∈ I, ∃x ∈ Ai, y = f(x) ⇐⇒ ∃i ∈ I, y ∈ f(Ai) ⇐⇒ y ∈ ∪i∈If (Ai).

(3) We note that A ⊂ A′ ⊂ X =⇒ f(A) ⊂ f(A′). For all j ∈ I, we have thus
f(
⋂

i∈I Ai) ⊂ f(Aj) so that f(
⋂

i∈I Ai) ⊂
⋂

i∈I f(Ai). If y ∈
⋂

i∈I f(Ai),

∀i ∈ I, ∃xi ∈ Ai, y = f(xi),

which implies for i, j ∈ I, f(xi) = f(xj). The injectivity of f implies thus for
i, j ∈ I, xi = xj , so that y = f(x) with x ∈ ∩i∈IAi, qed. We consider the mapping

f : {0, 1} −→ {1}, f(0) = f(1) = 1,

and we set Ai = {i}. We have f(A0 ∩ A1) = f(∅) = ∅ � f(A0) ∩ f(A1) = {1}.
Comment. Let us note that, conversely, if that property holds then f is injective.
In fact, if x1 �= x2 belongs to X , since

∅ = f(∅) = f({x1} ∩ {x2}) = f({x1}) ∩ f({x2}) = {f(x1)} ∩ {f(x2)}

we get f(x1) �= f(x2).

Exercise 1.9.7. Let X be a set. A partition of X is a family (Ai)i∈I of non-empty
subsets of X, pairwise disjoint (i �= j implies Ai ∩ Aj = ∅), with union X.

(1) Let (Ai)i∈I be a partition of X. Show that the relation xRy defined by

∃i ∈ I such that x ∈ Ai and y ∈ Ai

is an equivalence relation on X.

(2) Show that every equivalence relation on X can be obtained as in Question
(1).

(3) Describe the partition of Z associated to the equality modulo n.

Answer. (1) R is reflexive since X = ∪i∈IAi: for x ∈ X , there exists i ∈ I such
that x ∈ Ai and thus xRx. Symmetry of R follows from the definition, itself
symmetrical in x, y. Let x, y, z be in X such that xRy and yRz. Then there exists
i, j ∈ I such that

x, y ∈ Ai, y, z ∈ Aj .

Since the Ai are pairwise disjoint and y ∈ Ai ∩ Aj , we find Ai = Aj and xRz
(transitivity).
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(2) Let R be an equivalence relation on X . The quotient set Q = {Cj}j∈J is the
set of equivalence classes. No equivalence class is empty since Cj is defined as the
equivalence class of an element of X . Moreover,

X = ∪j∈JCj

since for x ∈ X , the equivalence class of x is one of the Cj which thus contains x.
Two distinct classes are disjoint since, if Cj ∩ Ck �= ∅, there exists z ∈ Cj ∩ Ck,
for xj ∈ Cj , xk ∈ Ck and we have

xjRz and zRxk =⇒ xjRxk =⇒ Cj = Ck.

(3) Let n be an integer ≥ 2. The equality modulo n is the equivalence relation on
Z given by

x ≡ y (n) ⇐⇒ x− y ∈ nZ ⇐⇒ n|(x− y), i.e., n divides x− y.
It is obviously an equivalence relation and the quotient set is denoted by Z/nZ.
The related partition of Z is the family with n elements

Ar = r + nZ = {r + nq}q∈Z, 0 ≤ r ≤ n− 1.

This follows from Euclidean division: for m ∈ N there exists a unique couple (q, r)
of integers such that m = nq + r, 0 ≤ r ≤ n − 1. This equivalence relation
is also compatible with the ring structure of Z, i.e., with pn : Z → Z/nZ the
canonical mapping sending an integer to its equivalence class modulo n, we may
define addition and multiplication on Z/nZ with

pn(a) ⊕ pn(b) = pn(a+ b), pn(a) ⊗ pn(b) = pn(ab)
and it is easily verified that for a ≡ a′ (n), b ≡ b′ (n), the results are unchanged.
A good exercise for the reader would be to write the multiplication table of Z/nZ
for 2 ≤ n ≤ 11, and verify that Z/nZ is a field iff n is a prime number. One
may also look for the divisors of 0 in Z/nZ for n ∈ {4, 6, 8, 9, 10} and . . . read an
introduction to Arithmetic such as [4].

Topology

Exercise 1.9.8.

(1) Show that all the norms on Rn are equivalent (two norms N1 and N2 on a
real or complex vector space E are said to be equivalent whenever there exists
C > 0 such that for all x ∈ E, C−1N1(x) ≤ N2(x) ≤ CN1(x)).

(2) Show that on C0([0, 1];R), the norms

‖f‖1 =
∫ 1

0

|f(t)|dt, ‖f‖∞ = sup
x∈[0,1]

|f(x)|,

are not equivalent.

(3) Looking at Figure 1.1 on page 6, find a sequence gn of continuous functions
converging for ‖ · ‖1 towards the discontinuous step function 1[1/2,1].
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Answer. (1) For x = (xj)1≤j≤n ∈ Rn, the Euclidean norm is

‖x‖2 =

( ∑
1≤j≤n

x2j

)1/2

.

Let N be another norm on Rn. From the triangle inequality and the homogeneity,
for x, h ∈ Rn, we get

N(x+ h) −N(x) ≤ N(h) ≤
∑

1≤j≤n

|hj |N(ej) ≤ ‖h‖2
( ∑

1≤j≤n

N(ej)
2

)1/2

,

where (ej)1≤j≤n is the canonical basis of Rn. We get the same estimate from above
(by the same argument) for N(x)−N(x+ h) so that |N(x+ h)−N(x)| ≤ C‖h‖2
and (Lipschitz) continuity holds for N . As a result, we obtain on the compact set
Sn−1 = {x ∈ Rn, ‖x‖2 = 1},

0 < c1 = inf
x∈Sn−1

N(x) ≤ c2 = sup
x∈Sn−1

N(x)

so that, by homogeneity, for all x ∈ Rn, c1‖x‖2 ≤ N(x) ≤ c2‖x‖2, proving the
equivalence of N with the Euclidean norm.

(2) We have of course ‖f‖1 ≤ ‖f‖∞, but choosing as in Figure 1.1 for n ≥ 1, the
continuous function

fn(x) =

{
n− n2x for 0 ≤ x ≤ 1/n,

0 for 1/n < x ≤ 1,

we find ‖fn‖∞ = n, ‖f1‖1 = 1/2 so that there does not exist C > 0 such that for
all f ∈ C0([0, 1];R), ‖f‖∞ ≤ C‖f‖1.
(3) Let us define for n ≥ 1, the continuous function

gn(x) =

⎧⎪⎨⎪⎩
x
n for 0 ≤ x ≤ 1

2 − 1
n ,

(n−1
2 + 1

n )(x − 1
2 ) +

1
2 for 1

2 − 1
n ≤ x ≤ 1

2 + 1
n ,

x
n + 1 − 1

n for 1
2 + 1

n ≤ x ≤ 1.

Noticing that gn is valued in [0, 1], we have

‖gn − 1[1/2,1]‖1 =

∫ 1
2−

1
n

0

gn(x)dx +

∫ 1
2

1
2−

1
n

gn(x)dx

+

∫ 1
2+

1
n

1
2

|1 − gn(x)|dx +
∫ 1

1
2+

1
n

|1 − gn(x)|dx

≤
∫ 1

2
− 1

n

0

gn(x)dx +
1

n
+

1

n
+

∫ 1
2
− 1

n

0

(
1 − gn

(
t+

1

2
+

1

n

))
dt

≤ 1

2n
+

2

n
+

∫ 1
2−

1
n

0

1

n

(
1

2
− 1

n
− t
)
dt ≤ 3

n
.
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Exercise 1.9.9.

(1) Let f : R −→ R be a function. Show that the set of discontinuity of f is an
Fσ set.

(2) Show that given an Fσ set A of R, there exists f : R −→ R whose disconti-
nuity set is A.

(3) Show that there does not exist a function f : R −→ R whose discontinuity set
is Qc.

(4) Find f : R −→ R whose discontinuity set is Q.

Answer. (1) We define the oscillation function of f by

ω(x) = lim sup
y→x

|f(y)− f(x)|,

and note that ω : R → R+, and is such that the set S of points of discontinuities
of f is

S = {x ∈ R, ω(x) > 0} = ∪k≥1 {x ∈ R, ω(x) ≥ 1

k
}︸ ︷︷ ︸

Sk

.

Let k0 ≥ 1 and (xj)j∈N be a sequence in Sk0 converging to some point a. For each
j ∈ N, we can find a sequence (yj,l)l∈N such that liml yj,l = xj and

|f(yj,l)− f(xj)| ≥
1

2k0
.

The point a must belong to S: otherwise, if f were continuous at a,

|f(yj,l) − f(a)| ≥ |f(yj,l) − f(xj)| − |f(xj) − f(a)| ≥ 1

2k0
− |f(xj) − f(a)|.

Let r > 0 be given: for j ≥ jr, we have |xj − a| ≤ r and for each j, we can find
lr,j such that |yj,lr,j − xj | ≤ r. We obtain

sup
|y−a|≤2r

|f(y)− f(a)| + sup
|x−a|≤r

|f(x) − f(a)| ≥ 1

2k0
,

an inequality which is incompatible with the continuity of f at a. As a result, we
have proven that

Sk ⊂ S =⇒ ∪k≥1Sk ⊂ S = ∪k≥1Sk =⇒ S = ∪k≥1Sk, indeed Fσ.

(2) Let (Fn)n≥1 be a sequence of closed subsets of R and let S = ∪n≥1Fn be
an Fσ set. We may assume that the sequence (Fn)n≥1 is increasing since we can
consider the sequence of closed sets (∪1≤j≤nFj)n≥1 which has the same union S.
We define for x ∈ S,

n(x) = min {n ≥ 1, x ∈ Fn}︸ ︷︷ ︸
non-empty
subset of N∗

, and f(x) =

⎧⎪⎨⎪⎩
1

n(x) , for x ∈ S ∩ Q,

− 1
n(x) , for x ∈ S ∩ Qc,

0, for x /∈ S.
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(2.1) We want first to show that f is continuous at Sc. Since f = 0 at Sc, the
function f is continuous on the interior of Sc. Let a be in Sc\interior(Sc) = Sc∩S:
let (xj)j≥1 be a sequence of S with limit a. No subsequence of

(
n(xj)

)
j≥1

can be

bounded, otherwise we could find some N0 ≥ 1 such that

lim
l
jl = +∞, n(xjl) ≤ N0 =⇒ ∀l ≥ 1, xjl ∈ FN0

=⇒ a = lim
l
xjl ∈ FN0 = FN0 ⊂ S,

which is impossible. As a result limj n(xj) = +∞ and limj f(xj) = 0 = f(a),
proving continuity.

(2.2) Let us prove now that f is discontinuous at S.

(2.2.1) Let a ∈ S ∩ Q: we have in particular a ∈ Fn(a), a /∈ Fn(a)−1 (defining
F0 = ∅) and f(a) = 1/n(a). If a ∈ interior(Fn(a)), there is a sequence (xj)j≥1

of S ∩ Qc converging to a and f(xj) < 0, so that lim supj f(xj) ≤ 0 proving the
discontinuity property at a. If a ∈ ∂(Fn(a)), then any open neighborhood V of a
intersects F c

n(a). In the open set V ∩F c
n(a), an irrational number can be found: thus

there is a sequence of irrational numbers (xj)j≥1 converging to a and f(xj) ≤ 0,
entailing discontinuity at a.

(2.2.2) Let a ∈ S ∩ Qc: we have in particular a ∈ Fn(a), a /∈ Fn(a)−1 (defining
F0 = ∅) and f(a) = −1/n(a). If a ∈ interior(Fn(a)), there is a sequence (xj)j≥1

of S ∩ Q converging to a and f(xj) > 0, so that lim infj f(xj) ≥ 0 proving the
discontinuity property at a. If a ∈ ∂(Fn(a)), then any open neighborhood V of a
intersects F c

n(a). In the open set V ∩ F c
n(a), a rational number can be found: thus

there is a sequence of rational numbers (xj)j≥1 converging to a and f(xj) ≥ 0,
entailing discontinuity at a.

(3) As proven on page 7, the Baire category theorem (see Section 10.2 in the
Appendix) implies that Qc is not an Fσ set, so that the already solved question 1
in this exercise answers that one as well.

(4) The function (1.2.14) does that job. In the first place, f is discontinuous at Q,
since in any neighborhood of a point a ∈ Q, an irrational number can be found,
so there is a sequence of irrational numbers (xj) with limit a and f(xj) = 0,
f(a) > 0. Moreover f is continuous at Qc since if (xj = pj/qj), pj ∈ Z∗, qj ∈ N∗

is a sequence converging to a /∈ Q, we must have limj qj = +∞: otherwise, we
could find a bounded subsequence (qjl)l≥1 of (qj)j≥1 in N∗, providing a constant
subsequence (q = qjlm )m≥1 in N∗, and since aq = limm pjlm , we find that the
sequence (pjlm )m≥1 is constant for m large enough and a ∈ Q, which contradicts
the assumption.

Exercise 1.9.10. Let (X, d) be a metric space, and let f : X → R be a function.
We define for ε > 0,

C(f, ε) = {x ∈ X, ∃δ > 0, d(x, x′), d(x, x′′) < δ =⇒ |f(x′) − f(x′′)| < ε}.
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(1) Show that C(f, ε) is open.

(2) We define S = {x ∈ X, f is not continuous at x}. Show that S is a Fσ set
(hint: prove that f is continuous at x iff x ∈ ∩n≥1C(f, 1/n)).

Answer. (1) Let x ∈ C(f, ε): for some positive δ and F defined on X × X by
(x′, x′′) �→ F (x′, x′′) = f(x′) − f(x′′), we have F (B(x, δ) × B(x, δ)) ⊂ [0, ε). Let
y ∈ B(x, δ/2): then we have

F (B(y, δ/2)×B(y, δ/2)) ⊂ F (B(x, δ) ×B(x, δ)) ⊂ [0, ε),

entailing that B(x, δ/2) ∈ C(f, ε).
(2) Let x ∈ Sc: then for any n ≥ 1, x ∈ C(f, 1/n). Conversely, if the latter
property holds and ε > 0 is given, we can take n ≥ 1/ε and find δ > 0 such that
|f(B(x, δ) − f(x)| < 1/n ≤ ε, proving continuity at x. As a result

Sc = ∩n≥1C(f, 1/n), which is a Gδ set, so that S is a Fσ set.

See [36] for more on this topic: in particular for a (non-empty) metric space X
without isolated points (a point x in a topological space is said to be isolated if
the singleton {x} is open) and a given Fσ set S, there exists a function f : X → R
such that the points of discontinuity of f are exactly S.

Measure theory

Exercise 1.9.11. Let (X,M) be a measurable space and let f, g : X → R be mea-
surable mappings. Show that the following sets belong to M.

A = {x ∈ X, f(x) ≤ g(x)},
B = {x ∈ X, f(x) < g(x)},
C = {x ∈ X, f(x) = g(x)}.

Answer. The mapping X � x �→ Φ(x) =
(
f(x), g(x)

)
∈ R × R is measurable from

the proof of Theorem 1.2.8. We have then A = Φ−1(L) with

L = {(α, β) ∈ R× R, α ≤ β}

which is a closed subset of R× R. Similarly, we have

M = {(α, β) ∈ R × R, α < β}, B = Φ−1(M),

N = {(α, β) ∈ R × R, α = β}, C = Φ−1(N),

with M open, N closed.

Exercise 1.9.12. Let (X,M) be a measurable space and fn : X → C be a sequence
of measurable functions. Show that the set

A = {x ∈ X, the sequence
(
fn(x)

)
n∈N is convergent}

belongs to M.
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Answer. Using the Cauchy criterion, we find

A = {x ∈ X, ∀ε ∈ Q∩]0, 1], ∃N, ∀n ≥ N, ∀k ≥ 0, |fn+k(x) − fn(x)| ≤ ε},

so that

A =
⋂

ε∈Q∩]0,1]

{ ⋃
N∈N

(
∩n≥N,k≥0{x ∈ X, |fn+k(x) − fn(x)| ≤ ε}

)}
.

Since the fn are measurable, the set {x ∈ X, |fn+k(x)−fn(x)| ≤ ε} belongs to M
(cf. Theorem 1.2.7). As a countable intersection of countable union of countable
intersection of elements of M, A belongs to M.

Exercise 1.9.13. Let (X,M) be a measurable space and let (un)n∈N be a sequence of
measurable functions from X into R. Show that the following sets are measurable:

A = {x ∈ X, lim
n→+∞

un(x) = +∞}, B = {x ∈ X, (un(x))n∈N is bounded}.

Answer. We have A = {x ∈ X, ∀m ∈ N, ∃N ∈ N, ∀n ≥ N, un(x) ≥ m}, so that
defining

An,m = {x ∈ X, un(x) ≥ m},

we find A = ∩m∈N
(
∪N∈N

(
∩n≥NAn,m

))
which is measurable as every An,m is.

Similarly, we have

B = {x ∈ X, ∃m ∈ N, ∀n ∈ N, |un(x)| ≤ m} = ∪m∈N
(
∩n∈NBn,m

)
,

with Bn,m = {x ∈ X, |un(x)| ≤ m}.

Exercise 1.9.14. Let X,Y be topological spaces, with X a Hausdorff space, and let
f : X → Y be continuous outside of a countable set D. Show that f is measurable
(X,Y are equipped with their Borel σ-algebra).

Answer. The mapping F : X\D → Y defined by F (x) = f(x) is continuous: let
x ∈ X\D. Since f is continuous at x, for every neighborhood W of f(x), there
exists a neighborhood V of x, such that f(V ) ⊂W ; thus F (V ∩Dc) = f(V ∩Dc) ⊂
W and F is continuous at x (see Lemma 1.2.4). Let V be an open set of Y . We
have

f−1(V ) = {x ∈ X, f(x) ∈ V } = {x ∈ X\D, f(x) ∈ V } ∪
(
f−1(V ) ∩D

)
= F−1(V ) ∪

(
f−1(V ) ∩D

)
=
(
U ∩ (X\D)

)
∪
(
f−1(V ) ∩D

)
,

where U is an open subset of X . Since X is a Hausdorff space, singletons {x}
are closed: the complement {x}c is open since if x′ ∈ X, x′ �= x, there exist
neighborhoods V ′ ∈ Vx′ , V ∈ Vx with V ∩ V ′ = ∅ and thus V ′ ⊂ {x}c which is
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thus a neighborhood of x′. As a result, the set D is measurable as a countable
union of points and U ∩ Dc is measurable. Moreover f−1(V ) ∩ D is countable
thus measurable. Finally, f−1(V ) is measurable and Lemma 1.1.4 proves that f is
measurable.

Exercise 1.9.15. Let X be a non-empty set and M be the σ-algebra generated by
the singletons {x} where x ∈ X.

(1) Show that A ∈ M iff A or Ac is countable.

(2) We assume that X is not countable and we define for A ∈ M

μ(A) =

{
0 when A is countable,

1 when A is not countable.

Show that μ is a positive measure defined on M.

Answer. (1) If A is a countable subset of X , A is a countable union of singletons
and thus belongs to M. Since M is also stable by complementation, we find as
well that Ac countable implies A ∈ M. We define

N = {A ⊂ X,A or Ac is countable}.

We have provenN ⊂ M, and we see that N is stable by complementation, contains
X and all singletons. Let (An)n∈N be a sequence in N . If all An are countable,
then ∪n∈NAn is countable and thus belongs to N . If there exists k ∈ N such that
Ak is not countable, then Ac

k is countable and since(
∪n∈NAn

)c
= ∩n∈NA

c
n ⊂ Ac

k,

we find that
(
∪n∈NAn

)c
is countable, entailing ∪n∈NAn ∈ N . The set N is thus a

σ-algebra which contains all singletons, so that M ⊂ N and eventually M = N ,
proving (1).

(2) We have μ(∅) = 0; let (An)n∈N be a pairwise disjoint sequence of M. If all An

are countable, then ∪n∈NAn is countable and

μ(∪n∈NAn) = 0 =
∑
n∈N
μ(An).

If there exists k ∈ N such that Ak is not countable, then Ac
k is countable and

∪n∈NAn is not countable. Since

Ac
k ⊃ ∪n�=kAn,

we get that for n �= k, An is countable, thus μ(An) = 0. As a result, we have

μ(∪n∈NAn) = 1 = μ(Ak) = μ(Ak) +
∑

n∈N,n�=k

μ(An) =
∑
n∈N
μ(An).
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Exercise 1.9.16. Let (X,M) be a measurable space and f : X → C be a measurable
function. Prove that there exists a measurable function α : X → C satisfying
|α| ≡ 1, such that f = α|f |.
Answer. Since f is measurable,E = f−1({0}) ∈ M and 1E is measurable. Noticing
that f(x) + 1E(x) is always different from 0, (1 for x ∈ E, f(x) �= 0 otherwise),
we set

α(x) =
f(x) + 1E(x)

|f(x) + 1E(x)|
,

so that α is measurable as a composition of measurable functions:

measurable continuous
X → C∗ → S1

x �→ f(x) + 1E(x) = t �→ t/|t|
,

and f(x) + 1E(x) = α(x)|f(x) + 1E(x)|, so that for x /∈ E, f(x) = α(x)|f(x)| and
for x ∈ E, f(x) = 0 = α(x)|f(x)|.

Exercise 1.9.17. Let (X,M, μ) be a probability space (measurable space where μ
is a positive measure such that μ(X) = 1). Defining T = {A ∈ M, μ(A) =
0 or μ(A) = 1}, show that T is a σ-algebra on X.

Answer. If A ∈ T , then Ac ∈ M, since μ(Ac) + μ(A) = μ(X) = 1, so that
μ(Ac) = 1 − μ(A) ∈ {0, 1}. If An ∈ T , n ∈ N, A = ∪n∈NAn ∈ M and if for
all n, μ(An) = 0, then μ(A) = 0. If there exists n0 such that μ(An0) = 1, then
1 = μ(An0) ≤ μ(A) ≤ μ(X) = 1, so that μ(A) = 1. Moreover X ∈ T since
μ(X) = 1.

Exercise 1.9.18. Let (X,M) be a measurable space and let (μj)j∈N be a sequence
of positive measures defined on M such that ∀A ∈ M, ∀j ∈ N, μj(A) ≤ μj+1(A).
For A ∈ M, we set μ(A) = supj∈N μj(A).

(1) Show that μ is a positive measure defined on M.

(2) Let f : X −→ R+ be a measurable function. Show that∫
X

fdμ = sup
j∈N

∫
X

fdμj (hint: start with simple functions).

(3) Let j ∈ N and let νj be defined on P(N) by

νj(A) = card(A ∩ [j,+∞[)

(cardE as usual whenever E is finite, cardE = +∞ for E infinite). Show
that for all j ∈ N, (N,P(N), νj) is a measure space. Show that

∀A ⊂ N, νj(A) ≥ νj+1(A).

Defining ν(A) = infj∈N νj(A), show that ν(N)=+∞ and for all k ∈ N,
ν({k}) = 0. Show that (N,P(N), ν) is not a measure space.
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Answer. (1) Let (An)n∈N be a pairwise disjoint sequence of M. We check

μ(∪n∈NAn) = sup
j∈N
μj(∪n∈NAn) = sup

j∈N

{∑
n∈N
μj(An)

}
.

We consider the measure space (N,P(N), λ), where λ is the counting measure on
N (λ(A) = CardA for A finite and λ(A) = +∞ for A infinite). We find with
fj(n) = μj(An) that 0 ≤ fj ≤ fj+1 (since μj(A) ≤ μj+1(A)), so that Beppo Levi’s
Theorem 1.6.1 implies

sup
j∈N

∫
N

fjdλ =

∫
N

(sup
j∈N
fj)dλ,

i.e., supj∈N
{∑

n∈N μj(An)
}
=
∑

n∈N supj∈N {μj(An)} =
∑

n∈N μ(An), providing
σ-additivity for μ on M. Moreover we have μ(∅) = 0.

(2) For a simple function s =
∑

1≤k≤m αk1Ak
with Ak ∈ M and αk > 0, using

the fact that the sequences (μj(Ak))j∈N are increasing, we have∫
X

s dμ =
∑

1≤k≤m

αkμ(Ak) =
∑

1≤k≤m

αk sup
j∈N

(μj(Ak)) =
∑

1≤k≤m

αk lim
j→∞

μj(Ak)

= lim
j→∞

[ ∑
1≤k≤m

αkμj(Ak)
]
= sup

j∈N

[ ∑
1≤k≤m

αkμj(Ak)
]
= sup

j∈N

∫
X

sdμj .

Moreover, for f : X −→ R+ a measurable function, we can find an increasing
sequence (sk) of simple functions converging pointwise to f . Theorem 1.6.1 and
the previous result imply

(∗)
∫
X

fdμ = sup
k∈N

∫
X

skdμ = sup
k∈N

(
sup
j∈N

∫
X

skdμj

)
.

Moreover, if (ajk)j,k∈N is a double sequence in R, for all l,m ∈ N, we have

α = sup
j∈N

(sup
k∈N
ajk) ≥ sup

k∈N
alk ≥ alm =⇒ sup

l∈N
alm ≤ α =⇒ sup

m∈N
(sup
l∈N
alm) ≤ α,

so that, exchanging the indices in the previous line,

(∗∗) sup
j∈N

(sup
k∈N
ajk) = sup

k∈N
(sup
j∈N
ajk).

As a result, from (∗) and (∗∗), we get∫
X

fdμ = sup
j∈N

(
sup
k∈N

∫
X

skdμj

)
= sup

j∈N

(∫
X

fdμj

)
,

where the second equality follows from Theorem 1.6.1.
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(3) With λ the counting measure on N, νj is a the measure with density 1[j,+∞[

with respect to λ and we use the notation νj = 1[j,+∞[λ. Since [j,+∞[⊃ [j +
1,+∞[, we have 1[j,+∞[ ≥ 1[j+1,+∞[ and thus νj(A) ≥ νj+1(A) for all A ⊂ N. As
ν(A) = infj∈N νj(A), and νj(N) = +∞, we obtain ν(N) = +∞. Moreover for all
k ∈ N, ν({k}) = infj∈N νj({k}) = 0, since νj({k}) = λ({k}∩ [j,+∞[) = 0 if j > k.
Thus ν is not a measure on N since +∞ = ν(N) >

∑
k∈N ν({k}) = 0.

Exercise 1.9.19 (Inclusion-exclusion principle, sieve formula). Let (X,M, μ) be a
measure space where μ is a positive measure such that μ(X) < +∞. Let {Aj}1≤j≤n

be a finite set of elements of M. Prove that

μ
(
∪1≤j≤nAj

)
=
∑

1≤k≤n

(−1)k+1

{ ∑
J⊂{1,...,n}
cardJ=k

μ
(
∩j∈JAj

)}
. (1.9.2)

(Hint: write and prove the formula for n = 2, 3, then apply induction on n.)

Answer. For n = 2, A1 ∪ A2 is equal to the pairwise disjoint union(
A1\(A1 ∩ A2)

)
∪
(
A2\(A1 ∩ A2)

)
∪ (A1 ∩ A2),

so that μ(A1 ∪ A2) = μ(A1) − μ(A1 ∩ A2) + μ(A2) − μ(A1 ∩ A2) + μ(A1 ∩ A2)=
μ(A1) + μ(A2)− μ(A1 ∩A2), which is the sought formula. Let us assume that the
formula is true for some n ≥ 2 and let us prove it for n+1. Applying the formula
for n = 2, we find

μ(∪1≤j≤n+1Aj) = μ(∪1≤j≤nAj) + μ(An+1) − μ
(
∪1≤j≤n(Aj ∩ An+1)

)
,

so that applying twice the formula for n we get

μ(∪1≤j≤n+1Aj) = μ(An+1) +
∑

1≤k≤n

(−1)k+1

{ ∑
J⊂{1,...,n}
cardJ=k

μ
(
∩j∈JAj

)}

+
∑

1≤k≤n

(−1)k
{ ∑

J⊂{1,...,n}
cardJ=k

μ
(
An+1 ∩j∈J Aj

)}

=
∑

1≤l≤n

(−1)l+1

{ ∑
L⊂{1,...,n,n+1}
cardL=l, n+1/∈L

μ
(
∩j∈LAj

)}

+
∑

2≤l≤n+1

(−1)l+1

{ ∑
L⊂{1,...,n,n+1}
cardL=l, n+1∈L

μ
(
∩j∈LAj

)}
+ μ(An+1)

=
∑

1≤l≤n+1

(−1)l+1

{ ∑
L⊂{1,...,n,n+1}

cardL=l

μ
(
∩j∈LAj

)}
.
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N.B. It is possible to avoid the assumption μ(X) < +∞ and write (1.9.2) as an
equality between non-negative quantities, displaying the odd (resp. even) k on the
rhs (resp. lhs).

Exercise 1.9.20. Let X be a finite set with N elements.

(1) Find the number d(N) of permutations σ of X (bijections from X onto X)
without fixed points (∀x ∈ X, σ(x) �= x). Find an equivalent of d(N) when N
tends to infinity.

(2) Let Y be a finite set with p elements. Find the number of surjections from X
onto Y .

Answer. (1) Let d(N) be the sought number. The total number of permutations
of X is N !. The number of permutations of X with exactly N − 2 fixed points is
d(2)C2

N = C2
N . The number of permutations of X with exactly N − 3 fixed points

is d(3)C3
N , so that

N ! =
∑

0≤k≤N

d(k)Ck
N ,

∑
0≤k≤N

d(k)

k!

1

(N − k)! = 1, d̃ ∗ f = u,

with d̃ = (d(k)/k!)k∈N, f = (1/k!)k∈N, u = (uk = 1)k∈N. With g = (xk/k!)k∈N, we
get

(f ∗ g)(k) =
∑

0≤j≤k

1

(k − j)!
xj

j!
= (1 + x)k/k!,

and thus d̃ ∗ f ∗ g = u ∗ g, i.e.,∑
0≤j≤N

d(j)

j!

(1 + x)N−j

(N − j)! =
∑

0≤j≤N

xj

j!
,

so that for x = −1 and N ≥ 1,

d(N) =
∑

0≤j≤N

(−1)jN !

j!
= N !

( ∑
0≤j≤N

(−1)j

j!

)
∼

N→+∞

N !

e
. (1.9.3)

(2) Let S(N, p) be the sought number. We have the following partition of Y X (the
set of all mappings from X into Y )

Y X = �1≤k≤p{φ ∈ Y X , cardφ(X) = k},

so that pN =
∑

1≤k≤p S(N, k)C
k
p , i.e.,

pN

p! =
∑

1≤k≤p
S(N,k)

k!
1

(p−k)! . Following the

same calculations as above (with p replacing N and N fixed), we find

(
pN

p!
)p≥1 = (

S(N, p)

p!
)p≥1 ∗ (fq)q≥1,
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so that
∑

1≤j≤p
jN

j!
xp−j

(p−j)! =
∑

1≤j≤p
S(N,j)

j!
(1+x)p−j

(p−j)! , and for x = −1,

S(N, p) = p!
∑

1≤j≤p

jN

j!

(−1)p−j

(p− j)! =
∑

1≤j≤p

Cj
pj

N(−1)p−j .

Notice that S(N, 1) = 1, S(N, 2) = 2N − 2,

S(N, p) = pN
∑

1≤j≤p

Cj
p(
j

p
)
N

(−1)p−j . (1.9.4)

It is a consequence of that formula that for 0 ≤ N < p, S(N, p) = 0: it is also a
fact that can be verified directly as follows. We have in that case

(
d

dx
)N{(1 + x)p} =

(1 + x)p−N

(p−N)!
=
∑

N≤j≤p

Cj
p

j!

(j −N)!
xj−N

and for x = −1, we get 0 =
∑

N≤j≤p(−1)jCj
pj(j − 1) . . . (j −N + 1), i.e.,∑

0≤j≤p

Cj
p(−1)j = 0,

∑
0≤j≤p

Cj
p(−1)jj = 0,

∑
0≤j≤p

Cj
p(−1)jj(j − 1) = 0,

implying that
∑

0≤j≤p C
j
p(−1)jj2 = 0, and the other equalities S(N, p) = 0 for

0 ≤ N < p follow by limited induction on N .

We have used the standard definition for the binomial coefficient,

Cp
n = card{A ⊂ {1, . . . , n}, cardA = p}, (1.9.5)

Cp
n =

n!

(n− p)!p! for 0 ≤ p ≤ n, Cp
n = 0 otherwise. (1.9.6)

We have the classical formulas, easily proven by induction on n,

(x1 + x2)
n =

∑
0≤p≤n

Cp
nx

p
1x

n−p
2 ,

(x1 + x2)
n

n!
=

∑
p1+p2=n

xp1

1

p1!

xp2

2

p2!
, (1.9.7)

1

n!
(x1 + · · ·+ xk)n =

∑
p1+···+pk=n

xp1

1

p1!
. . .
xpk

k

pk!
, (1.9.8)

1

n!
(x1 + · · ·+ xk)n =

∑
|α|=n

α∈Nk

xα

α!
, xα = xα1

1 . . . x
αk

k , (1.9.9)

where for Nk � α = (α1, . . . , αk), α! = α1! . . . αk!, |α| = α1 + · · ·+ αk.
Note also the immediate consequence of (1.9.5)

Cp
n+1 = Cp

n + Cp−1
n (1.9.10)
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which implies Cq+1
n+1 = Cq+1

n +Cq
n = Cq+1

n−1+C
q
n−1+C

q
n = Cq+1

n−2+C
q
n−2+C

q
n−1+C

q
n

and thus inductively on n,
∑

q≤k≤n C
q
k = Cq+1

n+1. Also we have for n ≥ p ≥ 1,

card
{
(jk)1≤k≤p ∈ {1, . . . , n}p, s.t. j1 ≤ j2 ≤ · · · ≤ jp

}
= Cp

n+p−1, (1.9.11)

since an increasing sequence (jk)1≤k≤p of g{1, . . . , n} can be identified with the
strictly increasing sequence (jk + k − 1)1≤k≤p of {1, . . . , n + p − 1}, that is to a
subset with p elements of the latter. Moreover

card{α ∈ Nd, |α| = l} = Cd−1
l+d−1, (1.9.12)

since defining β1 = α1 +1, β2 = α1 +α2 +2, . . . , βd−1 =
∑

1≤j≤d−1 αj + d− 1, we

identify {α ∈ Nd, |α| = l} with the set of strictly increasing sequences (βj)1≤j≤d−1

valued in {1, . . . , l+ d− 1}, whose cardinal is Cd−1
l+d−1.

Exercise 1.9.21.

(1) Let (X,M, μ) be a measure space where μ is a positive measure and let f :
X → R be a measurable function. Prove the Chebyshev inequality:

∀t > 0, μ
(
{x ∈ X, |f(x)| ≥ t}

)
≤ t−2

∫
X

|f |2dμ. (1.9.13)

(2) Let (Ω,A,P) be a probability space and X : Ω −→ R be a random vari-
able (i.e., a measurable mapping) such that

∫
Ω |X |2dP < +∞. Show that∫

Ω
|X |dP < +∞ and defining the expectation E(X) and the variance σ(X)2

of X as

E(X) =

∫
Ω

XdP, σ(X)2 =

∫
Ω

|X − E(X)|2dP, (1.9.14)

prove the Bienaymé–Chebyshev inequality: for a > 0,

P
(
|X − E(X)| ≥ a

)
≤ σ(X)2

a2
. (1.9.15)

(3) Let (Ω,A,P) be a probability space and Xj : Ω −→ R be a sequence of random
variables (j ≥ 1 integer) such that for each j,

∫
Ω

|Xj|2dP < +∞. Let us
assume that there exist m, s ∈ R such that

∀j ≥ 1, E(Xj) = m and ∀j, k ≥ 1,

∫
Ω

(Xj −m)(Xk −m)dP = δj,ks
2.

Defining Yn = 1
n

∑
1≤j≤nXj , prove that Yn converges in probability to m,

i.e.,

∀ε > 0, P
(
|Yn −m| ≥ ε

)
= 0. (1.9.16)
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Answer. (1) We have for t > 0,

μ
(
{x ∈ X, |f(x)| ≥ t}

)
=

∫
X

1{|f |≥t}dμ ≤
∫
X

1{|f |≥t}t
−2|f |2dμ ≤ t−2

∫
X

|f |2dμ.

(2) We have
∫
Ω

|X |dP =
∫
|X|≤1

|X |dP+
∫
|X|>1

|X |dP ≤ 1 +
∫
|X|>1

|X |2dP < +∞.
Applying the first question to the function X − E(X) with t = bσ(X), assuming
σ(X) > 0, b > 0, we get

P
(
|X − E(X)| ≥ bσ(X)

)
≤ 1

b2σ(X)2

∫
Ω

|X − E(X)|2dP = b−2.

If σ(X) = 0, we find X ≡ E(X) and for a > 0, the result (1.9.15) is obvious. We
may note∫

Ω

|X − E(X)|2dP =

∫
Ω

|X |2dP+

∫
Ω

|E(X)|2dP − 2

∫
Ω

XE(X)dP

=

∫
Ω

|X |2dP− |E(X)|2.
(1.9.17)

(3) We find E(Yn) = m and thus for ε > 0, from the Bienaymé–Chebyschev
inequality, we get

P(|Yn −m| ≥ ε) ≤ σ(Yn)
2

ε2
.

We calculate σ(Yn)
2 =

∫
Ω |Yn −m|2dP = n−2

∑
1≤j,k≤n

∫
Ω(Xj −m)(Xk −m)dP

and our assumption gives σ(Yn)
2 = n−2ns2, so that P(|Yn − m| ≥ ε) ≤ s2

nε2 ,
proving the sought convergence.

Exercise 1.9.22. For k, n positive integers, we define ak,n = δk,n
(
(−1)n+2

)
. Show

that, for each k, limn ak,n = 0, ak,n ≥ 0, |
∑

k ak,n| ≤ 3. Prove that the sequence
(
∑

k≥1 ak,n)n≥1 does not have a limit. Check that the domination assumption in
Lebesgue dominated convergence Theorem 1.7.5 is violated.

Answer. The first limit is obvious and we have also for n ≥ 1,∑
k≥1

ak,n = (−1)n + 2, a divergent sequence.

Of course the assumption of domination in the Lebesgue dominated convergence
theorem is not satisfied since supn ak,n = (−1)k + 2, a non-summable sequence.
As a result for the measure space (X,M, μ) = (N∗,P(N∗), counting measure),
it is possible to find a sequence (fn)n≥1 of non-negative bounded functions with
bounded integrals such that for all x ∈ X , limn fn(x) = 0, but so that the sequence
(
∫
X fndμ)n≥1 is divergent. This proves that the domination assumption cannot be

dispensed with in general.



1.9. Exercises 61

Exercise 1.9.23. Let (X,M, μ) be a measure space where μ is a positive measure.

(1) Let f : X −→ Y be a mapping and let ϕ : Y → R+ be a measurable function.
Prove that ∫

Y

ϕd
(
f∗(μ)

)
=

∫
X

(ϕ ◦ f)dμ. (1.9.18)

(2) Prove (1.9.18) for ϕ ∈ L1(f∗(μ)).

(3) Let f : X −→ Y and g : Y −→ Z be two mappings. Show that

(g ◦ f)∗(μ) = g∗
(
f∗(μ)

)
.

Answer. (1) That formula is satisfied for a simple function ϕ =
∑

1≤j≤m αj1Bj :∫
Y

ϕd
(
f∗(μ)

)
=
∑

1≤j≤m

αjf∗(μ)(Bj) =
∑

1≤j≤m

αjμ(f
−1
(
Bj)
)

(using 1Bj ◦ f = 1f−1(Bj)) =
∑

1≤j≤m

αj

∫
(1Bj ◦ f)dμ =

∫
X

(ϕ ◦ f)dμ.

Beppo Levi’s theorem 1.6.1 and the approximation Theorem 1.3.3 give the result.

(2) By linearity, that formula holds as well for ϕ ∈ L1
(
f∗(μ)

)
.

(3) Following Lemma 1.4.3, the pushforward f∗(μ) is defined on the σ-algebra

N = {B ⊂ Y, f−1(B) ∈ M}

by f∗(μ)(B) = μ
(
f−1(B)

)
. The pushforward g∗

(
f∗(μ)

)
is defined on the σ-algebra

T = {C ⊂ Z, g−1(C) ∈ N} = {C ⊂ Z, f−1
(
g−1(C)

)
∈ M}

= {C ⊂ Z, (g ◦ f)−1(C) ∈ M}

by g∗
(
f∗(μ)

)
(C) = f∗(μ)

(
g−1(C)

)
= μ
(
f−1
(
g−1(B)

))
= μ

(
(g ◦ f)−1(C)

)
. As a

result, the measures g∗
(
f∗(μ)

)
and (g ◦ f)∗(μ) coincide on the σ-algebra T .

Exercise 1.9.24. Let X be a Hausdorff σ-compact topological space, let B be the
Borel σ-algebra on X and let μ be a positive measure defined on B such that
μ(K) < +∞ for K compact (μ is a Borel measure on X).

(1) Prove that the singletons are closed. We define

D = {a ∈ X,μ({a}) > 0}.

(2) Let n, l be integers ≥ 1. Assuming X = ∪n≥1Kn, with Kn compact, we set

Dn,l = {a ∈ Kn and μ({a}) ≥ 1/l}.

Show that Dn,l is finite and D is countable.
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(3) For E ∈ B, we define λ(E) = μ(D ∩E). Show that it is meaningful and that
λ is a Borel measure on X. Show that

λ =
∑
a∈D
μ({a})δa,

where δa is the Dirac mass at a (i.e., δa(E) = 1E(a)).

(4) Show that μ = λ+ν where ν is a Borel measure on X such that for all x ∈ X,
ν({x}) = 0.

Answer. (1) For x′ /∈ {x}, we find V ∈ Vx, V
′ ∈ Vx′ such that V ∩ V ′ = ∅, so that

the complement of the singleton {x}c ⊃ V ′ and is a neighborhood of each of its
points, thus an open set.

(2) Let a1, . . . , am be distinct in Dn,l. We have

+∞ > μ(Kn) ≥ μ({a1, . . . , am}) =
∑

1≤j≤m

μ({aj}) ≥ m/l

so that m ≤ μ(Kn)l < +∞, proving finiteness for Dn,l. For a ∈ D, we may find
an integer l ≥ 1 such that μ({a}) ≥ 1/l. Since a belongs to some Kn, we find
a ∈ Dn,l. This implies D ⊂ ∪n≥1,l≥1Dn,l: Since Dn,l ⊂ D we find that D is a
countable union of finite sets, thus is countable.

(3) The set D is a Borel set as a countable union of singletons (closed sets), and
with E ∈ B, D ∩ E ∈ B. We may thus define λ(E) = μ(D ∩ E). This defines a
Borel measure since λ(∅) = μ(∅) = 0, and for En a sequence of pairwise disjoint
Borel sets, K a compact set, we have

λ(∪n∈NEn) = μ(∪n∈N(En ∩D)) =
∑
n∈N
μ(En ∩D) =

∑
n∈N
λ(En),

λ(K) = μ(K ∩D) ≤ μ(K) < +∞.

With D = {an}n∈N, we have

λ(E) = μ(D ∩ E) = μ({an, an ∈ E}) =
∑

n,an∈E
μ({an})

=
∑
n∈N
μ({an})δan(E) =

∑
a∈D
μ({a})δa(E), q.e.d.

(4) For E ∈ B, we have μ(E) = μ(E ∩ D) + μ(E ∩ Dc) = λ(E) + ν(E), with
ν(E) = μ(E ∩ Dc). As in question (3), we find that ν is a Borel measure. For
x ∈ D, we have ν({x}) = ν({x} ∩ Dc) = ν(∅) = 0. For x /∈ D, we find 0 =
μ({x}) = λ({x}) + ν({x}) = ν({x}), so that for all x, we have ν({x}) = 0.

Exercise 1.9.25. Let B be the Borel σ-algebra on R and μ be a positive measure
defined on B, finite on the compact sets.
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(1) For a ∈ R, we define

Fa(t) =

{
μ([a, t[) for t > a,

−μ([t, a[) for t ≤ a.

Show that Fa is increasing and left-continuous.

(2) We assume that μ is a probability measure. We define the repartition function
of the probability μ on R as

F (t) = μ
(
(−∞, t[

)
.

Show that F is increasing, tends to 0 (resp. 1) when t goes to −∞ (resp.
+∞), and is left-continuous.

Answer. (1) Let s < t be real numbers. For s > a, we have [a, s[⊂ [a, t[ and
thus Fa(s) = μ([a, s[) ≤ μ([a, t[) = Fa(t). For s ≤ a < t, we have Fa(s) =
−μ([s, a[) ≤ 0 ≤ μ([a, t[) = Fa(t). For s < t ≤ a, we have [t, a[⊂ [s, a[ and thus
Fa(s) = −μ([s, a[) ≤ −μ([t, a[) = Fa(t). The function Fa is thus increasing.

Let t0 ∈ R such that t0 > a and let (tn)n≥1 be an increasing sequence with
limit t0. We have

[a, t0[= ∪n≥1[a, tn[

and using Proposition 1.4.4(2), we find

Fa(t0) = μ([a, t0[) = lim
n→∞

μ([a, tn[) = lim
n→∞

Fa(tn).

Let t0 ∈ R such that t0 ≤ a and let (tn)n≥1 be an increasing sequence with limit
t0. We have

[t0, a[= ∩n≥1[tn, a[

using Proposition 1.4.4(3) along with μ([t1, a[) ≤ μ([t1, a]) < +∞, we find

Fa(t0) = −μ([t0, a[) = − lim
n→∞

μ([tn, a[) = lim
n→∞

Fa(tn).

(2) F is increasing since t �→ (−∞, t[ is increasing, and tends to 1 when t goes to
+∞ from Proposition 1.4.4(2), tends to 0 when t goes to −∞ from Proposition
1.4.4(3). The left-continuity is proven as in question (1) above.

Exercise 1.9.26. Let (X,M, μ) be a measure space where μ is a positive measure
and let fn : X → R+ be an increasing sequence of measurable functions such that
supn∈N

∫
X fndμ < +∞. Prove that supn∈N fn(x) is finite μ-a.e. Give an analogous

statement for series of measurable functions valued in R+.

Answer. Thanks to Beppo Levi’s theorem 1.6.1 we have, with f = supn∈N fn,∫
X

fdμ = sup
n∈N

∫
X

fndμ,
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so that f is a measurable function from X into R+ such that
∫
X fdμ < +∞.

Proposition 1.7.1(4) shows that is finite μ-a.e. Similarly, for a sequence (uk)k∈N of
measurable functions from X into R+ such that∑

k≥0

∫
X

ukdμ < +∞,

the series
∑

k∈N uk(x) converges μ-a.e. towards a finite limit: in fact Corollary
1.6.2 implies ∫

X

(∑
k∈N
uk
)
dμ =

∑
k≥0

∫
X

ukdμ < +∞

so that the function
∑

k∈N uk(x) is finite μ-a.e.

Exercise 1.9.27. Let (X,M, μ) be a measure space where μ is a positive measure
and let f : X → C be a function in L1(μ). We assume that for all E ∈ M,∫
E
fdμ = 0. Show that f is vanishing μ-a.e.

Answer. For E = {x ∈ X,Re f(x) ≥ 0}, we find

0 = Re
(∫

E

fdμ
)
=

∫
E

(Re f)dμ =⇒ 1{Re f≥0}Re f = 0 μ-a.e.,

and since we have also 1{Re f≤0}Re f = 0, μ-a.e., we get Re f = 0, μ-a.e. We prove
similarly that Im f = 0, μ-a.e.

Exercise 1.9.28. Let (X,M, μ) be a measure space where μ is a positive measure
and let (fn)n∈N be a decreasing sequence of measurable functions from X into R+

converging pointwise to a function f .

(1) Prove that if there exists N ∈ N such that fN belongs to L1(μ), then

lim
n

∫
X

fndμ = inf
n

∫
X

fndμ =

∫
X

fdμ.

(2) Prove that this property does not hold if the assumption in (1) is removed.

Answer. (1) We can apply the Lebesgue dominated convergence Theorem 1.6.8,
since for n ≥ N , we have 0 ≤ fn ≤ fN ∈ L1(μ).

(2) We note first that from Fatou’s lemma 1.6.4, we have∫
X

fdμ =

∫
X

lim inf fndμ ≤ lim inf
n

∫
X

fndμ = inf
n

∫
X

fndμ.

Let us prove that we may have 0 ≤
∫
X fdμ < infn

∫
X fndμ. We consider X = N

with the counting measure μ and the (decreasing) sequence fn = 1[n,+∞). We
have f = 0 and

∫
X
fndμ = +∞ for all n.
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Exercise 1.9.29. Let (X,M, μ) be a measure space where μ is a positive measure
such that μ(X) < +∞. Let (fn)n∈N be a sequence of bounded complex-valued
measurable functions converging uniformly towards a complex-valued function f
on X:

lim
n

(
sup
x∈X

|fn(x) − f(x)|
)
= 0.

(1) Prove that each fn and f belong to L1(μ) and limn

∫
X

|fn − f |dμ = 0.

(2) Prove that this property does not hold if the assumption μ(X) < +∞ is
removed.

Answer. (1) As a pointwise limit of measurable functions, f is also measurable.
We have also∫

X

|fn(x) − f(x)|dμ(x) ≤
∫
X

sup
x∈X

|fn(x) − f(x)|dμ(x)

= sup
x∈X

|fn(x) − f(x)|μ(X),

proving the convergence. Also that inequality proves that, for each (large enough)
n, fn−f belongs to L1(μ) and since each fn is bounded, it belongs to L1(μ) (since
μ(X) < +∞) as well as f .

(2) We consider X = N with the counting measure μ and the sequence (n ≥ 1)

fn(k) =
1

n
1[n,2n−1](k).

We have supk∈N |fn(k)| = 1/n which goes to zero when n goes to +∞ but∫
X fndμ = 1. Note that the sequence (fn) as well as f belong to a bounded
set of L1(μ). Of course the sequence (fn) fails to be dominated by an L1 function
since for each k ≥ 1,

sup
n≥1
fn(k) ≥ 1

k
, and

∑
k≥1

1

k
= +∞.

Exercise 1.9.30. Let (X,M, μ) be a measure space where μ is a positive measure
such that μ(X) < +∞ and let f ∈ L1(μ) such that, for a given closed set T of C,

(†) ∀E ∈ M with μ(E) > 0,
1

μ(E)

∫
E

fdμ ∈ T.

Prove that f(x) ∈ T , μ-a.e.

Answer. For z ∈ T c, ∃ρ > 0 with B̄(z, ρ) ⊂ T c. If we had μ
(
f−1
(
B̄(z, ρ)

))
> 0,

this would give, with E = f−1
(
B̄(z, ρ)

)
, 1

μ(E)

∫
E
fdμ ∈ T. However, we have

1

μ(E)

∫
f−1(B̄(z,ρ))

fdμ =
1

μ(E)

∫
f−1(B̄(z,ρ))

(f − z)dμ+ z,
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and since ∣∣∣∣∣ 1

μ(E)

∫
f−1(B̄(z,ρ))

(f − z)dμ
∣∣∣∣∣ ≤ ρμ(E)μ(E)

= ρ,

this would imply |z − T | ≤ ρ, which contradicts B̄(z, ρ) ⊂ T c. Consequently,
μ
(
f−1
(
B̄(z, ρ)

))
= 0. Since the open set T c is a countable union of closed balls,

this implies that μ
(
f−1(T c)

)
= 0.

N.B. The assumption μ(X) < +∞ can be replaced by σ-finiteness: assuming (†)
for all E with positive finite measure, we get from the previous result that, for
X = ∪k∈NXk, μ(Xk) < +∞, since

{x ∈ X, f(x) ∈ T c} = ∪k∈N{x ∈ Xk, f(x) ∈ T c}

each {x ∈ Xk, f(x) ∈ T c} has 0 measure, as well as f−1(T c).

Exercise 1.9.31. Let (X,M, μ) be a measure space where μ is a positive measure
and let (Ek)k≥1 be a sequence in M such that

∑
k≥1 μ(Ek) < +∞. Prove that

(‡) ∪n≥0{x ∈ X, x belongs to n subsets Ek}

has a complement with measure 0, i.e., almost all x lie in at most finitely many Ek.

Answer. The complement of the set (‡) is F = ∩n≥0

(
∪k>nEk

)
: In fact if x belongs

to infinitely many Ek, for each n ≥ 0, there exists k > n with x ∈ Ek; conversely,
any x ∈ F belongs to infinitely many Ek. We have

μ(F ) ≤ μ(∪k>nEk) ≤
∑
k>n

μ(Ek) −→
n→+∞

0,

proving μ(F ) = 0.



Chapter 2

Actual Construction
of Measure Spaces

In the previous chapter, we gave a presentation of integration theory along
with convergence theorems and a functional space for integrable functions. All
this seems to be very satisfactory, except for the fact that we do not have many
examples: the counting measure is an example and its version on N is certainly a
good way to present series and the space �1(N) of summable sequences of complex
numbers (an)n∈N (i.e., such that

∑
n∈N |an| < +∞).

However, our most important example is the construction of the Borel mea-
sure, defined on the Borel subsets of R, such that μ([a, b]) = b − a for a ≤ b
real numbers. Everything remains to be done for this example: construction of
such an object, proof of its uniqueness, various properties. The present chapter is
essentially devoted to this construction.

2.1 Partitions of unity

Let X be a topological space and let f : X −→ C be a continuous function. We
define the support of f as the set

supp f = {x ∈ X, � ∃V ∈ Vx such that f|V = 0 }. (2.1.1)

We note that supp f = {x ∈ X, f(x) �= 0}: since
(
Ā
)c

= int(Ac), we have

x /∈ {x ∈ X, f(x) �= 0} ⇐⇒ x ∈ int{x ∈ X, f(x) = 0} ⇐⇒ ∃V ∈ Vx, f|V = 0,

which defines the complement of supp f . As a result supp f is a closed subset of
X since (supp f)c is the union of open sets on which f = 0.

The vector space of continuous functions fromX into C with compact support
will be denoted by Cc(X). For f ∈ Cc(X), we have, if supp f �= X ,

f(X) = f(supp f) ∪ {0}

, ,
OI 10.1007/978-3- - -D
. 
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and since the continuous image of the compact set supp f is compact, so is f(X).
If f ∈ Cc(X) and supp f = X , then X is compact and so is its image f(X).

Lemma 2.1.1. Let (X, d) be a metric space and let A be a non-empty subset of X.
For x ∈ X, we set

d(x,A) = inf
a∈A
d(x, a). (2.1.2)

The function d(·, A) is Lipschitz continuous with Lipschitz constant ≤ 1, i.e.,
|d(x1, A) − d(x2, A)| ≤ d(x1, x2). That property implies uniform continuity for
d(·, A). Moreover

Ā = {x ∈ X, d(x,A) = 0}.

Proof of the lemma. For x1 ∈ X and ε > 0, there exists a ∈ A such that

d(x1, A) ≤ d(x1, a) < d(x1, A) + ε.

Thus for x2 ∈ X , we have d(x2, A)−d(x1, A) ≤ d(x2, a)−d(x1, a)+ε ≤ d(x2, x1)+ε,
so that

d(x2, A) − d(x1, A) ≤ d(x2, x1).
Switching x1 with x2, we get the sought

∣∣d(x2, A) − d(x1, A)
∣∣ ≤ d(x2, x1). The

set {x ∈ X, d(x,A) = 0} is closed (since d(·, A) is continuous) and contains A,
thus contains Ā. Also, if d(x,A) = 0, there is a sequence (ak)k∈N in A such that
limk d(x, ak) = 0, entailing limk ak = x and x ∈ Ā. �
Proposition 2.1.2. Let (X, d) be a locally compact metric space.

(1) Let A,B be disjoint non-empty closed subsets of X. Then, for all x ∈ X,
d(x,A) + d(x,B) > 0 and the function ψA,B defined on X by

ψA,B(x) =
d(x,B)

d(x,A) + d(x,B)
=

{
1, for x ∈ A,
0, for x ∈ B,

(2.1.3)

belongs to C(X ; [0, 1]) and is supported in Bc.

(2) Let Ω be an open subset of X and let K be a compact subset of Ω. Then 0 <
d(K,Ωc) = infx∈K,y∈Ωc d(x, y). Moreover there exists a function ϕ ∈ Cc(X)
such that

0 ≤ ϕ ≤ 1, ϕ|K = 1, suppϕ ⊂ Ω.

The function ϕ can be chosen to be identically 1 on a neighborhood of K.

Proof of Proposition 2.1.2. (1) From Lemma 2.1.1, we see that d(x,A)+d(x,B) ≥
0 and vanishes if and only if x ∈ Ā ∩ B̄ = A ∩B = ∅. If ψA,B(x) �= 0, then x /∈ B,
thus suppψA,B ⊂ Bc.

(2) Since K is a compact subset of Ω, we have

ε0 = inf
x∈K, y/∈Ω

d(x, y) = d(K,Ωc) > 0, (2.1.4)
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otherwise, we could find sequences xk ∈ K, and yk ∈ Ωc such that limk d(xk, yk) =
0. Since K is a compact subset of X , we may find a subsequence (xkl

)l∈N with
limit x ∈ K. Since the sequence d(ykl

, xkl
) converges to 0, we get, using that Ωc

is closed,

Ωc � lim
l
ykl

= x ∈ K,

which contradicts K ⊂ Ω. Since X is locally compact, every point has a compact
neighborhood: this implies that

∀x ∈ Ω, ∃r(x) > 0, B(x, r(x)) is compact ⊂ Ω.

Since K is compact and K ⊂ ∪x∈KB
(
x, r(x)

)
, we can find a finite set (xj)1≤j≤N

with

K ⊂ ∪1≤j≤NB
(
xj , r(xj)

)
= U︸︷︷︸

open

⊂ ∪1≤j≤NB
(
xj , r(xj)

)︸ ︷︷ ︸
=L compact

⊂ Ω. (2.1.5)

Using the notation (2.1.3) we define ϕ = ψK,Uc : this is a continuous function,
valued in [0, 1], equal to 1 on K, supported in U which is a compact subset of Ω
from (2.1.5). Note that applying this result to the compact set L, a subset of the
open set Ω, we find a new function ϕ̃ ∈ Cc(X ; [0, 1]), supp ϕ̃ ⊂ Ω, ϕ̃ = 1 on L
which is a neighborhood of K from the first inclusion in (2.1.5). �

Theorem 2.1.3. Let (X, d) be a locally compact metric space, let Ω1, . . . ,Ωn be open
subsets of X and let K be a compact set with K ⊂ Ω1 ∪ · · · ∪ Ωn. Then for each
j ∈ {1, . . . , n}, there exists a function ψj ∈ Cc(Ωj ; [0, 1]) such that

∑
1≤j≤n ψj ∈

Cc(∪n
j=1Ωj ; [0, 1]) and

1 =
∑

1≤j≤n

ψj |K .

We shall say that (ψj)1≤j≤n is a partition of unity on K, attached to (Ωj)1≤j≤n.
In particular, for θ ∈ Cc(∪1≤j≤nΩj), using the previous result for K = supp θ,
we get

θ =
∑

1≤j≤n

θj , with θj = θψj ∈ Cc(Ωj).

Remark 2.1.4. The reader will see in Exercise 2.8.2 that this theorem can be
extended to the case of a locally compact topological space. On the other hand,
Exercise 2.8.8 deals with the Rm framework, and provides smooth partitions.

Proof. The case n = 1 is dealt with in Proposition 2.1.2. For all x ∈ K, there
exists r(x) > 0 such that K ⊂ ∪x∈KB(x, r(x)), where the closed ball Bc(x, r(x))
is included in one of the Ωj . Applying the Borel–Lebesgue Lemma, we get

K ⊂ ∪1≤l≤NB(xl, r(xl)) ⊂ ∪1≤l≤NBc(xl, r(xl)),



70 Chapter 2. Actual Construction of Measure Spaces

and defining

Kj =
⋃

1≤l≤N,
Bc(xl,r(xl))⊂Ωj

(
Bc(xl, r(xl)) ∩K

)
,

we find K ⊂ ∪1≤j≤NKj, with Kj compact ⊂ Ωj . Applying now Proposition 2.1.2,
we find ϕj ∈ Cc(Ωj ; [0, 1]) such that ϕj |Kj

= 1. We set then

ψ1 = ϕ1,

ψ2 = (1 − ϕ1)ϕ2,
. . . . . . . . . . . . . . .

ψn = (1 − ϕ1) . . . (1 − ϕn−1)ϕn.

We have ψj ∈ Cc(Ωj ; [0, 1]) and inductively on n, the identity∑
1≤j≤n

ψj = 1 −
∏

1≤j≤n

(1 − ϕj). (2.1.6)

In fact (2.1.6) holds for n = 1 and supposing it for some n ≥ 1, we get∑
1≤j≤n+1

ψj = 1 −
∏

1≤j≤n

(1 − ϕj) + ϕn+1

∏
1≤j≤n

(1 − ϕj) = 1 −
∏

1≤j≤n+1

(1 − ϕj).

Equalities (2.1.6) and the previous one prove in particular that
∑

1≤j≤n ψj as well
as each ψj are valued in [0,1] since it is the case for each ϕj . As a result, we
have K ⊂ ∪1≤j≤nKj ⊂ ∪1≤j≤n{ϕj = 1} ⊂ {

∑
1≤j≤n ψj = 1}, concluding the

proof. �

2.2 The Riesz–Markov representation theorem

The results presented in this section concern a theorem proven by the Hungarian
mathematician Frigyes Riesz (1880–1956) and by AndrëıMarkov (1856–1922), a
Russian mathematician; we follow the presentation of Walter Rudin (1921–2010).
The starting point is natural, although the proof has some technical aspects: it is
not difficult to define the integral of compactly supported continuous functions,
either directly or using the well-broomed Riemann theory of integration. In that
case, using traditional notation, the mapping

Cc(Rm) � f �→
∫
Rm

f(x)dx

is a linear form which is positive in the sense that the integral of a non-negative
function is also non-negative. The theorem says that it is possible to construct
a measure space (Rm,Bm, μ), where Bm is the Borel σ-algebra of Rm, so that



2.2. The Riesz–Markov representation theorem 71

L1(μ) ⊃ Cc(Rm) where
∫
Rm fdμ =

∫
Rm f(x)dx for f ∈ Cc(Rm). This is an exten-

sion of a Radon measure (continuous linear functional on Cc(Rm)), which can be
done also replacing Rm by a locally compact Hausdorff topological space; here we
shall limit ourselves to locally compact metric spaces. A drawback of this point of
view is that it uses heavily some topological structure on the base space. A purely
set-theoretic extension could be implemented and we shall present later in this
chapter that different approach.

Theorem 2.2.1. Let (X, d) be a locally compact metric space. Let L : Cc(X) −→ C
be a positive linear form (i.e., such that f ≥ 0 =⇒ Lf ≥ 0; L is said to be a positive
Radon measure1on X). Then there exists a σ-algebra M on X, containing the
Borel σ-algebra BX , and a unique measure μ defined on M such that the following
properties hold.

(1) ∀f ∈ Cc(X), Lf =
∫
X
fdμ.

(2) ∀K compact ⊂ X, μ(K) < +∞.

(3) ∀E ∈ M, μ(E) = inf {μ(V ), V open ⊃ E} (outer regularity).

(4) ∀E ∈ OX ∪ {E ∈ M, μ(E) < +∞},

μ(E) = sup{μ(K),K compact ⊂ E} (inner regularity).

(5) ∀E ∈ M such that μ(E) = 0, A ⊂ E implies A ∈ M (the σ-algebra M will
be said μ-complete).

N.B. Let us note that (1) is meaningful since a function f in Cc(X) is Borel
measurable, so that the inverse image of a Borelian of C belongs to BX ⊂ M,
proving the measurability of f . Moreover, since f is compactly supported, the
inequality |f | ≤ 1K sup |f | and (2) imply f ∈ L1(μ).

Proof of the theorem, Uniqueness. Since μ satisfies (4) and open subsets are Bore-
lian, we have for V open, μ(V ) = sup {μ(K),K compact ⊂ V }. Property (3) shows
then that μ is completely determined by its values on compact subsets of X . Let
μ1, μ2 be two positive measures defined on a σ-algebra M containing BX and sat-
isfying (1-2-3-4). Let K be a compact subset of X . From (2), (3), we get that for
all ε > 0, there exists an open set Vε ⊃ K such that

μ2(K) ≤ μ2(Vε) < μ2(K) + ε.

Let ϕ ∈ Cc(Vε; [0, 1]) so that ϕ|K = 1 (cf. Proposition 2.1.2). We have

μ1(K) =

∫
X

1Kdμ1 ≤
∫
X

ϕdμ1 = Lϕ

=

∫
X

ϕdμ2 ≤
∫
X

1Vεdμ2 = μ2(Vε) < μ2(K) + ε,

1cf. (2.8.7), (2.8.8) in Exercise 2.8.3.



72 Chapter 2. Actual Construction of Measure Spaces

which implies μ1(K) ≤ μ2(K). Switching μ1 with μ2, we get μ2(K) = μ1(K),
proving uniqueness.

Proof of the theorem, Existence. We shall now construct μ and M:

for V an open set, we define μ(V ) = sup
{
Lϕ, ϕ ∈ Cc

(
V ; [0, 1]

)}
, (2.2.1)

for any subset E ⊂ X , we define μ∗(E) = inf{μ(V ), V open ⊃ E}. (2.2.2)

We define also

MF = {E ⊂ X, μ∗(E) < +∞, μ∗(E) = sup
K compact⊂E

μ∗(K)}, (2.2.3)

M = {E ⊂ X, ∀K compact, K ∩ E ∈ MF }. (2.2.4)

Lemma 2.2.2. The mappings μ and μ∗ are valued in R+. If V1 ⊂ V2 are open sets,
then μ(V1) ≤ μ(V2). If V is open, then μ(V ) = μ∗(V ). Moreover μ(∅) = 0.

Proof. Since Lϕ ∈ R+ for ϕ ∈ Cc(X ; [0, 1]), we have μ(V ) ∈ R+ and thus the same
for μ∗(E). If V1 ⊂ V2 are open, the inclusion Cc(V1; [0, 1]) ⊂ Cc(V2; [0, 1]) implies
μ(V1) ≤ μ(V2). For V open, we have μ(V ) = μ∗(V ) since whenever W open ⊃ V ,
we have μ(V ) ≤ μ(W ) so that μ∗(V ) ≤ μ(V ) ≤ μ∗(V ). The last property follows
from the very definition of

Cc(V ; [0, 1]) = {ϕ : X → [0, 1], continuous, suppϕ compact ⊂ V }.

When V = ∅, ϕ ∈ Cc(V ; [0, 1]) implies suppϕ = ∅, so that ϕ ≡ 0 and thus Lϕ = 0,
entailing μ(∅) = 0. �

The σ-additivity of μ∗ on P(X) does not hold in general2, but we shall prove
that it holds on a σ-algebra containing BX .

Lemma 2.2.3. The mapping μ∗ defined by (2.2.2) is increasing. Moreover, {E ⊂
X,μ∗(E) = 0} ⊂ M ∩ MF . Also, μ

∗(E) = 0 implies P(E) ⊂ M.

Proof. If B ⊃ A, we have

{V open ⊃ B} ⊂ {V open ⊃ A} =⇒
μ∗(B) = inf

V open ⊃B
μ(V ) ≥ inf

V open ⊃A
μ(V ) = μ∗(A).

Moreover if μ∗(E) = 0, then E ∈ M ∩ MF ; in fact if K ⊂ E is a compact subset
of X , we have μ∗(K) = 0 by monotonicity, so that E ∈ MF . Also E ∈ M since
for K compact μ∗(K ∩ E) ≤ μ∗(E) = 0 so that K ∩ E ∈ MF , from the above
argument. Moreover, if A ⊂ E and μ∗(E) = 0, then μ∗(A) = 0 and A ∈ M. �
2It is for instance possible to prove that there does not exist a positive measure defined on
P(Rm) which would coincide with the ordinary volume on compact rectangles

∏
1≤j≤n[aj , bj ].

As a matter of fact, this impossibility is the initial reason for the introduction of the notion of
σ-algebra, to restrict the measure first to Borel sets, then to the completed σ-algebra, i.e., the
σ-algebra generated by Bm and the subsets of sets with measure 0 (see Exercise 2.8.13).
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Note also the monotonicity of L: for f ≤ g ∈ Cc(X ;R) then

Lg = L(g − f + f) = L(g − f) + Lf ≥ Lf.
Definition 2.2.4. Let X be a set and ν : P(X) → R+ be a mapping. We shall say
that ν is an outer measure on X whenever

ν(∅) = 0, (2.2.5)

A ⊂ B ⊂ X =⇒ ν(A) ≤ ν(B), (2.2.6)

for (Ej)j∈N a sequence in P(X), ν(∪j∈NEj) ≤
∑
j∈N
ν(Ej). (2.2.7)

The last property is called countable subadditivity.

Lemma 2.2.5. Let L be a positive Radon measure on X and μ, μ∗ defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then μ∗ is an outer
measure on X.

Proof. Property (2.2.5) follows from Lemma 2.2.2 and Property (2.2.6) from Lem-
ma 2.2.3. Let us prove countable subadditivity for μ∗. Let V1, V2 be open subsets
of X and V = V1 ∪ V2. We have defined

μ(V ) = sup
ϕ∈Cc(V ;[0,1])

Lϕ.

If ϕ ∈ Cc(V ; [0, 1]) and K = suppϕ, Theorem 2.1.3 implies that we can find
θj ∈ Cc(Vj ; [0, 1]), j = 1, 2, such that θ1 + θ2 = 1 on K. As a result, we get
ϕ = θ1ϕ+ θ2ϕ, so that with ϕj = θjϕ,

Lϕ = Lϕ1 + Lϕ2 ≤ sup
φ1∈Cc(V1;[0,1])

Lφ1 + sup
φ2∈Cc(V2;[0,1])

Lφ2 = μ(V1) + μ(V2),

entailing μ(V1 ∪ V2) ≤ μ(V1) + μ(V2). Inductively on N , we get for V1, . . . , VN
open,

μ(∪1≤k≤NVk) ≤
∑

1≤k≤N

μ(Vk). (2.2.8)

To prove the lemma, we may assume that for all j, μ∗(Ej) < +∞ (otherwise the
result is obvious). From (2.2.2), we obtain for all ε > 0, for all j ∈ N, the existence
of an open set Vε,j ⊃ Ej such that

μ∗(Ej) ≤ μ(Vε,j) < μ∗(Ej) + ε2
−j−1.

We set then Vε = ∪j∈NVε,j (an open set) and consider ϕ ∈ Cc(Vε; [0, 1]). Since the
support of ϕ is compact, there exists N ∈ N such that ϕ ∈ Cc(∪0≤j≤NVε,j; [0, 1]).
Consequently, from the definition (2.2.1) and (2.2.8) we get

Lϕ ≤ μ(∪0≤j≤NVε,j) ≤
∑

0≤j≤N

μ(Vε,j)

<
∑

0≤j≤N

(
μ∗(Ej) + ε2

−j−1
)
≤ ε+

∑
j∈N
μ∗(Ej).
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As a result since μ∗ is increasing and ∪j∈NEj ⊂ Vε, we have for all ε > 0,

μ∗(∪j∈NEj) ≤ μ∗(Vε) = μ(Vε) = sup
ϕ∈Cc(Vε;[0,1])

Lϕ ≤ ε +
∑
j∈N
μ∗(Ej),

implying (2.2.7). �
Lemma 2.2.6. Let L be a positive Radon measure on X and μ, μ∗ defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then, all compact subsets
of X belong to MF ; more precisely for K compact in X,

μ∗(K) = inf{Lϕ, ϕ ∈ Cc(X ; [0, 1]), ϕ|K ≡ 1}. (2.2.9)

Proof. Let K be a compact subset of X , ϕ ∈ Cc(X ; [0, 1]), ϕ|K ≡ 1 and 1 > ε > 0.
The set Vε = {x ∈ X,ϕ(x) > 1− ε} is open and contains K. For ψ ∈ Cc(Vε; [0, 1]),
we have

(1 − ε)ψ ≤ (1 − ε)1Vε ≤ ϕ,
so that from the monotonicity of L and the definition of μ∗, we get

μ∗(K) ≤ μ∗(Vε) = μ(Vε) = sup
ψ∈Cc(Vε,[0,1])

Lψ ≤ (1 − ε)−1Lϕ. (2.2.10)

This implies μ∗(K) ≤ Lϕ < +∞ so that, since we have trivially by monotonicity

μ∗(K) ≤ sup
L compact ⊂ K

μ∗(L) ≤ μ∗(K), and thus equality,

we get K ∈ MF . Moreover from (2.2.10), we get also

μ∗(K) ≤ inf
ϕ∈Cc(X,[0,1]), ϕ|K≡1

Lϕ. (2.2.11)

To prove that (2.2.11) is an equality, we note, using μ∗(K) < +∞, that for all ε >
0, there exists an open setWε containingK such that μ∗(K) ≤ μ(Wε) < μ

∗(K)+ε.
Using Proposition 2.1.2, we find ϕ ∈ Cc(Wε; [0, 1]), ϕ|K = 1. Consequently, for all
ε > 0, we find Lϕ ≤ μ(Wε) < μ

∗(K) + ε, entailing

inf
ϕ∈Cc(X,[0,1]), ϕ|K≡1

Lϕ < μ∗(K) + ε,

and the result of the lemma. �
Lemma 2.2.7. Let L be a positive Radon measure on X and μ, μ∗ defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then any open set V is
such that

μ(V ) = sup
K compact ⊂ V

μ∗(K). (2.2.12)

In particular MF contains all the open sets V such that μ(V ) < +∞.
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Proof. We assume first μ(V ) < +∞. For all ε > 0, there exists ϕε ∈ Cc(V ; [0, 1])
such that

μ(V )− ε < Lϕε ≤ μ(V ).
Considering the compact set Kε = suppϕε ⊂ V and W open containing Kε, we
have ϕε ∈ Cc(W ; [0, 1]) and thus Lϕε ≤ μ(W ), which implies

Lϕε ≤ inf
W open ⊃ Kε

μ(W ) = μ∗(Kε).

Using monotonicity, this implies (2.2.12):

μ(V ) − ε < μ∗(Kε) ≤ sup
K compact ⊂ V

μ∗(K) ≤ μ(V ).

Moreover, for V open such that μ(V ) < +∞, we have proven

μ(V ) = sup
K compact ⊂ V

μ∗(K), i.e., V ∈ MF .

If μ(V ) = +∞, we can find a sequence ϕk ∈ Cc(V ; [0, 1]) such that Lϕk ≥ k. Con-
sideringKk = suppϕk ⊂ V andW open containingKk, we have ϕk ∈ Cc(W ; [0, 1])
so that

Lϕk ≤ μ(W ) =⇒ Lϕk ≤ inf
W open ⊃ Kk

μ(W ) = μ∗(Kk).

This implies limk μ
∗(Kk) = +∞ and (2.2.12) in that case. �

Lemma 2.2.8. Let L be a positive Radon measure on X and μ, μ∗ defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Let (Ej)j∈N be a pairwise
disjoint sequence in MF : then,

μ∗(∪j∈NEj) =
∑
j∈N
μ∗(Ej). (2.2.13)

Whenever μ∗(∪j∈NEj) < +∞, we have ∪j∈NEj ∈ MF .

Proof. We note first that for disjoint compact sets K1,K2, we have

μ∗(K1 ∪K2) = μ
∗(K1) + μ

∗(K2). (2.2.14)

In fact, we have K1 ⊂ Kc
2 open and we may find ϕ ∈ Cc(K

c
2 ; [0, 1]) such that

ϕ|K1
= 1. From Lemma 2.2.6, for all ε > 0, there exists ψε such that ψε|K1∪K2

= 1,
ψε ∈ Cc(X ; [0, 1] with

μ∗(K1 ∪K2) ≤ Lψε < μ∗(K1 ∪K2) + ε.

Moreover, we have ϕψε|K1
= 1 and (1 − ϕ)ψε|K2

= 1. As a result for all ε > 0,

μ∗(K1) + μ
∗(K2)

Lemma 2.2.6
≤ L(ϕψε) + L((1 − ϕ)ψε) = L(ψε)
< μ∗(K1 ∪K2) + ε ≤

Lemma 2.2.5
μ∗(K1) + μ

∗(K2) + ε,
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providing (2.2.14). Let us return to the proof of the lemma. Since Lemma 2.2.5
provides an inequality when μ∗(∪j∈NEj) = +∞, we get the result in that case.
Let us assume now that μ∗(∪j∈NEj) < +∞ and let ε > 0. As Ej ∈ MF , we may
find compact sets Kε,j ⊂ Ej such that

μ∗(Ej)− ε2−j−1 < μ∗(Kε,j) ≤ μ∗(Ej).

As a result, for any N ∈ N,

μ∗(∪j∈NEj)
monotonicity

≥ μ∗( ∪0≤j≤NKε,j︸ ︷︷ ︸
compact

pairwise disjoint

)

(2.2.14) and
induction on N

=
∑

0≤j≤N

μ∗(Kε,j)

≥ −ε+
∑

0≤j≤N

μ∗(E,j),

proving the first assertion in the lemma. Let us now show that E = ∪j∈NEj ∈ MF .
Since the series

∑
j∈N μ

∗(Ej) = μ
∗(E) converges, for all ε > 0, there exists Nε such

that

μ∗(E) − ε ≤
∑

0≤j≤Nε

μ∗(Ej) ≤ ε+
∑

0≤j≤Nε

μ∗(Kε,j) = ε+ μ
∗(

compact ⊂ E︷ ︸︸ ︷
∪0≤j≤NεKε,j).

Consequently, we have

μ∗(E) ≤ 2ε+ μ∗(∪0≤j≤NεKε,j) ≤ 2ε+ sup
K compact ⊂ E

μ∗(K)
monotonicity

≤ 2ε+ μ∗(E),

concluding the proof of Lemma 2.2.8. �

Lemma 2.2.9. Let L be a positive Radon measure on X and μ, μ∗ defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Let E,A1, A2 ∈ MF .
Then

(1) ∀ε > 0, ∃Kε compact, ∃Vε open such that Kε ⊂ E ⊂ Vε, and μ(Vε\Kε) < ε.

(2) A1\A2, A1 ∪A2, A1 ∩ A2 ∈ MF .

Proof. From the definition of MF , we have

μ∗(E) < +∞, inf
V open ⊃ E

μ(V ) = μ∗(E) = sup
K compact ⊂ E

μ∗(K).

As a result for all ε > 0, there exists a compact set Kε ⊂ E and an open set
Vε ⊃ E such that

μ∗(E) − ε/3 < μ∗(Kε) ≤ μ∗(E) ≤ μ(Vε) < μ∗(E) + ε/3.
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Since Vε\Kε is an open set such that μ(Vε\Kε) < +∞, we find using Lemma 2.2.7
that Vε\Kε ∈ MF . Lemmas 2.2.8–2.2.6 provide now

μ∗(Vε\Kε) + μ
∗(Kε) = μ(Vε) ≤ μ∗(E) + ε/3 =⇒ μ∗(Vε\Kε) ≤ 2ε/3,

proving (1). Using that result, we find for A1, A2 ∈ MF

Kj compact ⊂ Aj ⊂ Vj open, μ(Vj\Kj) < ε.

Since A1\A2 ⊂ V1\K2 ⊂ (V1\K1) ∪ (K1\V2) ∪ (V2\K2),
3 Lemma 2.2.5 gives

μ∗(A1\A2) ≤ 2ε+ μ∗(K1\V2),

and since K1\V2 is a compact set ⊂ A1\A2, we find A1\A2 ∈ MF . Moreover the
equality A1 ∪A2 = (A1\A2)∪A2 and Lemma 2.2.8 give A1 ∪A2 ∈ MF . Also the
identity

A1 ∩ A2 = A1︸︷︷︸
∈MF

\ (A1\A2)︸ ︷︷ ︸
∈MF

and the beginning of our proof shows that A1 ∩ A2 ∈ MF . �
Lemma 2.2.10. Let L be a positive Radon measure on X and μ, μ∗ defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then M defined in (2.2.4)
is a σ-algebra on X containing the Borel σ-algebra BX .

Proof. Let K be a compact subset of X and A ∈ M. Then we have

Ac ∩K = K\A = K\(A ∩K),

and since K∈ MF (Lemma 2.2.6) and A∩K∈ MF (assumption A ∈ M), we find,
from Lemma 2.2.9 that Ac ∩K∈ MF , implying Ac ∈ M. Moreover if (Aj)j≥1 is
a sequence of M and K is a compact set, we have,

(∪j≥1Aj) ∩K =
⋃
N≥1

{
(AN ∩K)\

[
∪1≤j<N (Aj ∩K)

]}
.

Since our assumption implies Aj ∩K ∈ MF , we get from Lemma 2.2.9 that for
all N ,

(AN ∩K)\
[
∪1≤j<N (Aj ∩K)

]
∈ MF .

But these sets are pairwise disjoint with union A∩K (A = ∪j≥1Aj), with a finite
outer measure since μ∗(A ∩ K) ≤ μ∗(K) < +∞. We may thus apply Lemma

3We have X1\X4 ⊂ (X1\X2) ∪ (X2\X3) ∪ (X3\X4) since

X1\X4 = X1 ∩Xc
4 = (X1 ∩Xc

4 ∩Xc
2) ∪ (X1 ∩Xc

4 ∩X2)

⊂ (X1\X2) ∪ (X1 ∩Xc
4 ∩X2 ∩Xc

3) ∪ (X1 ∩Xc
4 ∩X2 ∩X3)

⊂ (X1\X2) ∪ (X2\X3) ∪ (X3\X4).
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2.2.8, proving A ∩ K ∈ MF and thus A ∈ M. Moreover for F closed, F ∩ K
is compact thus belonging to MF , implying F ∈ M. In particular X belongs to
M. Finally, M is a σ-algebra on X containing the closed sets, thus the Borel
σ-algebra BX . �
Lemma 2.2.11. Let L be a positive Radon measure on X and μ, μ∗ defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). With MF and M defined
in (2.2.3), (2.2.4), we have

MF = {E ∈ M, μ∗(E) < +∞}.

Proof. Let E ∈ MF and K compact. Lemmas 2.2.6–2.2.9 show that K,E ∩K ∈
MF , which implies E ∈ M. Conversely, if E ∈ M and μ∗(E) < +∞, there exists
V open ⊃ E such that μ(V ) < +∞ and from Lemma 2.2.7, V ∈ MF . Using
Lemma 2.2.9, we find that for all ε > 0, there exists K compact such that K ⊂ V
and μ(V \K) < ε. Since we have assumed E ∩K ∈ MF , there exists a compact
set L ⊂ E ∩K such that

μ∗(E ∩K)− ε < μ∗(L) ≤ μ∗(E ∩K).

Moreover we have E ⊂ (E ∩K)
∈MF

∪ (V \K)
∈MF

, thus we find from Lemma 2.2.8,

μ∗(E) ≤ μ∗(E ∩K) + μ∗(V \K) < μ∗(L) + 2ε ≤ μ∗(E ∩K) + 2ε ≤ μ∗(E) + 2ε,

entailing E ∈ MF . �
Lemma 2.2.12. Let L be a positive Radon measure on X and μ, μ∗ defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then with M defined in
(2.2.4), μ∗ is a positive measure defined on the σ-algebra M, and denoting the
measure space (X,M, μ∗) by (X,M, μ), we find ∀ϕ ∈ Cc(X), Lϕ =

∫
X
ϕdμ.

Proof. We have proven in Lemma 2.2.2 that μ∗(∅) = μ(∅) = 0. Let (Ej)j≥1 be a
pairwise disjoint sequence in M. If there exists j0 ≥ 1 such that μ∗(Ej0 ) = +∞,
we obtain the result for the σ-additivity since μ∗(Ej0 ) ≤ μ∗(∪j≥1Ej). We may
thus suppose that ∀j ≥ 1, μ∗(Ej) < +∞. From Lemma 2.2.11, ∀j ≥ 1, Ej ∈ MF

and Lemma 2.2.8 gives the result. To obtain the second property, we may assume
that ϕ is real valued and we have only to prove that Lϕ ≤

∫
X
ϕdμ since we shall

deduce from this

−L(ϕ) = L(−ϕ) ≤
∫
X

−ϕdμ = −
∫
X

ϕdμ =⇒ Lϕ ≥
∫
X

ϕdμ.

We note also Cc(X) ⊂ L1(μ), since for ϕ ∈ Cc(X), we have

|ϕ| ≤ sup |ϕ|1suppϕ ∈ L1(μ),

because suppϕ is compact, implying μ(suppϕ) < +∞, and moreover, ϕ is mea-
surable since M contains the Borel σ-algebra. Let us then consider ϕ real-valued
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∈ Cc(X) with compact support K such that ϕ(X) ⊂ [a, b] and let ε > 0 be given.
We consider (yj)1≤j≤N real numbers such that

y0 < a < y1 < · · · < yN = b, 0 < yj+1 − yj < ε.

We define Ej = {x ∈ K, yj−1 < ϕ(x) ≤ yj}, 1 ≤ j ≤ N. The sets Ej are pairwise
disjoint Borel sets with unionK. Consequently, there exist some open sets Vj ⊃ Ej

such that
μ(Ej) ≤ μ(Vj) < μ(Ej) +

ε

N
. (2.2.15)

We consider the open sets Wj = Vj ∩ {x ∈ X,ϕ(x) < yj + ε} ⊃ Ej . We have

μ(Wj) ≤ μ(Vj) < μ(Ej) +
ε

N
, K = ∪1≤j≤NEj ⊂ ∪1≤j≤NWj . (2.2.16)

From Theorem 2.1.3 on partitions of unity, we find some functions ψj belonging
to Cc(Wj ; [0, 1]) such that on K,

∑
1≤j≤N ψj = 1, implying ϕ =

∑
1≤j≤N ψjϕ.

From Lemma 2.2.6 we get

μ(K) ≤ L(
∑

1≤j≤N

ψj) =
∑

1≤j≤N

Lψj , (2.2.17)

and since ψjϕ ≤ (yj + ε)ψj with yj − ε < ϕ(x) for x ∈ Ej , we get

Lϕ = L(
∑

1≤j≤N

ψjϕ) ≤ L(
∑

1≤j≤N

(yj + ε)ψj) =
∑

1≤j≤N

(yj + ε)Lψj

=
∑

1≤j≤N

(|a|+ yj + ε)︸ ︷︷ ︸
=yj−a+ε+a+|a|≥0

Lψj − |a|
∑

1≤j≤N

Lψj

(using (2.2.1) and (2.2.17)) ≤
∑

1≤j≤N

(|a| + yj + ε)μ(Wj) − |a|μ(K)

(using (2.2.16)) ≤
∑

1≤j≤N

(|a| + yj + ε)(μ(Ej) +
ε

N
) − |a|μ(K).

Consequently, we obtain for all ε > 0,

Lϕ ≤
∑

1≤j≤N

(|a| + yj + ε)
(
μ(Ej) +

ε

N

)
− |a|

∑
1≤j≤N

μ(Ej)

= ε|a|+
∑

1≤j≤N

(yj + ε)
(
μ(Ej) +

ε

N

)
(and since on Ej , yj−1 < ϕ =⇒ yj + ε ≤ yj−1 + 2ε ≤ ϕ+ 2ε)

≤ ε|a|+
∑

1≤j≤N

∫
Ej

(ϕ+ 2ε)dμ+ ε(b+ ε)

≤ ε(|a|+ b+ ε) +
∫
X

ϕdμ+ 2εμ(K),

so that Lϕ ≤
∫
X ϕdμ. �
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We have thus proven that (X,M, μ) is a measure space where μ is a positive
measure so that M ⊃ BX . Property (1) in Theorem 2.2.1 follows from Lemma
2.2.12, Property (2) from Lemma 2.2.6, Property (3) from (2.2.2), Property (4) for
open sets from Lemma 2.2.7, Property (4) for sets E ∈ M with μ(E) < +∞, from
Lemma 2.2.11 and Property (5) is proven in Lemma 2.2.3. The proof of Theorem
2.2.1 is complete.

Definition 2.2.13. LetX be a locally compact metric space, BX its Borel σ-algebra,
and let (X,BX , μ) be a measure space where μ is a positive measure. When the
measure μ is finite on the compact sets, we shall say that μ is a positive Borel
measure on X . When Property (3) (resp. (4)) in Theorem 2.2.1 is satisfied for all
E ∈ BX , we shall say that μ is outer regular (resp. inner regular); μ will be said
regular when both properties hold.

Theorem 2.2.14. Let (X, d) be a locally compact metric space which is also σ-
compact (i.e., countable union of compact sets), let L : Cc(X) −→ C be a positive
linear form and let (X,M, μ) be the measure space given by Theorem 2.2.1. The
following additional properties hold.

(1) μ is a regular Borel measure on X.

(2) For E ∈ M and ε > 0, there exists V, F such that

F closed ⊂ E ⊂ V open, μ(V \F ) < ε.

(3) E belongs to M if and only if there exists an Fσ set (countable union of
closed sets) A, and a Gδ set B (countable intersection of open sets), such
that

A ⊂ E ⊂ B, and μ(B\A) = 0. (2.2.18)

We start with the proof of (2). Let KN be a sequence of compact sets with X =
∪N≥1KN . We have

μ(KN ∩ E) ≤
monotonicity

μ(KN ) <
(2) in Th. 2.2.1

+∞.

From (2.2.2) there exists VN open such that VN ⊃ KN ∩ E such that

μ(KN ∩E) ≤ μ(VN ) < μ(KN ∩ E) + ε2−N−2.

Since E, VN ,KN ∈ M, we have μ(VN\(KN ∩ E)) ≤ ε2−N−2 and with the open
set V = ∪N≥1VN ⊃ E,

μ(V \E) = μ(∪N≥1(VN\E)) ≤ μ
(
∪N≥1

(
VN\(E ∩KN)

))
≤
∑
N≥1

μ(VN\(E ∩KN)) ≤ ε/4.
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Applying this to Ec, we find an open set W ⊃ Ec such that μ(W\Ec) ≤ ε/4.
Finally we get

F =W c closed ⊂ E ⊂ V, μ(V \E) ≤ ε/4, μ(E\F ) = μ(W\Ec) ≤ ε/4,

implying the result.

Let us now prove (1). Outer regularity and finiteness on compact sets follow from
Theorem 2.2.1. To get inner regularity, we have only to check Property (4) of
Theorem 2.2.1 for Borel sets with infinite measure. Let E be a Borel set with
infinite measure: from the already proven (2), there exists

F1 closed ⊂ E ⊂ V1 open, μ(V1\F1) < 1.

Since μ(E) = μ(E\F1) + μ(F1) ≤ 1 + μ(F1), we have μ(F1) = +∞. We consider
now the closed set F1 = ∪N≥1(F1 ∩KN ). Then from Proposition 1.4.4 (2), we find

μ
(
F1 ∩ (∪1≤j≤NKj)︸ ︷︷ ︸

LN compact⊂E

)
↑

N→+∞
μ(F1) = +∞,

so that limN μ(LN ) = +∞, providing Property (1) of Theorem 2.2.14.

We are left with the proof of (3). Let E be in M. From the already proven (2) in
this theorem, for all integers j ≥ 1, there exists a closed set Fj and an open set
Vj such that Fj ⊂ E ⊂ Vj with μ(Vj\Fj) ≤ 1/j. We get then

A = ∪j≥1Fj ⊂ E ⊂ ∩j≥1Vj = B,

and for all j ≥ 1, μ(B\A) ≤ μ(Vj\Fj) ≤ 1/j, implying μ(B\A) = 0 and the first
part of the statement. Conversely, if (2.2.18) holds, we have

E = (E\A) ∪ A, E\A ⊂ B\A,

and since the σ-algebra M is complete, we have E\A ∈ M as a subset of the
negligible Borel set B\A ∈ BX ⊂ M, entailing finally E ∈ M. �

Remark 2.2.15.

(1) The Riesz–Markov representation Theorem 2.2.1 remains true when X is a
locally compact Hausdorff topological space. Theorems on partition of unity
must be proven in that framework and require some effort (see Exercise 2.8.2).

(2) Theorem 2.2.14 is true when X is a locally compact Hausdorff topological
space which is σ-compact.

(3) Let us also note that a positive linear form on Cc(X) is continuous (cf.
Exercise 2.8.3).
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2.3 Producing positive Radon measures

After the proof of the Riesz–Markov Theorem 2.2.1, we are in a good position
to produce some significant examples of measure spaces, in particular of Borel
measures on Rm. However, we still need to provide a positive Radon measure to
apply the theorem. A standard way of doing this is to use another classical theory
of integration, due to Bernhard Riemann, but it is certainly overkilling since we
only need a Radon measure, that is integrating continuous functions with compact
support. We shall see here that for this sole purpose, it is not necessary to resort
to another integration theory.

Proposition 2.3.1. Let a ≤ b be real numbers. For f ∈ C([a, b]) (real-valued con-
tinuous functions defined on [a, b]), there exists a unique differentiable function F
defined on [a, b] such that

F (a) = 0, ∀x ∈ [a, b], F ′(x) = f(x). (2.3.1)

We shall note that unique solution as F (x) =
∫ x

a
f(t)dt. The mapping

C([a, b]) � f �→
∫ b

a

f(t)dt is a positive linear form.

Moreover, defining for f ∈ C([a, b]),
∫ a

b
f(t)dt = −

∫ b

a
f(t)dt, we find Chasles’

identity, ∫ b

a

f(t)dt+

∫ c

b

f(t)dt =

∫ c

a

f(t)dt, (2.3.2)

for f ∈ C(I), where I is an interval containing a, b, c. If f ∈ Cc(R), with supp f ⊂

[a, b] we define

∫
R

f(t)dt =

∫ b

a

f(t)dt and we have, for all s ∈ R,∫
R

f(t− s)dt =
∫
R

f(t)dt (2.3.3)

Proof. We note first that the mean value theorem and (2.3.1) imply

sup
x∈[a,b]

|F (x)| ≤ (b− a) sup
x∈[a,b]

|f(x)|. (2.3.4)

Let us prove first uniqueness. If F,G are differentiable on [a, b] and satisfy (2.3.1)
then (F − G)′ = 0 on [a, b] and the mean value theorem implies ∀x ∈ [a, b],
F (x)−G(x) = F (a)−G(a) = 0. Moreover, if (fn)n∈N is a sequence of continuous
functions converging uniformly towards f on [a, b], such that for all n ∈ N, there
exist Fn so that (2.3.1) holds, then the sequences (Fn), (F

′
n) converge uniformly

towards F, f , and F is differentiable on [a, b] with F ′ = f : in fact, using (2.3.4),
we have

sup
x∈[a,b]

|Fn+p(x) − Fn(x)| ≤ (b− a) sup
x∈[a,b]

|fn+p(x) − fn(x)|,
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implying uniform convergence of Fn towards a function F ∈ C([a, b]) such that
F (a) = 0. We have, for x, x + h ∈ [a, b],

Fn(x+ h) − Fn(x) = fn(x)h+
(
fn(x+ θnh) − fn(x)

)
h,

for some θn ∈ (0, 1) and thus

|Fn(x+ h) − Fn(x) − fn(x)h|
≤ |h||fn(x+ θnh)− f(x+ θnh) + f(x+ θnh)− f(x) + f(x) − fn(x)|

≤ |h|
[
2‖fn − f‖C([a,b]) + sup

|t|≤|h|
|f(x+ t) − f(x)|

]
,

(2.3.5)

so that

|Fn(x + h)− Fn(x) − fn(x)h| ≤ |h|
[
εn + ω(h)

]
, with lim

n
εn = 0, lim

h→0
ω(h) = 0.

We find |F (x+h)−F (x)−f(x)h| ≤ |h|ω(h) so that F is differentiable with F ′ = f .
We note that (2.3.1) holds trivially for continuous piecewise affine functions (see
Exercise 2.8.9), and also that this type of functions can approximate uniformly
continuous functions on [a, b]: with the previous remarks we get the existence.
Using the notation F (x) =

∫ x

a
f(t)dt, we find that for α, β ∈ R, f, g ∈ C([a, b]),∫ x

a

(
αf(t) + βg(t)

)
dt = α

∫ x

a

f(t)dt+ β

∫ x

a

g(t)dt,

since if F,G satisfy (2.3.1) for f, g, then αF + βG satisfies (2.3.1) for αf + βg.
Moreover, if f ≥ 0, then F ′ = f ≥ 0 and F (x) ≥ F (a) = 0 for x ∈ [a, b]. Let I be
an interval of R, f ∈ C(I) and let a, b, c ∈ I. If a ≤ b ≤ x ∈ I, defining

F (x) =

∫ x

a

f(t)dt, G(x) =

∫ b

a

f(t)dt+

∫ x

b

f(t)dt,

we find F ′(x) = f(x) = G′(x), F (b) = G(b), so that F (x) = G(x), proving Chasles’
identity (2.3.2) when a ≤ b ≤ c. Let us now consider I an interval of R, f ∈ C(I)
and x0 ≤ x1 ≤ x2 ∈ I. We have∫ x0

x1

f(t)dt =︸︷︷︸
definition

−
∫ x1

x0

f(t)dt =︸︷︷︸
already proven

∫ x2

x1

f(t)dt−
∫ x2

x0

f(t)dt

=

∫ x2

x1

f(t)dt+

∫ x0

x2

f(t)dt,

proving Chasles’ identity (2.3.2) in the general case. In particular for f ∈ Cc(R),
with supp f ⊂ [a, b] we define

∫
R
f(t)dt =

∫ b

a f(t)dt, a consistent definition since if
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supp f ⊂ [a′, b′], Chasles’ identity induces
∫ b

a
f(t)dt =

∫ b′

a′ f(t)dt. Let us prove now

(2.3.3): assuming supp f ⊂ [a, b], we have
∫
f(t− s)dt =

∫ s+b

s+a f(t− s)dt and with

F (x) =

∫ x

a

f(t)dt, G(x) =

∫ s+x

s+a

f(t− s)dt,

we find that F,G are both differentiable with G′(x) = f(s+x−s) = f(x) = F ′(x)
and since F (a) = G(a) = 0, we get F = G and the result. �
Proposition 2.3.2 (Fundamental theorem of calculus).

(1) Let a ≤ b be real numbers and f ∈ C([a, b]). Defining for x ∈ [a, b], F (x) =∫ x

a f(t)dt, the function F ∈ C1([a, b]) and F ′ = f .

(2) Let a ≤ b be real numbers and f, g ∈ C1([a, b]). Then for x ∈ [a, b],∫ x

a

f ′(t)dt = f(x) − f(a)

and ∫ b

a

f ′(t)g(t)dt =
[
f(t)g(t)

]b
a
−
∫ b

a

f ′(t)g(t)dt.

(3) Let I1, I2 be two intervals of R, let κ : I1 −→ I2 be a C1 mapping and let
f : I2 −→ R be continuous. Then for all a1, b1 ∈ I1,∫ κ(b1)

κ(a1)

f(t2)dt2 =

∫ b1

a1

f(κ(t1))κ
′(t1)dt1.

Proof. Property (1) is exactly Definition (2.3.1). To prove (2), we set for x ∈ [a, b],
F (x) =

∫ x

a f
′(t)dt. According to (2.3.1), we have F (a) = 0, F ′ = f ′, implying

F (x) − f(x) = F (a) − f(a), which is the sought formula. Using Leibniz’ (fg)′ =
f ′g + fg′, the last part follows from the first. Let us prove (3): we set for x2 ∈ I2,
x1 ∈ I1,

F (x2) =

∫ x2

κ(a1)

f(t2)dt2, G(x1) =

∫ x1

a1

f(κ(t1))κ
′(t1)dt1.

We have F (κ(a1)) = 0 = G(a1) and for x1 ∈ I1,

d

dx1

(
F (κ(x1)

)
= F ′

(
κ(x1)

)
κ′(x1) = f

(
κ(x1)

)
κ′(x1) = G

′(x1),

so that F (κ(x1)) = G(x1) and with x1 = b1, this is the result. �

The previous propositions show that integrating continuous functions of one
variable with compact support does not require any theoretical effort. For several
variables, it is not much more complicated.
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Proposition 2.3.3. Let m ≥ 1 be an integer and let Cc(Rm) be the vector space of
complex-valued continuous functions with compact support. There exists a unique
positive linear form on Cc(Rm) such that for f(x) =

∏
1≤j≤m fj(xj), fj ∈ Cc(R),

Lf =
∏

1≤j≤m

∫
R

fj(xj)dxj . (2.3.6)

We shall note Lf =
∫
Rm f(x)dx. For all t ∈ Rm, and all f ∈ Cc(Rm), we have∫

Rm

f(x− t)dx =
∫
Rm

f(x)dx. (2.3.7)

Proof. Let us prove the existence for m ≥ 2. We set∫
Rm

f(x)dx =

∫
Rm−1

(∫
R

f(x1, x
′)dx1

)
dx′,

which is meaningful if we know what is the integral of functions with compact
support in m− 1 dimensions: in fact defining

g(x′) =

∫
R

f(x1, x
′)dx1,

we find that g is continuous with compact support since f is continuous with
compact support and (2.3.4) implies

|g(x′) − g(y′)| ≤ sup
x1

|f(x1, x′)− f(x1, y′)| diam(supp f).

Moreover (2.3.6) as well as linearity and positivity are trivially satisfied. To prove
uniqueness, we shall use the following lemma.

Lemma 2.3.4. Let m ≥ 1 be an integer. The vector space ⊗1≤j≤mCc(R) is dense
in Cc(Rm).

Proof of the lemma. We note first that 1 =
∑

j∈Z(1− |t− j|)+ since that function
is 1-periodic and for t ∈ [0, 1[, the condition |t− j| < 1 implies

max(0, j − 1) ≤ t < min(1, j + 1) =⇒ 0 ≤ j ≤ 1,

implying
∑

j∈Z,|t−j|≤1(1 − |t − j|)+ = (1 − t) +
(
1 − (1 − t)

)
= 1. Also, defining

ϕ(t) = (1 − |t|)+ and

Φ(t1, . . . , tm) =
∏

1≤l≤m

ϕ(tl),

we find

1 =
∏

1≤l≤m

∑
jl∈Z
ϕ(tl − jl) =

∑
j∈Zm

Φ(T − j), with T = (t1, . . . , tm).
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Consequently, for ε > 0, T ∈ Rm, k = εj ∈ εZm defining Φk,ε(T ) = Φ
(
ε−1(T−εj)

)
,

we have,

1 =
∑
j∈Zm

Φ(ε−1T − j) =
∑
j∈Zm

Φ
(
ε−1(T − εj)

)
=
∑

k∈εZm

Φk,ε(T ),

with Φk,ε ∈ Cc(Rm), suppΦk,ε = {t, ‖t − k‖∞ ≤ ε} (here for t ∈ Rm, ‖t‖∞ =
max1≤j≤m |tj |). Let f ∈ Cc(Rm); since supp f is compact, the following sums are
finite and

f(t) =
∑

k∈εZm

Φk,ε(t)
(
f(t)− f(k)

)
+
∑

k∈εZm

Φk,ε(t)f(k).

Since we have∑
k∈εZm

Φk,ε(t)|f(t)−f(k)| ≤
∑

k∈εZm

Φk,ε(t) sup
‖t−s‖≤ε

|f(t)−f(s)| = sup
‖t−s‖≤ε

|f(t)−f(s)|,

the uniform continuity of f implies uniform convergence for
∑

k∈εZm Φk,ε(t)f(k)
towards f . But Φk,ε is a tensor product of continuous functions with compact
support defined on R, concluding the proof of the lemma. �

Uniqueness in the proposition follows then from the linearity and continuity
of L (which follows from positivity (see Exercise 2.8.3)): let L1, L2 be linear forms
satisfying the assumptions of Proposition 2.3.3 and let f ∈ Cc(Rm). From Lemma
2.3.4, f is a uniform limit of a sequence fn belonging to the vector space spanned
by tensor products on which L1 and L2 coincide. We find

(L1 − L2)(f) = lim
n
(L1 − L2)(fn) = lim

n
0 = 0.

Property (2.3.7) is a consequence of uniqueness and of that property for m = 1,
which is (2.3.3) in Proposition 2.3.1. �

2.4 The Lebesgue measure on Rm, properties
and characterization

Definition 2.4.1. Let m be a positive integer. Let us consider the positive linear
form defined on Cc(Rm) by Proposition 2.3.3: to ϕ ∈ Cc(Rm), we associate its
“Riemann integral”

∫
Rm ϕ(x)dx. Applying the Riesz–Markov representation theo-

rem 2.2.1 and Theorem 2.2.14, we find a measure space (Rm,Lm, λm) where λm is
a positive measure satisfying the properties of these theorems. We shall say that
λm is the Lebesgue measure on Rm and Lm is the Lebesgue σ-algebra on Rm.

N.B. Note in particular that Lm contains the Borel σ-algebra Bm on Rm, and
that λm is finite on compact sets as well as regular and complete. We shall note
the space L1(λm) as L1(Rm).
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Theorem 2.4.2. Let m ≥ 1 be an integer and let (Rm,Lm, λm) be the Lebesgue mea-
sure space Rm defined above. The σ-algebra Lm is stable by translation, contains
the Borel σ-algebra Bm, and is such that

(1) λm

(∏
1≤j≤d[aj , bj ]

)
=
∏

1≤j≤m(bj − aj), for aj ≤ bj,
(2) ∀E ∈ Lm, ∀x ∈ Rm, λm(E + x) = λm(E).

(3) If μ is a positive measure defined on Bm, finite on the compact sets, invariant
by translation (i.e., such that (2) holds) and such that μ([0, 1]m) = 1, then
μ = λm on Bm.

Proof. Let us prove (1), assuming first aj < bj for all 1 ≤ j ≤ m. Let ε > 0 such
that ∀j ∈ {1, . . . ,m}, aj + ε < bj − ε and ϕj ∈ Cc(R; [0, 1]) such that

ϕj(xj) =

⎧⎪⎨⎪⎩
1 for xj ∈ [aj + ε, bj − ε],
affine for xj ∈ [aj , bj ]\[aj + ε, bj − ε],
0 for xj /∈]aj , bj [.

We consider the function ϕ ∈ Cc(Rm; [0, 1]) defined by ϕ(x) = ϕ1(x1) . . . ϕm(xm).
We have ∫

Rm

ϕ(x)dx =
∏

1≤j≤m

∫
R

ϕj(xj)dxj =
∏

1≤j≤m

(bj − aj − 2ε+ ε).

Defining P =
∏

1≤j≤m[aj , bj ] and for N � k > k0 = 2
min1≤j≤m(bj−aj)

,

Pk =
∏

1≤j≤m

[aj +
1

k
, bj − 1

k
],

we get for ε = 1/k,

λm(Pk) =

∫
Rm

1Pk
dλm ≤

=
∏

1≤j≤m(bj−aj−ε)︷ ︸︸ ︷∫
Rm

ϕ(x)dx =

∫
Rm

ϕdλm ≤
∫
Rm

1Pdλm = λm(P ),

so that, from Proposition 1.4.4(2) and P̊ = ∪k>k0Pk (increasing union),

λm(P̊ ) = lim
k
λm(Pk) ≤ lim

k

∏
1≤j≤m

(bj−aj−
1

k
) =

∏
1≤j≤m

(bj−aj) ≤ λm(P ). (2.4.1)

This implies also that
λm({x1 = a1}) = 0, (2.4.2)

since for ε > 0 and M > 0, we have

λm
(
{(x1, x′) ∈ R× Rm−1, |x1 − a1| < ε/2, ‖x′‖∞ < M/2}

)
≤ εMm−1,



88 Chapter 2. Actual Construction of Measure Spaces

so that λm
(
{(x1, x′) ∈ R× Rm−1, x1 = a1, ‖x′‖∞ < M}

)
= 0, entailing by count-

able union λm({x1 = a1}) = 0. Since the difference P\P̊ is included in a finite
union of hyperplanes, Property (1) follows from (2.4.1), (2.4.2).

Let us prove now property (2) in Theorem 2.4.2. Let K be a compact subset of an
open set V and let χ ∈ Cc(V ; [0, 1]) such that χ|K = 1. We have from (2.2.9)

λm(K) ≤
∫
Rm

χ(x)dx =

∫
Rm

χdλm ≤
∫
Rm

1V dλm ≤ λm(V ),

and the inner regularity of λm ((4) in Theorem 2.2.1) implies

λm(V ) = sup
Kcompact ⊂V

λm(K) ≤ sup
χ∈Cc(V ;[0,1])

∫
Rm

χ(x)dx ≤ λm(V ). (2.4.3)

For θ ∈ Rm, we note τθ the translation of vector θ: we have τθ(x) = x + θ, and
τθ = τ−1

−θ is a homeomorphism, implying that τθ(V ) is open as the inverse image
of an open set by a continuous map. We find then

λm(V + θ) = sup
χ∈Cc(V +θ;[0,1])

∫
Rm

χ(x)dx = sup
ψ∈Cc(V ;[0,1])

∫
Rm

ψ(x+ θ)dx

= sup
ψ∈Cc(V ;[0,1])

∫
Rm

ψ(x)dx = λm(V ).

Since τθ is a homeomorphism, Bm is invariant by translation and using the outer
regularity of Lebesgue’s measure, we find for E ∈ Bm and θ ∈ Rm,

λm(E + θ) = inf
Wopen⊃E+θ

λm(W ) = inf
V open⊃E

λm(V + θ)

= inf
V open⊃E

λm(V ) = λm(E).
(2.4.4)

Let E ∈ Lm. Using (3) in Theorem 2.2.14, we can find a Fσ set A, a Gδ set B
such that A ⊂ E ⊂ B and λm(B\A) = 0. This implies for θ ∈ Rm,

A+ θ ⊂ E + θ ⊂ B + θ,

and moreover A+ θ is still an Fσ set since τθ is a homeomorphism:

τθ(∪n∈NFn) = ∪n∈Nτθ(Fn) = ∪n∈N τ
−1
−θ (Fn)︸ ︷︷ ︸
closed

.

We prove as well that B + θ is a Gδ set and using (2.4.4), we find

λm
(
τθ(B)\τθ(A)

)
= λm

(
τθ(B\A)

)
= λm(B\A) = 0,

which implies from (3) in Theorem 2.2.14, that E + θ belongs to Lm. We find
moreover that

λm(E + θ) = λm(A+ θ) = λm(A) = λm(E),

concluding the proof of (2).



2.4. The Lebesgue measure on Rm, properties and characterization 89

Let us prove (3) in Theorem 2.4.2. We claim that

μ
(
{x1 = 0}

)
= 0. (2.4.5)

In fact from Proposition 1.4.4(2) we have

μ
(
{x1 = 0}

)
= sup

M∈N
μ
(
{x1 = 0} ∩ { max

2≤j≤m
|xj | ≤M}︸ ︷︷ ︸

KM

)
,

and we note that for M ∈ N,{
max

1≤j≤m
|xj | ≤M

}
= ∪|α|≤M (KM + α−→e1) ⊃ ∪α∈Q,|α|≤M (KM + α−→e1),

which implies∑
α∈Q,|α|≤M

μ(KM ) =
∑

α∈Q,|α|≤M

μ(KM + α−→e1) ≤ μ
(
{ max
1≤j≤m

|xj | ≤M}
)
< +∞,

so that μ(KM ) = 0 = μ
(
{x1 = 0}

)
. From (2.4.5) and the invariance by translation

of μ, we find that all affine hyperplanes parallel to the axes have measure 0.

Lemma 2.4.3. Let (X,M, μ) be a measure space where μ is a positive measure. Let
(Ej)j∈N be a sequence of M such that for j �= k, μ(Ej ∩ Ek) = 0. Then we have

μ(∪j∈NEj) =
∑
j∈N
μ(Ej).

Proof of the lemma. From Proposition 1.4.4(2), it is enough to prove that for all
integers n, μ(∪0≤j≤nEj) =

∑
0≤j≤n μ(Ej). This is obvious inductively on n since

μ(∪0≤j≤n+1Ej) = μ
(
∪0≤j≤n(Ej\En+1)

)
+ μ(En+1)

=
∑

0≤j≤n

μ(Ej\En+1) + μ(En+1)

=
∑

0≤j≤n

(
μ(Ej\En+1) + μ(Ej ∩En+1)

)
+ μ(En+1)

=
∑

0≤j≤n+1

μ(Ej). �

For n ∈ N∗, we have

[0, 1]m = ∪0≤kj<n

rectangle Pk︷ ︸︸ ︷∏
1≤j≤m

[
kj
n
,
kj + 1

n

]
.
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We note that we have nm rectangles Pk which are all translated from the rectangle
P0 = [0, 1/n]m and such that Pk ∩Pl is included in an affine hyperplane parallel to
the axes for distinct multi-indices k, l. Using Lemma 2.4.3, consequences of (2.4.5)
on the measure of hyperplanes parallel to the axes as well as translation invariance
of μ, we find

1 = μ([0, 1]m) = nmμ([0, 1/n]m), i.e., μ([0, 1/n]m) = n−m.

Let us check now the compact rational rectangle,

P =
∏

1≤j≤m

[aj , bj ], aj , bj ∈ Q, [aj , bj ] =
[
0,
qj
n

]
+
cj
n
,
qj
n

= bj − aj , qj ∈ N.

Since μ is translation-invariant, using again Lemma 2.4.3 and the previous argu-
ments, we find

μ(P ) = μ

( ∏
1≤j≤m

[
0,
qj
n

])
= μ

(
∪0≤kj<qj

∏
1≤j≤m

[
kj
n
,
kj + 1

n

])
= q1 . . . qmn

−m =
∏

1≤j≤m

(bj − aj).
(2.4.6)

Lemma 2.4.4. Let Ω be an open subset of Rm. There exists a sequence of compact
rational rectangles (Qn)n∈N such that for n �= m, the intersection Qn ∩ Qm is
included in an affine hyperplane parallel to the axes and

Ω = ∪n∈NQn.

Proof of the lemma. Lemma 1.2.6 provides a sequence (Pn)n∈N of compact ratio-
nal rectangles such that Ω = ∪n∈NPn. Consequently, defining

R0 = P0, R1 = P1\P0, . . . , Rn = Pn\(∪0≤j<nPj), (2.4.7)

we get Ω = ∪n∈NRn, with Rn pairwise disjoint. Let us consider (Ij)1≤j≤m and
(Jj)1≤j≤m bounded intervals of R with rational endpoints and the rational rect-
angles S =

∏
1≤j≤m Ij , T =

∏
1≤j≤m Jj . The set S\T is a finite union of pairwise

disjoint rectangles and S ∩ T is a rational rectangle: it is true for m = 1 since I\J
is a union of at most two disjoint intervals with rational endpoints and moreover
for m > 1, with

S′ =
∏

1≤j≤m−1

Ij , T
′ =

∏
1≤j≤m−1

Jj ,

we have

S\T = (S′ × Im)\(T ′ × Jm) =

disjoint union︷ ︸︸ ︷(
(S′\T ′)× Im

)
∪
(
(S′ ∩ T ′) × Im\Jm

)
.
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From the induction hypothesis S′\T ′ is a disjoint union ofNm−1 rational rectangles
and S′ ∩ T ′ is a rational rectangle, we find that S\T is a union of Nm disjoint
rational rectangles with

Nm ≤ Nm−1 + 2, so that Nm ≤ 2m.

Moreover, since
S ∩ T =

(
S′ ∩ T ′

)
×
(
Im ∩ Jm

)
,

we find that S ∩ T is a rational rectangle. Going back to (2.4.7), we find that R1

is a finite union of pairwise disjoint rational rectangles and inductively, it is also
true for

Rn+1 = Pn+1\(∪0≤j≤nPj) =
(
Pn+1\(∪0≤j<nPj)

)
\Pn.

We have proven that Rn is a finite disjoint union of rational rectangles, i.e.,

Rn = ∪1≤k≤MnSk,n, Sk,n rational rectangle, k �= l =⇒ Sk,n ∩ Sl,n = ∅.

Moreover, since the Rn are pairwise disjoint, we have also

n �= m =⇒ Sk,n ∩ Sl,m = ∅.

As a result we have

Ω = ∪n∈NPn = ∪n∈NRn

= ∪n∈N ∪1≤k≤Mn Sk,n ⊂ ∪n∈N ∪1≤k≤Mn Sk,n ⊂ ∪n∈NPn = Ω,
(2.4.8)

and since the rational rectangles Sk,n are pairwise disjoint, the intersection of
their closure is included in an hyperplane parallel to the axes. The countable
family (

(
Sk,n)1≤k≤Mn

)
n∈N of compact rational rectangle satisfies the properties

asked for (Qn) in Lemma 2.4.4, whose proof is now complete. �

We obtain thus for an open set Ω, using Lemmas 2.4.3–2.4.4 and (2.4.6),

μ(Ω) =
∑
n∈N
μ(Qn) =

∑
n∈N
λm(Qn) = λm(Ω),

and this implies that λm coincide with μ on the open sets. Let E ∈ Bm. Exterior
regularity of λm (Theorem 2.2.1(3)), implies

λm(E) = inf
Ω open ⊃ E

λm(Ω) = inf
Ω open ⊃ E

μ(Ω).

It suffices then that we prove outer regularity for μ. We consider the positive linear
form

Λ(ϕ) =

∫
Rm

ϕdμ,

defined on Cc(Rm): let us note that μ is finite on compact sets and since for
ϕ ∈ Cc(Rm), |ϕ| ≤ sup |ϕ|1suppϕ (and ϕ measurable since continuous), Λ is indeed
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a positive linear form on Cc(Rm) ⊂ L1(μ). Theorem 2.2.1 provides the existence
of a regular measure ν, defined on Bm such that for ϕ ∈ Cc(Rm),∫

Rm

ϕdν =

∫
Rm

ϕdμ. (2.4.9)

Let Ω be an open subset of Rm; from Lemma 1.2.6, there exists a sequence of
compact sets (Kj)j≥1 such that

Ω = ∪j≥1Kj. (2.4.10)

We consider

ϕ1 ∈ Cc(Ω; [0, 1]) such that ϕ1|K1
= 1

ϕ2 ∈ Cc(Ω; [0, 1]) such that ϕ2|K1∪suppϕ1
= 1

ϕ3 ∈ Cc(Ω; [0, 1]) such that ϕ3|K1∪K2∪suppϕ1∪suppϕ2
= 1

. . . . . . .

ϕn+1 ∈ Cc(Ω; [0, 1]) such that ϕn+1|K1∪···∪Kn∪suppϕ1∪···∪suppϕn
= 1.

. . . . . . .

We have 0 ≤ ϕn ≤ ϕn+1, ϕn(x) ↑ 1Ω(x)(from (2.4.10)). As a result, applying
Beppo Levi’s theorem for the measure ν, (2.4.9) and Beppo Levi’s theorem for μ,
we get

ν(Ω) = lim
n

∫
Rm

ϕndν = lim
n

∫
Rm

ϕndμ = μ(Ω).

Thus ν is a regular measure coinciding with μ on the open sets. Using (3) in
Theorem 2.2.14 for ν, we find for E ∈ Bm and for all ε > 0,

F closed ⊂ E ⊂ V open, ε > ν(V \F︸ ︷︷ ︸
open

) = μ(V \F ).

Consequently, we obtain

μ(E) + ε ≥ μ(E) + μ(V \F ) ≥ μ(E) + μ(V \E) = μ(V ) ≥ μ(E)

so that μ(E) = infV open⊃E μ(V ), concluding the proof of Theorem 2.4.2. �

We shall prove in Chapter 5 a general theorem on changes of variables in
integrals on Rm, but the following lemma will be useful already in Chapter 2.

Lemma 2.4.5. Let m ∈ N∗ and let λm be the Lebesgue measure on Rm. The space
L1(Rm) is invariant by translation and dilation, i.e., for θ > 0, T ∈ Rm, f ∈
L1(Rm), the mappings x �→ f(θx) and x �→ f(x− T ) belong to L1(Rm) and∫

Rm

f(x)dx =

∫
Rm

f(x− T )dx = θm
∫
Rm

f(xθ)dx.
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Proof. The first assertions are obvious using simple functions and Definition 1.5.2
since the mappings x �→ θ−1x and x �→ x + T are continuous thus measurable.
Since the Lebesgue measure is invariant by translation, we get readily the first
equality. For θ > 0, we consider the positive measure μθ defined on Bm by

μθ(A) = θ
mλm(θ−1A).

The measure μθ is finite on compact sets (for K compact, θ−1K is compact), is
invariant by translation (since λm is invariant by translation) and such that

μθ
(
[0, 1]m

)
= θmλm(θ−1[0, 1]m) = θmλm([0, θ−1]m) = 1.

Theorem 2.4.2 implies that μθ = λm, so that for A ∈ Bm,∫
Rm

1A(x)dλm(x) =

∫
Rm

1A(x)dμθ(x) = θ
mλm(θ−1A)

= θm
∫
Rm

1θ−1A(x)dλm(x) = θm
∫
Rm

1A(θx)dλm(x),

which implies the last equality for f ∈ L1(λm). �

2.5 Carathéodory theorem on outer measures

Definition 2.5.1. LetX be a set and let μ∗ be an outer measure onX (see Definition
2.2.4). We define

Mμ∗ = {A ∈ P(X), ∀Y ∈ P(X), μ∗(Y ) = μ∗(Y ∩ A) + μ∗(Y ∩ Ac)}. (2.5.1)

A subset E of X is said to be μ∗-negligible if μ∗(E) = 0.

We note first that

X, ∅ ∈ Mμ∗ ,
[
A ∈ Mμ∗ ⇐⇒ Ac ∈ Mμ∗

]
, (2.5.2)

A ∈ Mμ∗ ⇐⇒ ∀Y ∈ P(X), μ∗(Y ) ≥ μ∗(Y ∩ A) + μ∗(Y ∩ Ac), (2.5.3)

any negligible set belongs to Mμ∗ . (2.5.4)

In fact Property (2.5.1) is symmetrical in A,Ac and μ∗(∅) = 0, proving (2.5.2).
Moreover, the subadditivity property (2.2.7) implies μ∗(Y ∩ A) + μ∗(Y ∩ Ac) ≥
μ∗(Y ), proving (2.5.3). Finally for E negligible and Y ⊂ X , from the monotonicity
property (2.2.6), we obtain

μ∗(Y ∩E) + μ∗(Y ∩ Ec) ≤ μ∗(E) + μ∗(Y ) = μ∗(Y ),

proving (2.5.4) from the already proven (2.5.3).
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Lemma 2.5.2. Let X be a set, μ∗ be an outer measure on X and Mμ∗ be the
subset of P(X) defined by (2.5.1). Then if A1, A2 belong to Mμ∗ so do A1 ∩ A2

and A1 ∪A2. Moreover if {Aj}j≥1 is a countable family of elements of Mμ∗ , then
∪j≥1Aj belongs to Mμ∗ .

Proof. We have for Y ⊂ X , using A1 ∈ Mμ∗ ,

μ∗(Y ∩Ac
2) = μ

∗(Y ∩ Ac
2 ∩ Ac

1) + μ
∗(Y ∩ Ac

2 ∩A1),

μ∗(Y ∩A2) = μ
∗(Y ∩ A2 ∩ Ac

1) + μ
∗(Y ∩ A2 ∩A1),

so that, using A2 ∈ Mμ∗ ,

μ∗(Y )=μ∗(Y ∩A2)+μ
∗(Y ∩Ac

2)

=μ∗(Y ∩A2∩Ac
1)︸ ︷︷ ︸

[1]

+μ∗(Y ∩A2∩A1)︸ ︷︷ ︸
[2]

+μ∗(Y ∩Ac
2∩Ac

1)︸ ︷︷ ︸
[3]

+μ∗(Y ∩Ac
2∩A1)︸ ︷︷ ︸

[4]

.

Applying the previous equality to Y ∩ (A1 ∪ A2), we find

μ∗
(
Y ∩ (A1 ∪ A2)

)
= μ∗(Y ∩A2 ∩ Ac

1) + μ
∗(Y ∩ A2 ∩ A1) + μ

∗(∅) + μ∗(Y ∩ A1 ∩ Ac
2),

(2.5.5)

so that

μ∗
(
Y ∩ (A1 ∪ A2)

)
+ μ∗

(
Y ∩ (A1 ∪ A2)

c
)
= [1] + [2] + [4] + [3] = μ∗(Y ),

proving that A1∪A2 belongs to Mμ∗ (as well as A1∩A2 by complement). Also we
obtain inductively that ∪1≤j≤nAj ∈ Mμ∗ for A1, . . . , An ∈ Mμ∗ . Let us consider
now a countable family (Aj)j≥1 of elements of Mμ∗ . We may first consider

B1 = A1, B2 = A2 ∩Ac
1, . . . , Bn = An ∩ Ac

n−1 ∩ · · · ∩Ac
1, . . .

so that each Bj ∈ Mμ∗ (first part of the lemma), the family (Bj)j≥1 is pairwise
disjoint (since Bn ⊂ An and Bn+m+1 ⊂ Ac

n for m ≥ 0) and ∪j≥1Bj = ∪j≥1Aj

since Bn ⊂ An and An ⊂ ∪1≤j≤nBj (true for n = 1 and if true for some n ≥ 1
An+1 = Bn+1∪

(
An+1∩(A1∪· · ·∪An)

)
⊂ ∪1≤j≤n+1Bj). We have now for Y ⊂ X ,

μ∗
(
Y ∩ (∪1≤j≤nBj)

)
=
∑

1≤j≤n

μ∗(Y ∩Bj),

since that property is true for n = 1 and if true for some n ≥ 1, we get since
∪1≤j≤nBj , Bn+1 ∈ Mμ∗ , applying (2.5.5) for A1 = ∪1≤j≤nBj , A2 = Bn+1, noting
that A1 ∩ A2 = ∅,

μ∗
(
Y ∩ (∪1≤j≤n+1Bj)

)
= μ∗

(
Y ∩ (∪1≤j≤nBj)

)
+ μ∗(Y ∩Bn+1).
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As a result, for Y ⊂ X ,

μ∗(Y ) = μ∗
(
Y ∩ (∪1≤j≤nBj)

)
+ μ∗

(
Y ∩ (∩1≤j≤nB

c
j )
)

=
∑

1≤j≤n

μ∗(Y ∩Bj) + μ
∗(Y ∩ (∩1≤j≤nB

c
j )
)

≥
∑

1≤j≤n

μ∗(Y ∩Bj) + μ
∗(Y ∩ (∩1≤jB

c
j )
)
,

so that

μ∗(Y ) ≥
∑
1≤j

μ∗(Y ∩Bj) + μ
∗(Y ∩ (∩1≤jB

c
j )
)
, (2.5.6)

and by subadditivity μ∗(Y ) ≥ μ∗
(
Y ∩(∪j≥1Bj)

)
+μ∗

(
Y ∩(∪1≤jBj)

c
)
, proving via

(2.5.3) that ∪1≤jAj = ∪1≤jBj ∈ Mμ∗ , completing the proof of the lemma. �

The following theorem, due to C. Carathéodory (1873–1950) is a set-
theoretic result allowing to construct a measure from an outer measure.

Theorem 2.5.3 (Carathéodory theorem on outer measures). Let X be a set, μ∗

be an outer measure on X and Mμ∗ be defined by (2.5.1). Then, with μ standing
for the restriction of μ∗ to Mμ∗ , the triple (X,Mμ∗ , μ) is a measure space where
the σ-algebra Mμ∗ is μ-complete (contains all subsets of any E ∈ Mμ∗ such that
μ∗(E) = 0).

Proof. Property (2.5.2) and Lemma 2.5.2 prove that Mμ∗ is a σ-algebra on X (see
Definition 1.1.1). Moreover, we have μ∗(∅) = 0 (see Property (2.2.5) of an outer
measure) and if (Bj)j≥1 is a countable pairwise disjoint family of Mμ∗ , applying
(2.5.6) to Y = ∪j≥1Bj, we find

μ∗(∪j≥1Bj) ≥
∑
j≥1

μ∗(Bj) ≥︸︷︷︸
(2.2.7)

μ∗(∪j≥1Bj),

concluding the proof (note that Mμ∗ is μ-complete from (2.5.4)). �

The following result will be useful later on.

Theorem 2.5.4. Let (X, d) be a metric space and μ∗ be an outer measure on X
such that for A,B subsets of X satisfying d(A,B) > 0, we have μ∗(A ∪ B) =
μ∗(A) + μ∗(B). Then the Borel σ-algebra BX is included in Mμ∗ .

Proof. Since Mμ∗ is a σ-algebra, it is enough to prove that closed sets belong to
Mμ∗ . Let F be a closed subset of X : from (2.5.3), we need only to prove that for
all Y ⊂ X with μ∗(Y ) < +∞, we have μ∗(Y ) ≥ μ∗(Y ∩ F ) + μ∗(Y ∩ F c). For
n ∈ N∗, we define

Bn = {x ∈ Y ∩ F c, d(x, F ) ≥ 1/n},
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so that Bn ⊂ Bn+1 and ∪n≥1Bn = Y ∩ F c: each Bn is included in Y ∩ F c and
conversely if x ∈ Y ∩F c, we have d(x, F ) > 0 since F is closed (see Lemma 2.1.1).
As a result

d(Y ∩ F,Bn) = inf
x′∈Y ∩F
x′′∈Bn

d(x′, x′′) ≥ inf
x′′∈Bn

d(x′′, F ) ≥ 1/n > 0,

and thus μ∗(Y ∩ F ) + μ∗(Bn) = μ
∗((Y ∩ F ) ∪Bn

)
≤ μ∗(Y ). To obtain the result

we have only to prove limn μ
∗(Bn) = μ

∗(Y ∩ F c). We set for n ≥ 1,

Cn = Bn+1 ∩Bc
n = {x ∈ Y ∩ F c,

1

n
> d(x, F ) ≥ 1

n+ 1
},

and we note that for |j − k| ≥ 2, say j ≥ k + 2, xj ∈ Cj , xk ∈ Ck, we have

d(xj , xk) +
1

j
> d(xj , xk) + d(xj , F ) ≥ d(xk, F ) ≥ 1

k + 1
,

so that d(Cj , Ck) ≥ 1
k+1 − 1

j > 0, implying that4∑
1≤j≤N

μ∗(C2j) = μ
∗(∪1≤j≤NC2j

)
≤ μ∗(Y ) < +∞,

∑
1≤j≤N

μ∗(C2j+1) = μ
∗(∪1≤j≤NC2j+1

)
≤ μ∗(Y ) < +∞.

As a result,
∑

j≥1 μ
∗(Cj) < +∞ and the subadditivity of μ∗ implies

μ∗(Y ∩ F c) ≤ μ∗(Bn) +
∑
j≥n

μ∗(Cj),

so that μ∗(Y ∩ F c) ≤ lim infn μ
∗(Bn) ≤ lim supn μ

∗(Bn) ≤ μ∗(Y ∩ F c) proving
the sought limn μ

∗(Bn) = μ
∗(Y ∩ F c). �

2.6 Hausdorff measures, Hausdorff dimension

Definition, first properties

Let (X, d) be a separable metric space. Then, there exists a countable dense set
D = {an}n∈N in X so that for all ε > 0, X = ∪n∈NB(an, ε) (any x ∈ X is the limit
of a sequence in D and thus for any ε > 0, there exists an ∈ D with d(x, an) < ε).
As a result, any subset E of X can be covered by a countable union of open sets
with diameter ≤ 2ε. We may thus give the following definition.

