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Preface

This volume is a textbook on Integration Theory, supplemented by 160 exercises
provided with detailed answers. There are already many excellent texts on this
topic and it is legitimate to ask whether it is worth while to add a new entry in
an already long list of books on Measure Theory.

Nevertheless, the author’s teaching experience has shown that many of these
books were too difficult for a student exposed for the first time to integration
theory. We have tried here to keep a rather elementary level, at least in the way
of exposing our arguments and proofs, which are hopefully complete, detailed,
sometimes at the cost of a lack of concision. Moreover, we hope that the many
exercises (with answers) included at the end of each chapter will represent an asset
for the present book.

A trend present in the contemporary textbook literature on integration the-
ory is simply to omit the not-so-easy construction of Lebesgue measure. We are
strongly opposed to this tendency, and we have made all efforts in our redaction to
provide a complete construction of the mathematical objects used in the book, first
and foremost for the construction of Lebesgue measure. Our point of view here is
not exclusive of some compromises in the reading order which can be used by the
reader trying to learn this material: the chapters of this book are of course ordered
logically (chapter n+1 is using chapters 1, ..., n and never chapter n+2,...), but
some “construction” chapters, such as Chapter 2, parts of Chapters 4, 5, could be
bypassed at first reading. We expect that a mathematically curious reader will feel
the need of a construction after experiencing some of the most efficient (or more
computational) parts of the theory and then will go back to these construction
chapters.

Last but not least, we hope that this book could serve as a reasonable “en-
trance gate” to Integration Theory for scientists and mathematicians who are
non-experts in measure theory. Another fact of mathematical life, say in the last
thirty years, is that it is more and more difficult to learn some mathematics not
directly connected with your professional area. Where is it possible for an Ana-
lyst to learn the algebraic properties of Theta functions? Where to find a text on
Fourier Analysis accessible to an Algebraic Geometer? Although both questions
above have (many) answers, it remains difficult to find a way to enter a domain
with which you are not a priori conversant. It is the author’s opinion that accessi-

xi



xii Preface

bility is now a rare commodity in the mathematical literature, and we hope that
the present book will provide its share of that good.

Integration Theories

The initial goal of integration theory, founded more than two millennia ago! is
to compute areas and volumes of various objects. A somewhat simplified mathe-
matical version of this question is to consider a function f : [0,1] — R4 and try
to evaluate the area A between the z-axis and the curve y = f(x). The standard
notation is

A= /01 F(x)dz.

Of course some assumptions should be made on the function f for this area to
make sense.

Riemann’s integral

Greek mathematicians of the third century B.C. were aware of volumes of spheres,
cones, polyhedra, and of many classical geometric objects. Later, in the early
eighteenth century, Gottfried Wilhelm LEIBNIZ (1646-1716) introduced the In-
finitesimal Calculus, whereas Isaac NEWTON (1642-1727) defined the Calculus of
Fluzions, both inventions (close to each other) closely linked with a notion of in-
tegral calculus. However the first systematic attempt to define the integral of a
function is due to the German mathematician Bernhard RIEMANN (1826-1866):
cutting the source space (here [0, 1]) into tiny pieces,

0=z0,21],... [k, Ts1], ..., [eNv_1,2n = 1], x5 1,

you expect A to be close to

Sy = Z (g1 — xk) f(my), where my € [Tk, Tr11],
0<k<N

since the area A should resemble the sum of the areas of the vertical rectangles
with base (xp,xk+1) and height f(my). In fact, assuming for instance f to be a
uniform limit of step functions (a step function is a finite linear combination of
characteristic functions of intervals), you obtain that Sy has a limit when

sup ($k+1 — mk) goes to zero,
0<k<N

and you define that limit as fol f(x)dz. It is indeed a simple matter to show directly
that this procedure works for a continuous function on [0, 1]. That theory is quite
elementary but has several downsides. The very first one is a terrible instability

IThe Greek scientist Archimedes of Syracuse, who lived in the third century B.C., was able to
provide a quadrature of the parabola.
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with respect to small perturbations: in particular, if you modify the function f (say
f continuous) on a rather small set such as the rational numbers Q, you may ruin
the integrability in the above sense. The rational numbers should be considered
as “small” since it is a countable set {x, }nen and thus, for any € > 0,

€ €
Q - UnGN (fEn — 2n+2,fEn + 2n+2)
and thus the “length” ¢ of Q is such that for any ¢ > 0,
€§6227"71 =—e=—/¢=0.
neN

In particular, it is easy to show that the integral of 1gn(p,1j (a small perturbation
of 0) cannot be defined by the procedure sketched above. Although the latter
function may appear to be quite pathological, the effects of this instability are
disturbing. Other difficulties occur with the Riemann integral, with complications
in integrating unbounded functions and also in developing a comprehensive theory
of multidimensional integrals.

The Lebesgue perspective

A key point in Lebesgue theory of integration (see, e.g., [8]) is that to calculate
the integral of f : X — R, one should not cut into small pieces the source space
X (for instance in small subintervals if X is an interval of R) but the target space
should be cut into pieces depending on the function f itself. It is easy to illustrate
this in the (very) simple case where

[ X={z1,...;2m} — {y1,..,un} =Y CR.
We can evaluate ije « f(x;) by sorting out the values taken by f:
D f) =) yecard({r € X, f(2) = yi}).
ijX Yy €Y

Also, playing around freely with the notation, say for f non-negative on R,
H=1g,,

/f dx—//H Hiy dydx—//H —ydm) (y)dy
= /H(y) measure({z € R, f(z) > y})dy

If we can “measure” the sets {x € R, f(z) > y}, it is thus quite natural to take as
a definition for the integral of f the last expression. Note that this expression is
very simple if f is taking a finite number of values y1, ..., yn: we have in that case

/f(x)dm = Z yr measure({z € R, f(z) = yi}).

1<k<N
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The set {z € R, f(z) = yx} could be quite complicated and we shall see that
many functions could be well approximated by simple functions, i.e., finite lin-
ear combinations of characteristic functions. To overcome the difficulties linked to
the integration of unbounded functions, we may consider f(z) = éx_l/Ql(O,l)(x)
(integral 1); we get according to the previous computation,

1 1 —+o0 1
dﬂc:/ measure <{m€ 0,1), > })d
/O o | (0,1) oy V[ W
+oo 1> 1/2 too 11
= min dy—/ dy—l—/ dy= _ + =1,
/0 ( " dy? 0 12 4y? 2 4,

and many other examples involving unbounded functions can be dealt with. If we
go back to our stability problem, we may consider the function ¢ = 1g, f : R = Ry,
then the integral of f is equal to the integral of f + ¢:

+oo
/ (f + g)()dz = / neasure({z € R, f(z) + q(z) > y})dy
R 0

+oo
= / measure ({z € R, f(z) > y})dy = /f(m)dm
0

since the function g vanishes except on a set with measure 0. Since the reader
may feel skeptical about the perturbation by this function ¢, let us give a finite
version of it, illustrating the instability occurring with the Riemann approach, an
instability which is not present with Lebesgue’s simple method outlined above.
We consider the interval [0, 1] and for some large integer N the function

= > 1 i weaey (@):

0<k<N

Applying Riemann’s method, using the sequence z, = k/N,0 < k < N, we deal

with k+1 k k k+1
+ -
S = Z <N —N)f(mk>, mkE[N, N]
0<k<N

We may for instance choose my = x = k/N, so that f(my) =1 and S =1. On
the other hand, Lebesgue’s method uses the fact that the function f is taking two
values 0,1, and the evaluation of the integral by this method gives

I = measure{z € [0,1], f(z) =1} = Z 27 N/N =27V,
0<k<N

Nonetheless this value turns out to be the exact value of the integral, but also it
goes to 0 when N goes to infinity whereas S is stuck at 1, very far from the true
value I. It is of course a scaling problem, since choosing the sequence (z) such
that supy, |vk4+1 — x| < 27V will provide a more accurate value for S. Nevertheless
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this scaling phenomenon is a good illustration of the fact that a perturbation f
with a small integral but with a large sup norm could trigger huge variations of
S, although the Lebesgue calculation remains stable.

There is much more to say in favour of Lebesgue’s point of view and in partic-
ular the fact that we can define a Banach space (complete normed vector space) of
integrable functions, the space L' (R™), and also spaces L?(R™), 1 < p < 400, other
Banach spaces (L? is a Hilbert space), is of considerable interest and well tuned to
the developments of functional analysis. Moreover, Lebesgue’s theory provides its
user with a remarkably simple convergence theorem, the so-called Lebesgue’s dom-
inated convergence theorem. The problem at hand is to decide whether [ f,(z)dz
is converging with limit [ f(z)dz when we have already a (weak) pointwise in-
formation, i.e., lim, f,(x) = f(z) for all z. A precise statement can be found in
Chapter 1 (Theorem 1.6.8), but let just say here that a domination condition

sup |fn(z)| = g(z) 1is such that / lg(z)|dx < 400,

will ensure nonetheless the sought convergence of integrals but also convergence
of the sequence of functions (f,)nen in the functional space L.

Is there a downside to Lebesgue’s integration theory?? Mathematically speak-
ing, the answer is no, and that theory has been widely used, polished and some-
times generalized to many different situations. However, it is true that Lebesgue’s
theory of integration is not elementary and that its actual construction requires
a significant effort. On the other hand the Instruction Manual for Lebesgue In-
tegration is indeed quite simple and one should encourage the reader to enjoy
the simplicity and efficiency of that theory before going back to the more austere
construction aspects.

We may draw a comparison with the construction and use of the real num-
bers: the real line R is widely used in Calculus and elsewhere as a basic mathemat-
ical object, but few students actually go through a construction of R. In fact, R
is also a very complicated object, as could be seen through the many examples of
the present book (cardinality questions, non-measurable subsets, Cantor ternary
set, Cantor sets with positive measure, category and measure,. .. ), but nobody (?)
is suggesting that getting some familiarity with the real line should not be a part
of a standard mathematical curriculum.

2An utterly pragmatic point of view was defended by Richard W. HAMMING (1915-1998), a
computer scientist and mathematician: “ Does anyone believe that the difference between the
Lebesgue and Riemann integrals can have physical significance, and that whether say, an airplane
would or would not fly could depend on this difference? If such were claimed, I should not care
to fly in that plane.” In N. Rose Mathematical Maxims and Minims, Raleigh NC: Rome Press
Inc., 1988. That criticism is surprising, since the norms of the functional spaces provided by
Lebesgue theory are actually used in numerical approximations and their stability is expressed
by inequalities involving those norms.
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Description of the contents of the book

Chapter 1, entitled General Theory of Integration, presents the basic framework for
integration theory, with the notion of measure space. We obtain rather easily the
three classical convergence theorems (Beppo Levi, Fatou, Lebesgue’s dominated
convergence) and we can define the space of integrable functions L!(y). This ab-
stract presentation of integration is not difficult to follow, but there is obviously a
shortage of significant examples of measure spaces at this stage of the exposition.

The main examples are constructed in Chapter 2, Actual Construction of
Measure Spaces; a first route is following the Riesz—Markov representation theorem
via linear forms on continuous compactly supported functions. We present as well
the more set-theoretic Carathéodory approach. At the end of this chapter, we
introduce the notion of Hausdorff measure. Among the statements in the exercises,
one may single out the construction of a non-measurable set, using the Axiom of
Choice. The parts dealing with the construction of the Lebesgue measure are
quite technical, and while using some earlier version of these notes for teaching
a one-semester course, we always postponed the exposition of the details of the
construction of Lebesgue measure to the very last week of class, after the students
had acquired some familiarity with the scope and means of that integration theory.

Chapter 3 deals with Spaces of Integrable Functions. The important convexity
inequalities (Jensen, Holder, Minkowski) are studied and the definition of LP(u)
spaces (1 < p < oo) are given along with their main properties, most notably
the fact that they are Banach spaces. We study as well integrals depending on a
parameter, with continuity and differentiability properties; this part is of course
related to many practical examples such as the Gamma function, Zeta function
and many integrals or series depending on a parameter. The Riemann—Lebesgue
Lemma, Egoroff’s and Lusin’s theorems are proven. The last section provides a
survey of various notions of convergence encountered in the text. Some exercises
are related to various explicit computations, others to more abstract questions,
such as examples of non-separable spaces.

The fourth chapter, Integration on a Product Space, constructs integrals on
product spaces, and contains statements and proofs of Tonelli’s and Fubini’s theo-
rems. Some exercises are purely computational (e.g., computation of the volumes
of the Euclidean balls in R™), others are more abstract, for instance with the study
of the notion of monotone class.

Chapter 5 is entitled Diffeomorphisms of Open Subsets of R"™ and Integration.
We deal there with the change-of-variable formula and give some classical exam-
ples, such as polar coordinates. We also define integration on a smooth hypersur-
face of the Euclidean R™, using implicitly a distribution approach to construction
of the simple layer. The last part of this chapter goes back to the notion of Haus-
dorff measures introduced in Chapter 2 and to the construction of Cantor sets. We
give many details on construction of the classical Cantor ternary set, along with
computation of its Hausdorff dimension and with study of the Cantor function
(a.k.a. as “devil’s staircase”). We study also Cantor sets with positive measure
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and compare the (unrelated) notions of category and measure. We calculate the
cardinalities of the Borel and Lebesgue o-algebras on R™: this requires some ef-
fort related to the introduction of cardinals and ordinals and we have devoted a
lengthy appendix to these topics.

Conwolution is the topic of Chapter 6, in which the Banach algebra L!(R") is
studied, as well as the classical Young’s inequality. Weak LP spaces are introduced
and we give a proof of the Hardy—Littlewood—Sobolev inequality, following an
explicit argument due to E. Lieb and M. Loss [43]. In the exercises, the reader
will find various computations related to the heat equation and to the Laplace
operator. We give also a study of Lorentz spaces and of the notion of decreasing
rearrangement.

Chapter 7 is entitled Complex Measures and is essentially devoted to the proof
of the classical Radon—Nikodym theorem, as well as to the expression of the dual
of LP(u) for 1 < p < co. We give several examples with the spaces cg, P, and study
various possible behaviors of weakly convergent sequences. The decomposition in
absolutely continuous, pure point, singular continuous parts for a Borel measure
on the real line is studied as well as the notion of polar decomposition of a vector-
valued measure.

Basic Harmonic Analysis on R™ is the topic of Chapter 8. Here we have cho-
sen to follow Laurent Schwartz’ presentation of Fourier transformation, first via
the space . (R"™) of rapidly decreasing functions, for which it is truly easy to prove
the Fourier inversion formula. Introducing the space .#/(R™) of tempered distri-
butions as the topological dual space of the Fréchet space .#(R™) was impossible
to resist, since the Fourier inversion formula follows almost immediately on the
huge space ./ (R™), by a trivial abstract nonsense argument. We took advantage
of the fact that tempered distributions are much easier to understand than gen-
eral distributions, essentially because the space #(R") is simply a Fréchet space,
whose topology is defined by a countable family of semi-norms. Understanding
general distributions is complicated by the fact that the space of test functions is
not metrizable. Anyhow, we recover easily the standard properties of the Fourier
transformation as well as basic properties of periodic distributions. Along the
way, we provide a proof of the Poisson summation formula using Gabor’s wavelet
method (Coherent States Method).

The last chapter is the ninth, Classical Inequalities, which begins with Hada-
mard’s three-lines theorem and the Riesz—Thorin interpolation. Although this
technique is useful to provide natural generalizations of Young’s inequality, it falls
short of dealing with natural operators such as the Hilbert transform: for that
purpose, we give a proof of the Marcinkiewicz Theorem. We introduce the notion
of maximal function, and prove the Lebesgue differentiation theorem. In order to
study Sobolev spaces, we start with a classical inequality due to Gagliardo and
Nirenberg. It turns out that this inequality is a perfect tool to handle Sobolev em-
bedding theorems. We would have liked to expand that chapter to study Fourier
multipliers and Hoérmander—Mikhlin theorems as well as more general Sobolev
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spaces, including the homogeneous ones. The best way to do this would have been
to introduce various tools of harmonic analysis, such as Calderon-Zygmund oper-
ators and pseudodifferential techniques: this would have been obviously too much
and we refer the reader to [5] for these developments.

Let us go through our Appendiz, essentially intended to reach a reasonable
self-containedness for the present book. The first section is concerned with set
theory, cardinals, ordinals: these notions are important for the understanding of
many problems related to measure theory, and we have chosen a rather lengthy
and elementary presentation of this topic. Section 2 deals with various topologi-
cal questions, including the notion of filter, useful for the Tychonoff theorem. A
proof of the Baire theorem is given and some classical consequences are recalled
(Banach—Steinhaus, Open Mapping Theorem): these questions are important for
the understanding of duality, which is also related to measure theory and L”
spaces. The last three sections of the appendix are concerned with basic formulas
and classical computations related to integration. Although it might seem prepos-
terous to provide again this widely available material in such a book, the author
would like to point out in the first place that some of these formulas are not so
easy to derive. But above all, it seems that the true absurdity would be to teach
Lebesgue measure to people while ignoring basic formulas of integral calculus.
These elementary computational aspects are here as a gentle reminder that Math-
ematics is also about computation, and that refined concepts and tools often find
their motivations in intricate calculations.



Chapter 1

General Theory of Integration

1.1 Measurable spaces, o-algebras

Definition 1.1.1. Let X be a set and M C P(X) be a family of subsets of X. M
is called a o-algebra on X whenever

(1) AeM — A e M,
(2) (An € M)nEN — UnENAn eM
(3) X e M.

We shall say that (X, M) is a measurable space.

Definition 1.1.2. Let (X1, M1), (X2, M3) be two measurable spaces and f : X1 —
X5. The mapping f is said to be measurable if for all Ay € My, f~1(A3) € M;.
That property will be symbolically denoted by f~1(Msz) C M.

Properties (1), (2) in Definition 1.1.1 imply readily that a o-algebra is stable
by countable intersection. Moreover (3) follows from (1), (2) provided M # ().

We call countable any set equipotent to a subset of N, i.e., such that there
exists an injection from D into N. If D is a non-empty finite set, there exists
a bijective mapping from D onto {1,...,n} where n is the cardinal of D. If D
is infinite (i.e., not finite) countable, then it is equipotent to N: we may in fact
consider D as a subset of N. We define

dy =min D, do = min D\{d1},...,dk+1 = min D\{dy,...,di}.

Since D is infinite and N is well ordered (i.e., every non-empty subset of N has
a smallest element) this definition makes sense for all k > 1. If d € D, we may
find k£ € N such that d < d < dg41 since the sequence dj, is strictly increasing
and we cannot have di, < d < di+1 (that would contradict the very definition of
di+1), so that we get d = dj, and D is {dj }ren, equipotent to N. It is easy to show

N. Lerner, A Course on Integration Theory: including more than 150 exercises with detailed answers, 1
DOI 10.1007/978-3-0348-0694-7 1, © Springer Basel 2014



2 Chapter 1. General Theory of Integration

that N* = N\{0}, 2N, 2N+ 1,Z,N x N are equipotent to N. To get the latter, it is
enough to note that

(p,q) € Nx N 2P(2g + 1) € N*

is bijective!. Since the set Q of rational numbers can be injected in Z x Z, we get
from the preceding remark that Q is equipotent to N as well as Q% (d integer > 1).
We shall see that the set R of real numbers is not countable since it is equipotent
to P(N) (see Exercise 1.9.5). It is easy to show that for any set X, there is no
surjection from X onto P(X) (see Exercise 1.9.2).

Let us give a couple of examples of o-algebras. Let X be a set; {0, X} is a
o-algebra on X as well as P(X). Moreover, if { A% }1<k<n is a partition of X (each
Ay, is a non-empty subset of X, Ay N A; =0 for k # I, X = Ur<k<nAx), the set

M = {Ukes A} s, n)

is a o-algebra on X. In fact, defining B(J) = UgejAg, we get B(J)¢ = B(J°), so
that the stability by complement is fulfilled (stability by reunion is obvious). Let
us note also that card M is 2" since there is a bijection from M onto the subsets
of {1,...,n}. Exercise 1.9.3 deals with a countable partition.

We can also note that for (M;);c; a family of o-algebras on X, M = N;e; M;
is also a o-algebra on X: let (A4, )nen be a sequence of M, thus of M, for each
i € I, then U,enAy, belongs to M for each ¢ € I, thus to M. Property (1) about
the complement can be checked similarly (and X € M since X € M, for alli € I).
Since a o-algebra on X is included in P(X), we can give the following definition.

Definition 1.1.3. Let X be a set and F C P(X). We define

M(F) = N M.

M o-algebra on X
MDF

We shall say that . (F) is the o-algebra generated by F (or the smallest o-algebra
on X containing F).

Lemma 1.1.4. Let (X1, My), (X2, M2) be measurable spaces with Mo = M (F)
and f : X1 — Xo be a mapping. For [ to be measurable, it is sufficient (and also
necessary) that f~1(F) C My, i.e., VF € F, f~YF) € M;.

Proof. We set N' = {B € My, f~1(B) € M;}. This is a o-algebra on Xs: if
B e N, f74B°) = (f~4B))" € My. Moreover for a sequence (B,)nen of N,
we have f 1 (UpenBn) = Unenf H(By) € My. Finally, Xo € N, since f~1(X3) =
X1 € Mj. As a result, NV is a o-algebra containing F if f~1(F) C M;. This
implies

MQZ%(F)CNCM2:>M2:N. O

lgee Exercise 1.9.1.
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Lemma 1.1.5. Let (X, M) be a measurable space and f : X — Y be a mapping.
Then the set N = {B C Y, f~}(B) € M} is a o-algebra on Y. It is the largest

o-algebra on'Y making f measurable.
Proof. For B, B, € N, we have f~1(B¢) = (f~}(B))¢ € M and
FHUBy) = Unf1(By) € M.

Since Y € N, we get the first result. N is the largest o-algebra on Y such that
[ is measurable: if (Y, N) is a measurable space such that f is measurable, then
for B € N, the measurability of f implies f~1(B) € M, so that B € A" and thus
N CN. O

Lemma 1.1.6. Let (X, M), (Y,N), (Z,T) be measurable spaces and
f g

X — Y — Z
be measurable mappings. Then g o f is measurable.

Proof. For C € T, we have (go f)~'(C) = f~*(¢g71(C)) € M since g7*(C) € N

(g is measurable) and f measurable. O
We have used above a simple property of the inverse image:
(9o /)~H(C) ={z € X, g(f(x)) € C}
={re X, flx) eg7(O)} =1 (g7(O)).
Lemma 1.1.7. Let (X, M) be a measurable space and let A C X. The set
Ma ={M N A}pem (1.1.2)

18 a o-algebra on A, the so-called o-algebra trace on A of M. It is the smallest
o-algebra on A such that the canonical injection ta of A into X is measurable.

Moreover, if Ae M, Ma={M e M, M C A}.

(1.1.1)

Proof. The properties in Definition 1.1.1 are obviously verified in both cases (A
in or not in M). We note also that a o-algebra on A such that ¢4 is measurable
must contain LZI(M) = MnN A, for any M € M, proving the second statement.
The last statement is obvious. g

1.2 Measurable spaces and topological spaces

Definition 1.2.1. Let X be a set. A family O of subsets of X is a topology on X
whenever the following conditions are satisfied,

(1) O, €0foriel = Uie0;€0,

(2) 01,02 €0 = 01N0; €0,

(3) 0, X €.
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In other words, O is stable by union and by finite intersection?. We shall say that
(X, 0) is a topological space.

Let (X, O) be a topological space. A set F' C X is said to be closed whenever
F€ is open. Of course, the intersection of a family of closed sets is closed as well as
a finite union of closed sets. The interior of a set A C X is defined as the union of
the open sets included in A: the interior of A is open. The closure of a set A C X
is defined as the intersection of the closed sets containing A: the closure of A is
closed. Denoting by A the closure of A and by A its interior, we have

(Ay[ U Qy N o= [ F=A4a, (1.2.1)

) open CA Q) open CA F closed DA*®

so that, defining the boundary of A as 0A = fl\/ﬂl, we have

0A=AnN (A)C = AN Ac (in particular, a closed set). (1.2.2)
It is also easy to verify from the very definitions that
interior(ANB) = AN B, closure(AUB) = AU B. (1.2.3)

In fact AN B is open included in A N B, thus included in the interior of A N B.
Conversely the interior of AN B is open included both in A and B so both in A
and B and we get the first equality. To obtain the second one, we use the first and
(1.2.1) with

(closure(A U B))C = interior(A° N B°) = interior(A°) Ninterior(B¢) = (A4)°N(B)°.

The following inclusions are satisfied whereas the equalities are not fulfilled in
general?, o o
interior(AU B) D AUB,  closure(AN B) C AN B.

Let V' be a subset of a topological space X and z € X. We shall say that V' is a
neighborhood of x if z € V, i.e., if V contains an open set containing x. The set
of neighborhoods of a given point z will be denoted by ¥,. We can note that for
x € X,

VW, Vet,=We?, (1.2.4)
VieVj=12=ViNVa €Y, (1.2.5)
0¢ v, Xc¥, (1.2.6)

2We may note that stability by union implies for I = () that § € ©. Moreover stability by
finite intersection implies for a set of empty indices that X € O. Condition (3) is somehow a
consequence of (1) and (2).

3Taking in C the intersection of half-spaces &+ Re z > 0, we find a counterexample to the second
equality with AN B = @, An B = iR. To violate the first it is enough to use +Rez > 0 with
AUB=C, AUB ={z,Rez # 0}.
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These properties define filters, a notion studied more extensively in Section 10.2 of
our Appendix. Metric spaces are very important examples of topological spaces: a
metric space is a set X equipped with a distance function d, i.e., d: X x X — R
such that

d(z,y) =0<=x =y (separation), (1.2.7)
d(z,y) = d(y,x) (symmetry), (1.2.8)
d(z,z) <d(z,y) +d(y,z) (triangle inequality). (1.2.9)

We define the topology O4 associated to the metric d as the family of sets which
are unions of “open balls”

B(z,r) ={y € X,d(y,z) <r} (zr€ X,r>0 given). (1.2.10)

Stability by union follows from the definition and to show the stability by fi-
nite intersection, it is enough to note that for x € B(z1,r1) N B(x2,r2) we have
B(z,r) C B(z1,71) N B(x2,72) with r = min(rl —d(z,x1),r2 — d($7$2)) since

)

d(y,z1) < d(y,z) +d(z,z1) <r+d(z,z1) <71,
<d(y,z) +d(z,x2) < r+d(z,x2) <ro.

d(y, w2) < d(

As a result, a finite intersection of open balls is a union of open balls, implying
that Oy is a topology. For x € X, r > 0, the “closed ball” B.(z,r) is defined as

d(y, ) <1":>{

Be(z,r) ={y € X, d(y,z) <r}, (1.2.11)
and we note that B(z,r) C B(z,r) C B.(z,7) since B.(x,r) is closed and contains
B(x,r).

R? is a metric space for the topology defined by the Euclidean distance. More
generally, a vector space E on C or R equipped with a norm, i.e., a mapping
N(z)=0<=z=0,
N:E — Ry, sothat { N(az)=[a[N(z), fora € C,z € E, (1.2.12)
N(z +y) < N(z) + N(y),

is a metric space for the distance N(x — y). (E, N) is called a normed vector
space. For instance, we may consider the space C°(]0, 1], R) of real-valued functions
defined on [0, 1] equipped with the norm

[flloc = sup [f(z)].
z€[0,1]

4(BC(£E,T'))C = Uy’d<zﬁy)>TB(y, d(z,y) — r) since if d(z,y) < d(z,y) — r and d(z,y) > r, we get
d(z,y) +7 <d(z,y) <d(z,2) +d(z,y) = r <d(z,2).

This implies that (Bc(x,7))¢ contains the above union and the inclusion is obvious.
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Yy = fn(x)

1/n

0

Figure 1.1: SEQUENCES f,, AND g¢,.

Let us recall that on R?, all the norms are equivalent (see Exercise 1.9.8). The
normed vector space C°([0, 1], R) equipped with the norm || - ||o, defined above is
complete®. A complete normed vector space is called a Banach space.

We may notice that all the norms on C°([0, 1],R) are not equivalent (see Ex.
1.9.8). We may consider the norm (Axioms (1.2.12) are easy to check)

11l = / ().

The sequence f,, is bounded for the norm || - ||; and unbounded for || - ||oc. On the
other hand the sequence of continuous functions g, is a Cauchy sequence for || - [|1
and converges for || - [[; towards the discontinuous function 1(1/51] (see Ex. 1.9.8).
Of course, a topology fails in general to be stable by complement: on the Euclidean
R, the complement of the open set |0, 4o00[ is | — 0o, 0] which is not open since it
does not contain an open ball containing 0. In fact a topological space is said to
be connected (intuitively made of a single piece) whenever the only sets which are
both open and closed are the whole space and the empty set (see Appendix 10.2
on connectedness of topological spaces).

Lemma 1.2.2. Let (X,0) be a topological space and let A be a subset of X. The
set

Oy = {Q N A}Qeo (1.2.13)

s a topology on A, the so-called induced topology on A by the topology of X, or
the subspace topology. It is the smallest (coarsest, weakest) topology on A such that

5A normed vector space is said to be complete whenever all Cauchy sequences are convergent.
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the canonical injection 14 : A — X is continuous. The closed sets of A for that
topology are Ca = {F N A} Felosed in X5 i-€., the “traces” of closed sets of X on A.

Proof. The properties of Definition 1.2.1 are obviously verified. The canonical
injection is indeed continuous since Lzl(O) = 04 and if O is a topology on A
making ¢4 continuous, this implies LZI (0) C O. Let ® be a closed set of A for this
topology: we have, with complements in X, N A = QN A for some 2 € O: as a
consequence, since ® C A, we get & = AN(PUA) = AN(Q°UA%) = ANnQe. O

In a topological space, it is interesting to examine the o-algebra generated
by the topology.

Definition 1.2.3. Let (X, O) be a topological space. The Borel o-algebra on X is
the o-algebra generated by O (according to Definition 1.1.3).

Although the definition above is clear-cut, it does not give a very precise
indication of what a Borel set is (an element of the Borel o-algebra). For instance,
a countable union of closed sets, called an Fy, is a Borel set (the set Q of rational
numbers, as a countable union of singletons is an F,). Its complement is a count-
able intersection of open sets (called a Gs set): the set of irrational numbers on
the real line is a G5 set. Some subsets of R can be at the same time F, and G
such as [0, 1], a closed set (thus F,,) and Gs since

0,1] = mn>1}1,1+ ! [
n n

However Q° (a Gs set, according to the above argument) is not an F,. Otherwise,
we could find a sequence of closed sets F;, such that R\Q = U,, F},; since R\Q does
not contain any interval (Q is dense in R) the interior of each F,, is empty. Finally,
it would be possible to write R as a countable union of closed sets with empty
interiors. The Baire theorem (see Section 10.2 in the Appendix) ensures that, in a
complete metric space, a countable union of closed sets with empty interiors has
also an empty interior. The previous equality describing Q¢ as an F, set is thus
absurd.

Lemma 1.2.4. Let (X1,01), (X2,02) be topological spaces and let f : X1 — Xo be
a mapping. The following properties are equivalent.

(i) The mapping f is continuous on X;.
(ii) f71(O2) C Oy, i.e., VO3 € Oq, f7HO02) € O;.

Proof. Note that the continuity of f at a given point x; means that for all V5
neighborhood of f(x1), there exists a neighborhood V; of 21 such that f(V1) C Va.
Using the notation introduced in Section 10.2, it means

—_~—

F(Y21) D Vi(an)-
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Since a neighborhood of a point contains an open set containing that point, we
may replace in the previous definition the word neighborhood by open neighborhood.
Continuity on the whole X; means continuity at each point of X;. If f is continuous
on X7 and V5 is an open subset of Xs, for z; € f_l(Vg), there exists V7 3 x1 such
that f(V1) C Vz, implying Vi C f71(f(V1)) C f~1(V2). As a result, f~1(V5) is
open since it is a neighborhood of all its points. Conversely, assuming f~1(Oz) C
O, for 1 € X1, 29 = f(x1) and V5 an open neighborhood of x5, the set V; =
f71(V2), is an open subset of X; containing z1. We get f(V1) = f(f~1(V2)) C Va,
providing the continuity of f. O
Proposition 1.2.5. Let (X1,01), (X2,02) be topological spaces and Bj,j = 1,2,

their Borel o-algebras. If f : X1 — Xo is continuous, then it is measurable.

Proof. Continuity means f~1(03) C O;. Since By is generated by Oz and O C By,
Lemma 1.1.4 proves that f is measurable. O

Note that there exist functions which are continuous at only one point, such as

r forxeQ,
—x forz ¢ Q,

One can show (Exercise 1.9.9) that the discontinuity set of a function f from
R to itself is an F,, and that for any F, set A, there exists a function whose
discontinuity set is A. In particular, there is no function from R into itself whose
discontinuity set is Q°. On the contrary, the following function is continuous at
Qc, discontinuous at Q:

continuous only at 0.

f R—=R, f(m)Z{

1 forx =0,
f(x)=1<1/q forx=p/q,peZ* qc N* irreducible fraction, (1.2.14)
0 forxé¢Q.

On the other hand, an open subset of R is an F}, set, as a countable union of closed
intervals: let U be a non-empty open subset of R and let « € U; there exists p > 0
so that | — p,z + p[C U and since Q is dense in R, this implies the existence of
p,q € Qsothat x — p < p <z < q<x+p, and thus [p,q] C U. The open set U
is thus a union of compact intervals with rational endpoints. Now the mapping

[p,ql = (p,q)

is one-to-one from the set Q of compact intervals with rational endpoints into
Q x Q which is equipotent to N. As a result Q is (infinite) and equipotent to a
subset of N, thus equipotent to N, proving the sought result. More generally, we
have in any dimension the following result. We shall say that a compact rectangle of
R? is a set [1i<;<ala;, b;] and that an open rectangle of R? is a set [Ti<j<dlaj: b5l
Of course, compact rectangles are compact (even if for one j, a; > b;, since the
empty set is compact) and open rectangles are open (even if for one j, a; > b;,
since the empty set is open).
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Lemma 1.2.6. Let d > 1 be an integer. We define

Q= H [ajv bj]
1<j<d (aj,b;)€EQ?
a;<bj

Q is a countable family of compact rectangles of R% such that any open set is a
union (necessarily countable) of a subfamily of these compact rectangles.

Proof. First of all Q is infinite and can be injected into Q?¢, and is thus equipotent
to N. As any neighborhood of z = (x1,...,74) € R? contains a cube

R4 .
{ye > max [y; mg<ﬂ}

with p > 0, we may find p;,q; € Q such that z; — p <p; <z; <¢q; <z; +p. As
a result, for any neighborhood U of z, there exists P,y € Q with z € P,y C U.
Let © be an open subset of R?: for each x € €, there exists a neighborhood U, of
z, included in 2. We have thus

Q = UerUl D UerPJ;,Um D Umeg{x} = Q — Q = UIEQPJ,‘,Uum

so that (2 is a union of a subfamily of elements of Q and since Q is countable, that
union is necessarily countable. g

Let B be the Borel o-algebra of R? and R., R, be the families of compact
rectangles, open rectangles of R?. We have, following Definition 1.1.3 and the
previous discussion

OCMR:) CB= B=H(R.).

Moreover, since [p, q] = Np>1]p—1/n, ¢+1/n[, any compact rectangle is a countable
intersection of open rectangles and thus

R. C M(Ry) => B=.#(0) = #(R.) C M(R,) C B,

so that eventually

B=#(R.)=M(R,). (1.2.15)
We note that, for p,q € R,
[ 7Q} = [p7 +oo[ﬂ] - 007(1] = [p7 +OO[H]Q7 +OO[C: ﬂnZl]p - 1/”7 +00[ﬂ}q7 +OO[C7

so that the Borel o-algebra on R is generated by the intervals (Ja, +00[)eecr and
thus also by the intervals (] — 00, al)qer or (since |a, +0o[= Up>1[a + 1/n, +00])
by the intervals ([a, +00[)ser and thus also by the intervals (] — 0o, a)qer. Using
Lemma 1.1.4 to check the measurability of f : X — R, it suffices to verify the
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measurability of f~1(]b, +oc[). For instance if X is a Borel subset of R and f is
monotonic on X, then f is Borel-measurable. In fact if f is increasing, b € R with
A= f71(]b, +00]) # 0, we have

A =Uaea([a, +oo[NX), (1.2.16)

since if X >z > a € A, we obtain f(z) > f(a) > b and thus € A (the other
inclusion is trivial). As a result, we get

Jinf A, +00[NX C A C [inf A, +oo[NX, (1.2.17)

since the second inclusion follows from (1.2.16) and the first is true if inf A = —oo0,
also from (1.2.16); if inf A > —oo, inf A € R since A # @) and for all € > 0, we can
find a. € A so that,

infA<a.<infA+e = J]infA, 4+00o[NX C Ucsolae, +o0[NX C A,

where the last inclusion follows from (1.2.16). Whatever happens with inf A, be-
longing or not to A, we find from (1.2.17) that

A=[inf A,+0[NX or A=]infA, +oo[NX,

Borel-measurable in both cases.

Theorem 1.2.7. Let (X, M), (Y,N)) be measurable spaces and R equipped with
its Borel o-algebra. Let uq,...,uq be measurable mappings from X in R and let
® :RY =Y be measurable. Then the mapping

X =Y
z = P(ui(w),. .. uqlz))

is measurable. In particular, f : X — C is measurable if (and only if) Re f,Im f
are measurable and then |f| is also measurable. If f,g : X — C are measurable,
then f + g, fg are also measurable. Moreover, if A € M, the indicator function of
A is measurable.

Proof. From the composition Lemma 1.1.6, it is enough to check the measurability
of z+— V(z) = (wi(z),...,u4(x)) from X to R?. From Lemma 1.2.6 and Lemma
1.1.4, it suffices to verify that the inverse image by V of a compact rectangle of
R? belongs to M. For that purpose, we note that

VLT lasnbil ) = () wit(agby]) € M,
1<j<d 1<j<d

since the u; are measurable. The other statements in the theorem follow immedi-
ately (the very last assertion is obvious since 1:\1(J) e {0, A, A, X}). O
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The following generalization of the previous theorem can be useful.

Theorem 1.2.8. Let (X, M), (Y,N) be measurable spaces and let T be a separable
metric space equipped with its Borel o-algebra. Let uq,...,uq be measurable map-
pings from X into T and let ® : T4 — Y be a measurable mapping. Then the

mapping
X =Y
z = P(ui(w),. .. uqz))

is measurable.

Proof. According to Lemma 1.1.6, it is enough to check the measurability of = +—
V(z) = (u1(z),...,ua(z)) from X in 7% From Lemma 1.1.4 it suffices to check
that the inverse image by V of an open set of 7% belongs to M. Moreover for
Q an open subset of T% and z = (z1,...,74) € Q, there exist ry,...,7q4 positive
numbers (that we may suppose rational numbers) so that the product of open
balls

B(z1,7m1) X -+ X B(q,7q) 3

is included in 2. With D a countable dense subset of T', we may find y1,...,yq4 € D
so that dist(z;,y;) < r;/2. Then the ball B(y,,r;/2) is such that

xj € B(y;,7;/2) C B(zj,15),

since dist(z,y;) < r;/2 implies dist(z, z;) < dist(z, y;) +dist(y;, z;) < r;j/2+71;/2
so that z € B(z;,7;). As a result, the open set Q is a union of products

B(yhpl) X X B(yd7pd>7 Yj € D7p_7 € Q

There is a surjection from D? x Q7 (which is countable) onto the set P of these
subsets and thus P is countable. We have

VLTI Bwie) | = () uy (B, pi)) € M,
1<j<d 1<j<d

since the u; are measurable. O

Lemma 1.2.9. Let (X,0) be a topological space and A € Bx, the Borel o-algebra
on X. The Borel o-algebra Ba on A is

BAZ{MEB)(,MCA}Z.//Z(OA>, (1.2.18)

where O 4 is the topology on A, given in Lemma 1.2.2.
Proof. From (1.2.13) and Definition 1.2.3, we have By = .#(O4). Since

B={MeBx,McC A}
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is (obviously) a o-algebra on A containing O 4, it contains .#(0). Moreover B
makes the canonical injection ¢4 measurable since L:‘l(B x) = B. Also B is the
smallest o-algebra on A making 14 measurable since any o-algebra making ¢4
measurable must contain Lgl(B x). We note now from Lemma 1.1.4 that the o-
algebra M(O,) on A is such that ¢4 is measurable since ¢ ;' (O) = O4: as a result,

we get that .#(O4) contains g, proving the lemma. O

Definition 1.2.10. The extended real line R is the set obtained by adjoining two
non-real distinct elements to the real line; it is the topological space RU{—o0, +00},
where the topology contains the open subsets of R and the sets

Ja, +oolU{+oc},  {—oo}U] = o0,4q]

(denoted respectively by ]a,+oo] and [—oo,a[). The order relation on R makes
—o0o the smallest element and +oo the largest. This order relation is compatible
with the topology since the open sets are unions of intervals.

R is easily shown to be homeomorphic to [—1,1] (i.e., there exists a bi-
continuous bijective mapping 1o from R onto [—1,1]), for instance by extending
continuously

Rz \/111:2 :’(/}0(13) S (_171>7 ¢0(i00):i17
1.2.19
-1,)3y— Y =yl R, g (£1) = £ec. ( )

V1-12

That homeomorphism is compatible with the order relation, i.e., is increasing.
We note also that any monotone sequence (x,) in R converges since ¢o(zy) is
monotone in [—1,1] thus converging (since it is either increasing bounded from
above or decreasing bounded from below) and since 1 ! is continuous, we get the
result. Since R is compact, for any A C R, there exists a

least upper bound, or supremum, sup A = inf{M € R,Va € A,a < M}, (1.2.20)

greatest lower bound, or infimum, inf A =sup{m € R,Va € A,a >m}. (1.2.21)
If A =0, following the definition, we get sup A = —oo,inf A = +o0, the only case
where the infimum is strictly larger than the supremum.

Definition 1.2.11. Let (z,)nen be a sequence in R. The sequences (infg>p Tk )nen,
(SUpy>,, Tk )nen, are monotone (the first is increasing, the next one decreasing).
We define

liminf x,, = ngl}}oo(ligfz mk) = ilelg(érzli mk),
limsupx, = lim (sup mk) = inf (sup mk)

n—-+o00 k>n neN k>n
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Proposition 1.2.12. Let (2, )nen be a sequence in R. Then liminf z,, is the smallest
accumulation point of the sequence and limsup xz,, the largest. We have

liminf z,, <limsupz,
and equality holds if and only if the sequence is converging to this value.

Proof. Using the homeomorphism vy defined above (cf. (1.2.19)) we can assume
that (2, )nen is a sequence in [—1, 1]. If y is an accumulation point of the sequence,
i.e., a limit point of subsequence, (zn, )ken, (Mo <M1 < nNg < +++ < N < N1 <
-), then
yk_ﬁ Tp, < ls>u7i T k_>—+> lim sup x,,,
where the second limit comes from a subsequence of a converging sequence. We
get thus y < limsup z, and similarly y > liminf z,,. Moreover, limsup x,, is an
accumulation point of the sequence since for all € > 0, N > 1, we may find n, > N
with
lim sup x,, = inf(sup zx) < sup x < limsupx,, + ¢,
o k>n k>ne

so that, for n > 0,3n(e,n) > n. with

limsup ,, —n = inf(sup x) —n < sup xp —1 < Ty(ey) < sUp T < limsupz, +e.
o k>n k>n. k>ne

As a result, for all €, 7 positive, for all N > 1, we can find n(e,n) > n. > N with
limsupzp, — N < Ty(ey) < limsupx, +¢,
proving the result. If lim sup x,, = liminf z,, = [, then

I +— inf o <2x, <supzp —> l,
n—-+oo k>n k>n n—-+oo

implying lim x,, = [. On the contrary, if lim inf x,, < lim sup x,,, the sequence has
at least two different accumulation points and cannot converge. g

Proposition 1.2.13. Addition and multiplication of real numbers can be extended
continuously respectively to®

(R x R)\{(400, —0), (—00,+0)} and to (R x R)\{(0, £00), (o0, 0)}.

6In other words, & 4+ y is meaningful for € R,y € R, provided we avoid the “undetermined
expression” +o0o0 — co. Same thing for the product and 0.co. The adjective “undetermined” is
justified by the fact that there is no continuous extension of the addition in R to R: if such
an extension were existing, for xp, = —n + [, yn = n, we would have for all values of the real
parameter [, I = lim(zy + yn) = limzyn + limyn, = +00 — 0co. Somehow worse than this, with
Tn = —n+ (—1)",yn =n, +00 — oo would be the limit of the non-converging sequence (—1)™.
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Let (Xn)nen, (Yn)nen be sequences of R such that x, + yn, liminf z,, + liminf y,
and lim sup z,, + limsup y,, are meaningful. Then, the following inequalities hold:"

liminf x,, + liminf y,, <liminf (z,, + y,)

< limsup (2, + ypn) < limsup x,, + limsup yy,.

Proof. Let us first assume that both sequences (z,,), (y») are bounded in R. For
k > n, we have zp + yr < Sup;>,, T1 + Sup;>,, ¥ so that supys, (v + Ye) <
SUP;>, Tt + SUp;>, Yi- As a result, taking limits for n — +oo, we get

limsup (z,, + yn) < limsup ,, + lim sup y,.
Noticing that

liminf(—x,) = sup(inf (—z,)) = sup(—sup z,,) = — inf(sup z,,) = — limsup z,,,
n k2n n k>n n k>n

we get the result. We leave for the reader to check the remaining cases when at
least one sequence is not bounded in R. O

The following result will be useful in the sequel.

Lemma 1.2.14. Let (ak,)ken,ien be a double sequence of Ry. Then

Z(Z akg) = Z(Z akl). We shall write Z agy for that sum.
k l 1 k

k.l

Proof. We have seen above that series of elements of R converge towards their
supremum®. Thus, for all K, L, we have

o= S2(Sw) = Cgun( 3 ) = 32 [un( 35 )]

o1 0<I<L 0<kh<K 0<iI<L
> E [Sup( E akl)] > E { E akl] = E { E akl}
0<k<K LL20 g 0<k<K L0<I<L 0<i<L lo<k<K

and for all L, o > 3 . (>4 ar], which implies 0 > Y, (Zk akl), and the
result by exchanging k and .

Remark 1.2.15. Addition of real numbers can be extended continuously to R4 x
R ; it is thus associative, commutative, with neutral element 0. Multiplication of
real numbers cannot be extended continuously to Ry x R4 but only to R:_ X R:_.

"Equalities are not true in general: check for instance x, = (—1)"/2,yn = (=1)"*1, for which
liminf xy + liminfy, = —1/2 — 1 < liminf (zn +yn) = —1/2 < limsup (zn +yn) = 1/2 <
limsup zy, + limsupy, = 1/2 + 1.

8In particular, the infinite sums in the statement are meaningful.



1.3. Structure of measurable functions 15

We could use the (discontinuous?) convention 0 - oo = 0 and!? it is easy to verify
that this new multiplication is associative, commutative, with neutral element 1,
distributive with respect to the addition. The reader may also check Remark 1.3.4
below.

1.3 Structure of measurable functions

Proposition 1.3.1. Let (X, M) be a measurable space and let (fn)nen be a se-
quence of measurable functions from Xinto R. Then the functions sup f,, inf f,,
limsup f,, liminf f,, are measurable. In particular, the pointwise limit of a se-
quence of measurable functions is measurable.

Proof. Let us set g = sup fy, i.e., g(x) = sup,cy fn(x). For a € R, we have
97" (Ja, +00]) = Unenf;, * (Ja, +o0)),

since sup,,cy fn(z) = g(x) > a <= 3ng € N,such that f,,(z) > a. Consequently,
we get g~ 1(Ja, +00]) € M. According to Lemma 1.1.4, this proves the measura-
bility of g since the Borel o-algebra By of R is equal to the o-algebra generated
by the intervals ]a, +o00] (see (1.2.15), the discussion on page 9 and the increas-
ing homeomorphism of R with [—1, 1] displayed in (1.2.19)). Thus g = sup f, is
measurable. Moreover the identities

inf f = —sup(~f,).  lmsup f, = inf(sup i), lninf f, = sup(inf fy)
o k>n n 2n

give the other results. O

Definition 1.3.2. Let (X, M) be a measurable space. A measurable function s :
X — [0, +00) is said to be simple if it takes only a finite number of values.

Let {a1,...,am,} be the image of s. Defining Ay, = s~*({ax}), we get that
{Ak}1<k<m is a partition of X and

8(33>: Z O‘klAk(m)7

1<k<m

where 14, is the indicator function of Aj.

9Considering the sequences in (0, +00), (Tn,yn) € {(1/n,n2), (1/n%,n), (I/n,n), (2+(;1) ,n)},
we see in each case limz, = 0,limy, = +oo and that the limit of z,y, could be anything in
Ry or that the sequence xnyn is not converging. A somehow worse behaviour is given by the
sequences

zn =qn/(n(1+qn)), yn=n(l+gqn), where Q= {gn}tn>1.
We have limz, = 0, limy, = 400 and the sequence (znyn) is dense in R.
10That commonly used convention refers to a “potential” vision of infinity: infinity is seen as
something that can be reached by some limiting process. Looking at the product On = 0 for
all n, that convention looks natural. That potential vision is opposed to an “actual” viewpoint
where infinity is there from the beginning. In measure theory, that convention is justified by
the fact that integrating the zero function on any set, even of infinite measure, will give 0. Also
integrating a function which is identically +oco on a set of measure 0 will give 0.
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Theorem 1.3.3. Let (X, M) be a measurable space and let f : X — R4 = [0, 4+00]
be a measurable mapping. There exists a sequence (si)i>1 of simple functions such
that

(1) 0<s1<sp< - <5 <spp1 <2 <
(2) Va € X, limy si(z) = f(x),
(3) For [ bounded, the limit is uniform: limy (supmex |f(x) — sk(x)\) =0.

Proof. Let us first assume that 0 < f < 1. We define!!
sp(z) =27 FE(2% f(x)). (1.3.1)
The function sj takes finitely many values since 0 < ok < 2k We have also
s <f <o +1=0<f—s5, <27F, (1.3.2)

so that s converges uniformly towards f. Moreover, multiplying (1.3.2) by 2 and
writing (1.3.2) for k + 1, we find

N3 2FFlg <okt oktlg |\ = B(2FHLf).
Using the definition of the integer value, we obtain
Mg, < 2Mspi, e, s < spt,

proving that (si) is an increasing sequence. Every function sj is measurable, as
the composition of measurable functions!'?. If 0 < f < M, for some positive real
number M, we can apply the previous result to f/M. Let us go back to the case
0< f<1and set

Sp = sk — 2 FE(f).

If f(x) < 1, we have s(z) = 3¢ (). If f(z) = 1, we have 1 — 27% = 5, (x). In both
cases, the sequences (5 (z))ren are increasing with limit f(x) and 0 < §(x) < 1.
Using the homeomorphism 1)y defined in (1.2.19), which identifies Ry to [0, 1], we
may consider

f o Py !

X — Ry — [0,1] — R4

Using the previous arguments, we find a sequence of simple functions t; valued
in [0,1], increasing with limit 1o o f. As a result, ¢; ' ot), is a simple function (in
particular with finite values since tj has values < 1) with limit f. The sequence
vy Lo ¢, is increasing as ¢, is and Yo !'is increasing. The proof of the theorem is
complete. O

L E(t) stands for the integer value of t € R, also called floor function or greatest integer function:
E(t) is the unique integer such that E(t) <t < E(t) + 1.

12The integer value is measurable since E~!([a,+oo]) = [a,+oo[ if a € Z and if a ¢ Z,
E~1([a, +0o0]) = [E(a) + 1, +oo].
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Remark 1.3.4. Let f,g be measurable functions from X into Ry; then f + g is
well defined and measurable. It follows from Theorem 1.2.8 and the measurability
of the (continuous) mapping

R+ X R+ — R+
(o, B) = a+ .

Analogously, the symmetric (discontinuous) mapping M

R+ X R+ — R+

(aaﬂ) = OZ'ﬂ

extending continuously to ]R: X Ri the multiplication on R% x R% and defining
0.00 = 0 is Borel-measurable: for a € R, the set

Ell = {(m,y) € RJr X R+,M(I,y) > CL}

. . . * * . . . .
is included in R, x R, on which M is continuous. As a result, F, is an open subset

of Ri X ]Rj_, thus a Borel set of R. x R;. Using Theorem 1.2.8, we get that f-g¢
is measurable.

1.4 Positive measures

Definition 1.4.1. Let (X, M) be a measurable space. A positive measure on (X, M)
is a mapping p : M — Ry satisfying p(0) = 0, and such that, for any sequence
(Ag)ken in M of pairwise disjoint sets (k # | = A N A; = 0),

UkENAk ZM Ak (1.4.1)
keN

That property is called o-additivity'® and the triple (X, M, u) is called a measure
space (where p is a positive measure). When p(X) = 1, we shall say that u is a
probability measure and the triple (X, M, p) is called a probability space.

N.B. We shall define later in this text (Definition 7.1.1 in Chapter 7) the notion
of complex measure.

Let us give a few simple examples.
(1) Let X be a finite set, equipped with the o-algebra P(X), and let us define the
counting measure o by po(A) = card A.

(2) Let X be anon-empty finite set, (c-algebra P(X)), and let 11 be the probability
measure p1 defined by
p1(A) = card A/ card X.

3or countable additivity.
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(3) Let X be a set, (o-algebra P(X)). We define the counting measure on X by

(4) = card A, when A is finite,
a B ~+o00, when A is infinite.

To check that it is indeed a measure, we consider a sequence of pairwise disjoint
subsets (Ag)ren: if one of them is infinite, (1.4.1) is obvious as well as when they
are all finite with a finite union. If they are all finite with an infinite union, (1.4.1)
follows from the inequalities

card(Up<r<nAk) = Z card Ay < anrdAk
0<k<N 0<k

and limy_, 400 card(Up<p<n Ag) = +00.

(4) Let X be a set (o-algebra P(X)). For a € X we define §,, the Dirac measure
at a by

%A =10 ita ¢ A

{1 ifa € A,

(5) Series of positive measures on the same measurable space.

Lemma 1.4.2. Let (X, M) be a measurable space and let (pj)jen be a sequence of
positive measures on (X, M). For A € M, we define n(A) = 3,y p;(A). Then
L is a positive measure on (X, M).

Proof. Let (Ag)ken be a pairwise disjoint sequence in M. We have

UkenAr) =Y 15 (Uren Ag) = Z(Z Mj(Ak)

JEN o-additivity JEN kEN
of each p;
= 2.2 mA) =) u(4). O
Lemma 1.2.14 KEN jEN keN

(6) We want to construct a positive measure on (R, Br), where By is the Borel
o-algebra on R, such that, for a < b real numbers,

p([a,0]) = b—a = p(]a,b]).

It is easy to construct p on finite unions of pairwise disjoint intervals. Although
Br is generated by the intervals in the sense of Definition 1.1.3, extending p to
By is a difficult task which is one of the main goals of this book.

(7) Measure with density v with respect to the Borel measure on R. Let v be a
continuous non-negative function on R; we want to construct a positive measure
defined on Bg such that for a < b real numbers, we have

b
i ([a,B]) = / v(t)dt,
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where the integral of v is the Riemann integral. It is also easy to construct u,
on finite unions of pairwise disjoint intervals (this is the density version of the
previous example in which v = 1). Also a difficult construction to be performed in
the sequel.

(8) Borel measure on RY. With Bga standing for the Borel o-algebra on R?, one

of the goals of this book is to provide a construction of a positive measure defined
on Bga, such that, for a; < b; real numbers, we have

“( 11 [aj,bj}> = II ® —ay.

1<j<d 1<j<d

It is the d-dimensional version of the example (6) on page 18.

(9) Cauchy probability on R with parameter o > 0. It is the positive measure with
density
1 o
Ta? 12’
“+oo
We note that [, ! a2y dt = [717 arctan(t/a)} = 1. We define the repartition

function of the probability 4 on R as

F(t) = p((—o0,t).-

The function F' is increasing, tends to 0 (resp. 1) when ¢ goes to —oo (resp. +00),
and is left-continuous (see Exercise 1.9.25). In the specific case of the Cauchy
probability, the repartition function is

1 t 1
F(t) = t .
(t) 7raurcaun<a>+2

(10) The Laplace—Gauss probability with mean (or ezpectation) m, variance o>

(o > 0 is the standard deviation), has density

1 (x —m)?
exp —
oV2r P 202
We note that fR exp — (mggf)zdx = o/27 and
(r —m)? dx / 5 (x —m)? dx 5
T exp — =m, T —m)exp — =co°.
/R P 202 o\2r R( ) exp 202 g\/27

(11) Bernoulli probability with parameter p € [0,1]: pdp + (1 — p)d1 on the set
X ={0,1}.

(12) Binomial probability with parameters n € N* and p € [0, 1],

p= > Ckp"(1—p)" e,

0<k<n
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where

& n! n
ct= M =(0) o
We can counsider p as a positive measure on {0,1,...,n — 1,n} so that u(4) =
>kea Cnpt(1 —p)" k.
(13) The Poisson probability with parameter A > 0 is given by

k
e_A Z 2' 6k7

which is meaningful, e.g., from Lemma 1.4.2. We may consider u as defined on the
subsets of N by u(A) =e 3, 4 )]‘j

Lemma 1.4.3. Let (X, M, u) be a measure space where p is a positive measure
and let f : X — Y be a mapping. The set N = {B CY,f~Y(B) € M} is a o-
algebra on Y : it is the largest o-algebra on' Y making f measurable. The so-called
pushforward measure fi(u) is a positive measure defined on N by

F)(B) = p(f~1(B)).
If g: Y — Z is another mapping, we have (g o f)s = g« © fu.

Proof. The first statements follow from Lemma 1.1.5. To check that f.(u) is a
positive measure defined on A, we consider a sequence ( By, )ren of pairwise disjoint

elements of A" and we note that (f~!(Bx)) is a pairwise disjoint sequence of
M and thus

Fe(1) (UkenBr) = p(f " (UkenBi)) = p(Urenf " (Br))
= Zk p(f~(By)) = Zk f()(Br).

Also we have trivially f.(p)(0) = p(f~(0)) = (@) = 0. The last “functorial”
property'* is obvious and follows from the other functorial property (see (1.1.1))
(go f)™HC) = f~H(g7(C)): with P = {C C Z,g~*(C) € N}, we have for C € P,

((go N(m)(C) = u(lgo /)~HC)) = u(f~(g71(O))) = fu(w)g(O))
= (9« (f(1)))(C) = ((g+ 0 f)(W))(C). O
Proposition 1.4.4. Let (X, M, 1) be a measure space where p is a positive measure.
(1) For A,Be M, AC B=> u(A) < u(B).
(2) Let (Ak)ken be an increasing sequence of M and A = UgenAg; then u(Ag) 1
(3) Let (Ap)ren be a decreasing sequence in M, such that p(Ag) < +oo and
A = NgenAy; then u(Ag) | u(A) in Ry.

keN

14This covariance property following from the contravariance property for inverse images explains
also the notation with a * at the bottom for the covariant pushforward and a —1 at the top for
the contravariant inverse images.
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Moreover the properties of Definition 1.4.1 are equivalent to p(0) = 0, (2) above
and (AU B) = u(A) + u(B), for disjoint A, B € M.
Proof. The disjoint union of elements of M, B = (B\A) U A, implies u(B) =
u(B\A) + u(A) > u(A) and thus (1). To get (2), we define A_; = (), and prove
inductively that'®

A = Uo<i<k (A N A7),
so that A = Ug>0Ar = Ug>0(Ar N AL_,). For k # 1 (say k > 1 > 0), since (4;) is
increasing, we have

(ApNAG_ )N(AINAT_) = AkNAINAS_ NA] | = AiINAS_| C Af_NAk_1 = 0.

As a result, using (1.4.1), we obtain

pA) = S (AN AGy) = Tm ST p(AeN Afy) = lim p(4,), e, (2)
k>0 0<k<n

We check now (3). We have

Ao\A = Ap N (Ug>04%) = Up>o (Ao NAE) .
~
increasing of k

Applying the already proven property (2), we get (Ao NAL) T u(Ao\A). For each
k, we have
oo > p(Ag) = f(Ax) + pl(A5 1 Ag),

so that u(Ap), w(Ax), u(A§ N Ag) are real numbers'®, and thus

1(Ak) = p(Ao) — p(Ai N Ao) | n(Ao) — n(Ao\A) = u(A),

proving (3). If p is a positive measure, the properties mentioned in the last state-
ment of Proposition 1.4.4 are fulfilled, as proven above. Conversely, we need to
prove (1.4.1). Let (Ax)ken be a pairwise disjoint sequence in M: from property
(2) in Proposition 1.4.4, using finite additivity'?, we get

7 n(Ar) = pUoskenAr) T i(Ukz0Ar), ie, D p(Ar) = p(UkzoAr).

0<k<n k>0

The proof of Proposition 1.4.4 is complete. O

=Ayg, since A;1

~ -~ ~
5 True for k = 0; moreover Agy1 = (Api1 N AU (Apy1 NAg) = (Agp1 NAL) U Ag.
16 At this very point, we are using the assumption u(Ag) < 400, which is necessary as shown
by the counting measure (Example (3) on page 18) on N with the decreasing sequence Ay =
[k, +00[NN: for each k, u(Ay) = 400 and p(Ng>0Ax) = p(@) = 0.
17Trivial inductively from the additivity for two disjoint sets:

#(Uo<k<nt1Ak) = m(Uo<k<nAr) + m(Ant1) = D p(Ak) + p(Antr).
0<k<n
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Remark 1.4.5. Let (X, M, 1) be a measure space where y is a positive measure,
let (An)nen be a sequence in M. Then

(UnenAy,) < ZM(An)' (1.4.3)

neN

In fact, checking the increasing B, = Up<k<nAr, we may apply property (2) in
Proposition 1.4.4 so that

p(UnenAn) = p(UnenBn) = sup u(By) <sup Y p(Ag) = Y p(A
neN "€N0<k§n neN

since the inequality p(Bp) < > o<p<,, #(Ax) holds trivially (inductively on n). See
Exercise 1.9.19 for the Sieve Formula.

1.5 Integrating non-negative functions

We want now to define the “integral with respect to a measure p” of simple
functions as defined in Definition 1.3.2: let s = Y, ., ., @x1a,, where the oy, are
positive, distinct and each Ay belongs to M. The integral will be defined as

[ sdu= 3 awntan)

1<k<m

which is a quite natural definition. We have to pay attention to the fact that
since all o > 0, although p(Ax) could be +oo, the product ayu(Ay) is de-
fined without ambiguity in R;. We should also keep in mind that the elements of
M could be awfully complicated: think for instance of the Borelian sets of type
F0'7 G57 G&Ia ady .- 18'

Lemma 1.5.1. Let (X, M, u) be a measure space where p is a positive measure and
let s be a simple function, that is a measurable function s : X — [0, 4o00[ taking a
ﬁm'te number of real non- negative distinct values aq, ..., 0y, in such a way that

Z1<]<m0‘11A]; i =5 "({ay}). We define

)= Y ayu(4y), (15.1)
1<j<m
a;>0

18 An F, is a countable union of closed sets, a Gy is a countable intersection of open sets, a
Gso is a countable union of Gy sets, a F,s5 a countable intersection of Fi; sets, and so on. That
terminology was introduced by the German mathematician Felix Hausdorff (1868-1942). The
letter o is a symbol for countable union (Summe in German) and § is a symbol for countable
intersection (Durchschnitt).

19We have only to handle products of positive real numbers a; with elements of R1. Moreover
the consistency of our definition relies on the fact that the decomposition of s as such a sum is
canonical since the a;; and thus the A; are functions of s. The condition I(0) = 0 follows in fact
from (1.5.1) since for s = 0, the summation takes place on an empty set of indices. We could
have written I(s) = > ; <<, @jp(A;) using the convention 0.00=0. We have preferred to avoid
that discontinuous convention, at a price of heavier notation.
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and I(0) = 0. For s,t simple functions and A > 0, we have

I(s) = s.up1 I(o), I(s+t)=1I(s)+1(t), I(rs)=A(s). (1.5.2)
0<o<s

Proof. 2° Let o, s be simple functions such that o < s (i.e., Vo € X, o(z) < s(x)).
We have the canonical decomposition

o= Z Brlp,, s= Z a;la;,

1<k<n 1<j<m

where {Bj }1<k<n and {A;}i<j<m are partitions of X. The definition gives

I(o)= > Bepu(Bi) = > Bri(Br N A;).
1<k<n 1<k<n,1<j<m
Br>0 ﬁk>O,BkﬂAJ‘¢@

Noticing that By N A; # (0 implies 85 < «; (since for © € By N A, B = o(x) <
s(x) = «;), and thus «; > 0 when S > 0, we get

I(o) < > auBenA) = Y au(4y) = 1(s),
1<k<n1<j<m 1<j<m
a;>0 a;>0

proving the first result. To prove the next one, we note first that for s,t simple
functions, the function s + ¢ is measurable as a sum of measurable functions and

also simple since it takes only a finite number of non-negative real values. Using
the canonical decomposition of s and ¢, we have

s = Z alej, t= Z /Bk]-Bka so that s+t = Z (Oéj‘i’ﬂk)]-AjﬂBk-
1<j<m 1<k<n 1<j<m
1<k<n

The sets A; N By, are measurable and pairwise disjoint (A; N By N Ay N By =0
when j # 5" or k # k), and since

X =Uigj<mA; = Uigj<m (4, N Br),
1<k<n

we get that {A; N Br}i<j<m,1<k<n makes a partition of X. Since 1y = 0, we

A NB
obtain
s4+t= > (o +Br)lans,. (1.5.3)
1<j<m, 1<k<n
AjﬁBk#@

20This proof is simple, but quite tedious, and could probably be omitted at first reading.
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Whenever the a; + 35 are distinct, Formula (1.5.3) provides the canonical decom-
position of s + t and we find

I(s+1t) = > (aj + Br)u(A; N By). (1.5.4)
1<j<m,1<k<n
AjﬁBk;é@,OéjJer>O
When the a; 4 Bi are not distinct and take the distinct positive values 71, ..., 7p,
we need to rewrite (1.5.3) as

s+t= Z " Z 14,08, -

1<9<p  1<j<m1<k<n
A;jNBr#D,a;+Bk=n

We get
I(s+t)= Z ’WM(U 1<j<mi<k<n (A;N Bk))
1<i<p AjNBL#D,a5+Br="
=D > u(A; N By) = > (aj + Br)n(A; N By),
1<I<p 1<j<m,1<k<n 1<j<m,1<k<n
A;NBr#D, a5+ Br=m A;jNBr#D,a;+B,>0

so that (1.5.4) always hold. On the other hand, we have

I(s)+ I(t) = D> aju(A;)+ Y Brn(By)

1<j<m 1<k<n
(Xj>0 5k>0
= Y auANB)+ Y Bul(4;N By,
1<j<m,1<k<n 1<j<m,1<k<n
Ozj>0 Br>0

and using the notation u,r = pu(A; N By), we have

Z Qi + Z Btk

Ozj>0 Br>0
= Z ok + Z Br itk + Z ok + Z Bk
aj>0,ﬁk>0 O¢j>075k>0 04j>0,ﬁk:0 ozj:O,Bk>0
= > (e HBmrt+ Y (g Bmst+ > (o + Bk
a;>0,8,>0 ;>0,8,=0 a;=0,Br>0
= > (a5 + B,
aj+5k>0

implying indeed

I(s)+I(t) = > (aj + Be)u(Aj N By) = I(s +1).
1<j<m,1<k<n
aj+B,>0, A;NBL#D
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Finally, with A > 0 and s a simple function, we have

Dooaila) = Y Aaju(4y) = M(s),

1<j<m 1<j<m
a;>0

completing the proof of the lemma. O

Thanks to this lemma, we can now define the integral of a measurable func-
tion f: X — [0, +00] = Ry.

Definition 1.5.2. Let (X, M, 1) be a measure space where p is a positive measure
and let f : X — [0, +00] be a measurable function. We define?!

[ fau= s 169
X

s simple
0<s<f

Note that from Lemma 1.5.1, for f simple, we have [, fdu = I(f). Also [, 0dp =
0 since I(0) = 0.

Remark 1.5.3. Going back to the list of examples starting on page 17, we can
check how the integral of a non-negative measurable function is obtained from the
measure of sets.

o Let X ={x1,...,2z,} (0-algebra P(X)) with po(A) = card A. We have

[ s = [ S i = )+ )

X 1<i<n
e Let X = {x1,...,2,} with the probability measure u;(A) = card A/ card X. We
have

e Let X = {z1,...,2,} and u be the measure with density v with respect to pg:

we have
/ fdp=3" fla;)v

1<j<n

In particular, if the non-negative real numbers v; are such that > v; = 1, the
measure 4 is a probability measure on X.

e Let (X = {a;}icr, P(X)) be equipped with the counting measure. We have

[ fan=3pw) = sw Y

J finite CI ieJ

21The notation /

fz)du(x), / f(z)p(dz) is also commonly used in the literature.
X be
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e Let X be a non-empty set and a € X. With p the Dirac mass at a, we have

/X fdu = f(a)

e For the Borel measure m on R? (yet to be constructed), we shall use the same
notation as for the Riemann integral [o, f(x)dz and we shall see that this integral
coincides with the Riemann integral for f € C2(R?). We shall have also

/RlQ(x)dx =m(Q) =0.

e Let 1 be a measure with density v with respect to the Borel measure: we have

/R = / @)

so that du(x) = v(x)dz and we may consider symbolically that u/(z) = v(x),
explaining the notation [ f(z)du(z) = [ f(z)v(z)dz. It is also tempting to use
that notation, say for the Dirac mass at 0 E ]R awfully abusing the notation,
making also a formal integration by parts, with H = 1g, (Heaviside function) we
have, say for f € C}(R),

—7/Rf’(x)H(x)dx:/Rf(f)Hl(m)dm:/Rf(x)‘s(x)dx

Distribution theory is necessary to handle properly these calculations, but the
intuition given by the previous formula is not so bad: the Dirac mass at 0 appears
as the “derivative” of the Heaviside function, is supported at 0, somehow “+oo at
0 and 0 elsewhere.

e Let (X, M, u) be a measure space where p is a positive measure and ® : X —
Y be a mapping. We have seen in Lemma 1.4.3 the construction of a measure
space (Y, N,v) where v = ®,(u) is the pushforward of p. Let g : ¥ — Ry be a
measurable function: then g o ® is also measurable and

/ ng:/(QO‘I’)d#
Y X
since for g = f1p,

/Y gdv = Bu(B) = Bu(@ / Bl a1

:/Xg(boq))du:/x(goq’)du,

and is the result by linearity for simple functions (see Exercise 1.9.23 for the
general case).
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Proposition 1.5.4. Let (X, M, 1) be a measure space where (1 is a positive measure,
let f,g: X — Ry be measurable functions, A,B € M and o > 0 a real number.
We define

. ) , ) f(x) when x € A,
/Afdu = /valédu, with  fa(z) = {O when o & A. (1.5.5)
fa

The following properties hold.

1) 0< f<g= [y fdu < [y gdu, ACB= [, fdu < [y fdp.
2) [yoafdu=oafy fdu.

3) W(A) =0= [, fdu =0, even for f = +ooc.

)

4) Let s be a simple function, E € M, we define \;(E) = fE sdu. Then As is a
positive measure defined on M.

(
(
(
(

Proof. Property (1) follows from Definition 1.5.2 (the second part from f4 < fg)
and (2) follows from Definition 1.5.2 and the last property in (1.5.2):

/afdp: sup I(s)=  sup I(as):a sup I(s):a/ fdu.
bl bl

s simple<af s simple<af @ > simple<f «

To get (3), we consider s simple < f4. We have A C {s = 0}, so that with

Z Otj].Aj

1<j<m
a;>0

as the canonical decomposition of s and «; # 0, we have A; C A and thus u(A;) =
0, implying I(s) = 0 and [, fdu = 0. Let us check (4): we note that A\(0) =
Josdu = 0 from the already proven (3) and u(0) = 0. Let (Ej);>0 a sequence of
pairwise disjoint sets in M and let s = Y, ., -, ar14, be a simple function. With
E =Uj>oFE}, from Lemma 1.5.1, Definition 1.5.2 and Lemma 1.2.14, we get

)\S(E):/XsEdp: Z apu(AxrNE) = Z ak(ZuAkﬂE )

1<k<m 1<k<m >0
Y Y awnnE) = Y AE)
520 1<k<m >0

The proof of the proposition is complete. O
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1.6 Three basic convergence theorems

In the previous section, we were able to define | « fdp, the integral with respect
to a positive measure 4 on X for a measurable function f : X — Ry. We shall
soon see that for f : X — C measurable such that fX |fldu < oo, it is easy to
define [ fdpu.

We are now reaching the most interesting part of Integration Theory (es-
sentially elaborated by Henri Lebesgue in his 1902 Ph.D. thesis defended at the
University of Nancy, under the directorship of Emile Borel, see, e.g., [8] for more
references and a historical perspective) and in particular, we shall state and prove
a couple of convergence theorems. Typically, it is our goal to prove that, under a
rather mild convergence assumption of a sequence f, towards f, we obtain as well
the convergence of the sequence [ + Jndp towards / + fdp (at any rate, our con-
vergence assumption on the f, will be much weaker than uniform convergence). It
is also certainly a great achievement of Lebesgue theory of integration to provide
a vector space of integrable functions which is actually a Banach space. Our first
convergence theorem is due to Beppo Levi.

Theorem 1.6.1 (Monotone Convergence Theorem, a.k.a. Beppo Levi Theorem).
Let (X, M, u) be a measure space where y is a positive measure. Let (frn)n>0 be a
sequence of measurable functions X — Ry.. Let us assume that

Ve e X, fn(z) 1 f(z), ie., fn converges pointwise increasingly towards f.

Then the function f is measurable and

tim [ fudp=sup [ fudu= [ sn
n— oo n>0 X
We can note that the convergence assumption is reduced to pointwise con-
vergence. Of course, without the additional hypothesis of monotonicity, the result
is not true in general??.

Proof. From Proposition 1.3.1 we get that sup f,, is measurable and (1) in Proposi-
tion 1.5.4 implies that the sequence ([ ¢ fndpt)nen is increasing and bounded from
above by fX fdu. As a result, we have

lim fndu—sup/ fndu</ fdu. (1.6.1)

n—oo

We are left with the proof of the reverse inequality. Let 1 > ¢ > 0 and let s be a
simple function such that 0 < s < f. We check the set

n={reX,(1-¢s(z) < fulz)},

xn?, for0 <z <1/n,
22We may consider on [0,1], fn(z) = ¢ 2n2 — zn3, for 1/n <z < 2/n, The sequence of con-
0 elsewhere.

tinuous functions (f,) converges pointwise towards 0, nevertheless fol fn(x)de =n — +oo.
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which is measurable since s and f,, are both measurable and thus
f—(1—¢€)s (meaningful since s takes finite values)

is also measurable. We have E,, = (f, — (1 — €)s)"1(Ry). Moreover, since the
sequence (f,) is increasing, we get E,, C E,41. Also we have X = U,enE, since
if we could find z¢ € Ef, for all n € N, we would have

+o00 > (1 —€)s(zg) > fulzo)(>0)
so that s(z¢) €]0, +o00[ and

f(xo) = sup fal(o) < (1 —€)s(zo) < s(w0) < f(wo)

which is impossible. As a result, from (4) in Proposition 1.5.4 (A5 is a measure),
Proposition 1.4.4 (increasing convergence for the measure of sets) and (2) in Propo-
sition 1.5.4 (homogeneity), we obtain

@ st =M1 (B) T Xa-0u(X) = [ (1= i = (1= 91(6). (162)
E, X

But we have (1—€)s-1g, < f,-1g, < fy, so that (1) in Proposition 1.5.4 implies

/En(l —O)sdu < [E Fudp < /andu- 163

We have thus (1 —€)I(s) = lim, [ (1 —¢)sdu < sup, [y fadpu, so that
(1.6.2) (1.6.3)

(1—¢) /X fdu=(1—-¢€) sup I(s)< h?{n/X frndu < /X fdu, (1.6.4)

s simple <f
for all € € (0,1). Taking the supremum on € > 0, yields the result?. O

Corollary 1.6.2. Let (X, M, u) be a measure space where p is a positive measure.
Let (fn)n>0 be a sequence of measurable functions from X — Ry. We set S(x) =

Z fn(x). Then S is non-negative measurable and

n>0
/XSdu:Z/andu.

n>0

Proof. The measurability of S follows from Proposition 1.3.1 since in the first
place

Sul@)= 3 file) 1 S(@),

0<k<n

231t is true even if fX fdup = 400 since, in that case, all the terms in inequality (1.6.4) are +oo.
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and the measurability of a finite sum of measurable functions valued in R follows
from the measurability (due to the continuity) of

Ry xRy — R,
(o, B) = a+p

We can then apply Theorem 1.6.1 to get

/Sdu:sup/ Spdp. (1.6.5)
X n>0JXxX
But we have
/Sndu:/ > fedp= > /fkdu, (1.6.6)
X X 0<k<n 0<k<n?’X

where the second equality follows from Lemma 1.6.3 below. Assuming provision-
nally the results of this lemma, we see that (1.6.5)—(1.6.6) imply our corollary. O

Lemma 1.6.3. Let (X, M, u) be a measure space where p is a positive measure.
Let f1,..., fn be measurable functions from X — Ry. Then f1 + --- + fn is
measurable and [ (fi+ -+ fn)dp = [ fidp+ -+ [ fydp.

Proof. Using induction on N, it is enough to prove the lemma for N = 2. Let

1, fo as in the lemma and, using Theorem 1.3.3, let 5(1), 5% be simple functions
g E %k

0< séj) 1 £, =1,2. From Theorem 1.6.1, we get

/sgj)dm/ fidp. (1.6.7)
X X

As a result, from Lemma 1.5.1, Theorem 1.6.1 we obtain

[ P+ [ sPan= [ 0+ st [+
X X X X

providing along with (1.6.7) the result of the lemma. O

Lemma 1.6.4 (Fatou’s Lemma). Let (X, M, u) be a measure space where p is a
positive measure. Let (fn)n>0 be a sequence of measurable functions from X — R,.
The following inequality holds:

/X (tim inf f,,)dp < lim inf ( /X fndﬂ)

Proof. We note first that the statement is meaningful since Proposition 1.3.1 im-
plies the measurability of liminf f,, (valued in Ry). Recalling that liminf f, =
sup,en (infr>n fi), we set g, = infy>, fi, and find that g, is measurable and
such that 0 < g, T liminf f,. Applying then Beppo Levi’s theorem 1.6.1, we get

[ gudut [ imint f)dn (1.6.3)
X X
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From Property (1) in Proposition 1.5.4, we obtain

/gndu=/(inf fk)duﬁ/ fndp,
X x kz2n X

implying** liminf [, gndp < liminf [, fodp and from (1.6.8) the result of the
lemma. O

Proposition 1.6.5. Let (X, M, u) be a measure space where p is a positive mea-
sure. Let v : X — Ry be a measurable mapping. For E € M, we define
M(E) = fE vdp. Then A, is a positive measure defined on M. For f: X — Ry

measurable, we have
/fd)\z/ fvdu
X X

where f-v is the measurable function®® defined by the convention 0.00 = 0. We
shall write d\ = vdp and say that A is the measure with density v with respect
to p.

Proof. We have trivially \,(0) = [, vdu = 0 from Property (3) in Proposition
1.5.4. Moreover, for (A4;)jen a pairwise disjoint sequence of M, Corollary 1.6.2
implies

A (Uj>04;) = / vdu = / Zl/ La,dp = Z/ v-la,dp = Z)\V(Aj),
Ujzo4; X j>0 j>07X 7>0

proving the first statement in the proposition. For a simple function f, we have
f=221<j<mjla, and we may assume that the «; are positive real numbers.
We get then

/ fd)\y = Z Otj)\y(Aj) = Z aj/ V- ]_Ajd/J7
X 1<j<m 1<j<m X
and using Lemma 1.6.3, we obtain
/ fd)\,,:/ > aj1Aj.udu:/ f-vdp,
X X1552m b'e

which is the sought result when f is a simple function. In the general case, we use
the approximation Theorem 1.3.3 and Beppo Levi’s theorem 1.6.1, providing with
simple functions (sx) converging pointwise increasingly to f,

/fd)\l, = sup/ spdX, = sup/ Sk -vdy = /f~1/dp.
X B. E Jx E Jx B. X

Levi sp simple Levi

24We are using here that for sequences (zn),(yn) in R, the inequalities Vn,zn < yn imply
liminf ,, < liminf y,. This is obvious since for | > n, infy>, zr < x; < y; so that infg>, zx <
infr>y, yp and limy, (infg>, 2g) < limg (infg >, yi)- - -

25See Remark 1.3.4.
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The reader may have noticed that we have used supy(sy -v) = (supy, si) - v, indeed
obvious except if v(z) = +oo,supy sk(xz) = 0 or v(x) = 0,sup, sp(r) = +oo. In
the latter case, we obtain 0 as well as in the first case since all the si(z) are
necessarily 0. 0

Definition 1.6.6. Let (X, M, ) be a measure space where p is a positive measure.
Let f : X — C be a measurable mapping. We shall say that f belongs to £!(u) if
Jx |fldu < +oo. We set then?®

[ sdu= [ Reridu— [ Repy-duti [ (npredui [ @m)dn

which is meaningful since the integrals [\ (Re f)+du , [ (Im f)+dp are bounded
above (Proposition 1.5.4 (1)) by [ |f|du, a finite quantity.

Proposition 1.6.7. Let (X, M, 1) be a measure space where p is a positive measure.
Then LY(p) is a vector space on C and f fX fdu is a linear form on that space.

Proof. Let f,g bein £(u) and «, 8 be complex numbers. Then af + B¢ is a mea-
surable function (Theorem 1.2.7) and since |af + Bg| < |a||f|+ |8]|g|, Proposition
1.5.4 (1)(2) and Lemma 1.6.3 imply af + 8g € L*(u). If f = f1+if2,9 = g1 +ige
is the decomposition in real and imaginary part, we have from Definition 1.6.6,

Re/X(f + g)dpu = /X(f1 + g1)4+dp — /X(fl +g1)_dp. (1.6.9)
But we have

Re(f+g)=(fitg)+—(i+tag)-=f+a=(f1)—(fi)-+(9)+—(91)-,

so that (f1 +g1)+ + (f1)- + (91)- = (f1)+ + (91)+ + (f1 + g1)-. Applying now
Lemma 1.6.3, we get

/X(fl +91)+du+/X(f1)—du+/x(g1)—du
Z/X(f1)+dl~t+/x(91)+du+/x(f1 + g1)_dp,

and using (1.6.9) (we manipulate here only real numbers and not +00),

Re [ (¢ +a)di= [ (osdas [ aedn= [ (2)-du— [ (o0)-au
:/XRefdu—i—/XRegdu.

26For x € R, 4+ = max(x,0), x— = max(—z,0) sothat x4 >0andx = x4y —x_,|z| = 24 +2_.
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Since we obtain analogously

[ (f+gau= [ (Rt [ edn= [ (B)odu— [ ()-d
:/lefdu—&-/xlmgdu,

we get

/(erg)du:/ Refdqu/ Regderi/ Imfdu+i/ Imgdp. (1.6.10)
X X X X X

But from Definition 1.6.6, we have

/deu:/XRefdu+i/XImfdu,

so that (1.6.10) implies [, (f + g)dpu = [ fdu + [ gdp. On the other hand if
o = a1 + iag is a complex number, we get from our reasoning above

/ozfdu:/ oqfldu—/ ozgfgdu—&—/ ialfgdu+/ ia frdp.
X X X X X

But for aq, f1 real-valued, Definition 1.6.6 and Proposition 1.5.4 (2) provide (with
a discussion on the sign of a1) [y o fidp = oy [ fidu. We are left with the proof
of [ ifidu =i [ fidu, which follows immediately from Definition 1.6.6. The proof
of the proposition is complete. O

Theorem 1.6.8 (Lebesgue dominated convergence theorem).?” Let (X, M, i) be a
measure space where (1 is a positive measure. Let (fn)nen be a sequence of mea-
surable functions from X into C such that the following properties hold.

(1) Pointwise convergence: Vo € X, lim,,_, fn(x) = f(z).
(2) Domination: 3¢ : X — R, measurable, with fx gdp < 400, so that

VneNVz e X, |fu(z) <g(z).

Then f is measurable and fX |fldp < 4+00; moreover we have

lim / |f = foldu =0, dimplying lim / fndu:/ fdu.

n—oo

Proof. The measurability of f follows from Proposition 1.3.1. Moreover, Proposi-
tion 1.5.4 (1) implies

/ \ntdMS/ gdp < +o0.
X X

27We shall give later a slightly more general version taking into account negligible sets.
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Fatou’s lemma 1.6.4 entails then

/|f\du:/ liminf|fn\du§hminf/ \fn|du§/gdu<—|—oo.
X x " " X X

On the other hand, the inequality |f, — f| < 2¢g and the Fatou’s lemma imply
/ 2gdy = / liminf(2g —|fn— f\)dp < liminf/ (2g —|fn— f\)dp
X x n n X
§/ 2gdp < +o00.
X

From Lemma 1.6.3, we obtain thus

[ o1t = fdit [ 1= = [ 20 <tinyint [ (291~ fl)a

As a result, we get
iimsup [ |7, fld
n b'e
< liminf/ (29 — | fn — f1)dp + limsup — [/ (29 = [fn — fl)du} =0,
n X n X

since the numerical sequence [ (2g —|fn— f\)dp is bounded. O

1.7 Space L'(u) and negligible sets

The next proposition introduces the notion of a property true almost everywhere in
a measure space (X, M, ). We shall write for short p-a.e. for u-almost everywhere.

Proposition 1.7.1. Let (X, M, 1) be a measure space where p is a positive measure
and let f,g: X — R4 be measurable mappings.

(1) [y fdp =0 is equivalent to f =0, p-a.e., i.e., p({z € X, f(z) #0}) =0.
(2) If f < g, p-ae., ice., p({z € X, f(z) > g(x)}) =0, then

/deuﬁ/xgdw

(3) If f=g, pace., ie, p({z € X, f(x) # g(x)}) =0, then [, fdu= [, gdu.
(4) If [ fdu < 400, then f < +oo, p-a.e., i.e., p({z € X, f(z) = +o00}) = 0.

Proof. Let us prove (1): if [, fdu =0, we define for any integer k > 1,

Fp={f>1/k}.



1.7. Space L' () and negligible sets 35

The sequence Fy, is increasing measurable and Ug>1 Fy, = {f > 0}. From Proposi-
tion 1.4.4, we obtain pu(Fy) t pn({f > 0}) when k — +o00. But we have

Proposition 1.5.4(1)

M(Fk)Z/Xl(fZ 1/k)dp = /Xk-fdu

= k:/deu:0:>u({f>O}):0.
)

Proposition 1.5.4(2

Conversely, if u(F) = 0 with E = {f > 0}, since f = f - 1g, we obtain
/ fdu = / f-1gdu= / fdu =0, from Proposition 1.5.4(3).
X X E
In particular, for f € £(u), we have

/ |fldp =0= f =0, p-ae. (1.7.1)
X

Let us prove (2). We consider the set F with measure 0 defined by F = {x €
X, f(x) > g(z)}. We have

f=f1pg+f-1ge, g=¢g - 1lpg+g-1lg, (1.7.2)

and f-1gc < g-1gc. From Proposition 1.5.4 and Lemma 1.6.3, we see that it is

enough to prove
/ f-1Edu=0=/ g - 1gdpy,
X b'e

which is indeed fulfilled since [y f-1gdp = [}, fdu = 0, from Proposition 1.5.4(3).
Using (1.7.2) for E = {z € X, f(z) # g(x)}, Lemma 1.6.3 and Proposition 1.5.4,
we obtain (3). To prove (4), we define E = {f = +o0}, and we note that u(E) > 0
implies for all integers n > 1, that

/deuZ/EfduZn/Edu:w(E),

entailing fX fdp = 4o0. g

Definition 1.7.2. Let (X, M, 1) be a measure space where p is a positive measure.
The space L'(u) is defined as the quotient of £!(p) (cf. Definition 1.6.6) by the
equivalence relation of equality p-a.e. (f ~ g means u({z € X, f(z) # g(x)}) = 0).

Remark 1.7.3. We note that L!(u) is a complex vector space as the quotient of the
vector space £!(11) by the subspace {f € L' (i), f ~ 0}.28 On the other hand, the

28For f1, f2 € L£'(p) vanishing respectively on Nf, N§ with u(N;) = 0, then for a1, as € C, we
have a1 f1 + a2 fo = 0 on (N1 U N2)€ thus p-a.e. since (N1 U Na) = 0.
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linear mapping f — [ fdu defined on £'(u) is compatible with the equivalence
relation, i.e., depends only on the equivalence class of f: if f ~ 0, we have

[ = [ Reprdu= [ ®ep-dpti [ @ pedu—i [ @ p)edn=o.

from Proposition 1.7.1(1). Similarly, for f,g € £(u) real-valued and

f < g p-a.e., then / fdu < / gdp. (1.7.3)
X b'e
This follows immediately from Proposition 1.6.7 and from

g—f~(g—flye >0, with u(N)=0,
providing (1.7.3) using Proposition 1.7.1.

Theorem 1.7.4. Let (X, M, 1) be a measure space where u is a positive measure.
(1) The mapping from L*(u) into C defined by f — [ fdu is a linear form.

(2) The mapping from L'(p) into Ry defined by f — [ |fldp = || fllLi is a
norm and for f € L'(u)

‘ /X fdu‘é /X Fldp. (1.7.4)

N.B. We postpone to Section 3.2 in Chapter 2 the introduction of spaces L” (1)
along with the proof that these spaces are complete.

Proof. Property (1) follows from Remark 1.7.3, and for the same reason, the map-
ping defined in (2) makes sense on the quotient space L*(u). If f € £(p) is such
that || f||11(.) = 0, Proposition 1.7.1(1) implies f ~ 0, i.e., f = 0 in L*(x). Propo-
sition 1.5.4(2) provides the homogeneity of this mapping, whereas the triangle
inequality follows from

||f+g||L1<#>Z/leJrg\duS/X(\fIHngu:||f||L1<u>+||g||L1(#).

Finally, let us prove (1.7.4). We define the complex number

o= [ sau= e,
X

and using Proposition 1.6.7, Definition 1.6.6 and (1.7.3), we get

‘ /X fdu‘ = Re (ei‘) /X fdu> = Re /X e~ fdu

— [ rete < [ e fld = [ 171dn O
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Theorem 1.7.5 (Lebesgue dominated convergence theorem). Let (X, M, u) be a
measure space where 1 is a positive measure. Let (fn)nen be a sequence of mea-
surable functions from X into C such that the following properties hold.

(1) Pointwise convergence: lim,, ,~, fn(z) = f(2), u-a.e.?®

(2) Domination: 3g : X — Ry with [, gdp < 400, such that ¥n € N, |f,| < g,
p-a.e3° Then the function f is 3! measurable, [\ |f|dp < 400 and

lim / |f = foldu =0, dimplying lim / fndu:/ fdpu.

Proof. Taking into account our footnotes, we set

B=NUUyenM,, (wehave B€ M and u(B) =0), f(z)=1lim f,(z)1pe(z).

The sequence fn = 1pcf, satisfies the assumptions of Theorem 1.6.8, so that
f e L(u) and
li fr — fldp = 0.
mg;[Qf fldp =0
Since |f — ful = |f — ful + |f — fulls and f = f + flg with u(B) = 0, we get
from Proposition 1.5.4(3) that f € £!(u) and the result

lim / |fn — fldu = 0. O
n—-+oo X

Remark 1.7.6. We may reformulate this theorem in a more concise and elegant
way by saying that whenever (f,,)nen is a sequence of L' (1) converging pointwise
to f with a domination condition |f,| < g € L*(u), then f,, converges towards f
in the space L'(p). To sum-up, for a sequence (f,,) in L!(u),

pointwise
In e |
convergence

— n > .
and [ LY (1) f

|ful < g€ L'(n)

The following lemma is taken from [16] (and has also an L? version).

(1.7.5)

Lemma 1.7.7. Let (X, M, ) be a measure space where p is a positive measure.
Let (frn)nen be a sequence of measurable functions from X into C such that the
following properties hold.

(1) Pointwise convergence: limy, o0 fn(z) = f(), p-a.e.,

(2) sup, [y [fuldp < +50.

Then f € L'(u) and || fo = fllzru + Ifllzrwy = 1 fnllzr ey — 0

293N € M, such that u(N) =0 and Vz € N€, (fn(x))nen is convergent with limit f(z).
30yn € N,3M,, € M with u(My) = 0 such that Vz € M¢, |fn(z)| < g(z).
31We define f(x) = 1ne(z) limy, fn ().
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Proof. Fatou’s lemma implies
/ |fldp = / liminf | f,,|du < liminf/ | frldu < sup/ | frldp < +o0.
X X X n JX

On the other hand, we have |f,| < |fn — f| + |f] < |fnl +2|f], so that

0<[fu = fI+IfI = Ifal <2If].
The Lebesgue dominated convergence theorem yields the result. O

An important consequence is the following result.

Proposition 1.7.8. Let (X, M, 1) be a measure space where p is a positive measure.
Let f be in LY(u) and let (fn)nen be a sequence of functions in L' (u) such that
the following properties hold.

(1) Pointwise convergence: limy, o0 frn(x) = f(x), p-a.e.,
(2) limy, || fall 22y = 122 -
Then limy, || fo = fllzi(u = 0.

Remark 1.7.9. To sum-up, for a sequence (f,,) in L*(n), f € L'(u),

pointwise
fn convergeice f f f (1 7 6)
and Ll(#)>

limy, (| fullrgey = 1z

The following proposition is an important consequence of the Lebesgue dom-
inated convergence theorem.

Proposition 1.7.10. Let (X, M, 1) be a measure space where p is a positive mea-
sure. Let f: X — Ry be a measurable mapping such that fX fdu < 0.

(1) The set N ={zx € X, f(x) = +o0} € M and u(N) = 0.
(2) For any e > 0, there exists a > 0 such that for all E € M satisfying u(E) <
o, we have [, fdu < e. In other words, lim, gy [ fdp = 0.
EeM

In particular, for u € L*(u), we have

#(IJ%ILO/E luldu = 0. (1.7.7)
EeM

Proof. (1) The set N = {x € X, f(x) = 400} belongs to M as the inverse image

of the closed set {+00} by the measurable f. For all integers k, k1y < f, so that

ku(N) < [y fdp < +oo. The non-negative sequence (ku(N))ren is bounded so

that u(N) = 0.
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(2) Let E € M and n € N: since u(N) = 0, we have
0 [ rau= [ gau= | fau+ [ fdu

E ENNe ENnNen{f<n} ENNen{f>n}

<nu(FE)+ /flEmNcm{f>n}dM < nu(E)+ /f1n<f<+oodﬂh

The sequence g, = fli,<fctoo} is such that g,(xz) = 0 for n > f(x), which is
verified for € N¢ if n is large enough. Since g, (z) = 0 for € N, we find

() Vee X, gn(z)—0.
Moreover
(%) 0<g,<flye and flye€ L'(p).

The Lebesgue dominated convergence Theorem 1.7.5 shows that (b) and (f) imply
the convergence of g, towards 0 in L*(p). From (§),we get

n—-+oo

Og/fdugnu(E)—i—@n, with 6, — 04.
E

Let € > 0 be given: AN € N such that Oy < €/2. Defining o = ON 41 (we have
indeed o > 0), we get for pu(F) < a,

Ne
0< dp < 0 2 2= d.
_/Efu_2N+1+ N<€/2+€/2=¢, qe
A slightly shorter reasoning from (ij) would be

Vn eN, 0<limsup fdugenzoglimsup/ fdp <limé, =0. O
n(E)—0JE n(E)—0JE n

1.8 Notes

Let us follow alphabetically the names of mathematicians encountered in our text
above. Much more details can be obtained on the web and in particular at the
very complete http://www-groups.dcs.st-andrews.ac.uk/history/BiogIndex.html

René BAIRE (1874-1932) was a French mathematician; the Baire category theorem
is certainly the most basic and important theorem in Functional Analysis.

Stefan BANACH (1892-1945), a Polish mathematician who set the basis of Func-
tional Analysis.

BERNOULLI (The reader will have certainly noted the spelling of the name with
only a single “i”.) The brothers Jacques (1654-1705) and Jean (1667-1748)
Bernoulli as well as Daniel (1700-1782), son of Jean, lived in Basel and


http://www-groups.dcs.st-andrews.ac.uk/history/BiogIndex.html
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contributed to the development of Integral Calculus (Jacques), Mechanics
(Jean), Kinetic Theory of Gas (Daniel). Jacques Bernoulli (quoted in the
example page 19) contributed also to the calculus of probabilities with the
Law of large numbers (see a simple version in Exercise 1.9.21(3)).

Emile BOREL (1871-1956), a French mathematician and politician, one of the
creators of measure theory.

Augustin CAUuCHY (1789-1857), a French mathematician, is one of the founders
of Analysis.

Paul DIRAC (1902-1984) was a British physicist, one of the creators of Quantum
Mechanics.

Pierre FATOU (1878-1929) was a French mathematician, author of the lemma
bearing his name, a cornerstone of measure theory.

Carl-Friedrich GAuss (1777-1855) was the most important German mathemati-
cian of his times.

Felix HAUSDORFF (1869-1942) was a German mathematician, founder of General
Topology.

Pierre-Simon LAPLACE (1749-1827) was a French astronomer and mathematician.

Henri LEBESGUE (1875-1941) created modern measure theory in 1901, generalizing
Riemann theory of integration.

Beppo LEVI (1875-1961) was an Italian mathematician, professor at the university
of Genova, also an expert in algebraic geometry; he was forced into exile in
1938 by the antisemitic persecutions of the Mussolinian regime. There is now
a Mathematics Research Institute named after Beppo Levi in the Argentinian
town of Rosario, where he found refuge.

Denis POISsoN (1781-1840) was a French mathematician.

Bernhard RIEMANN (1826-1866) was a German mathematician who contributed
to many different areas of mathematics, ranging from Number Theory to
Mathematical Analysis.

Lebesgue’s dominated convergence theorem was first proven by Lebesgue
on probability spaces, before B. Levi proved his monotone convergence theorem
for non-negative functions. The latter result implies Fatou’s lemma, from which
follows easily the more general version of Lebesgue’s dominated convergence.
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1.9 Exercises

Elementary set theory

Exercise 1.9.1. Show that the mapping (p,q) € NxN — 2P(2¢g+1) € N* is bijective.

Answer. Let m € N*. Then m can be written as 2P x an odd integer with p € N,
proving surjectivity. Moreover, if p;, g; are natural integers and 2P*(2¢; + 1) =
2P2(2¢9 + 1), assuming as we may p; < po, we get that the odd number

21 + 1 =2P27P1(2¢9 + 1),
implying that ps = p; and thus g2 = g1, proving injectivity.

Exercise 1.9.2. Let X be a set and P(X) the set of its subsets. Let f : X — P(X)
be a mapping. Show that f cannot be onto.

Answer. Let us consider A = {x € X,z ¢ f(x)}. Let us assume that there exists
a € X such that A = f(a). If a € f(a) = A, then a ¢ A, which is impossible. If
a ¢ f(a) = A, then a € A, which is also impossible. As a result there does not
exist @ € X such that A = f(a) and f is not onto.

Comment. We have proven more than what was actually required, since we pro-
duced an explicit construction. Let f be a mapping from X into P(X), then the
set A is not in the image of f. This example is a version of the liar’s paradox,
already known in the ancient Greek civilization. Does somebody claiming “I lie”
speak the truth? If yes, then he is indeed lying and thus does not speak the truth.
If not, he is lying in saying that he lies and thus speaks the truth. ..

Back to mathematics, a very important consequence of this exercise is the
so-called Russell’s paradox®? after which there is not a set of all sets. In fact,
if such a “universe” U existed, it would contain its powerset and the inclusion
P(U) C U would imply the existence of a surjection from U onto P(U). We could
also consider

Y={zxel,x ¢z},

and note that if Y € Y, from the definition of ¥ we would have Y ¢ Y. If Y ¢ YV
then from the definition of Y, we would get Y € Y, reaching a contradiction in both
cases. Note that for finite sets, it is trivial to prove directly that Vn € N,n < 2"
(induction works with n + 1 < 2m).

32 Bertrand Russell (1872-1970) is a British logician, co-author of the monumental treatise
Principia Mathematica, a joint work with A.N. Whitehead (1861-1947), elaborated between
1910 and 1913. In 1895, Georg Cantor (1845-1918) did create Set Theory, “a paradise from
which we cannot be expelled” according to the words of David Hilbert. Seven years later, it was
clear that serious difficulties occurred in Cantor theory, in particular with the very notion of
set. Russell was an extraordinary character: Nobel prize winner for literature in 1950, he fought
with great energy against the development of nuclear weapons and founded the very influential
Russell Tribunal. For more on B. Russell: http://www-history.mcs.st-and.ac.uk/history/
Mathematicians/Russell.html http://www.nobel.se/literature/laureates/1950 and on liar’s
paradox: http://www.utm.edu/research/iep/p/par-1liar.htm


http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Russell.html
http://www.nobel.se/literature/laureates/1950
http://www.utm.edu/research/iep/p/par-liar.htm
http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Russell.html

42 Chapter 1. General Theory of Integration

Exercise 1.9.3.
(1) Let X be a set and Ay, ..., Ay be a finite partition of X. What is the o-algebra
generated by Ay, ..., A, and what is its cardinal?
(2) Let X be a set and (Ag)ren be a partition of X. What is the o-algebra gen-
erated by (Ag)ren? Show that it is equipotent to P(N).

Answer. Question 1 is dealt with on page 2: the cardinal of that o-algebra is 2.
(2) We define 7 = {UjesA4;}scn. For all j € N, A; € T and every o-algebra A
such that all A; € A will contain 7. Moreover T is stable by reunion since

Uier Uje; Aj = UjEUieIJiAj7 and UieIJi C N.

Tt is also stable by complement since (Ag)ken is a partition: (UjGJAj)C = Ujege4;.
T contains also X = UjenA; and thus is the o-algebra generated by the A;. Let
us now check the mapping

P(N) >5J— UjGJAj € T,

which is obviously onto. This mapping is also one-to-one since, for J, K subsets of
N such that

UjesAj = Urek Ak,
we get for jo € J, A, = UkeK(AjU ﬂAk) =0 if jo ¢ K. Since A;, # (), we obtain
J C K and similarly K C J, i.e., J = K and a one-to-one mapping. We can write

symbolically
card T = 2%0

since we have proven that 7T is equipotent to P(N) and the cardinal of N is denoted
by Ro, pronounced aleph null (first letter in the 22-letters Hebrew alphabet).

This symbolic notation is justified by the general notation Y X for the set of
all mappings from a set X to a set Y and the fact that P(X) is equipotent to
{0,1}*: the mapping

®: {0,1}F > f— fTH({1}) € P(X)
is a bijection since it is one-to-one (f~'({1}) = ¢g~*({1}) implies f=1({0}) =

(F72{1)° = (971 ({1})) = g7 ({0}) and f = g) and onto since for A C X, 14
the indicator function of A (which is 1 on A, 0 elsewhere), we have

B(1,4) = A.

As a result, P(X) is equipotent to {0,1}* and card P(X) = 29X as we have
defined
(card Y 4X = card(YX).

The reader will find more on set theory and cardinals in Section 10.1 of our ap-
pendix.
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Exercise 1.9.4. Let X be a set and let M be a countable o-algebra on X.
(1) Show that for x € X, A(x) = Nmem M belongs to M.
xeM

(2) Show that for z,2' € X, we have either A(x) N A(x') =0 or A(z) = A(z').
(3) Show that M is a o-algebra generated by a countable partition. Show that M
is finite (hint: use Ezxercise 1.9.3).

Answer. (1) A(z) is a countable intersection (since M is countable) of elements
of M, and thus belongs to M.

(2) Let z,2’ be elements of X. If x € A(z'), we get A(x) C A(2’) and thus
A(x) = A(z') N A(x). Consequently, if z € A(2’) and 2’ € A(x), we find

A(z) = A(2") N A(z) = A(a').

If x ¢ A(2’) then A(z')¢ belongs to M and contains z so that A(z) C A(z')¢,
entailing A(x) N A(z') = 0 (same result if 2’ ¢ A(z)).
(3) We define

N={BcCcX,3z € X,B = A(x)}.

It is a subset of M and thus it is a countable set. Moreover, from (2) if B # B’ €
N, we have BN B’ = (). With D countable, we note N' = { By }xep and find that A/
is a partition of X:if X # 0 (if X = 0, M = {0}) no By, is empty and BN B; =0
for kK # 1 € D. We have also Ugcp By, = X since for x € X, there exists k € D,
such that A(x) = By. The o-algebra M contains the o-algebra generated by N/,
which is uncountable when D is infinite from Exercise 1.9.3. This implies that D
is finite as well as the o-algebra generated by N. Moreover, if C' € M, we find

since for x € C, C D A(x) and = € A(x); as a result C is a (countable) union of
elements of N'. The o-algebra M is thus the o-algebra generated by N, which is
finite.

Exercise 1.9.5. Show that R is equipotent to P(N) (hint: use dyadic expansions).
Show that R is not countable.

Answer. The last assertion follows from the first and Exercise 1.9.2. The mapping
1o defined in (1.2.19) is bijective from R onto (—1, 1), which is equipotent to (0, 1)
(x — (x+1)/2). We have seen in the previous exercise that P(N) is equipotent to
{0, 1}, the set of mappings from N into {0, 1}. We have thus to prove that {0, 1}
is equipotent to (0,1).

Let  be in (0,1). With E standing for the floor function (see the footnote
on page 16), we define for any integer k > 1,

zp = EB(2%z) — 2E(2"x) = pr().
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Note that F(t) = max{n € Z,n <t} = min{n € Z,t < n+ 1}. We have
E(2F2) < 2%z < B(2%z) + 1,
E@2Fz) <2z < B(2F ) + 1,
and thus 2E(2F"1x) < 28z < 2F(2%~1x) + 2, which implies
2F(281x) < E(2%x) < 2%z < E(2F2) + 1 < 2B(2" 'x) + 2.
This gives
0 <z =pi(z) = E2%z) — 2B(2F'2) < BE(2F2) + 1 - 2B(2" '2) < 2.

Since xy, is an integer, we get a3 € {0,1} and the series } 7, ., 5¢ converges. We
note that for any integer n > 1,

T E(2Fz) — 2E(2F 1 E(2Fx E2F1g
22::2 ( )Qk( ):Z (Qk)iz (Qk—l)

1<k<n 1<k<n 1<k<n 1<k<n
E(2%x) E(2Fz)  E(2"x) o ren
_ Z = Z o = on — E(x) =2""E(2"x).
1<k<n 0<k<n—1

Since 27"E(2"z) < x < 27" E(2"z) 4+ 27", this implies lim,, 27" E(2"z) = x and
thus
Tk
2k
k>1

€r =

with zj, € {0,1}. We have just constructed a mapping ¥ (dyadic expansion)
U (0,1) — {0, 1}
X —> (l’k = pk(x))kzl

This map is one-to-one since for x,y € (0,1) such that for all &k > 1, z; = yy, then
T =35, 227 % =3, 0, yx27% = y. The mapping ¥ is not onto (e.g., the zero
sequence has no preimage), however we shall prove that the complement of the
image of ¥ is countable. Let (zx)r>1 € D¢, with

D = {(x1)r>1 € {0, 1}V, 3N, VE > N,z = 1} U {0}, (1.9.1)

so that (xx)k>1 is a sequence in {0, 1} which is not the zero sequence nor identically
1 for k large enough. We note that D is countable since it can be injected into

{0} Un>1 {0, I}Nil.
Let us set X = >, o, 2,27 %, We have 0 < X < Y3, -,27% = 1. Then

T x1 Tk x1 _k T 1
<X< < 27" = )
2 _2+Z2k 2+Z 2+2

E>2 k>2
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so that 1 < 2X < 27 + 1 and thus E(2X) = x; with 21 = p1(X). We prove
similarly
pe(X) = E(2FX) - 2B(2F1X) = 2.

In fact assume that for an integer n > 1, we know that Vk € {1,...,n},ap =
pr(X); then
Yo o m2 <X < ) w2ty ) 2th= Y mah e
1<k<n+1 1<k<n+1 n+2<k 1<k<n+1
entailing

S opk(X)2F 427 <X < Y pr(X)27 a2 27
1<k<n 1<k<n

ie, 27 "E(2"X) + 2,412 "1 < X <27"E(2"X) + 127" 427771 that is
2E(2"X) 4+ 2pi1 < 2"TX < 2B(2"X) + wpy1 + 1,
so that z, 41 < 2" X —2E(2"X) < 2,11 + 1, implying
Tny1 = E(2"MX —2E(2"X)) = EQ"T'X) - 2E(2"X) = pp1(X),  qed.

As a result ¥ is bijective from (0, 1) onto ¥((0,1)) and ¥((0,1)) D D¢ where D
is a countable set (thus as well as Dy = ¥((0, 1))0). It suffices now to prove that
{0,1}M\ Dy is equipotent to {0, 1}". Let us consider C equipotent to N disjoint of
Dy in {0, 1} (such a C exists since {0, 1} is not countable),

{0, 1} = ({0, 1}"\Dy) UDy = ({0, 1}"\(Dy UC)) U (D UC).

But Dy UC is countable infinite, thus equipotent to N and thus to C. Consequently,
{0,1}" is equipotent to ({0, 1}\(DyUC)) UC = {0,1}"\ Dy, qed.

Exercise 1.9.6. Let f: X — Y be a mapping.
(1) Show that for a family (B;)icr of subsets of Y,
fﬁl(U B;) = Ufil(Bz‘), fﬁl(ﬂ B;) = ﬂfﬁl(Bz‘)-
i€l i€l iel iel

(2) Show that for a family (A;)icr of subsets of X, f(U;er Ai) = Uier f(As).
(3) Show that if f is one-to-one, f((N;c; Ai) = Nies f(Ai). Prove that the previ-

ous equality is not true in general (without the injectivity assumption).

Answer. 1) z € f~1(U;¢; Bi) means f(z) € U,c; Bi, equivalent to

Jiel, fx) B <= 3icl, zc fYB;) < z€Uperf 1(B).
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Similarly, x € f_l(ﬂiel B;) means f(x) € (,c; Bs, equivalent to
Viecl, f(r)e Bij<=Vicl, v € fYB;) <= x € Nierf 1 (B;).
(2) y € f(U;er Ai) means 3z € Ujer A; such that y = f(x), that is
diel,bIxe A,y=f(z)<=Tiel,ye f(A) = y € Uerf(Ai).
(3) We note that A ¢ A’ € X = f(A) C f(A’). For all j € I, we have thus
F(Nier Ai) € f(A;5) so that f(;e; Ai) C Mgy f(A)- Iy € Mgy f(A),
Viel,3x; € A, y= fxy),

which implies for ¢,j € I, f(z;) = f(z;). The injectivity of f implies thus for
i,j €I, z; = x;, so that y = f(x) with « € N;c1A4;, ged. We consider the mapping

f{0 1 — A1}, fO)=f(1) =1,
and we set A; = {i}. We have f(AgN A1) = f(0) =0 C f(Ao) N f(A1) ={1}.

Comment. Let us note that, conversely, if that property holds then f is injective.
In fact, if 1 # x2 belongs to X, since

0=f0)=f({z1} N {z2}) = f{z}) N f{z2}) = {f(z1)} N {f(22)}
we get f(z1) # f(z2).

Exercise 1.9.7. Let X be a set. A partition of X is a family (A;)icr of non-empty
subsets of X, pairwise disjoint (i # j implies A; N A; = 0), with union X.

(1) Let (Ai)ier be a partition of X. Show that the relation xRy defined by
diel suchthatz € A; andy € A;

s an equivalence relation on X.

(2) Show that every equivalence relation on X can be obtained as in Question
1).

(3) Describe the partition of Z associated to the equality modulo n.

Answer. (1) R is reflexive since X = U;erA;: for x € X, there exists ¢ € I such
that x € A; and thus xRz. Symmetry of R follows from the definition, itself
symmetrical in x,y. Let x,y, z be in X such that Ry and yRz. Then there exists
i,7 € I such that

x,y €A, y,z €A

Since the A; are pairwise disjoint and y € A; N A;, we find 4; = A; and 2Rz
(transitivity).
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(2) Let R be an equivalence relation on X. The quotient set Q = {C}};e is the
set of equivalence classes. No equivalence class is empty since C; is defined as the
equivalence class of an element of X. Moreover,

X =UjesCj
since for x € X, the equivalence class of x is one of the C; which thus contains x.

Two distinct classes are disjoint since, if C; N Cy # 0, there exists z € C; N Cy,
for z; € C}, 1 € C and we have

z;Rz and 2Rz = z;Rx, = C; = C},.

(3) Let n be an integer > 2. The equality modulo n is the equivalence relation on
Z given by

r=y (n)<=z—yenZ<n|(x—y), ie.,ndividesz—y.

It is obviously an equivalence relation and the quotient set is denoted by Z/nZ.
The related partition of Z is the family with n elements

A =r+nZ={r+nqleez, 0<r<n-—1.

This follows from Euclidean division: for m € N there exists a unique couple (g, r)
of integers such that m = ng+r, 0 < r < n — 1. This equivalence relation
is also compatible with the ring structure of Z, i.e., with p,, : Z — Z/nZ the
canonical mapping sending an integer to its equivalence class modulo n, we may
define addition and multiplication on Z/nZ with

Pn(a) @ pn(d) = pnla+b), pun(a)®pn(b) = pn(ad)
and it is easily verified that fora =a’ (n), b=V (n), the results are unchanged.
A good exercise for the reader would be to write the multiplication table of Z/nZ
for 2 < n < 11, and verify that Z/nZ is a field iff n is a prime number. One
may also look for the divisors of 0 in Z/nZ for n € {4,6,8,9,10} and ...read an
introduction to Arithmetic such as [4].

Topology

Exercise 1.9.8.
(1) Show that all the norms on R™ are equivalent (two norms N1 and Ny on a
real or complex vector space E are said to be equivalent whenever there exists
C > 0 such that for all x € E, C7'Ny(x) < Na(x) < CNy(z)).
(2) Show that on C°([0,1];R), the norms

1
||f||1/O [F@ldt, | flloc = sup [f(2)],

z€[0,1]
are not equivalent.

(3) Looking at Figure 1.1 on page 6, find a sequence g, of continuous functions
converging for || - |1 towards the discontinuous step function 19 1).
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Answer. (1) For x = (z;)1<j<n € R, the Euclidean norm is

1/2
lallz = ( 3 ) .
1<j<n

Let N be another norm on R". From the triangle inequality and the homogeneity,
for z,h € R™, we get

1/2
N+ - N N < Y Ve <l E Ne?)
1<j<n 1<j<n
where (e;)1<j<n is the canonical basis of R™. We get the same estimate from above
(by the same argument) for N(x) — N(x + h) so that |[N(x + h) — N(z)| < C| k]2
and (Lipschitz) continuity holds for N. As a result, we obtain on the compact set
s*l = {‘T eR", ||I||2 = 1}3

0<c¢= inf N(zx)<ce= sup N(x)
zesn—1 zeSn—1
so that, by homogeneity, for all x € R”, ¢1]|z]l2 < N(z) < c2|x||2, proving the
equivalence of N with the Euclidean norm.
(2) We have of course || f||1 < ||f|lc, but choosing as in Figure 1.1 for n > 1, the
continuous function

n—nlzx for0<x<1/n,

0 for1/n <z <1,

we find || frulloo = n, ||f1]l1 = 1/2 so that there does not exist C' > 0 such that for
all f € C([0,1];R), [|fllec < CIIf]l1-

(3) Let us define for n > 1, the continuous function

z for()gxgé—l,
n n
gn(x) = (";1+i)(x7§)+é foréf}lgxgéJr}l,
1 1,1
e for ; +, <z <1

Noticing that gy, is valued in [0, 1], we have

- :
lon =1l = [ galedda+ [T guta)is
0 27 n

sta 1

+/ |1—gn(x)|dx+/ [1— gn(x)|dz
1 1 1
121 : ;L

1
27 n 1 1 27 n 1 1
/ gn(x)dx +  + +/ (1 - gn (t+ + )> dt
0 n o n 0 2 n

12 el /11 3
+ 4+ - —t]dt< .
2n  n 0 n\2 n n

IN

IN
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Exercise 1.9.9.
(1) Let f: R — R be a function. Show that the set of discontinuity of f is an
F, set.
(2) Show that given an F, set A of R, there exists f : R — R whose disconti-
nuity set is A.
(3) Show that there does not exist a function f : R — R whose discontinuity set
is Q°.
(4) Find f: R — R whose discontinuity set is Q.
Answer. (1) We define the oscillation function of f by

w(x) = liglj;}p |fy) — f(@)],

and note that w : R — R, and is such that the set S of points of discontinuities
of fis
1
S={zeRw) >0} =U> {z e Rw(z) > k}
4

~ ~
Sk

Let ko > 1 and () jen be a sequence in S, converging to some point a. For each
j € N, we can find a sequence (y;,)ien such that lim; y;; = z; and

i) = Fz)l =y,

The point a must belong to S: otherwise, if f were continuous at a,
1
F (i) = F@)l 2 1 (y50) = Fag)l = 1f (@5) = fla)l 2 o) = 1f(25) = Fla)l.

Let r > 0 be given: for j > j., we have |z; — a| < r and for each j, we can find
lr; such that |y;;, , — x| < 7. We obtain

1
swp_[f(y) ~ fla) + swp 1)~ fla)l =,
ly—al<2r lz—al<r 0
an inequality which is incompatible with the continuity of f at a. As a result, we
have proven that

Sy CS— Uk215k cS= Uk215k — S = Ukzlsk, indeed F,.

(2) Let (F,)n>1 be a sequence of closed subsets of R and let S = Up>1F, be
an F, set. We may assume that the sequence (F),),>1 is increasing since we can
consider the sequence of closed sets (Ui<;<nFj)n>1 which has the same union S.
We define for x € S,

n(lm), forx e SNQ,
n(z) =min{n > 1,z € F,}, and f(z)= —n(lx), for x € SN Q°,
- ~ 4
non-empty O7 for x ¢ S.

subset of N*
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(2.1) We want first to show that f is continuous at S¢. Since f = 0 at S¢, the
function f is continuous on the interior of S¢. Let a be in S\interior(S¢) = S°NS:
let (z;);>1 be a sequence of S with limit a. No subsequence of (n(xj))j>1 can be
bounded, otherwise we could find some Ny > 1 such that -

li}'njl = +oo7n(ﬂcjl) < Ng = VI > 1737]‘[ S FNU

:>a:lilmmjl GFNO :FNO c S,

which is impossible. As a result lim;n(z;) = 400 and lim; f(z;) = 0 = f(a),
proving continuity.

(2.2) Let us prove now that f is discontinuous at S.

(2.2.1) Let a € SN Q: we have in particular a € Fj(q),a ¢ Fy)—1 (defining
Fy = 0) and f(a) = 1/n(a). If a € interior(F,(4)), there is a sequence (z;);>1
of $NQ° converging to a and f(x;) < 0, so that limsup, f(z;) < 0 proving the
discontinuity property at a. If a € O(F,(q)), then any open neighborhood V' of a
intersects Frf(a). In the open set VﬂFrf(a)7 an irrational number can be found: thus
there is a sequence of irrational numbers (z;);>1 converging to a and f(z;) <0,
entailing discontinuity at a.

