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Preface

A mathematical model constructed for a real system must be calibrated by data 
and its uncertainty must be assessed before used for prediction, decision making, 
and management purposes. After more than a half century of study, however, the 
construction of a reliable model for complex systems is still a challenging task.

In mathematical modeling, the “prediction problem” or the “forward problem” 
(inputs → outputs) uses as model inputs a fixed model structure, known model pa-
rameters, given system controls, and other necessary information to find the sys-
tem states (as model outputs). Unless all properties of the modeled system can be 
measured directly, model inputs tend to always contain unknowns or uncertainties 
that have to be determined indirectly. Model calibration (outputs → inputs) uses the 
measured system states and other available information to identify or estimate the 
unknown model inputs. Thus, in a certain sense it is the “inverse problem” of model 
prediction. The history of studying model calibration is probably as long as the his-
tory of forward modeling, but the progress of study had been slow due to the very 
nature of inversion: identifying the causes from results is always more difficult than 
predicting the results on the basis of known causes. Various optimization-based 
data-fitting methods developed for solving the classical inverse problem in math-
ematics have been proven to be successful for model calibration, only if a system’s 
structure is simple and well-defined, and both the number and dimensions of un-
known parameters are low. When these assumptions do not hold, the use of data-
fitting may produce an unacceptable model. 

With the advances in computing, instrumentation, and information technologies, 
more and more sophisticated numerical models have been developed for simulating 
complicated physical, chemical, and biological processes observed in environment, 
energy, water resources, and other scientific and engineering fields. The advent of 
highly sophisticated software packages has made solution to the “forward problem” 
much easier, but, at the same time, calibrating the resulting model becomes more 
difficult due to the increase of model complexity. Modelers gradually realize that: 
(1) the requirement of model uniqueness has to be given up; (2) the classical con-
cept of model inversion must be extended to include model structure identification, 
model reduction, and model error quantification; and (3) five fundamental prob-
lems of modeling technology (i.e., the model selection problem, model calibration 
problem, model reliability problem, model application problem, and data collection 
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problem) must be considered systematically rather than separately or sequentially 
during the model construction stage. The model calibration problem has thus be-
come more challenging but, at the same time, the process of solving the problem 
becomes more interesting and rewarding than the simple data-fitting exercise. Em-
powered by these methodological understandings and newly developed tools in 
mathematics and statistics, the research on model construction has made significant 
progress in recent years. As a result, existing methods have been improved and new 
and promising approaches have emerged. 

This book provides a comprehensive introduction on all aspects of constructing 
useful models: from the deterministic framework to the statistical frameworks; from 
the classical inverse problem of parameter estimation to the extended inverse prob-
lem of system structure identification; from physical-based models to data-driven 
models; from model reduction to model uncertainty quantification; from data suffi-
ciency assessment to optimal experimental design; and from basic concepts, theory, 
and methods to the state-of-the-art approaches developed for model construction. 
A central problem to be considered in this book is how to find surrogate models for 
predetermined model applications. 

Chapter 1 is a general description of the modeling technology. Models that are 
often seen in environmental and water resources fields are introduced here and are 
used to exemplify different methods throughout the book. Based on different crite-
ria of model calibration, three kinds of inverse problem are defined: the classical in-
verse problem (CIP) for parameter estimation, the extended inverse problem (EIP) 
for system identification, and the goal-oriented inverse problem (GIP) for model 
application. After reading this chapter, readers will be able to get a holistic picture 
of mathematical modeling, know the difficulties and problems of model construc-
tion, and learn how this book is organized. 

Part I of this three-part book (Chapter 2−5) is contributed to the solution of CIP. 
Basic concepts and methods on linear model inversion and single-state nonlinear 
model inversion are given in Chapter 2; singular value decomposition and various 
nonlinear optimization algorithms are introduced briefly. In Chapter 3, the multi-
state model inversion is cast into a multi-objective optimization problem and solved 
by the evolutionary algorithms. Regularization is also introduced in this chapter 
from the point of view of multi-criterion inversion. The inverse problem is refor-
mulated and resolved in the statistical framework in Chapter 4. Monte Carlo based 
sampling methods, including the Markov Chain Monte Carlo method, are intro-
duced for finding the posterior distribution. Various methods of model differentia-
tion are given in Chapter 5. Model differentiation is a necessary tool for almost all 
topics covered in this book. 

Part II of this book (Chapter 6−8) is dedicated to the solution of EIP. In Chapter 
6, various methods for parameterizing deterministic functions or random fields are 
introduced. Principal component analysis and other linear and nonlinear dimension 
reduction methods, as well as their applications to inverse solution, are covered. 
Model structure identification and hyperparameter estimation are the main topics 
of Chapter 7, in which various adaptive parameterization approaches, the level set 
method, multiscale inversion, and geostatistical inversion are introduced. Methods 
for constructing data-driven models are given in Chapter 8, including linear regres-
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sion and various machine learning methods such as artificial neural networks, sup-
port vector machine, and Gaussian process regression. 

Part III of the book (Chapter 9−12) is contributed to the topic of model reliability. 
Chapter 9 introduces various data assimilation methods for inverse solution that al-
low us to update a model continuously to improve its reliability whenever new data 
become available. Methods used for uncertainty quantification, including Monte 
Carlo simulation, global sensitivity analysis, stochastic response surface, are intro-
duced systematically in Chapter 10. The effects of model parameter uncertainty and 
model structure uncertainty on model outputs are assessed. To construct a more reli-
able model, more data are needed. Design of informative and cost-effective data col-
lection strategies is the subject of Chapter 11, in which, optimal experimental design 
is formulated into a multi-objective optimization problem. The criteria of optimal 
design for linear model inversion are derived. For nonlinear model inversion, Bayes-
ian and robust design methods, especially, the interval-identifiability-based robust 
design, are introduced. In Chapter 12, after the goal-oriented forward problem is 
described, the GIP is formulated and solved in both the deterministic and statistical 
frameworks. When the existing data are insufficient, a cost-effective experimental 
design method is given. Finally, the goal-oriented pilot-point method is described.

Preliminary mathematics required for reading this book is reviewed in details 
in three Appendices. To help readers better understand the text, review questions 
are given at the end of each chapter. All major methods introduced in this book are 
illustrated with numerical examples created by the authors, including the informa-
tion on available toolboxes. Alex Sun authored Chapters 6, 8, 9, and 10 and edited 
the whole book. Other chapters are authored by Ne-Zheng Sun. This book can be 
used as a textbook for graduate and upper-level undergraduate students majoring in 
environmental engineering, hydrology, or geosciences. It also serves as an essential 
reference book for petroleum engineers, mining engineers, chemists, mechanical 
engineers, biologists, medical engineers, applied mathematicians, and others who 
perform mathematical modeling. Much of the research conducted by the authors 
over the years has been made possible by the support from U.S. National Science 
Foundation (NSF), National Aeronautics and Space Administration (NASA), De-
partment of Energy (DOE), Environmental Protection Agency (EPA), and Nucle-
ar Regulatory Commission (NRC). We are grateful to all of our current and past 
collaborators for insightful discussions. Ne-Zheng Sun would like to give special 
thanks to Drs. Jacob Bear and William Yeh for their guidance, support, collabora-
tion, and long-term friendship. Alex Sun would like to thank Drs. Yoram Rubin and 
Dongxiao Zhang, and his colleagues at the University of Texas at Austin for their 
advice and collaboration. 

We are grateful to the editors Achi Dosanjh, Donna Chernyk, and Danielle Walk-
er at Springer for their support and guidance in every step of the process. Finally, 
we would like to thank Fang and Zhenzhen for their endless love, sacrifice, and 
patience during this multiyear-long book project. 

Santa Monica, CA Ne-Zheng Sun
Austin, TX  Alex Sun
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The German physicist Werner Heisenberg once said, “What we observe is not 
nature herself, but nature exposed to our method of questioning.” Mathematical 
models have long served as such a tool of questioning. A mathematical model of a 
physical system quantitatively describes the relationship among various variables 
that characterize the states, internal structure, and external conditions of the system.

In Sect. 1.1, several commonly seen models in environmental and water resourc-
es (EWR) studies are shown. A general form of mathematical models and their clas-
sifications is then provided. Different mathematical models are constructed across 
different science and engineering disciplines. Models used in the EWR fields are 
often nonlinear, dynamic, stochastic, and governed by partial differential equations 
(PDEs). The traditional process of constructing a EWR model involves data col-
lection, conceptualization, model calibration/parameter estimation, and finally, the 
evaluation of model reliability. During this process, the following problems must 
be solved: (1) the forward problem for simulation and prediction; (2) the inverse 
problem for model calibration and parameter estimation; (3) the design problem 
for effective data collection; and (4) the reliability problem for model application.

In EWR modeling, the solution of forward problem has become routine. We 
assume that readers of this book are already familiar with the solution of forward 
problems in their own fields. Thus, no attempt is made to survey numerous forward 
solution techniques existing in the literature; instead, a brief introduction to basic 
analytical and numerical methods is provided in Sect. 1.2.

Data types available for model construction include prior information, direct 
measurements of parameters, observations of state variables, as well as the accuracy 
requirement of model applications. Depending on the availability and use of differ-
ent types of data, different approaches and criteria for model calibration and param-
eter identification exist. The classical inverse problem (CIP) reverses the forward 
solution to seek model inputs from model outputs, under the assumption that the 
model structure error is absent. In Sect. 1.3, two common criteria, “fitting observed 
data” and “using prior information,” are used to formulate the inverse problem in 
both deterministic and statistical frameworks. The extended inverse problem (EIP), 
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requiring the identification of both model structure and model parameters in an 
adaptive sense, is also introduced in that section.

The model reliability problem to be introduced in Sect. 1.4 has recently become 
one of the most concerned issues in EWR modeling. But this problem is very chal-
lenging because of the inherent difficulties related to determining the model scale, 
model complexity, and data sufficiency. The goal-oriented inverse problem (GIP) 
incorporates “reliability assurance” as the third criterion in its formulation, in which 
separate models are constructed for the same system according to the goals of mod-
el applications and associated accuracy requirements.

1.1  Mathematical Modeling

1.1.1  Modeling an Open System

A EWR system, such as a watershed or groundwater basin, is an open system that 
continuously exchanges mass and/or energy with its surroundings. The states of a 
EWR system are determined by both its internal structure and external conditions. 
The following types of variables are often used to characterize a EWR system:

• State variables that characterize the states of a system
• System parameters that characterize the structure and properties of a system
• Boundary parameters that describe the outer conditions of a system in both spa-

tial and temporal domains
• Control variables that represent external forces acting on a system.

Mathematical models are omnipresent in EWR fields, including surface hydrol-
ogy, hydrogeology, environmental engineering, petroleum engineering, agriculture, 
ecology, and cross-disciplinary fields coupling two or more of these individual 
subjects. These EWR models are derived from the laws of mass, energy, and mo-
mentum conservation, empirical formulas, constitutive relationships, or statistical 
learning theory. They are also determined by appropriate subsidiary conditions and 
assumptions used during model simplification. Some examples are given below.

1.1.2  Examples of EWR Models

Example 1.1 The Monod model of biomass growth
Monod model is used for describing the growth of microorganisms (Bungay 1998)

 (1.1.1)µ
µ

=
+

max ,
S

K SS
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where µ  is the specific growth rate, S is the nutrient concentration, maxµ  is the 
maximum specific growth rate, and KS  is the Monod coefficient. In this model, µ  
is the state variable, S is the control variable, and maxµ and KS  are model parame-
ters to be determined by experiments. In (1.1.1), the state variable is given explicitly 
by an algebraic equation. 

Example 1.2 A convolution integral model for spring discharge prediction
The relationship between precipitation rate p(t) and spring discharge q(t) in a basin 
can be represented by the following model (Beven 2001)

 (1.1.2)

where the transfer function K(·)  reflects catchment characteristics and can be ob-
tained from historical observations of p t( ) and q t( ) . In this model, K(·)  is the 
model parameter, p t( )  is the control variable, and the state variable q t( )  is given 
by a convolution integral. 

Example 1.3 Lumped parameter rainfall–runoff model
A lumped parameter rainfall–runoff model of a watershed can be expressed in the 
following general form (Sorooshian 2008; Beven 2001)

 (1.1.3)

where the watershed is divided into M subbasins, u = …( , )u uM
T

1  is the state vec-
tor, with its ith component representing the average soil moisture content of the ith 
subbasin, (·)f  is a nonlinear operator representing the system transition over an 
instant of time, θ  is a set of system parameters, and p( )t  is a forcing term whose 
ith component represents the average precipitation rate over the ith subbasin. Equa-
tion (1.1.3) is a set of ordinary differential equations (ODE), and an appropriate 
initial condition u u( ) |t t= =0 0  is needed for its solution. It can be considered as a 
discretized form of a distributed parameter rainfall–runoff model. 

Example 1.4 Channel flow model
Water flow in a shallow river can be modeled by the Saint Venant equations, which 
assume 1-D flow, small bed slopes, and hydrostatic pressure distribution in the ver-
tical direction (Chow 1959)

 
(1.1.4)

and

 
(1.1.5)
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In (1.1.4), x is the longitudinal distance along the river, h x t( , )  is the water depth, 
v x t( , )  is the flow velocity, and q x t( , )  denotes the lateral inflow rate per unit length 
of the river. In (1.1.5), g  is the acceleration of gravity; F v h S Sf( , ) = −0 , where 

0S  is the riverbed slope, fS  is the energy slope defined as 2 2/v c h , and c  is 
a roughness coefficient. The 1-D Saint Venant equations are nonlinear first-order 
PDEs that require appropriate auxiliary conditions to solve for ( , )h x t  and ( , )v x t .

The appropriate auxiliary conditions for (1.1.4) and (1.1.5) include initial con-
ditions 00( , ) ( )h x f x=  and 00( , ) ( )v x g x=  at 0t =  and boundary conditions 

10( , ) ( )h t f t=  and 10( , ) ( )v t g t=  at the upstream end 0x = , where 0 1 0, ,f f g , and 
1g  are known functions. This model consists of two coupled nonlinear PDEs with 

the state variables ( , )h x t  and ( , )v x t , control variable q , parameters c  and 0S , and 
initial and boundary conditions. 

Example 1.5 Water quality control of a river segment
Water quality in a river segment is affected by the quality of inflow water from its 
upstream boundary. Assume that the purpose of constructing a model is to manage 
the water quality along the river segment. If the river is relatively narrow and shal-
low, only the cross-sectional average concentration along the river segment needs to 
be known. In this case, we can use the following 1-D advection–dispersion–reaction 
model (Schnoor 1996):

 (1.1.6)

with initial and boundary conditions

 (1.1.7)

The governing equation (1.1.6) is a second-order parabolic PDE derived from the 
mass conservation and Fick’s law. In this model, the cross-sectional average con-
centration distribution, ( , )C x t , is the state variable, and the concentration of inflow 
water, ( )inC t , is the control variable. Other parameters and variables include the 
flow velocity v ; the dispersion coefficient D, which represents not only the molecu-
lar diffusion, but also the effect of the small-scale turbulent flow; the linear reaction 
rate constantR ; the length of the river segment L ; and the initial concentration 
distribution 

0C .
If the reaction is nonlinear, the reaction term will depend on the concentration. 

For uniform and steady-state flow, the velocity ( , )v x t  in (1.1.6) can be measured. 
When the river flow is nonsteady and nonuniform, however, ( , )v x t  must be calcu-
lated using the river flow model presented in Example 1.4. 

Example 1.6 Modeling groundwater flow in an unconfined aquifer
Transient flow in an unconfined aquifer is governed by the following second-order 
parabolic PDE by invoking the Dupuit–Forchheimer approximation, which states 
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that water-level variation in the horizontal direction is negligible and head distribu-
tion in the vertical direction is hydrostatic (Bear 1979):

 (1.1.8)

In (1.1.8), ( , , )h x y t  is the water table elevation; iW  is the pumping rate from the 
ith well located at ; wi Nx  is the total number of wells; ( )iδ −x x  is the Dirac delta 
function; RQ  is the net recharge rate per unit area; yS  is the specific yield; K  is 
the hydraulic conductivity; and b is the bottom elevation of the aquifer. To solve the 
state variable ( , , )h x y t  from (1.1.8), we must have the following information: con-
trol variables 

iW  and RQ ; system parameters ,yS K , and b; the geometry of flow 
region Ω ; the initial condition 00( , , )h x y f=  over Ω; and the boundary conditions 

1
1h f

Γ
=  and 

2
2( ) ·K h b h f

Γ
− − ∇ =n  along the entire boundary of Ω , where 0 1,f f , 

and 2f  are known functions, 1Γ  is the given water-level boundary condition, and 2Γ  
is the given flux boundary section with n  being its unit normal vector. In practice, 
the above-mentioned conditions and parameter values may not be known complete-
ly and exactly. 

Example 1.7 Cleanup of a contaminated aquifer
Pump-and-treat is a remediation technology commonly used in the remediation of 
contaminated aquifers. To determine pumping locations and rates, we can couple a 
groundwater flow model, such as the one given in Example 1.6, with a 2-D advec-
tion–dispersion model (Bear 1979):

 (1.1.9)

subject to initial and boundary conditions

 (1.1.10)

In this model, the state variable, ( , , )C x y t , is the contaminant concentration in the 
aquifer; θ  is the effective porosity; ( , , )x y tV  is the average linear velocity deter-
mined using the hydraulic head ( , , )h x y t  solved from the flow model; D  is the 
hydrodynamic dispersion coefficient (a tensor); and ( )S C  is a sink/source term 
accounting for chemical reaction, decay, and adsorption processes. In the auxiliary 
conditions given in (1.1.10), 0 1,g g , and 2g  are known functions, and other nota-
tions are the same as those given in Example 1.6.

Hydrodynamic dispersion accounts for the effects of mechanical dispersion and 
molecular diffusion in porous media. Mechanical dispersion is caused by the dif-
ference between the average velocity in the macroscopic level and the distributed 
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velocity in the microscopic level. For an isotropic porous medium, the dispersion 
coefficient D  depends on the flow velocityV, longitudinal dispersivity Lα , and 
transverse dispersivity Tα , according to

 (1.1.11)

where 11 12 21, ,D D D , and 22D are elements of the tensor 1, VD  and 2V  are compo-
nents of V  and V  is its magnitude, dD  is the molecular diffusion coefficient, and 
0 1τ< <  is a coefficient related to tortuosity of flow paths in the porous medium. 
Detailed derivation of the advection–dispersion equation (1.1.9) can be found in 
Bear (1979) and Sun (1996).

Major assumptions underlying (1.1.9) include the following: (i) Upscaling of the 
flow field from the microscopic level to the macroscopic level is valid; (ii) Fick’s 
law is applicable for hydrodynamic dispersion; (iii) the Dupuit–Forchheimer as-
sumption is valid; and (iv) a 2-D mass transport model is acceptable; if not, a 3-D 
coupled flow and contaminant transport model should be constructed.

When the control variables (i.e., the extraction locations and rates) are changed 
in the flow model, the flow field V  and the dispersion tensor D  in the mass trans-
port model are changed accordingly, which cause the change in concentration dis-
tribution. The effect of pump-and-treatment can thus be predicted. 

Example 1.8 Large-scale emission management
In large-scale air pollution modeling, the concentration distribution of a chemical 
compound is governed by a mass balance equation that takes account of the effects 
of advection, dispersion, deposition, emission, and chemical reactions (Zannetti 
1990). If cN chemical components are involved, the model consists of the follow-
ing cN -coupled PDEs:

 (1.1.12)

where ( , )iC tx  is the concentration distribution of the ith chemical compound,K is 
a dispersion tensor that accounts for the effect of small-scale airflow,V is the aver-
age velocity of airflow at the large scale, ik  is the deposition rate of the ith com-
pound, ( , )iE tx is the emission source strength, and iQ  is the function of chemical 
reactions between the ith compound and other compounds.

An important assumption used in deriving (1.1.12) is the so-called K-theory that 
is similar to Fick’s law. It states that the large-scale dispersion flux, caused by the dif-
ference between the small-scale airflows and the average airflow at the large scale, 
is proportional to the concentration gradient, with the dispersion tensor K  being 
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the proportion coefficient. In the case of steady-state airflow, we can use a diag-
nostic model, for which the velocity V in the advection term is simply obtained by 
interpolation and extrapolation of meteorological measurements. When the purpose 
of model construction is to predict the development of a contaminant plume under 
transient airflow condition, a prognostic model is needed where the velocityV is 
obtained by solving a dynamic meteorological model.

The air pollution model consists of cN -coupled, second-order parabolic PDEs 
and their auxiliary conditions. In this model, the cN  concentration distributions are 
state variables, the emission source strengths are control variables for managing the 
air quality, and others are system parameters that can be calculated by empirical 
formulae or estimated by data. The components of airflow velocity and dispersion 
tensor may contain significant uncertainty. ■

From the examples presented thus far, we can draw the following conclusions:

• The governing equations of a physics-based model are derived from fundamen-
tal physical and chemical laws and, thus, can be used in any case; however, the 
values of system parameters and auxiliary conditions are case dependent and 
need to be determined on a case-by-case basis.

• Different governing equations may be derived for the same problem when differ-
ent assumptions are involved. Making assumptions and simplifications is essen-
tial in EWR modeling because we cannot construct a model that characterizes a 
EWR system exactly in all aspects and at all scales. In fact, the process of choos-
ing appropriate assumptions and determining the appropriate level of model 
complexity is also case dependent and is oftentimes an art in EWR modeling.

As a solid example of the above conclusions, we see that models of mass trans-
port in rivers (Example 1.5), porous media (Example 1.7), and air (Example 1.8) 
all share the same mathematical form, namely the advection–dispersion–reaction 
equation

 (1.1.13)

which is subject to appropriate auxiliary conditions. However, the dispersion coef-
ficient D  has different physical explanations and magnitudes in different problems 
and the same for the reaction term ( )R C  and sink/source term E . Equation (1.1.13) 
may become nonlinear when D  or V  is dependent on C (in the case of viscous 
flow) or when ( )R C  is a nonlinear function.

1.1.3  General Form and Classification

Although different systems and models appear in different EWR fields, all of them 
can be expressed in the following general form:

 (1.1.14)

∂
∂
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C
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Equation (1.1.14) is called an operator equation (see Appendix A). It may consist 
of one or a set of algebraic equations, integral equations, ODEs, or PDEs that rep-
resent the quantitative relationships between state variables and other variables or 
parameters of the system under consideration. In (1.1.14), , ,u q p , and b  are state 
variables, control variables, model parameters characterizing the internal proper-
ties of the system, and boundary parameters in both spatial and temporal domains, 
respectively. They can be scalars, vectors, functions, and vector functions.

A classification of mathematical models is provided below:

• Single-state model versus multistate model, depending on whether the number of 
state variables is one or more than one.

• Linear model versus nonlinear model, depending on whether or not all model 
equations are linear.

• Deterministic model versus probabilistic (or stochastic) model, depending on 
whether random variables appear in model equations.

• Lumped parameter model versus distributed parameter model, depending on 
whether or not spatially varying parameters are involved in model equations. 
When the spatial variability of a system can be ignored or averaged, the sys-
tem can be regarded as a point and simulated by a lumped parameter model. A 
distributed parameter model is represented by PDEs, while a lumped parameter 
model is represented by ODEs.

• Steady-state model versus transient model, depending on whether or not the time 
variable is involved in model equations.

• Physics-based model versus data-driven model, depending on whether or not 
physically based parameters appear in model equations.

All model types listed in the above exist in EWR modeling, as we have already 
seen in Sect. 1.1.2. The state of a EWR system may be characterized by more than 
one correlated state variables, its structure is usually inhomogeneous, the relation-
ships between its variables can be nonlinear, its state variables and parameters may 
depend on both locations and time, and its internal structure and external conditions 
are usually uncertain. As a result, (1.1.14) can be a highly complex mathematical 
model for a EWR system. This book focuses on the construction and calibration of 
such highly complex models.

1.1.4  Model Construction Process

A typical process of constructing an EWR model consists of the following steps 
(Fig. 1.1):

• Data collection: Collect all existing data that can provide information for model 
construction and calibration, such as measurements of state variables, control 
variables, and system parameters, and the knowledge of experts; site-specific 
field campaigns may be designed and conducted to acquire additional informa-
tion.
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• Conceptual model development: Select an appropriate model structure and deter-
mine the model equations based on the underlying physical/chemical processes, 
analysis of the collected data, and the assumptions made for model simplifica-
tions.

• Model calibration: Adjust the structure of the conceptual model and identify its 
parameters so that model outputs can fit the collected data.

• Uncertainty quantification: Estimate the reliability of the constructed model 
when it is used for prediction and decision support.

Among the four steps, the data collection step is the basis of model construction. 
Without sufficient data, no one can construct a useful model. The conceptualization 
step is probably the most challenging step for a modeler. A model should be an ap-
propriate simplification of a real system. If the model is oversimplified, important 
characteristics of the system may be lost, while if it is overcomplicated the model 
cannot be well calibrated because of data insufficiency. Therefore, the development 
of a conceptual model is regarded as an evolving process through which the concep-
tual model is adjusted to reflect newly gained knowledge. In the model calibration 
step, the model structure is corrected and model parameters are modified through 
fitting the model outputs to observed data. Model calibration is the key to successful 
modeling, but can be very challenging. A large fitting residual, of course, is unac-
ceptable, but a small fitting residual does not necessarily mean that the model is 
acceptable. In the latter case, we can only say that the model cannot be rejected, and 
that is why we need the additional uncertainty analysis step to assess the reliability 
of the calibrated model before it is used for prediction and decision making. As-
sessing the reliability of a nonlinear and complicated model is another challenging 
problem in model construction. When the calibrated model is deemed to be unreli-
able, new data must be collected, and the above steps must be repeated. As a result, 
the model construction process forms a closed loop (see Fig. 1.1), as opposed to the 
open-loop process in which all steps are done only once. The construction of a use-
ful EWR model can thus be both time-consuming and expensive.

Fig. 1.1  Major steps of 
model construction
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As described in the remaining sections of this chapter, three common problems 
are solved repeatedly during a model construction process: the forward problem for 
simulation and prediction, the inverse problem for model calibration and parameter 
estimation, and the uncertainty quantification problem for reliability assessment.

1.2  Forward Solution

1.2.1  The Forward Problem

In the forward problem, the model equation (1.1.14) is solved to find the unknown 
system states u  for given ,q p  and b. The forward solution forms the basis of 
model study. The general form of a forward solution can be represented by

 (1.2.1)

where   is a mapping from ( , , )q p b  to state variables u . Mapping is an extended 
concept of function when its variables are functions (see Appendix A). Analogous 
to computer programming, (·)  can be seen as a subroutine with ,q p, and b  as 
its inputs, and u  as its outputs. The forward solution provides an explicit represen-
tation of the “excitation–response” relationship for the system being modeled.

In some simple models, such as the models in Examples 1.1 and 1.3, the forward 
solution is given explicitly. For most EWR models, however, state u  appears in the 
model equation implicitly, and one or more equations must be solved to obtain the 
forward solution.

1.2.2  Solution Methods

The solution of the forward problem has been extensively studied in mathematics 
and engineering. Analytical and numerical methods for solving linear and nonlinear 
algebraic equations, integral equations, ODEs, and PDEs can be found in many 
mathematical textbooks for scientists and engineers (e.g., Polyanin and Manzhirov 
2007; Hoffman 2001; Lapidus and Pinder 1982; Beven 2012; Celia and Gray 1992; 
Sun 1996; Helmig 1997). In most cases considered in this book, an EWR model is a 
distributed parameter model expressed by one or more PDEs (i.e.,   is physically 
based). Typical PDEs appeared in EWR modeling include the elliptic PDEs used to 
describe steady-state flow processes, the parabolic PDEs used to describe transient 
flow and transport processes, the second-order hyperbolic PDEs used to describe 
wave or oscillation processes, and the first-order hyperbolic PDEs used to describe 
pure advection processes. Analytical and numerical methods for solving PDEs can 
be found in many books on EWR modeling (Bear 1979; Sun 1996; Zlatev 1995; 

u q p b=( , , ),
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Lynch 2005; Batu 2006; Szymkiewicz 2010; Kolditz 2002; Maidment 1993; Abbott 
and Refsgaard 1996; Chen 2007; Bear and Cheng 2010; Singh 2012).

This book also considers data-driven models, in which the model mapping  
is developed based solely on the information content of observed data. Data-driven 
models mainly involve algebraic equations, and usually, no specialized forward so-
lution method is needed (Bishop 2006).

Over the years, many specialized software packages have been developed in 
different EWR fields for solving the relevant forward problems (http://www.scien-
tificsoftwaregroup.com). For better understanding of the contents of this book, we 
provide a brief review below on the commonly used methods for obtaining forward 
solutions of physics-based models.

1.2.2.1 Analytical Methods

An analytical solution is a solution of the forward problem expressed by known 
functions or through some operations on them (series or integrals). Superposition 
of fundamental solutions, separation of variables, Laplace, Fourier, and other trans-
forms are the commonly used techniques to obtain analytical solutions. Analytical 
solutions can be found only for idealized models where the model parameters are 
constant and model geometry is simple. Thus, they are most useful for theoretical 
studies, simple parameter identification problems, and testing of newly developed 
numerical methods and codes.

Example 1.9 Analytical solution for the canonical 1-D mass transport model
When D and v  in (1.1.6) are constant, and 0 0= = = ∞, ,inC C const L  in (1.1.7), 
the model in Example 1.5 reduces to the 1-D canonical mass transport problem for 
which the following analytical solution can be obtained by Laplace transform:

 (1.2.2)

This solution provides an explicit expression of the relationship between the system 
state, control variable, and system parameters. For example, it shows that the con-
centration distribution is proportional to the concentration of inflow water. Detailed 
derivation of this solution and other analytical solutions for mass transport in open 
channels and aquifers can be found, for example, in Chow et al. (1988) and Sun 
(1996). 
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1.2.2.2 Discretization Methods

Most real-world models do not have analytical solutions because of their irregular 
geometries, complex boundary conditions, and inhomogeneous parameters. As a 
result, numerical methods are widely used to find approximate solutions. The of-
ten used numerical methods for solving PDEs include the finite difference method 
(FDM), the finite element method (FEM), the finite volume method (FVM), and 
their variations. These methods are all based on discretizing the spatial domain into 
a finite number of elements (or cells) and the temporal interval into a finite number 
of steps. After discretization, all infinite-dimensional functions (both known and 
unknown) are approximated by finite-dimensional vectors. For a dynamic model, a 
PDE is first reduced to a set of ODEs after the spatial discretization, and the set of 
ODEs is further reduced to a set of algebraic equations after the temporal discretiza-
tion.

Example 1.10 Numerical solution of the mass transport model
To solve the advection–dispersion–reaction equation (1.1.13), a discretization 
method consists of the following common steps:

1. Spatial discretization. The spatial domain is partitioned into M elements with 
N nodes (when FEM is used). The concentration distribution ( , , , )C x y z t  is 
replaced appropriately by a set of nodal concentration values

 (1.2.3)

The PDE is then reduced to a set of ODEs

 
(1.2.4)

where the coefficient matrices , ,A B and the right-hand-side vector f  depend 
on parameters , ,D V  R, and ,E boundary conditions, and the method used for 
spatial discretization.

2. Time discretization. The time interval 0[ , ]T  is partitioned into K time steps 

0 1 10 ··· ···n n Kt t t t t T+= < < < < < < =  and let 
nC  be the nodal value vector at 

time 
nt . Using finite difference approximation to replace the time derivative in 

(1.2.4), we have

 (1.2.5)

where 1n n nt t t+∆ = −  and 0 1α≤ ≤ , with 0α =  for explicit scheme and 1α =  
for implicit scheme.
3. Solving a system of algebraic equations. Let matrix / nt α= ∆ +H B A  and vec-

tor 1( / ( ) )n nt α= ∆ − − +b B A C f . At the beginning, 0C  is obtained from the 
initial condition. At 

nt t= , 
nC  is known and the solution of algebraic equations 

(1.2.5) gives
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 (1.2.6)

Applying (1.2.6) repeatedly for 1 2, ,···,n K= , we can obtain the discrete forward 
solutions 1 2( ), ( ),···, ( )Kt t tC C C  for all time steps.

When the governing equation (1.1.13) is nonlinear (e.g., R depends on the unknown 
concentration), (1.2.6) becomes a set of nonlinear algebraic equations. In this case, 
an iterative solver is needed at each time step to obtain solutions (Lapidus and Pin-
der 1982). 

1.2.2.3 Particle Tracking Methods

FDM, FEM, FVM, and their variations belong to the Eulerian methods as they use 
a spatially fixed coordinate system to find the solution. For advection-dominated 
mass transport problems, Eulerian methods are known to produce inaccurate results 
due to numerical dispersion and overshooting (Celia and Gray 1992). Particle track-
ing is a kind of Lagrangian method that directly simulates the movement of a large 
amount of mass particles in the flow field, instead of solving the advection–disper-
sion PDE (Delay et al. 2005; Zhang et al. 2000; Dagan et al. 1992; Pollock 1988).

Finite cell method (Sun 1999, 2002) and smooth particle hydrodynamics (Liu 
and Liu 2010; Tartakovsky et al. 2007) can be used to incorporate various physical, 
chemical, and biological processes into particle tracking. After the concentration 
distribution 

nC  at time step 
nt  is known (

0C  is given as the initial concentration 
distribution), the concentration distribution 

1n+C  at time step 1nt +  is calculated 
explicitly by

 (1.2.7)

where (·)  is an operator that directly simulates advection, dispersion, attachment, 
mechanical interaction, chemical reaction, growth, and decay processes using a set 
of particles. It depends also on model parameters, sink/sources, and boundary con-
ditions. The solution of complicated PDEs is replaced by calculating the operator 

(·) in each time step.

1.2.3  Well-Posedness of the Forward Problem

A mathematical problem is said to be well-posed in the sense of Hadamard if it 
satisfies the following three conditions (Hadamard 1902):

1. Existence: The problem has a solution.
2. Uniqueness: The problem does not have a different solution.
3. Stability: The solution is continuously dependent on data used to determine the 

solution.

C H b1n+
−=1 .

C Cn n+ =1 ( )
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It has been shown in mathematics that the forward problem of various EWR models 
is well-posed, provided that appropriate auxiliary conditions are prescribed. Differ-
ent types of auxiliary conditions are required for different types of ODEs and PDEs.

Note that the numerical solution of a forward problem is not unique because of 
the numerical error. Different numerical solutions may be produced for the same 
problem when different numerical methods or schemes of discretization are used. 
This fact, however, does not contradict with the uniqueness of the forward problem 
because all of these solutions converge to the unique accurate solution when the 
grid resolution and time steps are made sufficiently small. When a software package 
is used to solve a forward problem, we should make sure that the numerical solution 
is convergent and stable and the discretization error is within an acceptable range.

1.3  Model Calibration and Parameter Estimation

1.3.1  Data Availability

Successful model calibration and parameter identification depend on the quantity 
and quality of available data at a study site. For EWR modeling, the following types 
of data should be collected:

• Prior information. Examples of prior information include previously developed 
models for the site (or for similar sites), land use and land cover characteristics, 
soil properties, geological structures, and expert knowledge about the site. Prior 
information generally contains significant uncertainty and needs to be transferred 
to quantitative expressions, such as guessed values and ranges of the parameters 
under estimation.

• Measurements of the unknown parameters. Physical parameters can be measured 
either in the laboratory or in the field. A distributed parameter, of course, can 
only be measured at limited locations and times. Note that the measured value 
of a parameter may not be appropriate to be used directly in a model when the 
parameter is scale dependent.

• Observations of state variables. This type of data can be obtained from histori-
cal records and/or designed field experiments. Measuring state variables (such 
as pressure, temperature, concentration, and streamflow rate) is relatively easier 
than measuring parameters (such as hydraulic conductivity and dispersivity). 
Observation error is often assumed to be normally distributed with zero mean.

• Model application data. This type of data typically include the objectives of 
model construction (or the goals of model application) and their accuracy/reli-
ability requirements and can be elicited from a manager or a decision maker.
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1.3.2  Methods and Criteria

Depending on what types of data are available and how they are used, different 
approaches are developed for model calibration and parameter estimation. Let us 
consider several cases:

• Estimating a parameter with only measurements of the parameter. When the un-
known parameter is a deterministic function of spatial and/or temporal variables, 
various interpolation and approximation methods can be used. Incorporating 
prior information may help to reduce the errors of interpolation, extrapolation, 
and approximation. When the unknown parameter is regarded as a realization of 
a random field, statistical interpolation or approximation methods are needed.

• Estimating a model parameter with observations of state variables. In the ab-
sence of model error, this problem is a CIP, which aims to infer model inputs 
based on model outputs. Incorporating prior information and measurements of 
the parameter can help stabilize the inverse solution.

• Modifying a model structure with prior information and observation data. Model 
structure error in EWR models can never be avoided because a model is always 
a simplified representation of the underlying physical system. In this case, we 
need to solve a so-called EIP to reduce the model error through modifying the 
model structure, assuming that the information provided by available data al-
lows us to do so. Identifying a model structure is actually a system identification 
problem.

• Incorporating the model application data into the process of model calibration 
and parameter estimation to determine the model complexity and data sufficien-
cy. This problem is called the GIP, in which the model to be constructed is de-
termined not only by observation data and prior information, but also by model 
application data.

All of these methods for model calibration and parameter estimation are based on 
the following three criteria:

(C-1) The model outputs should fit the observed data as close as possible.
(C-2) The prior information should be used as much as possible.
(C-3) The model should be reliable for the given goals of model application.
The CIP and EIP are formulated using both (C-1) and (C-2), and the GIP is for-

mulated by all the three criteria. In the remaining sections of this chapter, we will 
introduce more concepts and ideas on various inverse problems and give detailed 
explanations of the three criteria.

1.3.3  The Inverse Problem

A model establishes a relationship between state variables u  and other vari-
ables( , , )q p b . If there is no model error, a model can be used in two directions: 
the forward problem solves u  from the model when ( , , )q p b are given, while the 
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inverse problem solves( , , )q p b from the model when observations of u  are avail-
able. The “excitation–response” relationship of the forward problem is reversed in 
the inverse problem. In EWR modeling, we may see the following types of inverse 
problems:

• System identification: identifying the true or a representative structure of a sys-
tem and associated structure parameters

• Parameter identification: identifying continuous or discrete model parameters 
that may or may not have a physical meaning

• Sink/source identification: identifying distributed or point sources (or sinks) that 
may vary with time and/or location

• Auxiliary condition identification: determining the initial condition, boundary 
geometry, and boundary conditions

• Stochastic variable identification: estimating statistics of a random variable or a 
random function

1.3.3.1 Ill-Posedness of Inverse Solution

In a model construction process, various inverse problems are solved either itera-
tively or simultaneously. Let θ  be a part of model input parameters (variables) that 
need to be identified and ς  be all other model input parameters (variables) that are 
known. Without showing ς  explicitly, model equation (1.1.14) is rewritten as

 (1.3.1)

Solving u from (1.3.1), we obtain the forward solution

 (1.3.2)

A question is thus raised: can we solve θ  from the same equation (1.3.1) to obtain 
the inverse solution? To address this question, we first note that u  and θ  have 
different positions in the model equation. As a result, the same model may have dif-
ferent types of equations when used for forward solution and inverse solution. This 
point is further elucidated using the following example.

Example 1.11 Identifying the dispersion coefficient D x( )  in Example 1.5
In model equation (1.1.6), when C x t( , )  is known and D x( )  is the unknown func-
tion, the same equation becomes

 (1.3.3)

where

 (1.3.4)
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Because C x t( , )  is known, the coefficients α β, , and γ  can be determined. Now, 
we see that model equation (1.1.6) is a second-order parabolic PDE for solving 
C x t( , )  in the forward problem, but it turns into a first-order ODE for solving D x( )  
in the inverse problem. Solving (1.3.3) for D x( ) , we get

 (1.3.5)

where c  is an arbitrary constant. Although the inverse solution (1.3.5) looks simple, 
it is actually useless because of its ill-posed nature. First, the solution is not unique 
because it contains an arbitrary constant c . To determine the constant, we need to 
know the value of D x( )  at a point in [ , ]0 L , but this condition is not given in the 
model. Second, the solution is unstable because a small change in C x t( , )  may 
cause a large change in the derivatives of C x t( , )  which, in turn, may cause the 
coefficients α β, , and γ  to become large or even unbounded. ■

Using a numerical method, we can reduce the model equation to a set of algebra-
ic equations, but the ill-posed nature of the inverse problem cannot be eliminated, 
as it is shown by the following example. 

Example 1.12 Solving the inverse problem from a numerical forward solution
Let us return to Example 1.10. After discretization, the unknown parameters be-
come an M-dimensional vector θ, and its components appear in the coefficient ma-
trix H . By treating θ  as the unknowns and Cn+1  as the known data, we can rewrite 
the forward solution equation (1.2.6) as

 (1.3.6)

where G  is an N M× matrix and d  is the right-hand data vector depending on u .  
When G  is not a square matrix, the system of equations (1.3.6) may be either over-
determined (N M> ) or underdetermined ( )N M< . In the former case, the in-
verse solution does not exist because no θ  can satisfy all equations, while in the lat-
ter case, the inverse solution is nonunique. When G  is a square matrix ( )N M= , 
(1.3.6) is ill conditioned because G  is nearly singular in this case (Sun 1994). An 
ill-conditioned linear system is unstable. ■

Solving θ  from the model equation (1.3.1) is called the direct method of inver-
sion. The previous discussion illuminates the inherent difficulty of direct inversion. 
Fortunately, there is another way called the indirect method of inversion that solves 
the unknown θ  through inverting the forward model (1.3.2). The following trial-
and-error method provides the primitive form of indirect inversion. 

1.3.3.2 The Trial-and-Error Method

The trial-and-error method, which is based on both criteria (C-1) and (C-2), has 
been widely used in practice for model calibration. To use this method, we only 
need (i) some observation data of the state variables, (ii) a computer code that solves 
the forward problem, and (iii) prior information of the identified parameters.

D x c x( ) exp[ ( / ) ],= + −
γ
β

β α

G dθθ = ,
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The trial-and-error method consists of the following steps:

1. Set an initial guess 0θ  based on prior information.
2. Use 0θ  as the inputs to the forward model to generate the model-calculated sys-

tem state.
3. Compare the model-calculated system state with the observed data. If the differ-

ence between the two is smaller than a user-defined tolerance level, then stop; 
otherwise, proceed to the next step.

4. Use a new guess 1θ  to replace 0θ and go back to step 2.

In the above process, steps 1 and 4 are completed by a domain expert who knows 
how to guess a reasonable 0θ  from the prior information and how to modify it to 
make the model outputs closer to the observed values. The advantages of the trial-
and-error method are as follows: (1) it only requires a numerical code or a software 
package for the forward solution; (2) it can be used not only for parameter identifi-
cation, but also for model structure calibration; and (3) the knowledge and expertise 
of an expert can be readily incorporated into the solution process.

Disadvantages of the trial-and-error method are as follows: (1) it is time consum-
ing and cannot handle relatively complex models with a large number of unknown 
parameters; (2) the best solution cannot be obtained; and (3) different modelers may 
obtain different results. Nevertheless, the trial-and-error method has provided the 
rudimentary idea for more sophisticated inversion theories.

1.3.3.3 Classical Inverse Problem

The CIP assumes no model structure error and has been extensively studied in 
mathematics. The assumption of no model structure error implies that the model has 
the same “excitation–response” relationship as the physical system being modeled. 
Thus, when the model variables and parameters (i.e., model inputs) are correctly 
assigned, the model calculated states (i.e., model outputs) would coincide with the 
observed system states if there is no observation error. When observation error ex-
ists, however, the accurate inverse solution can never be obtained.

Theoretical studies on CIP have been conducted in both deterministic and sta-
tistical frameworks. In the deterministic framework, the classical theory of inverse 
solution is concerned about how to define approximate solutions, how to find the 
best approximate solution, and how to make the inverse solution unique and stable. 
Like the trial-and-error method, the formulation of CIP is based on criteria (C-1) 
and (C-2). The use of prior information can help make the inverse solution unique 
and stable.

In the statistic framework, the estimated parameter is regarded as a random vari-
able (field), and the true parameter is merely a realization of the random variable 
(field). The initial probability distribution of the estimated parameter is determined 
by prior information and is called the prior probability distribution, which may con-
tain large uncertainty. The inverse solution is a process that transfers information 
from data to the estimated parameter. The relationship between them is established 
by the model, and the information transfer is completed through the Bayes’ theo-
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rem. After information transfer, the probability distribution of the estimated param-
eter (called the posterior distribution) is expected to be more concentrated, and thus, 
the uncertainty is reduced. In the statistical framework, the inverse solution always 
exists and the uniqueness is not required.

In Part I of this three-part book (Chaps. 2–5), we discuss solution of CIP in 
both deterministic and stochastic frameworks. Basic concepts of CIP and methods 
on linear model inversion and single-state nonlinear model inversion are given in 
Chap. 2; singular value decomposition and various nonlinear optimization algo-
rithms are introduced briefly as the solution methods of CIP. In Chap. 3, CIP and 
multistate model inversion are cast into a multiobjective optimization problem and 
solved by the evolutionary algorithms. Regularization is also introduced in this 
chapter from the point of view of multiobjective optimization. It can be seen as a 
general method for stabilizing the inverse solution. The inverse problem is reformu-
lated and resolved in the statistical framework in Chap. 4. Monte Carlo-based sam-
pling methods for finding the posterior distribution are introduced. Various methods 
of model differentiation are given in Chap. 5. Model differentiation is a necessary 
tool for almost all topics related to model construction covered in this book, such 
as nonlinear optimization, local and global sensitivity analysis, model reduction, 
model structure identification, nonparametric model calibration, reliability analysis, 
optimal experimental design, etc. Both the forward and reverse modes of automatic 
differentiation are introduced.

1.3.4  Model Structure Identification

A mathematical model of a complex system is a simplified representation of the 
system with certain assumptions. As a result, the model structure error cannot 
be avoided and may be significant. This is especially true for EWR models because 
the structure of a EWR system is usually inhomogeneous and exhibits multiscale 
variability. Unlike observation error, model structure error is a type of systematic 
error, and its probability distribution is generally non-Gaussian. When solving CIP 
with an erroneous model structure, we may find that the fitting residual cannot be 
reduced to a satisfactory level, no matter how the model parameters are changed. 
At this point, we should consider reducing the model structure error. Because prior 
information and observation data contain the system structure information, calibra-
tion of model structure is possible.

We will use S( , )θ  to represent a model, where S represents the model structure 
and θ  denotes the model parameters associated with the structure. The problem of 
identifying both the model structure and its associated parameters is called the EIP 
(Sun and Sun 2002). Strictly speaking, EIP is not an inverse problem in the original 
sense (i.e., swapping the positions of inputs and outputs of a model). Solving EIP 
can significantly decrease the fitting residual because of the reduction of model 
structure error. Many modelers may have already solved EIP via the trial-and-error 
method by adjusting not only the model parameters, but also the model structure.

The dimension (degrees of freedom) of a distributed parameter (e.g., the hydrau-
lic conductivity of a heterogeneous aquifer) is very high, or even infinite. It cannot 
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be identified by limited data. Parameterization is a method for representing a dis-
tributed parameter by a low-dimensional vector. Parameterization can be seen as a 
model and, more often, a simplified model of a distributed parameter. A distributed 
parameter, if its structure is unknown, may be represented by different parameter-
izations with different complexity and patterns (i.e., by different models). In this 
case, the identification of a distributed parameter becomes an EIP or an adaptive 
parameterization problem.

Although EIP can be formulated by the same criteria (C-1) and (C-2) used in the 
CIP, solving an EIP is much more challenging than solving a CIP because it needs 
the solution of a min–min optimization problem. Moreover, when solving an EIP, 
the existing data are often insufficient to differentiate between two or more differ-
ent model structures. In other words, the combination of different model structures 
and model parameters can fit the existing data equally well and that partly explains 
why different modelers may come up with different models for the same study 
site. When the true structure complexity of a system is unknown, discussion on the 
uniqueness of an EIP solution does not make much sense because data can never be 
sufficient to differentiate all possible structures.

Unlike the physics-based models, data-driven models do not rely on physical 
representation of the system; rather, they rely almost exclusively on the informa-
tion content embedded in the training datasets. The structure and parameters of a 
data-driven model usually do not possess physical meanings, other than serving as a 
black-box representation of the actual physical phenomena. Data-driven models are 
most useful when there is no or little a priori knowledge about the structure of the 
true system or when it is desirable to replace a physics-based model for expediting 
computation. Solving EIP is an important topic for constructing both physics-based 
and data-driven models.

Part II of this book (Chaps. 6–8) is dedicated to the solution of EIP in both de-
terministic and statistical frameworks. In Chap. 6, various methods for parameter-
izing a deterministic function or a random field are introduced. Principal component 
analysis (PCA) and other linear and nonlinear dimension reduction methods, as well 
as their applications to inverse solution, are covered in this chapter. Model structure 
identification and hyperparameter estimation are the main topics of Chap. 7, in 
which various adaptive parameterization approaches, the level set method, multi-
scale inversion, and geostatistical inversion are covered. Methods for constructing 
data-driven models and machine learning are introduced in Chap. 8.

1.4  Model Reliability

1.4.1  Model Uncertainty Analysis

Using the traditional process of model construction described in Sect. 1.1.4, a mod-
el obtained by solving either CIP or EIP is such one that “cannot be rejected” by the 
existing data but “may not be acceptable” for prediction or other purposes of model 
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application, as it is tested only by one or a limited number of excitations. Keep in 
mind that not all models are useful. Even a calibrated model may contain significant 
uncertainty in its structure, boundary conditions, and identified parameters. When 
model uncertainties and the inherent randomness of the modeled system are mixed, 
the assessment of model reliability could become extremely difficult. Uncertainty 
analysis attempts to find all possible unrejectable models and then assesses the rela-
tive reliability or the risk of using the identified model. When the risk level is unac-
ceptable, new data must be collected and the model construction process must be 
repeated.

In recent years, various Bayesian- and Monte Carlo-based methods have been 
used to analyze the model uncertainty caused by uncertainty in estimated param-
eters (e.g., Beven and Freer 2001; Vrugt et al. 2005; Makowski et al. 2002; Wang 
and Zabaras 2005; Oliver et al. 2008; Gupta et al. 2012; Doucet et al. 2000). In the 
statistical framework, the uncertainty of model prediction can be assessed through 
sampling the posterior distribution of estimated parameters, which is a challeng-
ing problem by itself. When the number of parameters increases, the number of 
required samples can become very large. A common mistake in EWR modeling is 
that the sampling process is terminated prematurely before convergence is reached. 
When EIP is solved for model identification, sampling methods may become very 
ineffective because the number of candidate structures may be very large or even 
infinite. When a Monte Carlo-based method is used, the computational cost is gen-
erally very high. Up to date, the model uncertainty caused by model structure error 
has been considered only by a few researchers in the field of EWR modeling (e.g., 
Duan et al. 2007; Neuman 2003; Gupta et al. 2005; Ye et al. 2004; Sun et al. 1998). 
Therefore, more studies are needed on this challenging subject.

1.4.2  Problems and Difficulties in Model Construction

1.4.2.1 Scale Dependence Problem

A EWR system, such as an aquifer or a watershed, is naturally heterogeneous at 
multiple scales. The measured system states (e.g., pressure, concentration, soil 
moisture content, and temperature) and system parameters (e.g., hydraulic conduc-
tivity, land cover, soil properties, dispersion coefficient, and reaction rate) may be 
associated with different scales depending on the measurement equipment and mea-
surement method. In a numerical model, all state variables and parameters must be 
upscaled or downscaled to the same discrete scale of the numerical model (the grid 
size). Unfortunately, without additional assumptions and constraints, the number 
of possible solutions of downscaling is infinite. The upscaled value of a parameter, 
such as the hydraulic conductivity, depends not only on the small-scale distribution 
of the parameter, but also globally on the control variables and boundary conditions. 
Moreover, the discrete scale of a model may vary with the accuracy requirement of 
model application and the computational capacity. As a result, the scale used for 
solving the inverse problem may be different from that used for solving the forward 
problem. Dealing with the scaling problem is thus crucial in EWR modeling.
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1.4.2.2 Model Complexity Problem

Determining the complexity of a EWR model is a very difficult problem for a mod-
eler. In practice, most modelers solve CIP to estimate the model parameters using a 
fixed model structure. If the fitting residual is large, the structure of the conceptual 
model will be adjusted and the model parameters are identified again. Using EIP, 
the model structure is automatically determined by available data. If we have more 
data, a complex structure can be identified; if we have less data, only a simple 
model can be identified. The resulting model complexity, of course, is generally 
inappropriate because the complexity of a useful model depends on not only the 
complexity of the modeled system, but also the goals of model application. Ide-
ally, we would like to build a model that has the same structure as the real system 
being modeled. Unfortunately, making lifelike models for EWR systems is neither 
feasible nor necessary, at least in the foreseeable future. In practice, the structure 
of a useful EWR model should be simple enough so that it can be calibrated with 
limited data; at the same time, it should be complex enough so that the most im-
portant characteristics of the system are captured by the model. But, how complex 
is complex? This is a very difficult question for a EWR modeler. Most failure cases 
of EWR model applications are caused by the use of models with an inappropriate 
level of complexity, either overcomplicated or oversimplified.

1.4.2.3 Data Sufficiency Problem

Modelers often complain about the insufficiency of data for constructing a reliable 
model. But, how sufficient is sufficient? This question cannot be answered before 
an appropriate model complexity is known because the identification of a more 
complex model structure needs the support of more data.

The optimal data collection strategy, or the optimal experimental design (OED), 
should provide the maximal information content for model calibration with the min-
imal cost. There are two inherent difficulties: first, for nonlinear model calibration, 
OED depends on the identified parameters, which are unknown at the design stage, 
and second, the computational effort of OED may become unaffordable if the model 
structure also needs to be identified. Moreover, if we cannot even determine how 
many data are sufficient, the optimal design problem does not make much sense.

1.4.2.4 Reliability Assessment Problem

A model can transform the excitation–response relationship of a system into an in-
put–output relationship of a computer code. This functionality makes the modeling 
method an indispensable tool for scientists and engineers. Optimal management of 
water resources, prediction of contaminant plume locations, natural hazard fore-
casts, recovery of contaminant source histories, and feasibility study for decision 
making are all typical applications of EWR modeling. But, we must assure the reli-
ability of a model before it is used in practice. For example, when a model is used 
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for decision making, we should make sure that the model can correctly predict the 
system states for all feasible scenarios.

The goal of uncertainty analysis is to answer the reliability problem of a con-
structed model. When the system structure is complex and unknown, however, the 
existing uncertainty analysis methods may not be effective because the number of 
nonrejectable model structures is too large to handle.

In its original sense, a model of a system should give the same response (output) 
as the actual system does for any excitation (input). Unfortunately, constructing 
such an absolutely and universally reliable model for a EWR system is generally 
beyond reach. Due to the complexity of system structure and the insufficiency of 
observation data, we are unable to construct a lifelike model, and we cannot assess 
“how complex is complex” for the model structure and “how sufficient is suffi-
cient” for the existing data. In practice, we can only find such a model that is tested 
by limited data and has a relative reliability. But, how reliable is reliable?

1.4.3  Goal-Oriented Modeling

This problem, fortunately, can be answered by the project manager or the decision 
maker. The answer actually is criterion (C-3) of model construction criteria listed 
under Sect. 1.3.2 (i.e., the constructed model should be reliable for the predeter-
mined goals of model application). It does not require a constructed model to be ab-
solutely reliable, but the model must be reliable (satisfying certain accuracy require-
ment) for the specified model applications. For example, a modeler may be asked 
to construct a mass transport model for predicting the arrival time of a contaminant 
plume to a specified location with a prediction error less than 10 days.

It is different from the traditional process of model construction, where criteria 
(C-1) and (C-2) are used to formulate the inverse problem and criterion (C-3) is 
only tested after inverse solution. In contrast, the GIP directly incorporates criterion 
(C-3) into its formulation as an objective or a constraint. A typical goal-oriented 
model construction process is as follows: (i) The goal of model application is used 
to determine an appropriate level of model complexity; (ii) the so-determined mod-
el complexity is then used to determine the data sufficiency; and (iii) if the existing 
data are insufficient, a robust design is used to guide the new data collection. From 
this procedure, we can see that solution of GIP is not simply a data-fitting problem, 
and it actually integrates all components of model construction. Model reliability, 
which is at the center of GIP, is used to determine the model complexity, the model 
complexity is used to determine the data sufficiency, and the data sufficiency is then 
used to guide the experimental design for new data collection. The computational 
effort of solving GIP, however, is huge. Solving a GIP requires the solution of a 
series of EIP, and solving an EIP requires the solution of a series of CIP.

Part III of the book (Chaps. 9–12) contributes to the topic of model reliability. 
Chapter 9 introduces various data assimilation methods that allow a model to be 
updated continuously to improve its reliability whenever new data become avail-
able. Methods used for uncertainty quantification are introduced systematically in 
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Chap. 10. The effects of model parameter uncertainty and model structure uncer-
tainty on model outputs are assessed. To construct a more reliable model, we need 
more data. Design of informative and cost-effective data collection strategies is the 
subject of Chap. 11, in which OED is formulated into a multiobjective optimiza-
tion problem. The criteria of optimal design for linear model inversion are derived. 
For nonlinear model inversion, Bayesian and robust design methods, especially 
interval-identifiability-based robust design, are introduced. In Chap. 12, after the 
goal-oriented forward problem is described, GIP is formulated and solved in both 
the deterministic and statistical frameworks. When the existing data are insufficient, 
a cost-effective experimental design method for GIP is given. Finally, the goal-
oriented, pilot-point method described in the last section of Chap. 12 is offered as a 
promising approach for developing distributed parameter models.

1.5  Review Questions

1. Classify the models in Examples 1.1–1.9.
2. Use an example in your study field to show how a conceptual model is 

constructed.
3. If the information on q p b, ,  is incomplete, can we say: (a) the forward problem 

may be ill-posed, or (b) the forward problem must be ill-posed?
4. Find or develop a code for solving the model given in Example 1.5 numerically 

and verify the accuracy of the numerical solution using the analytical solution 
given in (1.2.2).

5. Assume that concentration C x t( , )  is known in (1.1.6), solving the decay rate R  
from the equation. Is the problem well-posed?

6. Compare the similarities and differences between CIP and EIP?
7. Why the model complexity determined by solving CIP and EIP may not be 

appropriate?
8. Why the data sufficiency problem cannot be answered without knowing the 

model complexity?
9. In your area of study, what types of data are available for model calibration? 

How is the model structure determined?
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Chapter 2
The Classical Inverse Problem

The classical inverse problem (CIP) defined in Chap. 1 assumes no model structure 
error; thus, only model parameters need to be identified. In this chapter, we con-
sider the solution of CIP for single state variable models. Parameter identification 
of multistate variable models will be considered in the next chapter. When a single 
state variable u  and the unknown parameter q  are functions of space and/or time, 
the model equation ( , ) 0u q =  is an operator equation and its forward solution 

( )u q=  is a mapping from parameter space  to state space . Basic concepts 
and terminologies of functional analysis, such as function space, operator, mapping, 
and norm, are provided in Appendix A.

In Chap. 1, we showed that CIP is a typical ill-posed problem. An accurate solu-
tion of CIP does not exist when observation error is present. Even in the absence 
of observation error, the solution of CIP may still be nonunique and unstable. Sec-
tion 2.1 introduces the basic concepts and theory of CIP, as well as the definition of 
extended well-posedness. Using the “fitting data” criterion of inverse problem for-
mulation, we can obtain a quasi-solution by solving an optimization problem. We 
will show that when the inverse problem is extended well-posed and the conditions 
of quasi-identifiability are satisfied, the quasi-solution will approach the accurate 
inverse solution when the observation error reaches zero.

Linear inversion theory is relatively well established. Section 2.2 introduces 
methods for obtaining pseudoinverse solutions for both over- and underdetermined 
linear systems. Both singular value decomposition (SVD) and truncated singular 
value decomposition (TSVD) will be discussed, followed by a general procedure 
for linearizing mildly nonlinear problems.

Nonlinear inversion is challenging and still remains an area of active research. 
Optimization problems resulting from nonlinear inversion can be difficult to solve 
and the solutions are generally not unique. In Sect. 2.3, we shall restrict ourselves to 
cases in which the CIP is extended well-posed in a known region and the objective 
function for optimization is convex in the region. Consequently, the inverse solution 
can be found by using a local optimization algorithm. Common numerical methods 
for local optimization and norm selection problems will be briefly discussed.

© Springer Science+Business Media, LLC 2015
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The last section of this chapter, Sect. 2.4, focuses on Gauss–Newton method 
and its modified versions. These algorithms are especially effective when the least 
squares norm (i.e., L2-norm) is used for inversion.

2.1  Approximate Solutions

2.1.1  The Direct Method for Inverse Solution

Recall from Sect. 1.3.3 that the inverse solution q  can be obtained either directly by 
solving the following model equation when u  is given,

             

or indirectly by using the forward solution,

                                  

For a distributed parameter model, its state u can only be observed or measured at a 
limited number of times and locations, and the observed data are always “contami-
nated” by errors resulting from instrumentation, postprocessing, and scaling. There-
fore, we must consider three spaces in the study of practical inverse problems: the 
parameter space , state space  , and observation space  . These three spaces 
contain q , ( )u q= , and ( )

D
u u=  , respectively, as their elements, where (·)  

is called an observation operator that specifies when and where u  is sampled.
Figure 2.1 shows the relationships among the three spaces in the forward direc-

tion, in which ad
P Ì  is an admissible region of q ; 

ad
U Ì  is the value region of 

the forward solution ( )u q= , where 
ad

Pq Î ; and ad
F Ì   is the value region 

of observation operator ( )
D

u u=  , where ad
u UÎ . The real observed counterpart 

of D
u is denoted by obs

D
u . Because obs

D
u  contains observation error, it is generally not 

in 
ad

F .

( , ) 0,u q =

( ).u q=

Fig. 2.1  Relationships among the three spaces of inverse problems: parameter space , state 
space , and observation space . The letter  denotes the forward model,  the observation 
operator, and the subscript ad denotes an admissible region
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In mathematics, the theory of CIP has been developed for the general case that , 
, and  are infinite-dimensional function spaces. We assume that all these spaces 
are Banach space which, by definition, is a function space that contains finite- 
dimensional Euclidean spaces as its subspaces. A Banach space is furnished by vari-
ous norms and measures, such as “distance” and “limit” (see Appendix A). We will 
use e  to denote the norm of an element e  measured in the space that it belongs to.

Example 2.1 The , , and  space of a mass transport model
Assume that the distributed source term ( )E x  in Eq. (1.1.12) is unknown and all 
other parameters in the equation are given. The concentration ( , )C tx  is measured 
at ten locations every month for a year. In this case, the parameter space  and 
state space   are function spaces. The observation space   is an N-dimensional 
Euclidean space with 120N = . The distance between two trial source terms, 1( )E x
and 2( )E x , in the state space  can be measured by using the corresponding concen-
tration distributions

 
(2.1.1)

where 
2

·  is the 2L -norm, 0[ , ]T  is the total duration of observation, and Ω  represents 
the spatial domain. Their difference in the observation space  can be measured by

 (2.1.2)

Obviously, an infinite-dimensional function ( )E x  cannot be identified by N data. 
To solve the inverse problem, the unknown distributed parameter needs to be dis-
cretized and/or parameterized first. For instance, we can divide the parameter space 
into eight homogeneous zones with constant source strengths ( 1 2 8, ,···,E E E ). The 
parameter space  then becomes an eight-dimensional Euclidean space. ■

Let tq  be the true parameter, ( )tu q  be the true system state, and obs
D

u  be the ob-
served values of ( )t

D
u q  with observation error. The forward relationship between 

them can be represented by

 (2.1.3)

In reality, tq , ( )tu q , and ( )θ t
Du  are all unknown and we only have access to obs

D
u . The 

direct method of inversion attempts to find tq  from obs
D

u  by reversing the direction 
in (2.1.3). An inverse mapping (see Appendix A) 1-  of  and an inverse mapping 

1-  of  are needed in order to complete this process

 (2.1.4)

C E C E C E t C E t d dt
T

( ) ( ) [ ( , , ) ( , , )] ,
( )1 2 2

2

1 2
2

0
− = −∫∫ x x x

Ω

12 102 2
1 2 1 22

1 1

( ) ( ) [ ( , , ) ( , , )] .
D D i j i j

j i

C E C E C E t C E t
= =

- = -åå x x

( )  ( ) 
( ) ( ) .t t t obs

D D
u u uq q q® ® »

 

1 1( )  ( ) 
( ) ( ) ,t t t obs

D D
u u uq q q

- -
¬ ¬ »
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where 1-  can be considered an interpolation/extrapolation operator from D
u  to u. 

Because of observation error and the error introduced during interpolation and ex-
trapolation, using 1-  we can only obtain an approximation of ( )tu q , which is de-
noted as 1( )obs

D
u u-=  . Finding 1( )u-

  is equivalent to solving q from the model 
equation

 (2.1.5)

This is an ill-posed problem: when u contains error, (2.1.5) does not have an accu-
rate solution, and no 

ad
Pq Î  can make ( , )u q  equal to zero. We may attempt to find 

an approximate solution to (2.1.5), but the problem of finding an approximate solu-
tion is still ill-posed. As we have shown in Example 1.11, even when u is accurate, 
the inverse mapping 1-  may still be nonunique and unstable.

Although the direct method has these inherent difficulties, its simplicity and ef-
fectiveness are attractive and, thus, it continues to receive attention by the research 
community (e.g., Sun 1994; Zhan and Yortsos 2001; Irsa and Zhang 2012).

2.1.2  The Indirect Method of Inversion

Let us combine the forward mapping  and the sampling mapping  in (2.1.3) to 
form a composite mapping  such that ( ) ( )

D
uq q= . The inverse solution 

can then be obtained by solving the following equation

 (2.1.6)

Like in the case of (2.1.5), an accurate solution of (2.1.6) does not exist because its 
right-hand side contains observation errors. Approximate solutions of (2.1.6) can be ob-
tained indirectly through a trial-and-error process (see Sect. 1.3.3). First, a guessed param-
eter ad

Pq Î  is used to calculate the model output ( )
D

u q , which is then compared to obs
D

u .  
The “distance” between them or the “mismatch” can be measured in the observa-
tion space by a norm ( ) ( ) obs

D D
S u uq q= - . If the value of ( )S q  is large, we try an-

other q . These steps are repeated until the value of ( )S q  cannot be reduced further. 
The best solution of (2.1.6) is then chosen to be the minimizer of ( )S q

 (2.1.7)

We call 
qs
q  the quasi-solution of (2.1.6). It is obtained based on the criterion (C-1) of 

inverse problem formulation mentioned in Chap. 1 and recapitulated below:

(C-1) The model outputs should fit the observed data as close as possible.

The CIP is thus transformed into a single-objective optimization problem. The min-
imum, ( ) ( ) obs

qs D qs D
S u uq q= - , is the residual of data fitting. Figure 2.2 shows a 

( , ) 0, .
ad

u Pq q= Î

( ) , .obs
D ad

u Pq q= Î

argmin ( ) , .obs
qs D D ad

u u P
q

q q q= - Î
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comparison of the direct (dotted lines) and indirect methods (dashed line) of inver-
sion. The former uses the reverse direction and, thus, needs the inverse mappings 

1-  and 1- , whereas the latter simply applies the forward mapping repeatedly and 
avoids the difficulty of finding 1-  and 1- .

Example 2.2 Identification of mass transport parameters
The canonical 1-D mass transport model given in Example 1.9 has an analytical 
solution, ( , ) ( , ; , )

L
C x t f D R x t= , where the two mass transport parameters, 

L
D  and 

R, can be estimated using the following set of nonlinear equations

 (2.1.8)

where 
,
obs
i j

C  is the observed concentration at location i
x  and time

j
t , and I  and J  are 

the total numbers of sampling locations and times, respectively. When 
,
obs
i j

C  contain 
observation errors, no ( , )

L
D R  can satisfy all of the equations in (2.1.8). But, we can 

obtain a quasi-solution that is a minimizer of the following optimization problem,

 (2.1.9)

where q is a two-dimensional vector with components( , )
L

D R . For mass trans-
port in porous media, the dispersion coefficient L

D  is related to flow velocity v as 
L L

D va= , where L
a  is the longitudinal dispersivity to be estimated. If R can be 

estimated in the lab, then q  reduces to a scalar L
a . ■

So, how do we know that the quasi-solution 
qs
q  is really close to the true param-

eter tq ? Let us introduce the concept of the extended well-posedness. The inverse 
problem (2.1.6) is said to be extended well-posed if (Tikhonov and Arsenin 1977)

1, 2,… 1, 2,
,

( , ; , ) , , ,obs
L i j i j

f D R x t C i I j J= = = ¼

( )2,
1 1

argmin ( ,; , ) ,
I J

obs
qs i j i j ad

i j

f x t C P
q

q q q
= =

= - Îåå

Fig. 2.2  Comparison between direct ( dotted line) and indirect ( dashed line) methods of inversion. 
The direct method requires the knowledge of inverse mapping 1- and 1- , while the indirect 
method does not. All symbols are defined in the text
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• The problem has a solution tq  in a subset 0 ad
P PÌ ;

• The solution is unique in 0P : ( ) ( )t
D D

u uq q=  implies tq q=  for any 
0Pq Î ;

• The solution is stable in 0P : there exists a constant 0c >  such that

 (2.1.10)

Thus, when ( ) ( )t
D D

u uq q® , we must have tq q® . In some situations, the inverse 
solution may not be unique in ad

P  but may be unique in a subset 0 ad
P PÌ . The 

extended well-posedness assumes that 0P  can be determined on the basis of prior 
information. For example, a domain expert may suggest a reasonable range for find-
ing the unknown parameter.

Now we show that the quasi-solution defined in (2.1.7) is indeed close to the 
true parameter when the observation error is sufficiently small. Let h be the norm of 
observation error. Because of the assumption of no model error, we have

 
(2.1.11)

From (2.1.7), ( )
D qs

u q  should be closer to obs
D

u  than ( )t
D

u q  is. Therefore, we also 
have

 (2.1.12)

Combining the above two equations gives

 
(2.1.13)

Then, from the stability condition (2.1.10), we obtain 2t
qs

cq q h- £ , which im-
plies that when 0h®  we must have t

qs
q q® . An essential requirement of this 

conclusion is that a unique and stable quasi-solution 
qs
q  exists. In other words, the 

optimization problem (2.1.7) is well-posed.

2.1.3  Well-Posedness of the Quasi-solution

In the previous section, we showed that the true parameter tq  cannot be recovered 
in the presence of observation error, even if the inverse problem is well-posed. We 
may instead solve (2.1.7) to obtain a quasi-solution, 

qs
q . If 

qs
q  is unique, stable, and 

close to tq , we say that the inverse problem is well-solved and the unknown param-
eter is quasi-identifiable. As shown in the previous section, quasi-identifiability can 
be achieved if the following requirements are satisfied

• A quasi-solution 
0qs

Pq Î  can be found by solving the optimization problem (2.1.7);
• The quasi-solution 

qs
q  is unique in 0P  and continuously dependent on observation 

data;

0
( .) ( ) ,t t

D D
c u u Pq q q q q- £ - Î

( ) .t obs
D D

u u h- £θ

( ) .obs
D qs D

u uq h- £

2( ) ( ) ( ) ( ) .t obs t obs
D qs D D qs D D D

u u u u u uq q q q h- £ - + - =
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• The inverse problem is extended well-posed in 0P ; and
• The observation error is small.

The well-posedness of the optimization problem and the well-posedness of the 
inverse problem are combined in the above requirements. To satisfy these re-
quirements, appropriate assumptions and conditions are needed not only on 
the inverse problem but also on data. As an example of the possible nonunique-
ness of quasi-solutions, Fig. 2.3 shows that there exist 1 0Pq Î  and 2 0Pq Î  such 
that 1 2( ) ( ),

D D
u uq q¹  but their distances to obs

D
u  are the same when the range set 

0( )P  is nonconvex. Chavent (2009) presented a theoretical study of this topic, 
including finding sufficient conditions for the combined well-posedness.

Solution of the optimization problem (2.1.7) depends on the complexity of model 
( )q , the quantity and quality of data obs

D
u , the norm defined in observation space  ,  

and the optimization algorithm to be used. The complexity of a model is characterized 
by the degrees of freedom (DOF) of q. A more complex model has more parameters 
and, therefore, requires more information to support its identification. Data insuf-
ficiency is the main factor that leads to nonuniqueness and instability of inverse solu-
tions. In reality, it is common that the difference between 1( )

D
u q  and 2( )

D
u q  is within 

the range of observation error, but 1q  is significantly different from 
2q  (Fig. 2.3). More 

discrepancy between 1( )
D

u q  and 2( )
D

u q  can be revealed if we either increase the infor-
mation content or reduce the observation error. Three approaches exist that can make 
the information content match the complexity of a model:

• Using additional information and assumptions to make the inverse problem well-
posed;

• Replacing the original model by another one that has less complexity so that the 
existing data would be sufficient for inversion; or

• Increasing the quantity and/or improving the quality of observation data so that 
the model with given complexity can be identified.

The first approach will be considered starting from Chap. 3. If the first approach 
cannot give a satisfactory answer, the second approach may be used to reduce the 
difficulty of inversion but at the expense of introducing model structure errors to the 
identified model. If the identified model is deemed unreliable for the required model 
application, then the third approach, which includes selection of model complexity 
and design of new data collection strategy, must be used. All of these approaches 
and their related topics will be introduced successively in this book.

Fig. 2.3  Illustration of the 
possible nonuniqueness of 
quasi-solutions. Both 1 0Pq Î  
and 2 0,Pq Î 1 2( ) ( )

D D
u uq q¹ , 

but their distances to obs
D

u  are 
the same
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In the remainder of this chapter, we will focus on the methods for finding a 
quasi-solution in the deterministic framework and under the following assumptions: 
(i) no model error is present; (ii) the unknown parameter is an m-dimensional vec-
tor mθ Î  ; and (iii) observation data provide sufficient information to make the 
parameter quasi-identifiable in a predetermined region 0

mP Ì   and, thus, a unique 
and stable quasi-solution in the region can be found by using a local optimization 
method.

2.1.4  Parameterization and Discretization

Assume that a function, ( )f xq = , defined in a spatial (or temporal) region, W, is 
the unknown parameter. When the DOF of ( )f x  is infinite or high, we would not 
have sufficient data to make ( )f x  identifiable. We have to find a low-DOF function, 
(̂ )f x , to approximate the original ( )f x  for inversion. This process is known as pa-

rameterization, which is a topic that will be covered in full detail later in Chap. 6. 
In the following, we will briefly describe three basic parameterization methods to 
facilitate further discussion of topics in this chapter.

2.1.4.1  Parameterization by a Piecewise Constant Function

Parameterization by piecewise constant functions is the most commonly used pa-
rameterization method because of its simplicity and its role in stabilizing the in-
verse solution. In this method, the definition region of ( )f x , W, is divided into m  
zones,{ }1 2| , , ,

i
i mΩ = 

, and (̂ )f x  is a piecewise constant function over these 
zones,

 (2.1.14)

Identification of ( )f x  is then replaced by identification of the m-dimensional vector

 (2.1.15)

where m
ad

R  is the admissible region of m
f  in the m-dimensional Euclidean space m

 . 
The piecewise constant method is also referred to as the zonation method and can 
be represented in the following general form (see Appendix A):

 
(2.1.16)

where the basis function 1( )
i
xf = , when

i
Ωx Î ; and 0( )

i
xf = , otherwise. Zona-

tion can be applied to any continuous or discontinuous functions.

when(̂ ) , .
i i

f f Ωx x= Î

1 2( , ,···, ) , ,T m
m m m ad

f f f R= Îf f

1

( ) ( ),
m

i i
i

f f f
=

»åx x
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2.1.4.2  Parameterization by the Finite Element Method

The finite element method (FEM) parameterizes the unknown function ( )f x  in the 
same form as that in (2.1.16), in which m is the number of nodes, ( )

i i
f f x=  is the 

value of the function at node i
x , and ( )

i
xf  is a local interpolation basis function 

satisfying: (i) 1( )
i j
xf =  when j i=  and 0( )

i j
xf =  otherwise; (ii) 0( )

i
xf ¹  only 

in elements containing the node i
x , and (iii) in each element, ( )

i
xf  is a low-degree 

polynomial function, such as a linear function. In forward solution, ( )f x  is the un-
known state variable; once all basis functions are determined, all nodal values of 
m
f  can be obtained by solving the finite element discrete equations. For inverse 
solution, ( )f x  is the unknown distributed parameter and the elements of 

m
f  are the 

unknowns to be identified.
Note that (i) the FEM local interpolation is especially suitable for representing 

multiscale parameters and (ii) the element size used for inversion (i.e., discretizing 
distributed parameters) is typically much larger than that used for forward solution.

2.1.4.3  Parameterization by Kriging

Kriging is a statistical interpolation method that originated in geostatistics for esti-
mating the value of a spatially varying function ( )f x  at an unmeasured location x, 
using its measured values at a set of locations 1 2, ,···,

m
x x x . Let i

f  be the measured 
value of ( )f x  at location i

x  ( 1,2, , )i m= ××× . The minimum variance estimate of ( )f x  
is given by

 (2.1.17)

where the kriging weights, 1{ ( )}m
i i

λ x = , are obtained by solving a set of linear equa-
tions. A detailed discussion of kriging methods will be given in Chap. 6. For now, 
it suffices to know that when kriging is used as a parameterization method for 
inversion, the function values at specified locations become the unknowns to be 
identified.

2.1.4.4  Discrete Parameterization

Before a forward model can be solved numerically, all state variables and distrib-
uted parameters must be represented by their nodal values through discretization. 
From the perspective of parameterization, discretization naturally creates a full 
parameterization, after which a distributed parameter ( )f xq =  is replaced by an 
N-dimensional vector N

f , where N is the number of nodes. However, the vector N
f  

may not be identifiable if its DOF is large. We need a reparameterization process 
to further reduce N

f  to an m-dimensional vector m
f ( )m N  for inverse solution. 

Vectors 
N
f  and m

f  are related by a linear transformation

1

( ) ( ),
m

i i
i

f f
=

»åx xλ
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 (2.1.18)

Equation (2.1.18) can be seen as a discrete form of parameterization, where the 
N m´  transformation matrix G depends on the method used for parameterization. 
For example, in the case of zonation, the elements 

ij
g  of G satisfy

2.1.4.5  Application to Inverse Solution

Parameterization turns an infinite-dimensional distributed parameter into a low-
dimensional vector, which may be identifiable with limited data. In the general 
model equation 0( , )u q = , q  denotes all physical or nonphysical model param-
eters which may be scalars, vectors, and functions. After parameterization, q  is 
expressed as a vector

 (2.1.19)

The inverse problem then becomes identification of the vector m
θ . Elements of m

θ  
may include parameters that have different dimensions and magnitudes. Thus, us-
ing raw values of m

θ  directly during inversion may cause loss of accuracy of the 
inverse solutions. If the range of each element of m

θ  can be estimated from prior 
information, we can transform m

θ  into a dimensionless form. Assume the range of 
variation of i

q  is [ , ]
i i

a b , then ( ) / ( )
i i i i i

a b aq q° = - -  is a dimensionless variable 
that varies in the interval 0,1[ ]. We can then identify elements of the normalized 
vector during inversion. Similar scaling techniques are also used extensively by 
machine learning algorithms, as we will see in Chap. 8.

2.2  Linear Model Identification

2.2.1  Linear Model and Normal Equation

Linear model inversion is the simplest inverse problem, which requires solving the 
following system of algebraic equations (see Appendix C)

 (2.2.1)

.
N m
=f Gf

1 node zone
0 node zone
,     

,     ij

i j
g

i j

ìï Îïï= íï Ïïïî

for 1 2 and 1 2, ,···, , ,···, .i N j m= =

1 2( , ,···, ) .T
m mθ θ θ=θ

,
m
=G dθ
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where G is an n m´  matrix, m
m

θ Î   is the unknown parameter vector, and 
nd Î   is the data vector. For clarity, we will drop the subscript m on m

θ  where no 
confusion should occur. Linear model inversion serves as a basis for inverting more 
complex linear and nonlinear models governed by ODEs and PDEs. In Chap. 1, we 
showed that using a numerical method (e.g., FEM or FDM), a PDE is first reduced 
to a system of ODEs and then further reduced to a system of algebraic equations

 
(2.2.2)

where S T
n n n= ´ , S

n  is the number of nodes and T
n  is the number of time steps, 

nu Î   is the discretized state variable, and mθ Î   is the unknown parameter 
vector. If all equations in (2.2.2) are linear with respect to θ, we have a system of 
linear equations like (2.2.1), in which both G and d  are dependent on u. The system 
of equations (2.2.2) can be used to obtain the inverse solution θ if u  is approxi-
mated using its measurements (e.g., via interpolation and extrapolation), and G and 
d are calculated. This is the direct method of inversion.

When the forward solution is obtained from (2.2.2), we have

 
(2.2.3)

where obs
i

u 1 2( , , , )i n= ×××  are observed values of the state variable. If all of these 
equations are linear with respect to θ, we again obtain a system of linear equations 
like (2.2.1), where G  is an n m´  matrix and d  consists of observed values obs

i
u . 

This is the indirect method of inversion.
Therefore, both direct and indirect methods involve the solution of (2.2.1) when 

the model is linear. Unfortunately, the solution of (2.2.1) is inherently an ill-posed 
problem. Three cases are possible:

• Underdetermined case: This is the case when the dimension of parameter is larg-
er than the number of data (m n> ); the solution of (2.2.1) is nonunique in this 
case.

• Uniquely determined case: This is the case when the dimension of parameter 
is equal to the number of data (m n= ); the solution of (2.2.1) may be unstable 
when G is close to singular in this case.

• Overdetermined case: This is the case when the dimension of parameter is less 
than the number of data (m n< ); if (2.2.1) is an inconsistent system, the solution 
of (2.2.1) does not exist because no θ can satisfy all equations exactly in this case.

Example 2.3 Identification of contaminant release history
Let us revisit the 1-D mass transport problem in Example 1.5, for which the governing  
PDE is

 
(2.2.4)

1 2( , ) 0, , ,···, ,
i

i n= =u θ

1, 2,( ) , ···, ,obs
i i

u i n= = θ

( ),
L

C C C
D v RC s t

t x x x

æ ö¶ ¶ ¶ ¶÷ç ÷= - - +ç ÷ç ÷ç¶ ¶ ¶ ¶è ø
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subject to

Our goal is to recover the unknown release history of a point source that exists at 
a known location. This is a special case of the more general contaminant source 
identification problem. Here, we would like to identify the shape of source function 
( ) ( )t s tq =  in the time interval [0, ]T  based on n concentration samples obtained at 

different locations i
x  and times i

t

First, the unknown release history ( )tq  needs to be parameterized into an m-dimen-
sional vector θ. We apply the zonation method to discretize the time domain [0, ]T  
into m nonoverlapping subintervals such that the source strength is constant in each 
subinterval

The source strengths are components of the unknown vector 
1 2=( , , , )T

m
θ q q q .  

A linear system for inversion can be assembled from the following equation

 (2.2.5)

where ( , , )
i i

C x t θ  are model outputs. The source term in (2.2.4) is now replaced by 
its parameterization

where the basis function 0 1( )
j
s t = , when 

1
[ , ]

j j
t t t-Î , and 0 otherwise. For reasons 

that will soon become clear, the basis function 0( )
j
s t  is also called a unit-pulse 

source. Because (2.2.4) is a linear PDE, the forward solution of the model can be 
obtained by superposition. Let 0( , )

j
C x t  be the solution of the model when 0( )

j
s t  is 

used as its source term, then 0
1

( , ) ( , )
m

j jj
C x t C x tq

=
=å . After running the forward 

model m times, the system of equations (2.2.5) is converted to the form of a linear 
system (2.2.1), G dθ = , where the elements of n m´  matrix G and n-dimensional 
vector d are 0( , )

ij j i i
G C x t=  and ( , )obs

i i i
d C x t= , respectively. The method of as-

sembling the system of equations is known as the impulse-response method (Sun 
et al. 2006). It is similar to derivation of hydrographs from unit hydrographs in 
hydrology.

0 0

0

0

( , ) | ( ),

( , ) | ( ),

.

t

x in

x L

C x t C x

C x t C t

C

x

=

=

=

=
=

¶
=

¶

1 2{ ( , ) | , , , }.obs
i i

C x t i n= 

1in 1 2( ) [ , ], , , , .
j j j

t t t j mq q -= = 

1 2( , , )= ( , ), , , , ,obs
i i i i

C x t C x t i n= θ

0

1

( ) ( ),
m

j j
j

s t s tq
=
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As an illustration, let us assume that the length of the 1-D domain is 10 [L], 
1v = [L/T], and 0.1

L
D = [L2/T]. The source is located at the origin and we would 

like to estimate its release history during time interval 0, 7( ) [T]. The time domain 
is discretized into seven equal subintervals and the source strength is assumed con-
stant within each subinterval. Thus, the number of unknowns is equal to 7m = . 
For testing purpose, we assume that the “true” average source strengths ( tθ ) in all 
subintervals are known, which are 10, 5, 30, 80, 20, 100, 50{ }  [M/L3], respectively 
(Fig. 2.4). These values are used to generate the hypothetical concentration observa-
tions to be used by inversion.

Say the concentration is measured at five locations 1,3,5,7,9{ } [L] and six sam-
pling times 0.5,0.8,1.2,1.8,2.0,10.0{ }  [T]. The total number of data is 30n = , 
which leads to an overdetermined case because m n< . If concentration is measured 
at a location 1x = [L] for seven sampling times 0.5,0.8,1.2,1.8,2.0,5.0,10.0{ }  [T], 
the problem becomes a uniquely-determined case (m n= ). If concentration is 
measured at 1x = [L] for only five times at 1.0, 2.0, 3.0, 5.0,10.0{ } [T], we have an 
underdetermined problem at hand (m n> ). The solutions to these different cases 
will be discussed in subsequent examples. ■

The least squares solution to (2.2.1) is an approximate solution to (2.1.7), which 
minimizes the distance between the right-hand side and the left-hand side measured 
by the 

2L -norm (i.e., 
2

G dθ- ). It can be obtained by solving the normal equation 
defined as follows

 (2.2.6)

When TG G  is invertible, the least squares solution is simply

 (2.2.7)

which is the solution for the overdetermined case.

.T T=G G G dθ

1( ) ,T T
LS

-= G G G dθ

Fig. 2.4  Setup of the source identification problem
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Example 2.4 Release history identification for the overdetermined case
Consider the linear system that was obtained for the overdetermined case in  
Example 2.3

 (2.2.8)

where the subscripts correspond to matrix/vector dimensions. If the right-hand side 
d does not contain measurement error, the least squares solution of (2.2.8) fully 
recovers the “true” source strengths

 

If we perturb each observation data by 5 % random error, the accuracy of inverse 
solution degrades significantly

which has a root-mean-square error (RMSE) of 11.1. The RMSE is often used to 
measure the goodness-of-fit of an estimator

where 
1θˆ ˆ={ }m

i i=θ  is the estimator and 1={ }m
i i
q =θ  is the estimated parameter vec-

tor. For this example, ˆ=
LS

θ θ  and = tθ θ . If the magnitude of random observation 
error is increased to 10 %, the solution becomes even worse

which includes a nonphysical negative value and the RMSE is 30.5. These results 
show that the quasi-solution of a well-posed inverse problem can be sensitive to 
measurement errors and it is only close to the true solution when the observation 
error is sufficiently small. ■

The Matlab backslash operator (\) is used to obtain the least squares solutions for 
the above example. Other high-level programming languages provide similar tools, 
such as lstsq in Numerical Python (NumPy) and lm in R.

2.2.2  Estimation Using Singular Value Decomposition

The least squares solution 
LS

θ  defined by (2.2.7) exists only when TG G  is full 
rank. If TG G  is singular, 

LS
θ  does not exist. In this section, we introduce a pow-

erful technique for obtaining the pseudoinverse solution of the system of linear 
equations (2.2.1). The technique is based on singular value decomposition (SVD).

30 7 7 1 30 1[ ] [ ] [ ] ,´ ´ ´=G dθ

10.0, 5.0, 30.0, 80.0, 20.0, 100.0, 50.0{ }.
LS
=θ

9.6, 5.6, 31.8, 71.4, 41.3,82.1, 54.0{ },
LS
=θ

2

1

1RMSE ˆ( ) ,
m

i i
im
q q

=

= -å

10.1, 4.1, 29.2,117.7, 43.2,133.0, 46.7{ },
LS
=θ −
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The SVD provides a factorization of real or complex matrix (Golub and Van 
Loan 1996; Strang 2006). Using SVD, any n m´  matrix G  can be factored into

 (2.2.9)

in which U  is an n n´  matrix whose columns are orthogonal and form a set of 
basis vectors spanning the data space n

  (see Appendix C); V is an m m´  matrix 
whose columns are also orthogonal and form a set of basis vectors spanning the 
parameter space m

 ; Σ  is an n m´  diagonal matrix, and the entries of which are 
called the singular values of G . The columns of U  and V  are called singular vec-
tors of G . By convention, the singular values on the diagonal of Σ  are arranged in 
a descending order. If only the first r  singular values are nonzero, 

 (2.2.10)

we can construct a compact form of SVD

 (2.2.11)

where rU  contains the r  leftmost columns of U, rV  contains the r  leftmost col-
umns of V, and rΣ  is the upper-left block of Σ  with r  nonzero singular values on 
its diagonal

 (2.2.12)

Using SVD (2.2.11), we can calculate the inverse of G  as

 (2.2.13)

in which †G  is known as the Moore–Penrose pseudoinverse of G. The pseudo-
inverse is a generalized version of the conventional inverse matrix 1-G . It can be 
shown that when 1-G  exists, 1† -=G G ; and even when 1−G  does not exist, †G still 
exists and is unique (Golub and Van Loan 1996).

With the introduction of †G , the SVD pseudoinverse solution for problem 
(2.2.1) can be defined as

 (2.2.14)

Let ,r i
u  and ,r i

v  be the i-th column of r
U  and r

V , respectively, the matrix product 
of the right-hand side of the above equation gives

 
(2.2.15)

,TG U VΣ=

1 2 1
... 0

min( , )
... ,

r r n m
s s s s s+³ ³ ³ > = = =

,T
r r r

G U VΣ=

 = .r 
 
 

0
0 0

Σ
Σ

1† ,T
r r r

G V UΣ-=

1† † .T
r r r

G d V U dθ Σ-= =

1

,†
,
,

Tr
r i

r i
i i

s=

=å
u d
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where i
s  are singular values. The Moore–Penrose pseudoinverse solution can be 

obtained using the pinv routine that is available in Matlab, NumPy, and R. All 
three packages also provide an SVD routine named svd.

The SVD is a useful tool for linear model inversion. The pseudoinverse solution 
†θ  actually is a quasi-solution 

qs
θ  for problem (2.1.7) when the 2L -norm is used. 

For the overdetermined case (m n< ) and when ( )TG G  is invertible, we have

 

(2.2.16)

Therefore, the pseudoinverse solution †θ  in this case is equal to LS
θ  obtained by 

the normal equation (2.2.7), but the calculation of †θ  by (2.2.15) is more effective. 
When ( )TG G  is not invertible, (2.2.7) cannot be used to calculate

LS
θ , but †θ  can 

still be calculated.
For the underdetermined case (m n> ), the solution of =G dθ  is nonunique. 

With SVD, the system can be rewritten as

 (2.2.17)

Thus, its least squares solutions must satisfy

 

(2.2.18)

According to (2.2.18), the pseudoinverse solution †θ  is such a solution that its  
2L -norm in m

  is the smallest among all possible solutions because all † 0
i
=θ   

for 1i r³ + , viz.

 (2.2.19)

We have mentioned that for the uniquely determined case (m n= ), the solution 
of =G dθ  may become unstable when matrix G  is nearly singular. Although the 
pseudoinverse solution †θ  always exists and is unique even when the matrix G  is 
rank deficient ( min( , )r m n< ), its stability, however, must be considered, espe-
cially when used for model inversion.

†
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2.2.3  Truncated Singular Value Decomposition

Let us consider the stability problem of a pseudoinverse solution, namely, whether 
the solution is continuously dependent on data. An error in data, Dd, will cause an 
error, †Dθ , in the resulting inverse solution. The stability of the solution can be as-
sessed using the relative errors of solution and data

 

(2.2.20)

where (G)κ  is called the matrix condition number of G. Larger condition numbers 
mean that the solution is less stable. A linear system is said to be ill-conditioned 
when its condition number is much greater than 1. Using SVD, the condition num-
ber can be calculated as

  (2.2.21)

where 1s  and r
s  are the maximal and the minimal nonzero singular value of G, 

respectively. As can be seen from (2.2.15), when r
s  is close to zero, a small error in 

dwill cause a large error in †θ .
Linear systems derived from ill-posed inverse problems, such as (2.2.2) and 

(2.2.3), are also ill-conditioned in many situations. Therefore, we frequently en-
counter ill-conditioned linear systems in the study of inverse problems. Consider 
the case that the forward solution is linear with respect to θ  and (2.2.1) is derived 
from (2.2.3), where the elements 

ij
g  of matrix G are

,
/

D i j
u q¶ ¶ , i n= . . .1, 2, , , 

and ...1, 2, ,j m= . If all observations are insensitive to a certain component 
j
q  of θ,  

then all elements in the jth column of G  are close to zero which, in turn, means that 
the corresponding singular value of G  is also close to zero. Consequently, the sys-
tem is ill-conditioned and the identified 

j
q  has large uncertainty. In this case, if we 

cannot collect additional data that are sensitive to 
j
q , we need to drop 

j
q  from θ,  

which can be done by using the truncated singular value decomposition (TSVD).
In TSVD, only the first k  singular values 1 2

...
k

s s s³ ³ ³  are retained. All other 
singular values that are less than k

s  are truncated. As a result, the following ap-
proximation of the original matrix and corresponding pseudoinverse solution are 
obtained

 (2.2.22)

Comparing to †θ  obtained by SVD, the solution †
ts

θ  obtained by TSVD has a 
smaller number of DOF (k r< ) but is more stable and robust because the matrix 
condition number of tsG  is reduced to 1 /

k
s s . The reduction of solution instability 

comes at the expense of an increase in fitting residuals. Therefore, determination of 

2 2

22
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†
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d
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the truncation threshold k
s  needs to make a trade-off between minimizing the fit-

ting residual and maximizing the stability of the solution. As we will soon see in 
Chap. 3, this is a type of two-criterion optimization or regularization problem. We 
remark that †

ts
Gθ  cannot fit observation data d  accurately even without observa-

tion error because of the model structure error caused by truncation.

Example 2.5 SVD solution of an ill-conditional least squares problems
In Example 2.4, we showed that adding small noise to data may cause a significant 
change in the inverse solution. In this example, SVD is used to yield further insight 
into the problem. The solution instability, as shown below, is caused by the large 
condition number of the coefficient matrix.

Figure 2.5 shows that the maximum and the minimum singular values of matrix 
G in (2.2.8) are 1.24 and 1.5 × 10−4, respectively. The matrix condition number is 

8300( ) »Gκ , which is calculated using the formula in (2.2.21). If the smallest sin-
gular value is removed, κ  decreases significantly to 12.7.

Using the TSVD pseudoinverse formula given in (2.2.22) and keeping only the 
first six singular values (i.e., setting k  to 6), we get a TSVD solution

10.0, 4.1, 43.5, 56.1, 61.2, 62.9, 60.8† { }.
ts
=θ

Fig. 2.5.  Singular values of the response matrix G in Example 2.5
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for the case in which the data have 10 % observation error, and the RMSE is 23.3. 
The stability of the solution is clearly improved over the same case in Example 2.4. 
However, when no observation error is present, the following TSVD solution is 
obtained

which is different from the accurate solution. Generally speaking, any improvement 
in numerical stability may come at the expense of the loss of accuracy. In this ex-
ample, the loss of accuracy is caused by the truncation of singular values.

2.2.4  Linearization

Let the parameter space   and observation space   be finite dimensional Euclidean 
spaces such that mÎ θ  and obs n

D
Îu 

, respectively. When the model output ( )
D

u θ  
is mildly nonlinear around the parameter

0θ , it can be approximated by a linear 
function (first-order Taylor’s expansion)

 (2.2.23)

where the Jacobian
D

J  is defined as

 
(2.2.24)

in which all partial derivatives of D
J  are evaluated at point 0θ . If 0θ  is close 

to the true parameter, substitution of (2.2.23) into the inverse solution equation 
( ) obs

D D
=u uθ  gives

 (2.2.25)

Equation (2.2.25) can be seen as a linear model in the form of (2.2.1) if we replace 
G  on the left-hand side by D

J , d on the right-hand side by 0 0( )obs
D D D
- +u u Jθ θ , 

and multiply both sides by T
D

J . The corresponding normal equation becomes

 (2.2.26)

When T
D D

J J  is invertible, a least squares solution of the linearized inverse problem 
can be obtained by solving (2.2.26). Otherwise, we can find a pseudoinverse solution 
or a TSVD solution. An algorithm for successive linearization can be summarized as:

1. Guess an initial solution 0θ  in the admissible set ad
P

2. Use linearization at 0θ  to form (2.2.23)

10, 5, 36.2, 53.1, 65.5, 69.5, 56.1† { },
ts
=θ
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3. Solve the linear inverse problem (2.2.26) to obtain a solution 1θ
4. Test if a predefined convergence criterion 1 0 ε- <θ θ  is reached
5. If yes, stop; otherwise, replace 0θ  by 1θ  and go back to step 2.

Example 2.6 Linearization example
The continuity equation for 1-D flow in a rectangular channel is given by (see Ex-
ample 1.4)

 (2.2.27)

where ( , )h x t  is water depth (the state variable), ( , )v x t  is longitudinal flow velocity, 
and ( , )q x t  is lateral inflow rate per unit length of the channel. The kinematic wave 
equation assumes that the energy grade line is parallel to the channel bottom, and 
that the flow is steady and uniform. As a result, the momentum conservation equa-
tion becomes 

f
S  = 

0S , and both can be related to flow velocity v  using, for example, 
the Manning’s equation

 (2.2.28)

in which n is the Manning’s roughness coefficient. The longitudinal volumetric 
flow rate, Q, which is a product of channel width ( B), water depth ( h), and flow 
velocity (v), can be written using the Manning’s equation as

 (2.2.29)

where A hB=  is the channel’s cross-sectional area, the constant 1.49 is used when 
all quantities are given in English units, and a wide channel is implicitly assumed. 
Multiplying both sides of (2.2.27) by B gives

 (2.2.30)

where 
B
q qB= . Solving for h  from (2.2.29) and substituting the result into (2.2.30), 

we get

 (2.2.31)

where 2/3 1/2
01.49= ( / ( ))nB S ba  and 3 / 5b = .

Given the inflow hydrograph at the channel inlet, the initial condition, and chan-
nel parameters, the nonlinear kinematic wave equation (2.2.31) can be discretized 
by using FDM
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 (2.2.32)

in which the superscript and subscript correspond to temporal and spatial discretiza-
tion indices, respectively. From (2.2.32), the following expression for the unknown 

1
1

t
i

Q +
+  is obtained

 (2.2.33)

where

The solution progresses from the upstream to downstream.
For demonstration, we use data modified slightly from Chow et al. (1998, Exam-

ple 9.4.1), where the rectangular channel is 24000-ft long (1 ft = 0.3048 m) and 200-
ft wide, the Manning’s n  is 0.035, 0S  is 0.01, and 0

B
q = . The initial flow is uniform 

at 2000 [ft3/s]. Figure 2.6a shows the inflow hydrograph and two calculated, as well 
as the forward solution (i.e., routed hydrographs) at several cross sections along the 
channel. Figure 2.6b plots flow rate as a function of 0S , which shows that Q is a 
mild nonlinear function of 0S .

Now assume that the actual value of 0S  is unknown and we want to estimate it 
by using measurements of the flow rate ( , )Q x t . All observations are taken at the 
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Fig. 2.6  a Inflow hydrograph and calculated hydrographs at downstream sections 2000x =  and 
10000 ft (Δ = 1000 ft), respectively; b Plot of flow discharge rate as a function of 0S  at 2000x =  ft

 



2 The Classical Inverse Problem46

station 12000x = [ft] at six different times (circles in Fig. 2.7a). The successive 
linearization algorithm is used to estimate 0S  iteratively. Starting with an initial 
guess of 0S  = 0.005, we calculate the Jacobian J  which, in this case, is a 6 1× vector 
because there is only one unknown parameter. Figure 2.7b shows the corresponding 
sensitivities for the initial iteration (circles). The algorithm converged to the “true” 
S0 value of 0.01 in just three iterations. ■

The above example indicates that a nonlinear model can be identified accurately 
by linearization. However, when ( )

D
u θ  is highly nonlinear, as it is often the case 

in EWR modeling, the successive linearization process may not always converge 
to the inverse solution of the nonlinear model. In this case, we have to solve the 
nonlinear optimization problem (2.1.7) to find the inverse solution.