4If (Aj)1≤j≤N are subsets of X such that d(Aj , Ak) > 0 for j �= k, we have μ∗(∪1≤j≤NAj) =∑
1≤j≤N μ∗(Aj): this is true for N = 2 and inductively for N ≥ 2

μ∗(∪1≤j≤N+1Aj) = μ∗(∪1≤j≤NAj) + μ∗(AN+1)

since d(AN+1,∪1≤j≤NAj) ≥ min1≤j≤N d(AN+1, Aj) > 0, proving the property.
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Definition 2.6.1. Let (X, d) be a separable metric space and let κ ∈ R+. For ε > 0,
we define for E ⊂ X ,

h∗κ,ε(E) = inf

{∑
n∈N

(diamUn)
κ, E ⊂ ∪n∈NUn, Un open, diamUn ≤ ε

}
.

Lemma 2.6.2. With X, d, h∗κ,ε as above, for all E ⊂ X, the function R∗+ � ε �→
h∗κ,ε(E) ∈ R+ is decreasing. The function h∗κ defined on P(X) by

h∗κ(E) = lim
ε→0+

h∗κ,ε(E) = sup
ε>0

h∗κ,ε(E), (2.6.1)

is an outer measure on X (see Definition 2.2.4).

Proof. First of all we note that, say for subsets of R, the larger is the set, the
smaller is the infimum and the larger is the supremum (let’s call that the mono-
tonicity principle). Let ε1 < ε2 be positive real numbers and let E be a subset
of X . If (Un)n∈N is an open covering of E with diamUn ≤ ε1, it is an open cov-
ering of E with diamUn ≤ ε2, implying from the monotonicity principle that
h∗κ,ε2(E) ≤ h∗κ,ε1(E), which implies (2.6.1).We find also that h∗κ,ε(∅) = 0 and thus
h∗κ(∅) = 0. Let E1 ⊂ E2 be subsets of X ; then if (Un)n∈N is an open covering
of E2 with diamUn ≤ ε, it is also an open covering of E1, implying from the
monotonicity principle that

h∗κ,ε(E1) ≤ h∗κ,ε(E2) =⇒ h∗κ(E1) ≤ h∗κ(E2).

Let (Ej)j∈N be a countable family of subsets of X such that h∗κ(Ej) < +∞ for all
j ∈ N and let ε > 0, δ > 0 be given; we have h∗κ,ε(Ej) ≤ h∗κ(Ej) < +∞, so that
there exists an open covering (Un,j)n∈N of Ej with diamUn,j ≤ ε, and

h∗κ,ε(Ej) ≤
∑
n

(diamUn,j)
κ < h∗κ,ε(Ej) + δ2

−j−1

and thus ∪j∈NEj ⊂ ∪j,n∈NUn,j, implying

h∗κ,ε(∪j∈NEj) ≤
∑
j,n

(diamUn,j)
κ ≤

∑
j

h∗κ,ε(Ej) +
∑
j

δ2−j−1 ≤
∑
j

h∗κ(Ej) + δ.

Since this inequality is true for any ε, δ positive, we get indeed

h∗κ(∪j∈NEj) ≤
∑
j

h∗κ(Ej). (2.6.2)

Moreover that inequality is obviously satisfied when h∗κ(Ej) = +∞ for some j,
completing the proof of the lemma. �
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Remark 2.6.3. For a subset E of a separable metric space, with

Uε(E) = {countable open covering (Un)n∈N of E with diamUn ≤ ε},

and for U = (Un)n∈N ∈ Uε(E), H(κ, U) =
∑

n∈N(diamUn)
κ we have

h∗κ,ε(E) = inf
U∈Uε(E)

H(κ, U), h∗κ(E) = sup
ε>0

{
inf

U∈Uε(E)
H(κ, U)

}
. (2.6.3)

That formula implies readily

0 < ε1 ≤ ε2 =⇒ Uε1(E) ⊂ Uε2(E) =⇒ h∗κ,ε2 ≤ h∗κ,ε1 , (2.6.4)

E1 ⊂ E2 =⇒ Uε(E2) ⊂ Uε(E1) =⇒ h∗κ,ε(E1) ≤ h∗κ,ε(E2), (2.6.5)

0 ≤ κ1 ≤ κ2, 0 < ε ≤ 1 =⇒ H(κ2, U) ≤ H(κ1, U) =⇒ h∗κ2
≤ h∗κ1

. (2.6.6)

Lemma 2.6.4. Let X, d, h∗κ be as above and let A,B be subsets of X such that

0 < d(A,B) = inf
a∈A,b∈B

d(a, b).

Then we have h∗κ(A ∪B) = h∗κ(A) + h∗κ(B).

Proof. The subadditivity of h∗κ gives h∗κ(A ∪ B) ≤ h∗κ(A) + h∗κ(B). Let us prove
the reverse inequality; we may of course assume that h∗κ(A ∪ B) < +∞ and thus
h∗κ(A), h

∗
κ(B) are both finite. Then for ε, δ positive numbers with ε ≤ d(A,B)/2,

there exists an open covering (Un)n∈N of A ∪B such that

h∗κ,ε(A ∪B) ≤
∑
n∈N

(diamUn)
κ < h∗κ,ε(A ∪B) + δ ≤ h∗κ(A ∪B) + δ. (2.6.7)

We define NA = {n ∈ N, Un ∩ A �= ∅} and we note that if n ∈ NA, Un ∩ B = ∅:
otherwise ∃a ∈ Un ∩ A, ∃b ∈ Un ∩B so that

d(A,B) ≤ d(a, b) ≤ diamUn ≤ ε = d(A,B)/2,

which is impossible since d(A,B) > 0. We get thus NA ∩NB = ∅; as a result since
A ∪B ⊂ ∪n∈NUn, we have from A ∩B = ∅,

A ⊂ ∪n∈NA(Un ∩ A) ⊂ ∪n∈NAUn, B ⊂ ∪n∈NB (Un ∩B) ⊂ ∪n∈NBUn,

so that h∗κ,ε(A) ≤
∑

n∈NA
(diamUn)

κ, h∗κ,ε(B) ≤
∑

n∈NB
(diamUn)

κ, and thus
from (2.6.7) and NA ∩NB = ∅,

h∗κ,ε(A) + h∗κ,ε(B) ≤ h∗κ(A ∪B) + δ
=⇒ lim

ε→0+

(
h∗κ,ε(A) + h∗κ,ε(B)

)
≤ h∗κ(A ∪B) + δ,

implying h∗κ(A) + h∗κ(B) ≤ h∗κ(A ∪B) + δ for all δ > 0, entailing the result. �
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Definition 2.6.5. Let (X, d) be a separable metric space and let κ ≥ 0. The outer
measure h∗κ on X is defined in (2.6.1). We define the Hausdorff measure hκ of
dimension κ by using Theorem 2.5.3: (X,Mh∗κ , hκ) is a measure space where the
complete σ-algebraMh∗κ is defined by (2.5.1) and hκ is the restriction of h∗κ to Mh∗κ .
From Theorem 2.5.4 and Lemma 2.6.4, Mh∗κ contains the Borel σ-algebra BX .

Lemma 2.6.6. Let (X, d) be a separable metric space and let A be a subset of X
such that h∗0(A) < +∞. Then A is a finite set and cardA = h∗0(A). The Hausdorff
measure h0 is the counting measure on X (see Example (3) on page 18).

Proof. If h∗0(A) < +∞, we find that for all ε > 0, h∗0,ε(A) ≤ h∗0(A), so that

∃N ≥ 1, ∀ε > 0, ∃ an open covering (Un)1≤n≤N of A with diamUn ≤ ε.

Claim. This implies that the set A is finite with cardA ≤ N . Assume that a1,
. . . , aN , aN+1 are distinct elements of A. We set

δ = min
1≤i�=j≤N+1

d(ai, aj).

It is not possible to find (Un)1≤n≤N covering A with diamUn ≤ δ/2: otherwise,
we would have two points ai, aj , i �= j in the same Un, so that

δ/2 ≥ diamUn ≥ d(ai, aj) ≥ δ

which is not possible since δ > 0, proving the claim. The claim implies as well
cardA ≤ h∗0(A). On the other hand, if A is a finite set, we can cover A with
cardA open balls with arbitrary small radius, which implies h∗0,ε(A) ≤ cardA and
eventually cardA = h∗0(A). For A infinite, we have proven h∗0(A) = +∞, proving
the lemma. �

Hausdorff dimension

Lemma 2.6.7. Let (X, d) be a separable metric space, let κ ≥ 0 be given and let A
be a subset of X. Then if h∗κ(A) < +∞, we have h∗κ′(A) = 0 for all κ′ > κ and if
h∗κ(A) > 0, we have h∗κ′′(A) = +∞ for all κ′′ < κ.

Proof. If h∗κ(A) < +∞, we find that for all ε > 0, h∗κ,ε(A) ≤ h∗κ(A) < +∞.We can
find a countable open covering (Un)n∈N of A such that diamUn ≤ ε and

h∗κ,ε(A) ≤
∑
n

(diamUn)
κ < h∗κ,ε(A) + 1.

As a consequence, for κ′ > κ, we have∑
n

(diamUn)
κ′ =

∑
n

(diamUn)
κ′−κ(diamUn)

κ

≤ εκ
′−κ
(
h∗κ,ε(A) + 1

)
≤ εκ

′−κ
(
h∗κ(A) + 1

)
.
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As a result, we find 0 ≤ h∗κ′,ε(A) ≤
∑

n(diamUn)
κ′ ≤ εκ′−κ

(
h∗κ(A) + 1

)
, so that

h∗κ′(A) = lim
ε→0+

h∗κ′,ε(A) = 0.

Let us assume now that h∗κ(A) > 0 for some positive κ. For ε > 0, we can find
a countable open covering (Un)n∈N of A such that diamUn ≤ ε. For κ′′ < κ, we
have

(diamUn)
κ′′εκ−κ′′ ≥ (diamUn)

κ

and thus
∑

n(diamUn)
κ′′ ≥

∑
n ε

κ′′−κ(diamUn)
κ ≥ εκ′′−κh∗κ,ε(A). As a result, we

find
h∗κ′′,ε(A) ≥ εκ

′′−κh∗κ,ε(A)

and since limε→0+ h∗κ,ε(A) = h∗κ(A) > 0, we get h∗κ′′(A) = limε→0+ h∗κ′′,ε(A) =
+∞. �
Definition 2.6.8. Let (X, d) be a separable metric space and let A be a subset of
X such that h0(A) = +∞. The Hausdorff dimension of A is defined as

Dh(A) = sup{κ ≥ 0, h∗κ(A) = +∞}. (2.6.8)

A set such that h0(A) < +∞ is finite (Lemma 2.6.6): we define then Dh(A) = 0.

Note that we have also

Dh(A) = κ+ = inf{κ ≥ 0, h∗κ(A) = 0}. (2.6.9)

In fact, if h∗κ(A) > 0 for all κ > 0, Lemma 2.6.7 implies that h∗κ(A) = +∞ for all
κ ≥ 0 so that Dh(A) = +∞ = inf ∅. If there exists κ0 > 0 such that h∗κ0

(A) = 0,
then Lemma 2.6.7 implies h∗κ(A) = 0 for κ > κ0, proving that

h∗κ(A) = 0 if κ > κ+ = inf{κ′ ≥ 0, h∗κ′(A) = 0}.

If κ+ = 0, we get h∗κ(A) = 0 on (0,+∞) and κ+ = 0 = Dh(A). If κ+ > 0, we find
h∗κ(A) = 0 on (κ+,+∞). Then for an increasing positive sequence with limit κ+,
κn < κ+, we get

h∗κn
(A) > 0

so that h∗κ(A) = +∞ for κ ∈ [0, κn) and thus on [0, κ+), proving Dh(A) = κ+.

Hausdorff measures on Rm

Lemma 2.6.9. Let Rm be equipped with the distance d∞ defined by

d∞(x, y) = max
1≤j≤m

|xj − yj | (2.6.10)

and let K be a compact subset of Rm with positive diameter δ for the distance d∞.
Then there exists z′j ≤ z′′j ≤ z′j + δ such that

K ⊂
∏

1≤j≤m

[z′j, z
′′
j ].
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Proof. The continuous mapping Rm � x = (x1, . . . , xm) �→ x1 = π1(x) ∈ R is such
that π1(K) is a compact subset of R: π1(K) ⊂ [inf π1(K), supπ1(K)] = [z′1, z

′′
1 ] so

that z′ = (z′1, . . . , z
′
m), z′′ = (z′′1 , . . . , z

′′
m) ∈ K and thus

|z′1 − z′′1 | ≤ d∞(z′, z′′) ≤ δ,

proving the lemma. �

Considering the separable metric space (Rm, d∞), Definition 2.6.5 provides
a measure space (Rm, hm,M) where M is hm complete and contains the Borel σ-
algebra Bm on Rm. Moreover, from its very definition, hm is translation invariant
since hm,ε is translation invariant for any ε > 0; moreover hm is finite on compact
sets since, forK bounded in Rm, there existsM > 0 such thatK ⊂ [−M/2,M/2]m
and thus for ε > 0, δ > 0, we have5 with ak = −M

2 + εk,

[−M/2,M/2]m ⊂ ∪ (k1,...,km)
0≤kj≤[M/ε]

( ∏
1≤j≤m

]akj − δ, akj + ε+ δ[
)

︸ ︷︷ ︸
open with d∞ diameter=ε+2δ

,

so that hm,ε+2δ([−M/2,M/2]m) ≤ ([M/ε]+1)m(ε+2δ)m ≤
(
M+ M2δ

ε +ε+2δ
)m
.

With δ = ε2/2 we get

hm,ε+ε2([−M/2,M/2]m) ≤ (M + εM + ε+ ε2)m,

so that taking the limit of both sides when ε goes to 0, we obtain

hm(K) ≤ hm([−M/2,M/2]m) ≤Mm < +∞. (2.6.11)

Theorem 2.6.10. Let (Rm, d∞) be as above. Definition 2.6.5 provides a measure
space (Rm, hm,M)where M is hm complete and contains the Borel σ-algebra Bm

on Rm. The Lebesgue measure space (Rm, λm,Lm) given in Definition 2.4.1 is
such that Lm ⊂ M and λm coincides with hm on Lm.

Proof. Since (Rm, λm,Lm) is given by Theorems 2.2.14–2.2.1, it is enough to prove
that λm coincides with hm on the Borel σ-algebra Bm: in fact the σ algebra Lm is
generated by Bm and the subsets of λm-negligible Borel sets, so that, if we know
that hm = λm on Bm, the λm-negligible Borel sets will be also hm-negligible and
thus will belong to the hm-complete M.

On the other hand we already know that hm is a measure defined on the
Borel σ-algebra Bm, finite on compact sets, invariant by translation. To apply (3)
in Theorem 2.4.2 and obtain our result, it is enough to prove that hm([0, 1]m) = 1

5Using the integer-valued floor function [·], defined in footnote page 16,

x ∈ [−M/2,M/2] =⇒ [(x+M/2)/ε] = k ≤ [M/ε] =⇒ εk ≤ x+M/2 ≤ ε(k + 1)

=⇒ εk−M/2− δ < εk−M/2 ≤ x ≤ ε(k + 1) −M/2 < ε(k + 1)−M/2 + δ.
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and in fact, from (2.6.11) and translation invariance, we are reduced to the proof
of hm([0, 1]m ≥ 1.

Let us assume that hm([0, 1]m) < 1. Then for all ε > 0 we can find a
(finite) collection of open bounded sets (Uj,ε)1≤j≤Nε with diameter ≤ ε, cover-
ing [0, 1]m and such that

∑
1≤j≤Nε

(diamUj,ε)
m ≤ hm([0, 1]m) < 1. Since each

Uj,ε is relatively compact, we find from Lemma 2.6.9 and Theorem 2.4.2 that
λm(Uj,ε) ≤ (diamUj,ε)

m = (diamUj,ε)
m and this implies

1 = λm([0, 1]m) ≤
∑

1≤j≤Nε

λm(Uj,ε) ≤
∑

1≤j≤Nε

(diamUj,ε)
m ≤ hm([0, 1]m) < 1,

which is impossible. The proof of Theorem 2.6.10 is complete. �

It is important to note that we have found another way to construct the
Lebesgue measure on Rm, using the Carathéodory theorem on outer measures
(Theorem 2.5.3), Theorem 2.5.4, and the definition and properties of the m-
dimensional Hausdorff measure on Rm. That construction is independent from the
Riesz–Markov Theorem 2.2.1 and proceeds from a different perspective, a more
set-theoretic approach without using a positive linear form as in the Riesz–Markov
argument. It is however an interesting and important piece of information that the
two measures constructed by these two different methods indeed coincide.

2.7 Notes

Let us follow the new names of mathematicians encountered along the text.

Constantin Carathéodory (1873–1950) was a Greek mathematician.

Michel Chasles (1793–1880) was a French mathematician.

Gottfried Wilhelm Leibniz (1646–1716) was a German philosopher and mathe-
matician, co-inventor with Isaac Newton of Infinitesimal Calculus.

Andrei Markov (1856–1922) was a Russian mathematician.

Frigyes (Frédéric) Riesz (1880–1956) was a Hungarian mathematician who made
fundamental contributions to functional analysis. His younger brother, Mar-
cel Riesz (1886–1969), was also a mathematician, author of basic contribu-
tions in Harmonic Analysis.

Johann Radon (1887–1956) was an Austrian mathematician.
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2.8 Exercises

Topology

Exercise 2.8.1. Let X be a topological space and let f : X → R. The function f is
said to be lower semicontinuous at a point a ∈ X when

∀ε > 0, ∃Vε ∈ Va, ∀x ∈ Vε, f(a)− ε < f(x). (2.8.1)

The function f is said to be upper semicontinuous at a point a ∈ X when

∀ε > 0, ∃Vε ∈ Va, ∀x ∈ Vε, f(x) < f(a) + ε. (2.8.2)

The function f is said to be lower (resp. upper) semicontinuous on X if it is lower
(resp. upper) semicontinuous at every point of X.

(1) Prove that f is continuous at a ∈ X iff it is lower and upper semicontinuous
at a.

(2) Prove that f is lower semicontinuous on X iff {x ∈ X, f(x) > α} is open for
all α ∈ R. Prove that f is upper semicontinuous on X iff {x ∈ X, f(x) < α}
is open for all α ∈ R.

(3) Let A ⊂ X. Prove that 1A is lower (resp. upper) semicontinuous iff A is open
(resp. closed).

(4) Let (fi)i∈I be a family of lower (resp. upper) semicontinuous functions on X.
Then supi∈I fi (resp. infi∈I fi) is lower (resp. upper) semicontinuous. Note
that the former is valued in (−∞,+∞] and the latter in [−∞,+∞): our
definitions of lower and upper semicontinuity are given by the conditions in
(2).

(5) Let X be a non-empty compact topological space and let f : X → R be a
lower (resp. upper) semicontinuous function. Then there exists a ∈ X such
that infx∈X f(x) = f(a) (resp. supx∈X f(x) = f(a)).

(6) Prove that a function f : X → R is lower (resp. upper) semicontinuous at a
point a ∈ X iff lim infx→a f(x) = f(a) (resp. lim supx→a f(x) = f(a)).

We recall the following definitions, extending Definition 1.2.11: let X be a
topological space, let f be a mapping from X into R and let a ∈ X . We define

lim inf
x→a

f(x) = sup
V ∈Va

(
inf
x∈V
f(x)

)
, lim sup

x→a
f(x) = inf

V ∈Va

(
sup
x∈V
f(x)

)
. (2.8.3)

We have for V1, V2 ∈ Va,

inf
x∈V2

f(x) ≤ inf
x∈V1∩V2

f(x) ≤ sup
x∈V1∩V2

f(x) ≤ sup
x∈V1

f(x),

so that infx∈V2 f(x) ≤ infV1∈Va

(
supx∈V1

f(x)
)
= lim supx→a f(x) which implies

lim inf
x→a

f(x) ≤ lim sup
x→a

f(x). (2.8.4)
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Answer. (1) Continuity at a ∈ X is expressed as:

∀ε > 0, ∃Vε ∈ Va, f(Vε) ⊂ (f(a)− ε, f(a) + ε),

thus is equivalent to the conjunction of upper and lower semicontinuity.

(2) We assume that f is lower semicontinuous on X : let x0 ∈ X and α < f(x0).
For 0 < ε = f(x0)− α, we find V ∈ Vx0 such that

f(V ) ⊂ (f(x0) − ε,+∞) = (α,+∞) =⇒ V ⊂ f−1
(
f(V )

)
⊂ f−1

(
(α,+∞)

)
,

implying that f−1
(
(α,+∞)

)
is open. Conversely, assuming f−1

(
(α,+∞)

)
open

for all α, if we are given x0 ∈ X, ε > 0, we know that

x0 ∈ {x ∈ X, f(x) > f(x0) − ε} is open,

entailing (2.8.1). The result on upper semicontinuity can be obtained by remarking
that f upper semi-continuous is equivalent to −f lower semicontinuous.

(3) Let A ⊂ X ; then we have

{x ∈ X,1A(x) > α} =

⎧⎪⎨⎪⎩
∅ if α ≥ 1

A if 1 > α > 0

X if α ≤ 0,

,

so that lower semicontinuity of 1A is equivalent to A open. Upper semicontinuity
of 1A = 1 − 1Ac is equivalent to lower semicontinuity of 1Ac , which is equivalent
to Ac open, i.e., to A closed.

(4) We have for α ∈ R and (fi)i∈I a family of lower semicontinuous functions

{x ∈ X, sup
i∈I
fi(x) > α} = ∪i∈I {x ∈ X, fi(x) > α}︸ ︷︷ ︸

open

,

so that supi∈I fi is lower semicontinuous. Using infi∈I fi = − supi∈I (−fi) gives
that when (fi)i∈I is a family of upper semicontinuous functions, so is infi∈I fi.

(5) Let f be a lower semicontinuous function on a non-empty compact set X .
Then for α ∈ R, Kα = {x ∈ X, f(x) ≤ α} is a compact set. Let β = infx∈X f(x):
we have Kα ⊂ Kα′ for α ≤ α′ and for α > β, Kα �= ∅

∩α>β{x ∈ X, f(x) ≤ α} = ∩α>βKα is a non-empty compact set L:

otherwise, we would have

X = ∪α>βK
c
α =︸︷︷︸

compactness
of X

∪1≤j≤NK
c
αj

=
(
∩1≤j≤NKαj

)c
,

implying emptiness for Kmin1≤j≤N αj . Any a ∈ L satisfies f(a) = β.
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(6) Let us assume that f is upper semicontinuous at a: then for all ε > 0, ∃V ∈ Va

so that f(V ) ⊂ (−∞, f(a) + ε) and thus f(a) ≤ supV f(x) ≤ f(a) + ε, implying
lim supx→a f(x) = f(a). Conversely, if the latter property holds, using the very
definition of the infimum, we find that for all ε > 0, ∃V ∈ Va so that,

f(a) ≤ sup
V
f(x) < f(a) + ε =⇒ f(V ) ⊂ (−∞, f(a) + ε)

and upper semicontinuity at a.

Exercise 2.8.2 (Urysohn’s Lemma). Let Ω be an open subset of a locally compact
Hausdorff topological space X and K be a compact subset of Ω. Show that there
exists a function ϕ ∈ Cc(X) such that

0 ≤ ϕ ≤ 1, ϕ|K = 1, suppϕ ⊂ Ω.

Answer. Note that this result is proven in Proposition 2.1.2 for a metric space.
Using the local compactness (see Proposition 10.2.36), we have

K ⊂ ∪x∈KUx, x ∈ Ux open, relatively compact, Ux ⊂ Ω,

and the compactness of K entails

K ⊂ ∪1≤j≤NUxj︸ ︷︷ ︸
=V0, open

⊂ ∪1≤j≤NUxj = ∪1≤j≤NUxj︸ ︷︷ ︸
=V0, compact

⊂ Ω.

Repeating the procedure, we can find V1 open relatively compact such that

K ⊂ V1 ⊂ V1 ⊂ V0 ⊂ V0 ⊂ Ω.

Let us assume that for q1 = 0, q2 = 1, . . . , qn (n ≥ 2) distinct rational numbers in
[0, 1], we are able to find Vqj open relatively compact such that

qi < qj =⇒ K ⊂ V qj ⊂ Vqi ⊂ V qi ⊂ Ω.

Note that this property is proven for n = 2. Let qn+1 ∈ Q∩(0, 1) in the complement
of En = {q1, . . . , qn}, and qi the largest element of En such that qi < qn+1 and
let qj be the smallest element of En such that qj > qn+1. As above, we can find
Vqn+1 open relatively compact such that

V qj ⊂ Vqn+1 ⊂ V qn+1 ⊂ Vqi .

With {qn}n≥1 = Q ∩ [0, 1], we can construct (Vqn)n≥1 open relatively compact
such that

q, q′ ∈ Q ∩ [0, 1], q′ < q =⇒ K ⊂ V q ⊂ Vq′ ⊂ V q′ ⊂ Ω.
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We define now for q ∈ Q ∩ [0, 1],

fq = q1Vq , f = sup
Q∩[0,1]

fq, valued in [0, 1], lower s.c., (2.8.5)

gq = (1 − q)1V q
+ q, g = inf

Q∩[0,1]
gq, valued in [0, 1], upper s.c. (2.8.6)

If q′ < q, we have Vq ⊂ Vq′ and thus on Vq, fq = q ≤ gq′ = (1 − q′) + q′ = 1. If
q < q′, we have V q′ ⊂ Vq and thus on Vq,

fq = q ≤ gq′ =
{
1 on V q′ ,

q′ on (V q′)
c.

We have proven that for all q, q′, fq ≤ gq′ which implies 0 ≤ f ≤ g ≤ 1. On the
other hand, K ⊂ ∩q∈Q∩[0,1]Vq so that for x ∈ K, fq(x) = q and thus f(x) = 1:
f|K = 1. We claim that for all x, f(x) = g(x): otherwise, we could find x such
that f(x) < g(x) and thus q, q′ ∈ Q ∩ [0, 1] with

0 ≤ f(x) < q < q′ < g(x) ≤ 1,

so that x /∈ Vq (since fq(x) < q) and x ∈ V q′ (since gq′(x) > q
′) which is incompat-

ible with V q′ ⊂ Vq. Summing-up, the function f is 1 on K, valued in [0, 1], lower
s.c. by construction and upper s.c. since equal to g, so is eventually continuous.
Since V1 ⊂ Vq ⊂ V0 ⊂ V 0 for all q ∈ Q ∩ [0, 1], the function f = supq∈Q∩[0,1] q1Vq

is vanishing on the open set (V 0)
c so that (supp f)c ⊃ (V 0)

c and

supp f ⊂ V 0 ⊂ Ω.

Exercise 2.8.3. Let X be a topological space and let L be a positive linear form on
Cc(X). Show that L is continuous, in the sense that

∀Kcompact ⊂ X, ∃γK > 0, ∀f ∈ CK(X), |Lf | ≤ γK sup |f |, (2.8.7)

where CK(X) = {f ∈ Cc(X), supp f ⊂ K}. (2.8.8)

Answer. For f ∈ Cc(X), supp f ⊂ K compact, we have with χK ∈ Cc(X ;R+),
χK = 1 on K,

−χK sup |f | ≤ f ≤ χK sup |f | =⇒ |Lf | ≤ LχK sup |f |.

Exercise 2.8.4. Let (X, d) be a metric space such that all closed balls are compact:
(X, d) is said to be proper and is locally compact (some locally compact metric
spaces are not proper). Let Ω be an open subset of X and let K be a compact
subset of Ω. Find a simpler proof of Proposition 2.1.2: there exists a function
ϕ ∈ Cc(X) such that

0 ≤ ϕ ≤ 1, ϕ|K = 1, suppϕ ⊂ Ω.

The function ϕ can be chosen to be identically 1 on a neighborhood of K.
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Answer. We have proven in (2.1.4) that ε0 = infx∈K, y/∈Ω d(x, y) = d(K,Ω
c) > 0.

As a result, we find
Kε0 := ∪x∈KB(x, ε0) ⊂ Ω (2.8.9)

since for y ∈ B(x, ε0) and x ∈ K, we have y ∈ Ω: otherwise, y ∈ Ωc and

ε0 = d(K,Ωc) ≤ d(x, y) < ε0,

which is impossible. Let us then define for some positive ε1, ε2 such that ε1+ε2 < ε0,

ϕ(x) = max

(
0, 1− 1

ε2
d(x,Kε1)

)
. (2.8.10)

That function is valued in [0, 1] and is continuous as the maximum of two contin-
uous functions. Moreover if ϕ(x) �= 0, then d(x,Kε1) < ε2 so that

∃y ∈ Kε1 = ∪t∈KB(t, ε1), d(x, y) < ε2, ∃t ∈ K, d(y, t) < ε1,

implying d(t, x) < ε1 + ε2 and x ∈ Kε1+ε2 ⊂ {x, d(x,K) ≤ ε1 + ε2} = L. The
set L is closed (continuity of d(·,K)) and included in Ω since L ⊂ Kε0 ⊂ Ω, so
that suppϕ ⊂ L. Moreover the set L is compact since if (xn)n∈N is a sequence in
L, we find a sequence (yn)n∈N in K such that d(xn, yn) ≤ ε1 + ε2. Extracting a
convergent subsequence (ynk

)k∈N with limit y ∈ K of (yn)n∈N, we get

d(xnk
, y) ≤ d(xnk

, ynk
) + d(ynk

, y) ≤ ε1 + ε2 + d(ynk
, y)

(for k large enough) ≤ ε1 + ε2 +
1

2
(ε0 − ε1 − ε2) = r < ε0.

The sequence (xnk
)k∈N lies (for k large enough) in Bc(y, r), which is assumed to

be compact. We can extract another subsequence of (xnk
)k∈N, converging with

limit x ∈ Bc(y, r). The inequalities above ensure also that d(x, y) ≤ ε1+ ε2 so that
x ∈ L, proving the compactness of L.

Remark 2.8.5. Lemma 2.1.1 implies that ϕ is Lipschitz-continuous with a Lipschitz
constant 1/ε2. Since ε2 can be chosen arbitrarily in (0, d(K,Ωc)), the function ϕ
can be chosen Lipschitz continuous with a Lipschitz constant > 1

d(K,Ωc) .

Exercise 2.8.6 (Partitions of unity on Rm). We define for x ∈ Rm,

ρ(x) =

{
exp−(1− |x|2)−1 for |x| < 1,

0 for |x| ≥ 1,

where |x| = (
∑

1≤j≤m x
2
j)

1/2 stands for the Euclidean norm on Rm. The function

ρ is C∞ with supp f = B̄(0, 1) noted Bm.

Answer. Let us first consider the function ρ0 defined by

ρ0(t) = e
−1/t for t > 0, ρ0(t) = 0 for t ≤ 0.
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Let us prove by induction on k that ρ0 ∈ Ck(R) is such that for t ≤ 0, ρ
(k)
0 (t) = 0

and for t > 0, ρ
(k)
0 (t) = pk(1/t)e

−1/t, where pk is a polynomial. That property is
true for k = 0 since limt→0+ e

−1/t = 0. Assume that the property is true for some
k ≥ 0. Then, since ρ0 ∈ C∞(R∗), we get for t > 0,

ρ
(k+1)
0 (t) = e−1/t t−2

(
pk(1/t)− p′k(1/t)

)︸ ︷︷ ︸
polynomial pk+1 in t−1

, and ρ
(k+1)
0 (t) = 0 for t < 0.

We get also that limt→0 t
−1
(
ρ
(k)
0 (t) − ρ(k)0 (0)

)
= limT→+∞ Tpk(T )e

−T = 0, so

that ρ0 has a (k+1)th vanishing derivative at 0. The function ρ
(k+1)
0 is continuous

since limT→+∞ pk+1(T )e
−T = 0, completing the induction. As a result the function

ρ0 belongs to C∞(R), with support [0,+∞) and is flat at the origin, i.e., ∀k ∈
N, ρ(k)0 (0) = 0. We have ρ(x) = ρ0(1− |x|2) so that ρ ∈ C∞(Rm;R), with support
equal to the closed unit Euclidean ball.

N.B. The functions ρ, ρ0 are paradigmatic examples of C∞ functions which are
not real-analytic: the function ρ0 cannot be analytic at 0, since it is not identically
0 near the origin although its Taylor coefficients are all vanishing.

Exercise 2.8.7. The vector space of C∞ compactly supported functions from Rm

into C will be noted C∞c (Rm). Let Ω be an open subset of Rm and let K be a
compact subset of Ω. Then there exists a function ϕ ∈ C∞c (Ω; [0, 1]) such that
ϕ = 1 on a neighborhood of K.

Answer. We recall that6

d(K,Ωc) = inf
x∈K,y∈Ωc

|x− y| > 0.

As a result, we have with Bm standing for the closed unit Euclidean ball of Rm,
ε0 = d(K,Ωc), K + ε0Bm

◦
⊂ Ω: otherwise, we could find |t| < 1, x ∈ K such that

x+ ε0t = y ∈ Ωc, implying

0 < d(K,Ωc) ≤ |x− y| < ε0 = d(K,Ωc),

which is impossible. With the function ρ defined in Exercise 2.8.6, we define with
0 < ε ≤ ε1

2 <
ε0
4 ,

ϕ(x) =

∫
1K+ε1Bm(y)ρ

(
(x− y)ε−1

)
ε−ndy

(∫
ρ(t)dt

)−1

.

The function ϕ is C∞ and such that

suppϕ ⊂ K + ε1Bm + εBm ⊂ K +
3ε0
4

Bm ⊂ K + ε0Bm◦ ⊂ Ω.

6We may assume that both K and Ωc are non-empty, so that d(K,Ωc) is a positive real number.
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Moreover ϕ = 1 on K + ε1
2 B

m (which is a neighborhood of K), since if x ∈ K +
ε1
2 B

m, we have, for y satisfying |x−y| ≤ ε, that y ∈ K+ ε1
2 B

m+ εBm ⊂ K+ ε1Bm.

As a result, with ρ̃ = ρ
(∫
ρ(t)dt

)−1
, for x ∈ K + ε1

2 B
m, we have

1 =

∫
ρ̃((x − y)ε−1)ε−ndy =

∫
ρ̃((x− y)ε−1)ε−n1K+ε1Bm(y)dy = ϕ(x).

We note also that, since ρ̃ ≥ 0 with integral 1, 1L(y) ∈ {0, 1}, we have, for all
x ∈ Rm, 0 ≤ ϕ(x) ≤ 1.

Exercise 2.8.8. Let Ω1, . . . ,Ωn be open subsets of Rm and let K be a compact set
with K ⊂ Ω1 ∪ · · · ∪ Ωn. Then for each j ∈ {1, . . . , n}, there exists a function
ψj ∈ C∞c (Ωj ; [0, 1]) such that

∑
1≤j≤n ψj ∈ C∞c (∪n

j=1Ωj ; [0, 1]) and

1 =
∑

1≤j≤n

ψj |K .

We shall say that (ψj)1≤j≤n is a partition of unity on K, attached to (Ωj)1≤j≤n.
In particular, for θ ∈ C∞c (∪1≤j≤nΩj), using the previous result for K = supp θ,
we get

θ =
∑

1≤j≤n

θj , with θj = θψj ∈ C∞c (Ωj).

Answer. A simple inspection of the proof of Theorem 2.1.3 provides smooth func-
tions.

Exercise 2.8.9 (Approximating continuous functions by piecewise affine functions).
A function p : R → R is said to be piecewise affine if there exists x1 < x2 <
· · · < xN real numbers such that the restriction of p to each interval (xj , xj+1) for
0 ≤ j ≤ N + 1 is affine (x0 = −∞, xN+1 = +∞). Prove that the vector space of
compactly supported continuous piecewise affine functions is dense in Cc(R;R).

Answer. Let φ be a function in Cc(R;R), supported in [a, b] and let ε ∈ (0, 1) be
given. We consider N ∈ N such that N = [1 + (b − a)/ε] + 1 and

x1 = a < · · · < xj = a+ (j − 1)ε < · · · < xN = a+ (N − 1)ε︸ ︷︷ ︸
≥b

.

We define

p(x) =
∑

1≤j<N

1[xj,xj+1)(x)
(
φ(xj) +

x− xj
xj+1 − xj

(
φ(xj+1) − φ(xj)

))
.

The function p is piecewise affine, compactly supported in [a, b+ 1], and verifies

p(xj) = φ(xj) = p(xj+), for 1 ≤ j < N, p(xN ) = 0 = φ(xN ) = p(xN+),

p(xj−) = φ(xj), for 2 ≤ j ≤ N, p(x1) = 0 = φ(x1) = p(x1−),
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thus continuous. We have

p(x) − φ(x) =
∑

1≤j<N

1[xj,xj+1)(x)
(
φ(xj) − φ(x) + x− xj

xj+1 − xj
(
φ(xj+1) − φ(xj)

))
,

and thus

p(x) − φ(x)

=
∑

1≤j<N

1[xj,xj+1)(x)
{(
φ(xj) − φ(x)

) xj+1 − x
xj+1 − xj

+
x− xj
xj+1 − xj

(
φ(xj+1) − φ(x)

)}
,

implying
sup
x∈R

|p(x) − φ(x)| ≤ sup
|x′−x′′|≤ε

|φ(x′) − φ(x′′)| = ω(ε).

Since φ is uniformly continuous, we get limε→0 ω(ε) = 0 and the result.

Exercise 2.8.10. Let Ω be an open subset of Rn. Prove that there exists a sequence
(Kj)j≥1 of compact subsets of Ω such that

Ω = ∪j≥1Kj , Kj ⊂ K̊j+1. (2.8.11)

Prove also that if K is a compact subset of Ω, there exists j ∈ N∗ such that
K ⊂ Kj.

Answer. Given an open set Ω of Rn, we define for j ≥ 1,

Kj = {x ∈ Rn, d(x,Ωc) ≥ 1/j, |x| ≤ j}.

We note from the continuity of d(·,Ωc) and of the norm that Kj is a closed subset
of Rn; moreover it is also bounded and thus is a compact subset of Rn, and in fact
of Ω since d(x,Ωc) > 0 implies x /∈ Ωc = Ωc (Ω is open). We have also for j ≥ 1
that

Kj ⊂
{
x ∈ Rn, d(x,Ωc) >

1

j + 1
, |x| < j + 1

}
which is open ⊂ Kj+1,

so that Kj ⊂ K̊j+1. Finally, taking x ∈ Ω, we have d(x,Ωc) > 0 (Ωc is closed) and
thus

j ≥ max
( 1

d(x,Ωc)
, E(|x|) + 1

)
=⇒ x ∈ Kj,

proving Ω = ∪j≥1Kj and the result, since the very last statement follows from

K ⊂ Ω = ∪j≥1K̊j+1,

which implies the result by the Borel–Lebesgue property and the fact that the
sequence (Kj) is increasing.
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Exercise 2.8.11 (Dini’s Lemma).7 Let a ≤ b be real numbers and let fn : [a, b] → R
be a sequence of continuous functions. We assume that for all x ∈ [a, b], the
sequence (fn(x)) is decreasing with limit 0.

(1) Prove that (fn) converges uniformly towards 0.

(2) Prove that the result of (1) does not hold without the assumption of decreasing
monotonicity.

Answer. (1) Reductio ad absurdum8: if the sequence (fn) were not converging
uniformly towards 0, the sequence ωn = supx∈[a,b] |fn(x)| is such that there exists
ε0 > 0 and a subsequence (ωnk

)k∈N such that for all k, ωnk
> ε0. As a result for

all k, there exists xk ∈ [a, b] such that

fnk
(xk) > ε0.

Thanks to the compactness of [a, b], we may find a subsequence of (xk)k∈N con-
verging with limit c ∈ [a, b]. To simplify notation, let us assume that (xk)k∈N is
converging towards c. For l ≥ 0, we have nk+l ≥ nk, and thus

fnk
(xk+l) ≥ fnk+l

(xk+l) > ε0.

Since fnk
is continuous, we find fnk

(c) ≥ ε0 > 0, contradicting the convergence of
the sequence (fn(c)) towards 0.

(2) Let us define ϕn piecewise affine on [0, 1],

ϕn(0) = 0, ϕn(1/n) = 1, ϕn(t) = 0 for t ≥ 2/n.

The sequence of continuous functions (ϕn) converges pointwise to 0, not uniformly
since sup |ϕn| = 1. Moreover the result is incorrect without the continuity assump-
tion: defining ψn on [0,1] by

ψn(0) = 0 = ψn(t) for t ≥ 1/n, ψn(t) = 1 − nt for 0 < t < 1/n,

we find that for all t ∈ [0, 1], the decreasing sequence
(
ψn(t)

)
n∈N goes to zero.

However, the convergence is not uniform since sup[0,1] |ψn| = 1.

Exercise 2.8.12 (Support of an L1 function). Let (X,M, μ) be a measure space
where μ is a positive measure such that X is a topological space with M ⊃ BX

and μ(Ω) > 0 for any non-empty open set Ω. Let f ∈ L1(μ).

(1) Defining
supp f = {x ∈ X, � ∃V ∈ Vx, f|V = 0, μ-a.e.}, (2.8.12)

prove that (supp f)c is open and is the largest open set on which f = 0 a.e.

7Ulisse Dini (1845–1918) is an Italian mathematician, who served as Director of Scuola Normale
Superiore in Pisa. A bronze statue of Dini is located near the Piazza dei Cavalieri.
8About this method of proof, we may quote G.H. Hardy in A Mathematician’s Apology [29]:
Reductio ad absurdum, which Euclid loved so much, is one of a mathematician’s finest weapons.
It is a far finer gambit than any chess play: a chess player may offer the sacrifice of a pawn or
even a piece, but a mathematician offers the game.
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(2) Prove that supp f depends only on the class of f modulo equality μ-a.e.

(3) Prove that supp f coincides with Definition (2.1.1) when f is a continuous
function.

(4) Show by an example that it would be absurd to take (2.1.1) as a definition for
non-continuous functions.

Answer. (1) The complement of supp f is open, and every open set on which f
vanishes a.e. is included in (supp f)c.

(2) is obvious: if f, f̃ coincide a.e. f|V = 0 a.e. is equivalent to f̃|V = 0 a.e.

(3) It is enough to prove that for a continuous function f , and an open set V ,
f|V = 0 a.e. implies f|V = 0. If it were not the case, and f(x0) �= 0 for some
x0 ∈ V , the set

{x ∈ V, |f(x)| > |f(x0)|/2 > 0}

would be open (thanks to the continuity of f) and non-empty (contains x0), thus
with a positive measure. As a consequence, f would not be 0 a.e. on V , contra-
dicting the assumption.

(4) Taking f = 1Q, we see that f = 0, λ1-a.e., so that supp f = ∅. Taking (2.1.1)
as a definition for the support of f would imply supp f = Q = R.

Measure theory

Exercise 2.8.13 (Completion of a measure). Let (X,M, μ) be a measure space
where μ is a positive measure. Defining N =

⋃
E∈M,μ(E)=0 P(E), prove that

M′ = {M ∪N}M∈M,N∈N

is the σ-algebra generated by M∪N and defining forM ∈ M, N ∈ N , μ′(M∪N) =
μ(M), prove that this definition is consistent and (X,M′, μ′) is a measure space
such that μ′|M = μ.

Answer. Let A =M ∪N ∈ M′,M ∈ M, N ∈ N , N ⊂ E ∈ M, μ(E) = 0:

Ac = (M c ∩N c ∩E) ∪ (M c ∩N c ∩ Ec) = (M c ∩N c ∩E)︸ ︷︷ ︸
∈N

∪ (M c ∩ Ec)︸ ︷︷ ︸
∈M

∈ M′.

Let us consider sequences An = Mn ∪ Nn ∈ M′,Mn ∈ M, Nn ∈ N , Nn ⊂ En ∈
M, μ(En) = 0:

∪n∈NAn = (∪n∈NMn)︸ ︷︷ ︸
∈M

∪(∪n∈NNn)

and since ∪n∈NNn ⊂ ∪n∈NEn, μ(∪n∈NEn) = 0, we get ∪n∈NAn ∈ M′. As a result
M′ is a σ-algebra on X , containing M∪N , so containing the σ-algebra generated
by M∪N . On the other hand M′ is included in the σ-algebra generated by M∪N .
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Let M ′ ∈ M′,M ′ = Mj ∪ Nj ,Mj ∈ M, Nj ⊂ Ej ∈ M, μ(Ej) = 0, j =, 1, 2.
Then since M1 ⊂M1 ∪N1 =M2 ∪N2 ⊂M2 ∪ E2,

μ(M1) ≤ μ(M2 ∪ E2) = μ(M2) =⇒ μ(M1) ≤ μ(M2),

(similarly μ(M2) ≤ μ(M1)), so that μ′(M ′) = μ(M1) is defined without ambiguity.
Let us consider a pairwise disjoint sequence in M′: An = Mn ∪ Nn ∈ M′,Mn ∈
M, Nn ∈ N , Nn ⊂ En ∈ M, μ(En) = 0. We have

μ′
(
∪An

)
= μ′

(
(∪n∈NMn)︸ ︷︷ ︸

∈M

∪ (∪n∈NNn)︸ ︷︷ ︸
N

)
= μ
(
∪n∈NMn

)
and since the Mn are also pairwise disjoint (Mn ⊂ An), we get

μ′
(
∪An

)
=
∑
μ(Mn) =

∑
μ′(An), qed.

Exercise 2.8.14. Let (X,M, μ) be a measure space where μ is a positive measure.
Let (fn)n∈N be a sequence of complex-valued measurable functions on X. We shall
say that (fn)n∈N converges locally in measure towards a measurable function f if

∀α > 0, ∀Y ∈ M with μ(Y ) < ∞, lim
n
μ
(
{x ∈ Y, |fn(x)−f(x)| > α}

)
= 0. (2.8.13)

We shall say that (fn)n∈N converges globally in measure towards a measurable
function f if

∀α > 0, lim
n
μ
(
{x ∈ X, |fn(x) − f(x)| > α}

)
= 0. (2.8.14)

Assume that μ is σ-finite, i.e., there exists a sequence (Xk)k∈N in M such that
X = ∪k∈NXk and for all k ∈ N, μ(Xk) < +∞. Prove that the Lebesgue dominated
convergence theorem holds with local convergence in measure replacing pointwise
convergence in the assumptions.

Answer. Assuming |fn| ≤ g ∈ L1(μ), we have for α > 0, Yk = ∪0≤l≤kXl,∫
X

|fn − f |dμ =

∫
Yk∩{|fn−f |≤α}

|fn − f |dμ+
∫
Y c
k ∩{|fn−f |≤α}

|fn − f |dμ

+

∫
Yk∩{|fn−f |>α}

|fn − f |dμ+
∫
Y c
k ∩{|fn−f |>α}

|fn − f |dμ

≤ αμ(Yk) +
∫
Y c
k

2gdμ+

∫
Yk∩{|fn−f |>α}

2gdμ.

Using Proposition 1.7.10, we find that for all α > 0 and all integers k,

lim sup
n

∫
X

|fn − f |dμ ≤ αμ(Yk) +
∫
Y c
k

2gdμ, (2.8.15)
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so that, for all k,

lim sup
n

∫
X

|fn − f |dμ ≤
∫
X

2g1Y c
k
dμ. (2.8.16)

We have also +∞ >
∫
X
2gdμ =

∫
Yk

2gdμ+
∫
Y c
k
2gdμ, and by Beppo Levi’s theorem

limk

∫
Yk

2gdμ =
∫
X
2gdμ which implies limk

∫
Y c
k
2gdμ = 0: the inequality (2.8.16)

gives the result limn

∫
X

|fn − f | = 0.

To sum-up, for a sequence (fn) in L
1(μ), f measurable,

fn
convergence

in measure
�� f

and

|fn| ≤ g ∈ L1(μ)

⎫⎪⎬⎪⎭ =⇒ fn
L1(μ)

�� f . (2.8.17)

Exercise 2.8.15. Let (X,M, μ) be a measure space where μ is a positive measure.
Let (fn)n∈N be a sequence of measurable functions and f be a measurable function.

(1) Prove that if (fn)n∈N converges a.e. towards f , it implies that (fn)n∈N con-
verges locally in measure towards f .

(2) Prove that the converse of the previous statement does not hold in general.

Answer. (1) Let α > 0 and Y a measurable set with finite measure:

μ
(
{x ∈ Y, |fn(x) − f(x)| > α}

)
=

∫
Y

1{|fn−f |>α}dμ.

The function 1{|fn−f |>α} converges a.e. pointwise to 0 and is dominated by 1 ∈
L1(Y ). As a result the Lebesgue dominated convergence gives the result.

(2) cf. Exercise 2.8.23.

Exercise 2.8.16 (Borel–Cantelli Lemma). Let X be a set, μ∗ be an outer measure
on X and let (An)n∈N be a countable family of subsets of X. Then∑

n∈N
μ∗(An) < +∞ =⇒ μ∗(lim sup

n
An) = 0,

where we have defined lim supnAn = ∩n≥0(∪k≥nAk).

Answer. We have

0 ≤ μ∗(lim sup
n
An) ≤ μ∗(∪k≥nAk) ≤

∑
k≥n

μ∗(Ak) −→
n→+∞

0.

Exercise 2.8.17. We define μ∗ on P(R) by μ∗(A) = inf {
∑

j∈N(bj − aj)}, where
∪j∈N]aj, bj [ runs among the coverings of A by open bounded intervals. Show that
μ∗ is an outer measure on R (see Definition 2.2.4).
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Answer. Since an open subset of R is a countable union of bounded open intervals,
this appears as similar to Lemma 2.6.2 for κ = 1 and X = R, but a simple direct
proof may be useful. Properties (2.2.5), (2.2.6) are obvious. Let us prove (2.2.7).
Let (An)n∈N be a sequence of subsets of R. We may assume that all μ∗(An) are
finite, otherwise (2.2.7) is trivially satisfied. Let ε > 0 be given. For each n ∈ N,
we consider a countable family of bounded open intervals (Ink )k∈N such that

An ⊂ ∪k∈NI
n
k , μ

∗(An) ≤
∑
k∈N

|Ink | < μ∗(An) + ε2
−n−1,

where |Ink | is the length of Ink . We find ∪n∈NAn ⊂ ∪n,k∈NI
n
k and thus

μ∗
(
∪n∈NAn

)
≤
∑

n,k∈N
|Ink | =

∑
n∈N

(∑
k∈N

|Ink |
)

≤
∑
n∈N

(
μ∗(An) + ε2

−n−1
)
= ε+

∑
n∈N
μ∗(An),

for any ε > 0, proving the result.

Exercise 2.8.18. Let ε > 0 be given. Construct a dense open subset Ω of R such
that its Lebesgue measure λ1(Ω) < ε.

Answer. We set Q = {xn}n≥1 and we define

Ω = ∪n≥1]xn − ε2−n−2, xn + ε2−n−2[,

open as a union of open sets, dense since it contains Q and with Lebesgue measure

λ1(Ω) ≤
∑
n≥1

ε2−n−1 = ε/2 < ε.

Exercise 2.8.19 (A non-measurable set). We define on [0, 1] the equivalence relation
x ∼ y means x− y ∈ Q. Let us recall the statement of the Axiom of Choice: let I
be a non-empty set and let (Xi)i∈I be a family of sets. Then

∀i ∈ I,Xi �= ∅ =⇒
∏
i∈I
Xi �= ∅.

For X ⊂ R and t ∈ R, we shall write X + t = {x+ t}x∈X.

(1) Using the axiom of choice, show that there exists a subset A of [0, 1] defined
by taking a single element in each equivalence class of ∼.

(2) Let ϕ : N → Q ∩ [−1, 1] be a bijective mapping. We define An = A + ϕ(n).
Show that

[0, 1] ⊂ ∪n∈NAn ⊂ [−1, 2].

(3) Show that there is no positive measure μ defined on P(R), invariant by trans-
lation (i.e., such that μ(X) = μ(X + t) for all subsets X of R and all real
number t), and such that μ([a, b]) = b− a for a ≤ b.

(4) Show that A /∈ L, where L is the Lebesgue σ-algebra on R.
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Answer. (1) The quotient set [0, 1]/ ∼, is the set of equivalence classes {Xi}i∈I .
Each Xi is an equivalence class and is thus non-empty. Using the axiom of choice,
we may find a family (xi)i∈I of elements of [0, 1] such that Xi is the equivalence
class of xi. Let us define A = {xi}i∈I .
(2) The set Q ∩ [−1, 1] is infinite countable, thus equipotent to N. Let x ∈ [0, 1].
There exists i ∈ I such that x ∼ xi, i.e., x− xi ∈ Q. As a consequence, x = xi + ρ
with ρ ∈ Q and since both x and xi belong to [0, 1], ρ belongs to [−1, 1] so that
there exists n ∈ N such that ρ = ϕ(n). This implies x ∈ An = A+ϕ(n). Moreover,
we have

An ⊂ [0, 1] + [−1, 1] ⊂ [−1, 2].

(3) Let us assume that there exists such a measure. We note first that for n �= m
integers, we have An ∩Am = ∅: if x ∈ An ∩Am, we get with i, j ∈ I,

x = xi + ϕ(n) = xj + ϕ(m)

and thus xi ∼ xj , so that xi = xj , and ϕ(n) = ϕ(m) entailing m = n since ϕ is
injective. We would have

1 = μ([0, 1]) ≤ μ(∪n∈NAn) =
∑
n∈N
μ(An) =

∑
n∈N
μ(A) ≤ μ([−1, 2]) = 3,

which is impossible, since the first inequality implies μ(A) > 0 whereas the next
one gives μ(A) = 0.

(4) The set A cannot belong to L, since, if it were the case, the previous inequalities
would hold for the Lebesgue measure λ1 on R, leading as above to a contradiction.

Calculations

Exercise 2.8.20.

(1) Determine the values of the real parameter α for which
∫ 1

0
dx
xα converges.

(2) Determine the values of the real parameter α for which
∫ +∞
1

dx
xα converges.

(3) Prove that the harmonic series (general term 1/n) is divergent. Show that
the sequence

xn = 1 +
1

2
+

1

3
+ · · · + 1

n− 1
+

1

n
− lnn

converges.

(4) Show that limA→+∞
∫ A

0
sin x
x dx exists.9

(5) Show that
∫ +∞
0

∣∣ sin x
x

∣∣ dx = +∞.

Answer. Using lnx =
∫ x

1
dt
t for x > 0 and d

dx(
x−α+1

−α+1 ) = x
−α for α �= 1 we get

(1) for α < 1 and

(2) for α > 1.

9See Section 10.4 in the Appendix for the proof of
∫+∞
0

sinx
x

dx = π/2.
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(3) We have

xn =
∑

1≤k≤n

(
1

k
−
∫ k+1

k

dt

t

)
+

∫ n+1

n

dt

t
=
∑

1≤k≤n

∫ k+1

k

t− k
kt
dt+ ln

(
1 +

1

n

)
.

For 1 ≤ k, we have

0 ≤
∫ k+1

k

t− k
kt
dt ≤

∫ k+1

k

1

kt
dt ≤

∫ k+1

k

1

k2
dt =

1

k2
,

so that the series with general term
∫ k+1

k
t−k
kt dt converges. Since lim

n→∞
ln(1+

1

n
) = 0,

we get convergence for the sequence (xn). This implies that, with γ = limxn,∑
1≤k≤n

1

k
= lnn+ γ + εn, lim εn = 0.

(4) The function sinx/x is continuous on R, takes the value 1 at x = 0. For
A ≥ π/2,

I(A) =

∫ A

π/2

sin t

t
dt =

[
− cos t

t

]A
π/2

−
∫ A

π/2

cos t

t2
dt = −A−1 cosA−

∫ A

π/2

cos t

t2
dt.

Since | cosA| ≤ 1 and |t−2 cos t| ≤ t−2, the rhs converges for A→ +∞.

(5) For A ≥ 1,

lnA =

∫ A

1

dx

x
=

∫ A

1

cos(2x)

x
dx +

∫ A

1

2 sin2 x

x
dx

≤
∫ A

1

cos(2x)

x
dx + 2

∫ A

1

| sinx|
x
dx,

and the rhs goes to +∞ with A. Since we can prove as in (3) that
∫ A

1
x−1cos(2x)dx

has a finite limit when A→ +∞, we get the result.

N.B. The limit of the sequence (xn) is the so-called Euler constant, denoted by
the letter γ. An approximate value is

0.577215664901532860606512090082402431042159335939923598805767234884867726777664

This important constant remains quite mysterious and it is not even known
whether it is an algebraic number. For more mathematical details, see http://

mathworld.wolfram.com/Euler-MascheroniConstant.html. To know the first
100 digits type with Mathematica N[EulerGamma, 100].

http://mathworld.wolfram.com/Euler-MascheroniConstant.html
http://mathworld.wolfram.com/Euler-MascheroniConstant.html
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Exercise 2.8.21.

(1) Calculate lim
n→∞

∫ n

0

(
1 − x
n

)n
dx.

(2) Let z ∈ C such that Re z > 0. Show that

lim
n→∞

∫ n

0

xz−1
(
1 − x
n

)n
dx =

∫ +∞

0

xz−1e−xdx = Γ(z).

Answer. For x ≥ 0, we have limn→+∞(1 − x
n )

n = e−x (calculate the logarithm).
Also for all θ > −1, we have ln(1 + θ) ≤ θ (θ �→ θ − ln(1 + θ) is decreasing on
(−1, 0], increasing on [0,+∞)) so that for 0 ≤ x < n, we have

ln
(
1 − x
n

)
≤ −x
n

and thus 0 ≤ 1[0,n](x)
(
1 − x
n

)n ≤ e−x.

We can use the Lebesgue dominated convergence theorem for both questions; the
answer for (1) is 1 = Γ(1).

Exercise 2.8.22. Give an example of a sequence (fn)n∈N in C0
c ([0, 1],R+) converg-

ing pointwise to 0 such that ∫ 1

0

fn(x)dx→ +∞.

Answer. Piecewise affine fn equal to n2 at 1/n, 0 at 0, 2/n.

Exercise 2.8.23. Find a sequence of step functions fn : [0, 1] −→ R+ such that

limn→∞
∫ 1

0
fn(x)dx = 0 and so that the sequence (fn(x))n∈N is divergent for any

x ∈ [0, 1].

Answer. For 0 ≤ k < m integers, we consider the function

Fk,m(x) = 1[ k
m , k+1

m [(x)

and we set

f0 = F0,1

f1 = F0,2, f2 = F1,2

f3 = F0,3, f4 = F1,3, f5 = F2,3

. . .

fm(m−1)
2

= F0,m, . . . , fm(m−1)
2 +k

= Fk,m, . . . , fm(m−1)
2 +m−1

= Fm−1,m.

. . .

A simple drawing will convince the reader that for a fixed x, the sequence fn(x)
takes an infinite number of times the values 0 and 1, proving its divergence.
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We prove this result formally below. We note that the sequence
(m(m−1)

2

)
m≥1

is strictly increasing, with value 0 for m = 1 and goes to +∞. As a result, for all
integer n ≥ 0, there exists a unique integer mn ≥ 1 such that

mn(mn − 1)

2
≤ n < mn(mn + 1)

2

so that

n =
mn(mn − 1)

2
+ kn, with 0 ≤ kn <

mn2

2
= mn.

We note limn→+∞mn = +∞ since mn + 1 >
√
2n. For n ≥ 0, we set

fn(x) = Fkn,mn(x).

We have ∫ 1

0

fn(x)dx =

∫ 1

0

Fkn,mn(x)dx = 1/mn −→ 0 for n→ +∞.

Let x ∈ [0, 1] be given. Let n ≥ 3 be an integer such that fn(x) = 1: then

kn
mn

≤ x < 1 + kn
mn

,

and if kn < mn − 1, we have

mn(mn − 1)

2
≤ n < n+ 1 =

mn(mn − 1)

2
+ kn + 1

<
mn(mn − 1)

2
+mn =

mn(mn + 1)

2
,

so thatmn+1 = mn and fn+1(x) = F1+kn,mn(x) = 0. If fn(x) = 1 and kn = mn−1,
we have mn−1

mn
≤ x < 1 and

n+1 =
mn(mn − 1)

2
+mn =

mn(mn + 1)

2
, so that mn+1 = 1+mn, kn+1 = 0.

We get then

fn+1(x) = F0,1+mn(x) = 0 since
1

1 +mn
≤ mn − 1

mn
since mn ≥ 2.

As a result,
for n ≥ 3, fn(x) = 1 =⇒ fn+1(x) = 0. (2.8.18)

Moreover for x ∈ [0, 1[ and n ≥ 0, we have 0 ≤ mnx < mn so that

k = E(mnx) ∈ {0, . . . ,mn − 1}.
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We consider n′ = mn(mn−1)
2 + k ≥ mn(mn−1)

2 . We have

k ≤ mnx < 1 + k,
k

mn
≤ x < 1 + k

mn

so that
fn′(x) = Fk,mn(x) = 1, (2.8.19)

implying that the sequence fn(x) takes the value 1 an infinite number of times.
Since it takes also an infinite number of times the value 0 from (2.8.18), it can-
not converge. We can also define fn(1) = (1 + (−1)n)/2. Using piecewise affine
functions, it is possible to modify the above example so that the fn are continuous.

Exercise 2.8.24. Let (X,M, μ) be a measure space where μ is a positive measure
and let f : X → C be a measurable function.

(1) Prove that if f ∈ L1(μ), then limn nμ({|f | ≥ n}) = 0. Is the converse true?

(2) Prove that if f ∈ L1(μ), then
∑

n≥1
1
n2

∫
|f |≤n |f |2dμ < +∞. Is the converse

true?

Answer. (1) We have

0 ≤ nμ
(
{|f | ≥ n}

)
=

∫
X

n1{|f |≥n}dμ ≤
∫
X

|f |1{|f |≥n}dμ,

0 ≤ gn = |f |1{|f |≥n} ≤ |f | ∈ L1(μ) and lim
n→∞

|f(x)|1{|f |≥n}(x) = 0.

The Lebesgue dominated convergence theorem implies that

lim
n

∫
X

|f |1{|f |≥n}dμ = 0

and the result. The converse is not true: the positive continuous function on [0, e−1]
given by g(x) = x ln(x−1) has derivative ln(x−1) − 1 and is thus increasing on
[0, e−1] from g(0) = 0 to g(e−1) = e−1. We have∫ e−1

0

dx

g(x)
=

∫ e−1

0

dx

x ln(x−1)
=

∫ +∞

e

du

u ln(u)
= lim

A→+∞
ln(lnA) = +∞.

However for n ≥ 1,{
x ∈ [0, e−1],

1

g(x)
≥ n
}

=
{
x ∈ [0, e−1], g(x) ≤ n−1

}
= [0, xn]

where xn ∈ [0, e−1] is characterized by xn ln(x
−1
n ) = g(xn) = n

−1, which implies

nμ

({
x ∈ [0, e−1],

1

g(x)
≥ n
})

= nxn =
1

| lnxn|
−→ 0,

since xn −→ 0+. Property in (1) can hold without f (here 1/g) ∈ L1.
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(2) For f ∈ L1, we have∑
n≥1

1

n2

∫
|f |≤n

|f |2dμ =

∫ (∑
n≥1

n−2|f |21{|f |≤n}

)
dμ.

With

F (x) =
∑
n≥1

n−2|f(x)|21{|f |≤n}(x) =
∑

n≥max(|f(x)|,1)
n−2|f(x)|2

= |f(x)|2
∑

n≥max(|f(x)|,1)
n−2

using for N ≥ 1,
∑

n≥N n
−2 ≤ min

(
π2

6 ,
1

N−1

)
, we get

0 ≤ F (x) ≤ min

(
π2

6
,

1

max(|f(x)|, 1) − 1

)
|f(x)|2 ≤

{
π2

6 |f(x)|2 if |f(x)| ≤ 2,
|f(x)|2
|f(x)|−1 if |f(x)| > 2.

Since for |f(x)| ≤ 2 we have π2

6 |f(x)|2 ≤ π2

6 |f(x)||f(x)| ≤ |f(x)| 2π2

6 ≤ 4|f(x)| and
for |f(x)| > 2,

|f(x)|2
|f(x)| − 1

=
|f(x)|

|f(x)| − 1
|f(x)| ≤ 2|f(x)|,

we get
0 ≤ F (x) ≤ 4|f(x)|,

proving the result. The converse is not true since with f(x) = 1
x1[1,+∞[(x) (which

is not in L1), we have nevertheless∑
n≥1

1

n2

∫
|f |≤n

|f |2dμ =
∑
n≥1

1

n2

∫
x≥1

1

x2
dx = π2/6.

N.B. Looking at Ff =
∑

n≥1
1
n2 |f |21{|f | ≤ n} we have

Ff = 1{|f | ≤ 1}|f |2 + 1{|f | > 1}|f |2
∑
n≥|f |

1

n2
,

so that, with some positive constant C,

1{|f | ≤ 1}|f |2 + C−11{|f | > 1}|f | ≤ Ff ≤ 1{|f | ≤ 1}|f |2 + C1{|f | > 1}|f |.

As a result, Ff ∈ L1 is equivalent to

1{|f | ≤ 1}|f |2 and 1{|f | > 1}|f | ∈ L1.

When f belongs to L1, both conditions are satisfied. Conversely, we may have
Ff ∈ L1 without f ∈ L1 since 1{|f | ≤ 1}|f | may fail to be integrable. However if
Ff ∈ L1 and μ has finite total mass (i.e., μ(X) < +∞), we have 1{|f | ≤ 1}|f | ≤ 1
which is integrable, so that f is integrable.
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Exercise 2.8.25. What are the limits of the following sequences?

un =
∑
k≥1

n

nk2 + k + 1
, vn =

∑
1≤k≤2n

n2

kn2 + k2
, wn =

∑
1≤k≤n2

sin k

k2

(
k

k + 1

)n

.

Answer. For k integer ≥ 1, we have limn→+∞
n

nk2+k+1 = 1
k2 and moreover

n

nk2 + k + 1
=

1

k2 + (k/n) + (1/n)
≤ 1

k2
= F (k),

∑
k≥1

F (k) <∞.

We apply the Lebesgue dominated convergence theorem on the measure space

(N, μ =
∑
k≥1

δk,P(N))

to the sequence (fn)n≥1 defined by fn(k) =
n

nk2+k+1 . This gives

un =

∫
N

fndμ −→
n→+∞

∫
N

(lim
n
fn)dμ =

∑
k≥1

1

k2
=
π2

6
.

Using the same measure space and the sequence of positive functions (gn)n≥1

defined by

gn(k) =

{
n2

kn2+k2 for 1 ≤ k ≤ 2n,

0 otherwise,

we get from Fatou’s lemma,

+∞ =
∑
k≥1

1

k
=

∫
N

lim inf
n
gndμ ≤ lim inf

n

∫
N

gndμ = lim inf
n
vn,

so that limn vn = +∞. With the same measure space and the sequence of functions
(hn)n≥1 defined by

hn(k) =

{
sin k
k2 ( k

k+1 )
n if 1 ≤ k ≤ n2,

0 otherwise,

we note that |hn(k)| ≤ F (k) where F is defined above. The Lebesgue dominated
convergence theorem gives

lim
n
wn =

∫
N

(lim
n
hn)dμ =

∑
k≥1

lim
n→+∞

(sin k
k2
( k
k + 1

)n)
=
∑
k≥1

0 = 0.

The last point can be checked directly without using the Lebesgue dominated
convergence theorem: for any integer m ≥ 1, we have

|wn| ≤
∑

1≤k≤m

1

k2

( m

m+ 1

)n
+
∑
k>m

1

k2
≤ π

2

6

( m

m+ 1

)n
+
∑
k>m

1

k2
,
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and thus

lim sup
n→+∞

|wn| ≤
∑
k>m

1

k2
, so that lim sup

n→+∞
|wn| ≤ inf

m≥1

∑
k>m

1

k2
= 0

since
∑

k>m
1
k2 is the remainder of a converging series.

Exercise 2.8.26. Determine the limits of the following sequences.

In =

∫ 1

0

n

1 + x2
tanh

(x
n

)
dx, Jn =

∫ 1

0

ne−x

nx+ 1
dx.

Answer. Setting fn(x) =
n

1+x2 tanh
(
x
n

)
, we find

lim
n→+∞

fn(x) =
x

1 + x2
and |fn(x)| ≤

x

1 + x2
sup
α>0

(
tanhα

α

)
.

The Lebesgue dominated convergence theorem implies

lim
n→+∞

In =

∫ 1

0

x

1 + x2
dx =

1

2

[
ln(1 + x2)

]1
0
=

ln 2

2
.

We have Jn =
∫ 1

0
e−x

(
x+ 1

n

)−1
dx and Fatou’s lemma gives, with

gn(x) = e
−x

(
x+

1

n

)−1

,

+∞ =

∫ 1

0

e−xx−1dx =

∫ 1

0

(
lim inf

n
gn(x)

)
dx ≤ lim inf

n

∫ 1

0

gn(x)dx = lim inf
n
Jn.



Chapter 3

Spaces of Integrable Functions

3.1 Convexity inequalities (Jensen, Hölder, Minkowski)

Definition 3.1.1 (Convex function of one real variable). Let I be an interval of R.
A function φ : I → R is said to be convex if for all x0, x1 ∈ I and θ ∈ [0, 1], we
have

φ
(
(1 − θ)x0 + θx1

)
≤ (1 − θ)φ(x0) + θφ(x1). (3.1.1)

We note that xθ = (1 − θ)x0 + θx1 ranges over the interval [x0, x1] (or [x1, x0])
when θ ranges over [0, 1] so that xθ ∈ I and (3.1.1) makes sense. The function φ
is said to be concave if −φ is convex.

The best explanation is encapsulated in Figure 3.1: a function is convex if
the segments joining the points (xj , φ(xj)), j = 0, 1 are above the curve of φ. In
that picture, above the x-axis, we wrote only the y-coordinate of each point. Note
also that on the vertical line x = xθ , the y-coordinate (1 − θ)φ(x0) + θφ(x1) can
be calculated with the Thales theorem.

Proposition 3.1.2. Let I be an interval of R and φ : I → R be a function.

(1) For φ differentiable, φ is convex iff φ′ is increasing.

(2) For φ twice differentiable, φ is convex iff φ′′ ≥ 0.

(3) If φ is convex, then φ is continuous on I̊.

(4) The function x �→ ex is convex on R.

Proof. Let us first give some equivalent properties to (3.1.1). A function φ : I → R
is convex iff for all x, y, z ∈ I,

x0 = x < y = xθ < x1 = z =⇒ φ(y) ≤ z − y
z − x︸ ︷︷ ︸
1−θ

φ(x) +
y − x
z − x︸ ︷︷ ︸

θ

φ(z).

, ,
OI 10.1007/978-3- - -D
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Figure 3.1: Convex function

Property (3.1.1) is thus equivalent to the following: for all x, y, z ∈ I,

x < y < z =⇒ φ(y) − φ(x)
y − x ≤ φ(z) − φ(x)

z − x ≤ φ(z) − φ(y)
z − y , (3.1.2)

since the first inequality is equivalent to φ(xθ) − φ(x0) ≤ θ
(
φ(x1) − φ(x0)

)
and

the second one to (1 − θ)
(
φ(x1) − φ(x0)

)
≤ φ(x1) − φ(xθ), both are equivalent

to (3.1.1). Figure 3.2 describes (3.1.2). The lines XY,XZ, Y Z through the points
X(x, φ(x)), Y (y, φ(y)) and Z(z, φ(z)) on the graph of φ have slopes increasing with
lexicographic order: XY � XZ � Y Z.

Let us prove (1). Let ϕ be a convex differentiable function on I and let
x1 < x2 be points of I. For 0 < ε < (x2 − x1)/2, we have

x1 < x1 + ε < x2 − ε < x2.

Using inequalities (3.1.2) for the triples x1 < x1+ε < x2−ε and x1+ε < x2−ε < x2,
we get

ϕ(x1 + ε) − ϕ(x1)
ε

≤ ϕ(x2 − ε)− ϕ(x1 + ε)
x2 − x1 − 2ε

≤ ϕ(x2) − ϕ(x2 − ε)
ε

,

so that, taking the limit when ε→ 0+, we obtain

ϕ′(x1) ≤ ϕ(x2)− ϕ(x1)
x2 − x1

≤ ϕ′(x2),
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Figure 3.2: Description of (3.1.2)

proving that ϕ′ is increasing. Conversely, let ϕ be a differentiable function on I,
with an increasing derivative. For x < y < z in I, there exists ỹ ∈]x, y[, z̃ ∈]y, z[
such that

ϕ(y) − ϕ(x)
y − x = ϕ′(ỹ) ≤ ϕ′(z̃) = ϕ(z) − ϕ(y)

z − y ,

implying convexity for ϕ, completing the proof of (1). Property (2) follows from
the equivalence, true for ψ differentiable on an interval I,

ψ increasing ⇐⇒ ψ′ ≥ 0.

Property (4) follows from (2). Let us prove (3). Let ϕ be a convex function defined
on an interval I (with non-empty interior) and let a < b be real numbers such that
[a, b] ⊂ I̊. With a < x1 < x2 < b, applying (3.1.2), we find

ϕ(x1) − ϕ(a)
x1 − a ≤ ϕ(x2) − ϕ(a)

x2 − a and
ϕ(b) − ϕ(x1)
b− x1

≤ ϕ(b) − ϕ(x2)
b− x2

, (3.1.3)

which implies

ϕ(x1) − ϕ(a)
x1 − a (x2 − a) + ϕ(a) ≤ ϕ(x2) ≤ ϕ(b) − (b − x2)

ϕ(b) − ϕ(x1)
b− x1

.
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Taking the limit when x2 → x1+, we get

ϕ(x1) = ϕ(x1)− ϕ(a) + ϕ(a) ≤ lim inf
x2→x1+

ϕ(x2) ≤ lim sup
x2→x1+

ϕ(x2)

≤ ϕ(b) −
(
ϕ(b) − ϕ(x1)

)
= ϕ(x1),

implying
lim

x2→x1+

ϕ(x2) = ϕ(x1). (3.1.4)

Similarly, from (3.1.3), we find

ϕ(b) − (b− x1)
ϕ(b) − ϕ(x2)
b− x2

≤ ϕ(x1) ≤ (x1 − a)ϕ(x2)− ϕ(a)
x2 − a + ϕ(a),

which implies

ϕ(x2) = ϕ(b) −
(
ϕ(b) − ϕ(x2)

)
≤ lim inf

x1→x2−
ϕ(x1) ≤ lim sup

x1→x2−
ϕ(x1)

≤ ϕ(x2) − ϕ(a) + ϕ(a) = ϕ(x2),

so that limx1→x2− ϕ(x1) = ϕ(x2). The combination of left and right continuity
((3.1.4)) give the result. �
Theorem 3.1.3 (Jensen inequality). Let (X,M, μ) be a probability space (measure
space where μ is a positive measure such that μ(X) = 1). Let I be a non-empty
open interval of R, f : X → I be a function in L1(μ) and let ϕ : I → R be a
convex function. Then ϕ ◦ f = ψ + g, where ψ ∈ L1(μ) and g is measurable ≥ 0.
Moreover

∫
X
fdμ ∈ I and

ϕ

(∫
X

fdμ

)
≤
∫
X

(ϕ ◦ f)dμ,

with
∫
X
(ϕ ◦ f) dμ = +∞ whenever

∫
X
gdμ = +∞.

Proof. We set t0 =
∫
X fdμ and I = (a, b) where −∞ ≤ a < b ≤ +∞. Let us prove

first that t0 < b: it is true whenever b = +∞ since f ∈ L1(μ). If b < +∞, since f
is valued in I and μ is a probability measure, we have

t0 =

∫
X

fdμ ≤
∫
X

bdμ = bμ(X) = b.

If the equality t0 = b were satisfied, we would have 0 =
∫
X(b − f)dμ, and since

the function b− f is non-negative and belongs to L1(μ), Proposition 1.7.1 implies
b = f , μ-a.e., so at least in a point, which is not possible since f is valued in
(a, b). We prove of course similarly that t0 > a, so that

∫
X fdμ ∈ I. Using now

the convexity of ϕ on I, we get

β = sup
s<t0
s∈I

ϕ(t0) − ϕ(s)
t0 − s ≤ inf

u>t0
u∈I

ϕ(u) − ϕ(t0)
u− t0

< +∞. (3.1.5)
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As a consequence, we have

s ∈ I, s < t0 =⇒ ϕ(t0) − ϕ(s) ≤ β(t0 − s), i.e., ϕ(s) ≥ ϕ(t0) − β(t0 − s),
and moreover (3.1.5) implies

u ∈ I, u > t0 =⇒ ϕ(u) − ϕ(t0) ≥ β(u − t0), i.e., ϕ(u) ≥ ϕ(t0) − β(t0 − u),
so that ∀σ ∈ I, ϕ(σ) ≥ ϕ(t0)− β(t0 − σ). Since f is valued in I, we obtain

∀x ∈ X, ϕ
(
f(x)

)
≥ ϕ(t0) − β

(
t0 − f(x)

)
,

entailing
ϕ ◦ f = ϕ(t0) − β(t0 − f)︸ ︷︷ ︸

=ψ∈L1(μ)

+ϕ ◦ f − ϕ(t0) + β(t0 − f)︸ ︷︷ ︸
=g measurable ≥ 0

,

since μ is a probability, f ∈ L1(μ) and ϕ ◦ f is measurable (ϕ is continuous from
Proposition 3.1.2 and f is measurable). If g belongs to L1(μ), we find ϕ◦f ∈ L1(μ)
and∫

X

(ϕ ◦ f)dμ ≥
∫
X

(
ϕ(t0)− β(t0 − f)

)
dμ = ϕ(t0) − βt0 + βt0 = ϕ

(∫
X

fdμ

)
.

If
∫
X gdμ = +∞, with 0 ≤ ψ± ∈ L1(μ), we have

ϕ ◦ f + ψ− = ψ+ + g ≥ 0 =⇒
∫
X

(ϕ ◦ f + ψ−)dμ = +∞,

so that we may define
∫
X
(ϕ ◦ f)dμ = +∞ in that case. �

Remark 3.1.4. Let I be an interval of R and ϕ : I → R be a convex function. Then
for any integer n ≥ 1 and any n-tuple (θ1, . . . , θn) of non-negative real numbers
such that

∑
1≤j≤n θj = 1, we have with x1, . . . , xn ∈ I,

ϕ

( ∑
1≤j≤n

θjxj

)
≤
∑

1≤j≤n

θjϕ(xj). (3.1.6)

That property is equivalent to convexity (obviously stronger since (3.1.1) is (3.1.6)
with n = 2): it follows from convexity as a consequence of Jensen’s inequality
applied to

X = {1, . . . , n}, μ =
∑

1≤j≤n

θjδj ,
X

f−→ I
j �→ xj

ϕ−→ R
�→ ϕ(xj)

,

since Theorem 3.1.3 provides

ϕ

( ∑
1≤j≤n

θjxj

)
= ϕ

( ∑
1≤j≤n

θjf(j)

)
= ϕ

(∫
X

fdμ

)
≤
∫
X

(ϕ ◦ f)dμ =
∑

1≤j≤n

θj(ϕ ◦ f)(j) =
∑

1≤j≤n

θjϕ(xj).

Note also that (3.1.6) is easily proven inductively on n for a convex function ϕ.



130 Chapter 3. Spaces of Integrable Functions

Lemma 3.1.5 (Geometric mean – Arithmetic mean inequality). Let a1, . . . , an be
positive numbers and θ1, . . . , θn be non-negative such that

∑
1≤j≤n θj = 1. Then

geometric mean of the aj︷ ︸︸ ︷∏
1≤j≤n

a
θj
j ≤

arithmetic mean of the aj︷ ︸︸ ︷∑
1≤j≤n

θjaj , (3.1.7)

and equality holds iff a1 = · · · = an.

Proof. Using the previous remark along with the convexity of the exponential
function, we find∏

1≤j≤n

a
θj
j =

∏
1≤j≤n

eθj ln aj ≤
∑

1≤j≤n

θje
ln aj =

∑
1≤j≤n

θjaj .

Defining on (R∗+)
n the function ψ(a1, . . . , an) =

∑
1≤j≤n θjaj −

∏
1≤j≤n a

θj
j , we

note that ψ is non-negative and we may assume that the numbers θj are all positive
(if θj = 0, the function ψ does not depend on aj). If that smooth non-negative
function is vanishing at some point of (R∗+)

n, then its differential should be 0. As
a result, we have

0 =
∂ψ

∂aj
= θj − θja−1

j

∑
1≤k≤n

aθkk =⇒ aj =
∑

1≤k≤n

aθkk ,

since θj > 0, proving the last result. �

In the sequel to this book, we shall use the following notation: Let 1 < p <
+∞ be a real number. We set p′ = p

p−1 and we shall say that p′ is the conjugate
exponent of p, characterized by

1

p
+

1

p′
= 1. (3.1.8)

When p = 1 (resp. p = +∞) we define p′ = +∞ (resp. p′ = 1).

Theorem 3.1.6 (Hölder & Minkowski inequalities). Let (X,M, μ) be a measure
space where μ is a positive measure. Let f, g : X → C be measurable functions, let
1 < p < +∞ and p′ its conjugate exponent. Then,

(1)

∫
X

|fg|dμ ≤
(∫

X

|f |pdμ
)1/p(∫

X

|g|p′dμ
)1/p′

(Hölder),

(2)

(∫
X

|f + g|pdμ
)1/p

≤
(∫

X

|f |pdμ
)1/p

+

(∫
X

|g|pdμ
)1/p

(Minkowski).
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Proof. We may assume that f, g are valued in R+. We can also suppose that∫
X
fpdμ > 0 and

∫
X
gp
′
dμ > 0. Otherwise, from Proposition 1.7.1(1) we would

have f = 0 μ-a.e. or g = 0 μ-a.e., so that fg = 0 μ-a.e., trivializing (1) since the
lhs is 0. Also, we can assume that

∫
X f

pdμ < +∞ and
∫
X g

p′dμ < +∞: otherwise
since these quantities are both positive, their product would be +∞, trivializing
(1) since the rhs is +∞. Under these assumptions, we define

A =

(∫
X

fpdμ

)1/p

, B =

(∫
X

gp
′
dμ

)1/p′

(we have 0 < A,B < +∞),

and

F =
f

A
, G =

g

B
so that

∫
X

F pdμ =

∫
X

Gp′dμ = 1.

From inequality (3.1.7), we get

FG = (F p)1/p(Gp′ )1/p
′ ≤ 1

p
F p +

1

p′
Gp′ ,

entailing∫
X

FGdμ ≤
∫
X

(
1

p
F p +

1

p′
Gp′
)
dμ = 1, i.e.,

∫
X

fgdμ ≤ AB,

proving (1). Let us now prove (2), assuming as we may that f and g are non-
negative such that

∫
X
fpdμ and

∫
X
gpdμ are finite. We have

(f + g)p = f(f + g)p−1 + g(f + g)p−1,

and applying (1), we find∫
X

(f + g)pdμ ≤
(∫

X

fpdμ

)1/p (∫
X

(f + g)(p−1)p′dμ

)1/p′

+

(∫
X

gpdμ

)1/p(∫
X

(f + g)(p−1)p′dμ

)1/p′

.

Since (p− 1)p′ = p, we get∫
X

(f + g)pdμ ≤
[(∫

X

fpdμ

)1/p

+

(∫
X

gpdμ

)1/p
](∫

X

(f + g)pdμ

)1/p′

.

(3.1.9)
The mapping t �→ tp from R+ into itself is convex since p ≥ 1 (increasing deriva-

tive) and this implies
(

f+g
2

)p
≤ 1

2f
p + 1

2g
p. As a result, the lhs of (3.1.9) is finite

and we obtain the sought result[∫
X

(f + g)pdμ

]1− 1
p′=

1
p

≤
(∫

X

fpdμ

)1/p

+

(∫
X

gpdμ

)1/p

. �
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3.2 Lp spaces

Definition 3.2.1. Let (X,M, μ) be a measure space where μ is a positive measure
and let 1 ≤ p < +∞ be a real number. The space Lp(μ) is the set of measurable
functions f : X → C such that ∫

X

|f |pdμ < +∞, (3.2.1)

i.e., such that |f |p ∈ L1(μ) (cf. Definition 1.6.6). As in Definition 1.7.2, we define
Lp(μ) = Lp(μ)/ ∼ where ∼ stands for the equality μ-a.e. For f ∈ Lp(μ), we set

‖f‖Lp(μ) =

(∫
X

|f |pdμ
)1/p

. (3.2.2)

Notation. We shall note Lp(Rd) the space Lp(λd) where λd is the Lebesgue mea-
sure on Rd and �p(N) the space of complex-valued sequences (ak)k∈N such that∑

k∈N |ak|p < +∞.

Lemma 3.2.2. The quantity (3.2.2) depends only on the class of f in Lp(μ) and
Lp(μ) is a normed vector space for the norm (3.2.2).

Proof of the lemma. We prove first that Lp(μ) is a vector space on C. Let f, g :
X → C be measurable functions and α, β be complex numbers. Minkowski’s in-
equality implies for f, g ∈ Lp(μ).

‖αf + βg‖Lp(μ) ≤ ‖αf‖Lp(μ) + ‖βg‖Lp(μ) = |α|‖f‖Lp(μ) + |β|‖g‖Lp(μ) < +∞.

The space Lp(μ) is the quotient of Lp(μ) by the subspace {f ∈ Lp(μ), f ∼ 0}.
Moreover (3.2.2) depends only on the class of f (cf. Proposition 1.7.1(1)) and is a
norm on Lp(μ): The separation property follows from Proposition 1.7.1(1), homo-
geneity from Proposition 1.5.4(2) and triangle inequality from Theorem 3.1.6(2).

�

We want now to define the spaces L∞(μ) and L∞(μ) of (essentially) bounded
functions. Before we give such a definition, let us check the following example: we
define

f : R → R, f(x) =

{
1 for x /∈ Q,

x for x ∈ Q,

easily seen to be measurable1. Although that function is not bounded, it is “essen-
tially” bounded in the following sense: with λ1 standing for the Lebesgue measure
on R, we have

λ1
(
{x ∈ R, |f(x)| > 1}

)
≤ λ1(Q) = 0.

1We have f(x) = x1Q(x) + 1Qc(x), so that Theorem 1.2.7 implies the measurability of f .
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Lemma 3.2.3. Let (X,M, μ) be a measure space where μ is a positive measure and
let f : X → C be a measurable mapping such that there exists M ∈ R+ such that

μ
(
{x ∈ X, |f(x)| > M}

)
= 0. (3.2.3)

Then we shall say that f belongs to L∞(μ). The set L∞(μ) is a vector space on
C. The quantity

‖f‖ = inf{M ∈ R+, μ({|f | > M}) = 0}, (3.2.4)

is a semi-norm on L∞(μ) (i.e., satisfies homogeneity and triangle inequality). If
f1, f2 belong to L∞(μ) with f1 = f2 μ-a.e., then ‖f1‖ = ‖f2‖.

Proof. We have

∀k ≥ 1, μ

({
|f | > 1

k
+ ‖f‖

})
= 0,

and since {|f | > ‖f‖} = ∪k≥1{|f | > 1
k + ‖f‖}, we find (a countable union of

negligible sets is negligible)

μ
(
{|f | > ‖f‖}

)
= 0. (3.2.5)

Let f, g be in L∞(μ). The inclusions

{|f | ≤ ‖f‖} ∩ {|g| ≤ ‖g‖} ⊂ {|f + g| ≤ ‖f‖+ ‖g‖}

imply {|f | > ‖f‖} ∪ {|g| > ‖g‖} ⊃ {|f + g| > ‖f‖+ ‖g‖}, so that

μ
(
{|f + g| > ‖f‖+ ‖g‖}

)
= 0

and thus f + g ∈ L∞(μ) along with ‖f + g‖ ≤ ‖f‖ + ‖g‖. Also for α ∈ C and
f ∈ L∞(μ), we find readily αf ∈ L∞(μ) and ‖αf‖ = |α|‖f‖. To prove the last
statement, we write with N ∈ M, μ(N) = 0, |f1|1Nc = |f2|1Nc which implies for
M > 0,

μ
(
{|f1| > M}

)
= μ
(
{|f1|1Nc > M}

)
= μ
(
{|f2|1Nc > M}

)
= μ
(
{|f2| > M}

)
,

entailing ‖f1‖ = ‖f2‖. �
Definition 3.2.4. Let (X,M, μ) be a measure space where μ is a positive measure.
We define L∞(μ) as the quotient of L∞(μ) by the relation of equality μ-a.e. For
f ∈ L∞(μ), we have

‖f‖L∞(μ) = inf{M ∈ R+, μ(|f | > M) = 0} := esssup |f |. (3.2.6)

This quantity depends only on the class of f in L∞(μ) and L∞(μ) is a normed
vector space for the norm (3.2.6). We shall denote by L∞(Rd) the space L∞(λd)
where λd is the Lebesgue measure on Rd and �∞(N) the space of complex-valued
sequences (ak)k∈N such that supk∈N |ak| < +∞.
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Using the previous lemma, we have only to verify the separation axiom of
the norm: if ‖f‖ = 0 for some f ∈ L∞(μ), then for any k ∈ N∗, we have

μ
(
{|f | > 1/k}

)
= 0 =⇒ μ

(
{f �= 0}

)
= μ
(
∪k≥1{|f | > 1/k}

)
= 0

so that (3.2.6) is a norm on the vector space L∞(μ).

Remark 3.2.5. Let f be in L∞(μ). We have

‖f‖L∞(μ) = inf
A∈M

μ(Ac)=0

(
sup
x∈A

|f(x)|
)
.

In fact if f ∈ L∞(μ), A ∈ M, μ(Ac) = 0, we have f ∼ f1A and thus

‖f‖L∞(μ) = ‖f1A‖L∞(μ) ≤ sup
x∈A

|f(x)|.

Conversely if f ∈ L∞(μ), we saw that μ
(
{|f | > ‖f‖L∞(μ)}

)
= 0. Defining

A = {|f | ≤ ‖f‖L∞(μ)}

we find μ(Ac) = 0 and ‖f‖L∞(μ) = ‖f1A‖L∞(μ) ≤ supx∈A |f(x)| ≤ ‖f‖L∞(μ).

Proposition 3.2.6. Let (X,M, μ) be a measure space where μ is a positive measure.
Let 1 ≤ p, p′ ≤ +∞ be conjugate exponents (i.e., 1

p + 1
p′ = 1), f ∈ Lp(μ) and

g ∈ Lp′(μ). Then the product fg belongs to L1(μ) and we have

‖fg‖L1(μ) ≤ ‖f‖Lp(μ)‖g‖Lp′(μ).

Proof. For 1 < p < +∞, it is Hölder inequality (Theorem 3.1.6(1)). If p = 1, then
p′ = +∞ and we have

|f(x)g(x)| ≤ |f(x)|‖g‖L∞(μ) μ-a.e.,

which gives the result by integration using Theorem 1.7.4. �

Remark 3.2.7. Although the spaces Lp(μ) are quotients and its elements are classes
of functions in Lp(μ), we shall speak about functions of Lp(μ), keeping in mind
that they could be modified on negligible sets.

Theorem 3.2.8. Let (X,M, μ) be a measure space where μ is a positive measure
and let p ∈ [1,+∞]. Then Lp(μ) is a Banach space (complete normed vector space)
and L2(μ) is a Hilbert space (complete pre-Hilbertian space).

Proof. We assume first 1 ≤ p < +∞ and consider a Cauchy sequence (fn)n≥1 in
Lp(μ), i.e., such that

∀ε > 0, ∃Nε, ∀n,m ≥ Nε, ‖fn − fm‖Lp(μ) ≤ ε. (3.2.7)
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We claim that there exists a strictly increasing sequence of indices

1 ≤ n1 < n2 < · · · < nk < nk+1 < · · · such that ‖fnk+1
− fnk

‖ ≤ 2−k. (3.2.8)

In fact, using (3.2.7), we can find n1 ≥ 1 such that ∀p ≥ 0, ‖fp+n1 − fn1‖ ≤ 2−1.
Let us assume that we have found 1 ≤ n1 < n2 < · · · < nk such that

∀p ≥ 0, ∀j ∈ {1, . . . , k}, ‖fp+nj − fnj‖ ≤ 2−j. (3.2.9)

From (3.2.7), we can find mk such that ∀p ≥ 0, ∀m ≥ mk, ‖fp+m − fm‖ ≤ 2−k−1.
We define now

nk+1 = max(1 + nk,mk),

and we check nk < nk+1 and ∀p ≥ 0, ‖fp+nk+1
− fnk+1

‖ ≤ 2−k−1. This allows us
to construct a strictly increasing sequence (nk)k≥1 satisfying (3.2.9) which implies
Claim (3.2.8). For k ≥ 1, we define now the non-negative measurable functions

gk =
∑

1≤j≤k

|fnj+1 − fnj |, g =
∑
j≥1

|fnj+1 − fnj |. (3.2.10)

Using (3.2.8) and the triangle inequality for the norm Lp(μ), we find

‖gk‖Lp(μ) ≤
∑

1≤j≤k

‖fnj+1 − fnj‖Lp(μ) ≤
∑

1≤j≤k

2−j ≤ 1,

so that Fatou’s lemma 1.6.4 implies∫
X

(
|g|p = lim

k
|gk|p = lim inf

k
|gk|p

)
dμ ≤ lim inf

k

∫
X

|gk|pdμ ≤ 1,

proving g ∈ Lp(μ), ‖g‖Lp(μ) ≤ 1 and 0 ≤ g < +∞ μ-a.e. (cf. Proposition 1.7.1

(4)). As a consequence, the telescopic series
∑

j≥1

(
fnj+1(x)−fnj (x)

)
is absolutely

converging μ-a.e., i.e., on a measurable set A such that μ(Ac) = 0. Let us define

f(x) =
(
fn1(x) +

∑
j≥1

(
fnj+1(x) − fnj (x)

))
1A(x).

Since fn1(x) +
∑

1≤j≤k

(
fnj+1(x) − fnj(x)

)
= fnk+1

(x), we find

f(x) = lim
k
fnk

(x), μ-a.e.

Let ε > 0 be given and Nε be an integer such that (3.2.7) is fulfilled. Fatou’s
lemma implies for m ≥ Nε,∫

X

(
|f − fm|p = lim inf

k
|fnk

− fm|p
)
dμ ≤ lim inf

k

∫
X

|fnk
− fm|pdμ ≤ εp.
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As a result, f − fm belongs to Lp(μ) as well as f = f − fm + fm and we have

‖f − fm‖Lp(μ) −→
m→+∞

0, qed for 1 ≤ p < +∞.

In particular, L2(μ) is complete for the norm

‖u‖L2(μ) =

(∫
X

uūdμ

)1/2

. (3.2.11)

For u, v ∈ L2(μ), Proposition 3.2.6 implies that uv̄ belongs to L1(μ) so that

L2(μ) × L2(μ) � (u, v) �→
∫
X

uv̄dμ = B(u, v) (3.2.12)

is a sesquilinear Hermitian form, i.e., for λ1, λ2 ∈ C, u, v ∈ L2(μ),

B(λ1u1 + λ2u2, v) = λ1B(u1, v) + λ2B(u2, v), B(v, u) = B(u, v). (3.2.13)

The vector space L2(μ) equipped with the norm (3.2.11) is thus a Hilbert space.
We need now to check the case p = +∞. Let (fn)n∈N be a Cauchy sequence in
L∞(μ). We define for n,m ∈ N the sets

An = {x ∈ X, |fn(x)| > ‖fn‖L∞(μ)}, (3.2.14)

Bn,m = {x ∈ X, |fn(x) − fm(x)| > ‖fn − fm‖L∞(μ)}, (3.2.15)

and we note that they are both negligible (from (3.2.5)). Let us define

E = ∪n∈NAn ∪ ∪k,l∈NBk,l.

As a countable union of negligible sets, E is negligible and for x ∈ Ec, n,m ∈ N,

|fn(x) − fm(x)| ≤ ‖fn − fm‖L∞(μ), (3.2.16)

|fn(x)| ≤ ‖fn‖L∞(μ) ≤ sup
N

‖fn‖L∞(μ) =M0 < +∞. (3.2.17)

The very last inequality follows from the assumption (3.2.7) since the triangle
inequality implies in a normed space

‖fn‖ ≤ ‖fn − fm‖ + ‖fm‖, ‖fm‖ ≤ ‖fn − fm‖+ ‖fn‖,

so that

|‖fn‖ − ‖fm‖| = max
(
‖fn‖ − ‖fm‖, ‖fm‖ − ‖fn‖

)
≤ ‖fn − fm‖, (3.2.18)

proving that the sequence of real numbers (‖fn‖)n∈N is a Cauchy sequence, thus
is bounded. For x ∈ Ec, the sequence of complex numbers

(
fn(x)

)
n∈N is a Cauchy

sequence, thus converging (with a limit ≤M0 in modulus). Let us now define

f(x) =

{
limn fn(x) for x ∈ Ec,

0 for x ∈ E.
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The function f belongs to L∞(μ) (note that f is measurable as a pointwise limit
of the measurable fn1Ec) and ‖f‖L∞(μ) ≤ M0. Moreover, using (3.2.7), for ε > 0
and n ≥ Nε we have

|fn(x) − f(x)|1Ec(x) = lim
m

|fn(x) − fm(x)|1Ec(x) ≤ lim sup
m

‖fn − fm‖L∞(μ) ≤ ε.

Since μ(E) = 0, we find ‖fn − f‖L∞(μ) ≤ supx∈Ec |fn(x) − f(x)|1Ec(x) ≤ ε,
proving the convergence in L∞(μ) of the sequence (fn)n∈N. The proof of Theorem
3.2.8 is complete. �

Along the proof of the previous theorem, we have obtained the following
result, which is of independent interest.

Lemma 3.2.9. Let (X,M, μ) be a measure space where μ is a positive measure, let
p ∈ [1,+∞) and let (fn)n∈N be a convergent sequence in Lp(μ). Then there exists
a subsequence (fnk

)k∈N converging pointwise μ-a.e.

We have seen in Exercise 2.8.23 that a sequence (fn)n∈N can be converging in
L1(R) and nevertheless be such that for all x ∈ R, the sequence

(
fn(x)

)
n∈N is di-

vergent, proving that extracting a subsequence is necessary to get a.e. convergence
from convergence in L1.

The following theorem is an extension to Lp of Proposition 1.7.8.

Theorem 3.2.10. Let (X,M, μ) be a measure space where μ is a positive measure
and let p ∈ [1,+∞). Let fn : X → C be a sequence of measurable functions
converging μ-a.e. towards f .

(1) Let us assume that for all n ∈ N, fn ∈ Lp(μ) and the numerical sequence
‖fn‖Lp(μ) is bounded above. Then f ∈ Lp(μ).

(2) We assume that limn→∞ ‖fn‖Lp(μ) = ‖f‖Lp(μ). Then the sequence (fn)n∈N
converges in Lp(μ) towards f , i.e.,

lim
n→∞

∫
X

|fn − f |pdμ = 0.

Proof. The function f is measurable as a simple limit of measurable functions.
Moreover, Fatou’s lemma implies∫

X

|f |pdμ =

∫
X

lim inf
n

|fn|pdμ ≤ lim inf
n

∫
X

|fn|pdμ ≤ sup
n

∫
X

|fn|pdμ < +∞,

which proves (1). Let us prove (2). We define

gn = |fn − f |p − |fn|p + |f |p, (3.2.19)

and for a given λ > 0, we find∫
X

|gn|dμ =

∫
X

|gn|1{|fn|≤λ|f |}dμ︸ ︷︷ ︸
ελ(n)

+

∫
X

|gn|1{|fn|>λ|f |}dμ.
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We note that |gn|1{|fn|≤λ|f |} converges pointwise to 0 since gn converges pointwise
to 0. Moreover we have

1{|fn|≤λ|f |}|gn| ≤ 1{|fn|≤λ|f |}

(
|fn|p + |f |p +

∣∣|fn|+ |f |
∣∣p)

≤ |f |p(λp + 1 + (λ+ 1)p) ∈ L1(μ).

Lebesgue’s dominated convergence theorem implies then limn ελ(n) = 0. More-
over, we have, noting that fn �= 0 on {|fn| > λ|f |},

|gn|1{|fn|>λ|f |} =
∣∣|fn − f |p − |fn|p + |f |p

∣∣1{|fn|>λ|f |}

= |fn|p
∣∣|1 − f/fn|p − 1 + |f/fn|p

∣∣1{|fn|>λ|f |}.

For a complex number z such that |z| < 1, we have∣∣|1 − z|p − 1
∣∣ ≤ p2p−1

∣∣|1 − z| − 1
∣∣ ≤ p2p−1|z| :

the first inequality comes from the mean value theorem for the function t �→ tp

between 1 and |1 − z|, and the next one follows from the triangle inequalities

|1 − z| ≤ 1 + |z| and 1 ≤ |1 − z|+ |z|.

As a result for λ > 1, we find

|gn|1{|fn|>λ|f |} ≤ |fn|p(1 + p2p−1)/λ,

which implies
∫
X |gn|dμ ≤ εn(λ)+ 1+p2p−1

λ

∫
X |fn|pdμ. Consequently, for all λ > 1,

we get

lim sup
n→+∞

∫
X

|gn|dμ ≤ p2
p−1 + 1

λ
lim

n→+∞

∫
X

|fn|pdμ,

implying limn

∫
X |gn|dμ = 0, and thus limn

∫
X gndμ = 0. Going back to the defi-

nition of gn in (3.2.19) we find now

0 = lim
n

(∫
X

(
|fn − f |p − |fn|p + |f |p

)
dμ

)
= lim

n

(∫
X

|fn − f |pdμ−
∫
X

|fn|pdμ+
∫
X

|f |pdμ
)
.

Since we have assumed that limn

∫
X

|fn|pdμ =
∫
X

|f |pdμ, we obtain the result

lim
n

∫
X

|fn − f |pdμ = 0. �

N.B. The statement of the previous theorem does not hold for p = +∞: on the
real line we may consider the L∞ function f = 1[−1,1] which has norm 1. It is
easy to find a sequence of continuous functions fn with compact support in [−2, 2]
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converging pointwise towards f with L∞ norm equal to 1 with norm 1 (take fn
continuous piecewise affine, equal to 1 on [−1, 1], equal to 0 on the complement
of (−1 − 1

n , 1 +
1
n )). However it is not possible that the sequence (fn) converges

in the L∞ norm towards f , since the continuity of the (fn) must be preserved by
uniform limit, although f has discontinuity points.

Proposition 3.2.11. Let (X,M, μ) be a measure space where μ is a positive measure
and let 1 ≤ p < +∞. We define

S = {s : X → C,measurable, s(X) finite with μ
(
{s �= 0}

)
< +∞}. (3.2.20)

The set S is dense in Lp(μ).

Proof. Let s be in S and let α1, . . . , αm be the distinct non-zero values taken by
s. We have

s =
∑

1≤j≤m

αj1Aj , Aj = s
−1({αj}), μ(Aj) ≤ μ({s �= 0}) < +∞. (3.2.21)

Since the Aj are pairwise disjoint, we find∫
X

|s|pdμ =
∑

1≤j≤m

|αj |pμ(Aj) < +∞, (3.2.22)

proving the inclusion S ⊂ Lp(μ). Let f be a positive function belonging to Lp(μ).
Using the approximation Theorem 1.3.3, we find an increasing sequence of simple
functions (sk)k∈N converging pointwise to f . Each sk belongs to S since for s
simple ≤ f , taking the distinct non-negative values α1, . . . , αm on the pairwise
disjoint sets A1, . . . Am, we have

s =
∑

1≤j≤m

αj1Aj ,
∑

1≤j≤m
αj>0

αpjμ(Aj) =

∫
X

spdμ ≤
∫
X

fpdμ < +∞,

which implies μ(Aj) < +∞ whenever αj > 0 and thus

μ
(
{s �= 0}

)
=
∑

1≤j≤m
αj>0

μ(Aj) < +∞,

proving s ∈ S. Going back to the sequence (sk)k∈N, we have

0 ≤ (f − sk)p = |f − sk|p ≤ fp ∈ L1(μ) and (f − sk)p → 0 pointwise.

Using Lebesgue’s dominated convergence Theorem 1.6.8, this gives∫
X

|f − sk|pdμ→ 0, i.e., lim
k

‖f − sk‖Lp(μ) = 0.
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We conclude the proof by writing f ∈ Lp(μ) as

f = (Re f)+ − (Re f)− + i(Im f)+ − i(Im f)−. (3.2.23)

�
Remark 3.2.12. The previous proposition does not hold for p = +∞ when μ(X) =
+∞. For instance, the function 1 in L∞(μ) cannot be approximated in L∞(μ)-
norm by a function s which is 0 on the complement of a set A with finite measure:
we have

‖1 − s‖L∞(μ) ≥ ‖(1 − s)1Ac‖L∞(μ) = ‖1Ac‖L∞(μ) = 1,

since μ(Ac) = +∞ > 0. However, when p = +∞, we always have the following
property.

Proposition 3.2.13. Let (X,M, μ) be a measure space where μ is a positive mea-
sure. We define

S∞ = {s : X → C,measurable, s(X) finite}. (3.2.24)

The set S∞ is dense in L∞(μ). In particular, when μ(X) < +∞, we have S∞ = S,
where S is defined by (3.2.20), and Proposition 3.2.11 holds true in that case for
p = +∞.

Proof. Let 0 ≤ f ∈ L∞(μ): we find N negligible such that f̃ = f1Nc is bounded
non-negative. Theorem 1.3.3 implies that there exists an increasing sequence of
simple functions (sk)k∈N converging uniformly towards f̃ . Of course each sk be-
longs to S∞ and thus to L∞(μ) and we have

‖f − sk‖L∞(μ) = ‖f̃ − sk‖L∞(μ) ≤ sup
x∈X

|f̃(x) − sk(x)| −→
k→+∞

0.

We conclude by decomposing f as in (3.2.23). �

3.3 Integrals depending on a parameter

Continuity

Theorem 3.3.1. Let (X,M, μ) be a measure space where μ is a positive measure.
Let Y be a metric space, let y0 ∈ Y and let f : X × Y → C be a mapping such
that:

(1) For all y ∈ Y , the mapping

{
X → C
x �→ f(x, y)

belongs to L1(μ).

(2) The mapping

{
Y → C
y �→ f(x, y)

is continuous at y0, μ-a.e. with respect to x.

(3) There exists a function 0 ≤ g ∈ L1(μ) such that, μ-a.e. in x ∈ X, for all
y ∈ Y , |f(x, y)| ≤ g(x).
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Then the function F defined by

F (y) =

∫
X

f(x, y)dμ(x) (3.3.1)

is continuous at y0. In particular, if the assumption (2) holds for all y ∈ Y , we
find that F is continuous on Y .

Remark 3.3.2. Assumption (2) means that there existsN ∈ M such that μ(N) = 0
so that for all x ∈ N c, the mapping y �→ f(x, y) is continuous at y0. Assumption
(3) means that there exists N ∈ M such that μ(N) = 0 and

sup
y∈Y

|f(x, y)|1Nc(x) ∈ L1(μ). (3.3.2)

We note also that (1) allows us to define F by (3.3.1).

Proof. Let (yn)n≥1 be a sequence in Y converging towards y0. We check

F (yn)− F (y0) =
∫
X

(
f(x, yn) − f(x, y0)︸ ︷︷ ︸

fn(x)

)
dμ(x).

Thanks to (2), the sequence (fn)n≥1 converges pointwise a.e. to 0; moreover (3)
implies |fn| ≤ 2g, μ-a.e. We can apply Lebesgue’s dominated convergence Theorem
1.7.5 entailing the sought result limn→+∞ F (yn) = F (y0). �

When the space Y is locally compact, the domination hypothesis (3) can be
localized to any compact subset of Y .

Corollary 3.3.3. Let (X,M, μ) be a measure space where μ is a positive measure.
Let Y be a locally compact metric space, and let f : X × Y → C such that (1)
above is satisfied, as well as (2) for all y in Y . If for any compact subset K of Y ,
there exists a non-negative function gK ∈ L1(μ) such that, μ-a.e. with respect to
x ∈ X,

sup
y∈K

|f(x, y)| ≤ gK(x), (3.3.3)

then F defined by (3.3.1) is continuous on Y .

Proof. Since Y is locally compact, it is enough to check continuity for F restricted
to any compact set, so we can apply the previous theorem. �

Differentiability

Theorem 3.3.4. Let (X,M, μ) be a measure space where μ is a positive measure.
Let Y be an open subset of Rm, and f : X × Y → C be a mapping such that:

(1) For all y ∈ Y , the mapping

{
X → C
x �→ f(x, y)

belongs to L1(μ).
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(2) For all x ∈ X, the mapping

{
Y → C
y �→ f(x, y)

is differentiable on Y .

(3) For any compact subset K ⊂ Y , there exists a non-negative function gK ∈
L1(μ) such that, for all x ∈ X,

sup
y∈K

‖dyf(x, y)‖ ≤ gK(x). (3.3.4)

Then the function F defined by (3.3.1) is differentiable on Y , dyf(·, y) ∈ L1(μ)
and

dF (y) =

∫
X

dyf(x, y) dμ(x) (3.3.5)

Remark 3.3.5. The differential dyf(x, y) is a vector in Cm (a complex-valued linear
form on Rm) whose Euclidean norm is taken in (3.3.4). For that vector, to belong
to L1(μ) means that each component belongs to L1(μ). For all T ∈ Rm, the
mapping from X into C, defined by x �→ dyf(x, y) ·T belongs to L1(μ): first of all,

dyf(x, y) · T = lim
k→+∞

k
(
f(x, y + T/k)− f(x, y)

)
,

implying measurability, and also (3.3.4) gives∫
X

|dyf(x, y) · T |dμ(x) < +∞.

Proof. Let y ∈ Y and r > 0 such that the closed ball B̄(y, r) is included in Y . For
h ∈ Rm such that ‖h‖ ≤ r, we check

F (y + h) − F (y) =
∫
X

(
f(x, y + h) − f(x, y)

)
dμ(x)

=

∫
X

[
dyf(x, y) · h+ εx,y(h)‖h‖

]
dμ(x),

where we have

lim
h→0
εx,y(h) = εx,y(0) = 0. (3.3.6)

Since the function x �→ dyf(x, y) · h belongs to L1(μ), it is true also for εx,y(h)
and we find

F (y + h) − F (y) =
∫
X

dyf(x, y) · hdμ(x) +
∫
X

εx,y(h)dμ(x)‖h‖.

Using the mean value inequality, we get

|εx,y(h)|‖h‖ ≤ sup
θ∈[0,1]

‖dyf(x, y + θh)‖‖h‖+ ‖dyf(x, y)‖‖h‖
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so that from (3.3.4)

|εx,y(h)| ≤ 2 sup
z∈B̄(y,r)

‖dzf(x, z)‖ ≤ 2gK(x) ∈ L1(μ), (3.3.7)

with K = B̄(y, r). Inequalities (3.3.7) and (3.3.6) allow us to use Lebesgue’s
dominated convergence theorem to show that, for any sequence (hk)k∈N converging
to 0 in Rm, we have limk→+∞

∫
X

|εx,y(hk)|dμ(x) = 0. This implies

F (y + h) − F (y) =
∫
X

dyf(x, y) · hdμ(x) + ηy(h)‖h‖,

with ηy(h) =
∫
X
εx,y(h)dμ(x), and limh→0 ηy(h) = 0. We find thus that the map-

ping F is differentiable at any point y ∈ Y with dF (y) · h =
∫
X dyf(x, y) · hdμ(x),

concluding the proof. �

Remark 3.3.6. It would be harmless of course to replace
∫
X f(x, y)dμ(x) by-∫

X\N f(x, y)dμ(x) where N is negligible and thus to use a.e. assumptions. This

is in fact a consequence of Theorem 3.3.4 where X could be replaced by X\N .
However, the situation here is slightly different from the a.e. assumption in The-
orem 3.3.1: in the latter the hypothesis (3) is uniform with respect to y ∈ Y ,
as expressed by (3.3.2), whereas it is not the case for (1) when it is valid for all
y0 ∈ Y . In fact, in that case, (1) requires that for each y0 ∈ Y , there exists a
negligible set N (which could depend on y0) so that, for all x ∈ N c, the mapping
y �→ f(x, y) is continuous at y0.

Holomorphy

Theorem 3.3.7. Let (X,M, μ) be a measure space where μ is a positive measure.
Let U be an open subset of C, and let f : X ×U → C be a mapping satisfying the
following properties.

(1) For all z ∈ U , the mapping

{
X → C
x �→ f(x, z)

belongs to L1(μ).

(2) For all x ∈ X, the mapping

{
U → C
z �→ f(x, z)

is holomorphic on U .

(3) For every compact subset K of U , there exists a non-negative function gK ∈
L1(μ) such that for all x ∈ X,

sup
z∈K

|f(x, z)| ≤ gK(x). (3.3.8)

Then the function F defined by (3.3.1) is holomorphic on U and for all k ∈ N, the
mapping

X � x �→ ∂kf

∂zk
(x, z) ∈ C
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belongs to L1(μ) and

F (k)(z) =

∫
X

∂kf

∂zk
(x, z)dμ(x). (3.3.9)

Remark 3.3.8. It is important to note that Assumption (3.3.8) is apparently very
weak since we require only the local domination of the function itself, and not
like in (3.3.4) a control of the derivative. In fact, the holomorphy assumption and
Cauchy formula allow us to deduce from this some estimates for the derivatives.
Generally speaking, the oscillations of holomorphic functions (e.g., the values of
the derivatives) are controlled by the values of the functions. More precisely, the
topology on H (U) (holomorphic functions on the open set U) is given by the
countable family of semi-norms

sup
z∈Kj

|u(z)|, Kj compact, such that ∪j∈NKj = U,

which makes H (U) a Fréchet space2.

Proof. Let z0 ∈ U and r0 > 0 such that the closed ball K0 = B̄(z0, r0) is included
in U . Let (zn)n≥1 be a sequence in B̄(z0, r0/2)\{z0} with limit z0. With zn =
z0 + hn, let Γ0 be the circle with center z0 and radius r0: we have, using Cauchy’s
formula

F (z0 + hn) − F (z0) =
∫
X

[
f(x, z0 + hn) − f(x, z0)

]
dμ(x)

=

∫
X

1

2iπ

[∮
Γ0

f(x, ξ)

ξ − z0 − hn
dξ −

∮
Γ0

f(x, ξ)

ξ − z0
dξ

]
dμ(x)

=

∫
X

1

2iπ

[∮
Γ0

f(x, ξ)

ξ − z0

(
ξ − z0

ξ − z0 − hn
− 1

)
dξ

]
dμ(x)

= hn

∫
X

1

2iπ

[∮
Γ0

f(x, ξ)

ξ − z0
1

ξ − z0 − hn
dξ

]
︸ ︷︷ ︸

Gn(x)

dμ(x).

We claim that for all x ∈ X ,

lim
n→+∞

Gn(x) =
1

2iπ

∮
Γ0

f(x, ξ)

(ξ − z0)2
dξ =

∂f

∂z
(x, z0). (3.3.10)

2A Fréchet space is a complete metric vector space where the metric is given by a countable
family of semi-norms (pj)j∈N (a semi-norm satisfies the properties of a norm – see (1.2.12) –
except for the separation property); the family (pj)j∈N is assumed to be separating in the sense
that pj(u) = 0 for all j ∈ N implies that u = 0, and the metric is given by

d(u, v) =
∑
j≥0

2−jpj(u− v)

1 + pj(u− v)
.
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Indeed, for ξ ∈ Γ0, we have |ξ−z0| = r0, |ξ−z0−hn| ≥ |ξ−z0|−|hn| = r0−|hn| ≥
r0/2, which implies for all x ∈ X ,

|f(x, ξ)|
|ξ − z0||ξ − z0 − hn|

≤ 2|f(x, ξ)|
r20

,

so that for ξ = z0 + r0e
iθ,

|ir0eiθ|
|2iπ|

|f(x, z0 + r0eiθ)|
r0|r0eiθ − hn|

≤ 1

π

|f(x, z0 + r0eiθ)|
r0

= Ω(θ) ∈ L1([0, 2π]). (3.3.11)

Since for θ ∈ [0, 2π], we have

lim
n→+∞

ir0e
iθ

2iπ

f(x, z0 + r0e
iθ)

r0eiθ(r0eiθ − hn)
=
ir0e

iθ

2iπ

f(x, z0 + r0e
iθ)

r20e
2iθ

,

this implies from (3.3.11)

lim
n→+∞

Gn(x) = lim
n→+∞

1

2iπ

∮
Γ0

f(x, ξ)

(ξ − z0)(ξ − z0 − hn)
dξ

= lim
n→+∞

1

2iπ

∫ 2π

0

f(x, z0 + r0e
iθ)

r0eiθ(r0eiθ − hn)
ir0e

iθdθ

=
1

2iπ

∫ 2π

0

f(x, z0 + r0e
iθ)

r20e
2iθ

ir0e
iθdθ

=
1

2iπ

∮
Γ0

f(x, ξ)

(ξ − z0)2
dξ =

∂f

∂z
(x, z0),

which proves Claim (3.3.10). Moreover, we have

|Gn(x)| ≤
2πr0
2π

2

r0
sup
ξ∈Γ0

|f(x, ξ)| ≤ 2gK0(x) ∈ L1(μ).

Applying Lebesgue’s dominated convergence to the sequence Gn, we find that the
mapping x �→ ∂f

∂z (x, z0) belongs to L
1(μ) and

lim
n→+∞

h−1
n

(
F (z0 + hn) − F (z0)

)
=

∫
X

∂f

∂z
(x, z0)dμ(x),

for all z0 ∈ U . We get then (1), (2) for ∂f
∂z as well as (3) using Cauchy’s formula.

We conclude by a trivial induction argument. �

Let us end this section with a couple of examples. In the first place, we
consider the Gamma function, defined a priori on H0 = {z ∈ C,Re z > 0} by

Γ(z) =

∫ +∞

0

tz−1e−tdt. (3.3.12)
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Thanks to Theorem 3.3.7, we prove that Γ is holomorphic on H0, and is such that

∀z ∈ H0, Γ(z + 1) = zΓ(z), (3.3.13)

a functional equation allowing us to extend Γ meromorphically to C with simple

poles at {−k}k∈N with residue (−1)k

k! . We note that for n ∈ N, we have Γ(n+1) = n!
as well as Γ(1/2) =

√
π.

The Zeta function is defined a priori on H1 = {s ∈ C,Re s > 1} by

ζ(s) =
∑
n≥1

1

ns
. (3.3.14)

Theorem 3.3.7 implies that ζ is holomorphic on H1. This function can be extended
meromorphically to C with a single pole at 1 with residue 1. It can be proven also
that for Re s > 1,

ζ(s) =
∏
p∈P

(1 − p−s)−1, (3.3.15)

where P stands for the sequence of prime numbers. Most notably, the distribution
of prime numbers has an intimate connection with the location of the zeroes of
the ζ function, as pointed out first by Riemann. In particular the Hadamard–de
la Vallée-Poussin Theorem

card{p ∈ P , p ≤ x} def
= π(x) ∼

x→+∞

x

lnx
, (3.3.16)

follows from the fact that the ζ function does not vanish on H1. The Riemann
hypothesis, a most famous unsolved mathematical problem (November 2012 speak-
ing) stated by Riemann in 1859, asserts that the non-real zeroes of the ζ function
are located on the critical line {s ∈ C,Re s = 1

2}. Another important function is
the so-called function ξ, which is entire (i.e., holomorphic on C), defined by

ξ(s) = ζ(s)Γ(s/2)π−s/2 1

2
s(s− 1), (3.3.17)

and which verifies the functional equation

ξ(s) = ξ(1 − s). (3.3.18)

The Jacobi function θJ , is defined for Re z > 0 by

θJ (z) =
∑
n∈Z
e−πn2z. (3.3.19)

Theorem 3.3.7 implies that θJ is holomorphic on H0. The Modular Property of θJ
is expressed as

θJ (1/z) = z
1/2θJ(z). (3.3.20)
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The Beta function is defined for x, y ∈ H0 by

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt, (3.3.21)

and the following formula is easily proven:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (3.3.22)

Manifold other examples of applications of Theorem 3.3.7 occur in the mathemat-
ical literature and we refer the reader to the exercises sections as well as to our
Appendix 10.5 for examples related to the Airy functions, Bessel functions, elliptic
integrals, Fresnel integrals. . .

3.4 Continuous functions in Lp spaces

Theorem 3.4.1. Let 1 ≤ p < +∞ and let Ω be an open subset of Rm. The space
Cc(Ω) of complex-valued continuous compactly supported functions in Ω is dense
in Lp(Ω).

Proof. From Proposition 3.2.11, we know the density of S (see (3.2.20)) in Lp(Ω).
Thus we need only to consider a Borel set A ⊂ Ω with finite measure and prove
that we can approximate 1A in Lp-norm by a function of Cc(Ω).

Let ε > 0 be given. From Theorem 2.2.14, we find a closed set F and an open
set V of Ω such that

F ⊂ A ⊂ V, λm(V \F ) < εp/2p, (3.4.1)

which implies∫
Ω

|1A − 1V |pdλm =

∫
Ω

1p
V \Adλm = λm(V \A) < εp/2p. (3.4.2)

Moreover we have

λm(V ) = λm(A) + λm(V \A) ≤ λm(A) + λm(V \F ) ≤ λm(A) + εp/2p < +∞.

Using (2.4.3) in the proof of Theorem 2.4.2, we find χ ∈ Cc(V ; [0, 1]) such that

λm(V ) − εp/2p <
∫
Ω

χdλm ≤ λm(V ) = sup
χ∈Cc(V ;[0,1])

∫
Ω

χdλm < +∞,

so that∫
Ω

|1V −χ|pdλm=

∫
V

|1−χ|pdλm≤
∫
V

(1−χ)dλm=λm(V )−
∫
V

χdλm<ε
p/2p.

(3.4.3)
We get then from (3.4.2), (3.4.3) the inequality ‖1A −χ‖Lp(Ω) < ε and the result.

�
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Remark 3.4.2. Of course Theorem 3.4.1 does not hold for p = +∞ since for all
χ ∈ Cc(Ω), ‖1Ω − χ‖L∞(Ω) = 1. On the other hand, thanks to Proposition 3.2.13,
the space S∞ is dense in L∞(Ω).

Theorem 3.4.3. Let 1 ≤ p < +∞ and let Ω be an open set of Rm. The space
C∞c (Ω) is dense in Lp(Ω).

Proof. Let χ be in Cc(Ω) and ρ0 ∈ C∞c (Rd;R+), supp ρ0 = B̄(0, 1),
∫
Rd ρ0(x)dx =

1 (we may for instance consider the function ρ of Exercise 2.8.6 divided by its
integral). For ε > 0, we define

χε(x) =

∫
Rm

ρ0
(
(x− y)ε−1

)
ε−mχ(y)dy. (3.4.4)

Theorem 3.3.4 implies that χε is a C∞ function on Rm. Moreover we have

suppχε ⊂ suppχ+ εB̄(0, 1) ⊂ Ω for ε small enough (cf. (2.1.4)).

Using a dilation-translation change of coordinates in this integral of a compactly
supported continuous function (see Lemma 2.4.5), we get

χε(x) − χ(x) =
∫
Rm

ρ0(z)
(
χ(x+ εz)− χ(x)

)
dz

and since χ is uniformly continuous we find

|χε(x) − χ(x)| ≤ sup
|x1−x2|≤ε

|χ(x1)− χ(x2)| = θ(ε) →
ε→0

0,

so that
∫
Rd |χε(x) − χ(x)|pdx ≤ θ(ε)pλm(suppχ+ εB̄(0, 1)) →

ε→0
0. �

Remark 3.4.4. For 1 ≤ p < +∞, the space Lp(Ω) is thus the completion of Cc(Ω)
for the norm Lp. We could have defined Lp(Ω) using that completion argument, but
we would have to manipulate classes of Cauchy sequences of continuous functions
and this would be inelegant as well as complicated. Instead, we were able to realize
Lp as a space of functions modulo the equality a.e. and it is much simpler this
way. We shall see in Exercise 3.7.26 that the completion of Cc(Rm) for the L∞

norm is not L∞(Rm) but C(0)(Rm), the space of continuous functions going to 0
at infinity, i.e., continuous functions f on Rm such that

lim
R→+∞

{
sup
|x|≥R

|f(x)|
}
= 0.

We shall end this chapter with an important consequence of Theorem 3.4.3.

Lemma 3.4.5 (Riemann–Lebesgue Lemma). Let u be in L1(Rm). We define

û(ξ) =

∫
Rm

e−2iπx·ξu(x)dx (Fourier transform of u). (3.4.5)

Then we have û(ξ) −→
|ξ|→∞

0. Moreover the function û is uniformly continuous

on Rm.
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Proof. We note first that (3.4.5) is meaningful as the integral of an L1 function
and we have also

sup
ξ∈Rm

|û(ξ)| ≤ ‖u‖L1(Rm). (3.4.6)

Let ϕ ∈ C∞c (Rm). With α = (α1, . . . , αm) ∈ Nm, we define

Dα = Dα1
1 . . . D

αm
m , Dj =

1

2iπ

∂

∂xj
, ξα = ξα1

1 . . . ξ
αm
m . (3.4.7)

Theorem 3.3.4 implies the identities

ξ1ϕ̂(ξ) = D̂1ϕ(ξ), D̂αϕ(ξ) = ξαϕ̂(ξ), (3.4.8)

entailing
(
1 + |ξ|2

)
ϕ̂(ξ) = Fourier

(
ϕ+

∑
1≤j≤mD

2
jϕ
)
. We find thus(

1 + |ξ|2
)
|ϕ̂(ξ)| ≤ ‖ϕ+

∑
1≤j≤m

D2
jϕ‖L1(Rm),

which implies lim|ξ|→+∞ ϕ̂(ξ) = 0. For u ∈ L1(Rm), we have

|û(ξ)| ≤ | ̂(u− ϕ)(ξ)| + |ϕ̂(ξ)| ≤ ‖u− ϕ‖L1(Rm) + |ϕ̂(ξ)|,

so that for all ϕ ∈ C∞c (Rm),

lim sup
|ξ|→∞

|û(ξ)| ≤ ‖u− ϕ‖L1(Rm) =⇒ lim sup
|ξ|→∞

|û(ξ)| ≤ inf
ϕ∈C∞c (Rm)

‖u− ϕ‖L1(Rm) = 0.

We have also û(ξ + η) − û(ξ) =
∫
Rm e

−2iπx·ξ(e−2iπx·η − 1
)
u(x)dx, so that

|û(ξ + η) − û(ξ)| ≤
∫
Rm

|u(x)| |e−2iπx·η − 1|︸ ︷︷ ︸
≤2

dx,

and Lebesgue’s dominated convergence theorem shows that, for all ξ ∈ Rm,

lim
η→0

|û(ξ + η) − û(ξ)| = 0,

proving continuity, which is also a consequence of Theorem 3.3.1. We have also for
R > 1, |η| ≤ 1,

|û(ξ + η) − û(ξ)| ≤ sup
|ξ|≤R

|û(ξ + η) − û(ξ)| + 2 sup
|ξ|≥R−1

|û(ξ)|

so that for 0 < ε < 1, if ωρ is a modulus of continuity3 of the continuous function
û on the compact set {|x| ≤ ρ}

sup
|η|≤ε,ξ∈Rm

|û(ξ + η)− û(ξ)| ≤ ωR+1(ε) + 2 sup
|ξ|≥R−1

|û(ξ)|,

3For a continuous function v defined on a compact subset K of Rm, the modulus of continuity
ω is defined on R+ by ω(ρ) = sup x,y∈K

|x−y|≤ρ

|v(x)− v(y)|. We have limρ→0+ ω(ρ) = 0.
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proving that the lim sup of the lhs when ε goes to 0 is smaller than

2 sup
|ξ|≥R−1

|û(ξ)|, for all R > 1.

Since that quantity is already proven to go to 0 when R goes to +∞, we obtain
the uniform continuity of û. �

The next result shows that, on a measure space X with finite measure, point-
wise convergence of a sequence of (measurable) functions induces uniform conver-
gence on a set with measure arbitrarily close to μ(X).

Theorem 3.4.6 (Egoroff’s theorem). Let (X,M, μ) be a measure space where μ
is a positive measure such that μ(X) < +∞. Let fn : X → C be a sequence
of measurable functions converging pointwise towards a function f . Then for any
ε > 0, there exists Aε ∈ M with μ(Aε) < ε and such that the sequence (fn)n∈N
converges uniformly on X\Aε.

Proof. For k ≥ 1, n, integers, we define

Ek
n = ∩p≥n{x ∈ X, |fp(x) − f(x)| ≤ 1/k}.

Claim. For all k ≥ 1, X = ∪n∈NE
k
n. In fact, for any x ∈ X , we have limm fm(x) =

f(x) so that for all k ≥ 1, there exists an integer n such that for all p ≥ n,

|fp(x) − f(x)| ≤ 1/k,

i.e., x ∈ Ek
n, proving the claim. We note also that Ek

n ⊂ Ek
n+1 and from Proposition

1.4.4(2), this gives limn μ(E
k
n) = μ(X). Since μ(X) < +∞, for all ε > 0 and for

all k ≥ 1, there exists Nk such that

∀n ≥ Nk, μ(E
k
n) ≥ μ(X)− ε2−k.

We may thus assume that there exists a sequence (nk)k≥1 strictly increasing such
that

μ(Ek
nk
) ≥ μ(X)− ε2−k.

Indeed, we may define nk = k − 1 + max1≤j≤kNj : we have then

Nk ≤ nk = k − 1 + max
1≤j≤k

Nj ≤ k − 1 + max
1≤j≤k+1

Nj < k + max
1≤j≤k+1

Nj = nk+1.

Let ε > 0 be given. We define F = ∪k≥1Fk with Fk =
(
Ek

nk

)c
. We have

μ(Fk) = μ(X) − μ(Ek
nk
) ≤ ε2−k

and thus μ(F ) ≤
∑

k≥1 μ(Fk) ≤ ε. With B = F c and thus μ(Bc) ≤ ε, we get

B = ∩k≥1F
c
k = ∩k≥1E

k
nk
,

providing supx∈B |fn(x)− f(x)| ≤ supx∈Ek
nk

|fn(x)− f(x)| ≤ 1/k if n ≥ nk. The
sequence (supx∈B |fn(x) − f(x)|)n∈N is thus converging with limit 0. �
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Remark 3.4.7. The assumption μ(X) < +∞ is not dispensable. We consider the
Lebesgue measure λ1 on R and the sequence converging pointwise to 0 given by
fn(x) = 1[0,1](x−n). If A is measurable with the Lebesgue measure ≤ 1/2 and fn
converges uniformly on Ac, we must have

0 = lim
n

(
sup
x∈Ac

1[0,1](x− n)
)

which implies Ac ∩ [n, n+ 1] = ∅ for n ≥ N , and thus

A ⊃ [n, n+ 1] =⇒ λ1(A) ≥ 1, contradicting the assumption.

Theorem 3.4.8 (Lusin’s theorem). Let (X, d) be a locally compact metric space and
let μ be a Borel measure on X such that Properties (1), (2), (3) in Theorem 2.2.14
are satisfied (this includes the case of the Lebesgue measure on Rm).

Let f : X → C be a measurable function and let A be a measurable set such
that μ(A) < +∞ and f vanishes on Ac. Let ε > 0 be given; then there exists
φ ∈ Cc(X ;C) such that

μ
(
{x ∈ X, f(x) �= φ(x)}

)
< ε. (3.4.9)

Proof. We assume first that 0 ≤ f < 1 and A is compact. We define sk by (1.3.1)
and we have s0 = 0, 2E(2k−1f) ≤ E(2kf) ≤ 1 + 2E(2k−1f) so that for k ≥ 1,

2k(sk − sk−1) = E(2
kf)− 2E(2k−1f) ∈ {0, 1} = 1Ak

,

and from Theorem 1.3.3, f =
∑

k≥1 2
−k1Ak

. This implies in particular that
∪k≥1Ak ⊂ A, since x ∈ ∪k≥1Ak =⇒ f(x) > 0 =⇒ x �∈ Ac. For each Ak and
εk > 0 we can find

Fk closed ⊂ Ak ⊂ Vk open, μ(Vk\Fk) < εk.