(2.2.2) Let a € SN Q% we have in particular a € Fj,(q),a ¢ F,q)—1 (defining
Fy = 0) and f(a) = —1/n(a). If a € interior(F,(q)), there is a sequence (z;);>1
of SN Q converging to a and f(x;) > 0, so that liminf; f(z;) > 0 proving the
discontinuity property at a. If a € O(F,(q)), then any open neighborhood V' of a
intersects Frf(a). In the open set V N Fﬁ(a)’ a rational number can be found: thus
there is a sequence of rational numbers (z;);>1 converging to a and f(z;) > 0,
entailing discontinuity at a.

(3) As proven on page 7, the Baire category theorem (see Section 10.2 in the
Appendix) implies that Q° is not an F,, set, so that the already solved question 1
in this exercise answers that one as well.

(4) The function (1.2.14) does that job. In the first place, f is discontinuous at @,
since in any neighborhood of a point a € Q, an irrational number can be found,
so there is a sequence of irrational numbers (z;) with limit ¢ and f(z;) = 0,
f(a) > 0. Moreover f is continuous at Q¢ since if (z; = p;/q;),p; € Z*,q; € N*
is a sequence converging to a ¢ Q, we must have lim; g; = 400: otherwise, we
could find a bounded subsequence (gj,);>1 of (¢gj)j>1 in N*, providing a constant
subsequence (¢ = ¢j,, )m>1 in N*, and since aq = lim,, p;, , we find that the
sequence (pj, )m>1 is constant for m large enough and a € Q, which contradicts
the assumption.

Exercise 1.9.10. Let (X, d) be a metric space, and let f : X — R be a function.
We define for e > 0,

C(f,e)={r € X,306 > 0,d(z,2'),d(z,2") < § = |f(2') — f(a")| < €}
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(1) Show that C(f,¢) is open.
(2) We define S = {z € X, f is not continuous at x}. Show that S is a F, set
(hint: prove that f is continuous at x iff v € Ny>1C(f,1/n)).

Answer. (1) Let z € C(f,¢): for some positive 6 and F defined on X x X by
(o', 2") — F(a',2") = f(a') — f(2"), we have F(B(x,6) x B(z,d)) C [0,¢). Let
y € B(x,d/2): then we have

B(y,6/2) x B(y,d8/2)) C F(B(x,6) x B(x,0)) C [0,¢),

entailing that B(z,d/2) € C(f,¢).

(2) Let z € S¢ then for any n > 1, x € C(f,1/n). Conversely, if the latter
property holds and € > 0 is given, we can take n > 1/¢ and find § > 0 such that
|f(B(z,d) — f(z)| < 1/n < e, proving continuity at z. As a result

S¢=nN,>1C(f,1/n), which is a G5 set, so that S is a F,, set.

See [36] for more on this topic: in particular for a (non-empty) metric space X
without isolated points (a point z in a topological space is said to be isolated if
the singleton {z} is open) and a given F, set S, there exists a function f: X — R
such that the points of discontinuity of f are exactly S.

Measure theory

Exercise 1.9.11. Let (X, M) be a measurable space and let f,g : X — R be mea-
surable mappings. Show that the following sets belong to M.

A={reX f(z) < ()}
B={reX, f(x) <g(@)},
C={reX f(x)= @}

Answer. The mapping X > = — D(x) ( g(z )E R x R is measurable from
the proof of Theorem 1.2.8. We have then A <I> L) with

L={(e,) eRxR,a <}
which is a closed subset of R x R. Similarly, we have
M={(e,B) ERxR,a<p}, B=o'(M),
N={(a,f) ERxR,a= 8}, C=&YN),
with M open, N closed.

Exercise 1.9.12. Let (X, M) be a measurable space and f, : X — C be a sequence
of measurable functions. Show that the set

A={z € X, the sequence (fn(z))

nen 8 convergent}

belongs to M.
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Answer. Using the Cauchy criterion, we find
A={z e X, Ve € Qn]0,1],3IN,Vn > N,Vk > 0, |frir(x) — fn(z)] < €},

so that

A= ) {U (evisole € X, o) - fulel < )}

€€Qnlo,1] “NeN

Since the f,, are measurable, the set {x € X, |fn+r(x) — fu(x)| < €} belongs to M
(cf. Theorem 1.2.7). As a countable intersection of countable union of countable
intersection of elements of M, A belongs to M.

Exercise 1.9.13. Let (X, M) be a measurable space and let (un)nen be a sequence of
measurable functions from X into R. Show that the following sets are measurable:

A={ze X, lilf un(xz) =400}, B={z € X, (un(x))nen is bounded}.
n—-—+0o0

Answer. We have A = {& € X,Vm € N,IN € N,Vn > N,u,(x) > m}, so that
defining
Apm ={z € X, up(x) > m},

we find A = Npen (UNGN(ngNAn,m)) which is measurable as every A, ., is.
Similarly, we have

B= {I € X7 Jm e van € N7 ‘un(m)‘ < m} = UmGN(ﬂnGNBn,m)v
with By, = {2 € X, Jun(z)| < m}.

Exercise 1.9.14. Let XY be topological spaces, with X a Hausdorff space, and let
f: X =Y be continuous outside of a countable set D. Show that f is measurable
(X,Y are equipped with their Borel o-algebra).

Answer. The mapping F' : X\D — Y defined by F(z) = f(z) is continuous: let
x € X\D. Since f is continuous at z, for every neighborhood W of f(z), there
exists a neighborhood V' of z, such that f(V) ¢ W; thus F(VND¢) = f(VND°) C
W and F is continuous at z (see Lemma 1.2.4). Let V be an open set of Y. We
have

V) ={zeX fl@)eV}={ze X\D, f(x) e VIU(f~(V)N D)
=F'V)u(f~"(V)nD)=(Un(X\D))uU(f~(V)nD),
where U is an open subset of X. Since X is a Hausdorff space, singletons {«}

are closed: the complement {x}¢ is open since if 2’ € X,z # z, there exist
neighborhoods V' € ¥,V € ¥, with VNV’ = § and thus V' C {z}° which is
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thus a neighborhood of z’. As a result, the set D is measurable as a countable
union of points and U N D¢ is measurable. Moreover f~1(V) N D is countable
thus measurable. Finally, f~!(V) is measurable and Lemma 1.1.4 proves that f is
measurable.

Exercise 1.9.15. Let X be a non-empty set and M be the o-algebra generated by
the singletons {x} where x € X.

(1) Show that A € M iff A or A€ is countable.

(2) We assume that X is not countable and we define for A € M

wA) =

1  when A is not countable.

{O when A is countable,

Show that 1 is a positive measure defined on M.

Answer. (1) If A is a countable subset of X, A is a countable union of singletons
and thus belongs to M. Since M is also stable by complementation, we find as
well that A° countable implies A € M. We define

N ={AC X, A or A® is countable}.

We have proven N' C M, and we see that A is stable by complementation, contains
X and all singletons. Let (A4, )nen be a sequence in V. If all A, are countable,
then U, enA, is countable and thus belongs to N. If there exists k € N such that
Ay, is not countable, then A§ is countable and since

(UnGNAn)C = mnGNAfz - A;7

we find that (UneNAn)C is countable, entailing U,enA, € N. The set N is thus a
o-algebra which contains all singletons, so that M C A and eventually M = N/,
proving (1).

(2) We have pu(0) = 0; let (Ay,)nen be a pairwise disjoint sequence of M. If all A,
are countable, then U,ecnA,, is countable and

#(Unendn) =0 = Z p(An).

neN

If there exists & € N such that Aj is not countable, then Ajf, is countable and
UnenAy is not countable. Since

Aj D UntpAn,

we get that for n # k, A, is countable, thus u(A,) = 0. As a result, we have

p(UnenAn) = 1= u(Ax) = p(Ar) + Y p(An) =Y p(An).
neN,n#k neN
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Exercise 1.9.16. Let (X, M) be a measurable space and f : X — C be a measurable
function. Prove that there exists a measurable function o : X — C satisfying

|a] = 1, such that f = a|f].
Answer. Since f is measurable, E = f~1({0}) € M and 1 is measurable. Noticing
that f(x) + 1g(z) is always different from 0, (1 for z € E, f(x) # 0 otherwise),
we set 1
ooy~ F@)+16)
[f(x) + 1p(z)]
so that « is measurable as a composition of measurable functions:

measurable continuous
X — c* — st
x — fl@)+1p(z) =t — /¢l
and f(z) + 15(z) = a(2)|f(z) + 15(x)], so that for o ¢ E, f(x) = a(a)|f(z)| and
forx € E, f(z) = 0= a(x)|f(z)]-

Exercise 1.9.17. Let (X, M, u) be a probability space (measurable space where
is a positive measure such that u(X) = 1). Defining T = {A € M, p(A) =
0 or u(A) = 1}, show that T is a o-algebra on X.

Answer. If A € T, then A° € M, since u(A°) + p(4) = p(X) = 1, so that
(A% =1—p(A) € {0,1}. If A, € T, n € N, A = UpenAn € M and if for
all n, u(Ay,) = 0, then p(A) = 0. If there exists ng such that u(A4,,) = 1, then
1 = p(4n,) < w(4) < p(X) =1, so that u(A) = 1. Moreover X € T since
p(X)=1.

Exercise 1.9.18. Let (X, M) be a measurable space and let (u;)jen be a sequence
of positive measures defined on M such that VA € M,Vj € N, p;(A) < pjv1(A4).
For A € M, we set i(A) = sup;ey 15 (A).

(1) Show that p is a positive measure defined on M.
(2) Let f: X — R4 be a measurable function. Show that

/ fdp = sup/ fdu;  (hint: start with simple functions).
X jeNJx

(3) Let j € N and let v; be defined on P(N) by
1(A) = card(AN [, +o0])

(card E as usual whenever E is finite, card E = +oo for E infinite). Show
that for all j € N, (N, P(N),v;) is a measure space. Show that

VA C N, vy (A) Z Vj+1(A>.

Defining v(A) = infjenv;(A), show that v(N)=+oco and for all k € N,
v({k}) = 0. Show that (N, P(N),v) is not a measure space.



1.9. Exercises 55

Answer. (1) Let (A, )nen be a pairwise disjoint sequence of M. We check

1(UnenAn )—suwg( nenAn )—sup{Zug }

JEN neN

We consider the measure space (N, P(N), \), where A is the counting measure on
N (A(A) = CardA for A finite and A(A) = +oo for A infinite). We find with
fi(n) = p;(Ay) that 0 < f; < fj41 (since p;(A) < pj11(A)), so that Beppo Levi’s
Theorem 1.6.1 implies

sup/fjd)\ / (sup f;)dA
jeN N jeN

ie, supjen { e #(An) ) = D, cnsupjen {1(An)} = 3, ey 1(An), providing
o-additivity for p on M. Moreover we have p(0) = 0.

(2) For a simple function s = >, ,, axla, with Ay € M and oy > 0, using
the fact that the sequences (1,(Ax)) en are increasing, we have

/sdu: Z app(Ar) = Z akSUP(MJ(Ak = Z akjlim 145 (Ak)
X €N o

1<k<m 1<k<m J 1<k<m
= lim [ Z akuj(Ak)} = sup{ Z akuj(Ak)] = sup/ sdpj.
IO m IEN T Ch<m JENJX

Moreover, for f : X — R4 a measurable function, we can find an increasing
sequence (si) of simple functions converging pointwise to f. Theorem 1.6.1 and
the previous result imply

(%) / fdu:sup/ Skdp = sup (sup/ skduj>.
X keNJ X keN \jeNJXx

Moreover, if (a;k); ken is a double sequence in R, for all I, m € N, we have

a = sup(sup a]k) > sup ak > Gy = SUp aym < o = sup (sup agm) < q,
jEN keN leN meN 1eN

so that, exchanging the indices in the previous line,

(%) sup(sup a;x) = sup(sup a,).
JEN keN keN jeN

As a result, from (%) and (xx), we get

/ fdu = sup (sup/ Skdﬂj) = sup (/ fduj> ;
X JjeEN \keNJX JEN X

where the second equality follows from Theorem 1.6.1.
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(3) With A the counting measure on N, v; is a the measure with density 1(; 4
with respect to A and we use the notation v; = 1(; oA Since [j, +00[D [j +
1, +ool, we have 1 too[ = 1[j11 400 and thus v;(A) > v;;1(A) for all A C N. As
v(A) = infjenv;(A), and v;(N) = +o0, we obtain v(N) = +oco0. Moreover for all
ke N, v({k}) = infjenv;({k}) = 0, since v;({k}) = A({k} N [j, +oc[) =0 if j > k.
Thus v is not a measure on N since +oo = v(N) > >, v({k}) = 0.

Exercise 1.9.19 (Inclusion-exclusion principle, sieve formula). Let (X, M, u) be a
measure space where p is a positive measure such that j1(X) < +oo. Let {A;}1<j<n
be a finite set of elements of M. Prove that

n(Uigizndy) = Y (1)k+1{ > M(ﬂjeJAj)}- (1.9.2)
1<k<n Jc{1,...,n}
card J=k
(Hint: write and prove the formula for n = 2,3, then apply induction on n.)

Answer. For n =2, A; U As is equal to the pairwise disjoint union
(A1\(A1 N Ag)) U (A2\(A1 N A3)) U (A1 N Ag),

so that [L(Al U AQ) = [L(Al) - ,LL(Al N Az) + M(AQ) — [L(Al N AQ) + ,LL(Al N AQ):
(A1) + p(Az) — u(Ar N Az), which is the sought formula. Let us assume that the
formula is true for some n > 2 and let us prove it for n + 1. Applying the formula
for n = 2, we find

p(Ui<j<nt14;) = p(Ur<icnAy) + p(Ans1) — p(Ur<i<n (45 N Ang)),

so that applying twice the formula for n we get

pUr<jcnt1dy) = p(Ania) + > (—1)k+1{ > M(ﬁjeJAj)}

1<k<n Jc{1,...,n}
card J=k
+ 2 T senner a))
1<k<n Jc{1,...,n}
card J=k

S EIC I SR Gn)

1<i<n Lc{1,....,n,n+1}
card L=I, n+1¢L

+ ) (1)”1{ > #(mjeLAj)}Jrﬂ(AnJrl)

2<l<n+1 Lc{1,....,n,n+1}
card L=Il, n+1€L

- v (1)”1{ 3 u(ﬂjeLAj)}-

1<i<n+1 Lc{1,...,n,n+1}
card L=l
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N.B. Tt is possible to avoid the assumption u(X) < 400 and write (1.9.2) as an
equality between non-negative quantities, displaying the odd (resp. even) k on the
rhs (resp. lhs).

Exercise 1.9.20. Let X be a finite set with N elements.

(1) Find the number d(N) of permutations o of X (bijections from X onto X)
without fized points (Vo € X,0(x) # x). Find an equivalent of d(N) when N
tends to infinity.

(2) LetY be a finite set with p elements. Find the number of surjections from X
onto Y.

Answer. (1) Let d(N) be the sought number. The total number of permutations
of X is N!. The number of permutations of X with exactly N — 2 fixed points is
d(2)C% = C%. The number of permutations of X with exactly N — 3 fixed points
is d(3)C%;, so that

N!= Z d(k)Ck., Z dik) 1 =1, dxf=u,

El (N —E)! o
0<k<N 0<k<N

with CTZ (d(k‘)/k‘!)keN7 f= (1/k!)keN7 u= (ux = 1>keN- With g = (:L‘k/k!)keN7 we
get '
Frak)= 3 10 =),

A
o2, k=)t !
and thus c?*f*g:u*g, ie.,

) L+a)V7 o
2 g T 2

4!

0<j<N 0<j<N
so that forx = —1and N > 1,
(—1)/N! (—1)7 N!
=y OO s O A e
0<j<N 0<j<N N—+4o0

(2) Let S(N, p) be the sought number. We have the following partition of Y (the
set of all mappings from X into Y)
VY = Ui<pep{d € V¥, card p(X) = k},
. N S(N,k .
so that pV = > 1<hep SN, k)CE, ie., Py = 2i<k<p (k! ) (pjk)!. Following the
same calculations as above (with p replacing N and N fixed), we find

N
(pp! Jp>1 = (S(];I!J)) Jp>1 % (fg)g>1,
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N gp—i S(N.j) (1+z)P~7
so that >3, i, 7, (r—i) 21<J<p (j!j)((pi)j)! ,and for x = —1,

j .
S(N,p) = p! . ( Ta=>cC P,
1<j<p J ‘7 1<j<p
Notice that S(N,1) =1, S(N,2) =2V — 2,
S(N Y CJ —1)1’—3'. (1.9.4)
1<j<p

It is a consequence of that formula that for 0 < N < p, S(N,p) = 0: it is also a
fact that can be verified directly as follows. We have in that case

T p N 3! .
(M arary == S g T e
N<j<p

and for z = —1, we get 0= >y, (=1)/C}j(G —1)...(j = N +1), i.e
doCj(-1y =0, > Ci-1yj=0, Y Ci-1)Yi(i-1)=0,
0<j<p 0<j<p 0<j<p

implying that ZO<j<p C’g(fl)jj2 = 0, and the other equalities S(N,p) = 0 for
0 < N < p follow by limited induction on IN.
We have used the standard definition for the binomial coefficient,
CP =card{A C {1,...,n},card A = p}, (1.9.5)
|
CP = " for 0<p<mn, C2=0 otherwise. (1.9.6)
(n—p)'p!

We have the classical formulas, easily proven by induction on n,

(ml +l‘2)n l‘pl xpz
(w1 +@2)" = Y Chalay™?, =D pil pZ!, (1.9.7)
0<p<n p1t+p2=n
1 D1 Pk
(@ a)r= Y LT (1.9.8)
nt pitetpr=n pt et
1 n x(X [e3 g Qg
n'($1+"‘+$k) = Z G T Ear gt (1.9.9)
! o @
aeN*
where for N¥ 3 a = (ay,...,a1), al = a1!...ap!, o] = a1 + - + .

Note also the immediate consequence of (1.9.5)

et =cht+crt (1.9.10)
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which implies C21T] = Cat1 +C4 = CIH ] +C_ +C8 = CLL+CI_,+C2_ +C4

and thus inductively on n, 35 ), Cl= CZE. Also we have for n > p > 1,

card{(ji)1<r<p € {1,...,n}?, st 1 <jo < - <} =Ch, y,  (19.11)

since an increasing sequence (ji)i1<k<p of g{1,...,n} can be identified with the
strictly increasing sequence (ji + k — 1)1<k<p of {1,...,n 4+ p — 1}, that is to a
subset with p elements of the latter. Moreover

card{a € N4, |a| =1} = Cldgdlfl, (1.9.12)

since defining f1 = a1 + 1,82 =1+ a2 +2,...,8a-1 =D cjcq @ +d—1, we
identify {a € N4, |a| = [} with the set of strictly increasing sequences (3;)1<j<d—1
valued in {1,...,14+d — 1}, whose cardinal is Cld;dl_l.

Exercise 1.9.21.

(1) Let (X, M, ) be a measure space where p is a positive measure and let f :
X — R be a measurable function. Prove the Chebyshev inequality:

vt>0, p({zeX,|flx)|>t}) <t? /X |f|%du. (1.9.13)

(2) Let (Q,AP) be a probability space and X : @ — R be a random vari-
able (i.e., a measurable mapping) such that [, |X|*dP < +oo. Show that
Jo IX|dP < +o00 and defining the expectation E(X) and the variance o(X)?
of X as

E(X):/QXdIP’, o(X)Q:/Q|XfE(X)|2dIP’, (1.9.14)

prove the Bienaymé—Chebyshev inequality: for a > 0,

O‘(X)Q.

P(|X - E(X)|>a) < 7,

1.9.15

’ (19.15)

(3) Let (2, A,P) be a probability space and X; : @ — R be a sequence of random
variables (j > 1 integer) such that for each j,fQ | X;|?dP < +oco. Let us
assume that there exist m,s € R such that

Vi>1,E(X;)=m and Vj k> 1,/(Xj —m)(Xy, — m)dP = §; ;5>
Q

Deﬁm’ng Y, = iZlSan X, prove that Y, converges in probability to m,
i.e.,

ve>0, P(|Y,—m|>¢)=0. (1.9.16)
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Answer. (1) We have for ¢t > 0,

nlo € X15@) 2 8) = [ Vgpeodes [ Lgpeot*IPau<e? [ (P
X X X

(2 We have [, [X|dP = [y, [X|dP+ [, [XIdP < 1+ [y, [XPdP < +oc.
Applying the first question to the function X — E(X) with ¢t = bo(X), assuming
o(X)>0,b>0, we get

1 2 12
P(IX — E(X)| > bo(X)) < bQU(X)Q/Q|XE(X)| dP = b2

If 0(X) =0, we find X = E(X) and for a > 0, the result (1.9.15) is obvious. We
may note

/|X7E(X)|2dIP’:/ |X\2dIP’+/ |E(X)[?dP — 2 [ XE(X)dP
@ 9 @ @ (1.9.17)
= [ 1xPap - BGOP

(3) We find E(Y,) = m and thus for € > 0, from the Bienaymé-Chebyschev
inequality, we get
Y,)?

o2
We caleulate o(Y,)? = [, [V, —m|*dP = n"2 3, o, [o (X — m)(Xy, — m)dP

and our assumption gives o(Y,)? = n™2ns?, so that P(|Y,, — m| > ) < ;;,
proving the sought convergence.

B(|Y, —m| > &) < °

Exercise 1.9.22. For k,n positive integers, we define ay, , = (5k7n((—1)" +2). Show
that, for each k, limy, ap,, =0, arn >0, | Y, arn| < 3. Prove that the sequence
(D k>1 @kn)n>1 does not have a limit. Check that the domination assumption in
Lebesgue dominated convergence Theorem 1.7.5 is violated.

Answer. The first limit is obvious and we have also for n > 1,

Z agn = (—1)"+2, a divergent sequence.
E>1

Of course the assumption of domination in the Lebesgue dominated convergence
theorem is not satisfied since sup,, ax, = (—1)* + 2, a non-summable sequence.
As a result for the measure space (X, M,pn) = (N*,P(N*), counting measure),
it is possible to find a sequence (fy)n>1 of non-negative bounded functions with
bounded integrals such that for all z € X, lim,, f,,(x) = 0, but so that the sequence
( f + fndpt)n>1 is divergent. This proves that the domination assumption cannot be
dispensed with in general.
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Exercise 1.9.23. Let (X, M, 1) be a measure space where 1 is a positive measure.

(1) Let f: X — Y be a mapping and let p : Y — Ry be a measurable function.
Prove that

/Y d(f. (1) = /X (9o f)dp. (19.18)

(2) Prove (1.9.18) for ¢ € LY(f.(1n)).
3) Let f: X — Y and g: Y — Z be two mappings. Show that

(g0 f)e(pn) = g« (f*(ﬂ))

Answer. (1) That formula is satisfied for a simple function ¢ =37, .., a;1p;:

/Y pd(f0) = 3 @B = Y amu(f~ (B))

1<j<m 1<j<m
(using 1p, 0 f = 15-1(p,)) = Z a; /(IBJ. o f)du = / (p o fdu.
1<j<m X

Beppo Levi’s theorem 1.6.1 and the approximation Theorem 1.3.3 give the result.
(2) By linearity, that formula holds as well for ¢ € £! ( f*(u))
(3) Following Lemma 1.4.3, the pushforward f.(u) is defined on the o-algebra

N={BcCY,fB)ecM}
by fu(p)(B) = pu(f~*(B)). The pushforward g, (f.(1t)) is defined on the o-algebra
T={CcZg'(C)eN}={CCZ [ (9" (C)eM}
={CCZ(g0f)1(C) e M}

by 9. (£ (1) (C) = L) (971(C) = u(F (97 (B)) = nl(g 0 f)7H(C)). As a
result, the measures g, (f.(1)) and (g o f)«(u) coincide on the o-algebra 7.

Exercise 1.9.24. Let X be a Hausdorff o-compact topological space, let B be the
Borel o-algebra on X and let p be a positive measure defined on B such that
u(K) < 400 for K compact (1 is a Borel measure on X).

(1) Prove that the singletons are closed. We define
D ={a <€ X,u({a}) > 0}.
(2) Let n,l be integers > 1. Assuming X = U,>1 K, with K,, compact, we set
Dy ={ac K, and p({a}) > 1/1}.

Show that Dy, ; is finite and D is countable.
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(3) For E € B, we define A\(E) = p(D N E). Show that it is meaningful and that
A is a Borel measure on X. Show that

= 3" u{a})su,

a€D

where &, is the Dirac mass at a (i.e., ,(E) = 1g(a)).
(4) Show that p = A\+v where v is a Borel measure on X such that for allx € X,

v({z}) =0.

Answer. (1) For ' ¢ {z}, we find V € ¥,, V' € ¥, such that VNV’ = (, so that
the complement of the singleton {z}° > V' and is a neighborhood of each of its
points, thus an open set.

(2) Let aq,...,apn be distinct in D,, ;. We have

oo > p(I) = p{ar,. . am}) = Y u{a;}) = mjl

1<j<m

so that m < u(K,)l < 400, proving finiteness for D, ;. For a € D, we may find
an integer ! > 1 such that u({a}) > 1/I. Since a belongs to some K,, we find
a € D, ;. This implies D C Up>1,>1Dn,: Since D,,; C D we find that D is a
countable union of finite sets, thus is countable.

(3) The set D is a Borel set as a countable union of singletons (closed sets), and
with E € B, DN E € B. We may thus define A(E) = p(D N E). This defines a
Borel measure since A(#) = u(@) = 0, and for FE, a sequence of pairwise disjoint
Borel sets, K a compact set, we have

)‘(UnENEn) = /J( nEN E N D Z M ) = Z )‘(E
neN neN
MK)=pu(KND) < p(K) < +oo.

With D = {ay, }nen, we have

AME) = (DN E) = p({an, an € E}) = Z n({an})

=Y ulfan})da, (B) = Y u({a})da(E), qed.

(4) For E € B, we have u(E) = p(EN D)+ p(E N D% = XNE) + v(E), with
v(E) = u(E N D°). As in question (3), we find that v is a Borel measure. For
z € D, we have v({z}) = v({z} N D¢) = v(@) = 0. For z ¢ D, we find 0 =
p({z}) = A({z}) + v({z}) = v({z}), so that for all z, we have v({z}) = 0.

Exercise 1.9.25. Let B be the Borel o-algebra on R and p be a positive measure
defined on B, finite on the compact sets.
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(1) For a € R, we define

) ula,t])  fort>a,
Fa(t) = {—u([ta[) fort <a.

Show that F, is increasing and left-continuous.
(2) We assume that u is a probability measure. We define the repartition function
of the probability p on R as

F(t) = p((—00,t)-

Show that F is increasing, tends to 0 (resp. 1) when t goes to —oo (resp.
+00), and is left-continuous.

Answer. (1) Let s < t be real numbers. For s > a, we have [a, s[C [a,t] and
thus Fo(s) = u([a,s]) < w(la,t]) = Fa(t). For s < a < t, we have F,(s) =
—u([s,a]) <0 < u([a,t]) = Fu(t). For s < t < a, we have [t,a[C [s,a[ and thus
F.(s) = —p([s,a]) < —u([t,a]) = Fa(t). The function F, is thus increasing.
Let to € R such that tg > a and let (¢,)n>1 be an increasing sequence with
limit ¢5. We have
[a, to[= Unz1[a, tn]

and using Proposition 1.4.4(2), we find

Fa(tO) = :u([a7t0[) = nhﬁnéo M([avtn[) = lim Fa(tn)'

n— oo

Let to € R such that t9 < a and let (¢,),>1 be an increasing sequence with limit
to. We have
[th a[: m'rLZl [t’nm a[

using Proposition 1.4.4(3) along with pu([t1, o) < p([t1,a]) < 400, we find

Fu(to) = —p(lto,al) = — lim p(ftn,al) = lim Fy(t,).

n— oo n— oo

(2) F is increasing since t — (—o0, t[ is increasing, and tends to 1 when ¢ goes to
+oo from Proposition 1.4.4(2), tends to 0 when ¢ goes to —oo from Proposition
1.4.4(3). The left-continuity is proven as in question (1) above.

Exercise 1.9.26. Let (X, M, u) be a measure space where p is a positive measure
and let f, : X — R be an increasing sequence of measurable functions such that
sup,en [y fndp < +00. Prove that sup, ey fn() is finite p-a.e. Give an analogous
statement for series of measurable functions valued in Ry .

Answer. Thanks to Beppo Levi’s theorem 1.6.1 we have, with f = sup,,cy fn,

/fdu=sup/ Tndp,
X neNJ X
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so that f is a measurable function from X into Ry such that [y fdu < +oo.
Proposition 1.7.1(4) shows that is finite p-a.e. Similarly, for a sequence (uy)ken of
measurable functions from X into R, such that

Z/ urdp < 400,
k>07 X

the series ), . ur(z) converges p-a.e. towards a finite limit: in fact Corollary

1.6.2 implies
/ (Z uk)du = Z/ urdp < +00
X X

keN k>0
so that the function ), . ux(7) is finite p-a.e.
Exercise 1.9.27. Let (X, M, u) be a measure space where p is a positive measure

and let f : X — C be a function in L' (u). We assume that for all E € M,
fE fdu = 0. Show that f is vanishing p-a.e.

Answer. For E = {z € X,Re f(z) > 0}, we find

0= Re(/E fdu) - /E(Re Fdi = Lpe sy Ref =0 prace.,

and since we have also 1(re <o) Re f = 0, p-a.e., we get Re f = 0, p-a.e. We prove
similarly that Im f = 0, u-a.e.

Exercise 1.9.28. Let (X, M, u) be a measure space where p is a positive measure
and let (fn)nen be a decreasing sequence of measurable functions from X into Ry
converging pointwise to a function f.

(1) Prove that if there exists N € N such that fx belongs to L (i), then

lim/ fndp:inf/ fndp:/ fdu.
noJx nJx X

(2) Prove that this property does not hold if the assumption in (1) is removed.

Answer. (1) We can apply the Lebesgue dominated convergence Theorem 1.6.8,
since for n > N, we have 0 < f,, < fx € LY ().
(2) We note first that from Fatou’s lemma 1.6.4, we have

/ fdu:/ liminf f,du gliminf/ fndp:inf/ fndp.
X X n X nJx

Let us prove that we may have 0 < fX fdu < inf, fx fndu. We consider X = N
with the counting measure p and the (decreasing) sequence f, = 1f, yo0). We
have f =0 and [, fndp = +o0 for all n.
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Exercise 1.9.29. Let (X, M, u) be a measure space where p is a positive measure
such that p(X) < +oo. Let (fn)nen be a sequence of bounded complex-valued
measurable functions converging uniformly towards a complex-valued function f

on X:
lim(sup | fr(x) — f(m)\) =0.

n o zxeX

(1) Prove that each f, and f belong to L(n) and lim,, fX |fn — fldu =0.
(2) Prove that this property does not hold if the assumption u(X) < +oo is
removed.

Answer. (1) As a pointwise limit of measurable functions, f is also measurable.
We have also

/\fn(m)*f(m)\du(x)é/ sup [fn(z) — f(2)|dpu(x)
X

X zeX
= sup | fn(z) — f(2)|n(X),
rzeX

proving the convergence. Also that inequality proves that, for each (large enough)
n, fn — f belongs to £ (1) and since each f,, is bounded, it belongs to £!(u) (since
u(X) < +00) as well as f.

(2) We consider X = N with the counting measure p and the sequence (n > 1)

1
fn(k) = n l[n,2n—1] (k)

We have sup,ey |fn(k)] = 1/n which goes to zero when n goes to +oco but
[x fndp = 1. Note that the sequence (f,) as well as f belong to a bounded
set of £1(u). Of course the sequence (f,,) fails to be dominated by an L' function
since for each k > 1,

1 1
sup fn(k) > ., and = +00.
n;ff (k) = Zk

Exercise 1.9.30. Let (X, M, u) be a measure space where p is a positive measure
such that u(X) < +oc and let f € L*(u) such that, for a given closed set T of C,

@) VE € M with u(E) > 0, u(lE) /Efdu eT.

Prove that f(x) € T, p-a.e.

Answer. For z € T¢ 3p > 0 with B(z,p) C T If we had u(f~'(B(z,p))) > 0,
this would give, with E = f~! (B(zgp))7 #(1E) fE fdu € T. However, we have

1 / 1
fdp = / (f = 2)dp + 2,
H(E) Jp-1(B(z,p)) W(E) J5-1(B(z,p))
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and since

1
—2)d
n(E) /fwB(z,p))(f 2)du

this would imply |z — T'| < p, which contradicts B(z,p) C T¢. Consequently,
u(ffl(B(z,p))) = 0. Since the open set T° is a countable union of closed balls,
this implies that p(f~1(T°)) = 0.
N.B. The assumption p(X) < 400 can be replaced by o-finiteness: assuming ()
for all E with positive finite measure, we get from the previous result that, for
X = UgenXg, p(Xg) < 400, since

pu(E)

= wE) ~

{z e X, f(x) e T} = Upen{z € Xy, f(z) € T}

each {z € Xy, f(z) € T°} has 0 measure, as well as f~1(T¢).

Exercise 1.9.31. Let (X, M, u) be a measure space where p is a positive measure
and let (Ex)k>1 be a sequence in M such that 3~ u(Ex) < +00. Prove that

1) Un>o{z € X,z belongs to n subsets Ey}

has a complement with measure 0, i.e., almost all x lie in at most finitely many Ey.

Answer. The complement of the set (1) is F' = Ny,>0 (Uk>nEk) : In fact if = belongs
to infinitely many FEj, for each n > 0, there exists k > n with x € Ej; conversely,
any x € I belongs to infinitely many Ej. We have

p(F) < p(UgsnBr) < Z w(Er) — 0,

n—-+oo
k>n

proving u(F) = 0.



Chapter 2

Actual Construction
of Measure Spaces

In the previous chapter, we gave a presentation of integration theory along
with convergence theorems and a functional space for integrable functions. All
this seems to be very satisfactory, except for the fact that we do not have many
examples: the counting measure is an example and its version on N is certainly a
good way to present series and the space ¢!(N) of summable sequences of complex
numbers (an)nen (ie., such that Y7 lan| < 400).

However, our most important example is the construction of the Borel mea-
sure, defined on the Borel subsets of R, such that pu([a,b]) = b —a for a < b
real numbers. Everything remains to be done for this example: construction of
such an object, proof of its uniqueness, various properties. The present chapter is
essentially devoted to this construction.

2.1 Partitions of unity

Let X be a topological space and let f : X — C be a continuous function. We
define the support of f as the set

supp f = {z € X, AV € ¥, such that fjy, =0 }. (2.1.1)
We note that supp f = {z € X, f(x) # 0}: since (/_l)c = int(A°), we have
r¢{recX, f(x)#0} <=z cint{z € X, f(x) =0} <= IV € ¥, fjy =0,

which defines the complement of supp f. As a result supp f is a closed subset of
X since (supp f)¢ is the union of open sets on which f = 0.

The vector space of continuous functions from X into C with compact support
will be denoted by C.(X). For f € C.(X), we have, if supp f # X,

f(X) = f(supp f) U{0}

N. Lerner, 4 Course on Integration Theory: including more than 150 exercises with detailed answers, 67
DOI 10.1007/978-3-0348-0694-7_2, © Springer Basel 2014



68 Chapter 2. Actual Construction of Measure Spaces

and since the continuous image of the compact set supp f is compact, so is f(X).
If f € C.(X) and supp f = X, then X is compact and so is its image f(X).

Lemma 2.1.1. Let (X, d) be a metric space and let A be a non-empty subset of X.
For x € X, we set
d(z, A) = ;22 d(z,a). (2.1.2)
The function d(-,A) is Lipschitz continuous with Lipschitz constant < 1, i.e.,
|d(x1, A) — d(x2, A)| < d(x1,22). That property implies uniform continuity for
d(-, A). Moreover B
A={z e X, d(z,A) =0}.

Proof of the lemma. For 1 € X and e > 0, there exists a € A such that
d(z1,A) <d(z1,a) < d(z1,A) +e.

Thus for x5 € X, we have d(z2, A)—d(z1, A) < d(z2,a)—d(z1,a)+e < d(z2, 21)+e,
so that
d(l‘g, A) — d(ﬂ?h A) S d($27 3?1).

Switching 7 with zo, we get the sought ‘d(l’27A) - d(xl,A)‘ < d(x9,x1). The
set {x € X,d(x,A) = 0} is closed (since d(-, A) is continuous) and contains A,
thus contains A. Also, if d(z, A) = 0, there is a sequence (ax)ren in A such that
limy d(x, ar) = 0, entailing limy a;, = 2 and = € A. O
Proposition 2.1.2. Let (X,d) be a locally compact metric space.

(1) Let A, B be disjoint non-empty closed subsets of X. Then, for all v € X,
d(z, A) + d(z,B) > 0 and the function 14 p defined on X by

d(z, B) B
d(x, A) +d(z,B)

1, forxzeA,

(2.1.3)
0, forxe€ B,

Ya,p(x) =

belongs to C(X;[0,1]) and is supported in BC.

(2) Let Q be an open subset of X and let K be a compact subset of Q. Then 0 <
d(K,Q°) = infyek yeqe d(z,y). Moreover there exists a function p € Co(X)
such that

0<p<1, ¢rg=1, suppp C.

The function ¢ can be chosen to be identically 1 on a neighborhood of K.

Proof of Proposition 2.1.2. (1) From Lemma 2.1.1, we see that d(z, A) +d(x, B) >
0 and vanishes if and only if t € ANB=ANB =0.1If ¢4 g(z) #0, then = ¢ B,
thus supp¥a,p C B€.

(2) Since K is a compact subset of €, we have

= inf d =d(K,Q° 0 2.1.4
€0 zGIl(I,lyQQ (xvy) ( ) )> ) ( )
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otherwise, we could find sequences z3, € K, and yi, € Q° such that limy, d(zk, yr) =
0. Since K is a compact subset of X, we may find a subsequence (z,)ieny with
limit « € K. Since the sequence d(y,, zr,) converges to 0, we get, using that Q°
is closed,

Q°> lilmykl =z €K,

which contradicts K C 2. Since X is locally compact, every point has a compact
neighborhood: this implies that

Vo € Q,3r(x) >0, B(x,r(z)) is compact C .

Since K is compact and K C Uzex B(z,r(z)), we can find a finite set (z;)1<j<n
with

K C U1SjSNB($j,T($j)) = U C UlSjSNB(LBj,T(LBj)) c Q. (2.1.5)
~ - ~ o

open =L compact

Using the notation (2.1.3) we define ¢ = ) ye: this is a continuous function,
valued in [0, 1], equal to 1 on K, supported in U which is a compact subset of 2
from (2.1.5). Note that applying this result to the compact set L, a subset of the
open set €, we find a new function ¢ € C.(X;[0,1]), suppp C 2, p =1 on L
which is a neighborhood of K from the first inclusion in (2.1.5). O

Theorem 2.1.3. Let (X, d) be a locally compact metric space, let Q1, . ..,Q,, be open
subsets of X and let K be a compact set with K C Qq U ---UQ,. Then for each
J € {1,....n}, there exists a function ¥; € Cc(€;[0,1]) such that 32, ., ¥; €

Ce(U7_,95;[0,1]) and
1= Z b -

1<j<n

We shall say that (¢;)1<j<n 18 a partition of unity on K, attached to (2;)1<j<n.
In particular, for 0 € Co(U1<j<n§)j), using the previous result for K = supp®,
we get

0= > 0; with0;=0y; € Co().

1<j<n

Remark 2.1.4. The reader will see in Exercise 2.8.2 that this theorem can be
extended to the case of a locally compact topological space. On the other hand,
Exercise 2.8.8 deals with the R™ framework, and provides smooth partitions.

Proof. The case n = 1 is dealt with in Proposition 2.1.2. For all x € K, there
exists r(z) > 0 such that K C Uyex B(x,r(z)), where the closed ball B.(z,r(x))
is included in one of the ;. Applying the Borel-Lebesgue Lemma, we get

K C Ui<i<nB(x1,r(z1)) C Ur<i<nBe(zr, (1)),
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and defining

K= U (Bc(ml, r(21)) N K),
1<I<N,
Be(z,r(z1))C8;y
we find K C Ui<j<nKj, with K; compact C §2;. Applying now Proposition 2.1.2,
we find ¢; € C.(€25;0, 1]) such that @i, = 1. We set then

wl = ¥1,
Y2 = (1 — p1)p2,

We have 9; € C.(;5;[0,1]) and inductively on n, the identity

dowi=1- J[ (t-¢y. (2.1.6)

1<j<n 1<j<n

In fact (2.1.6) holds for n = 1 and supposing it for some n > 1, we get

S owi=1- J] QO-¢)+enns [[ O-en=1- J[ @-v.

1<j<n+1 1<j<n 1<j<n 1<j<n+1

Equalities (2.1.6) and the previous one prove in particular that ;- j<n V5 as well
as each v; are valued in [0,1] since it is the case for each ¢;. As a result, we
have K C Ui<j<nK; C Uigj<n{p; = 1} C {34, ¥; = 1}, concluding the
proof. O

2.2 The Riesz—Markov representation theorem

The results presented in this section concern a theorem proven by the Hungarian
mathematician Frigyes RIESZ (1880-1956) and by Andrei MARKOV (1856-1922), a
Russian mathematician; we follow the presentation of Walter RUDIN (1921-2010).
The starting point is natural, although the proof has some technical aspects: it is
not difficult to define the integral of compactly supported continuous functions,
either directly or using the well-broomed Riemann theory of integration. In that
case, using traditional notation, the mapping

CeR™) > f | fla)dw
]R‘m
is a linear form which is positive in the sense that the integral of a non-negative
function is also non-negative. The theorem says that it is possible to construct
a measure space (R™, B,,, ), where B, is the Borel o-algebra of R™, so that
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LY(p) D Ce(R™) where [o,, fdp = [, f(z)dx for f € C.(R™). This is an exten-
sion of a Radon measure (continuous linear functional on C.(R™)), which can be
done also replacing R™ by a locally compact Hausdorff topological space; here we
shall limit ourselves to locally compact metric spaces. A drawback of this point of
view is that it uses heavily some topological structure on the base space. A purely
set-theoretic extension could be implemented and we shall present later in this
chapter that different approach.

Theorem 2.2.1. Let (X, d) be a locally compact metric space. Let L : C.(X) — C
be a positive linear form (i.e., such that f > 0= Lf > 0; L is said to be a positive
Radon measure'on X). Then there exists a o-algebra M on X, containing the
Borel o-algebra Bx, and a unique measure p defined on M such that the following
properties hold.

(1) Vf € Co(X), Lf = [y fdp.

(2) YK compact C X, p(K) < +o0.

(3) VE e M, pu(E) = inf {u(V),Vopen D E} (outer regularity).
(4) VE € Ox U{E € M, u(E) < +oo},

w(E) = sup{u(K), K compact C E} (inner regularity).

(5) VE € M such that u(E) =0, A C E implies A € M (the o-algebra M will
be said pi-complete).

N.B. Let us note that (1) is meaningful since a function f in C.(X) is Borel
measurable, so that the inverse image of a Borelian of C belongs to Bx C M,
proving the measurability of f. Moreover, since f is compactly supported, the
inequality |f| < 1x sup|f| and (2) imply f € £ (u).

Proof of the theorem, Uniqueness. Since p satisfies (4) and open subsets are Bore-
lian, we have for V open, (V') = sup {(K), K compact C V'}. Property (3) shows
then that p is completely determined by its values on compact subsets of X. Let
141, b2 be two positive measures defined on a o-algebra M containing Bx and sat-
isfying (1-2-3-4). Let K be a compact subset of X. From (2), (3), we get that for
all € > 0, there exists an open set V. D K such that

p2(K) < pa(Ve) < pa(K) + e
Let ¢ € Cc(Ve;10,1]) so that ¢ =1 (cf. Proposition 2.1.2). We have
i (K) =/ 1gdp < / @dpy = Ly
b's b's
=/ wdpz S/ ly.dug = pa(Ve) < p2(K) +e,
b's X

Lef. (2.8.7), (2.8.8) in Exercise 2.8.3.
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which implies p;(K) < po(K). Switching py with pe, we get po(K) = pi(K),
proving uniqueness.

Proof of the theorem, Existence. We shall now construct g and M:

for V an open set, we define  pu(V) =sup{Lyp, ¢ € Cc(V;[0,1])}, (2.2.1)
for any subset E C X, we define p*(E) = inf{u(V'), Vopen D E}. (2.2.2)

We define also

Mp={ECX, p"(E) < +oo, p*(E)=  sup p"(K)}, (2.2.3)

K compactCFE

M={FE C X,VK compact, KNE € Mp}. (2.2.4)

Lemma 2.2.2. The mappings i and p* are valued in Ry. If Vi C Va are open sets,
then u(V1) < u(Va). If V is open, then u(V) = p*(V). Moreover u()) = 0.

Proof. Since Ly € R for ¢ € C.(X;][0,1]), we have (V) € R, and thus the same
for p*(E). If V4 C V4 are open, the inclusion C.(Vi;[0,1]) C C.(V2;[0,1]) implies
1(V1) < u(Va). For V open, we have u(V) = p*(V') since whenever W open D V,
we have p(V) < u(W) so that p*(V) < u(V) < p*(V). The last property follows
from the very definition of

C.(V;10,1]) = {¢ : X — [0, 1], continuous, supp ¢ compact C V}.

When V =0, p € C.(V;]0,1]) implies supp ¢ = @, so that ¢ = 0 and thus Ly = 0,
entailing p(0) = 0. O

The o-additivity of u* on P(X) does not hold in general?, but we shall prove
that it holds on a o-algebra containing Bx.

Lemma 2.2.3. The mapping u* defined by (2.2.2) is increasing. Moreover, {E C
X, u*(E) =0} c MNMp. Also, p*(E) =0 implies P(E) C M.

Proof. If B D A, we have

{V open D B} C {V open D A} =

pr(B)=_ inf pu(V)=

Vopen DB - VoplgrlfDAM(V) —H (A>

Moreover if p*(E) =0, then E € M N Mp; in fact if K C E is a compact subset
of X, we have p*(K) = 0 by monotonicity, so that E € Mp. Also E € M since
for K compact p*(K NE) < p*(E) = 0 so that K N E € Mp, from the above
argument. Moreover, if A C F and p*(E) =0, then p*(A) =0and Ae M. 0O

21t is for instance possible to prove that there does not exist a positive measure defined on
P(R™) which would coincide with the ordinary volume on compact rectangles JT;<;<,[a;,b;5]-
As a matter of fact, this impossibility is the initial reason for the introduction of the notion of
o-algebra, to restrict the measure first to Borel sets, then to the completed o-algebra, i.e., the
o-algebra generated by By, and the subsets of sets with measure 0 (see Exercise 2.8.13).
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Note also the monotonicity of L: for f < g € C.(X;R) then

Lg=Lg—f+f)=Lg—f)+Lf>Lf

Definition 2.2.4. Let X be a set and v : P(X) — R, be a mapping. We shall say
that v is an outer measure on X whenever

(D) =0, (2.2.5)

ACBcCX = v(A) <v(B), (2.2.6)

for (Ej;)jen a sequence in P(X), v(UjenE;) < Z v(E;). (2.2.7)
jEN

The last property is called countable subadditivity.

Lemma 2.2.5. Let L be a positive Radon measure on X and u, p* defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then u* is an outer
measure on X .

Proof. Property (2.2.5) follows from Lemma 2.2.2 and Property (2.2.6) from Lem-
ma 2.2.3. Let us prove countable subadditivity for p*. Let V7, V5 be open subsets
of X and V = V; U V5. We have defined

p(V)=  sup Lo
P€C(V;[0,1])
If ¢ € C.(V;]0,1]) and K = suppp, Theorem 2.1.3 implies that we can find
0; € C.(V};[0,1]),5 = 1,2, such that 6; + 62 = 1 on K. As a result, we get
@ =019+ b2, so that with ¢; = 8;¢,

Lo = Lo1 + Lpy < sup  Lei+  sup Lo = u(Va) + p(Va),
$1€C(V3[0,1]) $2€C(Va3[0,1])

entailing (Vi U Vo) < p(Vh) + u(V2). Inductively on N, we get for Vi,...,Vy
open,

p(Ur<een Vi) < Z (Vi) (2.2.8)
1<k<N

To prove the lemma, we may assume that for all j, u*(E;) < +oo (otherwise the
result is obvious). From (2.2.2), we obtain for all € > 0, for all j € N, the existence
of an open set V. ; D Ej; such that

P (Ey) < p(Vey) < w*(Ej) +e27771

We set then Ve = UjenVs,; (an open set) and consider ¢ € C.(V;[0,1]). Since the
support of ¢ is compact, there exists N € N such that ¢ € C.(Up<j<n Ve ;3 [0, 1]).
Consequently, from the definition (2.2.1) and (2.2.8) we get

Lo < p(Up<j<n Ve j) < Z 1(Ve,s)

0<j<N

< Y (WE)+e ) <e+ > pt(E)).

0<j<N JjEN
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As a result since p* is increasing and U;enE; C Ve, we have for all € > 0,

pUjenEy) S pt (V) = (V) = sup Lo <e+ Y p'(E)),
‘PGCE(VA[OJ]) JEN

implying (2.2.7). O

Lemma 2.2.6. Let L be a positive Radon measure on X and u, p* defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then, all compact subsets
of X belong to Mp; more precisely for K compact in X,

i (K) = inf{Lyp, ¢ € Ca(X;[0,1]), 0 = 1}. (2.2.9)

Proof. Let K be a compact subset of X, ¢ € C.(X;[0,1]),px =1 and 1 > € > 0.
The set V. = {x € X, p(x) > 1 — €} is open and contains K. For ¢ € C.(V,;[0, 1)),
we have

(I-—ev<(1-ely, <o,
so that from the monotonicity of L and the definition of u*, we get

pWE) Sp (Vo) =p(Ve) = sup Ly < (1) 'Ly (2.2.10)
$peC.(Ve,[0,1])

This implies p*(K) < Ly < +00 so that, since we have trivially by monotonicity

pr(K) < sup p' (L) < p*(K), and thus equality,
L compact C K

we get K € Mp. Moreover from (2.2.10), we get also

(K) < inf L. 2.2.11
wK) < pEC(X,[0,1]), ¢ x=1 ¢ ( )

To prove that (2.2.11) is an equality, we note, using p*(K) < +oo, that for all € >
0, there exists an open set W, containing K such that p*(K) < p(W,) < p*(K)+e.
Using Proposition 2.1.2, we find ¢ € C.(W¢;[0,1]), p x = 1. Consequently, for all
e >0, we find Ly < p(W,) < p*(K) + €, entailing

inf Lo < u*(K) + ¢,
©E€C(X,[0,1]), =1 < p(K)

and the result of the lemma. O

Lemma 2.2.7. Let L be a positive Radon measure on X and u,p* defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then any open set V is
such that

u(V) = sup w(K). (2.2.12)

K compact C V'

In particular Mg contains all the open sets Vsuch that u(V') < +oo.
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Proof. We assume first (V) < +oo. For all € > 0, there exists ¢. € C.(V;]0,1])
such that

n(V) —e < Lpe < p(V).
Considering the compact set K. = suppp. C V and W open containing K., we
have ¢, € C.(W;[0,1]) and thus Ly, < pu(W), which implies

< 1 = .
Lype < OplerrllfD KEM(W) pr(Ke)

Using monotonicity, this implies (2.2.12):

p(V)—e<p (K< sup  p*(K) < p(V).
K compact C V

Moreover, for V open such that (V) < 400, we have proven

w(V) = sup p (K), ie.,VeMp.
K compact C V

If (V) = +o0, we can find a sequence ¢y € C.(V;[0,1]) such that Ly, > k. Con-
sidering K} = supp ¢, C V and W open containing K}, we have ¢, € C.(W;[0,1])
so that

< < i =u* .
Lo < (W) = Lor < oo (W) = p* (Kg)

This implies limy, p*(Kj) = +o0 and (2.2.12) in that case. O

Lemma 2.2.8. Let L be a positive Radon measure on X and u, p* defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Let (E;)jen be a pairwise
disjoint sequence in Mp: then,

p(UjenEy) = > p*( (2.2.13)
JEN

Whenever p*(UjenEj) < 400, we have UjenE; € Mp.
Proof. We note first that for disjoint compact sets K, K5, we have
w (K1 UK) = p* (K1) + p*(Ka2). (2.2.14)

In fact, we have K; C KS§ open and we may find ¢ € C.(K$;[0,1]) such that
¢k, = 1. From Lemma 2.2.6, for all € > 0, there exists 1 such that ¢e|x, g, =1,
e € C.(X;10,1] with

,LL*(Kl U Kz) < L?,Z)e < ,LL*(Kl U Kz) + €.
Moreover, we have pie|r, = 1 and (1 — )ibe| g, = 1. As a result for all € > 0,

Lemma 2.2.6

pr(KL) +pt(K2) < Ligve) + L((1 — ¢)vbe) = L(¥e)
<P (K1UKz)+e < SM*(K1)+M*(K2)+€7

Lemma 2.2.
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providing (2.2.14). Let us return to the proof of the lemma. Since Lemma 2.2.5
provides an inequality when p*(UjenE;) = 400, we get the result in that case.
Let us assume now that u*(UjenE;) < 400 and let € > 0. As E; € Mp, we may
find compact sets K. ; C F; such that

WH(Ey) — €277 < pt(Ke ) < it (By).

As a result, for any N € N,

(2.2.14) and
monotonicity induction on N

nw(UjenE;) = p(UogisnKe) = > w(Key)
- ~ 4

compact
pairwise disjoint

proving the first assertion in the lemma. Let us now show that £ = U;enEj € Mp.
Since the series } .,y n*(Ej) = p*(E) converges, for all € > 0, there exists Ne such
that

compact C E
A~

-~ ~
W(B)—e< Y w(B)<et Y p(Key) = e+ p (Uogjen Key).

0<j<Ne 0<j<Ne
Consequently, we have
monotonicity
P (E) < 2e+ pu*(Uo<j<n, Ke j) < 2e+ sup p(K) < 2e + p*(E),
K compact C E

concluding the proof of Lemma 2.2.8. O

Lemma 2.2.9. Let L be a positive Radon measure on X and u, p* defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Let E, A1, Ay € Mp.
Then

(1) Ve > 0, K. compact, IV, open such that K. C E C V., and p(V\K,) <e.
(2) Al\Ag, AiUAs, AiNAy € Mp.

Proof. From the definition of Mg, we have

pt(E) < 400, inf  pu(V)=p"(E)=  sup  p*(K).
V open D E K compact C E

As a result for all € > 0, there exists a compact set K. C E and an open set
V. D E such that

1(E) — /3 < p*(K.) < ' (B) < pu(Ve) < ' (B) +¢/3.
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Since V. \ K, is an open set such that pu(Ve\K.) < 400, we find using Lemma 2.2.7
that V.\ K. € Mp. Lemmas 2.2.8-2.2.6 provide now

P (VAKS) + p7 (Ke) = p(Ve) < p™(E) + €/3 = p"(Ve\Ke) < 2¢/3,
proving (1). Using that result, we find for A;, As € Mp
K compact C Aj C V; open, u(V;\K;) <e.
Since A1\ Az C V1\Ka C (V1\ K1) U (K1\Va) U (V2\K2),® Lemma 2.2.5 gives
' (Ar1\Az) < 2¢ + p* (K1\V2),

and since K1\Vs is a compact set C A\ Az, we find A1\ Ay € Mp. Moreover the
equality A U Ay = (A1\A2) U Ay and Lemma 2.2.8 give Ay U Ay € Mp. Also the
identity
AiNAy = A \&Al\\/A22
EMFp EMp

and the beginning of our proof shows that A1 N Ay € Mp. O
Lemma 2.2.10. Let L be a positive Radon measure on X and p, u* defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then M defined in (2.2.4)
s a o-algebra on X containing the Borel o-algebra Bx .

Proof. Let K be a compact subset of X and A € M. Then we have
A°NK =K\A=K\(ANK),

and since K€ Mp (Lemma 2.2.6) and ANK€ My (assumption A € M), we find,
from Lemma 2.2.9 that A°N K€ Mp, implying A° € M. Moreover if (A;);>1 is
a sequence of M and K is a compact set, we have,

(Uz14) N K = | {(AN NE)\[Ui<jan(4; ﬂK)]}-

Since our assumption implies A; N K € Mp, we get from Lemma 2.2.9 that for
all NV,
(An N K)\[U1§j<N(Aj N K)] € Mp.

But these sets are pairwise disjoint with union ANK (A = U;>14;), with a finite
outer measure since pu*(A N K) < p*(K) < 40o. We may thus apply Lemma

3We have X1\X4 C (X1\X2) U (X2\X3) U (X3\X4) since
X1\ Xs=X1N X =(X1NX§NXS)U (X1 NX5N Xa)
C(X1\X2)U (X1 NX§NX2NXE)U (X1 NXEN X2 N X3)
C (X1\X2) U (X2\X3) U (X3\Xy).
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2.2.8, proving AN K € Mp and thus A € M. Moreover for F closed, F N K
is compact thus belonging to Mp, implying F' € M. In particular X belongs to
M. Finally, M is a o-algebra on X containing the closed sets, thus the Borel
o-algebra Bx. g

Lemma 2.2.11. Let L be a positive Radon measure on X and u, u* defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). With Mp and M defined
in (2.2.3), (2.2.4), we have

Mp={E M, pu*(E) < +oo}.

Proof. Let E € Mp and K compact. Lemmas 2.2.6-2.2.9 show that K, EN K €
Mg, which implies E € M. Conversely, if E € M and p*(F) < 400, there exists
V open D FE such that pu(V) < 400 and from Lemma 2.2.7, V € Mp. Using
Lemma 2.2.9, we find that for all € > 0, there exists K compact such that K C V
and p(V\K) < e. Since we have assumed E N K € Mp, there exists a compact
set L C EN K such that

p(ENK)—e<p (L) <p (ENK).

Moreover we have E C (EN K) U (V\K), thus we find from Lemma 2.2.8,
eEMFp eEMp

W (E) < @ (BN K) + 5" (V\K) < 1 (L) + 2¢ < " (E 1K) + 2€ < 1" (E) + 2,
entailing £ € Mp. O

Lemma 2.2.12. Let L be a positive Radon measure on X and u, u* defined respec-
tively on the open sets and on P(X) by (2.2.1), (2.2.2). Then with M defined in
(2.2.4), p* is a positive measure defined on the o-algebra M, and denoting the
measure space (X, M, p*) by (X, M, ), we find Vo € Ce(X), Lo = [y pdpu.

Proof. We have proven in Lemma 2.2.2 that p*(0) = pu(0) = 0. Let (E});>1 be a
pairwise disjoint sequence in M. If there exists jo > 1 such that p*(E;,) = +oo,
we obtain the result for the o-additivity since p*(Ej;,) < p*(U;>1E;). We may
thus suppose that Vj > 1, u*(E;) < +o00. From Lemma 2.2.11,Vj > 1, E; € Mp
and Lemma 2.2.8 gives the result. To obtain the second property, we may assume
that ¢ is real valued and we have only to prove that Ly < [ « pdp since we shall
deduce from this

—L(p) = L(—¢) S/ —pdp = —/ dp = Ly 2/ edp.
b b b
We note also C.(X) C L (), since for ¢ € C.(X), we have

o] < sup |@[Llsuppy € ‘Cl(/‘)7

because supp ¢ is compact, implying u(supp ¢) < 400, and moreover, ¢ is mea-
surable since M contains the Borel o-algebra. Let us then consider ¢ real-valued
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€ C.(X) with compact support K such that ¢(X) C [a,b] and let € > 0 be given.
We consider (y;)1<;j<n real numbers such that

Y<a<y1 < - <yn=b, 0<yjy1—y; <e

We define E; = {z € K,y;—1 < p(z) <y;}, 1 <j < N. The sets E; are pairwise
disjoint Borel sets with union K. Consequently, there exist some open sets V; D I
such that c
pEy) < p(Vy) < n(Ej) + % (2.2.15)

We consider the open sets W; = V; N{z € X, ¢(z) < y; + €} D E;. We have
€

pWj) < ulV;) < plEj) + s
From Theorem 2.1.3 on partitions of unity, we find some functions v; belonging

to Ce(W;;(0,1]) such that on K, 37,y ¥y = 1, implying ¢ = >, .oy ¥50.
From Lemma 2.2.6 we get

pK)<LC Y w) = > Ly, (2.2.17)

1<G<N 1<GEN

K =Ui<j<nE; CUi<j<nWj. (2.2.16)

and since ¥, < (y; + €)1; with y; — e < () for z € Ej;, we get

Lo=L( Y i) <L( > (i+ow)= > (y+eLyy

1<5<N 1<<N 1<5<N
= (lal +y;+€¢) Loy —lal > Ly
- ~ -~ - -
1<j<N 1<j<N

=y;j—a+etat|a|>0
(using (2.2.1) and (2.217)) < Y (lal +y; + €)u(W;) — |alu(K)

1<j<N

(using (2216)) < 3 (Jal +y; +(u(By) + 1)~ lalu(K).
1<j<N

Consequently, we obtain for all € > 0,

Le< Y (al+y+(uE) + ) =la > wlEy)

1<j<N 1<j<N

=clal+ Y (+) (uE)+ )

1<GEN

(and since on Ej,yj—1 < o = y; + € < yj_1 +2e < o+ 2¢)

<elal+ Y /E‘(cp+2e)du+e(b+e)

1<j<N
<e€(lal +b+€) + / odu + 2epu(K),
X

so that Ly < [ edpu. O
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We have thus proven that (X, M, ) is a measure space where p is a positive
measure so that M D Bx. Property (1) in Theorem 2.2.1 follows from Lemma
2.2.12, Property (2) from Lemma 2.2.6, Property (3) from (2.2.2), Property (4) for
open sets from Lemma 2.2.7, Property (4) for sets E € M with u(E) < +o00, from
Lemma 2.2.11 and Property (5) is proven in Lemma 2.2.3. The proof of Theorem
2.2.1 is complete.

Definition 2.2.13. Let X be a locally compact metric space, Bx its Borel o-algebra,
and let (X, Bx, ) be a measure space where u is a positive measure. When the
measure 4 is finite on the compact sets, we shall say that p is a positive Borel
measure on X. When Property (3) (resp. (4)) in Theorem 2.2.1 is satisfied for all
E € By, we shall say that p is outer regular (resp. inner regular); p will be said
regular when both properties hold.

Theorem 2.2.14. Let (X,d) be a locally compact metric space which is also o-
compact (i.e., countable union of compact sets), let L : C.(X) — C be a positive
linear form and let (X, M, ) be the measure space given by Theorem 2.2.1. The
following additional properties hold.

(1) w is a regular Borel measure on X.
(2) For E € M and € > 0, there exists V, F' such that

Fclosed C E C Vopen, wuw(V\F)<e

(3) E belongs to M if and only if there exists an F, set (countable union of
closed sets) A, and a Gs set B (countable intersection of open sets), such
that

ACECB, and p(B\A)=0. (2.2.18)

We start with the proof of (2). Let Ky be a sequence of compact sets with X =
Un>1Kn. We have

/J(KN ﬂE) < /J(KN < +00.
monotonicity (2) in Th. 2.2.1

From (2.2.2) there exists Vy open such that Viy D Ky N E such that
WEnNE) < pu(Vy) < wW(KyNE)+e2 N2,

Since E,Vy, Ky € M, we have u(Vy\(Ky N E)) < €27N¥=2 and with the open
set V = UNZlvN O F,

M(V\E) = (UN>1 VN\E (UN>1 VN\ EQKN)))
< ) uW\(ENKy)) < e/4.

2
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Applying this to E°, we find an open set W DO E° such that u(W\E°) < ¢/4.
Finally we get

F=W¢closedCECV, ulV\E)<e/4, uE\F)=puW\E) <e/4,

implying the result.

Let us now prove (1). Outer regularity and finiteness on compact sets follow from
Theorem 2.2.1. To get inner regularity, we have only to check Property (4) of
Theorem 2.2.1 for Borel sets with infinite measure. Let E be a Borel set with
infinite measure: from the already proven (2), there exists

Fy closed C E C V; open, p(Vi\F1) < 1.

Since pu(F) = w(E\F1) + p(F1) < 1+ pu(F1), we have pu(Fy) = +00. We consider
now the closed set F1 = Uny>1(F1 NKy). Then from Proposition 1.4.4 (2), we find

p(Fi N (UigienE;)) 1 u(Fr) = +oo,
~ ~ < N—+oo
LN compactCE

so that limy p(Ly) = 400, providing Property (1) of Theorem 2.2.14.

We are left with the proof of (3). Let E be in M. From the already proven (2) in
this theorem, for all integers j > 1, there exists a closed set F; and an open set
V; such that F; C E C V; with pu(V;\F;) < 1/j. We get then

A= szle CcCFEC 0]21‘/} =B,

and for all j > 1, u(B\A) < w(V;\F;) < 1/, implying u(B\A) = 0 and the first
part of the statement. Conversely, if (2.2.18) holds, we have

E=(E\A)UA, E\AC B\A,

and since the o-algebra M is complete, we have F\A € M as a subset of the
negligible Borel set B\A € Bx C M, entailing finally £ € M. O

Remark 2.2.15.

(1) The Riesz—Markov representation Theorem 2.2.1 remains true when X is a
locally compact Hausdorff topological space. Theorems on partition of unity
must be proven in that framework and require some effort (see Exercise 2.8.2).

(2) Theorem 2.2.14 is true when X is a locally compact Hausdorff topological
space which is o-compact.

(3) Let us also note that a positive linear form on C.(X) is continuous (cf.
Exercise 2.8.3).
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2.3 Producing positive Radon measures

After the proof of the Riesz—Markov Theorem 2.2.1, we are in a good position
to produce some significant examples of measure spaces, in particular of Borel
measures on R™. However, we still need to provide a positive Radon measure to
apply the theorem. A standard way of doing this is to use another classical theory
of integration, due to Bernhard Riemann, but it is certainly overkilling since we
only need a Radon measure, that is integrating continuous functions with compact
support. We shall see here that for this sole purpose, it is not necessary to resort
to another integration theory.

Proposition 2.3.1. Let a < b be real numbers. For f € C([a,b]) (real-valued con-

tinuous functions defined on [a,b]), there exists a unique differentiable function F
defined on [a,b] such that

F(a)=0, Vze [a,b], F'(z) = f(x). (2.3.1)

We shall note that unique solution as F(x f f)dt. The mapping
b
C(la,b]) > f — / f@@)dt s a positive linear form.

Moreover, defining for f € C([a,b]) fb = —fabf(t)dt, we find Chasles’

identity, , ‘ ‘
/a F(#)dt + /b F(t)dt = / Ft)dt, (2.3.2)

for f € C(I), where I is an interval containing a,b,c. If f € C.(R), with supp f C
b
[a, b] we define / ft)ydt = / ft)dt and we have, for all s € R,
R a

/R F(t — s)dt = /R Ft)dt (2.3.3)

Proof. We note first that the mean value theorem and (2.3.1) imply

sup |F(z)] < (b—a) sup |f(z)]. (2.3.4)
z€[a,b] z€la,b

Let us prove first uniqueness. If F, G are differentiable on [a, b] and satisfy (2.3.1)
then (F — G)" = 0 on [a,b] and the mean value theorem implies Vz € [a,b],
F(z) — G(z) = F(a) — G(a) = 0. Moreover, if (f,)nen is a sequence of continuous
functions converging uniformly towards f on [a, b], such that for all n € N, there
exist F), so that (2.3.1) holds, then the sequences (F,), (F},) converge uniformly

towards F, f, and F' is differentiable on [a,b] with F’ = f: in fact, using (2.3.4),
we have

sup [Fryp(2) = Fo(2)] < (0= a) sup [fnyp(z) = fu(2)],

z€[a,b] z€[a,b]
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implying uniform convergence of F,, towards a function F' € C([a,b]) such that
F(a) = 0. We have, for x,z + h € [a, ],

Fo(z 4+ h) = Fo(x) = fu(@)h 4 (fulx + 0uh) — fu(z))h,
for some 60,, € (0,1) and thus

[Fn(z 4+ h) — Fu(x) — fa(2)h]

< Il [20fu = Fllegamy + sup |fl+1) = f@)],
<l|h|

Il

2.3.5)

so that

|Fo(z 4+ h) — Fo(z) — fu(z)h| < |h|[en +w(h)], with lime, =0, }lbir%w(h) =0.
n —

We find |F(x+h)—F(z)— f(x)h| < |h|lw(h) so that F is differentiable with F' = f.

We note that (2.3.1) holds trivially for continuous piecewise affine functions (see

Exercise 2.8.9), and also that this type of functions can approximate uniformly

continuous functions on [a,b]: with the previous remarks we get the existence.
Using the notation F(z) = fax f(¢)dt, we find that for o, 8 € R, f, g € C([a,b]),

/ “(af (1) + Bo()dt = a / "t + 8 / " gt

since if F,G satisfy (2.3.1) for f,g, then aF + G satisfies (2.3.1) for af + 9.
Moreover, if f > 0, then F/ = f > 0 and F(x) > F(a) =0 for « € [a,b]. Let I be
an interval of R, f € C(I) and let a,b,c € I. If a < b < z € I, defining

x b x
F(z) = / ftdt, Gx) = / f(tdt + /b f(tyt,

we find F'(z) = f(x) = G'(z), F(b) = G(b), so that F'(z) = G(x), proving Chasles’
identity (2.3.2) when a < b < ¢. Let us now consider I an interval of R, f € C(I)
and xg < 21 < z9 € I. We have

/: fdt =, /: fde = /: f(t)dt/: f(t)dt

definition already proven

- /: f(t)dt+/: f(t)dt,

proving Chasles’ identity (2.3.2) in the general case. In particular for f € C.(R),
with supp f C [a, b] we define [, f(t)dt = fab f(t)dt, a consistent definition since if
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supp f C [a/, V'], Chasles’ identity induces f; ft)dt = f;,/ f(t)dt. Let us prove now
(2.3.3): assuming supp f C [a,b], we have [ f(t —s)dt = fsj: f(t — s)dt and with

S

xT s+x
F(z) = / f(dt, Gx) = / f(t - s)dt,

“+a

we find that F, G are both differentiable with G'(z) = f(s+z—s) = f(z) = F'(z)
and since F(a) = G(a) =0, we get F' = G and the result. O

Proposition 2.3.2 (Fundamental theorem of calculus).

(1) Let a < b be real numbers and f € C([a,b]). Defining for x € [a,b], F(z) =
[ f(t)dt, the function F € C*([a,b]) and F' = f.
(2) Let a <b be real numbers and f,g € C*([a,b]). Then for x € [a,b],

/ " Pt = f(2) - f(a)

and

b b b
/ F gt = [1(1)g(®)]" - / £ ()g(t)dt.

(3) Let Iy, Iy be two intervals of R, let k : Iy — Iy be a C' mapping and let
f I — R be continuous. Then for all a;,b1 € I,

Kk(b1) by
/ Ft)dts = [ Fls(ta))e (t2)ds.

k(a1) ay

Proof. Property (1) is exactly Definition (2.3.1). To prove (2), we set for x € [a, b],
F(z) = [T f'(t)dt. According to (2.3.1), we have F(a) = 0, F’ = f’, implying
F(z) — f(z) = F(a) — f(a), which is the sought formula. Using Leibniz’ (fg)’ =
f'g+ fg', the last part follows from the first. Let us prove (3): we set for zo € I,
r1 € I,

Fzs) = / ( ft)de, Glon) = / " Hr(t)R ()t

We have F(k(a1)) =0 = G(a;1) and for z; € I,

o (Fstan) = P (s(oa)) (1) = £ () 1) = G ),
so that F(k(x1)) = G(x1) and with 21 = by, this is the result. O

The previous propositions show that integrating continuous functions of one
variable with compact support does not require any theoretical effort. For several
variables, it is not much more complicated.
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Proposition 2.3.3. Let m > 1 be an integer and let C.(R™) be the vector space of
complex-valued continuous functions with compact support. There exists a unique
positive linear form on Cc(R™) such that for f(z) =[], << fi(z;), f; € Ce(R),

Lf = H / fj (ﬂﬁj)dl‘J (236)
1<j<m /R
We shall note Lf = [, f(x)dx. For allt € R™, and all f € C.(R™), we have
flx—t)dx = f(z)dx. (2.3.7)
Rm™ Rm™

Proof. Let us prove the existence for m > 2. We set

. f(x)dz = /RM </R f(xl,m')dml) da’,

which is meaningful if we know what is the integral of functions with compact
support in m — 1 dimensions: in fact defining

o@) = [ Foral)ior

we find that g is continuous with compact support since f is continuous with
compact support and (2.3.4) implies

l9(a") = g(¢)] < sup|f(z1,2") = f (21, )| diam(supp f).

Moreover (2.3.6) as well as linearity and positivity are trivially satisfied. To prove
uniqueness, we shall use the following lemma.

Lemma 2.3.4. Let m > 1 be an integer. The vector space ®1<;j<mCe(R) is dense
in C.(R™).

Proof of the lemma. We note first that 1 =3, (1 — [t — j|)+ since that function
is 1-periodic and for ¢ € [0, 1], the condition |t — j| < 1 implies

max(0,j — 1) <t <min(l,j+1) = 0<j < 1,

implying > ez <1 (I = [t = j)+ = (1 —t) + (1= (1—1)) = 1. Also, defining
o(t) = (1— 1))+ and
(p(th"'?tm): H QD(tl),

1<i<m
we find

1= J] Y eti—a)= > T —j), withT = (t1,...,tm).

1<I<m ji€Z jezm
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Consequently, for e > 0, T € R™, k = ¢j € eZ™ defining @4, .(T') = <I>(e_1(T—ej))7
we have,

1= ®('T—j)=> (e (T—ej))= > Ppe(T

jeZm, jeZm, keceZ™

with @ € Ce(R™), supp @i = {t, ||t — k|lcoc < €} (here for ¢ € R™, ||t]|co =

maxi<;<m |t;|). Let f € C.(R™); since supp f is compact, the following sums are

finite and
Z (pk,e(t) (f(t> - f(k)) + Z (Pk,e(t>f(k>

keeZm™ keeZm™
Since we have
ST T OIfO-FER) < DY Bre(t) sup [f(B)—f(s)| = sup |f(H)—f(s)],
keezm keezm HHHSe llt—sll<e

the uniform continuity of f implies uniform convergence for ), ,m @ () f(k)
towards f. But ® . is a tensor product of continuous functions with compact
support defined on R, concluding the proof of the lemma. O

Uniqueness in the proposition follows then from the linearity and continuity
of L (which follows from positivity (see Exercise 2.8.3)): let Ly, L be linear forms
satisfying the assumptions of Proposition 2.3.3 and let f € C.(R™). From Lemma
2.3.4, f is a uniform limit of a sequence f, belonging to the vector space spanned
by tensor products on which L; and Ly coincide. We find

(L1 = L2)(f) = lim(Ly — L2)(fn) = lim 0 = 0.

Property (2.3.7) is a consequence of uniqueness and of that property for m = 1,
which is (2.3.3) in Proposition 2.3.1. O

2.4 The Lebesgue measure on R, properties
and characterization

Definition 2.4.1. Let m be a positive integer. Let us consider the positive linear
form defined on C.(R™) by Proposition 2.3.3: to ¢ € C.(R™), we associate its
“Riemann integral” [, ¢(x)dz. Applying the Riesz-Markov representation theo-
rem 2.2.1 and Theorem 2.2.14, we find a measure space (R™, L, \,) where A, is
a positive measure satisfying the properties of these theorems. We shall say that
Am is the Lebesgue measure on R™ and £,, is the Lebesgue o-algebra on R™.

N.B. Note in particular that £,, contains the Borel o-algebra B,, on R™, and
that \,, is finite on compact sets as well as regular and complete. We shall note
the space L*(\,,) as L' (R™).
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Theorem 2.4.2. Let m > 1 be an integer and let (R™, L, A\p,) be the Lebesgue mea-
sure space R™ defined above. The o-algebra L, is stable by translation, contains
the Borel o-algebra B,,, and is such that

(1) Am (H1§jgd[ajvbj]) = H1gjgm(bj —aj), for a; < by,
(2) VE € L,,Vx € R™, M\ (E +2) = Ap(E).
(3) If p is a positive measure defined on By, finite on the compact sets, invariant

by translation (i.e., such that (2) holds) and such that p([0,1]™) = 1, then
W= Ay on By,.

Proof. Let us prove (1), assuming first a; < b; for all 1 < j < m. Let € > 0 such
that Vj € {1,...,m},a; + € < b; — e and ¢; € C.(R;][0,1]) such that

1 for x; € [a; + €,b; — €],
@j(x;) = < affine for x; € [a;,bj]\[a; + € b; — €],
0 for Zj ¢]aj,bj[.

We consider the function ¢ € C.(R™; [0, 1]) defined by ¢(x) = p1(z1) ... om(Tm).
We have

/mw(m)dmz 1T /ij(xj)dxj: IT & —a;—2¢+0).

1<j<m 1<j<m
Defining P = ngjgm[aj,bj] and for N3 k> kg = min1<j<,2n(bj—a,-)7
1 1
P, = H [aj+k7bj_ k]7
1<j<m

we get for e = 1/k,

:H1§jgm(b1—‘1j—€)
s

~ ~
Am (Pr) = / 1p.d\, < / plx)de = / PdAm < / 1pdA, = A (P),
so that, from Proposition 1.4.4(2) and P= Uk>ko Pr (increasing union),
. . 1
Am(P) = lim Ay, (Py) < lim H (bj—aj— ) = H (bj—a;j) < Am(P). (2.4.1)
1<j<m 1<j<m

This implies also that
Am({z1 =a1}) =0, (2.4.2)

since for € > 0 and M > 0, we have

Am ({(z1,2") € RX R™ |21 — a1] < €/2,]|2"|| o0 < M/2}) < eM™ 1,
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so that Ap, ({(z1,2") € R X R™™1 2y = ay, ||2'|oc < M}) = 0, entailing by count-
able union A, ({1 = a;}) = 0. Since the difference P\P is included in a finite
union of hyperplanes, Property (1) follows from (2.4.1), (2.4.2).

Let us prove now property (2) in Theorem 2.4.2. Let K be a compact subset of an
open set V and let x € C.(V;[0,1]) such that x|x = 1. We have from (2.2.9)

Am(K) < /m ©(@)dz = /m X < /m Lodhm < An(V),

and the inner regularity of A, ((4) in Theorem 2.2.1) implies

A (V) = sup Am (K) < sup / x(x)dx < Xy (V). (2.4.3)
Kcompact CV x€C.(V;[0,1]) m

For § € R™, we note 7y the translation of vector §: we have 79(z) = = + 6, and

Ty = 7:91 is a homeomorphism, implying that 79(V') is open as the inverse image

of an open set by a continuous map. We find then

A (V 4+ 0) = sup / x(x)dz = sup Y(x + 0)dx
x€Cc.(V+65[0,1]) JR™ peC.(V;[0,1]) JR™

= sup /m Y(z)de = Ap (V).

YeCe(V;[0,1])

Since 7y is a homeomorphism, B,, is invariant by translation and using the outer
regularity of Lebesgue’s measure, we find for E € B,,, and 6 € R™,

Am(E+0)= inf  Au(W)= inf An(V+0)
WopenDE+6 VopenDE (2 4 4)
= inf A\ (V) = A\u(E). o
VopenDE

Let E € L,,. Using (3) in Theorem 2.2.14, we can find a F, set A, a G5 set B
such that A C E C B and A, (B\A) = 0. This implies for § € R™,

A+0CE+6C B+,
and moreover A + 6 is still an F,, set since 7y is a homeomorphism:

To(UnenFn) = Unento(Fy) = Unen 74 (F) .
S ~ -
closed

We prove as well that B + 0 is a G set and using (2.4.4), we find
A (TQ(B)\TQ(A)) =A\m (TQ(B\A)) = )\m(B\A) =0,

which implies from (3) in Theorem 2.2.14, that E + 0 belongs to L,,. We find
moreover that

Am(E + 0) = A (A +0) = A (A) = A (E),

concluding the proof of (2).
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Let us prove (3) in Theorem 2.4.2. We claim that
p({z1 =0}) =0. (2.4.5)
In fact from Proposition 1.4.4(2) we have

p({z1 =0}) = Ele%u({xl =0} n{ max |z;| < M}),

~ -
Km

and we note that for M € N,

{1<mja<)§n|x]| < M} = U|a|<M(KM +0461) D Uaeq, |a|<M(KM +Oz61)

which implies

S wKu)= Y Ky +ae) < u({lglagqulel < M}) < +oo,
a€Q,al<M a€Q,al<M ==

so that u(Kp) = 0 = p({z1 = 0}). From (2.4.5) and the invariance by translation
of u, we find that all affine hyperplanes parallel to the axes have measure 0.

Lemma 2.4.3. Let (X, M, 1) be a measure space where i is a positive measure. Let
(Ej)jen be a sequence of M such that for j # k, u(E; N Ey) = 0. Then we have

JENE ZM

JjEN

Proof of the lemma. From Proposition 1.4.4(2), it is enough to prove that for all
integers 1, (Uo<j<nEj) = > o< j<, #(E;). This is obvious inductively on n since

1(Uo<i<nt1Ej) = p(Uogjcn(Ej\Ens1)) + p(Ens1)
e BN E) + u(Bas)

0<j<n

Z (/”L(EJ\E’VH‘l) + /’L(E] N En+1)) + M(En+1)
0<j<n

> ul(E)). O

0<j<n+1

For n € N*, we have

rectangle Py
A

g ki k417
[0,1]™ = Uo<r,<n ] [] g ]

1<j<m

)
n
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We note that we have n"™ rectangles P, which are all translated from the rectangle
Py =[0,1/n]™ and such that P, NP, is included in an affine hyperplane parallel to
the axes for distinct multi-indices k, [. Using Lemma 2.4.3, consequences of (2.4.5)
on the measure of hyperplanes parallel to the axes as well as translation invariance
of u, we find

L= p([0,1]™) = n"p([0,1/n]™), ie, p([0,1/n]™) =n"",

Let us check now the compact rational rectangle,

. Ci .
P = H [aj,bj}v aj,bj € Q, [aj,bj] = [O,(g] + j, 45 :bj—aj, q; e N.

a n n
1<5<m

Since p is translation-invariant, using again Lemma 2.4.3 and the previous argu-

ments, we find
H ki kj+1
n’ n

n(P) = /~L<1<11m [07 qﬁ) = u(Uogk,-<qj

1sjsm (2.4.6)
=q1...gmn " = H (b; — aj).
1<j<m

Lemma 2.4.4. Let ) be an open subset of R™. There exists a sequence of compact
rational rectangles (Qn)nen such that for n # m, the intersection Qn N Qn, 18
included in an affine hyperplane parallel to the axes and

Q= UnGNQn-

Proof of the lemma. Lemma 1.2.6 provides a sequence (P, )nen of compact ratio-
nal rectangles such that 2 = U,enP,. Consequently, defining

Ry = Py, Ry = PI\P,..., R, = P.\(Uo<j<nP;), (2.4.7)

we get Q@ = UpenRy, with R, pairwise disjoint. Let us consider (I;)1<j<m and
(Jj)1<j<m bounded intervals of R with rational endpoints and the rational rect-
angles S =[] ;<. Ij; T = [l,<j<n Jj- The set S\T is a finite union of pairwise
disjoint rectangles and SN T is a rational rectangle: it is true for m = 1 since I'\J
is a union of at most two disjoint intervals with rational endpoints and moreover

for m > 1, with
s= I n 7= I 7
1<j<m—1 1<j<m—1
we have

disjoint union
~ A

S\T = (S % Tp)\(T" % Jm) = ((S’\T’) X Im) U ((s' NT') x Im\Jm)\.
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From the induction hypothesis S"\T" is a disjoint union of N,,_; rational rectangles
and S’ N T’ is a rational rectangle, we find that S\T is a union of N,, disjoint
rational rectangles with

Ny < Nppo1 + 2, so that N, < 2m.

Moreover, since

ST =(S'"NT") x (I;n N ),

we find that SN 7T is a rational rectangle. Going back to (2.4.7), we find that Ry
is a finite union of pairwise disjoint rational rectangles and inductively, it is also
true for

Rpt1 = Poy1\(Uo<j<nPj) = (Pn+1\(Uogj<nPj)) \Pn.

We have proven that R, is a finite disjoint union of rational rectangles, i.e.,

R, = Ui<k<m, Skn, Skn rational rectangle, k # 1 => Sy ,, NS, ,, = 0.
Moreover, since the R,, are pairwise disjoint, we have also

n#m= Sgn,NS,m=0.
As a result we have
2= UnenFo = Unenfin (2.4.8)
= Unen Ui<k<n,, Sk,n C UneN Ut<k<i, Skn C UnenFn =,

and since the rational rectangles Sy, are pairwise disjoint, the intersection of
their closure is included in an hyperplane parallel to the axes. The countable
family ((Sk,n)lgkg Mn)n N of compact rational rectangle satisfies the properties
asked for (@) in Lemma 2.4.4, whose proof is now complete. g

We obtain thus for an open set €2, using Lemmas 2.4.3-2.4.4 and (2.4.6),
H’(Q) = ZM’(Q’R) = Z )\m(Qn) = )\m(Q)v
neN neN

and this implies that A, coincide with p on the open sets. Let E € B,,. Exterior
regularity of A,, (Theorem 2.2.1(3)), implies

An(E)=inf  An(Q)= inf  pu(Q).

Q open D E Q open D E

It suffices then that we prove outer regularity for . We consider the positive linear
form

Alp) = / pdp,

defined on C.(R™): let us note that p is finite on compact sets and since for
© € C(R™), || < sup|e|lsuppy (and ¢ measurable since continuous), A is indeed
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a positive linear form on C.(R™) C £!(u). Theorem 2.2.1 provides the existence
of a regular measure v, defined on B, such that for ¢ € C.(R™),

/m ody = /m edy. (2.4.9)

Let © be an open subset of R™; from Lemma 1.2.6, there exists a sequence of
compact sets (K;);>1 such that

Q=U;5K;. (2.4.10)
We consider
¢1 € Cc(82;[0,1]) such that o1 5, =1
w2 € C.(£2;]0,1]) such that P2 K Usupp g1 = 1
w3 € C.(22;]0,1]) such that P3| Ky UK Usupp o1 Usupp oz = 1

We have 0 < ¢, < @nt1, @n(z) T 1a(x)(from (2.4.10)). As a result, applying
Beppo Levi’s theorem for the measure v, (2.4.9) and Beppo Levi’s theorem for p,
we get

v(Q) = lim Pndyv = lim/ endp = ().
Rm n Jrm

n

Thus v is a regular measure coinciding with p on the open sets. Using (3) in
Theorem 2.2.14 for v, we find for E € B,, and for all € > 0,

F closed C E CV open, €>v(V\F)=puV\F).
\v/
open
Consequently, we obtain
((E) + € > p(E) + p(V\F) > p(E) + p(VAE) = p(V) > u(E)
so that u(E) = infyepense #(V), concluding the proof of Theorem 2.4.2. O

We shall prove in Chapter 5 a general theorem on changes of variables in
integrals on R™, but the following lemma will be useful already in Chapter 2.

Lemma 2.4.5. Let m € N* and let )\, be the Lebesgue measure on R™. The space
LY(R™) is invariant by translation and dilation, i.e., for 6 > 0,T € R™ f €
LY(R™), the mappings x — f(0x) and x> f(x —T) belong to L*(R™) and

(x)dx = fle=T)dz =0™ f(z0)dx.
R™ R R™
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Proof. The first assertions are obvious using simple functions and Definition 1.5.2
since the mappings = + 6 'z and x — x + T are continuous thus measurable.
Since the Lebesgue measure is invariant by translation, we get readily the first
equality. For 6 > 0, we consider the positive measure pg defined on B, by

fo(A) = 0™ A (01 A).

The measure pg is finite on compact sets (for K compact, 71K is compact), is
invariant by translation (since A, is invariant by translation) and such that

1o ([0,1]™) = 0" A\ (0710, 1]™) = 0™\, ([0,071]™) = 1.

Theorem 2.4.2 implies that ug = A, so that for A € B,,,
/ La(@)dAm (z) = / La(@)dpio(x) = 07 A (0-2 A)
= Qm/ lg-14(x)dAp(z) = Hm/ 14(0z)d\, (2),

m

which implies the last equality for f € £1(\,). O

2.5 Carathéodory theorem on outer measures

Definition 2.5.1. Let X be a set and let * be an outer measure on X (see Definition
2.2.4). We define

M- ={AeP(X),VY e P(X), p'Y)=p"(YNA+p(YNA% )} (25.1)
A subset E of X is said to be p*-negligible if p*(E) = 0.

We note first that

X,0€ My, [A€ My <= A°€ M,-], (2.5.2)
Ae My <= VY e P(X), p"Y)>p (Y NA) +p" (Y NAY, (2.5.3)
any negligible set belongs to M,«. (2.5.4)

In fact Property (2.5.1) is symmetrical in A, A° and p*(@) = 0, proving (2.5.2).
Moreover, the subadditivity property (2.2.7) implies p*(Y N A) + p*(Y N A°) >
w*(Y), proving (2.5.3). Finally for F negligible and Y C X, from the monotonicity
property (2.2.6), we obtain

W (Y OVB) + (Y 0 ES) < 1t (B) + (V) = i (Y),

proving (2.5.4) from the already proven (2.5.3).
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Lemma 2.5.2. Let X be a set, u* be an outer measure on X and M~ be the
subset of P(X) defined by (2.5.1). Then if A1, Ay belong to M+ so do A1 N Ay
and Ay U As. Moreover if {A;};>1 is a countable family of elements of M.+, then
Uj>14; belongs to M.

Proof. We have for Y C X, using A1 € M-,

pr(Y NAS) = " (Y N AS N AS) + u*(Y N A5 N Ay),
pr (Y NA) =p" (Y NA2NAT) + u* (Y N Az N Ay),

so that, using Ay € M-,

' (V) =p*(Y N Ag) + " (Y N AS)
=p (Y NANAD) +p* (Y NANAD)+p" (Y NASNAD) +p" (Y NASNAY).
~ ~ < ~ < ~ < ~ rd
1] (2] 3] 4]

Applying the previous equality to Y N (A; U As), we find

. X 2.5.5
= Y NANAD) + " (Y N AN Ay) + p*(0) + p* (Y N Ay N AS), ( )

so that
p* (¥ 0 (A1 U Ag)) (Y 0 (A U A2)) = (1] 4 (2 + (4] + (3] = (1),

proving that A; U Ay belongs to M- (as well as A1 N Ay by complement). Also we
obtain inductively that Ui<;j<,A; € M« for Ay,..., A, € M,-. Let us consider
now a countable family (A;);>1 of elements of M. We may first consider

B =A, Bo=ANAS,..., Bp=A,NA,_N---NA{,...

so that each B; € M- (first part of the lemma), the family (B;);>1 is pairwise
disjoint (since B, C A, and Bpim41 C A5 for m > 0) and Uj>1B; = Uj>14;
since B,, C A, and A,, C Ui<;j<nBj (true for n = 1 and if true for some n > 1
Aps1 = Bpi1U (An+1 N(A;U-- ~UAn)) C Ui<j<n+1Bj). We have now for Y C X,

p(Y N (Uigg<aBy)) = Y W (YN By),

1<j<n
since that property is true for n = 1 and if true for some n > 1, we get since

Ui<j<nBj, Bnt1 € M,«, applying (2.5.5) for Ay = Ui<;j<nBj, A2 = Bp41, noting
that Al n AQ = [Z),

p (Y N (Uigjcns1B;)) = (Y N (UigjcnBy)) + 17 (Y 0 Boga).
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As a result, for Y C X,

p(Y) =" (Y N (Uigj<nBy)) + 17 (Y N (Migj<aB5))
Y. WY NBy) +ut (YN (Mgj<nB)))
1<j<n

Y WY 0B+ (Y N (Mg, BY)),

1<j<n

Y

so that
p(Y)

v

> wr (Y 0 By) + (Y N (Mg BY)), (2.5.6)

and by subadditivity #*(Y) > p* (Y N(U;>1B;)) +p* (Y N (U1<; B;)°), proving via
(2.5.3) that U1<;A; = Ui<;Bj € M, completing the proof of the lemma. O

The following theorem, due to C. CARATHEODORY (1873-1950) is a set-
theoretic result allowing to construct a measure from an outer measure.

Theorem 2.5.3 (Carathéodory theorem on outer measures). Let X be a set, p*
be an outer measure on X and M- be defined by (2.5.1). Then, with p standing
for the restriction of p* to M, the triple (X, M-, 1) is a measure space where
the o-algebra M- is p-complete (contains all subsets of any E € M« such that

pr(E) =0).

Proof. Property (2.5.2) and Lemma 2.5.2 prove that M« is a o-algebra on X (see
Definition 1.1.1). Moreover, we have p*()) = 0 (see Property (2.2.5) of an outer
measure) and if (B;);>1 is a countable pairwise disjoint family of M+, applying
(2.5.6) to Y = U;>1Bj, we find

p(Uj1B;) > > p*(B 1 (Uj>1B;),
izl (2 2.7)
concluding the proof (note that M- is p-complete from (2.5.4)). O

The following result will be useful later on.

Theorem 2.5.4. Let (X,d) be a metric space and p* be an outer measure on X
such that for A, B subsets of X satisfying d(A,B) > 0, we have p*(A U B) =
p*(A) + p*(B). Then the Borel o-algebra Bx is included in M«

Proof. Since M+ is a o-algebra, it is enough to prove that closed sets belong to
M,-. Let F be a closed subset of X: from (2.5.3), we need only to prove that for
all Y € X with p*(Y) < +oo, we have p*(Y) > p*(Y N F) + p*(Y N F°). For
n € N*, we define

n={xeYNFdx,F)>1/n},
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so that B, C Bp4+1 and Up>15, = Y N F° each B, is included in ¥ N F¢ and
conversely if x € Y N F°, we have d(x, F') > 0 since F' is closed (see Lemma 2.1.1).
As a result

dYNF,B,)= inf d(z',2")> inf d(z",F)>1/n>0,
z’'€YNF z''€Bn
z'' €B,

and thus p*(Y N F) + p*(By,) = p* (Y NF) U B,,) < p*(Y). To obtain the result
we have only to prove lim, u*(By) = p*(Y N F°). We set for n > 1,

1

n1l

and we note that for |j — k| > 2, say j > k+ 2, x; € C},xy, € Ck, we have

1
> )
T k+1

1
C’n:BnJrlﬂBfL:{xGYﬂFC,n >d(z, F) >

1
d(zj, xk) + i > d(zj, z) + d(zj, F) > d(xg, F)
so that d(Cj, Cy) > kil - ; > 0, implying that*

Z 1 (Caj) = p* (U1<j<nCaj) < p*(Y) < +o0,
1<j<N

Y 1 (Copnn) = i (UrgjenCajen) < p*(Y) < +oo.
1<GEN

As aresult, .o, p*(Cj) < 400 and the subadditivity of x* implies
p (Y N F) < p*(Bu) + > 1 (Cy),
i>n

so that p*(Y N F°) < liminf, p*(B,) < limsup,, p*(B,) < p*(Y N F°) proving
the sought lim,, u*(B,,) = p*(Y N F°). O

2.6 Hausdorff measures, Hausdorff dimension

Definition, first properties

Let (X,d) be a separable metric space. Then, there exists a countable dense set
D ={an}nen in X so that for alle > 0, X = UpenB(an,€) (any x € X is the limit
of a sequence in D and thus for any € > 0, there exists a, € D with d(z,a,) < €).
As a result, any subset E of X can be covered by a countable union of open sets
with diameter < 2e. We may thus give the following definition.
41f (Aj)1<j<n are subsets of X such that d(A;, Ay) > 0 for j # k, we have u* (Ui<j<nAj) =
21<j<n W (Aj): this is true for N = 2 and inductively for N > 2

p (Ur<isn+14;) = p(Ui<j<nAj) + p (Ant)
since d(An11,Ui<j<nAj) > minj<j<n d(Any1,A;) > 0, proving the property.
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Definition 2.6.1. Let (X, d) be a separable metric space and let x € R,.. For e > 0,
we define for £ C X,

K,E

b (E) = inf{Z(diam Un)®, E CUpenUn, U, open, diamU, < 5}.
neN

Lemma 2.6.2. With X,d, b . as above, for all E C X, the function R} > & —
* (E) € Ry is decreasing. The function b% defined on P(X) by

K,E

b(E) = lim he (E) = supb (E), (2.6.1)

e—04 >0
is an outer measure on X (see Definition 2.2.4).

Proof. First of all we note that, say for subsets of R, the larger is the set, the
smaller is the infimum and the larger is the supremum (let’s call that the mono-
tonicity principle). Let €1 < €9 be positive real numbers and let E be a subset
of X. If (Up)nen is an open covering of E with diamU,, < &1, it is an open cov-
ering of E with diamU, < e, implying from the monotonicity principle that

v o (E) < bk . (E), which implies (2.6.1). We find also that b, _(#) = 0 and thus

K,E2 K,€1

h*(P) = 0. Let F; C FE3 be subsets of X; then if (U,)nen iS an open covering

K
of Ey with diamU,, < ¢, it is also an open covering of E;, implying from the

monotonicity principle that
brc(E1) < by (Ea) = by (E1) < by (E).
Let (E;) en be a countable family of subsets of X such that §%(E;) < +oo for all

j € Nand let € > 0,5 > 0 be given; we have by, _(E;) < b (FE;) < 400, so that
there exists an open covering (U, ;)nen of E; with diam U, ; < e, and

bi(By) < (diam U, ;)" < by (E;) 462777

and thus UjenE; C Uj nenU, j, implying

br c(UjenE;) <Y (diam Uy, ;)" <Y bk (Bj) + Y 627971 <> bi(E)) +6.
im i i i

Since this inequality is true for any e, positive, we get indeed

br(UjenE;) < Z b (Ej). (2.6.2)

Moreover that inequality is obviously satisfied when h%(E;) = +oo for some j,
completing the proof of the lemma. O
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Remark 2.6.3. For a subset E of a separable metric space, with
U.(E) = {countable open covering (Uy,)nen of F with diamU,, < e},
and for U = (Up)nen € U(E), H(k,U) = ), y(diam Uy, )" we have

* (B)= inf H(kU), b (E)= inf  H(r, U)Y. 2.6.3
b (E) et (k,U), bL(E) iﬁ%’{yeﬁm (k,U)} (2.6.3)

That formula implies readily

0< €1 < e = Z/{E1 (E) - u82 (E) - h:,&‘g < h:,f;‘17 (264>
FEi C By = UE(EQ) C L{E(El) = hZ’E(El) < bzyE(EQ), (265)
0<k1 <hp,0<e<1= H(rko,U) < H(k1,U) = by, <hj,. (2.6.6)

Lemma 2.6.4. Let X, d, b’ be as above and let A, B be subsets of X such that

0<d(A,B)= inf d(a,b).
acA,beB

Then we have h%(AU B) = h%(A) + 55 (B).

Proof. The subadditivity of h* gives h*(A U B) < h*(A) + h%(B). Let us prove
the reverse inequality; we may of course assume that h% (AU B) < +oo and thus
h%(A),b%(B) are both finite. Then for &, positive numbers with ¢ < d(A, B)/2,

K

there exists an open covering (U, )nen of AU B such that

bi (AUB) <> (diamU,)" < b} (AUB)+6 <b (AUB)+4.  (2.6.7)
neN

We define Ny = {n € N,U, N A # 0} and we note that if n € Na, U, N B = {:
otherwise da € U, N A, 3b € U,, N B so that

d(A, B) < d(a,b) < diamU, <e=d(A, B)/2,

which is impossible since d(A4, B) > 0. We get thus No N Np = {J; as a result since
AU B C UpenU,, we have from ANB =0,

A CUpen,(UyNA) CUpen,Uny, B CUpeny (U, N B) CUpenyUn,

so that by (A) < > oy, (diamUy,)", by (B) < >, cn,(diamU,)", and thus
from (2.6.7) and Na N Ng =0,
bre(A) + b5 (B) < b (AUB) +6
= lim (b} (4) + b} (B)) <bL(AUB) +9,

e—04 g

implying h%(A4) + h5(B) < h:(AU B) + 4 for all § > 0, entailing the result. O
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Definition 2.6.5. Let (X, d) be a separable metric space and let x > 0. The outer
measure §% on X is defined in (2.6.1). We define the Hausdorff measure b,; of
dimension x by using Theorem 2.5.3: (X, My-, b, ) is a measure space where the
complete o-algebra My is defined by (2.5.1) and b is the restriction of b, to M- .
From Theorem 2.5.4 and Lemma 2.6.4, My: contains the Borel o-algebra By.

Lemma 2.6.6. Let (X,d) be a separable metric space and let A be a subset of X
such that h§(A) < +o00. Then A is a finite set and card A = h§(A). The Hausdorff
measure o is the counting measure on X (see Example (3) on page 18).

Proof. 1f h5(A) < +oo, we find that for all € > 0, b _(A) < bi(A), so that
dN >1, Ve >0, 3 anopen covering (U,)i<n<n of A with diamU,, < e.

Claim. This implies that the set A is finite with card A < N. Assume that aq,
...,an, an41 are distinct elements of A. We set

0= d(ai,aj).

min
1<i£j<N+1

It is not possible to find (Uy,)1<n<n covering A with diamU,, < §/2: otherwise,
we would have two points a;, aj,% # j in the same U, so that

§/2 > diamU,, > d(a;,a;) > §

which is not possible since § > 0, proving the claim. The claim implies as well
card A < h§(A). On the other hand, if A is a finite set, we can cover A with
card A open balls with arbitrary small radius, which implies g _(A) < card A and
eventually card A = h§j(A). For A infinite, we have proven hj(A) = 400, proving
the lemma. g

Hausdorff dimension

Lemma 2.6.7. Let (X, d) be a separable metric space, let k > 0 be given and let A
be a subset of X. Then if b} (A) < 400, we have §%,(A) =0 for all ' > k and if
hi(A) > 0, we have b, (A) = 400 for all K" < k.

Proof. 1f by (A) < +oo, we find that for all e > 0, by, _(A) < by (A) < +oo. We can
find a countable open covering (U, )nen of A such that diamU,, < e and

b (A) < Z(diam Up)™ < b (A) + 1.

n

As a consequence, for k' > k, we have

Z(diam U~ = Z(diam U,)" " (diam U, )"

n n

< e (hE L (A) + 1) < eV TR(BE(A) + 1),
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As a result, we find 0 < by, _(A) <>, (diam Un)s < 5”/_’””(@(14) + 1), so that
b (A) = lim by, (A) =0.
E—>O+

Let us assume now that h%(A) > 0 for some positive k. For € > 0, we can find
a countable open covering (Up,)nen of A such that diamU,, < e. For k" < k, we
have B ;
(diam Up)™ €% > (diam U,)"
and thus 3 (diam U,,)"" > 3 &' ~#(diam U, )" > EKII_KF];E(A). As a result, we
find B
h:”,s(A) > " 7’€h:,8(A)
and since lim.—o, by, .(A) = bi(A) > 0, we get bl (A) = lim.o, by, (A) =
+00. 0

Definition 2.6.8. Let (X, d) be a separable metric space and let A be a subset of
X such that ho(A) = +o0o. The Hausdorff dimension of A is defined as

Dy(A) = sup{x > 0,b5(A) = +o0}. (2.6.8)

A set such that ho(A) < 400 is finite (Lemma 2.6.6): we define then Dy(A) = 0.
Note that we have also

Dy(A) = ky = inf{x > 0, (A) = 0}. (2.6.9)

In fact, if h5(A) > 0 for all k > 0, Lemma 2.6.7 implies that b} (A) = +oo for all
> 0 so that Dy(A) = +oo = inf (). If there exists ko > 0 such that b} (A) =0,
then Lemma 2.6.7 implies h%(A) = 0 for & > kg, proving that

bi(A) =0 if x> ky = inf{x' >0,b%(A) = 0}.

K

If ky =0, we get h(A) =0 on (0,+00) and k1 = 0 = Dy(A). If K4+ > 0, we find
h%(A) =0 on (k4,+00). Then for an increasing positive sequence with limit %4,
Kn < K4, We get

b, (4) >0

Kn

so that h%(A) = +oo for k € [0, k) and thus on [0, k4 ), proving Dy(A) = k4.

Hausdorff measures on R™
Lemma 2.6.9. Let R™ be equipped with the distance do, defined by

doo(z,y) = | nax lz; — yj (2.6.10)

Jj<m

and let K be a compact subset of R™ with positive diameter § for the distance dxo.
Then there exists z; < z;»’ < z; + 0 such that

K C H 25, 27

1<5<m
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Proof. The continuous mapping R™ 3 z = (21,...,Zy) — 21 = m1(z) € R is such
that 7 (K) is a compact subset of R: 1 (K) C [inf 71 (K),sup m1 (K)] = [#], 2{] so
that 2’ = (21,...,20,),2" = (2{,...,2) € K and thus

21 — 21| < do(2',2") <6,
proving the lemma. g

Considering the separable metric space (R™,ds), Definition 2.6.5 provides
a measure space (R™, ,,,, M) where M is b, complete and contains the Borel o-
algebra B,, on R™. Moreover, from its very definition, b,, is translation invariant
since b, . is translation invariant for any € > 0; moreover b, is finite on compact
sets since, for K bounded in R™, there exists M > 0 such that K C [-M/2, M /2]™
and thus for € > 0,6 > 0, we have® with a, = — ¥ + ¢k,

(=0/2,M/2™ < U i,y (T Jaw, = 8,0, +2 +4[),
0<k;<[M/e] “1<j<m
~ ~ -
open with doo diameter=e+24§

50 that B cqos([—M /2, M/2]™) < ([M/e]+1)™(e426)™ < (M + M2° +e+25)™.
With ¢ = £2/2 we get

hm,€+€2([_M/27 M/Q]m) < (M +eM+e+ 52)m7
so that taking the limit of both sides when & goes to 0, we obtain
B (K) < b ([-M /2, M/2]™) < M™ < +00. (2.6.11)

Theorem 2.6.10. Let (R™,dw) be as above. Definition 2.6.5 provides a measure
space (R™, b, M)where M is b, complete and contains the Borel o-algebra B,
on R™. The Lebesgue measure space (R™, Ay, L) given in Definition 2.4.1 is
such that L., C M and N\, coincides with b,, on L,,.

Proof. Since (R™, A\, L) is given by Theorems 2.2.14-2.2.1, it is enough to prove
that A\, coincides with b,,, on the Borel o-algebra B,,: in fact the o algebra L,, is
generated by B,, and the subsets of \,,-negligible Borel sets, so that, if we know
that b,, = A, on B,,, the \,,-negligible Borel sets will be also h,,-negligible and
thus will belong to the b,,-complete M.

On the other hand we already know that b,, is a measure defined on the
Borel o-algebra B,,, finite on compact sets, invariant by translation. To apply (3)
in Theorem 2.4.2 and obtain our result, it is enough to prove that h,,([0,1]™) =1

5Using the integer-valued floor function [-], defined in footnote page 16,
z€[-M/2,M/2] = [(x+ M/2)/e] =k < [M/e] = ek <axz+ M/2<e(k+1)
= eck—-—M/2-0<ek—M/2<zx<ek+1)—M/2<e(k+1)—M/2+0.
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and in fact, from (2.6.11) and translation invariance, we are reduced to the proof
of b ([0,1]™ > 1.

Let us assume that b, ([0,1]™) < 1. Then for all ¢ > 0 we can find a
(finite) collection of open bounded sets (Ujc)i<j<n. with diameter < e, cover-
ing [0,1]™ and such that >, .y (dlamU;.)™ < hn,([0,1]™) < 1. Since each
Uj . is relatively compact, we find from Lemma 2.6.9 and Theorem 2.4.2 that
Am(Uje) < (diamU, )™ = (diam U, .)™ and this implies

1=Xn([0,1]™) < Y AaUje) < Y (diamU;)™ < b ([0,1]™) < 1,
1<j<N. 1<j<N.

which is impossible. The proof of Theorem 2.6.10 is complete. g

It is important to note that we have found another way to construct the
Lebesgue measure on R™, using the Carathéodory theorem on outer measures
(Theorem 2.5.3), Theorem 2.5.4, and the definition and properties of the m-
dimensional Hausdorff measure on R". That construction is independent from the
Riesz—Markov Theorem 2.2.1 and proceeds from a different perspective, a more
set-theoretic approach without using a positive linear form as in the Riesz—Markov
argument. It is however an interesting and important piece of information that the
two measures constructed by these two different methods indeed coincide.

2.7 Notes

Let us follow the new names of mathematicians encountered along the text.

Constantin CARATHEODORY (1873-1950) was a Greek mathematician.
Michel CHASLES (1793-1880) was a French mathematician.

Gottfried Wilhelm LEIBNIZ (1646-1716) was a German philosopher and mathe-
matician, co-inventor with Isaac Newton of Infinitesimal Calculus.

Andrei MARKOV (1856-1922) was a Russian mathematician.

Frigyes (Frédéric) Riesz (1880-1956) was a Hungarian mathematician who made
fundamental contributions to functional analysis. His younger brother, Mar-
cel RIESZ (1886-1969), was also a mathematician, author of basic contribu-
tions in Harmonic Analysis.

Johann RADON (1887-1956) was an Austrian mathematician.
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2.8 Exercises

Topology

Exercise 2.8.1. Let X be a topological space and let f : X — R. The function f is
said to be lower semicontinuous at a point a € X when

Ve >0,3V. € ¥,V € V., f(a) —e < f(z). (2.8.1)
The function f is said to be upper semicontinuous at a point a € X when
Ve >0,3V. € ¥, Ve e Vo, f(x) < f(a) +e. (2.8.2)

The function f is said to be lower (resp. upper) semicontinuous on X if it is lower
(resp. upper) semicontinuous at every point of X.

(1) Prove that f is continuous at a € X iff it is lower and upper semicontinuous
at a.

(2) Prove that f is lower semicontinuous on X iff {x € X, f(x) > a} is open for
all @ € R. Prove that f is upper semicontinuous on X iff {x € X, f(x) < a}
is open for all o € R.

(3) Let A C X. Prove that 1, is lower (resp. upper) semicontinuous iff A is open
(resp. closed).

(4) Let (fi)icr be a family of lower (resp. upper) semicontinuous functions on X .
Then sup;c; fi (resp. inficr f;) is lower (resp. upper) semicontinuous. Note
that the former is valued in (—oo,+o0] and the latter in [—oo,400): our
definitions of lower and upper semicontinuity are given by the conditions in
(2).

(8) Let X be a non-empty compact topological space and let f : X — R be a
lower (resp. upper) semicontinuous function. Then there exists a € X such
that inf,cx f(z) = f(a) (resp. sup,cx f(z) = f(a)).

(6) Prove that a function f: X — R is lower (resp. upper) semicontinuous at a
point a € X iff liminf,_,, f(z) = f(a) (resp. limsup,_,, f(x) = f(a)).

We recall the following definitions, extending Definition 1.2.11: let X be a
topological space, let f be a mapping from X into R and let a € X. We define

lim inf f(z) = Sup. (inf f(x)), limsup f(z) = inf (225 f@).  (283)

We have for V1, V5 € ¥,

inf < inf < <
a;lélvz f(x) - Z’E%}}QVQ f(x) - xes\}llgvz f(x) - Isél\l/)l f(x)7

so that infyev, f(z) < infv, ey, (Sup,ey, f(2)) = limsup,_,, f(z) which implies

limjnf f(z) <limsup f(z). (2.8.4)

T—ra
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Answer. (1) Continuity at a € X is expressed as:
Ve > 0,3V € ¥, f(Ve) C (f(a) —¢, f(a) + o),

thus is equivalent to the conjunction of upper and lower semicontinuity.

(2) We assume that f is lower semicontinuous on X: let 2y € X and o < f(zo).
For 0 < & = f(z9) — e, we find V € ¥, such that

F(V) C (f(xo) —&,400) = (o, +00) =V C fH(f(V)) € ' ((a, +00)),

implying that f_l((oz, +oo)) is open. Conversely, assuming f_l((a;l—oo)) open
for all «, if we are given zg € X, e > 0, we know that

xo €{z € X, f(x) > f(zg) — e} is open,

entailing (2.8.1). The result on upper semicontinuity can be obtained by remarking
that f upper semi-continuous is equivalent to —f lower semicontinuous.
(3) Let A C X; then we have

0 ifa>1
{reX,1a(x)>a=¢A ifl>a>0,
X ifa<,

so that lower semicontinuity of 1,4 is equivalent to A open. Upper semicontinuity
of 14 =1 — 14 is equivalent to lower semicontinuity of 1 ¢, which is equivalent
to A€ open, i.e., to A closed.

(4) We have for o € R and (f;)ier a family of lower semicontinuous functions

{z € X,sup fi(z) > a} = Uier {z € X, fi(z) > o},
i€l ~ ~ -
open
so that sup,c; fi is lower semicontinuous. Using inficr fi = —sup;c; (—fi) gives

that when (f;);es is a family of upper semicontinuous functions, so is inf;ecs f;.
(5) Let f be a lower semicontinuous function on a non-empty compact set X.
Then for a € R, K, = {z € X, f(z) < o} is a compact set. Let 8 = inf,cx f(x):
we have K, C Ky for a < o and for a > 3, K, # 0

Nass{zr € X, f(z) < a} = Na>pKy is a non-empty compact set L:
otherwise, we would have

P C — . C — . ¢
X =UaspKS = UigienKS = (MejenKa,)',
compactness

of X

implying emptiness for Kmin,_,_y o, Any a € L satisfies f(a) = S.
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(6) Let us assume that f is upper semicontinuous at a: then for all e > 0,3V € 7,
so that f(V) C (—o0, f(a) + €) and thus f(a) < supy f(z) < f(a) + ¢, implying
limsup,_,, f(z) = f(a). Conversely, if the latter property holds, using the very
definition of the infimum, we find that for all ¢ > 0,3V € ¥ so that,

fw)éﬂyf@)<fw)+6:¢f03Cﬂfﬁfw)+@
and upper semicontinuity at a.

Exercise 2.8.2 (Urysohn’s Lemma). Let 2 be an open subset of a locally compact
Hausdorff topological space X and K be a compact subset of Q. Show that there
exists a function ¢ € C.(X) such that

0<p<1, ¢r=1, supppC

Answer. Note that this result is proven in Proposition 2.1.2 for a metric space.
Using the local compactness (see Proposition 10.2.36), we have

K CUgerxU,, x € U, open, relatively compact, U, C (2,
and the compactness of K entails

K C UlSjSNUIj C UlSjSNUIJ‘ = UlSjSNUIJ‘ c Q.
~ ~ - ~ ~ -
=Vy, open =Vp, compact
Repeating the procedure, we can find V; open relatively compact such that

KcvicvicVWycVypCc.

Let us assume that for g1 = 0,q2 = 1,...,¢, (n > 2) distinct rational numbers in
[0, 1], we are able to find V4, open relatively compact such that

G <q =KcCV, CV, CV, C.
Note that this property is proven for n = 2. Let g, +1 € QN(0, 1) in the complement
of B, = {q1,-..,qn}, and g; the largest element of F,, such that ¢; < g,+1 and

let ¢; be the smallest element of E, such that ¢; > ¢,+1. As above, we can find
Vs, open relatively compact such that

qu - ‘/qn+1 - an+1 C ‘/qt

With {gn}n>1 = QN [0,1], we can construct (Vg, )n>1 open relatively compact
such that

.4 €Qnl0,1], ¢<gq=KcCcV,CVyCVyCQ.
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We define now for ¢ € Q N[0, 1],

Jo=qly,, f= sup fg, valuedin [0,1], lower s.c., (2.8.5)
QN(o,1]
gg=01-q1, +q, g= @h[lofl] gq, valued in [0, 1], upper s.c. (2.8.6)
q N s

If ¢ <q wehave V, C Vyy and thuson V, fy =q¢<gy =(1—-¢)+4¢ =1.1f
q < ¢, we have V C V, and thus on V,

1 onVy,

= < —
fa=1< 9 {q’ on (Vg)°.

We have proven that for all ¢,¢’, fq < g which implies 0 < f < g < 1. On the
other hand, K C Nyeqnpo,11Vq so that for z € K, f,(x) = ¢q and thus f(z) = 1:
fixk = 1. We claim that for all z, f(z) = g(z): otherwise, we could find 2 such
that f(z) < g(z) and thus ¢,¢ € QN [0, 1] with

0< f(z) <g<dq <g(z) <1,

so that ¢ V;, (since fy(z) < ¢) and x € Vo (since g¢ (x) > ¢') which is incompat-
ible with Vs C V. Summing-up, the function f is 1 on K, valued in [0, 1], lower
s.c. by construction and upper s.c. since equal to g, so is eventually continuous.
Since V1 C V4 C Vo C Vg for all ¢ € QN [0, 1], the function f = sup,egnpo,1) ¢1v,
is vanishing on the open set (V)¢ so that (supp f)¢ D (V)¢ and

supp f C Vo C Q.

Exercise 2.8.3. Let X be a topological space and let L be a positive linear form on
Co(X). Show that L is continuous, in the sense that

VK compact C X,3yg > 0, Vf € Cx(X), |Lf| < vk sup|f], (2.8.7)
where Cx(X) ={f € Cc(X),supp f C K}. (2.8.8)
Answer. For f € C.(X),supp f C K compact, we have with yx € C.(X;R;),
Xk =1on K,
—xk sup|f| < f < xxsup|f| = [Lf| < Lxx sup|f].

Exercise 2.8.4. Let (X, d) be a metric space such that all closed balls are compact:
(X,d) is said to be proper and is locally compact (some locally compact metric
spaces are not proper). Let Q be an open subset of X and let K be a compact
subset of Q. Find a simpler proof of Proposition 2.1.2: there exists a function
¢ € Co(X) such that

0<p<1, ¢pr=1 supppC.

The function ¢ can be chosen to be identically 1 on a neighborhood of K.



2.8. Exercises 107

Answer. We have proven in (2.1.4) that eg = inf ek, ygod(z,y) = d(K,Q°) > 0.
As a result, we find
K., :=UzexB(z,60) CQ (2.8.9)

since for y € B(z,€p) and x € K, we have y € Q: otherwise, y € Q¢ and
€0 = d(K,Q°) <d(x,y) < eo,

which is impossible. Let us then define for some positive €1, €3 such that e;+€2 < €,

! d(x,K€1)> . (2.8.10)

o(x) = max (07 1-
€2

That function is valued in [0, 1] and is continuous as the maximum of two contin-
uous functions. Moreover if p(x) # 0, then d(z, K¢,) < €2 so that

ElyeKCl :UtGKB(t351)7 d(l’7y) < €2, EltGKa d(y7t) < €1,

implying d(t,x) < €1+ €3 and © € K¢, 1, C {2,d(x,K) < €1 + €2} = L. The
set L is closed (continuity of d(-, K)) and included in Q since L C K, C £, so
that supp ¢ C L. Moreover the set L is compact since if (z,)nen 1S a sequence in
L, we find a sequence (yn)neny in K such that d(z,,y,) < €1 + €2. Extracting a
convergent subsequence (yn, Jken With limit y € K of (yn)nen, we get

d(mnk ) y) < d(mnk ) ynk) + d(y”lk ) y) <ete+ d(y”lk ) y)

1
(for k large enough) < e + €3+

2(60—61—62):T<60.

The sequence (x,, )ren lies (for k large enough) in B.(y,r), which is assumed to
be compact. We can extract another subsequence of (x,, )ren, converging with
limit « € B.(y,r). The inequalities above ensure also that d(z,y) < €1 + €3 so that
z € L, proving the compactness of L.

Remark 2.8.5. Lemma 2.1.1 implies that ¢ is Lipschitz-continuous with a Lipschitz
constant 1/es. Since ez can be chosen arbitrarily in (0, d(K, ©2)), the function ¢
can be chosen Lipschitz continuous with a Lipschitz constant > d Klgc).