2.3  Nonlinear Model Identification

2.3.1  Inverse Solution and Optimization

In Sect. 2.2, the quasi-solution of a CIP is obtained from a minimization problem

 (2.3.1)

where ( ) ( ) obs
D D

S u uq q= - . Equation (2.3.1) is a typical nonlinear optimization 
problem. As an important mathematical tool, nonlinear optimization has found ex-
tensive applications in virtually all fields of science and engineering. For inverse 

min ( ), ,
ad

S P
q
q q Î

Fig. 2.7  a Flow rate observations ( circles) used for estimating 0S , and b sensitivity 0/dQ dS  
corresponding to plot (a)
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solutions, however, problem (2.3.1) is often difficult to solve because of the com-
plexity of ( )S q  and the irregularity of 

ad
P .

According to the properties of objective functions and constraints, optimiza-
tion problems can be classified in different ways, such as constrained vs. uncon-
strained, linear vs. nonlinear, smooth vs. nonsmooth, continuous vs. discrete, single 
vs.  multiple objectives, and so on. The selection of an appropriate optimization 
algorithm is problem dependent. According to the level of difficulty, optimization 
problems can be roughly classified into:

• Easy problems: The objective function ( )S q  is linear or quadratic and the admis-
sible region 

ad
P  is characterized by linear functions. In this case, algorithms of 

linear programming and quadratic programming can be used to obtain the solu-
tion effectively.

• Slightly difficult problems: ( )S q  is convex, 
ad

P  is either convex or unbinding. In 
this case, a local minimum can be found by an unconstrained optimization algo-
rithm; the unique local minimum is also the global minimum.

• Moderately difficult problems: ( )S q  is nonconvex or 
ad

P  is nonconvex and bind-
ing, but the dimension of q  is not too high. In this case, a constrained and/or a 
global optimization algorithm can be used to find the global minimum with mod-
est computational effort.

• Highly difficult problems: ( )S q  and ad
P  are highly nonlinear, and the dimension 

of q  is also high. In this case, global optimization algorithms may become inef-
fective and the computation may become intractable.

Depending on the complexity of the model and availability of data, the minimiza-
tion problem derived from an inverse problem may be an easy one, a slightly dif-
ficult one, a moderately difficult one, or a highly difficult one. In EWR modeling, 
the optimization problem for inversion is often difficult because (i) the evaluation 
of ( )S q  requires solution of the forward problem, which is time-consuming when 
the model equation consists of PDEs and the model scale (e.g., number of nodes) is 
large; (ii) the ill-posedness of the inverse problem makes the solution of the optimi-
zation problem nonunique (having multiple local minima) and unstable (sensitive 
to the observation error) because of insufficient data; and (iii) the dimension of q is 
usually high for distributed systems.

Numerical optimization is a major tool for solving inverse problems. In this sec-
tion, we will introduce the basic concepts and algorithms of unconstrained optimi-
zation for finding a local minimum. This type of algorithms is suitable for solving 
an extended well-posed CIP. To ensure that the unknown parameter is quasi-identi-
fiable (see Sect. 2.1.3), we make the following assumptions:

1. The unknown parameter is within a convex region ad
P  known a priori;

2. The quantity and quality of the observation data are sufficient such that ( )S q  is 
a strictly convex function over the region.

These assumptions ensure that the boundary of 
ad

P  is an unbinding constraint, only 
one local minimum exists in the region, and the unique local minimum is also the 
global minimum over the region. In other words, the inverse solution can be found 
by solving a slightly difficult optimization problem.
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2.3.2  Basic Concepts of Numerical Optimization

2.3.2.1  Optimality Conditions

Let us first review the necessary and sufficient conditions for an interior point of 
m

ad
P Ì   to be a minimizer of an objective function ( )S θ Î . When ( )S θ  is high-
order differentiable in the neighborhood of a point *

ad
Pθ Î , we have the following 

Taylor’s expansion around *θ

 (2.3.2)

where HOT represents high-order terms, g  is the gradient vector

 

(2.3.3)

and H  is the Hessian matrix (see Appendix C)

 (2.3.4)

In Taylor’s expansion (2.3.2), all derivatives in g  and H  are evaluated at point *θ . 
A point *θ  is called a stationary point of ( )S θ  when *( )g 0θ = . If *( ) ( )S Sθ θ£  for 
all θ  in a neighborhood of *

ad
Pθ Î , then *θ is a local minimizer of ( )S θ . To deter-

mine whether a stationary point is also a minimizer, we must consider the second-
order terms in (2.3.2). When H  is positive definite at *θ , then for any θ  close to 

*θ , we must have * *( ) ( ) 0THθ θ θ θ- - > ; when H  is positive semidefinite at *θ , 
we must have * *( ) ( ) 0THθ θ θ θ- - ³  for any θ  close to *θ (see Appendix C). The 
necessary and sufficient conditions for *θ  to be a local minimizer are thus given by

• Necessary conditions, *( )g 0θ =  and *( )H θ is positive semi-definite;
• Sufficient conditions, *( )g 0θ =  and *( )H θ is positive definite.

1
2

* * * *( ) ( ) ( ) ( ) ( ) ,T TS S HOT- = - + - - +g Hθ θ θ θ θ θ θ θ

1 2

, ,···, ,

T

m

S S S
S

q q q

æ ö¶ ¶ ¶ ÷ç ÷ç= Ñ = ÷ç ÷ç ÷¶ ¶ ¶è ø
g

2 2 2

2
1 2 11

2 2 2

2
1 2 22

2 2 2

2
1 2

· · ·

· · ·

· · · · · · .
· · · · · ·

· · · · · ·

· · ·

m

m

m m m

S S S

S S S

S S S

q q q qq

q q q qq

q q q q q

é ù¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ ¶¶ê ú
ê ú¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ ¶¶ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ ¶ ¶ë û

H



2.3 Nonlinear Model Identification 49

These conditions can be derived from (2.3.2) directly. In fact, if *θ  is not a station-
ary point or *( )H θ is not positive semidefinite, then in any neighborhood of *θ , we 
can find two points 1θ  and 2θ  such that 1

*( ) ( )S Sθ θ-  and 2
*( ) ( )S Sθ θ-  have dif-

ferent signs; therefore, *θ  cannot be a local minimizer. On the other hand, if *θ  is 
a stationary point and *( )H θ  is positive definite, the second-order term determines 
that the right-hand side of (2.3.2) must be positive in a neighborhood of *θ  and, 
thus, *θ  must be a local minimizer.

The positive definiteness of *( )H θ  guarantees the local convexity of ( )S θ  at *θ  
and, thus, 0*( )=g θ  becomes the necessary and sufficient condition of minimiza-
tion. If ( )S θ  is a differentiable convex function over a convex region, then *θ  must 
be a global minimizer of the region.

2.3.2.2  Numerical Differentiation

When objective function ( )S θ  is given numerically by a computer code instead 
of by an analytical expression, its gradient vector and Hessian matrix can only be 
calculated approximately by numerical differentiation. In this case, we do not have 
a gradient equation ( )g θ = 0  for solving the stationary points. When the forward 
solution ( )

D
u θ  is obtained numerically using a computer code, the objective func-

tion, ( ) ( ) obs
D D

S u uθ θ= - , depends only on θ: for each input θ  to the computer 
model, we obtain a corresponding output value ( )S θ . Similarly, we can invoke the 
model to calculate the gradient vector at a given point θ, for example, by the finite 
difference approximation:

 (2.3.5)

where i
e  is the unit vector along the th-i coordinate axis. Calculating the Hessian 

matrix of a numerical model by using second-order finite difference approximation 
is generally infeasible because of the resulting significant numerical error and high 
computational cost when the dimension of θ  is high. We will introduce various 
methods for differentiating a numerical model in Chap. 5. To speed up optimization, 
it is also possible to develop metamodels or reduced-order models using the original 
computer model. This latter topic will be covered in both Chaps. 8 and 10.

2.3.2.3  Iteration Approach

Numerical optimization uses an iteration process to search for a solution. An itera-
tion process for minimization generally consists of three steps:

1. Choose a starting point 0 ad
Pθ Î  (an initial guess of the inverse solution);

2. Generate an iteration sequence

1 2
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 (2.3.6)

such that the value of the objective function is decreased gradually, namely, 
1

( ) ( )
k k

S Sθ θ+ <  for all k;

3. Determine whether convergence has reached.

The iteration sequence (2.3.6) has the following general form

 (2.3.7)

where vector 
k

d  is called a displacement direction, and kλ  is a step size along this 
direction. Different optimization algorithms use different methods to generate k

d  
and kλ , as we will see later in Sect. 2.3.3.

2.3.2.4  Convergence and Stopping Criteria

The iteration sequence (2.3.6) generated by an algorithm is said to be convergent if 
it reaches a point *θ  where the value *( )S θ  is a minimum of the objective function. 
In other words, for any given numbers 0ε >  and 0d > , there is an integer ,K  such 
that

 (2.3.8)

The integer K  is the number of iterations needed to reach an accuracy requirement 
of convergence. The speed of convergence is measured by the limit

 (2.3.9)

where a  is called the order of convergence, and b  is called the convergence factor. 
In particular, we have the following cases:

• Linear convergence, when 1a =  and 0 1b< < ;
• Superlinear convergence, when 1a =  and 0b = ; and
• Quadratic convergence, when 2a =  and 0 1b< < .

We cannot use (2.3.8) directly in practice to determine the convergence and termi-
nate the iteration because *θ  is unknown. Instead, we have to resort to the following 
stopping criteria:

1. The displacement becomes small after several successive movements,

 (2.3.10)
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2. The value change of the objective function ( )S θ  becomes small after several suc-
cessive movements,

 (2.3.11)

In (2.3.10) and (2.3.11), 0e >  and 0d >  are user-specified numbers, and 1L ³  
is a predetermined integer (e.g., the dimension of θ).

3. For inverse solution, we have to consider an additional criterion, namely, the 
value of data fitting residual becomes small,

 (2.3.12)

where 0h >  is an acceptable level of fitting residual measured in the observa-
tion space.

When the assumptions made at the end of Sect. 2.3.1 are valid and the number of 
iterations ( K) is large enough, all three criteria listed above should be satisfied simul-
taneously. A quasi-solution is then obtained. In practice, especially in EWR model-
ing, however, the following cases may occur because of data and model errors:

1. Criteria 1 and 2 are satisfied but criterion 3 is not (i.e., the fitting residual is not 
acceptable). In this case, a local minimum may be found, but it is not the inverse 
solution, and the global minimum is needed.

2. Criteria 2 or 3 are satisfied but criterion 1 is not (i.e., the observation data are 
insensitive to the identified parameter). In this case, the quantity of observation 
data is insufficient for distinguishing the identified parameter from other signifi-
cantly different parameters.

3. Criterion 3 cannot be satisfied regardless of the satisfaction of criteria 1 and 2. 
This case may be attributed to the bad quality of the observation data, but more 
often, the model structure error.

We can try to find the global minimum if any one of the three cases identified in 
the above occurs. But, in general, we have to consider (i) increasing the quantity of 
observation data, (ii) decreasing the observation error, (iii) using additional infor-
mation related to the identified parameters, and finally, (iv) modifying the model 
structure. These topics will be covered in different chapters of this book.

2.3.3  Algorithms for Local Optimization

The algorithms reviewed in this section are designed for finding a local minimum 
without constraints. They can be sorted into three categories:

• An optimization algorithm is called a zero-order method if only the objective 
function values are utilized.

( ) ( ) .
k k L

S S d+< +θ θ

( ) ( ) ,obs
k D k D

S h= - <u uθ θ
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• An optimization algorithm is called a first-order method if the first-order deriva-
tives of the objective function are also utilized.

• An optimization algorithm is called a second-order method if the second-order 
derivatives of the objective function are also utilized.

Generally speaking, the convergence speed of a first-order method is faster than 
that of a zero-order method, and the speed of a second-order method is faster than 
that of a first-order method. But, the efficiency of an optimization algorithm is de-
termined by the total computational effort rather than the number of iterations. In 
other words, an algorithm that requires a larger number of iterations but less com-
putational effort for one iteration may be more efficient than another one that needs 
fewer iterations but more computational effort for each iteration. The efficiency of 
an optimization algorithm is problem dependent. From the perspective of inversion, 
we often use “the number of evaluations of the objective function” or “the number 
of forward model runs” to gauge the efficiency of an optimization algorithm.

2.3.3.1  Search Along a Direction

Along a displacement k
d , the optimal step size k

λ  in (2.3.7) is the solution of the 
following 1-D optimization problem

 (2.3.13)

The range ( , )ba  of λ  is determined by the admissible region of θ . When ( )f λ  
is convex in the range, the minimum must be in a bracket defined by three points 
[ , , ]a c b  such that a c b< < , and ( ) min ( ( ), ( ))f c f a f b£ . If we take a new point d  
in the bracket and calculate ( )f d , then either ( ) ( )f c f d£  or ( ) ( )f c f d> . For the 
former case, we can remove the interval [ , ]d b  and use [ , , ]a c d  as a new bracket; for 
the latter case, we can remove the interval [ , ]a c  and use [ , , ]c d b  as a new bracket 
(see Fig. 2.8). Repeating this process, we can obtain a sequence of brackets with 
smaller and smaller lengths and all of which contain the minimum. This process 
can be terminated when the length of a new bracket is less than a predetermined 
number e. The general bracket process uses the following steps to generate a line 
search sequence:

1. Let a a=  and b b= ;
2. If b a e- < , end the search and let λ ( ) / 2b a= - ;
3. Otherwise, find two points c  and d  in [ , ]a b . If ( ) ( )f c f d£ , then let b d= ; 

otherwise, let a c= . Go back to step 2.

Points c  and d  may be determined by different methods. In the golden section 
search method, the points are given by

 (2.3.14)

where andargmin ( ), ( ) ( ) .
k k k

f f S b= = + <dθλ λ λ λ λa <

5 1

2
τ τ τ ≈

−
= − ( − ) = + − = 0.618.and ( ), wherec b b c d a b a
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In the quadratic interpolation method, c  is the mid point of the bracket and d  is the 
minimizer of a quadratic polynomial defined by the three points( , ( ))a f a , ( , ( ))c f c , 
and ( , ( ))b f b

 
(2.3.15)

The result of an exact line search gives the optimal step size for displacement along 
a given direction.

2.3.3.2  Search Along Coordinate Directions and the Powell Method

The simplest zero-order algorithm is the one-at-a-time line search method in 
which the search process is performed cycle by cycle. Each cycle consists of m 
displacements along the coordinate directions, 1 2

. . ., , ,
m

e e e . The process of one 
search cycle is described by

1. Let 0θ  be the search result of the last cycle (
0

θ  is equal to the initial guess for the 
first cycle);

2. For . . .1,2, ,i m= , find 1i i i i-= + eθ θ λ , where λ
i  is determined from

2
2 2

[ ( ) ( )]
( ) / and .

[ ( ) ( ) ( )]

c f a f b
c b a d c

f b f c f a

-
= - = +

- +

1argmin ( ).
i i i

S -= + eθ
λ

λ λ

Fig. 2.8  Illustration of a single iteration in the branching process of line search, in which the new 
bracket is set to [ , , ]a c d
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This method is simple but not useful because its convergence speed is slow. The 
Powell method is an improved zero-order algorithm, in which the displacement 
directions 1 2

. . ., , ,
m

d d d  used in a cycle are modified gradually from the coordinate 
directions to a set of mutually conjugate directions of the Hessian matrix H, such 
that 0T

i j
»d Hd  for i j¹ . It can be shown that when the objective function is qua-

dratic and the line search is exact, the minimum can be found by m displacements, 
one by one along the conjugate directions (Press et al. 2007). In the Powell method, 
the conjugate directions are generated gradually during the iteration process. The 
following algorithm describes one search cycle of the Powell method:

1. Let 0θ  be the search result of the last cycle and let 
1 2
, ,···,

m
d d d  be the search 

directions updated in the last cycle. For the first cycle, 0θ  is the initial guess and 
1 2
, ,···,

m
d d d  are set to the coordinate directions.

2. For 1,2,···,i m= , find λ
1i i i i-= + dθ θ , where λ λ

1
argmin ( )

i i i
S

l -= + dθ .
3. Let 1 0m m+ = -d θ θ  and find 1 1m m m+ += + dθ θ λ , where 

1
argmin ( )

m m
S+ = + dθ

λ
λ λ .

4. Use 1m+θ  as the result of search of this cycle and update the search directions for 
the next cycle by letting 1i i+=d d  for 1,2,···,i m= .

In this process, after m displacements are completed one by one along the search 
directions, an additional line search along a new direction 1 0m m+ = -d θ θ  is used 
to generate the search results of this cycle, and the search directions are updated 
for the next cycle. Therefore, one cycle in the Powell method contains 1m +  dis-
placements, and the search directions gradually become mutually conjugate with 
the increase of the number of iterations.

2.3.3.3  Steepest Decent and Conjugate Gradient Methods

The steepest descent method is one of the oldest first-order optimization methods. 
For the thk  iteration, the new displacement direction is given by ( ),

k k
= -d g θ   

which is the negative gradient direction or the steepest descent direction of ( )S θ  at 
k

θ . The step size k
λ  is determined by a line search along this direction. When ( )S θ  

is given numerically, its gradient ( )
k

g θ  can be calculated by the finite difference ap-
proximation as shown in (2.3.5), which requires solving the forward model 1m +  
times (recall that m  is the dimension of θ ). The steepest descent method has been 
widely used for inverse solutions. Its convergence speed, however, is slow when the 
initial guess 0

θ  is not in the neighborhood of the minimizer.
The conjugate gradient method is an improved first-order algorithm, in which 

the search directions used in each cycle are modified gradually to the conjugate di-
rections. In this method, the search process for one cycle is given by the following 
algorithm:

1. Let 0θ  be the search result of the last cycle.
2. Let 1 0

( )= -d g θ  and find 1 0 1 1
= + dθ θ λ , where 

1 0 1
argmin ( )S

l
= + dθλ λ .
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3. For 2, 3,···,i m= , let 
1 1 1i i i i
b- - -= - +d g d , where 1 1

( )
i i- -=g g θ , and find 

1i i i i-= + dθ θ λ , where 
1

argmin ( )
i i i

S -= + dθ
λ

λ λ .
4. Report 

m
θ  as the search result of this cycle.

In this process, the current search direction is a linear combination of the current 
steepest decent direction and the direction of the previous displacement. The coef-
ficient i

b  is selected to make the search directions conjugate. In the F-R algorithm 
(Fletcher and Reeves 1964; Press et al. 2007), i

b  is given by

while in the P-R algorithm (Polak and Ribiere 1969; Press et al. 2007), i
b  is given by

where 1i i i-D = -g g g . In general, the P-R algorithm is more efficient than the F-R 
algorithm.

2.3.3.4  Newton and Quasi-Newton Methods

The Newton method is a second-order optimization algorithm that requires calcu-
lation of the Hessian matrix. When we have a point 

k
θ  in the iteration sequence, 

we expect to find a point 
1k+θ  such that the gradient 

1
( )

k+ =g 0θ  (i.e., satisfying 
the necessary condition of minimization). Using Taylor’s expansion of ( )g θ  at 
point  k

θ , we have the following equation

 (2.3.16)

Ignoring the high-order terms and denoting ( )
k

g θ  by k
g  and ( )

k
H θ  by k

H , respec-
tively, we obtain

 (2.3.17)

This equation can be used to generate the iteration sequence. Compared to the gen-
eral equation (2.3.7), we see that the displacement direction in the Newton meth-
od is given by 1

k k k
-= -d H g  (called the Newton direction) and the step size k

λ  is 
always equal to one. The Newton algorithm converges fast and no line search is 
needed. When the objective function is quadratic, the minimum can be found by one 
displacement from any point. For the general case, of course, an iteration process 
is needed. Finding the Newton direction for each step of iteration requires the cal-
culation of the Hessian matrix which, unfortunately, is computationally prohibitive 

2 2

1/ ,
i i i
b -= g g

2

1· / ,
i i i i
b -= Dg g g

1 1
( ) ( ) ( )( ) .

k k k k k
HOT+ += = + - +0 g g Hθ θ θ θ θ

1
1 .

k k k k
-
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when the forward run of a model is expensive. Therefore, the Newton method is not 
practical from the perspective of inverse solutions.

To avoid the calculation of the Hessian matrix, several quasi-Newton methods 
have been proposed. The common idea behind these methods is the replacement of 
the inverse of the Hessian matrix, 1

k
-H , by a symmetric and positive definite matrix, 

k
M , which is modified gradually during the iteration process. In a quasi-Newton 
method, the process of generating 

1k+θ  from 
k

θ  can be summarized as

1. Let 
k k k
= -d M g ; if 0k = , set 

0
=M I  (the identity matrix);

2. Find 1k k k k+ = + dθ θ λ , where argmin ( )
k k k

S= + dθ
λ

λ λ ;
3. Update 

k
M  to 

1k+M  for the next iteration.

An often used quasi-Newton algorithm, which was presented by Broyden, Fletcher, 
Goldfarb, and Shanno and commonly known as the BFGS method (Fletcher 1970), 
suggests the following updating formula:

 

(2.3.18)

where 
1k k k+D = -θ θ θ  and 

1k k k+D = -g g g . The convergence speed of the 
BFGS method is superlinear when the line searches are exact. Detailed discussions 
on the quasi-Newton methods and more updating formulae can be found in (Fletch-
er 1987; Luenberger and Ye 2008; Nocedal and Wright 2006).

A variation of the BFGS method is the limited memory BFGS (L-BFGS) meth-
od, in which the matrix 1k+M  is not calculated by (2.3.18); instead, it is obtained 
implicitly by using 

1 1
, ,···,

k k k r- - +θ θ θ  and 1 1
, ,···,

k k k r- - +g g g  (i.e., the results of r  
previous iterations, where r  is an integer less than 10). Because the full matrix 

1k+M  is not formed and stored, L-BFGS is more efficient than BFGS when the di-
mension of θ  is high. Detailed discussions and algorithms of L-BFGS can be found 
in Nocedal and Wright (2006).

Both BFGS and steepest descent are available as options for Hessian update in the 
Matlab function, fminunc, which can solve unconstrained nonlinear optimization 
problems. SciPy provides an implementation of BFGS in function fmin_bfgs, 
L-BFGS in fmin_l_bfgs_b, and conjugate-gradient (P-R algorithm) in fmin_
cg. The R language command optim is a general-purpose optimization routine 
that implements BFGS, L-BFGS, and conjugate gradient (F-R algorithm) methods.

2.3.3.5  Inexact Line Search

All gradient-based algorithms of optimization, including various quasi-Newton 
methods, require using exact line search to assure convergence when the objective 
function is nearly quadratic. But, this requirement may make an algorithm ineffi-
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cient, especially when it is used to solve an inverse problem and the forward solu-
tion is time-consuming. In fact, when the current point in the search sequence is 
not close to the minimum, an exact line search is not helpful for fast convergence. 
Therefore, appropriate stopping criteria for inexact line search have been devel-
oped that can increase the efficiency while ensuring the convergence of an iteration 
process. The following strong Wolfe conditions have been incorporated into most 
algorithms in common optimization software packages:

 (2.3.19)

 (2.3.20)

where 
1 2

0 1c c< < < . Note that ( ) < 0T
k k

d g θ  because 
k

d  is a descent direction. 
For a step size k

λ , the first condition (2.2.19) ensures that the value of the objective 
function decreases sufficiently, and the second condition (2.3.20) ensures that the 
length of the gradient reduces sufficiently. The coefficient 

1
c  is usually chosen to be 

close to zero, while 2
c  is close to one. For example, BFGS method sets 4

1
10c -=  

and 
2

0.9c = , whereas the conjugate gradient method sets 4
1

10c -=  and 2
0.1c =

(Nocedal and Wright 2006).

Example 2.7 Estimation of parameters in a soil water retention model
Modeling water movement in the vadose zone requires knowledge of soil water 
retention characteristics. Simply speaking, a soil water retention model describes 
how water content varies with pressure head and, therefore, reflects a soil’s water-
holding capacity. A widely used soil water retention model is the van Genuchten 
model (Van Genuchten 1980), which expresses saturation as a nonlinear function 
of pressure head

 (2.3.21)

where 
w
q  is volumetric water content; 

s
q  and 

r
q  denote the saturated and residual 

water content, respectively; 
e

S  is a normalized quantity called effective water satu-
ration; ψ  is pressure head [L]; and a  and n  are fitting parameters that characterize 
the shape of the retention curve.

In this example, we would like to estimate parameters of the van Genuchten’s 
model using measurements of ψ  and

w
q . We assume that 

s
q  and r

q  are known and 
only parameters a  and n  need to be estimated (i.e., { , }na=θ ). The experimental 
data reported in van Genuchten (1980) are used here for demonstration (open circles 
in Fig. 2.9a). The optimization problem (2.3.1) can be cast as

 
(2.3.22)

in which the objective function is the discrepancy (
2

L -norm) between observed and 
simulated water content,

1( ) ( ) ( ),T
k k k k k k k

S S c+ £ +d d gθ θ θλ λ

2( ) ( ) ,T T
k k k k k k

c+ £d g d d gθ θλ

1 ( ) , , 1 1/ ,
m

n w r
e e

s r

S S m n
q q

a
q q

-é ù
ê ú

-
= + = = -

-ë ûψ

{ }
{ , }

min ,
n
S

a=θ
θ



2 The Classical Inverse Problem58

 (2.3.23)

where obs
w

θ  and 
w

θ  are observed and simulated water content values at different 
pressure heads. ■

The unconstrained minimization problem (2.3.22) was solved using the Matlab 
function, fminunc, which implements a quasi-Newton method for medium-scale 
problems. Given initial guesses of 2a =  and 1n = , the final solution returned by 
fminunc is 2.90a =  and 1.58n = . The fitted van Genuchten model is shown 
in Fig. 2.9a (solid line). Figure 2.9b shows the convergence history of the solution 
process, from which a monotonic reduction in objective function value can be ob-
served.

The optimization problem has multiple local minima and, thus, the quasi-solu-
tion returned by local optimization algorithms is dependent on initial guesses. For 
example, if the initial guesses are changed to 0.8a =  and 0.5n = , the estimated 
parameters become 2.75a =  and 1.60n = .

2.3.4  Norm Selection

The objective function ( ) ( ) obs
D D

S u uq q= -  for inverse solutions is a misfit function, 
depending on which norm is furnished in the observation space (see Appendix A). 
The selection of different norms may affect both the accuracy and stability of 
inverse solutions. When observation data are provided over a continuous spatial 
and/or temporal region (W ), the most popular and also the one that we have used 
extensively so far is the 2

L -norm, also known as the Euclidean distance

2

2
,obs

w w
S = -θ θ

Fig. 2.9  a Experimental data (o) and the fitted van Genuchten model ( solid line); and b conver-
gence history of the minimization process

 



2.3 Nonlinear Model Identification 59

 (2.3.24)

2
L -norm is a special case of the general 

p
L -norm (also known as the Minkowski 

distance) defined by

 (2.3.25)

where 1 p£ <¥. In particular, we have the 
1

L -norm (also known as the city-
block distance)

 (2.3.26)

When the observation error is normally distributed with zero mean, we will see 
in Chap. 4 that the quasi-solution 

qs
q  associated with the 2L -norm is an unbiased 

estimation of the true parameter tq . This is one of the most important advantages of 
using 2L -norm. However, when the observation error is not normally distributed 
or when outliers exist, the use of 2L -norm tends to amplify their effect and lead 
to an unacceptable inverse solution. In this case, it is better to use the more robust 

1L -norm.
When only n  observation data are available, the observation space  reduces to 

an n -dimensional space, and the 2L - and 
1L -norm become, respectively,

 (2.3.27)

and

 (2.3.28)

where ,
( )

D i
u θ  is the i th component of ( )

D
u θ  corresponding to the thi  observation 

,
obs
D i

u . If we want to minimize the maximal misfit error, the following L¥ -norm can 
be used:

 (2.3.29)

In addition to p
L -norms, other functions (not necessarily norms) can also be used 

to measure the misfit error. For example, the Kullback–Leibler (KL) misfit function 
is defined by

 (2.3.30)
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In the KL-misfit function, the misfit errors are measured in the logarithm scale. As 
a result, the contribution of a misfit error is decreased when it is associated with 
a large observation value. To balance this impact, observation values are used as 
weights.

Weights can also be applied to an 
p

L -norm. For example, the weighted 2L -norm 
is defined by

 (2.3.31)

where 1 2{ , ,···, }
n

w w w  is a set of weighting coefficients. The generalized least 
square (GLS) norm is defined by

 (2.3.32)

where W is an n n´  positive-definite symmetric matrix.
The advantage of using a weighted norm is that the relative importance of each 

observation can be adjusted. In practice, we often use the following rules to deter-
mine the weighting coefficients:

• More accurate observations are assigned with larger weights, while less accurate 
observations are assigned with smaller weights.

• Observations that represent the state of the system in a large spatial and/or tem-
poral region are assigned with larger weights, while smaller weights are assigned 
to observations that are dense in a small region.

• Observations that are sensitive to important model parameters are assigned to  
larger weights, while smaller weights are assigned to others.

In Chap. 4, we will learn how to find the optimal weighting coefficients when ob-
servation error statistics are known.

Example 2.8 Parameter estimation using different norms
We illustrate the effect of norm selection on parameter estimation using the non-
linear optimization problem considered in Example 2.7. In addition to 2L -norm 
shown in (2.3.23), both 1L - and L¥-norm are considered

Starting with the same initial guesses as before (i.e., 2,  1na = = ), different solu-
tions are obtained (see the two columns under the header “Original” in Table 2.1). 
In general, the difference in estimated a  values is larger than that in n because 
the latter appears as an exponent term. Recall that L¥-norm attempts to minimize 
the maximal misfit and thus its results deviate more from the other two norms. 
Figure 2.10 plots the three solutions (lines) against experimental data (circles).

To test the effect of measurement noise, 5 % multiplicative random measurement 
error is applied to the original pressure head data. In this case, the 

2
L -norm results are 

2 2 2

1
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slightly changed from its original estimates (columns under 5 % error in Table 2.1). 
However, the 2L -norm is more sensitive to outliers. In the next test, three pressure 
head values are effectively made as “outliers” (columns under “Outliers” in Table 2.1), 
causing 2L -norm results to show significant deviation from its original values.

2.4  The Gauss–Newton Method

2.4.1  The Gauss–Newton Method for Least Squares

For inverse solution, the objective function ( )S θ  can be evaluated by the following 
general process

Table 2.1  van Genuchten parameters estimated using different norms
Norm Original 5 % error Outliers

2.95 1.57 3.06 1.54 2.97 1.57

2.90 1.58 2.92 1.57 3.44 1.54

2.48 1.64 2.60 1.62 2.34 1.63

a n a n a n

1L

2L

L¥

Fig. 2.10  Comparison of fitted van Genuchten models using different norms
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 (2.4.1)

where   is the forward solution,   is an observation design, and   measures 
the misfit to the observed data. All optimization algorithms introduced in Sect. 2.3.3 
can then be implemented for finding the inverse solution, no matter which norm is 
selected or how a misfit function is defined.

In case of using 2L -norm, however, the Gauss–Newton method provides an ef-
ficient optimization algorithm, in which the Hessian matrix is calculated approxi-
mately by using the Jacobian. Let us consider the least squares problem given by

 (2.4.2)

From (2.4.2), we can calculate the first-order derivatives of ( )S θ  by

 (2.4.3)

and the second-order derivatives of ( )S θ  by

 (2.4.4)

In (2.4.4), the second-order term in the right-hand side summation may be ignored 
because the value of fitting residual ( )

i
f θ  is small when θ  is not too far from the 

minimizer. Thus, we have

 (2.4.5)

where

 (2.4.6)

is the Jacobian or the sensitivity matrix of observations with respect to the param-
eter. Substituting (2.4.5) into the Newton algorithm (2.3.17) and noting that the 
gradient in (2.4.3) can be represented by T

D
g J f= , where 

1 2
( , ,···, )T

n
f f ff = , we 

have the following iteration sequence
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 (2.4.7)

where 
,

( )
D k D k

J J θ=  and ( )
k k
f f θ= . The displacement direction

 (2.4.8)

is called the Gauss–Newton direction. When the weighted 2L -norm in (2.3.31) 
is used, it is easy to show that the Hessian matrix in (2.4.5) is replaced by 

T T
D D

H J W WJ» , where W  is an n n´  diagonal matrix with 1 2, ,···,
n

w w w  as en-
tries, and the Gauss–Newton direction is replaced by

 (2.4.9)

where ( )
k D k

A WJ θ= . For a linear model, (2.4.3) is exact, the Gauss–Newton di-
rection becomes the Newton direction, and the inverse solution can be obtained by 
only one step along this direction. For a nonlinear model, however, (2.4.3) may 
contain significant error and the Gauss–Newton direction may not be a good ap-
proximation of the Newton direction. In this case, the following difficulties are 
often encountered: first, the iteration process may become divergent. We may see 
that the values of the objective function at an updated point are increased rather than 
decreased 1( ) (( ))

k k
S Sθ θ+ > ; second, the matrix T

D D
J J  may become singular or 

nearly singular. The Gauss–Newton direction thus becomes undetermined and un-
stable, and the updated point 1k

θ +  may be even out of the admissible region. Several 
modified Gauss–Newton methods have been developed to avoid these difficulties.

2.4.2  Modified Gauss–Newton Methods

In the Gauss–Newton method, the step size is always equal to one. The first modifi-
cation is to add a line search in each step of iteration to assure that the value of the 
objective function is decreased during the iteration process. The iteration sequence 
still has the general form

 (2.4.10)

but the displacement direction k
d  becomes the Gauss–Newton direction and k

λ  
is determined by a line search along this direction. This method is simple but not 
efficient because too many additional function evaluations are needed for the line 
searches.

The second method modifies the displacement direction according to

 (2.4.11)
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Equation (2.4.11) implies that when the calculated Gauss–Newton direction is not 
consistent with the descent direction, it is replaced by the latter to assure that the 
value of the objective function is decreased during the iteration. This modification 
drops the convergence rate to a lower order.

The Levenberg–Marquardt method is another popular way to assure the con-
vergence of the iteration process, in which the displacement in the Gauss–Newton 
algorithm (2.4.9) is replaced by

 (2.4.12)

where I  is the identity matrix, and λ  is a coefficient. When 0λ = , the Levenberg–
Marquardt method becomes the Gauss–Newton method, while when λ  is large, 

k
θD  turns to the steepest descent direction and its size approaches zero. Therefore, 

the descent condition 1( ) ( )
k k

S Sθ θ+ <  can always be expected by increasing the 
value of λ . If this condition is not satisfied for an initial value of λ , then λ  is 
multiplied by a factor b  (e.g., 10b = ) and k

Dθ  is recalculated until the descent 
condition is satisfied. In general, the Levenberg–Marqurdt method is more efficient 
than the line search method.

Example 2.9 Parameter estimation using Gauss–Newton method
Let us consider the minimization problem (2.3.22) in Example 2.7 and solve the prob-
lem using algorithms introduced in this section. The Matlab function lsqnonlin 
is used, which offers three different choices of algorithms, Gauss–Newton, Lev-
enberg–Marquardt, and conjugate-gradient. Starting with the initial guesses 

2,  1na = = , all three algorithms give the same solution 2.9,  1.58na = =  at the 
end. The number of iterations/functions calls for Gauss–Newton, Levenberg–Mar-
quardt and conjugate-gradient are 5/29, 7/24, and 9/30, respectively. Figure 2.11 

1( ) ,T T
k k k k k

-D = - +A A I A fθ λ

Fig. 2.11  Comparison of 
convergence histories of 
three nonlinear optimization 
algorithms
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compares the convergence history of the three methods. The Levenberg–Marquardt 
method has a steady decrease in objective function values over the iterations, 
whereas the other two methods oscillate somewhat during the iterations. Both the 
Gauss–Newton and Levenberg–Marquardt methods show faster convergence speed 
than the conjugate-gradient method.

2.4.3  Application to Inverse Solution

In Chap. 4, we will show that when the observation error is normally distributed, 
the weighted 2L -norm is the most acceptable selection for measuring the fitting re-
sidual in the observation space. Therefore, most software packages choose a modi-
fied Gauss–Newton method, the Levenberg–Marquardt algorithm, for solving the 
CIP. The core code of the algorithm is short and easy to combine with any forward 
solution code. The inverse solution code uses the forward solution code to calculate 
the fitting residual in (2.4.2) and the sensitivity matrix in (2.4.6), and then uses a 
linear system solver to obtain an updated inverse solution (2.4.12) in each iteration. 
With a software package, the user only needs to determine which model parameters 
are to be identified and what are their guessed values and admissible ranges.

Example 2.10 Using the Gauss–Newton method for inverse solution
Figure 2.12 shows a hypothetical aquifer ABCD, 1200 [m] long, 600 [m] wide, and 
50 [m] thick. The head at boundary section AB remains constant at 100 [m], while 
all other boundary sections are no-flow boundaries. The initial head is 100 [m] ev-
erywhere. A recharge well is located at • with injection rate 1000 [m3/day] and an 
extraction well is located at o  with a pumping rate of 4000 [m3/day]. Four observa-
tion wells are located at ´ where the head is measured three times at 0.1, 0.5, 1.0 
[day]. The total number of observation data is thus equal to 12. The aquifer consists 
of two homogeneous zones (see Fig. 2.12) characterized by different values of hy-
draulic conductivity 1K , 2K , and storage coefficient 1S , 2S . Our purpose is to esti-
mate the four groundwater flow parameters with the observation data.

Fig. 2.12  Configuration of the hypothetical aquifer
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For testing purpose, in this example, we assume that the “true” parameter values 
are known and the observation data are obtained by (i) using the “true” parameters 
as model input to solve the forward problem to find a set of model output according 
to the observation design and (ii) adding artificial observation error to this set of data 
to obtain the observed data for inversion. The observation error is assumed to be 
normally distributed with zero mean and a certain standard deviation.

As shown in Table 2.2, when the Gauss–Newton method is used, the inverse 
solution converges fast. When the observation error is less than 0.005 (trunca-
tion error), the fitting residual ( )S θ  decreases from 1.36 to 0.0001 after only four 
 iterations and the true parameter values are identified exactly. Moreover, the inverse 
solution is unique and independent of the selection of initially guessed values in 
the admissible region. After adding Gaussian observation error with zero mean and 
standard deviation s up to 0.5 [m], the solution becomes inaccurate but stable. If 
we add two more observation times at 2.0 and 5.0 days, an accurate inverse solution 
can be obtained with the same level of observation error.

2.5  Review Questions

1. Can we find the true physical parameters of a system by model inversion? Under 
what conditions can we find their satisfactory approximate values by model 
inversion?

2. Define the parameter space, state space, and observation space for the 1-D mass 
transport model given in Example 1.5. What are the operators ,, and  for 
this model when the assumptions in Example 1.9 are satisfied?

3. Compare the direct method and the indirect method of model inversion.
4. Create an example of linear model inversion to show the underdetermined, 

uniquely determined, and overdetermined cases. What are the inverse solutions 
obtained by SVD for these three cases?

5. What are the advantages and disadvantages of using TSVD?
6. Why linearization is not always feasible for model inversion?

Table 2.2  Results of the inverse solution obtained by the Gauss–Newton method
True Initial It.-1 It.-2 It.-3 It.-4
5.00 3.00 5.25 5.04 5.00 5.000 5.31 6.83

10.00 3.00 6.29 8.40 9.81 10.00 9.67 9.30

0.001 0.003 0.002 0.001 0.001 0.001 0.001 0.004

0.002 0.003 0.001 0.002 0.002 0.002 0.002 0.002

1.36 0.95 0.05 0.0003 0.0001 0.001 0.02

RMSE 0.34 0.28 0.06 0.00 0.00 0.02 0.04

0.1s = 0.5s =

1K

2K

1S

2S

( )S q
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7. Complete the following steps: (a) use ( , ) ( , , , , )C x t R D v x t=  in Eq. (1.2.2) as 
the forward solution operator, (b) define the observation operator  by design-
ing a set of observation locations and times, (c) specify tR and tD as the “true” 
values of parameters R and D and use them as model inputs, (d) run the model to 
find the model calculated concentrations ( , ),t t

D
R DC =   (e) add “observa-

tion error” to D
C  as the “observed” data obs

D
C , (f) select a numerical optimization 

code, for example, from the Matlab function fminunc, (g) develop a code for 
calculating the objective function defined by the 2L -norm, (h) specify 0R and 0D
as the initial guess to solve the inverse problem. Answer the following questions: 
Is this a CIP? Can tR and Dt be found approximately? Can the flow velocity be 
estimated too? Try to use different designs of observation, add different levels of 
observation error, and compare the effect of different stopping criteria.

8. Draw a flow chart of using the Levenberg–Marquardt Gauss–Newton algorithm 
for model inversion.

9. As a course project, select a frequently used model in your field, for which you 
have a forward solution code. Follow the steps in Question 7 to form a CIP. Then 
find out if a set of hypothetical parameter values can be identified correctly by 
inverse solution.
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Chapter 3
Multiobjective Inversion and Regularization

In Chap. 2, we cast the classical inverse problem (CIP) into an optimization prob-
lem based on criterion (C-1), which requires that the model outputs fit the observed 
data as much as possible. When existing data cannot support the identification of 
a complex model, the objective function may become nonconvex and the optimal 
solution may become unstable. As a result, a satisfactory inverse solution cannot 
be obtained by simply choosing a different optimization method or by selecting an 
alternative misfit function. The key to reducing this inherent difficulty of the inverse 
problem is to gather more information.

Criterion (C-2) of inversion (Sect. 1.4) requires the use of prior information as 
much as possible. The inverse problem becomes a bicriterion optimization problem 
after incorporating prior information. In Sect. 3.2, we will show how this problem 
is formulated and solved by using multiobjective optimization (MOO). The use of 
prior information in such a way can be seen as a special case of the regularization 
method to be introduced in Sect. 3.3. Regularization provides a general framework 
for increasing the stability of inverse solutions at the price of the possible loss of 
accuracy.

Only the inversion of a single-state model is considered in Chap. 2. Environmen-
tal and water resources (EWR) models are often multistate models characterized by 
a set of coupled equations, as shown in Chap. 1. The state variable of one equation 
may depend on states or parameters in other equations which, in turn, implies that 
measurements of one state variable may provide information for identifying the 
states and/or parameters in other equations. For example, concentration measure-
ments can be used to identify the hydraulic conductivity of subsurface formations, 
remotely sensed surface temperature data can be used to estimate soil moisture, and 
hydraulic heads can be used to infer recharge rates. The inversion of a multistate 
model is called a coupled inverse problem. It allows fusion of multiple sources of 
data for parameter identification. We show how to formulate the coupled inverse 
problem into an MOO problem in Sect. 3.4.

In Chap. 2, the optimal parameter was obtained by minimizing a single objec-
tive function defined by a predetermined misfit function in the observation space. 
Because of errors in observation data and also in the model structure, the parameters 
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identified based on minimizing only a single objective function may not be ac-
ceptable when measured by other misfit functions. For example, in the inversion 
of a mass transport model, the transport parameters identified by fitting a limited 
number of noisy concentration observations may not fit the plume arrival times or 
peak concentration values well. Section 3.5 considers a multiobjective method that 
uses multiple misfit functions for inverse solution. The obtained parameter values 
represent the best trade-offs among different objectives. This multiobjective method 
actually exceeds the scope of CIP because it considers the model structure error. We 
introduce the method in this chapter because it has the same mathematical form and 
uses the same solution method as that is used for the coupled inverse problem (i.e., 
MOO). Various algorithms for solving MOO, including recently developed Multi-
objective evolutionary algorithms, are introduced in Sect. 3.6.

3.1  Multiobjective Optimization

Mathematically, an MOO problem is represented by

 (3.1.1)

where  1 2 )() , , ,(i if Kθ =   are objective functions ( 

m → ) to be minimized. 
In general, a feasible solution that minimizes all objective functions of an MOO 
problem does not exist. A point ∈*

adPθ  is called a noninferior solution or a Pare-
to-optimal solution of problem (3.1.1) if there does not exist another point ∈ adPθ  
such that (i) ≤ *( ) ( )i if fθ θ  for all indices i K= 1 2, ,  and (ii) the strict inequality 

< *( ) ( )j jf fθ θ  holds for at least one index j K= 1 2, , . In other words, we say 
that *θ  is not dominated by other solutions. The set of all noninferior solutions 
form the Pareto front. The solution of an MOO problem generally consists of two 
tasks:

• Optimization task, which aims to find a set of Pareto-optimal solutions
• Decision-making task, which selects the most preferred solution from the set

In the deterministic framework, the first task is completed by transforming the 
MOO problem into a constrained single-objective optimization (SOO) problem. 
There are different approaches to implement such a transformation. The weighted 
sum method (or the weighting method) solves the following problem:

 (3.1.2)

{ }1 2  ,min ( ), ( ), , ( ) ,K adf f f P∈
θ

θ θ θ θ

1 1

where  and 1 

min ( ), ,

( ) ( ) ,

ad

K K

i i i i
i i

S P

S w f w

w

w
= =

∈

= =∑ ∑
θ

θ θ

θ θ
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in which wi  ( i K= …1 2, , , ) are weight coefficients. Different weighting coeffi-
cients will lead to different Pareto-optimal solutions. A shortcoming of the weighting 
method is that not all noninferior solutions can be found by changing the values of 
weighting coefficients when the problem is nonconvex. Instead of problem (3.1.2), 
the ε-constraint method solves the following problem:

subject to (3.1.3)

In (3.1.3), εi  is the upper bound of ( )if θ . By choosing different j K= 1 2, , ,  and 
setting different upper bounds, different Pareto-optimal solutions are obtained. This 
constraint method requires more computational effort than the weighting method. 
It works for both convex and nonconvex problems, but it cannot locate promising 
Pareto-optimal solutions that are just outside of the boundary of the constraints.

The second task of MOO solution is completed either by an interactive process 
or by a noninteractive process. For the former, a decision maker determines how to 
pick a solution from the Pareto solution set based on his/her preference, while for 
the latter, a single solution is chosen based on certain criteria. For detailed discus-
sions on this topic, readers may refer to monographs or textbooks on MOO (e.g., 
Tan et al. 2005; Sawaragi et al. 1985; Knowles et al. 2008; Coello Coello et al. 
2007). In this chapter, we show how a noninteractive process can be used to find the 
best trade-off between the accuracy and stability of the solution.

The study of various algorithms for solving MOO problems is an active research 
area by itself. Both deterministic (branch and bound) and so-called evolutionary 
algorithms have been used to solve MOO. Multiobjective evolutionary algorithms 
(MOEA) have become one of the fastest developing fields since 1990s (Deb 2001; 
Branke 2008; Coello Coello et al. 2007). MOEA can search for several Pareto-
optimal solutions simultaneously and have been used for multiobjective inversion 
in hydrology for more than a decade. We will give a brief introduction of these 
algorithms in Sect. 3.6.

3.2  The Second Criterion of Inverse Problem Formulation

3.2.1  Inversion with Prior Information

We have shown that the solution of an inverse problem can be transformed into an 
optimization problem based on the “fitting data” criterion (C-1) of inverse problem

 (3.2.1)

 for all 1 2 , but ε

∈

≤ = ≠

min ( ), ,

( ) , , , .

j ad
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θ θ
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where qsθ  is the quasi-solution defined in Sect. 2.1.2. When the inverse problem is 
ill-posed, however, the optimization problem (3.2.1) cannot give us a unique and 
stable solution. In Sect. 2.2, we showed that after discretization and linearization, 
the linear model derived from an ill-posed problem becomes ill-conditioned. The 
inversion may be stabilized using methods such as truncated singular value decom-
position (TSVD), but at the expense of increased fitting residual. As a result, the 
inverse solution may not be close to the true solution.

If uD
obs  alone cannot provide sufficient information for identifying θ , we can use 

other available information to help solve the inverse solution. Any information on 
the unknown parameter θ  obtained independently of the observation data uD

obs  is 
called prior information. In EWR modeling, some form of prior information almost 
always exists, such as direct measurements of θ , feasible ranges of θ  determined 
from physical reasoning, and guessed values of θ  that are elicited from experts or 
extracted from previous studies. Prior information may be more or less reliable and 
can be used in different ways. In Chap. 2, prior information was used to limit the 
admissible region, making the unknown parameters quasi-identifiable. In this sec-
tion, prior information is incorporated directly into the inverse problem formulation 
as the second criterion:

(C-2) The prior information should be used as much as possible.

For example, if we have a prior guess, pθ , of the unknown parameter θ , criterion 
(C-2) requires that the identified θ  should not be too far from it. In the ideal case 

when pθ  is absolutely reliable, the distance between 
pθ  and θ  in the parameter 

space, p−θ θ , should be minimized. Combining criteria (C-1) and (C-2), we ob-
tain a bicriterion optimization problem for determining the inverse solution.

3.2.2  Formulation of the Bicriterion Inverse Problem

The inverse problem formulated by criteria (C-1) and (C-2) is a bicriterion optimi-
zation problem

 (3.2.2)

Problem (3.2.2), which consists of two objectives, can be considered a special case 
of the general MOO problems.

The first task of solving problem (3.2.2) is to find its Pareto-optimal solutions. 
When the weighting method is used, a Pareto-optimal solution θα  is obtained by 
solving the following SOO problem for a given weighting coefficient α :

 (3.2.3)
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The collection of all Pareto-optimal solutions often forms an L-shaped curve (i.e., 
Pareto front) in the objective space, as illustrated in Fig. 3.1 for a bicriterion mini-
mization problem.

The second task of solving the bicriterion inverse problem (3.2.2) is to select a 
solution from the L-curve. The solution of a bicriterion optimization problem is ac-
tually a process of making tradeoffs between Pareto-optimal solutions—an increase 
in 1( )f θ  is used to compromise for the reduction in 2( )f θ  and vice versa. The final 
selection is usually made by a decision maker. More discussion on the L-curve and 
other methods for selecting trade-off solutions will be given in Sect. 3.3.3. For the 
current case, we use an additional criterion to make an appropriate trade-off be-
tween the stability and accuracy of the inverse solution. That is, the inverse solution 
is dependent on our belief in the observation data and in the prior information.

Let η  be the norm of the observation error and ∆  be the reliability range of the 
prior information defined by t

p− < ∆θ θ , where tθ  is the true parameter. When 
η  is known, the discrepancy principle states that the best we can do is to select a 
solution αθ  that satisfies ( ) obs

D Dα η− =u uθ . Any attempt to decrease the fitting 
residual further will not help to bring the identified parameter closer to the true pa-
rameter and may even render the inverse solution unstable. Using a small weighting 
coefficient α  to make ( ) obs

D Dα η− <u uθ  is called overfitting the data as the so-
lution is forced to recover the random observation error rather than the true system 
state. At the same time, we should also avoid overbelieving the prior information. 
When ∆  is known, we should not use a large α  to enforce pα − < ∆θ θ  because 
the true parameter may not be in this range. Therefore, an appropriate solution ( )αθ  
should neither overfit the data nor overbelieve the prior information.

In practice, however, both η  and ∆  are difficult to estimate, especially when 
model errors are involved. Therefore, the selection of an appropriate weighting 

Fig. 3.1  Pareto front of a 
bicriterion minimization 
problem ( solid line), where 
the dots correspond to Pareto-
optimal solutions and asterisk 
corresponds to the best trade-
off solution
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coefficient for inverse solution is still a challenging problem. We will return to 
this topic in Sect. 3.3.3 when discussing regularization. In practice, we may follow 
a trial-and-error process: starting with a small α  to solve problem (3.2.3), if the 
solution is unique and stable and the fitting residual is acceptable, we can accept 
the solution as an approximate inverse solution and terminate the process; other-
wise, if the solution is unstable, we need to increase the value of α  and solve the 
problem (3.2.3) again. One should keep in mind, however, that the fitting residual is 
increased at the same time when α  is increased.

The SOO problem (3.2.3) can be solved by using an appropriate optimization 
method introduced in Chap. 2. For example, if L2 -norm is used as a measure of 
distance for both the observation space   and parameter space  , the problem 
becomes

 (3.2.4)

Because the objective function of this problem is in the form of sum of squares, it 
can be solved effectively by using the Gauss–Newton method or any other appropri-
ate method described in Chap. 2.

Example 3.1 Bicriterion inversion of the Monod kinetics model
Let us consider the following microbial kinetics model that couples the rate of bio-
mass growth with the rate of substrate utilization (Monod’s equation):

subject to

 (3.2.5)

where S and X are the substrate (nutrient) and biomass concentrations, respectively; 
µ  is the specific growth rate given by the Monod’s equation (Example 1.1)

where maxµ  is the maximum growth rate, kS  is the Monod’s coefficient (see 
Eq. (1.1.1)), Y is the yield coefficient, and ke is a known endogenous decay coef-
ficient.

Let us denote the parameter vector of the Monod’s model as { }= max, , .Sk Yµθ
The main goal of this example is to identify θ  using measurements of S and X. 
Assume that the “true” model parameters are µmax .= 0 15mg/L , kS = 0 4. mg/L, 
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Y = 0 2. mg/mg , and ke = 0 004. L/h , and the initial conditions are S0 19= mg/L  
and X0 0 05= . mg/L . The forward solution given in (3.2.5) is solved numerically 
using the fourth-order Runge–Kutta algorithm (ode45 function in MATLAB). 
For demonstration, the “true” profiles S t( ) and X t( )  are generated and plotted in 
Fig. 3.2a and b, respectively. Observations are taken every 2 h for 30 h. The “ob-
served values” of S t( ) and X t( )  (open circles) are then perturbed by adding zero-
mean Gaussian noise with standard deviations of 0.2 and 0.02 mg/L, respectively, to 
their “true” values. These “noisy” observations and a prior guess { }0 1 0 5 0 1. , . , .p =θ  
are now used to estimate θ.

Fig. 3.3 plots the variation of two objectives or criteria, 
2

2
( ) obs

D D−u uθ  and 
2

2p−θ θ , for different values of the weighting factor α , which is increased from 
0.01 to 0.5 in 0.02 increments from the left to right of the plot. For each α , a solu-
tion (× ) is obtained using the MATLAB minimization function, fminunc. The 
collection of all solutions forms an L-shaped curve, as shown in Fig. 3.3. For this 
example, the α  value that makes the best trade-off between the two criteria is 0.31 
(the circled value in Fig. 3.3), which corresponds to a solution { }= 0 15 0 12 0 19. , . , .θ
. Although this is not the best estimation of the unknown parameters, it represents 
the best trade-off between the two criteria among all feasible solutions. The trade-
off solution is plotted in Fig. 3.2 (dashed lines). Readers may refer to Sect. 3.3.3 for 
an in-depth discussion of the L-curve method. 

Fig. 3.2  Plots of “true” ( solid line) and “noisy” observations ( open circles) of a the substrate 
concentration S and b the biomass concentration X
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3.2.3  Inversion with Constrained Optimization

The general form of constrained optimization is given by

 (3.2.6)

where  1 2( , ,. . )( . ,) gr rg n=θ are inequality constraints and  ( 1 2=( ) , ,..., )l hh l nθ  are 
equality constraints. This problem can be converted to an unconstrained optimiza-
tion problem by defining a new objective

 (3.2.7)

where ( )Hα θ  is called a penalty term, α  the penalty coefficient, and ( )H θ  the 
penalty function defined by

 (3.2.8)

g 0, 1
subject to 
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Fig. 3.3  Plot of bicriterion values for different weighting coefficient values, in which α increases 
from 0.01 to 0.5 from the left to the right of the plot and the corresponding solutions are labeled 
by ×
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When a point θ  is feasible (i.e., satisfying all constraint conditions), this penalty 
term is equal to zero (no penalty); otherwise, the penalty term is positive and in-
creases with the increase of α . As a result, an infeasible point cannot be a mini-
mizer. By appropriately selecting the value ofα , the solution of the constrained 
problem (3.2.6) can be obtained by solving an unconstrained problem that minimiz-
es the objective function ( )Sα θ  in (3.2.7). The complexity on the feasible region is 
thus transferred into the complexity in the objective function. The advantage of the 
penalty method is that it is easy to use and converges to a feasible solution when 
α → ∞ . However, the solution may become unstable when α  increases. The pen-
alty method is also criticized for giving inexact solution (i.e., inexact fulfillment of 
the constraints; Han 1979). The other commonly used method for converting con-
strained optimization problems into unconstrained ones is the Lagrange multiplier 
approach, which seeks to satisfy all constraints and to solve for the optimal mul-
tiplier simultaneously (Fletcher 1987). This is the approach behind some popular 
tools such as MATLAB’s fmincon function. However, both methods may return 
local minima.

When the constraint method is used to solve the bicriterion inverse problem, a 
Pareto solution can be obtained by solving either

 (3.2.9)

or

 (3.2.10)

where δ  and ε  are given numbers. Different values of δ  in problem (3.2.9) or 
ε  in problem (3.2.10) lead to different Pareto-optimal solutions. Note that when 
the penalty method is used to solve the constrained problem (3.2.9), the constraint 
method gives the same SOO problem as the weighting method (3.2.3). Reducing δ  
can improve the stability of the inverse solution, while reducing ε  can improve the 
accuracy. However, as explained in Sect. 3.2.2, we should not let ε η< ; otherwise, 
the overfitting problem will occur. On the other hand, in order to avoid the overbe-
lieving problem, we should not letδ < ∆ .

Prior information is often given in the form of an interval constraint that as-
signs the upper and lower bounds to each component of the unknown parameter 
vector θ : θ θ θ− ≤ ≤i ii

 ( , ,···, )i m= 1 2 . In this case, the admissible region is an 
m-dimensional hyperbox. When the penalty method is used, we can define the fol-
lowing penalty function:

 (3.2.11)

Many software packages for inverse solution, however, often adopt a simple strat-
egy to make the solution fall within a given range: when a component θi  of nθ  
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obtained during the iteration process falls out of range, set θ θi i=  if θ θi i> ,  or set 
θ θ−=i i  if θ θ−< ii .

3.3  Regularization

3.3.1  Tikhonov Regularization

Regularization is a general method for stabilizing the solution of an ill-posed prob-
lem through the trade-off between accuracy and stability. From this sense, param-
eterization, TSVD, and the use of prior information can be seen as some type of 
the regularization method. In the deterministic framework, the general form of Tik-
honov regularization is given by (Tikhonov and Arsenin 1977)

 (3.3.1)

θ  can be a finite-dimensional vector or an infinite-dimensional function, G( )θ  is 
the objective function, α θR( )  is called the regularization term, and 0 < < ∞α  is 
the regularization coefficient. The following are examples of regularization.

3.3.1.1 Regularization and Bicriterion Inversion

The bicriterion inverse problem considered in Sect. 3.2 is a special case of regular-
ization. When using the weighting method to stabilize the quasi-solution in (3.2.1) 
and letting G u uD D

obs( ) ( )θ θ= −  and R p( ) ,θ θ θ= −  we have

 (3.3.2)

This is exactly the same objective function as that was defined in (3.2.3) when θ  
is a finite-dimensional vector. The regularization term represents prior information 
and the regularization coefficient plays the role of weighting coefficient.

3.3.1.2 Regularization and Constrained Optimization

A similar link exists between regularization and constrained optimization. When 
using the penalty method to solve the constrained optimization problem (3.2.6) and 
letting G S( ) ( )θ θ=  andR H( ) ( )θ θ= , we can represent the objective function in 
(3.2.7) through regularization as

min ( ),
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 (3.3.3)

where the regularization term represents a penalty to the objective function when 
the constraint is violated. Therefore, from the perspective of constrained optimiza-
tion, regularization uses a penalty term to stabilize the quasi-solution.

3.3.1.3 Regularization for Well Posedness

If an inverse problem is ill-posed, regularization provides a general mechanism to 
make the problem conditionally well posed by adding restrictions to the identified pa-
rameter θ . For example, when an inverse problem has nonunique solutions, we may 
select a solution that has the minimum norm in the parameter space by minimizing

 (3.3.4)

Minimizing the objective function (3.3.4) yields a unique and stable inverse solu-
tion when the model is linear and α > 0 (see next subsection).

3.3.1.4 Regularization for Smoothing

If we know that a distributed parameter is a smooth function, we can use this in-
formation to stabilize the inverse solution by adding a regularization term to the 
objective function to penalize nonsmoothness

 (3.3.5)

The second term on the right-hand side of the above equation provides regulariza-
tion on the gradient of θ . Thus, if θ  is nonsmooth, the penalty term will suppress 
it by penalizing large changes in the gradient and make the inverse solution stable. 
Note: (i) a general form of the regularization term in (3.3.5) is Dx , where D  is 
a differentiation operator (e.g., first- or second-order derivative) and (ii) we can 
combine the regularization terms in (3.3.4) and (3.3.5) to penalize large variations 
in both the magnitude and smoothness of θ .

3.3.2  Regularization of Linear Models

The Tikhonov regularization theory is well established for linear models (Hansen 
2010; Golub and Van Loan 1996). Recall the general form of linear models given 
in (2.2.1):

,( ) ( ) ( )S G R= +α θ θ α θ

( ) ( ) .obs
D DS u uα θ θ α θ= − +

2 2

22
( ) ) / .( obs

D DS u u xα θ θ α θ= − + ∂ ∂
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 (3.3.6)

where G is an n m×  matrix, m∈θ   is the unknown parameter, and d ∈ n  is the 
data vector. To stabilize the solution of (3.3.6), setting the G and R terms in (3.3.1) 
to 

2

2
( )G = −G dθ θ  and 

2

2
( ) ,R =θ θ  respectively, we get

 (3.3.7)

The regularization term in the above equation suggests that a solution with small 
length is favored. Applying the necessary condition for minimization on (3.3.7) by 
setting /Sα∂ ∂ = 0θ  gives

 (3.3.8)

Substituting the singular value decomposition (SVD) of G  (see (2.2.9)) into the 
above equation, we obtain

 (3.3.9)

It can be verified that the solution to this equation is (Hansen 2010)

 (3.3.10)

where k m n= min( , ); iu  and iv  are the ith column of U  and V , respectively; 
and si  are singular values. The effect of regularization can be clearly seen from the 
above equation if we compare it to (2.2.15). Becauseα > 0 , all terms in the αθ  ex-
pression (3.3.10) are defined, including the terms associated with very small or even 
zero singular values. In other words, a stable solution αθ  can always be obtained 
without using the TSVD. It is also clear from (3.3.10) that a larger α  can increase 
the stability of the solution, but at the expense of introducing biases in the solution.

3.3.3  Selection of Regularization Coefficients

The solution θα  of a regularized optimization problem depends on the regulariza-
tion coefficient α . If α  is set too large, θα  becomes inaccurate because of the 
large fitting residual. On the other hand, if α  is set too small, θα  becomes unstable 
because of the ill-posedness of the problem and the effect of observation error. Al-
though the problem of selecting an appropriate α  is well studied for linear models, 
it is still an open problem for complex and nonlinear models. There are several 
methods available depending on what extra information we have.
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3.3.3.1 The L-curve Method

The L-curve method, which has already been discussed in the context of bicriterion 
optimization under Sect. 3.2, can be used to select an appropriate regularization co-
efficient if we only have the observation data uD

obs  and prior information θp  with-
out other information. For any α > 0, we can find a solution θα  for the regularized 
problem (3.3.2), and we have G u uD D

obs( ) ( )θ θα α= −
2

2
 and R p( )θ θ θα α= −

2

2
. 

Let X Gα αθ= log ( )  andY Rα αθ= log ( ),  and then for each α , ( , )X Yα α  repre-
sents a point in the XY plane. By systematically changing the value ofα , we obtain 
an L-curve, as we have done in Example 3.1. The turning point or knee of the 
L-curve is defined as either the closest point to the origin or the point that has the 
maximum curvature on a log–log plot. The α  value corresponding to the turning 
point of the L-curve gives an appropriate balance between the accuracy and stability 
of the solution. From the perspective of bicriterion optimization, the turning point 
gives an appropriate trade-off between the two objectives. For a finite-dimensional 
linear model, we can use an optimization routine described in Chap. 2 to find an α  
that maximizes the curvature, where for each α  the explicit solution θα  is obtained 
using (3.3.10).

For a nonlinear model, we may use the linearization techniques described in 
Sect. 2.3.1 to solve the nonlinear optimization problem (3.3.1) in order to obtain a 
point on the L-curve. In that case, the L-curve method is ineffective because it re-
quires significant computational effort to find the turning point, and moreover, the 
turning point may not correspond to the most appropriate regularization coefficient 
(Lukas 2006).

3.3.3.2 The Discrepancy Principle Method

If we also know the norm η  of observation error besides uD
obs  and θp , the discrep-

ancy principle can be used to determine the regularization coefficient. As explained 
in Sect. 3.2.2, we should not attempt to make the fitting residual u uD D

obs( )θ ηα − <  
to avoid the overfitting problem. Therefore, the regularization coefficient α  should 
be selected such that θα  satisfies

 (3.3.11)

The so selected α , however, is often too small and any error in η  may lead to a 
large change in the value of α . A modified form of the discrepancy principle ac-
cepts a little larger fitting residual by selecting α  from

 (3.3.12)

( ) .obs
D Du uαθ η− =

( ) ,obs
D Du uαθ τη− =
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where τ > 1  (Resmerita and Otmar 2006; Scherzer 1993). We can obtain an ap-
propriate regularization coefficient through a trial-and-error process by adjusting 
the value of α  until the condition (3.3.12) is approximately satisfied. When the 
value of η  cannot be estimated accurately, it is often replaced by its estimated up-
per bound.

When the L2 -norm is used and if we know both η  and ∆  such that 
u uD

t
D
obs( )θ η− ≤

2
 and θ θt − ≤0 2

∆,  then the regularization coefficient in 
(3.2.4) can be simply assigned as α η= 2 2/ ∆ . In this case, we have

 (3.3.13)

Thus,

 (3.3.14)

Comparing this equation to (3.3.12), θα  gives a satisfactory fitting residual up to a 
factor 1 2< <τ .

3.3.3.3 The Robust Least Squares Method

Robust least squares (RLS), which is a special class of robust optimization meth-
ods, can be used to obtain the regularization coefficient for linear models in cer-
tain applications. RLS was developed independently by several research groups in 
late 1990s (El Ghaoui and Lebret 1997; Chandrasekaran et al. 1997; Ben-Tal and 
Nemirovski 1998). Let us start with the general linear model

and assume that the model G and data d are subjected to unknown but bounded 
errors

where ∆  represents perturbations from nominal model G and data d, which may be 
caused, respectively, by uncertainty in model parameters and measurement errors, 
and ρG  and ρd  are bounds of the perturbations. The actual linear regression prob-
lem that needs to be solved becomes

where the tilde symbol denotes quantities with uncertainty. The original goal of 
RLS is to minimize the effect of unknown error on estimates of θ  by utilizing 
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information of error bounds, which is similar to the discrepancy principle method 
introduced in the above. With the triangle inequality, it can be shown that

 (3.3.15)

The right-hand side of (3.3.15) provides the upper bound of  ( ) ( )+ ∆ − + ∆G G d dθ , 
and the RLS solution is the solution of the following minimization problem (Chan-
drasekaran et al. 1997)

 (3.3.16)

subject to

Sun et al. (2006a) showed that (3.3.16) is equivalent to the so-called cone program-
ming problem given below

 (3.3.17)

subject to

in which η  and τ  are slack variables introduced to facilitate problem solving. 
A main feature of the above cone programming problem is that it involves two 
norm constraints (cones). Detailed discussion on cone programming can be found 
in (Boyd and Vandenberghe 2004). The solution to (3.3.17) is given in the following 
form (Sun et al. 2006a):

 (3.3.18)

Thus, the regularization parameter α  is obtained rigorously by solving an optimi-
zation problem.

Unlike the discrepancy principle method that makes use of the bound of fitting 
residual between model outputs and state observations, the RLS assumes bounds 
on the linear model. It also assumes that a nominal model G can be defined, which 
may correspond to the system under normal conditions (e.g., mean model). The 
magnitude of ρG  represents the level of perturbations from the nominal model and 
may be defined through either uncertainty quantification (see Chap. 10), simulation, 
or prior knowledge. In-depth discussion on RLS and its application to contaminant 
source identification problems can be found in (Sun et al. 2006a, b).
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Besides the above-mentioned methods, there are several other methods that can 
be used to determine the regularization coefficient, such as generalized cross-val-
idation (Aster et al. 2013; Golub et al. 1979) and restricted maximum likelihood 
(Phillips et al. 2002). The MATLAB-based toolbox, Regularization Tools, devel-
oped by Hansen (2010), includes a number of useful utility functions for diagnos-
ing the stability of linear systems and for selecting regularization coefficients. For 
example, the toolbox provides implementations of TSVD, L-curve, and generalized 
cross-validation methods.

All of the methods mentioned herein are only clearly justified for linear model 
identification or quadratic objective functions. For complex nonlinear model identi-
fication, appropriate regularization coefficients can be found approximately by the 
following steps:

• At the beginning, use a large value of α  to assure that the regularized problem 
is well posed or well conditioned after linearization.

• Then, gradually decrease the value of α  to make the fitting residual smaller 
while maintaining the stability of the solution.

Algorithms for solving regularized optimization problems will be discussed in 
Chap. 4.

Example 3.2 Tikhonov regularization for deconvolution
Convolution integrals are often used in EWR for simulating a transport process, 
such as the surface runoff and discharge from a spring (Example 1.2) and mass 
transport from a point contaminant source (Example 2.3). Its general form is given 
by

 (3.3.19)

where f ( )τ  is the model input, g t( )  is the model output, and φ τ( )t −  is called the 
kernel function or transfer function. The deconvolution problem solves for the in-
verse problem, namely, estimating input function f ( )τ  based on discrete measure-
ments of output function,g t( ).

An inherent challenge of solving this inverse problem is that small perturbations 
in data g t( )  may cause arbitrarily large perturbations in the solution, an aspect that 
pertains essentially to all ill-posed problems. Let us consider the following function:

 (3.3.20)

This is a classical problem known as the Phillips problem (Phillips 1962). Let 
f ( ) ( ),τ ϕ τ=  φ τ ϕ τ( ) ( ),t t− = −  and

 (3.3.21)
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The integration interval is [ , ]−3 3 . Substituting these definitions into (3.3.19) and 
after discretizing the integrals, we get a linear system of equations in the form of 

=G dθ . We use the Phillips function in Regularization Tools (Hansen 2010) to 
generate the system matrix G  for this example. The function takes a single input, 
n , as the number of discretization intervals. For n = 64, the resulting linear system 
is ill-conditioned, with a condition number of 4.4 × 105.

Figure 3.4a plots the singular values of G  (line with filled diamond). Also plot-
ted in Fig. 3.4a are the absolute values of u di

T , where si  is the ith singular value 
and ui  is the ith left singular vector G . Such a plot is referred to as the Picard plot 
(Hansen 2010) and can be useful for visually examining if u di

T  decays faster than 
the singular values of the same system matrix. The condition provides a necessary 
condition to check whether a good solution can be obtained without regulariza-
tion. From Fig. 3.4a, we see that Picard condition is apparently satisfied when no 
measurement error exists and u di

T  ( × symbol) decays monotonically. To add the 
effect of noise, the measurement vector d  is perturbed by Gaussian white noise 
with a variance of 1 × 10−6, and the resulting perturbed vector is denoted by dn. 
Figure 3.4a shows that u di

T
n  (○ symbol) decreases to 10−3, and then just randomly 

varies around that level without further decaying. So in this case, even a small 
amount of random noise can make the system unstable and regularization is needed 
to obtain a useful solution.

We now proceed to show the selection of regularization coefficient α  using the 
L-curve method for the case with random noise. Figure 3.4b plots the L-curve for 
different values of the regularization coefficient, from which a turning point can be 

Fig. 3.4  a Plots of sorted singular values of G  ( line with diamonds) and the absolute values 

of u di
T  ( × ) and u di

T
n (o) and b the L-curve obtained by using different regularization 

coefficients
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clearly observed and the corresponding α  value is 2 × 10−3. The l_curve func-
tion in Regularization Tools was used to generate the L-curve. ■

Tikhonov regularization (3.3.1) adds a regularization term to the original objec-
tive of inversion to stabilize the solution, as the regularization term carries addition-
al information on the solution. Detailed discussions on Tikhonov regularization for 
linear and nonlinear model inversion and its applications can be found in the books 
of Engl et al. (1996), Doicu et al. (2010), Wang et al. (2010), and Aster et al. (2013).

Generally speaking, any method that transforms an ill-posed problem to a well-
posed one can be considered as some type of regularization method. Parameteriza-
tion, for example, is such an approach that uses a simplified representation of the 
unknown parameter for inversion. Because the number of degrees of freedom of the 
inverse solution is lowered, the existing data may become sufficient for identifying 
the simplified representation. Of course, using parameterization or any regulariza-
tion methods, we can only obtain an approximation of the unknown parameter. The 
choice of parameterization method has a profound impact on inverse solutions. In 
Chap. 6, we will give a detailed account of parameterization methods in both deter-
ministic and stochastic frameworks. In Chap. 8, we will introduce several regular-
ization-based methods for training data-driven models.

In addition to regularizing the parameter space  , we can also regularize the 
state space   and the observation space  , such as increasing the quantity of 
observation data by adding either guessed or interpolated/extrapolated values of 
the state variable(s), or by improving the quality of the observation data through 
filtering out observation error.

3.4  Parameter Identification of Multistate Models

3.4.1  Multistate Modeling

As explained in Chap. 1, a EWR system has multiple state variables, such as pres-
sure, temperature, velocity, concentration, and soil moisture content. A physical 
process that involves two or more state variables is represented by a multistate 
model (or a coupled model), in which state variables are coupled through a set of 
governing equations and auxiliary conditions. A multistate model may contain mul-
tiple physical parameters that need to be identified. Because of the nature of EWR, 
a large number of multistate models exist in EWR fields. The following gives an 
incomplete list:

• Nonisothermal, reactive mass transport models
• Groundwater flow and geomechanical models
• Surface–subsurface water interaction models
• Multiphase flow models
• Biodegradation models
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• Colloid-facilitated radioactive transport models
• Land and water resources management models
• Global climate models

An often seen example in groundwater modeling is the coupled groundwater flow 
and mass transport model. This model consists of a confined aquifer flow equation, 
a mass transport equation (Example 1.7), the Darcy’s law, and two-state equations 
for density ρ  and viscosity µ , respectively,

 
(3.4.1)

This model involves five state variables, namely, the hydraulic head h , concen-
tration C , velocity vector V , fluid density ρ , and viscosity µ . This model is 
coupled through the Darcy’s law and mass conservation: a change in h  causes a 
change in the flow field which, in turn, a change in C . If a change in C  affects ρ  
and µ , the value of hydraulic conductivity K k g= ρ µ/  will be affected, which 
causes a change in h . Geochemical and geomechanical processes, which are not 
considered in (3.4.1), may also alter permeability and porosity. The aquifer thick-
ness is b and W is sink/source term, and both are assumed deterministic here. Thus, 
the unknown parameters of the model include the storativity S , porosity φ , ad-
sorption coefficient kd , hydraulic conductivity K , and hydrodynamic dispersion 
coefficient tensor D . For an isotropic aquifer, D  is determined by the longitudinal 
and transverse dispersivities αL and αT , respectively.

In general, a multistate model or a coupled model can be represented by the fol-
lowing form:

 (3.4.2)

where   represents a set of equations (algebraic equations, integral equations, 
ODEs, or PDEs), u = ( , ,···, )u u uk1 2  is a set of state variables, q  is a set of control 
variables, p  is a set of parameters characterizing the system properties, and b  is a 
set of parameters characterizing the boundary conditions of the system in both spa-
tial and temporal domains. Variables and parameters u , p, q, and b  in (Eq. 3.4.2) 
can be scalars, vectors, functions, and vector functions. The forward problem is the 
solution of u  from the equation when q , p , and b  are given. If q, p, and b  are 
not known completely, they need to be identified using the observed values of u.
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3.4.2  Coupled Inverse Problems

A multistate model can be represented simply by ( , ) =u 0θ , where θ  represents 
all unknown parts of q , p , and b , and its forward solution can be represented sim-
ply by ( )=u θ . For a distributed parameter model, the components of u  and θ  
are functions of spatial and temporal variables. The inverse problem of a multistate 
model or a coupled inverse problem (Sun and Yeh 1990) attempts to identify θ  
based on observations of multiple states. The advantage of solving a coupled in-
verse problem is that multiple data sources can be used to increase the identifiability 
of related parameters. For example, when both groundwater head and concentration 
measurements are available, we should solve the coupled groundwater flow and 
mass transport inverse problem to identify the hydraulic conductivity field because 
both datasets embed useful information about the unknown hydraulic conductivity.

Basic concepts and methods of multistate inversion are very similar to those of 
single-state inversion. There are, however, several fundamental differences between 
them that make the coupled inverse problem more complex and challenging. First, 
different state variables often have different dimensions, scales, and measurement 
accuracies. Second, there are crossover effects between state variables and param-
eters. Third, there are more options in the formulation of a performance criterion of 
inversion and also in the design of experiments for inversion.

We will use ui
obs  to denote a set of observed values of the ith state variable ui  

( , , , )i k= 1 2 . When parameter θ  is used in the forward solution, the distance be-
tween model output ( )iu θ  and its corresponding observation ui

obs  is measured by

 (3.4.3)

When the “fitting data” criterion (C-1) is used, a quasi-solution qsθ  of the coupled 
inverse problem is the one that minimizes the difference between model outputs and 
observed values for all state variables

 (3.4.4)

The components θ θ θ1 2, , , r  of θ  may be scalars, vectors, or functions that have 
different meanings and dimensions. Applying criterion (C-2) (i.e., using prior infor-
mation as much as possible), we obtain the following r  additional objectives to be 
minimized

 (3.4.5)

where θp j,  is the prior estimate of θ j . Therefore, the inverse solution with bicrite-
rion (C-1) and (C-2) is given by

1 2= − =( ) ( ) , , , , .obs
i i iG i ku uθ θ 

{ }1 2= ∈argmin ( ), ( ), , ( ) , .qs k adG G G P
θ

θ θ θ θ θ

1 2.( ) , , , ,j j p jR j rθ θ= − =θ 
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 (3.4.6)

The coupled inverse problem is thus cast into an MOO problem. Using the weight-
ing method, we can find the Pareto-optimal solutions of (3.4.6) by solving the fol-
lowing SOO problem:

 (3.4.7)

The weighting coefficients ( , , , , , , , )ω ω ω α α α1 2 1 2 k r  in the above equation also 
play the role of unifying the dimensions of all terms in the summation. Applying 
the regularization concept, we can obtain the same objective function (Eq. 3.4.7), 
but now the regularization terms can be different types for stabilizing the inverse 
solution.

Example 3.3 Solve example 3.1 with constraints
The microbial kinetics model considered in Example 3.1 is actually a multistate 
problem involving two-state variables, the biomass concentration X and substrate 
concentration S. In Example 3.1, the prior information was given in the form of a 
guessed solution, 0 1 0 5 0 1{ . , . , . }p =θ . Oftentimes, one can at most define the range 
of parameter values. Suppose that the lower and upper bounds for the model param-
eters are available based on prior knowledge

 (3.4.8)

Equation (3.4.8) can be cast in the following equivalent forms:

In this case, a constrained optimization problem needs to be solved

subject to
 (3.4.9)
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All other data are the same as before. The constrained optimization is solved using 
the MATLAB function fmincon.

In the hypothetical example, because the “true” 0 15 0 4 0 2[ . , . , . ]t =θ  is known, 
the norm 

2

2
0 023.t

p− =θ θ  can be used as ∆ . Let us consider two cases: the 
overbelieving case, where δ  is set to 0.01 ( < ∆ ), and the overfitting case, where 
δ  is set to 0.2 ( > ∆ ). The resulting inverse solutions are 1 0 16 0 35 0 24[ . , . , . ]=θ  for 
the first case and 2 0 15 0 16 0 19[ . , . , . ]=θ  for the second case. Both solutions are dif-
ferent from tθ , although 1θ  is closer. In practice, the upper bound ∆  is inaccessible 
and a trial-and-error method has to be used.

3.4.3  Solution of Coupled Inverse Problems

The SOO problem (Eq. 3.4.7) can be solved by a local optimization algorithm in-
troduced in Chap. 2 when the problem becomes well posed after regularization. 
Furthermore, when L2 -norm is used for all terms, the problem can be solved effec-
tively by the Gauss–Newton method. The problem is how to determine the weight-
ing coefficients (or how to select a Pareto-optimal solution) for the MOO problem. 
Because there is no decision maker involved for inverse solution, we have to use 
additional criteria to determine an appropriate solution. There are several “no-pref-
erence” methods available for general MOO problems (Branke 2008). For inverse 
solution, if we know the upper bound of the norm of observation error, ηi, for state 

…(  = 1, 2, , )i kiu  and the reliability range, j∆ , for each parameter θ j j r( , , , )= 1 2 , 
we suggest using the neutral compromise solution by solving

 (3.4.10)

where ( )iG θ  and ( )jR θ  are defined in (3.4.3) and (3.4.5), respectively, and all 
terms in the objective function are normalized. The idea of this method is using 
the midpoints of the ranges of all objective functions to determine a Pareto-optimal 
solution. As described in Sect. 3.2.2, the regularization coefficient α  can be de-
termined by gradually increasing it from a small value until the inverse solution 
becomes stable. Of all Pareto-optimal solutions, the solution determined in this way 
is often not the closest one to the true parameter. For nonlinear model inversion, 
determination of the optimal weighting and regularization coefficients is still an 
open problem.

Example 3.4 A coupled inverse problem of groundwater flow and mass transport
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In the study of groundwater contamination, the density ρ  and viscosity µ  can be 
considered the same as that of water because of the low concentration. As a result, 
(3.4.1) reduces to a two-state model with state variables h and C and the unknown 
parameters {K S kL T d, , , , ,φ α α } (note S  denotes storativity here).

Let us use the problem settings in Example 2.10, but add the following assump-
tions: the inflow water from boundary section AB is clean, and the aquifer is free of 
contamination initially; the concentration of injected water to the aquifer through 
the injection well is 1000 mg/m3. Both head and concentration are measured at the 
four observation wells timed at 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0, 40.0, and 50.0 
day, respectively. The total number of observation data is 80, and the total number 
of unknown parameters is 12 (i.e., { , , , , , | , }, , ,K S k ii i i L i T i d iφ α α = 1 2  for the two 
zones). First, we attempt to identify all of these parameters simultaneously by solv-
ing the coupled inverse problem. In this case, the matrix J JD

T
D

 is singular because 
the contaminant plume has not moved to Zone 2; As a result, all observations are 
not sensitive to the four mass transport parameters, φ α α2 2 2 2, , ,, , ,L T dk{ } , associated 
with Zone 2.

To make all 12 unknown parameters identifiable, we need to extend the observa-
tion time until the contaminant plume can be measured at least in one observation 
well of Zone 2. After adding two extra observation times at 200 day and 300 day, 
respectively, we can obtain the inverse solution. The results are shown in Table 3.1, 

Table 3.1  Results of inverse solution
True Initial It. 3 It. 6 It. 9 σ = 0 1. σ = 0 5.

K1
5.00 3.00 5.32 5.00 5.00 5.33 5.28

K2
10.00 3.00 8.16 10.00 10.00 6.06 8.08

S1
0.001 0.003 0.001 0.001 0.001 0.001 0.001

S2
0.002 0.003 0.002 0.002 0.002 0.003 0.002

φ1
0.10 0.20 0.09 0.09 0.09 0.08 0.09

αL,1 40.0 20.0 44.1 40.7 40.3 80.0 44.4

αT ,1 6.0 10.0 5.8 5.8 5.9 5.0 5.0

kd,1
0.05 0.10 0.05 0.06 0.05 0.04 0.06

φ2 0.20 0.10 0.16 0.12 0.12 0.05 0.30

αL,2 60.0 20.0 80.0 64.0 59.8 10.0 80.0

αT ,2 10.0 12.0 20.0 13.3 9.9 5.0 5.0

kd,2 0.10 0.15 0.30 0.19 0.19 0.05 0.30

ˆ( )S θ 55,316 46.2 0.058 0.001 6201 78.5

RMSE 26.3 0.76 0.03 0.003 8.80 1.00

3.4  Parameter Identification of Multistate Models 
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in which the “true” parameter values are listed in column 1, the initial guesses are 
given in column 2, the next three columns show solutions obtained after 3, 6, and 9 
iterations, and the last two columns show solutions obtained under different levels 
of measurement errors.

From Table 3.1, we can see that (i) when the observation error is only caused 
by truncation error (0.005), the RMSE of fitting (0.003) becomes less than the ob-
servation error after nine iteration steps; (ii) ten of the twelve identified parameters 
converge to their true values except for φ2  and kd,2 , and the result cannot be im-
proved unless more data are collected; (iii) the inverse solution becomes unstable 
when standard deviation of observation error is increased to σ = 0 1. , in which case 
the Gauss–Newton solution process terminates after three iteration steps because 
J JD
T

D  becomes singular; and (iv) the RMSE of fitting is not always increased with 
the increase of observation error. The final column shows that the root mean square 
error (RMSE) of the σ = 0 5.  case is less than that of the σ = 0 1.  case, but the ac-
curacy of the inverse solution becomes worse.

When the quantity and quality of data cannot support a stable inverse solution, 
we should give up the identification of those parameters that are insensitive to 
the observation data. In this example, if all φ  and kd  are measured in the labo-
ratory instead through inversion, the inverse solution will be stable as shown in 
Table 3.2. ■

Coupled flow and mass transport model inversion is a typical CIP in EWR 
modeling. In the field of groundwater modeling, examples of previous work are 
(Sun and Yeh 1990; Wagner and Gorelick 1987; Medina and Carrera 1996; Carrera 
1988; Medina and Carrera 2003; Mishra and Parker 1989; Hendricks Franssen and 
Kinzelbach 2008).

Table 3.2  Inverse solution after removing insensitive parameters
True Initial It. 1 It. 2 It. 3 σ = 0 1. σ = 0 5.

K1 5.00 3.00 4.27 4.93 5.00 5.00 4.98

K2
10.00 3.00 10.04 10.00 10.00 9.96 9.83

S1
0.001 0.003 0.002 0.001 0.001 0.001 0.001

S2
0.002 0.003 0.002 0.002 0.002 0.003 0.002

αL,1 40.0 20.0 35.3 40.3 40.1 40.8 41.8

αT ,1 6.0 10.0 8.0 5.9 6.0 5.7 5.3

αL,2 60.0 20.0 73.3 62.0 59.8 61.6 64.6
αT ,2 10.0 12.0 17.0 9.7 9.9 13.3 20.0

ˆ( )S θ 1620 78.08 0.059 0.001 0.35 8.81

RMSE 4.50 0.99 0.03 0.003 0.06 0.33
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3.5  Parameter Identification with Multiobjectives

In the previous subsection, MOO is used to solve coupled inverse problems that can 
extract information from multiple data sources to reduce uncertainty of the inverse 
solution. In this section, MOO will be used again to reduce uncertainty of the in-
verse solution, but through minimizing multiple measures of model performance. 
There are many examples of such uses in the EWR. For example, we can use both 
observed concentration values and solute arrival times to measure performance 
of a mass transport model. In hydrology, Madsen (2000) used four performance 
measures (or objectives of optimization) to identify the unknown parameters of a 
rainfall–runoff model. They are: (i) overall water balance, (ii) overall shape of the 
hydrograph, (iii) peak flows, and (iv) low flows. More examples of performance 
measures can be found in the review paper of Efstratiadis and Koutsoyiannis (2010).

We have seen in Chap. 2 that different norms or misfit functions lead to different 
objective functions for inverse solution. Theoretically, if the model and observa-
tion errors are insignificant and the inverse problem is well posed, the identified 
parameters will be close to the true parameters and the model can produce the same 
excitation–response relationship as the true system does. In this case, the param-
eters identified by minimizing one performance measure should also pass the test 
of other performance measures. For example, if a mass transport model calibrated 
by using concentration observations is a “correct” simulator, then it should be able 
to produce the correct arrival times as well. Similarly, for the rainfall–runoff model 
mentioned in the last paragraph, if the model can correctly produce the observed 
hydrograph, it should also be able to reproduce the observed peaks and low flows.

In practice, however, a model (or a set of model parameters) obtained by mini-
mizing one performance measure may be different from that obtained by minimiz-
ing other measures, due to observation error, model error, and data insufficiency 
(e.g., using limited data to calibrate a complex model structure). As a result, we 
are unable to find a model that can correctly represent all attributes of the modeled 
system. The best we can do is to pick a Pareto-optimal solution that strikes a balance 
among all performance measures.

Let { }1 2( ), ( ), , ( )kS S Sθ θ θ  be a set of performance measures (or a set of ob-
jectives to be minimized) for identifying the parameter θ. The multiperformance 
measure (or the multiobjective) inverse problem aims at finding

 (3.5.1)

This problem is identical to the coupled inverse problem (Eq. 3.4.4) in form. Be-
cause of the complexity of these objective functions, the solution of the problem de-
pends on the efficacy of MOEA algorithms for finding the global minimum, which 
we will discuss in the next section.

The multiobjective inverse problem introduced here is closely related to the top-
ics on model structure error, model selection, and model uncertainty assessment that 
we will discuss in details in the successive chapters of the book.

{ }1 2  argmin ( ), ( ), , ( ) , .qs k adS S S P= ∈
θ

θ θ θ θ θ
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Example 3.5 Performance measures for calibrating a rainfall–Runoff model using 
MOO
The Xinanjiang rainfall–runoff model is a semi-distributed watershed model for 
humid and semi-humid regions. It was originally developed to forecast inflows to 
the Xinanjiang Reservoir in China, but has been applied to many other basins since 
then (Zhao et al. 1980; Zhao 1992; Cheng et al. 2002; Ju et al. 2009). The original 
Xinanjiang model has 15 parameters, of which seven are used to describe the runoff 
generation (or water balance) component and the rest are used to describe the runoff 
routing component. Zhao (1992) later modified the model to add an additional in-
terflow component, and the model now includes 17 parameters. When applying the 
model, the basin is first divided into a set of subbasins, and the outflow hydrograph 
from each subbasin is then simulated and routed down the channels to the main 
basin outlet. Because of its unique model structure, calibration of the Xinanjiang 
model has become a classical MOO problem over the years. Detailed descriptions 
of the Xinanjiang model structure and its parameters are provided in Zhao (1992).

Objective functions that listed below are commonly employed to calibrate the 
rainfall–runoff models (Madsen 2000). These objectives provide different perfor-
mance measures on how well the simulated streamflow hydrograph fits the phase 
and magnitudes of the observed hydrograph:

• Overall water quantity balance error, which measures the difference between 
measured and computed streamflow for all calibration periods

 (3.5.2)

where N  is the number of calibration periods, θ  represents all model parame-
ters, and Qi  and Qobs i,  are simulated and observed streamflows at a basin outlet.

• Overall RMSE,

 (3.5.3)

• Average RMSE of peak-flow events

 (3.5.4)

where Mp  is the number of peak-flow events for the simulation period and nj  
the number of time steps used to approximate each peak-flow event, which var-
ies for different events.

• Average RMSE of low-flow events
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 (3.5.5)

where Ml  is the number of low-flow events.

• Nash Sutcliffe coefficient (NSC), which measures the predictive power of the 
model

 (3.5.6)

where Qobs  is the mean of observations. The value of NSC ranges from −∞  to 1. 
A value of 1 means a perfect match between model prediction and observations. 
At value 0, the NSC says that the model prediction is only as good as the mean 
observation.

The Xinanjiang model has been calibrated against many of the above performance 
measures using a number of different MOO calibration techniques (Cheng et al. 
2002; Ju et al. 2009). For example, Cheng et al. (2002) used genetic algorithms 
(GA) to calibrate the Xinanjiang model. We will introduce GA in Sect. 3.6.2.

Example 3.6 Calibration of a groundwater model using MOO
Remotely sensed data are useful for tracking the movement and storage of water in 
different stores of the hydrologic cycle. The gravity recovery and climate experi-
ment (GRACE) satellite, for example, provides monthly averaged measurements 
of Earth’s static and time-variable gravity fields, which, after removing the effects 
of atmospheric and ocean tidal effects, can be used to track the total water storage 
change (i.e., the sum of all water stored in a vertical column, including snow, sur-
face water, soil moisture, and groundwater; Tapley et al. 2004). The total water stor-
age change (TWSC) data collected from GRACE can be disaggregated to provide 
estimates on the groundwater storage change. Traditionally, most regional ground-
water models are calibrated using in situ water level data. The calibration results are 
poor when the coverage of groundwater monitoring network is sparse. Therefore, 
the GRACE-derived groundwater storage change data provide an additional source 
of information for calibrating regional-scale groundwater models. Sun et al. (2012) 
formulated an MOO problem to calibrate a regional groundwater model for a re-
gional aquifer in the USA by considering the following two objectives:

• RMSE of modeled and observed water levels at observation locations
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 (3.5.7)

where hi j,  and hi j
obs
,  are simulated and observed heads at the ith well and jth 

observation time, M  is the total number of wells, ni  is number of observations 
at each well, and wi  is the weight assigned to each well.

• NSC of simulated and observed groundwater storage changes, which is similar 
to (3.5.6), but replaces flow rates with groundwater storage changes.

Additional performance measures may include observed and simulated boundary 
fluxes such as the spring discharge. At the present time, the TWSC derived from 
GRACE satellite mission contains significant error because of instrumentation and 
data processing errors (Swenson and Wahr 2006). Disaggregation of groundwater 
storage changes from TWSC can introduce additional errors because of uncertain-
ties related to estimating other hydrological components (e.g., soil moisture stor-
age). To deal with uncertainty, one approach is to incorporate prior information as 
additional constraints (e.g., upper and lower bounds) when formulating the MOO 
problem. Sun et al. (2010) formulated a robust least squares (see Sect. 3.3) problem 
to deal with uncertainty in GRACE data, in which a priori error bounds on TWSC 
and soil moisture changes were used as constraints when estimating the unknown 
specific yields of a regional aquifer.

3.6  Algorithms for Multiobjective Optimization

3.6.1  Deterministic Methods

As discussed in previous sections, the classical optimization methods convert MOO 
problems into SOO problems by focusing on one Pareto-optimal solution at a time. 
This is the basic mechanism behind many deterministic algorithms. In principle, 
many of the algorithms described in Chap. 2 can be applied. However, because 
the convexity of the objective function is not guaranteed even if the inverse solu-
tion is unique in the admissible region, the iteration process of a local optimization 
method may converge to a useless local minimum, instead of the global minimum 
(Fig. 3.5). As mentioned in Sect. 2.4.2, at a local minimum, the fitting residual 
cannot be decreased even there is no model error. Finding the global minimum of 
a function is much more challenging than finding a local minimum. This section 
gives only a brief review on deterministic global optimization algorithms. We will 
see that when the dimension m  of the unknown parameter is high, using a deter-
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ministic global minimization algorithm for inverse solution may become infeasible 
in practice because of the huge computational effort involved.

The most straightforward method for finding the global minimum is grid search 
or greedy search, in which the objective function is evaluated at all nodes of a grid 
(in parameter space) to find the smallest. A major difficulty associated with this ap-
proach is the determination of the block size. Using a larger block size may miss the 
global minimum when the objective function has a sharp peak within a block; on the 
other hand, the computational effort may become unaffordable when a small block 
size is used. An appropriate block size can be determined only when additional 
information on the mathematical structure of the objective function is available, for 
example, when the Lipschitz condition

 (3.6.1)

is satisfied everywhere and the Lipschitz constant L  can be estimated. However, 
it is often difficult to verify such structures for the inversion of a numerical model.

The multistart method, one of the first used global search procedures, is often 
used for inverse solution when the convexity of an objective function is unknown. 
It starts a local optimization solver from multiple starting points and stores all solu-
tions found during the search process. The start points can be defined by the user 
if a priori information is available, or they can be uniformly distributed within 
predefined bounds. The global minimum is the smallest one of all solutions. The 
multistart method is often used to test the uniqueness of an inverse solution in real 
case studies by checking whether all search sequences starting from different initial 
guesses converge to the same solution. Strictly speaking, however, there is no guar-
antee that the global minimum could be found by such a heuristic method, unless 
starting from everywhere.

The branching and bounding (BnB) method is a widely used deterministic glob-
al optimization algorithm. Assuming that we have a list of subregions of the admis-
sible region: � �= { }  1 2, , , K , where each subregion may potentially contain 
the global minimum, and we also have a global minimum 

cgmθ  found so far. The 
BnB method implements the following steps:

1 2 1 2( ) ( )S S L− ≤ −θ θ θ θ

Fig. 3.5  Local optimization 
algorithms may return local 
minima ( circles), instead of a 
global one ( hexagon)
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1. Selecting. Select subregions from the list   for further exploration one by one. 
The selection may be based on different orders: first select a subregion that 
contains the currently found global minimizer cgmθ , or a subregion that has the 
largest size. In the beginning, if we do not have additional information,   may 
consist of the entire admissible region, and cgmθ  can be the initial guess of the 
unknown parameter.

2. Branching. Split a selected subregion k  into several smaller subregions and 
delete k  from the list .

3. Bounding. For each subregion k i,  of k , estimate the lower bound ,( )k iS   of 
the objective function on it as tight as possible. If ,( ) ( )k i cgmS S< θ  and we can 
find a * ,k i∈θ   such that *( ) ( )cgmS S<θ θ , then replace cgmθ  by *θ , ( )cgmS θ  
by *( )S θ , and add k i,  to the list .

4. Eliminating. If ,( ) ( )k i cgmS S> θ , then k i,  can be eliminated.

After the above steps are completed for all subregions, both   and ( )cgmS θ  are up-
dated, and the next iteration can start. During this recursive process, ( )cgmS θ  keeps 
deceasing, and both the number and size of subregions left in   become smaller 
and smaller. The recursion stops when the lower- and upper bounds of the current 
list are sufficiently close. Detailed discussion on the BnB method and its parallel 
implementation can be found in Pintér (1996).

The strength of the BnB method is that an entire subregion may be discarded 
after bounding. But the bounding approach depends on the mathematical structure 
of the objective function. Different BnB methods must be designed for different 
problems. For inverse solution, when the objective function is given by an input–
output subroutine, there is no accurate and effective method to estimate its lower 
bound over a subregion.

The dividing rectangles algorithm (DIRECT) is a deterministic sampling method 
introduced by Jones et al. (1993). Assume that the admissible region of the un-
known parameter is an m-dimensional rectangle determined by the upper and lower 
bounds of its components. The initial rectangle is divided into smaller rectangles, 
the centers of all rectangles are taken as sampling points where the objective func-
tion is evaluated, and then the potentially optimal rectangles are selected for refine-
ment. During such an iteration process, the sampling points will form clusters at the 
locations of local minima and the global minimum can thus be determined. Detailed 
instructions on how to divide a rectangle and how to select a rectangle for refine-
ment can be found in Finkel and Kelley (2006) and Huyer and Neumaier (1999). 
Sun et al. (2006b) applied a DIRECT algorithm to identify both contaminant source 
locations and source release histories by minimizing the difference between ob-
served and calculated concentrations. The algorithm consists of two nested loops: 
the outer loop sets a trial location, while the inner loop solves a release history iden-
tification problem (see Example 2.3); the DIRECT algorithm was used to narrow 
the trial location regions.

When inverting a EWR model and when the quantity and quality of data are in-
sufficient, the objective function ( )S θ  may have a flat bottom as shown in Fig. 3.6. 
In this case, any global optimization method can give an answer.
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3.6.2  Genetic Algorithm

The GA is a class of global optimization algorithms for solving SOO problems. Its 
search heuristics is inspired by the natural evolution and selection process (Holland 
1975). To solve an SOO problem, GA first encodes the decision variables into fixed-
length binary strings consisting of 0s and 1s, although other forms of encoding are 
possible depending on the nature of the problem. These strings, which represent the 
candidate solutions to the optimization problem, are referred to as chromosomes in 
analogy to genetic biology. The chromosomes are then evolved by allowing muta-
tions and crossovers between them in hope to generate better solutions.

A basic GA typically consists of the following steps:

1. Initialization. Generate the initial population of candidate solutions S( )0  by ran-
domly sampling across the search space. If prior information is available, the 
initial solutions may be seeded in areas where optimal solutions are most likely 
to be found.