We may assume that A compact ⊂ V0 open ⊂ V0 compact. Note that Fk is com-
pact as a closed subset of the compact set A, so that we can find ϕk ∈ Cc(Vk; [0, 1])
with ϕk = 1 on Fk; we may also assume that Vk ⊂ V0 since Ak ⊂ A ⊂ V0. We set
now W = ∪k≥1(Vk\Fk), and choosing εk = ε2−k for some positive number ε, we
have

μ(W ) <
∑
k≥1

εk ≤ ε.

We define φ =
∑

k≥1 2
−kϕk, which belongs to CV 0

(X) and we have

φ(x) − f(x) =
∑
k≥1

2−k
(
ϕk(x) − 1Ak

(x)
)︸ ︷︷ ︸

=0 on Fk ∪ V c
k

=⇒ (φ− f)1W c = 0,

proving the result in that case and also in the case where f is bounded measurable
and A compact.
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Case f bounded and μ(A) < +∞. The inner regularity of μ implies that for any
ε > 0, we can find K compact ⊂ A such that

μ(A) − ε < μ(K) ≤ μ(A) =⇒ μ(A\K) < ε.

We can find χ ∈ Cc(X) equal to 1 on K, supported in a neighborhood V of K
such that μ(V \K) < ε and V is compact. The function χf vanishes on (V )c and
we may apply the previous result. Since χ = 1 on K, we obtain the result in that
case.

General case. We consider Bn = {x ∈ X, |f(x)| > n} ⊂ A and we note that
∩nBn = ∅. This implies from Proposition 1.4.4(3) that limn μ(Bn) = 0. Since f
coincides with the bounded function 1Bc

n
f , except on Bn, whose measure goes to

0, this gives the result. �

3.5 On various notions of convergence

We collect in this section the various properties linked to the several convergence
modes met in the text.

Definition 3.5.1. Let (X,M, μ) be a measure space where μ is a positive measure
and let (fn)n∈N be a sequence of measurable functions from X into C.

(1) The sequence (fn)n∈N converges almost everywhere towards f if there exists
N ∈ M, such that μ(N) = 0 and

∀x ∈ N c, lim
n
fn(x) = f(x).

(2) The sequence (fn)n∈N converges in measure towards f if

∀ε > 0, lim
n
μ
(
{x ∈ X, |fn(x) − f(x)| > ε}

)
= 0.

(3) The sequence (fn)n∈N converges in the space L1(μ) towards f ∈ L1(μ) if

lim
n

‖fn − f‖L1(μ) = 0.

(4) The sequence (fn)n∈N satisfies the dominated convergence criterion if (1)

holds and if g(x) = supn∈N |fn(x)| is such that g ∈ L1(μ).
Theorem 3.5.2. Let (X,M, μ) be a measure space where μ is a positive measure
and let (fn)n∈N be a sequence of measurable functions from X into C. With the
notation of Definition 3.5.1, we have the following properties.

(i) (4) =⇒ (3) ∩ (1).

(ii) (3) =⇒ (2).

(iii) (2) does not imply (1) in general, but it is true for a subsequence.

(iv) (3) does not imply (1) in general, but it is true for a subsequence.

(v) (1) =⇒ (2) if μ(X) < +∞ and not in general without this condition.
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Proof. Assertion (i) is the Lebesgue dominated convergence Theorem 1.7.5. State-
ment (ii) follows from the inequality

μ
(
{x ∈ X, |fn(x) − f(x)| > ε}

)
≤
∫
X

1

ε
|fn − f |dμ = ε−1‖fn − f‖L1(μ).

The first part of (iii) follows from the example in Exercise 2.8.23 in which is
displayed a sequence (fn) of non-negative measurable functions converging in
L1([0, 1]) towards 0 (thus in measure from the already proven (ii)) such that se-
quence (fn(x))n∈N diverges for every x ∈ [0, 1]. Let us prove the second part of
(iii): let (fn) be a sequence converging to f in measure. This implies that

∀k ≥ 0, ∃Nk ∈ N, ∀n ≥ Nk, μ
(
{|fn − f | > 2−k}

)
< 2−k.

Let us assume that we have found N0 < N1 < · · · < Nl such that the above
property is true for k = 0, . . . , l. Then using that

lim
n
μ
(
{|fn − f | > 2−l−1}

)
= 0,

we may find Nl+1 > Nl such that μ
(
{|fn−f | > 2−l−1}

)
< 2−l−1 for n ≥ Nl+1. Let

us consider the subsequence (fNk
)k∈N. We define Ek = {x, |fNk

(x)−f(x)| > 2−k}.
We know that μ(Ek) < 2−k and |f(x) − fNk

(x)| ≤ 2−k if x /∈ Ek. Defining
Fm = ∪k>mEk we find that μ(Fm) ≤ 2−m and moreover

∀x ∈ F c
m, ∀k > m, |fNk

(x) − f(x)| ≤ 2−k =⇒ ∀x ∈ F c
m, lim

k→+∞
fNk

(x) = f(x).

The set F = ∩m≥0Fm has measure 0 and for each x ∈ F c = ∪m≥0F
c
m, we have

limk→+∞ fNk
(x) = f(x), proving the sought result. The first part of statement

(iv) follows from Exercise 2.8.23 and the second part from Lemma 3.2.9. The first
part of statement (v) follows from (1) in Exercise 3.7.12 and the second part from
Remark 3.7.13. �

Theorem 3.5.3. Let (X,M, μ) be a measure space where μ is a positive measure
and let (fn)n∈N be a sequence of measurable functions from X into C. With the
notation of Definition 3.5.1, we have the following properties.

(j) For p ∈ [1,+∞), (1) and limn ‖fn‖Lp(μ) = ‖f‖Lp(μ) imply convergence in the
space Lp(μ).

(jj) Local convergence in measure (see (2.8.14)) and domination (supn |fn(x)| ∈
L1(μ)) imply (3).

Proof. Statement (j) is Theorem 3.2.10. Statement (jj) follows from Ex. 2.8.14.
�



154 Chapter 3. Spaces of Integrable Functions

3.6 Notes

Much more on the topic of convexity can be obtained from L. Hörmander’s mono-
graph, Notions of Convexity ([33]).

Let us follow alphabetically the names of mathematicians encountered in the
text.

George Airy (1801–1892) was an English mathematician and astronomer. The
intensity of light near a caustic was the initial reason for his invention of the
now called Airy function.

Friedrich Bessel (1784–1846) was a German mathematician, astronomer.

Dmitri Egoroff (1869–1931) was a Russian mathematician.

Augustin Fresnel (1788–1827) was a French engineer who contributed signifi-
cantly to the establishment of the theory of wave optics.

Jacques Hadamard (1865–1963) was a French mathematician of extraordinary
breadth and depth. He proved the Prime Number Theory at the same time
as Charles de la Vallée-Poussin (1866–1962).

Otto Hölder (1859–1937), a German mathematician who proved his inequality
in 1884.

Carl Gustav Jacobi (1804–1851) was a German mathematician, creator of the
theory of elliptic functions.

Johan Jensen (1859–1925) was a Danish mathematician, who proved in 1906 the
fundamental inequality bearing his name.

Nikolai Lusin (1883–1950) was a Russian mathematician, a Ph.D. student of
Dmitri Egoroff.

Hermann Minkowski (1864–1909) was a professor at the university of Göttingen.
He also taught in Zürich where Albert Einstein attended his lectures.

Thales of Miletus lived from 624 BC to 547 BC. Miletus is a city in Asia
Minor (now located in Turkey). Thales seems to be the first known Greek
philosopher as well as a scientist, mathematician and a professional engineer.
Thales’ theorem is now in fact one of the axioms in the definition of vector
spaces:

λ · (x+ y) = λ · x+ λ · y

where λ is a scalar (e.g., a real number for real vector spaces) and x, y are
vectors.
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3.7 Exercises

Exercise 3.7.1. Let (aj)1≤j≤n and (θj)1≤j≤n be as in Lemma 3.1.5. Prove the
harmonic mean – geometric mean – arithmetic mean inequality( ∑

1≤j≤n

θja
−1
j

)−1

≤
∏

1≤j≤n

a
θj
j ≤

∑
1≤j≤n

θjaj ,

and also that, if any of the inequalities above is an equality, we have a1 = · · · = an.

Answer. The second inequality is proven in Lemma 3.1.5; also proven there is the
fact that the equality holds iff all aj are equal. With bj = a

−1
j , the first inequality

is equivalent to the second one, completing the answer.

N.B. The above inequality will be called HGA inequality and the second one GA.

Exercise 3.7.2 (Logarithmic convexity). Let f : I −→ R∗+ be a function defined on
an interval I of the real line. The function f is said to be log-convex when ln f is
a convex function.

(1) Prove that a log-convex function is convex.

(2) Give an example of a convex function valued in R∗+ which is not log-convex.

(3) Prove that the Γ function is log-convex on R+.

(4) Prove that the Gamma function is the only positive valued function f defined
on R∗+ such that

• f(1) = 1,

• ∀x > 0, f(x+ 1) = xf(x),

• f is log-convex.

Answer. (1) In the case where f is twice differentiable and log-convex, we have
with φ convex twice differentiable

f = eφ, f ′ = eφφ′, f ′′ = eφ
(
φ′

2
+ φ′′

)
≥ 0, (3.7.1)

implying convexity for f . Without the assumption of differentiability, we find with
x0, x1 ∈ I, θ ∈ (0, 1), xθ = (1 − θ)x0 + θx1,

f(xθ) = e
φ(xθ) ≤ e(1−θ)φ(x0)+θφ(x1) ≤︸︷︷︸

GA inequality

(1 − θ)eφ(x0) + θeφ(x1),

proving convexity for f .
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(2) The function R � x �→ x2 + 1 ∈ R∗+ is obviously convex but not log-convex.
With φ(x) = ln(1 + x2), we have

φ′(x) =
2x

1 + x2
, φ′′(x) =

2(1 + x2) − 2x2x

(1 + x2)2
=

2(1 − x2)
(1 + x2)2

,

and since φ′′ takes negative values, Proposition 3.1.2(2) implies that φ is not
convex.

(3, 4) See Lemmas 10.5.4 and 10.5.5 in Section 10.5.

Exercise 3.7.3 (Hermite–Hadamard inequality). Let a < b ∈ R and let φ : [a, b] →
R be a convex function. Prove that

φ

(
a+ b

2

)
≤ 1

b− a

∫ b

a

φ(t)dt ≤ φ(a) + φ(b)
2

. (3.7.2)

Answer. Using an affine rescaling, we may assume that [a, b] = [0, 1]. We have for
θ ∈ [0, 1/2],

φ

(
1

2

)
= φ

(
1

2

(
1

2
− θ
)
+

1

2

(
1

2
+ θ

))
≤ 1

2
φ

(
1

2
− θ
)
+

1

2
φ

(
1

2
+ θ

)
,

so that, integrating for θ ∈ [0, 1/2], we get

1

2
φ

(
1

2

)
≤ 1

2

∫ 1/2

0

φ

(
1

2
− θ
)
dθ +

∫ 1/2

0

1

2
φ

(
1

2
+ θ

)
dθ

=
1

2

∫ 1/2

0

φ(t)dt+
1

2

∫ 1

1/2

φ(t)dt =
1

2

∫ 1

0

φ(t)dt,

which is the first inequality. On the other hand, for t ∈ [0, 1], we have

φ(t) = φ((1 − t)0 + t1) ≤ (1 − t)φ(0) + tφ(1),

so that, integrating for t ∈ [0, 1], we get∫ 1

0

φ(t)dt ≤ φ(0)
2

[(1 − t)2]01 +
φ(1)

2
[t2]10 =

φ(0) + φ(1)

2
.

Exercise 3.7.4 (Karamata’s inequality). Let φ : I −→ R be a convex function de-
fined on an interval of the real line. Prove that for (xj)1≤j≤n, (yj)1≤j≤n decreasing
finite sequences in I such that

for all i with 1 ≤ i < n,
∑

1≤j≤i

yj ≤
∑

1≤j≤i

xj ,
∑

1≤j≤n

yj =
∑

1≤j≤n

xj ,

we have
∑

1≤j≤n φ(yj) ≤
∑

1≤j≤n φ(xj).
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Answer. With a1 < a2 < a3 < a4 and [ij] =
φ(aj)−φ(ai)

aj−ai
, we have from the

convexity of φ

[12] ≤ [13] ≤ [14] ≤ [24] ≤ [34].

This implies that for x′′ < x′, y′′ < y′, we have, assuming all four points distinct,

φ(y′′) − φ(x′′)
y′′ − x′′ ≤ φ(y

′) − φ(x′)
y′ − x′ (3.7.3)

since one of the following situations occurs:

• x′′ < x′ < y′′ < y′ so that (3.7.3) means [13] ≤ [24],

• x′′ < y′′ < x′ < y′ so that (3.7.3) means [12] ≤ [34],

• x′′ < y′′ < y′ < x′ so that (3.7.3) means [12] ≤ [34],

• y′′ < x′′ < y′ < x′ so that (3.7.3) means [12] ≤ [34],

• y′′ < y′ < x′′ < x′ so that (3.7.3) means [13] ≤ [24].

Assuming all the points are distinct, this proves that

σi+1 =
φ(yi+1) − φ(xi+1)

yi+1 − xi+1
≤ σi =

φ(yi) − φ(xi)
yi − xi

and thus, with Yi =
∑

j≤i yj , Xi =
∑

j≤i xj∑
1≤i≤n

(
φ(xi)− φ(yi)

)
=
∑

1≤i≤n

σi(xi − yi) =
∑

1≤i≤n

σi(Xi −Xi−1 − Yi + Yi−1)

=
∑

1≤i≤n

σi(Xi − Yi) −
∑

0≤i≤n−1

σi+1(Xi − Yi)

=
∑

1≤i≤n−1

(σi − σi+1)(Xi − Yi) + σn(Xn − Yn)

=
∑

1≤i≤n−1

(σi − σi+1)(Xi − Yi) ≥ 0.

We can get rid of the assumption that all points are distinct since we have only
used the expression σi(xi − yi) = φ(xi) − φ(yi), which is 0 whenever xi = yi.

Exercise 3.7.5. Let ϕ : I → R be a convex function defined on an interval I of R.
Let [a, b] ⊂ I̊ and a < x1 < x2 < b. Show that

ϕ(x1) − ϕ(a)
x1 − a (x2 − a) + ϕ(a) ≤ ϕ(x2) ≤ ϕ(b) − (b − x2)

ϕ(b) − ϕ(x1)
b− x1

.

Prove that ϕ is continuous on I̊. Give an example of a convex function defined on
[0, 1] and continuous only on (0, 1).
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Answer. Continuity of ϕ is proven in Proposition 3.1.2. On the other hand the
function

ϕ(x) =

{
1 if x ∈ {0, 1},
0 if x ∈]0, 1[,

is convex on [0, 1]: Property (3.1.1) is verified for θ ∈]0, 1[ if 0 ≤ x0 < x1 ≤ 1 since
xθ ∈]0, 1[; also (3.1.1) holds for θ ∈ {0, 1} and for x0 = x1.

Exercise 3.7.6. Let u, v be positive log-convex functions defined on some interval
I of the real line. Prove that u+ v is log-convex.

Answer. We calculate for θ ∈ [0, 1], x0, x1 ∈ I, setting u = eφ, v = eψ, with φ, ψ
convex on I,

ln
(
u((1 − θ)x0 + θx1) + v((1 − θ)x0 + θx1)

)
= ln

(
eφ((1−θ)x0+θx1) + eψ((1−θ)x0+θx1)

)
≤ ln

(
e(1−θ)φ(x0)+θφ(x1) + e(1−θ)ψ(x0)+θψ(x1)

)
.

With a0 = u(x0)
1−θ, a1 = u(x1)

θ, b0 = v(x0)
1−θ, b1 = v(x1)

θ we have from
Hölder’s inequality,

a0a1 + b0b1 ≤ (a
1/(1−θ)
0 + b

1/(1−θ)
0 )1−θ(a

1/θ
1 + b

1/θ
1 )θ,

so that

ln
(
e(1−θ)φ(x0)+θφ(x1) + e(1−θ)ψ(x0)+θψ(x1)

)
≤ (1 − θ) ln

(
a
1/(1−θ)
0 + b

1/(1−θ)
0

)
+ θ ln

(
a
1/θ
1 + b

1/θ
1

)
= (1 − θ) ln

(
u(x0) + v(x0)

)
+ θ ln

(
u(x1) + v(x1)

)
.

We have thus proven

ln
(
u((1 − θ)x0 + θx1) + v((1 − θ)x0 + θx1)

)
≤ (1 − θ) ln

(
u(x0) + v(x0)

)
+ θ ln

(
u(x1) + v(x1)

)
,

which is the log-convexity of u+ v.

Exercise 3.7.7. Determine the set of real numbers α, β, γ such that

uα(t) =
tαe−t

(1 + t1/2)
∈L1(R+), vβ(t) =

sin t

tβet
∈L1(R+), wγ(t) =

ln |t|
|t|γ ∈L1([−1, 1]).

Answer. α > −1: if that condition is fulfilled, uα belongs to L1(R+) and conversely
if uα ∈ L1(R+), then uα ∈ L1loc(R+) and thus tα ∈ L1loc(R+), implying α > −1.

β < 2: if that condition is fulfilled, vβ belongs to L1(R+) since vβ ∈
L1([r,+∞)) for all β ∈ R, all r > 0 and vβ(t) ∼ t1−β in a neighborhood of
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0. Conversely, if vβ ∈ L1(R+), then vβ ∈ L1loc(R+) and thus t1−β ∈ L1loc(R+),
implying 1 − β > −1, i.e., β < 2.

γ < 1: using the parity of wγ setting t = 1/x, we find that wγ ∈ L1([−1, 1])
is equivalent to xγ−2 lnx ∈ L1([1,+∞)) which is equivalent to γ − 2 < −1, i.e.,
γ < 1.

Exercise 3.7.8.

(1) Let E be a normed vector space. Prove that E is complete iff the normally
convergent series are convergent (a series

∑
un is normally convergent when-

ever
∑

‖un‖ < +∞).

(2) Let (X,M, μ) be a measure space where μ is a positive measure and let
∑
un

be a normally convergent series in L1(μ). Prove that
∑
un(x) converges μ-

a.e.

(3) Let (fn)n≥1 be a sequence in L1(μ) such that
∑

n≥1 ‖fn+1 − fn‖L1(μ) < +∞.

Prove that the sequence (fn) converges in L
1(μ) and also μ-a.e. Compare this

with Exercise 2.8.22.

Answer. (1) Let us assume first that E is complete; let
∑
un be a normally

convergent series. We define Sn =
∑

0≤k≤n uk, and we have for p ≥ 0,

‖Sn+p − Sn‖ = ‖
∑

n<k≤n+p

uk‖ ≤
∑

n<k≤n+p

‖uk‖ ≤
∑
n<k

‖uk‖ = εn.

Since the numerical series
∑

‖uk‖ converges, we have limn εn = 0 and (Sn) is
a Cauchy sequence, thus converges. Conversely, let E be a normed vector space
in which normally convergent series are convergent. Let (un)n∈N be a Cauchy
sequence. For all ε > 0, there exists Nε such that, for n ≥ Nε,m ≥ Nε,

‖un − um‖ ≤ ε.

Using that property, we may find n1 ∈ N such that, for all p ≥ 0,

‖un1+p − un1‖ ≤ 1/2.

Also, we may find n2 > n1 ∈ N such that for all p ≥ 0,

‖un2+p − un2‖ ≤ 1/22,

and more generally, we may construct a strictly increasing sequence of integers
n1 < n2 < · · · < nj such that for all p ≥ 0,

‖unj+p − unj‖ ≤ 2−j .

The series
∑

j≥1(unj+1 − unj) is normally convergent, thus converges. Since∑
1≤j<l

(unj+1 − unj ) = unl
− un1 ,
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the sequence (unl
)l∈N is convergent. As a subsequence of a Cauchy sequence, this

implies that (un)n∈N is indeed convergent: let w be the limit of (unl
)l∈N. We have

‖un − w‖ ≤ ‖un − unl
‖ + ‖unl

− w‖.

Let ε > 0 be given and n ≥ Nε. Since nl goes to infinity with l, we get

‖un − w‖ ≤ lim sup
l→+∞

‖un − unl
‖ + lim sup

l→+∞
‖unl

− w‖ ≤ ε + 0 = ε,

entailing convergence for the sequence (un).

(2) Since L1(μ) is complete, the series
∑
un converges in L1(μ). Moreover, since∑

n∈N

∫
X

|un|dμ < +∞,

Corollary 1.6.2 implies
∫
X

(∑
n∈N |un|

)
dμ =

∑
n∈N
∫
X

|un|dμ < +∞, proving that∑
n∈N |un| belongs to L1(μ). As a result, that function is μ-a.e. finite, i.e., for

N ∈ M, with μ(N) = 0,

∀x ∈ N c,
∑
n∈N

|un(x)| < +∞,

so that for all x ∈ N c, the series
∑

n∈N un(x) converges.

N.B. Let (fn)n∈N be a convergent sequence in L1(μ); we may find a subsequence
converging μ-a.e. (Lemma 3.2.9). Extracting a subsequence cannot be dispensed
with, as shown by Exercise 2.8.23. Moreover if limn fn = f in L1 and (fn) converges
μ-a.e. towards g, then g = f μ-a.e.: for ε > 0, n ∈ N,

μ
(
{x, |f(x) − g(x)| ≥ ε}

)
≤ μ
(
{x, |f(x) − fn(x)| ≥ ε/2}

)
+ μ
(
{x, |g(x) − fn(x)| ≥ ε/2}

)
,

so that

μ
(
{x, |f(x) − g(x)| ≥ ε}

)
≤ 2ε−1

∫
X

|f − fn|dμ+ μ
(
{x, |g(x) − fn(x)| ≥ ε/2}

)
,

proving

μ
(
{x, |f(x) − g(x)| ≥ ε}

)
≤ lim sup

n
μ
(
{x, |g(x) − fn(x)| ≥ ε/2}

)
= 0, qed.

(3) The series
∑

k(fk − fk−1) is normally convergent thus convergent in L1

from (1). Since
Sn =

∑
1≤k≤n

(fk − fk−1) = fn − f0,

the sequence (fn) converges in L
1. Moreover from(2),

∑
k

(
fk(x) − fk−1(x)

)
con-

verges μ-a.e., so that (fk(x)) converges μ-a.e.
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N.B. Convergence μ-a.e. does not imply convergence in L1 as shown by Exercise
2.8.22. See however Exercises 2.8.15 and 2.8.14 for the weak notion of conver-
gence in measure, weaker than μ-a.e. convergence, which along with a domination
assumption, implies convergence in L1.

Exercise 3.7.9. Let (X,M, μ) be a measure space where μ is a positive measure.
(X,M, μ) is said to be σ-finite whenever there exists a sequence (Xn)n∈N of ele-
ments of M such that for all n, μ(Xn) < +∞ and X = ∪n∈NXn (see Exercise
2.8.14). Show that (X,M, μ) is σ-finite iff there exists f ∈ L1(μ) such that for all
x ∈ X, f(x) > 0.

Answer. We suppose first that (X,M, μ) is σ-finite. We consider

f(x) =
∑
n∈N

1Xn(x)

2n
(
μ(Xn) + 1

) . (3.7.4)

For all x ∈ X , we have f(x) > 0 (since x belongs to one Xn) and∫
X

|f |dμ ≤
∑
n∈N

μ(Xn)

2n
(
μ(Xn) + 1

) ≤ 2.

Conversely, if there exists f ∈ L1(μ) such that for all x ∈ X , f(x) > 0, we define
for n ∈ N,

Xn = {x ∈ X, f(x) > 1/(n+ 1)}.

We have X = ∪n∈NXn since for x ∈ X , f(x) > 0, so that f(x) > 1/(n + 1) for
n ≥ E

(
1/f(x)

)
. On the other hand since f is positive and belongs to L1(μ),

μ(Xn) ≤
∫
X

(n+ 1)fdμ = (n+ 1)

∫
X

fdμ < +∞.

Exercise 3.7.10. Let (X,M, μ) be a measure space where μ is a positive measure.
Let f : X → C be a measurable function such that μ

(
{x ∈ X, f(x) �= 0}

)
> 0. For

p ∈ [1,+∞), we define

ϕ(p) =

∫
X

|f |pdμ and J = {p ∈ [1,+∞), ϕ(p) < +∞}.

(1) Let p0 ≤ p1 ∈ J . With θ ∈ [0, 1] and pθ = (1 − θ)p0 + θp1, show that pθ ∈ J
(hint: use Hölder’s inequality).

(2) Prove that ϕ is positive on J and lnϕ is convex on J .

(3) We assume that there exists r0 ∈ [1,+∞)such that f ∈ Lr0(μ) ∩ L∞(μ).
Prove that f ∈ Lp(μ) for p ∈ [r0,+∞]. Show that

lim
p→+∞

‖f‖Lp(μ) = ‖f‖L∞(μ).
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(4) We assume that there exists r0 ∈ [1,+∞) such that f ∈ Lp(μ) for p ∈
[r0,+∞). Show that if f /∈ L∞(μ) we have

lim
p→+∞

‖f‖Lp(μ) = +∞.

Answer. The assumption μ
(
{|f | > 0}

)
> 0 implies ϕ(p) > 0 for all p ≥ 1 (ϕ(p) = 0

would imply f = 0, μ-a.e.). For θ ∈ (0, 1), using Hölder’s inequality, we have

0 < ϕ(pθ) =

∫
X

∈L
1

1−θ︷ ︸︸ ︷
|f |p0(1−θ)

∈L
1
θ︷ ︸︸ ︷

|f |p1θ dμ

≤
(∫

X

|f |p0dμ

)1−θ (∫
X

|f |p1dμ

)θ

= ϕ(p0)
1−θϕ(p1)

θ,

proving (1), (2).

(3) We have |f | ≤ ‖f‖L∞ μ-a.e., so that
∫
X

|f |pdμ ≤
∫
X

|f |r0dμ‖f‖p−r0
L∞ < +∞

for p ≥ r0 and thus

0 < ϕ(p)
1
p ≤ ϕ(r0)

1
p ‖f‖1−

r0
p

L∞ −→
p→+∞

‖f‖L∞.

We have also ‖f‖L∞ > 0 (otherwise f = 0 μ-a.e.). Let ε such that 0 < ε < ‖f‖L∞;
we note that

+∞ >
∫
X

|f |pdμ ≥
∫
|f |≥‖f‖L∞−ε

|f |pdμ ≥
(
‖f‖L∞ − ε

)p
μ
(
{|f | > ‖f‖L∞ − ε}

)
,

entailing

ϕ(p)1/p ≥
>0︷ ︸︸ ︷

μ
(
{|f | > ‖f‖L∞ − ε}

)1/p
(‖f‖L∞ − ε) −→

p→+∞
‖f‖L∞ − ε.

Finally, we obtain limp→+∞ ‖f‖Lp = ‖f‖L∞ since

∀ε > 0, ‖f‖L∞ − ε ≤ lim inf
p

‖f‖Lp ≤ lim sup
p

‖f‖Lp ≤ ‖f‖L∞.

(4) Since f /∈ L∞, for all n ∈ N, μ
(
{|f | > n}

)
> 0 and thus

ϕ(p) ≥
∫
|f |>n

|f |pdμ ≥ npμ
(
{|f | > n}

)
=⇒ ‖f‖Lp ≥ μ

(
{|f | > n}

)1/p
n,

which implies ∀n ∈ N, lim infp→+∞ ‖f‖Lp ≥ n, and thus limp→+∞ ‖f‖Lp = +∞.

Exercise 3.7.11. Let (X,M, μ) be a probability space. Let f, g be measurable func-
tions from X into ]0,+∞) such that for all x ∈ X, f(x)g(x) ≥ 1. Show that∫
X
fdμ

∫
X
gdμ ≥ 1.

Answer. We have 1 = μ(X) ≤
∫
X f

1/2g1/2dμ ≤
(∫

X fdμ
)1/2 (∫

X gdμ
)1/2
.
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Exercise 3.7.12. Let (X,M, μ) be a probability space. Let (fn)n∈N be a sequence
of measurable functions from X into R. Let f : X → R be a measurable function.
The sequence (fn)n∈N is said to converge in measure4 towards f if for all ε > 0,

lim
n
μ({|fn − f | > ε}) = 0.

(1) Show that, if fn converges towards f μ-a.e., then fn converges towards f in
measure.

(2) Let p ∈ [1,+∞] and fn, f ∈ Lp(μ) such that fn converges towards f in Lp(μ).
Show that fnconverges towards f in measure.

Answer. (1) If (fn) converges towards f μ-a.e., there exists N ∈ M such that
μ(N) = 0 and ∀x ∈ N c, limn→+∞ |fn(x) − f(x)| = 0. As a result for ε > 0,
Lebesgue’s dominated convergence implies

lim
n
μ
(
{|fn − f | > ε}

)
= lim

n

∫
X

1{|fn−f |>ε}dμ = 0,

since 1{|fn−f |>ε}(x) = 0 when |fn(x)−f(x)| ≤ ε and thus the sequence 1{|fn−f |>ε}
converges towards 0 μ-a.e. and is bounded above by 1, which is in L1 since μ is a
probability.

(2) If p < +∞ and ε > 0, we have

μ
(
{|fn − f | > ε}

)
=

∫
X

1{|fn−f |>ε}dμ

≤ ε−p

∫
X

|fn − f |pdμ = ε−p‖fn − f‖pLp −→
n→+∞

0.

If p = +∞, we note that for α > 0,

‖g‖L∞(μ) ≤ α =⇒ μ
(
{|g| > α}

)
= 0.

As a result if limn ‖fn − f‖L∞(μ) = 0 and ε > 0, we have

for n ≥ Nε, ‖fn − f‖L∞(μ) ≤ ε

and thus μ
(
{|fn−f | > ε}

)
= 0. The sequence

(
μ
(
{|fn−f | > ε}

))
n∈N

is stationary

equal to 0 for n ≥ Nε.

N.B. Let (X,M, μ) be a measure space where μ is a positive measure. Let 1 ≤
p < +∞, and let (fn)n∈N be a sequence converging towards f in Lp(μ): then it
converges as well in measure, as proven by the previous inequalities and there is
no need here to assume μ(X) < +∞.

4See also Exercises 2.8.15 and 2.8.14.
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Remark 3.7.13. On the contrary, the assumption μ(X) < +∞ cannot be dispensed
with for (1) since for instance the sequence fn defined on R by fn(x) =

x
n1[0,n2](x)

goes to 0 pointwise although

μ
(
{|fn(x)| > ε}

)
= μ
(
{n2 ≥ x > nε}

)
= n2 − nε −→

n→+∞
+∞.

We may note that this sequence belongs to ∩p≥1L
p(R), without converging in any

Lp since it would contradict (2).

Exercise 3.7.14. Let (X,M, μ) be a probability space and let f ∈ L∞(μ) be different
from the zero function. We set αn = ‖f‖nLn(μ). Prove that αn+1/αn tends towards

‖f‖L∞(μ) (hint: use Exercise 3.7.10).

Answer. We note first that 0 < αn < +∞ since on the one hand

αn ≤ ‖f‖nL∞(μ)μ(X) = ‖f‖nL∞(μ) < +∞,

and on the other hand αn = 0 would imply f = 0 μ-a.e. and thus f = 0 in L∞(μ).
For n ∈ N, we have

αn+1 =

∫
X

|f |n+1dμ ≤ ‖f‖L∞(μ)

∫
X

|f |ndμ = ‖f‖L∞(μ)αn

and thus using Jensen’s inequality (Theorem 3.1.3), we get

α
1+ 1

n
n =

(∫
X

|f |ndμ
)n+1

n

≤
∫
X

(|f |n)
n+1
n dμ = αn+1 ≤ ‖f‖L∞(μ)αn,

so that
‖f‖Ln(μ) = α

1
n
n ≤ αn+1

αn
≤ ‖f‖L∞(μ).

Using Exercise 3.7.10 (3), we get limn→+∞ ‖f‖Ln(μ) = ‖f‖L∞(μ), and the previous
inequalities imply the result.

N.B. The same statement is true for a measure space (X,M, μ) where μ is a
positive measure and f such that

0 �= f ∈ ∩p≥1L
p(μ).

In fact, we have as above αn+1 ≤ αn‖f‖L∞(μ) and

αn =

∫
X

|f |ndμ = ‖f‖L1(μ)

∫
X

|f |n−1 |f |dμ
‖f‖L1(μ)

.

Using Jensen’s inequality, we obtain with the probability measure dν = |f |dμ
‖f‖L1(μ)

,

α
1+ 1

n−1
n = ‖f‖1+

1
n−1

L1(μ)

(∫
X

|f |n−1dν

) n
n−1

≤ ‖f‖
n

n−1

L1(μ)

∫
X

|f |ndν

= ‖f‖
n

n−1−1

L1(μ)

∫
X

|f |n+1dμ = αn+1‖f‖
1

n−1

L1(μ),
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so that (
α

1
n
n

) n
n−1 ‖f‖−

1
n−1

L1(μ) = α
1

n−1
n ‖f‖−

1
n−1

L1(μ) ≤ αn+1

αn
≤ ‖f‖L∞(μ).

Using Exercise 3.7.10 (3), we get limn→+∞ ‖f‖Ln(μ) = ‖f‖L∞(μ), and the previous
inequalities imply the result.

Exercise 3.7.15. Let p ∈ [1,+∞[ and h ∈ Rd. For u ∈ Lp(Rd), we define
(τhu)(x) = u(x− h). Show that ‖τhu‖Lp = ‖u‖Lp and

lim
h→0

‖τhu− u‖Lp = 0.

Answer. The equality of Lp norms is due to the translation invariance of Lebesgue’s
measure. Let ϕ ∈ C0

c (R
d). Considering the compact set K = {x+ t}x∈suppϕ,|t|≤1,

and |h| ≤ 1, we have

‖τhϕ− ϕ‖pLp =

∫
Rd

|ϕ(x− h) − ϕ(x)|pdx ≤ λd(K) sup
x∈K

|ϕ(x − h)− ϕ(x)|p −→
h→0

0,

from the uniform continuity of ϕ. This gives

‖τhu−u‖Lp ≤ ‖τhu−τhϕ‖Lp+‖τhϕ−ϕ‖Lp+‖ϕ−u‖Lp = ‖τhϕ−ϕ‖Lp+2‖ϕ−u‖Lp,

so that for all functions ϕ ∈ C0
c (R

d),

lim sup
h→0

‖τhu− u‖Lp ≤ 2‖ϕ− u‖Lp .

We get lim suph→0 ‖τhu − u‖Lp ≤ 2 infϕ∈C0
c (R

d) ‖ϕ − u‖Lp = 0, since C0
c (R

d) is

dense in Lp(Rd) for all p ∈ [1,+∞[.

Exercise 3.7.16. Find the values of p ∈ [1,+∞] for which the following functions
are in Lp(R+): f1(t) = 1/(1+ t), f2(t) = 1/(

√
t(1 + t)), f3(t) = 1/(

√
t(ln t)2 + 1),

f4(t) = t
−1/2 sin(t−1).

Answer. We have the following equivalences, justified below:∫ +∞

0

|f1(t)|pdt =
∫ +∞

0

dt

(1 + t)p
< +∞ ⇐⇒ 1 < p,∫ +∞

0

|f2(t)|pdt =
∫ +∞

0

dt

tp/2(1 + t)p
< +∞ ⇐⇒ 2

3
< p < 2,∫ +∞

0

|f3(t)|pdt =
∫ +∞

0

dt(
1 +

√
t(ln t)2

)p < +∞ ⇐⇒ 2 ≤ p,∫ +∞

0

|f4(t)|pdt =
∫ +∞

0

| sin(t−1)|p
tp/2

< +∞ ⇐⇒ 2

3
< p < 2.



166 Chapter 3. Spaces of Integrable Functions

We note that for f3, the square of the L2 norm is bounded above by

e+

∫ +∞

e

dt

t(ln t)4
= e+

∫ +∞

1

s−4ds < +∞.

Since tp/2(ln t)2p ≥ 1 for t ≥ e, the pth power of the Lp norm of f3 for 1 ≤ p < 2
is bounded below by

2−p

∫ +∞

e

dt

tp/2(ln t)2p
= 2−p

∫ +∞

1

es

>0︷ ︸︸ ︷
(1− p

2 )s−2pds = +∞.

Moreover we have∫ +∞

0

| sin(t−1)|p
tp/2

dt =

∫ +∞

0

| sin s|p

s2−
p
2

ds < +∞

if 2 − p
2 > 1, 3p

2 − 2 > −1, i.e., if 2
3 < p < 2. Moreover if p = 2, the same

computation gives for ε > 0,∫ ε−1

ε

| sin(t−1)|p
tp/2

dt =

∫ ε−1

ε

sin2 s

s
ds ≥

∫ ε−1

1

sin2 s

s
ds −→

ε→0+
+∞,

by an argument similar to Exercise 2.8.20 (4): we note that sin2 s
s = 1−cos(2s)

2s and

the integral
∫ +∞
1

cos(2s)
s ds converges. On the other hand, if p > 2, p = 2 + 2θ,

θ > 0,∫ ε−1

ε

| sin(t−1)|p
tp/2

dt ≥
∫ ε−1

1

(sin s)2+2θ

s1−θ
ds

≥ 2−2−2θ

∫
{1≤s≤ε−1,| sin s|≥1/2}

sθ−1ds −→
ε→0+

+∞,

since sin s ≥ 1/2 on ∪k∈Z[
π
6 + 2kπ, 5π6 + 2kπ] and consequently∫

{1≤s≤ε−1,| sin s|≥1/2}
sθ−1ds ≥ 1

θ

∑
k≥1

5π
6 +2kπ≤ε−1

[(
5π

6
+ 2kπ

)θ

−
(π
6
+ 2kπ

)θ]

≥
∑
k≥1

5π
6 +2kπ≤ε−1

2π

3

(
5π

6
+ 2kπ

)θ−1

−→
ε→0+

+∞.

For p ≤ 2/3, the integrand is equivalent near 0+ to s
3p
2 −2 and 3p

2 − 2 ≤ −1, so
that the integral diverges.
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Exercise 3.7.17. Let n ≥ 1 be an integer and fn defined on R by

fn(x) =
nα

(|x| + n)β , with β > 1.

(1) For 1 ≤ p ≤ +∞, show that fn ∈ Lp(R) and calculate ‖fn‖p.
(2) Prove that gn defined by gn(x) = n

γe−n|x| belongs to Lp(R) for all p ≥ 1.

(3) Deduce from the previous questions that for 1 ≤ p < q ≤ +∞ the topologies
on Lp ∩ Lq induced by Lp and Lq cannot be compared.

Answer. (1) For p ≥ 1, β > 1,

‖fn‖pp = 2

∫ +∞

0

nαp

(x + n)βp
dx = 2

∫ +∞

0

n(α−β)p+1

(y + 1)βp
dy

= 2n(α−β)p+1

[
(y + 1)−βp+1

−βp+ 1

]+∞
0

=
2n(α−β)p+1

βp− 1
,

so that ‖fn‖p = 2
1
p (βp− 1)−

1
pnα−β+ 1

p . Moreover we have ‖fn‖∞ = nα−β .

(2) We have ‖gn‖∞ = nγ and for p ≥ 1,

‖gn‖pp = nγp2

∫ +∞

0

e−npxdx =
nγp2

np
, i.e., ‖gn‖p = nγ−

1
p 2

1
p p−

1
p .

(3) We calculate for 1 ≤ p < q ≤ +∞,

‖fn‖p
‖fn‖q

= n
1
p−

1
q

depends only
on p, q, β︷ ︸︸ ︷
C1(p, q, β) −→

n→+∞
+∞, ‖gn‖p

‖gn‖q
= n

1
q−

1
p

depends only
on p, q︷ ︸︸ ︷
C2(p, q) −→

n→+∞
0.

If the topologies on Lp ∩ Lq induced respectively by Lp and Lq were comparable,
we would have for instance for a sequence (ϕn) of L

p ∩ Lq,
lim
Lp
ϕn = 0 =⇒ lim

Lq
ϕn = 0.

This is contradicted by the choice ϕn = n−γ+ 1
q gn since

lim
n

‖ϕn‖p = lim
n
n

1
q−

1
p 21/pp−1/p = 0,

whereas ‖ϕn‖q = 21/qq−1/q > 0 which is independent of n (true also for q = +∞).
It is not possible either to have for a sequence (ϕn) in L

p ∩ Lq,
lim
Lq
ϕn = 0 =⇒ lim

Lp
ϕn = 0.

Choosing ϕn = n−α+β− 1
p fn gives

lim
n

‖ϕn‖q = lim
n
n−α+β− 1

p+α−β+ 1
q 21/q(βq − 1)−1/q = 0

whereas ‖ϕn‖p = n−α+β− 1
p+α−β+ 1

p 21/p(βp − 1)−1/p = 21/p(βp − 1)−1/p > 0, is
independent of n.
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Exercise 3.7.18. Let (X,M, μ) be a measure space where μ is a positive measure.
Let p, p′ ∈]1,+∞[ such that 1/p+ 1/p′ = 1. A sequence (fn)n∈N in Lp(μ) will be
said to converge weakly towards f ∈ Lp(μ) if for all g ∈ Lp′(μ),

lim
n

∫
X

fngdμ =

∫
X

fgdμ.

(1) Show that convergence in Lp implies weak convergence.

(2) Show that the converse is not true.

Answer. (1) Let (fn) be a sequence in Lp converging towards f in Lp. Then for
all g ∈ Lp′ , using Hölder’s inequality∣∣∣∣∫

X

(fn − f)gdμ
∣∣∣∣ ≤ ‖fn − f‖Lp‖g‖Lp′ −→

n→+∞
0.

(2) The converse is untrue since fn(x) = 1[0,1](x)e
inx has norm 1 in Lp(R) and

converges weakly in Lp since for g ∈ Lp′(R), and ϕ ∈ C∞c (R), suppϕ ⊂ [0, 1]∫ 1

0

g(x)einxdx =

∫ 1

0

(
g(x) − ϕ(x)

)
einxdx+

∫
R

ϕ(x)einxdx.

Since we have
∫
ϕ(x)einxdx = (in)−1

∫
ϕ(x) d

dx(e
inx)dx = (−in)−1

∫
ϕ′(x)einxdx,

we get

lim sup
n→+∞

∣∣∣∣∫ 1

0

g(x)einxdx

∣∣∣∣ ≤ ∫ 1

0

|g(x) − ϕ(x)|dx

≤
(∫ 1

0

|g(x) − ϕ(x)|p′dx
)1/p′

= ‖g1[0,1] − ϕ‖Lp′ ,

for all ϕ ∈ C∞c (R), suppϕ ⊂ [0, 1]. Since these functions are dense in Lp
′
([0, 1])

according to Theorem 3.4.3 (here p > 1 and thus p′ < +∞), we get

inf
ϕ∈C∞c (R),suppϕ⊂[0,1]

‖g1[0,1] − ϕ‖Lp′ = 0

and limn

∫ 1

0
g(x)einxdx = 0.

N.B. 1. We note that (einx) goes to 0 in L∞-weak*, which means that for all
functions g in L1(R), limn

∫
R
g(x)einxdx = 0: this is the Riemann–Lebesgue lemma

(Lemma 3.4.5).

N.B. 2. Let us give another counterexample. Let f ∈ Cc(R) with norm 1 in Lp(R);
we consider the sequence (fn) with norm 1 in Lp(R) defined by fn(x) = n

1/pf(nx).
That sequence goes to 0 weakly in Lp(R), since for g ∈ Lp′(R), we have for
ϕ ∈ Cc(R),∫

R

fn(x)g(x)dx =

∫
R

fn(x)
(
g(x) − ϕ(x)

)
dx+

∫
R

f(y)ϕ(y/n)dyn
1
p−1
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which implies, since |f(y)ϕ(y/n)dyn
1
p−1| ≤ |f(y)|(sup |ϕ|)n−1/p′ ,

lim sup
n

∣∣∣∣∫
R

fn(x)g(x)dx

∣∣∣∣ ≤ ‖g − ϕ‖Lp′ =⇒ lim
n

∫
R

fn(x)g(x)dx = 0.

Note that if f ∈ Lp(R) has norm 1, the result remains the same since for ψ ∈
Cc(R),

fn(x) = n
1/pf(nx) = n1/pψ(nx) + n1/pf(nx)− n1/pψ(nx).

For g ∈ Lp′(R), we have thus

lim sup
n

∣∣∣∣∫
R

fn(x)g(x)dx

∣∣∣∣
≤ lim sup

n

∣∣∣∣∫
R

ψn(x)g(x)dx

∣∣∣∣ + lim sup
n

∫
R

n−1/p′ |f(y)− ψ(y)||g(y/n)|dy

≤ ‖g‖Lp′‖f − ψ‖Lp ,

which implies limn

∫
R
fn(x)g(x)dx = 0. If p = 1 and f is a function in L1 with

integral 1, the sequence fn(x) = nf(nx) does not go to 0 weakly: in particular if
g ∈ C(R) ∩ L∞(R), we have

(‡) lim
n

∫
R

fn(x)g(x)dx = g(0).

In fact the function fn is also in L1 with integral 1 and∫
R

fn(x)g(x)dx − g(0) =
∫
R

fn(x)
(
g(x) − g(0)

)
dx =

∫
R

f(y)
(
g(y/n)− g(0)

)
dy.

Since |f(y)
(
g(y/n)− g(0)

)
| ≤ |f(y)|2 sup |g|, and by continuity of g at 0,

lim
n
f(y)

(
g(y/n)− g(0)

)
= 0,

Lebesgue’s dominated convergence gives the result (‡).
N.B. 3. Another counterexample is given by fn(x) = f(x−n) where f ∈ Lp(R) has
norm 1 in Lp Each fn has norm 1 in Lp and nevertheless for g ∈ Lp′ , ϕ ∈ Cc(R),
we have for a fixed A > 0,∫

R

fn(x)g(x)dx =

∫
R

f(y)
(
g(y + n) − ϕ(y + n)

)
dy

+

∫
{|y|≤A}

f(y)ϕ(y + n)dy +

∫
{|y|>A}

f(y)ϕ(y + n)dy,

which implies

lim sup
n

∣∣∣∣∫
R

fn(x)g(x)dx

∣∣∣∣ ≤ ‖g − ϕ‖Lp′ + lim sup
n

∫
{|y|>A}

|f(y)||ϕ(y + n)|dy

≤ ‖g − ϕ‖Lp′ +

(∫
{|y|>A}

|f(y)|pdy
)1/p

‖ϕ‖Lp′ .



170 Chapter 3. Spaces of Integrable Functions

Taking the infimum with respect to A in the rhs, we get

lim sup
n

∣∣∣∣∫
R

fn(x)g(x)dx

∣∣∣∣ ≤ ‖g − ϕ‖Lp′ , for all ϕ ∈ Cc(R),

so that limn

∫
R
fn(x)g(x)dx = 0.

Exercise 3.7.19. Let μ be a positive measure defined on the Borel σ-algebra of R

such that μ(R) < +∞. We define f(x) =

∫
R

eitxdμ(t). Show that f is continuous

on R. Show that if
1

h2

(
2f(0)− f(h)− f(−h)

)
has a limit when h goes to 0, then

∫
R
t2dμ(t) < +∞ and f is of class C2.

Answer. Let (xk) be a convergent sequence of real numbers with limit x. Using
μ(R) < +∞, we have

|eitxk − eitx| ≤ 2 ∈ L1(μ), and lim
k
eitxk = eitx,

and Lebesgue’s dominated convergence theorem gives limk f(xk) = f(x). We note
that

1

h2

(
2f(0)− f(h)− f(−h)

)
= h−2

∫
R

(2 − 2 cos th)dμ(t)−→
h→0
L.

From Fatou’s lemma, we obtain∫
R

lim inf
h→0

(
h−2|2 − 2 cos th|

)
dμ(t)

≤ lim inf
h→0

∫
R

(
h−2| 2 − 2 cos th︸ ︷︷ ︸

≥0

|
)
dμ(t) = lim inf

h→0
h−2

∫
R

(2 − 2 cos th)dμ(t) = L.

Since

lim
h→0
h−2(2 − 2 cos th) = lim

h→0
h−2
(
2 − 2[1− 2 sin2(th/2)]

)
= lim

h→0

4 sin2(th/2)

h2
= t2,

we get

(Υ)

∫
R

t2dμ(t) ≤ L < +∞.

We note incidentally that∫
R

|t|dμ(t) ≤
(∫

R

t2dμ(t)

)1/2

μ(R)1/2 ≤
(
Lμ(R)

)1/2
< +∞.
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Using Theorem 3.3.4, we find that f is twice differentiable and

f ′′(x) = −
∫
R

eitxt2dμ(t).

That formula and Condition (Υ) ensure continuity for f ′′, using Theorem 3.3.1.

Exercise 3.7.20. Show that �∞(N) and L∞(R) are not separable. (Hint: reductio
ad absurdum.)

Answer. Assume that �∞(N) contains a countable dense subset {xn}n∈N. Each
element xn is a bounded sequence (xn,k)k∈N, i.e., such that

sup
k≥0

|xn,k| = ‖xn‖l∞(N) < +∞.

The triangle inequality implies

2 ≤ |1+x0,0|+|1−x0,0| ≤ 2max
(
|1+x0,0|, |1−x0,0|

)
= 2max

(
|−1−x0,0|, |1−x0,0|

)
and thus max

(
| − 1 − x0,0|, |1 − x0,0|

)
≥ 1. We may thus find y0 ∈ {−1, 1} such

that |y0 − x0,0| ≥ 1. Let us assume that we have found y0, . . . , yk ∈ {−1, 1} such
that

∀l ∈ {0, . . . , k}, |yl − xl,l| ≥ 1.

As above, we may find yk+1 ∈ {−1, 1} such that

|yk+1 − xk+1,k+1| ≥ 1.

We have thus constructed a sequence y = (yk)k∈N such that ∀k ∈ N, |yk| = 1 (and
thus this sequence belongs to �∞(N)) such that

‖y − xn‖l∞(N) = sup
k∈N

|yk − xn,k| ≥ |yn − xn,n| ≥ 1.

This contradicts the density of {xn}n∈N.
Let {ϕn}n∈Z be a countable subset of L∞(R). We have

R = ∪m∈ZIm, Im = [m,m+ 1[.

The triangle inequality implies

2 ≤ ‖1+ϕn‖L∞(In)+‖1−ϕn‖L∞(In) ≤ 2max
(
‖−1−ϕn‖L∞(In), ‖1−ϕn‖L∞(In)

)
.

For all n ∈ Z, we may thus find θn ∈ {−1, 1}, such that

‖θn − ϕn‖L∞(In) ≥ 1.
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The function

ψ(x) =
∑
n∈Z
θn1In(x) =

∑
n∈N,θn=1

1In(x) −
∑

n∈N,θn=−1

1In(x)

belongs to L∞(R)and has norm 1 (ψ is measurable since it takes two values −1, 1
and ψ−1({1}) and ψ−1({−1}) are countable unions of intervals). Moreover for
n ∈ Z,

‖ψ − ϕn‖L∞(R) ≥ ‖ψ − ϕn‖L∞(In) = ‖θn − ϕn‖L∞(In) ≥ 1,

making impossible the density of {ϕn}n∈Z.

Exercise 3.7.21. Here, Lp stands for the space Lp(μ) where μ is the Lebesgue
measure on ]0,+∞[ and ‖u‖p is the Lpnorm of u.

(1) Let f :]0,+∞[→ R, be a continuous function with compact support in
]0,+∞[. For x > 0, we set

(Hf)(x) =
1

x

∫ x

0

f(t)dt.

For p > 1, show that Hf belongs to Lp.

(2) For f as in (1), taking non-negative values, show that

(�) ‖Hf‖p ≤ p

p− 1
‖f‖p,

(hint: F = Hf is also a non-negative function, integrate by parts in∫ +∞

0

F (x)p
d

dx
(x)dx. )

(3) For f as in (1), show (�).

(4) Show that the mapping H : Cc(]0,+∞[) −→ Lp is uniquely extendable to Lp

and verifies (�) for all f ∈ Lp.
(5) Show that the constant p

p−1 in (�) cannot be replaced by a smaller constant

(hint: take f(x) = x−1/p on [1, λ], 0 elsewhere and let λ go to +∞).

Answer. (1) Since f is supported in [a, b] with 0 < a ≤ b < +∞, Hf vanishes on

]0, a] and is bounded above by 1
x

∫ b

a
|f(t)|dt elsewhere. As a result,∫ +∞

0

|Hf(x)|pdx ≤
∫ +∞

a

x−pdx

(∫ b

a

|f(t)|dt
)p

< +∞, since p > 1.

(2) With f as in (1), taking non-negative values, the function F = Hf is also
non-negative. Thus

‖F‖pp =

∫ +∞

a

F (x)pdx.
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Since xF (x) =
∫ x

0 f(t)dt, the function x �→ xF (x) is differentiable on ]0,+∞[ with
a derivative f . Thus on ]0,+∞[, F is differentiable and xF ′(x)+F (x) = f(x). For
N ≥ a, we have∫ N

a

F (x)pdx = [xF (x)p]Na −
∫ N

a

xpF (x)p−1F ′(x)dx

= NF (N)p −
∫ N

a

pF (x)p−1
(
f(x) − F (x)

)
dx,

so that for N ≥ b

p

∫ b

a

F (x)p−1f(x)dx = p

∫ N

a

F (x)p−1f(x)dx = (p− 1)

∫ N

a

F (x)pdx+NF (N)p.

From (1), we know that 0 ≤ F (N) ≤ N−1
∫ b

a f(t)dt, and taking the limit when
N goes to +∞ in the above equality, we get

p

∫ b

a

F (x)p−1f(x)dx = (p− 1)

∫ +∞

a

F (x)pdx,

i.e.,

‖F‖pp =
p

p− 1

∫ +∞

0

F (x)p−1f(x)dx.

With 1/p+ 1/q = 1, i.e., q = p/(p− 1), Hölder’s inequality implies

‖F‖pp =
p

p− 1

∫ +∞

0

F (x)p−1f(x)dx

≤ p

p− 1

(∫ +∞

0

F (x)(p−1)qdx

)1/q (∫ +∞

0

f(x)pdx

)1/p

=
p

p− 1
‖F‖p−1

p ‖f‖p,

which is (�).

(3) With f as in (1), we set

f+(x) = max(f(x), 0) =
1

2
(|f(x)| + f(x)), f−(x) =

1

2
(|f(x)| − f(x))

so that the functions f± are non-negative continuous with compact support and
f = f+ − f− as well as f−f+ = 0, so that Hf = Hf+ −Hf−. Since the functions
Hf± are non-negative, we have

‖Hf‖pp =

∫ +∞

0

|(Hf+)(x) − (Hf−)(x)|pdx

≤
∫ +∞

0

max
(
[(Hf+)(x)]

p, [(Hf−)(x)]
p
)
dx
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≤
∫ +∞

0

(
[(Hf+)(x)]

p + [(Hf−)(x)]
p
)
dx = ‖Hf+‖pp + ‖Hf−‖pp

≤
(
p

p− 1

)p (
‖f+‖pp + ‖f−‖pp

)
=

(
p

p− 1

)p ∫ +∞

0

(f+(x)
p + f−(x)

p)dx

=

(
p

p− 1

)p ∫ +∞

0

|f(x)|pdx =
(
p

p− 1

)p

‖f‖pp,

providing (�) for continuous functions with compact support in ]0,+∞[.

(4) Let 1 < p < +∞ and let f ∈ Lp. Then in Lp, f = lim fk where fk is continuous
with compact support. Since

‖Hfk −Hfl‖p ≤ p

p− 1
‖fk − fl‖p,

the sequence (Hfk) is a Cauchy sequence, thus is converging. On the other hand
if (f̃k) is another sequence with limit f in Lp, we have

‖Hfk −Hf̃k‖p ≤ p

p− 1
‖fk − f̃k‖p,

and thus Hfk and Hf̃k are converging towards the same limit. We can thus de-
fine without ambiguity, Hf = limHfk. Moreover, if H̃ extends H on Lp and is
continuous, we shall have

H̃f = lim H̃fk = limHfk = Hf.

Moreover since ‖u‖p ≤ ‖v‖p + ‖u − v‖p and ‖v‖p ≤ ‖u‖p + ‖v − u‖p and thus
| ‖Hf‖p − ‖Hfk‖p | ≤ ‖Hf −Hfk‖p, we get

‖Hf‖p = lim ‖Hfk‖p ≤ lim sup
p

p− 1
‖fk‖p =

p

p− 1
‖f‖p.

(5) For x > 0, the function t �→ 1(0,x)(t)f(t) belongs to L
1 since it is the product

of an Lp function with an Lq function (1(0,x) ∈ Lq since
∫

|1(0,x)(t)|qdt = x). Let
f ∈ Lp. We may set for x > 0,

Kf(x) =
1

x

∫ x

0

f(t)dt =
1

x

∫ +∞

0

1(0,x)(t)f(t)︸ ︷︷ ︸
∈L1

dt.

Moreover if (fk) is a sequence in Cc(]0,+∞[) such that lim fk = f in Lp, then
for all x > 0, lim fk = f in L1(0, x) ⊃ Lp(0, x) since using Hölder’s inequality
‖f‖L1(0,x) ≤ x1/q‖f‖Lp(0,x). As a result for x > 0,

(Kf)(x) =
1

x
lim
R

∫ x

0

fk(t)dt = lim
R
(Hfk)(x).
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But the sequence (Hfk) converges in Lp with limit Hf . We may thus extract a
sequence converging almost everywhere towards Hf . Thus for almost all x > 0,
(Kf)(x) = (Hf)(x) and thus the functions Hf and Kf coincide in Lp.

For λ ≥ 1, we consider the function fλ defined in (5). Since 1
q = p−1

p , we
have

for 0 < x ≤ 1, (Hfλ)(x) = 0,

for 1 ≤ x ≤ λ, (Hfλ)(x) = x−1

∫ x

1

t−1/pdt = qx−1(x1/q − 1) = q(x−1/p − x−1),

and for λ ≤ x, (Hfλ)(x) = x−1

∫ λ

1

t−1/pdt = qx−1(λ1/q − 1).

Consequently, we get

‖Hfλ‖p =

(∫ +∞

0

|(Hfλ)(x)|pdx
)1/p

= q

(∫ λ

1

(x−1/p − x−1)pdx+

∫ +∞

λ

x−p(λ1/q − 1)pdx

)1/p

= q

(∫ λ

1

x−1(1 − x−1/q)pdx+
λ1−p

p− 1
(λ1/q − 1)p

)1/p

= q

(
lnλ+

∫ λ

1

x−1
(
(1 − x−1/q)p − 1

)
dx+O(1)

)1/p

= q
(
lnλ+O(1)

)1/p
.

We have also ‖fλ‖p =
(∫ λ

1
x−1dx

)1/p
= (lnλ)1/p so that, defining

μ = sup
f∈Lp,f �=0

‖Hf‖p
‖f‖p

,

we get p
p−1 = limλ→+∞

‖Hfλ‖p
‖fλ‖p ≤ μ ≤ p

p−1 , proving μ = p
p−1 .

Exercise 3.7.22. Let u be a function in L1(R). We set for ξ ∈ R,

ũ(ξ) =

∫
R

u(x) cos(xξ) dx.

(1) Show that ũ belongs to L∞. Show that the function ũ is uniformly continuous
on R.

(2) Show that for ϕ ∈ C1
c , lim|ξ|→+∞ ϕ̃(ξ) = 0.

(3) Show that lim|ξ|→+∞ ũ(ξ) = 0.

Answer. An immediate consequence of the Riemann–Lebesgue Lemma 3.4.5.
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Exercise 3.7.23. For n ∈ N and x ≥ 0, we define fn(x) =
ne−x

nx1/2+1
cosx.

(1) Show that fn belongs to L1(R+).

(2) Show that the sequence an =
∫
R+
fn(x)dx converges towards

∫
R+
f(x)dx for

some f ∈ L1(R+).

Answer. (1) For x ≥ 0, we have |fn(x)| ≤ e−xx−1/2 = g(x). The functions fn
and g are continuous on R∗+ and belong to L1(R+) since bounded from above by

1[0,1](x)x
−1/2 + 1[1,+∞](x)e

−x.

(2) For x > 0, we have limn fn(x) = f(x) = e−xx−1/2 cosx. Since |fn| ≤ g ∈
L1(R+), Lebesgue’s dominated convergence theorem implies f ∈ L1(R+) and
limn an =

∫
R+
f(x)dx. Note that∫ +∞

0

f(x)dx = Re

∫ +∞

0

e−(1+i)xx−1/2dx.

We have for z > 0, using Section 10.5,∫ +∞

0

e−zxx−1/2dx = z−1/2

∫ +∞

0

e−tt−1/2dt = z−1/2Γ(1/2) = π1/2z−1/2.

So with the results of Section 10.5, we obtain by analytic continuation of holomor-
phic functions on Re z > 0,

π1/2e−
1
2 Log z =

∫ +∞

0

e−zxx−1/2dx,

implying
∫ +∞
0 e−(1+i)xx−1/2dx = π1/2e−

1
2 Log(1+i) = π1/22−1/4e−iπ/8 and thus

lim
n
an = π1/22−1/4 cos(π/8) = π1/2

√
1 +

√
2

2
.

Exercise 3.7.24. Let (X,M, μ) be a measure space where μ is a positive measure.

(1) Let (An)n∈N be a sequence of elements of M such that
∑

n∈N μ(An) < +∞.
For n ∈ N, we set Bn = ∪k≥nAk. Show that μ(∩n∈NBn) = 0.

(2) Let ν be a positive measure on (X,M). We shall say that ν is dominated by
μ whenever

∀A ∈ M, μ(A) = 0 =⇒ ν(A) = 0.

Assuming ν(X) < +∞, show that if ν is dominated by μ,

∀ε > 0, ∃δ > 0, ∀A ∈ M, μ(A) < δ =⇒ ν(A) < ε.

Answer. (1) We have μ(Bn) ≤
∑

k≥n μ(Ak) which goes to 0 when n goes to infinity
as the remainder of a converging series. For all n ∈ N, we have

0 ≤ μ(∩k∈NBk) ≤ μ(Bn) =⇒ μ(∩k∈NBk) = 0.
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(2) Reductio ad absurdum: if the required property is not satisfied, ∃ε0 > 0 such
that for all n ∈ N, ∃An ∈ M such that

μ(An) < 2−n and ν(An) ≥ ε0.

Since the series
∑

n μ(An) converges, we find from (1) that

0 = μ
(
∩n∈N(∪k≥nAk)

)
(=⇒ ν

(
∩n∈N(∪k≥nAk)

)
= 0).

Using ν(X) < +∞, we have Bn = ∪k≥nAk, Bn ⊃ Bn+1 and lim ν(Bn) =
ν(∩nBn) = 0 and thus

0 = ν
(
∩n∈N(∪k≥nAk)

)
= lim

n→∞
ν
(
(∪k≥nAk)

)
≥ lim sup ν(An) ≥ ε0 > 0,

which is a contradiction.

Exercise 3.7.25. Let (X,M, μ) be a measure space where μ is a positive measure
such that μ(X) < +∞. A family of measurable functions (ui)i∈I is said to be
equi-integrable whenever

lim
t→+∞

(
sup
i∈I

∫
Ei(t)

|ui|dμ
)

= 0, with Ei(t) = {x ∈ X, |ui(x)| > t}.

(1) Let (ui)i∈I be a family of measurable functions from X into C. Show that if
(ui)i∈I is equi-integrable, then

∀ε > 0, ∃δ > 0, ∀A ∈ M, μ(A) < δ =⇒ sup
i∈I

∫
A

|ui|dμ < ε.

(2) Let (un)n∈N be a sequence of measurable equi-integrable functions from X
into C, μ-a.e. converging towards a function u. Show that for ε > 0, we have

lim
n→+∞

μ
(
{|un − u| > ε}

)
= 0.

Show that the sequence (un)n∈N converges in L1(μ).

Answer. (1) Let us assume that the required condition does not hold. There exists
ε0 > 0 such that for all n ∈ N, there exists An ∈ M with μ(An) < 1/n and

sup
i∈I

∫
An

|ui|dμ ≥ ε0.

Consequently for t ≥ 0

tμ(An) + sup
i∈I

∫
An∩{|ui|>t}

|ui|dμ

≥ sup
i∈I

∫
An∩{|ui|>t}

|ui|dμ+ sup
i∈I

∫
An∩{|ui|≤t}

|ui|dμ ≥ ε0,
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which implies for tn = nε0
2 → +∞ with n,

sup
i∈I

∫
|ui|>tn

|ui|dμ ≥ sup
i∈I

∫
An∩{|ui|>tn}

|ui|dμ ≥ ε0 − tnμ(An) ≥ ε0
2
,

contradicting the assumption of equi-integrability.

(2) We check for M > ε > 0;∫
X

|un − u|dμ =

∫
|un−u|≤ε

|un − u|dμ+
∫
|un−u|>ε

|un − u|dμ

≤ εμ(X) +

∫
|un−u|>ε,|un|≤M

|un|dμ+
∫
|un−u|>ε,|un|>M

|un|dμ+
∫
|un−u|>ε

|u|dμ

≤ εμ(X) +Mμ({|un − u| > ε}) +
∫
|un|>M

|un|dμ+
∫
|un−u|>ε

|u|dμ.

Consequently, we have

lim sup
n→∞

∫
X

|un − u|dμ ≤ εμ(X) +M lim sup
n→∞

(
μ({|un − u| > ε})

)
+ sup

n∈N

∫
|un|>M

|un|dμ+ lim sup
n→∞

∫
|un−u|>ε

|u|dμ.

But we know that for ε > 0,

lim
n→∞

(
μ
(
{|un − u| > ε}

))
= 0.

In fact, we have An = {|un − u| > ε} ⊂ Bn = ∪k≥n{|uk − u| > ε} and Bn is
decreasing (and μ(X) < +∞), so that with

B = ∩n∈NBn, μ(B) = lim
n
μ(Bn).

Since B = ∩n∈NBn = ∩n∈N(∪k≥n{|uk − u| > ε}) for x ∈ B, for all n ∈ N, there
exists k ≥ n such that |uk(x) − u(x)| > ε, so that the sequence ul(x) does not
converge towards u(x). Since we have assumed that the convergence μ-a.e. holds,
we get that B has zero measure and μ(Bn) converges to 0. As a result for all
M ≥ ε > 0,

lim sup
n→∞

∫
X

|un − u|dμ ≤ εμ(X) + sup
n∈N

∫
|un|>M

|un|dμ+ lim sup
n→∞

∫
|un−u|>ε

|u|dμ.

Taking the limit when M → +∞, we find, by using equi-integrability, that

lim sup
n→∞

∫
X

|un − u|dμ ≤ εμ(X) + lim sup
n→∞

∫
|un−u|>ε

|u|dμ.
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But we have proven that μ(An) goes to 0. From (1), we find that

sup
j∈N

∫
An

|uj|dμ→ 0, for n→ ∞.

Fatou’s lemma implies

0 ≤
∫
An

|u|dμ =

∫
An

lim inf
j

|uj |dμ ≤ lim inf
j

∫
An

|uj |dμ

≤ sup
j∈N

∫
An

|uj |dμ→ 0 (n→ +∞),

and thus limn

∫
|un−u|>ε

|u|dμ = 0. Finally for all ε > 0,

lim sup
n→∞

∫
X

|un − u|dμ ≤ εμ(X),

providing the result limn→∞
∫
X |un − u|dμ = 0.

Exercise 3.7.26. Let X be a locally compact Hausdorff topological space. We define

C(0)(X) = {f ∈ C(X ;R), ∀ε > 0, ∃Kε compact, sup
x/∈Kε

|f(x)| ≤ ε}. (3.7.5)

(1) Prove that the functions of C(0)(X) are also bounded on X. Prove that
C(0)(X) = Cc(X) whenever X is compact.

(2) Prove that C(0)(X) is a Banach space for the norm ‖f‖ = supx∈X |f(x)|.
(3) Prove that Cc(X) is dense in C(0)(X).

N.B. This exercise proves in particular that the completion of Cc(Rm) for the L∞

norm is C(0)(Rm), a proper subset of L∞(Rm). We have seen in Theorem 3.4.1
that for 1 ≤ p < +∞, the completion of Cc(Rm) for the Lp norm is Lp(Rm).

Answer. (1) If f belongs to C(0)(X), there exists a compact set K1 such that
supx/∈K1

|f(x)| ≤ 1: as a result,

sup
x∈X

|f(x)| ≤ max
(
sup
x/∈K1

|f(x)|, sup
x∈K1

|f(x)|
)
< +∞.

The last statement of the first question is obvious by taking Kε = X .

(2) The mapping C(0)(X) � f �→ ‖f‖ obviously satisfies the axioms of a norm
(see, e.g., (1.2.12)). Let us now consider a Cauchy sequence (fj)j∈N in C(0)(X):
this implies that for every x ∈ X , the sequence of real numbers (fj(x))j∈N is
a Cauchy sequence, thus converges. Let us define f(x) = limj fj(x). Since X is
locally compact, each point x0 ∈ X has a compact neighborhood K0. Defining
gj = fj |K0

, g = f|K0
, we see that (gj)j∈N is a Cauchy sequence in C(K0;R)
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converging uniformly towards g: this implies that g is continuous on K0 since, for
x, x′ ∈ K, the inequality

|g(x′) − g(x)| ≤ |g(x′)− gj(x′)| + |gj(x′) − gj(x)| + |gj(x) − g(x)|

and the continuity of gj implies

lim sup
x′→x

|g(x′)− g(x)| ≤ 2 sup
y∈K0

|gj(y) − g(y)| ≤ 2 lim sup
k

‖fj − fk‖ = 2εj.

Since (fj) is a Cauchy sequence, limj εj = 0, and thus g is continuous on K0,
which is a neighborhood of x0: this implies continuity for f on a neighborhood of
any point, thus continuity of f on X .

Let δ > 0 be given. We have, for x ∈ X, j ∈ N,

|f(x)| ≤ |f(x) − fj(x)| + |fj(x)| = lim
k

|fk(x) − fj(x)| + |fj(x)|

≤ lim sup
k

‖fk − fj‖ + |fj(x)| = εj + |fj(x)|.

Let j be such that εj ≤ δ/2 (possible since limj εj = 0) and let Kj,δ be a compact
subset such that supKc

j,δ
|fj | ≤ δ/2 (possible since fj ∈ C(0)(X)). We obtain

supKc
j,δ

|f | ≤ δ and f belongs to C(0)(X). Moreover the inequality

|f(x) − fj(x)| = lim
k

|fk(x) − fj(x)| ≤ lim sup
k

‖fk − fj‖ = εj

implies limj ‖f − fj‖ = 0, that is the convergence of the sequence (fj) towards f
in C(0)(X).

(3) Let ε > 0 be given and let f ∈ C(0)(X). There exists a compact setK such that
supKc |f | ≤ ε. On the other hand, using Urysohn’s Lemma (cf. Exercise 2.8.2),
we may find a function ϕ ∈ Cc(X ; [0, 1]) such that ϕ|K = 1. The function g = fϕ
belongs to Cc(X) and we have

|g(x) − f(x)| = 1Kc(x)|f(x)|(1 − ϕ(x)) ≤ ε,

so that ‖g − f‖ ≤ ε, proving the density of Cc(X) in C(0)(X).

Exercise 3.7.27.

(1) Let (X,M, μ) be a measure space where μ is a positive measure. Show that
if μ(X) < +∞, the assumptions 1 ≤ q ≤ p ≤ +∞ imply Lp(μ) ⊂ Lq(μ)
continuously. Show that the conditions 1 ≤ q ≤ p ≤ +∞ imply Lploc(R

n) ⊂
Lqloc(R

n).

(2) Show that the conditions 1 < q < p < +∞ imply �1(N) ⊂ �q(N) ⊂ �p(N) ⊂
�∞(N) with continuous injections and strict inclusions. Show that the inclu-
sion

�1(N) ⊂ ∩q>1�
q(N) is strict.

(3) Let p, q ∈ [1,+∞] be two distinct indices. Show that Lp(Rn) is not included
in Lq(Rn).
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Answer. Exercise 3.7.10 gives several details related to the present exercise.

(1) Using Hölder’s inequality, we get

‖u‖qLq =

∫
X

|u|qdμ ≤ ‖|u|q‖Lp/q‖1‖Lr ,
q

p
+

1

r
= 1,

so that ‖u‖Lq ≤ ‖u‖Lpμ(X)
1
q−

1
p . The same proof gives the inclusion of local spaces

since we integrate on compact sets. Note that for Lploc spaces, the exponent p is
an index of regularity.

(2) Let 1 < q < p < +∞ and let x = (xn)n∈N an element �q. We have

‖x‖p�p =
∑
n≥0

|xn|p ≤ sup
n∈N

|xn|p−q
∑
n≥0

|xn|q ≤
(∑
n∈N

|xn|q
) p

q−1+1

so that ‖x‖�p ≤ ‖x‖�q and this works as well for q = 1 and p = +∞, proving the
continuous injections. The inclusions are strict since for α > 0, 1 ≤ p < +∞, we
have

(n−α)n≥1 ∈ �p ⇐⇒ αp > 1,

so that for 1 < r1 < q < r2 < p < r3 < +∞,

(n−1/r1)n≥1 ∈ �q\�1, (n−1/r2)n≥1 ∈ �p\�q, (n−1/r3)n≥1 ∈ �∞\�p.

Moreover the sequence (
1

n lnn

)
n≥2

∈ ∩q>1�
q(N)\�1(N),

proving the last assertion of question 2. Similarly the inclusion

L∞loc(R
n) ⊂ ∩1≤p<+∞L

p
loc(R

n)

is strict since ln |x| ∈ ∩1≤p<+∞L
p
loc(R

n)\L∞loc(Rn). Also for 1 < q < +∞, the
inclusion

Lqloc(R
n) ⊂ ∩1≤p<qL

p
loc(R

n)

is strict since |x|−n
q ∈ ∩1≤p<qL

p
loc(R

n)\Lqloc(Rn).

(3) See Exercises 3.7.16, 3.7.17. We note also that for 1 ≤ p < q ≤ +∞ and
χ ∈ C0

c (R
n), χ(0) = 1,

χ(x)|x|−
n
p+ε ∈ Lp, χ(x)|x|−

n
p+ε /∈ Lq,

provided ε > 0, − qn
p + qε < −n, i.e., 0 < ε < n

q (
q
p − 1). Moreover, we have

(1 + |x|)− n
q −σ ∈ Lq, (1 + |x|)− n

q−σ /∈ Lp,

provided 0 < σ, np
q + σp < n i.e., 0 < σ < n

p

(
1 − p

q

)
.



182 Chapter 3. Spaces of Integrable Functions

Exercise 3.7.28. Let m be an integer ≥ 1. We denote by 〈, 〉 the standard dot-
product on Rm. Let A be a real m ×m, positive definite symmetric matrix (i.e.,
〈Ax, x〉 > 0 for x �= 0).

(1) Show that the function f defined by f(x)=exp{−〈Ax,x〉} belongs to L1(Rm).

(2) Show that ∫
Rm

exp{−〈Ax, x〉}dx = πm/2(detA)−1/2.

(3) Let B be an m×m matrix. Show that∫
Rm

〈Bx, x〉 exp−{〈Ax, x〉}dx = 1

2
πm/2(detA)−1/2 trace (BA−1).

(4) Let F be the function from R into C defined by F (t) =
∫
R
eitxe−x2

dx. Show
that F is of class C1 on R and verifies 2F ′(t) + tF (t) = 0. Give an explicit
expression for F .

(5) For y ∈ Rm, calculate

∫
Rm

exp{i〈y, x〉 − 〈Ax, x〉}dx.

Answer. (1) The function f is continuous on Rm. There exists Ω ∈ O(m) such
that A = ΩDtΩ where D is the diagonal matrix with the (positive) eigenvalues of
A, denoted by αi. The function f satisfies

exp
{

− 〈Ax, x〉
}

≤ exp{−αmin‖x‖2}, αmin = min
1≤i≤m

αi > 0,

which implies integrability.

(2) We have∫
Rm

exp
{

− 〈Ax, x〉
}
dx =

∫
Rm

exp
{

− 〈ΩDtΩx, x〉
}
dx

=

∫
Rm

exp
{

− 〈DtΩx, tΩx〉
}
dx,

and with the change of variables y = tΩx, we get, since | detΩ| = 1:∫
Rm

exp
{

− 〈Ax, x〉
}
dx =

∫
Rm

exp
{

− 〈Dy, y〉
}
| detΩ| dy

=

∫
Rm

exp
{

−
m∑
i=1

αiy
2
i

}
dy.

Since detA =
∏m

i=1 αi, we get∫
Rm

exp
{

− 〈Ax, x〉
}
dx =

m∏
i=1

∫
R

exp{−αiy2i } dyi

=
m∏
i=1

√
1

αi

∫
R

exp{−t2i } dti =
√
πm

detA
.
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(3) The same calculation as in the previous question gives

IA,B =

∫
Rm

e−〈Ax,x〉〈Bx, x〉dx =

∫
Rm

e−〈Dy,y〉〈tΩBΩy, y〉dy

=

∫
Rm

∑
1≤j,k≤m

cj,kyjyk exp

{
−π

∑
1≤j≤m

αjy
2
j

}
dy

=

∫
Rm

∑
1≤j≤m

cj,jy
2
j exp

{
−
∑

1≤j≤m

αjy
2
j

}
dy,

with (cj,k)1≤j,k≤m = tΩBΩ. We note that for a > 0,∫
R

e−at2t2dt = − d
da

(∫
R

e−at2dt

)
= − d
da

(π1/2a−1/2) =
1

2
π1/2a−3/2,

so that

IA,B =
∑

1≤j≤m

1

2
cj,jα

−1
j π

m/2
∏

1≤k≤m

α
−1/2
k =

1

2
πm/2(detA)−1/2

∑
1≤j≤m

cj,jα
−1
j .

Since traceMN = traceNM , we have∑
1≤j≤m

cj,jα
−1
j = trace (tΩBΩD−1) = trace (tΩBΩ(tΩAΩ)−1)

= trace (tΩBA−1Ω) = traceBA−1,

which is the sought result.

(4) We may apply Theorem 3.3.4:

(i) For all t, the mapping x �−→ eitxe−x2

is continuous and supt∈R |eitxe−x2 | =
e−x2

which is integrable on R. F is thus well defined on R.
(ii) For all x in R, the mapping t �−→ eitxe−x2

is of class C1 on R with derivative

ixeitxe−x2

.

(iii) Moreover supt∈R |ixeitxe−x2 | = |x|e−x2

which is integrable on R.

As a result F is of class C1 on R and

∀t ∈ R, F ′(t) =

∫
R

ixeitxe−x2

dx.

Integrating by parts gives

F ′(t) =
[
− i

2
eitxe−x2

]
+
i

2

∫
R

iteitxe−x2

dx = − t
2
F (t).

Since F (0) =
√
π we obtain ∀t ∈ R, F (t) =

√
π exp{−t2/4}.
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(5) As in the first question∫
Rm

exp i〈y, x〉 exp−〈Ax, x〉dx =
∫
Rm

exp i〈y, x〉 exp−〈ΩDtΩx, x〉dx

=

∫
Rm

exp i〈y, x〉 exp−〈DtΩx,tΩx〉dx.

The change of variables z =tΩx gives∫
Rm

exp i〈y, x〉 exp−〈Ax, x〉dx =
∫
Rm

exp i〈y,Ωz〉 exp−〈Dz, z〉| detΩ|dz

=

∫
Rm

exp i〈tΩy, z〉 exp−〈Dz, z〉dz,

so that∫
Rm

exp i〈y, x〉 exp−〈Ax, x〉dx =
∫
Rm

m∏
j=1

exp i(tΩy)jzj exp−αjz2j dz

=

m∏
j=1

∫
R

exp i(tΩy)jzj exp−αjz2jdzj .

Using the change of variable xj =
√
αjzj in each integral we get

∫
Rm

exp i〈y, x〉 exp−〈Ax, x〉dx =
m∏
j=1

1
√
αj

∫
R

(
exp i(tΩy)jxj/

√
αj

)
exp−x2jdxj

=

m∏
j=1

1
√
αj
F
(
(tΩy)j/

√
αj
)
,

and the previous question gives∫
Rm

exp i〈y, x〉 exp−〈Ax, x〉dx =
√
πm

detA
exp−1

4

m∑
j=1

1

αj
(tΩy)2j

=

√
πm

detA
exp−1

4
〈D−1tΩy,tΩy〉

so that, since A−1 = ΩD−1tΩ,∫
Rm

exp i〈y, x〉 exp−〈Ax, x〉dx =
√
πm

detA
exp−1

4
〈A−1y, y〉.
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Exercise 3.7.29. We define c0 as the space of sequences of complex numbers con-
verging to 0.

(1) Show that the space c0 is a closed subspace of �∞.

(2) Show that the spaces c0, �
p, for 1 ≤ p < +∞ are separable.

Answer. (1) Let (un)n∈N be a sequence in c0 converging towards u in �∞. Each un
is a sequence (ak,n)k∈N such that limk ak,n = 0 and u = (bk)k∈N ∈ �∞. We have

|bk| ≤ |bk − ak,n| + |ak,n| ≤ ‖u− un‖ + |ak,n|,

so that ∀n ∈ N, lim supk |bk| ≤ ‖u− un‖, and taking the infimum on n of the rhs
implies lim supk |bk| = 0, and u ∈ c0.
(2) Let us define the countable set

D = ∪N∈N{(yk)k∈N, yk ∈ Q+ iQ, yk = 0 for k > N}.

Then D is dense in c0: let u = (xk)k∈N be in c0 and let ε > 0 be given. Then there
exists Nε such that supk≥Nε

|xk| < ε/2. Moreover, by density of Q in R, there
exists (yk)0≤k≤Nε such that each yk ∈ Q + iQ and max0≤k≤Nε |xk − yk| < ε/2.
With v = (yk)k∈N (yk = 0 for k > Nε), we have v ∈ D and

‖u− v‖∞ ≤ max
0≤k≤Nε

|xk − yk|+ sup
k≥Nε

|xk| < ε,

proving the sought property.

The set D is also dense in �p for 1 ≤ p < +∞: let u = (xk)k∈N be in �p and
let ε > 0 be given. Then there exists Nε such that∑

k≥Nε

|xk|p < εp/2.

Moreover, by density of Q in R, there exists (yk)0≤k≤Nε such that each yk ∈ Q+iQ
and

max
0≤k≤Nε

|xk − yk|p <
εp

2Nε + 1
.

With v = (yk)k∈N (yk = 0 for k > Nε), we have v ∈ D and

‖u− v‖pp =
∑

0≤k≤Nε

|xk − yk|p +
∑
k≥Nε

|xk|p < εp,

proving the sought property.

Exercise 3.7.30. Let (X,M, μ) be a measure space where μ is a positive measure.
Prove that L1(μ) ⊂ L∞(μ) if and only if

inf
E∈M
μ(E)>0

μ(E) > 0. (3.7.6)

Prove that, when this condition is satisfied, we have for 1 ≤ p ≤ q ≤ ∞, Lp(μ) ⊂
Lq(μ). Give an example of such a measured space.
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Answer. Let us assume first that (3.7.6) holds with an infimum equal to α > 0
and let f ∈ L1(μ) be different from 0. If f were not in L∞(μ), for every k ∈ N, we
would have

μ
(
{x ∈ X, |f(x)| > k}︸ ︷︷ ︸

Ek

)
> 0,

so that

+∞ > ‖f‖L1(μ) ≥
∫
Ek

|f |dμ ≥ kμ(Ek) ≥ kα −→
k→+∞

+∞,

which is impossible. We obtain thus f ∈ L∞(μ). With ε > 0, assuming that f is
not 0 and ε ∈

(
0, ‖f‖L∞(μ)

)
, we define

Fε = {x ∈ X, |f | > ‖f‖L∞(μ) − ε}.

We find μ(Fε) > 0 and thus μ(Fε) ≥ α > 0. As a result for every ε ∈
(
0, ‖f‖L∞(μ)

)
,

we get

‖f‖L1(μ) ≥
∫
Fε

|f |dμ ≥
(
‖f‖L∞(μ) − ε

)
μ(Fε) ≥ α

(
‖f‖L∞(μ) − ε

)
,

implying ‖f‖L∞(μ) ≤ α−1‖f‖L1(μ). We remark that if 1 ≤ p < +∞, we find also
under (3.7.6),

f ∈ Lp(μ) =⇒ |f |p ∈ L1(μ) =⇒ |f |p ∈ L∞(μ).

We note also that, assuming (3.7.6) and 1 ≤ p < q < +∞, we find from the
previous argument that if f ∈ Lp(μ), we obtain that |f |p belongs to L∞(μ) with

‖|f |p‖L∞ ≤ α−1‖|f |p‖L1 = α−1‖f‖pLp

=⇒
∫

|f |qdμ ≤
∫

|f |pdμ ‖f‖q−p
L∞ ≤ (α−1)

q−p
p ‖f‖p+q−p

Lp

=⇒ ‖f‖Lq(μ) ≤ (α−1)
q−p
pq ‖f‖Lp ,

proving that f ∈ Lq(μ) (with a continuous injection).

Conversely, let us assume that L1(μ) ⊂ L∞(μ). If for any k ∈ N∗, we could
find Ek ∈ M such that 0 < μ(Ek) < 2−k, then

‖f =
∑
k≥1

k1Ek
‖L1(μ) ≤

∑
k≥1

kμ(Ek) < +∞ =⇒ f ∈ L1(μ) =⇒ f ∈ L∞(μ),

but since μ(Ek) > 0, we have ‖f‖L∞(μ) ≥ k for all k ∈ N, which is impossible.

The most typical example is given by the �p spaces (1 ≤ p ≤ +∞) which are
the Lp spaces for the measured space

(N,P(N), μ), μ =
∑
k∈N
δk.

Here μ is the counting measure on N so that μ(E) ≥ 1 if E is not empty.



3.7. Exercises 187

Exercise 3.7.31. Let (X,M, μ) be a measure space where μ is a positive measure.
Let f1, . . . , fN be non-negative measurable functions and let p1, . . . , pN ∈ [1,+∞]
such that ∑

1≤j≤N

1

pj
= 1.

Prove that

∫
X

f1 . . . fNdμ ≤
∏

1≤j≤N

‖fj‖Lpj (μ).

Answer. When N = 2, this is Hölder’s inequality. We may assume that all fj are
not vanishing μ-a.e. (otherwise the lhs is 0) and that each fj belongs to Lpj (μ)
(otherwise the rhs is +∞ as the product of positive quantities in R+ with one
of them +∞). Induction on N : let N ≥ 2 and p1, . . . , pN+1 ∈ [1,+∞] with∑

1≤j≤N+1
1
pj

= 1. Applying Hölder’s inequality we find

(�)

∫
X

f1 . . . fNfN+1dμ ≤
∥∥∥∥ ∏
1≤j≤N

fj

∥∥∥∥
L

p′
N+1(μ)

‖fN+1‖LpN+1(μ).

Since
∑

1≤j≤N

p′N+1

pj
= 1 (ensuring that pj/p

′
N+1 ≥ 1) and

∥∥∥∥ ∏
1≤j≤N

fj

∥∥∥∥
L

p′
N+1(μ)

=

∥∥∥∥ ∏
1≤j≤N

f
p′N+1

j

∥∥∥∥ 1
p′
N+1

L1(μ)

,

we may use the induction hypothesis to obtain∥∥∥∥ ∏
1≤j≤N

fj

∥∥∥∥
L

p′
N+1(μ)

≤
( ∏
1≤j≤N

‖fp
′
N+1

j ‖
L

pj/p
′
N+1

) 1
p′
N+1 .

The rhs of that inequality equals
∏

1≤j≤N ‖fj‖Lpj , and with (�) this provides the
answer.



Chapter 4

Integration on a Product Space

4.1 Product of measurable spaces

Definition 4.1.1 (σ-algebra on a product space). Let (X1,M1), (X2,M2) be mea-
surable spaces. We define the product σ-algebra of M1 and M2 as the σ-algebra
on X1 ×X2 generated by the sets A1 × A2, where Aj ∈ Mj , j = 1, 2 (such a set
A1 × A2 will be called a Cartesian rectangle, CAR for short). That σ-algebra will
be denoted by M1 ⊗ M2.

We note that M1 ⊗ M2 is the smallest σ-algebra (i.e., the intersection of
σ-algebras) on X1 × X2 such that the canonical projections πj : X1 × X2 →
Xj, πj

(
(x1, x2)

)
= xj , j = 1, 2 are measurable. First of all π1 is measurable since

for A1 ∈ M1, we have π
−1
1 (A1) = A1×X2 which is a CAR, thus belongs to M1⊗M2

(same for π2). Moreover if T is a σ-algebra onX1×X2 such that πj are measurable,
then for Aj ∈ Mj , T contains π−1

1 (A1) = A1 ×X2 and π−1
2 (A2) = X1 ×A2, thus

their intersection

(A1 ×X2) ∩ (X1 ×A2) = A1 ×A2.

The σ-algebra T contains the CAR and thus the σ-algebra generated by the CAR,
i.e., M1 ⊗ M2.

Remark 4.1.2. Let fj : Xj → C (j = 1, 2) be measurable mappings. We define the
tensor product f1 ⊗ f2 by

f1 ⊗ f2 : X1 ×X2 → C
(x1, x2) �→ f1(x1)f2(x2).

The mapping f1⊗f2 is the product (f1◦π1)(f2◦π2); since each fj◦πj is measurable
(cf. Lemma 1.1.6), Theorem 1.2.7 shows that their product is also measurable.

Proposition 4.1.3. Let (X1,M1), (X2,M2), (Y, T ) be measurable spaces and let
f : X1 ×X2 → Y be a measurable mapping. Then

, ,
OI 10.1007/978-3- - -D
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(1) ∀x1 ∈ X1, the mapping f(x1, ·) : x2 ∈ X2 �→ f(x1, x2) ∈ Y is measurable,

∀x2 ∈ X2, the mapping f(·, x2) : x1 ∈ X1 �→ f(x1, x2) ∈ Y is measurable.

(2) For A ∈ M1 ⊗ M2, and (x1, x2) ∈ X1 ×X2, we define

A(x1, ·) = {x2 ∈ X2, (x1, x2) ∈ A},
A(·, x2) = {x1 ∈ X1, (x1, x2) ∈ A}.

(4.1.1)

The set A(x1, ·) belongs to M2 and A(·, x2) belongs to M1.

Let us check first Figure 4.1 with the “vertical slice” A(x1, ·). Of course
drawing an horizontal slice would be easy, but the picture would not gain much.

Figure 4.1: Vertical slice

A ∈ M1 ⊗ M2, A(x1, ·) = {x2 ∈ X2, (x1, x2) ∈ A}

Proof of the proposition. Let B be in T . For x1 ∈ X1, we have

f(x1, ·)−1(B) = {x2 ∈ X2, f(x1, x2) ∈ B}
= {x2 ∈ X2, (x1, x2) ∈ f−1(B)} =

(
f−1(B)

)
(x1, ·).
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Since f is measurable, the set f−1(B) belongs to M1 ⊗ M2; it is thus enough to
prove (2) to obtain (1). We define

M = {E ⊂ X1 ×X2, ∀x1 ∈ X1, ∀x2 ∈ X2, E(x1, ·) ∈ M2, E(·, x2) ∈ M1}.

We note that E ∈ M implies Ec ∈ M: for x1 ∈ X1, we have

(Ec)(x1, ·) = {x2 ∈ X2, (x1, x2) ∈ Ec}
= {x2 ∈ X2, (x1, x2) /∈ E} =

(
E(x1, ·)︸ ︷︷ ︸
∈M2

since E ∈ M

)c

and thus (Ec)(x1, ·) ∈ M2 since M2 is stable by complement as a σ-algebra. We
prove as well that, for x2 ∈ X2, we have (Ec)(·, x2) ∈ M1, so that Ec ∈ M.
Moreover if (Ek)k∈N is a sequence of M, then ∪k∈NEk ∈ M: for x1 ∈ X1, we have(

∪k∈NEk

)
(x1, ·) = {x2 ∈ X2, (x1, x2) ∈ ∪k∈NEk} = ∪k∈N

(
Ek(x1, ·)︸ ︷︷ ︸
∈M2

since Ek ∈ M

)

which belongs to M2 since M2 is stable by countable union, as a σ-algebra. Since
we can get by the same proof, mutatis mutandis, that for x2 ∈ X2,

(
∪k∈NEk

)
(·, x2)

belongs to M1, we have indeed proven that ∪k∈NEk ∈ M. We note also that the
CAR belongs to M: let Aj be in Mj , j = 1, 2. For x1 ∈ X1, we have

(A1 ×A2)(x1, ·) = {x2 ∈ X2, (x1, x2) ∈ A1 ×A2} =

{
∅, if x1 /∈ A1

A2, if x1 ∈ A1

]
∈ M2.

We prove as well that for x2 ∈ X2, we have (A1×A2)(·, x2) ∈ M1. As a result, M is
a σ-algebra onX1×X2 containing the CAR, and thus the σ-algebraM1⊗M2, which
is generated by the CAR. This completes the proof of (2) and of the Proposition. �

Remark 4.1.4. Let d ∈ N and let Bd be the Borel σ-algebra on Rd. Then if d1, d2 ∈
N, we have

Bd1+d2 = Bd1 ⊗ Bd2 . (4.1.2)

We prove first Bd1+d2 ⊃ Bd1 ⊗Bd2 : Bd1+d2 is a σ-algebra such that the projections
are measurable (since they are continuous), thus contains the smallest σ-algebra
Bd1 ⊗Bd2 making these projections measurable. Moreover, from Lemma 1.2.6, the
σ-algebra Bd1+d2 is generated by the compact rectangles

∏
1≤j≤d1+d2

[aj , bj] which
are also CARs (equal to

∏
1≤j≤d1

[aj , bj]
∏

d1+1≤j≤d1+d2
[aj , bj ]). Consequently, using

the notation in Definition 1.1.3, we have

Bd1 ⊗ Bd2 ⊂ Bd1+d2 = M(compact rectangles) ⊂ M(CAR) = Bd1 ⊗ Bd2 . �
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4.2 Tensor product of sigma-finite measures

Lemma 4.2.1. Let (X1,M1, μ1), (X2,M2, μ2) be measure spaces where the μj are

positive σ-finite measures (i.e., Xj = ∪k∈NE
j
k, with μj(E

j
k) < +∞). Let A be in

M1 ⊗ M2. Defining ϕ1(x1) = μ2(A(x1, ·)), ϕ2(x2) = μ1(A(·, x2)), the functions
ϕj are Mj measurable (j = 1, 2) and

(�)

∫
X1

ϕ1dμ1 =

∫
X2

ϕ2dμ2.

Proof. Let us first assume that A = A1 ×A2 with Aj ∈ Mj . We have

(A1 ×A2)(x1, ·) = {x2 ∈ X2, (x1, x2) ∈ A1 ×A2} =

{
∅ if x1 /∈ A1,
A2 if x1 ∈ A1,

and this implies

ϕ1(x1) =

{
0 if x1 /∈ A1,

μ2(A2) if x1 ∈ A1,

i.e., ϕ1 = μ2(A2) · 1A1 , ϕ2 = μ1(A1) · 1A2 , so that if μ1(A1) and μ2(A2) are both
finite, ∫

X1

ϕ1dμ1 = μ2(A2)μ1(A1) =

∫
X2

ϕ2dμ2.

Moreover if μ2(A2) = +∞ and μ1(A1) = 0, we have ϕ1 = 0, μ1-a.e. and ϕ2 = 0,
proving the result in that case as well. If μ2(A2) = +∞ and μ1(A1) > 0, we find∫
X1
ϕ1dμ1 = +∞ =

∫
X2
ϕ2dμ2, so that the sought property is proven when A is a

CAR. Let us now define

R = {A ∈ M1 ⊗ M2, (�) holds true}. (4.2.1)

We have already proven that
R ⊃ CAR. (4.2.2)

Moreover, we claim that if (Aj)j∈N is an increasing sequence of R, then

∪j∈NAj ∈ R. (4.2.3)

Indeed, defining ϕ1,j(x1) = μ2(Aj(x1, ·)), ϕ2,j(x2) = μ2(Aj(·, x2)), the sequence
Aj(x1, ·) = {x2 ∈ X2, (x1, x2) ∈ Aj} is increasing with union A(x1, ·). As a result,
we have 0 ≤ ϕ1,j(x1) ↑ ϕ1(x1), 0 ≤ ϕ2,j(x2) ↑ ϕ2(x2), and Beppo Levi’s theorem
implies ∫

X1

ϕ1,jdμ1 ↑
∫
X1

ϕ1dμ1 and

∫
X2

ϕ2,jdμ2 ↑
∫
X2

ϕ2dμ2.

Since each Aj belongs to R, we have
∫
X1
ϕ1,jdμ1 =

∫
X2
ϕ2,jdμ2, proving Claim

(4.2.3). Moreover, we claim that if (Aj)j∈N is a sequence of pairwise disjoint ele-
ments of R, we have

∪j∈NAj ∈ R. (4.2.4)
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In fact, considering the increasing sequence Bn = ∪0≤j≤nAk, and using (4.2.3),
we see that it is enough to check that if A1, A2 are disjoint elements of R, then
A1 ∪ A2 ∈ R. We have indeed

(A1 ∪ A2)(x1, ·) = {x2 ∈ X2, (x1, x2) ∈ A1 ∪ A2} = A1(x1, ·)∪A2(x1, ·)︸ ︷︷ ︸
disjoint union

,

so that μ2(A1 ∪ A2)(x1, ·) = μ2(A1(x1, ·)) + μ2(A2(x1, ·)) and

∫
X1

ϕ1(x1)︷ ︸︸ ︷
μ2(A1 ∪ A2)(x1, ·) dμ1(x1)

=

∫
X1

μ2(A1(x1, ·))dμ1(x1) +
∫
X1

μ2(A2(x1, ·))dμ1(x1).

Since both A1, A2 belong to R, we have proven Claim (4.2.4). Moreover, for
A1 ∈ M1, A2 ∈ M2 with μj(Aj) <∞, j = 1, 2, and for (Qj) a decreasing sequence
in R such that A1 ×A2 ⊃ Qj, we claim that

Q = ∩jQj ∈ R. (4.2.5)

Indeed, let us define

ϕ1,j(x1) = μ2(Qj(x1, ·)) = μ2({x2 ∈ X2, (x1, x2) ∈ Qj}) ≤ μ2(A2) < +∞.

Using Proposition 1.4.4(3), we get

ϕ1,j(x1) → ϕ1(x1) = μ2({x2 ∈ X2, (x1, x2) ∈ Q}),
μ1(Qj(·, x2)) = ϕ2,j(x2) → ϕ2(x2) = μ1({x1 ∈ X1, (x1, x2) ∈ Q}).

We have also

0 ≤ ϕ1,j(x1) ≤ μ2({x2 ∈ X2, (x1, x2) ∈ A1 ×A2}) = ψ1(x1).

But we have already seen in (4.2.1) that
∫
X1
ψ1dμ1 = μ1(A1)μ2(A2) (a finite

quantity here). We may thus apply the Lebesgue dominated convergence theorem
and get ∫

X1

ϕ1,jdμ1 →
∫
X1

ϕ1dμ1 and

∫
X2

ϕ2,jdμ2 →
∫
X2

ϕ2dμ2.

Since Qj belongs to R, we find
∫
X1
ϕ1,jdμ1 =

∫
X2
ϕ2,jdμ2 proving Claim (4.2.5).

We need a definition.

Definition 4.2.2. Let X be a set and S be a subset of the powerset P(X). The set
S is said to be a Monotone Class on X when for (Aj)j∈N increasing sequence of S,
(Bj)j∈N decreasing sequence of S, ∪j∈NAj ∈ S, ∩j∈NBj ∈ S. Note that if (Ti)i∈I
is a family of monotone classes on X , then ∩i∈ITi is also a monotone class on X .
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Since μ1 is σ-finite, we can find a sequence (X1,k) of elements of M1 such
that

X1 = ∪k∈NX1,k, μ1(X1,k) < +∞.

We may as well assume that the X1,k are pairwise disjoint. Let (X2,l) be a sequence
with the same properties with respect to (X2,M2, μ2). We define the set

S = {A ∈ M1 ⊗ M2, ∀(k, l), A ∩ (X1,k ×X2,l) ∈ R}. (4.2.6)

Then we claim that S is a monotone class. Indeed, let Aj ∈ M1 ⊗ M2 be an
increasing sequence such that Aj ∩ (X1,k ×X2,l) ∈ R. From (4.2.3), we find that
∪jAj belongs to S. Similarly (4.2.5) and the fact that μ1(X1,k), μ2(X2,l) are both
finite imply the property on decreasing sequences, proving the claim. As a result,
S is a monotone class included in M1 ⊗ M2, containing the CAR ((4.2.2)) and
countable pairwise disjoint unions of CARs ((4.2.4)).

Lemma 4.2.3. M1⊗M2 is the smallest monotone class on X1×X2 which contains
finite unions of CARs.

Let us take provisionally that lemma for granted. We get then S = M1⊗M2.
As a consequence, if A ∈ M1 ⊗ M2, then A ∩ (X1,k ×X2,l) satisfy the property
of Lemma 4.2.1, so that using

A = ∪k,l

{
A ∩ (X1,k ×X2,l)

}
(disjoint union),

we find from (4.2.4) that A ∈ R, concluding the proof of Lemma 4.2.1. �

Proof of Lemma 4.2.3. M1 ⊗ M2 is a σ-algebra, thus a monotone class. We may
thus consider the monotone class T defined as

T = intersection of monotone classes containing the finite unions of CARs.

Since M1 ⊗ M2 is a monotone class containing the finite unions of CARs, we get
that M1 ⊗ M2 ⊃ T .We need to prove the other inclusion. Note that it is enough
to prove that T is a σ-algebra: if that it is so, T will contain the CAR, thus the
σ-algebra generated by the CAR, that is M1 ⊗ M2. We note that

(A1 ×A2) ∩ (B1 ×B2) = (A1 ∩B1) × (A2 ∩B2), (4.2.7)

(A1 ×A2)\(B1 ×B2) =
[
(A1\B1)×A2

]
∪
[
(A1 ∩B1)× (A2\B2)

]
. (4.2.8)

We see that the difference of two CARs is a disjoint union of two CARs. Then the
symmetric difference of two CARs is as disjoint union of four CARs, the union of two
CARs is a disjoint union of five CARs. We find that the set

E = finite disjoint unions of CARs, (4.2.9)
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is stable by union, intersection, and symmetric difference. For P ⊂ X1 ×X2, we
set

Ω(P ) = {Q ⊂ X1 ×X2, P\Q, Q\P, P ∪Q ∈ T }.
We see at once that

Q ∈ Ω(P ) ⇐⇒ P ∈ Ω(Q). (4.2.10)

Moreover, if (Qj)j∈N is an increasing sequence of Ω(P ) and Q = ∪jQj, we have

P\Q = P ∩Qc = P ∩ ∩jQ
c
j = ∩j(P ∩Qc

j),

and since P ∩ Qc
j is decreasing and in T (which is a monotone class), we find

that P\Q ∈ T . We prove similarly that Q\P, P ∪ Q ∈ T . As a result, Ω(P ) is a
monotone class. Let P ∈ E : if Q ∈ E , we have Q ∈ Ω(P ) since we have already
seen that E is stable by union, intersection and symmetric difference. We find

E ⊂ Ω(P ) for P ∈ E .

Since Ω(P ) is a monotone class, using the very definition of T , we find

(�) T ⊂ Ω(P ) for P ∈ E .
Consequently, if Q ∈ T , we have

P ∈ E =⇒︸︷︷︸
(�)

T ⊂ Ω(P ) =⇒︸︷︷︸
Q∈T

Q ∈ Ω(P ) =⇒︸︷︷︸
(4.2.10)

P ∈ Ω(Q),

so that E ⊂ Ω(Q). Since Ω(Q) is a monotone class, we find

T ⊂ Ω(Q) for Q ∈ T .

Finally for P,Q ∈ T , we have T ⊂ Ω(Q) which implies P ∈ Ω(Q) and thus
P\Q,Q\P, P ∪Q ∈ T . We get then

X1 ×X2 ∈ E ⊂ T ,

if Q ∈ T , Qc =
(
X1 ×X2︸ ︷︷ ︸

∈T

\
∈T︷︸︸︷
Q
)
∈ T ,

(Qj ∈ T )j∈N, Pn = ∪1≤j≤nQj ∈ T ,monotone class, thus ∪n Pn ∈ T ,
proving that T is a σ-algebra, completing the proof of Lemma 4.2.3. �
Definition 4.2.4 (Tensor product of σ-finite measures). Let (X1,M1, μ1) and
(X2,M2, μ2) be measure spaces where each μj is a σ-finite positive measure. For
A ∈ M1 ⊗ M2, using the notation (4.1.1) and Lemma 4.2.1 we set

(μ1 ⊗ μ2)(A) =
∫
X1

μ2
(
A(x1, ·)

)
dμ1(x1) =

∫
X2

μ1
(
A(·, x2)

)
dμ2(x2).

Then μ1 ⊗ μ2 is a σ-finite positive measure. From the proof of Lemma 4.2.1 we
find that for Aj ∈ Mj , j = 1, 2, (μ1 ⊗ μ2)(A1 × A2) = μ1(A1) · μ2(A2) (with the
convention 0 · ∞ = 0).
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Indeed, if (Ak)k∈N is a pairwise disjoint sequence of M1 ⊗ M2, if x1 ∈ X1,
then Ak(x1, ·) is measurable (Proposition 4.1.3 (2)) and, using (4.1.1), we find(
∪k∈NAk

)
(x1, ·) = ∪k∈N Ak(x1, ·)︸ ︷︷ ︸

pairwise disjoint

, so that

μ2

((
∪k∈NAk

)
(x1, ·)

)
=
∑
k∈N
μ2
(
Ak(x1, ·)

)
. (4.2.11)

Lemma 4.2.1 implies that the mappings x1 �→ μ2
(
Ak(x1, ·)

)
are measurable and

Corollary 1.6.2 gives

(μ1 ⊗ μ2)(∪k∈NAk)
déf.
=

∫
X1

μ2

((
∪k∈NAk

)
(x1, ·)

)
dμ1(x1)

(4.2.2)
=

∫
X1

(∑
k∈N
μ2
(
Ak(x1, ·)

))
dμ1(x1)

cor. 1.6.2
=

∑
k∈N

∫
X1

μ2
(
Ak(x1, ·)

)
dμ1(x1) =

∑
k∈N

(μ1 ⊗ μ2)(Ak),

which is the sought result. Moreover the measure μ1 ⊗ μ2 is σ-finite since if we
have with j = 1, 2, Xj = ∪k∈NXj,k with Xj,k ∈ Mj and μj(Xj,k) < +∞, we get
X1 ×X2 = ∪(k,l)∈N×N

(
X1,k ×X2,l

)
, and thus

(μ1 ⊗ μ2)(X1,k ×X2,l) = μ1(X1,k)μ2(X2,l) < +∞.

Theorem 4.2.5 (Tonelli). Let (X1,M1, μ1) and (X2,M2, μ2) be measure spaces
where each μj is a σ-finite positive measure. Let f : X1×X2 → R+ be a measurable
mapping (the product X1 × X2 is equipped with the σ-algebra M1 ⊗ M2). From
Proposition 4.1.3, the mappings X2 � x2 �→ f(x1, x2), X1 � x1 �→ f(x1, x2) are
measurable and we may define

f1(x1) =

∫
X2

f(x1, x2)dμ2(x2), f2(x2) =

∫
X1

f(x1, x2)dμ1(x1).

Then the mappings fj are measurable and we have∫
X1

f1(x1)dμ1(x1) =

∫
X2

f2(x2)dμ2(x2) =

∫
X1×X2

f(x1, x2)d(μ1 ⊗ μ2)(x1, x2).

(4.2.12)

Proof. The following notation for (4.2.12) is certainly easier to follow:∫
X1

(∫
X2

f(x1, x2)dμ2(x2)

)
dμ1(x1) =

∫
X2

(∫
X1

f(x1, x2)dμ1(x1)

)
dμ2(x2)

=

∫∫
X1×X2

f(x1, x2)d(μ1 ⊗ μ2)(x1, x2).
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We assume first that f = 1Q with Q ∈ M1 ⊗ M2: Definition 4.2.4 gives the
sought result. As a consequence, we obtain as well that result for simple functions
on X1 ×X2 (Definition 1.3.2). From the approximation Theorem 1.3.3, we get the
existence of a sequence of simple functions (sk)k∈N on X1 ×X2 such that for all
(x1, x2) ∈ X1 ×X2,

0 ≤ sk(x1, x2) ↑ f(x1, x2).
We set sk,1(x1) =

∫
X2
sk(x1, x2)dμ2(x2), sk,2(x2) =

∫
X1
sk(x1, x2)dμ1(x1). Since

sk is a simple function, we have already proven that∫
X1

sk,1dμ1 =

∫
X2

sk,2dμ2 =

∫
X1×X2

skd(μ1 ⊗ μ2). (4.2.13)

Using now Beppo Levi’s Theorem 1.6.1 on (X1 ×X2,M1 ⊗ M2, μ1 ⊗ μ2), we get

lim
k

∫
X1×X2

skd(μ1 ⊗ μ2) =
∫
X1×X2

fd(μ1 ⊗ μ2). (4.2.14)

For x1 ∈ X1, Beppo Levi’s theorem on (X2,M2, μ2), applied to the non-negative
increasing sequence sk(x1, x2) gives

0 ≤ sk,1(x1) =
∫
X2

sk(x1, x2)dμ2(x2) ↑
∫
X2

f(x1, x2)dμ2(x2) = f1(x1).

Beppo Levi’s theorem on (X1,M1, μ1), applied to the non-negative increasing
sequence sk,1(x1) gives then

lim
k

∫
X1

sk,1dμ1 =

∫
X1

f1dμ1. (4.2.15)

We get then∫
X1×X2

fd(μ1 ⊗ μ2)
(4.2.14)
= lim

k

∫
X1×X2

skd(μ1 ⊗ μ2)

(4.2.13)
= lim

k

∫
X1

sk,1dμ1
(4.2.15)
=

∫
X1

f1dμ1,

and we prove similarly
∫
X1×X2

fd(μ1⊗μ2) =
∫
X2
f2dμ2, concluding the proof. �

Remark 4.2.6. Lemma 1.2.14 on double series with terms in R+ is a very elemen-
tary version of Tonelli’s theorem.

Theorem 4.2.7 (Fubini). Let (X1,M1, μ1) and (X2,M2, μ2) be measure spaces
where each μj is a σ-finite positive measure. Let f : X1 ×X2 → C be a measurable
mapping (the product X1 ×X2 is equipped with the σ-algebra M1 ⊗ M2).

(1) If

∫
X1

(∫
X2

|f(x1, x2)|dμ2(x2)
)
dμ1(x1) < +∞, then f ∈ L1(μ1 ⊗ μ2).
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(2) If f ∈ L1(μ1 ⊗ μ2), then f(x1, ·) ∈ L1(μ2) μ1-a.e. in x1, f(·, x2) ∈ L1(μ1)
μ2-a.e. in x2 and∫

X1

(∫
X2

f(x1, x2)dμ2(x2)

)
dμ1(x1)

=

∫
X2

(∫
X1

f(x1, x2)dμ1(x1)

)
dμ2(x2)

=

∫∫
X1×X2

f(x1, x2)d(μ1 ⊗ μ2)(x1, x2).

(4.2.16)

Proof. To obtain (1), we need only to apply Tonelli’s theorem 4.2.5 to |f |. Let us
prove (2). We assume first that f is real valued: then we have

f = f+ − f−, with f± ≥ 0, f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0).

From Tonelli’s theorem and the assumption of (2), we get∫
X1

(∫
X2

f+(x1, x2)dμ2(x2)

)
dμ1(x1) =

∫
X2

(∫
X1

f+(x1, x2)dμ1(x1)

)
dμ2(x2)

=

∫∫
X1×X2

f+(x1, x2)d(μ1 ⊗ μ2)(x1, x2) < +∞,

and the same identity holds for f−. As a result the M1 measurable functions
(f+)1, (f−)1 belong to L1(μ1) (we define as in Lemma 4.2.1 for g : X1 ×X2 → R+

measurable, g1(x1) =
∫
X2
g(x1, x2)dμ2(x2), g2(x2) =

∫
X1
g(x1, x2)dμ1(x1)). From

Proposition 1.7.1 (4) we get

(f+)1 < +∞, (f−)1 < +∞, μ1-a.e.

Similarly, we prove (f+)2 < +∞, (f−)2 < +∞, μ2-a.e. Since we have

|f(x1, x2)| = f+(x1, x2) + f−(x1, x2),

this gives the first part of (2). Applying the identities (4.2.16) for f+ and f−, we
find the identity of (2) by writing a linear combination of real numbers. When f
is complex valued, we may consider separately the imaginary and real parts, each
of them satisfying the assumptions of (2) and thus which can be given the same
treatment as above �
Remark 4.2.8. Let (X1,M1, μ1) and (X2,M2, μ2) be measure spaces where each
μj is a σ-finite positive measure. Let fj : Xj → C, j = 1, 2 be mappings of
L1(μj). We define on X1 ×X2, the tensor product of f1 with f2, noted f1 ⊗ f2, by
(f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2). This function is measurable (Remark 4.1.2) and
Theorem 4.2.7 gives right away that f1 ⊗ f2 belongs also to L1(μ1 ⊗μ2) as well as
the formula∫∫

X1×X2

(f1 ⊗ f2)d(μ1 ⊗ μ2) =
(∫

X1

f1dμ1

)(∫
X2

f2dμ2

)
.
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4.3 The Lebesgue measure on Rm and tensor products

The Lebesgue measure on Rm was constructed in Section 2.4. In the present sec-
tion, we are willing to compare that measure to the tensor product of Lebesgue
measures on R, so that we can reduce the computation of multiple integrals to a
succession of computations of simple integrals.

Theorem 4.3.1. Let m1,m2 be integers ≥ 1. We set m = m1 + m2. With λd
standing for the Lebesgue measure on Rd and Ld for the Lebesgue σ-algebra on Rd

(see Theorem 2.4.2), we have Lm ⊃ Lm1 ⊗Lm2 and λm coincides with λm1 ⊗λm2

on Lm1 ⊗ Lm2 .

Proof. Using the notation of Definition 1.1.3, we get from (1.2.15) and Remark
4.1.4

Bm1 ⊗ Bm2 = Bm = M
(
compact CAR

)
⊂ M

(
CAR
)
= Lm1 ⊗ Lm2 . (4.3.1)

Theorem 2.2.14 implies that for Ej ∈ Lmj , j = 1, 2, there exist a Fσ set Aj and a
Gδ set Bj such that Aj ⊂ Ej ⊂ Bj , λmj (Bj\Aj) = 0. As a result, we have

A1 × Rm2︸ ︷︷ ︸
Fσ set

⊂ E1 × Rm2 ⊂ B1 × Rm2︸ ︷︷ ︸
Gδ set

.

It is thus enough to prove that

λm
(
(B1\A1) × Rm2

)
= 0, (4.3.2)

since this implies that E1×Rm2 ∈ Lm (Theorem 2.2.14 ) as well as Rm1×E2 ∈ Lm,
so that E1 × E2 ∈ Lm, entailing Lm1 ⊗ Lm2 = M

(
Rectangles

)
⊂ Lm. To obtain

(4.3.2), we shall use Proposition 1.4.4 (2) and prove that for all M ≥ 0,

λm
(
(B1\A1) × {x2 ∈ Rm2 , |x2| ≤M}

)
= 0. (4.3.3)

On the other hand, λm1 ⊗ λm2 is a positive measure defined on Bm = Bm1 ⊗Bm2 ,
finite on the compact sets since a compact subset K of Rm is included in a product
β1 × β2 with βj = {xj ∈ Rmj , |xj | ≤M} and thus

(λm1 ⊗ λm2)(K) ≤ (λm1 ⊗ λm2)(β1 × β2) = λm1(β1)λμ2(β2) < +∞.

Moreover, from Theorem 2.2.14 (2) and Definition 4.2.4 we find

(λm1 ⊗ λm2)([0, 1]
m) = λm1([0, 1]

m1)λm2 ([0, 1]
m2) = 1.

Also λm1 ⊗ λm2 is invariant by translation since for E ∈ Bm and t = (t1, t2) ∈
Rm1 × Rm2 , we have

(λm1 ⊗ λm2)(E + t) =

∫
Rm1

(∫
Rm2

1E+(t1,t2)(x1, x2)dλm2(x2)

)
dλm1(x1)
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and by translation invariance of λm2 , we get

(λm1 ⊗ λm2)(E + t) =

∫
Rm1

(∫
Rm2

1E+(t1,t2)(x1, x2 + t2)dλm2(x2)

)
dλm1(x1)

=

∫
Rm1

(∫
Rm2

1E+(t1,0)(x1, x2)dλm2(x2)

)
dλm1 (x1),

so that using Fubini’s theorem, we find

(λm1 ⊗ λm2)(E + t) =

∫
Rm2

(∫
Rm1

1E+(t1,0)(x1, x2)dλm1 (x1)

)
dλm2(x2)

and using translation invariance of λm1 , we get

(λm1 ⊗ λm2)(E + t) =

∫
Rm2

(∫
Rm1

1E+(t1,0)(x1 + t1, x2)dλm1(x1)

)
dλm2(x2)

=

∫
Rm2

(∫
Rm1

1E(x1, x2)dλm1(x1)

)
dλm2(x2) = (λm1 ⊗ λm2)(E).

As a result, from Theorem 2.4.2 λm1 ⊗ λm2 and λm coincide on Bm. This implies
(4.3.3) since λm1(B1\A1) = 0. We have proven that

Bm = Bm1 ⊗ Bm2 ⊂ Lm1 ⊗ Lm2 ⊂ Lm, (4.3.4)

A ∈ Bm =⇒ (λm1 ⊗ λm2)(A) = λm(A). (4.3.5)

Moreover, for Q ∈ Lm1 ⊗ Lm2 , since Q ∈ Lm, there exist an Fσ set A and a Gδ

set B such that A ⊂ Q ⊂ B, λm(B\A) = 0. Since A is a Borel set, we get

λm(Q) =

≤λm(B\A)=0︷ ︸︸ ︷
λm(Q\A) +λm(A) = (λm1 ⊗ λm2)(A).

Moreover as B\A is also a Borel set, we have

(λm1 ⊗ λm2)(Q) =

≤(λm1⊗λm2 )(B\A)=λm(B\A)=0︷ ︸︸ ︷
(λm1 ⊗ λm2)(Q\A) +(λm1 ⊗ λm2)(A)

proving that λm coincides with λm1⊗λm2 on Lm1⊗Lm2 , completing the proof. �

4.4 Notes

Sections 4.1–4.2 clearly belong to Chapter 1 and we could have logically exposed
their content there. However, it was our wish to reduce as much as possible the
exposition of the general theory and to delay the introduction of multiple integrals.
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We have seen Lm1+m2 ⊃ Lm1 ⊗ Lm2 and that inclusion can be shown to be
strict. In fact Lm is complete (Property (5) in Theorem 2.2.1), whereas Lm1 ⊗Lm2

is not complete. However it can be proven (see Exercise 4.5.3) that

(Rm1+m2 ,Lm1+m2 , λm1+m2)

is the completion of the measure space (Rm1 × Rm2 ,Lm1 ⊗ Lm2 , λm1 ⊗ λm2).

Let us review the names of mathematicians encountered in this chapter:

Guido Fubini (1879–1943) was one of the greatest Italian mathematicians; he was
expelled from Italy in 1938 by the antisemitic laws of the Mussolini regime
and emigrated to the US, where the Princeton Institute for Advanced Study
offered him a position.

Leonida Tonelli (1885–1946) was also an Italian mathematician.

4.5 Exercises

Exercise 4.5.1. Let L be the Lebesgue σ-algebra on R. Checking a set {a} × A,
where A ⊂ R, A /∈ L, show that L ⊗ L is not complete.

Answer. In Exercise 2.8.19, we have constructed a subset A of the real line which
does not belong to the Lebesgue σ-algebra (our construction depended heavily on
the Axiom of Choice). With λ2 standing for the Lebesgue measure on R2, we have

{a} ×A ⊂ {a} × R, λ2
(
{a} × R

)
=
∑
k∈Z
λ2
(
{a} × [k, k + 1[

)
= 0.

Nevertheless {a}×A does not belong to L⊗L, otherwise using Proposition 4.1.3,
we would find

L �
(
{a} ×B

)
(a, ·) = {x2 ∈ R, (a, x2) ∈ {a} ×A} = A,

contradicting A /∈ L.

Exercise 4.5.2. Let (Xj , dj), j = 1, 2 be two separable metric spaces. We define on
(X1 ×X2)

2, d
(
(x1, x2), (y1, y2)

)
= max

(
d1(x1, y1), d2(x2, y2)

)
.

(1) Show that d is a distance on X = X1 ×X2 such that both projections X1 ×
X2 → Xj , j = 1, 2, are continuous. Show that d defines the product topology
on X1 ×X2.

(2) Show that (X, d) is separable.

(3) Show that every open set in X is a countable union of products of open balls.

(4) Show that the Borel σ-algebra of X equals the tensor product of the Borel
σ-algebras on each Xj.
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Answer. (1) The mapping d is valued in R+ (see (1.2.7), (1.2.8), (1.2.9)) symmetric
since dj are symmetric, satisfying the triangle inequality (as the dj), separated (as
the dj). The projections πj are continuous since if

lim
n
d
(
(x1,n, x2,n), (x1, x2)

)
= 0,

this implies limn dj(xj,n, xj) = 0. Since the product topology Op on X1 × X2 is
defined as the weakest (coarsest) topology making these projections continuous,
we find that Op ⊂ Od, where Od is the topology defined by the distance d on
X1 ×X2. On the other hand we have for xj ∈ Xj , r > 0, with obvious notation,

Bd

(
(x1, x2), r

)
= Bd1(x1, r

)
×Bd2(x2, r)

so that the topology Od on X1 × X2 generated by the open d-balls1, is equal to
the topology generated by the products of open balls. Since the products of open
balls belong to Op, we find that Od is included in Op and thus Op = Od.

2

(2) Let (xj,n)n∈N be a dense subset of Xj : then D =
{
(x1,m, x2,n)

}
(m,n)∈N2 is

countable and dense in X .

(3) Let Ω be an open subset of X . We consider the countable family of balls

(†) CΩ = {Bd(y, r)}y∈D,r∈Q∗+
Bd(y,r)⊂Ω

.

Let x0 ∈ Ω: then Bd(x0, r0) ⊂ Ω with some positive r0 ∈ Q. We can find y0 ∈ D
such that d(x0, y0) < r0/2: this implies x0 ∈ B(y0, r0/2) ⊂ Ω (since d(y0, z) <
r0/2 =⇒ d(x0, z) < r0

2 + r0
2 = r0 =⇒ z ∈ Bd(x0, r0) ⊂ Ω). As a result,

Ω = ∪y∈D,r∈Q∗+
Bd(y,r)⊂Ω

Bd(y, r),

giving the result since Bd(y, r) is a product of open balls.3

(4) We have, with obvious notation B1 ⊗ B2 ⊂ B since B is a σ-algebra such that
the projections are measurable (since they are continuous), thus contains B1 ⊗B2.
Moreover we have B1 ⊗ B2 ⊂ B = M(C) ⊂ B1 ⊗ B2 since each element of C is a
product of balls, proving the result.

1If X is a set and (Oi)i∈I is a family of topologies on X, then O = ∩i∈IOi is also a topology
on X. Let F be a family of subsets of X: since P(X) is a topology on X, we may define the
topology on X generated by F as the intersection of topologies on X containing F : this is the
coarsest topology on X containing F .
2Taking d((x1, x2), (y1, y2)) = d1(x1, y1)+d2(x2, y2) does not change significantly the argument,
although β = Bd((x1, x2), r) is no longer a product of open balls, it is a union of products since
(z1, z2) ∈ β implies that Bd1 (z1, r/2)× Bd2 (z2, r/2) ⊂ β.
3Here also, taking d((x1, x2), (y1, y2)) = d1(x1, y1)+ d2(x2, y2) does not change significantly the
argument, although in that case Bd is not a product of balls. However, defining CXj

, j = 1, 2

as in (†), we find that Bd(y, r) is a union – necessarily countable – of products B1 × B2 with
Bj ∈ Cj .
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Exercise 4.5.3. Let m1,m2 be positive integers and let us set m = m1 +m2.

(1) Prove that Bm = Bm1 ⊗Bm2, where Bd stands for the Borel σ-algebra on Rd.

(2) Prove that Lm1 ⊗Lm2 ⊂ Lm, where Ld stands for the Lebesgue σ-algebra on
Rd and that the inclusion is strict.

(3) Prove that (Rm,Lm, λm) is the completion of the measure space (see Exercise
2.8.13) (Rm1 × Rm2 ,Lm1 ⊗ Lm2 , λm1 ⊗ λm2).

Answer. (1) See Exercise 4.5.2.

(2) See Theorem 4.3.1 and Exercise 4.5.1 for the strict inclusion.

(3) From Theorem 4.3.1, we know that λm coincides with λm1⊗λm2 on Lm1⊗Lm2 .
Let P ∈ Lm: there exists a Fσ set A (thus in Bm), a Gδ set B (thus in Bm), such
that

A ⊂ P ⊂ B, λm(B\A) = 0.

Now A ∈ Bm = Bm1 ⊗ Bm2 ⊂ Lm1 ⊗ Lm2 , we find

P = P\A︸︷︷︸
∈Lm

∪ A︸︷︷︸
∈Lm1⊗Lm2

, P\A ⊂ B\A︸︷︷︸
∈Lm1⊗Lm2

, λm(B\A) = 0.

so that P belongs to the completion of Lm1 ⊗ Lm2 for the measure λm1 ⊗ λm2

which coincides with λm on Lm1 ⊗Lm2 . Since the measure space (Rm,Lm, λm) is
complete and contains (Rm1 ×Rm2 ,Lm1 ⊗Lm2 , λm1 ⊗λm2), this proves the result:
in fact if (Rm, C, μ) is the completion of (Rm1 ×Rm2 ,Lm1 ⊗Lm2 , λm1 ⊗λm2), the
σ-algebra C is generated by Lm1 ⊗ Lm2 and the subsets of its negligible sets and
since λm1 ⊗ λm2 coincides with λm on Lm1 ⊗ Lm2 , C is included in Lm.

Exercise 4.5.4. Let φ be a continuous function supported in [0, 1] such that∫
φ(t)dt = 1. We define on R2 the following function:

f(x1, x2) = H(x2)φ
(
x2 − E(x2)

){
φ
(
x1 − E(x2)

)
− φ
(
x1 − E(x2)− 1

)}
where E is the integer part (floor function, see footnote on page 16) and H = 1R+

the Heaviside function.

(1) Prove that∫ (∫
f(x1, x2)dx2

)
dx1 = 1,

∫ (∫
f(x1, x2)dx1

)
dx2 = 0.

(2) Comment on this example.

Answer. (1) We have
∫
f(x1, x2)dx1 = 0 and∫

f(x1, x2)dx2 =
∑
n≥0

∫ n+1

n

φ(x2 − n)
(
φ(x1 − n)− φ(x1 − n− 1)

)
dx2

=
∑
n≥0

(
φ(x1 − n)− φ(x1 − n− 1)

)
= φ(x1),

and thus
∫ (∫

f(x1, x2)dx2

)
dx1 = 1.
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(2) The assumptions of Fubini’s theorem cannot be satisfied: computing for in-
stance∫

|f(x1, x2)|dx1

= H(x2)|φ(x2 − E(x2))|
∫

|φ(x1 − E(x2)) − φ(x1 − E(x2) − 1)|dx1

= H(x2)|φ(x2 − E(x2))|
∫

|φ(t + 1)− φ(t)|dt︸ ︷︷ ︸
=cφ>0

since φ is not periodic

,

so that ∫ (∫
|f(x1, x2)|dx1

)
dx2

= cφ
∑
n≥0

∫ n+1

n

|φ(x2 − n)|dx2 = cφ
∑
n≥0

∫
|φ(t)|dt = +∞.

Exercise 4.5.5. Let φ be a non-negative smooth function supported in (0, 1) such
that

∫
φ(t)dt = 1. Let ψ be a non-negative smooth 1-periodic function defined on

R such that ψ vanishes in a neighborhood of 0. We define on R2 the function

f(x1, x2) = H(x2)ψ(x2)
(
φ(x1 − x2) − φ(x1 − x2 − 1)

)
,

where H is the Heaviside function.

(1) Give an example of functions φ, ψ satisfying the above assumptions. Prove
that f is a smooth function.

(2) Prove that
∫
f(x1, x2)dx1 = 0 and calculate

∫
f(x1, x2)dx2.

(3) Comment on this example.

Answer. (1) The function ρ in Exercise 2.8.6 (with m = 1) is smooth non-negative
with support [−1, 1]. We can take

φ(t) =
ρ(4t− 2)∫
ρ(4s)ds

: φ is smooth ≥ 0 with support [1/4, 3/4] and integral 1.

We can take ψ(t) =
∑

n∈Z φ(t + n). We claim that this function is smooth, 1-
periodic and vanishes on [−1/4, 1/4] + Z: in fact the function t �→ φ(t − n) is
supported in [n+ 1

4 , n+
3
4 ], so these functions have disjoint supports for different

n, implying that ψ is smooth 1-periodic with support Z+[ 14 ,
3
4 ], thus vanishing on

Z+ [− 1
4 ,

1
4 ]. As a result, the function x �→ H(x)ψ(x) is smooth and f is a smooth

function.
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(2) We have
∫
f(x1, x2)dx1 = 0 and

∫
f(x1, x2)dx2 =

∫ +∞

0

ψ(x2)

vanishes for x2

outside (x1 − 2, x1)︷ ︸︸ ︷(
φ(x1 − x2) − φ(x1 − x2 − 1)

)
dx2

=

∫
φ(x1 − x2)

(
H(x2)ψ(x2) −H(x2 − 1)ψ(x2 − 1)

)︸ ︷︷ ︸
ω(x2)

dx2.

The function ω vanishes for x2 > 1 since ψ is 1-periodic and also for x2 < 0; as a
result, ∫

f(x1, x2)dx2 =

∫ 1

0

φ(x1 − x2)ψ(x2)dx2.

(3) We find thus

I =

∫ (∫
f(x1, x2)dx2

)
dx1 =

∫ (∫
φ(x1 − x2)ψ(x2)1[0,1](x2)dx2

)
dx1,

and using Tonelli’s theorem, this gives

I =

∫
φ(t)dt

∫ 1

0

ψ(s)ds = 1.

This is a smooth version of the counterexample of Exercise 4.5.4. Of course com-
puting ∫

|f(x1, x2)|dx1 = H(x2)ψ(x2)

∫
|φ(x1 − x2)− φ(x1 − x2 − 1)|dx1

= H(x2)ψ(x2)

∫
|φ(1 + t) − φ(t)|dt,

and as in Exercise 4.5.4(3),
∫ (∫

|f(x1, x2)|dx1
)
dx2 = +∞. On the other hand,∫

|f(x1, x2)|dx2 =

∫ +∞

0

ψ(x2)|φ(x1 − x2) − φ(x1 − x2 − 1)|dx2,

and using Tonelli’s theorem, we get as well∫ (∫
|f(x1, x2)|dx2

)
dx1 =

∫∫
ψ(x2)H(x2)|φ(t+ 1)− φ(t)|dtdx2 = +∞.