Exercise 2.8.6 (Partitions of unity on R™). We define for x € R™,

exp—(L—[z)™ for |z <1,
p(x) =
0 for x| > 1,

where |z| = (31 << 95?)1/2 stands for the Euclidean norm on R™. The function

p is C> with supp f = B(0,1) noted B™.
Answer. Let us first consider the function pg defined by

po(t) = e ! for t > 0, po(t) =0 fort <O0.
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Let us prove by induction on k that py € C*(R) is such that for ¢ <0, pék) (t)=0
and for t > 0, pék) (t) = pr(1/t)e '/, where py, is a polynomial. That property is
true for k£ = 0 since lim;_o, e~ 1/t = 0. Assume that the property is true for some

k > 0. Then, since pg € C*°(R*), we get for ¢t > 0,

TV () = eV 2 (pe(1/8) — ph(1/1)),  and pfT () = 0 for t < 0.
~ ~ -
polynomial pp1 in =1

We get also that lim;_,g t_l(pék) (t) — p(()k) (O)) = limgy 400 Tpr(T)e~T = 0, so

that pg has a (k+ 1)th vanishing derivative at 0. The function p(()kH) is continuous

since limp_, 4 oo Pr+1 (T)e*T = 0, completing the induction. As a result the function
po belongs to C*°(R), with support [0, 4+00) and is flat at the origin, i.e., Vk €
N,pék)(O) = 0. We have p(z) = po(1 — |z|?) so that p € C>°(R™;R), with support
equal to the closed unit Euclidean ball.

N.B. The functions p, py are paradigmatic examples of C°° functions which are
not real-analytic: the function pg cannot be analytic at 0, since it is not identically
0 near the origin although its Taylor coefficients are all vanishing.

Exercise 2.8.7. The vector space of C* compactly supported functions from R™
into C will be noted CX(R™). Let Q@ be an open subset of R™ and let K be a
compact subset of Q0. Then there exists a function ¢ € C*(9;1[0,1]) such that
@ =1 on a neighborhood of K.

Answer. We recall that®

d(K,Q° = inf |z —y|>0.

rzeK,yeNe

As a result, we have woith B™ standing for the closed unit Euclidean ball of R™,
€0 = d(K,Q°), K + ¢B™C Q: otherwise, we could find |t| < 1,z € K such that
T + ot = y € Q°, implying

0 <d(K,Q°) <|z—y|<e =d(K,Q°,

which is impossible. With the function p defined in Exercise 2.8.6, we define with
0<e< G <9,

-1
o@) = [ Licramm@i((e ~ e e mdy( [ olorar)
The function ¢ is C'*° and such that

3 °
suppp C K +e6B™ + eB™ C K + iO]B%m C K+ ¢B™C Q.

6We may assume that both K and Q€ are non-empty, so that d(K, Q°) is a positive real number.
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Moreover ¢ = 1 on K + ¢/ B™ (which is a neighborhood of K), since if z € K +
S B™, we have, for y satisfying |x:y\ <ethaty € K+ B +eB™ C K+ B™.
As aresult, with g = p([ p(t)dt) ", for z € K + §B™, we have

1= /ﬁ((m —y)e He "dy = /ﬁ((m —y)e e "k (y)dy = ().

We note also that, since p > 0 with integral 1, 1.(y) € {0,1}, we have, for all
zeR™ 0< o) <1

Exercise 2.8.8. Let Qq,...,8, be open subsets of R™ and let K be a compact set
with K C Q4 U---UQ,. Then for each j € {1,...,n}, there exists a function
Uy € O (Q[0,1]) such that 3y ;< Y5 € O (Uj=195; [0, 1]) and

1= Z b -

1<j<n

We shall say that (¢¥)1<j<n s a partition of unity on K, attached to (;)1<j<n-
In particular, for 8 € C°(U1<j<n$);), using the previous result for K = supp¥,
we get
0= Y 0;, with0;=0p; € C>y).
1<j<n
Answer. A simple inspection of the proof of Theorem 2.1.3 provides smooth func-
tions.

Exercise 2.8.9 (Approximating continuous functions by piecewise affine functions).
A function p : R — R is said to be piecewise affine if there exists r1 < T <
-+ < xy real numbers such that the restriction of p to each interval (x;,x;41) for
0<j<N+1is affine (xg = —00,xN4+1 = +00). Prove that the vector space of
compactly supported continuous piecewise affine functions is dense in C.(R;R).

Answer. Let ¢ be a function in C.(R;R), supported in [a,b] and let € € (0,1) be
given. We consider N € N such that N =[1+ (b —a)/e] + 1 and

ri=a<---<zj=a+(—-le<---<zy=a+ (N —-1e.
~ e

We define
P@) = D0 @ (0@ + 7 (0lwie) = 0(2))).

1<j<N
The function p is piecewise affine, compactly supported in [a, b+ 1], and verifies

p(xj) = ¢(x;) = p(x; ), for 1<j<N, p(an)=0=¢(zn)=plxNn,),
p(x;_) = ¢(z;), for2<j <N, p(x1)=0=d¢(1)=plxi_),
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thus continuous. We have

PE) =9 = 30 T 2) (0@ =)+ " "7 (0ein) - 6(2) )
and thus )
pla) — 6(a)

= 2 T @{ () —o@) P DT G — @)
implying

sup [p(z) — p(x)| < sup () — B(a")] = w(e).

z€R |z!—z"|<e

Since ¢ is uniformly continuous, we get lim._,ow(e) = 0 and the result.

Exercise 2.8.10. Let ) be an open subset of R™. Prove that there exists a sequence
(Kj)j>1 of compact subsets of Q such that

0= UjZlKj7 Kj - f(j+1. (2811)

Prove also that if K is a compact subset of §2, there exists j € N* such that
K C K;.

Answer. Given an open set 2 of R", we define for j > 1,
Kj ={z eR",d(z,Q°) > 1/j, |z < j}.

We note from the continuity of d(-, 2¢) and of the norm that K is a closed subset
of R™; moreover it is also bounded and thus is a compact subset of R™, and in fact
of  since d(z,Q°) > 0 implies z ¢ Q¢ = Q° (Q is open). We have also for j > 1
that

1
K; C {LL‘ € R", d(z,Q°) > .+1,|x| <j—|—1} which is open C K41,
J

so that K; C f(j_H. Finally, taking x € €2, we have d(z, Q°) > 0 (Q° is closed) and
thus

1
P> E 1) —rcKj,
j> maX(d(ﬂch) (=) + z € K;
proving Q = U;>1 K; and the result, since the very last statement follows from
KcQ= szlf(j-l-h

which implies the result by the Borel-Lebesgue property and the fact that the
sequence (K;) is increasing.
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Exercise 2.8.11 (Dini’s Lemma).” Let a < b be real numbers and let f,, : [a,b] — R
be a sequence of continuous functions. We assume that for all x € [a,b], the
sequence (fn(x)) is decreasing with limit 0.

(1) Prove that (f,) converges uniformly towards 0.

(2) Prove that the result of (1) does not hold without the assumption of decreasing
monotonicity.

Answer. (1) Reductio ad absurdum?®: if the sequence (f,) were not converging
uniformly towards 0, the sequence wy, = sup,c(q, [ fn(2)| is such that there exists
€0 > 0 and a subsequence (wy, )ren such that for all k, w,, > €. As a result for
all k, there exists z, € [a, b] such that

fr (xr) > €0.

Thanks to the compactness of [a,b], we may find a subsequence of (zy)ren con-
verging with limit ¢ € [a,b]. To simplify notation, let us assume that (zx)gen is
converging towards c. For [ > 0, we have ng4; > ng, and thus

Jrw(@rs1) 2 [ (Trar) > €o.

Since f,, is continuous, we find f,, (¢) > ¢ > 0, contradicting the convergence of
the sequence (f,(c)) towards 0.
(2) Let us define ¢,, piecewise affine on [0, 1],

en(0) =0, o(1/n) =1, p,(t) =0 for t > 2/n.

The sequence of continuous functions (¢, ) converges pointwise to 0, not uniformly
since sup |, | = 1. Moreover the result is incorrect without the continuity assump-
tion: defining v, on [0,1] by

P (0) =0=1,(t) for t > 1/m, ,(t)=1—nt for 0 <t < 1/n,

we find that for all ¢ € [0, 1], the decreasing sequence (¢n(t))neN goes to zero.
However, the convergence is not uniform since supyq ) [¢n| = 1.

Exercise 2.8.12 (Support of an L' function). Let (X, M, u) be a measure space
where u is a positive measure such that X is a topological space with M DO Bx
and p(Q) > 0 for any non-empty open set Q. Let f € L1 ().

(1) Defining
supp f = {z € X, AV € ¥, fjy =0, p-a.e.}, (2.8.12)

prove that (supp f)¢ is open and is the largest open set on which f =0 a.e.

"Ulisse DINI (1845-1918) is an Italian mathematician, who served as Director of Scuola Normale
Superiore in Pisa. A bronze statue of Dini is located near the Piazza dei Cavalieri.

8 About this method of proof, we may quote G.H. HARDY in A Mathematician’s Apology [29]:
Reductio ad absurdum, which Euclid loved so much, is one of a mathematician’s finest weapons.
It is a far finer gambit than any chess play: a chess player may offer the sacrifice of a pawn or
even a piece, but a mathematician offers the game.
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(2) Prowve that supp f depends only on the class of f modulo equality pi-a.e.

(3) Prove that supp f coincides with Definition (2.1.1) when f is a continuous
function.

(4) Show by an example that it would be absurd to take (2.1.1) as a definition for
non-continuous functions.

Answer. (1) The complement of supp f is open, and every open set on which f
vanishes a.e. is included in (supp f)°.

(2) is obvious: if f, f coincide a.e. Jiv =0 a.e. is equivalent to f|v =0 a.e.

(3) It is enough to prove that for a continuous function f, and an open set V,
fiv = 0 a.e. implies fjy = 0. If it were not the case, and f(xg) # 0 for some
xo € V, the set

{z e V,|f(@)| > |f(z0)]/2 > 0}

would be open (thanks to the continuity of f) and non-empty (contains xg), thus
with a positive measure. As a consequence, f would not be 0 a.e. on V| contra-
dicting the assumption.

(4) Taking f = 1q, we see that f =0, A;-a.e., so that supp f = (). Taking (2.1.1)
as a definition for the support of f would imply supp f = Q = R.

Measure theory

Exercise 2.8.13 (Completion of a measure). Let (X, M, u) be a measure space
where 1 is a positive measure. Defining N' = Urem M(E):OP(E), prove that

M ={MUN}yemnen

is the o-algebra generated by MUN and defining for M € M, N € N, ;/ (MUN) =
w(M), prove that this definition is consistent and (X, M’ ') is a measure space
such that MIM = u.

Answer. Let A=MUNeM MeMNeNNCFEeM,uE)=0:

A= (M NN NE)U (M NNNE®)=(M°NN°NE)U(M°NE®) e M.
~ ~ N N 7
eN eEM
Let us consider sequences A,, = M,, UN,, ¢ M''M,, € M,N,, ¢ N,N,, C E, €
M,M(En) = O:
UnENAn = (UnENMn> U(UnENNn)
- ~ -~
eM
and since UpenNp, C UnenEn, p(UnenEn) = 0, we get UpenAy, € M’ As a result

M’ is a o-algebra on X, containing M UN, so containing the o-algebra generated
by MUAMN. On the other hand M’ is included in the o-algebra generated by MUN..
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Let M' € M/,M/ = Mj UNj,Mj S M,Nj - Ej S M7/,L(E]) =0,5 =1,2.
Then since My C My U Ny = My U Ny C Mo U Es,
p(My) < p(Mz U Ep) = p(Mz) = p(My) < p(Ma),

(similarly p(Mz) < pu(My)), so that p/(M') = u(My) is defined without ambiguity.
Let us consider a pairwise disjoint sequence in M’: A, = M,, UN,, € M', M,, €
M,N, e N,N,, C E, € M, u(E,) =0. We have

M/(UAn) = M/ (SUnENMn) U (UnENNn)) = M(UnENMn)

< N\ ~ 4

eM N

and since the M, are also pairwise disjoint (M,, C A,), we get

M/(UAn) = ZM(Mn) = ZM/(An)7 qed.

Exercise 2.8.14. Let (X, M, u) be a measure space where p is a positive measure.
Let (fn)nen be a sequence of complex-valued measurable functions on X. We shall
say that (fn)nen converges locally in measure towards a measurable function f if

Va > 0,VY € M with u(Y) < oo, lignu({x €Y, |fn(z)— f(z)| > a}) =0. (2.8.13)

We shall say that (fn)nen converges globally in measure towards a measurable
function f if

Vo >0, limu({z € X,|fu(z) — f(z)| > a}) = 0. (2.8.14)
Assume that p is o-finite, i.e., there exists a sequence (Xi)ken in M such that
X = UgenXy and for all k € N, u(Xy) < 400. Prove that the Lebesgue dominated

convergence theorem holds with local convergence in measure replacing pointwise
convergence in the assumptions.

Answer. Assuming |f,| < g € L' (1), we have for a > 0, Y, = Up<j<x X1,

/Ifn—f\du=/ Ifn—fldu+/ F— fldu
X Yk“{'fn*flga} chm{lfn*flga}
+/ o — fldu+/ F— fldu
Y {| fn—f|>a} Ye{|fn—f|>a}

< au(Yy) —l—/ 2gdu+/ 2gdy.
Yy Y {|fn—fl>a}

Using Proposition 1.7.10, we find that for all & > 0 and all integers k,

timsup [ 1f, ~ fldu < an(vi) + | 29dn (2.8.15)
n o Jx Ve
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so that, for all &,
limsup/ |fro — fldp g/ 2g1yzdp. (2.8.16)
n X X

We have also +-00 > [ 2gdy = fYk 2gdu+ [y 2gdp, and by Beppo Levi’s theorem
k
limy fYk 2gdp = fX 2gdp which implies limy, fykc 2gdu = 0: the inequality (2.8.16)
gives the result lim,, [, [f, — f| = 0.
To sum-up, for a sequence (f,,) in L'(x), f measurable,

convergence

fn >

In measure

and — fn LI(M)> f . (2817)

[ful < g€ L'(n)
Exercise 2.8.15. Let (X, M, u) be a measure space where p is a positive measure.
Let (fn)nen be a sequence of measurable functions and f be a measurable function.

(1) Prove that if (fn)nen converges a.e. towards f, it implies that (fr)nen con-
verges locally in measure towards f.

(2) Prove that the converse of the previous statement does not hold in general.

Answer. (1) Let o > 0 and Y a measurable set with finite measure:
il € V.lfu(o) = )] > ) = [ 1p, -

The function 1yjf, _f>q) converges a.e. pointwise to 0 and is dominated by 1 €
L1(Y). As a result the Lebesgue dominated convergence gives the result.
(2) cf. Exercise 2.8.23.

Exercise 2.8.16 (Borel-Cantelli Lemma). Let X be a set, u* be an outer measure
on X and let (An)nen be a countable family of subsets of X. Then

Z w(4,) < 400 = p*(limsup 4,,) =0,
neN "

where we have defined limsup,, A, = Np>0(Uk>nAk).

Answer. We have

0< u*(limsup An) < u Uk>nAk Z ,LL Ak — 0.

—+o0
k>n

Exercise 2.8.17. We define p* on P(R) by p*(A) = inf {} (b —a;)}, where
Ujenlaj, bj[ Tuns among the coverings of A by open bounded intervals. Show that

p* is an outer measure on R (see Definition 2.2.4).
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Answer. Since an open subset of R is a countable union of bounded open intervals,
this appears as similar to Lemma 2.6.2 for Kk = 1 and X = R, but a simple direct
proof may be useful. Properties (2.2.5), (2.2.6) are obvious. Let us prove (2.2.7).
Let (An)nen be a sequence of subsets of R. We may assume that all p*(A,,) are
finite, otherwise (2.2.7) is trivially satisfied. Let € > 0 be given. For each n € N,
we consider a countable family of bounded open intervals (I}')xen such that

Ay CUgendy,  p*(An) <D < (An) + 2777,
keN

where |I7?] is the length of I}?. We find UpenAn C Up kenI]! and thus

W nenta) < X 11 = 0 (L 1a21)

n,kEN neN “keN
<Y (A e = e Y (A,
neN neN

for any € > 0, proving the result.

Exercise 2.8.18. Let € > 0 be given. Construct a dense open subset ) of R such
that its Lebesque measure A\ () < e.

Answer. We set Q = {x,,},,>1 and we define
Q=Ups1)mp — 27" 2 2, + 27772

open as a union of open sets, dense since it contains Q and with Lebesgue measure

() < Z 2 "l = €/2 < e.
n>1

Exercise 2.8.19 (A non-measurable set). We define on [0, 1] the equivalence relation
x ~y means x —y € Q. Let us recall the statement of the Aziom of Choice: let I
be a non-empty set and let (X;);cr be a family of sets. Then

VieLX;#0 = [[X:i#0.
iel
For X CR and t € R, we shall write X +t = {x + t}zex.

(1) Using the aziom of choice, show that there exists a subset A of [0,1] defined
by taking a single element in each equivalence class of ~.

(2) Let ¢ : N = QnN[—1,1] be a bijective mapping. We define A, = A+ o(n).
Show that

[Oa 1] - UnGNAn C [*17 2}

(3) Show that there is no positive measure p defined on P(R), invariant by trans-
lation (i.e., such that u(X) = u(X +t) for all subsets X of R and all real
number t), and such that p(la,b]) =b —a for a <b.

(4) Show that A ¢ L, where L is the Lebesgue o-algebra on R.
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Answer. (1) The quotient set [0,1]/ ~, is the set of equivalence classes {X;}icr.
Each X; is an equivalence class and is thus non-empty. Using the axiom of choice,
we may find a family (x;);er of elements of [0,1] such that X; is the equivalence
class of x;. Let us define A = {z; }cr.

(2) The set QN [—1,1] is infinite countable, thus equipotent to N. Let « € [0, 1].
There exists 7 € I such that x ~ x;, i.e., x —x; € Q. As a consequence, x = x; + p
with p € Q and since both z and z; belong to [0,1], p belongs to [—1,1] so that
there exists n € N such that p = ¢(n). This implies z € A,, = A+ ¢(n). Moreover,
we have

A, C[0,1]+[-1,1] C [-1,2].

(3) Let us assume that there exists such a measure. We note first that for n # m
integers, we have A, N A, = 0: if z € A, N A, we get with 4,7 € I,

x =i+ ¢(n) =z; + p(m)

and thus x; ~ x;, so that x; = z;, and ¢(n) = p(m) entailing m = n since ¢ is
injective. We would have

= ([0, 1]) < p(Unendn) = Y p(An) = > u(A) -1,2)) =3,

neN neN

which is impossible, since the first inequality implies u(A) > 0 whereas the next
one gives p(A4) = 0.

(4) The set A cannot belong to L, since, if it were the case, the previous inequalities
would hold for the Lebesgue measure A; on R, leading as above to a contradiction.

Calculations

Exercise 2.8.20.

(1) Determine the values of the real parameter o for which fol iﬁ converges.

(2) Determine the values of the real parameter o for which frm ii converges.

(3) Prove that the harmonic series (general term 1/n) is divergent. Show that
the sequence

xn:1+1+1+~~~+ 1 + ! —Inn
2 3 n—1 n
converges.
(4) Show that lima_, 4 o foA Si‘;zdm exists.”
(5) Show that fo+°° |97 | do = +o0.
Answer. Using Inz = ;" % 4 for > 0 and ddx( 7:_:) x~® for a # 1 we get

(1) for o < 1 and
(2) for a > 1.

9See Section 10.4 in the Appendix for the proof of f0+°° Si;“:dx =m/2.
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(3) We have
1 k+1 dt n+1 dt k+1tfk 1
- _ - dt +1n (1 .
e X ([T [T [ (1))
1<k<n 1<k<n

For 1 < k, we have

k+1 k+1 k+1

t—k 1 1 1
0< dt < dt < dt =
= /k kt = /k kto /k k2 k2’

+1 t—k
kt

we get convergence for the sequence (z,,). This implies that, with v = lim z,,,

1
so that the series with general term |, ]f dt converges. Since lim In(1+ ) =0,
n—oo n

1
Z i =lnn+~vy+e¢e,, lime,=0.
1<k<n

(4) The function sinz/x is continuous on R, takes the value 1 at x = 0. For
A>7/2,

A B A A A
14 :/ Smtdt: [ cost] _/ costdt _ e cosA—/ costdt.
/2 t t w/2 /2 t /2 t

Since |cos A] <1 and [t~2 cost| < t72, the rhs converges for A — +oc.
(5) For A > 1,

A A Ag 2
2 2
lnA:/ dx :/ cos( m)dm—i—/ sin“x
1 1 1

x x x
S/A cos(2m)dx+2/’4|s1nxd ’
1 X 1 X

and the rhs goes to +o00 with A. Since we can prove as in (3) that flA " Lcos(22)dx
has a finite limit when A — 400, we get the result.

N.B. The limit of the sequence (x,,) is the so-called Euler constant, denoted by
the letter 7. An approximate value is

0.577215664901532860606512090082402431042159335939923598805767234884867726777664

This important constant remains quite mysterious and it is not even known
whether it is an algebraic number. For more mathematical details, see http://
mathworld.wolfram.com/Euler-MascheroniConstant.html. To know the first
100 digits type with Mathematica N[EulerGamma, 100].


http://mathworld.wolfram.com/Euler-MascheroniConstant.html
http://mathworld.wolfram.com/Euler-MascheroniConstant.html
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Exercise 2.8.21.

n

(1) Calculate lim (1 — Jv)ndx.

n—00 n

(2) Let z € C such that Rez > 0. Show that

n too
lim P (1 - x) dx = / 2 te dr = T'(2).
0

n—oo Jo n

Answer. For z > 0, we have lim,, o (1 — 7)" = ™% (calculate the logarithm).
Also for all § > —1, we have In(14+6) < 0 (6 — 6 — In(1 + 0) is decreasing on
(—1,0], increasing on [0, +00)) so that for 0 < z < n, we have

x x
In(1 - n) < “ and thus 0 < 1jg,(2)(1 — "

We can use the Lebesgue dominated convergence theorem for both questions; the
answer for (1) is 1 =T'(1).

Exercise 2.8.22. Give an example of a sequence (f,)nen in C2([0,1],R1) converg-
g pointwise to 0 such that

/1 fn(z)dr — +oo.
0

Answer. Piecewise affine f,, equal to n? at 1/n, 0 at 0,2/n.

Exercise 2.8.23. Find a sequence of step functions f : [0,1] — Ry such that

lim,, o0 fol fo(x)dx =0 and so that the sequence (fn(x))nen is divergent for any
z € 10,1].

Answer. For 0 < k < m integers, we consider the function

Fk,m(x> = 1[ k k+1[($)

m’ m
and we set
fo=Fon

fi=Fo2, fo=TF12
fa=Fo3, fi=Fi3 [fs=1F3

m(m—-1) = F| R . =F R - =Fn_1m-
f (2 ) 0,m» 7f (2 )+k k,m 7f (2 )+m_1 m—1,m

A simple drawing will convince the reader that for a fixed z, the sequence f,(x)
takes an infinite number of times the values 0 and 1, proving its divergence.
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. m(m—1)
We prove this result formally below. We note that the sequence ( 5 )mzl

is strictly increasing, with value 0 for m = 1 and goes to +o00. As a result, for all
integer n > 0, there exists a unique integer m,, > 1 such that

n n_l n n 1
mp(m )§n<m(m +1)
2 2
so that ) )
n= mn(m;— )Jrkn, with 0 < k,, < m2n = My,

We note lim,,—, 4 o0 My, = +00 since my, +1 > v/2n. For n > 0, we set

fn(x> = kamn(x)'

We have
1 1
/ fu(x)de = / Fy, m, (x)de =1/m, — 0 for n — +o0.
0 0

Let z € [0,1] be given. Let n > 3 be an integer such that f,(x) = 1: then

kn, <z< 1+kn’
Mn Mn

and if k, < m, — 1, we have

My (my, — 1)

My (my, — 1)

) <n<n+l= " 5 +k,+1
<m(m2 )+mn:m(m2+ )7

so that mp,41 = my and fr41(2) = Fitk, m, () = 0.1f f,(z) =1 and k,, = m,,—1,
we have m;l;l <z <1and

n n - 1 mn mn 1
n+1= m (m2 )—l—mn =" (m2 + ), so that myu41 = 14+my, kye1 =0.
We get then
1 n—1 |,
frt1(x) = Fo14m, () =0 since ¢ m, < mmn since m, > 2.
As a result,
forn >3, fo(r)=1= foyi(x)=0. (2.8.18)

Moreover for z € [0, 1] and n > 0, we have 0 < m,x < m,, so that

k= E(myz) € {0,...,m, —1}.



120 Chapter 2. Actual Construction of Measure Spaces

We consider n' = m”(”;”_l) +k> m”(";”_l). We have

k 1+ k
E<mupr<l1+kEk, <z< +
my M,
so that
frr (@) = Figm, () = 1, (2.8.19)

implying that the sequence f,(z) takes the value 1 an infinite number of times.
Since it takes also an infinite number of times the value 0 from (2.8.18), it can-
not converge. We can also define f,(1) = (1 + (—1)")/2. Using piecewise affine
functions, it is possible to modify the above example so that the f,, are continuous.

Exercise 2.8.24. Let (X, M, 1) be a measure space where p is a positive measure
and let f: X — C be a measurable function.

(1) Prove that if f € LY (i), then lim,, nu({|f| > n}) = 0. Is the converse true?
(2) Prove that if f € LY (), then D>t o f|f|<n |f|2du < +oo. Is the converse
true? -

Answer. (1) We have

0 < nu({|f] =n}) :/ nlyifznydp S/ FALSTI TS
X X
0 < gn=f11qs5ny < |fl € LY (1) and lim [ f(2)[1{f2n)(z) = 0.

The Lebesgue dominated convergence theorem implies that

lim/ \f|1{|f|2n}du:0
noJx

and the result. The converse is not true: the positive continuous function on [0, e ~}]
given by g(r) = zIn(z~!) has derivative In(z~!) — 1 and is thus increasing on
[0,e71] from g(0) = 0 to g(e™!) = e~1. We have

et et —+oo
/ dz :/ de :/ du lim In(ln A) = +oo.
o gx) o xln(z1) . uln(u) AS¥eo

However for n > 1,

{eemen,

o(2) > n} ={ze0,e M,g(z) <n '} =[0,m,]

where z,, € [0,e71] is characterized by z,, In(z,!) = g(z,) = n~!, which implies

L1 1
nu |z €0,e ], >ny | =nz, = — 0,
g9(z) | In2y |

since x,, — 04. Property in (1) can hold without f (here 1/g) € £!.
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(2) For f € £!, we have
Z n2/ |f\2dﬁt:/(Zﬂ_2|f\21{|f|gn})du-
n>1 n>1

With

=Y 0 f @)1 p<my (@) = > a7 f@)

n>1 nzmax(|f(z)[,1)

@ Y w7

n2max(|f(z)],1)

using for N > 1, 37 -y n 2<mm( ;,N 1) we get

e 1 TU@P i]f() <
0§F(m)§mln<6 " max(|f(2)], 1) — > |f(@)|* < {&Sfll if | ()] >2.

Since for | f(z)| < 2 we have 7 |f(z)2 < 7 |f(@)||lf(@)] < [f(x)|% < 4/f(x)| and

for |f(z)| > 2,
f@PF _ @)

f@) =1 |f(x)| - @I <215 ()],

we get
0< F(z) < 4f(z)],

proving the result. The converse is not true since with f(z) = 113 {oof(¢) (which
is not in £'), we have nevertheless

ZnQ/ PPdp=3" />1x2dx4/6

n>1 n>1

N.B. Looking at Fy =}_ -, 7112 |f121{|f| < n} we have
1

Fy =1{f <P+ 2{If1 > DI >0,

nz|f|

so that, with some positive constant C,

LI < AP+ O {If1 > 1S < Fr < {|f] < ISP+ CL{|f] > 1} S

As a result, Fy € L' is equivalent to
H|f| <1}fPP and 1{|f| > 1}f| € L'

When f belongs to £!, both conditions are satisfied. Conversely, we may have
Fy € £ without f € £! since 1{|f| < 1}|f| may fail to be integrable. However if
Fy € £ and p has finite total mass (i.e., u(X) < +00), we have 1{|f| < 1}|f] < 1
which is integrable, so that f is integrable.
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Exercise 2.8.25. What are the limits of the following sequences?

n n? sin k E\"
“"’anukﬂ’”"’ 2 kn2 + k2 T 2 e <k:+1) '

k>1 1<k<2n 1<k<n?

Answer. For k integer > 1, we have lim,,_, = k12 and moreover

nk2<tk+1
o L < Lo Fw), SF®) <
k24 k1 K24 (k/n) + (1fn) T k2N e

We apply the Lebesgue dominated convergence theorem on the measure space

(N, = 6, P(N))

E>1
to the sequence (fn)n>1 defined by f,(k) = .7, ;. This gives
u —/fd — /(limf)d => L
n_NnMnHJrooNn n M_k21k2_6.

Using the same measure space and the sequence of positive functions (gn)n>1
defined by

2
(k) = kn§‘+k2 for 1 <k < 2n,
0 otherwise,

we get from Fatou’s lemma,
1
400 = E = / liminf g,dp < lim inf/ gndp = liminf vy,
k N n n N n
E>1

so that lim,, v,, = +00. With the same measure space and the sequence of functions
(hn)n>1 defined by

sin k kK \n
ey — ) G if 1 <k <n?
n(k) .

0 otherwise,

we note that |h, (k)| < F(k) where F' is defined above. The Lebesgue dominated
convergence theorem gives

i, = [ mada= 3 i (S )) = 0o
N E>1 k>1

The last point can be checked directly without using the Lebesgue dominated
convergence theorem: for any integer m > 1, we have

1 m o \" 1 2/, m \n 1
< <
onl < 3 k2(m+1) +’§nk2_ 6(m+1) +,§nk2’

1<k<m
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and thus

1 1
lim sup |wy, | < Z p2r 50 that limsup |w,| < niln>f1 Z 2 = 0

n—-+o0o n—-+oo

k>m ~ k>m

since D o, le is the remainder of a converging series.

Exercise 2.8.26. Determine the limits of the following sequences.
1 T

1 _
I, = / " tanh (I) de,  Jn = / " e
o 1+a2 n o nr+1

Answer. Setting f,,(z) = 112 tanh (i), we find

lim fo(z)= "

n—-+o0 T 14 a2 a>0 «

The Lebesgue dominated convergence theorem implies

1
. T 1 o1 In2
nglfoo["/o 14 q2 8=y ImlHaf]y ="y

We have J,, = fol e * (m + Tll)fl dx and Fatou’s lemma gives, with

gn(x) =€ " (m + 71L>_1 ;

1

tanh
and  |fa(z)] < Hxﬁ sUp( an a)_

123

1 1
400 = / e x e = / (lim inf gn(x))dx < lim inf/ gn(x)dz = liminf J,.
0 0 n n 0 n



Chapter 3

Spaces of Integrable Functions

3.1 Convexity inequalities (Jensen, Holder, Minkowski)

Definition 3.1.1 (Convex function of one real variable). Let I be an interval of R.
A function ¢ : I — R is said to be convex if for all xg,z1 € I and 0 € [0,1], we
have

We note that zp = (1 — 0)xg + Oz ranges over the interval [zg,21] (or [z1,20])
when 0 ranges over [0,1] so that zp € I and (3.1.1) makes sense. The function ¢
is said to be concave if —¢ is convex.

The best explanation is encapsulated in Figure 3.1: a function is convex if
the segments joining the points (x;, ¢(z;)),j = 0,1 are above the curve of ¢. In
that picture, above the z-axis, we wrote only the y-coordinate of each point. Note
also that on the vertical line x = xg, the y-coordinate (1 — 6)d(xg) + 0¢(x1) can
be calculated with the Thales theorem.

Proposition 3.1.2. Let I be an interval of R and ¢ : I — R be a function.

(1) For ¢ differentiable, ¢ is convex iff ¢' is increasing.
(2) For ¢ twice differentiable, ¢ is convex iff ¢"" > 0.

(3) If ¢ is convex, then ¢ is continuous on I.
(4)

4) The function x — €* is conver on R.

Proof. Let us first give some equivalent properties to (3.1.1). A function ¢ : I — R
is convex iff for all x,y,z € I,

z—Y Yy—
ro=r<y=mo <z =2= P(y) < o(x) + (2).
Z—x Z—x
N 7 N~ 7
1-6 0
N. Lerner, A Course on Integration Theory: including more than 150 exercises with detailed answers, 125
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P(z0)

(1= 0)p(z0) + 0d(z1)

P(x1)
d(xo)
Lo Ty T
= (]. — G)LEQ + 01’1
Figure 3.1: CONVEX FUNCTION
Property (3.1.1) is thus equivalent to the following: for all x,y,z € I,
by s O 0@ 00 —0) ()=o) g
y—x z—x z—y

since the first inequality is equivalent to ¢(zg) — ¢(zo) < 0(d(21) — ¢(x0)) and
the second one to (1 — 0)(¢(z1) — d(z0)) < ¢(z1) — ¢(zg), both are equivalent
to (3.1.1). Figure 3.2 describes (3.1.2). The lines XY, X Z, Y Z through the points
X(z,¢(x)),Y (y,¢(y)) and Z(z, ¢(z)) on the graph of ¢ have slopes increasing with
lexicographic order: XY < XZ Y Z.

Let us prove (1). Let ¢ be a convex differentiable function on I and let
x1 < x2 be points of I. For 0 < € < (z2 — x1)/2, we have

r1 <21 t+e<xyg—€< To.

Using inequalities (3.1.2) for the triples 1 < z1+€ < x9—e and z1+€ < x2—€ < 23,
we get

plar+e) —plr1) _ p(rs =€) =gz +6) _ p(a2) = p(r2 =€)

€ - To — X1 — 2€ - € ’

so that, taking the limit when € — 0, we obtain

p(r2) — p(z1)

< /
T — Ty S ($2)7

¢'(z1) <
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¢(x)
Xz

YZ

T Y z

Figure 3.2: Description of (3.1.2)

proving that ¢’ is increasing. Conversely, let ¢ be a differentiable function on I,
with an increasing derivative. For < y < z in I, there exists § €]z, y[, Z €]y, 2|
such that ) () () W)
Ply) — e ~ 5 pz)— ey
=¢'(5) <¢'(2) = :
Yy—x =Y

implying convexity for ¢, completing the proof of (1). Property (2) follows from
the equivalence, true for 1 differentiable on an interval I,

1 increasing <= ¢’ > 0.

Property (4) follows from (2). Let us prove (3). Let ¢ be a convex function defined
on an interval I (with non-empty interior) and let a < b be real numbers such that
[a,b] C I. With a < 1 < z2 < b, applying (3.1.2), we find

p(z1) = ¢la) _ pla2) = p(a) p(0) = p(z1) _ @(b) = p(a2)

d 1.
1 —a To—a at b—x; - b—xzy (3.1.3)
which implies
p(x1) — p(a) ( p(b) — p(z1)

oo (@)@ <ple) o) = (b-w)T
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Taking the limit when 29 — 1, we get

p(21) = @(21) = @(a) + ¢(a) < liminf p(z2) < limsup p(z2)

< @(b) — (2(b) — p(z1)) = @(x1),

implying
lim  o(x2) = @(z1). (3.1.4)

T2—T1 4

Similarly, from (3.1.3), we find

(p(b) . (b . Il)(p(b) - CP(I’Q) < (P(xl) < (ml - a) QD(IQ) - (p((l)

b— e — + ¢(a),

which implies

p(x2) = p(b) — (p(b) — @(x2)) < liminf @(z;) < limsup p(z1)

< p(x2) — pla) + ¢(a) = p(x2),

so that limg, ., @(z1) = @(x2). The combination of left and right continuity
((3.1.4)) give the result. O

Theorem 3.1.3 (Jensen inequality). Let (X, M, u) be a probability space (measure
space where p is a positive measure such that u(X) = 1). Let I be a non-empty
open interval of R, f : X — I be a function in L*(p) and let o : I — R be a
convex function. Then oo f =1 + g, where v € LY (i) and g is measurable > 0.
Moreover [ fdu € I and

w(/xfdu) S/X(soOf)dm

with fX(go o f) du = +oo whenever fX gdyp = +00.

Proof. We set to = [y fdp and I = (a,b) where —oco < a < b < 400. Let us prove
first that to < b: it is true whenever b = +oo since f € £ (u). If b < +o00, since f
is valued in I and p is a probability measure, we have

to=/deu§/deu=bu(X)=b-

If the equality tg = b were satisfied, we would have 0 = [ (b — f)du, and since
the function b — f is non-negative and belongs to £!(u), Proposition 1.7.1 implies
b = f, u-a.e., so at least in a point, which is not possible since f is valued in
(a,b). We prove of course similarly that ty > a, so that [y fdu € I. Using now
the convexity of ¢ on I, we get

5= sup P0) — 9(9) (u) — p(to)

s<to to — s u>to u —to
sel uel

ginfw

< +o0. (3.1.5)
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As a consequence, we have
s€l,s <to=p(to) —(s) < Bto —s), ie, @(s) = e(to) —Blto — ),
and moreover (3.1.5) implies
u€lu>tg= p(u) —p(to) =2 Blu—1to), e, (u)=pto)—pBto—u),
so that Yo € I, ¢(0) > ¢(to) — B(to — o). Since f is valued in I, we obtain
Ve e X, (f(x)) = plto) — B(to — f(2)),
entailing
pof=gplto) — 5(t0*f)+¢°f*80(t0)+5(t0*f)7
-~ ~ ~ -
_we,/;l(#) =g measurable > 0

since p is a probability, f € £!(u) and ¢ o f is measurable (¢ is continuous from
Proposition 3.1.2 and f is measurable). If g belongs to £ (1), we find po f € L1 (1)
and

/ (po fldu > / (p(to) — B(to — f))dp = @(to) — Bto + Bto = ¢ (/ fdu> :
X X X
If [y gdp = o0, with 0 <4 € L (1), we have

WOfH/L:¢++920:$/X(300f+¢7)d;t:+oo,

so that we may define fX (¢ o f)du = +oo in that case. g
Remark 3.1.4. Let I be an interval of R and ¢ : I — R be a convex function. Then
for any integer n > 1 and any n-tuple (61,...,60,) of non-negative real numbers
such that ZlSan 0; = 1, we have with z1,...,z, € I,
(2 t) < ¥ le) (3.1.6)
1<j<n 1<j<n

That property is equivalent to convexity (obviously stronger since (3.1.1) is (3.1.6)
with n = 2): it follows from convexity as a consequence of Jensen’s inequality
applied to

f 4
Z X — I— R
X:{].,...7Tl}, n= 063 . )
1<j<n Y i e oz o)
since Theorem 3.1.3 provides

‘P( > Wj) =<P( > ij(j)> =<p</deu)

1<j<n 1<j<n
S/(swf)du: D 0o H) = D Oie(x;).
X 1<j<n 1<j<n

Note also that (3.1.6) is easily proven inductively on n for a convex function ¢.
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Lemma 3.1.5 (Geometric mean — Arithmetic mean inequality). Let ai,...,a, be
positive numbers and 01, ... ,0, be non-negative such that Zl<j<n 0; =1. Then

geometric mean of the a;  arithmetic mean of the a;

7 0\ N
H ay < Z 0;a; , (3.1.7)

1<j<n 1<j<n
and equality holds iff a1 = -+ = ay,.

Proof. Using the previous remark along with the convexity of the exponential
function, we find

0; . . .
H ajJ: H eajlna] S 2 : ejelna]: 2 : ejaj.

1<j<n 1<j<n 1<j<n 1<j<n
Defining on (R%)" the function ¢ (a1,...,an) = >3 o<, 0505 — [licjcn a?j
note that 9 is non-negative and we may assume that the numbers ; are all positive
(if ; = 0, the function ¢ does not depend on a;). If that smooth non-negative
function is vanishing at some point of (R* )", then its differential should be 0. As
a result, we have

o -1 0 0
O:aajzﬁj—ejaj Z a;f = a; = Z a;®,

1<k<n 1<k<n

we

since §; > 0, proving the last result. O
In the sequel to this book, we shall use the following notation: Let 1 < p <

+00 be a real number. We set p’ = pf , and we shall say that p’ is the conjugate
exponent of p, characterized by

+ =1 (3.1.8)

When p =1 (resp. p = +00) we define p’ = 400 (resp. p’ = 1).

Theorem 3.1.6 (Holder & Minkowski inequalities). Let (X, M, ) be a measure
space where 1 is a positive measure. Let f,g: X — C be measurable functions, let
1< p<+oo and p' its conjugate exponent. Then,

1/p 1/p’

g 4 older

(1) /legldug </X|f du> </X g du) (Hélder),
e p 1/p

) (/x'f ﬂﬂd") = < /X prdu> + < /X Igl”du> (Minkowski).
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Proof. We may assume that f,g are valued in Ry. We can also suppose that
Jx fPdp > 0 and [ g” dp > 0. Otherwise, from Proposition 1.7.1(1) we would
have f = 0 p-a.e. or g = 0 p-a.e., so that fg = 0 p-a.e., trivializing (1) since the
Ihs is 0. Also, we can assume that [, fPdu < 400 and [ g”'dp < +o00: otherwise
since these quantities are both positive, their product would be 400, trivializing
(1) since the rhs is +oo. Under these assumptions, we define

1/p , 1/p’
A:(/ f”du> , B:(/ gpdu) (we have 0 < A, B < +00),
X X

and

_f _9 P, — 7, —
FfA, GiB so that XF dy = XG dp = 1.

From inequality (3.1.7), we get
FG = (FP>1/p(Gp'>1/p’ < 1Fp + 1lep’7
p p

entailing

1 1 _
/Fdeg/ ( FP+ /Gp>du1, ie., /fgdpgAB7
X X \P p X

proving (1). Let us now prove (2), assuming as we may that f and g are non-
negative such that [, fPdu and [y gPdp are finite. We have

(f+9P=f(f+9)" " +g(f+9P T,

and applying (1), we find

/X oy = (/x fpd”) N ( /X (f + g)(“)”'du) ”

1/p , 1/p’
+ (/ g”du) (/ (f +9) P07 d#) :
X X
Since (p — 1)p’ = p, we get

[ saroe [(f ) ()] (s or)”

(3.1.9)
The mapping ¢ — tP from R into itself is convex since p > 1 (increasing deriva-

)
tive) and this implies (f;rg) < 3 fP+ 3gP. As aresult, the lhs of (3.1.9) is finite

and we obtain the sought result

[/X(f+g)pdu]1pll_; < </X fpdu)l/er </X gpdu>1/p- O
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3.2 LP spaces

Definition 3.2.1. Let (X, M, ) be a measure space where y is a positive measure
and let 1 < p < 400 be a real number. The space £P(p) is the set of measurable
functions f : X — C such that

/ |fIPdp < +o0, (3.2.1)
X

i.e., such that |f|” € £1(u) (cf. Definition 1.6.6). As in Definition 1.7.2, we define
LP(u) = LP(u)/ ~ where ~ stands for the equality p-a.e. For f € LP(u), we set

1/p
£l 2oy = (/le”du) : (3.2.2)

Notation. We shall note LP(R?) the space LP(\g) where )4 is the Lebesgue mea-
sure on R? and ¢P(N) the space of complex-valued sequences (ax)ren such that

> ken laxl? < +oo.

Lemma 3.2.2. The quantity (3.2.2) depends only on the class of f in LP(u) and
LP(u) is a normed vector space for the norm (3.2.2).

Proof of the lemma. We prove first that £P(u) is a vector space on C. Let f,g :
X — C be measurable functions and «, 8 be complex numbers. Minkowski’s in-
equality implies for f,g € LP(u).

laf + BallLey < llfllLe + 189l e = lallflleqy + 1819l Loy < +oo.

The space LP(u) is the quotient of £P(u) by the subspace {f € LP(u), f ~ 0}.
Moreover (3.2.2) depends only on the class of f (cf. Proposition 1.7.1(1)) and is a
norm on LP(u): The separation property follows from Proposition 1.7.1(1), homo-
geneity from Proposition 1.5.4(2) and triangle inequality from Theorem 3.1.6(2).

O

We want now to define the spaces £ () and L>°(u) of (essentially) bounded
functions. Before we give such a definition, let us check the following example: we
define
1 forx ¢ Q,

xz forz e Q,

f:R—R, f(x){

easily seen to be measurable!. Although that function is not bounded, it is “essen-
tially” bounded in the following sense: with A; standing for the Lebesgue measure
on R, we have

M (fz € R.|f(x)] > 13) < (@) =0,

1We have f(z) = z1g(z) + 1ge (), so that Theorem 1.2.7 implies the measurability of f.
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Lemma 3.2.3. Let (X, M, ) be a measure space where p is a positive measure and
let f: X — C be a measurable mapping such that there exists M € Ry such that

p({z € X, |f(x)] > M}) =0. (3.2.3)

Then we shall say that f belongs to L>® (). The set L®(u) is a vector space on
C. The quantity
If]l = inf{M € Ry, u({|f] > M}) = 0}, (3.2.4)

is a semi-norm on L (u) (i.e., satisfies homogeneity and triangle inequality). If

f1, fa belong to L (u) with f1 = fo p-a.e., then || f1ll = || f2]l-

Proof. We have
1
vzt ({in> +}) o

and since {|f| > |[fII} = Ue=1{If| >  + |||}, we find (a countable union of
negligible sets is negligible)

p({If1>1£11}) = 0. (3.2.5)

Let f,g be in £>(u). The inclusions

A< AR N {lgl < Nlgll} < {1f + gl < NS+ Nl
imply {|f| > IFI} U {lgl > llgll} 2 {If + gl > [l + llgll}, so that

p({lf +al > 1I£l+ llgll}) =0

and thus f + g € £(u) along with || f + g[| < |[f]| + [[g]. Also for a € C and
f € L£(u), we find readily af € £°(u) and ||af|| = ||l f]]. To prove the last
statement, we write with N € M, pu(N) =0, |f1|1ne = |f2|1ne which implies for
M >0,

p({Ifil > M}) = u({| filtne > M}) = p({If2l1ne > M}) = u({|f2| > M}),

entailing || f1|| = || f2- .

Definition 3.2.4. Let (X, M, 1) be a measure space where p is a positive measure.
We define L>(u) as the quotient of £°°(u) by the relation of equality p-a.e. For
f € L£>®(u), we have

| fllLoe(uy = inf{M € Ry, pu(|f| > M) = 0} := esssup | f]. (3.2.6)

This quantity depends only on the class of f in £>°(u) and L*(p) is a normed
vector space for the norm (3.2.6). We shall denote by L>(R9) the space L>=(\4)
where )\g is the Lebesgue measure on R¢ and £>°(N) the space of complex-valued
sequences (ai)ren such that supycy |ar| < +o00.



134 Chapter 3. Spaces of Integrable Functions

Using the previous lemma, we have only to verify the separation axiom of
the norm: if || f|| = 0 for some f € £>°(u), then for any k£ € N*, we have

p({1f1>1/k}) =0 = p({f # 0}) = p(Ur=1{If] > 1/k}) = 0

so that (3.2.6) is a norm on the vector space L™ (u).
Remark 3.2.5. Let f be in L (). We have

Il =t (suplrio)]).

€A
p(A%)=0 €

In fact if f € L>®(u), A € M, u(A°) =0, we have f ~ f14 and thus

[l = 1f1alli=go < sup |f(x)

Conversely if f € L°(u), we saw that p ({|f] > ||| e }) = 0. Defining

A={f] < fllze}

we find u(A4¢) = 0 and [|f]l g~ o) = [ FLall() < $uPgen [F@) < 1l

Proposition 3.2.6. Let (X, M, 1) be a measure space where p is a positive measure.
Let 1 < p,p’ < 400 be conjugate exponents (i.e., 117 + ;, =1), f € LP(n) and
ge LV (). Then the product fg belongs to L'(u) and we have

1fgllzrg < 1 flzegollgl Lo -

Proof. For 1 < p < 400, it is Hélder inequality (Theorem 3.1.6(1)). If p = 1, then
p’ = 400 and we have

[f@)g(@)] < |f@)llgllzoeqn p-ae.,

which gives the result by integration using Theorem 1.7.4. O

Remark 3.2.7. Although the spaces LP (1) are quotients and its elements are classes
of functions in L£P(u), we shall speak about functions of LP(u), keeping in mind
that they could be modified on negligible sets.

Theorem 3.2.8. Let (X, M, ) be a measure space where i is a positive measure
and let p € [1,+00]. Then LP(u) is a Banach space (complete normed vector space)
and L?(u) is a Hilbert space (complete pre-Hilbertian space).

Proof. We assume first 1 < p < 400 and consider a Cauchy sequence (fy)n>1 in
LP?(u), i.e., such that

Ve >0, AN, Vn,m > Ne, |[fu = finllzr(u) <€ (3.2.7)
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We claim that there exists a strictly increasing sequence of indices
1<ng <ng < <ng <nggpr <o such that || fo,,, — fuell <277 (3.2.8)

In fact, using (3.2.7), we can find ny > 1 such that ¥p > 0, || fpin, — fai || <275
Let us assume that we have found 1 < n; < ng < --- < ng such that

Vp>0,V5 € {1,....k}, | fpsn, — fo,ll <277 (3.2.9)

From (3.2.7), we can find my, such that Vp > 0,Ym > my, || fotm — fml < 27571
We define now
ng+1 = max(1 + ng, mg),

and we check np < ngpy1 and Vp > 0, | fprniyy — frae |l < 2=k=1 This allows us
to construct a strictly increasing sequence (ny)x>1 satisfying (3.2.9) which implies
Claim (3.2.8). For k > 1, we define now the non-negative measurable functions

9k = Z ‘fnj«{»l - f’nj|a g = Z |fnj+1 - fnJ‘ (3210)

1<j<k i>1

Using (3.2.8) and the triangle inequality for the norm LP(u), we find

||gk||LP(/_L) < Z Ilfnj+1 - fnjHLP(,u) < Z 277 <1,

1<5<k 1<5<k

so that Fatou’s lemma 1.6.4 implies
/ (lg/” = lim [gx|P = lim inf |gg|P)dp < liminf/ lgk|Pdp <1,
x k k k x

proving g € LP(u), [|gllzr(uy < 1 and 0 < g < +o0 p-a.e. (cf. Proposition 1.7.1
(4)). As a consequence, the telescopic series » - -, (fi;41 (@) = fn, () is absolutely
converging pi-a.e., i.e., on a measurable set A such that u(A¢) = 0. Let us define

F@) = (fan (@) + 32 (faga (@) = fu, (@) ) 1a(2).

j=1
Since f, (z) + Zlgjgk(fnj+l(m) — fn, (m)) = Sy (2), we find
f(z) = h’gn fri (@), prace.

Let € > 0 be given and N, be an integer such that (3.2.7) is fulfilled. Fatou’s
lemma implies for m > N,

/ (|f - fm|p = hmlnf|fnk - fm|p)d,uf < hmlnf/ |fnk - fm‘pdﬂl <€l
X k k X
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As a result, f — f,, belongs to LP(u) as well as f = f — f,, + fm and we have

”f - meLp(u) mjoo 0, qed for1<p < +oo.

In particular, L?(u1) is complete for the norm

1/2
[ull 2y = (/ uudu) : (3.2.11)
X

For u,v € L?(p), Proposition 3.2.6 implies that uv belongs to L () so that
L*(p) x L2 (1) 2 (u,v) / utdp = B(u,v) (3.2.12)
X

is a sesquilinear Hermitian form, i.e., for A\;, Ao € C, u,v € L?(u),
B(Mui + Aaug,v) = MiB(u1,v) + A2 B(ug,v), B(v,u) = B(u,v). (3.2.13)

The vector space L?(u) equipped with the norm (3.2.11) is thus a Hilbert space.
We need now to check the case p = +o00. Let (fn)nen be a Cauchy sequence in
L (). We define for n,m € N the sets

Ap = {I € Xa |f’n(‘r)‘ > ||f’ﬂ||L°C(M)}? (3214)
Bnm ={2 € X, |fu(@) = fm(@)| > |fn = finllLe(w} (3:2.15)
and we note that they are both negligible (from (3.2.5)). Let us define
E = UpenApn UUg1enBi,.
As a countable union of negligible sets, E is negligible and for z € E¢, n,m € N,

|fn(x)*fm(m)‘ S ”fn*fm”Lw(uﬁ (3216)
[fr(@)] < [ fallLee(uy < sup | frll Lo (uy = Mo < +oc. (3.2.17)

The very last inequality follows from the assumption (3.2.7) since the triangle
inequality implies in a normed space

[fnll <M fn = fnll + [ fmll, ([ fmll < N fn = fll + 1 fnlls
so that

proving that the sequence of real numbers (|| fu||)nen is a Cauchy sequence, thus
is bounded. For x € E°, the sequence of complex numbers (fn(m))neN is a Cauchy
sequence, thus converging (with a limit < My in modulus). Let us now define

lim,, f,(x) for z € E°,
0 for z € E.
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The function f belongs to L>°(u) (note that f is measurable as a pointwise limit
of the measurable f,1g<) and || f| () < Mo. Moreover, using (3.2.7), for € > 0
and n > N, we have

[fa(2) = f(@)[1pe(z) =lim | fu(2) = fn(2)[1pe(2) < limsup [ fo = finllLoego < €

Since p(E) = 0, we find [[fn — fllpo(n) < supPpepe [fa(z) — f(2)1pe(2) < ¢
proving the convergence in L> (1) of the sequence (f,,)nen. The proof of Theorem
3.2.8 is complete. O

Along the proof of the previous theorem, we have obtained the following
result, which is of independent interest.

Lemma 3.2.9. Let (X, M, u) be a measure space where p is a positive measure, let
p € [1,400) and let (fn)nen be a convergent sequence in LP(u). Then there exists
a subsequence (fn, )ken converging pointwise ji-a.e.

We have seen in Exercise 2.8.23 that a sequence (f,)nen can be converging in

L'(R) and nevertheless be such that for all z € R, the sequence (fn(m))neN is di-

vergent, proving that extracting a subsequence is necessary to get a.e. convergence
from convergence in L.

The following theorem is an extension to LP of Proposition 1.7.8.

Theorem 3.2.10. Let (X, M, u) be a measure space where p is a positive measure
and let p € [1,400). Let f, : X — C be a sequence of measurable functions
converging p-a.e. towards f.

et us assume that for all n € n € and the numerical sequence
(1) L hat for all N, f LP(n) and th [ seq
I fullr () is bounded above. Then f € LP(u).
(2) We assume that limy, eo || frllzeuy = [ fllzru). Then the sequence (fn)nen
converges in LP(u) towards f, i.e.,

i [ 1fo — sPdp =0

Proof. The function f is measurable as a simple limit of measurable functions.
Moreover, Fatou’s lemma implies

/ |f|Pdp = / liminf | f, [Pdp < liminf/ | frlPdp < sup/ | frlPdp < 400,
X x " " X n JX
which proves (1). Let us prove (2). We define

In = fa = fIP = 1fal” + IfIP, (3.2.19)
and for a given A > 0, we find

/|9n|dﬁ‘:/ |9n|1{|fn|9|f|}dﬂ+/ ZARSIFNESIIT
X \X _ X

~
ex(n)
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We note that |g,| 11 5.1<a 7]y converges pointwise to 0 since g, converges pointwise
to 0. Moreover we have

L i |90l < Lpaisnisy (1al? + 1117 + |1l + 1£1]7)
<P+ 1+ A+ 1)7) € L1 (p).

Lebesgue’s dominated convergence theorem implies then lim, e)(n) = 0. More-
over, we have, noting that f, # 0 on {|fn| > A f|},

90| L pisairly = [1fn = FIP = 1fal” + 1 F PP |1 a5 a00y
= fal? |11 = f/fal? = L+ £/ FalP [ 1151513

For a complex number z such that |z| < 1, we have
[[1— 2P — 1| <p2P~ 1 — 2| — 1| < p2P~H|2]

the first inequality comes from the mean value theorem for the function ¢ — P
between 1 and |1 — z|, and the next one follows from the triangle inequalities

1—2| <14z and 1<|1—z|+]z.
As a result for A > 1, we find

9l Lg o imary < LalP (L4 p2P7 1)/,

which implies [ |gnldp < e, (X) + Hpipil Jx | falPdp. Consequently, for all A > 1,
we get
21 +1
timsup [ Jguldp <P [ (flrda.
n—+oo JX A n—+0o0o Jx

implying lim,, [y [gn|dp = 0, and thus lim, [y gndp = 0. Going back to the defi-
nition of g, in (3.2.19) we find now

o=t ( [ (1fa =7 =11l +1£)an)
—tin ([ 1g = pan= [ 1 [ 1),

Since we have assumed that lim,, [ |fn|Pdp = [ |f|Pdp, we obtain the result

lim/ |frn— fIPdp = 0. O
noJx

N.B. The statement of the previous theorem does not hold for p = +oc0: on the
real line we may consider the L* function f = 1[_; ;) which has norm 1. It is
easy to find a sequence of continuous functions f,, with compact support in [—2, 2]
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converging pointwise towards f with L® norm equal to 1 with norm 1 (take f,
continuous piecewise affine, equal to 1 on [—1,1], equal to 0 on the complement
of (<1 — !, 1+ !)). However it is not possible that the sequence (fn) converges
in the L* norm towards f, since the continuity of the (f,) must be preserved by
uniform limit, although f has discontinuity points.

Proposition 3.2.11. Let (X, M, 1) be a measure space where u is a positive measure
and let 1 < p < +o0o. We define

S ={s: X — C, measurable, s(X) finite with pu({s # 0}) < +oo}.  (3.2.20)

The set S is dense in LP(u).

Proof. Let s be in S and let ay, ..., a,, be the distinct non-zero values taken by
s. We have
s= Y ajla, Aj=s"({o5}), u(4;) <p({s #0}) <400, (32:21)
1<j<m

Since the A; are pairwise disjoint, we find
[ brdn= 3 lagu(a) < +oc, (3.2.22)
X

proving the inclusion S C L?(u). Let f be a positive function belonging to LP(u).
Using the approximation Theorem 1.3.3, we find an increasing sequence of simple
functions (si)ren converging pointwise to f. Each si belongs to S since for s
simple < f, taking the distinct non-negative values ajy,...,a,, on the pairwise
disjoint sets Aq,...A,,, we have

s= Y ojla, Y aﬁ-’u(Aj):/XsdeS/Xf”du<+oo7

1<j<m 1<j<m
a;>0

which implies p(A;) < +00 whenever «; > 0 and thus

u({s £0}) = 3 u(A) < +oo,
'

proving s € S. Going back to the sequence (si)ren, we have
0<(f—sp)P =|f—suP <fPeL'(p)and (f — s;)? — 0 pointwise.

Using Lebesgue’s dominated convergence Theorem 1.6.8, this gives

/ |f = selPdp =0, i, Tim [ f — sillLogu = 0.
X
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We conclude the proof by writing f € LP(u) as

f=Ref)s — (Ref)_ +i(Im f)y —i(Im f)_. (3.2.23)
Il

Remark 3.2.12. The previous proposition does not hold for p = +00 when p(X) =
+oo. For instance, the function 1 in L*°(u) cannot be approximated in L°°(u)-
norm by a function s which is 0 on the complement of a set A with finite measure:
we have
[T = slloo(uy = I[(1 = 8)Laellpoo(uy = [LacllLo =1,

since p(A°) = +o0o0 > 0. However, when p = 400, we always have the following
property.

Proposition 3.2.13. Let (X, M, 1) be a measure space where [ is a positive mea-
sure. We define

Soo = {s: X — C, measurable, s(X) finite}. (3.2.24)

The set S is dense in L™ (w). In particular, when p(X) < 400, we have Sos = S,
where S is defined by (3.2.20), and Proposition 3.2.11 holds true in that case for
p = +o0.

Proof. Let 0 < f € L*(u): we find N negligible such that f = flye is bounded
non-negative. Theorem 1.3.3 implies that there exists an increasing sequence of
simple functions (sj)ken converging uniformly towards f. Of course each sj, be-
longs to S and thus to L>°(u) and we have

17 = skl = 1F = sell i < sup | F(e) = su(a)] 0.

We conclude by decomposing f as in (3.2.23). O

3.3 Integrals depending on a parameter

Continuity

Theorem 3.3.1. Let (X, M, 1) be a measure space where p is a positive measure.
Let Y be a metric space, let yo € Y and let f : X XY — C be a mapping such
that:

(1) For ally € Y, the mapping {X - belongs to L (p).

z = flz,y)
Y — C
2) The mappin,
(2) pp g{y o oy
(3) There exists a function 0 < g € LY(u) such that, p-a.e. in x € X, for all
yeY, |f(z,y) <g(=)

) s continuous at yg, p-a.e. with respect to x.
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Then the function F defined by

Fly) = /X f(y)du(z) (33.1)

is continuous at yo. In particular, if the assumption (2) holds for all y € Y, we
find that F is continuous on Y.

Remark 3.3.2. Assumption (2) means that there exists N € M such that u(N) =0
so that for all z € N€¢, the mapping y — f(z,y) is continuous at yo. Assumption
(3) means that there exists N € M such that u(N) =0 and

Zlelie |f(z,y) [ 1ne(2) € LY (). (3.3.2)

We note also that (1) allows us to define F' by (3.3.1).

Proof. Let (yn)n>1 be a sequence in Y converging towards yo. We check

Flun) = Ploo) = [ (f(@0) = F@,0))du(a).
In(z)

Thanks to (2), the sequence (fy)n>1 converges pointwise a.e. to 0; moreover (3)
implies | f,,| < 2g, p-a.e. We can apply Lebesgue’s dominated convergence Theorem
1.7.5 entailing the sought result lim,_, oo F(yn) = F(yo)- O

When the space Y is locally compact, the domination hypothesis (3) can be
localized to any compact subset of Y.

Corollary 3.3.3. Let (X, M, u) be a measure space where p is a positive measure.
Let Y be a locally compact metric space, and let f : X xY — C such that (1)
above is satisfied, as well as (2) for all y in Y. If for any compact subset K of Y,
there exists a non-negative function g € LY(u) such that, p-a.e. with respect to
re X,
sup |f(z,y)| < gk (), (3.3.3)
yeK

then F defined by (3.3.1) is continuous on'Y .

Proof. Since Y is locally compact, it is enough to check continuity for F' restricted
to any compact set, so we can apply the previous theorem. O

Differentiability

Theorem 3.3.4. Let (X, M, 1) be a measure space where p is a positive measure.
Let'Y be an open subset of R™, and f: X XY — C be a mapping such that:

— C

X
1) Forally €Y, the mappin,
(1) y pp g{x o o)

belongs to L(p).
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(2) For all x € X, the mapping {Y - C is differentiable on'Y .

y = flzy)
(3) For any compact subset K C Y, there exists a non-negative function gx €
LY (1) such that, for all x € X,

sup |dy f(z,y)|| < g (z). (3.34)
yeEK

Then the function F defined by (3.3.1) is differentiable on'Y, dyf(-,y) € L*(p)
and

AP(w) = | d,f,y)dutz) (33.5)

X
Remark 3.3.5. The differential dy, f(x, y) is a vector in C™ (a complex-valued linear
form on R™) whose Euclidean norm is taken in (3.3.4). For that vector, to belong

to £!(u) means that each component belongs to £!(u). For all T € R™, the
mapping from X into C, defined by = + d,, f(x,y) - T belongs to £ (u): first of all,

dyf(mny) T = kEka(f(x7y+T/k) - f(337y))7

implying measurability, and also (3.3.4) gives
[ Wt Tlduta) < +oc.

Proof. Let y € Y and r > 0 such that the closed ball B(y,r) is included in Y. For
h € R™ such that ||h|| < r, we check

Fly+) = F) = [ (Fa+h) = Flo.)dn(o)
= [ [dutte. - ht cop ] duco)

where we have
lim €, ,(h) = €;,,(0) = 0. (3.3.6)

h—0

Since the function = — d, f(z,y) - h belongs to £!(u), it is true also for €, ,(h)
and we find

Fly+h) — F(y) = /X dyf(z,y) - hdpu(z) + /X oy () dpa() [ ]|

Using the mean value inequality, we get

€,y (MR < P [y f (2, y + OR)[[[[R]] + lldy f (2, y)[[[| 2]
€10,
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so that from (3.3.4)

€,y (R)] < 2 p )||dzf($72)|| < 2gx(x) € L (), (33.7)
ze€B(y,r

with K = B(y,r). Inequalities (3.3.7) and (3.3.6) allow us to use Lebesgue’s
dominated convergence theorem to show that, for any sequence (h)ren converging
to 0 in R™, we have limy_, 4o [ |€x,y(hi)|dp(z) = 0. This implies

Fly+h) — F(y) = /X dy f () - hdp(x) + ny (W]

with 0y (h) = [y €x,y(h)dp(x), and limy, o7, (h) = 0. We find thus that the map-
ping F' is differentiable at any point y € Y with dF(y)-h = [ dy f(2,y) - hdu(z),
concluding the proof. g

Remark 3.3.6. It would be harmless of course to replace [ f(x,y)du(z) by-
fX\N f(z,y)du(z) where N is negligible and thus to use a.e. assumptions. This
is in fact a consequence of Theorem 3.3.4 where X could be replaced by X\N.
However, the situation here is slightly different from the a.e. assumption in The-
orem 3.3.1: in the latter the hypothesis (3) is uniform with respect to y € Y,
as expressed by (3.3.2), whereas it is not the case for (1) when it is valid for all
yo € Y. In fact, in that case, (1) requires that for each yo € Y, there exists a
negligible set N (which could depend on yg) so that, for all x € N¢, the mapping
y — f(x,y) is continuous at yo.

Holomorphy

Theorem 3.3.7. Let (X, M, 1) be a measure space where p is a positive measure.
Let U be an open subset of C, and let f : X x U — C be a mapping satisfying the
following properties.

(1) For all z € U, the mapping {)m( belongs to L1 (u).

—
—  f(z,2)
H

(2) For all x € X, the mapping {[z] ) 18 holomorphic on U.

C
= flz,z
(3) For every compact subset K of U, there exists a non-negative function gx €

LY(p) such that for all x € X,

sup |f(2,2)] < g (2). (3.3.8)

Then the function F defined by (3.3.1) is holomorphic on U and for oll k € N, the
mapping
k

XBx»—)aZk(

z,z) €C
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belongs to L1 (n) and
ak
FO)(5) = /X 62{ (2, 2)du(z). (3.3.9)

Remark 3.3.8. It is important to note that Assumption (3.3.8) is apparently very
weak since we require only the local domination of the function itself, and not
like in (3.3.4) a control of the derivative. In fact, the holomorphy assumption and
Cauchy formula allow us to deduce from this some estimates for the derivatives.
Generally speaking, the oscillations of holomorphic functions (e.g., the values of
the derivatives) are controlled by the values of the functions. More precisely, the
topology on . (U) (holomorphic functions on the open set U) is given by the
countable family of semi-norms

sup |u(z)|, Kj; compact, such that UjenK; = U,
z€K;

which makes J#(U) a Fréchet space?.

Proof. Let zp € U and ro > 0 such that the closed ball Ky = B(zq,7¢) is included
in U. Let (2,)n>1 be a sequence in B(20,70/2)\{20} with limit 2o. With 2, =
20 + hy, let I'g be the circle with center zy and radius ry: we have, using Cauchy’s
formula

Flea+ ha) = Fleo) = [ [Fla,50 + ) = . 20)]dta)
[l e, 2

2im | Jp, € — 20 — hn

o 1 f(‘rag) 572’0
7/X2m { ) s <g—zo—hn1>d€] du(x)

:h”/x 1 [ 3 @8 1 dg] dp().

247 E—20&—20—hnp
~ ~
G (x)

We claim that for all x € X,

: _ 1 f@,8) . _0f
nEIEoo Gn(x) - 2w fi“o (f — Zo)Qdf n 0z

2A Fréchet space is a complete metric vector space where the metric is given by a countable
family of semi-norms (p;)jen (a semi-norm satisfies the properties of a norm — see (1.2.12) —
except for the separation property); the family (p;);en is assumed to be separating in the sense
that p;j(u) = 0 for all j € N implies that v = 0, and the metric is given by

dfuy = 32 2P0

Sl Hmt-0)

(z, 20). (3.3.10)
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Indeed, for £ € Ty, we have |£ — zo| = ro, |E— 20— hn| = |E— 20| = |hn| = 10— |hn| >
r0/2, which implies for all z € X,

@Ol 2@

€ = z0ll6 =20 —hn| = 15
so that for & = 2 + e,

liroe™| | f(z, 20 + r0e™)| < 1 [f(x, 20 + roe™)|
|2im|  ro|roe?® —h,| T 7 70

=Q(0) € L'([0,27]). (3.3.11)
Since for 6 € [0, 27], we have

y irge®® f(x, 2z + roew) iroe’? f(z, 2o + roew)
im =

n—too 2im roet(roe® —hy,)  2im rae2i ’

this implies from (3.3.11)

: . f(z,€)
lim Gp(z)= 1 d
WA G @) = i ]go (€ = 20)(€ — 20 — han) :
1% f(x, 20 + 10€") 0
= i . . irge’” d
nstoo 2 /0 roet?(roe? — hy,) troe

1 2m f(z, 20 + 1m0e?)

— . 0
- 2im rae2 iroe™dy
1 f@,§) . of

" 2ir 7? (€~ ™ = 0: (")

which proves Claim (3.3.10). Moreover, we have

27T7"0 2

|Gn(2)] < sup | f (2, )| < 2k, (x) € L' ().

2T To €Ty

Applying Lebesgue’s dominated convergence to the sequence G,,, we find that the
mapping = — gj; (7, z0) belongs to L' (1) and

n—-+oo

lim hy, ' (F(z0 + ha) — F(20)) = /X gﬁ (x, z0)dp(x),

for all zg € U. We get then (1), (2) for gj; as well as (3) using Cauchy’s formula.
We conclude by a trivial induction argument. O

Let us end this section with a couple of examples. In the first place, we
consider the Gamma function, defined a priori on Hy = {z € C,Rez > 0} by

“+oo
I'(z) = / t*~te tdt. (3.3.12)
0
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Thanks to Theorem 3.3.7, we prove that I' is holomorphic on Hy, and is such that
Vz € Hy, T(z+1)=2T(2), (3.3.13)

a functional equation allowing us to extend I' meromorphically to C with simple
k
poles at { —k}ren with residue (7,:!) . We note that for n € N, we have I'(n+1) = n!
as well as I'(1/2) = /.
The Zeta function is defined a priori on H; = {s € C,Res > 1} by

C(s)=>" Tj (3.3.14)

n>1

Theorem 3.3.7 implies that ¢ is holomorphic on Hy. This function can be extended
meromorphically to C with a single pole at 1 with residue 1. It can be proven also
that for Res > 1,

¢(s) = [Ta-p=)7" (3.3.15)

peEP

where P stands for the sequence of prime numbers. Most notably, the distribution
of prime numbers has an intimate connection with the location of the zeroes of
the ¢ function, as pointed out first by Riemann. In particular the Hadamard—de
la Vallée-Poussin Theorem

def X

card{p € P,p <z} = w(x) (3.3.16)

~ )
z—+oo Inx

follows from the fact that the ¢ function does not vanish on H;. The Riemann
hypothesis, a most famous unsolved mathematical problem (November 2012 speak-
ing) stated by Riemann in 1859, asserts that the non-real zeroes of the ¢ function
are located on the critical line {s € C,Res = ;}. Another important function is
the so-called function &, which is entire (i.e., holomorphic on C), defined by

£(s) = g(s)r(s/z)w*ﬂ;s(s -1), (3.3.17)

and which verifies the functional equation

&(s) =&(1—s). (3.3.18)
The Jacobi function 0j, is defined for Rez > 0 by
05(2) = e ™= (3.3.19)
neZ

Theorem 3.3.7 implies that 6 is holomorphic on Hy. The Modular Property of 65
is expressed as
0;(1/z) = 21/20,(2). (3.3.20)
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The Beta function is defined for x,y € Hy by

1
Blz,y) = / 11— 1), (3.3.21)
0

and the following formula is easily proven:
I(z)I(y)
D(z+y)
Manifold other examples of applications of Theorem 3.3.7 occur in the mathemat-
ical literature and we refer the reader to the exercises sections as well as to our

Appendix 10.5 for examples related to the Airy functions, Bessel functions, elliptic
integrals, Fresnel integrals. . .

B(z,y) = (3.3.22)

3.4 Continuous functions in L? spaces

Theorem 3.4.1. Let 1 < p < 400 and let ) be an open subset of R™. The space
C.(Q) of complex-valued continuous compactly supported functions in  is dense

in LP(Q).

Proof. From Proposition 3.2.11, we know the density of S (see (3.2.20)) in LP(2).
Thus we need only to consider a Borel set A C 2 with finite measure and prove
that we can approximate 14 in LP-norm by a function of C.(2).

Let € > 0 be given. From Theorem 2.2.14, we find a closed set F' and an open
set V' of ) such that

FCcACV, M(V\F)<eP/2r, (3.4.1)
which implies
/ 14— 1y [PdA, = / 19, ydh = Am(V\A) < /27, (3.4.2)
Q Q
Moreover we have

Am (V) = A (A) + A (VAA) < A (A) + A (VAF) < A (A) + €7/2P < o0,
Using (2.4.3) in the proof of Theorem 2.4.2, we find x € C.(V;[0,1]) such that

AnV) = /20 < [ <0nV) = sp [ xdh < v,
Q x€C(V;[0,1]) JQ
so that
/|1V_X|mm:/ \1—X\pd)\m§/(1—X)d)\m:)\m(V)—/Xd)\m<ep/2p.
Q \% 1% 1%

(3.4.3)
We get then from (3.4.2), (3.4.3) the inequality [[14 — x|[zr(q) < € and the result.
O
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Remark 3.4.2. Of course Theorem 3.4.1 does not hold for p = +oc0 since for all
X € Cc(Q), [[1a — x||z=() = 1. On the other hand, thanks to Proposition 3.2.13,
the space S is dense in L>(2).

Theorem 3.4.3. Let 1 < p < 400 and let  be an open set of R™. The space
C°(Q) is dense in LP ().

Proof. Let x be in Cc(Q) and py € C°(R%R4.), supp po = B(0,1), [ga po(z)da =
1 (we may for instance consider the function p of Exercise 2.8.6 divided by its
integral). For € > 0, we define

@ = [ ple=pe)e )y (3.4.4)
Rm,
Theorem 3.3.4 implies that x. is a C'*° function on R™. Moreover we have

supp xe C suppx +€B(0,1) C Q for € small enough (cf. (2.1.4)).

Using a dilation-translation change of coordinates in this integral of a compactly
supported continuous function (see Lemma 2.4.5), we get

(@) = x(@) = [ o) (xta + €2) = x(a)) s
and since x is uniformly continuous we find

IXe(z) = x(2)] < sup  |x(z1) — x(22)] = 0(e) — O,

|$1_$2|S5 e—0
so that [ga [xe(®) — x(2)[Pdz < 6(e)P Ay, (supp x + €B(0,1)) = 0. O
e—

Remark 3.4.4. For 1 < p < 400, the space LP(Q) is thus the completion of C.(2)
for the norm L?. We could have defined L?(2) using that completion argument, but
we would have to manipulate classes of Cauchy sequences of continuous functions
and this would be inelegant as well as complicated. Instead, we were able to realize
LP as a space of functions modulo the equality a.e. and it is much simpler this
way. We shall see in Exercise 3.7.26 that the completion of C.(R™) for the L
norm is not L>°(R™) but C(g)(R™), the space of continuous functions going to 0
at infinity, i.e., continuous functions f on R™ such that

lim {sup \f(m)\} = 0.

R=too Ya|>R

We shall end this chapter with an important consequence of Theorem 3.4.3.

Lemma 3.4.5 (Riemann-Lebesgue Lemma). Let u be in L'(R™). We define
u(g) = / e 28y (1) dx (Fourier transform of u). (3.4.5)

Then we have w(§) — 0. Moreover the function G is uniformly continuous

[§]—o0
on R™.
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Proof. We note first that (3.4.5) is meaningful as the integral of an L' function
and we have also
sup [w()] < [lul[zr®m)- (3.4.6)
£eR™
Let p € C*(R™). With o = (1, ..., ;) € N™ we define
1 0

D® =D .. D D=
! 7 2im Oy’

m

§r =& 60 (3.4.7)

Theorem 3.3.4 implies the identities
§9(8) = D1p(§), Dp(§) =£7%(), (3.4.8)
entailing (1 + [£[*)@(&) = Fourier(go + 2 <i<m D?cp). We find thus
L+ PO <le+ > Diglliem,
1<j<m

which implies lim¢|_, 1o $(£) = 0. For u € L*(R™), we have

()] < (1w —9)(©)] +13()] < [[u—@llam) +1BE)],
so that for all ¢ € C(R™),

limsup [@(¢)] < |u = ¢l @y = limsup [@(¢)] < inf flu— ]| am) = 0.
[€] =00 |€]—o00 peC(R™)

We have also U(¢ + 1) — (&) = g €2 (e 2™ — 1)u(x)dz, so that

g+ - ) < [ fu(w)][e " - 1 da,

<2

m

and Lebesgue’s dominated convergence theorem shows that, for all £ € R™,
lim [@(€ + 1) — A(E)] =0,

proving continuity, which is also a consequence of Theorem 3.3.1. We have also for
R>1,|n <1,

[u(€ +n) —u)] < sup [u(§+n) —u(€)|+2 sup |a()]
EI<R l€> R—1

so that for 0 < e < 1, if w, is a modulus of continuity® of the continuous function
@ on the compact set {|z| < p}

sup  [u(§ +n) —a(§)| < wr(e) +2 sup |a(f)],
|n|<e E€R™ €1>R—1

3For a continuous function v defined on a compact subset K of R™, the modulus of continuity
w is defined on R4 by w(p) = sup 4 yex |v(z) — v(y)|. We have lim,—o, w(p) = 0.
lz—y|<p
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proving that the lim sup of the lhs when ¢ goes to 0 is smaller than

2 sup |4(§)|, forall R>1.
[§]>2R-1

Since that quantity is already proven to go to 0 when R goes to +00, we obtain
the uniform continuity of 4. O

The next result shows that, on a measure space X with finite measure, point-
wise convergence of a sequence of (measurable) functions induces uniform conver-
gence on a set with measure arbitrarily close to u(X).

Theorem 3.4.6 (Egoroft’s theorem). Let (X, M,u) be a measure space where p
is a positive measure such that pu(X) < 4oo. Let f, : X — C be a sequence
of measurable functions converging pointwise towards a function f. Then for any
e > 0, there exists Ac € M with u(A:) < € and such that the sequence (fp)nen
converges uniformly on X\ A..

Proof. For k > 1,n, integers, we define
EF =npsnf{z € X,|fp(z) — f(2)] < 1/k}.

Claim. For all k > 1, X = UpenEF. In fact, for any = € X, we have lim,, f,,(z) =
f(z) so that for all k > 1, there exists an integer n such that for all p > n,

[fp(x) = f(2)| < 1/F,

i.e., z € EF proving the claim. We note also that E¥ C E’“Jrl and from Proposition
1.4.4(2), this gives lim,, u(E¥) = p(X). Since M(X) +o0, for all € > 0 and for
all £ > 1, there exists Nj such that

Vn > Ne, p(E) 2 p(X) - 27t

We may thus assume that there exists a sequence (ny)r>1 strictly increasing such
that
W(EE,) > p(xX) — 27k,

Indeed, we may define ny = k — 1 + max;<;<x IN;: we have then

Nk<nk—k—1—|— maxN <k—-14+ max N<k+ max N = ng41.
1<j<k+ 1<j<k+1

Let € > 0 be given. We define F' = Up>1 F), with Fj, = (E,’ik)c We have
p(Fy) = p(X) — u(B},) < e27*
and thus p(F) < 37 <, pu(Fy) < e. With B = F° and thus u(B¢) < €, we get
B = Ng>1F¢ = > EF

providing supe s |fu(z) — £(2)| < ubsepy |fal@)— F@)| < 1/k i 0> ng. The
L
sequence (Sup,ep |fn(z) — f(x)|)nen is thus converging with limit 0. O
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Remark 3.4.7. The assumption u(X) < 400 is not dispensable. We consider the
Lebesgue measure A\; on R and the sequence converging pointwise to 0 given by
fn(w) = 19 (2 —n). If A is measurable with the Lebesgue measure < 1/2 and f,
converges uniformly on A¢, we must have

0 = lim(sup 1jgqj(z —n))
nozeAe

which implies A° N [n,n+ 1] = @ for n > N, and thus
AD[n,n+1 = A(A) > 1, contradicting the assumption.

Theorem 3.4.8 (Lusin’s theorem). Let (X,d) be a locally compact metric space and
let u be a Borel measure on X such that Properties (1),(2),(3) in Theorem 2.2.14
are satisfied (this includes the case of the Lebesque measure on R™).

Let f : X — C be a measurable function and let A be a measurable set such
that p(A) < 400 and f wvanishes on A°. Let € > 0 be given; then there exists
¢ € Ce(X;C) such that

p({z € X, f(z) # ¢(z)}) <e. (3.4.9)

Proof. We assume first that 0 < f < 1 and A is compact. We define si by (1.3.1)
and we have sop = 0, 2E(28~1f) < E(2¥f) <1+ 2E(2*~1f) so that for k > 1,

2 (s — si1) = B2Ff) = 2B(21 ) € {0,1} = 14,

and from Theorem 1.3.3, f = >, 27%1,4,. This implies in particular that
Up>1Ar C A, since z € Up>1 A = f(x) > 0 = z ¢ A°. For each Aj and
er > 0 we can find

Fy, closed C Ay, C Vi open, u(Vi\Fk) < €.

We may assume that A compact C Vj open C Vy compact. Note that Fj is com-
pact as a closed subset of the compact set A, so that we can find ¢ € C.(Vi;[0,1])
with ¢, = 1 on F}; we may also assume that Vi, C Vj since Ay C A C V. We set
now W = Ug>1(Vi\Fi), and choosing e; = €2~% for some positive number ¢, we
have

(W) < Z er < e.

k>1
We define ¢ =37, -, 27F ¢y, which belongs to Cy,(X) and we have
$(x) = f(x) =Y 27" (pulz) = La,(2)) = (¢ — f)lwe =0,

k‘Zl ~
=0 on F, UV

proving the result in that case and also in the case where f is bounded measurable
and A compact.
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Case f bounded and p(A) < 4+o0o. The inner regularity of p implies that for any
e >0, we can find K compact C A such that

u(A) —e < u(K) < p(A) = p(A\K) <e

We can find x € C.(X) equal to 1 on K, supported in a neighborhood V' of K
such that u(V\K) < € and V is compact. The function xf vanishes on (V)¢ and
we may apply the previous result. Since Yy = 1 on K, we obtain the result in that
case.

General case. We consider B, = {z € X,|f(z)] > n} C A and we note that
Np By, = (. This implies from Proposition 1.4.4(3) that lim,, u(B,) = 0. Since f
coincides with the bounded function 1p¢ f, except on B,,, whose measure goes to
0, this gives the result. g

3.5 On various notions of convergence

We collect in this section the various properties linked to the several convergence
modes met in the text.

Definition 3.5.1. Let (X, M, 1) be a measure space where p is a positive measure
and let (f,)nen be a sequence of measurable functions from X into C.

(1) The sequence (fy)nen converges almost everywhere towards f if there exists
N € M, such that p(N) =0 and

Vo € N€, liygnfn(m) = f(z).

(2) The sequence (f)nen converges in measure towards f if

Ve > 0, lirrlnu({x € X, |fulx) = f(z)| > €}) =

(3) The sequence (fn)nen converges in the space L'(u) towards f € L(u) if
11717:[1 ||fn - fHLl(;L) =0

(4) The sequence (fn)nen satisfies the dominated convergence criterion if (1)
holds and if g(z) = sup,,cy | fn(2)| is such that g € L' (u).

Theorem 3.5.2. Let (X, M, u) be a measure space where u is a positive measure
and let (fn)nen be a sequence of measurable functions from X into C. With the
notation of Definition 3.5.1, we have the following properties.

(i) (4) = )N (1),

(ii) 3) = (2).
(iii) (2) does not imply (1) in general, but it is true for a subsequence.
(iv) (3) does not imply (1) in general, but it is true for a subsequence.
(v) (1) = (2) if w(X) < 400 and not in general without this condition.
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Proof. Assertion (i) is the Lebesgue dominated convergence Theorem 1.7.5. State-
ment (ii) follows from the inequality

1
plr € X,1fu@) = @) > ) < [ UUfa= fld = = Tl

The first part of (iii) follows from the example in Exercise 2.8.23 in which is
displayed a sequence (f,) of non-negative measurable functions converging in
L'([0,1]) towards 0 (thus in measure from the already proven (ii)) such that se-
quence (fn(z))nen diverges for every x € [0,1]. Let us prove the second part of
(iii): let (f,) be a sequence converging to f in measure. This implies that

Vk > 0,3N, € N,vn > Ny, p({|fn — fI >27%}) <278

Let us assume that we have found Ny < Ny < --- < N; such that the above
property is true for £k = 0,...,[l. Then using that

timp({|f — f| > 27713) =0,

we may find Niy1 > N; such that p({|fn— f| > 27!71}) <277 for n > Nijq. Let
us consider the subsequence (fx, Jren. We define Ey, = {x, |fn, (z)— f(z)| > 27}
We know that u(Ex) < 27% and |f(z) — fn,(z)| < 27F if x ¢ Ej. Defining

F,, = Ugsm Ey we find that p(F,,) < 27™ and moreover

Vo€ B vk >m, fa(2) = fo)] <278 = Ve e L, lim fy, (@) = f(2).
—+o0

The set F' = Ny,>0F), has measure 0 and for each x € F'° = Up,>oF),, we have
limg 400 v, () = f(z), proving the sought result. The first part of statement
(iv) follows from Exercise 2.8.23 and the second part from Lemma 3.2.9. The first
part of statement (v) follows from (1) in Exercise 3.7.12 and the second part from

Remark 3.7.13. O

Theorem 3.5.3. Let (X, M, u) be a measure space where u is a positive measure
and let (fn)nen be a sequence of measurable functions from X into C. With the
notation of Definition 3.5.1, we have the following properties.

(j) Forp € [1,+00), (1) and limy, || fullzr(u) = | fllzr(u) imply convergence in the
space LP(u).

(33) Local convergence in measure (see (2.8.14)) and domination (sup,, |fn(x)| €

LY (p)) imply (3).

Proof. Statement (j) is Theorem 3.2.10. Statement (jj) follows from Ex. 2.8.14.
g
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3.6 Notes

Much more on the topic of convexity can be obtained from L. Hérmander’s mono-
graph, Notions of Convexity ([33]).

Let us follow alphabetically the names of mathematicians encountered in the
text.

George AIRY (1801-1892) was an English mathematician and astronomer. The
intensity of light near a caustic was the initial reason for his invention of the
now called Airy function.

Friedrich BESSEL (1784-1846) was a German mathematician, astronomer.
Dmitri EGOROFF (1869-1931) was a Russian mathematician.

Augustin FRESNEL (1788-1827) was a French engineer who contributed signifi-
cantly to the establishment of the theory of wave optics.

Jacques HADAMARD (1865-1963) was a French mathematician of extraordinary
breadth and depth. He proved the Prime Number Theory at the same time
as Charles DE LA VALLEE-POUSSIN (1866-1962).

Otto HOLDER (1859-1937), a German mathematician who proved his inequality
in 1884.

Carl Gustav JACOBI (1804-1851) was a German mathematician, creator of the
theory of elliptic functions.

Johan JENSEN (1859-1925) was a Danish mathematician, who proved in 1906 the
fundamental inequality bearing his name.

Nikolai LusIN (1883-1950) was a Russian mathematician, a Ph.D. student of
Dmitri Egoroff.

Hermann MINKOWSKI (1864-1909) was a professor at the university of Géttingen.
He also taught in Ziirich where Albert Einstein attended his lectures.

THALES OF MILETUS lived from 624 BC to 547 BC. Miletus is a city in Asia
Minor (now located in Turkey). Thales seems to be the first known Greek
philosopher as well as a scientist, mathematician and a professional engineer.
Thales’ theorem is now in fact one of the axioms in the definition of vector
spaces:

Az+y)=X-z+A-y

where )\ is a scalar (e.g., a real number for real vector spaces) and z,y are
vectors.
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3.7 Exercises

Exercise 3.7.1. Let (a;)1<j<n and (0j)i<j<n be as in Lemma 3.1.5. Prove the
harmonic mean — geometric mean — arithmetic mean inequality

-1
(Z "jaj_l) < II a7 < > a5,

1<j<n 1<j<n 1<j<n
and also that, if any of the inequalities above is an equality, we have a1 = -+ = ay,.

Answer. The second inequality is proven in Lemma 3.1.5; also proven there is the
fact that the equality holds iff all a; are equal. With b; = a;l, the first inequality
is equivalent to the second one, completing the answer.

N.B. The above inequality will be called HGA inequality and the second one GA.

Exercise 3.7.2 (Logarithmic convexity). Let f : I — R be a function defined on
an interval I of the real line. The function f is said to be log-conver when In f is
a convex function.

(1) Prove that a log-conver function is conver.

(2) Give an example of a convex function valued in R which is not log-conver.
(3) Prowve that the T function is log-convexr on R.

(4) Prove that the Gamma function is the only positive valued function f defined
on RY such that

. f1)=1,
e V>0, fz+1)=uaf(x),

e f is log-conver.

Answer. (1) In the case where f is twice differentiable and log-convex, we have
with ¢ convex twice differentiable

f=et, fl=e, fr=e?(¢%+¢") >0, (3.7.1)

implying convexity for f. Without the assumption of differentiability, we find with
xo,x1 € 1,0 € (0,1), 29 = (1 — O)xg + b1,
f(zg) = e®(@0) < (1=0)p(z0)+0¢(z1) < (1-— 9)605(960) + 96<15(7«‘1)7
=< =<
GA inequality

proving convexity for f.
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(2) The function R 3 z — 22 4+ 1 € R* is obviously convex but not log-convex.
With ¢(z) = In(1 + 2?), we have

2z C2(1+2?) — 2222 2(1—a?)

V@)= ¥'@= (1+22)2  (1+22)2

and since ¢” takes negative values, Proposition 3.1.2(2) implies that ¢ is not
convex.
(3, 4) See Lemmas 10.5.4 and 10.5.5 in Section 10.5.

Exercise 3.7.3 (Hermite-Hadamard inequality). Let a < b € R and let ¢ : [a,b] —
R be a convex function. Prove that

b
P (a;rb) < bia/a P(t)dt < ¢(a);¢(b). (3.7.2)

Answer. Using an affine rescaling, we may assume that [a,b] = [0, 1]. We have for
6 e0,1/2],

o(2) =) (a) =ar(a0) v e (o00)

so that, integrating for 6 € [0,1/2], we get

1 /1 1 Y2 21 11
< _
2¢(2)_2/0 ¢(2 9)d9+/0 2¢<2+9)d0
1 172 1 1/
- o)t + . [ o(t)dt = / o(t)dt,
2 Jo 2 )12 2 Jo
which is the first inequality. On the other hand, for ¢ € [0, 1], we have
o(t) = ¢((1 =)0 +11) < (1 = 1)p(0) + (1),
so that, integrating for ¢ € [0, 1], we get

8(0) + (1)

t21:

[ et < “Pa-op+

Exercise 3.7.4 (Karamata’s inequality). Let ¢ : I — R be a convex function de-
fined on an interval of the real line. Prove that for (xj)i1<j<n, (Yj)1<j<n decreasing
finite sequences in I such that

for all i with 1 <i <n, ZijZQC]y Zyj: Z%ﬁ

1<j<i 1<5<i 1<j<n 1<j<n

we have Zlgjgn qzﬁ(y]) < Z1§j§n (b(mj)
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Answer. With a1 < ay < as < a4 and [ij] = *“)7%)  we have from the

aj;—a;

convexity of ¢
[12] < [13] < [14] < [24] < [34].

This implies that for " < 2’,y"” < 3’, we have, assuming all four points distinct,

oy") — ") _ oy') — o(a')

y// — ! y/ — (373>
since one of the following situations occurs:
o ' < <y"” <y sothat (3.7.3) means [13] < [24],
oz <y" <z’ <y sothat (3.7.3) means [12] < [34],
oz <y" <y <2 sothat (3.7.3) means [12] < [34],
o ' <1 <y <1’ sothat (3.7.3) means [12] < [34],
o y' <y <" < sothat (3.7.3) means [13] < [24].

Assuming all the points are distinct, this proves that

oor = PWir1) = O(xivr) - (yi) — d(zi)
o Yirl = Tiv1 Yi — Ti

and thus, with Y; = ng yi, Xi = quxj

Do (d@) =) = Y oilwi—yi) = Y 0i(Xi— Xio1 —Yi+ Vi)

1<i<n 1<i<n 1<i<n
= Y a(Xi-Y) Z GZ+1 (X; — ;)
1<i<n 0<i<n
= > (Uz‘—Ui+1)(Xi—Yi)+0n(Xn—Yn)
1<i<n—1
= Z (i —0iy1)(X; = Yi) > 0.
1<i<n—1

We can get rid of the assumption that all points are distinct since we have only
used the expression o;(z; — y;) = ¢(x;) — ¢(y;), which is 0 whenever z; = y;.

Exercise 3.7.5. Let ¢ : I — R be a convex function defined on an interval I of R.
Let [a,b] C I and a < x1 < x93 < b. Show that

W(mi _ f(a) (x2 —a) + pla) < p(r2) < @(b) — (b— mQ)Lp(bl)) i} 51(%1)'

Prove that o is continuous on I. Give an example of a convex function defined on
[0,1] and continuous only on (0,1).
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Answer. Continuity of ¢ is proven in Proposition 3.1.2. On the other hand the

function
1 ifze{0,1},
wlw) = {0 if 7 €]0, 1],

is convex on [0, 1]: Property (3.1.1) is verified for 6 €]0,1[if 0 < o < 1 < 1 since
xg €]0,1[; also (3.1.1) holds for § € {0,1} and for zg = 1.
Exercise 3.7.6. Let u,v be positive log-convexr functions defined on some interval
I of the real line. Prove that u + v is log-convex.
Answer. We calculate for 8 € [0,1], 29,21 € I, setting u = e®,v = ¥, with ¢,
convex on I,
In(u((1 — 0)zo + O21) + v((1 — O)zo + 021))
= 1n(e¢((1*9)1?0+91’1) + ew((1*9)10+911))
< ln(6(1—9)¢(wo)+9¢(w1) + 6(1—9)1/}(740)-5-91&(741)).

With ag = u(20)' % a1 = u(z1)?, by = v(20)' % b1 = v(x1)? we have from
Holder’s inequality,

IN

agar + boby < (ay’ " + by N0 (0 4 07/%)0,
so that

In (=000 H68(m1) | ((1-6)0(z0) +0%(z1))

IN

(1 -0 n(ay ™" + 0/ ") + 0 (ay”’ + ;%)
(1= 0)In(u(zo) + v(z0)) + Oln(u(z1) + v(z1)).

We have thus proven

In(u((1 — 0)zo + O21) + v((1 — )20 + 021))
< (1= 0)In(u(wo) + v(zo)) + OIn(u(z1) + v(z1)),

which is the log-convexity of u + v.

Exercise 3.7.7. Determine the set of real numbers a, 3,7 such that

sint

ELMRy), valt) = 5y,

eL'(Ry), w,(t) =

Answer. o > —1: if that condition is fulfilled, u,, belongs to L*(R) and conversely
if ug € L'(Ry), then uy € L (Ry) and thus ¢t € L _(Ry), implying o > —1.

B < 2: if that condition is fulfilled, vz belongs to L'(R.) since vg €
LY([r,+00)) for all B € R, all r > 0 and vg(t) ~ t'=# in a neighborhood of
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0. Conversely, if vs € L'(R4), then vg € LL _(Ry) and thus t'=% € LL (R,),
implying 1 — 8 > —1, ie., < 2.

v < 1: using the parity of w, setting ¢ = 1/x, we find that w, € L*([-1,1])
is equivalent to 7" 2?Inz € L'([1,+00)) which is equivalent to v — 2 < —1, i.e.,
v <1

Exercise 3.7.8.

(1) Let E be a normed vector space. Prove that E is complete iff the normally
convergent series are convergent (a series . u, is normally convergent when-
ever Y ||un|| < +00).

(2) Let (X, M, ) be a measure space where u is a positive measure and let Y uy,
be a normally convergent series in L'(u). Prove that > uy,(x) converges -
a.e.

(3) Let (fn)n>1 be a sequence in L'(p) such that Y, <1 || fas1 — fullLr(u) < +00.
Prove that the sequence (f,) converges in L' (1) and also pi-a.e. Compare this
with Ezercise 2.8.22.

Answer. (1) Let us assume first that E is complete; let Y u, be a normally
convergent series. We define S, = > -, ~,, ux, and we have for p > 0,

1Susp = Sull =11 D wll < D0 lluel < D7 Nurll = ene

n<k<n+p n<k<n+p n<k

Since the numerical series > |lug|| converges, we have lim, e, = 0 and (S,) is
a Cauchy sequence, thus converges. Conversely, let E be a normed vector space
in which normally convergent series are convergent. Let (un)nen be a Cauchy
sequence. For all € > 0, there exists N, such that, for n > N.,m > N,

lun — uml < e.
Using that property, we may find n; € N such that, for all p > 0,
[ty 4p — Un,y || < 1/2.
Also, we may find ny > n; € N such that for all p > 0,
[tngp — wna|l < 1/22,

and more generally, we may construct a strictly increasing sequence of integers
ny < ng < --- < ny such that for all p > 0,

||unj+l7 — Uny ” < 27]"

The series » -, (un,,, — Un;) is normally convergent, thus converges. Since

Z (u’ﬂj+1 - u’ﬂj) = Up; — Uny,

1<5<l
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the sequence (un, )ien is convergent. As a subsequence of a Cauchy sequence, this
implies that (up)nen is indeed convergent: let w be the limit of (uy, )ien. We have

[tn — wl| < [Jun = wn,[| + [Jtin, — w].
Let € > 0 be given and n > N,. Since n; goes to infinity with [, we get

|, — wl|| < limsup ||ty — wp, || + limsup ||up, —w|| < e+0=F¢,
l—+oc0 l— 400

entailing convergence for the sequence (uy,).
(2) Since L'(u) is complete, the series Y u, converges in L!(u). Moreover, since

S [ funldn < ¢,
X

neN

Corollary 1.6.2 implies [ (ZneN |un|)du = > nen Jx [tunldp < oo, proving that
> nen |un| belongs to L'(p). As a result, that function is p-a.e. finite, ie., for
N € M, with u(N) = 0,

Vo € N ) Jun(@)] < 400,
neN

so that for all € N€, the series ), un(x) converges.
N.B. Let (fn)nen be a convergent sequence in L!(u1); we may find a subsequence
converging p-a.e. (Lemma 3.2.9). Extracting a subsequence cannot be dispensed
with, as shown by Exercise 2.8.23. Moreover if lim,, f,, = f in L' and (f,,) converges
u-a.e. towards g, then g = f p-a.e.: for e > 0,n € N,
p({z, | f (@) — g(x)] = €})
< pu({z | f(2) = fu(@)] = €/2}) + p({z, |9(z) = fal2)] = €/2}),

so that
w({a, £ () - g(@)] > e}) < 2! /X 1 = Fuldp + u({z, |g(@) — fu(@)] > ¢/2}),

proving

p({z, | f(x) — g(z)] > €}) < limnsupu({w, lg(z) = fu(x)] > €/2}) =0,  qed.

(3) The series >, (fk — fr—1) is normally convergent thus convergent in L*
from (1). Since
Su=Y_ (fx=fs-1) = fn— fo,
1<k<n
the sequence (f,) converges in L'. Moreover from(2), >, (fx(z) — fr—1(z)) con-
verges p-a.e., so that (fx(z)) converges u-a.e.
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N.B. Convergence pi-a.e. does not imply convergence in L' as shown by Exercise
2.8.22. See however Exercises 2.8.15 and 2.8.14 for the weak notion of conver-
gence in measure, weaker than p-a.e. convergence, which along with a domination
assumption, implies convergence in L.

Exercise 3.7.9. Let (X, M, ) be a measure space where u is a positive measure.
(X, M, 1) is said to be o-finite whenever there exists a sequence (X, )nen of ele-
ments of M such that for all n, p(X,) < +o0o0 and X = UpenX, (see Ezercise
2.8.14). Show that (X, M, u) is o-finite iff there exists f € L(n) such that for all
zeX, f(z)>0.

Answer. We suppose first that (X, M, p) is o-finite. We consider

_ 1x, (x)
flz) = % 2 () £ 1) (3.7.4)

For all z € X, we have f(x) > 0 (since z belongs to one X,,) and

#(Xn)
/X [fldp < () +1) <2

neN

Conversely, if there exists f € £1(u) such that for all x € X, f(x) > 0, we define
forn € N,

Xp={2zeX, f(z)>1/(n+1)}.
We have X = UpenX, since for x € X, f(x) > 0, so that f(xz) > 1/(n + 1) for
n > E(1/f(z)). On the other hand since f is positive and belongs to £*(y),

,u(Xn>S/X(n—kl)fdu:(n—&-l)/xfdu<+oo.

Exercise 3.7.10. Let (X, M, 1) be a measure space where p is a positive measure.
Let f: X — C be a measurable function such that p({z € X, f(x) # 0}) > 0. For
p € [1,+00), we define

so(p):/x\fl”du and J ={p € [1,+00),p(p) < +o0}.

(1) Letpo <p1 € J. With 0 € [0,1] and pg = (1 — 0)po + p1, show that pg € J
(hint: use Holder’s inequality).

(2) Prowve that ¢ is positive on J and In g is convex on J.

(3) We assume that there exists ro € [1,+00)such that f € L™ (u) N L™ (u).
Prove that f € LP(u) for p € [ro, +00]. Show that

m || flloegn = 1l Lo ()

p——+o00
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(4) We assume that there exists ro € [1,4+00) such that f € LP(u) for p €
[ro, +00). Show that if f ¢ L>(u) we have

lim ||f||Lp(M) = +o00.

p——+oo

Answer. The assumption p({|f| > 0}) > 0 implies ¢(p) > 0 for all p > 1 (p(p) =0
would imply f =0, p-a.e.). For 6 € (0,1), using Holder’s inequality, we have

1
c€L1-9 eLé

PR )
0 < lpo) = /X FP0D | g

1-6 0
s( / f|”°du) ( / |fp1du> = o(po) oo,
X X
proving (1), (2).

(3 We have |f] < |fllz= p-aue. so that [y |[fPdu < [ |fIodull 5207 < +oo
for p > ro and thus

1 1 1-"0
0<ep)r <o)l fllp=" -2 Ifllze-
p——+0o0

We have also || f||r= > 0 (otherwise f = 0 p-a.e.). Let € such that 0 < € < || f]|po;
we note that

voo> [ lianz [ P = (1 — ) ({11 > 1]~ — b),
X IF1=1fll oo —e

entailing

>0

P07 2 W({If1 > 1l = )" 1w = &) =2 I o = .

Finally, we obtain lim, 1o || f||zr = || f||L~ since

Ve >0, |[flle~ —e < liminf [ fll 2o < limsup |[f]le < [[f]l
P
(4) Since f ¢ L™, for all n € N, pu({|f| > n}) > 0 and thus

#le) 2 /m> P = nPu({1f] > n}) = [ flle = p({1f] > n})/"n,

which implies Vn € N, liminf, 4 || fllzr > n, and thus lim,_, o || f||zr = +o0.

Exercise 3.7.11. Let (X, M, ) be a probability space. Let f,g be measurable func-
tions from X into ]0,+00) such that for all x € X, f(z)g(x) > 1. Show that

Ix fdp [y gdp > 1.

Answer. We have 1 = pu(X) < [y f1/%¢"2dp < ([ fdu)l/2 (Jx gdu)l/g.
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Exercise 3.7.12. Let (X, M, u) be a probability space. Let (fn)nen be a sequence
of measurable functions from X into R. Let f : X — R be a measurable function.
The sequence (fn)nen is said to converge in measure* towards f if for all € > 0,

lim pu({| fn — f1 > €}) = 0.

(1) Show that, if f, converges towards f p-a.e., then f, converges towards f in
measure.

(2) Letp € [1,+00] and fn, f € LP(u) such that f, converges towards f in LP(u).
Show that f, converges towards f in measure.

Answer. (1) If (f,) converges towards f p-a.e., there exists N € M such that
w(N) = 0 and Vo € N lim,— 100 |fn(z) — f(z)] = 0. As a result for € > 0,
Lebesgue’s dominated convergence implies

lim pu({|fn = f| > €}) = li}}l/X Lt —fl>eydp =0,

since 14|, —f|>e} (7) = 0 when | f,(2) — f(x)| < € and thus the sequence 15, _ f|>e}
converges towards 0 p-a.e. and is bounded above by 1, which is in L' since y is a
probability.

(2) If p < +00 and € > 0, we have

p({lfo = f1>€}) = /X L fu=s1>erdp
< [ U= frau == £ 0
If p = 400, we note that for a > 0,

gl o<y < & = u({lg] > a}) =0.
As a result if lim,, || f, — f[/zoc(u) = 0 and € > 0, we have

for n > N, || fn = fllpeequ) < €

and thus p({|f,,— f| > €}) = 0. The sequence (M({\fn*f\ > e})) N is stationary

ne
equal to 0 for n > N..
N.B. Let (X, M, u) be a measure space where p is a positive measure. Let 1 <
p < 400, and let (f,)nen be a sequence converging towards f in LP(u): then it
converges as well in measure, as proven by the previous inequalities and there is
no need here to assume p(X) < +oo0.

4See also Exercises 2.8.15 and 2.8.14.
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Remark 3.7.13. On the contrary, the assumption p(X) < +oo cannot be dispensed
with for (1) since for instance the sequence f,, defined on R by f,,(x) = 7119 n2)(z)
goes to 0 pointwise although

pw({|fa()] > €}) = u({n® > 2 > ne}) =n® - ne —— +00.

We may note that this sequence belongs to N,>1 LP(R), without converging in any
LP since it would contradict (2).

Exercise 3.7.14. Let (X, M, 1) be a probability space and let f € L (u) be different
from the zero function. We set an = || |7, Prove that ani1/an tends towards

Ifllzoeuy (hint: use Ezercise 3.7.10).
Answer. We note first that 0 < «,, < +00 since on the one hand
an <[ fI e oy (X)) = ([ fIl o0 () < +00,
and on the other hand «,, = 0 would imply f = 0 p-a.e. and thus f = 0in L*(u).

For n € N, we have

i1 = /X ™ dp < /X g = 1y

and thus using Jensen’s inequality (Theorem 3.1.3), we get

1+ n Ea ny "t
o = ([ 1srdn) "< [ 0AM " dn = s < Ul on
X X

so that . .
n n+
Hf”L”(y) =oah < < Ilf”Loo(l_L)

Using Exercise 3.7.10 (3), we get limy, 4 o0 || fl| () = || fll (), and the previous
inequalities imply the result.

N.B. The same statement is true for a measure space (X, M,u) where p is a
positive measure and f such that

0# f € NMp>1LP ().

In fact, we have as above a1 < ay| flle(,) and

n ne1 | fldp
X X LY (u)

Using Jensen’s inequality, we obtain with the probability measure dv =

e UG () <1 [ e

=l [ 1 = ol G

|fldr
Il Ly’
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so that

1

n— 'n.i 771,17 An41
(o)1 F i = o I < < 1 e

n

Using Exercise 3.7.10 (3), we get limy, 4 o0 || fl| 27 (1) = || fll o(n), and the previous
inequalities imply the result.

Exercise 3.7.15. Let p € [1,+o0o[ and h € R For u € LP(RY), we define
(thu)(z) = u(x — h). Show that ||thul|Lr = ||ul|Lr and

lim ||7hu — ul|Le = 0.
h—0

Answer. The equality of LP norms is due to the translation invariance of Lebesgue’s
measure. Let ¢ € C?(R?). Considering the compact set K = {z + t} wesupp o, |t <15
and |h| <1, we have

ITne = ol = / p(z = h) — p()[Pdz < Aa(K) sup |p(x — h) —p(z)|” — 0,
Rd r€K h—0
from the uniform continuity of ¢. This gives
ITnu—ullr < Thu—Tnelle+lITe—@llLe+llo—ullLr = IThe—@llLr+2]lo—ul| Lr,

so that for all functions ¢ € C?(R?),

limsup ||mpu — ullLr < 2| — ul|Le.
h—0

We get limsupy, o [|Thu — ul|zr < 2inf,ccogay I — ullzr = 0, since C2(R?) is
dense in LP(RY) for all p € [1, +o0].

Exercise 3.7.16. Find the values of p € [1,+00] for which the following functions

are in LP(R1): fi(t) = 1/(1+1), fa(t) = 1/(VH(L1 +1)), f3(t) = 1/(Vt(Int)* + 1),
fa(t) =t~ 2sin(t~1).

Answer. We have the following equivalences, justified below:

+oo » +o0 dt
t)|Pdt = <+ —= 1 <p,
|inwra= [ < p
/+<><> | fa(t)[Pdt /+OO dt <+ — fop<
= OO
o 7 o tP/2(14t)p g ~P=%
400 » +o0 dt
t)|Pdt = < 400 —= 2 <p,
Jsra= [ ey <»

oo 90 | gin(t=1)|? 2
P —
/o a(8)] dt—/o e <o = l<p<2



166 Chapter 3. Spaces of Integrable Functions

We note that for fs, the square of the L? norm is bounded above by

/+oo dt /+oo L
e+ =e+ s %ds < 4o0.
e t(h’l t)4 1

Since t#/2(Int)?? > 1 for t > e, the pth power of the LP norm of f3 for 1 < p < 2
is bounded below by

>0

oo dt too T
27P =27F s(1=2)572Pds = 400.
/e tp/Q(h’l t)2p /1 e S S —+00

Moreover we have

+oo : -1 +00 | o2

t—hp P
sty ISt 4 < oo
0 tr/2 0 5

if 2 -1 > 1, 321’ -2 > —1, ie, if g < p < 2. Moreover if p = 2, the same

computation gives for € > 0,

671 . 1 571 .92 671 .2
=P
/ | sin(¢1)] dt:/ sin”s 2/ sin”s oo,
€ € 1

tp/2 S s e—04

1—cos(2s)

2 and

by an argument similar to Exercise 2.8.20 (4): we note that Sinj s =

the integral f1+°o COSSS) ds converges. On the other hand, if p > 2, p = 2 + 20,
0 >0,
< |sin(t~ )P <" (sin 5)2+20
/6 /2 dt > /1 (150 ds
> 2_2_29/ s?~lds — 400,
{1<s<e=1,|sins|>1/2} =04

since sins > 1/2 on Upez[§ + 2k, 57 + 2kn] and consequently
1 5 ¢ T g
6-1
S dsze g (6+2k77> —(6+2k7r)]

E>1
6—1
2 5
> Z T ( T —|—2k77> — +00.

/{1§s5e1,|sms|zl/2}

5&" +2kr<e !
k>1 3 \6 €0+

5T +2km<e?

For p < 2/3, the integrand is equivalent near 04 to s7=2 and 32” —-2< ~1,s0
that the integral diverges.
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@

Exercise 3.7.17. Let n > 1 be an integer and f, defined on R by
n

PO (o 4y

(1) For 1 <p < +o0, show that f, € LP(R) and calculate | fulp-

(2) Prove that g,, defined by g, (x) = nYe~"1*! belongs to LP(R) for all p > 1.

(3) Deduce from the previous questions that for 1 < p < q < 400 the topologies
on LP N L1 induced by LP and LY cannot be compared.

with B > 1.

Answer. (1) Forp>1, 8> 1,

b _ g too pap J 5 +oo n("‘*ﬁ)p*ld

- +o00 o
_ gpla—B)pt [(y +1) 6p+1} _ onlempw
—Pp+1 g pp—1 "~

so that || full, = 2 (Bp — 1)_117na_5+11>. Moreover we have || f, /o = n® 5.
(2) We have ||gn|lcc = n” and for p > 1,

+oo n'”” 11 1
lonlly =w0m2 [ e = "R e fgall, =720
0
(3) We calculate for 1 < p < g < +0o0,
depends only depends only
on p,q, 3 on p,q
[follp _ 122 S0 N lgnllp _ 11 2 7= 2
=nr" a Ci(p,q,) — 400 =nai r Co(p,q — 0.
I£all B L0 227 gall, L

If the topologies on LP? N L4 induced respectively by LP and L9 were comparable,
we would have for instance for a sequence (¢,,) of LP N LY,

lirlpgon =0= lilglcpn =0.

1

=n"""ag, since

This is contradicted by the choice ¢,
lim [|pn]lp, = limn<11711021/pp_1/p =0,
n n
whereas ||, ||, = 21/9g71/9 > 0 which is independent of n (true also for ¢ = +00).
It is not possible either to have for a sequence (¢,,) in LP N L9,
erglgon =0= hLIIplcpn =0.

—

Choosing ¢, =n ‘Hg_;fn gives

lim [ | = limn =P~ p o ragl/a(gg — 1)=1/1 = 0
n n

whereas ||gn|l, = n~tPm st AL 0l/p(gp — 1)=1/P = 21/P(Bp — 1)"1/P > 0, is
independent of n.
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Exercise 3.7.18. Let (X, M, 1) be a measure space where p is a positive measure.
Let p,p" €]1,400[ such that 1/p+ 1/p" = 1. A sequence (fn)nen in LP(u) will be
said to converge weakly towards f € LP(u) if for all g € LP (u),

M/nwm/mw
noJx X

(1) Show that convergence in LP implies weak convergence.
(2) Show that the converse is not true.

Answer. (1) Let (f,) be a sequence in LP converging towards f in LP. Then for
all g € LP | using Holder’s inequality

[ o= Dyt <15 Alilallr <0

+

(2) The converse is untrue since f,(x) = 1jg1j(z)e™* has norm 1 in LP(R) and
converges weakly in L? since for g € L’ (R), and ¢ € C(R),supp ¢ C [0,1]

[ oo = [t ptaeras o [ ooy

Since we have [ p(z)e™*dz = (in)~" [ p(z) &L (€"")dx = (—in)~! [ ¢/ (x)e"du,

we get
/ lg(x x)|dx

1/p’
gz €z = 19L[0,1] — PliLe’>
\ ) d llg1 |

lim sup e dx

n—-+oo

for all ¢ € C>(R),supp ¢ C [0,1]. Since these functions are dense in L? ([0, 1])
according to Theorem 3.4.3 (here p > 1 and thus p’ < 4+00), we get

¢€C§°(R)l,£1fpp oClo] llg10,1) — @l s =0
and lim,, fol g(z)e*dr = 0.
N.B. 1. We note that (e"*) goes to 0 in L>-weak*, which means that for all
functions g in L'(R), lim,, [, g(x)e"*dx = 0: this is the Riemann-Lebesgue lemma
(Lemma 3.4.5).
N.B. 2. Let us give another counterexample. Let f € C.(R) with norm 1 in L?(R);
we consider the sequence (f,) with norm 1 in L?(R) defined by f,(z) = n'/? f(nx).

That sequence goes to 0 weakly in LP(R), since for ¢ € L? (R), we have for
¢ € Ce(R),

/fn dx:/an(x)(g( dx+/f p(y/n)dyn !
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which implies, since | f(y)g(y/n)dyn» ' < |f(y)|(sup p|)n1/7
| #n@t@)i| < llg = el = tim [ f@gla)de =0,

Note that if f € LP(R) has norm 1, the result remains the same since for ¢ €
Ce(R),

lim sup

folz) = nl/pf(nx) = nl/pw(nm) + nl/pf(nx) - nl/pw(nx).
For g € L* (R), we have thus

/mmmm
/ Y (z)g(x)dx

<gllzor 1f = ¢l zr,

which implies lim,, [ fn(2)g(z)dz = 0. If p = 1 and f is a function in L' with
integral 1, the sequence f, () = nf(nz) does not go to 0 weakly: in particular if
g € C(R) N L>*(R), we have

®) hm/ﬁl ©)dz = g(0).

lim sup

< lim sup

+mw41memmwwy

In fact the function f, is also in L' with integral 1 and

[ #u@t@)iz = 90) = [ f.(@) o) = 9(0)de = [ 1) (atu/n) - a(0))dy

Since | f(y)(9(y/n) — g(0))| < |f(y)|2sup|g|, and by continuity of g at 0,
lim f(y)(g(y/n) — 9(0)) =0,

Lebesgue’s dominated convergence gives the result (1).

N.B. 3. Another counterexample is given by f,,(z) = f(z—n) where f € L?(R) has
norm 1 in L? Each f, has norm 1 in L? and nevertheless for g € L¥', ¢ € C.(R),
we have for a fixed A > 0,

/fn dm*/f gy +n) — oy +n))dy
/ ﬂ)w@+nﬂy+/ F@)o(y +n)dy,
{ly|<A}

{ly|>A}

which implies

/ fn(z)g(x)d

i sup qgﬂm+MWJ F)llo(y +n)ldy

{ly|>A}

1/p
sug—wmﬂ-%</ .ﬂwP@O el
{ly|>A}
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Taking the infimum with respect to A in the rhs, we get

lim sup ‘/ fn(@)g(z)dz| < |lg — ¢, forall p € C.(R),
n R

so that lim, [; fn(z)g(z)dz = 0.

Exercise 3.7.19. Let u be a positive measure defined on the Borel o-algebra of R
such that p(R) < +o0o0. We define f(x) = / e du(t). Show that f is continuous
R
on R. Show that if
1
1o (200 = F() = 1 (=)
has a limit when h goes to 0, then fR t2du(t) < +oo and f is of class C?.

Answer. Let (zx) be a convergent sequence of real numbers with limit x. Using
u(R) < 400, we have

‘eitmk _ 6itz| < 2¢ Ll(,LL), and hlIcneitmk — eitm7

and Lebesgue’s dominated convergence theorem gives limy, f(x) = f(z). We note
that

h12 (2f(0) — f(h) - f(fh)) - h*Q/(2 — 2cos th)du(t) — L.

R h—

From Fatou’s lemma, we obtain

/ liminf (h™?|2 — 2 costh|)dpu(t)
R

h—0

< lim inf/ (h7%|2 = 2costh|)du(t) = lim infh_g/(Q — 2costh)du(t) = L.
R S 7 R

h—0 h—0
>0
Since
4sin?(th/2)

. _9 B T _92 . B .2 _ T — 2
%;rr%)h (2 — 2costh) }{;H%)h (2 — 2[1 — 2sin”(th/2))) l?gb B2 t°,
we get

(1) / t2du(t) < L < +oo.

R

We note incidentally that

/]R\ﬂdﬂ(t) < (/]R tQClu(t))l/gu(R)l/2 < (Lu(R))"* < +oc.
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Using Theorem 3.3.4, we find that f is twice differentiable and
f//(fE) _ 7/ eitthdu(t)'
R
That formula and Condition (T) ensure continuity for f”, using Theorem 3.3.1.

Exercise 3.7.20. Show that (>°(N) and L*°(R) are not separable. (Hint: reductio
ad absurdum.)

Answer. Assume that ¢°°(N) contains a countable dense subset {z,}nen. Each
element x,, is a bounded sequence (Z,, k)ken, i-€., such that

sup [Tp x| = ||25 |10 vy < +00.
k>0

The triangle inequality implies

2 < |1+$0’0|+|17$0’0‘ < 2max(\1+x070\, ‘171’070‘) = 2max(\717m0,0\, ‘171’070”
and thus max(| — 1 — g, |1 — zo,0|) > 1. We may thus find yo € {—1,1} such
that |yo — zo,0] > 1. Let us assume that we have found yo,...,yx € {—1,1} such

that
VZE{O,...J{?}, |yl_$l,l‘21-

As above, we may find yry1 € {—1, 1} such that

[Yk+1 — Tht1, k41| > 1.