2. Evaluation and selection. For any generation S n( ) , the fitness values of the 
candidate solutions are evaluated and ranked according to a user-defined objec-
tive or fitness function. Those with higher ranks are preferred and are selected to 
breed a new generation.

3. Reproduction. To generate a new generation S n( )+ 1  from its parental genera-
tion S n( ), two genetic operators are commonly used: crossover and mutation. 
The former combines parts of two or more parental chromosomes to create new 
and possibly better offspring, whereas the latter creates new individuals by mod-
ifying the genetic composition of a single individual, which is equivalent to a 
random perturbation in the vicinity of a candidate solution.

The above steps are repeated until a termination criterion is met. Usually, this hap-
pens when there is no improvement in objective function over several consecutive 
generations or when the maximum number of generations is exceeded.

Various GAs differ in the implementation strategies for steps 2 and 3 in the 
above. Commonly used selection strategies include: (i) roulette wheel selection, 
where good solutions are assigned larger slot sizes than the less fit solutions such 

Fig. 3.6  Objective func-
tion may have a flat bottom 
when the information is not 
sufficient
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that the good solutions have a better chance to be selected when the roulette wheel 
spins and (ii) tournament selection, where groups of candidate solutions are ran-
domly selected and competed with each other; the fittest individual in the group 
wins the tournament.

Fig. 3.7 illustrates how the two different selection strategies work. Roulette 
wheel selection based on fitness value is known to have scaling problems (i.e., 
an individual with excellent fitness value is likely to dominate the intermediate 
population, leading to a decrease in diversity of the offspring). As a fix, rank-based 
selection is often used instead. In comparison, the tournament selection is popular 
because it is scaling invariant and it is implicitly elitist (i.e., the fittest individu-
als in a population are guaranteed to be selected for the next generation). Elitism 
is considered an important attribute of evolutionary algorithms because it ensures 
nondegrading performance of an algorithm during evolution.

Crossover and mutation strategies are critical to the efficiency of the GAs. The 
simplest crossover strategy is substring crossover, in which subsequences of a pair 
of randomly selected individuals are swapped to form two offspring with a prob-
ability, Pc . That is, a uniform random number r  is first generated; if ≤ cr P , the 
swapping occurs; otherwise, the two offspring are simply clones of their parents. 
The crossover of chromosomes greatly facilitates GA to approach and eventually 
find the optimum. However, they do not introduce new information to the popula-
tion. Mutation is used to maintain diversity in the population by enabling random 
change in portions of the gene sequence.

The performance of GA depends on population size, the number of generations, 
and parameters of the selected genetic operators. Successful tuning of these parame-
ters usually requires a considerable amount of insight into the nature of the problem 

Fig. 3.7  a Roulette wheel selection, where there are five candidates and fi  are fitness values; 

the probability of getting selected is proportional to f fi i
i

/
=
∑

1

5

. b Tournament selection, where 

the eight candidates are ranked and selected randomly in pairs for tournament. The winners are 
selected according to their ranks (e.g., 5 is selected from the pair 5–1)
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at hand, which is unlikely for complicated problems. Major criticisms of the GA 
include its (1) computational efficiency, which is a major bottleneck for complex 
model, and (2) convergence, meaning there is no guarantee for the algorithm to find 
the global optimum for the termination criterion selected and also the algorithm 
can return local optima if there is not enough diversity in the population. Numerous 
variants of the classic GA have been developed to deal with these issues, including 
parallel GA and hybrids between GA and gradient-based local search algorithms. 
Detailed descriptions of the GA and its implementation can be found in many text-
books (Goldberg 1989; Mitchell 1996; Sivanandam and Deepa 2007). GA is avail-
able in several commercial software and open-source libraries, such as ga function 
in MATLAB’s global optimization toolbox and GAlib (http://lancet.mit.edu/ga).

Example 3.7 Use GA to estimate parameters of a lumped parameter hydrologic 
model (HyMOD)
HyMOD is a lumped parameter rainfall–runoff model that is often used for bench-
marking parameter estimation algorithms in the hydrology literature (Vrugt et al. 
2008; Boyle et al. 2003; Moradkhani et al. 2005; Wagener et al. 2001; Young 2013). 
HyMOD conceptualizes a watershed as a simple nonlinear soil moisture reservoir 
connected with two series of linear reservoirs for routing excess rainfalls: three 
identical quick-flow tanks ( x1–x3) for representing short-term surface detention and 
one slow-flow tank ( x4) for representing groundwater storage (see Fig. 3.10).

For soil moisture storage, HyMOD adopts the probability distribution model 
(PDM; Moore 2007, 1985), which models the storage capacity C at any point of 
the watershed as a random variable. The most widely used CDF for C is in the fol-
lowing form:

 (3.6.2)

where Cmax  is the maximum soil moisture storage capacity within the watershed 
and b controls the degree of spatial variability of the soil moisture capacity within 
the watershed. Rainfall excess (RE) is obtained after subtracting evaporation (ET) 
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Fig. 3.8  Conceptual diagram of HyMOD, adapted from Moradkhani et al. (2005). Symbols are 
explained in the text
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and soil moisture storage from precipitation (P). The partition of rainfall excess 
between the two series of tanks is controlled by a partitioning factor α. The flow 
routing in quick-flow and slow-flow linear reservoirs is determined by the residence 
times in tanks Rq  and Rs , respectively. Finally, the simulated streamflow at the 
watershed outlet is taken as the sum of quick flow Qq  and slow flow Qs . Thus, 
HyMOD consists of five tunable parameters, Cmax , b, α, Rq , and Rs .

As an example, a hydrometeorological dataset collected from Leaf River catch-
ment (1944 km2) located in north of Collins, Mississippi, USA (USGS Station ID 
02472000), is used to develop a HyMOD model. The five parameters are calibrated 
using MATLAB’s ga function. The dataset includes daily precipitation, streamflow, 
and potential evapotranspiration time series from 1948 to 2003, all in mm. Data 
from 1952 to 1962 (inclusive) are used for calibration. The upper and lower bounds 
of HyMOD parameters are taken from the literature (Moradkhani et al. 2005) and 
listed in Table 3.3. The value of fitness function is the RMSE between simulated 
and observed flow rates. Figure 3.9 shows the evolution histories of the mean (+) 
and the best solution (•) of each generation, obtained using tournament and roulette 
wheel selection algorithms, respectively. After 51 generations, the RMSE of the 
best solution returned by the former is 1.1968 mm/day, while for the latter, it is 
1.1974 mm/day. The tournament algorithm shows faster convergence in this case. 
The estimated HyMOD parameters are slightly different, especially for Cmax. ■

Fig. 3.9  Evolution history of GA by using a tournament and b roulette wheel selection algorithms

 

Table 3.3  Bounds of HyMOD parameters and calibration results
Parameter [Unit] Minimum Maximum Tournament Roulette
Cmax mm 150 350 302.62 259.75

b – 0.1 1.5 0.59 0.497
α – 0.6 1.0 0.989 0.987

Rq
day 0.2 0.7 0.485 0.483

Rs
day 0.01 0.1 0.0119 0.0211
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In general, GA returns solutions that are close to the global optimum, but are not 
exact solutions. Also, if there is not sufficient diversity, GA may even return local 
optimal solutions. Only the RMSE is used in this example for model calibration. In 
practice, it is common to consider multiple objectives, as discussed in Sect. 3.5. We 
will demonstrate such a case in the next example.

Example 3.8 Use GA to solve an MOO problem
In addition to RMSE, the mean square error of log-transformed flows (LRMSE) 
is added when calibrating the Leaf River HyMOD model described in Example 
3.7. Unlike RMSE that is sensitive to high-flow events, the LRMSE puts more 
emphasis on minimizing the differences between simulated and observed low-flow 
events. MATLAB’s gamultiobj function is used to solve the MOO problem. 
Figure 3.10 shows the Pareto front after 120 generations.

3.6.3  Multiobjective Evolutionary Algorithm

Both the BnB and traditional GA discussed previously can be used to solve MOO, 
in a way that a single Pareto-optimal solution is sought each time by solving an 
SOO problem. The process is then repeated to produce a set of Pareto-optimal solu-
tions. Since the mid-1980s, evolutionary algorithms have been developed to find 
multiple Pareto-optimal solutions in a single run and, therefore, eliminate the need 
for running a sequence of SOO problems. These evolutionary algorithms are col-
lectively referred to as the MOEA.

Fig. 3.10 Pareto front for the 
Leaf River model obtained 
by using two objective func-
tions, RMSE and LRMSE    
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The vector evaluated genetic algorithm (VEGA) developed by Schaffer (1984) 
represents one of the earliest MOEA. VEGA creates subpopulations within a popu-
lation, one for each objective. Therefore, if there are m  objectives, then the size of 
each subpopulation is N/m for an N-member population. The individuals in each 
subpopulation are the fittest for the corresponding objective of the group. The sub-
populations are then shuffled to create a new generation, on which the GA crossover 
and mutation operators are applied and the offspring of a generation are selected. 
The main limitation of the Schaffer’s method is its inability to retain solutions with 
acceptable performance; also, the solutions in a given generation tend to cluster 
around the individual minima and the solutions are not evenly distributed along the 
Pareto front (Marler and Arora 2004).

Goldberg (1989) first introduced the idea of Pareto ranking to move population 
toward the Pareto front. Under this scheme, individuals in a population that are 
Pareto nondominated by the rest of the population are assigned the highest rank 
and are tentatively eliminated from further contention. Individuals in the highest 
ranking group have the maximum fitness value (usually assigned the same dummy 
value to avoid loss of diversity) so that they have more chance to be selected during 
breeding of the next generation. This process is continued for the rest of the popu-
lation to create groups of ranked solutions; the less fit groups are either discarded 
or penalized. This implies that at any evolution step, two populations are present, 
the current population and a tentative set of nondominated solutions, with the latter 
representing the current approximation of the Pareto front. Solutions from the cur-
rent population that are nondominated by any solution in the tentative set are added 
to that set. The Pareto ranking scheme is behind several so-called first-generation 
MOEA, including multiobjective genetic algorithm (MOGA; Fonseca and Fleming 
1993), nondominated sorting genetic algorithm (NSGA; Srinivas and Deb 1994) 
and niched Pareto genetic algorithm (NPGA; Horn and Nafpliotis 1993).

More recent development of MOEA focuses on (i) explicitly incorporating some 
type of elitist mechanism in the algorithm, which is important for ensuring the non-
degrading performance of MOEA; and (ii) properly and evenly distributing solu-
tions along the Pareto front to maintain diversity. On the latter issue, the use of 
relaxed Pareto dominance (e.g., e-dominance) has become more popular, so that the 
user can specify the precision with which they want to quantify each objective in a 
multiobjective problem. Representative algorithms from this category include the 
elitist nondominated sorting genetic algorithm (NSGA-II; Deb et al. 2002), strength 
Pareto EA (SPEA and SPEA-II; Zitzler and Thiele 1999), Pareto archived evolution 
strategy (PAES; Knowles and Corne 2000), and the honey-bee mating optimization 
(HBMO; Haddad et al. 2006).

Although we do not attempt to give a detailed account of all MOEA algorithms 
here, it is important to recognize that the EWR is one of the first fields to adopt 
MOEA for parameter estimation. Notably, Yapo et al. (1998) proposed a multiob-
jective complex evolution (MOCOM) method for calibrating hydrological models. 
MOCOM uses the Pareto ranking scheme suggested by Goldberg (1989; see the 
above), and the population is evolved using an extension of the downhill simplex 
search strategy. Reed et al. (2003) developed an ε-NSGA-II method to improve 
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the efficiency of the NSGA-II method by using ε-dominance archiving technique. 
Under the concept of ε-dominance archiving, the user specifies an ε-grid in the 
parameter space based on their precision goals. Larger ε values result in a coarser 
grid, while smaller ε values produce a finer grid. As a result, the algorithm promotes 
a more uniform search of the objective space. The ε-NSGA-II algorithm and its 
parallel version have been applied to long-term groundwater monitoring network 
design and hydrological model calibration (Tang et al. 2007; Hadka and Reed 2012; 
Kollat et al. 2011). An review of the MOEA applications in EWR is provided by 
Efstratiadis and Koutsoyiannis (2010).

3.7 Review Questions 

1. “Using prior information can increase the accuracy of the inverse solution.” Is 
that statement correct? If not, why should we use it?

2. Can we avoid the two problems, “overfitting the data” and “overbelieving the 
prior information” simultaneously? Why?

3. Do the weighted sum method and the ε-constraint method give the same set of 
Pareto optimal solutions?

4. Return to the review question 7 of Chap. 2, try to decrease the number of obser-
vation data and/or increase the level of observation error until the inverse solu-
tion becomes instable. Then, as in Example 3.1, solve the bicriterion inverse 
problem in (Eq. 3.2.4) to see how the values of the estimated R and D change 
with the weighting coefficient α.

5. Verify that the αθ  in (3.3.10) is indeed the solution of (3.3.9).
6. Can the parameter reduction method used in Example 3.4 be seen as a regulariza-

tion method? Why?
7. What is the benefit of solving the coupled inverse problem with multistate obser-

vations? Do the estimated parameters become more accurate or more stable, or 
both?

8. The multistate inverse problem in Sect. 3.4 and the multiperformance inverse 
problem in Sect. 3.5 have the same mathematical form and share the same solu-
tion methods, but what is the essential difference between them in the concept?

9. Find a multistate model used in your study area, formulate its inverse problem, 
and solve the inverse problem with a multiobjective code, such as the MATLAB 
function gamultiobj.

3.7  Review Questions
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Chapter 4
Statistical Methods for Parameter Estimation

In this chapter, the classical inverse problem (CIP) is formulated in a statistical 
framework. By using the Bayesian inference theory, we cast the CIP as an informa-
tion transfer problem, in which the prior information and the information trans-
ferred from state observations are combined to reduce uncertainty in the estimated 
parameters. The prior information is modeled using a probability density function 
(PDF) called the prior PDF, and the inverse solution is also a PDF known as the pos-
terior PDF. Because it is a PDF, the inverse solution is always existent and unique 
but with uncertainty. When the posterior PDF is in a relatively simple form, point 
estimates of the unknown parameters can be readily obtained by solving an optimi-
zation problem, just as we have done in the deterministic framework. Further, the 
statistical framework naturally lends itself to the estimation of confidence intervals. 
When the posterior PDF has a complex multimodal shape, however, the nonunique-
ness and instability issues associated with the inverse solution arise again. For such 
cases, Monte Carlo sampling methods provide powerful tools for learning the pos-
terior PDFs without requiring knowing their actual functional forms. Using Monte 
Carlo sampling methods, we can approximately find the posterior PDF (i.e., the 
inverse solution), evaluate the uncertainty of a point estimate, and assess the reli-
ability of a model application.

In Sect. 4.1, we formulate the CIP using Bayesian inference. Different types 
of PDFs used for describing the observation error and prior information are intro-
duced. In Sect. 4.2, various point estimators are derived for these different types of 
PDFs. Statistical properties used for assessing the quality of a point estimator are 
given. The CIP solutions formulated in Chaps. 2 and 3, including regularization, are 
explained as point estimates in the statistical framework. The Markov chain Monte 
Carlo (MCMC), which is a class of Monte Carlo sampling algorithms, is discussed 
in detail in Sect. 4.3. Two popular MCMC algorithms, the Metropolis–Hastings 
algorithm and the Gibbs algorithm, are introduced. The application of MCMC for 
inverse solution and global optimization is also discussed in that section.
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4.1  The Statistical Inverse Problem

4.1.1  Statement of the Statistical Inverse Problem

In Chap. 2, the CIP was formulated in a deterministic framework. Because of the 
uncertain prior knowledge and observation errors, the identified parameter can 
never be an exact one, even when the model error is not considered. In a statistical 
framework, we have the following different considerations:

• The parameter identification problem is not considered as the inverse problem of 
a deterministic forward model; instead, it is considered as an estimation problem 
of a random parameter (a random vector or a random function). This consid-
eration is based on the stochastic nature of the unknown parameter when it is 
estimated with incomplete or sparse information.

• The prior knowledge and observation data are treated as information providers—
the former reflects the subjective judgment of a modeler, whereas the latter are 
objective.

• The model serves the role of transferring information from the observation space 
to parameter space.

• The result of parameter estimation is a PDF of the unknown(s), conditioned on 
data and prior information.

A short review on probability and statistics is given in Appendix B. For detailed 
discussions, readers may refer to any textbook on these topics (e.g., Olofsson and 
Andersson 2012; Walpole 2013). In this chapter, it is assumed that the estimated 
parameter is an m-dimensional random vector denoted by m∈θ 

. We will use the 
same notation to represent its realizations (a specific realization is denoted by a sub-
script or a superscript). The infinite-dimensional case will be considered in Chap. 6, 
where we will show how a stochastic process can be parameterized and represented 
by a finite-dimensional parameter vector.

In a statistical framework, the information used for parameter estimation is es-
sentially the same as that used in a deterministic framework. Unlike the determinis-
tic framework, a statistical method naturally gives some estimation of uncertainty. 
Essential components of the statistical inversion include the following:

• The prior information I , which is cast in a probabilistic framework
• A conditional PDF, ( | )p Iθ , which is called the prior PDF of θ
• A set of observations, uD

obs , and the associated random observation error eD  and 
the error distribution, p D( )e

• A set of model outputs ( )Du θ  corresponding to uD
obs

In this chapter, we shall limit ourselves to considering only the CIP (i.e., no model 
error), which leads to the following observation equation:

 (4.1.1)( ) .obs
D D D= +u u eθ
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The statistical inversion problem can then be stated as using prior information and 
the information transferred from observation data to reduce the uncertainty of a 
parameter being estimated. In what follows, we will proceed to describe:

• How to measure information quantitatively
• How to transfer information from the observation space to parameter space
• How to quantify the uncertainty of an estimated parameter

4.1.2  Information Content and Uncertainty

A continuous random vector θ  is completely characterized by its PDF, ( )p θ , using 
which the mean and the covariance of θ  can be calculated, respectively, by

 (4.1.2)

and

 (4.1.3)

in which E(·)  denotes the mathematical expectation. In the classical information 
theory (Bard 1974; Gray 2011; Kullback 1997), the uncertainty associated with 

( )p θ  of a continuous random variables is measured by its differential entropy, 
( )p , which is defined as

 (4.1.4)

where E p(log )  is the mathematical expectation of log ( )p θ  and the inte-
gral is taken over the whole parameter space 



m . The negative value of ( )p , 
− =( ) (log )p E p , is called the information content associated with ( )p θ .

Example 4.1 The uncertainty of a uniform distribution
The PDF of a uniform distribution over its definition region Ω  is given by

 (4.1.5)

where V  is the total volume of region Ω. From (4.1.4), we have

 (4.1.6)

= = ∫


( ) ( ) ,
m

E p dµ θ θ θ θ

= − − = − −∫


[( )( ) ] ( )( ) ( ) ,
m

T TE p dC θ µ θ µ θ µ θ µ θ θ

( ) (log ) ( ) log ( ) ,
m

p E p p p d= − = −∫ θ θ θ




1 when  

0 otherwise.

, ,
( )

,
p V


∈ Ω= 



θθ

1 1( ) ( / )log( / ) log .p V V d V
Ω

= − =∫ θ
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Therefore, uniform distribution with a larger definition region has a larger uncer-
tainty.

Example 4.2 The uncertainty of a one-dimensional Gaussian distribution
The PDF of a one-dimensional or univariate Gaussian distribution is given by

 (4.1.7)

where µ  and σ 2  are the mean and variance of the distribution, respectively, and the 
  symbol is used to denote a Gaussian PDF. According to (4.1.4), we have

 
(4.1.8)

Therefore, a Gaussian distribution with a larger variance tends to have greater un-
certainty.

Example 4.3 The uncertainty of an m-dimensional (or multivariate) Gaussian 
distribution
The PDF of an m-dimensional Gaussian distribution is given by

 (4.1.9)

where µ  and C  are the mean and covariance matrix of θ  as defined in (4.1.2) 
and (4.1.3), respectively, and the determinant of C, detC, is called the general-
ized variance of θ. Substituting (4.1.9) into (4.1.4), we get the uncertainty of an 
m-dimensional Gaussian distribution

 (4.1.10)

Therefore, a multidimensional Gaussian distribution with a larger generalized vari-
ance has a larger uncertainty. ■

From Examples 4.2 and 4.3, we see that the uncertainty quantified by entropy 
measure (4.1.4) is consistent with our intuition—a PDF spanning over a wider re-
gion has a larger uncertainty (see Fig. 4.1).

Strictly speaking, the differential entropy defined in (4.1.4) is not a valid exten-
sion of the Shannon entropy to the case of continuous random variables. For ex-
ample, it cannot remain invariant under variable transformation. A modified version 
of continuous entropy is given by (Jaynes and Bretthorst 2003)

p( ) ( , ) exp ( ) ,θ µ σ
πσ σ

θ µ  = − −










1

2

1
2 2

2

1 1 2 .
2

( ) ( ) log ( ) log ( log )p p p dθ θ θ σ π
∞

−∞

= − = + +∫

2 1 2 112
2

π − − − 
= − − − 

 


/ /( ) ( , ) ( ) (det ) exp ( ) ( ) ,m Tp C C Cθ µ θ µ θ µ
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 (4.1.11)

where ( )Mp θ  is the density of a uniform distribution called the invariant measure. 
Because both ( )Mp θ  and ( )p θ  must be transformed in the same way, r p( )  is in-
variant under variable transformation. The entropy defined in (4.1.11) is also known 
as the relative information entropy. More discussions on the Shannon entropy mea-
sure will be given in Sect. 10.1, together with other uncertainty measures.

4.1.3  Bayesian Inference for Inverse Solution

Bayesian inference is a statistical inference method that uses prior information I  
and observation data D  as evidence to find the probability of a hypothesis H  be-
ing true. This can be done by calculating the conditional probability p H D I( | , ). 
Applying the product rule of conditional probability gives

 (4.1.12)

Solving p H D I( | , )  from (4.1.12), we obtain the well-known Bayes’ theorem (see 
Appendix B)

 (4.1.13)

( )
( ) ( ) log ,

( )mr
M

p
p p d

p
= −∫ θ

θ θ
θ



p H D I p D H I p H I p H D I p D I( , | ) ( | , ) ( | ) ( | , ) ( | ).= =

p H D I
p H I p D H I

p D I
( | , )

( | ) ( | , )

( | )
.=

Fig. 4.1  Probability distribution pb( )θ  has less uncertainty than probability distribution pa ( )θ  
does
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The hypothesis H  can be an estimate, a statistical model, or the conclusion from 
an experiment. This suggests that the Bayesian inference method can be applied to 
a wide array of inverse problems, not only for parameter estimation, but also for 
structure identification, model selection, and reliability analysis. In this chapter, H  
is regarded as the parameter θ  to be estimated and D  as the observation data uD

obs . 
Thus, the Bayes’ theorem (4.1.13) can be rewritten in the following form

 (4.1.14)

and the meanings of different quantities are

• ( | )p Iθ  is the prior PDF of θ  and will be denoted by 0( )p θ  in the sequel
• ( | , )obs

Dp Iu θ , which is the conditional probability that uD
obs  is observed for a 

given θ , is called the likelihood of θ  and will be denoted by ( )L θ
• ( | , )obs

Dp Iuθ  is the posterior PDF of θ  conditioned on both prior information 
and the observed data and will be denoted by *( )p θ

• p ID
obs( | )u , the marginal probability distribution 0( ) ( )

m
p L d∫ θ θ θ



, plays the 
role of a normalization constant and its value will be denoted as 1/ .c

Using the above notations, we can simply write the Bayes’ theorem (4.1.14) as

 (4.1.15)

Equation (4.1.15) is called the Bayesian inference for inverse solution. It serves as 
the foundation for the statistical CIP and will be used repeatedly throughout this 
chapter.

Using (4.1.4) and (4.1.14), we can calculate the uncertainties associated with 
both prior and posterior distributions and the difference between them, which is 
given by

 (4.1.16)

Equation (4.1.16) provides a measure of the reduction in uncertainty after transfer-
ring information from observation data; its opposite,  ( ) ( )*p p− 0 , measures the 
information content that is transferred.

The posterior PDF, *( )p θ , is the solution of Bayesian inference. It expresses 
our degree of belief regarding the true value of θ  in light of new observations or 
samples. With *( )p θ , we can calculate the probability of θ  falling in any subregion 
( )Ω of the parameter space by evaluating the following integral

 
(4.1.17)

( | ) ( | , )
( | , ) ,

( | )

obs
obs D
D obs

D

p I p I
p I

p I
=

u
u

u

θ θ
θ

0*( ) ( ) ( ).p cp L=θ θ θ

0 0 0* * *( ) ( ) [ ( ) log ( ) ( ) log ( )] .
m

p p p p p p d− = −∫ θ θ θ θ θ
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Equation (4.1.17) is often used to quantify the confidence intervals associated with 
our estimate by specifying the appropriate subregion ( )Ω for integration. Note that 
finding *( )p θ  by Bayesian inference is always a well-posed problem because it is 
given by (4.1.15) explicitly and uniquely, regardless of how much prior informa-
tion and observation data we have. If the quantity and quality of information is 
sufficient, *( )p θ  will define a narrow neighborhood around the true parameter; 
otherwise, *( )p θ  will spread over a larger region. In the latter case, the result of 
parameter estimation has a large uncertainty associated with it (Fig. 4.1).

Example 4.4 Bayesian inference for Gaussian prior and likelihood function
Analytical expressions of the posterior PDF can only be derived for a few special 
distributions, and the Gaussian distribution is one of them. Let us consider a uni-
variate case and assume that the prior PDF and the likelihood function are both 
Gaussian, namely,

 (4.1.18)

Because the product of two Gaussian distributions is also Gaussian, from the 
Bayes’ theorem (4.1.15) we can deduce that the posterior is also a Gaussian, 
p*( ) ( , )θ µ σ=  , and its mean and variance are given, respectively, by

 (4.1.19)

 (4.1.20)

The second equality in (4.1.19) suggests the posterior mean is a weighted mean of 
the prior mean and the mean of observations, with the weights given by the vari-
ances.

As an illustration, suppose that we want to estimate the concentration of a pol-
lutant in an aquifer. The prior PDF of the pollutant concentration is assumed to be 
Gaussian. Its mean and standard deviation are estimated to be 20 and 10 mg/L, 
respectively, based on studies of similar sites and expert opinions. Suppose that 
we then take a number of samples and conduct a statistical analysis of the sam-
ples, through which the mean and standard deviation are calculated to be 18.7 and 
3.5 mg/L, respectively. The statistical analysis also suggests that it is appropriate to 
model the data distribution as Gaussian, which leads to Gaussian likelihood func-
tion L( ) ( . , . )θ =  18 7 3 5 . The posterior mean and standard deviation can then be 
easily calculated using (4.1.19) and (4.1.20), and the results are 18.8 and 3.3 mg/L, 
respectively. In this case, the posterior is closer to the likelihood function than to 
the prior (see Fig. 4.2a).
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If the likelihood function is L( ) ( , )θ =  30 15  instead, the posterior mean and stan-
dard deviation become 23.1 and 8.3 mg/L, respectively, which are closer to the 
statistics of the prior (see Fig. 4.2b).

4.1.4  Probability Distribution of Observation Error

Observational error usually has two additive parts: system (or instrument) error and 
random error (or white noise). The former is caused by the drift of measurement 
instrument from its normal operating conditions, whereas the latter is caused by 
uncontrollable stochastic factors. In what follows, we assume that the observation 
error consists of only random error, while the system error has been eliminated 
by correction. According to the central limit theorem in statistics, when the same 
physical quantity is measured many times, the histogram should be close to a nor-
mal distribution. But the data collected for model calibration and parameter iden-
tification are not from repeated experiments or repeated measurements of a fixed 
physical quantity. Instead, they are taken at different locations and times. In this 
case, the randomness is actually used to represent uncertainty. Note that Gaussian 
distribution is certainly not always the best choice for characterizing uncertainty. 
For example, let c represent the number of precipitation events in a day; in this 
case, the observation error associated with the event count c is better modeled using 
a Poisson distribution. If we do not have extra knowledge, however, the Gaussian 
distribution can be used because it represents the least compromising choice for 
describing random observation error (Demoment and Goussard 2010).

Let eD  be the observation error associated with a set of n  observation data. 
When the error distribution is chosen to be Gaussian with zero mean, we have

 (4.1.21)p D
n

D D
T

D D( ) ( ) (det ) exp ,/ /e C e C e= −










− − −2 1
2

2 1 2 1π

Fig. 4.2  Role of observations in Bayesian inference. a The posterior is closer to the likelihood 
function than to the prior, b the posterior is closer to the prior than to the likelihood function
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where CD  is the covariance matrix of the joint PDF of observation errors.
Because the mean of Gaussian distribution (4.1.21) is assumed zero, only its 

covariance needs to be determined. Usually, CD  is characterized by a set of pa-
rameters ψ  called hyperparameters, a term used to refer parameters of statistical 
distributions. Hyperparameters may be treated as additional unknowns in the case 
of insufficient prior information. For example, when the components of eD  are 
independent of each other, CD  becomes a diagonal matrix and the hyperparameter 
vector ψ  consists of the variances of all n  components,

 (4.1.22)

where σD i,
2  is the variance of the i-th component of eD . Further, when all com-

ponents of eD  are independent and identically distributed (i.i.d.), ψ  reduces to a 
single scalar, σD

2 . When the components of eD  are not independent, however, more 
hyperparameters are needed for determining the nondiagonal elements of CD. In 
Chap. 7, we will show how to identify hyperparameters using the observation data. 
In this chapter, however, we assume that p D( )e  is specified.

Because there is no model error in CIP, we can establish the following equality 
based on the observation equation (4.1.1),

Furthermore, when eD  follows a Gaussian distribution, we have the following like-
lihood function based on (4.1.21),

 (4.1.23)

If p D( )e  is not Gaussian, ( )L θ  will have different expressions. For example, if all 
components of eD  are independent and the mean deviation ηi i n ( , ,···, )= 1 2  can 
be estimated for each component, we can use the following L1 -norm-based likeli-
hood function

 (4.1.24)

Readers may refer to Pawitan (2001) and Sprott (2000) for more examples of the 
likelihood function.
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4.1.5  Probability Distribution of Prior Information

Selecting a proper prior distribution is essential for Bayesian inference; however, it 
can also be a challenging problem because it usually requires translating qualitative 
information into quantitative forms. If an inappropriate prior distribution is used in 
the Bayesian inference, an incorrect inverse solution may be generated. Therefore, 
the choice of a prior distribution should be based on existing data and rely on as 
little subjective inputs as possible.

A common form of prior information is given as an admissible region ( )Ω  in the 
parameter space, for example, an m-dimensional hyperbox [ , ]L U  defined by upper 
and lower bounds of the estimated parameter vector θ. Because we have no other 
information in this case, we should use the principle of indifference to assign equal 
probability to all points in the admissible region. The prior distribution is thus a 
uniform distribution, as defined in Example 4.1:

 (4.1.25)

where V  is the volume of ( )Ω . Uniform distribution in a region is not a nonin-
formative prior because it contains strong information: the unknown parameters 
must be in a given range. Designating the range subjectively may produce biased 
estimation.

Another often used prior distribution is the Gaussian distribution (4.1.9), in 
which an initial guess 0θ  is used as the mean and its uncertainty is characterized by 
a prior covariance matrix CP

 (4.1.26)

As yet another example, the L1 -norm-based prior distribution (also called the La-
place distribution) is given by

 (4.1.27)

where θ0,i  is a prior estimate of θi , and αi  is a scale parameter.
Gaussian prior is a special case of exponential conjugate priors. A conjugate 

prior of a likelihood function means the produced posterior distribution has the 
same functional structure as the prior distribution. As we have shown in Example 
4.4, when the likelihood is Gaussian, the posterior will also be Gaussian, provided 
that the prior is chosen to be Gaussian. Other non-Gaussian prior distributions will 
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be introduced in Chap. 6. For a detailed discussion on conjugate priors and nonin-
formative priors, the readers may refer to Robert (2007). An in-depth analysis of 
prior distributions for Bayesian inference is recently given in Kitanidis (2012).

Like in the case of likelihood functions, various prior distributions have hyper-
parameters associated with them, such as the mean pθ  and covariance matrix CP  
in the Gaussian distribution (4.1.26) and the scale parameters ( , ,···, )α α α1 2 m  in 
the L1 -norm prior distribution (4.1.27). In practice, these hyperparameters need to 
be estimated from observation data as well, because prior knowledge is generally 
insufficient to determine them. The topic of hyperparameter estimation will be cov-
ered in Chap. 7. In this chapter, we simply assume 0( )p θ  is given.

4.2  Point Estimation

4.2.1  Maximum a Posteriori Estimate

In the previous section, we showed that the posterior distribution *( )p θ  is the in-
verse solution under the Bayesian inference framework, namely,

 (4.2.1)

We also discussed how to select the prior distribution 0( )p θ  and the likelihood 
function ( )L θ . However, after 0( )p θ  and ( )L θ  are selected, finding the posterior 
distribution can still be a challenging problem when dimensionality of the param-
eter space is high. We will return to this topic later in Sect. 4.3.

In the deterministic framework, the goal of inversion is to seek an approximate 
solution θ̂  in the parameter space that is as close as possible to the true parameter 
and, thus, can be used to replace the true parameter for model application. In the 
statistical framework, ideally we would like to obtain a *( )p θ  that forms a narrow 
region around the true parameter and is unimodal. In this case, the maximum a pos-
teriori (MAP) estimate is defined by

 (4.2.2)

where MAPθ  is such a point in the parameter space that has the maximum probabil-
ity to be the true parameter for given observations and prior information. In other 
words, we would like to find the mode of the posterior distribution. Finding MAP 
is an optimization problem that can be solved by a search process without the need 
to know the full posterior distribution. Toward this end, we substitute (4.2.1) into 
(4.2.2) and take the logarithm of 

*( )p θ  to obtain

 (4.2.3)

0*( ) ( ) ( ).p cp L=θ θ θ

{ }= *argmax ( ) ,MAP p
θ

θ θ
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The MAP estimate MAPθ  is a point in the parameter space and, therefore, is called 
a point estimate or a point estimator of the true parameter. In the following subsec-
tions, we will introduce more point estimators under different statistical assump-
tions and for different forms of ( )L θ  and 0( )p θ .

In practice, however, finding the MAP by solving a problem as given in (4.2.3) 
is not always possible. As shown in Fig. 4.3, even though *( )p θ  is uniquely deter-
mined, it may not be convex, and its global maximum may not be unique, when 
the information content provided for inversion is insufficient. In this case, the ill-
posedness of inversion can again be seen and the search for point estimates becomes 
meaningless. An in-depth discussion of this aspect will be provided in Sect. 4.3.

A point estimator θ̂  always contains uncertainty because it is determined by in-
complete information. Thus, θ̂  may also be treated as a random variable. The PDF 
of θ̂  is called a sampling distribution and is denoted by ( )ˆp θ . For a given ( )ˆp θ , 
we can calculate its sample mean ( )ˆE θ  and sample variance (ˆ)Var θ . Then, we can 
assess its quality according to the following statistical properties:

• The bias of an estimator θ̂  is defined by = −( ) (ˆ)ˆ tB Eθ θ θ , where tθ  is the true 
parameter to be estimated. When the bias vanishes, θ̂  is called an unbiased esti-
mator.

• The mean squared error (MSE) of an estimator θ̂  is defined by

 (4.2.4)

For an unbiased estimator, MSE is the sampling variance. The square root of 
MSE (or RMSE) has the same unit as the estimated parameter. A small RMSE 
means the estimator, on average, is close to the true parameter.

2 2= − = +( ) [( ) ]ˆ ˆ ˆ( ) ˆ( ).tMSE E B Varθ θ θ θθ

Fig. 4.3  A multimodal posterior distribution, where the MAP estimates are not unique
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• An ideal point estimator is one that is unbiased and has the minimum MSE. But 
such an estimator may not exist because a biased estimator may have a lower 
MSE than any unbiased estimator. An unbiased estimator is called a minimum-
variance unbiased estimator or the best unbiased estimator if it has the lowest 
variance compared to other unbiased estimators. According to (4.2.4), such an 
estimator has the lowest MSE among all unbiased estimators.

More detailed discussion on these and other statistical properties of estimators, such 
as efficiency, sufficiency, consistency, and robustness, can be found, for example, 
in Beck and Arnold (1977), Anderson and Moore (1979), and Lehmann and Casella 
(1998).

Note that the sampling distribution of an estimator depends not only on the es-
timator itself, but also on the model structure and probability distribution of the 
observation error. It can be found only for some simple cases, for example, when 
the model ( )u θ  is linear and p D( )e  is Gaussian. When a model is nonlinear and 
the observation data are limited, the sampling distribution ( )ˆp θ  is very difficult to 
obtain and, as a result, the assessment of a statistical estimator can become a chal-
lenging task.

4.2.2  Estimators With Uniform Prior Distribution

In the case of uniform prior distributions, the prior knowledge can only be used to 
define an admissible region, but within the region it is not informative. The estima-
tion problem is, thus, only based on the information provided by observation data, 
namely, criterion (C-1) of inversion. Because 0log ( )p θ  is a constant in this case, 
the MAP estimator given in (4.2.3) turns into the following maximum likelihood 
estimator (MLE)

 (4.2.5)

When the observation error follows a Gaussian distribution, MLE becomes the gen-
eralized least squares (GLS) estimator after substituting the Gaussian likelihood 
function (4.1.21) into (4.2.5),

 (4.2.6)

When all observations are independent of each other, the GLS estimator further 
reduces to the weighted least squares (WLS) estimator

 (4.2.7)

which coincides with the quasi-solution defined in the last chapter when the weight-
ed L2 -norm is used in the observation space, but the diagonal of the weight matrix 

{ } { } , argmax log ( ) argmin log ( ) .MLE adL L P= = − ∈
θ θ

θ θ θ θ

1 , argmin[ ( )] [ ( )] .obs T obs
GLS D D D D D adP−= − − ∈u u C u u

θ
θ θ θ θ

, argmin[ ( )] [ ( )] ,obs T obs
WLS D D D D adP= − − ∈u u W u u

θ
θ θ θ θ
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W  is now specified as σ σ σD D D n, , ,, ,···,1
2

2
2 2− − −{ } . Furthermore, when all error variances 

are the same (i.e., in the case of i.i.d. observation errors), the WLS estimator reduces 
to the ordinary least squares (OLS) estimator

 (4.2.8)

The OLS estimator is identical to the inverse solution of (2.3.1) given in Chap. 2 
when L2 -norm is used. Now we know that using the OLS criterion for inversion 
needs to meet certain statistical assumptions:

• The observation error eD  should be normally distributed with zero mean and all 
components of eD  should be i.i.d.

• When the components of eD  have different variances, the WLS estimator should 
be used.

• When the components of eD  are correlated, the GLS estimator should be used.

From OLS to GLS, more and more hyperparameters in the covariance matrix CD  
need to be determined. If we define 

2 1−=     ( )
D

T
DC

C  as the generalized L2 -norm 
in the observation space, then GLS, WLS, and OLS estimators can be expressed 
using a unified form

 (4.2.9)

When the observation error is not Gaussian, we have to derive other estimators ac-
cording to the selected likelihood function. For example, using the L1 -norm-based 
likelihood function given in (4.1.24), we have the following weighted L1 -norm 
(WL1) estimator

 (4.2.10)

This estimator is more robust than the L2 -norm-based estimators when the observa-
tion dataset has outliers.

4.2.2.1 Linear Regression

When the model is linear with respect to the estimated parameter, the parameter 
estimation problem is called linear regression. In this case, we have ( )D =u Gθ θ, 
where G  is an n m×  matrix. Using the necessary condition of minimization, we 
obtain

 (4.2.11)

, argmin[ ( )] [ ( )] .obs T obs
OLS D D D D adP= − − ∈u u u u

θ
θ θ θ θ

2
, argmin ( ) .

D

obs
D D adP= − ∈

C
u u

θ
θ θ θ

1
1

, , ,argmin ( ) / .
n

obs
WL D i D i i ad

i

u u Pη
=

= − ∈∑θ
θ θ θ

1 0( ) .T obs
D D
− − =G C u Gθ
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Solving this equation, we get an explicit GLS estimator

 (4.2.12)

From this explicit expression and (4.2.11), we can find the mean of GLSθ

 (4.2.13)

and the covariance matrix of GLSθ

 (4.2.14)

The final equality on the right hand of (4.2.14) is based on BG I=  derived from 
(4.2.12). Equation (4.2.13) means GLSθ  is an unbiased estimator, while (4.2.14) 
means the variance of GLSθ  reaches the lower bound of variances among all unbi-
ased estimators (the Gauss–Markov theorem) (Golub and Van Loan 1996). There-
fore, for a linear model, GLSθ  is the best unbiased estimator.

4.2.3  Estimators With Gaussian Prior Distribution

When the information content of the prior distribution is more than a uniform distri-
bution in the admissible region, a better MAP estimate can be obtained because both 
(C-1) and (C-2) criteria are used for inversion. As a commonly seen special case, we 
assume that the probability distributions of both observation error and prior infor-
mation are Gaussian. After substituting (4.1.23) and (4.1.26) into (4.2.2), we obtain 
the following Conjugate Gaussian (CG) estimator

 (4.2.15)

When C ID D= σ 2  and C IP P= σ 2 , the above equation reduces to

 (4.2.16)

Equation (4.2.16) is exactly identical to the Tikhonov regularization problem (3.3.7), 
if the coefficient α  is set to α σ σ= P D

2 2/ . More generally, when the observation 

1 1 1, where ( ) .obs T T
GLS D D D

− − −= =Bu B G C G G Cθ

1 1 1( ) ( ) ( ) ,T T obs
GLS D D DE E− − −= =G C G G C uθ θ

{ }
{ }

1 1

Cov

− −

= − −

= − −

= =

( ) [ ( )][ ( )]

[ ][ ]

( ) .

T
GLS GLS GLS GLS GLS

obs obs T T
D D
T T

D D

E E E

EB u G u G B

BC B G C G

θ θ θ θ θ

θ θ

{
}

1

1
0 0

−

−

= − −

+ − −

argmin [ ( )] [ ( )]

[ ] [ ] .

obs T obs
CG D D D D D

T
P

u u C u u

C
θ

θ θ θ

θ θ θ θ

2 2
0 22

, argmin ( ) .obs
CG D D adPα 

= − + − ∈ 
 
u u

θ
θ θ θ θ θ
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error distribution and prior distribution are not Gaussian, but can be expressed by 
exponential functions as

 (4.2.17)

the MAP estimate (4.29) becomes the general Tikhonov regularization (GTR) solu-
tion described under Sect. 3.3

 (4.2.18)

where α λ λ= D P
2 2/ , and ( )G θ  and ( )R θ  are norm terms. The discussion herein 

casts the Tikhonov regularization method in the statistical framework, and the prob-
lem of determining the optimal regularization coefficient is turned into estimating 
hyperparameters, σD

2  and σP
2 , in the likelihood function and the prior distribution, 

respectively.

4.2.3.1 Linear Regression With Regularization

For a linear model ( ) =u Gθ θ , an explicit expression for the mean of CGθ  can be 
found by solving (4.2.15)

 (4.2.19)

and the corresponding covariance matrix is given by

 (4.2.20)

Applying the Woodbury identity for matrix inversion (Golub and Van Loan 1996), 
we can derive the following alternative expressions for the mean and variance of 
CGθ

 (4.2.21)

 (4.2.22)

From (4.2.21), it can be observed that CGθ  is a biased estimator because of the use 
of prior information and regularization.

02 2

1 1 and ( ) exp ( ) ( ) exp ( ) ,
D P

L G p R
λ λ

      ∝ − ∝ −   
      

θ θ θ θ

{ } , argmin ( ) ( ) ,GTR adG R Pα= + ∈
θ

θ θ θ θ

1 1 1 1 1
0( ) ( ) ( ),T T obs

CG D P D D PE − − − − −= + +G C G C G C u Cθ θ

1 1 1Cov( ) ( ) .T
CG D P

− − −= +G C G Cθ

1
0 0( ) ( ) ( ),T T obs

CG P P D DE −= + + −C G GC G C u Gθ θ θ

1Cov( ) ( ) .T T
CG P P D P P

−= − +C C G C GC G GCθ
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4.2.4  Minimum Relative Entropy Estimator

The Kullback–Leibler (K–L) relative entropy between one distribution ( )p θ  and 
another distribution ( )q θ  is defined by (Jaynes 1982; Kullback and Leibler 1951)

 (4.2.23)

It has the similar form as the entropy measure defined in (4.1.11), which differ by a 
minus sign. However, they are different concepts. Minimizing ( ; )p q  means mak-
ing ( )p θ  as close to a fixed distribution ( )q θ  as possible. Especially, when ( )q θ  is 
a given prior distribution, we have

 (4.2.24)

Therefore, minimizing ( ; )p p0  means honoring the prior information as much 
as possible, which is criterion (C-2) of inversion. From the point of view of mul-
ticriterion optimization, the fitting data criterion (C-1) can be used as a constraint 
for inverse solution. Assuming that the mean of observation error is zero, from the 
observation equation (4.1.1), we have n  constraints:

 (4.2.25)

The minimum relative entropy (MRE) estimation processor proceeds in two steps. 
In the first step, the unknown probability distribution ( )p θ  is found by minimizing 
( ; )p p0 , subject to the n  constraints in (4.2.25) (and the higher-order moment 
constraints if used) and the normality constraint

 (4.2.26)

In the second step, the MRE estimate is obtained by

 (4.2.27)

Because ( )p θ  contains the prior information and the information transferred from 
data, it is actually a posterior distribution and, therefore, the MRE estimator gives 
the posterior mean estimate. If there is no error in the data, the MRE estimates are 
identical to the Bayesian estimates.

( )
( ; ) ( ) log .

( )m

p
p q p d

q
= ∫ θ

θ θ
θ



0
0

( )
( ; ) ( ) log .

( )m

p
p p p d

p
= ∫ θ

θ θ
θ



, 1 2, , ,[ ( )] ( ) ( ) , ,···, .
m

obs
D i D i D iu E u p u d i n= = =∫θ θ θ θ



1( ) .
m
p d =∫ θ θ



( ) .
mMRE p d= ∫θ θ θ θ
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The constrained optimization problem for finding the posterior ( )p θ  can be 
solved by using the method of Lagrange multipliers. The Lagrange function for this 
case is defined by

 (4.2.28)

where λi  and η  are Lagrange multipliers. For a complete review on this approach, 
the reader is referred to Woodbury (2011). MRE has been used to identify release 
history of contaminant sources (Woodbury and Ulrych 1996), hydraulic conductiv-
ity (Hou and Rubin 2005), and the leakage pathways in geologic carbon repositories 
(Sun and Nicot 2012). A Matlab implementation of MRE is provided by Neupauer 
and Borchers (2001).

4.2.5  Bayesian Inversion for Multistate Models

In the coupled inverse problem considered in Sect. 3.4.2, we have k state vari-
ables, { }1 2( ), ( ), , ( )ku u uθ θ θ

, and k sets of observation data, D D Dk1 2, , ,{ } , 
for inversion, where Di D i

obs= u , ( i k= 1 2, , , ). In this case, the Bayesian theorem 
in (4.1.14) has the following extended form

 (4.2.29)

Then, all discussions in this section so far can be easily extended to the multistate 
inverse problems. For example, the CG estimator in (4.2.15) is extended to

 (4.2.30)

This solution is equivalent to the regularized multistate inversion in Sect. 3.4.2 
when the covariance matrices are used as weights.
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4.3  Monte Carlo Methods for Bayesian Inference

4.3.1  Exploring the Posterior Distribution

In Sect. 4.1, the posterior distribution is defined as the inverse solution in the sta-
tistical framework
 (4.3.1)

In Sect. 4.2, point estimators are derived based on different criteria. When *( )p θ  
has a Gaussian-like shape (single modal and nearly symmetric), point estimates 
obtained via solving an optimization problem can be good approximations of the 
unknown parameter. Because Bayesian inference uses incomplete information for 
parameter estimation, the shape of *( )p θ  may be highly complex (e.g., asymmetric 
and with multiple modes and long tails). As a result, the following difficulties often 
arise in practice:

• Estimates obtained by a point estimator, such as the MAP, may be nonunique, 
although the posterior distribution is uniquely determined by (4.3.1). This is al-
ready illustrated in Fig. 4.3. If we are limited to considering only point estimates, 
we will face the same ill-posed problem as that in the deterministic framework.

• When the posterior distribution does not have a Gaussian-like shape, a point es-
timate does not make much sense. For example, Fig. 4.3 suggests that no single 
point estimate can be a good approximation of the true parameter: the mean of 
the distribution is not representative of the unknown parameter, and the variance 
of the distribution is not a useful measure of the uncertainty.

In principle, these difficulties can go away if we have access to the full posterior 
distribution, instead of merely point estimates. A complete picture of the posterior 
distribution helps determine whether a point estimate makes sense and how reliable 
it is. For example, we can obtain the MAP estimate directly based on the plot of pos-
terior distribution. We can then accept the estimate if the shape of *( )p θ  is limited 
to a narrow region surrounding it; conversely, if we find out that the shape of *( )p θ  
is too disperse, new data should be collected.

The posterior distribution can also be used to quantify the uncertainty. Let ( )θg  
be a cost function consisting of, for example, a set of objectives of the model ap-
plication, the mean of model estimated ( )θg  can be obtained by calculating the 
integral

 (4.3.2)

and the uncertainty of the estimation can be evaluated by calculating the covariance

 (4.3.3)

0*( ) ( ) ( ).p cp Lθ θ θ=

*( ) ( ) ( ) ,
m

E p dθ θ θ= ∫


g g

Cov *( ) [ ( ) ( )][ ( ) ( )] ( ) .
m

TE E p dθ θ θ θ= − −∫


g g g g g
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The advantage of using Bayesian inference for inversion now becomes clear. If we 
could find out the shape of the full posterior distribution and calculate the integrals 
(4.3.2) and (4.3.3), then the parameter estimation problem, the uncertainty assess-
ment problem, and the data sufficiency problem can all be addressed. Unfortunately, 
except for a few limited cases (e.g., Gaussian prior and likelihood), the two tasks are 
analytically intractable, especially when the model is nonlinear and the dimension 
of θ  is high. More often than not, numerical methods have to be used.

4.3.2  Markov Chain Monte Carlo Sampling Techniques

4.3.2.1 Monte Carlo Integration

As the mean of a random variable, (4.3.2) can be calculated approximately by its 
sample mean

 (4.3.4)

where 1 2{ , ,···, }Nθ θ θ  in 


m is a set of points (samples) drawn from the PDF *( ).p θ  
According to the law of large numbers, (4.3.4) becomes accurate when N approach-
es to infinity. In fact, such a random sampling method provides a general tool for 
numerical integration. For an integrand function ( )h θ , if it can be decomposed into 
the product of a function ( )f θ and a PDF ( )p θ  defined over a region (Ω), then we 
have

 (4.3.5)

where ( )p θ  is called a target distribution and (4.3.5) is referred to as Monte Carlo 
integration. The problem is how we can strategically draw the samples to make 
the Monte Carlo integration more efficient or converge faster. Both homogeneous 
sampling and i.i.d. random sampling methods can be inefficient because they may 
take a lot of samples from those regions where the target distribution ( )p θ  is close 
to zero. In what follows, we introduce the MCMC methods that can guide sampling 
to regions of significant probability.

Although the original concept of MCMC was introduced in the middle of the 
last century, it gained significant momentum in the last two decades because of 
the advance of computing power. MCMC algorithms now play an influential role 
in statistical inference, machine learning, and decision analysis. For a detailed ac-
count of the history of MCMC, interested readers may refer to the review papers 
and textbooks by Liu (2001), Robert and Casella (2004), Berge et al. (1995), and 
Andrieu et al. (2005).

1
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To explore a target distribution ( )p θ  over its definition region, an MCMC algo-
rithm constructs a series of samples or a Markov chain

 (4.3.6)

where the sample 1iθ +  is generated by a random walk rule based on the current 
sample iθ , but is independent of all other samples before iθ . This is equivalent 
to assuming a first-order Markov process. A Markov process is uniquely defined 
by the probability of moving to 1iθ +  from iθ  which is called the transition ker-
nel and often denoted by 1( , )i iP θ θ + , 1( )i iP θ θ +→ , or the conditional probabil-
ity, 1( | )i iP θ θ+ , in the literature. The main idea behind MCMC is to construct a 
Markov chain (4.3.6) that converges to samples drawn from the target distribution 
after a large number of steps. This is guaranteed by the following detailed balance 
condition

 (4.3.7)

which requires that each transition 1i iθ θ +→ is reversible (Robert and Casella 
2004). Integrating (4.3.7) over the definition region, we have

 (4.3.8)

Equation (4.3.8) indicates that once a sample iθ  from the target distribution is found, 
all subsequent samples will be distributed according to the target distribution. As a 
result, the Monte Carlo integration can be calculated efficiently.

The Metropolis–Hastings algorithm (Hastings 1970; Metropolis et al. 1953) and 
the Gibbs algorithm (Geman and Geman 1984), to be introduced below, are the two 
best known MCMC algorithms.

4.3.2.2 Metropolis–Hastings Algorithm

The Metropolis–Hastings algorithm is a simple but powerful MCMC sampler that 
serves as the basis of many practical MCMC algorithms. To generate a new sample 

1iθ +  based on the current sample iθ , the Metropolis–Hastings algorithm uses a 
proposal distribution, ( )iq θ θ→ , to draw a candidate ′θ . This is especially useful 
when the target distribution cannot be directly simulated, such as the posterior dis-
tribution *( )p θ  used in the calculation of (4.3.2) and (4.3.3) for Bayesian inversion. 
A Gaussian distribution with mean iθ  and covarianceC, for example, may serve 
as a proposal distribution. In this case, the randomly drawn ′θ  will be around the 
current iθ  with a dispersed distance depending on the value of (det ) /C 1 2. Based 
on the value of an acceptance probability, the Metropolis–Hastings algorithm then 
determines whether to move to ′θ  or stay with the current value. The sample series 

1 2 1, ,···, , ,···i iθ θ θ θ +

1 1 1( ) ( ) ( ) ( ),i i i i i ip P p Pθ θ θ θ θ θ+ + +→ = →

1 1 1

1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ).

i i i i i i i i

i i i i i
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generated in this way will converge to the target distribution after a burn-in period. 
More specifically, a generic Metropolis–Hastings algorithm starts from an arbitrary 
initial sample point 1θ  satisfying 1 0( )p θ > , and finds 1iθ +  from iθ  by implement-
ing the following steps:

1. Use the selected proposal distribution to draw a candidate ′θ  and calculate the 
Metropolis ratio r  given by

 (4.3.9)

Note that for symmetric proposal distributions (e.g., Gaussian), ′→( )iq θ θ  is 
equal to ′ →( )iq θ θ .

2. Calculate the acceptance probability

 (4.3.10)

3. Accept ′θ  with probability α ′→( )iθ θ  or reject ′θ  with probability 
1 α ′− →( )iθ θ . If ′θ  is accepted, let 1

′
+ =iθ θ ; if ′θ  is rejected, let 1i iθ θ+ =  

and return to step 1 to generate another candidate.

From the above algorithm, we see that the transition kernel for the Metropolis–
Hastings algorithm is given by

 (4.3.11)

Using (4.3.10), it is easy to show that

 (4.3.12)

By combining the above two equations, the detailed balance equation (4.3.7) is ob-
tained. Therefore, after discarding the samples in a “burn-in” period to eliminate the 
effect of the initial sample, the Markov chain constructed by the Metropolis–Hast-
ings algorithm converges to the target distribution.

Besides its simplicity, another major advantage of the Metropolis–Hastings algo-
rithm is that the target distribution ( )p θ  can be replaced by function ( )cp θ , where c 
is any constant. The difficulty of normalization is thus avoided. Unfortunately, there 
is no general theoretical result for determining the number of samples required. The 
effectiveness of the algorithm is also a problem. Using larger step size for exploring 
may require fewer samples but result in lower acceptance rate, while using smaller 
step size may require more samples but fewer rejections. Roberts and Rosenthal 
(1998) recommended that an appropriate acceptance rate should be in the range 
25–50 %. When the proposal distribution is a Gaussian distribution, we can use this 
recommendation to adjust the value of the spread hyperparameter (i.e., standard 
deviation) adaptively during the sampling process.

′′

′

→
=

→

( )( )
· .

( ) ( )
i

i i

qp
r

p q

θ θθ
θ θ θ

1α ′→ =( ) min( , ).i rθ θ

1 1 1( ) ( ) ( ).i i i i i iP qθ θ θ θ θ θ+ + +→ = → →α

1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ).i i i i i i i i i ip q p qθ θ θ θ θ θ θ θ θ θ+ + + + +→ → = → →α α
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Example 4.5 Using the Metropolis–Hastings algorithm to approximate a PDF
To illustrate how Metropolis–Hastings algorithm works, let us assume that we know 
a univariate PDF p( )θ  up to some normalizing constant

 (4.3.13)

The Gaussian distribution is used as the proposal distribution q i i( ) ( , )θ θ θ σ→ =  . 
Let us start from an initial guess θ0 5=  and assume the standard deviation of the 
Gaussian distribution σ  is 10. With this information, we draw a random sample 
from the proposal distribution  ( , )5 10 , say, 13.6. The corresponding Metropolis–
Hastings ratio is then calculated using (4.3.9)

 (4.3.14)

Thus, the acceptance probability α  for this sample is 0.44 according to (4.3.10). 
Then, we draw a random sample from the uniform distribution, ( , )0 1 , say, 
u = 0 63. . In this case, the candidate is rejected because α < u . We then draw an-
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Fig. 4.4  Effect of the spread of proposal distribution on Metropolis–Hastings sampling: (a) 
σ = 10, (b) σ = 0 25. , and (c) σ = 80 . The corresponding trace plots are given in (d)–(f).
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other sample from the proposal distribution and repeat the above process many 
times.

In this example, the first 100 samples were discarded (i.e., burn-in period), after 
which 2000 more random samples were generated. Figure 4.4a–c shows the results 
for σ  equal to 10, 0.25, and 80, respectively, where the solid line is the actual PDF 
and the bar plots are the frequency histograms of random samples.

The hyperparameter σ  can have a significant effect. When σ  is too small com-
pared to the actual spread (Fig. 4.4b), the samples tend to cluster in a narrow region 
and fail to explore the other significant modes, although the acceptance rate is high 
(90 %). On the other hand, when σ  is too large (Fig. 4.4c), the samples are too dis-
persed and the acceptance rate is also low (10 %). The acceptance rate correspond-
ing to Fig. 4.4a is 44 %.

Trace plots (i.e., a plot of sample value vs. sample number) can be used to check 
the convergence of MCMC. In this case, the trace plot (Fig. 4.4d) corresponding to 
Fig. 4.4a provides an example of a well-mixed Markov chain, while the trace plot 
corresponding to Fig. 4.4b is an example of a poorly mixed chain. The trace plot 
corresponding to Fig. 4.4c gives a typical example of low acceptance rates, in which 
we see a stair-function-like behavior because of contiguous sample rejections.

As discussed in the text, the sample size also plays a significant role on the 
goodness of fit. Figs. 4.5a–b show that when the sample size increases from 1000 
to 20000, the resulting histogram becomes significantly smoother. As an exercise, 
the reader can also test the effects of initial guess and the length of burn-in period.

4.3.2.3 Gibbs Algorithm

The Gibbs algorithm devises a random walk from the i-th sample iθ  to the next 
sample 1iθ +  in a sequence of movements along the coordinate directions. Let θ  be 
an m-dimensional variable, 1 2( , ,···, )mθ = θ θ θ  and let us denote the i-th sample as 

1 2
( ) ( ) ( )( , ,···, )i i i

i mθ = θ θ θ , where the superscripts in parentheses are used to indicate 
the sample number.

Fig. 4.5  Effect of sample sizes. a 1000, b 20000
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The Gibbs sampling uses the following steps to move from iθ to 1iθ + :

1. Draw a sample for each component of iθ  from the full conditional distribution

Thus, θ1
1( )i+  is drawn from p i i

m
i( | , ,···, )( ) ( ) ( )θ θ θ θ1 2 3 , θ2

1( )i+  is drawn from 
p i i

m
i( | , ,···, )( ) ( ) ( )θ θ θ θ2 1

1
3

+ , and so on. Note that

− The full conditional distribution is assumed known and is used as the proposal 
distribution; otherwise, Metropolis–Hastings steps can be embedded using 
the procedure described in the last subsection.

− The acceptance probability of the Gibbs sampler is always one.
− Each new component sample is used immediately to condition the sampling 

of the next component.

2. Set the new sample as 1 1 1
1 1 2

( ) ( ) ( )( , ,···, )i i i
i mθ + + +
+ = θ θ θ .

From the above process, we see that the transition kernel of the Gibbs algorithm is 
given by

 (4.3.15)

With this transition kernel, the same Eqs. (4.3.12) and (4.3.8) can be derived. There-
fore, the distribution of Gibbs samples approaches the target distribution after a 
burn-in period. Although there is no rejection in the Gibbs sampling process, its 
computational effort is high when the dimensionality m  is large, because m  move-
ments are needed to generate a new sample of θ.

Example 4.6 Gibbs sampling
A popular application of the Gibbs sampler is to estimate parameters of a PDF. In 
this example, we would like to estimate the unknown mean μ and standard deviation 
σ  of a Gaussian distribution,

For reasons to be clear soon, we define a new variable, λ σ −2, which is often 
known as the precision. Thus, the unknown variable is ( , )θ = µ λ . To use the Gibbs 
sampler, we first need to define the full conditional PDFs, which are used as pro-
posal distributions for µ  and λ

 (4.3.16)

θ θ θ θ θ θ θk
i

k
i i

k
i

k
i

m
ip( ) ( ) ( ) ( ) ( ) ( )~ ( | , , , , , , ).+ + +

−
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+ …1
1

1
2

1
1
1

1

1 1 1
1 1 2 1 1

1

( ) ( ) ( ) ( ) ( )( ) ( | , ,···, , ,···, ).
m

i i i i i
i i k k k m
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+ − +

=
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where xo o j j
nx= ={ }, 1  represents a sample dataset. Derivation of (4.3.16) requires 

knowledge of prior PDFs. The commonly used priors for µ  and λ  are Gaussian 
and gamma distribution, respectively (Besag et al. 1995):

 (4.3.17)

where mµ  and s  are the mean and standard deviation of µ ; a  and b  are shape and 
rate parameters of the gamma distribution, and Γ(·)  is the gamma function. For the 
selected priors and assuming Gaussian likelihood, we can derive the full conditional 
distributions as

 (4.3.18)

 (4.3.19)

where

 (4.3.20)

and x  is the sample mean of xo.
As a solid example, let us assume that the “true” parameters are µ σ= =11 2, . 

We generated n = 50 samples from  ( , )µ σ= =11 2  as our data. The correspond-
ing sample mean is calculated as x = 10 87. . In addition, the parameters of the pri-
ors are given as

Starting with an initial value of σ = 1 5.  (or λ = 0 44. ), we used the formulae in 
(4.3.18)–(4.3.20) to perform Gibbs sampling of µ  and λ  repeatedly. The length of 
the burn-in period is 500, and the total number of Gibbs samples is 5000. The results 
of λ  are converted to σ  at the end.

Figure 4.6a and b show the resulting histograms for µ  and σ , respectively. 
After incorporating the observation data, the posterior mean of µ  moved from its 
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prior mean of 9 to 10.85 and the posterior mean of σ  moved from its prior mean 3 
to 2.03. Figure 4.6c and d show the corresponding trace plots for both parameters. 
In practice, the Gibbs sampling procedure delineated here is often combined with 
the Metropolis–Hastings sampler in a hierarchical Bayesian framework, in which 
the latter is used to sample PDFs of physical parameters and the former is used to 
sample PDFs of hyperparameters. A full exposition of the formulation and use of 
hierarchical Bayesian framework for inversion will be provided in Chap. 7. ■

Over the years, many variants of Metropolis–Hastings and Gibbs samplers have 
been proposed to improve the performance or for special applications. Readers may 
refer to Liu (2001), Robert and Casella (2004), Berg (2004), and Bolstad (2010) for 
further readings.

Implementations of Metropolis–Hastings sampler, Gibbs sampler, and their vari-
ants can be found in many packages, including Matlab, R, and Python. Matlab’s 
own Statistical Toolbox, for example, includes a Metropolis–Hastings sampler and 
random number generators for different distributions. The Bayesian inference us-
ing Gibbs sampling (BUGS) project (openBUGS) is a widely used open-source 
MCMC toolbox (http://www.openbugs.info/w/); in particular, it can be used to per-
form Gibbs sampling even when closed forms of the full conditional distributions 
are not available.

Fig. 4.6  Relative frequency histogram of the Markov chains generated using the Gibbs sampler 
for a mean, µ , b standard deviation, σ , c–d corresponding trace plots
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4.3.3  Sampling for Inverse Solution

MCMC is an effective method for exploring any target distribution with or without 
an analytical expression. Therefore, it is widely used to explore the posterior distri-
bution for Bayesian inference. Especially, when the model is nonlinear and/or the 
posterior distribution is non-Gaussian, MCMC provides one of the few approaches 
for performing Bayesian inversion.

Now let us go back to our discussion of the Metropolis–Hastings sampler. 
Suppose that the target distribution represents the posterior distribution, namely, 

0*( ) ( ) ( )p cp Lθ θ θ= , the ratio r  in (4.3.9) can then be written as

 (4.3.21)

When the prior distribution is uniform in a region Pad  and the proposal distribu-
tion is symmetric, both p0  and q(·)  cancel out and the ratio r  becomes the ratio 
of likelihood functions

 (4.3.22)

In this case, we only need to explore the likelihood function. In general, of course, 
we have to explore both the prior distribution and the likelihood function. There are 
case-dependent techniques to increase the effectiveness of exploration and decrease 
the dependence between samples. For example, after taking one sample of the prior 
distribution, we take many samples of the likelihood function (Tarantola 2005); 
when a prior guess of the unknown parameter is available, we can use it as the ini-
tial sample to shorten the burn-in period. We can also use multiple Markov chains 
starting from different initial samples to avoid getting trapped at a local mode and 
missing out significant unexplored regions (Gilks et al. 1998).

After exploring the posterior distribution using MCMC, we obtain a set of sam-
ples or a Markov chain

 (4.3.23)

where N is the total number of samples (excluding the burn-in period). An impor-
tant question that we must answer is whether the Markov chain has converged or 
when the sampling process can be terminated. There are more than ten convergence 
diagnostic tools presented in the references, but none of them can give us a defini-
tive answer (Brooks and Roberts 1998; Cowles and Carlin 1996). In Examples 4.5 
and 4.6, we showed that simple trace plots (sample value vs. sample index) can be 
very useful in visually assessing convergence. Through examining the trace plots, 
we can see whether a chain has converged to a stationary distribution and whether 
a longer burn-in period is necessary. The Gelman–Rubin test (Gelman and Rubin 
1992) uses multiple chains to test whether they all converge to the same target dis-
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tribution; failure could indicate the presence of a multimodal posterior distribution 
or the need to take more samples. Yet another example is the Geweke test (Geweke 
1992) that compares the sample mean of the first nF  samples (e.g., first 10 % of the 
samples) to that of the last nL  samples (e.g., last 50 % of all samples); significant 
difference between the two may indicate that the sampling chain has not reached a 
stationary distribution.

The samples generated by an MCMC method are not independent of each other. 
When the samples of a chain are poor mixing, the chain may explore only a small 
region of the parameter space. The independence between samples can be mea-
sured by a simple autocovariance defined for each component k m= 1 2, ,···,  of the 
parameter vector θ. For a lag h  in sample indices, the sample autocovariance func-
tion is given by

 (4.3.24)

where θ θk k
i

i

N

N
=

=
∑1

1

( )  is the sample mean of component k , and the sample auto-

correlation is defined by ρ γ γk k kh h( ) ( ) / ( )= 0 . If ρk h( )  drops quickly with the 
increase in lag h  for all components, we can conclude that the chain is good mixing 
and the convergence would be fast. Note that the convergence of different compo-
nents may not be isochronous. Thus, we have to check the autocorrelations for all 
components.

An MCMC-based inverse problem solver can give us the following results:

• Once we have the MCMC samples (4.3.23), we can use them to get additional 
statistics. For example, we can calculate the sample mean, an estimate of the 
posterior mean, by

 (4.3.25)

Equation (4.3.25) gives us a smoothed estimation of the unknown parameter. If we 
do not have these MCMC samples, as we have mentioned before, the sample mean 
and sample covariance would be very difficult to calculate for nonlinear models.

• From these MCMC samples, we can find all modes, the tail, and high probability 
regions of the posterior distribution. Once we find from the samples that a point 
estimate makes sense, we can easily output this point estimate and calculate its 
uncertainty.

Moreover, after the cost function of model application ( )θg  is given, we can use the 
MCMC samples to approximate E( )g  in (4.3.2) by

 (4.3.26)
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and Cov( )g  in (4.3.3) by

 (4.3.27)

In summary, the MCMC sampling process is simple and very useful, but can be 
computationally expensive, especially when the dimension of the unknown param-
eter is high. In the Metropolis–Hastings algorithm, testing each candidate sample 
needs to solve the forward problem once, regardless of whether the candidate can 
be accepted or rejected. In the Gibbs algorithm, the forward problem needs to be 
solved m  times for generating a new sample. Another difficulty of using MCMC is 
the formulation of prior distribution. In practice, we can use the original posterior 
distribution as the prior distribution and then incorporate new data to obtain an up-
dated posterior distribution.

Bayesian inference using MCMC sampling is now widely used in EWR model-
ing. Modified versions of the standard MCMC algorithms and their applications in 
hydrological and geo-hydrological modeling are given by Oliver et al. (1997), Vrugt 
et al. (2003), Feyen et al. (2007), Blasone et al. (2008), Fu and Gómez-Hernández 
(2009), Vrugt et al. (2009), Liu et al. (2010), among others. Review papers on this 
topic are given by Mosegaad and Sambridge (2002), Hendricks Franssen et al. 
(2009), and Yustres et al. (2012).

The differential evolution adaptive metropolis (DREAM) toolbox (available in 
Matlab and Python) developed by J. Vrugt and his coworkers runs multiple different 
chains simultaneously for global exploration, and automatically tunes the proposal 
distribution using differential evolution (Vrugt et al. 2009). Another Matlab-based 
MCMC toolbox is MCMCStat developed by Haario et al. (2006), which imple-
ments an adaptive Metropolis–Hastings algorithm and can be easily adopted for 
parameter estimation.

Example 4.7 Estimate parameters of a HyMOD model
In this example, the five parameters of the HyMOD model introduced in Example 
3.7 are calibrated using MCMC. Here the unknown parameter vector is denoted as 

max( , , , , )q sC b R Rθ  α  and the lower and upper bounds of the parameters are the 
same as those given before in Table 3.3 for the Leaf River watershed. The initial 
guesses of the five parameters are 0 =(220, 0.5, 0.9, 0.02, 0.6)θ . The priors of all 
parameters are assumed as Gaussian with statistics

For this example, the Metropolis–Hastings algorithm in MCMCStat toolbox (Haario 
et al. 2006) is used and the likelihood function is set to the sum-of-squares between 
observed and simulated streamflows. The length of burn-in period is 500 and the 
number of samples is 5000.

1
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Figure 4.7a–e shows the resulting (marginal) posterior distributions of the Hy-
MOD parameters. The shapes of the PDFs for Cmax, b, and Rq  are Gaussian like, 
whereas those for α and Rs are more skewed.

4.3.4  Simulated Annealing

Previously, we showed how MCMC can be used to sample a complex shaped PDF. 
For the same token, the MCMC can also be used to find the global optimum of a 
complex multimodal function by forming a chain that gradually approaches the 
global optimum. This is the basic principle behind simulated annealing (SA), a class 
of stochastic global optimization methods.

In general, stochastic global optimization methods proceed in a similar way as 
many of the deterministic global optimization methods do (see Chap. 3.6). Given 
an optimization problem,

stochastic global optimization methods explore many points in the feasible space 
in the hope that the function value approaches the global minimum as the number 
of trials increases. The main difference is that in stochastic optimization the points 
are chosen according to some random rule. For any point iθ , the objective func-
tion ( )if θ  is evaluated and the transition to the next point can either depend on 
the current state or be purely random. Like in MCMC methods, the efficiency of 

,  subject to constraints,∈min ( ) adf P
θ

θ θ

Fig. 4.7  Posterior distributions of the HyMOD parameters obtained using MCMC sampling, a 
Cmax, b b, c α , d Rq , e Rs

 



138 4 Statistical Methods for Parameter Estimation

the stochastic global optimization methods relies on the rules they use to search 
the parameter space. In addition, the efficiency of the global optimization methods 
depends on how the promising solutions survive different iterations and how the 
algorithms avoid trapping at local minima.

SA is closely related to the Metropolis–Hastings algorithm. As its name implies, 
SA is inspired by the annealing process in metallurgy. The main idea is to “melt” the 
system being optimized at a high temperature and then gradually lower the “energy” 
of the system following a cooling schedule until the system reaches a minimum 
energy state and no further changes occur. At each temperature, the simulation must 
proceed long enough to reach equilibrium before the temperature is lowered again. 
This is because like in metal annealing, the cooling should not happen too fast so 
that the system is trapped at local minima.

The standard SA includes several basic elements: the initial guess, a cooling 
schedule, an acceptance criterion, and a scheme for transitioning to different state 
or for visiting different neighbors of the current solutions. More specifically, the 
standard SA includes the following steps:

1. Start from a high temperature, T0, and an initial guess, 0θ , and evaluate the value 
of user-specified objective function, 0( )f θ .

2. At a temperature Tn , generate a new point, 1iθ + , from the current point iθ :

− First generate a candidate point ′θ  based on the current point iθ  using transi-
tion function ′→( )iq θ θ . This is essentially the same as what the proposal 
distribution does in MCMC, through which a random variate is obtained

− Evaluate the change in function value when migrating from iθ  to ′θ , 
′∆ = −( ) ( )if fθ θ . The new point ′θ  is accepted with a probability α  accord-

ing to

 (4.3.28)

where Tn  is the current temperature. Equation (4.3.28) says that if the new 
state has a lower objective function value, accept it unconditionally; other-
wise, the new state is accepted probabilistically and the probability is analo-
gous to the metal’s energy state when reaching equilibrium at a temperature 
during annealing. Therefore, an uphill climbing move (i.e., positive ∆ ) is 
more likely to be accepted at higher temperatures, but as the temperature ap-
proaches zero, most uphill moves will be rejected. The above equation can 
also be compared to the Metropolis–Hastings ratio given in (4.3.9).

− If ′θ  is accepted, let 1
′

+ =iθ θ ; if ′θ  is rejected, let 1i iθ θ+ = .

3. Iterate step 2L times (e.g., L = 10) without changing the temperature. This is 
aimed to avoid trapping at a local equilibrium.

4. Reduce the temperature to Tn+1 , which is usually done according to a user-spec-
ified cooling schedule. For example, a simple cooling schedule can be

1 if 0
if 0

α
 ∆ ≤=  −∆ ∆ >

,
,

exp( / ),nT
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Steps 2–4 in the above are repeated until a certain stopping criterion is satisfied, 
such as when the minimum temperature is reached or when the objective function 
is below a user-specified tolerance. In the above SA algorithm, tunable parameters 
include number of iteration times ( L) at each temperature and cooling rate λ.

Like genetic algorithms (GA) introduced in Chap. 3, SA is also derived based on 
analogy to a natural process. Unlike GA which evolves generations of individuals, 
SA evolves a single chain. If the transition PDF is symmetric and is bounded away 
from zero (i.e., ′→ >( )iq cθ θ , where c  is a positive real number), it can be shown 
that SA converges to a global minimizer (Zhigljavsky 2007).

In the literature, SA has been applied to solve both SOO and MOO problems. 
Suman and Kumar (2005) provided a review of different SA algorithms. In EWR, 
SA has been used to find contaminant source locations (Jha and Datta 2012; Sun 
and Nicot 2012).

4.4  Review Question

1. Compare the deterministic inverse problem to the statistical inverse problem in 
all of the following aspects: (a) concept, (b) well-posedness, (c) data used, (d) 
results of solution, (e) methods of solution, and (f) uncertainty of solution.

2. Assume the prior distribution of the unknown parameter θ  is a uniform distri-
bution over interval [ , ]0 1 . After estimation, its posterior distribution is given by 
p( ) ,θ = 2  when 0 1 4≤ <θ / ; and p( ) / ,θ = 2 3  when1 4 1/ ≤ <θ . Calculate 
the information content transferred from data to the estimated parameter.

3. Discuss the statement, “The statistical inversion method is superior to the deter-
ministic inversion method.”

4. Discuss the statement, “The statistical inversion method cannot be used if we do 
not have a prior distribution and/or we do not know the distribution of observa-
tion error.”

5. Discuss the statement, “When the probability distribution of observation error 
is inaccurate, the estimated parameters must be inaccurate too. In this case, the 
deterministic inversion method gives more accurate results.”

6. Derive Eq. (4.2.19) and Eq. (4.2.20), find the Woodbury identity, and obtain 
Eq. (4.2.22) and Eq. (4.2.21).

7. Formulate the statistical inverse problem for two-state coupled models.
8. Compared with point estimators, what kinds of result can be obtained from 

sampling the posterior distribution by an MCMC solver?
9. Use an MCMC code, such as the one mentioned in Sect. 4.3.2, to resolve the 

Review Question 9 of Chap. 2.

T Tn n+ = < <1 0 1λ λ, .
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Chapter 5
Model Differentiation

In the previous chapters, we showed that an inverse problem ultimately becomes an 
optimization problem, regardless the type of framework (deterministic or statistical) 
used to formulate it. Gradient-based algorithms are efficient for solving optimiza-
tion problems, but require derivatives of the objective function ( )S θ  as inputs. In 
this chapter, we will consider methods for obtaining derivatives of a generic func-
tion defined by a model or by a computer code.

Section 5.1 introduces the perturbation method, which uses the first-order fi-
nite difference to approximate derivatives and is the simplest method for model 
differentiation. However, more accurate and effective alternatives to the perturba-
tion method are available. In Sect. 5.2, we will introduce the sensitivity equation 
method, in which model derivatives are the solution of a system of sensitivity equa-
tions obtained by differentiating the governing equations of the model. With the 
same computational effort, this method can produce more accurate results than that 
produced by the simpler perturbation method. Nevertheless, additional derivation 
and programming are required.

Section 5.3 introduces the adjoint-state method, in which an adjoint problem is 
derived from the original forward problem. Although this method typically incurs 
more derivation and programming overhead, its computational effectiveness is at-
tractive. By solving the adjoint problem and the original forward problem once, all 
components of the gradient vector ( )S∇ θ  can be obtained, regardless of the dimen-
sion of the unknown parameter vector θ .

Section 5.4 gives a short introduction to the method of automatic differentiation 
(AD). As its name suggests, AD attempts to differentiate an arbitrary numerical 
code with input θ  and output ( )S θ  to generate a new code with input θ  and output 

( )S∇ θ . AD has two modes: a forward mode that “differentiates” a code from top to 
bottom and a reverse mode that “differentiates” a code from bottom to top. The two 
modes correspond to the sensitivity equation method and the adjoint-state method, 
respectively. With the advent of AD, model differentiation could eventually be-
come straightforward. Unfortunately, the currently available AD tools, especially 
those based on the reverse mode, have not reached full automation for complicated 
models.

© Springer Science+Business Media, LLC 2015
N-Z. Sun, A. Sun, Model Calibration and Parameter Estimation, 
DOI 10.1007/978-1-4939-2323-6_5
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Section 5.5 shows some basic applications of model differentiation in inverse 
modeling and local sensitivity analysis. As we shall see later in this book, model 
differentiation plays an important role not only for numerical optimization but also 
for sensitivity analysis, data assimilation, reliability assessment, and experimental 
design.

5.1  Perturbation Method

Whenever a gradient-based optimization algorithm is used for inversion, we need to 
calculate the gradient vector of the objective function ( )S θ

 (5.1.1)

where adP∈θ  is an m-dimensional input parameter vector, 1 2( , ,···, )T
mθ θ θ=θ .  

For example, the bicriterion objective function given in Sect. 3.2 is

 (5.1.2)

in which uD
obs  is an n-dimensional observation vector, ( )Du q  is the corresponding 

model outputs, α  is weight, and q0  is prior guess of the unknown q. When the 
Gauss–Newton method is used to solve for the optimization problem, the following 
n m×  Jacobian matrix needs to be calculated

 (5.1.3)

in which DJ  is also called the sensitivity matrix of model outputs uD  to input pa-
rameters, and its elements are called sensitivity coefficients. When the forward so-
lution is obtained by a numerical model, closed-form expressions of ( )Du θ  are 
not available for differentiation; instead, we need to evaluate ( )S θ  numerically by 
running the forward model.
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The simplest method for calculating the gradient ∇ ( )S θ  is the perturbation 
method, which evaluates derivatives ∂ ∂S j/ θ  by taking the first-order finite differ-
ence approximation of ( )S θ  with respect to θ j ,

 (5.1.4)

where e j  is a unit vector along the j-th coordinate direction and j∆  is an increment 
or magnitude of perturbation applied to θ j

. To calculate the gradient ( )S θ  using 
the perturbation method, we need to run the forward solution code m + 1  times, in 
which an extra run is needed for calculating ( )S θ . With the perturbation method, all 
elements of the sensitivity matrix ( )DJ θ  can be evaluated numerically by

 (5.1.5)

A major difficulty related to the perturbation method is the determination of an 
appropriate increment j∆  to be used in (5.1.4) or (5.1.5). Too large an increment 
may produce inaccurate results because of the truncation error, while a too small 
increment may produce unstable results because of the computational error of the 
forward solution. A rule of thumb is to set

such that the difference ∆+ −( ) ( )j jS Seθ θ  is significantly larger than the com-
putational error of the forward solution. Thus, the perturbation method has certain 
subjectivity in it which may cause inaccuracy. In the rest of this chapter, we will 
introduce more accurate methods for obtaining derivatives.

5.2  Sensitivity Equation Method

5.2.1  Sensitivity Equation and Its Solution

Let us derive the sensitivity equation for the following general model equation

 (5.2.1)
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For a single-state model, (5.2.1) consists of a single equation and the model state 
variable u  is a scalar function. For a multistate model, (5.2.1) consists of a set 
of equations, where u = …( , , , )u u uk

T
1 2  is a k-dimensional vector function, 

1 2= …( , , , )Tk    is a vector operator, and θ  is an m ×1  vector with compo-
nents ( , ,···, )θ θ θ1 2 m

T . Differentiating (5.2.1) with respect to θ j
 yields

 (5.2.2)

Equation (5.2.2) is called the sensitivity equation of model equation (5.2.1) because 
its solution yields the sensitivity coefficients. In (5.2.2), operators ∇u  and ∇θ  
are defined respectively by

 (5.2.3)

Operators ∇u  and   are the same when   is linear or similar (see the examples 
below). The term ∇ ∂ ∂( / )jθq q  is known after the primary problem is solved, 
and j∂ ∂/θ q  has components ∂ ∂ =θ θi j/ 0  when i j≠  and ∂ ∂ =θ θi j/ 1  
when i j= . The solution of sensitivity equations (5.2.2) gives distributed deriva-
tives [ / ]∂ ∂ui jθ  for all state variables with respect to all components of the input 
parameter, using which the gradient ∇ ( )S θ  and Jacobian ( )DJ θ  can be calculated.

Applying the sensitivity method to calculate the Jacobian has two major advan-
tages: (1) the total computational effort is independent of the number of observa-
tions and (2) the method circumvents the difficulty of determining the perturbation 
increments as required by the perturbation method.

Example 5.1 Derivation of the sensitivity equation for a linear model
Assuming the model equation is given by a linear system

 (5.2.4)

where the response matrix A  and the right-hand-side data vector b may depend on 
the parameter vector q . Differentiating (5.2.4) with respect to component θ j  of q , 
we obtain the following sensitivity equation

 (5.2.5)

where ′ = ∂ ∂u uj j/ θ  and ′ = ∂ ∂ − ∂ ∂b b A uj j j( / ) ( / )θ θ . Equation (5.2.5) implies 
that the same code used for solving the model equation (5.2.4) can also be used to 
solve the sensitivity equation (5.2.5) after modifying the right-hand-side term ap-
propriately. The solution process consists of two major steps:

 1 2
θ θ
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∂ ∂
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j mu
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1. Solve the primary problem (5.2.4) using a selected linear system solver.
2. For j m= 1 2, ,···,

− Calculate ′bj ,
− Use ′bj  as the right-hand-side term of (5.2.5), and
− Solve the equation to obtain ′u j .

The gradient ∇ ( )S θ  or Jacobian ( )DJ θ  can then be assembled using ′u j . 

Example 5.2 Derivation of the sensitivity equation for an ODE
Assuming the modeling equation is a second-order ODE given by

 (5.2.6)

subject to initial conditions

where coefficients a b c, , , and the right-hand-side term d  may depend on the pa-
rameter vector θ  and so does model state u when the model is nonlinear. Differen-
tiation of (5.2.6) with respect to component θ j  of θ  yields

 (5.2.7)

subject to

where ′ = ∂ ∂u uj j/ θ  and

 (5.2.8)

Again, the sensitivity equation (5.2.7) and model equation (5.2.6) have the same form. 
Thus, they can be solved using the same code after replacing d  with ′dj  and set-
ting f0  and f1  to zero. Solving (5.2.7) for all j m= 1 2, ,···, , the gradient ∇ ( )S θ  or 
Jacobian ( )DJ θ  can then be obtained for any number of observations. 
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Example 5.3 Derivation of the sensitivity equation for a partial differential equa-
tion (PDE)
Consider a model governed by the following PDE

 
(5.2.9)

subject to initial and boundary conditions

 (5.2.10)

where f0 , f1 , and f2  are prescribed functions, Γ1  and  Γ2  consist of boundaries 
of the domain Ω , and ( , )n nx y  is the normal direction of Γ2. All coefficients of 
the PDE may depend on parameter q  and also on the state variable u if the model 
is nonlinear. Note that (5.2.9) (or its three-dimensional counterpart) can be used to 
model many flow and mass/heat transport processes typically encountered in the 
EWR modeling (see examples in Chap. 1).

Differentiation of (5.2.9) and (5.2.10) with respect to component θ j  of θ  yields

 (5.2.11)
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and

 (5.2.12)

where ′ = ∂ ∂u uj j/ θ  and

 (5.2.13)

 (5.2.14)

After solving the primary problem defined by (5.2.9) and (5.2.10), we can calculate ′ej  
and ′f j2, , substitute them into sensitivity equations (5.2.11) and (5.2.12), and then solve 
the sensitivity problem by using the same code to obtain ′ = ∂ ∂u uj j/ θ . 

Example 5.4 Derivation of the sensitivity equation for a multistate model
Let us consider a classical leaky aquifer problem in hydrogeology, in which an 
unconfined aquifer is separated from the underlying confined aquifer by a leaky 
confining layer. Groundwater flow in such a leaky aquifer system is governed by 
the following two coupled PDEs (Bear 1979):

 (5.2.15)
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where h is the water level in the unconfined aquifer; φ  is the head of the confined 
aquifer; Sy  and S  are the specific yield and storativity, respectively; K and T  
are hydraulic conductivity and transmissivity; bl  is the leakage coefficient; λ  is 
the infiltration rate; and Q  is the pumping rate. The model in (5.2.15) consists 
of two state variables u = ( , )h φ  and six parameters λ= ( , , , , , )Ty lS S K T bθ . For 
simplification, we assume that these parameters are constant. Note that the first 
equation in (5.2.15) is nonlinear. To find distributed derivatives ′ = ∂ ∂h hλ λ/  
and ′ = ∂ ∂φ φ λλ / , we differentiate the primary model equations with respect to 
λ , which yields

 (5.2.16)

The model equation (5.2.15) and its sensitivity equation (5.2.16) have almost identi-
cal forms, except that an extra divergence term now appears in the first equation of 
(5.2.16) because of its nonlinearity. After solving the state variables h and φ  from 
the primary model equation, we can substitute them into the sensitivity equation 
(5.2.16) and solve for both ′hλ  and ′φλ  from the equation. The derivatives of h and 
φ  with respect to other parameters can be obtained similarly. 

5.2.2  Discrete Form

When a numerical method is used to solve a time-independent PDE, the forward 
solution can be obtained by solving a set of linear equations after spatial discretiza-
tion. For nonlinear problems, both linearization and iteration will be needed. As 
shown in Example 5.1, the sensitivity equation of a linear model can be solved by 
the same numerical code after changing the right-hand-side terms. For a time-de-
pendent PDE (such as the one shown in Example 5.3), the primary PDE is reduced 
to a set of algebraic equations after discretizing both temporal and spatial variables. 
We need to solve this system of algebraic equations when propagating the model 
states from time tk−1  to tk  (see also Example 1.10 in Chap. 1)

 (5.2.17)

In (5.2.17), Hk
 is an N N×  coefficient matrix that may depend on parameter θ , 

N  is the number of nodal points resulting from the spatial discretization of the state 
variable, uk ; and the right-hand-side term bk  depends on the solution uk−1  from 
the previous time step, the forcing term, and the boundary conditions. Differentia-
tion of (5.2.17) with respect to θ j  yields the following sensitivity equations

 (5.2.18)
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where ′ = ∂ ∂u uk j k j, / θ  and ′ = ∂ ∂ − ∂ ∂b b H uk j k j k j k, ( / ) ( / )θ θ .

The code for solving the sensitivity equations (5.2.18) can be developed by mak-
ing minor modifications to the original code for solving the primary problem. At the 
kth time step, the following statements are executed after the forward solution uk  
is calculated (see also Fig. 5.1):

For j m= 1 2, ,···, , do

1. Calculate ′bk j, ,
2. Use it to replace bk , and
3. Use the same solver to obtain all derivatives ′uk j, .

Note that in the above process, we do not need to change Hk , neither do we need 
to calculate ′ej  and ′f j2,  as we have done in (5.2.13) and (5.2.14). Therefore, the 
discrete form of the sensitivity equation method is easier to implement than its 
continuous-form counterpart.

5.3  The Adjoint-State Method

5.3.1  Single-State Models

In this section, we introduce the adjoint-state method for evaluating the gradient and 
Jacobian, which is more effective than the sensitivity equation method when the di-
mension of parameter is high. For ease of understanding, we start off by considering 
a general single-state model represented by

 (5.3.1)0=( , ) ,u θ

Fig. 5.1  Flow diagram for 
solving a discretized time-
dependent sensitivity equa-
tion, where k and k-1 are time 
step indices, j is parameter 
index, and m is dimension 
of θθ
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where the state variable = ( )u u θ  is defined in terms of spatial variables x ∈Ω  
and/or temporal variables t tf∈ [ , ]0 , and θ  is the unknown parameter vector or 
functions. We assume that both the state space and parameter space are Hilbert 
space ( ) for which the inner product is defined by (see Appendix A)

 (5.3.2)

where R tf [ , ]0 × Ω  denotes the spatial and temporal domain for integration. In 
mathematics, it can be shown that for any continuous linear operator  :  → , 
there is an operator *, called the adjoint operator of   (see Appendix A), such that

 
(5.3.3)

The first step of the adjoint-state method is to define a performance function in the 
following general form

 (5.3.4)

where ( , )f u θ  is a function to be chosen by the user and examples of which will be 
given later in this section.

The second step is to derive the variational problem of the original model. Tak-
ing the first-order variation of the performance function (5.3.4), we have

 
(5.3.5)

Note that the two variations δ θ  and δu  in the above equation may be functions of 
both space and time. Taking the first-order variation of model equation (5.3.1), we 
have

 (5.3.6)

where ∇ = ∂ ∂u u  /  and ∇ = ∂ ∂/θ θ   are gradient operators. Equa-
tion (5.3.6) is known as the variation equation of model equation (5.3.1). It gives 
the relationship between δθ  and δu.

The third step is to use (5.3.6) to eliminate δu  from (5.3.5). This is the key 
step of the adjoint-state method. Multiplying (5.3.6) by a differentiable function 
ψ ( , )x t , integrating the equation over R , and letting A L ∇u , w u δ , v ψ , and 

∇ θ , δw θ, v ψ , respectively, in (5.3.3), we obtain

 (5.3.7)
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where the adjoint operators ( )*∇u  and *( )∇θ  are denoted by ∇u
*  and *∇θ , 

respectively. The summation of (5.3.5) and (5.3.7) yields

 (5.3.8)

The term associated with δu  on the right-hand-side of the above equation can 
be eliminated if ψ  is the solution of the following equation

 (5.3.9)

Equation (5.3.9) is called the adjoint equation of the primary model, and its solution 
ψ  is called the adjoint state. Depending on the type of the equation, certain subsid-
iary conditions may be needed to solve this equation (see examples given later in 
this section). After using the adjoint equation (5.3.9) to eliminate the term associ-
ated with δu  in (5.3.8), we obtain the following variational identity.

 (5.3.10)

The fourth step is to calculate partial derivatives of the performance function. 
For each component θ j , let { }δ θ∆=  0, , 0, , 0, , 0

T

jθ , we have

 (5.3.11)

The above four steps describe the adjoint-state method. The selection of the per-
formance function ( , )E u θ  in the first step is problem dependent. For example, if 
we choose ( , )f u θ  in (5.3.4) to be

 (5.3.12)

the performance function ( , )E u θ  then becomes the weighted least squares misfit 
function,

 (5.3.13)
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In (5.3.13), =, 1{ ( )}nD i iu θ  is a set of model predictions corresponding to the observa-
tion locations and times {( , )}xi i i

nt =1  of the observation design, δ(·)  is the Dirac 
delta function, and { }wi i

n
=1  are weights. Therefore, when a gradient-based optimi-

zation method is used for inversion, (5.3.11) can be used to calculate all components 
of ∇ ( )S θ . When a Gauss–Newton method is used for inversion, we need to calcu-
late the Jacobian (5.1.3). In this case, we can choose ( , )f u θ  in (5.3.4) as

 (5.3.14)

and the performance function ( , )E u θ  becomes

 (5.3.15)

Equation (5.3.11) can now be used to calculate ∂ ∂uD i j, / θ  for j m= 1 2, ,···, . To 
obtain the Jacobian, this calculation is repeated for all , ( )D iu θ (i n= 1 2, ,···, ).

As an effective model differentiation tool, the adjoint-state method plays an im-
portant role in sensitivity analysis and experimental design when the number of 
parameters is large. In what follows, we will describe procedures for finding the 
adjoint operators, deriving the adjoint equation, finding the subsidiary conditions, 
and solving the adjoint equation to obtain the adjoint state.

5.3.2  Rules of Adjoint Operation

In this section, we introduce rules and formulae for deriving adjoint equations. Let 
us start with a simple example of applying the adjoint-state method.

Example 5.5 The adjoint-state method for a lumped parameter model
Assume that the model equation is given by

 (5.3.16)

Taking the first-order variation of the model, we obtain the following variational 
problem

 (5.3.17)

Multiplying (5.3.17) by a differentiable function ψ ( )t  and then integrating it over 
the interval [ , ]0 tf , we obtain

 (5.3.18)
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Applying integration by parts to the first term in (5.3.18), the operator ( / )d dt  is 
moved from δu  to ψ , and we obtain

 (5.3.19)

Combining (5.3.19) with the variational equation of the performance function 
(5.3.5) and noting that the integration region R is now the interval [ , ]0 tf , we have

 (5.3.20)

Letting ψ ( )t  be the solution of the following adjoint problem

 (5.3.21)

the second term in (5.3.20) is now eliminated and we obtain

 (5.3.22)

Note that the first term ( )ψδu
tf

0
 in (5.3.20) also drops because of the imposed final 

condition ψ ( )t
t tf=

= 0  in (5.3.21) and the initial condition δu
t=

=
0

0  in (5.3.17). 
The adjoint problem (5.3.21) is a backward-in-time problem but can be transferred 
into a forward-in-time problem via the transformation τ = −t tf . After the adjoint-
state ψ ( )t  is solved, the gradient of E can be calculated directly from (5.3.22).

In this example, the adjoint equation was obtained by integration by parts. In order 
to find the adjoint operators for distributed parameter models, however, we need to 
use the Green’s theorem, which is a generalized form of integration by parts. 

5.3.2.1  Green’s Theorem and Its Extensions

Recall the Gauss’ divergence theorem from multivariable calculus

 (5.3.23)

where F is a continuously differentiable vector function defined on a spatial re-
gion Ω , ∇  is the gradient operator, Γ  is the bounding surface of Ω, ∇·F  is the 
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divergence of F, n is outward pointing unit normal vector, and Fn·  is the flux. In a 
Cartesian coordinate system, the divergence of F can be expressed by

 (5.3.24)

Letting F = ∇ψ φ  in (5.3.23), where φ  and ψ  are second-order differentiable 
functions, we obtain Green’s first theorem

 (5.3.25)

Multiplying the integrands on both sides of (5.3.25) by a differentiable function u , 
we arrive at a useful identity

 (5.3.26)

Letting F = ∇ − ∇ψ φ φ ψ  in (5.3.23), we obtain Green’s second theorem

 (5.3.27)

Multiplying the integrands on both sides of (5.3.27) by any differentiable function 
K , we arrive at another useful identity

 (5.3.28)

Finally, letting F v= φψ  in (5.3.23), where v  is a differentiable vector function, 
we obtain

 (5.3.29)

The above identities will be used to derive the rules of adjoint operation.

Example 5.6 The adjoint problem of groundwater flow in a confined aquifer
Two-dimensional groundwater flow in confined aquifer is modeled by

 (5.3.30)
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where φ( , , )x y t  is the hydraulic head; S x y( , )  and T x y( , )  are the aquifer storativ-
ity and transmissivity, respectively; the flow region Ω  is bounded by Γ Γ Γ= ∪1 2; 
and f0 , f1 , and f2  are known functions. The variational problem of this model is

 
(5.3.31)

subject to initial and boundary conditions

 (5.3.32)

Multiplying the variational equation by ψ ( , , )x y t  and integrating it over the region 
[ , ] ( )0  tf × Ω  yield

 (5.3.33)

The second term in the above equation can be eliminated by applying the zero initial 
condition on δφ  and imposing the following zero final condition on ψ

 (5.3.34)

Furthermore, using the two-dimensional forms of identities (5.3.26) and (5.3.28), 
(5.3.33) can be rewritten as

 (5.3.35)

Setting the following zero-boundary conditions on ψ

 (5.3.36)

and using the zero-boundary condition on δφ , we have

 (5.3.37)

in which all integrals along Γ  in (5.3.35) are eliminated because of the zero-bound-
ary conditions. To calculate the gradient ∂ ∂E T/ , we rewrite (5.3.5) as

 (5.3.38)
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Subtracting (5.3.37) from (5.3.38), the term associated with δφ  is eliminated, pro-
vided that ψ  is the solution of the following adjoint problem

 
(5.3.39)

subject to initial and boundary conditions

As a result, we obtain the functional partial derivative

 (5.3.40)

Because of the final condition, problem (5.3.39) is a backward-in-time problem. For 
convenience, we can use transformation τ = −t tf  to transfer it into a forward-in-
time problem

 (5.3.41)

subject to initial and boundary conditions

Comparing problem (5.3.41) with the primary problem (5.3.30), we see that the 
two problems are different only in the sink/source term and subsidiary conditions. 
Therefore, the code that is used to solve the primary problem can be adapted for 
solving the adjoint problem by making minor modifications to it. After ψ τf x y( , , )  
is obtained, we have the adjoint-state ψ ψ( , , ) ( , , )x y t x y t tf f= − .

We can use (5.3.40) to calculate δE  for any increment δT  after solving for φ  
and ψ . In a numerical model, a distributed parameter like T x y( , )  is approximated 
by a finite-dimensional vector (parameterization)

 (5.3.42)

where ( , ,···, )β β β1 2 m  are basis functions. Using (5.3.40) and noting that 
∂ ∂ =T Tj j/ β , we obtain

 (5.3.43)
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In a special case, when the flow region is divided into m  zones and T x y Tj( , ) =  in 
the j-th zone ( jΩ ), we have

 (5.3.44)

5.3.2.2  Some Rules of Adjoint Operation

Using the extended forms of Green’s theorem, we can derive rules of adjoint op-
eration as summarized in Table 5.1 (Sun and Yeh 1990), in which the symbol  
represents a function that an operator is active on it, f and g are scalar functions, v  
is a vector function, K  is a symmetric tensor function, and n  is the unit normal 
vector of boundary ( )Γ . The table covers almost all operators often encountered in 
EWR models. Using these rules, derivation of the adjoint problem for a given model 
becomes straightforward.

As an example, comparing (5.3.17) with (5.3.21) in Example 5.5, we see that the 
term ( / )d dt uδ  in the variational equation is replaced by ( / )−d dt ψ  in the adjoint 
equation. This uses the rule in the second row (the first two columns) of Table 5.1.