This is a second example proving that the assumption (1) in Fubini’s theorem
4.2.7 cannot be dispensed with.
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Exercise 4.5.6. We consider (R,P(R), h0) where h0 is the counting measure and
(R,L1, λ1) the Lebesgue measure on R.

(1) Prove that D = {(x1, x2) ∈ R2, x1 = x2} belongs to L1 ⊗ P(R).
(2) Calculate

∫
1D(x1, x2)dλ1(x1) and

∫
1D(x1, x2)dh0(x2).

(3) Comment on the previous example.

Answer. (1) As a closed subset of R2, the diagonal D is a Borel set of R2, thus
(see Exercise 4.5.3) belongs to B2 = B1 ⊗ B1 ⊂ L1 ⊗ P(R).
(2) Since x1 �→ 1D(x1, x2) vanishes λ1-a.e., we have

∫
1D(x1, x2)dλ1(x1) = 0, and

on the other hand
∫
1D(x1, x2)dh0(x2) = 1.

(3) As a result, we have∫ (∫
1D(x1, x2)dλ1(x1)

)
dh0(x2) = 0,

and
∫ (∫

1D(x1, x2)dh0(x2)
)
dλ1(x1) = +∞. This proves that the assumption of

σ-finiteness in Tonelli’s theorem is not superfluous (the counting measure is σ
finite only on countable sets).

Exercise 4.5.7. Prove limA→+∞
∫ A

0
sin x
x dx = π

2 , using Fubini’s theorem and the

identity 1/x =
∫ +∞
0 e−txdt for x > 0.

Answer. We have for A > 0,∫ A

0

sinx

x
dx =

∫ A

0

sinx

(∫ +∞

0

e−txdt

)
dx,

so that using Fubini’s theorem,∫ A

0

sinx

x
dx =

∫ +∞

0

(∫ A

0

Im{ex(i−t)}dx
)
dt =

∫ +∞

0

[
Im
ex(i−t)

i− t
]x=A

x=0
dt

=

∫ +∞

0

Im

(
(−t− i)
t2 + 1

(eA(i−t) − 1)

)
dt

=

∫ +∞

0

1

t2 + 1

(
1− e−tA cosA− te−tA sinA

)
dt.

Lebesgue’s dominated convergence theorem ensures that

lim
A→+∞

∫ A

0

sinx

x
dx =

∫ +∞

0

dt

t2 + 1
=
π

2
.

Exercise 4.5.8. Let (X,M, μ) be a measure space where μ is a positive measure.

(1) Let S be defined by (3.2.20). Show that for 1 ≤ p < +∞, S is dense in Lp(μ).

(2) Show that for 1 ≤ p < +∞, C0
c (R

n) is dense in Lp(Rn).
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(3) Let Ω be an open subset of Rn. Show that for 1 ≤ p < +∞, C0
c (Ω) is dense

in Lp(Ω).

(4) Let ρ ∈ C∞c (Rn;R+),
∫
Rn ρ(x)dx = 1 (cf. Exercise 2.8.6). For ε > 0, x ∈

Rn, u ∈ L1loc(Rn), we set

uε(x) =

∫
Rn

u(y)ρ

(
x− y
ε

)
dy

εn
.

Show that it is meaningful and that uε ∈ C∞(Rn).

(5) Let 1 ≤ p < +∞. Show that for u ∈ Lp(Rn), we have uε ∈ Lp(Rn) and
limε→0+ uε = u in Lp(Rn).

(6) We replace ρ in (4) by e−π|x|2 where |x| is the Euclidean norm. Show that
for u ∈ L1(Rn), uε is analytic and limε→0+ uε = u in L1(Rn). Assuming
u ∈ C0

c (R
n), show that this method provides a proof of the Stone–Weierstrass

Theorem.

Answer. (1) is Proposition 3.2.11,

(2), (3) are proven in Theorem 3.4.3.

(4) The function y �→ u(y)ρ((x− y)/ε) is compactly supported in |y| ≤ ε+ |x|, so
that the integrand defining uε is indeed in L1comp for each x. Moreover the function
x �→ u(y)ρ((x− y)/ε) is smooth and we have

sup
|x|≤M

∣∣∣u(y)ρ(k)((x − y)/ε)ε−n−k
∣∣∣ ≤ |u(y)|‖ρ(k)‖L∞ε−n−k1

(
|y| ≤ ε+M

)
,

which is ∈ L1(Rn). We may apply Theorem 3.3.4 to get uε ∈ C∞ along with

u(k)ε (x) =

∫
u(y)ρ(k)((x− y)/ε)ε−n−kdy.

(5) We note ρε(t) = ρ(tε
−1)ε−n and uε = ρε∗u. This function belongs to C∞(Rn).

Jensen’s inequality (Theorem 3.1.3) implies for u ∈ Lp(Rn)

‖ρε ∗ u‖pLp(Rn) =

∫
Rn

∣∣∣∣∫
Rn

ρε(x− y)u(y)dy
∣∣∣∣p dx

≤
∫∫

Rn×Rn

ρε(x− y)|u(y)|pdydx =
∫
Rn

|u(y)|pdy = ‖u‖pLp(Rn)

entailing uε ∈ Lp. Moreover using again Jensen’s inequality, we get∫
Rn

|(u ∗ ρε)(x) − u(x)|pdx =
∫
Rn

∣∣∣∣∫
Rn

(
u(x− εt)− u(x)

)
ρ(t)dt

∣∣∣∣p dx
≤
∫
Rn

∫
Rn

|u(x− εt) − u(x)|pρ(t)dtdx =
∫
Rn

‖τεtu− u‖pLp(Rn)ρ(t)dt.
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Exercise 3.7.15 proves pointwise convergence towards 0 of ‖τεtu− u‖pLpρ(t), which
is dominated by 2p‖u‖pLpρ(t) ∈ L1. We get limε→0 ‖u ∗ ρε − u‖Lp(Rn) = 0.

(6) We have

uε(x) =

∫
Rn

e−π|x−t|2ε−2

u(t)ε−ndt

and for u ∈ L1(Rn), we have uε ∈ L1(Rn) (even ‖uε‖L1(Rn) ≤ ‖u‖L1(Rn) using the
previous proof). We may extend uε to Cn, defining for z = x+ iy (x, y ∈ Rn),

uε(x+ iy) =

∫
Rn

e−π
∑n

j=1 (zj−tj)
2ε−2

u(t)ε−ndt. (4.5.1)

This integral converges since

|e−π
∑n

j=1(zj−tj)
2ε−2

| = e−π|x−t|2ε−2

eπε
−2y2

.

Holomorphy of (4.5.1) on Cn follows from Theorem 3.3.7, inducing analyticity on
Rn. The proof of the convergence in L1(Rn) of uε is proven as in the previous
question. Let ϕ ∈ C0

c (R
n) and

ϕε(x) − ϕ(x) =
∫
Rn

e−π|x−t|2ε−2(
ϕ(t) − ϕ(x)

)
ε−ndt

=

∫
Rn

e−π|t|2(ϕ(x− εt)− ϕ(x)
)
dt.

We have for A > 0,

|ϕε(x) − ϕ(x)| ≤
∫
|t|≤A

|ϕ(x− εt) − ϕ(x)|dt + 2‖ϕ‖L∞
∫
|t|>A

e−π|t|2dt,

and thus

sup
x∈Rn

|ϕε(x) − ϕ(x)|

≤ An|Bn| sup
|x1−x2|≤εA

|ϕ(x1) − ϕ(x2)|+ 2‖ϕ‖L∞
∫
|t|>A

e−π|t|2dt.

Since ϕ is uniformly continuous, we get for all A > 0,

lim sup
ε→0+

‖ϕε − ϕ‖L∞ ≤ 2‖ϕ‖L∞
∫
|t|>A

e−π|t|2dt.

Taking the limit when A → +∞, we find limε→0+ ‖ϕε − ϕ‖L∞ = 0. As a result
ϕ is a uniform limit of a sequence of analytic functions, restrictions to Rn of
holomorphic functions on Cn (entire functions). The radius of convergence of the
power series defining these entire functions is infinite, so that, on every compact
set, these functions are a uniform limit of polynomials.
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Exercise 4.5.9. Find an example of a monotone class M on a set X, such that
∅, X ∈ M, but such that M is not a σ-algebra.

Answer. Let X be an uncountable set and

M = {A ⊂ X,A countable}.

Then M is obviously a monotone class, but is not stable by complement, so is
not a σ-algebra. Taking M′ = M ∪ {X}, we get a monotone class: let (An)n∈N
be an increasing sequence in M′. If all An are different from X , ∪An is countable
and thus belongs to M. If one of the An = X , then ∪An = X ∈ M′. Let
(Bn)n∈N be a decreasing sequence in M′. If all Bn are different from X , ∩Bn

is countable and thus belongs to M. If BN = X , then since the sequence is
decreasing, B0 = · · · = BN = X ; either the sequence is stationary equal to X and
then ∩Bn = X , or BN+1 is countable and ∩n∈NBn is countable, in both cases
in M′.

Exercise 4.5.10. Let X be a set.

(1) Let (Mi)i∈I be a family of monotone classes on X (see Definition 4.2.2).
Prove that N = ∩i∈IMi is a monotone class on X.

(2) Let F be an algebra on X, i.e., a non-empty subset of the powerset P(X)
such that

A ∈ F =⇒ Ac ∈ F , (4.5.2)

A,B ∈ F =⇒ A ∪B ∈ F , A ∩B ∈ F . (4.5.3)

Prove that the smallest monotone class containing F is the smallest σ-algebra
containing F (Monotone Class Theorem).

Answer. (1) Obvious from the definition.

(2) Since a σ-algebra is a monotone class, setting

m(F) =
⋂

M monotone class
containing F

M, s(F) =
⋂

M σ-algebra
containing F

M,

we find m(F) ⊂ s(F). To get the required equality, it is enough to prove that
m(F) is a σ-algebra: since m(F) contains F , this will imply m(F) ⊃ s(F). We
know that m(F) is not empty since F is assumed to be non-empty. Let (An)n∈N
be a sequence of m(F); to prove that ∪n∈NAn belongs to m(F), it is enough to
prove that m(F) is stable by finite union. In fact, we have

∪n∈NAn = ∪n∈NBn, Bn = ∪0≤k≤n∈NAk,

and if we know that each Bn belongs to m(F), the monotone class property will
imply the result. Inductively, it is enough to prove that A1, A2 ∈ m(F) implies
A1 ∪ A2 ∈ m(F). Let E ∈ F (which is non-empty) and let us define

NE = {A ∈ m(F), A ∩ E,Ac ∩ E,A ∩Ec ∈ m(F)}.
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Then NE is a monotone class. Note first that NE contains F and thus is non-
empty. Let (An)n∈N be an increasing sequence of NE . We have

∪nAn ∈ m(F), (∪nAn) ∩ E = ∪n (An ∩ E)︸ ︷︷ ︸
∈m(F), increasing

∈ m(F),

(∪nAn)
c ∩ E = ∩n Ac

n ∩ E︸ ︷︷ ︸
∈m(F), decreasing

∈ m(F),

(∪nAn) ∩ Ec = ∪n An ∩ Ec︸ ︷︷ ︸
∈m(F), increasing

∈ m(F).

Let (Bn)n∈N be an decreasing sequence of NE . We have

∩nBn ∈ m(F), (∩nBn) ∩ E = ∩n (Bn ∩E)︸ ︷︷ ︸
∈m(F), decreasing

∈ m(F),

(∩nBn)
c ∩ E = ∪n (Bc

n ∩ E)︸ ︷︷ ︸
∈m(F), increasing

∈ m(F),

(∩nBn) ∩ Ec = ∩n Bn ∩ Ec︸ ︷︷ ︸
∈m(F), decreasing

∈ m(F).

Since NE is a monotone class containing F , it contains m(F) and thus is equal to
m(F). Let us now consider for B ∈ m(F),

NB = {A ∈ m(F), A ∩B,Ac ∩B,A ∩Bc ∈ m(F)}.

Reasoning as above NB is a monotone class; moreover it contains F since for
E ∈ F , B ∈ m(F) = NE , we have B ∩ E,B ∩ Ec, Bc ∩ E ∈ m(F). Since NB is
also included in m(F), it is thus equal to m(F). We have X, ∅ ∈ F since F is
non-empty and for E ∈ F , X = Ec ∪ E ∈ F , Xc = ∅. As a result if A ∈ m(F),
since X ∈ m(F), we have

Ac = Ac ∩X ∈ m(F),

so that m(F) is stable by complement. For A,B ∈ m(F), we find

(A ∪B)c = Ac ∩Bc ∈ m(F) =⇒ A ∪B ∈ m(F)

so that m(F) is stable by finite union. As a result, from the remarks at the
beginning, m(F) is a σ-algebra.

Exercise 4.5.11.

(1) Calculate

I(a, α) =

∫ +∞

0

dx

(x2 + a2)α
, for a > 0 and α > 1/2.
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(2) Calculate J(α) =

∫∫
R2

+

dxdy

(1 + x2 + y2)α
for α > 1.

Answer. (1) Using Proposition 2.3.2, setting x = a tan t, I(a, α) =∫ π/2

0

a(1 + tan2 t)dt

(a2 + a2 tan2 t)α
= a1−2α

∫ π/2

0

(cos t)2α−2dt =
a1−2αΓ(α− 1

2 )π
1/2

2Γ(α)
.

according to Lemma 10.5.7 on the Wallis integrals.

(2) Using Fubini’s theorem, we get for α > 1,

J(α) =

∫ +∞

0

I(
√
1 + y2, α)dy =

Γ(α− 1
2 )π

1/2

2Γ(α)

∫ +∞

0

(1 + y2)
1
2−αdy

=
Γ(α− 1

2 )π
1/2

2Γ(α)
I(1, α− 1

2
) =

Γ(α− 1
2 )

2Γ(α)

Γ(α− 1)π

2Γ(α− 1
2 )

=
π

4(α− 1)
.

N.B. Using the results of the next chapter on change of variables, it is easier to
calculate

J(α) =
π

2

∫ +∞

0

r(1 + r2)−αdr =
π

4(α− 1)
[(1 + r2)1−α]r=0

r=+∞ =
π

4(α− 1)
.

Exercise 4.5.12.

(1) Calculate the volume |Bn| of the unit Euclidean ball in Rn.

(2) Calculate the volume of the simplex

Σn = {x ∈ Rn, ∀j, xj ≥ 0, x1 + · · · + xn ≤ 1}.

(3) Let p ∈ [1,+∞). Calculate the volume of the unit ball of Rn for the norm

‖x‖p =
(∑

1≤j≤n |xj |p
)1/p

.

Answer. (1)We consider on Rn
x × R+

t the product measure λn ⊗ λ1. We define

I =

∫∫
{(x,t)∈Rn×R+,‖x‖≤t}

te−t2dtdx =

∫ +∞

0

t1+ne−t2dt|Bn| =
|Bn|Γ(n2 + 1)

2
,

and we have also

I =

∫
Rn

(∫ +∞

‖x‖
te−t2dt

)
dx =

1

2

∫
Rn

e−‖x‖
2

dx =
πn/2

2
,

so that

|Bn| = 2πn/2

nΓ(n/2)
. (4.5.4)
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(2) We have

|Σn| =
∫
Rn

H(x1) . . . H(xn)H(1 − x1 − · · · − xn)dx1 . . . dxn.

We study first for f ≥ 0 measurable and a = (aj)1≤j≤n ∈ (0,+∞)n,

In(f, a) =

∫
Rn

+

f(
∑

1≤j≤n

xj)
∏

1≤j≤n

x
aj−1
j

Γ(aj)
dx,

and we claim that

In(f, a) =

∫ +∞

0

t−1+
∑

1≤j≤n aj

Γ(
∑

1≤j≤n aj)
f(t)dt. (4.5.5)

That property is true for n = 1, and assuming that it is true for some n ≥ 1, we
check

In+1(f, a) =

∫
R+

∫
Rn

+

f(
n∑
1

xj + xn+1)
x
an+1−1
n+1

Γ(an+1)

∏
1≤j≤n

x
aj−1
j

Γ(aj)
dxdxn+1

=

∫
R+

x
an+1−1
n+1

Γ(an+1)
In(τ−xn+1f, (aj)1≤j≤n)dxn+1

=

∫∫
R2

+

x
an+1−1
n+1

Γ(an+1)

t−1+
∑

1≤j≤n aj

Γ(
∑

1≤j≤n aj)
f(t+ xn+1)dtdxn+1

=

∫∫
R2

H(xn+1)H(s− xn+1)f(s)
x
an+1−1
n+1

Γ(an+1)

(s− xn+1)
−1+

∑
1≤j≤n aj

Γ(
∑

1≤j≤n aj)
dsdxn+1

=

∫ +∞

0

f(s)s−1+
∑n+1

1 ajds
B(an+1,

∑n
1 aj)

Γ(
∑

1≤j≤n aj)Γ(an+1)
,

where the Beta function is given by (10.5.17). Formula (10.5.18) yields (4.5.5).
Applying this to aj = 1, f(t) = H(1 − t), we obtain

|Σn| =
1

Γ(n)

∫ 1

0

tn−1dt =
1

n!
. (4.5.6)

(3) We start over with the computations of (1), this time with

Jp =

∫∫
{(x,t)∈Rn×R+,‖x‖p≤t}

tp−1e−tpdtdx =

∫ +∞

0

tp+n−1e−tpdtVn(p)

=
Vn(p)Γ(

n
p + 1)

p
,
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and we have also

I =

∫
Rn

(∫ +∞

‖x‖p
tp−1e−tpdt

)
dx =

1

p

∫
Rn

e−‖x‖
p
pdx

=
1

p

(∫
R

e−|t|
p

dt

)n

=
2nΓ(1/p)n

pn+1

so that

Vn(p) =

(
2

p

)n
Γ(1/p)n

Γ(np + 1)
=

(
2

p

)n
pΓ(1/p)n

nΓ(n/p)
. (4.5.7)

N.B. Note that the above formula for p = 1 gives the volume

λn
(
{x ∈ Rn,

n∑
1

|xj | ≤ 1}
)
=

2n

n!
= 2nλn(Σn),

so that we have found another way to proving (4.5.6).

Exercise 4.5.13. We consider the following functions, defined on R2 by

f1(x, y) =

⎧⎨⎩
x2 − y2
x2 + y2

if (x, y) �= 0,

0 if (x, y) = 0,
, f2(x, y) =

⎧⎨⎩
x− y

(x2 + y2)3/2
if (x, y) �= 0,

0 if (x, y) = 0.

Calculate for j = 1, 2,∫ 1

0

(∫ 1

0

fj(x, y)dy

)
dx,

∫ 1

0

(∫ 1

0

fj(x, y)dx

)
dy.

Comment on the result.

Answer. The function f1 is bounded measurable since

f1(x, y) = 1R2\{(0,0)}(x, y)R(x, y),

where R is a continuous function on R2\{(0, 0)}, such that |R(x, y)| ≤ 1. As a
result, if Ω is an open subset of R which does not contain 0,

f−1
1 (Ω) = {(x, y) ∈ R2\{(0, 0)}, R(x, y) ∈ Ω} = R−1(Ω)

and R−1(Ω) is an open subset of R2\{(0, 0)} thus an open subset of R2. If Ω
contains 0

f−1
1 (Ω) = R−1(Ω) ∪ {(0, 0)}, union of an open set and a closed set, thus a Borel set.
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The function f2 is also measurable (and unbounded) for the same reasons. We
calculate for y > 0,∫ 1

0

x2 − y2
x2 + y2

dx =

∫ 1

0

(
1 − 2y2

x2 + y2

)
dx = 1 − 2y2

1

y
arctan

1

y
= 1 − 2y arctan

(
1

y

)
.

We note that y �→ y arctan( 1y ) is continuous on [0, 1] and that limy→0+ y arctan(
1
y )

= 0. We have∫ 1

0

(
1 − 2y︸︷︷︸

u′(y)

arctan(1/y)︸ ︷︷ ︸
v(y)

)
dy = 1 −

(
[y2 arctan(1/y)]10 −

∫ 1

0

y2
1

1 + y−2
(−y−2)dy

)

= 1 − π
4

−
∫ 1

0

y2

1 + y2
dy = 1 − π

4
− 1 +

∫ 1

0

1

1 + y2
dy = 0.

The value of
∫ 1

0

(∫ 1

0
f1(x, y)dy

)
dx is identical. In fact the function f1 is locally

integrable so that

I1 =

∫∫
[0,1]×[0,1]

f1(x, y)dxdy =

∫∫
[0,1]×[0,1]

f1(y, x)dxdy

= −
∫∫

[0,1]×[0,1]

f1(x, y)dxdy = −I1,

(the second equality follows from the change of variables (x, y) �→ (y, x)) which
implies I1 = 0. The assumptions of Fubini’s theorem 4.2.7 are fulfilled and the
double integral I1 is indeed the iteration of simple integrals.

It is a different story for f2, for which we cannot argue as above although
f2(x, y) = −f2(y, x). The function f2 is measurable, but not locally integrable
near the origin since the polar coordinates change of variables gives

|f2(x, y)|dxdy = | cos θ − sin θ|r−1drdθ.

We calculate for y > 0,

J(y) =

∫ 1

0

x− y
(x2 + y2)3/2

dx =
[
(x2 + y2)−1/2

]0
1
− y
∫ 1

0

(x2 + y2)−3/2dx

= y−1 − (1 + y2)−1/2 − y
[
(x2 + y2)−1/2xy−2

]x=1

x=0

= y−1 − (1 + y2)−1/2 − y−1(1 + y2)−1/2

= (1 + y2)−1/2

(
−1 +

(1 + y2)1/2 − 1

y

)
= (1 + y2)−1/2

(
−1 +

y(
(1 + y2)1/2 + 1

)) .
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We may then calculate∫ 1

0

J(y)dy = −
∫ 1

0

(1 + y2)−1/2dy +

∫ 1

0

y

1 + y2 + (1 + y2)1/2
dy

=
[
ln(y + (1 + y2)1/2)

]0
1
+

∫ arcsinh(1)

0

sinh t

1 + sinh2 t+ (1 + sinh2 t)1/2
cosh tdt

= − ln(1 +
√
2) +

∫ arcsinh(1)

0

sinh t

cosh2 t+ cosh t
cosh tdt

= − ln(1 +
√
2) +

∫ arcsinh(1)

0

sinh t

cosh t+ 1
dt

= − ln(1 +
√
2) +

[
ln(cosh t+ 1)

]arcsinh(1)
0

= − ln(1 +
√
2) +

[
ln(cosh t+ 1)

]arcsinh(1)
0

, and since arcsinh(1) = ln(1 +
√
2),

= − ln(1 +
√
2) + ln

(
cosh

(
ln(1 +

√
2)
)
+ 1
)

− ln 2

= − ln(1 +
√
2) + ln

(1 + √
2

2
+

1

2

1

1 +
√
2
+ 1
)

− ln 2

= − ln(1 +
√
2) + ln

(1
2
+

√
2

2
+

√
2

2
− 1

2
+ 1
)

− ln 2 = − ln 2 �= 0.

If for x > 0, we calculate

K(x) =

∫ 1

0

x− y
(x2 + y2)3/2

dy = −J(x)

we shall find ∫ 1

0

K(x)dx = ln 2,

so that both integrals in the Exercise for j = 2 make sense with two differing values
ln 2 and − ln 2. This does not contradict Fubini’s theorem since the assumptions
of integrability on the product space are not satisfied. This simple example is a
useful reminder that formal manipulations of integrals without prior checking of
hypotheses could lead to errors. The iteration of simple integrals does not depend
on the order of integration provided the function is integrable on the product
space. Also, we can remark that the fact that both integrals make sense is not
sufficient to ensure their equality.

Let us give another example, algebraically simpler than the one above. We
define the measurable function

F2(x, y) =

{
x−y

max(x3,y3) , if x ≥ 1 and y ≥ 1,

0, otherwise.
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For x < 1, F2(x, y) = 0. We calculate for x ≥ 1,∫
R

F2(x, y)dy =

∫ x

1

x− y
x3
dy +

∫ +∞

x

x− y
y3
dy

= x−2(x− 1)− x−3

(
x2

2
− 1

2

)
+ x
x−2

2
− x−1 = −x−2 + x−32−1.

We have thus∫
R

(∫
R

F2(x, y)dy

)
dx =

∫ +∞

1

(−x−2 + x−32−1)dx = −1 + 2−12−1 = −3/4.

The same calculation gives
∫
R

(∫
R
F2(x, y)dx

)
dy = 3/4. The above remarks on f2

are true as well for F2.

Exercise 4.5.14.

(1) For z ∈ C\R−, we define

Log z =

∮
[1,z]

dξ

ξ
.

Show that it makes sense and coincides with ln z for z ∈ R∗+. Show that

exp(Log z) = z for z ∈ C\R−.

Calculate Log(exp z), for z such that exp(z) /∈ R∗−.
(2) Show that for Re z > 0,∫

R

e−πzt2dt = exp−(Log z)/2 = z−1/2.

(3) Show that ∫
R+

lnx

x2 − 1
dx =

π2

4
,

∫
R+

(
arctanx

x

)2

dx = π ln 2.

Answer. (1) is treated in Theorem 10.5.1.

(2) From Theorem 3.3.7 z �→
∫
R
e−πzt2dt is a holomorphic function on {Re z > 0}

which coincides with exp(− ln z
2 ) for z > 0. By analytic continuation, these two

functions coincide on {Re z > 0}.
(3) We have ∫ 1

0

lnx

x2 − 1
dx =

∫ +∞

1

ln(y−1)

y−2 − 1

dy

y2
=

∫ +∞

1

ln y

y2 − 1
dy,
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so that

I =

∫ +∞

0

lnx

x2 − 1
dx = 2

∫ +∞

1

lnx

x2 − 1
dx = 2

∫ +∞

1

lnx

x2

∑
k≥0

x−2kdx.

Using Corollary 1.6.2 of Beppo Levi’s theorem, we get

I = 2
∑
k≥1

∫ +∞

1

x−2k lnxdx = 2
∑
k≥1

∫ +∞

0

e−(2k−1)ttdt

= 2
∑
k≥1

∫ +∞

0

e−ssds(2k − 1)−2 = 2Γ(2)
∑
k≥1

(2k − 1)−2 =
π2

4
,

since Γ(2) = 1 and

π2

6
=
∑
n≥1

n−2 =
∑
k≥1

(2k − 1)−2 +
∑
k≥1

(2k)−2 =
∑
k≥1

(2k − 1)−2 + 2−2π
2

6
,

which implies
∑

k≥1(2k − 1)−2 = π2
(
1
6 − 1

24

)
= π2

8 .

We calculate first

J =

∫∫∫
[0,1]×[0,1]×R+

1

(1 + x2z2)(1 + y2z2)
dxdydz.

For x, y ∈ R∗+, we have∫ A

0

1

(1 + x2z2)(1 + y2z2)
dz = (y2 − x2)−1[y arctan(yz)− x arctan(xz)]z=A

z=0

=
y arctan(Ay) − x arctan(Ax)

y2 − x2 −→
A→+∞

π

2(x+ y)
,

and thus

J =

∫∫
[0,1]2

πdxdy

2(x+ y)
=
π

2

∫ 1

0

[ln(x+ y)]y=1
y=0dx =

π

2

∫ 1

0

(
ln(x+ 1)− lnx

)
dx

=
π

2
[(x + 1) ln(x + 1)− x lnx]10 =

π

2
2 ln 2 = π ln 2.

On the other hand, we have

J =

∫∫
[0,1]×R+

1

1 + x2z2

[
arctan yz

z

]y=1

y=0

dxdz

=

∫
R+

[arctanxz
z

]x=1

x=0

[
arctanyz

z

]y=1

y=0

dz =

∫
R+

(
arctan z

z

)2

dz,

which is the sought result.



Chapter 5

Diffeomorphisms of Open Subsets
of Rn and Integration

5.1 Differentiability

Definition 5.1.1. Let U be an open subset of Rn, x0 ∈ U and let f : U → Rm. We
shall say that f is differentiable at x0 if there exist a linear map A : Rn → Rm,
r0 > 0 and a mapping ε : B(0, r0) → Rm such that for all |h| < r0,

f(x0 + h) = f(x0) +Ah+ ε(h)|h|, lim
h→0
ε(h) = 0. (5.1.1)

Here |h| stands for the Euclidean norm of h, but we may choose any other norm
on Rn. We say that A is the differential of f at x0 and we write f ′(x0) = A.

N.B. Note that the definition above is consistent since if for r0 > 0 and for all
|h| < r0,

f(x0 + h) = f(x0) +A1h+ ε1(h)|h|, lim
h→0
ε1(h) = 0,

f(x0 + h) = f(x0) +A2h+ ε2(h)|h|, lim
h→0
ε2(h) = 0,

we get (A1 −A2)h = (ε1(h) − ε2(h))|h| and thus for all T ∈ Rn such that |T | = 1
and for all s ∈ (−r0, r0), this gives

(A1 − A2)T = ε1(sT )− ε2(sT ) = lim
s→0

(
ε1(sT )− ε2(sT )

)
= 0, i.e., A1 = A2.

Remark 5.1.2. (1) We note also that f ′(x0) is a m×n matrix (m rows, n columns)
as a linear map from Rn into Rm.

(2) If f is differentiable at a point x, then the partial derivatives ( ∂f
∂xj

(x))1≤j≤n of

f exist, i.e., for all 1 ≤ j ≤ n, with ej the jth vector of the canonical basis of Rn,

lim
t→0
t∈R∗

f(x+ tej) − f(x)
t

=
∂f

∂xj
(x).

, ,
OI 10.1007/978-3- - -D
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In fact the differentiability of f at x implies f(x0+tej) = f(x0)+A(tej)+ε(tej)|t|,
so that for 0 < |t| < r0, we get(

f(x+ tej) − f(x)
)
t−1 = Aej + ε(tej)|t|t−1,

which implies ∂f
∂xj

(x) = Aej = f
′(x)ej and thus

f ′(x)h = f ′(x)

( ∑
1≤j≤n

hjej

)
=
∑

1≤j≤n

hjf
′(x)ej =

∑
1≤j≤n

∂f

∂xj
(x)hj .

The first-order Taylor–Young formula (5.1.1) can thus be written for

h = (h1, . . . , hn) ∈ Rn, |h| < r0, as

f(x+ h) = f(x) +
∑

1≤j≤n

∂f

∂xj
(x)hj + ε(h)|h|. (5.1.2)

Note that f(x) =
(
f1(x), . . . , fm(x)

)
belongs to Rm and that

∂f

∂xj
(x) =

⎛⎜⎜⎝
∂f1
∂xj

...
∂fm
∂xj

⎞⎟⎟⎠ .
Finally, f ′(x) is the m× n matrix⎛⎜⎜⎜⎜⎜⎝

∂f1
∂x1

. . .
∂f1
∂xn

. . .
∂fi
∂xj

. . .

∂fm
∂x1

. . .
∂fm
∂xn

⎞⎟⎟⎟⎟⎟⎠
1≤i≤m
1≤j≤n

. (5.1.3)

(3) Conversely, the existence of partial derivatives at a point does not ensure
differentiability (not even continuity), as shown by the following example. We set

f(x, y) =

{
xy

x2+y2 for (x, y) �= (0, 0),

0 if (x, y) = (0, 0).

That function is discontinuous at 0 (for ε �= 0, we have f(ε, ε) = 1/2) and thus
is not differentiable at 0 (Formula (5.1.1) implies continuity at x0). However, we
have for all x, y, f(x, 0) = 0, f(0, y) = 0, which implies ∂f

∂x (x, 0) = 0 = ∂f
∂y (0, y).

(4) However if the partial derivatives exist and are continuous on an open set U ,
then f is continuously differentiable on U , i.e., is differentiable on U with U �
x �→ f ′(x) continuous. Let us prove the previous statement. We consider x ∈ U ;
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there exists r > 0 such that the open ball B(x, r) ⊂ U . For h = (h1, . . . , hn) ∈ Rn,
such that |h| < r, we have

f(x+ h) − f(x) = f(x1 + h1, . . . , xn + hn) − f(x1, . . . , xn)

= f

(
x+

∑
1≤j≤n

hjej

)
− f
(
x+

∑
2≤j≤n

hjej

)

+ f

(
x+

∑
2≤j≤n

hjej

)
− f
(
x+

∑
3≤j≤n

hjej

)
. . .

+ f(x+ hnen)− f(x),

so that

f(x+ h) − f(x) −
∑

1≤j≤n

∂f

∂xj
(x)hj

=
∑

1≤j≤n

{
f

(
x+ hjej +

∑
j<k≤n

hkek

)
− f
(
x+

∑
j<k≤n

hkek

)
− ∂f
∂xj

(x)hj

}

=
∑

1≤j≤n

{∫ 1

0

∂f

∂xj

(
x+

∑
j<k≤n

hkek + θhjej

)
dθhj − ∂f

∂xj
(x)hj

}

=
∑

1≤j≤n

hj

∫ 1

0

{
∂f

∂xj

(
x+

∑
j<k≤n

hkek + θhjej

)
− ∂f
∂xj

(x)

}
dθ.

As a result, we have∣∣∣f(x+ h) − f(x) −
∑

1≤j≤n

∂f

∂xj
(x)hj

∣∣∣

≤ |h|

=η(h)︷ ︸︸ ︷∑
1≤j≤n

sup
θ∈[0,1]

∣∣∣∣ ∂f∂xj
(
x+ θ

∑
j<k≤n

hkek

)
− ∂f
∂xj

(x)

∣∣∣∣,
with limh→0 η(h) = 0, thanks to the continuity of the partial derivatives. This
proves the differentiability of f at x and the continuity of f ′(x) follows from
(5.1.3).

Proposition 5.1.3. Let U be a convex open subset of Rn and let

f : U → Rm, f(x) = (f1(x), . . . , fm(x))

be a differentiable mapping on U . Then for x, y ∈ U ,

‖f(y)− f(x)‖Rm ≤ ‖y − x‖Rn sup
θ∈(0,1)

‖f ′(x+ θ(y − x)‖.
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For a (m × n) matrix A, we set ‖A‖ = sup‖T‖Rn=1 ‖AT ‖Rm, where ‖T ‖Rd is the

Euclidean norm of T ∈ Rd.

We prove a more general statement with the following lemma whose second
property implies the proposition.

Lemma 5.1.4.

(1) Let E be a normed real vector space, let a < b be real numbers and let φ :
[a, b] → E be a continuous mapping, differentiable on (a, b) so that there
exists M ∈ R+ such that for all t ∈ (a, b), ‖φ′(t)‖ ≤M . Then

‖φ(b) − φ(a)‖ ≤M(b− a).

(2) Let E,F be normed vector spaces, let U be an open set of E, let x0, x1 ∈ U
such that (x0, x1) = {(1 − θ)x0 + θx1}θ∈(0,1) ⊂ U and let f : U → F be a
continuous mapping which is differentiable on (x0, x1). Then

‖f(x1) − f(x0)‖ ≤ ‖x1 − x0‖ sup
x∈(x0,x1)

‖f ′(x)‖.

(3) Let E be a normed vector space, let U be an open set of E, let x0, x1 ∈ U
such that (x0, x1) ⊂ U and let f : U → R be a continuous mapping which is
differentiable on (x0, x1). Then there exists x ∈ (x0, x1) such that

f(x1)− f(x0) = f ′(x)(x1 − x0).

Proof of the lemma. (1) We may assume by rescaling that a = 0, b = 1. Let ε > 0
be given. We define

Tε = {t ∈ [0, 1], ‖φ(t)− φ(0)‖ −Mt− εt ≤ ε}.

By continuity of φ, Tε is a closed subset of [0, 1], contains 0 (the lhs of the inequality
vanishes at 0) and thus by continuity, Tε contains a neighborhood of 0. Defining
c = supTε we have c > 0 and since Tε is closed, c ∈ Tε. Let us assume that c < 1.
We can find t > c such that∥∥∥∥φ(t) − φ(c)

t− c

∥∥∥∥ ≤ ‖φ′(c)‖ + ε

implying

‖φ(t) − φ(0)‖ ≤ ‖φ(t) − φ(c)‖ + ‖φ(c) − φ(0)‖
≤ (t− c)‖φ′(c)‖ + ε(t− c) +Mc+ ε(c+ 1)

≤ (t− c)M + ε(t− c) +Mc+ ε(c+ 1)

=Mt+ εt+ ε,
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so that t ∈ Tε, which is impossible since t > c = supTε. As a result c = 1 and thus

∀ε > 0, ‖φ(1) − φ(0)‖ ≤M + 2ε,

implying the result (1). Property (2) follows immediately by applying (1) to φ(θ) =
f(xθ). Let us prove the equality (3). We consider φ : [0, 1] → R defined by φ(θ) =
f(xθ). The function φ is continuous on [0, 1] and also differentiable on (0, 1) with
φ′(θ) = f ′

(
xθ)(x1 − x0). Applying the Mean Value Theorem (see, e.g., Lemma

5.10.2) to φ gives the result (3). �
N.B. We have proven in (1), (2) an inequality, whereas the 1D mean value theorem
provides an equality. There is no equivalent of the 1D result when the function
f is valued into a space with dimension greater than 2: consider for instance the
analytic mapping [0, 2π] � t �→ eit = f(t) ∈ C. We have f(2π)−f(0) = 0 and there
does not exist any c ∈ (0, 2π) such that f(2π) − f(0) = 2πf ′(c) since f ′(c) = ieic

has modulus 1.

5.2 Linear transformations

Proposition 5.2.1. Let T be a linear isomorphism of Rn and let E be a Borel set of
Rn. Then T (E) is also a Borel set. For E ∈ Bn, we set μ(E) = λn

(
T (E)

)
. Then

μ = λn
(
[0, 1]n

)
λn, i.e.,

λn
(
T (E)

)
= λn

(
T ([0, 1]n)

)
λn(E). (5.2.1)

Proof. We note first that T (E) = (T−1)−1(E) and since T−1 is continuous (since
linear), it is also Borel-measurable, so that (T−1)−1(E) ∈ Bn for E ∈ Bn. Moreover
μ is indeed a Borel measure (i.e., a positive measure defined on Bn finite on
compact sets): μ(∅) = λn(T (∅)) = λn(∅) = 0, and if (Ek)k∈N is a sequence of
pairwise disjoint Borel sets, the injectivity of T implies for k �= l, ∅ = T (Ek∩El) =
T (Ek) ∩ T (El), and we have

μ
(
∪k∈NEk

)
= λn

(
T (∪k∈NEk)

)
= λn

(
∪k∈NT (Ek)

)
=
∑
k∈N
λn
(
T (Ek)

)
=
∑
k∈N
μ(Ek).

Moreover for K compact, we have μ(K) = λn
(compact︷ ︸︸ ︷
T (K)

)
< +∞. Finally, μ is invari-

ant by translation since for x ∈ Rn and E ∈ Bn,

μ(E + x) = λn
(
T (E + x)

)
= λn

(
T (E) + Tx

)
= λn

(
T (E)

)
= μ(E).

We have also

μ
(
[0, 1]n

)
= μ
(
[−1/2, 1/2]n

)
= λn

(
T
(
[−1/2, 1/2]n

))
≥ λn

( open set containing 0︷ ︸︸ ︷
(T−1)−1

(
]− 1/2, 1/2[n

))
>0,
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where the last inequality follows from (1) in Theorem 2.4.2. As a result, for E ∈ Bn,
we have

μ(E)

μ
(
[0, 1]n

) = λn(E), i.e., μ(E) = λn
(
T ([0, 1]n)

)
λn(E). �

N.B. According to Lemma 1.4.3, μ is defined as the (direct) image of the Lebesgue
measure by T−1: for E ∈ Bn,

(T−1)∗(λn)(E) = λn((T
−1)−1(E)) = λn(T (E)) = μ(E).

Introducing the notation T ∗(λn) = (T−1)∗(λn) for the inverse image, we have the
following general framework.

Let (Y,N , ν) be a measure space where ν is a positive measure. Let f : X →
Y be a bijective mapping. We define the inverse image f∗(ν) (or pullback by f)
of the measure ν as

μ = f∗(ν) = (f−1)∗(ν), i.e., μ(A) = ν(f(A)),

for A ∈ M = {A ⊂ X, f(A) ∈ N}. M is indeed a σ-algebra on X from Lemma
1.4.3: it is the largest σ-algebra on X such that f−1 is measurable. The mapping
f is also measurable, since for B ∈ N , f(f−1(B)) = B ∈ N .

When X,Y are topological spaces, N is the Borel σ-algebra on Y and f
is an homeomorphism, M is the Borel σ-algebra on X : in fact M contains the
open subsets of X since f is an open mapping, as a homeomorphism, proving that
M ⊃ BX . On the other hand, if A ∈ M,

A = f−1
(
f(A)︸ ︷︷ ︸
∈BY

)
∈ BX ,

since f is measurable as a continuous mapping.

Proposition 5.2.2. Let T be a linear isomorphism of Rn. Then λn
(
T ([0, 1]n)

)
=

| detT |.

For instance, for

T =

(
2 1
1/2 1

)
,

the determinant is equal to 3/2 which is the area of the parallelogram P in Fig-
ure 5.1.

Analogously, for

T =

⎛⎝ 1 0 0
3/4 3/4 1/4
0 1/4 1/2

⎞⎠ ,
the determinant is 5/16 and is equal to the volume of the parallelepiped Q in
Figure 5.2.
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Figure 5.1: Parallelogram

Figure 5.2: Parallelepiped

Proof of the proposition. Let us set ΔT = λn
(
T ([0, 1]n)

)
. In the previous proof,

we have seen that ΔT > 0 and λn(T (E)) = ΔTλn(E), for any Borel set E. For
T1, T2 linear isomorphisms, setting Q1 = [0, 1]n, we find

ΔT2T1 = λn
(
(T2T1)(Q1)

)
= λn

(
T2
(
T1(Q1)

))
= ΔT2λn

(
T1(Q1)

)
= ΔT2ΔT1λn(Q1) = ΔT2ΔT1 .

(5.2.2)

We have also ΔId = 1. We want to prove

ΔT = λn
(
T ([0, 1]n)

)
= | detT |, (5.2.3)

for all invertible matrices T (matrix of T in the canonical basis).
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case I. That formula holds for a diagonal matrix T : in fact if

T =

⎛⎜⎝a1 0 0

0
. . . 0

0 0 an

⎞⎟⎠
assuming all the aj > 0, T (Q1) =

∏
1≤j≤n[0, aj] and Theorem 2.4.2 (1) implies

λn
(
T (Q1)

)
=
∏

1≤j≤n

aj = | detT |.

If some aj are negative, we have to replace in T (Q1) the interval [0, aj ] by [aj , 0]
so that the result is unchanged.

case II. The formula holds for T symmetric, i.e., whenever T = tT : in that case
T is diagonal in an orthonormal basis and there exists an invertible matrix P and
a diagonal matrix D such that tPP = I,D = P−1TP. We get from (5.2.2) and
case I,

ΔT = ΔPDP−1 = ΔPΔDΔP−1 = ΔD = | detD| = | detT |.

case III. The formula holds when T is an isometry, i.e., if tTT = I (this implies
| detT | = 1). In fact denoting by B1 the closed Euclidean ball of Rn, we have
T (B1) = B1 since for x ∈ B1, ‖Tx‖ = ‖x‖ ≤ 1. Conversely, we have x = TT−1x
with ‖T−1x‖ = ‖TT−1x‖ = ‖x‖ ≤ 1. From Proposition 5.2.1, we find

λn(B1) = λn
(
T (B1)

)
= ΔTλn(B1) =⇒ ΔT = 1,

since λn(B1) > 0 as B1 contains a non-empty open set.

case IV. Let us tackle the general case. Let T be an invertible matrix. Then
the matrix tTT is positive definite, i.e., symmetric with positive eigenvalues. As
a consequence, there exists a matrix P such that tPP = I, a positive definite
diagonal matrix D such that

tTT = tPDP (implying (det T )2 = detD). We define |T | = tPD1/2P.

The matrix |T | is invertible as a product of invertible matrices and T |T |−1
is an

isometry since

t
(
T |T |−1)

T |T |−1
= t
(
|T |−1)t

TT |T |−1

= t
(
P−1D−1/2(tP )−1

)
tPDPP−1D−1/2(tP )−1

= P−1D−1/2(tP−1)tPDD−1/2(tP )−1 = P−1(tP )−1 = I.

As a consequence, since T = T |T |−1|T |, we find from cases I, II, III,

ΔT = ΔT |T |−1Δ|T | = Δ|T | = ΔD1/2 = | detD1/2| = | detT |,
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where the last equality follows from (det T )2 = detD = (detD1/2)2. The proof
of Proposition 5.2.2 is complete. Note that along with (5.2.1), we obtain that for
E ∈ Bn and T a linear isomorphism of Rn, λn(T (E)) = | detT |λn(E), i.e.,∫

Rn

1T (E)(y)dy = | det T |
∫
Rn

1E(x)dx =

∫
Rn

1T (E)(Tx)| detT |dx. (5.2.4)

�
Proposition 5.2.3. Let T be a linear isomorphism of Rn and let f ∈ L1(Rn). Then
f ◦ T ∈ L1(Rn) and ∫

Rn

f(y)dy =

∫
Rn

f(Tx)| detT |dx. (5.2.5)

Remark 5.2.4. We need to verify first that f ◦ T actually makes sense, which is
easy but needs verification: the function f is defined modulo equality a.e. and it
should also be the case of f ◦T . Let us then consider f ∈ L1(Rn), i.e., a measurable
function f : Rn → C such that

∫
Rn |f(x)|dx < +∞. Let f1 : Rn → C be a.e. equal

to f , i.e., {x ∈ Rn, f(x) �= f1(x)} = N is a Lebesgue set with measure 0. Since
T is a homeomorphism, it is Borel-measurable and T−1(E) ∈ Bn when E ∈ Bn.
Now since N belongs to the Lebesgue σ-algebra, thanks to Theorem 2.2.14, there
exist Borel sets A,B with A ⊂ N ⊂ B, λn(B\A) = 0. We find that

T−1(A)︸ ︷︷ ︸
∈Bn

⊂ T−1(N) ⊂ T−1(B)︸ ︷︷ ︸
∈Bn

,

λn
(
T−1(B)\T−1(A)

)
= λn

(
T−1(B\A)

)
=︸︷︷︸

(5.2.4)

λn
(
B\A

)
| detT |−1 = 0,

proving that T−1(N) belongs to the Lebesgue σ-algebra (T is proven Lebesgue-
measurable). Moreover, since λn(A) = 0, (A is a subset of N) we find λn(B) =
λn(B\A) + λn(A) = 0, as well as

λn(T
−1(A)) = λn(T

−1(B)) = 0 =⇒ λn(T−1(N)) = 0.

We have thus

{y ∈ Rn, f(Ty) �= f1(Ty)} = {y ∈ Rn, T y ∈ N} = T−1(N),

and T−1(N) is a Lebesgue set with measure 0, so that f ◦ T = f1 ◦ T a.e.

Remark 5.2.5. We go on with a trivial remark: this is indeed the absolute value
of the determinant which should appear in Formula (5.2.5) and this does not
contradict the habit of the reader with changes of variable in one dimension: with
f ∈ Cc(R), we have indeed ∫

R

f(y)dy =

∫
R

f(−2x)2dx
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since with the standard method∫
R

f(y)dy =

∫ +∞

−∞
f(y)dy =

∫ −∞

+∞
f(−2x)(−2)dx

=

∫ +∞

−∞
f(−2x)2dx =

∫
R

f(−2x)2dx.

Proof. Let us assume first that f is non-negative; using the approximation The-
orem 1.3.3 we find a sequence (sk)k∈N of simple functions converging pointwise
increasingly towards f . With sk =

∑
1≤j≤Nk

αj,k1Aj,k
(we may assume αj,k > 0),

from Lemma 1.6.3 and (5.2.4), we get∫
Rn

sk(y)dy =
∑

1≤j≤Nk

αj,k

∫
Rn

1Aj,k
(y)dy

=
∑

1≤j≤Nk

αj,k

∫
Rn

1Aj,k
(Tx)| detT |dx

=

∫
Rn

( ∑
1≤j≤Nk

αj,k1Aj,k
(Tx)

)
| detT |dx

=

∫
Rn

sk(Tx)| detT |dx.

Beppo Levi’s theorem 1.6.1 implies∫
Rn

f(y)dy = lim
k→+∞

∫
Rn

sk(y)dy = lim
k→+∞

∫
Rn

sk(Tx)| detT |dx

=

∫
Rn

f(Tx)| detT |dx.

For f ∈ L1(Rn), the decomposition f = (Re f)+ − (Re f)− + i(Im f)+ − i(Im f)−
and the previous case give (5.2.5). �

5.3 Change-of-variables formula

Definition 5.3.1 (C1 diffeomorphism). Let U, V be open subsets of Rn and let
κ : U → V . We shall say that κ is a C1 diffeomorphism from U onto V if it is a
bijection of class C1 as well as κ−1. For each x ∈ U , the linear bijective mapping
κ′(x) is called the Jacobian matrix of κ and the determinant det

(
κ′(x)

)
is called

the Jacobian determinant. Let us recall that for

U � x = (x1, . . . , xn) �→ κ(x) =
(
κ1(x), . . . , κn(x)

)
∈ V,
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we have

κ′(x) =

⎛⎜⎝
∂κ1

∂x1
. . . ∂κ1

∂xn

. . . ∂κi

∂xj
. . .

∂κn

∂x1
. . . ∂κn

∂xn

⎞⎟⎠
1≤i,j≤n

(i row index, j column index). (5.3.1)

Moreover with ν = κ−1, since for all x ∈ U , (ν ◦ κ)(x) = x, we have

ν′
(
κ(x)

)
κ′(x) = I, i.e., ν′

(
κ(x)

)
= κ′(x)−1.

When a diffeomorphism κ is of class Ck for some k ≥ 1 (resp. C∞, resp. analytic) as
well as κ−1, we shall say that κ is a Ck-diffeomorphism (resp. C∞-diffeomorphism,
resp. analytic-diffeomorphism).

Remark 5.3.2. Let U be an open subset of Rn, x0 ∈ U and let κ : U → Rn be a
C1 mapping such that detκ′(x0) �= 0. Then the Inverse Function Theorem ensures
that there exists an open neighborhood U0 of x0 and an open set V0 such that
κ : U0 → V0 is a C1 diffeomorphism from U0 onto V0. This fundamental result
of differential calculus reduces the problem of local invertibility of a C1 mapping
to a linear algebra problem, that is the invertibility of a n × n matrix (Jacobian
matrix). When κ is of class Ck for some k ≥ 1 and such that det κ′(x0) �= 0, the
inverse function theorem provides a local Ck-diffeomorphism.

Proposition 5.3.3. Let κ : U → V be a C1 diffeomorphism of open subsets U, V
of Rn. Then if A is a Borel subset of U , κ(A) is a Borel subset of V . If E is a
Lebesgue-measurable subset of U , then κ(E) is a Lebesgue-measurable subset of V .

Proof. The first assertion is obvious since κ(A) = (κ−1)−1(A) and ν = κ−1 is
continuous, thus Borel-measurable (Proposition 1.2.5, Lemma 1.2.9). To check the
next assertion it suffices to prove

A is a Borel set with null measure =⇒ ν−1(A) has null measure. (5.3.2)

If (5.3.2) holds, then for E ⊂ A, with A Borel set with null measure, we ob-
tain ν−1(E) ⊂ ν−1(A) = B, where B is a Borel set with null measure. Since the
Lebesgue σ-algebra is generated by the Borel σ-algebra and the subsets of Borel
sets with null measure, Lemma 1.1.4 will provide the result. Property (5.3.2) fol-
lows from the next proposition. �
Proposition 5.3.4. Let U, V be open subsets of Rn and let κ : U → V be a C1

diffeomorphism. Let A be a Borel subset of U . Then κ(A) is a Borel subset of V
and

λn(κ(A)) =

∫
A

| detκ′(x)|dx.

More generally, for f ≥ 0 measurable on V ,∫
V

f(y)dy =

∫
U

f (κ(x)) | detκ′(x)| dx.
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Proof. Let P be a compact rational rectangle (product of compact intervals of R
with rational endpoints) included in U . Let ε > 0 be given. By uniform continuity
on the compact P , there exists δ (depending on ε and P ) such that1

sup
|x1−x2|≤δ
x1,x2∈P0

‖κ′(x1) − κ′(x2)‖ + | detκ′(x1) − detκ′(x2)| ≤ ε.

We define also

sup
x∈P

‖κ′(x)−1‖ =M (< +∞ since P is compact).

We may write P = ∪1≤j≤NQj where the Qj are compact rational rectangles with
sides ρ ≤ δ such that Qj ∩ Qk is included in a hyperplane whenever j �= k: since
P =

∏
1≤l≤n Il where each Il is a compact interval of R with rational endpoints (a

compact rational interval), we may write Il as a finite union of compact rational
intervals Il,r with length2 ρ, such that for r �= s, Il,r ∩ Il,s is either empty or
reduced to a single point. As a result, we get

P =
⋃

1≤r1≤N1
...

1≤rn≤Nn

⎛⎝ ∏
1≤l≤n

Il,rl

⎞⎠
︸ ︷︷ ︸
compact rational

rectangle Q

.

Let aj be the center of mass of Qj so that Qj = {x, |x− aj | ≤ ρ/2}. Let us set

γ(x) = κ′(aj)
−1κ(x).

Using the mean value inequality (Proposition 5.1.3) and the convexity of Qj, we
get for x ∈ Qj,

|γ(x) − γ(aj)| ≤ sup
x∈Qj

‖κ′(aj)−1κ′(x)‖ |x− aj |.

Moreover, we have κ′(aj)
−1κ′(x) − Id = κ′(aj)

−1(κ′(x) − κ′(aj)) so that

‖κ′(aj)−1κ′(x)‖ ≤ 1 +Mε.

This implies supx∈Qj
|γ(x) − γ(aj)| ≤ (1 +Mε)ρ/2, and thus

λn(γ(Qj)) ≤ (1 +Mε)nρn = (1 +Mε)nλn(Qj).

1We shall note here |x| for the sup norm of x ∈ Rn and with a d × d matrix A, we define
‖A‖ = sup|x|=1 |Ax|.
2Possible since each Il has a rational length ml: we must find integers N1, . . . , Nn such that
m1/N1 = · · · = mn/Nn ≤ δ. To do this it is enough to find an integer N1 such that for all
k ∈ {1, . . . , n}, N1mk/m1 = Nk ∈ N. Since mk/m1 are rational numbers, it suffices to take N1

as a multiple of the product of denominators. This gives the above equality and the inequality
holds for a large enough multiple.
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We have already proven that for a linear isomorphism T and a Borel set E,

λn(T (E)) = | detT | λn(E).

This implies λn(γ(Qj)) = | detκ′(aj)|−1λn(κ(Qj)) and thus

λn(κ(Qj)) ≤ | detκ′(aj)|(1 +Mε)nλn(Qj).

Since for x ∈ Qj , | detκ′(aj)| ≤ ε+ | detκ′(x)|, we get

λn(κ(Qj)) ≤ (ε + | detκ′(x)|)(1 +Mε)nλn(Qj).

Integrating that inequality on Qj , we find

λn(κ(Qj))λn(Qj) ≤
(
ελn(Qj) +

∫
Qj

| detκ′(x)|dx
)
(1 +Mε)nλn(Qj),

so that

λn(κ(Qj)) ≤
(
ελn(Qj) +

∫
Qj

| detκ′(x)|dx
)
(1 +Mε)n.

From P = ∪1≤j≤NQj , we find κ(P ) = ∪1≤j≤Nκ(Qj); moreover

λn(P ) =
∑

1≤j≤N

λn(Qj)
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since m(Qj ∩Ql) = ∅ if j �= l. Consequently, for all ε > 0,

λn(κ(P )) ≤
∑

1≤j≤N

λn(κ(Qj)) ≤ (1 +Mε)n
(
ελn(P ) +

∫
P

| detκ′(x)|dx
)
.

Taking the infimum for ε > 0, we obtain

λn(κ(P )) ≤
∫
P

| detκ′(x)|dx, (5.3.3)

for every compact rational rectangle.

Let us now consider a Borel subset A of U and Ω an open set of U containing
A. From Lemma 1.2.6 we know that we may write Ω as a countable union of
compact rational rectangles. Thanks to Lemma 2.4.4, it is also possible to make
these compact rational rectangles with an intersection of null measure whenever
they are distinct. Since A ⊂ Ω = ∪k∈NPk ⊂ U , we have

λn(κ(A)) ≤
∑
N

λn(κ(Pk)) ≤︸︷︷︸
(5.3.3)

∑
N

∫
Pk

| detκ′(x)|dx =
∫
Ω

| detκ′(x)|dx.

The measure | detκ′(x)|dx is outer regular (the Riesz representation theorem 2.2.14
implies that the positive Radon measure ϕ ∈ Cc(U) �→

∫
U ϕ(x)| det κ′(x)|dx pro-

vides a regular measure which is the measure with density | detκ′(x)| with respect
to the Lebesgue measure), so that

λn(κ(A)) ≤
∫
A

| detκ′(x)|dx. (5.3.4)

In particular this implies that if A is a Borel set with null measure, then κ(A)
(which is a Borel set) has also null measure. Also, for B a Borel subset of V , with
A = κ−1(B) we find∫

V

1B(y)dy = λd(B) ≤
∫
κ−1(B)

| detκ′(x)|dx =
∫
U

1B(κ(x)) | detκ′(x)|dx.

Using Beppo Levi’s theorem 1.6.1 and Theorem 1.3.3 (approximation by simple
functions), we obtain for f ≥ 0, Borel measurable defined on V ,∫

V

f(y)dy ≤
∫
U

f(κ(x)) | detκ′(x)|dx.

Switching U with V , we get∫
U

f(κ(x)) | detκ′(x)|dx ≤
∫
V

f(κ(ν(y))) | detκ′(ν(y))|| det ν′(y)|dy =
∫
V

f(y)dy,
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so that for f ≥ 0, Borel measurable defined on V , we obtain∫
V

f(y)dy =

∫
U

f(κ(x)) | detκ′(x)|dx. (5.3.5)

A non-negative Lebesgue-measurable function f is the pointwise limit of a sequence
of simple functions coinciding a.e. with simple Borel functions so that f = f0 a.e.
with f0 a Borel non-negative function. This implies that (5.3.5) holds for f ≥ 0
Lebesgue measurable. The proof of Proposition 5.3.4 is complete. �

Applying this proposition to |f |, (Re f)±, (Im f)± for f ∈ L1(V ), we obtain
the following result.

Theorem 5.3.5. Let U, V be open subsets of Rn, let κ : U → V be a C1 diffeomor-
phism and let f ∈ L1(V ). Then | detκ′|f ◦ κ belongs to L1(U) and∫

V

f(y)dy =

∫
U

f (κ(x)) | detκ′(x)| dx. (5.3.6)

5.4 Examples, polar coordinates in Rn

Polar coordinates in R2

We check first

κ :] 0,+∞[×]− π, π[ −→ C\R− = R2\(R− × {0})
(r, θ) �→ reiθ = (r cos θ, r sin θ)

ν = κ−1 : C\R− −→ ]0,+∞[×]− π, π[
z �→ |z|, Im(Log z)

where the complex logarithm is defined on C\R− by (10.5.1). We have in particular
proven in Section 10.5 that for z ∈ C\R−, exp(ln z) = z and for | Im z| < π,
Log ez = z. The Jacobian matrix J of κ and its Jacobian determinant J are

J =

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
, J =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r.
For f ∈ L1(R2), we have since R− × {0} has null Lebesgue measure in R2, using
the diffeomorphism κ and Theorem 5.3.5,∫∫

R2

f(x, y)dxdy =

∫∫
R+×(−π,π)

f(r cos θ, r sin θ)rdrdθ. (5.4.1)
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Spherical coordinates in R3

We define

κ :]0,+∞[×]0, π[×]− π, π[ −→ R3\{(x, y, z), x ≤ 0, y = 0}
(r, φ, θ) �→ (r cos θ sinφ, r sin θ sinφ, r cosφ)

and we have

κ−1 = ν : R3\{(x, y, z), x ≤ 0, y = 0} −→]0,+∞[×]0, π[×]− π, π[
(x, y, z) �→

(
(x2 + y2 + z2)1/2, ImLog(z + i

√
x2 + y2), ImLog(x+ iy)

)
which makes sense since x+ iy /∈ R− and z+ i

√
x2 + y2 /∈ R− (otherwise x = y =

0). The Jacobian matrix J of κ and its Jacobian determinant J are

J =

⎛⎜⎝
∂x
∂r

∂x
∂φ

∂x
∂θ

∂y
∂r

∂y
∂φ

∂y
∂θ

∂z
∂r

∂z
∂φ

∂z
∂θ

⎞⎟⎠ =

⎛⎝cos θ sinφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r sin θ cosφ r cos θ sinφ
cosφ −r sinφ 0

⎞⎠ ,

J =

∣∣∣∣∣∣
cos θ sinφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r sin θ cosφ r cos θ sinφ
cosφ −r sinφ 0

∣∣∣∣∣∣
= r2 sinφ

∣∣∣∣∣∣
cos θ sinφ cos θ cosφ − sin θ
sin θ sinφ sin θ cosφ cos θ
cosφ − sinφ 0

∣∣∣∣∣∣
= (r2 sinφ)

(
cos2 φ+ sin2 φ

)
= r2 sinφ.

As a result we have for f ∈ L1(R3),∫∫∫
R3

f(x, y, z)dxdydz

=

∫∫∫
r>0,|θ|<π,
0<φ<π

f(r sinφ cos θ, r sinφ sin θ, r cosφ)r2 sinφdrdφdθ.
(5.4.2)

It is interesting to note that it is not necessary to go through the previous compu-
tation to obtain (5.4.2). We may skip as well the fact that κ is a diffeomorphism
by simply iterating two-dimensional changes in polar coordinates as follows. We
have ∫∫∫

R3

f(x, y, z)dxdydz =

∫∫∫
z∈R,ρ>0
|θ|<π

f(ρ cos θ, ρ sin θ, z)ρdzdρdθ

=

∫∫∫
r>0,|θ|<π,
0<φ<π

f(r sinφ cos θ, r sinφ sin θ, r cosφ)r sinφrdrdφdθ

=

∫∫∫
r>0,|θ|<π,
0<φ<π

f(r sinφ cos θ, r sinφ sin θ, r cosφ)r2 sinφdrdφdθ,
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.

Figure 5.3: Spherical coordinates: r > 0, |θ| < π, 0 < φ < π

where the first equality is the polar coordinates change in the plane (x, y) and the
second equality comes from the polar coordinates change in the half-plane (z, ρ)
(ρ ≥ 0).

Polar coordinates in Rn

It is possible to build upon the two-dimensional formula to get all dimensions
inductively as follows. We write, using the n-dimensional formula,∫∫

Rn
x×Rz

f(x, z)dxdz =

∫
R

+
ρ ×S

n−1
ω ×Rz

f(ρω, z)ρn−1dρdωdz.

Then we use 2D polar coordinates in the half-plane z, ρ with

z = r cosφ, ρ = r sinφ, 0 < φ < π,

to get∫∫
Rn×R

f(x, z)dxdz =

∫
S
n−1
ω ×(0,π)φ×R

+
r

f(rω sinφ, r cosφ)rn(sinφ)n−1dωdφdr,

so that
dSn(σ) = dSn(ω sinφ⊕ cosφ) = (sinφ)n−1dSn−1(ω)dφ. (5.4.3)
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We have proven, say for f ∈ Cc(Rn),∫
Rn

f(x)dx =

∫ +∞

0

∫
Sn−1

f(rω)dSn−1(ω)rn−1dr, (5.4.4)

where dSn−1 is defined inductively by (5.4.3). We have seen

2D :

{
x1 = r cos θ

x2 = r sin θ

dS1(θ) = dθ
|θ| < π

3D :

⎧⎪⎨⎪⎩
x1 = r cos θ sinφ

x2 = r sin θ sinφ

x3 = r cosφ

dS2(θ, φ) = sinφ dφdθ
|θ| < π, 0 < φ < π

4D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 = r cos θ sinφ1 sinφ2

x2 = r sin θ sinφ1 sinφ2

x3 = r cosφ1 sinφ2

x4 = r cosφ2

dS3(θ, φ1, φ2) = sin2 φ2 sinφ1 dφ2dφ1dθ
|θ| < π, 0 < φ1, φ2 < π.

In n dimensions, the spherical coordinates are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = r cos θ sinφ1 sinφ2 . . . sinφn−3 sinφn−2

x2 = r sin θ sinφ1 sinφ2 . . . sinφn−3 sinφn−2

x3 = r cosφ1 sinφ2 . . . sinφn−3 sinφn−2

. . .

xn−1 = r cosφn−3 sinφn−2

xn = r cosφn−2

with

dSn−1(θ, φ1, . . . , φn−2) = (sinφn−2)
n−2(sinφn−3)

n−3 . . . sinφ1dφn−2 . . . dφ1dθ
(5.4.5)

|θ| < π, 0 < φj < π, 1 ≤ j ≤ n− 2. (5.4.6)

An alternative way is to use the homogeneity and to define, say for a continuous
function on the sphere,∫

Sn−1

f(σ)dσ =

∫
Rn

f(
x

|x| )χ(|x|)dx where

∫
R+

χ(r)rn−1dr = 1. (5.4.7)

It is not difficult to prove that this formula does not depend on χ satisfying (5.4.7).
A good choice can be χ(r) = e−r/Γ(n). Another way would be more geometrical
and simply use the fact that the sphere is a smooth hypersurface of Rn, without



5.4. Examples, polar coordinates in Rn 237

resorting as above to some homogeneity property. We may define the Euclidean
surface measure on Sn−1, say for f continuous on Rn,∫

Sn−1

f(σ)dσ = lim
ε→0

∫
Rn

f(x)ρ

(
|x| − 1

ε

)
ε−1dx, ρ ∈ C∞c (R),

∫
ρ = 1.

A useful computation is the n − 1 area of Sn−1, using polar coordinates and
1 =

∫
e−π|x|2dx; we get

1 = |Sn−1|
∫ +∞

0

e−πr2rn−1dr = |Sn−1|
∫ +∞

0

e−x(x/π)(n−1)/2π−1/2 1

2
x−1/2dx

=
1

2
|Sn−1|π−n/2Γ(n/2),

yielding

|Sn−1| = 2πn/2

Γ(n/2)
, (5.4.8)

e.g.,

|S1| = 2π, |S2| = 2π3/2

1
2Γ(1/2)

= 4π, |S3| = 2π2

Γ(2)
= 2π2. (5.4.9)

We can check that this is consistent with Formula (4.5.4) since

|Bn|n =

∫ 1

0

rn−1dr|Sn−1|n−1 =
2πn/2

nΓ(n/2)
.

We obtain in particular that the volume of a Euclidean ball with radius R, Bn(R)
in Rn is

λn
(
Bn(R)

)
= V (R) =

2πn/2

nΓ(n/2)
Rn.

The reader will have noticed that, with V (r) as the n-volume of the Euclidean ball
with radius r and S(r) the (n− 1)-volume of the Euclidean sphere with radius r,
we have

V ′(r) = S(r),

which is suggested by the following picture, indicating that the shaded volume is
V (r + dr) − V (r) ∼ S(r)dr, i.e., V ′(r) = S(r).

Note that to integrate a function f on the sphere of center x0 and radius R
in Rn, we get ∫

|x−x0|=R

f(ω)dω =

∫
Sn−1

f(x0 +Rσ)dσR
n−1.
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We have also for A ∈ O(n) (the orthogonal group in n dimensions, i.e., n × n
matrices with tAA = Id),∫

Sn−1

f(Aω)dω =

∫
Sn−1

f(ω)dω, (5.4.10)

since
∫
Sn−1 f(Aω)dω =

∫
Rn f(Ax/|x|)e−|x|dx/Γ(n) =

∫
Rn f(y/|y|)e−|y|dy/Γ(n).

5.5 Integration on a C1 hypersurface

of the Euclidean Rn

Definition 5.5.1. Let Σ be a subset of the Euclidean Rn (n ≥ 2). We shall say that
Σ is a C1 hypersurface of Rn if there exists a function ρ ∈ C1(Rn;R) such that

Σ = {x ∈ Rn, ρ(x) = 0}, dρ(x) �= 0 for x ∈ Σ.

A function ρ satisfying these properties will be called a defining function for Σ.

N.B. Using the implicit function theorem, it implies that Σ is locally the graph of a
C1 function of (n−1) variables. For instance we may assume that (∂ρ/∂xn)(x0) �= 0
at some point x0 ∈ Σ and thus we may find a neighborhood U0 of x0 such that
Σ ∩ U0 appears as the graph {Rn−1 × R � (x′, xn) ∈ U0, xn = α(x′)} where
ρ(x′, α(x′)) ≡ 0.

Let f be a compactly supported continuous function defined on Rn. We want
to define the positive Radon measure

f �→
∫
Σ

fdσ

using the Euclidean embedding of Σ into Rn.
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Lemma 5.5.2. Let Σ be a C1 hypersurface of Rn, with a defining function ρ, let
θ ∈ C∞c (R;R+) such that

∫
θ(t)dt = 1 and let f ∈ Cc(Rn). Then the following

limit exists:

lim
ε→0+

∫
Rn

θ

(
ρ(x)

ε

)
ε−n‖dρ(x)‖f(x)dx.

That limit does not depend on the choice of the defining function ρ of Σ, nor
on the choice of the function θ. This limit defines a positive Radon measure with
support Σ.

Proof. If supp f ⊂ Σc, then the limit above is 0: since supp f is compact and Σ
is closed, we have dist(supp f,Σ) > 0, which implies that ρ(x) ≥ ε0 > 0 on the
support of f , implying that θ(ρ(x)/ε) vanishes for x ∈ supp f and ε small enough
(depending only on the support of θ and on ε0).

We may thus assume that supp f ∩Σ �= ∅. Since supp f ∩Σ is a compact set,
we can find a finite cover of it by open sets U1, . . . , UN such that, in each Uj , the
defining function ρ appears as a coordinate. We have

supp f ⊂ ∪1≤j≤NUj ∪ Σc

and a partition of unity argument (Theorem 2.1.3) shows that

f = f0 +
∑

1≤j≤N

fj, supp f0 ⊂ Σc, supp fj ⊂ Uj.

As above the contribution of f0 is 0, and by linearity, we have only to consider
the case where f is supported in a subset Uj (denoted by U). We may assume for
instance that, on Uj , ∂ρ/∂xn �= 0 and consider the local diffeomorphism

(x1, . . . , xn−1, xn) = x �→ κ(x) = (x1, . . . , xn−1, ρ(x)), ν = κ
−1.

We have by the change of variable formula,{
y′ = x′

yn = ρ(x′, xn)

{
x′ = y′

xn = α(y′, yn)

with ρ(x′, α(x′, yn)) ≡ yn,∫
Rn

θ

(
ρ(x)

ε

)
ε−1‖dρ(x)‖f(x)dx =

∫
U

θ

(
ρ(x)

ε

)
ε−1‖dρ(x)‖f(x)dx

=

∫
V=κ(U)

θ

(
ρ(ν(y))

ε

)
ε−1‖dρ(ν(y))‖f(ν(y))|ν′(y)|dy

=

∫
V=κ(U)

θ
(yn
ε

)
ε−1
(
(∂ρ/∂x′)2 + (∂ρ/∂xn)

2
)1/2
f(y′, α(y′, yn))

∣∣∣∣ ∂α∂yn
∣∣∣∣dy
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whose limit when ε goes to zero is∫
f(y′, α(y′, 0))

(
(∂ρ/∂x′)2 + (∂ρ/∂xn)

2
)1/2∣∣∣∣ ∂α∂yn

∣∣∣∣dy′.
We note that ∂ρ

∂x′ +
∂ρ
∂xn

∂α
∂x′ = 0, ∂ρ

∂xn

∂α
∂yn

= 1, so that the limit is∫
f(x′, α(x′, 0))

(∣∣∣∣ ∂α∂x′ (x′, 0)
∣∣∣∣2 + 1

)1/2

dx′. (5.5.1)

This proves also that the result does not depend on the choice of the function θ
satisfying the required assumptions and also that this defines a positive Radon
measure with support Σ. We need to verify that this Radon measure does not
depend on the choice of the defining function ρ. By localization and partition of
unity, we may consider a coordinate chart U near a point of Σ and two defining
functions ρ1, ρ2 for Σ defined on U neighborhood of 0. As seen above, we may
assume that ∂ρ1/∂xn �= 0 and

(x′, xn) ∈ {ρ1 = 0} ∩Σ ⇐⇒ xn = α1(x
′, 0), α1 ∈ C1(U),

so that ρ2(x
′, α1(x

′, 0)) ≡ 0 near the origin, which implies

∂ρ2/∂x
′ + (∂ρ2/∂xn)(∂α1/∂x

′) = 0 =⇒ ∂ρ2/∂xn �= 0, at 0,

otherwise ∂ρ2/∂xn = 0, ∂ρ2/∂x
′ = 0 at 0, contradicting the assumption dρ2 �= 0 at

Σ. Now ρ2 = 0 is equivalent to xn = α2(x
′, 0) as well as to xn = α1(x

′, 0), proving
that α1(x

′, 0) = α2(x
′, 0) = α(x′, 0) near the origin and (5.5.1) holds there. The

proof of the lemma is complete. �
Definition 5.5.3. Let Σ be a C1 hypersurface of Rn, with a defining function ρ.
We define the simple layer on Σ as the positive Radon measure with support Σ
given by

Cc(Rn) � f �→
∫
Σ

fdσ = lim
ε→0+

∫
Rn

θ

(
ρ(x)

ε

)
ε−1‖dρ(x)‖f(x)dx.

Definition 5.5.4. Let Ω be an open set of Rn: Ω will be said to have a C1 boundary
if for all x0 ∈ ∂Ω, there exists a neighborhood U0 of x0 in Rn and a C1 function
ρ0 ∈ C1(U0;R) such that dρ0 does not vanish and Ω ∩ U0 = {x ∈ U0, ρ0(x) < 0}.

Note that ∂Ω ∩ U0 = {x ∈ U0, ρ0(x) = 0} since the implicit function
theorem shows that, if (∂ρ0/∂xn)(x0) �= 0 for some x0 ∈ ∂Ω, the mapping
x �→ (x1, . . . , xn−1, ρ0(x)) is a local C1-diffeomorphism.

Theorem 5.5.5 (Gauss–Green formula). Let Ω be an open set of Rn with a C1

boundary, X a C1 vector field on Ω, continuous on Ω̄. Then we have, if X is
compactly supported or Ω is bounded,∫

Ω

(divX)dx =

∫
∂Ω

〈X, ν〉dσ, (5.5.2)

where ν is the exterior unit normal and dσ is the Euclidean measure on ∂Ω.
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Proof. We may assume that Ω = {x ∈ Rn, ρ(x) < 0}, where ρ : Rn −→ R is C1

and such that dρ �= 0 at ∂Ω. The exterior normal to the open set Ω is defined on
(a neighborhood of) ∂Ω as ν = ‖dρ‖−1dρ. We can reformulate the theorem as∫

Ω

divX dx =

∫
〈X, ν〉δ(ρ(x))‖dρ(x)‖ = lim

ε→0+

∫
〈X, dρ(x)〉θ(ρ(x)/ε)dx/ε

where θ ∈ Cc(R) has integral 1. Since it is linear in X , it is enough to prove it for
a(x)∂x1 , with a ∈ C1

c . We have, with ψ = 1 on (1,+∞), ψ = 0 on (−∞, 0),∫
Ω

divX dx =

∫
ρ(x)<0

∂a

∂x1
(x)dx = lim

ε→0+

∫
∂a

∂x1
(x)ψ(−ρ(x)/ε)dx

= lim
ε→0+

∫
a(x)ψ′(−ρ(x)/ε)ε−1 ∂ρ

∂x1
(x)dx

= lim
ε→0+

∫
〈a(x)∂x1 , dρ〉ψ′(−ρ(x)/ε)ε−1dx

= lim
ε→0+

∫
〈X, dρ〉θ(ρ(x)/ε)ε−1dx,

with θ(t) = ψ′(−t),
∫ +∞
−∞ θ(t)dt =

∫ +∞
−∞ ψ

′(−t)dt =
∫ +∞
−∞ ψ

′(t)dt = 1. �

In two dimensions, we get the Green–Riemann formula∫∫
Ω

(
∂P

∂x
+
∂Q

∂y

)
dxdy =

∫
∂Ω

Pdy −Qdx, (5.5.3)

since with X = P∂x +Q∂y, Ω ≡ ρ(x, y) < 0, the lhs of (5.5.3) and (5.5.2) are the
same, whereas the rhs of (5.5.2) is, if ρ(x, y) = f(x) − y on the support of X ,∫∫

〈X, dρ〉δ(ρ)dxdy = lim
ε→0+

∫∫ (
P (x, y)f ′(x) −Q(x, y)

)
θ((f(x) − y)/ε)dxdy/ε

=

∫ (
P (x, f(x))f ′(x) −Q(x, f(x))

)
dx =

∫
∂Ω

Pdy −Qdx.

Corollary 5.5.6. Let Ω be an open subset of Rn with a C1 boundary, u, v ∈ C2(Ω̄).
Then∫

Ω

(Δu)(x)v(x)dx =

∫
Ω

u(x)(Δv)(x)dx +

∫
∂Ω

(
v
∂u

∂ν
− u∂v
∂ν

)
dσ, (5.5.4)∫

Ω

∇u · ∇vdx = −
∫
Ω

uΔvdx+

∫
∂Ω

u
∂v

∂ν
dσ, (5.5.5)

where Δ =
∑

1≤j≤n ∂
2
xj

is the Laplace operator and ∂u
∂ν = ∇u · ν where ν is the

unit exterior normal.

Proof. We have vΔu = div
(
v∇u

)
−∇u ·∇v so that vΔu−uΔv = div(v∇u−u∇v)

providing the first formula from Green’s formula (5.5.2). The same formula written
as ∇u · ∇v = −uΔv + div

(
u∇v

)
entails the second formula. �
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5.6 More on Hausdorff measures on Rm

We begin with a result on the structure of open subsets of Rm, that could have
been proven in Chapter 1. It will be useful in our study of Hausdorff measures.

Theorem 5.6.1. Let Ω be an open subset of Rm and let r > 0 be given. There exists
a countable pairwise disjoint family {Bn}n∈N of open Euclidean balls with radii
smaller than r such that Bn ⊂ Ω and

λm
(
Ω\(∪n∈NBn)

)
= 0.

N.B. The reader will find a less precise (but as useful and simpler to prove)
statement in Exercise 5.10.12.

Proof. We have seen in Lemma 2.4.4 that for a given open set Ω, we could find
a countable family of compact rational rectangles {Qn}n∈N such that for n �= n′
Qn ∩ Qn′ is included in a hyperplane parallel to the axes. Also the image of a
compact rational rectangle by a dilation of a suitably chosen integer ratio is a
compact rectangle with integer sides, thus a finite union of translations of [0, 1]m

with intersections included in a hyperplane. Performing the inverse dilation, we
see that each Qn is a finite union of cubes (rectangles whose sides have the same
length) such that the intersection of two different cubes is included in a hyperplane.
As a result, we could assume that Ω is an open cube whose sides are all smaller
than r. We shall assume only that Ω has finite measure and that a Euclidean ball
included in Ω has a radius automatically smaller than r.

Let Ω = Ω0 be an open set such that λm(Ω0) < +∞. As noted above,
there exists a countable family (Cn,0)n∈N of compact cubes such that the family

(C̊n,0)n∈N is pairwise disjoint and

Ω0 = ∪n∈NCn,0, λm(Ω0) =
∑
n∈N
λm(Cn,0).

For each Cn,0, we consider the inscribed open Euclidean ball Bn,0 and we have

λm(Bn,0) = αmλm(Cn,0),

with a constant αm ∈ (0, 1) depending only on m (note that the Bn,0 are pairwise

disjoint as subsets of C̊n,0). Let us choose β ∈ (1, 1
1−αm

). We have λm(Cn,0\Bn,0) =
(1 − αm)λm(Cn,0), so that

λm(Ω0\ ∪N Bn,0) = (1 − αm)λm(Ω0).

Since β > 1, we may find a finite subset N0 such that

λm(Ω0\ ∪N0 Bn,0) ≤ β(1 − αm)λm(Ω0).
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We consider now the open set

Ω1 = Ω0\
(
∪n∈N0Bn,0

)
, (Bn,0) pairwise disjoint open Euclidean balls

Bn,0 ⊂ Ω0, λm(Ω1) ≤ β(1 − αm)λm(Ω0).

Let k ≥ 1 be an integer. Let us assume that we have found some open subsets

Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωk, N0, . . . ,Nk−1 finite sets,

for each 0 ≤ j < k,
(Bn,j)n∈Nj pairwise disjoint open Euclidean balls, Bn,j ⊂ Ωj ,

Ωj+1 = Ωj\
(
∪n∈NjBn,j

)
, λm(Ωj+1) ≤ β(1 − αm)λm(Ωj), 0 ≤ j < k.

We consider the open set Ωk (which has finite measure as a subset of Ω0) and
using what was done for Ω0, we can find a finite set Nk, and a pairwise disjoint
set of open Euclidean balls (Bn,k)n∈Nk

such that Bn,k ⊂ Ωk,

Ωk+1 = Ωk\
(
∪n∈Nk

Bn,k

)
, λm(Ωk+1) ≤ β(1 − αm)λm(Ωk),

so that we have constructed an open set Ωk+1 such that the above properties are
true up to k + 1. We can thus perform that construction for every k ≥ 1. We find
in particular inductively for k ≥ 1,

λm(Ωk) ≤
(
β(1 − αm)

)k
λm(Ω0).

We consider now ∪j≥0

(
∪n∈NjBn,j

)
. This is a pairwise disjoint union: in the first

place Bn,j ∩Bn,j′ = ∅ for j �= j′, say j < j′, since

Bn,j ∩Bn′,j′ ⊂ Ωc
j+1 ∩ Ωj′ ⊂ Ωc

j+1 ∩ Ωj+1 = ∅.

Moreover for a given j the family (Bn,j)n∈Nj is pairwise disjoint. We have also

Bn,j ⊂ Ωj ⊂ Ω0, and for k ≥ 1,

λm
(
Ω0\(∪j≥0 ∪n∈Nj Bn,j)

)
≤ λm

(
Ω0\(∪0≤j≤k ∪n∈Nj Bn,j)

)
= λm

(
Ω0\(∪0≤j≤k ∪n∈Nj Bn,j︸ ︷︷ ︸

=Ωk+1

)
)

≤
(
β(1 − αm)

)k+1
λm(Ω0).

As a result, since β(1 − αm) ∈ (0, 1), λm
(
Ω0\(∪j≥0 ∪n∈Nj Bn,j)

)
= 0. �

Let m ≥ 1 be an integer. We define3

vm =
1

2m
πm/2

Γ(1 + m
2 )

=
λm(Bm)

2m
. (5.6.1)

For ν ∈ Sm−1, we shall denote by ν⊥ the hyperplane orthogonal to ν and for
y ∈ Rm, we shall denote by y + Rν the affine line with direction ν through y.

3See Exercise 4.5.12.
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Definition 5.6.2 (Steiner symmetrization). Let A be a Borel subset of Rm. The
Steiner symmetrization of A with respect to ν ∈ Sn−1 is defined as

σν(A) =
⋃

y∈ν⊥
|t|≤ 1

2λ1(A∩(y+Rν))

{y + tν}.

Lemma 5.6.3. Let A, ν be as above. Then the set σν(A) is a Borel set, symmetric
with respect to ν⊥ and λm

(
σν(A)

)
= λm(A). Moreover we have

diam2

(
σν(A)

)
≤ diam2(A).

Proof. Note that from Lemma 1.2.9 the Borel σ-algebra on the line y + Rν (a
closed set of Rm) is made with the Borel subsets of Rm included in that line.
As a result, A ∩ (y + Rν) is a Borel set of the line y + Rν and one can take its
Lebesgue measure. The symmetry is obvious since y + tν ∈ σν(A), y ∈ ν⊥, imply
y − tν ∈ σν(A). We have also from Fubini’s theorem,

λm(A) =

∫∫
ν⊥×Rν

1A(y ⊕ z)dydz

=

∫
y∈ν⊥

λ1(A ∩ (y + Rν))dy

=

∫
y∈ν⊥

∫
|t|≤ 1

2λ1(A∩(y+Rν))

dtdy

=

∫
Rm

1

{
x = y ⊕ tν ∈ ν⊥ ⊕ Rν, |t| ≤ 1

2
λ1(A ∩ (y + Rν))

}
dx

= λm
(
σν(A)

)
.

The mapping Rm � x = y ⊕ tν �→
(
λ1(A ∩ (y + Rν)), t

)
∈ R2 is measurable since

λ1(A ∩ (y + Rν)) =
∫
Rν

1A(y ⊕ z)dz

so that Proposition 4.1.3 and Theorem 1.2.7 imply that σν(A) is a Borel set. We
consider now for j = 1, 2, xj = yj ⊕ tjν ∈ σν(A). We know that for j = 1, 2,

Ij = {θ ∈ R, yj + θν ∈ A} �= ∅, |tj | ≤ λ1(Ij)/2.
Claim. For I1, I2, non-empty Borel subsets of R,

λ1(I1) + λ1(I2) ≤ 2 sup
θj∈Ij

|θ1 − θ2|.

Let us take provisionally this claim for granted. Then we get, when the diameter
of A is finite,

‖x1 − x2‖2 = ‖y1 − y2‖2 + (t1 − t2)2 ≤ ‖y1 − y2‖2 +
1

4

(
λ1(I1) + λ1(I2)

)2
≤ ‖y1 − y2‖2 + sup

θj∈Ij
|θ1 − θ2|2 ≤ diam2(A)

2,
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entailing diam2(σν(A)) ≤ diam2(A). We are left with the proof of the above claim.
We may assume that Ij are both bounded, otherwise the rhs of the inequality to be
proven is +∞. We set then aj = inf Ij , bj = sup Ij . We may assume by symmetry
that b2 ≥ b1. Let us suppose first that a2 ≥ a1; it is enough to prove

b1 − a1 + b2 − a2 ≤ 2(b2 − a1),

which is equivalent to b2 ≥ b1 + a1 − a2, which is satisfied since b2 ≥ b1 and
a1 − a2 ≤ 0. Still with b2 ≥ b1, we assume now a2 ≤ a1 and we have to prove

2max(b2 − a1, b1 − a2) ≥ b1 − a1 + b2 − a2.

When b2 − a1 ≥ b1 − a2 it amounts to proving

2(b2 − a1) ≥ b1 − a1 + b2 − a2 ⇐⇒ b2 − a1 ≥ b1 − a2 (hypothesis).

When b2 − a1 ≤ b1 − a2, we have to prove

2(b1 − a2) ≥ b1 − a1 + b2 − a2 ⇐⇒ b1 − a2 ≥ b2 − a1 (hypothesis),

completing the proof of the claim. The proof of Lemma 5.6.3 is complete. �
Lemma 5.6.4. Let ν, ω ∈ Sm−1 such that ω · ν = 0 and let A be a Borel set
symmetrical with respect to ω⊥. Then σν(A) is also symmetrical with respect to ω⊥.

Proof. We have

σν(A) =
⋃

y∈ν⊥
|t|≤ 1

2λ1(A∩(y+Rν))

{y + tν} =
⋃

z∈ν⊥∩ω⊥,s∈R
|t|≤ 1

2λ1(A∩(z+sω+Rν))

{z + sω + tν},

so that, denoting symω⊥(B) the symmetric of B with respect to ω⊥, we find

symω⊥
(
σν(A)

)
=

⋃
z∈ν⊥∩ω⊥,s∈R

|t|≤ 1
2λ1(A∩(z+sω+Rν))

{z − sω + tν} =
⋃

z∈ν⊥∩ω⊥,s∈R
|t|≤ 1

2λ1(A∩(z−sω+Rν))

{z + sω + tν}.

Since we have

A ∩ (z − sω + Rν) = symω⊥(A) ∩ symω⊥(z + sω + Rν)

= symω⊥
(
A ∩ (z + sω + Rν)

)
,

we find
symω⊥

(
σν(A)

)
=

⋃
z∈ν⊥∩ω⊥,s∈R

|t|≤ 1
2λ1(A∩(z+sω+Rν))

{z + sω + tν} = σν(A),

proving the lemma. �
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Lemma 5.6.5 (Isodiametric inequality). Let A be a Borel subset of Rm. With vm
given in (5.6.1), we have

λm(A) ≤ vm(diam2(A))
m,

where diam2 stands for the Euclidean diameter of A: diam2(A) = supx,y∈A ‖x−y‖2
where ‖x‖2 is the Euclidean norm.

N.B. This lemma says that the Lebesgue measure ofA is smaller than the Lebesgue
measure of the ball with diameter diam2(A). This statement is far from obvious
for the Euclidean norm since it is possible to find Borel sets A which are not
included in a ball with diameter diam2A. Let us consider for instance in R2 the

Figure 5.4: triangle with diameter
√
3, circumscribed circle with diameter 2.

(equilateral) triangle T with vertices 1, j = e2iπ/3, j2 = e−2iπ/3. We have

diam2(T ) = |1 − e2iπ/3| =
∣∣∣∣32 − i

√
3

2

∣∣∣∣ =
√

9

4
+

3

4
=

√
3.

However the circumscribed circle of that triangle is the unit circle, thus has diam-
eter 2 >

√
3: it is not possible to find a circle with diameter diam2(T ) containing

T . On the other hand, we have indeed

λ2(T ) =
3
√
3

4
≤ v2 diam2(T )

2 =
π

4
3.

Note also that for the d∞ distance, it is obvious that a bounded set A is included
in a cube with sides parallel to the axes equal to diam∞A. Since A is bounded, Ā
is compact with the same diameter as A, we can apply Lemma 2.6.9.
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Proof of the lemma. Let e1, . . . , em be the canonical basis of Rm and

Am = (σem ◦ · · · ◦ σe1 )(A).

We have from Lemma 5.6.3 that diam2(Am) ≤ diam2(A) and λm(Am) = λm(A).
Moreover the set Am is symmetrical with respect to all hyperplanes e⊥1 , . . . , e

⊥
m,

since the symmetry of B with respect to a hyperplane ω⊥ induces the same sym-
metry for σν(B) whenever ν · ω = 0 (Lemma 5.6.4). As a result the set Am is
symmetric with respect to the origin: this implies that

Am ⊂ B̄
(
0,

1

2
diam2(Am)

)
(Euclidean ball).

In fact, if ‖x‖2 > 1
2 diam2(Am) then x cannot belong to Am otherwise the sym-

metry of Am will imply that −x belongs as well to Am with

diam2(Am) ≥ d2(x,−x) = 2‖x‖2 > diam2(Am),

which is impossible. Finally we have

λm(A) = λm(Am) ≤ λm
(
B

(
0,

1

2
diam2(Am)

))
= vm(diam2(Am))m ≤ vm(diam2(A))

m,

concluding the proof of Lemma 5.6.5.

Remark 5.6.6. The statement of Lemma 5.6.5 is true as well for A in the Lebesgue
σ-algebra. In fact, thanks to Theorem 2.2.14, we can then find E,F Borel sets such
that

E ⊂ A ⊂ F, λm(F ∩ Ec) = 0,

so that from the lemma,

λm(A) = λm(E) ≤ vm(diam2E)
m ≤ vm(diam2A)

m. �

Theorem 5.6.7. Let m be a positive integer. The Hausdorff measure hm on the
metric space (Rm, d∞) (see Theorem 2.6.10) is equal to the product of the Hausdorff
measure on the metric space (Rm, d2) (d2 is the Euclidean distance) by the constant
vm defined in (5.6.1). For ε > 0, we define for E ⊂ X,

h∗m,ε,d2
(E) = inf

{∑
n∈N

(diam2 Un)
κ, E ⊂ ∪n∈NUn, Un open, diam2 Un ≤ ε

}
,

where diam2 stands for the Euclidean diameter. We have

hm = hm,d∞ = vmhm,d2 .
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Proof. We recall first the obvious inequalities d∞ ≤ d2 ≤ m1/2d∞, and we note
that this implies for E subset of Rm,

{open covering (Un)n∈N of E, diam2(Un) ≤ ε}
⊂ {open covering (Un)n∈N of E, diam∞(Un) ≤ ε}
⊂ {open covering (Un)n∈N of E, diam2(Un) ≤ m1/2ε},

so that, since d2/d∞ ≥ 1 and (d∞/d2)
m ≥ m−m/2, we get

h∗m,ε,d2
(E) ≥ h∗m,ε,d∞(E) ≥ m−m/2h∗m,m1/2ε,d2

(E),

entailing

(�) h∗m,d2
(E) ≥ h∗m,d∞(E) ≥ m−m/2h∗m,d2

(E).

Note also that the measure vmhm,d2 is defined on the Borel σ-algebra Bm, is
translation invariant and is finite on compact sets (from the previous inequalities).
To obtain vmhm,d2 = λm = hm,d∞ , we need only to prove that

(�) vmhm,d2([0, 1]
m) = 1.

Let ε > 0 be given. Thanks to Theorem 5.6.1, it is possible to find a sequence
(Bn)n∈N of pairwise disjoint open Euclidean balls with (Euclidean) diameter ≤ ε,
included in (0, 1)m such that

[0, 1]m = ∪NBn ∪ Z, λm(Z) = 0,

1 = λm
(
[0, 1]m

)
=
∑
n

λm(Bn) =
∑
n

vm diam2(Bn)
m,

implying that (see (2.6.2))

vmh∗m,ε,d2
([0, 1]m) ≤ vmh∗m,ε,d2

(∪NBn) + vmh∗m,ε,d2
(Z)

≤ 1 + vmh∗m,d2
(Z) =︸︷︷︸

inequality (�)

1,

and thus vmh∗m,d2
([0, 1]m) ≤ 1. On the other hand, if the previous inequality were

strict, for all ε > 0, all δ > 0, we could find an open covering of [0, 1]m by a
sequence of sets (Un) with diameter ≤ ε such that

1 = λm([0, 1]m) ≤
∑
n

λm(Un) ≤︸︷︷︸
Lemma 5.6.5

∑
n

vm(diam2(Un))
m

≤ vmh∗m,d2
([0, 1]m) + δ < 1,

if δ =
(
1 − vmh∗m,d2

([0, 1]m)
)
/2. This inequality entails 1 < 1 and thus cannot

hold. �
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5.7 Cantor sets

Perfect sets, Nowhere dense sets

Definition 5.7.1. Let X be a topological space.

(1) A subset A of X is said to be perfect if it is closed without isolated point,
i.e.,

Ā = A and ∀a ∈ A, ∀V ∈ Va, (V \{a}) ∩ A �= ∅.

(2) A subset A of X is said to be nowhere dense (or rare) when ˚̄A = ∅.

It is easy to find perfect sets (e.g., closed balls with positive radius in Rn) or
closed sets which are not perfect such as Z (all points are isolated) or (−∞, 0] ∪
{1/2} ∪ [1,+∞) (1/2 is the only isolated point).

Theorem 5.7.2 (Cantor–Bendixson theorem). Let (X, d) be a separable complete
metric space and let F be a closed subset of X. Then F is the disjoint union P ∪C,
where C is countable and P is perfect.

Proof. Let D = {qk}k∈N be a countable dense subset of X . Every open set of X
is a (necessarily countable) union of open balls B(qk, r) where r ∈ Q+: if Ω is an
open set of X , then for x ∈ Ω, the open ball B(x, r) ⊂ Ω for some positive rational
r. Then there exists qk ∈ D such that d(qk, x) < r/2, which implies that

x ∈ B(qk, r/2) ⊂ B(x, r) ⊂ Ω.

As a result the set {B(q, r)}q∈D,r∈Q+ is a countable basis for the topology of X .

Let F be a closed set of X . A point x ∈ F is said to be a condensation point
of F if ∀V ∈ Vx, V ∩ F is uncountable. Let P be the set of condensation points
of F and C = F\P . Considering B(q, r) ∩ F , q ∈ D, r ∈ Q+, we find a countable
basis {Un}n∈N for the topology of F . By definition of P , we have

C =
⋃
n∈N

Un countable

Un :

in fact, if x ∈ C, there exists n ∈ N such that x ∈ Un countable. Conversely,
if Un is a countable open subset of F , then every point in Un belongs to C, so
that C is countable, as a countable union of countable sets. Let x ∈ P and let V
be a neighborhood of x in F . Then V is uncountable and since C is countable,
V contains uncountably many points of P . Moreover P is closed in F , as the
complement of C, open in F as a union of open sets. As a result, P is closed in X
and

F = P ∪ C, P perfect, C countable, P ∩ C = ∅. �
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Cantor ternary set

We want to construct a subset of the real line which is perfect and nowhere dense,
i.e., closed without isolated point and with empty interior. Cantor’s ternary set
is an excellent example. We shall use the following notation: let J = [a, b] be a
compact interval of the real line. We shall denote by

J0 =

[
a, a+

b− a
3

]
, the first third of J , (5.7.1)

J2 =

[
a+

2(b− a)
3

, b

]
, the last third of J. (5.7.2)

We start with I = [0, 1] and we have

I0 =

[
0,

1

3

]
I2 =

[
2

3
, 1

]
,

I00 =

[
0,

1

9

]
I02 =

[
2

9
,
3

9

]
I20 =

[
6

9
,
7

9

]
I22 =

[
8

9
,
9

9

]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for α = (α1, . . . , αn) ∈ {0, 2}n, xα =
∑

1≤j≤n

αj
3j
, Iα = [xα, xα + 3−n]. (5.7.3)

We verify inductively that for α = (α1, . . . , αn) ∈ {0, 2}n,

Iα0 = [xα, xα + 3−n−1] = [xα0, xα0 + 3−n−1],

Iα2 = [xα + 2 × 3−n−1, xα + 3−n] = [xα2, xα2 + 3−n−1].

Figure 5.5: Intervals Iα, α ∈ {0, 2}1,2,3.

For an integer n ≥ 1, we define the compact set Kn by

Kn =
⋃

α∈{0,2}n
Iα, (5.7.4)

and we note that (Iα)α∈{0,2}n are 2n pairwise disjoint compact intervals with
length 3−n (true for n = 1 and if true for some n ≥ 1, also true for n+1: we have
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for α ∈ {0, 2}n, Iα0, Iα2 pairwise disjoint with length 3−n−1 ). As a result, we have

λ1(Kn) = 2n × 3−n. (5.7.5)

We note also that Kn ⊃ Kn+1 by construction since Iα ⊃ Iα0 ∪ Iα2. We define
then at last the Cantor ternary set K∞ by

K∞ = ∩n≥1Kn =
⋂
n≥1

(
∪α∈{0,2}nIα

)
. (5.7.6)

Lemma 5.7.3. The Cantor ternary set K∞ is a compact subset of [0, 1] with Le-
besgue measure 0 which is equipotent to R. Moreover K∞ has no isolated points
and has an empty interior. The set K∞ is totally discontinuous, i.e., the connected
component of each of its points is reduced to a singleton.

Proof. K∞ is a compact set as an intersection of compact sets and its Lebesgue
measure must be smaller than (2/3)n for each n so is zero. As a result K∞ cannot
contain an interval with positive measure, thus has an empty interior and is totally
discontinuous. Let us check the mapping

Φ : {0, 2}N∗ −→ K∞,

α �→
∑

1≤j
αj

3j .
(5.7.7)

Let us prove first that Φ is indeed valued in K∞. From (5.7.4) and (5.7.3), with
(α1, . . . , αn) ∈ {0, 2}n, we have xα =

∑
1≤j≤n

αj

3j ∈ Kn. As a result, for α ∈
{0, 2}N∗, ∑

1≤j

αj
3j

= lim
n

∑
1≤j≤n

αj
3j︸ ︷︷ ︸

∈Kn⊂Km, for n ≥ m.

∈ ∩m≥1Km = K∞.

The mapping Φ is one-to-one since for α′, α′′ ∈ {0, 2}N∗ and

α′j = α
′′
j for 1 ≤ j < N , α′N < α

′′
N ,

we have necessarily α′N = 0, α′′N = 2 and

Φ(α′) =
∑
j≥1

α′j
3j

=
∑

1≤j<N

α′′j
3j

+
∑

j≥N+1

α′j
3j

≤
∑

1≤j<N

α′′j
3j

+ 3−N−12
1

1− 1
3

=
∑

1≤j<N

α′′j
3j

+ 3−N <
∑

1≤j≤N

α′′j
3j

= Φ(α′′).

Let us prove now that Φ is onto; let x ∈ K∞. Then for all n ≥ 1, there exists

α(n) = (α
(n)
1 , . . . , α

(n)
n ) ∈ {0, 2}n such that x ∈ Iα, i.e.,

xα(n) ≤ x ≤ xα(n) + 3−n =⇒ x = lim
n
xα(n) = lim

n

( ∑
1≤j≤n

α
(n)
j

3j

)
. (5.7.8)
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Claim. We may assume that both inequalities above are strict, otherwise the answer
is clear: On the one hand, if x = xα(n) for some n ≥ 1, then

x = Φ(α
(n)
1 , . . . , α

(n)
n , 0, 0, . . . ).

On the other hand if x = xα(n) + 3−n for some n ≥ 1, then

x =
∑

1≤j≤n

α
(n)
j

3j
+

∑
j≥n+1

2

3j︸ ︷︷ ︸
3−n−12 1

1−1/3
=3−n

= Φ(α
(n)
1 , . . . , α

(n)
n , 2, 2, . . . ),

proving the claim4.

We know also that x ∈ [0, 1] so that x =
∑

j≥1
xj

3j , xj ∈ {0, 1, 2} and

0 ≤ x−
∑

1≤j≤n

xj
3j

≤
∑
j>n

xj
3j

≤ 3−n−12
1

1− 1
3

= 3−n,

so that eventually with the strict inequalities of (5.7.8),

3n
∑

1≤j≤n

xj
3j︸ ︷︷ ︸

∈N

≤ 3nx ≤ 3n
∑

1≤j≤n

xj
3j

+ 1, 3nxα(n)︸ ︷︷ ︸
∈N

< 3nx < 3nxα(n) + 1,

implying
∑

1≤j≤n xj3
n−j = 3nxα(n) =

∑
1≤j≤n α

(n)
j 3n−j . The latter identity im-

plies

x1︸︷︷︸
∈N

+
∑

2≤j≤n

xj3
1−j

︸ ︷︷ ︸
∈[0,6×3−2× 3

2 )=[0,1)

= α
(n)
1︸︷︷︸
∈N

+
∑

2≤j≤n

α
(n)
j 31−j

︸ ︷︷ ︸
∈[0,1)

,

so that, taking the floor function of each side (see the footnote on page 16), we

get x1 = α
(n)
1 and similarly xj = α

(n)
j for 1 ≤ j ≤ n, so that each xj belongs to

{0, 2}, proving that x belongs to the image of Φ. We have obtained in particular
the following description of the Cantor ternary set5.

Lemma 5.7.4. K∞ = {x ∈ [0, 1], ∃(xj)j≥1, xj ∈ {0, 2}, x =
∑

j≥1
xj

3j }.

The bijectivity of Φ and Section 10.1 prove that cardK∞ = card{0, 2}N∗ =
card{0, 1}N = cardP(N) = cardR. Let us finally prove that K∞ has no isolated
point. Let x be in K∞: then for each n ≥ 1, there exists α(n) ∈ {0, 2}n such that

K∞ � xα(n) ≤ x ≤ xα(n) + 3−n ∈ K∞
and thus

(
[x−3−n, x+3−n]\{x}

)
∩K∞ �= ∅, completing the proof of the lemma. �

4Note that for instance 1/3, written as 0.1 in its development in base 3 can also be written as
0.022222222222222 . . .
5Similarly, the development of 1 in base 3 can be written as 1 = 0.222222222222 . . .
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Lemma 5.7.5. The Hausdorff dimension (see Definition 2.6.8) of the Cantor ter-
nary set K∞ is

log32 =
1

log23
=

ln 2

ln 3
≈ 0.6309.

Proof. We have K∞ ⊂ ∪α∈{0,2}nIα with diam Iα = 3−n so that

h∗κ,3−n(K∞) ≤
∑

α∈{0,2}n
(diam Iα)

κ = 2n3−nκ = en(ln 2−κ ln 3),

implying for κ0 = ln 2/ ln 3, that

(�) hκ0(K∞) ≤ 1, and for κ > κ0, hκ(K∞) = 0.

The main point in the proof is to estimate hκ0(K∞) from below by a positive
quantity. Let ε > 0 be given and let (Vn)n∈N be a covering of K∞ by open sets
with diameter ≤ ε. By compactness of K∞, we may extract a finite covering and
since each Vn is a union of open intervals, we may find a finite collection (Jl)1≤l≤L

of open intervals with diameter smaller than ε (assumed < 1/3) such that

K∞ ⊂ ∪1≤l≤LJl, K∞ ∩ Jl �= ∅,
∑
n

(diamVn)
κ0 ≥

∑
1≤l≤L

(diamJl)
κ0 .

For each l, there exists a unique nl ≥ 1 such that 3−nl−1 ≤ diam Jl < 3−nl

and moreover Jl meets exactly one (Iα)α∈{0,2}nl : it must meet one such interval
otherwise the intersection with K∞ would be empty and could not meet two since
the distance between two such intervals is at least 3−nl by construction. We have
moreover

diamJl ≥ 3−nl−1 =⇒ 3κ0(diamJl)
κ0 ≥ 2−nl =⇒ 2j3κ0(diamJl)

κ0 ≥ 2j−nl .

Since Jl meets only one Iα(l) , α(l) ∈ {0, 2}nl , it meets at most 2j−nl intervals Iβ
for β ∈ {0, 2}j, j ≥ nl. As a consequence, we have for j ≥ max1≤l≤L nl,

2j = card {connected component of Kj}

≤
∑

1≤l≤N

card {connected component of Kj meeting Jl}

≤
∑

1≤l≤N

2j−nl ≤
∑

1≤l≤N

2j3κ0(diamJl)
κ0 ,

so that
∑

n(diamVn)
κ0 ≥

∑
1≤l≤L(diamJl)

κ0 ≥ 3−κ0 = 1/2 and thus

(�) hκ0(K∞) ≥ 1/2,

implying the result from (�), (�), Lemma 2.6.7 and Definition 2.6.8. �
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The Cantor function

With Kn defined in (5.7.4) for n ≥ 1, we define

ψn(x) =
1

|Kn|

∫ x

0

1Kn(t)dt, |Kn| = λ1(Kn) = (2/3)n. (5.7.9)

The function ψn is continuous on R, with value 0 (resp. 1) for x ≤ 0 (resp. x ≥ 1)
and is monotone increasing. We have with Iα defined in (5.7.3),

ψn+1(x) − ψn(x) = (3/2)n
∫ x

0

∑
α∈{0,2}n

(
3

2
1Iα0(t) +

3

2
1Iα2(t) − 1Iα(t)

)
dt

= (3/2)n
∑

α∈{0,2}n

∫ x

0

(
1

2
1Iα0(t) +

1

2
1Iα2(t) − 1Iα1(t)

)
dt︸ ︷︷ ︸

=0 if x ≤ xα

or x ≥ xα + 3−n

= (3/2)n
∑

α∈{0,2}n
1Iα(x)

∫ x

0

(
1

2
1Iα0(t) +

1

2
1Iα2(t) − 1Iα1(t)

)
dt

= (3/2)n
∑

α∈{0,2}n
1Iα(x)∫ x

0

(
1

2
1[0,1]

(
t− xα0
3−n−1

)
+

1

2
1[0,1]

(
t− xα2
3−n−1

)
− 1

2
1[0,1]

(
t− xα1
3−n−1

))
dt

= (3/2)n
1

2

∑
α∈{0,2}n

1Iα(x)

(∫ (x−xα0)3
n+1

−3n+1xα0

1[0,1](s)ds3
−n−1

+

∫ (x−xα2)3
n+1

−3n+1xα2

1[0,1](s)ds3
−n−1 −

∫ (x−xα1)3
n+1

−3n+1xα1

1[0,1](s)ds3
−n−1

)
.

As a result we have (note
∫
R
1[0,1](s)ds = 1),

|ψn+1(x) − ψn(x)| ≤
3n

2n+1

∑
α∈{0,2}n

1Iα(x)3
−n−1 × 3 ≤ 2−n−1.

Consequently, the sequence (ψn) is converging uniformly on R towards a function
Ψ, the so-called Cantor function, which is continuous monotone increasing, with
value 0 (resp. 1) for x ≤ 0 (resp. x ≥ 1). Moreover, from the calculation above if
x /∈ Kn = ∪α∈{0,2}nIα, we have ψn+1(x) = ψn(x) and since Kn ⊃ Kn+1 ⊃ Kn+l

for l ≥ 2, we have x /∈ Kn+l for l ≥ 2, so that ψn+2(x) = ψn+1(x) = ψn(x) and
ψn+l(x) = ψn(x) for l ≥ 0, proving

x /∈ Kn =⇒ Ψ(x) = ψn(x).
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We see also that ψn is piecewise affine with ψ′n = 1Kn/|Kn|, so that Ψ is constant
on each connected component of the complement of Kn, and since Kc

∞ = ∪n≥1K
c
n,

this implies that Ψ is constant on each connected component of Kc
∞, i.e., is almost

everywhere differentiable with a null derivative. Nevertheless the function Ψ is
monotone increasing such that Ψ(0) = 0,Ψ(1) = 1.

Let us calculate the weak derivative of Ψ. We define for φ ∈ C1
c (R),

〈Ψ′, φ〉 = −
∫
R

Ψ(x)φ′(x)dx = lim
h→0

∫
R

Ψ(x)
(
φ(x) − φ(x+ h)

)
h−1dx,

and thus

〈Ψ′, φ〉 = lim
h→0+

∫
R

(
Ψ(x) − Ψ(x− h)

)
φ(x)h−1dx.

Since Ψ is monotone increasing, it implies that the linear form

C1
c (R) � φ �→ 〈Ψ′, φ〉

is non-negative, i.e., takes non-negative values for φ valued in R+. As a result, for
φ ∈ C1

c (R) and χ ∈ C1
c (R; [0, 1]) equal to 1 near the support of φ, we have

〈Ψ′, φ〉 = 〈Ψ′, χφ− χ‖φ‖L∞(R)︸ ︷︷ ︸
≤0

〉 + 〈Ψ′, χ〉‖φ‖L∞(R),

so that 〈Ψ′, φ〉 ≤ 〈Ψ′, χ〉‖φ‖L∞(R), and thus 〈Ψ′,−φ〉 ≤ 〈Ψ′, χ〉‖φ‖L∞(R), entailing

|〈Ψ′, φ〉| ≤ 〈Ψ′, χ〉‖φ‖L∞(R),

and the linear form C1
c (R) � φ �→ 〈Ψ′, φ〉 can be extended as a positive Radon

measure, i.e., a positive linear form on Cc(R): let φ ∈ Cc(R) and let φn be a
sequence in C1

c (R) converging to φ in Cc(R) (uniform convergence on R with
support φn ⊂ L fixed compact). Then for χ = 1 near L,

|〈Ψ′, φn+k〉 − 〈Ψ′, φn〉 = 〈Ψ′, φn+k − φn〉| ≤ 〈Ψ′, χ〉‖φn+k − φn‖L∞,

so that we may define
〈Ψ′, φ〉 = lim

n
〈Ψ′, φn〉

and get a positive Radon measure (the definition is independent of the approxi-
mating sequence φn). As a result, the measure μ constructed using Theorem 2.2.1
is supported in K∞: if φ ∈ C1

c (R) with suppφ ⊂ Kc
∞, we find

〈Ψ′, φ〉 = −
∫
φ′(x)Ψ(x)dx = 0

since Ψ is constant on each connected component of Kc
∞. Moreover, as a conse-

quence of the following lemma, μ has no atoms (see Exercise 1.9.24, page 61).
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Lemma 5.7.6. Let Φ be a continuous monotone increasing function on R. Then the
distribution derivative of Φ is a Radon measure μ (the so-called Cantor measure
when Φ = Ψ) without atoms.

Proof. The fact that Φ′ is a positive Radon measure μ is proven above. Now let
a ∈ R. According to Theorem 2.2.1, for ε > 0, we have

μ({a}) ≤ μ((a− ε, a+ ε)) = sup
φ∈C0

c ((a−ε,a+ε);[0,1])

〈μ, φ〉 ≤ 〈μ, φε〉,

where φε is non-negative C1, compactly supported, equal to 1 on (a − ε, a + ε),
supported on (a− 2ε, a+ 2ε). We have

0 ≤ 〈μ, φε〉 = −
∫

Φ(x)φ′ε(x)dx

= −
∫ a−ε

a−2ε

Φ(x)φ′ε(x)dx −
∫ a+2ε

a+ε

Φ(x)φ′ε(x)dx

= −
∫ a−ε

a−2ε

(
Φ(x) − Φ(a)

)
φ′ε(x)dx −

∫ a+2ε

a+ε

(
Φ(x) − Φ(a)

)
φ′ε(x)dx

≤ sup
|x−a|≤2ε

|Φ(x) − Φ(a)|
∫

|φ′ε(x)|dx.

We may choose

φε(x) = θ

(
x− a
ε

)
where θ is a fixed function valued in [0, 1], equal to 1 on [−1, 1] and supported in
[−2, 2] so that we get

μ({a}) ≤ sup
|x−a|≤2ε

|Φ(x) − Φ(a)|
∫

|θ′(t)|dt−→
ε→0

0,

by continuity of Φ. �

We have proven the following

Proposition 5.7.7. The Cantor function Ψ is a continuous monotone increasing
function defined on R by the uniform limit of the sequence (ψn)n≥1 given by (5.7.9).
That function is equal to 0 (resp. 1) on (−∞, 0] (resp. [1,∞)). Its weak derivative
(or distribution derivative) is a positive Radon measure without atoms whose sup-
port is the Cantor ternary set K∞ (which has Lebesgue measure 0). The function
Ψ is differentiable on the open set Kc

∞ where its derivative is 0.
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Figure 5.6: The Cantor function

Lebesgue and Borel measurability

Let us consider the function F defined by

[0, 1] � x �→ F (x) = Ψ(x) + x ∈ [0, 2], (5.7.10)

where Ψ is the Cantor function defined above. F is strictly increasing continu-
ous and thus one-to-one, with F (0) = 0, F (1) = 2, so that it is also onto (the
continuous image of the interval [0, 1] is a compact interval contained in [0, 2]
and containing 0, 2 so is [0, 2]). Moreover F is an open mapping since the image
F (]a, b[) is an interval contained in ]F (a), F (b)[ which contains F (a+ ε), F (b− ε)
for all ε > 0 small enough, thus by continuity of F , we have F (]a, b[) =]F (a), F (b)[.
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As a result F−1 is continuous and F is a homeomorphism. We have also

F ([0, 1]\K∞) = F
(
(0, 1) ∩Kc

∞
)
= F

(
� n≥1
α∈{0,2}n

Iα1
)
= � n≥1

α∈{0,2}n
F (Iα1),

where J1 stands for the open middle third of the interval J . As a consequence, we
have

λ1
(
F ([0, 1]\K∞)

)
=

∑
n≥1

α∈{0,2}n

λ1
(
F (Iα1)

)
=

∑
n≥1

α∈{0,2}n

λ1
(
Iα1
)
= 1,

since Ψ is constant on each interval Iα1 and we have

λ1([0, 2]) = λ1(F ([0, 1])) = λ1
(
F ([0, 1]\K∞)

)
+ λ1(F (K∞))

=⇒ λ1
(
F (K∞)

)
= 1.

(5.7.11)

The restriction of F to K∞ is thus a homeomorphism from the Cantor ternary set
K∞ which has measure 0 onto F (K∞) which has measure 1.

Lemma 5.7.8. Let A be a Lebesgue measurable subset of R with positive measure.
Then there exists a non-measurable set E ⊂ A.

Proof. We may assume that A∩(−N0, N0) has positive measure for some N0 ∈ N∗

(otherwise λ1(A) = 0) so that we may assume that A is bounded. As in Exercise
2.8.19, we define an equivalence relation on R by x ≡ y meaning x − y ∈ Q. We
consider the quotient set of A by this equivalence relation and using the Axiom of
Choice, we choose a representative in A for each class. Let E be the subset of A
which is that set of representatives: for any y ∈ A, we find x ∈ E, q ∈ Q such that
y = x+ q. Consequently

A ⊂ ∪q∈Q,|q|≤2N0

(
E + q

)
= B =⇒ 0 < λ1(A) ≤ λ1(B) < +∞.

For q1, q2 ∈ Q, q1 �= q2, we have (E+q1)∩ (E+q2) = ∅ since y = x1+q1 = x2+q2,
for qj ∈ Q, xj ∈ E implies x1 = x2 and thus q1 = q2. Using the translation
invariance of the Lebesgue measure, we get, assuming E measurable,

0 < λ1(B) =
∑

q∈Q,|q|≤2N0

λ1(E) =⇒ λ1(E) > 0 =⇒ λ1(B) = +∞,

which is a contradiction. The set E cannot be Lebesgue measurable. �
Lemma 5.7.9. The function F defined by (5.7.10) is a homeomorphism from [0, 1]
onto [0, 2] such that λ1(K∞) = 0, λ1

(
F (K∞)

)
= 1. The inverse homeomorphism

F−1 is not Lebesgue measurable.

Proof. The first part is proven in (5.7.11). Let D be a subset of F (K∞) which does
not belong to the Lebesgue σ-algebra (it is possible since the measure of F (K∞)
is positive). Then F−1(D) is a subset of K∞ and thus belongs to the Lebesgue
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σ-algebra since K∞ has Lebesgue measure 0. Now

(F−1)−1
(
F−1(D)︸ ︷︷ ︸
Lebesgue

measurable

)
= D,

so that F−1 is continuous and is not Lebesgue measurable. �

It is not that surprising: let f : R → R be Borel–Borel measurable: it means
that f is measurable whenever we equip source and target6with the Borel σ-
algebra. Of course when f is continuous, it is Borel–Borel measurable (Proposi-
tion 1.2.5). However, if we equip the target with the Lebesgue σ-algebra, there
is no reason that f should be Borel–Lebesgue measurable since it may happen
that the inverse image of a Lebesgue measurable set with measure 0 does not
belong to the Borel σ-algebra: even if we equip both source and target with the
Lebesgue σ-algebra, it does happen in the example above with f = F−1 that the
inverse image of a Lebesgue measurable set with measure 0 does not belong to the
Lebesgue σ-algebra. However in Proposition 5.3.3, we have seen that if f is a C1

diffeomorphism, it is Lebesgue–Lebesgue measurable (and of course Borel–Borel
measurable).

Remark 5.7.10. Considering

F−1 1F−1(D)

[0, 2] −−−−→ [0, 1] −−−−→ R
homeomorphism Lebesgue–Lebesgue meas.

we see that the composition (1F−1(D) ◦ F−1)(x) = 1D(x) is not Lebesgue–Borel
measurable since D does not belong to the Lebesgue σ-algebra. However 1F−1(D)

is indeed Lebesgue–Lebesgue measurable since F−1(D) belongs to the Lebesgue
σ-algebra as a subset of the Cantor ternary set, which is a Borel set with measure
0. On the other hand, the composition

f g
A −−−−→ B −−−−→ C

Lebesgue–Borel meas. Borel–Borel meas.

is obviously Lebesgue–Borel measurable from Lemma 1.1.6.

Theorem 5.7.11. Let m ≥ 1 be an integer, let Bm be the Borel σ-algebra on Rm

and let Lm be the Lebesgue σ-algebra on Rm. Then the following cardinality results
hold:

(1) cardBm = c = cardR,
(2) cardLm = 2c = cardP(R).

Proof. The proof is given in the Exercises (with detailed answers) 5.10.7, 5.10.8,
5.10.9. �
6Given two measurable spaces (X,M), (Y,N ), a measurable mapping f : X → Y is said to be
M−N measurable.
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A Cantor set with positive measure

Let θ ∈ (0, 1] be given and let (θn)n≥1 be a sequence of positive numbers such
that

∑
n≥1 2

n−1θn = θ. With I = [0, 1], we define

I0 ∪ I2 = I\I1, I1 =

(
1 − θ1

2
,
1 + θ1

2

)
, I0, I2 compact intervals, max I0 < min I2,

|I1| = θ1, |I0| = |I2| = (1 − θ1)/2.

We define

I00 ∪ I02 = I0\I01, I01 =

(
m0 − θ2

2
,m0 +

θ2
2

)
, m0 midpoint of I0,

I20 ∪ I22 = I2\I21, I21 =

(
m2 − θ2

2
,m0 +

θ2
2

)
, m2 midpoint of I2,

for α ∈ {0, 2} : |Iα1| = θ2,

for α ∈ {0, 2}2: |Iα| =
(
1 − θ1

2
− θ2

)
1

2
= 2−2(1 − θ1 − 2θ2).

Let N ≥ 1 and assume that we have constructed 2N compact pairwise disjoint
intervals Iα, α ∈ {0, 2}N , included in [0, 1] with length

2−N

(
1 −

∑
1≤j≤N

2j−1θj

)

and that the complement in [0, 1] of ∪α∈{0,2}N Iα is the disjoint union of 2N−1 open

intervals I1, I01, I21, . . . , Iβ,1, β ∈ {0, 2}N−1 (note that 1+2+ · · ·+2N−1 = 2N −1)
with |Iγ1| = θj+1 if γ ∈ {0, 2}j. We have indeed

2N2−N

(
1 −

∑
1≤j≤N

2j−1θj

)
+

∑
0≤j≤N−1

2jθj+1 = 1.

We define then for each α ∈ {0, 2}N the open interval Iα1 as the mid-interval of
Iα with length θN+1, its complement in Iα = Iα0 ∪ Iα2 where Iα0, Iα2 are disjoint
compact intervals with length

1

2
(|Iα| − θN+1) = 2−N−1

(
1 −

∑
1≤j≤N

2j−1θj

)
− θN+1/2

= 2−N−1

(
1 −

∑
1≤j≤N+1

2j−1θj

)
,



5.7. Cantor sets 261

indeed the expected result. Since the Iα, α ∈ {0, 2}N are 2N pairwise disjoint
compact intervals, this produces 2N+1 pairwise disjoint compact intervals Iα, α ∈
{0, 2}N+1. The complement in [0, 1] of ∪α∈{0,2}N+1Iα is the disjoint union of the

complement of ∪α∈{0,2}N Iα with the intervals Iα1, α ∈ {0, 2}N : it is indeed the

disjoint union of 1+2+ · · ·+2N−1+2N intervals I1, I01, I21, . . . , Iβ,1, β ∈ {0, 2}N .
We define

K(θ)
n = ∪α∈{0,2}nIα, K

(θ) = ∩n≥1K
(θ)
n . (5.7.12)

We note that the mapping n �→ K(θ)
n is decreasing so thatK(θ) is a compact subset

of [0, 1]. We have also

|K(θ)
n | = 1 −

∑
1≤j≤n

2j−1θj =⇒ |K(θ)| = 1 − θ.

Note that if θ = 1 with the7 choice θj = 3−j, we recover the ternary Cantor set
K∞ constructed above. When θ ∈ (0, 1) the compact set K(θ) has positive measure
1− θ, but an empty interior since, with complements in [0, 1], we have

(K(θ))
c
= ∪n≥1(K

(θ)
n )

c
= ∪n≥1

(
∪α∈{0,2}n−1Iα1

)
.

Let x be a point in K(θ): then for each n ≥ 1, x ∈ K(θ)
n = ∪α∈{0,2}nIα. Thus for

each n ≥ 1 there exists α(n) ∈ {0, 2}n such that x ∈ Iα(n) = Iα(n)0 � Iα(n)1 � Iα(n)2

and we can find xn ∈ Iα(n)1 ⊂ (K(θ))
c
such that

|x− xn| ≤ |Iα(n) | = 2−n

(
1 −

∑
1≤j≤n

2j−1θj

)
≤ 2−n =⇒ x = lim

n
xn,

and thus x belongs to the closure of (K(θ))
c
; (K(θ))

c
is consequently a dense open

set of [0, 1] so that

K(θ) ⊂ (K(θ))c =
(
K̊(θ)

)c
=⇒ K̊(θ) ⊂

(
K(θ)

)c
=⇒ K̊(θ) ⊂

(
K(θ)

)c ∩K(θ) = ∅.

As a result K(θ) is a compact set of positive measure when θ < 1, with empty
interior (thus totally discontinuous) and also without isolated points: The proof
above entails that for x ∈ K(θ), for each n ≥ 1 there exists α(n) ∈ {0, 2}n such
that x ∈ Iα(n) = [an, bn] where 0 < bn − an = 2−n

(
1 −

∑
1≤j≤n 2j−1θj

)
≤ 2−n.

Since the endpoints of Iα belong to Kn and also by construction to all Km,m ≥ n,
both points an, bn belong to K(θ), providing a sequence (xn)n≥1 of points of K(θ),
distinct from x such that x = limn xn.

7We have indeed
∑

j≥1 2
j−13−j = 3−1 1

1− 2
3

= 1.
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5.8 Category and measure

Definition 5.8.1. Let X be a topological space and A ⊂ X .

(1) The subset A is of first category in X when it is a countable union of rare
subsets (see Definition 5.7.1). Such a subset is also said to be meager.

(2) The subset A of X is of second category in X when it is not of first category.

(3) A topological space X is a Baire space if for any sequence (Fn)n∈N of closed
sets with empty interiors, the union ∪n∈NFn is also with empty interior.
Equivalently, X is a Baire space if for any sequence (Un)n∈N of dense open
sets, the intersection ∩n∈NUn is also dense.

N.B. Note that a subset of a set of first category is also of first category: if B ⊂ A
with A of first category in a topological space X , then

B ⊂ A = ∪NAn, Ån = ∅ =⇒ B = ∪N(B ∩ An),
˚B ∩ An ⊂ Ån = ∅.

The proof of the two following theorems is given in the Appendix (Theorems
10.2.39, 10.2.40).

Theorem 5.8.2 (Baire theorem). Let (X, d) be a complete metric space and (Fn)n≥1

be a sequence of closed sets with empty interiors. Then the interior of ∪n≥1Fn is
also empty.

N.B. The statement of that theorem is equivalent to saying that, in a complete
metric space, given a sequence (Un)n≥1 of open dense sets the intersection ∩n≥1Un
is also dense.

Theorem 5.8.3. Let X be a locally compact topological space (Hausdorff topological
space such that each point has a compact neighborhood) and (Fn)n≥1 be a sequence
of closed sets with empty interiors. Then the interior of ∪n≥1Fn is also empty.

Corollary 5.8.4. A metric complete space, as well as a locally compact space are
both Baire spaces and are both of second category in themselves, provided they are
not empty. A non-empty Baire space is of second category in itself.

Proof. Let X be a Baire space; if it were of first category in itself, it would be a

countable union ∪NAn with Ån = ∅, thus we would have X = ∪NAn and by the
Baire property, X = X̊ would be empty. �

For a topological space, the category in itself is indeed a topological notion,
as proven by the following lemma.

Lemma 5.8.5. Let X,Y be topological spaces and let κ : X → Y be a homeomor-
phism. If X is of second category in itself, then Y is also of second category in
itself.
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Proof. We note first that for a subset B of Y , since κ is a homeomorphism

κ−1(B) = κ−1(B), κ−1(B̊) = ˚κ−1(B). (5.8.1)

In fact, we have κ−1(B) ⊂ κ−1(B) (a closed set by continuity of κ) so that
κ−1(B) ⊂ κ−1(B). We have also B = κ(κ−1(B)) ⊂ κ(κ−1(B)) (a closed set
by continuity of κ−1) so that B ⊂ κ(κ−1(B)) and κ−1(B) ⊂ κ−1(B), giving the
first equality in (5.8.1). The second equality can be deduced by complementation,

using (1.2.1). If Y were of first category, we would have Y = ∪NBn, B̊n = ∅ and
thus

X = κ−1(Y ) = ∪Nκ
−1(Bn), κ−1(Bn) = κ

−1(Bn),

and interior
(
κ−1(Bn)

)
= κ−1(interior(Bn)) = ∅, contradicting the assumption

on X . �
Lemma 5.8.6. Let X be a complete metric space and let A be a subset of X such
that A contains a closed set F with a non-empty interior. Then A is of second
category in X.

Proof. If A were of first category in X , so would be F , and we would have

F = ∪NBn, B̊n = ∅.

The complete metric space F would be a countable union of closed sets with empty
interiors since

F = ∪N (Bn ∩ F )︸ ︷︷ ︸
closure of Bn in F

, interiorF (Bn ∩ F ) = B̊n ∩ F = ∅,

contradicting the Baire theorem. �

Note that Q is a meager subset of R, thus of first category in R, i.e., “small”
in the sense of category but Q is dense in R. On the other hand the notions of
category and measure are unrelated: a set can be of first category (small in the
sense of category) and large in the Lebesgue measure sense. Also a set can have
a Lebesgue measure 0 and be of second category: the following lemma is provides
some examples.

Lemma 5.8.7.

(1) The Cantor ternary set is a compact space, and so is of second category in
itself, but it is of first category in the interval [0, 1] with the usual topology.

(2) The Cantor sets with positive measure constructed in Section 5.7 are of first
category in [0, 1].

(3) There exists a subset of [0, 1] which has Lebesgue measure 1 and which is of
first category.

(4) There exists a subset of [0, 1] which has Lebesgue measure 0 and which is of
second category.
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Proof. The Cantor sets are closed sets, and also with empty interior, so they are
of first category in [0, 1]. To convince the reader that the notions of size given
respectively by the Lebesgue measure and by the category are unrelated, we can
also give an example of a set of first category, “small” in the sense of category,
but with full Lebesgue measure in [0, 1]. We have seen with the construction of
Cantor sets with positive measure that for any integer k ≥ 1, we can construct a
compact subset Ck of [0, 1] such that

int(Ck) = ∅, |Ck| ≥
k − 1

k
.

We define then A = ∪k≥1Ck and we have |A| ≥ supk≥1 |Ck| ≥ supk≥1(1− 1
k ) = 1.

Moreover, A is obviously of first category as a countable union of compact sets
with empty interior.

Here is an example of a set of second category in R, i.e., “large” in the sense
of category, but with Lebesgue measure 0 (small in the sense of the Lebesgue
measure). We define for Q = {xn}n≥1,

A = ∩m≥1Um, Um = ∪n≥1]xn − 2−n−m, xn + 2−n−m[.

The Lebesgue measure |A| is such that

|A| ≤ inf
m≥1

∑
n≥1

21−n−m = inf
m≥1

2−m+1 = 0.

If A were meager,we would have a sequence (Ak) of subsets of R with int(Ak) = ∅,
so that

R = A ∪ Ac = ∪kAk ∪ Ac = ∪kAk ∪ Ac = ∪kAk ∪ ∪mU
c
m.

We note that int(U c
m) = ∅ since Um ⊃ Q = R. We would have written R as a

countable union of closed sets with empty interiors: this is not possible from the
Baire theorem. �

5.9 Notes

Ivar Bendixson (1861–1935) was a Swedish mathematician.

Euclid (325 BC–265 BC). Euclid of Alexandria is the most prominent mathe-
matician of antiquity, author of the fundamental treatise The Elements.