We have thus constructed a sequence y = (yx)ren such that Vk € N, |yx| = 1 (and
thus this sequence belongs to £°°(N)) such that

1y — @nllie ) = SUP [yk — T k| = [Yn — Tnnl > 1.
keN
This contradicts the density of {z, }nen.
Let {¢n }nez be a countable subset of L (R). We have
R = UmGZIma I, = [ma m+ 1[
The triangle inequality implies
2 < M+ enllnee() + 11— @nllpoe(r,) < 2max(|| =1 =wnll Loz, 11 = @nllLe(r,))-
For all n € Z, we may thus find 6,, € {—1,1}, such that

10n — onllLe(r,) > 1.
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The function

@)= Ol (@)= > 1@- Y 1(2)

nez neN, 6, =1 neN,f,=—1

belongs to L>°(R)and has norm 1 (¢ is measurable since it takes two values —1,1
and ¥~ 1({1}) and ¥~!({—1}) are countable unions of intervals). Moreover for
n € 7,

1Y = enllre® > 1% — @nllLe,) = 100 — @nllLer,) > 1,
making impossible the density of {¢y, tnez.

Exercise 3.7.21. Here, L? stands for the space LP(u) where p is the Lebesgue
measure on |0, 4+o00[ and ||ul|, is the LPnorm of u.

(1) Let f :]0,4o00[— R, be a continuous function with compact support in
10, +o0[. For x > 0, we set

=, [ s

For p > 1, show that H f belongs to LP.
(2) For f as in (1), taking non-negative values, show that

p
(#) 1 fllp = =4 I£ ]

(hint: F = Hf is also a non-negative function, integrate by parts in

+o0o
/o Flaz) ddx(x)dx. )

(3) For f asin (1), show ().
(4) Show that the mapping H : C.(]0,400[) — LP is uniquely extendable to LP
and verifies (8) for oll f € LP.

(5) Show that the constant pfl in (§) cannot be replaced by a smaller constant
(hint: take f(x) = x=YP on [1,)], 0 elsewhere and let X go to +00).

Answer. (1) Since f is supported in [a,b] with 0 < a < b < +o00, H f vanishes on
]0,a] and is bounded above by ! fab |f(t)|dt elsewhere. As a result,

+o0 +oo b ?
/ |H f(2)|Pde < / x " Pdx (/ |f(t)dt> < 400, since p > 1.
0 a a

(2) With f as in (1), taking non-negative values, the function F = H f is also
non-negative. Thus

“+oo
1F]]5 = / F(z)Pdx.
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Since o F(x) = [ f(t)dt, the function  — xF(z) is differentiable on ]0, +-00[ with
a derivative f. Thus on |0, +oo[, F' is differentiable and F"'(z) 4+ F(x) = f(z). For
N > a, we have

N N
/ F(2)Pdx = [zF(z)P]Y —/ xpF(z)P F'(z)dx

— NF(N)? — / PP~ (f(z) — F(z))da,

so that for N > b

N

b N
p / Fap f(z)dz = p / F(a)P~ f(@)dz = (p— 1) / F(x)Pdz + NF(N)?.

a

From (1), we know that 0 < F(N) < N1 fab f(t)dt, and taking the limit when
N goes to +o0o in the above equality, we get

b “+o0
p / F(a) ' f(z)dz = (p - 1) / F(z)dz,

ie.,
p [T
1#lg= " [ P
p—1Jo

With 1/p+1/q¢=1, ie., ¢=p/(p— 1), Holder’s inequality implies
p oo 1
1Flp= P [ Fer e
p—1Jo

» +o00 1/q +oo 1/p P
< P (T r@ea) ([T pwpas) = P El A

p—1

which is (f).
(3) With f asin (1), we set

Fo(a) = max(£(2),0) =, (1f@)| + @), J-(@) = (1) ~ F(@))

so that the functions fi are non-negative continuous with compact support and
f=f+—f-aswellas f_f, =0,sothat Hf = Hf; — H f_. Since the functions
H f1 are non-negative, we have

+oo
VA = / (Hfo) (@) — (H ) (@) Pde

< [ max (@ (0 )
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8

+
< [ (U + (@) )do = L+ 1H 5]

0

<(,7) s = (7)) [ ey @
=(,7) [ wra= (7 ) stz

providing (#) for continuous functions with compact support in ]0, +oo[.
(4) Let 1 < p < +ooandlet f € LP. Then in L?, f = lim f; where fj is continuous
with compact support. Since

p
15 fr = Hfillp < o e = filly,

the sequence (H fy) is a Cauchy sequence, thus is converging. On the other hand
if (f) is another sequence with limit f in LP, we have

| S = Hfilp < 1k = el

and thus H f; and H f are converging towards the same limit. We can thus de-
fine without ambiguity, H f = lim H fi. Moreover, if H extends H on LP and is
continuous, we shall have

Hf =lmHf, =limHf, = Hf.

Moreover since |Jul, < ||v|lp + [Ju — v|lp and ||v]|, < |Jull, + |[Jv — u||, and thus
IH fllp = 1H fellp | < [HS = H fillp, we get

: . p p
[1H fllp = Tim [[H fi|, < limsup b1 [ fllp = p—1 [1f1lp-

(5) For z > 0, the function ¢ — 1 ,(t)f(t) belongs to L' since it is the product
of an LP function with an L7 function (1(o ) € L9 since [ |1 4)(t)|%dt = x). Let
f € LP. We may set for z > 0,

1 [® 1 [t
:m/o f(t)dt:m/o Low (D E) .

Moreover if (fx) is a sequence in C,(]0,4+oc[) such that lim fi = f in LP, then
for all x > 0, lim f, = f in L'(0,2) D LP(0,) since using Holder’s inequality
Il L 0,2) < xl/qllfHLp(O’z). As a result for z > 0,

() =, tim [ byt = Hm(H ) (z).
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But the sequence (H fj) converges in LP with limit H f. We may thus extract a
sequence converging almost everywhere towards H f. Thus for almost all z > 0,
(Kf)(z) = (Hf)(x) and thus the functions H f and K f coincide in LP.

For A > 1, we consider the function f) defined in (5). Since 31 = p;l’ we

have

for 0 <z <1, (Hf\)(z) =

for 1<z <\ (Hf))(x T VPAE = qam (2 — 1) = q(a7 VP — 27,

/1
A

and for A <z, (Hf))(z 1/ t=Pdt = gz YAV — 1),
1

Consequently, we get

+o00 1/p
VH Al = ( / |<fo><x>pdx)
A o 1/p
=q (/ (Ifl/p — mfl)pdx + /+ I*P()\l/q _ 1)pdx>
1 A

A )\l—p 1/p
q / 711 — 2 VNP dr + (A4 —1)p
1 p—1

A 1/p
=q (ln)\ +/1 e (1 -2~V —1)dz + 0(1))

— g(lmr+0(1)) ",

1/
We have also || fall, = (fl’\ x_ldm) . (In \)/? so that, defining

_ H fllp

p= sup ,
rerr 20 |1fllp

|E

we get P =lmy 00 ) fk‘\lp <p< Py provingp= 7.

Exercise 3.7.22. Let u be a function in L'(R). We set for £ € R,

u(§) = /Ru(m) cos(z€) dx

(1) Show that u belongs to L°°. Show that the function u is uniformly continuous
on R.

(2) Show that for ¢ € CL, lim¢| 510 P(€) = 0.
(3) Show that lim¢| 40 u(§) = 0.

Answer. An immediate consequence of the Riemann—Lebesgue Lemma 3.4.5.
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Exercise 3.7.23. For n € N and x > 0, we define fp(x) =

(1) Show that f, belongs to L*(R..).
(2) Show that the sequence a, = fR+ fn(z)dx converges towards fR+ f(z)dx for

some f € L'(Ry).

Answer. (1) For x > 0, we have |f,(z)] < e ®2~Y/2 = g(x). The functions f,
and g are continuous on R’} and belong to LY(R,) since bounded from above by
Lo,y(2)a ™2 + 1y yog)(2)e™.

(2) For x > 0, we have lim,, f,(z) = f(z) = e 2z~ /2cosz. Since |f,| < g €
L'(R.), Lebesgue’s dominated convergence theorem implies f € L'(Ry) and
lim,, a, = fR+ f(z)dz. Note that

ne *
/241 COST.

“+o0 “+oo )
/ fz)dr = Re/ e (IHDz=1/2 0y,
0 0

We have for z > 0, using Section 10.5,
+o0 too
/ e PV 2y = 271/2/ e V24t = 27120 (1)2) = 7' /22712,
0 0

So with the results of Section 10.5, we obtain by analytic continuation of holomor-
phic functions on Rez > 0,

—+oo
71_1/267;L0gz :/ 67211’71/2d£€,
0
implying fOJrOO e~ (DT =1/2 40 — 71/2= 5 Log(1+i) — 71/29=1/4~im/8 4nq thus

1 2
lima, = n'/227Y4 cos(n/8) = /2 v —2'_ v .
n
Exercise 3.7.24. Let (X, M, u) be a measure space where p is a positive measure.

(1) Let (An)nen be a sequence of elements of M such that ) oy p(An) < +00.
Forn € N, we set By, = Up>nAg. Show that p(NpenBy) = 0.

(2) Let v be a positive measure on (X, M). We shall say that v is dominated by
1 whenever

VAe M, p(A) =0=v(A4)=0.
Assuming v(X) < 400, show that if v is dominated by p,

Ye>0, 30 >0, VAe M, p(A) <éd =v(4) <e

Answer. (1) We have u(By,) < >+, #(Ax) which goes to 0 when n goes to infinity
as the remainder of a converging series. For all n € N, we have

0 < pu(NrenBr) < p(Bn) = w(NkenBi) = 0.
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(2) Reductio ad absurdum: if the required property is not satisfied, deg > 0 such
that for all n € N, 3A4,, € M such that

w(Ay) <27 and  v(A4,) > €.
Since the series ) p1(A,) converges, we find from (1) that

0= p(Mnen(Urzndr)) (= v(Mnen(UkznAr)) = 0).

Using v(X) < +o0, we have B, = Ug>nAk, By, D Bpy1 and limv(B,) =
v(Ny,By) = 0 and thus

0= V(ﬂneN(UkznAk)) = lim y((UkznAk)) > limsupv(4,) > e >0,

n— oo

which is a contradiction.

Exercise 3.7.25. Let (X, M, u) be a measure space where p is a positive measure
such that u(X) < 4oo. A family of measurable functions (u;);cr is said to be
equi-integrable whenever

lim (sup/ uidu) —0, with Ei(t) = {z € X, [us(x)| > 1)
E;(t)

t—=+oo \ jer

(1) Let (u;)ier be a family of measurable functions from X into C. Show that if
(ui)ier is equi-integrable, then

Ve >0, 36 >0, VA e M, u(A) <5:>sup/\u,\du<e

el

(2) Let (up)nen be a sequence of measurable equi-integrable functions from X
into C, p-a.e. converging towards a function u. Show that for e > 0, we have

lim  p({|un —ul > €}) =0.

n——+00
Show that the sequence (un)nen converges in L' (u).

Answer. (1) Let us assume that the required condition does not hold. There exists
€o > 0 such that for all n € N, there exists A,, € M with pu(4,) < 1/n and

sup/ |usildp > €.
A’VL

el

Consequently for t > 0

icl

> sup | usldpe+ sup [ jusldpt > eo,
1€l JAN{|us| >t} 1€l J A, N{|u|<t}

tu(4,) + sup [ sl
Apn{|ui| >t}
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which implies for ¢, = ";° — 400 with n,

€0
sup [ Juildp = sup [ uidp > o — tup(A4) > 0
i€l Ju;|>tn, i€l JA,N{|us|>tn}

contradicting the assumption of equi-integrability.
(2) We check for M > ¢ > 0;

[t =udda= [ udt [ u -
X Jup—u|<e |up—ul>e

<en(x)+ | unld+ | O
|un—u|>e€,|un| <M |un —u|>e€,|un|>M |wy —ul>e

< () + Mu({Jun — ul > €}) + / oty + / .
|un|>M |un—u|>e

Consequently, we have

n—oo n—oo

+sup/ |un\du+limsup/ |u|dp.
neNJ|u,|>M n—00  J|u,—ul|>e

limsup/ [tr, — uldp < en(X) + Mlimsup(u({|un —u| > e}))
p's

But we know that for € > 0,

nhﬂngo (u({|un —u| > e})) =0.
In fact, we have A, = {Jun, —u| > €} C By = Upsn{|ur — u| > €} and B, is
decreasing (and p(X) < +00), so that with

B =NpenBrn, w(B) =limu(By,).

Since B = NpenBrn = Mpen(Ugsn{|ur — u| > €}) for x € B, for all n € N, there
exists k > n such that |ug(z) — u(x)| > ¢, so that the sequence u;(z) does not
converge towards u(x). Since we have assumed that the convergence p-a.e. holds,
we get that B has zero measure and p(B,) converges to 0. As a result for all
M >¢€e>0,

limsup/ [t — uldp < eu(X) + sup/ |un|dp + limsup/ |uldp.
X |un|>M |up—ul>e

n—oo neN n—oo

Taking the limit when M — +o00, we find, by using equi-integrability, that

limsup/ [t — uldp < eu(X) + limsup/ |uldp.
X |up —ul>e

n—oo n—oo
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But we have proven that u(A,) goes to 0. From (1), we find that

sup/ lujldp — 0,  for n — oco.
JeENJ A,

Fatou’s lemma implies

OS/ |u\du:/ limlinf|uj|d,u§limlinf/ lujldu
A J J An

n n

< sup/ lujldp =0 (n— +00),
jeENJ A,

and thus lim,, flu |uldp = 0. Finally for all € > 0,

—u|>e

imsup [ Jun — uldy < eu(X),
X

n—oo

providing the result lim, o [ |un — uldp = 0.

Exercise 3.7.26. Let X be a locally compact Hausdorff topological space. We define

C)(X) ={f € C(X;R),Ve > 0,3K. compact, sup |f(z)| <e}. (3.7.5)
c¢ K.

(1) Prove that the functions of C(0)(X) are also bounded on X. Prove that
C0)(X) = Ce(X) whenever X is compact.

(2) Prove that Cy(X) is a Banach space for the norm || f|| = sup,¢x | f()].

(3) Prove that C.(X) is dense in Cg)(X).

N.B. This exercise proves in particular that the completion of C.(R™) for the L>°
norm is C(o)(R™), a proper subset of L>(R™). We have seen in Theorem 3.4.1
that for 1 < p < 400, the completion of C.(R™) for the L? norm is L?(R™).

Answer. (1) If f belongs to Cg)(X), there exists a compact set K such that
SUP,¢fc, |f(7)| < 1: as a result,

sup | f ()| < max(sup |f(z)], sup |f(z)]) < +oc.
zeX z¢ K1 ze K,

The last statement of the first question is obvious by taking K. = X.

(2) The mapping C(oy(X) > f = || f|| obviously satisfies the axioms of a norm
(see, e.g., (1.2.12)). Let us now consider a Cauchy sequence (f;);jen in C(p)(X):
this implies that for every # € X, the sequence of real numbers (f;(x)),en is
a Cauchy sequence, thus converges. Let us define f(z) = lim; f;(z). Since X is
locally compact, each point zp € X has a compact neighborhood Kj. Defining
g = fleo,g = fik,» we see that (g;)jen is a Cauchy sequence in C(Ko;R)
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converging uniformly towards g: this implies that g is continuous on K since, for
z,x’ € K, the inequality

lg(z") = g(2)] < |g(a") = gj(«")| +1g;(2") — gj ()| + |gj () — g(z)]

and the continuity of g; implies

limsup |g(z') — g(z)| <2 sup |g;(y) — g(y)| < 2limsup | f; — full = 2¢;.
z' =z yeKo k
Since (f;) is a Cauchy sequence, lim;e; = 0, and thus g is continuous on Ky,
which is a neighborhood of x(: this implies continuity for f on a neighborhood of
any point, thus continuity of f on X.
Let § > 0 be given. We have, for z € X,j € N,

[f@)] < [f(z) = fi(@)] +|f;(@)] = lim | fi(2) = f; ()] + | f;(2)]
< limksup e = fill + [f5 (@) = &5 + [ f3(2)].

Let j be such that €; < §/2 (possible since lim; e; = 0) and let K 5 be a compact
subset such that SUPgce | |fil < 0/2 (possible since f; € C(g)(X)). We obtain

SUpge |f| <6 and f belongs to C()(X). Moreover the inequality
[f (@) = f3(@)] = lim[fu(z) = f;(2)] < lim sup Ife = fill =¢;

implies lim; || f — f;|| = 0, that is the convergence of the sequence (f;) towards f
in C(O) (X)

(3) Let e > 0 be given and let f € C(g)(X). There exists a compact set K such that
supge | f| < €. On the other hand, using Urysohn’s Lemma (cf. Exercise 2.8.2),
we may find a function ¢ € C.(X;[0,1]) such that ¢ = 1. The function g = f¢
belongs to C.(X) and we have

9(x) = f(2)] = 1xe (@) f(2)|(1 = p(2)) <e,
so that [|g — f|| < e, proving the density of C.(X) in C(g)(X).

Exercise 3.7.27.

(1) Let (X, M, ) be a measure space where p is a positive measure. Show that
if w(X) < +o0, the assumptions 1 < q < p < +oo imply LP(u) C LI(p)
continuously. Show that the conditions 1 < q < p < 4o0 imply LY (R™) C

LL (R™).

(2) Show that the conditions 1 < q < p < +oo imply £*(N) C ¢4(N) C ¢P(N) C
£°(N) with continuous injections and strict inclusions. Show that the inclu-
sion

loc

¢Y(N) C Ng>109(N) s strict.

(3) Let p,q € [1,+00] be two distinct indices. Show that LP(R™) is not included
in LY(R™).
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Answer. Exercise 3.7.10 gives several details related to the present exercise.
(1) Using Holder’s inequality, we get

q 1
lul|7e = / lulfdp < [lu|zoralltller, 4+ =1,
X p T

so that [Ju||re < ||w|rrp(X) 4~ » . The same proof gives the inclusion of local spaces
since we integrate on compact sets. Note that for L{, . spaces, the exponent p is
an index of regularity.

(2) Let 1 < ¢ <p < +oo and let 2 = (z,)nen an element ¢9. We have

— P_1+1
lzllfr = lenl” < Sgg\mnlp Ty lzal? < (Y laal?)
n

n>0 n>0 neN

so that ||z]|ee < ||2|l¢e and this works as well for ¢ = 1 and p = +o0, proving the
continuous injections. The inclusions are strict since for a > 0,1 < p < +o0, we
have

(N~ %)p>1 € P = ap>1,

so that for 1 <7 < g <re <p<rg <400,
(nil/rl)n21 S gq\£17 (nil/rz)nzl S fp\gq, (nil/rs)nzl S Eoo\gp

Moreover the sequence

( ! )n>Qemq>1éq<N>\él<N>,

nlnn

proving the last assertion of question 2. Similarly the inclusion
?;)C(Rn) C mlSP<+OOLfOC(Rn)

(R™)\L2 (R™). Also for 1 < g < 400, the

. o »
is strict since In|z| € Ni<petool -

loc
inclusion
Lq

loc

(Rn) C m1S1’<‘1Lfoc(IRn)

is strict since |z|” @ € Ny<peg LP (R™\LL (R™).

loc loc

(3) See Exercises 3.7.16, 3.7.17. We note also that for 1 < p < ¢ < +o0 and
x € C2(R™),x(0) =1,

X@)la| " e P, x(@)|a] 7P ¢ LY,
provided € > 0, —q; +ge<—n, ie, 0<e< Z(Z — 1). Moreover, we have
(4 2))"a 7 €Ll (1+|z))"a77 ¢ L7,

provided 0 <o, "P+op<n ie, O<0<Z(1f§).



182 Chapter 3. Spaces of Integrable Functions

Exercise 3.7.28. Let m be an integer > 1. We denote by (,) the standard dot-
product on R™. Let A be a real m x m, positive definite symmetric matriz (i.e.,
(Az,z) > 0 for x #0).
(1) Show that the function f defined by f(z)=exp{—(Ax,z)} belongs to L*(R™).
(2) Show that

/ exp{—(Az, z)}dx = 7™/?(det A)~1/2,
]Rm

(3) Let B be an m x m matriz. Show that

1
/ (Bx,x) exp —{{Az, z)}dx = 27Tm/2(det A)7Y2 trace (BA™Y).

(@) Let F be the function from R into C defined by F(t) = [, et e=7"dz. Show
that F is of class C* on R and verifies 2F'(t) + tF(t) = 0. Give an explicit
expression for F.

(5) Fory e R™, calculate / exp{i(y, ) — (Az, z)}dx.

m

Answer. (1) The function f is continuous on R™. There exists € O(m) such
that A = QD) where D is the diagonal matrix with the (positive) eigenvalues of
A, denoted by «;. The function f satisfies

exp{ - (Am,m)} < exp{—aminlzll®}, Qmin = 1gi<nm a; >0,

which implies integrability.
(2) We have

/mexp{f(Ax,x>}dx:/Rmexp{f(QDth,@}dx

= /Rm exp{ — (D'Qu, tﬂx>} dz,

and with the change of variables y = 2z, we get, since | det Q| = 1:

/m exp{ — (Az,z)} do = /]Rm exp { — (Dy,y)}| det Q| dy
=/]Rme><p{ —iaiy?}dy

Since det A =[], a;, we get

[ ew{~tann} =] [ epl-au?)dy
R™ 1 /R
M 1 Tm
= 2V dt; = .
J-;[l \/ozi /Rexp{ i} \/detA
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(3) The same calculation as in the previous question gives
Iap= / 67<Az’z>(Bm,m>dx = / 67<Dy’y>(tﬂBQy,y>dy
]R‘m m

:/ Z cj,kyjykexp{—ﬂ Z ozjng-}dy
Rm

1<j,k<m 1<j<m
_ 2 2
= / E Cj,jY; €Xp {— g a;Y; }dy7
R™1<j<m 1<j<m

with (¢ k)1<jk<m = QBQ. We note that for a > 0,

/67“t2t2dt _ d /efaﬂdt _ d (W1/2a71/2) _ 17T1/2a73/2
R da R da 2 ’

so that

1 _ 1
Iap = Z 2cj7j04;17rm/2 H akl/zz27rm/2(detA)_1/2 Z cj7j04j71.

1<j<m 1<k<m 1<j<m
Since trace M N = trace NM, we have

Z cjyjogl = trace ('"QBQD ™) = trace ("QBQ('QAQ) ™)
1<j<m

= trace ('"QBA™'Q) = trace BA™!,

which is the sought result.

(4) We may apply Theorem 3.3.4:
(i) For2all t, the mapping @ — /e~ is continuous and sup,p || =
e~® which is integrable on R. F' is thus well defined on R.
(ii) For all z in R, the mapping ¢ — €*#e¢=*" is of class C' on R with derivative
ixeitxe—xz
(ili) Moreover sup,cp |ize

As a result F is of class C! on R and

te o 2 g
#re=2"| = |z|e~® which is integrable on R.

vt € R, F'(t) = / ive'™ e dy.
R
Integrating by parts gives
P ; 4 t
F'(t) = [— ;em“e_xz} + ; /]Ritemce_””2 dx = —2F(t).

Since F(0) = /7 we obtain Vt € R, F(t) = \/mexp{—t?/4}.
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(5) As in the first question

/ expi{y, x) exp —(Ax, x)d exp iy, ) exp —(QD'Qx, x)dx

m

exp iy, x) exp —(D'Qx,"Qx)dx

=
J

m

The change of variables z ='Qx gives

m

/ exp i(y, ) expf<Ax,x>dx:/ expi(y,z) exp—(Dz, z)| det Q|dz
m R’V

/ expi('Qy, z) exp —(Dz, z)dz,
]Rm,

so that
m
/ expi(y,x) exp —(Azx, x) :/ H expi("Qy);zj exp —02; 2dz

= /expz ("Qy) )j%; €Xp — a;z; dzj.

Using the change of variable z; = /a;2; in each integral we get

/ expi(y,x) exp —(Ax, x)dx = / (exp i(to)jxj/\/ozj) exp —m?dmj
m R

1
Mo

=11, P(wi/yes).

and the previous question gives

. _ T 1 1, 9
/m expi(y,x) exp —(Ax,x)dx = \/detAeXp 4;(1_( Qy);

T 1 t
= — (D71Qy'Q
2 vyt

so that, since A~1 = QD~'Q,

ﬂ-m

1
; A — Ay ).
/meXpZ<y7w>exp (Az, x)dx = \/d o4 P 4< Y, y)
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Exercise 3.7.29. We define ¢y as the space of sequences of complex numbers con-
verging to 0.

(1) Show that the space ¢y is a closed subspace of £°°.

(2) Show that the spaces cg, P, for 1 < p < 4+o00 are separable.

Answer. (1) Let (u,)nen be a sequence in ¢g converging towards u in £°°. Each u,,
is a sequence (ag,n)ren such that limy ax ., = 0 and v = (by)ken € £°°. We have

[bk] < bk — akn| + lakn| < llu—unll + lagnl,
so that ¥n € N, limsupy, |bx| < ||u — uy||, and taking the infimum on n of the rhs

implies lim supy, [bx| = 0, and u € ¢o.
(2) Let us define the countable set

D = Unen{(yr)ken, yr € Q+1iQ, yr =0 for k > N}.

Then D is dense in ¢g: let w = (2 )ken be in ¢o and let € > 0 be given. Then there
exists N such that supysy. |zx| < €/2. Moreover, by density of Q in R, there
exists (yk)o<k<n. such that each y, € Q 4+ iQ and maxo<k<n. [Tk — Yr| < €/2.
With v = (yk)ken (yx = 0 for k > N,), we have v € D and

lu —vlle < oax |2k — Y| + Sup k| <,

— Ve

proving the sought property.
The set D is also dense in /P for 1 < p < 4o00: let u = (2 )ren be in £ and
let € > 0 be given. Then there exists N, such that

Z |z |P < €P/2.

k>N,
Moreover, by density of Q in R, there exists (yx)o<k<n. such that each y, € Q+iQ
and

€
max |zx — yi|’ < .
0<k<N, ok = Y| 2N, +1

With v = (yx)ken (yx = 0 for k > N.), we have v € D and
lu=olp =" lex =yl + Y fanl? < ¢,
0<k<N., k>N,
proving the sought property.

Exercise 3.7.30. Let (X, M, 1) be a measure space where [ is a positive measure.
Prove that L*(p) C L*(p) if and only if

Elg/fw w(E) > 0. (3.7.6)
w(E)>0
Prove that, when this condition is satisfied, we have for 1 < p < q < oo, LP(u) C
L(u). Give an example of such a measured space.
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Answer. Let us assume first that (3.7.6) holds with an infimum equal to o > 0
and let f € L'(p) be different from 0. If f were not in L>(u), for every k € N, we
would have
ulfe € X, |f@)] > k) > 0,
~ ~
Ey
so that
+o0o > || fll L1 2/ |fldu > ku(Ey) > ka — +oo,

k—+o0

which is impossible. We obtain thus f € L*(u). With € > 0, assuming that f is
not 0 and € € (0, || f|| ooy ), we define

Fe={z e X,[f| > [[fllLee(u) — €}
We find p(Fe) > 0 and thus p(F.) > a > 0. As a result for every € € (O7 ||f||Loc(M))7
we get
||f||L1(;L) > /F |f‘dp, > (”f”LOQ(M) - G)M(FE) > a(”f”L‘x’(;L) - E)a
implying || f|| Lo (uy) < @ | fllL1()- We remark that if 1 < p < +o0, we find also
under (3.7.6),
felr(u)=|fIP € L'(n) = |fIP € L®(n).

We note also that, assuming (3.7.6) and 1 < p < ¢ < 400, we find from the
previous argument that if f € LP(u), we obtain that |f|? belongs to L™ (u) with

1Ple= < a 1Pl = a 112,
— / Flodu < / P [ F1527 < ()" | Flzte?

= If ey < (@)% || f 2o,

proving that f € L%(u) (with a continuous injection).
Conversely, let us assume that L'(u) C L% (u). If for any k € N*, we could
find E), € M such that 0 < u(Ey) < 2%, then

1f =Y kel < Y ku(Br) < +00 = f € L (n) = f € L=(n),
k>1 k>1

but since pu(Ey) > 0, we have || f| () > k for all & € N, which is impossible.
The most typical example is given by the ¢? spaces (1 < p < 400) which are
the LP? spaces for the measured space

(N,P(N), ), p=>_ .
keN

Here 1 is the counting measure on N so that p(F) > 1 if E is not empty.
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Exercise 3.7.31. Let (X, M, 1) be a measure space where p is a positive measure.

Let f1,..., fn be non-negative measurable functions and let p1,...,pn € [1,+00]
such that 1
> o
1<5<n P

Prove that/ fi.. fndp < H I £5ll 273 (-
X

1<G<N

Answer. When N = 2, this is Holder’s inequality. We may assume that all f; are
not vanishing p-a.e. (otherwise the lhs is 0) and that each f; belongs to L3 (u)
(otherwise the rhs is 400 as the product of positive quantities in Ry with one
of them +4o00). Induction on N: let N > 2 and p1,...,pn+1 € [1,+0o0] with
do1<j<N41 plj = 1. Applying Hoélder’s inequality we find

II 5

1<G<N

N1l rns -

/

LEN+1(p)

(%) /Xfl---foNHdMS

Since D <y p;:l =1 (ensuring that p;/pjy; > 1) and

II

1<j<N

1

’

N+1
LN+ () '

()

/
PN 41
II 7

1<j<N

)

p
L
we may use the induction hypothesis to obtain

II %

1<j<N

1

P’ ;
=TT )

LPN+1(p) 1<j<N

The rhs of that inequality equals [, ;- [ fjllz»s, and with (f) this provides the
answer.
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Integration on a Product Space

4.1 Product of measurable spaces

Definition 4.1.1 (o-algebra on a product space). Let (X1, M), (X2, M3) be mea-
surable spaces. We define the product o-algebra of My and My as the o-algebra
on X; X Xy generated by the sets A; X Ay, where A; € M;,j = 1,2 (such a set
Ay x Ay will be called a Cartesian rectangle, CAR for short). That o-algebra will
be denoted by M; ®@ Mo.

We note that M; ® My is the smallest o-algebra (i.e., the intersection of
o-algebras) on X7 X X5 such that the canonical projections m ot X1 X Xo —
X, ﬂj((xhxg)) = z;,j = 1,2 are measurable. First of all m; is measurable since
for A; € M1, we have 7r1_1 (A1) = A; x X3 which is a CAR, thus belongs to M; @ M
(same for 7). Moreover if T is a o-algebra on X7 x X5 such that 7; are measurable,
then for A; € M;, T contains 7r1_1(A1) = A; x Xy and 7T2_1(A2) = X1 X As, thus
their intersection

(A1 X X2> N (X1 X Ag) = A1 X AQ.
The o-algebra T contains the CAR and thus the o-algebra generated by the CAR,
ie., M; ® Ms.

Remark 4.1.2. Let f; : X; — C (j = 1,2) be measurable mappings. We define the
tensor product f; ® fo by

f1®f22 X1XX2 — C
(x1,22) = fi(z1) fa(z2).

The mapping f1® f2 is the product (f1om1)(f20ms); since each f;om; is measurable
(cf. Lemma 1.1.6), Theorem 1.2.7 shows that their product is also measurable.

Proposition 4.1.3. Let (X1, M1), (X2, M2), (Y,T) be measurable spaces and let
f: X1 x Xo =Y be a measurable mapping. Then

N. Lerner, A Course on Integration Theory: including more than 150 exercises with detailed answers, 189
DOI 10.1007/978-3-0348-0694-7_4, © Springer Basel 2014
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(1) Va1 € X1, the mapping f(x1,-) : 22 € Xo — f(x1,22) €Y is measurable,
Vo € Xo, the mapping f(-,x2) : 21 € X1 — f(x1,22) €Y is measurable.
(2) For A e My ® Ma, and (x1,22) € X1 x X3, we define
Az, ) = {x2 € Xo, (x1,22) € A},
A(,z2) = {x1 € X1, (21, 22) € A}
The set A(z1,-) belongs to My and A(-,xz2) belongs to M.

Let us check first Figure 4.1 with the “vertical slice” A(x1,-). Of course
drawing an horizontal slice would be easy, but the picture would not gain much.

(4.1.1)

€2

1

T
Figure 4.1: VERTICAL SLICE
A e My ®M2, A(.’I?h') :{372 EXQ,(al‘l,a'}Q) EA}

Proof of the proposition. Let B be in T. For 1 € X1, we have

f(z1, )" (B) = {22 € Xo, f(z1,22) € B}
~ {2 € X, (e1,2) € FUBY} = (/) (s ).
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Since f is measurable, the set f~!(B) belongs to M; ® Mao; it is thus enough to
prove (2) to obtain (1). We define

M= {E C X1 X X27V$1 S X1,Vl‘2 S Xg,E(l‘l, ) S MQ,E(-,J}Q) S M1}
We note that £ € M implies E¢ € M: for 1 € X1, we have

(EC)(I’17') = {1’2 € X27 (1’171’2) S Ec}
= {1’2 € X27(I17x2) ¢ E} = ( f](l’h'l )C

~
EMo
since E € M

and thus (E°)(x1,-) € Mg since My is stable by complement as a o-algebra. We
prove as well that, for zo € Xs, we have (E€)(-,z2) € My, so that E¢ € M.
Moreover if (Ey)ren is a sequence of M, then UgenFEg € M: for z1 € X7, we have

(UrenEg) (z1,-) = {22 € Xa, (21, 22) € UrenEr} = Ugen( ?k(mla 2 )
~
EMo

since B, € M

which belongs to M5 since M5 is stable by countable union, as a o-algebra. Since
we can get by the same proof, mutatis mutandis, that for zo € X, (UkeNEk) (-, x2)
belongs to M7, we have indeed proven that UgenEr € M. We note also that the
CAR belongs to M: let A; be in M;, j =1,2. For z; € X, we have

@, lf X1 ¢ A1

(Al X Ag)(m‘l, ) = {1‘2 S X27 (:1?1,3?2) S Al X Ag} = {A2 i 2y € A1

]EMQ.

We prove as well that for 23 € X3, we have (A; X A2)(+, 22) € M. As aresult, M is
a o-algebra on X x X5 containing the CAR, and thus the o-algebra M;® M5, which
is generated by the CAR. This completes the proof of (2) and of the Proposition. O

Remark 4.1.4. Let d € N and let By be the Borel o-algebra on R¢. Then if dy, dy €
N, we have

Bd1+d2 = Bd1 & de. (4.1.2)

We prove first By, +d, O Ba, ® Ba,: Ba,+d,1s a o-algebra such that the projections
are measurable (since they are continuous), thus contains the smallest o-algebra
Ba, ® Bg, making these projections measurable. Moreover, from Lemma 1.2.6, the
o-algebra Bg, +4, is generated by the compact rectangles [ [, - ;< 4, 14,a;, b;] which
are also CARs (equal to [ [, <4, [aj, 0] 14, 4 1< j<a, 1a,1@): bj])- Consequently, using
the notation in Definition 1.1.3, we have

Ba, ® Ba, C Ba,+d, = M(compact rectangles) C M(CAR) = By, ® Bg,. O
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4.2 Tensor product of sigma-finite measures

Lemma 4.2.1. Let (X1, My, p1), (X2, Ma, u2) be measure spaces where the i are
positive o-finite measures (i.e., X; = UpenEY, with pj(E]) < 400). Let A be in
My ® Ms. Defining o1(x1) = pa(A(x1,-)), p2(x2) = u1(A(-, x2)), the functions
@, are M; measurable (j =1,2) and

) / ordpn = / adiin.
X1 X2

Proof. Let us first assume that A = A; x Ay with A; € M;. We have

(Z) lf I ¢ Al,

(A1 X AQ)(m17'> = {:172 S X27 (:1?1,3?2) S A1 X AQ} = {A2 i 2y € A17

and this implies
(l‘ ) _ O lf X1 ¢ Al,
P11 = ILLQ(AQ) if xr1 € Al,

i.e., Y1 = ILLQ(AQ) . ].Al, Y2 = [Ll(Al) . 1A27 so that if [Ll(Al) and [LQ(AQ) are both
finite,
/ prdpn = po(A2)pa (A1) =/ Padpiz.
X1 X2

Moreover if pa(A2) = +oo and p1(A;) = 0, we have p; = 0, pi-a.e. and po = 0,
proving the result in that case as well. If ug(As) = 400 and ug(A4;) > 0, we find
le p1dp; = 400 = fX2 padus, so that the sought property is proven when A is a
CAR. Let us now define

R ={A € M; ® Ma,, (b) holds true}. (4.2.1)
We have already proven that
R D CAR. (4.2.2)
Moreover, we claim that if (4,),en is an increasing sequence of R, then
Ujend; € R. (4.2.3)

Indeed, defining o1 (1) = pa(Aj(z1,-)), @2,5(x2) = pa(A4;(-, x2)), the sequence
Aj(x1,-) = {xe € Xo, (x1,22) € A;} is increasing with union A(xq,-). As a result,
we have 0 < ¢1,j(z1) T w1(z1), 0 < o j(22) T p2(x2), and Beppo Levi’s theorem
implies

/sol,jme/ p1dpy and /@2,jdu2T padpa.
X1 X1 X2 X2

Since each A; belongs to R, we have le p1,;dp = sz p2,;dpa, proving Claim
(4.2.3). Moreover, we claim that if (A4;);jen is a sequence of pairwise disjoint ele-
ments of R, we have

Ujen4; € R. (4.2.4)
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In fact, considering the increasing sequence B,, = Up<j<n A, and using (4.2.3),
we see that it is enough to check that if Aj, As are disjoint elements of R, then
A; U Ay € R. We have indeed

(A1 U Ag) (21, ) = {m2 € Xo, (x1,22) € A1 U As} =§1($17 JUAs (21, '27
disjoir?t/union
so that [LQ(Al U AQ)(xl, ) = ,LLQ(AAl(I’l7 )) + ,LLQ(AAQ(I’l7 )) and
p1(z1)

/X ;2(141 U/;42)(I173dlt1(951)
- / o (A (1, g (1) + / o (Aa(zr, ))dpn (21).
X1 X1

Since both A;, Ay belong to R, we have proven Claim (4.2.4). Moreover, for
Ay € My, Ay € My with pj(A4;) < 00, = 1,2, and for (Q);) a decreasing sequence
in R such that A; x Ay D @Q;, we claim that

Q=n;Q; €R. (4.2.5)
Indeed, let us define

e1(x1) = p2(Qj (21, ) = pa({z2 € Xo, (1, 72) € Q5}) < p2(A2) < +oo.

Using Proposition 1.4.4(3), we get

o1,5(71) = p1(21) = pa({22 € Xz, (21, 72) € Q}),
p1(Q; (- 2)) = p2,j(72) = p2(x2) = p ({71 € X1, (71, 72) € Q}).

We have also
0< Lpl,j($1> < /LQ({J}Q € X27 (:1?1,3?2) € Ay x Ag}) = wl(l‘l).

But we have already seen in (4.2.1) that le P1dur = pi(Ar)pa(Az2) (a finite
quantity here). We may thus apply the Lebesgue dominated convergence theorem
and get

/ cpl,jdul — (pldul and / (pz’jd,LLQ — QDQd,LLQ.

X X1 Xa X2

Since Q; belongs to R, we find [ ¢1,jdu1 = [, ¢2,;dus proving Claim (4.2.5).
We need a definition.

Definition 4.2.2. Let X be a set and S be a subset of the powerset P(X). The set
S is said to be a Monotone Class on X when for (A;);en increasing sequence of S,
(Bj)jen decreasing sequence of S, UjenA4; € S, NjenB; € S. Note that if (7;)ier
is a family of monotone classes on X, then N;c;7; is also a monotone class on X.
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Since pi is o-finite, we can find a sequence (X7 ) of elements of M; such
that

X1 =UrenX1k,  pm(X1k) < 400,

We may as well assume that the X j, are pairwise disjoint. Let (X3;) be a sequence
with the same properties with respect to (X2, Ma, pi2). We define the set

S= {A € M1 ® My, V(k7l)7 AN (Xl,k X XgJ) S R} (4.2.6)

Then we claim that S is a monotone class. Indeed, let A; € M; ® M3 be an
increasing sequence such that A; N (X1 % x Xa;) € R. From (4.2.3), we find that
U;A; belongs to S. Similarly (4.2.5) and the fact that p1 (X1 k), p2(X2,) are both
finite imply the property on decreasing sequences, proving the claim. As a result,
S is a monotone class included in M; ® My, containing the CAR ((4.2.2)) and
countable pairwise disjoint unions of CARs ((4.2.4)).

Lemma 4.2.3. M;® M, is the smallest monotone class on X1 x X2 which contains
finite unions of CARs.

Let us take provisionally that lemma for granted. We get then S = M; @ Mo.

As a consequence, if A € M; ® Ma, then AN (X1, X Xo,) satisfy the property
of Lemma 4.2.1, so that using

A= Uk,z{A N (X1 k% ngl)} (disjoint union),

we find from (4.2.4) that A € R, concluding the proof of Lemma 4.2.1. O

Proof of Lemma 4.2.3. Mj ® M is a g-algebra, thus a monotone class. We may
thus consider the monotone class 7 defined as

T = intersection of monotone classes containing the finite unions of CARs.

Since M; ® M5 is a monotone class containing the finite unions of CARs, we get
that M1 ® My D T. We need to prove the other inclusion. Note that it is enough
to prove that 7 is a o-algebra: if that it is so, 7 will contain the CAR, thus the
o-algebra generated by the CAR, that is M1 ® Ms. We note that

(A1 X AQ) N (B1 X Bg) = (Al n Bl) X (A2 n Bg)7 (427)
(Al X AQ)\(Bl X BQ) = [(Al\Bl) X AQ] U [(Al N Bl) X (AQ\BQ)] (428)

We see that the difference of two CARs is a disjoint union of two CARs. Then the
symmetric difference of two CARs is as disjoint union of four CARs, the union of two

CARs is a disjoint union of five CARs. We find that the set

£ = finite disjoint unions of CARs, (4.2.9)



4.2. Tensor product of sigma-finite measures 195

is stable by union, intersection, and symmetric difference. For P C X7 x X5, we
set
Q(P):{QCX1XXQa P\Qa Q\Pa PUQGT}
We see at once that
Q€ QP) <<= PeQQ). (4.2.10)

Moreover, if (Q;);jen is an increasing sequence of Q(P) and @ = U;Q;, we have
P\Q:PﬂQc:PﬂﬂjQ; = ﬂj(PﬂQ?),

and since P N Qf is decreasing and in 7 (which is a monotone class), we find

that P\Q € T. We prove similarly that Q\P,PUQ € T. As a result, Q(P) is a

monotone class. Let P € £: if Q € &, we have @ € Q(P) since we have already
seen that & is stable by union, intersection and symmetric difference. We find

ECQP) for Pe&.
Since Q(P) is a monotone class, using the very definition of 7, we find
(#) T CQ(P) for Peé&.
Consequently, if Q € T, we have

PGE@TCQ(P)@QEQ(P) = P eQ(Q),
) QeT (4.2.10)

so that & C Q(Q). Since Q(Q) is a monotone class, we find

TCcQQ) forQeT.

Finally for P,Q € T, we have T C Q(Q) which implies P € Q(Q) and thus
P\Q,Q\P,PUQ@ € T. We get then

X1 X X2 S £ - 7-7

€T
. A~ N
ifQeT,Q° :(Xl x X2\ @ )E T,
N~ ~ -
€T

(Qj € T)jen, P = Ui<j<n@Q; € T,monotone class, thus U, P, € T,

proving that 7 is a o-algebra, completing the proof of Lemma 4.2.3. O

Definition 4.2.4 (Tensor product of o-finite measures). Let (X1, My, pu;) and
(X2, Mg, 12) be measure spaces where each 1 is a o-finite positive measure. For
A € My ® Mo, using the notation (4.1.1) and Lemma 4.2.1 we set

(11 ® p2) (4) /X iz (A, )) dan (1) = / 11 (A(- 22)) dpis(2).

X2

Then p; ® ps is a o-finite positive measure. From the proof of Lemma 4.2.1 we
find that for A; € M, 5 =1,2, (u1 @ p2)(A1 X Ag) = p1(A1) - p2(Asz) (with the
convention 0 - co = 0).
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Indeed, if (Ag)ken is a pairwise disjoint sequence of My ® Mo, if 21 € X7,
then Ag(x1,-) is measurable (Proposition 4.1.3 (2)) and, using (4.1.1), we find
(UkenAr)(21,-) = Uken  Ag(a1,+) , so that

~ ~ -

pairwise disjoint
M2 ((UkeNAk)(xh )) = Z po (Ag(z1,-)). (4.2.11)
keN

Lemma 4.2.1 implies that the mappings 1 — s (Ak(ﬂcl7 )) are measurable and
Corollary 1.6.2 gives

(111 ® p2)(UkenAy) dg'/X M2((UkeNAk)(I17'))dm(ml)

(4@-2)/)( (ZMQ(Ak(x1,~)))du1(m1)

1 keN
cor. 1.6.2 Z/ pio(Ax (21, ) dp (1) = Z(Ml ® p2)(Ag),
keN v X1 ken

which is the sought result. Moreover the measure p; ® po is o-finite since if we
have with j = 1,2, X; = Ugen X with X, € M; and p;(X; ) < 400, we get
X1 x Xg = U(k,l)GNXN(Xl,k X XQJ)’ and thus

(1 @ p2) (X1 ke x Xoy) = p1 (X1 k)p2(Xa,) < +oo.

Theorem 4.2.5 (Tonelli). Let (X1, M, 1) and (Xa, Mo, p12) be measure spaces
where each p1; is a o-finite positive measure. Let f : X1 x Xo — R, be a measurable
mapping (the product X1 x Xs is equipped with the o-algebra My @ Ms). From
Proposition 4.1.3, the mappings Xo 3 xa — f(x1,22), X1 D 1 — f(x1,22) are
measurable and we may define

fl(ml) = f(xl,xg)dug(xg), fz(mz) = f(xhxz)dm(ml)-
X5 X1

Then the mappings f; are measurable and we have

fi(zr)dpa () = | fa(z2)dpa(z2) = (w1, 22)d(pn @ po) (1, 22).
Xl X2 X1 XX2
(4.2.12)

Proof. The following notation for (4.2.12) is certainly easier to follow:

/Xl < . f(ml,mz)duz(m)) duy (z1) = /X2 ( . f(l’l,ftz)d,ul(ml)) dpg ()
://Xlxx fz1, z2)d(pn @ pa)(x1, 22).

2
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We assume first that f = 1g with @ € M; ® My: Definition 4.2.4 gives the
sought result. As a consequence, we obtain as well that result for simple functions
on X7 X Xo (Definition 1.3.2). From the approximation Theorem 1.3.3; we get the
existence of a sequence of simple functions (si)reny on X7 X Xo such that for all
(1‘1,3?2) € X1 x Xo,

0 < sgp(x1,22) 1 f(21,22).

We set sy 1(x1) = fx2 sk(w1, xa)dpa(xe),  Sk2(z2) fx (21, 22)dp (21). Since
sk is a simple function, we have already proven that
/ Skadp :/ Sk,2d 2 :/ spd(p1 ® pa). (4.2.13)
Xl X2 X1 XX2

Using now Beppo Levi’s Theorem 1.6.1 on (X7 x Xo, M1 ® Ma, u1 ® p2), we get

lim skd(p1 @ po) = / fd(pr ® po). (4.2.14)
X1 xX2

X1 X X2

For 1 € X1, Beppo Levi’s theorem on (X2, Ma, us), applied to the non-negative
increasing sequence sy(x1,x2) gives

0< 5k,1($1) = / Sk(mlam2)dﬂ2(x2) ) f(xl,m)dﬁ@(m) = f1(9€1)-
X5 X2

Beppo Levi’s theorem on (X7, Mj, 1), applied to the non-negative increasing
sequence S 1(z1) gives then

lim Sk,ld/,bl = fld/,bl. (4215)
k X1 X1
We get then
4.2.14) .,
[ pdgn e ) "2 i sxd(1 ® o)
X1 X X2 X1 X X2
4.2.13) .. 4.2.15
(4219 1 sk71du1( 2.15) fidpa,
k X1 X1

and we prove similarly le wx, JAp®p2) = fX2 fadpa, concluding the proof. [

Remark 4.2.6. Lemma 1.2.14 on double series with terms in Ry is a very elemen-
tary version of Tonelli’s theorem.

Theorem 4.2.7 (Fubini). Let (X1, M1, 1) and (Xa, Ma, u2) be measure spaces
where each 1 is a o-finite positive measure. Let f : X1 x X9 — C be a measurable
mapping (the product X1 X Xy is equipped with the o-algebra M; @ Ma).

(1) If (/ f(I17$2)|du2(I2)) dpa (1) < 400, then f € L' (11 @ pz).
X \Jx,
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(2) If f € L' ® p2), then f(x1,-) € LN (o) p-a.e. in w1, f(-,22) € L (1)
le-a.€. in T3 and

/X1 < . f(xl,mg)dMQ(x2)> dpiy (1)
— /2 ( f(mhxg)dul(xl)) dpia(x2) (4.2.16)

// f(z1,22)d(p1 @ p2)(z1, 22).
X1 X X2

Proof. To obtain (1), we need only to apply Tonelli’s theorem 4.2.5 to |f|. Let us
prove (2). We assume first that f is real valued: then we have

f=F = - with f£ >0, fi(2) = max(f(2),0), f-(z) =max(-f(z),0).

From Tonelli’s theorem and the assumption of (2), we get

/X1 ( . f+(m1,m2)d/~t2(m2)> dp (z1) = /)(2 ( . f+(ﬂc1,x2)dul(x1)> dpia(2)

= // fr(z1, w2)d(p1 @ p2) (w1, 22) < 00,
X1XXo

and the same identity holds for f_. As a result the M; measurable functions
(fo), (f-)n belong to Ll(ul) (we define as in Lemma 4.2.1 for g : X7 x Xo — Ry
measurable, g;(z1) fx (w1, x2)dpa(z2), g2 (12) = le g(z1,m2)du1 (21)). From
Proposition 1.7.1 (4) we get

(f4)1 <H4oo, (f-)1 <+oo, pi-ae.

Similarly, we prove (f4)2 < 400, (f-)2 < 400, uo-a.e. Since we have

|f(@1,22)| = fi(z1,22) + [ (71, 72),

this gives the first part of (2). Applying the identities (4.2.16) for f and f_, we
find the identity of (2) by writing a linear combination of real numbers. When f
is complex valued, we may consider separately the imaginary and real parts, each
of them satisfying the assumptions of (2) and thus which can be given the same
treatment as above g

Remark 4.2.8. Let (X1, My, 1) and (X2, Ma, u2) be measure spaces where each
p; is a o-finite positive measure. Let f; : X; — C,j = 1,2 be mappings of
L' (p;). We define on X; x Xo, the tensor product of f; with fo, noted f1 ® f2, by
(f1 ® f2)(z1,22) = fi(x1)f2(x2). This function is measurable (Remark 4.1.2) and
Theorem 4.2.7 gives right away that f; ® fa belongs also to L' (11 ® o) as well as
the formula

//XlxXz(fl ® f2)d(p1 ® p2) = </X1 fld/n) (/XZ fzd/m) ~
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4.3 The Lebesgue measure on R™ and tensor products

The Lebesgue measure on R™ was constructed in Section 2.4. In the present sec-
tion, we are willing to compare that measure to the tensor product of Lebesgue
measures on R, so that we can reduce the computation of multiple integrals to a
succession of computations of simple integrals.

Theorem 4.3.1. Let my1,mo be integers > 1. We set m = my + ma. With \g
standing for the Lebesque measure on R% and Ly for the Lebesque o-algebra on RY
(see Theorem 2.4.2), we have Ly, D Ly, @ Loy, and Ay, coincides with Ay, & Am,
on Loy, @ Loy, -

Proof. Using the notation of Definition 1.1.3, we get from (1.2.15) and Remark
414

B, ® By, = Bp = M (compact CAR) C M (CAR) = Ly, @ Loy, (4.3.1)

Theorem 2.2.14 implies that for E; € L, j = 1,2, there exist a F,, set A; and a
Gs set Bj such that A; C E; C Bj, Ay, (B;j\A;) = 0. As a result, we have

A xR™ Cc By xR™ C By x R™2,
N~ ~ - - ~ 4
F, set G set
It is thus enough to prove that
Am ((B1\41) x R™) =0, (4.3.2)

since this implies that F1 xR™2 € £, (Theorem 2.2.14 ) as well as R™ x Ey € L,,,
so that Fh x Ey € Loy, entailing L., ® Ly, = M(Rectangles) C L. To obtain
(4.3.2), we shall use Proposition 1.4.4 (2) and prove that for all M >0,

Am((Bl\Al) X {1’2 € Rm27 ‘I2| < M}) =0. (433)

On the other hand, A, ® A, is a positive measure defined on By, = By, @ By,
finite on the compact sets since a compact subset K of R™ is included in a product
B1 x B2 with 8; = {z; € R™,|z;| < M} and thus

()‘m1 Y )"mfz)(K) < ()\ml Y )"mfz)(ﬁl X 62> = )\m1 (51>)‘M2 (ﬁQ) < +o0.
Moreover, from Theorem 2.2.14 (2) and Definition 4.2.4 we find
Ay @ Ay )([0,1]™) = A, ([0, 1)) A, ([0, 1]™2) = 1.

Also A, ® A\, is invariant by translation since for E € B, and t = (t1,t2) €
R™ x R™2, we have

oy ® Ay )(E 4+ £) :/

R™1

( [ et aidn, <xz>) Do (1)
R™m2
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and by translation invariance of A,,,, we get

()‘m1 ® )‘mz)(E + t) = / (/ 1E+(t1,t2)(m17 To + tQ)d)‘Wu (31‘2)) d)\ml (1‘1)
R™m2

R™1

:/ (/ 1E+(t1,0)(3317xQ)d)‘mz(xQ)> dAm, (71),
R™1 R™2

so that using Fubini’s theorem, we find

oy © Ay )(E + 1) :/

R™2

( [ im0 rinm, <x1>) Doy (12)
R™1

and using translation invariance of A,,,, we get

oy ® Ay )(E 4+ £) :/

( [ et + tl,m)dxml(xl)) Doy (12)
R™2 R™1

- /R y ( /R N lE(ml,mg)d)\ml(ml)) Ay (72) = (Amy @ Amy ) (E).

As a result, from Theorem 2.4.2 A, ® Ay, and Ay, coincide on B,,. This implies
(4.3.3) since A\, (B1\A1) = 0. We have proven that

B = Buny, @ Bing C Loy @ Lany C Lo, (4.3.4)
A€ Bo = (Amy @ Ay )(A) = A (A). (4.3.5)

Moreover, for Q € Ly,, ® Ly,,, since Q € L,,, there exist an F, set A and a Gs
set B such that A C Q C B, A, (B\A) = 0. Since A is a Borel set, we get

<Am (B\A)=0
~ 7~ N
An(Q) = An(Q\A) +Am(A) = Ay @ Ay ) (A).
Moreover as B\ A is also a Borel set, we have

SAmq @Amy ) (B\A)=Am (B\A)=0
- -~ ~

proving that A, coincides with A,,; ® A, on L, ®L,,,, completing the proof. [

4.4 Notes

Sections 4.1-4.2 clearly belong to Chapter 1 and we could have logically exposed
their content there. However, it was our wish to reduce as much as possible the
exposition of the general theory and to delay the introduction of multiple integrals.
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We have seen Ly 4ms O Lmy @ Ly, and that inclusion can be shown to be
strict. In fact £, is complete (Property (5) in Theorem 2.2.1), whereas L, @ L,
is not complete. However it can be proven (see Exercise 4.5.3) that

(le ma ) £m1 +ma2» )‘m1 +me )

is the completion of the measure space (R™* x R™2, L,,,, ® Lynys Ay @ Ay )-
Let us review the names of mathematicians encountered in this chapter:

Guido FUBINI (1879-1943) was one of the greatest Italian mathematicians; he was
expelled from Italy in 1938 by the antisemitic laws of the Mussolini regime
and emigrated to the US, where the Princeton Institute for Advanced Study
offered him a position.

Leonida TONELLI (1885-1946) was also an Italian mathematician.

4.5 Exercises

Exercise 4.5.1. Let L be the Lebesgue o-algebra on R. Checking a set {a} X A,
where A CR, A ¢ L, show that L ® L is not complete.

Answer. In Exercise 2.8.19, we have constructed a subset A of the real line which
does not belong to the Lebesgue o-algebra (our construction depended heavily on
the Axiom of Choice). With Ay standing for the Lebesgue measure on R?, we have

{a} x AC {a} xR, X({a} xR) =Y Xa({a} x [k, k+1[) =0.
keZ

Nevertheless {a} x A does not belong to £ ® L, otherwise using Proposition 4.1.3,
we would find

L3> ({a} x B)(a,") = {z2 € R, (a,x2) € {a} x A} = A,
contradicting A ¢ L.

Exercise 4.5.2. Let (X;,d;),j = 1,2 be two separable metric spaces. We define on
(X1 x X2)2, d((z1,22), (y1,2)) = max(di(z1,y1), d2(22,y2)).

(1) Show that d is a distance on X = X1 X Xo such that both projections X1 X
X9 — X;,5 = 1,2, are continuous. Show that d defines the product topology
on X1 X Xo.

(2) Show that (X,d) is separable.

(3) Show that every open set in X is a countable union of products of open balls.

(4) Show that the Borel o-algebra of X equals the tensor product of the Borel
o-algebras on each Xj.
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Answer. (1) The mapping d is valued in Ry (see (1.2.7), (1.2.8), (1.2.9)) symmetric
since d; are symmetric, satisfying the triangle inequality (as the d;), separated (as
the d;). The projections 7; are continuous since if

li7rln d((ﬂh,n, T2.n), (T1, 1‘2)) =0,

this implies lim,, d;(x;,, ;) = 0. Since the product topology &, on X; x Xy is
defined as the weakest (coarsest) topology making these projections continuous,
we find that &, C 04, where 0y is the topology defined by the distance d on
X1 x X5. On the other hand we have for x; € X;,r > 0, with obvious notation,

Bd((l‘hﬂ?g)ﬂ") = Bdl(ml,r) X By, (x2,7)

so that the topology €y on X; x X, generated by the open d-balls!, is equal to
the topology generated by the products of open balls. Since the products of open
balls belong to &), we find that €y is included in &), and thus &, = 0,2

(2) Let (2jn)nen be a dense subset of X;: then D = {(1’1777“1’27”
countable and dense in X.

(3) Let Q2 be an open subset of X. We consider the countable family of balls

1) Ca = {Bal(y, T)}yeD,reQi-
Bd(y,T)CQ

)}(m,n)€N2 is

Let g € Q: then By(zo,70) C 2 with some positive rp € Q. We can find yo € D
such that d(zo,yo) < 70/2: this implies zo € B(yo,70/2) C Q (since d(yo, z) <
r0/2 = d(x0,2) <9 + ') =19 = 2 € By(x0,70) C Q). As a result,

Q= UyGD,TGQin(z% T)7
Bd(y,T)CQ

giving the result since By(y,r) is a product of open balls.?

(4) We have, with obvious notation By ® By C B since B is a o-algebra such that
the projections are measurable (since they are continuous), thus contains B; ® Ba.
Moreover we have By ® Bo C B = M(C) C By ® By since each element of C is a
product of balls, proving the result.

f X is a set and (&;);¢s is a family of topologies on X, then & = N;c0; is also a topology
on X. Let F be a family of subsets of X: since P(X) is a topology on X, we may define the
topology on X generated by F as the intersection of topologies on X containing F: this is the
coarsest topology on X containing F.

2Taking d((z1,2), (y1,y2)) = d1(x1,y1)+da(x2,y2) does not change significantly the argument,
although 8 = By((x1,22),r) is no longer a product of open balls, it is a union of products since
(21, 22) € B implies that Bg, (z1,7/2) X Bg,(z2,7/2) C .

3Here also, taking d((x1,z2), (y1,y2)) = d1(z1,y1) +da2(x2,y2) does not change significantly the
argument, although in that case By is not a product of balls. However, defining ij,j =1,2
as in (}), we find that B4(y,r) is a union — necessarily countable — of products By X Bz with
Bj c Cj.
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Exercise 4.5.3. Let m1, mo be positive integers and let us set m = mq + ms.

(1) Prove that By, = By, @ Bu,, where By stands for the Borel o-algebra on R?,
(2) Prove that L, @ L, C Ly, where L4 stands for the Lebesque o-algebra on
RY and that the inclusion is strict.
(3) Prove that (R™, Ly, A\p) is the completion of the measure space (see Exercise
2.8.13) (R™ x R™2, L, @ Lonys Amy ® Ay )-
Answer. (1) See Exercise 4.5.2.
(2) See Theorem 4.3.1 and Exercise 4.5.1 for the strict inclusion.
(3) From Theorem 4.3.1, we know that A, coincides with Ay, ® A, 01 Ly, @ Loy,
Let P € L,,: there exists a F,, set A (thus in B,,), a G5 set B (thus in B,,), such
that
ACPCB, MJ(B\A)=0.
Now A € By, = By, @ By, C L, ® Ly, we find
P=P\AU A , PN\Ac B\A , \.(B\A4)=0.
N ~~ N
€Ly ELm i ®Lmy €ELmy ®Lmy
so that P belongs to the completion of £,,, ® L,,, for the measure A\,,;, ® A,
which coincides with A, on L,,, ® L,,,. Since the measure space (R, Ly, Ay, is
complete and contains (R™* x R™2, L, @ Ly, Ay ® A, ), this proves the result:
in fact if (R™,C, ) is the completion of (R™ x R™2, L, ® Loy, Ay @ A, ), the
o-algebra C is generated by L,,; ® L,,, and the subsets of its negligible sets and
since Ap,; ® Ap, coincides with A\, on L, ® L, C is included in £,,.

Exercise 4.5.4. Let ¢ be a continuous function supported in [0,1] such that
[ o(t)dt = 1. We define on R? the following function:

far,22) = H(w2)p(w3 — B(22)) {621 — B(w2)) — (1 — Blwz) - 1) }

where E is the integer part (floor function, see footnote on page 16) and H = 1,
the Heaviside function.

(1) Prove that

/ ( / Flar,a2)das ) dey = 1, / ( / f(or,2)dor ) dzz = 0.

(2) Comment on this example.
Answer. (1) We have ff ml,mg)dﬂcl =0 and

/f T, x9)dry = Z/n d(z2 —n)(plz1 —n) — ¢z —n — 1))ds

n>0

_Z xl—n (1‘1—71_1)) :¢($1),

n>0

and thus f(f f(xl,xg)dxg)dxl =1.
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(2) The assumptions of Fubini’s theorem cannot be satisfied: computing for in-
stance

/ (@, 22))dey
= H(z2)|p(x2 — E(x2))| / |p(x1 — E(x2)) — ¢(21 — E(x2) — 1)|dxy
— H(a)| (o2 ~ B(aa)) [ lole+1) - o(0ldr,

~ i
=cy>0
since ¢ is not periodic

/(/f(“‘lv%)ldml) dars

6wz — n)ldws = ¢5 3 / I6(8)|dt = +oo.

n>0v " n>0

so that

Exercise 4.5.5. Let ¢ be a non-negative smooth function supported in (0,1) such
that f(b(t)dt = 1. Let ¢ be a non-negative smooth 1-periodic function defined on
R such that ¥ vanishes in a neighborhood of 0. We define on R? the function

f(@1,22) = H(z2)h(x2) (¢(21 — 2) — (21 — 22 — 1)),

where H is the Heaviside function.

(1) Give an example of functions ¢, satisfying the above assumptions. Prove
that f is a smooth function.

(2) Prove that ff(xl,xg)dml =0 and calculate ff(xl,xg)dmg.

(3) Comment on this example.

Answer. (1) The function p in Exercise 2.8.6 (with m = 1) is smooth non-negative
with support [—1,1]. We can take

4t — 2
= ?( ¥ )d) : ¢ is smooth > 0 with support [1/4,3/4] and integral 1.
p(4s)ds

We can take 9(t) = >, ¢(t + n). We claim that this function is smooth, 1-
periodic and vanishes on [—1/4,1/4] + Z: in fact the function ¢t — ¢(t — n) is
supported in [n + }1, n+ Z], so these functions have disjoint supports for different
n, implying that 1 is smooth 1-periodic with support Z + [}17 Z], thus vanishing on
Z+ |-}, ;]. As aresult, the function  — H(z)i(z) is smooth and f is a smooth
function.

(1)
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(2) We have [ f(z1,22)dz1 =0 and

vanishes for zo
outside (z1 — 2, 1)
+oo ~ A ~

/f(xlva)dm2 =, Y(x2) (p(x1 — 2) — p(x1 — 22 — 1)) do

= /¢(I1 — IQ)EH(I'Q)'IZ}(IQ) — H(IQ — 1)1,[1(1’2 — I)Zdiz
w(w2)

The function w vanishes for x5 > 1 since ¥ is 1-periodic and also for x5 < 0; as a
result,

flz1,x0)dxy = 1 d(z1 — x2)(z2)dws.
0

(3) We find thus

= / (/ f(ml,mg)dxg) diy = / (/ (o — x2>¢(x2>1[0,1](x2)dx2) dary,

and using Tonelli’s theorem, this gives

I= /¢(t)dt/01¢(s)ds =1

This is a smooth version of the counterexample of Exercise 4.5.4. Of course com-
puting

/|f($17$2)\d$1 = H(x2)(v2) / |p(x1 — 2) — P21 — 22 — 1)|ds
— Hia2)u(ea) [ 601 +1) - o(0)d,

and as in Exercise 4.5.4(3), [ ([ |f(z1,22)|dz1) dzy = +00. On the other hand,

+oo

[15ra)ldzs = [ wa)loten — 2) = 61 ~ 22 - Dldaa,
0
and using Tonelli’s theorem, we get as well
/ ( / |f<x1,x2>dx2) dnr = [ [ B )ot+1) = 60 dtdns = +oc.

This is a second example proving that the assumption (1) in Fubini’s theorem
4.2.7 cannot be dispensed with.
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Exercise 4.5.6. We consider (R, P(R),bo) where by is the counting measure and
(R, L1, 1) the Lebesgue measure on R.

(1) Prove that D = {(z1,22) € R?, 21 = 22} belongs to L1 @ P(R).

(2) Calculate le(xl,xQ)d)\l(ml) and le(ml,mg)dbo(mg).

(3) Comment on the previous example.

Answer. (1) As a closed subset of R?, the diagonal D is a Borel set of R2, thus
(see Exercise 4.5.3) belongs to By = B1 ® By C £1 @ P(R).

(2) Since x1 — 1p(z1,x2) vanishes Aj-a.e., we have [ 1p(z1,22)d\ (21) = 0, and
on the other hand [ 1p(x1,z2)dho(z2) = 1.

(3) As a result, we have

/(/ 1D(I13I2)d)‘1(m1)) dho (a2) = 0,

and [ (f 1D(m1,m2)dho(m2)) dM1(z1) = +o00. This proves that the assumption of
o-finiteness in Tonelli’s theorem is not superfluous (the counting measure is o
finite only on countable sets).

. . A g
Exercise 4.5.7. Prove lims, o [, “2%de = 7,

identity 1/x = 0+°° e~ tdt for x > 0.

using Fubini’s theorem and the

Answer. We have for A > 0,

A . A +o00
/ ST g = / sinx (/ e“"dt) dx,
0 T 0 0

so that using Fubini’s theorem,

A . +oo A . +ee EARRT
/ Slnﬂ;‘dx _ / / Im{ew(z—t)}dx dt = / [Im e‘ ]m:g‘dt
i . | A o 11—t "=

_ /0 I (<tj+1i> (A0 _ 1)> dt

+oo 1
= / 2 (1 — et cos A — te M sin A) dt.
0

Lebesgue’s dominated convergence theorem ensures that
. Asing oo dt T
lim dr = ) = .
A—+oo 0 x 0 te + 1 2

Exercise 4.5.8. Let (X, M, 1) be a measure space where i is a positive measure.

(1) Let S be defined by (3.2.20). Show that for 1 < p < +o0, S is dense in LP ().
(2) Show that for 1 <p < +oo, CO(R") is dense in LP(R™).
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(3) Let Q be an open subset of R™. Show that for 1 < p < +oo, C2(Q) is dense
in LP(Q).

(@) Let p € CX(R™Ry), [pn p(x)de = 1 (¢f. Ezercise 2.8.6). For e > 0,2 €
R, u € LL (R"), we set

loc
ue<x>/nu<y>p(mey) w.

Show that it is meaningful and that u. € C>°(R™).
(5) Let 1 < p < 4o0. Show that for v € LP(R™), we have ue € LP(R™) and
lime_,o, ue = u in LP(R™).

(8) We replace p in (4) by el where || is the Fuclidean norm. Show that
for w € LY(R™), ue is analytic and lim._,o, ue = u in L'(R™). Assuming
u € CY(R™), show that this method provides a proof of the Stone—Weierstrass
Theorem.

Answer. (1) is Proposition 3.2.11,
(2), (3) are proven in Theorem 3.4.3.

(4) The function y — u(y)p((x —y)/¢e) is compactly supported in |y| < e+ |z], so

that the integrand defining u. is indeed in Liomp for each x. Moreover the function

x — u(y)p((z —y)/e) is smooth and we have

S u(y)p™ ((z — y)/E)E‘"‘k’ < Ju@)|[| oM p~e " *1(|y| < e+ M),

which is € L*(R™). We may apply Theorem 3.3.4 to get u. € C™ along with

ul®) () = / u()p™ (& — y)/e)e" " dy.

(5) We note p.(t) = p(te 1)e™™ and u. = pe *u. This function belongs to C°°(R™).
Jensen’s inequality (Theorem 3.1.3) implies for v € L?(R™)

Pe* Ul o gn :/
loer uloqan = |
<[ oo wlutPdyds = [ Jut)Pdy =l e

R» xRm™ R~

entailing u. € LP. Moreover using again Jensen’s inequality, we get

/Rn [(u* pe)(z) —u(@)[Pdr = /Rn /Rn (u(m —€t) — u(m))ﬂ(t)dt
< /n /n |u(z — et) — u(x)|Pp(t)dtde = /Rn I7erte = ull? gy p(t)t.

p

dxr

/n pe(x — y)u(y)dy

p
dx
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Exercise 3.7.15 proves pointwise convergence towards 0 of ||7epu — u|} ,p(t), which
is dominated by 27||ul|7 ,p(t) € L'. We get limc_o ||u* pe — ul|Lrgn) = 0.
(6) We have

ue(x) :/ 6_”|x_t|2672u(t)e_"dt

and for u € L'(R"), we have uc € L'(R™) (even [ue||L1(rn) < [|ul| 11 @) using the
previous proof). We may extend u. to C*, defining for z = = + iy (z,y € R"),

ue(x + iy) = / e X () ey (et (4.5.1)

This integral converges since

|ef7r2?:1(2j7tj)2672| — e—7r|x—t|267267r672y2.

Holomorphy of (4.5.1) on C™ follows from Theorem 3.3.7, inducing analyticity on
R™. The proof of the convergence in L!'(R™) of u. is proven as in the previous
question. Let ¢ € CY(R™) and

pe(r) — p(z) = /n e ((t) — () et
= /n el ((z — et) — p(x))dt.

We have for A > 0,

e(a) — ()] < /

oz — ct) — p(@)|dt + 2] o] 1~ / e g,
[t]<A

lt[>A

and thus

sup |¢e(z) — p(z)]
rER™

2
SA'B"|  sup  fp(x1) — p(22)] +2||<P||L°o/ e~ dt.
|z1—x2]|<eA [t|>A

Since ¢ is uniformly continuous, we get for all A > 0,

limsup |le — ¢l 2~ < 2|l L~ / eIt gt
|[t|>A

e—04

Taking the limit when A — 400, we find limc o, [[¢c — @[z~ = 0. As a result
@ is a uniform limit of a sequence of analytic functions, restrictions to R™ of
holomorphic functions on C™ (entire functions). The radius of convergence of the
power series defining these entire functions is infinite, so that, on every compact
set, these functions are a uniform limit of polynomials.
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Exercise 4.5.9. Find an example of a monotone class M on a set X, such that
0, X € M, but such that M is not a o-algebra.

Answer. Let X be an uncountable set and
M = {A C X, A countable}.

Then M is obviously a monotone class, but is not stable by complement, so is
not a o-algebra. Taking M’ = M U {X}, we get a monotone class: let (A, )nen
be an increasing sequence in M’. If all A,, are different from X, UA,, is countable
and thus belongs to M. If one of the 4, = X, then UA, = X € M’. Let
(Bn)nen be a decreasing sequence in M’. If all B,, are different from X, NB,
is countable and thus belongs to M. If By = X, then since the sequence is
decreasing, By = --- = By = X either the sequence is stationary equal to X and
then NB,, = X, or By41 is countable and N,enB,, is countable, in both cases

in M.
Exercise 4.5.10. Let X be a set.

(1) Let (M;)ier be a family of monotone classes on X (see Definition 4.2.2).
Prove that N' = N;e1 M; is a monotone class on X.

(2) Let F be an algebra on X, i.e., a non-empty subset of the powerset P(X)
such that

Ac F= A“c F, (4.5.2)
A Be F= AUBe F,ANBeF. (4.5.3)

Prove that the smallest monotone class containing F is the smallest o-algebra
containing F (Monotone Class Theorem,).

Answer. (1) Obvious from the definition.
(2) Since a o-algebra is a monotone class, setting

m(F) = N M, s(F)= [ M,
M monotone class M o-algebra
containing F containing F

we find m(F) C s(F). To get the required equality, it is enough to prove that
m(F) is a o-algebra: since m(F) contains F, this will imply m(F) D s(F). We
know that m(F) is not empty since F is assumed to be non-empty. Let (Ay)nen
be a sequence of m(F); to prove that U,enA4, belongs to m(F), it is enough to
prove that m(F) is stable by finite union. In fact, we have

UneNnArn = UnenBrn, Bn = Uo<k<nenAr,

and if we know that each B, belongs to m(F), the monotone class property will
imply the result. Inductively, it is enough to prove that A;, Ay € m(F) implies
A1 U Ay € m(F). Let E € F (which is non-empty) and let us define

Neg={Aem(F),ANE,A“NE,ANE° € m(F)}.
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Then Ng is a monotone class. Note first that Az contains F and thus is non-
empty. Let (A, )nen be an increasing sequence of Ng. We have

Undp, € m(F), (U Ap)NE=U, (A,NE) €m(F),

~ o~ 7
em(F), increasing

(Und) NE=n, ASNE  em(F),
~ o~ 7
em(F), decreasing

(UpAn)NE‘=U, A,NE° € m(F).
S ~ -

em(F), increasing
Let (Bn)nen be an decreasing sequence of Ng. We have

NnBn €m(F), (MB,)NE=n, (B,NE) ¢€m(F),
N~~~ 7
em(F), decreasing
(MwBn)'NE=U, (BiNE) €m(F),

N~~~ 7
em(F), increasing

(NwBy)NE‘=nN, B,NE° € m(F).
- ~ -

em(F), decreasing

Since Ng is a monotone class containing F, it contains m(F) and thus is equal to
m(F). Let us now consider for B € m(F),

Ng={Aem(F),AnNB,A°NB,AN B° € m(F)}.

Reasoning as above Nz is a monotone class; moreover it contains JF since for
E € F,B € m(F) = Ng, we have BN E,BN E°, B°NE € m(F). Since Np is
also included in m(F), it is thus equal to m(F). We have X,{) € F since F is
non-empty and for £ € F, X = E°UFE € F,X¢ = {). As a result if A € m(F),
since X € m(F), we have

AC=A°NX e m(F),
so that m(F) is stable by complement. For A, B € m(F), we find
(AUB)*=A°NB° e m(F) = AUB € m(F)

so that m(F) is stable by finite union. As a result, from the remarks at the
beginning, m(F) is a o-algebra.

Exercise 4.5.11.
(1) Calculate

I(a, ) /+OO de fora>0 and a>1/2
a,o) = or a ana .
) 0 (I‘Q + a2)a’
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dxdy
(2) Calculate J(a) = // for o> 1.
(@) R2 (L4 22 +y?)*

Answer. (1) Using Proposition 2.3.2, setting « = atant, I(a, ) =

/’“/2 a(l +tan2t)dt 4 o /”/Q(COS 122y = a' =T (o — 5)m'/?
0 ( 0 '

a? + a? tan? t)> - 2T' ()

according to Lemma 10.5.7 on the Wallis integrals.
(2) Using Fubini’s theorem, we get for a@ > 1,

e 2 _ I'(a - %)771/2 e pAp
J(a)Z/O I(V1 492, a)dy = o () /0 (L+y7)>""dy
_F(a—é)ﬂl/Q 1 _F(a—é)F(a—l)ﬂ'_ s

T 2l(a) Ia—y)= () 2T(a— L)  4(a—1)

N.B. Using the results of the next chapter on change of variables, it is easier to
calculate

4(a—1)

T +oo -
Jla) = / r ) edr = ()T =
0

Exercise 4.5.12.
(1) Calculate the volume |B™| of the unit Fuclidean ball in R™.
(2) Calculate the volume of the simplex

Y, ={zeR"Vjz; >0,21+ -+, <1}.

(3) Let p € [1,400). Calculate the volume of the unit ball of R™ for the norm

1
lzllp = (1cjen l2P) 7.

Answer. (1)We consider on R? x R the product measure )\, ® \;. We define

oo B I(" + 1
1:// te—tzdtdx:/ ring gy — PBT0G + 1)
{(z,t)ER" X Ry, ||z|| <t} 0 )

and we have also

so that
(4.5.4)
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(2) We have

|2, = H(xy)...H(xp)H1—21 — -+ — xp)dzy . . . dxy.
R"'L

We study first for f > 0 measurable and a = (a;)1<;<n € (0, +00)",

a;—1
ATORY IO SETI | (D
+ 0 1<i<n 1< VY
and we claim that
too 41+ icjcn @
Lu(f.a) = /O NS, ap) | O (4.5.5)

That property is true for n = 1, and assuming that it is true for some n > 1, we
check

aj—1

an+1 1 7
n+1 g
Inti(f,a) / / x; +mn+1 drdrn41
R, JR® Z ! ) H I'(a;)

a
U <g<n

xan+1 1
- / L (o (05) 1<)
(anJrl)

a”+1 1 _1+E1<J‘<n a;
f(t + $n+1)dtdl’n+1
//JRZ [an+1) Zl<]<n a;)

an+171

x, (5 — Tpgr)  TEasiEn W
H(zni1)H (s — 2na) f(s) 0
/]RZ * [(an+1) F(Z1gjgn a;)

_ n+l, B(an 17Zna')
_ 4321 e g + 1% ’
[ e P51y )T (001)

where the Beta function is given by (10.5.17). Formula (10.5.18) yields (4.5.5).
Applying this to a; =1, f(t) = H(1 —t), we obtain

dsdzy, 41

1 ! 1
Y, = T lde = . 4.5.6
B = p | . (45.6)

(3) We start over with the computations of (1), this time with

400
Jp = / / P~ e~ dtde = / P le= " qtv, (p)
{(2.t)€R" xRy, |||, <t} 0

Va(@)I'(, +1)

p

)
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and we have also

Hoo » 1 »
I :/ / P le dt | do = / e I1=lE gy
m \Jlzllp D Jrr

1 v\ 2" "
_ </ ol dt> _ 2 F(l/lp)
p \Jr pt

2\ T(/p)™ (2" pD(1/p)"
v = ;) r<z+1>‘<p) nT(n/p)’ (45.7)

N.B. Note that the above formula for p = 1 gives the volume

so that

n - 2n n
An({z € RY)Y oy < 1}) = =2 (),
1
so that we have found another way to proving (4.5.6).

Exercise 4.5.13. We consider the following functions, defined on R? by

A, -y .
fl(x7y) — £2 + 32 Zf (33711) # 07 7 f2(x7y) _ (1,‘2 + y2)3/2 ’Lf (I’7y) 7& O’
’ ¥ @y =0, 0 if (2.9) = 0.

Calculate for j =1,2,

/01 (/01 fj(x,y)dy> da, /01 (/01 fj(x,y)dx> dy.

Comment on the result.

Answer. The function f; is bounded measurable since

fl(x7 y) = IRZ\{(O,O)}(I7 y)R(I7 y)a

where R is a continuous function on R?\{(0,0)}, such that |R(z,y)] < 1. As a
result, if €2 is an open subset of R which does not contain 0,

Q) = {(z,y) € RA\{(0,0)}, R(x,y) € O} = R7}(Q)

and R™(Q) is an open subset of R*\{(0,0)} thus an open subset of R2. If Q

contains 0

fl_l(Q) = Rfl(Q) U {(0,0)}, union of an open set and a closed set, thus a Borel set.
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The function f; is also measurable (and unbounded) for the same reasons. We
calculate for y > 0,

1, 2 2 1 2
- 2 1 1 1
/ x2 dex:/ (1— 2y 2)dmzl—2y2 arctan =1 — 2yarctan .
o Tty 0 =ty Yy Yy Yy

We note that y — y arctan( ;) is continuous on [0, 1] and that lim,_,o, y arctan(;)
= 0. We have

/O (1 —Engrcta\nf(l/yl)dy —1- ([y2 arctan(1/y)]s —/O v +1 2(—1/2)dy)

Yy
u/(y) v(y)

1 2 1
s Y s 1
- dy=1-" -1 dy =0
4 /O 142" 4 +/0 142"

The value of fol ( fol fi(z, y)dy) dz is identical. In fact the function f; is locally
integrable so that

L = // f1xydfvdy—// f1(y, z)dxdy
[0,1]%[0,1] [0,1]x[0,1]
// fi(e,y)dedy = 1,
[0,1]x[0,1]

(the second equality follows from the change of variables (z,y) + (y,x)) which
implies I; = 0. The assumptions of Fubini’s theorem 4.2.7 are fulfilled and the
double integral I; is indeed the iteration of simple integrals.

It is a different story for fs, for which we cannot argue as above although
fa(z,y) = —f2(y,x). The function fy is measurable, but not locally integrable
near the origin since the polar coordinates change of variables gives

| f2(z, y)|dxdy = | cos O — sin O]r~drdh.

We calculate for y > 0,

! rT—Y 2 2\—1/219 !
_ _ —1/2 2 2\—3/2
16) = | (m2+y2)3/2dx (@49 =y [ )

=1
1/2 {( ty ) 1/2my—2L_

=0
1/2 (1+y) 1/2

)~
= ')~
=(1+y% 1/2< 1 - >

=(1+y*)"2 1+

y
(1492 )1/2+1)>'
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We may then calculate

1 1 1
J)dy = — | (1+42)"2d +/ Y d
/O (y)dy /O( y) Y 1yt (122

arcsinh(1) sinh t
= In(y + (1 + ¢*)V/2 O+/ cosh tdt
[In(y + (1 +*)"?)]] ; 1+ sinh? ¢ + (1 + sinh? ¢)1/2

arcsinh(1) sinh #
= —In(1+ V2 +/ coshtdt
( ) 0 cosh? t + cosh ¢

arcsinh(1) sinh ¢
= —1In(1 2
( +\/)+/0 cosht +1

= —In(1+4+Vv2)+ [In(cosht + 1)]arcsmh(1)

= —In(14+Vv2)+ [1H(COSht+1)]
= —In(14+v2)+1In cosh(In 1+\/2)) )71n2

h
arcsin (1)7 and since arcsinh(1) = In(1 + v'2),

142 1
= —m(1+ v+ v 21+\/2+1)71n2
2 V2 o1
— —In(1 4+ /2) +ln( +é é 72+1)71n2:—1n27£0.

If for z > 0, we calculate

I T
K@= [y Dapty==T0

1
/ K(z)dx =1n2,
0

so that both integrals in the Exercise for j = 2 make sense with two differing values
In2 and —In2. This does not contradict Fubini’s theorem since the assumptions
of integrability on the product space are not satisfied. This simple example is a
useful reminder that formal manipulations of integrals without prior checking of
hypotheses could lead to errors. The iteration of simple integrals does not depend
on the order of integration provided the function is integrable on the product
space. Also, we can remark that the fact that both integrals make sense is not
sufficient to ensure their equality.

we shall find

Let us give another example, algebraically simpler than the one above. We
define the measurable function

F — maxw(;é/,y?»)7 if x Z 1 and Yy Z ]_’
2(w,y) :
0, otherwise.
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For z < 1, Fy(z,y) = 0. We calculate for 2 > 1,

x 400
T -y T -y
/Fz(%y)dy=/ 5 dy+/ 5 dy
R 1 Y x Yy

2 1 -2
3z —-1) -z <x - ) A D

2 2 2

We have thus

—+oo
/ (/ Fg(ﬂmy)dy) dx = / (—x 2+ 2732 Nde = -1+ 271271 = —3/4.
R \J/R 1

The same calculation gives [, (f]R Fy(x, y)dx) dy = 3/4. The above remarks on f,
are true as well for Fj.

Exercise 4.5.14.
(1) For z € C\R_, we define

d¢
Logz = ]{ .
1,2 §

Show that it makes sense and coincides with Inz for z € R% . Show that
exp(Logz) =z for z € C\R_.

Calculate Log(exp z), for z such that exp(z) ¢ R*.
(2) Show that for Rez > 0,

/ e ™ gt = exp —(Logz)/2 = 271/,
R

(3) Show that

Inx 72 arctan z \ 2
/ 5 de =, / ( > dr =7mln2.
R+ xre — ]. 4 R+ T

Answer. (1) is treated in Theorem 10.5.1.
(2) From Theorem 3.3.7 z — [, e~ dt is a holomorphic function on {Re z > 0}

Inz

which coincides with exp(—",%) for z > 0. By analytic continuation, these two
functions coincide on {Re z > 0}.

(3) We have
1 ~+o0 —1 “+ o0
| | d |
/ QH‘T de = / n_(g ) g = / Qny dy,
o z2—1 1 oy i-ly 1 yr—1
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4.5. Exercises
so that
+oo 1 +oo 1 +oo 1
I:/ 2nx dm:2/ 2nx dm:2/ n2x D
0 xre — ]. 1 e — 1 1 X k>0
Using Corollary 1.6.2 of Beppo Levi’s theorem, we get
1_22/ 2klnmdm—22/ —(k=Dtyqy
k>1 k>1
+oo ) ) 7T2
=2 “®sds(2k — 1) =2T°(2 2k —1)"° =
S [ etsaser -1 —ore Y k-2 =T
E>1 k>1
since I'(2) = 1 and
m -2 IPRNNPS
G:Zn =Y @k-1T24) 2k 2= (2k—1)"2+2 6
n>1 E>1 k>1 E>1
which implies Zk21(2k -1)2= 7r2((1,) — 214) = ”82.
We calculate first
1
J = /// dxdydz.
0,1]x[0,1]xk, (1 +2222)(1 +y?2?)
For z,y € R%, we have
dz = (y? — 2?)7! t — t 2=
/0 (14 2222)(1 + y222) z = (y° — x°) " [yarctan(yz) — xarctan(xz)]ZZ§
_ yarctan(Ay) — x arctan(Ax) N v
B y? — a2 A—too 2(x +y)’

and thus

wdxd, T [! T [!
// i y =, / (In(z + y)])= 1dx =, / (In(z +1) — Inz)dz
[0,1]2 0 0

= ;r[(m"‘ 1 In(x +1) —xlnx](l) = 7272ln2 =7ln2.

On the other hand, we have

7 // 1 {arctanyz]y_ld i
= xdz
0,1)xR, 1+ 2222 z y=0

y=1 2
arctanrz,z=1 | arctanyz arctan z
= [ ]E*O dz = dZ,
R4 z - 4 y=0 R 4

which is the sought result.



Chapter 5

Diffeomorphisms of Open Subsets
of R™ and Integration

5.1 Differentiability

Definition 5.1.1. Let U be an open subset of R™, zo € U and let f: U — R™. We
shall say that f is differentiable at x( if there exist a linear map A : R" — R™,
ro > 0 and a mapping € : B(0,r9) — R™ such that for all |h| < 7o,

flzo+h) = f(zo) + Ah + €(h)|h|, ]lgr%)e(h) =0. (5.1.1)
Here |h| stands for the Euclidean norm of h, but we may choose any other norm

on R™. We say that A is the differential of f at xg and we write f'(z9) = A.

N.B. Note that the definition above is consistent since if for rg > 0 and for all
|h| <o,

f(:l?o—‘rh) = f($0)+A1h+61(h>|h‘, ’11_1)1'661(]1) =0,

f(xo+ h) = f(zo) + Ash + e2(h)|hl], %in}) e2(h) =0,
—

we get (A1 — A2)h = (e1(h) — e2(h))|h| and thus for all T' € R™ such that |T| =1
and for all s € (—rg,ro), this gives

(A1 — AQ)T = El(ST) — EQ(ST) = hII(l)(El(ST) — EQ(ST)) = O7 i.e., A1 = AQ.
S5—r

Remark 5.1.2. (1) We note also that f'(x) is a m x n matrix (m rows, n columns)

as a linear map from R” into R™.

(2) If f is differentiable at a point x, then the partial derivatives (gj (x))1<j<n of
; <<

f exist, i.e., for all 1 < j < n, with e; the jth vector of the canonical basis of R",

L flatte) — f(z) _ Of

li .
t—0 t Ox; @)
teR*
N. Lerner, 4 Course on Integration Theory: including more than 150 exercises with detailed answers, 219

DOI 10.1007/978-3-0348-0694-7_5, © Springer Basel 2014
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In fact the differentiability of f at  implies f(zo+te;) = f(xo)+ A(te;)+e(te;)|t],
so that for 0 < [t]| < ro, we get

(f(z+te;) — flx))t™" = Aej + e(te;)|t|t ",

which implies 27 (z) = Aej = f'(x)e; and thus

ij
!/ ! !/ af
f(x)h = f'(x) Z hje; | = Z hif'(z)e; = Z Gx-(m)hj'
1<j<n 1<j<n 1<j<n
The first-order Taylor—Young formula (5.1.1) can thus be written for

h=(hi,...,hn) €R", || <1, as

0 5.1.2
=@+ Y @hyemin (612
1<5<n O
Note that f(z) = (fi(z),..., fm(z)) belongs to R™ and that
0f1
ox;
8 J
b 0=
J O fm
Ox
Finally, f/(z) is the m X n matrix
of1 of1
0x1 8f oz,
or, (5.1.3)
A fm Ofm
Ox1 Oz, / 1<i<m

1<j<n

(3) Conversely, the existence of partial derivatives at a point does not ensure
differentiability (not even continuity), as shown by the following example. We set

2.y) = m;fyz for (x,y) # (0,0),
Hew {0 if (z,y) = (0,0).

That function is discontinuous at 0 (for € # 0, we have f(e,e) = 1/2) and thus
is not differentiable at 0 (Formula (5.1.1) implies continuity at zg). However, we
have for all x,y, f(x,0) =0, f(0,y) = 0, which implies gi (z,0)=0= g£ (0,y).

(4) However if the partial derivatives exist and are continuous on an open set U,
then f is continuously differentiable on U, i.e., is differentiable on U with U >
x — f'(x) continuous. Let us prove the previous statement. We consider z € U;
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there exists r > 0 such that the open ball B(z,r) C U. For h = (hq,...,h,) € R",
such that |h| < r, we have

flx+h)—fx)=flxr+h1,... @0+ hn) — f(T1,...,2p)

:f(x+ > hjej>—f<a:+ > hjej>

1<j<n 2<j<n
+f<$+ Z hj@j) —f($+ Z hj@j)
2<j<n 3<j<n

+ f(x + hnen) — f(2),

so that
0
fatm-sw- 3 o) @
1<j<n
— Z {f<x+hjej+ Z hkek> f<x+ Z hk6k> — aag;f (x)hj}
1<j<n j<k<n j<k<n J
on Jiohs - g o}
= + hrer + 0h;e; |dOh; —
1;71{/0 3Ij x jgén k€k j€j J 5%( )
_ 2 of
_K% /{6% <x+j<kz<nhkek+9hjej> axj(x)}dﬁ.

As a result, we have

Fa+h) = f@) = >

=n(h)

af |
oz, (1’+ 0 Z hkek> ~ o, (x)

Jj<k<n

< |h| Z sup

1<j<n 0€l0,1]

with limp_,0n(h) = 0, thanks to the continuity of the partial derivatives. This
proves the differentiability of f at z and the continuity of f/(z) follows from
(5.1.3).

Proposition 5.1.3. Let U be a convexr open subset of R™ and let
be a differentiable mapping on U. Then for x,y € U,

1f@) = f@)llrr < lly — 2llee sup [If'(z+0(y — ).

0€(0,1)
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For a (m x n) matriz A, we set | A|| = suppy,.=1 [|AT||rm, where ||T'||ga is the
Euclidean norm of T € R?.

We prove a more general statement with the following lemma whose second
property implies the proposition.

Lemma 5.1.4.

(1) Let E be a normed real vector space, let a < b be real numbers and let ¢ :
[a,b] — E be a continuous mapping, differentiable on (a,b) so that there
exists M € Ry such that for all t € (a,b), ||¢'(t)|| < M. Then

[6(b) — d(a)l| < M(b— a).

(2) Let E,F be normed vector spaces, let U be an open set of E, let xg,x1 € U
such that (xo,x1) = {(1 — 0)xo + 0x1}gco) C U and let f : U — F be a
continuous mapping which is differentiable on (xg,x1). Then

1f (1) = fzo)ll < [lw1 — 2ol sup  [[f' ().

z€(zo0,21)

(3) Let E be a normed vector space, let U be an open set of E, let xg,x1 € U
such that (xo,z1) CU and let f: U — R be a continuous mapping which is
differentiable on (xg,x1). Then there exists x € (xg,x1) such that

f(x1) = f(xo) = f'(2) (21 — x0).

Proof of the lemma. (1) We may assume by rescaling that a = 0,b=1. Let € >0
be given. We define

T. = {t € [0,1], [ $(t) — $(0)]| — Mt — et < €}.

By continuity of ¢, T is a closed subset of [0, 1], contains 0 (the lhs of the inequality
vanishes at 0) and thus by continuity, T, contains a neighborhood of 0. Defining
c =sup T, we have ¢ > 0 and since T is closed, ¢ € T¢. Let us assume that ¢ < 1.
We can find ¢ > ¢ such that

Hwi - f@ < ')l +e

implying

[6(t) = ¢(0)]| < [lo(t) — d(o)] + lld(c) — ¢(0)]]
(t—o)|l¢ (e)| + et —c)+ Mc+e(c+1)
(t—c)M+et—c)+ Mc+e(c+1)

Mt + et + ¢,

IN A CIA
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so that t € T,, which is impossible since t > ¢ = sup T.. As a result ¢ = 1 and thus
Ve>0, [[¢(1) —(0)[ < M + 2,

implying the result (1). Property (2) follows immediately by applying (1) to ¢(8) =
f(zp). Let us prove the equality (3). We consider ¢ : [0, 1] — R defined by ¢(0) =
f(zp). The function ¢ is continuous on [0, 1] and also differentiable on (0,1) with
¢'(0) = f'(zo)(w1 — x0). Applying the Mean Value Theorem (see, e.g., Lemma
5.10.2) to ¢ gives the result (3). O

N.B. We have proven in (1), (2) an inequality, whereas the 1D mean value theorem
provides an equality. There is no equivalent of the 1D result when the function
f is valued into a space with dimension greater than 2: consider for instance the
analytic mapping [0, 271] 3 t > e = f(t) € C. We have f(27)— f(0) = 0 and there
does not exist any ¢ € (0,27) such that f(27) — f(0) = 27 f'(c) since f'(c) = ie’
has modulus 1.

5.2 Linear transformations

Proposition 5.2.1. Let T be a linear isomorphism of R™ and let E be a Borel set of
R". Then T(E) is also a Borel set. For E € By, we set u(E) = A\, (T(E)). Then

=X ([0,1]") A, iee.,
M (T(E)) = X (T([0,1]) A (E). (5.2.1)

Proof. We note first that T(E) = (T~!)~(F) and since T~ is continuous (since
linear), it is also Borel-measurable, so that (T~)~"!(E) € B,, for E € B,,. Moreover
u is indeed a Borel measure (i.e., a positive measure defined on B, finite on
compact sets): u(0) = A\ (T(0)) = A, (0) = 0, and if (Ex)ren is a sequence of
pairwise disjoint Borel sets, the injectivity of T implies for k # I, ) = T(ExNE;) =
T(E;)NT(E;), and we have

1(UkenEx) = A (T(UrenEr)) = An (UkenT (Ex)) = Z M (T(Ey)) = ZM(Ek)-
keN keN

compact

SN
Moreover for K compact, we have 1(K) = A\, (T(K) ) < +o0. Finally, 4 is invari-
ant by translation since for x € R" and F € B,

WE +z) =X\ (T(E+2)) = M (T(E) + Tz) = M\ (T(E)) = pu(E).
We have also

p(0,1]7) = u([=1/2,1/2]") = M (T([-1/2,1/2]"))

open set containing 0
A ~

> (17710 = 1/2,1/2[)) >0,
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where the last inequality follows from (1) in Theorem 2.4.2. As aresult, for E € B,
we have

n(E)
p([0,1]")

N.B. According to Lemma 1.4.3, p is defined as the (direct) image of the Lebesgue
measure by T~ !: for E € B,

(T On)(B) = 2 (T7H)THE)) = M(T(E)) = w(B).

Introducing the notation T*(\,) = (T~1).(\,) for the inverse image, we have the
following general framework.

Let (Y, N,v) be a measure space where v is a positive measure. Let f: X —
Y be a bijective mapping. We define the inverse image f*(v) (or pullback by f)
of the measure v as

p=f1w)=(w), de, u(A)=v(f(4),

for Ae M ={AC X, f(A) € N}. M is indeed a o-algebra on X from Lemma
1.4.3: it is the largest o-algebra on X such that f~! is measurable. The mapping
f is also measurable, since for B € N, f(f~1(B)) = BeN.

When X,Y are topological spaces, N is the Borel o-algebra on Y and f
is an homeomorphism, M is the Borel o-algebra on X: in fact M contains the

open subsets of X since f is an open mapping, as a homeomorphism, proving that
M D Bx. On the other hand, if A € M,

A= f_l(f(AD € Bx,
N~~~
€By
since f is measurable as a continuous mapping.

Proposition 5.2.2. Let T be a linear isomorphism of R™. Then A, (T([0,1]™)) =

| det T'|.
2 1
= (1/2 1) ’

the determinant is equal to 3/2 which is the area of the parallelogram P in Fig-
ure 5.1.

For instance, for

Analogously, for

1 0 0
T=|3/4 3/4 1/4],
0 1/4 1/2

the determinant is 5/16 and is equal to the volume of the parallelepiped @ in
Figure 5.2.
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Tey =2e1 + (1/2)es

-
L

€1

Figure 5.1: PARALLELOGRAM

€3

A

T61

Figure 5.2: PARALLELEPIPED

Proof of the proposition. Let us set Ar = A\, (T([O7 1]")) In the previous proof,
we have seen that Ap > 0 and A\, (T(E)) = ArA,(E), for any Borel set E. For
Ty, Ty linear isomorphisms, setting @1 = [0, 1]™, we find

A, = )\n((TQTI>(Q1)) =M (T2 (Tl(Q1))) =An\, (Tl(Q1))

5.2.2
— Ap A Mn(Q1) = Ay Ag,. (522)

We have also Arq = 1. We want to prove
Ar =\, (T([O, 1]")) = |det T, (5.2.3)

for all invertible matrices T' (matrix of T in the canonical basis).
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CASE I. That formula holds for a diagonal matrix T": in fact if

ay 0 0
0 0 ap

assuming all the a; > 0, T(Q1) = [[,<;<,[0, a;] and Theorem 2.4.2 (1) implies

)\n(T(Ql» = H a; = \detT|.

1<j<n
If some a; are negative, we have to replace in T'(Q1) the interval [0, a;] by [a;, 0]
so that the result is unchanged.

CASE II. The formula holds for T symmetric, i.e., whenever 7' = 'T": in that case
T is diagonal in an orthonormal basis and there exists an invertible matrix P and
a diagonal matrix D such that /PP = I, D = P~'TP. We get from (5.2.2) and
CASE I,

Ar =Appp-1 = ApApAp-1 = Ap =|det D| = |det T.

CASE III. The formula holds when T is an isometry, i.e., if *T'T = I (this implies
|detT| = 1). In fact denoting by Bj the closed Euclidean ball of R™, we have
T(By) = By since for & € By, ||[Tz| = ||z|| < 1. Conversely, we have o = TT 'z
with || tz| = |TT x| = ||z|| < 1. From Proposition 5.2.1, we find

)\n(Bl) = )\n(T(Bl)) = AT)\n(Bl) — AT = 17

since A, (B1) > 0 as B; contains a non-empty open set.

CASE IV. Let us tackle the general case. Let T be an invertible matrix. Then
the matrix *T'T is positive definite, i.e., symmetric with positive eigenvalues. As
a consequence, there exists a matrix P such that PP = I, a positive definite
diagonal matrix D such that

YT = 'PDP (implying (det T)? = det D). We define |T| = ‘PD/2P.

The matrix |T| is invertible as a product of invertible matrices and T|T| " is an
isometry since

(i T = (T T
— t(P—ID—I/Q(tP)—l)tPDPP—lD—l/Q(tP)—l
— P*lDfl/Q(tpfl)tPDDfl/Q(tp)fl — P*l(tp)fl =T
As a consequence, since T' = T|T| " |T|, we find from casgs I, 11, III,

Ar = Apyp-1Ajpy = Ajp) = Apije = |det DV?| = | det T,
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where the last equality follows from (det T')? = det D = (det D'/?)2. The proof
of Proposition 5.2.2 is complete. Note that along with (5.2.1), we obtain that for
E € B,, and T a linear isomorphism of R, A, (T'(E)) = | det T|\,(E), i.e.,

/ 1pp)(y)dy = \detT\/ 1p(z)dx :/ 1pp)(Tz)|det T'|dz. (5.2.4)
R™ R™ R™

O

Proposition 5.2.3. Let T'be a linear isomorphism of R™ and let f € L*(R™). Then
foT e L'(R™) and

f(y)dy :/ f(Tx)| det T'|dz. (5.2.5)
R™ R™

Remark 5.2.4. We need to verify first that f o T actually makes sense, which is
easy but needs verification: the function f is defined modulo equality a.e. and it
should also be the case of foT. Let us then consider f € L}(R"), i.e., a measurable
function f : R™ — C such that [p, |f(z)|dz < 40c0. Let fi : R — C be a.e. equal
to f, e, {x € R, f(z) # fi(x)} = N is a Lebesgue set with measure 0. Since
T is a homeomorphism, it is Borel-measurable and T~!(E) € B,, when E € B,,.
Now since N belongs to the Lebesgue o-algebra, thanks to Theorem 2.2.14, there
exist Borel sets A, B with A C N C B, \,(B\A) = 0. We find that

T'(A) cT YN)C \T*l(B),

eb. &~
M (T7HBN\TH(A) = A\ (THB\A)) = M\ (B\A)|detT|™" =0,
(5.2.4)

proving that T~1(NN) belongs to the Lebesgue o-algebra (T is proven Lebesgue-
measurable). Moreover, since A\,(A) = 0, (A is a subset of N) we find A\, (B) =
An(B\A) + A\ (A4) = 0, as well as

M(T7HA) = \(T7H(B)) =0 = \,(T"*(N)) =0.
We have thus

{y eR™, f(Ty) # [1(Ty)} ={y eR", Ty € N} = T '(N),

and T~1(N) is a Lebesgue set with measure 0, so that foT = f; o T a.e.

Remark 5.2.5. We go on with a trivial remark: this is indeed the absolute value
of the determinant which should appear in Formula (5.2.5) and this does not
contradict the habit of the reader with changes of variable in one dimension: with
f € C.(R), we have indeed

/Rf(y)dy:/Rf(—zx)mx
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since with the standard method

[war= [ sway= [ san-2a

—00 400

/M f(—2m)2dx:/Rf(*2I)2dI-

— 00

Proof. Let us assume first that f is non-negative; using the approximation The-
orem 1.3.3 we find a sequence (si)ren of simple functions converging pointwise
increasingly towards f. With s, = >,y @jkla;, (We may assume a;y > 0),
from Lemma 1.6.3 and (5.2.4), we get

sc)dy =Y ok [ 1a,,(y)dy
. R

1<G<N

Z ozj,k/ 14,,(Tx)|det T|dx
Rn

1< <Ny,

/n( Z Oéj,k].Aj’k(Tl’))|detT‘dx

1<j<Ng

= / si(Tx)| det T'|dx.
Beppo Levi’s theorem 1.6.1 implies

f(y)dy = lim sp(y)dy = lim si(Tx)| det T'|dx
Rn k——+oo Rn k——+oo Rn

_ / F(T2)| det T|dz.
RTL

For f € L'(R"), the decomposition f = (Re f)+ — (Re f)— +i(Im f)4 — i(Im f)_
and the previous case give (5.2.5). O

5.3 Change-of-variables formula

Definition 5.3.1 (C! diffeomorphism). Let U,V be open subsets of R™ and let
k: U — V. We shall say that x is a C* diffeomorphism from U onto V' if it is a
bijection of class C' as well as x~!. For each = € U, the linear bijective mapping
K'(x) is called the Jacobian matrix of £ and the determinant det(x/(z)) is called
the Jacobian determinant. Let us recall that for

Udz=(x1,...,20) = £(z) = (k1(2), ..., kn(2)) EV,
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we have
OK1 Ok1
Oxq 8 'V oz,
K(z)=1| ... BZ; e (¢ row index, j column index). (5.3.1)
Okn Okn
Oy "7 0w/ 1<ij<n

L since for all x € U, (v o k)(z) = x, we have

Vi(k(@)K (z) =1, ie., V(k(z))=r'(z)""

Moreover with v = k™~

When a diffeomorphism & is of class C* for some k > 1 (resp. C°°, resp. analytic) as
well as k1, we shall say that r is a C*-diffeomorphism (resp. C*°-diffeomorphism,
resp. analytic-diffeomorphism).

Remark 5.3.2. Let U be an open subset of R", zg € U and let k : U — R™ be a
C' mapping such that det x’(zg) # 0. Then the Inverse Function Theorem ensures
that there exists an open neighborhood Uy of g and an open set Vj such that
k: Uy — Vpis a C! diffeomorphism from Uy onto Vy. This fundamental result
of differential calculus reduces the problem of local invertibility of a C! mapping
to a linear algebra problem, that is the invertibility of a n x n matrix (Jacobian
matrix). When & is of class C* for some k& > 1 and such that det x’(zg) # 0, the
inverse function theorem provides a local C*-diffeomorphism.

Proposition 5.3.3. Let k : U — V be a C' diffeomorphism of open subsets U,V
of R™. Then if A is a Borel subset of U, k(A) is a Borel subset of V. If E is a
Lebesgue-measurable subset of U, then x(E) is a Lebesgue-measurable subset of V.

Proof. The first assertion is obvious since x(A) = (k71)71(A) and v = k=1 is
continuous, thus Borel-measurable (Proposition 1.2.5, Lemma 1.2.9). To check the
next assertion it suffices to prove

A is a Borel set with null measure = v~!(A) has null measure. (5.3.2)

If (5.3.2) holds, then for E C A, with A Borel set with null measure, we ob-
tain v~1(E) C v~1(A) = B, where B is a Borel set with null measure. Since the
Lebesgue o-algebra is generated by the Borel o-algebra and the subsets of Borel
sets with null measure, Lemma 1.1.4 will provide the result. Property (5.3.2) fol-
lows from the next proposition. g

Proposition 5.3.4. Let U,V be open subsets of R* and let K : U — V be a C*
diffeomorphism. Let A be a Borel subset of U. Then k(A) is a Borel subset of V

and
A (5(A)) = /A | det ' (2)|dz.

More generally, for f > 0 measurable on V,

/vf(y)dy = /Uf(li(a?)) | det &' ()| da.
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Proof. Let P be a compact rational rectangle (product of compact intervals of R
with rational endpoints) included in U. Let € > 0 be given. By uniform continuity
on the compact P, there exists § (depending on € and P) such that!

sup ||&'(z1) — K (z2)|| + | det &' (z1) — det &' (z2)| < €.
|1 —x2|<6
r1,22€ P

We define also

sup ||’ (x) 7| = M (< +oo0 since P is compact).

zeP
We may write P = U1<j<n@; where the (); are compact rational rectangles with
sides p < 6 such that @; N @y is included in a hyperplane whenever j # k: since
P =[],<,<, Ii where each I; is a compact interval of R with rational endpoints (a
compact rational interval), we may write I; as a finite union of compact rational
intervals I, with length? p, such that for r # s, I;,. N [ 5 is either empty or
reduced to a single point. As a result, we get

P= U [ 1I &n

1<rm <Ny \1<i<n

N
1<r, <N, ~
compact rational

rectangle @

-

Let a; be the center of mass of Q; so that @Q; = {z, | —a;| < p/2}. Let us set

V(@) = K/ (a;) " k().

Using the mean value inequality (Proposition 5.1.3) and the convexity of @Q;, we
get for x € Q;,

(@) = ¥(a5)] < sup || (a;) " K (@)] |2 = ayl-

TE;
Moreover, we have /(a;)7'x'(z) — Id = k/(a;) "1 (+'(z) — k/(a;)) so that
I/(a5)" 1 ()] < 1+ Me.
This implies sup,cq [v(x) —v(a;)| < (1 + Me)p/2, and thus

An(1(Q))) < (1 + Me)"p" = (1 4+ Me)" A (Q;)-

IWe shall note here |x| for the sup norm of z € R™ and with a d x d matrix A, we define
[ All = supjy =1 |Az].

2Possible since each I; has a rational length m;: we must find integers Ni,..., N, such that
mi1/N1 = -+ = mn/Np < §. To do this it is enough to find an integer Ni such that for all
ke{l,...,n}, Nymg/m1 = Ni € N. Since my/m; are rational numbers, it suffices to take Ny

as a multiple of the product of denominators. This gives the above equality and the inequality
holds for a large enough multiple.
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We have already proven that for a linear isomorphism 7" and a Borel set E,
M (T(E)) = |det T| M\ (E).
This implies A, (7(Q;)) = | det ' (a;)| " A (£(Q;)) and thus
M ((Q)) < | det & (a)[(1+ M)A (Q):
Since for x € @, |det k' (a;)| < e + | det £/ (z)|, we get
Ma(K(Q)) < (e + [ det &/ (@)])(1 + Me)"Au(Qy).
Integrating that inequality on @;, we find

M Q@) < (@) + [ et @) (1 M) An(),

J

so that
M(s(@)) < (Anl@)) + /Q et ' (2)|de) (1 -+ Me)™

From P = Ui<j<n@j, we find k(P) = Ui<;j<nk(Q;); moreover

M(P)= > (@)

1<j<N
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since m(Q; N Q) = 0 if j # I. Consequently, for all € > 0,

Z A (K(Q;)) < (14 Me)™ /\detm \dm

1<j<N

Taking the infimum for € > 0, we obtain

)) g/}j\detn’(x)\dw, (5.3.3)

for every compact rational rectangle.

Let us now consider a Borel subset A of U and 2 an open set of U containing
A. From Lemma 1.2.6 we know that we may write {2 as a countable union of
compact rational rectangles. Thanks to Lemma 2.4.4, it is also possible to make
these compact rational rectangles with an intersection of null measure whenever
they are distinct. Since A C Q = UgenPr C U, we have

A))SZ)\n(n(Pk))\g/Z/ \dem’(x)\dx:/|dem/(x>|dx.
N (533) N P ¢

The measure | det £’ (z)|dz is outer regular (the Riesz representation theorem 2.2.14
implies that the positive Radon measure ¢ € Ce(U) — [, ()| det &/ (z)|dx pro-
vides a regular measure which is the measure with density | det /()| with respect
to the Lebesgue measure), so that

A) < /A | det &/ (z)|dz. (5.3.4)

In particular this implies that if A is a Borel set with null measure, then x(A)
(which is a Borel set) has also null measure. Also, for B a Borel subset of V', with
A= r"YB) we find

/VIB(y)dy = \(B) < /,41(3) | det &' (x)|dx = /U 1p(k(x)) |det k' (x)|dx.

Using Beppo Levi’s theorem 1.6.1 and Theorem 1.3.3 (approximation by simple
functions), we obtain for f > 0, Borel measurable defined on V,

/f dy</f ) | det #'(2)|da.

Switching U with V', we get

/f )) | det &'z \dfv</f y))) | det &' (v(y ))IdetV’(y)ldy/Vf(y)d%
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so that for f > 0, Borel measurable defined on V', we obtain

[ £y = [ @) | det (@)l da (5.3.5)
1% U

A non-negative Lebesgue-measurable function f is the pointwise limit of a sequence
of simple functions coinciding a.e. with simple Borel functions so that f = fy a.e.
with fo a Borel non-negative function. This implies that (5.3.5) holds for f > 0
Lebesgue measurable. The proof of Proposition 5.3.4 is complete. O

Applying this proposition to |f|, (Re f)+, (Im f)+ for f € L*(V), we obtain
the following result.

Theorem 5.3.5. Let U,V be open subsets of R, let k: U =V be a C' diffeomor-
phism and let f € LY(V). Then |detx’|f o k belongs to L*(U) and

/V f(y)dy = /U £ (5(@)) | det ' (2)] do. (5.3.6)

5.4 Examples, polar coordinates in R"

Polar coordinates in R?
We check first

ki 0,4oo[x]—ma[ — C\R_=R*\(R_ x {0})
(r,0) — re® = (rcosf,rsin6)
v=r"1: C\R, — ]O’ +OO[><] — 7'["71'[
z +—  |z],Im(Log z)

where the complex logarithm is defined on C\R_ by (10.5.1). We have in particular
proven in Section 10.5 that for z € C\R_, exp(lnz) = z and for |Imz| < m,
Loge® = z. The Jacobian matrix J of x and its Jacobian determinant J are

dx Oz :
_(or 98\ _ [cosf —rsind -
J = (gy gg) B <sin9 7 cosf >’ 7=

or

cos) —rsinf
sinf rcos6

For f € L*(R?), we have since R_ x {0} has null Lebesgue measure in R?, using
the diffeomorphism x and Theorem 5.3.5,

// flx,y)dxdy = // f(rcos@,rsin@)rdrdd. (5.4.1)
R2 Ry X (—m,m)
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Spherical coordinates in R3
We define
k10, +oo[x]0, 7[x] — 7,7 — R3\{(z,,2),z <0,y =0}
(r,9,0) —  (rcosfsing,rsinfsing,r cos o)
and we have
K =v RN\{(2,9,2),z <0,y = 0} —]0, +-00[x]0, 7[x] — 7, 7[
(z,y,2) = (2> +y° + 22)Y2 ImLog(z + iv/22 + y2), Im Log(z + iy))

which makes sense since = +iy ¢ R_ and z +iy/22 + y2 ¢ R_ (otherwise z = y =
0). The Jacobian matrix J of x and its Jacobian determinant J are

12} 0 0 . . .
or az 6 cosfsing rcosfcos¢p —rsinfsing
J = gff gg gg = | sinfsing rsinfcos¢ rcosfsing |,
0z Oz 0z _rgi
o 05 o6 cos ¢ rsin ¢ 0
cosfsing rcos@cos¢p —rsinfsingd
J = |sinfsing rsinfcos¢ rcosfhsing
cos ¢ —rsin ¢ 0
cosfsing cosfcos¢p —sind
=7r2sin¢ [sinfsing sinfcos¢p cosh
cos ¢ —sin ¢ 0

= (r?sin ¢) (cos2 & + sin? qu) = 72 sin ¢.
As a result we have for f € L}(R3),

///R?, f(x,y, z)dwdydz

. . . 2 .
= ///>0,|9|<7r, f(rsingcosf,rsin¢gsind, r cos ¢)r® sin pdrdpds.

0<op<m

(5.4.2)

It is interesting to note that it is not necessary to go through the previous compu-
tation to obtain (5.4.2). We may skip as well the fact that x is a diffeomorphism
by simply iterating two-dimensional changes in polar coordinates as follows. We

have
/ / - f(z,y, 2)dzdydz = / / / Ry f(pcos, psin b, z) pdzdpdd

|8 <m

= ///>0 0]< f(rsingcos®,rsin¢gsin b, r cos @)r sin prdrdpdd
Oé <7r7

= ///>0 lo|< f(rsin¢cos@, rsin¢sin b, r cos ¢)r? sin pdrdodo,

0<p<m
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rsin¢gsinfd =y

-
’

rsingcosf = x
M'(rsin ¢ cos 6,r sin ¢ sin 6)

Figure 5.3: SPHERICAL COORDINATES: 1 > 0,]0] < 7,0< ¢ <7

where the first equality is the polar coordinates change in the plane (z,y) and the
second equality comes from the polar coordinates change in the half-plane (z, p)

(p>0).

Polar coordinates in R™

It is possible to build upon the two-dimensional formula to get all dimensions
inductively as follows. We write, using the n-dimensional formula,

// f(z, z)dzdz :/ flpw, 2)p" tdpdwdz.
R7 xR, R} xSLT' xR,

Then we use 2D polar coordinates in the half-plane z, p with
z=rcosg,p=rsing,0< ¢ <,

to get

// f(z, z)dxdz :/ f(rwsin ¢, r cos ¢)r" (sin ¢)" L dwdepdr,
R”™ xR SET % (0,m) g xR

so that
dsn (o) = dgn (wsin ¢ @ cos ¢) = (sin ¢)™ dgn—1(w)de. (5.4.3)
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We have proven, say for f € C.(R"™),

+oo
f(x)dz :/ / f(rw)dgn—1 (w)r"™ *dr, (5.4.4)
R 0 gn—1
where dgn-1 is defined inductively by (5.4.3). We have seen
oD - x1 =1rcosf dg1(0) = db
To = rsinf 0] <=

= 9 i
x1 = rcosfsin ¢ ds> (6, ¢) = sin ¢ depdh

3D :{ x92 =rsinfsing 0] <7,0< <

T3 = 1 Cos ¢

x1 = 1 cos B sin ¢1 sin ¢po

ZTo = rsinf sin ¢; sin ¢ dss (0, 1, ¢2) = sin® go sin ¢y depadepydo
T3 = T COS @1 sin ¢o 0] <m0 < 1,02 <.

T4 = 7 COS (P2

4D :

In n dimensions, the spherical coordinates are

r1 = rcosfsin ¢y sings . ..sin ¢, _3sin ¢, _o
To = rsinfsin ¢ sin ¢ . . . sin ¢, 3 Sin ¢y, _o

T3 =T Ccos@sings...sin¢,_3sin@,_2

Tp—1 = TCOS ¢n—3 sin ¢n72

Ty = T COS Pp_2

with

dsn—1(0,¢1,. .., ¢n_2) = (5inp_2)" 2 (sin g, _3)" "> ...sinp1dg_o ...dp1d6
(5.4.5)

0 <m, O0<¢;<m 1<j<n-—2. (5.4.6)

An alternative way is to use the homogeneity and to define, say for a continuous
function on the sphere,

/STF1 f(o)do = /Rn f( 2] Yx(|z|)dz where /]R+ x(r)yr" tdr = 1. (5.4.7)

Tt is not difficult to prove that this formula does not depend on x satisfying (5.4.7).
A good choice can be x(r) = e7"/T'(n). Another way would be more geometrical
and simply use the fact that the sphere is a smooth hypersurface of R™, without
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resorting as above to some homogeneity property. We may define the Euclidean
surface measure on S™~!, say for f continuous on R,

f(o)do =1lim [ f(z)p (’3 B 1) e ldz, pe C;O(R),/p =1.
R~ 3

sn—1 e—0

A useful cognputation is the n — 1 area of S"~!, using polar coordinates and
1= [e ™ dz; we get

+oo 5 +oo 1
1= ‘Sn—1|/ e~ Tn_ld'f' — |Sn—1‘ / e—x(m/ﬂ_)(n—l)/Qﬂ_—l/Qzx—l/Qdm
0 0

1
= 18" AT (nf2),

yielding
271_n/2
st = 5.4.8
IS™ 7] I(n/2)’ (5.4.8)
e.g.,
2 3/2 2 2
S =2m, |S% =, =dm [S%|= 1 =2r%. (5.4.9)
o, 1'(1/2) I'(2)

We can check that this is consistent with Formula (4.5.4) since

1

2 n/2
IB"|, = / P le|S Y =

0 nl(n/2)
We obtain in particular that the volume of a Euclidean ball with radius R, B, (R)
in R™ is
27"/2
M (Bn(R)) =V(R) = R".
(Bum) =vim) = T

The reader will have noticed that, with V'(r) as the n-volume of the Euclidean ball
with radius r and S(r) the (n — 1)-volume of the Euclidean sphere with radius r,
we have

V(r) = S(r),

which is suggested by the following picture, indicating that the shaded volume is
V(r+dr)—=V(r) ~ S(r)dr, ie., V'(r) = S(r).