Similarly, in Example 5.6 terms −∇ ∇·( )T δφ  and −∇ ∇·( )δ φT  in the variational 
equation (5.3.31) are replaced by terms −∇ ∇·( )T ψ  and ∇ ∇φ ψ· , respectively, in 
the adjoint equation and for the derivative calculation. This applies the rule listed 
in the fourth row and the eighth row of Table 5.1, respectively. Let us consider one 
more application in the following example.

Example 5.7 Application of adjoint operation rules
Consider the following nonlinear heat transport model

 (5.3.45)

subject to initial and boundary conditions

where T is temperature, ρ  is density, c  is heat capacity, k T( )  is thermal conductiv-
ity, and Q  is heat source density. Taking variation of the model equation, we obtain 
the following gradient operators

 (5.3.46)
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Using the adjoint operation rules in Table 5.1, we can obtain the following adjoint 
operators,

 (5.3.47)

Therefore, the adjoint problem of the model can be obtained directly as

 (5.3.48)

subject to zero final and boundary conditions

Finally, the functional derivatives with respect to k and c are given by

 (5.3.49)

 (5.3.50)
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Table 5.1  Rules of adjoint operation

Term in ∇ Term in Term in ∇B Term in 

f f v n· 0

∂ ∂ ( / )f t − ∂ ∂ ( / )( )t f ∇·f n ∇·f n

− ∂ ∂ ( / )( )t f ∂ ∂ ( / )f t ∇·K n ∇·K n

∇ ∇·( )f ∇ ∇·( )f ∇ ( )·fK n ∇·fK n

∇ ∇·( )K ∇ ∇·( )K

∇·( )v −∇ ·( )v

∇ ·( )v − ∇·( )v

∇ ∇ ·( )f g − ∇ ∇·f g

∇ ∇ ·( )gK − ∇ ∇·gK

∇ ∇ ·[ ( )]fK ∇ ∇·( )f K

( )*∇ ( )*∇B
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5.3.3  Multistate Models

In many EWR real case studies, we need multistate models governed by coupled 
PDEs. Extending the adjoint-state method from the single-state case to multistate 
case is straightforward. Using the same notations given in Sect. 5.2.1, we can write 
the variational problem of a general multistate model =( , )u θ 0  as

 (5.3.51)

where ×∇ = ∂ ∂[ / ]i j k kuu   and  θ ×∇ = ∂ ∂[ / ]i j k mθ   are gradient operators with 
respect to u = ×[ ]ui k 1  and θ ×= 1[ ]j mθ , respectively; δ δu = ×[ ]ui k 1  and δ δθθθ = ×[ ]j m 1  
denote the corresponding variations. The subscripts outside square brackets in the 
above indicate dimensions of either a matrix or vector, and subscripts inside square 
brackets denote element indices. All elements may be functions defined on a time-
space domain R . The adjoint model of a multistate model can be derived in the 
same way as in Sect. 5.3.1 for a single-state model.

5.3.3.1 Deriving the Adjoint Model 

The inner product of two elements w  and v  in the multistate space is defined by

 (5.3.52)

For any matrix operator A , we can find its adjoint A A+ = ( )* T  such that

 (5.3.53)

Let w be a vector function ψ  having continuous second-order derivatives, the ma-
trix operator A  be ∇u, and v  be δu  in the above equation, we have

 (5.3.54)

where ∇ = ∇+ +
u u ( ) . Similarly, we have also

 (5.3.55)

where ∇ = ∇+ +
θθ θθ ( ) . Using (5.3.54) and (5.3.55) to the inner production of ψ  

and the variation equation (5.3.51) gives

 (5.3.56)

Next, we define the following performance function

 (5.3.57)

δ δ∇ + ∇ = ,u u θ θ 0 

( , ) ( ) .w v w vR
T

R
dR= ∫

( , ) ( , ) .w Av v A wR R= +

δ δ +∇ = ∇( , ) ( , ) ,R Ru uu uψ ψ 

( , ) ( , ) ,R Rδ δ +∇ = ∇θ θψ θ θ ψ 
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for which the first-order variation is given by

 (5.3.58)

where ∂ ∂ = ∂ ∂ ×f f ui k/ [ / ]u 1 and 1θ ×∂ ∂ = ∂ ∂/ [ / ]i mf fθ . Adding (5.3.56) to 
(5.3.58) yields

 (5.3.59)

When ψ  is the solution to the following equation

 (5.3.60)

then the term associated with δu  in (5.3.59) vanishes and we have

 (5.3.61)

Equation (5.3.60) is called the adjoint equation and ψ  the adjoint-state of the multi-
state model. With the adjoint state, the gradient of the performance function E with 
respect to each component of θ  can be calculated from

 (5.3.62)

Because the same adjoint-state ψ  is used in (5.3.62) for all components, all gradi-
ents can be calculated by solving the adjoint equation (5.3.60) only once.

Note that when the primary model equation =( , )u 0θ  contains ODEs and/or 
PDEs, initial and boundary conditions must be supplied to Eq. (5.3.60) to form a 
complete adjoint problem. If the boundary conditions of the primary model are rep-
resented in a general form by =( , )B u 0θ , where B  is a set of operators defined 
on the boundary of the time-space domain R , the variational equation (5.3.51) has 
boundary conditions

 (5.3.63)

Boundary conditions for the adjoint-state equation (5.3.60) can then be obtained by 
finding the adjoint operators +∇ Bu  and +∇ Bθ .
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5.3.3.2  Finding the Adjoint Operators

The adjoint operators used above for PDEs models can be derived by the Green for-
mulae (Sun and Yeh 1990) as described in the last section for the single-state case. 
For example, we can use Table 5.1 to find all elements of the adjoint matrix ∇u

*, its 
transpose matrix ( )*∇u

T  then is ∇+
u . And, + +∇ ∇, Buθ  and +∇ Bθ  can be found 

by the same way as shown in the following examples.

Example 5.8 Derive the adjoint equations for the Saint-Venant model (see also 
Example 1.4 in Chap. 1)

 (5.3.64)

Taking the first-order variation of these equations gives

 (5.3.65)

Using Table 5.1, we can find

 (5.3.66)

Applying (5.3.60), we have

 (5.3.67)

which, after substituting the gradient operators from (5.3.66), leads to the following 
adjoint-state equations

 (5.3.68)

These equations are solved with zero final and zero-boundary conditions.
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Example 5.9 The adjoint problem for a coupled flow and mass transport model
Let us consider the mass transport problem in a transient groundwater flow field and 
assume that the aquifer is isotropic, heterogeneous, and unconfined. The coupled 
model is given by (see Examples 1.9 and 1.10 in Chap. 1)

 (5.3.69)

subject to initial and boundary condition

In the above equation, h is the groundwater level, Sy  is specific yield, b is the eleva-
tion of aquifer bottom, Q is the flow source term, C is concentration, θe  is effective 
porosity (note the subscript e is used here to avoid confusion with generic parameter 
notation θ ), V is flow velocity, S C( )  is the contaminant source term, and D  is the 
hydrodynamic dispersion coefficient depending on flow velocity V, longitudinal 
dispersivity αL , and transverse dispersivity αT  (see Example 1.7). Note that the 
state variables h and C are implicitly coupled because C depends on V which, in 
turn, depends on h through Darcy’s law.

The following gradient operators can be obtained directly by taking the first-
order variation of the governing equations

 (5.3.70)
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Darcy’s law was used in the derivation of ∇h2  in (5.3.70). A variation δh  causes a 
variation δ θ δV = − ∇( / )K he . Using Table 5.1, we can find their adjoint  operators

 (5.3.71)

Let 1 2( , )Tψ ψ=ψ  be the adjoint states. The coupled adjoint equation (5.3.60) is

 (5.3.72)

Or in the scalar form

 (5.3.73)

 (5.3.74)

For this problem, the boundary operators on Γ2  are

 (5.3.75)

From the right two columns of Table 5.1, we can find their adjoint operators

 (5.3.76)
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Therefore, the subsidiary conditions for ψ1  in (5.3.73) are given by

 (5.3.77)

and the subsidiary conditions for ψ 2  in (5.3.74) are given by

 (5.3.78)

After the adjoint states ψ1  and ψ 2  are obtained by solving the coupled adjoint 
problem derived above, all derivatives of the performance function E  with respect 
to θ j  can be calculated by substituting operator ∇

θ j

†   into (5.3.62). For example, 
when θ j  is hydraulic conductivity K x y z( , , ), we have

 (5.3.79)

where F D Vh h= ∂ ∂ ∇( / ) . The second equation in (5.3.79) was derived using the 
fact that a variation δK  causes a variation δ θ δV = − ∇( / )h Ke , according to 
 Darcy’s law. Thus, applying the rules given in Table 5.1, we find

 (5.3.80)

using which we can calculate

 (5.3.81)

Substituting (5.3.81) into (5.3.62) and replacing θ j  by K, we get

 (5.3.82)
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Similarly, we can obtain the gradients of performance function E with respect to 
other parameters (i.e., specific yield Sy , porosity θe , dispersivities αL  and αT )

 

 

(5.3.83)

5.3.3.3 Solution of the Multistate Adjoint Problem

The adjoint problem of the coupled groundwater flow and mass transport model can 
be solved by the following steps:

1. Solve the coupled flow and mass transport problem (5.3.69) by a numerical 
method. In each time step, do
− Solve the flow problem to obtain the head distribution h t( , )x
− Calculate the velocity distribution V x( , )t  by Darcy’s law
− Calculate the dispersion coefficient D V( , , )α αL T , and
− Solve the mass transport problem to obtain the concentration distribution 

C t( , )x .

2. Solve the adjoint equation (5.3.74) with subsidiary conditions (5.3.78) to obtain 
the adjoint-state ψ 2( , )x t ;

3. Calculate the sink/source terms ∇ ∇·[ · ]K CE ψ 2  and ∇ ∇·( )KC ψ 2  for the adjoint 
equation (5.3.73);

4. Substitute the terms into (5.3.73) and solve the equation with subsidiary condi-
tions (5.3.77) to obtain the adjoint-state ψ1( , )x t .

Structures of the primary forward problem and the adjoint problem are basically 
the same except that (i) the initial condition is replaced by the final condition, (ii) a 
new term K h∇ ∇· ψ1 is added to (5.3.73), and (iii) the right-hand-side terms of the 
adjoint equations need to be calculated. Therefore, the code for solving the adjoint 
problem can be developed by making minor changes to the code for solving the 
primary forward problem. The computational accuracy of ψ 2( , )x t  is same as that 
of C t( , )x , but the computational accuracy of ψ1( , )x t  is a tricky problem because 
it depends on ∇ ∇h C, , and ∇ψ 2 . When the first-order finite difference method 
(FDM) or linear finite element method (FEM) are used, the computational accuracy 
of these gradients is usually poor, and moreover, overshooting and numerical dis-
persion errors associated with the numerical solutions of C and ψ 2  can propagate to 
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estimates of ∇C  and ∇ψ 2 . Therefore, use of a high-order FEM for solving these 
PDEs is strongly recommended.

More examples, including derivation of the adjoint problem for multiphase 
flow problems, can be found in Sun (1994). In practice, when the forward model 
is solved numerically, the discrete form of adjoint-state equations is more general 
and convenient.

5.3.4  Discrete Form

The discrete adjoint-state method derives adjoint equations for numerical models. 
It follows the same steps as those involved in the continuous adjoint method, but 
needs less mathematical derivations and programming effort. After temporal and/or 
spatial discretization, the solution of one or a set of ODEs or PDEs is reduced to the 
solution of a set of algebraic equations in each time step. The collection of equations 
from all time steps can be written as

 (5.3.84)

where u u u1 2, ,···, K  are the forward solutions at K time steps and u0  is given by 
the initial condition. For linear models, coefficient matrices { }Gk , k K= 1 2, , , , 
depend only on the parameter vector θ , and the dimensions of each matrix Gk  are 
N N× , with N the number of nodes resulting from the spatial discretization of the 
state variable u. The right-hand-side matrices Hk  (also have dimensions N N× ) 
and forcing terms qk  may depend also on θ. This set of equations is solved from 
the first time step to the last time step. Let the objective function for differentiation 
be

 (5.3.85)

A variation δθ  will cause variations δ δ δu u u1 2, ,···, K  and then a variation δE . 
The first-order variation of (5.3.85) results

 (5.3.86)
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The dimensions of δuk  and δθ  are N ×1  and m ×1 , respectively. Our purpose 
is to eliminate all unknown variations of the state variable from (5.3.86) so that an 
explicit relationship between δE  and δθθ  can be found. Taking the first-order varia-
tion of the discretized model equation (5.3.84) yields

 (5.3.87)

In deriving the above equation, we used the following shorthand notation

 (5.3.88)

Therefore,

The term ( / )∂ ∂ −H uk kθθ 1  was derived similarly. Multiplying an arbitrary vector 
T
kψ  to the kth equation in (5.3.87), adding all K equations together, and rearranging 

the order of summation, we arrive at

 (5.3.89)

1 1

1 2

δ δ δ− −

 ∂ ∂ ∂
− + − − = ∂ ∂ ∂ 

=

,

, ,···, .

k k k
k k k k k k

k K

G H q
G u H u u u 0θ

θ θ θ

1 2

, ,  
θ θ θ

 ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

, .k k k k

m

G G G G

θ

1 2
1 2

1 2
1 2

1

2

1 2

=  

=

δ δ

δθ δθ δθ
θ θ θ

δθ δθ δθ
θ θ θ

δθ
δθ

θ θ θ
δθ

δ

 ∂
=  ∂ 

 ∂ ∂ ∂
= + + + ∂ ∂ ∂ 

 ∂ ∂ ∂
= + + + ∂ ∂ ∂ 

 
  ∂ ∂ ∂     ∂ ∂ ∂ 
 
 

 ∂
 ∂ 









( )

.

k
k k k

k k k
m k

m

k k k
k k k m

m

k k k
k k k

m

m

k

G
G u u

G G G
u

G G G
u u u

G G G
u u u

G
u

θ
θ

θ
θ

1

1 1
1

1
1

 

+

δ δ

δ

−

+ +
=

−
=

  − + 
  

  ∂ ∂ ∂ − − =  ∂ ∂ ∂   

∑

∑

( )

.

K
T T T
k k k k k K K K

k
K

T k k k
k k k

k

G H u G u

G H q
u u 0

ψ ψ ψ

ψ θ
θ θ θ

5.3  The Adjoint-State Method 



168 5 Model Differentiation

Just as in the case of continuous form we can obtain the following equation after 
adding (5.3.89) to (5.3.86),

 (5.3.90)

provided that { }ψk k
K
=1  are the solutions to the following set of adjoint equations:

 (5.3.91)

Comparing the set of discrete adjoint equations (5.3.91) to the original equations 
(5.3.84), we see that the two sets have identical structures, except that the solution 
of the former must be in a reverse direction (i.e., from the final time step to the first 
time step). Once the discrete adjoint states are obtained for all time steps, the gradi-
ent of the objective function can be calculated directly from (5.3.90).

The discrete adjoint method can be extended to nonlinear models, in which 
case the coefficient matrices Gk  of (5.3.84) would depend on the unknown state 
uk k K( , ,···, )= 1 2 . For this case, the first-order variational equation (5.3.87) be-
comes

 (5.3.92)

where ′ = + ∂ ∂G G G u uk k k k k( / )  and the shorthand notation used in (5.3.88) is 
implied for ( / )∂ ∂G uk k . Following the above derivation, we can obtain the same 
results as in the linear case, except that all Gk  are replaced by ′Gk  in (5.3.91).

Example 5.10  The adjoint method for one-dimensional advection–dispersion–
reaction Model
Let us consider the following one-dimensional, advection–dispersion–reaction 
equation

 (5.3.93)
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subject to initial and boundary conditions

where C x t( , )  is the concentration distribution, D is the dispersion coefficient, V 
is the flow velocity, kr  is the reaction rate coefficient, and C x0( )  and C tB( )  are 
given functions. Let us assume that the finite difference grid consists of N nodes 
with uniform block size x∆  and the time domain is discretized into K time steps 
with uniform time step t∆ . When the backward scheme is used, the finite differ-
ence equations for the kth time step are given by

 (5.3.94)

In the above equations, the first subscript of Ci k,  denotes node number, and

 (5.3.95)

where

Suppose that our purpose is to find the gradient of an objective function E with re-
spect to all dimensionless nodal values D = ( , ,···, )D D DN

T
1 2  of the distributed dis-

persion coefficient D x( ). The weighted least squares criterion E may be dependent 
on some or all nodal values of the concentration distribution and can be expressed 
in the following general form

 (5.3.96)
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When Ci k,  is not observed, set the weight wi k, = 0 . From (5.3.94), the coefficient 
matrix of the forward equations is time independent and given by

 (5.3.97)

and H is a unit matrix. According to (5.3.91), we can find the adjoint equations im-
mediately. The adjoint state associated with the final time step, Kψ , is solved first 
from the kth adjoint equation, which is formulated using the transpose of G

 (5.3.98)

Then, solving 1 2 1, ,···,K K− −ψ ψ ψ  one by one with the following adjoint equations

 (5.3.99)
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Because ∂ ∂ =H D 0/  and ∂ ∂ =f / D 0 , the gradient ∂ ∂E / D  can be calculated 
according to (5.3.90)

 (5.3.100)

It has been shown that discrete and continuous forms of the adjoint-state method 
always give consistent results (Sun and Yeh 1992a). ■

The adjoint-state method has been extensively used in EWR modeling for sensitiv-
ity analysis, inverse solution, uncertainty assessment, and experimental design. We 
will address these applications in the subsequent chapters of the book. Detailed 
discussions on this method can be found also in Sun (1994), Cacuci et al. (2003), 
Plessix (2006), Oliver et al. (2008), and Chavent (2009).

5.4  Automatic Differentiation

Automatic differentiation (AD) is a new technique of differentiation that can accu-
rately calculate the derivatives of a function defined by a numerical code. In recent 
years, AD has been widely used in various science and engineering fields for pa-
rameter identification, uncertainty analysis, and optimal design. Detailed discussion 
on the theory, applications, and implementations of AD can be found in Rall (1981), 
Berz et al. (1996), and Griewank and Walther (2008).

A source code with inputs θ θ θ= …1 2( , , , )mθ  and outputs u = …( , , , )u u un1 2  
defines a function  (= → ( ) )m nu f θ . AD “differentiates” the code directly by 
converting it to another source code and the latter can be used to evaluate the deriva-
tives of the function. In the most general sense, the source code of an algorithm can 
be considered as a series of variable declarations and statements

 (5.4.1)

where m, p, and n are the number of input, intermediate, and output variables, re-
spectively. After assigning input variables s j mj j= =θ  ( , ,···, )1 2  and running the 
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 (5.4.2)

where φk  is a computable function.
Depending on how the “chain rule” of differentiation is used, AD has two modes: 

the forward mode that differentiates the original code from top to bottom and the re-
verse mode that differentiates the original code from bottom to top. The two modes 
will be explained in detail below.

5.4.1  The Forward Mode

According to the chain rule of differentiation, for any θ j j m ( = 1 2, ,···, ), we have

 (5.4.3)

The forward mode of AD differentiates the primary variables in (5.4.1) one by one, 
which requires calculation of s sk j k j, /= ∂ ∂θ  for k m p n= + +1 2, ,···,  in the for-
ward order,

 (5.4.4)

For k m= 1 2, ,···, , we have

For k m m p n sk j= + + +1,···, , ,  can be calculated by using the chain rule (5.4.3). 
Because  < k , all terms �� �s s sj j, /= ∂ ∂  in the equation are known by the time 
when sk j,  is calculated. All derivatives of ui  with respect to θ j  are thus generated 
through this forward calculation process,

 (5.4.5)

The AD code for the forward mode is constructed by adding a statement sk j,  
after each primary statement sk
 (5.4.6)

In order to calculate the Jacobian /u∂ ∂θ, we need to run the code m times for 
j m= 1 2, ,···, .
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Example 5.11 Illustration of the forward mode of AD
To illustrate how the forward mode of AD works, let us consider a simple function

 (5.4.7)

The code for calculating u  is given by

Variable group Expression Results
Input

1 1θ=s

s2 2= θ
Intermediate

s s s3 1 2= + θ θ1 2+

s s4 3= sin( ) sin( )θ θ1 2+

s s5 2= −exp( ) exp( )−θ2

s s s6 1 5= * θ θ1 2exp( )−

s s s7 4 6= + sin( ) exp( )θ θ θ θ1 2 1 2+ + −

Output
u s= 7

To calculate ∂ ∂u / θ1 , the source code generated by the forward mode of AD is

s1 1= θ

s2 2= θ

s1
1

s2
0

s s s3 1 2= +

  s s s3 1 2= + 1

s s4 3= sin( )

 s s s4 3 3= cos( ) * cos( )θ θ1 2+

s s5 2= −exp( )

 s s s5 2 2= − −exp( ) *
0

s s s6 1 5= *

u f= = + + −( , ) sin( ) exp( ).θ θ θ θ θ θ1 2 1 2 1 2

5.4  Automatic Differentiation 
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  s s s s s6 1 5 1 5= +* * exp( )−θ2

s s s7 4 6= +

  s s s7 4 6= + cos( ) exp( )θ θ θ1 2 2+ + −

u s= 7

 u s= 7

The code can also be used to calculate ∂ ∂u / θ2  by changing only the inputs s1 1=  
to s1 0=  and s2 0=  to s2 1= .

The above example shows that AD can accurately evaluate the derivatives of a 
function when the function is accurately evaluated by the original code, but the per-
turbation method can only give approximate answers. Comparing the forward mode 
of AD with the sensitivity equation method, we see that (i) the two methods require 
almost the same computational effort; in order to obtain the Jacobian of a function, 
the former needs to solve the sensitivity equation m  times, while the latter needs to 
run AD code m  times, where m is the dimension of the input variable; and (ii) the 
results produced by the two methods have the same accuracy as that of the forward 
solution because they are solved by the same numerical system. ■

The sensitivity equation method, however, requires making changes to the original 
code individually according to the type of the model equation, but AD is a general 
tool of numerical differentiation that can be applied to any codes regardless of the 
model structure. Therefore, using AD can save the time of developing new codes 
and avoid human errors. The forward mode of AD is now well developed. Available 
software packages available can differentiate codes written in Fortran, C++, Matlab, 
and Python. Detailed information can be found online at http://www.autodiff.org.

5.4.2  The Reverse Mode

The reverse mode (or the adjoint mode) of AD traverses the chain rule from left to 
right and, as a result, it differentiates the model code in the reverse direction from 
bottom to top. The reverse mode of AD differentiates the statements of the primary 
code by calculating s u sk i i k, /= ∂ ∂  (k m p n m p n= + + + + − …, , , ,1 2 1 ) one by 
one in the reverse order

 (5.4.8)
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For 1 1 ,, , , , k ik m p m p s= + + − …  can be calculated one by one by using the chain 
rule

 (5.4.9)

where all ,/ ( )i iu s s k∂ ∂ = >
 

  are already calculated by the time when sk i,  is 
calculated. All derivatives of ui  with respect to the parameter vector θ  are thus 
obtained by repeating this process,

 (5.4.10)

To calculate the Jacobian /u∂ ∂θ , we need to run the AD code (5.4.8) n times for 
i n= 1 2, ,···, .

Example 5.12 Illustration of the reverse mode of AD
Consider the same function used in Example 5.11,

 (5.4.11)

The code for calculating u  is given in the first table of Example 5.11. The reverse 
mode of AD calculates
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The last two equations produce

 

(5.4.12)

 ■

From Example 5.12, we see that the values of all primary variables 
s s sm p n1 2, ,···, + +  are required in the reverse order computation. If the original code 
overwrites all or some of these variables, the AD code must restore them before cal-
culating s s sm p n i m p n i i+ + + + − …, , ,, , ,1 1 . This is a major difficulty associated with pro-
gramming a reverse mode AD code. For example, when the primary code solves a 
time-dependent problem by a numerical method, the state variables of all time steps 
must be stored before they are overwritten or recalculated after they are overwritten. 
The extra store space or computation effort to be required may become unafford-
able. In contrast, the forward mode of AD does not have this problem. As shown 
in (5.4.6), the value of sk  can be overwritten after sk j,  is calculated. Different 
software packages use different strategies to tackle this issue by using either extra 
computational effort and/or extra storage space. As a result, it is often necessary to 
modify a reverse mode code generated by an AD tool manually, especially when 
they are used to process a complicated EWR model. A list of current AD tools us-
ing the reverse mode can also be found from the website, http://www.autodiff.org.

Both the forward and reverse modes of AD have been used in the field of EWR 
modeling. For example, He et al. (2000) used AD as a tool of sensitivity analy-
sis for air pollution modeling, Barhen and Reister (2003) used AD for parameter 
estimation and uncertainty analysis, Baalousha and Köngeter (2006) used AD for 
analyzing the risk of groundwater pollution, in which a Fortran code (MCB) used 
for solving coupled groundwater flow and mass transport problems (Sun 1996) is 
differentiated, Sambridge et al. (2007) gave an introduction to using AD for solving 
geophysical inverse problems, and Castaings et al. (2009) used AD for distributed 
hydrological modeling.

5.5  Applications of Model Differentiation

5.5.1  Numerical Optimization

We showed in Chaps. 2–4 that the problems of finding quasisolutions in the deter-
ministic framework and finding point estimates in the stochastic framework can 
both be formulated as an optimization problem:

 (5.5.1)
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When a gradient-based optimization code is used to solve this problem, the code 
calls two subroutines after obtaining an updated θ  in each iteration step:

• Subroutine ( )S→θ θ  for calculating the value of the objective function
• Subroutine ( )g→θ θ  for calculating the gradient of the objective function

The former incorporates observation data and regularization terms into the forward 
solution code, and the latter is obtained from the former with a model differentia-
tion method. In this case, we should choose the adjoint-state method because of its 
effectiveness—all components ∂ ∂ =S j mj/ ( , ,···, )θ 1 2  of the gradient can be ob-
tained by solving the adjoint problem (or running the code for the reverse mode of 
AD) only once, regardless of the dimension m of θ. In contrast, when the sensitivity 
equation method is used to calculate ( )g θ , the sensitivity problem must be solved 
m times. Examples of using the adjoint-state method for inversion can be found 
in Chavent et al. (1975), Seinfeld and Chen (1978), Neuman (1980), Sun and Yeh 
(1985), and Townley and Wilson (1985) for parameter identification; Sun and Yeh 
(1992b), Neupauer and Wilson (2001), Cirpka and Kitanidis (2000), and Michalak 
and Kitanidis (2004) for statistical inversion and contaminant transport simulation; 
Castaings et al. (2009) and Ding and Wang (2012) for the inversion of distributed 
hydrological models.

In the case of using a Gauss–Newton algorithm to minimize a sum of squares 
function, we need a subroutine ( )DJ→θ θ  to calculate the Jacobian matrix in each 
iteration step. In this case, the sensitivity equation method is more effective be-
cause all elements of the matrix in (5.1.3) can be obtained by solving the sensitiv-
ity problem (or running the code of the forward mode of AD) m times, regardless 
the number n of observation data. In contrast, to obtain the Jacobian, the adjoint-
state method requires solving the adjoint problem n times. Because we always have 
m n<  for a well-posed inverse problem, the sensitivity equation method is often 
incorporated into a Gauss–Newton algorithm and used in the inverse solution codes 
(Hill and Tiedeman 2007; Sun 1994).

5.5.2  Local Sensitivity Analysis

Sensitivity analysis quantifies variations in model output(s) caused by possible vari-
ations of model input(s). It can be used to rank the relative importance of different 
model parameters to the model output (for system control and model reduction), 
assess the uncertainty of model application on the basis of uncertainty in model 
parameters (for model uncertainty analysis), and, in the inverse direction, determine 
the accuracy requirement of model parameters from the accuracy requirement of 
model application (for model improvement). In fact, sensitivity analysis plays an 
important role in almost all aspects of model study and has been applied to various 
fields of science and engineering. Depending on the problem at hand, either a lo-
cal or global sensitivity analysis needs to be carried out. This section gives only a 
brief discussion on the derivative-based method of local sensitivity analysis. Global 
sensitivity analyses and their applications to uncertainty analysis will be considered 
in Chap. 10.
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5.5.2.1 Definition of Local Sensitivity

Let us consider a model ( )u = θ , where θ  is an m-dimensional vector of input 
parameter and u  is an n-dimensional vector of output state. Let *θ  be a nominal 
parameter obtained, for example, by inversion. A variation of ∆θ  in *θ  will lead 
to a variation ∆u  in u( )*θθ . For a continuously differentiable model, we have the 
following expression after applying Taylor’s expansion,

 (5.5.2)

where *( )J θ  is the Jacobian matrix [ / ]n mu ×∂ ∂θ  evaluated at θθ*. After omitting the 
higher-order terms, (5.5.2) gives

 (5.5.3)

Equation (5.5.3) implies that (1) the output variation ∆u  depends not only on the 
input variation ∆θ , but also on the nominal parameter *θ ; (2) in a neighborhood of 

*θ , ∆u  is proportional to ∆θ, with  *( )J θ  the coefficient of proportion, and (3) the 
Jacobian matrix represents the local sensitivity of the model output to model input.

As mentioned previously, Jacobian matrix is often called the sensitivity matrix 
and its elements, all first-order derivatives, the sensitivity coefficients. The deriva-
tive ∂ ∂ui j/ θ  measures how sensitive an output component ui  is with respect 
to an input parameter θ j  when other input parameters are fixed. The ith row of 
the sensitivity matrix consists of sensitivity coefficients of ui  with respect to all 
parameters

 (5.5.4)

The j-th column of the sensitivity matrix consists of sensitivity coefficients of all 
model outputs to a single parameter

 (5.5.5)

From (5.5.3), the variation of a single output component ui  is given by

 (5.5.6)

The contribution of the variation of one input component jθ∆  to 
iu∆  depends not 

only on the value of ∂ ∂ui j/ θ , but also on the magnitude of θ θ∆ ∆,j j . Therefore, 
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we cannot use the sensitivity coefficients in (5.5.4) alone to compare the relative 
importance of different input components to a model output unless all input com-
ponents have the same size of variation (which is unlikely because of the differ-
ence in physical parameters). By the same token, we cannot compare the relative 
importance of one input parameter to all output components with the sensitivity 
coefficients in (5.5.5) unless the model is a single-state model.

In order to compare the sensitivities of different state variables with respect to 
different parameters, the dimensionless sensitivity of an output component ui  to an 
input parameter θ j  is defined as

 (5.5.7)

where the coefficient λi  has the same dimension as u i ni( , , , )= 1 2 , the coefficient 
τ j  has the same dimension as θ j j m( , , , ) = 1 2 , and all derivatives are evaluated at 
a nominal input parameter *θ . There are different methods to set these coefficients, 
for example, by simply taking τ θj j= *  and λ = *( )i iu θ . In the statistical frame-
work, we can use the mean of θ j  and ui  (or their standard deviations), respectively, 
as τ j  and λi  (Saltelli et al. 2008).

5.5.2.2 Calculation of Local Sensitivity

After the two sets of coefficients { }τ j j
m
=1  and { }λi i

n
=1 are specified, the problem 

of calculating local sensitivities (5.5.7) turns into the calculation of a sensitivity 
matrix, which can be done by any method of model differentiation that has been 
introduced in this chapter. As we have explained previously, for this purpose, the 
sensitivity equation method is more effective when m n< , while the adjoint-state 
method is more effective when n m< . In most practical problems of sensitivity 
analysis, a model is used to predict the values of only a few variables (model output) 
and we want to screen the most sensitive factors from a large number of parameters 
(model input); in this case, the adjoint-state method provides an indispensable tool 
for sensitivity analysis.

Example 5.14 Sensitivity of a single-state output to a distributed parameter
We consider calculation of sensitivity coefficients for a confined groundwater flow 
problem. Figure 5.2 shows a hypothetical two-dimensional confined aquifer, which 
is 3000 m long in the x-direction and 2000 m wide in the y-direction. Boundary 
sections AB and CD are inflow boundary with constant head equal to 100 m, and 
all other boundary sections are no-flow boundaries. The initial head is 100 m every-
where. There are three wells located at W1,  W2 , and W3  with planned pumping 
rates of 2000, 10000 and 4000 m3/day, respectively. The transmissivity T x y( , )  of 
the aquifer is not known exactly. We want use a model to find the sensitivity of the 
lowest head (or the maximum drawdown) in well W2 with respect to the distributed 
transmissivity T x y( , ) .

S
u

i n j mi j
j

i

i

j
, ( , , , ; , , , ),=

∂

∂
= =

τ

λ θ
 1 2 1 2 



180 5 Model Differentiation

Following the derivation given in Example 5.6, we first solve the forward prob-
lem (5.3.30) by a finite element code to obtain the head distribution φ  of each 
node and its gradient ∇φ  of each element. Then, using the same code, we solve 
the adjoint problem (5.3.39) to obtain the adjoint-state distribution ψ  of each node 
and its gradient ∇ψ  in each element by resetting (i) the initial condition to zero, 
(ii) the given head boundary condition to zero, and (iii) the sink/source term to 
∂ ∂f / φ . According to (5.3.14), the sink/source term is equal to one at W2  and zero 
elsewhere. Denote the value of transmissivity T x y( , )  in the jth element as Tj

, then 
according to (5.3.44) we have

 (5.5.8)

where tf  is the time that the system reaches steady state, jΩ is the area of the jth 
element, and Ne  is the total number of elements. To obtain all of the Ne  deriva-
tives, we only need to solve the forward problem and the adjoint problem once. We 
can use these derivatives as the dimensionless sensitivity for analysis because this 
problem has one state variable and all inputs are components of the same physical 
parameter.

Local sensitivity depends on the nominal input parameter T x y*( , ). We as-
sume that it is a realization of a log-normally distributed random field with mean 

6 9ln =( ) .E T  (m2/day) and nearly homogeneous with variance σ 2 0 01= . . The 
distribution of sensitivity 2φ∂ ∂( ) /W T  calculated by (5.5.8) is shown in Fig. 5.3. 
Three major sensitive areas can be identified: around the pumping well W2  and 
near the inflow boundary sections AB and CD.

We now consider a case in which the transmissivity field is more heterogeneous 
with the same mean, but higher variance σ 2 2 0= .  (shown in Fig. 5.4) is used as 
the model input. The corresponding sensitivity distribution is shown in Fig. 5.5.
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Fig. 5.2  A hypothetical two-
dimensional confined aquifer: 
pumping rates from W1, W2, 
and W3 are 2000, 10000, and 
4000 m3/day, respectively
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A quick comparison of Figs. 5.3 and 5.5 may suggest that the major sensitive 
areas of the two cases are the same, and the pattern of sensitivity distribution de-
pends mainly on the pattern of the flow field, instead of the nominal transmissivity. 
A careful look at Figs. 5.3 and 5.5, however, indicates that the actual sensitivity 
values of the two cases are quite different. In the homogeneous case, the most sensi-
tive area is around the well and the maximum sensitivity value is 0.68, while in the 

Fig. 5.3  Sensitivity 
2φ∂ ∂( ) /W T  for the nearly 

homogeneous nominal 
transmissivity

 

Fig. 5.4  Spatial distribution 
of the heterogeneous nominal 
transmissivity field
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Fig. 5.5  Sensitivity 
2φ∂ ∂( ) /W T  obtained for 

the heterogeneous nominal 
transmissivity field shown in 
Fig. 5.4
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heterogeneous case, the most sensitive area is near the outflow boundary and the 
maximum sensitivity value becomes 0.30. Moreover, when the nominal parameter 
T x y*( , )  is replaced by another realization generated from the same random field, 
the sensitivity values will change significantly too.

Nevertheless, we can draw a useful conclusion: in order to accurately estimate 
the drawdown in well W2, the most important thing is to find the accurate transmis-
sivity values in areas surrounding the well and near the flow boundaries. 

5.5.3  Dimensionless Sensitivity Analysis

Sensitivity coefficients can also be used to measure the contribution of observa-
tion data to parameter identification. In Sun and Yeh (1990), the contribution of an 
observation uD i

obs
,

 to the identification of parameter θ j  is defined by the following 
dimensionless variable

 (5.5.9)

where uD i,  is the model output corresponding to the observation uD i
obs

, , ηi  is the up-
per bound of observation error, and ε j  is the accuracy requirement of the identified 
parameter. Note that the contribution defined in (5.5.9) depends only on the data 
collection strategy, rather than their actual observed values. In Chap. 11, we will 
show how the sufficiency of a design can be quantified by calculating the contribu-
tions of data (i.e., data worth) during the design stage.

Example 5.15 Contributions of observations to the identification of a parameter
For the same problem considered in the Example 5.14, let us find the sensitivity 
distribution

 (5.5.10)

where TW 2  is the local transmissivity around the well W2, and N  is the total num-
ber of nodes. The perturbation method is an easy way to calculate these derivatives, 
but the sensitivity equation method (or the forward mode of AD) can produce more 
accurate results by solving the forward and sensitivity problems once for each.

The contribution of an observation taken at node ( i ) to the identification of TW 2  
is defined by ε

η
φ∂ ∂ =i WT i N/ ( , , , )2 1 2 . Because ε

η
 is the same for all nodes, 

we can simply use the absolute values of the derivatives in (5.5.10) to compare the 
contributions of observations taken from different locations.
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The nominal T x y*( , )  fields used in Example 5.14 are reused here as the model 
inputs. Figure 5.6 shows the contribution distribution for the nearly homogeneous 
case, which suggests that data should be collected around well W2 to make the 
largest contribution. In contrast, locations around the two low-flow corners would 
make less contribution, and areas near the constant-head boundaries would make 
little contribution.

For the heterogeneous transmissivity shown in Fig. 5.4, the corresponding con-
tribution distribution is given in Fig. 5.7. It has similar pattern as the heterogeneous 
case, but observations taken from the upper-right low-flow area make more contri-
bution, in addition to the area around well W2.

This example emphasizes the fact that the sensitivity defined in (5.5.7) and the 
contribution of an observation defined in (5.5.9) can only be used in the local sense 
for nonlinear models. When the nominal input parameter has a large uncertainty, 
the result of local sensitivity analysis based on a fixed input parameter will become 
unreliable. In this case, a global sensitivity analysis is needed, which will be intro-
duced in Chap. 10. 

Fig. 5.6  Contribution 
distribution for the nearly 
homogeneous case

 

Fig. 5.7  Contribution distri-
bution for the heterogeneous 
case
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5.6  Review Questions

1. Derive the sensitivity equation model for the model given in Example 1.5.
2. Use the forward solution code used in the Review Question 4 of Chap. 1 to find 

∂ ∂C D/  and ∂ ∂C R/  at a set of specified locations and times by the pertur-
bation method and the sensitivity equation method, respectively. Compare the 
results obtained by these two methods.

3. Complete the four steps of the adjoint-state method described in Sect. 5.3.1 for 

the following model: 
2

0 02
0  0  θ = =+ = ≤ ≤ = =( , ) , ; | , | .f t t

d u du
a u t t u f g

dtdt
4. Give the details of derivation that leads to Eq. (5.3.29) from Eq. (5.3.25).
5. Show the adjoint operation rules #4, #5, and #6 in Table 5.1.
6. Use the adjoint operation rules to derive the adjoint-state problem for the model 

given in Example 5.4 with appropriate initial and boundary conditions.
7. Derive the second and the third equations in Eq. (5.3.83).
8. How the contribution of an observation to the identification of a parameter is 

defined and calculated? How do we evaluate the total contribution of a set of 
observations to the identification of a parameter and the contribution of an obser-
vation to the identification of a set of parameters?

9. In this chapter, model differentiation is used to calculate the gradient of an objec-
tive function for inversion and the Jacobian matrix for local sensitivity analysis, 
which method, the sensitivity equation method (the forward mode of AD) or the 
adjoint-state method (the reverse mode of AD) should be used in different cases?
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Chapter 6
Model Dimension Reduction

In Chap. 2–5, we focused on the CIP of identifying or estimating finite-dimensional 
parameter vectors, in which it was assumed that the modeled system can be char-
acterized completely and accurately by a set of scalar parameters. Generally speak-
ing, characterization of more complex systems needs more complex models. The 
complexity of a model is measured by its DOF (i.e., the number of independent 
parameters to be estimated or the dimension of inversion). A real system, especially 
a distributed parameter system, may have high or even infinite dimensions. When 
the dimensionality of a model becomes too high, we will encounter the so-called 
curse of dimensionality (Bellman 1957): (i) the amount of local data needed for 
identifying the local behavior of the model becomes sparse or even nonexistent, 
(ii) the number of possible models increases exponentially, and (iii) the informa-
tion matrix J JT  becomes nearly singular and, thus, the inverse solution becomes 
unstable (i.e., the over-parameterization problem). We learned in Sect. 5.5 that for a 
single parameter vector to be identifiable, at least one observation that is sensitive to 
parameter value changes must be available. Thus, in the case of high dimensional-
ity all inversion methods that we have learned become inefficient and the inverse 
problem becomes unsolvable because of data and computational limitations. As a 
tradeoff, certain details of a complex system have to be omitted during the construc-
tion of its model. When the structure of a model is overly simplified, however, the 
model may become useless because of its large structure error. Therefore, selection 
of an appropriate model structure is a challenging task. Nevertheless, it is the key to 
successful modeling of complex EWR systems.

An appropriate model structure depends not only on the complexity of the mod-
eled system, but also on data availability, data format, and the intended use of the 
model. In previous chapters, we assumed that the model structure error is absent. 
Starting from this chapter, we will consider quantification and mitigation of model 
structure errors. The main purpose of this chapter is to give a comprehensive survey 
of various parameterization techniques. Section 6.1 describes techniques for param-
eterizing deterministic functions, including Voronoi diagram, radial basis functions, 
and local polynomial approximation. It is shown that many of parameterization 
techniques fall into the form of weighted sum of basis functions. Physical processes 
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involved in EWR applications are spatially variable and the resulting parameter-
ization is high-dimensional. Section 6.2 introduces methods for parameterizing 
random fields, including Gaussian random field, Markov random field, variogram 
analysis, and multipoint statistics. Various kriging algorithms will be described, not 
only from geospatial interpolation perspective, but also for parameterizing random 
fields. Section 6.3 describes linear and nonlinear techniques for reducing dimen-
sions of parameters and model states while preserving certain aspects (e.g., covari-
ance or local similarity) of the original parameters.

As we shall see in subsequent chapters, materials introduced in this chapter serve 
as bases for advanced subjects such as data-driven modeling, data assimilation, un-
certainty quantification, and optimal model structure identification.

6.1  Parameterization of a Deterministic Function

6.1.1  Function Approximation for Inversion

The basic concept of parameterization was first mentioned in Sect. 2.1.4, where 
we introduced several commonly used parameterization methods for spatially dis-
tributed parameters. A distributed parameter or a distributed state variable may be 
a parametric or a nonparametric function of spatial and/or temporal coordinates. A 
parametric function has finite DOF and, thus, can be determined completely by a 
number of scalar parameters. For example, Fig. 6.1a illustrates such a parametric 
curve. A nonparametric function, on the other hand, has infinite DOF, as illustrated 
in Fig. 6.1b. Real-world examples of nonparametric functions include the hydrau-
lic conductivity of a highly heterogeneous aquifer, the elevation distribution of a 
mountainous terrain, and the temporal distribution of precipitation over a water-
shed. It is important to keep in mind that a nonparametric function cannot be com-
pletely and accurately recovered by a finite number of measurements or identified 
by a finite number of data points.

To describe or estimate a nonparametric function f ( )x , where x  represents spa-
tial and/or temporal coordinates, we first need to parameterize it, a process by which 
a nonparametric function is approximated by a parametric function (̂ )f x  with finite 

Fig. 6.1  Illustrations of a 
parametric curve and b non-
parametric curve
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DOF. In essence, parameterization transforms a complex physical process or an 
input–output relationship into a simplified representation, and the function (̂ )f x  
can be seen as a model of f ( )x  in the general sense. We know that when f ( )x  is 
an element of the Hilbert functional space (see Appendix A), it can be expressed by

 
(6.1.1)

where { ( )}φj jx =
∞

1  is a set of basis functions. When these basis functions are or-
thogonal to each other, (6.1.1) is called an orthogonal expansion of f ( )x  and coef-
ficients { , , , , }c c cm1 2    are given by the inner product

 
(6.1.2)

The first m  terms of expansion (6.1.1) define an approximation function of f ( )x ,

 
(6.1.3)

Because (̂ )f x  is completely specified by m coefficients { }cj j
m
=1  and corresponding 

basis functions { }φj j
m
=1, it is a parametric function and is called a parameteriza-

tion or a model of f ( )x , where m  is called the dimension of parameterization. 
 Equation (6.1.3), which was used previously in the zonation method (Sect. 2.1.4), 
is general and serves as the starting point of many parameterization methods to be 
introduced later in this chapter, as well as many linear and nonlinear regression 
methods to be described in Chap. 8. Although x mainly includes spatial and tem-
poral coordinates in the context of this chapter, in general it can consist of any set 
of physical variables (or predictors) needed to capture an input–output relationship. 
By changing the type of basis functions and/or the dimension of parameterization, 
we obtain different models of the same function. Therefore, parameterization of a 
function is always nonunique.

After a set of m basis functions { }φj j
m
=1  are selected, we can use the measured 

values of f ( )x  at n points { , , , }x x x1 2  n  to determine the m coefficients in (6.1.3) 

under the requirement that (̂ ) ( )i if f≈x x  for i n= 1 2, , , . Let the measurement 

vector be d x x xn n
Tf f f= [ ( ), ( ), , ( )]1 2   and the unknown coefficient vector be 

cm m
Tc c c= [ , , , ]1 2  , we can rewrite (6.1.3) as a system of equations

 (6.1.4)

where G is an n m×  matrix with elements gij j i= φ ( )x . The solution of the coef-
ficients cm  from (6.1.4) is the focus of linear inversion problems discussed exten-
sively under Sect. 2.2. Below we consider three separate cases, namely, interpola-
tion, regression, and dimension reduction.
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6.1.1.1  Interpolation

When n m=  and matrix G is nonsingular, solving (6.1.4) is straightforward and 
the solution is c G dm n= −1 . In this case, we have (̂ ) ( )f fi ix x=  at all measurement 
points as shown in Fig. 6.2a. In particular, if all basis functions satisfy the condition

we simply have c xj jf= ( )  for all j m= …1 2, , , . Such setting is behind the “pa-
rameterization by finite-element method” scheme described under Sect. 2.1.4.

6.1.1.2  Regression

When the problem is overdetermined (n m> ) and G GT  is invertible, we can find 
the least squares solution c G G G dm

T T
n= −( ) 1  of (6.1.4). In this case, (̂ )f x  and 

f ( )x  may not coincide at measurement points, but the difference between them (L2
-norm) is minimized as illustrated by Fig. 6.2b. For the general case of ≠n m , we 
can use the pseudoinverse solution cm

†  of (6.1.4) to find (̂ )f x  (see Sect. 2.2). The 
main difference between interpolation and regression is that the former honors the 
measurement points exactly, whereas the latter minimizes the discrepancy between 
a fitted solution and the data.

6.1.1.3  Dimension Reduction

Using the truncated SVD in Sect. 2.2, we may improve the stability of linear inver-
sion problem (6.1.4) by reducing the dimension of parameterization. This can be 
especially useful when (̂ )f x  is used to approximate f ( )x  for inversion.

In a numerical model, a distributed parameter f ( )x  is automatically parameter-
ized into an N-dimensional vector fN N

Tf f f= …[ , , , ]1 2  after discretization, where N 
is the number of nodes (or elements), { , , , }x x x1 2

…
N  are space coordinates of the 

nodes, and f fi i= ( )x  for i N= …1 2, , , . Depending on the actual application, the 
resulting number of nodes N can be large. Because we rarely have sufficient data to 
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Fig. 6.2  Illustration of a 
interpolation and b regres-
sion. The thin curve is the 
actual function f ( )x , the 
thick curve is approximation 
function (̂ )f x , and open cir-
cles represent measurements
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identify such a high-dimensional vector, reducing the dimension of fN  or reparam-
eterizing it into a low-dimensional vector becomes essential. The discretized form 
of parameterization (6.1.3) can be written as

 (6.1.5)

in which G is an N m×  matrix having elements gij j i= φ ( )x , the m N×  matrix 
G†  is its pseudoinverse, and m N  in most cases. From (6.1.5), we see that a 
discrete parameterization is a linear transformation that projects a high-dimensional 
vector to a low-dimensional space for inversion.

6.1.1.4  Parameterization and Inversion

In the above discussion, a parameterization or an approximation of function f ( )x  
is determined directly by a set of measurements of the function itself. If the func-
tion is the unknown parameter, its approximation can be determined indirectly 
by the observations of state variables through inversion. After discretization, the 
inverse problem of identifying all nodal values of the unknown parameter, fN , 
requires minimizing an objective function S f f fN( , , , )1 2  . After parameterization, 
the problem of identifying fN  becomes identification of a low-dimensional vector 
cm  by minimizing the same objective function. Using (6.1.5) and the chain rule, 
we have

 
(6.1.6)

where elements of the N N×  matrix [ ]∇S  are the gradients of S f f fN( , , , )1 2   
with respect to all nodes and can be obtained effectively by the adjoint-state method 
introduced in Chap. 5; and matrix G is defined in (6.1.5) by basis functions. Simi-
larly, the Jacobian after parameterization is given by

 
(6.1.7)

where the Jacobian before parameterization, J f( )N , can also be obtained effectively 
by using the adjoint-state method. The scalar form of (6.1.6) is given by

 

(6.1.8)

The scalar form of (6.1.7) can be obtained similarly. Once we know how to cal-
culate gradients ∂ ∂S m/ c  and the Jacobian J c( )m , a gradient-based optimization 
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method or a Gauss-Newton method described in Chap. 2 can be used to find the 
low-dimensional parameter vector cm. Note that the problem of identifying cm  is 
much easier than the problem of identifying the unknown high-dimensional vector 
fN . After cm  is identified, the discrete inversion fN  can be determined easily by 
(6.1.5). A continuous approximation (̂ )f x  of the unknown parameter f ( )x  is then 
generated from fN  by interpolation.

The error of parameterization is measured in the parameter space by

 (6.1.9)

Unfortunately, epar  cannot be evaluated directly by using (6.1.9) because f ( )x  
is unknown. Parameterization error is a type of model error because even in the 
absence of observation errors, we cannot find a (̂ )f x  such that the model outputs 
satisfy u uD D

obs( )̂θ =  exactly. In EWR modeling, model error characterization re-
mains a challenging problem and an active research area. As mentioned before, 
model error is often the main cause of model failure. In Chap. 7, we will return to 
this important topic and learn how to reduce the parameterization error.

6.1.2  Interpolation as a Tool for Parameterization

Assume that we have m  measured values of a function, f ( )x , defined on a spatial 
(and/or temporal) domain Ω :

 (6.1.10)

where xi  is called a data site or a basis point of interpolation, and ei  is the as-
sociated measurement error. The error terms are assumed to be zero-mean i.i.d. 
Gaussian random variables. Interpolation is a method that can estimate the function 
value f ( )x  at any unmeasured point using the data in (6.1.10). After interpolation 
is completed for the entire region Ω , we obtain a parametric function (̂ )f x  called 
an interpolant such that at any measured site, (̂ )f x  is equal to the measured value of 
f ( )x ; and at any unmeasured site, f ( )x  is unknown but (̂ )f x  can be calculated by 
an interpolation algorithm. The difference between f ( )x  and (̂ )f x , or the error of 
interpolation, depends on (i) variability of the interpolated function, (ii) number and 
distribution pattern of the data sites, and (iii) the algorithm used for interpolation.

Interpolation produces a parametric representation of an incompletely measured 
function. It has been used extensively in computer graphics, signal and image pro-
cessing, geographic information systems, and numerical solution visualization. In 
the field of EWR, various interpolation methods are used for generating distributed 
states (e.g., precipitation, temperature, soil moisture, concentration) from their dis-
crete measurements. Knotters et al. (2010) presented a literature review of various 
interpolation methods used in EWR.

e f fpar = −( ) (̂ ) .x x

f f e i mi i i= + =( ) , , , ,x 1 2
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6.1.2.1  Interpolation for Inverse Solution

In the study of inverse problems, the unknown parameter θ( )x  is regarded as the 
interpolated function and the interpolant (̂ )θ x  is used as a parameterization of the 
unknown parameter. Let us again consider three separate cases:

• Case 1. The unknown parameter is measured at m sites in the field. In this case, 
we can use measurements { ( ) | , , , }θ θ εi i i i m= + =x 1 2  directly to generate 
an interpolant (̂ )θ x  as the identified parameter. Any structural information rel-
evant to the parameter, such as discontinuity, can be incorporated into the in-
terpolation process. Generally speaking, (̂ )θ x  obtained in this way may not be 
a satisfactory approximation of the true parameter because of the insufficient 
number of measurements and the measurement error.

• Case 2. A set of state observations { }uD
obs  is available, which can be related to the 

unknown parameter θ( )x  through some simulation model. In this case, we create 
m virtual “data sites” (called the basis points). The “measured values” at these 
points then become the parameter vector 1 2θ θ θ= ( , , , )Tmθ  to be identified by 
inverse solution. At the beginning, an initial guess of θ  is used to generate an 
interpolant (̂ )θ x . During the iterative optimization process of inverse solution, 
(̂ )θ x  is updated continuously by the current θ  until the optimum solution is 

reached. Any prior information on the identified parameter can be incorporated 
into this process either as regularization terms or as constraints. The number of 
virtual data sites, m, is now the dimension of parameterization.

• Case 3. Both state observations and measurements of the parameter itself are 
available. In this case, we have two approaches to use these data. The first ap-
proach is to combine m hypothetical measurements θ θ θ1 2, , , m  and k real 
measurements θ θ θm m m k+ + +1 2, , ,  of the parameter to form a full set of data. 
In the optimization process of inversion, all of these data are used to generate 
the interpolant (̂ )θ x , but only the m hypothetical measurements θ θ θ1 2, , , m  
are updated and optimized. The second approach treats θ θ θm m m k+ + +1 2, , ,  as 
soft rather than hard data. They are identified together with θ θ θ1 2, , , m  in the 
optimization process, but are subject to a range constraint, which requires that 
their identified values be not far from the measured values. This approach can 
decrease the fitting residual at the cost of increasing the dimension of parameter-
ization.

From the above discussion we see that any interpolation method is also a param-
eterization method, but not all interpolation methods are appropriate for inverse 
solution. When an interpolation method is chosen as a parameterization method for 
inversion, it should satisfy the following additional criteria:

1. The method should be able to handle scattered basis points so that irregular 
parameter structures can be characterized effectively and flexibly.

2. The method should be computationally effective because the parameterized 
model (̂ )θ x  must be recalculated or updated in each iteration during the optimi-
zation process of inversion.
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3. The method should allow incorporation of prior information pertaining to the 
interpolant.

4. The method should be flexible for modifying the shape of the interpolant in order 
to decrease the model error and fitting residuals. This can be done by introduc-
ing shape parameters into the basis functions, as will be shown in the following 
subsections.

We already described two simple parameterization methods, the zonation method 
and the finite element interpolation method, in Chap. 2. In the rest of this section, 
we will introduce more interpolation and approximation methods commonly used 
for parameterization.

6.1.3  Inverse Distance Weighting

Inverse distance weighting (IDW) is a popular weighted average method because 
of its simplicity. Let { }fi i

m
=1  in (6.1.10) be a set of data collected from data sites 

{ }xi i
m
=1, and { ( )}wi i

mx =1  be a set of weighting functions satisfying the unbiasedness 
condition wii

m
( )x

=∑ =
1

1. The following interpolant is called a weighted average

 

(6.1.11)

Let x x− i  be the Euclidian distance between the point of estimation x  and a data 
site xi . In the simplest IDW method, the weighting functions of IDW are given by 
(Shepard 1968):

 (6.1.12)

where

The power β > 0  is called a shape parameter because it determines the shape of the 
interpolant (̂ )f x . When the value of β  is large, the weight of nearby data sites will 
dominant those located farther away; conversely, when the value of β  is small, far-
ther away data sites become more influential. As a result, the simple global weight 
method (6.1.12) often produces undesirable results.

Figure 6.3 illustrates the (̂ )f x  surface obtained by IDW using the same data 
sites but different β  values. It shows that when β = 4  the surface features (e.g., 
bumps) tend to be more spatially extensive than in the case of β = 1, indicating 
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the more dominating effect of nearby data sites on interpolation. The default value 
of β  used in the IDW module of many commercial software packages is 2. In the 
following, we will describe several techniques that can improve the accuracy of the 
global weight IDW.

6.1.3.1  Location-Dependent Shape Parameters

Unless data sites are uniformly distributed, different locations should use different 
β  values. When a site is surrounded by clustered data sites, small β  value should 
be used to give nearly equal weights to these measurements. On the other hand, 
when a site is surrounded by relatively dispersed data sites, large β  value should 
be used to give large weights to nearby measurements. This suggests that the IDW 
weighting functions in (6.1.12) should be changed such that the shape parameter β  
is location dependent

 
(6.1.13)

where

Lu and Wong (2008) developed an adaptive algorithm that can determine the β  
values for different locations based on the pattern of data sites. In the next chapter, 
we will see that these shape parameters are additional tuning parameters to be iden-
tified when IDW is used as a parameterization method for inversion.

 w
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Fig. 6.3  Approximation function surface (̂ )f x  obtained by IDW for a β  = 1, b β  = 2, and c 
β  = 4, respectively. Open circles correspond to randomly generated data sites, which are the same 
for all three cases
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6.1.3.2  Localization

Localization means that when determining the value of (̂ )f x , only the mw  nearest 
measurements of x  in a local neighborhood are considered, instead of all m mea-
surements of x. The undesirable effect of faraway measurements (e.g., spurious 
correlations) can thus be avoided. To make the IDW localized, for each interpola-
tion location x  we first find mw  nearest data sites surrounding it and then calculate 
the interpolant by

 (6.1.14)

where  x  is the index set of the mw  nearest data sites of x, the weight functions 
are defined by

 
(6.1.15)

and R
i ix

x

x x= −
∈
max


 is the largest distance from x  to its mw
 nearest data sites.

6.1.3.3  Regression

For each data site xi , we find its mq  nearest data sites and then use a low-order 
(constant, linear, quadratic) polynomial Qi( )x  to fit the mq + 1  measured values by 
least squares regression, with the constraint that Q fi i i( )x −  is less than an esti-
mated upper bound of the measurement error. The function Qi( )x  can be seen as an 
approximation of the interpolant f ( )x  in the local neighborhood of xi . For exam-
ple, when linear approximation is used for a 2D problem, we have a plane surface

which has three unknown coefficients. When bilinear approximation is used, we 
have a bilinear surface

in which the number of unknown coefficients is increased to 4. Similarly, for biqua-
dratic surface we have
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which has six coefficients. To determine Qi( )x  by regression, mq  should be larger 
than the number of unknown coefficients. Using Qi( )x  to replace fi  in algorithm 
(6.1.14) can improve accuracy of the localized IDW (Renka 1988).

Localization and regression are commonly used techniques for improving the 
accuracy of an interpolation or approximation method. We will use them repeatedly 
in this and subsequent chapters.

6.1.4  Voronoi Diagram and Delaunay Tessellation

So far, we have not addressed how all surrounding sites of a data site are found 
when a localized interpolation method is used. This problem is not easy to answer 
when the number of measurement points is large and their distribution is irregular. 
In this section, we introduce Voronoi diagram, a classical method for spatial tessel-
lation that provides a natural and effective way to solve this problem.

Voronoi diagram is a long-standing topic in mathematics. It was first system-
atically studied by German mathematician Johann Peter Gustav Lejeune Dirichlet 
(1805–1859) and Russian mathematician Georgy Feodosevich Voronoy (1868–
1908). Along with the development of computational technology, however, Voronoi 
diagram has become an important study area of computational geometry and found 
interesting applications in many fields. Voronoi diagram was rediscovered in many 
fields. For example, it is referred to as the Thiessen method for calculating areal 
averages in surface hydrology for a long time (Sambridge et al. 1995).

Let  = { , , , }x x x1 2  m  be a set of m distinct points in a bounded or unbounded 
region Ω . These points are called generators of a Voronoi diagram. The Voronoi 
cell of a generator xi , denoted by V i ( )x , is defined as a region surrounding xi  
such that all points in V i ( )x  are closer to xi  than to any other generator of the 
set, viz.

 
(6.1.16)

It is natural to define V i ( )x  as the neighborhood region of a generator xi . In 2D, 
Voronoi cell is a polygon and in 3D it is a polyhedron. Voronoi cells of all genera-
tors collectively form a tessellation of Ω, which is called the Voronoi diagram of 
the set  . Figure 6.4a shows an example of Voronoi diagram for random genera-
tors, in which all Voronoi cells are colored.

By connecting all generators whose Voronoi cells have the common boundaries, 
we obtain another tessellation of Ω  which is called the Delaunay tessellation. Vo-
ronoi diagram and Delaunay tessellation are dual, meaning when one is known the 
other is completely determined. Figure 6.4b shows a Delaunay triangulation that is 
the dual of the Voronoi diagram in Fig. 6.4a. Delaunay tessellation is often used to 
generate meshes for FEM simulations.

V i i j j ( ) , , .x x x x x x x x= − ≤ − ∈ ∈{ } for all  Ω
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Several algorithms have been developed for generating the Voronoi diagram cor-
responding to a given set of generators in 2D and higher dimensions (De Berg 2000; 
Okabe 2000). For example, the Fortune’s sweep line algorithm for 2D (Fortune 1987) 
and gift wrapping method for 3D (Sugihara 1994). We can also create the Delaunay 
tessellation for the given generators first and then obtain the dual Voronoi diagram 
(Barber et al. 1996). In-depth discussion on Voronoi diagram and relevant topics can 
be found in Okabe (2000). More information can be found, for example, from the 
webpage of Computational Geometry Algorithms Library at http://www.cgal.org.

A number of commercial and open-source programs provide routines for 
generating Voronoi diagrams. For example, Fig. 6.4 was generated using Mat-
lab functions voronoin and Delaunay. SciPy provides a similar routine, 
scipy.spatial.Voronoi. The computational geometry library underlying 
both Matlab and SciPy implementations is Qhull, which implements a Quickhull 
algorithm for computing the convex hull (i.e., convex envelope of a set of points 
in the Euclidean plane). More details can be found at http://www.qhull.org.

After this brief introduction on Voronoi diagram, we now return to our main 
subject, namely, using Voronoi diagrams for nearest-neighbor interpolation. In this 
case, the data sites (or the basis points of interpolation), { }xi i

m
=1, play the role of 

generators. In the following, we introduce three interpolation methods based on the 
Voronoi diagram.

6.1.4.1  Nearest-Neighbor Interpolation

Nearest-neighbor interpolation can be represented in a general form by

 
(6.1.17)

1

φ
=

= ∑(̂ ) ( , ),
m

i i
i

f fx x ν

Fig. 6.4  Illustrations of a Voronoi diagram and b Delaunay tessellation, where the Voronoi gen-
erators (open circles) are generated randomly
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where 1φ ={ ( , )}mi ix ν  is set of basis functions which, in turn, depend on shape param-
eters 1 2= { , , , }mx x xν . If we define

we will have (̂ )f fix =  for x x∈V i ( ), and the interpolant is a piecewise constant 
function in this case. Therefore, we can use Voronoi diagram to generate a zonation 
structure, in which each zone delineates the nearest neighbor of a data site.

The IDW can also be seen as a nearest-neighbor interpolation method if the basis 
functions in (6.1.17) are defined in such a way that

 

(6.1.18)

where { ( , ) | , , , }w i mi ix β = 1 2  are weighting functions of IDW defined in 
(6.1.13) and   is the integer set { , , , }1 2 m . In this case, the shape parameter 
ν  contains not only the locations of data sites, but also the power parameters 

1 2β β β= { , , , }mβ .
Sun and Yeh (1985) presented an interpolation method that introduces additional 

shape parameters to the basis functions in (6.1.18) to make the nearest-neighbor in-
terpolation more flexible for representing different types of functions. In their meth-
od, a multiplier σ αi i( , )x  is applied to wi i( , )x β  such that (6.1.18) is replaced by

 

(6.1.19)

where σ αi i( , )x  is a user-defined function that contains additional shape parameters 
1 2α α α= …{ , , , }.mα  If we define

where dj i,  is the distance between sites xi  and x j , and d ix,  is the distance be-
tween point x  and site xi , then the interpolant (6.1.17) becomes a piecewise 
function when αi > 2 , and a continuous function when all αi = 1 and βi > 10. 
Between the two extreme cases, other function shapes can be obtained by adjust-
ing these shape parameters. Moreover, the method can also produce reasonable 
extrapolation results when the value of σ αi i( , )x  becomes negative (see Sun and 
Yeh (1985) and Sun (1994) for details). The set of shape parameters now becomes 
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1 2= { , , , , , }mx x xν α β . In Tsai and Yeh (2004), the IDW weighting functions in 
(6.1.19) were replaced by general weighting functions, and functions σ αi i( , )x  in 
(6.1.19) were simply replaced by 0 1≤ ≤βi( )x .

Nearest-neighbor interpolation represents a useful parameterization method for 
inverse solution according to the criteria presented at the end of Sect. 6.1.2: (i) 
the generators (i.e., basis points) can accommodate arbitrary spatial patterns; (ii) 
(̂ )f x  can be obtained with minimal computational effort; (iii) prior information on 

parameter structure can be incorporated into the determination of tessellation (or 
zonation) pattern, as well as the values of shape parameters; and (iv) the tessellation 
pattern can be optimized by simply modifying the locations of generators. As we 
will show in Chap. 7, the flexibility offered by the nearest-neighbor parameteriza-
tion greatly facilitates the optimization of model structures.

6.1.4.2  Interpolation with Delaunay Tessellation

Delaunay tessellation generates a spatial discretization mesh for FEM when the 
locations of nodes are assigned. For interpolation, nodes play the role of data sites. 
Using the finite element basis functions, for any point within an element, the in-
terpolant value at the point can be obtained from the nodal values of the element. 
Therefore, interpolation with Delaunay tessellation is the same as the finite ele-
ment interpolation introduced in Chap. 2. The only difference here is that the finite 
element mesh is automatically generated from the node distribution. In the next 
chapter, we will take advantage of this feature during the model structure identifica-
tion process to optimize the pattern of parameterization or to generate meshes for 
multiscale inversion.

6.1.4.3  Natural Neighbor Interpolation

For any given site x ∈Ω , Voronoi diagram can help us find its surrounding data 
sites for local interpolation. A data site is called a natural neighbor of another data 
site if their Voronoi cells share a common boundary. Thus, when x x= i  is a data 
site, we can find all its natural neighbors by drawing the Voronoi diagram. Fig-
ure 6.5a shows such an example, in which the open circle is a data site and all its 
7 natural neighbors, labeled by small hexagons, were found by drawing a Voronoi 
diagram. When x  is not a data site, we can use it as an additional generator to 
redraw the Voronoi diagram and then find its natural neighbors. As an example, in 
Fig. 6.5b, the cross symbol represents a nondata site and the shaded area is the new 
Voronoi cell corresponding to it, which we will denote by V +( )x ; again the natural 
neighbors of x  are labeled by small hexagons. Comparing Fig. 6.5b to 6.5a, we see 
that the newly formed cell V +( )x  is created by “grabbing” a piece of each of its 
natural neighbors. The overlap between V +( )x  and its neighbors, as we will show 
below, can be used to define weights.

After all natural neighbors of x are found, three local interpolation methods are 
often used to obtain an interpolant:
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1. Distance weighting, which uses the localized IDW algorithm (6.1.14) and 
(6.1.15), as described in Sect. 6.1.3.

2. Area weighting (Sibson 1981), in which the weighting function in (6.1.11) is 
defined by

 (6.1.20)

where κ( , )x xi  is the common area between V i ( )x  and V +( )x  (e.g., areas with 
dashed borders in the shaded cell of Fig. 6.5b), and κ( )x  is the whole area of 
V +( )x  (i.e., the shaded cell in Fig. 6.5b). Obviously, w xi( )  satisfies the unbiased-
ness condition. Weighting function (6.1.20) is often used as the interpolation func-
tion in mesh-free FEM (Alfaro et al. 2007).

3. Regression. Using a low-order polynomial in the local area to fit measurements 
of the natural neighbors as described in Sect. 6.1.3.

When natural neighbor interpolation is used as a parameterization method for in-
verse solution, we prefer to use the localized IDW method (i.e., distance weighting) 
because of its simplicity and effectiveness.

6.1.5  Approximation with Radial Basis Functions

Radial basis function (RBF) has become an important tool in the past decade in 
many subject areas such as surface reconstruction, object representation, density 
estimation, nonparametric modeling, model reduction, and mesh-free methods 
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Fig.6.5  Natural neighbors (hexagons) of a a data site xi  ( open circle), and b nondata site x  
( cross), where the shaded area in green is V +( )x , and the common areas between original data 
site and its natural neighbors are labeled by dashed lines within the shaded area
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(Buhmann 2003). It is also a useful tool for structure and parameter identification 
because of its simplicity, effectiveness, and ability to handle scattered data.

The form of RBF-based interpolation is expressed also by (6.1.3),

 
(6.1.21)

where ν represents shape parameters, ri i= −x x  is the separation distance be-
tween a point x  and a data site xi , and all basis functions are determined by a single 
radial basis function φ( , )r ν  such that φ φ=( , ) ( , )i irx ν ν . The most commonly used 
radial basis functions include:

• Gaussian RBF

where the shape parameter ε  is inversely proportional to the standard deviation of 
the Gaussian distribution. Increasing the value of ε  narrows shape of the RBF and, 
thus, makes the interpolation more localized. The Gaussian RBF is also known as 
Gaussian kernel in kernel-based methods (see Chap. 8).

• Generalized multiquadric RBF

where ε  and p  are two shape parameters. When p = 1 2/ , it is simply called the 
multiquadric RBF, and when p = −1 2/ , it is called the inverse multiquadric RBF. 
In the special case when p < 0  and ε  is large, the IDW is obtained.

• Thin-plate spline RBF:φ( ) logr r r= 2 .

Because the condition

is not satisfied by RBF, we do not have c fi i= ( )x  ( i m= 1 2, , , ). Instead, these 
coefficients must be estimated by solving the system of equations (6.1.4), where 
the matrix G for RBF is asymmetric and usually positive definite, but may become 
conditionally positive definite for the thin-plate spline RBF. In the latter case, we 
can add a low-order polynomial p x( )  to the right-hand side of (6.1.21) to ensure 
the uniqueness of the interpolant (Buhmann 2003). When RBF is used as a param-
eterization method for inverse solution, it is important to make it localized and keep 
m small.

In Chap. 7, RBF will be used in the level set method for inversion. In Chap. 8, 
RBF will be used to develop a neural network model.
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6.1.6  Local Polynomial Approximation

Local polynomial approximation (LPA) can be used to find the natural neighbors 
of an arbitrary point (see Sect. 6.1.3). By the same token, LPA can also be used to 
define a window function w r h( , ), which is a localized RBF, to generate a local 
approximation of the interpolated function. A window function specifies a local 
neighborhood that satisfies the condition

 
(6.1.22)

where the half-width h is a shape parameter. Commonly used window functions are 
rectangular, Gaussian, and quadric, as shown in Fig. 6.6.

Within a window, LPA uses a low-order (constant to cubic) polynomial (̂ , )f x c  
as an approximation of f ( )x , and the coefficient vector c  of the polynomial is 
determined by regression using measurements of f ( )x  that fall within the win-
dow. Let the data sites within the window be { , , , }x x x1 2

w w
s
w

 , ri
w

i
w= −x x , and 

f fi
w

i
w= ( )x , the coefficient vector c  can be obtained by minimizing the following 

weighted least-squares objective function

 
(6.1.23)

In LCA, the window size h controls the number of data sites in a window and, thus, 
the accuracy of approximation.

Intersection of confidence intervals (ICI) is a method that can adaptively deter-
mine an appropriate window size for a given point x . ICI searches for the largest 
window possible such that measurements falling in the window can be fit well by 
the polynomial with a predetermined order. An exposition of the LPA/ICI method 
and its applications can be found in Katkovnik et al. (2006). Compared with spline, 
LPA can produce piecewise constant, continuous, and smooth interpolants using 
scattered data.

w r h r h( , ) ,= >0, when 

S w r h f fi
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Fig. 6.6  Commonly used localization window functions a rectangular, b Gaussian, and c quadric, 
where h is half-width of the window
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We have introduced several commonly used methods for parameterization. There 
are, of course, other useful parameterization methods suitable for different cases, 
for example, polynomial approximation (Phillips 2003), discrete cosine transform 
(Jafarpour and McLaughlin 2008), and wavelet transformation (Liu 1993) The lat-
ter is especially useful for multiresolution inversion (Bhark et al. 2011; Efendiev 
and Hou 2009).

The truncated expansion (6.1.3) is expressed as a linear combination of a set of 
linear or nonlinear basis functions. This is the most popular, although not the only 
form of parameterization. Nonlinear parameterization, in which the approximate 
function (̂ , )f c x  is nonlinear with respect to its parameters c, maybe useful when 
the criteria presented in Sect. 6.1.2 are satisfied.

6.2  Parameterization of Random Fields

In Chap. 4, the unknown parameter (e.g., hydraulic conductivity) is regarded as a 
realization of a random field, specified by its joint PDF over a finite set of points. 
We assumed that the prior PDF of the unknown parameter is known and then ob-
tained its posterior distribution through Bayesian inference. This is an example of 
statistical parameterization, for which the main goal is modeling or parameter-
izing a random function, which is an indexed collection of random variables (see 
Appendix B). When the index is time, the random function is commonly referred 
as a stochastic process. When the index is spatial coordinates, the random function 
is often called a random space function or, simply, random field. In this chapter, 
we shall use stochastic processes and random fields interchangeably. The selection 
of an appropriate statistical parameterization is determined by sample statistics. In 
general, three types of statistics can be calculated during the data exploration stage: 
univariate, bivariate (two-point), and multivariate (multipoint) statistics. Univariate 
analysis is used to calculate single-point sample statistics (e.g., mean, variance, and 
histogram), whereas the two-point and multipoint statistics parameterize the covari-
ance, and the spatial pattern of distributed attributes. Because of data limitations, 
most statistical parameterization techniques are limited to characterization of low-
order statistical moments in practice. In this section, we introduce several statistical 
parameterization methods commonly used in statistical inversion problems.

6.2.1  Gaussian Random Field

Let θ( )x  be a random field defined in a temporal or a spatial region Ω . As a dis-
tributed function, its dimension (DOF) may be infinite. If we consider a finite set 
of m points in the region,  = { }x x x1 2, , , m , we will have an m-dimensional 
random vector

 (6.2.1)1 2 ,  where     1 2θ θ θ θ θ= = = ( , , , ) ( ), , , , .T
m i i i mxθ
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In spatial statistics, the elements in set   may represent (i) point-level data (e.g., 
groundwater levels), (ii) lattice data, and (iii) point process data (Cressie 1993). 
Statistical parameterization is about modeling the joint PDF of θ.

Gaussian random field (GRF) is one of the most popular statistical parameteriza-
tion methods for parameterizing a random field, partly because it has a number of 
well-known analytical properties. A GRF is fully specified by its mean and covari-
ance and its joint PDF is given by

 
(6.2.2)

where m is the dimensionality of θ, µ  is its mean, and C  is its covariance matrix. 
The quadratic quantity appearing the exponent of (6.2.2) defines a distance

in which d is known as the Mahalanobis distance. The joint PDF of GRF will be 
constant on surfaces of the same d.

If a nondiagonal element of C, cov( , )θ θi j , is nonzero, it means the value of 
θ( )x  at the two sites xi  and xj  are correlated. In general, a Gaussian model de-
scribes a globally correlated structure. For a Gaussian distribution to be well de-
fined, it is necessary for the covariance matrix C to be positive definite and symmet-
ric. The covariance matrix C of a full Gaussian model will have m m( ) /+ 1 2  inde-
pendent parameters which, when combined with the m independent parameters in 
µ , give rise to a total of m m( ) /+ 3 2  independent parameters (i.e., the number of 
DOF). When the dimension m is large, the computational demand associated with 
inverting C and estimation of the hyperparameters becomes prohibitive. Therefore, 
simplifications must be made to the structure of C when m is large, for example, by 
assuming statistical stationarity:

• A random field is said to be strongly stationary, if its joint PDF is constant in the 
definition region.

• A random field is said to be second-order stationary, if (i) its mean is constant, 
and (ii) its covariance depends only on the distance and direction separating any 
two locations. For any increment r, we have

 (6.2.3)

For an isotropic field, C( )r  reduces to C r( ) , where r = r  is the length of r . In 
this case, the mean function is a constant and the covariance function depends only 
on a single scalar parameter. For a random vector defined in (6.2.1), Eq. (6.2.3) can 
be rewritten as

 (6.2.4)

( ) ( ) ( )1 22 112
2

π
−− − 

= − − −  
//( ) exp ,

Tmp C Cθ θ µ θ µ

2 1( ) ( ),Td C−− −θ µ θ µ

0 andθ θ θ θ+ − = + =[ ( ) ( )] [ ( ), ( )] ( ).E Cov Cx r x x r x r

E Cov C ri j i j[ ( ) ( )] [ ( ), ( )] ( ),θ θ θ θx x x x− = =0 and 
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where r i j= −x x  under the isotropic assumption.
Let 1θ  and 2θ  be two Gaussian random vectors. The joint distribution of 1θ  

and 2θ  is

 (6.2.5)

in which 1µ  and 2µ  are means of 1θ  and 2θ , and C11 , C22 , C12 , C21  are block 

partitions of the covariance matrix of 1 2( , )Tθ θ . The conditional distribution of 2θ  

given 1θ  is a Gaussian

 
(6.2.6)

Thus, (6.2.5) and (6.2.6) indicate that if a joint distribution is Gaussian, the con-
ditional distribution is also a Gaussian. A well-known example of the GRF is the 
hydraulic conductivity of a heterogeneous aquifer, which is commonly modeled as 
a random field with log-normal distribution (Freeze 1975). The selection of log-
normal distribution is supported by the work of Hoeksema and Kitanidis (1985), 
who analyzed data from about 20 aquifers in the US.

The generalization of the GRF discussed here to multivariate random variables is 
Gaussian processes (GP), which has gained popularity in the machine learning field 
in recent decades. We will introduce a GP-based regression algorithm in Sect. 8.4.

6.2.2  Markov Random Field

Markov random field (MRF) is another commonly used statistical parameterization 
technique. It is simple in structure and computationally efficient. Unlike GRF that 
describes a global correlation structure, MRF describes local correlation structures 
on a lattice. To explain this, let us first introduce the concept of undirected graph. 
An undirected graph consists of a set of nodes and a set of edges that connect these 
nodes. Finite difference and finite element grids (regular and irregular lattices) are 
all examples of undirected graphs. In an undirected graph, if two nodes i and j are 
connected by an edge, then node i is said to be a neighbor of node j and vice versa. 
Let us denote the neighboring relationship of any two nodes by i j~ . All neighbors 
of a node form a local structure associated with that node, and the number of neigh-
bors is typically much smaller than the total number of nodes in a graph.

To illustrate, Fig. 6.7 shows a simple undirected graph with four nodes and four 
edges. Thus, the neighbors of node 1 are nodes 2 and 3, and node 4 only has node 2 
as its neighbor. We can use all sites of  = { }x x x1 2, , ,� m  to generate a Voronoi 
diagram and then generate a Delaunay tessellation of the region. In such case, the 
natural neighbors of each site form a local structure of that site.
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Let us consider an m-dimensional random vector θ  defined on lattice  . An 
MRF model assumes that the component θi  is correlated to θ j  only if x j  is a 
neighbor of xi . In other words, the distribution of an MRF model is localized. For 
example, the Gaussian MRF (GMRF) is a localized Gaussian model defined by

 
(6.2.7)

where Q , which is the inverse of a covariance matrix, is called the precision matrix; 
and ν  is the so-called location parameter of θ. Because the off-diagonal elements 
of Q  is not zero if and only if i j~ , Q is often a highly sparse matrix. Thus, 
computations involving (6.2.7) are generally more efficient than using the GRF in 
(6.2.2).

MRF is a flexible parameterization method. By choosing different local distribu-
tions, we can obtain different MRF models for characterizing discontinuous, contin-
uous, and smooth parameters. For detailed discussions on MRF and its applications, 
the reader may refer to the monograph of Rue and Held (2005).

For inverse solution, the following pairwise-interaction MRF is often used (Be-
sag et al. 1995)

 (6.2.8)

where γ  is a scale parameter; Φ Φ( ) ( )u u= −  is a symmetric function; the summa-
tion is over all node pairs that are neighbors; and wij  are weights that control the 
spatial dependence structure of sites. The summation in the exponent of (6.2.8) is 
called energy function, for which a physical interpretation is that low-energy states 
are the more likely states. Recall that a similar energy function is used in the simu-
lated annealing algorithm described in Sect. 4.3.4.

When Φ = u  is used and all weights are set equal, (6.2.8) becomes a stochastic 
version of the median filter often used in image analysis (Besag et al. 1995):
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 Fig. 6.7  An undirected graph 
with four nodes and four 
edges.
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where wij  are weights. When Φ = 1
2

2u  is used, (6.2.8) becomes a special GMRF 
model

 (6.2.9)

in which the weight matrix W  plays the role of precision matrix. A possible defini-
tion of the matrix is

 
(6.2.10)

where ni  is the number of neighbors of site i . In this case, the MRF depends only 
on a single parameter γ . A GMRF defined using (6.2.10) is called a local planar 
model, which follows a Gaussian distribution with mean and covariance given as 
(Besag et al. 1995)
 

(6.2.11)

where p i i( , )θ θ γ−  denotes the conditional distribution of θi  given the rest of the 
nodes, θ−i , in its neighborhood.

Because of its simple structure and computational efficiency, the MRF is of-
ten used as a prior distribution in MCMC. When the precision matrix in a GMRF 
(6.2.7) is not full rank, the GMRF is called an intrinsic GMRF (Rue and Held 2005). 
An example is given in (6.2.10), in which the precision matrix W is sparse. Thus, 
(6.2.9) is an intrinsic GMRF, which is extensively used as a prior distribution in the 
estimation of locally correlated random fields. In EWR applications, MRF has been 
used to model, for example, porous media permeability (Lee et al. 2002; Ferreira 
and Lee 2007) and contaminant concentration field (Wang and Zabaras 2006).

Example 6.1 MRF on 2D Lattice
Figure 6.8 shows the local neighborhood of a data site on a regular 2D lattice, which 
includes the eight shaded cells surrounding it. It is also common to include only 
the four nearest cells (labeled with circles) as neighbors. As mentioned in the text, 
different patterns of spatial association can be accommodated by using different 
neighboring systems and the lattices need not be regular. 

Example 6.2 Application of GMRF
Let us assume that the prior of a random field θ( )x  can be modeled using the 
GMRF (6.2.9) and the likelihood function is Gaussian. Then the posterior PDF is 
also Gaussian and can be expressed as (Rue and Held 2005)

 
(6.2.12)
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where the first and second exponential terms are the likelihood function and the 
prior, respectively; e  is an error vector between observations obsu  and model out-
puts, and VD  is the corresponding error covariance matrix. The scale parameter γ  
is treated as a hyperparameter, for which the prior PDF is often assumed to follow 
a Gamma distribution,

 
(6.2.13)

where α  and β  are shape parameters. Using the Bayes theorem, we arrive at the 
following posterior distribution

 
(6.2.14)

The posterior PDF in (6.2.14) can be estimated using MCMC. 

6.2.3  Variogram

Variogram is a type of two-point statistics used to parameterize the variability of 
a random field. It was originally introduced in mining geostatistics for estimating 
a spatial variable from its scattered measurements (Matheron 1962). We will see 
in the next section that variogram is at the center of classical geostatistical meth-
ods (i.e., kriging). Variograms have been covered in a large body of geostatistical 
literature for different disciplines (Atkinson 2010; Caers 2005; Deutsch and Jour-
nel 1998; Diggle and Ribeiro 2007; Goovaerts 1997; Isaaks and Srivastava 1989; 
Cressie 1993; Rubin 2003).
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Fig. 6.8  A data site and its 
3 × 3 local neighbor system 
( shaded area) on a 2D regu-
lar lattice grid; alternatively, 
the neighbors of θi  may 
only include its four closest 
neighbors ( open circles)
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6.2.3.1  Definition

Let θ( ) |x x ∈{ }Ω  be a random field and ( , )x xi j  be a pair of points in Ω. We will 
call r x x= −j i  the separation (or lag) vector, x j  the tail and xi  the head points,  
respectively, of the pair. At these two points, θ( )xi  and θ( )x j  are two random 
variables. The variogram of the random field associated with this pair is defined by

 
(6.2.15)

where Var(·)  represents the variance of a random variable, and γ ( , )x xi j  is called 
the semivariogram (note: a subscript θ  will be added to γ  to specify its associated 
random field when other random fields are considered at the same time). Variogram 
measures the statistical difference of a random field at two different locations. In 
general, it depends on both xi  and x j , but for a second-order stationary random 
field defined by (6.2.3), the semivariogram may be simplified to γ ( )r . In this case, 
the two statistics, γ ( )r  and C( )r , are related by

 
(6.2.16)

where C( )0 2= σ  is the constant variance. Figure 6.9 plots γ ( )r  and C( )r  as func-
tions of the separation distance r = r .

From Fig. 6.9, we see that covariance and variogram are two complementary 
concepts: the former measures correlation (similarity), while the latter measures 
the variability (dissimilarity). When the distance between two locations increases, 
the similarity of the random field at the two sites tends to decrease, while their dis-
similarity increases. Unlike the covariance function, however, variogram has two 
advantages. First, variogram can be calculated without knowing the mean; second, 
when the random field is not second-order stationary, the variance of the field could 
become unbounded, in which case C( )r  is undefined but γ ( )r  still exists. Let us 
define some weaker stationarity used in geostatistics:

• A random field is said to be increment stationary if its semivariogram depends 
only on the distance and direction separating any two locations, viz.

 
(6.2.17)

• Further, a random field is said to be intrinsically stationary if it has a constant 
mean, in addition to satisfying (6.2.17). Thus, second-order stationarity is a spe-
cial class of intrinsic stationarity.

( )2 ( , ) ( ) ( ) ,i j i jVarx x x xγ θ θ= −
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For an intrinsically stationary random field, C( )r  may not exist, but γ ( )r  is always 
available. With γ ( )r , the structure of a random field can be characterized by a smaller 
number of statistical parameters.

6.2.3.2  Sample Variogram

In practice, variograms are estimated from sample data. Assume that we have sam-
ples of θ( )x  taken from n data sites. The total number of possible site pairs is 
n n( ) /+ 1 2 . Let n( )r  be the number of all pairs of data sites that have similar 
lags, r r+ ∆ , where ∆r  is a tolerance interval, and let zh k,  and zt k,  be the sampled 
values at the head and tail points of the kth pair, respectively, then a sample or ex-
perimental semivariogram is calculated as a function of r

 
(6.2.18)

Similarly, the sample covariance function is defined as

 

(6.2.19)

where µ̂h  and µ̂t  are sample means of { },zh k  and { },zt k , respectively. Comparing 
(6.2.18) and (6.2.19), we can clearly see that (̂ )γ r  is easier to calculate than ˆ( )C r  
because the former does not involve sample means. Note that zh k,  and zt k,  can be 

(̂ )
( )

( ) ., ,

( )

γ r
r

r

= −
=
∑1

2
2

1n
z zh k t k

k

n

ˆ( )
( )

( ˆ )( ˆ ),, ,

( )

C
n

z zh k h t k t
k

n

r
r

r

= − −
=
∑1

1

µ µ
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axis) are complementary 
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measurements of different types of physical variables, in which case (6.2.18) gives 
the so-called cross-variogram.

6.2.3.3  Variogram Models

Once an experimental semivariogram is obtained, we can fit a parametric vario-
gram model to it. In fact, this is a required step for obtaining kriging estimates. For 
isotropic random fields, variogram models are commonly characterized by three 
parameters:

• Nugget effect (υ ), which represents uncorrelated small-scale variability. When 
r is small but the sample variogram (̂ )γ r  is not close to zero, the nugget effect 
parameter should be considered. Its effect is to add a discontinuity to γ ( )r  at 
r = 0.

• Sill, which is the upper bound of γ ( )r . In the absence of nugget, sill is equal to 
the variance.

• Range ( l), which represents the large-scale correlation. It is defined as the mini-
mum separation distance that γ ( )r  becomes equal or nearly equal to the sill 
(more than 95 % of the sill). In other words, when the distance between two 
points is larger than l, the random field at these two points can be effectively 
treated as uncorrelated.

Note that not all variograms have sill and range. In the following, we list several 
most commonly used variogram models in the geostatistics literature. When the 
sample variogram shows the existence of a sill, we can choose one of the following 
basic models:

• Exponential model:

 (6.2.20)

• Gaussian model:

 (6.2.21)

• Spherical model:

 

(6.2.22)
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When the sample variogram shows no sill and the random field is increment station-
ary, we can use the power law model

 
(6.2.23)

When ω > 1, the increments are positively correlated, leading to smooth random 
fields; whereas when ω < 1, the increments are negatively correlated, leading to 
random fields with rugged appearance (Rubin 2003). A demonstration of the power 
law model was given by Gelhar (1986), who showed that the experimental vario-
gram of log-transformed hydraulic conductivity increases as the scale of observa-
tion increases.

When the sample variogram shows evidence of small-scale variability, we need 
to use the nugget effect parameter to account for it. For example, the exponential 
model having a nugget effect can be written as

 

(6.2.24)

As a matter of fact, new variograms can be generated by combining the basic vario-
gram models described in the above.

For statistical anisotropic random fields, the sample variogram will have differ-
ent correlation ranges along different directions. For example, in geological set-
tings, the range in the vertical direction is often significantly shorter than that in the 
horizontal direction. In this case, we may simply replace h r l= /  in the fundamen-
tal models (except for the power model) by

 
(6.2.25)

where ( , , )r r rx y z  and ( , , )l l lx y z  are components of separation vector r and ranges 
along the three coordinate directions, respectively.

Figure 6.10 compares three variogram models. The exponential model exhibits 
stronger persistence in correlation than the other two. The Gaussian model, on the 
other hand, produces smooth spatial variations. In practice, the selection of an ap-
propriate model is not easy because of insufficient data and unavoidable measure-
ment errors. To a large extent, it is determined by the modeler based on his/her sub-
jective judgment. Once a variogram model is selected, the variogram parameters, 
such as υ σ ω, , , , ,2

1 2 3l l l a  and , can be estimated by solving a least-squares problem 
to fit the model output with the sampling variogram. Many geostatistical software 
packages, such as GSLIB (Deutsch and Journel 1998) and GSTAT (Pebesma 2004), 
offer the capability to fit the variogram parameters automatically for user-selected 
variogram models.
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6.2.3.4  Variogram Model for Categorical Variables

So far, we have focused on variograms of continuous random variables. Many at-
tributes, such as rock facies or land use/land cover types, are categorical in nature. 
For such variables, we may define an indicator spatial random function (Goovaerts 
1997; Journel and Isaaks 1984)

 

(6.2.26)

where 1 …= , ,k K  represent different classes or categories of an attribute. In other 
situations, we may want to digitize a continuously varying parameter into pixels or 
clusters and use an indicator to label each group

 

(6.2.27)

where ∆k  ( 1 …= , ,k K ) represent nonoverlapping ranges. Equation (6.2.27) is 
particularly useful for geophysical and remote sensing applications, where the 
physical parameter under study often corresponds to a range of signals in the 
frequency domain. In either case, the following indicator semivariogram can be 
defined

 
(6.2.28)
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Fig. 6.10  Basic variogram 
models. The nugget effect is 
set to 0, and sill and range 
values are both set to 1.0
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Analogous to variograms for continuous random variables, (6.2.28) measures con-
tinuity of an indicator variable. Thus, the greater the indicator variogram value, the 
less connected a class is in space. Similarly, the indicator cross-variogram can be 
defined between two classes as

We see that the indicator approach is nonparametric in the sense that it does not 
require a prior model, nor does it require estimation of the parameters of PDFs. 
Applying indicator statistics requires the ability to define K cutoff values in an un-
ambiguous manner, which is not always straightforward. To facilitate the use of 
indicator statistics in parameter estimation or geostatistical simulation, the concept 
of transition probability is introduced which, similar to its counterpart in MCMC, 
defines the conditional probability that a class occurs at one (unsampled) location 
given a different class is observed at another location

In the context of geologic facies modeling, Carle and Fogg (1997) related transition 
probability to facies volumetric proportions, mean lengths, and juxtapositional ten-
dencies (i.e., the tendency of facies occurring adjacent to each other), which essen-
tially provide a multipoint statistical framework for simulating facies distributions. 
More details on multipoint statistics will be given shortly in Sect. 6.2.5.

Example 6.3 Variogram of a Satellite Image
Satellite imagery has become an indispensable resource for EWR applications. As 
satellites fly by physical objects, they register digital images at their own detection 
resolution. Each pixel of the image has a digital number (or pixel value) which may 
correspond to, for example, the elevation or reflectivity of the object as seen by 
the satellite. Analyses of the image patterns can help to characterize the roughness, 
regularity, symmetry, and uniformity of the image. There is a tremendous interest 
in relating satellite data to distributions of physical attributes either at or below the 
spatial resolution of a satellite.

Variograms can be used to parameterize the spatial distributions of digital num-
bers. Figure 6.11a (left) shows a scene acquired by the Landsat-7 satellite (http://
landsat.usgs.gov), which remotely senses land coverage. The scene has a size of 
400 × 640 pixels (size reduced for visualization) and corresponds to a mountain-
ous region. We now perform variogram analysis on a part of the image (Fig. 6.11b, 
right), which has a size of 200 × 200 pixels and corresponds to a small foothill town. 
The resolution of each pixel is 15 m. The sample variogram of the digital numbers 
is constructed as

 
(6.2.29)
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where DN  denotes the digital number. Figure 6.11b shows the resulting sample 
variogram for two orthogonal directions. Both variograms show a rather quick loss 
of correlation with separation distance, although the correlation in the N-S direction 
is slightly stronger than that in the E-W direction, reflecting the spatial orientation 
of the township. Both variograms were fit using an exponential model with the 
same nugget effect, but slightly different ranges. 

6.2.3.5  Modeling Space-Time Processes

Many physical processes in EWR modeling exhibit both spatial and temporal vari-
ability. Examples include precipitation, vegetation, terrestrial water storage, and 

Fig. 6.11  a A scene from Landsat-7 ( left). The extracted subarea ( right) has a size of 200 × 200 
pixels and is the subject of variogram analysis. b Variograms for N-S and E-W directions
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surface ozone levels. The geostatistical approach to modeling such physical quan-
tity is to define a space-time stochastic process θ( , )x t . The notion of space-time 
process is necessary when time cannot be simply treated as another dimension or 
when observations from different times cannot be assumed as realizations from the 
same underlying spatial process. Similar to (6.2.15), a general variogram can be 
defined according to

 
(6.2.30)

where the subscripts s and t denotes space and time, respectively. The space-time 
process is spatially stationary if γst  is a function of separation vector x xi j−  only, 
and temporally stationary if γst  only depends on time lag t t1 2− .

In the simplest case, the space-time process θ( , )x t  is assumed separable and 
can be modeled via either an additive or product model (assuming the mean is de-
terministic)

 (6.2.31)

in which S and T are uncorrelated stochastic process. For example, variations in 
groundwater well levels may be decomposed as intrawell variations superposed 
on top of a purely temporal regional variation. In the case of stationarity, possible 
separable covariance models are

Additive model:

 (6.2.32)

Product model:

 (6.2.33)

Product-sum model:

 (6.2.34)

where r  and τ  are separation vector and temporal lag, respectively. The corre-
sponding variograms can be derived easily.

A nonseparable stationary covariance model that is widely used today was pro-
posed by Cressie and Huang (1999)

where σ 2  is the variance of the space-time process, a and c are nonnegative scal-
ing parameters, β  is a space-time interaction parameter, and δ  is either one or 
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two. Clearly, when β = 0, the Cressie–Huang model degenerates into a separable 
model. Gneiting (2002) proposed another general nonseparable covariance model

in which σ 2  is the variance of the space-time process, α  and κ  are smoothness 
parameters in (0,1], β  is a space-time interaction parameter in (0, 1], and a and c 
are nonnegative scaling parameters. In general, nonseparable covariance models 
are more flexible and realistic than separable covariance models, but require more 
consideration in model selection and more samples. Additional discussion on spa-
tial and temporal statistics can be found in (Kyriakidis and Journel 1999; Gneiting 
et al. 2007; Cressie and Huang 1999; Stein 2005).

6.2.4  Geostatistical Interpolation

Geostatistical interpolation attempts to estimate the values of a random field at un-
observed locations based on scattered point measurements. Various geostatistical 
interpolation algorithms, better known as kriging algorithms, have been developed 
for performing spatial interpolation on different types of random fields. The build-
ing block of kriging algorithms is variogram, which has been described in the previ-
ous section. In this section, we will first give a brief introduction to various kriging 
algorithms. Then we show how kriging can be used effectively as a parameteriza-
tion method for inversion. For the history, theory, algorithms, and applications of 
geostatistics, readers may refer to a large number of related monographs and text-
books (e.g., Cressie 1993; Deutsch and Journel 1998; Goovaerts 1997; Isaaks and 
Srivastava 1989; Stein et al. 1999; Ripley 2004).

6.2.4.1  Simple Kriging

Simple kriging (SK) provides the simplest geostatistical interpolation algorithm. Let 
us assume that the underlying random field is second-order stationary with a known 
mean. Let { }xi i

m
=1  denote locations in a spatial domain Ω  where the random field 

θ( )x  is observed. The SK estimator for θ( )x  at an unobserved location x0  is a 
linear combination of observed values

 
(6.2.35)
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where λi
0  are SK weights associated with x0 . To estimate the unknown weights, 

the SK minimizes the mean square error

 
(6.2.36)

After substituting (6.2.35) into (6.2.36) and some algebraic manipulations, we ob-
tain the following equation

 
(6.2.37)

The SK weights can be solved by minimizing (6.2.37), which yields the so-called 
SK system of equations

 
(6.2.38)

where = −( , ) ( )i j i jC Cx x x x  because of stationarity. From (6.2.38), we see that 
(i) the SK system of equations is only a function of measurement locations, but not 
the actual measurement values; and (ii) only the right-hand side of the equations 
needs to be evaluated for each new estimation location x0. After obtaining the SK 
weights, we can compute the SK variance as

 
(6.2.39)

which quantifies the reduction in uncertainty due to measurements. Note that (i) 
the SK variance is not a measure of spatial variability and (ii) the assumption of 
stationarity is not required for SK, but is widely made in practice.

6.2.4.2  Ordinary Kriging

Unlike the SK, ordinary kriging (OK) does not require that the mean be known ex-
plicitly. If θ( )x  can be modeled as an intrinsically stationary random field Ω  that 
satisfies (see also Sect. 6.2.3)

 
(6.2.40)
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then we can apply OK. Again, let θ θi i i m= ={ }( ) | , , ,x 1 2  be a set of measure-
ments of θ( )x  and we would like to estimate θ θ0 0= ( )x  for any unobserved site 
x0 . As in the SK, we parameterize the unknown as a linear combination of mea-
sured values

 (6.2.42)

where 0
0λ λ= ( )i i x , i m= 1 2, , , , is a set of OK weights to be determined. We 

also impose the following constraint on the OK weights so that the unknown mean 
can be removed

 (6.2.43)

To solve for λi
0, we again minimize the MSE

 (6.2.44)

Similar to the SK, we can expand the MSE using (6.2.42)

 

(6.2.45)

Because

where γ γi i0 0= −( )x x , γ γj j0 0= −( )x x , and γ γij i j= −( )x x , (6.2.45) can be 
rewritten as

 

(6.2.46)

The advantage of (6.2.46) is that spatial data can be more readily fitted to a var-
iogram model than a covariance model. Minimization of (6.2.46) with the linear 
constraint (6.2.43) is equivalent to minimizing the following Lagrange function
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where η  is a Lagrange multiplier. Using the necessary condition of minimization 
∂ ∂ =L i/ λ0 0  (i m= 1 2, , , ) and ∂ ∂ =L / η 0, we obtain the OK system of equa-
tions

 

(6.2.48)

from which the m + 1 unknowns can be determined. Substituting the solution 
λi i m0 1 2 ( , , , )=   into (6.2.42), we obtain the OK estimator for x0. OK is a best 
linear unbiased estimator (BLUE) and has the minimum variance of estimation 
given by

 
(6.2.49)

Note that we use the same notations to denote the weights of SK and the weights 
of OK, but their values actually are different. OK follows naturally from variogram 
analysis and its weights always sum up to one, while the SK weights do not satisfy 
such constraint.