George Green (1793–1841) was an English mathematician. The Gauss–Green
formula proved above appears as a particular case of Stokes’ theorem.

Pierre-Simon Laplace (1749–1827) was a French mathematician. He had a con-
siderable influence on the developments of the calculus of probabilities and
celestial mechanics.
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Isaac Newton (1642–1727) was an English physicist and mathematician. He was
one of the most influential scientists of all times. His book Philosophiæ Nat-
uralis Principia Mathematica, published in 1687, set up the foundations of
Mechanics for more than two centuries until the scientific revolutions of Rel-
ativity and Quantum mechanics in the twentieth century.

Jakob Steiner (1796–1863) was a Swiss mathematician and geometer.

Brook Taylor (1685–1731) was an English mathematician. He published Metho-
dus incrementorum directa et inversa in 1715, in which he introduced a ver-
sion of what is now known as Taylor’s formula. He took sides with Isaac
Newton, creator of the Calculus of fluxions, in the violent controversy with
Gottfried Wilhelm Leibniz (inventor of the Infinitesimal calculus) about pri-
orities on the invention of Calculus. Today, both Newton and Leibniz are
considered as scientific geniuses who transformed radically the mathematics
and science of their times.

William Henry Young (1863–1942) was an English mathematician. His name is
associated to B. Taylor for the following theorems:

Theorem 5.9.1 (Taylor–Young formula). Let k ∈ N, let U be an open set of Rn,
let f : U → Rm of class Ck and let x0 ∈ U . If the function f is k + 1 times
differentiable at x0, there exists ε : U → Rm with limx→x0 ε(x) = 0 such that

f(x) =
∑

0≤j≤k+1

1

j!
f (j)(x0)(x− x0)j + ε(x)|x − x0|k+1. (5.9.1)

Note that f (j)(x0) is the symmetric jth linear form given by

f (j)(x0)

j!
T j =

∑
α∈Nn,|α|=j

(∂αx f)(x0)

α!
Tα, (5.9.2)

where for α = (α1, . . . , αn) ∈ Nn,

|α| =
∑

1≤l≤n

αl, ∂
α
x = ∂α1

x1
. . . ∂αn

xn
, α! = α1! . . . αn! (5.9.3)

Theorem 5.9.2 (Taylor–Lagrange formula). Let k ∈ N, let U be an open set of Rn,
let f : U → Rm of class Ck. Let x0, x1 ∈ U and assume that the function f is
k + 1 times differentiable on (x0, x1) = {(1− θ)x0 + θx1}θ∈(0,1). Then

f(x1) =
∑

0≤j≤k

1

j!
f (j)(x0)(x1 − x0)j +Rk(x1, x0), (5.9.4)

|Rk(x1, x0)| ≤
|x1 − x0|k+1

(k + 1)!
sup

(x0,x1)

‖f (k+1)(x)‖, (5.9.5)
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where ‖f (k+1)‖ stands for the norm of the multilinear form, i.e.,

‖f (l)(y)‖ = sup
|Tj |=1
1≤j≤l

|f (l)(y)(T1, . . . , Tl)|.

When m = 1, for k, U, f, x0, x1 as above, there exists x ∈ (x0, x1) such that

Rk(x1, x0) =
1

(k + 1)!
f (k+1)(x)(x1 − x0)k+1.

Theorem 5.9.3 (Taylor formula with integral remainder). Let k ∈ N, let U be a
convex open set of Rn, let f : U → Rm of class Ck+1. Then for x1, x0 ∈ U

f(x1) =
∑

0≤j≤k

1

j!
f (j)(x0)(x1 − x0)j

+

∫ 1

0

(1 − θ)k
k!

f (k+1)
(
x0 + θ(x1 − x0)

)
dθ(x1 − x0)k+1.

(5.9.6)

The three theorems above are proven in Exercise 5.10.1.

Our next chapter studies the convolution and Young’s inequalities for Lp(Rn)
spaces:

‖u ∗ v‖Lr(Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn), 1− 1

r
= 1− 1

p
+ 1− 1

q
, 1 ≤ p, q, r. (5.9.7)

5.10 Exercises

Exercise 5.10.1. Prove Theorems 5.9.1, 5.9.2, 5.9.3.

Answer. We start with a one-dimensional lemma.

Lemma 5.10.2 (Mean Value Theorem). Let ϕ : [0, 1] → R be a continuous function
which is differentiable on (0, 1). Then there exists t ∈ (0, 1) such that ϕ(1)−ϕ(0) =
ϕ′(t).

Proof. The continuous function [0, 1] � t �→ ψ(t) = ϕ(t) − ϕ(0) − t
(
ϕ(1) − ϕ(0)

)
is such that ψ(0) = ψ(1) = 0. Since the image by ψ of [0,1] is a compact interval
[m,M ], either m =M and ψ is constant on [0, 1], so that

∀t ∈ [0, 1], ϕ(t) = ϕ(0) + t
(
ϕ(1) − ϕ(0)

)
=⇒ ϕ′(t) = ϕ(1)− ϕ(0),

or ψ(t0) = m < M = ψ(t1). In the latter case t0 or t1 belong to (0, 1) (we have
ψ(0) = ψ(1)). As a result ψ has an extremum at a point t ∈ (0, 1) and its derivative
must vanish there: 0 = ψ′(t) = ϕ′(t) −

(
ϕ(1)− ϕ(0)

)
. �
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(1) Let us prove first the one-dimensional version (m = 1) in Theorem 5.9.2. We
introduce, following the notation of this theorem,

ϕ(θ) = f(x1) −
∑

0≤j≤k

f (j)(xθ)

j!
(x1 − xθ)j , xθ = (1 − θ)x0 + θx1, θ ∈ [0, 1].

We note that ϕ(1) = 0 and we define

ψ(θ) = ϕ(θ) − ϕ(0)(1 − θ)k+1, so that ψ(0) = 0 = ψ(1).

We may apply Lemma 5.10.2 to ψ and we get that there exists some θ ∈ (0, 1)
with ψ′(θ) = 0, i.e.,

0 = −
∑

0≤j≤k

f (j+1)(xθ)

j!
(x1 − x0)(x1 − xθ)j

+
∑

1≤j≤k

f (j)(xθ)

j!
j(x1 − xθ)j−1(x1 − x0) + ϕ(0)(k + 1)(1 − θ)k,

implying since x1 − xθ = (1 − θ)(x1 − x0),

(k + 1)ϕ(0)(1 − θ)k =
f (k+1)(xθ)

k!
(x1 − x0)k+1(1 − θ)k,

i.e.,

ϕ(0) =
f (k+1)(xθ)

(k + 1)!
(x1 − x0)k+1,

which is the sought result.

(2) Let us prove now the multi-dimensional inequality in Theorem 5.9.2. Lemma
5.1.4 provides the result for k = 0. Let us assume that k ≥ 1. The function f is
thus assumed to be Ck ⊂ C1. We note that the function

U � x �→ f ′(x) ∈ L(Rn,Rm) ≡ Rmn

is of class Ck−1 and k times differentiable on (x0, x1). We calculate

d

dθ

(
f(xθ)

)
= f ′(xθ)(x1 − x0)

=
∑

0≤j≤k−1

f ′
(j)

(x0)

j!
(xθ − x0)j(x1 − x0) +Rk−1(f

′)(xθ , x0)(x1 − x0),

with (induction hypothesis)

(�) ‖Rk−1(f
′)(xθ , x0)‖Rmn ≤

sup(x0,xθ)
‖f ′(k)(x)‖Mk

n,mn

k!
‖xθ − x0‖kRn ,
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where Mk
n,mn is the vector space of k multilinear forms from (Rn)k to Rmn. Since

the function [0, 1] � θ �→ f(xθ) is C1 and the sum is a polynomial in θ, the function
[0, 1] � θ �→ Rk−1(f

′)(xθ , x0)(x1 − x0) is also C0 and we can integrate from 0 to 1
and get

f(x1) − f(x0) =
∑

0≤j≤k−1

f (j+1)(x0)

j!

1

j + 1
(x1 − x0)j+1

+

∫ 1

0

Rk−1(f
′)(xθ , x0)(x1 − x0)dθ.

The estimate (�) implies for θ ∈ [0, 1],

‖Rk−1(f
′)(xθ , x0)(x1 − x0)‖Rm

≤
sup(x0,xθ)

‖f ′(k)(x)‖Mk
n,mn

k!
‖xθ − x0‖kRn‖x1 − x0‖Rn

≤ θ
k

k!
‖x1 − x0‖k+1

Rn sup
(x0,x1)

‖f (k+1)(x)‖Mk+1
n,m
.

We obtain thus f(x1) =
∑

0≤j≤k
f(j)(x0)

j! (x1 − x0)j +Rk(f)(x1, x0), with

‖Rk(f)(x1, x0)‖Rm ≤ ‖x1 − x0‖k+1
Rn sup

(x0,x1)

‖f (k+1)(x)‖Mk+1
n,m

1

(k + 1)!
,

which is the sought result.

(3) Let us prove Theorem 5.9.3. Let x, x + h ∈ U . From the convexity of U , we
may define for θ ∈ [0, 1], ϕ(θ) = f(x+ θh). If k = 0, we have ϕ ∈ C1([0, 1];Rm),

ϕ(θ) = ϕ(0) +

∫ θ

0

ϕ′(s)ds = ϕ(0) +

∫ 1

0

ϕ′(θt)dtθ.

If k ≥ 1, the function ϕ is Ck+1([0, 1];Rm) and we may assume inductively

ϕ(θ) =
∑

0≤j≤k−1

ϕ(j)(0)

j!
θj +

∫ 1

0

ϕ(k)(θt)︸ ︷︷ ︸
u(t)

(1 − t)k−1

(k − 1)!︸ ︷︷ ︸
v′(t)

dtθk.

Integrating by parts in the integral I, we get

I =
ϕ(k)(0)

k!
θk − θk

∫ 1

0

ϕ(k+1)(θt)θ
(1 − t)k
k!

(−1)dt,

providing

ϕ(θ) =
∑

0≤j≤k

ϕ(j)(0)

j!
θj +

∫ 1

0

ϕ(k+1)(θt)
(1 − t)k
k!

dtθk

and the theorem by taking θ = 1 and noting that ϕ(j)(θ) = f (j)(x+ θh)hj .
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(4) Let us prove finally Theorem 5.9.1.When k = 0, by definition of differentiability
at x0, we have

f(x0 + h) = f(x0) + f
′(x0)h+ ε(h)|h|, lim

h→0
ε(h) = 0.

For k ≥ 1, the function h �→ f ′(x0 + h) is Ck−1 and k times differentiable at 0, so
that inductively for θ ∈ [0, 1],

f ′(x0 + θh)h =
∑

0≤j≤k−1

f ′
(j)

(x0)

j!
(θh)jh+ ε(θh)|hθ|kh, lim

h→0
ε(h) = 0.

Since the sum is a polynomial in θ and θ �→ f ′(x0 + θh)h is Ck−1 ⊂ C0, we obtain
that θ �→ ε(θh)|hθ|k is continuous and by integration with respect to θ ∈ [0, 1],

f(x0 + h)− f(x0) =
∑

0≤j≤k−1

f (j+1)(x0)

j!

1

j + 1
hj+1 +

∫ 1

0

ε(θh)|hθ|khdθ,

so that
∫ 1

0 ε(θh)|hθ|khdθ = |h|k+1 ∫ 1

0 ε(θh)θ
kdθ h

|h| and∣∣∣∣∫ 1

0

ε(θh)θkdθ
h

|h|

∣∣∣∣ ≤ 1

k + 1
sup

θ∈[0,1]
|ε(θh)| = ε1(h).

We have indeed limh→0 ε1(h) = 0, concluding the proof.

Exercise 5.10.3. Let E be a normed real vector space and let f : [0, 1] → E and
g : [0, 1] → R be continuous mappings, both differentiable on (0, 1) such that for
all t ∈ (0, 1), ‖f ′(t)‖ ≤ g′(t). Prove that

‖f(1)− f(0)‖ ≤ g(1) − g(0).

Answer. Let ε > 0 be given. We define

Tε = {t ∈ [0, 1], ‖f(t)− f(0)‖ − g(t) + g(0) − εt ≤ ε}.

By continuity of f, g, Tε is a closed subset of [0, 1], contains 0 (the lhs of the
inequality vanishes at 0) and thus by continuity, Tε contains a neighborhood of 0.
Defining c = supTε we have c > 0 and since Tε is closed, c ∈ Tε. Let us assume
that c < 1. We can find t > c such that∥∥∥∥f(t)− f(c)t− c

∥∥∥∥ ≤ ‖f ′(c)‖ + ε/2, g′(c) ≤ g(t)− g(c)
t− c + ε/2,
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implying

‖f(t)− f(0)‖ ≤ ‖f(t)− f(c)‖ + ‖f(c) − f(0)‖

≤ (t− c)‖f ′(c)‖ +
ε(t− c)

2
+ g(c) − g(0) + ε(c+ 1)

≤ (t− c)g′(c) + ε(t− c)
2

+ g(c) − g(0) + ε(c+ 1)

≤ g(t) − g(c) + ε(t− c) + g(c)− g(0) + ε(c+ 1)

= g(t) − g(0) + εt+ ε,

so that t ∈ Tε, which is impossible since t > c = supTε. As a result c = 1 and thus

∀ε > 0, ‖f(1)− f(0)‖ ≤ g(1)− g(0) + 2ε,

implying the result.

Exercise 5.10.4. Let U be an open subset of Rn and let f : U → Rn be a C1

injective mapping such that, for all x ∈ U , det f ′(x) �= 0. Prove that f(U) is an
open subset of Rn and that f is a diffeomorphism from U onto f(U).

Answer. Let x ∈ U . Since det f ′(x) �= 0, the inverse function theorem implies that
there exists an open neighborhood W (x) of x such that f|W (x) is a C

1 diffeomor-
phism from W (x) onto f(W (x)). As a result,

f(U) = ∪x∈U f(W (x))︸ ︷︷ ︸
open

=⇒ f(U) is open.

As a consequence, f : U → V = f(U) is a C1 bijection of open subsets of Rn. Let
Ω be an open subset of U : as above we prove that f(Ω) is an open subset of V and
thus the inverse mapping is continuous and f is a homeomorphism from U onto
V . The inverse function theorem implies that f−1 is C1, completing the proof.

Exercise 5.10.5.

(1) Prove that the mapping (0, 1) × (−π, π) � (r, θ) �→ (r cos θ, r sin θ) is an
analytic diffeomorphism from (0, 1)× (−π, π) onto

{z ∈ C, |z| < 1}\(−1, 0].

(2) Prove that the mapping (0, 1)× (−π, π] � (r, θ) �→ (r cos θ, r sin θ) onto {z ∈
C, 0 < |z| < 1} is analytic and bijective, but is not a homeomorphism.

Answer. (1) With φ(r, θ) = (r cos θ, r sin θ), the mapping φ is analytic and bijective
from (0,+∞)× (−π, π) onto C\R− with inverse mapping (also analytic)

ψ(x, y) =
(√
x2 + y2, Im

(
Log(x+ iy)

))
,

where Log z is defined for z ∈ C\R− by (10.5.1).
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(2) Extending φ to (0, 1)× (−π, π] keeps of course analyticity as well as bijectivity
since the injective image of (0, 1)×{π} is (−1, 0). However, it is not a homeomor-
phism: we have

lim
y→0+

ψ

(
−1

2
+ iy

)
= (1/2, π), lim

y→0+
ψ

(
−1

2
− iy

)
= (1/2,−π),

since for 0 < φ < π, Log(eiφ) = iφ, Log(e−iφ) = −iφ and thus

lim
φ→π−

Im(Log(eiφ)) = π, lim
φ→(−π)+

Im(Log(eiφ)) = −π.

Exercise 5.10.6. Let Q be a non-degenerate real symmetric n × n matrix and let
m > 0 be given. We define

ΣQ,m = {x ∈ Rn, 〈Qx, x〉 = m}.

(1) Prove that ΣQ,m is an analytic hypersurface of Rn.

(2) Assuming that the index of Q (the index is the number of negative eigen-
values) equals 0, prove that ΣQ,m is diffeomorphic to the unit Euclidean
sphere of Rn (compact and connected for n ≥ 2).

(3) Assuming that the index of Q equals 1, and n ≥ 2 prove that ΣQ,m is diffeo-
morphic to the hyperboloid{

x ∈ Rn,
∑

1≤j≤n−1

x2j = x2n + 1

}
,

which is non-compact, with two connected components when n = 2, connected
if n ≥ 3 (hyperboloid with one sheet).

(4) Assuming that the index of Q equals 2, and n ≥ 3 prove that ΣQ,m is diffeo-
morphic to the hyperboloid{

x ∈ Rn,
∑

1≤j≤n−2

x2j = x2n−1 + x
2
n + 1

}
,

which is non-compact, has two connected component if n = 3 (hyperboloid
with two sheets), is connected if n ≥ 4.

(5) We assume that n ≥ 2. Let r be the index of Q. If r = n−1, prove that ΣQ,m

is non-compact with two connected components. Prove that if r < n− 1, then
ΣQ,m is connected, non-compact for r ≥ 1.

Answer. (1) The differential of 〈Qx, x〉 is 2Qx and thus does not vanish at ΣQ,m

since m �= 0. Moreover the matrix Q can be diagonalized in an orthonormal basis,
i.e.,

Q = PDtP, tPP = Id, D diagonal with the eigenvalues of Q as entries.
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(2) Defining x = Py (a linear isomorphism), we get

tP (ΣQ,m) =

{
y ∈ Rn,

∑
1≤j≤n

λjy
2
j = m

}

=

{
y ∈ Rn,

∑
1≤j≤n
λj>0

λjy
2
j = m+

∑
1≤j≤n
λj<0

|λj |y2j
}

and thus, dividing by m the previous equations, we find the answer to questions
(2), (3) and (4), except for the connectedness issues, addressed below. The arc-
connectedness of the unit Euclidean sphere is obvious since if ‖x0‖ = ‖x1‖ = 1
with Euclidean norm in Rn (n ≥ 2), we may consider a plane Π containing x0, x1:
the intersection of Π with the unit sphere Sn−1 is a circle (thus arc-connected).

(5) Let us assume that n ≥ 2 and the index r = n− 1. We may thus assume that
ΣQ,m is given by the equation

x21 = 1 +
∑

2≤j≤n

x2j .

It has two connected components:

{x ∈ Rn, x1 =
√
1 + ‖x′‖2︸ ︷︷ ︸

Σ+

�{x ∈ Rn, x1 = −
√
1 + ‖x′‖2︸ ︷︷ ︸

Σ+

Σ± = F±(Rn−1), F±(x
′) =

(
±
√
1 + ‖x′‖2, x′

)
, Σ+ ∩ Σ− = ∅.

Let us assume that n ≥ 3 and the index 1 ≤ r ≤ n− 2. The equation of ΣQ,m is

‖x′′‖2 = 1 + ‖x′‖2, x′ ∈ Rr, x′′ ∈ Rn−r.

Then ΣQ,m is arc-connected. We consider

(x0, y0) and (x1, y1) ∈ Rn−r × Rr, ‖xj‖2Rn−r = 1 + ‖yj‖2Rr , j = 0, 1.

We define for θ ∈ [0, 1],

y(θ) = (1− θ)y0 + θy1, r(θ) =
√
1 + ‖y(θ)‖2, ξ(θ) ∈ Sn−r−1,

{
ξ(0) = x0/‖x0‖,
ξ(1) = x1/‖x1‖,

which is possible with a continuous ξ since Sn−r−1 is arc-connected (n−r−1 ≥ 1).
We have with x(θ) = r(θ)ξ(θ), x(0) = x0, x(1) = x1,

‖x(θ)‖2 = r(θ)2 = 1 + ‖y(θ)‖2, i.e., (x(θ), y(θ)) ∈ ΣQ,m,

proving the arc-connectedness of ΣQ,m.
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Exercise 5.10.7. Let X be a set and let E ⊂ P(X) be a family of subsets of X
such that ∅ ∈ E. We want to describe M (E), the σ-algebra generated by E (see
Definition 1.1.3). We define

Ec = {Ec}E∈E , Eσ = {∪NEk}Ek∈E . (5.10.1)

Let Ω be the set of countable ordinals, as defined and studied in Propositions
10.1.35, 10.1.37 and Remark 10.1.36 (Ω is the first uncountable ordinal). We de-
fine, following Definition 10.1.42,

F1 = E ∪ Ec, (5.10.2)

for x ∈ Ω with an immediate predecessor y, Fx = (Fy)σ ∪
(
(Fy)σ

)
c
, (5.10.3)

for x ∈ Ω a limit ordinal, Fx = ∪y<xFy. (5.10.4)

(1) Prove that E ⊂ Eσ.
(2) Prove that Fx ⊂ M (E) for all x ∈ Ω.

(3) Prove that ∪x∈ΩFx = M (E).

Answer. (1) Obvious since ∅ ∈ E .
(2) Note that if Fy ⊂ M (E) for all y < x, then Fx ⊂ M (E): this is obvious for a
limit ordinal and if x has an immediate predecessor y, then Fy ⊂ M (E) implies
(Fy)σ ⊂ M (E) and

(
(Fy)σ

)
c
⊂ M (E) so that in that case as well Fx ⊂ M (E).

Now since F1 ⊂ M (E), we may use transfinite induction (see Theorem 10.1.19)
and conclude that (2) holds.

(3) It is enough to prove that ∪x∈ΩFx is a σ-algebra since it contains E and we
already know ∪x∈ΩFx ⊂ M (E). We note that the empty set belongs to ∪x∈ΩFx,
which is also stable by complementation as is each Fx: it is true for x = 1 and if
true for all y < x, it is obvious for x when x is a limit ordinal and also true when x
has an immediate predecessor. We may use transfinite induction to conclude. We
need to prove that ∪x∈ΩFx is stable by countable unions. We consider (Ej)j∈N
with Ej ∈ Fxj , xj ∈ Ω. According to Proposition 10.1.37, the countable family
{xj}j∈N of countable ordinals has an upper bound x ∈ Ω. As a consequence, for
all j ∈ N, Ej ∈ Fx and thus

∪j∈NEj ∈ (Fx)σ.

Since Ω has no largest element8, x has an immediate successor x+1 and (Fx)σ ⊂
Fx+1, implying ∪j∈NEj ∈ Fx+1, completing the proof.

Exercise 5.10.8 (Cardinality of the Borel σ-algebra). Let B be the Borel σ-algebra
of Rm.

(1) Prove that B is generated by a family of sets E containing the empty set and
such that cardE = c = cardR.

8Ω has no largest element otherwise we would find x ∈ Ω with Ω = (→, x)∪{x} and since (→, x)
is countable, this would imply that Ω is countable.
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(2) Let Ω be the first uncountable ordinal. We define Fx for each x in Ω as in
Exercise 5.10.7. Prove that cardFx = c for each x ∈ Ω.

(3) Prove that cardB = c.

Answer. (1) We consider E = {B(x, r)}x∈Rm,r≥0. Thanks to Theorem 10.1.20, we
have

c = cm = card(Rm) ≤ cardE ≤ card(Rm × R+) = cm+1 = c.

(2) We define P = {x ∈ Ω, cardFx = c}. We note that

cardE ≤ cardF1 ≤ cardE + card(Ec) = 2 cardE = cardE

since cardE = c is infinite9 and this implies that 1 ∈ P . Let x ∈ Ω; suppose that
y ∈ P for all y < x. Then if x has an immediate predecessor y,

cardFy = c ≤ cardFx ≤ card
(
(Fy)σ

)
+ card

(
((Fy)σ)c

)
.

Noting that from (10.1.5) and Section 10.1, we have

c = cardFy ≤ card
(
(Fy)σ

)
≤ card

(
FN

y

)
= cℵ0 = 2ℵ

2
0 = 2ℵ0 = c,

we obtain c = cardFx. If x is a limit ordinal, then Fx is a countable union ((→, x)
is countable) of sets with cardinal c, so that

c ≤ cardFx ≤ ℵ0c ≤ c2 = c.

In all cases x ∈ P . By a transfinite induction (see Theorem 10.1.19), we get P = Ω.

(3) From Exercise 5.10.7, we know that

B = ∪x∈ΩFx

and thus we can conclude c ≤ cardB ≤ c cardΩ ≤ c2 = c.

Exercise 5.10.9 (Cardinality of the Lebesgue σ-algebra). Prove that the cardinality
of the Lebesgue σ-algebra Lm on Rm is equal to 2c, the cardinal of P(R).

Answer. We have obviously cardLm ≤ cardP(Rm) = 2cardRm

= 2c
m

= 2c. On the
other hand, the ternary Cantor set K∞ (5.7.6) (see also Lemma 5.7.3) is a Borel
set with Lebesgue measure 0 and same cardinality as R. Thus P(K∞) ⊂ L1 and
thus ⊗1≤j≤mP(K∞) ⊂ Lm, implying

2c = 2mc = (2c)m ≤ card
(
Lm

)
≤ 2c

and the result.

9Theorem 10.1.20 proves much more: for every infinite cardinal, we have x2 = x, so that x ≤
2x ≤ x2 = x.
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Exercise 5.10.10. Let (X, d) be a separable metric space and let BX its Borel σ-
algebra. Prove that BX is generated by a countable family of sets E.
Answer. Let D = {an}n∈N be a countable dense subset of X . Let us consider the
countable family E = {B(an, ε)}n∈N,ε∈Q∗+ of open balls. Let U be an open subset

of X . Then for each x ∈ U , there exists rx ∈ Q∗+ such that the ball B(x, 2rx) ⊂ U .
Since D is dense in X , we may find some nx ∈ N with d(x, anx) < rx. As a
consequence

x ∈ B(anx , rx) ⊂ U,
where the inclusion follows from the triangle inequality:

d(y, anx) < rx =⇒ d(y, x) ≤ d(y, anx) + d(anx , x) < rx + rx

=⇒ y ∈ B(x, 2rx) ⊂ U.
We get finally that U = ∪x∈UB(anx , rx). As a result, with O standing for the open
subsets of X ,

BX = M (O) ⊃ M (E) ⊃ O =⇒ BX = M (E).
Exercise 5.10.11. Let (X, d) be a separable infinite metric space and let BX its
Borel σ-algebra. Prove that cardBX = c.

Answer. In the first place, since X is not finite, it contains a subset {xn}n∈N
equipotent to N. Each subset XA = {xn}n∈A, with A ⊂ N belongs to the Borel
σ-algebra BX as a countable union of singletons (which are closed sets). We have
thus an injection of P(N) into BX , proving that

(∗) 2ℵ0 = c ≤ cardBX .

Let E be a countable family of sets generating the σ-algebra BX , as in Exercise
5.10.10. Let Ω be the first uncountable ordinal. We define Fα for each α in Ω as
in Exercise 5.10.7. We claim that

(∗∗) for each α ∈ Ω, cardFα ≤ c.

We note that cardF1 ≤ cardE+card(Ec) = 2 cardE = cardE = ℵ0 ≤ c. Let α ∈ Ω;
suppose that cardFβ ≤ c for all β < α. Then if α has an immediate predecessor β,

cardFα ≤ card(Fβ)σ + card
(
((Fβ)σ)c

)
≤ card(RN) + card(RN) = 2ℵ

2
0 = 2ℵ0 = c.

If α is a limit ordinal, then Fα is a countable union ((→, α) is countable) of sets
with cardinal ≤ c, so that

cardFα ≤ ℵ0c ≤ c2 = c.

By a transfinite induction (see Theorem 10.1.19), we get that property (∗∗) holds.
From Exercise 5.10.7, we know that

BX = ∪α∈ΩFα

and thus we can conclude cardBX ≤ c cardΩ ≤ c2 = c. The inequality (∗) gives
the result.
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Exercise 5.10.12. Let Ω be an open subset of Rm. Prove that for any ε > 0, there
exists a pairwise disjoint covering (Kn,ε)n∈N of Ω with diam2(Kn,ε) ≤ ε.
Answer. Let ε > 0 be given. For each x ∈ Ω, there exists r(x) ∈ Q ∩ (0, ε/2) such
that B̄(x, r(x)) ⊂ Ω. Defining D = Qm ∩ Ω, for each x ∈ Ω, we can find ax ∈ D
such that d(x, ax) ≤ r(x)/2): as a consequence x ∈ B̄(ax, r(x)/2) ⊂ Ω, since

|y − ax|2 ≤ r(x)/2 =⇒ |y − x|2 ≤ r(x) =⇒ y ∈ B̄(x, r(x)) ⊂ Ω.

We have thus Ω = ∪ a∈D0⊂D
r∈Δ⊂Q∩(0,ε/2)

B̄(a, r) so that

Ω = ∪n∈NBn, Bn closed ball with diameter2 ≤ ε.

We define now

K0 = B0,K1 = B1\B0, . . . ,Kn+1 = Bn+1\(B0 ∪ · · · ∪Bn), . . . .

We have obviously

diam2(Kn) ≤ diam2(Bn) ≤ ε, ∪n∈NKn = ∪n∈NBn = Ω, (5.10.5)

and also for 0 ≤ n1 < n2, Kn1 ∩Kn2 ⊂ Bn1 ∩Bc
n1

= ∅. (5.10.6)

As a consequence, λm(Ω) =
∑

n∈N λm(Kn,ε).

Exercise 5.10.13. Calculate the n− 1-dimensional area of the unit sphere Sn−1 of
Rn by using the explicit change in polar coordinates.

Answer. We have

|Bn+1|n+1 =

∫
x∈Rn+1,‖x‖2≤1

dx =
1

n+ 1

∫
Sn
dSnσ,

so that using (5.4.3), we find

|Bn+1|n+1 =
1

n+ 1

∫ π

0

(sinφ)n−1dφ|Sn−1|n−1.

The computation of the Wallis integrals in Lemma 10.5.7 gives

|Sn|n
n+ 1

= |Bn+1|n+1 =
|Sn−1|n−1

n+ 1

∫ π

0

(sinφ)n−1dφ =
|Sn−1|n−1

n+ 1

√
πΓ(n2 )

Γ(n+1
2 )
,

so that |Sn|n = |Sn−1|n−1

√
πΓ(n

2 )

Γ(n+1
2 )
, |S1|1 = 2π and thus

|Sn|n = 2π
∏

2≤j≤n

√
πΓ( j2 )

Γ( j+1
2 )

= 2π1+
n−1
2

Γ(1)

Γ(n+1
2 )
,

recovering (5.4.8): |Sn−1|n−1 =
2π

n
2

Γ(n2 )
.
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Exercise 5.10.14. Prove that card{α ∈ Nd, |α| = l} = Cd−1
l+d−1.

Answer. We start with

(�) Cd−1
l+d−1 =

∑
0≤j≤l

Cd−2
j+d−2

which is true for l = 0, and since Cd−1
l+d = Cd−1

l+d−1 +C
d−2
l+d−1 is proven by induction

on l: we have

Cd−1
l+1+d−1 =

∑
0≤j≤l

Cd−2
j+d−2︸ ︷︷ ︸

induction hypothesis

+Cd−2
l+d−1 =

∑
0≤j≤l+1

Cd−2
j+d−2,

proving (�). Now,

card{α ∈ Nd, |α| = l} =
∑

0≤j≤l

card{β ∈ Nd−1, |β| = j},

providing the proof by induction on d of the sought formula.

Exercise 5.10.15.

(1) We consider a norm on Rn, denoted by ‖ · ‖. Find an iff condition on the
real numbers α, β so that∫

Rn

dx

(1 + ‖x‖)β < +∞,
∫
‖x‖≤1

dx

‖x‖α < +∞.

(2) We assume that n ≥ 2 and we set, with ‖ · ‖ standing for a norm on Rn−1,
and for λ > 0,

C1,λ = {(x1, x′) ∈ R × Rn−1, ‖x′‖ ≤ λ|x1|}.

Give an iff condition on the real numbers α, β so that∫
C1,λ

dx

(1 + |x1|)β
< +∞, for all compact K

∫
C1,λ∩K

dx

|x1|α
< +∞.

Show that this provides a proof of (1) without using a change of variables.

Answer. (1) The answer is β > n and α < n. Since all the norms on Rn are
equivalent (see, e.g., Exercise 1.9.8), we may assume that ‖ · ‖ is the Euclidean
norm and use polar coordinates (see Section 5.4). We need only to check the 1D
integrals∫ +∞

0

rn−1(1 + r)−βdr < +∞ ⇐⇒ n− 1 − β < −1, i.e., β > n,
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and ∫ 1

0

rn−1−αdr < +∞ ⇐⇒ n− 1 − α > −1, i.e., α < n.

(2) Let us use Fubini’s theorem for these positive measurable functions. With
Vn−1 equal to the (n− 1)-dimensional Lebesgue measure of the unit ball of Rn−1

for the norm ‖ ‖, we find∫
C1,λ

dx

(1 + |x1|)β
=

∫
R

(∫
|x′|≤λ|x1|

dx′

)
dx1

(1 + |x1|)β

= Vn−1

∫
R

λn−1|x1|n−1

(1 + |x1|)β
dx1 < +∞

if and only if β > n. Similarly if the condition in (2) holds for all compact sets
K, it is satisfied in particular for {(x1, x′) ∈ R× Rn−1, |x′| ≤ λ, |x1| ≤ 1} and we
obtain ∫ 1

0

λn−1|x1|n−1

|x1|α
dx1 < +∞ =⇒ α < n.

Conversely, if that condition holds and if K is a compact set, K is included in
a Euclidean ball with center 0 and finite radius on which the integral is finite
following the same computation. We note then that

Rn = ∪1≤j≤n

{
x ∈ Rn, max

1≤k≤n
|xk| = |xj |

}
so that the integral over Rn is a finite sum of integrals on conical sets of type{

(x1, x
′) ∈ R× Rn−1, max

2≤k≤n
|xk| ≤ |x1|

}
for which the calculation is done.

Exercise 5.10.16. Let n be an integer ≥ 2. For x ∈ Rn, we denote by ‖x‖ the
Euclidean norm of x.

(1) Calculate the volume of the ellipsoid{
x ∈ Rn,

∑
1≤j≤n

x2j
a2j

≤ 1

}

(aj are positive parameters).

(2) Let A be a n× n real symmetric positive definite matrix. Calculate∫
Rn

e−π〈Ax,x〉dx.
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(3) Let B be a n× n invertible real symmetric matrix. Calculate

lim
ε→0+

∫
Rn

e−πε‖x‖2e−iπ〈Bx,x〉dx.

(4) Let A,B be n× n real symmetric matrices such that A $ 0 (i.e., 〈Ax, x〉 ≥
d‖x‖2, d > 0). Calculate

lim
ε→0+

∫
Rn

e−πε‖x‖2e−π〈(A+iB)x,x〉dx.

Answer. (1) Performing a linear change of variables, yj = ajxj , we get that the
volume is

|Bn|
∏

1≤j≤n

aj ,

where |Bn| is given by (4.5.4) in Exercise 4.5.12.

(2) With the change of variables x = A−1/2y, we find (detA)−1/2.

(3) The matrix B can be diagonalized in an orthonormal basis:

D =tPBP, D =

⎛⎜⎝d1 0
. . .

0 dn

⎞⎟⎠ diagonal, tPP = Id.

The linear change of variables x = Py gives∫
Rn

e−επ‖x‖2e−iπ〈Bx,x〉dx =

∫
Rn

e−επ‖y‖2e−iπ〈Dy,y〉dy =
∏

1≤j≤n

∫
R

e−πt2(ε+idj)dt.

Using question (2) in Exercise 4.5.14, we obtain∏
1≤j≤n

(ε+ idj)
−1/2 −→

ε→0+

∏
1≤j≤n

|dj |−1/2e−iπ4 sign(dj) = | detB|−1/2e−iπ4 signature(B),

where

signature(B)

= number of positive eigenvalues of B − number of negative eigenvalues of B. (5.10.7)

(4) We have

I(ε) =

∫
Rn

e−πε‖x‖2e−π〈(A+iB)x,x〉dx

= (detA)−1/2

∫
Rn

e−πε‖A−1/2y‖2e−π〈(Id+iA−1/2BA−1/2)y,y〉dy.
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The real symmetric matrix A−1/2BA−1/2 can be diagonalized (eigenvalues λj , 1 ≤
j ≤ n) in an orthonormal basis and using the previous calculation we obtain

lim
ε→0+

I(ε) = (detA)−1/2
∏

μj eigenvalues of

Id+iA−1/2BA−1/2

μ
−1/2
j .

The μj are equal to 1+ iλj where the λj are the eigenvalues of the real symmetric
matrix A−1/2BA−1/2. If (νj)1≤j≤n are the (positive) eigenvalues of the positive-
definite matrix A, we have

A = PDA
tP, P ∈ O(n), DA = diagonal(ν1, . . . , νn),

A−1/2BA−1/2 = QDB
tQ, Q ∈ O(n), DB = diagonal(λ1, . . . , λn),

and thus with A1/2 = PD
1/2
A

tP , we have A + iB = A1/2Q
(
Id+iDB

)
tQA1/2, so

that

det(A+ iB) = detA
∏

1≤j≤n

(1 + iλj) =
∏

1≤j≤n

νj(1 + iλj).

As a result limε→0+ I(ε) is equal to a particular determination of (detA)−1/2

given by ∏
1≤j≤n

ν
−1/2
j (1 + iλj)

−1/2 =
∏

1≤j≤n

ν
−1/2
j e−

1
2 Log(1+iλj).

The reader may consult the section entitled The logarithm of a nonsingular sym-
metric matrix on page 463 of the Appendix for a further discussion on this topic.
The following lemma may be useful for future reference.

Lemma 5.10.17. Let A,B be n×n real symmetric matrices such that A is positive
definite. Then there exists an invertible n× n real matrix R such that

tRAR = Id, and tRBR is a diagonal matrix.

Proof. There exists P ∈ O(n) such that tPAP = DA where DA is the diagonal
matrix with diagonal (λ1, . . . , λn) where the λj are the (positive) eigenvalues of
A. We may consider the real symmetric matrix A−1/2BA−1/2, where A−1/2 =

PD
−1/2
A

tP : there exists Q ∈ O(n) such that tQA−1/2BA−1/2Q = DB where DB is
the diagonal matrix with diagonal (μ1, . . . , μn) where the μj are the eigenvalues
of A−1/2BA−1/2. We have thus with the invertible matrix R = A−1/2Q,

tQA−1/2AA−1/2Q = tRAR = Id, tQA−1/2BA−1/2Q = tRBR = DB,

so that the quadratic forms x �→ 〈Ax, x〉 and x �→ 〈Bx, x〉 can be simultaneously
diagonalized. �
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Exercise 5.10.18. Using a change of variables, calculate the integrals

I =

∫∫
x>0, y>0, x+y<a

3y√
1 + (x+ y)3

dxdy, a > 0,

J =

∫∫
x>0, y>0

|x4 − y4|e−(x+y)2dxdy.

Answer. With H = 1R+ , we have

I =

∫∫
H(x)H(y − x)H(a− y) 3(y − x)√

1 + y3
dxdy

=

∫∫
H(x)H(y − x)H(a− y)H(y)

3(y − x)√
1 + y3

dxdy,

so that

I =

∫ a

0

(1 + y3)−1/23

(∫ y

0

(y − x)dx
)
dy

=

∫ a

0

(1 + y3)−1/23

(
y2 − y

2

2

)
dy = (1 + a3)1/2 − 1.

For the second integral we set x = u− v, y = u+ v, so that

J = 2

∫∫
H(u− v)H(u + v)2|v|2|u|2(u2 + v2)e−4u2

dudv

and thus

J = 24
∫ +∞

0

(∫
H(u− |v|)|v|(u2 + v2)dv

)
ue−4u2

du

= 25
∫ +∞

0

(∫ u

0

v(u2 + v2)dv

)
ue−4u2

du

= 3 × 23
∫ +∞

0

u5e−4u2

du = 3 × 2−4Γ(3) =
3

8
.



Chapter 6

Convolution

6.1 The Banach algebra L1(Rn)

Let u, v ∈ Cc(Rn). For all x ∈ Rn, the mapping y �→ u(x − y)v(y) is continuous
with compact support ⊂ supp v. We may thus consider

(u ∗ v)(x) =
∫
Rn

u(x− y)v(y)dy. (6.1.1)

We shall say that u ∗ v is the convolution of u with v. For a given x, the change of
variables y′ = x − y shows that u ∗ v = v ∗ u. Theorem 3.3.1 implies readily that
u ∗ v is continuous and moreover if x /∈ suppu + supp v, then for all y ∈ supp v,
x − y /∈ suppu (otherwise x = x − y + y ∈ suppu + supp v) so that for all
y ∈ Rn, u(x− y)v(y) = 0. As a result, (supp u + supp v)c ⊂ {u ∗ v = 0} and thus
{u ∗ v �= 0} ⊂ suppu + supp v. Since suppu + supp v is compact (as a sum of
compact sets), we have

supp(u ∗ v) ⊂ suppu+ supp v = {x+ y}x∈suppu
y∈suppv

(6.1.2)

and u∗v ∈ Cc(Rn). Moreover convolution is associative, since for u, v, w ∈ Cc(Rn),
we have(
(u∗v)∗w

)
(x)=

∫
Rn

(u∗v)(x−y)w(y)dy=
∫∫

Rn×Rn

u(x−y−z)v(z)w(y)dydz

=

∫∫
Rn×Rn

u(x−z)v(z−y)w(y)dydz=
∫
Rn

u(x−z)(v∗w)(z)dz=
(
u∗(v∗w)

)
(x).

Proposition 6.1.1. The binary operation of Cc(Rn) given by (u, v) �→ u ∗ v is
associative, commutative and distributive with respect to addition and such that

‖u ∗ v‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn). (6.1.3)

, ,
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Proof. The estimate is the only point to be proven. For u, v ∈ Cc(Rn), we have

‖u ∗ v‖L1(Rn) ≤
∫
Rn

∣∣∣∣∫
Rn

u(x− y)v(y)dy
∣∣∣∣ dx ≤

∫∫
Rn×Rn

|u(x− y)||v(y)|dydx

= ‖u‖L1(Rn)

∫
Rn

|v(y)|dy = ‖u‖L1(Rn)‖v‖L1(Rn).

With u0(x) = exp−π|x|2, we have ‖u0‖L1(Rn) = 1 and

‖u0 ∗ u0‖L1(Rn) =

∫
|(u0 ∗ u0)(x)|dx =

∫∫
e−π|x−y|2−π|y|2dydx = 1,

proving that the estimate (6.1.3) is optimal. �

Proposition 6.1.2. Let k ∈ N, ϕ ∈ Ck
c (R

n) and let u ∈ L1loc(Rn) (i.e., ∀K compact,
u1K ∈ L1(Rn)). We define

(ϕ ∗ u)(x) =
∫
Rn

ϕ(x− y)u(y)dy. (6.1.4)

The function ϕ ∗ u belongs to Ck(Rn) and if u ∈ L1(Rn), then ϕ ∗ u belongs to
L1(Rn) and is such that ‖ϕ ∗ u‖L1(Rn) ≤ ‖ϕ‖L1(Rn)‖u‖L1(Rn). Moreover, we have
supp(ϕ ∗ u) ⊂ suppϕ+ suppu, where the support of u is defined by (2.8.12).

Proof. Let x ∈ Rn be given. The function y �→ u(y)ϕ(x − y) is supported in
x − suppϕ = {x − z}z∈suppϕ, a compact set (since suppϕ is compact). Since ϕ
is bounded, the function y �→ u(y)ϕ(x − y) belongs to L1comp(R

n), so that (6.1.4)

makes sense. Theorem 3.3.4 shows that ϕ ∗ u belongs to Ck(Rn): indeed, we have

|ϕ(k)(x− y)u(y)| ≤ |u(y)|1suppϕ(x− y) sup |ϕ(k)|

so that for K compact, since K − suppϕ = {x − z}x∈K,z∈suppϕ is also compact,
we have

sup
x∈K

|ϕ(k)(x − y)u(y)| ≤ |u(y)|1K−suppϕ(y) sup |ϕ(k)| ∈ L1(Rn
y ).

Whenever u ∈ L1(Rn), the inequality on L1-norms is proven as (6.1.3).

Let us prove now the inclusion of supports. Since suppϕ is compact and
suppu is closed, the set supp u + suppϕ is closed: if limk(yk + zk) = x, with
yk ∈ suppu, zk ∈ suppϕ, extracting a subsequence, we get liml zkl

= z ∈ suppϕ
and liml(ykl

+ zkl
) = x, so that the sequence ykl

is converging and since supp u is
closed suppu � liml ykl

= x − z, proving x ∈ suppu + suppϕ. We consider now
the open set V0 = (suppu+ suppϕ)c. For all y ∈ Rn, we have

V0 − y ⊂ (suppϕ)c or y /∈ suppu, (6.1.5)
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otherwise, we could find y0 such that V0 − y0 ∩ (suppϕ) �= ∅ and y0 ∈ suppu. This
would imply the existence of x ∈ V0 such that x− y0 ∈ suppϕ and thus

V0 � x = x− y0 + y0 ∈ suppϕ+ suppu = V c
0 ,

which is impossible. As a result (6.1.5) implies that for x ∈ V0, and y ∈ Rn, we
have ϕ(x − y) = 0 or y /∈ suppu. Since the domain of integration in (6.1.4) is
suppu, this implies (ϕ ∗u)(x) = 0 and (supp u+suppϕ)c ⊂

(
supp(ϕ ∗u)

)c
, which

is the sought result. �

Proposition 6.1.3. Let Ω be an open set of Rn, let u ∈ L1loc(Ω) and let V be open
⊂ Ω. Then

u |V = 0 ⇐⇒ ∀ϕ ∈ Cc(V ),

∫
u(x)ϕ(x)dx = 0.

N.B. This result is important for distribution theory: a function in L1loc(Ω) can
be viewed as a Radon measure on Ω, i.e., a continuous linear form on Cc(Ω). For
u ∈ L1loc(Ω), we define the linear form lu,

Cc(Ω) � ϕ �→ lu(ϕ) =
∫
Ω

ϕ(x)u(x)dx,

which is continuous since∣∣∣∣∫
Ω

ϕ(x)u(x)dx

∣∣∣∣ ≤ sup |ϕ(x)|
∫
suppϕ

|u(x)|dx.

This proposition proves that the mapping u �→ lu is injective.

Proof of the proposition. The condition is obviously necessary. Let us prove that
it is sufficient. Let K be a compact set included in V and let χK ∈ Cc(V ; [0, 1]),
χK = 1 on K. With

ρ ∈ C∞c (Rn;R+),

∫
ρ(x)dx = 1, supp ρ = {‖x‖ ≤ 1}, ε > 0, ρε(·) = ρ(·/ε)ε−n,

we obtain (ρε ∗ χKu)(x) =
∫
u(y)

∈Cc(V )︷ ︸︸ ︷
χK(y)ρε(x − y)dy = 0.

As a consequence, we have

‖χKu‖L1(Rn)≤‖χKu−ϕ‖L1(Rn)+‖ϕ−ϕ∗ρε‖L1(Rn)+‖ϕ∗ρε−χKu∗ρε‖L1(Rn)

≤2‖χKu−ϕ‖L1(Rn)+‖ϕ−ϕ∗ρε‖L1(Rn). (6.1.6)

Lemma 6.1.4. Let ϕ ∈ Ck
c (R

n). Then ϕ ∗ ρε ∈ C∞c (Rn) and ϕ ∗ ρε → ϕ in Ck
c (R

n)
when ε goes to 0.
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Proof of the lemma. We have indeed (ϕ ∗ ρε)(x) =
∫
ϕ(x− εy)ρ(y)dy, so that

|(ϕ ∗ ρε)(x) − ϕ(x)| ≤
∫
ρ(y)|ϕ(x− εy) − ϕ(x)|dy ≤ sup

|x1−x2|≤ε

|ϕ(x1)− ϕ(x2)|,

which goes to 0 with ε. Similar estimates hold for derivatives of order ≤ k, and
moreover we have supp (ϕ ∗ ρε) ⊂ suppϕ+εBn ⊂ suppϕ+ε0Bn for ε ≤ ε0, yielding
the lemma. �

We go on with the proof of Proposition 6.1.3. From (6.1.6) and Lemma 6.1.4,
we obtain

‖χKu‖L1(Rn) ≤ 2 inf
ϕ∈Cc(V )

‖χKu− ϕ‖L1(Rn) = 0,

since χKu ∈ L1(V ). Thus we have χKu = 0 for all compact sets K ⊂ V , and since
χK = 1 on K, and V is a countable union of compact sets, we find that u = 0 a.e.
on V . �
Theorem 6.1.5. There exists a unique bilinear mapping

L1(Rn) × L1(Rn) → L1(Rn)
(u, v) �→ u ∗ v

such that if u, v ∈ Cc(Rn), u ∗ v is the convolution of u and v and

‖u ∗ v‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn).

The space L1(Rn) is a commutative Banach algebra1 for addition and convolution.

Proof. Uniqueness: if � is another mapping with the same properties, u, v ∈
L1(Rn), ϕ, ψ ∈ Cc(Rn),

u � v − u ∗ v
= (u − ϕ) � v + ϕ � (v − ψ) + ϕ � ψ − (u− ϕ) ∗ v − ϕ ∗ (v − ψ) − ϕ ∗ ψ,

using ϕ ∗ ψ = ϕ � ψ, and with L1(Rn) norms,

‖u � v − u ∗ v‖ ≤ 2‖u− ϕ‖‖v‖+ 2‖v − ψ‖‖ϕ‖.

The density of Cc(Rn) in L1(Rn) and the above inequality entail u ∗ v = u � v. To
prove existence, we consider sequences (ϕk), (ψk) in Cc(Rn), converging in L1(Rn):
it is easily proven that ϕk ∗ ψk are Cauchy sequences since (with L1(Rn) norms),

‖ϕk+l ∗ ψk+l − ϕk ∗ ψk‖ ≤ ‖ϕk+l − ϕk‖‖ψk+l‖ + ‖ψk+l − ψk‖‖ϕk‖.

Moreover, using the same inequality, we prove that the limit does not depend on
the choice of the sequences ϕk, ψκ but only on their limits. �
1A complex Banach space B equipped with a multiplication ∗ which is associative, distributive
with respect to the addition, such that for λ ∈ C and x, y ∈ B, (λx)∗ y = λ(x ∗ y) = x ∗ (λy) and
so that ‖x ∗ y‖ ≤ ‖x‖‖y‖ is called a Banach algebra. When the multiplication is commutative
the Banach algebra is said to be commutative. When the multiplication has a unit element, the
Banach algebra is said to be unital.
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Proposition 6.1.6. Let u, v ∈ L1(Rn). Then for almost all x,∫
|u(x− y)v(y)|dy < +∞.

Defining h(x) =
∫
u(x− y)v(y)dy, we have h ∈ L1(Rn),

‖h‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn) and h = u ∗ v .

Proof. We consider the measurable function F on R2n, given by F (x, y) = u(x−
y)v(y). We have∫ (∫

|F (x, y)|dx
)
dy =

∫ (∫
|u(x− y)|dx

)
|v(y)|dy

= ‖u‖L1(Rn)‖v‖L1(Rn) < +∞.

As a result, F ∈ L1(R2n) and Fubini’s theorem implies that

h(x) =

∫
F (x, y)dy

is an L1 function of x. We have also proven that ‖h‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn).
Since for u, v ∈ Cc(Rn), we have h = u∗v, Theorem 6.1.5 yields the conclusion. �

Lemma 6.1.7. The Banach algebra L1(Rn) is not unital.

Proof. Let us assume that L1(Rn) has a unit ν. We would have for all x ∈ Rn,

e−π|x|2 =
∫
e−π|x−y|2ν(y)dy and thus for all ξ ∈ Rn,

(†)
∫
e−π|x|2e−2iπx·ξdx =

∫
e−π|x|2e−2iπx·ξdx

∫
e−2iπy·ξν(y)dy.

Claim. For τ ∈ R, ∫
R

e−πt2e−2iπtτdt = e−πτ2

. (6.1.7)

To prove this claim, we note that

F (τ) =

∫
R

e−πt2e−2iπtτeπτ
2

dt =

∫
R

e−π(t+iτ)2dt,

so that F ′(τ) =
∫
R

d
idt

(
e−π(t+iτ)2

)
dt = 0 and F (τ) = F (0) = 1, proving the

Claim. Applying this to (†), we get e−π|ξ|2 = e−π|ξ|2 ∫ e−2iπy·ξν(y)dy. Thanks
to the Riemann–Lebesgue Lemma 3.4.5, ξ �→

∫
e−2iπy·ξν(y)dy is a continuous

function with limit 0 at infinity, so we cannot have
∫
e−2iπy·ξν(y)dy = 1 which is

a consequence of the previous equality. �
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6.2 Lp Estimates for convolution, Young’s inequality

Lemma 6.2.1. Let (X,M, μ) be a measure space where μ is a σ-finite positive
measure. Let 1 ≤ r ≤ ∞, 1/r + 1/r′ = 1. For u ∈ Lr(μ), w ∈ Lr′(μ), the product
uw belongs to L1(μ). Moreover we have

‖u‖Lr(μ) = sup
‖w‖

Lr′ (μ)
=1

|〈u,w〉|, with 〈u,w〉 =
∫
X

uw̄dμ.

Proof. The first statement follows from Hölder’s inequality (Theorem 3.1.6). Also
that inequality implies for ‖w‖Lr′ = 1 that∣∣∣∣∫

X

uw̄dμ

∣∣∣∣ ≤ ‖u‖Lr(μ) =⇒ ‖u‖Lr(μ) ≥ sup
‖w‖

Lr′ (μ)
=1

∣∣∣∣∫
X

uw̄dμ

∣∣∣∣ .
We assume first that 1 < r < +∞. Taking w = α|u|r−1, with u = α|u|, |α| ≡ 1
(we define α = u/|u| on {u �= 0}, α = 1 on {u = 0}: α is easily seen to be a
measurable function), we find for u �= 0 in Lr,

‖w‖r′
Lr′ =

∫
X

|u|(r−1)r′=rdμ = ‖u‖rLr > 0,

and
∫
X
uw̄ =

∫
X
uᾱ|u|r−1 =

∫
X

|u|αᾱ|u|r−1 = ‖u‖rLr . We obtain thus

〈u,w/‖w‖Lr′ 〉 = ‖u‖r−
r
r′=r(1− 1

r′ )=1

Lr ,

proving the result.

We assume now r = 1. We take w = 1u�=0
u
|u| , so that we find for u �= 0 in L1,

‖w‖L∞ = 1,

∫
X

uw̄dμ =

∫
|u|dμ = ‖u‖L1, proving the result in that case.

We assume r = +∞, μ(X) < +∞. Let u ∈ L∞(μ), u �= 0, and let ε > 0: then we
have

+∞ > μ
(
{x ∈ X, |u(x)| ≥ ‖u‖L∞(μ) − ε}︸ ︷︷ ︸

Gε

)
> 0.

We define for ε ∈ (0, ‖u‖L∞(μ)), w =
ū1Gε

|u|μ(Gε)
, so that ‖w‖L1(μ) = 1. We have

also

〈u,w〉 =
∫
X

|u| 1Gε

μ(Gε)
dμ ≥ ‖u‖L∞(μ) − ε,

so that sup‖w‖L1=1 |〈u,w〉| ≥ ‖u‖L∞(μ) − ε. Since the latter is true for all ε > 0,
this gives the result.



6.2. Lp Estimates for convolution, Young’s inequality 289

We assume r = +∞, μ σ-finite. Let X = ∪NXN , μ(XN ) < +∞. We may assume
that the sequence (XN )N∈N is increasing. Let u ∈ L∞(μ), u �= 0. We define for
ε ∈ (0, ‖u‖L∞(μ)),

Gε,N = {x ∈ XN , |u(x)| ≥ ‖u‖L∞(μ) − ε}.

Since Gε = ∪N∈NGε,N = {x ∈ X, |u(x)| ≥ ‖u‖L∞(μ) − ε} which has a positive
measure, Proposition 1.4.4(2) implies

lim
N
μ(Gε,N ) = μ(Gε) > 0 =⇒ ∃Nε, ∀N ≥ Nε, μ(Gε,N ) > 0.

We define w =
ū1Gε,Nε

|u|μ(Gε,Nε)
, so that ‖w‖L1(μ) = 1, and we have

〈u,w〉 =
∫
X

|u|
1Gε,Nε

μ(Gε,Nε)
dμ ≥ ‖u‖L∞(μ) − ε,

proving the result in that case as well. The proof of the lemma is complete. �

Theorem 6.2.2 (Young’s inequality). Let p, q, r ∈ [1,+∞] such that

1 − 1

r
= 1 − 1

p
+ 1 − 1

q
. (6.2.1)

Then for u, v ∈ Cc(Rn), we have

‖u ∗ v‖Lr(Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn). (6.2.2)

Moreover the bilinear mapping Cc(Rn)2 � (u, v) �→ u∗v ∈ Lr(Rn) can be extended
to a bilinear mapping from Lp(Rn) × Lq(Rn) into Lr(Rn) satisfying (6.2.2).

Proof. (1) We note first that if r = 1, then p = q = 1 and the inequality is already
proven as well as the unique extension property.

(2) Moreover if r = +∞, then 1/p+ 1/q = 1, the requested inequality is

‖u ∗ v‖L∞(Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn),

which follows immediately from Hölder’s inequality (Theorem 3.1.6). The exten-
sion property holds obviously for 1 ≤ p, q < +∞. If p = +∞ = r, then q = 1
and

(u ∗ v)(x) =
∫
u(x− y)v(y)dy,

and (u, v) �→ u∗v is a bilinear continuous mapping from L∞×L1 into L∞ satisfying
(6.2.2).

(3) We may thus assume that r ∈]1,+∞[. If p = +∞ (resp. q = +∞), we have
1 + 1/r = 1/q (resp. 1 + 1/r = 1/p), so that r = +∞, a case now excluded. If
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p = 1 we have q = r; if q = r = 1, the inequality is proven. We thus may assume
that 1 ≤ p < +∞, 1 < q, r < +∞. Let w ∈ Cc(Rn). We consider

(u ∗ v ∗ w)(0) =
∫
(u ∗ v)(y)w(−y)dy =

∫∫
u(y − x)v(x)w(−y)dydx,

we define

t =
1

p
, s =

1

q
, σ = 1 − 1

r
, u0 = |u|p, v0 = |v|q, w0 = |w|1/σ,

and we find

(�) |(u ∗ v ∗ w)(0)| ≤
∫∫
ut0(y − x)vs0(x)wσ

0 (−y)dydx.

We note that

1 − t+ 1 − s = σ, i.e., 1 − t+ 1 − s+ 1 − σ = 1, 1 − t, 1 − s, 1− σ ≥ 0.

Lemma 6.2.3. Let u0, v0, w0 be non-negative functions in L1(Rn) with norm 1. Let
s, t, σ ∈ [0, 1] such that 1 − t+ 1 − s+ 1 − σ = 1. Then∫∫

ut0(y − x)vs0(x)wσ
0 (−y)dydx ≤ 1.

Proof of the lemma. We have for u0(y − x), v0(x), w0(−y) positive,

tLogu0(y − x) + sLog v0(x) + σ Logw0(−y)

=

⎡⎢⎢⎢⎢⎢⎣(1 − t)

⎛⎝0
1
1

⎞⎠
︸ ︷︷ ︸

a1

+(1 − s)

⎛⎝1
0
1

⎞⎠
︸ ︷︷ ︸

a2

+(1 − σ)

⎛⎝1
1
0

⎞⎠
︸ ︷︷ ︸

a3

⎤⎥⎥⎥⎥⎥⎦ ·

⎛⎝Log u0(y − x)
Log v0(x)
Logw0(−y)

⎞⎠
︸ ︷︷ ︸

L

.

Consequently, we obtain, using the convexity of the exponential function,

ut0(y − x)vs0(x)wσ
0 (−y)

= exp
[
(1 − t)(a1 · L) + (1 − s)(a2 · L) + (1 − σ)(a3 · L)

]
≤ (1 − t) exp(a1 · L) + (1 − s) exp(a2 · L) + (1 − σ) exp(a3 · L),

so that ∫∫
ut0(y − x)vs0(x)wσ

0 (−y)dydx

≤
∫∫ {

(1 − t)v0(x)w0(−y) + (1 − s)u0(y − x)w0(−y)

+ (1 − σ)u0(y − x)v0(x)
}
dydx = 1,

(6.2.3)

concluding the proof of the lemma. �
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Going back to the proof of the theorem, we note that the previous lemma
and (�) imply

|(u ∗ v ∗ w)(0)| ≤
∫∫ {

(1 − t)v0(x)w0(−y) + (1 − s)u0(y − x)w0(−y)

+ (1 − σ)u0(y − x)v0(x)
}
dydx.

(6.2.4)

We get thus with 1/r + 1/r′ = 1, w̌(x) = w(−x), 〈u, v〉 =
∫
uw̄,

|〈u ∗ v, w̌〉| ≤ (1 − t)‖v‖qLq‖w‖r
′

Lr′ + (1 − s)‖u‖pLp‖w‖r
′

Lr′ + (1 − σ)‖u‖qLp‖v‖qLq .

Let us assume ‖u‖Lp = ‖v‖Lq = ‖w‖Lr′ = 1.We have then |〈u ∗ v, w̌〉| ≤ 1 so that
by homogeneity,

|〈u ∗ v, w〉| ≤ ‖u‖Lp‖v‖Lq‖w‖Lr′ . (6.2.5)

Since we have assumed that r ∈ (1,+∞], we know that r′ ∈ [1,+∞) and Cc(Rn) is
dense in Lr

′
(Rn) (Theorem 3.4.1). Inequality (6.2.5) implies for u, v, w ∈ Cc(Rn),

W ∈ Lr′(Rn),∣∣∣∫ (u ∗ v)︸ ︷︷ ︸
Cc(R

n)
⊂Lr(Rn)

(x) W (x)︸ ︷︷ ︸
Lr′(Rn)

dx
∣∣∣ ≤ |〈u ∗ v,W − w〉| + |〈u ∗ v, w〉|

≤ ‖u ∗ v‖Lr‖W − w‖Lr′ + ‖u‖Lp‖v‖Lq‖w‖Lr′ .

As a result for u, v ∈ Cc(Rn),W ∈ Lr′(Rn), and ε > 0, there exists w ∈ Cc(Rn)
such that ‖W − w‖Lr′ ≤ ε and thus

|〈u ∗ v,W 〉| ≤ ε‖u ∗ v‖Lr + ‖u‖Lp‖v‖Lq(‖W‖Lr′ + ε),

which implies |〈u ∗ v,W 〉| ≤ ‖u‖Lp‖v‖Lq‖W‖Lr′ and from Lemma 6.2.1 this gives
‖u ∗ v‖Lr ≤ ‖u‖Lp‖v‖Lq .

To prove that the mapping (u, v) �→ u ∗ v can be continuously extended from
Cc(Rn)2 into Lr(Rn) to a continuous mapping from Lp × Lq into Lr, we may
assume that p, q ∈ [1,+∞). For (u, v) ∈ Lp ×Lq and (uk, vk) sequences in Cc(Rn)
converging towards u, v respectively in Lp, Lq, we note that the sequence (uk ∗ vk)
is a Cauchy sequence in Lr since

‖uk+l ∗ vk+l − uk ∗ vk‖Lr = ‖(uk+l − uk) ∗ vk+l + uk ∗ (vk+l − vk)‖Lr

≤ ‖uk+l − uk‖Lp‖vk+l‖Lq + ‖vk+l − vk‖Lq‖uk‖Lp ,

and the numerical sequences (‖vk‖Lq)k, (‖vk‖Lq)k are bounded. We may define
u ∗ v for (u, v) ∈ Lp ×Lq as the limit in Lr of uk ∗ vk. That limit does not depend
on the approximating sequences, thanks to the same inequality: with ũk, ṽk other
approximating sequences, we have

uk ∗ vk − ũk ∗ ṽk = (uk − ũk) ∗ vk + ũk ∗ (vk − ṽk),

and thus ‖uk ∗vk − ũk ∗ ṽk‖Lr ≤ ‖uk− ũk‖Lp‖vk‖Lq +‖ũk‖Lp‖vk − ṽk‖Lq , entailing
that limk uk ∗ vk = limk ũk ∗ ṽk in Lr. �
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There is a more constructive approach to the definition of the convolution
product between Lp(Rn) and Lq(Rn) for p, q, r satisfying (6.2.1). The case r = +∞
is settled directly by Hölder’s inequality. We assume in the sequel that 1 ≤ r <
+∞.

Let u ∈ Lp(Rn), v ∈ Lq(Rn), both non-negative functions. Then the function
(x, y) �→ u(y − x)v(x) is measurable and Tonelli’s theorem 4.2.5 implies that

(u ∗ v)(y) =
∫
u(y − x)v(x)dx

is a measurable non-negative function of y. Moreover choosing w(y) = 1Bn(y/k),
inequalities (6.2.4), (6.2.5) entail that

∫
|y|≤k

(u ∗ v)(y)dy is finite for all k. As a

result the non-negative function u∗v is locally integrable (thus almost everywhere
finite). We use now Lemma 6.2.1: for B with finite measure and λ > 0,(∫

B∩{y,(u∗v)(y)≤λ}

(
(u ∗ v)(y)

)r
dy

)1/r

= sup
w≥0

‖w‖
Lr′=1

∫
B∩{y,(u∗v)(y)≤λ}

(u ∗ v)(y)w(y)dy,

and inequality (6.2.5) implies∫
B∩{y,(u∗v)(y)≤λ}

(
(u ∗ v)(y)

)r
dy ≤ ‖u‖rLp(Rn)‖v‖rLq(Rn),

which proves that for u, v non-negative respectively in Lp(Rn) and Lq(Rn) for
p, q, r satisfying (6.2.1), we find that u ∗ v belongs to Lr(Rn) and (6.2.2) holds.
Now if u, v are respectively in Lp(Rn) and Lq(Rn), we may write

u = (Reu)+ − (Reu)− + i(Imu)+ − i(Imu)−,

and define u ∗ v = (Reu)+ ∗ (Re v)++ · · · . The bilinearity is obvious as well as the
continuity Lp ∗Lq ⊂ Lr. To obtain the inequality (6.2.2), we use again inequalities
(6.2.4), (6.2.5). We sum-up our discussion.

Definition 6.2.4. Let p, q, r ∈ [1,+∞] satisfying (6.2.1). For u ∈ Lp(Rn) and
v ∈ Lq(Rn), we define

(u ∗ v)(y) =
∫
u(y − x)v(x)dx

which is a locally integrable function (thus a.e. finite).

Theorem 6.2.5. Let p, q, r ∈ [1,+∞] satisfying (6.2.1). The mapping

Lp(Rn) × Lq(Rn) � (u, v) �→ u ∗ v ∈ Lr(Rn),

is continuous and (6.2.2) holds.
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6.3 Weak Lp spaces

Definition 6.3.1. Let p ∈ [1,+∞). We define the weak-Lp(Rn) space Lpw(R
n) as

the set of measurable functions u : Rn → C such that

sup
t>0
tpλn

(
{x ∈ Rn, |u(x)| > t}

)
= Ωp(u) < +∞, (6.3.1)

where λn is the Lebesgue measure on Rn.

Remark 6.3.2. (1) We have Lp(Rn) ⊂ Lpw(Rn): let u ∈ Lp(Rn). We have for t > 0,

tpλn({|u| > t}) =
∫
|u|>t

tpdx ≤
∫
|u|>t

|u(x)|pdx ≤ ‖u‖pLp(Rn),

so that, with Ωp(u) defined in (6.3.1), we have

Ωp(u) ≤ ‖u‖pLp(Rn). (6.3.2)

(2) For x ∈ Rn, we define vp(x) = |x|−n/p (a measurable function). For R > 0, we
have ∫

B(0,R)

vp(x)
pdx =

∫
B(0,R)

|x|−ndx ≥ |Sn−1|
∫ R

0

dr/r = +∞,

so that vp is not in Lploc(R
n). On the other hand, we have for t > 0,

tpλn
(
{|x|−n/p > t}

)
= tpt−

p
nnλn(Bn) = λn(Bn),

so that vp belongs to Lpw(R
n).

Lemma 6.3.3. Let p ∈ [1,+∞). Then Lpw(R
n) is a C-vector space. For u, v ∈

Lpw(R
n), α ∈ C, we have(
Ωp(αu)

) 1
p = |α|

(
Ωp(u)

) 1
p ,

(
Ωp(u+ v)

) 1
p ≤ 2

1
p
(
Ωp(u)

1
p +Ωp(v)

1
p
)
.

Remark 6.3.4. The mapping Lpw(R
n) � u �→

(
Ωp(u)

) 1
p is a quasi-norm: it satisfies

the first two properties (separation and homogeneity) in (1.2.12), but fails to
satisfy the triangle inequality, although a substitute is available with a constant
21/p > 1. We shall see below (Lemma 6.3.5) that when p ∈ (1,+∞), we can find
a true norm equivalent to this quasi-norm.

Proof of the lemma. Let α, β be non-zero complex numbers and let u, v ∈ Lpw.
Since for t > 0, |αu| ≤ t/2 and |βv| ≤ t/2 imply |αu + βv| ≤ t, we have

{|αu+ βv| > t} ⊂ {|αu| > t/2} ∪ {|βv| > t/2},
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and thus

tpλn
(
{|αu+ βv| > t}

)
≤ (2|α|)p

(
t

2|α|

)p

λn
(
{|αu| > t/2}

)
+ (2|β|)p

(
t

2|β|

)p

λn({|βv| > t/2})

≤ (2|α|)pΩp(u) + (2|β|)pΩp(v),

so that Ωp(αu + βv) ≤ (2|α|)pΩp(u) + (2|β|)pΩp(v) < +∞, proving the vector
space property. The first homogeneity equality in the lemma is obvious, let us
prove the second one. We may of course assume that both quantities Ωp(u),Ωp(v)
are positive (Ωp(u) = 0 implies u = 0 a.e.). Let θ ∈ (0, 1). Since for t > 0,
|u| ≤ (1 − θ)t and |βv| ≤ θt imply |u+ v| ≤ t, we have

{|u+ v| > t} ⊂ {|u| > t(1 − θ)} ∪ {|v| > tθ},

so that

tpλn({|u+ v| > t})
≤ (1 − θ)−ptp(1 − θ)pλn({|u| > t(1 − θ)}) + θ−ptpθpλn({|v| > tθ})
≤ (1 − θ)−pΩp(u) + θ

−pΩp(v).

(∗)

We consider now the function (0, 1) � θ �→ (1− θ)−pa+ θ−pb = φa,b(θ), where a, b
are positive parameters. We have

φ′a,b(θ) = p(1 − θ)−p−1a− pθ−p−1b,

and the minimum of φ is attained at θ such that (1 − θ)−p−1a = θ−p−1b, i.e.,

θ

1 − θ = (b/a)
1

p+1 , i.e., θ =
(b/a)

1
p+1

1 + (b/a)
1

p+1

=
b

1
p+1

a
1

p+1 + b
1

p+1

,

with φa,b = (1− θ)−pa+ θ−pb = (a
1

p+1 + b
1

p+1 )p+1 at this point. We infer from (∗)
that (

Ωp(u+ v)
) 1

p ≤
(
Ωp(u)

1
p+1 +Ωp(v)

1
p+1
) p+1

p ≤ 2
1
p
(
Ωp(u)

1
p +Ωp(v)

1
p
)
,

where the last inequality comes from the sharp elementary2

(a
1

p+1 + b
1

p+1 )
p+1
p ≤ 2

1
p
(
a

1
p + b

1
p
)
. �

2We have from Hölder’s inequality for a, b positive,

a
1

p+1 + b
1

p+1 ≤
(
(a

1
p+1 )

p+1
p + (b

1
p+1 )

p+1
p

) p
p+1 (

1
p+1
1 + 1

p+1
1

) 1
p+1 = 2

1
p+1

(
a

1
p + b

1
p
) p

p+1 .

The constant 2
1

p+1 is easily shown to be sharp by taking a = b.
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Lemma 6.3.5. Let p ∈ (1,+∞) and let p′ be its conjugate exponent. For u ∈
Lpw(R

n), we define

Np(u) = sup
A measurable

with finite positive
measure

λn(A)
−1/p′

∫
A

|u(x)|dx. (6.3.3)

Then Np is a norm on Lpw(R
n) which is equivalent to the quasi-norm Ωp(·)1/p.

Proof. Tonelli’s Theorem 4.2.5 gives for a measurable subset A of Rn,∫
A

|u(x)|dx =
∫∫

1A(x)H(|u(x)| − t)H(t)dtdx, with H = 1R+ .

As a result, for T ≥ 0 and A measurable with finite measure, we have∫
A

|u(x)|dx =
∫ +∞

0

λn
(
A ∩ {|u| > t}

)
dt

=

∫ T

0

λn
(
A ∩ {|u| > t}

)
dt+

∫ +∞

T

λn
(
A ∩ {|u| > t}

)
dt

≤ Tλn(A) +
∫ +∞

T

λn
(
{|u| > t}

)
dt.

≤ Tλn(A) +
∫ +∞

T

Ωp(u)t
−pdt = Tλn(A) + Ωp(u)

T 1−p

p− 1
.

We choose T = λn(A)
−1/pΩp(u)

1/p and we find∫
A

|u(x)|dx ≤ λn(A)1/p
′
Ωp(u)

1/p +
1

p− 1
λn(A)

− 1
p+1Ωp(u)

1+ 1
p−1

= λn(A)
1/p′Ωp(u)

1/p p

p− 1
,

proving

Np(u) ≤ p

p− 1
Ωp(u)

1/p. (6.3.4)

For t > 0, and Xk measurable with finite measure, we have

tpλn
(
{|u| > t} ∩Xk

)
= tp

∫
{|u|>t}∩Xk

dx ≤ tp−1

∫
{|u|>t}∩Xk

|u(x)|dx

≤ tp−1Np(u)λn
(
{|u| > t} ∩Xk

)1/p′
,

so that tλn
(
{|u| > t} ∩Xk

)1/p ≤ Np(u). Since λn is σ-finite, this implies

Ωp(u) ≤ Np(u)
p. (6.3.5)
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We see now that Np is finite ≥ 0 on Lpw from (6.3.4). Moreover Np(u) = 0 implies
from (6.3.5) that λn({|u| > t}) = 0 for all t > 0 and since

{u �= 0} = ∪n≥1{|u| > 1/n},

we find u = 0, a.e. Moreover, for α ∈ C and u ∈ Lpw, we have

Np(αu) = sup
A measurable

with finite measure>0

λn(A)
−1/p′

∫
A

|αu(x)|dx = |α|Np(u).

Eventually, for u, v ∈ Lpw and A measurable with finite measure, we have

λn(A)
−1/p′

∫
A

|u(x) + v(x)|dx

≤ λn(A)−1/p′
∫
A

|u(x)|dx + λn(A)−1/p′
∫
A

|v(x)|dx ≤ Np(u) +Np(v),

which implies Np(u+ v) ≤ Np(u) +Np(v), proving that Np is a norm on Lpw(R
n)

and concluding the proof of the lemma. �

Proposition 6.3.6. Let p ∈ (1,+∞). Then Lpw(R
n) is a Banach space for the norm

(6.3.3).

Proof. Let us consider a Cauchy sequence (uk)k∈N in Lpw(R
n): in particular for

every measurable subset A with finite measure, we find that (uk|A)k∈N is a Cauchy
sequence in L1(A), thus convergent with limit vA. Since the Lebesgue measure on
Rn is σ-finite, we find a measurable function u such that for every A measurable
with finite measure, limk ‖uk−u‖L1(A) = 0. We check now for a measurable subset
A with finite measure,

λn(A)
−1/p′

∫
A

|uk(x) − u(x)|dx

≤ λn(A)−1/p′
∫
A

|uk(x) − ul(x)|dx + λn(A)−1/p′
∫
A

|ul(x) − u(x)|dx

≤ Np(uk − ul) + λn(A)−1/p′‖ul − u‖L1(A).

Let ε > 0 be given. There exists Nε such that for k, l ≥ Nε, we have Np(uk −ul) ≤
ε/2. We know also that for l ≥ Lε,A, we have λn(A)

−1/p′‖ul − u‖L1(A) ≤ ε/2. We
take k ≥ Nε and we choose l = max(Nε, Lε,A): we find

λn(A)
−1/p′

∫
A

|uk(x) − u(x)|dx ≤ ε.

As a result u belongs to Lpw(R
n) and Np(uk − u) ≤ ε for k ≥ Nε, proving the

completeness of Lpw(R
n). �
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6.4 The Hardy–Littlewood–Sobolev inequality

We begin with a lemma, following [43].

Lemma 6.4.1. Let p, q, r > 1 be real numbers such that

1 − 1

p
+ 1 − 1

q
= 1 − 1

r
=

1

r′

and let f, g be non-negative measurable functions such that ‖f‖Lp(Rn) = 1 =
‖g‖Lr′(Rn). Setting τ = n/q, we define Tτ (f, g) =

∫∫
f(x)|x − y|−τg(y)dydx and

we have

Tτ (f, g) = τ

∫
R3

+×Rn×Rn

t−τ−1
3 H(t3 − |x− y|)

H(f(x) − t1)H(g(y) − t2)dt1dt2dt3dxdy. (6.4.1)

Setting for tj ≥ 0,

u1(t1) =

∫
Rn

H(f(x) − t1)dx, u2(t2) =
∫
Rn

H(g(y)− t2)dy, u3(t3) = βntn3 ,

with βn = |Bn| (see (4.5.4), (5.4.8)), and

m(t1, t2, t3) = max
(
u1(t1), u2(t2), u3(t3)

)
,

we have

Tτ (f, g) ≤ τ
∫
R3

+

t−τ−1
3

u1(t1)u2(t2)u3(t3)

m(t)
dt1dt2dt3, (6.4.2)

p

∫ +∞

0

tp−1
1 u1(t1)dt1 = r′

∫ +∞

0

tr
′−1

2 u2(t2)dt2 = 1. (6.4.3)

Proof. We have for τ > 0,

τ

∫ +∞

0

t−τ−1H(t− |x|)dt = τ
∫ +∞

|x|
t−τ−1dt = [t−τ ]

t=|x|
t=+∞ = |x|−τ

and thus

Tτ (f, g) =

∫∫
f(x)|x − y|−τg(y)dydx

=

∫
Rn×Rn×R+

f(x)g(y)τt−τ−1
3 H(t3 − |x− y|)dxdydt3

= τ

∫
R3

+×Rn×Rn

t−τ−1
3 H(t3 − |x− y|)H(f(x) − t1)H(g(y) − t2)dt1dt2dt3dxdy,
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proving (6.4.1). We have thus

Tτ (f, g) ≤ τ
∫
R3

+×Rn×Rn

m(t)=u3(t3)

t−τ−1
3 H(f(x) − t1)H(g(y)− t2)dt1dt2dt3dxdy

+ τ

∫
R3

+×Rn×Rn

m(t)=u2(t2)

t−τ−1
3 H(t3 − |x− y|)H(f(x) − t1)dt1dt2dt3dxdy

+ τ

∫
R3

+×Rn×Rn

m(t)=u1(t1)

t−τ−1
3 H(t3 − |x− y|)H(g(y)− t2)dt1dt2dt3dxdy,

so that

Tτ (f, g) ≤ τ
∫
R3

+,m(t)=u3(t3)

t−τ−1
3 u1(t1)u2(t2)dt

+ τ

∫
R3

+,m(t)=u2(t2)

t−τ−1
3 βnt

n
3u1(t1)dt

+ τ

∫
R3

+,m(t)=u1(t1)

t−τ−1
3 βnt

n
3u2(t2)dt

= τ

∫
R3

+

t−τ−1
3

u1(t1)u2(t2)u3(t3)

m(t)
dt1dt2dt3.

Moreover, we have

p

∫ +∞

0

tp−1
1 u1(t1)dt1 =

∫
Rn

∫ +∞

0

ptp−1
1 H(f(x) − t1)dxdt1 =

∫
Rn

f(x)pdx = 1

and

r′
∫ +∞

0

tr
′−1

2 u2(t2)dt2 =

∫
Rn

∫ +∞

0

r′tr
′−1

2 H(g(y) − t2)dydt2 =

∫
Rn

g(y)r
′
dx = 1,

completing the proof of the lemma. �
Lemma 6.4.2. Let p, q, r, f, g, τ, Tτ , βn, u1, u2 as in the previous lemma. Then we
have

Tτ (f, g) ≤ nβ
τ/n
n

n− τ

∫
R2

+

min
(
u1(t1)

1− τ
nu2(t2),u1(t1)u2(t2)1−

τ
n

)
dt1dt2. (6.4.4)

Proof. For t ∈ R3
+, we set V (t) = u1(t1)u2(t2)u3(t3)

m(t) .

Let us assume that u1(t1) ≥ u2(t2). In that case we have∫ +∞

0

t−τ−1
3 V (t1, t2, t3)dt3 =

∫ +∞

0

t−τ−1
3

u1(t1)u2(t2)u3(t3)

max(u1(t1), u3(t3))
dt3

= u1(t1)u2(t2)
(∫

R+,βntn3≤u1(t1)

t−τ−1+n
3 βndt3u1(t1)

−1 +

∫
R+,βntn3 >u1(t1)

t−τ−1
3 dt3

)
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= u1(t1)u2(t2)βn

(
u1(t1)

−1
[ tn−τ

3

n− τ
]t3=u1(t1)

1/nβ−1/n
n

t3=0
+ β−1

n

[ t−τ
3

τ

]t3=u1(t1)
1/nβ−1/n

n

t3=+∞

)
= u1(t1)u2(t2)βn

(
u1(t1)

−1+n−τ
n
β
−1+ τ

n
n

n− τ + τ−1β
−1+ τ

n
n u1(t1)

−τ/n
)

= u1(t1)
1− τ

n u2(t2)β
τ/n
n

n

τ(n − τ) .

If we have instead u1(t1) ≤ u2(t2), we find∫ +∞

0

t−τ−1
3 V (t1, t2, t3)dt3 = u2(t2)

1− τ
n u1(t1)β

τ/n
n

n

τ(n− τ) .

From (6.4.2) and the previous estimates, we obtain

Tτ (f, g) ≤ nβ
τ/n
n

n− τ

∫
R2

+

1
(
u1(t1) ≥ u2(t2)

)
u1(t1)

1− τ
nu2(t2)

1− τ
nu2(t2)

τ
n dt1dt2

+
nβ

τ/n
n

n− τ

∫
R2

+

1
(
u1(t1) ≤ u2(t2)

)
u1(t1)

1− τ
n u2(t2)

1− τ
n u1(t1)

τ
n dt1dt2

=
nβ

τ/n
n

n− τ

∫
R2

+

u1(t1)
1− τ

n u2(t2)
1− τ

n

(
min
(
u1(t1), u2(t2)

))τ/n
dt1dt2,

which is (6.4.4). �
Lemma 6.4.3. Let p, q, r, f, g, τ, Tτ , βn, u1, u2 as in the previous lemmas. We define

J =

∫
R2

+

min
(
u1(t1)

1− τ
n u2(t2),u1(t1)u2(t2)1−

τ
n

)
dt1dt2. (6.4.5)

Then with

J1 =

∫ +∞

0

u1(t1)

∫ t
p/r′
1

0

u2(t2)
1− τ

n dt2dt1, J2 =

∫ +∞

0

u2(t2)

∫ t
r′/p
2

0

u1(t1)
1− τ

n dt1dt2,

we have J ≤ J1 + J2. Moreover, we have

J1 ≤ 1

pr′

(
p′τ

n

)τ/n

, J2 ≤ 1

pr′

(rτ
n

)τ/n
.

Proof. We have

J ≤
∫∫

0≤t1,0≤t2≤t
p/r′
1

(
u1(t1)u2(t2)

)1− τ
n min

(
u1(t1), u2(t2)

)τ/n
dt1dt2

+

∫∫
0≤t2,0≤t1≤t

r′/p
2

(
u1(t1)u2(t2)

)1− τ
n min

(
u1(t1), u2(t2)

)τ/n
dt1dt2
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and thus

J ≤
∫ +∞

0

u1(t1)

(∫ t
p/r′
1

0

u2(t2)
1− τ

n dt2

)
dt1

+

∫ +∞

0

u2(t2)

(∫ t
r′/p
2

0

u1(t1)
1− τ

n dt1

)
dt2.

From Hölder’s inequality, since 1 − τ
n = 1/q′, we find, choosing m = r′−1

q′ ,

∫ t
p/r′
1

0

u2(t2)
1− τ

n dt2 =

∫ t
p/r′
1

0

tm2 u2(t2)
1− τ

n t−m
2 dt2

≤
( ∫ t

p/r′
1

0

tmq′
2 u2(t2)dt2︸ ︷︷ ︸

=1/r′ from (6.4.3)

)1/q′(∫ t
p/r′
1

0

t−mq
2 dt2

)1/q

.

We note also that

mq =
r′ − 1

q′
q < 1 ⇐⇒ r′ − 1

q′
< 1/q ⇐⇒ r′ < q′ which holds since

1

p′
+

1

q′
=

1

r′
.

As a result, we have

J1 ≤
∫ +∞

0

u1(t1)

(
1

r′

)1/q′ (
(t

p/r′
1 )1−mq(1 −mq)−1

)1/q
dt1.

Since

p(1 −mq)
r′q

=
p

r′q

(
1 − (r′ − 1)

q′
q

)
=
p

r′

(
1 − r

′

q′

)
= p

(
1

r′
− 1

q′

)
=
p

p′
= p− 1,

we obtain, using (6.4.3),

J1 ≤
∫ +∞

0

u1(t1)t
p−1
1 dt1

(
1

r′

)1/q′

(1 −mq)−1/q

=
1

p

(
1

r′

)1/q′

(1 −mq)−1/q =
1

pr′

(
1

r′
− mq
r′

)−1/q

=
1

pr′

(
1

r′
− q

q′r

)−1/q

=
1

pr′

(
1

r′
− (q − 1)

r

)−1/q

=
1

pr′

(
1 − q
r

)−1/q

=
1

pr′

(
1

q
− 1

r

)−1/q

q−1/q

=
1

pr′

(
1

p′

)−1/q

q−1/q =
1

pr′

(
p′

q

)1/q

=
1

pr′

(
p′τ

n

)τ/n

.
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To estimate J2 from above is analogous: we have, choosing μ = p−1
q′ ,∫ t

r′/p
2

0

u1(t1)
1− τ

n dt1 =

∫ t
r′/p
2

0

tμ1u1(t1)
1− τ

n t−μ
1 dt1

≤
(∫ t

r′/p
2

0

tμq
′

1 u1(t1)dt1︸ ︷︷ ︸
=1/p

)1/q′(∫ t
r′/p
2

0

t−μq
1 dt1

)1/q

.

We check μq < 1 by the same calculation, exchanging the roles of p and r′: p′ is
replaced by r and pr′ replaced by r′p is unchanged. �
Theorem 6.4.4 (Hardy–Littlewood–Sobolev inequality). Let p, q, r ∈ (1,+∞) such
that 1

p′ +
1
q′ =

1
r′ . There exists C > 0 such that, for all F ∈ Lp(Rn),

‖(F ∗ | · |−n/q)‖Lr(Rn) ≤ C‖F‖Lp(Rn).

The constant C can be taken as q′β
1/q
n

1
pr′

((
p′

q

)1/q
+
(

r
q

)1/q)
.

Proof. For f = |F |/‖F‖Lp, ‖g‖Lr′ = 1, we have proven from (6.4.4) and Lemma
6.4.3,

Tτ (f, g) ≤ nβ
τ/n
n

n− τ
1

pr′

((p′
q

)1/q
+
(r
q

)1/q)
= β1/qn q

′ 1

pr′

((p′
q

)1/q
+
(r
q

)1/q)
,

providing the sought result. �

6.5 Notes

The names of mathematicians encountered in this chapter follow.

Godfrey H. Hardy (1877–1947) was a prominent British mathematician.

John E. Littlewood (1885–1977) was a British mathematician, a pioneer of
Fourier analysis in collaboration with Raymond Paley (1907–1933).

Serguei Sobolev (1908–1989) was a Russian mathematician, author of several
fundamental contributions to functional analysis. His name is attached to
the so-called Sobolev spaces. He introduced in the 1930s a theory for weak
solutions to PDE, similar to distribution theory, later developed in greater
generality by the French mathematician Laurent Schwartz (1915–2002).
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6.6 Exercises

Exercise 6.6.1. Let p ∈ [1,+∞] and let u ∈ Lp(Rn), v ∈ Lp′(Rn). Prove that u ∗ v
is a bounded continuous function on Rn.

Answer. We already know from Theorem 6.2.4 (and in fact Hölder’s inequality)
that u ∗ v belongs to L∞ with ‖u ∗ v‖L∞ ≤ ‖u‖Lp‖v‖Lp′ . We may assume that
1 ≤ p < +∞ (if p = +∞, then p′ = 1 and we may use the commutativity of
convolution). Moreover, we have

(u ∗ v)(x+ h) − (u ∗ v)(x) =
∫ (
u(x+ h− y) − u(x− y)

)
v(y)dy,

and using the notation of Exercise 3.7.15, with ǔ(t) = u(−t), we have

(u ∗ v)(x + h) − (u ∗ v)(x) =
∫
(τx+hǔ− τxǔ)(y)v(y)dy

so that |(u ∗ v)(x+ h) − (u ∗ v)(x)| ≤ ‖τx+hǔ− τxǔ‖Lp(Rn)‖v‖Lp′(Rn), and thus

|(u ∗ v)(x + h)− (u ∗ v)(x)| ≤ ‖τh(τxǔ)− τxǔ‖Lp(Rn)‖v‖Lp′(Rn).

Since τxǔ ∈ Lp(Rn), we may apply Exercise 3.7.15 to get

lim
h→0

‖τh(τxǔ) − τxǔ‖Lp(Rn) = 0,

entailing the continuity of u ∗ v.

Exercise 6.6.2. We define E = {(x1, x2) ∈ R2, x1 − x2 /∈ Q}. Show that E cannot
contain a set A1 ×A2 with A1, A2 measurable with positive Lebesgue measure.

Answer. Reductio ad absurdum: let us assume that E ⊃ A1 × A2 with A1, A2

measurable with positive measure. We may assume

0 < λ1(Aj) < +∞, for j = 1, 2,

and we define ϕ(x1) =
∫
R
1A1(x1 + x2)1A2(x2)dx2. The function ϕ is continuous,

since with the notation of Exercise 3.7.15 we have

ϕ(x+ h) − ϕ(x) =
∫
R

[
τ−x−h(1A1) − τ−x(1A1)

]
(y)1A2(y)dy

so that since τ−x(1A1) ∈ L1(Rn), we get from Exercise 3.7.15,

|ϕ(x+ h) − ϕ(x)| ≤ ‖τ−h

(
τ−x(1A1)

)
− τ−x(1A1)‖L1(Rn) −→

h→0
0.

The function ϕ is thus continuous on R valued in R+. Moreover, we have∫
R

ϕ(x1)dx1 =

∫∫
R×R

1A1(x1 + x2)1A2(x2)dx2dx1 = λ1(A1)λ1(A2) ∈ R∗+.
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As a consequence, there exists x1 ∈ R such that ϕ(x1) > 0; we have then x1 ∈
A1 −A2, otherwise

∀x2 ∈ A2, x1 + x2 /∈ A1,

which implies 1A1(x1 + x2)1A2(x2) = 0 for all x2 ∈ R and thus ϕ(x1) = 0. As a
result, we have

∅ �= {ϕ > 0} ⊂ A1 −A2.

Moreover, we have (A1 −A2) ∩Q = ∅, otherwise

∃x1 ∈ A1, ∃x2 ∈ A2, x1 − x2 ∈ Q =⇒ (x1, x2) /∈ E

contradicting A1 ×A2 ⊂ E. We have proven A1 −A2 ⊂ Qc and thus

∅ �= {ϕ > 0} ⊂ Qc.

But the non-empty open set {ϕ > 0} contains a non-empty open interval ]a, b[, a <
b; the density of Q in R implies ]a, b[∩Q �= ∅, which is incompatible with the above
inclusion.

Exercise 6.6.3. Let ρ ∈ L1(Rn) with integral 1. For ε > 0, we define ρε(x) =
ε−nρ(x/ε).

(1) Let p ∈ [1,+∞[ and let u ∈ Lp(Rn). Show that u ∗ ρε converges with limit u
in Lp(Rn) when ε→ 0+.

(2) Let us take u = 1[0,1] and ρ(x) = e
−π‖x‖2 . Show that u ∗ ρε does not converge

in L∞(R).

Answer. (1) We have seen in Theorem 6.2.5 that L1(Rn) ∗Lp(Rn) ⊂ Lp(Rn), and
we have ∫

|(u ∗ ρε)(x) − u(x)|pdx =
∫ ∣∣∣∣∫ (u(x− εy)− u(x)

)
ρ(y)dy

∣∣∣∣p dx,
so that with the notation of Exercise 3.7.15, using Jensen’s inequality (Theorem
3.1.3),

‖u ∗ ρε − u‖pLp(Rn) ≤
∫ |ρ(y)|

‖ρ‖L1(Rn)
‖τεyu− u‖pLp(Rn)dy‖ρ‖

p
L1(Rn).

From the same Exercise 3.7.15, we find that 0 = limε→0 ‖τεyu−u‖Lp(Rn) and since

|ρ(y)|‖τεyu− u‖Lp(Rn) ≤ 2‖u‖Lp(Rn)|ρ(y)| ∈ L1(Rn),

we may apply Lebesgue’s dominated convergence theorem to get the sought result.

(2) (see also Exercise 4.5.8 for analogous results). From Exercise 6.6.1, the func-
tions u ∗ ρε are continuous. If the sequence of continuous functions u ∗ ρε were
converging in L∞(Rn), the convergence would be uniform and the limit would
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be a continuous function v. This would imply the convergence of (u ∗ ρε)|[−2,2]

towards v|[−2,2] in L
1([−2, 2]). But we know from the previous question that u ∗ρε

converges towards u in L1(Rn): this would imply that the continuous function v
would satisfy

0 =

∫ 1

0

|v(x) − 1|dx+
∫
[−2,0]∪[1,2]

|v(x)|dx = 0 =⇒ v = 1[0,1] on [−2, 2],

which is impossible since v is continuous. We can say a little bit more, since the
expressions are quite explicit here. We have for ε > 0,

(u ∗ ρε)(x) =
∫
R

1[0,1](x− εy)e−πy2

dy =

∫ x/ε

(x−1)/ε

e−πy2

dy.

Consequently for x ∈]0, 1[, x/ε→ +∞ and (x − 1)/ε→ −∞ so that

lim
ε→0+

(u ∗ ρε)(x) =

⎧⎪⎨⎪⎩
1 for 0 < x < 1,

1/2 =
∫ 0

−∞ e
−πy2

dy =
∫ +∞
0
e−πy2

dy for x = 0, 1,

0 for x /∈ [0, 1],

since for x > 1,

0 ≤
∫ x/ε

(x−1)/ε

e−πy2

dy ≤ e−π(x−1)2ε−2

ε−1 −→
ε→0+

0.

The case x < 0 is dealt with analogously. The pointwise limit is actually discon-
tinuous at 0 and 1.

Exercise 6.6.4. Let p1, . . . , pk, q ∈ [1,+∞] such that∑
1≤j≤k

1

pj
= k − 1 +

1

q
.

Show that ‖u1 ∗ · · · ∗ uk‖Lq(Rn) ≤ ‖u1‖Lp1(Rn) . . . ‖uk‖Lpk(Rn).

Answer. For k = 2, this is Young’s inequality since

1

p1
+

1

p2
= 1 +

1

q
, i.e., 1 − 1

p1
+ 1 − 1

p2
= 1 − 1

q
.

We have for k ≥ 2, if 1
p′ +

1
q′ =

1
r′ , using induction on k,

‖u1∗· · ·∗uk ∗uk+1‖Lr ≤ ‖u1∗· · ·∗uk‖Lq‖uk+1‖Lp ≤ ‖u1‖Lp1 . . . ‖uk‖Lpk ‖uk+1‖Lp

1

q′
=
∑

1≤j≤k

1

p′j
=⇒ 1

r′
=

( ∑
1≤j≤k

1

p′j

)
+

1

p′
,

i.e., ∑
1≤j≤k

1

pj
+

1

p
= k + 1 − 1

r′
= k +

1

r
, qed.
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Exercise 6.6.5. Let n ∈ N∗, a ∈]1,+∞[, p ∈]1,+∞[ and let k ∈ C1(Rn\{0})
homogeneous with degree −n/a. We define

γ = n

(
1 − 1

a
− 1

p

)
and we assume γ ∈]0, 1[.

(1) Show that for x �= 0, |k(x)| ≤ C0|x|−n/a. For u ∈ Lpcomp(R
n), we define

(k ∗ u)(x) =
∫
k(y)u(x − y)dy. Show that k ∗ u is meaningful and that for

R > 0, ∫
|y|≤R

|y|−n/a|u(x− y)|dy ≤ cn,p‖u‖LpRγ .

(2) Show that for u ∈ Lpcomp(R
n), k ∗ u is an Hölderian function with index γ.

Answer. (1) For x �= 0, we have

|k(x) = k(x/|x|)|x|−n/a| ≤ |x|−n/a sup
Sn−1

|k|.

We have also∫
|y|≤R

|y|−n/a|u(x− y)|dy ≤ ‖u‖Lp

(∫
|y|≤R

|y|−np′/ady

)1/p′

≤ C‖u‖Lp

(∫ R

0

rn−1−np′
a dr

)1/p′

= C′‖u‖LpR
n
p′−

n
a = C′‖u‖LpRγ ,

since n − 1 − np′

a = np′( 1
p′ − 1

a ) − 1 = np′(1 − 1
p − 1

a ) − 1 = γp′ − 1 > −1. As a
result,

(k ∗ u)(x) =
∫
y∈suppu

k(x− y)u(y)dy

is a bounded measurable function since u ∈ Lpcomp and k ∈ Lp
′

loc: we have indeed

−np
′

a
> −n

since 1 − 1
p − 1

a > 0 =⇒ 1
p′ >

1
a =⇒ p′

a < 1. We can prove as well that k ∗ u is
continuous, but the next question provides a sharper Hölderian regularity.

(2) For u ∈ Lpcomp(R
n), x, h ∈ Rn, we have

(k ∗ u)(x+ h) − (k ∗ u)(x) =
∫
k(y)u(x+ h− y)dy −

∫
k(y)u(x− y)dy

=

∫
k(y + h)u(x− y)dy −

∫
k(y)u(x− y)dy,
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so that

|(k ∗ u)(x+ h)− (k ∗ u)(x)| ≤
∫
|y|<2|h|

|k(y + h) − k(y)| |u(x− y)|dy︸ ︷︷ ︸
I1

+

∫
|y|≥2|h|

|k(y + h)− k(y)| |u(x− y)|dy︸ ︷︷ ︸
I2

.

To handle I1 we note that |k(y)| ≤ C0|y|−n/a and |k(y + h)| ≤ C0|y + h|−n/a, so
that, using the estimate of question (1), we get

I1 ≤ C0C
′(2|h|)γ‖u‖Lp + C0C

′(3|h|)γ‖u‖Lp.

We have thus, using the mean value theorem and the homogeneity of k′ for I2,

|(k ∗ u)(x+ h)− (k ∗ u)(x)|

≤ 2C0C
′(3|h|)γ‖u‖Lp + C′′|h|

∫
|y|≥2|h|

sup
θ∈[0,1]

|y + θh|−n
a−1|u(x− y)|dy.

If |y| ≥ 2|h|, we have |y + θh| ≥ |y| − |h| ≥ 1
2 |y| and the factor of C′′ is bounded

above by

ω = |h|2n
a +1‖u‖Lp

(∫
|y|≥2|h|

|y|−(n
a+1)p′dy

)1/p′

= |h|2n
a +1‖u‖Lp

(∫ +∞

2|h|
rn−1− np′

a −p′dr

)1/p′

|Sn−1|1/p′

and since

n− 1 − np
′

a
− p′ = np′

(
1

p′
− 1

a

)
− 1 − p′ = γp′ − p′ − 1 = p′(γ − 1) − 1 < −1,

we get

ω ≤ C′′′‖u‖Lp|h|(|h|p′(γ−1))1/p
′
= C′′′‖u‖Lp|h|γ .

Exercise 6.6.6. Let n be an integer ≥ 3. For x ∈ Rn, we denote by ‖x‖ the Eu-
clidean norm of x. Let p ∈ [1,+∞]; a measurable function f : Rn → C is said to
belong to Lploc when for all compact subsets K of Rn, 1Kf ∈ Lp(Rn).

(1) We define E(x)=‖x‖2−n and pn=
n

n−2 . Show that E belongs to ∩1≤p<pnL
p
loc,

and E /∈ Lpn

loc.



6.6. Exercises 307

(2) Let q ∈]n/2,+∞] and let F be a function in Lq(Rn) with compact support.
We define

CF (x) =

∫
Rn

‖x− y‖2−nF (y)dy.

Show that CF belongs to L∞loc.

(3) Let ϕ be a function in C2
c (R

n). Show that Cϕ is twice differentiable.

(4) Let ε > 0 be given and ϕ ∈ C2
c (R

n). Let χ ∈ C∞(R, [0, 1]) such that

χ(t) =

{
0 for t ≤ 1,

1 for t ≥ 2.

We set Δϕ =
∑

1≤j≤n

∂2ϕ

∂x2j
, I(ϕ, ε) =

∫
Rn

‖y‖2−nχ(‖y‖/ε)(%ϕ)(y)dy.

Show that

lim
ε→0+

I(ϕ, ε) = C�ϕ(0) and C�ϕ(0) = αnϕ(0),

where αn is a constant depending only on n (hint: calculate %(θ(‖x‖)) where
θ is twice differentiable vanishing near 0).

(5) Let F be as in question (2). Show that for any function ϕ, compactly sup-
ported and twice differentiable∫

Rn

CF (x)(%ϕ)(x)dx = αn

∫
Rn

F (x)ϕ(x)dx.

Answer. (1) We have

∫
‖x‖≤R

‖x‖p(2−n)dx = |Sn−1|
∫ R

0

rp(2−n)+n−1dr which is

finite iff
p(2 − n) + n− 1 > −1, i.e., p <

n

n− 2
= pn.

(2) For a given x ∈ Rn, the function y �→ ‖x−y‖2−n belongs to Lploc for 1 ≤ p < pn.
As a result, with K = suppF (a compact set), the function

y �→ ‖x− y‖2−n1K(y) = Gx(y)

belongs to Lp(Rn) for 1 ≤ p < pn. If q′ is the conjugate exponent of q > n/2, we
have 1/q < 2/n and

1

q′
= 1 − 1

q
> 1 − 2

n
=
n− 2

n
i.e., q′ <

n

n− 2
= pn,

so that the function Gx belongs to Lq
′
(Rn). From Hölder’s inequality, the product

GxF belongs to L1 and

|CF (x)| ≤ ‖F‖Lq‖Gx‖Lq′ .
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But we have for L compact and x ∈ L,

‖Gx‖q
′

Lq′ =

∫
K

‖y − x‖q′(2−n)dy =

∫
−x+K

‖t‖q′(2−n)dt

≤
∫
−L+K

‖t‖q
′(2−n)dt < +∞,

since K−L = {a− b}a∈K,b∈L is compact and q′(2−n) > −n (since q′ < n
n−2 from

above).

(3) Indeed, with Cϕ(x) =
∫

‖y‖2−nϕ(x − y)dy, defining ϕjk = ∂2ϕ
∂xj∂xk

(a C0
c

function), we see that for a compact set M ,

sup
x∈M

‖y‖2−n|ϕjk(x − y)| ≤ ‖y‖2−n1M−suppϕ(y)‖ϕjk‖L∞ ∈ L1,

since if x− y ∈ suppϕ, y = y − x+ x ∈M − suppϕ which is compact.

(4) Since ϕ ∈ C2
c and thus %ϕ ∈ C0

c , we have

‖y‖2−nχ(‖y‖/ε)|(%ϕ)(y)| ≤ ‖y‖2−n|(%ϕ)(y)| ∈ L1.
Moreover for y �= 0, limε→0+ χ(‖y‖/ε) = 1, Lebesgue’s dominated convergence
theorem gives the first result. Moreover integrating by parts in the simple integrals
in xj (on C1

c functions), we get

I(ϕ, ε) =
∑

1≤j≤n

∫
‖y‖2−nχ(‖y‖/ε)ϕjj(y)dy

=
∑

1≤j≤n

∫
∂2

∂y2j

(
‖y‖2−nχ(‖y‖/ε)

)
ϕ(y)dy.

We note that for x �= 0, ∂xj (‖x‖) = xj/‖x‖ since ∂xj (‖x‖2) = 2xj , so that for θ
as in the statement of question (4),

%(θ(‖x‖)) =
∑

1≤j≤n

∂

∂xj

[
θ′(‖x‖) xj‖x‖

]

=
∑

1≤j≤n

θ′′(‖x‖)
x2j

‖x‖2 + θ′(‖x‖)
(

1

‖x‖ − xj
‖x‖2

xj
‖x‖

)
.

Denoting r = ‖x‖, we get

%(θ(r)) = θ′′(r) +
1

r
nθ′(r) − 1

r3
r2θ′(r) = θ′′(r) +

n− 1

r
θ′(r).

We may now calculate

%(r2−nχ(r/ε)) = (2 − n)(1 − n)r−nχ(r/ε)

+ 2(2 − n)r1−nχ′(r/ε)ε−1 + r2−nχ′′(r/ε)ε−2

+
n− 1

r

[
(2 − n)r1−nχ(r/ε) + r2−nχ′(r/ε)ε−1

]
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= χ(r/ε)

=0︷ ︸︸ ︷
[(2 − n)(1 − n)r−n + (n− 1)(2 − n)r−n]

+ χ′(r/ε)[2(2 − n)r1−nε−1 + (n− 1)r1−nε−1]

+ χ′′(r/ε)ε−2r2−n

= χ′(r/ε)ε−1r1−n(3 − n) + χ′′(r/ε)ε−2r2−n.

We find

I(ϕ, ε) =

∫
ϕ(y)

[
χ′(‖y‖/ε)ε−1‖y‖1−n(3 − n) + χ′′(‖y‖/ε)ε−2‖y‖2−n

]
dy

=

∫
ϕ(εy)

[
χ′(‖y‖)ε−1ε1−n‖y‖1−n(3 − n) + χ′′(‖y‖)ε−2ε2−n‖y‖2−n

]
εndy

=

∫
ϕ(εy)

[
χ′(‖y‖)‖y‖1−n(3 − n) + χ′′(‖y‖)‖y‖2−n

]
dy,

and since the function between the brackets is C∞c , we get

C�ϕ(0) = lim
ε→0
I(ϕ, ε) = ϕ(0)|Sn−1|

∫ +∞

0

[χ′(r)(3 − n) + χ′′(r)r]dr

= ϕ(0)|Sn−1|
(
(3 − n) −

∫ +∞

0

χ′(r)dr

)
= ϕ(0) |Sn−1|(2 − n)︸ ︷︷ ︸

αn

.

(5) Thanks to Fubini’s theorem we have, with ψy(x) = ψ(x+ y),∫
CF (x)(%ϕ)(x)dx =

∫∫
‖x− y‖2−nF (y)(%ϕ)(x)dxdy

=

∫∫
‖x‖2−nF (y)(%ϕ)(x + y)dxdy

=

∫ [∫
‖x‖2−n(%ϕ)(x + y)dx

]
F (y)dy =

∫ [∫
‖x‖2−n(%ϕ)y(x)dx

]
F (y)dy

=

∫ [∫
‖x‖2−n(%ϕy)(x)dx

]
F (y)dy =

∫
C�ϕy (0)F (y)dy

=

∫
αnϕy(0)F (y)dy =

∫
αnϕ(y)F (y)dy.

We may note that with F of class C2
c , the above equality gives %(α−1

n CF ) = F
and gives a solution to the equation

Δu = F

for F ∈ Ln
2 +δ with δ > 0 and F with compact support.



310 Chapter 6. Convolution

Exercise 6.6.7. Let n ≥ 1 be an integer. For x ∈ Rn, ‖x‖ stands for the Euclidean
norm of x. For (t, x) ∈ R× Rn, we define

E(t, x) =

{
(4πt)−

n
2 exp− ‖x‖2

4t if t > 0,

0 if t ≤ 0.

(1) Show that for all T ∈ R, E belongs to L1(] − ∞, T ]× Rn).

(2) For t > 0, we define on Rn the function e(t) by e(t)(x) = E(t, x). Show that
for all t > 0, e(t) ∈ L1(Rn).

(3) Let ψ be in L1(Rn). For t > 0, we set u(t) = e(t)∗ψ. Show that for all t > 0,
u(t) ∈ L1(Rn) and

lim
t→0+

u(t) = ψ in L1(Rn).

(4) We assume in the sequel that ψ ∈ Cc(Rn). For t > 0 and x ∈ Rn, we set
U(t, x) = u(t)(x). Show that U ∈ C∞(R∗+ × Rn).

(5) Show that for t > 0, x ∈ Rn, we have
∂U

∂t
(t, x) =

∑
1≤j≤n

∂2U

∂x2j
(t, x).

Answer. (1) The function E is positive measurable. For T > 0, we have∫ T

0

(4πt)−n/2

∫
Rn

exp−‖x‖2
4t
dxdt =

∫ T

0

dt = T.

(2) For t > 0, the same calculation proves
∫
Rn E(t, x)dx = 1.

(3) The function u(t) belongs to L1 as a convolution of L1 functions. We have for
t > 0,

u(t)(x) =

∫
Rn

ψ(x− y)(4πt)−n/2 exp−‖y‖2
4t
dy =

∫
Rn

ψ(x+ z(4πt)1/2)e−π‖z‖2dz.

Let ψk be a sequence of continuous functions with compact support converging
towards ψ in L1 and let us set ε = (4πt)1/2. We have

u(t)− ψ = e(t) ∗ ψ − ψ = e(t) ∗ (ψ − ψk) − (ψ − ψk) + e(t) ∗ ψk − ψk
and thus for a parameter M > 0,

‖u(t)− ψ‖L1 ≤ 2‖ψ − ψk‖L1 +

∫∫
Rn

x×{‖z‖≤M}
|ψk(x+ εz)− ψk(x)|e−π‖z‖2dzdx

+

∫∫
Rn

x×{‖z‖>M}
|ψk(x+ εz)− ψk(x)|e−π‖z‖2dzdx.

Lebesgue’s dominated convergence theorem applied to the first integral for ε→ 0+
(pointwise convergence towards 0 follows from the continuity of ψk, domination is
due to the uniform compact support for 0 ≤ ε ≤ 1) provides

lim sup
t→0+

‖u(t)− ψ‖L1 ≤ 2‖ψ − ψk‖L1 +

∫
{‖z‖>M}

e−π‖z‖2dz2‖ψk‖L1 .
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As a result, taking the limit when k goes to +∞, we get

lim sup
t→0+

‖u(t)− ψ‖L1 ≤
∫
{‖z‖>M}

e−π‖z‖2dz2‖ψ‖L1

for all M > 0, implying the sought result.

(4) We write for t > 0, x ∈ Rn,

U(t, x) =

∫
Rn

ψ(y)(4πt)−n/2 exp−‖x− y‖2
4t

dy

and defining F (t, x, y) = ψ(y)(4πt)−n/2 exp− ‖x−y‖2
4t , we see that

(i)
∫
Rn |F (t, x, y)|dy < +∞,

(ii) (t, x) �→ F (t, x, y) is C∞ on R∗+ × Rn,

(iii) for all compact K ⊂ R∗+ × Rn,
∫
Rn sup(t,x)∈K |∂kt ∂αxF (t, x, y)|dy < +∞.

The last point follows from the following identity (easily proven by induction on
k + |α|):

∂kt ∂
α
xF (t, x, y) = ψ(y)Qkα(t

−1/2, x− y) exp−‖x− y‖2
4t

where Qkα is a polynomial. The function U is thus C∞ on R∗+ × Rn.

(5) We calculate then directly on R∗+ × Rn,

∂U

∂t
=

∫
Rn

ψ(y)(4πt)−n/2 exp−‖x− y‖2
4t

[
− n
2t

+
‖x− y‖2

4t2

]
dy

and
∂U

∂xj
=

∫
Rn

ψ(y)(4πt)−n/2 exp−‖x− y‖2
4t

[
− (xj − yj)

2t

]
dy,

which gives

∂2U

∂x2j
=

∫
Rn

ψ(y)(4πt)−n/2 exp−‖x− y‖2
4t

[
(xj − yj)2

4t2
− 1

2t

]
dy

and then∑
1≤j≤n

∂2U

∂x2j
=

∫
Rn

ψ(y)(4πt)−n/2 exp−‖x− y‖2
4t

[
‖x− y‖2

4t2
− n

2t

]
dy =

∂U

∂t
.

Exercise 6.6.8. Let (X,M, μ) be a measure space where μ is a positive measure.
Let p ∈ [1,+∞), q ∈ [1,+∞]. We define the Lorentz space Lp,q(X) as the set of
measurable functions f : X → C such that(

tpμ
(
{x ∈ X, |f(x)| > t}

))1/p
∈ Lq(R+,

dt

t
).



312 Chapter 6. Convolution

We define the following quantities on Lp,q(X):

for p, q ∈ [1,+∞), ‖f‖Lp,q(X)=

(∫ +∞

0

(
tpμ
(
{x ∈ X, |f(x)| > t}

)) q
p dt

t

) 1
q

, (6.6.1)

for p ∈ [1,+∞), q = +∞, ‖f‖pLp,∞(X) = sup
t>0
tpμ
(
{x ∈ X, |f(x)| > t}

)
, (6.6.2)

for p = q = +∞, ‖f‖L∞,∞(X) = ‖f‖L∞(X). (6.6.3)

(1) Show that Lp,p(X) = Lp(X) and Lp,∞(X) = Lpw(X) (see Definition 6.3.1).

(2) Prove that Lp,q(X) is a vector space and that ‖f‖Lp,q(X) is a quasi-norm on
this vector space.

N.B. A very complete and accessible description of Lp,q spaces is given in the
survey article [34] by the American mathematician R. Hunt (1937–2009).

Answer. (1) The second assertion follows immediately from the very definition of
Lpw(X). The first assertion is obvious by definition for p = ∞. If p ∈ [1,+∞), we
have for f ∈ Lp(X),

‖f‖pLp(X) =

∫
X

|f(x)|pdμ =

∫
X

(∫
R+

ptp−1H(|f(x)| − t)dt
)
dμ,

and by Tonelli’s theorem,

‖f‖pLp(X) = p

∫ +∞

0

tpμ
(
{x ∈ X, |f(x)| > t}

)dt
t

= p‖f‖pLp,p(X).

(2) The answer is obvious for p = q = ∞, and is already known for q = ∞. We
may thus assume that p, q ∈ [1,+∞). Let us prove that ‖·‖Lp,q(X) is a quasi-norm:

if ‖f‖Lp,q(X) = 0, then for all t > 0, μ
(
{x ∈ X, |f(x)| > t}

)
= 0 so that

{x ∈ X, f(x) �= 0} = ∪n∈N∗{x ∈ X, |f(x)| > 1/n}

has measure 0 and thus f = 0 a.e. Moreover ‖ · ‖Lp,q(X) is positively homogeneous
with degree 1, and Lp,q(X) is stable by multiplication by a complex number since
with z ∈ C∗,

tq
(
μ
(
{x ∈ X, |zf(x)| > t}

))q/p dt
t

= |z|qsq
(
μ
(
{x ∈ X, |f(x)| > s}

))q/p ds
s
.

Let f, g be in Lp,q(X). Let θ ∈ (0, 1). Since for t > 0, |f | ≤ (1 − θ)t and |g| ≤ θt
imply |f + g| ≤ t, we have

{|f + g| > t} ⊂ {|f | > t(1 − θ)} ∪ {|g| > tθ},

so that

tpμ({|f + g| > t}) ≤ tpμ({|f | > t(1 − θ)}) + tpμ({|g| > tθ}),



6.6. Exercises 313

and thus(
tpμ({|f + g| > t})

)1/p
≤
(
tpμ({|f | > t(1 − θ)}) + tpμ({|g| > tθ})

)1/p
≤ tμ({|f | > t(1 − θ)})1/p + tμ({|g| > tθ})1/p

where the last inequality follows from the sharp elementary3

∀a, b ≥ 0, ∀p ≥ 1, (ap + bp)1/p ≤ a+ b.

We obtain(
tpμ({|f + g| > t})

)1/p
≤ tμ({|f | > t(1 − θ)})1/p + tμ({|f | > tθ})1/p

and the triangle inequality in Lq and the homogeneity give

‖f + g‖Lp,q(X) ≤ (1 − θ)−1‖f‖Lp,q(X) + θ
−1‖g‖Lp,q(X).

We may assume that both ‖f‖Lp,q(X), ‖g‖Lp,q(X) are positive (otherwise f or g are

0 a.e.) and choosing θ = ‖g‖1/2/(‖f‖1/2 + ‖g‖1/2), we get

‖f + g‖Lp,q(X) ≤
(
‖f‖1/2Lp,q(X) + ‖g‖1/2Lp,q(X)

)2 ≤ 2
(
‖f‖Lp,q(X) + ‖g‖Lp,q(X)

)
,

proving the result.

Exercise 6.6.9. Let (X,M, μ) be a measure space where μ is a positive measure.
Let f : X → C be a measurable function. We define the distribution function
f∗ : [0,+∞] → [0,+∞] of f and the decreasing rearrangement function f∗ :
[0,+∞] → [0,+∞] by

f∗(t) = μ
(
{x ∈ X, |f(x)| > t}

)
, (6.6.4)

f∗(s) = inf
{
t ≥ 0, f∗(t) ≤ s

}
, (6.6.5)

with the usual convention inf ∅ = +∞.

(1) Prove that f∗ and f∗ are decreasing.

(2) Prove that f∗ is right-continuous.

(3) Prove that for all t ≥ 0, f∗(f∗(t)) ≤ t and that for all s ≥ 0, f∗(f
∗(s)) ≤ s.

(4) Prove that f∗ is right-continuous.

(5) Prove that f and f∗ have the same distribution function (with R+ equipped
with the Lebesgue measure).

3For p ≥ 1, the function [0, 1] � τ �→ τp+(1− τ)p = γ(τ) is convex as a sum of convex functions
and thus for a, b ≥ 0,

τp + (1− τ)p = γ(τ1 + (1− τ)0) ≤ τγ(1) + (1− τ)γ(0) = 1 =⇒ (ap + bp) ≤ (a + b)p.

This inequality is shown to be sharp by taking b = 0.
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Answer. (1) Note that

f∗(+∞) = 0, f∗(0) = μ
(
{x, f(x) �= 0}

)
,

f∗(+∞) = 0, f∗(0) = inf
{
t ≥ 0, f∗(t) = 0

}
.

Let t1 < t2 in R+: then

{x ∈ X, |f(x)| > t2} ⊂ {x ∈ X, |f(x)| > t1},

implying readily that f∗ is decreasing. Let s1 < s2 in R+: then

(f∗)
−1([0, s1]) ⊂ (f∗)

−1([0, s2]) =⇒ f∗(s2) ≤ f∗(s1).

(2) Let (εk) be a sequence of positive numbers decreasing towards 0. We have

{|f | > t} = ∪k∈N{|f | > t+ εk},

so that by Proposition 1.4.4(2) (or Beppo Levi’s theorem), we get limk f∗(t+εk) =
f∗(t).

(3) Let t ∈ R+. If s = f∗(t), we have f∗(s) ≤ t (otherwise t < f∗(s) and from
(6.6.5) we find f∗(t) > s = f∗(t) which is impossible): we have proven f∗(f∗(t))≤ t.
Let s ∈ R+. We have f∗(+∞) = 0, and thus if f∗(s) = +∞, f∗(f

∗(s)) = 0 ≤ s.
We may thus assume f∗(s) < +∞. Let (tk) be a decreasing sequence converging
towards f∗(s) with f∗(tk) ≤ s. By the already proven right-continuity of f∗, we
have

lim
k
f∗(tk) = f∗(f

∗(s)) =⇒ f∗(f∗(s)) ≤ s.

(4) Let s ∈ R+ and (εk) be a positive sequence decreasing to 0. We already know
that f∗(s+ εk) ≤ f∗(s) and let us assume that there exists t such that

∀k ∈ N, f∗(s+ εk) < t < f∗(s).

This implies f∗(f
∗(s + εk)) ≤ f∗(t) ≤ f∗(f∗(s)) ≤ s, and thus t ≥ f∗(s) which

contradicts the assumption.

(5) We start with a lemma.

Lemma 6.6.10. Let g : [0,+∞] → [0,+∞] be a decreasing function. Then,

g∗(t) = sup{s ∈ R+, g(s) > t}.

Proof. Let s be such that g(s) > t. Then, since g is decreasing, g([0, s]) ⊂ (t,+∞],
so that s ≤ g∗(t) and thus sup{s ∈ R+, g(s) > t} ≤ g∗(t). Conversely, let s∞ =
sup{s ∈ R+, g(s) > t}. If s > s∞, we have g(s) ≤ t, so that

(s∞,+∞] ⊂ {s, g(s) ≤ t} =⇒ {s, g(s) > t} ⊂ [0, s∞] =⇒ g∗(t) ≤ s∞,

concluding the proof of the lemma. �
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We can apply this lemma to the decreasing function f∗ to get

(f∗)∗(t) = sup{s ∈ R+, f
∗(s) > t}.

We have

(†) f∗(t) ≥ (f∗)∗(t),

otherwise, we would have f∗(t) < (f∗)∗(t) and thus we could find s such that
f∗(t) < s with f

∗(s) > t, which would give f∗(s) ≤ f∗(f∗(t)) ≤ t, contradicting
f∗(s) > t. Conversely, we note that

(f∗)∗(t) =

∫ +∞

0

H
(
f∗(s) − t

)
ds

and since f∗(f∗(t)) ≤ t, we get the first inequality

(‡) (f∗)∗(t) ≤
∫ +∞

0

H
(
f∗(s) − f∗

(
f∗(t)

))
ds ≤

∫ +∞

0

H
(
f∗(t) − s

)
ds = f∗(t),

where the second inequality follows from the inclusion

{s, f∗(s) > f∗(f∗(t))} ⊂ {s, s < f∗(t)},

due to the implication s ≥ f∗(t) =⇒ f∗(s) ≤ f∗(f∗(t)). The inequalities (†), (‡)
give the answer.

Exercise 6.6.11. Let (X,M, μ) be a measure space where μ is a positive measure
and let

1 ≤ p1 ≤ p ≤ p2 ≤ +∞.

Prove that Lp(μ) ⊂ Lp1(μ) + Lp2(μ).

Answer. We may of course assume that p1 < p < p2. We note then that, for
u ∈ Lp(μ),

μ
(
{x ∈ X, |u(x)| > 1}

)
=

∫
{|u(x)|>1}

dμ ≤
∫
{|u(x)|>1}

|u(x)|pdμ ≤ ‖u‖pLp(μ) < +∞.

We have u = u1{|u|>1} + u1{|u|≤1} and u1{|u|≤1} ∈ L∞(μ). We have also with
q = p/p1 ≥ 1, 1/q′ = 1− p1/p,∫

X

|u1{|u|>1}|p1dμ ≤
(∫

X

|u|p1qdμ

)1/q(∫
X

1{|u|>1}
p1q

′
dμ

)1/q′

= ‖u‖p1

Lp(μ)μ
(
{|u| > 1}

)1− p1
p ≤ ‖u‖p1+(1− p1

p )p

Lp(μ) = ‖u‖pLp(μ) < +∞,
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so that we have proven that u1{|u|>1} ∈ Lp1(μ). If p2 = +∞, we use u1{|u|≤1} ∈
L∞(μ) to conclude. If p2 < +∞, we estimate∫

X

|u1{|u|≤1}|p2dμ =

∫
X

|u1{|u|≤1}|p2−p|u|pdμ ≤
∫
X

|u|pdμ = ‖u‖pLp(μ) < +∞.

Finally we have proven more precisely that for u ∈ Lp(μ),

u = u1{|u|>1}︸ ︷︷ ︸
u1

+ u1{|u|≤1}︸ ︷︷ ︸
u2

, ‖u1‖Lp1(μ) ≤ ‖u‖p/p1

Lp(μ), ‖u2‖Lp2(μ) ≤ ‖u‖p/p2

Lp(μ). (6.6.6)



Chapter 7

Complex Measures

7.1 Complex measures

Definition 7.1.1. Let (X,M) be a measurable space (see Definition 1.1.1). A com-
plex measure on (X,M) is a mapping μ : M → C such that μ(∅) = 0 and for any
sequence (Ak)k∈N of pairwise disjoint elements of M,

μ(∪k∈NAk) =
∑
k∈N
μ(Ak), (7.1.1)

i.e., the series
∑

k∈N μ(Ak) converges in C with limit μ(∪k∈NAk). A real measure
is a complex measure valued in R.

N.B. Reading Definition 1.1.1 of a positive measure, we realize the unpleasant
fact that a positive measure is not always a complex measure, since for a positive
measure the convergence of the series with positive terms

∑
k∈N μ(Ak) always

holds in R+, but not necessarily in R: in the first place, some μ(Ak) could be
+∞ and even if every μ(Ak) is non-negative finite, it could happen that the series∑

k∈N μ(Ak) = +∞.

We note also that the set of complex measures on (X,M) is a C-vector
space. We could have defined easily a vector-valued measure: with (X,M) being a
measurable space and B being a Banach space, Definition 7.1.1 gives a meaning to
a B-valued measure. In particular when B is finite dimensional, the notion of an
RN -valued measure follows easily from the notion of a real-valued measure. When
B is infinite dimensional, integration theory presents specific difficulties which are
beyond the scope of this book.

Remark 7.1.2. Definition 7.1.1 implies the so-called commutative convergence of
the series

∑
k∈N μ(Ak), which is equivalent to its absolute convergence (see Exercise

7.7.1). So it is a consequence of the definition of a complex measure, that for
(Ak)k∈N pairwise disjoint sets in M,

∑
k∈N |μ(Ak)| < +∞.

, ,
OI 10.1007/978-3- - -D
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The following definition provides a good set of examples of complex measures.

Definition 7.1.3. Let (X,M, μ) be a measure space where μ is a positive measure
and let h ∈ L1(μ). The complex measure ν defined on M by ν(E) =

∫
E
hdμ

is called the measure with density h with respect to μ and we use the notation
dν = hdμ. For f ∈ L1(ν), we have fh ∈ L1(μ) and∫

X

fdν =

∫
X

fhdμ.

Remark 7.1.4. We have seen in Proposition 1.6.5 that in a measure space (X,M, μ)
where μ is a positive measure, given a measurable function h : X → R+, we may
define a new positive measure ν on (X,M) by

ν(E) =

∫
E

hdμ and for f : X → R+ measurable

∫
X

fdν =

∫
X

f · hdμ.

Of course when h belongs to L1(μ), we can write

h = (Reh)+ − (Reh)− + i(Imh)+ − i(Imh)−,

and we may define the complex measure

dν = hdμ, ν(E) =

∫
E

hdμ.

The measure ν is the complex linear combination of the finite positive measures

dν = (Reh)+dμ− (Reh)−dμ+ i(Imh)+dμ− i(Imh)−dμ.

There are various extensions of this notion when h does not belong to L1(μ), for
instance if h = h+ − h−, h± ≥ 0 measurable and h− ∈ L1(μ): in that case the
positive measures h±dμ, well defined by Proposition 1.6.5, are such that h−dμ is
bounded so that h+dμ− h−dμ makes sense and is a measure.

Remark 7.1.5. More generally, on a measure space (X,M) we may consider μ1, μ2
two positive measures such that

{E ∈ M, μ1(E) = μ2(E) = +∞} = ∅, (7.1.2)

so that we may define the signed measure

μ : M → R, μ(E) = μ1(E) − μ2(E).

We have of course μ(∅) = 0 and if (Ak)k∈N is a pairwise disjoint sequence of M,
we have

μ
(
∪NAk

)
=
∑
N

μ(Ak).
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To verify that the sum above converges in R and that equality holds, we note that
with A = ∪NAk, either μ1(A) < +∞ or μ2(A) < +∞. Let us assume that the
latter holds: then we have

μ1(A) =
∑
N

μ1(Ak), convergence in R+,

μ2(A) =
∑
N

μ2(Ak), convergence in R+,

so that μ1(A) − μ2(A) makes sense, belongs to (−∞,+∞], and is equal to +∞ if
μ1(A) = +∞ = μ1(A) − μ2(A) =

∑
N μ(Ak), with convergence1 in (−∞,+∞]. If

μ1(A) < +∞, the σ-additivity property is obvious. Of course if μ2(A) = +∞ so
that μ1(A) < +∞, the discussion is similar, leading to convergence in [−∞,+∞).
In both cases, convergence and equality hold in R.

7.2 Total variation of a complex measure

Definition 7.2.1. Let (X,M) be a measurable space and let λ be a complex measure
on (X,M) (Definition 7.1.1). The total variation measure of λ, denoted by |λ|, is
defined on M as

|λ|(E) = sup
(Ek)k∈N pairwise disjoint

with union E,
Ek∈M

∑
N

|λ(Ek)|. (7.2.1)

The name total variation measure is justified by the following results proving
that |λ| is actually a positive measure on M.

Remark 7.2.2. We may use the word partition of E for the (Ek)k∈N although
according to our definition, a partition (Xi)i∈I of a set X is a pairwise disjoint
family of subsets of X , with union X and also such that no Xi is empty. Adding
empty sets in the family does not change the sum in (7.2.1).

Proposition 7.2.3. Let (X,M) be a measurable space and let λ be a complex mea-
sure on (X,M). The total variation measure of λ is a positive measure on (X,M)
with a finite total variation, i.e., such that |λ|(X) < +∞.

1Let (ak) be a sequence in R+ such that
∑

N ak = +∞ and let (bk) be a sequence in R+ such
that

∑
N bk < +∞. Then limn→+∞

∑
0≤k≤n(ak−bk) = +∞: in the first place for each k, ak−bk

makes sense in (−∞,+∞] and

∑
0≤k≤n

(ak − bk) ≥
( ∑

0≤k≤n

ak −
∑
N

bk

)
−→

n→+∞+∞, qed.
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Proof. We have obviously |λ|(∅) = 0. Let A ∈ M and let (An)n∈N be a partition
of A. Let us consider (Fk)k∈N a partition of A: we have∑

k∈N
|λ(Fk)| =

∑
k∈N

∣∣∣∑
n∈N
λ(An ∩ Fk)

∣∣∣ ≤ ∑
n∈N

∑
k∈N

|λ(An ∩ Fk)| ≤
∑
n∈N

|λ|(An),

implying

|λ|(A) ≤
∑
n∈N

|λ|(An).

Since Formula (7.2.1) is obviously increasing2 with E, we may assume that for all
n ∈ N, |λ|(An) < +∞. This implies that for all n, all ε > 0, there exists (En,k,ε)k∈N
partition of An such that

|λ|(An) − ε2−n−1 <
∑
k∈N

|λ(En,k,ε)| ≤ |λ|(An).

Since we have
∑

n,k∈N |λ(En,k,ε)| ≤ |λ|(A) we obtain

∀ε > 0, −ε+
∑
n

|λ|(An) ≤ |λ|(A) =⇒
∑
n

|λ|(An) ≤ |λ|(A),

proving that |λ| is indeed a positive measure on (X,M).

Let us now prove that |λ| is bounded.

Lemma 7.2.4. Let X0 ∈ M such that |λ|(X0) = +∞. Then there exists X1, Y1 ∈
M such that

X0 = X1 ∪ Y1, X1 ∩ Y1 = ∅, |λ(Y1)| ≥ 1, |λ|(X1) = +∞.