Note that to integrate a function f on the sphere of center xy and radius R
in R™, we get

/ flw)dw = f(zo + Ro)doR" 1.
|z—z0|=R §n—1
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We have also for A € O(n) (the orthogonal group in n dimensions, i.e., n X n
matrices with ‘AA = 1d),

f(Aw)dw = flw)dw, (5.4.10)
Snfl Snfl

since fg, 1 f(Aw)dw = [o. f(Az/|z])e”"ldz/T(n) = [o. f(y/ly)e™"Idy/T(n).

5.5 Integration on a C! hypersurface
of the Euclidean R"

Definition 5.5.1. Let 3 be a subset of the Euclidean R™ (n > 2). We shall say that
¥ is a C* hypersurface of R™ if there exists a function p € C1(R"; R) such that

Y ={xeR" p(x) =0}, dp(x)#0 forzeX.

A function p satisfying these properties will be called a defining function for X.

N.B. Using the implicit function theorem, it implies that ¥ is locally the graph of a
C! function of (n—1) variables. For instance we may assume that (9p/dz,,)(xo) # 0
at some point ¢y € ¥ and thus we may find a neighborhood Uy of zg such that
¥ N Uy appears as the graph {R""! x R > (2/,2,) € Up,x, = a(z’)} where
p(@’, a(z')) = 0.

Let f be a compactly supported continuous function defined on R™. We want
to define the positive Radon measure

fr—>/2fdo

using the Euclidean embedding of ¥ into R™.
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Lemma 5.5.2. Let ¥ be a C' hypersurface of R™, with a defining function p, let
6 € C(R;Ry) such that [0(t)dt = 1 and let f € C.(R™). Then the following

limit exists:

6~>0+

g [ o (") gt staras

That limit does not depend on the choice of the defining function p of ¥, nor
on the choice of the function 0. This limit defines a positive Radon measure with
support 3.

Proof. If supp f C %€, then the limit above is 0: since supp f is compact and X
is closed, we have dist(supp f,>) > 0, which implies that p(z) > ¢y > 0 on the
support of f, implying that 6(p(z)/€) vanishes for x € supp f and e small enough
(depending only on the support of § and on €p).

We may thus assume that supp fNY # ). Since supp f NX is a compact set,
we can find a finite cover of it by open sets Uy, ..., Uy such that, in each U;, the
defining function p appears as a coordinate. We have

supp f C UlSjSNUj U e

and a partition of unity argument (Theorem 2.1.3) shows that

f=fo+ Y fi suppfo CX°, suppf; CUj.

1<GEN

As above the contribution of fj is 0, and by linearity, we have only to consider
the case where f is supported in a subset U; (denoted by U). We may assume for
instance that, on Uj, 0p/0z, # 0 and consider the local diffeomorphism

(T1,. .y Tt ) =2 k(2) = (21,..., 20 1,p(x)), v=r"1

We have by the change of variable formula,

y/ — = y’
yn = p(a’, xp) Tn =y, yn)
with p(2/, (2, yn)) = yn,
Lo (") s = [ () ol swas
_ / ( y”) ()| F )Y ())dy
V= /<a
oa

-/ ) <~ (@n/0r" 4 ©0/0, ) " 1l ) 1
V=k(U Yn
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whose limit when € goes to zero is

/f(yC a(y', 0)) ((9p/02')? + (9p/02,)?)

We note that gcf, + aam" g;", =0, B‘Zj’ aay"‘ = 1, so that the limit is

oo
OYyn

1/2 dy'.

2 1/2
+ 1> dx’. (5.5.1)

Jrw a0 (| o0

This proves also that the result does not depend on the choice of the function 6
satisfying the required assumptions and also that this defines a positive Radon
measure with support ¥. We need to verify that this Radon measure does not
depend on the choice of the defining function p. By localization and partition of
unity, we may consider a coordinate chart U near a point of ¥ and two defining
functions p1, p2 for 3 defined on U neighborhood of 0. As seen above, we may
assume that dp1/0x, # 0 and

(2 2,) € {p1 =0} NY <= 1z, = a1(2/,0), a3 € CY(V),
so that p2(2’, a1 (2’,0)) = 0 near the origin, which implies
Op2/0x" + (Op2/0xy,) (01 JO2') = 0 => Dpa/Ozy, # 0, at 0,

otherwise dp2/0x, = 0,0p2/02’ = 0 at 0, contradicting the assumption dp2 # 0 at
Y. Now py = 0 is equivalent to z,, = ax(z’,0) as well as to x, = oy (2’,0), proving
that aq(2’,0) = as(2’,0) = a(a’,0) near the origin and (5.5.1) holds there. The
proof of the lemma is complete. O

Definition 5.5.3. Let ¥ be a C' hypersurface of R”, with a defining function p.
We define the simple layer on ¥ as the positive Radon measure with support X
given by

CC(R")Bf»—)/Ede: lim Rn@(p(:c>>e_1||dp(m)||f(a:)dx.

6~>0+

Definition 5.5.4. Let  be an open set of R”: Q will be said to have a C' boundary
if for all zo € 99, there exists a neighborhood Uy of zg in R™ and a C* function
po € C1(Ug; R) such that dpy does not vanish and QN Uy = {x € Uy, po(x) < 0}.

Note that Q2 N Uy = {z € Uy, po(x) = 0} since the implicit function
theorem shows that, if (9po/0zn)(xo) # 0 for some zy € 0f), the mapping
x> (T1,...,Tn_1,po(x)) is a local C*-diffeomorphism.

Theorem 5.5.5 (Gauss—Green formula). Let Q be an open set of R™ with a C*
boundary, X a C' wvector field on Q, continuous on Q. Then we have, if X is
compactly supported or € is bounded,

/Q(divX)dx: / (X, v)do, (5.5.2)

o0
where v is the exterior unit normal and do is the Euclidean measure on OS).



5.5. Integration on a C' hypersurface of the Euclidean R™ 241

Proof. We may assume that Q = {z € R", p(x) < 0}, where p : R* — R is C
and such that dp # 0 at 0€2. The exterior normal to the open set 2 is defined on
(a neighborhood of) 9 as v = ||dp||~*dp. We can reformulate the theorem as

[ divX do = [(X)s(pta) ldota)] = Jim [ (X.do(e)(o(a) /e)ds/e

where 6 € C.(R) has integral 1. Since it is linear in X, it is enough to prove it for
a(z)0y,, with a € C}. We have, with ¢ = 1 on (1, +0c0), 1 = 0 on (—00,0),

. _ aa;p;p:im aal’*IGl’
/dexczx/p(m (@)de = lim [ " () (—p(a)/c)d

)<0 aﬂ'}l e—04

—tim [ a@ (—p@)/aet P (@)de

6—>O+ 3I1
= lim (a(2)0y, , dp) (—p(x)/€)e tda
e—U4

— lim [ (X, dp)b(p(x)/e)e \da,

e—04

with 0(t) = ¢/(—=t), [~ = [Ty (~tydt = [T (t)dt = 1. O

In two dimensions, we get the Green—Riemann formula

// <6P 8Q> dady = Pdy — Qdz, (5.5.3)
o0

since with X = P9, + Q9y, 2 = p(z,y) < 0, the lhs of (5.5.3) and (5.5.2) are the
same, whereas the rhs of (5.5.2) is, if p(z, y) f(x) — y on the support of X,

[[x.dn@rasdy = 1w [[ (P05 @) - Q)0 5(@) ~ v)/e)dody/e

e—04
- / (P, () (z) — Qla, f(x)))dz = / Pdy — Qde.
o0

Corollary 5.5.6. Let Q2 be an open subset of R™ with a C* boundary, u,v € C?(9).
Then

/Q (A (z)o(z)dz = /Q w(@)(Av)(@)dz + / (vgz —uZZ) do,  (5.5.4)
v

/Vu~Vvdx:—/ uAvdm—l—/ do, (5.5.5)
Q Q o9 “ou

where A =37, i), 6%7_ is the Laplace operator and ‘g;j = Vu - v where v is the

unit exterior normal.

Proof. We have vAu = div (vVu) — Vu- Vo so that vAu—uAv = div(vVu—uVv)
providing the first formula from Green’s formula (5.5.2). The same formula written
as Vu - Vv = —uAv + div (qu) entails the second formula. O
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5.6 More on Hausdorff measures on R™

We begin with a result on the structure of open subsets of R™, that could have
been proven in Chapter 1. It will be useful in our study of Hausdorff measures.

Theorem 5.6.1. Let Q be an open subset of R™ and let r > 0 be given. There exists
a countable pairwise disjoint family {By}nen of open Euclidean balls with radii
smaller than r such that B,, C Q and

Am (Q\(UnGNBn)) =0.

N.B. The reader will find a less precise (but as useful and simpler to prove)
statement in Exercise 5.10.12.

Proof. We have seen in Lemma 2.4.4 that for a given open set €2, we could find
a countable family of compact rational rectangles {Q, }nen such that for n # n’
@Qn N Qs is included in a hyperplane parallel to the axes. Also the image of a
compact rational rectangle by a dilation of a suitably chosen integer ratio is a
compact rectangle with integer sides, thus a finite union of translations of [0, 1]™
with intersections included in a hyperplane. Performing the inverse dilation, we
see that each @), is a finite union of cubes (rectangles whose sides have the same
length) such that the intersection of two different cubes is included in a hyperplane.
As a result, we could assume that 2 is an open cube whose sides are all smaller
than r. We shall assume only that €2 has finite measure and that a Euclidean ball
included in 2 has a radius automatically smaller than r.

Let Q@ = Qo be an open set such that A, () < +oo. As noted above,
there exists a countable family (C), 0)nen of compact cubes such that the family

o

(Cn,0)nen is pairwise disjoint and

QO = UnENCn,O7 )\m(QO) = Z )‘m(C’ﬂ,O)
neN

For each Cy, o, we consider the inscribed open Euclidean ball B, ¢ and we have
)\m(Bn,O> = am)\m(on,0>7

with a constant a,,, € (0,1) depending only on m (note that the B,, o are pairwise
disjoint as subsets of C, o). Let us choose 8 € (1, ; 1 ). We have A, (Cy0\Byyo) =
(1 — am)Am(Cr0), so that

)\m(QO\ Un Bn,O) = (1 - O‘m))‘m(QO)'
Since 3 > 1, we may find a finite subset Ny such that

)\m(QO\ U Bn,O) < 6(1 - am))\m(QO>
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We consider now the open set
Q= Qo\(UneNo Bn,O)7 (Bn,0) pairwise disjoint open Euclidean balls
Bno CQo, A (£21) < B(1 — am)Am (o).
Let £ > 1 be an integer. Let us assume that we have found some open subsets
QD DD, MN,...,Ni_1 finite sets,
for each 0 < j < k,
(Bn,j)nen; pairwise disjoint open Euclidean balls, B, ; C €,
Qi1 = Qj\(UnGNjBnJ), Am(Qj41) < B(1 — am) A (), 0<j<k.

We consider the open set € (which has finite measure as a subset of Q) and
using what was done for g, we can find a finite set N, and a pairwise disjoint
set of open Euclidean balls (By, i )nen,, such that By C Qp,

Q’H‘l = Qk\(UnENan,k)7 )\m(Qk-l-l) S 6(1 - am))\m(Qk)7

so that we have constructed an open set {211 such that the above properties are
true up to k 4+ 1. We can thus perform that construction for every k > 1. We find
in particular inductively for &k > 1,

A () < (B(L = @) A ().

We consider now U;>(Unenr, Bn,;). This is a pairwise disjoint union: in the first
place By, ; N B, j» =0 for j # j', say j < j’, since

Bn,j n Bn/,j/ C Q§+1 n Qj/ C Q§+1 N Qj+1 =0.

Moreover for a given j the family (B, ;)nen; is pairwise disjoint. We have also
B, ; CQ; CQp, and for k£ > 1,

A (Q0\(Uj>0 Unen; Bn,j)) < A (Q0\(Vo<j<k Unen; Bn,j))
= A ( Q0\(Vo<j<k Unen; Bnj) )
N~ -~ -
=1
k
< (B(1 = am)) T A (Q0).
As a result, since S(1 — @) € (0,1), A (Qo\(szo Unen; Bn,j)) =0. O

Let m > 1 be an integer. We define3

1 am/? A (B™)
- - , 6.1
Um T om P14 m) om (56.1)

For v € S™~!, we shall denote by v* the hyperplane orthogonal to v and for
y € R™, we shall denote by y + Ry the affine line with direction v through y.

3See Exercise 4.5.12.
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Definition 5.6.2 (Steiner symmetrization). Let A be a Borel subset of R™. The
Steiner symmetrization of A with respect to v € S"~! is defined as

o= U fy+wh

yevt
[t|< 3 A1 (AN(y+Rv))

Lemma 5.6.3. Let A,v be as above. Then the set 0, (A) is a Borel set, symmetric
with respect to v and Ay, (0,(A)) = A\ (A). Moreover we have

diams (0, (A)) < diamy(A).

Proof. Note that from Lemma 1.2.9 the Borel o-algebra on the line y + Rv (a
closed set of R™) is made with the Borel subsets of R™ included in that line.
As a result, AN (y + Rv) is a Borel set of the line y + Rv and one can take its
Lebesgue measure. The symmetry is obvious since y + tv € 0,,(A),y € v+, imply
y —tv € 0,(A). We have also from Fubini’s theorem,

// Ay ® 2)dydz
I/J‘X]RV

7/ . M(AN (y+Rv))dy

/ / dtdy
yevt t|< A1 (AN(y+Rv))

1
:/ 1 x:y@tueyJ‘@Ry,h&§2)\1(Aﬂ(y+RV))}dm
= Am (0, (A)).

The mapping R™ > x =y d tv — ()\1(14 N (y + Rv)), t) € R? is measurable since

M(AN (y+ Rv)) = /R 1Ay @ 2)dz

so that Proposition 4.1.3 and Theorem 1.2.7 imply that o, (A) is a Borel set. We

consider now for j = 1,2, z; = y; ® t,;v € 0,(A). We know that for j =1, 2,
[j:{96R7yj—|—0V€A}7é@7 ‘tj‘g)\l(fj)/z

Claim. For I, I, non-empty Borel subsets of R,

)\1([1) + )\1([2) < 2 sup |91 — 92‘
0;€l;

Let us take provisionally this claim for granted. Then we get, when the diameter
of A is finite,

1 2
21 — @2l = |lyr — w2l + (b1 — 2)* < llyr — w2l * + 4 (M (1) + M (1))

< lys — y2|® + sup [0 — 6s]* < diamy(A)?,

€15
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entailing diams (o, (A4)) < diama(A). We are left with the proof of the above claim.
We may assume that I; are both bounded, otherwise the rhs of the inequality to be
proven is +-c0. We set then a; = inf I;,b; = sup I;. We may assume by symmetry
that by > b1. Let us suppose first that as > aq; it is enough to prove

b1 —aj + by —az < 2(b2 — ay),

which is equivalent to b2 > b1 + a1 — a2, which is satisfied since bs > b; and
a1 — ag < 0. Still with by > by, we assume now as < a1 and we have to prove

2max(by — a1,by — az) > by —ay + by — as.
When b — a; > by — ag it amounts to proving
2(bg —a1) > by — a1 + by — az <= ba — a1 > by — as (hypothesis).
When by — a1 < by — ag, we have to prove
2(by —az) > b1 — a1 + by — az <= by — az > ba — a1 (hypothesis),

completing the proof of the claim. The proof of Lemma 5.6.3 is complete. O

Lemma 5.6.4. Let v,w € S™ ! such that w-v = 0 and let A be a Borel set
symmetrical with respect to w>. Then o, (A) is also symmetrical with respect to w™.

Proof. We have

o, (A4) = U {y +tv} = U {z + sw + tv},
yevt zevtnwt, seR
[t| <3 A1 (AN(y+Rv)) [t|< 3 A1(AN(z4sw+Rv))

so that, denoting sym,,. (B) the symmetric of B with respect to w', we find

sym,: (0, (4)) = U {z —sw+trv} = U {z 4 sw+ tv}.
zevtnwt,seR zevtnwt, seR
[t| <3 A1 (AN(z+sw+Rv)) [t|< 3 A1 (AN(z—sw+Rv))

Since we have

AN (z — sw+ Rv) =sym, 1 (A) Nsym,1 (z + sw + Rv)
= sym,,. (A N(z+sw+ Ry)),
we find

sym,: (0,(A)) = U {z4+sw+tr} =0,(A),

ZGVLﬁwL,SGR
[t|<3A1(AN(z4sw+Rv))

proving the lemma. g
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Lemma 5.6.5 (Isodiametric inequality). Let A be a Borel subset of R™. With vy,
gien in (5.6.1), we have

Am(A) < vy, (diamg(A))™,

where diamg stands for the Buclidean diameter of A: diama(A) = sup, yec 4 [|z—yll2
where ||z||2 is the Fuclidean norm.

N.B. This lemma says that the Lebesgue measure of A is smaller than the Lebesgue
measure of the ball with diameter diams(A). This statement is far from obvious
for the Euclidean norm since it is possible to find Borel sets A which are not
included in a ball with diameter diamg A. Let us consider for instance in R? the

J
Figure 5.4: TRIANGLE WITH DIAMETER /3, CIRCUMSCRIBED CIRCLE WITH DIAMETER 2.

(equilateral) triangle T with vertices 1, j = e27/3, j2 = ¢=2%7/3 We have

: 3. V3 9 3
diamy(T) = |1 — >3 = |7 —i \/ = /3.
iama(T) = [1— ™% = | —i ') Aty V3
However the circumscribed circle of that triangle is the unit circle, thus has diam-
eter 2 > +/3: it is not possible to find a circle with diameter diams(7’) containing
T. On the other hand, we have indeed

3V3

Ao (T) = Vi, diamy(T)2 = " 3.
4 4

Note also that for the dw distance, it is obvious that a bounded set A is included

in a cube with sides parallel to the axes equal to diam., A. Since A is bounded, A

is compact with the same diameter as A, we can apply Lemma 2.6.9.
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Proof of the lemma. Let eq,..., e, be the canonical basis of R™ and
Ay = (0c,, 000 )(A).

We have from Lemma 5.6.3 that diamy(4,,) < diamz(A) and A\, (An) = A (4).

Moreover the set A,, is symmetrical with respect to all hyperplanes ei, ..., e

*rvme

since the symmetry of B with respect to a hyperplane w induces the same sym-
metry for o, (B) whenever v -w = 0 (Lemma 5.6.4). As a result the set A, is
symmetric with respect to the origin: this implies that

A, CB (O7 ; diamQ(Am)) (Euclidean ball).

In fact, if [|z[2 > § diama(A,,) then 2 cannot belong to A,, otherwise the sym-
metry of A,, will imply that —z belongs as well to A4,, with

diama(Ay,) > do(x, —xz) = 2||z||2 > diama(A4,,),

which is impossible. Finally we have

A (A) = A (Am) < Am <B <0, ; diamz(Am)>>
= vy (diamy (A,))™ < vy, (diama(A))™,

concluding the proof of Lemma 5.6.5.

Remark 5.6.6. The statement of Lemma 5.6.5 is true as well for A in the Lebesgue
o-algebra. In fact, thanks to Theorem 2.2.14, we can then find E, F' Borel sets such
that

ECACEF, M,(FNE°=0,

so that from the lemma,
Am(A4) = An(E) < vy (diamg E)™ < vy, (diamg A)™. O

Theorem 5.6.7. Let m be a positive integer. The Hausdorff measure b,, on the
metric space (R™, d) (see Theorem 2.6.10) is equal to the product of the Hausdorff
measure on the metric space (R™, dy) (dg is the Euclidean distance) by the constant
Um defined in (5.6.1). For e > 0, we define for E C X,

0 c.a, (E) = inf{Z(diamg Un)®, E CUpenUn, U, open, diamy U, < g},
neN

where diamsg stands for the Euclidean diameter. We have

bm = hm,doc = Umhm,d2~
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Proof. We recall first the obvious inequalities doe < do < m'/2ds, and we note
that this implies for FE subset of R™,
{open covering (Up,)nen of E, diams(U,) < e}
C {open covering (U, )nen of E, diam(Uy,) < e}
C {open covering (Uy,)nen of E, diamy(U,,) < ml/25}7

so that, since do/dw > 1 and (doo/d2)™ > m~™/2 we get

h:n,e,dz(E) Z h;kn,e,doo (E) Z mim/2hrn,m1/2g7d2(E)7

entailing

&) O (E) 2 05, 0 (B) = m™ "2}, o, (E).

Note also that the measure vy,hn;,,q, is defined on the Borel o-algebra B,,, is
translation invariant and is finite on compact sets (from the previous inequalities).
To obtain v, Hm,d, = A = bBm,d.., We need only to prove that

() OmBm.ay ([0,1]™) = 1.

Let € > 0 be given. Thanks to Theorem 5.6.1, it is possible to find a sequence
(Bn)nen of pairwise disjoint open Euclidean balls with (Euclidean) diameter < e,
included in (0,1)™ such that

0,1]" =UyB,UZ, An(Z) =0,
1= ([0,1]™) = " An(Bn) = > vy diamy(By,)™,

n

implying that (see (2.6.2))

Um b e.d, ([0,1]™) < vimby, o 4, (UnBn) + vmby, 2 4, (Z)
<1 * A = 1
= + vmhm,d2( ) , )
inequality ()
and thus vy, by, 4,([0,1]™) < 1. On the other hand, if the previous inequality were

strict, for all ¢ > 0, all 6 > 0, we could find an open covering of [0,1]™ by a
sequence of sets (U, ) with diameter < e such that

1= X ([0,1]™) <" A (Un) = > v (diamy (U, )™
n Lemma 5.6.5 "

< Vmby,a, ([0,1]™) +6 < 1,

if 6 = (1— Vb, a, ([0, 1]™))/2. This inequality entails 1 < 1 and thus cannot
hold. g
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5.7 Cantor sets

Perfect sets, Nowhere dense sets

Definition 5.7.1. Let X be a topological space.

(1) A subset A of X is said to be perfect if it is closed without isolated point,
ie.,

A=A and Vac AVV €V, (V\{a})NA#D0.

(2) A subset A of X is said to be nowhere dense (or rare) when A=0.

Tt is easy to find perfect sets (e.g., closed balls with positive radius in R™) or
closed sets which are not perfect such as Z (all points are isolated) or (—oo,0] U
{1/2} U[1,4+00) (1/2 is the only isolated point).

Theorem 5.7.2 (Cantor—Bendixson theorem). Let (X,d) be a separable complete
metric space and let F be a closed subset of X. Then F is the disjoint union PUC,
where C' is countable and P is perfect.

Proof. Let D = {qx}ren be a countable dense subset of X. Every open set of X
is a (necessarily countable) union of open balls B(gk,r) where r € Q4: if Q is an
open set of X, then for x € Q, the open ball B(z,r) C Q for some positive rational
r. Then there exists ¢, € D such that d(g,x) < /2, which implies that

x € B(qy,r/2) C B(z,r) C Q.

As a result the set {B(q,7)}qep,req, is a countable basis for the topology of X.

Let I be a closed set of X. A point z € F is said to be a condensation point
of Fif VV € ¥,, V N F is uncountable. Let P be the set of condensation points
of F and C = F\P. Considering B(q,7) N F, ¢ € D,r € Q4, we find a countable
basis {Up, }nen for the topology of F. By definition of P, we have

C= U Uy, :

neN
U,, countable

in fact, if z € C, there exists n € N such that « € U, countable. Conversely,
if U,, is a countable open subset of F', then every point in U, belongs to C, so
that C' is countable, as a countable union of countable sets. Let x € P and let V'
be a neighborhood of = in F. Then V is uncountable and since C is countable,
V' contains uncountably many points of P. Moreover P is closed in F', as the
complement of C, open in F' as a union of open sets. As a result, P is closed in X
and

F=PUC, P perfect, C countable, PNC = (. O
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Cantor ternary set

We want to construct a subset of the real line which is perfect and nowhere dense,
i.e., closed without isolated point and with empty interior. Cantor’s ternary set
is an excellent example. We shall use the following notation: let J = [a,b] be a
compact interval of the real line. We shall denote by

b—a

Jo = [a,a+ 3

] ) the first third of J, (5.7.1)

Jo = [a + 2(1’; @) b] . the last third of J. (5.7.2)

We start with I = [0, 1] and we have

1 2
Iy = I = 1
0 |:Oa3:| 2 |:37 :| ’

for a=(a1,...,00) €{0,2}" 20 = Y ), Io=[ra,7a+37"]. (5.7.3)

We verify inductively that for a = (ay,...,a,) € {0,2}",

Ioo = [Ta; Ta + 37" 7] = [Za0, a0 + 3771,
Toz = [t +2 X 37" 20 37" = [ta2, a2 + 37" 7).
1
I(J 12
0 —102 I Is

Figure 5.5: INTERVALS I, a € {0,2}1:2:3,

For an integer n > 1, we define the compact set K,, by

K, = U I, (5.7.4)
ae{0,2}"

and we note that (In)aefo,2y» are 2" pairwise disjoint compact intervals with
length 37" (true for n = 1 and if true for some n > 1, also true for n + 1: we have
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for o € {0,2}", L0, Io2 pairwise disjoint with length 3771 ). As a result, we have
A (Kp) =27 x 377, (5.7.5)

We note also that K,, O K41 by construction since I, D I4o U I42. We define
then at last the Cantor ternary set K, by

K.=0Mps1K, = ﬂ (Uaego.2ynLa).- (5.7.6)

n>1

Lemma 5.7.3. The Cantor ternary set K., is a compact subset of [0,1] with Le-
besgue measure 0 which is equipotent to R. Moreover K., has no isolated points
and has an empty interior. The set K, is totally discontinuous, i.e., the connected
component of each of its points is reduced to a singleton.

Proof. K., is a compact set as an intersection of compact sets and its Lebesgue
measure must be smaller than (2/3)™ for each n so is zero. As a result K, cannot
contain an interval with positive measure, thus has an empty interior and is totally
discontinuous. Let us check the mapping

00 9

{02}V — K

o (5.7.7)
o DM PIRp
Let us prove first that ® is indeed valued in K. From (5.7.4) and (5.7.3), with
(a1,...,an) € {0,2}", we have 0 = >, jc, 5 € Kn. As a result, for a €
{0.2}",
Oéj T ozj -
Z 5 = lim Z o € N1 K = K.
1<j 1<j<n

N~ ~
eK,CKp, for n > m.

The mapping ® is one-to-one since for o/, o € {0,2}N" and
oy =aj for1<j< N, oy <ay,
we have necessarily oy = 0, o5, = 2 and

1

ESED SIS SIS DN DI BRI
(— 37 - 37 ) 3T £ 37 1-1
j>1 1<j<N j>N+1 1<j<N 3
o off
_ J —N J "
SR EE R SR 10}
1<j<N 1<j<N

Let us prove now that ® is onto; let x € K_. Then for all n > 1, there exists
o™ = (agn), . oz%n)) € {0,2}" such that z € I,, i.e.,
RO
Toim) <T < Ty + 3" = 2 = lim ) = lim( > o ) (5.7.8)
1<j<n
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Claim. We may assume that both inequalities above are strict, otherwise the answer
is clear: On the one hand, if x = x,x) for some n > 1, then

T = @(aﬁ"),...7a51"),0,0, ce)e

On the other hand if z = x_ ) + 37" for some n > 1, then

(n)
_ aj 2 _a ) (n)
r= Y 5t > 5 =0V al22. ),
1<j<n j>n+1
- ~ -
377L7121711/3::5577L

proving the claim?.
We know also that 2 € [0,1] so that z = Y~,5, 5/, z; € {0,1,2} and

D DED ST S B

1<j<n i>n 3

so that eventually with the strict inequalities of (5.7.8),

X X;

3" § 3;. <3z < 3" § 35 +1, §"xa(nl < 3" < 3"wym + 1,
1<j<n 1<j<n e

.« o - eN

€N

implying ZlSan ;3" = 3wy = ZlSan a;n)3"_j. The latter identity im-

plies
x1 + Z ;317 = agn) + Z a§")31ﬂ7
pe 2<ji<n ' 9<i<n
N~ ~ - GN N~ ~ -
€[0,6x3-2x 3)=[0,1) €[0,1)

so that, taking the floor function of each side (see the footnote on page 16), we
get x1 = agn) and similarly x; = agn) for 1 < j < n, so that each z; belongs to
{0,2}, proving that x belongs to the image of ®. We have obtained in particular

the following description of the Cantor ternary set®.

Lemma 5.7.4. K = {z € [0,1],3(z;);j>1,2; € {0,2}, =" ,5, 5]

The bijectivity of ® and Section 10.1 prove that card K., = card{0,2}" =
card{0, 1} = card P(N) = cardR. Let us finally prove that K., has no isolated
point. Let 2 be in K. : then for each n > 1, there exists o™ € {0,2}" such that

K.3z,m <z <z, +37" €K,
and thus ([z—37",2437"]\{z})NK.. # 0, completing the proof of the lemma. [
4Note that for instance 1/3, written as 0.1 in its development in base 3 can also be written as

0.022222222222222 . ..
5Similarly, the development of 1 in base 3 can be written as 1 = 0.222222222222 . ..
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Lemma 5.7.5. The Hausdorff dimension (see Definition 2.6.8) of the Cantor ter-
nary set K is
1 In2

= ~ 0.6309.
log;3  In3

logs2 =
Proof. We have K, C Uyeqo,2yn lo with diam I, = 37" so that

h:’?’in (Koc) < Z (diam[a)” — 9gng—ne _ 6n(1n27m1n3)’
ae{0,2}n

implying for k9 = In2/1n 3, that
(1) Do (K) <1, and for k > ko, hx(K,.) =0.

The main point in the proof is to estimate b, (K, ) from below by a positive
quantity. Let € > 0 be given and let (V;,)nen be a covering of K, by open sets
with diameter < e. By compactness of K, we may extract a finite covering and
since each V}, is a union of open intervals, we may find a finite collection (J;)1<i<r,
of open intervals with diameter smaller than e (assumed < 1/3) such that

K., CUi<i<tdi, K.NJ # 0, Z(diamVn)”O > Z (diamJl)'“’.

n 1<I<L

For each [, there exists a unique n; > 1 such that 3=™~! < diamJ; < 3—™
and moreover .J; meets exactly one (In)aefo,23m: it must meet one such interval
otherwise the intersection with K would be empty and could not meet two since
the distance between two such intervals is at least 37" by construction. We have
moreover

diam .J; > 371 = 3"0(diam J;)"° > 27" == 273" (diam J;)"°0 > 297",

Since J; meets only one I,a), a¥) € {0,2}™, it meets at most 2/~™ intervals I
for 8 € {0,2}7,j > n;. As a consequence, we have for j > max;<;<r, n,

27 = card {connected component of K}

< Z card {connected component of K; meeting .J; }

1<I<N
< ) 2imm< 37 2938 (diam )™,
1<I<N 1<I<N

so that 3 (diamV,,)" > 37, ) (diam J;)"0 > 370 = 1/2 and thus

() bro (Ko) = 1/2,

implying the result from (b), (), Lemma 2.6.7 and Definition 2.6.8. O
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The Cantor function

With K, defined in (5.7.4) for n > 1, we define

1 z n
(@) = |Kn|/0 L (Ddt, 1Kl = M(Ko) = (2/3)". (5.7.9)

The function v, is continuous on R, with value 0 (resp. 1) for < 0 (resp. z > 1)
and is monotone increasing. We have with I, defined in (5.7.3),

b (@) = (@) = (3/2)" / S (St + 10 - 1,0)

ac{0,2}"
1
(3/2)" _
CEDS / (310004 511000~ 10,00))
aef{0,2}" ~ -
=0 if x < x4

orx>xe+3"
/71 1
= (3/2)" Z 1, (m)/ (211@ (t) + 211a2(t) - 1,a1(t)> dt
ae{0,2}n 0

=(3/2" Y 1)

aec{0,2}n

— a0 1 t—mag 1 t—xal
/ < 0.1] < g3-n—1 > + 510 <3_n_1 > ~ 5l (g_n_l >) dt
1
2

(a;—a;ao)3”+1
= (3/2) Z 17, (m) (/ 1[071](8)(183_”_1

aef{0,2}7 —3" 1z ap
(w—xa2)3”+1 (a;—a;al)3”+1

+/ 1[071](5)d53_n_1 */ 1[0)1](5)d$3_n_1 .
—3ntlzas —3ntlza

As a result we have (note [, 1j9,1)(s)ds = 1),

37l
o1 (@) = 0n(@)| < gy D0 L@ k320

ac{0,2}"

Consequently, the sequence (1,,) is converging uniformly on R towards a function
U, the so-called Cantor function, which is continuous monotone increasing, with
value 0 (resp. 1) for x < 0 (resp. z > 1). Moreover, from the calculation above if
v ¢ Kn = Ugeqo,23n Lo, We have ¥y,41(z) = 9, (x) and since K, D Kpp1 D Ky
for I > 2, we have x ¢ K, 4; for | > 2, so that ¥,49(x) = ¥p41(x) = ¥,(x) and
Unyi(x) = Yu(x) for I > 0, proving

r ¢ K, = ¥(z) = ¢ (x).
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We see also that 1, is piecewise affine with ¢, = 1k, /| K|, so that U is constant
on each connected component of the complement of K,,, and since K¢ = Up,>1 K¢,
this implies that ¥ is constant on each connected component of K¢, i.e., is almost
everywhere differentiable with a null derivative. Nevertheless the function ¥ is
monotone increasing such that ¥(0) =0, ¥(1) = 1.

Let us calculate the weak derivative of ¥. We define for ¢ € C}(R),

(W', ¢) = */R\If(m)qy(x)dx = lim \Il(x)(qs(m) — oz + h))h’ldx,

h—0 Jr

and thus

(W',0) = lim [ (W(x) — (w—h)pa)h~dz.
+JR

Since ¥ is monotone increasing, it implies that the linear form
C:(R) > ¢ = (¥, )

is non-negative, i.e., takes non-negative values for ¢ valued in R;. As a result, for
¢ € CHR) and x € CL(R;][0,1]) equal to 1 near the support of ¢, we have

(W,6) = (¥, x6 = X0l qm) + (¥ 000l ooy

~
<0

so that (W', ¢) < (', \)||¢]| Lo~ (r), and thus (', —¢) < (V', x)||¢|| Lo (r), entailing

(T, )] < (T, )1l L )

and the linear form C}(R) > ¢ +— (¥’,¢) can be extended as a positive Radon
measure, i.e., a positive linear form on C.(R): let ¢ € C.(R) and let ¢, be a
sequence in C}(R) converging to ¢ in C.(R) (uniform convergence on R with
support ¢,, C L fixed compact). Then for x = 1 near L,

‘<\I],7 ¢n+k> - <\Ij/a ¢n> = <\I],7 ¢n+k - ¢n>‘ < <le/a X>||¢n+k - ¢n||L°°7

so that we may define
(W', ¢) = im(¥’, ¢y,)

and get a positive Radon measure (the definition is independent of the approxi-
mating sequence ¢, ). As a result, the measure p constructed using Theorem 2.2.1
is supported in K: if ¢ € C}(R) with supp ¢ C K¢, we find

(W', ¢) = —/¢’(m)\IJ(m)dm =0

since ¥ is constant on each connected component of K¢. Moreover, as a conse-
quence of the following lemma, p has no atoms (see Exercise 1.9.24, page 61).
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Lemma 5.7.6. Let ® be a continuous monotone increasing function on R. Then the
distribution derivative of ® is a Radon measure p (the so-called Cantor measure
when ® = U) without atoms.

Proof. The fact that @' is a positive Radon measure p is proven above. Now let
a € R. According to Theorem 2.2.1, for € > 0, we have

p({a}) < pl(a—ea+te)) = sup {1, @) < (s be),
$€CO((a—c,a+e)i[0,1])

where ¢, is non-negative C', compactly supported, equal to 1 on (a — €,a + €),
supported on (a — 2¢,a + 2¢). We have

0< () = / B ()6, (x)da

=— /aa6 O(z)o.(x)dx — /:“6 O(x)¢ (x)dw

—2e¢
a+2e

= [ (@) - e - [ (@) - #(@)d e

—2€ ate

< s [B(a) - B(a) / 16! (2)d.

|z—a|<2e

We may choose

where 6 is a fixed function valued in [0, 1], equal to 1 on [—1, 1] and supported in
[—2, 2] so that we get

w{a) < s |9(z) — d(a) / 0 ()ldt — 0.

|z—a|<2e

by continuity of ®. O

We have proven the following

Proposition 5.7.7. The Cantor function ¥ is a continuous monotone increasing
function defined on R by the uniform limit of the sequence (n)n>1 given by (5.7.9).
That function is equal to 0 (resp. 1) on (—o0,0] (resp. [1,00)). Its weak derivative
(or distribution derivative) is a positive Radon measure without atoms whose sup-
port is the Cantor ternary set K, (which has Lebesgue measure 0). The function
¥ is differentiable on the open set K¢ where its derivative is 0.
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Figure 5.6: The Cantor function

Lebesgue and Borel measurability

Let us consider the function F' defined by
[0,1] 32+ F(x) =¥ (z)+x € [0, 2], (5.7.10)

where U is the Cantor function defined above. F' is strictly increasing continu-
ous and thus one-to-one, with F(0) = 0,F (1) = 2, so that it is also onto (the
continuous image of the interval [0,1] is a compact interval contained in [0, 2]
and containing 0,2 so is [0, 2]). Moreover F' is an open mapping since the image
F(Ja,b]) is an interval contained in |F(a), F/(b)[ which contains F(a + €), F(b — €)
for all € > 0 small enough, thus by continuity of F', we have F(]a, b]) =]F(a), F(b)][.
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As a result F~! is continuous and F' is a homeomorphism. We have also

F(0,1\K.)=F((0,1)NKS) =F(U p>1 Ja1) =U n>1 F(la1),
ae{0,2}" ae{0,2}"

where J; stands for the open middle third of the interval .J. As a consequence, we
have

MF(LINE) = S MECa) = S M) =1,

n>1 n>1
ae{0,2}" ae{0,2}"

since W is constant on each interval I,; and we have

A ((0,2]) = M (F([0,1]) = A (F([0, I\KL)) + M (F(EL))

(PR = 1. (5.7.11)

The restriction of F' to K, is thus a homeomorphism from the Cantor ternary set
K, which has measure 0 onto F(K,,) which has measure 1.

Lemma 5.7.8. Let A be a Lebesque measurable subset of R with positive measure.
Then there exists a non-measurable set E C A.

Proof. We may assume that AN(—Ny, Np) has positive measure for some Ny € N*
(otherwise A1(A) = 0) so that we may assume that A is bounded. As in Exercise
2.8.19, we define an equivalence relation on R by z = y meaning x — y € Q. We
consider the quotient set of A by this equivalence relation and using the Axiom of
Choice, we choose a representative in A for each class. Let E be the subset of A
which is that set of representatives: for any y € A, we find z € E, ¢ € Q such that
y = x + ¢q. Consequently

A C Uyeq,jgl<2no (B4 q) = B=0 < A\1(A) < A(B) < +oo.

For ¢1,q2 € Q, q1 # g2, we have (E+q1)N(E+g2) = @ sincey = 21 +¢1 = 22+ g2,
for ¢;j € Q,z; € F implies 1 = x2 and thus ¢ = ¢2. Using the translation
invariance of the Lebesgue measure, we get, assuming F measurable,

0<M(B)= > M(E)= A\(E)>0= \(B) = +ox,
q€Q,[q|<2Ny
which is a contradiction. The set E' cannot be Lebesgue measurable. O

Lemma 5.7.9. The function F defined by (5.7.10) is a homeomorphism from [0, 1]
onto [0,2] such that A\1(K..) = 0, A\ (F(K.)) = 1. The inverse homeomorphism
F~' is not Lebesque measurable.

Proof. The first part is proven in (5.7.11). Let D be a subset of F(K,,) which does
not belong to the Lebesgue o-algebra (it is possible since the measure of F(K,)
is positive). Then F~1(D) is a subset of K., and thus belongs to the Lebesgue
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o-algebra since K_, has Lebesgue measure 0. Now
(F=H~H(F (D)) =D,
~ ~ -
Lebesgue

measurable

so that FF~! is continuous and is not Lebesgue measurable. g

It is not that surprising: let f : R — R be Borel-Borel measurable: it means
that f is measurable whenever we equip source and targetSwith the Borel o-
algebra. Of course when f is continuous, it is Borel-Borel measurable (Proposi-
tion 1.2.5). However, if we equip the target with the Lebesgue o-algebra, there
is no reason that f should be Borel-Lebesgue measurable since it may happen
that the inverse image of a Lebesgue measurable set with measure 0 does not
belong to the Borel g-algebra: even if we equip both source and target with the
Lebesgue o-algebra, it does happen in the example above with f = F~! that the
inverse image of a Lebesgue measurable set with measure 0 does not belong to the
Lebesgue o-algebra. However in Proposition 5.3.3, we have seen that if f is a C!
diffeomorphism, it is Lebesgue-Lebesgue measurable (and of course Borel-Borel
measurable).

Remark 5.7.10. Considering

F1 1p- (D)
[0, 2] — [0, 1] — R
homeomorphism Lebesgue—Lebesgue meas.

we see that the composition (1p-1(py o F~')(2z) = 1p(z) is not Lebesgue-Borel
measurable since D does not belong to the Lebesgue o-algebra. However 1p-1(p)
is indeed Lebesgue—Lebesgue measurable since F~1(D) belongs to the Lebesgue
o-algebra as a subset of the Cantor ternary set, which is a Borel set with measure
0. On the other hand, the composition

f 9
A B B i C
Lebesgue—Borel meas. Borel-Borel meas.

is obviously Lebesgue—Borel measurable from Lemma 1.1.6.

Theorem 5.7.11. Let m > 1 be an integer, let B,, be the Borel g-algebra on R™
and let L., be the Lebesgue o-algebra on R™. Then the following cardinality results
hold:

(1) card B, = ¢ = card R,

(2) card L, = 2° = card P(R).

Proof. The proof is given in the Exercises (with detailed answers) 5.10.7, 5.10.8,
5.10.9. 0

6Given two measurable spaces (X, M), (Y, ), a measurable mapping f : X — Y is said to be
M — N measurable.
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A Cantor set with positive measure

Let 6 € (0,1] be given and let (6,),>1 be a sequence of positive numbers such
that 3, -, 2" 710, = 0. With I = [0, 1], we define

1—-6; 140
IoUI, = 1\I, IlZ( 217 —;1

|| =061, [lo| =[I2| = (1—061)/2.

> , Io, I2 compact intervals, max Ip < min I,

We define

) 0
Ioo Ulpe = Ip\Ip1, Io1 = (mo — ;,mo + 22> , mg midpoint of I,

2

0
,mo + 22> , mo midpoint of I,

0
Ing Ulyy = Io\I21, Iz = (m2 -7
for o € {0,2} : |In1| = 02,

1-6 1
for a € {0,2}%: 1| = < ) ! 92>

5= 272(1 — 01 — 265).

Let N > 1 and assume that we have constructed 2V compact pairwise disjoint
intervals I, a € {0,2}", included in [0, 1] with length

2N(1 > 2J’10j)

1<j<N

and that the complement in [0, 1] of U, ¢ 0,23~ I is the disjoint union of 2N _1 open
intervals I1, Io1, Ia1, - - -, I5.1, B € {0,2}V =1 (note that 1+2+4---+2VN-1 = 2N 1)
with |I,1| = 6,41 if v € {0,2}7. We have indeed

NN (1 - > 2J’10j) + > 20 =1

1<j<N 0<j<N-1

We define then for each a € {0,2}" the open interval I,; as the mid-interval of
I, with length On41, its complement in I, = I,0 U I42 where Iy, 142 are disjoint
compact intervals with length

1 .
Lol =) =275 (1= 3 970 < 02

1<j<N

2—N—1(1 > 2j—10j),

1<GSN+1
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indeed the expected result. Since the I,,a € {0,2}" are 2V pairwise disjoint
compact intervals, this produces 2V+! pairwise disjoint compact intervals I, o €
{0,2}N+1. The complement in [0, 1] of Uaeqo,23v+11o is the disjoint union of the
complement of U,c o237 lo With the intervals I,;,a € {0,2}": it is indeed the
disjoint union of 142+ ---+2¥=1 42N intervals I, Ip1, Io1, - - ., I5.1, B € {0,2}.
We define

K" =Uscqooynla, K9 =K. (5.7.12)

)

We note that the mapping n — K,(Lg is decreasing so that K (?) is a compact subset

of [0, 1]. We have also

KP|=1- Y 2710, = |K"|=1-0.

1<j<n

Note that if § = 1 with the” choice ; = 377, we recover the ternary Cantor set
K, constructed above. When 6 € (0, 1) the compact set K (®) has positive measure
1 — 60, but an empty interior since, with complements in [0, 1], we have

(K(a))c = Unzl(K}ze))C = Un>1 (Uae{0,2}"*1fa1)-
Let 2 be a point in K): then for each n > 1, z € Kr(ﬁ) = Uaefo,2}7 Lo Thus for

each n > 1 there exists o™ € {0,2}™ such that & € I,y = Iy U Ty U yme
and we can find z,, € I, C (K®) such that

|z — zn| < [Lym| =277 (1 - > 2119]-) <27 =z =limz,,

1<j<n

and thus 2 belongs to the closure of (K®)%; (K(®) is consequently a dense open
set of [0,1] so that

c

KO c (K®)e = (K®))° = K® c (K©)
— KO c (K@) nK® =y,

As a result K@ is a compact set of positive measure when 6 < 1, with empty
interior (thus totally discontinuous) and also without isolated points: The proof
above entails that for + € K9, for each n > 1 there exists a(™ € {0,2}" such
that @ € I, = [an,bn] where 0 < b, —an = 27" (1 = Yy, 27710;) <27
Since the endpoints of I, belong to K, and also by construction to all K,,,, m > n,
both points a,, b, belong to K®) providing a sequence (Zn)n>1 of points of K©),
distinct from x such that z = lim,, z,,.

"We have indeed 2>t 2/-13=7 =3-1 L !

=1.

2
3
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5.8 Category and measure

Definition 5.8.1. Let X be a topological space and A C X.

(1) The subset A is of first category in X when it is a countable union of rare
subsets (see Definition 5.7.1). Such a subset is also said to be meager.

(2) The subset A of X is of second category in X when it is not of first category.

(3) A topological space X is a Baire space if for any sequence (F),)nen of closed
sets with empty interiors, the union U,enF), is also with empty interior.
Equivalently, X is a Baire space if for any sequence (Uy,)nen of dense open
sets, the intersection N,enU, is also dense.

N.B. Note that a subset of a set of first category is also of first category: if B C A
with A of first category in a topological space X, then

BCA=UxAp, An=0 = B=Ux(BNA,), BNA,CA,=0.

The proof of the two following theorems is given in the Appendix (Theorems
10.2.39, 10.2.40).

Theorem 5.8.2 (Baire theorem). Let (X, d) be a complete metric space and (Fy)n>1
be a sequence of closed sets with empty interiors. Then the interior of Up,>1F, is
also empty.

N.B. The statement of that theorem is equivalent to saying that, in a complete
metric space, given a sequence (U, )n>1 of open dense sets the intersection Ny,>1U,,
is also dense.

Theorem 5.8.3. Let X be a locally compact topological space (Hausdorff topological
space such that each point has a compact neighborhood) and (Fy,)n>1 be a sequence
of closed sets with empty interiors. Then the interior of U,>1F), is also empty.

Corollary 5.8.4. A metric complete space, as well as a locally compact space are
both Baire spaces and are both of second category in themselves, provided they are
not empty. A non-empty Baire space is of second category in itself.

Proof. Let X be a Baire space; if it were of first category in itself, it would be a

countable union UnA4,, with A, = (0, thus we would have X = UyA,, and by the
Baire property, X = X would be empty. O

For a topological space, the category in itself is indeed a topological notion,
as proven by the following lemma.

Lemma 5.8.5. Let X,Y be topological spaces and let vk : X — Y be a homeomor-
phism. If X is of second category in itself, then Y is also of second category in
itself.
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Proof. We note first that for a subset B of Y, since k is a homeomorphism
k~Y(B) =r~1(B), & Y(B)=r"1(B). (5.8.1)

In fact, we have k™ 1(B) C k7 !(B) (a closed set by continuity of k) so that
k~1(B) C k7 }(B). We have also B = k(k~1(B)) C (k= 1(B)) (a closed set
by continuity of £71) so that B C x(k~1(B)) and k= *(B) C k~1(B), giving the
first equality in (5.8.1). The second equality can be deduced by complementation,
using (1.2.1). If Y were of first category, we would have Y = UxB,, B, = 0 and
thus

X =x"HY)=Uns " (By), K 1B, =r"(B),

and interior(k~1(B,)) = k™ !(interior(B,)) = 0, contradicting the assumption
on X. O

Lemma 5.8.6. Let X be a complete metric space and let A be a subset of X such
that A contains a closed set F with a non-empty interior. Then A is of second
category in X.

Proof. If A were of first category in X, so would be F', and we would have
F=UyB,, B,=0.

The complete metric space F' would be a countable union of closed sets with empty
interiors since

F = Uy SBnﬂF) , interiorp(B,NF)=B,NF =0,
-~ d

closure of B,, in F
contradicting the Baire theorem. O

Note that Q is a meager subset of R, thus of first category in R, i.e., “small”
in the sense of category but Q is dense in R. On the other hand the notions of
category and measure are unrelated: a set can be of first category (small in the
sense of category) and large in the Lebesgue measure sense. Also a set can have
a Lebesgue measure 0 and be of second category: the following lemma is provides
some examples.

Lemma 5.8.7.

(1) The Cantor ternary set is a compact space, and so is of second category in
itself, but it is of first category in the interval [0, 1] with the usual topology.

(2) The Cantor sets with positive measure constructed in Section 5.7 are of first
category in [0, 1].

(3) There exists a subset of [0,1] which has Lebesgue measure 1 and which is of
first category.

(4) There exists a subset of [0,1] which has Lebesgue measure 0 and which is of
second category.
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Proof. The Cantor sets are closed sets, and also with empty interior, so they are
of first category in [0,1]. To convince the reader that the notions of size given
respectively by the Lebesgue measure and by the category are unrelated, we can
also give an example of a set of first category, “small” in the sense of category,
but with full Lebesgue measure in [0,1]. We have seen with the construction of
Cantor sets with positive measure that for any integer k£ > 1, we can construct a
compact subset 6 of [0,1] such that

k—1

int(‘fk) = @, ‘%}J > 3

We define then A = Ug>1%} and we have [A| > sup;> [6k] > sup,s,(1— ;) = 1.
Moreover, A is obviously of first category as a countable union of compact sets
with empty interior.

Here is an example of a set of second category in R, i.e., “large” in the sense
of category, but with Lebesgue measure 0 (small in the sense of the Lebesgue
measure). We define for Q = {z, }n>1,

A= p1Un,  Up = Unsilz, — 277, 427777,
The Lebesgue measure |A] is such that

< i l-n—m _ —m+1 _ )
|A] < #&%;2 énzle 0
n=z

If A were meager,we would have a sequence (Ay) of subsets of R with int(A) = 0,
so that
R=AUA®=ULA, UA° =UA, UA® =U,A; U UmUﬁl.

We note that int(U5,) = 0 since U, D Q = R. We would have written R as a
countable union of closed sets with empty interiors: this is not possible from the
Baire theorem. O

5.9 Notes

Ivar BENDIXSON (1861-1935) was a Swedish mathematician.

EvcLip (325 BC-265 BC). Euclid of Alexandria is the most prominent mathe-
matician of antiquity, author of the fundamental treatise The Elements.

George GREEN (1793-1841) was an English mathematician. The Gauss—Green
formula proved above appears as a particular case of Stokes’ theorem.

Pierre-Simon LAPLACE (1749-1827) was a French mathematician. He had a con-
siderable influence on the developments of the calculus of probabilities and
celestial mechanics.
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Isaac NEWTON (1642-1727) was an English physicist and mathematician. He was
one of the most influential scientists of all times. His book Philosophie Nat-
uralis Principia Mathematica, published in 1687, set up the foundations of
Mechanics for more than two centuries until the scientific revolutions of Rel-
ativity and Quantum mechanics in the twentieth century.

Jakob STEINER (1796-1863) was a Swiss mathematician and geometer.

Brook TAYLOR (1685-1731) was an English mathematician. He published Metho-
dus incrementorum directa et inversa in 1715, in which he introduced a ver-
sion of what is now known as Taylor’s formula. He took sides with Isaac
Newton, creator of the Calculus of fluxions, in the violent controversy with
Gottfried Wilhelm Leibniz (inventor of the Infinitesimal calculus) about pri-
orities on the invention of Calculus. Today, both Newton and Leibniz are
considered as scientific geniuses who transformed radically the mathematics
and science of their times.

William Henry YOUuNG (1863-1942) was an English mathematician. His name is
associated to B. Taylor for the following theorems:

Theorem 5.9.1 (Taylor—Young formula). Let k € N, let U be an open set of R™,
let f:U — R™ of class C* and let xo € U. If the function f is k + 1 times
differentiable at xo, there exists € : U — R™ with limg_, 4, €(x) = 0 such that

fla)y= > .1,f(j) (o) (z — x0)? + e()]x — zo[FFL. (5.9.1)

0<j<k+1"7

Note that f9)(xq) is the symmetric jth linear form given by

FO(wo) 1y _ (02 )(0) 1
i = LT, (5.9.2)
a€eN" |a|=j
where for a = (aq,...,a,) € N7,
ol = >, 97 =000, al=anl.. ! (5.9.3)
1<I<n

Theorem 5.9.2 (Taylor—Lagrange formula). Let k € N, let U be an open set of R™,
let f:U — R™ of class C*. Let xo,x1 € U and assume that the function f is
k+ 1 times differentiable on (xo,71) = {(1 — 0)xo + 0x1}9c(0,1). Then

fz1) = Z .1,f(j) (xo)(z1 — ﬂco)j + Ri(x1,x0), (5.9.4)

o<j<k 7’

x1 — zo|FtL
1 =20l 1 (@), (5.9.5)

| Ry (21, 20)| <
(k + 1)' (zo,x1)
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where || f*+V)|| stands for the norm of the multilinear form, i.e.,

1YWl = sup [fPD)(T,...,T))
|T;|=1
1<5<

When m =1, for k,U, f,xo,x1 as above, there exists x € (xg,x1) such that

1

Ry(z1,20) = (k+1)

JED (@) (21— o)*

Theorem 5.9.3 (Taylor formula with integral remainder). Let k € N, let U be a
convex open set of R™, let f : U — R™ of class C**1. Then for x1,x0 € U

fa) = 3 L D)@ — w0y

1l
0<j<k I’

5.9.6
+/1 (1 *e)kf(k+1) (o + 0(x1 — x0)) dB(y — wo)** | )
.k 0 1~ 2o 1—Z0)"

The three theorems above are proven in Exercise 5.10.1.
Our next chapter studies the convolution and Young’s inequalities for LP(R™)
spaces:

1 1 1
s vllze ey < Julliocee ol oy, 1= =1= +1=  1<pgr (597)

5.10 Exercises

Exercise 5.10.1. Prove Theorems 5.9.1, 5.9.2, 5.9.3.

Answer. We start with a one-dimensional lemma.

Lemma 5.10.2 (Mean Value Theorem). Let ¢ : [0,1] — R be a continuous function
which is differentiable on (0,1). Then there existst € (0,1) such that p(1)—¢(0) =

©'(t).

Proof. The continuous function [0,1] 3 ¢ — 1(t) = ¢(t) — ©(0) — t(¢(1) — ¢(0))
is such that 1(0) = ¢ (1) = 0. Since the image by v of [0,1] is a compact interval
[m, M], either m = M and 1) is constant on [0, 1], so that

vt € [0,1], @(t) = @(0) +t(p(1) — ¢(0)) = ¢'(t) = (1) — ©(0),

or Y(tg) = m < M = ¢(t1). In the latter case ty or t; belong to (0,1) (we have
¥(0) = 1(1)). As aresult ¥ has an extremum at a point ¢ € (0, 1) and its derivative
must vanish there: 0 = ¢/(t) = ¢/ (t) — (¢(1) — (0)). O
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(1) Let us prove first the one-dimensional version (m = 1) in Theorem 5.9.2. We
introduce, following the notation of this theorem,

f(j) (z9)

i (x1 — xg)j, x9g = (1 — 0)xg + 021, 0 € [0,1].

o0) = fa)— ¥

0<j<k
We note that ¢(1) = 0 and we define
¥(0) = ¢(0) = p(0)(1 = ), so that ¢(0) = 0 = (1).

We may apply Lemma 5.10.2 to ¢ and we get that there exists some 6 € (0,1)
with ¢'(0) =0, i.e.,

G+ (g )
0= — Z / . ( 9)(961 —l‘o)(l‘l _336)]

0<j<k 7t
f(j)(xg) ' 1 &
+ Z i J(x1 —x9)’ (21 — 20) + 0(0)(k + 1)(1 — 0)",
1<j<k '

(k+1)p(0)(1 - )" = g @—w )L - 0)F,
.e., -
SD(O) = f(k + (1)'9) (‘rl —Z )k+17

which is the sought result.

(2) Let us prove now the multi-dimensional inequality in Theorem 5.9.2. Lemma
5.1.4 provides the result for £ = 0. Let us assume that k& > 1. The function f is
thus assumed to be C* ¢ C'. We note that the function

Uszw f'(z) € LR, R") =R™
is of class C*~! and k times differentiable on (xg,z;). We calculate

d

2o (F@0) = (@)1 — o)

1(3)
= > ! ﬁmhm—mw%m—$®+RmﬂfXMJM@d—%%
0<j<k-1

with (induction hypothesis)

k
SUD (2 2 17" (@) | 1

R R

(&) [Rk—1(f") (o, w0) lrmn <
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where M% | is the vector space of k multilinear forms from (R™)* to R™". Since

the function [0,1] 3 0+ f(xg) is C* and the sum is a polynomial in 0, the function
[0,1] 3 0+ Ri—1(f")(wa,x0)(x1 — z0) is also CY and we can integrate from 0 to 1
and get

]+1) .
fen) S0 = Y s ) =y

1
" / Ric 1 () (0, 20) 1 — 0)do.
0
The estimate () implies for 6 € [0, 1],

| Ri—1(f") (g, x0) (1 — 20)||Rm

(k)
_ W 17 @)l
- k!

k
ol = 2ol sup [ FEFD @) ypn
($07$1) ’

" |z = wollgallwr — wollzn

We obtain thus f(z1) = ZOSjgk f(j)j(!mo) (1 — Io)j + Ry (f)(x1, 20), with
1
1Rx(f) (1, @0)[[rm < llor = ol sup [ f5HD (@) v ,
(z0,z1) Mlm (k‘ + 1)'
which is the sought result.

(3) Let us prove Theorem 5.9.3. Let z,2 + h € U. From the convexity of U, we
may define for 6 € [0, 1], p(0) = f(x + 6h). If k = 0, we have ¢ € C*([0,1];R™),

0 1
2(0) = (0) + / o (s)ds = (0) + / o (01)dt.

If k > 1, the function ¢ is C**1([0, 1];R™) and we may assume inductively

) . 1 1—¢ k—1
)= > ? ,(O)aﬂ + / o ") (6t) A=0""
- j! 0N ~ “ (k‘ — 1)'
0<j<k—1 H N~ 7
v(#)

S

Integrating by parts in the integral I, we get

(k) 1 Y
=% g e’f/ (p(k+1)(9t)9(1 2 (—1)dt,
0

k! k!
providing
1 k
1-1¢
Z <P / (p(k+1)(0t)( ) dtoF
0 k!
0<j<k

and the theorem by taking # = 1 and noting that ) (0) = £ (x + 6h)hI
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(4) Let us prove finally Theorem 5.9.1. When k = 0, by definition of differentiability
at g, we have

f(zo +h) = f(zo) + f'(zo)h + €(h)|h|,  lim e(h) = 0.

h—0

For k > 1, the function h + f’(2¢ + h) is C*~! and k times differentiable at 0, so
that inductively for 6 € [0, 1],

1(3)
fl@o+6mh= > ! j(xO) (0R) h 4 €(6h)| 16", lim e(h) = 0.
0<j<k—1 '

Since the sum is a polynomial in 6 and 6 + f'(zo+ 0h)h is C*~1 C C°, we obtain
that 6 — €(0h)|h0|* is continuous and by integration with respect to 6 € [0, 1],

Jrl) 1

feotn)— sy = > I L

1
hj“Jr/ e(0h)|ho|*hdo,
0<j<k—1 0

5o that fo 9h \hé)\khdé) |h‘k+1 fol E(Qh de0|Z| and

! h
e(Oh)0*do ‘S sup 0h h).
) comeran <Ly s (o] = am)

We have indeed limy,_,g €1 (k) = 0, concluding the proof.

Exercise 5.10.3. Let E be a normed real vector space and let f : [0,1] — E and
g :[0,1] = R be continuous mappings, both differentiable on (0,1) such that for
allt € (0,1), | f'(®)|| < ¢'(t). Prove that

[£(1) = fOO)] < g(1) — g(0).
Answer. Let € > 0 be given. We define

Te ={t € [0, 1 [[£(t) = FO)l = g(t) + g(0) — et <€}

By continuity of f,g, T. is a closed subset of [0, 1], contains 0 (the lhs of the
inequality vanishes at 0) and thus by continuity, T, contains a neighborhood of 0.
Defining ¢ = sup 7. we have ¢ > 0 and since T is closed, ¢ € T;. Let us assume
that ¢ < 1. We can find ¢ > ¢ such that
Hf(t) - f(e) g9(t) — g(c)
t—c

SIfl+e/2, g'le) <™

+¢/2,
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implying
1 (&) = FOI < 1f () = £l + [1f () = £O)]]

<=+ 1) - g(0) +elc+1)

2
<@+ 4 gl0) - g0) + el 1)
< g(t) ~ 9(c) + elt ) + gle) — 9(0) + ele + 1)
=g(t) —g(0) + et + ¢,

so that t € T,, which is impossible since t > ¢ = sup T.. As a result ¢ = 1 and thus

Ve>0, [[f(1) = fO)] <g(1) —g(0) + 2,

implying the result.

Exercise 5.10.4. Let U be an open subset of R® and let f : U — R™ be a C!
injective mapping such that, for all x € U, det f'(x) # 0. Prove that f(U) is an
open subset of R™ and that f is a diffeomorphism from U onto f(U).

Answer. Let © € U. Since det f'(x) # 0, the inverse function theorem implies that
there exists an open neighborhood W (z) of x such that fjy () is a C! diffeomor-
phism from W (z) onto f(W(z)). As a result,

fU) = UEGUI(W(I)Z = f(U) is open.

~
open

As a consequence, f: U — V = f(U) is a C! bijection of open subsets of R". Let
Q be an open subset of U: as above we prove that f(2) is an open subset of V" and
thus the inverse mapping is continuous and f is a homeomorphism from U onto
V. The inverse function theorem implies that f~! is C'!, completing the proof.

Exercise 5.10.5.
(1) Prove that the mapping (0,1) x (=m,7) > (r,0) — (rcosf,rsinf) is an
analytic diffeomorphism from (0,1) X (—m, ) onto

{2 €C, |z < 1}\(~1,0].

(2) Prove that the mapping (0,1) X (—m, 7] 3 (r,0) — (rcosf,rsinf) onto {z €
C,0 < |z| < 1} 4s analytic and bijective, but is not a homeomorphism.

Answer. (1) With ¢(r,0) = (r cos 6, rsin 0), the mapping ¢ is analytic and bijective
from (0, +00) X (=, 7) onto C\R_ with inverse mapping (also analytic)

v(a.y) = (Va2 + 2 Im(Log(x + i) ).

where Log z is defined for z € C\R_ by (10.5.1).
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(2) Extending ¢ to (0,1) x (—m, 7] keeps of course analyticity as well as bijectivity
since the injective image of (0,1) x {r} is (—1,0). However, it is not a homeomor-
phism: we have

lim (—; +iy> _(1/2,7), lim ¥ <_; —iy> — (1/2,—7),

y—04 y—04
since for 0 < ¢ < 7, Log(e!?) = i¢, Log(e™ ') = —i¢ and thus

lim Im(Log(e?)) =, lim Im(Log(e'®)) = —.

P ¢ (—m)+
Exercise 5.10.6. Let @ be a non-degenerate real symmetric n X n matriz and let
m > 0 be given. We define

Yom ={z e R",(Qz,z) = m}.

(1) Prove that ¥g m is an analytic hypersurface of R™.

(2) Assuming that the index of Q (the index is the number of negative eigen-
values) equals 0, prove that g is diffeomorphic to the unit Euclidean
sphere of R™ (compact and connected for n > 2).

(3) Assuming that the index of Q equals 1, and n > 2 prove that Xq , is diffeo-
morphic to the hyperboloid

{IER", Z x?xi+1},

1<j<n—1

which is non-compact, with two connected components when n = 2, connected
if n > 3 (hyperboloid with one sheet).

(4) Assuming that the index of Q equals 2, and n > 3 prove that X, is diffeo-
morphic to the hyperboloid

{xeR", > oa? :xi_1+xi+1},

1<j<n—2

which is non-compact, has two connected component if n = 3 (hyperboloid
with two sheets), is connected if n > 4.

(5) We assume that n > 2. Let r be the index of Q. If r = n—1, prove that Xg m
s mon-compact with two connected components. Prove that if r < n—1, then
XQ,m 15 connected, non-compact for r > 1.

Answer. (1) The differential of (Qz, z) is 2Qx and thus does not vanish at Xg .,
since m # 0. Moreover the matrix @ can be diagonalized in an orthonormal basis,
ie.,

Q =PD'P, 'PP=1d, D diagonal with the eigenvalues of @) as entries.
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(2) Defining x = Py (a linear isomorphism), we get

PP(Eo.m) = {y € R"™, Z )\jy? = m}

1<j<n
2 2
{ver. & ad-m 3 Wi}
1<j<n 1<j<n
)\j>0 )\j<0

and thus, dividing by m the previous equations, we find the answer to questions
(2), (3) and (4), except for the connectedness issues, addressed below. The arc-
connectedness of the unit Euclidean sphere is obvious since if ||xo|| = ||z1]] = 1
with Euclidean norm in R™ (n > 2), we may consider a plane II containing xg, x1:
the intersection of II with the unit sphere S*~1 is a circle (thus arc-connected).
(5) Let us assume that n > 2 and the index r = n — 1. We may thus assume that
Y Q,m is given by the equation

2 _ 2
i =1+ E .
2<j<n

It has two connected components:

{zeR z =1+ l2/[|2 U {w € R" 21 = —V/1+ |12
N~
;r 2+

Sy = F(R™Y), Fu(@) = (V14 ]2]%,2), Zin2_ =0.
Let us assume that n > 3 and the index 1 <r < n —2. The equation of ¥q ,, is
2”2 =1+ ||2'||?, 2 € R",2” € R"".
Then ¥q , is arc-connected. We consider
(z0,90) and (z1,51) €R"T" xR",  [laj|gu—r =1+ Iyl =01

We define for 6 € [0, 1],

£(0) = zo/[|zoll,

y(0) = (1= 0)yo +0y1, 7(0) = /1 + [|y(0)]%, ()ESH_T_I’{g(l)x1/||x1||,

which is possible with a continuous & since S*~ "1 is arc-connected (n—7r—1 > 1).
We have with x(0) = 7(0)£(0), z(0) = zo,2(1) = =1,

l=(@)]I* = r()* = 1+ [y(O)7, ie., (x(6),y(9)) € ZqQum,

proving the arc-connectedness of ¥ r,.
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Exercise 5.10.7. Let X be a set and let £ C P(X) be a family of subsets of X
such that O € £. We want to describe M (E), the o-algebra generated by & (see
Definition 1.1.3). We define

E ={Epee, & ={UnEr}E,ce- (5.10.1)

Let Q be the set of countable ordinals, as defined and studied in Propositions
10.1.35, 10.1.37 and Remark 10.1.36 (2 is the first uncountable ordinal). We de-
fine, following Definition 10.1.42,

Fi=EUE,, (5.10.2)
for z € Q with an immediate predecessor y, Fy = (Fy)e U ((.Fy)g)c, (5.10.3)
for x € Q a limit ordinal, Fp = Uy<aFy. (5.10.4)

(1) Prove that £ C &,.
(2) Prove that Fy C A (E) for all x € Q.
(3) Prove that UyeqFy = A (E).

Answer. (1) Obvious since @) € £.

(2) Note that if F,, C #(€) for all y < z, then F, C .#(€): this is obvious for a
limit ordinal and if  has an immediate predecessor y, then F, C .#(€) implies
(Fy)o C A (E) and ((Fy)s), C A(E) so that in that case as well F, C ().
Now since F1 C #(€), we may use transfinite induction (see Theorem 10.1.19)
and conclude that (2) holds.

(3) It is enough to prove that UycqF, is a o-algebra since it contains £ and we
already know UyeqF, C #(E). We note that the empty set belongs to UzcqFy,
which is also stable by complementation as is each F,: it is true for x = 1 and if
true for all y < z, it is obvious for z when z is a limit ordinal and also true when z
has an immediate predecessor. We may use transfinite induction to conclude. We
need to prove that UyecoF, is stable by countable unions. We consider (Ej);en
with E; € Fy;, z; € . According to Proposition 10.1.37, the countable family
{z;};en of countable ordinals has an upper bound = € . As a consequence, for
all 7 € N, E; € F, and thus

UjenE; € (.Fz)g.

Since Q has no largest element®, z has an immediate successor = + 1 and (), C
Fzt1, implying UjenE; € Fr41, completing the proof.

Exercise 5.10.8 (Cardinality of the Borel o-algebra). Let B be the Borel o-algebra
of R™.

(1) Prove that B is generated by a family of sets £ containing the empty set and
such that card € = ¢ = cardR.

8Q has no largest element otherwise we would find € Q with Q = (—,z)U{z} and since (—, z)
is countable, this would imply that €2 is countable.
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(2) Let Q be the first uncountable ordinal. We define F, for each x in Q as in
Ezercise 5.10.7. Prove that card F, = ¢ for each x € 2.
(3) Prowve that card B = c.

Answer. (1) We consider € = {B(z,7)}zerm r>0. Thanks to Theorem 10.1.20, we
have
¢ =" =card(R™) < card € < card(R™ x R, ) = ¢! =¢.

(2) We define P = {z € Q, card F, = ¢}. We note that

card€ < card F; < card € + card(&,) = 2card € = card €

since card £ = ¢ is infinite® and this implies that 1 € P. Let = € §); suppose that
y € P for all y < z. Then if x has an immediate predecessor y,

card Fy = ¢ < card F, < card((F,)o) + card(((Fy)o)e)-
Noting that from (10.1.5) and Section 10.1, we have
¢ =card Fy < card((]—"y)g) < card(]-'g]) — Mo — 9% — 9N _ c,

we obtain ¢ = card F,. If x is a limit ordinal, then F, is a countable union ((—, x)
is countable) of sets with cardinal ¢, so that

¢ <card F, < Npe < 2 =c

In all cases x € P. By a transfinite induction (see Theorem 10.1.19), we get P = €.
(3) From Exercise 5.10.7, we know that

B - UIGQJT'.I
and thus we can conclude ¢ < card B < ccardQ < ¢ = «¢.

Exercise 5.10.9 (Cardinality of the Lebesgue o-algebra). Prove that the cardinality
of the Lebesgue o-algebra L., on R™ is equal to 2%, the cardinal of P(R).

Answer. We have obviously card £,,, < card P(R™) = 2¢ardR™ — 2¢™ — 9¢_ On the
other hand, the ternary Cantor set K, (5.7.6) (see also Lemma 5.7.3) is a Borel
set with Lebesgue measure 0 and same cardinality as R. Thus P(K.) C £y and
thus ®@1<j<mP(K.) C Ly, implying

2¢=12"¢ = (2" < card(L,,) < 2¢
and the result.

9Theorem 10.1.20 proves much more: for every infinite cardinal, we have x>

2z < 22 = .

=z, so that x <
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Exercise 5.10.10. Let (X,d) be a separable metric space and let By its Borel o-
algebra. Prove that Bx 1is generated by a countable family of sets £.

Answer. Let D = {a,}nen be a countable dense subset of X. Let us consider the
countable family £ = {B(ay, 6)}neN,ee@1 of open balls. Let U be an open subset
of X. Then for each x € U, there exists r, € Q% such that the ball B(x,2r,) C U.
Since D is dense in X, we may find some n, € N with d(z,a,,) < ry. As a
consequence

x € Blan,,r:) CU,

where the inclusion follows from the triangle inequality:
d(y,an,) <ry = d(y,x) < d(y,an,) + d(an,, ) <ry + 74
=y € B(z,2r;) CU.
We get finally that U = Uzepy B(an, , 72 ). As a result, with O standing for the open

subsets of X,
Bx = #(0)D #(E) DO = Bx =.#(E).

Exercise 5.10.11. Let (X,d) be a separable infinite metric space and let Bx its
Borel o-algebra. Prove that card Bx = ¢.

Answer. In the first place, since X is not finite, it contains a subset {z,}nen
equipotent to N. Each subset X4 = {@,}nea, with A C N belongs to the Borel
o-algebra Bx as a countable union of singletons (which are closed sets). We have
thus an injection of P(N) into Bx, proving that

(*) 2N — ¢ < card By.

Let &£ be a countable family of sets generating the o-algebra By, as in Exercise
5.10.10. Let Q be the first uncountable ordinal. We define F,, for each « in € as
in Exercise 5.10.7. We claim that

() for each o € 2, card F, <c.

We note that card 7 < card E+card(€.) = 2card€ = card€ = R < ¢. Let a € Q;
suppose that card Fg < ¢ for all 8 < a. Then if a has an immediate predecessor /3,

card F,, < card(Fj3), + card(((Fp)s)e) < card(RY) + card(RY) = PRI LUy

If « is a limit ordinal, then F, is a countable union ((—, ) is countable) of sets
with cardinal < ¢, so that

card F, < Roe < ¢? =c.

By a transfinite induction (see Theorem 10.1.19), we get that property (s*) holds.
From Exercise 5.10.7, we know that

BX = UaGQ]:a

and thus we can conclude card By < ccard) < ¢ = ¢. The inequality () gives
the result.
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Exercise 5.10.12. Let 2 be an open subset of R™. Prove that for any € > 0, there
exists a pairwise disjoint covering (Kp. ¢)nen of Q with diams (K, ) <e.

Answer. Let € > 0 be given. For each x € Q, there exists 7(z) € QN (0,£/2) such
that B(z,7(z)) C Q. Defining D = Q™ N Q, for each = € (2, we can find a, € D
such that d(z,a,) < r(x)/2): as a consequence x € B(a,,r(x)/2) C Q, since

|y — azpla < 7r(2)/2 = |y — 2|2 < 7(x) = y € B(x,r(z)) C Q.

We have thus @ =U  4ep,cp  B(a,r) so that
re ACQn(0,e/2)

Q =UpenBn, B, closed ball with diameters < e.
We define now
Ky=By,K1 =B1\By, ... ,Kni1=Bpt1\(BoU---UBy), ....
We have obviously

diamg(K,,) < diamg(By,) <&, UpenK, = UpenBn = Q, (5.10.5)
and also for 0 < ny <ny, K, NK,, CB, NB;, =0. (5.10.6)

As a consequence, Ay, (2) = > oy Am (K ).

Exercise 5.10.13. Calculate the n — 1-dimensional area of the unit sphere S*~! of
R™ by using the explicit change in polar coordinates.

Answer. We have
1

1
|B"+ ‘n-&-l:/ dr = 1/ dsn o,
z€RH1 ||z]|»<1 n+1l /s

so that using (5.4.3), we find

1 T e ne
B = Ly [ g taols .
0

The computation of the Wallis integrals in Lemma 10.5.7 gives

|Sn|n ‘Sn_1|n—1 ‘Sn_1|n—1 \/ﬂr(g)

=B, = / ing)" ldo =
n+1 | | +1 n4+1 0 (SIHQS) (b n+1 F(n;1)7

so that [S"|, = [S"7Y,—1 vrT(s) ISY|; = 27 and thus

F(ng»l) ’
S ] VD) g TO)
n i+1 n Y
2<j<n F(szr ) I'( ; )

recovering (5.4.8): |[S"|,_; =
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Exercise 5.10.14. Prove that card{a € N? |a| =1} = Cldgdlfl.
Answer. We start with

(9) CldJ:dlq = Z Cj('iJ:d272

0<j<l

which is true for [ = 0, and since Cl'ﬂ__dl = Cl’ﬂ__dl_l + C’ld_;dQ_l is proven by induction
on [: we have

d—1 _ d—2 -2 _ d—2
Clfiva—1 = E : Citis O = Z Cita—2
0<j<l 0<j<l+1
- ~ -~
induction hypothesis

proving (). Now,

card{a € N, |a| =1} = Z card{3 € N71 |3| = j},

0<j<l

providing the proof by induction on d of the sought formula.

Exercise 5.10.15.
(1) We consider a norm on R™, denoted by || - ||. Find an iff condition on the
real numbers o, B so that

/ @ / @ e
re (14 ||])? 7 lei<1 llzll® '

(2) We assume that n > 2 and we set, with || - || standing for a norm on R"~1,
and for A > 0,

Cra = {(z1,2) € R xR"™L, ||| < Al |}

Give an iff condition on the real numbers «, 8 so that

dx dx
5 < +o0, for all compact K o < Foo.
i (T |2a]) ciank |21l

Show that this provides a proof of (1) without using a change of variables.

Answer. (1) The answer is § > n and « < n. Since all the norms on R" are
equivalent (see, e.g., Exercise 1.9.8), we may assume that || - || is the Euclidean
norm and use polar coordinates (see Section 5.4). We need only to check the 1D
integrals

—+00
/ r”—1(1+r)_ﬁdr<+oo<:>n—1—3<—17 ie, B8 >n,
0



278 Chapter 5. Diffeomorphisms of Open Subsets of R™ and Integration

and

1
/ P < boo = n—1—a> -1, ie,a<n.
0

(2) Let us use Fubini’s theorem for these positive measurable functions. With
V-1 equal to the (n — 1)-dimensional Lebesgue measure of the unit ball of R"~1
for the norm || ||, we find

/ dx / / , dry
B~ dz 8
cra (L4 21]) R \J)2/| <Az (1 + [z1])

A Hxlw 1
=V,_ dry <
1/ (1 + |21])? 1 < 400

if and only if 8 > n. Similarly if the condition in (2) holds for all compact sets
K, it is satisfied in particular for {(x1,2") € R x R"™1 |2/| <\ |z1] < 1} and we
obtain

/v A" Hmlw 1
dri < 0o = a < n.
0 |21 ]

Conversely, if that condition holds and if K is a compact set, K is included in
a Euclidean ball with center 0 and finite radius on which the integral is finite
following the same computation. We note then that

R" = ulgjgn{x € R", max |zy| = \xj\}
1<k<n
so that the integral over R™ is a finite sum of integrals on conical sets of type
{(@1,2) e RX R, max || < o]}
2<k<n
for which the calculation is done.

Exercise 5.10.16. Let n be an integer > 2. For x € R™, we denote by ||z|| the
Euclidean norm of x.

(1) Calculate the volume of the ellipsoid

{x e R",
1<j

@
<1
2 —
as
j<n 7

(a; are positive parameters).
(2) Let A be an xn real symmetric positive definite matriz. Calculate

/ e~ ™(AB)
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(3) Let B be a n x n invertible real symmetric matriz. Calculate

lim 677r6|\1:|\267727r<31:,m>d
€—>0+ R™

Z.

(4) Let A, B be n x n real symmetric matrices such that A > 0 (i.e., (Az,x) >
d||z||?, d > 0). Calculate

. — 12— i o
i [ emellal? o—m((A+iB)z.a) 4
€—>0+ Rn

X.

Answer. (1) Performing a linear change of variables, y; = a;jz;, we get that the

volume is
n
B 1]
1<j<n

where |B"| is given by (4.5.4) in Exercise 4.5.12.
(2) With the change of variables = A=1/2y, we find (det A)~1/2.
(3) The matrix B can be diagonalized in an orthonormal basis:

dy 0
D ='PBP, D= diagonal, ‘PP = 1d.
0 dn,

The linear change of variables z = Py gives
/ e—erllel? —im(Br.z) g _ / emerlvl =im(Dvangy — T / o=t (eidy) gy
" " 1<j<n VR

Using question (2) in Exercise 4.5.14, we obtain

| I (€+Z‘dj)71/2 I | ‘dj‘71/2677;2 sign(d;) _ |det B‘71/267i25ignature(B)’
—0
1<j<n T gign

where

signature(B)

= number of positive eigenvalues of B — number of negative eigenvalues of B. (5.10.7)

(4) We have
I() :/ o—rellall? = ((A+iB)a,a) g

_ (detA)—l/Q/ e—‘n’eHA*l/Qy”Ze_ﬂ—((Id+iA*1/QBA*1/2)y7y>dy.

n
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The real symmetric matrix A~'/2BA~1/2 can be diagonalized (eigenvalues A;,1 <
j <n) in an orthonormal basis and using the previous calculation we obtain

; _ —1/2 —1/2
61&& I(e) = (det A) H wy
1 eigenvalues of

Id4+iA~Y/2BA—1/2

The p; are equal to 1+i); where the A; are the eigenvalues of the real symmetric
matrix A7Y/2BATY2.1f (v;)1<;j<n are the (positive) eigenvalues of the positive-
definite matrix A, we have

A=PD4'P, PecO(n), Da=diagonal(vy,...,v,),
ATYV2BATY?2 = QD'Q, Qe O(n), Dp=diagonal(Ai,...,\),

and thus with A2 = PDY?'P, we have A+ iB = AY2Q(Id+iDg)'QAY2, so
that
det(A+iB)=detA [ @ +iN)= J[ w1 +ir).
1<j<n 1<j<n
As a result lim. 0, I(€) is equal to a particular determination of (det A)~!/2
given by
H V]'_I/Q(lJri)\ —12 = H 1/_1/2 =3 Log(1+iA;)
1<j<n 1<5<n

The reader may consult the section entitled The logarithm of a nonsingular sym-

metric matriz on page 463 of the Appendix for a further discussion on this topic.
The following lemma may be useful for future reference.

Lemma 5.10.17. Let A, B be n X n real symmetric matrices such that A is positive
definite. Then there exists an invertible n X n real matriz R such that

'‘RAR=1d, and 'RBR is a diagonal matriz.

Proof. There exists P € O(n) such that ‘PAP = D4 where Dy is the diagonal
matrix with diagonal (A1,...,\,) where the A; are the (positive) eigenvalues of
A. We may consider the real symmetric matrix A=/2BA=1/2, where A=Y/? =
PD;l/th: there exists @ € O(n) such that 'QA~'/2BA~1/2Q = Dp where Dp is
the diagonal matrix with diagonal (u1, ..., u,) where the u; are the eigenvalues
of A=1/2BA~1/2. We have thus with the invertible matrix R = A~Y/2Q,

fQATV2AATY2Q ='RAR=1d, 'QA"Y?BA~Y2Q ='RBR = Dp,

so that the quadratic forms x — (Axz,z) and  — (Bz,z) can be simultaneously
diagonalized. O



5.10. Exercises

Exercise 5.10.18. Using a change of variables, calculate the integrals

3
I = // 4 dxdy, a >0,
x>0, y>0, z+y<a \/1 + (I + y)3

= // ot — y*le @ dady.
x>0, y>0

Answer. With H = 1r,, we have

= —x)H(a — 3y —2) T
I—//H(w)H(y JH ( y)\/Hy?,d dy

3(y — )

V1i+ty?

I= /Oa(l +y%) 7123 </Oy(y - m)dm) dy

a 2
:/ (1+y*)~1/23 <y2 - y2 > dy = (1+d)"? - 1.
0

_ / / H(x)H(y —)H(a — y)H(y) dxdy,

so that

For the second integral we set © = u — v,y = u + v, so that

J=2 // H(u —v)H (u + v)2|v|2|u|2(u? + v2)674“2dudv

+o0 5
J = 24/ (/ H(u — |v))|v|(u? +v2)dv) ue " du
0

+oo u 5
= 25/ (/ v(u? + vg)dv> ue " du
0 0
3

—+o0
=3x 23/ We™ W du = 3 x 279T(3) = .
0

and thus
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Chapter 6

Convolution

6.1 The Banach algebra L'(R")

Let u,v € C.(R™). For all z € R™, the mapping y — u(x — y)v(y) is continuous
with compact support C suppv. We may thus consider

(uxv)(z) = /n u(z — y)v(y)dy. (6.1.1)

We shall say that u * v is the convolution of u with v. For a given x, the change of
variables ' = x — y shows that u * v = v % u. Theorem 3.3.1 implies readily that
u * v is continuous and moreover if x ¢ supp u + supp v, then for all y € suppwv,
x —y ¢ suppu (otherwise + = z — y + y € suppu + suppv) so that for all
y € R" u(z — y)v(y) = 0. As a result, (suppu + suppv)® C {u*v = 0} and thus
{uxv # 0} C suppu + suppv. Since suppu + suppv is compact (as a sum of
compact sets), we have

supp(u * v) C suppu + suppv = {z + y}eesuppu (6.1.2)
yesupp v

and uxv € C.(R™). Moreover convolution is associative, since for u, v, w € C.(R"),
we have

(wro)sw)o)= [ weoe-puy=[[  ule-y-2)olpot)dud:
://Rnxwu(m—z) v(iz—y)w(y )dydz—/nu(x z)(vxw)(z)dz= (ux (vxw))(z).

Proposition 6.1.1. The binary operation of C.(R™) given by (u,v) — u * v is
associative, commutative and distributive with respect to addition and such that

s oll gy < s gy ol oy (6.1.3)

N. Lerner, A Course on Integration Theory: including more than 150 exercises with detailed answers, 283
DOI 10.1007/978-3-0348-0694-7_6, © Springer Basel 2014
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Proof. The estimate is the only point to be proven. For u,v € C.(R™), we have

ol < [ ][ we=vemarlao < [[ e pllowlds

Rn

= Jlull 2z / o(@)ldy = a2 gm0l 1 -

With ug(z) = exp —|z|*, we have |[ug|| 1 (rn) = 1 and

Juo < woll ey = [ (o < uo)@ldo = [[ e ayaz — 1,

proving that the estimate (6.1.3) is optimal. g

Proposition 6.1.2. Letk € N, ¢ € C*(R"™) and let u € L _(R") (i.e., VK compact,
ulg € LY(R™)). We define

(erua) = [ oo yulws (6.1.4)

The function ¢ * u belongs to C*(R™) and if u € L*(R™), then ¢ * u belongs to
LY(R™) and is such that || * u| Lirny < ||@]l L1 @) l|ullLr@ny. Moreover, we have
supp(p * u) C supp @ + supp u, where the support of u is defined by (2.8.12).

Proof. Let x € R™ be given. The function y — u(y)e(x — y) is supported in
x —suppy = {T — z}sesuppyp, & compact set (since supp ¢ is compact). Since ¢
is bounded, the function y — u(y)p(x — y) belongs to Ll (R™), so that (6.1.4)

comp
makes sense. Theorem 3.3.4 shows that ¢ * u belongs to C*(R™): indeed, we have

o™ (@ = y)u)| < [u(y)Lsupp o (@ — ) sup [*)]

so that for K compact, since K — supp ¢ = {& — 2}zeK, zcsupp 1S also compact,
we have

sup o™ (@ = y)uy)] < [u(y) L —supp o (y) sup || € L1 (RY).

Whenever u € L'(R™), the inequality on L'-norms is proven as (6.1.3).

Let us prove now the inclusion of supports. Since supp ¢ is compact and
suppu is closed, the set suppu + supp ¢ is closed: if limy(yx + 2x) = x, with
Yk € suppu, 2z, € supp ¢, extracting a subsequence, we get lim; zr, = 2z € supp ¢
and lim;(yg, + 2x,) = x, so that the sequence yy, is converging and since supp u is
closed suppu > lim; yx, = « — z, proving = € suppu + supp ¢. We consider now
the open set Vi = (supp u + supp ¢)¢. For all y € R™, we have

Vo—y C (suppp)® or y ¢ suppu, (6.1.5)
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otherwise, we could find yg such that Vy — yo N (supp ¢) # 0@ and yo € supp w. This
would imply the existence of x € Vj such that z — yo € supp ¢ and thus

Vo2 =2—yo+yo €suppy +suppu = Vy,

which is impossible. As a result (6.1.5) implies that for x € V, and y € R™, we
have p(x —y) = 0 or y ¢ suppu. Since the domain of integration in (6.1.4) is
supp u, this implies (¢ *u)(z) = 0 and (supp v+ supp )¢ C (supp(go* u))c, which
is the sought result. O

Proposition 6.1.3. Let 2 be an open set of R", let u € L (2) and let V be open
C Q. Then

upy, = 0= Vpe CC(V)7/u(x)Lp(x)dx =0.

N.B. This result is important for distribution theory: a function in L{ (2) can
be viewed as a Radon measure on €2, i.e., a continuous linear form on C.(2). For

u € L (), we define the linear form [,,,

loc

Cumathw%iLﬂ@MMM,

which is continuous since

< sup|p(c)| fu(a)|de.
supp ¢

/S pla)u(a)da

This proposition proves that the mapping u + [,, is injective.

Proof of the proposition. The condition is obviously necessary. Let us prove that
it is sufficient. Let K be a compact set included in V and let xx € C.(V;]0,1)]),
xx =1 on K. With

pE Cé"’(R";Rmv/ﬂ(w)dw =1, suppp = {[|z|| <1}, € >0, pe() = p(-/e)e™ ",
€Ce(V)
)

- ~
we obtain  (pe * xxu)(z) = / u(y) XK (y)pe(z —y)dy = 0.
As a consequence, we have

IxxullLr@ny <[IXrw—@l 1 @e) + 10— 9% pellLr@n) + [0 % pe — XK UH pel| L1 (R
L2 Ixxu—@llLr@n) + 1l — @ pell L1 (rn)- (6.1.6)

Lemma 6.1.4. Let o € CF(R™). Then ¢ * p. € CX(R™) and ¢ * p. — ¢ in C¥(R™)
when € goes to 0.
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Proof of the lemma. We have indeed (¢ * p)(z) = [ ¢(z — ey)p(y)dy, so that

(o * pe)(x) — p(z)] < /p(y)lw(xfey)*sa(x)\dyﬁ sup  [p(21) — p(z2)],

|z —x2|<e

which goes to 0 with e. Similar estimates hold for derivatives of order < k, and
moreover we have supp (¢ * pe) C supp p+€eB™ C supp p+€oB" for € < g, yielding
the lemma. g

We go on with the proof of Proposition 6.1.3. From (6.1.6) and Lemma 6.1.4,
we obtain

n <2 i f — n 207
Ixrullpr@mny < L Ixxu — @l L1 @)

since xxu € L*(V). Thus we have xxu = 0 for all compact sets K C V, and since
xx =1 on K, and V is a countable union of compact sets, we find that © = 0 a.e.
on V. 0

Theorem 6.1.5. There exists a unique bilinear mapping
LY(R") x LY(R?) — LYR")
(u,v) R
such that if u,v € Co.(R™), ux v is the convolution of u and v and
[w* vl ey < llullpr@mlloll L)
The space L*(R™) is a commutative Banach algebra® for addition and convolution.

Proof. Uniqueness: if x is another mapping with the same properties, u,v €
LY(R"), ¢,9 € Ce(R™),
UKkV — UKV
(@) vt px (0= ) R — (= p) kv — 9 (0 — D) — P x D,
using ¢ * 1) = @ x 1), and with L*(R"™) norms,
luxv—uxvl| <2)lu—gl[v] +2[lv =2l

The density of C..(R") in L!'(R") and the above inequality entail u* v = uxv. To
prove existence, we consider sequences (¢ ), (1) in C.(R™), converging in L!(R"):
it is easily proven that ¢y * ¢, are Cauchy sequences since (with L!(R") norms),

lorti * Yurr — or * Yrll < [loktr — oxllllerill + 1err — Yrllllexll-

Moreover, using the same inequality, we prove that the limit does not depend on
the choice of the sequences @y, 1, but only on their limits. O

1A complex Banach space B equipped with a multiplication * which is associative, distributive
with respect to the addition, such that for A € C and z,y € B, (Az) *y = A(zxy) = x* (Ay) and
so that ||z * y|| < ||z||||lyl| is called a Banach algebra. When the multiplication is commutative
the Banach algebra is said to be commutative. When the multiplication has a unit element, the
Banach algebra is said to be unital.
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Proposition 6.1.6. Let u,v € L*(R™). Then for almost all z,

/\um— y)|dy < 4o0.

Defining h(z) = [u(z — y)v(y)dy, we have h € L*(R™),
||h||L1(Rn) S ||u||L1(Rn)||U||L1(Rn) and h =UuU*xv.

Proof. We consider the measurable function F' on R?", given by F(z,y) = u(z —
y)v(y). We have

[ ([1ria)as= [ ( [ 1wt~ wiae) 1oias

= HUHLl(Rn)HUHLl(Rn) < +o00.

As a result, F' € L'(R?") and Fubini’s theorem implies that

= /F(w‘,y)dy

is an L' function of . We have also proven that [|h||p1@n) < [Jull i@ l|o]l o1 ny.-
Since for u, v € C.(R™), we have h = uxv, Theorem 6.1.5 yields the conclusion. [

Lemma 6.1.7. The Banach algebra L'(R™) is not unital.
Proof. Let us assume that L'(R") has a unit v. We would have for all x € R",
e~ mlel® = fe*ﬂz*y'zu(y)dy and thus for all £ € R®,

(T) /67W|m|2672iﬂ'z-£d$ _ /677T|z|26727;7rm-§dm/ef2i7ry-£y(y)dy.

Claim. For 7 € R,
/ e~ e 2TIT Gy — o (6.1.7)
R

To prove this claim, we note that
F(’/") _ / 677“2672””67”—26125 _ / 677T(t+i7—)2dt
R R

so that F'(1) = [i 4 (e7™+)%)dt = 0 and F(r) = F(0) = 1, proving the
Claim. Applymg this to (), we get e —mlel? = e—mlel? fe_gi”y'gu(y)dy. Thanks
to the Riemann—Lebesgue Lemma 3.4.5, £ — fe_Qi”y‘fu(y)dy is a continuous
function with limit 0 at infinity, so we cannot have [ e~ 28y (y)dy = 1 which is
a consequence of the previous equality. O
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6.2 LP Estimates for convolution, Young’s inequality

Lemma 6.2.1. Let (X, M,u) be a measure space where p is a o-finite positive
measure. Let 1 <r < oco,1/r+1/r =1. For u € L"(u),w € L" (u), the product
uw belongs to L'(1). Moreover we have

llull - :H Hsup [{(u,w)|, with (u,w)z/ uwd.
w 1 X

L’ (W=
Proof. The first statement follows from Hélder’s inequality (Theorem 3.1.6). Also
that inequality implies for |w||,~» =1 that
/ uwdu‘ .
X

We assume first that 1 < r < 4o00. Taking w = afu|" ™", with u = aju|, |a| = 1
(we define @ = u/|u| on {u # 0}, « = 1 on {u = 0}: « is easily seen to be a
measurable function), we find for u # 0 in L",

’/ uwdu‘ < ||u||L7‘(M) = ||u||L7‘(u) > sup
X

flwll =1

L ()

7 1 o
lll7, = /X il Iy = a5 > 0,

and [, ud = [, ualul"" = [, Julad@u]""" = ||lu]|}.. We obtain thus

—rn=r(l-1)=1
(s w/|[w] o) = llulle ™

proving the result.

We assume now r = 1. We take w = 1,4 |Z|, so that we find for v # 0 in L?,
[lw|pLe =1, / wwdp = / |uldp = ||ul|L1, proving the result in that case.
bl

We assume r = 400, 1(X) < +00. Let u € L*™(u),u # 0, and let € > 0: then we
have
+oo > u({m € X, u(@)| > ullp(m — e}) > 0.
- e

~
Ge

al
We define for e € (0, [|ul|po(), w = |u|M(GC§€),

also

so that |lwl||z1(,) = 1. We have

1q
u, W) = U du > ||u||peerny — €,
() = [ Jul > g

so that supy, ,—1 [{u, w)| = |lullge(s) — € Since the latter is true for all € > 0,
this gives the result.



6.2. LP Estimates for convolution, Young’s inequality 289

We assume r = 400, u o-finite. Let X = UyXpn, u(Xn) < +00. We may assume
that the sequence (Xn)nen is increasing. Let u € L*™(u),u # 0. We define for
€€ (Oa ”u”L‘X’(u))a

Gen ={z € Xy, [u(z)] > [Jull ooy — €}

Since G = UnenGen = {2 € X, |u(x)| > |lul|p~(,) — €} which has a positive
measure, Proposition 1.4.4(2) implies

lim p(Ge,v) = p(Ge) > 0 = INGYN > N, ulGew) > 0.

al
We define w = IuTM(GC;:V;E), so that |lw[[z1(,) = 1, and we have
1c. &
ww) = [ Jul & >l ~ €
x ' u(Gen.) "
proving the result in that case as well. The proof of the lemma is complete. O

Theorem 6.2.2 (Young’s inequality). Let p,q,r € [1, +00] such that

1 1 1
1— =1—- 41— . (6.2.1)
r p q

Then for u,v € C.(R™), we have

||u k UHLT(Rn) S ||u||Lp(Rn)||'U||Lq(Rn). (622)

Moreover the bilinear mapping C.(R™)? > (u,v) = uxv € L"(R™) can be extended
to a bilinear mapping from LP(R™) x LY(R™) into L"(R™) satisfying (6.2.2).

Proof. (1) We note first that if r = 1, then p = ¢ = 1 and the inequality is already
proven as well as the unique extension property.

(2) Moreover if r = +o00, then 1/p+ 1/q = 1, the requested inequality is

w0 oo mny < [Jullr@nyllv]lLogn),

which follows immediately from Holder’s inequality (Theorem 3.1.6). The exten-
sion property holds obviously for 1 < p,q < 4o00. If p = +00 = 7, then ¢ = 1
and

m*wm»=/ﬁm—yw@w%

and (u,v) — ux*v is a bilinear continuous mapping from L> x L into L satisfying
(6.2.2).

(3) We may thus assume that r €]1,+o0[. If p = +00 (resp. ¢ = +00), we have
14+ 1/r =1/q (resp. 1 + 1/r = 1/p), so that r = 400, a case now excluded. If
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p =1 we have ¢ = r; if ¢ = r = 1, the inequality is proven. We thus may assume
that 1 <p < 400, 1 < ¢, 7 < 4+00. Let w € C.(R™). We consider

(u*vxw)(0) = /(u*v)( y)dy = // y — x)v(z)w(—y)dyde,

we define
t:1 *1,0:1771",u0:|u\p,1}0:\v\q,w0:|w|1/”,
and we find
® o rw)O)] < [ [ bty = )i e)g (~u)dyda
We note that
l1-t4+1—-s=o0,ie,1—-t+1—-s54+1—-0=1, 1—-t,1—-5,1—0>0.

Lemma 6.2.3. Let ug, vo, wo be non-negative functions in L*(R™) with norm 1. Let
s, t,o0 €[0,1] such that 1 —t+1—s+1—o0=1. Then

J[ bty erstns -y < 1.
Proof of the lemma. We have for ug(y — ), vo(x), wo(—y) positive,

tLoguo(y — =) + s Logvo(x) + o Logwo(—y)

0 1 1 Log ug( )
=[Q=-t)[1]+Q=s)[0]+(1—0) |1 Log vg(x)
1 1 0 Log wo(—y)
\V/ \V/ \V/ ~ -~
ay as as L

Consequently, we obtain, using the convexity of the exponential function,

ug(y — 2)vg (@)wg (~y)
=exp[(1—t)(a1- L)+ (1 —s)(az- L)+ (1 —0o)(az - L)]
< (1—t)explas - ) + (1 — ) explaz - L) + (1 — o) explag - L),
so that

J[ bty eratons -y
< //{(1 — t)vo(z)wo(—y) + (1 — 8)uo(y — z)wo(—y) (6.2.3)

+ (1 —o)uoly — J:)vo(a:)}dydx =1,

concluding the proof of the lemma. O
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Going back to the proof of the theorem, we note that the previous lemma
and () imply

weorw)O)] < [[{1 = Ouhun(-9) + (1= s)unly - ahuo(-)

+ (1= FYuo(y — @)vo() }dyda.

We get thus with 1/r + 1/r" = 1,w(z) = w(—z), (u,v) = [uw,

(6.2.4)

[{ws v, d)| < (1= D)[oll 7wl + @ =) ullzsllwlf. + 1= o)ulisllvl|7a.

Let us assume |[u||zr = ||v]jze = [|Jw| ,~ = 1. We have then |(u*v,w)| <1 so that
by homogeneity,
[(ux v, w)| < [lufl ool Lallw] - (6.2.5)

Since we have assumed that r € (1, +00], we know that v’ € [1,4+00) and C.(R") is
dense in L™ (R™) (Theorem 3.4.1). Inequality (6.2.5) implies for u, v, w € C.(R™),
W e L (R"),

N~

‘/ Su*vl(m) W (z) dz| < [{ux o, W —w)| + |{u * v, w)|
c(ir)

&) L (R™)
CL"(R™

< lus ol W = wll g + [[ufl o [0l allw] -

As a result for u,v € Co(R"),W € L" (R"), and € > 0, there exists w € C.(R")
such that ||W —w|| .~ < € and thus

[{ux o, W)| < elluxv]or + [lullol[oll (W]l +€),

which implies |(u * v, W)| < |Ju||zr||v]|La|W |~ and from Lemma 6.2.1 this gives
[l vl < [lullze|[v]| za-

To prove that the mapping (u,v) — u*v can be continuously extended from
Ce(R™)? into L"(R™) to a continuous mapping from LP x L9 into L", we may
assume that p,q € [1,4+00). For (u,v) € LP x L7 and (uy, vi) sequences in C,(R™)
converging towards u, v respectively in LP, L9, we note that the sequence (uy * vy)
is a Cauchy sequence in L" since

llwhrt * Vs — up * V|| or = || (ks — Uk) * Vs + Uk * (Vi1 — vk) | 2
< kst — wkll Lo |vetillza + |vksr — vkl La|uk|| e,

and the numerical sequences (||vk||Le)k, (||vk||ze)r are bounded. We may define
u*v for (u,v) € LP x LY as the limit in L" of uy, * v;. That limit does not depend
on the approximating sequences, thanks to the same inequality: with g, 0 other
approximating sequences, we have

g * Uk — U *x U = (uk — Ug) * Vg + Uk * (Vg — k),

and thus ||ug *vg — Uk * Okl o < ||ug — k|| Lr || vkl La + ||kl Lr |ve — Ok || La, entailing
that limg ug * v = limyg Uy * U in L". [l
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There is a more constructive approach to the definition of the convolution
product between LP(R™) and L2(R™) for p, ¢, r satisfying (6.2.1). The case r = +00
is settled directly by Holder’s inequality. We assume in the sequel that 1 < r <
+o00.

Let u € LP(R™),v € L4(R™), both non-negative functions. Then the function
(z,y) — u(y — x)v(z) is measurable and Tonelli’s theorem 4.2.5 implies that

(uxv)(y) = / uly — o)u(z)de

is a measurable non-negative function of y. Moreover choosing w(y) = 1~ (y/k),

inequalities (6.2.4), (6.2.5) entail that f|y|<k(u * v)(y)dy is finite for all k. As a

result the non-negative function ux*wv is locally integrable (thus almost everywhere
finite). We use now Lemma 6.2.1: for B with finite measure and A > 0,

1/r
( / (u U)@)ydy)
Br{y,(uxv)(y)<A}

/ (% v) (y)w(y)dy,
w>07 B{y,(uxv)(y) <A}

and inequality (6.2.5) implies
/ ((wx 0)) dy < [l gy [0l oy
BN{y,(uxv)(y) <A}

which proves that for w,v non-negative respectively in LP(R™) and L9(R™) for
D, q,r satisfying (6.2.1), we find that u * v belongs to L"(R™) and (6.2.2) holds.
Now if u, v are respectively in LP(R™) and L9(R™), we may write

u=(Reu); — (Rew)- +i(Imu); —i(Imu)_,
and define uxv = (Reu)4 * (Rev)4 + - - -. The bilinearity is obvious as well as the

continuity L? x L? C L. To obtain the inequality (6.2.2), we use again inequalities
(6.2.4), (6.2.5). We sum-up our discussion.

Definition 6.2.4. Let p,q,r € [1,400] satisfying (6.2.1). For v € LP(R") and
v € LI(R™), we define

(w5 v)(y) = / u(y — 2)o(z)de

which is a locally integrable function (thus a.e. finite).
Theorem 6.2.5. Let p,q,r € [1,+00] satisfying (6.2.1). The mapping
LP(R™) x LYR") 3 (u,v) = u*v € L"(R"),

is continuous and (6.2.2) holds.
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6.3 Weak LP spaces

Definition 6.3.1. Let p € [1,4+00). We define the weak-LP(R™) space L (R™) as
the set of measurable functions u : R™ — C such that

ig}gt”)\n({x € R™, Ju(z)| > t}) = Qp(u) < +o0, (6.3.1)

where )\, is the Lebesgue measure on R™.

Remark 6.3.2. (1) We have LP(R™) C L2 (R™): let u € LP(R™). We have for ¢t > 0,

20 ({Ju] > 1)) = /

Ju|>t

edo< [ fu@lPde < Jull o,
|u|>t

so that, with €, (u) defined in (6.3.1), we have

Qp(u) < ||u||1£p(]1@n)~ (6.3.2)

(2) For z € R™, we define v,(x) = |z| /7 (a measurable function). For R > 0, we

have
R
/ vp(x)Pdx = / |x|~"dx > |S"_1\/ dr/r = 400,
B(0,R) B(0,R) 0

so that v, is not in L} (R™). On the other hand, we have for ¢ > 0,
X ({277 > 1) = 747 170 (BY) = A, (B),

so that v, belongs to LP (R™).

Lemma 6.3.3. Let p € [1,400). Then LE(R™) is a C-vector space. For u,v €
L2 (R™),a € C, we have

1

(Qlaw)” = lal(Q) 7, (Qlu+v))7 <25 (Qu)r +Q(v)?).

Remark 6.3.4. The mapping L2 (R") 3 u — (Qp(u))ll’ is a quasi-norm: it satisfies
the first two properties (separation and homogeneity) in (1.2.12), but fails to
satisfy the triangle inequality, although a substitute is available with a constant
21/P > 1. We shall see below (Lemma 6.3.5) that when p € (1, +00), we can find
a true norm equivalent to this quasi-norm.

Proof of the lemma. Let o, 8 be non-zero complex numbers and let u,v € LP.
Since for ¢t > 0, |au| < t/2 and |Bv| < ¢/2 imply |au + Bv| < t, we have

{loaw + Bv| >t} C {|au| > t/2} U {|Bv| > t/2},
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and thus
A ({Jou + Bo| > t})
< 2l (o, ) Aol > 1123) + el
< 2ol (u) + (218172, (1),

t

op3) {1801 > 1/2))

so that Q,(au + fv) < (2|a])PQ,(u) + (2|6])PQp(v) < 400, proving the vector
space property. The first homogeneity equality in the lemma is obvious, let us
prove the second one. We may of course assume that both quantities 2, (u), ,(v)
are positive (Q,(u) = 0 implies v = 0 a.e.). Let § € (0,1). Since for ¢ > 0,
lu] < (1 —6)t and |Sv| < 0t imply |u + v| < ¢, we have

{lu+v| >t} C{|u] >t(1 —0)} U{jv|] > t6},
so that

A0 ({|u+ v > t})
< (1=0)P(1— 0P ({Jul > t(1 — 0)}) + 07 PPN, ({|v] > t0}) ()
< (1= 0)"PQp(u) + 677, (v).

We consider now the function (0,1) 3 6 — (1 —6)"Pa+607Pb = ¢4 (6), where a,b
are positive parameters. We have

$up(0) =p(1 = 0)"""a —po~"71b,
and the minimum of ¢ is attained at @ such that (1 —0)7P~la = 67P71p, ie,

0
1-6

(b/a)ri  br

= (b/a) pil ’ i'e'7 = 1 1 1
1+ (b/a)rt+r ar+tl 4 hrt1

. 1 1 . . .
with ¢gp = (1 —0)"Pa+07Pb = (art +br+1)PTL at this point. We infer from (x)
that

1 1 [N 1 1 1
(Qp(u+0))? < (Qplu)rr + Qp(v)rir) P <20 (Qp(u)r + Qp(v)7),
where the last inequality comes from the sharp elementary?
(ap}H +bp~1kl)p;1 §2117(a11>+b11>) O
2We have from Hélder’s inequality for a, b positive,
P
artl +brtl < ((apil)p:fl +(bpi1)p§1>p“ 171 17Ty ph = 2041 (ar 40w ) ph

1
The constant 2»7+1! is easily shown to be sharp by taking a = b.
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Lemma 6.3.5. Let p € (1,+00) and let p' be its conjugate exponent. For u €
LP (R™), we define

Ny = sup (AU /A lu(z)|da. (6.3.3)

A measurable
with finite positive
measure

Then N, is a norm on LE(R™) which is equivalent to the quasi-norm ,(-)*/?.

Proof. Tonelli’s Theorem 4.2.5 gives for a measurable subset A of R",

/A lu(a)|dz = // La(2)H (Ju(e)| — t)H(t)dtdr, with H = 1g, .

As a result, for T > 0 and A measurable with finite measure, we have

+o00
/A lu(z)|dr = /o An (AN {Ju] > t})dt
+oo

T
:/ )\n(Aﬂ{|u\>t})dt+/ M (AN {Ju] > t})dt
0

+0o0 !
< TAn(A) +/T An ({Ju] > t})dt.

~+o00 T1-p
< Tan(A) + / ()Pt = TALA) + ()
T p—=

We choose T' = \,,(A)~/?Q,(u)/? and we find
1
p—1

/ p
= () ey P

/Mmmsamwﬂuwﬁ+ An(A) 21 (u) o
A

proving

p 1/p
Ny(u) < e D (w) /P, (6.3.4)

For t > 0, and X} measurable with finite measure, we have

P ({lul >t} N Xi) :t”/ dx gtpfl/ lu(z)|dz
{lu|>t}NXy {|u|>t}NXy

_ 1/p’
< PTIN (A ({Ju] > £} 0 X)) 7

so that tA, ({Jul > t} N X) /e < Np(u). Since A, is o-finite, this implies

Qp(u) < Np(u)?. (6.3.5)
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We see now that IV, is finite > 0 on LE, from (6.3.4). Moreover N,(u) = 0 implies
from (6.3.5) that A, ({|u| > t}) =0 for all ¢ > 0 and since

{u# 0} = Unz1{lu| > 1/n},
we find u = 0, a.e. Moreover, for o € C and u € L2, we have
Nau) = swp ) [ auta)ide = ol ).
A

A measurable
with finite measure>0

Eventually, for u,v € LY and A measurable with finite measure, we have

An(A)17 /A lu(z) + v(z)|dz
<) [ fu@lde + 2047 [ Julalde < Nyf) + Ny(o),

which implies N,(u + v) < Np(u) + Np(v), proving that N, is a norm on L% (R™)
and concluding the proof of the lemma. O

Proposition 6.3.6. Let p € (1,+00). Then LY (R™) is a Banach space for the norm
(6.3.3).

Proof. Let us consider a Cauchy sequence (uy)keny in LE(R™): in particular for
every measurable subset A with finite measure, we find that (ug A)ken is a Cauchy
sequence in L'(A), thus convergent with limit v4. Since the Lebesgue measure on
R™ is o-finite, we find a measurable function u such that for every A measurable
with finite measure, limy, ||ux —u(|£1(4) = 0. We check now for a measurable subset
A with finite measure,

M) [ o) uta)do
A
<) [ o)~ w(@)de + 200 [ ) - u(o)lda
A A
< Np(up — ) + Ma(A) P g — | piay.
Let € > 0 be given. There exists N, such that for k, > N,, we have N,(ur —u;) <

€/2. We know also that for [ > L, 4, we have A, (A)~ Y7 ||u; — ullprcay < €/2. We
take k > N, and we choose | = max(N, L., 4): we find

A (A)117 /A lun(z) — u(@)|de < e.

As a result u belongs to L2 (R™) and N,(up —u) < € for k& > N, proving the
completeness of LE (R™). O
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6.4 The Hardy-Littlewood—Sobolev inequality

We begin with a lemma, following [43].

Lemma 6.4.1. Let p,q,r > 1 be real numbers such that

1 1 1 1

- 41— =1- =

P q roor
and let f,g be non-negative measurable functions such that ||f||pemny = 1 =
191l 1 gy~ Setting T = n/q, we define Tr(f,9) = [[ f(z)lx —y|~"g(y)dydz and

we have

TT(va) = T/]R3 R t?TT_lH(t?) - ‘J} - y‘)
H(f(m) — t1>H(g(y) — tg)dtldtgdtgd.’lﬁdy. (641)

Setting for t; > 0,

ui(t1) = - H(f(x) —t1)dx, us(tz) = - H(g(y) — t2)dy, us(ts) = Buty,

with B, = |B"| (see (4.5.4), (5.4.8)), and

m(tl, tQ, tg) = max(ul(tl), UQ(tQ), U3(t3))7

we have
t t t
T.(f,g) < T/ t;f—lul( uzlto)uslta) gy gy o (6.4.2)
R3 m(t)
+o0 too
p/ 2y (ty)dty = r’/ th " tug(ta)dty = 1. (6.4.3)
0 0

Proof. We have for 7 > 0,

+00 +oo t—
T/ T H (- Jo])dt = T/ T = [T = el
0 |
and thus

2l
//f Ve — g1~ g(y)dyde

= / flx)g(y)rts ™™ 1H(t3 — |z — y|)dzdydts
R™xR™ xR

_ / b7 H (s — |2 — g H(f(2) — 1) H(g(y) — t2)dtrdtadtsdady,
R3 xR” xRn®
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proving (6.4.1). We have thus

T‘r(fa g) S T%RJr SR™ XR™ ET lH(f( ) - tl)H(g(y) — tg)dtldtgdtgdfﬂdy

m(t)=us(ts)

+ 57 H (b — lo — g H(f(x) — t1)dtrdtadtadady

T :
R} xR™ xR™
m(t)=uz(tz)

n t?:T_lH(t?, _ |$ _ y|)H(g(y> — tg)dtldtht3dxdy7

T R} xR™xR™
m(t)=u1(t1)
so that

T‘F(fa g) < T/ tgiTilul(tl)UQ(tQ)dt
2 am(t)_ud(td)
+ T/ t3 " Bty (ty)dt
R3 ,m(t)=u2(t2)

+ 7’/ t3 7 Buthua(te)dt
R%  m(t)=u1(t1)

1 )ua (t2)us(t
_ 7/ por-rltuzltouslts) oy gy
R? m(t)

Moreover, we have

+o0 +oo
p / 2y (8 dty = / / pt? T VH(f (@) — t1)dadt, = | f(x)Pde =1
0 n JO R~
and

400 + oo
r’/ t5 71u2(t2)dt2 = / / r'th 71H(g(y) — to)dydty = / g(y)" dx =1,
0 nJo n

completing the proof of the lemma. O
Lemma 6.4.2. Let p,q,r, f,9,7,T;, Bn,u1,us as in the previous lemma. Then we
have
nﬂT/n . T T
T‘r(f7 g) = - |, mln(ul(tl) . Uz(tz),ul(tl)UQ (t2) n )dtldtg. (644)
_ RZ

Proof. For t € R3, we set V(t) = ui(tuz(te)us(ta)

m(t)
Let us assume that ui(t;) > usa(t2). In that case we have

1oo +o0 (t1)ua(t2)us(ts)
157V (b, to, t3)dt =/ T N
/0 3 (t1, b2, t3)dts 0 5 max(ug(t1), us(ts)) ’

— ul(tl)u2(t2)(/ ty 7B dtuy ()7 +/ ty T—ldtg)
R Ry ,Bnth >uy (t1)

+1ﬁnt§f§U1(t1)
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+ B,

n — Tlt3=0 T

tg_T :| tz=u (tl)l/”ﬁgl/” 1 |:th ] tz=u (t1)1/”ﬁ;1/”
t3:+00

= u(t1)uz(t2)Bn (ul(tl)l [

—147
fror BT

n—rT

= wr(t1)ua(t2) B (v (01)

= u1(t1)1_;u2(t2)55/n7_

4 7_71/6;1“!‘” ul(tl)f‘r/n)
n

(n—1)
If we have instead uy(t1) < uz(t2), we find

n

+oo
tT Wty ta, t3)dts = us(ts) ™ nuy () 87" .
/O 3 ( 1,02, 3) 3 ’UQ( 2) Ul( 1)51'7/ T(n_T)

From (6.4.2) and the previous estimates, we obtain

T/n
TT(f, g) nﬂn /R l(ul(tl) Z U2(t2))u1(t1)17:"u2(t2)17:"'U/Q(tQ);dtldtQ

<
n—rT 2
T
T/n
nPn _T _7 Ed
+ nﬁ 7’/ l(ul(tl) Su2(t2))u1(t1)1 ”UQ(tQ)l ”ul(tl)”dtldtz
— ]R%r
T/n T/n
= Zﬁi . /]RzJr U1(t1)1_ZLUQ(t2)1_:L (min(ul(tl), UQ(tQ))) dt1dt27
which is (6.4.4). O

Lemma 6.4.3. Let p,q,r, f,9,7, Ty, Bn,u1,us as in the previous lemmas. We define

J:/ min(ul(tl)lf;u2(t2),u1(t1)u2(t2)17;)dtldtg. (645)
R;
Then with
400 / ) 400 '/ )
J1 :/ ul(tl)/ UQ(tQ)lindthth J2 :/ UQ(tQ)/ ul(tl)lfndtldtg,
0 0 0 0

we have J < Jy + Jo. Moreover, we have

I < 1/ (;D’T)T/n7 7 1/ (’I”T)T/".

pr n pr n

IA

Proof. We have

J = // /(u1(t1)uQ(t2))l_” min(ul(t1)7U2(t2))7/ndt1dt2
0<t1,0<to <t?/"

.

+ // , (U1(t1)u2(t2))1_n min(U1(t1),UQ(tg))T/ndhdtg
0<ts,0<t <t /P
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and thus

/'
u2(t2)17 n dtg) dtl

t;//p

i< [
e

U1(t1>1_;dt1>dt2.