Kriging assigns larger weights to nearby measurements because variogram in-
creases with the separation distance. Nevertheless, kriging is a global interpolation 
method, and all measurements are used in determining the interpolated value of a 
point. When θ( )x  is not an intrinsically stationary random field in the region Ω, 
we cannot obtain the ordinary kriging estimates globally unless the region can be di-
vided into several zones such that θ( )x  satisfies the intrinsic stationarity condition 
in each zone. For example, the region Ω  may represent an aquifer with a layered 
structure and θ( )x  is weakly stationary in each layer. In this case, we can build 
separate kriging estimators for different layers.

6.2.4.3  Regression Kriging

For a general nonstationary random field, we may use universal kriging (Cressie 
1993; Marsily 1986) to filter out its spatially varying mean. But, regression krig-
ing (RK) (Hengl et al. 2004; Odeh et al. 1995; Kitanidis 1997) is not only a more 
elegant method to deal with variable mean, but also an appropriate parameterization 
method for inverse solution.

A nonstationary random field, θ( )x , can be decomposed into two parts, a deter-
ministic trend (or drift) µ( )x  describing the large-scale variability of the field, and a 
random fluctuation part ε( )x  describing the small-scale variability of the field, viz.

 (6.2.50)
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The RK estimation of θ( )x  is conducted in two stages. First, the trend is estimated 
by using a deterministic regression method. Second, the residuals are estimated by 
a statistical method. Assume that the trend is approximated by a parametric model 
ˆ( , )xµ β , where β  is a set of model parameter, and the fluctuation can be estimated 
by kriging (̂ , )xε ψ , where ψ  is a set of hyperparameters appearing in the selected 
variogram model. We have the following algorithm for RK:

1. Use GLS to identify model parameters β̂  through fitting measurements 
{ ( ) | , , , }θ θi i i m= =x 1 2  using a deterministic trend model ˆ( , )xµ β .

2. Calculate the residuals by removing the trend, ˆˆ( , )i i ixε θ µ= − β  for 
i m= 1 2, , , .

3. If the residual distribution is nearly normal with zero mean, calculate the sample 
variogram of the residuals, fit it to a selected variogram model, and identify the 
variogram parameters ψ̂.

4. Find SK or OK estimation of ˆ ˆ( , )xε ψ .
5. The estimated RF is given finally by ˆˆ ˆ ˆ ˆ( ) ( , ) ( , )x x xθ µ ε= +β ψ .
6. The variance of estimation is given by summation.

 (6.2.51)

For Step 1, either OLS or GLS may be used to perform linear regression. If the latter 
is used and the residuals are correlated, it may be necessary to perform Steps 1−4 
in an iterative manner because estimation of β̂  in Step 1 may require knowledge 
of the covariance of the residuals, which can change after Step 3. For more details 
and available software packages on RK, readers may refer to Hengl et al. (2004).

6.2.4.4  Indicator Kriging

Indicator kriging (IK) is used for interpolating categorical variables defined in 
Sect. 6.2.3. In particular, IK estimates the conditional probability that a category 
occurs at an observed location for the given information. Let Ik ( )x  be an indica-
tor random function of an attribute defined in (6.2.26) and its measured values at 
{ , , , }x x x1 2  m  be { ( ), , , },I I i mk i k i= =x 1 2 . Then at an unobserved site x0, 
Ik ( )x0  can be estimated by OK

 
(6.2.52)

where OK weights { }λi
0  depend on the semivariogram of Ik ( )x  defined in (6.2.28), 

which is identified by fitting measured values to a variogram model. The value of 
ˆ ( )Ik x0  is between 0 and 1, corresponding to the probability of the attribute at x0 
falling into the category k.

Indicator kriging can also be used to estimate the probability that the value of 
a continuous distribution θ( )x  (e.g., concentration of a contaminant) at a target 
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point x0  exceed a threshold value θc  (e.g., maximum contaminant level), given 
measured values at m sites { , , , }x x x1 2  m  around x0. In this case, we define an 
indicator random function I1( )x  for θ( )x  such that

Measured values { ( ), ( ), , ( )}θ θ θx x x1 2  m  of θ( )x  are then transferred into “mea-
sured values” { ( ), ( ), , ( )}I I I m1 1 1 2 1x x x  of the indicator random function I1( )x , 
and the value at a target point x0 , ˆ ( ) [ ( ) ]I p1 0 0 0x x= >θ θ , can be estimated by the 
indicator kriging (6.2.52) for k = 1.

Besides indicator kriging, there are other variants of kriging, such as disjunctive 
kriging, multi-Gaussian kriging, lognormal kriging, and so forth. These methods 
first transfer the measured data of a non-Gaussian distribution into Gaussian dis-
tribution and then use the OK to find the interpolation results. Note that in our 
discussion so far we have assumed that all measurements are used. To make the 
calculations faster, practical algorithms often only consider observations located in 
a local neighborhood of each estimation site such that the size of kriging system of 
equations is significantly reduced.

Detailed discussion of the theory and available software packages on various 
kriging algorithms can be found in Goovaerts (1997), Deutsch and Journel (1998) 
(GSLIB), Webster and Oliver (2001), Bivand et al. (2008) (GSTAT in R), and Remy 
et al. (2009) (Stanford Geostatistical Modeling Software or SGeMS). As an interpo-
lation method, kriging has found interesting applications in many fields, including 
EWR (Knotters et al. 2010).

6.2.4.5  Kriging for Parameterization

The main purpose of introducing kriging in this chapter is to use it as a technique to 
parameterize a random field for inversion. In its general form, kriging parameter-
izes a random function as a linear combination of its measured values

 
(6.2.53)

where the kriging weights { ( , , )}i xλ ν ψ  are obtained by solving one of the kriging 
systems introduced before, such as the OK in (6.2.48). Equation (6.2.53) suggests 
that the kriging coefficients play the role of basis functions, in which the shape 
parameters 1 2= { , , , }mx x xν  are the basis points of interpolation, and ψ  is a set 
of statistical parameters defining the random field, such as parameters defining a 
variogram model. To obtain an estimate of (̂ )θ x , we need not only measurements 
{ ( ), ( ), , ( )}θ θ θx x x1 2  m , but also the statistical parameters ψ.
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In Sect. 6.2.2, we presented three cases of using interpolation methods for parameter 
estimation. Here, we describe how kriging fits into three cases. For Case 1, the unknown 
parameter is estimated with its real measurements { ( ), ( ), , ( )}θ θ θx x x1 2  m

. As an 
interpolation method, (6.2.53) can be used directly for this case, where ψ  is estimated 
from the same set of parameter measurements. In fact, we have learned in the last sec-
tion about fitting a variogram model using measurements. Because kriging satisfies the 
requirements presented in Sect. 6.2.1, it is qualified as a parameterization method for 
inversion. For Case 2 of Sect. 6.2.2, { ( ), ( ), , ( )}θ θ θx x x1 2  m  in (6.2.53) are con-
sidered as hypothetical measurements which, together with statistical parameters, are 
estimated indirectly from the measurements of state variables by inverse solution. While 
for Case 3 of Sect. 6.2.2, hypothetical measurements and statistical parameters are es-
timated when both parameter measurements and state observations are available. We 
will return to these topics in the next chapter when introducing the cokriging and pilot 
point methods.

6.2.5  Multipoint Statistics

Parameterization of spatial patterns is often needed in many EWR applications. A 
primary reason is to better characterize the spatial distribution of attributes (e.g., 
rock facies and soil types) which, in turn, can help improve the accuracy of a distrib-
uted model. In geoscience, the observations that are available for parameterization 
and simulation are often classified as either “hard data” or “soft data.” The former 
refer to direct observations such as borehole logs and outcrop analyses, whereas 
the latter refer to indirect observations obtained via noninvasive technologies such 
as geophysical surveys or x-ray computed tomography. All this prior information 
can be used to develop a conceptual model of material pattern distributions, as well 
as to derive statistical controls, which are statistics of geometric measures such 
as volumetric proportions, shape lengths, and juxtapositional relationships of dif-
ferent material types (see also our discussion related to transition probability in 
Sect. 6.2.3). Now the question is how to factor the derived statistical controls and 
conceptualization of pattern distributions into parameterization.

Many of the traditional geostatistical descriptors introduced in previous sections 
are insufficient for creating realistic spatial patterns. Variograms explore two-point 
statistics of variates and covariates (e.g., geophysical data) via covariance or cross-
covariance. Therefore, by way of construction, variograms do not contain much 
geometrical information and will have difficulty in simulating complex topologi-
cal patterns (i.e., curvilinear fluvial channels or micropore structures of materials). 
Although the indicator variograms make an extra effort toward this direction by 
providing two-point statistics of categorical variables, they cannot easily fuse other 
types of statistic controls and, thus, tend to yield unrealistic or overly smooth spatial 
structures. It is also known that two structures having distinctively different geom-
etries may have similar variograms. A prerequisite for structure imitation is to honor 
sample statistics of geometric measures, which can serve as both guidance and con-
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straints during simulations. For example, the correct modeling of juxtapositional 
relationship is crucial for honoring the long-range connectivity of spatial structures. 
In the geostatistics literature, object-based algorithms have long been used for struc-
ture imitation (Koltermann and Gorelick 1996); however, object-based models suf-
fer from not being able to condition to local data of different volumes. Two statis-
tical methodologies have been independently developed for circumventing these 
problems by combining the strengths of variogram- and object-based techniques: 
the Markov chain transition probability approach (Carle and Fogg 1996, 1997) and 
the pixel-based, multipoint statistical approach (Journel 1992; Strebelle 2000), both 
are rooted in MCMC. The former is parametric, whereas the latter is nonparametric. 
We will describe the pixel-based multipoint statistical approach below.

As its name suggests, the multipoint statistical approach parameterizes joint cor-
relations among multiple points or patterns. The application of multipoint statisti-
cal approach follows three main steps. The first step is development of training 
image(s), which can be in the form of either continuous or categorical variables. 
Training images are conceptual assemblages of patterns that reflect the general as-
pects of spatial structures or textures expected to be present in actual objects and 
need not have any local accuracy (Caers and Zhang 2004). For example, a training 
image can be drawn by a geologist based on his/her interpretation of field obser-
vations or generated using an object-based modeling technique. In the Bayesian 
sense, the role of training images is equivalent to prior PDFs for generating random 
samples which are, in the current context, the local patterns. The training image 
concept implicitly assumes stationarity and ergodicity, meaning different training 
images need to be developed for different depositional environments. An inher-
ent difficulty of using multipoint statistics is related to the parameterization of the 
training image. Mariethoz and Kelly (2011) presented a parameterization method 
based on random transformation. It enables the generation of complex geological 
images whose spatial structure can be parameterized by adjusting the statistics of 
the random transformations. Michael et al. (2010) combined multipoint statistics 
with geologic-processing models to construct realistic 3-D realizations conditioned 
to data. Note that the local accuracy is enforced during the simulation stage through 
conditioning patterns to data, as we will see later,

In the second step, the local patterns manifested by a training image are extracted 
using a template consisting of n + 1  pixels, where the location of the center of the 
template is denoted by x0  and the locations of all other n  offset pixels (or voxels if 
3D) are denoted by x j  ( 1 …= , ,j n ). A template can be defined as

 (6.2.54)

where rj  is the separation vector. Figure 6.12 illustrates a 2D binary-phase training 
image (left) and a local pattern captured by a 7 × 7 square template (right). Tem-
plates of different shapes and sizes can be used, depending on the problem at hand. 
Because a template includes the relative positions of all neighbors of x0 and their 
values, it is very rich in terms of information content. Scanning of the training im-
age using a template   results in a pattern set (or database) Ω

0 0 1 …= + ={ : , , , },j j j nx x r x
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 (6.2.55)

where N  is the number of central locations in the training image. Given Ω , the 
probability of occurrence of a particular local pattern, as seen by the template  , 
can be determined by

 (6.2.56)

where c patn( )  is the number of replicates of a local pattern, patn , in Ω . It is im-
portant that Ω  consists of enough replicates of different local patterns so that the 
calculated probabilities are not biased. Here replicate patterns refer to all patterns 
having the same geometry and values. Equation (6.2.56) can be extended to the gen-
eral case of K  different categories, where c patk n( ) 1 …=( , , )k K  can be defined 
to count the number of replicates of patn  whose central pixel is category k . To be 
more precise, the training image is first converted to K  binary maps, each original 
pattern is represented by K  sets of binary patterns, and from which the probability 
in (6.2.56) can be calculated. This completes the second step of the multipoint sta-
tistical approach and, also, the parameterization stage.

The third step of multipoint statistical approach is sequential simulation, where 
at each pixel a pattern is looked up and extracted from Ω  to match the existing 
pattern in a neighborhood, which is determined by previously simulated pixels and/
or conditioning data.

So far we have talked about classifying and storing distinct local patterns in a 
pattern database without specifying how. Although a pixel-wise comparison can be 
used to determine the similarity between two patterns, it is not very efficient when 
the number of patterns is large. Alternatively, a scoring system may be used

 

(6.2.57)

where w j( )r  are weighting coefficients and T j( )x r x0 0+  are values of the pix-
els. Equation (6.2.57) can be regarded as an image filter and the role of w j( )r  in 

1 …Ω = ={ ( ), , , },jpat j Nx

P pat c pat Nn n( ) ( ) / ,=

S w Tj j
j

n

= +
=
∑ ( ) ( ),r x r x0 0

1

Fig. 6.12  Illustration of a a binary training image and b a 7 × 7 template used to scan it
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(6.2.57) is similar to that of the weighting matrix in MRF. A single score may not be 
sufficient to identify all geometrical characteristics of a pattern. Multipoint statisti-
cal algorithms typically employ more than one filter. This is a rather unique aspect 
of the multipoint statistical approach because the filters act as dimension reduction 
techniques: an n-dimensional pattern is translated to only a small number of filter 
scores. Zhang (2006) defines three directional filters:

• The average filter

 (6.2.58)

where m  is the half-width of the template (number of pixels) and f1  ranges from 
0 to 1.

• The gradient filter,

 (6.2.59)

which ranges from −1 to 1.

• The curvature filter,

 (6.2.60)

which ranges from −1 to 1.
For a 2D template with two principal directions (e.g., N-S and E-W), (6.2.58)–

(6.2.60) define six filters; hence, the dimension of a template is reduced from n  
to 6. Data clustering algorithms (e.g., k-means) can then be used to group similar 
patterns into classes and store them in a pattern database for use during simulation. 
This filter-based algorithm has been implemented in the multipoint statistical simu-
lator, FILTERSIM, which is included in the open-source geostatistical simulation 
package, Stanford Geostatistical Modeling Software (SGeMS) (Zhang 2006; Wu 
et al. 2008; Remy et al. 2009). Complications arise when correlation exists at mul-
tiple scales. If a single template is used and the size of the template size is small, the 
long-range continuity is not reproduced well; on the other hand, if the template size 
is too large, the number of “orphans” in Ω  (i.e., local patterns without replicates) 
increases dramatically. A practical trick is to apply multiple nested templates to 
capture pattern structures at different scales (Zhang 2006).

Scanning and storing patterns can be computationally demanding when the size 
of a training image is large. Mariethoz et al. (2010) proposed to directly sample the 
training image (in a local window) for a given pattern, instead of storing all training 
pattern probability values in a database a priori. The “on-demand” direct sampling 
method is more efficient than the database approach and can be used to simulate 
both categorical and continuous random variables.
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The multipoint statistical methods have been used in a large number of EWR 
applications, including subsurface flow and transport (Sun et al. 2008; Weissmann 
et al. 2002; Doughty and Pruess 2004; Caers 2003; Feyen and Caers 2006; Sun et al. 
2009), groundwater and surface water interaction (Zhou et al. 2013; Fleckenstein 
et al. 2006), and remote sensing (Cao et al. 2011; Jha et al. 2013).

The multipoint statistical approach represents a good example of the increasing 
use of dimension-reduction techniques in parameterization of distributed variables. 
Unlike scalar statistical parameters in the variogram case, local patterns are vector 
data and the classification of these patterns becomes a key part of the parameteriza-
tion technique. Like the variograms, the multipoint statistical parameterization does 
not provide a differentiable relationship between the input (i.e., training image) and 
the output (i.e., realizations of the random field). Such relationship, if exists, can 
improve the efficiency of gradient-based parameter estimation algorithms. We will 
revisit this issue in Sect. 6.4. In the next section, we formally introduce dimension 
reduction techniques.

6.3  Linear Dimension Reduction

The process of dimension reduction is closely related to finding the intrinsic dimen-
sion of a high-dimensional dataset, such as the pattern database in the previous 
section. Loosely speaking, the intrinsic dimension of a dataset corresponds to the 
minimum number of features (variables) that are necessary to explain the observed 
high-dimensional data or to represent a high-dimensional variable. A key perfor-
mance criterion of dimension reduction techniques is how well the information 
content and/or geometry of the original dataset can be retained or how to identify 
the intrinsic dimension. In this section, we introduce several commonly used linear 
dimension reduction techniques. For detailed discussions on these techniques, read-
ers may refer to Jolliffe (2002) and Härdle and Simar (2012).

6.3.1  Principal Component Analysis

Principal component analysis (PCA) is one of the oldest and, yet, still the most 
widely used linear dimension reduction techniques (Hotelling 1933). Historically it 
has been reinvented a number of times and is also known under names such as em-
pirical orthogonal function (EOF), the discrete Karhunen–Loève (KL) transform, 
and proper orthogonal decomposition (POD) in different application fields.

Let us consider an m-dimensional random variable X . In a model reduction 
scenario, X  may consist of m state variables (e.g., streamflow from the outlets of m 
subbasins or simulated groundwater water levels at m locations). In a data reduction 
scenario, X  may be a large sample dataset of multiple variables taken at different 
measurement times. Because of correlation among variables, the information in X 
may be redundant. The purpose of PCA is to find a small number of principal com-
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ponents (PCs) (see text below for definition) to account for most of the total vari-
ance in the original X. Mathematically, the process of finding PCs is equivalent to 
transforming X  into another random variable Z  such that (i) the dimension of Z  is 
lower than the dimension of X, (ii) the components of Z  are independent of each 
other (i.e., the covariance matrix of Z  is diagonal), and (iii) the components of Z  
are ordered according to their variances from the largest to smallest.

6.3.1.1  Finding the Principal Components

Let us assume we have n samples of an m-dimensional random variable X  and 
store them as an m n×  sample matrix Xs . Without loss of generality, we assume 
that the sampling mean of each component has already been removed from the data. 
Thus, the m m×  sample covariance matrix is given by

 
(6.3.1)

Our purpose is to find an orthogonal transformation matrix P such that the sample 
covariance Cz  for dataset Z PXs s=  will become a diagonal matrix

 

(6.3.2)

Because X Xs s
T  is a symmetric square matrix, its eigenvalue decomposition (see 

Appendix C) is

 (6.3.3)

where Q  is an orthogonal matrix with the eigenvectors of X Xs s
T  as its columns, 

and Λ  is a diagonal matrix with the eigenvalues ( λ λ λ1 2, , , m ) of X Xs s
T  as its 

entries. The eigenvalue decomposition problem can be performed by using any lin-
ear algebra package, such as ARPACK (Lehoucq et al. 1998). The Matlab’s eigs 
function provides an implementation of the ARPACK, and R’s eigen function 
offers similar capability. By default, the eigenvalues are ordered from the largest 
to smallest.

Setting the transformation matrix P Q= T  and substituting =T T
s sX X P PΛ  

into (6.3.2), we obtain a diagonal matrix

 
(6.3.4)

In the above equation, P PT = −1  is used because P  is an orthogonal matrix (see 
Appendix C). The eigenvectors of X Xs s

T  are called PCs of Xs . The above deriva-
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tion shows that when transformation matrix P is formed with the PCs as its rows, 
the covariance matrix of dataset Z PXs s=  becomes a diagonal matrix, and the ele-
ments on the diagonal are the variances of Xs associated with the PCs ordered from 
the largest to the smallest.

PCA provides a representation of correlated data using uncorrelated orthogonal 
PCs. If we consider PCs as orthogonal basis functions, then PCA provides a linear 
parameterization method in the form of (6.1.3).

6.3.1.2  Connection with SVD

SVD was introduced in Chap. 2 in the context of regularization of a linear system. 
There is a close relationship between PCA and SVD. Given a sample matrix Xs , 
let us define a new n m×  matrix Y such that

 
(6.3.5)

It is easy to show that Y Y X X Cx
T

s s
T

n
=

−
=

1
1

. Let the SVD of Y  be ,TU VΣ  

then 2=T TY Y V VΣ  or 21= −( )T T
s s nX X V VΣ . Therefore, V  is equal to Q  in 

(6.3.3), and the columns of V  are the PCs of Xs. Because SVD is more general 
than eigenvalue decomposition (e.g., SVD exists for any matrix, not just square 
matrices; singular vectors are always orthogonal) and is easier to calculate, SVD is 
usually used behind the PCA routines.

6.3.1.3  Dimension Reduction

As mentioned before, the main use of PCA is for dimension reduction. After per-
forming PCA on a sample dataset of X, we may find that a large number of ei-
genvalues have close-to-zero values, indicating information redundancy. Thus, PCs 
corresponding to small eigenvalues can be removed, which means that the dimen-
sion of X can be reduced from m to an intrinsic dimension k without losing major 
features of the dataset. During this reduction process, all components that are non-
independent or caused by noises are eliminated. Recall that the same concept is be-
hind TSVD introduced in Chap. 2, where the purpose there was to improve stability 
of inverse solutions by truncating small singular values.

One method for determining the intrinsic dimension is to use scree plot, which 
is simply a plot of all eigenvalues in a decreasing order. If the scree plot reveals an 
L -shaped curve, the eigenvalue corresponding to the turning point of the curve can 
be chosen for the intrinsic dimension, such that only PCs corresponding to eigen-
values greater or equal to the turning point are kept. Another estimation method is 
to choose k PCs such that

Y X=
−

1
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(6.3.6)

where α  is a threshold specified by the user and λi  are eigenvalues. There are other 
more involved methods for estimating the intrinsic dimension of a high dimensional 
dataset, including the geometric methods (Kégl 2003) and the probability-based 
methods (Levina and Bickel 2004) that usually require a large number of data.

In summary, PCA is a nonparametric linear dimension reduction technique whose 
effectiveness is tied to the validity of its main assumptions: (i) linearity, only linear 
transformation are involved; (ii) second-order statistics, the sample covariance suf-
ficiently captures the probability distribution of X; and (iii) the major features of 
the physical problem can be captured by a small number of PCs corresponding to 
large variances (eigenvalues). PCA cannot incorporate prior structure information. 
PCA is available in many high-level linear algebra or statistical packages such as 
Matlab (pca) and R (princomp).

6.3.2  Factor Analysis

Many environmental datasets, such as surface water monitoring sets, often include 
samples of multivariates from multiple sites. The goal of factor analysis (FA) is 
to find a small set of latent variables to explain patterns of a large set of measured 
variables without losing important information. In statistics, the term latent variable 
is used to refer to an inferred rather than a directly measured variable.

FA was originally introduced in psychology in connection with human intel-
ligence assessment (Spearman 1904). Like PCA, FA is a dimension-reduction 
technique based on second-order statistics. Unlike PCA, which finds PCs that are 
not necessarily interpretable, FA aims to find a small number of factors that are 
physically interpretable and meaningful. FA focuses on discovering the underlying 
structure of a dataset and on revealing any latent variables that cause the observed 
variables to co-vary, rather than simply maximizing the variance. Therefore, FA 
can be especially useful in helping design new experiments or conduct sensitivity 
analysis (see also Chap. 10).

FA assumes that a linear model exists between an m-dimensional random vari-
able X  and a k-dimensional factor vector f,

 (6.3.7)

where µ  is the mean of X , the m k×  matrix L  is called the loadings matrix. In 
the literature, f  is often referred to as common factors and ε  the specific factors. 
FA assumes the following for f  and ε:

• ε   has zero-mean and its diagonal covariance matrix is denoted by Ψ;
•  f  has zero-mean and its covariance matrix is the identity matrix I; and
•  f  and ε  are independent.
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The first two bullets in the above basically require the components of f  and ε  be 
uncorrelated. Using (6.3.7) and these assumptions, we can derive the covariance 
matrix

 (6.3.8)

where LLT  is called common variance, which represents the part of data variance 
that is accounted for by the common factors f ; Ψ  is called specific variance and it 
represents the variance that is not shared by other variables. The greater the specific 
variance of a variable, the less is its relevance in the factor model. In particular, the 
diagonal elements in the above equation give variances

 
(6.3.9)

where σ ij  and lij  are elements of CX  and L, respectively; ψ ii  is the variances 
of ε. The summation term on the right-hand side of the above equation is called the 
communality and is denoted by hi

2. Communalities measure the variances due to all 
common factors. The remaining problem is how to determine the loadings matrix L 
and estimate the specific variance Ψ  through sample data.

Let us denote the sample matrix by Xs. We can use PCA to find the decomposi-
tion =T T

s sX X P PΛ , where the rows of P consists of PCs. By reducing the number 
of PCs to k, we obtain an approximation

 (6.3.10)

where Pk  is a k m×  matrix with the first k PCs of Xs , { , , , }e e e1 2  k , in its rows; 
and kΛ  is a k k×  diagonal matrix with the first largest eigenvalues, { , , , }λ λ λ1 2  k ,  
as its entries. Now the FA equation (6.3.7) can be completely determined. Let the 
loadings matrix be 1 2



/T
k kL P Λ , we then use (6.3.9) to estimate the variance of the 

specified factors

 (6.3.11)

where σ̂ ii  and ĥ ei j jij

k2 2
1

=
=∑ λ  are the sampling variance and the estimated com-

munality of the ith  component, respectively.
From the above discussion we can see the differences between PCA and FA. 

In PCA, the number k of PCs is determined objectively by analyzing the sample 
covariance, whereas in FA the number k of factors is determined somewhat by prior 
knowledge. Due to the existence of specific factors, (6.3.11) shows that FA does 
not discriminate the variance caused by common and specific factors. Therefore, 
the most important factor in PCA may not coincide with the most important factor 
in FA. Moreover, FA can be used to uncover the underlying structure of a model 
(Exploratory FA) or to confirm a proposed structure of a model (Confirmatory FA) 
(Raykov and Marcoulides 2008).
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Another difference between PCA and FA is that PCs are uniquely determined, 
while factor loadings are not unique. In fact, for any orthogonal matrix R, (6.3.7) 
can be replaced by

 (6.3.12)

Nonuniqueness is both a disadvantage and an advantage of FA. For example, we 
can use a rotation transform R to simplify the structure in the loadings matrix, such 
that each factor has a small number of large loadings and a large number of small 
(or zero) loadings (Raykov and Marcoulides 2008). Varimax, developed by Kaiser 
(1958), is a commonly used criterion for orthogonal rotation. It maximizes the vari-
ance of the squared loadings of a factor on all the variables in a factor matrix. After 
a varimax rotation, each component of X  is associated with only one or few fac-
tors, and each factor represents only one or few components. Note that orthogonal 
rotations require factors to be uncorrelated. If the factors are correlated, using or-
thogonal rotation may result in a loss of valuable information. In this case, oblique 
rotations can provide a more accurate solution (Costello and Osborne 2005).

FA is available in most statistical analysis packages, such as Matlab ( factoran) 
and R (factanal).

Example 6.4 Surface Water Quality Data Analysis Using FA
Boyacioglu et al. (2005) presented surface water quality data collected from 17 
monitoring stations located in the Buyuk Menderes River Basin in western Turkey. 
The river basin had been subject to increased pollution due to various anthropogenic 
activities. The Buyuk Menderes River Basin dataset consists of measurements of a 
total of nine variables collected during the high- and low-flow periods of the Buyuk 
Menderes River, namely, electrical conductivity, total organic content, biological 
oxygen demand, chemical oxygen demand, sodium, total coliform, total dissolved 
solids, sulfate, and total Kjeldahl nitrogen. We now use the low-flow dataset to 
demonstrate how FA can be used to reduce the dimension.

The FA proceeded in three steps:

1. First, the raw data were converted to standard normal random variates and then 
a sample covariance (or correlation) matrix of all variables was calculated. The 
raw data should be relatively normally distributed, and the correlation matrix 
should be full rank and positive definite. This requires elimination of dependent 
variables before conducting the FA. If all nine variables were used, the determi-
nant of the correlation matrix would be negative, suggesting linear dependency 
between some variables. While there are several options, we dropped sulfate 
from the analysis. The resulting correlation matrix is tabulated in Table 6.1.

2. In the second step, factors from the correlation matrix were extracted. To deter-
mine the number of necessary factors, the eigenvalues of the correlation matrix 
was calculated (see Fig. 6.13a) and the number of latent factors was set to the 
number of eigenvalues that are greater than one. This is the so-called Kaiser 
criterion in the literature (Simeonov et al. 2003; Raykov and Marcoulides 2008). 
In the current case, the first two eigenvalues account for about 85 % of the total 
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variance. The number of factors is set to two. Note that instead of the Kaiser 
criterion, it is always a good idea to use scree plot to assess the number of factors 
to retain (Costello and Osborne 2005).

3. Finally, the factors were rotated using the varimax method to enhance 
interpretability.

Steps 2 and 3 above were carried out using the Matlab function factoran.
Figure 6.13b plots the two factors for all water quality parameters. Liu et al. 

(2003) classified the significant loadings as (i) strong (> 0.75), (ii) moderate (0.50 
to 0.75), and (iii) weak (0.30 to 0.50) based on absolute loading values. Costello 
and Osborne (2005) suggested that a factor with fewer than three items is generally 
weak and unstable; five or more strongly loading items (0.50 or better) are desirable 
and indicate a solid factor. Using 0.5 as a threshold, we see that the first loading 
factor is significant for electric conductivity, sodium, total dissolved solids, and 
total Kjeldahl nitrogen, whereas the second factor is significant for the rest of the 
parameters. This result has good physical meanings. The first group of parameters 

Fig. 6.13  a Eigenvalues of the correlation matrix used for FA. In this case, the number of factors 
is equal to the number of eigenvalues > 1. b The factor loadings L. A baseline is added to highlight 
the loading values > 0.5 for both factors

 

Table 6.1  Correlation matrix for water quality data, adapted from Table 3 of Boyacioglu et al. 
(2005)
Parameter EC TOC BOD COD Sodium T. Coli TDS Total N
ECa 1.000 0.422 0.540 0.277 0.864 0.536 0.989 0.798
TOCb 0.422 1.000 0.697 0.350 0.584 0.428 0.430 0.586
BODc 0.540 0.697 1.000 0.799 0.583 0.779 0.523 0.696
CODd 0.277 0.350 0.799 1.000 0.233 0.786 0.277 0.554
Sodium 0.864 0.584 0.583 0.233 1.000 0.376 0.890 0.858
T. Coli.e 0.536 0.428 0.779 0.786 0.376 1.000 0.505 0.585
TDSf 0.989 0.430 0.523 0.277 0.890 0.505 1.000 0.845
Total N 0.798 0.586 0.696 0.554 0.858 0.585 0.845 1.000
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can be considered as indicators of the inorganic contaminants, whereas the second 
group is representative of organic contaminants. The findings here also have eco-
nomic implications: instead of monitoring all pollutants, one can set up continuous 
monitoring of a representative parameter from each group as indicators of water 
quality and, therefore, achieve sample reduction and cost savings. ■

The discussion so far may suggest that FA is more of a data modeling approach 
than a method for parameterizing a single random variable per se. However, FA is 
a method of reducing model structures because it manifests the intricate relation-
ship among samples of different random variables in terms of a small set of latent 
variables.

Note that FA is meant for exploratory analyses and the meanings of factors may 
not always be obvious in some applications. The analyst should also keep in mind 
some main limitations of FA, namely, its linearity, potential identification ambigu-
ity, and reliance on distribution normality. The linearity assumption may be lifted by 
replacing the linear model used in (6.3.7) with a nonlinear model, provided that the 
associated identification and distribution normality are handled correspondingly. 
This leads to the general topic of nonlinear parameterization and dimension-reduc-
tion methods.

6.3.3  Dimension Reduction for Inversion

So far we have described PCA and FA, which are common tools of linear dimension 
reduction and have found a wide range of applications in optimal design and con-
trol, imaging processing, and also in the solution of inverse problems. When model-
ing a large-scale distributed system, the inverse solution could become extremely 
difficult because of (1) the high dimensionality of the estimated parameter and (2) 
the high dimensionality of the forward model. The former may cause the inverse 
solution to be ill-posed in nature, while the latter may cause the inverse solution to 
be computationally prohibitive. For these cases, it is critical to choose an appropri-
ate parameterization and dimension reduction method, as we have alluded to at the 
beginning of this chapter. In this section, we show how the SVD-based PCA (or 
POD) may help to achieve such a goal during inversion.

6.3.3.1  Reducing the Dimension of a Parameter Vector

Let us start with the linear inverse problem introduced in Sect. 2.2

 
(6.3.13)

where G is an n m×  matrix, θ  is an m-dimensional parameter vector to be estimat-
ed, and d  is an n-dimensional data vector. Using TSVD introduced in Sect. 2.2.3, 
we can approximate (6.3.13) as

= ,G dθ
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(6.3.14)

where kΣ  is a k k×  diagonal matrix that contains only the k largest singular values 
s s sk1 2≥ ≥ ≥···  and all other small singular values starting from sk+1  are truncated; 
Vk  is an m k×  matrix and its rows are the first k  orthogonal basis vectors (PCs) 
spanning the parameter space; Uk  is an n k×  matrix and its columns are the first 
k orthogonal basis vectors spanning the data space; and the m-dimensional vector 
θ̂  is a pseudo-inverse solution when the first k singular values are retained. Equa-
tion (6.3.14) can be rewritten as

 (6.3.15)

where = ˆT
kVξ θ  is the projection of θ̂  onto a subspace spanned by the first k PCs. 

The problem of estimating the m-dimensional parameter θ  now is reduced to the 
estimation of k-dimensional parameter ξ, and the solution of ξ  is more stable than 
the solution of θ  for reasons mentioned under Sect. 2.2. After ξ  is solved from 
(6.3.15), we have =ˆ

kVθ ξ. Note that ξ  no longer has the original physical meaning 
of θ, and θ̂  is only an approximation of θ  because of the truncation.

If a nonlinear inverse problem can be linearized (see Sect. 2.2.4), the matrix G 
in (6.3.13) becomes J JD

T
D , where JD  is the Jacobian of the nonlinear model. The 

above SVD-based PCA then can be used to reduce the dimension of the estimated 
parameter. But, the linearization error may be amplified after dimension reduction.

6.3.3.2  Reducing the Dimension of Model States

Considering a nonlinear dynamic model governed by a set of ODEs

 
(6.3.16)

where u( )t N∈   is the model outputs and θ  is the model parameters. This equa-
tion can also be seen as a semidiscrete form of transient PDEs after spatial dis-
cretization, in which N is the number of grid nodes (see Chap. 1). Now, we want to 
reduce the dimension of model output from N to k N  such that the forward solu-
tion of the model can be obtained by less computational effort and the efficiency of 
the inverse solution can be improved.

By solving the forward problem (6.3.16), we collect the model state outputs 
(called snapshots) at L different times and form an L N×  data matrix, with each row 
representing a snapshot of the model

 
(6.3.17)
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Applying TSVD to X, we have

 (6.3.18)

Let =ˆ( ) ( )kt tu V ξ , ∈kξ , be an approximate solution of the model and substitute 
it into (6.3.16), we obtain a reduced set of model equations

 
(6.3.19)

After ξ  is solved from this smaller set of equations, we can use ˆ( )u t  as the model 
outputs to calculating the fitting residuals for inversion. However, the efficiency 
of the approach is a problem: the above model reduction process must be repeated 
each time after the unknown parameter θ  is updated because the state matrix X  is 
a function of θ. The TSVD solution in (6.3.18) may be sensitive to the change of θ.

In order to find a robust reduced-dimensional model for all possible parameter 
values in an admissible region, the snapshots should be generated with different 
parameter samples 1 2 ( , , , )Sθ θ θ  taken from the region, leading to an LS N×  
matrix

 (6.3.20)

TSVD is then used to find the PCs of this dataset. Detailed descriptions on POD-
based inversion process can be found in (Cardoso et al. 2009; Kaleta et al. 2011; 
Burkardt et al. 2006). Effective algorithms of reducing the forward solution dimen-
sion for inversion and other applications in groundwater hydrology can be found in 
(McPhee and Yeh 2008; Pasetto et al. 2013).

6.3.3.3  Reducing the Dimension of a Random Field

Let θ( )x  be a random function defined in a spatial region ( )Ω . Its Karhunen–Loève 
(KL) expansion is given by (Ghanem and Spanos 1991)

 
(6.3.21)

where θ ( )x  is the mean, λi  and φi( )x  are the eigenvalue and eigenfunctions of the 
covariance function of θ( )x , and the set { }ξi  are orthonormal random variables 
with zero mean and unit covariance

 (6.3.22)

where δij  is Kronecker delta function. Comparing to (6.1.1), we see that (6.3.21) 
is a special series expansion of a distributed function. The significance of the KL 

= ≈ <<X ,( ).T T
k k k k NU V U VΣ Σ

= ( , ).T
k k

d

dt
V f V

ξ
ξ θ

1 1 1 1 =  X     ( , ), , ( , ), , , , ( , ), , ( , ) .
T

L S L St t t tu u u uθ θ θ θ

θ θ ξ λ φ( ) ( ) ( ),x x x= +
=

∞

∑ i i i
i 1

0, i j iji ξξ ξ δ= =



236 6 Model Dimension Reduction

expansion is that it expresses a random function using two orthogonal sets, one 
consisting of random variables { }ξi  and the other of deterministic basis functions 
φi( )x{ }.

KL expansion (6.3.21) can be obtained from the covariance function. The co-
variance of θ( )x  between any two points x  and ′x , C( , )x x′ , has the following 
spectral or eigendecomposition

 
(6.3.23)

and λi  and φi( )x  are the solution of the Fredholm integral equation of the second 
kind given by

 (6.3.24)

After C( , )x x′  is given, (6.3.24) can be solved either analytically or numerically 
(see Example 6.5), and the KL expansion of θ( )x  is thus obtained.

We are especially interested in the truncated form of KL expansion because it 
provides a reduced-dimension parameterization. Let N∈θ  be the discrete ex-
pression of θ( )x  associated with a grid of N nodes. We want to represent the ran-
dom field using the first k terms of KL expansion. The above equations, (6.3.21), 
(6.3.23), and (6.3.24), can be rewritten, respectively, as

 (6.3.25)

 (6.3.26)

 (6.3.27)

where v x x xi i i i N
T= [ ( ), ( ), , ( )]φ φ φ1 2   is the ith  eigenvector of covariance matrix 

C  and λi  is the corresponding eigenvalue. Equation (6.3.26) is the truncated eigen-
value decomposition of C, where the N k×  matrix Qk  has k eigenvectors {vi} 
(PCs) as its columns. In other words, we obtain the result of PCA again. As in PCA, 
by taking n samples of the random vector θ  and making the data centered (i.e., re-
moving the mean), all PCs of the covariance matrix can be estimated by TSVD, and 
(6.3.25) gives a parameterization or a dimension-reduced approximation

 (6.3.28)

where ∈ˆ Nθ  but ∈kξ . Equation (6.3.28) can be considered as a random field 
generator: we can generate a vector of standard normal random variates ξ  and use 
it to generate a realization of random field θ̂, which can then be used as model input 
for inverse solution or other purposes. For example, such application of KL expan-
sion is behind stochastic ensemble methods to be introduced in Chap. 9.
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There are, however, two issues associated with this KL expansion method. First, 
the number of nodes ( N) may be very large; as a result, performing SVD to find 
the PCs of an N N×  sample covariance matrix may become too expensive, if not 
impossible. Second, the distribution of θ( )x  may not be Gaussian, but the distribu-
tion of θ̂  is always Gaussian; therefore, the approximated random fields are overly 
smooth. To circumvent these issues, we need the Kernel PCA (KPCA) and nonlin-
ear dimension reduction techniques to be introduced in the next section.

Example 6.5 KL Expansion
For certain covariance function families, the solution to the eigenvalue problem 
(6.3.24) can be obtained analytically. For example, let us consider a one-dimension-
al random process with exponential covariance

 
(6.3.29)

where σ 2  and I  are variance and integral scale, respectively; φ( )x  is eigenfunc-
tion; and L  is the domain length. The eigenvalues and eigenfunctions can be found 
from the following two equations (Zhang and Lu 2004)

 
(6.3.30)

and

 
(6.3.31)

where wi  are roots of the characteristic equation

 
(6.3.32)

Equation (6.3.32) has an infinite number of positive roots, which can be sorted in 
ascending order to get eigenvalues in the descending order.

The results are illustrated numerically using L  = 10, σ 2  = 1, and I  = 1. In this 
case, the first four roots of the characteristic equation are 0.2628, 0.5307, 0.8067, 
and 1.0909, respectively, in ascending order. Figure 6.14a shows the corresponding 
eigenfunctions, and Fig. 6.14b compares the covariance function approximated us-
ing the first 4, 10, and 50 terms of the KL expansion. The true covariance function 
is shown with the solid line. The long-range portion of the covariance curve (i.e., the 
low-frequency part in the frequency domain) is better approximated than the short-
range portion. As the number of KL expansion terms increases, the approximation 
of the short-range part gets better, and the corresponding RMSE of the approxima-
tion is 0.15, 0.058, and 0.009, respectively. 
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Fig. 6.14  a The first four eigenfunctions corresponding to a one-dimensional random process with 
exponential covariance function, L  = 10, σ 2  = 1, and I  = 1. b The covariance function approxi-
mated by the first 4, 10, and 50 terms of KL expansion
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6.4  Nonlinear Dimension Reduction

The dimension reduction methods (i.e., PCA) described in the previous section all 
assume a linear mapping between the sample space and that of the lower-dimen-
sional parameterization. This is not always true. There are situations in which such 
a linearity assumption can lead to inaccurate representation of the raw data and/
or ineffective reduction in data dimension. One example that PCA does not work 
is parameterization of multimodal permeability random fields (Sarma et al. 2008). 
Another example is the reduction of remotely sensed data, such as hyperspectral 
images. Parameterization of these problems requires not only finding a low-dimen-
sional representation of high-dimensional data, but also preserving certain charac-
teristics of the original data (e.g., geometry of facies distributions) which are not 
linear. The significance of such low-dimensional space can be rather great in the 
context of inverse problems because we no longer need to be limited by the appar-
ent high-dimensionality of many problems. In mathematics, a manifold is a topo-
logical space that resembles the Euclidean space of a specific dimension on a small 
enough scale. The identification of a small set of parameters that uniquely define a 
manifold embedded in a high-dimensional space is called manifold learning.

Many algorithms have been developed for nonlinear manifold learning, includ-
ing kernel PCA, isomap, locally linear embedding, Laplacian Eigenmaps, Sammon 
mapping, and multilayer autoencoders (van der Maaten 2007). Not all of the algo-
rithms are designed equal and their performance heavily depends on the underlying 
problem. It remains an active research area to choose the most effective algorithm 
for nonlinear dimension reduction in different EWR applications. In this section, we 
shall focus on several commonly used nonlinear dimension reduction techniques.

6.4.1  Kernel PCA

KPCA is a nonlinear version of PCA. It was originally introduced in the field of ma-
chine learning (Schölkopf et al. 1998) and later used as a parameterization method 
for inverse solution (Sarma et al. 2008). KPCA assumes the existence of a map-
ping that transforms the data from its original space to a high- or even infinite-
dimensional space called the feature space. Through this projection, the hope is to 
“unfold” the otherwise nonlinear data into linear ones such that PCA can be applied.

Let θ  be an m-dimensional random vector, where m is a very large number, 
and 1 2 [ , , , ]nθ θ θ  be the data matrix formed by n samples of θ, where n m . 
As usual, we assume that the sample mean has been removed from the data and the 
m m×  sample covariance matrix is given by

 
(6.4.1)
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1
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j j
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n
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In PCA, all eigenvectors v (PCs) are solved from the eigenvalue equation
 

(6.4.2)

This equation is too expensive or even impossible to solve when the size of C
(m m× ) is too large. As mentioned in Sect. 6.3.3, this is the first difficulty of using 
PCA to parameterize a random field. In what follows, we will see that with KPCA 
the solution of (6.4.2) is reduced to a low-dimensional eigenvalue problem.

Because the data matrix 1 2 [ , , , ]nθ θ θ  is an m n×  rectangular matrix, the num-
ber of its singular values is at most min( , )n m n= . In other words, the maximum 
number of nonzero eigenvectors of matrix (6.4.1) is n. This fact has two nice con-
sequences: first, all eigenvectors v  with nonzero eigenvalues must lie in the span 
of 1 2 { , , , }nθ θ θ , namely, there exists a set of coefficients { }α j  such that each 
eigenvector can be expressed as a linear combination of the sample vectors

 
(6.4.3)

Second, (6.4.2) can be represented by the following inner product form

 (6.4.4)

where 
1

1
=

= ∑( / ) ( · )
n

j j
j

nCv vθ θ . Substituting (6.4.3) into (6.4.4) and after some ma-

nipulations (Schölkopf et al. 1998), we get a so-called kernel eigenvalue problem

 (6.4.5)

where K  is an n n×  kernel matrix with elements = ( · )ij i jK θ θ , vector αα  is an 
eigenvector of K  and its components α j  are used in the expansion (6.4.3), and 
δ λ= n  is the associated eigenvalue. Once α  and δ  are obtained by solving the 
reduced dimensional problem (6.4.5), the original eigenvector v  of C  can be 
obtained by substituting α  into (6.4.3), and its associated eigenvalue is equal to 
λ δ= / n . Solving the kernel eigenvalue equation (6.4.5) is much easier than solv-
ing the original eigenvalue equation (6.4.2). For example, in an example given by 
Sarma et al. (2008), the hydraulic conductivity is distributed over 2500 nodes. The 
size of matrix C  in (6.4.2) is 2500  × 2500, but the covariance can be recovered 
with no more than 300 samples, and thus, the size of matrix K  in (6.4.5) is less than 
300 300× . The computational effort of PCA is decreased significantly.

Next, we will derive KPCA and use it to parameterize random fields character-
ized by multipoint statistics. As mentioned at the beginning of this section, KPCA 
assumes that a nonlinear mapping ( )=Φ Φ θ  exists that transforms N∈θ  to 

∈Φ , where   is a high-dimensional feature space.
With the inner product form introduced herein, it is straightforward to derive 

PCA for the nonlinear mapping Φ  in . Let the dataset 1 2{ , , , }nΦ Φ Φ  be the 
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low-dimensional projection of the centered sample dataset 1 2{ , , , }nθ θ θ , where 
( )i i=Φ Φ θ  for i n= 1 2, , , . The sample covariance matrix of Φ  is then given by

 
(6.4.6)

Repeat the derivation of equations (6.4.1) to (6.4.5) but replacing 1 2{ , , , }nθ θ θ  
with 1 2 { , , , }nΦ Φ Φ , we arrive at another eigenvalue equation

 (6.4.7)

where the n n×  kernel matrix K  has elements = ( · )ij i jK Φ Φ , α  is an eigenvector 
of K, and δ  is its corresponding eigenvalue. After all eigenvectors 1 2{ , , , }nα α α  
and eigenvalues { , , , }δ δ δ1 2  n  of K  are solved from this equation, the eigenvec-
tors (PCs) and corresponding eigenvalues of CΦ  are given, respectively, by

 
(6.4.8)

We now have completed the derivation of PCA in the feature space on ( )Φ θ . The 
following parameterization of ( )Φ θ  is obtained

 
(6.4.9)

where matrix Q  has vl  given in (6.4.8) as its columns, the diagonal matrix Λ  has 
λl  given in (6.4.8) as its entries, and the n-dimensional vector ξ  is the reduced-
dimension parameter. Note that in the above derivation of KPCA, the actual form of 
Φ  never needs to be known explicitly because all that is required is the functional 
form of its inner product. This is known as the kernel trick in machine learning 
and is the building block of several machine learning algorithms, as we shall see in 
Chap. 8.

Using (6.4.8), parameterization (6.4.9) can be rewritten as

 
(6.4.10)

As we have explained in Sect. 6.3.3, Φ̂  depends only on the second-order moment 
of the data statistics. In order to make it contain the information of higher order mo-
ments, we have to change the structure of the kernel matrix K  by introducing a ker-
nel function κ( , )x y  and define the form inner product in   as κ=( · ) ( , )i j i jθΦ θΦ .  
As a result, the solution α  and δ  of (6.4.7) will change accordingly. Finally, (6.4.9) 
becomes a parameterization of ( )Φ θ  generated by the KPCA.
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Example 6.6 Polynomial Kernels
One of the most commonly used kernel functions is the polynomial kernel 
κ( , ) ( )x y x y= +T p1 , where x  and y  are vectors in the same input space and p  is 
the order of polynomial kernel. Consider the following second-order polynomial 
kernel in 2

where x = ( , )x x T
1 2  and y = ( , )y y T

1 2 . The kernel function can be decomposed as 
the inner product of two mappings

in which the mapping Φ  transforms data from the two-dimensional input space 
into a 6-dimensional feature space. It is not hard to imagine that such decomposi-
tion quickly becomes infeasible as the order of polynomial or the dimension of 
input data grows higher. The kernel trick makes it possible to solve problems in 
the six-dimensional space without explicitly transforming the input data into that 
space.

More complex kernels can be constructed out of simple kernels. Assuming we 
have valid kernels κ1( , )x y  and κ2( , )x y , then the following operations are valid and 
can create a new kernel κ  out of κ1 and κ2

in which c is a constant. More examples of valid kernel operations can be found 
in Bishop (2006). In addition to polynomial kernel, Gaussian kernel introduced in 
RBF (Sect. 6.1.5) is also widely used in KPCA. Other examples of the kernel func-
tions can be found in (Sarma et al. 2008; Schölkopf et al. 1998).

For inverse solution, our purpose is to find a parameterization of the original 
parameter θ. Finding θ  from ( )Φ θ  (called the pre-image problem) is an ill-posed 
inverse problem, because a unique inverse mapping 1−Φ  may not exist. In this case, 
we can only find a quasisolution by solving a least-squares problem

 
(6.4.11)

Expanding the norm in (6.4.11) and using (6.4.10), we have
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(6.4.12)

The optimal solution θ̂  must satisfy the necessary condition of minimum. When the 
kernel function is given by the p-order inner product, the following equation can be 
derived from ρ∂ ∂ =/ θ 0  (Schölkopf et al. 1998):

 

(6.4.13)

Prior information on the parameter structure can be incorporated into the samples 
and the iteration process of solution. The steps of KPCA parameterization process 
can be summarized as follows:

• Generate n realizations (or samples) 1 2 { , , , }nθ θ θ  of the random field θ( )x
• Select a kernel function κ(·,·)  and form the kernel matrix K
• Solving eigenvalue equation (6.4.7) for {ααi } and { }δi  ( i n= 1 2, , , )
• Calculate { }βi  ( i n= 1 2, , , ) by (6.4.10)
• Draw an n-dimensional vector ξ
• Solve (6.4.13) to obtain =ˆ ( )fθ ξ  when κ(·,·)  is a p-order inner product

Note that we can further decrease the dimension of parameterization from n to k by 
truncating the eigenvectors associated with small eigenvalues. The above KPCA 
nonlinear parameterization technique was used by Sarma et al. (2008) for modeling 
permeability fields characterized by multipoint statistics.

The performance of KPCA is affected by the a priori specified kernel functions. 
Maximum variance unfolding (MVU) or semidefinite embedding attempts to over-
come this issue by “learning” kernel matrices, in which a semidefinite programming 
problem is solved to yield elements of kernel matrix (Weinberger and Saul 2006).

6.4.2  Laplacian Eigenmaps

If PCA and KPCA are full spectral methods that involve eigendecomposition of 
a full covariance matrix, other algorithms seek to construct sparse matrices and, 
therefore, are easier to scale to large datasets. These include local linear embed-
ding (Roweis and Saul 2000) and Laplacian Eigenmaps (Belkin and Niyogi 2003). 
Because of the similarity between the two algorithms, we will only describe the 
Laplacian Eigenmap algorithm, which constructs a low-dimensional representation 
of the input data by minimizing the distance between data points and their neigh-
bors. Thus, Laplacian Eigenmaps may be viewed as a local method that attempts to 
preserve the neighborhood information during dimension reduction.
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Given the input set 1 2 { , , , }nθ θ θ  in m, the Laplacian Eigenmap algorithm 
finds a reduced-dimension set. Laplacian Eigenmap proceeds in three steps. First, 
a neighborhood is defined for each input data point, which can be based on either 
geometric distance or simply the l  nearest neighbors. Here, the size of neighbor-
hood is specified by the user.

Second, a weight matrix W of dimensions n n×  is defined on the input data 
using the neighborhoods identified in the previous step. Two popular choices for 
W are:

• Nearest neighbor

 (6.4.14)

• Gaussian kernel

 (6.4.15)

Thus, by way of construction, W measures local similarity among data points and 
is usually highly sparse. For example, if W  is defined via the nearest neighbor 
method, each row of W only contains l nonzero elements and l is usually smaller 
than the number of data, n . The Gaussian kernel in (6.4.15) plays the same role as 
the kernel functions used in RBF and KPCA do. 

In the third step, a reduced-dimension set is constructed. Let y = …( , , , )y y yn
T

1 2  
denote a vector and we want to project the original dataset onto y such that the 
points in y stay as close as possible. This is equivalent to solving the following 
minimization problem to minimize distances between neighboring nodes

 
(6.4.16)

in which L D W= −  is the so-called Laplacian matrix and D  is a diagonal matrix 
with elements D wii ij

j

= ∑ . It can be shown that the solution can be obtained by 

solving the following generalized eigenvalue problem (Belkin and Niyogi 2003)

 
(6.4.17)
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and denote the corresponding eigenvectors as { , , , }y y y1 2  k . This set of eigen-
vectors represents the reduced-dimension dataset found by Laplacian Eigenmaps. 
Like in the case of KPCA (see (6.4.7)), only an n n×  eigenvalue problem needs 
to be solved, which is much easier than dealing with the eigenvalue problem in 
original, high-dimensional space. In (6.4.17), L  is sparse and D  is diagonal. The 
computational complexity of Laplacian Eigenmap is O l k n(( ) )+ 2 , which is gener-
ally much less than the full spectral method such as KPCA. From parameterization 
perspective, any new point in the reduced-dimension space can be expressed in 
terms of { , , , }y y y1 2  k  and the weight matrix; however, projecting the new point 
to the original space requires solving an ill-posed, pre-image problem as it is done 
for KPCA. Laplacian Eigenmap has been used for information extraction from hy-
perspectral remote sensing data (Qian and Chen 2007).

6.5  Review Questions

 1. What is the dimension of a model? Give examples of finite- and infinite-dimen-
sional models. Why do we need model dimension reduction?

 2. According to the criteria presented at the end of Sect. 6.1.2, is the IDW method 
suitable for parameterizing a distributed function to be identified? Explain how 
it is used to the three cases described in Sect. 6.1.2.

 3. According to the general expression of function approximation given in equa-

tion (6.1.3), show the basis functions φj{ }  and coefficients cj{ }  for the three 
methods, IDW, nearest-neighbor, and RBF.

 4. What are the differences between parameterizing a deterministic function and 
parameterizing a random field?

 5. What are the dimension (the number of DOF) of a GRF model and the dimen-
sion of a MRF model under different assumptions?

 6. How is the variogram of a random field defined and estimated? How do we 
choose a variogram model? And, how do we find whether or not a random field 
can be regarded as an intrinsically stationary one?

 7. Give the details of deriving simple kriging equations (6.2.38) and (6.2.39).

 8. Design an example from your study area, and get familiar with a geostatistical 
software package to perform ordinary kriging and regression kriging. Can we 
use the ordinary kriging to estimate a nonintrinsically stationary random field?

 9. Express PCA by the general form of parameterization given in equation (6.1.3).

10. What are the advantages and disadvantages of using SVD-based PCA to reduce 
the dimension of the unknown parameter vector for model inversion?

11. Explain how KL expansion can be used to approximate a random field.
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Chapter 7
Model Structure Identification

In the CIP, it is assumed that model errors can be neglected and only model pa-
rameters need to be estimated from observed data. In practice, determination of the 
model structure is the first problem that a modeler has to deal with when modeling a 
complicated physical system. This problem is referred to as “system identification” 
in control theory. It requires estimation of the model structure and model parameters 
simultaneously from input–output data. In EWR modeling, a conceptual model with 
given structure is often provided by an expert based on his/her knowledge. The 
unknown parameters of the model are then estimated by inverse solution. If model 
outputs do not fit observed data well, the model structure is “tweaked” by trial and 
error. However, such traditional model construction process suffers from the fol-
lowing issues:

• The fitting residual cannot be reduced to a satisfactory level.
• Only very limited model structures can be considered, and the true structure is 

usually beyond reach because of its complexity.
• It is difficult to determine an appropriate level of model complexity. A model 

complexity that is appropriate for fitting data may not always be appropriate for 
other intended model applications such as prediction.

• The problem of identifying model structure and model parameters simultane-
ously is usually ill-posed, namely, the same dataset can be fit equally well by 
different model structures with different model parameters.

Because of these issues, model structure error is often the major cause of model 
failure (Sun et al. 1998). Even a carefully calibrated model may produce unreliable 
results when used for prediction and decision-making purposes. Bredehoeft (2005) 
pointed out that “surprises” occur in 20–30 % of groundwater model analyses, in 
which he defined a surprise as new data or evidence that invalidates a prevailing 
conceptual model. In a recent white paper published by the US National Science 
Foundation, model structure identification was listed as one of the grand challenges 
of future environmental modeling (Beck et al. 2009).

We have shown in Chap. 1 that parametric EWR models are derived from con-
servative laws and represented by certain types of mathematical equations. Because 

© Springer Science+Business Media, LLC 2015
N-Z. Sun, A. Sun, Model Calibration and Parameter Estimation, 
DOI 10.1007/978-1-4939-2323-6_7



248 7 Model Structure Identification

of a myriad of information is required to build a EWR model and limitations of data 
in practice, the developed EWR model can be considered as a “gray box” that has 
uncertainties in its dimensions, internal structures, and external conditions (Refs-
gaard et al. 2007; Sun 1994; Beven 2009; Chou and Voit 2009). In this chapter, a 
model will be denoted by ( , )S θ , where S  is the model structure and θ  denotes the 
set of parameters associated with the structure. We will show how both S  and θ  
can be parameterized and optimized using existing knowledge and data.

In Sect. 7.1, the model structure S  is parameterized, an extended inverse prob-
lem (EIP) is formulated for identifying both S  and θ  with state observations and 
prior information, and the model complexity problem is considered. The EIP is a 
global optimization problem and is difficult to solve in general. For a distributed 
parameter, the structure identification problem becomes how to find the optimal 
parameterization. In Sect. 7.2, techniques and algorithms of adaptive parameter-
ization, such as Voronoi nearest neighbor algorithm, zone refinement, and level 
set methods, are reviewed. We will show how shape parameters of a structure are 
defined and identified. The multiscale inversion method introduced in Sect. 7.3 may 
avoid the difficulty of structure identification and give higher-resolution results, but 
generally requires more data support.

In the statistical framework, structure identification requires estimation of both 
shape parameters and statistical parameters. Statistical parameters are hyperparam-
eters that do not appear directly in the model but must be estimated during the 
inversion process. In Sect. 7.4, the statistical EIP is formulated, in which model 
parameters and hyperparameters are estimated either simultaneously or iteratively 
by MLE or by hierarchical Bayesian inversion. Geostatistical inversion uses krig-
ing and cokriging as parameterization for estimating a distributed parameter, but is 
subject to the problem of plausibility. The pilot-point method introduced in that sec-
tion is a flexible parameterization method for inversion that can decrease the model 
structure error of a geostatistical model effectively, especially when the number and 
locations of pilot points (as shape parameters) are optimized.

7.1  Model Structure Parameterization

7.1.1  Model Structure Representation

A model of a system (or system model) is characterized by a structure and a set of 
parameters associated with that structure. All candidate models to be identified for a 
real system form a set. We assume that the real system can be considered as a mem-
ber of the set approximately, at least for certain aspects of model applications when 
the model structure is made sufficiently complex. Intuitively, we would like to find 
a model that has the most parsimonious structure and yet is reasonably close to the 
real system under consideration. A major question is then how we can measure the 
“distance” between two models having different structures. To answer this question, 
we have to define a Banach space (called a system model space, or system space in 
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short) that contains all feasible system models, as well as the “real system” as its 
members. For numerical models with space/time discretization, however, we can 
limit our discussion to the Euclidean space.

7.1.1.1 Define a System Model Space

Assume that the properties of a spatially distributed system are characterized by r 
unknown or incompletely known parameters 1 2θ θ θ{ ( ), ( ), , ( )}rx x x . The prob-
lem of system identification then becomes identification of these parameters. If the 
small-scale variability of a distributed parameter can be neglected, its number of 
degrees of freedom (DOF) is equal to or less than the node number ( N ) of the finest 
grid used for simulating the system. In this case, the system space   is defined 
as r stacking N-dimensional spaces, where the ith layer is the parameter space of 
discretized θ ( )i x  ( i r= 1 2, , , ). Thus, the DOF of the most complex model struc-
ture in   is r N× . The real system after discretization is an element of , and 
all candidate models to be identified for the system consist of a subset Mad ⊂ .

The difference between two models A  and B  in system space   is mea-
sured by  A B− . In the observation space   of a state variable u, the differ-
ence between the two models is measured by u uD A D B( ) ( ) − , where D is an 
observation design stipulating where and when the state variable u  is observed. 
Therefore, after the norms in space   and   are defined, models with different 
structures can be compared to each other. For example, we can compare a two-
dimensional model having a continuous structure with a three-dimensional model 
having a discontinuous structure.

7.1.1.2 Parameterization of a System Model

The dimension of space   is often too high for identifying a system model. To 
make a complex model structure identifiable with limited data, parameterization 
becomes necessary. From Chap. 6, we have learned that a distributed function can 
be parameterized by truncating its expansion. When a system model is character-
ized by r distributed parameters 1 2θ θ θ{ ( ), ( ), , ( )}rx x x , we have the following 
truncated expansion:

 (7.1.1)

where mi  is the dimension of parameterization of θ ( )i x , 1 2{ | , , , }i ij ij mφ= =φ   
are corresponding basis functions, and ννi  is a set of shape parameters associated 
with basis functions iφ . Let { , , }i i i im=S φ ν  be a parameterization structure and 

1 2θ= = { | , , , }i ij ij mθ  be the parameter values associated with the structure Si . 
If we use the shorthand notation ( , )i iS θ  to denote a single parameterization θ̂ ( )i x  
in (7.1.1), then a parameterization of the whole system model is

1

1 2θ θ θ φ
=

≈ = =∑ 

ˆ( ) ( ) ( , ), , , ,
im

i i ij ij i
j

i rx x x ν
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           . (7.1.2)

By systematically varying the model structure and associated parameter values, we 
can generate a set of candidate models. We would like to find a model from the set 
that can best represent the real system. An EIP is formulated for this purpose.

7.1.2  Extended Inverse Problem

As mentioned in Chap. 1, CIP identifies model parameters under the assumption 
that the model structure is known, while EIP aims to identify the model structure 
and model parameters simultaneously. Based on criteria (C-1) and (C-2) of inverse 
problem formulation (i.e., fitting observation data and using prior information), EIP 
is defined by (Sun and Sun 2002)

 
(7.1.3)

where α ( , )R S θ  is a regularization term. When an initial guess 0 0( , )S θ  is avail-
able, we may set = −( , ) ( , ) ( , )R 0 0S S Sθ θ θ .

EIP can be defined similarly in the statistical framework. Rewriting the Bayes’ 
theorem for a system model =( , )S θ , we have

 (7.1.4)

where *( , )p S θ , 0( , )p S θ , and ( , )L S θ  are posterior distribution, prior distribution, 
and likelihood function of the model, respectively, and c is a normalization con-
stant. The MAP estimate of the model is thus given by

 (7.1.5)

When both observation error distribution and prior distribution are Gaussian 
(Sect. 4.2.3), the MAP estimate (7.1.5) is identical to (7.1.3).

Two approaches are available for solving the EIP problem (7.1.3), (i) using a 
global optimization method to search for S* and *θ  simultaneously or (ii) using 
a min-min optimization method to search for S* and *θ  in a hierarchical manner 
because (7.1.3) can be replaced by

 (7.1.6)

{ }1 2 1 2( , ) , , , ; , , ,r r=S S S Sθ θ θ θ 
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= ∈ ⊂

= − +
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When searching for the optimal structure (the outer min problem in (7.1.6)), the 
optimal parameter values associated with the current structure are identified by 
solving a CIP (the inner min problem in (7.1.6)). In practice, however, both ap-
proaches for EIP solution are very hard to implement when the structures of candi-
date models are complex. Another major difficulty of solving EIP is its nonunique 
nature. Because the errors in model structure and parameter values can compensate 
each other when minimizing the fitting residual, different combinations of model 
structures and parameter values could fit the same observation data equally well, 
especially when the model structure is complicated and/or the data are insufficient. 
In this case, incorporating prior information related to both model structure and 
parameter values into the regularization term of EIP problem (7.1.3) is helpful.

7.1.2.1 EIP for a Single Distributed Parameter

Let us start from a simple problem, for which the system model to be identified is a 
single distributed parameter θ( )x . In this case, EIP reduces to identification of the 
following form:

 (7.1.7)

where { , , }m=S φ ν  is its structure, m is the dimension of parameterization, φ  is a 
set of basis functions, ν  is a set of shape parameters, and θ  is the parameter val-
ues associated with the structure. Eq. (7.1.7) is a special case of (7.1.1) when i  in 
the latter equation is set to 1. In CIP, S is given and only θ  needs to be identified, 
whereas in EIP, both S  and θ  (i.e., all four components  ,{ , , }m φ ν θ ) need to be 
identified.

Example 7.1 Parameter Structure Identification Using Zonation  Parameterization 
Let us consider the identification of a distributed parameter θ( )x  defined in a two-
dimensional domain, Ω. As we mentioned in Chap. 2, zonation is one of the sim-
plest and most often used parameterization methods. It partitions Ω  into zones 
{ | , , , }Ω j j m= 1 2 . Figure 7.1a assumes that θ( )x  is constant in each zone (i.e., a 

1

(̂ ) ( , ) ( , ),
m

j j
j

θ θ φ
=

= = ∑x S xθ ν

Fig. 7.1  Illustration of a a zonation partition; b a two-zone partition with a straight line boundary; 
and c a two-zone partition with a curve boundary, which is approximated by a 3-segment zigzag 
line
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piecewise constant function θ̂( )x  is used as a model for identification). In this case, 
 ,{ , , }m φ ν θ  have the following meanings:

• The dimension m of parameterization is the number of zones.
• The j-th basis function is defined by

• The shape parameter ν  determines the zonation pattern. Let us consider a sim-
ple two-zone case. In Fig. 7.1b, the boundary between the two zones is a straight 
line. Because the number of DOF of such a boundary is two (its two ends must be 
on the boundary of the region), the shape parameter ν  has two components. In 
Fig. 7.1c, the boundary between the two zones is a curve. If we use a zigzag line 
(piecewise constant) with three segments to replace the curve approximately, the 
number of DOF of the line is six, or the shape parameter has six components. 
In general, the dimension of the shape parameter is several times larger than the 
number of zones.

• Component θ j  of θ  is the parameter value of the jth zone.

This example clearly shows that even when basis functions are given, the DOF of 
structure parameters could still be large because of the variability in structure patterns.

7.1.3  Model Complexity Selection

The complexity of a model is characterized by its DOF. Two major difficulties ex-
ist in the identification of a complex model. First, the more complex a model is, 
the more data are required. When data are insufficient, the EIP will be ill-posed. 
Second, the optimization problems associated with EIPs are combinatorial in nature 
and the computational effort is generally prohibitive. In fact, a model can be suc-
cessfully identified by solving an EIP only when its structure is relatively simple or 
the number of candidate structures is small.

In the traditional process of model construction, a conceptual model is used first 
to fit existing data. If the fitting residual is large after manually or automatically 
adjusting model parameters, the modeler would need to modify the structure of 
the conceptual model and introduce more adjustable parameters (i.e., increasing 
the DOF) to reduce the fitting residual. During this process, the model complexity 
is gradually increased and the fitting residual is gradually decreased; the model 
calibration process is terminated when the fitting residual reaches a satisfactory 
level. Unfortunately, a model developed by following such a process often gives 
erroneous prediction results. This problem is caused by model structure error and 
data insufficiency.

Let the real system be ( , )t t t= S θ , the identified model be * * *( , )= S θ , and 
the observed data be generated by the real system (i.e., uD

obs  are equal to ( , )t t
Du S θ  

plus observation error). Because of data insufficiency, * *( , )Du S θ  may be very 

1 -th zone
0 otherwise

φ
 ∈= 


,
( )

,j

jx
x
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close to ( , )t t
Du S θ , even when S*  is significantly different from St . As we have 

explained before, the effect of incorrect model structure is compensated automati-
cally by the effect of incorrect parameter values during the data-fitting process. 
Paradoxically, making * *( , )Du S θ  and ( , )t t

Du S θ  closer in observation space will 
increase the difference between *θ  and tθ  in parameter space. As a result, incorrect 
parameter values are always obtained when an incorrect model structure is used for 
inversion (Sun and Yeh 1985).

As a hypothetical example, the true system ( , )t tS θ  is assumed to be known. 
Figure 7.2 shows a typical process of model identification by increasing model com-
plexity. With the increase of DOF, the fitting residual (shown by the dash line) keeps 
decreasing, but the difference between the identified model and the true system, 

* *( , ) ( , )t t −S Sθ θ , decreases at first and then starts to increase after a certain DOF. 
The model then becomes “overparameterized,” and the data are “overfitted.”

Overparameterization is caused by introducing too many unknowns for inver-
sion, more than what can be supported by data; thus, a direct consequence of over-
parameterization is the increase of model variability. An overparameterized model 
is unreliable for model prediction, just as an under-parameterized model is. In 
Fig. 7.2, the most appropriate model complexity corresponds to the minimum of the 
discrepancy curve. However, this curve is dependent on the true system and is thus 
unknown in practice.

Fig. 7.2  Effect of increasing model complexity. The solid line shows the changes of model error, 
while the dashed line shows the fitting residual. The arrow indicates the most appropriate model 
complexity
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7.1.3.1 Model Complexity Selection with SVD

In Sect. 2.2.3, we showed that the inverse solution of a linear model =G dθ  be-
comes unstable when the matrix condition number 1κ = / rs s  is large, where s1  and 
sr  are the largest and smallest nonzero singular values of the coefficient matrix G
. As mentioned in Sect. 2.2.3, the smallest singular value sk  that can be retained in 
the truncated SVD must satisfy

 (7.1.8)

where rd = ∆d d/  and † †/rθ = ∆θ θ  are the relative uncertainty of data and 
the relative uncertainty of the identified parameter, respectively. From (7.1.8), only 
the first k  components of †θ  can be identified from the given dataset. For a nonlin-
ear model, we could use SVD to find the largest DOF to avoid overparameterization, 
in which the coefficient matrix G  is replaced by the Jacobian matrix JD  after lin-
earization (see Sect. 2.2.4). However, there are two inherent difficulties associated 
with this approach. First, the TSVD solution does not have a physical meaning, and 
second, the computational cost would be expensive because JD  must be updated 
each time the identified parameters are updated during the EIP solution process.

7.1.3.2 Model Complexity Selection with Statistical Criteria

In statistics, the model selection problem has been studied extensively. Statistical 
criteria for model selection attempt to balance the goodness of fit and the complex-
ity of model structure so that both over- and underparameterization can be avoided. 
Assume that we have the following information:

• A set of n observation data,
• A set of K candidate models M = { , , , }  1 2  K , and
• The number of DOF of model k  is pk (k = 1, 2,…, K).

The problem is how to pick an appropriate model from M  for modeling the da-
taset. According to the Akaike Information Criterion (AIC) for model selection 
(Akaike 1974), model 

k* should be selected from M  such that its AIC value is 
the smallest among all,

 (7.1.9)

where L k( )  is the likelihood of model k . Problem (7.1.9) can be seen as a 
MLE problem with a penalty term proportional to the number of DOF (the model 
complexity) or can be seen as a two-criterion optimization problem that gives a 
trade-off solution between the goodness of data fit and the complexity of model 
structure.

1 θ≥ / ,k ds s r r

k L p
k k k

* argmin log ( ) ,= − +{ }2 2
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Another commonly used model selection criterion is the Bayesian Information 
Criterion (BIC) (Schwarz 1978). According to BIC, k* is calculated by

 (7.1.10)

Comparing (7.1.9) to (7.1.10), we see that AIC penalizes the DOF less strongly 
than BIC does. AIC and BIC have been widely used for linear regression and time 
series modeling. In principle, they can be applied to selection of any maximum 
likelihood-based models. The actual performance of AIC and BIC will depend on 
the nature of the data-generation model and sample sizes (Burnham and Anderson 
2002). AIC and BIC are mainly applied to model structure selection for regression 
models, which will be covered in details in Chap. 8.

Besides AIC and BIC, other statistical criteria for model selection exist, such 
as deviance information criterion (DIC) and Kullback information criterion (KIC). 
Detailed discussion on these criteria and their modifications can be found in (Ye 
et al. 2008; Burnham and Anderson 2002; Claeskens and Hjort 2008). The perfor-
mance of different model selection criteria has been studied for groundwater mod-
eling (e.g., Ye et al. 2008; Poeter and Hill 2007; Refsgaard et al. 2012; Rojas et al. 
2008) and hydrological modeling (e.g., Wagener et al. 2004; Dawson and Wilby 
2001; Schoups et al. 2008).

Practical challenges exist when applying the aforementioned statistical model 
selection criteria to identifying system models involving distributed parameters. 
First, there may be an infinite number of models that have the same number of 
DOF but different structure patterns. For example, the number of possible two-zone 
structures in the region given in Example 7.1 is infinite and uncountable. Second, 
the computational effort of finding an appropriate model by calculating (7.1.9) or 
(7.1.10) is essentially the same as that of obtaining the MAP estimate (7.1.5). When 
the DOF of a parameterized model is large, the curse of dimensionality principle 
(see Chap. 6) dictates that the computational effort will become prohibitive.

7.2  Adaptive Parameterization

7.2.1  General Algorithm

In general, an adaptive parameterization algorithm attempts to construct a series of 
models sequentially

 (7.2.1)

During the adaptive parameterization process, the complexity of these models is 
gradually increased, the structure pattern is optimized after each increase of com-
plexity, and parameter values associated with the optimal structure pattern are es-

k L p n
k k k

* argmin log ( ) log .= − +{ }2 

   1 2 1, , , , , m m+
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timated. The process is repeated until no more information can be extracted from 
the data to support identification of a more complex model structure. With adaptive 
parameterization, the model complexity is determined automatically by the quantity 
and quality of available data.

7.2.1.1 Discretized Form

As in the last section, the grid used for solving the forward problem will be consid-
ered as the finest structure or the most complex structure. After discretization, the 
maximum number of DOF of a distributed parameter is equal to the total number 
of nodes (N ) of the grid (or the total number of elements when a block-centered 
numerical method is used). We will use Nθ  to denote the N-dimensional input pa-
rameter vector. After discretization, parameterization (7.1.7) can be represented by

 (7.2.2)

where G  is an N m×  matrix called the structure matrix of parameterization and 
Gθ  is the parameter vector associated with the structure. The elements of matrix 
G  are φ= ( , )ij j i Gg x ν  ( i N= 1 2, , , ; j m= 1 2, , , ), where xi  represents the 
coordinates of node i. For example, when the zonation method is used, we have 
gij = 1 when node i  is located in zone j; otherwise, gij = 0. In this case, the pattern of 
nonzero elements in the structure matrix follows exactly the zonation pattern.

Before parameterization, the objective function for identifying 
Nθ  is given by

 (7.2.3)

Equation (7.2.3) is a CIP problem. However, minimizing ( )NS θ  is generally in-
feasible because of the high dimensionality of Nθ . After parameterization, (7.2.3) 
becomes

 (7.2.4)

Equation (7.2.4) is an EIP problem because both structure matrix G  and value vec-
tor Gθ  are unknown. Comparing (7.2.4) with (7.1.3), we see that the generic ( , )S θ  
pair is replaced by GGθ . Adaptive parameterization attempts to solve the EIP by the 
following general steps:

1. Select a set of basis functions { ( , )}xφ ν .
2. Design an initial parameterization model with a relatively low dimension m and 

a simple structure pattern (i.e., the dimension of shape parameter ν  is low) on 
the basis of prior information.

3. Because m  and  φ  are fixed, the structure matrix G  depends only on the shape 
parameter Gν . From (7.2.4), the EIP (7.1.3) reduces to identification of the opti-
mal * *( , )G Gν θ  such that

,N G= Gθ θ

α= − +( ) ( ) ( ).obs
N D N D NS Ru uθ θ θ

α= − +( ) ( ) ( ).obs
G D G D GS RG u G u Gθ θ θ
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where

 

(7.2.5)

4. Check whether one or more predetermined stopping criteria are satisfied. If not, 
increase the complexity of the model by increasing the dimension of parameter-
ization and/or the dimension of the shape vector, and then return to step 3.

Thus, a sequence of nested optimization problems needs to be solved. Different 
adaptive parameterization methods use different basis functions, shape parameters, 
and optimization algorithms. The adaptive parameterization scheme delineated 
herein also shares common features with adaptive mesh refinement (AMR) com-
monly used in FEM (Lee et al. 1998; Berger and Oliger 1984).

7.2.1.2 Sensitivity Analysis

Regardless of the approach used for parameter structure identification, it is impor-
tant to be able to find the sensitivity of objective function with respect to Gν  and 
Gθ  effectively. Before parameterization, the objective function is ( )NS θ  in (7.2.3). 

In Chap. 5, we learned that when the adjoint-state method is used, the gradient com-
ponents θ∂ ∂/ iS  ( i N= 1 2, , , ) for all nodes of the finest grid can be obtained by 
only solving the forward problem once and the adjoint problem once. After param-
eterization, the objective function becomes

 (7.2.6)

and its gradient components can be calculated by the chain rule as

 (7.2.7)

 (7.2.8)

After θ∂ ∂/ iS  are obtained by the adjoint-state method (or by the reverse model 
of numerical differentiation) for all nodes i N= 1 2, , , , the cost of calculating 
these gradient components is minimal because θ θ∂ ∂ ,/i G j  and θ ν∂ ∂ ,/i G j  can be 
obtained directly from the structure matrix G .

After parameterization, the sensitivity coefficients of model output uD l,  with 
respect to the components of Gν  and Gθ  can also be obtained via the chain rule as

 (7.2.9)
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 (7.2.10)

where n is the number of observation data. All sensitivity coefficients θ∂ ∂, /D l iu  
( i N= 1 2, , , ) for the finest grid can be obtained effectively by the adjoint-state 
method. As in (7.2.7) and (7.2.8), θ θ∂ ∂ ,/i G j  and θ ν∂ ∂ ,/i G j  can be obtained 
from the structure matrix. Therefore, the sensitivity analysis problem for solving 
EIP (7.2.5) is not difficult.

Example 7.2 Calculating the Gradient of a Zonation Structure 
A line in Fig. 7.3 cuts the region into two zones, Ω1  and Ω2 . If the two ends of the 
cutting line are located at the two horizontal sides, then the shape parameters of the 
structure are 1,G aν =  and 2,G bν = , respectively (i.e., the distances of the two ends 
measured from the left side of the region). The parameter values associated with 
the two zones are 1θ ,G  and 2θ ,G , respectively. When node i ∈Ω1 , let 1,i Gθ θ= , and 
when node i ∈Ω2 , let 2,i Gθ θ= . Therefore, 1,/i G jθ θ∂ ∂ =  when node i j∈Ω , and 

0,/i G jθ θ∂ ∂ =  when node i j∉Ω , where j=1 2, . From (7.2.7),

 (7.2.11)

When 1ν ,G  has an increment 1ν∆ ,G , a subregion ∆Ω1  is generated because of this 
change (the shaded area in Fig. 7.3), in which the node value θi  changes from 1θ ,G  
to 2θ ,G , or 2 1θ θ θ∆ = −, ,i G G . Therefore, 1 1θ ν θ ν∂ ∂ ≈∆ ∆, ,/ /i G i G . From (7.2.8),

 (7.2.12)
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Fig. 7.3  Two zone structure 
with a moving cutting line
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where i ∈∆Ω1  in the first equation means the summation is over all node i  that are 
located in ∆Ω1. The second equation is obtained similarly.

7.2.1.3  Solution of EIP

Local Optimization Once the gradient of objective function ( , )G GS ν θ  is calcu-
lated by (7.2.7) and (7.2.8), a gradient-based local optimization method can be used 
to solve the EIP in (7.2.5). Unfortunately, the objective function formulated in this 
way is usually non-convex because different pairs of ( , )G Gν θ  (i.e., different struc-
tures combined with different parameter values) may produce very close model 
outputs. As a result, the solution of a gradient-based optimization method is often 
trapped at local minima.

Global Optimization A global optimization method can be used to find the global 
minimum of objective function (7.2.6). For example, Zheng and Wang (1996) used 
tabu search and simulated annealing (SA), Tsai et al. (2003) used generic algorithm 
(GA), and Tan et al. (2008) combine tabu search with the adjoint-state method to 
increase the efficiency of the search process. However, as the dimension of param-
eterization increases, the computational effort of global optimization quickly 
becomes infeasible because convergence of a global optimization algorithm is usu-
ally very slow and because during each iteration a high-dimensional CIP must be 
solved.

Min-Min Optimization The EIP in (7.2.5) can be solved by a min-min optimiza-
tion process

 (7.2.13)

where VG  and PG  are admissible regions of Gν  and Gθ , respectively. Furthermore, 
the min-min problem can be solved iteratively by

 (7.2.14)

 (7.2.15)

The inner optimization problem (7.2.15) is a CIP because Gν  is fixed and the 
outer optimization problem (7.2.14) contains only shape parameters. The high-
dimensional EIP is thus decomposed into two relatively low-dimensional opti-
mization problems. The efficiency of the min-min algorithm can be improved 
significantly by the following structure selection method.
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7.2.1.4 Structure Selection

In one iteration cycle of min-min optimization, the outer min generates structure 
candidates and the inner min solves the CIP to obtain the fitting residual for each 
candidate structure. A structure associated with the minimum fitting residual is then 
selected as the best structure to be used for the next iteration. Most computation 
effort during this process is spent on solving the costly inner CIP for all candidate 
structures. Keep in mind that the main goal of solving these CIPs is to facilitate 
structure selection rather than parameter identification. Based on the adjoint-state 
method and linearization, Sun and Yeh (1985) presented an effective method for 
structure selection. When the GLS norm is used (see Sect. 4.2), the objective func-
tion is given by

 (7.2.16)

where W is a weight matrix. Around an estimated 0
Nθ  of Nθ , the first-order 

approximation of the model is 0 0( , ) ( , ) ( )D N D D N N≈ + −u x u x Jθ θ θ θN , where 
the Jacobian JD  is evaluated at 0

Nθ  and is usually obtained by the adjoint-state 
method. Using parameterization N G= Gθ θ  and first-order approximation, the 
objective function (7.2.16) becomes

 (7.2.17)

where 0
0 0( , )obs

D D N D N= − +a u u x Jθ θ . Minimization of (7.2.17) gives

 (7.2.18)

Let the solution to the linear system in (7.2.18) be ˆGθ , the minimum of the objective 
function can be written as

 (7.2.19)

When we have a set of structures, we can find the solutions of (7.2.18) for each of 
these structures by only changing G  in the equation because JD  and a0  are inde-
pendent of structures. Next, we can use (7.2.19) to estimate the fitting residual as-
sociated with each of these structures without solving CIP. A structure that gives the 
smallest fitting residual is then selected as the best structure among these structures. 
Without solving CIP, the cost of completing such a structure selection process for 
the min-min optimization problem in (7.2.14) and (7.2.15) is not expensive.

7.2.2  Adding Basis Points

In this method, a set of basis points is used as the shape parameter of parameteriza-
tion. New basis points are added gradually to increase the structure complexity, 

 ( ) [ ( , ) ] [ ( , ) ],obs T obs
N D N D D N D N adS P= − − ∈u x u W u x uθ θ θ θ

0 0( ) ( ) ( ),T
N D G D GS ≈ − −J G a W J G aθ θ θ

0( ) .T T T T
D D G D=G J WJ G G J Waθ

0 0
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ).T
N G D G D GS S≈ = − −G J G a W J G aθ θ θ θ
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and their locations are identified for optimizing each structure. The original form 
of the method was presented in Sun and Yeh (1985) for groundwater modeling. In 
principle, any interpolation method that involves basis points, such as IDW, Voronoi 
diagram, kriging, and others introduced in Chap. 6, can be used here for adaptive 
parameterization.

By using different basis functions in (7.1.7), the identified representative param-
eter can be either discrete or continuous. One example is Voronoi zonation. When 

1 2{ , , , }G m= x x xν   is used as generators, all Voronoi cells { ( ) | , , , }V j mjx =1 2  
form a partition of the definition region (Sect. 6.1.4). If elements of the structure 
matrix ( )GG ν  in (7.2.2) are defined by gij = 1  when node i V j∈ ( )x  and gij = 0  
otherwise, the parameterization gives a zonation structure with Voronoi cells as its 
zones and a constant parameter value is associated with each zone. Another simple 
example is the use of IDW that can produce continuous and smooth interpolation 
functions by adding additional shape parameters (Sect. 6.1.4).

Each time new basis points are added, their locations need to be optimized by 
solving a global minimization problem. During this process, we have to find and 
compare the fitting residuals for all candidate structure patterns. If the fitting re-
sidual of each candidate is obtained by solving a CIP, the total computational effort 
for pattern optimization would become unaffordable. Fortunately, we can use the 
adjoint-state method described in the last subsection to expedite structure selection. 
To evaluate the fitting residual of a structure pattern, we need only to recalculate the 
structure matrix G in (7.2.19), rather than resolve CIP.

The major steps of solving EIP by gradually adding basis points include:

1. Form an initial model structure Z0. If there is no prior information, let Z0 be 
a homogeneous structure with only one basis point. Then, solve CIP with the 
initial structure to find the inverse solution *

0θ , its span * * *
,0 0( )N G= Gθ ν θ , and the 

fitting residual *
,0( )NS θ .

2. Calculate Jacobian matrix *
,0( )D NJ θ  by the adjoint-state method.

3. Add one or several new basis points to increase the structure complexity. The 
starting positions of new basis points should include the previous basis points as 
a subset (i.e., all basis points from the previous iteration should be covered) so 
that the fitting residual can keep decreasing rather than increasing, after adding 
new basis points.

4. Find the optimal zonation pattern. Follow a global search strategy to move the 
basis points from their starting locations to new locations. There are two options: 
only optimizing the locations of newly added basis points or optimizing the loca-
tions of all basis points. The adjoint-based pattern search process is used here 
to search for the optimal zonation pattern until the fitting residual cannot be 
decreased further for any new movement. During this process, when the linear 
system (7.2.18) becomes ill-conditioned for a movement, skip it and move to 
the next one. After the optimal pattern *νG  is found, a new model structure Z1  
is obtained. Then, solve CIP to find the optimal parameter vector *

1θ , its span 
* * *

,1 1( )N G= Gθ ν θ , and the fitting residual *
,1( )NS θ .

5. Choose one of the following stopping criteria during the solution process:
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 (i) * *
,1 ,0N N−θ θ  is less than a predetermined tolerance;

 (ii) *
,1( )NS θ  is less than a predetermined tolerance;

(iii) −* *
,1 ,0( ) ( )N NS Sθ θ  is less than a predetermined tolerance.

(iv)  After adding new basis points, the linear system (7.2.18) becomes ill-con-
ditioned for all movements.

If any of the above criteria is satisfied, the process can be stopped. If none of these 
criteria is met, replace Z0  by Z1 , *

,0Nθ  by *
,1Nθ , *

,0( )NS θ  by S( ),
*θθN 1  and then go 

back to Step 2. Criterion (ii) may also be seen when data are limited (see Example 
7.4 below). Criterion (iv) means the data cannot support identification of a more 
complex structure, and therefore, the search process should be terminated.

Example 7.3 Optimal Partition of One Zone into Two Zones 
In this example, the hydraulic conductivity of a hypothetical aquifer described in 
Example 5.14 is identified by solving EIP. We now assume that a fault separates the 
aquifer into two homogeneous zones with true hydraulic conductivity K1 = 20 m/
day and K2 = 60 m/day, respectively (see Fig. 7.4). A pumping test is conducted to 
collect data for solving the inverse problem. Wells W1, W2, and W3  are pumped 
at constant rates of 500, 2000, and 1000 m3/day, respectively, for 2 days. Head 
measurements are recorded at five wells O1, W1, W2, W3, and O2 at times 0.01, 
0.1, 0.5, 1.0, and 2.0 day. According to the basis-point EIP algorithm described in 
the above, we initially started from a homogeneous structure with a single Voronoi 
generator x1  located at the center of the region. Without observation error, the iden-
tified hydraulic conductivity is K* = 20 m/day, and RMSE = 0.26 m. After adding 
the  second Voronoi generator x2  and moving it to the optimal location, the RMSE 

Fig. 7.4  Fault location identification by solving EIP. The solid line is the true location of the 
fault. In the absence of observation error, the true fault location is accurately recovered; in the 
presence of observation error, the identified fault location ( dashed line) deviates slightly from its 
true location
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reduces to 0.05 m, and the true location of the fault and the true values of K in each 
zone are accurately recovered: K1 19 96* .=  and K2 60 16* .= m/day.

To test the stability of the inverse solution, random observation errors with norm 
equal to 0.05 m are added to the data. For the single basis point case, the identi-
fied K * is 36.5 m/day and the RMSE is 0.29 m. After adding the second basis 
point, the identified fault location is somehow deviated from the true one (dashed 
line in Fig. 7.4). The identified parameter values associated with the structure are 
K1 18 9* .=  and K2 57 2* .= m/day  with RMSE = 0.014 m.

When the true parameter structure is complex and unknown, the EIP solution 
can provide a simplified representative model, as shown in the following example.

Example 7.4 Find the Representative Parameter of a Random Field  
We revisit the hypothetical aquifer used in the previous example, but assume that 
the unknown hydraulic conductivity is spatially heterogeneous with a trend. The 
random component of hydraulic conductivity field has an exponential covariance 
structure with variance 2 2 0σ = .  and correlation distance 500 m= ; the trend part 
is a bilinear function determined by the parameter values at the four corners of the 
region. The resulting “true” hydraulic conductivity field (log-transformed) is shown 
in Fig. 7.5, which shows wide variations. The observation data were obtained by 
simulating the same pumping test described in the last example and adding random 
observation errors with norm equal to 0.05 m.

Using the same basis-point EIP algorithm as before, we start from the homoge-
neous structure and then add Voronoi generators one at a time until a stopping crite-
rion is satisfied. When the number of zones is increased to four, the fitting residual 
(RMSE) is reduced to 0.04 m, which is already within the range of observation 
error. Thus, we terminate the EIP process according to Criterion (iii) mentioned in 
Step 5 of the basis-point EIP algorithm. The results are summarized in Table 7.1, 
and the identified four-zone structure is plotted in Fig. 7.6a. Because the EIP solu-
tion is nonunique in the presence of observation error, we can find many acceptable 
models that have similar fitting residuals. For the current case, an equally plausible 
model is shown in Fig. 7.6b. Of course, we may try to add more zones and search 

Fig. 7.5  Synthetic true 
hydraulic conductivity field 
used in Example 7.4
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for more patterns to further decrease the fitting residual. However, simply reducing 
fitting residuals will not lead to better models and may run the risk of overfitting, as 
we have explained before (see Fig. 7.2 and discussion therein). ■

After Example 7.4, we can make the following observations on EIP solution:

• It is impossible in practice to accurately identify a system, such as the one shown 
in Fig. 7.5, because of the limitation of data. In this case, the best an inversion 
algorithm can do is to help find a data-acceptable model—a model that cannot 
be distinguished from the true system in the data space. In other words, we obtain 
a model that cannot be rejected by the existing observation data and prior infor-
mation. A model found by EIP is a “data-acceptable” model, and its structure 
may be significantly different from that of the real system, as we have seen in 
Example 7.4. In a certain sense, EIP can be seen as a tool for global upscaling or 
model reduction.

• Accurate parameter values cannot be found by solving EIP, unless the true sys-
tem structure is known, as we demonstrated in Example 7.3. Structure error is 
always automatically compensated by the error in parameter values in the EIP 
solution process.

• In the presence of observation errors, the EIP solution is always nonunique. For 
example, all models shown in Fig. 7.6 are EIP solutions. The number of “data-
acceptable” models is actually infinite. They may have different structure com-
plexities (e.g., number of zones) and different structure patterns (e.g., shape of 
Voronoi diagrams) and parameter values.

Fig. 7.6  a and b: Two sets of possible representative parameters identified by EIP solution for 
approximating the heterogeneous random field in Fig. 7.5

 

Table 7.1  Summary of the EIP results of Example 7.4.
Number of zones 1 2 3 4
K values (m/day)

1 17 8.K = 1 14 2.K =  

2 30 6.K =
1
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14 2
32 2
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RMSE (m) 0.40 0.12 0.07 0.04
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• Not all “data-acceptable” models are useful because they may give different 
results for a model application. Using a sampling-based approach to estimate 
reliability of an EIP solution is generally ineffective because of the variabil-
ity in model structure. We will consider how to find a model that is both “data 
acceptable” and “application acceptable” in Chap. 12.

7.2.3  Zone Refinement

Zone refinement is another method for adaptive parameterization (Chavent and Bis-
sell 1998; Ameur et al. 2002; Hayek et al. 2008). Starting from an initial zonation 
model, the method selects one or several zones to refine in order to increase the 
model complexity. The parameter values associated with the new zonation are then 
identified by inversion. This process is repeated until a stopping criterion is met. 
When deciding which zones are to be selected for refinement, a common criterion 
is that the refinement should lead to the largest reduction in the value of objective 
function.

7.2.3.1 Refinement Indicator

Let us assume that the current zonation consists of m  mutually exclusive zones 
Ω Ω Ω Ω= ∩ ∩…∩1 2 m  and 1 2θ = 

ˆ{ | , , , }j j m  are the parameter values as-
sociated with this zonation, as identified by solving the CIP. Furthermore, assume 
that a current zone Ω j  is selected to be cut into two subzones Ω j,1  and Ω j,2. The 
interface between them is called a cut and denoted by C. The number of possible 
cuts, of course, is infinite. Our purpose is to find the optimal cut such that the objec-
tive function can be maximally decreased after the cut. Let us denote the unknown 
parameter values associated with two subzones as 1θ j  and 2θ j , respectively. Let 

1 2θ θ θ θ∆ = −ˆ ˆ( , ) ( , )j j j jS S S  be the decrease of the objective function after 1θ j  and 
2θ j  are identified by inversion. Using the first-order approximation to the objective 

function, we have

 (7.2.20)

where the summation ΣΩj ,1
 is over all nodes( )i within subzone Ω j,1 , ΣΩj ,2

 has 

similar meaning, and all partial derivatives in the equation are evaluated at θ̂ j  (i.e., 
zone value before the cut). Because θ̂ j  is the inverse solution obtained by a gradi-
ent algorithm, we must have

 (7.2.21)

1 2

1 2θ θ θ θ
θ θΩ Ω

∂ ∂
∆ ≈ − + −

∂ ∂∑ ∑
, ,

ˆ ˆ( ) ( ) ,

j j

j j j j

i i

S S
S

1 2 1 2

0 or θ
θ θ θ θΩ Ω Ω Ω

∂ ∂ ∂ ∂
∇ = + ≈ ≈ −

∂ ∂ ∂ ∂∑ ∑ ∑ ∑
, , , ,

ˆ( ) .

j j j j

j

i i i i

S S S S
S



266 7 Model Structure Identification

Substituting (7.2.21) into (7.2.20) gives

 (7.2.22)

where

 (7.2.23)

is called a refinement indicator of Ω j  when it is cut into two zones. We can always 
assume 0λ >j ; otherwise, we can change 2 1θ θ−( )j j  to 1 2θ θ−( )j j on the right-hand 
side of (7.2.22). Using (7.2.21), λ j  can be defined equivalently by

 (7.2.24)

Because λ j  depends on the shape of the two subzones, it is a function of cut, namely, 
λ λ= ( )j j C . According to (7.2.22), a larger λ j  will cause a larger decrease of the 
objective function. Therefore, a cut that corresponds to the maximum λ j  should be 
considered as the optimal one.

7.2.3.2 Finding the Optimal Cut

After the sensitivity coefficients θ∂ ∂( / )iS  are calculated for all nodes by the ad-
joint-state method, the refinement indicator λ ( )j C  associated with a cut can be 
obtained simply by summing the sensitivity coefficients of all nodes within subzone 
Ω j,1  or subzone Ω j,2  of the cut (see Example 7.2). The optimal cut C *  can then be 
obtained by solving the following maximization problem:

 
(7.2.25)

To make this problem solvable, candidate cuts have to be parameterized, for 
example, by considering only horizontal and vertical grid lines as cuts (Figs. 7.7a 
and b). In this case, of course, only a nearly optimal cut can be found. Moreover, 
because (7.2.22) is based on the first-order approximation, there is no guarantee that 
the optimal cut obtained in such a way will lead to the maximum ∆S . As suggested 
in Ameur et al. (2002), it is better to keep several nearly optimal cuts and calculate 
∆S  for each of them to determine which one is the best.

After the maximum refinement indicators λ *( )j C  (j m= 1 2, , , ) are calculated 
for all current zones, we can select one or several zones that have the largest indica-
tor to refine and finally generate a new zonation structure for EIP solution, as shown 
in Fig. 7.7c.
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7.2.3.3 Algorithm

The zone refinement method consists of the following major steps:

1. Form an initial zonation structure Z0  based on prior information. If there is 
no prior structure information, set Z0  as a homogeneous (one zone) structure. 
Then, solve CIP to obtain the optimal parameter values *

0θ  and its span *
,0Nθ  

associated with Z0.
2. Use the adjoint-state method to calculate the sensitivity coefficients evaluated at 

*
,0Nθ  for all nodes.

3. Find the best cut (or several nearly best cuts) and the maximum refinement indi-
cator for each zone, select zones to refine, and finally form a new zonation struc-
ture Z1 .

4. Solve the CIP for structure Z1  to obtain the optimal parameter *
1θ  and its span 

*
,1Nθ  associated with Z1 .

5. Check the stopping criteria: (i) * *
,1 ,0N N−θ θ  becomes small; (ii) *

,1( )NS θ  

becomes small; (iii) * *
,1 ,0( ) ( )N NS S−θ θ  becomes small; and (iv) after adding 

new cuts, the inverse solution becomes overparameterized. If all of these criteria 
are not met, replace Z0  by Z1 , *

,0Nθ  by *
,1Nθ , *

,0( )NS θ  by *
,1( )NS θ  and then go 

back to step 2.

Detailed discussions and numerical examples can be found in Ameur et al. (2002) 
and Hayek et al. (2008). Ameur et al. (2002) also defined refinement indicators for 
cutting one zone into more than two zones and coarsening indicators for reducing 
the number of zones. Ameur et al. (2008) extended the method for the identifica-
tion of multiple distributed parameters of a system. Hayek et al. (2009) presented 
a second-order refinement indicator that is more efficient than the first-order one.

Both the basis point method and the zone refinement method can be used for 
adaptive parameterization. To increase the structure complexity, the former in-
creases the number of basis points, while the latter increases the number of zones. 
Both methods use the adjoint-state sensitivity analysis for pattern optimization. But 
the former uses global optimization for pattern identification and it can use differ-
ent basis functions to fit continuously and/or discontinuously varying parameters. 

Fig. 7.7  Zone refinement. a A horizontal cut, b a vertical cut, and c an identified zonation
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There are other methods for zone structure identification. For example, Eppstein 
and Dougherty (1996) used an extended Kalman filter (see Chap. 9) and partitional 
clustering algorithm, Ayvaz (2007) applied a fuzzy c-means clustering and meta-
heuristic harmony search algorithm, and Lin et al. (2010) used a modified tabu 
search method.

7.2.4  The Level Set Method

The level set method was originally introduced by Osher and Sethian in the 1980s 
for tracking moving interfaces (Osher and Fedkiw 2003; Sethian 1996). It has been 
successfully applied to a number of disciplines including computational fluid dy-
namics, computer animations, combustion, and inverse problems for shape recon-
struction and scattering (Santosa 1996; Burger and Osher 2005; Dorn and Lesselier 
2009; Chan and Tai 2004). It is especially suitable for identifying interfaces between 
different materials or fluid phases. In this section, the level set method is used as a 
parameterization tool for structure pattern identification in the framework of EIP.