Proof of the lemma. From the assumption on X0, for any ε > 0, we may find a
partition (Ak,ε)k∈N of X0 such that

∑
k∈N

|λ(Ak,ε)| >
5
√
2

ε
=⇒ ∃N, such that

∑
0≤k≤N

|λ(Ak,ε)| >
4
√
2

ε
, (7.2.2)

and according to Exercise 7.7.2, we find J ⊂ {0, . . . , N} such that

|λ(∪k∈JAk,ε)| =
∣∣∣∣∑
k∈J
λ(Ak,ε)

∣∣∣∣ > 1

ε
,

2Let E ⊂ F in M and (Ek)k∈N be a partition of E: we have∑
k∈N

|λ(Ek)| ≤ |λ(F ∩ Ec)|+
∑
k∈N

|λ(Ek)| ≤ |λ|(F ).
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and this implies

|λ(∪k∈N\JAk,ε)| = |λ(X) − λ(∪k∈JAk,ε)| >
1

ε
− |λ(X)| > 1

2ε
,

provided ε is chosen ab initio such that 2ε|λ(X)| < 1. Moreover, since |λ| is a
positive measure and X0 is the disjoint union of (∪k∈N\JAk,ε), (∪k∈JAk,ε), at least
one of these sets has infinite |λ| measure and we have proven above that both
have λ measure with absolute value ≥ 1, providing we choose ε = 1

2+2|λ(X)| . This

completes the proof of the lemma. �

Now let us show that |λ|(X) = +∞ leads to a contradiction. Using the
previous lemma, we set X0 = X and we find X1, Y1 disjoint subsets of X0 such
that |λ|(X1) = +∞ and |λ(Y1)| ≥ 1. We may thus apply the lemma again and
find X2, Y2 disjoint subsets of X1 such that |λ|(X2) = +∞ and |λ(Y2)| ≥ 1. Let
us assume that we have found (X1, Y1), . . . , (Xn, Yn), with

Xj ∩ Yj = ∅, Xj ∪ Yj = Xj−1, |λ|(Xj) = +∞, |λ(Yj)| ≥ 1, j ≥ 1.

we may apply the lemma and findXn+1, Yn+1 disjoint subsets ofXn = Xn+1∪Yn+1

such that |λ|(Xn+1) = +∞ and |λ(Yn+1)| ≥ 1. As a result, we have constructed a
sequence (Yn)n≥1 of elements of M, such that |λ(Yn)| ≥ 1 and for n,m ≥ 1,

Yn ∩ Yn+m ⊂ Yn ∩Xn+m−1 ⊂ Yn ∩Xn = ∅,

so that the (Yn)n≥1 are pairwise disjoint elements of M such that |λ(Yn)| ≥ 1.
This is incompatible with the convergence of the series

∑
n≥1 λ(Yn). The proof of

the proposition is complete. �
Definition 7.2.5 (Jordan decomposition of a real measure). Let (X,M) be a mea-
sure space and let λ be a real measure. We define

λ+ =
1

2

(
|λ| + λ

)
, λ− =

1

2

(
|λ| − λ

)
. (7.2.3)

The positive measures λ± are both bounded and satisfy

|λ| = λ+ + λ−, λ = λ+ − λ−. (7.2.4)

7.3 Absolute continuity, mutually singular measures

Definition 7.3.1. Let (X,M) be a measurable space, let μ be a positive measure
on (X,M) and let λ be a complex or a positive measure on (X,M). We shall say
that λ is absolutely continuous with respect to μ, and use the notation λ & μ,
whenever

for E ∈ M, μ(E) = 0 =⇒ λ(E) = 0. (7.3.1)
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Lemma 7.3.2. Let (X,M) be a measurable space, let λ be a complex or a positive
measure on (X,M) and let C ∈ M. The following properties are equivalent:

(i) for all E ∈ M, λ(E) = λ(E ∩ C).
(ii) for all E ∈ M, E ⊂ Cc =⇒ λ(E) = 0.

Such a set C will be called a carrier of λ.

Proof. Obviously (i) implies (ii) since λ(∅) = 0. Conversely, if (ii) holds, and
E ∈ M, we have λ(E) = λ(E ∩ C) + λ(E ∩ Cc)︸ ︷︷ ︸

=0

= λ(E ∩ C). �

Definition 7.3.3. Let (X,M) be a measurable space, and let λ1, λ2 be two measures
on M. These two measures will be said to be mutually singular whenever they are
carried by disjoint sets: there exist A1, A2 ∈ M, A1 ∩ A2 = ∅ such that Aj is a
carrier of λj , j = 1, 2. We shall then use the notation λ1 ⊥ λ2.
Proposition 7.3.4. Let (X,M) be a measurable space, and let μ, λ, λ1, λ2 be mea-
sures on M with μ a positive measure. Then we have

λ1 ⊥ μ and λ2 ⊥ μ =⇒ λ1 + λ2 ⊥ μ, (7.3.2)

λ1 & μ and λ2 & μ =⇒ λ1 + λ2 & μ, (7.3.3)

λ1 & μ and λ2 ⊥ μ =⇒ λ1 ⊥ λ2, (7.3.4)

λ& μ and λ ⊥ μ =⇒ λ = 0. (7.3.5)

Proof. If λj ⊥ μ, j = 1, 2, then there exist A1, A2, A ∈ M such that Aj is a carrier
for λj , B1, B2 are carriers for μ and Aj ∩Bj = ∅, j = 1, 2. Then B1 ∩B2 is also a
carrier for μ (obvious from (i) in Lemma 7.3.2) and A1 ∪A2 is a carrier for λ1+λ2
since ∀E ∈ M,

(λ1 + λ2)(E) = (λ1 + λ2)(E ∩ (A1 ∪ A2)) + (λ1 + λ2)(E ∩ Ac
1 ∩ Ac

2)

= (λ1 + λ2)(E ∩ (A1 ∪ A2)),

since λj(E ∩ Ac
1 ∩ Ac

2) = 0. Since we have (A1 ∪ A2) ∩ (B1 ∩ B2) = ∅, this gives
the sought result.

Let us assume now λ1 & μ and λ2 & μ and let E ∈ M such that μ(E) = 0.
Then we have λj(E) = 0 and the result.

If λ1 & μ and λ2 ⊥ μ, we find A2, B ∈ M such that A2 ∩ B = ∅, μ carried
by B and λ2 carried by A2. We have thus for E ∈ M,

λ1(E) = λ1(E ∩ Ac
2) + λ1(E ∩ A2︸ ︷︷ ︸

⊂A2⊂Bc

) = λ1(E ∩ Ac
2),

since E ∩ A2 ⊂ Bc =⇒ μ(E ∩ A2) = 0 =⇒ λ1(E ∩ A2) = 0. As a result λ1 is
carried by Ac

2 which is disjoint from A2, a carrier of λ2, entailing λ1 ⊥ λ2.
We assume now λ & μ and λ ⊥ μ. Let A,B be disjoint in M respective

carriers for λ, μ. For E ∈ M, we have λ(E) = λ(E ∩ A) and since μ(E ∩ A) =
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μ(E ∩ A ∩B) = μ(∅) = 0, the assumption λ & μ implies λ(E ∩ A) = 0 and thus
λ(E) = 0. The proof of the proposition is complete. �
Lemma 7.3.5. Let (X,M, μ) be a measure space where μ is a positive measure.
Then μ is σ-finite if and only if there exists w ∈ L1(μ) such that for all x ∈ X,
0 < w(x) < 1.

Proof. A simple modification of Exercise 3.7.9: if μ is σ-finite, take w = f/3
where f is given by (3.7.4) on page 161. The same exercise provides a stronger
converse. �

7.4 Radon–Nikodym theorem

Theorem 7.4.1 (Radon–Nikodym Theorem). Let (X,M) be a measurable space,
let μ be a positive σ-finite measure on (X,M) and let λ be a complex measure on
(X,M).

(1) There exists a unique couple (λa, λs) of complex measures on (X,M) such
that

λ = λa + λs, λa & μ, λs ⊥ μ.

(2) There exists a unique element h ∈ L1(μ) such that dλa = hdμ, i.e., for all
E ∈ M,

λa(E) =

∫
E

hdμ.

The couple of measures (λa, λs) is called the Lebesgue decomposition of λ with
respect to μ and h is called the Radon–Nikodym derivative of λ with respect to μ.

Proof. We shall follow the proof given by John von Neumann ([66]). Let us prove
the uniqueness properties: if for λa,j , λs,j , j = 1, 2, complex measures, we have

λ = λa,j + λs,j , λa,j & μ, λs,j ⊥ μ,

then, from (7.3.3), λa,1 − λa,2 & μ and since λa,1 − λa,2 = λs,1 − λs,2 ⊥ μ (from
(7.3.2)), property (7.3.5) implies λa,1 − λa,2 = 0 and thus λs,1 = λs,2. Moreover,
if dλa = hjdμ, hj ∈ L1(μ), j = 1, 2, we obtain for all E ∈ M,∫

E

(h1 − h2)dμ = 0,

which implies h1 = h2 from Exercise 1.9.27. We shall now prove the existence part,
which is the most interesting part of this theorem.

Let us assume first that λ is a bounded positive measure. Let w be a function given
by Lemma 7.3.5 and let us define the bounded positive measure φ by

dφ = dλ+ wdμ.
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For E ∈ M and f = 1E , we have∫
X

fdφ =

∫
X

fdλ+

∫
X

wfdμ. (7.4.1)

As a result, this equality holds as well for simple functions (see Definition 1.3.2),
and thus for a non-negative measurable function, we apply Beppo Levi’s theorem
1.6.1 and Theorem 1.3.3 (to the three positive measures dφ, dλ, wdμ). For f ∈
L2(φ), we have∣∣∣∣∫

X

fdλ

∣∣∣∣ ≤ ∫
X

|f |dλ ≤
∫
X

|f |dφ ≤ ‖f‖L2(φ)φ(X)
1
2

≤ ‖f‖L2(φ)

(
λ(X) + ‖w‖L1(μ)

) 1
2 .

Consequently, the mapping L2(φ) � f �→
∫
X
fdλ is a continuous linear form on

L2(φ): by the classical Riesz representation theorem of continuous linear forms in
a Hilbert space, we know that there exists a unique g ∈ L2(φ) such that

∀f ∈ L2(φ),
∫
X

fdλ = 〈f, g〉L2(φ). (7.4.2)

Let E ∈ M such that φ(E) > 0; for f = 1E in (7.4.2), we find

λ(E) =

∫
E

ḡdφ,

and since λ(E) is real this implies in particular that
∫
E Im gdφ = 0, for all E ∈

M, so that g is real-valued φ-almost everywhere. Moreover, from the inequality
λ(E) ≤ φ(E), we infer that for all E ∈ M such that φ(E) > 0,

0 ≤ 1

φ(E)

∫
E

gdφ ≤ 1,

and from Exercise 1.9.30 and g ∈ L2(φ) ⊂ L1(φ) (due to φ bounded measure), this
implies that g(x) ∈ [0, 1], φ-almost everywhere, i.e., on N c where N ∈ M with
φ(N) = 0. We may replace g in (7.4.2) by g̃ = g1Nc and find that ∀x ∈ X, g̃(x) ∈
[0, 1], so that we may rewrite (7.4.2) as

∀f ∈ L2(φ),
∫
X

fdλ =

∫
X

f g̃dφ =

∫
X

f g̃dλ+

∫
X

f g̃wdμ,

i.e.,

∫
X

f(1 − g̃)dλ =
∫
X

f g̃wdμ. (7.4.3)

Let us now define the positive measures λa, λs on (X,M) by

A = {x ∈ X, 0 ≤ g̃(x) < 1}, B = {x ∈ X, 0 ≤ g̃(x) = 1} (note A,B ∈ M), (7.4.4)

for E ∈ M, λa(E) = λ(A ∩ E), λs(E) = λ(B ∩ E). (7.4.5)
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Taking f = 1B in (7.4.3), we obtain
∫
B wdμ = 0, and since w(x) > 0 for all x,

this implies 1Bw = 0, μ-a.e. and thus μ(B) = 0, so that

λs ⊥ μ, (B is a carrier of λs).

In (7.4.3), we may as well take f = (1 + g̃ + · · · + g̃N)1E for E ∈ M since g̃ is
bounded and the measure φ is bounded, entailing∫

E∩A
(1 − g̃N+1)dλ =

∫
E

(1 − g̃N+1)dλ =

∫
E

g̃(1 + g̃ + · · ·+ g̃N )wdμ.

For x ∈ A, the sequence (1 − g̃N+1(x)) converges monotonically to 1, so that,
thanks to Beppo Levi’s theorem, the lhs converges to λ(E ∩ A) = λa(E). The
sequence

(
g̃(x)(1+ g̃(x)+ · · ·+ g̃N(x))

)
N∈N converges increasingly towards a non-

negative measurable function h(x), so that

∀E ∈ M, λa(E) =

∫
E

hdμ.

Since λa(X) < +∞, we get as well that h ∈ L1(μ) and λa & μ, which concludes
the proof for a λ bounded positive measure.

Let us assume now that λ is a complex measure on (X,M). Then, according to
the decomposition into real and imaginary parts and to the Jordan decomposition
(Definition 7.2.5), we have

λ = Reλ+ i Imλ = (Reλ)+ − (Re λ)− + i(Imλ)+ − i(Imλ)−
where (Re λ)±, (Imλ)± are bounded positive measures to which we may apply the
previous result. This completes the proof of Theorem 7.4.1. �
Remark 7.4.2. If λ is a positive σ-finite measure (as well as μ), then using Lemma
7.3.5 we can find a measurable function v valued in (0, 1) such that vdλ is a
bounded positive measure. We can use the Lebesgue decomposition of vdλ, so
that for f non-negative measurable,∫

X

fvdλ =

∫
X

fhdμ+

∫
X

fdνs, νa & μ, 0 ≤ h ∈ L1(μ), νs ⊥ μ.

This implies
∫
X
fdλ =

∫
X
fv−1hdμ+

∫
X
fv−1dνs, and

dλ = v−1hdμ+ v−1dνs, λ(E) =

∫
E

v−1hdμ+

∫
E∩C

v−1dνs, μ(C) = 0.

The positive measure v−1hdμ is absolutely continuous with respect to μ, thanks
to (3) in Proposition 1.5.4 which implies as well that v−1dνs and dμ are mutually
singular. This means that the first part of the Radon–Nikodym Theorem holds
for λ a positive σ-finite measure (and of course μ positive σ-finite), although the
second part may not hold since the function v−1h need not be in L1(μ): however,
due to the explicit construction used in Lemma 7.3.5, we see that v−1h1Xn will
belong to L1(μ) if ∪n∈NXn = X , λ(Xn) < +∞.
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Lemma 7.4.3 (Hahn decomposition). Let (X,M) be a measure space and let λ be
a real measure. There exists a partition {A+, A−} of X with A± ∈ M such that

∀E ∈ M, λ±(E) = ±λ(A± ∩ E).

Proof. See Exercise 7.7.9. �

Theorem 7.4.4. Let (X,M) be a measure space. The mapping λ �→ |λ|(X) is a
norm on the vector space M (X,M) of complex measures on (X,M). Using the
notation ‖λ‖ = |λ|(X), |||λ||| = supE∈M |λ(E)|, these formulas are defining norms
on M (X,M) which are equivalent and make M (X,M) a Banach space.

Proof. Note first that M (X,M) is obviously a complex vector space and Defini-
tion 7.2.1 implies that ‖·‖ is valued in R+, homogeneous with degree 1, separated,
and satisfies the triangle inequality. The quantity |||λ||| = supE∈M |λ(E)| is such
that

|||λ||| ≤ sup
E∈M

|λ|(E) ≤ ‖λ‖ < +∞.

Thus ||| · ||| is a norm on M (X,M) (we have proven finiteness, which was the
only non-obvious property). Moreover, if λ is a real measure, we have from the
Jordan-Hahn decomposition (Definition 7.2.5, Lemma 7.4.3),

|λ|(X) = λ+(X) + λ−(X) = λ(A+)− λ(A−) ≤ 2|||λ|||.

If λ is a complex measure, we have λ = Reλ+ i Imλ and thus

‖λ‖ ≤ ‖Reλ‖ + ‖ Imλ‖ ≤ 2|||Reλ|||+ 2||| Imλ||| = |||λ+ λ|||+ |||λ− λ||| ≤ 4|||λ|||,

where the definition of λ is simply λ(E) = λ(E), which makes λ a complex measure
with the same norm as λ (true for ‖ · ‖, ||| · |||).

Let us now consider a Cauchy sequence (μn)n∈N in M (X,M). For each
E ∈ M, the sequence of complex numbers (μn(E))n∈N is a Cauchy sequence and
we may define

μ(E) = lim
n
μn(E). (7.4.6)

We have thus obviously μ(∅) = 0 and finite additivity. Let (Ak)k∈N be a pairwise
disjoint sequence of elements of M. We note first that

|μ(E) − μn(E)| = lim
m

|μm(E) − μn(E)| ≤ lim sup
m

|||μm − μn||| = εn −→
n→+∞

0.

Using the finite additivity property of μ we have

μ(∪k∈NAk) =
∑

0≤k≤N

μ(Ak) + μ(∪k>NAk).
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We have also for n,N ∈ N,

|μ(∪k∈NAk) −
∑

0≤k≤N

μ(Ak)| = |μ(∪k>NAk)|

≤ |μ(∪k>NAk) − μn(∪k>NAk)| + |μn(∪k>NAk)| ≤ εn +
∑
k>N

|μn(Ak)|,

so that for all n ∈ N, lim supN→+∞ |μ(∪k∈NAk)−
∑

0≤k≤N μ(Ak)| ≤ εn, and since
limn εn = 0, this implies

lim
N→+∞

|μ(∪k∈NAk) −
∑

0≤k≤N

μ(Ak)| = 0,

proving the convergence of the series
∑

k≥0 μ(Ak) towards μ(∪k∈NAk), which is
the sought σ-additivity. The proof of Theorem 7.4.4 is complete. �

7.5 The dual of Lp(X,M, μ), 1 ≤ p < +∞
Let (X,M, μ) be a measure space where μ is a positive measure. We consider the
Banach spaces Lp(μ) (see Theorem 3.2.8) and we want to determine their dual
spaces whenever 1 ≤ p < +∞ and the measure μ is σ-finite. For 1 ≤ p < +∞, we
shall denote by p′ the conjugate index such that

1

p
+

1

p′
= 1

(p′ = p/(p− 1) if 1 < p < +∞ and p′ = +∞ if p = 1).

Main result

Theorem 7.5.1. Let (X,M, μ) be a measured space where μ is a σ-finite positive
measure and let 1 ≤ p < +∞. Let ξ ∈ (Lp(μ))∗, the topological dual of Lp(μ).
Then there exists a unique g ∈ Lp′(μ) such that

∀f ∈ Lp(μ), 〈ξ, f〉 =
∫
X

fgdμ, ‖ξ‖(Lp(μ))∗ = ‖g‖Lp′(μ),

so that, for 1 ≤ p < +∞, (Lp(μ))∗ = Lp
′
(μ).

N.B. We may consider the sesquilinear mapping

Φ : Lp(μ) × Lp′(μ) −→ C
(f, g) �→

∫
X f ḡdμ.

which is well defined, thanks to Hölder’s inequality (Theorem 3.1.6), and satisfy

|Φ(f, g)| ≤ ‖f‖Lp‖g‖Lp′ .
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Let us check that the mapping Lp
′
(μ) � g �→ Φg ∈ (Lp(μ))∗ given by Φg(f) =

Φ(f, g) is isometric, i.e.,

‖Φg‖(Lp)∗ = sup
‖f‖Lp=1

∣∣∣∣∫
X

f ḡdμ

∣∣∣∣ = ‖g‖Lp′ . (7.5.1)

In fact the inequality ‖Φg‖(Lp)∗ ≤ ‖g‖Lp′ follows from Hölder’s inequality and for

a given 0 �= g ∈ Lp′ and 1 < p < +∞ we have, with

f =
g

|g| |g|
p′/p1g �=0‖g‖−p′/p

Lp′ , ‖f‖pLp =

∫
X

|g|p′dμ‖g‖−p′

Lp′ = 1,

and the equality∫
X

f ḡdμ =

∫
X

|g|1+
p′
p dμ‖g‖−p′/p

Lp′ = ‖g‖−
p′
p +p′

Lp′ = ‖g‖Lp′ .

The same type of argument works for p = 1: here p′ = +∞ and for 0 �= g ∈ L∞
we choose ε > 0 such that μ

(
{|g| ≥ ‖g‖L∞ − ε}

)
> 0 and we set

f =
g

|g|
1
(
|g| ≥ ‖g‖L∞ − ε

)
μ
(
{|g| ≥ ‖g‖L∞ − ε}

) , so that ‖f‖L1 = 1,

and

Φg(f) =

∫
X

|g|
1
(
|g| ≥ ‖g‖L∞ − ε

)
μ
(
{|g| ≥ ‖g‖L∞ − ε}︸ ︷︷ ︸

Gε

)dμ =
1

μ(Gε)

∫
‖g‖L∞−ε≤|g|≤‖g‖L∞

|g|dμ

≥ 1

μ(Gε)
(‖g‖L∞ − ε)μ(Gε) = ‖g‖L∞ − ε.

As a result ‖Φg(f)‖(L1)∗ = ‖g‖L∞. As a result the mapping

ψ : Lp
′
(μ) −→ (Lp(μ))∗, ψ(g) = Φg

is injective and isometric and thus has a closed image isomorphic to Lp
′
(μ) (thanks

to the Open Mapping Theorem 10.2.43). The main difficulty of the above theorem
is the proof that ψ is indeed onto when 1 ≤ p < +∞. We shall see some examples
(see (7.5.11)) showing that for p = ∞, the dual space of L∞, i.e., the bidual of
L1 is much larger than L1 and that the mapping ψ is not onto in general in that
case3.

Proof of the theorem. Let then 1 ≤ p < +∞ and ξ ∈ (Lp(μ))∗. We assume first
that μ(X) < +∞. For E ∈ M, we define

λ(E) = ξ(1E). (7.5.2)

3It is true however that ψ is an isometric one-to-one mapping, even for p = ∞: for g ∈ L1, we
have Φg(

g
|g|1{g 	=0}) = ‖g‖L1 .
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If A,B are measurable and disjoint, we have 1A∪B = 1A+ 1B, which implies that
λ is finitely additive. Let us consider E = ∪j∈NEj with (Ej)j∈N pairwise disjoint
elements of M. With Ak = ∪j≤kEj , we have

‖1E − 1Ak
‖pLp =

∫
E\Ak

dμ = μ(E\Ak).

By the Lebesgue dominated convergence theorem, we know that limk μ(E\Ak) =
0, and since ξ is continuous on Lp, we get that limk λ(Ak) = λ(E), i.e.,

λ(E) =
∑
j∈N
λ(Ej),

so that λ is a complex measure. Moreover if μ(E) = 0, we have 1E = 0, μ-a.e. and
1E = 0 in Lp implying λ(E) = 0. As a result we have λ & μ. We may apply the
Radon–Nikodym Theorem 7.4.1: there exists g ∈ L1(μ) such that

ξ(1E) = λ(E) =

∫
E

gdμ =

∫
X

g1Edμ.

Thus, by the linearity of ξ, for any simple function f (finite linear combination of
characteristic functions of measurable sets) we get

ξ(f) =

∫
X

fgdμ, which is true as well for f ∈ L∞(μ), (7.5.3)

since a function in L∞(μ) is a uniform limit of simple functions. If p = 1, for all
E ∈ M, we have∣∣∣∣∫

X

1Egdμ

∣∣∣∣ = |ξ(1E)| ≤ ‖ξ‖(L1)∗‖1E‖L1 = μ(E)‖ξ‖(L1)∗ ,

and thus |g(x)| ≤ ‖ξ‖(L1)∗ μ-a.e., implying

‖g‖L∞(μ) ≤ ‖ξ‖(L1)∗ . (7.5.4)

If 1 < p < +∞, we consider a measurable function α such that αg = |g| (see
Exercise 1.9.16), and we define

fn = 1En |g|p
′−1α, En = {|g| ≤ n}.

We have |α| = 1 on the set {g �= 0} and p(p′ − 1) = p′ so that

|f |pn = 1En |g|p
′
, |fn| ≤ np

′
,

and applying (7.5.3) to the L∞ function fn, we get

ξ(fn) =

∫
X

1En |g|p
′−1αgdμ =

∫
En

|g|p′dμ,
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and
∣∣∣∫En

|g|p′dμ
∣∣∣ ≤ ‖ξ‖(Lp)∗‖fn‖Lp = ‖ξ‖(Lp)∗

(∫
En

|g|p′dμ
)1/p

and this implies

∣∣∣∣∫
En

|g|p′dμ
∣∣∣∣1− 1

p=
1
p′

≤ ‖ξ‖(Lp)∗ .

Beppo Levi’s theorem 1.6.1 then implies that ‖g‖Lp′ ≤ ‖ξ‖(Lp)∗ . Since ξ and
f �→

∫
fgdμ coincide (and are continuous) on L∞(μ), which is dense in Lp(μ) (see

Proposition 3.2.11), they coincide on Lp(μ) and ‖ξ‖(Lp)∗ = ‖g‖Lp′ . The proof is
complete in the case μ(X) < +∞.

Let us now assume that μ(X) = +∞. From Lemma 7.3.5, we know that there
exists w ∈ L1(μ) such that ∀x ∈ X, 0 < w(x) < 1. We consider now the finite
measure dν = wdμ (ν(X) =

∫
X wdμ <∞) and the linear isometries

Lp(ν) −→ Lp(μ)
F �→ Fw1/p

}
,

{
Lp(μ) −→ Lp(ν)
f �→ fw−1/p , (7.5.5)

noting that we have

‖F‖pLp(ν) =

∫
X

|F |pwdμ = ‖Fw1/p‖pLp(μ),

‖f‖pLp(μ) =

∫
X

|f |pw−1dν = ‖fw−1/p‖pLp(ν).

As a consequence, if ξ ∈ (Lp(μ))∗ we can define η ∈ (Lp(ν))∗ by

∀F ∈ Lp(ν), 〈η, F 〉(Lp(ν))∗,Lp(ν) = 〈ξ, w1/pF 〉(Lp(μ))∗,Lp(μ),

and

‖η‖(Lp(ν))∗ = ‖ξ‖(Lp(μ))∗ .

We can use the proven result on finite measures to find G ∈ Lp′(ν) such that
‖G‖Lp′(ν) = ‖η‖(Lp(ν))∗ with 〈η, F 〉(Lp(ν))∗,Lp(ν) =

∫
X
FGdν so that

〈ξ, f〉(Lp(μ))∗,Lp(μ) =

∫
X

fw−1/pGwdμ =

∫
X

fgdμ, g = Gw1− 1
p ,

and, if p′ <∞,

‖ξ‖p(Lp(μ))∗ = ‖G‖p
Lp′(ν) =

∫
X

|G|p′wdμ =

∫
X

(|G|w1− 1
p )p

′
dμ = ‖g‖p

Lp′(μ).

If p = 1, p′ = ∞, we have g = G and ‖ξ‖(L1(μ))∗ = ‖G‖L∞(ν) = ‖g‖L∞(ν). The
proof of the theorem is complete. �
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The Banach spaces c0, �
p

These are spaces of sequences of complex numbers (xk)k≥1. We have

c0 = {(xk)k≥1, lim
k
xk = 0}, ‖(xk)k≥1‖∞ = sup

k≥1
|xk|, (7.5.6)

for p ≥ 1, �p = {(xk)k≥1,
∑
k≥1

|xk|p < +∞}, ‖(xk)k≥1‖p =

(∑
k≥1

|xk|p
)1/p

,

(7.5.7)

�∞ = {(xk)k≥1, sup
k≥1

|xk| < +∞}, ‖(xk)k≥1‖∞ = sup
k≥1

|xk|. (7.5.8)

These spaces are Banach spaces, and �2 is a Hilbert space (see Theorem 3.2.8).
Note also that the space c0 is a closed subspace of �∞ (Exercise 3.7.29). The spaces
c0, �

p, for 1 ≤ p < +∞ are separable since the finite sequences of complex numbers
with rational real and imaginary part are dense (Exercise 3.7.29). The space �∞

is not separable (see Exercise 3.7.20).

Duality results

Let us prove that c∗0 = �1. We consider the mapping

c0 × �1 −→ C
(x, y) �→

∑
k≥1 xkyk := (x, y)

(7.5.9)

and we have |(x, y)| ≤ ‖x‖c0‖y‖�1. As a consequence, we have a mapping

�1 � y �→ j(y) ∈ c∗0 with j(y) · x = (x, y).

The mapping j is linear, sends �1 into c∗0 and that inequality proves as well that j
is continuous: ‖j(y)‖c∗0 ≤ ‖y‖�1. On the other hand, for a given y in �1, N ∈ N∗,
choosing xk = yk/|yk| when yk �= 0 and k ≤ N , xk = 0 otherwise, we have
x = (xk)k≥1 ∈ c0, ‖x‖c0 ≤ 1,

‖j(y)‖c∗0 = sup
‖x‖c0≤1

|(x, y)| ≥
∑

1≤k≤N

|yk|, for all N ≥ 1,

so that ‖j(y)‖c∗0 = ‖y‖�1. As a result j(�1) is a closed subspace of c∗0 which is
isomorphic to �1.

We need to prove that j is onto. Let us take ξ ∈ c∗0; we define for j ≥ 1,
ej = (δj,k)k≥1 (∈ c0). We choose some real numbers θj so that eiθjξ · ej = |ξ · ej |
and we consider x = (eiθ1 , . . . , eiθn , 0, 0, 0 . . . ) ∈ c0, ‖x‖c0 = 1, so that

ξ · x =
∑

1≤j≤n

eiθjξ · ej =
∑

1≤j≤n

|ξ · ej |.



332 Chapter 7. Complex Measures

As a result, we have for all n ≥ 1,
∑

1≤j≤n |ξ · ej | ≤ ‖ξ‖c∗0‖x‖c0 = ‖ξ‖c∗0 , proving
that y = (ξ ·ej)j≥1 ∈ �1. Now, we have for x = (xj)j≥1 ∈ c0, by the continuity of ξ,

ξ · x = lim
n→+∞

∑
1≤j≤n

xj(ξ · ej) = (x, (ξ · ej)j≥1) = (x, y),

proving that ξ = j(y) for some y ∈ �1 and the sought surjectivity.

Theorem 7.5.1 implies that (�1)∗ = �∞ (a direct proof analogous to the
previous one is also possible).

Let us now prove that (�∞)∗, which is the bidual of �1, is (much) larger than
�1. The space c0 is a closed proper subspace of �∞, and the Hahn–Banach theorem
(Theorem 10.2.38) allows us to construct ξ0 ∈ (�∞)∗ such that

ξ0|c0 = 0, ξ0 · x0 = 1, x0 = (1, 1, 1, . . . ) ∈ �∞\c0. (7.5.10)

As a consequence, the mapping j : �1 −→ (�1)∗∗ = (�∞)∗, defined in Proposition
10.3.13, is not onto since there is no y ∈ �1 such that j(y) = ξ0: otherwise, we
would have for x ∈ �∞,

〈ξ0, x〉(�∞)∗,�∞ = 〈j(y), x〉(�1)∗∗,(�1)∗ = 〈x, y〉(�1)∗,�1 =
∑
j≥1

xjyj,

and since 〈ξ0, ej〉(�∞)∗,�∞ = 0, that would imply yj = 0 for all j ≥ 1, and ξ0 = 0,
contradicting (7.5.10). The next proposition summarizes the situation.

Proposition 7.5.2. We consider the spaces c0, �
p defined in (7.5.6), (7.5.7), (7.5.8).

When 1 < p < +∞ we define p′ ∈]1,+∞[ by the identity 1
p + 1

p′ = 1. Then we
have

(�1)∗ = �∞, (�1)∗∗ �= �1, �1 is not reflexive, (7.5.11)

1 < p < +∞, (�p)∗ = �p
′
, (�p)∗∗ = �p, �p is reflexive, (7.5.12)

�∞ is not reflexive, (7.5.13)

c∗0 = �1, c∗∗0 = (�1)∗ = �∞ �= c0, c0 is not reflexive. (7.5.14)

Proof. The first and the fourth lines are proven above, the second line follows from
Theorem 7.5.1, the third line is a consequence of Proposition 10.3.16, since �1 is
not reflexive. �

Examples of weak convergence

Definition of weak convergence and elementary properties related to that notion
are given in Section 10.3. We consider the space Lp(R) for some p ∈ [1,+∞[. We
want to provide some examples of a sequence (uk)k∈N of Lp(R) weakly converging
to 0, but not strongly converging to 0. Here we assume 1 < p < +∞.
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• A first phenomenon is strong oscillations: take uk(x) = eikx1[0,1](x): the L
p

norm of uk is constant equal to 1 but for v ∈ Lp′ , the sequence

〈uk, v〉 =
∫
uk(x)v̄(x)dx

has limit zero (a consequence of the Riemann–Lebesgue Lemma 3.4.5).

• The sequence (uk)k∈N may also concentrate at a point: take

uk(x) = k
1/pu1(kx),

where u1 has norm 1 in Lp. Here also the Lp-norm of uk is a constant equal to 1.
However for v ∈ Lp′ ,

〈uk, v〉 =
∫
uk(x)v̄(x)dx =

∫
u1(t)v̄(t/k)dtk

− 1
p′ ,

with p, p′ ∈]1,+∞[. With ϕ, ψ ∈ C0
c (R) we have with ψk(x) = k

1/pψ(kx),

|〈uk, v〉| ≤ |〈uk, v − ϕ〉| + |〈uk − ψk, ϕ〉| + |〈ψk, ϕ〉|
≤ ‖u1‖Lp‖v − ϕ‖Lp′ + ‖u1 − ψ‖Lp‖ϕ‖Lp′ + |〈ψk, ϕ〉|,

which implies lim supk |〈uk, v〉| ≤ ‖u1‖Lp‖v− ϕ‖Lp′ + ‖u1 − ψ‖Lp‖ϕ‖Lp′ , and this
gives the weak convergence to 0 since p, p′ are both in ]1,+∞[.

• The sequence (uk)k∈N may also escape to infinity: take uk(x) = u0(x−k), where
u0 has norm 1 in Lp. Reasoning as above, we need only to check∫

ψ(x − k)ϕ(x)dx,

for ϕ, ψ ∈ C0
c (R): that quantity is 0 for k large enough.

7.6 Notes

Hans Hahn (1879–1934) was an Austrian mathematician. He served as an adviser
for Kurt Gödel (1906–1978) (see our appendix on page 414).

Otto Nikodỳm (1887–1974) was a Polish mathematician.

John von Neumann (1903–1957) was a Hungarian-born American mathemati-
cian, a major scientist of the twentieth century, with fundamental contribu-
tions in Quantum Mechanics, Information Theory, Functional Analysis and
Set Theory.
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7.7 Exercises

Exercise 7.7.1. Let (ak)k∈N be a sequence of complex numbers such that for any
bijection σ : N → N, the series

∑
k∈N aσ(k) converges. Then∑
k∈N

|ak| < +∞,

i.e., the series is absolutely converging.

Answer. Let us assume that all ak are real valued and
∑

k∈N |ak| = +∞. Writing

ak = a+k − a−k , a
+
k = max(ak, 0), a

−
k = max(−ak, 0), |ak| = a+k + a−k ,

we have
∑

k∈N a
+
k = +∞ =

∑
k∈N a

−
k , otherwise if one of this series converges

in R (say
∑

k∈N a
+
k < +∞), since

∑
k∈N ak is convergent, this would imply that∑

k∈N a
−
k < +∞ and the convergence of

∑
k∈N |ak|, contradicting the assumption.

Let us define

N+ = {k ∈ N, ak ≥ 0}, N− = {k ∈ N, ak < 0}.

We have from the properties of divergence

N+ �N− = N, cardN± = ℵ0.

Let {ml}l≥1 = N−, {νj}j≥1 = N+ be strictly increasing sequences.

Take n1 such that
∑

1≤j≤n1

aνj + am1 ≥ 1 (possible since
∑

k∈N+

ak = +∞).

Take n2 > n1 such that
∑

1≤j≤n2

aνj + am1 + am2 ≥ 2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Take nl > nl−1 such that
∑

1≤j≤nl

aνj + am1 + · · · + aml
≥ l.

Then we can find nl+1 > nl such that∑
1≤j≤nl+1

aνj + am1 + · · · + aml
+ aml+1

≥ l + 1.

We have thus constructed a strictly increasing sequence (nl)l≥1 of integers such
that ∀l ≥ 1,

∑
1≤j≤nl

aνj + am1 + · · ·+ aml
≥ l, so that

lim
l→+∞

( ∑
1≤j≤nl

aνj +
∑

1≤j≤l

aml

)
= +∞.
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This implies that we have found a bijection σ from N onto N such that
∑

k∈N aσ(k)
diverges.

If the ak are complex valued, and if
∑

k∈N |ak| = +∞, then we have∑
k∈N

|Re ak| = +∞ or
∑
k∈N

| Im ak| = +∞.

In the first case, we find a bijection of N such that
∑

k∈N Re aσ(k) diverges which
implies that

∑
k∈N aσ(k) diverges as well (its convergence would imply the conver-

gence of the real parts).

Exercise 7.7.2. Let n ≥ 1 be an integer and let ‖ · ‖ be a norm on Rn. Show that
there exists a positive constant c (depending only on the norm ‖ · ‖ and on n) such
that for all N ≥ 1, all v1, . . . , vN ∈ Rn, there exists J ⊂ {1, . . . , N} such that∥∥∥∥∑

j∈J
vj

∥∥∥∥ ≥ c
∑

1≤j≤N

‖vj‖.

Show that for the sup-norm, c can be taken as 1
2n , and for the Euclidean norm as

1
2n
√
n
.

Answer. Since all the norms on Rn are equivalent (Exercise 1.9.8), we may assume
that

‖x‖ = max
1≤r≤n

|xr|.

We may also assume by homogeneity that
∑

1≤j≤N ‖vj‖ = 1. We note that

Rn = ∪1≤l≤nΓl, with Γl = {x ∈ Rn, |xl| = max
1≤r≤n

|xr|},

so that
∑

1≤j≤N ‖vj‖ = 1 ≤
∑

1≤l≤n

∑
1≤j≤N
vj∈Γl

|vj,l| implies that we can find l ∈

{1, . . . , n} with

1

n
≤
∑

1≤j≤N
vj∈Γl

|vj,l| =
∑

1≤j≤N
vj∈Γl,vj,l>0

vj,l +
∑

1≤j≤N
vj∈Γl,vj,l<0

(−vj,l).

Eventually, we can find l ∈ {1, . . . , n} with

1

2n
≤

∑
1≤j≤N

vj∈Γl,vj,l>0

vj,l or
1

2n
≤

∑
1≤j≤N

vj∈Γl,vj,l<0

(−vj,l).

In the first case (the second case is analogous), we have

1

2n
≤

∑
1≤j≤N

vj∈Γl,vj,l>0

vj,l ≤
∥∥∥∥ ∑

1≤j≤N
vj∈Γl,vj,l>0

vj

∥∥∥∥
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and we can take J = {1 ≤ j ≤ N, vj ∈ Γl, vj,l > 0} and c = 1
2n . Since

max
1≤l≤n

|xl| ≤
( ∑

1≤l≤n

|xl|2
)1/2

≤
√
n max

1≤l≤n
|xl|,

we get as well the constant for the Euclidean norm.

Exercise 7.7.3. Let (X,M, μ) be a measure space where μ is a positive measure
and let λ be a complex measure on (X,M). Prove that if λ & μ then |λ| & μ
(prove that the converse is also true).

Answer. Let E ∈ M such that μ(E) = 0 and |λ|(E) > 0: we can find a partition
(Ek)k∈N of E (Ek ∈ M) such that∑

k∈N
|λ(Ek)| ≥

1

2
|λ|(E) > 0,

which is impossible since μ(E) = 0 =⇒ ∀k, μ(Ek) = 0 =⇒ ∀k, λ(Ek) = 0. The
converse is obvious since μ(E) = 0 =⇒ |λ|(E) = 0 and since |λ|(E) ≥ |λ(E)| we
get λ(E) = 0.

Exercise 7.7.4. Let (X,M, μ) be a measure space where μ is a positive measure
and let λ be a complex measure on (X,M). Prove that λ& μ iff

∀ε > 0, ∃δ > 0, ∀E ∈ M, μ(E) < δ =⇒ |λ(E)| < ε. (7.7.1)

We can write this property symbolically as limμ(E)→0 λ(E) = 0 uniformly with
respect to E ∈ M.

Answer. If (7.7.1) holds, with E ∈ M such that μ(E) = 0, we obtain immediately
λ(E) = 0, proving λ& μ. Let us assume conversely that (7.7.1) does not hold:

∃ε0 > 0, ∀k ∈ N, ∃Ek ∈ M, μ(Ek) < 2−k and |λ(Ek)| ≥ ε0.

We define Fj = ∪k,k≥jEk so that the sequence (Fj)j≥1 is decreasing and

μ(Fj) ≤
∑
k≥j

2−k = 21−j =⇒ μ(F = ∩j≥1Fj) = 0.

On the other hand we have |λ|(Fj) ≥ |λ|(Ej) ≥ |λ(Ej)| ≥ ε0 and since |λ| is a
bounded positive measure, thanks to (3) in Proposition 1.4.4, we have |λ|(F1) <
+∞ and we get

0 < ε0 ≤ lim
j

|λ|(Fj) = |λ|(F ) =⇒ |λ| is not absolutely continuous with respect to μ,

proving that λ is not absolutely continuous with respect to μ from the previous
exercise.
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Exercise 7.7.5. Let (X,M) be a measurable space and let λ be a complex measure
carried by a set A ∈ M. Then |λ| is also carried by A.

Answer. We have λ(E) = λ(E∩A) so that for E ∈ M and for a partition (Ek)k∈N
of E, we have ∑

k

|λ(Ek)| =
∑
k

|λ(Ek ∩A)| ≤ |λ|(E ∩ A),

so that |λ|(E) ≤ |λ|(E ∩A) =⇒ |λ|(E ∩ A) = |λ|(E).

Exercise 7.7.6. Let (X,M) be a measurable space and let λ be a measure on (X,M)
valued in Rm for some m ∈ N∗.

(1) Give a definition of |λ| such that this total variation measure is a positive
bounded measure on (X,M) which coincides with |λ| when λ is a complex-
valued measure (see Definition 7.2.1).

(2) Let f : X → Rm be in L1(|λ|). Prove that∥∥∥∫
X

fd|λ|
∥∥∥ ≤

∫
X

‖f‖d|λ|. (7.7.2)

Let T be a closed set of Rm such that

∀E ∈ M with |λ|(E) > 0,
1

|λ|(E)

∫
E

fd|λ| ∈ T. (7.7.3)

Prove that f(x) ∈ T , |λ|-a.e.
(3) Prove that there exists a measurable function f : X → Rm such that

∀x ∈ X, ‖f(x)‖ = 1, (Euclidean norm) dλ = fd|λ|.
This identity is called the polar decomposition of the vector-valued measure λ.

Answer. (1) We use the very same definition as in Definition 7.2.1,

|λ|(E) = sup
(Ek)k∈Npairwise disjoint

with union E,
Ek∈M

∑
N

‖λ(Ek)‖, (7.7.4)

and the proof that |λ| is a positive measure is identical to the case where λ is
complex valued in Proposition 7.2.3. To check that |λ| is bounded requires a simple
modification of the proof of Lemma 7.2.4. We modify (7.2.2) as follows:∑

k∈N
|λ(Ak,ε)| >

(2m+ 1)
√
m

ε
=⇒ ∃N, such that

∑
0≤k≤N

|λ(Ak,ε)| >
2m

√
m

ε
,

(7.7.5)
and according to Exercise 7.7.2, we find J ⊂ {0, . . . , N} such that

‖λ(∪k∈JAk,ε)‖ =

∥∥∥∥∑
k∈J
λ(Ak,ε)

∥∥∥∥ > 1

ε
,

and the sequel of the proof does not need any modification.
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(2) We have∥∥∥∥∫
X

fd|λ|
∥∥∥∥ = sup

‖ξ‖=1

〈∫
X

fd|λ|, ξ
〉

= sup
‖ξ‖=1

∫
X

〈f, ξ〉d|λ| ≤
∫
X

‖f‖d|λ|.

For η ∈ T c, ∃ρ > 0 with B̄(η, ρ) ⊂ T c. If we had |λ|
(
f−1
(
B̄(z, ρ)

))
> 0, this would

give, with E = f−1
(
B̄(z, ρ)

)
, 1
|λ|(E)

∫
E
fd|λ| ∈ T. However, we have

1

|λ|(E)

∫
f−1(B̄(z,ρ))

fd|λ| = 1

|λ|(E)

∫
f−1(B̄(z,ρ))

(f − η)d|λ| + η,

and since ∣∣∣∣ 1

|λ|(E)

∫
f−1(B̄(η,ρ))

(f − η)d|λ|
∣∣∣∣ ≤ ρ|λ|(E)|λ|(E) = ρ,

this would imply ‖η − T ‖ ≤ ρ, which contradicts B̄(η, ρ) ⊂ T c. Consequently,
|λ|
(
f−1
(
B̄(η, ρ)

))
= 0. Since the open set T c is a countable union of closed balls,

this implies that |λ|
(
f−1(T c)

)
= 0.

(3) We have obviously λ & |λ| which is a positive bounded measure, so that we
may apply the Radon–Nikodym Theorem to the m components of λ and get a
function f : X → Rm in L1(|λ|) such that

dλ = fd|λ|.

We define for ρ > 0, Lρ = {x ∈ X, ‖f(x)‖ < ρ}. Let (Ek)k∈N be a partition of Lρ:
we have, using (7.7.2),

∑
k∈N

‖λ(Ek)‖ =
∑
k∈N

∥∥∥∥∫
Ek

fd|λ|
∥∥∥∥ ≤ ρ

∑
k∈N

∫
Ek

d|λ| = ρ|λ|(Lρ)

so that |λ|(Lρ) ≤ ρ|λ|(Lρ), which implies |λ|(Lρ) = 0 for ρ < 1. As a result
‖f‖ ≥ 1, |λ| a.e. On the other hand for |λ|(E) > 0, we have∥∥∥∥ 1

|λ|(E)

∫
E

fd|λ|
∥∥∥∥ = ‖λ(E)‖

|λ|(E) ≤ 1

and (7.7.3) implies ‖f‖ ≤ 1, |λ| a.e., and eventually the sought result.

Exercise 7.7.7. Let κ ∈ [0, 1) and let hκ be the Hausdorff measure of dimension
κ on a finite interval I of the real line with a non-empty interior (see Definition
2.6.5).

(1) Prove that λ1 = h1 & hκ where λ1 is the Lebesgue measure on I. Prove that
hκ is not σ-finite on I.

(2) Prove that there is no f ∈ L1(hκ) such that dλ1 = fdhκ.
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N.B. This implies that the conclusions of the Radon–Nikodym Theorem 7.4.1 do
not hold in general when the σ-finiteness of μ is not satisfied, even though λ is a
bounded positive measure.

Answer. (1) We consider the measurable space (I,B) where B is the Borel σ-
algebra on I and hκ as measures on that measurable space. From Lemma 2.6.7, if
A is a Borel subset of the real line,

hκ(A) < +∞ =⇒ h1(A) = 0,

proving in particular the absolute continuity of h1 with respect to hκ for κ ∈ [0, 1).
Moreover if hκ were σ-finite on I, we could find a sequence (Xn)n∈N such that
I = ∪NXn and hκ(Xn) < +∞. From Lemma 2.6.7, this would imply h1(Xn) = 0
and thus h1(I) = 0, contradicting the assumption on I.

(2) If we could find a Borel function f such that fdhκ = dλ1, this would imply
for ε > 0 and Jε = {t ∈ I, f(t) ≥ ε},

+∞ > λ1(Jε) =
∫
Jε

fdhκ ≥ εhκ(Jε) =⇒ hκ(Jε) < +∞ =⇒ λ1(Jε) = 0,

so that
∫
Jε
fdhκ = 0, proving that hκ(Jε) = 0. As a result f ≤ 0, hκ a.e., implying

dλ1 ≤ 0.

Exercise 7.7.8. Let (X,M, μ) be a measure space where μ is a positive measure
and let f ∈ L1(μ). Let dλ = fdμ be the absolutely continuous complex measure
with density f with respect to μ. Prove that

d|λ| = |f |dμ.

Answer. According to (3) in Exercise 7.7.6, there exists a measurable function w
of modulus 1 such that

wd|λ| = dλ = fdμ =⇒ d|λ| = w̄fdμ,

implying that w̄f ≥ 0, μ-a.e. Since we have also |w̄f | = |f |, we find w̄f = |f |,
μ-a.e., proving the sought result.

Exercise 7.7.9. Let (X,M) be a measurable space and let λ be a real measure on
(X,M). Show that there exists a partition of X, {A+, A−}, elements of M which
are carriers respectively of λ+, λ− (cf. Definition 7.2.5) and

λ±(E) = ±λ(E ∩ A±).

Answer. We have from the polar decomposition (Exercise 7.7.6),

dλ = ud|λ|, |u| = 1,
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and since λ is a real measure, u is real valued |λ| a.e. Thus modifying u on a set
of measure 0, we may assume that u takes only the values ±1. Consequently, we
have

dλ = u+d|λ| − u−d|λ| = 1{u=1}d|λ| − 1{u=−1}d|λ|,
so that u+ + u− = 1 and

dλ+ =
1

2
(d|λ| + dλ) = 1{u=1}d|λ|, dλ− =

1

2
(d|λ| − dλ) = 1{u=−1}d|λ|,

and we can take A± = {u = ±1}.

Exercise 7.7.10. Let (X,M) be a measurable space and let λ be a real measure on
(X,M) such that there exists positive bounded measures μ1, μ2 with λ = μ1 − μ2.
Prove that μ1 ≥ λ+, μ2 ≥ λ−.
Answer. We have from the previous exercise for E ∈ M,

λ+(E) = λ(A+ ∩ E) ≤ μ1(A+ ∩ E) ≤ μ1(E),
λ−(E) = −λ(A− ∩E) ≤ μ2(A− ∩ E) ≤ μ2(E).

Exercise 7.7.11. Let μ be a positive σ-finite Borel measure on the real line (μ is
a positive measure defined on the Borel σ-algebra of R which is finite on compact
sets) and let λ1 be the Lebesgue measure on R.

(1) Show that there exist three positive Borel measures μac, μsp, μsc such that

μ = μac + μsp + μsc, (7.7.6)

μac & λ1, μsp =
∑
k∈N
αkδak

, where ak ∈ R, αk > 0, (7.7.7)

μsc ⊥ λ1, ∀x ∈ R, μsc({x}) = 0. (7.7.8)

(2) Prove that the above decomposition is unique. The measure μac is called the
absolutely continuous part of μ, μsp the pure point part of μ and μsc the
singular continuous part of μ. A measure such that for all x, μsc({x}) = 0
is also said to be diffuse.

(3) Give an example of a measure μ such that μ = μsc.

Answer. (1) The Radon–Nikodym Theorem 7.4.1 implies that

μ = μac + μs, dμac = fdλ1, 0 ≤ f ∈ L1(R), μs ⊥ λ1,

where μs is a positive measure (note that μs is finite on compact sets since μ is a
Borel measure). The measure μs is carried by a measurable set C with Lebesgue
measure 0. Now Exercise 1.9.24 applied to the positive Borel measure μs, implies
that there exists a countable subset D = {ak}k∈N of R such that

μs =
∑
a∈D
μs({a})δa︸ ︷︷ ︸
μsp

+μsc,
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where μsc is a Borel measure such that for all x ∈ R, μsc({x}) = 0. Moreover μsc
is also carried by C and thus μsc ⊥ λ1 and μsc ⊥ μsp since μsp is carried by the
countable set D.

(2) Let us prove the uniqueness of this decomposition. If

μ = μac,j + μsp,j + μsc,j , j = 1, 2,

with the properties of (1), we find from the uniqueness part in the Radon–Nikodym
Theorem, that μac,1 = μac,2, μsp,1 +μsc,1 = μsp,2 +μsc,2 = ν. For x ∈ R, we have

μsp,1({x}) + μsc,1({x}) = μsp,2({x}) + μsc,2({x}) =⇒ μsp,1({x}) = μsp,2({x}),

proving that μsp,1 = μsp,2 and thus μsc,1 = μsc,2.

(3) The Cantor measure Ψ′ defined in Proposition 5.7.7 is the derivative of the
Cantor function Ψ and is a positive Radon measure supported in the (compact)
Cantor ternary set K∞ which has Lebesgue measure 0, so that Ψ′ ⊥ λ1. Moreover
Ψ′ has no atoms (is a diffuse measure), so that Ψ′ = (Ψ′)sc.



Chapter 8

Basic Harmonic Analysis on Rn

The Fourier transform of L1(Rn) functions was defined in Chapter 3 with the
Riemann–Lebesgue Lemma 3.4.5.We need to extend this transformation to various
other situations and it turns out that L. Schwartz’ point of view to define the
Fourier transformation on the very large space of tempered distributions is the
simplest. However, the cost of the distribution point of view is that we have to
define these objects, which is not a completely elementary matter. We have chosen
here to limit our presentation to the tempered distributions, topological dual of
the so-called Schwartz space of rapidly decreasing functions; this space is a Fréchet
space, so its topology is defined by a countable family of semi-norms and is much
less difficult to understand than the space of test functions with compact support
on an open set. Proving the Fourier inversion formula on the Schwartz space is a
truly elementary matter, which yields almost immediately the most general case
for tempered distributions, by a duality abstract nonsense argument. This chapter
may also serve the reader as a motivation to explore the more difficult local theory
of distributions.

8.1 Fourier transform of tempered distributions

The Fourier transformation on S (Rn)

Definition 8.1.1. Let n ≥ 1 be an integer. The Schwartz space S (Rn) is defined as
the vector space of C∞ functions u from Rn to C such that, for all multi-indices.
α, β ∈ Nn,

sup
x∈Rn

|xα∂βxu(x)| < +∞.

Here we have used the multi-index notation: for α = (α1, . . . , αn) ∈ Nn we define

xα = xα1
1 . . . x

αn
n , ∂

α
x = ∂α1

x1
. . . ∂αn

xn
, |α| =

∑
1≤j≤n

αj . (8.1.1)
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A simple example of such a function is e−|x|
2

, (|x| is the Euclidean norm
of x) and more generally, if A is a symmetric positive definite n × n matrix, the
function

vA(x) = e
−π〈Ax,x〉 (8.1.2)

belongs to the Schwartz class (Exercise 8.5.1). The space S (Rn) is a Fréchet space
(see Exercise 8.5.2) equipped with the countable family of semi-norms (pk)k∈N,

pk(u) = sup
x∈Rn

|α|,|β|≤k

|xα∂βxu(x)|. (8.1.3)

Definition 8.1.2. For u ∈ S (Rn), we define its Fourier transform û as

û(ξ) =

∫
Rn

e−2iπx·ξu(x)dx. (8.1.4)

Lemma 8.1.3. The Fourier transform sends continuously S (Rn) into itself.

Proof. Just notice that

ξα∂βξ û(ξ) =

∫
e−2iπxξ∂αx (x

βu)(x)dx(2iπ)|β|−|α|(−1)|β|,

and since supx∈Rn(1 + |x|)n+1|∂αx (xβu)(x)| < +∞, we get the result. �
Lemma 8.1.4. For a symmetric positive definite n× n matrix A, we have

v̂A(ξ) = (detA)−1/2e−π〈A−1ξ,ξ〉, (8.1.5)

where vA is given by (8.1.2).

Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove the
one-dimensional version of (8.1.5), i.e., to check∫

e−2iπxξe−πx2

dx =

∫
e−π(x+iξ)2dxe−πξ2 = e−πξ2 ,

where the second equality is obtained by taking the ξ-derivative of
∫
e−π(x+iξ)2dx:

we have indeed

d

dξ

(∫
e−π(x+iξ)2dx

)
=

∫
e−π(x+iξ)2(−2iπ)(x+ iξ)dx

= −i
∫
d

dx

(
e−π(x+iξ)2

)
dx = 0.

For a > 0, we obtain
∫
R
e−2iπxξe−πax2

dx = a−1/2e−πa−1ξ2 , which is the sought
result in one dimension. If n ≥ 2, and A is a positive definite symmetric matrix,
there exists an orthogonal n× n matrix P (i.e., tPP = Id) such that

D =tPAP, D = diag(λ1, . . . , λn), all λj > 0.
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As a consequence, we have, since | detP | = 1,∫
Rn

e−2iπx·ξe−π〈Ax,x〉dx =

∫
Rn

e−2iπ(Py)·ξe−π〈APy,Py〉dy

=

∫
Rn

e−2iπy·(tPξ)e−π〈Dy,y〉dy

(with η = tPξ) =
∏

1≤j≤n

∫
R

e−2iπyjηj e−πλjy
2
j dyj =

∏
1≤j≤n

λ
−1/2
j e−πλ−1

j η2
j

= (detA)−1/2e−π〈D−1η,η〉

= (detA)−1/2e−π〈tPA−1P tPξ,tPξ〉

= (detA)−1/2e−π〈A−1ξ,ξ〉. �

Proposition 8.1.5. The Fourier transformation is an isomorphism of the Schwartz
class and for u ∈ S (Rn), we have

u(x) =

∫
e2iπxξû(ξ)dξ. (8.1.6)

Proof. Using (8.1.5) we calculate for u ∈ S (Rn) and ε > 0, dealing with absolutely
converging integrals,

uε(x) =

∫
e2iπxξû(ξ)e−πε2|ξ|2dξ

=

∫∫
e2iπxξe−πε2|ξ|2u(y)e−2iπyξdydξ

=

∫
u(y)e−πε−2|x−y|2ε−ndy

=

∫ (
u(x+ εy)− u(x)

)︸ ︷︷ ︸
with absolute value≤ε|y|‖u′‖L∞

e−π|y|2dy + u(x).

Taking the limit when ε goes to zero, we get the Fourier inversion formula

u(x) =

∫
e2iπxξû(ξ)dξ. (8.1.7)

We have also proven for u ∈ S (Rn) and ǔ(x) = u(−x),

u =
ˇ̂
û. (8.1.8)

Since u �→ û and u �→ ǔ are continuous homomorphisms of S (Rn), this completes
the proof of the proposition. �
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Proposition 8.1.6. Using the notation

Dxj =
1

2iπ

∂

∂xj
, Dα

x =

n∏
j=1

Dαj
xj

with α = (α1, . . . , αn) ∈ Nn, (8.1.9)

we have, for u ∈ S (Rn),

D̂α
xu(ξ) = ξ

αû(ξ), (Dα
ξ û)(ξ) = (−1)|α|x̂αu(x)(ξ). (8.1.10)

Proof. We have for u ∈ S (Rn), û(ξ) =
∫
e−2iπx·ξu(x)dx and thus

(Dα
ξ û)(ξ) = (−1)|α|

∫
e−2iπx·ξxαu(x)dx,

ξαû(ξ) =

∫
(−2iπ)−|α|∂αx

(
e−2iπx·ξ)u(x)dx = ∫ e−2iπx·ξ(2iπ)−|α|(∂αx u)(x)dx,

proving both formulas. �
N.B. The normalization factor 1

2iπ leads to a simplification in Formula (8.1.10),
but the most important aspect of these formulas is certainly that the Fourier
transformation exchanges the operation of derivation with the operation of multi-
plication. For instance with

P (D) =
∑
|α|≤m

aαD
α
x ,

we have for u ∈ S (Rn), P̂ u(ξ) =
∑
|α|≤m aαξ

αû(ξ) = P (ξ)û(ξ), and thus

(Pu)(x) =

∫
Rn

e2iπx·ξP (ξ)û(ξ)dξ. (8.1.11)

Proposition 8.1.7. Let φ, ψ be functions in S (Rn). Then the convolution φ ∗ ψ as
given by (6.1.1) belongs to the Schwartz space and the mapping

S (Rn) × S (Rn) � (φ, ψ) �→ φ ∗ ψ ∈ S (Rn)

is continuous. Moreover we have

φ̂ ∗ ψ = φ̂ψ̂. (8.1.12)

Proof. The mapping (x, y) �→ F (x, y) = φ(x − y)ψ(y) belongs to S (R2n) since
x, y derivatives of the smooth function F are linear combinations of products
(∂αφ)(x − y)(∂βψ)(y) and moreover

(1 + |x| + |y|)N |(∂αφ)(x − y)(∂βψ)(y)|
≤ (1 + |x− y|)N |(∂αφ)(x − y)|(1 + 2|y|)N |(∂βψ)(y)|
≤ p(φ)q(ψ),
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where p, q are semi-norms on S (Rn). This proves that the bilinear mapping
(φ, ψ) �→ F (φ, ψ) is continuous from S (Rn) × S (Rn) into S (R2n). We have
now directly ∂αx (φ ∗ ψ) = (∂αxφ) ∗ ψ and

(1 + |x|)N |∂αx (φ ∗ ψ)| ≤
∫

|F (∂αφ, ψ)(x, y)|(1 + |x|)Ndy

≤
∫

|F (∂αφ, ψ)(x, y)|(1 + |x|)N (1 + |y|)n+1︸ ︷︷ ︸
≤p(F )

(1 + |y|)−n−1dy,

where p is a semi-norm of F (thus bounded by a product of semi-norms of φ and
ψ), proving the continuity property. Also we obtain from Fubini’s theorem

(φ̂ ∗ ψ)(ξ) =
∫∫
e−2iπ(x−y)·ξe−2iπy·ξφ(x− y)ψ(y)dydx = φ̂(ξ)ψ̂(ξ),

completing the proof of the proposition. �

The Fourier transformation on S ′(Rn)

Definition 8.1.8. Let n be an integer ≥ 1. We define the space S ′(Rn) as the
topological dual of the Fréchet space S (Rn): this space is called the space of
tempered distributions on Rn.

We note that the mapping

S (Rn) � φ �→ ∂φ

∂xj
∈ S (Rn),

is continuous since for all k ∈ N, pk(∂φ/∂xj) ≤ pk+1(φ), where the semi-norms pk
are defined in (8.1.3). This property allows us to define by duality the derivative
of a tempered distribution.

Definition 8.1.9. Let u ∈ S ′(Rn). We define ∂u/∂xj as an element of S ′(Rn) by〈
∂u

∂xj
, φ

〉
S ′,S

= −
〈
u,
∂φ

∂xj

〉
S ′,S

. (8.1.13)

The mapping u �→ ∂u/∂xj is a well-defined endomorphism of S ′(Rn) since
the estimates

∀φ ∈ S (Rn),

∣∣∣∣〈 ∂u∂xj , φ
〉∣∣∣∣ ≤ Cupku

(
∂φ

∂xj

)
≤ Cupku+1(φ),

ensure the continuity on S (Rn) of the linear form ∂u/∂xj .

Definition 8.1.10. Let u ∈ S ′(Rn) and let P be a polynomial in n variables with
complex coefficients. We define the product Pu as an element of S ′(Rn) by

〈Pu, φ〉S ′,S = 〈u, Pφ〉S ′,S . (8.1.14)
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The mapping u �→ Pu is a well-defined endomorphism of S ′(Rn) since the
estimates

∀φ ∈ S (Rn), |〈Pu, φ〉| ≤ Cupku(Pφ) ≤ Cupku+D(φ),

where D is the degree of P , ensure the continuity on S (Rn) of the linear form Pu.

Lemma 8.1.11. Let Ω be an open subset of Rn, f ∈ L1loc(Ω) such that, for all
ϕ ∈ C∞c (Ω),

∫
f(x)ϕ(x)dx = 0. Then we have f = 0.

Proof. Let K be a compact subset of Ω and let χ ∈ C∞c (Ω) equal to 1 on a
neighborhood of K as in Exercise 2.8.7. With ρ as in Exercise 6.6.3, we get that

lim
ε→0+

ρε ∗ (χf) = χf in L1(Rn).

We have
(
ρε∗(χf)

)
(x) =

∫
f(y)χ(y)ρ

(
(x− y)ε−1

)
ε−n︸ ︷︷ ︸

=ϕx(y)

dy, with suppϕx ⊂ suppχ,

ϕx ∈ C∞c (Ω), and from the assumption of the lemma, we obtain
(
ρε∗(χf)

)
(x) = 0

for all x, implying χf = 0 from the convergence result and thus f = 0, a.e. on
K; the conclusion of the lemma follows since Ω is a countable union of compact
sets. �

Definition 8.1.12 (support of a distribution). For u ∈ S ′(Rn), we define the sup-
port of u and we denote by suppu the closed subset of Rn defined by

(suppu)c = {x ∈ Rn, ∃V open ∈ Vx, u|V = 0}, (8.1.15)

where Vx stands for the set of neighborhoods of x and u|V = 0 means that for all
φ ∈ C∞c (V ), 〈u, φ〉 = 0.

Proposition 8.1.13.

(1) We have S ′(Rn) ⊃ ∪1≤p≤+∞L
p(Rn), with a continuous injection of each

Lp(Rn) into S ′(Rn). As a consequence S ′(Rn) contains as well all the
derivatives in the sense (8.1.13) of all the functions in some Lp(Rn).

(2) For u ∈ C1(Rn) such that(
|u(x)| + |du(x)|

)
(1 + |x|)−N ∈ L1(Rn), (8.1.16)

for some non-negative N , the derivative in the sense (8.1.13) coincides with
the ordinary derivative.

Proof. (1) For u ∈ Lp(Rn) and φ ∈ S (Rn), we can define

〈u, φ〉S ′,S =

∫
Rn

u(x)φ(x)dx, (8.1.17)
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which is a continuous linear form on S (Rn):

|〈u, φ〉S ′,S | ≤ ‖u‖Lp(Rn)‖φ‖Lp′(Rn),

‖φ‖Lp′(Rn) ≤ sup
x∈Rn

(
(1 + |x|)

n+1
p′ |φ(x)|

)
Cn,p ≤ Cn,ppk(φ), for k ≥ kn,p =

n+ 1

p′
,

with pk given by (8.1.3) (when p = 1, we can take k = 0). We indeed have
a continuous injection of Lp(Rn) into S ′(Rn): in the first place the mapping
described by (8.1.17) is well defined and continuous from the estimate

|〈u, φ〉| ≤ ‖u‖LpCn,ppkn,p(φ).

Moreover, this mapping is linear and injective from Lemma 8.1.11.

(2) We have for φ ∈ S (Rn), χ0 ∈ C∞c (Rn), χ0 = 1 near the origin,

A =

〈
∂u

∂xj
, φ

〉
S ′,S

= −
〈
u
∂φ

∂xj

〉
S ′,S

= −
∫
Rn

u(x)
∂φ

∂xj
(x)dx

so that, using Lebesgue’s dominated convergence theorem, we find

A = − lim
ε→0+

∫
Rn

u(x)
∂φ

∂xj
(x)χ0(εx)dx.

Performing an integration by parts on C1 functions with compact support (see
Proposition 2.3.2 (2)), we get

A = lim
ε→0+

{∫
Rn

(∂ju)(x)φ(x)χ0(εx)dx + ε

∫
Rn

u(x)φ(x)(∂jχ0)(εx)dx

}
,

with ∂ju standing for the ordinary derivative. We have also∫
Rn

|u(x)φ(x)(∂jχ0)(εx)|dx ≤ ‖∂jχ0)‖L∞(Rn)

∫
|u(x)|(1+ |x|)−Ndx pN(φ) < +∞,

so that 〈 ∂u
∂xj
, φ〉S ′,S = limε→0+

∫
Rn(∂ju)(x)φ(x)χ0(εx)dx. Since the lhs is a con-

tinuous linear form on S (Rn) so is the rhs. On the other hand for φ ∈ C∞c (Rn),
the rhs is

∫
Rn(∂ju)(x)φ(x)dx. Since C

∞
c (Rn) is dense in S (Rn) (Exercise 8.5.3),

we find that 〈
∂u

∂xj
, φ

〉
S ′,S

=

∫
Rn

(∂ju)(x)φ(x)dx,

since the mapping φ �→
∫
Rn(∂ju)(x)φ(x)dx belongs to S ′(Rn), thanks to the

assumption on du in (8.1.16). This proves that ∂u
∂xj

= ∂ju. �

The Fourier transformation can be extended to S ′(Rn). We start with notic-
ing that for T, φ in the Schwartz class we have, using Fubini’s theorem,∫

T̂ (ξ)φ(ξ)dξ =

∫∫
T (x)φ(ξ)e−2iπx·ξdxdξ =

∫
T (x)φ̂(x)dx,

and we can use the latter formula as a definition.
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Definition 8.1.14. Let T be a tempered distribution; the Fourier transform T̂ of T
is the tempered distribution defined by the formula

〈T̂ , ϕ〉S ′,S = 〈T, ϕ̂〉S ′,S . (8.1.18)

The linear form T̂ is obviously a tempered distribution since the Fourier trans-
formation is continuous on S . Thanks to Lemma 8.1.11, if T ∈ S , the present
definition of T̂ and (8.1.4) coincide.

This definition gives that, with δ0 standing as the Dirac mass at 0, 〈δ0, φ〉S ′,S =
φ(0) (obviously a tempered distribution), we have

δ̂0 = 1, (8.1.19)

since 〈δ̂0, ϕ〉 = 〈δ0, ϕ̂〉 = ϕ̂(0) =
∫
ϕ(x)dx = 〈1, ϕ〉.

Theorem 8.1.15. The Fourier transformation is an isomorphism of S ′(Rn). Let
T be a tempered distribution. Then we have1

T =
ˇ̂
T̂ ,

ˇ̂
T = ˆ̌T . (8.1.20)

With obvious notation, we have the following extensions of (8.1.10),

D̂α
xT (ξ) = ξ

αT̂ (ξ), (Dα
ξ T̂ )(ξ) = (−1)|α|x̂αT (x)(ξ). (8.1.21)

Proof. We have for T ∈ S ′,

〈
ˇ̂
T̂ , ϕ〉S ′,S = 〈 ˆ̂T , ϕ̌〉S ′,S = 〈T̂ , ˆ̌ϕ〉S ′,S = 〈T, ˆ̌̂ϕ〉S ′,S = 〈T, ϕ〉S ′,S ,

where the last equality is due to the fact that ϕ �→ ϕ̌ commutes2 with the Fourier
transform and (8.1.7) means

ˇ̂
ϕ̂ = ϕ,

a formula also proven true on S ′ by the previous line of equality. Formula (8.1.10)
is true as well for T ∈ S ′ since, with ϕ ∈ S and ϕα(ξ) = ξ

αϕ(ξ), we have

〈D̂αT , ϕ〉S ′,S = 〈T, (−1)|α|Dαϕ̂〉S ′,S = 〈T, ϕ̂α〉S ′,S = 〈T̂ , ϕα〉S ′,S ,

and the other part is proven the same way. �

1We define Ť as the distribution given by 〈Ť , ϕ〉 = 〈T, ϕ̌〉 and if T ∈ S ′, Ť is also a tempered
distribution since ϕ �→ ϕ̌ is an involutive isomorphism of S .
2If ϕ ∈ S , we have ̂̌ϕ(ξ) = ∫

e−2iπx·ξϕ(−x)dx =
∫
e2iπx·ξϕ(x)dx = ϕ̂(−ξ) = ˇ̂ϕ(ξ).
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The Fourier transformation on L1(Rn)

Theorem 8.1.16. The Fourier transformation is linear continuous from L1(Rn)
into L∞(Rn) and for u ∈ L1(Rn), we have

û(ξ) =

∫
e−2iπx·ξu(x)dx, ‖û‖L∞(Rn) ≤ ‖u‖L1(Rn). (8.1.22)

Proof. Formula (8.1.4) can be used to define directly the Fourier transform of a
function in L1(Rn) and this gives an L∞(Rn) function which coincides with the
Fourier transform: for a test function ϕ ∈ S (Rn), and u ∈ L1(Rn), we have by
the definition (8.1.18) above and Fubini’s theorem

〈û, ϕ〉S ′,S =

∫
u(x)ϕ̂(x)dx =

∫∫
u(x)ϕ(ξ)e−2iπx·ξdxdξ =

∫
ũ(ξ)ϕ(ξ)dξ

with ũ(ξ) =
∫
e−2iπx·ξu(x)dx which is thus the Fourier transform of u. �

The Fourier transformation on L2(Rn)

Theorem 8.1.17 (Plancherel formula). The Fourier transformation can be extended
to a unitary operator of L2(Rn), i.e., there exists a unique bounded linear operator
F : L2(Rn) −→ L2(Rn), such that for u ∈ S (Rn), Fu = û and we have F ∗F =
FF ∗ = IdL2(Rn). Moreover

F ∗ = CF = FC, F 2C = IdL2(Rn), (8.1.23)

where C is the involutive isomorphism of L2(Rn) defined by (Cu)(x) = u(−x).
This gives the Plancherel formula: for u, v ∈ L2(Rn),∫

Rn

û(ξ)v̂(ξ)dξ =

∫
u(x)v(x)dx. (8.1.24)

Proof. For test functions ϕ, ψ ∈ S (Rn), using Fubini’s theorem and (8.1.7), we
get3

(ψ̂, ϕ̂)L2(Rn) =

∫
ψ̂(ξ)ϕ̂(ξ)dξ =

∫∫
ψ̂(ξ)e2iπx·ξϕ(x)dxdξ = (ψ, ϕ)L2(Rn).

Next, the density of S in L2 shows that there is a unique continuous extension
F of the Fourier transform to L2 and that extension is an isometric operator (i.e.,
satisfying for all u ∈ L2(Rn), ‖Fu‖L2 = ‖u‖L2, i.e., F ∗F = IdL2). We note that
the operator C defined by Cu = ǔ is an involutive isomorphism of L2(Rn) and
that for u ∈ S (Rn),

CF 2u = u = FCFu = F 2Cu.
3We have to pay attention to the fact that the scalar product (u, v)L2 in the complex
Hilbert space L2(Rn) is linear with respect to u and antilinear with respect to v: for λ, μ ∈
C, (λu, μv)L2 = λμ̄(u, v)L2 .
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By the density of S (Rn) in L2(Rn), the bounded operators

CF 2, IdL2(Rn), FCF, F
2C,

are all equal. On the other hand for u, ϕ ∈ S (Rn), we have

(F ∗u, ϕ)L2 = (u, Fϕ)L2 =

∫
u(x)ϕ̂(x)dx

=

∫∫
u(x)ϕ̄(ξ)e2iπx·ξdxdξ = (CFu, ϕ)L2 ,

so that F ∗u = CFu for all u ∈ S and by continuity F ∗ = CF as bounded
operators on L2(Rn), thus FF ∗ = FCF = Id. The proof is complete. �

Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R byH(x) = 1 for x > 0,H(x) =
0 for x ≤ 0; as a bounded measurable function, it is a tempered distribution, so
that we can compute its Fourier transform. With the notation of this section, we
have, with δ0 the Dirac mass at 0, Ȟ(x) = H(−x),

Ĥ + ̂̌H = 1̂ = δ0, Ĥ − ̂̌H = ŝign,
1

iπ
=

1

2iπ
2δ̂0(ξ) = D̂ sign(ξ) = ξŝignξ.

We note that R �→ ln |x| belongs to S ′(R) and4 we define the so-called principal
value of 1/x on R by

pv

(
1

x

)
=
d

dx
(ln |x|), (8.1.25)

so that,〈
pv

1

x
, φ

〉
= −

∫
φ′(x) ln |x|dx = − lim

ε→0+

∫
|x|≥ε

φ′(x) ln |x|dx

= lim
ε→0+

(∫
|x|≥ε

φ(x)
1

x
dx+

(
φ(ε) − φ(−ε)

)
ln ε︸ ︷︷ ︸

→0

)
= lim

ε→0+

∫
|x|≥ε

φ(x)
1

x
dx.

(8.1.26)

This entails ξ
(
ŝignξ − 1

iπ pv(1/ξ)
)
= 0 and from Exercise 8.5.4, we get

ŝignξ − 1

iπ
pv(1/ξ) = cδ0,

4For φ ∈ S (R), we have 〈ln |x|, φ(x)〉S ′(R),S (R) =
∫
R
φ(x) ln |x|dx.
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with c = 0 since the lhs is odd5. We obtain

ŝign(ξ) =
1

iπ
pv

1

ξ
, (8.1.27)

̂
pv

(
1

πx

)
= −i sign ξ, (8.1.28)

Ĥ =
δ0
2

+
1

2iπ
pv

(
1

ξ

)
=

1

(x − i0)
1

2iπ
(see Exercise 8.5.6). (8.1.29)

Let us consider now for 0 < α < n the L1loc(R
n) function uα(x) = |x|α−n (|x| is

the Euclidean norm of x); since uα is also bounded for |x| ≥ 1, it is a tempered
distribution. Let us calculate its Fourier transform vα. Since uα is homogeneous
of degree α− n, we get from Exercise 8.5.9 that vα is a homogeneous distribution
of degree −α. On the other hand, if S ∈ O(Rn) (the orthogonal group), we have
in the distribution sense6 since uα is a radial function, i.e., such that

vα(Sξ) = vα(ξ). (8.1.30)

The distribution |ξ|αvα(ξ) is homogeneous of degree 0 on Rn\{0} and is also
“radial”, i.e., satisfies (8.1.30). Moreover on Rn\{0}, the distribution vα is a C1

function which coincides with7∫
e−2iπx·ξχ0(x)|x|α−ndx+ |ξ|−2N

∫
e−2iπx·ξ|Dx|2N

(
χ1(x)|x|α−n

)
dx,

where χ0 ∈ C∞c (Rn) is 1 near 0 and χ1 = 1− χ0, N ∈ N, α+ 1 < 2N . As a result
|ξ|αvα(ξ) = cα on Rn\{0} and the distribution on Rn (note that α < n),

T = vα(ξ) − cα|ξ|−α

is supported in {0} and homogeneous (on Rn) with degree −α. From the Exercises
8.5.7(1), 8.5.5 and 8.5.8, the condition 0 < α < n gives vα = cα|ξ|−α. To find cα,
we compute ∫

Rn

|x|α−ne−πx2

dx = 〈uα, e−πx2〉 = cα
∫
Rn

|ξ|−αe−πξ2dξ

which yields

2−1Γ
(α
2

)
π−

α
2 =

∫ +∞

0

rα−1e−πr2dr = cα

∫ +∞

0

rn−α−1e−πr2dr

= cα2
−1Γ

(
n− α
2

)
π−(n−α

2 ).

5A distribution T on Rn is said to be odd (resp. even) when Ť = −T (resp. T ).
6For M ∈ Gl(n,R), T ∈ S ′(Rn), we define 〈T (Mx), φ(x)〉 = 〈T (y), φ(M−1y)〉| detM |−1.
7We have ûα = χ̂0uα + χ̂1uα and for φ supported in Rn\{0} we get,

〈χ̂1uα, φ〉 = 〈χ̂1uα|ξ|2N , φ(ξ)|ξ|−2N 〉 = 〈 ̂|Dx|2Nχ1uα, φ(ξ)|ξ|−2N 〉.
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We have proven the following lemma.

Lemma 8.1.18. Let n ∈ N∗ and α ∈ (0, n). The function uα(x) = |x|α−n is
L1loc(R

n) and also a temperate distribution on Rn. Its Fourier transform vα is
also L1loc(R

n) and given by

vα(ξ) = |ξ|−απ
n
2−α Γ(α2 )

Γ(n−α
2 )
.

Fourier transform of Gaussian functions

Proposition 8.1.19. Let A be a symmetric nonsingular n× n matrix with complex
entries such that ReA ≥ 0. We define the Gaussian function vA on Rn by vA(x) =
e−π〈Ax,x〉. The Fourier transform of vA is

v̂A(ξ) = (detA)−1/2e−π〈A−1ξ,ξ〉, (8.1.31)

where (detA)−1/2 is defined according to Formula (10.5.8). In particular, when
A = −iB with a symmetric real nonsingular matrix B, we get

Fourier(eiπ〈Bx,x〉)(ξ) = v̂−iB(ξ) = | detB|−1/2ei
π
4 signBe−iπ〈B−1ξ,ξ〉. (8.1.32)

Proof. We use the notation of Section 10.5 (in the subsection Logarithm of a
nonsingular symmetric matrix). Let us define Υ∗+ as the set of symmetric n × n
complex matrices with a positive definite real part (naturally these matrices are
nonsingular since Ax = 0 for x ∈ Cn implies 0 = Re〈Ax, x̄〉 = 〈(ReA)x, x̄〉, so
that Υ∗+ ⊂ Υ+).

Let us assume first that A ∈ Υ∗+; then the function vA is in the Schwartz class

(and so is its Fourier transform). The set Υ∗+ is an open convex subset of Cn(n+1)/2

and the function Υ∗+ � A �→ v̂A(ξ) is holomorphic and given on Υ∗+ ∩ Rn(n+1)/2

by (8.1.31). On the other hand the function

Υ∗+ � A �→ e− 1
2 traceLogAe−π〈A−1ξ,ξ〉,

is also holomorphic and coincides with the previous one on Rn(n+1)/2. By analytic
continuation this proves (8.1.31) for A ∈ Υ∗+.

If A ∈ Υ+ and ϕ ∈ S (Rn), we have 〈v̂A, ϕ〉S ′,S =
∫
vA(x)ϕ̂(x)dx so that

Υ+ � A �→ 〈v̂A, ϕ〉 is continuous and thus (note that the mapping A �→ A−1 is an
homeomorphism of Υ+), using the previous result on Υ∗+,

〈v̂A, ϕ〉 = lim
ε→0+

〈v̂A+εI , ϕ〉 = lim
ε→0+

∫
e−

1
2 traceLog(A+εI)e−π〈(A+εI)−1ξ,ξ〉ϕ(ξ)dξ,

and by continuity of Log on Υ+ and dominated convergence,

〈v̂A, ϕ〉 =
∫
e−

1
2 trace LogAe−π〈A−1ξ,ξ〉ϕ(ξ)dξ,

which is the sought result. �
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Multipliers of S ′(Rn)

Definition 8.1.20. The space OM (Rn) of multipliers of S (Rn) is the subspace of
the functions f ∈ C∞(Rn) such that,

∀α ∈ Nn, ∃Cα > 0, ∃Nα ∈ N, ∀x ∈ Rn, |(∂αx f)(x)| ≤ Cα(1 + |x|)Nα . (8.1.33)

It is easy to check that, for f ∈ OM (Rn), the operator u �→ fu is continuous
from S (Rn) into itself, and by transposition from S ′(Rn) into itself: we define
for T ∈ S ′(Rn), f ∈ OM (Rn),

〈fT, ϕ〉S ′,S = 〈T, fϕ〉S ′,S ,

and if p is a semi-norm of S , the continuity on S of the multiplication by f implies
that there exists a semi-norm q on S such that for all ϕ ∈ S , p(fϕ) ≤ q(ϕ).
A typical example of a function in OM (Rn) is eiP (x) where P is a real-valued
polynomial: in fact the derivatives of eiP (x) are of type Q(x)eiP (x) where Q is a
polynomial so that (8.1.33) holds.

Definition 8.1.21. Let T, S be tempered distributions on Rn such that T̂ belongs
to OM (Rn). We define the convolution T ∗ S by

T̂ ∗ S = T̂ Ŝ. (8.1.34)

Note that this definition makes sense since T̂ is a multiplier so that T̂ Ŝ is
indeed a tempered distribution whose inverse Fourier transform is meaningful. We
have

〈T ∗ S, φ〉S ′(Rn),S (Rn) = 〈T̂ ∗ S, ˆ̌φ〉S ′(Rn),S (Rn) = 〈Ŝ, T̂ ˆ̌φ〉S ′(Rn),S (Rn).

Proposition 8.1.22. Let T be a distribution on Rn such that T is compactly sup-
ported. Then T̂ is a multiplier which can be extended to an entire function on Cn

such that if suppT ⊂ B̄(0, R0),

∃C0, N0 ≥ 0, ∀ζ ∈ Cn, |T̂ (ζ)| ≤ C0(1 + |ζ|)N0e2πR0| Im ζ|. (8.1.35)

In particular, for S ∈ S ′(Rn), we may define according to (8.1.34) the convolution
T ∗ S.

Proof. Let us first check the case R0 = 0: then the distribution T is supported
at {0} and from Exercise 8.5.5 is a linear combination of derivatives of the Dirac
mass at 0. Formulas (8.1.19), (8.1.21) imply that T̂ is a polynomial, so that the
conclusions of Proposition 8.1.22 hold in that case.

Let us assume that R0 > 0 and let us consider a function χ that is equal to
1 in a neighborhood of suppT (this implies χT = T ) and

〈T̂ , φ〉S ′,S = 〈χ̂T , φ〉S ′,S = 〈T, χφ̂〉S ′,S . (8.1.36)
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On the other hand, defining for ζ ∈ Cn (with x · ζ =
∑
xjζj for x ∈ Rn),

F (ζ) =
〈
T (x), χ(x)e−2iπx·ζ〉

S ′,S , (8.1.37)

we see that F is an entire function (i.e., holomorphic on Cn): calculating

F (ζ + h) − F (ζ) = 〈T (x), χ(x)e−2iπx·ζ(e−2iπx·h − 1)〉
= 〈T (x), χ(x)e−2iπx·ζ(−2iπx · h)〉

+

〈
T (x), χ(x)e−2iπx·ζ

∫ 1

0

(1 − θ)e−2iθπx·hdθ(−2iπx · h)2
〉
,

and applying to the last term the continuity properties of the linear form T , we
obtain that the complex differential of F is∑

1≤j≤n

〈T (x), χ(x)e−2iπx·ζ(−2iπxj)〉dζj .

Moreover the derivatives of (8.1.37) are

F (k)(ζ) = 〈T (x), χ(x)e−2iπx·ζ(−2iπx)k〉S ′,S . (8.1.38)

To evaluate the semi-norms of x �→ χ(x)e−2iπx·ζ(−2iπx)k in the Schwartz space,
we have to deal with a finite sum of products of type∣∣xγ(∂αχ)(x)e−2iπx·ζ(−2iπζ)β

∣∣ ≤ (1 + |ζ|)|β| sup
x∈Rn

|xγ(∂αχ)(x)e2π|x|| Im ζ||.

We may now choose a function χ0 equal to 1 on B(0, 1), supported in B(0, R0+2ε
R0+ε )

such that ‖∂βχ0‖L∞ ≤ c(β)ε−|β| with ε = R0

1+|ζ| . We find with

χ(x) = χ0(x/(R0 + ε)) (which is 1 on a neighborhood of B(0, R0)),

sup
x∈Rn

|xγ(∂αχ)(x)e2π|x|| Im ζ|| ≤ (R0 + 2ε)|γ| sup
y∈Rn

|(∂αχ0)(y)e2π(R0+2ε)| Im ζ||

≤ (R0 + 2ε)|γ|e2π(R0+2ε)| Im ζ|c(α)ε−|α|

=

(
R0 + 2

R0

1 + |ζ|

)|γ|
e2π(R0+2

R0
1+|ζ| )| Im ζ|c(α)

(
1 + |ζ|
R0

)|α|
≤ (3R0)

|γ|e2πR0| Im ζ|e4πR0c(α)R
−|α|
0 (1 + |ζ|)|α|,

yielding
|F (k)(ζ)| ≤ e2πR0| Im ζ|Ck(1 + |ζ|)Nk ,

which implies that Rn � ξ �→ F (ξ) is indeed a multiplier. We have also

〈T, χφ̂〉S ′,S = 〈T (x), χ(x)
∫
Rn

φ(ξ)e−2iπxξdξ〉S ′,S .



8.2. The Poisson summation formula 357

Since the function F is entire we have for φ ∈ C∞c (Rn), using (8.1.38) and Fubini’s
theorem on �1(N) × L1(Rn),∫

Rn

F (ξ)φ(ξ)dξ =
∑
k≥0

〈T (x), χ(x)(−2iπx)k〉
∫
suppφ

ξk

k!
φ(ξ)dξ. (8.1.39)

On the other hand, since φ̂ is also entire (from the discussion on F or directly
from the integral formula for the Fourier transform of φ ∈ C∞c (Rn)), we have

〈T, χφ̂〉 = 〈T (x), χ(x)
∑
k≥0

(φ̂)(k)(0)xk/k!〉

= 〈T (x), χ(x) lim
N→+∞

∑
0≤k≤N

(φ̂)(k)(0)xk/k!︸ ︷︷ ︸
convergence in C∞c (Rn)

〉

= lim
N→+∞

∑
0≤k≤N

〈T (x), χ(x)xk/k!〉
∫
Rn

φ(ξ)(−2iπξ)kdξ.

Thanks to (8.1.39), that quantity is equal to
∫
Rn F (ξ)φ(ξ)dξ. As a result, the

tempered distributions T̂ and F coincide on C∞c (Rn), which is dense in S (Rn)
(see Exercise 8.5.3) and so T̂ = F , concluding the proof. �

8.2 The Poisson summation formula

Wave packets

We define for x ∈ Rn, (y, η) ∈ Rn × Rn,

ϕy,η(x) = 2n/4e−π(x−y)2e2iπ(x−y)·η = 2n/4e−π(x−y−iη)2e−πη2

, (8.2.1)

where for ζ = (ζ1, . . . , ζn) ∈ Cn, ζ2 =
∑

1≤j≤n

ζ2j . (8.2.2)

We note that the function ϕy,η is in S (Rn) and with L2 norm 1. In fact, ϕy,η
appears as a phase translation of a normalized Gaussian. The following lemma
introduces the wave packets transform as a Gabor wavelet.

Lemma 8.2.1. Let u be a function in the Schwartz class S (Rn). We define

(Wu)(y, η) = (u, ϕy,η)L2(Rn) = 2n/4
∫
u(x)e−π(x−y)2e−2iπ(x−y)·ηdx (8.2.3)

= 2n/4
∫
u(x)e−π(y−iη−x)2dxe−πη2

. (8.2.4)
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For u ∈ L2(Rn), the function Tu defined by

(Tu)(y + iη) = eπη
2

Wu(y,−η) = 2n/4
∫
u(x)e−π(y+iη−x)2dx (8.2.5)

is an entire function. The mapping u �→Wu is continuous from S (Rn) to S (R2n)
and isometric from L2(Rn) to L2(R2n). Moreover, we have the reconstruction for-
mula

u(x) =

∫∫
Rn×Rn

(Wu)(y, η)ϕy,η(x)dydη. (8.2.6)

Proof. For u in S (Rn), we have

(Wu)(y, η) = e2iπyηΩ̂
1

(η, y)

where Ω̂
1

is the Fourier transform with respect to the first variable of the S (R2n)

function Ω(x, y) = u(x)e−π(x−y)22n/4. Thus the function Wu belongs to S (R2n).
It makes sense to compute

2−n/2(Wu,Wu)L2(R2n)

= lim
ε→0+

∫
u(x1)u(x2)e

−π[(x1−y)2+(x2−y)2+2i(x1−x2)η+ε2η2]dydηdx1dx2.
(8.2.7)

Now the last integral on R4n converges absolutely and we can use Fubini’s theorem.
Integrating with respect to η involves the Fourier transform of a Gaussian function
and we get ε−ne−πε−2(x1−x2)

2

. Since

2(x1 − y)2 + 2(x2 − y)2 = (x1 + x2 − 2y)2 + (x1 − x2)2,

integrating with respect to y yields a factor 2−n/2. We are left with

(Wu,Wu)L2(R2n)

= lim
ε→0+

∫
u(x1) u(x2)e

−π(x1−x2)
2/2ε−ne−πε−2(x1−x2)

2

dx1dx2.
(8.2.8)

Changing the variables, the integral is

lim
ε→0+

∫
u(s+ εt/2) u(s− εt/2)e−πε2t2/2e−πt2dtds = ‖u‖2L2(Rn)

by Lebesgue’s dominated convergence theorem: the triangle inequality and the
estimate |u(x)| ≤ C(1 + |x|)−n−1 imply, with v = u/C,

|v(s+ εt/2) v(s− εt/2)| ≤ (1 + |s+ εt/2|)−n−1(1 + |s+ εt/2|)−n−1

≤ (1 + |s+ εt/2|+ |s− εt/2|)−n−1

≤ (1 + 2|s|)−n−1.
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Eventually, this proves that for u ∈ S (Rn),

‖Wu‖2L2(R2n) = ‖u‖2L2(Rn), (8.2.9)

so that by density of S (Rn) in L2(Rn),

W : L2(Rn) → L2(R2n) with W ∗W = idL2(Rn). (8.2.10)

Noticing first that
∫∫
Wu(y, η)ϕy,ηdydη belongs to L2(Rn) (with a norm smaller

than ‖Wu‖L1(R2n)) and applying Fubini’s theorem, we get from the polarization
of (8.2.9) for u, v ∈ S (Rn),

(u, v)L2(Rn) = (Wu,Wv)L2(R2n) =

∫∫
Wu(y, η)(ϕy,η, v)L2(Rn)dydη

=

(∫∫
Wu(y, η)ϕy,ηdydη, v

)
L2(Rn)

,

yielding u =
∫∫
Wu(y, η)ϕy,ηdydη, which is the result of the lemma. �

Poisson’s formula

The following lemma is in fact the Poisson summation formula for Gaussian func-
tions in one dimension.

Lemma 8.2.2. For all complex numbers z, the following series are absolutely con-
vergent and ∑

m∈Z
e−π(z+m)2 =

∑
m∈Z
e−πm2

e2iπmz. (8.2.11)

Proof. We set ω(z) =
∑

m∈Z e
−π(z+m)2 . The function ω is entire and 1-periodic

since for all m ∈ Z, z �→ e−π(z+m)2 is entire and for R > 0,

sup
|z|≤R

|e−π(z+m)2 | ≤ sup
|z|≤R

|e−πz2

|e−πm2

e2π|m|R ∈ �1(Z).

Consequently, for z ∈ R, we obtain, expanding ω in Fourier series8,

ω(z) =
∑
k∈Z
e2iπkz

∫ 1

0

ω(x)e−2iπkxdx.

8Note that we use this expansion only for a C∞ 1-periodic function. The proof is simple and

requires us only to compute 1 + 2Re
∑

1≤k≤N e2iπkx =
sinπ(2N+1)x

sinπx
. Then one has to show

that for a smooth 1-periodic function ω such that ω(0) = 0,

lim
λ→+∞

∫ 1

0

sinλx

sinπx
ω(x)dx = 0,

which is obvious since for a smooth ν (here we take ν(x) = ω(x)/ sinπx), | ∫ 1
0
ν(x)sin(λx)dx| =

O(λ−1) by integration by parts.
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We also check, using Fubini’s theorem on L1(0, 1)× �1(Z),∫ 1

0

ω(x)e−2iπkxdx =
∑
m∈Z

∫ 1

0

e−π(x+m)2e−2iπkxdx

=
∑
m∈Z

∫ m+1

m

e−πt2e−2iπktdt

=

∫
R

e−πt2e−2iπkt = e−πk2

.

So the lemma is proven for real z and since both sides are entire functions, we
conclude by analytic continuation. �

It is now straightforward to get the nth-dimensional version of the previous
lemma: for all z ∈ Cn, using the notation (8.2.2), we have∑

m∈Zn

e−π(z+m)2 =
∑

m∈Zn

e−πm2

e2iπm·z. (8.2.12)

Theorem 8.2.3 (Poisson summation formula). Let n be a positive integer and let
u be a function in S (Rn). Then we have∑

k∈Zn

u(k) =
∑
k∈Zn

û(k), (8.2.13)

where û stands for the Fourier transform of u. In other words the tempered distri-
bution D0 =

∑
k∈Zn δk is such that D̂0 = D0.

Proof. We write, according to (8.2.6) and to Fubini’s theorem

∑
k∈Zn

u(k) =
∑
k∈Zn

∫∫
Wu(y, η)ϕy,η(k)dydη

=

∫∫
Wu(y, η)

∑
k∈Zn

ϕy,η(k)dydη.

Now, (8.2.12), (8.2.1) give ∑
k∈Zn

ϕy,η(k) =
∑
k∈Zn

ϕ̂y,η(k),

so that (8.2.6) and Fubini’s theorem imply the result. �



8.3. Periodic distributions 361

8.3 Periodic distributions

The Dirichlet kernel

For N ∈ N, the Dirichlet kernel DN is defined on R by

DN (x) =
∑

−N≤k≤N

e2iπkx

= 1 + 2Re
∑

1≤k≤N

e2iπkx =︸︷︷︸
x/∈Z

1 + 2Re

(
e2iπx

e2iπNx − 1

e2iπx − 1

)

= 1 + 2Re
(
e2iπx−iπx+iπNx

) sin(πNx)
sin(πx)

= 1 + 2 cos(π(N + 1)x)
sin(πNx)

sin(πx)

= 1 +
1

sin(πx)

(
sin
(
πx(2N + 1)

)
− sin(πx)

)
=

sin
(
πx(2N + 1)

)
sin(πx)

,

and extending by continuity at x ∈ Z that 1-periodic function, we find that

DN (x) =
sin
(
πx(2N + 1)

)
sin(πx)

. (8.3.1)

Now, for a 1-periodic v ∈ C1(R), with

(DN � u)(x) =

∫ 1

0

DN (x− t)u(t)dt, (8.3.2)

we have

lim
N→+∞

∫ 1

0

DN(x−t)v(t)dt = v(x)+ lim
N→+∞

∫ 1

0

sin(πt(2N+1))

(
v(x − t)− v(x)

)
sin(πt)

dt,

and the function θx given by θx(t) =
v(x−t)−v(x)

sin(πt) is continuous on [0, 1], and from

the Riemann–Lebesgue Lemma 3.4.5, we obtain

lim
N→+∞

∑
−N≤k≤N

e2iπkx
∫ 1

0

e−2iπktv(t)dt = lim
N→+∞

∫ 1

0

DN(x − t)v(t)dt = v(x).

On the other hand if v is 1-periodic and C1+l, the Fourier coefficient

ck(v) =

∫ 1

0

e−2iπktv(t)dt

for k �= 0︷︸︸︷
=

1

2iπk
[e−2iπktv(t)]t=0

t=1 +

∫ 1

0

1

2iπk
e−2iπktv′(t)dt,

and iterating the integration by parts, we find ck(v) = O(k−1−l) so that for a
1-periodic C2 function v, we have∑

k∈Z
e2iπkxck(v) = v(x). (8.3.3)
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Pointwise convergence of Fourier series

Lemma 8.3.1. Let u : R −→ R be a 1-periodic L1loc(R) function and let x0 ∈ [0, 1].
Let us assume that there exists w0 ∈ R such that the Dini condition is satisfied,
i.e., ∫ 1/2

0

|u(x0 + t) + u(x0 − t) − 2w0|
t

dt < +∞. (8.3.4)

Then, limN→+∞
∑
|k|≤N ck(u)e

2iπkx0 = w0 with ck(u) =
∫ 1

0 e
−2iπtku(t)dt.

Proof. Using the above calculations, we find

∑
|k|≤N

ck(u)e
2iπkx0 = (DN � u)(x0) = w0 +

∫ 1

0

sin
(
πt(2N + 1)

)
sin(πt)

(
u(x0 − t)−w0

)
dt,

so that, using the periodicity of u and the fact that DN is an even function, we get

(DN � u)(x0) − w0 =

∫ 1/2

0

sin
(
πt(2N + 1)

)
sin(πt)

(
u(x0 − t) + u(x0 + t) − 2w0

)
dt.

Thanks to the hypothesis (8.3.4), the function

t �→ 1[0, 12 ]
(t)
u(x0 − t) + u(x0 + t) − 2w0

sin(πt)

belongs to L1(R) and the Riemann–Lebesgue Lemma 3.4.5 gives the conclusion.
�

Theorem 8.3.2. Let u : R −→ R be a 1-periodic L1loc function.

(1) Let x0 ∈ [0, 1], w0 ∈ R. We define ωx0,w0(t) = |u(x0 + t) + u(x0 − t) − 2w0|
and we assume that ∫ 1/2

0

ωx0,w0(t)
dt

t
< +∞. (8.3.5)

Then the Fourier series (DN �u)(x0) converges with limit w0. In particular, if
(8.3.5) is satisfied with w0 = u(x0), the Fourier series (DN �u)(x0) converges
with limit u(x0). If u has a left and right limit at x0 and is such that (8.3.5)
is satisfied with w0 = 1

2

(
u(x0+0)+u(x0−0)

)
, the Fourier series (DN �u)(x0)

converges with limit 1
2

(
u(x0 − 0) + u(x0 + 0)

)
.

(2) If the function u is Hölder-continuous9, the Fourier series (DN � u)(x) con-
verges for all x ∈ R with limit u(x).

(3) If u has a left and right limit at each point and a left and right derivative at
each point, the Fourier series (DN � u)(x) converges for all x ∈ R with limit
1
2

(
u(x− 0) + u(x+ 0)

)
.

9Hölder-continuity of index θ ∈]0, 1] means that ∃C > 0,∀t, s, |u(t)− u(s)| ≤ C|t− s|θ.
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Proof. (1) follows from Lemma 8.3.1; to obtain (2), we note that for a Hölder
continuous function of index θ ∈]0, 1], we have for t ∈]0, 1/2],

t−1ωx,u(x)(t) ≤ Ctθ−1 ∈ L1([0, 1/2]).

(3) If u has a right derivative at x0, it means that

u(x0 + t) = u(x0 + 0) + u′r(x0)t+ tε0(t), lim
t→0+

ε0(t) = 0.

As a consequence, for t ∈]0, 1/2], t−1|u(x0+ t)−u(x0+0)| ≤ |u′r(x0)+ε0(t)|. Since
limt→0+ ε0(t) = 0, there exists T0 ∈]0, 1/2] such that |ε0(t)| ≤ 1 for t ∈ [0, T0]. As
a result, we have∫ 1/2

0

t−1|u(x0 + t) − u(x0 + 0)|dt

≤
∫ T0

0

(|u′r(x0)| + 1)dt+

∫ 1/2

T0

|u(x0 + t) − u(x0 + 0)|dtT−1
0 < +∞,

since u is also L1loc. The integral
∫ 1/2

0 t−1|u(x0 − t)− u(x0 − 0)|dt is also finite and

the condition (8.3.5) holds with w0 = 1
2

(
u(x0 − 0) + u(x0 + 0)

)
. The proof of the

lemma is complete. �

Periodic distributions

We consider now a distribution u on Rn which is periodic with periods Zn. Let
χ ∈ C∞c (Rn;R+) such that χ = 1 on [0, 1]n. Then the function χ1 defined by

χ1(x) =
∑
k∈Zn

χ(x− k)

is C∞ periodic10 with periods Zn. Moreover since

Rn � x ∈
∏

1≤j≤n

[E(xj), E(xj) + 1[,

the bounded function χ1 is also bounded from below and such that 1 ≤ χ1(x).
With χ0 = χ/χ1, we have∑

k∈Zn

χ0(x− k) = 1, χ0 ∈ C∞c (Rn).

For ϕ ∈ C∞c (Rn), we have from the periodicity of u,

〈u, ϕ〉 =
∑
k∈Zn

〈u(x), ϕ(x)χ0(x− k)〉 =
∑
k∈Zn

〈u(x), ϕ(x + k)χ0(x)〉,

10Note that the sum is locally finite since for K compact subset of Rn, (K − k) ∩ suppχ0 = ∅
except for a finite subset of k ∈ Zn.
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where the sums are finite. Now if ϕ ∈ S (Rn), we have, since χ0 is compactly
supported (say in |x| ≤ R0),

|〈u(x), ϕ(x + k)χ0(x)〉| ≤ C0 sup
|α|≤N0,|x|≤R0

|ϕ(α)(x+ k)|

≤ C0 sup
|α|≤N0,|x|≤R0

|(1 +R0 + |x+ k|)n+1ϕ(α)(x + k)|(1 + |k|)−n−1

≤ p0(ϕ)(1 + |k|)−n−1,

where p0 is a semi-norm of ϕ (independent of k). As a result u is a tempered
distribution and we have for ϕ ∈ S (Rn), using Poisson’s summation formula,

〈u, ϕ〉 = 〈u(x),
∑
k∈Zn

ϕ(x + k)χ0(x)︸ ︷︷ ︸
ψx(k)

〉 = 〈u(x),
∑
k∈Zn

ψ̂x(k)〉.

Now we see that ψ̂x(k) =
∫
Rn ϕ(x+ t)χ0(x)e

−2iπktdt = χ0(x)e
2iπkxϕ̂(k), so that

〈u, ϕ〉 =
∑
k∈Zn

〈u(x), χ0(x)e2iπkx〉ϕ̂(k),

which means

u(x) =
∑
k∈Zn

〈u(t), χ0(t)e2iπkt〉e−2iπkx =
∑
k∈Zn

〈u(t), χ0(t)e−2iπkt〉e2iπkx.

Theorem 8.3.3. Let u be a periodic distribution on Rn with periods Zn. Then u is a
tempered distribution and if χ0 is a C∞c (Rn) function such that

∑
k∈Zn χ0(x−k) =

1, we have

u =
∑
k∈Zn

ck(u)e
2iπkx, (8.3.6)

û =
∑
k∈Zn

ck(u)δk, with ck(u) = 〈u(t), χ0(t)e−2iπkt〉, (8.3.7)

and convergence in S ′(Rn). If u is in Cm(Rn) with m > n, the previous formulas
hold with uniform convergence for (8.3.6) and

ck(u) =

∫
[0,1]n

u(t)e−2iπktdt. (8.3.8)

Proof. The first statements are already proven and the calculation of û is immedi-
ate. If u belongs to L1loc we can redo the calculations above, choosing χ0 = 1[0,1]n ,
and get (8.3.6) with ck given by (8.3.8). Moreover, if u is in Cm with m > n,
we get by integration by parts that ck(u) is O(|k|−m) so that the series (8.3.6) is
uniformly converging. �
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Theorem 8.3.4. Let u be a periodic distribution on Rn with periods Zn. If u ∈ L2loc
(i.e., u ∈ L2(Tn) with Tn = (R/Z)n), then

u(x) =
∑
k∈Zn

ck(u)e
2iπkx, with ck(u) =

∫
[0,1]n

u(t)e−2iπktdt, (8.3.9)

and convergence in L2(Tn). Moreover ‖u‖2L2(Tn) =
∑

k∈Zn |ck(u)|2. Conversely, if
the coefficients ck(u) defined by (8.3.7) are in �2(Zn), the distribution u is L2(Tn).

Proof. As said above the formula for the ck(u) follows from changing the choice
of χ0 to 1[0,1]n in the discussion preceding Theorem 8.3.3. Formula (8.3.6) gives
the convergence in S ′(Rn) to u. Now, since∫

[0,1]n
e2iπ(k−l)tdt = δk,l,

we see from Theorem 8.3.3 that for u ∈ Cn+1(Tn),

〈u, u〉L2(Tn) =
∑
k∈Zn

|ck(u)|2.

As a consequence the mapping L2(Tn) � u �→ (ck(u))k∈Zn ∈ �2(Zn) is isometric
with a range containing the dense subset �1(Zn) (if (ck(u))k∈Zn ∈ �1(Zn), u is a
continuous function); since the range is closed11, the mapping is onto and is an
isometric isomorphism from the open mapping theorem. �

8.4 Notes

Johann Dirichlet (1805–1859) was a German mathematician.

Maurice Fréchet (1878–1973) was a French mathematician.

Joseph Fourier (1768–1830) was a French mathematician, inventor of the tri-
gonometrical series, a versatile tool used now in many branches of Science.

Dennis Gabor (1900–1979) was a Hungarian-born British electrical engineer.

Oliver Heaviside (1850–1925) was a British electrical engineer.

Michel Plancherel (1885–1967) was a Swiss mathematician.

Denis Poisson (1781–1840) was a French mathematician.

Laurent Schwartz (1915–2002) was a French mathematician, creator of the mod-
ern theory of distributions. In 1950 he became the first French recipient of
the Fields medal.

11If A : H1 → H2 is an isometric linear mapping between Hilbert spaces and (Auk) is a con-
verging sequence in H2, then by linearity and isometry, the sequence (uk) is a Cauchy sequence
in H1, thus converges. The continuity of A implies that if u = limk uk, we have

v = lim
k

Auk = Au, proving that the range of A is closed.
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8.5 Exercises

Exercise 8.5.1. Let A be a positive definite n×n symmetric matrix. Prove that the
function ψA defined by ψA(x) = e

−〈Ax,x〉 belongs to S (Rn).

Answer. The function ψA is smooth and such that

xα(∂βxψA)(x) = Pα,β(x)ψA(x),

where Pα,β is a polynomial (obvious induction). Since 〈Ax, x〉 ≥ δ‖x‖2 with a
positive δ and |Pα,β(x)| ≤ C(1 + ‖x‖2)d/2, where d is the degree of P , we obtain
the boundedness of xα(∂βxψA)(x), proving the sought result.

Exercise 8.5.2. The Schwartz class of functions is defined by

S (Rn) =

{
u ∈ C∞(Rn), ∀α, β ∈ Nn, sup

x∈Rn

|xα∂βxu(x)| = pαβ(u) <∞
}
,

where α = (α1, . . . , αn) ∈ Nn, xα = xα1
1 . . . x

αn
n , β ∈ Nn, ∂βx = ∂β1

x1
. . . ∂βn

xn
. Show

that the pαβ are semi-norms on S (Rn), making this space a Fréchet space.

Answer. The pαβ are semi-norms, i.e., valued in R+ such that pαβ(λu) = |λ|pαβ(u)
and they satisfy the triangle inequality. We consider a Cauchy sequence (uk)k∈N.
It means that for all α, β, for all ε > 0, there exists kαβε such that for all k ≥
kαβε, l ≥ 0,

pαβ(uk+l − uk) ≤ ε.

Using the case α = β = 0, we find a continuous function u with a uniform limit
of uk. Using the uniform convergence of the sequence (∂αx uk)k∈N, we get that u is
C∞ and that the sequences (∂αx uk)k∈N are uniformly converging towards ∂αx u. We
write then

|xα∂βx (uk − u)(x)| = lim
l→+∞

|xα∂βx (uk − ul)(x)|

≤ lim sup
l
pαβ(uk − ul) ≤ ε

for k ≥ kαβε. We get pαβ(uk − u) ≤ ε for k ≥ kαβε, proving the convergence
in S (Rn).

Exercise 8.5.3. Prove that C∞c (Rn) is dense in the Schwartz class S (Rn).

Answer. Let χ0 ∈ C∞c (Rn) equal to 1 on the unit ball. Let φ ∈ S (Rn) and let us
define for k ∈ N∗,

φk(x) = χ0(x/k)φ(x), φk ∈ C∞c (Rn), φk(x) − φ(x) = φ(x)
(
χ0(x/k) − 1

)
,
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and with the pαβ defined in Exercise 8.5.2, we have

pαβ
(
φk − φ

)
= sup

x∈Rn

∣∣∣∣xα ∑
β′+β′′=β
|β′′|≥1

β!

β′!β′′!
∂β

′
x φ(x)∂

β′′
x χ0(x/k)k

−|β′′|
∣∣∣∣

+ sup
x∈Rn,|x|≥k

∣∣∣xα(∂βxφ)(x)(χ0 (xk)− 1)
∣∣∣ ,

≤ Ck−1pmax(|α|,|β|)(φ)pmax(|α|,|β|)(χ0) + k
−1 sup

x∈Rn

||x|xα(∂βxφ)(x)|,

with pk defined in (8.1.3), proving the convergence towards φ in the Schwartz
space of the sequence (φk)k∈N.

Exercise 8.5.4. Let T ∈ S ′(R) such that xT = 0. Prove that T = cδ0.

Answer. Let φ ∈ S (R) and let χ0 ∈ C∞c (Rn) such that χ0(0) = 1. We have

φ(x) = χ0(x)φ(x) + (1 − χ0(x))φ(x).

Applying Taylor’s formula with integral remainder (see, e.g., Theorem 5.9.3), we
define the smooth function ψ by

ψ(x) =
(1 − χ0(x))

x
φ(x)

and, applying Leibniz’ formula, we see also that ψ belongs to S (R). As a result

〈T, φ〉S ′(R),S (R) = 〈T, χ0φ〉 = 〈T, χ0
(
φ− φ(0)

)
〉 + φ(0)〈T, χ0〉 = φ(0)〈T, χ0〉,

since the function x �→ χ0(x)
(
φ(x) − φ(0)

)
/x belongs to C∞c (R). As a result

T = 〈T, χ0〉δ0.

Exercise 8.5.5. Prove that a distribution with support {0} is a linear combination
of derivatives of the Dirac mass at 0, i.e.,

u =
∑
|α|≤N

cαδ
(α)
0 ,

where the cα are some constants.

Answer. Let N0 ∈ N such that |〈u, ϕ〉| ≤ CpN0(ϕ), where the semi-norms pk are
given by (8.1.3). For ϕ ∈ S (Rn), we have

ϕ(x) =
∑
|α|≤N0

(∂αxϕ)(0)

α!
xα +

∫ 1

0

(1 − θ)N0

N0!
ϕ(N0+1)(θx)dθ︸ ︷︷ ︸

ψ(x), ψ∈C∞(Rn)

xN0+1,
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and thus for χ0 ∈ C∞c (Rn), χ0 = 1 near 0,

〈u, ϕ〉 = 〈u, χ0ϕ〉 =
∑
|α|≤N0

(∂αxϕ)(0)

α!
〈u, χ0(x)xα〉 + 〈u, χ0(x)ψ(x)xN0+1〉. (8.5.1)

We note that

|〈u, χ0(x)ψ(x)xN0+1〉| ≤ C0 sup
|α|≤N0

|∂αx
(
χ0(x)ψ(x)x

N0+1
)
|. (8.5.2)

We can take χ0(x) = ρ(x/ε), where ρ ∈ C∞c (Rn) is supported in the unit ball B1,
ρ = 1 in 1

2B1 and ε > 0. We have then

χ0(x)ψ(x)x
N0+1 = εN0+1ρ

(x
ε

)
ψ
(
ε
x

ε

) xN0+1

εN0+1
= εN0+1ρ1

(x
ε

)
,

with ρ1(t) = ρ(t)ψ(εt)tN0+1, so that ρ1 ∈ C∞c (Rn) is supported in the unit ball
B1 and has all its derivatives bounded independently of ε. From (8.5.2), we get for
all ε > 0,

|〈u, χ0(x)ψ(x)xN0+1〉| ≤ C0 sup
|α|≤N0

εN0+1−|α|
∣∣∣(∂αt ρ1)(xε )∣∣∣ ≤ C1ε,

which implies that the left-hand side of (8.5.2) is zero.

Exercise 8.5.6. Let u ∈ S ′(Rn) and λ ∈ C. The distribution u is said to be homo-
geneous with degree λ if for all t > 0, u(t·) = tλu(·). Prove that the distribution u
is homogeneous of degree λ if and only if Euler’s equation is satisfied, namely∑

1≤j≤n

xj∂xju = λu. (8.5.3)

Answer. A distribution u on Rn is homogeneous of degree λ means:

∀ϕ ∈ C∞c (Rn), ∀t > 0, 〈u(y), ϕ(y/t)t−n〉 = tλ〈u(x), ϕ(x)〉,

which is equivalent to ∀ϕ ∈ C∞c (Rn), ∀s > 0, 〈u(y), ϕ(sy)sn+λ〉 = 〈u(x), ϕ(x)〉,
also equivalent to

∀ϕ ∈ C∞c (Rn),
d

ds

(
〈u(y), ϕ(sy)sn+λ〉

)
= 0 on s > 0. (8.5.4)

The differentiability property is easy to derive12 and that

〈u(y), ϕ(sy)sn+λ〉 = 〈u(x), ϕ(x)〉 at s = 1.

12We have for s > 0,

ϕ((s+ h)y) − ϕ(sy) = ϕ′(sy)hy +

∫ 1

0
(1− θ)ϕ′′

(
(s+ θh)y

)
dθh2y2.

It is enough to prove that for σ in a neighborhood V of s, the function y �→ ϕ(l)(σy) is bounded
in S (Rn). This is obvious, choosing for instance V = (s/2, 2s).
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As a consequence, we get that the homogeneity of degree λ of u is equivalent to

∀s > 0,

〈
u(y), sn+λ−1

(
(n+ λ)ϕ(sy) +

∑
1≤j≤n

(∂jϕ)(sy)syj
)〉

= 0,

also equivalent to 0 = 〈u(y), (n+ λ+
∑

1≤j≤n yj∂j)
(
ϕ(sy)

)
〉 and by the definition

of the differentiation of a distribution, it is equivalent to

(n+ λ)u−
∑

1≤j≤n

∂j(yju) = 0,

which is (8.5.3) by Leibniz’ rule.

Exercise 8.5.7.

(1) Prove that the Dirac mass at 0 in Rn is homogeneous of degree −n.
(2) Prove that if T is a homogeneous distribution of degree λ, then ∂αxT is also

homogeneous with degree λ− |α|.
(3) Prove that the distribution pv( 1x) is homogeneous of degree −1 as well as

1/(x± i0).
(4) For λ ∈ C with Reλ > −1 we define the L1loc(R) functions

xλ+ =

{
xλ if x > 0,

0 if x ≤ 0,
χλ+ =

xλ+
Γ(λ+ 1)

. (8.5.5)

Prove that the distributions χλ+ and xλ+ are homogeneous of degree λ.

Answer. (1) We have for t > 0,

〈δ0(tx), ϕ(x)〉 = 〈δ0(y), ϕ(y/t)t−n〉 = t−nϕ(0) = t−n〈δ0, ϕ〉.

(2) Taking the derivative of the Euler equation (8.5.3), we get

∂xk
u+

∑
1≤j≤k

xj∂xj∂xk
u− λ∂xk

u = 0,

proving that ∂xk
u is homogeneous of degree λ− 1 and the result by iteration.

(3) It follows immediately from the definition (8.1.26) that the distribution pv( 1x )
is homogeneous of degree −1. The same is true for the distributions 1

x±i0 as it is
clear from

1

x± i0 =
d

dx

(
Log(x± i0)

)
=
d

dx

(
ln |x| ± iπȞ(x)

)
= pv

1

x
∓ iπδ0. (8.5.6)

(4) The distributions χλ+ and xλ+ are homogeneous of degree λ. By an analytic
continuation argument, we can prove that χλ+ may be defined for any λ ∈ C and
is a homogeneous distribution of degree λ which satisfies

χλ+ =

(
d

dx

)k

(χλ+k
+ ), χ−k

+ = δ
(k−1)
0 , k ∈ N∗.
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Exercise 8.5.8. Let (uj)1≤j≤m be non-zero homogeneous distributions on Rn with
distinct degrees (λj)1≤j≤m (j �= k implies λj �= λk). Prove that they are indepen-
dent in the complex vector space S ′(Rn).

Answer. We assume that m ≥ 2 and that there exists some complex numbers
(cj)1≤j≤m such that

∑
1≤j≤m cjuj = 0. Then applying the (Euler) operator

E =
∑

1≤j≤m

xj∂xj ,

we get for all k ∈ N, 0 =
∑

1≤j≤m cjEk(uj) =
∑

1≤j≤m cjλ
k
juj . We consider now

the Vandermonde matrix m×m

Vm =

⎛⎜⎜⎝
1 1 . . . 1
λ1 λ2 . . . λm

. . . . .
λm−1
1 λm−1

2 . . . λm−1
m

⎞⎟⎟⎠ , detVm =
∏

1≤j<k≤m

(λk − λj) �= 0.

We note that for ϕ ∈ C∞c (Rn), and X ∈ Cm given by

X =

⎛⎜⎜⎝
c1〈u1, ϕ〉
c2〈u2, ϕ〉
. . . . . . . . . .
cm〈um, ϕ〉

⎞⎟⎟⎠ ,
we have VmX = 0, so that X = 0, i.e., ∀j, ∀ϕ ∈ C∞c (Rn), cj〈uj , ϕ〉 = 0, i.e.,
cjuj = 0 and since uj is not the zero distribution, we get the sought conclusion
cj = 0 for all j.

Exercise 8.5.9. Let T ∈ S ′(Rn) be a homogeneous distribution of degree m. Prove
that its Fourier transform is a homogeneous distribution of degree −m− n.

Answer. We check

(ξ ·Dξ)T̂ = −ξ · x̂T = − ̂(Dx · xT ) = − n
2iπ
T̂ − 1

2iπ
̂(x · ∂xT ) = − (n+m)

2iπ
T̂ ,

so that Euler’s equation ξ · ∂ξT̂ = −(n+m)T̂ is satisfied.

Exercise 8.5.10. Let u ∈ S ′(Rn) such that ∇u = (∂1u, . . . , ∂nu) = 0. Prove that
u is a constant.

Answer. For all j, we have ξj û(ξ) = 0 and since a polynomial is a multiplier of
S , we have also |ξ|2û(ξ) = 0, which implies that supp û ⊂ {0}. From Exercise
8.5.5, we find that û is a linear combination of derivatives of the Dirac mass at 0
and (8.1.19) implies along with (8.1.21) that u is a polynomial. Now a polynomial
with a vanishing gradient is a constant (use Taylor’s formula).



Chapter 9

Classical Inequalities

9.1 Riesz–Thorin interpolation theorem

Theorem 9.1.1 (Hadamard three-lines theorem). Let a < b be real numbers, let
Ω = {z ∈ C, a < Re z < b} and let f : Ω → C be a bounded continuous function
holomorphic on Ω. We define for x ∈ [a, b],

M(x) = sup
y∈R

|f(x+ iy)|.

Then the function M is log-convex on [a, b], i.e.,

M(x) ≤M(a)
b−x
b−aM(b)

x−a
b−a . (9.1.1)

N.B. Exercise 3.7.2 provides some information about logarithmic convexity. We
note here that this proposition implies in particular that if f vanishes identically
on the vertical line {Re z = a} or on {Re z = b}, then it should vanish identically
on Ω. If M(a),M(b) are both positive, then (9.1.1) reads

(lnM)
(
(1 − θ)a+ θb

)
≤ (1 − θ) lnM(a) + θ lnM(b),

which means convexity of lnM on [a, b], i.e., log-convexity. Defining ln 0 = −∞,
we recover the fact that if f vanishes on one vertical line, it vanishes on Ω.

Proof. We may of course assume without loss of generality that a = 0, b = 1: given
a < b real numbers, and f as in the proposition above, we may consider

f̃(z) = f
(
(b − a)z + a

)
,

which is defined on {z ∈ C, 0 ≤ Re z ≤ 1}. If we get the result for f̃ , it will read

, ,
OI 10.1007/978-3- - -D
. 
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for θ ∈ [0, 1]

sup
{Re ζ=a+θ(b−a)=x}

|f(ζ)| = sup
{Re z=θ}

|f̃(z)|

≤
(
sup
y∈R

|f̃(iy)|
)1−θ(

sup
y∈R

|f̃(1 + iy)|
)θ

=
(
sup
y∈R

|f(a+ (b − a)iy)|
)1−θ(

sup
y∈R

|f(a+ b − a+ (b− a)iy)|
)θ

=
(
sup

Re ζ=a
|f(ζ)|

) b−x
b−a
(
sup

Re ζ=b
|f(ζ)|

) x−a
b−a ,

which is the sought result.

We assume first that M(0) = M(1) = 1. We define for ε > 0 the holomorphic
function hε on Re z > −1/ε given by

hε(z) =
1

1 + εz
.

We note that ∀z ∈ ∂Ω, |f(z)hε(z)| ≤ 1 (in fact |f(z)| ≤ 1 there as well as hε(z))
and moreover with C = supΩ̄ |f |, we have for 0 ≤ Re z ≤ 1, | Im z| ≥ C/ε,

|f(z)hε(z)| ≤ C|1 + εz|−1 ≤ Cε−1| Im z|−1 ≤ 1. (9.1.2)

As a result, considering the rectangle Rε = {0 ≤ Re z ≤ 1, | Im z| ≤ C/ε}, we see
that the continuous function fhε : Rε → C is bounded above by 1 on the boundary
and is holomorphic in the interior. Applying the maximum principle, we obtain
that

(�) ∀z ∈ Rε, |f(z)hε(z)| ≤ 1.

On the other hand if z ∈ Ω̄ with | Im z| > C/ε, we get from (9.1.2) the same
inequality (�). Consequently, we have for all ε > 0 and all z ∈ Ω̄, |f(z)hε(z)| ≤ 1,
which implies the sought result |f(z)| ≤ 1 for z ∈ Ω̄.

We assume now that M(0),M(1) are both positive, and we introduce the function

F (z) =M(0)−(1−z)M(1)−zf(z) = f(z)ez(lnM(0)−lnM(1))M(0)−1. (9.1.3)

The function F is holomorphic on Ω = {0 < Re z < 1}, is and bounded on Ω̄ since

sup
z∈Ω̄

|F (z)| ≤M(0)−1e| lnM(0)−lnM(1)| sup
Ω̄

|f |.

Moreover, on the vertical lines Re z = 0, 1, |F | is bounded above respectively by

M(0)M(0)−1 = 1, M(1)M(0)M(1)−1M(0)−1 = 1,

so that we may apply the previous result to obtain

∀z ∈ Ω̄, |M(0)−(1−z)M(1)−zf(z)| ≤ 1,

which is precisely the sought result.
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We assume now that M(0) ≥ 0,M(1) ≥ 0. Let ε > 0 be given. We introduce the
function

Fε(z) = (M(0) + ε)−(1−z)(M(1) + ε)−zf(z). (9.1.4)

Then, using the previous result, we obtain

∀ε > 0, ∀z ∈ Ω̄, |f(z)| ≤ |(M(0) + ε)(1−z)(M(1) + ε)z |,

which implies the result, letting ε→ 0+. The proof of the theorem is complete. �
Theorem 9.1.2 (Riesz–Thorin Interpolation Theorem). Let (X,M, μ) be a measure
space where μ is a σ-finite positive measure. Let p0, p1, q0, q1 ∈ [1,+∞] and let
T : Lpj (μ) −→ Lqj (μ), j = 0, 1, be a linear map such that

‖Tu‖Lqj(μ) ≤Mj‖u‖Lpj (μ), j = 0, 1.

For θ ∈ [0, 1] we define 1
pθ

= 1−θ
p0

+ θ
p1
, 1

qθ
= 1−θ

q0
+ θ

q1
. Then T is a bounded

linear map from Lpθ(μ) into Lqθ (μ) and

∀u ∈ Lpθ (μ), ‖Tu‖Lqθ (μ) ≤M1−θ
0 Mθ

1 ‖u‖Lpθ (μ). (9.1.5)

Proof. We may of course assume that θ ∈ (0, 1).

[1] Let us first assume that pθ = +∞, so that p0 = p1 = +∞.

Let u be a function in L∞(μ): Tu belongs to Lq0(μ) ∩ Lq1(μ).
Claim. For θ ∈ (0, 1), we have Lq0(μ)∩Lq1 (μ) ⊂ Lqθ(μ). This is obvious if qθ = +∞
(implying q0 = q1 = +∞) and if qθ < +∞, assuming that q0, q1 are both finite
(and distinct), we find some t ∈ (0, 1) such that

qθ = (1 − t)q0 + tq1, so that with
1

r
= 1 − t,∫

X

|v|qθdμ =

∫
X

|v|q0(1−t)|v|q1tdμ

≤ ‖|v|q0(1−t)‖Lr‖|v|q1t‖Lr′ = ‖v‖q0(1−t)
Lq0 ‖v‖q1tLq1 .

(9.1.6)

If q0 = +∞, 1 ≤ q1 < +∞, we have qθ = q1/θ and∫
X

|v|qθdμ ≤ ‖v‖q1(
1
θ−1)

L∞

∫
X

|v|q1dμ, (9.1.7)

proving the claim in that case as well.

We find thus that Tu ∈ Lqθ and when q0, q1 are both finite, applying (9.1.6),

‖Tu‖qθqθ ≤ ‖Tu‖q0(1−t)
q0 ‖Tu‖q1tq1 ≤M q0(1−t)

0 M q1t
1 ‖u‖qθ∞,

and since

tq1
qθ

=
qθ − q0
q1 − q0

q1
qθ

=
1 − q0

qθ

1 − q0
q1

=
q−1
0 − q−1

θ

q−1
0 − q−1

1

= θ, so that
(1 − t)q0
qθ

= 1 − θ,
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proving (9.1.5). If q0 = +∞, 1 ≤ q1 < +∞, we have qθ = q1/θ and applying (9.1.7)

‖Tu‖qθqθ ≤ ‖Tu‖q1(
1
θ−1)

q0 ‖Tu‖q1q1 ≤M q1(
1
θ−1)

0 M q1
1 ‖u‖qθ∞,

and since
qθ − q1
qθ

= 1 − q−1
θ

q−1
1 − q−1

0

= 1 − θ, so that
q1
qθ

= θ,

this implies (9.1.5) in that case as well.

[2] We assume now that 1 ≤ pθ < +∞, qθ > 1. Let u be a function in S (defined
in (3.2.20)), so that

u =
∑

1≤j≤m

αje
iφj1Aj , αj > 0, φj ∈ R, μ(Aj) < +∞, (9.1.8)

where the Aj are pairwise disjoint elements of M. Then Tu makes sense, belongs
to Lqθ (μ) and since S is dense in Lpθ(μ) (Proposition 3.2.11), it is enough to prove
that

∀v ∈ L(qθ)′ ,
∣∣∣∣∫ (Tu)vdμ

∣∣∣∣ ≤M1−θ
0 Mθ

1 ‖u‖pθ
‖v‖(qθ)′ . (9.1.9)

In fact, if we prove the above inequality, thanks to Lemma 6.2.1, this will imply
that ‖Tu‖qθ ≤M1−θ

0 Mθ
1 ‖u‖pθ

. Now since T is a linear operator, and S is dense in
Lpθ(μ), there is a unique extension of T to a bounded linear operator from Lpθ(μ)
into Lqθ (μ) with operator-norm bounded above by M1−θ

0 Mθ
1 . To obtain (9.1.9), it

is enough to prove that

∀v ∈ S,
∣∣∣∣∫ (Tu)vdμ

∣∣∣∣ ≤M1−θ
0 Mθ

1 ‖u‖pθ
‖v‖(qθ)′ , (9.1.10)

since qθ > 1 (S is dense in L(qθ)
′
). We may thus assume that

v =
∑

1≤k≤N

βke
iψk1Bk

, βk > 0, ψk ∈ R, μ(Bk) < +∞, (9.1.11)

where the Bk are pairwise disjoint elements of M. We define the entire functions

u(z) =
∑

1≤j≤m

α
a(z)/a(θ)
j eiφj1Aj , a(z) =

1 − z
p0

+
z

p1
, (9.1.12)

v(z) =
∑

1≤k≤N

β
(1−b(z))/(1−b(θ))
k eiψk1Bk

, b(z) =
1 − z
q0

+
z

q1
, (9.1.13)

F (z) =

∫
X

(
Tu(z)

)
v(z)dμ, (9.1.14)
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and we note that a(θ) = 1/p(θ), b(θ) = 1/q(θ) ∈ (0, 1) since θ ∈ (0, 1). The
function F is bounded on {z ∈ C, 0 ≤ Re z ≤ 1}: we have to deal with a finite sum
and

Re a(z) ∈ [0, 1], Re(1 − b(z)) ∈ [0, 1].

Moreover, for y ∈ R, we have

F (iy) =

∫
X

T
( ∑
1≤j≤m

α
a(iy)
a(θ)

j eiφj1Aj

)( ∑
1≤k≤m

1Bk
β

(1−b(iy))
(1−b(θ))

k eiψk

)
dμ,

and thus

|F (iy)| ≤M0

∥∥∥∥ ∑
1≤j≤m

α
a(iy)
a(θ)

j eiφj1Aj

∥∥∥∥
p0

∥∥∥∥ ∑
1≤k≤m

1Bk
β

(1−b(iy))
(1−b(θ))

k eiψk

∥∥∥∥
q′0

.