From Holder’s inequality, since 1 — 7 = 1/¢/, we find, choosing m = T/q_,l,
tllﬂ/r' tzlj/rl
/ UQ(tQ)l_:Ldtg = / t;nUQ(TQ)l_ ;tgmdtQ
0 0
t’lj/r/ , 1/q t’lj/r/ 1/q
< ( / 5" ug(ta)dty > (/ tz_qut2> .
0 0
~ ~~ -
=1/r’ from (6.4.3)
We note also that
-1 -1 1 1 1
mq:T , q<1<:>T . <1/q<=r" < ¢ which holds since  + = .
q q p q r

As a result, we have

oo 1 e p/T’'\1—mgq —1\1/q
J1 S ul(tl) , ((tl ) (1 — mq) ) dtl.
0

Since

1 — r_1 ! 1 1
,’n/q qu ql ,r/ q/ T/ ql p/

we obtain, using (6.4.3),

+oo = 1 1/‘1/
J1 S/ U1(t1)t11) dt1 (T") (1—mq>*1/q
0
Ny gao L (L oma) L1 e\
,’n/ prl ,’n/ ,’n/ prl Tl q/fr
—1/q _ —1/q
1 (¢—1) 1 (17Q) Vo _ 1 (1 1 gV
r! r pr’ r pr' \q r

1 *1/Qq_1/q: 1 p/ 1/‘1: 1 p/T T/n
I pr' \ q pr' \ n '
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. . . —1
To estimate Jo from above is analogous: we have, choosing u = pq, ,
e RL

2 - 2 ——
/ U1 (t1>17"dt1 = / tlltul(h)li”tl Mdtl
0 0

t7"/p

g(\/o

We check pg < 1 by the same calculation, exchanging the roles of p and r': p’ is
replaced by r and pr’ replaced by r’'p is unchanged. O

tT'/p

, 1/q’ A
tlfq ul(tl)dt1> </
0

~
=1/p

1/q
tl“thl) .

Theorem 6.4.4 (Hardy-Littlewood—Sobolev inequality). Let p,q,r € (1,+00) such
that pl, + ql, = :,. There exists C' > 0 such that, for all F € LP(R™),

I - 7D | @y < CIF | Logany-

pr’ q q

N\ 1/q 1/q
The constant C' can be taken as ¢'By " - ((p ) + (7") >

Proof. For f = |F|/||F| e, ||gll~» = 1, we have proven from (6.4.4) and Lemma
6.4.3,

T/n / /
nBn'" 1 1 p'\1/q TN1/a\ _ pi/qs L o((P'\1/a "\1/q
re(fg) < (C) T ) = () (0)),

providing the sought result. O

6.5 Notes

The names of mathematicians encountered in this chapter follow.

Godfrey H. HARDY (1877-1947) was a prominent British mathematician.

John E. LITTLEWOOD (1885-1977) was a British mathematician, a pioneer of
Fourier analysis in collaboration with Raymond PALEY (1907-1933).

Serguei SOBOLEV (1908-1989) was a Russian mathematician, author of several
fundamental contributions to functional analysis. His name is attached to
the so-called Sobolev spaces. He introduced in the 1930s a theory for weak
solutions to PDE, similar to distribution theory, later developed in greater
generality by the French mathematician Laurent SCHWARTZ (1915-2002).
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6.6 Exercises

Exercise 6.6.1. Let p € [1,+00] and let u € LP(R™),v € L (R™). Prove that u v
s a bounded continuous function on R™.

Answer. We already know from Theorem 6.2.4 (and in fact Holder’s inequality)
that u % v belongs to L™ with ||u * v||pee < ||ullze||v] ;- We may assume that
1 < p< 400 (if p = 400, then p’ = 1 and we may use the commutativity of
convolution). Moreover, we have

(u*v)(@ + h) — (u*v)(z) = / (u(z + h — ) — u( — ))o(y)dy,

and using the notation of Exercise 3.7.15, with 4 (t) = u(—t), we have

(s o) +h) = (wx 0)@) = [ (roani = m0) )elu)dy
so that [(u*v)(z + h) — (uxv)(@)] < [|Te4nl — T2 Lo ®n) [|V]| o7 (g0, and thus
|(uxv)(@ + h) = (ux0)(@)] < (|70 (12%) — Tl Lo @) 10]] Lo (g0
Since 1,4 € LP(R™), we may apply Exercise 3.7.15 to get
Lim |74 (ro@) — 7ot Lrgn) = 0,
entailing the continuity of u * v.

Exercise 6.6.2. We define E = {(x1,72) € R* w1 — 29 ¢ Q}. Show that E cannot
contain a set Ay X Ao with A1, As measurable with positive Lebesque measure.

Answer. Reductio ad absurdum: let us assume that £ D A; x Ay with Ay, As
measurable with positive measure. We may assume

0 < Ai(4;) < 400, forj=1,2,

and we define p(z1) = fR 14, (21 + 22)14,(z2)dxe. The function ¢ is continuous,
since with the notation of Exercise 3.7.15 we have

P+ 1) = pla) = [ [reoa(la) = e (L)) 0)Las )iy
so that since 7_,(14,) € L*(R™), we get from Exercise 3.7.15,
[p(@+h) —p@)] < Imn(re(la) = 7o (La) L1 @e) 0.

The function ¢ is thus continuous on R valued in R;. Moreover, we have

/gp(ml)dml = // 1A1($1 +$2)1A2(l’2)d1’2d$1 = )\1(A1))\1(A2) S Ri
R RxR
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As a consequence, there exists x; € R such that ¢(z1) > 0; we have then x; €
Ay — As, otherwise
V$2€A27 T +$2¢A1,

which implies 14, (21 + 22)14,(22) = 0 for all 22 € R and thus ¢(z1) = 0. As a
result, we have

0 #{p>0}C A — As.
Moreover, we have (A; — A2) NQ = ), otherwise

dz, € Al,Ele S Ag,ml — X9 € Q — (l’l,xg) ¢ E
contradicting A; x As C E. We have proven A; — Ay C Q¢ and thus

0 #{p>0}CcQ".

But the non-empty open set {¢ > 0} contains a non-empty open interval ]a, b, a <
b; the density of Q in R implies ]a, b[NQ # @, which is incompatible with the above
inclusion.

Exercise 6.6.3. Let p € L*(R™) with integral 1. For ¢ > 0, we define pe(z) =
e "p(x/e).
(1) Let p € [1,+00[ and let u € LP(R™). Show that u * p. converges with limit u
in LP(R™) when ¢ — 04.
(2) Let us take u = 1y 17 and p(x) = e=ml=1”. Show that u* pe does not converge
in L (R).

Answer. (1) We have seen in Theorem 6.2.5 that L'(R™) x LP(R™) C LP(R"), and
we have

[ @) —wpas = [ ] [t~ ) - w@)oti| a,

so that with the notation of Exercise 3.7.15, using Jensen’s inequality (Theorem
3.1.3),

lp(y)|
Hp”Ll(R")

p

o pe = ullf gy < I7eyu = ullzo @)Y 1PIT 1 gny-

From the same Exercise 3.7.15, we find that 0 = lim, 0 ||7eju — ul| L»(rn) and since

pW)I7eyt — ull Loy < 2]l Lo lo(y)] € LHR™),

we may apply Lebesgue’s dominated convergence theorem to get the sought result.
(2) (see also Exercise 4.5.8 for analogous results). From Exercise 6.6.1, the func-
tions w * pe are continuous. If the sequence of continuous functions u * p. were
converging in L*°(R"™), the convergence would be uniform and the limit would
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be a continuous function v. This would imply the convergence of (u * pc)|[—2,2
towards vj[_ 9 in L'([—2,2]). But we know from the previous question that u s pc
converges towards u in L'(R™): this would imply that the continuous function v
would satisfy

1
0= / |v(z) — 1|dx +/ [v(z)|dr =0 = v = 1j9,1) on [-2,2],
0 [—2,0]U[1,2]

which is impossible since v is continuous. We can say a little bit more, since the
expressions are quite explicit here. We have for € > 0,

z/e

(wip)@) = [ Lot —epe ™ dy= [ ey
R (x—1)/e
Consequently for = €]0,1[, /e — +00 and (x — 1)/e — —oo so that
1 for0 <z <1,
lip (e p)o) = 41722 [°_ ey = [y for =01,
0 for « ¢ [0, 1],

since for x > 1,

‘/L’/E 2 2 -2
0 §/ e ™ dy < e @) 1 o,
(

:Efl)/e 6~>O+

The case x < 0 is dealt with analogously. The pointwise limit is actually discon-
tinuous at 0 and 1.

Exercise 6.6.4. Let p1,...,pk,q € [1, +00] such that

1 1
=k—1+ .

155<k P q
Show that  [[uy * -+ * ugl|Larny < [|utllzer@e) - - - Ukl Lox @ny-
Answer. For k = 2, this is Young’s inequality since
1 1 1 . 1 1 1
+ =1+ , ie, 1- +1-— =1- .
P11 P2 q P p2 q
Wehavefork22,if;,+ql, =1

r’)

using induction on k,

ug s kuprugyr||nr < lurse - wug| polluesille < lJurllzen - flukllLew |ugsa] 2o
1 1 1 1 1
= = (X )
T Gk Pi " 1<k i/ P
ie.,
11 1 1
+ =k+1-— ,=k+ qed.

1<k i P " "
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Exercise 6.6.5. Let n € N*, a €]1,+00[, p €]1,+00[ and let k € C*(R™\{0})
homogeneous with degree —n/a. We define

1 1
y=mn (1 - = ) and we assume 7y €]0, 1].
a p

(1) Show that for x # 0, |k(z)| < Colz|~™™/*. For u € L2 mp(R™), we define
(k xu)(x) = [k(y)u(z — y)dy. Show that k * u is meaningful and that for
R >0,

/I | yl ™ u(e — y)|dy < cnpllullr R
y|<R

(2) Show that for u € LP, . (R™), k *u is an Holderian function with index .

comp

Answer. (1) For x # 0, we have

|k(z) = k(x/|z])|z| =] < |z 7/ sup K.

We have also

1/p’
/ =" Ju(e = y)ldy < |lu] o (/ ly |~ Ndl/)
lyI<R ly|I<R

R , 1/pl
< Clull 1 (/ pn1=1 dr)
0

= C'lufl o R~ = C'|lul|r R,

sincenflf"é’/:np’(l,fi)flznp’(lf;f;)flzfyp’fl>fl.Asa

result,
(e = [ ke gty

’
is a bounded measurable function since u € LE,, ~and k € L : we have indeed

since17;7i>O:>pl, > (11 :>1: < 1. We can prove as well that k x u is

continuous, but the next question provides a sharper Holderian regularity.
(2) For w e L2 _(R™), x,h € R™, we have

comp

(k#w)(z + ) — (k + u)(x) = / k(y)u(z + h — y)dy — / k(y)u(z — y)dy

= /k(y +h)u(r —y)dy — /k(y)u(w —y)dy,
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so that
s+ = (e@I < [ b+ )~ k) e = 9)ldy
\|y|<2|h| - .
e[ by ) — k)l fuCe — o)y
\|y|22|h| - .
Iz

To handle I; we note that |k(y)| < Coly|=/® and |k(y + h)| < Coly + h|~™/2, so
that, using the estimate of question (1), we get

I < CoC' (2IR])7[u]l Lo + CoC' (3] ) [|ull Lo
We have thus, using the mean value theorem and the homogeneity of k’ for Io,
(ks u)(z+h) = (k*u)(z)]

< 2GoC" (3|h[)[|ullLe + C"|A] sup |y + 0h]~ =~ u(z — y)|dy.
ly|>2[h| 0€[0,1]

If |y| > 2|h|, we have |y + 0h| > |y| — |h| > }|y| and the factor of C” is bounded

above by
1/p’
w =[R2 |ul| s / ly| =T dy
ly|>2|h|
Too , 1/p
= |h2a Y ul| Lo / 1= =P gy (S
2|l
and since
! 1 1
n-1-"" —p’znp’< , >—1—p’=7p’—p’—1=p’(7—1)—1<—1,
P a
we get

w < C"|lul| Lo R|(|R[P DYV = O ||u]| Lo ||

Exercise 6.6.6. Let n be an integer > 3. For x € R™, we denote by ||x| the Eu-
clidean norm of x. Let p € [1,400|; a measurable function f : R™ — C is said to
belong to LY = when for all compact subsets K of R™, 1x f € LP(R™).

loc
(1) We define E(z)=|z||*~™ and p,=,",. Show that E belongs to Ni<p<p, L},
and E ¢ Lt

loc”
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(2) Let q €ln/2,+0] and let F be a function in LY(R™) with compact support.
We define

Crla) = [ o= ylP"Flw)dy.

Show that Cr belongs to LS. .

(3) Let ¢ be a function in C2(R™). Show that Cy, is twice differentiable.
(4) Let € >0 be given and o € C2(R™). Let x € C*=(R,[0,1]) such that

) = {0 fort <1,

1 fort>2.
6290 2—n
We set Ap= op20 o) = A lylI="x([lyll/e) (D) (y)dy.
1<j<n T "

Show that

lirg I(g,€) = Crp(0)  and  Cay(0) = ane(0),

e—U4
where ay, s a constant depending only on n (hint: calculate A(O(||x||)) where
0 is twice differentiable vanishing near 0).

(58) Let F be as in question (2). Show that for any function v, compactly sup-
ported and twice differentiable

/n Cr(z)(Ap)(z)dx = an/ F(z)p(x)dx.

n

Answer. (1) We have /

R
|z)|PC—™dz = |S* / rP=m) =10 which is
lol|<R 0

finite iff n
p2—n)+n—-1>-1, 1ie, p< = Pp.
n—2
(2) For a given z € R™, the function y — ||z—y||?>~" belongs to LY for1 < p < p,,.
As a result, with K = supp F' (a compact set), the function

y |z —yllP "1k (y) = Ge(y)

belongs to LP(R™) for 1 < p < p,. If ¢ is the conjugate exponent of ¢ > n/2, we
have 1/¢ < 2/n and
1 1 2 n-2 . on

=1- >1- = e, ¢ < = Dn,
q q n n n—2

/

so that the function G, belongs to LY (R™). From Holder’s inequality, the product
G, F belongs to L' and

[Cr(@)] < [|FllLallGall Lo
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But we have for L compact and = € L,
IGally = [ Ny=al? @y = [ e
K —z+ K

g/ 1@t < +oc,
—L+K

since K — L = {a —b}aek per is compact and ¢'(2—n) > —n (since ¢ < ", from
above).
(3) Indeed, with Cy(x) = [|lyll>"(z — y)dy, defining @, = afg; L (a

function), we see that for a compact set M,

sup. Iyl =" e sn(x = )| < Y1~ Lar—suppeo (9) | 0snll 2 € LY,
X

since if x — y € suppy, y =y — x + & € M — suppy which is compact.
(4) Since ¢ € C? and thus Ay € C?, we have

1P~ x(llyll/ Q)W) < lyl>~"[(Ae)(w)] € L.

Moreover for y # 0, limeo, Xx(||y||/€) = 1, Lebesgue’s dominated convergence
theorem gives the first result. Moreover integrating by parts in the simple integrals
in z; (on C! functions), we get

I(p.e) = §j‘/nw2" (/€3 (w)dy

-5 | oy =300/ w01

We note that for z # 0, 3EJ(||x||) = z;/||z|| since 8, (||z]|?) = 2x;, so that for ¢
as in the statement of question (4),

NCENED SR
”:EQ (1 17xj‘rj
]ggna“'mnu2+9“'m(ww i)

Denoting r = ||z||, we get

n—1

AO(r)) =0"(r) + inf)'(r) - :3 r20'(r) = 0"(r) + o' (r).

r
We may now calculate

A@* T x(r/€)) = (2= n)(1 = n)r~"x(r/e)

+2(2—n)r'Ty (r/e)e ™t + 127 (r/e)e 2
n

+ " @ X 4 T e
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=0
A~

= x(r/9) @ = )1~ )"+ (0= 1)@~ )]
+ X/ (r/e)2(2 —n)r et 4 (n — 1)rt e
+ X”(T‘/E)E_QT‘Q_n

=X'(r/e)e ' rt (3 —n) + X" (r/e)e 2P

We find

I(p,e) = /w(y) {x’(IIyII/E)E‘lIIylll‘”(3 —n)+ x”(||y||/e)e_2||y||2_"] dy
= [ eten) [ eIyl = m) Xl 2e ol ey
= [ oten) [ Uyl = )+ "l o,

and since the function between the brackets is C2°, we get

-‘roo
Cagl0) = lim I(p.¢) = £(0)}S" 1\/ P)(3 = n) + X" ()rldr

G CEOR / o)
= 0(0) 52 = ).

(6203

(5) Thanks to Fubini’s theorem we have, with v, (z) = ¢¥(z + y),
[ er@ @@ = [[ e s> F@)0)@)dady

- / ]2~ F(y) (M) (& + y)dady

= [ [1a1r@0e 4 vite] ran = [ | [l 00| Fpay

:/ {/ ||m||2"(A<py)(x)dx] F(y)dy = /CA<py(O)F(y)dy
N /a”‘py(o)F(y)dy = /Oénw(y)F(y)dy.

We may note that with F of class C2, the above equality gives A(a,,'Cp) = F
and gives a solution to the equation

Au=F

for F € L2*9 with § > 0 and F with compact support.
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Exercise 6.6.7. Let n > 1 be an integer. For x € R", ||z|| stands for the Fuclidean
norm of x. For (t,x) € R x R™, we define

n T 2 .
Bt z) = (4mt)~ 2 exp—”4|t‘ if t>0,
’ if t<O0.

(1) Show that for all T € R, E belongs to L'(] — 0o, T] x R™).
(2) Fort >0, we define on R™ the function e(t) by e(t)(z) = E(t,x). Show that
for allt >0, e(t) € L'(R™).
(3) Let 1 be in LY(R™). Fort > 0, we set u(t) = e(t) 1. Show that for all t > 0,
u(t) € L*(R™) and
lim w(t) =1+ in L'(R™).
t—)0+
(4) We assume in the sequel that ¢ € C.(R™). For t > 0 and x € R"™, we set
U(t,xz) = u(t)(z). Show that U € C=(R% x R").
oU 02U
(5) Show that fort >0, x € R, we have (t,x) = Z 5 (t, ).
ot 1<j<n 0}

Answer. (1) The function F is positive measurable. For T' > 0, we have

g B4 g
/ (47”5)771/2 / exp — dxdt = / dt ="T.
0 n 4t 0

(2) For t > 0, the same calculation proves [, E(t,z)dz = 1.

(3) The function u(t) belongs to L' as a convolution of L' functions. We have for
t >0,

lyII?

u(t)(x) = - Pz — y)(dnt) "2 exp — = 5 W@ + 2(4mt) eI gz

Let 91 be a sequence of continuous functions with compact support converging
towards ¢ in L' and let us set € = (4rt)'/2. We have

u(t) = =e(t) « ¥ —1p = e(t) * (¥ — ) — (¥ — Yr) + e(t) * Y — i
and thus for a parameter M > 0,

o) vl <200 =+ [ o) e e

+ // W (z + e2) — (@) e ™1 dzda.
R x{|lz[|>M}

Lebesgue’s dominated convergence theorem applied to the first integral for e — 0
(pointwise convergence towards 0 follows from the continuity of ¢, domination is
due to the uniform compact support for 0 < e < 1) provides

3 —T||Z 2
limsup fu(t) = ¥l < 2= dullp+ [ T,
{ll=ll>M

t—04
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As a result, taking the limit when k goes to 400, we get

limsup [|u(t) — ¢ 1 g/ e ™11 22 |4p | 1
t—=04 {llzlI>a1}

for all M > 0, implying the sought result.

(4) We write for t > 0,z € R",

o2
Ultye) = [ w(y)am)exp— 17~ Vg,
o 4t

and defining F(t,z,y) = ¢(y)(4mt)~"/? exp — |‘me|‘2, we see that
(i) fon [F(t,2,y)ldy < +o00,
(i) (t,z)— F(t,z,y)is C*> on R% x R™,
(ili) for all compact K C R% x R™, [p, Supg . ex |0FOSF (t,z,y)|dy < +oo.
The last point follows from the following identity (easily proven by induction on
k+lal):
k ga _ —1/2 |z —yl?
OOz F(t,x,y) = Y(y)Qra(t™ "z —y)exp =T
where Qo is a polynomial. The function U is thus C°° on R% x R™.
(5) We calculate then directly on R%} x R",

ou - lz—=yl* [ n  llo—yl?
_ n/2 _ _
at Rn ’(/}(y) (47Tt) eXp 4t 2 + 4t2 d
and
ou - lz—yll> T (x5 —y;)
— 4 n/2 _ g J
or; = Jon P(y)(4mt) ™" exp At o | 9

which gives

0*U lz =yl [(z; —y;)* 1
— Ant —n/2 _ J 7/ _ d
922 = P(y)(4mt) "= exp At 42 o | W
and then
o*U - lz —yll? [llz—yl* n ou
= 4rt) ™2 exp — — ldy="_.
1;@ 22 L wnt) T e = [ A2 zt] Y= ot

Exercise 6.6.8. Let (X, M, ) be a measure space where p is a positive measure.
Let p € [1,400),q € [1,400]. We define the Lorentz space LP1(X) as the set of
measurable functions f : X — C such that

(tplu({m e X,|f(x)| > t}))l/p € LY(Ry, Cit).
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We define the following quantities on LP4(X):

1
q

+oo Zd
for p.q € [1, +00), IIfIILp,q(X)(/ (tpu({x eX,|f(z) > t})) f), (6.6.1)
0
forpe[l,+o0),qg=+00, [[fllfpex)= iggt”u({m € X,|f(z)| >t}), (6.6.2)
forp=q=+o0, |fllrecox)=Ifllrex) (6.6.3)

(1) Show that LPP(X) = LP(X) and LP>°(X) = L2 (X) (see Definition 6.3.1).
(2) Prove that LP9(X) is a vector space and that || f||Lr.e(x) s a quasi-norm on
this vector space.

N.B. A very complete and accessible description of LP9 spaces is given in the
survey article [34] by the American mathematician R. HUNT (1937-2009).

Answer. (1) The second assertion follows immediately from the very definition of
L? (X). The first assertion is obvious by definition for p = co. If p € [1, +00), we
have for f € LP(X),

110 = [ 1f@Pdu= [ ( / +pt”1H(f(m)—t)dt> dp,

and by Tonelli’s theorem,

Foo dt
T / Pu({e € X, 1£@) > 1) = oI 1.

(2) The answer is obvious for p = ¢ = oo, and is already known for ¢ = co. We
may thus assume that p, ¢ € [1,400). Let us prove that ||- | zr.a(x) is a quasi-norm:
if |||l zr.a(x) =0, then for all t > 0, u({z € X,|f(x)| > t}) =0 so that

{z e X, f(x) # 0} = Upen-{z € X, |f(x)| > 1/n}

has measure 0 and thus f = 0 a.e. Moreover | - || Lr.a(x) is positively homogeneous
with degree 1, and LP?(X) is stable by multiplication by a complex number since
with z € C*,

t(n({e € X, |2/ (2)] > t}))q/”f = 2175 (u({z € X, |f(2)] > 5}))

Let f,g be in LP9(X). Let 6 € (0,1). Since for ¢t > 0, |f| < (1 — @)t and |g| < 0t
imply |f + g| < t, we have

{If +9l >t} c{lf] > t(1 = 0)y U{lgl > 10},

a/pds
i

so that

u{lf + 90> t}) <t"p{|f] > t(1 = 0)}) + t"u{lg| > t0}),
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and thus

(uttis +o1> )" ( (11> 11— 0)}) + #u{lgl > 19))) "
p({If1 >t =N + tu({lg| > to})"/?

where the last inequality follows from the sharp elementary®
Ya,b > 0,¥p>1, (d” —|—bp)1/p < a+b.

‘We obtain

(5 + ol > 0) 7" < {151 > ¢ - DY+ tu((1 1] > t0) 7

and the triangle inequality in L? and the homogeneity give

If+ gllzeaxy < X =0)" [ fllzraixy + 0 gl Lowa(x)-

We may assume that both || f||Lr.a(x), [|9]lLr.a(x) are positive (otherwise f or g are
0 a.e.) and choosing 6 = ||g||*/2/(||fII*/% + ||lg]|*/?), we get

1/2 1/2 2
1F + gllzoacy < (I a + 190 x)” < 201 fllracx) + gl zoac)),

proving the result.

Exercise 6.6.9. Let (X, M, u) be a measure space where p is a positive measure.
Let f : X — C be a measurable function. We define the distribution function
fe + [0,400] — [0,400] of f and the decreasing rearrangement function f* :
[0, +00] — [0, +00] by

fo(t) = n({z € X, |f(@)] > 1}), (6.6.4)
F(s) = imf{t > 0.£.(1) < s},

with the usual convention inf ) = +oo.

(1) Prove that f. and f* are decreasing.

(2) Prove that f. is Tight-continuous.

(3) Prove that for all t > 0, f*(f«(t)) <t and that for all s >0, f.(f*(s)) < s.

(4) Prove that f* is right-continuous.

(5) Prove that f and f* have the same distribution function (with Ry equipped
with the Lebesque measure).

3For p > 1, the function [0,1] 3 7+ 7P 4+ (1 — 7)P = (7) is convex as a sum of convex functions
and thus for a,b > 0,

P4 (1= 7P = 3(r1 4 (1= 7)0) < 7y(1) + (1 = 7)7(0) = 1 = (a” + ) < (a +b)P.

This inequality is shown to be sharp by taking b = 0.
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Answer. (1) Note that

fr(+00) =0, £.(0) = u({=, (=) # 0}),

fr(+00) =0, f*(0) = inf{t >0, fu(t) = 0}.
Let t; < t2 in Ry: then

{z e X, |f(@)| >t} C{z € X, [f(z)] >t}
implying readily that f,. is decreasing. Let s; < so in R4: then

(f) 7110, 51]) € ()70, 52]) = f7(s2) < f*(s1).

(2) Let (ex) be a sequence of positive numbers decreasing towards 0. We have

{If1 >t} = Uren{lf| >t + e},

so that by Proposition 1.4.4(2) (or Beppo Levi’s theorem), we get limy, f,(t+¢€x) =
().

(3) Let t € Ry. If s = fi(t), we have f*(s) < t (otherwise ¢t < f*(s) and from
(6.6.5) we find f.(t) > s = f.(t) which is impossible): we have proven f*(f.(¢))< t.
Let s € Ry. We have f.(+00) = 0, and thus if f*(s) = +oo, fu(f*(s)) =0 < s.
We may thus assume f*(s) < 4+o00. Let (¢;) be a decreasing sequence converging
towards f*(s) with f.(tx) < s. By the already proven right-continuity of f., we
have

lin £.(t) = £o(F"(5) = £-(F*(s) < s.

(4) Let s € Ry and (eg) be a positive sequence decreasing to 0. We already know
that f*(s + ex) < f*(s) and let us assume that there exists ¢ such that

VEeN, f*(s+e) <t<f*(s).

This implies fi(f*(s + €x)) < fu(t) < fu(f*(s)) < s, and thus ¢t > f*(s) which
contradicts the assumption.
(5) We start with a lemma.

Lemma 6.6.10. Let g : [0, +o0] — [0, +00] be a decreasing function. Then,

g«(t) = sup{s € Ry, g(s) > t}.

Proof. Let s be such that g(s) > ¢. Then, since g is decreasing, g([0, s]) C (¢, +o0],
so that s < g.(t) and thus sup{s € Ry, g(s) > t} < g.(t). Conversely, let 5o, =
sup{s € Ry, g(s) > t}. If s > s, we have g(s) < t, so that

(8007+OO] C {879(5) < t} = {579(8) > t} C [07500] = g*(t) < Soo;

concluding the proof of the lemma. O
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We can apply this lemma to the decreasing function f* to get

(F).(t) = sup{s € Ro, *(s) > t}.

We have

(t) fo@) = (f)« (1),

otherwise, we would have f.(¢f) < (f*)«(t) and thus we could find s such that
f«(t) < s with f*(s) > ¢, which would give f*(s) < f*(f«(t)) < t, contradicting
f*(s) > t. Conversely, we note that

“+oo
(F)alt) = / H(f*(s) — t)ds

and since f*(f.(t)) <t, we get the first inequality

400 400

H(r )= £ o)ds < [ H @) - s)ds =170

0

(1) (f)a(t) < /

0

where the second inequality follows from the inclusion

{s,/7(s) > f7(fu ()} C {s,5 < fu(D)},

due to the implication s > f.(t) = f*(s) < f*(f«(¢)). The inequalities (1), (1)
give the answer.

Exercise 6.6.11. Let (X, M, u) be a measure space where p is a positive measure
and let
L<p1<p<pz < +oo.

Prove that LP(p) C LP(u) + LP2 ().

Answer. We may of course assume that p; < p < ps. We note then that, for
u € LP(p),

pee Y@l > 1) = [ dps [ qu@Pde < full, <+
{lu(z)|>1} {lu(z)|>1}

We have u = ulyjy>1} + ulfjy <1y and ulgy <1y € L(p). We have also with
q=p/p1>1,1/¢"=1—p1/p,

1/q , 1/q’
/ [ulgjy>13]P dp < </ |up1qdu> (/ L1y d#)
X ¥ .

1-"P1 P1+(1—pp1 )p
—ul (e > T < Bl < g < oo,
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so that we have proven that ulyj,>1y € LP*(i). If po = 400, we use ulyjy<1y €
L () to conclude. If py < +00, we estimate

lulgju<ipP?dp = | |ulqpy <y P27 PlulPdp < |u\pdu = [Jull7, ) < +oo.
X X 2

Finally we have proven more precisely that for u € LP(u),

u=uljuj>1y + Ul a1y, utllzes ) < ||u||i/ppL)7 lluzllLez(uy < ||u||i/ppi) (6.6.6)
w s



Chapter 7

Complex Measures

7.1 Complex measures

Definition 7.1.1. Let (X, M) be a measurable space (see Definition 1.1.1). A com-
plex measure on (X, M) is a mapping i : M — C such that () = 0 and for any
sequence (Ay)ren of pairwise disjoint elements of M,

,LL UkGNAk ZM Ak (711)
keN

i.e., the series ), .\ (Ax) converges in C with limit p(UrenAr). A real measure
is a complex measure valued in R.

N.B. Reading Definition 1.1.1 of a positive measure, we realize the unpleasant
fact that a positive measure is not always a complex measure, since for a positive
measure the convergence of the series with positive terms », .\ pu(Ax) always
holds in R4, but not necessarily in R: in the first place, some u(Ay) could be
+0o and even if every pu(Ay) is non-negative finite, it could happen that the series

> ken M(Ag) = 400.

We note also that the set of complex measures on (X, M) is a C-vector
space. We could have defined easily a vector-valued measure: with (X, M) being a
measurable space and B being a Banach space, Definition 7.1.1 gives a meaning to
a B-valued measure. In particular when B is finite dimensional, the notion of an
RN -valued measure follows easily from the notion of a real-valued measure. When
B is infinite dimensional, integration theory presents specific difficulties which are
beyond the scope of this book.

Remark 7.1.2. Definition 7.1.1 implies the so-called commutative convergence of
the series ), -y 14(Ax), which is equivalent to its absolute convergence (see Exercise
7.7.1). So it is a consequence of the definition of a complex measure, that for
(Ag)ren pairwise disjoint sets in M, Y7, o [p(Ar)| < 400.

N. Lerner, 4 Course on Integration Theory: including more than 150 exercises with detailed answers, 317
DOI 10.1007/978-3-0348-0694-7 7, © Springer Basel 2014
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The following definition provides a good set of examples of complex measures.

Definition 7.1.3. Let (X, M, ) be a measure space where 4 is a positive measure
and let h € L'(u). The complex measure v defined on M by v(E) = S hdp
is called the measure with density h with respect to u and we use the notation
dv = hdu. For f € L*(v), we have fh € L'(u1) and

/X fdv = /X Fhdp.

Remark 7.1.4. We have seen in Proposition 1.6.5 that in a measure space (X, M, )
where p is a positive measure, given a measurable function i : X — R, we may
define a new positive measure v on (X, M) by

v(E) = / hdp and for f: X — R, measurable / fdv :/ /- hdpu.
E X b's

Of course when h belongs to L' (1), we can write
h=(Reh)y —(Reh)_ +i(Imh); —i(Imh)_,
and we may define the complex measure
dv = hdp, v(E)= / hdjs.
E
The measure v is the complex linear combination of the finite positive measures
dv = (Reh)+dp — (Reh)_dp + i(Im b)) dp — i(Im h) _dp.

There are various extensions of this notion when h does not belong to L!(u), for
instance if h = hy — h_,he > 0 measurable and h_ € L!(u): in that case the
positive measures hdu, well defined by Proposition 1.6.5, are such that h_du is
bounded so that hydyp — h_dp makes sense and is a measure.

Remark 7.1.5. More generally, on a measure space (X, M) we may consider g1, ua
two positive measures such that

{E € M, 1(E) = pa(E) = +o0} =0, (7.1.2)
so that we may define the signed measure
p:M=R, p(E) = p(E) — p(E).

We have of course () = 0 and if (Ag)ren is a pairwise disjoint sequence of M,

we have
[L(UNAk) = Z,LL(Ak)-
N
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To verify that the sum above converges in R and that equality holds, we note that
with A = UnAg, either p1(A) < 400 or p2(A) < +00. Let us assume that the
latter holds: then we have

w1 (4) = Z p1(Ayg), convergence in Ry,
N

pa(4) = Z pa(Ay), convergence in Ry,
N

so that p1(A) — p2(A) makes sense, belongs to (—oo, +00], and is equal to +oo if
p1(A) = +oo = p1(A) — p2(A) = Yy 1(Ax), with convergence! in (—oo, +oc]. If
p1(A) < 400, the o-additivity property is obvious. Of course if ps(A) = 400 so
that 111 (A) < 400, the discussion is similar, leading to convergence in [—o0, +00).
In both cases, convergence and equality hold in R.

7.2 Total variation of a complex measure

Definition 7.2.1. Let (X, M) be a measurable space and let A be a complex measure
on (X, M) (Definition 7.1.1). The total variation measure of A\, denoted by ||, is
defined on M as

IA[(E) = sup > IAER)- (7.2.1)
(Ek)ren pairwise disjoint N
with union F,
EreM

The name total variation measure is justified by the following results proving
that || is actually a positive measure on M.

Remark 7.2.2. We may use the word partition of E for the (Ej)ren although
according to our definition, a partition (X;);cr of a set X is a pairwise disjoint
family of subsets of X, with union X and also such that no X; is empty. Adding
empty sets in the family does not change the sum in (7.2.1).

Proposition 7.2.3. Let (X, M) be a measurable space and let A be a complex mea-
sure on (X, M). The total variation measure of X is a positive measure on (X, M)
with a finite total variation, i.e., such that |A\|(X) < +oo.

'Let (aj) be a sequence in R4 such that >y ai = +oo and let (by) be a sequence in Ry such
that > by < 4+00. Then limy s 400 D o< <y @k —bi) = +o0: in the first place for each k, aj, — by,
makes sense in (—oo, +o0] and

> (ak—bk)2< > ak_zbk) WD TOO qged.

0<k<n 0<k<n N
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Proof. We have obviously |A|(#) = 0. Let A € M and let (A,)nen be a partition
of A. Let us consider (Fj)ien a partition of A: we have

> IAF) pZ]ZAA N Fy) ’_ZZ\)\ WO F) <Y AA

keN keN neN neNkeN neN

implying

AI(A) < D IAI(An).

neN

Since Formula (7.2.1) is obviously increasing? with E, we may assume that for all
n € N, |A|(4,) < +oo. This implies that for all n, all € > 0, there exists (Ep k¢ )ken
partition of A, such that

Al(An) =277 <Y A Ene)] < AI(4n).

keN

Since we have 3y [AN(En k)| < [A[(A) we obtain

Ve >0, *6+Z\>\| ) < [AI(A :>Z\>\| ) < A[(A),

proving that |A| is indeed a positive measure on (X, M).

Let us now prove that |A| is bounded.

Lemma 7.2.4. Let Xy € M such that |\|(Xo) = +o0o. Then there exists X1, Y1 €
M such that

X():Xl UYl, leyliw, ‘)\(Yl)| Zl, ‘)\|(X1):+OO

Proof of the lemma. From the assumption on X, for any € > 0, we may find a
partition (A )ken of Xo such that

2 4v/2
Z|A(Ak,e)|>5‘€/ = 3N, such that Y [A(Agc)| > Z (7.2.2)

keN 0<k<N

and according to Exercise 7.7.2, we find J C {0,..., N} such that

Z )\(Ak,e) >

keJ

|)\(UkEJAk,6)‘ =

2Let E C F in M and (Fj)ren be a partition of E: we have

D AE) S IMENE) + Y IME)] < AI(F).
keN keN
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and this implies

1

1
AUkt s Akl = M) = MUkes A > . = NI >

provided € is chosen ab initio such that 2¢/A(X)| < 1. Moreover, since |A| is a
positive measure and Xy is the disjoint union of (Upen s Ak,c), (UresAr,c), at least
one of these sets has infinite |A\| measure and we have proven above that both
have A\ measure with absolute value > 1, providing we choose € = +2|}\( X))\ This
completes the proof of the lemma.

Now let us show that |A\[(X) = +oco leads to a contradiction. Using the
previous lemma, we set Xg = X and we find X;,Y; disjoint subsets of Xy such
that [A|(X1) = 400 and |A(Y7)] > 1. We may thus apply the lemma again and
find X5,Y> disjoint subsets of X; such that |A|(X2) = 400 and |A(Y2)| > 1. Let
us assume that we have found (X1,Y1),..., (X,,Y,), with

X;nY; =0, X;0Y; =X, [MXj) =400, [MYj)| =21, =1

we may apply the lemma and find X,, 41, Y41 disjoint subsets of X, = X, 11UY, 41
such that |\|[(X,+1) = +00 and [A(Y,41)| > 1. As a result, we have constructed a
sequence (Y3,),>1 of elements of M, such that |A(Y},)| > 1 and for n,m > 1,

Yn N Yn+m C Yn n Xn+m71 C Yn N Xn - @,

so that the (Y,)n>1 are pairwise disjoint elements of M such that |A(Y,)] > 1.
This is incompatible with the convergence of the series ), - A(Y;,). The proof of
the proposition is complete. Il

Definition 7.2.5 (Jordan decomposition of a real measure). Let (X, M) be a mea-
sure space and let A be a real measure. We define
1 1
A=, (IA[+A), A== ) (Al = A). (7.2.3)
The positive measures A+ are both bounded and satisfy

A=A+ A, A=Ay —A_. (7.2.4)

7.3 Absolute continuity, mutually singular measures

Definition 7.3.1. Let (X, M) be a measurable space, let u be a positive measure
on (X, M) and let A be a complex or a positive measure on (X, M). We shall say
that X is absolutely continuous with respect to u, and use the notation A < p,
whenever

for Ee M, wE)=0= AFE)=0. (7.3.1)
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Lemma 7.3.2. Let (X, M) be a measurable space, let A be a complex or a positive
measure on (X, M) and let C € M. The following properties are equivalent:

(i) for all E € M, \(E) = AX(ENC).

(ii) for al E€e M, E C C° = \(E) =0.

Such a set C' will be called a carrier of \.
Proof. Obviously (i) implies (ii) since A\(()) = 0. Conversely, if (ii) holds, and
E e M, wehave \(E) = A(ENC)+AMENCY) =NENC). O
~ -
=5
Definition 7.3.3. Let (X, M) be a measurable space, and let A1, A2 be two measures
on M. These two measures will be said to be mutually singular whenever they are

carried by disjoint sets: there exist A;, Ao € M, A1 N Ay = 0 such that A4; is a
carrier of \;, j = 1,2. We shall then use the notation A; L Aj.

Proposition 7.3.4. Let (X, M) be a measurable space, and let p, A\, A1, A2 be mea-
sures on M with (i a positive measure. Then we have

MLpand o Ly = A+ X Ly,
M<K pand do K = A\ + o < U,
M << pand o Ly = A\ L Ao,
ALpand A Ly = A=0.

Proof. If A\j L p,5 = 1,2, then there exist A1, A2, A € M such that A; is a carrier
for \;, By, By are carriers for p and A; N B; =0, = 1,2. Then By N By is also a
carrier for p (obvious from (i) in Lemma 7.3.2) and A; U Ay is a carrier for A; + Ag
since VE € M,

()\1 + )\2)(E) = ()\1 + )\2)(E N (Al @] AQ)) + ()\1 + )\2)(E N Ai N Ag)
=\ 4+ X)(EN(A1UA)),

since \;(E N A N AS) = 0. Since we have (41 U A2) N (B1 N By) = 0, this gives
the sought result.

Let us assume now A\; < p and A2 < p and let E € M such that u(E) = 0.
Then we have A\;(E) = 0 and the result.

If A1 < pand Ay L u, we find Ay, B € M such that A> N B =0, u carried
by B and Ay carried by As. We have thus for £ € M,

M(E) = M(ENAS) + M (ENAy) =M\ (ENAS),
~ ~ -
CA2CB*e
since EN Az C B¢ = p(EFNAy) =0 = A\(ENA2) =0. As a result \; is
carried by A§ which is disjoint from Aj, a carrier of Ag, entailing A\; L Ag.

We assume now A < g and A L pu. Let A, B be disjoint in M respective
carriers for A, u. For E € M, we have A(E) = AM(E N A) and since u(E N A) =
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w(ENANB) = pu(@) =0, the assumption A < p implies A(F N A) = 0 and thus
A E) = 0. The proof of the proposition is complete. O

Lemma 7.3.5. Let (X, M, ) be a measure space where p is a positive measure.
Then pu is o-finite if and only if there exists w € LY (u) such that for all z € X,
0<w(z) <1.

Proof. A simple modification of Exercise 3.7.9: if p is o-finite, take w = f/3
where f is given by (3.7.4) on page 161. The same exercise provides a stronger
converse. g

7.4 Radon—Nikodym theorem

Theorem 7.4.1 (Radon—Nikodym Theorem). Let (X, M) be a measurable space,
let p be a positive o-finite measure on (X, M) and let X be a complex measure on

(X, M).

(1) There exists a unique couple (Mg, As) of complex measures on (X, M) such
that
A=A+ s, A <<, A Lo

(2) There exists a unique element h € L'(pn) such that d\, = hdp, i.e., for all
EeM,

Ao(E) = /E hdp.

The couple of measures (Aq,As) is called the Lebesgue decomposition of A\ with
respect to p and h is called the Radon—-Nikodym derivative of A\ with respect to p.

Proof. We shall follow the proof given by John von Neumann ([66]). Let us prove
the uniqueness properties: if for A, j, As;,7 = 1,2, complex measures, we have

)\ = )\a,j + A37j7 )\a,j << ,LL7 )\s,j J_ [L,

then, from (7.3.3), Ag,1 — Ag,2 < p and since A1 — Ag2 = As;1 — As2 L g (from
(7.3.2)), property (7.3.5) implies Aq,1 — Ag2 = 0 and thus As 1 = A; 2. Moreover,
if d\, = hjdu, h; € L'(u), j =1,2, we obtain for all E € M,

/ (hl — hg)dﬂ = O7
E

which implies h; = ho from Exercise 1.9.27. We shall now prove the existence part,
which is the most interesting part of this theorem.

Let us assume first that A is a bounded positive measure. Let w be a function given
by Lemma 7.3.5 and let us define the bounded positive measure ¢ by

dp = d\ + wdp.
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For E € M and f = 1, we have

/de¢>:/de/\+/wadu. (7.4.1)

As a result, this equality holds as well for simple functions (see Definition 1.3.2),
and thus for a non-negative measurable function, we apply Beppo Levi’s theorem
1.6.1 and Theorem 1.3.3 (to the three positive measures d¢, dX\, wdu). For f €
L?(¢), we have

X A d (o) $(X)?
[ sl < [1an< [ 1716 < o)

1
< 2oy (AX) + llwllprgey) *-

Consequently, the mapping L2(¢) > f f  JdA is a continuous linear form on
L?(¢): by the classical Riesz representation theorem of continuous linear forms in
a Hilbert space, we know that there exists a unique g € L?(¢) such that

Vf € L3(9), /X AN = (F,9) 2o (7.4.2)

Let E € M such that ¢(E) > 0; for f = 15 in (7.4.2), we find
NE) = [ gio,
E

and since A(F) is real this implies in particular that fE Imgdp = 0, for all £ €
M, so that g is real-valued ¢-almost everywhere. Moreover, from the inequality
AME) < ¢(E), we infer that for all E € M such that ¢(F) > 0,

1
osd)(E)/EngL

and from Exercise 1.9.30 and g € L?(¢) C L'(¢) (due to ¢ bounded measure), this
implies that g(x) € [0,1], ¢-almost everywhere, i.e., on N¢ where N € M with
¢(N) = 0. We may replace g in (7.4.2) by g = gly. and find that Vo € X, §(x) €
[0, 1], so that we may rewrite (7.4.2) as

vf € L2(9), /X fdr = /X f3do = /X f3A + /X fawdp,

ie., / f(1—g)dA :/ fogwdp. (7.4.3)
X X
Let us now define the positive measures Ay, As on (X, M) by

A={zecX,0<§(x) <1}, B={zre X,0<j(zx)=1} (note A, Be M), (7.4.4)
for E€ M, M(E)=XANE), X(E)=XBNE). (7.4.5)
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Taking f = 1p in (7.4.3), we obtain [, wdy = 0, and since w(z) > 0 for all x,
this implies 1pw = 0, p-a.e. and thus u(B) = 0, so that

As L, (B is a carrier of A).

In (7.4.3), we may as well take f = (1+ g+ ---+ §"V)1g for E € M since § is
bounded and the measure ¢ is bounded, entailing

/ (1—g"* hdr = / (1—gN"* hdr = / GA+G+ -+ gV )wdu.
ENA E E

For x € A, the sequence (1 — gV*!(z)) converges monotonically to 1, so that,
thanks to Beppo Levi’s theorem, the lhs converges to A(E N A) = A\, (E). The
sequence (g(z)(1+g(z)+--- +§N(x)))NeN converges increasingly towards a non-
negative measurable function h(zx), so that

VE € M, )\a(E):/ hdyu.
E

Since Ao (X) < +o0, we get as well that h € L'(u) and A, < p, which concludes
the proof for a A bounded positive measure.

Let us assume now that A is a complex measure on (X, M). Then, according to
the decomposition into real and imaginary parts and to the Jordan decomposition
(Definition 7.2.5), we have

A=ReAd+iImA=(ReA); — (ReA) - +i(ImN); —i(TmA)—

where (Re A)4, (Im A)+ are bounded positive measures to which we may apply the
previous result. This completes the proof of Theorem 7.4.1. O

Remark 7.4.2. If A is a positive o-finite measure (as well as p), then using Lemma
7.3.5 we can find a measurable function v valued in (0,1) such that vd\ is a
bounded positive measure. We can use the Lebesgue decomposition of vdA, so
that for f non-negative measurable,

[ goir= [ i+ [ v vi<p 0<heri, voin
X X X
This implies [y fdA = [y fo~ hdu+ [y fv~'dvs, and
d\ = v hdp + v tdu,, )\(E):/ v’lhdu—k/ v dys, p(C) =0.
E ENC

The positive measure v~'hdy is absolutely continuous with respect to u, thanks
to (3) in Proposition 1.5.4 which implies as well that v~"'dvs and du are mutually
singular. This means that the first part of the Radon-Nikodym Theorem holds
for A a positive o-finite measure (and of course u positive o-finite), although the
second part may not hold since the function v~1h need not be in L!(x): however,
due to the explicit construction used in Lemma 7.3.5, we see that v~ 1hly, will
belong to L (p) if Upen X, = X, A(X,,) < +oo0.
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Lemma 7.4.3 (Hahn decomposition). Let (X, M) be a measure space and let X be
a real measure. There exists a partition {A+, A_} of X with Ay € M such that

VEeM, M (E)==+AALNE).
Proof. See Exercise 7.7.9. O

Theorem 7.4.4. Let (X, M) be a measure space. The mapping A — |A[(X) is a
norm on the vector space M (X, M) of complex measures on (X, M). Using the
notation ||A|| = [A(X), [l = supgerq [N(E)|, these formulas are defining norms
on M (X, M) which are equivalent and make (X, M) a Banach space.

Proof. Note first that .# (X, M) is obviously a complex vector space and Defini-
tion 7.2.1 implies that || - || is valued in R, homogeneous with degree 1, separated,
and satisfies the triangle inequality. The quantity [|A|| = supgeaq [A(E)| is such
that

I < sup [A[(E) < [[All < +o0.
EeM

Thus || - || is @ norm on .# (X, M) (we have proven finiteness, which was the
only non-obvious property). Moreover, if A is a real measure, we have from the
Jordan-Hahn decomposition (Definition 7.2.5, Lemma 7.4.3),

IA[(X) = A (X) + A (X) = A(Ay) = A(A-) < 2]l
If A\ is a complex measure, we have A = Re A + iIm A and thus
A< [ Re Al 4 [[ Tm All < 2[[| Re Allf + 2[[ T Aflf = [I[A + Al + 1A = Al < 4{IAll,

where the definition of A is simply A(E) = A\(E), which makes A a complex measure
with the same norm as A (true for || - ||, || - [II)-

Let us now consider a Cauchy sequence (fin)nen in (X, M). For each
E € M, the sequence of complex numbers (p,(E))nen is a Cauchy sequence and
we may define

w(E) = lirlln pn(E). (7.4.6)

We have thus obviously () = 0 and finite additivity. Let (Ag)ren be a pairwise
disjoint sequence of elements of M. We note first that

1) — ()] = i |t () — o (B)| < Timsup [ — ]| = €0 —> 0.
Using the finite additivity property of u we have

p(UkenAr) = D p(Ak) + p(Ups N A).
0<k<N
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We have also for n, N € N,
(UkenAr) = Y p(Ar)] = [p(Uks v Ag)|
0<k<N

< pu(UesnAk) = pin (Ues N AR)| + [0 (Uks N Ak)| < €, + Z L (Ax)|,
k>N

so that for all n € N, imsupy_, | o [#(UrenAr) = D> o<y #(Ax)| < €, and since
lim,, €, = 0, this implies T

yimfp(UkenAr) — Z p(Ag)| =0,
oo 0<k<N

proving the convergence of the series >, p(Ax) towards p(UpenAgx), which is
the sought o-additivity. The proof of Theorem 7.4.4 is complete. O

7.5 The dual of LP(X, M, ), 1 < p < 400

Let (X, M, u) be a measure space where p is a positive measure. We consider the
Banach spaces LP(u) (see Theorem 3.2.8) and we want to determine their dual
spaces whenever 1 < p < +00 and the measure u is o-finite. For 1 < p < 400, we
shall denote by p’ the conjugate index such that

1 n 1/ _1

p D

P =p/(p—1)ifl<p<+ooandp =+o0if p=1).

Main result

Theorem 7.5.1. Let (X, M, u) be a measured space where p is a o-finite positive
measure and let 1 < p < +oo. Let & € (LP(u))*, the topological dual of LP(u).
Then there exists a unique g € LP (1) such that

Vi), (f) = [ fodu €l = ol

so that, for 1 < p < +oo, (LP(u))* = L¥ (p).

N.B. We may consider the sesquilinear mapping

O LP(u) x L () —> C
(f7g) = fx fadp.

which is well defined, thanks to Holder’s inequality (Theorem 3.1.6), and satisfy
12(f, ) < [ llzellgll por-
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Let us check that the mapping L? (1) 3 g ~— @, € (LP(p))* given by ®4(f) =
O(f,g) is isometric, i.e.,

Iyl = s |[ fgdu]ngnm/. (7.5.1)

Il fllp=1
In fact the inequality || ®y[|(zr)- < |||/, follows from Holder’s inequality and for
agiven 0 #£ g € L* and 1 < p < +oo we have, with

£ Dl gl 1A = [ ot dulgl = 1.

and the equality

/ Fgdy = / o dlgll 727 = gl = gl

The same type of argument works for p = 1: here p’ = +o00 and for 0 # g € L™
we choose € > 0 such that ({|g| > |lg|lz — €}) > 0 and we set

1 > o —
R A N Y PP
9l n({lol > lglz~ <))

and

1(lgl = llgll~ —e) 1
o = | oldn
/ n(lol = lglle~ —e}) = 1G) Jyglm—esiol <ol
Ge
> gllLee — €l Ge = |g||L> — €.
(G )(Il Lo — )u(Ge) = llgllz

As a result || @,(f)[|(z1)» = [|g]|z. As a result the mapping

b LY () — (LP(n)*,  ¥(g) = D,

is injective and isometric and thus has a closed image isomorphic to L? () (thanks
to the Open Mapping Theorem 10.2.43). The main difficulty of the above theorem
is the proof that v is indeed onto when 1 < p < 400. We shall see some examples
(see (7.5.11)) showing that for p = oo, the dual space of L, i.e., the bidual of
L' is much larger than L' and that the mapping % is not onto in general in that

Case3 .

Proof of the theorem. Let then 1 < p < 400 and £ € (LP(u))*. We assume first
that p(X) < +o0. For E € M, we define

AE) = €(15). (7.5.2)

31t is true however that 1) is an isometric one-to-one mapping, even for p = oco: for g € L', we
have @4 ( \g| 1ig203) = llgllp1-
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If A, B are measurable and disjoint, we have 1 4y = 14 + 1, which implies that
A is finitely additive. Let us consider E = UjenE; with (E;) en pairwise disjoint
elements of M. With A, = U< E;, we have

1 —1a,l2, = / dp = w(E\Ay).
E\Aj

By the Lebesgue dominated convergence theorem, we know that limy p(E\Ax) =
0, and since £ is continuous on LP, we get that limy A(Ax) = A(E), i.e.,

AE) = AE;),
JEN
so that A is a complex measure. Moreover if p(E) = 0, we have 15 = 0, py-a.e. and

1r =0 in L? implying A(E) = 0. As a result we have A\ < p. We may apply the
Radon-Nikodym Theorem 7.4.1: there exists g € L' () such that

5(1E):)\(E):/Egdu:/xg1Edu.

Thus, by the linearity of &, for any simple function f (finite linear combination of
characteristic functions of measurable sets) we get

&f) = / fgdp,  which is true as well for f € L*(u), (7.5.3)
X

since a function in L (u) is a uniform limit of simple functions. If p = 1, for all
E € M, we have

‘/X lEng‘ =€)l < [Elwy- el = w(E)IEl -,
and thus |g(z)| < ||€][(z1)- p-a.e., implying

191l ooy < €l (E1y-- (7.5.4)

If 1 < p < 400, we consider a measurable function «a such that ag = |g| (see
Exercise 1.9.16), and we define

fo=1p,lgl" o, E,={|gl <n}.
We have |a| =1 on the set {g # 0} and p(p/ — 1) = p’ so that
[fIh =1e.lgl”,  |fal < 0¥,

and applying (7.5.3) to the L* function f,, we get

f(fn):/ 1En\9\”/’1agdu:/ lg? dp,
X

n
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’ / 1/]7 . . .
and | [, |gl?" du| < [€llwo- I Fallr = 1€l (S, 917 dpr) " and this implies

17
’/ lg|” du
E,

Beppo Levi’s theorem 1.6.1 then implies that ||g||;,» < [|€][(zry~. Since & and
[+ [ fgdu coincide (and are continuous) on L (u), which is dense in LP(p) (see
Proposition 3.2.11), they coincide on LP(u) and |[{][(r)» = [lgll - The proof is
complete in the case u(X) < +oo.

1
—

< [l€llzey-

Let us now assume that (X ) = +o0. From Lemma 7.3.5, we know that there
exists w € L'(u) such that Vo € X,0 < w(x) < 1. We consider now the finite
measure dv = wdp (v(X) = [, wdp < co0) and the linear isometries

LP(v LP P IP(y
SR 7 B g ol R LD

noting that we have
1Py = [ PPuwdn = [ 71,
11 = [ 1710 = ™ 7,
As a consequence, if £ € (LP(u))* we can define n € (LP(v))* by

YF € LP(v), (0, F) (o)) 1) = (& 0YPF) Loy 1o
and

170l ey = 1€l r(uy)-

We can use the proven result on finite measures to find G € L”/(V) such that
1Gl 2o 0y = INll(zryy With (1, F) (Lo )= 2rw) = Jx FGdv so that

— 1
<§7f>(m(#))*,m(u)=/ fw l/prdMZ/ fodp, g=Guw'"»,
X X
and, if p’ < oo,
P - P’ — 1=\ 7, P
161y = 161, = [ 16w = [ (G = Vgl

If p=1,p' = oo, we have g = G and ||{||(z1(u))* = |IGllL=w) = llgllzoe@w). The
proof of the theorem is complete. O
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The Banach spaces cq, £P

These are spaces of sequences of complex numbers (z)r>1. We have

co = {(r)z1, limar =0}, [[(@r)kz1llec = sup |zk |, (7.5.6)

for p> 1, 02 = {(zion, 3 leal? < oo}, (@il = (Zmul’) 7

k>1 k>1

(7.5.7)
0> = {(2k)r>1, sup |zx| < +oo}t,  [[(@k)k>1lle0 =sup|zi|.  (7.5.8)
k>1 k>1

These spaces are Banach spaces, and ¢2 is a Hilbert space (see Theorem 3.2.8).
Note also that the space ¢ is a closed subspace of £*° (Exercise 3.7.29). The spaces
co, PP, for 1 < p < +oo are separable since the finite sequences of complex numbers
with rational real and imaginary part are dense (Exercise 3.7.29). The space £
is not separable (see Exercise 3.7.20).

Duality results

Let us prove that ¢, = 1. We consider the mapping

C()Xfl — C

(z,y) = 2@1 Tryk = (z,y) (7.5.9)

and we have [(z,y)] < ||Z]lc llyller- As a consequence, we have a mapping

">y j(y) € ¢ with j(y) -2 = (z,y).

The mapping j is linear, sends ¢! into ¢fj and that inequality proves as well that j
is continuous: ||j(y) ¢y < |lyller. On the other hand, for a given y in ', N € N,
choosing zr = yi/|yx| when gy # 0 and k < N, a2, = 0 othervvlse, we have
z = (zr)kz1 € o, [lz]le, <1,

Li@les = sup @yl = D lyel, forall N>1,
|1Hc0§1 1<k<N
so that [|5(y)|lex = |lyller. As a result j(¢') is a closed subspace of ¢} which is

isomorphic to K?

We need to prove that j is onto. Let us take £ € ¢f; we define for j > 1,
e; = (§;x)k>1 (€ co). We choose some real numbers 6, so that e ¢ - e; = |€ - ¢
and we consider z = (e%1,... €% 0,0,0...) € cg, ||z|le, = 1, so that

o= ite= Y el

1<j<n 1<j<n
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As a result, we have for all n > 1, 37, [€ - ;] < [[€llezl|z][co = [I€]|cz, proving
that y = (£-e;)j>1 € £1. Now, we have for z = (z;);>1 € co, by the continuity of &,

¢rz= lim z;i(§-ej) = (z,(€- €5)i>1) = (2,9),
1<j<n

proving that & = j(y) for some y € ¢! and the sought surjectivity.

Theorem 7.5.1 implies that (¢1)* = ¢ (a direct proof analogous to the
previous one is also possible).

Let us now prove that (£°°)*, which is the bidual of ¢!, is (much) larger than
0'. The space ¢y is a closed proper subspace of £>°, and the Hahn-Banach theorem
(Theorem 10.2.38) allows us to construct & € (£°°)* such that

£0|Co =0, & -xo=1, xzg= (17 1,1,.. ) € EOO\C(). (7510)

As a consequence, the mapping j : £1 — (£})** = (£>°)*, defined in Proposition
10.3.13, is not onto since there is no y € ¢! such that j(y) = &: otherwise, we
would have for x € £°°,

(€05 @) (g e = (G (Y)s T (01> (1) = (T, Y) (1)~ 0 = Z‘ijjv

Jj=1

and since (§o, €;) g+ ¢ = 0, that would imply y; = 0 for all j > 1, and & = 0,
contradicting (7.5.10). The next proposition summarizes the situation.

Proposition 7.5.2. We consider the spaces cg, P defined in (7.5.6), (7.5.7), (7.5.8).
When 1 < p < 400 we define p’ €]1, 400 by the identity ; + ;, = 1. Then we
have

(O =02, ()™ £ 01, Y is not reflexive, ( )

l<p<4oo, (P) = o (Y™ =P, AP is reflexive, ( )

£ is not reflexive, (7.5.13)

ch =01 ctr = (N =7 #co, co is not reflevive. ( )

Proof. The first and the fourth lines are proven above, the second line follows from

Theorem 7.5.1, the third line is a consequence of Proposition 10.3.16, since ¢! is
not reflexive. O

Examples of weak convergence

Definition of weak convergence and elementary properties related to that notion
are given in Section 10.3. We consider the space LP(R) for some p € [1,+o00[. We
want to provide some examples of a sequence (uy)ren of LP(R) weakly converging
to 0, but not strongly converging to 0. Here we assume 1 < p < 400.
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e A first phenomenon is strong oscillations: take ui(z) = €1 1)(x): the L?
norm of uy is constant equal to 1 but for v € Lp/7 the sequence

(ug,v) = /uk(x)@(m)dm

has limit zero (a consequence of the Riemann-Lebesgue Lemma 3.4.5).

e The sequence (ux)reny may also concentrate at a point: take
up(z) = kYPuy (ka),

where 41 has norm 1 in LP. Here also the LP-norm of uy is a constant equal to 1.
However for v € LP |

(w0) = [ @)z = [ @oe/pin
with p,p’ €]1, +oo[. With ¢, € C%(R) we have with 1y (z) = k'/P¢(kx),

[(uk, v)| < Kuk, v — @) + [(ue — Vi, ©)] + [(tr; #)
< Hluallzellv =@l o + llur = Pllzellol Lo + [(r, )1,
which implies limsupy, [(ug, v)| < ||uil|zel|v — @l 0 + [|Jur — Y|z ||l 1, and this
gives the weak convergence to 0 since p,p’ are both in |1, 400l

e The sequence (ug)reny may also escape to infinity: take ug(z) = uo(z — k), where
ug has norm 1 in LP. Reasoning as above, we need only to check

/w@*kw@ﬂm

for ,1 € CO(R): that quantity is 0 for k large enough.

7.6 Notes

Hans HAHN (1879-1934) was an Austrian mathematician. He served as an adviser
for Kurt GODEL (1906-1978) (see our appendix on page 414).

Otto NIKODYM (1887-1974) was a Polish mathematician.

John vON NEUMANN (1903-1957) was a Hungarian-born American mathemati-
cian, a major scientist of the twentieth century, with fundamental contribu-
tions in Quantum Mechanics, Information Theory, Functional Analysis and
Set Theory.
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7.7 Exercises

Exercise 7.7.1. Let (ar)ren be a sequence of complex numbers such that for any
bijection o : N — N, the series ), Gy converges. Then

Z lax| < 400,
keN
i.e., the series is absolutely converging.
Answer. Let us assume that all a;, are real valued and ), |ax| = 4+-00. Writing

ar = a; —ay, af =max(ay,0), a =max(—ay,0), |ax|=a] +a,

we have », az = +00 = ) N0y > otherwise if one of this series converges
in R (say > ey @y < +00), since Y,y ak is convergent, this would imply that

> ken @ < +oo and the convergence of ), -\ |ax|, contradicting the assumption.
Let us define

Ny ={keN,a, >0}, N_={keN,a,<0}.
We have from the properties of divergence
NiUN_ =N, card Ny =Ny.
Let {m;};>1 = N_, {v;};>1 = N4 be strictly increasing sequences.

Take n1 such that Z Ay; + Gm,; > 1 (possible since Z ar, = +0o0).
1<j<ny REN,

Take no > nq such that Z Ay; + Qmy + Ay > 2,
1<j<n2

Then we can find ny41 > n; such that

Z Quy F Qg+ Ay F Ay, > 1L
1<j<ni41

We have thus constructed a strictly increasing sequence (n;);>1 of integers such
that VI > 1, ZlSjS"LL Gy, + Ay + 4 A, > 1, 50 that

Jin (3 o+ Y o) =t

1<j<ny 1<j<1
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This implies that we have found a bijection o from N onto N such that ), _ ax(x)
diverges.
If the ay are complex valued, and if ), - |ax| = 400, then we have

Z|Reak\ = +o0 or Z | Im ag| = +o00.

keN keN

In the first case, we find a bijection of N such that }, - Re aq (k) diverges which
implies that ), . ao(k) diverges as well (its convergence would imply the conver-
gence of the real parts).

Exercise 7.7.2. Let n > 1 be an integer and let || - || be a norm on R™. Show that
there exists a positive constant ¢ (depending only on the norm ||-|| and on n) such
that for all N > 1, all vy,...,ony € R"™, there exists J C {1,..., N} such that

douil[ze Yo vl

jeJ 1<j<N

Show that for the sup-norm, ¢ can be taken as 21n,
1

2n+/n°

and for the Fuclidean norm as

Answer. Since all the norms on R™ are equivalent (Exercise 1.9.8), we may assume
that

lz|| = max |z,|.
1<r<n

We may also assume by homogeneity that >, .y [|v;[| = 1. We note that

R" = Ui<i<p Iy, with Iy = {z € R”,|z;| = max |z,|},
1<r<n

so that >, oy llvill =1 <30 4<p ZlSjeSFN |vj ;| implies that we can find [ €
’L)j 1
{1,...,n} with
1
i Doolval= > vt Y (v
1<j<N 1<j<N 1<j<N
v el v;€l,v;5,:>0 v el ,v;1<0
Eventually, we can find [ € {1,...,n} with
> PRl
v O —v;1).
2n — - Il 2n — - gl
1<j<N 1<j<N
v; €005, >0 v; €N, <0
In the first case (the second case is analogous), we have
1
WETED DIRTTES D DI

1<j<N 1<j<N
v; €05, >0 v; €05, >0
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and we can take J = {1 < j < N,v; € Tj,v;; >0} and c = an. Since

1/2
max || < ( E x12> < v/n max |z,
1<i<n 1<i<n

1<i<n
we get as well the constant for the Euclidean norm.
Exercise 7.7.3. Let (X, M, ) be a measure space where i is a positive measure

and let A be a complex measure on (X, M). Prove that if A < p then [N\ < p
(prove that the converse is also true).

Answer. Let E € M such that u(E) = 0 and |A|(E) > 0: we can find a partition
(Ex)ken of E (E, € M) such that

SOIAER| = N(E) > 0,
keN

which is impossible since p(E) = 0 = Yk, u(Er) = 0 = Vk, A(Ex) = 0. The
converse is obvious since p(E) = 0 = |A|(F) = 0 and since [A|(E) > |A(E)| we
get A(E) = 0.

Exercise 7.7.4. Let (X, M, u) be a measure space where i is a positive measure
and let X be a complex measure on (X, M). Prove that A < p iff

Ve>0,36>0,YEEM, u(E) <= |\E) <e (7.7.1)

We can write this property symbolically as lim, g0 A(E) = 0 uniformly with
respect to E € M.

Answer. If (7.7.1) holds, with E € M such that u(FE) = 0, we obtain immediately
A(E) =0, proving A < p. Let us assume conversely that (7.7.1) does not hold:

Jeo > 0,Vk € N,IE, € M,  pu(Ey) <27% and |M(EL)| > €.

We define Fj; = Uy, ,>; E) so that the sequence (F});>1 is decreasing and
W(Fy) <D 278 =217 = p(F =z Fy) = 0.
k>j

On the other hand we have |\|(F;) > |A(E;) > |A(E;)| > € and since |A| is a
bounded positive measure, thanks to (3) in Proposition 1.4.4, we have |\|(F}) <
400 and we get

0 < e <lim |)\‘(FJ) = |A|(F') = || is not absolutely continuous with respect to p,
J

proving that A is not absolutely continuous with respect to u from the previous
exercise.



7.7. Exercises 337

Exercise 7.7.5. Let (X, M) be a measurable space and let A be a complex measure
carried by a set A € M. Then |\| is also carried by A.

Answer. We have A(E) = A(ENA) so that for E € M and for a partition (Ex)ken
of E/, we have

DOIAED =D INE N A) < [N(EN A),
k k
so that |A|(E) < |A(ENA) = [A(ENA) =|A\(E).
Exercise 7.7.6. Let (X, M) be a measurable space and let X be a measure on (X, M)

valued in R™ for some m € N*.

(1) Give a definition of |A| such that this total variation measure is a positive
bounded measure on (X, M) which coincides with |\ when X is a complez-
valued measure (see Definition 7.2.1).

(2) Let f: X —R™ bein L'(|\|). Prove that

| sax] < [ ustan -

Let T be a closed set of R™ such that
1
VE € M with |\(E) > 0, / fdlA € T. (7.7.3)
IA(E) Jp

Prove that f(x) € T, |\|-a.e.
(3) Prove that there exists a measurable function f: X — R™ such that

Ve e X, ||f(x)|| =1, (Euclidean norm) dX = fd|\|.
This identity is called the polar decomposition of the vector-valued measure \.

Answer. (1) We use the very same definition as in Definition 7.2.1,

IA(E) = sup > IAERI, (7.7.4)

E})kenpairwise disjoint N
with union F,
EreM
and the proof that || is a positive measure is identical to the case where A is
complex valued in Proposition 7.2.3. To check that |A| is bounded requires a simple
modification of the proof of Lemma 7.2.4. We modify (7.2.2) as follows:

2 1 2
S A > PPV oy e that Y A4 > TV
keN € 0<k<N €
(7.7.5)
and according to Exercise 7.7.2, we find J C {0,..., N} such that
1
IMUres Al = |[D_ MAk)| >

€
keJ

and the sequel of the proof does not need any modification.
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(2) We have

dIA||| = d|\ = d|\ d|\|.
H/Xf | |H Etllgl</xf| ,s> E?E’l/;ff’@ Y Y

For n € T¢,3p > 0 with B(n, p) C Te. If we had |A|(f~*(B(z,p))) > 0, this would
give, with E = f~1(B(z, p)), |/\|(E) [ fd|A| € T. However, we have

1 / 1
fd|\ = / f=n)d\ +mn,
IAN(E) J5-1(B(zp)) A IA(E) f’l(B(z,p))( 1N

and since A(E)

1 / pIN(E
(f—=mn dAI’ =P,
’ IMN(E) Jp=1(B(n.p)) IA[(E)

this would imply ||n — T|| < p, which contradicts B(n,p) C T°. Consequently,
IMN(f~1(B(n,p))) = 0. Since the open set T is a countable union of closed balls,
this implies that [A|(f~1(T°)) = 0.

(3) We have obviously A < |A| which is a positive bounded measure, so that we
may apply the Radon-Nikodym Theorem to the m components of A\ and get a
function f: X — R™ in L*(|\|) such that

dX = fd|)|.

We define for p > 0, L, = {z € X, || f(z)|| < p}. Let (Ex)ren be a partition of L,:
we have, using (7.7.2),

DIAEN =D

keN keN

fdA|H <pZ/ dIN = pIAI(L,)

keN

so that |A|(L,) < p|A|(L,), which implies [A[(L,) = 0 for p < 1. As a result
7l > 1, |A] a.e. On the other hand for |A|(E) > 0, we have

IAE
d|\ <1
HAI /f' H A (E

and (7.7.3) implies || f]] < 1, |A| a.e., and eventually the sought result.

Exercise 7.7.7. Let k € [0,1) and let b,; be the Hausdorff measure of dimension
Kk on a finite interval I of the real line with a non-empty interior (see Definition

2.6.5).

(1) Prove that \1 = b1 < b, where A1 is the Lebesgue measure on I. Prove that
bk is not o-finite on I.
(2) Prove that there is no f € L*(h,) such that d\; = fdb,.
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N.B. This implies that the conclusions of the Radon—Nikodym Theorem 7.4.1 do
not hold in general when the o-finiteness of p is not satisfied, even though A is a
bounded positive measure.

Answer. (1) We consider the measurable space (I,B8) where B is the Borel o-
algebra on I and b, as measures on that measurable space. From Lemma 2.6.7, if
A is a Borel subset of the real line,

br(4) < +o0 = h1(4) =0,

proving in particular the absolute continuity of h; with respect to b, for xk € [0,1).
Moreover if h,, were o-finite on I, we could find a sequence (X, )nen such that
I = UnX, and b,(X,) < +00. From Lemma 2.6.7, this would imply b1 (X,) =0
and thus by (I) = 0, contradicting the assumption on 1.

(2) If we could find a Borel function f such that fdbh, = dA1, this would imply
for e >0 and J. ={t € I, f(t) > €},

+oo > M (Je) = fdbe > eh(Je) = b (Je) < +00 = A (Je) =0,
Je

so that fJ fdb, =0, proving that b, (J.) = 0. As aresult f <0, b, a.e., implying
dX\; <0.

Exercise 7.7.8. Let (X, M, u) be a measure space where p is a positive measure
and let f € L'(u). Let d\ = fdu be the absolutely continuous complex measure
with density [ with respect to p. Prove that

Al = |fldp.

Answer. According to (3) in Exercise 7.7.6, there exists a measurable function w
of modulus 1 such that

wdA| = dX\ = fdp = d|\| = @ fdy,

implying that @wf > 0, p-a.e. Since we have also |@wf| = |f|, we find @f = |f|,
p-a.e., proving the sought result.

Exercise 7.7.9. Let (X, M) be a measurable space and let A be a real measure on
(X, M). Show that there exists a partition of X, {A4, A_}, elements of M which
are carriers respectively of Ay, A— (cf. Definition 7.2.5) and

)\i(E) = ﬂ:)\(E N Ai).
Answer. We have from the polar decomposition (Exercise 7.7.6),

AN =ud|N|, |ul=1,
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and since A is a real measure, u is real valued |A| a.e. Thus modifying u on a set
of measure 0, we may assume that u takes only the values +1. Consequently, we
have

0 = updI\] = u_dA] = Loy = e 1A,

so that uy +u_ =1 and
1 1
dry = 2(d\)\| +dA) = 1—13d]A], dr_ = 2(d|)\\ —dA) = 1gu—_1yd|]|,
and we can take Ay = {u = £1}.

Exercise 7.7.10. Let (X, M) be a measurable space and let X be a real measure on
(X, M) such that there exists positive bounded measures p1, o with A = pg — po.
Prove that py > Ay, pa > A_.

Answer. We have from the previous exercise for £ € M,
A (BE) =AMALNE) < m(Ay NE) < (E),
A(E) = -ANA-NE) < p2(A-NE) < pa(E).
Exercise 7.7.11. Let p be a positive o-finite Borel measure on the real line (u is

a positive measure defined on the Borel o-algebra of R which is finite on compact
sets) and let A1 be the Lebesgue measure on R.

(1) Show that there exist three positive Borel measures ac, fsp, frsc Such that

1= fac + Hep + fses (7.7.6)

Paec K A1, phsp = Z akla,, where ap € Ry ap >0, (7.7.7)
keN

tse L A1, Ve eR, ps.({z}) =0. (7.7.8)

(2) Prove that the above decomposition is unique. The measure jiqc S called the
absolutely continuous part of i, pg, the pure point part of 1 and ps. the
singular continuous part of u. A measure such that for all x, ps.({x}) =0
is also said to be diffuse.

(3) Give an example of a measure p such that g = pisc.

Answer. (1) The Radon—Nikodym Theorem 7.4.1 implies that
= fac + sy dpae = fdhi, 0 < f e LYR), ps L A,

where p; is a positive measure (note that u is finite on compact sets since y is a
Borel measure). The measure pg is carried by a measurable set C' with Lebesgue
measure 0. Now Exercise 1.9.24 applied to the positive Borel measure us, implies
that there exists a countable subset D = {aj }ren of R such that

pe =Y ps({a})da+itse,

a€D
~ ~ -

Hsp
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where pg. is a Borel measure such that for all € R, ps.({x}) = 0. Moreover pg.
is also carried by C and thus pe. L A1 and pse L psp since gy is carried by the
countable set D.

(2) Let us prove the uniqueness of this decomposition. If

U= Hac,j + Hsp,j + Hsc,jy ] = ]-a 27

with the properties of (1), we find from the uniqueness part in the Radon—Nikodym
Theorem, that fiqc.1 = ftac,2, Hsp,1 + Hsc,1 = [sp,2 + [hse,2 = V. For © € R, we have

psp1({7}) + pse1({2}) = pop2({2}) + pse2({2}) = psp1({2}) = psp2({2}),

proving that pig,1 = psp,2 and thus piee1 = flsc,2-

(3) The Cantor measure W' defined in Proposition 5.7.7 is the derivative of the
Cantor function ¥ and is a positive Radon measure supported in the (compact)
Cantor ternary set K. which has Lebesgue measure 0, so that ¥/ 1 \;. Moreover
U’ has no atoms (is a diffuse measure), so that ¥' = (¥'),.



Chapter 8

Basic Harmonic Analysis on R"

The Fourier transform of L!'(R") functions was defined in Chapter 3 with the
Riemann-Lebesgue Lemma 3.4.5. We need to extend this transformation to various
other situations and it turns out that L. Schwartz’ point of view to define the
Fourier transformation on the very large space of tempered distributions is the
simplest. However, the cost of the distribution point of view is that we have to
define these objects, which is not a completely elementary matter. We have chosen
here to limit our presentation to the tempered distributions, topological dual of
the so-called Schwartz space of rapidly decreasing functions; this space is a Fréchet
space, so its topology is defined by a countable family of semi-norms and is much
less difficult to understand than the space of test functions with compact support
on an open set. Proving the Fourier inversion formula on the Schwartz space is a
truly elementary matter, which yields almost immediately the most general case
for tempered distributions, by a duality abstract nonsense argument. This chapter
may also serve the reader as a motivation to explore the more difficult local theory
of distributions.

8.1 Fourier transform of tempered distributions

The Fourier transformation on .7 (R™)

Definition 8.1.1. Let n > 1 be an integer. The Schwartz space . (R™) is defined as
the vector space of C*° functions u from R™ to C such that, for all multi-indices.
o, e N,

sup [a°92u(x)] < +s.

zER™
Here we have used the multi-index notation: for & = (a1, ..., a,) € N® we define
a n — n —
e =gt 0Y =091...00, al= ) o (8.1.1)
1<j<n
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A simple example of such a function is e~*I°, (|z| is the Euclidean norm
of ) and more generally, if A is a symmetric positive definite n X n matrix, the
function

va(z) = e AT (8.1.2)

belongs to the Schwartz class (Exercise 8.5.1). The space ./ (R™) is a Fréchet space
(see Exercise 8.5.2) equipped with the countable family of semi-norms (pg)ken,

pe(u) = sup |z*0Pu(z)|. (8.1.3)

Definition 8.1.2. For u € .(R™), we define its Fourier transform 4 as

(&) = /n e 2 Sy (z)d. (8.1.4)

Lemma 8.1.3. The Fourier transform sends continuously . (R™) into itself.

Proof. Just notice that
£00a(e) = [ &m0 (o) @)do(2im) 1ol (-1),

and since sup,cgn (1 + |2])" 102 (zPu)(z)| < 400, we get the result. O
Lemma 8.1.4. For a symmetric positive definite n X n matrix A, we have

TA(E) = (det A)V/2emmATIES), (8.1.5)
where v4 is given by (8.1.2).

Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove the
one-dimensional version of (8.1.5), i.e., to check

/672iwz£677r12d$ _ /efﬂ'(eri{)deefﬂ'{Q — 6771'527

where the second equality is obtained by taking the ¢-derivative of [ e~ (@+iO)® gg.
we have indeed

d (/ 6”(“"“5)2(&) = /efw(zﬂf)z(fﬁﬂ)(m+i§)dx

dg
d 2
= —4 —m(z+if) =
Z/dm (e )dx 0.

For a > 0, we obtain [, e~ 2ime€o—max® 4o — =1/26-7a7 '€ hich is the sought
result in one dimension. If n > 2, and A is a positive definite symmetric matrix,
there exists an orthogonal n x n matrix P (i.e., ‘PP =1d) such that

D ='PAP, D =diag(A1,...,An), all A; > 0.
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As a consequence, we have, since | det P| =1,
/ o= 20T € = T(AT,T) g / ¢~ 2im(Py) €~ (APY. Py) g,
:/ e~ 2imy-(PE) o=m(Dy.y) gy,

: _t _ —2imyn; —wNY 3 —1/2 —mx;ln?
(with n = "P§) = H /Re M3 e= TN Y5 dy; = H Ay e

1<j<n 1<j<n
= (det 14)_1/26_”@717”7’>
_ (det A)fl/Qefﬂ'(”PA’lP tpetPe)

= (det A)~1/2e=m(ATEE), O

Proposition 8.1.5. The Fourier transformation is an isomorphism of the Schwartz
class and for u € L (R™), we have

u(z) = / 2T (€)dE. (8.1.6)

Proof. Using (8.1.5) we calculate for u € .#(R™) and € > 0, dealing with absolutely
converging integrals,

wle) = [ mesaee I ag
_ / / eIy ()2 dy
— [ (s @)~ u@) e dy+ (o)

~ ~ -
with absolute value<e|y|||u’|| oo

Taking the limit when € goes to zero, we get the Fourier inversion formula

u(z) = / XL (€)dE. (8.1.7)

We have also proven for v € .(R") and u(z) = u(—=x),

¢

(8.1.8)

u =

Since u — 4 and u — @ are continuous homomorphisms of .(R™), this completes
the proof of the proposition. O
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Proposition 8.1.6. Using the notation

1 0 o TX e n
w; = sim O, Dy :jl;[lDI; with o = (a1, ...,a,) € N (8.1.9)

we have, for u € L (R™),

Dgu(€) = €*a(6),  (Dga)(€) = (~1)*lzou(z)(€). (8.1.10)
Proof. We have for u € (R"), 4(§) = [ e 2™ Sy(x)dz and thus

(DED©) = (-1 [ ™ aru(a)da,
£iu(e) = / (—2im) 1192 (=27 ) () dr = / e=2im€ (957) =1l (90 (),

proving both formulas. O

N.B. The normalization factor Qgﬂ leads to a simplification in Formula (8.1.10),

but the most important aspect of these formulas is certainly that the Fourier
transformation exchanges the operation of derivation with the operation of multi-
plication. For instance with

P(D): Z an Dy,

lal<m

we have for u € S (R"), f’\u(f) =2 ja<m & 0(§) = P(§)a(£), and thus

(Pu)(x) = / ) X TEP ()i (€)dE. (8.1.11)

Proposition 8.1.7. Let ¢, be functions in . (R™). Then the convolution ¢ * 1) as
given by (6.1.1) belongs to the Schwartz space and the mapping

J(R") x L (R") 3 (¢,9) = ¢ x1p € S(R")
is continuous. Moreover we have
b = . (8.1.12)

Proof. The mapping (x,y) — F(z,y) = ¢(z — y)(y) belongs to .7 (R?*") since
x,y derivatives of the smooth function F' are linear combinations of products

(0%¢)(x — y)(0%4)(y) and moreover

(L+ |z + [y 1(0¢) (= — ) (8°¥) ()]
< (L [z = y)MI0%¢) (@ — »)I(1+ 2y )™ (07%) (y)]
< p(d)g(¥),
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where p,q are semi-norms on . (R™). This proves that the bilinear mapping
(¢,90) = F(¢,9) is continuous from . (R") x #(R") into .#(R?"). We have
now directly 0% (¢ * 1) = (0%¢) * ¢ and

(1 + |2 ™10 (6 % )] S/ [F(0%¢, ) (2, y)| (1 + |z]) N dy

< [ 1@ 00w I+ DY+ ™A+ ),
<p(F)

where p is a semi-norm of F' (thus bounded by a product of semi-norms of ¢ and
), proving the continuity property. Also we obtain from Fubini’s theorem

G / / —2im(e—u) €2 (o — y)p(y)dyda = HE)D(E),

completing the proof of the proposition. O

The Fourier transformation on .7’ (R™)

Definition 8.1.8. Let n be an integer > 1. We define the space .#/(R™) as the
topological dual of the Fréchet space #(R™): this space is called the space of
tempered distributions on R™.

We note that the mapping

¢

L (R") 3 ¢ oz

€ y(Rn)7

is continuous since for all k € N, py,(9¢/0z;) < pr+1(¢), where the semi-norms py,
are defined in (8.1.3). This property allows us to define by duality the derivative
of a tempered distribution.

Definition 8.1.9. Let u € ./ (R™). We define Ou/0z; as an element of .#/(R™) b

= - 99 > 8.1.13
<3IJ’¢>y~,y <u, Oz y’/,y’. (8.1.13)

The mapping u — du/dz; is a well-defined endomorphism of ./(R™) since
the estimates

¢

0
woes @), (o)< (5) < Cuprnto)
J

J
ensure the continuity on .#(R™) of the linear form du/0x;.

Definition 8.1.10. Let u € %/(R™) and let P be a polynomial in n variables with
complex coefficients. We define the product Pu as an element of ./(R™) by

(Pu,¢) 51 . = (u, Pd) s 7. (8.1.14)
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The mapping u — Pu is a well-defined endomorphism of ./ (R™) since the
estimates

Vo e S(R"), [(Pu,¢)| < Cupr, (Pp) < Cupr,+0(9),

where D is the degree of P, ensure the continuity on . (R™) of the linear form Pu.

Lemma 8.1.11. Let Q be an open subset of R™, f € L () such that, for all
e C®(Q), [ f(x)p(x)dr =0. Then we have f = 0.

Proof. Let K be a compact subset of Q and let x € C°(Q) equal to 1 on a
neighborhood of K as in Exercise 2.8.7. With p as in Exercise 6.6.3, we get that

lim pex (xf) = xf in LY(R™).

€E—>

We have (pex(xf))(z) = /f(y)zc(y)p((x - y)ﬁ’l)e”idy, with supp ¢, C supp x,

=¢a(y)
¢z € C2°(12), and from the assumption of the lemma, we obtain (pe* (x f))(z) = 0
for all z, implying xf = 0 from the convergence result and thus f = 0, a.e. on
K; the conclusion of the lemma follows since €2 is a countable union of compact
sets. O

Definition 8.1.12 (support of a distribution). For u € ./(R"), we define the sup-
port of u and we denote by supp u the closed subset of R™ defined by

(suppu)® = {x € R",3V open € ¥, wjy =0}, (8.1.15)

where 7, stands for the set of neighborhoods of x and u|;; = 0 means that for all

¢ e Ce(V), (u,¢) =0.

Proposition 8.1.13.
(1) We have ' (R™) D Ui<p<tooLP(R™), with a continuous injection of each
LP(R™) into /' (R™). As a consequence /' (R™) contains as well all the
derivatives in the sense (8.1.13) of all the functions in some LP(R™).

(2) Foru € CY(R") such that
(jul@)] + [du(@)) (L + o)~ € L' ®™), (3.1.16)

for some non-negative N, the derivative in the sense (8.1.13) coincides with
the ordinary derivative.

Proof. (1) For uw € LP(R™) and ¢ € .7 (R"™), we can define

(w0 = [ ulz)o(wyds (3.1.17)
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which is a continuous linear form on . (R"):
{u; @)s#,57] < Mlull Lo @) |1l Lo )

n+1 n—+1
Ml Lo mny < Sélﬂfn((l +lal) 7 |¢(@)]) Crp < Crppr(@), for k = knp =

v
with py given by (8.1.3) (when p = 1, we can take k = 0). We indeed have

a continuous injection of LP(R™) into .#/(R™): in the first place the mapping
described by (8.1.17) is well defined and continuous from the estimate

[(u, @) < l[ullLrCr ppr., , (6)-

Moreover, this mapping is linear and injective from Lemma 8.1.11.
(2) We have for ¢ € (R™), xo € C*(R™), xo = 1 near the origin,

_/ Ou _ (o)) _ (o))
4= <5xj 7 ¢>y/,y B <uamj >y~,y’ B /]R" u() Ox; (e)d

so that, using Lebesgue’s dominated convergence theorem, we find

A=— lim u(x) 09

dm oz (z)xo(ex)dx.

Performing an integration by parts on C! functions with compact support (see
Proposition 2.3.2 (2)), we get

a= i { [ @@t +e [

e—04

u<x>¢<x><aj><o><ex>dx},

n

with d;u standing for the ordinary derivative. We have also
/ lu(x)(2)(0;x0)(ex)]dz < [|9;x0) || Lo ®m) / [u()|(1+ |2]) ™ N dz pn (6) < +oo,

so that <(9a;‘j L O) . = limeo, [on(05u)(z)d(z)x0(ex)dz. Since the lhs is a con-
tinuous linear form on .#(R™) so is the rhs. On the other hand for ¢ € C°(R™),
the rhs is [p, (9ju)(x)p(x)dz. Since C(R™) is dense in & (R") (Exercise 8.5.3),

we find that 5
U
(omre) = [ EmEow

since the mapping ¢ — [, (9ju)(x)¢(x)dx belongs to .’/(R™), thanks to the
assumption on du in (8.1.16). This proves that g;‘j = OJ;u. O

The Fourier transformation can be extended to .7/ (R™). We start with notic-
ing that for T, ¢ in the Schwartz class we have, using Fubini’s theorem,

[ 1@t = [[ T@oe)e = bdude = [ 1013wz,

and we can use the latter formula as a definition.
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Definition 8.1.14. Let T be a tempered distribution; the Fourier transform Tof T
is the tempered distribution defined by the formula

(T,p)7,9 = (T, )71, (8.1.18)

The linear form 7 is obviously a tempered distribution since the Fourier trans-
formation is continuous on .#. Thanks to Lemma 8.1.11, if ' € ., the present
definition of 7" and (8.1.4) coincide.

This definition gives that, with dy standing as the Dirac mass at 0, (do, ). v =
@(0) (obviously a tempered distribution), we have

o~

o =1, (8.1.19)

since (30, ¢) = (60, @) = 3(0) = [ p(a)dz = (1,¢).

Theorem 8.1.15. The Fourier transformation is an isomorphism of .#'(R™). Let
T be a tempered distribution. Then we have®

T=17 T=1 (8.1.20)
With obvious notation, we have the following extensions of (8.1.10),
DgT(§) = €T(€),  (DET)(€) = (=) *zoT(2)(©). (8.1.21)
Proof. We have for T € ./,

OV =T, Q0 = (T, Q) 1.0 = (T, @) 1.0 = (T, ) 1,57,

ﬂ))(

(

where the last equality is due to the fact that ¢ + ¢ commutes? with the Fourier
transform and (8.1.7) means

¢

=,

a formula also proven true on . by the previous line of equality. Formula (8.1.10)
is true as well for T' € &/ since, with ¢ € . and . (§) = £%¢(&), we have

(DT, ) 1,.7 = (T,(~1)!*'D*@) 51, » = (T, Ga) 1,7 = (T, a) 71,7,
and the other part is proven the same way. O
'We define T as the distribution given by (T, ) = (T, ¢) and if T € ./, T is also a tempered

distribution since ¢ — ¢ is an involutive isomorphism of ..
21f ¢ € .7, we have (&) = [ e~ 2T Ep(—a)da = [ 2 Ep(z)da = G(—€) = H(E).
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The Fourier transformation on L!(R™)

Theorem 8.1.16. The Fourier transformation is linear continuous from L(R™)

into L>°(R™) and for uw € L*(R™), we have

ﬁ(f) = /efmm'gu(x)dx, ||7:L||Loo(]Rn) S ||u||L1(Rn). (8122)

Proof. Formula (8.1.4) can be used to define directly the Fourier transform of a
function in L!(R™) and this gives an L°(R™) function which coincides with the
Fourier transform: for a test function ¢ € . (R"), and v € L'(R"), we have by
the definition (8.1.18) above and Fubini’s theorem

(9077 = [u@ptade = [ [ uip@)emdnas = [w(ple)de
with @(§) = [ e™2Sy(z)dz which is thus the Fourier transform of u. O

The Fourier transformation on L2 (R™)

Theorem 8.1.17 (Plancherel formula). The Fourier transformation can be extended
to a unitary operator of L2(R™), i.e., there exists a unique bounded linear operator
F: L?>(R") — L*(R"), such that for u € . (R"), Fu = @ and we have F*F =
FF* =1Idp2gn). Moreover

F*=CF =FC, F?C=1Idpgn, (8.1.23)

where C' is the involutive isomorphism of L*(R™) defined by (Cu)(x) = u(—x).
This gives the Plancherel formula: for u,v € L*(R™),

/n w(§)v(€)dE = /u(m)v(m)dm. (8.1.24)

Proof. For test functions ¢, ¢ € #(R™), using Fubini’s theorem and (8.1.7), we
get?

(%, @) 2y = / D(E)P(€)dE = / / ()P ™ () dade = (¥, ) L2 (mn)-

Next, the density of .# in L? shows that there is a unique continuous extension
F of the Fourier transform to L? and that extension is an isometric operator (i.e.,
satisfying for all u € L*(R"), || Fulp2 = ||ul|zz, i.e., F*F = Idzz). We note that
the operator C' defined by Cu = 4 is an involutive isomorphism of L?(R") and
that for u € Z(R"),

CF*u=u= FCFu= F?Cu.
3We have to pay attention to the fact that the scalar product (u,v);2 in the complex

Hilbert space L2(R”) is linear with respect to u and antilinear with respect to v: for A\, u €
(C7 ()\U, H/U)L2 = Aﬂ(uv U)L2 .
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By the density of .#(R") in L?(R"™), the bounded operators
CF?, Idje(rny, FCF, F?C,

are all equal. On the other hand for u, € .(R"), we have

(F*u, @)1z = (u, Pip) g2 = / u(@)@(e)d
= [[ w@e(er ™ dade = (CFu. )10,

so that F*u = CFu for all v € ¥ and by continuity F* = CF as bounded
operators on L2(R"), thus FF* = FCF = Id. The proof is complete. O

Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(z) = 1forz > 0, H(x) =
0 for x < 0; as a bounded measurable function, it is a tempered distribution, so
that we can compute its Fourier transform. With the notation of this section, we
have, with §y the Dirac mass at 0, H(z) = H(—x),

~ = o ~ = — 1 1 =~ — —
H+H=1=6y, H— H =sign, .= . 200(&) = Dsign(§) = Esigné.
im 2w

We note that R + In|z| belongs to .#/(R) and* we define the so-called principal
value of 1/ on R by

pv (;) - d(i(ln\x\), (8.1.25)

so that,

<pv i¢>

/qb )In |z|dz = — lim ¢ (x)In |z|dx

0+ Jjz|e

) 1
= lim (/leze o) dw+ (6(e) = ﬂ—@) lnf) (8.1.26)
—0
_ 1
= el—l>%l+ e gb(x)mdx

This entails f(sTg\HS — ;rpv(l/f)) = 0 and from Exercise 8.5.4, we get

— 1
sieng — _pu(1/€) = e,

4For ¢ € /' (R), we have (In |z|,¢(z)) 5/ (R, (r) = [ ¢(z) In|z|dz.
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with ¢ = 0 since the lhs is odd®. We obtain
— 1 1

i = 8.1.27
(e = 1 ooy (81.27)
1 .
pU ( > = —isigné, (8.1.28)
T

5 1 1 11
H = = Exercise 8.5.6). 8.1.29
5 + 9ir PV (£> (z — i0) 2ir (see Exercise ) ( )

Let us consider now for 0 < o < n the L (R™) function uq(z) = |z|*™™ (|z| is
the Euclidean norm of z); since u,, is also bounded for |z| > 1, it is a tempered
distribution. Let us calculate its Fourier transform v,. Since wu, is homogeneous
of degree oo — n, we get from Exercise 8.5.9 that v, is a homogeneous distribution
of degree —a. On the other hand, if S € O(R™) (the orthogonal group), we have
in the distribution sense® since u, is a radial function, i.e., such that

a(5€) = va(§)- (8.1.30)

The distribution |£|*v,(€) is homogeneous of degree 0 on R™\{0} and is also
“radial”, i.e., satisfies (8.1.30). Moreover on R™\{0}, the distribution v, is a C*
function which coincides with”

[ @lalt a1 [ DY (a@)fal ) d,

where yg € C°(R™) is 1 near 0 and x1 =1 —x0, N € NJa+1 < 2N. As a result
|€]“v(§) = co on R™\{0} and the distribution on R™ (note that o < n),

T =v4(§) — calé|™*

is supported in {0} and homogeneous (on R™) with degree —«a. From the Exercises
8.5.7(1), 8.5.5 and 8.5.8, the condition 0 < o < n gives v, = ¢ |&|~*. To find c,,
we compute

/ [2l* e ™™ do = (wa, ) = ca / €7 e e de
n Rn

which yields
Q @ Foo 2 +oo 2
2-1r ( ) T2 = / re e ™ dr = ca/ preTlem ™ gy
2 0 0
=c,27'T (n ; a) ("),

5A distribution 7' on R™ is said to be odd (resp. even) when 7' = —T (resp. T').
SFor M € Gl(n R) Te€ y’(R”) we define (T'(Mz), ¢(z)) = (T(y), (M ~1y))| det M|~1.
"We have o = XoUa + X1ua and for ¢ supported in R?\{0} we get,

(XTtia, 8) = (X1uale?N, #(E)[€]72N) = (ID2PN x1ua, 6(€)IE] 7).
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We have proven the following lemma.

Lemma 8.1.18. Let n € N* and o € (0,n). The function us(x) = |z|*™ ™ is

Li (R™) and also a temperate distribution on R™. Its Fourier transform v, is
also L{,.(R™) and given by
n_a 1(3)
U(X(f) = ‘E|_a’ﬂ'2_a nEOL :
r3®)

Fourier transform of Gaussian functions

Proposition 8.1.19. Let A be a symmetric nonsingular n X n matriz with complex
entries such that Re A > 0. We define the Gaussian function va on R™ by va(z) =

e~ ™ A%2)  The Fourier transform of v is

TA(€) = (det A)~1/2e~mATIEE) (8.1.31)
where (det A)~/2 is defined according to Formula (10.5.8). In particular, when
A = —iB with a symmetric real nonsingular matriz B, we get

Fourier(e"™B#™))(&) = 5_,5(€) = | det B|~/2¢i 7 sian Be=im(B7'68) - (31.32)

Proof. We use the notation of Section 10.5 (in the subsection Logarithm of a
nonsingular symmetric matriz). Let us define Y7 as the set of symmetric n x n
complex matrices with a positive definite real part (naturally these matrices are
nonsingular since Az = 0 for x € C” implies 0 = Re(Az,z) = ((Re A)x, T), so
that T% C T,).

Let us assume first that A € T% ; then the function v4 is in the Schwartz class
(and so is its Fourier transform). The set T* is an open convex subset of C*(n+1)/2
and the function Y% > A — v4(€) is holomorphic and given on Y% N R™n+1)/2
by (8.1.31). On the other hand the function

Tj_ S5 A €7§ traceLogAefW(A’lg,g)7

is also holomorphic and coincides with the previous one on R*™*+1/2, By analytic
continuation this proves (8.1.31) for A € Y% .

If A€ Ty and ¢ € L (R"), we have (Va,¢) v, » = [va(z)@(x)dz so that
Y. > A (Ua, ) is continuous and thus (note that the mapping A — A~ is an
homeomorphism of Y ), using the previous result on Y%,
e—; trace Log;(A-i—eI)e—‘n’((A—‘,—fI)71§,5>Lp(g)df7

—~ . —_— .
(04, 0) = lim (Dater, ) = lim

and by continuity of Log on Y and dominated convergence,

(53, 0) = / o7 eebordemr AT o e)de,

which is the sought result. O
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Multipliers of .7’ (R™)

Definition 8.1.20. The space & (R™) of multipliers of .#(R™) is the subspace of
the functions f € C°°(R™) such that,

Va € N" 3C, > 0,3N, € N,Vz € R, [(0%f)(x)| < Co(1+ |z))N>. (8.1.33)

It is easy to check that, for f € &)/ (R"™), the operator u — fu is continuous
from . (R™) into itself, and by transposition from .#’(R™) into itself: we define
for T € S'(R"), f € Op(R™),

ST, 0) 1.9 = (T, fo)s 7,

and if p is a semi-norm of .#; the continuity on . of the multiplication by f implies
that there exists a semi-norm ¢ on .% such that for all ¢ € ., p(f) < q(p).
A typical example of a function in &y (R™) is eP(@) where P is a real-valued
polynomial: in fact the derivatives of €¥'®) are of type Q(x)er (*) where Q is a
polynomial so that (8.1.33) holds.

Definition 8.1.21. Let 7', S be tempered distributions on R™ such that T belongs
to Op(R™). We define the convolution T' x S by

T+«S=T8. (8.1.34)

Note that this definition makes sense since 1" is a multiplier so that T8 is
indeed a tempered distribution whose inverse Fourier transform is meaningful. We
have

<T * S, ¢>y/(Rn)’y(]Rn) = <T * S, QB>y/(Rn)’y(]Rn) = <S, TQB>y/(]Rn)’y(Rn).

Proposition 8.1.22. Let T' be a distribution on R™ such that T is compactly sup-
ported. Then T is a multiplier which can be extended to an entire function on C"
such that if suppT C B(0, Ry),

3Co, No > 0,¥¢ € C*,  |T(C)] < Co(1 + [¢[)Noe2mFoltmcl, (8.1.35)

In particular, for S € ' (R™), we may define according to (8.1.34) the convolution
TxS.

Proof. Let us first check the case Ry = 0: then the distribution T is supported
at {0} and from Exercise 8.5.5 is a linear combination of derivatives of the Dirac
mass at 0. Formulas (8.1.19), (8.1.21) imply that 7" is a polynomial, so that the
conclusions of Proposition 8.1.22 hold in that case.

Let us assume that Ry > 0 and let us consider a function x that is equal to
1 in a neighborhood of supp T (this implies xT'=T') and

(T,0) 5.9 = (XTI, ) .r,0 = (T, XB) 71,7. (8.1.36)



356 Chapter 8. Basic Harmonic Analysis on R™

On the other hand, defining for ( € C* (with z - = )" z;(; for z € R™),
F(Q) = (T(@), x@)e57C) , ., (8.1.37)
we see that F' is an entire function (i.e., holomorphic on C™): calculating

F(C+h) = F(Q) = (T(x), x(w)e™ ¢ (72 — 1))
= (T(z), x(x)e™ 2™ ¢(—2inx - h))

+ <T(x),x(x)e2i”'< /01(1 — 0)e 20T hag(—2inz - h)2> :

and applying to the last term the continuity properties of the linear form T, we
obtain that the complex differential of F' is

Y (T(@), x(w)e ¢ (< 2imay))d(;.
1<j<n
Moreover the derivatives of (8.1.37) are
FO(C) = (T(a), x(w)e™ ™ (~2in2)*) v . (8.1.38)
~2imwC(

To evaluate the semi-norms of z — x(z)e —2i7x)* in the Schwartz space,
we have to deal with a finite sum of products of type

|IEFY(3ax)(:p)672mm'g(*2iﬂ'oﬁ| <(1+ |C‘)|ﬁ| sup |x7(6ax)(x)e27rlm”1mc||,
rER™

Ro+2¢

We may now choose a function xg equal to 1 on B(0,1), supported in B(0, Fohe )

such that |[0%xo||L=~ < c(B)e 1! with € = 1f|°<|. We find with

x(x) = xo(z/(Ro +¢€)) (which is 1 on a neighborhood of B(0, Ry)),

Su]RE) |x'y(aax)(x)627r|x||Im(|| < (RO —&-26)'7' suﬂg |(aaXO)(y)627r(Rg+25)|Imc||
zeR™ yeR™

< (Ro + ge)lvle%(RoHE)lImCIC(a)eflal

Ry \" 27 (Ro+2, %0 )| Tm ¢| 1+¢| !
=R 2 0T 140¢l
( o+ 14 |C> e c(a) Ro

< (3Ro) e tholmletnioc(a) Ry 1l (1 + 1)),

yielding
[FR(Q)] < ol ey (1 4 ¢,

which implies that R™ 3 £ — F(£) is indeed a multiplier. We have also

(T.x9)7,9 = (T@).x(@) | ()™ dE) 5.
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Since the function F' is entire we have for ¢ € C°(R"™), using (8.1.38) and Fubini’s
theorem on ¢}(N) x L*(R"™),

Ek
o k!

[ P©oe = S xio)-2ima)®) [

k>0 supp

H(€)dE. (8.1.39)

On the other hand, since cf) is also entire (from the discussion on F or directly
from the integral formula for the Fourier transform of ¢ € C°(R™)), we have

(T, x9) = (T(@), x(x) Y_(6)M (0)z* /)

k>0
= (T(@),x(@) Jim > ()P (0)"/k)
N ngiN .

convergence in CZ°(R™)

= lim T )z /k! —2im€)Fde.
*NLWOSKZSN@( ) x(a)at /K [ ole)(~2ing) de

Thanks to (8.1.39), that quantity is equal to [, F(£)¢(€)d€. As a result, the

tempered distributions 7T and F' coincide on C2°(R™), which is dense in .%/(R")
(see Exercise 8.5.3) and so T' = F, concluding the proof. O

8.2 The Poisson summation formula

Wave packets
We define for z € R™, (y,n) € R™® x R,

Oy (@) = 27/ Ae=m@=w)* 2im(a—y)n — gn/do—m(@—y=in)® o —mn® (8.2.1)
where for ¢ = ((1,...,¢,) €C™, (% = Z C?. (8.2.2)
1<j<n

We note that the function ¢y, is in .%(R") and with L? norm 1. In fact, ¢y,
appears as a phase translation of a normalized Gaussian. The following lemma
introduces the wave packets transform as a Gabor wavelet.

Lemma 8.2.1. Let u be a function in the Schwartz class #(R™). We define

2 - . .
(Wu)(y,n) = (4 py,n)r2@n) = 2"/4/u(m)e‘”(’”—y) e~ @Gy (8.2.3)

— 2n/4/u(m)e‘”(y‘i"‘”‘)dee‘”"Q. (8.2.4)
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For v € L?>(R"), the function Tu defined by
(T)(y + i) = €™ Wu(y, —n) = 2"/* / u(z)e W= g (8.2.5)

is an entire function. The mapping u — Wu is continuous from ./ (R") to . (R?")
and isometric from L?(R™) to L?(R?"). Moreover, we have the reconstruction for-
maula

u(x) = //RWW(W“)(Z””)@y’"(x)dyd”' (8.2.6)
Proof. For u in . (R™), we have

(Wu)(y,n) = 2™ (1, y)

where Q' is the Fourier transform with respect to the first variable of the .# (R?7)

function Q(z,y) = u(z)e~™@=927/4 Thus the function Wu belongs to . (R2").
It makes sense to compute

2_n/2(WU, WU)LZ(Rzn)
(8.2.7)

_ el_if& u(ml)u(xg)e_ﬂ—[(xl_y)2+(x2_y)2+2i($1_I2)n+€2n2]dydﬁdI1dI2.

Now the last integral on R*" converges absolutely and we can use Fubini’s theorem.
Integrating with resp(zect ton Zinvolves the Fourier transform of a Gaussian function
and we get e e~ ¢ (¥1772)" Since

2(z1 — y)* + 222 — y)? = (21 + 22 — 29)” + (21 — 22)°,
integrating with respect to y yields a factor 2-"/2. We are left with

(WU, WU)LZ(Rzn)
(8.2.8)

= lim [ u(x) U(mg)eiﬂ-(ml71‘,2)2/267”677“72(zlizZ)le’ldl’Q.
e—04

Changing the variables, the integral is

lim [ u(s+et/2) u(s — et/2)e_”€2t2/26_”t2dtd5 = ||u||%2(Rn)

e—04

by Lebesgue’s dominated convergence theorem: the triangle inequality and the
estimate |u(z)| < C(1 + |z|)~™ ! imply, with v = u/C,
lu(s +et/2) v(s — et/2)] < (14 |s+et/2]) "1+ |s +et/2]) "
< (14 [s+et/2|+|s —et/2)) !
< (142
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Eventually, this proves that for v € . (R"™),
||Wu||2L2(R2") = ||U||2L2(]Rn)a (8.2.9)
so that by density of .%(R") in L?(R"),
W L*(R") — L*(R*")  with  W*W = idp2(gn). (8.2.10)

Noticing first that [ Wu(y,n)ey.,dydn belongs to L?(R™) (with a norm smaller
than ||Wul|1(g2n)) and applying Fubini’s theorem, we get from the polarization
of (8.2.9) for u,v € S (R"),

(u,v)p2(rn) = (Wu, Wo) p2(gen) :/ Wu(y,n) @y, v)r2 @) dydn

= (/ Wu(y,n)ey,ndydn, v) ,
L2(R™)

yielding v = [[ Wu(y,n)py,,dydn, which is the result of the lemma. O

Poisson’s formula

The following lemma is in fact the Poisson summation formula for Gaussian func-
tions in one dimension.

Lemma 8.2.2. For all complex numbers z, the following series are absolutely con-

vergent and
Z (3771'(erm)2 _ Z 677rm262i77mz. (8211)
mEeZ meZ

Proof. We set w(z) = >,z e~(=+m)* The function w is entire and 1-periodic

since for all m € Z, z — e~™(=+m)* ig entire and for R > 0,

Islu<pR |ef7r(z+m)2‘ < Islu<pR ‘677722 |ef7rm2627r|m|R c gl(Z)
z|< E1RS

Consequently, for z € R, we obtain, expanding w in Fourier series®,

1
UJ(Z) — Z e?iﬂ'kz/(; W(l‘)e_%ﬂkmd!l}.

kEZ

8Note that we use this expansion only for a C™ 1-periodic function. The proof is simple and
2irtke _ sinw(2N+1)x

: . Then one has to show
sin wx

requires us only to compute 1 +2Red ;o€
that for a smooth 1-periodic function w such that w(0) = 0,

1 sin Az

lim . w(x)dx = 0,
A—+o0 Jg sinmz
which is obvious since for a smooth v (here we take v(z) = w(z)/sinmz), |f01 v(z)sin(Az)dz| =
O(\™1) by integration by parts.
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We also check, using Fubini’s theorem on L(0,1) x ¢1(Z),

1 1
/ w(z)e 2mke gy = Z / e m(atm)? —2imkx 7.
0 0

mEeZ

m4+1 R )
— § / efﬂt 6727,7rktdt

mezY ™

42 o 2
:/6 7t e 2imkt —e 7k )
R

So the lemma is proven for real z and since both sides are entire functions, we
conclude by analytic continuation. g

It is now straightforward to get the nth-dimensional version of the previous
lemma: for all z € C", using the notation (8.2.2), we have

Z e—mzm)? _ Z o= Tm? G2immz. (8.2.12)

mez" mez"

Theorem 8.2.3 (Poisson summation formula). Let n be a positive integer and let
u be a function in 7 (R™). Then we have

> k)= )" k), (8.2.13)

kez™ kez™

where @ stands for the Fourier transform of u. In other words the tempered distri-
bution Do = ) ;. cym Ok is such that Do = Dy.

Proof. We write, according to (8.2.6) and to Fubini’s theorem

> uk)=Y //WU(y,n)wy,n(k)dydn

kez™ kez™

B // Wy, m) Z Py, (k)dydn.

kez™

Now, (8.2.12), (8.2.1) give

Z Pyn(k) = Z Dyn(k),

kez™ kez™

so that (8.2.6) and Fubini’s theorem imply the result. O
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8.3 Periodic distributions

The Dirichlet kernel
For N € N, the Dirichlet kernel Dy is defined on R by

Dy (37) — Z eQiﬂ'kx

—N<k<N

) ) eZiTrNa: -1
=1+2Re Z e?mkT — 14 2Re <62m )

2imx __
1<k<N » e 1
=142 Re(6217r1;—z7r1;+17r1\71;) SlI.l(’TT 37) =142 COS(ﬂ'(N + 1)3’3) Slr.l(’ﬂ' 37)
sin(7z) sin(mrz)
sin(mc(2N + 1))

=1+ sin(lmc) (sin(mv(2N +1)) - sin(mv)) = sin(r) ,

and extending by continuity at x € Z that 1-periodic function, we find that
sin(rz(2N + 1))

D = 8.3.1
n (@) sin(7rx) ( )

Now, for a 1-periodic v € C*(R), with

1
(D % u)(z) = / Dl — Bu(t)dt, (8.3.2)
0
we have
. ! : ' (v(z =) —v(x))

Ngriloo/o Dy (z—t)v(t)dt = v(x)+N£1}~_100 ; sin(mt(2N+1)) sin(rt) dt,
and the function @, given by 0, (t) = U(xs:rfg;tg(w) is continuous on [0, 1], and from

the Riemann-Lebesgue Lemma 3.4.5, we obtain
1

1

. 2imkx —2imkt _ . o —_

Nlirilw E e /Oe v(t)dthlirEm ; Dy (x — t)v(t)dt = v(z).
—N<k<N

On the other hand if v is 1-periodic and C'*!, the Fourier coefficient

1
ek (v) :/ e 2mkby (1) dt
0

for k # 0

1 4 _ L 4
/:\ ziﬂk[e—%ﬂktv(t>]§;?+/o 2i7rk€_2”rkt’l)/(t)dt7

and iterating the integration by parts, we find cx(v) = O(k~!7!) so that for a
1-periodic C? function v, we have

Zemmzck(v) = v(x). (8.3.3)

kEZ
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Pointwise convergence of Fourier series

Lemma 8.3.1. Let u: R — R be a 1-periodic L{, (R) function and let o € [0, 1].
Let us assume that there exists wg € R such that the Dini condition is satisfied,

i.e.,
/1/2 [ulwo +8) +ulwo — ) = 2wol , _ (8.3.4)
0

t
Then, Nmy 400 D2 j3j<n Ck (u)e?i™Fzo =y with ¢, (u) = fol e~ 2mthy(t)dt.

Proof. Using the above calculations, we find

Usin(mt(2N + 1))

sin(rt) (u(mo —t)— wo)dt7

e (u)e?i™hTo — *u)(xg) = w
S ) (Dy +u)(z0) o+/0

[k|<N

so that, using the periodicity of u and the fact that Dy is an even function, we get

A N

| sin(rt) (u(wo — t) + u(zo +t) — 2wy dt.

Thanks to the hypothesis (8.3.4), the function

—t t)—2
te 1 1}(75)“(950 )+ o +1) = 2ug
2 sin(7t)
belongs to L'(R) and the Riemann-Lebesgue Lemma 3.4.5 gives the conclusion.
O

Theorem 8.3.2. Let u: R — R be a 1-periodic Li . function.

loc
(1) Let zp € [0,1],wo € R. We define wygw,(t) = |u(xo +t) + u(zo — t) — 2wo|
and we assume that

1/2 dt
Wao,wo (£) < +00. (8.3.5)
0

Then the Fourier series (Dyxu)(xo) converges with limit wo. In particular, if
(8.3.5) is satisfied with wy = u(xg), the Fourier series (Dyxu)(xg) converges
with limit w(xo). If u has a left and right limit at xo and is such that (8.3.5)
is satisfied with wo = 3 (u(wo+0)+u(xo—0)), the Fourier series (Dy*u)(zo)
converges with limit J (uw(zg — 0) + u(zo + 0)).

(2) If the function u is Hélder-continuous®, the Fourier series (Dy xu)(z) con-
verges for all © € R with limit u(x).

(3) If u has a left and right limit at each point and a left and right derivative at
each point, the Fourier series (Dn xu)(x) converges for all x € R with limit
5 (u(@—=0) +u(z+0)).

9Holder-continuity of index 6 €]0, 1] means that 3C > 0,Vt, s, |u(t) — u(s)| < C|t — s|°.
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Proof. (1) follows from Lemma 8.3.1; to obtain (2), we note that for a Holder
continuous function of index 6 €]0, 1], we have for ¢t €]0,1/2],

t ™ w, ) (t) < CP71 e L([0,1/2]).
(3) If w has a right derivative at z, it means that

u(zo +t) = u(zo + 0) + up(x0)t + teo(t), m €(t) = 0.

li
t—0,

As a consequence, for ¢ €]0,1/2], t~u(zo +t) —u(wo+0)| < |ul(xo) +eo(t)]. Since
lim; 0, €o(t) = 0, there exists Ty €]0,1/2] such that |e(t)] < 1 for ¢ € [0,Tp]. As
a result, we have

1/2
/ t~Hu(wo +t) — u(wo + 0)|dt
0

To 1/2
g/ (ot (o)) +1)dt+/ (o + ) — u(zo + 0)|dtT; ! < oo,
0

To

since u is also L . The integral 1/2 t~Yu(zg —t) — u(zg — 0)|dt is also finite and
loc 0

the condition (8.3.5) holds with wo = } (u(xg — 0) + u(zo + 0)). The proof of the

lemma is complete. O

Periodic distributions

We consider now a distribution v on R™ which is periodic with periods Z". Let
X € C°(R™;Ry) such that x =1 on [0, 1]™. Then the function x; defined by

xi(@) = > x(@—k)
kezn
is C* periodic'® with periods Z". Moreover since
R"sze [] [B), Elx;)+1],
1<j<n

the bounded function y; is also bounded from below and such that 1 < x1(z).
With xo = x/x1, we have

> xox—k)=1, xo€CSRY).
kezZm
For ¢ € C2°(R™), we have from the periodicity of u,
(w,0) = Y (u(@), p(@)xo(x — k) = Y (u(x), o(z + k)xo(x)),
kezm™ kezm

10Note that the sum is locally finite since for K compact subset of R, (K — k) Nsupp xo = 0
except for a finite subset of k € Z™.
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where the sums are finite. Now if ¢ € .#(R"), we have, since x( is compactly
supported (say in |z| < Ryp),

[(u(@), o(z +E)xo(z))| <Co  sup [ (z+ k)|
|a|<No,|z|<Ro

<Co sup |(L+Ro+|z+k)" o™ (@+k)(1+]|k)""
|a|<No,|z|<Ro

< po(p)(1 + [K)) ™

where pg is a semi-norm of ¢ (independent of k). As a result u is a tempered
distribution and we have for ¢ € .7(R"™), using Poisson’s summation formula,

() = @), 3 g+ Bxol)) = (u@). 3 bulk

KEET hes
Now we see that ¥, (k = Jan @ xo(z)e 2kt dt = yo(z)e2™* p(k), so that
(u, ) = Z (u(x), xo(x)e* ™) (k),
kezn

which means

u(x) _ Z (u(t), Xo(t)e%‘nkt>6—2iﬂ'kx _ Z (u(t), Xo(t)e_%”kt>62”k7‘.

kezm kezn

Theorem 8.3.3. Let u be a periodic distribution on R™ with periods Z™. Then u is a
tempered distribution and if xo is a CZ°(R™) function such that ), c,n Xo(z—k) =
1, we have

u= Z c(u)e?™ke (8.3.6)

i= > cr(u)dk, with cn(u) = (u(t), xo(t)e >, (8.3.7)

and convergence in ' (R™). If u is in C™(R™) with m > n, the previous formulas
hold with uniform convergence for (8.3.6) and

c(u) :/ u(t)e” 2R gt (8.3.8)
[0,1]™

Proof. The first statements are already proven and the calculation of @ is immedi-
ate. If u belongs to LllOC we can redo the calculations above, choosing xo = 1(g,1j»,
and get (8.3.6) with ¢ given by (8.3.8). Moreover, if u is in C™ with m > n,
we get by integration by parts that ci(u) is O(|k|™™) so that the series (8.3.6) is
uniformly converging. g
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Theorem 8.3.4. Let u be a periodic distribution on R™ with periods Z". If u € L%,
(i.e., w € L*(T™) with T™ = (R/Z)"), then

u(z) = Z cr(w)e® ™ with ey (u) :/ u(t)e 2kt gt (8.3.9)
kezn [0,1]"

and convergence in L?(T™). Moreover ||u||%2(w) =Y ez lcu(u)?. Conversely, if

the coefficients ci(u) defined by (8.3.7) are in £2(Z™), the distribution u is L*(T™).