7.2.4.1 Level Set Parameterization

Assume that the unknown parameter θ( )x  in a region Ω  can be approximated 
by a multivalue function θ̂( )x  that has m different values at m mutually exclusive 
subregions or zones, viz.

 (7.2.26)

This representation is the same as the zonation method, but here a zone may have 
an arbitrary shape and can be either connected or disconnected, as shown in Fig. 7.8 
for a two-zone case. Note that the interface (or hypersurface) Γ  is a curve in two-
dimensional and surface in three-dimensional space (Fig. 7.9).

As another example, consider an aquifer consisting of different geological ma-
terials (facies) with different hydraulic conductivity values. The space occupied by 
each material is defined as one zone (connected or disconnected), and the inverse 
problem is to identify the material interfaces and the hydraulic conductivity of each 
material. In the level set method, this kind of structure is represented and then iden-
tified by defining a set of level set functions.

Let us first consider the two-zone case:

For this case, the EIP requires identifying 1 2θ θΓ( , , )  based on state observations 
and prior information, where Γ  is the interface between the two zones. We have 
seen in the last section that using an adaptive zonation method to identify the ge-
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ometry of an irregular zone is not an easy task. In the level set method, a level set 
function ϕ( )x  is defined over the whole region ( )Ω  by

 (7.2.27)

The two-value function θ̂( )x  can then be represented by

 (7.2.28)

where ϕ( )H  is the Heaviside function defined by 1ϕ =( )H , when 0ϕ > , and 
0ϕ =( )H , when 0ϕ ≤ . Note that the level set function defined by (7.2.27) is 

nonunique, but the boundary Γ  is determined uniquely once a level set function 
is found. Using the Heaviside function makes (7.2.28) more definite than using 
the level set function directly. The problem of zone structure identification now 
becomes identification of the level set function ϕ( )x .

A multivalue function θ̂( )x  defined in (7.2.26) can be represented similarly by 
multiple level set functions { }1 2( ) | , , ,k i i kϕ= =xϕ  , where k is the smallest 
integer satisfying 2k m≥  ( k level set functions can differentiate at most 2k zones). 
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Fig. 7.9  A four-zone structure and its zonal interfaces: a connected and b disconnected zones

 

Fig. 7.8  A two-zone structure and its zonal interfaces ( Γ ): a connected and b disconnected zones
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According to the multiple level set framework (Tai and Chan 2004; Vese and Chan 
2002), we have

 (7.2.29)

Here, 1 2θ θ θ= { , , , }m mθ , m k= 2 , and ( , )iφ x ϕ  are basis functions defined by

 (7.2.30)

where ( , , , ) ( )b b b jj j
k
j

1 2 1 = −bin  is the binary representation of integer ( )j − 1 . 
When the true number of zones m  is less than 2k, (7.2.29) can still be used by 
deleting all terms associated with empty zones.

Let us consider the case of using two level set functions (k = 2 ) to represent a 
four-zone structure (m = 4 ) shown in Fig. 7.6. From (7.2.29), we have

 (7.2.31)

Using (7.2.31), we can represent the four-value, piecewise-constant function θ̂( )x  
by

 (7.2.32)

There are two approaches of using the level set method for inversion: the evolution 
approach and the optimization approach (Santosa 1996; van Dijk et al. 2013). The 
first approach is a traditional one. It moves interfaces gradually from their initial lo-
cations toward optimal locations such that the fitting residual is gradually decreased 
until it is minimized. In the second approach, the level set functions in (7.2.29) are 
considered as shape parameters of parameterization and identified directly by solv-
ing the EIP. The following is a brief description of these two approaches.

7.2.4.2 The Evolution Approach for Level Set Inversion

We start from an initial guess of ϕ( )x  and then use an iterative process to modify 
it gradually based on the criterion that the objective function is gradually decreased 
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until the minimum is reached. During this process, the interface Γ  moves and de-
forms until reaching the optimal location. In the traditional level set method, such 
an iterative process is simulated by an evolution process by introducing an artificial 
time variable t. Again, using the two-zone case as an example, we can redefine the 
level set function (7.2.27) as

 (7.2.33)

Figure 7.10 illustrates the movement of the interface for the two-zone case in two-
dimensional. The initial guess is now the initial condition 0ϕ( , )x , the result of the 
n th  iteration is denoted by ϕ( , )ntx , and the final result is represented by ϕ ∞( , )x . 
According to this definition, we always have zero level set 0ϕ =( ( ), )t tx  for x( )t  
on Γ( )t , and the movement of Γ( )t  is described by

 (7.2.34)

where v x( , )t  is the moving velocity of x( )t  on Γ( )t , 0ϕ ( )x  is the initial level 
set function, and 0 0ϕ =( )x  determines the initial location of Γ . Because the nor-
mal direction to Γ( )t is ϕ ϕ= ∇ ∇/n , where ϕ ϕ ϕ∇ = ∇ ∇· , (7.2.34) can be 
rewritten as

 (7.2.35)

Equation (7.2.35) is a type of the Hamilton–Jacobi equation and called the level set 
equation, where v tn ( , ) ·x v n=  is the moving velocity of x ∈Γ  at time t along the 
normal direction.

Our task now is to select an appropriate v tn ( , )x  such that the objective function 
will be decreased after each move. Consider the variation of objective function S  
due to a small normal movement of boundary Γ
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Fig. 7.10  Illustration of the 
level set function for a two-
zone case
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(7.2.36)

in which dl  is an arc length along Γ  and the variation of S  is related to parameter 
variation δθ . When a point x ∈Γ  moves to a new incremental location x x+ d  
along the normal direction of Γ , where d vnx n= , the corresponding increment of 
θ( )x  will be 2 1θ θ θ θ+ − = −( ) ( )dx x x  in the current case. If we select v tn ( , )x  as

 (7.2.37)

the variation δS  will always be negative, and as a result, the objective function S  
will always be decreased by the movement of Γ . Substituting the so-determined 
v tn ( , )x  into (7.2.35), we can obtain ϕ( , )tx  and finally ϕ ∞( , )x .

For detailed discussions on this traditional approach and its numerical solutions, 
readers may refer to Burger and Osher (2005), Santosa (1996), and Burger (2003). 
Extensions of the method to the multizone case with multiple level set functions can 
be found in Tai and Chan (2004) and DeCezaro et al. (2009). The gradient descent 
algorithm described above usually needs many iterations to converge, especially for 
low-sensitivity problems (Aghasi et al. 2011).

Example 7.5 Identification of Zone Shapes Using Evolution Method 
In this example, the level set method is exemplified for identifying the shape of a 
low-permeability zone in an otherwise homogeneous aquifer. The size of the two-
dimensional aquifer is 1000 m × 500 m and is subject to a constant head boundary 
condition of 10 m on the left-hand side, constant flux boundary condition at the 
lower-right segment, and no-flow boundary conditions on the rest of the boundary 
segments. The shape of the actual low-permeability zone is elliptical. Figure 7.11a 
shows the steady-state head distribution, as well as the actual location of the low-
permeability zone. For illustration purposes, we assume that the hydraulic conduc-
tivity values of the background (K1) and low-permeability zone (K2) are given as 
5 and 0.01 m/day, respectively. Thus, only the shape of the low-permeability zone 
needs to be identified. The steady-state solution is obtained using a finite element 
code. Head observations are taken from the monitoring network (white open cir-
cles) shown in Fig. 7.11a.

A level set toolbox developed by Sumengen (2004) is used to evolve the level 
set function. The toolbox implements an accurate, third-order essentially non-oscil-
latory (ENO3) finite difference scheme for solving the level set equation (7.2.35). 
The domain of the problem is discretized uniformly into 5 m × 5 m cells. Initially, 
the shape of the zero level set, 0ϕ =( , )tx , is approximated by a square, as shown in 
Fig. 7.11b (the thick green line). After each iteration, the normal velocity v tn ( , )x  at 
each cell is updated according to the following expression:

 (7.2.38)
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which is derived from (7.2.37) by expanding the derivative θ∂ ∂ˆ/S  with respec-
tive to the state variable, h, using the chain rule. In (7.2.38), hD

obs  is a 24-element 
head observation vector (at steady state), h x( )D  is the corresponding model predic-
tions, and the Jacobian J is obtained by taking derivative of h x( )D  with respect to 
the two hydraulic conductivity zones. After each evolution step, the zero level set 
is used to delineate an updated hydraulic conductivity field which, in turn, is used 
to obtain an updated head field by solving the flow problem. The stopping criterion 
used for this simple case is the RMSE between simulated and observed head values. 
Figure 7.12 shows the shape of zero level set at different times, which shows that 
the zero level set converges to the shape of the actual low-permeability zone.

If in addition to the zone geometry, the hydraulic conductivity values are also 
unknown, a CIP problem needs to be solved in each loop. Like in other aforemen-
tioned EIP methods, updating the Jacobian after each iteration is the most time-
consuming part of the level set method.

Fig. 7.11  a Contour of steady-state head distribution and locations of observation points ( white 
circles) and b initial guess of level set function, 0( , )tϕ =x  (thick green line). The ellipse shape 
corresponds to the actual low-permeability zone. The domain size is 1000 m × 500 m
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7.2.4.3 The Optimization Approach for Level Set Inversion

When (7.2.29) is used for parameterization, the level set inversion method turns 
into an adaptive parameterization method, in which the level set functions play the 
role of shape parameters. After the number of zones ( m) and the number of level 
set functions ( k) are determined, both mθ  and kϕ  can be identified by solving EIP. 
Following Sect. 7.2.1, the discrete representation of (7.2.29) is

 (7.2.39)

Here, Nθ  is the model input parameter vector for all nodes, and ( )kG ϕ  is an 
N m×  matrix with elements gij

The distribution pattern of nonzero elements in the matrix is determined by kϕ . 
Using (7.2.5), we obtain the following objective function for EIP solution:

( ) .N k m= Gθ ϕ θ

g
i j

ij =
∈
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 zone 
otherwise

Fig. 7.12  Evolution of the zero level set
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 (7.2.40)

In level set inversion, more regularization terms may be added to the objective 
function, such as prior information, smoothness, and simple geometry of the zone 
boundaries (DeCezaro et al. 2009; Dorn and Lesselier 2009).

Note that because level set functions are distributed functions over the whole 
region Ω , they must be parameterized to make them identifiable. Using the general 
representation of parameterization, a level set function can be approximated by

 (7.2.41)

Here, r is the dimension of parameterization, c = { , , },c c cr1 2   are coefficients, 
ψ{ }l  are basis functions, and a is the shape vector. Linear basis functions are often 

used because of their simplicity and low DOF, but other basis functions are also 
suggested. For example, the RBF is introduced in Sect. 6.1, in which the shape 
vector a consists of the centers of the RBF and both c and a need to be identified 
(Aghasi et al. 2011; Gelas et al. 2007; van Dijk et al. 2013; Wang et al. 2003). 
Introducing appropriate shape parameters may increase the flexibility of ϕ̂( , , )x c a  
for fitting different shapes.

After all k level set functions in (7.2.29) are parameterized, we have  ( , )k xϕ µ , 
where 1 1 2 2{ , , , , , , }k k= c a c a c aµ  . The problem of level set function identifica-
tion now becomes identification of a finite-dimensional shape vector µ , and the 
EIP can be solved by methods introduced in Sect. 7.2.1. Let us explain how to 
calculate the gradients /S∂ ∂θ  and /S∂ ∂µ  with the two-zone case. After param-
eterization, (7.2.28) can be rewritten as

 (7.2.42)

The derivative of Heaviside function ϕ( )H  is the Dirac-delta function δ ϕ( ) . For nu-
merical calculation, it is often replaced by a smooth function 2 2

εδ ϕ ε π ϕ ε= +( ) / ( ) , 

where ε  is a smoothing factor. Tai and Chan (2004) found that δ ϕ( )  can be re-
placed simply by 1 without changing the gradient direction of the objective func-
tion in some applications. Now, as in the evolution level set inversion, we need to 
calculate the sensitivity matrix using methods introduced in Chap. 5,

 (7.2.43)

 (7.2.44)
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In addition, for any component µj  of the shape vector µ , we need to calculate

 (7.2.45)

In the above equations, θ∂ ∂/ iS  for all nodes ( i N= 1 2, , , ) are calculated by the 
adjoint-state method. When a Gauss–Newton method is used for optimization, the 
sensitivity matrix [ / ]i ju µ= ∂ ∂Jµ  can be calculated similarly.

For more discussion on using the optimization method for level set inversion, 
readers may refer to, for example, Tai and Chan (2004), Dorn and Lesselier (2009), 
and Ahgasi et al. (2011). The level set inversion method has been used for identifying 
the hydraulic conductivity structure in aquifers and the permeability distribution in 
petroleum reservoirs (Berre et al. 2007; Iglesias and McLaughlin 2011; Dorn and 
Villegas 2008; Berre et al. 2009; Aghasi et al. 2013; Lien and Mannseth 2014). The 
level set method has been combined with Bayesian inversion (Cardif and Kitanidis 
2009), ensemble Kalman filter (Chang et al. 2010), and the multiscale inversion 
method (Berre et al. 2007, 2009; Lien et al. 2005), which will be introduced in the 
next section.

7.3  Multiscale Inversion

7.3.1  Multiscale Refinement

Multiscale refinement, or multigrid refinement, is a special case of zone refinement, 
in which the zonation pattern is obtained by making the grid progressively finer. 
Algorithms for this method are very similar to those used in Sect. 7.2.2 and 7.2.3:

1. A homogeneous model is formed initially over a coarse grid.
2. A sensitivity-based selection method is used to determine which blocks of the 

coarse grid should be refined in order to decrease the value of the objective func-
tion as much as possible.

3. The selected blocks are replaced by finer-scale blocks to form a new structure.
4. The parameter values of all blocks of the new structure are identified by solving 

CIP.
5. The stopping criteria are checked for convergence. If not converged, return to 

Step 2.

Grimstad et al. (2003) used finite difference grids for refinement (Fig. 7.13a) and 
presented a stopping criterion

 (7.3.1)
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where n is the number of observation data and m is the dimension of θ. Note that 
m is increased when the grid becomes finer. In Majdalani and Ackerer (2011), mul-
tiscale finite element meshes are used for refinement, in which a coarse triangle 
element is divided into four finer triangle elements (Fig. 7.13b). The authors applied 
their method to a real case study.

The multiscale refinement method avoids the difficulty of identifying shape pa-
rameters, but at the expense of losing flexibility in structure parameterization. Be-
cause structural patterns often cannot be well characterized by using a small number 
of regular blocks, an adaptive process of multiscale refinement is needed to gener-
ate high-resolution grids for identifying irregular zone boundaries. In this case, it 
is difficult to avoid the overparameterization problem—with the decrease of the 
block size, the identified block parameter values would become very insensitive to 
all observation data, and as a result, the CIP solution becomes unstable. Berre et al. 
(2007) attempted to overcome this problem by combining the adaptive multiscale 
estimation with the level set inversion, in which the former is used as a predictor, 
while the latter is used as a corrector. Berre et al. (2009) presented another way to 
combine the two methods, in which the multiscale refinement algorithm is applied 
to the level set functions, instead of the unknown parameter itself. In their method, 
bilinear interpolation is used to determine the basis functions in (7.2.41) without 
using any shape parameter. After substituting (7.2.41) into (7.2.29), the unknown 
parameter is determined completely by coefficients 1 2{ , , , , }m kc c cθ  , which can 
be identified by minimizing the objective function. This process is repeated for 
progressively finer grids until the stopping criteria are satisfied. The adaptive mul-
tiscale refinement process can also be combined with Bayesian inversion for the 
estimation of statistical parameters (Wan and Zabaras 2011).

Fig. 7.13  Illustration of grid refinement for multiscale inversion. a Finite difference grid and 
b finite element mesh
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7.3.2  Multiscale Modeling

If a distributed parameter can be identified over a fine-resolution grid, the prob-
lem of identifying its structure becomes insignificant because the structure error 
becomes small. In other words, we may use the increase of parameterization di-
mension to compensate for the reduction in the number of shape parameters. Un-
fortunately, in reality, we cannot identify a distributed parameter directly at a very 
fine grid because overparameterization will cause the inverse solution unstable. The 
multiscale inversion approach provides another way to deal with this problem. After 
a model is identified at a coarse scale (a low-resolution grid), it is used as a high-
level regularization mechanism to stabilize the inverse solution at a finer scale. 
This approach is different from the multiscale refinement method discussed in the 
previous subsection, where only some selected blocks of a grid are refined and the 
forward problem is solved in a fixed fine grid independent of the inverse solution. 
In multiscale inversion, a series of models are identified adaptively at a series of 
nested coarsening grids and both forward and inverse problems are solved at the 
same scale. In other words, different models are constructed for different scales. 
The following is a brief introduction of this approach.

7.3.2.1 Upscaling and Downscaling

Let us consider two scales, a coarse scale ( c) and a fine scale (  f  ), which are char-
acterized by two nested grids with Nc  and Nf  nodes, respectively (Fig. 7.14). The 
models associated with the two scales are denoted by ( , )c cu θ  and ( , )f fu θ , 
in which uc  and u f  are the forward solutions and cθ  and fθ  are the respective pa-
rameterizations of the unknown parameter. The relation between cθ  and fθ  can be 

Fig. 7.14  Two nested grids, 
in which the coarse grid is 
shown by thick dark lines, 
whereas the fine grid is 
shown by thin blue lines
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represented by two transformations: an upscaling transformation ( )c fU=θ θ  and 
a downscaling transformation ( )f cD=θ θ . Figure 7.15a–b show how local nodal 
values are used to generate upscaled and downscaled parameters. Note that various 
averaging methods can be considered as upscaling transformations, whereas vari-
ous interpolation methods can be considered as downscaling transformations.

When linear transformations are used as usual, upscaling and downscaling can 
be represented, respectively, by

 (7.3.2)

and

 (7.3.3)

where U  is an N Nc f×  matrix for upscaling and D  is an N Nf c×  matrix for 
downscaling. Note that the form of (7.3.3) is identical to (7.2.2), where the matrix 
D  was called the structure matrix of parameterization and denoted by G.

Different methods of upscaling and downscaling will generally lead to different 
results. The parameter values obtained from downscaling can be used directly for 
forward solution. For example, during the identification of a parameterized model, 
the grid parameter values are obtained from the identified parameter vector (down-
scaling) and used for calculating the values of the objective function; if a software 
package has a grid refinement function, the grid parameter values will be generated 
automatically by interpolation (downscaling) and used for model prediction. On 
the other hand, however, the parameter values obtained by local homogenization 
(upscaling) cannot be used directly in a coarse-scale grid for obtaining the for-

= ,c fUθ θ

,f c= Dθ θ

Fig. 7.15  Information exchange between scales. a Upscaling, in which the coarse-scale parameter 
value cθ  (at the center circle) is obtained from surrounding fine-scale fθ  values by averaging 
and b downscaling, in which all fine-scale fθ  values within a block are obtained from the cor-
responding coarse-scale cθ  ( corner circles) through interpolation
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ward solution. In EWR modeling, upscaling depends not only on the local structure, 
but also on global flow conditions, including boundary conditions (Renard and De 
Marsily 1997; Gerritsen and Durlofsky 2005; Farmer 2002). In multiscale inver-
sion, however, parameter values obtained by upscaling or downscaling are only 
used as initial estimation or regularization for stabilizing the inverse solution. As 
described in the following algorithm, different models are constructed for different 
scales. Therefore, the effect of upscaling and downscaling errors is insignificant.

7.3.2.2 Two-Scale Inversion

A simple, two-scale inversion process consists of the following major steps:

1. Estimate a fine-scale model 0
fθ . The objective function used for fine scale inver-

sion is

 (7.3.4)

 where u f
obs  is observation data and α ( )f f fR θ  is the regularization term for 

inversion at the fine scale. We assume that the structure error at the fine scale can 
be ignored.

2. Upscale 0
fθ  to obtain an initial coarse-scale model, 0 0

c f= Uθ θ .
3. Solve CIP at the coarse scale to obtain an inverse solution ˆcθ  by minimizing the 

coarse-scale objective function

 (7.3.5)

 where uc
obs  is a modified observation data vector and the determination of which 

will be discussed below.
4. Downscale ˆcθ  to obtain a fine-scale model, = + −0 0(ˆ )ˆ

f f c cD θ θθ θ .
5. Starting from ˆfθ , solve CIP at the fine scale until convergence.

The most important issue in the above process is to keep the value of the objec-
tive function ( )f fS θ  decreasing monotonically after scale change. Because 

( )c cu θ  and ( )f fu θ  are obtained by solving the forward problem at different 
scales, their values are generally different. If we enforce the consistence condition, 

( ) ( )obs obs
c f c f f f− = −u U u u uθ θ , namely, let the following hold at observation lo-

cations/times xobs

 (7.3.6)

then the two objective functions ( )c cS θ  and ( )f fS θ  will become consistent: 
( )ˆ obs

c c c→u uθ  in the coarse scale implies ( )ˆ obs
f f f→u uθ  in the fine scale. The 

term in the square brackets of (7.3.6) is the upscaling error or bias of forward solu-
tion. Furthermore, we need to ensure that the gradients of the two objectives are 

α= − +( ) ( ) ( ),obs
f f f f f f f fS Ru uθ θ θ

α= − + ( ) ( ) ( ),obs
c c c c c c c cS Ru uθ θ θ

[ ( , ) ( , )],obs obs
c f c f obs f f obs= + −u u u U x u xθ θ
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equal so that when cθ  is the minimizer at the coarse scale,  fθ  will be the minimizer 
at the fine scale. In order to satisfy this requirement, let

 (7.3.7)

and redefine the objective function of the coarse scale by

 (7.3.8)

Note that the dimension of gradient residual rc  is m Nc× , where m is the num-
ber of observations. By calculating the gradient of this equation, we can find that 
 ( )c cS θ  satisfies the equal gradient requirement. The gradient residual rc  in (7.3.7) 

can be calculated by the adjoint-state method. Note that the scale difference be-
tween the two scales should not be too great; otherwise, large errors in uc

obs  and 
large value of rc  will cause the algorithm to fail.

In practical applications, multiscale inversion often involves a hierarchy of 
scales, which starts from a fine scale, followed by several intermediate scales, and 
then to a coarse scale. Upscaling is first performed at each scale, followed by down-
scaling, and the inversion is completed for each scale. Although multiscale inver-
sion involves relatively complex algorithm and computation, it has attractive ad-
vantages. First, the major effort of inverse solution is completed at the coarse scale. 
At this scale, the forward solution becomes faster because of the smaller number of 
nodes, the inverse solution becomes more stable, and no structure parameters need 
to be identified. Second, once the optimal parameter is found at the coarse scale, the 
downscaled solution will provide a good initial guess to guide the inverse solution 
at the fine scale. Finally, a more detailed characterization of the unknown parameter 
is obtained from the available data.

Multiscale inversion is a promising approach for model calibration when data 
are sufficient. Unfortunately, in EWR modeling, the available data are usually in-
sufficient for identifying the parameter values of all blocks even at a coarse scale. 
Up to date, this approach has not become popular. Yoon et al. (2001) applied mul-
tigrid inversion in history matching; starting with a coarse description, the pro-
duction history at the wells is matched by recursively refining the reservoir grid. 
Because production data are integrated at a coarse scale with fewer parameters, 
the authors found that their method is significantly faster than direct fine-scale 
inversion of the production data. Similarly, Aanonsen and Eydinov (2006) applied 
multiscale inversion to reservoir history matching, in which the objective functions 
for different scales are modified by recalculating the regularization coefficients 
for each scale. The multilevel model correction method presented by Li and Zou 
(2007) avoids the use of different regularization coefficients at different scales; 
instead, the authors added a correction term to the objective functions of coarse 
scales, similar to that used in the above algorithm. The method presented by Fu 
et al. (2010) uses the adjoint-state method to reduce the computational effort of 
inversion at a fine scale, in which the gradient of objective function is calculated at 
a coarse scale instead of fine scale.

( ) ( ) ,c c f f fS S= ∇ − ∇r U Dθ θ

 ( ) ( ) .c c c c c cS S= − rθ θ θ
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7.4  Statistical Structure Parameter Estimation

7.4.1  Statistical Parameterization and Hyperparameters

In Chap. 4, the unknown parameter θ( )x  is regarded as a realization of a random 
field, where the random field is assumed to be known and characterized by some 
statistical parameters. Let 1 2θ θ= = { ( ) | , , , }j j j mx  be m samples of the param-
eter taken from m locations (or times), { , , , }= 1 2 mx x xν  , and linear interpolation 
in the statistical framework has the following general form:

 (7.4.1)

where 1 2{ , , , }mφ φ φ=φ   is a set of orthonormal basis functions satisfying:

and 1 2{ , , , }rψ ψ ψ=ψ   is a set of statistical parameters that characterize the 
structure of the random field. Recall that similar forms of parameterization have 
been used extensively in Chap. 6 for both deterministic (Sect. 6.1.1) and statistical 
parameterization methods (Sect. 6.1.5).

When interpolation (7.4.1) is used for parameterization, θ̂( )x  is a model of 
θ( )x  , m is the dimension of parameterization, and 1 2={ , , , }mθ θ θθ   is a vector 
of parameter values to be estimated. A model under statistical parameterization can 
also be represented by the pair ( , )S θ , where { , , , }m=S φ ν ψ  is the model struc-
ture. In Chap. 6, we have shown that different types of model structures can be 
represented by choosing different types of basis functions. To represent a complex 
structure, we can either increase the dimension of parameterization or increase the 
number of statistical parameters. When the model structure is predetermined and 
only the value vector θ  needs to be identified, the number of DOF of the estima-
tion problem is m; when r statistical parameters need to be estimated, the number of 
DOF is increased to m r+ ; the number of DOF will be increased further when the 
shape vector ν  needs to be identified. The full structure identification also includes 
the determination of the parameterization dimension and the selection of basis func-
tions. In this section, we will focus on the estimation of statistical parameters.

Statistical parameters are hyperparameters of inverse solution. Although estimat-
ing hyperparameters is not the direct objective of inversion because they are not 
the model parameters, we have to estimate them as part of the inversion process 
because the hyperparameters affect model structures and are uncertain. In this sec-
tion, we will use ψ  to represent all hyperparameters appearing in the formulation 
of inversion. The following lists some examples of hyperparameters that we have 
seen before:

1
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•	 A	typical	example	of	statistical	parameterization	is	kriging	interpolation	intro-
duced	in	Sect.	6.2.4,	in	which	the	kriging	weighting	coefficients	are	obtained	by	
solving	the	kriging	equations.	The	kriging	coefficients,	 1 2{ ( , ) | , , , }j j mλ =x ψ � , 
play	the	role	of	basis	functions	in	(7.4.1),	where	ψ 	is	the	statistical	parameters	
in	a	selected	variogram	model,	such	as	variance	 2σ 	and	range	l 	in	the	exponen-
tial	and	Gaussian	models.	In	Sect.	6.2.3,	these	two	parameters	are	estimated	by	
samples	of	the	unknown	θ( )x .	But,	they	can	be	considered	as	hyperparameters	
to	be	estimated	by	the	observations	of	state	variables.

•	 The	objective	functions	derived	from	MAP	or	MLE	contain	statistical	param-
eters	in	the	covariance	matrices	of	data	and	prior	distributions,	such	as	the	vari-
ance	of	measurements,	 the	mean	 and	variance	of	Gaussian	 prior.	 In	Chap.	 4,	
these	statistical	parameters	are	assumed	to	be	known,	but	in	practice,	they	are	
usually	unknown	and	need	 to	be	estimated	by	data.	Such	a	case	was	actually	
presented	in	Example	4.6,	in	which	Gibbs	sampling	algorithm	was	demonstrated	
for	estimating	the	mean	and	variance	of	a	Gaussian	PDF.

•	 The	regularization	coefficients	of	the	regularization	terms	and	the	weighting	co-
efficients	of	the	coupled	inverse	problems	cannot	be	easily	determined	by	meth-
ods	learned	in	Chap.	3.	Thus,	they	can	be	considered	as	hyperparameters	to	be	
estimated	as	part	of	inversion.

The	simplest	method	of	dealing	with	hyperparameters	is	marginalization.	Assume	
that	a	model	has	two	unknown	parameters	 θ  and ψ,	and	we	are	only	interested	in	
estimating	 θ 	from	data	D.	In	this	case,	we	can	regard	 ψ 	as	a	nuisance	parameter	
vector	and	integrate	it	out	by	calculating	the	marginal	posterior

	 (7.4.2)

Marginalization	technique	has	been	used	in	the	derivation	of	the	Bayes’	theorem	in	
Sect.	4.1.3.	Because	the	marginal	probability	distribution

	 (7.4.3)

is	a	constant	after	 θ 	is	integrated	out,	the	Bayes’	theorem	then	can	be	written	as	
( | ) ( | ) ( )p D p D p∝θ θ θ .
Marginalization	(7.4.2)	gives	only	the	average	effect	of	hyperparameter	 ψ  to 

the	estimation	of	θ . Because θ  and ψ 	are	dependent,	if	ψ 	can	be	estimated	more	
accurately,	 the	estimated	 θ 	will	become	more	accurate.	 In	fact,	we	can	estimate	
them	simultaneously	by	solving	a	statistical	EIP	as	we	have	done	for	the	determin-
istic	framework.	With	the	min-min	optimization	process	described	in	Sect.	7.2.1,	for	
any	 ψ̂ 	chosen	from	its	admissible	region,	we	can	use	a	classical	statistical	inversion	
method,	the	MAP	for	example,	to	find	an	optimal	parameter	 θ̂  associated with ψ̂ . 
When	 ψ̂ 	is	changed	systematically	according	to	a	global	optimization	method,	the	
optimal	parameter	pairs	 (ˆ ˆ, )θ ψ 	then	can	be	found.	In	general,	the	fitting	residual	is	
significantly	decreased	during	this	process.	As	shown	in	the	following	example,	the	
optimal	 ψ̂ 	can	be	found	explicitly	for	simple	cases.

,= ∫( | ) ( | ) .p D p D dθ ψ ψθ

( ) ( | ) ( )p D p D p d= ∫ θ θ θ
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Example 7.6 Estimation of Unknown Variance 
Consider	 the	 identification	 of	 transmissivity	 T x y( , ) 	 and	 storage	 coefficient	
S x y( , ) 	of	a	confined	aquifer,	where	head	observations	and	prior	estimation	of	the	
two	parameters	are	available.	Let	the	observed	heads	be	an	n-dimensional vector 
uD
obs . After	discretization	and	parameterization,	T and S	are	represented	by	an	mT

-dimensional vector T and an mS -dimensional vector S, respectively.	We	assume	
that	all	data	and	prior	distributions	are	Gaussian,	namely

p p pD D T S( ) ( , ), ( ) ( , ), ( ) ( , ).e 0 C T T C S S C= = =  0 0and 

Furthermore,	we assume 2σ=D DC I , 2σ=T TC I , and 2σ=S SC I . In this case, the 
unknown	parameters	and	hyperparameters	are	 = { , }T Sθ  and 2 2 2{ , , }D T Sσ σ σ=ψ , 
respectively.	From	Sect.	4.2.3,	the	conjugate	MAP	estimate	of	them	is

	 (7.4.4)

where

	 (7.4.5)

This	optimization	problem	can	be	solved	iteratively.	At	the	kth iteration, ( )kψ  are 
known	and	the	above	objective	function	reduces	to

	 (7.4.6)

where	the	regularization	coefficients	are

	 (7.4.7)

Problem	(7.4.6)	is	a	regularized	least	squares	problem	with	known	regularization	
coefficients.	Let	its	solution	be =( ) ( ) ( )( , )k k kT Sθ .	Substituting	 ( )kθ 	into	(7.4.5)	and	
using	the	necessary	condition	of	minimization	with	respect	toσD ,	we	obtain

	 (7.4.8)

where RLS D
obs

D
k k T

D
obs

D
k k= − −[ ( , )] [ ( , )]( ) ( ) ( ) ( )u u T S u u T S 	 is	 the	 fitting	 residual.	

The	solution	of	(7.4.8)	gives	an	updated	estimate	of	hyperparameter	 2σD ,

{ }= Φ
( )

ˆ( , ) argmin (ˆ , ) ,
ψθ,

ψ ψθθθ

{

}

2 2 2

2

2 0 0 2 0 0

=

+

+

( , ) log log log
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( ) ( ) ( ) ( ) .
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−

− −
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− −
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(7.4.9)

Similarly,	we	can	obtain

	 (7.4.10)

These	are	biased	estimates.	Unbiased	estimates	of	them	are

	 (7.4.11)

Once we have

we	can	use	it	to	replace	 ( )kψ 	in	(7.4.6)	for	the	next	iteration	until	convergence	is	
reached.

7.4.2  Hierarchical Bayesian Inversion

If	we	have	prior	information	on	hyperparameters,	we	can	assume	both	 θ  and ψ  
as	random	variables	and	estimate	them	simultaneously	in	the	Bayesian	framework.	
This	approach	is	called	hierarchical Bayesian or full Bayesian	because	it	may	in-
volve	also	the	selection	of	optimal	dimension	of	parameterization	and	the	optimal	
type	of	basis	functions	(Wikle	et	al.	1998;	Wikle	2003;	Gilks	et	al.	1998).	Hierarchi-
cal	Bayesian	incorporates	prior	distributions	of	all	unknowns	into	the	inversion	and	
also	gives	the	reliability	estimate.

7.4.2.1 Joint MAP Estimate

Joint	estimation	of	both	 θ  and ψ 	is	a	statistical	EIP	defined	in	Sect.	7.1.3.	Using	
a	sampling	method	to	search	the	joint	posterior	distribution	is	generally	infeasible	
because	of	the	high	dimension	of	inversion.	Nevertheless,	there	are	approaches	to	
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find	the	maximum	of	the	joint	posterior	distribution.	According	to	(7.1.5),	the	MAP	
estimate	of	θ  and ψ 	is	given	by

	 (7.4.12)

where

	 (7.4.13)

The	 above	 equation	 is	 derived	 from	 Bayesian	 inference,	 where	 d 	 is	 observa-
tion	 data.	Once	 the	 joint	 posterior	 distribution	 is	 found,	 the	 solution	 of	 (7.4.12)	
can	be	obtained	by	the	MCMC	search	process	(see	Sect.	4.3.2).	Like	the	min-min	
optimization	problem	(7.1.6)	used	for	EIP	solution,	problem	(7.4.12)	can	be	solved	
iteratively	by	 the	max-max	optimization.	From	step	k	 to	 step	 k + 1 , we need to 
estimate

	 (7.4.14)

	 (7.4.15)

In	this	process,	two	MAP	problems	are	solved	in	each	iteration.

Example 7.7 Hierarchical Bayesian for Conjugate Priors 
In	Chap.	4,	we	considered	the	problem	of	estimating	parameter	 θ 	from	observa-
tion data ( ) ,obs

D D Du u e= +θ 	where	the	probability	distribution	of	error	term	 eD  
was	assumed	known.	Now,	we	assume	that	 p D( )e 	is	Gaussian	with	zero	mean	and	
covariance	matrix	 2σ= ,D DC I 	but	the	variance	 2σD 	needs	to	be	estimated.	Using	
the	Bayesian	inference,	the	posterior	distribution	of	 θ 	is	given	by

	 (7.4.16)

where d u= D
obs, ( )p θ 	is	the	prior	distribution	of	 θ,	and	the	likelihood	is	a	Gaussian	

given	by

	 	 (7.4.17)

where 21β σ= / D .	The	MRF	defined	in	Sect.	6.2.2	is	selected	as	the	prior	distribu-
tion	for	θ,

	 (7.4.18)

{ }= *( , )
ˆ( , ) argmaxˆ ( , )p

θ ψ
ψ θ ψθ

= ∝*( , ) ( , | ) ( | , ) ( | ) ( ).p p p p pd dψ ψ ψ ψθ θ ψθ θ

{ }1+ = ∝( ) ( ) ( ) ( )
*

ˆ ˆ ˆargmax ( , ) ( | , ) ) ,ˆ ( |k k k kp p pd
θ

ψ ψ ψθ θθ θ

{ }1 1 1 1( ) ( ) ( ) ( )
*

ˆ argmax ( , ) ( | , ) ( | )ˆ ( )ˆ ˆ .k k k kp p p p+ + + += ∝ d
ψ

ψ ψθ θψ ψθψ

( | ) ( | ) ( ),p p p∝d dθ θ θ
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= − − − 
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D Dp
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In	Bayesian	statistics,	if	the	posterior	distribution	is	in	the	same	family	as	the	prior	
distribution,	they	are	called	conjugate distributions,	and	the	prior	is	called	a	conju-
gate prior	of	the	likelihood	function.	In	Chap.	4,	we	have	seen	that	Gaussian	family	
is	a	self-conjugate.	In	the	current	case,	MRF	is	a	conjugate prior	of	the	likelihood	
(7.4.17)	 because	 after	multiplication	 they	 give	 rise	 to	 a	 posterior	 distribution	 in	
the	same	exponential	family.	By	changing	the	value	of	the	scale	parameter	 γ  and 
the	weights	in	matrix	W,	this	distribution	can	represent	various	locally	correlated	
structures.	Because	of	 its	simplicity	and	flexibility,	MRF	is	often	used	as	a	prior	
distribution	in	the	field	of	image	processing,	as	well	as	spatial	statistical	modeling.	
When	both	 β  and γ 	are	considered	as	hyperparameters,	the	joint	posterior	distri-
bution	will	be

	 (7.4.19)

where ( | , )p βd θ  and ( | )p γθ 	are	given	by	(7.4.17)	and	(7.4.18),	respectively.	In	
the	 literature,	 the	gamma	distribution	 is	often	used	as	priors	 for	 β  and γ (Gilks	
et	al.	1998;	Besag	et	al.	1995).	Thus,	 β( )p  and γ( )p ,	also	known	as	hyperpriors,	
are	given	by

	 (7.4.20)

	 (7.4.21)

These	two	hyperpriors	are	also	conjugate	distributions	because	they	keep	the	poste-
rior	distribution	(7.4.19)	in	exponential	family	after	multiplication.	Moreover,	they	
are	nearly	non-informative	in	the	regions	 ( , )0 ∞  when constants a b a1 1 2, ,  and b2  
are	small	(Congdon	2006;	Robert	2007).	Substituting	the	prior,	likelihood,	and	hy-
perpriors	into	(7.4.19),	we	obtain

	 (7.4.22)

Now,	we	can	use	MCMC	algorithms	described	in	Sect.	4.3.2	to	explore	this	joint	
posterior	 distribution	 to	 find	 the	 hierarchical	Bayesian	 inverse	 solution	 ˆˆ ˆ( , , )β γθ . 
Detailed	discussions	on	the	algorithm	and	its	application	to	recover	the	release	his-
tory	of	a	contaminant	source	can	be	found	in	Wang	and	Zabaras	(2006),	in	which	
the	authors	used	MRF	to	model	the	unknown	concentration	field;	the	Gibbs	sam-
pler	was	used	to	sample	the	concentration	field	(one	component	at	a	time),	and	the	
Metropolis–Hastings	sampler	was	used	to	estimate	PDFs	of	the	hyperparameters	of	
the	MRF.
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7.4.2.2 Marginalized MAP Estimate

Besides	 using	 joint	 inversion,	 there	 are	 two	 marginalization-based	 methods	 for	
solving	problem	(7.4.12),	which	may	be	more	effective	in	some	cases.

•	 Marginalization of hyperparameters, ψ

Integrating	out	ψ 	from	the	joint	posterior	distribution	(7.4.13),	the	MAP	estimation	
of	θ 	is	given	by

	 (7.4.23)

Then,	ψ 	is	estimated	by

	 (7.4.24)

•	 Marginalization of the unknown parameters, θ

First,	integrating	out	θ 	from	the	joint	posterior	distribution	(7.4.13)	to	find

	 (7.4.25)

Then,	 θ 	is	estimated	by

	 (7.4.26)

Completing	these	calculations	is	difficult	in	general	because	numerical	integration	
is	needed.	Explicit	solutions	can	be	derived	only	for	linear	models	with	simple	pa-
rameter structures.

Example 7.8 Estimation of Hyperparameters with Uniform Priors 
Let	the	mean	of	parameter	 θ 	be	 =( )E θ θ ,	and	the	integral	in	(7.4.25)	actually	is	
the	likelihood	 ( | , )p d θ ψ .	If	 ( )p ψ 	 is	uniform	and	the	probability	distribution	of	
data	is	Gaussian,	the	marginalized	MAP	(7.4.25)	becomes	the	MLE	of	ψ,

	 (7.4.27)

Then,	(7.4.26)	gives	the	MLE	of	 θ,

	 (7.4.28)	

 
■

Other	 types	of	prior	distributions	can	also	be	 incorporated	 into	 the	marginalized	
MAP	estimation	but	with	more	computational	effort,	for	example,	by	integrating	out	
β  and γ 	from	the	joint	posterior	distribution	(7.4.22)	in	Example	7.7.	Hierarchical	
Bayesian	 has	 been	 used	 in	 various	 fields	 for	 hyperparameter	 estimation.	 Read-
ers	may	 refer	 to	Robert	 (2007)	 for	 a	 general	 discussion	 on	 this	 topic	 and	more	 
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examples. In groundwater modeling, marginalization-based algorithms were de-
rived for both linear and nonlinear models by Kitanidis (1995). In Woodbury and 
Rubin (2000), the transport parameters that determine the travel time moments 
are estimated, while the unknown variances of observation errors are considered 
as hyperparameters and integrated out. In Woodbury and Ulrych (2000), the log 
transmissivity field is estimated, while hyperparameters, including the variance of 
observation error, prior guess, as well as its uncertainty, are integrated out. Recent 
applications can be found in (Koutsourelakis 2009; Mondal et al. 2010; Chen et al. 
2012). More applications of hierarchical Bayesian methods can be found in sub-
sequent chapters. For example, hierarchical Bayesian will be used to estimate the 
hyperparameters of Gaussian process regression models in Chap. 8. 

7.4.3  Geostatistical Inversion

7.4.3.1 Cokriging Estimate

Cokriging, an extension of kriging, can estimate two or more random fields. Thus, 
not only parameter measurements, but also state measurements can be used for pa-
rameter estimation simultaneously. Because the information contained in all related 
sources is used for estimation, cokriging can often give better results than that of 
using a single source alone. Theoretical basis of cokriging was developed originally 
by Matheron (1971), Journel and Huijbregts (1978), and Myers (1982). For detailed 
discussion on cokriging and its applications, readers may refer to Isaaks and Srivas-
tava (1989), Cressie (1993), Kitanidis (1997), Goovaerts (1997), Deutsch and Jour-
nel (1998), Webster and Oliver (2001), Rubin (2003), and Knotters et al. (2010).

Let f ( )x  and h( )x  be two zero-mean random fields. Assume that we know their 
variance and covariance functions and the measurements of f ( )x  and h( )x  are 
given by

 (7.4.29)

in which the measurement locations of f ( )x  and h( )x  may be identical or different. 
Like in kriging, the cokriging estimate of f ( )x  at any point x0  in the field, denoted 
by (̂ )f x0 , is a linear combination of all measurements of both f ( )x  and h( )x ,

 (7.4.30)

which is written shortly as
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where 0λi ( i m= 1 2, , , ) and 0µj ( j n=1 2, , , ) are called cokriging coefficients. 
They can be determined by the requirement that f̂0  is an unbiased estimate of f0  
and the variance of estimation is the minimum. Because f ( )x  and h( )x  have zero 
mean, the unbiased requirement is satisfied automatically. The variance of estima-
tion is given by

 (7.4.31)

where all covariance components E(· ·)  are assumed to be known (we will show 
how to find them shortly). The necessary condition for minimizing Var f f(ˆ )0 0−  
gives the following m n+  cokriging equations for solving the m n+  cokriging 
coefficients

 

(7.4.32)

And, the minimum variance of estimation is given by

 (7.4.33)

On the right-hand side of the above equation, the first term is the unconditional vari-
ance of the random field f ( )x , the second term is the decrease of the variance (or 
reduction in uncertainty) due to f ( )x  measurements only (kriging), and the third 
term is the decrease of the variance after incorporating measurements of h( )x  as 
conditioning data (cokriging). In parallel to the above derivations for f ( )x , we can 
derive the cokriging estimate of h( )x  by incorporating f ( )x  measurements.

As in kriging, the coefficient matrix of the cokriging equations (7.4.32) is inde-
pendent of the location x0 . Therefore, to calculate the cokriging coefficients for 
different locations, we only need to change the right-hand terms of the equations. 
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In the most general case, cokriging only requires that the involved random fields be 
somehow correlated, not necessarily through a model.

7.4.3.2 The Procedure of Geostatistical Inversion

Cokriging estimate can be used for parameter estimation of a model in the statis-
tical framework by considering the unknown parameter θ( )x  as a random field 
and the state variable u( )x  as another and the two fields are related through a 
model θ= ( )u  . Assume that we have the following measurements of the two 
fields:

 (7.4.34)

In the above equation, { }1 2θ = , , , mX x x x  are measurement locations and/or 
times of the unknown parameter θ( )x , and Xu n= ′ ′ ′{ }x x x1 2, , ,  are observation 
locations and/or times of the state variable u( )x . The locations/times of parameter 
measurements and state observations may be identical or different.

According to Sect. 6.2.4, a random field can be decomposed into two parts: a 
deterministic trend (or mean) term for describing the large-scale variability of the 
field and a random fluctuation term for describing the small-scale variability of the 
field. Therefore, θ( )x  and u( )x  can be decomposed into

 (7.4.35)

where ( )θ x  and u( )x  are deterministic trends of θ( )x  and u( )x , respectively, and 
f ( )x  and h( )x  are their random fluctuations (with zero mean). Geostatistical inver-
sion uses the following steps to obtain an estimate of θ( )x :

• Estimate deterministic trend θ( )x  and let θ= ( )u  .
• Filter the trends out from the measurement data in (7.4.34) to obtain “measure-

ments” of perturbations f ( )x  andh( )x .
• Use cokriging to obtain an estimate of f ( )x .

The remaining problems are as follows: how to estimate θ( )x  and how to find co-
variance components needed in (7.4.32) for cokriging estimate. As a function, θ( )x  
must be parameterized before it is estimated, for example, by zonation, interpola-
tion, or functional approximation learned in Sect. 6.1. The estimation of θ( )x  then 
becomes estimation of a low-dimensional vector β . For parameterizing the random 
field f ( )x , a covariance model of θ( )x , denoted by ( )Covθθ ψ , must be chosen, in 
which ψ  represents some statistical parameters that need to be estimated (see also 
Sect. 6.2). Let us give a simple example.

Example 7.9 Estimate of a Second-Order Stationary Random Field 

1 2 1 2 θ θ θ ′ ′ ′ ( ), ( ), , ( ); ( ), ( ), , ( ).m nu u ux x x x x x

( ) ( ) ( ), ( ) ( ) ( )f u u hθ θ= + = +x x x x x x
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A Gaussian random field can be characterized by its first two moments, the mean 
and covariance. Even so, the number of candidate random fields for inversion is still 
too large to select. A second-order stationary random field defined in Sect. 6.2.1 is a 
simple case, for which the mean function µ  is constant and the covariance function 
depends only on the separation vector 2 1r x x= − . For example, we can select the 
isotropic exponential covariance model

 (7.4.36)

where xi  and x j  are two arbitrary points, 2
θσ  is the variance, and l is the correla-

tion length. In this case, the random field is determined by only three scalar param-
eters, 2

θµ σ{ , , }l . With kriging, these parameters are estimated only by parameter 
measurements. Now, we want to improve their estimates with the information pro-
vided by state observations.

7.4.3.3  Correlations Between Parameter Measurements  
and State Observations

Our first task is to find the covariance matrices between parameter measurements 
and state observations so that the information embedded in them can be combined 
for inversion. Let Dθ  be true parameter values measured at ( θX ) and uD  be the 
model outputs measured at (Xu ) as defined in (7.4.34),

 (7.4.37)

The covariance matrices that we need for geostatistical inversion are defined by

 (7.4.38)

The first one, ,DC θθ , can be obtained directly from the chosen covariance model of 
θ( )x . The other two, 

,D uC θ
 and C uuD, , can be found after we find u( )x  from θ( )x  

and find h( )x  from f ( )x  as shown in the two methods described below.

Perturbation Equation and Adjoint-State Method Under certain assumptions, 
the model equation 0θ + + =( , , )f u h x  can be separated into two, one for mean 
and the other for fluctuation (or perturbation), viz.

 (7.4.39)
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Example 7.10 Perturbation Equation of Steady-State Groundwater Flow 
Two-dimensional steady-state groundwater flow in a confined aquifer is governed by

 (7.4.40)

where u( )x  is hydraulic head, S is storage coefficient, T( )x  is aquifer transmis-
sivity to be estimated, m is the aquifer thickness, Q  is a sink/source term, and Ω  
is the flow region. The equation is subjected to appropriate initial and boundary 
conditions. Assume that all parameters and variables in the governing equation and 
initial and boundary conditions are known, except transmissivity T( )x . As usual, 
we will use logTθ =  as the estimated random field and assume that it is normally 
distributed. Substituting (7.4.35) into (7.4.40) gives

 (7.4.41)

To proceed further, let us make the following simplifications: (i) The random field 
θ( )x  is second-order stationary, and (ii) the second-order terms ( / )( / )∂ ∂ ∂ ∂f x h x  
and ( / )( / )∂ ∂ ∂ ∂f y h y  can be ignored. With these assumptions, (7.4.41) is simpli-
fied to

 (7.4.42)

where e f−  is approximated by ( )1 − f . Taking expectation of this equation, we 
obtain the mean equation

 (7.4.43)

Subtracting (7.4.43) from (7.4.42), we obtain the perturbation equation

 (7.4.44)

The mean equation (7.4.43) is subjected to the original boundary conditions, and 
the perturbation equation (7.4.44) is subjected to zero-head and/or no-flow bound-
ary conditions. The perturbation equation (7.4.44) was first used by Hoeksema and 
Kitanidis (1984) for geostatistical inversion.

Applying the adjoint-state method in Sect. 5.3.1, we can form the adjoint ψ( )x  
of h( )x . Then, the sensitivity coefficient of any h hj j= ′( )x  with respect to any fi  
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(where ′x j  is an observation location in Xu  and fi  is the nodal value of f ( )x  at 
node i ) can be calculated by

 (7.4.45)

In the above equation, ( )Ωi  is the exclusive subdomain of the node, Ωi  is its area, 
and αi  is the nodal value of the integrand at the node. All sensitivity coefficients 
in (7.4.45) comprise an n N×  Jacobian matrix ( ) [ / ]D D= ∂ ∂J h fθ , and the num-
ber of model runs needed for calculating these sensitivity coefficients is (n + 1). 
Detailed description and numerical results for this example and also for transient 
flow problems can be found in Sun and Yeh (1992). ■

After having Jacobian JD , the first-order approximation h J fD D≈  can be used to 
calculate the required covariance matrices in (7.4.38) as follows:

 (7.4.46)

Perturbation Expansion and Moment Equation Method Although the two 
assumptions used in Example 7.10 have significantly simplified the task of cal-
culating the covariance matrices, they make the use of the method limited and the 
results inaccurate. The perturbation expansion–moment equation method, however, 
does not depend on these assumptions, namely, it can handle non-stationary random 
fields and retain high-order variations in the perturbation equation and thus make 
the calculation of covariance more general and accurate.

Let us consider again the two-dimensional steady-state model in (7.4.40) but 
written with the summation convention,

 (7.4.47)

where x x1 =  and x y2 = . The perturbation expansion of u( )x  is defined by

 (7.4.48)

where u k( )  is the k-order term proportional to θσ( )k  in the statistical sense and θσ  
is the standard deviation of θ . Substituting θ θ= + f  defined in (7.4.35) and the 
above expansion into equation (7.4.47), we have
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This equation can be decomposed into a series of equations by collecting the terms 
having the same order:

 (7.4.49)

where summation over index i  is implied in the above equations. The zeroth-order 
equation is the mean equation as (7.4.43) but without invoking the secondary sta-
tionarity assumption. It is subject to the original boundary conditions. The perturba-
tion equation is decomposed into a series of equations without ignoring high-order 
terms, and all of these equations are subject to zero boundary conditions. By solv-
ing the equations in (7.4.49) one by one, all u u u( ) ( ) ( ), , ,0 1 2

  in (7.4.48) can be 
obtained successively. As a result, u  can approximated to any order. For example, 
to the second order, we have u u u u≈ + +( ) ( ) ( )0 1 2 . By taking expectation, we have 
E u u[ ]( ) ( )0 0=  from the zeroth-order equation, E u[ ]( )1 0=  and h u u u= − ≈ ( )1  
from the first-order equation, and then, we can find the second-order variations 
of u characterized by covariance C E h huu( , ) [ ( ) ( )]x x x x′ = ′  and cross-covariance 

θ =′ ′( , ) [ ( ) ( )]uC E f hx x x x .
By multiplying the first-order equation in (7.4.49) with u( )1  at another location 

x0  and taking expectation, we obtain the PDE for solving Cuu( , )x x′ :

 (7.4.50)

By rewriting the first-order equation in (7.4.49) in terms of ′x , multiplying it with 
f ( )x , and taking expectation, we obtain the PDE for solving θ ′( , )uC x x :
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(7.4.51)

The above PDEs for θ ′( , )uC x x  and Cuu( , )x x′  have the same structures as the 
first-order equation, subject to the same zero boundary conditions and thus can be 
solved by the same code. First, we use the known ( , )Cθθ ′x x  to obtain ( , )uCθ ′x x  
by solving (7.4.51) and then use the latter to obtain Cuu( , )x x′  by solving (7.4.50). 
Detailed discussions on theory, algorithms, and applications of this method can be 
found in Zhang (2002) and Rubin (2003).

By systematically changing the pair ( , )x x′  to the specified parameter measure-
ment locations in Xθ  and state observation locations in Xu  defined in (7.4.34), all 
variance matrices in (7.4.38) can be calculated and used for geostatistical inversion.

7.4.3.4 Finding the Inverse Solution 

Let us concatenate all data in (7.4.34) into a vector form zD
obs  and denote the cor-

responding model-simulated values by zD, namely

 (7.4.52)

where (̂ , )θ x β  is the current parameter estimate and (̂ , , )u x β ψ  is the current state 
estimate. Geostatistical inversion consists of two stages: First, the combined data 
( zD

obs ) in (7.4.52) are used to estimate { },β ψ , and second, the same data are used 
to determine a realization of the field as the inverse solution.

In order to use all data zD
obs  for parameter estimation, after we obtain the covari-

ance matrices in (7.4.46), we can combine them into an ( ) ( )m n m n+ × +  block 
covariance matrix

 
(7.4.53)
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A method given in Sect. 7.4.2 for statistical parameter inversion can be used to esti-
mate { }, ψβ . When a uniform prior is used, we have the following MLE estimates 
according to (7.4.27) and (7.4.28):

 (7.4.54)

 
(7.4.55)

When a Gaussian prior is given, the conjugate Gaussian estimator in Sect. 4.2.3 can 
be used, instead of the above two equations.

After { },β ψ  are estimated, we have the estimates of ( )θ x  and u( )x , and the 
final task is to find a realization of ( )θ x . Now, we have all required data for cokrig-
ing: two zero-mean random fields ( ) ( ) ( )f θ θ= −x x x  and h u u( ) ( ) ( )x x x= − , 
their covariance matrices (7.4.53), and their measurements (7.4.29) obtained by 
filtering out the means from (7.4.34). Using the cokriging estimate (7.4.30) and 
the variance of estimation (7.4.33) and writing them in terms of ( )θ x , then at any 
unmeasured location x , we have

 
(7.4.56)

 
(7.4.57)

For a transient problem, the state variable and observation data depend on time. 
The covariance matrix CD  should contain the covariance of data between differ-
ent times. When there are k time periods, the number of state observations will be 
k n× . In this case, (7.4.56) and (7.4.57) become

 (7.4.58)

 

(7.4.59)
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Equation (7.4.59) shows that transient observation data contain more information 
content to reduce the uncertainty of estimation. For details, see Sun and Yeh (1992). 
Note that the cross-covariance ,D uC θ  in (7.4.59) involves both spatial and temporal 
lags. The space–time covariance models described under Sect. 6.2.3 can be used to 
fit the data. Cokriging has found wide applications not only in hydrogeology and 
petroleum engineering (Kitanidis 1995; Rubin 2003; Oliver and Chen 2011), but 
also in remote sensing and natural resources modeling (Goovaerts 2000; Zhou et al. 
2013; Michalak et al. 2004; Krajewski 1987; Smith and Kummerow 2013).

7.4.3.5 Geostatistical Inversion for Multistate Models

In multistate model inversion, we have k state variables, { }1 2( ), ( ), , ( )ku u uθ θ θ

, and k sets of observation data, D D Dk1 2, , ,{ } , where D ul l
obs= ( l k= 1 2, , , ). 

Using these data, the unknown parameter can be estimated either in the determinis-
tic framework as a multiobjective optimization problem (Sect. 3.4.2) or in the statis-
tical framework as a Bayesian inference problem (Sect. 4.2.5). The extension of the 
geostatistical inversion process from single state variable to multistates is straight-
forward. The key is to find all cross-covariance matrices between measurements 
of the unknown parameter and observations of state variables. When the coupled 
forward model containing these state variables is given, we can use the adjoint-state 
method for multistate models (Sect. 5.3.3) to calculate these cross-covariance ma-
trices. A typical example is the estimation of hydraulic conductivity using both head 
and concentration observations. Once the combined covariance matrix ( )DC ψ  is 
formed, all unknown statistical parameters can be estimated by MLE. We will not 
repeat the details of this process here. Finally, the cokriging estimate with multistate 
data is given by

 (7.4.60)

where nl  is the number of observations in Dl , xl j,  are the locations of state 
observations, and ,l jµ  are the cokriging coefficients associated with state ul  for 
l k= 1 2, , ,  and j nl= 1 2, , , .

The applications of multistate geostatistical inversion are numerous. For exam-
ple, observations on water level (or pressure), concentration, temperature, arrival 
time, well logs, water age, head slope, electrical resistivity, and seismic geophysical 
data have been used to estimate hydraulic conductivity (Kowalsky et al. 2004; Yeh 
et al. 2002; Sun et al. 1995; Rubin and Dagan 1992; Fienen et al. 2009; Harvey and 
Gorelick 1995; Pollock and Cirpka 2012).

7.4.3.6 Other Methods for Combined Parameter and State Estimation 

Using both parameter and state measurements for parameter estimation is a central 
issue of inverse problem study. In fact, it has been studied in the previous chapters in 
different forms. In the deterministic framework, parameter measurements are used to 
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generate constraints or penalty terms for stabilizing the inverse solution (Using them 
as hard constraints is not recommended because of the existence of model error). In the 
statistical framework, parameter measurements are used to generate prior PDF and this 
information is then transferred into the posterior PDF with Bayesian inference. Identi-
fying model structure parameters and decreasing model error allow us to use parameter 
measurements more directly. The problem considered in this section is a joint estima-
tion problem, in which parameter measurements and state observations are combined 
to provide information for inversion. The geostatistical inversion method described 
above is not the only method for solving such a joint estimation problem. The pilot-
point method to be introduced in the next subsection is another interesting approach of 
using parameter measurements directly for inversion. In Chap. 9, we will introduce the 
less computationally intensive, sequential data assimilation methods that can perform 
joint parameter and state estimates when new measurements become available.

7.4.4  The Pilot-Point Method

7.4.4.1 Pilot Points as Shape Parameters 

Geostatistical inversion with cokriging can provide a distributed estimation to 
the unknown distributed parameter. But, there are problems associated with the 
approach. The first problem is structure error: The estimated parameter is regarded 
as a realization of a random field parameterized by a selected statistical structure 
with only a few statistical parameters. Although the estimated parameter is distrib-
uted, the number of its DOF is actually low compared to that of the true parameter. 
As a result, the fitting residual of the estimated parameter generally could not be 
reduced to a satisfactory level. The second problem is the error in statistical param-
eters: MLE may give erroneous results because of the insensitivity of observations 
to these parameters. The third problem is plausibility: There are infinite realiza-
tions of the estimated random field that have the same statistical structure and can 
produce nearly the same data. The realization resulted from kriging or cokriging 
interpolation is merely a smoothed, or even an oversmoothed one. Unfortunately, 
errors caused by these problems are not accounted for in the variance of estimation.

At the end of Sect. 6.3.3, we mentioned three cases of using kriging as param-
eterization for inversion, where kriging is represented by

 (7.4.61)

When state observations are available, { }( ) | 1,2, ,mi iθ= =xθ   are considered 
as “hypothetical measurements” to be estimated by inversion. The basis points of 
interpolation, { }= x x x1 2, , , mν , now become the shape parameters of parameter-
ization. After θ  is estimated, a distributed estimate of the unknown parameter ( )θ x  
can be obtained by kriging or cokriging. Introducing shape parameters ν  increases 
the DOF of parameterization, making the shape of parameter structure to be ad-
justable and, thus, decreasing the structure error and fitting residual. This method, 
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known as the pilot-point method, was originally introduced by de Marsily et al. 
(1984), and the shape parameters x x x1 2, , , m{ }  are called pilot points.

As mentioned in Sect. 6.2.1, there are two approaches to deal with real measure-
ments, 1 2, , ,m m m kθ θ θ+ + + , of the unknown parameter. The first approach, which 
is often used in the literature, considers the real measurements as hard data (i.e., 
values of the estimated parameter at measurement locations are fixed and equal to 
the measured values during inversion). This approach can make the inverse solution 
more stable, but at the expense of producing biased estimates because of the model 
structure error. In the second approach, the parameter values at measurement loca-
tions are estimated together with the parameter values at the pilot points, while the 
real measurements are used as prior information to stabilize the inverse solution.

To formulate the pilot-point method, we can use a regularized or generalized 
least squares objective function for inversion as we have done before in Chap. 4, but 
now with additional hyperparameters to be estimated

 (7.4.62)

where { }1 2 1, , , , , ,m m m kθ θ θ θ θ+ +=θ    is the unknown parameter vector that 
consists of the parameter values at m pilot points and k measurement points; the 
locations of pilot points, { }= x x x1 2, , , mν , are shape parameters; ψ  is a vector 
of hyperparameters; and λ  is a regularization coefficient.

7.4.4.2 Algorithms

After the pioneering work of de Marsily et al. (1984) and Ahmed and de Marsily 
(1987), numerous variants of pilot-point algorithms have been introduced (LaVenue 
et al. 1995; Alcolea et al. 2008; Doherty 2003; LaVenue and Pickens 1992; Ra-
maRao et al. 1995; Le Ravalec-Dupin 2010; Alcolea et al. 2006; Singh et al. 2008).

Like the Voronoi zonation method in the deterministic framework, pilot-point 
method is essentially a method of model structure parameterization and model struc-
ture identification in the geostatistical framework. The number of pilot points deter-
mines the complexity of model structure and their locations determine the structure 
pattern. Therefore, the basic concepts and methods of adaptive parameterization 
can also be used to solve the pilot-point problem formulated in (7.4.62). In fact, by 
combining different methods for structure parameter identification with methods 
for statistical parameter estimation described in this chapter, different pilot-point 
algorithms can be developed. A modified pilot-point algorithm, which is based on 
the idea of adaptive parameterization and the minimization of objective function 
(7.4.62), consists of the following major steps:

1. Use the k real measurements to identify a covariance (or variogram) model with 
estimated statistical parameters 0ψ , and then, use kriging to find a distributed 
estimation 0( )θ x  for all nodes (Sect. 6.3.3).
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2. Use the adjoint-state method to calculate the gradient /S θ∂ ∂  for all nodes 
evaluated at 0( )θ x . Then, m  nodes are chosen as the pilot points (shape param-
eter ν ) according to the criteria: (i) The selected nodes have larger gradient 
values than other locations and (ii) their pairwise distances are no smaller than 
the correlation length (a statistical parameter in 0ψ ). The components of 0θ  are 
values of 0( )θ x  at m pilot points and k measurement locations.

3. Minimize the objective function (7.4.62) with the fixed ν  obtained in Step 2 
and 0=ψ ψ  obtained in Step 1 to find the optimal solution θ̂  together with the 
optimal regularization coefficient λ  (Sect. 3.3).

4. As in Step1, but use θ̂  as m k+  “measurements” to estimate the covariance 
model and update the statistical parameters to ψ̂ , and vestimate (̂ )θ x . Now, we 
can check the stopping criteria presented in Sect. 7.2.2 to determine whether we 
should (i) stop the iteration, or (ii) continue the iteration (i.e., return to Step 2 by 
setting 0(̂ ) ( )θ θ→x x , 0

ˆ →θ θ , and 0ˆ →ψ ψ ), or (iii) increase the complexity 
of model structure (i.e., add new pilot points, and then, continue the iteration).

7.4.4.3 Variations and Applications 

There are several variations of the above basic pilot-point algorithm that may re-
quire additional computational effort

• Use different methods to determine the number and locations of pilot points
• Use parameter measurements as hard data
• Use different regularization functions in (7.4.62)
• Use cokriging instead of using kriging in Step 1 and Step 4
• Use adaptive parameterization to optimize the locations of pilot points (i.e., iden-

tifying ( , )ν θ  simultaneously by solving EIP (Sect. 7.2))
• Use hierarchical Bayesian to estimate ( , , )λθ ψ  simultaneously.

These variants have not been fully studied and compared. A recent review on 
various inverse methods, including the pilot-point method, is given by Hendricks 
Franssen et al. (2009). A major problem to be considered in the references is how 
to determine the number of pilot points and how to optimize their locations. The 
method presented by LaVenue and Pickens (1992) and used by RamaRao et al. 
(1995) is based on adjoint sensitivity analysis. Wen et al. (1999) found that two to 
three master points per correlation range in each direction are sufficient for most 
application. Doherty (2003) used a local homogeneous regularization function to 
stabilize the inverse solution when the number of pilot points is large. Alcolea et al. 
(2006) gave detailed steps to the regularized pilot-point algorithm and shows the 
importance of finding an appropriate regularization coefficient. Tonkin and Doherty 
(2005) and Moore and Doherty (2005) suggested to use a large number of densely 
distributed pilot points (a high-dimensional parameterization) to better characterize 
the structure of heterogeneous aquifers. In order to avoid the overparameterization 
problem, after the model is linearized, the PCA (see Sect. 6.3.1) is used to reduce 
the DOF of the pilot-point parameterization (reparameterization). As we have de-
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noted in Sect. 6.3.1, the unknown parameters associated with reparameterization 
have no physical meanings and the linearization error may be amplified after di-
mension reduction. The variance of nonlinear prediction error associated with the 
high-dimensional parameterization was estimated in Tokin et al. (2005). Riva et al. 
(2010) analyzed the influence of the number of pilot points in geostatistical inver-
sion. Jung et al. (2011) simply chose the number of pilot points to be less than the 
number of observation data; the problem of “what is the optimal number of pilot 
points” was not addressed.

The aforementioned pilot-point-based, adaptive parameterization algorithm 
already includes determination of the locations of pilot points, but the results may 
not be the optimal solution. In Chap. 11, the problem of determining the optimal 
locations of pilot points is considered as an optimal experimental design problem. 
In Chap. 12, the problem of determining an appropriate number of pilot points is 
associated with the selection of an appropriate model complexity.

7.4.4.4 Plausibility

We have noted the existence of plausible realizations of a random field estimated by 
geostatistical inversion. After introducing pilot points and regularization terms for 
inversion, the plausibility problem is mitigated by additional conditioning, but not 
eliminated. In the pilot-point method, after an estimated (̂ )θ x  is obtained by krig-
ing or cokriging, its plausible realizations { }( )θ x  can be obtained by conditional 
simulation (Gómez-Hernánez et al. 1997; Delhomme 1979)

 (7.4.63)

where ( )aθ x  is a realitxzation drawn from the estimated random field and ˆ ( )aθ x  
is a kriging or cokriging estimation of ( )aθ x  conditioned at the same pilot points. 
Eq. (7.4.63) indicates that ( )θ x  and (̂ )θ x  are realizations of the same random field 
and have the same values at all pilot points. Thus, the uncertainty caused by plausi-
bility must be considered in uncertainty analysis (see Chap. 10).

7.5  Review Questions

1. Under what conditions the true structure and the true parameter values of a 
system can be identified approximately by solving EIP?

2. How the statistical EIP is formulated?
3. Why the adjoint-state method of model differentiation is very useful in the solu-

tion of EIP? And, how is it used for sensitivity analysis and structure selection?
4. Give more explanations on the stopping criteria given in Sect. 7.2.2. Especially, 

under what situation the criterion (iii) is satisfied but the criterion (ii) is not?

θ θ θ θ= + − ˆ ˆ( ) ( ) [ ( ) ( )],a ax x x x

7 Model Structure Identification
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 5. Compare the three adaptive parameterization methods given in Sect. 7.2.2, 
7.2.3, and 7.3.1 by considering the simplicity, flexibility, computational effort, 
and convergence rate.

 6. Why the consistence condition and the equal gradient condition are needed and 
how they can be satisfied in the two-scale inversion process?

 7. What hyperparameters are needed for statistical inversion? Which of them are 
used for determining the statistical structure of a random field? Why these non-
physical parameters can be estimated by state measurements?

 8. What does “marginalization” mean? How the two marginalized MAP estimates 
in equations (7.4.23) to (7.4.26) are obtained?

 9. What data are needed for cokriging estimate and how these data are obtained 
during the procedure of geostatistical inversion?

10. Read a paper from the recommended reference in Sect. 7.4.4 to find out the data 
requirement, algorithms, and problems associated with the regular pilot-point 
method when it is used for distributed parameter estimation.
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Chapter 8
Development of Data-Driven Models

In previous chapters, we have mainly dealt with physics-based models represented 
by a general mapping ( ),=u θ  where u  denotes state variable(s), ( )θ  is ob-
tained from mathematical equation(s) describing the underlying physical processes, 
and θ  is a set of unknown physical parameters that need to be estimated from 
measurements. As mentioned in Chap. 1, various data-driven models that connect 
model inputs and outputs directly are also developed and used extensively in EWR 
fields. They are most useful when little a priori knowledge is available about the ac-
tual physical processes, or when it is desired to replace a physics-based model with 
a surrogate model for improving computational efficiency in optimization prob-
lems. The latter usage is referred to as reduced-order modeling or metamodeling.

In mathematics, data-driven models can be represented by a general mapping 
z x= ( ),  where input variables x  are sometimes called predictors and output 
variables z  are called targets. These terms will be used interchangeably throughout 
this chapter. For a data-driven model, the mapping ( )x  is not derived based on 
physical laws; rather, it is regarded as a black box with an unknown structure that 
needs to be trained by using co-observed input–output pairs, ( , ).x z  The construc-
tion of a data-driven model is a process of identifying the mapping ( )⋅  with rel-
evant input–output training data, which is known as supervised machine learning 
due to its origins in artificial intelligence (Haykin 1994). The term “supervised” re-
fers to the fact that output data are also used during training. Note that x  and z  can 
be any variables that are useful for describing the observed excitation-response rela-
tionship of a system. When x  is a P-dimensional vector and z  is a K-dimensional 
vector, the mapping becomes a vector function z f x= ( ), where f = { }f f fK1 2, , , .  
When K = 1 (i.e., a scalar target variable), the problem of constructing a data-
driven model becomes the identification of a single function z f= ( ).x

We have learned how to identify a distributed function in Chaps. 6 and 7, in 
which the unknown function is a distributed physical parameter. Major techniques 
include parameterization, structure (or shape) parameter identification, hyperpa-
rameter estimation, and model structure reduction. Basically, all of these techniques 
can be used here for developing a data-driven model. The only difference is that the 
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identified function is now a function that does not have much physical meaning. 
Major steps of data-driven modeling include the following:

• Finding a general functional form, ( ; ),f x α  as the model candidate, where α  is 
a set of undetermined model (structure) parameters. This step is similar to the 
parameterization step for distributed functions (see Chap. 6). A commonly used 
functional form is the linear combination of basis functions. In this case, the 
parameter vector α  may include weighting coefficients, shape parameters, and 
hyperparameters associated with the basis functions.

• Identifying the optimal model parameters α  through iteratively fitting the in-
put–output data. In the language of artificial intelligence, this process is called 
training. Besides using various optimization algorithms learned in Chaps. 2 and 
3, some efficient training algorithms will be introduced in this chapter for obtain-
ing α.

• Selecting an appropriate model complexity to avoid the problem of overfitting 
or underfitting. For a data-driven model, its complexity is determined by the 
number of undetermined model parameters (i.e., the dimension of α ). This is 
actually a model reduction problem or a model structure identification problem 
considered in Chap. 6 and 7. But, in this case the appropriate complexity of 
a data-driven model depends completely on the quantity and quality of train-
ing data. In this chapter, using training data to control the model complexity is 
considered the key to successful construction of a data-driven model. Besides 
regularization-based techniques, special methods used in machine learning will 
be introduced in this chapter.

• Testing the reliability of model prediction or the generalization capability of a 
trained model. This can be done by quantifying the model prediction error, also 
known as the generalization error in artificial intelligence, by testing the model on 
target values not used during training. This is actually a model validation process. 
The generalization error can be used to guide the selection of different structures 
in an iterative manner and with the aid of certain information criterion such as AIC 
and BIC described in Chap. 7. It is desirable to test the generalization performance 
of a developed model on different validation datasets. In reality, however, most 
training datasets often have limited number of records. Statistical sampling tech-
niques such as bootstrapping are introduced in this chapter for artificially expand-
ing datasets by randomly sampling the original training data. Further, ensemble 
methods such as bagging and boosting are also introduced to enhance the model 
performance while providing means for uncertainty quantification.

Section 8.1 describes some classical linear regression techniques, which remain 
the most widely used data-driven modeling methods and serve as the foundation 
for more sophisticated nonlinear machine learning methods. Section 8.2 discusses 
artificial neural networks, which are considered one of the most well-established 
nonlinear data-driven models. Section 8.3 introduces support vector machine and 
relevance vector machine algorithms, both belong to the so-called kernel methods. 
Finally, Sect. 8.4 describes Gaussian process regression methods, which are flexible 
Bayesian learning algorithms that possess attributes of both linear regression and 
kernel methods.
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8.1  Linear Regression

Let us first consider linear models with P predictors ( , , , )x i Pi = 1  and only a sca-
lar target variable. This kind of model has the following general expression:

 (8.1.1)

where x = ( , , , , )1 1 2x x xP
T

  is the model input vector; w = ( , , , , )w w w wP
T

0 1 2   
is the weight vector, in which w0  is the intercept term (also called the bias term); 
and z  is the model output or target variable. The intercept term is used to account 
for a constant shift in data and can often be eliminated by preprocessing data (e.g., 
eliminating the mean of measurements). Because (8.1.1) uniquely determines the 
model structure of linear models, the model identification problem now becomes 
estimation of w with a dataset consisting of N input–output data pairs:

 (8.1.2)

Substituting (8.1.2) into (8.1.1), we obtain a set of linear equations:

 (8.1.3)

where X  is an 1( )N P× +  input data matrix with each row representing a sample 
of the input vector,

in which the superscript denotes the sample index; z = ( , , , )z z zN
T

1 2   is an N-
dimensional output data vector; and ε is an additive error vector that may contain 
the effect of both measurement error and model error.

Solving w  from (8.1.3) is a linear inversion problem we are already very fa-
miliar with (see Chap. 2), but now w  plays the role of the unknown parameters θ 
in Eq. (2.2.1). When ε  is Gaussian with zero mean and its components are i.i.d., 
the least squares solution of (8.1.3) can be obtained by minimizing the following 
L2-norm objective function

 (8.1.4)

When X XT  is invertible, the least squares solution is (see Sect. 2.2.1),

 (8.1.5)
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More generally, we can find the pseudoinverse solution w†  by using SVD as de-
scribed in Sect. 2.2.2, viz.

 
(8.1.6)

where ( , , , )s s sr1 2   are r nonzero singular values obtained from the SVD of X, 
X U V= r r

TΣr , and r N P≤ +min( , )1  (See Eq. (2.2.15) for explanation of other 
symbols in the above equation). Eq. (8.1.6) provides a means for reducing redun-
dant information, as we will learn soon toward the end of this subsection. In the 
statistical framework, the GLS solution of (8.1.3) and the variance of estimation 
can be found in Sect. 4.2.2.

8.1.1  Autoregressive Models

A large number of applications related to the linear regression problem (8.1.1) ap-
pear in time series analyses and forecasting. Time series has the unique property 
that all input data are ordered temporally. In this case, the input data and the target 
may be either observations of the same variable (endogenous) or different variables 
(exogenous). Special linear models and algorithms have been developed for time 
series regression. We will introduce several common ones below.

AR is the simplest time series regression model. It is used to predict the value 
of a variable on the basis of its own past states. Let us assume that the time series 
Xt  is a zero-mean stationary stochastic process. A p-order AR model, AR( p), is 
defined as

 

(8.1.7)

where subscript t is time index, 20~ ( , )t vV σ  is white noise uncorrelated with Xs  
for all 2, vs t σ<  is the variance of the noise. Eq. (8.1.7) has the same form as (8.1.3). 
For AR models, the unknown parameters ai  serve as a measure of persistence or 
correlation between Xt  and its antecedent states. If the mean of Xt  is nonzero, we 
can first remove the mean from Xt  and then use the resulting time series to define 
AR( p) accordingly, thus eliminating the intercept term in (8.1.1). AR models as-
sume temporal stationarity, and their parameters ai  must satisfy certain conditions 
to ensure existence and uniqueness of the solution, as shown by the following ex-
ample.

Example 8.1 Estimate Parameters of an AR(1) model 
Let us consider the AR(1) model given below,

 (8.1.8)
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The autocovariance function of , ( ),tX hρ  is obtained by multiplying both sides of 
(8.1.8) by Xt h−  and taking expectations

 

(8.1.9)

where h  is the lag between two observation times, (·)C  represents covariance, and 
C V Xt t h( , )−  is equal to zero by definition of the noise term Vt . Similar to spatial 
random processes introduced in Chap. 6, the autocovariance function of a temporal 
stationary process has the following basic properties,

Applying the procedure in (8.1.9) recursively, we obtain the following expression 
for the autocovariance ( )hρ

 (8.1.10)

The sample autocovariance ˆ( )hρ can be calculated as

where N is the number of samples. Multiplying both sides of (8.1.8) with Xt  and 
taking expectations, we obtain

 
(8.1.11)

where 2
Xσ  is the variance of Xt , and the first term in the second equality is obtained 

using the results from (8.1.10). Similarly, multiplying both sides of (8.1.8) by Vt
 

and taking expectations, we get

 (8.1.12)

Thus, the variance and autocovariance of Xt  are obtained by substituting (8.1.11) 
into (8.1.12) and (8.1.10), respectively,
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 (8.1.13)

Invoking the nonnegativity condition on variance, we see that the coefficient a  
must lie within ( , )−1 1 . The AR(1) model (8.1.8) has a unique stationary solution

 (8.1.14)

which has zero mean and an autocovariance function as defined in (8.1.13). It is 
straightforward to show that (8.1.14) is a solution of (8.1.8). The proof of unique-
ness is provided in Brockwell and Davis (2002, p. 52).

To estimate the unknown parameters in the AR(1) model, a  and 2
vσ , we multi-

ply both sides of (8.1.8) by Xt−1  and then take expectations

 (8.1.15)

Using the sample autocovariance ˆ(·)ρ  to replace the autocovariance in (8.1.15) and 
(8.1.13), we obtain the solution for a  and 2

vσ

 ■

The procedure delineated in Example 8.1 is generally known as the Yule-Walker 
algorithm. When applied to the AR( p) model (8.1.7), the Yule-Walker algorithm has 
the following matrix form

 (8.1.16)

which can be written in a compact form as

 
(8.1.17)

where , 1( ) , ,i j i j pρ −= ≤ ≤Λ  is the covariance matrix, a = ( , , )a ap
T

1   is the pa-
rameter vector, and 1( , , )Tpρ ρ=ρ   are values of autocovariance function at dif-
ferent lags. The symmetric matrix Λ  is nonsingular if the autocovariance function 
satisfies: 0 0( )ρ >  and 0 as ( )h hρ → → ∞.
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After solving for ai  by replacing (·)ρ  using sample estimates ˆ(·)ρ  in (8.1.17), 
we can estimate 2

vσ  from the equation below

 

(8.1.18)

Other methods for estimating the parameters of an AR( p) model include linear esti-
mators mentioned in Chap. 2 and Burg’s algorithm (Burg 1968). The latter succes-
sively minimizes forward and backward one-step prediction errors and can some-
times yield better solutions than the Yule-Walker algorithm for pure autoregressive 
models. Interested readers may refer to Brockwell and Davis (2002, Chap. 5) for 
derivation of the Burg algorithm.

After the AR( p) model parameters are fitted using data, it can be used for predic-
tion. For example, the one-step-ahead prediction given by the AR( p) model is

 

(8.1.19)

where

8.1.1.1  Autoregressive-Moving-Average Model (ARMA)

ARMA models represent another special case of linear regression model, (8.1.3). 
It was originally described by Whittle (1953), but made popular by G.E.P. Box and 
G.M. Jenkins after the publication of their 1970 book (Box and Jenkins 1970). The 
ARMA( p, q) model for a mean-removed stationary time series Xt  is

 (8.1.20)

where Xt  is correlated not only with its past states, but also with past noise terms. 
Eq. (8.1.20) combines an AR( p) model and q moving-average terms, result-
ing 1p q+ +  unknowns, namely, 1 1, { } { } ,p q

i i j ja b= =  and 2
vσ . The parameters of an 

ARMA( p, q) model can be estimated using the Yule-Walker algorithm.

8.1.1.2  Autoregressive-Moving-Average with Exogenous Inputs (ARMAX)

The ARMAX model extends the AR and ARMA models further by including pre-
dictors other than the variable itself. Thus, an ARMAX( p, q; nb, nd) model is a 
combination of a p-order AR( p) model, q moving-average terms, and weighted con-
tribution from a set of exogenous predictors
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(8.1.21)

where K  is the number of exogenous variables denoted by 1,{ }Kk t kU = , the integer 
vector b K∈n   contains the orders of different exogenous variables, and d K∈n   
contains the delays associated with each of the exogenous variables (i.e., time 
elapsed before the effect of an exogenous variable is first reflected in the output). 
Comparing to the ARMA( p, q) model in (8.1.20), we see that the ARMAX model 
requires estimation of an additional set of parameters, { }klc .

Example 8.2 Daily Streamflow Forecasting Using AR 
In this example, an AR model is developed for streamflow forecasting. The time 
series consists of daily streamflow records collected from a gauge located on Neches 
River in Texas, USA (USGS gauge no. 08033500) for the period 1948–2003. The 
drainage area upstream of the station is approximately 3600 mi2 (9300 km2). For the 
study period, the basin can be considered free of anthropogenic impacts (Duan 2003).

The distribution of streamflow rates is skewed. Thus, as part of the preprocessing 
the streamflow time series is first normalized by using the Box-Cox transformation 
defined below

where bcQ  represents transformed streamflow and λ  is a transformation parameter 
determined to be 0.072 using the Matlab function boxcox. The total time series 
is then split into two parts, one for training (1948–1992), and the rest for testing 
(1993–2003). A sample autocorrelation analysis on the time series indicated that the 
daily streamflow has relatively strong temporal correlation. To identify the optimal 
model order, the Matlab functions arxstruc and selstruc are used to evaluate 
the performance of AR models over a range of model orders. The best model order 
for one-day-ahead prediction is found to be 10,

In essence, the model-order selection problem for AR models is tantamount to 
model structure identification problem for distributed models. In addition to AIC 
and BIC mentioned in Chap. 7, a commonly used criterion in time series analyses 
is the Final Prediction Error (FPE) criterion originally proposed by Akaike (1969). 
The FPE is based on minimization of the mean squared error (MSE) associated with 
one-step prediction

 
(8.1.22)
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where 2
v̂σ  is the estimated variance of the white noise of AR( p) model and N is 

sample size. For the current example, FPE is an appropriate model-order selection 
criterion because a large number of training samples are available.

Figure 8.1a, b show the scatterplot and quantile–quantile plot using predicted 
and observed streamflow values over the testing period. Figure 8.1c compares the 
time series of the same datasets. The Nash-Sutcliff coefficient (NSC) obtained by 
the AR model for the testing dataset is 0.978. Thus, the simple AR model achieved 
a relatively good performance for one-day-ahead streamflow prediction, although 
some peak values are underestimated as indicated by all three plots.

Fig. 8.1  a Scatterplot of predicted and observed streamflow (log-transformed) for Neches River 
watershed in Texas, USA. b Quantile–quantile plot. c Comparison between observed (open cir-
cles) and predicted streamflow obtained for the testing period
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According to (8.1.19), the one-step AR model developed here can be extended 
to multistep-ahead prediction

where T is the prediction interval (in multiples of days). Starting from t + 1, when 
an intermediate forecast value is obtained, it is put back to the front of the predic-
tor vector for estimating the next value until the prediction interval T is reached. In 
general, the prediction reliability deteriorates quickly as the prediction interval T 
increases.

Example 8.3 ARMAX Models 
In practice, it is common to include multiple co-observed variables to improve pre-
diction accuracy, as well as to enhance information content. We have seen exam-
ples of such multivariate applications in FA (Chap. 6) and cokriging (Chap. 7). For 
streamflow forecasting, the common predictors include both in situ and remotely 
sensed hydrometeorological variables. For example, Coulibaly et al. (2000) devel-
oped the following ARMAX model using both endogenous (streamflow) and 
exogenous (precipitation, snowmelt, and maximum and minimum temperatures) 
predictors,

 (8.1.23)

where T T Tmax min, ,  are maximum, minimum, and average temperature, respec-
tively;P  is precipitation; and S  is snowmelt. In (8.1.23), the order of the AR mod-
el is p = 1, the number of moving-average terms is 0, and the orders of exogenous 
variables are [1, 1, 1, 5, 5] for T T T Pmax min, ,, , and S , respectively.

Sun et al. (2014b) used the following ARMAX model for one-month-ahead 
streamflow forecast:

in which the long-term monthly averages of precipitation and temperature (symbols 
with overbar) for the predicting month are incorporated as predictors.
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In hydrology, time series methods are best suited for short-term forecasting based 
on daily or weekly timescales, but become less accurate for long-term forecasting 
involving seasonal or annual timescales, neither can they handle nonlinearities in-
herent in rainfall-runoff processes very well (Sun et al. 2014b). The deficiencies 
associated with linear regression models have prompted the development of vari-
ous machine learning methods that are shown to have better capability for handling 
nonlinear models. This topic will be introduced starting from Sect. 8.2.

8.1.2  Model Complexity Control

The complexity of model (8.1.1) is determined by the number of predictors, P. Using 
a large number of predictors may cause the over-fitting problem (see Sect. 3.2.2), 
making the identified weights w unstable and the results of model prediction un-
reliable. Common selection criteria, such as AIC, BIC, and FPE, can be used to 
test different combinations of predictors in a systematic manner to select the best 
performer. A statistical procedure for doing so is cross-validation, which will be 
described shortly in the next subsection.

Other methods attempt to reduce information redundancy by looking into cor-
relation between predictors and target variables, and among predictors themselves. 
We have learned several such dimension reduction methods in Sect. 6.3. For ex-
ample, PCA and FA can be used to decrease the number of predictors, but they do 
not incorporate model outputs in the dimension-reduction process. The principal 
component regression (PCR) (Mandel 1982) is built on the SVD of input data ma-
trix and its solution is already given in (8.1.6). If the number of nonzero singular 
values, r, is less than P, it implies information redundancy and colinearity among 
some of the P predictors. Mathematically, the PCR method is the same as the TSVD 
method introduced for parameter estimation (see Sect. 2.2.3).

A common issue with FA, PCR, or TSVD is that the transformed predictors (i.e., 
latent variables) no longer possess physical meanings. Here we describe a class 
of linear regression methods called shrinkage (or weight decay) methods that can 
help identify a subset of the predictors exhibiting the strongest impact on mod-
el prediction while preserving the physical meanings of predictors. By reducing 
the number of DOF, the hope is that the inverse solution can become more stable, 
the model variability caused by the correlation between predictors is reduced, and 
consequently the model prediction can become more accurate than that of the full 
model.

Shrinkage methods attempt to decrease the weights of insignificant predictors to  
effectively reduce model complexity. Because all predictors may not have the same 
dimensions and scales, it is important to preprocess the input data in (8.1.2) before 
applying shrinkage methods. This can be done by making the measurements of all 
predictors dimensionless and normalized (see discussion under Sect. 2.1.4). How-
ever, the intercept term 0w  must be calculated before this process. Taking the mean 
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of (8.1.1) and assuming 1 2 0Px x x= = = =
, we will have 0w z= . Therefore, 

if we remove the respective sample means from input and output data, the intercept 
w0  in (8.1.1) can be eliminated. In the rest of this discussion, we assume that all 
sample means of input and output data in (8.1.2) have been removed, and all input 
datasets are dimensionless and normalized. The dimensions of input data matrix X 
are now N P× .

Shrinkage methods use the following regularized objective function to control 
the sizes of its solution

 (8.1.24)

where the power 0q > , and 0α >  is a penalty coefficient to be determined. An 
often-seen shrinkage method is called the ridge regression method (Hoerl and Ken-
nard 1970) in which q = 2 . In this case, the objective function in (8.1.24) becomes

 (8.1.25)

As in the case of the full regression problem (8.1.5), when X XT  is invertible the 
following ridge regression solution can be obtained explicitly

 (8.1.26)

From (8.1.26), we see that α  is a complexity control parameter: (i) when 0, wαα →  
approaches the solution of the full regression problem (8.1.5); (ii) when α  increas-
es, the amount of “shrinkage” increases and the components of αw  are forced to de-
crease; and (iii) when , αα → ∞ →w 0  (i.e., the DOF of the model becomes zero). 
Recall that the objective function in (8.1.25) has been used in Sect. 3.3.2 for linear 
model regularization problems, with α  acting as the regularization coefficient.

Another shrinkage method is called the Lasso method (Tibshirani 1996), which 
is obtained by setting 1q =  in (8.1.24), viz.

 (8.1.27)

where the regularization term is defined by L1 -norm. As a result, the first-order 
derivatives of 1, ( )Sα w  are discontinuous at the origin w 0=  and the minimizer of 

1, ( )Sα w  does not have an analytical expression. Usually, Lasso is solved by qua-
dratic programming or a numerical optimization algorithm. In this case, increasing 
α  will force some of the weights to be identically zero, leading to a sparse linear 
regression model.
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Although both ridge regression and Lasso can control the model complexity con-
tinuously by varying α , there is a main difference between the two. In ridge regres-
sion, when α  increases, all components of w  are reduced proportionally but still 
remain nonzero, while in Lasso the increase of α  will cause more components of 
w  to become identically zero.

A known shortcoming of the Lasso method is that when there is a group of pre-
dictors with high pairwise correlation, it tends to select only one predictor from the 
group and does not care which one is selected. Zou and Hastie (2005) introduced an 
elastic net method which, in addition to automatic variable selection and continuous 
shrinkage, can also select groups of correlated variables. The penalty term in the elas-
tic net method is a hybrid of those used in ridge regression and Lasso methods, viz.

 (8.1.28)

in which β  is an additional parameter introduced to control model complexity. The 
elastic net method has been shown to outperform both Lasso and ridge regression. 
Detailed discussion on these shrinkage methods, including method comparisons 
and application examples, can be found in Hastie et al. (2009).

As mentioned in the beginning of this section, a close connection exists between 
the linear regression methods discussed here and the linear model inversion meth-
ods considered in the Bayesian framework in Chap. 4. The solution in (8.1.26) has 
been obtained in Sect. 4.2.3 under the assumptions that the prior distribution of w  
is 2σ I( , )P0  and the distribution of observation error is 2σ I( , )D0 . In this case, 
we can also have the variance of estimation given by (4.2.20), and the minimum 
variance corresponds to 2 2/P Dα σ σ= . Similarly, Lasso corresponds to the use of 
a double-exponential prior (also known as Laplacian or Gaussian kernel) for α  
(Tibshirani 1996); this link prompts some authors to treat α  as a hyperparam-
eter and adopt Markov Chain Monte Carlo (MCMC) to estimate Lasso parameters 
(Park, Casella 2008; Kyung et al. 2010). In Sect. 8.3 and 8.4, we will introduce 
kernel-based learning algorithms that explicitly incorporate the PDF of weights in 
a hierarchical Bayesian framework; many of the kernel methods also yield sparse 
solutions. In EWR, shrinkage methods have been used to select predictors for sta-
tistical downscaling global climate model outputs (Hammami et al. 2012; Tareghian 
and Rasmussen 2013).

8.1.3  Multiple Target Regression

So far, we have mainly dealt with a scalar target variable. Extension to multiple tar-
get variables is possible if they all share the same set of predictors. The general form 
of linear models with K model outputs (targets) consists of a set of linear equations, 
one linear model (8.1.1) for each different target, viz.

 (8.1.29)
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The model can be expressed in a matrix form as

 (8.1.30)

where 1 21( , , , , )TPx x x=x 
 is the model input vector, 1 2( , , , )TKz z z=z   is the 

model output vector and each of its component represents a different target variable; 
W  is a 1( )P K+ ×  weight matrix,

 (8.1.31)

The identification of model (8.1.30) becomes estimation of W with a set of N input–
output data pairs

 (8.1.32)

Substituting (8.1.32) into (8.1.30) yields

 
(8.1.33)

where X  is an N P× +( )1  matrix of input data, Z  is an N K×  matrix of output 
data, and E  is an N K×  matrix of observation error. Using the same process for 
deriving (8.1.5) and assuming that the components of E  are i.i.d. with zero mean 
and X XT  is invertible, the weight matrix W can be estimated explicitly by

 
(8.1.34)

Equation (8.1.34) shows that columns of Ŵ can be solved column by column be-
cause 1ˆ ( )T T

j j
−=w X X X z , which is exactly the least squares solution (8.1.5) for 

the j-th target. In other words, a multiple target linear model can be identified sepa-
rately for each target. Therefore, the shrinkage methods can still be used to the mul-
tiple target case by finding either different regularization coefficients for different 
target or the same one for all targets. Readers may refer to Hastie et al. (2009) for 
detailed discussions and examples on this topic. Another example will appear in the 
context of metamodeling (see Sect. 8.2.4), in which the same set of predictors are 
used to predict model outputs at multiple observation locations.
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8.1.4  Linear Regression with Basis Functions

Assume that the model input x  is a P-dimensional vector and the model output z  
is a scalar, but the model ( )z f= x  is a nonlinear function. Our purpose is to identify 
the model with the same input–output training data pairs given in (8.1.2).

In Chap. 6, we have learned parameterization of a distributed parameter ( )θ x  
for inversion. The same approach can be used here to identify the model f ( )x . The 
basic assumption is that f ( )x  can be represented approximately by

 (8.1.35)

In the above equation, 0 1( ) ( ( ), ( ), , ( ))TMx x x xφ φ φ=φ   are M+1 basis functions, 
and w = ( , , , )w w wM

T
0 1   are weights associated with these basis functions. If 

0 1( )φ ≡x , the first term of the summation in (8.1.35) becomes the bias term 0.w  
We have seen in Chap. 6 that (8.1.35) can represent a wide range of functions, con-
tinuous or discontinuous, linear or nonlinear, by selecting different classes of basis 
functions.

After the model form (8.1.35) is specified and its basis functions are selected 
(this means the model structure is determined), the training task becomes estimat-
ing weights w  using the input–output pairs. Note that model (8.1.35) is nonlinear 
with respect to x  when the basis functions are nonlinear, but it is always linear with 
respect to w  and, thus, can be estimated by linear regression.

Substituting all N training data pairs in (8.1.2) into (8.1.35), the following set of 
N linear equations are obtained:

 (8.1.36)

where the coefficient matrix is defined by

 (8.1.37)

Assuming that all observation errors 1( , , )Nε ε  are i.i.d., all weights can then 
be solved from this set of equations by the least squares method, and the training 
of model (8.1.35) is thus completed. From (8.1.37), it can be seen that the linear 
model regression (8.1.3) is nothing but a special case of (8.1.35) when ( )i ixφ =x  
for 1 2, , ,i M=   and M P= .

A large number of nonlinear basis functions exist in the literature. Some of them, 
such as the linear basis function, polynomial basis functions, RBF, and level set 
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basis functions, have already been used in previous chapters. More will be defined 
later in this chapter.

8.1.4.1  Cross-Validation and Model Reliability

A trained data-driven model may not be a useful one because of model and data 
errors. The real relationship between x and z may not be accurately represented by 
the functional form in (8.1.35), the number of terms and the form of basis func-
tions may not be appropriately selected, and the estimated weights (i.e., model pa-
rameters) may contain significant errors due to inadequacy and inaccuracy of data 
used for model training. These issues are exactly the same as what we have seen in 
Chap. 6 when parameterizing a distributed parameter.

Therefore, the correctness of a trained model must be verified and its reliability 
must be tested before it is used. If there are new input–output data available after the 
model is constructed, we can certainly use them to validate and test the usefulness 
of the model. When there are no new data available, however, we can still do some 
verification and testing using the existing data. The basic idea of cross-validation 
(CV) is to partition the existing data into two portions, one for model training and 
the other for model validation. Such notion of cross-validation has already been 
implicitly applied in Example 8.2 when determining the order of AP model.

The most often used CV method is the K-fold CV, which partitions the whole 
training dataset into K groups of equal sizes G G GK1 2, , ,{ }. Common choices are 
K = 5 and K = 10 . For generality, let z f x= ( )  be the model to be identified and 
ˆ ˆ ( )z f x− −=k k  be the model trained without using the data in group Gk . The mean 
square error of CV when the data in Gk are used for validation is given by

 (8.1.38)

where Nk  is the number of data pairs in Gk , and the average overall CV error is

 (8.1.39)

This error can be used not only for validating a trained model, but also for model se-
lection. When there is a set of candidate models, we can calculate the CVE for each 
of them and select the one that has the smallest CVE. For example, using different 
values of regularization coefficient α  to minimize the objective function

 (8.1.40)
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we will have a set of candidate models { }ˆˆ ( )α α=z f x . Let the CVE, (8.1.39), 
associated with model ˆ ( )αf x  be ( )CVE α , then the optimal regularization coef-
ficient would be 

α
α α=* argmin ( )CVE . Similarly, we can use CV in the selection 

of model structure, such as determining the optimal number and shape parameters 
of basis functions.

The CV method, however, is computationally expensive when the size of data 
and the number of unknowns are large. Moreover, a model with small validation er-
ror does not mean it must be reliable for model application. Unlike a physics-based 
model, a data-driven model may be good for interpolation, but is usually poor for 
extrapolation when the model application is out of the range of training data.

8.2  Artificial Neural Network

We have seen in Sect. 8.1.4 that a nonlinear model can still be trained by linear re-
gression if it is approximated by a linear combination of known basis functions. But 
this is not always possible. For example, when the true system is 1 2/ ( )z a x a x= + , 
the identification of a1  and a2  is a nonlinear regression problem. In this section, we 
introduce artificial neural network (ANN) that can handle both linear and nonlinear 
mappings.

ANN uses layers of interconnected information processing units, or artificial 
neurons, to mimic the learning process of human brains. Because of its flexible 
structure and tunable structure parameters, ANN has become a popular method for 
constructing data-driven models. Introduced originally in 1940s for representing 
information processing in biological systems (McCulloch and Pitts 1943), ANN 
models have been used in various fields, including EWR. For example, ANN has 
been applied to rainfall-runoff forecasting (Chang et al. 2007; Christian and Wilby 
1998; Coulibaly et al. 2001b; Hsu et al. 1995; ASCE 2000; Moradkhani et al. 2004), 
urban water demand forecasting (Liu et al. 2003), water resources management 
(Bowden et al. 2005; Maier and Dandy 2000), groundwater level forecasting (Cop-
pola et al. 2005; Coulibaly et al. 2001a; Sun 2013), and statistical downscaling 
of climate models (Cannon and Whitfield 2002; Schoof and Pryor 2001; Tisseuil 
et al. 2010). A recent review indicates that prediction of water resource variables 
using ANNs has become a well-established research area over the last two decades 
(Maier et al. 2010). ANN has also found its applications in the inversion and dimen-
sion reduction of physics-based models (i.e., metamodeling). The main strengths of 
ANN models include the following: (i) they can be trained to learn both linear and 
nonlinear mappings; (ii) once trained, an ANN model has the capability to quickly 
generate useful results even for inputs not encountered during training, provided 
that a sufficient number of bounding input patterns are used for training; and (iii) a 
trained ANN is relatively robust to process noise (Haykin 1994).
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8.2.1  Multilayer Perceptron Networks

A number of ANN architectures have been developed over the years. The best 
known and arguably the most widely used ANN is multilayer perceptron network 
(MLP), which is a type of feedforward neural networks (FNN). As its name sug-
gests, an FNN is obtained by connecting multiple layers one-by-one in a forward-
only direction through a series of transformations. The outputs are not used to pro-
vide feedbacks to the input and, thus, the FNNs are referred to as static neural 
networks, as opposed to dynamic neural networks.