Since the (Aj)1≤j≤m (and the (Bk)1≤k≤N ) are pairwise disjoint, we have∥∥∥∥ ∑
1≤j≤m

α
a(iy)
a(θ)

j eiφj1Aj

∥∥∥∥
p0

=

∥∥∥∥ ∑
1≤j≤m

α
Re a(iy)

a(θ)

j 1Aj

∥∥∥∥
p0

=

∥∥∥∥ ∑
1≤j≤m

α
p(θ)
p0

j 1Aj

∥∥∥∥
p0

=

(∫
X

( ∑
1≤j≤m

α
p(θ)
j 1Aj

)
dμ

)1/p0

=

(∫
X

|u(θ)|p(θ)dμ
)1/p0

= ‖u(θ)‖pθ/p0

p(θ) ,

and∥∥∥∥ ∑
1≤k≤N

1Bk
β

(1−b(iy))
(1−b(θ))

k eiψk

∥∥∥∥
q′0

=

∥∥∥∥ ∑
1≤k≤N

β
1−Re b(iy)

1−b(θ)

k 1Bk

∥∥∥∥
q′0

=

∥∥∥∥ ∑
1≤k≤N

β

q′(θ)
q′
0

k 1Bk

∥∥∥∥
q′0

=

(∫
X

( ∑
1≤k≤N

β
q′(θ)
k 1Bk

)
dμ

)1/q′0
=

(∫
X

|v(θ)|q
′(θ)dμ

)1/q′0
= ‖v(θ)‖q

′
θ/q

′
0

q′(θ) ,

so that, for y ∈ R, |F (iy)| ≤M0‖u(θ)‖pθ/p0

p(θ) ‖v(θ)‖q
′
θ/q

′
0

q′(θ) . We obtain similarly that

|F (1 + iy)| ≤M1‖u(θ)‖pθ/p1

p(θ) ‖v(θ)‖q
′
θ/q

′
1

q′(θ) .

The last two inequalities and Theorem 9.1.1 imply for Re z ∈ [0, 1],

|F (z)| ≤
(
M0‖u(θ)‖

pθ
p0

p(θ)‖v(θ)‖
q′θ
q′0
q′(θ)

)1−Re z(
M1‖u(θ)‖pθ/p1

p(θ) ‖v(θ)‖q
′
θ/q

′
1

q′(θ)

)Re z

,

so that for Re z = θ, since

pθ
p0

(1 − θ) + pθ
p1
θ = 1 =

q′θ
q′0

(1 − θ) + q
′
θ

q′1
θ,
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we get ∣∣∣∣∫ (Tu)vdμ

∣∣∣∣ = |F (θ)| ≤M1−θ
0 Mθ

1 ‖u‖p(θ)‖v‖q′(θ),

which is indeed (9.1.10), concluding the proof in this case.

[3] We assume now that 1 ≤ pθ < +∞, qθ = 1 (and thus q0 = q1 = 1, q′0 =
q′1 = +∞). It is enough to prove (9.1.9) (from Proposition 3.2.11), and to get it,
(9.1.10) should be modified so that S is replaced by S∞ (see Proposition 3.2.13),
meaning that (9.1.11) must be modified so that μ(Bk) could be +∞. We modify
(9.1.13) and take v(z) = v. The rest of the proof is unchanged, following case [2].
The proof of Theorem 9.1.2 is complete. �

The Riesz–Thorin interpolation theorem appears as a direct consequence of
Hadamard’s three-lines theorem and is a typical example of a complex interpola-
tion method based on a version of the maximum principle for holomorphic func-
tions on unbounded domains. Of course holomorphic functions in an unbounded
domain Ω, continuous in Ω̄, may fail to satisfy the maximum principle1. However,
the Phragmén–Lindelöf principle asserts that a maximum principle result holds
true, provided we impose some restriction on the growth of the class of functions:
Hadamard’s three lines theorem, in which we have assumed boundedness for the
holomorphic function, is a good example of this technique. We give below some
classical consequences of Theorem 9.1.2.

Theorem 9.1.3 (Generalized Young’s inequality). Let p, q, r ∈ [1,+∞] such that
(6.2.1) holds. Let (X1,M1, μ1) and (X2,M2, μ2) be measure spaces where each μj
is a σ-finite positive measure and let k : X1 ×X2 → C be a measurable mapping
(the product X1 × X2 is equipped with the σ-algebra M1 ⊗ M2) such that there
exists M ≥ 0 with

sup
x1∈X1

(∫
X2

|k(x1, x2)|pdμ2(x2)
)1/p

≤M, (9.1.15)

sup
x2∈X2

(∫
X1

|k(x1, x2)|pdμ1(x1)
)1/p

≤M. (9.1.16)

The linear operator L defined by

(Lu2)(x1) =

∫
X2

k(x1, x2)u2(x2)dμ2(x2) (9.1.17)

can be extended to a bounded linear operator from Lq(μ2) into L
r(μ1) with opera-

tor-norm less than M .

1The function ez on Ω = {z ∈ C,Re z > 0} is unbounded on Ω although it has modulus 1 on
∂Ω.



9.1. Riesz–Thorin interpolation theorem 377

Remark 9.1.4. The first (resp. second) supremum can be replaced by an esssup
(see (3.2.6)) in the μ1 (resp. μ2) sense. If p = +∞ (which implies q = 1, r = +∞),
the hypothesis reads as

esssup(x1,x2)∈X1×X2
|k(x1, x2)| ≤M =M,

and the result in that case is trivial since

|(Lu2)(x1)| ≤M‖u2‖L1(μ2) =⇒ ‖Lu2‖L∞(μ1) ≤M‖u2‖L1(μ2).

We may thus assume that 1 ≤ p < +∞. If q = +∞ (which implies p = 1, r = +∞),
we get also trivially

|(Lu2)(x1)| ≤
∫
X2

|k(x1, x2)||u2(x2)|dμ2(x2)

≤M‖u2‖L∞(μ2)

=⇒ ‖Lu2‖L∞(μ1) ≤M‖u2‖L∞(μ2).

We may thus assume that p and q are finite. We may define (9.1.17) for u2 = 1A2 ,
where A2 ∈ M, with μ2(A2) < +∞. Then we have∫

A2

|k(x1, x2)|dμ2(x2) ≤M‖1A2‖Lp′(μ2)

≤Mμ2(A2)
1/p′ < +∞.

As a result for u2 ∈ Sq(μ2) (the space Sp(μ) is defined by (3.2.20)), we may define
Lu2 as an L∞(μ1) function. Since for 1 ≤ q < +∞, Sq(μ2) is dense in Lq(μ2)
(Proposition 3.2.11), the statement of Theorem 9.1.3 can be rephrased as follows:
the linear operator L defined from Sq(μ2) into L

∞(μ1) can be uniquely extended
as a bounded linear operator from Lq(μ2) into Lr(μ1) with operator-norm less
than M .

N.B. Young’s inequality (Theorem 6.2.2) is indeed a consequence of the above
result, taking k(x1, x2) = a(x1 − x2) with xj ∈ Rn, μj equal to the Lebesgue
measure on Rn, M = ‖a‖Lp(Rn).

Proof of the theorem. As noted in the above remark, we may assume that p, q are
both finite. For u2 ∈ Sq(μ2) (also if p′ = +∞ for u2 ∈ Sq,∞(μ2), where Sp,∞(μ) is
defined by (3.2.24)), we have

‖Lu2‖L∞(μ1) ≤M‖u2‖Lp′(μ2)
. (9.1.18)

This implies that L can be extended uniquely as a bounded linear operator from
Lp

′
(μ2) into L∞(μ1) so that (9.1.18) holds true. Moreover, for u2 ∈ Sq(μ2), we
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have if p > 1 (thus p′ < +∞),

‖Lu2‖Lp(μ1) =︸︷︷︸
Lemma 6.2.1

sup
‖w‖

Lp′ (μ1)
=1

w∈Sp′(μ1)

∣∣∣∣∫
X1

(Lu2)(x1)w(x1)dμ(x1)

∣∣∣∣
≤ sup
‖w‖

Lp′(μ1)
=1

w∈Sp′(μ1)

∫∫
X1×X2

|k(x1, x2)||u2(x2)||w(x1)|dμ1(x1)dμ2(x2)

≤M sup
‖w‖

Lp′ (μ1)
=1

w∈Sp′(μ1)

‖w‖Lp′(μ1)

∫
X2

|u2(x2)|dμ2(x2) =M‖u2‖L1(μ2).

This implies that if p > 1, L can be extended uniquely as a bounded linear operator
from L1(μ2) into L

p(μ1) so that

‖Lu2‖Lp(μ1) ≤M‖u2‖L1(μ2). (9.1.19)

Applying the Riesz–Thorin interpolation theorem 9.1.2 to the inequalities (9.1.18)-
(9.1.19), we find that the linear operator L sends continuously Lq̃(μ2) into L

r̃(μ2)
(with operator norm M) with

1

q̃
=

1 − θ
1

+
θ

p′
,

1

r̃
=

1 − θ
p

+
θ

∞ ,

for all θ ∈ [0, 1]. From (6.2.1), we have 1/p′ + 1/q′ = 1/r′ so that p′ ≥ r′ and
1 ≤ p ≤ r: thus we may choose

[0, 1] � θ = 1− p
r
=⇒ 1 − θ

p
=

1

r
, r̃ = r,

1 − θ
1

+
θ

p′
= 1 − 1

p
+

1

r
=

1

q
, q̃ = q.

This completes the proof for p > 1. Note that if p = 1 then r = q (which can be
assumed finite from Remark 9.1.4), we have directly∫

X1

(∫
X2

|k(x1, x2)||u2(x2)|dμ2(x2)
)q

dμ1(x1)

≤
∫
X1

(∫
X2

(
|k(x1, x2)|

1
q |u2(x2)|

)q
dμ2(x2)

)(∫
X2

|k(x1, x2)|
q′
q′ dμ2(x2)

) q

q′
dμ1(x1)

≤M q/q′
∫∫

X1×X2

|k(x1, x2)||u2(x2)|qdμ2(x2)dμ1(x1) ≤M
q

q′ +1‖u2‖qLq(μ2)
,

so that in this case as well, we find that

‖Lu2‖Lq(μ1) ≤M‖u2‖Lq(μ2). (9.1.20)

The proof of Theorem 9.1.3 is complete. �
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Theorem 9.1.5 (Hausdorff–Young). Let n ≥ 1 be an integer. The Fourier transform
F maps injectively and continuously Lp(Rn) into Lp

′
(Rn) for 1 ≤ p ≤ 2 and

∀u ∈ Lp(Rn), ‖û‖Lp′(Rn) ≤ ‖u‖Lp(Rn). (9.1.21)

Proof. Note first that we have defined the Fourier transformation on the space
of tempered distributions (see Definition 8.1.14), so that Proposition 8.1.13(1)
provides a definition of the Fourier transform for any function in Lp(Rn) and that
this transformation is injective on S ′(Rn), since it is an isomorphism (see Theorem
8.1.15). We have seen as well in Theorem 8.1.16 that the Fourier transformation
on L1(Rn) is given by the explicit formula (8.1.22) and satisfies the inequality

∀u ∈ L1(Rn),we have û ∈ L∞(Rn) and ‖û‖L∞(Rn) ≤ ‖u‖L1(Rn).

Moreover, Theorem 8.1.17 shows that the Fourier transformation is a unitary
transformation of L2(Rn) so that

∀u ∈ L2(Rn),we have û ∈ L2(Rn) and ‖û‖L2(Rn) = ‖u‖L2(Rn).

Applying the Riesz–Thorin interpolation theorem 9.1.2 yields readily that the
Fourier transformation is a bounded linear map from Lp(Rn) into Lp

′
(Rn) for

1 ≤ p ≤ 2 since for θ ranging in [0, 1], we have

1

p
=

1 − θ
1

+
θ

2
= 1 − θ

2
=⇒ 1

p′
=
θ

2
. �

N.B. The constant 1 in (9.1.21) is not sharp. The best constant can be found in
a paper by E. Lieb [42] who proved that for 1 < p < 2,

sup
‖u‖Lp(Rn)=1

‖û‖Lp′(Rn) =
(
p1/pp′−1/p′)n/2. (9.1.22)

Remark 9.1.6. The mapping L1(Rn) � u �→ û ∈ L∞(Rn) is one-to-one and not
onto: if it were onto it would be a bijective continuous mapping from L1(Rn) onto
L∞(Rn) and thus, from the Open Mapping Theorem 10.2.43 (a direct consequence
of Baire’s theorem), it would be an isomorphism. Since

ˆ̌̂v = v for a tempered distribution v,

the inverse isomorphism from L∞(Rn) onto L1(Rn) would be the inverse Fourier
transformˆ̌· and this would imply that the Fourier transform of an L∞(Rn) function
belongs to L1(Rn). However the latter is not true since the Fourier transform of
1[−1,1](a function in L∞ ∩ L1) is∫ 1

−1

e−2iπxξdx =
[e−2iπxξ

−2iπξ

]x=1

x=−1
=
e2iπξ − e−2iπξ

2iπξ
=

sin(2πξ)

πξ
,

which does not belong to L1(R) (see Exercise 2.8.20).
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9.2 Marcinkiewicz Interpolation Theorem

Definition 9.2.1. Let p, q ∈ [1,+∞]. A (not necessarily linear) mapping

T : Lp(Rn) −→ Lqw(Rn) = Lq,∞(Rn),

such that ∃C ≥ 0, ∀u ∈ Lp(Rn), ‖Tu‖Lq,∞(Rn) ≤ C‖u‖Lp(Rn),

where the Lorentz space Lq,∞(Rn) is defined in Exercise 6.6.8 (see also Definition
6.3.1) is said to be of weak-type (p, q).

N.B. When q = +∞, this means:

∃C ≥ 0, ∀u ∈ Lp(Rn), ‖Tu‖L∞(Rn) ≤ C‖u‖Lp(Rn). (9.2.1)

For 1 ≤ q < +∞ this means: ∃C ≥ 0, ∀u ∈ Lp(Rn), ∀t > 0,

λn

({
x ∈ Rn, |(Tu)(x)| > t

})
≤
(
C‖u‖Lp(Rn)t

−1
)q
, (9.2.2)

where λn stands for the Lebesgue measure on Rn.

Definition 9.2.2. A bounded mapping T : Lp(Rn) −→ Lq(Rn), i.e., such that

∃C ≥ 0, ∀u ∈ Lp(Rn), ‖Tu‖Lq(Rn) ≤ C‖u‖Lp(Rn), (9.2.3)

will be said of strong-type (p, q).

Of course, a strong-type (p, q) mapping is also of weak-type (p, q), since the
notions are identical for q = +∞ and if 1 ≤ q < +∞, this follows from Inequality
(6.3.2) (and the related inclusion Lq ⊂ Lqw).

Theorem 9.2.3 (Marcinkiewicz Interpolation Theorem). Let r ∈ (1,+∞] and let
T : L1(Rn) + Lr(Rn) −→ {measurable functions} be a mapping such that

|T (u+ v)| ≤ |Tu|+ |Tv|. (9.2.4)

We assume that T is of weak-type (1, 1) and (r, r) (see Definition 9.2.1). Then T
is of strong-type (p, p) for all p ∈ (1, r) (see (9.2.3)).

N.B. From the inclusion Lp ⊂ L1 + Lr (see Exercise 6.6.11), we see that T is
indeed defined on Lp. This very useful theorem (see [45] for the 1939 original
paper and [44] for a historical perspective) is also very remarkable by the fact that
it is providing a strong-type information from a weak-type assumption.

Notation. Let (X,M, μ) be a measure space where μ is a positive measure; we
shall use the following notation, for a measurable function u and t > 0:

ω(t, u) = μ
(
{x ∈ Rn, |u(x)| > t}

)
. (9.2.5)
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With Ωp(u) given by Definition 6.3.1 (see also Exercise 6.6.8 (1)), we find that
Ωp(u) = supt>0 t

pω(t, u). For p ∈ [1,+∞) and u ∈ Lp(μ), we have, using Fubini’s
theorem,∫ +∞

0

ptp−1ω(t, u)dt =

∫ +∞

0

ptp−1
(∫
{x,|u(x)|>t}

dμ
)
dt

=

∫∫
R+×X

ptp−1H(|u(x)| − t)dμ(x)dt

=

∫
X

∫ |u(x)|

0

ptp−1dtdμ(x) =

∫
X

|u(x)|pdμ(x),

so that

‖u‖Lp(μ) = p
1/p‖tω(t, u)1/p‖Lp(R+, dtt ). (9.2.6)

On the other hand for u ∈ L∞(μ) we have, according to Definition 3.2.4,

‖u‖L∞(μ) = inf{t > 0, ω(t, u) = 0}.

Proof of Theorem 9.2.3. We use the above notation with μ = λn, the Lebesgue
measure on Rn. Let us assume first r = +∞. The weak type (∞,∞) hypothesis
means ‖Tu‖L∞ ≤ C‖u‖L∞ and we may assume that C = 1. We write for u ∈
L1 + L∞, t > 0,

u = u1{|u|>t/2}︸ ︷︷ ︸
u1

+ u1{|u|≤t/2}︸ ︷︷ ︸
u2

and this gives

|(Tu)(x)| ≤ |(Tu1)(x)| + |(Tu2)(x)| ≤ |(Tu1)(x)| + ‖u2‖L∞ ≤ |(Tu1)(x)| +
t

2
,

so that we find the inclusion

(�) {x, |(Tu)(x)| > t} ⊂ {x, |(Tu1)(x)| > t/2}.

The weak-type (1, 1) assumption reads tω(t, T v) ≤ c11‖v‖L1 so that

(�)

t

2
λn

({
x, |(Tu1)(x)| >

t

2

})
≤ c11‖u1‖L1

=⇒ ω
(
t

2
, T u1

)
≤ 2c11
t

∫
|u|>t/2

|u|dx.

Applying Formula (9.2.6) to Tu, we find, using Tonelli’s theorem and 1 < p < +∞,

‖Tu‖pLp = p

∫ +∞

0

tp−1ω(t, Tu)dt
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(from (�)) ≤ p
∫ +∞

0

tp−1ω

(
t

2
, T u1

)
dt

(from (�)) ≤ p
∫ +∞

0

tp−1 2c11
t

∫
|u|>t/2

|u|dxdt

= 2pc11

∫∫
R+×Rn

tp−2H(2|u(x)| − t)|u(x)|dtdx

=
2pc11
p− 1

∫
Rn

(2|u(x)|)p−1|u(x)|dx = 2ppc11
p− 1

‖u‖pLp,

which gives the strong-type (p, p) for T .

We assume now 1 < r < +∞. Let u ∈ Lp, let t > 0 and let u1, u2 be defined as
above. Since |(Tu)(x)| ≤ |(Tu1)(x)| + |(Tu2)(x)|, we find

{x, |(Tu)(x)| > t} ⊂ {x, |(Tu1)(x)| > t/2} ∪ {x, |(Tu2)(x)| > t/2},

and thus ω(t, Tu) ≤ ω( t2 , T u1) + ω(
t
2 , T u2). Following (6.6.6), we see that u1 ∈

L1, u2 ∈ Lr. The weak-type assumptions imply with fixed positive constants c1, cr,

t

2
ω

(
t

2
, T u1

)
≤ c1‖u1‖L1 ,

(
t

2

)r

ω

(
t

2
, T u2

)
≤ crr‖u2‖rLr .

We obtain thus

(�) ω(t, Tu) ≤ 2c1
t

∫
|u(x)|H(2|u(x)| − t)dx + 2rcrr

tr

∫
0<|u(x)|≤t/2

|u(x)|rdx.

Tonelli’s theorem implies∫ +∞

0

ptp−1ω(t, Tu)dt

≤
∫∫

R+×Rn

ptp−1 2c1
t

|u(x)|H(2|u(x)| − t)dtdx

+

∫∫
R+×Rn

ptp−1 2
rcrr
tr

1{0<|u|≤t/2}|u(x)|rdtdx

=
2pc1
p− 1

∫
|u(x)|(2|u(x)|)p−1dx + 2rcrrp

∫
|u(x)|>0

|u(x)|r
∫ +∞

2|u(x)|
tp−1−rdt︸ ︷︷ ︸

note that p−r<0

dx

=
2ppc1
p− 1

∫
|u(x)|pdx+ 2rcrrp

∫
|u(x)|r (2|u(x)|)

p−r

r − p dx

= ‖u‖pLp

(
2ppc1
p− 1

+
2pcrrp

r − p

)
,

so that ‖Tu‖Lp ≤ ‖u‖Lp2p1/p
(

c1
p−1 +

crr
r−p

)1/p
, concluding the proof. �
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9.3 Maximal function

Definition 9.3.1. Let f be a function in L1loc(R
n). The maximal function of f ,

denoted by Mf , is defined on Rn by

Mf (x) = sup
t>0

1

|B(x, t)|

∫
B(x,t)

|f(y)|dy, (9.3.1)

where |B(x, t)| is the Lebesgue measure of the ball with center x and radius t.

Using the notation –
∫
A
fdμ =

∫
A
fdμ/μ(A), we find

Mf (x) = sup
t>0

—

∫
B(x,t)

|f(y)|dy = sup
t>0

—

∫
Bn

|f(x+ tz)|dz.

We note also that the maximal function (of a measurable function) is measurable
(see Exercise 9.8.3).

Remark 9.3.2. Let us evaluate M1Bn
. Let x ∈ Rn. For t ≥ 1 + |x|, we have

|y| ≤ 1 =⇒ |y − x| ≤ 1 + |x| =⇒ y ∈ B̄(x, t).

We have thus for t ≥ 1 + |x|, t−n|Bn|−1
∫
B(x,t)

1Bn(y)dy = t−n, implying

M1Bn
(x) ≥ (1 + |x|)−n =⇒ M1Bn

/∈ L1(Rn),

proving that the mapping f �→ Mf does not send L1 into itself. We shall see
below that the maximal function of an L1(Rn) function is nevertheless in L1w(R

n),
proving that the mapping f �→ Mf is of weak-type (1, 1).

Theorem 9.3.3 (Hardy–Littlewood maximal inequality). The mapping f �→ Mf

is of weak-type (1, 1) and of strong-type (p, p) for all p ∈ (1,+∞] (see Definitions
9.2.1, 9.2.2).

Proof. Since the mapping f �→ Mf is obviously of strong-type (∞,∞) (since
‖Mf‖L∞ ≤ ‖f‖L∞), according2 to the Marcinkiewicz interpolation theorem 9.2.3,
it is enough to prove the weak-type (1, 1) property:

∃Cn, ∀f ∈ L1(Rn), sup
t>0
t
∣∣{x ∈ Rn,Mf (x) > t}

∣∣ ≤ Cn‖f‖L1(Rn). (9.3.2)

Note that from Remark 9.3.2, the Riesz–Thorin Theorem 9.1.2 cannot be used
since the mapping fails to be of strong-type (1, 1). We start with a lemma.

2Note that the subadditivity property is fulfilled since

0 ≤ (Mf+g)(x) = sup
t>0

–

∫
Bn

|(f + g)(x+ tz)|dz ≤ sup
t>0

–

∫
Bn

|f(x+ tz)|dz + sup
t>0

–

∫
Bn

|g(x+ tz)|dz.
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Lemma 9.3.4 (Wiener covering lemma). Let E be a measurable subset of Rn such
that E ⊂ ∪j∈JBj where (Bj)j∈J is a family of open balls such that

2ρ0 = sup
j∈J

diamBj < +∞.

Then there exists a countable subfamily (Bj)j∈D of pairwise disjoint balls such
that

λn(E) ≤ 5n
∑
j∈D
λn(Bj).

Proof of the lemma. Let Bj0 = B(x0, r0) be a ball3 such that diamBj0 = 2r0 >
ρ0. Next, we define

J0 = J, J1 = {j ∈ J0, Bj ∩Bj0 = ∅}.

If j /∈ J1, then Bj ∩Bj0 �= ∅, so that ∃y0 ∈ Bj ∩Bj0 and

x ∈ Bj =⇒ |x− x0| ≤ |x− y0|︸ ︷︷ ︸
x,y0∈Bj

+ |y0 − x0|︸ ︷︷ ︸
y0∈B(x0,r0)

≤ 2ρ0 + r0 < 5r0,

entailing j /∈ J1 =⇒ Bj ⊂ B∗j0 which is defined as a ball with the same center as
Bj0 and a diameter equal to five times the diameter of Bj0 .

• For the family (Bj)j∈J0 of open balls with bounded diameters,

∃j0 ∈ J0, with J1 = {j ∈ J0, Bj ∩Bj0 = ∅},
{
j ∈ J1 =⇒ Bj ∩Bj0 = ∅,
j /∈ J1 =⇒ Bj ⊂ B∗j0 .

• Let us assume that we have found J0 ⊃ J1 ⊃ · · · ⊃ Jk, k ≥ 1, j0 ∈ J0, . . . , jk ∈ Jk
such that

(1) diamBj0 >
1

2
sup
j∈J0

diamBj , . . . . . . . . . . . . . , diamBjk >
1

2
sup
j∈Jk

diamBj ,

(2)
{
j ∈ J0, j /∈ J1 =⇒ Bj ⊂ B∗j0

}
, (3)

{
j ∈ J1 =⇒ Bj ∩Bj0 = ∅

}
,

. . . . . . . . . . .

(2)
{
j ∈ Jk−1, j /∈ Jk =⇒ Bj ⊂ B∗jk−1

}
, (3)

{
j ∈ Jk =⇒ Bj ∩Bjk−1

= ∅
}
.

We define then Jk+1 = {j ∈ Jk, Bj ∩Bjk = ∅} and if Jk+1 �= ∅ we find jk+1 ∈ Jk+1

such that

diamBjk+1
>

1

2
sup

j∈Jk+1

diamBj ,

3We may of course assume that E has positive measure, which implies that J is not empty and
ρ0 > 0.
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fulfilling (1) for k+1 as well. Moreover (3) holds true for k+1 by construction and
if j ∈ Jk\Jk+1, we have Bj ∩ Bjk �= ∅, so that ∃yk ∈ Bj ∩ Bjk , Bjk = B(xk, rk),
and

x ∈ Bj =⇒ |x− xk| ≤ |x− yk|︸ ︷︷ ︸
x,yk∈Bj

+ |yk − xk|︸ ︷︷ ︸
yk∈B(xk,rk)

≤ diamBj︸ ︷︷ ︸
j∈Jk

+rk < 2 diamBjk + rk = 5rk,

entailing Bj ⊂ B∗jk , proving (2) for k + 1.

• As a result, assuming that all the Jk are non-empty, we find

J0 ⊃ J1 ⊃ · · · ⊃ Jk ⊃ . . . , jk ∈ Jk,
such that {

k ≥ 1 : j ∈ Jk−1\Jk =⇒ Bj ⊂ B∗jk−1
,

k ≥ 1 : j ∈ Jk =⇒ Bj ∩Bjk−1
= ∅.

The family (Bjk )k≥0 is pairwise disjoint: we consider k′ ≥ k′′ + 1. We have jk′ ∈
Jk′ ⊂ Jk′′+1 and jk′′ ∈ Jk′′ so that

Bjk′︸︷︷︸
jk′∈Jk′′+1

∩Bjk′′ = ∅.

Claim. If
∑

k≥0 |Bjk | < +∞ we have for all j ∈ J0, Bj ⊂ ∪k≥1B
∗
jk−1
.

The Claim is obvious if j ∈ ∪k≥1(Jk−1\Jk). Otherwise we have

j ∈ ∩k≥1(J
c
k−1 ∪ Jk), which means j ∈ ∩k≥1Jk:

in fact, we have ∩k≥1(J
c
k−1 ∪ Jk) = ∩k≥1Jk since

{∀k ≥ 1, j ∈ Jk ∪ Jck−1} and {∃k0 ≥ 1, j /∈ Jk0}
=⇒ j ∈ Jck0−1, k0 ≥ 2, since Jc0 = ∅,
=⇒ j ∈ Jck0−2, k0 ≥ 3 · · · =⇒ j ∈ Jc1 =⇒ j ∈ Jc0 = ∅,

which is impossible. If j ∈ ∩k≥1Jk, we have ∀k ≥ 1, 2 diamBjk > diamBj

and since the series
∑

k≥0 |Bjk | converges, this implies limk diamBjk = 0, and
diamBj = 0 so that the open ball Bj is empty. The claim is proven.

• Finally, we have either
∑

k≥0 |Bjk | = +∞ (a case where the conclusion of the
lemma is reached trivially) or

∑
k≥0 |Bjk | < +∞ and the above claim implies that

E ⊂ ∪k≥1B
∗
jk−1
,

providing the sought answer.

• When Jk0 = ∅ for some k0 ≥ 1, we find that J0 = ∪1≤k≤k0 (Jk−1\Jk) and we
have obviously ∀j ∈ J0, Bj ⊂ ∪k≥1B

∗
jk−1
, obtaining the conclusion as well in that

case. The proof of the Wiener covering lemma is complete. �
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Let us go back to the proof of Theorem 9.3.3. Let s > 0 be given. If x ∈ Rn

is such that Mf (x) > s, we can find ts,x > 0 such that

1

|B(x, ts,x)|

∫
B(x,ts,x)

|f(y)|dy > s =⇒ |B(x, ts,x)| ≤ s−1‖f‖L1(Rn) < +∞.

We consider the measurable set

Es = {x ∈ Rn,Mf(x) > s} ⊂ ∪x∈EsB(x, ts,x),

and we note that tns,x|Bn| ≤ s−1‖f‖L1(Rn) so that we may apply the Wiener
covering Lemma 9.3.4. We find a sequence (xk)k∈N in Rn such that the balls
B(xk, ts,xk

) are pairwise disjoint and

|Es = {x ∈ Rn,Mf(x) > s}|

≤ 5n
∑
k∈N

|B(xk, ts,xk
)| ≤ s−15n

∑
k∈N

∫
B(xk,ts,xk

)

|f(y)|dy ≤ s−15n
∫
Rn

|f(y)|dy,

proving s|Es| ≤ 5n‖f‖L1(Rn) and the weak-type (1, 1) property. �
Remark 9.3.5. Note that with the result of Exercise 9.8.2, this implies

for 1 < p ≤ +∞, ‖Mf‖Lp(Rn) ≤ p
1+ 1

p

p− 1
5

n
p ‖f‖Lp(Rn). (9.3.3)

A result due to E.M. Stein and J.-O. Stromberg [56] shows that the Lp to Lp norm
of M can be chosen independently of the dimension n.

9.4 Lebesgue differentiation theorem, Lebesgue points

Theorem 9.4.1 (Lebesgue Differentiation Theorem). Let f be a function in L1(Rn).
Then, there exists a Borel set Lf such that λn(L

c
f ) = 0 such that

∀x ∈ Lf , lim
r→0+

1

λn(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dy = 0. (9.4.1)

The set Lf is called the set of Lebesgue points of f .

Remark 9.4.2. Note that this implies that for f ∈ L1(Rn), for all x ∈ Lf ,
limr→0 –

∫
B(x,r)f(y)dy = f(x).

Proof. For ρ > 0 we define the measurable set

Eρ = {x ∈ Rn, lim sup
t→0+

1

|B(x, t)|

∫
B(x,t)

|f(y)− f(x)|dy︸ ︷︷ ︸
Nf (t,x)

> ρ}. (9.4.2)
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Let φ ∈ C0
c (R

n). We have

Nf (t, x) ≤ —

∫
B(x,t)

|f(y)− φ(y)|dy +—

∫
B(x,t)

|φ(y) − φ(x)|dy + |φ(x) − f(x)|

≤ Mφ−f (x) +—

∫
B(x,t)

|φ(y) − φ(x)|dy + |φ(x) − f(x)|.

Since φ is uniformly continuous, we get

lim sup
t→0

Nf (t, x) ≤ Mφ−f(x) + |f(x) − φ(x)|.

As a result the set Eρ defined by (9.4.2) is such that

Eρ ⊂ {x, |f(x) − φ(x)| > ρ/2} ∪ {x,Mφ−f(x) > ρ/2},

and this implies |Eρ| ≤ |{x, |f(x) − φ(x)| > ρ/2}|+ |{x,Mφ−f (x) > ρ/2}|. Using
now Theorem 9.3.3, we obtain for any φ ∈ C0

c (R
n),

|Eρ| ≤
2

ρ

∫
Rn

|f(x) − φ(x)|dx + Cn
2

ρ
‖f − φ‖L1(Rn) =

2(1 + Cn)

ρ
‖f − φ‖L1(Rn).

The density of C0
c (R

n) in L1(Rn) implies that |Eρ| = 0 for all ρ > 0 and since

{x ∈ Rn, lim sup
t→0+

Nf (t, x) > 0} = ∪k≥1E1/k,

this gives as well that |E0| = 0. We define Lf = Ec
0 and we have for x ∈ Lf ,

limt→0 Nf (t, x) = 0, which is the sought result. �
Theorem 9.4.3. Let f ∈ L1loc(R). We define for x ∈ R, F (x) =

∫ x

0
f(y)dy.

(1) Then the function F is continuous on R, differentiable almost everywhere
with derivative f(x).

(2) The weak derivative of F is f .

Proof. (1) The continuity of F is obvious since for h ≥ 0,

F (x+ h) − F (x) =
∫
[x,x+h]

f(y)dy,

and for h ≤ 0, F (x + h) − F (x) = −
∫
[x+h,x] f(y)dy. Proposition 1.7.10 implies

limh→0(F (x + h)− F (x)) = 0. We consider now for h �= 0,∣∣∣F (x+ h) − F (x)
h

− f(x)
∣∣∣ ≤ 1

|h|

∫
[x,x+h]∪[x+h,x]

|f(y)− f(x)|dy

≤ 2

2|h|

∫
[x−|h|,x+|h|]

|f(y)− f(x)|dy.



388 Chapter 9. Classical Inequalities

Applying the previous theorem if f ∈ L1(R) (or Exercise 9.8.4 when f ∈ L1loc(R)),
we find that F is differentiable at the Lebesgue points of f , with derivative f .

(2) We have for φ ∈ C∞c (Rn), using Fubini’s theorem,

〈F ′, φ〉 = −
∫
F (x)φ′(x)dx

= −
∫
φ′(x)

∫ (
H(x)1[0,x](y)−H(−x)1[x,0](y)

)
f(y)dydx

=

∫
f(y)

(
−
∫
0≤y≤x

φ′(x)dx +

∫
x≤y≤0

φ′(x)dx
)
dy

=

∫
f(y)

(
H(y)φ(y) +H(−y)φ(y)

)
dy = 〈f, φ〉,

proving the result. �
Remark 9.4.4. Almost everywhere differentiability is a very weak piece of informa-
tion. Almost everywhere differentiability of a function F is a very weak property
that does not tell much about the function F : in the first place the trivial example
of the Heaviside function shows that a bounded function can be differentiable al-
most everywhere in R with a zero derivative without being a constant. The much
more elaborate example of the Cantor function defined in Proposition 5.7.7 shows
that a continuous function can be differentiable almost everywhere with a null
derivative without being a constant, so is not the integral of its a.e. derivative.

Remark 9.4.5. It may also happen that a continuous function is differentiable
everywhere but with a derivative which is not integrable in the Lebesgue sense
(see Exercise 9.8.5). Some other theories of integration are devised in such a way
that a differentiable function is always the integral of its derivative. This is the
case in particular of the so-called Henstock–Kurzweil integration theory [38] as
well as some earlier theories due to Denjoy and Perron.

The distribution (or weak) derivative does not miss jumps and singularities
as the notion of everywhere differentiability. Here the reader may consider only
tempered distributions as in Chapter 8, but the statements are true as well for
general distributions defined as local objects.

Lemma 9.4.6. Let T be a distribution on R such that T ′ = 0. Then T is a constant.

Proof. Let φ ∈ C∞c (R) and let χ0 ∈ C∞c (R) with integral 1. Denoting I(φ) =∫
R
φ(y)dy, the function ψ defined by

ψ(x) = φ(x) − I(φ)χ0(x),

belongs to C∞c (R) and is the derivative of Ψ(x) =
∫ x

−∞ ψ(y)dy. Note that Ψ is
C∞ and with compact support, since for x large enough

Ψ(x) =

∫
R

φ(y)dy − I(φ)
∫
R

χ0(y)dy = 0.
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As a result, we find

〈T, φ〉 = 〈T, ψ〉 + I(φ)〈T, χ0〉 = 〈T,Ψ′〉 + I(φ)〈T, χ0〉 = −〈T ′,Ψ〉+ I(φ)〈T, χ0〉,

so that T = 〈T, χ0〉. �
Theorem 9.4.7. Let F be a locally integrable function in R such that its distribution
derivative F ′ is locally integrable. Then the function F is bounded continuous and
for all a ∈ R,

F (x) = F (a) +

∫ x

a

F ′(y)dy. (9.4.3)

The function F is also a.e. differentiable with (ordinary) derivative F ′(x).

Proof. We define G(x) =
∫ x

a
F ′(y)dy and from Theorem 9.4.3, we find that the

distribution derivative G′ of G is equal to F ′ (and that G is continuous). Thus the
distribution derivative of F−G is zero, so that F−G is the constant F (a)−G(a) =
F (a). The last statement follows from Theorem 9.4.3. �

9.5 Gagliardo–Nirenberg inequality

Proposition 9.5.1. For all φ ∈ C1
c (R

n), we have

‖φ‖
L

n
n−1 (Rn)

≤ 1

2

∏
1≤j≤n

∥∥∥∥ ∂φ∂xj
∥∥∥∥1/n
L1(Rn)

. (9.5.1)

Proof. The cases n = 1, 2 are very easy: for n = 1, we have

2φ(x) =

∫ x

−∞
φ′(t)dt+

∫ x

+∞
φ′(t)dt =⇒ 2‖φ‖L∞(R) ≤ ‖φ′‖L1(R).

For n = 2, we have, using the previous result,

|φ(x1, x2)| ≤
1

2

∫
R

|∂1φ(t1, x2)|dt1, |φ(x1, x2)| ≤
1

2

∫
R

|∂2φ(x1, t2)|dt2,

so that

4‖φ‖2L2(R2) ≤
∫
R4

|∂1φ(t1, x2)||∂2φ(x1, t2)|dt1dt2dx1dx2 = ‖∂1φ‖L1(R2)‖∂2φ‖L1(R2).

The cases n ≥ 3 are more complicated and we need to start with a lemma.

Lemma 9.5.2. Let n ≥ 2 be an integer and let ω1, . . . , ωn be non-negative mea-
surable functions on Rn−1 so that ωj is a function of (xk)1≤k≤n,k �=j . Then, we
have ∫

Rn

ω
1

n−1

1 . . . ω
1

n−1
n dx1 . . . dxn ≤

n∏
j=1

(∫
Rn−1

ωjdx̂j

) 1
n−1

,

where dx̂j =
∏

1≤k≤n
k �=j

dxk.
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Proof of the lemma. For n = 2 we have indeed∫
R2

ω1(x2)ω2(x1)dx1dx2 = ‖ω1‖L1(R)‖ω2‖L1(R).

Let us assume now that n ≥ 3: we have

In =

∫
Rn

ω
1

n−1

1 . . . ω
1

n−1
n dx1 . . . dxn =

∫
Rn−1

does not
depend on x1︷ ︸︸ ︷
ω

1
n−1

1

(∫
R

∏
2≤j≤n

ω
1

n−1

j dx1

)
dx̂1,

and since 1
n−1 + n−2

n−1 = 1, Hölder’s inequality implies

In ≤ ‖ω1‖
1

n−1

L1(Rn−1)

⎧⎨⎩
∫
Rn−1

(∫
R

∏
2≤j≤n

ω
1

n−1

j dx1

)n−1
n−2

dx̂1

⎫⎬⎭
n−2
n−1

.

We have, using the generalized Hölder’s inequality of Exercise 3.7.31,∫
R

∏
2≤j≤n

ω
1

n−1

j dx1 ≤
∏

2≤j≤n

(∫
R

(ω
1

n−1

j )n−1dx1

) 1
n−1

=
( ∏
2≤j≤n

∫
R

ωjdx1

) 1
n−1

.

This gives

In ≤ ‖ω1‖
1

n−1

L1(Rn−1)

{∫
Rn−1

∏
2≤j≤n

(∫
R

ωjdx1

) 1
n−2

︸ ︷︷ ︸
=Ω

1
n−2
j

dx̂1

}n−2
n−1

,

with Ωj independent of x1, xj (here 1 �= j since j ≥ 2). We may apply the induction
hypothesis to obtain

In ≤ ‖ω1‖
1

n−1

L1(Rn−1)

{ ∏
2≤j≤n

‖Ωj‖
1

n−2

L1(Rn−2)

}n−2
n−1

= ‖ω1‖
1

n−1

L1(Rn−1)

{ ∏
2≤j≤n

‖Ωj‖L1(Rn−2)

} 1
n−1

,

and since for 2 ≤ j ≤ n,

‖Ωj‖L1(Rn−2) =

∫
Rn−2

∫
R

ωjdx1
∏

2≤k≤n,k �=j

dxk = ‖ωj‖L1(Rn−1),

this proves the lemma. �
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Let us go back to the proof of Proposition 9.5.1. We have

2|φ(x)| ≤
∫
R

|∂jφ(x1, . . . , xj−1, tj , xj+1, . . . , xn)|dtj = ωj(x),

where ωj does not depend on xj . This implies that

2
n

n−1 |φ(x)| n
n−1 ≤

∏
1≤j≤n

ωj(x)
1

n−1 ,

and from Lemma 9.5.2, this implies

2
n

n−1

∫
|φ(x)| n

n−1 dx ≤
( ∏
1≤j≤n

‖ωj‖L1(Rn−1)

) 1
n−1

=
( ∏
1≤j≤n

‖∂jφ‖L1(Rn)

) 1
n−1

,

which is (9.5.1), concluding the proof. �

Proposition 9.5.3. The space W 1,1(Rn) is defined as the set of functions u ∈
L1(Rn) such that the distribution ∇u belongs as well to L1(Rn). This space is a
Banach space for the norm

‖u‖W 1,1(Rn) = ‖u‖L1(Rn) + ‖∇u‖L1(Rn).

Proof. Let (uk)k∈N be a Cauchy sequence in W 1,1(Rn). Then, we find u, V ∈ L1
such that limk uk = u, lim∇uk = V in the space L1(Rn). Now for φ ∈ C∞c (Rn),
we have ∫

V φdx = lim
k

∫
φ∇ukdx = lim

k
〈∇uk, φ〉 = − lim

k
〈uk,∇φ〉

= − lim
k

∫
uk∇φdx = −

∫
u∇φdx = 〈∇u, φ〉,

proving V = ∇u. �

Theorem 9.5.4 (Gagliardo–Nirenberg inequality). Let u ∈ W 1,1(Rn). Then u be-
longs to L

n
n−1 (Rn) and is such that

‖u‖
L

n
n−1 (Rn)

≤ 1

2

∏
1≤j≤n

‖∂ju‖1/nL1(Rn). (9.5.2)

Proof. Let ρ ∈ C∞c (Rn;R+) such that
∫
ρ(x)dx = 1. For ε > 0, we define

ρε(x) = ρ(x/ε)ε
−n. The function (u ∗ ρε)(x) =

∫
u(y)ρε(x− y)dy is smooth (obvi-

ous from Theorem 3.3.4), belongs to L1(Rn) (Proposition 6.1.1) and converges to
u in L1(Rn): for φ ∈ C0

c (R
n), we have

u ∗ ρε − u = (u− φ) ∗ ρε + φ ∗ ρε − φ+ φ− u,
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so that with L1 norms, using (6.1.3), for ε ≤ 1,

‖u ∗ ρε − u‖ ≤ 2‖u− φ‖ +

∫
K

|(φ ∗ ρε)(x) − φ(x)|dx,

where K is the compact set suppφ+ supp ρ. From Lemma 6.1.4, we find uniform
convergence of the sequence of continuous functions φ ∗ ρε and this implies

∀φ ∈ C0
c (R

n), lim sup
ε→0

‖u ∗ ρε − u‖ ≤ 2‖u− φ‖.

The density of C0
c (R

n) in L1(Rn) entails that limε ‖u ∗ ρε − u‖ = 0. We have also

ρε ∗ ∇u = ∇(ρε ∗ u) (9.5.3)

since for φ ∈ C∞c (Rn),∫
Rn

(ρε ∗ ∇u)(x)φ(x)dx =

∫∫
ρε(x− y)(∇u)(y)φ(x)dxdy

= 〈∇u, ρ̌ε ∗ φ〉 = −〈u, ρ̌ε ∗ ∇φ〉 = −
∫
(ρε ∗ u)(x)∇φ(x)dx = 〈∇(ρε ∗ u), φ〉,

proving (9.5.3).

Let us assume first that u belongs to W 1,1(Rn) and is compactly supported.
We may apply (9.5.1) to the smooth compactly supported ρε ∗ u. We note that
the sequence ∂j(ρε ∗ u) = ρε ∗ ∂ju converges in L1(Rn) towards ∂ju. Moreover
the inequality (9.5.1) applied to ρε1 ∗ u − ρε2 ∗ u implies that ρε ∗ u is a Cauchy
sequence in Ln/n−1(Rn) thus converges with a limit v; since that sequence is
converging towards u in L1(Rn), and for φ ∈ C0

c (R
n), we have∫

v(x)φ(x)dx = lim
ε

∫
(ρε ∗ u)(x)φ(x)dx =

∫
u(x)φ(x)dx.

Lemma 8.1.11 implies u = v which belongs to Ln/n−1. Inequality (9.5.2) holds
true by taking the limits in (9.5.1).

Let us assume now that u belongs to W 1,1(Rn). Let χ be in C∞c (Rn; [0, 1]),
equal to 1 on B(0, 1) and supported in B(0, 2). For ε > 0 we have obviously
(dominated convergence)

lim
ε→0
χ(εx)u(x) = u(x) in L1(Rn).

Let us calculate for χε(x) = χ(εx), ∇(uχε) = χε∇u+ u∇χε. We have

lim
ε→0

∫
Rn

|u(x)χ′(εx)|dxε = 0 = lim
ε→0

∫
Rn

|u(x)|(1 − χ(εx))dx,

where the first equality is obvious (domination by ‖u‖L1ε‖χ′‖L∞) as well as the
next one since ∫

Rn

|u(x)|(1 − χ(εx))dx ≤
∫
|x|≥1/ε

|u(x)|dx.
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We have thus
lim
ε→0
χεu = u, lim

ε→0
∇(χεu) = ∇u in L1.

Since uε = χεu is compactly supported in W 1,1, we may apply the previous result
to get Inequality (9.5.2) for uε. That inequality implies as well that uε is a Cauchy
sequence in Ln/n−1 and thus converges in that space towards a function v. Since
the sequence uε converges in L1 towards u, the same reasoning as above shows
v = u and the result.

Remark 9.5.5. The Gagliardo–Nirenberg inequality (9.5.2) has some interesting
properties, beyond the most remarkable of being true. In the first place, this in-
equality has a scaling invariance: take u ∈ W 1,1(Rn) and A ∈ Gl(n,R), and
consider the function

uA(x) = u(Ax)| detA|
n−1
n , so that (∇uA)(x) = (∇u)(Ax)A| detA|

n−1
n .

We have

‖uA‖
L

n
n−1 (Rn)

=

(∫
|u(Ax)| n

n−1 | detA|dx
)n−1

n

= ‖u‖
L

n
n−1 (Rn)

,

and

‖∇uA‖L1(Rn) =

∫
|(∇u)(Ax)A|| detA|

n−1
n dx =

∫
|(∇u)(y)A|| detA|− 1

n dx.

Considering (∇u)(x) as a linear form on Rn, and A as a linear endomorphism of
Rn, we have

‖(∇u)(x)A‖ = sup
|T |=1

‖(∇u)(x)AT ‖.

Let us assume now that A = αΩ, where α ∈ R∗,Ω ∈ O(n). We get then

‖(∇u)(x)A‖ = |α|‖(∇u)(x)‖, | detA| = |α|n,

so that ‖∇uA‖L1(Rn) = ‖∇u‖L1(Rn). Inequality (9.5.2) implies

‖u‖
L

n
n−1 (Rn)

≤ 1

2n

∑
1≤j≤n

∫
|(∂ju)(x)|dx ≤ 1

2
√
n

∫ ⎛⎝ ∑
1≤j≤n

|(∂ju)(x)|2
⎞⎠1/2

dx

=
1

2
√
n

∫
‖∇u(x)‖︸ ︷︷ ︸
Euclidean

norm on Rn

dx =
1

2
√
n
‖∇u‖L1(Rn), (9.5.4)

and the latter is invariant by affine similarities (generated by homothetic trans-
formations x �→ x0 + αx, α ∈ R∗, and linear isometries x �→ Ωx, Ω ∈ O(n)).

On the other hand, we shall use Theorem 9.5.4 to prove the so-called Sobolev
inequalities of the next section. Although these inequalities can be handled via
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some Fourier analysis methods, this is not the case for the Gagliardo–Nirenberg
inequality above which involves the L1-norm of the gradient (L1 is not so friendly
to Fourier analysis). It is thus an interesting reminder that a clever but elementary
combinatorial argument such as Lemma 9.5.2 can find its way into proving a
statement that is not accessible to Fourier analysis. �

9.6 Sobolev spaces, Sobolev injection theorems

We begin with a lemma.

Lemma 9.6.1. Let n ≥ 1 be an integer and let p, q ∈ [1,+∞) such that 1
q = 1

n + 1
p .

Then there exists a constant C(p, n) such that for all v ∈ C1
c (R

n),

‖v‖Lp(Rn) ≤ C(p, n)‖∇v‖Lq(Rn).

Proof. When n = 1, we find that the sought estimate is true as well for p =
+∞, q = 1 (this is (9.5.1)) and for 1 ≤ p < +∞, we cannot have q ≥ 1. We may
thus assume that n ≥ 2.

Let us first suppose that v ≥ 0. We define u = v
p(n−1)

n : we note that

1

p
+

1

n
≤ 1 =⇒ 1

p
≤ n− 1

n
=⇒ p(n− 1)

n
≥ 1,

so that we have with ordinary differentiation, ∂ju =
p(n−1)

n v
p(n−1)

n −1∂jv, and the
function u is also C1

c . On the other hand we have, using (9.5.1),

‖v‖pLp = ‖u‖
n

n−1

L
n

n−1
≤ 2−

n
n−1

∏
1≤j≤n

‖∂ju‖
1

n−1

L1 (9.6.1)

≤ 2−
n

n−1

(p(n− 1)

n

) n
n−1

( ∏
1≤j≤n

∫
|∂jv||v|p−

p
n−1dx

) 1
n−1

︸ ︷︷ ︸
term I

,

and this implies that

‖v‖p(n−1)
Lp ≤ 2−n

(p(n− 1)

n

)n ∏
1≤j≤n

(
‖∂jv‖Lq‖v

np−p−n
n ‖Lq′

)
.

We note that (np−p−n)
n = p(1 − 1

n − 1
p ) =

p
q′ , so that if q > 1 we have proven

‖v‖p(n−1)
Lp ≤ 2−n

(p(n− 1)

n

)n( ∏
1≤j≤n

‖∂jv‖Lq

)
‖vp‖

n
q′
L1,
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which gives (the result) for v �≡ 0,

‖v‖nLp = ‖v‖
p(n−1)−np

q′
Lp ≤ 2−n

(p(n− 1)

n

)n ∏
1≤j≤n

‖∂jv‖Lq ,

since p(n− 1)− np
q′ = pn(1− 1

n − 1
q′ ) = pn(

1
q − 1

n ) = n. If q = 1, we have in term I

above, p− p
n − 1 = p(1 − 1

n − 1
p ) = 0, so that (9.6.1) gives the answer in the case

q = 1.

We drop now the non-negativity assumption on v. For ε>0, and χ ∈ C∞c (Rn; [0, 1])
equal to 1 near the support of v, we define the C1

c function uε by

uε(x) =
(
v(x)2 + ε2

) 1
2

p(n−1)
n χ(x).

We have limε→0 ‖uε‖
n

n−1

L
n

n−1
= limε→0

∫ (
v(x)2 + ε2

) p
2 χ(x)

n
n−1 dx = ‖v‖pLp , and cal-

culating

∇uε = (∇χ)
(
v2 + ε2

) 1
2

p(n−1)
n + χ

p(n− 1)

2n
(v2 + ε2)

p(n−1)
2n −12v∇v,

using p(n− 1)/n ≥ 1, we get that

lim
ε→0

(∇uε)(x) = χ(x)
p(n− 1)

2n
|v(x)|

p(n−1)
n −22v(x)(∇v)(x),

so that with dominated convergence, we obtain

lim
ε→0

‖∇uε‖L1 =
p(n− 1)

n

∫
|v|

p(n−1)−n
n |∇v|dx.

Applying Gagliardo–Nirenberg (9.5.4) to uε we find

‖v‖
p(n−1)

n

Lp = lim
ε

‖uε‖L n
n−1

≤ 1

2
√
n
lim
ε

‖∇uε‖L1 =
p(n− 1)

2n3/2

∫
|v|

p(n−1)−n
n |∇v|dx.

If q = 1, we have p(n − 1) − n = pn(1 − 1
n − 1

p ) =
pn
q′ = 0, p(n − 1) = n and the

previous inequality gives the answer. If q > 1, we have p(n − 1) − n = pn
q′ and

Hölder’s inequality implies

‖v‖
p(n−1)

n

Lp ≤ p(n− 1)

2n3/2
‖v‖

p

q′
Lp‖∇v‖Lq .

Since p(n−1)
n − p

q′ = p(1 − 1
n − 1

q′ ) = p(1q − 1
n ) = 1, this completes the proof of

Lemma 9.6.1. �



396 Chapter 9. Classical Inequalities

Proposition 9.6.2. Let p ∈ [1,+∞] and s ∈ N. We define the Sobolev space
W s,p(Rn) as the set of functions u ∈ Lp(Rn) such that the distribution deriva-
tives ∂αu belong to Lp(Rn) when the multi-index α ∈ Nn is such that |α| ≤ s. This
space is a Banach space for the norm

‖u‖W s,p(Rn) =
∑
|α|≤s

‖∂αu‖Lp(Rn).

When p = 2, it is a Hilbert space with dot-product

(u, v)W s,2(Rn) =
∑
|α|≤s

(∂αu, ∂αv)L2(Rn).

Proof. This set is obviously a vector space. Let (uk)k∈N be a Cauchy sequence in
W s,p(Rn). Then, we find u, vα ∈ Lp such that limk uk = u, limk ∂

αuk = vα in the
Banach space Lp(Rn). Now for φ ∈ C∞c (Rn), we have∫

vαφdx = lim
k

∫
φ∂αukdx = lim

k
〈∂αuk, φ〉 = (−1)|α| lim

k
〈uk, ∂αφ〉

= (−1)|α| lim
k

∫
uk∂

αφdx = (−1)|α|
∫
u∂αφdx = 〈∂αu, φ〉,

proving vα = ∂αu. �
Lemma 9.6.3. Let p ∈ [1,+∞) and k ∈ N. Then C∞c (Rn) is dense in W k,p(Rn).
More precisely, defining for ε > 0, ρ ∈ C∞c (Rn) such that

∫
ρ(t)dt = 1, χ ∈

C∞c (Rn) equal to 1 on a neighborhood of 0, ρε(x) = ε
−nρ(x/ε), χε(x) = χ(εx) and

Rεu = ρε ∗ χεu, (9.6.2)

we have limε→0Rεu = u with convergence in W k,p(Rn).

Proof. Let u ∈ W k,p(Rn). The sequence of compactly supported functions (χεu)
converges in Lp(Rn) towards u. We have also

Rεu− u = ρε ∗ (χεu− u) + ρε ∗ u− u,

so that ‖Rεu− u‖Lp ≤ ‖χεu− u‖Lp + ‖ρε ∗ u− u‖Lp and the result for k = 0. For
|α| ≤ k, we have

∂αRεu− ∂αu = ρε ∗ ∂α(χεu)− ∂αu = ρε ∗ ([∂α, χε]u) + ρε ∗ (χε∂
αu)− ∂αu,

entailing

‖∂αRεu− ∂αu‖Lp ≤ ‖Rε∂
αu− ∂αu‖Lp +

∑
β≤α
|β|≥1

α!

β!
ε|β|‖ρε ∗ ((∂βχ)ε∂α−βu‖Lp ,

which implies convergence in W k,p(Rn) of Rεu. �
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Theorem 9.6.4. Let n ≥ 2 be an integer and let p, q ∈ [1,+∞) such that 1
p = 1

n+
1
q .

Then we have the continuous embedding

W 1,p(Rn) ↪→ Lq(Rn) =W 0,q(Rn),

and there exists C(p, n) > 0 such that for all u ∈W 1,p(Rn),

‖u‖Lq(Rn) ≤ C(p, n)‖∇u‖Lp(Rn). (9.6.3)

Remark 9.6.5. Note that when p ranges in the interval [1, n), we have q = np
n−p

ranging in [ n
n−1 ,+∞). We shall use the notation

p∗(n) =
np

n− p for the Sobolev conjugate exponent. (9.6.4)

We may note here that in the limiting case p = n, q = +∞, the above inclusion
does not hold for n ≥ 2 (however Remark 9.6.6 shows that it is true for n = 1).
Let β ∈ ( 1

n , 1) and w(x) = χ(x)(ln |x|)1−β/(1− β), where χ ∈ C∞c (Rn) is equal to
1 on B(0, 1/4) and is supported in B(0, 1/2). We have

(∇w)(x) = (ln |x|)−β |x|−1 x

|x|χ(x) + C
∞
c (Rn)

=⇒ ‖∇w‖nLn ≤ C + C

∫ 1/2

0

rn−1r−n| ln r|−βndr = C +

∫ +∞

2

dR

R| lnR|βn < +∞,

since nβ > 1. The function w is also in Ln(Rn) since

‖w‖nLn ≤ C1

∫ 1/2

0

rn−1| ln r|(1−β)ndr = C1

∫ +∞

2

(lnR)(1−β)ndR

Rn+1
< +∞.

However w does not belong to L∞ since β < 1.

Remark 9.6.6. In the case n = 1, we have then p = 1, q = +∞ and it is indeed
true that W 1,1(R) ↪→ L∞(R). Let u ∈W 1,1(R). In the proof of Theorem 9.5.4, we
have shown the density of C1

c (R) in W
1,1(R): let (φk) be a sequence of functions

of C1
c (R) converging in W 1,1(R). We have

u(x) = u(x) − φk(x) +
∫ x

−∞
φ′k(t)dt =⇒ |u(x)| ≤ |u(x) − φk(x)| + ‖φ′k‖L1(R),

and thus |u(x)| ≤ |u(x) − φk(x)| + ‖φ′k − u′‖L1(R) + ‖u′‖L1(R). We may find a
subsequence of (φk) converging almost everywhere to u so that we have a.e.,

|u(x)| ≤ ‖u′‖L1(R) =⇒ u ∈ L∞(R), ‖u‖L∞(R) ≤ ‖u′‖L1(R).

Proof of Theorem 9.6.4. Let u ∈ W 1,p(Rn). Then from Lemma 9.6.3, we have
limεRεu = u in W 1,p(Rn). Moreover from Lemma 9.6.1, we find that

‖Rεu‖Lq(Rn) ≤ C(p, n)‖∇Rεu‖Lp(Rn).
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This inequality proves that (Rεu) is a Cauchy sequence in Lq(Rn), thus converging
towards some v ∈ Lq(Rn). Since (Rεu) converges towards u in W 1,p(Rn), we find
for φ ∈ C∞c (Rn),

〈v, φ〉 = lim
ε

∫
(Rεu)φdx = 〈u, φ〉 =⇒ v = u, u ∈ Lq(Rn).

Passing to the limit with respect to ε in the inequality above gives (9.6.3). �
Theorem 9.6.7. Let 0 ≤ l < k be integers, and let 1 ≤ p < q < +∞ be real numbers
such that

k − l
n

=
1

p
− 1

q
. Then W k,p(Rn) ↪→W l,q(Rn).

Proof. If n = 1, we should have p = 1, q = +∞, k = l + 1, and we have already
seen that W 1,1(R) ↪→ W 0,∞(R), with

‖u‖L∞ ≤ 1

2
‖u′‖L1 for u, u′ ∈ L1

=⇒ for l ∈ N and u(l), u(l+1) ∈ L1(R), ‖u(l)‖L∞ ≤ 1

2
‖u(l+1)‖L1 ,

which implies for l ∈ N, W 1+l,1(R) ↪→ W l,∞(R). We assume now n ≥ 2 and we
note that Theorem 9.6.4 tackles the case k = 1, l = 0 with the estimate

∀u ∈W 1,p(Rn), ‖u‖Lq(Rn) ≤ C(p, n)‖∇u‖Lp(Rn),
1

p
− 1

q
=

1

n
.

We note that this implies

∀u ∈W 1+l,p(Rn), ‖∇lu‖Lq(Rn) ≤ C(p, n)‖∇l+1u‖Lp(Rn),
1

p
− 1

q
=

1

n
,

which deals with the case k = l+1. Let us assume that for k− l = ν ≥ 1, we have
proven

∀u ∈W ν+l,p(Rn), ‖∇lu‖Lq(Rn) ≤ C(p, n)‖∇l+νu‖Lp(Rn),
1

p
− 1

q
=
ν

n
.

This implies that for

1

pν+1
− 1

qν+1
=
ν + 1

n
,

1

pν+1
− 1

qν+1
− 1

n
=
ν

n
,

∀u ∈ W ν+l+1,pν+1(Rn), ‖∇l+1u‖Lqν (Rn) ≤ C(pν+1, n)‖∇l+1+νu‖Lpν+1(Rn),

with 1
pν+1

− 1
qν

= ν
n , qν = nqν+1

n+qν+1
. But we have

‖∇lu‖Lr(Rn) ≤ C(qν , n)‖∇l+1u‖Lqν (Rn),
1

qν
− 1

r
=

1

n
,
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so that 1
r = 1

qν+1
+ 1

n − 1
n , i.e., r = qν+1. We have thus proven by induction on

ν that

∀u ∈W ν+l,p(Rn), ‖∇lu‖Lq(Rn) ≤ C(p, n)‖∇l+νu‖Lp(Rn),
1

p
− 1

q
=
ν

n
,

proving the sought result. �
Remark 9.6.8. We have proven above that

W k,p(Rn) ↪→W l,q(Rn), for
k − l
n

=
1

p
− 1

q
, 1 ≤ p < q < +∞.

Note that in this formula, we have k > l but p < q so that the functions in W k,p

have more derivatives but less Lebesgue regularity than the functions in W l,q.
This means that we can somehow trade some regularity in terms of derivatives
(first index k > l) to buy some Lq regularity according to the fixed exchange rate
given by k−l

n = 1
p − 1

q . We see also that Lebesgue regularity is a non-convertible
currency which cannot buy a derivative regularity.

9.7 Notes

A more general definition of Sobolev spacesW s,p(Rn) for p ∈ (1,+∞) and s ∈ R is

W s,p(Rn) = {u ∈ S ′(Rn), 〈Dx〉su ∈ Lp(Rn)}, (9.7.1)

with ̂〈Dx〉su = 〈ξ〉sû(ξ), 〈ξ〉 = (1 + |ξ|2)1/2, which makes sense since 〈ξ〉s belongs
to the space OM (Rn) of multipliers of S ′(Rn) (see Definition 8.1.21). The general
study of these spaces is not much more difficult than what we have done above
for s ∈ N, but a simple exposition would require some basic study of the Fourier
multiplier 〈ξ〉s, i.e., of the operator 〈Dx〉s. For instance, we would have to prove
Lp boundedness (p ∈ (1,+∞)) for the operators Dxj 〈Dx〉−1, and here also a
simplifying point of view would certainly be required to introduce elementary facts
about pseudodifferential operators. We felt that a five-hundred-page book does
not need a hundred more and decided to end the book here. Some information on
the topic of pseudodifferential operators can be found in Chapter 18 in the third
volume of Hörmander’s treatise on Linear Partial Differential Operators [32] and
also in the book [41] and the references therein.

The names of mathematicians encountered in this chapter follow.

Arnaud Denjoy (1884–1974) was a French mathematician.

Ralph Henstock (1923–2007) was an English mathematician.

Jaroslav Kurzweil (born 1926) is a Czech mathematician.

Emilio Gagliardo (1930–2008) was an Italian mathematician.
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Ernst Lindelöf (1870–1946) is a Finnish mathematician.

JózefMarcinkiewicz (1910–1940) was a Polish mathematician. He died probably
during the Katyn killings perpetrated by the NKVD (Soviet secret police).

Louis Nirenberg (born 1925) is a Canadian-born American mathematician.

Oskar Perron (1880–1975) was a German mathematician.

Lars Phragmén (1863–1937) was a Swedish mathematician.

Olof Thorin (1912–2004) was a Swedish mathematician.

Norbert Wiener (1894–1964) was a prominent American scientist, one of the
founders of modern harmonic analysis and computer science.

9.8 Exercises

Exercise 9.8.1. Let p, q, r ∈ [1, 2] such that (6.2.1) holds. Let u ∈ Lp(Rn), v ∈
Lq(Rn). Prove that û ∈ Lp′(Rn), v ∈ Lq′(Rn) and that the product ûv̂ belongs to
Lr

′
(Rn). Show that

u ∗ v ∈ Lr(Rn) and û ∗ v = ûv̂.

Answer. The fact that u ∗ v belongs to Lr follows from Young’s inequality and
we have û ∈ Lp′ , v̂ ∈ Lq′ from the Hausdorff–Young Theorem. This implies from
Hölder’s inequality that the product ûv̂ belongs to Lr

′
since∫

|û|r′ |v̂|r′dξ ≤
(∫

|û|sr′dξ
)1/s(∫

|v̂|s′r′dξ
)1/s′

,

where we may choose

s =
p′

r′
=⇒ 1

s′
= 1 − r

′

p′
= r′

(
1

r′
− 1

p′

)
=
r′

q′
=⇒ r′s′ = q′.

The above argument extends when r′ = +∞ (which implies p′ = q′ = +∞ so that
p = q = r = 1 and û, v̂ belong to L∞). We have thus

‖û ∗ v‖Lr′(Rn) ≤ ‖û‖Lp′(Rn)‖v̂‖Lq′ (Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn). (9.8.1)

To get that û ∗ v = ûv̂, it is enough to prove it for u, v in the Schwartz space
since then we shall obtain with ϕk, ψk ∈ S (Rn) such that limk ϕk = u in Lp,
limk ψk = v in Lq, thanks to (9.8.1),

ûv̂ = lim
k
ϕ̂k︸ ︷︷ ︸

limit

in Lp′

lim
l
ψ̂l︸ ︷︷ ︸

limit

in Lq′

= lim
k
ϕ̂k ∗ ψk︸ ︷︷ ︸
limit

in Lr′

= û ∗ v.

Formula (8.1.12) gives the result.
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Exercise 9.8.2. Show that if T satisfies the assumptions of Theorem 9.2.3 with
r = +∞ and

tω(t, Tu) ≤ c1‖u‖L1, ‖Tu‖L∞ ≤ c∞‖u‖L∞,

then for 1 < p < +∞, we have

‖Tu‖Lp ≤ p
1+ 1

p

p− 1
c
1/p
1 c

1/p′
∞ ‖u‖Lp.

Answer. We have only to revisit the proof of Theorem 9.2.3 while paying more
attention to the choice of the various constants. We write for u ∈ L1 +L∞, t > 0,
α > c∞,

u = u1{|u|>t/α}︸ ︷︷ ︸
u1

+ u1{|u|≤t/α}︸ ︷︷ ︸
u2

, (9.8.2)

and this gives

|(Tu)(x)| ≤ |(Tu1)(x)| + |(Tu2)(x)| ≤ |(Tu1)(x)| + ‖u2‖L∞ ≤ |(Tu1)(x)| +
c∞t

α
,

so that we find the inclusion

(�) {x, |(Tu)(x)| > t} ⊂ {x, |(Tu1)(x)| > t(1 − c∞α−1)}.

The weak-type (1, 1) assumption reads tω(t, T v) ≤ c1‖v‖L1 so that

(�) ω(t(1 − c∞α−1), T u1) ≤ c1
t(1 − c∞α−1)

∫
|u|>t/α

|u|dx.

Applying Formula (9.2.6) to Tu, we find, using Tonelli’s theorem and 1 < p < +∞,

‖Tu‖pLp = p

∫ +∞

0

tp−1ω(t, Tu)dt

(from (�)) ≤ p
∫ +∞

0

tp−1ω(t(1 − c∞α−1), T u1)dt

(from (�)) ≤ p
∫ +∞

0

tp−1 c1
t(1 − c∞α−1)

∫
|u|>t/α

|u|dxdt

=
pc1

1 − c∞α−1

∫∫
R+×Rn

tp−2H(α|u(x)| − t)|u(x)|dtdx

=
pc1

(1 − c∞α−1)(p− 1)

∫
Rn

(α|u(x)|)p−1|u(x)|dx

=
αp−1pc1

(1 − c∞α−1)(p− 1)
‖u‖pLp.
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We check now for α = λc∞ with λ > 1 (assuming of course c∞ > 0),

αp−1pc1
(1 − c∞α−1)(p− 1)

= p′c1
λpcp−1

∞
λ− 1

.

We have proven that for any λ > 1,

sup
‖u‖Lp=1

‖Tu‖Lp ≤ (p′c1)
1/p λ

(λ− 1)1/p
c1/p

′
∞ ,

so that choosing λ = p/(p− 1) gives the sought answer.

Exercise 9.8.3. Let f : Rn → C be an L1loc function. Prove that Mf is a measurable
function (see Definition 9.3.1).

Answer. For each t > 0 the function Rn × Rn � (x, z) �→ f(x+ tz) is measurable
(from Theorem 1.2.7) and Proposition 4.1.3 implies that

x �→ |B(x, t)|−1

∫
B(x,t)

|f(y)|dy = |Bn|−1

∫
Bn

|f(x+ tz)|dz,

is measurable. Proposition 1.3.1 proves that

M̃f(x) = sup
t∈Q∗+

—

∫
Bn

|f(x+ tz)|dz

is measurable. Let ε > 0 be given. Let us consider t > 0 and 0 < s ∈ Q such that
t ≤ s ≤ t(1 + ε); we have

1

tn|Bn|

∫
B(x,t)

|f(y)|dy ≤ 1

tn|Bn|

∫
B(x,s)

|f(y)|dy ≤ (
s

t
)nM̃f (x) ≤ (1 + ε)nM̃f (x),

which implies Mf (x) ≤ (1 + ε)nM̃f (x). Since M̃f (x) ≤ Mf (x), we find that for

any ε > 0, Mf (x) ≤ (1 + ε)nM̃f(x) ≤ (1 + ε)nMf (x), proving that Mf is equal

to the measurable M̃f (this works in particular when Mf(x) = +∞).

Exercise 9.8.4. Show that Theorem 9.4.1 holds for f ∈ L1loc(Ω) where Ω is an open
subset of Rn.

Answer. Using Exercise 2.8.10, we find a sequence (Kj)j≥1 of compact subsets

of Ω such that Kj ⊂ K̊j+1 and Ω = ∪j≥1Kj; Exercise 2.8.7 provides a function

ϕj ∈ C∞c (K̊j+1) equal to 1 on Kj . We may now consider the L1(Rn) function ϕjf
and apply Theorem 9.4.1: we find a measurable set Lj such that λn(L

c
j) = 0 so

that

∀x ∈ Lj , lim
r→0

—

∫
B(x,r)

∣∣ϕj(y)f(y)− ϕj(x)f(x)∣∣dy = 0.
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In particular, for j ≥ 2 and x ∈ Kj−1 ∩ Lj, we have x ∈ K̊j so that B(x, r) ⊂ Kj

for r > 0 small enough and this gives ∀x ∈ Kj−1 ∩ Lj,

0 = lim
r→0

—

∫
B(x,r)

∣∣ϕj(y)f(y)− ϕj(x)f(x)∣∣dy = lim
r→0

—

∫
B(x,r)

∣∣f(y) − f(x)
∣∣dy.

As a result the conclusion holds whenever x ∈ L = ∪j≥2(Kj−1 ∩ Lj) which is a
measurable subset of Ω. On the other hand we have

Lc ∩ Ω = Ω ∩
⋂
j≥2

(Kc
j−1 ∪ Lcj) ⊂ ∪j≥2L

c
j ∪
(
Ω ∩ ∩j≥2K

c
j−1

)︸ ︷︷ ︸
=∅

,

so that λn(L
c ∩ Ω) = 0.

Exercise 9.8.5. Let F be defined on R by F (0) = 0 and for x �= 0, F (x) =
x2 sin(x−2).

(1) Prove that F is differentiable everywhere and calculate its derivative F ′.

(2) Prove that F ′ is not locally integrable.

(3) Prove that the weak derivative of F is not a Radon measure.

Answer. (1) Differentiability outside 0 is obvious with

x �= 0, F ′(x) = 2x sin(x−2) − 2x−1 cos(x−2), F ′(0) = lim
x→0
x sin(x−2) = 0.

We note in particular that F ′ is not continuous since F ′( 1√
2kπ

) = −2
√
2kπ for

k ∈ N∗.
(2) Since 2x sin(x−2) is locally bounded, we have to prove that x−1 cos(x−2) is
not locally integrable:∫ 1

0

| cos(x−2)|x−1dx =
1

2

∫ +∞

1

| cos t|dt
t

= +∞ (see Exercise 2.8.20).

(3) The weak derivative f of F is defined as a linear form on C∞c (R) functions
(or as a tempered distribution, cf. Chapter 8 with Definition 8.1.8), with

〈F ′, ϕ〉 = −
∫
R

F (x)ϕ′(x)dx.

Let us assume that ϕ is supported in (0,+∞): we have then

〈F ′, ϕ〉 =
∫ (

2x sin(x−2) − 2x−1 cos(x−2)
)
ϕ(x)dx.

We choose now ϕk ∈ C∞c ((ak, bk); [0, 1]) with k ∈ N∗,

ak =
(
2πk +

π

4

)−1/2

, bk =
(
2πk − π

4

)−1/2
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so that x ∈ (ak, bk) =⇒ x−2 ∈ (2πk − π
4 , 2πk +

π
4 ) =⇒ cos(x−2) ∈ (2−1/2, 1]. As a

result, we have∫ bk

ak

x−1 cos(x−2)ϕk(x)dx ≥ 2−1/2
(
2πk − π

4

)1/2 ∫ bk

ak

ϕk(x)dx.

We may also assume that ϕk equals 1 on
[
(2πk+ π

6 )
−1/2, (2πk− π

6 )
−1/2

]
, implying∫ bk

ak

x−1 cos(x−2)ϕk(x)dx ≥ 2−1/2
(
2πk − π

4

)1/2 π
3

1

2

(
2πk +

π

6

)−3/2

≥ c0k−1.

Since the intervals (ak, bk) are pairwise disjoint, the function

ΦN (x) =
∑

1≤k≤N

ϕk(x)

is such that ΦN ∈ C∞c ((0,+∞); [0, 1]) and

〈F ′,ΦN 〉 ≤ −c0
∑

1≤k≤N

1

k
+

∫ 1

0

2xdx −→
N→+∞

−∞.

Exercise 9.8.6. Let ρ ∈ Cc(Rn;R+) such that
∫
ρ(z)dz = 1. We define for ε > 0,

ρε(x) = ε
−nρ(x/ε) and the operator Rε on L1loc(R

n) by

(Rεu)(x) =

∫
ρε(x − y)u(y)dy. (9.8.3)

(1) Let 1 ≤ p < +∞. Prove that if u belongs to Lp(Rn), limε→0+ Rεu = u, with
Lp convergence. Moreover prove that for almost all x, limε→0+(Rεu)(x) =
u(x).

(2) Let u ∈ L∞(Rn). Prove that for almost all x, limε→0+(Rεu)(x) = u(x). Prove
that ‖Rεu‖L∞ ≤ ‖u‖L∞.

Answer. (1) The proof of Theorem 3.4.3 answers the very first statement. Let us
answer the two questions about a.e. convergence assuming only u ∈ L1loc: we have
(Rεu)(x) − u(x) =

∫ (
u(x− εz)− u(x)

)
ρ(z)dz so that for N > 0, assuming as we

may that supp ρ ⊂ Bn,

1Bn(x/N)|(Rεu)(x) − u(x)| ≤ 1Bn(x/N)‖ρ‖L∞
∫
z∈supp ρ

|u(x− εz)− u(x)|dz.

We define U(y) = 1(1+N)Bn(y)u(y) and we have for ε ≤ 1,

1Bn(x/N)|(Rεu)(x) − u(x)| ≤ 1Bn(x/N)‖ρ‖L∞
∫

1Bn(z)|U(x− εz)− U(x)|dz.

From the Lebesgue differentiation theorem applied to the L1(Rn) function U , we
have for almost every x, limε→0

∫
1Bn(z)|U(x−εz)−U(x)|dz = 0. For each positive
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integer N , we find a set LN such that |LcN | = 0 and

∀x ∈ NBn ∩ LN , lim
ε→0

(Rεu)(x) = u(x).

Since
{
∪N≥1

(
NBn∩LN )

}c
= ∩N≥1

(
(NBn)c∪LcN ) ⊂ ∪N≥1L

c
N , which has measure

0, this completes the proof of a.e. convergence.

(2) The inequality ‖Rεu‖L∞ ≤ ‖u‖L∞ follows trivially from the assumptions on ρ.

Exercise 9.8.7. Let b ∈ L1(Rn), and v ∈ L∞(Rn). Prove that

lim
t→0
t∈Rn

∫
|b(x)||v(x + t) − v(x)|dx = 0.

Answer. Let R, κ be positive constants. We define

AR,κ(t) = {x, |x| ≤ R and |v(x+ t) − v(x)| > κ}.
We have for t ∈ Rn, for |t| ≤ R,

λn({x, |x| ≤ R, |x+ t| > R}) =
∫
|x|≤R

H(|x+ t| −R)dx

= Rn

∫
Bn

H(|Ry + t| −R)dy = Rn

∫
Bn

H(|y + tR−1| − 1)dy

≤ Rn

∫
Bn

H(|y|+ |t|R−1 − 1)dy = Rnn−1|Sn−1|
(
1 − (1 − |t|R−1)n

)
≤ Rnn−1|Sn−1|n|t|R−1 = Rn−1|Sn−1||t|.

We have also the estimates

λn(AR,κ(t)) ≤ 1

κ

∫
|x|≤R,|x+t|≤R

|v(x+ t) − v(x)|dx + λn({x, |x| ≤ R, |x+ t| > R})

≤ 1

κ
‖τ−tvR − vR‖L1 + |t|Rn−1|Sn−1|,

with vR(x) = v(x)1(|x| ≤ R) which is an L1(Rn) function. This implies that for
all κ > 0, R > 0 we have limt→0 λn(AR,κ(t)) = 0 and thus

lim sup
t→0

∫
|b(x)||v(x + t) − v(x)|dx

= lim sup
t→0

{∫
|v(x+t)−v(x)|≤κ

|b(x)||v(x + t)− v(x)|dx +
∫
|v(x+t)−v(x)|>κ

|b(x)||v(x + t) − v(x)|dx
}

≤ κ‖b‖L1 + 2‖v‖L∞ lim sup
t→0

∫
AR,κ(t)

|b(x)|dx + 2‖v‖L∞
∫
|x|>R

|b(x)|dx

= κ‖b‖L1 + 2‖v‖L∞
∫
|x|>R

|b(x)|dx.

We infer the result from this inequality, letting R→ +∞ and κ→ 0+.
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Exercise 9.8.8. For p ∈ [1, 2], t = 1/p, draw the curve [1/2, 1] �→ t−t(1 − t)1−t =
p1/pp′−1/p′ , related to the best constant in the Hausdorff–Young inequality (9.1.22).(
p1/pp′−1/p′

)n/2
.

Answer. We draw (see Figure 9.1) the graph of the function

[1/2, 1] � t �→ t−t(1 − t)1−t,

with t standing for 1/p.

Figure 9.1: Function t−t(1− t)1−t, t ∈ [1/2, 1].



Chapter 10

Appendix

10.1 Set theory, cardinals, ordinals

Set theory

We shall assume that the reader is familiar with elementary set theory (e.g., def-
initions of union, intersection, products, of family of sets) and knows a little bit
about Russell’s paradox (see, e.g., Exercise 1.9.2). A simple introduction to the
subject would be to solve the seven first exercises in Section 1.9. The notions of
Cartesian product1, relations, equivalence relations, partitions, quotient set, func-
tions, images and inverse images, as well as injectivity, surjectivity, bijectivity,
composition of functions shall also be assumed to be familiar to the reader.

Definition 10.1.1. Let E be a set and ≤ be a binary relation on E.

(1) The relation ≤ is said to be an order relation whenever it is reflexive (x ≤ x)
antisymmetric (x ≤ y, y ≤ x =⇒ y = x) and transitive (x ≤ y, y ≤ z =⇒ x ≤
z).

(2) The order relation is said to be total whenever for any (x, y) ∈ E2, either
x ≤ y or y ≤ x.

(3) An ordered set (E,≤) is said to be well ordered whenever every non-empty
subset of E has a smallest element, i.e.,

∀A non-empty ⊂ E, ∃a ∈ A, ∀x ∈ A, a ≤ x.

Note that the smallest element of a non-empty subset of E is unique, when
it exists.

1The Cartesian product
∏

i∈I Xi of a family of sets (Xi)i∈I is defined as the set of mappings x
from I to ∪i∈IXi such that, for all i ∈ I, x(i) ∈ Xi. A particular case of interest occurs when
∀i ∈ I,Xi = X; then we note

∏
i∈I Xi = XI which is the set of mappings from I to X. A more

academic remark is concerned with the case when I = ∅: in that case,
∏

i∈∅Xi is not empty
since it has a single element which is the mapping whose graph is the empty set.

, ,
OI 10.1007/978-3- - -D
. 
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Definition 10.1.2. Let (E,≤) be an ordered set.

(1) An element a ∈ E is said to be maximal if {x ∈ E, x > a} = ∅.
(2) An element a ∈ E is said to be the smallest (resp. largest) element in E if

for all x ∈ E, x ≥ a (resp. x ≤ a). If a smallest (resp. largest) element exists,
then it is unique.

(3) Let X be a subset of E. An upper bound of X is an elementM ∈ E such that
X ⊂ (→,M ] = {x ∈ E, x ≤ M}. A lower bound of X is an element m ∈ E
such that X ⊂ [m,←) = {x ∈ E,m ≤ x}.

(4) Let X be a subset of E. When the set of upper bounds (resp. lower bounds)
is non-empty and has a smallest element b, we call that element the least
upper bound or supremum (resp. greatest lower bound or infimum).

We state below the Axiom of Choice, Zorn’s lemma and Zermelo’s theo-
rem, three statements that can be proven to be equivalent. The Axiom of Choice
plays an important rôle in measure theory, since it is a key argument to find
non-measurable sets (see Exercise 2.8.19).

Axiom of choice.2 Let I be a set and let (Ai)i∈I be a family of non-empty sets.
Then the Cartesian product

∏
i∈I Ai is non-empty.

Zorn’s lemma. Let (X,≤) be a non-empty inductive ordered set: if Y is a totally
ordered subset of X , there exists x ∈ X which is an upper bound for Y . Then
there exists a maximal element in X .

Zermelo’s theorem.On any set X , one can define an order relation ≤ which makes
(X,≤) a well-ordered set.

Obviously the set N of the natural integers with the usual order is indeed well
ordered, and this is the basis for the familiar induction reasoning; considering a
sequence (Pn)n∈N of statements such that P0 is true and ∀n ∈ N,Pn =⇒ Pn+1

we define
S = {n ∈ N,Pn is not true}.

If S is not empty, then it has a smallest element s0 and necessarily s0 > 0 since
P0 is true; as a consequence s0 − 1 ∈ Sc, so that Ps0−1 is true, implying that
Ps0 is true, contradicting s0 ∈ S. As a result, S should be empty and Pn is
true for all n ∈ N. In some sense, Zorn’s lemma could be used in a similar way
to handle a non-countable family of statements satisfying properties analogous to
those of the countable family mentioned above (see Theorem 10.1.19). Of course,
it is not difficult to equip a countable set X with an order relation which makes
it a well-ordered set: it suffices to use the bijection with a subset of N. However,
the set Q of rational numbers (which is countable), with the standard order is
not a well-ordered set; consider for instance T = {x ∈ Q+, x

2 ≥ 2}, a set which

2This Axiom has not much to do with choosing an element in a non-empty set: the real point
at stake is the case where the set I is uncountable and it is in fact in that framework that it is
used to build non-measurable sets.
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is bounded from below without a smallest element (exercise). This means that to
construct an order relation on Q which makes it a well-ordered set, one has to use
a different order than the classical one and, for instance, one may use an explicit
bijection between Q and N. The real difficulties begin when you want to construct
an order relation on R which makes it a well-ordered set; naturally, one cannot use
the standard order, e.g., since ]0, 1] does not have a smallest element, although it
has the greatest lower bound 0. So the construction of that order relation has no
relationship with the standard order on the real line and is in fact a result of set
theory, dealing with order relations on P(N), the set of subsets of N.

Cardinals

A non-empty finite set is defined as a set X such that there exists N ∈ N∗ and a
bijection from {1, . . . , N} onto X . The empty set is also finite. If N1, N2 ∈ N∗ are
such that there exists a bijection from {1, . . . , N1} onto {1, . . . , N2}, this implies
N1 = N2. We can thus define the Cardinal (noted cardX) of a finite set X as its
number of elements and card ∅ = 0.

Lemma 10.1.3. Let X be a set. The following properties are equivalent.

(i) X is infinite, i.e., X is not a finite set.

(ii) There exists a proper subset Y of X and a bijection from X onto Y .

(iii) There exists an injection φ : X −→ X such that φ(X) is a proper subset
of X.

Proof. Let us assume that X is finite: then if Y is a proper subset of X , its cardinal
is strictly smaller than cardX , and there cannot exist a bijection from X onto Y :
this proves (ii)=⇒(i).

Let us assume now that X is infinite: then X cannot be empty. Let x1 ∈ X
and let us assume that for every N ∈ N∗, there exists a subset {x1, . . . , xn} ⊂ X
with N elements: this is true for n = 1 and assuming this for some n ≥ 1, the set
{x1, . . . , xn} must be proper in X (otherwise X would be finite) and thus there
exists xn+1 ∈ X such that card{x1, . . . , xn, xn+1} = n + 1. As a result, we find a
subset N ⊂ X such that there is a bijection φ from N onto N . We consider now
the mapping Φ : X −→ N c ∪ φ(2N) defined by{

Φ(x) = x, if x ∈ N c,

Φ(x) = φ(2φ−1(x)), if x ∈ N.

The mapping Φ is bijective with inverse mapping Ψ,{
Ψ(x) = x, if x ∈ N c,

Ψ(x) = φ(12φ
−1(x)), if x ∈ φ(2N).
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Indeed, we have for x ∈ N c, (Φ ◦ Ψ)(x) = x = (Ψ ◦ Φ)(x). For x ∈ N , we have

(Ψ ◦ Φ)(x) = Ψ
(
φ(2φ−1(x))︸ ︷︷ ︸
∈φ(2N)

)
= φ
(1
2
φ−1
(
φ(2φ−1(x))

))
= x,

and for x ∈ φ(2N), x = φ(2n),

(Φ ◦ Ψ)(x) = Φ
(
φ(

1

2
φ−1(x))

)
= Φ(φ(n)︸︷︷︸

∈N

) = φ
(
2φ−1

(
φ(n)

))
= φ(2n) = x.

Now the set Y = N c ∪ φ(2N) is a proper subset of X = N c ∪
partition of N︷ ︸︸ ︷

φ(2N) ∪ φ(2N+ 1)
and Φ is a bijection from X onto Y : this proves (i)=⇒(ii). Since the equivalence
between (ii) and (iii) is obvious, the proof of Lemma 10.1.3 is complete. �
Remark 10.1.4. We get immediately that a subset of a finite set is finite and a
superset of an infinite set is infinite.

Definition 10.1.5. Let X,Y be two sets: they are said to be equipotent whenever
there exists a bijective mapping φ : X −→ Y .
Remark 10.1.6. We note that a set X is equipotent to itself and for X,Y, Z sets
such that X is equipotent to Y and Y is equipotent to Z, we find that X is
also equipotent to Z; also X equipotent to Y is equivalent to Y equipotent to
X . We refrain to say that equipotence is an equivalence relation since there is
not a set of all sets. When two sets X,Y are equipotent, we shall write symbol-
ically cardX = cardY , without defining each side of the equality (note that it
nevertheless consistent with the case where X is finite).

Remark 10.1.7. We have defined on page 1 the notion of countable set: we have
also proven there that a countable set is either finite or equipotent to N and that
a countable union of countable sets is countable. A byproduct of the proof of
Lemma 10.1.3 is that every infinite set contains a set equipotent to N. We shall
note ℵ0 = cardN (see Exercise 1.9.3).

Theorem 10.1.8. We have

card(N× N) = cardN = cardQ, cardR = cardP(N).

The set of real numbers is not countable.

Proof. The first equality is proven in Exercise 1.9.1, the second on page 2, the
third equality and the last assertion in Exercise 1.9.5. �
Theorem 10.1.9 (Schröder–Bernstein Theorem). Let X,Y be two sets and let
f : X −→ Y , g : Y −→ X be injective mappings. Then there exists a bijective
mapping from X onto Y , i.e., cardX = cardY .
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Proof. We set A0 = X\g(Y ), and for n ≥ 0, An+1 = g(f(An)). We define for
x ∈ X,

Φ(x) =

{
f(x), if x ∈ ∪n≥0An,

g−1(x) otherwise,

where g−1 is the inverse mapping of the bijection g : Y → g(Y ). Note that it is
consistent since if x �∈ ∪n≥0An, then x ∈ g(Y ). The mapping Φ is one-to-one: let
us assume that Φ(x′) = Φ(x′′). Then if x′, x′′ ∈ ∪n≥0An, we find f(x′) = f(x′′)
and thus from the injectivity of f , we get x′ = x′′. If x′, x′′ �∈ ∪n≥0An, then we
find g−1(x′) = g−1(x′′) and since g : Y → g(Y ) is bijective, we get x′ = x′′. Let
us check the case x′ ∈ ∪n≥0An, x

′′ �∈ ∪n≥0An: we have then

f(x′) = g−1(x′′) =⇒ g(f(x′)) = x′′ =⇒ x′′ ∈ ∪n≥0g(f(An)) = ∪n≥0An+1,

which contradicts the assumption on x′′, proving injectivity for Φ. Let us show
now that Φ is onto: let y ∈ Y . If y belongs to ∪n≥0f(An) = f(∪n≥0An), then y =
f(x) = Φ(x) for some x ∈ ∪n≥0An. If y �∈ f(∪n≥0An), then x = g(y) �∈ ∪n≥0An:
otherwise

y = g−1(g(y)) ∈ ∪n≥0g
−1(An ∩ g(Y )) = ∪n≥0g

−1(An+1 ∩ g(Y ))
= ∪n≥0g

−1
(
g(f(An)) ∩ g(Y )

)
=︸︷︷︸

injectivity
of g

∪n≥0f(An) = f(∪n≥0An),

contradicting the assumption on y. As a result, we have indeed x = g(y) �∈ ∪n≥0An

and y = g−1(x) = Φ(x), which ends the proof. �

Definition 10.1.10. Let X,Y be two sets. We shall say that cardX ≤ cardY if X
is equipotent to a subset of Y , i.e., if there exists an injection from X into Y .

Remark 10.1.11. It follows from the Schröder–Bernstein theorem that cardX ≤
cardY and cardY ≤ cardX imply cardX = cardY . On the other hand, it is
obvious that cardX ≤ cardX and for Z a third set,

cardX ≤ cardY and cardY ≤ cardZ =⇒ cardX ≤ cardZ.

Again we shall refrain from claiming that we have found an order relation on
cardinals, since in the first place we have not defined a cardinal and next, because
there is not a set of all sets. We shall say that cardX < cardY whenever cardX ≤
cardY and X is not equipotent to Y .

Theorem 10.1.12 (Cantor’s Theorem). Let X be a set and P(X) its powerset. Then
cardX < cardP(X).

Proof. Cf. Exercise 1.9.2. �
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Let (Ai)i∈I be a family of sets. The disjoint union of this family is⊔
i∈I
Ai =

⋃
i∈I

(
Ai × {i}

)
. (10.1.1)

We note that for i′ �= i′′ in I, we have (Ai′ × {i′})∩ (Ai′′ × {i′′}) = ∅. Let (Ai)i∈I
be a family of sets and let (Bi)i∈I be a family of sets such that for each i ∈ I, Ai

is equipotent to Bi. This implies obviously that
⊔

i∈I Ai is equipotent to
⊔

i∈I Bi,
so that we may define ∑

i∈I
cardAi = card

(⊔
i∈I
Ai

)
. (10.1.2)

Also the Cartesian product
∏

i∈I Ai is equipotent to
∏

i∈I Bi so that we may define
as well ∏

i∈I
cardAi = card

(∏
i∈I
Ai

)
. (10.1.3)

In particular sums and products of cardinals are commutative and associative. We
have seen above ℵ0 + ℵ0 = ℵ0,ℵ2

0 = ℵ0.

Let X,Y be two sets and let Y X be the set of all mappings from X into Y :
this notation is justified by the fact that a mapping φ from X into Y is (φ(x))x∈X
where each φ(x) belongs to Y . Then if X ′ is equipotent to X and Y ′ is equipotent

to Y , we obtain obviously the equipotence of Y X with Y ′
X′

so that we may define

(cardY )cardX = card(Y X). (10.1.4)

For instance, we have proven in Exercises 1.9.3, 1.9.5,

2cardX = card
(
P(X)

)
, c = cardR = 2ℵ0 , ℵ0 < c. (10.1.5)

Lemma 10.1.13. Let X be a set and let {ω} be a singleton. Then the set X is
infinite if and only if the disjoint union X � {ω} is equipotent to X. In other
words, a cardinal number x is infinite if and only if x = x+ 1.

Proof. Let X be a finite set: then cardX < 1 + cardX . Let X be an infinite set:
then X contains a set equipotent to N, we may assume that it contains N. We
have then

X = N � (X\N) equipotent to {ω} � N︸ ︷︷ ︸
equipotent to N

�(X\N) = X � {ω},

proving cardX = 1 + cardX . �
Remark 10.1.14. Let X,Y, Z be three sets. Then X × (Y � Z) is equipotent to
(X × Y ) � (X × Z) so that with x = cardX, y = cardY, z = cardZ,

x(y + z) = xy + xz.

Note also that ∅ ×X = ∅, i.e., 0x = 0.
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Lemma 10.1.15. Let X,Y, Z be three sets.

(1) The set ZX�Y is equipotent to ZX × ZY , so that, with x = cardX, y =
cardY, z = cardZ, zx+y = zxzy.

(2) The set (ZY )X is equipotent to ZY×X , i.e., (zy)x = zyx.

(3) The set (X × Y )Z is equipotent to the set XZ × Y Z , i.e., (xy)z = xzyz.

Proof. We consider the mappings

Ψ : ZX�Y −→ ZX × ZY

φ �→ (φ|X , φ|Y )
,

Γ : ZX × ZY −→ ZX�Y

(f, g) �→ Γ(f, g)

where, considering X,Y as disjoint sets with union X � Y ,

for x ∈ X , Γ(f, g)(x) = f(x), for y ∈ Y , Γ(f, g)(y) = g(y).

We have Γ ◦ Ψ = IdZX�Y and Ψ ◦ Γ = IdZX×ZY : for

φ : X � Y → Z,

we have (Γ ◦ Ψ)(φ) = Γ
(
(φ|X , φ|Y )

)
so that for x ∈ X , (Γ ◦ Ψ)(φ)(x) = φ(x),

for y ∈ Y , (Γ ◦Ψ)(φ)(y) = φ(y), i.e., (Γ ◦ Ψ)(φ) = φ. Also for f : X → Z, g : Y →
Z, we have

(Ψ ◦ Γ)(f, g) = Ψ
(
Γ(f, g)

)
= Ψ

(
f � g

)
, with f � g : X � Y → Z

defined by (f � g)(x) = f(x) for x ∈ X , (f � g)(y) = g(y) for y ∈ Y and thus

(Ψ ◦ Γ)(f, g) =
(
(f � g)|X , (f � g)|Y

)
= (f, g),

proving (1).

We consider the mappings

Ω : ZY×X −→ (ZY )
X

φ �→ (X � x �→ φ(·, x)),
Θ : (ZY )

X −→ ZY×X

f �→ Θ(f),

with Θ(f)(y, x) = f(x)(y). We have

(Θ◦Ω)(φ)(y, x) = Ω(φ)(x)(y) = φ(y, x), (Ω◦Θ)(f)(x)(y) = Θ(f)(y, x) = f(x)(y),

proving (2).

We consider the mappings

Ξ : (X × Y )Z −→ XZ × Y Z

φ �→ Ξ(φ)
,

Λ : XZ × Y Z −→ (X × Y )Z
(f, g) �→ Λ(f, g),

with Ξ(φ) =
(
z �→ ΠXφ(z), z �→ ΠY φ(z)

)
, Λ(f, g)(z) = (f(z), g(z)). We have

(Λ ◦ Ξ)(φ)(z) = (ΠXφ(z),ΠY φ(z)) = φ(z),

(Ξ ◦ Λ)(f, g) =
(
z �→ ΠXΛ(f, g)(z), z �→ ΠY Λ(f, g)(z)

)
= (z �→ f(z), z �→ g(z)) = (f, g),

proving (3). �
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Remark 10.1.16. We note also that ℵ2
0 = ℵ0 (N2 is equipotent to N) and 2ℵ0 = ℵ0

and applying the previous lemma

c ≤ c+ ℵ0 ≤ 2c = 22ℵ0 = 2ℵ0+1 = 2ℵ0 = c =⇒ c = c+ ℵ0 = 2c.

Moreover, we have
c2 = c, (10.1.6)

since c2 = 2ℵ02ℵ0 = 22ℵ0 = 2ℵ0 = c. We note also that

cc = (2ℵ0)c = 2ℵ0c = 2c > c,

since c ≤ ℵ0c ≤ c2 = c gives ℵ0c = c. We have proven

card(RR) = card
(
P(R)

)
> cardR. (10.1.7)

On the other hand, considering C(R;R) (set of real-valued continuous functions),
we see that each φ ∈ C(R;R) is determined by its restriction to Q, so that

card
(
C(R;R)

)
≤ card(RQ) = cℵ0 = 2ℵ

2
0 = 2ℵ0 = c.

On the other hand, C(R;R) contains the constant functions whose cardinality is
c. We have proven that

card
(
C(R;R)

)
= cardR. (10.1.8)

The continuum hypothesis (CH) asserts that there is no subset of the real line
which is not countable and not equipotent to R, i.e., there is no cardinal number
x such that ℵ0 < x < c. Since c = 2ℵ0 this statement has a natural generalization.
The general continuum hypothesis (GCH) asserts that for any non-finite cardinal
a there is no cardinal number x such that a < x < 2a. The CH problem was stated
in 1900 by David Hilbert (1862–1943) as the first one in his list of 23 important
mathematical questions.

In 1940, Kurt Gödel (1906–1978) proved that (CH) cannot be disproved
from the standard axioms of set theory (Zermelo–Fraenkel set theory: ZF), even
adding the axiom of choice (C). In other words there is no proof of the negation of
CH in ZFC. Paul Cohen (1934–2007) showed in 1963 that (CH) cannot be proven
in ZFC. Both results assume that ZFC is non-contradictory.

Let us give a couple of examples of applications of Zorn’s lemma 10.1 to Set
Theory.

Lemma 10.1.17. Let X,Y be two sets. Then cardX ≤ cardY or cardY ≤ cardX.

Proof. Let us consider the set I = {(Xi, φi)}i∈I where φi : Xi → Y is injective
and Xi ⊂ X . It is a non-empty set since the mapping φ : ∅ → Y with graph ∅ × ∅
is injective. We equip it with the order relation

(X1, φ1) ≤ (X2, φ2) means X1 ⊂ X2 and φ2|X1
= φ1.
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If {(Xi, φi)}i∈J is a totally ordered subset of I , we consider A = ∪i∈JXi and φ
defined on Xi by φi: if x belongs to Xi′ , Xi′′ , we have Xi′ ⊂ Xi′′ or Xi′′ ⊂ Xi′

and in both cases φi′(x) = φi′′ (x), proving the consistency of the definition of φ,
as well as its injectivity. According to Zorn’s lemma, the set I must contain a
maximal element (X̃, φ). If X̃ = X , we have found an injection from X into Y .

If there is some x0 ∈ X̃c, then we claim that φ : X̃ → Y is bijective: we
need only to prove that it is onto. If φ were not onto, we could find some y0 ∈ Y ,
such that φ : X̃ → Y \{y0} and thus the extension of φ to X̃ ∪ {x0} defined
by φ(x0) = y0 would be an injection from X̃ ∪ {x0} into Y , contradicting the
maximality of (X̃, φ). Thus, we have found an injection of Y into X , completing
the proof of the lemma. �
Lemma 10.1.18. Let X,Y be two sets, Y �= ∅. The inequality cardX ≥ cardY is
equivalent to the existence of a surjective map p : X → Y .

Proof. Let us assume that such a surjective map exists. Then the set∏
y∈Y
p−1({y})

is the product of non-empty sets so that thanks to the Axiom of Choice 10.1, the
product is non-empty: ∀y ∈ Y, ∃s(y) ∈ X such that p(s(y)) = y. The mapping
s : Y → X is injective since p ◦ s is injective. Conversely if cardY ≤ cardX , from
Definition 10.1.10, we can find an injection from Y onto X , i.e., a subset Z of X
which is equipotent to Y (ψ : Z → Y bijective): then we have X = Z � (X\Z)
and we can define with y0 ∈ Y (assumed to be non-empty), for x ∈ X ,

p(x) =

{
ψ(x) if x ∈ Z,
y0 if x �∈ Z.

Since ψ is onto, p is onto. �
Theorem 10.1.19 (Principle of Transfinite Induction). Let (X,≤) be a well-ordered
set and let us assume that for each x ∈ X, P (x) is a statement. We assume that
for all x ∈ X,

P (y) holds for all y < x =⇒ P (x).
Then P (x) is true for all x ∈ X.

Proof. Let S = {x ∈ X,P (x) does not hold}. If S is not empty, it has a small-
est element a. Now for all x < a, P (x) holds true and thus P (a) holds true,
contradicting a ∈ S. Consequently, S is empty.

N.B. Note that the assumption implies that P (x0) holds true for the smallest
element x0 of X . �
Theorem 10.1.20. Let X be an infinite set. Then X ×X is equipotent to X: for
any infinite cardinal x, x2 = x.
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Proof. We have seen in the proof of Lemma 10.1.3 that X contains a set X0

equipotent to N and thus we can find a bijection ψ0 : X0 → X0 ×X0. We consider
now

F = {ψ : Y → Y × Y, bijective, Y infinite ⊂ X}.

The family F is non-empty and ordered by (ψ1, Y1) ≤ (ψ2, Y2) meaning

Y1 ⊂ Y2, ψ2|Y1
= ψ1.

The family F is inductive for that order: let (ψi, Yi)i∈I be a totally ordered subset
of F . Setting Y = ∪i∈IYi, we define for y ∈ Y , ψ(y) = ψi(y) if y ∈ Yi: note that
this definition is consistent since if y ∈ Yi ∩ Yj , then we have Yi ⊂ Yj (or Yi ⊃ Yj)
and the restriction of ψj to Yi equals ψj (or the same property exchanging i with
j). The mapping ψ : Y → Y ×Y is injective since for y′, y′′ ∈ Y , we find i ∈ I such
that y′, y′′ ∈ Yi and thus ψ(y′) = ψ(y′′) means ψi(y

′) = ψi(y
′′) implying y′ = y′′.

It is also onto since for (y′, y′′) ∈ Y × Y , we find i ∈ I such that y′, y′′ ∈ Yi and
thus there exists y ∈ Yi such that ψ(y) = ψi(y) = (y′, y′′).

Applying Zorn’s Lemma 10.1, we find a maximal element (ψ, Y ) in F . We
have in particular a = a2 with a = cardY and a is an infinite cardinal. If a =
cardX , we are done. If a < cardX , we find that card(Y c) > a (otherwise cardX =
cardY +cardY c ≤ 2a ≤ a2 = a, contradicting the assumption). As a consequence
we may find a subset Z of Y c equipotent to Y . We note that a ≤ 2a2 = 2a ≤ a2 = a
and we consider

(Y ∪ Z)× (Y ∪ Z) = (Y × Y ) ∪ (Y × Z) ∪ (Z × Y ) ∪ (Z × Z)︸ ︷︷ ︸
with cardinal 3a2=a

,

so that, using a bijective map θ : Z → (Y ×Z)∪ (Z× Y )∪ (Z ×Z) we may define
for x ∈ Y ∪ Z,

ψ̃(x) =

{
ψ(x), if x ∈ Y ,
θ(x), if x ∈ Z.

The mapping ψ̃ is bijective from Y ∪Z onto (Y ∪Z)2 and extends ψ, contradicting
the maximality property. The proof of Theorem 10.1.20 is complete. �

Kurt Gödel proved in 1938 that the Axiom of Choice is consistent with (ZF),
i.e., that, if (ZF) is consistent3, then (ZFC) is also consistent. Paul Cohen proved
in 1963 that the Axiom of choice is independent of (ZF), i.e., is not a consequence
of the axioms of (ZF).

3A consistent theory is a theory that does not contain a contradiction, i.e., does not contain a
proof of a statement S and a proof of its negation not S.
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Ordinals

Introduction

We have seen in Definition 10.1.1(3) the notion of well-ordered set. Let us give a
couple of examples. Of course, N equipped with the usual order is a well-ordered
set as well as any finite ordered set. Z with the standard order is not a well-ordered
set since it does not have a smallest element, neither is (0, 1] with the order induced
by R (no smallest element). Let us now consider

E =

{
1 − 1

n

}
n≥1

∪ N∗, (10.1.9)

with the order induced by the standard order onQ. Then, althoughE is equipotent
to N, it is not isomorphic to N as an ordered set: before giving a proof of this, let
us give a definition.

Definition 10.1.21. Let (X,�X), (Y,�Y ) be well-ordered sets. These two ordered
sets are said to be isomorphic if there exists a bijective mapping φ : X → Y that
is increasing, i.e., such that x1 �X x2 in X implies φ(x1) �Y φ(x2) in Y . Note
that a mapping φ as above is such that φ−1 is also increasing4. We shall say then
that

ordX = ordY (the ordinal of X equals the ordinal of Y ), (10.1.10)

or that the ordered sets X,Y are order-isomorphic.

N.B. As for the notion of cardinal, note that we have not defined the ordinal of a
well-ordered set, but only the equality between ordinals, meaning isomorphism in
the natural sense for ordered sets.

Lemma 10.1.22. Let (A,�A), (B,�B) be two disjoint well-ordered sets. We define
X = A ∪B and the following relation on X:

x1 �X x2 means

⎧⎪⎨⎪⎩
either x1, x2 ∈ A, x1 �A x2

or x1, x2 ∈ B, x1 �B x2

or (x1, x2) ∈ A×B.

Then (X,�X) is a well-ordered set

Proof. Let us check first that �X is indeed an order relation on X : it is obviously
reflexive and if x1 �X x2, x2 �X x1, either both x1, x2 belong to A or both belong
to B and then are equal; the third case (x1, x2) ∈ A × B cannot occur since we
would also have (x2, x1) ∈ A×B, so that x2 ∈ A ∩B = ∅. The relation is indeed
antisymmetric. Let us now assume that x1 �X x2, x2 �X x3: if x1, x2 are both in

4Take φ(x1) = y1 ≤ y2 = φ(x2) in Y , then x1 ≤ x2 otherwise x2 < x1 and φ(x2) < φ(x1),
contradicting the assumption.



418 Chapter 10. Appendix

A, then either x3 ∈ A and the transitivity follows from the transitivity of �A or
x3 ∈ B and x1 �X x3. If x1, x2 are both in B, then x3 must belong to B so that
x1 ≤ x3. Moreover, if x1 ∈ A, x2 ∈ B, then x3 must belong to B so that x1 �X x3,
concluding the proof of transitivity.

Let C be a non-empty subset of X : if C ⊂ B, then minX C = minB C. If
C ∩ A �= ∅, then

min
X
C = min

A
(C ∩ A) = c,

since c ∈ C and if x ∈ C, then either x ∈ B and c �X x or x ∈ A and c �A x so
that c �X x. The proof of the lemma is complete. �
Remark 10.1.23. This implies that E defined by (10.1.9) with the order induced by
the order of R is well ordered. Also we can see that there is no bijective increasing
mapping from N onto E. If such a mapping existed, we would have φ(n) = 1− 1

n+1
for all n ∈ N: it is true for n = 0 since φ(0) should be the minimum of E. Assuming
that it is true up to someN ≥ 0, we see that the minimum of φ({0, . . . , N}c) should
be φ(N + 1) and also

min
(
φ({0, . . . , N})

)c
= 1 − 1

N + 2
,

so that φ(N + 1) = 1 − 1
N+2 , which was to be proven. As a result φ(N) ∩ N∗ = ∅

and φ cannot be onto.

Definition 10.1.24. Let (X,�X) be a well-ordered set. A subset S of X is said to
be a segment of X if s ∈ S, x ∈ X, x �X s =⇒ x ∈ S.

Obviously X itself, the empty set, any set

Sa = (→, a) = {x ∈ X, x < a}, a ∈ X, (10.1.11)

are segments of X : for the latter, s < a, x ≤ s imply x < a. Moreover if a, b ∈ X ,
Sa = Sb implies a = b: otherwise a < b (resp. b < a) and a ∈ Sb = Sa (resp.
b ∈ Sa = Sb), which is impossible.

Proposition 10.1.25. Let (X,�X) be a well-ordered set. Any union or intersection
of segments of X is again a segment of X. A segment of a segment of X is a
segment of X. For each proper segment S of X (a segment �= X), there exists
a ∈ X with S = Sa.

Proof. We start by the proof of the third statement. If S is a proper segment of
X , Sc is not empty so that we may define a = minSc. We have S ⊂ Sa: if x ∈ S
and x ≥ a, then by the segment property, we must have a ∈ S, which is impossible
since a ∈ Sc. Also we have Sa ⊂ S: if x < a then x /∈ Sc by the minimum property
of a, i.e., x ∈ S.

For the first statement, let us consider a family (Si)i∈I of segments of X . If
I = ∅, then ∪ISi = ∅ is a segment. If I �= ∅,

s ∈ ∪ISi, x ≤ s =⇒ ∃j ∈ I, s ∈ Sj, x ≤ s =⇒ x ∈ Sj ⊂ ∪ISi.
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Moreover to check that ∩ISi is a segment, we may assume that I �= ∅ (otherwise
∩ISi = X), and

s ∈ ∩ISi, x ≤ s =⇒ ∀i ∈ I, s ∈ Si, x ≤ s =⇒ ∀i ∈ I, x ∈ Si.

For the second statement we consider a segment Σ of a segment of X , which is
either X or (→, a); the first case is trivial, and if Σ is a segment of (→, a), we find
either Σ = (→, a) or for some b < a, Σ = {x ∈ X, x < a and x < b} = (→, b). �

Ordering of ordinals

Definition 10.1.26. Let (X,�X), (Y,�Y ) be two well-ordered sets. We shall say
that

ordX � ordY

if X is order-isomorphic to a segment of Y . When ordX � ordY and X is not
order-isomorphic to Y , we shall write ordX ≺ ordY .

Lemma 10.1.27. Let (X,�X) be a well-ordered set. The only order-isomorphism
of X onto a segment of X is the identity of X.

Proof. Let us assume that φ : X −→ (→, a) is an order-isomorphism of X onto a
proper segment of X (a ∈ X , see Proposition 10.1.25). We define

(�) A = {x ∈ X,φ(x) < x},

and we note that a ∈ A so that we can define b = minA. We have

(�) φ(b) < b =⇒ φ(φ(b)) < φ(b) =⇒ φ(b) ∈ A,

contradicting the fact that b is the smallest element of A. We have proven that
φ : X → X is an order-isomorphism.

We want now to prove that φ is the identity. The set A defined in (�) must
be empty, otherwise as above its smallest element b satisfies (�), leading to a
contradiction. As a result, we have for all x ∈ X , x ≤ φ(x) and applying this
result to φ−1, we find

∀x ∈ X, x ≤ φ(x) ≤ φ−1(φ(x)) = x, i.e., φ = Id. �

Proposition 10.1.28. Let (X,�X), (Y,�Y ) be well-ordered sets. Then

ordX � ordY and ordY � ordX =⇒ ordX = ordY.

Proof. Let φ : X → T be an order-isomorphism of X onto a segment T of Y and
let ψ : Y → S be an order-isomorphism of Y onto a segment S of X . Then

X � x �→ ψ(φ(x)) ∈ (ψ ◦ φ)(X) = ψ(T )

is an order-isomorphism and ψ(T ) is a segment of S, thus from Proposition 10.1.25
is also a segment of X . Applying Lemma 10.1.27 shows that ψ(T ) = X so that
S = X and ordX = ordY . �
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Proposition 10.1.29. Let (X,�X), (Y,�Y ) be two well-ordered sets. Then either
ordX � ordY or ordY � ordX.

Proof. We define

M = {x ∈ X, ∃y ∈ Y, ord (→, x) = ord (→, y)}.

We note that for each x ∈M , there exists a unique y ∈ Y such that ord (→, x) =
ord (→, y): if we have for y1, y2 ∈ Y (say with y2 �Y y1)

ord (→, y1) = ord (→, y2)

then (→, y1) is order-isomorphic to its segment (→, y2) and Lemma 10.1.27 implies
y2 = y1. We have thus a mapping φ :M → Y defined by

ord (→, x) = ord (→, φ(x)).

Note that φ is injective since if φ(x1) = φ(x2), say with x2 �X x1, we find that
(→, x1) is isomorphic to its segment (→, x2), so that Lemma 10.1.27 implies x2 =
x1. Moreover φ is increasing since if x2 �X x1, we must have φ(x2) �Y φ(x1),
otherwise φ(x1) <Y φ(x2) with

ord (→, φ(x2)) = ord (→, x2), ord (→, x1) = ord (→, φ(x1)),

so that (→, φ(x2)) is isomorphic to a segment of (→, φ(x1)) which is a proper
segment of (→, φ(x2)): this is not possible, thanks to Lemma 10.1.27. We find also
that φ(M) = N is a segment of Y : let

t = φ(s), s ∈M, i.e., ord (→, s) = ord (→, φ(s)),

and let y �Y t = φ(s). Using the isomorphism between (→, s) and (→, φ(s)),
we find an isomorphism between (→, y) and (→, x) for some x �X s, proving
y = φ(x). This implies as well that M is a segment of X .

Suppose now that X is not isomorphic to a segment of Y : then X\M is
not empty (otherwise, we would have an isomorphism φ : X → N of X onto a
segment of Y ). If Y is not isomorphic to a segment of X , then Y \N is not empty
(otherwise, we would have an isomorphism φ :M → Y of a segment of X onto Y ).
Assuming that neither X is isomorphic to a segment of Y , nor Y is isomorphic to
a segment of X , both X\M,Y \N are non-empty. We define

a = min(X\M), b = min(Y \N).

Then (→, a) is isomorphic to M and (→, b) is isomorphic to N (see Proposition
10.1.25), and since N is isomorphic to M , this implies a ∈ M , contradicting the
assumption. The proof is complete. �
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Remark 10.1.30. Let (X,�X), (Y,�Y ), (Z,�Z) be three well-ordered sets. Then

ordX � ordY and ordY � ordZ =⇒ ordX � ordZ.

In fact if φ : X → S is an isomorphism onto a segment S of Y and ψ : Y → T is
an isomorphism onto a segment T of Z, we find that

X � x �→ ψ(φ(x)) ∈ (ψ ◦ φ)(X) = ψ(S)

is an isomorphism onto a segment of T , which is also a segment of Z, thanks to
Proposition 10.1.25.

Addition of ordinals

Let (A,�A), (B,�B) be two well-ordered sets. We shall denote by

A �+ B (10.1.12)

the well-ordered set defined in Lemma 10.1.22 on the disjoint union A � B. Ac-
cording to the discussion on Example (10.1.9) in Remark 10.1.23, we have proven
that

ordN ≺ ord
(
N �+ N

)
. (10.1.13)

Moreover, replacing A by an order-isomorphic A′ and B by an order-isomorphic
B′ provides A′�+B

′ order-isomorphic to A�+B, so that we can give the following
definition.

Definition 10.1.31. Let (A,�A), (B,�B) be two well-ordered sets. We define the
addition of ordinals,

ordA⊕+ ordB = ord
(
A �+ B

)
.

Our notation emphasizes the fact that this addition is not commutative.

Lemma 10.1.32. Denoting by ω the ordinal of N and by k the ordinal of a finite
set with k elements, we have

(1) ω ≺ ω ⊕+ ω,

(2) ω = k ⊕+ ω,

(3) ω ≺ ω ⊕+ k, if k ≥ 1.

(4) If α is an ordinal, α ≺ α⊕+ 1.

Proof. We prove (2): we have

k ⊕+ ω = ord
(
{1, . . . , k} ∪ {k + 1, k + 2, . . . }

)
= ordN∗ = ordN = ω.

Let us prove (4): let X be a well-ordered set and φ : X → X �+ {∞} be an
order-isomorphism. Let a be the (unique) element of X such that φ(a) = ∞. Then
for all x ∈ X\{a}, φ(x) < ∞ = φ(a) implying x < a. Thus the restriction of φ
to X\{a} is an isomorphism from (→, a) (a proper segment of X) onto X . From
Lemma 10.1.27, it is impossible, proving (4). Since (4) implies (3) which implies
(1), the proof of the lemma is complete. �
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N.B. An immediate consequence of the previous lemma is that

for every finite ordinal, α ≺ 1 ⊕+ α = α⊕+ 1, (10.1.14)

for every infinite ordinal, α = 1 ⊕+ α ≺ α⊕+ 1. (10.1.15)

Moreover this lemma proves as well that, given (A,�A), (B,�B) two well-ordered
sets, the well-ordered set A �+ B is order-isomorphic to A if and only if B = ∅.

Uncountable well-ordered sets

Proposition 10.1.33. Let α be an ordinal. Then the set of all ordinals β such that
β ≺ α is a well-ordered set whose ordinal is α.

In other words, let (A,�A) be a well-ordered set. The set SA = {(→, a)}a∈A
of proper segments of A (see Proposition 10.1.25) is a well-ordered set by the
inclusion relation and is order-isomorphic to A.

Proof. We consider the mapping φ : A → SA defined by φ(a) = (→, a). It is
obviously onto and increasing and if φ(a1) = φ(a2), this implies(

φ(a1)
)c

=
(
φ(a2)

)c
=⇒ a1 = min

(
φ(a1)

)c
= min

(
φ(a2)

)c
= a2,

proving that φ is one-to-one and the proposition. �
Theorem 10.1.34. Any set of ordinals is well ordered. Moreover there does not
exist a set of all ordinals.

N.B. The existence of a set of all sets leads to the so-called Russell’s paradox
(see Exercise 1.9.2). Here as well the existence of a set of all ordinals leads to a
contradiction, known as the Burali-Forti5 paradox.

Proof. Let F = (Xi)i∈I be a family of well-ordered sets. From Proposition 10.1.29,
we may assume that the set I is infinite. Let us assume that there is no j ∈ I such
that ∀i ∈ I, ordXj ≤ ordXi, i.e.,

∀j ∈ I, ∃i ∈ I, ordXi ≺ ordXj , i.e., Xi isomorphic to a proper segment of Xj ,

so that ∀j ∈ I, ∃i ∈ I, ∃aj ∈ Xj , ordXi = ord (→, aj)Xj
. For j1 ∈ I, there exists

j2 ∈ I such that ordXi2 ≺ ordXi1 and thus we find a strictly decreasing sequence

· · · ≺ ordXin+1 ≺ ordXin ≺ · · · ≺ ordXi2 ≺ ordXi1 .

Thanks to Proposition 10.1.33, that sequence included in the ordinals ≺ ordXi1

should have a smallest element, which is not possible. Thus we have proven the
first statement in the theorem.

Let us prove the second statement by reductio ad absurdum. Let U be the
set of all ordinals; then it should be well ordered with an ordinal u which should
be the largest ordinal, contradicting (4) in Lemma 10.1.32. �
5Cesare Burali-Forti (1861–1931) was an Italian mathematician. He came up in 1897 with the
first discovery of a paradox in Cantor set theory.
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Proposition 10.1.35. There exists an uncountable well-ordered set Ω such that for
all x ∈ Ω, the segment (→, x) is countable. The well-ordered set Ω is unique up to
an order-isomorphism. Let A be a countable well-ordered set: then ordA ≺ ordΩ.

Proof. According to Zermelo’s Theorem 10.1, the set of real numbers R (which
is uncountable, see Theorem 10.1.8) can be well ordered (of course with an order
which is not the standard one). If R does not have the required property, we define

a = min{x ∈ R, (→, x) uncountable}.

Then we take Ω = (→, a) which is uncountable and such that for x < a, (→, x) is
countable, proving the existence.

For the uniqueness property, let Ω1 be a well-ordered set with the same
property. If ordΩ1 ≺ ordΩ, then Ω1 would be isomorphic to a proper segment of
Ω, that is to a countable set, which is incompatible with the requirement that Ω1

is uncountable.

Let A be a countable well-ordered set. Thanks to Proposition 10.1.29, A is
order-isomorphic to a proper segment of Ω (since Ω is uncountable, the inequality
ordΩ � ordA is ruled out). �

Remark 10.1.36. We can reformulate the previous result by saying that there exists
a unique ordinal ordΩ, where Ω is the set of countable ordinals.

Proposition 10.1.37. Let ordΩ be as above the set of countable ordinals. Every
countable subset of Ω has an upper bound.

Proof. Let {xj}j∈N ⊂ Ω. The countable union of countable sets ∪j∈N(→, xj) is
also a countable set (see Theorem 10.1.8) and cannot be equal to Ω. Thanks to
Proposition 10.1.25, it is also a (proper) segment of Ω and thus there exists y ∈ Ω
such that

∪j∈N(→, xj) = (→, y)

implying that ∀j ∈ N, xj ≤ y, i.e., y is indeed an upper bound for {xj}j∈N. �

Remark 10.1.38. Note that ω = ordN is the smallest infinite countable ordinal,
but that, according to (4) in Lemma 10.1.32 and k finite ≥ 1,

ω ≺ ω ⊕+ 1 ≺ · · · ≺ ω ⊕+ k are all countable ordinals.

Moreover, it is also possible to define the (non-commutative) product of or-
dinals.

Definition 10.1.39. Let (A,�A), (B,�B) be two well-ordered sets. We define the
product of ordinals,

ordB ⊗× ordA = ord
(
A×B

)
,
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where the Cartesian product A×B is endowed with the lexicographic order:

(a1, b1) �A×B (a2, b2) means

{
a1 <A

a2

or a1 = a2, b1 �B b2.

Our notation emphasizes the fact that this multiplication is not commutative.

Note that this order makes A×B well ordered: let X be a non-empty subset
of A×B. We define

a0 = min{a ∈ A, ∃b ∈ B, (a, b) ∈ X}, b0 = min{b ∈ B, (a0, b) ∈ X},

and we have (a0, b0) = minX .

Lemma 10.1.40. With ω = ordN, we have

2 ⊗× ω = ord
(
N× {1, 2}

)
= ω ≺ ω ⊗× 2 = ord

(
{1, 2} × N

)
= ω ⊕

+
ω.

Proof. We have {1, 2} × N = ({1} × N) ∪ ({2} × N) ≡ N �
+
N, proving the last

equality. Moreover, we have N × {1, 2} = (N × {1}) ∪ (N × {2}). Considering

φ : N× {1, 2} → N, φ((n, 1)) = 2n, φ((n, 2)) = 2n+ 1,

we see that φ is bijective and increasing, proving the equalities in the lhs. We have
proven in Lemma 10.1.32 (1) the requested strict inequality between ordinals. �
Remark 10.1.41. We can also go on with Remark 10.1.38: for k, l finite ≥ 1,

ω ≺ ω ⊕+ k ≺ ω ⊕
+
ω = ω ⊗× 2 ≺ (ω ⊗× 2)⊕

+
l ≺ ω ⊗× 3,

all countable ordinals. With the powers ω2, ω3 (to be defined) we could find other
countable ordinals.

Definition 10.1.42. Let (X,�X) be a well-ordered set.

(1) Let a ∈ X such that {x ∈ X, x > a} = (a,→) �= ∅. We define the immediate
successor of a, that we note by a+ 1, as

a+ 1 = min(a,→), (note that a < a+ 1).

(2) Let b ∈ X such that there exists a ∈ X with a+ 1 = b, i.e.,

b = min(a,→).

Then a is uniquely determined6 and is called the immediate predecessor of b.

(3) Let x ∈ X which has no immediate predecessor. Then x is called a limit
element of the well-ordered set X .

6If b = a1 + 1 = a2 + 1, i.e., min(a1,→) = min(a2,→), then

a1 < a2 =⇒ a2 ∈ (a1,→) =⇒ b = a1 + 1 ≤ a2 < a2 + 1 = b, which is impossible.
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Example. Let Ω be as in Proposition 10.1.35: ω = ordN has no immediate pre-
decessor, otherwise we would find a countable ordinal a such that ω = a + 1 =
min(a,→) with a < ω. If a was finite, then a+1 would be also finite (impossible),
and if a was not finite, a would be countable and thus such that ω ≤ a < a+1 = ω,
which is impossible.

10.2 Topological matters

Filters

General properties of filters

Definition 10.2.1. Let X be a set. A subset V of P(X) such that the conditions

V ⊂W, V ∈ V =⇒W ∈ V , (10.2.1)

Vj ∈ V , j = 1, 2 =⇒ V1 ∩ V2 ∈ V , (10.2.2)

∅ /∈ V , X ∈ V , (10.2.3)

are fulfilled is called a filter on X .

Remark 10.2.2. A set X on which there exists a filter V is necessarily non-empty:
we have P(∅) = {∅} and since ∅ /∈ V , the latter is not compatible with X ∈ V .

Simple examples of filters are

• On a (non-empty) topological space X , for x ∈ X ,

Vx = {V ⊂ X,V neighborhood of x}

is a filter (the filter of neighborhoods of x, cf. (1.2.4), (1.2.5), (1.2.6)).

• On Rn, V∞ = {V ⊂ Rn, V c bounded} (here bounded means included in a
ball with finite radius). The first axiom is satisfied since a subset of a bounded
set is bounded, the second axiom follows from (V1 ∩ V2)c = V c

1 ∪ V c
2 and the

fact that a union of two bounded sets is bounded. Finally, the empty set
has the unbounded complement Rn and the empty set, complement of Rn,
is bounded.

• On an infinite set X , F∞ = {V ⊂ X,V c finite} is a filter (a subset of a finite
set is finite, a finite union of finite sets is finite).

Definition 10.2.3. Let X be a set and Fj , j = 1, 2 be filters on X . We shall say
that F2 is finer than F1 when F2 ⊃ F1.

If (Fi)i∈I is a family of filters on a set X (I non-empty), then F = ∩i∈IFi

is also a filter on X : if V ∈ F , V ⊂ W , then W belongs to each Fi, thus to F .
If V ′, V ′′ ∈ F , then V ′ ∩ V ′′ belongs to each Fi, thus to F . Moreover the empty
set cannot belong to F , since it would belong to an Fi.
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Lemma 10.2.4. Let X be a set and ∅ �= B ⊂ P(X) with the non-empty finite
intersection property: for every finite family B1, . . . , BN of B, ∩1≤j≤NBj �= ∅.
Then

F = {V ⊂ X, ∃B1, . . . , BN ∈ B,∩1≤j≤NBj ⊂ V }
is a filter on X. It is the smallest filter on X which contains B, called the filter
generated by B and denoted by B̃.

Proof. Let F � V ⊂ W , then W ∈ F . Let V ′, V ′′ ∈ F : there exists (B′j)1≤j≤M ,
(B′′k )1≤k≤N in B such that V ′ ⊃ ∩1≤j≤MB

′
j , V

′′ ⊃ ∩1≤k≤NB
′′
k and thus V ′∩V ′′ ⊃

∩1≤j≤MB
′
j ∩1≤k≤N B

′′
k , proving V

′ ∩V ′′ ∈ F . Finally ∅ /∈ F since it would imply
from the definition that for B1, . . . , BN in B, ∅ = ∩1≤j≤NBj . Also X ∈ F since
there exists B ∈ B (B non-empty) and B ⊂ X . Moreover any filter containing B
must contain F . �
Lemma 10.2.5. Let f : X −→ Y be a mapping and F be a filter on X. Then the
set

f(F ) = {f(V )}V ∈F

has the non-empty finite intersection property and thus generates a filter on Y

denoted by f̃(F ), called the filter-image by f of the filter F .

Proof. Note that the family f(F ) is not empty since it contains f(X). Moreover,
for V1, . . . , VN ∈ F , we have

∩1≤j≤Nf(Vj) ⊃ f
(
∩1≤j≤NVj︸ ︷︷ ︸

∈F

)
�= ∅.

According to Lemma 10.2.4, f(F ) generates a filter. �
Definition 10.2.6. Let X be a set and let F = (Ai)i∈I ,G = (Bj)j∈J be filters on
X . The filters F ,G are said to be secant if

∀(i, j) ∈ I × J, Ai ∩Bj �= ∅.

Proposition 10.2.7. Let X be a set and let F ,G be filters on X. Then the filters
F ,G have a least upper bound (for the inclusion relation) if and only if they are
secant.

Proof. The condition is obviously necessary since when a filter H ⊃ F ∪ G ,
the intersection of two elements of H must be non-empty. Conversely let F =
(Ai)i∈I ,G = (Bj)j∈J be secant filters on X . We define

H = {C ⊂ X, ∃(i, j) ∈ I × J,C ⊃ Ai ∩Bj}.

We note that H is a filter on X since the first property (10.2.1) is obvious, the
second one (10.2.2) follows from

Ai1 ∩ Ai2︸ ︷︷ ︸
∈F

∩Bj1 ∩Bj2︸ ︷︷ ︸
∈G

,
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the third one (10.2.3) from the secant hypothesis. We have trivially H ⊃ F ∪ G
and if K is a filter on X containing F ∪G , any Ai ∩Bj should belong to K and
thus from (10.2.1), H ⊂ K , proving the sought result. �
Definition 10.2.8. LetX be a set. An Ultrafilter onX is a filter U which is maximal
for the inclusion: if a filter V on X contains U , it should be equal to U .

Proposition 10.2.9. Let X be a set and let F0 be a filter on X. There exists an
ultrafilter containing F0.

Proof. Zornification. We consider the (non-empty) family

Φ = {F filter on X such that F ⊃ F0}.

It is inductive since if (Fi)i∈I is a totally ordered subset of Φ, we may consider

G = ∪i∈IFi

and note that it is a filter on X : let V ∈ G , W ⊃ V , then V ∈ Fi for some i ∈ I,
so that W ∈ Fi ⊂ G . If V1, V2 ∈ G , since (Fi)i∈I is totally ordered, we find i ∈ I
such that V1, V2 both belong to Fi, implying that V1 ∩ V2 ∈ Fi ⊂ G . Finally
∅ /∈ G , otherwise it should belong to some Fi. Applying Zorn’s Lemma 10.1 yields
a maximal element U in Φ. If V is a filter containing U , it must contain F0, thus
it belongs to Φ, thus is equal to U by maximality: U is an ultrafilter. �
Lemma 10.2.10. Let U be an ultrafilter on a set X. If A1, A2 are subsets of X
such that A1 ∪ A2 ∈ U , then A1 ∈ U or A2 ∈ U .