Proof. As said above the formula for the ¢ (u) follows from changing the choice
of xo to 1jgq» in the discussion preceding Theorem 8.3.3. Formula (8.3.6) gives
the convergence in ./ (R™) to u. Now, since

/ eQiﬂ'(k—l)tdt — 5k,l7
[0,1]™

we see from Theorem 8.3.3 that for u € C"1(T™),

<U7U>L2(T") = Z \Ck(u)\g-

kezn

As a consequence the mapping L*(T") 3 u +— (cx(u))kezn € €*(Z") is isometric
with a range containing the dense subset £1(Z") (if (cx(u))pezn € £H(Z"), u is a
continuous function); since the range is closed!!, the mapping is onto and is an
isometric isomorphism from the open mapping theorem. O

8.4 Notes

Johann DIRICHLET (1805-1859) was a German mathematician.
Maurice FRECHET (1878-1973) was a French mathematician.

Joseph FOURIER (1768-1830) was a French mathematician, inventor of the tri-
gonometrical series, a versatile tool used now in many branches of Science.

Dennis GABOR (1900-1979) was a Hungarian-born British electrical engineer.
Oliver HEAVISIDE (1850-1925) was a British electrical engineer.

Michel PLANCHEREL (1885-1967) was a Swiss mathematician.

Denis POISsON (1781-1840) was a French mathematician.

Laurent SCHWARTZ (1915-2002) was a French mathematician, creator of the mod-
ern theory of distributions. In 1950 he became the first French recipient of
the Fields medal.

I A : Hy; — Hz is an isometric linear mapping between Hilbert spaces and (Auy) is a con-

verging sequence in Hz, then by linearity and isometry, the sequence (uy) is a Cauchy sequence
in H1, thus converges. The continuity of A implies that if u = limy uy, we have

v = lién Auy, = Au, proving that the range of A is closed.
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8.5 Exercises

Exercise 8.5.1. Let A be a positive definite n X n symmetric matriz. Prove that the
function ¢4 defined by a(z) = e~ A% belongs to .7 (R™).

Answer. The function 14 is smooth and such that

2 (0794)(2) = Pag(x)a(z),

where P, s is a polynomial (obvious induction). Since (Az,z) > §|z|?> with a
positive § and | P, (x)| < C(1 + ||z|?)%/2, where d is the degree of P, we obtain
the boundedness of x® (9%t 4)(x), proving the sought result.

Exercise 8.5.2. The Schwartz class of functions is defined by

7@ = fu e ¥R Va8 €N, sup [2°0u(w)] = pua) < oo
xER™

where o = (ay,...,a,) € N, 2% = 2t .. 2%, B € N*,0f = 901 ... 90", Show
that the pag are semi-norms on ./ (R™), making this space a Fréchet space.

Answer. The p,g are semi-norms, i.e., valued in Ry such that pag(Au) = |A\|pas(w)
and they satisfy the triangle inequality. We consider a Cauchy sequence (uk)ken.
It means that for all «, 3, for all € > 0, there exists kqg. such that for all £ >
kaﬁeJ > 07

Pap(Uk1 — up) < €

Using the case « = 8 = 0, we find a continuous function u with a uniform limit
of uy. Using the uniform convergence of the sequence (0%uy)ren, we get that u is
C* and that the sequences (0% ux)ren are uniformly converging towards 9Su. We
write then

208 (u, — u)(@)] = lim_ (2207 (uy — ur)(a)]

l—+oo

< limsup pag(ur —w;) <€
1

for k& > kape. We get pag(ur — u) < € for k > kqge, proving the convergence
in .7 (R™).

Exercise 8.5.3. Prove that C°(R™) is dense in the Schwartz class /' (R™).

Answer. Let xo € C2°(R™) equal to 1 on the unit ball. Let ¢ € . (R™) and let us
define for k € N*|

or(x) = xo(x/k)p(x), ér € CER™),  or(z) — d(x) = ¢(z)(xo(z/k) — 1),
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and with the p,p defined in Exercise 8.5.2, we have

Pas(dr — @) = sup
rER™

(0% ﬂ! / 1 \a
t Z 3/!3”!65 gb(m)@f xo(z/k)k 18 |’
B'+B"=p
[B">1
x
+ sup  [2%(92¢)(z)(xo0 (k) —-1)
vER™ 2|2k

< Ck_lpmax(|a|,|5|)(¢)prrlax(|a|,|5|)(X0) + k_l Seuﬂgn \|x|x“(3f¢)(x)|,

)

with py defined in (8.1.3), proving the convergence towards ¢ in the Schwartz
space of the sequence (¢ )ken.

Exercise 8.5.4. Let T € ./'(R) such that T = 0. Prove that T = cdy.
Answer. Let ¢ € .(R) and let xg € C°(R™) such that xo(0) = 1. We have

¢(x) = xo(x)¢(x) + (1 = xo(2)) ().

Applying Taylor’s formula with integral remainder (see, e.g., Theorem 5.9.3), we
define the smooth function ¥ by

(1 = Xo(x))

xT

U(z) = ¢()

and, applying Leibniz’ formula, we see also that ¢ belongs to .#(R). As a result
(T, ). ®), @) = (T, x00) = (T, x0(¢ — #(0))) + #(0)(T, x0) = #(0)(T, x0),

since the function z — xo(z)(é(z) — ¢(0))/z belongs to C°(R). As a result
T= <T7 X0>50'

Exercise 8.5.5. Prove that a distribution with support {0} is a linear combination
of derivatives of the Dirac mass at 0, i.e.,

u= E caééa)7
la|<N
where the ¢, are some constants.

Answer. Let Nog € N such that [(u, )| < Cpn,(¢), where the semi-norms p;, are
given by (8.1.3). For ¢ € . (R"), we have

_ (029)(0) L1 — )Mo (No+1) No+1
ooy = >0 Ay [N 0000 gy e,
~ -

Y(z), PeC=(Rm)
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and thus for xo € C(R™), xo = 1 near 0,

o) =twxop = 3 PO o) + wro@pe ). (851)
la]<No
We note that
(X0 < Co s (2 (@@ ] (552)

We can take xo(z) = p(x/€), where p € C°(R™) is supported in the unit ball By,
p=11in ;Bl and € > 0. We have then

No+1
No+1 _ _No+1 (T Ty T _ _No+1 T
Xo(@)p ()20 = €7 p(e)w(ee) eNot1 € ’ pl(e)’
with p1(t) = p(t)(et)tNo+l so that p; € C°(R™) is supported in the unit ball
Bj and has all its derivatives bounded independently of e. From (8.5.2), we get for
all e > 0,

|(u, xo ()t (2)z"o )| < Cp sup eNottle
la|<No

x
oo (2)] <
which implies that the left-hand side of (8.5.2) is zero.

Exercise 8.5.6. Let u € ./(R™) and A € C. The distribution u is said to be homo-
geneous with degree X if for all t > 0, u(t-) = t*u(-). Prove that the distribution u
1s homogeneous of degree A if and only if Fuler’s equation is satisfied, namely

> 20uu=u. (8.5.3)
1<j<n

Answer. A distribution u on R™ is homogeneous of degree A means:

Vo € CF(R™), V>0, (uly), ¢(y/Ht ") = tM(u(@), p(2)),

which is equivalent to Vo € C(R"),Vs > 0, (u(y), ¢(sy)s" ™) = (u(z), ¢(x)),
also equivalent to

d
ds

The differentiability property is easy to derive'? and that
(u(y), p(sy)s" ) = (u(z),(z)) ats=1

12We have for s > 0,

Yo € CZ(R"), ((u(y), p(sy)s"™)) =0 ons>0. (8.5.4)

1
Pl 1)) = olo) = &/ (suhy -+ [ (1= 00" ((s-+ Oy don®y?.

It is enough to prove that for o in a neighborhood V of s, the function y — <p(l> (oy) is bounded
in .(R™). This is obvious, choosing for instance V' = (s/2, 2s).
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As a consequence, we get that the homogeneity of degree A of u is equivalent to

Vs >0, <U@%5"“1«n+/ﬂw@y)+ E:(aj)@yﬁyﬁ>a

1<j<n

also equivalent to 0 = (u(y), (R + A+ >, <,<, ¥;0;) (¢(sy))) and by the definition
of the differentiation of a distribution, it is equivalent to

(n+Nu— > 9(yu) =0,
1<j<n

which is (8.5.3) by Leibniz’ rule.

Exercise 8.5.7.
(1) Prove that the Dirac mass at 0 in R™ is homogeneous of degree —n.

(2) Prove that if T is a homogeneous distribution of degree A, then 05T is also
homogeneous with degree A\ — |¢|.

(3) Prove that the distribution pv(;) is homogeneous of degree —1 as well as
1/(z +40).
(@) For X € C with Re A > —1 we define the L], (R) functions
A . A
N T if x >0, N x4
= = . 8.5.5
T {o ifr<0, FTTO+1) (8.5.5)

Prove that the distributions Xi and J:f;_ are homogeneous of degree \.

Answer. (1) We have for ¢t > 0,
(0o (tz), o(x)) = (bo(y), p(y/t)t™") = t7"p(0) = t7"(do, ¥)-

(2) Taking the derivative of the Euler equation (8.5.3), we get
O ut > 00,05, — Ay, u =0,

1<5<k

proving that 0,, u is homogeneous of degree A — 1 and the result by iteration.
(3) It follows immediately from the definition (8.1.26) that the distribution pv(})
is homogeneous of degree —1. The same is true for the distributions m:ll:iO as it is
clear from

1

d d - 1
= +140)) = 1 +omH = L0 .- D,
et i0 = du (Log(x +i0)) i (In|z| +imH(z)) = pv LT imdo (8.5.6)

(4) The distributions Xf;_ and xi are homogeneous of degree A\. By an analytic
continuation argument, we can prove that Xi‘r may be defined for any A € C and
is a homogeneous distribution of degree A which satisfies

d\" _ _ .
= <dx) OA), xgr =6, ken
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Exercise 8.5.8. Let (u;)1<j<m be non-zero homogeneous distributions on R™ with
distinct degrees (Aj)i<j<m (j # k implies Aj # Ai). Prove that they are indepen-
dent in the complex vector space . (R™).

Answer. We assume that m > 2 and that there exists some complex numbers

(¢j)1<j<m such that >, ., cju; = 0. Then applying the (Euler) operator

E= Y 0,

1<j<m

we get forall k € N, 0=3",_,,, c;iEF(uj) = d1<j<m ¢jAu;. We consider now
the Vandermonde matrix m x m

1 1 1
Vi, = A A2 . A . detV,, = H Ak — ;) #0.
G e e \sisbm
1 2

We note that for ¢ € C°(R™), and X € C™ given by

C1 <U17 <P>
X = C2 <u23 Q0> ,

we have Vi, X = 0, so that X = 0, i.e, Vj,Vp € C(R"),c;(uj,¢) = 0, Le.,
cjuj = 0 and since u; is not the zero distribution, we get the sought conclusion
c; =0 for all j.

Exercise 8.5.9. Let T € .#'(R™) be a homogeneous distribution of degree m. Prove
that its Fourier transform is a homogeneous distribution of degree —m — n.

Answer. We check

(€ D = —¢-aT = —(Dy o) =- "7 ' o =-"Tmp

2im 2T 21T ’

so that Buler’s equation ¢ - 8:T = —(n + m)T is satisfied.

Exercise 8.5.10. Let u € .'(R™) such that Vu = (O1u,...,0,u) = 0. Prove that
u 18 a constant.

Answer. For all j, we have £;4(§) = 0 and since a polynomial is a multiplier of
7, we have also |¢[>0(¢) = 0, which implies that supp@ C {0}. From Exercise
8.5.5, we find that 4 is a linear combination of derivatives of the Dirac mass at 0
and (8.1.19) implies along with (8.1.21) that u is a polynomial. Now a polynomial
with a vanishing gradient is a constant (use Taylor’s formula).



Chapter 9

Classical Inequalities

9.1 Riesz—Thorin interpolation theorem

Theorem 9.1.1 (Hadamard three-lines theorem). Let a < b be real numbers, let
Q={2€C,a<Rez<b} andlet f:Q — C be a bounded continuous function
holomorphic on Q. We define for x € [a, ],

M (x) = sup|f(x + iy)|.
yER

Then the function M is log-convez on [a,b], i.e.,
M(z) < M(a)r—a M(b) e (9.1.1)
N.B. Exercise 3.7.2 provides some information about logarithmic convexity. We
note here that this proposition implies in particular that if f vanishes identically
on the vertical line {Rez = a} or on {Re z = b}, then it should vanish identically
on Q. If M(a),M(b) are both positive, then (9.1.1) reads
(InM)((1—6)a+6b) < (1—6)InM(a)+0InM(b),

which means convexity of In M on [a, b], i.e., log-convexity. Defining In0 = —oo,
we recover the fact that if f vanishes on one vertical line, it vanishes on €.

Proof. We may of course assume without loss of generality that a = 0,b = 1: given
a < b real numbers, and f as in the proposition above, we may consider

f(z)=f((b—a)z+a),
which is defined on {z € C,0 < Rez < 1}. If we get the result for f, it will read

N. Lerner, 4 Course on Integration Theory: including more than 150 exercises with detailed answers, 371
DOI 10.1007/978-3-0348-0694-7_9, © Springer Basel 2014



372 Chapter 9. Classical Inequalities

for 6 € [0, 1]

sup If(Ol = sup |f(2)]

{Re(=a+0(b—a)=z} {Re z=0}
P 1-0 e . 0
< (sup|f(iy)l) " (sup|f(1 +iy)])
yeER yER

= (suplf(a+ (b~ a)iy>|)1*9(31£ [fla+b—a+(b-a)iy)|)’

= (sup [FON* " (sup [FON) ",
Re ¢=b

Re(=a

b—x
b—a

which is the sought result.

We assume first that M(0) = M(1) = 1. We define for ¢ > 0 the holomorphic
function h. on Rez > —1/e given by

1

Cldez

We note that Vz € 0Q, |f(2)he(2)] <1 (in fact |f(2)| < 1 there as well as he(z))
and moreover with C' = supg | f|, we have for 0 < Rez < 1, |[Im z| > C/e,

|f(2)he(2)| S C|1 +ez| 7' < CeHImz|7t < 1. (9.1.2)

he(z)

As a result, considering the rectangle R, = {0 < Rez < 1,|Imz| < C/e}, we see
that the continuous function fh. : R — C is bounded above by 1 on the boundary
and is holomorphic in the interior. Applying the maximum principle, we obtain
that

(1) Vz € Re, |[f(2)he(z)| < 1.

On the other hand if z € Q with |Imz| > C/e, we get from (9.1.2) the same
inequality (f). Consequently, we have for all € > 0 and all z € Q, |f(2)h.(2)| < 1,
which implies the sought result |f(z)| < 1 for z € Q.

We assume now that M(0), M (1) are both positive, and we introduce the function

F(Z) _ M(O)—(I—Z)M(l)—Zf(Z) _ f(z)ez(lnM'(O)—ln M(l))M(O)_l. (913)
The function F is holomorphic on = {0 < Rez < 1}, is and bounded on  since

sup |F(z)] < M(0)~ el MO MWl gyp | £].
z€Q Q

Moreover, on the vertical lines Rez = 0, 1, |F| is bounded above respectively by
MO)M(0)™ ' =1, M)MO)M (1)~ 'M(0)~! =1,
so that we may apply the previous result to obtain
vzeQ, |M©O)UIML) ()] < 1,

which is precisely the sought result.
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We assume now that M(0) > 0, M (1) > 0. Let € > 0 be given. We introduce the
function
F.(z) = (M(0)+ €)= (M(1) + )% f(2). (9.1.4)

Then, using the previous result, we obtain
Ve>0,¥2€Q, |f(2) < |(M(0)+ e)(l—Z)(M(l) +€)*|,
which implies the result, letting € — 0. The proof of the theorem is complete. [

Theorem 9.1.2 (Riesz—Thorin Interpolation Theorem). Let (X, M, i) be a measure
space where [ is a o-finite positive measure. Let po,p1,qo,q1 € [1,+00] and let
T:LPi(u) — LY (u),j =0,1, be a linear map such that

| Tull pos (y < Mjllulles Jj=0,1

For 0 € [0,1] we define ' = 164 ¢ L — 120 4 0 Then T is a bounded

Po Po P1’ Qe 90 @’
linear map from LP°(u) into L% (u) and

Vu € LP (i), || Tull ooy < Mo~ "M ull £y 0. (9.1.5)

Proof. We may of course assume that 6 € (0,1).
[1] Let us first assume that pg = +00, so that pp = p1 = +00.
Let u be a function in L% (p): T'u belongs to L% () N L ().

Claim. For 6 € (0,1), we have LT (p)NL% () C L% (). This is obvious if ¢g = +00
(implying go = ¢1 = +o0) and if gs < +o00, assuming that qo,q1 are both finite
(and distinct), we find some ¢ € (0,1) such that

go = (1 —t)go +tq1, so that Wlth =1-—t,

] bl = / 0ot
(9.1.6)

1—t t
< o] Q=Y L[] e = [0l ol 24

If go = +00,1 < ¢1 < +00, we have g9 = ¢1/6 and

1_
[ b < o2 [ ol (9.1.7)
X X

proving the claim in that case as well.
We find thus that Tu € L% and when qg, ¢; are both finite, applying (9.1.6),

|Tul|% < ||Tuf @00 Tu|@t < M) M |ul|%,

and since

q _ _
o _go—dom _ 17 a0 ma _

% - 1-F q'—q' a0
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proving (9.1.5). If go = +00,1 < g1 < 400, we have g9 = ¢1/6 and applying (9.1.7)

(5-1) (3-1
| Tullds < | Tullgy® ™I Tullfh < Mg™ o™ M{* [lul|2,

and since

@—q _q _ K ., =1—0, so that ql:@,
90 41 — 4o o

this implies (9.1.5) in that case as well.

[2] We assume now that 1 < pg < +00, g > 1. Let u be a function in S (defined
in (3.2.20)), so that

u= Z ozjeid’lej, a; >0,0; € R, p(A4;) < oo, (9.1.8)

1<j<m

where the A; are pairwise disjoint elements of M. Then T'u makes sense, belongs
to L% () and since S is dense in LP? (i) (Proposition 3.2.11), it is enough to prove
that

o e L) \ / (TU)vdu‘ < MMl il (919)

In fact, if we prove the above inequality, thanks to Lemma 6.2.1, this will imply
that || Tullq, < Ma—?M{||ul|,,. Now since T is a linear operator, and S is dense in
LP9 (), there is a unique extension of T to a bounded linear operator from LP¢ (u)
into L% (11) with operator-norm bounded above by Mg~ M?. To obtain (9.1.9), it
is enough to prove that

Yv e S, ‘/(Tu)vdu‘ < My~ MY ullpo 101l (o (9.1.10)

since gg > 1 (S is dense in L(99)"), We may thus assume that

v = Z Bkeiwlek, Br > 0,9, €R, p(Bg) < 400, (9.1.11)
1<k<N

where the By are pairwise disjoint elements of M. We define the entire functions

) 1—
u(z) = Z Oz;(Z)/a(e)e“z’lej, a(z) = z + z ’ (9.1.12)
1<5<m Po Y41
—b(z _ . 1—
vz = S0 TPy opey = T 7 (9.1.13)
1<k<N qo q1

F(z):/X(Tu(z))v(z)du, (9.1.14)
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and we note that a(d) = 1/p(0),b(f) = 1/q(8) € (0,1) since § € (0,1). The
function F is bounded on {z € C,0 < Rez < 1}: we have to deal with a finite sum
and

Rea(z) € 10,1], Re(l—0b(2)) €[0,1].

Moreover, for y € R, we have

(1—b(iy))

a(iy)
ri = [ (5 i e ) (X 1mat T e

1<j<m 1<k<m

and thus

(1-0b(iy))

1— 5(9))
E 1p, k(

1<k<m

a((iey)) b
a Q5
g Q; ey,

1<j<m

|F(iy)| < Mo
40

Ppo

Since the (A4;)1<j<m (and the (Bg)i<rp<n) are pairwise disjoint, we have

Rea(iy) p(0)
2 : o a(e) z¢>]1A Z a; a(0) Z a; Po Iy
1<j<m Ppo 1<j<m Po 1<j<m Po
) 1/po 1/po /
P 0) Po/Po
([ (2 @, )du> - / (@) du) = (),
X M<i<m
and
(1=b(iy)) 1—Re b(iy) q(9)
1-b0) 1-b(6) a)
E 1p ( § B, " 1p, § B, 1p,
1<k<N a0 1<k<N as 1<k<N 40

1/% 1/%
(/X q<9>13k)du) = ([ wor “du) — (@l

so that, for y € R, |F(iy)| < M0||u(9)||Z?9/p°||v( )||q9/q° We obtain similarly that

1<k<N

[F(1+iy)| < Myu(@)|227 11o(6)]|%/

The last two inequalities and Theorem 9.1.1 imply for Re z € [0, 1],

Po )

F()| < (Mollu(8) 120 o ®)]1 1))

so that for Re z = 0, since

(anallu@)g2 @) ) ™

Do Do q q
(1-0)+"0=1="1-0)+ "0,

Po b1 qp q1



376 Chapter 9. Classical Inequalities

we get
[ aea] = ) < 35 Mool o,

which is indeed (9.1.10), concluding the proof in this case.

[3] We assume now that 1 < pg < +00, q¢p = 1 (and thus o = 1 = 1,¢) =
¢} = +00). It is enough to prove (9.1.9) (from Proposition 3.2.11), and to get it,
(9.1.10) should be modified so that S is replaced by S (see Proposition 3.2.13),
meaning that (9.1.11) must be modified so that u(By) could be +00. We modify
(9.1.13) and take v(z) = v. The rest of the proof is unchanged, following case [2].
The proof of Theorem 9.1.2 is complete. O

The Riesz—Thorin interpolation theorem appears as a direct consequence of
Hadamard’s three-lines theorem and is a typical example of a complex interpola-
tion method based on a version of the maximum principle for holomorphic func-
tions on unbounded domains. Of course holomorphic functions in an unbounded
domain €, continuous in €, may fail to satisfy the maximum principle!. However,
the Phragmén—Lindel6f principle asserts that a maximum principle result holds
true, provided we impose some restriction on the growth of the class of functions:
Hadamard’s three lines theorem, in which we have assumed boundedness for the
holomorphic function, is a good example of this technique. We give below some
classical consequences of Theorem 9.1.2.

Theorem 9.1.3 (Generalized Young’s inequality). Let p,q,r € [1,+00] such that
(6.2.1) holds. Let (X1, Mu, p1) and (Xa, M2, pi2) be measure spaces where each pi;
is a o-finite positive measure and let k : X1 X Xo — C be a measurable mapping
(the product X1 x Xy is equipped with the o-algebra M1 ® Ms) such that there
exists M > 0 with

1/p
sup </ Ik(xuxz)”duz(xz)> <M, (9.1.15)
z1€X1 X

1/p
Sup (/ |k($17w2)pdu1(x1)> < M. (9.1.16)
T2€ X2 X1

The linear operator L defined by
(Luz)(21) = / k(. w0 (2)dpia () (9.1.17)
X2

can be extended to a bounded linear operator from Li(ue) into L™ (u1) with opera-
tor-norm less than M.

IThe function e* on Q = {z € C,Rez > 0} is unbounded on Q although it has modulus 1 on
oN.
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Remark 9.1.4. The first (resp. second) supremum can be replaced by an esssup
(see (3.2.6)) in the pq (resp. p2) sense. If p = +oo (which implies ¢ = 1,7 = +00),
the hypothesis reads as

esssup(zl,zg)GXl X Xo |k(l’1,l’2)‘ < M = Ma
and the result in that case is trivial since
|(Lu2)(z1)] < MuzllL1(u) = | Luzl| Lo () < Mlluzll L (u,)-

We may thus assume that 1 < p < +o00. If ¢ = +00 (which implies p = 1, r = +00),
we get also trivially

(Luz)en)| < [ Ir(or,aa) Jus(es)ldua ()

X2
< MJual|Loo (1)
= [[Lual|poo (1) < M|Jual|Loo (yuy)-

We may thus assume that p and ¢ are finite. We may define (9.1.17) for ug = 14,,
where A; € M, with p2(Az) < +o00. Then we have

|k(21, wa)|dpa(x2) < M| Lasl Lo (0,
A2 a
§ M/,LQ(AQ)I/p/ < +00.

As aresult for us € Sq(p2) (the space Sp(u) is defined by (3.2.20)), we may define
Luy as an L™ (1) function. Since for 1 < g < 400, Sq(p2) is dense in L9(p2)
(Proposition 3.2.11), the statement of Theorem 9.1.3 can be rephrased as follows:
the linear operator L defined from Sy (p2) into L (u1) can be uniquely extended
as a bounded linear operator from L%(uz2) into L"(p;) with operator-norm less
than M.

N.B. Young’s inequality (Theorem 6.2.2) is indeed a consequence of the above
result, taking k(z1,22) = a(r1 — x2) with z; € R", p; equal to the Lebesgue
measure on R", M = ||a||z»gn)-

Proof of the theorem. As noted in the above remark, we may assume that p, q are
both finite. For us € Sq(p2) (also if p’ = 400 for ug € Sy o0 (p2), where Sp o0 (i) is
defined by (3.2.24)), we have

Ltz ey < Mol o - (9.1.18)

This implies that L can be extended uniquely as a bounded linear operator from
LP (p2) into L*(u1) so that (9.1.18) holds true. Moreover, for ug € S;(u2), we
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have if p > 1 (thus p’ < +00),

Ml = swp | [ (Luz) ) dutan)
S~~~ _
Lemma 6.2.1 ”w”Lp/(tq)il X1
weS,r (K1)
< sup // (, 2)| iz () w0 o (1 )dpea ()
”w”Lp/(Hl):l X1 X Xo
weS,r (p1)

<M sl / iz (o) dpta (2) = M iz s .
ol )= Xa
weS, (p1)

This implies that if p > 1, L can be extended uniquely as a bounded linear operator
from L!(uz) into LP (1) so that

||Lu2||Lp(#1) S M||u2||L1(/—t2)' (9.1.19)

Applying the Riesz—Thorin interpolation theorem 9.1.2 to the inequalities (9.1.18)-
(9.1.19), we find that the linear operator L sends continuously Ld(uz) into L7 (u2)
(with operator norm M) with

1 1-6 0 1 1-0 0

q 1 p
for all # € [0,1]. From (6.2.1), we have 1/p’ +1/¢' = 1/r' so that p’ > ' and
1 < p < r: thus we may choose

T‘i P o

1-6 1 1-0 0 1 1 1
0,10=1-" = = Fi=r 4 =1- 4+ = . j=q
r p T 1 D p T q

This completes the proof for p > 1. Note that if p = 1 then r = ¢ (which can be
assumed finite from Remark 9.1.4), we have directly

/X1 (/}(2 k(mhmz)|uQ(m2)du2(x2)>qdu1(ml)

< /XI(/XQ(k(xl,mg)3u2($2)|)qduz($2)>( Ik($17$2)|3;du2(w2)> ’ dp (1)

X2

<[], fualn) da(a)din (1) < ME sl
X1 XX2

so that in this case as well, we find that
[ Luzll Lo(uy) < M[uzllLau,)- (9.1.20)

The proof of Theorem 9.1.3 is complete. O
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Theorem 9.1.5 (Hausdorff-Young). Letn > 1 be an integer. The Fourier transform
F maps injectively and continuously LP(R™) into LP (R™) for 1 <p <2 and

Vu € LP(R™), |8l Lo gy < lutll zogin)- (9.1.21)

Proof. Note first that we have defined the Fourier transformation on the space
of tempered distributions (see Definition 8.1.14), so that Proposition 8.1.13(1)
provides a definition of the Fourier transform for any function in L?(R"™) and that
this transformation is injective on .’ (R™), since it is an isomorphism (see Theorem
8.1.15). We have seen as well in Theorem 8.1.16 that the Fourier transformation
on L'(R™) is given by the explicit formula (8.1.22) and satisfies the inequality

Vu € L'(R™), we have & € L™(R™) and ||| oo ®n) < [Jullz1(mn)-

Moreover, Theorem 8.1.17 shows that the Fourier transformation is a unitary
transformation of L?(R™) so that

Yu € LQ(Rn),We have @ € LQ(Rn) and HﬂHL’z(Rn) = ||u||L2(Rn).

Applying the Riesz—Thorin interpolation theorem 9.1.2 yields readily that the
Fourier transformation is a bounded linear map from LP(R™) into LP (R™) for
1 < p < 2 since for 6 ranging in [0, 1], we have

1 1-6 6 0 1 6

p 1 + 2 2 p 2
N.B. The constant 1 in (9.1.21) is not sharp. The best constant can be found in
a paper by E. Lieb [42] who proved that for 1 < p < 2,

n/2

sup [ Lo ey = (/7P 7H) (9.1.22)

[lull e @ny=1
Remark 9.1.6. The mapping L*(R") > u + 4 € L*°(R") is one-to-one and not
onto: if it were onto it would be a bijective continuous mapping from L!(R™) onto
L>°(R"™) and thus, from the Open Mapping Theorem 10.2.43 (a direct consequence
of Baire’s theorem), it would be an isomorphism. Since

So>

=wv for a tempered distribution v,

the inverse isomorphism from L>(R") onto L'(R™) would be the inverse Fourier
transform © and this would imply that the Fourier transform of an L>°(R™) function
belongs to L!(R™). However the latter is not true since the Fourier transform of
1(_1,1j(a function in L>® N L') is

/1 20T g {e‘gimfrzl e — 72 sin(27€)
—2im€

. =1 2imE re

which does not belong to L*(R) (see Exercise 2.8.20).
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9.2 Marcinkiewicz Interpolation Theorem
Definition 9.2.1. Let p,q € [1,+00]. A (not necessarily linear) mapping
T:LP(R™) — LI (R™) = LY*°(R"),

SuCh that ElC Z O,Vu c LP(R”L)7 ||TU||Lq,oo(]Rn) S C”u”Lp(]Rn),

where the Lorentz space L2°°(R") is defined in Exercise 6.6.8 (see also Definition
6.3.1) is said to be of weak-type (p, q).

N.B. When g = 400, this means:
4C > 0,Vu € Lp(Rn), ||Tu||Loo(]Rn) < C’||u||Lp(Rn). (921)

For 1 < ¢ < 400 this means: 3C > 0,Vu € LP(R™),Vt > 0,
)\n({x € R", |(Tw)(z)| > t}) < (Cllufl omt™)", (9.2.2)

where A, stands for the Lebesgue measure on R".

Definition 9.2.2. A bounded mapping 7" : LP(R™) — L%(R"), i.e., such that
ElC 2 07Vu € LP(RTL)7 ||TU||LQ(R7L) S C||u||Lp(Rn)7 (923)
will be said of strong-type (p, q).

Of course, a strong-type (p, ¢) mapping is also of weak-type (p, ¢), since the
notions are identical for ¢ = +o0 and if 1 < ¢ < 400, this follows from Inequality
(6.3.2) (and the related inclusion LY C L%).

Theorem 9.2.3 (Marcinkiewicz Interpolation Theorem). Let r € (1,+00] and let
T : LY(R™) + L"(R"™) — {measurable functions} be a mapping such that

T (u+v)| <|Tu|+ |Tv|. (9.2.4)
We assume that T is of weak-type (1,1) and (r,r) (see Definition 9.2.1). Then T

is of strong-type (p,p) for all p € (1,r) (see (9.2.3)).

N.B. From the inclusion LP C L' + L" (see Exercise 6.6.11), we see that T is
indeed defined on LP. This very useful theorem (see [45] for the 1939 original
paper and [44] for a historical perspective) is also very remarkable by the fact that
it is providing a strong-type information from a weak-type assumption.

Notation. Let (X, M, u) be a measure space where u is a positive measure; we
shall use the following notation, for a measurable function u and ¢ > 0:

w(t,u) = p({z € R, ju(z)| > t}). (9.2.5)
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With Q,(u) given by Definition 6.3.1 (see also Exercise 6.6.8 (1)), we find that
Qp(u) = sup,~ o tPw(t,u). For p € [1,400) and u € LP(ut), we have, using Fubini’s
theorem,

+o0o +oo
/ ptP~w(t, u)dt = / ptP~1 (/ du) dt
0 0 {z,|u(x)|>t}

_ //RJrXXptp_lH(u(m) — Ddp()dt

AKWUwWWwAmmwm»

lull 2oy = PP tw(t )Pl Lo, 0. (9-2.6)

so that

On the other hand for u € L* () we have, according to Definition 3.2.4,
]| Loe (y = f{E > 0,w(t, u) = 0}.

Proof of Theorem 9.2.3. We use the above notation with u = A,, the Lebesgue
measure on R™. Let us assume first r = +00. The weak type (0o, 00) hypothesis
means ||[Tul|p~ < Cllul|p~ and we may assume that C = 1. We write for u €
LY+ L> t>0,

U= ulfju>t/2y + Ul gju)<e/o)
N~ ~ - N~ ~ -

Ul u2

and this gives

[(Tu)(@)] < [(Twr) ()] + [(Tuz)(@)] < [(Tur)(z)| + [[uzllLe < [(Tur)(@)] + ;
so that we find the inclusion

(#) {2, [(Tw) ()| > t} C {=, |(Twr)(x)] > t/2}.

The weak-type (1,1) assumption reads tw(t, Tv) < c11||v]/r1 so that
t t
oA (2 [(Tu)@) >, ¢ | < cnflunle

()
t 2
:>w( 7Tu1> < CH/ |u|dz.
2 t Jjusts2

Applying Formula (9.2.6) to T'u, we find, using Tonelli’s theorem and 1 < p < +o0,

—+oo
|wmwp:p/ P uo(t, Tu)dt
0
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+oo t
(from (f)) < p/ P lw (2,TU1) dt
0

+oo 1 2611
(from (b)) < p / P~ / |u|dzdt
0 t |lu|>t/2

— 9peny / / =2 H (2Ju(z)| — ) |u(z)|dtde
Ry xR™

_ 2pci1
p—1

P=liy(z)|de = 2Ppen
/RH(QW(I)D u(z)|d b L ellzs,

which gives the strong-type (p, p) for T.

We assume now 1 < r < 4o00. Let u € LP, let ¢ > 0 and let uy, us be defined as
above. Since |(Tu)(z)| < |(Tur)(z)| + [(Tuz2)(x)|, we find

{2, [(Tu) ()| > t} C{a, [(Tur) ()| > t/2} U{z, |(Tuz)()| > /2},

and thus w(t, Tu) < w(},Tur) + w(s,Tusg). Following (6.6.6), we see that u; €
L', uy € L”. The weak-type assumptions imply with fixed positive constants c1, ¢,

t [t " ([t :
o (27Tu1> < |z, (2) UJ<27TUQ> < ey |luz||7r-

We obtain thus

T AT

201 2"cl .
O wwros [u@menel-owsE

Tonelli’s theorem implies

—+oo
/ ptPrw(t, Tu)dt
0

<[[ e @lE )] - dds
R xR" t

_12%c;. ”
+// pt?~! i Lio<|u<t/2} |u()|"dtdx
Ry xR™

_ 2 e
b /\ )| (2|u(x )pfldx+2rc:p/ \u(m)\r/Q e

Ju(a)
~ ~ Z
o (2luz)|)
- pcl/\ )|Pda +27clp /|u ‘“ D 4
-p

note that p—r<0
2Ppc;  2Pclp
Jull (277 + 2757,
r—p

7‘ 1/17
so that || Tu||» < ||u||Lp2p1/1”(pc_11 + f_"p) , concluding the proof. O
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9.3 Maximal function

Definition 9.3.1. Let f be a function in L{ (R™). The maximal function of f,
denoted by M, is defined on R™ by

1
M () = sup |f(y)ldy, (9.3.1)
TS0 1B 0] S
where |B(z,t)| is the Lebesgue measure of the ball with center z and radius ¢.

Using the notation f, fdu = [, fdu/pu(A), we find

t>0

My =sup | I5@ldy=sup | 1S +12)la

We note also that the maximal function (of a measurable function) is measurable
(see Exercise 9.8.3).

Remark 9.3.2. Let us evaluate M1q,,, . Let © € R™. For t > 1 + |z|, we have
ly| <1= |y — 2| <1+ |z| =y € B(x,1).

We have thus for t > 1+ |z|, t"|B"|~! J5(ap) 1en(y)dy =t~ implying

Mag, (2) 2 (L+[2) ™" = M, € L'(R"),

proving that the mapping f ~ M; does not send L' into itself. We shall see
below that the maximal function of an L!(R™) function is nevertheless in L. (R"),
proving that the mapping f — M/ is of weak-type (1,1).

Theorem 9.3.3 (Hardy-Littlewood maximal inequality). The mapping f — Mj
is of weak-type (1,1) and of strong-type (p,p) for all p € (1,400] (see Definitions
9.2.1,9.2.2).

Proof. Since the mapping f — M/ is obviously of strong-type (00, 00) (since
|MgllLe < ||f]lz), according? to the Marcinkiewicz interpolation theorem 9.2.3,
it is enough to prove the weak-type (1, 1) property:

3C,,Vf € L'(R™), suptl{z € R", My(x) > t}| < Cn| fllprmn)- (9.3.2)
t>0

Note that from Remark 9.3.2, the Riesz—Thorin Theorem 9.1.2 cannot be used
since the mapping fails to be of strong-type (1,1). We start with a lemma.

2Note that the subadditivity property is fulfilled since

0 (Mysg)e) =sup [ (1 +g)(e+12)ldz <sup [ |7+ e2)lds+sup | oo+ 2)ldz.
t>0 JBn t>0 JBn t>0 JBn
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Lemma 9.3.4 (Wiener covering lemma). Let E be a measurable subset of R™ such
that E C UjeB; where (Bj)jes is a family of open balls such that

2po = supdiam B; < +oo0.
jedJ

Then there exists a countable subfamily (Bj);ep of pairwise disjoint balls such
that
An(E) < 5™ An(By).

jE€ED

Proof of the lemma. Let Bj, = B(xo,70) be a ball® such that diam B;, = 2r¢ >
po- Next, we define

Jo = J, J1:{j€JOaBjﬂBjo:®}'
If j ¢ Ji, then B; N Bj, # 0, so that Jyo € B; N Bj, and

T € Bj =[x —x0| < |2 —yo| + [yo — 20| < 2po + 10 < 5ro,
- ~ 4 - 4

~
z,90€B;  yo€B(wo,T0)

entailing j ¢ J1 = B; C B} which is defined as a ball with the same center as
Bj, and a diameter equal to five times the diameter of B;,.

e For the family (B;) e, of open balls with bounded diameters,

. . . jeJi = B;NB,;, =0,
Jjo € Jo, with J1 = {j € Jo,B; N B;, =0}, Jo e
Jo 0, W1 1 {] 0, Dy Jo } {j¢J1 BjCB;O.

e Let us assume that we have found Jo D J1 D -+ D Jp, k> 1,50 € Jo, ..., jk € Ji
such that

1 1

(1) diam B, > _supdiam B, ............. ,diam B;, > _ sup diam By,
2 jelo 2 jel,

(2) {j€J07j¢J1:>BjCB;O}, (3) {j€J1:>Bijj0:®}7

(@) {i €1, ¢ I =B, C B}, () {jeJu=> BiNB;_, =0}.

Jk—1
We define then Jy11 = {j € Ji, BjNB;, = 0} and if Jy41 # 0 we find jr+1 € Jpp1
such that )
diam B;,., > sup diam Bj,

Jk+1 i
2 JE€EJIk+1

3We may of course assume that E has positive measure, which implies that J is not empty and
po > 0.
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fulfilling (1) for k+1 as well. Moreover (3) holds true for k41 by construction and
if j € Ji\Jk+1, we have B; N B;, # 0, so that 3y, € B; N Bj,, B;, = B(xk, ),
and

r€ B = |z —xi| < |z —yr|+ |yp — x|
\v/ - -

~
z,yr€Bj  yr€B(Tk,Tk)

< diam B; +r;, < 2diam Bj, + 1, = 57,
- ~ 4
Jj€Jk
entailing B; C Bj , proving (2) for k + 1.

e As a result, assuming that all the J are non-empty, we find
Jo D J1 D"-:)Jk:)...7jk€Jk7
such that

Jk—1"

k>1: jEJk_l\JkSBjCB’»k
k>1: jGJk:>BjﬂBjk71:®.

The family (Bj, )r>o is pairwise disjoint: we consider ¥’ > k" + 1. We have ji/ €
Ji C Jgry1 and i € Jir so that
Bj ﬂBj - @

k! k!

It EJk//+1

Claim. If 3 ;<o |Bj,| < +00 we have for all j € Jo, Bj C Up>1B;,
The Claim is obvious if j € Ug>1(Jx—1\Jk). Otherwise we have

1

J € Ni>1(J5_1 U Jy), which means j € Ng>1Jg:
in fact, we have Ng>1(J{_; U Jx) = Ni>1J) since

{Vk>1, jeJyUJ; 1} and {3ko > 1,5 ¢ Ji }
= j € Ji,_1, ko > 2, since J§ =0,
= jeJi k>3- =jeJi=jeJ5=0,
which is impossible. If j € Ng>1Jk, we have Vk > 1, 2diam B;, > diam B;

and since the series ), |Bj,| converges, this implies limj diam B;, = 0, and
diam B; = 0 so that the open ball B; is empty. The claim is proven.

e Finally, we have either ), |B;,| = +00 (a case where the conclusion of the
lemma is reached trivially) or »_, |Bj,| < +oo and the above claim implies that

FE C Uk21B%{

Jk—1"

providing the sought answer.

e When Jj, = 0 for some ko > 1, we find that Jy = Ur<p<i, (Je—1\Jx) and we
have obviously Vj € Jo, Bj C Ug>1Bj, |, obtaining the conclusion as well in that
case. The proof of the Wiener covering lemma is complete. O



386 Chapter 9. Classical Inequalities

Let us go back to the proof of Theorem 9.3.3. Let s > 0 be given. If z € R"
is such that Ms(z) > s, we can find ¢5 , > 0 such that

1

1f)|dy > s = |B(z,ter)| < s flli@n) < +oo.
1B(z,tsx)| Jpar. ) LR

We consider the measurable set
E, ={z e R", My(x) > s} C Uzer,B(z,ts2),

and we note that t7 ,|B"| < s7'||f| 1@ so that we may apply the Wiener
covering Lemma 9.3.4. We find a sequence (z)geny in R™ such that the balls
B(zg,ts,z,) are pairwise disjoint and

|Es = {x € R", M(z) > s}
<53 Bk, toun, \<s*15"2/ Wiy <575" [ 15wy,
keN keN Y B(@nts,a)) "
proving s|Es| < 5" f||z1r=) and the weak-type (1,1) property. O
Remark 9.3.5. Note that with the result of Exercise 9.8.2, this implies
1+

for 1< p <400, [Mllpe@n < g_ 57 L. (9.3.3)

A result due to E.M. Stein and J.-O. Stromberg [56] shows that the L? to LP norm
of M can be chosen independently of the dimension n.

9.4 Lebesgue differentiation theorem, Lebesgue points

Theorem 9.4.1 (Lebesgue Differentiation Theorem). Let f be a function in L'(R™).
Then, there exists a Borel set Ly such that )\n(ch) = 0 such that

1
veeln tmo oo f W= @y =0 (9.4.1)

The set Ly is called the set of Lebesgue points of f.

Remark 9.4.2. Note that this implies that for f € LY(R"), for all € Ly,
limr%OfB(x,T)f(y)dy = f(x)

Proof. For p > 0 we define the measurable set

E, ={z € R",limsup |f(y) — f(x)|dy > p}. (9.4.2)
t—04 |B(z,1)] B(w,t)
~ e

~
Ny (t,x)
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Let ¢ € C2(R™). We have

N (t,x) Sf

B(z,t)

) — 6()ldy +7[ 16() — $(2)|dy + |9(z) — f ()|

B(x,t)

< My_y(2) +f 16(5) — $(@)ldy + |6(x) — F()].

B(z,t)

Since ¢ is uniformly continuous, we get

limsup Ny (¢, ) < Mg s(x) +[f(x) — ¢(x)].

t—0

As a result the set E, defined by (9.4.2) is such that
E, C Az, [f(2) — o(2)| > p/2} U {2, My—s(x) > p/2},

and this implies |E,| < [{z,|f(z) — ¢(x)| > p/2} + {z, My—f(x) > p/2}|. Using
now Theorem 9.3.3, we obtain for any ¢ € CO(R"),

1B, < / (@) — d(@)lde + Cr > | — Bl =

2 2(14Cy)
P Jrn P

Ilf — &l @ny-

The density of C2(R™) in L'(R") implies that |E,| = 0 for all p > 0 and since

{z e R", limsup Ny (t,z) > 0} = Up>1 B4 /i,
t—04

this gives as well that |Ey| = 0. We define Ly = E§ and we have for z € Ly,
limy_,o Ny (¢, z) = 0, which is the sought result. O

Theorem 9.4.3. Let f € L (R). We define for x € R, F(z) = [ f(y)dy.

loc
(1) Then the function F is continuous on R, differentiable almost everywhere
with derivative f(x).
(2) The weak derivative of F is f.

Proof. (1) The continuity of F is obvious since for h > 0,

F(z+h) - F(z) = / F)dy,

[z,z+h]
and for h < 0, F(x + h) — F(z) = — f[ﬂh 2] f(y)dy. Proposition 1.7.10 implies
limj,o(F(z + h) — F(z)) = 0. We consider now for h # 0,
Flx+h)—F(z 1
A CIE 7(w) ~ F)ldy
h |h‘ [z, z+h]U[x+h,z]
2

— dy.
S ot o 10— @y
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Applying the previous theorem if f € L*(R) (or Exercise 9.8.4 when f € L] (R)),
we find that F' is differentiable at the Lebesgue points of f, with derivative f.

(2) We have for ¢ € C°(R™), using Fubini’s theorem,
(P.6) = - [ F@)é (@o
—~ [ 6@ [(H@1000) - H-0)100 ) @dyds

- [ 1) (- / <y<x¢’<x>dx+ [ ¢ )y
— [ W (HEW) + HEp)ow)dy = (f.9)

proving the result. g

Remark 9.4.4. Almost everywhere differentiability is a very weak piece of informa-
tion. Almost everywhere differentiability of a function F is a very weak property
that does not tell much about the function F': in the first place the trivial example
of the Heaviside function shows that a bounded function can be differentiable al-
most everywhere in R with a zero derivative without being a constant. The much
more elaborate example of the Cantor function defined in Proposition 5.7.7 shows
that a continuous function can be differentiable almost everywhere with a null
derivative without being a constant, so is not the integral of its a.e. derivative.

Remark 9.4.5. It may also happen that a continuous function is differentiable
everywhere but with a derivative which is not integrable in the Lebesgue sense
(see Exercise 9.8.5). Some other theories of integration are devised in such a way
that a differentiable function is always the integral of its derivative. This is the
case in particular of the so-called Henstock—Kurzweil integration theory [38] as
well as some earlier theories due to Denjoy and Perron.

The distribution (or weak) derivative does not miss jumps and singularities
as the notion of everywhere differentiability. Here the reader may consider only
tempered distributions as in Chapter 8, but the statements are true as well for
general distributions defined as local objects.

Lemma 9.4.6. Let T be a distribution on R such that T’ = 0. Then T is a constant.

Proof Let ¢ € CP(R) and let xo € CP(R) with integral 1. Denoting I(¢) =
Jg ¢(y)dy, the function ¢ defined by

P(x) = d(z) = 1(¢)x0(x),

belongs to C2°(R) and is the derivative of ¥(z) = [*_ 4 (y)dy. Note that W is
C*° and with compact support, since for x large enough

- / o(y)dy — 1(6) / Yo(y)dy = 0.
R R
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As a result, we find
(T, ¢) = (T,9) + 1($)(T, xo0) = (T, V') + I($)(T, x0) = —(T",¥) + I($){T, x0),
so that T = (T, xo)- O

Theorem 9.4.7. Let F' be a locally integrable function in R such that its distribution
derivative F' is locally integrable. Then the function F is bounded continuous and
foralla e R,

F(z) = F(a)+ / F'(y)dy. (9.4.3)
The function F is also a.e. differentiable with (ordinary) derivative F'(x).

Proof. We define G(x) = [ F'(y)dy and from Theorem 9.4.3, we find that the
distribution derivative G’ of G is equal to F’ (and that G is continuous). Thus the
distribution derivative of F'—G is zero, so that F'—G is the constant F(a)—G(a) =
F(a). The last statement follows from Theorem 9.4.3.

9.5 Gagliardo—Nirenberg inequality

Proposition 9.5.1. For all ¢ € C}(R™), we have

1
1602 oy < 5 11 |

1<j<n

1/n

o

89@

(9.5.1)

L1(R™) '

Proof. The cases n = 1,2 are very easy: for n = 1, we have

X

20(e) = [ (0t [ (Odt— 2l < 16 sy
—00 +oo
For n = 2, we have, using the previous result,

1 1
b1, )| < 2/\al¢(t17x2>|dth (a1, )| < 2/|52¢($17t2)\dt27
R R
so that
41 l2 ey < / 0n9(tr, w202, )]t diacdra ey = 108 ey 029 1 e
R

The cases n > 3 are more complicated and we need to start with a lemma.

Lemma 9.5.2. Let n > 2 be an integer and let wy,...,w, be non-negative mea-

surable functions on R ! so that w; is a function of (zk)i<k<n,kzj. Then, we
have )

1 1 n n—1

/ wlnl_..wgldml...dmngn(/ wjd@> ,

n i Rn—1

=1

where dT; = ngkgn dxy, .
k#j
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Proof of the lemma. For n = 2 we have indeed

/ wl(mg)wg(xl)dxldxg = ||w1||L1(R)||w2||L1(R)
R2

Let us assume now that n > 3: we have

does not
depend on x1

1 1
In:/ wi L wn T ...dmn:/ / w" Ydx )dx7

2<j<n

and since ! .+ "*f =1, Holder’s inequality implies

n— n—

n—

1 ”*;
L= lanligon S [ ([ IT wp™dn) " aa
Roc<j<n

We have, using the generalized Holder’s inequality of Exercise 3.7.31,

4 L

/ H w” 1d$1 < H (/ n_ldl‘l)n = ( H /wjdl‘l)n .

Roli<n 2<i<n j<n /R

This gives

1 -
I < ||w1||L1(]R" 1){/ H /w]dxl) n—2 dﬁ} ’
~

-

1
—_qnr—2
)

with Q; independent of z1, z; (here 1 # j since j > 2). We may apply the induction
hypothesis to obtain

< lealiigeon{ TT 195055000 |

2<j<n

2
1

1

- leHLl R— 1){ H ||Qj||L1(]Rn2)} ,

2<j<n
and since for 2 < j <n,
1250 21 —2) =/ /Wjdxl T do = llwjllr@nr),
R IR 2<k<n ket

this proves the lemma. O
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Let us go back to the proof of Proposition 9.5.1. We have

2‘¢($)| g/]R\8jq§(m1,...,mj_l,tj,mj+17...7xn)|dtj :wj(m),

where w; does not depend on x;. This implies that

201 () H wj(x )

1<j<n

and from Lemma 9.5.2, this implies

1 1

s fle@ltde < (] lslpn)" = (TT 1éluem) "

1<j<n 1<j<n
which is (9.5.1), concluding the proof. O

Proposition 9.5.3. The space WHH(R™) is defined as the set of functions u €
LY(R™) such that the distribution Vu belongs as well to L*(R™). This space is a
Banach space for the norm

lullwia@ny = lJullLr@ny + [Vl g1 gn)-

Proof. Let (ux)ren be a Cauchy sequence in WH1(R™). Then, we find u,V € L!
such that limy ug = u,lim Vu, = V in the space L*(R™). Now for ¢ € C°(R"),
we have

/ngdm = lilgn/qSVukdx = lilgn(Vuk, Py = — li]£ﬂ<uk7 Vo)
= —lillcn/uqude =— /qubdm = (Vu, ¢),

proving V = Vu. 0

Theorem 9.5.4 (Gagliardo-Nirenberg inequality). Let u € WH1(R™). Then u be-
longs to L»=1(R™) and is such that

1 1/n
lull L2y gy < IT N5l e (9.5.2)

1<j<n

Proof. Let p € C*(R™R4) such that [p(z)de = 1. For € > 0, we define
pe(x) = p(xz/€e)e”™. The function (u * pc)(x) = [ u(y)pe(x — y)dy is smooth (obvi-
ous from Theorem 3.3.4), belongs to L(R™) (Proposition 6.1.1) and converges to
w in L'(R™): for ¢ € CY(R™), we have

U*Pe—uz(U_¢)*Pe+¢*Pe—¢+¢—U7
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so that with L! norms, using (6.1.3), for € < 1,

lu pe — ull < 2[lu— ¢l + /K (¢ % pe)(x) — o(x)|de,

where K is the compact set supp ¢ + supp p. From Lemma 6.1.4, we find uniform
convergence of the sequence of continuous functions ¢ * p. and this implies

Vo € CJR™), limsup [Ju* pe —ul| < 2(ju— ¢
e—0

The density of CO(R"™) in L!(R") entails that lim, ||u * p. — u|| = 0. We have also
pe * Vu = V(pe xu) (9.5.3)
since for ¢ € C°(R™),

[ oex vo@otyiz = [ [ ol - p)(Tu)w)o(a)dody
= (Vupx 8) = (£ V) = =[x ))Volalde = (T(p. + ). 6),

proving (9.5.3).

Let us assume first that u belongs to WH1(R™) and is compactly supported.
We may apply (9.5.1) to the smooth compactly supported p. * u. We note that
the sequence 9;(pe * u) = pe * dju converges in L'(R™) towards d;u. Moreover
the inequality (9.5.1) applied to pe, * u — pe, * u implies that p. * u is a Cauchy
sequence in L"/ n=1(R™) thus converges with a limit v; since that sequence is
converging towards u in L!'(R"), and for ¢ € CO(R™), we have

/ o(@)¢(x)dz = lim / (pe * u)(2)$(x)dz = / u(@)d(z)dz.

Lemma 8.1.11 implies u = v which belongs to L™/~ Inequality (9.5.2) holds
true by taking the limits in (9.5.1).

Let us assume now that u belongs to WH1(R™). Let x be in C°(R™;[0,1]),
equal to 1 on B(0,1) and supported in B(0,2). For ¢ > 0 we have obviously
(dominated convergence)

lirrtl) x(ez)u(z) = u(z) in L'(R™).
€E—>
Let us calculate for x.(z) = x(ex), V(uxe) = xeVu + uVy.. We have

lim |u(x)X' (ex)|dze = 0 = lim lu(z)|(1 — x(ex))dz,

e—0 Rn e—0 Rn

where the first equality is obvious (domination by ||u||pi€||x||z=) as well as the
next one since

[l xteyie < [
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We have thus
lim ycu =u, lim V(xu) =Vu in L.
e—0 e—0

Since u, = Ycu is compactly supported in W', we may apply the previous result
to get Inequality (9.5.2) for u.. That inequality implies as well that u. is a Cauchy
sequence in L™/"~! and thus converges in that space towards a function v. Since
the sequence . converges in L' towards u, the same reasoning as above shows
v = u and the result.

Remark 9.5.5. The Gagliardo—Nirenberg inequality (9.5.2) has some interesting
properties, beyond the most remarkable of being true. In the first place, this in-
equality has a scaling invariance: take u € WHH(R") and A € Gi(n,R), and
consider the function

ua(z) = u(Az)|det A|"» ", so that (Vua)(z) = (Vu)(Az)A|det A" .

We have

n—1
||uA||Ln21 (]R”) = </ |U(Al')| ni1 | det A|dm) - ||u||Ln7—Ll (]R”)’
and

IVeall sy = / |(Vu)(Az) Al det A] "+ dz = / |(Vu)(y)Al| det A|~ " do.

Considering (Vu)(x) as a linear form on R™, and A as a linear endomorphism of
R"™, we have
(V) () Al = sup, (V) () AT |.

Let us assume now that A = o), where a € R*,Q € O(n). We get then
[(Va) (@) Al = lal[|(Vu)(@)[l,  [det Al = [o]",

so that ||Vuallpiwny = [[Vul|L1®n). Inequality (9.5.2) implies

1/2
1 1 )
ol sy € g, 3 IO, [ S (@@ ds
1<j<n 1<j<n
— o [ IFu@ do= vl (9.5.0
_2\/71 \i&l‘/ﬂ?—z\/n Ul LY(R™), 0.
Euclidean
norm on

and the latter is invariant by affine similarities (generated by homothetic trans-
formations z — z¢ + ax, o € R*, and linear isometries = — Qz, Q € O(n)).

On the other hand, we shall use Theorem 9.5.4 to prove the so-called Sobolev
inequalities of the next section. Although these inequalities can be handled via
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some Fourier analysis methods, this is not the case for the Gagliardo—Nirenberg
inequality above which involves the L!-norm of the gradient (L' is not so friendly
to Fourier analysis). It is thus an interesting reminder that a clever but elementary
combinatorial argument such as Lemma 9.5.2 can find its way into proving a
statement that is not accessible to Fourier analysis. O

9.6 Sobolev spaces, Sobolev injection theorems

We begin with a lemma.

1 1
n+p'

Lemma 9.6.1. Let n > 1 be an integer and let p,q € [1,+00) such that 31 =
Then there exists a constant C(p,n) such that for all v € CL(R™),

[v]| L@y < C@,n) VY| La(rn)-

Proof. When n = 1, we find that the sought estimate is true as well for p =
+00,q = 1 (this is (9.5.1)) and for 1 < p < 400, we cannot have ¢ > 1. We may

thus assume that n > 2.

Let us first suppose that v > 0. We define u = v"" " we note that

+1§1:>1§n—1:>p(n—1)21’
p n p n n
so that we have with ordinary differentiation, d;u = p("rfl) ey ~19;v, and the
function u is also C}. On the other hand we have, using (9.5.1),
n 1
[ollzs =l 5, <27 IT liosull;: (9.6.1)
1<j<n
n —1 m
<oty (P =Dy ( 1ol ) 7
n 1<5<n

-
term I

and this implies that

n— _n —1)\" np—p—n
ol < 27 (P IV TT (agolluelle™ " )-

1<j<n

We note that ("pjf*") =p(1-]} - 117) = 7, so that if ¢ > 1 we have proven

ol < 2= (P DY CTT ool ) 1o

1<j<n
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which gives (the result) for v # 0,

N pin=1)="F _ _rp(n—1)\n
lollzs = o]z <27( ) I 1oswlee,

n ;
1<j<n

since p(n—1) = 7 = pn(1 - L ql,) :pn(; — 1y =n.1f ¢ =1, we have in term I
above,p— P —1=p(1-"! - 11)) =0, so that (9.6.1) gives the answer in the case
q=1.

We drop now the non-negativity assumption on v. For >0, and x € C°(R™; [0, 1])
equal to 1 near the support of v, we define the C! function u, by

1 p(n—1)

uc(z) = (v(z)* + )2 " x(x).

We have lim,_,o ||u€||Z:11 = lim0 [ (v(2)* + €%) 2 x(2) n“ide = ||v||,, and cal-
culating
1 p(n—1) —1 p(n—
Vue = (VX) (U2 + 62) 2o + Xp(n2 )(U2 + 62) (271 Y 712UVU7
n

using p(n — 1)/n > 1, we get that

) p(n—1) p(n—1) _y

lim (Vue)(z) = x(z) (@)~ 7 20(2)(Vo)(),

e—0 2n

so that with dominated convergence, we obtain
—1 p(n—1)—n
lim | Vue[ g = 27 Y /|U| T Vol da.
e—0 n
Applying Gagliardo—Nirenberg (9.5.4) to u,. we find

p(nnfl) . . B p(n— 1) p(n—1)—n
[l o = lim [luc] im [|Vuellzr =" 55" [ ol = [Volda.

1
n <
Ln=l = 2/n

If g=1, we have p(n — 1) —n =pn(1 — } —11)) ="' =0,p(n—1) =n and the
previous inequality gives the answer. If ¢ > 1, we have p(n — 1) —n = ’; "’ and

Holder’s inequality implies

p(n—1)

r
on3/2 [l £ 1V 2.

p(n—
ol " <

Since p("n_l) — == =)= p(; — 1) =1, this completes the proof of

Lemma 9.6.1. O
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Proposition 9.6.2. Let p € [1,+0o0] and s € N. We define the Sobolev space
WeP(R™) as the set of functions uw € LP(R™) such that the distribution deriva-
tives 0“u belong to LP(R™) when the multi-index o € N™ is such that || < s. This
space is a Banach space for the norm

||U||Wsm(Rn) = Z ”aau”LP(Rn)-

laf<s

When p = 2, it is a Hilbert space with dot-product

(wv)ws,z(Rn) = Z (8au76°‘v)Lz(Rn).

la|<s

Proof. This set is obviously a vector space. Let (ug)ren be a Cauchy sequence in
W#P(R™). Then, we find u, v, € LP such that limy ux = u, limg 0%ur = v, in the
Banach space LP(R™). Now for ¢ € C°(R™), we have

/vaqﬁdm = lilgn/qbaaukdx = lillqrn(a”‘uk, ¢) = (—1)lel lilgrl<uk76“q§>

= (=1)lel 11}31/ukaa¢dx = (=1)lel /uao‘qbdx = (0%, ¢),

proving v, = 0%u. O

Lemma 9.6.3. Let p € [1,+00) and k € N. Then C®(R") is dense in WkP(R").
More precisely, defining for € > 0, p € C(R™) such that [p(t)dt = 1, x €
C(R™) equal to 1 on a neighborhood of 0, p.(x) = e "p(x/e), xe(x) = x(ex) and

Reu = pe * XU, (9.6.2)
we have lim._,o Rcu = u with convergence in WP (R"™).

Proof. Let u € W"P(R"). The sequence of compactly supported functions (y.u)
converges in LP(R™) towards u. We have also

Reu —u = pe * (Xeu — u) + pe xu—u,

so that [|[Reu — u| pr < ||xct — ullLe + ||pe ¥ — u||L» and the result for k = 0. For
la| < k, we have

O“Reu — 0%u = pe x 0% (xeu) — 0%u = pe * ([0%, xeJu) + pe * (xc0%u) — 0%u,

entailing

al
0% R = %ull o < IR = 0ull o+ 37 e+ (09)c0 Pl
B<a 7T
[8]>1

which implies convergence in W*»(R") of R.u. O
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Theorem 9.6.4. Let n > 2 be an integer and let p,q € [1,+00) such that 11) = }L+ ;.
Then we have the continuous embedding

WhP(R™) < LYR") = WO4(R"),

and there exists C(p,n) > 0 such that for all w € WHP(R™),

[ullLa@eny < C(p,n)||Vull Lo @n).- (9.6.3)
Remark 9.6.5. Note that when p ranges in the interval [1,n), we have ¢ = n"fp
ranging in [ ", +00). We shall use the notation
* np .
p*(n) = for the Sobolev conjugate exponent. (9.6.4)
n—p

We may note here that in the limiting case p = n,q = +00, the above inclusion
does not hold for n > 2 (however Remark 9.6.6 shows that it is true for n = 1).
Let 8 € (},1) and w(z) = x()(In |z])* =7 /(1 — B), where x € C2°(R") is equal to
1 on B(0,1/4) and is supported in B(0,1/2). We have

(Vo)) = (nfol)PJa] ™

1/2
= |Vw||}. < C+ C’/ e In | TPdr = C 4
0

x(x) + CF(R™)

o 4R

< )
, R|mRen =%

since nf > 1. The function w is also in L™(R™) since
v +oo (1 RY(1-B)ng
[w[[Z~ < 01/ | A gy = 01/ (In R) . R < 4oo.
0 9 Rn

However w does not belong to L™ since 5 < 1.

Remark 9.6.6. In the case n = 1, we have then p = 1,q¢ = +o0 and it is indeed
true that WHH(R) < L*°(R). Let u € WH1(R). In the proof of Theorem 9.5.4, we
have shown the density of CL(R) in WH1(R): let (¢x) be a sequence of functions
of C}(R) converging in W11 (R). We have

u(r) = u(z) — dr(x) + /j P (t)dt = u(@)] < |u(z) = ¢r (@) + Skl @),

and thus |u(z)| < |u(z) — ¢r(2)| + [|¢), — vl w) + [[W|lL1@). We may find a
subsequence of (¢y) converging almost everywhere to u so that we have a.e.,

(@) < W'l @ = u € L¥R), [lullzem < lu'ller @)

Proof of Theorem 9.6.4. Let v € WYP(R"). Then from Lemma 9.6.3, we have
lime Reu = u in WHP(R™). Moreover from Lemma 9.6.1, we find that

|Reul|Lamny < C(p,n)||V Rl Lomn).
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This inequality proves that (R.u) is a Cauchy sequence in L4(R™), thus converging
towards some v € LI(R™). Since (R.u) converges towards u in WP (R"), we find
for ¢ € CZ(R™),

(v,¢) = lizn/(Reu)qbdx =(u,¢) = v=u, u€ LYR").

Passing to the limit with respect to € in the inequality above gives (9.6.3). 0

Theorem 9.6.7. Let 0 <1 < k be integers, and let 1 < p < g < 400 be real numbers
such that
k=1 1 1 & n . n
= - . Then WHP(R™) — WH9(R™).
n p q
Proof. If n = 1, we should have p = 1,q = 400,k = [ + 1, and we have already
seen that WHH(R) — W9%(R), with

1 / / 1
L )
2||u|| 1 for u,u’ € L

1
— for I € Nand ), vV € LY(R), |u| L~ < 0 w11,

ufl e <

which implies for [ € N, WtLH(R) < WH(R). We assume now n > 2 and we
note that Theorem 9.6.4 tackles the case k = 1,1 = 0 with the estimate

1 1
VU c Wl’p(Rn)7 ||u||Lq(]Rn) S C’(p7 n)||Vu||Lp(Rn)7 P — q =
We note that this implies

1 1
Vu e WHEPR™), [V pa@ny < C(p,n) [V | Lo, p g n

which deals with the case k =+ 1. Let us assume that for k —1 = v > 1, we have
proven

1 1
Yu e WHIR), [Vl € OOVl . -

This implies that for
1 1 v+1 1 1 1 v

)

Pr+1 qu+1 n ' Pr+1 qu+1 n
Yu € WY HHLPrs (R™), ||Vl+1u||qu(Rn) < C(py+1, n)||Vl+1+”u||pr+1(Rn),

with ! — 1 =v g = "+ Byt we have
Pr+1 qu n n+qu1

1 1 1
vl r n < C vy Vl-‘rl v nY, — = 5
IVl < Clan, MVl @, ==



9.7. Notes 399

so that i =, 1“ + }L — 71” i.e., r = q,4+1. We have thus proven by induction on

v that
v+lpmn l I+v 1 1 v
Yue W ’ (R ), ||V u||Lq(Rn) < Cj(p7 n)||V u||Lp(Rn), » — q = n’
proving the sought result. O
Remark 9.6.8. We have proven above that
WPEP(R™) — WHI(R™), for = -, 1<p<g<+oo.
n P q

Note that in this formula, we have k& > [ but p < ¢ so that the functions in Wk»
have more derivatives but less Lebesgue regularity than the functions in Whe.
This means that we can somehow trade some regularity in terms of derivatives
(first index k > 1) to buy some L? regularity according to the fixed exchange rate
given by k;l = 117 — 1. We see also that Lebesgue regularity is a non-convertible
currency which cannot buy a derivative regularity.

9.7 Notes
A more general definition of Sobolev spaces WP (R"™) for p € (1,+00) and s € R is
WP(R™) = {u € &' (R"), (D;)*u € LP(R")}, (9.7.1)

with (ﬂu = (&)%0(€), (€) = (1 +|¢]?)"/2, which makes sense since (£)® belongs
to the space ) (R™) of multipliers of .”/(R™) (see Definition 8.1.21). The general
study of these spaces is not much more difficult than what we have done above
for s € N, but a simple exposition would require some basic study of the Fourier
multiplier (€)*, i.e., of the operator (D, )®. For instance, we would have to prove
LP boundedness (p € (1,+00)) for the operators D, (D,)~!, and here also a
simplifying point of view would certainly be required to introduce elementary facts
about pseudodifferential operators. We felt that a five-hundred-page book does
not need a hundred more and decided to end the book here. Some information on
the topic of pseudodifferential operators can be found in Chapter 18 in the third
volume of Hormander’s treatise on Linear Partial Differential Operators [32] and
also in the book [41] and the references therein.

The names of mathematicians encountered in this chapter follow.
Arnaud DENJOY (1884-1974) was a French mathematician.
Ralph HENSTOCK (1923-2007) was an English mathematician.

Jaroslav KURZWEIL (born 1926) is a Czech mathematician.

Emilio GAGLIARDO (1930-2008) was an Italian mathematician.
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Ernst LINDELOF (1870-1946) is a Finnish mathematician.

J6zef MARCINKIEWICZ (1910-1940) was a Polish mathematician. He died probably
during the Katyn killings perpetrated by the NKVD (Soviet secret police).

Louis NIRENBERG (born 1925) is a Canadian-born American mathematician.
Oskar PERRON (1880-1975) was a German mathematician.

Lars PHRAGMEN (1863-1937) was a Swedish mathematician.

Olof THORIN (1912-2004) was a Swedish mathematician.

Norbert WIENER (1894-1964) was a prominent American scientist, one of the
founders of modern harmonic analysis and computer science.

9.8 Exercises

Exercise 9.8.1. Let p,q,r € [1,2] such that (6.2.1) holds. Let u € LP(R™),v €
LI(R™). Prove that 4 € L (R"),v € LY (R"™) and that the product Gt belongs to
L™ (R™). Show that

u*xv e L"(R™) and w*v = ad.

Answer. The fact that u x v belongs to L" follows from Young’s inequality and
we have & € LP ;v € L? from the Hausdorff-Young Theorem. This implies from
Holder’s inequality that the product 4t belongs to L™ since

[ ([ |a“"d5>l/s (/ @|s”"d§)1/8/,

where we may choose
/ 1 / 1 1 /
s=f — :1—T:r'(,— /)zT/:M"'s’:q’.
r p q
The above argument extends when 7’ = +o0o (which implies p’ = ¢’ = 400 so that
p=gq=r=1and 4,0 belong to L°). We have thus

||m||u’(mn) < ||ﬂ||LP’(]R")||6HLQ’(R") < llullze@n) [Vl Lagn).- (9.8.1)

To get that w+v = 4, it is enough to prove it for u,v in the Schwartz space
since then we shall obtain with ¢, ¥ € .#(R™) such that limy ¢ = w in LP,
limg ¢, = v in L9, thanks to (9.8.1),

A A . 1 N . - —
u? = lim @ lim ¢; = lim @y * Y = u * 0.
k l k
VR X ) ~ -
lirnit/ limit/ lirnit/
in LP in L1 in L”

Formula (8.1.12) gives the result.
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Exercise 9.8.2. Show that if T satisfies the assumptions of Theorem 9.2.3 with
r =400 and

tw(t, Tu) <cllullpr,  [[Tullze < coollullze,

then for 1 < p < +o00, we have

1

1+
p P
ITulr < el ul o

Answer. We have only to revisit the proof of Theorem 9.2.3 while paying more
attention to the choice of the various constants. We write for u € L' + L, ¢t > 0,
> Coo,

U= Ul fju)>t/a) +UL{jul<t/a); (9.8.2)
~ ~~ - ~ ~ 7

and this gives

(Tu)@)] < [(Tun)(@)| + [(Tuz)(@)] < |(Ter) @) + ol < [(Tur)(e)] +

so that we find the inclusion

(#) {,[(Tu)(@)] >t} C {z, |(Tu)(2)] > (1 = coa™)}.

The weak-type (1,1) assumption reads tw(t, Tv) < c1||v]/z1 so that

b w(t(l = cooa™), Tuy) < cl / uldz.
¢) ( hTu) < t(1 - coc™?) |u|>t/o¢‘ |

Applying Formula (9.2.6) to T'u, we find, using Tonelli’s theorem and 1 < p < +00,
“+oo
ITallfy =p [ (e, Tupde
0

+oo
(from () < p/ tp_lw(t(l — cooofl),Tul)dt
0

“+oo
_ C1
(from (b)) §p/ Pt B / |u|dzdt
0 t(1 - coa™t) Ju|>t/a

_ ra / /R - =2 H (afu(z)| — £)|u(x)|dtdz

1—cooa?

_ per R
e L @@ @)

P pey

= (- ewa -l
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We check now for @ = Acoo with A > 1 (assuming of course ¢, > 0),

ozp_lpcl e /\chgl
(1-cooa H(p-1) —ra A—1"

We have proven that for any A > 1,

A ,
sup || Tulz» < (per)'/? v,
lull o =1 (A—1)t/e

so that choosing A = p/(p — 1) gives the sought answer.

Exercise 9.8.3. Let f : R" — C be an L]
function (see Definition 9.3.1).

ive function. Prove that My is a measurable

Answer. For each ¢t > 0 the function R™ x R™ 5 (z,z) — f(z + tz) is measurable
(from Theorem 1.2.7) and Proposition 4.1.3 implies that

oo Bl [ 1wy = B [ If )

B(z,t)

is measurable. Proposition 1.3.1 proves that

My(x) = sup - |f(z +t2)|dz
teQy JBn

is measurable. Let € > 0 be given. Let us consider £ > 0 and 0 < s € Q such that
t < s <t(l+e€); we have

1 —
Wl = oy [ Wy < Q@) < (015 0" My ),
tn‘Bn‘ B(z,t) tn|Bn| (z,s) S !
which implies Mf(z) < (1+ e)"va (x). Since va (x) < My(z), we find that for
any € > 0, Ms(z) < (1+€)"My(z) < (14 €)"M;(z), proving that My is equal
to the measurable My (this works in particular when Ms(x) = +00).

Exercise 9.8.4. Show that Theorem 9.4.1 holds for f € Li, () where ) is an open
subset of R™.

Answer. Using Exercise 2.8.10, we find a sequence (Kj);>1 of compact subsets
of © such that K; C K41 and Q = Uj>1 K;; Exercise 2.8.7 provides a function

¢; € C®(K;41) equal to 1 on K. We may now consider the L*(R") function ¢; f
and apply Theorem 9.4.1: we ﬁnd a measurable set L; such that A, (L§) = 0 so
that

Vr € Ly, }I_I}})]é )|‘Pj(y) y) = ¢;(2)f(x)|dy = 0.
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In particular, for j > 2 and x € K;_1 N L;, we have z € f(j so that B(z,r) C K;
for » > 0 small enough and this gives Vo € K;_1 N Ly,

0=tim{ o) f(y) — o3(2)f(x)|dy = lim 7@ o = wlas

r—0 B(ZE,T) r—0

As a result the conclusion holds whenever © € L = U;j>2(K;—1 N L;) which is a
measurable subset of 2. On the other hand we have

L°NQ=0n [(K{_  ULS) CUj»2L5 U (2N My»2K5 ),
i>2 ~ ~ -

=0
so that A, (L°NQ) = 0.

Exercise 9.8.5. Let F' be defined on R by F(0) = 0 and for x # 0,F(x) =

z? sin(z72).

(1) Prove that F is differentiable everywhere and calculate its derivative F’.

(2) Prove that F’ is not locally integrable.
(3) Prove that the weak derivative of F' is not a Radon measure.

Answer. (1) Differentiability outside 0 is obvious with

r#0, F'(r)=2zrsin(z"?) - 22 'cos(z™?), F'(0) = lim zsin(z~?) = 0.

z—0
We note in particular that F’ is not continuous since F”( \/21“) = —2v/2kr for
k € N*.

(2) Since 2z sin(z~?) is locally bounded, we have to prove that z—! cos(z~?) is
not locally integrable:

! N 1 [t dt
/ |cos(z™%)|z™ dx = 2/ | cost| ;= +0o  (see Exercise 2.8.20).
0 1

(3) The weak derivative f of F' is defined as a linear form on C2°(R) functions
(or as a tempered distribution, cf. Chapter 8 with Definition 8.1.8), with

(F'.) = = [ Pla)y (@),
Let us assume that ¢ is supported in (0, +00): we have then
(F' @) = /(295 sin(z7?) — 227" cos(z7?)) p(z)dx.
We choose now ¢y, € C°((ag, by); [0, 1]) with k € N*,

ar = (27rk:—|— 2)71/27 b, = (27rk:— 2)71/2
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so that z € (ag,by) => 272 € (2nk — 7,27k + 7) = cos(z72) € (27V/2,1]. As a
result, we have

bi 1/2 bk
/ 7V cos(z™?) oy (x)da > 271/2 (27rk - Z) / o (z)d.

k k

We may also assume that ¢y, equals 1 on [(2rk+ §)~'/2, (2rk— §)~'/2], implying

7T)1/2 w1

T\ —3/2
> cok 1.
4 32(27rk+6) > cok

by
/ 7V cos(z™?)pp(x)dx > 271/? (27rk -
ak
Since the intervals (ag, bi) are pairwise disjoint, the function

Oy(z)= Y onlx)

1<k<N

is such that ®n € C°((0, 4+00); [0, 1]) and

1 1
/
< — —00.
(F',®n) < —co 1<Ek<N i Jr/o 2xdx N?+ 00

Exercise 9.8.6. Let p € C.(R";Ry) such that [ p(z)dz = 1. We define for e > 0,
pe(x) = e "p(x/€) and the operator R, on L (R™) by

loc

(Row)(z) = / pel — y)u(y)dy. (9.8.3)

(1) Let 1 < p < 400. Prove that if u belongs to LP(R™), lime o, Reu = u, with
LP convergence. Moreover prove that for almost all x, lim o, (Reu)(xz) =
u(x).

(2) Letu € L*(R™). Prove that for almost all x, lim_,o, (Reu)(x) = u(x). Prove
that ||Reul| e < [uf|z~.

Answer. (1) The proof of Theorem 3.4.3 answers the very first statement. Let us
answer the two questions about a.e. convergence assuming only u € L] : we have

(Reu)(z) — u(z) = [(u(z — ez) — u(x))p(z)dz so that for N > 0, assuming as we
may that supp p C B”,

L0 (2/N)|(Rew) (&) — u(a)] < Lo (2/N) | ol = / fu(w — e2) — u(e)|d=.

zZEsupp p

We define U(y) = 1(14+np~(y)u(y) and we have for e <1,
Lgn (2/N)|(Reu)(x) — u(@)| < 1gn (x/N)|pl £ /1Bn(3)|U($ —€z) = U(x)|dz.

From the Lebesgue differentiation theorem applied to the L'(R™) function U, we
have for almost every x, lim¢_,o [ 1~ (2)|U(z—€z)—U(z)|dz = 0. For each positive
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integer N, we find a set Ly such that |L| = 0 and
Yz € NB" N Ly, hrr(l)(REu)(x) = u(x).
€E—
Since {UNzl (NIB"HLN)}C =NN>1 ((NIB”)CULR,) C Un>1LS;, which has measure

0, this completes the proof of a.e. convergence.
(2) The inequality ||Reu||zoe < ||u||r~ follows trivially from the assumptions on p.

Exercise 9.8.7. Let b € L'(R"), and v € L>=(R"). Prove that
hm /|b )|v( —v(z)|dz = 0.

Answer. Let R, k be positive constants. We define
Apr.(t) ={z,|z| < R and |v(z +t) — v(x)| > K}.
We have for t € R™, for [t| < R,
An({z, |z] < R, |z + >R}):/ H(|lz +t| — R)dz
lz|<R

=R" | H(Ry+t|— R)dy = R"/ H(ly +tR™| — 1)dy
B B

<R" [ H(yl+[tIR™" = )dy = R*n7HS" (1= (1 = [t|R71)")
B
< RS nlt| R = RS,

We have also the estimates

1
An(AR,x (1)) < / [o(z + ) — v(@)|de + An({z, [2] < R, |z + 1] > R})
|z|<R,|z+t|<R

1 _ _
< llmwor = vrlles + RS,

with vg(z) = v(z)1(|z] £ R) which is an L'(R™) function. This implies that for
all k >0, R > 0 we have limy_,0 A, (Ag x(t)) = 0 and thus

lir?jélp/ |b(x)||v(x +t) — v(z)|dx
= lim sup{/lv(x+t)|b(x)|v(x +1t) —v(x)|dr + /lv(w+t)b(m)|v(x +1) — v(x)|dm}

t—0 —v(x)|<k —v(z)|>K

< Aol e+ 2[|v] 1imsup/ b(x)|dz + 2[|v]| L~ / |b(x)|dx
t—0 AR, . (t) |z|>R

— el + 2ol / Ib(a)|dz.

|z|>R

We infer the result from this inequality, letting R — 400 and k£ — 0.
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Exercise 9.8.8. For p € [1,2], t = 1/p, draw the curve [1/2,1] — t7t(1 — t)!=t =
p /Pp'=/P" related to the best constant in the Hausdorff-Young inequality (9.1.22).
(pt/rp =17 )2,

Answer. We draw (see Figure 9.1) the graph of the function
[1/2,1] 2t = t7H(1 — ),

with ¢ standing for 1/p.

1.0

10.863

0.2

1 I I I I 1 I I I I 1 g 0|.83|9 1

0.6 0.7 0.8 0.9 1.0

Figure 9.1: FuncTion ¢t~5(1 — ¢)* 7%t € [1/2,1].
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Appendix

10.1 Set theory, cardinals, ordinals

Set theory

We shall assume that the reader is familiar with elementary set theory (e.g., def-
initions of union, intersection, products, of family of sets) and knows a little bit
about Russell’s paradox (see, e.g., Exercise 1.9.2). A simple introduction to the
subject would be to solve the seven first exercises in Section 1.9. The notions of
Cartesian product!, relations, equivalence relations, partitions, quotient set, func-
tions, images and inverse images, as well as injectivity, surjectivity, bijectivity,
composition of functions shall also be assumed to be familiar to the reader.

Definition 10.1.1. Let E be a set and < be a binary relation on E.

(1) The relation < is said to be an order relation whenever it is reflexive (r < )
antisymmetric (x < y,y <z = y = z) and transitive (z < y,y <z =2 <

(2) The order relation is said to be total whenever for any (x,y) € E?, either
z<yory<uzx.

(3) An ordered set (F, <) is said to be well ordered whenever every non-empty
subset of E has a smallest element, i.e.,

VA non-empty C F,da € A, Ve € Aja <.

Note that the smallest element of a non-empty subset of E is unique, when
it exists.

1The Cartesian product HiGI X; of a family of sets (X;);cr is defined as the set of mappings x
from I to U;erX; such that, for all 4 € I, z(i) € X;. A particular case of interest occurs when
Vi € I, X; = X; then we note [[;c; Xi = X7 which is the set of mappings from I to X. A more
academic remark is concerned with the case when I = (): in that case, Hie@) X, is not empty
since it has a single element which is the mapping whose graph is the empty set.

N. Lerner, 4 Course on Integration Theory: including more than 150 exercises with detailed answers, 407
DOI 10.1007/978-3-0348-0694-7 10, © Springer Basel 2014
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Definition 10.1.2. Let (F, <) be an ordered set.

(1) An element a € F is said to be mazimal if {x € E,z > a} = 0.

(2) An element a € E is said to be the smallest (resp. largest) element in E if
forallz € E, x > a (resp. x < a). If a smallest (resp. largest) element exists,
then it is unique.

(3) Let X be a subset of E. An upper bound of X is an element M € E such that
X C (=M ={z e E,x < M}. A lower bound of X is an element m € E
such that X C [m,+) ={z € E,m < z}.

(4) Let X be a subset of E. When the set of upper bounds (resp. lower bounds)
is non-empty and has a smallest element b, we call that element the least
upper bound or supremum (resp. greatest lower bound or infimum).

We state below the Aziom of Choice, Zorn’s lemma and Zermelo’s theo-
rem, three statements that can be proven to be equivalent. The Axiom of Choice
plays an important role in measure theory, since it is a key argument to find
non-measurable sets (see Exercise 2.8.19).

Axiom of choice.? Let I be a set and let (4;)ier be a family of non-empty sets.

Then the Cartesian product [[,.; A; is non-empty.

Zorn’s lemma. Let (X, <) be a non-empty inductive ordered set: if Y is a totally

ordered subset of X, there exists x € X which is an upper bound for Y. Then
there exists a maximal element in X.

Zermelo’s theorem.On any set X, one can define an order relation < which makes
(X, <) a well-ordered set.

Obviously the set N of the natural integers with the usual order is indeed well
ordered, and this is the basis for the familiar induction reasoning; considering a
sequence (2, )nen of statements such that &2 is true and Vn € N, &, — &, 11
we define

S ={neN, 2, is not true}.

If S is not empty, then it has a smallest element sg and necessarily sg > 0 since
Py is true; as a consequence sgp — 1 € §¢, so that Hs,_; is true, implying that
P, 18 true, contradicting sop € S. As a result, S should be empty and &, is
true for all n € N. In some sense, Zorn’s lemma could be used in a similar way
to handle a non-countable family of statements satisfying properties analogous to
those of the countable family mentioned above (see Theorem 10.1.19). Of course,
it is not difficult to equip a countable set X with an order relation which makes
it a well-ordered set: it suffices to use the bijection with a subset of N. However,
the set Q of rational numbers (which is countable), with the standard order is
not a well-ordered set; consider for instance T = {z € Q,,2% > 2}, a set which

2This Axiom has not much to do with choosing an element in a non-empty set: the real point
at stake is the case where the set I is uncountable and it is in fact in that framework that it is
used to build non-measurable sets.
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is bounded from below without a smallest element (exercise). This means that to
construct an order relation on Q which makes it a well-ordered set, one has to use
a different order than the classical one and, for instance, one may use an explicit
bijection between Q and N. The real difficulties begin when you want to construct
an order relation on R which makes it a well-ordered set; naturally, one cannot use
the standard order, e.g., since ]0, 1] does not have a smallest element, although it
has the greatest lower bound 0. So the construction of that order relation has no
relationship with the standard order on the real line and is in fact a result of set
theory, dealing with order relations on &?(N), the set of subsets of N.

Cardinals

A non-empty finite set is defined as a set X such that there exists N € N* and a
bijection from {1,..., N} onto X. The empty set is also finite. If N1, Ny € N* are
such that there exists a bijection from {1,..., N7} onto {1,..., Na}, this implies
N; = Ny. We can thus define the Cardinal (noted card X) of a finite set X as its
number of elements and card () = 0.

Lemma 10.1.3. Let X be a set. The following properties are equivalent.

(i) X is infinite, i.e., X is not a finite set.
(ii) There exists a proper subset Y of X and a bijection from X onto Y.

(iil) There exists an injection ¢ : X — X such that ¢(X) is a proper subset
of X.

Proof. Let us assume that X is finite: then if Y is a proper subset of X, its cardinal
is strictly smaller than card X, and there cannot exist a bijection from X onto Y:
this proves (ii)==(i).

Let us assume now that X is infinite: then X cannot be empty. Let 1 € X
and let us assume that for every N € N* there exists a subset {z1,...,2,} C X
with IV elements: this is true for n = 1 and assuming this for some n > 1, the set
{z1,...,2,} must be proper in X (otherwise X would be finite) and thus there
exists ¢,41 € X such that card{z1,...,Zn, Tnt1} = n + 1. As a result, we find a
subset N C X such that there is a bijection ¢ from N onto N. We consider now
the mapping ® : X — N°U ¢(2N) defined by

O(x) =z, if x € N¢,
O(x) = ¢(2¢71(x)), ifz € N.
The mapping ® is bijective with inverse mapping ¥,

U(z) = x, if x € N¢,
(3071 (x)), if z € ¢(2N).



410 Chapter 10. Appendix

Indeed, we have for x € N¢, (Do U)(x) =2 = (¥ o ®)(x). For z € N, we have
(¥ 0 ®)a) = W(9(207' @) = 007 (6267 (@) ) = .

€¢(2N)

and for z € ¢(2N), = ¢(2n),

(o W)(x) = @(o(

partition of N

P
Now the set Y = N°¢U ¢(2N) is a proper subset of X = N¢U gS(QN) U ¢(2N + 1.5
and @ is a bijection from X onto Y: this proves (i)==(ii). Since the equivalence
between (ii) and (iii) is obvious, the proof of Lemma 10.1.3 is complete. O

Remark 10.1.4. We get immediately that a subset of a finite set is finite and a
superset of an infinite set is infinite.

Definition 10.1.5. Let X, Y be two sets: they are said to be equipotent whenever
there exists a bijective mapping ¢ : X — Y.

Remark 10.1.6. We note that a set X is equipotent to itself and for X,Y, Z sets
such that X is equipotent to Y and Y is equipotent to Z, we find that X is
also equipotent to Z; also X equipotent to Y is equivalent to Y equipotent to
X. We refrain to say that equipotence is an equivalence relation since there is
not a set of all sets. When two sets X,Y are equipotent, we shall write symbol-
ically card X = cardY’, without defining each side of the equality (note that it
nevertheless consistent with the case where X is finite).

Remark 10.1.7. We have defined on page 1 the notion of countable set: we have
also proven there that a countable set is either finite or equipotent to N and that
a countable union of countable sets is countable. A byproduct of the proof of
Lemma 10.1.3 is that every infinite set contains a set equipotent to N. We shall
note Ny = card N (see Exercise 1.9.3).

Theorem 10.1.8. We have
card(N x N) = cardN = cardQ, cardR = card P(N).

The set of real numbers is not countable.

Proof. The first equality is proven in Exercise 1.9.1, the second on page 2, the
third equality and the last assertion in Exercise 1.9.5. 0

Theorem 10.1.9 (Schréder—Bernstein Theorem). Let X,Y be two sets and let
f: X —Y,g:Y — X be injective mappings. Then there exists a bijective
mapping from X onto Y, i.e., card X = cardY.
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Proof. We set Ag = X\g(Y), and for n > 0, A1 = g(f(4,)). We define for
z e X,

f(x), ifx € Un>0dn,
(x) =97, -
g H(x) otherwise,

where g~! is the inverse mapping of the bijection g : Y — g(Y). Note that it is

consistent since if # & U,>0A4,, then z € g(Y). The mapping @ is one-to-one: let
us assume that ®(z') = ®(z”). Then if 2/, 2" € Up>0A,, we find f(z') = f(a”)
and thus from the injectivity of f, we get 2’ = 2”. If 2/, 2" & Up>0A,, then we
find g~1(2') = g~ (2”) and since g : Y — g(Y) is bijective, we get 2’ = . Let
us check the case 2’ € Up,>0A4,, 2" & Up>04,: we have then

f@) = g7 (@") = g(f(2") = 2" = 2" € Unz0g(f(An)) = UnzoAn+1,

which contradicts the assumption on z”, proving injectivity for ®. Let us show
now that @ is onto: let y € Y. If y belongs to U,>0f(An) = f(Un>04s,), then y =
f(z) = ®(x) for some x € Up>0An. 'y & f(Un>04n), then z = g(y) & Un>04n:
otherwise

y=9""(9(y) € Unz09" (A N g(Y)) = Unz09 ' (Ant1 Ng(Y))
= Unzogil(g(f(An)) N g(Y)) \:’, UnZOf(An) = f(UnZOAn)v
injectivity

of g

contradicting the assumption on y. As a result, we have indeed z = ¢g(y) & Un>04,
and y = g~ (x) = ®(x), which ends the proof. O

Definition 10.1.10. Let X,Y be two sets. We shall say that card X < cardY if X
is equipotent to a subset of Y, i.e., if there exists an injection from X into Y.

Remark 10.1.11. It follows from the Schroder—Bernstein theorem that card X <
cardY and cardY < card X imply card X = cardY. On the other hand, it is
obvious that card X < card X and for Z a third set,

card X < cardY and cardY < card Z —> card X < card Z.

Again we shall refrain from claiming that we have found an order relation on
cardinals, since in the first place we have not defined a cardinal and next, because
there is not a set of all sets. We shall say that card X < cardY whenever card X <
cardY and X is not equipotent to Y.

Theorem 10.1.12 (Cantor’s Theorem). Let X be a set and P(X) its powerset. Then
card X < card P(X).

Proof. Cf. Exercise 1.9.2. O
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Let (A;)ier be a family of sets. The disjoint union of this family is
| A = [J(4i x {i}). (10.1.1)
iel il

We note that for " # " in I, we have (A; x {i'}) N (A x {i"}) = 0. Let (A4;)ier
be a family of sets and let (B;);er be a family of sets such that for each i € I, A;

is equipotent to B;. This implies obviously that | |, ; A; is equipotent to | |;; B;,
so that we may define
anrdAi = card(|_| Ai>. (10.1.2)
i€l i€l
Also the Cartesian product [ ], ; 4; is equipotent to [],.; B; so that we may define
as well
HcardA,» = card(H Ai). (10.1.3)
iel i€l

In particular sums and products of cardinals are commutative and associative. We
have seen above Rg + Ng = Ng, NZ = R.

Let X,Y be two sets and let Y be the set of all mappings from X into Y
this notation is justified by the fact that a mapping ¢ from X into Y is (¢(2))zex
where each ¢(z) belongs to Y. Then if X’ is equipotent to X and Y” is equipotent

to Y, we obtain obviously the equipotence of YX with Y’ X" 50 that we may define
(card Y 4X = card(Y™X). (10.1.4)

For instance, we have proven in Exercises 1.9.3, 1.9.5,
204X = card(P(X)), c¢=cardR=2%, Ny<e (10.1.5)

Lemma 10.1.13. Let X be a set and let {w} be a singleton. Then the set X is
infinite if and only if the disjoint union X U {w} is equipotent to X. In other
words, a cardinal number x is infinite if and only if x = x + 1.

Proof. Let X be a finite set: then card X < 1 4 card X. Let X be an infinite set:
then X contains a set equipotent to N, we may assume that it contains N. We
have then

X =NU(X\N) equipotent to {w}UN U(X\N)=XU{w},
- -
equipo?e/nt to N
proving card X =1 + card X. g

Remark 10.1.14. Let X,Y,Z be three sets. Then X x (Y U Z) is equipotent to
(X XY)U (X x Z) so that with = card X,y = cardY, z = card Z,

z(y+2) =zy + xz.
Note also that § x X =0, i.e., 0z = 0.



10.1. Set theory, cardinals, ordinals 413

Lemma 10.1.15. Let X,Y, Z be three sets.
(1) The set ZXYY s equipotent to ZX x ZY, so that, with v = card X,y =
cardY,z = card Z, z*TY = 2%2Y.
(2) The set (ZY)X is equipotent to ZY*X  i.e., (2¥)% = 2¥%.
(3) The set (X x Y)Z is equipotent to the set X% x Y% i.e., (vy)* = x*y*.
Proof. We consider the mappings
V. ZXWw . 72X xzY r: Z2Xxz¥ — ZzXW
(b = (QZS|X7¢|Y>7 (fvg> — F(va)

where, considering X, Y as disjoint sets with union X LY,
forz € X, T(f.9)(x)=f(z), foryeY, I(f.9)(y)=gy)
We have 'o U =Idzxuy and Pol' =1Idzxy zv: for
o: XUY = Z,

we have (T o U)(¢) = I'((¢)x,¢py)) so that for z € X, (I o ¥)(¢)(z) = ¢(x),
for y EhY (ToW)(¢)(y) = ¢(y), i.e.,, (ToW)(¢p) =¢. Alsofor f: X - Z,g:Y —
Z, we have

(ToT)(f,9) =V(I(f,9) =¥(fUg), with fUg:XUY —Z
defined by (f Ug)(z) = f(z) forz € X, (fUg)(y) = g(y) for y € Y and thus

(\II OF)(f,g) = ((ng)le(fl—lg>|Y) = (f7g)7

proving (1).
We consider the mappings

Q. 20X (z¥)* 0: (2V)° — 72X
¢ = (X3z0¢(,2) fo=e),
with O(f)(y,z) = f(z)(y). We have

y,x) = QP)()(y) = ¢(y, x), (20O)(f)(x)(y) = O(f)(y,2) = f(=)(y),
proving (2).

We consider the mappings
E: (X xY)? — XZxYy? A XZxY?Z — (XxY)?
¢ = E(¢) (fi9) = Af9)
with E(¢) = (2 = Txd(2), 2 = Iy é(2)),  A(f,9)(2) = (f(2), 9(2)). We have
(Ao E)(9)(2) = (Mx¢(2), Iy ¢(2)) = (=),
(EoA)(f.9) = (2 = IxA(f, 9)(2), 2 = Ty A(f, 9)(2))
= (2= f(2), 2 g(2)) = (f,9),

proving (3). O



414 Chapter 10. Appendix

Remark 10.1.16. We note also that RZ = Xg (N? is equipotent to N) and 2Ry = X
and applying the previous lemma

¢ <4 RNy <2 =228 =Nl — 9o — ¢ — ¢ — ¢ 4 Ny = 2c.

Moreover, we have
=, (10.1.6)

since ¢? = 2802%0 = 92R0 — 9%o — ¢ We note also that
¢ = (2N0>c _ 2N0c =92t c,
since ¢ < Roe < ¢? = ¢ gives Rgc = ¢. We have proven
card(R®) = card(P(R)) > card R. (10.1.7)

On the other hand, considering C(R;R) (set of real-valued continuous functions),
we see that each ¢ € C(R;R) is determined by its restriction to @, so that

card(C(R; R)) < card(RQ) — No _ 9R5 _oRo _

On the other hand, C(R;R) contains the constant functions whose cardinality is
¢. We have proven that
card(C(R;R)) = cardR. (10.1.8)

The continuum hypothesis (CH) asserts that there is no subset of the real line
which is not countable and not equipotent to R, i.e., there is no cardinal number
x such that Ry < = < ¢. Since ¢ = 2%0 this statement has a natural generalization.
The general continuum hypothesis (GCH) asserts that for any non-finite cardinal
a there is no cardinal number x such that a < x < 2°. The CH problem was stated
in 1900 by David HILBERT (1862-1943) as the first one in his list of 23 important
mathematical questions.

In 1940, Kurt GODEL (1906-1978) proved that (CH) cannot be disproved
from the standard axioms of set theory (Zermelo—Fraenkel set theory: ZF), even
adding the axiom of choice (C). In other words there is no proof of the negation of
CH in ZFC. Paul COHEN (1934-2007) showed in 1963 that (CH) cannot be proven
in ZFC. Both results assume that ZFC is non-contradictory.

Let us give a couple of examples of applications of Zorn’s lemma 10.1 to Set
Theory.

Lemma 10.1.17. Let X,Y be two sets. Then card X < cardY or cardY < card X.

Proof. Let us consider the set .¢ = {(X;, ¢;) }ier where ¢; : X; — Y is injective
and X; C X. It is a non-empty set since the mapping ¢ : ) — Y with graph () x ()
is injective. We equip it with the order relation

(X1,01) < (X2,¢2) means X; C X3 and é2)x, = ¢1.
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If {(Xi, ¢i)}ies is a totally ordered subset of .#, we consider A = U;c;X; and ¢
defined on X; by ¢;: if  belongs to X;/, X;», we have X; C X;» or X;» C Xy
and in both cases ¢, (x) = ¢, (x), proving the consistency of the definition of ¢,
as well as its injectivity. According to Zorn’s lemma, the set .# must contain a
maximal element (X, o). If X = X, we have found an injection from X into Y.
If there is some zo € X¢, then we claim that ¢ : X — Y is bijective: we
need only to prove that it is onto. If ¢ were not onto, we could find some yg € Y,
such that ¢ : X — Y\{yo} and thus the extension of ¢ to X U {zo} defined
by ¢(z0) = yo would be an injection from X U {zo} into Y, contradicting the
maximality of (X ,®). Thus, we have found an injection of ¥ into X, completing
the proof of the lemma. O

Lemma 10.1.18. Let X,Y be two sets, Y # (). The inequality card X > cardY is
equivalent to the existence of a surjective map p: X — Y.

Proof. Let us assume that such a surjective map exists. Then the set

1> |

yey

is the product of non-empty sets so that thanks to the Axiom of Choice 10.1, the
product is non-empty: Yy € Y,3s(y) € X such that p(s(y)) = y. The mapping
s:Y — X is injective since p o s is injective. Conversely if card Y < card X, from
Definition 10.1.10, we can find an injection from Y onto X, i.e., a subset Z of X
which is equipotent to Y (¢ : Z — Y bijective): then we have X = Z U (X\Z2)
and we can define with yy € Y (assumed to be non-empty), for z € X,

_JY(x) ifreZ,
p(x) = {yo ifa & Z.

Since ¥ is onto, p is onto. O

Theorem 10.1.19 (Principle of Transfinite Induction). Let (X, <) be a well-ordered
set and let us assume that for each x € X, P(x) is a statement. We assume that
forallx € X,

P(y) holds for all y < v = P(x).

Then P(x) is true for all v € X.

Proof. Let S = {z € X, P(z) does not hold}. If S is not empty, it has a small-
est element a. Now for all # < a, P(x) holds true and thus P(a) holds true,
contradicting a € S. Consequently, S is empty.

N.B. Note that the assumption implies that P(z¢) holds true for the smallest
element g of X. Il

Theorem 10.1.20. Let X be an infinite set. Then X X X is equipotent to X : for

any infinite cardinal z, > = x.
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Proof. We have seen in the proof of Lemma 10.1.3 that X contains a set X
equipotent to N and thus we can find a bijection vy : Xo — X x Xg. We consider
now

F={1Y:Y =Y xY, bijective, Y infinite C X }.

The family Z is non-empty and ordered by (11,Y1) < (¢2,Y2) meaning

YiCYs, oy, =¢1.

The family % is inductive for that order: let (1;, Y;);cr be a totally ordered subset
of Z. Setting Y = U;c1Y;, we define for y € Y, ¥(y) = ¢ (y) if y € Y;: note that
this definition is consistent since if y € ¥; MY}, then we have Y; C Y; (or ¥; D Y))
and the restriction of 9; to Y; equals ¢; (or the same property exchanging i with
7). The mapping ¢ : Y — Y XY is injective since for ¢/, y"” € Y, we find ¢ € I such
that y',y” € Y; and thus ¢(y’) = ¢(y") means ¢;(y’) = ¢;(y”) implying y = y".
It is also onto since for (y',y"”) € Y x Y, we find ¢ € I such that y',y"” € Y; and
thus there exists y € Y; such that ¥ (y) = ¥i(y) = v/, y").

Applying Zorn’s Lemma 10.1, we find a maximal element (¢,Y) in .%. We
have in particular @ = a? with a = cardY and a is an infinite cardinal. If a =
card X, we are done. If a < card X, we find that card(Y¢) > a (otherwise card X =
cardY +card V¢ < 2a < a? = q, contradicting the assumption). As a consequence
we may find a subset Z of Y © equipotent to Y. We note that a < 2a2 =2a < a? =a
and we consider

YUZ)xYUZ) =Y xY)U(Y x2)U(ZxY)U(Z x Z),

~ o
with cardinal 3a2=a

so that, using a bijective map 0 : Z — (Y x Z) U(Z xY)U(Z x Z) we may define
forxeYUZ,

~ Y(x), fx ey,

da) = 00
0(z), fz € Z.

The mapping d is bijective from Y UZ onto (Y UZ)? and extends v, contradicting

the maximality property. The proof of Theorem 10.1.20 is complete. g

Kurt Godel proved in 1938 that the Axiom of Choice is consistent with (ZF),
i.e., that, if (ZF) is consistent®, then (ZFC) is also consistent. Paul Cohen proved
in 1963 that the Axiom of choice is independent of (ZF), i.e., is not a consequence
of the axioms of (ZF).

3A consistent theory is a theory that does not contain a contradiction, i.e., does not contain a
proof of a statement S and a proof of its negation not S.
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Ordinals
Introduction

We have seen in Definition 10.1.1(3) the notion of well-ordered set. Let us give a
couple of examples. Of course, N equipped with the usual order is a well-ordered
set as well as any finite ordered set. Z with the standard order is not a well-ordered
set since it does not have a smallest element, neither is (0, 1] with the order induced
by R (no smallest element). Let us now consider

1
E{l } UN*, (10.1.9)
n>1

n

with the order induced by the standard order on Q. Then, although F is equipotent
to N, it is not isomorphic to N as an ordered set: before giving a proof of this, let
us give a definition.

Definition 10.1.21. Let (X, <x), (Y, <y) be well-ordered sets. These two ordered
sets are said to be isomorphic if there exists a bijective mapping ¢ : X — Y that
is increasing, i.e., such that 1 <x 2 in X implies ¢(x1) <y @(z2) in Y. Note
that a mapping ¢ as above is such that ¢! is also increasing®. We shall say then
that

ord X = ordY (the ordinal of X equals the ordinal of V), (10.1.10)

or that the ordered sets X,Y are order-isomorphic.

N.B. As for the notion of cardinal, note that we have not defined the ordinal of a
well-ordered set, but only the equality between ordinals, meaning isomorphism in
the natural sense for ordered sets.

Lemma 10.1.22. Let (A, <,4), (B, <p) be two disjoint well-ordered sets. We define
X = AU B and the following relation on X :

either x1,19 € A, 1 <4 X2
x1 <x Tz means or x1,T2 € B, 1 <z T2
or (z1,z2) € A x B.

Then (X,<x) is a well-ordered set

Proof. Let us check first that <y is indeed an order relation on X: it is obviously
reflexive and if z1 <x 22,22 <x 1, either both z1, zs belong to A or both belong
to B and then are equal; the third case (z1,22) € A x B cannot occur since we
would also have (x2,21) € A x B, so that zo € AN B = (). The relation is indeed
antisymmetric. Let us now assume that z1 <y =2, x2 <x x3: if x1, 2 are both in

4Take ¢p(x1) = y1 < y2 = ¢(x2) in Y, then 1 < x2 otherwise z2 < 1 and ¢(x2) < H(x1),
contradicting the assumption.
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A, then either x3 € A and the transitivity follows from the transitivity of <, or
z3 € B and 1 <x x3. If 1, x5 are both in B, then x3 must belong to B so that
x1 < x3. Moreover, if 1 € A, x5 € B, then x3 must belong to B so that 1 <x z3,
concluding the proof of transitivity.

Let C' be a non-empty subset of X: if C' C B, then miny C' = ming C. If
CNA#, then

minC = min(C' N A) = ¢,
X A

since ¢ € C' and if x € C, then either z € Bandc <y zorz € Aand ¢ <, = so
that ¢ <x x. The proof of the lemma is complete. O

Remark 10.1.23. This implies that £ defined by (10.1.9) with the order induced by
the order of R is well ordered. Also we can see that there is no bijective increasing
mapping from N onto E. If such a mapping existed, we would have ¢(n) = 1— n_lH
for all n € N: it is true for n = 0 since ¢(0) should be the minimum of E. Assuming
that it is true up to some N > 0, we see that the minimum of ¢({0, ..., N }¢) should

be ¢(N + 1) and also
- 1
N+2’
which was to be proven. As a result ¢(N) NN* = ()

min(¢({0,...,N})) =1

so that ¢(N +1) =1 —
and ¢ cannot be onto.

Definition 10.1.24. Let (X, <x) be a well-ordered set. A subset S of X is said to
be a segmentof X if s€ Sz e X, e <x s=x € S.

1
N+2°

Obviously X itself, the empty set, any set
So=(—,a)={ze X,z <a}, aclX, (10.1.11)

are segments of X: for the latter, s < a,z < s imply = < a. Moreover if a,b € X,
Sa = Sp implies a = b: otherwise a < b (resp. b < a) and a € S, = S, (resp.
b e S, =Sp), which is impossible.

Proposition 10.1.25. Let (X, <x) be a well-ordered set. Any union or intersection
of segments of X is again a segment of X. A segment of a segment of X is a
segment of X. For each proper segment S of X (a segment # X), there exists
ac X with S =25,.

Proof. We start by the proof of the third statement. If S is a proper segment of
X, 5S¢ is not empty so that we may define a = min S¢. We have S C S,: if z € S
and z > a, then by the segment property, we must have a € S, which is impossible
since a € S°¢. Also we have S, C S:if z < a then x ¢ S° by the minimum property
of a,ie.,xz € S.

For the first statement, let us consider a family (5;);er of segments of X. If
I =0, then U;S; =0 is a segment. If T # (,

seUrS,e<s=djel,se€ S,z <s=x€S; CUS,.
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Moreover to check that NyS; is a segment, we may assume that I # @ (otherwise
NrS; = X), and

seENSj,x<s=Viel,seS,xr<s=Vielxecs,.
For the second statement we consider a segment 3 of a segment of X, which is

either X or (—,a); the first case is trivial, and if ¥ is a segment of (—, a), we find
either ¥ = (—,a) or forsome b < a, X ={r € X,z <aand z < b} = (—,b). O

Ordering of ordinals

Definition 10.1.26. Let (X, <), (Y,<y) be two well-ordered sets. We shall say
that
ord X < ordY

if X is order-isomorphic to a segment of Y. When ord X < ordY and X is not
order-isomorphic to Y, we shall write ord X < ordY.

Lemma 10.1.27. Let (X,<x) be a well-ordered set. The only order-isomorphism
of X onto a segment of X is the identity of X.

Proof. Let us assume that ¢ : X — (—,a) is an order-isomorphism of X onto a
proper segment of X (a € X, see Proposition 10.1.25). We define

() A={re X, ¢(r) <a},
and we note that a € A so that we can define b = min A. We have
(%) P(b) < b= ¢(¢(b)) < ¢(b) = &(b) € 4,

contradicting the fact that b is the smallest element of A. We have proven that
¢ : X — X is an order-isomorphism.

We want now to prove that ¢ is the identity. The set A defined in (b) must
be empty, otherwise as above its smallest element b satisfies (), leading to a
contradiction. As a result, we have for all z € X, x < ¢(x) and applying this
result to ¢!, we find

Vee X, x<o(x)<¢ o) =1 Iie,d=1Id O
Proposition 10.1.28. Let (X, <x), (Y, <y) be well-ordered sets. Then
ord X <ordY and ordY <ord X — ordX =ordY.

Proof. Let ¢ : X — T be an order-isomorphism of X onto a segment T of Y and
let ¢ : Y — S be an order-isomorphism of Y onto a segment S of X. Then

X3z 4(d(x) € (Yo d)(X) =4(T)

is an order-isomorphism and 1(T) is a segment of S, thus from Proposition 10.1.25
is also a segment of X. Applying Lemma 10.1.27 shows that (7)) = X so that
S =X and ord X = ordY. O
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Proposition 10.1.29. Let (X,<x), (Y,<y) be two well-ordered sets. Then either
ord X <ordY or ordY <ord X.

Proof. We define
M={xeX,IyeY, ord(—,z) =ord(—,y)}.

We note that for each z € M, there exists a unique y € Y such that ord (—,z) =
ord (—,y): if we have for y1,y2 € Y (say with yo <y y1)

ord (=, y1) = ord (=, y2)

then (—, y1) is order-isomorphic to its segment (—, y2) and Lemma 10.1.27 implies
y2 = y1. We have thus a mapping ¢ : M — Y defined by

ord (—,z) = ord (—, ¢(x)).

Note that ¢ is injective since if ¢(x1) = @(x2), say with zo <x x1, we find that
(—, 1) is isomorphic to its segment (—, z2), so that Lemma 10.1.27 implies xo =
x1. Moreover ¢ is increasing since if zo <x 1, we must have ¢(z2) <y ¢(z1),
otherwise ¢(x1) <y ¢(z2) with

ord (=, ¢(x2)) = ord (=, z2), ord(—,z1) = ord (—, ¢(z1)),

so that (—,¢(x2)) is isomorphic to a segment of (—, ¢(x1)) which is a proper
segment of (—, ¢(z2)): this is not possible, thanks to Lemma 10.1.27. We find also
that ¢(M) = N is a segment of Y: let

t=¢(s),s € M, ie.,ord(—,s)=ord(—=,d¢(s)),

and let y <, t = ¢(s). Using the isomorphism between (—,s) and (—, #(s)),
we find an isomorphism between (—,y) and (—,z) for some z <x s, proving
y = ¢(x). This implies as well that M is a segment of X.

Suppose now that X is not isomorphic to a segment of Y: then X\M is
not empty (otherwise, we would have an isomorphism ¢ : X — N of X onto a
segment of V). If Y is not isomorphic to a segment of X, then Y\ N is not empty
(otherwise, we would have an isomorphism ¢ : M — Y of a segment of X onto V).
Assuming that neither X is isomorphic to a segment of Y, nor Y is isomorphic to
a segment of X, both X\M,Y\N are non-empty. We define

a =min(X\M), b=min(Y\N).
Then (—,a) is isomorphic to M and (—,b) is isomorphic to N (see Proposition

10.1.25), and since N is isomorphic to M, this implies a € M, contradicting the
assumption. The proof is complete. O
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Remark 10.1.30. Let (X, <x), (Y, <y), (Z,<5) be three well-ordered sets. Then
ord X <ordY and ordY ord”Z = ord X < ord Z.

In fact if ¢ : X — S is an isomorphism onto a segment S of Y and ¢ : Y — T is
an isomorphism onto a segment 1" of Z, we find that

X3z 9(o(z)) € (Yo @)(X) =1(S5)

is an isomorphism onto a segment of T, which is also a segment of Z, thanks to
Proposition 10.1.25.

Addition of ordinals
Let (A,<.), (B, <) be two well-ordered sets. We shall denote by
AU, B (10.1.12)

the well-ordered set defined in Lemma 10.1.22 on the disjoint union A U B. Ac-
cording to the discussion on Example (10.1.9) in Remark 10.1.23, we have proven
that

ordN < ord(N U, N). (10.1.13)

Moreover, replacing A by an order-isomorphic A’ and B by an order-isomorphic
B’ provides A’ LI, B’ order-isomorphic to AL, B, so that we can give the following
definition.

Definition 10.1.31. Let (A, <4), (B, <z) be two well-ordered sets. We define the
addition of ordinals,
ord A ®, ord B =ord(A L, B).

Our notation emphasizes the fact that this addition is not commutative.

Lemma 10.1.32. Denoting by w the ordinal of N and by k the ordinal of a finite
set with k elements, we have
1 w<wd, w
2) w=k&, w
w<wd k, if k>1.
(4) If « is an ordinal, « < a @, 1

Proof. We prove (2): we have
ko, w=ord({1,...,k} U{k+1,k+2,...}) = ordN* = ordN = w.

Let us prove (4): let X be a well-ordered set and ¢ : X — X U, {oco} be an
order-isomorphism. Let a be the (unique) element of X such that ¢(a) = co. Then
for all x € X\{a}, ¢(z) < 0o = ¢(a) implying = < a. Thus the restriction of ¢
to X\{a} is an isomorphism from (—,a) (a proper segment of X) onto X. From
Lemma 10.1.27, it is impossible, proving (4). Since (4) implies (3) which implies
(1), the proof of the lemma is complete. O



422 Chapter 10. Appendix

N.B. An immediate consequence of the previous lemma is that

for every finite ordinal, a<1®, a=ad, 1, (10.1.14)
for every infinite ordinal, a=10,a<a®, 1. (10.1.15)

Moreover this lemma proves as well that, given (A, <,), (B, <z) two well-ordered
sets, the well-ordered set A LI, B is order-isomorphic to A if and only if B = ().

Uncountable well-ordered sets

Proposition 10.1.33. Let « be an ordinal. Then the set of all ordinals B such that
B < « is a well-ordered set whose ordinal is c.

In other words, let (A, <.) be a well-ordered set. The set G4 = {(—,a)}aca
of proper segments of A (see Proposition 10.1.25) is a well-ordered set by the
inclusion relation and is order-isomorphic to A.

Proof. We consider the mapping ¢ : A — &4 defined by ¢(a) = (—,a). It is
obviously onto and increasing and if ¢(a1) = ¢(az), this implies

(¢(a1))” = (#(a2)) => a1 = min(¢(a1))” = min(¢(as)) = as,
proving that ¢ is one-to-one and the proposition. 0

Theorem 10.1.34. Any set of ordinals is well ordered. Moreover there does not
exist a set of all ordinals.

N.B. The existence of a set of all sets leads to the so-called Russell’s paradox
(see Exercise 1.9.2). Here as well the existence of a set of all ordinals leads to a
contradiction, known as the Burali-Forti® paradox.

Proof. Let § = (X;)icr be a family of well-ordered sets. From Proposition 10.1.29,
we may assume that the set I is infinite. Let us assume that there is no j € I such
that Vi € I,ord X; < ord Xj, i.e.,

Vjel,Fiel, ordX; <ordX;, ie. X;isomorphicto a proper segment of Xj,

sothat Vj € I,3i € I,da; € X;, ordX; = ord(%,aj)xj. For j; € I, there exists
j2 € I such that ord X;, < ord X;, and thus we find a strictly decreasing sequence

- =<ord X, <ordX;, <--- <ordX;, < ord Xj,.

n+1

Thanks to Proposition 10.1.33, that sequence included in the ordinals < ord X,
should have a smallest element, which is not possible. Thus we have proven the
first statement in the theorem.

Let us prove the second statement by reductio ad absurdum. Let % be the
set of all ordinals; then it should be well ordered with an ordinal u which should
be the largest ordinal, contradicting (4) in Lemma 10.1.32. O

5Cesare BURALI-FORTI (1861-1931) was an Italian mathematician. He came up in 1897 with the
first discovery of a paradox in Cantor set theory.
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Proposition 10.1.35. There exists an uncountable well-ordered set 0 such that for
all z € Q, the segment (—, x) is countable. The well-ordered set Q) is unique up to
an order-isomorphism. Let A be a countable well-ordered set: then ord A < ord €.

Proof. According to Zermelo’s Theorem 10.1, the set of real numbers R (which
is uncountable, see Theorem 10.1.8) can be well ordered (of course with an order
which is not the standard one). If R does not have the required property, we define

a = min{z € R, (—, ) uncountable}.

Then we take 2 = (—, a) which is uncountable and such that for z < a, (—, ) is
countable, proving the existence.

For the uniqueness property, let €23 be a well-ordered set with the same
property. If ord Q1 < ord 2, then €2; would be isomorphic to a proper segment of
), that is to a countable set, which is incompatible with the requirement that 2,
is uncountable.

Let A be a countable well-ordered set. Thanks to Proposition 10.1.29, A is
order-isomorphic to a proper segment of £ (since 2 is uncountable, the inequality
ordQ < ord A is ruled out). O

Remark 10.1.36. We can reformulate the previous result by saying that there exists
a unique ordinal ord 2, where € is the set of countable ordinals.

Proposition 10.1.37. Let ord Q2 be as above the set of countable ordinals. FEvery
countable subset of Q has an upper bound.

Proof. Let {z;};en C Q. The countable union of countable sets Ujen(—,x;) is
also a countable set (see Theorem 10.1.8) and cannot be equal to . Thanks to
Proposition 10.1.25, it is also a (proper) segment of Q and thus there exists y € Q
such that

UjGN(*h Ij) = (*)a y)
implying that Vj € N, z; <y, i.e., y is indeed an upper bound for {z,};en. O

Remark 10.1.38. Note that w = ordN is the smallest infinite countable ordinal,
but that, according to (4) in Lemma 10.1.32 and k finite > 1,

w<wd, 1<+ <wd, k are all countable ordinals.

Moreover, it is also possible to define the (non-commutative) product of or-
dinals.

Definition 10.1.39. Let (A, <.4), (B, <z) be two well-ordered sets. We define the
product of ordinals,

ord B®, ord A = ord(A X B)7
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where the Cartesian product A x B is endowed with the lexicographic order:

ayp <, ag

a1,b1) <axs (az2,by) means
(a1,b1) Saxa (a2, b2) {OT a1y = a2, by <z bo.
Our notation emphasizes the fact that this multiplication is not commutative.

Note that this order makes A x B well ordered: let X be a non-empty subset
of A x B. We define

ap =min{a € A, 3 € B, (a,b) € X}, by =min{b € B, (ap,b) € X},
and we have (ag,bp) = min X.
Lemma 10.1.40. With w = ordN, we have

20, w=ord(Nx{1,2}) =w<w®, 2=0rd({1,2} xN) =w &, w.

Proof. We have {1,2} x N = ({1} x N)U ({2} x N) = NuU, N, proving the last
equality. Moreover, we have N x {1,2} = (N x {1}) U (N x {2}). Considering

¢:Nx{1,2} = N, o((n,1)) =2n, ¢((n,2)) =2n+1,

we see that ¢ is bijective and increasing, proving the equalities in the lhs. We have
proven in Lemma 10.1.32 (1) the requested strict inequality between ordinals. O

Remark 10.1.41. We can also go on with Remark 10.1.38: for k,[ finite > 1,
WRwP k<wd, w=w®, 2< (W, 2)®,l<wd, 3,

all countable ordinals. With the powers w? w3 (to be defined) we could find other
countable ordinals.
Definition 10.1.42. Let (X, <x) be a well-ordered set.