In general, an MLP can be represented by a connected network of the form

 (8.2.1)

where x y≡ ( )0  is an input layer, y y y( ) ( ) ( ), , ,1 2


L{ }  are L hidden layers, and 
y z( )L+ ≡1  is an output layer. Each layer consists of a number of neurons (or units) 
that receive, process, and transmit information. Neurons of the l-th layer y( )l  are 
denoted by y y y yl l

i
l

M
l

l
1 2
( ) ( ) ( ) ( ),, , , , { }, in which Ml  is the number of neurons used 

by the layer; and W( )l  ( , , , )l L= +1 2 1  are weight matrices. An element ( )l
ijw  of 

W( )l  is the weight that links a neuron yi
l( )−1  of layer ( )l −1  to a neuron yj

l( )  of layer l . 

Fig. 8.2 illustrates an MLP with a single hidden layer.
An MLP defined in (8.2.1) is characterized by the following equations:

 (8.2.2)
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Fig. 8.2  An MLP with multiple inputs, one hidden layer, and multiple outputs, in which the num-
ber of neurons in the input, hidden, and output layers are M P M M0 1= =, , and M K2 =
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Equation (8.2.2) shows how a neuron yj
l( )  of layer l  is determined by all neurons 

of layer ( )l −1 , in which aj
l( )  is called the activation, and function (·)φ  is known as 

the activation function or transfer function. Some commonly used activation func-
tions include:

• Linear function: ( )a aφ =
• Hyperbolic tangent sigmoid function: 

2

2

1
1

( )
a

a

e
a

e
φ

−

−

−=
+

• Gaussian function (mean, µ ; variance, 2σ ): 
2 22( ) /( ) aa e µ σφ − −=

• Logistic sigmoid function: 1
1

( )
a

a
e

φ
−

=
+

Comparing the first equation of (8.2.2) to the linear regression model (8.1.35), we 
see that the neurons of layer ( )l −1  essentially serve as basis functions for neurons 
of layer l , although the dependency is nonlinear when the selected activation func-
tion is nonlinear. This means that the data-driven model, z f x= ( , ) , defined by 
(8.2.1) and (8.2.2), is a nonlinear model with respect to both x and  , where   
denotes the set of all weight matrices,  = { }+W W W( ) ( ) ( ), , ,1 2 1



L . It has been 
shown that the MLP, even with only one hidden layer (Fig. 8.2), can uniformly ap-
proximate any continuous mapping z f x= ( )  to arbitrary accuracy, provided that 
the network has a sufficiently large number of hidden units. This result is known as 
the universal approximation theorem (Cybenko 1989). The theorem, however, does 
not say how many hidden neurons should be used. A popular strategy is to treat the 
number of hidden neurons as additional unknowns to be adjusted during network 
training. In the case of a large number of inputs, it is worthwhile to include more 
than one hidden layer to improve network training efficiency (Bishop 2006).

8.2.2  Training of an ANN

8.2.2.1  The Training Process

Once the structure of an ANN model z f x= ( , )  is determined, the model con-
struction problem becomes identifying weight matrices   using the input–output 
data pairs given in (8.1.32). There exist two approaches to train an ANN model: (i) 
using all data pairs simultaneously and (ii) using data pairs sequentially by a recur-
sive procedure. When a data pair ( , )x zn n  is used to train, the objective of training 
is to minimize the following fitting residual of the model outputs

 
(8.2.3)
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 (8.2.4)

When all N data pairs are used for training, the objective is to minimize the total 
fitting residual

 (8.2.5)

Because of the nonlinearity of the model, an iteration process is required for iden-
tifying the unknown set of weight matrices  . This process is exactly the same as 
that was described in Chap. 2 for nonlinear model inversion, namely, the objective 
function (8.2.5) is minimized gradually by generating a series of weight matrix sets:

 (8.2.6)

where 0  is an initial guess, and t+1  is an update of t  such that condition 
S St t( , , ) ( , , )X Z X Z + <1  is satisfied for t = 0 1, ,. This process is terminated 
until a convergence criterion is reached.

8.2.2.2  Backpropagation Algorithm

This algorithm provides a way to find t+1  from t  by iteration. It consists of two 
distinct passes:

• Forward pass solves the forward problem. For a given input layer xn and the cur-
rent weight matrix set t , calculate all hidden layers and the output layer. This 
can be done according to (8.2.1): first y xn n

( )0 ≡  and Wt
( )1  are used to obtain the 

hidden layer yn
( )1 , then yn

( )1  and Wt
( )2  are used to obtain yn

( )2  and so forth, until 
finally yn

L( )  and Wt
L( )+1  are used to obtain the output layer 1( ) ( , ).L

n n t
+ ≡y z x   

The value of the objective function Sn n n t( , , )x z   can then be calculated ac-
cording to (8.2.3).

• Backward pass solves the inverse problem to estimate the final weight matrix 
Wt

L
+
+

1
1( )  first with the observed data zn , then a recursive process is used to esti-

mate W Wt
L

t
L

+ +
−

1 1
1( ) ( ), , , until Wt+1

2( ) , and finally Wt+1
1( )  is estimated with the input 

data xn . The set of all updated weights t+1  is thus obtained. Details of this 
process are shown below. For clarity, the subscript ( )t + 1  associated with all 
identified weights will be omitted.

Train the Output Layer yn
L( )+1  for Identifying W( )L+1  

From (8.2.3), for all i M j ML L= = +1 2 1 2 1, , , , , ,  and , we have

 (8.2.7)
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where

 (8.2.8)

Because 1( )
,
L

n jδ +  and ( )
,
L
n iy  are known, the gradients of objective function Sn  with 

respect to all 1( )L
ijw +  are obtained by (8.2.7). Various gradient-based optimization al-

gorithms in Sect. 2.3.3 can be used here to identify these weights ( )( )W L+1 .

Train the Hidden Layer yn
L( )  for Identifying W( )L  

The objective function Sn  in (8.2.3) is only indirectly dependent on yn
L( )  through 

yn
L( )+1 , which means Sn  is also dependent on wij

L( ) . For all i ML= −1 2 1, , ,  and 
j ML= 1 2, , ,  we have the following expression according to the chain rule

 (8.2.9)

where

 (8.2.10)
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,

( )−1  are known, the gradients of objective function Sn  with 
respect to all wij

L( )  are obtained by (8.2.9), a gradient-based optimization algorithms 
then can be used to identify these weights ( )( )W L .

Train Other Layers 
Using such a backpropagation process, we will find

 (8.2.11)
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which is dependent on the input data. With these gradients, all weight matrices 
W W W( ) ( ) ( ), ,L L− −1 2 1

  can be identified, and identification of the whole set of 
weight matrices   is thus completed.

The simplest but also the most commonly used ANN structure consists of only 
three layers (Fig. 8.2): an input layer x , a hidden layer y , and an output layer z.  
Assuming the numbers of neurons in them are P ,M , and K , respectively, we 
have

 (8.2.12)

Following the above general results, we have

 
(8.2.13)

When the steepest descent optimization algorithm is used to train an MLP model, 
the solved weights are locally optimal, but may not be globally optimal. In fact, the 
likelihood of trapping at local minima in this case is even higher given the strong 
nonlinearity of the MLP error function. One commonly used strategy for circum-
venting the local minima issue is random initialization, in which the MLP is trained 
many times using different random initial weights. The resulting solutions form an 
ensemble of MLPs, which can then be used to give an ensemble averaged forecast 
and associated estimation variance. We will turn to techniques for generating ANN 
ensembles in Sect. 8.2.4. To improve accuracy and training speed, one may use 
more sophisticated solvers such as Levenberg-Marquardt, conjugate-gradient, and 
quasi-Newton method (requires Hessian matrix). So far, Levenberg-Marquardt (see 
Sect. 2.4.2) is the most widely used algorithm for backpropagation.

The other issue commonly encountered during network training is numerical 
stability, which can be partly mitigated by adopting more robust algorithms. For 
example, we can augment the original error function (8.2.3) with a regularization 
term 

2

2
( ) ( )S Sα α= +w w w , where α  is a regularization parameter. The regular-

ization problem can be solved either in the deterministic framework (Chap. 3) or in 
Bayesian framework (see Chap. 4).

Example 8.4 Daily Streamflow Forecasting Using MLP 
We now develop an MLP model using the same Neches River streamflow dataset 
considered in Example 8.2. In addition to antecedent streamflow, we would also 
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like to consider other related predictors, including total daily precipitation and 
maximum and minimum daily temperatures. The MLP design generally involves 
two subtasks: input selection and hidden layer structure (e.g., number of layers 
and neurons). Although in theory both subtasks may be tackled simultaneously 
using cross-validation and model selection criteria, the number of different com-
binations can quickly become overwhelming. It is, therefore, not surprising to see 
heuristic design approaches. For instance, one can first build an ARMAX model 
by using an automated model selection procedure to select the number of lags for 
each type of inputs, and then construct an ANN using the same inputs. We choose 
the following 17 predictors for the base model, largely through correlation analy-
ses and the knowledge gained from building the AR model in Example 8.2,

The target variable is Q t( ) . Before training, all input and target data are scaled to 
the range [ , ]−1 1  using linear scaling. For example, for the precipitation time series, 
this can be done by subtracting the minimum from all precipitation and then scaling 
by the range of the precipitation during the study period. Also, streamflow is trans-
formed using the Box-Cox transformation as we have done in Example 9.2.

The total data records are divided into three parts: training (65 %), validation 
(15 %), and testing (20 %). Matlab’s Neural Network Toolbox is used and the Lev-
enberg-Marquart algorithm is chosen for backpropagation.

The number of hidden neurons is a free parameter that needs to be determined 
during training. In general, more hidden neurons will ease the training process, but 
at the price of overfitting. Trial-and-error and cross-validation are often used for 
determining the number of hidden neurons (Zealand et al. 1999; Maier et al. 2010). 
Although some researchers pointed out that the number of hidden neurons should 
be smaller than the total number of input variables (Maier and Dandy 1996), the 
actual number of hidden neurons appears to be case dependent, especially when the 
system has multiple outputs. Figure 8.3 plots the corrected AIC, or AICC, as a func-
tion of the number of hidden neurons. The AICC corrects the AIC for finite sample 
sizes (Hurvich and Tsai 1989)

where P is the number of inputs and N is the number of samples. The plot suggests 
that 5 is the best number of hidden neurons.

Backpropagation training for the base model took 59 iterations. The result-
ing NSC (calculated on testing data) is 0.982 and the root-mean-square error 
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(RMSE) is about 580 cfs. At this time, a sensitivity analysis may be conducted to 
formally quantify the effect of exogenous predictors. A number of methods are 
available for gauging the importance of predictors (Olden et al. 2004). Here, we 
demonstrate the use of the backward elimination method, in which the predictor 
variable (or predictor group) is removed one at a time to compare the perfor-
mance of the reduced model to the base model. Table 8.1 lists the ratios of MSE’s 
between various subsets and the base case, where each subset was formed by 
removing the corresponding predictor type. The larger the MSE ratio, the greater 
the importance of a variable to ANN prediction will be. Table 8.1 indicates that 
all three additional predictor types contribute positively to the predictive power 
of the base model. The backward elimination method requires developing a new 
model for each variable selection; alternatively, one may either conduct a global 
sensitivity study (see Chap. 10) or use the connection weight method suggested 
by Olden et al. (2004), who showed that the raw input-hidden and hidden-output 
connection weights in a trained ANN provides the best methodology for accu-
rately quantifying variable importance. An application of the connection-weight 
method is given in Sun (2013), who studied feasibility of downscaling a satellite 
data set to predict groundwater level changes.

The ANN performed well in this one-day-ahead streamflow forecast application 
because the training dataset spans a long period so that a large number of variation 
patterns are included. Also, the Neches River flow regime is unregulated, which 
ensures a good correspondence between the predictors and target. If the streamflow 
is significantly affected by anthropogenic activities (e.g., irrigation or damming), 
additional information, such as return flow and flow diversion rates, is needed to 
correct for such impacts.

Fig. 8.3  AICC as a func-
tion of the number of hidden 
neurons
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8.2.3  Radial Basis Function Network

RBFN is a special FNN that has only one hidden layer. In RBFN, radial basis func-
tions (see Sect. 6.1.5) are used as activation functions to connect the input layer to 
the hidden layer, while the outputs are still modeled as linear combinations of hid-
den neurons, as in MLP models. Let us assume that the numbers of neurons of the 
three layers are P M, and K , respectively. An RBFN can be formulated as

 (8.2.14)

where ( )rφ  is an RBF function, jr = −x c  is the distance (typically Euclidean) 
between a training sample x  and data centers ck , and wk  is the weight vector. 
Determination of data centers (as structure parameters) will be described in details 
below. As explained in Sect. 8.1.2, bias terms in the above equations are omitted 
after preprocessing the data. RBFN (8.2.14) defines a mapping

 
(8.2.15)

where W w w w= [ ]1 2    K  is an M K×  weight matrix as shown in (8.1.31),
1 2=( , , , )T

Mφ φ φφ  , and C c c c= { }1 2, , , M  are data centers. When the output is a 
scalar variable z , the mapping reduces to a function

 (8.2.16)

This is exactly the interpolation or the function approximation problem we consid-
ered in Sect. 6.1.5. Now it is viewed and trained as a special ANN. The backpropa-
gation algorithm for training an MLP, of course, can be used to train an RBFN, 
but there are more effective training methods for this special case. According to 
(8.2.16), the problem of training an RBFN requires (i) selecting an RBF, (ii) esti-
mating weights, and (iii) optimizing structure parameters.

( )
1 1

1 2

1 2

( ) , , , ,

, , , , ,

j j j
T

k k kM M k

y j M

z w y w y k K

x x c

w y

φ φ= = − =

= + + = =



 

= ( , ),Tz W x Cφ

( )
1 1

φ φ
= =

= − =∑ ∑ ( ).
M M

j j j j
j j

z w wx c x

Predictor Type MSE Ratio
Precipitation 1.10
Tmax 1.11
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8.2.3.1  Selecting Radial Functions

A number of RBFs exist in the literature, and some commonly used forms have 
already been given in Sect. 6.1.5. The Gaussian kernel 2 22( ) exp( / )r rφ σ= −  is 
probably the most widely used RBF. It contains a shape parameter σ  that controls 

the spread of the RBF. The multiquadric RBF 2 21( ) /r rφ σ= +  also contains a 
shape parameter σ . In the rest of this discussion, we denote all shape parameters 
of RBFs by { }1 2= σ σ σ, , , Mσ . Shape parameters make RBFN more flexible but 
increase the training effort. Park and Sandberg (1991) showed that RBFNs with a 
single global spread parameter can approximate any continuous mapping on a com-
pact input domain to arbitrary accuracy, provided that the network has a sufficiently 
large number of hidden neurons. From the training perspective, the use of a single 
global spread parameter for all hidden neurons greatly reduces the training effort.

8.2.3.2  Estimating Weights

In RBFN, the input layer and the hidden layer are not connected by weights. Once 
RBFs are selected, and data centers C  and shape parameters σ  are determined, all 
neurons of the hidden layer can be obtained directly by the first equation of (8.2.14) 
(i.e., = ( )y xφ ). For a set of input data { }xn , the corresponding RBF values are 
{ ( )}nxφ . Let the N samples of input data be represented by an N P×  matrix

and the corresponding RBF values be an N M×  matrix

 (8.2.17)

The output layer z  is connected to the hidden layer ( )y x= φ  through (8.2.15), 
which actually is a linear model with multiple outputs as considered in (8.1.30), but 
here x is replaced by ( )xφ . Therefore, the weight matrix in (8.2.15) can be estimated 
by replacing X  by Φ  in (8.1.33) and (8.1.34) to get

 (8.2.18)
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and
 (8.2.19)

The results show that weights of a RBFN model can be obtained simply by linear 
regression. In comparison, a nonlinear optimization problem must be solved to es-
timate weights of an MLP model.

8.2.3.3  Optimizing Structure Parameters

Structure parameters of an RBFN include the number of data centers ( M), the lo-
cations of data centers C , and shape parameters σ . Unlike the case of MLP, the 
bulk effort of most RBFN algorithms focuses on selection of structure parameters, 
which directly affects the performance of RBFN. Actually, this is the extended in-
verse problem (EIP) considered in Chap. 7 for physics-based models. According to 
Eq. (7.6), all structure parameters and weights can be obtained by solving the fol-
lowing min-min problem:
 

(8.2.20)

Because the inner min solution Ŵ  has been obtained explicitly in (8.2.19), this min-
min problem is reduced to a minimization problem

 (8.2.21)

Note that Ŵ  depends also on the structure parameters. Let the number of data cen-
ters, M, be increased gradually from a small initial value; for each fixed M, C and σ 
can be optimized by a local or a global optimization method introduced in Chaps. 2 
and 3. When a gradient-based algorithm is used, according to (8.2.21) the gradients 
of Sn  with respect to all data centers are given by

 (8.2.22)
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Especially, when Gaussian kernel is used as the RBF, we have

 (8.2.23)

Besides solving (8.2.20), there are other methods for training RBFNs, such as the 
clustering method (Xu et al. 1993) and the more effective orthogonal least squares 
method originally introduced by Chen et al. (1991). The clustering method groups 
the input dataset into appropriate clusters and the centers of these clusters are then 
used as RBF centers. The orthogonal least squares method adds data centers se-
quentially until either a predefined MSE is reached on the training set or the maxi-
mum number of hidden neurons is exceeded, and all data centers are chosen from 
the input dataset.

In EWR-related applications, Moradkhani et al. (2004) applied RBFN to develop 
a one-step-ahead streamflow forecast model; a data clustering algorithm was first 
used to determine the data centers. Lin and Wu (2011) used RBFN to obtain hourly 
inflow forecasts to a reservoir during typhoons. They applied a two-step procedure 
to optimize selection of data centers, which includes the use of both data clustering 
and orthogonal least squares.

8.2.4  Use ANN for Inverse Solution

Because ANN is a universal function approximator, it can be used to replace a phys-
ics-based model, especially when the computational demand associated with such 
a model is high. The resulting surrogate models are often referred to as response 
surfaces, emulation models, or metamodels in the literature. Morshed and Kalu-
arachchi (1998) combined ANN and genetic algorithm (GA) for solving inverse 
problems related to nonaqueous phase liquids (NAPL) in groundwater aquifers. 
In their work, ANN was used to approximate the inverse relationship between pa-
rameters of a multiphase model and pollutant concentration observations. Mirghani 
et al. (2012) used the combination of ANN and GA to solve a contaminant source 
identification problem.

Given a forward mapping   from parameter space to state space

 (8.2.24)
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we would like to find a metamodel   that converges to the original   in the 
mean square sense. Here, it is assumed that the original model   is a physics-
based model and is computationally demanding to run. The structure of   depends 
on the underlying metamodeling technique used. ANN represents one of the com-
mon choices. In Chap. 10, we will introduce other metamodeling methods in the 
context of uncertainty propagation.

The basic ANN metamodeling procedure consists of three major steps:

1. Define the range of parameters and generate a large number of input patterns
2. Run the forward physics-based model on each training pattern and collect model 

outputs at user-designated observation points
3. Develop, train, and test an ANN model using the dataset obtained from the previ-

ous two steps

After obtaining the ANN metamodel, we can couple it with a global optimization 
solver, such as GA (see Chap. 3), to perform parameter estimation or experimen-
tal design. Depending on the underlying physics-based model, the metamodeling 
approach can offer improvement in computational efficiency by several orders of 
magnitudes. In the following, we use a simple example to illustrate how the com-
bined ANN-GA metamodeling approach works.

Example 8.5 Parameter Estimation Using MLP-GA 
We would like to develop an MLP to approximate the following sinusoidal function

for which the parameter vector is 1 2 3 4( , , , )c c c c=c , and 0 2( , )x π∈ . All parameters 
are assumed to be uniformly distributed. The bounds of the parameters are given in 
Table 8.2 below.

The parameter space is first sampled uniformly to generate 200 realizations 
of training patterns. The target data consist of “observations” of f x( )  from 63 
points. The “true” parameter vector that generated those model observations is 

0 25 0 51 0 23 1 1( . , . , . , . )= −c , and is not included in training. In the second step, a 
single-hidden-layer MLP is developed. The size of the input data to the MLP is 
4 × 200 (i.e., one row for each parameter) and the size of the output data is 63 × 200 
(i.e., one row for each observation point). The data are divided into three parts for 
training, validation, and testing, respectively. The number of hidden neurons is set 

1 2 3 4( ) sin( ) sin( ),f x c c x c c x= +

Table 8.2  Parameter bounds used in Example 8.5
Parameter Lower Bound Upper Bound
c1 0.1 0.5
c2 −1 0
c3 0 0.5
c4 0.5 1.5
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to 15 through trial and error. The MLP model is trained following the same steps as 
detailed in Example 8.4.

After the MLP model is trained, it can be used to simulate model output for any 
input vector within the parameter bounds. For testing, we passed the true parameter 
vector to the trained metamodel to assess its performance. Figure 8.3 compares the 
“true” model outputs (open circles) with those from the MLP (solid line). A good 
match between the two can be observed.

In reality, we can only access observations. Thus, the MLP model is combined 
with a GA solver to estimate model parameters. For each trial parameter vector, 
the objective function is the MSE between the MLP solution and actual observa-
tions (i.e., circles in Fig. 8.4). The goal of GA is to find a set of global optima 
that minimize the objective function. The final parameter set returned by GA is 
ˆ ( . , . , . , . )c = −0 0 0 028 56  26  1 5 . Figure 8.4 shows that the MLP-GA solution matches 
the true solution well except near the right end of the curve. We used a relatively 
dense observation grid in this example. Readers may try to vary observation density 
to see the impact on final results.  ■

Although the actual model used in Example 8.5 is not computationally expen-
sive, the example highlights the potential of MLP-GA for solving inverse problems. 
In contaminant source identification problems requiring identification of both con-
taminant source locations and release histories, a popular strategy is to solve a min-
min problem (see also Sect. 7.1.2). Because the minimization requires running the 
forward model many times, a metamodel may be trained using different source lo-
cations as inputs. Another possible use of metamodeling is to replace physics-based 
models in decision support systems, which often requires the capability to generate 
model predictions under different scenarios (e.g., climate change). The following 
example shows a prototype.

Fig. 8.4  Metamodeling 
using MLP, in which open 
circles correspond to training 
output data, the solid red 
line is simulated by MLP 
using “true” parameters, and 
the dash line corresponds to 
MLP outputs obtained using 
model parameters estimated 
from GA
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Example 8.6 Nonpoint-Source Pollution 
In this example, an RBFN model is used to approximate a physics-based model 
originally built using the Soil and Water Assessment Tool (SWAT), which is a 
continuous hydrologic simulation tool developed to quantify the impact of land 
management practices on surface water quality in large watersheds (Gassman et al. 
2007). The study area, Arroyo Colorado Watershed (~ 1800 km2), is located in 
Lower Rio Grande Valley of south Texas, USA, near the Gulf of Mexico coast. It is 
an intensively cultivated, canal-irrigated watershed. The SWAT model was devel-
oped for the study area to model the effect of watershed best management practices 
(Kannan et al. 2010). The dominant land use categories in the watershed are agri-
culture (43 %) and rangeland (34 %). From the training performance perspective, it 
is generally better to develop a separate RBFN for different pollutants of interest. 
As an application example, here the RBFN model is specifically developed to pre-
dict one-month-ahead total nitrogen (TN) loading, which includes nitrate, nitrite, 
ammonia, and organic nitrogen in the water. Unlike the data-driven streamflow 
forecast models shown in Example 8.4, in this case the targets of RBFN model are 
obtained using forward SWAT model runs. In other words, the data-driven model-
ing is taken place in the model space of a calibrated SWAT model.

As part of the RBFN development, a backward elimination selection procedure 
was applied to choose predictors. The selected final set of input variables for the 
one-month-ahead TN loading prediction include

where the subscripts ha, md, and mc are abbreviations of different observation sta-
tions, and all other symbols are as defined in Example 8.3. The final RBFN for TN 
loading prediction consists of 30 hidden neurons. Note that the number of hidden 
neurons used by RBFN is typically larger than that for a single-hidden-layer MLP.

Figure 8.5 plots the TN loading simulated by the RBFN for both the training and 
testing periods, and the boundary of the two periods is indicated by the vertical line 
on the plot. The training period includes a sufficient number of variation patterns, 
including a high loading peak near the end of 2002. The trained RBFN model gives 
satisfactory performance. The NSE calculated on the testing set is 0.78. During 
scenario analyses, forcing data under different climate change scenarios may be cre-
ated by downscaling from climate models or using weather generators (Schoof and 
Pryor 2001). The trained RFBN model can be used as a surrogate of the physics-
based SWAT model to perform continuous loading prediction. In addition to forcing 
data, metamodels may also be developed for fast parametric sensitivity studies by 
using SWAT parameters as inputs and SWAT output as target variable. More details 
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of this case study, including the use of metamodels in a decision support framework, 
can be found in Sun et al. (2014a). ■

When using metamodels for parameter estimation or experimental design, at 
least three types of errors are involved. The first is model approximation error that 
is introduced by replacing a physics-based model with a metamodel, the second 
is model fitting error arising during metamodel training, and the third is model 
structure error associated with the original physics-based model itself. Several pos-
sible strategies exist to mitigate the first two sources of error. One may increase the 
number of training patterns used for metamodeling, provided that the effort required 
for generating those training patterns is still significantly less than that of using the 
physics-based model for the full design. Another possibility is to switch to the origi-
nal physics-based models for the part of design requiring high fidelity. For example, 
in model-based system failure probability assessment, Li et al. (2011) applied a hy-
brid method that utilizes a metamodel in most part of the parameter space, but uses 
the full model in the region surrounding the failure mode (i.e., parameter values that 
can lead to system failure). Such method relies on one’s ability to identify parameter 
regions that the developed metamodel is likely to fail. Yet another possibility is to 
treat the desired reliability of the developed metamodel as a constraint and solve 
a constrained programming problem. More details on probabilistic metamodeling 
will be given in Chap. 10.

8.2.5  ANN Ensembles

Typical ANNs do not yield confidence intervals of estimates directly. The most 
popular method for estimating confidence intervals is by combining outputs of mul-
tiple neural networks to form an ANN ensemble,

Fig. 8.5  RBFN metamodel 
for TN output prediction, 
using SWAT results (circles). 
Training and testing periods 
separated by vertical line
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(8.2.25)

where L is the number of different ANNs in an ensemble and lβ  is the weight as-
signed to the l-th ensemble member. From (8.2.25), the statistics of estimation can 
be estimated. Methods for ensemble generation fall into one of the four categories 
(Sharkey 1999): (i) random initialization, (ii) variation of network topologies, (iii) 
variation of the training algorithm, and (iv) random permutation of training datas-
ets. The first category of methods mainly pertains to ANNs trained via backpropa-
gation, for which different initial guesses of weights generally lead to different final 
weights because of the inherent nonlinearity of the error function. Utilizing this 
“unstableness” side effect, a number of ensembles can be generated and trained, 
each using different initial weights. Category (ii) and (iii) are less common because 
they involve networks of different structures, making it less straightforward to esti-
mate weights for individual ensemble members. The last category of methods, orig-
inated from standard statistical techniques, has received the most attention so far. 
We will briefly go through two of such statistical techniques, bagging and boosting.

8.2.5.1  Bagging

Bagging is short for bootstrap aggregation, which was originally introduced by 
Breiman (1996) for improving stability of learning algorithms when training data 
are limited. The core concept behind bagging is relatively simple. In the bootstrap-
ping step, the training dataset is randomly sampled with replacement to form L 
“realizations” of the original dataset. In the aggregation step, all realizations are 
used separately to train the ANN to form an ensemble of models, from which the en-
semble performance can be evaluated using its statistics (e.g., mean and variable). 
On average, each bootstrapped training set contains 63.2 % of the original training 
set and the remaining samples are replicates, due to the sampling-with-replacement 
procedure (Breiman 1996).

Bagging essentially provides a nonparametric method for approximating poste-
rior mean which, as we have learned in Chap. 4, often leads to a reduction in the 
MSE. In this case, each ensemble member is an individual model and is assigned 
uniform prior probability. Each model is trained using the same set of training data. 
The empirical ensemble statistics then reflects the new information in training data 
in a Bayesian sense. The same empirical Bayesian concept is behind ensemble-
based data assimilation and Bayesian model averaging. In particular, we will see in 
Chap. 9 that data assimilation may be used to sequentially update the weight of each 
ensemble member as new information becomes available.

So what makes bagging work? Like the random initialization method, bagging 
also exploits nonlinearity of the loss function and unstableness of the underlying 
base training algorithm (e.g., backpropagation) to generate diverse ensemble mem-
bers. In other words, bagging expects that a small change to a training set can cause 
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β
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sensible changes in the trained model, which is true when the sample size is limited 
and when many local minima exist. Hansen and Salamon (1990) showed that the 
necessary and sufficient condition for the performance of an ensemble of models to 
be more accurate than the best of its individual members is that all ensemble models 
are accurate and diverse. However, the condition does not say how many ensemble 
members are needed. In practice, the number of ensemble members is usually found 
by trial-and-error, a process that can be computationally demanding for large-size 
training data.

Bagging involves a passive sampling method in the sense that the algorithm does 
not use feedbacks from the likelihood to inform the sampling process (i.e., update 
weights of ensemble members). The method introduced below represents a different 
paradigm.

8.2.5.2  Boosting

Boosting, originally described in a seminal paper by Schapire (1990) and later in 
Freund and Schapire (1996), is a general algorithm for adaptively generating a se-
ries of predictive models. Each time, a new predictive model is conditioned on the 
performance of previous ones, and the sampling weights of the original training 
data are adjusted. Training data that receive poor prediction by the current predictor 
will have higher probability of getting sampled in a new training set than those cor-
rectly predicted. In boosting, the ensemble members are generated serially, instead 
of all at once as in bagging. A boosting algorithm is provided below.

For a given training dataset consisting of N pairs of input and target data 
1{( , )}Ni i i=x z , do

1. Initially, assign equal weight to each training sample, 1/iw N=
2. For 1 :m M= , where M is the number of iterations, do

• Generate a new training dataset by sampling with replacement from the original 
dataset using sampling weights { }iw

• Construct and train an ANN model, mf , using the training set
• Calculate the distance or loss function for each sample as

 (8.2.26)

where the commonly used loss function ( )iL d  are

( ) , 1= − = ( ) ( ) , ,i i m iL d L i Nz f x
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in which the normalization constant max sup{ }id d=  is the upper bound of all 
1( , , )id i N=  .

• Calculate the weighted average loss obtained by mf  as

• Update the weight of each training data according to

 (8.2.27)

where 1/ ( )m m mα ε ε= − , m is looping index, and C is a normalization factor to 
ensure the sum of { }wi  is 1.

The above boosting algorithm for regression is known as AdaBoost.R2 in the 
literature (Drucker 1997). As mentioned previously, the main difference between 
boosting and bagging is that boosting goes one step further by progressively adjust-
ing training data sampling strategy through (8.2.27) such that more focus is placed 
on poorly performing data in future iterations. By design, AdaBoost does not ex-
plore unstableness of the underlying training algorithm when generating ensembles. 
On the other hand, by progressively handing more difficult fitting problems to the 
base training algorithm, AdaBoost exposes itself to overfitting, especially when the 
data noise level is high. The choice of loss function can also affect the robustness 
of AdaBoost.

A number of studies have been carried out to compare performance of random 
initialization, bagging, and boosting. In the context flood frequency analysis, Shu 
and Burn (2004) reported that the average generalization ability of ANN ensembles 
was always better than that of single models, regardless of the ensemble method 
used; among the ensemble averaging methods tested by them, the performance of 
bagging was better than that of random initialization, and AdaBoost outperformed 
bagging. In-depth discussion of these ensemble methods can be found in Zhou 
(2012) and Hastie et al. (2009).

8.3  Support Vector Machine and Relevance Vector Machine

8.3.1  Support Vector Machine Regression

ANN models may involve considerable subjectivity when it comes to model struc-
ture selection and training. As we mentioned at the beginning of this chapter, a 
fundamental question underlying ANNs and any other statistical learning algorithm 
is related to generalization capability: how to design and train a data-driven model 
such that it is guaranteed to deliver similar performance on data not seen during 
training. A measure of model prediction discrepancy can be defined as
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(8.3.1)

where x  contains all input variables, z  is the true system response (assumed to be 
a scalar), ( ; )f x θ  is the model-predicted response, θ  are parameters associated with 
the trained model, ·  is a distance measure, and ( , )p zx  is the joint PDF of input and 
output variables. Eq. (8.3.1) is often referred to as the true prediction risk in statisti-
cal learning theory (Burges 1998; Vapnik 1995). Because neither the true system 
nor the joint PDF p z( , )x  is known exactly, (8.3.1) has only theoretical meaning. In 
practice, the system response is observed only at discrete points. Thus, discrepancy 
or training error is approximated by some empirical loss function, or empirical pre-
diction risk Ee . A commonly used measure of the empirical risk is MSE. Training 
algorithms that seek to minimize empirical risks are said to follow the empirical risk 
minimization principle. For instance, the backpropagation algorithm in MLP mini-
mizes the MSE. We see that the empirical risk minimization principle is essentially 
equivalent to Criterion (C-1) underlying the CIP (Chap. 2).

If the training dataset is large and the values are accurate, MSE provides a good 
estimate of true prediction error. On the other hand, if the sample size is limited and 
noisy, relying solely on MSE minimization may weaken a model’s generalization 
capability. Another issue with the empirical risk minimization approach is that the 
process does not give direct control on model structure complexity; instead, ad hoc 
procedures (e.g., cross-validation) must be repeated on all possible model structures 
and the optimal structure is selected based on one or more model selection criteria, 
such as the AIC or BIC.

8.3.1.1  Bound of Prediction Risk

Is it possible to establish a relationship between the size of training data and gener-
alization capability of a trained model? Or better, can we incorporate such knowl-
edge in the training process to prevent overfitting? These questions motivated the 
development of the support vector machine (SVM), which grew out of the statistical 
learning theory pioneered by Vapnik and Chervonenkis (1974) and later formalized 
by Vapnik and his co-workers at the former AT&T Bell Laboratory (Vapnik 1995). 
In statistical learning theory, the term learning machine refers to data-driven algo-
rithms that can be used to learn and generalize from training data.

The starting point of SVM is to establish a bound of the true prediction risk, pE , 
by using two types of error

 (8.3.2)

where the fitting error ( )eE θ  is fixed for given model parameters θ, and ( )sE θ  rep-
resents the capacity of a statistical learning algorithm to learn any dataset without 
error. In SVM terminology, ( )sE θ  provides a capacity control of model complexity. 

= −∫ ( ; ) ( , ) ,pE z f p z d dzx x xθ

≤ +( ) ( ) ( ),p e sE E Eθ θ θ
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Functional forms of ( )sE θ  will be provided later in this section when we describe 
SVM training. The significance of (8.3.2) is that it establishes an upper bound of 
generalization error. Minimization of this upper bound calls for minimization of two 
objective functions: the empirical risk (fitting error) and the capacity control. Gen-
erally speaking, increasing model complexity tends to reduce the fitting error, but 
at the risk of overfitting, and vice versa. This is analogous to the concept illustrated 
in Fig. 7.2 in the context of distributed parameter models. In statistical learning 
theory, minimization of the right-hand side of (8.3.2) is referred to as the structural 
risk minimization principle.

The upper bound of prediction risk is sometimes given in a multiplicative form 
instead of additive form (Cherkassky and Mulier 2007),

 
(8.3.3)

in which 1γ ≥  is a penalization factor. A definition of γ  is given by Cherkassky 
and Mulier (2007)

 
(8.3.4)

where  κ = / ,v N v  is called the Vapnik-Chervonenkis (VC) dimension; and N is 
the sample size. The VC dimension is a measure of model complexity of a mod-
el class. Larger VC is usually indicative of more complex models (Vapnik 1995). 
Thus, giving a set of models, the one that yields the smallest γ  should be chosen. 
Eq. (8.3.4) shows that 1γ →  as N → ∞, meaning that the empirical risk con-
verges to true prediction risk when sample size becomes large.

Based on the structural risk minimization principle, SVM seeks to improve a 
trained model’s generalization performance by striking a balance between the em-
pirical risk and capacity control. SVM has been used widely for both classification 
and regression problems. We will mainly focus on the latter in this book.

8.3.1.2  Support Vector Regression (SVR)

Our starting point is the general regression problem involving a single target vari-
able

 (8.3.5)

where (·)φ  is a set of basis functions and the unknown parameters are becomes the 
weight vector w  and the intercept term w0  in this case. In SVM, (·)φ  is a mapping 
that transforms data from the input space to a feature space in which linear regres-
sion can be performed, but the feature space may have high or even infinite dimen-
sion. In other words, the dimension of w  is only implicitly defined. Fortunately, as 

γ≤( ) ( ),p eE Eθ θ

( ) 1
1 2γ κ κ κ

−
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we will show shortly, the actual form of (·)φ  does not need to be known explicitly 
because all we need is a kernel function that describes the inner product of (·)φ  in 
the feature space,

 (8.3.6)

where x  and ′x  are two data points in the input space. For our purpose, it suffices 
to know that feature space is an inner product space. The idea of avoiding explicit 
manipulation of (·)φ  by working with their inner products in a feature space is 
known as the “kernel trick,” or kernel substitution. Kernel trick is used broadly 
in density estimation, machine learning, and dimension reduction. For example, 
we have already seen applications of kernels in the KPCA algorithm introduced in 
Sect. 6.4. Kernel trick will also appear in several other machine learning algorithms 
to be introduced later in this chapter.

The necessary and sufficient condition for a function to be a valid kernel is that 
the Gram matrix, whose elements are obtained by applying the same kernel on all 
combinations of input data, is positive semidefinite (Bishop 2006). The most com-
monly used kernel functions are Gaussian kernel and polynomial kernel, which 
were already given separately in Sect. 6.1 and Sect. 6.4.

Now let us return to the regression problem (8.3.5). As we have learned in 
Chap. 3, with the training data pairs in (8.2), the unknown weights w  can be esti-
mated by solving the following minimization problem

 (8.3.7)

where 1q =  or 2 is the power, and N is the number of training data pairs. Note that 
the objective function in (8.3.7) is defined according to structural risk minimization 
principle, in which the first term corresponds to fitting error Ee  and the second 
term can be considered a form of capacity control Es . The parameter c  controls 
the trade-off between fitting error and model complexity. At this point, readers may 
recognize the linkage between the structural risk minimization principle and Tik-
honov regularization (see Sect. 3.3), both seeking to avoid overfitting via an addi-
tional penalty term, and parameter c  can be considered the inverse of regularization 
parameter in Tikhonov regularization. Both methods also involve the solution of a 
bi-criterion minimization problem that we have discussed extensively in Chap. 3. 
By the same token, we see that (8.3.7) is closely related to the regularized objec-
tive function, (8.1.24), used in shrinkage methods, only that in (8.3.7) the penalty 
parameter appears in front of the fitting error term.

Direct calculation of the terms in (8.3.7) would suggest that all training data pairs 
are used. However, not all of these data are equally important and it may offer some 
advantage to treat them differently. Toward this end, Cortes and Vapnik (1995) used 
an ε-insensitive cost function to replace the sum-of-squares error term in (8.3.7) by 
introducing two sets of slack variables, 0iξ ≥  and 0*

iξ ≥
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 (8.3.8)

where 1( ; ), , ,i i id z f i Nx w …= − = ; and parameter ε specifies the amount of de-
viations that can be tolerated. The concept behind the ε-insensitive cost function is 
further illustrated in Fig. 8.6, in which the residual space is split into two regions: 
one inside the dash lines and the other outside. The part that is inside the dash lines 
is referred to as the ε-tube. Positive deviations are denoted as ξ  and negative devia-
tions as *ξ . Only those points that lie outside of the ε-tube are used by SVR to train 
the model. This way, the SVM gives sparse solutions while mitigating the issue of 
overfitting. The ε-insensitive cost function (8.3.8) can also be interpreted as a means 
for achieving robustness because of the penalty exerted on outliers.

After substituting (8.3.8) into (8.3.7) and setting 1q = , we obtain a constrained 
optimization problem for ε-insensitive SVR or ε-SVR (Vapnik 1998, 1995):

 (8.3.9)

subject to

 

(8.3.10)

In ε-SVR, the constant 0c >  determines the threshold to which deviations larger 
than ε are tolerated. An illustration of deviation measurement is shown in the inset 
of Fig. 8.6.
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Fig. 8.6  Illustration of the ε-insensitive cost function, in which circles are data points and only 
points lie outside and on the boundary of the ε-tube contribute to the cost. The inset shows how a 
deviation term is measured

 



344 8 Development of Data-Driven Models

The constrained quadratic programming problem (8.3.9)–(8.3.10) can be solved 
more easily in its dual formulation by incorporating the constraints into a Lagrang-
ian

 (8.3.11)

where *, ,i i iη η α , and *
iα  are nonnegative Lagrange multipliers. Substituting 

(8.3.5) into (8.3.11) and taking partial derivatives with respect to the primal vari-
ables (w, 0, iw ξ , and *

iξ ), we arrive at the following dual optimization problem

 (8.3.12)

subject to the linear constraints

 
(8.3.13)

From (8.3.12), it can be seen that the kernel function, ( , )i jk x x , arises naturally 
as part of the dual formulation and the dependence on φ  disappears. The original 
regression problem (8.3.5) can now be expressed in terms of the kernel functions. 
The solution to the dual problem (8.3.12)–(8.3.13) is

 (8.3.14)

which is also the solution of the ε-SVR problem. In (8.3.14), the values of iα  and 
*
iα  are zero for all points inside the ε-tube. Those training data points for which 

either 0iα ≠  or 0*
iα ≠  are called support vectors. The larger the tolerance to de-

viations, the fewer support vectors are needed to estimate ( )f x . The intercept term 
can be estimated using one of the support vectors (say, the m-th support vector),
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This completes the derivation of the standard ε-SVR.
In ε-SVR, model complexity is controlled by adjusting parameters ε and c, as 

well as hyperparameters of the chosen kernel function. In general, these parameters 
have to be determined through separate methods. Cross-validation, for example, is 
commonly used and is implemented by many SVM packages mentioned at the end 
of this subsection. However, cross-validation becomes computationally intensive 
when the number of trial values of ε, c, and the kernel function hyperparameters 
is large. Therefore, heuristic methods exist for the selection of ε and c. Interested 
readers may refer to Mattera and Haykin (1999) and Cherkassky and Ma (2004) for 
setting ε and c using analytical formulae.

When 2q = , the resulting SVR is called the least-squares SVR, or LS-SVR. In 
this case, the minimization problem becomes

 
(8.3.15)

in which a new set of unknowns is introduced to represent the fitting error,

 (8.3.16)

The Lagrangian corresponding to the minimization problem is obtained by incorpo-
rating the constraint (8.3.16)

 (8.3.17)

where iα  are Lagrange multipliers. After taking partial derivatives with respect to 
the primal variables (w, 0  , iw e , and iα ), a linear system of equations is obtained, 
from which the unknowns iα  and 0w  can be solved for. The final solution is given 
in the form of linear combination of kernel functions

 
(8.3.18)

Thus, unlike the dual optimization problem in ε-SVR, the dual problem in LS-SVR 
is linear and easier to solve. The disadvantage of the LS-SVR, however, is that its 
solution is no longer sparse because of the replacement of the ε-insensitive cost 
function by the sum of squares cost function. In this sense, the difference between 
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ε-SVR and LS-SVR is analogous to that between Lasso and ridge regression: one 
yields sparse weights and the other does not. More details of the LS-SVR method 
can be found in Basak et al. (2007).

Example 8.7 Application of ε-SVR 
In this example, we illustrate the effect of loss tolerance parameter ε on the com-
plexity of resulting models. Let us consider the sinc function that is commonly used 
for benchmarking statistical learning machines in the literature (Cherkassky and Ma 
2004). Our test dataset is generated by using the following equation

which is “contaminated” by a measurement noise 20( , )σ . For this example, the 
range of x is 10 10[ , ]−  and is discretized uniformly into 0.02 intervals. The standard 
deviation of noise term σ is 0.1. The training data are selected randomly from the 
test dataset. Figure 8.7a shows the original function sinc( x) (solid line) and the 50 
data (+) selected for training. The kernel function used is the Gaussian kernel. The 
SVM toolbox LibSVM (Chang and Lin 2011) is used to solve this problem.

In the first experiment, ε is set to 0.2. The value of c is set to 1.5 and the Gauss-
ian kernel spread parameter is set to 0.12. Figure 8.7a shows the ε-SVR predictions. 
The number of support vectors selected by the algorithm is 8 (circles), and dotted 
line represents prediction given by the trained ε-SVR model for the whole x range. 
In the second experiment, ε is set to a smaller value of 0.1 and all other parameters 
are fixed. The results are shown in Fig. 8.7b. Not surprisingly, the sparseness is re-
duced and the number of support vectors is increased to 18 in the second case. The 
RMSE values corresponding to the two cases are 0.0874 and 0.0574, respectively. 
The results indicate that ε-SVR can yield relatively sparse solutions while giving 
acceptable performance.  ■

sinc( ),y x=

Fig. 8.7  Effect of ε on model complexity: a ε = 0.2 (8 support vectors). b ε = 0.1 (18 support 
vectors)
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The SVR has gained popularity in many fields including the EWR (Ghosh and 
Mujumdar 2008; Asefa et al. 2006; Kalra and Ahmad 2009). Although the SVR can 
be formulated as a standard constrained optimization problem, special solvers are 
now provided in several open-source packages, including LibSVM (C++ with Mat-
lab interface) (Chang and Lin 2011), Pegasos (C++) (Shalev-Shwartz et al. 2011), 
and CVXOPT (Python) (Andersen et al. 2011). More comprehensive discussion of 
SVR algorithms and solution methods can be found in a number of literature sur-
veys and monographs (Smola and Schölkopf 2004; Cherkassky and Mulier 2007; 
Bottou and Lin 2007).

8.3.2  Relevance Vector Machine

SVM represents a powerful data-driven method for learning nonlinear models; 
however, it has several issues and can be further improved. A noteworthy extension 
of SVM is the relevance vector machine (RVM), which was originally introduced 
by Tipping (2001). By design, RVM seeks to address several issues and deficiencies 
of SVM, such as (i) SVM predictions are not probabilistic and, thus, confidence 
intervals are not readily accessible, and (ii) ad hoc procedures (e.g., cross-valida-
tion) are needed for hyperparameter selection (Tipping 2001). Unlike the determin-
istic ε-insensitive cost function used in ε-SVR, RVM estimates the weights w  in 
the Bayesian framework that enforces prior distribution on w  to control the model 
complexity and, thus, avoids overfitting.

Given a set of training data pairs, 1{( , )}Ni i iz =x , the following relationship exists 
between the observation, iz , of a scalar target variable z  and its model f i( )x

 
(8.3.19)

where iε  are zero-mean i.i.d. noise, 20( , )iε σ=  , and observations iz  are as-
sumed to be independent of each other. The solution of RVM has the general form 
of linear regression (8.1.35):

 (8.3.20)

which contains 1M +  free parameters.
Assume that w is a multiGaussian random variable and all its components are 

independent, the prior distribution of w, p(w), can be written as

 (8.3.21)
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in which iα  denotes the reciprocal of the variance of wi  (also known as the preci-
sion parameter). Eq. (8.3.21) involves M+1 hyperparameters 0 1

.( , , , )TMα α α…=α  
that need to be determined.

To estimate the hyperparameters, RVM uses the hierarchical Bayesian approach. 
Like in MCMC (Sect. 4.3) and hierarchical Bayesian estimation (Sect. 7.4.2), the 
prior of α  is assumed to follow the Gamma distribution and take the following 
product form

 
(8.3.22)

where the Gamma distribution is defined as

Similarly, we can write the likelihood function in a product form,

 (8.3.23)

Because of the assumed Gaussianity for the additive error iε , an analytical form of 
the likelihood function can be obtained

 (8.3.24)

in which the 1( )N M× +  design matrix Φ is defined in (8.1.37).
The posterior of weight, p( | )w z , is also Gaussian because both its prior and the 

likelihood function are Gaussian. The error variance 2σ  in (8.3.24) is another hy-
perparameter. Again, we introduce a precision parameter β  to denote the reciprocal 
of 2σ  (i.e., 2β σ −= ). The prior of β  is also assumed to follow Gamma distribution

 (8.3.25)

with parameters c and d.
Having defined PDFs for different pieces of the current hierarchical Bayesian 

problem, we are now ready to estimate the hyperparameters α  and β  by using 
the likelihood function (8.3.24). Examination of (8.3.24) shows that the likelihood 
function is a function of w, which can be integrated out (i.e., marginalization) to 
obtain the following marginal log-likelihood function (Bishop 2006)

 (8.3.26)
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(8.3.27)

where the N N×  covariance matrix R is defined as

in which A is a 1 1( ) ( )M M+ × +  diagonal matrix of hyperparameters iα . Estima-
tion of α  and β  proceeds using the following algorithm:

1. Choose initial values for α  and β , and denote them as α̂  and β̂
2. Calculate covariance and mean of the posterior of w, which is also Gaussian

 (8.3.28)

 (8.3.29)

where Â is a diagonal matrix consisting of hyperparameters îα .

3. Obtain new estimates of α  and β  from the following equations

 (8.3.30)

 
(8.3.31)

where mi  is the i-th component of the mean vector m, Cii  is the i-th diagonal com-
ponent of the covariance matrix C  in (8.3.28).

4. Repeat Steps 2–3 in the above until some convergence criterion is met on the 
estimates.

After the estimates α̂  and β̂ are obtained, we have an RVM learning machine.
Now we can use the trained RVM to predict output *z  for any test input x *

 
(8.3.32)

in which the posterior mean and variance of the prediction are defined using the 
basis function vector φ

 (8.3.33)
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 (8.3.34)

where the predictive variance 2
zσ  is the sum of two terms, the estimated variance of 

noise 1β̂ −  and the uncertainty of weight estimates ( *) ( *)Tx C xφ φ .
In summary, we see that RVM gives probabilistic solutions, and the hyperparam-

eters are determined by minimizing the log-likelihood function (8.3.27). Thus, there 
is no need to use cross-validation to determine the hyperparameters as it is done for 
ε-SVR. RVM basis functions can be general and do not need to be positive-definite 
kernels like in the case of the SVM. The posterior distributions of many of the 
weights are sharply peaked around zero and, thus, set to zero. Data that are associ-
ated with the remaining nonzero weights are referred to as the relevance vectors by 
Tipping (2001). RVM is found to give models that are typically an order of magni-
tude more compact (i.e., fewer nonzero weights) than the corresponding ε-SVR for 
many regression problems and yet, has little or no impact on generalization error 
(Bishop 2006). However, RVM does not offer explicit control on the structural risk 
the way SVM does. The derivation of RVM assumes Gaussian-distributed additive 
errors, which may not always hold in practice. A Matlab implementation of RVM 
has been made available by Tipping (2009).

Example 8.8 Application of RVM 
Let us revisit the problem in Example 8.7 and use the same training dataset to 
approximate the sinc( x) function. The Gaussian kernel is again used as basis func-
tion. The spread of the Gaussian kernel is set to 3.0 such that the resulting MSE of 
RVM (0.0824) is comparable to that of the ε-SVR in the first case of Example 8.7. 
In this case, RVM selected 5 relevance vectors (circles), as opposed to 8 support 
vectors selected by the ε-SVR algorithm. The final values of α̂  and β̂  are [0.159, 
0.894, 0.782, 0.004, 0.016]T and 90.34, respectively. The bounds corresponding to 

2 zσ± (~ 95 % confidence interval) are plotted in Fig. 8.8. Comparing Fig. 8.8 to 

2 1σ β−= +ˆ ( *) ( *),T
z x C xφ φ

Fig. 8.8  RVM prediction and 
its prediction bounds on the 
sinc( x) benchmark problem 
used in Example 8.7, where 
RV denotes relevance vectors
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Fig. 8.7a, we see that the relevance vectors tend to locate closer to the true function 
(solid curve), whereas the support vectors tend to deviate significantly from the true 
curve. This is caused by the difference in the design of the two algorithms: RVM 
seeks to minimize the empirical risk (log-likelihood) by using as few relevance vec-
tors as possible, whereas ε-SVR minimizes the structural risk by penalizing large 
deviations from the ε-tube. ■ 

Note that both SVM and RVM select a subset of actual training data to achieve 
sparsity. Other learning algorithms use “virtual” data centers, which may or may 
not coincide with any of the training data. An example is the RBFN described in 
Sect. 8.2, for which either the K-means clustering algorithm or orthogonal least 
squares is used to find data centers. The standard RVM algorithm does not include 
estimation of hyperparameters of basis functions. In the next section, we consider 
another Bayesian method that streamlines all parameter estimation tasks.

8.4  Gaussian Process Regression

In this section, we turn to Gaussian Process (GP) models, which serve as a pillar for 
many data-driven models commonly employed in machine learning in recent years. 
Formally speaking, a GP is a collection of random variables for which the joint PDF 
of any of its subsets is multiGaussian. When extending the definition to function 
outputs, we say that a random process f ( )x  is a GP if it is completely specified by 
its mean and covariance

The GP can be seen as a framework for unifying several methods that have been in-
troduced in this chapter. The GP can be derived using linear regression. It has been 
shown that for fixed hyperparameters, a large class of ANN models will converge 
to a GP in the limit of an infinite number of hidden units because of the central limit 
theorem (Neal 1996; Williams 1998). 

Because of its well-known mathematical properties, the GP has been extensively 
used in Bayesian inversion algorithms. The main focus here is using GP as a tool to 
develop data-driven models, a technique commonly referred to as the Gaussian pro-
cess regression (GPR) in machine learning theory (Rasmussen and Williams 2006). 
Mathematically, GPR is an extension of kriging methods in classical geostatistics 
(Chap. 6). However, as it will be shown below, the GPR is not simply a reinvention 
of kriging. Instead, it is a flexible machine learning framework that emphasizes 
on easing the training process by combining hyperparameter estimation, model 
training, and uncertainty quantification in a hierarchical Bayesian framework. The 

( ) ~ ( ( ), cov( , ))f GP m ′x x x x

( ) [ ( )]m E f=x x

cov( , ) [( ( ) ( ))( ( ) ( ))].E f m f m′ ′ ′= − −x x x x x x
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classical kriging or cokriging algorithms usually involve a separate variogram mod-
eling step, which require quite some user intervention and judgment, whereas GPR 
automates the estimation of hyperparameters.

In the following, two equivalent views and also derivations of the GPR are pro-
vided: the weight space view and functional space view. The derivations follow 
those given by Rasmussen and Williams (2006).

8.4.1  Weight Space View

Let us again start with the generic regression model (8.1.35):

 
(8.4.1)

where w is the unknown weight vector; 0φ == { ( )}Mi ixφ  is a set of basis functions 
that provide mapping from the input space to feature space, and φ  includes 0 1φ =  
for the bias term. The derivation of the GPR under the weight space view is largely 
on par with that of the RVM. In particular, the problem at hand is to compute the 
posterior distribution of w from its likelihood and prior.

Given a set of training data pairs, 1{( , )}Ni i iz =x , we again assume the relationship 
(8.3.19) exists between observations of target variable zi  and model approximation 
(8.4.1)

 (8.4.2)

As a result, the likelihood function is the same as that used in RVM

 (8.4.3)

where z is the target output vector and N is the total number of training data pairs. 
The predictive distribution is defined as the PDF of target output z * for any test in-
put value x *  and integrated over weights. Eliminating w by marginalization gives

 
(8.4.4)

To evaluate (8.4.4), however, some knowledge of the prior distribution over w is 
needed. A convenient choice for the prior of w is a zero-mean Gaussian,

0

( ; ) ( ) ( ),
M

T
i i

i

f wx w x w xφ
=

= =∑ φ

2 1 0( ; ) , , .), ,( ,i i i iz if Nx w ε ε σ= + ∈ …=

( )

( )
1

2

1

 σ

=

=

∏

∏

( | ) ~ ,

~ ( ) ,,

N

i i
i
N

T
i i

i

p p z

z

z w x w

w xφ

( * | *, ) ( * | *, ) ( | ) .p z p z p d= ∫x z x w w z w



3538.4  Gaussian Process Regression 

 (8.4.5)

where Cp
 is the covariance matrix of the prior distribution. Comparing (8.4.5) with 

the prior used in RVM (8.3.18), we see that the latter, which assumes independent 
Gaussian-distributed weights, can be considered a special case of the former when 
Cp

 is diagonal. The posterior of w, which can be expressed as a product of (8.4.3) 
and (8.4.5), is also Gaussian

 (8.4.6)

Expanding the likelihood function p z w( ), we have

 (8.4.7)

where Φ  is the design matrix defined in (8.1.37). Thus, the posterior mean m and 
covariance matrix C of w are obtained by combining (8.4.7) and (8.4.5) (Rasmus-
sen and Williams 2006)

 (8.4.8)

 (8.4.9)

The predictive distribution, (8.4.4), is the convolution of two Gaussian distribu-
tions; thus, it is also a Gaussian. The mean and variance of the predictive distribu-
tion are expressed in terms of the mean and covariance of w

 (8.4.10)

 (8.4.11)

where 11( *) [ , ( *), , ( *)]TMx x xφ φ…=φ . Using the Woodbury matrix identity (Peters-
en and Pedersen 2012), we can rewrite the prediction statistics in slightly different 
forms

 (8.4.12)
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(8.4.13)

from which we see that the matrix entries all appear in the form ′( ) ( )T
px C xφ φ , 

where x  and ′x  are either testing or training input data. We can define the follow-
ing symbol to denote the covariance

 (8.4.14)

where 1 2= /
pCψ φ . Eq. (8.4.14) is exactly the kernel function that was described in 

Sect. 8.3, where the “kernel trick” enables us to work with the covariance function 
in the input space without having to know the actual form of the basis function.

In GPR, the free parameters include the hyperparameters of kernel functions 
and 2σ , which can be estimated using methods given in Sect. 7.4.2. The Gaussian 
kernel (also called squared exponential covariance function) is commonly used in 
GPR. More complex kernel functions can be constructed out of simple ones, as 
mentioned in Sect. 6.4. One of the most widely used composite kernels for GPR is 
given by the superposition of several terms (Rasmussen and Williams 2006)

 
(8.4.15)

where 0 3( , , )i iθ …=  are hyperparameters. Other examples can be found in Ras-
mussen and Williams (2006, Chap. 4).

In RVM, each weight is individually penalized by its precision parameter (i.e., 
reciprocal of variance). The weights are effectively set to zero when the precision 
parameters have large values. Sparseness in RVM is achieved by pruning zero 
weights and associated basis functions, making RVM faster than a nonsparse GP 
model. However, RVM can yield undesirable results when a test point is located far 
from the relevance vectors, in which case the predictive distribution will degenerate 
into a Gaussian with mean close to zero and variance also close to zero (Rasmussen 
and Williams 2006). The small predictive variance, of course, gives false confi-
dence about the prediction in this case.

8.4.2  Functional Space View

Under the functional space view of GP, the goal is to estimate the statistics of a 
random function f ( )x  using its discrete values f i( )x  at training inputs xi , and each 
f i( )x  is regarded as a random variable. Let us consider the following additive-error 
model without the weight w
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The joint PDF of target z conditioned on function outputs 1[ ( ), , ( )]TNf ff x x…=  
can be obtained by applying Bayes’ rule

 (8.4.16)

where X  represents all input training data stored in rows. By definition of GP, the 
prior of f is Gaussian

 
(8.4.17)

where K is the covariance matrix of f, and θ is the corresponding hyperparameter. 
From discussion in the last section, K can also be considered as a Gram matrix with 
its elements defined by kernel functions,

Then θ  includes hyperparameters used to define all kernel functions. The likelihood 
of f is Gaussian because of the Gaussian additive error assumption

 (8.4.18)

As a result, the posterior of f is Gaussian with mean and covariance given by

 (8.4.19)

 (8.4.20)

To estimate the unknown hyperparameters in (8.4.19)–(8.4.20), we formulate the 
following marginal PDF,

 (8.4.21)

After substituting the prior (8.4.17) and likelihood (8.4.18) into (8.4.21), perform-
ing integration, and taking logarithm of the results, we have

 (8.4.22)
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The hyperparameters 2σ{ , }θ  can then be estimated from (8.4.22) using a gradient-
based algorithm introduced in Chap. 2.

It can be shown that the prediction distribution for any test data x* is Gaussian 
(Quiñonero-Candela and Rasmussen 2005)

 (8.4.23)

with mean and covariance defined by

 (8.4.24)

 (8.4.25)

where k*  denotes a vector of covariance between the test point x*  and all train-
ing inputs. Using the definition of kernel function (8.4.14), we can verify that the 
prediction statistics obtained here are equivalent to those obtained under the weight 
space view.

The computational cost associated with learning the full GP model is 3( )O N , 
mainly because of the need to invert the covariance matrix. The costs associated 
with calculating the prediction mean and variance are O N( )  and O N( )2 , respec-
tively (Rasmussen and Williams 2006, Chap. 8). Thus, for a large training dataset, 
some approximation to the full-rank covariance matrix is necessary, which is the 
subject of study of sparse Bayesian GPR. The key idea is to extract a small number 
of features that can approximate the original covariance matrix well. Such model 
reduction techniques are behind PCA and KPCA. Also note that equations (8.4.24)–
(8.4.25) are identical to cokriging equations given in Sect. 7.4.3 and the classic Kal-
man filter equations to be introduced in Chap. 9. To avoid inversion of the full-rank 
covariance matrix, we know that a practical technique in kriging is to construct a 
small-sized system of equations using data points located only in a local neighbor-
hood of the estimation point. Similar localization ideas may be applied when con-
structing sparse Bayesian systems. Indeed, we will show how these techniques are 
used in constructing reduced-rank Kalman filters in Chap. 9.

Example 8.9 Using GPR on the Sinc(x) Function 
We use GPR to develop a nonparametric predictive model based on the same data-
set that was used in Examples 8.7 and 8.8. We use the first two terms of the com-
posite covariance model given in (8.4.15) (i.e., the covariance term and the constant 
nugget term). The first term is assumed to be a unit variance, isotropic squared 
exponential function (Gaussian kernel),

where l is the correlation length. The hyperparameters are the nugget term and the 
length scale ( l) in the squared exponential function, which are initialized to 0 and 
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1.0, respectively. The GPR problem is solved using the GPML Matlab toolbox de-
veloped by Rasmussen and Nickisch (2010), which automates the estimation of hy-
perparameters and model training. In this case, the final hyperparameters are 0.052 
and 1.17, respectively. Figure 8.9 shows the GPR prediction and the estimation 
bounds. The GPR used all 50 data pairs in training. The results are more accurate 
than those from SVM and RVM, although the performance of the latter two sparse 
algorithms could be improved by increasing the number of either support vectors 
or relevant vectors. Setting up the GPR problem in the GPML Matlab toolbox is 
straightforward, and the user can perform training and prediction in just two func-
tion calls.

Example 8.10 One-Month-Ahead Streamflow Forecast Using SVR, RVM, and GPR 
Having demonstrated the learning mechanisms and performance of SVR, RVM, 
and GPR over a simple regression problem, we now compare the three algorithms 
for one-month-ahead streamflow forecasting using Neches River streamflow data 
(see Example 8.1). The daily hydrometeorological observations are first converted 
into monthly data through either aggregation (for precipitation) or averaging (for 
Tmax, Tmin, and streamflow). The Box-Cox transform is applied to the flow data, and 
all input data are scaled linearly to the interval [− 1, 1], just as we did in the MLP 
example. The predictors include the following variables at different lags:

The target output is Q t( )  for the prediction month t. About 70 % of the data is used 
for training and the remaining is used for testing. Gaussian kernel is used in all three 
methods and the spread parameter is set to 1.0. The parameter c in ε-SVR is set to 

Precipitation: 1 2
Temperature: 1 , 2 1
Streamflow: 1 2

max max min

( ), ( )

( ) ( ), ( )

( ), ( )

P t P t

T t T t T t

Q t Q t

− −
− − −

− −

Fig. 8.9  GP prediction on the 
sinc( x) benchmark problem 
used in Example 8.7
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0.09 and ε is set to 0.15 on the basis of five-fold cross-validation using LibSVM. 
The performance metrics on the testing dataset are summarized in Table 8.3, which 
shows that all three algorithms obtain similar results, with the performance of GPR 
better than the other two.  ■

Recently, Sun et al. (2014b) applied GPR to one-month-ahead streamflow pre-
diction using the MOPEX database, which is a collection of long-term hydrometeo-
rological time series obtained from 438 natural basins across the USA from 1948 to 
2003. Comparisons with linear regression (ARMAX) and artificial neural network 
(MLP) models showed that GPR outperformed both methods in most cases. Else-
where in EWR, the GPR has been applied to metamodeling (Pau et al. 2013) and 
monitoring network design (Krause et al. 2008).

8.5   Review Questions

1. What is the general form of data-driven models? In what cases data should we 
develop data-driven models instead of physical-based models?

2. Why do we need to control the complexity of a regression model? What are the 
main advantages of the shrinkage method over other methods (e.g., PCR) when 
used for reducing the dimension of linear models?

3. What is the difference between Lasso and ridge regression?
4. Extend the shrinkage method to the case of two-target regression.
5. What is the basic idea behind the cross-validation method? What is the limita-

tion of the multi-fold cross-validation when the number of possible predictors is 
large? Discuss how this method can be applied to kriging estimation.

6. Repeat the ANN derivation from equation (8.2.1) to equation (8.2.11) for the 
three-layer case.

7. What are the advantages of RBFN? Derive equations (8.2.22) and (8.2.23).
8. How do we generate f xl ( ) in equation (8.2.25)? Give examples of different types 

of methods can be used to generate ANN ensembles. And, how do we use an 
ensemble to assess the uncertainty of an ANN generalization? Why ensemble 
methods can outperform prediction of individual members?

9. What are the differences between ε-SVR and LS-SVR in terms of formulation, 
objective function, algorithm, and the sparsity? Can SVR be used to develop 
multioutput models?

8 Development of Data-Driven Models

Table 8.3  Performance metrics of the regression algorithms
Algorithm NSC RMSE
ε-SVR 0.616 3.33
RVM 0.560 3.56
GPR 0.657 3.15
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10. What improvements are made in RVM compared to the SVM in terms of basis 
functions and uncertainty estimate?

11. What is the main difference between RVM and GPR (use weight space view for 
the latter)? Can spatial coordinates be used as predictors in GPR?

8.5   Review Questions 
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Chapter 9
Data Assimilation for Inversion

Many EWR applications are data centric and naturally call for the ability to fuse 
spatial and temporal information from multiple sources and in different formats 
and scales. With the rapid advance of in situ and remote sensing technologies and 
cyberinfrastructures, a major EWR research front in recent years has focused on the 
development of effective algorithms for integrating real-time data into prediction 
models. Oftentimes, prior knowledge and historic training data are limited in both 
quality and quantity, leading to uncertainties in calibrated models and estimated 
parameters. Such issues are relevant not only to distributed EWR models, but also 
to data-driven models, as we have seen in Chap. 8. A fundamental need in EWR 
is thus related to systematic and continuous extraction of useful information from 
new observations to provide updated estimates of model states and parameters. In 
this chapter, mathematical tools and methods that can be applied to automate such 
information fusion process will be introduced.

Generally speaking, the aim of data assimilation (DA) is to incorporate newly 
obtained observations into a system model to provide updated estimates of system 
states and parameters, together with a posteriori error estimates (Nichols 2010). In 
most cases, DA seeks to sequentially reduce the discrepancy between observations 
and model predictions by using predefined fitting criteria and model application 
objectives. Liu and Gupta (2007) suggested that the purpose of DA is to merge 
uncertain data and information produced by imperfect models in an optimal way 
such that both uncertainty quantification and uncertainty reduction can be achieved 
simultaneously. This broad interpretation of DA covers all three objectives of this 
book, namely experimental design, model structure identification, and parameter 
estimation. In addition, DA is intertwined with data collection design and data 
worth (or value of information) evaluation. Because model structure identification 
and experimental design require a considerable amount of off-line analysis and user 
intervention, they are typically done separately. With this in mind, the scope of this 
chapter is restricted to sequential DA (SDA) algorithms that are suitable for online 
update of both model states and parameters for given model structures. Of course, 
instead of working with a single model or single model structure class, one may 
use the same forcing data to update an ensemble of models such that the effect of 
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conceptualization uncertainty is incorporated in an ensemble averaging sense. This 
latter topic will be covered in Chap. 10, as part of the discussion on uncertainty 
quantification techniques.

SDA is deeply rooted in system and control engineering, a field that has al-
ways had a high demand for recursive online estimators to handle real-time sen-
sor information. The earliest idea of DA came from the German mathematician 
Karl F. Gauss, who first formulated a recursive least squares method for estimating 
parameters in linear regression (Gauss 1826). The recursive least squares method 
was rediscovered by Plackett in 1950s (Plackett 1950). However, a real burgeoning 
of interests in DA only started in 1960s, after the introduction of the now classi-
cal Kalman filter (KF). Wide adoption of DA in EWR applications, especially for 
distributed systems, is a relatively recent phenomenon. In fact, some early reviews 
(e.g., McLaughlin and Townley 1996) were dismissive about the use of SDA for 
updating distributed parameters sequentially, citing large computational burdens. 
Most DA studies during that time focused on lumped-parameter, low-dimensional 
systems. A noteworthy early study on real-time river discharge prediction was done 
by Kitanidis and Bras (1980), who stated that adaptive estimation might be suit-
able when the forecast lead time is short in comparison with the response time of 
a watershed. With the advance of computing power, DA has received significantly 
renewed interest in recent years, especially in numerical weather prediction and 
hydrometeorology, which feature some of the most advanced DA systems that are 
in operation today. An example is the Land Data Assimilation Systems (LDAS) de-
veloped by the US National Aeronautics and Space Administration. LDAS includes 
a coarse-resolution (1°) global version and a finer-scale (1/8°) North America ver-
sion. Both systems operate in near real time and are forced with precipitation gauge 
observations, satellite data, and radar precipitation measurements. LDAS has been 
used to support numerous water resources applications, climate prediction stud-
ies, and global water- and energy-cycle investigations (Rodell et al. 2004; Su et al. 
2008; Reichle et al. 2010; Hain et al. 2012).

Despite the demonstrated success of DA techniques in past decades, questions 
remain regarding the scalability, rigorousness, and robustness of DA schemes. The 
field of DA is fast growing. The sheer number of existing DA schemes may already 
overwhelm novice users, not to mention those schemes for which efficacy has not 
been adequately tested. For the latter reason, we will focus primarily on the most 
well-established DA schemes in this chapter while providing references to the latest 
developments where necessary.

Section 9.1 introduces basic DA concepts. A special emphasis will be given to 
parameter estimation problems, which are the main theme of this book. The clas-
sical KF can be adapted for solving joint state and parameter estimation problems 
when the system being considered is linear and subjected to white noise (Sect. 9.2). 
When the system under consideration is nonlinear, the classical KF becomes inap-
propriate. The extended KF is introduced to handle nonlinearity (Sect. 9.3). When 
the system of interest has high-dimensional state and parameter space, the extended 
KF is of limited value. For instance, the dimension of state space in hydrometeo-
rological DA systems is on the order of 107–108 and the number of observations 
can be on the order of 105–106 (Nichols 2010; Kalnay 2003). Therefore, dimension 
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reduction (Chap. 6) becomes necessary to make DA feasible. We introduce the so-
called reduced-rank or sparse filters, including the ensemble KF and its variants in 
Sect. 9.4. As a result of their approximation nature, a key aspect of all reduced-rank 
filters revolves around maintaining filter stability during operation. Finally, when 
the system is nonlinear and non-Gaussian, only a few choices are left. The generic 
particle filter will be introduced in Sect. 9.5.

9.1  Basic Concepts and Methods

SDA is a model calibration procedure that sequentially applies information con-
tained in new measurements to make the prediction of an existing model more ac-
curate. In this section, SDA is formulated as a sequential estimation problem in 
the statistical framework, as well as a tool for jointly estimating system states and 
model parameters. This section also provides an overview of various SDA algo-
rithms that will be introduced separately in the remaining sections.

9.1.1  State-Space Model

9.1.1.1 Definition and examples

All SDA problems involve some type of discrete-time, (continuous) state-space 
models, which usually consist of a pair of prediction and measurement equations

 (9.1.1)

 (9.1.2)

where k  is an index of discrete-time steps; u ∈n  represents the discretized sys-
tem states concatenated in a vector form; the forward model operator f(·)  evolves 
the system state from time tk−1  to tk  to give uk; g(·)  maps system state uk  to 
observations zk

m∈ ; kη  and kε  represent model (or process) error and observa-
tion error, respectively; and θ  represents model inputs, which may include model 
parameters, initial/boundary conditions, and sink/source terms. For forward solu-
tion, θ  is assumed to be given.

Equation (9.1.1) is also referred to as the evolution equation, state equation, or 
forecast equation in different application fields. For EWR modeling, it can be seen 
as a time-discrete forward solution of a physics-based model governed by ODEs or 
PDEs. Eq. (9.1.2) is used to compare the model prediction obtained in (9.1.1) with 
the newly obtained data. If the model state is directly observable, the measurement 
operator g(·)  in (9.1.2) is a simple matrix with elements equal to either 0 or 1; oth-
erwise, g(·)  can be complex and may well be another nonlinear mathematical mod-
el or inverse solution. The latter scenario can be especially true in  geophysical and 

1 1− −= +( , ) ,k k k ku f u θ η

= +( , ) ,k k k kz g u θ ε
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remote sensing applications, where physical variables of interest (e.g., soil types, 
soil moisture, and water storage anomalies) are inferred indirectly from raw signals 
(e.g., electric conductivity, radiance, and gravity measurements). Measurement er-
rors arise because of instrumentation limitations and signal conversion uncertainty. 
Yet another possibility is due to the fact that the model state u is discrete, whereas 
observations represent snapshots of a continuous true state; thus, errors can appear 
because of the discrepancy between model output scale and observation scale, ei-
ther in time or space, or both. This type of error is often referred to as the represen-
tativeness error (Cohn 1997). For the rest of this discussion, we shall assume that all 
measurement errors are random (i.e., no systematic error is involved).

Examples of discrete-time state-space EWR models are virtually everywhere, 
from pore-scale process models to global climate models. In principle, we may 
convert any dynamic model to a discrete-time, state-space model, using numerical 
discretization techniques.

Example 9.1 Formulation of a discrete-time, state-space model
Example 1.10 gives the numerical solution of the general advection–dispersion–re-
action problem governed by PDE (1.1.13),

After time and space discretization, the unknown concentration field Ck  at time 
step k  is obtained forwardly from the solved concentration field Ck−1  at time step 
k − 1  by using Eq. (1.2.5),

 (9.1.3)

where ∆t t tk k k= − −1  and 0 1α≤ ≤ , with 0α =  for explicit scheme and 1α =  
for implicit scheme. Coefficient matrices A, B, and the right-hand-side vector r  
depend on parameters D, V, R, and E , boundary conditions, and the method used 
for spatial discretization.

When the same problem is solved by a particle tracking method, the time-dis-
crete solution is given by Eq. (1.2.7), viz.

In this example, the state variable u in (9.1.1) becomes concentration field C and the 
operator f(·)  is obtained by the forward solution.

If the concentration is directly observed at a set of locations, then the measure-
ment operator is a matrix G  with elements equal to 1 at observation locations and 0 
otherwise. The measurement equation is written as = +k k kz GC ε .

Example 9.2 Change Detection
Change detection appears in many EWR applications, such as detecting changes in 
hydrometeorological time series caused by climate change (slow changes) ( Seidou 
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et al. 2007; Xu et al. 2013) or in monitored pollutant levels (abrupt changes). For-
mally speaking, change detection is the identification of significant changes in the 
generative parameters of a dynamic system. In the simplest case, the system is as-
sumed to be controlled by a single parameter θ , which takes different values before 
and after a change point. The state-space model in (9.1.1)–(9.1.2) now needs to be 
augmented by a model for θ . For example, in the case of mean shift, we have

where τ  is the unknown change time. Before the change, the residuals are white 
noise, and after the change, the residuals become large. The goal is to determine 
a set of rules for determining whether there is a significant change. Change point 
detection problem can be solved both in the traditional statistical sense (i.e., hypoth-
esis testing) and in the Bayesian framework. A formal discussion on parameter evo-
lution modeling will be given in Sect. 9.1.2.

9.1.1.2 SDA  Algorithms

As its name suggests, a SDA algorithm is recursive by nature: From a given initial 
state u0, an estimate u1  is found, and then, u2  is found from the estimated u1  and 
so forth. In general, the process of finding uk  from uk−1  consists of two stages as 
sketched in Fig. 9.1. In the first stage, model (9.1.1) is used to generate a prediction 
of uk , uk

f , where the superscript f  is used to emphasize that it is a result of model 
forecast. Because of the existence of model errors and the uncertainty associated 
with uk−1  and 1kθ − , uk

f  may not be as close as desired to the true uk . In the second 
stage, new measurements zk  in (9.1.2) are used to update uk

f  to generate a newer 
and, hopefully, improved estimate of uk , ûk  (note: the posterior estimate ûk  is also 
denoted as analysis uk

a  in some textbooks). The first stage is called forecast; it is 

1

2

,
,

,
k

k
k

t

t

θ τ
θ θ τ

 ≤=  >

1−= + ,k k kθ θ υ

Fig. 9.1  A typical DA step in SDA, where u  denotes model state, θ  the model inputs, z  the 
observations, and η  and ε  are error terms. The forward model operator is f(·)  and the measure-
ment operator is g(·) . The dotted line splits the forecast and analysis steps
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simply a model prediction or a forward solution problem. The second stage is called 
update, analysis, or assimilation and it is actually an inverse problem: Using uk

f  as 
the initial guess, find the best estimate of uk  by incorporating new observations zk .

Existing DA frameworks can be divided into two broad categories, deterministic 
and stochastic. In the former, the inverse problem is solved by methods introduced 
in Chaps. 2 and 3. The objective functions to be minimized are usually written in a 
similar form as Tikhonov regularization, and the gradients of the objective function 
are evaluated by the adjoint-state method when the forward model is distributed. 
But, most SDA algorithms, as we shall see below, are based on Bayesian inference 
introduced in Chap. 4.

9.1.1.3 A Bayesian View of DA

When casting in the stochastic framework, system states u , parameter θ, and mea-
surement z in (9.1.1) and (9.1.2) are all regarded as stochastic processes. The Bayes-
ian theory then provides a flexible framework for propagating the uncertainty of 
uk−1  to uk

f  in the forecast step and subsequently updating the estimate ûk  in the 
assimilation step. When θ  is deterministic, the full posterior distribution of state 
variables from the initial time to any time tK  is given by
 

(9.1.4)

where u u u u0 0 1: , , ,K K= { } , z z z z1 1 2: , , ,K K= { } , 0:( )Kp u  is the joint prior 
distribution of u0:K , and p K K( | ): :z u1 0  is the likelihood function. Obviously, up-
dating a full PDF every time when new information becomes available is a demand-
ing task. If we assume that the sequence u0:K  generated by (9.1.1) is a first-order 
Markov process (i.e., in u0:k , uk  depends only on uk−1  for k K= 1 2, , , ), then 
using the one-step transition PDF, p k k( )u u −1 , the prior PDF can be represented by

 (9.1.5)

where p( )u0  is the PDF of the initial state. Further, if measurement errors from 
different assimilation times are independent of each other and zk  depends only on 
uk , the likelihood p K K( | ): :z u1 0  can also be expressed in a product form

 (9.1.6)

Using (9.1.5) and (9.1.6), the Bayes’ theorem (9.1.4) can be written as

 (9.1.7)
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This equation can be represented in a recursive form

 (9.1.8)

Using this recursive form, the posterior distribution can be calculated step by step 
during the SDA process. Starting from p( )u0 , after p k k( ): :u z0 1 1 1− −  is obtained, we 
can use it to find p k k( ): :u z0 1  for k K= 1 2, , , ; thus, in each DA step, we only need 
to calculate the one-step transition PDF p k k( )u u −1  and likelihood ( ),k kp z u  in 
lieu of the full posterior PDF. Equation (9.1.8) is the common base of various SDA 
algorithms, as we shall see throughout this chapter.

At first glance, the first-order Markov assumption used in the above derivations 
may seem to be rather restrictive because many physical processes can exhibit long-
time memories (i.e., autocorrelation). For instance, we showed in Chap. 8 that data-
driven models, such as the ARMA and ANN models, can include any number of 
previous states. It turns out that we can actually convert an ARMA model to a state-
space model by defining a new augmented state vector, and vice versa. Example 9.3 
below demonstrates such an application. Even in the case of temporally correlated 
model errors, it is still possible to reformulate a DA problem as a Markov process by 
augmenting the model state vector with model error terms (Evensen 2003).

Example 9.3 Convert linear regression model to state-space model
Consider the AR( p) model given in Eq. (8.1.7)

in which the state variable and white noise are denoted by X  and V , respectively, 
and 1= ( , , )ia i p  are coefficients. Let us define the state vector uk  as

and the transition matrix as

then the AR( p) model can be written in a discrete-time, state-space form as

where 0…= ( , , )Tk kVη . Thus, we see that uk  “folds” the multilag memory of the 
original state Xk  into a first-order Markov process. Here, it is assumed that the state 
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is observable; if not, then X  is a “latent” process and the measurement equation 
would relate it to an observable quantity. In-depth discussion of the relation  between 
time series models (including ARMA) and the Kalman filter can be found in Brock-
well and Davis (2002, Chap. 8).

9.1.1.4 Types of DA

Depending on when and how the observations are assimilated, three types of DA 
problems can be formally defined:

• Filtering, this has been our focus of discussion so far. It is an operation that 
extracts information about system states using data measured up to and includ-
ing the current time tk; this amounts to estimating the posterior PDF, p k k( ):u z1 . 
According to the Markov assumption, we have the marginal PDF

 (9.1.9)

After new measurements zk  arrive, we can obtain

 (9.1.10)

This equation shows that posterior PDFs can be obtained sequentially during 
the SDA process. In each time step, a pair of posterior PDFs is given after the 
forecast step and assimilation step are implemented (i.e., we obtain sequentially 
p( )u z1 1 ; p( )u z2 1 , p( ):u z2 1 2 ; 1 1 1 1−

…
 : :; ( ), , ( ), ( )k k k k kp p pu z u z u z ).

• Prediction, which provides a priori estimates of future system states at tk s+  us-
ing data measured up to and including the current time tk, where s ≥ 1  denotes 
the length of lead time; this amounts to estimating the PDF p k s k( ):u z+ 1 .

• Smoothing, which provides a posteriori estimates of the system state at a previ-
ous time using all data obtained from interval [ , ]0 tT . The smoothing problem is 
analogous to batch estimation, off-line analysis, or 4DVAR (four-dimensional 
variational method). Unlike filtering and prediction, smoothing uses not only 
past and present information, but also “future” information relative to the actual 
assimilation time. It requires estimating the PDF p k T( ):u z1  for T k≥ .

9.1.1.5 Numerical Approximation

In the simplest case, when both the forward model and measurement operators are 
linear, we have a linear filtering problem. Many EWR systems, however, are non-
linear, non-Gaussian, and high dimensional. Different SDA algorithms are needed 
depending on assumptions and approximations made regarding the prior, likeli-
hood, transition PDF, model and measurement errors, as well as forward model 
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and measurement operators. Common numerical approximation techniques used in 
SDA may be classified into the following categories:

• Linear or higher-order approximation, in which the forward model and mea-
surement operators are approximated by their first-order or higher-order Taylor 
series expansion. The best-known filter under this category is the extended Kal-
man filter (EKF) (Sect. 9.3.1).

• Deterministic sampling approximation, which is based on the approximation of 
a PDF through a fixed set of sampling points. The optimal sampling points and 
their weights are determined a priori to approximate the first two moments of the 
prior PDF, and these sampling points are then propagated through the forward 
model operator to arrive at approximations of the posterior PDF. The best-known 
filter under this category is the unscented Kalman filter (Sect. 9.3.2).

• Gaussian sum approximation, which is based on the classical statistical principle 
that any non-Gaussian PDF can be approximated to some accurate degree by a 
sufficiently large number of Gaussian PDFs. A weighted sum of Gaussian PDFs 
are used for approximating the transition PDF, p k k( )u u −1 , and are evolved with 
time. This approximation leads to the so-called Gaussian sum filters, which can 
be especially useful for multimodal distributions (Sect. 9.3.3).

• Monte Carlo sampling approximation, which is based on the idea of Monte Carlo 
integration, in which a PDF is approximated by a finite number of random sam-
ples drawn from its probability space. The mean of samples converges to the mean 
of the true PDF by the law of large numbers. Sequential Monte Carlo sampling 
includes a rich family of methods, which we will discuss in Sects. 9.4 and 9.5.

• Moment approximation, which is based on the fact that any PDF can be rep-
resented equivalently by an infinite set of its statistical moments, and for each 
PDF, a moment generation function exists. This method seeks to approximate the 
posterior PDF by a number of statistical moments, which are evolved using their 
recursive equations (Zeng and Zhang 2010; Kim et al. 2003).

We remark that all of the above categories, except for linear approximation, seek to 
approximate the PDFs, instead of the forward model and measurement operators. 
Also, not all filters are created equal. High dimensionality of distributed models 
makes the use of many filters difficult, if not infeasible. By the same token, the per-
formance of many SDA algorithms can degrade significantly when switching from 
low- to high-dimensional space. Reduced-rank filters and localization techniques 
have been introduced, in part to circumvent these difficulties (Sect. 9.4). In addi-
tion, stochastic metamodeling approaches (e.g., polynomial chaos expansion) may 
be used to approximate the forward model (Li and Xiu 2009; Zhang et al. 2007). A 
formal discussion of metamodeling techniques will be given in Chap. 10.

9.1.2  Combined State and Parameter Estimation

In the last subsection, SDA is used to update the model output vector u defined 
in (9.1.1) and (9.1.2), where model input vector θ  is assumed known. In fact, the 
information contained in the new measurements on u and/or θ  can be used to 
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 update both of them. In other words, we can use SDA to update the entire model 
simultaneously, rather than consider the forward and inverse solutions separately. 
Hereafter, as explained in Sect. 1.2.3, we will assume that θ  consists of only the 
unknown or poorly known model parameters, initial/boundary conditions, and sink/
source terms; all perfectly known model inputs will not be shown explicitly in the 
model equations; and both state vector u and parameter vector θ  are considered as 
stochastic processes. In this subsection, we will derive the joint PDF of them and 
formulate a joint SDA problem. This problem generally leads to strongly nonlinear 
optimization problems, even when the system models are linear.

9.1.2.1 Joint Posterior Distribution of Model States and Parameters

Let us extend the Bayesian view of SDA considered in the last section to include the 
estimation of both model states u and model parameters θ. In this case, the Bayes’ 
theorem (9.1.4) becomes

 (9.1.11)

where u u u u0 0 1: , , ,K K= { } , { }0 0 1= : , , ,K Kθ θ θ θ , and { }1 1 2= : , , ,K Kz z z z . 
Assume that both u0:K  and 0:Kθ  are Markov chains, and from (9.1.1), for any k, uk  
depends only on uk−1  and 1−kθ , and (9.1.11) can then be rewritten as

 (9.1.12)

This equation, in turn, can be represented in a recursive form for k K= 1 2, , , :

 (9.1.13)

Because

the expression in (9.1.13) can be simplified to

 (9.1.14)
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As this point, we may introduce an augmented state variable y

 (9.1.15)

The posterior PDF in (9.1.14) can then be written in terms of y  as

 (9.1.16)

We see that (9.1.16) is exactly identical to (9.1.8) when u  is replaced by y. There-
fore, filter algorithms used for estimating state variables u  can be used directly to 
estimate u  and θ  jointly by replacing u  in the filter with y.

9.1.2.2 Parameter Evolution Equation

In order to estimate the augmented state y  through DA, the prediction equation 
(9.1.1) and measurement equation (9.1.2) must be augmented to include predic-
tion and measurement equations for θ. These equations are case dependent. For 
EWR modeling, in most cases, θ  is considered time-invariant or slowly varying 
parameters. In this case, a commonly used parameter prediction equation has the 
following form:

 (9.1.17)

where 
kυ  is an error term. Equation (9.1.17) is known as the slowly time-varying 

or drifting parameter for the combined state and parameter estimation problem 
(Doucet and Tadić 2003). Different rationales for using (9.1.17) have been sug-
gested, depending on the application at hand.

One school of thoughts suggests that 
kθ  be treated as a stationary stochastic 

process driven by a zero-mean artificial noise kυ  (Gordon et al. 1993; Liu and West 
2001; Lopes and Tsay 2011) such that θ  becomes a random walk process. Along 
this line of thinking, van de Merwe (2004) suggested that the covariance structure 
of parameter error υ, Qυ, takes one of the following parametric forms:

• The diagonal structure

 (9.1.18)

• The exponential decay structure

 (9.1.19)

where Pk  is the state covariance at tk  and λ  is a “forgetting” factor that imposes 
exponentially decaying weighting on past data. We can define a new constant, 
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1 1β λ − − , where the role of β  is similar to that of the scaling factor used in 
covariance inflation, which is a commonly used heuristic technique to counteract 
the effect of model errors (see Sect. 9.4). The need for covariance inflation is 
based on the argument that covariance structure is correct, but the sample vari-
ance is too small (Anderson and Anderson 1999).

• Robbins–Monro stochastic approximation

 (9.1.20)

where dk  is the innovation vector (i.e., difference between measurements and 
prediction) and α  is a weighting factor. Equation (9.1.20) approximates the 
parameter covariance as a weighted sum of the parameter covariance from the 
previous step and the innovation covariance, d dk

T
k . Note that (9.1.20) is in the 

form of regularized objective function we have seen in the shrinkage methods 
(Sect. 8.1) and SVR (Sect. 8.3).

Parameters σ , λ , and α  appearing in (9.1.18)–(9.1.20) can be regarded as addi-
tional hyperparameters that need to be tuned adaptively during the DA process. The 
level of artificial noise υ  should be such that a balance is maintained between filter 
robustness and estimation accuracy. Too much artificial noise will lead to an overly 
diffuse posterior PDF for θ. Another issue to keep in mind is that the added artifi-
cial noise will distort the approximated posterior PDFs. Selection of the appropriate 
covariance structures and hyperparameters is application specific.

Another school of thoughts suggests that Qυ  should be used to represent pa-
rameter uncertainty, but not artificial noise. Parameter uncertainty includes both a 
reducible component and an irreducible component, as we will learn in Chap. 10. 
The reducible uncertainty component motivates modelers to reduce uncertainty by 
gathering more data or by refining models. Then, (9.1.17) signifies that θ  is up-
dated in an iterative manner starting from some initial guess. Of course, “iteration” 
in the current context means that new information is processed to update the state 
of knowledge on parameters. Such was the point of view held by Evensen (2007) 
when presenting the ensemble Kalman filter (EnKF) algorithm for joint state and 
parameter estimation (see Sect. 9.4). We remark that similar ideas have long been 
used in geostatistical community. For example, a sequential cokriging method was 
introduced to the stochastic hydrogeology literature in 1990s for solving combined 
parameter and state estimation problems (Sun and Yeh 1992; Vargas-Guzmán and 
Yeh 1999; Harvey and Gorelick 1995) and later incorporated in other geostatisti-
cal inversion problems. Detailed discussion of these topics has been provided in 
Sect. 7.4.

Let us denote the augmented error vector as ( )T T Tη η υ

 , where η  and υ  
denote model and parameter errors, respectively. The covariance matrix of η  is a 
block matrix

 (9.1.21)
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where Q  and C  represent, respectively, the auto- and cross-covariance matrices. 
Cross-covariance allows interactions between model states and parameters to be 
modeled and only appears in joint state and parameter filters. Quantification of the 
covariance and cross-covariance matrices in (9.1.21) is essential. We can identify 
the following three cases for parameter error specification.

• Case I. The model is subjected to white noise, and parameters are unknown, but 
constant. In this simple case, υ  is artificial and is mainly used as a heuristic 
measure to improve filter stability. Further, if it can be assumed that η  and υ  
are uncorrelated, 



Qη  becomes a diagonal block matrix. The error covariance 
Qυ  can be modeled using one of the structures provided in (9.1.18) to (9.1.20). 
Again, Qυ  should be small enough to avoid interference with estimates, but big 
enough to alleviate filter degeneracy. For reasons mentioned previously, the Rob-
bins–Monro stochastic approximation is expected to be the most robust structure 
because of its resemblance to regularized objective function. EWR applications 
that adopt the artificial noise approach include Moradkhani et al. (2005) who as-
similated hyperparameters in a lumped-parameter streamflow model, and Gove 
and Hollinger (2006) who assimilated net CO2 exchange data into a physiologi-
cal model with uncertain parameters.

• Case II. Model state error is mainly caused by uncertain parameters, and parame-
ter error structures are deterministic. In this case, η  and υ  are highly correlated, 
and both have a spatial structure if parameters are distributed. Initially, the prior 
PDF of θ  is estimated from data to fit to a parameter structure which may be, for 
example, any of the covariance structures introduced in Sect. 6.2. Starting with 
the prior of θ, we can recursively estimate all other elements in (9.1.21) by solv-
ing either stochastic moment equations or by using a Monte Carlo-based method 
at each assimilation step. Using the stochastic moment equation approach, one 
needs to derive and solve coupled stochastic PDEs for auto- and cross-covari-
ance (e.g., McLaughlin and Townley 1996; Sun and Yeh 1992; Zhang 2002; Gra-
ham and McLaughlin 1989; Xiu 2010). In contrast, Monte Carlo-based methods 
typically operate with a large ensemble of sample points or particles, and the 
population statistics are approximated by ensemble statistics. The efficacy of 
Monte Carlo methods depends on the statistical representativeness of the en-
semble, as well as the feasibility to drive the “swarm” of particles to the true 
posterior PDF. During SDA, Qυ  is continuously updated by measurements and 
acts as a regularization mechanism. The latter point can be clarified by using the 
posterior PDF of θ

 (9.1.22)

where the likelihood and prior in (9.1.22) were obtained by assuming Gaussian 
error distributions,
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In theory, there is no need for artificial noise in this case. Complexity, however, 
can arise because of (i) system nonlinearity and (ii) errors in prior statistics caused 
by, for example, using sampling statistics to approximate population statistics. 
Researchers have proposed to “repair” problematic covariance matrices by add-
ing artificial noise or by inflating the covariance. A fundamental issue, however, 
is probably rooted in the higher order interactions among parameters, which are 
not captured by low-order moments. Therefore, ad hoc fixes of covariance matri-
ces will only have limited effect. Case II has been considered in a large number of 
EWR applications involving estimation of distributed parameters (e.g., Evensen 
2009; Chen and Zhang 2006; Oliver and Chen 2011; Sun et al. 2009a; Agbalaka 
and Oliver 2008; Xie and Zhang 2010; Elsheikh et al. 2012; Zhou et al. 2011; 
Zhang et al. 2007; Gu and Oliver 2005; Vrugt and Robinson 2007).

• Case III. Both model structure error and parameter uncertainty exist. Here, the 
model structure error is caused by conceptualization error. It is fair to say that 
Case III is probably the most realistic and, unfortunately, the least understood 
scenario. The fundamental challenge stems from the specification of the prior 
PDF for model states which, in theory, requires consideration of an infinite num-
ber of model classes (a model class defines a group of models having similar 
mathematical forms, see also Sect. 10.6). Therefore, even with the advent of 
easily accessible high-performance computing facilities, online analyses are still 
limited to special cases. One such example is the identification of the uncertain 
hyperparameters of a parameter structural model through separate MCMC (Del 
Moral et al. 2006; Polson et al. 2008) or point estimators (Andrieu et al. 2005; 
Doucet and Tadić 2003). Another example is the multiple model particle filter or 
reverse-jump MCMC that are capable of jumping or switching between models 
(Doucet et al. 2001b; Ristic et al. 2004).

For reasons mentioned at the beginning of this chapter, our main focus herein is on 
Cases I and II.

9.1.2.3 Formulation of the Joint SDA Problem

After the above discussion, let us formulate a joint SDA problem to be solved by 
various filters introduced in this chapter. Equations (9.1.1) and (9.1.2) will be re-
placed, respectively, by the following augmented state form:

 
(9.1.23)

where variable y  may consist of model states u  to be predicted, model param-
eters θ  to be estimated, or both of them. Accordingly, the forward model operator 
f(·)  may consist of both state and parameter evolution equations, the measurement 
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 operator g(·)  may contain both state and parameter measurements, and the error 
vector η  is set accordingly using η and υ .

In the prediction stage of (9.1.23), the current parameter values are used in the 
forward solution model to generate the state predictions, and after the parameter 
values are updated in the assimilation stage, these updated parameter values are im-
mediately used in the next time step for model prediction. The dependence of u  on 
θ  is directly incorporated into the DA process.

The following common assumptions are needed in the derivation of DA filters 
for (9.1.23):

• The augmented process error kη  is unbiased (i.e., zero mean) and temporally 
uncorrelated,

 
(9.1.24)

where the covariance matrix, Qk, has a block structure as discussed in Sect. 9.1.2.

• The measurement error kε  is unbiased and temporally uncorrelated,

 
(9.1.25)

• kε  is uncorrelated with kη  and the initial state y0.
• The covariance of initial state y0  is known.

Example 9.4 Set up a state-space model for 1D porous flow
Consider 1D flow in a confined porous medium. The governing PDE is

 (9.1.26)

subject to initial and boundary conditions

where Ss  is specific storage, h  is the hydraulic head, K  is hydraulic conductiv-
ity, qs  is a distributed sink/source term, L  is the length of the column, and H0  
and HL  are constant head boundaries. A numerical method can be used to find the 
forward solution of this model. When the finite difference method is used, (9.1.26) 
is discretized into

 (9.1.27)
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where the superscript denotes time step and the subscript labels the coordinate indi-
ces; ∆t  is temporal discretization interval; ∆x  is spatial discretization interval; and 
{ }hi i

L
=
−
1
1  denote unknown nodal values.

After incorporating boundary conditions into (9.1.27), the head distribution at 
time step k, hk , can be obtained from hk−1  by solving

 (9.1.28)

where a S ts1 = / ∆  and

 (9.1.29)

where a K x2
2= / ∆ , ck  contains known boundary values and qk  is the unknown 

distributed sink/source term that we wish to estimate. Both ck  and qk  are assumed 
temporally invariant. From (9.1.28), the forward solution of the model is

 (9.1.30)

To perform joint SDA, we can define the augmented state vector as

In this case, the prediction equation in (9.1.23) becomes a linear system given by

 (9.1.31)

When both h  and q  can be measured directly, the measurement equation in 
(9.1.23) is also a linear system

 (9.1.32)

where Gh  and Gq  are matrices of 0’s and 1’s, with 1’s corresponding to h measure-
ment and q measurement locations, respectively. In the next section, we will show 
how the linear SDA problems such as (9.1.31) and (9.1.32) can be solved. ■
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Note that for clarity, we will drop the tilde symbol in (9.1.23) hereafter where 
no confusion should occur. Thus, all filters introduced in the subsequent sections 
will use the following extended, discrete-time state-space model for joint state and 
parameter estimation:

 (9.1.33)

9.2  The Kalman Filter

The KF, originally introduced by Rudolph E. Kalman (Kalman 1960), is the most 
well-known SDA method for linear models and serves as the building block for 
many modern SDA methods. The basic KF theory for state assimilation has been 
covered by many textbooks (Lewis et al. 2006; Brockwel and Davis 2002).

In (9.33), when f y M y c( )k k k k− −= +1 1 , where ck  is a known control (or forc-
ing) term, and g y G y( )k k k= , we have a linear stochastic dynamic system

 (9.2.1)

 (9.2.2)

The purpose of KF is using the forward model and measurements 
z z z z1 2 1, , , , , k k−{ }  to find the best estimates ˆ , ˆ , , ˆ , ˆ ,y y y y1 2 1 k k−{ }  of the true 

but unknown system states y y y y1 2 1, , , , , k k−{ }, as well as the uncertainty of 
estimation measured by posterior covariance matrices ˆ , ˆ , , ˆ , ˆ ,P P P P1 2 1 k k−{ }. The 
initial state y0  and its covariance P0  are assumed known.