Proof. Reductio ad absurdum. Let A1, A2 be subsets of X such that A1∪A2 ∈ U ,
A1 /∈ U and A2 /∈ U . We define

F = {M ⊂ X,A1 ∪M ∈ U }.

This is a filter on X since if V ⊃M ∈ F , then A1 ∪ V ⊃ A1 ∪M ∈ U , implying
A1 ∪ V ∈ U and V ∈ F . If V ′, V ′′ ∈ F , then

A1 ∪ (V ′ ∩ V ′′) = (A1 ∪ V ′)︸ ︷︷ ︸
∈U

∩ (A1 ∩ V ′′)︸ ︷︷ ︸
∈U

=⇒ V ′ ∩ V ′′ ∈ F .

Moreover ∅ /∈ F since A1 /∈ U . The filter F contains U since M ∈ U implies
A1∪M ∈ U . Finally, we see also that A2 belongs to F and not to U , contradicting
the maximality of the filter U . �
Lemma 10.2.11. Let F be a filter on a set X such that for any subset M of X,
either M ∈ F or M c ∈ F . Then F is an ultrafilter.

Proof. Let G be a filter containing F . For A ∈ G , we have Ac /∈ G , thus Ac /∈ F ,
thus A ∈ F , proving the maximality of F . �
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Proposition 10.2.12. Let f : X → Y be a surjective mapping and let F be a filter
on X. Then the filter-image by f of F is equal to {f(A)}A∈F . Moreover if F is
an ultrafilter, so is f(F ) = {f(A)}A∈F .

Proof. The filter-image is f̃(F ) and is generated by f(F ): it suffices to prove that
f(F ) is a filter when f is onto. If W ⊃ f(A) with A ∈ F , then

f−1(W ) ⊃ f−1
(
f(A)

)
⊃ A =⇒ f−1(W ) ∈ F =⇒ f

(
f−1(W )

)
∈ f(F ),

and since f is onto7, we have f
(
f−1(W )

)
= W , so that W ∈ f(F ), proving the

first property (10.2.1). Let V1, V2 ∈ f(F ): then with Aj ∈ F , we have

V1 ∩ V2 = f(A1) ∩ f(A2) ⊃ f(A1 ∩ A2︸ ︷︷ ︸
∈F

),

and from the already proven first property, we get V1 ∩ V2 ∈ f(F ). On the other
hand, ∅ /∈ f(F ), otherwise for some A ∈ F , we would have f(A) = ∅, which
implies A = ∅ (impossible since F is a filter on X).

If F is an ultrafilter on X , then G = f(F ) is a filter on Y and if B is a
subset of Y , either f−1(B) ⊃ A for some A ∈ F and (since f is onto),

B = f(f−1(B)) ⊃ f(A) =⇒ B ∈ G ,

or f−1(B) does not contain any element of F . In the latter case, since F is an
ultrafilter (see Lemma 10.2.10) and f−1(B) /∈ F ,

X = f−1(B) ∪ f−1(Bc) =⇒ f−1(Bc) ∈ F =⇒ Bc = f(f−1(Bc)) ∈ f(F ).

As a consequence G is a filter on Y verifying the property of Lemma 10.2.11, and
thus an ultrafilter, completing the proof. �

Filters in a topological space

Definition 10.2.13. Let X be a topological space, x ∈ X and F be a filter on X .

(1) The filter F is said to converge to x whenever it is finer than the filter Vx

of neighborhoods of x, i.e., when F ⊃ Vx.

(2) The closure of the filter F is defined as ∩A∈FA.

N.B. When a point x is a limit point of a filter F , i.e., when F converges to x,
then it also belongs to the closure of F : let A be an element of F and let V ∈ Vx.
Since these sets both belong to the filter F , we have A ∩ V �= ∅ and this8 implies
x ∈ Ā.
7The inclusion f(f−1(W )) ⊂ W always holds and when f is onto and y ∈ W , there exists
x ∈ f−1(W ) with y = f(x), so that y ∈ f(f−1(W )).
8Applying (1.2.1) to Ac yields (Ā)c = interior(Ac) so that

x /∈ Ā ⇐⇒ ∃V ∈ Vx, V ⊂ Ac ⇐⇒ ∃V ∈ Vx, V ∩ A = ∅.
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Lemma 10.2.14. Let X,Y be topological spaces, x ∈ X and f : X −→ Y be a
mapping. The mapping f is continuous at x if and only if

f̃(Vx) ⊃ Vf(x),

where Vz stands for the filter of neighborhoods of z.

Proof. For f to be continuous at x ∈ X means

∀W ∈ Vf(x), ∃V ∈ Vx such that f(V ) ⊂W. (10.2.4)

This implies that f̃(Vx) ⊃ Vf(x). Conversely, if the latter holds, it means

∀W ∈ Vf(x), ∃V1, . . . , VN ∈ Vx, ∩1≤j≤Nf(Vj) ⊂W,

which implies f
(
∩1≤j≤NVj

)
⊂W, providing (10.2.4) since ∩1≤j≤NVj ∈ Vx. �

Compactness and Tychonoff’s Theorem

We recall first that a topological space (X,O) is said to be a Hausdorff space
whenever

∀(x, y) ∈ X2, x �= y =⇒ ∃U ∈ Vx, ∃V ∈ Vy, U ∩ V = ∅. (10.2.5)

Definition 10.2.15. A topological space (X,O) is said to be compact when it is a
Hausdorff space and satisfies the Borel–Lebesgue property: if (Ωi)i∈I is a family
of open sets such that X = ∪i∈IΩi, there exists a finite subset J of I such that
X = ∪i∈JΩi.

Remark 10.2.16. If A is a closed subset of a compact space X , then A is also
compact. Using the definition in Lemma 1.2.2 of the induced topology on A, the
separation property is obvious and we may assume that A ⊂ ∪i∈IΩi, where each
Ωi is an open subset of X . Then we have

X = ∪i∈IΩi ∪ Ac

and since Ac is open, the compactness of X implies that X = ∪i∈JΩi ∪Ac with a
finite subset J of I. As a consequence A ⊂ ∪i∈JΩi, proving its compactness.

Proposition 10.2.17. Let X be a topological space. The following properties are
equivalent.

(i) Any filter on X has a non-empty closure.

(ii) Any ultrafilter on X is convergent.

(iii) The Borel–Lebesgue property holds.

A topological space satisfying these properties is said to be quasi-compact. A topo-
logical space is compact whenever it is a quasi-compact Hausdorff space.
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Proof. (i) =⇒ (ii). Let U be an ultrafilter on X : then there exists x ∈ ∩U∈U U,
so that U and Vx are secant (see Definition 10.2.6) and from Proposition 10.2.7,
they have a least upper bound which must be U since it is an ultrafilter: this
implies U ⊃ Vx and (ii).

(ii) =⇒ (iii). Let (Ωi)i∈I be an open covering of X and let us assume by contra-
diction that for all J finite subset of I, ∪i∈JΩi �= X. Then the family

B = {∩i∈JΩ
c
i}J finite ⊂ I

has the non-empty finite intersection property: for Bk = ∩i∈Jk
Ωc

i , 1 ≤ k ≤ N and
Jk finite subset of I, we have

∩1≤k≤NBk =
⋂

i∈∪1≤k≤NJk︸ ︷︷ ︸
finite

Ωc
i �= ∅.

According to Lemma 10.2.4 and to Proposition 10.2.9, there exists an ultrafilter U
containing B and from the assumption (ii) there exists x ∈ X such that U ⊃ Vx.
The point x belongs to the closure of U and thus to⋂

i∈I
Ωc

i =︸︷︷︸
Ωi open

⋂
i∈I

Ωc
i =
(
∪i∈IΩi

)c
= ∅,

which is impossible.

(iii) =⇒ (i). Let F = (Mi)i∈I be a filter on X with an empty closure: we have

∅ = ∩i∈IMi =⇒ X = ∪i∈I
(
Mi

)c
︸ ︷︷ ︸
open

=⇒ ∃J finite ⊂ I, X = ∪i∈J
(
Mi

)c
,

and thus ∩i∈JMi = ∅ which is impossible since allMi belong to the filter F which
enjoys the non-empty finite intersection property. The proof of the proposition is
complete. �

Proposition 10.2.18. Let X be a Hausdorff topological space.

(1) Let A,B be two compact disjoint subsets of X. Then there exist U, V open
disjoint subsets of X such that A ⊂ U and B ⊂ V .

(2) Let A be a compact subset of X. Then A is a closed subset of X.

Proof. Since X is Hausdorff, for each (x, y) ∈ A× B, there exists some open sets
Ux(y) ∈ Vx, Vy(x) ∈ Vy such that Ux(y) ∩ Vy(x) = ∅. By the compactness of B,
we have for all x ∈ A,

B ⊂ ∪1≤j≤NxVyj (x) =W (x).
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As a consequence, with T (x) = ∩1≤j≤NxUx(yj), we have T (x) ∩W (x) = ∅, W (x)
open containing B and the open set T (x) ∈ Vx. By the compactness of A, we have

A ⊂ ∪1≤k≤MT (xk).

We take then U = ∪1≤k≤MT (xk), V = ∩1≤k≤MW (xk), which are disjoint open
sets containing respectively A,B, proving (1). Let A be a compact subset of X ; if
a /∈ A, then A and {a} are disjoint compact subsets and from the now proven (1),
there exists an open set V ∈ Va such that V ∩ A = ∅, i.e., V ⊂ Ac, proving that
Ac is open. �
Proposition 10.2.19. Let (Ki)i∈I be a family of compact subsets of a Hausdorff
space X such that ∩i∈IKi = ∅. Then there exists a finite subset J of I such that
∩i∈JKi = ∅.

Proof. Note that from Property (2) of Proposition 10.2.18, the Ki are closed sub-
sets of X . For a fixed i0 ∈ I,

Ki0 ⊂ ∪i�=i0,i∈IK
c
i =⇒ Ki0 ⊂ ∪i∈JK

c
i , J finite subset of I.

As a result, ∩i∈J∪{i0}Ki = ∅. �
Theorem 10.2.20. Let X,Y be topological spaces, with Y a Hausdorff space, and
f : X −→ Y be a continuous mapping. If X is compact, then f(X) is compact.

Proof. f(X) is a Hausdorff space as a subset of a Hausdorff space. Let us assume
that f(X) ⊂ ∪i∈IVi where Vi are open subsets of Y . Then

X = ∪i∈I f−1(Vi)︸ ︷︷ ︸
open

since f continuous

,

so that for some finite J , X = ∪i∈Jf
−1(Vi), and thus f(X) = ∪i∈Jf(f

−1(Vi)) ⊂
∪i∈JVi, proving the result. �
Definition 10.2.21. Let (Xi,Oi)i∈I be a family of topological spaces. The product-
topology on X =

∏
i∈I Xi is the weakest topology on X such that all canonical

projections πi : X → Xi are continuous.

We note that the continuity of the projections forces

π−1
i (Oi) = {π−1

i (Ω)}Ω∈Oi

to belong to the product topology O on X . As a result O is the intersection of
topologies containing ∪i∈Iπ

−1
i (Oi), i.e., the smallest topology containing that set.

Lemma 10.2.22. Let (Xi,Oi)i∈I be a family of topological spaces and let (X,O) be
the product topology on X =

∏
i∈I Xi. Then

O = {∪α∈AΩα} Ωα=
∏

i∈I Ui,α, Ui,α∈Oi

Ui,α=Xiexcept for a finite subset of I

.



432 Chapter 10. Appendix

Proof. Let us call Õ the set defined in the lemma. Since any product∏
i∈I
Ui,α, Ui,α ∈ Oi, Ui,α = Xi, except for a finite subset of I,

belongs to O, as a finite intersection of elements of ∪i∈Iπ
−1
i (Oi), we find that

∪i∈Iπ
−1
i (Oi) ⊂ Õ ⊂ O. (10.2.6)

Moreover Õ is a topology on X since it is obviously stable by union and also by
finite intersection: to verify this it is enough to consider

W =

(∏
i∈I
Ui

)
∩
(∏

i∈I
Vi

)
, Ui, Vi ∈ Oi, all but a finite number equal to Xi.

We have indeed W =
∏

i∈I(Ui ∩ Vi) where all but a finite number of (Ui ∩ Vi)
are equal to Xi and the others are open subsets of Xi. Since Õ is proven to be a
topology, the inclusions (10.2.6) imply Õ = O. �

Theorem 10.2.23 (Tychonoff). Let (Xi)i∈I be a family of compact topological
spaces. Then the space X =

∏
i∈I Xi equipped with the product topology is compact.

Proof. Let U be an ultrafilter on X . From Proposition 10.2.12, each πi(U ) is an
ultrafilter on Xi (πi is the canonical projection from X onto Xi). By compactness
of Xi, there exists xi ∈ Xi such that πi(U ) ⊃ Vxi . Let us define x = (xi)i∈I and
let us prove that U converges to x: let V ∈ Vx, so that x belongs to an open set
of X contained in V . From Lemma 10.2.22, V contains a set∏

i∈I
Ui, xi ∈ Ui open in Xi, Ui = Xi, except for a finite subset J of I.

Since Ui ∈ Vxi , it belongs also to πi(U ) and for all i ∈ J , there exists V (i) ∈ U
such that

Ui = πi(V
(i)) =⇒ ∀i ∈ J, Ui ⊃ πi(W ),W = ∩i∈JV

(i) and W ∈ U .

Since for i /∈ J , Ui = Xi, we obtain that

V ⊃
∏
i∈I
Ui ⊃

∏
i∈I
πi(W ) ⊃W =⇒ V ∈ U ,

proving the convergence U ⊃ Vx and quasi-compactness. To conclude, we need to
prove the following result.

Lemma 10.2.24. A product of Hausdorff spaces is also Hausdorff.
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Proof of the lemma. Let (x′i)i∈I , (x
′′
i )i∈I be distinct points in X . We are thus able

to find i0 ∈ I such that x′i0 �= x′′i0 and consequently (since Xi0 is Hausdorff) we
can find U ′i0 , U

′′
i0

disjoint open subsets of Xi0 with x′i0 ∈ U ′i0 , x
′′
i0

∈ U ′′i0 . We define
then

U ′ =
∏
i∈I
V ′i , V

′
i0 = U ′i0 , other V

′
i = Xi, U

′′ =
∏
i∈I
V ′′i , V

′′
i0 = U ′′i0 , other V

′′
i = Xi.

The sets U ′, U ′′ are disjoint and respective neighborhoods of (x′i)i∈I , (x
′′
i )i∈I . �

The proof of Theorem 10.2.23 is complete. �

Connectedness of topological spaces

Definition 10.2.25. A topological space is said to be connected if the only subsets
of X which are both open and closed are X and ∅.
Lemma 10.2.26. Let X be a topological space and let (Ai)i∈I be a family of con-
nected subsets of X such that

∀(i′, i′′) ∈ I2, ∃J = {ik}1≤k≤N ⊂ I, i1 = i′, iN = i′′,

such that for 1 ≤ k < N , Aik ∩ Aik+1
�= ∅.

Then the set A = ∪i∈IAi is connected.

Proof. Using the induced topology (see Lemma 1.2.2), we assume that

A ⊂ Ω1 ∪Ω2, Ω1 ∩ Ω2 ∩A = ∅, Ωj open subsets of X .

Let us assume that A ∩ Ω1 �= ∅. Then there exists x ∈ Ω1 ∩ Ai′ for some i′ ∈ I.
Since Ai′ is connected and

Ai′ ⊂ Ω1 ∪ Ω2, Ω1 ∩ Ω2 ∩Ai′ = ∅, Ai′ ∩ Ω1 �= ∅ =⇒ Ai′ ∩Ω2 = ∅ =⇒ Ai′ ⊂ Ω1.

Let us now consider i′′ ∈ J : applying the hypothesis, we find

J = {ik}1≤k≤N ⊂ I, i1 = i′, iN = i′′, 1 ≤ k < N,Aik ∩Aik+1
�= ∅.

Assuming Aik ⊂ Ω1 for some 1 ≤ k < N , we have from the connectedness of Aik+1
,

∅ �= Aik+1
∩ Aik , Aik+1

⊂ Ω1 ∪ Ω2, Ω1 ∩ Ω2 ∩ Aik+1
= ∅, Aik+1

∩ Ω1 �= ∅,

and this implies Aik+1
∩Ω2 = ∅, thus Aik+1

⊂ Ω1. Since we have proven Ai1 ⊂ Ω1

this proves Ai′′ ⊂ Ω1 for any i′′ ∈ I, entailing A ⊂ Ω1, proving connectedness
for A. �
Definition 10.2.27. Let X be a topological space. We define a binary relation on
X by x′ ∼ x′′ means there exists a connected subset A of X such that x′, x′′ ∈ A.
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Remark 10.2.28. This relation is an equivalence relation: reflexivity and symme-
try are obvious whereas transitivity follows from Lemma 10.2.26. The connected
components of X are defined as the equivalence classes of that binary relation. We
obtain a partition of X ,

X = �i∈ICi, {Ci}i∈I = X/ ∼ (the quotient space).

Moreover each Ci is connected: we have Ci = p(xi), the equivalence class of a
point xi and if x ∈ Ci, then there exists A connected such that xi, x ∈ A. Since
all points of A are equivalent to xi, this implies that

Ci =
⋃

A connected � xi

A

and Lemma 10.2.26 provides connectedness for Ci. Moreover if C is connected and
contains Ci = p(xi), all elements of C are equivalent to xi, so that C = Ci.

Theorem 10.2.29. Let X,Y be topological spaces, let f : X → Y be a continuous
mapping and let A be a connected subset of X. Then f(A) is connected.

Proof. Let us assume that V1, V2 are open subsets of Y such that

f(A) ⊂ V1 ∪ V2, f(A) ∩ V1 ∩ V2 = ∅.

By continuity of f , the sets f−1(Vj) are open in X and we have

A ⊂ f−1(f(A)) ⊂ f−1(V1) ∪ f−1(V2),

as well as f−1(V1)∩f−1(V2)∩f−1(f(A)) = ∅. The connectedness of A implies A ⊂
f−1(Vj) say for j = 1 and thus f(A) ⊂ V1, proving connectedness for f(A). �

Proposition 10.2.30. Let X be a topological space and let A be a connected subset
of X. Then the closure of A is also connected.

Proof. We may assume that A is non-empty. Let us assume that

Ā ⊂ Ω1 ∪Ω2, Ā ∩ Ω1 ∩ Ω2 = ∅, Ωj open.

From the connectedness of A, we infer that A must be included in one Ωj , say Ω1.
We have

A ⊂ Ω1 ∩A ⊂︸︷︷︸
from

Ω1∩A∩Ω2=∅

Ωc
2 =⇒︸︷︷︸
Ωc

2 closed

A ⊂ Ωc
2 =⇒ Ω2 ∩ A = ∅ =⇒︸︷︷︸

A⊂Ω1∪Ω2

A ⊂ Ω1,

proving connectedness for Ā as well. �

Proposition 10.2.31. The connected subsets of R are the intervals.
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Proof. Let C be a connected subset of the real line containing at least two distinct
points a < b. If there exists x ∈ (a, b) such that x /∈ C, then

C ⊂ (−∞, x) ∪ (x,+∞), a disjoint union of open sets,

violating connectedness. As a result C is an interval, i.e., a subset of R such that

a, b ∈ C, a < b =⇒ (a, b) ⊂ C.

Conversely, let I be an interval of R such that

I ⊂ U1 ∪ U2, U1 ∩ U2 ∩ I = ∅, Uj open.

Let us assume that I ∩ U1 �= ∅ and let a1 ∈ I ∩ U1. If I ∩ U2 �= ∅, we may find
a2 ∈ I ∩ U2. Since the sets I ∩ Uj , j = 1, 2 are disjoint we have a1 �= a2 and we
may assume a1 < a2. Note that [a1, a2] ⊂ I since I is an interval. We consider the
set [a1, a2] ∩ U1 which is non-empty (contains a1) and bounded above. We define

b = sup
(
[a1, a2] ∩ U1

)
(note that a1 ≤ b ≤ a2, implying b ∈ I).

The point b belongs to I ⊂ U1 ∪ U2. If b ∈ U1, then there exists ε > 0 such that

(�) [b− ε, b+ ε] ⊂ U1.

Moreover we have b < a2 (otherwise b = a2 and b ∈ U1 ∩ U2 ∩ I = ∅). Thus for
some ε′ > 0, we have b+ ε′ < a2 and b+ ε′ ∈ U1, violating the supremum property
defining b. As a result we have b ∈ U2 (thus b > a1) and there exists ε′′ > 0 such
that

(�) [b− ε′′, b+ ε′′] ⊂ U2 ∩ (a1,+∞).

Since b− ε′′ is not an upper bound for [a1, a2] ∩ U1, we may find

c ∈ [a1, a2] ∩ U1 such that a1 < b− ε′′ < c ≤ b =⇒ c ∈ U1 ∩ I ∩ U2 = ∅,

which is impossible. This proves that I ⊂ U1 and the result. �
Definition 10.2.32. A topological space X is said to be path-connected if for all
x0, x1 ∈ X there exists a continuous mapping γ : [0, 1] → X such that γ(0) =
x0, γ(1) = x1.

Proposition 10.2.33. A path-connected topological space is connected.

Proof. Let X be a path-connected topological space. If X is non-empty, we may
find a ∈ X such that for all x ∈ X , there exists a continuous mapping γx : [0, 1] →
X with γx(0) = a, γx(1) = x. We have thus

X = ∪x∈Xγx([0, 1]),

and we note that each γx([0, 1]) is connected (Theorem 10.2.29) and for x1, x2 ∈ X

a ∈ γx1([0, 1]) ∩ γx2([0, 1]),

fulfilling the assumptions of Lemma 10.2.26, entailing the result. �
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Remark 10.2.34. The set

G =

{(
x, sin

1

x

)}
0<x≤2/π

∪
(
{0} × [−1, 1]

)
(10.2.7)

is connected, not path-connected. In fact, the function

(0, 2/π] � x �→ (x, sin(1/x))

is continuous so that G0 = {(x, sin 1
x )}0<x≤2/π is connected (and path-connected)

as the continuous image of the interval (0, 2/π]. The set G is the closure of G0 and
thus is connected (from Proposition 10.2.30). However, G is not path-connected:
for a continuous mapping γ : [0, 1] → G such that γ(t) = (x(t), y(t)),

γ(0) = (0, 0), γ(1) = (2/π, 1),

we may define T = sup{t ∈ [0, 1], x(t) = 0}: then 0 ≤ T < 1 and x(t) > 0 for
t ∈ (T, 1], so that we may assume that

γ : [0, 1] → G, x(0) = 0, y(0) ∈ [−1, 1], x(t) > 0 for t ∈ (0, 1], γ(1) = (2/π, 1).

By continuity of x we have

x((0, 1)) ⊃ (0, 2/π) =⇒ ∀ε ∈ (0, 2/π), ∃tε ∈ (0, 1), ε = x(tε).

As a consequence, we have y(tε) = sin(1/ε). Since limε tε = 0 (otherwise there is a
sequence (εk) of positive numbers with limit 0, such that, by compactness of [0, 1],
limk tεk = θ > 0 and this would imply limk x(tεk) = x(θ) > 0), we must have

y(0) = lim
ε→0+

y(tε) = lim
ε→0+

sin(1/ε)

but the latter limit does not exist. So there is no such γ and G is not path-
connected.

Partitions of unity in a topological space

A topological space (X,O) is said to be locally compact if every point has a compact
neighborhood.

Definition 10.2.35. A topological space is said to be locally compact if it is a
Hausdorff space such that each point has a compact neighborhood.

Proposition 10.2.36. In a locally compact topological space X, every point has a
basis of compact neighborhoods, i.e., ∀x ∈ X, ∀U ∈ Vx, ∃Lcompact, L ∈ Vx, L ⊂ U.
More generally, let K be a compact subset of a locally compact topological space
and U an open set such that K ⊂ U . Then there exists an open set V with compact
closure such that

K ⊂ V ⊂ V ⊂ U.
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Proof. Since every point has a compact neighborhood, we can cover K with
finitely many (Wj)1≤j≤N such that Wj is open with compact closure; the set
W = ∪1≤j≤NWj is also open with compact closure, since a finite union of open
sets is open and the closure of a finite union is the union of the closures. If U = X ,
we can take V = W . Otherwise, for each x ∈ U c, Proposition 10.2.18 shows
that there exists Vx, V

′
x open disjoint such that K ⊂ Vx, {x} ⊂ V ′x; as a result,

(U c ∩W ∩ Vx)x∈Uc is a family of compact sets with empty intersection: we have
Vx ∩ V ′x = ∅ and thus x /∈ Vx, so that

y ∈ ∩x∈Uc

(
U c ∩W ∩ Vx

)
=⇒ y ∈ U c, y ∈W and for all x ∈ U c, y ∈ Vx
=⇒ y ∈ Vy =⇒ Vy ∩ V ′y �= ∅, which is not true.

From Proposition 10.2.19, we can find x1, . . . , xN ∈ U c such that

∅ = ∩1≤j≤N

(
U c ∩W ∩ Vxj

)
=⇒ ∩1≤j≤N

(
W ∩ Vxj

)
⊂ U. (10.2.8)

We consider now the open set V = W ∩ ∩1≤j≤NVxj . We have by construction

K ⊂ Vxj ∩ U and thus K ⊂ V ⊂ V ⊂ W ∩ ∩1≤j≤NVxj , which is compact and
included in U from (10.2.8). �

Exercise 2.8.2 contains a proof of Urysohn’s Lemma, a basic element for
constructing partitions of unity. For that purpose, see also Remark 2.1.4 after
Theorem 2.1.3.

Hahn–Banach Theorem

We recall here the statement of the Hahn–Banach Theorem.

Definition 10.2.37. Let E be a vector space (on R or C) and let p : E −→ R+. We
shall say that p is a semi-norm on E if for x, y ∈ E,α scalar,

(1) p(αx) = |α|p(x), (homogeneity),

(2) p(x+ y) ≤ p(x) + p(y), (triangle inequality)9.

Let us consider a countable family (pk)k≥1 of semi-norms on E. We shall say that
the family (pk)k≥1 is separating whenever pk(x) = 0 for all k ≥ 1 implies x = 0.

Theorem 10.2.38 (Hahn–Banach theorem). Let E be a vector space (on R or C),
let M be a subspace of E, let p be a semi-norm on E, and let ξ be a linear form
on M such that

∀x ∈M, |ξ · x| ≤ p(x). (10.2.9)

Then there exists a linear form ξ̃ on E, such that

ξ̃|M = ξ, and ∀x ∈ E, |ξ̃ · x| ≤ p(x).
9We note that (1) implies p(0) = 0 but that the separation property (first in (1.2.12)) is not
satisfied in general.
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Baire category theorem and its consequences

René Baire (1874–1932) was a French mathematician who made a lasting landmark
contribution to Functional Analysis, known today as the Baire Category Theorem.

Theorem 10.2.39 (Baire theorem). Let (X, d) be a complete metric space and
(Fn)n≥1 be a sequence of closed sets with empty interiors. Then the interior of
∪n≥1Fn is also empty.

N.B. The statement of that theorem is equivalent to saying that, in a complete
metric space, given a sequence (Un)n≥1 of open dense sets the intersection ∩n≥1Un
is also dense. In fact, if (Un) is a sequence of open dense sets, the sets Fn = U c

n

are closed and intFn = ∅ ⇐⇒ ∅ = int(U c
n) =

(
Un

)c ⇐⇒ Un = X, so that

int(∪n≥1Fn) = ∅ ⇐⇒ ∅ = int(∪n≥1U
c
n) = int

(
(∩n≥1Un)

c
)
=
(
(∩n≥1Un)

)c
which is equivalent to (∩n≥1Un) = X.

Proof of the theorem. Let (Un)n≥1 be a sequence of dense open sets. Let x0 ∈
X, r0 > 0 (we may assume that X is not empty, otherwise the theorem is trivial).
Using the density of U1, we obtain B(x0, r0) ∩ U1 �= ∅ so that

∃r1 ∈]0, r0/2[, B(x0, r0)∩U1 ⊃ B(x1, 2r1) ⊃ B̃(x1, r1) = {y ∈ X, d(y, x1) ≤ r1}.

Let us assume that we have constructed x0, x1, . . . , xn with n ≥ 1 such that

B(xk, rk) ∩ Uk+1 ⊃ B̃(xk+1, rk+1), 0 < rk+1 < rk/2, 0 ≤ k ≤ n− 1.

Using the density of Un+1, we obtain B(xn, rn) ∩ Un+1 �= ∅ and

∃rn+1 ∈]0, rn/2[, B(xn, rn) ∩ Un+1 ⊃ B(xn+1, 2rn+1) ⊃ B̃(xn+1, rn+1).

Since 0 < rn ≤ 2−nr0 (induction), we have limn rn = 0 and (xn)n≥0 is a Cauchy
sequence since for k, l ≥ n,

B(xk, rk) ∪B(xl, rl) ⊂ B(xn, rn) =⇒ d(xk, xl) < 2rn.

Since the metric space X is assumed to be complete, the sequence (xn)n≥0 con-

verges; let x = limn xn. We have for all n ≥ 0, B̃(xn+1, rn+1) ⊂ B(xn, rn) so that,
for all k ≥ 1, B̃(xn+k, rn+k) ⊂ B(xn, rn) and thus

sup
k≥0
d(xn+k, xn) ≤ rn =⇒ d(x, xn) ≤ rn =⇒ x ∈ ∩n≥1B̃(xn, rn) ⊂ ∩n≥1Un

and d(x, x0) ≤ r0. As a result, for all x0 ∈ X , all r0 > 0, the set

B̃(x0, r0) ∩ ∩n≥1Un �= ∅.

This implies that U = ∩n≥1Un is dense since, for x0 ∈ X , for any neighborhood

V of x0, there exists r0 > 0 such that V ⊃ B(x0, 2r0) ⊃ B̃(x0, r0), and thus
V ∩ U ⊃ B̃(x0, r0) ∩ U �= ∅ =⇒ x0 ∈ U. �
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Theorem 10.2.40. Let X be a locally compact topological space (Hausdorff topo-
logical space such that each point has a compact neighborhood) and (Fn)n≥1 be a
sequence of closed sets with empty interiors. Then the interior of ∪n≥1Fn is also
empty.

Proof. The proof is essentially the same as for the previous theorem. Let (Un)n≥1

be a sequence of dense open sets. Let B0 a non-empty open subset of X . Since U1
is dense, the open set B0 ∩U1 is non-empty and thus is a neighborhood of a point.
Since each point in X has a basis of compact neighborhoods, B0 ∩ U1 contains a
compact set with non-empty interior and thus

B0 ∩ U1 ⊃ B1, B1 compact, B1 open �= ∅.
We get that B1 ∩ U2 is a non-empty open set which contains a compact B2, B2

open �= ∅. Following the same procedure as in the previous proof, we may consider
the compact set K defined by K = ∩n≥1Bn. The set K is non-empty, otherwise
we would have ∅ = ∩1≤n≤NBn = BN for some N , which is not possible since at
each step, the set BN is compact with non-empty interior. As a result, we have

∅ �= K ⊂ ∩n≥1Un = U, K ⊂ B0,

and thus, for any open subset B0 of X , the set U ∩ B0 �= ∅, which means that
U = X . �
Definition 10.2.41. Let X be a topological space and A ⊂ X .

• The subset A is said to be rare or nowhere dense when Å = ∅.
• The subset A is of first category when it is a countable union of rare subsets.
Such a subset is also said to be meager.

• The subset A of X is of second category when it is not of first category.

A topological space X is a Baire space if for any sequence (Fn)n∈N of closed sets
with empty interiors, the union ∪n∈NFn is also with empty interior. As shown
above, X is a Baire space if and only if, for any sequence (Un)n∈N of dense open
sets, the intersection ∩n∈NUn is also dense.

The following results are classical consequences of Baire’s Theorem.

Banach–Steinhaus

Theorem 10.2.42 (Banach–Steinhaus). Let E be a Banach space, F be a normed
vector space and (Lj)j∈J be a family of L(E,F ) (continuous linear mappings from
E to F ) which is “weakly bounded”, i.e., satisfies

∀u ∈ E, sup
j∈J

‖Lju‖F < +∞. (10.2.10)

Then the family (Lj)j∈J is “strongly bounded”, i.e., satisfies

sup
j∈J

‖Lj‖L(E,F ) < +∞. (10.2.11)
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Open mapping Theorem

Theorem 10.2.43 (Open mapping Theorem). Let E,F be Banach spaces and let
A be a bijective mapping belonging to L(E,F ). Then A is an isomorphism, i.e.,

∃β, γ > 0, ∀u ∈ E, β‖u‖E ≤ ‖Au‖F ≤ γ‖u‖E. (10.2.12)

10.3 Duality in Banach spaces

Definitions

All the vector spaces considered here are on the field R or C, denoted by k. We
recall that a Banach space is a complete normed vector space and for E,F Banach
spaces, L(E,F ) stands for the vector space of continuous linear mappings from E
into F . The space L(E,F ) is a Banach space for the norm

‖L‖L(E,F ) = sup
‖x‖E=1

‖Lx‖F . (10.3.1)

The topological dual of E is the Banach space E∗ = L(E, k) of continuous linear
forms. When ξ ∈ E∗, x ∈ E, we shall write ξ · x instead of ξ(x).

Theorem 10.3.1. Let E be a Banach space and E∗ its topological dual. Then

∀x ∈ E, ‖x‖E = sup
‖ξ‖E∗=1

|ξ · x|.

Proof. We have ‖ξ‖E∗ = supx∈E,‖x‖E=1 |ξ · x|. Let 0 �= x0 ∈ E. Applying the
Hahn–Banach Theorem 10.2.38 with M = kx0, p(x) = ‖x‖E , defining on M the
linear form η by η · λx0 = λ‖x0‖E , we have |η · λx0| ≤ ‖λx0‖ = p(λx0) and we
find a linear form ξ0 defined on E such that

|ξ0 · x0| = ‖x0‖E , ∀x ∈ E, |ξ0 · x| ≤ ‖x‖E .

As a consequence, ξ0 ∈ E∗ with ‖ξ0‖ = 1. Finally we have proven

‖x0‖E = |ξ0 · x0| ≤ sup
‖ξ‖E∗=1

|ξ · x0| ≤ ‖x0‖E . �

Weak convergence

Definition 10.3.2. Let E be a Banach space. The weak topology σ(E,E∗) on E is
the weakest topology such that for all ξ ∈ E∗ the mappingsE � x �→ 〈ξ, x〉E∗,E ∈ k

are continuous.

Remark 10.3.3. Let E be a Banach space. For each ξ ∈ E∗, we define the semi-
norm pξ on E by pξ(x) = |〈ξ, x〉E∗,E |; the properties of Definition 10.2.37 are ob-
viously satisfied. Moreover the family (pξ)ξ∈E∗ is separating from Theorem 10.3.1.
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The neighborhoods of 0 for the weak topology on E, say V0, have the following
basis: taking Ξ a finite subset of E∗ and r > 0, we define

WΞ,r = {x ∈ E, ∀ξ ∈ Ξ, pξ(x) < r}. (10.3.2)

Note that the WΞ,r are convex and symmetric. Every neighborhood of 0 for the
weak topology contains a WΞ,r which is also a neighborhood of 0 for that topol-
ogy. The neighborhoods Vx of a point x are defined as Vx = {x + V }V ∈V0 ; E
equipped with that topology is a Topological Vector Space. Note that the separat-
ing property of the family (pξ)ξ∈E∗ is implying that the weak topology is separated
(i.e., Hausdorff, see (10.2.5)): in fact {0} is closed for the weak topology, since for
x0 �= 0, from Theorem 10.3.1, there exists ξ0 ∈ E∗ such that 〈ξ0, x0〉 = 1, so that

0 /∈ x0 + {x ∈ E, pξ0(x) < 1}.

Otherwise, 1 = 〈ξ0, x0〉 = 〈ξ0,
=0︷ ︸︸ ︷
x0 + x〉 − 〈ξ0, x〉 < 1. Moreover, to check that the

addition is continuous, we take x1, x2 ∈ E, WΞ0,r0 as above a neighborhood of
zero (Ξ0 finite and r0 > 0), and we try to find WΞj ,rj , j = 1, 2 such that

x1 +WΞ1,r1 + x2 +WΞ2,r2 ⊂ x1 + x2 +WΞ0,r0 .

It is enough to take WΞj ,rj =WΞ0,r0/2. Checking the continuity of the multiplica-
tion by a scalar is similar: given λ0 ∈ k, x0 ∈ E, WΞ0,r0 as above, we want to find
WΞ1,r1 and t1 > 0 such that

∀t ∈ R, |t| ≤ t1, (λ0 + θt)(x0 +WΞ1,r1) ⊂ λ0x0 +WΞ0,r0 .

It is enough to require

t1WΞ1,r1 ∪ λ0WΞ1,r1 ⊂WΞ0,r0/3, t1x0 ∈WΞ0,r0/3.

This is satisfied for Ξ1 = Ξ0, |λ0|r1 < r0/3, t1r1 < r0/3.
Remark 10.3.4. Let E be a Banach space; the weak topology σ(E,E∗) on E is
weaker than the norm-topology on E (also called the strong topology): this is
obvious from the very definition of the weak topology since all the mappings x �→
〈ξ, x〉 are continuous for the norm-topology since pξ(x) = |〈ξ, x〉| ≤ ‖ξ‖E∗‖x‖E.

Let E be a Banach space and x ∈ E; a sequence (xn)n∈N in E is weakly
converging to x means that

∀ξ ∈ E∗, lim
n

〈ξ, xn〉E∗,E = 〈ξ, x〉E∗,E . We write xn ⇀ x, (10.3.3)

or to avoid confusion between the arrows ⇀ and →, we may write

xn −−−−−→
σ(E,E∗)

x.
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Proposition 10.3.5. Let E be a Banach space and (xn)n∈N be a weakly converging
sequence with limit x in E. Then ‖xn‖E is bounded and ‖x‖E ≤ lim infn ‖xn‖E.
If (ξn)n∈N is a strongly converging sequence in E∗ with limit ξ, then

lim
n

〈ξn, xn〉E∗,E = 〈ξ, x〉E∗,E.

Proof. We consider the sequence of linear forms on E∗ given by E∗ � ξ �→ 〈ξ, xn〉.
Since for all ξ ∈ E∗, the numerical sequence 〈ξ, xn〉 is converging, we may apply the
Banach–Steinhaus Theorem to get that E∗ � ξ �→ 〈ξ, x〉 is continuous on E∗, i.e.,

∃C > 0, ∀ξ ∈ E∗, |〈ξ, x〉| ≤ C‖ξ‖E∗ .

Using Theorem 10.3.1, this implies ‖x‖E ≤ C. The Banach–Steinhaus theorem
10.2.42 implies also that the norms of the linear forms E∗ � ξ �→ 〈ξ, xn〉 make a
bounded sequence, and since that norm is ‖xn‖E , we get that sequence (‖xn‖E)
is bounded. We have for ξ ∈ E∗ with ‖ξ‖E∗ = 1, using again Theorem 10.3.1,

|〈ξ, x〉| = lim
n

|〈ξ, xn〉| ≤ lim inf
n

‖xn‖E =⇒ ‖x‖E ≤ lim inf
n

‖xn‖E .

Moreover, we have for a strongly converging sequence (ξn)n∈N with limit ξ in E∗,

|〈ξn, xn〉 − 〈ξ, x〉| ≤ |〈ξn − ξ, xn〉| + |〈ξ, xn − x〉|
≤ ‖ξn − ξ‖E∗︸ ︷︷ ︸

→0

sup
n

‖xn‖E + |〈ξ, xn − x〉|︸ ︷︷ ︸
→0

,

which implies limn〈ξn, xn〉 = 〈ξ, x〉. �
Remark 10.3.6. When the Banach space E is infinite dimensional, the weak topol-
ogy σ(E,E∗) is strictly weaker than the strong topology given by the norm of E.
Let us prove that the unit sphere of E, S = {x ∈ E, ‖x‖E = 1} is not closed in
the weak topology σ(E,E∗) if E is not finite dimensional. Let us consider x0 ∈ E
with ‖x0‖E < 1; let WΞ0,r0 be a neighborhood of zero for the weak topology as in
(10.3.2). We claim that

(x0 +WΞ0,r0) ∩ S �= ∅. (10.3.4)

This will imply that x0 belongs to the closure of S for the σ(E,E∗) topology. To
prove (10.3.4), we consider the finite subset Ξ0 = {ξj}1≤j≤N of E∗; each ker ξj
is a closed hyperplane, and since E is infinite dimensional, ∩1≤j≤N ker ξj is not
reduced to {0} (otherwise the mapping E � x �→ L(x) = (〈ξj , x〉)1≤j≤N ∈ RN

would be injective and L would be an isomorphism from E onto L(E), implying
that E is finite dimensional). Taking now a non-zero x1 ∈ ∩1≤j≤N ker ξj , we see
that the continuous function f on R given by f(θ) = ‖x0 + θx1‖ is such that

f(R+) ⊃ [‖x0‖,+∞[ =⇒ ∃θ ∈ R, x0 + θx1 ∈ S.

This proves (10.3.4) since x0 + θx1 ∈ x0 + WΞ0,r0 because 〈ξj , x1〉 = 0 for all
j ∈ {1, . . . , N}.
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Weak-∗ convergence on E∗

Definition 10.3.7. Let E be a Banach space and E∗ its topological dual. The
weak-∗ topology on E∗, denoted by σ(E∗, E), is the weakest topology such that
the mappings E∗ � ξ �→ ξ · x ∈ k are continuous for all x ∈ E. A sequence
(ξk)k∈N of E∗ is weakly-∗ converging means that ∀x ∈ E, the sequence (ξk · x)k∈N
converges.

Proposition 10.3.8. Let E be a Banach space and (ξn)n∈N be a weakly-∗ converging
sequence with limit ξ in E∗. Then ‖ξn‖E∗ is bounded and ‖ξ‖E∗ ≤ lim infn ‖ξn‖E∗.
Let (xn)n∈N be a strongly converging sequence in E with limit x. Then we have

lim
n

〈ξn, xn〉E∗,E = 〈ξ, x〉E∗,E.

Proof. We have for x ∈ E with ‖x‖E = 1,

|〈ξ, x〉| = lim
n

|〈ξn, x〉| ≤ lim inf
n

‖ξn‖E∗ =⇒ ‖ξ‖E∗ ≤ lim inf
n

‖ξn‖E .

From the Banach–Steinhaus Theorem 10.2.42 the sequence (ξn)n∈N is bounded in
the normed space E∗ and we define supn ‖ξn‖E∗ =M <∞. We have then

|〈ξn, xn〉 − 〈ξ, x〉| ≤ |〈ξn, xn − x〉| + |〈ξn − ξ, x〉| ≤M‖xn − x‖E + |〈ξn − ξ, x〉|,

and since limn ‖xn − x‖E = 0 = limn〈ξn − ξ, x〉, we obtain the result. �
Lemma 10.3.9 (Diagonal Process). Let (aij)i,j∈N∗ be an infinite matrix of elements
of a metric space A. We assume that each line is relatively compact, i.e., for
all i ∈ N∗, the set {ai,j}j≥1 is relatively compact. Then, there exists a strictly
increasing mapping ν from N∗ into itself such that, for all i ∈ N∗, the sequence(
ai,ν(k)

)
k∈N∗converges.

Proof of the lemma. We can extract a converging subsequence

(a1,n1(k))k≥1 from the first line (a1,j)j≥1.

We can extract a converging subsequence

(a2,n1(n2(k)))k≥1 from a subsequence of the second line (a2,n1(k))j≥1.

We can extract a converging subsequence

(a3,n1(n2(n3(k))))k≥1 from a subsequence of the third line (a3,n1(n2(k)))j≥1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For all i ≥ 1, we can extract a converging subsequence(
ai,(n1◦···◦ni)(k)

)
k≥1
.
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Note that the mappings nl are strictly increasing from N∗ into itself and thus
satisfy ∀k ≥ 1, nl(k) ≥ k (true for k = 1 and nl(k + 1) > nl(k) ≥ k gives
nl(k + 1) ≥ k + 1). We define

bi,k = ai,ν(k), with ν(k) = (n1 ◦ · · · ◦ nk)(k).

The mapping ν sends N∗ into itself and is strictly increasing:

ν(k + 1) = (n1 ◦ · · · ◦ nk+1)(k + 1)

since nk+1(k + 1) ≥ k + 1︷︸︸︷
≥ (n1 ◦ · · · ◦ nk)(k + 1)

>︸︷︷︸
n1◦···◦nk↗strict

(n1 ◦ · · · ◦ nk)(k) = ν(k).

Moreover, the sequence (bi,k)k,k>i is a subsequence of the converging sequence(
ai,(n1◦···◦ni)(k)

)
k≥1

since for k > i ≥ 1, ν(k) = (n1 ◦ · · · ◦ ni)
(
(ni+1 ◦ · · · ◦ nk)(k)

)
and

μi(k + 1) = (ni+1 ◦ · · · ◦ nk+1)(k + 1) ≥ (ni+1 ◦ · · · ◦ nk)(k + 1)

> (ni+1 ◦ · · · ◦ nk)(k) = μi(k).

As a result, the sequence (ai,ν(k))k≥1 is converging, which proves the lemma. �
Theorem 10.3.10. Let E be a separable Banach space. The closed unit ball of E∗

equipped with the weak-∗ topology is (compact and) sequentially compact.

Proof. Let (ξj)j∈N be a sequence of E∗ with supj∈N ‖ξj‖E∗ ≤ 1. Let {xi}i∈N be a
countable dense part of E. For each i ∈ N, we define yi : E∗ −→ k by yi(ξ) = ξ ·xi.
Let us now consider the matrix with entries (ξj · xi)i,j∈N. For all i ∈ N, we have

sup
j∈N

|ξj · xi| ≤ ‖xi‖E

so that we can apply the diagonal process given by Lemma 10.3.9 and find ν
strictly increasing from N to N such that ∀i ∈ N, the sequence (ξν(k) · xi)k∈N is
converging. As a consequence, for x ∈ E,

|ξν(k) · x− ξν(l) · x|
≤ |ξν(k) · x− ξν(k) · xi| + |ξν(k) · xi − ξν(l) · xi|+ |ξν(l) · xi − ξν(l) · x|
≤ 2‖x− xi‖E + |ξν(k) · xi − ξν(l) · xi|.

Let ε > 0 be given and x ∈ E. Let i ∈ N such that ‖x − xi‖E < ε/4; since the
sequence (ξν(k) ·xi)k∈N is converging, for k, l ≥ Nε, |ξν(k) ·xi − ξν(l) ·xi| < ε/2 and
thus for k, l ≥ Nε, |ξν(k) · x − ξν(l) · x| < ε, proving the weak convergence of the
sequence (ξν(k))k∈N. �



10.3. Duality in Banach spaces (weak convergence, reflexivity) 445

Remark 10.3.11. Let E be a Banach space and E∗ its topological dual. For x ∈
E, ξ ∈ E∗, we define px(ξ) = |ξ · x|. For each x ∈ E, px is (trivially) a semi-norm
on E∗. The family (px)x∈E is a separating10 (uncountable) family of semi-norms
on E∗. We shall say that U is a neighborhood of 0 in the weak-∗ topology if it
contains a finite intersection of sets

Vpx,r = {ξ ∈ E∗, px(ξ) < r}, x ∈ E, r > 0.

The family of semi-norms (px)x∈E describes the weak-∗ topology on E∗, also
denoted by σ(E∗, E).

Remark 10.3.12. Given a Banach space E and its topological dual E∗, we can
define on E∗ several weak topologies: the weak-∗ topology σ(E∗, E) described
above, but also the weak topology on E∗, σ(E∗, E∗∗), where E∗∗ is the bidual of
E, i.e., the topological dual of the Banach space E∗. Note that the weak topology
on E∗ is stronger than the weak-∗ topology, since E ⊂ E∗∗ as shown below.

Reflexivity

Proposition 10.3.13. Let E be a Banach space. The bidual of E is defined as the
(topological) dual of E∗. The mapping E � x �→ j(x) ∈ E∗∗ defined by

〈j(x), ξ〉E∗∗,E∗ = 〈ξ, x〉E∗,E

is linear isometric and is an isomorphism on its image j(E) which is a closed
subspace of E∗∗. A Banach space is said to be reflexive when j is bijective (this
implies in particular that E∗∗ and E are isometrically isomorphic).

Proof. For x ∈ E, we have

‖j(x)‖E∗∗ = sup
‖ξ‖E∗=1

|〈j(x), ξ〉E∗∗,E∗ |

= sup
‖ξ‖E∗=1

|〈ξ, x〉E∗,E | =︸︷︷︸
thm 10.3.1

‖x‖E ,
(10.3.5)

and thus j is isometric and obviously linear. The image j(E) is closed: whenever
a sequence (j(xk))k≥1 converges, it is also a Cauchy sequence as well as (xk)k≥1

since ‖xk −xl‖E ≤ ‖j(xk −xl)‖E∗∗ = ‖j(xk)− j(xl)‖E∗∗ . As a result, the sequence
(xk)k≥1 converges to some limit x ∈ E, and the continuity of j (consequence of
the isometry property) ensures limk j(xk) = j(x), proving that j(E) is closed, and
thus a Banach space for the norm of E∗∗. The mapping j : E −→ j(E) is an
isometric isomorphism of Banach spaces. �

10If for some ξ ∈ E∗, we have ∀x ∈ E, px(ξ) = 0, it means ∀x ∈ E, ξ · x = 0, i.e., ξ = 0E∗ .



446 Chapter 10. Appendix

Remark 10.3.14. Let E be a Banach space; then the bidual of E∗ is equal to the
dual of E∗∗, so that

(
E∗
)∗∗

=
(
(E∗∗)

)∗
, that we shall denote simply as E∗∗∗: we

have by definition (
E∗
)∗∗

=
((
E∗
)∗)∗
,

as well as (
(E∗∗)

)∗
=
((
E∗
)∗)∗
.

Theorem 10.3.15 (Banach–Alaoglu). Let E be a Banach space. The closed unit
ball B of E∗ is compact for the weak-∗ topology.

Proof. For each x ∈ E, the mapping E∗ � ξ �→ ξ · x ∈ C is continuous in the
weak-∗ topology; since |ξ · x| ≤ ‖ξ‖E∗‖x‖E we see that

B ⊂
∏
x∈E

(‖x‖ED1), D1 = {z ∈ C, |z| ≤ 1},

and the product topology on
∏

x∈E(‖x‖ED1) induces the weak-∗ topology on B.
Using Tychonoff’s Theorem 10.2.23, we see that the set B is a closed subset of a
compact set and is thus compact. �

Proposition 10.3.16. Let E be a Banach space and B its closed unit ball. The
following properties are equivalent.

(i) E is reflexive,

(ii) E∗ is reflexive,

(iii) B is weakly compact, i.e., compact for the σ(E,E∗) topology.

Proof. Let us assume that (i) is satisfied. Then the mapping j defined by Proposi-
tion 10.3.13 is an isometric isomorphism from E to E∗∗ and the weak-∗ topology
on E is well defined as the topology σ(E = E∗∗, E∗), which is simply the weak
topology on E. The Banach–Alaoglu theorem implies that the closed unit ball of
E∗∗ = E, which is thus B, is weak-∗ compact, i.e., is weakly compact, proving
(iii). Before going on with the proof of the proposition, we need a lemma.

Lemma 10.3.17. Let E be a Banach space, B its closed unit ball and j be de-
fined by Proposition 10.3.13. Then j is a homeomorphism of the topological space(
E, σ(E,E∗)

)
onto a dense subspace of the topological space

(
E∗∗, σ(E∗∗, E∗)

)
.

The set j(B) is dense for the σ(E∗∗, E∗) topology in the closed unit ball of E∗∗.

Proof of the lemma. The mapping j : E → j(E) ⊂ E∗∗ is bijective and continuous
whenever E is equipped with the weak topology σ(E,E∗) and E∗∗ with the weak-∗
topology σ(E∗∗, E∗): we consider a semi-norm qξ on E∗∗, ξ ∈ E∗, defined by

qξ(X) = |〈X, ξ〉E∗∗,E∗ |.
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We evaluate for x ∈ E, qξ(j(x)) = |〈j(x), ξ〉E∗∗,E∗ | = |〈ξ, x〉E∗,E| = pξ(x), where
pξ is a semi-norm on E (for the weak topology). The previous equality proves that
j is an homeomorphism from E to j(E). A consequence of the isometry property
of j given in Proposition 10.3.13 is that j(B) is included in the closed unit ball B∗∗
of E∗∗. Let B̃ be the closure for σ(E∗∗, E∗) of j(B). First of all, B∗∗ is σ(E

∗∗, E∗)
compact from the Banach–Alaoglu theorem and thus is σ(E∗∗, E∗) closed, so that

B̃ ⊂ B∗∗. If there is some X0 ∈ B∗∗\B̃, the Hahn–Banach theorem implies that
there exists ξ0 ∈ E∗, α ∈ R, ε > 0 with

∀x ∈ B, Re〈ξ0, x〉 < α < α+ ε < Re〈X0, ξ0〉.

Since 0 ∈ B, this implies α > 0. We may thus multiply the previous inequality by
1/α and find ξ1 ∈ E∗, ε1 > 0 such that

∀x ∈ B, Re〈ξ1, x〉 < 1 < 1 + ε1 < Re〈X0, ξ1〉.

Using that B is stable by multiplication by z ∈ C with |z| = 1, we get ‖ξ1‖E∗ ≤ 1,
implying that 1 + ε1 < Re〈X0, ξ1〉 ≤ ‖X0‖E∗∗ ≤ 1 which is impossible. The proof
of the lemma is complete. �

Going back to the proof of the proposition, we assume that (iii) holds. Then,
using the previous lemma, we see that j is continuous from

(E, σ(E,E∗)) in (E∗∗, σ(E∗∗, E∗))

and since B is compact for the (E, σ(E,E∗)) topology, we infer that j(B) is
compact. But the same lemma gives that j(B) is dense for the σ(E∗∗, E∗) topology
in the closed unit ball of E∗∗, so j(B) is closed and equal to the closed unit ball
of E∗∗, implying that j is onto and (i).

We know now that (i) is equivalent to (iii), so that (ii) is equivalent to the
compactness of the closed unit ball B∗ of E∗ in the topology σ(E∗, E∗∗). The
Banach–Alaoglu theorem shows that B∗ is compact for σ(E∗, E) and if (i) holds,
that topology is σ(E∗, E∗∗), so that (i) implies (ii).

Finally we assume that (ii) holds, i.e., E∗ is reflexive. Let us first consider
the norm-closed subspace j(E) of E∗∗. The space E∗∗ is reflexive since E∗ = E∗∗∗

by (ii) and thus E∗∗ = E∗∗∗∗. As a consequence, the unit ball of E∗∗ is compact
for the topology σ(E∗∗, E∗∗∗) = σ(E∗∗, E∗) and thus the unit ball of the norm-
closed subspace j(E) is compact for the σ(j(E), E∗) = σ(j(E), (j(E))∗) topology,
which proves that j(E) and thus E is reflexive. The proof of the proposition is
complete. �
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10.4 Calculating antiderivatives

Table of classical antiderivatives

Let f be a continuous function on an open subset I of R. We shall denote by∫
f(x)dx any antiderivative of f on I. The 33 most classical formulas are the

following ones.

(1)

∫
xα dx =

xα+1

α+ 1
, for α �= −1, I = (0,+∞).

(2)

∫
x−1 dx = ln |x|, I = R∗.

(3)

∫
ezx dx = z−1ezx, for z �= 0, I = R.

(4)

∫
tanx dx = − ln | cosx|, I = R\(π2 + πZ).

(5)

∫
cotx dx = ln | sinx|, I = R\πZ.

(6)

∫
1

cosx
dx = ln

∣∣∣∣tan(x2 +
π

4

)∣∣∣∣ , I = R\(π2 + πZ).

(7)

∫
1

sinx
dx = ln

∣∣∣∣tan(x2
)∣∣∣∣ , I = R\πZ.

(8)

∫
arcsinx dx = x arcsinx+

√
1 − x2, I = (−1, 1).

(9)

∫
arccosx dx = x arccosx−

√
1− x2, I = (−1, 1).

(10)

∫
arctanx dx = x arctanx− 1

2
ln(1 + x2), I = R.

(11)

∫
sin2 x dx =

x

2
− sin(2x)

4
, I = R.

(12)

∫
cos2 x dx =

x

2
+

sin(2x)

4
, I = R.

(13)

∫
1

cos2 x
dx = tanx, I = R\(π2 + πZ).

(14)

∫
1

sin2 x
dx = − cotx, I = R\πZ.

(15)

∫
sinhx dx = coshx, I = R.
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(16)

∫
coshx dx = sinhx, I = R.

(17)

∫
tanhx dx = ln (coshx), I = R.

(18)

∫
cothx dx = ln | sinhx|, I = R∗.

(19)

∫
1

coshx
dx = arctan(sinhx) = 2 arctan(ex) − π

2
, I = R.

(20)

∫
1

sinhx
dx = ln

∣∣∣tanh x
2

∣∣∣ , I = R∗.

(21)

∫
1

cosh2 x
dx = tanhx, I = R.

(22)

∫
1

sinh2 x
dx = − cothx, I = R∗.

(23)

∫
tanhx dx = ln(coshx), I = R.

(24)

∫
cothx dx = ln | sinhx|, I = R∗.

(25)

∫
1√
x2 + 1

dx = ln(x+
√
x2 + 1) = arcsinhx, I = R.

(26)

∫
1

x2 + 1
dx = arctanx, I = R.

(27)

∫
1

1− x2 dx =
1

2
ln

∣∣∣∣1 + x1 − x

∣∣∣∣ (= arctanhx for |x| < 1), I = R\{−1, 1}.

(28)

∫
lnx dx = x ln x− x, I = (0,+∞).

(29)

∫
1√

1 − x2
dx = arcsinx, I = (−1, 1).

(30)

∫
1√
x2 − 1

dx = ln |x+
√
x2 − 1|(= arccoshx for x ≥ 1), I = R\(−1, 1).

(31)

∫ √
1 + x2 dx =

x

2

√
1 + x2 +

1

2
ln(x +

√
x2 + 1), I = R.

(32)

∫ √
1 − x2 dx =

x

2

√
1 − x2 + 1

2
arcsinx, I = (−1, 1).

(33)

∫ √
x2 − 1 dx =

x

2

√
x2 − 1 − 1

2
ln
∣∣x+√x2 − 1

∣∣, I = R\(−1, 1).



450 Chapter 10. Appendix

We have

for t ∈ C, cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
,

for t ∈ C\
(π
2
+ πZ

)
, tan t =

sin t

cos t
. For t ∈ C\πZ, cot t =

cos t

sin t
,

as well as

[−π
2 ,

π
2 ]

sin �� [−1, 1]
arcsin�� [−π

2 ,
π
2 ] , arcsinx =

∫ x

0

ds√
1 − s2

,

[0, π]
cos �� [−1, 1]

arccos �� [0, π] , arccosx =

∫ 1

x

ds√
1 − s2

,

(−π
2 ,

π
2 )

tan �� R arctan�� (−π
2 ,

π
2 ) , arctanx =

∫ x

0

ds

1 + s2
,

(0, π)
cot �� R arccot�� (0, π) , arccotx =

∫ +∞

x

ds

1 + s2
.

We have used

for t ∈ C, sinh t =
et − e−t

2
, cosh t =

et + e−t

2
,

for t ∈ C\
( iπ
2

+ iπZ
)
, tanh t =

et − e−t

et + e−t
. For t ∈ C\iπZ, coth t = e

t + e−t

et − e−t
,

so that

R sinh �� R arcsinh�� R , arcsinhx = ln
(
x+

√
x2 + 1

)
,

[0,+∞)
cosh �� [1,+∞)

arccosh�� [0,+∞) , arccoshx = ln
(
x+

√
x2 − 1

)
,

R tanh �� (−1, 1)
arctanh�� R , arctanhx =

1

2
ln
(1 + x
1− x

)
,

R∗ coth �� R\[−1, 1]
arccoth�� R∗ , arccothx =

1

2
ln
(x+ 1

x− 1

)
.

We have also

(34)

∫
arcsinhx dx = x arcsinhx−

√
1 + x2,

(35)

∫
arccoshx dx = x arccoshx−

√
x2 − 1, on x > 1,

(36)

∫
arctanhx dx = x arctanhx+

1

2
ln(1 − x2), on |x| < 1,

(37)

∫
arccothx dx = x arccothx+

1

2
ln(x2 − 1), on |x| > 1.



10.4. Calculating antiderivatives (classics, Abelian, Gaussian) 451

Remark 10.4.1. With Definition (10.5.1) of the Logarithm on C\R−, and since for
t ∈ C, cos t = cosh(it), sin t = −i sinh(it),

for x ∈ [−1, 1],

{
arcsinx = −iLog

(
ix+

√
1 − x2

)
,

arccosx = −iLog
(
x+ i

√
1 − x2

)
.

(10.4.1)

For z ∈ C\ ± i[1,+∞), arctan z = −iLog(1 + iz) + i
2
Log(1 + z2), (10.4.2)

so that arctan is holomorphic on C\ ± i[1,+∞) with

arctan′(z) =
1

1 + iz
+
i

2

2z

1 + z2
=

1 − iz + iz
1 + z2

=
1

1 + z2
,

a meromorphic function on C, with poles at ±i and residues ∓i/2.

Integrating rational fractions

Lemma 10.4.2. Let P (X), Q(X) be polynomials with complex coefficients such that
Q is a normalized polynomial with degree d ≥ 1 and P is a polynomial with degree
< d. Let z1, . . . , zr be the distinct roots of Q with respective multiplicity μ1, . . . , μr.
Then

Q(X) =
∏

1≤j≤r

(X − zj)μj , d =
∑

1≤j≤r

μj ,

and the rational fraction R = P/Q is

P (X)

Q(X)
=

∑
1≤j≤r

1≤mj≤μj

αj,mj

(X − aj)mj
, with αj,mj =

R
(μj−mj)
j (zj)

(μj −mj)!

where the rational fraction Rj without a pole at zj is given by

Rj(X) = (X − zj)μjR(X).

Proof. We perform an induction on r, the number of distinct roots: when r = 1
we have a single root z1 with multiplicity μ1 = d, so that

(X − z1)μ1
P (X)

Q(X)
= P (X) =

∑
0≤k<μ1

P (k)(z1)

k!
(X − z1)k

and thus

P (X)

Q(X)
=

∑
0≤k<μ1

P (k)(z1)

k!
(X − z1)

−m︷ ︸︸ ︷
k − μ1 =

∑
1≤m≤μ1

P (μ1−m)(z1)

(μ1 −m)!
(X − z1)−m,
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proving the result in that case with an explicit expression. Let us assume that the
formula is true for some r ≥ 1 and let us prove it when we have r + 1 distinct
poles z1, . . . , zr, zr+1 with respective positive multiplicity μ1, . . . , μr, μr+1 for the
rational fraction P/Q. The rational fraction

(X − zr+1)
μr+1
P (X)

Q(X)
= Rr+1(X)

=
∑

0≤k<μr+1

R
(k)
r+1(zr+1)

k!
(X − zr+1)

k + S(X)(X − zr+1)
μr+1

where the rational fraction Rr+1 (and thus S have poles z1, . . . , zr with respective
multiplicity μ1, . . . , μr. This yields

P (X)

Q(X)
=

∑
1≤m≤μr+1

R
(μ1−m)
r+1 (zr+1)

(μ1 −m)!
(X − zr+1)

−m + S(X),

and we may apply the induction hypothesis to S: note that S has no polyno-
mial part since a linear combination of rational fractions Aj/Bj with degreeBj >
degreeAj is a rational fraction A/B with degreeB > degreeA. In fact we have∑

1≤j≤N

Aj

Bj
=
A1

∏
2≤j≤N Bj + · · ·+AN

∏
1≤j≤N−1Bj∏

1≤j≤N Bj

and the numerator has obviously a degree strictly smaller than the denominator
since for instance

degree

(
A1

∏
2≤j≤N

Bj

)
≤ degreeA1 +

∑
2≤j≤N

degreeBj

<
∑

1≤j≤N

degreeBj = degree

( ∏
1≤j≤N

Bj

)
.

We see also that for 1 ≤ j ≤ r, R = P/Q,

Sj = (X − zj)μjS = (X − zj)μj

(
R−

∑
1≤m≤μr+1

R
(μ1−m)
r+1 (zr+1)

(μ1 −m)!
(X − zr+1)

−m

)
so that, with Rj = (X − zj)μjR, we have

S
(l)
j (zj) = R

(l)
j (zj) for l < μj .

The induction is thus provides the sought formula. �

Although the above lemma is sufficient to calculate antiderivatives of any
rational fraction, the next lemma may be also useful.
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Lemma 10.4.3. Let P (X), Q(X) be polynomials with real coefficients such that Q
is a normalized polynomial with degree d ≥ 1 and P is a polynomial with de-
gree < d. Let a1, . . . , ar be the distinct real roots of Q with respective multiplicity
μ1, . . . , μr. Let z1, z̄1, . . . , zs, z̄s be the distinct non-real roots with respective mul-
tiplicity ν1, . . . , νs. Then

Q(X) =
∏

1≤j≤r

(X − aj)μj

∏
1≤k≤s

(
(X − Re zk)

2 + (Im zk)
2
)νk
,

d =
∑

1≤j≤r μj +
∑

1≤k≤s 2νk and the rational fraction P/Q is such that

P (X)

Q(X)
=

∑
1≤j≤r

1≤m≤μj

αj,m
(X − aj)m

+
∑

1≤k≤s
1≤n≤νk

βk,nX + γk,n(
(X − Re zk)2 + (Im zk)2

)n .
Proof. This follows immediately from Lemma 10.4.2 which implies

(�)
P (X)

Q(X)
=

∑
1≤j≤r

1≤m≤μj

αj,m
(X − aj)m

+
∑

1≤k≤s
1≤n≤νk

{ γk,n
(X − zk)n

+
γk,n

(X − zk)n
}
.

We have only to deal with

γk,n
(X − zk)n

+
γk,n

(X − zk)n
=
γk,n(X − zk)n + γk,n(X − zk)n(

(X − Re zk)2 + (Im zk)2
)n

=
T (X − Re zk)(

(X − Re zk)2 + (Im zk)2
)n ,

where T is a real polynomial with degree less than n. We note that for 2p even
integer

(X − Re zk)
2p =

(
(X − Re zk)

2 + (Im zk)
2 − (Im zk)

2
)p
,

(X − Re zk)
2p+1 = (X − Re zk)

(
(X − Re zk)

2 + (Im zk)
2 − (Im zk)

2
)p
,

so that T (X − Re zk) is a polynomial in the variable
(
(X − Re zk)

2 + (Im zk)
2
)

with coefficients polynomial of degree ≤ 1, yielding the result. �

Lemma 10.4.2 implies that to find an antiderivative of a rational fraction,
we use the decomposition into partial fraction and we are left with finding an
antiderivative of (x − ζ)−m with ζ ∈ C. If m ≥ 2, Formula (1) on page 448 gives
the result. If m = 1 and ζ ∈ R, this is ln |x− ζ| on R\{ζ}. If m = 1 and Im ζ �= 0,
this is Log(x− ζ) where the logarithm is defined by (10.5.1).

Lemma 10.4.4. Let ζ be a complex number and let m ≥ 1 be an integer.

(1) If m ≥ 2, the meromorphic function z �→ (z − ζ)−m has the antiderivative

(z − ζ)1−m(1 −m)−1.

(2) With the complex logarithm defined by (10.5.1), the holomorphic function
defined on C\{ζ + R−}, z �→ (z − ζ)−1 has the antiderivative Log(z − ζ).
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Remark 10.4.5. If our rational fraction is real, we may want to avoid altogether
complex numbers and use only Lemma 10.4.3. By rescaling and translation we
have only to deal with antiderivatives of x−m or (x2+1)−nx, (x2+1)−n. The first
case is already treated, the answer to the second case is 1

2

∫
du
un which is reduced

to the first case. To calculate,

In(X) =

∫ X

0

dx

(1 + x2)n
=

∫ arctanX

0

(1 + tan2 θ)1−ndθ =

∫ arctanX

0

(cos θ)2n−2dθ.

We have I1(X) = arctanX and for n ≥ 1,

In+1(X) =

∫ arctanX

0

(cos θ)2n−2(1 − sin2 θ)dθ

= In(X) +
1

2n− 1

∫ arctanX

0

sin θ
d

dθ

(
(cos θ)2n−1

)
dθ

= In(X) +
sin(arctanX)

(
cos(arctanX)

)2n−1

2n− 1
− 1

2n− 1

∫ arctanX

0

(cos θ)2ndθ,

so that the following induction relation holds:

2n

2n− 1
In+1 = In +

sin(arctanX)
(
cos(arctanX)

)2n−1

2n− 1
.

We note also that for |θ| < π/2, sin θ = tan θ cos θ = tan θ(1 + tan2 θ)−1/2 so that

sin(arctanx) =
x√

1 + x2
, cos(arctanx) =

1√
1 + x2

,

and

In+1 =
2n− 1

2n
In +

1

2n

x

(1 + x2)n
.

Antiderivatives of rational fractions of cosx, sinx

We want to calculate antiderivatives of F (cosx, sinx) where F is a rational frac-
tion. The following changes of variables will work depending on some invariance
properties of the one-form F (cosx, sinx)dx.

1. u = sinx, if the mapping x �→ π− x leaves invariant the form F (cosx, sinx)dx.
It is the case for instance of

∫
sin4x cos5xdx since

sin4(π − x) cos5(π − x)d(π − x) = sin4x cos5xdx.

This can be applied to the integrals
∫
sinkx cos2l+1xdx with k, l integers. The

assumption means in fact that the function F is odd with respect to its first
variable: F (−X,Y ) = −F (X,Y ).
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Lemma 10.4.6. Let R be a rational fraction in C(X,Y ), odd with respect to the
first variable: then, there exists M1,M2, polynomials of two variables such that

R(X,Y ) =
XM1(X

2, Y )

M2(X2, Y )
= XS(X2, Y ), S rational fraction.

Proof. We have

2R(X,Y ) =
P (X,Y )

Q(X,Y )
− P (−X,Y )
Q(−X,Y )

=
P (X,Y )Q(−X,Y )− P (−X,Y )Q(X,Y )

Q(X,Y )Q(−X,Y ) =
XN1(X,Y )

N2(X,Y )
,

where Nj are polynomials in C[X,Y ], even w.r.t. X . Thus

2Nj(X,Y ) = Nj(X,Y ) +Nj(−X,Y ) =Mj(X
2, Y ),

where Mj is a polynomial. �

We have thus

F (cosx, sinx)dx = cosx G(cos2 x, sinx)dx = G(1 − u2, u)du.

2. u = cosx, if the mapping x �→ −x leaves invariant the form F (cosx, sinx)dx.
It is the case of

∫
sin5x cos7xdx since

sin5(−x) cos7(−x)d(−x) = sin5x cos7xdx.

It can be applied to
∫
sin2k+1x coslxdx with k, l integers. The assumption means

in fact that the function F is odd with respect to its second variable: F (X,−Y ) =
−F (X,Y ). We have thus

F (cosx, sin x)dx = sinx G(cosx, sin2 x)dx = −G(u, 1− u2)du.

3. u = tanx, if the mapping x �→ π + x leaves invariant the form F (cosx, sinx)
dx. It is the case of

∫
sin4x cos6xdx since

sin4(π + x) cos6(π + x)d(π + x) = sin4x cos6xdx.

It can be applied to
∫
sin2kx cos2lxdx with k, l integers. The assumption means in

fact that the function F is even: F (−X,−Y ) = F (X,Y ).
Lemma 10.4.7. Let R be an even rational fraction in C(X,Y ): then, there exist
(Mj)1≤j≤4 polynomials of two variables such that

R(X,Y ) =
M1(X

2, Y 2) +XYM2(X
2, Y 2)

M3(X2, Y 2) +XYM4(X2, Y 2)
.

In particular, R is a rational fraction of X2, Y 2, XY .
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Proof. We have

2R(X,Y ) =
P (X,Y )

Q(X,Y )
+
P (−X,−Y )
Q(−X,−Y ) (10.4.3)

=
P (X,Y )Q(−X,−Y ) + P (−X,−Y )Q(X,Y )

Q(X,Y )Q(−X,−Y ) =
N(X,Y )

D(X,Y )
,

where N,D are even polynomials. Since the polynomial D in (10.4.3) is even we
have

2D(X,Y ) =
∑

j+k even

bj,kX
jY k(1 + (−1)j+k),

and thus,

D(X,Y ) =
∑

0≤j≤2l

bj,2l−jX
jY 2l−j

=
∑

0≤j′≤l

b2j′,2l−2j′X
2j′Y 2l−2j′ +

∑
0≤j′′≤l−1

b2j′′+1,2l−2j′′−1X
2j′′+1Y 2l−2j′′−1

= N1(X
2, Y 2) +XYN2(X

2, Y 2), Nj polynomials.

We found eventually some polynomials (Nj)1≤j≤4 such that

2R(X,Y ) =
N3(X

2, Y 2) +XYN4(X
2, Y 2)

N1(X2, Y 2) +XYN2(X2, Y 2)
. �

We have thus

F (cosx, sinx)dx = G(cos2 x, sin2 x, sinx cosx)dx

= G(cos2 x, sin2 x, sinx cosx)dx

= G

(
1

1 + u2
,
u2

1 + u2
,
u

1 + u2

)
du

1 + u2
.

4. As a last remedy, we can use the change u = tan x
2 which will provide a rational

fraction in u.

This method extends ne varietur to rational fractions of sinhx, coshx.

Abelian integrals

Let us give a couple of examples of the so-called Abelian integrals,∫
R
(
x, ϕ(x)

)
dx, (10.4.4)

where R is a rational fraction.
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The function ϕ in 10.4.4 is the square-root of a second-degree polynomial

For instance, we want to calculate
∫
R(x,

√
x2 + 1)dx. We set x = sinh t and we

get
∫
R(sinh t, cosh t) cosh tdt, which is a rational function of sinh, cosh, tackled

above. To deal with
∫
R(x,

√
x2 − 1)dx, we set x = cosh t to obtain∫
R(cosh t, sinh t) sinh tdt,

also a rational function of sinh, cosh. For
∫
R(x,

√
1 − x2)dx, we set x = sin t to get∫

R(sin t, cos t) cos tdt, a rational function of sin, cos. The discussion above allows
us to determine∫

R(x,
√
ax2 + b+ c)dx, for R a rational fraction.

The function ϕ in 10.4.4 is
(
ax+b
cx+d

)1/m
, m ∈ N∗

We set u = (ax+ b/cx+ d)
1
m so that x = ρ(um) where ρ is a rational fraction and∫

R(x, ϕ(x))dx =

∫
R(ρ(um), u)ρ′(um)mum−1du,

also the antiderivative of a rational fraction.

The function ϕ in 10.4.4 enjoys a parametric unicursal representation

The assumption means that we can find rational fractions p, q of one variable such
that t �→

(
p(t), q(t)

)
is onto on the graph of ϕ. We set then x = p(t) and we are

reduced to the computation of∫
R(p(t), q(t))p′(t)dt, again the antiderivative of a rational fraction.

Let us give a specific example. We want to compute for X > 0

F (X) =

∫ X

0

R(x, x1/2 + x1/3)dx, where R is a rational fraction.

We note that the mapping t �→ (t6, t3 + t2) provides a unicursal representation of
ϕ. We set x = t6 to obtain

F (X) =

∫ X1/6

0

R(t6, t3 + t2)6t5dt,

which is the antiderivative of a rational fraction.
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Some Fourier integrals

We have seen a couple of explicit computations of Fourier transforms in (8.1.18),
in Chapter 8, Section Some standard examples of Fourier transform on page 352
as well as in Proposition 8.1.19 and Theorem 8.2.3.

The computation of the antiderivative∫
eztP (t)dt,

where z ∈ C and P is a polynomial (of one variable) is also a computation of a
Fourier (–Laplace) transform. If Re z < 0, we have

∫ x

−∞ e
ztdt = z−1ezx and for

k ∈ N,∫ x

−∞
ezttkdt =

(
d

dz

)k (∫ x

−∞
eztdt

)
=

(
d

dz

)k

(z−1ezx)

= ezxe−zx

(
d

dz

)k

(ezxz−1) = ezx
(
e−zx d

dz
ezx
)k

(z−1) = ezx
(
d

dz
+ x

)k

(z−1)

= ezx
∑

0≤l≤k

Cl
kx

lz−1−(k−l)(−1)k−l(k − l)! = z−1ezx
∑

0≤l≤k

xl

l!
k!z−k+l(−1)k−l,

so that for P (t) =
∑

0≤k≤m akt
k,∫ x

−∞
P (t)eztdt = z−1ezxQP (x, z

−1),

QP (x, z
−1) =

∑
0≤l≤m

xl

l!

∑
l≤k≤m

akk!(−1)k−lz−k+l.

We have thus for Re z > 0,∫ x

0

P (t)eztdt = z−1ezxQP (x, z
−1) − z−1QP (0, z

−1),

and by analytic continuation, this formula holds as well for z �= 0. Note that the
limit of the rhs when z goes to 0 is indeed

∫ x

0 P (t)dt: by linearity it suffices to

verify this for the monomial P (t) = tk. We need to check for z �= 0,

N(x, z) = ezxz−1
∑

0≤l≤k

xl

l!
k!(−1)k−lz−k+l − z−1k!(−1)kz−k.

We have

N(x, z) = k!(−1)kz−k−1ezx
( ∑

0≤l≤k

(−zx)l
l!

− e−zx

)

= −k!(−1)kz−k−1ezx
∫ 1

0

(1 − θ)k
k!

e−θzxdθ(−zx)k+1
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so that N(x, z) = ezxxk+1
∫ 1

0
(1 − θ)ke−θzxdθ, which has the expected limit xk+1

k+1
when z → 0.

Lemma 10.4.8. Let n ∈ N∗ and Rn � x �→ u(x) = exp−2π|x|, where |x| stands
for the Euclidean norm of x. The function u belongs to L1(Rn) and its Fourier
transform is

û(ξ) = π−(n+1
2 )Γ

(
n+ 1

2

)(
1 + |ξ|2

)−(n+1
2 )
. (10.4.5)

Proof. We note first that in one dimension∫
R

e−2iπxξe−2π|x|dx = 2Re

∫ +∞

0

e−2πx(1+iξ)dx =
1

π(1 + ξ2)
,

corroborating the above formula in 1D. We want to take advantage of this to write
e−2π|x| as a superposition of Gaussian functions; doing this will be very helpful
since it is easy to calculate the Fourier transform of Gaussian functions (this quite
natural idea seems to be used only in the wonderful textbook by Robert Strichartz
[62] and we follow his method). For t ∈ R+, we have

e−2πt =

∫
R

e2iπtτ
dτ

π(1 + τ2)
=

∫∫
R2

e2iπtτe−sπ(1+τ2)H(s)dsdτ

=

∫
R+

e−πss−1/2e−
π
s t2ds,

so that for x ∈ Rn, e−2π|x| =
∫
R+
e−πss−1/2e−

π
s |x|

2

ds and thus

û(ξ) =

∫∫
Rn×R+

e−2iπxξe−πss−1/2e−
π
s |x|

2

dxds =

∫
R+

e−πss−1/2e−πs|ξ|2sn/2ds,

so that

û(ξ) =

∫ +∞

0

e−ss(n−1)/2
(
π(1 + |ξ|2)

)−(n+1)/2
ds,

which is the sought result. �

Gaussian integrals

In Proposition 8.1.19, we have computed the Fourier transform of Gaussian func-
tions, a typical case when the calculation of an integral does not follow from the
knowledge of an antiderivative. However our definition of the Fourier transform of
eix

2

relied on a duality argument, and we want to connect this result with a more
elementary approach. According to Formula (8.1.31), for wa(x) = e

iπax2

we have
for a ∈ R∗,

ŵa(ξ) = |a|−1/2ei
π
4 sign ae−iπa−1ξ2 .
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Let φ ∈ S (Rn): we have
∫
wa(x)φ̂(x)dx =

∫
|a|−1/2ei

π
4 sign ae−iπa−1ξ2φ(ξ)dξ, and

in particular for ε > 0,∫
wa(x)e

−πεx2

dx = |a|−1/2ei
π
4 sign aε−1/2

∫
e−iπa−1ξ2e−πε−1ξ2

= |a|−1/2ei
π
4 sign aε−1/2(ε−1 + ia−1)−1/2 −→

ε→0+
|a|−1/2ei

π
4 sign a,

proving that, for a ∈ R∗,

lim
ε→0+

∫
eiπax

2

e−πεx2

dx = |a|−1/2ei
π
4 sign a. (10.4.6)

For λ > 0, a ∈ R∗, we have

σ(a, λ) =

∫ λ

0

eiπax
2

dx =
1

2

∫ λ

−λ

eiπax
2

dx =
1

2
lim

ε→0+

∫ λ

−λ

eiπ(a+iε)x2

dx.

We have also

2

∫ +∞

λ

eiπ(a+iε)x2

dx =

∫ +∞

λ2

eiπ(a+iε)tt−1/2dt

=

[
eiπ(a+iε)t

iπ(a+ iε)
t−1/2

]t=+∞

t=λ2

+
1

2

∫ +∞

λ2

eiπ(a+iε)t

iπ(a+ iε)
t−3/2dt,

so that for λ ≥ 1, ε > 0,∣∣∣∣∫ +∞

λ

eiπ(a+iε)x2

dx

∣∣∣∣ ≤ 1

2
λ−1π−1|a|−1 +

2λ−1

4π|a| =
1

π|a|λ.

We have thus∫ λ

−λ

eiπ(a+iε)x2

dx− |a|−1/2ei
π
4 sign a

=

∫
R

eiπ(a+iε)x2

dx− |a|−1/2ei
π
4 sign a −

∫
|x|>λ

eiπ(a+iε)x2

dx,

and ∣∣∣∣ ∫ λ

−λ

eiπ(a+iε)x2

dx− |a|−1/2ei
π
4 sign a

∣∣∣∣
≤
∣∣∣∣∫

R

eiπ(a+iε)x2

dx− |a|−1/2ei
π
4 sign a

∣∣∣∣+ 2

π|a|λ

so that taking the limit when ε→ 0+ gives from (10.4.6),∣∣∣∣ ∫ λ

−λ

eiπax
2

dx− |a|−1/2ei
π
4 sign a

∣∣∣∣ ≤ 2

π|a|λ,
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entailing

lim
λ→+∞

∫ λ

0

eiπax
2

dx =
1

2
|a|−1/2ei

π
4 sign a. (10.4.7)

This gives in particular the classical Fresnel integrals11∫
R

cos(x2)dx =

√
π

2
=

∫
R

sin(x2)dx. (10.4.8)

Another classical calculation (introduced in Exercise 2.8.20) yields∫ +∞

0

sinx

x
dx =

π

2
. (10.4.9)

We integrate the holomorphic function (on C∗) eiz/z on the path

[ε, R] ∪ upper half-circle(0, R) (counterclockwise)

∪ [−R,−ε] ∪ upper half-circle(0, ε) (clockwise),

we get

0 = 2i

∫ R

ε

sinx

x
dx+

∫ π

0

eiReiθ

Reiθ
iReiθ dθ −

∫ π

0

eiεe
iθ

εeiθ
iεeiθdθ.

The third integral has limit iπ when ε goes to 0. The absolute value of the second
integral is bounded above by

∫ π

0
e−R sin θdθ which goes to 0 when R goes to +∞

(thanks to the Lebesgue dominated convergence Theorem, but a simpler argument
is also available here).

10.5 Some special functions

The complex logarithm

Logarithm on C\R−

The set C\R− is star-shaped with respect to 1, so that we can define the principal
determination of the logarithm for z ∈ C\R− by the formula

Log z =

∮
[1,z]

dζ

ζ
=

∫ 1

0

(z − 1)dt

(1 − t) + tz . (10.5.1)

Thanks to Theorem 3.3.7, the function Log is holomorphic on C\R− and we have
Log z = ln z for z ∈ R∗+ and by analytic continuation

eLog z = z = eReLog zei ImLog z,

{
|z| = eReLog z,

Arg z = ImLog z,

11Of course in the sense limλ,μ→+∞
∫ λ
−μ eix

2
dx.
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for z ∈ C\R−. For z = reiθ , |θ| < π, we have for r > 0,

Log(reiθ) =

∮
[1,reiθ ]

dζ

ζ
= ln r +

∫ θ

0

ireit

reit
dt = ln r + iθ, ImLog z = θ.

We get also by analytic continuation, that Log ez = z for | Im z| < π. Note also
that for |z| < 1, we have from Theorem 3.3.7,

Log(1 + z) = z

∫ 1

0

dt

1 + tz
=
∑
k≥0

z(−1)k
zk

k + 1
=
∑
l≥1

(−1)l+1 z
l

l
. (10.5.2)

Note that we have also for |z| = 1, z �= −1,

Log(1 + z) = z

∫ 1

0

dt

1 + tz
= z

∫ 1

0

lim
N

⎛⎝ ∑
0≤k≤N

(−1)ktkzk

⎞⎠ dt.
Since with z = eiθ, |θ| < π, t ∈ [0, 1],∣∣∣∣ ∑

0≤k≤N

(−1)ktkzk =
1 + (−1)N(tz)1+N

1 + tz

∣∣∣∣ ≤ 2

|1 + tz| =
2√

1 + 2t cos θ + t2

≤ 21{cos θ ≥ 0}√
1 + t2

+
21{−1 < cos θ ≤ 0}√

1 − cos2 θ
∈ L1([0, 1]t),

so that Lebesgue’s dominated convergence implies

Log(1 + z) = z lim
N

∑
0≤k≤N

(−1)k
zk

k + 1
,

implying that (10.5.2) holds as well for |z| = 1, z �= −1. We consider the following
open subset of C:

{z ∈ C, exp z /∈ R∗−} = {z ∈ C, Im z �≡ π(2π)}
= ∪k∈Z {z ∈ C, (2k − 1)π < Im z < (2k + 1)π}︸ ︷︷ ︸

ωk

.

Let k ∈ Z. On the open set ωk, the function z �→ Log(exp z) − z is holomorphic
with a null derivative. As a result for z ∈ ωk,

Log(exp z)− z = Log
(
exp(2ikπ)

)
−2ikπ = ln(1) − 2ikπ = −2ikπ,

i.e., Log(exp z) = z − 2ikπ.

We sum-up these results as follows.
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Theorem 10.5.1. For z ∈ C\R−, we define Log z by (10.5.1). This is a holomorphic
function on C\R−, with derivative 1/z, and Log coincides with ln on R∗+.

For z ∈ C\R−, eLog z = z = reiθ ,

r = |z| = eReLog z, θ = Arg z = ImLog z ∈ (−π, π). (10.5.3)
For k ∈ Z, z ∈ C, (2k − 1)π < Im z < (2k + 1)π, Log(ez) = z − 2ikπ. (10.5.4)

For z ∈ C\{−1}, |z| ≤ 1, Log(1 + z) =
∑
l≥1

(−1)l+1 z
l

l
. (10.5.5)

Logarithm of a nonsingular symmetric matrix

Let Υ+ be the set of symmetric nonsingular n× n matrices with complex entries
and non-negative real part. The set Υ+ is star-shaped with respect to the Id:
for A ∈ Υ+, the segment [1, A] =

(
(1 − t) Id+tA

)
t∈[0,1] is obviously made with

symmetric matrices with non-negative real part which are invertible, since for
0 ≤ t < 1, Re

(
(1 − t) Id+tA

)
≥ (1 − t) Id > 0 and for t = 1, A is assumed to be

invertible12. We can now define for A ∈ Υ+,

LogA =

∫ 1

0

(A− I)
(
I + t(A− I)

)−1
dt. (10.5.6)

We note that A commutes with (I+sA) (and thus with LogA), so that, for θ > 0,

d

dθ
Log(A+ θI)

=

∫ 1

0

(
I + t(A+ θI − I)

)−1
dt−

∫ 1

0

(
A+ θI − I

)
t
(
I + t(A+ θI − I)

)−2
dt,

and since

d

dt

{(
I + t(A+ θI − I)

)−1
}
= −

(
I + t(A+ θI − I)

)−2
(A+ θI − I),

we obtain by integration by parts d
dθ Log(A + θI) = (A + θI)−1. As a result, we

find that for θ > 0, A ∈ Υ+, since all the matrices involved are commuting,

d

dθ

(
(A+ θI)−1eLog(A+θI)

)
= 0,

12If A is a n×n symmetric matrix with complex entries such that ReA is positive definite, then
A is invertible: if AX = 0, then,

0 = 〈AX, X̄〉 = 〈AReX,ReX〉+ 〈A ImX, ImX〉+
=0 since A symmetric︷ ︸︸ ︷

〈AReX,−i ImX〉+ 〈Ai ImX,ReX〉
and taking the real part give 〈ReAReX,ReX〉 + 〈ReA ImX, ImX〉 = 0, implying X = 0 from
the positive-definiteness of ReA.
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so that, using the limit θ → +∞, we get13 that

∀A ∈ Υ+, ∀θ > 0, eLog(A+θI) = (A+ θI),

and by continuity

∀A ∈ Υ+, e
LogA = A, which implies detA = etraceLogA. (10.5.7)

Using (10.5.7), we can define for A ∈ Υ+,

(detA)−1/2 = e−
1
2 trace LogA = | detA|−1/2e−

i
2 Im(trace LogA). (10.5.8)

• When A is a positive definite matrix, LogA is real valued and (detA)−1/2 =
| detA|−1/2.

• When A = −iB where B is a real nonsingular symmetric matrix, we note
that B = PDtP with P ∈ O(n) and D diagonal. We see directly on the
formulas (10.5.6), (10.5.1) that

LogA = Log(−iB) = P (Log(−iD))tP, traceLogA = traceLog(−iD),

and thus, with (μj) the (real) eigenvalues of B, we have Im (traceLogA) =
Im
∑

1≤j≤n Log(−iμj), where the last Log is given by (10.5.1). Finally we
get,

Im (trace LogA) = −π
2

∑
1≤j≤n

signμj = −π
2
signB,

where signB is the signature of B. As a result, we have when A = −iB, B
real symmetric nonsingular matrix

(detA)−1/2 = | detB|−1/2ei
π
4 signB. (10.5.9)

13We have eLog(A+θ) = (A+ θ)BA and with τ = θ − 1,

eLog(A+θ)e− ln θ = eCθ , Cθ = A

∫ 1

0
(1 + tA+ tτ)−1(1 + tτ)−1dt.

For t, τ ∈ R+, the matrix 1 + tA+ tτ is invertible (see the footnote on page 463) and we have

Re〈(1 + tA+ tτ)X,X〉 ≥ (1 + tτ)‖X‖2 , so that this implies ‖(1 + tA+ tτ)X‖ ≥ (1 + tτ)‖X‖
and thus ‖(1 + tA+ tτ)−1‖ ≤ (1 + tτ)−1. We get

‖Cθ‖ ≤ ‖A‖
∫ 1

0
(1 + tτ)−2dt =

‖A‖
1 + τ

=⇒ lim
θ→+∞

Cθ = 0

=⇒ BA = lim
θ→+∞

(A+ θ)BAe− ln θ = lim
θ→+∞

eLog(A+θ)e− ln θ = lim
θ→+∞

eCθ = I.
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The Γ function

For z ∈ C with a positive real part, we define

Γ(z) =

∫ +∞

0

tz−1e−tdt. (10.5.10)

Theorem 3.3.7 implies that Γ is a holomorphic function on the half-plane {Re z >
0}, and for z there, an integration by parts yields

Γ(z + 1) =

∫ +∞

0

tze−tdt = [tze−t]0+∞ +

∫ +∞

0

ztz−1e−tdt = zΓ(z).

We get immediately that

for n ∈ N, Γ(n+ 1) = n! and Γ(1/2) =
√
π. (10.5.11)

The latter equality follows from (8.1.31) since

Γ(1/2) =

∫ +∞

0

s−1e−s22sds =

∫
R

e−s2ds =
√
π.

For Re z > −1, z �= 0, we define Γ(z) = Γ(z+1)
z : it coincides with the previous

definition if Re z > 0 from the previous identity. Let k ≥ 1 be an integer: we may
define for Re z > −k, z �∈ {−k + 1, . . . , 0},

Γ(z) =
Γ(z + k)

z(z + 1) . . . (z + k − 1)
. (10.5.12)

The Γ function appears as a meromorphic function on C with simple poles at −N
such that

Res (Γ,−k) = (−1)k

k!
, (10.5.13)

and the following functional equation holds:

∀z /∈ (−N), Γ(z + 1) = zΓ(z). (10.5.14)

Theorem 3.3.7 implies for Re z > 0,

Γ′(z) =

∫ +∞

0

tz−1e−t ln tdt, Γ′′(z) =

∫ +∞

0

tz−1e−t(ln t)2dt. (10.5.15)

Lemma 10.5.2 (Gauss’ formula). For z ∈ C\(−N), we have:

Γ(z) = lim
n

n! nz∏
0≤j≤n(z + j)

. (10.5.16)
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Proof. We assume first that Re z > 0. Lebesgue’s dominated convergence theorem
induces for Re z > 0 that∫ n

0

tz
(
1 − t
n

)n
dt

t
−→

n→+∞
Γ(z) :

we have indeed pointwise convergence of

1[0,n](t)t
z−1

(
1 − t
n

)n

towards 1R+(t)t
z−1e−t and domination

|1[0,n](t)t
z−1

(
1 − t
n

)n

| ≤ 1R+(t)t
Re z−1e−t ∈ L1(R),

since for x ∈ [0, 1), ln(1 − x) ≤ −x implies 1[0,n](t)
(
1 − t

n

)n ≤ e−n t
n = e−t. We

check now

(�)

∫ n

0

tz
(
1 − t
n

)n
dt

t
=

∫ 1

0

sz−1nz(1 − s)nds = nzB(z, n+ 1),

where the so-called Beta-functionis defined for a, b complex numbers with Re a >
0,Re b > 0 by

B(a, b) =

∫ 1

0

ta−1(1 − t)b−1dt. (10.5.17)

The holomorphy of the Beta function on this domain of C2 (Re a > 0,Re b > 0)
follows from Theorem 3.3.7. Moreover, we have with x+ = xH(x), H = 1R+ ,

xa−1
+ ∗ xb−1

+ =

∫
R

H(t)ta−1H(x− t)(x − t)b−1dt

= H(x)xa+b−1

∫ 1

0

sa−1(1 − s)b−1ds = xa+b−1
+ B(a, b),

so that multiplying both sides by e−x, we find

for Re a > 0,Re b > 0, Γ(a)Γ(b) = Γ(a+ b)B(a, b). (10.5.18)

On the other hand, we prove directly by induction on n that for Re z > 0, n ∈ N,

B(z, n+ 1) = n!
∏

0≤j≤n

(z + j)−1.
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It is true for n = 0 since B(z, 1) =
∫ 1

0
tz−1dt = 1/z and we have

B(z, n+ 2) =

∫ 1

0

tz−1(1 − t)n+1dt

=
[
z−1tz(1 − t)n+1

]1
0
−
∫ 1

0

z−1tz(n+ 1)(1 − t)ndt(−1)

= (n+ 1)z−1B(z + 1, n+ 1) =︸︷︷︸
induction
hypothesis

(n+ 1)z−1n!
∏

0≤j≤n

(z + 1 + j)−1

= (n+ 1)!
∏

0≤k≤n+1

(z + k)−1, qed.

Applying this to (�), we get

nzB(z, n+ 1)︸ ︷︷ ︸
with limit Γ(z)

= n!nz
∏

0≤j≤n

(z + j)−1,

proving the result of the lemma for Re z > 0. The result for z ∈ (−N)c follows
from (10.5.12): if Re z > −k, we have

Γ(z) =
Γ(z + k)∏
0≤l<k(z + l)

= lim
n

n!nz+k∏
0≤l<k(z + l)

∏
0≤j≤n(z + j + k)

= lim
n

n!nz∏
0≤q≤n(z + q)

nk
∏

n−k<j≤n

(z + j + k)−1,

and since nk
∏

n−k<j≤n(z + j + k)
−1 =

∏
1≤r≤k

n
z+n+r , we have

lim
n
nk

∏
n−k<j≤n

(z + j + k)−1 = 1,

entailing the result. The proof of the lemma is complete. �

Lemma 10.5.3 (Weierstrass Formula). The function 1/Γ is entire with simple zeroes
located at (−N) and we have the strictly convergent infinite product

Γ(z)−1 = zeγz
∏

1≤j≤+∞

(
1 +
z

j

)
e−z/j. (10.5.19)

Proof. Starting from Lemma 10.5.2, we find for z ∈ C\(−N),

Γ(z) = z−1 lim
n
ez(lnn−

∑
1≤j≤n

1
j )
∏

1≤j≤n

j(z + j)−1ez/j .
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From Exercise 2.8.20, we know that limn

(∑
1≤j≤n

1
j − lnn

)
= γ, the Euler–

Mascheroni constant, so that

Γ(z) = z−1e−γz
∏

1≤j≤+∞

(
1 +
z

j

)−1

ez/j .

The convergence of the infinite product follows from the previous formula, but we
can also see directly that, with the complex logarithm and j > |z|,

Log

((
1 +
z

j

)−1

ez/j

)
= −z
j
+
z

j
+O

(
z2

j2

)
= O(j−2).

As a result, the Γ function vanishes nowhere and 1/Γ is an entire function whose
zeroes are simple and located at (−N):

Γ(z)−1 = zeγz
∏

1≤j≤+∞

(
1 +
z

j

)
e−z/j. �

Lemma 10.5.4 (Log-convexity of the Γ function). The Γ function is positive on
R∗+ and is also log-convex.

Proof. The Γ function never vanishes and is also non-negative on (0,+∞), thus
is positive there. Moreover, Cauchy–Schwarz inequality and (10.5.15) imply for
x > 0

Γ′(x)2 = 〈tx/2, tx/2 ln t〉2L2(R+,e−tdt/t)

< ‖tx/2‖2L2(R+,e−tdt/t)‖tx/2 ln t‖2L2(R+,e−tdt/t) = Γ(x)Γ′′(x),

so that
d2

dx2
(
ln Γ
)
=
d

dx

(
Γ′

Γ

)
=

Γ′′Γ− Γ′
2

Γ2
> 0. �

Note that the minimum of the Gamma function on the positive half-line is

0.8856031944108886 · · ·= Γ(1.461632144845406 . . .).

Lemma 10.5.5. Let G be a positive function defined on (0,+∞) such that G(1) = 1,
G is log-convex and satisfies G(x+ 1) = xG(x) for all x > 0. Then G = Γ.

Proof. For x > 0, n ∈ N∗, we have with g = lnG, g(n) = (n− 1)! and

g(x+ n) − g(x) =
∑

0≤j<n

(
g(x+ j + 1)− g(x+ j)

)
=
∑

0≤j<n

ln(x+ j),
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Figure 10.1: Gamma function on the real line

so that g(x+ n) − g(x) − g(n) = lnx+
∑

1≤j≤n−1 ln
(
x+j
j

)
and

g(x) + lnx− x lnn+
∑

1≤j≤n−1

ln

(
x+ j

j

)
= g(x+ n)− g(n) − x lnn. (10.5.20)

Let k ∈ N∗ with k > x: we have n− 1 < n < x+n < k+n and from the convexity
of g, for n ≥ 2,

g(n)− g(n− 1)

1
≤ g(x+ n) − g(n)

x
≤ g(n+ k)− g(n)

k
=

∑
0≤r<k ln(n+ r)

k
,

so that

ln(1 − 1

n
) ≤ g(x+ n) − g(n)− x lnn

x
≤
∑

0≤r<k ln(1 +
r
n )

k
,

and thus limn

(
g(x+n)− g(n)− x lnn

)
/x = 0, which implies, thanks to (10.5.20),

g(x) = − lnx+ lim
n

(
x lnn+

∑
1≤j≤n−1

ln

(
j

x+ j

))
= lnΓ(x),

where the last equality follows from Gauss’ formula (10.5.16). �
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Figure 10.2: Logarithm of the Gamma function on (0,+∞).

Wallis integrals

Lemma 10.5.6. Let q ∈ N.We have

Wq =

∫ π/2

0

(sin θ)qdθ =

√
πΓ( q+1

2 )

qΓ( q2 )
, i.e., for p ∈ N,

⎧⎨⎩W2p =
π(2p)!

(p!)222p+1
,

W2p+1 = (p!)222p

(2p+1)! .

(10.5.21)

This lemma follows from the next one.

Lemma 10.5.7. Let z ∈ C such that Re z > −1. Then∫ π/2

0

(sin θ)zdθ =

√
πΓ( z+1

2 )

2Γ( z+2
2 )

.

Proof. We have, with t = sin2 θ,

2

∫ π/2

0

(sin θ)zdθ = 2

∫ 1

0

tz/2(2 sin θ cos θ)−1dt

=

∫ 1

0

t
z−1
2 (1 − t)−1/2dt = B(

z + 1

2
, 1/2) =

Γ( z+1
2 )Γ(1/2)

Γ( z+2
2 )

,

where the last equality follows from (10.5.18). �
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Laplace equation in spherical coordinates

Lemma 10.5.8. We have

|x|2ΔRd = (r∂r)
2 + (d− 2)r∂r +ΔSd−1 , (10.5.22)

where ΔSd−1 is the Laplace–Beltrami operator on the sphere Sd−1.

Proof. In two dimensions, using the complex logarithm defined for z /∈ R− by
(10.5.1) and polar coordinates{
x1 = r cos θ

x2 = r sin θ
, r > 0, |θ| < π,

{
r = (x21 + x

2
2)

1/2

θ = ImLog(x1 + ix2)
, x1 + ix2 /∈ R−,

we get
∂

∂x1
=
∂r

∂x1

∂

∂r
+
∂θ

∂x1

∂

∂θ
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂x2
=
∂r

∂x2

∂

∂r
+
∂θ

∂x2

∂

∂θ
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
,

and a simple direct computation yields the two-dimensional result

r2ΔR2 = (r∂r)
2 + ∂2θ . (10.5.23)

More generally, we get

Sd−1 � σ = ω sinφ⊕ ed cosφ, ω ∈ Sd−2, ed = (0, . . . , 0, 1), 0 < φ < π.

We consider the half-plane xd = r cosφ, ρ = r sinφ, 0 < φ < π, and the two-
dimensional (already proven) formula

r2(∂2xd
+ ∂2ρ) = (r∂r)

2 + ∂2φ.

We have inductively for d ≥ 3, ρ2ΔRd−1 = (ρ∂ρ)
2 + (d− 3)ρ∂ρ +ΔSd−2 and thus

r2∂2xd
+r2∂2ρ+r

2ΔRd−1 = (r∂r)
2+∂2φ+r

2ρ−2(ρ∂ρ)
2+(d−3)r2ρ−2ρ∂ρ+r

2ρ−2ΔSd−2 ,

that is r2ΔRd = (r∂r)
2 + ∂2φ + (d− 2)r2ρ−1∂ρ +

Δ
Sd−2

sin2 φ . Since

∂

∂ρ
=
∂r

∂ρ

∂

∂r
+
∂φ

∂ρ

∂

∂φ
= ρr−1∂r + xdr

−2∂φ,

we get indeed

r2ΔRd = (r∂r)
2 + (d− 2)r∂r + ∂

2
φ +

(d− 2)

tanφ
∂φ +

ΔSd−2

sin2 φ
, (10.5.24)

ΔSd−1 = ∂2φ +
(d− 2)

tanφ
∂φ +

ΔSd−2

sin2 φ
. (10.5.25)

�
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More calculations on the Laplace operator

In three dimensions, using the spherical coordinates⎧⎪⎨⎪⎩
x1 = r cos θ sinφ

x2 = r sin θ sinφ

x3 = r cosφ

r > 0, 0 < φ < π is the colatitude, |θ| < π is the longitude,

we have

r2ΔR3 = (r∂r)
2 + r∂r + ∂

2
φ +

1

sin2 φ
∂2θ +

1

tanφ
∂φ, (10.5.26)

which is also

r2ΔR3 = (r∂r)
2 + r∂r +

1

sin2 φ

(
(sinφ∂φ)

2 + ∂2θ

)
.

In four dimensions, the spherical coordinates are⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 = r cos θ sinφ1 sinφ2

x2 = r sin θ sinφ1 sinφ2

x3 = r cosφ1 sinφ2

x4 = r cosφ2

0 < φ1, φ2 < π, |θ| ≤ π

and

r2ΔR4 =(r∂r)
2+2r∂r+∂

2
φ2

+
1

sin2φ2

(
∂2φ1

+
1

sin2φ1
∂2θ +

1

tanφ1
∂φ1

)
+

2

tanφ2
∂φ2 ,

i.e.,

r2ΔR4 =(r∂r)
2+2r∂r+∂

2
φ2

+
∂2φ1

sin2φ2
+

∂2θ
sin2φ2 sin

2φ1
+

∂φ1

sin2φ2tanφ1
+

2∂φ2

tanφ2
.

(10.5.27)

In d dimensions, the spherical coordinates are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = r cos θ sinφ1 sinφ2 . . . sinφd−3 sinφd−2

x2 = r sin θ sinφ1 sinφ2 . . . sinφd−3 sinφd−2

x3 = r cosφ1 sinφ2 . . . sinφd−3 sinφd−2

· · ·
xd−1 = r cosφd−3 sinφd−2

xd = r cosφd−2

0 < φj < π, |θ| < π.
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We have

r2ΔRd = (r∂r)
2 + (d− 2)r∂r

+ ∂2φd−2
+
∂2φd−3

sin2 φd−2

+ · · ·+
∂2φd−j

sin2 φd−2 . . . sin
2 φd−j+1

+ · · ·+ ∂2θ
sin2 φd−2 . . . sin

2 φ1
+

(d− 2)

tanφd−2
∂φd−2

+
(d− 3)

sin2 φd−2 tanφd−3

∂φd−3

+ · · ·+
(d− j)∂φd−j

sin2 φd−2 . . . sin
2 φd−j+1 tanφd−j

+ · · ·+ ∂φ1

sin2 φd−2 . . . sin
2 φ2 tanφ1

.

In other words, we have

ΔSd−1 =
∑

2≤j≤d−1

∂2φd−j

sin2 φd−2 . . . sin
2 φd−j+1

+
(d− j)∂φd−j

sin2 φd−2 . . . sin
2 φd−j+1 tanφd−j

+
∂2θ

sin2 φd−2 . . . sin
2 φ1

so that, inductively, we verify

ΔSd =
∑

2≤j≤d

∂2φd+1−j

sin2 φd−1 . . . sin
2 φd−j+2

+
(d+ 1 − j)∂φd+1−j

sin2 φd−1 . . . sin
2 φd−j+2 tanφd+1−j

+
∂2θ

sin2 φd−1 . . . sin
2 φ1

and indeed

ΔSd = ∂2φd−1
+
d− 1

tanφd−1
∂φd−1

+
1

sin2 φd−1

ΔSd−1 .

Laplace–Beltrami operator

Let (M, g) be a Riemannian manifold of dimension n. We use the usual notation
in a coordinate chart:

g = (gjk)1≤j,k≤n,

is a symmetric positive definite matrix, with inverse matrix g−1 = (gjk)1≤j,k≤n,

ds2 =
∑

1≤j,k≤n

gjk(x)|dxj ||dxk|, |g| = det g.

The Laplace–Beltrami operator is defined in a coordinate chart as

Δg = |g|−1/2∂j |g|1/2gjk∂k.
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Note that for u, v ∈ C2
c (M), we have the selfadjointness property

〈Δgu, v〉 = 〈u,Δgv〉.

In fact, in a coordinate chart, we have

〈Δgu, v〉 =
∫ (

|g|−1/2∂j |g|1/2gjk∂ku
)
v̄|g|1/2dx = −

∫
|g|1/2gjk∂ku∂̄jvdx

=

∫
u|g|−1/2∂k(|g|1/2 gjk︸︷︷︸

=gkj

∂jv)|g|1/2dx = 〈u,Δgv〉. (10.5.28)

The Laplace–Beltrami operator on S2, with parameters θ, φ, |θ| < π, 0 < φ < π,
is defined with

g =

(
sin2 φ 0
0 1

)
and we recover the formula

ΔS2 = (sin φ)−1
(
∂θ(sinφ)

1−2∂θ + ∂φ(sinφ)∂φ

)
= (sinφ)−2∂2θ + ∂2φ +

1

tanφ
∂φ.

Looking at the Laplace–Beltrami operator on Sd+1, we look at

Sd × (0, π) � (ω, φ) �→ ω sinφ⊕ ed+1 cosφ ∈ Sd+1

and we note that

gSd =

(
sin2 φ gSd−1 0

0 1

)
so that

ΔSd = (sinφ)−d+1
(
(sinφ)d−1−2ΔSd−1 + ∂φ(sinφ)

d−1∂φ

)
= ∂2φ + (d− 1)(sinφ)−d+1+d−2 cosφ∂φ + (sinφ)−2ΔSd−1

= ∂2φ +
d− 1

tan φ
∂φ + (sinφ)−2ΔSd−1 .

10.6 Classical volumes and areas

We have calculated in (4.5.4) the volume of the unit ball Bn of Rn as well as the
n− 1-dimensional “area” of the unit sphere Sn−1 with Formula (5.4.8).

Cones in Rm

We consider a measurable set B ⊂ Rm−1 and a point V = (0, h) ∈ Rm−1 × R,
h > 0. The cone of Rm with base B and vertex V is defined as

Γ(V,B) = {X = (x, xm) ∈ Rm−1 × R, ∃λ ≥ 1, V + λ(X − V ) ∈ B × {0}}.
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This gives λx ∈ B, h+ λ(xm − h) = 0, i.e., λ = h
h−xm

. The volume of Γ(V,B) is

|Γ(V,B)|m =

∫∫
h

h−xm
x∈B,0≤xm≤h

dxdxm =

∫ h

0

|B|m−1

(
h− xm
h

)m−1

dxm

= |B|m−1h
−m+1(m)−1hm,

that is

|Γ(V,B)|m =
|B|m−1h

m
=

base× height

m
. (10.6.1)

For a triangle in R2 (m = 2) or a cone in R3 (m = 3), we recover the classical
formulas. Note that the cone Γ(V,B) is the union of segments with endpoints V,
M ∈ B:

X = (1 − θ)V + θM, M ∈ B × {0}, θ ∈ [0, 1],

means that with λ = 1
θ ,

V + λ(X − V ) = V + θ−1((1 − θ)V + θM − V ) =M.

The converse follows from the fact that B � M = V + λ(X − V ) for some λ ≥ 1
implies X = λ−1M + (1 − λ−1)V.

Platonic polyhedra

Two-dimensional polygons

Before investigating the five 3-dimensional Platonic polyhedra, let us take a look
at the simple two-dimensional situation. A regular polygon with k sides (k ≥ 3)
and circumscribed radius R has the area

Ak = k︸︷︷︸
� sides

1

2
R︸︷︷︸

base

R sin(
2π

k
)︸ ︷︷ ︸

height

.

Note that this quantity goes to πR2 when k → +∞. The length s of the side is
s = R|e2iπ/k−1| = 2R sin(π/k), so that we may define Ak(s), the area of a regular
polygon with k sides of length s as

Ak(s) =
ks2

4 tan(π/k)
. (10.6.2)

Also the perimeter pk = 2kR sin(π/k) (a quantity going to 2πR when k goes to
+∞) and the apothem (distance from the center to a side) is

ak = R|1 + e2iπ/k|1
2
= R cos(π/k).

We note that

Ak(s) =
pkak
2

=
2kR sin(π/k)R cos(π/k)

2
=
kR2 sin(2π/k)

2
. (10.6.3)
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Three-dimensional regular polyhedrons

• There are only five of them:

Tetrahedron: 4 faces (equilateral triangles), 6 edges, 4 vertices.

Cube: 6 faces (squares), 12 edges, 8 vertices.

Octahedron: 8 faces (equilateral triangles), 12 edges, 6 vertices.

Dodecahedron: 12 faces (regular pentagons), 30 edges, 20 vertices.

Isosahedron: 20 faces (equilateral triangles), 30 edges, 12 vertices.

We want to compute their areas and their volumes, choosing as a parameter the
length s of the edges. Denoting by SN,k(s) the area of the regular polyhedron with
N faces, whose faces are regular 2D polygons with k sides of length s, we have

SN,k(s) = NAk(s). (10.6.4)

The apothem aN,k(s) is defined as the distance from the center to a face: we have,
with VN,k(s) the volume of the regular polyhedron with N faces whose faces are
regular 2D polygons with k sides of length s,

VN,k(s) = N
Ak(s)aN,k(s)

3
=
aN,k(s)SN,k(s)

3
. (10.6.5)

Since SN,k(s) is easy to determine with (10.6.4), the heart of the matter to find the
volume is to determine the apothem. Note that the apothem is the radius of the
inscribed sphere (RN,k(s) will stand for the radius of the circumscribed sphere).

• Cube, Octahedron, Tetrahedron with edge s.

Area of the cube: S6,4(s) = 6s2, Volume of the cube: V6,4(s) = s
3.

Area of the octahedron: S8,3(s) = 8A3(s) = 8
3s2

4
√
3
= 2

√
3s2,

apothem of the octahedron (computed below), a8,3(s) = s/
√
6,

Volume of the octahedron: V8,3(s) =
a8,3(s)2

√
3s2

3
= s3

2√
3
√
6
= s3

√
2

3
.

We have indeed, calculating the center of a face,

a8,3(s) =
R

3
‖(0, 0, 1) + (1, 0, 0) + (0, 1, 0)‖ = R/

√
3, 2R2 = s2,

where the last equality follows from the Pythagorean Theorem.

Area of the tetrahedron: S4,3(s) = 4A3(s) =
4 × 3s2

4
√
3

= s2
√
3,

Volume of the tetrahedron: V4,3(s) =
A3(s)h

3
=

3s3
√
2

4
√
3 × 3

√
3
=
s3

6
√
2
,

with h2 + r2 = s2 where r = s/
√
3 is the radius of the circumscribed cycle of the

equilateral triangle with side s.



10.6. Classical volumes and areas (balls, spheres, cones, polyhedra) 477

• Icosahedron, Dodecahedron. We start with the icosahedron. With coordinates in
C×R, the North pole is V0 = (0, R). Five vertices are issued from V0 with endpoints
Wj = (re2iπj/5, R − h), j = 0, . . . , 4, where r is the radius of the circumscribed
circle to the regular pentagon with sides s. We have

s2 = r2 + h2, r =
s

2 sinπ/5
, h2 = s2

(
1 − 1

4 sin2(π/5)

)
.

The center of the face V0W0W−1 is

1

3
(2r cos(π/5), R+ 2(R− h)) =⇒ a2 =

1

9

(
4r2 cos2(π/5) + (3R− 2h)2

)
,

so that the apothem a of the icosahedron satisfies

a2=
1

9

(
4s2

cos2(π/5)

4sin2(π/5)
+9R2+4s2

(
1− 1

4sin2(π/5)

)
−12Rs

(
1− 1

4sin2(π/5)

)1
2

)
.

We have also R2 = ‖Wj‖2 = r2 + (R− h)2, so that s2 = r2 + h2 = 2Rh and

R = s
sin(π/5)√

4 sin2(π/5)− 1
.

We obtain

a2 = s2
1

9

(
cos2(π/5)

sin2(π/5)
+ 9

sin2(π/5)

4 sin2(π/5)− 1
+ 4

(
1 − 1

4 sin2(π/5)

)
− 6

)
= s2

1

9

(
1

tan2(π/5)
+ 9

sin2(π/5)

4 sin2(π/5) − 1
− 1

sin2(π/5)
− 2

)
= s2

1

9

(
9

sin2(π/5)

4 sin2(π/5)− 1
− 3

)
= s2

1

9

(
3 − 3 sin2(π/5)

4 sin2(π/5) − 1

)
= s2

1

3

(
cos2(π/5)

4 sin2(π/5) − 1

)
.

Area of the icosahedron: S20,3(s) = 20A3(s) =
20 × 3s2

4
√
3

=
15s2√

3
= s25

√
3,

Volume of the icosahedron: V20,3(s) =
a20,3(s)S20,3(s)

3
=

15s3

9

cos(π/5)√
4 sin2(π/5) − 1

,

so that14

V20,3(s) = s
3 5

3

1√
3 tan2(π/5) − 1

= s3
5(3 +

√
5)

12
.

14We shall use that

tanπ/5 =

√
5− 2

√
5, sinπ/5 =

√
2
√

5−√
5

4
, cos π/5 =

1 +
√
5

4
, 3 tan2(π/5)− 1 = (3−

√
5)2.
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Let us tackle finally the dodecahedron. This polyhedron is dual to the icosahedron:
taking the five centers of the faces V0WjWj+1, 0 ≤ j ≤ 4, we get the top horizontal
face of the dodecahedron so that the apothem of that dodecahedron is

1

3
(R+ 2(R− h)) = R− 2h

3
= s

sin(π/5)√
4 sin2(π/5)− 1

− 2s

3

(
1 − 1

4 sin2(π/5)

)1/2

=
s sin(π/5)√

4 sin2(π/5)− 1
− s

3 sinπ/5

√
4 sin2(π/5)− 1.

However the length of the side of this dodecahedron is not s but

s′ =

∥∥∥∥13(2r cosπ/5, 3R− 2h)− 1

3
(e2iπ/52r cosπ/5, 3R− 2h)

∥∥∥∥
=

2r cosπ/5× 2 sinπ/5

3
=

s

2 sinπ/5

2 cosπ/5 × 2 sinπ/5

3
= s

2 cosπ/5

3
.

As a result, we have

s−1a12,5(s) =

3
2 cosπ/5 sin(π/5)√
4 sin2(π/5)− 1

−
3

2 cosπ/5

3 sinπ/5

√
4 sin2(π/5)− 1

=
3
2 tan(π/5)√

4 sin2(π/5)− 1
−

3
2

3 sinπ/5

√
4 tan2(π/5)− cos−2(π/5)

=
3

2

tan(π/5)

cosπ/5
√
3 tan2(π/5) − 1

−
√
3 tan2(π/5) − 1

2 sinπ/5

=
3
2 tan(π/5)2 sinπ/5 − (3 tan2(π/5) − 1) cosπ/5

2 sinπ/5 cosπ/5
√
3 tan2(π/5)− 1

=
1

2 sinπ/5
√
3 tan2(π/5)− 1

.

Area of the dodecahedron: S12,5(s) = 12A5(s) =
15s2

tanπ/5
= s23

√
5(5 + 2

√
5),

Volume of the dodecahedron: V12,5(s) =
a12,5(s)S12,5(s)

3
, so that

V12,5(s) = s
3 15 cosπ/5

6 sin2 π/5
√
3 tan2(π/5)− 1

= s3
15 + 7

√
5

4
.
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Icosahedron

Dodecahedron
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Notation
Å, interior of A, 4
A, closure of A, 4
∂A, boundary of A, 4
Bc(x, r), closed ball with center x,

radius r, 5
Bm, closed unit Euclidean ball of

Rm, 108
Bm, Borel σ-algebra of Rm, 70
B(x, r), open ball with center x,

radius r, 5
Cc(X), continuous functions on X,

valued in C, 67
Ck

n =
(
n
k

)
, binomial coef., 20

d∞, sup-distance on Rm, 100
Dh, Hausdorff dimension, 100
d(x,A), 68
Dxj = 1

2iπ
∂

∂xj
, 346

f∗(μ), pushforward of μ, 20
Γ, Gamma function, 465
hκ, Hausdorff measure, 96
h∗κ, Hausdorff outer measure, 96
–
∫
A
fdμ =

∫
A
fdμ/μ(A), 383∫

X
fdμ, 25

λ � μ, λ absolutely continuous wrt
μ, 321

|λ|, total variation of λ, 319
λ+, positive part of λ, 321
λ−, negative part of λ, 321
L1(μ), 35
L1(μ), 32
lim inf , lim sup, 12
λ ⊥ μ, mutually singular measures,

322
λm, Lebesgue measure on Rm, 86
Log: the principal determination of

the logarithm in C\R−, 461
Lp(μ), 132

Lp
loc, 306

Lp
w(R

n), weak Lp(Rn), 293
Mf , maximal function, 383
M1 ⊗M2, 189
μac, 340
μsc, 340
μsp, 340
ℵ0 = cardN, 410
OM (Rn), multipliers of S , 355
p∗(n), Sobolev conj. exp., 397
R, 12
S ′(Rn), 347
σ(E,E∗):weak top. on E, 440
σ(E∗, E):weak-∗ top. on E∗, 443
Sm−1, unit Euclidean sphere of Rm,

237
S (Rn), 343
supp f , support of f , 67
Υ+: the n× n complex nonsingular

symmetric matrices with
non-negative real part, 463

Υ∗+: the n× n complex symmetric
matrices with a positive definite
real part, 354

ǔ(x) = u(−x), 345
û, Fourier transform, 344
Vx, the neighborhoods of x, 4
χλ
+, λ ∈ C, 369

xk ↑ x: limk xk = x, increasing
sequence, 21

Y X = {f : X → Y }, 42

Abelian integral, 456

absolute continuity, 321

absolutely continuous part, 340

algebra
σ-∼, 1
Banach ∼ L1(Rn), 283, 286
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Borel σ-∼, 7
complete σ-∼, 71
product σ-∼, 189

almost everywhere, a.e., 34

antiderivatives of rational fractions, 451

area of Euclidean spheres, 237

arithmetic mean, 130

axiom of choice, 115, 408

Baire space, 262

Baire theorem, 7, 262, 438

Banach
–Alaoglu theorem, 446
–Steinhaus theorem, 439
algebra L1(Rn), 283, 286
space, 6

Beppo Levi theorem, 28

Bernoulli probability, 19

Beta function, 466

Bienaymé–Chebyshev inequality, 59

binomial coefficient, 20

binomial probability, 19

Borel
–Lebesgue property, 429
measure, 80
σ-algebra, 7

Cantor
–Bendixson theorem, 249
function, 254
measure, 256
set with positive measure, 260
sets, 249
ternary set, 250
theorem, 411

Carathéodory theorem, 93

cardinal, 409

carrier, 322

Cartesian product of sets, 407

Cartesian rectangle, 189

category, 262

Cauchy probability, 19

change of variable formula, 228

Chebyshev inequality, 59

closed ball, 5

closed set, 4

commutative convergence, 334

compact rectangle, 8

compact space, 429

complete σ-algebra, 71

completion of a measure, 112

complex measure, 317

condensation point, 249

conjugate exponents, 130

connected topological space, 6

connectedness, 433

convergence in measure, 113, 163

convex function, 125

convolution, 283

countable, 1

countable additivity, 17

counting measure, 17

density of a measure, 318

derivative of a distribution, 347

diffeomorphism, 228

differentiability, 219

differential, 219

diffuse, 340

Dini condition, 362

Dini lemma, 111

Dirac measure, 18

Dirichlet kernel, 361

disjoint union of sets, 412

distance, 5

distributions with support {0}, 367
dual of Lp(μ), 1 ≤ p < ∞, 327

Egoroff theorem, 150

equi-integrability, 177

equipotence, 410

equivalence of norms, 5

Euler equation, 368

Euler–Mascheroni constant, 117
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expectation, 19, 59

exponentiation of cardinals, 413

extended real line, 12

exterior unit normal, 241

Fσ, 7

Fatou lemma, 30

filter, 425

first category, 262, 439

flat function, 108

floor function, 16

formula
change of variable ∼, 228
Fourier inversion ∼, 345
Gauss ∼, 465
Gauss–Green ∼, 240
Green–Riemann ∼, 241
multinomial ∼, 58
Plancherel ∼, 351
Poisson ∼, 357
sieve ∼, 56
Taylor ∼, 265
Taylor ∼ with integral remainder,

265
Taylor–Lagrange ∼, 265
Taylor–Young ∼, 265
Weierstrass ∼, 467

Fourier
inversion formula, 345
transform, 343, 344

of Gaussian functions, 354

Fréchet space, 366

Fresnel integrals, 461

Fubini theorem, 197

function
Beta ∼, 466
Cantor ∼, 254
convex ∼, 125
flat ∼, 108
floor ∼, 16
Gamma ∼, 465
greatest integer ∼, 16
maximal ∼, 383
piecewise affine ∼, 109
repartition ∼, 19

simple ∼, 15

Gδ , 7

GA inequality, 155

Gabor wavelet, 357

Gagliardo–Nirenberg inequality, 389

Gamma function, 465

Gauss formula, 465

Gauss–Green formula, 240

Gaussian integrals, 459

geometric mean, 130

greatest integer function, 16

greatest lower bound, 12

Green–Riemann formula, 241

Hahn decomposition, 326

Hahn–Banach theorem, 437

Hardy–Littlewood maximal inequality,
383

Hardy–Littlewood–Sobolev inequality,
297, 301

harmonic mean, 155

Hausdorff
dimension, 99

of the Cantor ternary set, 253
measures, 96
space, 429

HGA inequality, 155

Hölder inequality, 130

homogeneous distributions, 368

horizontal slice, 190

hypersurface measure, 238

inclusion-exclusion principle, 56

induced topology, 6

induction, 408

inequality
Bienaymé–Chebyshev ∼, 59
Chebyshev ∼, 59
GA ∼, 155
Gagliardo–Nirenberg ∼, 389
Hardy–Littlewood maximal ∼, 383
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Hardy–Littlewood–Sobolev ∼, 297,
301

HGA ∼, 155
Hölder ∼, 130
isodiametric ∼, 246
Jensen ∼, 128
Minkowski ∼, 130
Young ∼, 288

inner regular, 80

integer value, 16

integration on a hypersurface, 238

inverse function theorem, 229

isodiametric inequality, 246

isolated point, 51

Jensen inequality, 128

Jordan decomposition, 321

Laplace
–Beltrami operator, 473
–Gauss probability, 19
equation, 471
operator, 241

law of large numbers, 40, 59

least upper bound, 12

Lebesgue
decomposition, 323
differentiation theorem, 386
dominated convergence, 37
measure, 86
points, 386

lemma
Dini ∼, 111
Fatou ∼, 30
Riemann–Lebesgue ∼, 148
Urysohn ∼, 105
Wiener covering ∼, 384
Zorn ∼, 408

length of a multi-index, 343

liar’s paradox, 41

liminf, 12, 103

limsup, 12, 103

linear change of variables, 227

logarithm, 461

logarithm of a matrix, 463

logarithmic convexity, 155, 468

lower semicontinuous, 103

Lusin theorem, 151

Marcinkiewicz interpolation theorem,
380

maximal function, 383

meager, 249, 439

mean inequality theorem, 221

mean value theorem, 266

measurability, 1

measure
Borel ∼, 80
Cantor ∼, 256
complex ∼, 317
counting ∼, 17
Dirac ∼, 18
Hausdorff ∼, 96
hypersurface ∼, 238
Lebesgue ∼, 86
mutually singular ∼s, 322
outer ∼, 73
positive ∼, 17
positive Radon ∼, 71
probability ∼, 17
pushforward ∼, 20
Radon ∼, 71
real ∼, 317
regular ∼, 80
sigma-finite ∼, 113
signed ∼, 318
space, 17
total variation ∼, 319

metric space, 5

Minkowski inequality, 130

monotone class, 193

monotone class theorem, 209

multi-index, 343

multinomial formula, 58

multipliers of S ′(Rn), 355

mutually singular measures, 322

negligible set, 34
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non-measurable set, 115, 258

non-separable space, 171

norm, 5

normally convergent series, 159

nowhere dense, 249

open
ball, 5
mapping theorem, 440
rectangle, 8
set, 3

order relation, 407

outer measure, 73

outer regular, 80

pairwise disjoint sets, 17

partial derivatives, 219

partition, 2, 319

partition of unity, 69

path-connectedness, 435

perfect set, 249

phase translation, 357

piecewise affine function, 109

Plancherel formula, 351

Platonic polyhedra, 475

Poisson formula, 357

Poisson probability, 20

polar coordinates, 233

polar decomposition, 337

positive measure, 17

positive Radon measure, 71

probability measure, 17

probability space, 17

product
of cardinals, 413
σ-algebra, 189
tensor ∼ of σ-finite measures, 195
topology, 431

pure point part, 340

pushforward measure, 20

quadrics, 271

quasi-compactness, 429

quasi-norm, 293

Radon
–Nikodym derivative, 323
–Nikodym theorem, 323
measure, 71

rare, 249

rare (nowhere dense) subset, 439

real measure, 317

regular measure, 80

repartition function, 19, 63

Riemann–Lebesgue lemma, 148

Riesz–Markov representation theorem,
70

Riesz–Thorin interpolation theorem,
373

Russell’s paradox, 41

Schröder–Bernstein theorem, 410

Schwartz space, 343

secant filters, 426

second category, 262, 439

semi-norm, 437

sieve formula, 56

sigma
-additivity, 17
-algebra, 1
-finite measure, 113

signature, 464

signed measure, 318

simple function, 15

singular continuous part, 340

Sobolev
conjugate exponent, 397
injection, 394
spaces, 394

space
Baire ∼, 262
Banach ∼, 6
compact ∼, 429
connected topological ∼, 6
Fréchet ∼, 366
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Hausdorff ∼, 429
measure ∼, 17
metric ∼, 5
non-separable ∼, 171
probability ∼, 17
Schwartz ∼, 343
Sobolev ∼, 394

spherical coordinates, 233

standard deviation, 19

Steiner symmetrization, 244

Stone–Weierstrass theorem, 207

strong-type (p, q), 380

subadditivity, 73

subspace topology, 6

support of
a continuous function, 67
a distribution, 348
an L1 function, 111

table of antiderivatives, 448

Taylor
–Lagrange formula, 265
–Young formula, 265
formula with integral remainder, 265

tempered distributions, 347

tensor product of σ-finite measures, 195

theorem
Baire ∼, 7
Banach–Alaoglu ∼, 446
Banach–Steinhaus ∼, 439
Beppo Levi ∼, 28
Cantor ∼, 411
Cantor–Bendixson ∼, 249
Carathéodory ∼, 93
Egoroff ∼, 150
Fubini ∼, 197
Hahn–Banach ∼, 437
inverse function ∼, 229
Lebesgue differentiation ∼, 386
Lusin ∼, 151
Marcinkiewicz interpolation ∼, 380
mean inequality ∼, 221
mean value ∼, 266
monotone class ∼, 209
open mapping ∼, 440

Radon–Nikodym ∼, 323
Riesz–Markov representation ∼, 70
Riesz–Thorin interpolation ∼, 373
Schröder–Bernstein ∼, 410
Stone–Weierstrass ∼, 207
Tonelli ∼, 196
Tychonoff ∼, 429
Zermelo ∼, 408

Tonelli theorem, 196

topology, 3

total
order, 407
variation measure, 319

totally discontinuous, 251

transfinite induction, 415

Tychonoff theorem, 429

ultrafilter, 427

unicursal representation, 457

upper semicontinuous, 103

Urysohn lemma, 105

variance, 19, 59

vertical slice, 190

volume of
a cone, 474
Euclidean balls, 237
the unit ball, 211

Wallis integrals, 470

wave packets, 357

weak Lp, 293

weak-type (p, q), 380

Weierstrass formula, 467

well-ordered set, 407

Wiener covering lemma, 384

Young inequality, 288

Zermelo theorem, 408

Zorn lemma, 408
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