(1) Let a € X such that {x € X,z > a} = (a,—) # 0. We define the immediate

successor of a, that we note by a + 1, as
a+1=min(a,—), (note thata<a+1).
(2) Let b € X such that there exists a € X with a + 1 =b, i.e.,
b = min(a, —).

Then a is uniquely determined® and is called the immediate predecessor of b.
(3) Let x € X which has no immediate predecessor. Then x is called a limit
element of the well-ordered set X.

61f b=a; + 1 = az + 1, i.e., min(a1, —) = min(az, —), then

a1 <ax=az € (a1,—) =b=a1+1<a2 <az+1=0>b, which is impossible.
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Ezxample. Let Q be as in Proposition 10.1.35: w = ord N has no immediate pre-
decessor, otherwise we would find a countable ordinal a such that w = a+ 1 =
min(a, —) with a < w. If @ was finite, then a + 1 would be also finite (impossible),
and if a was not finite, a would be countable and thus such that w < a < a+1 = w,
which is impossible.

10.2 Topological matters

Filters
General properties of filters

Definition 10.2.1. Let X be a set. A subset ¥ of P(X) such that the conditions

Vew, VeV =WwWeY?, (10.2.1)
VieV,j=12=VinVheV, (10.2.2)
D¢y, Xev, (10.2.3)

are fulfilled is called a filter on X.

Remark 10.2.2. A set X on which there exists a filter ¥ is necessarily non-empty:
we have P(0) = {0} and since ) ¢ ¥, the latter is not compatible with X € ¥

Simple examples of filters are

e On a (non-empty) topological space X, for x € X,
¥, = {V C X,V neighborhood of z}

is a filter (the filter of neighborhoods of z, cf. (1.2.4), (1.2.5), (1.2.6)).

e On R", ¥, = {V C R", V¢ bounded} (here bounded means included in a
ball with finite radius). The first axiom is satisfied since a subset of a bounded
set is bounded, the second axiom follows from (V3 NV3)¢ = V£ U Vi and the
fact that a union of two bounded sets is bounded. Finally, the empty set
has the unbounded complement R™ and the empty set, complement of R™,
is bounded.

e On an infinite set X, Zo = {V C X, V° finite} is a filter (a subset of a finite
set is finite, a finite union of finite sets is finite).

Definition 10.2.3. Let X be a set and .%;,j = 1,2 be filters on X. We shall say
that %5 is finer than %7 when %, D .%.

If (%:)icr is a family of filters on a set X (I non-empty), then # = N;ec; %;
is also a filter on X: if V € %,V C W, then W belongs to each .%;, thus to .#.
ItV V" e Z, then V' NV" belongs to each .%;, thus to .%. Moreover the empty
set cannot belong to .%, since it would belong to an .%;.
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Lemma 10.2.4. Let X be a set and O # B C P(X) with the non-empty finite
intersection property: for every finite family Bi,..., By of B, Mi<j<nBj # 0.
Then

Z ={V cCX,3B;,...,By € %qungNBj cV}
is a filter on X. It is the smallest filter on X which contains %, called the filter
generated by B and denoted by AB.

Proof. Let . >V C W, then W € #. Let V', V" € .%: there exists (B;-)lgjg]\/[7
(B]Z)lngN in £ such that V' D mlSjSMB§'7 V"o mlSkSNBl/c, and thus V'NV" >
ﬂlgngBg- Ni<k<n By, proving V' NV"” € Z. Finally ) ¢ .# since it would imply
from the definition that for By,...,By in &, 0 = Ni<j<nBj. Also X € .Z since
there exists B € % (% non-empty) and B C X. Moreover any filter containing %
must contain .%. O

Lemma 10.2.5. Let f: X — Y be a mapping and F be a filter on X. Then the
set

() ={f(V)}ves
has the mon-empty finite intersection property and thus generates a filter on 'Y

P

denoted by f(F), called the filter-image by f of the filter F.

Proof. Note that the family f(.%) is not empty since it contains f(X). Moreover,
for V1,..., VN € &, we have

Mi<j<n f(V5) D f(MigienV;) # 0.
- ~ -~
eF
According to Lemma 10.2.4, f(%) generates a filter. O

Definition 10.2.6. Let X be a set and let F = (A;)icr, Y = (Bj)jes be filters on
X. The filters F,¥ are said to be secant if

V(Lj)EIXJ, AiﬂBj#[Z).

Proposition 10.2.7. Let X be a set and let .F,9 be filters on X. Then the filters
F .9 have a least upper bound (for the inclusion relation) if and only if they are
secant.

Proof. The condition is obviously necessary since when a filter 57 > % U ¥,
the intersection of two elements of ¢ must be non-empty. Conversely let .# =
(Ai)ier, 9 = (Bj) et be secant filters on X. We define

S ={C C X,3(i,j) € I x J,C D A; N B,}.

We note that %7 is a filter on X since the first property (10.2.1) is obvious, the
second one (10.2.2) follows from

A, N A;, N Bj, N By,
- ~ - ~ ~ 4

eF S
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the third one (10.2.3) from the secant hypothesis. We have trivially 2 > % U¥
and if 7" is a filter on X containing .# U¥, any A; N B; should belong to .2 and
thus from (10.2.1), 5 C J#, proving the sought result. O

Definition 10.2.8. Let X be a set. An Ultrafilter on X is a filter % which is maximal
for the inclusion: if a filter ¥ on X contains %, it should be equal to % .

Proposition 10.2.9. Let X be a set and let Fy be a filter on X. There exists an
ultrafilter containing Fq.

Proof. Zornification. We consider the (non-empty) family
® = {Z filter on X such that % D %}.
It is inductive since if (%;);er is a totally ordered subset of ®, we may consider
Y = UierF;

and note that it is a filter on X: let V.€ ¢, W DV, then V € %, for some i € I,
sothat W e %, C 9. If Vi,Va € ¢, since (%;)icr is totally ordered, we find i € T
such that Vi, V5 both belong to .%;, implying that V3 NV, € .%; C ¢. Finally
(0 ¢ 4, otherwise it should belong to some .%;. Applying Zorn’s Lemma 10.1 yields
a maximal element % in ®. If ¥ is a filter containing %/, it must contain %, thus
it belongs to @, thus is equal to % by maximality: % is an ultrafilter. g

Lemma 10.2.10. Let % be an ultrafilter on a set X. If A1, Ao are subsets of X
such that A1 U Ay € %, then Ay € U or As € U .

Proof. Reductio ad absurdum. Let Ay, A5 be subsets of X such that A1 UAs € %,
Ay ¢ U and Az ¢ % . We define

F={MCX,AAUMeu}.

This is a filter on X since if VO M € %, then A; UV D Ay UM € 7/, implying
AUV e andV e Z V', V" € %, then

AUV NV =A4uV)INAnV)y =V nV"eZ.
AN Vol
cu (S4

Moreover ) ¢ .7 since A; ¢ % . The filter .# contains % since M € % implies
A1UM € % . Finally, we see also that As belongs to .# and not to %, contradicting
the maximality of the filter % . O

Lemma 10.2.11. Let .F be a filter on a set X such that for any subset M of X,
either M € & or M°¢ € %. Then F is an ultrafilter.

Proof. Let ¢ be a filter containing .%. For A € 4, we have A° ¢ ¢, thus A° ¢ F,
thus A € #, proving the maximality of .Z. O
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Proposition 10.2.12. Let f : X — Y be a surjective mapping and let F be a filter
on X. Then the filter-image by [ of F is equal to {f(A)} ace. Moreover if F is
an ultrafilter, so is f(F) = {f(A)}acz.

—_~—

Proof. The filter-image is (&) and is generated by f(%): it suffices to prove that
f(Z) is a filter when f is onto. If W D f(A) with A € %, then

FAW) D f7Hf(A) D A= fTI (W) € F = f(f71(W)) € f(F),

and since f is onto”, we have f(f~*(W)) = W, so that W € f(F), proving the
first property (10.2.1). Let Vi, V5 € f(.%): then with A; € .%, we have

VinVe = f(A1) N f(A2) O f(Ai N Ay),
cF

and from the already proven first property, we get V43 NV, € f(%). On the other
hand, § ¢ f(%), otherwise for some A € %, we would have f(A) = @, which
implies A = () (impossible since .Z is a filter on X).

If .% is an ultrafilter on X, then ¥ = f(.%) is a filter on Y and if B is a
subset of Y, either f~1(B) D A for some A € .Z and (since f is onto),

B=f(f""(B))D f(A) = Be¥,

or f~1(B) does not contain any element of .#. In the latter case, since .# is an
ultrafilter (see Lemma 10.2.10) and f~(B) ¢ .7,

X=[TB)USN(B) = [TU(B°) € F = B° = [(f71(B)) € [(F).

As a consequence ¥ is a filter on Y verifying the property of Lemma 10.2.11, and
thus an ultrafilter, completing the proof. O

Filters in a topological space

Definition 10.2.13. Let X be a topological space, x € X and .# be a filter on X.

(1) The filter .7 is said to converge to x whenever it is finer than the filter 7,
of neighborhoods of z, i.e., when # D ¥;.
(2) The closure of the filter .7 is defined as Nc.z A.

N.B. When a point z is a limit point of a filter %, i.e., when % converges to x,
then it also belongs to the closure of .#: let A be an element of .% and let V € ¥.
Since these sets both belong to the filter .7, we have ANV # (0 and this® implies
x € A

"The inclusion f(f~1(W)) C W always holds and when f is onto and y € W, there exists

x € f~H(W) with y = f(x), so that y € FF~rw)).
8 Applying (1.2.1) to A€ yields (A)¢ = interior(A°) so that

¢ A= 3V E YV, VCA <=V VNA=.
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Lemma 10.2.14. Let X,Y be topological spaces, x € X and f : X — Y be a
mapping. The mapping f is continuous at x if and only if

—_~—

F(%) D Vi)
where ¥V, stands for the filter of neighborhoods of z.

Proof. For f to be continuous at x € X means

VW € Y}y, 3V € ¥, such that f(V) C W. (10.2.4)

—_~—

This implies that f(72) D ). Conversely, if the latter holds, it means
VW € Vi), IV1,..., VN € ¥, Micien f(Vy) CW,

which implies f(N1<j<nV;) C W, providing (10.2.4) since Ni<j<n'V; € %;. O

Compactness and Tychonoff’s Theorem

We recall first that a topological space (X, Q) is said to be a Hausdorff space
whenever

V(z,y) e X o #y=3U€¥,3VeY, UNV=0 (10.2.5)

Definition 10.2.15. A topological space (X, &) is said to be compact when it is a
Hausdorff space and satisfies the Borel-Lebesgue property: if (2;);cs is a family
of open sets such that X = U;¢€);, there exists a finite subset J of I such that
Remark 10.2.16. If A is a closed subset of a compact space X, then A is also
compact. Using the definition in Lemma 1.2.2 of the induced topology on A, the

separation property is obvious and we may assume that A C U;c;€2;, where each
Q; is an open subset of X. Then we have

X = Uie[QiUAC

and since A€ is open, the compactness of X implies that X = U;c;; U A€ with a
finite subset J of I. As a consequence A C U;cs€);, proving its compactness.

Proposition 10.2.17. Let X be a topological space. The following properties are
equivalent.

(i) Any filter on X has a non-empty closure.
(ii) Any ultrafilter on X is convergent.
(iii) The Borel-Lebesgue property holds.

A topological space satisfying these properties is said to be quasi-compact. A topo-
logical space is compact whenever it is a quasi-compact Hausdorff space.
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Proof. (i) = (ii). Let % be an ultrafilter on X: then there exists z € Nyex U,
so that % and ¥, are secant (see Definition 10.2.6) and from Proposition 10.2.7,
they have a least upper bound which must be % since it is an ultrafilter: this
implies % D ¥, and (ii).

(ii) = (iii). Let (€2;)ier be an open covering of X and let us assume by contra-
diction that for all J finite subset of I, U;c s§2; # X. Then the family

B = {ﬂleJQ;}J finite C I

has the non-empty finite intersection property: for By = N;c s, €25, 1 <k < N and
Ji, finite subset of I, we have

Ni<k<nDBr = m QF # 0.
ieUr<k<nJk

~ ~~ -
finite

According to Lemma 10.2.4 and to Proposition 10.2.9, there exists an ultrafilter %
containing & and from the assumption (ii) there exists € X such that Z D 7.
The point = belongs to the closure of % and thus to

- > (&
DQE NP ﬂch = (Uier®%)" =10,
iel Q; open €l
which is impossible.

(iii) = (i). Let .F = (M;)ier be a filter on X with an empty closure: we have

0 =NierM; = X = Ujes (M) — 3] finite ¢ I, X = uieJ(Mi) :
S ~ -~
open

and thus N;c ;M; = () which is impossible since all M; belong to the filter .# which
enjoys the non-empty finite intersection property. The proof of the proposition is
complete. O

Proposition 10.2.18. Let X be a Hausdorff topological space.

(1) Let A, B be two compact disjoint subsets of X. Then there exist U,V open
disjoint subsets of X such that ACU and BCV.

(2) Let A be a compact subset of X. Then A is a closed subset of X.

Proof. Since X is Hausdorff, for each (z,y) € A x B, there exists some open sets
U.(y) € ¥4, Vy(z) € ¥, such that U,(y) NV, (z) = 0. By the compactness of B,
we have for all x € A,

B CUi<j<n, Vy, (x) = W(z).
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As a consequence, with T'(z) = Mi<,<n, Uz (y;), we have T(z) N W (z) =0, W(x)
open containing B and the open set T'(z) € ¥;. By the compactness of A, we have

AC UlgkgMT(fEk)-

We take then U = Ui<p<mT(2k), V = Mi<k<mW(zx), which are disjoint open
sets containing respectively A, B, proving (1). Let A be a compact subset of X; if
a ¢ A, then A and {a} are disjoint compact subsets and from the now proven (1),
there exists an open set V € ¥, such that VN A =0, i.e., V C A¢, proving that
A€ is open. g

Proposition 10.2.19. Let (K;);cr be a family of compact subsets of a Hausdorff
space X such that N;erK; = (). Then there exists a finite subset J of I such that
Nies Ki = 0.

Proof. Note that from Property (2) of Proposition 10.2.18, the K; are closed sub-
sets of X. For a fixed ip € I,

Kio C Ui7gi07i€[Kz»C B Kio C UieJKiC, J finite subset of I.
As a result, Nicyugi1 K = 0. O

Theorem 10.2.20. Let X,Y be topological spaces, with Y a Hausdorff space, and
f: X — Y be a continuous mapping. If X is compact, then f(X) is compact.

Proof. f(X) is a Hausdorff space as a subset of a Hausdorff space. Let us assume
that f(X) C UjerV; where V; are open subsets of Y. Then
X =Uer f7(Vi)
N~ ~ -
open
since f continuous
so that for some finite J, X = U;esf~1(V;), and thus f(X) = Uies f(f~1(Vi)) C
U;e Vi, proving the result. Il

Definition 10.2.21. Let (X;, O;);ecs be a family of topological spaces. The product-
topology on X = [];c; X; is the weakest topology on X such that all canonical
projections m; : X — X, are continuous.

We note that the continuity of the projections forces
i H(0) = {771 (D) }eeo,
to belong to the product topology O on X. As a result O is the intersection of
topologies containing U;erm; ! (0;), i.e., the smallest topology containing that set.
Lemma 10.2.22. Let (X;,0;)icr be a family of topological spaces and let (X, O) be
the product topology on X = Hie] X;. Then

0= {UQGAQQ} Qa=[licr Ui,as Ui,a €0;
U;,oa=X;except for a finite subset of I
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Proof. Let us call O the set defined in the lemma. Since any product
H Ui, Uia € 0;,U; o = X, except for a finite subset of I,
iel
belongs to O, as a finite intersection of elements of U;e;m; ' (O;), we find that

Uierm;, H(O;) € O C O. (10.2.6)

Moreover O is a topology on X since it is obviously stable by union and also by
finite intersection: to verify this it is enough to consider

W = (H UZ-> N <H Vi), U;,V; € O;, all but a finite number equal to X;.
iel i€l
We have indeed W = [],.;(U; N Vi) where all but a finite number of (U; N'V;)

are equal to X; and the others are open subsets of X;. Since O is proven to be a
topology, the inclusions (10.2.6) imply O = O. O

Theorem 10.2.23 (Tychonoff). Let (X;)ier be a family of compact topological
spaces. Then the space X = [],c; Xi equipped with the product topology is compact.

Proof. Let % be an ultrafilter on X. From Proposition 10.2.12, each m;(% ) is an
ultrafilter on X; (; is the canonical projection from X onto X;). By compactness
of X;, there exists z; € X; such that m;(%) D ¥,,. Let us define x = (z;);er and
let us prove that % converges to x: let V € ¥, so that x belongs to an open set
of X contained in V. From Lemma 10.2.22, V' contains a set

H U;, z; € U;open in X;, U; = X;, except for a finite subset J of I.
i€l

Since U; € ¥,,, it belongs also to m;(% ) and for all i € .J, there exists V() € %
such that

U=m(VO)=VieJ U d>m(W),W =0,V and W € %.
Since for i ¢ J, U; = X;, we obtain that

vol[uio[[rW) oW =Vez,
el el

proving the convergence % O ¥, and quasi-compactness. To conclude, we need to
prove the following result.

Lemma 10.2.24. A product of Hausdorff spaces is also Hausdorff.
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Proof of the lemma. Let (2})icr, (27 )icr be distinct points in X. We are thus able
to find i € I such that x; # ;) and consequently (since X;, is Hausdorff) we
can find Uj , U/’ disjoint open subsets of X;, with zj € U] ,z{ € U;’. We define
then

U = HVi,’ v, =U

207
i€l icl

other V/ = X;,U" = [[V/, Vi = U},

207

other V" = X;.

The sets U’,U" are disjoint and respective neighborhoods of (2});cr, (2 )icsr. O

The proof of Theorem 10.2.23 is complete. g

Connectedness of topological spaces

Definition 10.2.25. A topological space is said to be connected if the only subsets
of X which are both open and closed are X and (.

Lemma 10.2.26. Let X be a topological space and let (A;)icr be a family of con-
nected subsets of X such that

Y(i',i") € 1%,3T = {inhi<p<n C I, iy =i iy =",
such that for 1 <k <N, A;, NA;, ., #0.
Then the set A = U;c1 A; is connected.

Proof. Using the induced topology (see Lemma 1.2.2), we assume that
ACQUQy, 2 NQnNA=0, Q; open subsets of X.

Let us assume that A N Q; # 0. Then there exists x € Q1 N Ay for some i’ € I.
Since A,/ is connected and

Ay CQUQ, Q9NN Ay :[Z),Ai/ N #@Z}Al/ N =0 = Ay C Q.
Let us now consider " € J: applying the hypothesis, we find
J = {ik}lngN cl, ip= i/7iN = i//71 <k< ]V,Ai,c ﬂAik+1 #* 0.

Assuming A;, C Q for some 1 < k < N, we have from the connectedness of 4;, , ,,

(Z)#AikJrlﬂAilwA CQlLJQg, QlﬂQgﬂAik+1:®7Aik+1ﬂ917é®7

g1
and this implies A;,,, N Qs = (0, thus Ajy ., C Q. Since we have proven A;, C ()
this proves A;» C 4 for any i’ € I, entailing A C 1, proving connectedness
for A. O

Definition 10.2.27. Let X be a topological space. We define a binary relation on
X by 2’ ~ x” means there exists a connected subset A of X such that 2/, 2" € A.
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Remark 10.2.28. This relation is an equivalence relation: reflexivity and symme-
try are obvious whereas transitivity follows from Lemma 10.2.26. The connected
components of X are defined as the equivalence classes of that binary relation. We
obtain a partition of X,

X =U;ierCy, {Ci}ier = X/ ~  (the quotient space).

Moreover each C; is connected: we have C; = p(x;), the equivalence class of a
point x; and if z € C;, then there exists A connected such that z;,z € A. Since
all points of A are equivalent to z;, this implies that

C; = U A

A connected > x;

and Lemma 10.2.26 provides connectedness for C;. Moreover if C' is connected and
contains C; = p(x;), all elements of C are equivalent to z;, so that C = C;.

Theorem 10.2.29. Let X,Y be topological spaces, let f: X — Y be a continuous
mapping and let A be a connected subset of X. Then f(A) is connected.

Proof. Let us assume that V;, V5 are open subsets of Y such that
f(A) cViuVe, fANVINV, =0.
By continuity of f, the sets f~!(V;) are open in X and we have

AcCfTHfA) C M) U (),

aswell as f1(Vi)Nf~1(Va)Nf~1(f(A)) = 0. The connectedness of A implies A C
f71(V;) say for j =1 and thus f(A) C V4, proving connectedness for f(A). O

Proposition 10.2.30. Let X be a topological space and let A be a connected subset
of X. Then the closure of A is also connected.

Proof. We may assume that A is non-empty. Let us assume that
ACQ:{UQQ, A091092:®7 Qjopen.

From the connectedness of A, we infer that A must be included in one Q;, say Q;.
We have

ACcOQinA C QS = ACQU=WNA=0 =— ACQ,
~ ~~ ~—

from Qf closed ACOUQ
Q1NANQ,=0 ? R
proving connectedness for A as well. 0

Proposition 10.2.31. The connected subsets of R are the intervals.
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Proof. Let C be a connected subset of the real line containing at least two distinct
points a < b. If there exists « € (a,b) such that = ¢ C, then

C C (—o00,2) U (z,4+0), a disjoint union of open sets,
violating connectedness. As a result C is an interval, i.e., a subset of R such that
a,be C,a< b= (a,b) CC.
Conversely, let I be an interval of R such that
IcU,UlU;, UinNUyNI=0, Uj open.

Let us assume that INU; # 0 and let a; € INU;. If INUy # (0, we may find
az € I NU,. Since the sets I NUj,j = 1,2 are disjoint we have a1 # a2 and we
may assume a1 < ag. Note that [a1,as] C I since I is an interval. We consider the
set [a1, az] N Uy which is non-empty (contains a1) and bounded above. We define

b= sup([al, as) N Ul) (note that a3 < b < ag, implying b € I).
The point b belongs to I C Uy UUs. If b € Uy, then there exists € > 0 such that
(1) [b—e,b+¢ CUs.

Moreover we have b < ay (otherwise b = ag and b € Uy N Uz NI = §). Thus for
some ¢’ > 0, we have b+ ¢’ < as and b+ ¢’ € Uy, violating the supremum property
defining b. As a result we have b € Uy (thus b > a1) and there exists €’ > 0 such
that

() [b—€",b+ €] C Uy (ay,4+00).
Since b — €” is not an upper bound for [a;, az] N Uy, we may find

c € [a1,a2] N Uy such that a1 <b—€" <c<b=ceU NINU; =0,
which is impossible. This proves that I C U; and the result. O

Definition 10.2.32. A topological space X is said to be path-connected if for all
xo, 21 € X there exists a continuous mapping v : [0,1] — X such that y(0) =
Zo, ’7(1) =1

Proposition 10.2.33. A path-connected topological space is connected.

Proof. Let X be a path-connected topological space. If X is non-empty, we may
find @ € X such that for all z € X, there exists a continuous mapping v, : [0,1] —
X with 7,(0) = a,7,(1) = 2. We have thus

X = UwEX7$([O7 1])7
and we note that each v, ([0, 1]) is connected (Theorem 10.2.29) and for 21,22 € X

a € Y2, ([0, 1]) N 72, ([0, 1)),
fulfilling the assumptions of Lemma 10.2.26, entailing the result. O
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Remark 10.2.34. The set

G = { (m sin ;) }OQS% U ({0} x [-1,1]) (10.2.7)

is connected, not path-connected. In fact, the function
(0,2/7] 3 — (x,sin(1/x))

is continuous so that Go = {(z,sin | )}o<z<2/~ is connected (and path-connected)
as the continuous image of the interval (0, 2/7]. The set G is the closure of G and
thus is connected (from Proposition 10.2.30). However, G is not path-connected:
for a continuous mapping « : [0, 1] — G such that v(t) = (x(¢),y(¢)),

7(0) = (070)7 7(1) = (2/777 1)7

we may define T = sup{t € [0,1],2(t) = 0}: then 0 < T < 1 and z(¢t) > 0 for
t € (T, 1], so that we may assume that

v:10,1] = G,z(0) = 0,y(0) € [-1,1], =(t) >0 for t € (0,1], v(1) = (2/m, 1).
By continuity of z we have
z((0,1)) D (0,2/m) = Ve € (0,2/m),3tc € (0,1), € = z(t).

As a consequence, we have y(t.) = sin(1/e€). Since lim, t. = 0 (otherwise there is a
sequence () of positive numbers with limit 0, such that, by compactness of [0, 1],
limy t., = 0 > 0 and this would imply limy z(¢., ) = z(0) > 0), we must have
_ — fim sin(l
y(0) = lim y(te) = lim sin(1/e)

but the latter limit does not exist. So there is no such v and G is not path-
connected.

Partitions of unity in a topological space

A topological space (X, O) is said to be locally compact if every point has a compact
neighborhood.

Definition 10.2.35. A topological space is said to be locally compact if it is a
Hausdorff space such that each point has a compact neighborhood.

Proposition 10.2.36. In a locally compact topological space X, every point has a
basis of compact neighborhoods, i.e., Vx € X,VYU € ¥, dLcompact, L € ¥, L C U.
More generally, let K be a compact subset of a locally compact topological space
and U an open set such that K C U. Then there exists an open set V with compact
closure such that

KcvcVvcl
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Proof. Since every point has a compact neighborhood, we can cover K with
finitely many (W;)i<j<n such that W; is open with compact closure; the set
W = Ui<;j<nWj is also open with compact closure, since a finite union of open
sets is open and the closure of a finite union is the union of the closures. If U = X,
we can take V' = W. Otherwise, for each x € U¢, Proposition 10.2.18 shows
that there exists V,, V. open disjoint such that K C V,, {z} C V; as a result,
(UenNW N Vy)eeue is a family of compact sets with empty intersection: we have
Ve NV} =0 and thus z ¢ V,, so that

yGﬂmeUC(UCﬂWﬂVz) —yeUyeWandforallz e U, y €V,
—=yeV,=V,NV, #0, which is not true.

From Proposition 10.2.19, we can find x1,...,xn € U° such that
0= ﬂlSjSN(Uc NN ij) — ﬂlSjSN(W N ij) cU. (10.2.8)

We consider now the open set V.= W N Ni<j<nV;,;. We have by construction
K cVy,,NU and thus K C V CV C W NNi<j<nVz,;, which is compact and
included in U from (10.2.8). O

Exercise 2.8.2 contains a proof of Urysohn’s Lemma, a basic element for
constructing partitions of unity. For that purpose, see also Remark 2.1.4 after
Theorem 2.1.3.

Hahn-Banach Theorem

We recall here the statement of the Hahn—Banach Theorem.

Definition 10.2.37. Let E be a vector space (on R or C) and let p : E — R;. We
shall say that p is a semi-norm on F if for z,y € F, « scalar,

(1) plax) = |alp(z), (homogeneity),

(2) p(z +y) < p(z) +p(y), (triangle inequality)”.
Let us consider a countable family (px)x>1 of semi-norms on E. We shall say that
the family (px)g>1 is separating whenever pi(z) = 0 for all k > 1 implies z = 0.

Theorem 10.2.38 (Hahn-Banach theorem). Let E be a vector space (on R or C),
let M be a subspace of E, let p be a semi-norm on E, and let £ be a linear form
on M such that

Vee M, [£-x|<p(x). (10.2.9)

Then there exists a linear form E on E, such that
gIM =& and Vv €E, \gx\ < p(x).

9We note that (1) implies p(0) = 0 but that the separation property (first in (1.2.12)) is not
satisfied in general.
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Baire category theorem and its consequences
René Baire (1874-1932) was a French mathematician who made a lasting landmark
contribution to Functional Analysis, known today as the Baire Category Theorem.

Theorem 10.2.39 (Baire theorem). Let (X,d) be a complete metric space and
(Fn)n>1 be a sequence of closed sets with empty interiors. Then the interior of
Un>1Fy is also empty.

N.B. The statement of that theorem is equivalent to saying that, in a complete
metric space, given a sequence (U, )n>1 of open dense sets the intersection Ny, >1U,,
is also dense. In fact, if (U,) is a sequence of open dense sets, the sets F,, = Ug
are closed and intF,, = 0 < 0 = int(US) = (Un)C <= U, = X, so that

c

(U1 F) = 0 <= 0 = int(Up >, U2) = int((Nps1Up)°) = ((mnlen))

which is equivalent to (N,>1U,) = X.

Proof of the theorem. Let (Up)n>1 be a sequence of dense open sets. Let z¢ €
X, ro > 0 (we may assume that X is not empty, otherwise the theorem is trivial).
Using the density of Uy, we obtain B(xzg,r9) N U; # () so that

Jry €]0,70/2[, B(zo,7m0)NUy D B(z1,2r1) D B(x1,m1) = {y € X,d(y, 1) < r}.
Let us assume that we have constructed zg, z1,...,z, with n > 1 such that
B(xg, k) NUks41 D B(karl,rkJrl), 0<riy1 <rg/2, 0<k<n-1L1
Using the density of U1, we obtain B(zy,r,) N Up4+1 # 0 and
Arpi1 €0, /2], B(xn,r) NUpt1 D B(@pi1,2rm41) D B(mnH, Trt1)-

Since 0 < 7, < 27"y (induction), we have lim, r, = 0 and (2, ),>0 is a Cauchy
sequence since for k,l > n,

B(xg,re) UB(x1,7m) C B(tn,rn) = d(zk, 1) < 214

Since the metric space X is assumed to be complete, the sequence (z,)n>0 con-
verges; let x = lim,, z,,. We have for all n > 0, B(2p41,7n+1) C B(%y,7,) so that,
for all k > 1, B(zp+k, Tnt+k) C B(2n, ) and thus

sup d(Tptk, Tn) <1y = d(z,2,) <1y = T € ﬂnZlé(mn,rn) C Np>1Un
k>0

and d(z,x0) < ro. As a result, for all zp € X, all ro > 0, the set

B(ﬂ?o,’l”o) N ﬂn21Un 7é 0.

This implies that U = N,>1U, is dense since, for g € X, for any neighborhood
V' of x¢, there exists 79 > 0 such that V' D> B(zo,2r¢) D B(wo,70), and thus
VﬂUDB(l‘o,To)ﬂU#@SLBQEU. O
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Theorem 10.2.40. Let X be a locally compact topological space (Hausdorff topo-
logical space such that each point has a compact neighborhood) and (Fy,)n>1 be a
sequence of closed sets with empty interiors. Then the interior of Up>1F;, is also
empty.

Proof. The proof is essentially the same as for the previous theorem. Let (Uy,)n>1
be a sequence of dense open sets. Let By a non-empty open subset of X. Since U;
is dense, the open set By NU; is non-empty and thus is a neighborhood of a point.
Since each point in X has a basis of compact neighborhoods, By N U; contains a
compact set with non-empty interior and thus

BynNU; D By, B compact, By open # ().

We get that By N U, is a non-empty open set which contains a compact Bs, Bs
open # (). Following the same procedure as in the previous proof, we may consider
the compact set K defined by K = N,>1B,. The set K is non-empty, otherwise
we would have () = Mi<n<nBpn = By for some IV, which is not possible since at
each step, the set By is compact with non-empty interior. As a result, we have

@#KCﬂn21Un:U, K C By,
and thus, for any open subset By of X, the set U N By # 0, which means that
U=X. O
Definition 10.2.41. Let X be a topological space and A C X.
e The subset A is said to be rare or nowhere dense when A = 0.
e The subset A is of first category when it is a countable union of rare subsets.

Such a subset is also said to be meager.
e The subset A of X is of second category when it is not of first category.

A topological space X is a Baire space if for any sequence (F,)nen of closed sets
with empty interiors, the union U,enF;, is also with empty interior. As shown
above, X is a Baire space if and only if, for any sequence (Up,)nen of dense open
sets, the intersection N,enU, is also dense.

The following results are classical consequences of Baire’s Theorem.

Banach—Steinhaus

Theorem 10.2.42 (Banach—Steinhaus). Let E be a Banach space, F be a normed
vector space and (Lj)jer be a family of L(E, F) (continuous linear mappings from
E to F) which is “weakly bounded”, i.e., satisfies

Yu e E, supl||Ljullr < +4oc. (10.2.10)
jeJ

Then the family (L;)jeg is “strongly bounded”, i.e., satisfies
sup || Ll c(r,r) < +o0. (10.2.11)
jeJ
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Open mapping Theorem

Theorem 10.2.43 (Open mapping Theorem). Let E,F be Banach spaces and let
A be a bijective mapping belonging to L(E, F). Then A is an isomorphism, i.e.,

B,7>0, VueE, PBllule < |Aulr <7llulle. (10.2.12)

10.3 Duality in Banach spaces

Definitions

All the vector spaces considered here are on the field R or C, denoted by k. We
recall that a Banach space is a complete normed vector space and for E, F' Banach
spaces, L(E, F') stands for the vector space of continuous linear mappings from F
into F. The space L(E, F) is a Banach space for the norm

Ll ze,ry = sup || Lz F. (10.3.1)

lzllz=1

The topological dual of E is the Banach space E* = L(E, k) of continuous linear
forms. When & € E*,x € E, we shall write £ - © instead of &(z).

Theorem 10.3.1. Let E be a Banach space and E* its topological dual. Then

VeeE, |z|lg= sup |-z
l€px=1
Proof. We have |[€||p+ = sup,cp, o) p=1 ¢ - |. Let 0 # 2o € E. Applying the
Hahn-Banach Theorem 10.2.38 with M = kzo, p(x) = ||z| g, defining on M the
linear form n by n - Axo = A||zo||g, we have |5+ Azxg| < |[[Azo|| = p(Azo) and we
find a linear form & defined on E such that

[0 - wo| = llzolle, Vo € B, |&o -z < |lz]e-

As a consequence, & € E* with ||| = 1. Finally we have proven
[zolle = [€0 - xo| < sup  [§ - zo| < [|2olle- O
1€ =1

Weak convergence

Definition 10.3.2. Let E be a Banach space. The weak topology o(E, E*) on E is
the weakest topology such that for all £ € E* the mappings E 3 x +— (£, 2)p~ g € k
are continuous.

Remark 10.3.3. Let E be a Banach space. For each £ € E*, we define the semi-
norm pg on E by pe(x) = [(€, ) g« gl|; the properties of Definition 10.2.37 are ob-
viously satisfied. Moreover the family (pg)ec g+ is separating from Theorem 10.3.1.
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The neighborhoods of 0 for the weak topology on E, say 7;, have the following
basis: taking = a finite subset of E* and r > 0, we define

Wz, ={z € E,V§ € E,pe(x) <r}. (10.3.2)

Note that the Wz, are convex and symmetric. Every neighborhood of 0 for the
weak topology contains a Wz , which is also a neighborhood of 0 for that topol-
ogy. The neighborhoods ¥, of a point z are defined as ¥, = {& + V}ivew; E
equipped with that topology is a Topological Vector Space. Note that the separat-
ing property of the family (p¢)ec g+ is implying that the weak topology is separated
(i.e., Hausdorff, see (10.2.5)): in fact {0} is closed for the weak topology, since for
2o # 0, from Theorem 10.3.1, there exists £y € E* such that (£, zo) = 1, so that

0 ¢z +{z € B,pg,(x) <1}

=0

)
Otherwise, 1 = (£y, xo) = (go,éo + E) — (&0, x) < 1. Moreover, to check that the
addition is continuous, we take z1,22 € E, Wz, », as above a neighborhood of
zero (Z finite and r¢ > 0), and we try to find Wz, .., j = 1,2 such that

1+ Way oy + 22+ Wa,y 0, C 1+ 22 + Wag pp

It is enough to take Wz, ,, = Wz /2. Checking the continuity of the multiplica-
tion by a scalar is similar: given A\ € k,xo € E, Wg, , as above, we want to find
Wz, . and t; > 0 such that

VteR, [t|<ti, (Ao +0t)(zo+ Wz, ,r) C Aoxo + Wag ro-
It is enough to require
thELﬁ U )\OWEI,TI C WEO,TU/?n tixpg € WEO,TO/?)-

This is satisfied for 21 = =g, ‘)\0‘7"1 < 7"0/37 tiry < 7"0/3.

Remark 10.3.4. Let E be a Banach space; the weak topology o(E, E*) on F is
weaker than the norm-topology on E (also called the strong topology): this is
obvious from the very definition of the weak topology since all the mappings x —
(€, x) are continuous for the norm-topology since pe(x) = [(&, )| < [[E||le~||z|| -

Let E be a Banach space and z € E; a sequence (Zp)nen in E is weakly
converging to x means that

V¢ e E*, lim{& z,)pp = (&, 2)p . We write xz, =z, (10.3.3)

or to avoid confusion between the arrows — and —, we may write

Ty —— T
o(E,E*)
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Proposition 10.3.5. Let E be a Banach space and (zy)nen be a weakly converging
sequence with limit x in E. Then ||x,|| g is bounded and ||z||g < liminf, ||z,| &.
If (£1)nen is a strongly converging sequence in E* with limit £, then

1i717,l’1<§n7mn>E*,E = <E7$>E*,E~

Proof. We consider the sequence of linear forms on E* given by E* 3 £ — (£, x,,).
Since for all £ € E*, the numerical sequence (£, x,,) is converging, we may apply the
Banach—Steinhaus Theorem to get that E* 3 £ — (£, ) is continuous on E*| i.e.,

3C >0,v¢ € E*, [(§,z)| < Cll¢]| -

Using Theorem 10.3.1, this implies ||z]|g < C. The Banach—Steinhaus theorem
10.2.42 implies also that the norms of the linear forms E* 3 £ — (£, x,,) make a
bounded sequence, and since that norm is ||z,|| g, we get that sequence (x| £)
is bounded. We have for £ € E* with ||£]| g~ = 1, using again Theorem 10.3.1,

(€)= Tim| (€, 2)| <l inf [z & = [Jo|p < liminf 2|5

Moreover, we have for a strongly converging sequence (&,,)nen with limit € in E*,

|<§n7mn> - <va>| < ‘<5n - &xn)‘ + |<§7xn - m)‘
< 6 = €llo- sup e + (6.3, — )],

~ ~
—0 —0

which implies lim, (£, z,) = (£, x). O

Remark 10.3.6. When the Banach space E is infinite dimensional, the weak topol-
ogy o(E, E*) is strictly weaker than the strong topology given by the norm of E.
Let us prove that the unit sphere of E, S = {x € E,|z||g = 1} is not closed in
the weak topology o(F, E*) if E is not finite dimensional. Let us consider z¢ € E
with ||zl < 1; let Wz, ., be a neighborhood of zero for the weak topology as in
(10.3.2). We claim that

(o + Wzyry) NS # 0. (10.3.4)

This will imply that xo belongs to the closure of S for the o(E, E*) topology. To
prove (10.3.4), we consider the finite subset Zg = {§;}1<j<n of E*; each ker¢;
is a closed hyperplane, and since F is infinite dimensional, Ni<j<n ker§; is not
reduced to {0} (otherwise the mapping £ > z — L(z) = ((§,2))1<j<n € RV
would be injective and L would be an isomorphism from E onto L(E), implying
that E is finite dimensional). Taking now a non-zero z; € Ni<j<n ker§;, we see
that the continuous function f on R given by f(0) = ||xg + 621]| is such that

f(R+) D [HI()H, +OO[ = 0 e R,z + 0z € 5.

This proves (10.3.4) since zg + 0z1 € xg + W, », because (§;,z1) = 0 for all
je{l,...,N}.
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Weak-* convergence on E*

Definition 10.3.7. Let E be a Banach space and E* its topological dual. The
weak-* topology on E*, denoted by o(E*, E), is the weakest topology such that
the mappings E* 5 & — £ -x € k are continuous for all x € E. A sequence
(&k)ken of E* is weakly-* converging means that Va € E, the sequence (& - &) ken
converges.

Proposition 10.3.8. Let E be a Banach space and ({,)nen be a weakly-+ converging
sequence with limit £ in E*. Then ||&,] g+ is bounded and ||€|| g+ < liminf,, ||£, ]| .
Let (xn)nen be a strongly converging sequence in E with limit . Then we have

lirgfl<§n7$n>E*,E =, 2)p~ B
Proof. We have for « € E with ||z||g =1,

(€, 2)] = lim| (€, )| < liminf || 5 => (€]~ < lim nf [ ] .

From the Banach—Steinhaus Theorem 10.2.42 the sequence (&, )nen is bounded in
the normed space E* and we define sup,, ||, ]|g» = M < co. We have then

[(€nstn) = (& o) < [(Gns2n — )| + [(€n — & 2)| < M[zn — 2] B + [{En — & 2)],
and since limy, |z, — z||g = 0 = lim, (&, — &, x), we obtain the result. O

Lemma 10.3.9 (Diagonal Process). Let (a;;)i jen+ be an infinite matriz of elements
of a metric space A. We assume that each line is relatively compact, i.e., for
all i € N*, the set {a;;};j>1 is relatively compact. Then, there exists a strictly
increasing mapping v from N* into itself such that, for all i € N*, the sequence

(aiyl,(k) ) pen~ COnverges.

Proof of the lemma. We can extract a converging subsequence
(@1,n, (k))k>1 from the first line (a1,;);j>1-
We can extract a converging subsequence
(@2,n1 (n2(k)))k>1 from a subsequence of the second line (az,p, (k))j>1-
We can extract a converging subsequence

(ag’m(m(n?,(k))))kzl from a subsequence of the third line (a/g’nl(nz(k)))jzl.

For all 4 > 1, we can extract a converging subsequence

(ai,(nlouoni)(k))kzl'



444 Chapter 10. Appendix

Note that the mappings n; are strictly increasing from N* into itself and thus
satisfy Yk > 1,m(k) > k (true for &k = 1 and ny(k + 1) > ni(k) > k gives
ni(k+1) > k+1). We define

bik = iy, with v(k) = (nio---onyg)(k).
The mapping v sends N* into itself and is strictly increasing:

since np41(k+1) > k+1
N
v(ik+1)=(nio---ong1)(k+1) >
> (nyo---ong)(k) = v(k).

nio---ony 'strict

Moreover, the sequence (b; ;)i k> 1S a subsequence of the converging sequence
) s k>

(ai,(nlou-oni)(k))kzl
since for k > i > 1, v(k) = (nyo---on;)((nig1 0 ony)(k)) and

pilk+1)=(nip10---ongr1)(k+1) > (nig10---ong)(k+1)
> (nig10---ong)(k) = pi(k).

As a result, the sequence (a; ,(x))x>1 is converging, which proves the lemma. [

Theorem 10.3.10. Let E be a separable Banach space. The closed unit ball of E*
equipped with the weak-x topology is (compact and) sequentially compact.

Proof. Let (§;)jen be a sequence of E* with sup;cy [|§;]|g+ < 1. Let {;}ien be a
countable dense part of E. For each i € N, we define y; : E* — k by y;(§) = &-x;.
Let us now consider the matrix with entries (&; - ;); jen. For all ¢ € N, we have

sup ;- @il < Jlzill e

Jje

so that we can apply the diagonal process given by Lemma 10.3.9 and find v
strictly increasing from N to N such that Vi € N, the sequence (&, k) - #i)ren is
converging. As a consequence, for r € F,

1&ury - — &y - 2
<&tk - — Eory - Tl + &y - T — Euy - Tl + vy - T — Euqy - T
<2llz = zillE + &) - @i — Euqy - Tl
Let € > 0 be given and « € E. Let ¢ € N such that ||z — z;||p < €/4; since the
sequence (&, (k) - Ti)ken is converging, for k,1 > Ne, |§,) - i — () - 24| < €/2 and
thus for k,1 > N, &) - — &) - 2| < €, proving the weak convergence of the
sequence (&, (k))ren- O
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Remark 10.3.11. Let E be a Banach space and E* its topological dual. For z €
E ¢ € E*, we define p,(§) = |£ - z|. For each z € E, p, is (trivially) a semi-norm
on E*. The family (p;)zcr is a separating!® (uncountable) family of semi-norms
on E*. We shall say that U is a neighborhood of 0 in the weak-* topology if it
contains a finite intersection of sets

Voor ={6 € E",ps(§) <71}, z€E,T>0.

The family of semi-norms (p;).cr describes the weak-x topology on E*, also
denoted by o(E*, E).

Remark 10.3.12. Given a Banach space E and its topological dual E*, we can
define on E* several weak topologies: the weak-x topology o(E*, E) described
above, but also the weak topology on E*, o(E*, E**), where E** is the bidual of
E | i.e., the topological dual of the Banach space E*. Note that the weak topology
on E* is stronger than the weak-* topology, since £ C E** as shown below.

Reflexivity

Proposition 10.3.13. Let E be a Banach space. The bidual of E is defined as the
(topological) dual of E*. The mapping E > x — j(x) € E** defined by

(4(x), &) pre . p» = (&, T)E+ E

is linear isometric and is an isomorphism on its image j(E) which is a closed
subspace of E**. A Banach space is said to be reflexive when j is bijective (this
implies in particular that E** and E are isometrically isomorphic).

Proof. For x € E, we have

7 (@)lEes = sup  [(j(2),&) B~ 5]
lEl g==1
= sup [(§x)p-nl = zlle,
1€ =1

thm 10.3.1

(10.3.5)

and thus j is isometric and obviously linear. The image j(F) is closed: whenever
a sequence (j(zx))r>1 converges, it is also a Cauchy sequence as well as (zg)r>1
since ||z — || < [|j(zk —21) || Ber = || (zx) — j(21)|| £++ - As a result, the sequence
(xk)k>1 converges to some limit # € E, and the continuity of j (consequence of
the isometry property) ensures limy, j(zy) = j(x), proving that j(E) is closed, and
thus a Banach space for the norm of E**. The mapping j : E — j(F) is an
isometric isomorphism of Banach spaces. O

101f for some £ € E*, we have Vz € E, p;(€) = 0, it means Vz € E, - =0, i.e., £ = Op~.
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Remark 10.3.14. Let E be a Banach space; then the bidual of E* is equal to the
dual of E**, so that (E*)** = ((E**))*, that we shall denote simply as E***: we
have by definition

(B = (7)),
as well as

()" = ("))

Theorem 10.3.15 (Banach—Alaoglu). Let E be a Banach space. The closed unit
ball B of E* is compact for the weak-x topology.

Proof. For each z € FE, the mapping E* 3> £ — £ -z € C is continuous in the
weak-* topology; since |£ - 2| < ||€||g+||z|| g we see that

Bc [[(lzlleD1), Di={z€C, 2 <1},
el

and the product topology on [,y (||z[|gD1) induces the weak-* topology on B.
Using Tychonoff’s Theorem 10.2.23, we see that the set B is a closed subset of a
compact set and is thus compact. Il

Proposition 10.3.16. Let E be a Banach space and B its closed unit ball. The
following properties are equivalent.

(i) E is reflexive,
(ii) E* is reflexive,
(iil) B is weakly compact, i.e., compact for the o(E, E*) topology.

Proof. Let us assume that (i) is satisfied. Then the mapping j defined by Proposi-
tion 10.3.13 is an isometric isomorphism from E to F** and the weak-* topology
on F is well defined as the topology o(F = E**, E*), which is simply the weak
topology on E. The Banach—Alaoglu theorem implies that the closed unit ball of
E** = E, which is thus B, is weak-* compact, i.e., is weakly compact, proving
(iii). Before going on with the proof of the proposition, we need a lemma.

Lemma 10.3.17. Let E be a Banach space, B its closed unit ball and j be de-
fined by Proposition 10.3.13. Then j is a homeomorphism of the topological space
(E,J(E, E*)) onto a dense subspace of the topological space (E**,J(E**,E*)).
The set j(B) is dense for the o(E**, E*) topology in the closed unit ball of E**.

Proof of the lemma. The mapping j : E — j(E) C E** is bijective and continuous
whenever E is equipped with the weak topology o(E, E*) and E** with the weak-x
topology o(E**, E*): we consider a semi-norm g: on E**, { € E*, defined by

4 (X) = (X, &) g+ B+ |-
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We evaluate for x € E, qe(j(2)) = |(j(2),&) g+~ 6| = [(§, ) g+ E| = pe(x), where
Pe is a semi-norm on E (for the weak topology). The previous equality proves that
Jj is an homeomorphism from E to j(E). A consequence of the isometry property
of j given in Proposition 10.3.13 is that j(B) is included in the closed unit ball B,.
of E**. Let B be the closure for o(E**, E*) of j(B). First of all, B, is o(E**, E*)
compact from the Banach—Alaoglu theorem and thus is o(E**, E*) closed, so that
B C B... If there is some Xp € B**\B the Hahn—Banach theorem implies that
there exists £y € E*, a € R, e > 0 with

Vre B, Re(f,z) <a<a+e<Re(Xo,&).

Since 0 € B, this implies o > 0. We may thus multiply the previous inequality by
1/a and find & € E*,¢; > 0 such that

VI’EB, R6<§1,$> <l<l+e¢e <R6<X0,€1>.
Using that B is stable by multiplication by z € C with |z| = 1, we get ||&1]| g+ < 1,

implying that 1+ €1 < Re(Xo,&1) < || Xo||g+= < 1 which is impossible. The proof
of the lemma is complete. O

Going back to the proof of the proposition, we assume that (iii) holds. Then,
using the previous lemma, we see that j is continuous from

(E,o(E,E")) in (E™,0(E™,E"))

and since B is compact for the (F,o(E,E*)) topology, we infer that j(B) is
compact. But the same lemma gives that j(B) is dense for the o(E**, E*) topology
in the closed unit ball of E**, so j(B) is closed and equal to the closed unit ball
of E**, implying that j is onto and (i).

We know now that (i) is equivalent to (iii), so that (ii) is equivalent to the
compactness of the closed unit ball B, of E* in the topology o(E*, E**). The
Banach—Alaoglu theorem shows that B, is compact for o(E*, E) and if (i) holds,
that topology is o(E*, E**), so that (i) implies (ii).

Finally we assume that (ii) holds, i.e., E* is reflexive. Let us first consider
the norm-closed subspace j(E) of E**. The space E** is reflexive since E* = E***
by (ii) and thus E** = E****. As a consequence, the unit ball of E** is compact
for the topology o(E**, E***) = o(E**, E*) and thus the unit ball of the norm-
closed subspace j(E) is compact for the o(j(F), E*) = o(j(E), (§(E))*) topology,
which proves that j(E) and thus E is reflexive. The proof of the proposition is
complete. O
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10.4 Calculating antiderivatives

Table of classical antiderivatives

Chapter 10.

Appendix

Let f be a continuous function on an open subset I of R. We shall denote by
[ f(z)dz any antiderivative of f on I. The 33 most classical formulas are the

following ones.

1) /xa dx

(2)

8
A

a

8]

®
N
8]

U

S

tanx dz

cotx dx

—
U
S

Q
o
o)
8

5 =
U
8

Z.
8

(10) [ arctanz dz
(11) [sin’*z dx
(12) [ cos®x dx
1
13 d
(13) costz
1
g [ L
sin® x
(15) [sinhx dx

—_— T T T T T T T T T T T T

arcsinz dx

arccosx dx

—In|cosz|,

= In|sinz|,

=1In

=In

tan( © +
an

2

T
tan

(2)

7r
4

)

b

)

; 2
mar081nm+\/1—x ,

2
T arccosx — \/lfx ,

rarctanz —

r  sin(22)

[N}
—~

—cotx,

coshz,

1
5 In(1 + 2?),

for a # —1,

for z # 0,

I=(0,+00).

I =R~

I =R.

I =R\(} +7Z).
[ = R\nZ.

I =R\(} +7Z).
[ =R\nZ.
I=(-1,1).
I=(-1,1).
I=R.

I =R.

I=R.
I=R\(T +Z)
[ =R\rZ

I =R.
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(16)
(17)

(18)

(28)

Calculating antiderivatives (classics, Abelian, Gaussian)

coshx dx
tanh x dx
cothz dx

1
d
coshz v

1
sinh x

1

2
cosh” x

1
L, dx
sinh” x

tanh x dx

e e

cothx dx

= arctan(sinh z) = 2 arctan(e”) —

dr =In ’tanh 926

sinh z,
In (cosh z),

In | sinh z|,

)

dx =tanhuz,

— cothx,
In(cosh z),

In | sinh z|,

1
/\/1‘2 1 dx =1In(x + V2 + 1) = arcsinh z,

dx

/ 1
2 +1
/ 1
1— 22
/lnmdm

dx

= ln’
2

arctanz,

1 1+

1—2x

rlnx — x,

1
/\/1 ) dxr = arcsinz,
-

1
/\/ ) 1dmzln\m—&—\/xg—1|(:arccoshxforx21),
2

/\/1+x2 dx
/\/17552 dz
/\/x2—1dm

SV1+a?+
;\/1—m2+

x\/ﬂcg—l—

2

— N = N

2

2

In(xz + \/952 +1),

arcsin x,

ln‘m—&—\/mQ—l

)

)

(= arctanh z for |z] < 1),
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I =R

I =R

I =R~
I=R.

I =R*
I=R.

I =R~

I =R

I =R*
I=R.

I=R.
I=R\{-1,1}.
I=(0,+00).
I=(-1,1).
I=R\(-1,1).
I =R
I=(-1,1).

I =R\(-1,1).



450 Chapter 10. Appendix

We have

et 4 it eit _ =it
, sint = . ,
27

int t
for t € (C\(;r +7Z), tant = iloI;t' For t € C\nZ, cott= Ziojt’

fort € C, cost=

as well as
. i z dS
7o s —1,1] MR [—T, 7], arcsinz :/ ,
CH RSB 84 C T
cos arccos ! ds
[0, 7] >[—1,1] > [0,7], arccosx :/ ,
T \/]- — 52

xT
o tan arctan - o ds
(=75.7%) >R > (=5,5), arctanz = 142

0,7) ©* >R % (0,7), arccotz = T ds
b b b - 1 + 52 .
We have used
et — et et 4 et
2 ’ 2 ’

t_ ot t -t
—e . e +e
For t € C\inZ, cotht = | o
et —e~

for t € C, sinht =

o e
for t € C\( 5 +inZ), tanht = o 4ot

so that

R SRR Aok p , arcsinhz = In(z + Va2 + 1),

cosh

[0, +00) > 1, 4+00) %% [0, +00) , arccosha = In(z + Va2 - 1),

an arctan ]- 1
R fenh (-1,1) tanh R, arctanhz = ln( er),

2 11—z
Re - R\[-1,1] arccoth , arccothx = 1 ln(x + 1).
2 z—1
We have also
(34) /arcsinhx dz = zarcsinhz — /1 + 22,
(35) arccoshz dz = zarccoshz — /22 — 1, onz >1,

In(1 —2?), on |z| <1,

(36) /arctanhx dx = x arctanhz 4+

1
2
1
(37 ,

arccothz dx = zarccothx + _ In(z* — 1), on |z| > 1.
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Remark 10.4.1. With Definition (10.5.1) of the Logarithm on C\R_, and since for
t € C, cost = cosh(it),sint = —isinh(it),

arcsinx = —1i Log(ix ++/1— xQ),

10.4.1
arccosr = —iLog(m—i—i\/l - a?). ( )

for x € [-1,1], {
For z € C\ £ i[1,400), arctanz = —i Log(1 + iz) + ; Log(1+2%), (10.4.2)

so that arctan is holomorphic on C\ +i[1, +00) with

1 1 2z _1—iz—|—iz 1

tan’(z) = — -
arctan’(2) = | o e 1422 1422

a meromorphic function on C, with poles at +i and residues Fi/2.

Integrating rational fractions

Lemma 10.4.2. Let P(X), Q(X) be polynomials with complex coefficients such that
Q is a normalized polynomial with degree d > 1 and P is a polynomial with degree
< d. Let z1,. ..,z be the distinct roots of QQ with respective multiplicity p1, . . ., tr.

Then
Q(X): H (Xizj)#% d= Z His
1<j<r 1<j<r

and the rational fraction R = P/Q is

(pg—myj)
D SR with agm, = 0 )
QX) 1<j<r (X —ag)™ " (b —m;)!
1<m;<p;

where the rational fraction R; without a pole at z; is given by
Rj(X) = (X = 2))" R(X).

Proof. We perform an induction on 7, the number of distinct roots: when r = 1
we have a single root z; with multiplicity u; = d, so that

) (2,
(X_Zl)#lp(X):P(X): Z P ( )(X—Z1)k

and thus
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proving the result in that case with an explicit expression. Let us assume that the
formula is true for some r > 1 and let us prove it when we have r + 1 distinct
poles z1,..., zr, 2r+1 With respective positive multiplicity pi, ..., tr, ry1 for the
rational fraction P/@Q. The rational fraction

P(X)
Q(X)

(X = zpp)firt = Ry 41(X)

R\ (2r41)
= 3 I ) SOO(X - 2y
0<k<pirt1

where the rational fraction R,11 (and thus S have poles z1, ..., z, with respective
multiplicity p1, ..., u,. This yields
P(X R(#l*m) Zra1 B
DS " ! ) V(X = 2i) ™™ 4 8(X),
I<m<piry, LT
and we may apply the induction hypothesis to S: note that S has no polyno-
mial part since a linear combination of rational fractions A;/B; with degree B; >
degree A; is a rational fraction A/B with degree B > degree A. In fact we have

A;  Aillgjen Bi+ -+ AvILicjen—1 Bj

1<j<N B; H1§j§N B,

and the numerator has obviously a degree strictly smaller than the denominator
since for instance

degree <A1 H Bj) < degree Ay + Z degree B;

2<j<N 2<j<N
< Z degree B; = degree ( H Bj>.
1<j<N 1<j<N
We see also that for 1 < j <r, R=P/Q,
R(Ml—m) ,
s=(gps=op(ne 5 TG )
rmSin, W —m)!
so that, with R; = (X — z;)* R, we have
l l
S]( )(zj) = R§)(zj) for I < p;.
The induction is thus provides the sought formula. O

Although the above lemma is sufficient to calculate antiderivatives of any
rational fraction, the next lemma may be also useful.
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Lemma 10.4.3. Let P(X),Q(X) be polynomials with real coefficients such that Q
18 a normalized polynomial with degree d > 1 and P is a polynomial with de-
gree < d. Let ay,...,a, be the distinct real roots of QQ with respective multiplicity
Wiyeospbpr. Let 21,21, ..., 25, Zs be the distinct non-real roots with respective mul-
tiplicity v1,...,vs. Then

Q)= TT (x—ap» T (X ~Rez)? +(mz)?) ",
1<j<r 1<k<s

d=731cjcr b+ D 1<pes 2vk and the rational fraction P/Q is such that

P(X) Z Qjom BrenX + Y,n
= ’ m + Z ) 3 n
Q) G2, (X-a) 1<k<s ((X — Rez)? + (Im Zk)Q)
1<m<p; 1<n<vy

Proof. This follows immediately from Lemma 10.4.2 which implies

P(X) jm Yk Vkn
() = Tt LT R
Q(X) 1<Jz_;r (X —aj)m™ 1<zk;S { —zp)" (X —zp)" }
1<m<p; 1<n<vy

We have only to deal with

Vem . Ve _ Ve (X — 21)"™ + Y (X — 21)"
(X —2e)" (X —z)" ((X —Rez)? + (Im z)2)"
T(X —Re Zk)

((X —Rezp)? + (Im zk)g)m
where T is a real polynomial with degree less than n. We note that for 2p even
integer
(X —Rez,)? = ((X —Rezp)? + (Imz,)? — (Im2;,)%)”,
(X —Rezp)®™ = (X — Rezi) (X — Rezi)? + (Im2)? — (Im z1,)?)”,

so that T(X — Rez;) is a polynomial in the variable ((X — Rez;)? + (Im 25)?)
with coeflicients polynomial of degree < 1, yielding the result. g

Lemma 10.4.2 implies that to find an antiderivative of a rational fraction,
we use the decomposition into partial fraction and we are left with finding an
antiderivative of (x — {)™™ with ¢ € C. If m > 2, Formula (1) on page 448 gives
the result. If m = 1 and ¢ € R, this is In |z — ¢| on R\{¢}. If m = 1 and Im ¢ # 0,
this is Log(z — ¢) where the logarithm is defined by (10.5.1).

Lemma 10.4.4. Let ¢ be a complex number and let m > 1 be an integer.

(1) If m > 2, the meromorphic function z — (z — {)™™ has the antiderivative
(z=¢Q (1 —m)"h

(2) With the complex logarithm defined by (10.5.1), the holomorphic function
defined on C\{C +R_}, 2+ (2 — ()~ has the antiderivative Log(z — ().
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Remark 10.4.5. If our rational fraction is real, we may want to avoid altogether
complex numbers and use only Lemma 10.4.3. By rescaling and translation we
have only to deal with antiderivatives of =™ or (22 +1)~"z, (2% +1)~™. The first
case is already treated, the answer to the second case is ; J gif which is reduced
to the first case. To calculate,

X dr arctan X arctan X
I,(X)= = 1 2 9\1-n g9 / Mm—2 gy
(X) /0 (14 22) /0 (1+tan“6) ~"df | (cos ) de

We have [;(X) = arctan X and for n > 1,

arctan X
L1 (X) = / (cos0)?"~2(1 — sin” §)d6
0

1 arctan X d ) .
=1,(X i n—
n )+2n71/0 sm@da((cosg) )do
sin(arctan X) (cos(arctan X))2n71 1 arctan X )
—I,(X _ nap,
(X) + on — 1 2n—1/0 (cos 0)“"db

so that the following induction relation holds:
2n sin(arctan X ) (cos(arctan X)) et
In+1 = In +
2n—1 2n —1

We note also that for |§] < 7/2, sin@ = tan @ cosf = tan (1 + tan? §)~'/2 so that

. x 1
sin(arctanz) = V14 a2 cos(arctan z) = V1t z2
and 9 1 1
n— x
Iy = I, +

2n " 2n (1 4 22

Antiderivatives of rational fractions of cos x, sin

We want to calculate antiderivatives of F(cosz,sinz) where F' is a rational frac-
tion. The following changes of variables will work depending on some invariance
properties of the one-form F'(cos z, sin z)dz.

1. u = sinz, if the mapping « — 7 — z leaves invariant the form F'(cosz,sinz)dz.
It is the case for instance of [ sinz cos’zdz since

42 cos® zdr.

sinf(7 — ) cos™(w — x)d(r — x) = sin
This can be applied to the integrals fsinkx cos®tlxdr with k.l integers. The
assumption means in fact that the function F' is odd with respect to its first
variable: F(—X,Y) = —-F(X,Y).
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Lemma 10.4.6. Let R be a rational fraction in C(X,Y), odd with respect to the
first variable: then, there exists My, M, polynomials of two variables such that

XM (X2)Y)

R(X.Y) = My(X2,Y)

= XS(X2Y), 8 rational fraction.

Proof. We have

B P(X,Y) P(fX,Y)
2REY)= oxy) ~ Q-x.v)

_ P(XvY)Q(*XaY) 7P(7X7Y)Q(X7Y) _ XNl(XaY)
B Q(X7Y)Q(_X7Y) B NQ(X7Y) ’

where N; are polynomials in C[X,Y], even w.r.t. X. Thus
2N;(X,Y) = Nj(X,Y) + N;(—X,Y) = M;(X?Y),
where Mj is a polynomial. O
We have thus
F(cosx,sinz)dr = cosx G(cos® z,sinz)dr = G(1 — u*, u)du.
2. u = cosw, if the mapping « — —x leaves invariant the form F'(cosz,sinx)dx.

It is the case of fsinE’m cos’zdx since

5

sin®(—x) cos’(—z)d(—x) = sin®z cos” zdx.

It can be applied to f sin?* 1z cosladr with k, integers. The assumption means
in fact that the function F' is odd with respect to its second variable: F(X,-Y) =
—F(X,Y). We have thus

F(cosx,sinx)dx = sinx G(cosz,sin® z)dr = —G(u, 1 — u?)du.
3. u = tanx, if the mapping  — 7 + x leaves invariant the form F(cosx,sin x)

dz. It is the case of fsin4x cosbzdx since

4

sin!(7 4 z) cos(m + z)d(r + x) = sin*z cos®xdz.

It can be applied to f sin?*z cos? xdx with k, 1 integers. The assumption means in
fact that the function F is even: F(—X,-Y) = F(X,Y).

Lemma 10.4.7. Let R be an even rational fraction in C(X,Y): then, there exist
(M;)1<j<a polynomials of two variables such that

RX,Y) = M (X2,Y?) + XY My(X2,Y?)
T Ms(X2,Y?) + XY My(X2,Y2)

In particular, R is a rational fraction of X2,Y2 XY
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Proof. We have

2R(X,Y) = gg Q + gg_ _Q (10.4.3)
_ P(X,Y)Q(-X,-Y)+ P(-X,-Y)Q(X,Y) _ N(X,Y)
- Q( 7Y) ( 77Y) B D(XaY)7

where N, D are even polynomials. Since the polynomial D in (10.4.3) is even we
have '
2D(X,Y) = > bipXIYF(1 4 (—1)7F),
j+k even

and thus,

DX, Y)= Y b XyV*

0<5<21
Z 25"y 21—25" Z 25" +1y,21—25" -1
0<57<l 0<j"<l—1

= N1(X%Y?) + XY Ny (X2 Y?), N, polynomials.

We found eventually some polynomials (IV;)1<;<4 such that

N3(X2,Y2) + XY N,(X2,Y?2)

PROCY)= N (x2,v2) + XY Ny (X2, Y2)

We have thus

F(cos z,sinx)dxr = G(cos® x,sin® z, sin = cos x)dx

= G(cos? z,sin? x, sin  cos x)dx

_ G 1 u? u du
- 14+u2’ 14w’ 14+u?2) 14+u?’

4. As a last remedy, we can use the change u = tan 3 which will provide a rational
fraction in u.

This method extends ne varietur to rational fractions of sinh z, cosh z.

Abelian integrals

Let us give a couple of examples of the so-called Abelian integrals,

/R(ﬂmap(m))dm, (10.4.4)

where R is a rational fraction.
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The function ¢ in 10.4.4 is the square-root of a second-degree polynomial

For instance, we want to calculate [ R(z,vx2 + 1)dz. We set x = sinh¢ and we
get [ R(sinht,cosht)coshtdt, which is a rational function of sinh, cosh, tackled
above. To deal with [ R(z,v/22 — 1)dz, we set x = cosht to obtain

/ R(cosht,sinht) sinh tdt,

also a rational function of sinh, cosh. For [ R(z, V1 — x2)dx, we set x = sint to get
f R(sint,cost) costdt, a rational function of sin, cos. The discussion above allows
us to determine

/R(ﬂc7 \/@952 +b+c)dx, for R a rational fraction.
. . s (axm+b\1l/m *
The function ¢ in 10.4.4 is (Cm+d) ,méeN

We set u = (az + b/cz +d)m so that z = p(u™) where p is a rational fraction and

/R(m’ p(z))de = /R(P(Um)7 w)p' (W™ ymu™ " du,
also the antiderivative of a rational fraction.

The function ¢ in 10.4.4 enjoys a parametric unicursal representation

The assumption means that we can find rational fractions p, ¢ of one variable such
that ¢ — (p(t),q(t)) is onto on the graph of ¢. We set then z = p(t) and we are
reduced to the computation of

/R(p(t), q(t))p'(t)dt, again the antiderivative of a rational fraction.

Let us give a specific example. We want to compute for X > 0
X
F(X)= / R(z,z'/? + z1/3)dz, where R is a rational fraction.
0

We note that the mapping t + (t%,¢3 4 t?) provides a unicursal representation of
. We set x = t® to obtain
Xl/(j
F(X) :/ R(t°, £ + t*)6t°dt,
0

which is the antiderivative of a rational fraction.
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Some Fourier integrals

We have seen a couple of explicit computations of Fourier transforms in (8.1.18),
in Chapter 8, Section Some standard examples of Fourier transform on page 352
as well as in Proposition 8.1.19 and Theorem 8.2.3.

The computation of the antiderivative

/ e*' P(t)dt,

where z € C and P is a polynomial (of one variable) is also a computation of a
Fourier (—Laplace) transform. If Rez < 0, we have ffoo e*'dt = z71e*® and for
keN,

/_g; ek dr = (i)k (/_a; etht) _ (ddz>k (o ieen

k k k
__ _Zx_—2ZT d zx ,—1\ __ _zx —zx d 2T -1\ _ zx d —1
= e*e (dz) (e**z7 ) =e (e £ ° > (z7 ) =e (dz+x> (z7)

l
D DS Tl C Ve CER IRl WY Co Vi
0<I<k 0<i<k

so that for P(t) =3 ocpcpm apt®,

/ P(t)e®dt = 27 'e**Qp(z,271),

1
_ x -
Qp(r, 271 = E ! E apk!(—1)Fty=kFL
0<i<m  I1<k<m

We have thus for Rez > 0,

| POt = s Qe s - 1 Qr(0,27Y),
0

and by analytic continuation, this formula holds as well for z # 0. Note that the
limit of the rhs when z goes to 0 is indeed fom P(t)dt: by linearity it suffices to
verify this for the monomial P(t) = t*. We need to check for z # 0,

!
N(z,z) =z} Z alv' EN(—1)kty=h =gl (= 1)k 2k,
0<I<k
We have
_ k. —k—1 _zx (_Zm)l —zx
N(z,z) =kI(-1)"z e ( Z noe >

0<I<k

1 (1 _ g
— _k_!(_l)kz—k—lezx/ ( k'e) e—QZxde(_Zm)k-‘rl
O .
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so that N(z,z) = e*@gkt! fol( —0)*e=%7d, which has the expected limit ©
when z — 0.

k+1

Lemma 10.4.8. Let n € N* and R > x — u(x) = exp —2n|z|, where |z| stands
for the Euclidean norm of x. The function u belongs to L*(R™) and its Fourier
transform is

a(§) === ("sr (n ; 1) (1+1e2)""). (10.4.5)

Proof. We note first that in one dimension

) +oo ) 1
/ 6722#156727‘-&'611’ -9 Re/ 672wz(1+2§)d‘r _ ,
R 0 m(1+¢&?)

corroborating the above formula in 1D. We want to take advantage of this to write

e~2m17l as a superposition of Gaussian functions; doing this will be very helpful

since it is easy to calculate the Fourier transform of Gaussian functions (this quite

natural idea seems to be used only in the wonderful textbook by Robert Strichartz
[62] and we follow his method). For ¢ € Ry, we have

e—27rt — / eQi‘n’tT // 2imtT —57r(1+7' ) (S)deT
R 1 =+ T R2

_ _ —my2
_/ eS¢ 1/2 t ds,
Ry

so that for x € R™, e~ 272l = fR+ e~ ™5 1/2¢= 1171”45 and thus

a(§) = // e~ 2imaE o —ms =1/2o= T2l g :/ 6771’8571/267”8'5'25”/26157
Rn xRy Ry

so that N
ft(f) :/ efss(nfl)/Q(ﬂ(l + ‘€|2))*(n+1)/2d8’
0

which is the sought result. O

Gaussian integrals

In Proposition 8.1.19, we have computed the Fourier transform of Gaussian func-
tions, a typical case when the calculation of an integral does not follow from the
knowledge of an antiderivative. However our definition of the Fourier transform of
¢ relied on a duality argument, and we want to connect this result with a more
clementary approach. According to Formula (8.1.31), for we(z) = i™**” we have
for a € R*,

1/2 7,4 signa —ima”1€2

@(5) = |a\ e
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Let ¢ € 7 (R™): we have [ wq(z)p(x)dz = [ |a|~1/2ei7 signag=ima™ & 4(¢)de, and
in particular for € > 0,

2 _ S _ L 12 142
/wa(x)e TET dm:|a\ 1/261451g,‘na6 1/2/6 ima” "€ e € 13

= |a‘*1/2ei’£signa€71/2(€71 +ia*1)71/2 . |a‘71/26izsigna
e—04 ’

proving that, for a € R*,

. 2 2 _ S
11%1 eimaz” j—mex” 1. ‘a| 1/2614 signa_ (1046)
e—0

For A > 0,a € R*, we have

A . 2 1 A . 2 1 A . ; .2
o(a,\) :/ e dy = 2/ e dx = _ lim eimatieT” go.
0

—\ 2 €—>0+ A\

We have also

+o0 R +o0
2/ ei7r(a+ie)m do = / 6i7r(a+ie)tt71/2dt
A A2

eim(atie)t 12 t=+o0 1 [0 gim(atie)t 3/2d
t t t
[iﬂ(a + i€) ]t_/\2 Ty /)\2 im(a + ie) ’
so that for A > 1,e > 0,
+ -1
/ > eiﬂ'(a-‘rie)xzdx S 1)\—171_—1‘a|—1 + 2\ _ 1 )
A\ 2 dmlal  wlalA

We have thus
A . . 2 . .
/ ezﬂ'(a-‘rze)x dr — |a‘—1/26121r sign a
-2
_ / 6i7r(a+ie)12dx . |a‘71/26iz signa / e7l7r(a+ie)1:2dl,7
R [z]>X

and

A
. L2 _ U
‘/ em’(aJrze)z d$—|a‘ 1/267,451gna
—A

2

mlal\

<

_|_

. RN _ o
/ em’(aJrze)z dr — ‘CL| 1/2624 sign a
R

so that taking the limit when € — 04 gives from (10.4.6),

2
< .
7lal\

A
2 _ U
‘/ elmaz dl’*|a‘ 1/261451gna
-2
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entailing
A
) 1 S
lim ey = ~|a| "1/ 2t 0 siEna (10.4.7)
A—+oo 0 2

This gives in particular the classical Fresnel integrals'!

/Rcos(x?)dx - \/g - /Rsin(x?)dx. (10.4.8)

Another classical calculation (introduced in Exercise 2.8.20) yields

+oo .+
/ g =T (10.4.9)
0 X 2

We integrate the holomorphic function (on C*) e%*/z on the path

[e, R] U upper half-circle(0, R) (counterclockwise)
U [~ R, —€] U upper half-circle(0, €) (clockwise),

R _: m _iRe®? T _jeet?
. Ssinx e . . e . -
0=2i dx + _iRe do — _iee® do.
0 0
e X o Re' o €€l

The third integral has limit ¢m when € goes to 0. The absolute value of the second
integral is bounded above by f07r e~ 5940 which goes to 0 when R goes to 400
(thanks to the Lebesgue dominated convergence Theorem, but a simpler argument
is also available here).

we get

10.5 Some special functions

The complex logarithm
Logarithm on C\R_

The set C\R_ is star-shaped with respect to 1, so that we can define the principal
determination of the logarithm for z € C\R_ by the formula

B ¢ ' (z—1)dt
Logz]{l’z] A (10.5.1)

Thanks to Theorem 3.3.7, the function Log is holomorphic on C\R_ and we have
Logz =1Inz for z € R} and by analytic continuation
_ R
6Logz:Z:eReLogzeilmLogz7 ‘Z‘ =e eLogz7
Argz =ImLogz,

. . A g2
LOf course in the sense limy, ;5400 f—u e dx.
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for € C\R_. For z = re® |0 < m, we have for r > 0,

¢ rett

) d 0 ot
Log(re') = j{ ¢ Inr —|—/ T dt =nr + i0, ImLogz =6.
[1,reif] 0

We get also by analytic continuation, that Loge® = z for |Imz| < 7. Note also
that for |z| < 1, we have from Theorem 3.3.7,

!
Log(1 + z) = —1)HE 10.5.2
og(1 +7) Z/O 14tz Z k:+1 ;( 7 (10.5.2)
Note that we have also for |z| =1,z # —1,

1 1
_ . _ ; bk K
Log(1+z)—z/0 1+ —z/o hj{fn E (—1)"t2" | dt.

0<k<N
Since with z = €¥, || < 7,t € [0, 1],

_1\N (4, \1+N
N PUC A
1+1tz 1 4+tz]  +/1+ 2tcosf + t2
< 21{cosf > 0} 21{—1 < cosf < 0}
V1 + t2 V1 —cos20

0<k<N
€ L'([0,1],),
so that Lebesgue’s dominated convergence implies
. k P
Log(1+2) = zh]{[n Z (-1) I
0<k<N

implying that (10.5.2) holds as well for |z| = 1,z # —1. We consider the following
open subset of C:

{z€eC,expz ¢ R} ={z € C,Imz # 7(2m)}
=Ukez{7z€C,2k— )m <Imz < (2k + U)7}.

-
Wi

Let k € Z. On the open set wy, the function z — Log(exp z) — z is holomorphic
with a null derivative. As a result for z € wy,

Log(exp z) — z = Log(exp(2ikm)) —2ikm = In(1) — 2ikm = —2ik,

i.e., Log(exp z) = z — 2ikm.
We sum-up these results as follows.
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Theorem 10.5.1. For z € C\R_, we define Log z by (10.5.1). This is a holomorphic
Junction on C\R_, with derivative 1/z, and Log coincides with In on R*. .

For z € C\R_, eM8% = z = e,
r=|z| =elf°lo8% 9 — Argz =TImLogz € (—m, 7). (10.5.3)
ForkeZ,zeC, 2k—1)mr <Imz < (2k+ 1), Log(e®) =z — 2ikw. (10.5.4)

l
For z € C\{—1},|z| <1, Log(l+ 2) = Z(fl)”lzl . (10.5.5)
>1

Logarithm of a nonsingular symmetric matrix

Let Y4 be the set of symmetric nonsingular n x n matrices with complex entries
and non-negative real part. The set Y is star-shaped with respect to the Id:
for A € T, the segment [1,A] = ((1 —¢)Id +tA)te[o,1] is obviously made with
symmetric matrices with non-negative real part which are invertible, since for
0<t<1, Re ((1 —t)Id+tA) > (1—1t)Id > 0 and for t = 1, A is assumed to be
invertible!2. We can now define for A € T,

Log A = /Ol(A—I)(I+t(A—I))_1dt. (10.5.6)

We note that A commutes with (I+sA) (and thus with Log A), so that, for § > 0,

d
Log(A + 61)

do
:/1(I+t(A+91_I>)_1dt_/1(A+01—I)t([+t(A+GI—I))_2dt,
0 0
and since
;lt{(l—kt(A—k@I—[))‘l} — _(I+t(A+91—I))_Q(A+9[_]>7

we obtain by integration by parts f Log(A + 0I) = (A+ 6I)"1. As a result, we
find that for 8 > 0, A € T, since all the matrices involved are commuting,

d
do

121f A is a n x n symmetric matrix with complex entries such that Re A is positive definite, then
A is invertible: if AX = 0, then,

((A+0n)71clestaton) o,

=0 since A symmetric
- -

_ ~
0=(AX,X)=(AReX,ReX)+ (AIm X, Im X) + (ARe X, —iIm X) + (AiIm X, Re X))

and taking the real part give (Re ARe X,Re X) + (Re AIm X, Im X) = 0, implying X = 0 from
the positive-definiteness of Re A.
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so that, using the limit # — 400, we get'3 that
VA e YT,,V0 >0, ehosAT0D) — (A 401,
and by continuity
VAe Y., €%84=A which implies det A = etaccloga
Using (10.5.7), we can define for A € T,

(det A)71/2 _ efétraceLogA _ ‘detA‘71/267; Im(traceLogA)'

Appendix

(10.5.7)

(10.5.8)

e When A is a positive definite matrix, Log A is real valued and (det A)~'/2 =

|det A|~1/2,

e When A = —iB where B is a real nonsingular symmetric matrix, we note
that B = PD'P with P € O(n) and D diagonal. We see directly on the

formulas (10.5.6), (10.5.1) that

Log A = Log(—iB) = P(Log(—iD))'P, traceLog A = trace Log(—iD),

and thus, with (u;) the (real) eigenvalues of B, we have Im (trace Log A) =
Im}>, ., Log(—iu;), where the last Log is given by (10.5.1). Finally we

get,
Im (trace Log A) S— Z signp; = — " sign B
gAa) = 9 2 gn i = 9 gn s,
1<j<n
where sign B is the signature of B. As a result, we have when A = —iB, B

real symmetric nonsingular matrix
(det A)~Y2 = | det B|~1/2¢ti sien B,
13We have elo8(A+0) — (A4 4 0)B4 and with 7 =6 — 1,

1
elos(A+0)=Ind _ ,Co -y = A/ (1+tA+tr) " (1 + tr) " Ldt.
0

(10.5.9)

For t,7 € Ry, the matrix 1 + ¢tA + ¢t7 is invertible (see the footnote on page 463) and we have

Re((1 4 tA +t1)X, X) > (1 4+ t7)|| X||?, so that this implies ||(1 +tA +t7)X| > (1 +t7)|| X]||

and thus ||(1 +tA +tr)71| < (1 +t7)~1. We get

! Al
<A 1+tr) " 2dt = li -
IColl < |l ”/0( + t7) e = Jim _Cy=0

— By = . liI—F (A+6)Bge™ In0 — jjy elog(A+0)—Inb — 1y Co =
—+o00

60— +oc0 60— +oc0
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The T function

For z € C with a positive real part, we define
—+oo
I'(z) = / t*~tetdt. (10.5.10)
0

Theorem 3.3.7 implies that I" is a holomorphic function on the half-plane {Re z >
0}, and for z there, an integration by parts yields

“+o0 “+oo
L(z+1) = / tPetdt = [t7e "% o Jr/ 27 et dt = 2T'(2).
0 0

We get immediately that
forneN, T'(n+1)=n! and I'(1/2) = /7. (10.5.11)

The latter equality follows from (8.1.31) since

Foo 2 2
I(1/2) = / s7le™ 2sds = / e " ds = /.
0 R

For Rez > —1,2z # 0, we define I'(z) = F(ZZH): it coincides with the previous
definition if Re z > 0 from the previous identity. Let £ > 1 be an integer: we may
define for Rez > —k,z ¢ {-k+1,...,0},

I(z+ k)

P& = L h1). th—1)

(10.5.12)

The I function appears as a meromorphic function on C with simple poles at —N
such that
(=1)*

Res (T, —k) = ol (10.5.13)
and the following functional equation holds:
Vz ¢ (-N), T(z+1)==z[(z). (10.5.14)

Theorem 3.3.7 implies for Re z > 0,
400 + oo
IM(z) = / t*"te tIntdt, T"(z)= / t*~tet(Int)?dt. (10.5.15)
0 0

Lemma 10.5.2 (Gauss’ formula). For z € C\(—N), we have:

| oz
I'(z) = lim e

P e () (10.5.16)
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Proof. We assume first that Re z > 0. Lebesgue’s dominated convergence theorem
induces for Re z > 0 that

n t\" dt
/ t* (1 - ) — T'(2):
0 n t n—+4oo

we have indeed pointwise convergence of

t n
1 1 —
[O,n]( ) < ’I’L)

towards 1g, (¢)t* 'e~! and domination
t n
L0, (1)* (1 - ) | < 1g, (R le ™ € LY(R),
n

since for z € [0,1), In(1 — z) < —= implies 1g,j()(1 — )" < e ™n = et We
check now

" t\" dt v
) t*(1- = [ 7 n*(1-9)"ds=n*B(z,n+1),
0 n) t 0

where the so-called Beta-functionis defined for a, b complex numbers with Rea >
0,Reb > 0 by

B(a,b) = /Oltala — 1) dt. (10.5.17)

The holomorphy of the Beta function on this domain of C? (Rea > 0,Reb > 0)
follows from Theorem 3.3.7. Moreover, we have with z. = 2H (x), H = 1g_,

R /H Ot H (z — t)(x —t)° " Ldt
= H(z)zt~ 1/ s“_l(l—s)b_ld,s:m‘fjb*lB(a,b),
0

* we find

so that multiplying both sides by e~
for Rea > 0,Reb >0, T(a)T'(b) =T(a+ b)B(a,b). (10.5.18)

On the other hand, we prove directly by induction on n that for Rez > 0,n € N,

Blzin+1)=n! J] (z+45)7"
0<j<n
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Tt is true for n = 0 since B(z,1) = fol t*~1dt = 1/z and we have

1
B(z,n +2) :/ 2711 — )" T ldt
0

= [ (1 — )] - /1 2 (n+ 1)(1— t)"dt(—1)
0
=(n+1)z"'Blz+1,n+1) = (n+1)z"'n! H (z4+144)71

induction 0<j<n
hypothesis

=(n+1)! J] G+r)7 qed.
0<k<n+1

Applying this to (b), we get

n*B(z,n+1) = nln® H (z+j)—1’
- o ;
with li\nfit I'(z) 0<j<n

proving the result of the lemma for Rez > 0. The result for z € (—N)° follows
from (10.5.12): if Re z > —k, we have

I'(z+k) lim nin*tk
frg = 11 .
[<icrkz+D  n Tlocicn(z+ D 1locjcn(z +5 +F)
192
" S | BCET RS O

n—k<j<n

= lim n
n locqen(z +a)

. k - -1 _
and since n" [[,, 4 <, (z +7+k)"" =Ili<,<p .., We have

limn* [ G+i+k) =1,
" n—k<j<n

entailing the result. The proof of the lemma is complete. O

Lemma 10.5.3 (Weierstrass Formula). The function 1/T is entire with simple zeroes
located at (—N) and we have the strictly convergent infinite product

r(z) ' =z ][] (1 + j) e, (10.5.19)

1<j<+o0

Proof. Starting from Lemma 10.5.2, we find for z € C\(—N),

I(z) = 2~ lim *" " Tigicn 5) II iz +43)tex.
" 1<j<n
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From Exercise 2.8.20, we know that lim,, (Zl<j<n} — lnn) = ~, the Euler—
Mascheroni constant, so that o

-1

z .

[(z) =z te? H <1+ > eI,
1<j<+00 J

The convergence of the infinite product follows from the previous formula, but we
can also see directly that, with the complex logarithm and j > |z],

Log<<1+%) ez/j>z.+z.+0<z.2)0(j2)-
J J ] ]

As a result, the T' function vanishes nowhere and 1/T" is an entire function whose
zeroes are simple and located at (—N):

[(z)7! = ze? H (1 + Z) e, O
1<j<+o0 /

Lemma 10.5.4 (Log-convexity of the I' function). The I' function is positive on
R% and is also log-convex.

Proof. The I' function never vanishes and is also non-negative on (0, +00), thus
is positive there. Moreover, Cauchy—Schwarz inequality and (10.5.15) imply for
x>0

F,(m)2 = <tz/27 tz/Q In t>iQ(R+7e*‘dt/t)
<2 o emtar 167 It emtaryy = D@L (@),
so that

gm0 = (L >0 O

& d <r') 0 -1
Note that the minimum of the Gamma function on the positive half-line is
0.8856031944108886 - - - = I'(1.461632144845406 .. .).

Lemma 10.5.5. Let G be a positive function defined on (0, +00) such that G(1) = 1,
G is log-convex and satisfies G(xz + 1) = G(x) for all x > 0. Then G =T.

Proof. For x > 0,n € N*| we have with ¢ =InG, g(n) = (n — 1)! and

glz+n)—gx)= Y (ge+ji+1)—gx+j) = > In(z+j),

0<j<n 0<j<n
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Figure 10.1: GAMMA FUNCTION ON THE REAL LINE

so that g(z +n) —g(z) —g(n) =Inz+ 37, ., 4 ln(x;_j) and

gx)+Inx —zlnn + Z In (:r:+]> =g(z+n)—g(n)—zlnn. (10.5.20)
1<j<n—1 J
<j<n
Let k € N* with k£ > 2: we have n—1 < n < z+n < k+n and from the convexity
of g, for n > 2,

g(n) —g(n—1) < g(x +n) —g(n) < gn+k)—g(n) _ D o<rer n(n+7)
1 - T - k k ’

so that
1 g(x+n)—g(n)—zlnn < >o<r<r (14 7)

In(l— )<

n x k ’

and thus lim, (g(z + n) — g(n) —zInn) /z = 0, which implies, thanks to (10.5.20),

g(x)z—lnx—i—lign(xlnn—i— > ln<xij>>zlnf(x)7

1<j<n—1

where the last equality follows from Gauss’ formula (10.5.16). O
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2.0

1.5

1.0

0.5

05 1.0 15— 20 2.5 3.0 3.5

Figure 10.2: LOGARITHM OF THE GAMMA FUNCTION ON (0, +00).

Wallis integrals

Lemma 10.5.6. Let ¢ € N.We have

/2 JrD(7Hh) Wor — (2p)!
w, :/ (sin@)7do = ¥ 2 e, forpeN, P (ply222etL
0 ql'(3) 147 _ (o2
2p+1 (2p+1)! -
(10.5.21)
This lemma follows from the next one.
Lemma 10.5.7. Let 2z € C such that Rez > —1. Then
/2 T z+1
/ (sin@)*dd = v g_é )
0 2F( 2 )
Proof. We have, with ¢ = sin? 6,
w/2 1
2/ (sin9)2d9:2/ t*/2(2sin 0 cos 0) " Ldt
0 0
1 z+1
21 _ z+1 I( T'(1/2)
:/ t2 (L—t)~'2dt = B( o /2= Lln
0 ( 2 )

where the last equality follows from (10.5.18). O
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Laplace equation in spherical coordinates
Lemma 10.5.8. We have

|22 Aga = (r0,)% + (d — 2)r0, + Aga-1, (10.5.22)
where Aga—1 is the Laplace—Beltrami operator on the sphere S41.

Proof. In two dimensions, using the complex logarithm defined for z ¢ R_ by
(10.5.1) and polar coordinates

r1 =1rcosf = (2 2)1/2
! . ) T>Ov|0| <m, " (x1+x2> . ) :E1+iI2 ¢R*v
Ty =7rsinf 0 = Im Log(z1 + ix2)

we get
o or o 00 0 o  sind 9
oy~ Omor Tom o0 = o T 4 op
0 or 0 08 9 . 0 cosf O
Oy~ Omor T omon 0ot L e

and a simple direct computation yields the two-dimensional result
r?Ag: = (r0,)* + ;. (10.5.23)
More generally, we get
S5 o =wsing®eqgcosp, weST2, eg=(0,...,0,1), 0<¢<m.

We consider the half-plane z4 = rcos¢, p = rsing, 0 < ¢ < 7, and the two-
dimensional (already proven) formula

7"2(83(1 + 65) = (rd,)* + 8;.
We have inductively for d > 3, p?Aga-1 = (pd,)? + (d — 3)pd, + Aga-2 and thus
T26§d+T265+T2ARd—1 = (7"6,.)2—&—8(725—1—7“2p_2(p6p)2—l—(d—3)7"2p_2p6p—1—1"2p_2ASuz727

Agd—

that is 7*Aga = (r0,)* + 95 + (d — 2)r*p~ 10, + (; . Since

g orod +8¢3 B
dp Opor  0pdp

sin2
pr 1o, + xdr*2a¢7

we get indeed

(d—2) .  Agio

2Ana = 2 — N7, + 2 10.5.24

r°Aga = (rdp)” + (d — 2)rd, + 05 + san ¢ 0p + in? (10.5.24)
d—2) Aga—2

Aga-1 = 0> ( ) 10.5.2

sd 05 + tand ¢+Sin2¢ (10.5.25)

O
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More calculations on the Laplace operator

In three dimensions, using the spherical coordinates

r1 =rcosfsin ¢
o =7rsinfsing r >0, 0< ¢ < 7 is the colatitude, |0| < 7 is the longitude,

T3 = 1 Cos ¢

we have

1 1
r’Aps = (r0,)? + 10, + 05+ ., 0f
S1

10.5.2
. ¢ag * tan o0 (10.5.26)

which is also
) B 5 1 . 2 2
r?Ags = (r0p)* + 10 + ., ((singdy)® + 0 ).
sin® ¢

In four dimensions, the spherical coordinates are

1 = 7 cosfsin ¢1 sin ¢o
ZTo = rsinfsin ¢; sin P
. 0<¢1,¢2 <m0 <
T3 = T COS 1 Sin o

T4 = T COS (o

and

1 1 1 2
2Aga=(rd,)? +2rd, + 02 + <62 + 05+ 0 >+ o,
r R (T ) T b2 sin2q§2 b1 si 2 b2

nZ¢; ¢ tang é1 tango
ie.,
92 92 ) 20,
2 2 2 b1 0 2l 2
12 Ags = (r0,)2 +2r0, + 02, + + '
re =(r0r) P sin’gy | sin’osin®gy | sin*gotangy | tands
(10.5.27)

In d dimensions, the spherical coordinates are

r1 = rcosfsin g sings . ..sin@q_3sin gg_o
To = rsinfsin ¢ sin ¢ . . .sin ¢g_3 sin Ppg_o
X3 = 1 Cos 1 Sin g ... SN Pg_3 Sin Ppg—2
0<¢;<m, |0 <m.
Tg—1 = T COS Pg_3Sin g2

Tq = TCOSPg_2
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We have

r?Aga = (r0,)* + (d — 2)ro,

02 02

Pd—3 Pd—j

+05, ,+ et !
Pa—z T g2 Pd—2 sin® ¢g_o . ..sin? Gd—j+1
03 (d—2) (d—3)
+ -+ + 0,
sin® ¢g_o...sin> g1 tangg_o Pa—2 T 2 Gd—otan dg_z $a-3

4t (d_j)a¢d—g a¢1

sin? bd—2 ... sin? Pd—j+1tan dq_; sin? Pd—2 ... sin? P2 tan ¢

In other words, we have

o3 d—7)04, .
Agd—l _ Z bd—j ( ]) Pa—j

+
-2 -2 -2 .2
a<icd 1 Sin @g—o...sin" @g—j41  sin” Pg_a...sin” pg—;41 tan ¢gg—;
2
36
sin? Pa—2 ... sin? d1
so that, inductively, we verify

2

0 .
ASd = Z . 9 bat1-j

(d+ 1 7j)a¢d+1—j 362

. . + . .
sin® Pd—1 - - - sin? Dd—j+2tan Par1—; sin? Od—1 - - - sin? 01

and indeed
d—1 1
a¢d—1 +

Aga = 82 + B
S Pd—1 tan ¢d71 Sin2 ¢d71

Aga-i.

Laplace—Beltrami operator

Let (M, g) be a Riemannian manifold of dimension n. We use the usual notation
in a coordinate chart:

9= (gjk)1<) k<ns

is a symmetric positive definite matrix, with inverse matrix g~ = (¢’ k)lﬁjyksm

ds* = 3 g(a)lda’||da®], || = detg.

1<j,k<n
The Laplace—Beltrami operator is defined in a coordinate chart as

Ay = gI720519" g7 O
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Note that for u,v € C?(M), we have the selfadjointness property
(Agu,v) = (u, Agv).
In fact, in a coordinate chart, we have
@)= [ (lol 20,192 0 )olgl 2o =~ [ 1ol 0pud 0

= /u|g|—1/28k(\g\1/2 g% 9;v)|g|2dz = (u, Agv). (10.5.28)
N

—ghi
The Laplace—Beltrami operator on S?, with parameters 60, ¢, |0| < 7,0 < ¢ < ,

is defined with
_ sin?¢ 0
9=\ o0 1

‘Agz::(sh1¢)71(59@h1¢)rf2694—6@(sh1¢)6¢)::(sh1¢)7233%73§4kta

and we recover the formula
1

00

Looking at the Laplace-Beltrami operator on S*!, we look at

S x (0,7) 3 (w, B) — wsing @ egqq cos p € ST

_ sin? ¢ gga—1 0
ng - O 1

Aga = (sin Qﬁ)—d-l-l ((sin ¢)d_1_2ASd71 + a¢(sin ¢)d_16¢)

= 8; + (d — 1) (sin ¢) "2 cos pdy + (sin @) " Aga—1
d—1

_ a2

=05+ tan ¢

and we note that

so that

O0s + (sin ¢)_2Agd—l .

10.6 Classical volumes and areas

We have calculated in (4.5.4) the volume of the unit ball B” of R™ as well as the
n — 1-dimensional “area” of the unit sphere S*~! with Formula (5.4.8).
Cones in R™

We consider a measurable set B C R™~! and a point V = (0,h) € R™! x R,
h > 0. The cone of R™ with base B and vertex V is defined as

T(V,B)={X = (z,2,) ER™ ' xR,IN> 1,V + XX - V) € Bx {0}}.
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This gives Az € B, h+ Az, —h) =0, ie, A=, " _ The volume of I'(V, B) is

h—Tm

h h—a,\™ "
TV, B)|m = // dzdz,y, :/ | B|m—1 ( m> dz,
w L *€B,0<z,, <h 0 h

= |Blm-1h™"  (m) " R,

that is )
D(V, B[y = |Blim—1h _ base x helght. (10.6.1)
m m
For a triangle in R? (m = 2) or a cone in R?® (m = 3), we recover the classical
formulas. Note that the cone T'(V, B) is the union of segments with endpoints V,
M e B:
X=01-6v+0M, MeBx{0}, 6€]0,1],

means that with A\ = é,
VAEMNX V)=V +0 (1 -0V +0M—-V) =M.

The converse follows from the fact that B> M =V + A(X — V) for some A > 1
implies X = A™1M + (1 = A"H)V.

Platonic polyhedra
Two-dimensional polygons

Before investigating the five 3-dimensional Platonic polyhedra, let us take a look
at the simple two-dimensional situation. A regular polygon with k sides (k > 3)
and circumscribed radius R has the area
27
N~ ~ -

height

1 .
A= _k 5 R Rsin(

# sides  base

Note that this quantity goes to mR? when k — 4o00. The length s of the side is
s = R|e*"/k —1| = 2Rsin(n/k), so that we may define A(s), the area of a regular
polygon with k sides of length s as

ks?

Ae) = 4 tan(r k)

(10.6.2)

Also the perimeter py, = 2kRsin(7/k) (a quantity going to 2R when k goes to
+00) and the apothem (distance from the center to a side) is

: 1
ar = R|1 + 62”/]“\2 = Rcos(n/k).

We note that

Ax(s) = pkzak _ 2kRsin(7r/l;)Rcos(7T/k) _ kR? sir;(?w/k). (10.6.3)
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Three-dimensional regular polyhedrons

e There are only five of them:
Tetrahedron: 4 faces (equilateral triangles), 6 edges, 4 vertices.

Cube: 6 faces (squares), 12 edges, 8 vertices.
Octahedron: 8 faces (equilateral triangles), 12 edges, 6 vertices.
Dodecahedron: 12 faces (regular pentagons), 30 edges, 20 vertices.
Isosahedron: 20 faces (equilateral triangles), 30 edges, 12 vertices.

We want to compute their areas and their volumes, choosing as a parameter the

length s of the edges. Denoting by S x(s) the area of the regular polyhedron with
N faces, whose faces are regular 2D polygons with k sides of length s, we have

SNyk(S) = NAk(S) (1064)

The apothem an (s) is defined as the distance from the center to a face: we have,
with Vv, (s) the volume of the regular polyhedron with N faces whose faces are
regular 2D polygons with & sides of length s,

NAk(5>aN,k(3) CLN,k(S)SN,k(S)

VN,k(S) = 3 = 3 . (10.6.5)

Since Sy i (s) is easy to determine with (10.6.4), the heart of the matter to find the
volume is to determine the apothem. Note that the apothem is the radius of the
inscribed sphere (R x(s) will stand for the radius of the circumscribed sphere).
e Cube, Octahedron, Tetrahedron with edge s.
Area of the cube: Sg4(s) = 6s%, Volume of the cube: Vg 4(s) = s°.
35 = 2V/35?
4V3 ’
apothem of the octahedron (computed below), ag3(s) = s/v/6,
as3(s)2v/3s? _ 3 2 _ E V2
3 V36 3

Area of the octahedron: Ss3(s) =8As(s) =8

Volume of the octahedron: Vs 3(s) =
We have indeed, calculating the center of a face,
R
1(0,0,1) + (1,0,0) + (0,1,0)|| = R/V3, 2R? =52,

3
where the last equality follows from the Pythagorean Theorem.

ag,g(s) =

4x3s*
Area of the tetrahedron: Sy 3(s) = 4A4s(s) = 43 = 5%V/3,
As(s)h 353/2 3
Volume of the tetrahedron: Vjs(s) = 3(5) = s*V - ° ,
3 4v/3 x3vV3 62
with h2 + r2 = s2 where r = s/\/B is the radius of the circumscribed cycle of the
equilateral triangle with side s.
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e Icosahedron, Dodecahedron. We start with the icosahedron. With coordinates in
CxR, the North pole is V = (0, R). Five vertices are issued from Vj with endpoints
W; = (re?™/5 R — h), j = 0,...,4, where r is the radius of the circumscribed
circle to the regular pentagon with sides s. We have

1
s2=r*4+n* r= ,5 , h252(1 5 >
2sinm/5 4sin“(m/5)
The center of the face VoWoW_1 is
1 1
3 (2rcos(m/5), R+ 2(R — h)) = a* = 9 (47% cos®(m/5) + (3R — 2h)?),
so that the apothem a of the icosahedron satisfies

= ; (452:;?((7;/ /55)) +OR? 445 (1 - 4sin21(7r/5)) —12Rs (1 = 4sin21(7r/5) > : )

We have also R? = ||W;||* = r? + (R — h)?, so that s> =72 + h? = 2Rh and
Res sin(7/5) .
\/4sin2(7r/5) -1
We obtain

a2:2

o ottt 2o 1+ (1 ttern) =9
21 1 sin“(7w/5 1
7 (ta 2(n/5) 4sin2(7(r/é)> 1 sin2(7.r/25) - 2)
AL
cos?(m/5
=5 3 \4sin®(n/5) -1/

2 1 2
Area of the icosahedron: Sag 3(s) = 2043(s) = 0 x 3s? 5s

W3 V3 5V3,
a20,3(5)S20,3(s) _ 155> cos(m /5)

3 -9 \/4sm

35 1 _ 5B+ V5)
3 /3tan?(7/5) — 1 12

Volume of the icosahedron: Vg 3(s) =

so that!4

Vao,3(s) =

14We shall use that

tan /5 = \/5 —2V/5, sinw/5 = ‘/2\/5;7 ‘/5, cosm/5 = ! +4‘/5, 3tan?(n/5) — 1 = (3 — v/5)%.
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Let us tackle finally the dodecahedron. This polyhedron is dual to the icosahedron:
taking the five centers of the faces VoW;W;1,0 < j < 4, we get the top horizontal
face of the dodecahedron so that the apothem of that dodecahedron is

1 B o 2h sin(7/5) 25 B 1 1/2
g+ AR-N) =R 3 \/4 sin(/5) — 3 (1 4sin2(7r/5)>
ssin(m/5) \/4s1n (r/5) — 1.

= \/4 in?(n/5) — 3sm7T/5

However the length of the side of this dodecahedron is not s but

1 L g
s = H 3(2rcos7r/5,3R— 2h) — 3(62”/527"6087r/5,3R— 2h)H

2rcosm/5 X 2sin7/5 s 2cosm/b x 2sinw/5 2cosm/5
— = S .
3 2sinm/5 3 3

As a result, we have

COSs T SIH()]T/S)) COos T
s aias(s) = ? /5 g /5 \/45111 (r/5) —1

\/45111 (r/5) — - 3sinm/5

3 tan(m/5)

B \/4sin2(7r/5) -1
3 tan(r/5)  /3tan?(r/5) — 1
B 2 cosm/5+/3 tan(7/5) — 1 2sin7/5
5 tan(m/5)2sinm/5 — (3tan?(m/5) — 1) cos /5
2sin /5 cosm/5/3 tan?(m/5) — 1
1
2sin7/5/3tan?(7/5) — 1

3
- 3Sin27r/5 \/4tan2(7r/5) —cos™2(n/5)

15
Area of the dodecahedron: Sia5(s) = 1245(s) = tan 2/5 = 523\/5 5+ 2v/5),

CL12,5( )512,5( ) S

Volume of the dodecahedron: Vis 5(s) = 3 , so that

15cosm/5 3154+ 75
= 8 .

\% s s3
125(8) =5 e 7/5+/3 tan?(r/5) — 1 4
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Notation

;1, interior of A, 4

A, closure of A, 4

0A, boundary of A, 4

Bc(z,r), closed ball with center z,
radius r, 5

B™, closed unit Euclidean ball of
R™, 108

B, Borel o-algebra of R™, 70

B(z,r), open ball with center z,
radius r, 5

C.(X), continuous functions on X,
valued in C, 67

ck = (}), binomial coef., 20

doo, sup-distance on R™, 100

Dy, Hausdorff dimension, 100

d(z, A), 68

Daz; = 2; aij’ 346

f«(u), pushforward of u, 20

I'; Gamma function, 465

b, Hausdorff measure, 96

by, Hausdorff outer measure, 96

[ufdp= [, fdu/u(A), 383

Jx fdp, 25

A < p, A absolutely continuous wrt
n, 321

|A], total variation of A, 319

A4, positive part of A, 321

A_, negative part of A\, 321

L' (), 35

L (p), 32

Ly

LE(R"), weak LP(R™), 293

My, maximal function, 383

My ® Ma, 189

Hac, 340

Msc, 340

Hsp, 340

No = card N, 410

O (R™), multipliers of ., 355

p*(n), Sobolev conj. exp., 397

R, 12

S (R™), 347

o(E, E*):weak top. on E, 440

o(E”, E):weak-* top. on E*, 443

S™~1. unit Euclidean sphere of R™,
237

S (R™), 343

supp f, support of f, 67

T4: the n X n complex nonsingular
symmetric matrices with
non-negative real part, 463
% : the n X n complex symmetric
matrices with a positive definite
real part, 354

u(z) = u(—x), 345

4, Fourier transform, 344

Y%, the neighborhoods of z, 4

X, X € C, 369

i T x: limy, xx = x, increasing
sequence, 21

Y¥={f: X =Y}, 42

lim inf, lim sup, 12

A L u, mutually singular measures, Abelian integral, 456

399 absolute continuity, 321
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Borel o-~, 7
complete o-~, 71
product o-~, 189

almost everywhere, a.e., 34
antiderivatives of rational fractions, 451
area of Euclidean spheres, 237
arithmetic mean, 130

axiom of choice, 115, 408

Baire space, 262
Baire theorem, 7, 262, 438
Banach
—Alaoglu theorem, 446
—Steinhaus theorem, 439
algebra L'(R™), 283, 286
space, 6
Beppo Levi theorem, 28
Bernoulli probability, 19
Beta function, 466
Bienaymé—Chebyshev inequality, 59
binomial coefficient, 20
binomial probability, 19

Borel
—Lebesgue property, 429
measure, 80
o-algebra, 7

Cantor
—Bendixson theorem, 249
function, 254
measure, 256
set with positive measure, 260
sets, 249
ternary set, 250
theorem, 411

Carathéodory theorem, 93
cardinal, 409

carrier, 322

Cartesian product of sets, 407
Cartesian rectangle, 189
category, 262

Cauchy probability, 19

change of variable formula, 228

Index

Chebyshev inequality, 59
closed ball, 5

closed set, 4

commutative convergence, 334
compact rectangle, 8

compact space, 429

complete o-algebra, 71
completion of a measure, 112
complex measure, 317
condensation point, 249
conjugate exponents, 130
connected topological space, 6
connectedness, 433
convergence in measure, 113, 163
convex function, 125
convolution, 283

countable, 1

countable additivity, 17

counting measure, 17

density of a measure, 318
derivative of a distribution, 347
diffeomorphism, 228
differentiability, 219
differential, 219

diffuse, 340

Dini condition, 362

Dini lemma, 111

Dirac measure, 18

Dirichlet kernel, 361

disjoint union of sets, 412
distance, 5

distributions with support {0}, 367
dual of LP(u), 1 < p < o0, 327

Egoroff theorem, 150
equi-integrability, 177
equipotence, 410
equivalence of norms, 5
Euler equation, 368

Euler—-Mascheroni constant, 117
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expectation, 19, 59
exponentiation of cardinals, 413
extended real line, 12

exterior unit normal, 241

Fo, 7

Fatou lemma, 30

filter, 425

first category, 262, 439

flat function, 108

floor function, 16

formula
change of variable ~, 228
Fourier inversion ~, 345
Gauss ~, 465
Gauss—Green ~, 240
Green—Riemann ~, 241
multinomial ~, 58
Plancherel ~, 351
Poisson ~, 357
sieve ~, 56
Taylor ~, 265
Taylor ~ with integral remainder,

265

Taylor-Lagrange ~, 265
Taylor-Young ~, 265
Weierstrass ~, 467

Fourier
inversion formula, 345
transform, 343, 344

of Gaussian functions, 354

Fréchet space, 366
Fresnel integrals, 461
Fubini theorem, 197

function
Beta ~, 466
Cantor ~, 254
convex ~, 125
flat ~, 108
floor ~, 16
Gamma, ~, 465
greatest integer ~, 16
maximal ~, 383
piecewise affine ~, 109
repartition ~, 19
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simple ~, 15

Gs, 7

GA inequality, 155

Gabor wavelet, 357
Gagliardo—Nirenberg inequality, 389
Gamma function, 465
Gauss formula, 465
Gauss—Green formula, 240
Gaussian integrals, 459
geometric mean, 130
greatest integer function, 16
greatest lower bound, 12

Green—Riemann formula, 241

Hahn decomposition, 326
Hahn-Banach theorem, 437

Hardy—Littlewood maximal inequality,
383

Hardy—Littlewood—Sobolev inequality,
297, 301

harmonic mean, 155
Hausdorff

dimension, 99

of the Cantor ternary set, 253

measures, 96

space, 429
HGA inequality, 155
Holder inequality, 130
homogeneous distributions, 368
horizontal slice, 190

hypersurface measure, 238

inclusion-exclusion principle, 56
induced topology, 6
induction, 408
inequality
Bienaymé-Chebyshev ~, 59
Chebyshev ~, 59
GA ~, 155
Gagliardo—Nirenberg ~, 389
Hardy-Littlewood maximal ~, 383
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Hardy—Littlewood—Sobolev ~, 297,
301

HGA ~, 155

Holder ~, 130

isodiametric ~, 246

Jensen ~, 128

Minkowski ~, 130

Young ~, 288
inner regular, 80
integer value, 16
integration on a hypersurface, 238
inverse function theorem, 229
isodiametric inequality, 246

isolated point, 51

Jensen inequality, 128

Jordan decomposition, 321

Laplace
—Beltrami operator, 473
—Gauss probability, 19
equation, 471
operator, 241
law of large numbers, 40, 59
least upper bound, 12

Lebesgue
decomposition, 323
differentiation theorem, 386
dominated convergence, 37
measure, 86
points, 386

lemma
Dini ~, 111
Fatou ~, 30
Riemann—Lebesgue ~, 148
Urysohn ~, 105
Wiener covering ~, 384
Zorn ~, 408

length of a multi-index, 343
liar’s paradox, 41

liminf, 12, 103

limsup, 12, 103

linear change of variables, 227
logarithm, 461

Index

logarithm of a matrix, 463
logarithmic convexity, 155, 468
lower semicontinuous, 103

Lusin theorem, 151

Marcinkiewicz interpolation theorem,
380
maximal function, 383
meager, 249, 439
mean inequality theorem, 221
mean value theorem, 266
measurability, 1
measure
Borel ~, 80
Cantor ~, 256
complex ~, 317
counting ~, 17
Dirac ~, 18
Hausdorff ~, 96
hypersurface ~, 238
Lebesgue ~, 86
mutually singular ~s, 322
outer ~, 73
positive ~, 17
positive Radon ~, 71
probability ~, 17
pushforward ~, 20
Radon ~, 71
real ~, 317
regular ~, 80
sigma-finite ~, 113
signed ~, 318
space, 17
total variation ~, 319
metric space, 5
Minkowski inequality, 130
monotone class, 193
monotone class theorem, 209
multi-index, 343
multinomial formula, 58
multipliers of ./ (R"), 355

mutually singular measures, 322

negligible set, 34
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non-measurable set, 115, 258
non-separable space, 171
norm, 5

normally convergent series, 159

nowhere dense, 249

open
ball, 5
mapping theorem, 440
rectangle, 8
set, 3

order relation, 407
outer measure, 73

outer regular, 80

pairwise disjoint sets, 17
partial derivatives, 219
partition, 2, 319
partition of unity, 69
path-connectedness, 435
perfect set, 249
phase translation, 357
piecewise affine function, 109
Plancherel formula, 351
Platonic polyhedra, 475
Poisson formula, 357
Poisson probability, 20
polar coordinates, 233
polar decomposition, 337
positive measure, 17
positive Radon measure, 71
probability measure, 17
probability space, 17
product

of cardinals, 413

o-algebra, 189

tensor ~ of o-finite measures, 195

topology, 431

pure point part, 340

pushforward measure, 20

quadrics, 271
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quasi-compactness, 429

quasi-norm, 293

Radon
—Nikodym derivative, 323
—Nikodym theorem, 323
measure, 71

rare, 249

rare (nowhere dense) subset, 439
real measure, 317

regular measure, 80

repartition function, 19, 63
Riemann-Lebesgue lemma, 148

Riesz—Markov representation theorem,
70

Riesz—Thorin interpolation theorem,
373

Russell’s paradox, 41

Schréder—Bernstein theorem, 410
Schwartz space, 343
secant filters, 426
second category, 262, 439
semi-norm, 437
sieve formula, 56
sigma
-additivity, 17
-algebra, 1
-finite measure, 113
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signed measure, 318
simple function, 15
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Sobolev
conjugate exponent, 397
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Banach ~, 6
compact ~, 429
connected topological ~, 6
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measure ~, 17
metric ~; 5
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Schwartz ~, 343
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standard deviation, 19
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Stone—Weierstrass theorem, 207
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support of
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a distribution, 348
an L' function, 111
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Taylor
—Lagrange formula, 265
—Young formula, 265
formula with integral remainder, 265
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theorem
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Banach—Alaoglu ~, 446
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Beppo Levi ~, 28
Cantor ~, 411
Cantor—Bendixson ~, 249
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Tychonoff theorem, 429

ultrafilter, 427
unicursal representation, 457
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Urysohn lemma, 105

variance, 19, 59
vertical slice, 190

volume of
a cone, 474
Euclidean balls, 237
the unit ball, 211

Wallis integrals, 470
wave packets, 357

weak LP, 293

weak-type (p, q), 380
Weierstrass formula, 467
well-ordered set, 407

Wiener covering lemma, 384
Young inequality, 288

Zermelo theorem, 408

Zorn lemma, 408



	Contents
	Preface
	Integration Theories
	Riemann’s integral
	The Lebesgue perspective
	Description of the contents of the book

	Chapter 1 General Theory of Integration
	1.1 Measurable spaces, σ-algebras
	1.2 Measurable spaces and topological spaces
	1.3 Structure of measurable functions
	1.4 Positive measures
	1.5 Integrating non-negative functions
	1.6 Three basic convergence theorems
	1.7 Space L1(µ) and negligible sets
	1.8 Notes
	1.9 Exercises
	Elementary set theory
	Topology
	Measure theory


	Chapter 2 Actual Construction of Measure Spaces
	2.1 Partitions of unity
	2.2 The Riesz–Markov representation theorem
	2.3 Producing positive Radon measures
	2.4 The Lebesgue measure on Rm, properties and characterization
	2.5 Carathéodory theorem on outer measures
	2.6 Hausdorff measures, Hausdorff dimension
	Definition, first properties
	Hausdorff dimension
	Hausdorff measures on Rm

	2.7 Notes
	2.8 Exercises
	Topology
	Measure theory
	Calculations


	Chapter 3 Spaces of Integrable Functions
	3.1 Convexity inequalities (Jensen, Hölder, Minkowski)
	3.2 Lp spaces
	3.3 Integrals depending on a parameter
	Continuity
	Differentiability
	Holomorphy

	3.4 Continuous functions in Lp spaces
	3.5 On various notions of convergence
	3.6 Notes
	3.7 Exercises

	Chapter 4 Integration on a Product Space
	4.1 Product of measurable spaces
	4.2 Tensor product of sigma-finite measures
	4.3 The Lebesgue measure on Rm and tensor products
	4.4 Notes
	4.5 Exercises

	Chapter 5 Diffeomorphisms of Open Subsets of Rn and Integration
	5.1 Differentiability
	5.2 Linear transformations
	5.3 Change-of-variables formula
	5.4 Examples, polar coordinates in Rn
	Polar coordinates in R²
	Spherical coordinates in R³
	Polar coordinates in Rn

	5.5 Integration on a C¹ hypersurface of the Euclidean Rn
	5.6 More on Hausdorff measures on Rm
	5.7 Cantor sets
	Perfect sets, Nowhere dense sets
	Cantor ternary set
	The Cantor function
	Lebesgue and Borel measurability
	A Cantor set with positive measure

	5.8 Category and measure
	5.9 Notes
	5.10 Exercises

	Chapter 6 Convolution
	6.1 The Banach algebra L1(Rn)
	6.2 Lp Estimates for convolution, Young’s inequality
	6.3 Weak Lp spaces
	6.4 The Hardy–Littlewood–Sobolev inequality
	6.5 Notes
	6.6 Exercises

	Chapter 7 Complex Measures
	7.1 Complex measures
	7.2 Total variation of a complex measure
	7.3 Absolute continuity, mutually singular measures
	7.4 Radon–Nikodym theorem
	7.5 The dual of Lp(X,M,µ), 1 ≤ p < +∞ 
	Main result
	The Banach spaces c0, lp
	Duality results
	Examples of weak convergence

	7.6 Notes
	7.7 Exercises

	Chapter 8 Basic Harmonic Analysis on Rn
	8.1 Fourier transform of tempered distributions
	The Fourier transformation on J(Rn)
	The Fourier transformation on J'(Rn)
	The Fourier transformation on L1(Rn)
	The Fourier transformation on L2(Rn)
	Some standard examples of Fourier transform
	Fourier transform of Gaussian functions
	Multipliers of J'(Rn)

	8.2 The Poisson summation formula
	Wave packets
	Poisson’s formula

	8.3 Periodic distributions
	The Dirichlet kernel
	Pointwise convergence of Fourier series
	Periodic distributions

	8.4 Notes
	8.5 Exercises

	Chapter 9 Classical Inequalities
	9.1 Riesz–Thorin interpolation theorem
	9.2 Marcinkiewicz Interpolation Theorem
	9.3 Maximal function
	9.4 Lebesgue differentiation theorem, Lebesgue points
	9.5 Gagliardo–Nirenberg inequality
	9.6 Sobolev spaces, Sobolev injection theorems
	9.7 Notes
	9.8 Exercises

	Chapter 10 Appendix
	10.1 Set theory, cardinals, ordinals
	Set theory
	Cardinals
	Ordinals
	Introduction
	Ordering of ordinals
	Addition of ordinals
	Uncountable well-ordered sets


	10.2 Topological matters
	Filters
	General properties of filters
	Filters in a topological space

	Compactness and Tychonoff’s Theorem
	Connectedness of topological spaces
	Partitions of unity in a topological space
	Hahn–Banach Theorem
	Baire category theorem and its consequences
	Banach–Steinhaus

	General properties of filters
	Filters in a topological space
	Banach–Steinhaus
	Open mapping Theorem

	10.3 Duality in Banach spaces
	Definitions
	Weak convergence
	Weak-* convergence on E*
	Reflexivity

	10.4 Calculating antiderivatives
	Table of classical antiderivatives
	Integrating rational fractions
	Antiderivatives of rational fractions of cos x, sin x
	Abelian integrals
	The function φ in 10.4.4 enjoys a parametric unicursal representation

	Some Fourier integrals
	Gaussian integrals

	10.5 Some special functions
	The complex logarithm
	Logarithm on C\R_
	Logarithm of a nonsingular symmetric matrix

	The Γ function
	Wallis integrals

	Laplace equation in spherical coordinates
	More calculations on the Laplace operator
	Laplace–Beltrami operator


	10.6 Classical volumes and areas
	Platonic polyhedra
	Two-dimensional polygons
	Three-dimensional regular polyhedrons


	Bibliography
	Index