As a SDA filter, KF is a recursive process: Starting from the known initial pair 
(ˆ , ˆ )y y P P0 0 0 0= = , find the estimates of unknown pair (ˆ , ˆ )y P1 1  using data z1, and 
then from (ˆ , ˆ )y P1 1

 find (ˆ , ˆ )y P2 2  using data z2, and so forth. In general, a single KF 
step of obtaining (ˆ , ˆ )y Pk k  from (ˆ , ˆ )y Pk k− −1 1  consists of two stages, the forecast 
stage (forward solution) and the assimilation stage (inverse solution), as shown in 
Fig. 9.1 and described in detail below:

• KF forecast. Using model (9.2.1) to obtain a prediction pair

 (9.2.3)

where Qk  is the covariance of kη  defined in (9.1.24).

• KF assimilation: Using measurement model (9.2.2) to modify yk
f . This is ex-

actly the statistical inverse problem of a linear model that we have considered in 
Sect. 4.2.3, but here yk  is the unknown, yk

f  is its initial guess, Pk
f  is the prior 

1−= +
= +

( ) ,

( ) .
k k k

k k k

y f y
z g y

η
ε

1 +−= + ,k k k k ky M y c η

= + .k k k kz G y ε

y M y c

P M P M Q
k
f

k k k

k
f

k k k
T

k

= +

= +
−

−

ˆ
ˆ

1

1



378 9 Data Assimilation for Inversion

covariance matrix, and zk  is the observation data to be used for estimation. 
 According to Eqs. (4.2.21) and (4.2.22), the optimal estimation and the covari-
ance matrix of estimation are given by

 (9.2.4)

where Rk  is the covariance matrix of kε  defined in (9.1.25). The above equation 
can be rewritten as

 (9.2.5)

where

 (9.2.6)

is called the Kalman gain matrix. It is easy to show P P Gy zk k

f
k
f

k
T=  and 

P G P G R
z zk k

f
k k

f
k
T

k= + , where Py zk k

f  is the cross-covariance matrix between yk
f  

and zk . Thus, the Kalman gain matrix can also be written as

 (9.2.7)

After the pair (ˆ , ˆ )y Pk k  is found in (9.2.5), we can move to the next time step to 
find (ˆ , ˆ )y Pk k+ +1 1 , and so forth.

The length of each assimilation time interval is determined by consistency and sta-
bility of the particular spatial and temporal discretization schemes used for deriving 
a state-space model. To maintain numerical stability, the interval length of tk  is 
typically small compared to the time window at which successive sets of observa-
tions are available (i.e., in those steps without an measurement update, the forward 
model is simply run to evolve the state).

The a posteriori error covariance, P̂k , provides a measure of prediction uncer-
tainty at tk . Propagation of the state covariance Pk  represents the most computa-
tionally expensive part of the KF, which becomes even more demanding when the 
state variable is augmented. From (9.2.5), the Kalman gain determines the uncer-
tainty reduction from the prior covariance P̂k

f  to the posterior covariance P̂k, or the 
amount of information that is extracted from the new measurements zk. For further 
interpretation, we use a simpler form of Kk  (Lewis et al. 2006)

 (9.2.8)
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Equation (9.2.8) suggests that Kk  depends on the state covariance and the inverse 
of measurement covariance. If the measurement errors are large but model and 
 parameters are more certain, Kk  assigns more weight to the model state and vice 
versa. In practice, however, we seldom have access to actual Q  and R . A rule of 
thumb is to use more conservative estimates for both to reduce filter divergence and, 
thus, improve filter stability (Cohn 1997).

For linear systems that is subjected to Gaussian errors, the KF gives unbiased, 
minimum variance estimate of the state variable. The KF estimates are equivalent 
to those obtained from a linear Gaussian estimator because both are also maximum-
likelihood estimators (McLaughlin and Townley 1996). The KF is not robust and 
can be affected by outliers in data. If the Gaussianity requirement is removed, the 
KF still remains an optimal filter in the mean square sense, but its solution is no 
longer unbiased.

Example 9.5 Estimate boundary condition using the KF
Now, assume that the left-hand-side boundary condition (H0 ) of the 1D system in 
Example 9.4 is uncertain and needs to be estimated through SDA. All other param-
eters are known. We can adopt the evolution equation (9.17) for H0

 (9.2.9)

where υ  is white noise. If we define the augmented state vector yk  as

The state transition matrix Mk  in (9.2.1) becomes

 (9.2.10)

where 2 0 0…= [ , , , ]Tab . In this example, the sink/source term is known and is 
merged into the control term ck  in (9.2.1) as

 (9.2.11)
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The error covariance matrices assume the following structures:

in which 2
υσ  and 

0

2
Hσ  are variances of υ  and H0, respectively. For demonstration, 

let us assume the following data for the problem at hand:

The total length of the 1D system is 100 [L] and the spatial discretization is 
∆x = 1[ ]L . A single pumping well is installed at x = 70 [ ]L  and pumps at constant 
rate of 2 10 4× − [ ]L/T . Measurements are taken every 10 [L] along the domain. The 
total assimilation time is 0.5 [T], and the sampling interval is ∆t = 0 1. [ ]T , which 
is the same as the assimilation interval. Let us assume that the actual value of H0  
is 10 [L], but the initial guess of H0  is 8 [L]. Initially, the head is assumed to be 5 
[L] everywhere in the domain.

Figure 9.2a shows the evolution of hydraulic head profile h with time, and Fig. 9.2b 
shows the assimilated H0  with time. Starting with the initial guess, the actual value 
of H0, 10.0 [L], is obtained after only five assimilation steps. For this example, the 
variances are assigned through trial and error. In practice, these variances may be 
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Fig. 9.2  a Evolution of head distribution hk  with time, where the green dotted line represents 
head distribution after the first update step, brown solid line represents the final head distribu-
tion, dark dashed lines in between represent outputs from the intermediate steps, and open circles 
indicate sample locations; Plot of the assimilated value of unknown boundary condition, H0, at 
different assimilation times
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 regarded as hyperparameters that need to be adjusted simultaneously with the un-
known parameters. Two KF functions, kf_predict and kf_update, from the 
MATLAB toolbox EKFUKF (Hartikainen and Särkkä 2008) were used to perform 
the SDA.

9.3  Nonlinear System Filtering

The KF, when used for joint state and parameter estimation, is subject to several 
limitations. Firstly, the filtering problem generally becomes nonlinear even for lin-
ear systems. In Example 9.4, the left-hand side involves the product of unknown 
state h and the hydraulic conductivity K  (not to be confused with the bold-faced 
Kalman gain matrix). Thus, if K  is unknown, the filtering problem is nonlinear. 
On the other hand, if K  is known, but the sink/source term and boundary condi-
tions are unknown, we still have a linear state and parameter estimation problem, as 
shown in Example 9.5. Nonlinearity usually leads to non-Gaussianity. Although the 
KF maintains its minimum variance estimator property, propagation of the first two 
moments is not expected to approximate the highly skewed or multimodal distribu-
tions well. Secondly, it is hard to estimate errors in prior statistics. Model biases 
may be present, and the assumption that y0  and { }kη  are mutually uncorrelated 
may not always hold. As a result, the KF can easily diverge. Thirdly, the KF is not 
designed for high-dimensional systems.

Nonlinear problems are ubiquitous in EWR applications. Therefore, filters that 
encompass a wide range of techniques have been developed for nonlinear SDA 
problems. The main aim of this section is to discuss several variants of the KF for 
solving general joint state and parameter estimation problems.

9.3.1  Extended Kalman Filter

The extended KF (EKF) is a straightforward extension of the KF concept to nonlin-
ear problems by linearization (Sect. 2.2.4). After the estimate ŷk−1  is obtained from 
time step k − 1, the first-order approximation of the evolution operator in (9.1.33) 
about ŷk−1  is obtained by Taylor’s expansion

 (9.3.1)

where [ / ]∂ ∂f y  is the Jacobian matrix. When (9.1.17) is used as the evolution 
equation for parameters θ, we have

 (9.3.2)
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The prediction equation in (9.1.33) can then be replaced approximately by the fol-
lowing linear equation:

 (9.3.3)

where ( ˆ )y yk k− −−1 1  is the residual of the ( )k − 1  step. Similarly, linearization of 
the measurement equation in (9.1.33) about yk

f  is given by

 (9.3.4)

where

 (9.3.5)

Combination of (9.3.3) and (9.3.5) leads to a linear DA model that can be solved 
by KF.

• EKF forecast.

 (9.3.6)

• EKF assimilation.

 (9.3.7)

Note that a known control term can also be added to the EKF forecast equation, as 
we have done in the KF. Example 9.6 below shows such a case.

The EKF is one of the most widely used nonlinear DA methods for low-dimen-
sional systems. For high-dimensional systems, the computational effort of gener-
ating the Jacobian matrix by numerical differentiation will become unaffordable. 
Obviously, EKF still assumes Gaussianity of posterior PDFs. This is a fundamental 
limitation of EKF because PDFs of random variables are usually not Gaussian-
distributed after nonlinear transformations by the model and measurement opera-
tors. Therefore, although EKF can handle mild nonlinearity, it usually gives poor 
results or even breaks down when (i) the models are highly nonlinear such that the 
truncated higher-order terms of the Taylor series expansion become significant or 
(ii) the posterior PDFs are heavily skewed or multimodal. Methods that use higher 
order moments may alleviate the problem of EKF to some degree; however, they 
are still based on the concept of approximating a PDF around its mean.
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Example 9.6 Use EKF to estimate hydraulic conductivity
Consider the 1D groundwater flow system in Example 9.4. But, this time we as-
sume that the hydraulic conductivity, K, is uncertain, which makes the joint state 
and parameter assimilation problem nonlinear. The PDF of hydraulic conductivity 
K  is typically considered lognormal; thus, we will work with its log-transform, 
Y K= ln . The parameter evolution equation for Y  is written as

 (9.3.8)

using which the augmented state vector can be defined as y hk k
T

k
TY [ ] , where 

υ  is white noise. Substituting the log-transformed hydraulic conductivity into 
(9.1.26), the governing PDE becomes

 (9.3.9)

In Example 9.4, constant head boundary conditions were applied. For this ex-
ample, we assume that the right end of the 1D column is subject to a constant flux 
boundary. The initial and boundary conditions are revised to

where qL  is specified. The resulting state evolution equation still has the same form 
as that in (9.1.30), which is recapitulated below:

 (9.3.10)

However, the quantities have slightly different definitions because of the change in 
boundary conditions,

 (9.3.11)

and a e xY
2

2= / ∆ . Note that the matrix A  is now dependent on the unknown Y 
through a2. To calculate the coefficient a2  associated with H0  in the control term 
c, the Y  estimate from the previous step is used. From (9.3.10), we can find (see 
Appendix C)
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From (9.3.11), we can find

As a result, the matrix Mk  for this example is

 (9.3.12)

where all quantities in Mk  are evaluated using ĥk−1  and Ŷk−1.
For demonstration, the following data are assumed:

where I is the identity matrix and the distributed sink/source qs  is assumed zero. 
Figure 9.3a shows the computed head distributions for different assimilation times. 
As before, measurements are taken at 10 [L] intervals along x for every 0.05 [T] and 
the total assimilation time is 1.0 [T]. Figure 9.3b shows the assimilated K values 
from different time steps. Starting with an initial guess of Y = −4 4.  ( K = 0.0122 
[L/T]), the largest parameter update happened after the first assimilation step, after 
which the curve gradually approaches to the “true” value.

The accuracy and stability of the EKF algorithm depend critically on a number 
of factors, including total assimilation time and assimilation frequency, specifica-
tion of error covariance, and magnitude of boundary flux, all of which may need to 
be adjusted simultaneously. A closely related question is when to stop assimilation, 
which has found surprisingly little discussion in the literature. One possibility is 
to monitor the variance of parameter being assimilated, as shown in Fig. 9.4 for 
the current example. The plot indicates that PY  decreases gradually with time and 
essentially becomes flat toward the end of assimilation, which signifies that the 
information content diminishes as the head distribution approaches steady state. 
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As a result, further updates will provide little additional value or, worse, can even 
deteriorate existing estimates. Thus, instead of the constant pumping, in practice, 
it is more meaningful to vary the stimulation to the system so that more useful 
information can be obtained for assimilation. Such topic has been investigated in 
hydraulic tomography using numerical, laboratory, and field experiments (e.g., Liu 
et al. 2007; Li et al. 2005; Leube et al. 2012).

For this example, the EKF was performed using two EKF functions, ekf_pre-
dict1 and ekf_update1, from the MATLAB toolbox EKFUKF (Hartikainen 
and Särkkä 2008).

Fig. 9.4  Reduction of the 
parameter variance P

Y
 

 during assimilation

 

Fig. 9.3  a Evolution of head distribution hk  with time, where the green dotted line represents 
head distribution after first step, brown solid color line represents the final head distribution, and 
gray color dashed lines represent the intermediate steps ( open circles indicate sample locations) 
and b value of hydraulic conductivity, K , as a function of assimilation time
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9.3.2  Unscented Kalman Filter

The EKF linearizes the nonlinear prediction and measurement operators by calcu-
lating the Jacobian in each step. A prerequisite is that the models be differentiable. 
Moreover, the performance of EKF can be poor because the posterior mean and co-
variance are corrupted by the truncation error. The unscented Kalman filter (UKF), 
introduced in mid-1990s (Julier et al. 2000; Julier et al. 1995; Julier and Uhlmann 
2004), is a derivative-free alternative of EKF. It is built upon the idea that approxi-
mating a PDF is usually easier than linearizing a nonlinear function. In UKF, the 
state distribution is obtained by a sampling technique. Because it relinquishes the 
need to linearize system operators, the UKF is expected to have better accuracy 
than the EKF.

9.3.2.1 Unscented Transform

The core of the UKF is unscented transform, which approximates the PDF of an n-
dimensional random variable x ∈n  via a set of 2 1n +  sample points of x, { }i , 
also known as the sigma points. The sigma points can be calculated based on prior 
statistics

 (9.3.13)

 (9.3.14)

 (9.3.15)

where x  and P  are the mean and covariance of x, respectively; wi  is the weight 
associated with the i th sigma point i  and the sum of all weights is equal to 1; κ  is 
a scaling parameter; and ( ( ) )in κ+ P  is the ith column of the matrix square root of 
( )n κ+ P. It can be shown that the 2 1n +  sigma points generated through (9.3.13) 
to (9.3.15) completely capture the mean and covariance of an n-dimensional Gauss-
ian random variable. When propagated through a nonlinear system, the sigma points 
also capture the posterior mean and covariance accurately up to the second order for 
any nonlinearity, with errors introduced only in the third and higher orders (Julier 
and Uhlmann 2004). The scaling parameter κ  is introduced to control the “dis-
tance” of sigma points from the mean to better handle nonlinearity. When 0κ > , the 
sigma points are shifted away from the mean; conversely, when 0κ < , the points 
are moved closer to the mean. In particular, when 3 nκ = − , the dimensional scal-
ing invariance is achieved. However, when 3 0nκ = − < , the scaling could make 
the resulting covariance non-positive definite. A scaled unscented transform has 
been introduced to address this issue (Julier and Uhlmann 2004), which results in 
slightly different weights for mean and covariance approximation.
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As a simple example, consider a nonlinear function of two variables

where u and v are standard  ( , )0 1  random variables and are independent of each 
other. The prior statistics of the bivariate random variable x = [ , ]u v T  are

and the set of sigma points and associated weights are

in which the scaling parameter κ  is equal to 1. Note: (i) The PDF of s also has mean 
0 and variance 1, but is non-Gaussian; it can be shown that its PDF is proportional to 
a zeroth-order-modified Bessel function of second kind (Weisstein 2013) and (ii) as 
we shall see in Chap. 10, the selected sigma points coincide with zeros of the third-
order Hermite polynomials, which are known to provide optimal polynomial bases 
for Gaussian random variables. The concept of representing a multidimensional 
parameter space with a parsimonious set of points is also behind many experimental 
design and reduced-order modeling methods to be described in Chap. 10.

9.3.2.2 UKF Implementation

We now describe the UKF implementation for the joint state and parameter estima-
tion problem (9.1.33), namely

According to the general DA procedure, UKF starts from the known initial (ˆ , ˆ ).y P0 0  
At any time tk , UKF uses the following forecast and update steps to find (ˆ , ˆ )y Pk k  
from (ˆ , ˆ )y Pk k− −1 1 ,

• UKF Forecast. Generate 2 1L +  sigma points according to (9.3.13) to (9.3.15), 
by replacing  , x  and P  in those equations with  , ŷk−1  and P̂k−1, respectively,

 (9.3.16)
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where L is the dimension of the augmented state variable y, the first subscript of 
each sigma point   is the time step index, and the second subscript is the point 
index. The nonlinear forward operator f(·)  is then used to evolve these sigma 
points into a set of prediction sigma points

 (9.3.17)

The forecast mean and covariance can be approximated using weighted sum of 
sigma points

 (9.3.18)

 (9.3.19)

where model and parameter noise is added just like in the case of KF. All weights 
are given in (9.3.16), but slightly different weights may be used for mean and 
covariance (Wan and Van Der Merwe 2000).

• UKF assimilation. First, using yk
f  and Pk

f  to replace ŷk−1  and P̂k−1  in (9.3.16) 
to update the prediction sigma points

The nonlinear measurement operator g(·)  is then used to transfer these prediction 
sigma points into a set of measurement sigma points

 (9.3.20)

The weighted sample mean and sample covariance of these measurement sigma 
points are

 (9.3.21)

 (9.3.22)
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 (9.3.23)

After obtaining Pz zk k
 and Py zk k

, according to (9.2.7), we have Kalman gain

 (9.3.24)

The required pair (ˆ , ˆ )y Pk k  at tk  is then given by the Kalman update formula

 (9.3.25)

We remark that the UKF can be considered as a special case of the particle fil-
ter or the ensemble-based Kalman filter to be discussed shortly. In the UKF, the 
size of the ensemble is fixed and is at least twice the dimension of the augmented 
state. Therefore, the computational cost of calculating the covariance matrix and its 
square root for generating sigma points is prohibitively high when the system di-
mension is large. We may use dimension reduction techniques described in Chap. 6 
(e.g., PCA) to first project the state vector to a low-dimensional space, perform 
the UKF in the lower-dimensional space, and then reproject the result back to the 
original state space. Variants of the UKF, including an implementation of the dual 
sigma-point, state-parameter filter, were discussed in the PhD dissertation of van de 
Merwe (2004). In particular, van de Merwe proposed a sigma-point Kalman filter 
framework to combine several “derivativeness” Kalman filters into a single algo-
rithmic framework and verified that UKF achieved consistently better performance 
than the EKF.

The UKF approximates the low-order moments of a prior PDF; therefore, like 
the EKF, it works best for Gaussian posterior PDF and will fail when the distribu-
tion is highly skewed or multimodal.

Example 9.7 Estimate hydraulic conductivity using UKF
We solve the SDA problem in Example 9.6 using the UKF. In this case, the dimen-
sion of augmented state vector is L = 101 , which means the total number of sigma 
points required is 203. Figure 9.5 shows the evolution of assimilated K (recall that 
the log-transformed K is used in the actual assimilation). For comparison, the re-
sults of EKF from Example 9.6 are also plotted. It can be seen that the convergence 
of UKF is significantly faster than that of the EKF, especially for the first update. 
The UKF also outperforms the EKF in terms of accuracy. At the end of assimilation, 
the exact value of K is recovered.

For this example, we used two functions ukf_predict1 and ukf_update1, 
from the MATLAB toolbox EKFUKF to perform the UKF. All hyperparameters 
(i.e., error variances) of the UKF are set the same as those used in Example 9.6.
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9.3.3  Gaussian Sum Filter

The Gaussian sum filter (GSF), originally introduced in 1970s (Sorenson and Al-
spach 1971), is a technique for approximating an arbitrary PDF. Let ( , )Cµ  de-
note a multivariate Gaussian distribution for x ∈n,

 (9.3.26)

It can be shown that any PDF p( )x  can be approximated as closely as desired by a 
weighted sum of Gaussian distributions (Anderson and Moore 1979)

 (9.3.27)

where the weights { }wi  are nonnegative and the sum of all weights is equal to 1. 
Eq. (9.3.27) is known as the Gaussian mixture model (GMM), for which the mean 
and covariance of the mixture can be calculated as

 (9.3.28)

 (9.3.29)
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Fig. 9.5  Comparison of 
hydraulic conductivity K 
assimilated by using UKF 
( crosses) and EKF ( open 
circles)
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The parameters of the GMM are { }iµ , { }Ci , and { }wi  ( 1 …= , ,i N ), where N  is 
the number of mixture components.

We now describe the formulation of the GSF for the SDA model (9.1.33) and for 
the case when both model and measurement error distributions are Gaussian. The 
starting point of the GSF is approximation of the prior PDF of the augmented state 
y at the kth step using a GMM

 (9.3.30)

where symbols µ  and C  represent the mean and covariance of augmented state 
variables for each mixture component. Like other filters that have been introduced 
so far, the GSF also consists of recursive forecast and measurement update steps. 
During the forecast step, each component of the GMM is propagated using the 
model operator. This can be accomplished using an array of either EKF or UKF, one 
for each component. For the ith component, if the EKF is used, the system model is 
first linearized about the prior mean 1− ,k iµ , which is then propagated to 

,
f
k iµ  using 

the model operator, and the forecast state covariance can be calculated using Ck i−1,  
and error covariance Qk ; if the UKF is used, a set of sigma points is generated using 

1− ,k iµ  and Ck i−1,  of the ith component and then propagated using the model opera-
tor for calculating the forecast statistics. The results are then combined to construct 
a forecast GMM

 (9.3.31)

In the measurement update step, the forecast mean and covariance of each compo-
nent are updated to ,k iµ  and Ck i, , using the measurement update scheme of either 
the EKF or UKF. The weight of each component is updated by the likelihood func-
tion, = ,( )i k k k ip z y µ , which is also Gaussian

 (9.3.32)

where the denominator normalizes each mixture component’s weight.
We will see in Sect. 9.5 that GSF is a special case of particle filters. The GSF 

formulation for non-Gaussian model and measurement errors is more involved. 
At each DA step, two additional GMMs are needed to represent the non-Gaussian 
model and measurement error distributions, respectively. Let us assume that the 
number of components used in each of these GMMs is, I  and J , respectively. Be-
ginning with N  in the original mixture model, the total number of mixture compo-
nents becomes NI  after the first forecast step and NIJ  after the first measurement 
update. As a result, the total number of components will grow exponentially during 
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the DA process. For practical purpose, after measurement update, we want to retain 
only N  components that have the highest weights and eliminate the rest. This is 
essentially importance sampling, which we will describe in Sect. 9.5.

So far, we have assumed that N  for the GMM is known and the parameters for 
initializing a GMM are given. Methods for learning GMM (i.e., identifying its pa-
rameters) have been discussed extensively in the data clustering and pattern recog-
nition literature (Figueiredo and Jain 2002; Fraley and Raftery 1998). Starting with 
some initial guess of N  and a set of samples generated from the prior of GMM, an 
unsupervised GMM learning routine determines the optimal GMM parameters by 
minimizing a cost function. The process of selecting the number of mixture com-
ponents is thus similar to model complexity control. We can apply model selection 
criteria such as AIC, BIC, and Kullback–Leibler distance to determine N (Bou-
veyron et al. 2007). For the nonlinear non-Gaussian case, this GMM learning step 
needs to be repeated after each measurement update to determine GMM parameters. 
Such reinitialization can be very expensive for online analysis. Another problem 
commonly encountered in practice is that the component covariance C  is often 
ill-conditioned, causing numerical instability during the GMM learning process.

Despite its computational complexity, the GSF remains one of the most powerful 
schemes for nonlinear filtering. The flexibility of the filter lies in that (i) the design 
of the GSF readily lends itself to parallel processing and (ii) the core algorithm 
for evolving each mixture component can be tuned for different applications. In 
addition to the EKF and UKF, the GSF has been combined with the importance 
sampling particle filters (Kotecha and Djuric 2003; van de Merwe 2004; Rings et al. 
2012) and the reduced-rank ensemble KFs to be introduced in the next section (Kim 
et al. 2003; Smith 2007; Sun et al. 2009b).

9.4  Reduced-Rank Filters

9.4.1  The Classical Ensemble Kalman Filter

9.4.1.1 Derivation

The ensemble KF or EnKF is a sequential Monte Carlo approach originally in-
troduced by Evensen (1994) for DA applications in oceanography. The EnKF has 
drawn wide attention from researchers in different fields in the last decade. Unlike 
the classical KF, the EnKF is a reduced-rank filter designed to handle high-dimen-
sional state space and mild nonlinearity, and unlike variational methods, the EnKF 
requires much less effort to implement and can be readily applied to many different 
problems. The latter advantage partly explains the popularity of the EnKF for joint 
state and parameter estimation, especially in the context of Case II described in 
Sect. 9.1.2. Toward that end, the EnKF is an efficient SDA algorithm for estimating 
distributed parameters, providing an alternative to the traditional batch parameter 
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estimation algorithm. Recall that a full-Bayesian algorithm, the GPR model, was 
introduced in Chap. 8 for solving low-dimensional data-driven models. GPR re-
quires inversion of a full-rank covariance, which is computationally prohibitive for 
high-dimensional systems. The EnKF can be considered a reduced-rank counterpart 
of the GPR for data assimilation.

The basic implementation of the classical EnKF is almost identical to that of 
the UKF, except that deterministic sigma points are now replaced by user-provided 
random realizations to generate ensemble statistics. During initialization of EnKF, 
the prior distribution of the unknown parameters θ  is sampled to generate an N-
member ensemble of initial parameter estimates { }0 1 0 2 0, , ,, , , Nθ θ θ , where the 
second subscript of 0θ  is the ensemble member index. An N-member ensemble 
of initial states { }0 0 1 2= = , ,( ) | , , ,i i i Nu u θ  is then obtained by running the for-
ward model N times, after which we obtain an N-member ensemble of initial aug-
mented state vectors: { }0 1 0 2 0, , ,ˆ ˆ ˆ, , , Ny y y , where 0 0 0

 =  , , ,ˆ
T

T T
i i iy u θ  (Fig. 9.6). 

The main underlying assumption of the EnKF is that the number of ensemble mem-
bers required for approximating state/parameter statistics is generally much smaller 
than that required by a full-Bayesian treatment. For distributed parameter models, 
this means using an ensemble of ~102 members to approximate an augmented state 
space on the order of 1012–16. Therefore, before using the EnKF, main questions 
to be addressed are (i) whether system dynamics can be effectively captured by a 
small number of ensemble samples, (ii) how to generate these samples or, equiva-
lently, how to parameterize the unknowns, and (iii) whether the generated param-
eter fields and error distributions are suitable to be updated in a KF-like procedure. 
Both the quantity and quality of ensembles will have an important impact on the 
performance and stability of the EnKF. For joint state and parameter estimation, 
careful consideration must be given to parameterization and possible transforma-
tion of the uncertain distributed parameter field(s), keeping in mind that the EnKF 

Fig. 9.6  Main stages of the EnKF for joint state and parameter estimation, in which prediction and 
analysis steps are applied recursively
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still assumes Gaussian statistics. This is the place where parameterization schemes 
introduced in Chap. 6 can be applied to generating random realizations of distrib-
uted parameters.

During each DA step of the EnKF, the current distribution of the augmented 
state ensemble is updated by using data and propagated to the next time step. 
From the posterior distribution, we can find the best point estimates (i.e., ensemble 
mean) and assess the uncertainty of estimation (ensemble variance). In general, 
after obtaining

 (9.4.1)

the EnKF uses the following steps to find { }1 2, , ,ˆ ˆ ˆ, , ,k k k Ny y y  (see also Fig. 9.6):

• EnKF forecast. Use the forward model in (9.1.33) to propagate each ensemble 
member of (9.4.1) to obtain a forecast ensemble

 
(9.4.2)

The mean and covariance of the forecast ensemble (9.4.2) are given, respectively, 
by

 (9.4.3)

 (9.4.4)

The EnFK uses sample mean f
ky  to approximate f

ky  and sample covariance f
kP
  to 

approximate f
kP . Classical statistics tells us that (9.4.3) and (9.4.4) are unbiased es-

timators of the mean and covariance and converge to those statistics when N → ∞. 
In (9.4.4), f

kA  is an ensemble perturbation matrix (or anomaly matrix) obtained by 
subtracting forecast ensemble mean from each ensemble member (i.e., the ith col-
umn of f

kA  is given by ,
f f
k i k−y y ).

• EnKF assimilation. Use the measurement equation in (9.1.33) to obtain model 
outputs at observation locations for each ensemble member in (9.4.2), namely

 (9.4.5)

Let f
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the following ensemble covariance and cross-covariance matrices:
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(9.4.7)

Using 
k k

f
z z

P  and 
k k

f
y z

P  to replace 
k k

f
z z

P , and 
k k

f
y z

P  in (9.2.7), we obtain an approxi-
mation of the Kalman gain

 (9.4.8)

Finally, the assimilated members of the augmented state ensemble are obtained us-
ing the measurement update formula

 (9.4.9)

where ,k iε  is a normally distributed random variable with zero mean and covariance 
kR . The updated ensemble (9.4.9) contains the required results of a DA time step

 (9.4.10)

 (9.4.11)

In fact, ,k iε  in (9.4.9) is an artificial perturbation added the observation data. With-
out this term, the ensemble covariance ˆ

kP  would be underestimated, as we shall 
show below.

Now, we can replace (9.4.1) by (9.4.9) and move on to the next time step. Al-
though the EnKF algorithm presented herein is easy to interpret, in practice, the 
following matrix form is used for computational efficiency.

9.4.1.2 The Matrix Form of EnKF

Most implementations of EnKF are based on its matrix form. Let us define the fol-
lowing matrices:
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Because we have

 (9.4.12)

the Kalman gain in (9.2.6) can be calculated approximately by

 (9.4.13)

Here, we assume that the measurement equation is linear, and the measurement er-
ror covariance kR  is replaced approximately by its ensemble covariance

 (9.4.14)

The second equality in (9.4.13) suggests that instead of calculating and storing the 
forecast covariance matrix, we only need to deal with matrix GAk

f  when calculat-
ing the approximate Kalman gain. The assimilated ensemble (9.4.9) can be repre-
sented by

 (9.4.15)

from which the updated ensemble mean in (9.4.10) is calculated to serve as an un-
biased estimate of the augmented state and the updated covariance of estimation in 
(9.4.11) can be represented by

 (9.4.16)

To show why artificial perturbation is necessary, let us compare (9.4.16) with the 
theoretical assimilated covariance given in (9.2.5), namely

 (9.4.17)

If observations in the EnKF were not perturbed, the second term on the right-hand 
side of (9.4.16) would drop. As a result, the assimilated covariance ˆ

kP  given by 
(9.4.16) would be less than the theoretical covariance calculated by (9.4.17) be-
cause of the extra multiplier matrix ( )Tk k−I K G . In other words, the assimilated 
covariance is underestimated. Underestimation of covariance can lead to premature 
reduction in the ensemble spread and result in filter degeneracy (Burgers et al. 1998; 
Evensen 2009). The role of perturbed measurement covariance kR  is to counteract 
underestimation. The main criticism of the random perturbation approach is that it 
alters actual measurements and inevitably affects accuracy of assimilation results, 
especially when the ensemble size is small.
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Note that (9.4.16) is not used to calculate ˆ
kP . If necessary, we can first calculate 

the updated ensemble anomaly matrix

 (9.4.18)

and then calculate 1ˆ ( ) / ( ).T
k k k N= −P A A  But, (9.4.13) and (9.4.15) show that 

neither f
kP
  nor P̂k  needs to be explicitly calculated and stored in actual EnKF im-

plementation. In fact, during each time step of the EnKF, we only need to calculate 
the Kalman gain by the second identity in (9.4.13) and then update the ensemble for 
the next time step by (9.4.15).

Example 9.8 EnKF update of variable hydraulic conductivity
Let us consider the 1D porous flow problem given in Example 9.5. However, we 
now assume that the hydraulic conductivity K is heterogeneous along x (i.e., a spa-
tial random process). We would like to estimate the distribution of K using EnKF. 
This problem is similar to that presented in Sun et al. (2009a). Constant head bound-
ary conditions 10 [L] and 1[L] are imposed to the left and right sides, respectively. 
Two wells are located at 30x = [L] and 60 [L], both pumping at a constant rate of 
3 × 10-2 [L/T]. The log-transform of K, lnY K= , is assumed second-order station-
ary with an exponential-type covariance model (see Sect. 6.2)

where r is separation distance, the variance of Y is 2 0 5.Yσ = , and the correlation 
length is 5 [L].

As part of the EnKF initialization process, 500 random realizations of Y are 
generated by performing eigenvalue decomposition of Y’s covariance matrix given 
in the above. Note that any other method for generating spatially correlated random 
numbers may be used here. Each augmented state vector consists of 100 states and 
100 Y values, corresponding to the discretized 1D grid. Thus, the size of the aug-
mented ensemble matrix is 200 × 500. During SDA, the forward model is solved for 
each realization during each assimilation step. Measurements are taken every 10 
[L]. The measurement data are artificially perturbed by white noise with a standard 
deviation, 0 01.εσ =  [L]. The size of each assimilation step is 0.1 [T], and the total 
number of steps is 6.

Figure 9.7a shows the evolution of the “true” state (i.e., hydraulic head) along 
the x-axis and at different assimilation time steps. Recall that the initial head is 10 
[L]. Figure 9.7b shows the initial and final ensemble mean solutions of Y obtained 
by EnKF. Starting with an essentially flat initial value, the final solution given by 
the EnKF is significantly improved from the initial guess. Because of the relative 
sparsity of head observations and the Gaussian nature of the EnKF, the final ensem-
ble mean only provides a smooth version of the synthetic truth. Figure 9.7c shows 
the reduction of RMSE with time. The greatest RMSE decrease happens after the 
first update step, and then, it becomes relatively flat.
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Figure 9.8 shows the effect of increasing the artificial noise level to 1.0 [L]. The 
assimilated parameter profile becomes more smoothed, and the RMSE reduction 
is slower than the previous case. During EnKF assimilation, the parameters are 
modified after each step. The “consistency” school of thoughts advocates that the 
forward model should be rerun from the initial time to the current time using modi-
fied parameters so that the distribution of state variables is “consistent” with current 
estimates of parameters (Aanonsen et al. 2009). However, several studies indicated 
that the rerun step is not only unnecessary, but also detrimental to future assimila-
tion results (Zhao et al. 2008; Zafari and Reynolds 2005). Therefore, the rerun step 
is not done in this example.

Fig. 9.7  a Evolution of head with time (the dash line represents head distribution after first time 
step); b history of assimilated lnY K= along x, where the blue solid line is the synthetic truth, 
the green dashed line corresponds to the initial ensemble mean, and open circles represent the 
final ensemble mean obtained by EnKF; and c reduction of RMSE with time. Standard deviation 
of artificial measurement noise is 0 01εσ = .  [L]
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9.4.2  Variants of the EnKF

The use of perturbed observations in the classical EnKF results in a suboptimal 
filter. Several variants of the classical EnKF have been proposed in the literature, in 
part to address this issue.

9.4.2.1 Deterministic EnKF

The deterministic EnKF (DEnKF) attempts to make the assimilated covariance as-
ymptotically match the theoretical KF covariance (9.4.17) without requiring per-
turbing the actual measurements (Sakov and Oke 2008a). To start, let us revisit the 
EnKF analysis covariance (9.4.16) without the perturbed noise covariance term

 (9.4.19)

Sakov and Oke (2008a) observed that if the product of Kalman gain and measure-
ment operator, k kK G , is small, the quadratic term f T T

k k k k kK G P G K  becomes small, 
and one can asymptotically match the KF-assimilated covariance by halving the 
Kalman gain kK . In the DEnKF, the updated ensemble anomaly matrix kA  in 
(9.4.18) is changed to (Sakov and Oke 2008a)

 (9.4.20)

ˆ ( ) ( )
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Fig. 9.8  a History of assimilated lnY K=  and b reduction of RMSE with time, when standard 
deviation of artificial measurement noise is set to 1.0 [L]
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and the corresponding assimilated covariance becomes

 (9.4.21)

From (9.4.21), we see that the DEnKF scheme always overestimates the KF covari-
ance because of the second term appearing on the right-hand side of the equation; 
thus, it essentially imposes a covariance inflation mechanism without perturbing the 
measurements artificially. Tests of DEnKF on different problems (Sakov and Oke 
2008a; Sun et al. 2009a; Simon and Bertino 2012) have indicated that DEnKF con-
sistently outperforms the classical EnKF. We remark that the name “deterministic” 
is largely a misnomer because DEnKF is still a Bayesian algorithm.

9.4.2.2 Square Root EnKFs

Square root EnKFs represent a class of reduced-rank EnKFs that involve certain 
type of decomposition of the covariance matrix. Examples of such filters include 
the singular evolutive interpolate Kalman (SEIK) filter (Pham 2001), ensemble ad-
justment KF (EAKF) (Anderson 2001), and the ensemble transform KF (ETKF) 
(Bishop et al. 2001). A general review of the ensemble square root filters can be 
found in Sakov and Oke (2008c).

The basic idea underlying square root EnKFs is to multiply the ensemble pertur-
bation matrix f

kA  with a transform matrix such that the analysis ensemble covari-
ance matches theoretical KF covariance without needing to perturb measurements 
artificially (Sakov and Oke 2008b; Tippett et al. 2003). Toward this end, let us 
define a transformed anomaly matrix as

 (9.4.22)

where kT  is transform matrix to be determined. Substituting (9.4.22) into the theo-
retical KF covariance in (9.2.5) gives

 (9.4.23)

A general form of transform matrix kT  is (Bishop et al. 2001)

 (9.4.24)

 (9.4.25)

in which U  is an arbitrary orthogonal matrix satisfying T =UU I  and R  is the 
actual measurement error covariance. Performing eigenvalue decomposition on the 
term in square brackets of (9.4.25) gives
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 (9.4.26)

where kΓ  is the diagonal eigenvalue matrix. Thus, kS  in (9.4.25) can be written in 
a simplified form after taking the square root of the inverse of kΓ

 (9.4.27)

The transform matrix for ETKF is (Sakov and Oke 2008b)

The computational demand of square root filters is higher than EnKF and DEnKF 
because of the additional eigenvalue decomposition step.

Example 9.9 Comparison of EnKF, DEnKF, and ETKF
The performance of EnKF, DEnKF, and ETKF is compared using the 1D porous 
flow problem described in Example 9.8. Overall, all three ensemble filters capture 
the spatial trend of lnY K=  well (Fig. 9.9a). DEnKF obtained the best perfor-
mance, whereas the results of EnKF and ETKF are similar (Fig. 9.9b). Sun et al. 
(2009a) conducted a more comprehensive comparison of filter performance using 
both 1D and 2D porous flow problems and found that the DEnKF is consistently the 
most robust filter in all test cases and gives the best performance at relatively small 
ensemble sizes; also, the detrimental effect of artificial sampling noise on EnKF be-
comes more pronounced when observations are sparse, whereas DEnKF and square 
root filters do not suffer from such issue.

11
1

−+ =
−

( ) ,f T f T
k k k k k k k kN

I G A R G A E EΓ

1 2−= / .T
k k k kS E EΓ

1 2−= / .T
k k k kT E E UΓ

Fig. 9.9  Comparison of the performance of EnKF, DEnKF, and ETKF on the 1D flow problem: a 
Y  solutions and b reduction of RMSE
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9.4.2.3 Covariance Inflation and Localization

So far, we have mentioned covariance inflation several times without a formal 
 discussion. The reduced-rank nature of EnKF (i.e., use of ensemble statistics) in-
evitably causes insufficient variance in estimated state covariance matrix. Covari-
ance inflation is an ad hoc technique that attempts to prevent filter degeneracy by 
inflating either forecast or analysis covariance during each assimilation cycle. Note 
that this covariance inflation is in addition to artificial measurement perturbation in 
classical EnKF, which is done to compensate for algorithmic deficiency.

Both additive and multiplicative inflation can be applied to the ensemble to 
boost the ensemble forecast covariance. Multiplicative inflation simply multiplies 
the forecast ensemble covariance (or each ensemble anomaly matrix) by a scalar. 
Additive inflation adds random perturbation fields with a certain spatial covariance 
structure to each ensemble member, which is only feasible if the model error can 
be well characterized. In many applications, especially surface hydrology, there is 
often insufficient information to determine the structure of additive error and the 
assignment then becomes rather arbitrary (DeChant and Moradkhani 2012; Clark 
et al. 2008).

A major assumption underlying covariance inflation is that the prior correla-
tion structure is correct, but estimates of the variance of individual state vector 
components are too small (Anderson 2009). To account for spatiotemporal correla-
tion in model errors, some suggested that spatially and temporally varying adaptive 
covariance inflation be used (Anderson 2009; Evensen 2003). Thus, for the classi-
cal EnKF, both forecast covariance and measurement covariance can be inflated, 
although numerical experiments suggest that multiplicative inflation is more useful 
for square root EnKFs (Sun et al. 2009a).

Localization is another ad hoc technique for improving filter stability. It has 
been observed in atmospheric modeling studies that sampling error (due to limited 
sample size) can result in spurious correlations in space, causing updates to state 
variables in regions of no real influence (Lorenc 2003; Houtekamer and Mitchell 
2001). The basic idea behind localization is to restrict the radius of influence of 
each observation so that a certain observation only affects the state variables that are 
close to it in the physical space. An alternative rationale is that localization solves 
for a small model state in a relatively large ensemble space and, thus, allows for a 
larger flexibility in the analysis scheme to reach different model solutions (Hamill 
et al. 2001; Houtekamer and Mitchell 2001). In the literature, two types of loca-
tion techniques have been used: (i) distance-dependent covariance localization or 
covariance tapering (Agbalaka and Oliver 2008; Houtekamer and Mitchell 2001; 
Hamill et al. 2001) and (ii) moving-window-based localization (Sun et al. 2009b; 
Szunyogh et al. 2008).

The moving-window-based localization approach is physically more intuitive. 
Sun et al. (2009b) demonstrated that localization can be an effective strategy by 
itself for reducing parameter uncertainty in multimodal parameter fields, especially 
when the initial ensemble is well constrained by prior data. However, localization is 
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more computationally intensive because it requires solution of many local ensemble 
filtering problems, as opposed to a single global filtering problem. Also, disconti-
nuity or “edge effect” in updated state and parameters may appear at local window 
boundaries because different measurements are used during solution of each local 
filtering problem. Sun et al. (2009b) suggested that by randomly updating the nodes 
in a grid, as opposed to updating in regular row/column order, the “edge effect” can 
be effectively suppressed.

9.5  Particle Filters

Particle filters are based on the simple concept that any integral (in our case PDFs) 
can be approximated using a finite number of independent random samples called 
particles. This is the same idea behind the Monte Carlo integration that we have in-
troduced in the context of MCMC (Sect. 4.3). Particle filters do not require assump-
tions about the state model and observation error. The state model can be nonlinear, 
and the observation error distribution can be non-Gaussian. But, this kind of filter 
does not perform well for high-dimensional systems due to the limited number of 
particles that can be used in practice.

We now reformulate the problem using the Bayesian filtering framework con-
sidered in Sect. 9.1. Our starting point is the posterior PDF shown in (9.1.16) for 
augmented state variable ky  after having measurement kz , which is written in a 
recursive form below

 (9.5.1)

This distribution can be evaluated recursively as new data become available. How-
ever, the marginal in (9.5.1) is usually not tractable analytically. It is also difficult 
to sample directly from the prior, 1 1 1:( )k kp − −y z , because of its complex shape and 
high dimensionality. Like in MCMC, we would like to construct an easy-to-imple-
ment sampling density, or proposal distribution, ( )q y , which ideally should be as 
close to the prior 1 1 1:( )k kp − −y z  as possible. If (·)q  deviates from the prior, some 
particles from (·)q  will not be useful because of their negligible contributions. In 
the worst case, if (·)q  and the prior are completely separated, all particles from (·)q  
will not contribute to the evaluation of the integral.

To help construct a good proposal distribution, sequential importance sampling 
(SIS) was introduced to enable recursive estimate of particle weights over time 
(Doucet et al. 2001a). The starting point of SIS is to decompose the proposal distri-
bution in the following form:

 (9.5.2)
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Denoting the set of N particles at the kth time step by 1
( ){ }i N
k i=y  and the associated 

weights by 1
( ){ }i N
k iw = , our task is concerned with updating the weights using new 

data, for which a recursive formula is given as (Doucet et al. 2000):

 (9.5.3)

where 
1

( )i
kw −

 is the prior importance weight of the ith particle. Initially, all particles 
are assigned with the same weight. The weights in (9.5.3) is further normalized by 
their sums

Equation (9.5.3) suggests that a suitable proposal distribution would be one that 
minimizes the variance of weights conditional upon past particle “trajectories” 

1 1
( )
:
i
k−y  and observations 1:kz . One such possibility was suggested by Doucet et al. 

(2000)

 (9.5.4)

which has also been used extensively in the MCMC literature (e.g., Liu and Chen 
1998). However, the proposal distribution in (9.5.4) requires the ability to evalu-
ate the likelihood, 1 1

( ) ( )( ) ( ) ( )i i
k k k k k k kp p p d− −= ∫z y z y y y y  and to sample from 

1
( ) ( )( , )i i
k k kp −y y z , which has no close form in the general case. A suboptimal choice 

is to set the proposal distribution to state transition PDF, 1
( ) ( )( )i i
k kp −y y , which is not 

conditioned on new data. Under this simplification, the recursive weight update 
formula given in (9.5.3) becomes

 
(9.5.5)

which simply updates importance weights using likelihood function.

w
p

q

p p

k
i k

i
k

k
i

k

k k
i

k
i

k
i

( ) :
( )

:

:
( )

:

( ) ( ) (

( )

( )

( ) (

=

∝
−

y z

y z

z y y y

1 1

1 1

1
))

:
( )

:

( )
:
( )

: :
( )

:

) ( )

( , ) (

p

q q

k
i

k

k
i

k
i

k k
i

k

y z

y y z y z

1 1 1 1

1 1 1 1 1 1

− −

− − −−

−
−

−

=

1

1
1

1 1 1

)
,

( ) ( )

( ,

( )

( ) ( ) ( )

( )
:
( )

:

w
p p

q
k
i k k

i
k
i

k
i

k
i

k
i

z y y y

y y z kk )

w
w

w
i

k
i

k
i

i

N
=

=
∑

( )

( )

.

1

q pk
i

k
i

k k
i

k
i

k( , ) ( , ),( )
:
( )

:
( ) ( )y y z y y z1 1 1 1− −=

w w pk
i

k
i

k k
i( ) ( ) ( )( ).= −1 z y



4059.6  Review Questions 

SIS can quickly run into filter degeneracy after several update cycles, whence 
the particle set is dominated by only a few particles with large weights, while all 
others have negligible weights. An indicator of SIS degeneracy is the (approximate) 
effective sample size, effN  (Liu 1996):

 (9.5.6)

Initially, all particles have equal weights 1/N and effN  is equal to N. When effN  
falls below a preset threshold value, say N/2, it signals that the particle set will 
need some correction for degeneracy. A naïve remedy to SIS degeneracy is to boot-
strap the particle set, the net effect of which is equivalent to duplicating particles 
with large weights and discarding those with small weights. This is known as the 
resampling step, and the resulting particle filter is referred to as sequential impor-
tance resampling (SIR) filter. Unfortunately, resampling does not resolve the filter 
degeneracy issue completely because the particle set is gradually filled with iden-
tical particles, leading to sample impoverishment. A large number of alternative 
importance resampling schemes have been improvised in the last decade, includ-
ing multinomial sampling, residual sampling, systematic resampling, and stratified 
resampling, for which reviews and comparison studies can be found in (Cappé et al. 
2007; Douc and Cappé 2005; Hol et al. 2006). The biggest challenge to practical use 
of particle filters is sampling the high-dimensional parameter space, which partly 
explains why applications of particle filter in large-scale EWR problems are nonex-
istent. Recently, a number of studies have demonstrated the merits of particle filters 
for conceptual hydrologic models (DeChant and Moradkhani 2012; Moradkhani 
et al. 2012; Rings et al. 2012; Salamon and Feyen 2009; Vrugt et al. 2013). Liu et al. 
(2012) provided a summary of recent applications of data assimilation and particle 
filters in hydrology.

9.6  Review Questions

1. Show the pair of prediction and measurement equations that involve system 
states, parameters, and control variables.

2. Extend the Bayes’ theorem in Eq. (9.1.11) to include the estimation of system 
states, parameters, and control variables. Then, extend Eq. (9.1.14) to this case.

3. Give the details of deriving Eq. (9.2.4) from Eqs. (4.2.21) and (4.2.22) in 
Sect. 4.2.3. What assumptions do we need to obtain these results?

4. Under what conditions can we use EKF for parameter estimation?
5. What is the difference between EKF and UKF in handling the model 

nonlinearity?
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 6. Summarize the forecast and assimilation algorithms of GMM described in 
Sect. 9.3.3.

 7. Discuss how EnKF is related to KF and UKF and describe its main advantages 
over the two SDA algorithms.

 8. Why the classical EnKF requires artificial noise perturbation? What is the 
adverse side effect of the artificial noise perturbation approach?

 9. What is covariance inflation and why is it needed?
10. Use vector and matrix notations to show a flowchart that describes the step-by-

step algorithm of the classical EnKF.
11. Explain how the MCMC approach is used in a particle filer to explore the joint 

posterior distribution. Explain the cause of SIR collapse.   

9 Data Assimilation for Inversion
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Chapter 10
Model Uncertainty Quantification

Uncertainty quantification (UQ) is the analytic process of determining the effect 
of input uncertainties (both their magnitudes and sources) on system outcomes. 
Traditionally applied in engineering reliability analysis, UQ now plays a significant 
role in environmental and water resource (EWR) applications as environmental en-
gineers and modelers are increasingly involved in designing or permitting complex 
systems, including examining their long-term environmental impacts and providing 
decision support under risks. Risk analysis is the process of determining the con-
sequence of uncertain and often undesirable outcomes. UQ provides inputs to risk 
analysis which, in turn, provides bases for decision making and for improving data 
collection design (Fig. 10.1). UQ and risk analysis are integral and often required 
components of EWR applications nowadays. Examples of high-risk and high-pro-
file EWR projects are many, such as siting of radioactive waste repositories or geo-
logic carbon sequestration reservoirs. For these projects, the broad aim of UQ and 
risk analysis is to describe a potentially hazardous situation in a manner as accurate, 
thorough, and decision-relevant as possible, addressing the significant concerns of 
the interested and affected parties, and making this information understandable and 
accessible to public officials and to the stakeholders (Stern et al. 1996).

Advancements in computing and data collection techniques have drastically 
changed the landscape of EWR modeling in the last several decades. At the same 
time, with the permeation of social media, societal expectations and scrutiny of 
EWR models and predictions are becoming greater than ever, with a diminishing 
tolerance to mistakes. Environmental decision making has shifted to be more of a 
participatory and iterative process, requiring not only effective communication and 
collaboration but also compromises among diverse interest groups. The participa-
tory approach to environmental decision making is arguably more effective and 
transparent than the traditional top-down approach because it attempts to involve 
stakeholders from the onset of decision-making processes and is, in principle, less 
prone to ideological clashes. Every step of a decision-making process can involve 
iterative analysis and deliberation steps. During deliberation, participants collec-
tively decide which harms to analyze and how to describe scientific uncertainty and 
disagreement (Stern et al. 1996). A system or platform used to support collaborative 
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decision making must operate on the premise of reliable and mutually agreeable 
models. However, the performance of a model can only be assessed according to 
the available data and information (thereby, involving some degree of uncertainty) 
and to the best of one’s knowledge (thereby, involving some aspects of ignorance).

The complexity and challenges of UQ arise from multiple sources, including 
difficulties in characterizing origins and causes of the unknowns, measuring their 
magnitudes, and evaluating their impacts on system outputs. Adding to the com-
plexity of UQ is the existence of a wide spectrum of subtly different uncertainty 
definitions and the lack of a general taxonomy. The main aim of this chapter is to 
introduce concepts and methods for UQ in EWR applications. Uncertainties to be 
dealt with under this chapter are assumed recognizable, measureable, and quantifi-
able. When the uncertainty is not recognizable, it is ignorance. The latter often puts 
risk analysts on the horn of dilemma—the combination of low-probability extreme 
events can happen and often leads to disastrous consequences. Arguably, the ability 
of recognizing limitations of UQ in the context of a specific decision-making activ-
ity is as important as conducting the UQ itself.

In Sect. 10.1, taxonomies and classifications of uncertainties used in the litera-
ture are reviewed; several uncertainty measures for deterministic and stochastic 
variables are introduced; and the most general tool used for UQ, the Monte Carlo 
method and Latin hypercube sampling (LHS) technique are described. Section 10.2 
introduces the global sensitivity analysis (GSA) method that finds the total effect 
of all model input factors to the variance of the model output simultaneously with-
out using linearization. The problem of how to screen noninfluential parameters 
to model outputs and model applications is addressed. Section 10.3 is dedicated to 
the stochastic methods of UQ. The stochastic response surface methods (SRSMs), 
including polynomial chaos and stochastic collocation, are introduced in detail. Fi-
nally, Sect. 10.4 tackles the challenging problem of characterizing model structural 
uncertainty from the model averaging perspective.

While reading this chapter, readers should keep in mind that UQ is not a stand-
alone subject, nor is it a single group of techniques. It is intertwined with many 

Fig. 10.1  Flowchart of model construction and application, where arrows show the directions of 
uncertainty propagation
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other topics, several of which have been either explicitly or implicitly touched upon 
in previous chapters. The purpose of uncertainty characterization and reduction has 
been mentioned in Chaps. 2–4 in the context of parameter estimation and model 
calibration. UQ is closely related to sensitivity methods discussed in Chap. 5. Chap-
ters 6 and 7 discussed parameterization techniques and model structure identifi-
cation methods that are needed to perform UQ, while Chaps. 8 and 9 discussed 
methods for continuous model uncertainty reduction and for dealing with high-
dimensional systems. In practice, we envision that UQ and inversion are done in a 
closed-loop fashion—after model calibration, we quantify its prediction uncertainty 
which then provides insights into future data collection strategies (Fig. 10.1). This 
is the broad definition of data assimilation mentioned in Chap. 9. UQ also plays an 
important role in experimental design and goal-oriented modeling, which will be 
covered in Chaps. 11 and 12.

10.1  Basic Concepts

10.1.1  Definitions and Taxonomy

Definitions of uncertainty vary in different disciplines, depending on the subject 
of study and purpose of use. Some authors broadly define uncertainty as “any 
deviation from the unachievable ideal of completely deterministic knowledge of 
the relevant system” (Walker et al. 2003). Others make distinction between knowl-
edge incompleteness caused by absence (incompleteness in kind) and uncertainty 
(incompleteness in degree); along this vein, absence refers to gaps in knowledge, 
whereas uncertainty refers specifically to that part of “knowledge incompleteness 
caused by inherent deficiencies in acquired knowledge” (Ayyub and Klir 2006; 
Bammer and Smithson 2008; Smithson 1989). A subjective interpretation of un-
certainty has also been proposed, for which the main focus is on the degree of con-
fidence (or lack of confidence) that a decision maker has about possible outcomes 
and/or probabilities of these outcomes (Refsgaard et al. 2007).

Given the many definitions of uncertainty, it is not surprising that different un-
certainty taxonomies exist. For example, if classified on the basis of its origins, 
uncertainty can include (Refsgaard et al. 2007):

• Context uncertainty, which is the uncertainty regarding problem domain bound-
aries and external circumstances (e.g., social, economic, and environmental) that 
form the problem context;

• Input uncertainty, which refers to the uncertainty in external driving forces (e.g., 
precipitation, land use/land cover pattern, and recharge rates) and data that drive 
the model;

• Model structural uncertainty, which is caused by incomplete understanding of 
physical processes and/or due to simplification of a system under study;

• Parameter uncertainty, which is a result of incomplete or imprecise knowledge 
about model parameters; and
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• Technical implementation uncertainty, which arises mostly during implementa-
tion and solution of numerical models.

A taxonomy that is commonly used in risk analyses classifies uncertainty according 
to its reducibility:

• Aleatory uncertainty (also known as stochastic uncertainty), which is caused by 
inherent randomness that is perceived to be nondeterministic and irreducible in 
nature;

• Epistemic uncertainty (also known as subjective uncertainty), which is a result of 
incomplete knowledge and which can be potentially reduced when new informa-
tion is gained.

Aleatory uncertainty is usually quantifiable by using probabilistic methods. On the 
other hand, epistemic uncertainty is more subjective, making the use of probability 
distribution assertion questionable when data are sparse. Therefore, nonprobabilis-
tic methods based on set-theoretic or interval analysis are often used for the latter.

A taxonomy that is often used in social science classifies uncertainty into

• Vagueness, which originates from the imprecise nature of the membership of 
elements in a set or a notion of interest;

• Likelihood, which stems from the randomness of outcomes; and
• Ambiguity, which results from the possibility of having multiple outcomes for 

processes or systems.

Finally, four major types of uncertainties have been identified in environmental and 
ecological decision making (Ascough et al. 2008)

• Knowledge uncertainty, which is caused by model and data limitations;
• Variability uncertainty, which is caused by the inherent variability manifested in 

natural and societal systems;
• Decision uncertainty, which is related to ill-defined goals, objectives, and per-

formance measures; and
• Linguistic uncertainty, which arises because natural human language can be am-

biguous and subject to multiple interpretations.

The notion of multiple outcomes is an important one to recognize in UQ. If all 
possible outcomes of a system are known, we deal with bounded uncertainty, and 
probabilities can be assigned to each outcome. On the other hand, if only a subset 
of outcomes can be recognized, we deal with unbounded uncertainty. Identifying 
all system outcomes and subsequently assigning probability to each outcome in an 
undisputed manner is a daunting task.

Which model to use? Questions like this are often at the center of debate in a 
decision-making process, especially when differences in probabilities are perceived 
as elevated risks and financial losses down the road. Thus, in UQ more is less—the 
use and the correct use of more than one UQ methods may greatly lessen the con-
troversial nature of environmental decision-making processes and clear some major 
hurdles to the use of uncertainty analysis in practice. A risk analyst should strive for 
an accurate, balanced, and informative uncertainty analysis, one that incorporates 
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state-of-the-art UQ tools and still remains comprehensible and usable by decision 
makers and other participants. Although not covered here, visual analytics is an 
emerging discipline that can be tremendously useful for enhancing interpretation 
of uncertainty analysis results (Heer, Agrawala 2008; Keim et al. 2008; Andrienko 
et al. 2007; Sun 2013).

10.1.2  Model Uncertainty Propagation

This chapter is mainly devoted to model uncertainties. Figure 10.1 shows a flow-
chart of modeling from data collection, forward solution, inverse solution, to model 
application. During this process, the following uncertainties are involved

1. Prior information uncertainty
2. Data uncertainty
3. Input parameter uncertainty
4. Conceptual model uncertainty
5. Model output uncertainty
6. Parameter estimation uncertainty
7. Structure identification uncertainty
8. Model application uncertainty

From Fig. 10.1, we can see that (i) the uncertainties associated with prior informa-
tion and observation data are the sources of all other uncertainties (the uncertainty 
caused by numerical error is not shown explicitly in the figure), (ii) the uncertainty 
propagates from one module to the next module one by one, and (iii) the propaga-
tion of uncertainty happens in two-way flows, the forward solution flow and the 
inverse solution flow.

Along the forward solution flow, the uncertainty in prior information is propa-
gated from model inputs to model applications, while the inverse solution flow 
transfers the information in observation data to decrease the model input uncertain-
ty. The ultimate goal of model construction is to decrease the uncertainty associated 
with model application to an acceptable level.

As shown in Fig. 10.2, a module can be seen as a function, or more generally, a 
mapping, u = ( ),q  that transfers the module input q together with its variation dq 
to the module output u  and generates a variation du  given by

 (10.1.1)

The major problems in the UQ study are how to measure different kinds of uncer-
tainty and how to estimate the change in uncertainty through a module or a model.

du = + − ( ) ( )q q qδ

Fig. 10.2  Uncertainty propa-
gation through a module 
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10.1.3  Measures of Uncertainty

“Measure,” as a theoretical problem, has been systematically studied in math-
ematics and extensively used in almost all disciplines. Besides measuring size and 
weight, we need to measure functions, evidence, risks, information, satisfaction, 
uncertainty, and much more. The measure theory in mathematics provides con-
cepts, principles, and methods for measuring a “set” if it is “measureable.” Gener-
ally speaking, a measure of a setA,  denoted by ( ),Am  is a number in the interval 
[ , )0 +∞  and satisfies at least two requirements:

 (10.1.2)

We will not discuss the measure theory in depth. Readers interested in this issue 
may refer to, for example, Bogachev (2007). This section only introduces several 
measures that are useful for quantification of model uncertainties. Most of them 
have been used in the previous chapters.

Range Measure The most often used method of measuring the uncertainty of a 
variable is the size of its variation range (interval). For example, let a  and b  be the 
upper and lower bounds, respectively, of the identified parameter vector θ  based 
on existing evidence, we can use the Euclidian norm ( , )a b b am = -  as an uncer-
tainty measure of θ . If we can find new evidence to support the increase of a  and/
or the decease of b, the uncertainty of θ  is decreased.

Hartley Measure Let q  be a discrete variable that has an equal chance to be any 
element of a setE n

= { }q q q
1 2
, , , ,  the nonspecificity uncertainty of q  is measured 

by the following Hartley measure introduced by R. Hartley (Hartley 1928):

 (10.1.3)

This measure can be used when the unknown q  is one of the n candidates. For ex-
ample, when n = 10  and the base of logarithm is 2, we have0

3 32= . .  If we can 
find new evidence to decrease the number of candidates to three, the uncertainty of 
x  will be decreased to0

1 58= . .  When the number of candidates reduces to one, 
there is no uncertainty and

0
0= .  For more discussions on the Hartley measure, 

readers may refer to Ayyub and Klir (2006).

Shannon Entropy Measure Shannon entropy measure introduced by C.E. Shan-
non (Shannon 1948) is widely used to measure uncertainties or conflicts associ-
ated probability assignments. For a discrete random variable with n outcomes 
q q q
1 2
, , , ,

n{ }  the Shannon entropy is defined as

 (10.1.4)

(i) ( ) 0,when  (an empty set)

(ii) ( ) ( ), when  (  belongs to )

A A

A B A B A B

m
m m

= = Æ
£ Í


0
( ) log , .E E E E n= ( ) ∈ = where  andq


s i i

i

n

p p p( ) ( ) log ( ),= −
=
∑ q q

1
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where p
i

( )q  is the probability mass function of outcome q
i
. Shannon entropy is 

an extension of the Hartley measure when there is additional information that can 
support the assignment of different weights to different candidates. In fact, when all 
weights are equal (i.e., p n

i
( )q = −1 for all i n= 1 2, , , ),

 we have 
s
p n( ) log( )=  

which is the same as the Hartley measure. On the other hand, if additional informa-
tion can support the assignment of more nonuniform probability distribution, the 
value of s

p( )  decreases and finally becomes zero when the probability associated 
with one outcome becomes one. In this case, there is no more uncertainty.

For a continuous random variable q  over the whole range ,  once its probabil-
ity distribution p( )q  is given based on the existing information, its uncertainty can 
be measured by rewriting (10.1.4) into the following continuous form

 (10.1.5)

Unfortunately, the so-defined entropy is not qualified to be a measure because 
its value may become negative. For example, when p( )q  is a Gaussian distribu-
tion ( , ),µ σ  from Example 4.2, we have

When s  is small enough, ( )
s
p  becomes negative. Other problems associated with 

(10.1.5) are that the value of s
p( ) depends on the chosen coordinate system, and 

the improper integral (10.1.5) may not be convergent (Ayyub and Klir 2006). These 
problems can be overcome by introducing the relative information entropy

 (10.1.6)

where pM
( )q  is the density of a uniform distribution.

Equation (10.1.6) can be further extended to measure the uncertainty of a ran-
dom vector. In Chap. 4, the uncertainty of a continuous m-dimensional random 
vector θ with joint PDF ( )p θ  is measured by Eq. (4.1.11),

 (10.1.7)

The uncertainties associated with the prior distribution 
0
( )p θ  and the posterior dis-

tribution *
( )p θ  can thus be measured by s

p( )
0  and s

p( ),
*  respectively, and the 

uncertainty reduction caused by inversion is their difference  
s s
p p( ) ( ).

*0
-

Variance-Based Measure When a variable with uncertainty is considered a ran-
dom variable, we can use its variance s2  to measure its uncertainty roughly. Espe-
cially, when the variable is normally distributed, we can use its mean and variance 

= −∫ ( ) ( ) log ( ) .s p p p d q q q



s
p( ) log ( log ).= + +σ π
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2
1 2
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to find its confidence intervals. For a random vector, its uncertainty can be charac-
terized by its covariance matrix containing also the correlation information between 
its components.

In general, covariance matrices are obtained by sampling. When the number of 
parameters is high, calculating integral (10.1.7) is computationally expensive. As 
shown in Chap. 4, after the posterior distribution is found by Bayesian inference, 
instead of calculating entropy, we can use sample covariance matrix obtained by 
Markov Chain Monte Carlo (MCMC) to characterize the uncertainty of the esti-
mated parameters.

10.1.4  Monte Carlo Simulation

Monte Carlo methods are the most general tool for characterization and quantifica-
tion of model uncertainty. They do not impose specific assumptions on the model 
and input parameters. In previous chapters, we have already used Monte Carlo 
methods in different contexts, such as MCMC for exploring the posterior distribu-
tion (Chap. 4) and sequential Monte Carlo methods for data assimilation (Chap. 9). 
Using a sample-based method to find the propagation of uncertainty through model 
(10.1.1), we only need to perform the following steps:

1. Determining a sampling range, such as a multidimensional hypercube, a confi-
dence interval, or a discrete set, according to the given uncertainty and type of 
the input variables .θ

2. Choosing a sampling method, such as uniform sampling, random sampling, and 
stratified sampling, to generate a set of samples { }1 2

, , , .
N

θ θ θ
3. Calculating the corresponding model outputs { }1 2

( ), ( ), , ( )
N

f f fθ θ θ  by run-
ning the model.

4. Measuring the uncertainty of the model output set to find, for example, its 
range, sampling covariance, and other statistics, according to the type of output 
variables.

In the above process, generating the sample set in step 2 is the most important but 
also a difficult task. Using a small sample set cannot produce meaningful statistical 
results; on the other hand, using a very large sample set may make the computation-
al effort unaffordable. Uniform and random sampling methods will generate either 
too dense or too sparse samples when the dimension of the input parameter space 
becomes large. An efficient sampling method should use the minimum number of 
samples to make the statistical results satisfy a preset accuracy requirement.

Stratified sampling techniques have been introduced in attempt to improve 
sampling efficiency by dividing parameter space into strata. One of the most well-
known stratified sampling techniques is LHS, which was proposed originally by 
McKay et al. (1979). It assumes that the sampling range is a “hypercube” deter-
mined by the upper and lower bounds of each input component. The efficiency of 
the LHS arises from the fact that it can be configured with any number samples. 



415

For N samples, the LHS method divides each axis of the hypercube into N bins of 
equal marginal probability, and selects samples from the resulting multidimensional 
grid. The sampling is done in such a way that for all one-dimensional projections 
of the N samples, there is one and only one sample in each bin. The LHS scheme is 
illustrated using a two-dimensional parameter space shown in Fig. 10.3, in which a 
grid is used for drawing three random samples. The first sample is randomly drawn 
from the 3 × 3 grid (nine possibilities). The second sample is drawn from bins that 
are not on the same row or column as the bin of the first sample (four possibilities). 
Finally, the last sample can only be sampled from one bin.

By design, LHS guarantees that the ranges of all input variables are adequately 
represented. For the same number of samples, it has been shown that the sample 
mean estimated by using LHS has a smaller variance than that estimated by the 
naïve random sampling (McKay et al. 1979). A number of variants of LHS exist. 
For example, instead of drawing samples randomly from each bin, some authors 
suggest using the midpoint of each hyperblock as samples. This is known as the 
midpoint and lattice LHS (Helton and Davis 2003). It is also possible to gener-
ate samples that match a priori sample correlation specified by the user (Iman and 
Shortencarier 1984). A recent study on the sampling efficiency and convergence of 
Monte Carlo-based methods for UQ is given by Janssen (2013).

For most situations involving complex models, however, direct Monte Carlo 
simulation is beyond reach, even with the use of efficient sampling techniques. 
Although LHS can work with any number of samples, caution must be taken not to 
make the grid too coarse, implying that a large number of samples are still needed 
for high-dimensional parameter space.

10.1  Basic Concepts 

Fig. 10.3  Illustration of the 
LHS scheme for drawing 
three random samples from 
a two-dimensional parameter 
space
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For a distributed parameter model, the uncertainties caused by parameterization 
and model structure errors must be considered. In this case, Monte Carlo simulation 
for UQ would become less efficient after hyperparameters are involved.

10.2  Sensitivity-Based Methods

10.2.1  Local Sensitivity Analysis

Uncertainty propagation through a linear model = +u A bθ  is easy to be quanti-
fied, where A  is an n m´  matrix and 

1 2
(    ) .T

m
q q q= θ  According to (10.1.1), 

we have .d d=u A θ  When the uncertainty of dq  has a range measure ,d a<θ  the 
following range measure of du  can be obtained

 (10.2.1)

The L
1
 and L2  norms of a vector and the matrix are often used in the above estima-

tion (see Appendix C). When the uncertainty of θ  is represented by its covariance 
matrix Cov( ),θ  the covariance of output u is given by

 (10.2.2)

For a nonlinear model ( ),=u f θ  after linearization around a nominal point 0
θ , 

(10.1.1) gives (see Sect. 2.2.4):

 (10.2.3)

where 
0

( )J θ  is the local sensitivity matrix evaluated at
0

θ . Replacing matrix A  by 
0

( )J θ  in (10.2.2), we have

 (10.2.4)

Example 10.1 Uncertainty Propagation Through a Linearized Model
Let us first consider a simple model 1 2

( , )u f q q= . According to (10.2.4), we have

 (10.2.5)

where the derivatives are evaluated at a point ( , )q q
1
0

2
0  in the input space.
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Next, let us consider the following model that has more but independent inputs,

 (10.2.6)

In this case, according to (10.2.4), we have

 (10.2.7)

where all derivatives are evaluated at a point q
0  in the input space.

In Chap. 5, the dimensionless (or normalized) sensitivity coefficients are defined 
in Eq. (5.5.7). If we set τ qs=  and 

u
λ s=  in that equation, the variance normal-

ized sensitivity coefficient with respect to q
i
 is defined by

 (10.2.8)

Substituting (10.2.8) into (10.2.7) gives

 (10.2.9)

By ranking the values of S i m
is, ( , , , ),2 1 2=   we can find the contribution of each 

input factor in percentage to the model output uncertainty.
The above analysis can be extended straightforwardly to multioutput models

 (10.2.10)

In this case, (10.2.8) is replaced by

 (10.2.11)

and (10.2.9) is replaced by

 (10.2.12)

 ■

The limitations of linearization-based UQ are obvious: (i) the model must be 
differentiable, (ii) the model must be nearly linear, and (iii) the analysis is not 
robust. 
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10.2.2  Global Sensitivity Analysis

Local sensitivity analysis considers the effect of input factors one by one through 
the calculation of partial derivatives. When the effect of a factor q

i
 is evaluated 

around a point q
0  byS

is,
2 , the values of all other input factors are fixed at that point 

without considering their uncertainties. As a result, the input–output relationship is 
not thoroughly explored for nonlinear and nonmonotonic models. The GSA, on the 
other hand, attempts to find the total effect of varying all factors simultaneously and 
identify those factors that contribute the most to the model output variance.

10.2.2.1 Variance Decomposition

GSA can be considered as an extension of the traditional analysis of variance (ANO-
VA) to the analysis of model output variance. Let us return to model ( )u f= θ  
in (10.2.6) and keep the assumption that all input factors are independent random 
variables. The univariate partial variance of output u  due to q

i
 varying over its 

uncertainty range is denoted by V
i
 and given by

 (10.2.13)

For a nonlinear model, V
i
 is not the total effect of the uncertainty of q

i
 to the output 

variance because of the combined effects of the uncertainty of q
i

 with the uncertain-
ties of other factors. This fact can be seen clearly from the variance decomposition 
theorem proposed by the Russian mathematician I. M. Sobol’. The theorem states 
that if all input variables are independent of each other, the total variance of model 
output V  can be uniquely decomposed into the following finite series (Sobol’ 1993):

 (10.2.14)

The first term of this decomposition consists of all univariate partial variances due 
to the uncertainty of each factor, the second term consists of all bivariate partial 
variances due to the joint uncertainties of any two factors, and the final term is the 
partial variance due to the joint uncertainties of all factors. In the first term, V

i
 is 

given by (10.2.13), and in the second term, V
i j,

 is given by

 (10.2.15)

When V
i j,

 is nonzero, the two factors qi  and q
j

 are said to be interactive. In this 
case, the output variance contains more contribution from the two factors than the 
sum of V V

i j
+  alone.

The decomposition (10.2.14) has 2m  terms, each of which represents a different 
conditional expectation of the model output and needs to be calculated by numerical 
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integration. Therefore, using (10.2.14) to find the total variance of the model input 
is impractical.

10.2.2.2  Global Sensitivity Indices

As we define V
i
 in (10.2.13), the partial variance of the output contributed by the 

uncertainties of all factors except for q
i

 (or non-q
i
) is denoted by V i-  and given by

 (10.2.16)

where q− − += { }i i i m
q q q q q
1 2 1 1
, , , , , , .   The quantity [ ( | )]

i
EVar u -θ  represents 

another partial variance contributed by the uncertainties of all factors jointly with 
the uncertainty of qi  (i.e., between qi  and at least one component from 

i-θ ). The 
sum of the two quantities is the total variance of the output,

 (10.2.17)

Note that [Var( | )]
i

E u -θ  can also be explained as the total contribution of the 
uncertainty of qi  to the variance of output, and (10.2.17) means that the total vari-
ance of output is equal to the sum of the total variance due to non-q

i
 and the total 

variance due to q
i

.
The ratio between V

i
 and the total variance V  is called the first-order global 

sensitivity index ( or first-order Sobol’ index) of q
i
 and denoted by

 (10.2.18)

It measures the main effect of the uncertainty of qi  to the output variance, while the 
total effect of the uncertainty of qi  is measured by the total-order sensitivity index

 (10.2.19)

The global sensitivity problem thus becomes the calculation of indices S
i
 and 

S
i
T  for all i m= 1 2, , , . For a linear model, or more generally, a purely additive 

model, we haveS S S
i i

T
i

= = s,
2 , and according to (10.2.12), S S

i i
T= ≈∑∑ 1 .  

Otherwise, S S
i i

T< , and S
i
T∑ > 1  because the interaction between qi  and qj  is 

counted in both S
i
T and S

j
T .

10.2.2.3 Algorithm

The purpose of GSA is to find E V V V
i i

, , , -
 and then use them to calculate S

i
 and S

i
T  

for all i m= 1 2, , , . Because E V V V
i i

, , , -
 are defined by integrals, the core part 
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of GSA calculations is numerical integration. In the algorithm proposed by Saltelli 
(2002) and Saltelli et al. (2008), the Month Carlo method is used for numerical in-
tegration. The Saltelli algorithm consists of the following major steps:
1. Generate two sample matrices A and B and then generate a matrix C

i
 from 

matrix B such that its ith column is replaced by the ith column of A.

 

(10.2.20)

where N is the number of samples. The Latin Hypercube Sampling method intro-
duced in the last section is frequently used to generate these samples.

2. Use the samples in matrices A, B, and Ci , respectively, as model inputs to run 
the model u f= ( )q , the following model outputs are obtained

3. Calculate the sample statistics

 (10.2.21)

4. Use the above sample statistics to find S
V

Vi
i=  and S

V

Vi
T i= − −1 .

Compared to the original Sobol’ (1993) algorithm, the above Saltelli (2002) 
algorithm is more effective; to obtain all sensitivity indices, the former needs 
N m( )2 1+  model runs, while the latter needs only N m( )+1  model runs. Even  
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so, GSA can still become computationally demanding as the dimensions of param-
eter space increase.

10.2.2.4  Multiple Model Outputs

In the above discussion on GSA, the model to be considered has only one output 
variable (i.e., ( )u f= θ ). For EWR modeling, we have to deal with multiple output 
models, such as the numerical solution of a distributed parameter system given by

 (10.2.22)

Let u u u
n1 2

, , ,{ }  be the values of state variables at particular locations and/or 
times of interest. The first- and total-order sensitivity indices associated with these 
outputs are

 (10.2.23)

The total number of sensitivity indices required to be calculated is increased n
times, but this does not mean that the total computational effort is increased n times 
too. With the above Saltelli algorithm, the number of samples used in step 1 is 
not changed because it depends only on model inputs; the number of model runs 
to obtain all corresponding model outputs in step 2 is also not changed because 
all components u u u

n1 2
, , ,{ }  are obtained simultaneously from the output of the 

model (10.2.22); and finally, only a little more algebraic operations are added for 
calculating the sample statistics of all output variables.

Example 10.2 Using GSA for a Mass Transport Model
Let us consider one-dimensional mass transport in a semi-infinite porous medium, 
for which the governing equation is

 (10.2.24)

subject to the following boundary and initial conditions

 (10.2.25)
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where R  is a retardation factor [-] that is related to the reaction (e.g., adsorption); 
D  is the dispersion coefficient [m2/s], v  is the Darcy flux [m/s], f  is porosity [-], 
and C  is the solute concentration [mg/L]. Equation (10.2.24) has the same form as 
the water quality model given in Example 1.5. In the current case, the dispersion 
coefficient is expressed as

where a  is dispersivity [m] and D
e

 is the effective diffusion coefficient [m2/s].
Our task at hand is to find the global sensitivity indices for all input parameters. 

Assume that we know the following information about model parameter distribu-
tions

 (10.2.26)

in which Tri c a b( ; , )  represents a triangular PDF with mode c  (i.e., the peak of tri-
angle), lower-bound a , and upper-bound b . Triangular distributions are often used 
when there is insufficient information to characterize parameter variability.

The analytical solution to model (10.2.24) is given in van Genuchten, Alves 
(1982),

 (10.2.27)

in which u v= / f  is the flow velocity.
Figure 10.4 shows the concentration distribution at t = 10  days for various pa-

rameter combinations. The thick solid line is simulated using the parameter modes 
(i.e., the first number in Tri c a b( ; , ) ) listed in (10.2.26), whereas the 1000 hairlines 
are obtained by sampling from the triangular distributions using the LHS. The fig-
ure indicates that concentration distributions vary significantly for the given param-
eter ranges.

To perform GSA using the Saltelli algorithm described in the text, we generate 
two sets of samples, A andB , according to (10.2.20). The number of LHS samples 
used in this example is 213. Figure 10.5a and b show the global sensitivity indices 
calculated for three locations, x = 0 1. , 10, and 20 m, respectively. In all cases, the 
uncertainty in v  contributes the most to the total variability. Dispersivity plays a 
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more significant role at x = 0 1.  and then its contribution diminishes at larger dis-
tances. This example shows that the global sensitivity indices may depend on both 
space and time. ■

GSA has become a widely used tool in EWR applications in recent years. Tang et al. 
(2007) used the Saltelli method (Saltelli 2002) to identify influential hydrological 
parameters in a distributed watershed model. Liu et al. (2012) applied GSA to a 
regional groundwater model to identify zonal hydraulic conductivity values that 
significantly affect the model output. In a geologic carbon sequestration risk assess-
ment study, Wainwright et al. (2013) used GSA to identify parameters that affect the 
extent of the CO2 plume and the overpressured zone the most.

A straightforward and less “intrusive” approach for expediting the GSA is to 
adopt distributed or parallel computing. For example, Liu et al. (2012) used cloud 
computing to run a regional-scale groundwater model. Metamodeling, a generic 
term that refers to all techniques for reducing model complexity or for constructing 
proxy models, may also be used to improve computational efficiency (Fang et al. 
2006; Sudret 2008).

10.2  Sensitivity-Based Methods 

Fig. 10.5  First-order and 
total-order indices calculated 
for a x = 0 1. m, b x = 10
m, and c x = 20 m. Time is 
fixed at t = 10 days

 

Fig. 10.4  Concentration 
distribution as a function 
of distance from source for 
t = 10  days. A thick line 
is generated using modes of 
uncertain parameters, while 
hairlines are generated using 
LHS
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10.2.3  Screening Input Factors

For large systems involving many input variables, preliminary analyses need to be 
performed to determine which variables to include in the UQ. Such an analysis is 
part of the deliberation process mentioned at the beginning of this chapter. A general 
purpose of screening is to identify all relevant uncertain variables, but only select 
those that either significantly affect the model outputs or are risk significant, or both.

Screening of input parameters should avoid two common types of errors; either 
important parameters are omitted or noninfluential parameters are retained. Model-
input screening and model-output uncertainty quantification are thus two comple-
mentary tasks. The former can make the latter more effective and, in turn, the latter 
can make the former more exact. The benefits of eliminating noninfluential factors 
from further studies are (i) the data collection will be more targeted, (ii) the inverse 
solution will be easier because of the dimension reduction, and (iii) the model will 
become more reliable. In Chap. 8, we have learned how to screen the inputs of a da-
ta-driven model. This subsection will show how GSA can be used for this purpose.

10.2.3.1  Variance-Based Measure

GSA provides a quantitative basis for input screening, in which, the effects of all in-
put factors are simultaneously considered, the entire region of uncertainties is thor-
oughly explored, and the effects of interactions are completely accounted. After the 
global sensitivity indices Si  and Si

T  are calculated for all factors, i m= 1 2, , , , 
we can use them for input screening. Note that a large first-order index Si  indicates 
that qi  is an important factor, but a small Si  does not necessarily mean the factor 
is noninfluential because its interactions with other factors may be significant. That 
is why we still need to find the total effect of a factor q

i
, which is  represented by 

the index Si
T . According to the values of the total effect of all factors, we can select 

part of them that account for, say, more than 90 % of the total variance of the out-
put while keeping the remaining factors constant. Returning to Example 10.2, the 
results of GSA suggest that if we are mainly concerned with far-field transport, we 
would keep only the Darcy flux, porosity, and the retardation factor as important pa-
rameters for further studies. Once the uncertainties of these parameters are reduced, 
the accuracy of the model output will be significantly increased.

As mentioned before, the main practical challenge of applying variance-based 
GSA is that the computational effort of calculating all global sensitivity indices may 
become unaffordable when the cost of running the model is high and/or the dimen-
sions of the parameter space are high.

10.2.3.2  Morris Sampling-Based Measure

Morris sampling (Morris 1991) is an alternative method for GSA. It can give a 
rough estimate of global sensitivities with less computational effort. Thus, it is 
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particularly useful for screening a large number of input factors of a complex mod-
el. The basic idea underneath Morris sampling is rather straightforward; the global 
sensitivity of a factor is estimated by averaging its local sensitivities, which are ap-
proximated by finite difference. Let us consider again the uncertainty of the model 
u f

m
= ( , , , )q q q

1 2
  resulting from the uncertain input factors, and assume that the 

range forms a hypercube in the m-dimensional parameter space. Partitioning the 
hypercube by a finite difference grid, the local sensitivity of a factor qi  at a point 
q  can be approximated by

 (10.2.28)

where Di  is the step size along the qi  direction. In the literature, Di  is also called 
the elementary effect. Usually, the step size is set as

where p is an even number. The method randomly chooses r nodes of the grid as 
starting points of r trajectories. Each trajectory is generated in the following man-
ner: from the starting point, move one step along the q1  direction to arrive at the 
first point; then from the first point, move one step along the q2  direction to arrive 
at the second point; and so forth, until starting from the (m -1 )-th point, move one 
step along the q

m
 direction to arrive at the end of the trajectory. Let the nodes on 

the jth trajectory be

 (10.2.29)

For each point 
,j i

θ  on the trajectory, we can use (10.2.28) to calculate an elementary 
effect Dj i, . Because the total number of points on all r trajectories is r m( )+1 , the 
same number of model runs is needed to obtain all elementary effects. For each fac-
tor q

i
, we have r samples D D D

i i r i1 2, , ,
, , ,{ } . Then, we can calculate the following 

sample mean and sample variance with respect to each factor:

 
(10.2.30)

where i
m  is an estimate of the global sensitivity of the model output with respect to 

factor qi , and si
2  measures the uncertainty of the estimation. To assure the global 

requirement of the estimations, the trajectories should be as far apart as possible. 
After obtaining the statistics in (10.2.30), we can rank the effects of all input factors. 
A factor with small 

i
m  and small s

i
2  can be considered a noninfluential one.
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Note that for a nonmonotonic function,D
j i,

’s may have different signs and a 
small i

m  may be obtained after cancellation. In this case, i
m  is often estimated by 

*
,

1

1 r

i j i
j

D
r

m
=

= å  in order to avoid labeling an important factor as a noninfluential 

one.
Saltelli et al. (2008) provided a review of several other sensitivity analysis meth-

ods. In general, the more quantitative a screening method becomes, the more infor-
mation it requires about characteristics of the unknown parameters.

10.2.3.3 Screening Inputs for Model Application

Obtaining model outputs is generally not the ultimate goal of constructing a model. 
As shown in Fig. 10.1, the model output is either used as an input to a given model 
application or used to calculate the fitting residual for inverse solution. Note that a 
factor that is sensitive to model outputs may be insensitive to a model application. 
In practice, we care more about the uncertainty of model applications than that of 
model outputs. The value-of-information principle seeks to address whether reduc-
tion of uncertainty in parameters would make a meaningful difference in the deci-
sion (Stern et al. 1996; Bratvold et al. 2009).

GSA can be applied to composite modules in Fig. 10.1. For example, to combine 
the forward solution module ( )=u f θ  with a model application moduleg g= ( ),u  
a composite module ( )h®θ θ  is formed, where ( ) [ ( )]h g= fθ θ . After the global 
sensitivity indices of ( )h θ  with respect to all input factors are calculated and the 
most influential factors to the given model application are identified, we only need 
to concentrate on how to decrease the uncertainties of those factors (e.g., by collect-
ing more data in the objective-oriented sense). Obviously, this is one of the most 
important topics of successful modeling and in-depth discussion will be provided 
in the next two chapters.

10.3  Stochastic Methods for Uncertainty Propagation

Conducting a comprehensive uncertainty analysis using the standard Monte Carlo 
and LHS techniques may not be feasible for a complex model. Because of the high 
computational cost of running the forward model, the number of samples is of-
ten not large enough to reach convergence, which means the results of uncertainty 
analysis can be unreliable. The same difficulty can also be seen in the use of global 
sensitivity methods, where the number of samples required for calculating all global 
sensitivity indices increases significantly when the accuracy requirement of UQ 
is increased. The purpose of this section is to introduce several computationally 
efficient SRSMs for uncertainty propagation. In these methods, both model inputs 
and outputs are considered as stochastic variables and approximated either by their 
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truncated expansions or by their interpolants. The model uncertainty is then esti-
mated with a smaller number of actual model runs.

10.3.1  Stochastic Response Surface Methods

A stochastic model contains random variables in its inputs and/or structure. As a 
result, the model output also becomes stochastic. Let us consider the general dis-
tributed parameter model used in the EWR fields (Eq. (1.1.14) in Chap. 1). When 
uncertainty is involved in its physical parameters p , control variables q , and ini-
tial/boundary conditions b , the model can be represented by

 (10.3.1)

where x  is a set of uncorrelated random variables called “germs.” As mentioned in 
Sect. 10.1, there are two types of randomness, aleatory and epistemic. We will use 
( )xθ  to represent all variables in p q b, ,{ }  that contain any type of randomness. 

Equation (10.3.1) can be rewritten as [ , ( )]=u 0 xθ  and its forward solution is 
given by

 (10.3.2)

where ( )xθ  and u( )x  are inputs and outputs, respectively, and all of them may vary 
with space and time (i.e., they are stochastic fields). A germ x  can be a uniform 
distribution, a standard normal distribution, or others. Let us consider the following 
cases:

• A stochastic scalar parameter q  is expressed as a function θ( )ξ  of a single x.
• A stochastic parameter vector is expressed by several germs. The number of 

germs may not be the same as the dimensions of the parameter vector.
• A distributed stochastic parameter q( )x  is parameterized by a set of germs. In 

Chap. 6, a stochastic field q( )x  is approximated by truncating its Karhunen-
Loève (KL) expansion and represented by a low-dimensional random vector. 
According to Eq. (6.3.21), we have 

 (10.3.3)

where k N  and N is the number of nodes used in the numerical solution.

The total number of germs involved in all inputs of a model (i.e., the dimension of 
x) is called the random dimension of the model.

Response surface methods (RSMs) refer broadly to all mathematical and statisti-
cal techniques used for building surrogate models or metamodels. Like interpola-
tion and parameterization that represent a function with a small number of measure-
ments, an RSM attempts to construct the model output space using a small number 

[ , ( ), ( ), ( )] ,u p q b 0x x x =

( ) [ ( )],=u x x θ

θ θ( ) ( , , , ),x » � �ξ ξ ξ
1 2 k
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of model runs. More precisely, if the original model is ( , )=u x θ , then we want 
to find a metamodel̂  that converges to   in the mean square sense and is com-
putationally cheaper. In a broad sense, examples of the RSM that we have already 
seen in previous chapters include:

• Using a parameterized model to replace a distributed parameter for inversion
• Using PCA or FA to reduce the dimensions of a dataset (Chap. 6)
• Using a variogram model to describe the structure of a random field (Chap. 6)
• Applying K-L decomposition to parameterize a random field (Chap. 6)
• Using a shrinkage method to reduce the complexity of a linear model (Chap. 8)
• Training ANN to approximate a physically based model (Chap. 8)
• Using GPR to generate a data-driven model (Chap. 8)

In this section, we introduce stochastic RSMs (SRSMs), an extension of RSMs, to 
develop metamodels for stochastic modeling. Uncertainty propagation can then be 
conducted by using metamodels, instead of full model runs. As a consequence, sam-
ple-based methods for UQ will become more efficient because a large number of 
samples can be analyzed when   is replaced bŷ . For the same token, SRSMs 
can also significantly improve the efficiency of sensitivity analysis (Buzzard 2012; 
Sudret 2008).

Several SRSMs that have received broad attention in engineering reliability 
analyses are the polynomial chaos expansion (PCE) method and the stochastic col-
location (SCM) method. In the former, truncated orthogonal polynomial expansions 
in the stochastic space are used as metamodels, while in the latter polynomial in-
terpolants in the stochastic space are used as metamodels. With polynomial ap-
proximation, exponential convergence rates can be achieved for a wide range of 
probabilistic analysis problems (Xiu and Karniadakis 2002). Let us first introduce 
the basic theory and methods of PCE and its applications to UQ.

10.3.2  Polynomial Chaos

The original idea of using orthogonal polynomial expansion for uncertainty analysis 
was established by Wiener in his homogeneous chaos theory (Wiener 1938) and 
later rediscovered by Ghanem and Spanos (1991). PCE can be used to construct a 
metamodel that maintains high-order effects of a nonlinear stochastic model. Let us 
start from a simple model that contains only a single random variable.

10.3.2.1  One Random Dimensional PCE

Orthogonal Polynomial Expansion in Probability Space In order to identify 
an infinite-dimensional deterministic function f x( ) , it must be parameterized or 
approximated by a low-dimensional function. A general parameterization method 
that we have used many times in the previous chapters is to truncate an infinite-
dimensional expansion of the function, namely, let
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 (10.3.4)

where fi x( ){ }  is a selected family of basis functions (see Appendix A). The prob-
lem of identifying f x( )  then becomes identification of a vector f = { }f f f

n1 2
, , , .  

Of course, we prefer to select such basis functions that make the series in (10.3.4) 
converge faster. In PCE, the same structure as (10.3.4) is used to parameterize a 
random function f ( )x in the stochastic space and orthogonal polynomials are used 
as basis functions, viz.

 (10.3.5)

where φ ξ
i
( )  is a polynomial of degree i . A family of polynomials φ ξ

i
( ){ }  is said to 

be orthogonal and optimal with respect to a probability distribution p( )x  if

 (10.3.6)

where dij  is the Kronecker delta function, and cj  is given by

 (10.3.7)

In PCE, the truncated expansion (10.3.5) is not used for inversion; instead, it is 
regarded as a reduced-order model (or metamodel) of f ( )x ,

 (10.3.8)

Multiplying this equation by φ ξ ξ
j

p( ) ( )  for j n= 1 2, , , , integrating over( )Ω , and 
then using (10.3.6) and (10.3.7), we can find all coefficients

 (10.3.9)

Thus, after p( )x  is given, its optimal orthogonal polynomial family φ ξ
i
( ){ }  is cho-

sen, and the order n of approximation is specified, the metamodel (̂ )f x  of a func-
tion f ( )x  defined in (10.3.8) is completely determined. We will have (̂ ) ( )f fx x®
whenn → ∞ , with an exponential convergence rate in general. Below are several 

most often used combinations of p( )x and φ ξ
i
( ){ }:
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In general, we have the recurrence relationship

• Uniform distribution & Legendre polynomials ( P)
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In general, a recurrence formula is

• Exponential distribution & Laguerre polynomials (L)
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More combinations of probability distributions and their matching orthogonal poly-
nomials can be found, for example, in Xiu (2010). Using a nonoptimal combination 
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( ){ }  (e.g., using Hermite polynomials with uniform distribution) 
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The PCE of a Model Input Parameter Let θ ξ( )  be a random input parameter that 
depends on a germ x  with a known distribution p( )x . According to p( )x , we can 
find a family of optimal orthogonal polynomials, e.g., using Hermite polynomials 
when p( )x  is Gaussian. Applying (10.3.8) to θ( )ξ , we have

 (10.3.10)

Using (10.3.9), we can find all coefficients of the expansion,

 (10.3.11)

These integrals may be calculated numerically by the Gaussian quadrature,

 (10.3.12)

where xk  and w
k
 are Gaussian quadrature points and weights, respectively, and 

θ( )ξ
k

 are obtained by function evaluation (we will give more explanation on the 
Gaussian quadrature later). After all coefficients are calculated, (10.3.10) gives a 
metamodel θ( )ξ of θ( )ξ .

Uncertainty Propagation Through a Scalar Model Let us consider a model 
u( ) [ ( )]ξ ξ= θ . Our purpose is to find the uncertainty ofu( )x . First, according to 
the known distribution p( )x of x , we can find its PCE

 (10.3.13)

Using (10.3.9), all coefficients of the expansion are determined by

 (10.3.14)

These integrals can be calculated numerically using the Gaussian quadrature,

 (10.3.15)

where xk  and w
k
 are quadrature points and weights, respectively, and u k

( )x  is 
obtained by running the model [ ( )]θ ξ

k
.

Substituting all coefficients in (10.3.15), a metamodel ˆˆˆ ( )u  q=  in (10.3.13) 
is obtained, and ̂ ®  when n → ∞ . Using this metamodel, it is easy to es-
timate the model output uncertainty that is propagated from the uncertain model 
inputs. Taking expectation of (10.3.13) and noting E[ ]f

0
1=  and E i

[ ]f = 0  for 
i n= 1 2, , , , we obtain the following statistics of the model output

 
(10.3.16)
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Higher-order moments can also be obtained from ̂  when needed.

Example 10.3 Convection Model Uncertainty Caused by Uncertain Initial 
Conditions
The one-dimensional convection transport model is given by

 (10.3.17)

Because the initial conditions are random functions of x , the solution will also be a 
random function of x  and can be represented by the following expansion

 (10.3.18)

Substituting this expression into the PDEs (10.3.17) yields

 (10.3.19)

Multiplying by p j
( ) ( )ξ φ ξ  and integrating over ( )Ω in the stochastic space, the 

above equation generates a set of n +1 equations

 (10.3.20)

Using (10.3.6) and (10.3.7), the above equations can be rewritten as n +1  uncou-
pled deterministic convection equations
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Initial conditions of these PDEs can be found from the expansion of g x( , )x :

 (10.3.22)

After the coefficients in this expansion are determined by PCE, we can use 
u x t g x i n
i t i
( , ) | ( )( , , , )= = =

0
0 1  as the deterministic initial condition and the 

original boundary conditions in (10.3.17) to solve each PDE in (10.3.21). Finally, 
using these solutions as the coefficients u x t

i
( , )  in (10.3.18), a metamodel of the 

original model (10.3.17) is found and UQ can be completed by (10.3.16) using the 
metamodel. 

Uncertainty Propagation Through a Multioutput Model Extending the above 
discussion to the multiple output case is straightforward. Let us consider a vector 
model u( ) [ ( )]ξ ξ= θ . Our purpose is to find the uncertainties of all its L out-
puts u j L

j
( ) | , , ,x ={ }1 2 . The PCE expansion (10.3.8) for each component of 

u( )x  is

 (10.3.23)

According to (10.3.9), all coefficients of the expansion are determined by

 
(10.3.24)

These integrals may be calculated numerically by the Gaussian quadrature,

 
(10.3.25)

where u
j k
( )x  for all j L= 1 2, , , are obtained simultaneously by running model 

[ ( )]θ ξ
k

. Substituting (10.3.25) into (10.3.23), a metamodel ̂  is obtained, and 
̂ ®  when n → ∞ . Using this metamodel, it is easy to estimate the uncer-
tainty propagated from model inputs to model outputs. Taking the expectation of 
(10.3.23) and noting that E[ ]f

0
1=  and E i

[ ]f = 0  for i n= 1 2, , , , we obtain the 
following statistics for all components of model outputs

 (10.3.26)
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Like in the case of GSA, when the number of model outputs increases, the complex-
ity of PCE is not increased and the computational effort of using PCE for uncertain-
ty analysis is increased only slightly. But, when the number of random dimensions 
increases, both the complexity of PCE and the computational effort of using PCE 
will be increased quickly.

10.3.2.2  Multiple Random Dimensional PCE

Hermite Polynomials for Multivariate Gaussian Distribution Let us consider 
the case that two independent Gaussian germs x1  and x2  are involved in a model. 
Their joint probability distribution is given by

 
(10.3.27)

A two-dimensional polynomial, according to the order, has the following general 
forms:

The two-dimensional Hermite polynomials are defined specially by

 (10.3.28)

where Hi
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polynomials, for anyr = 0 1 2, , , , are defined by one-dimensional Hermite poly-
nomials according to

 (10.3.29)

We can arrange all Hermite polynomials from low to high orders, viz.

 (10.3.30)

Orthogonality of two-dimensional Hermite polynomials is easy to show. In fact, 
when ( , )i i

1 2  is not equal to ( , )j j
1 2 , we have

 (10.3.31)

When ( , ) ( , )i i j j
1 2 1 2
= , we have

 (10.3.32)

For notational convenience, we change the subscripts of (10.3.30) to a series form

 (10.3.33)

Keep in mind that all of them are two-dimensional polynomials in the current case. 
The Hermite orthogonal expansion in two-dimensional random space has the same 
form as in one-dimensional, viz.

 (10.3.34)

To reach the same order of approximation, two-dimensional expansion needs more 
terms than one-dimensional expansion does. For example, the total number of terms 
up to the third-order in (10.3.34) is N = 10.

Extending the above derivations to cases involving more random dimensions is 
straightforward. Let x= x x x

1 2
, , ,

m{ } be m independent Gaussian germs. Similar 
to (10.3.34), the Hermite orthogonal expansion of f ( )x  is given by

 
(10.3.35)
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In this expansion, if i
( )x  is an r-th order Hermite polynomial, for r = 0 1 2, , , ,   

then as (10.3.29) in the two-dimensional case, it must have a form 
H

i i i mm1 2 1 2, , ,
( , , , )



x x x , and the latter is defined by the product of one-dimensional 
Hermite polynomials,

 (10.3.36)

Finally, we note that in (10.3.35) the total number of terms needed to reach n-order 
approximation for a random dimension of m is

 (10.3.37)

This can lead to a large number even when random dimensions are small. Fortu-
nately, it has been shown that the convergence rate of expansion of (10.3.35) is ex-
ponential (Xiu and Karniadakis 2002) and thus only its low-order terms are needed.

10.3.2.3 Generalized PCE (GPCE) 

The above discussion is limited to the use of Hermite polynomials coupled with 
Gaussian distribution. We have shown in the one-dimensional case that each prob-
ability distribution has its own optimal family of orthogonal polynomials. The Wie-
ner–Askey scheme used by GPCE can generate different families of orthogonal 
polynomials suitable for various continuous and discrete distributions. Besides the 
Hermite polynomials (for normal distribution), Legendre polynomials (for uniform 
distribution), and Laguerre polynomials (for exponential distribution) we have con-
sidered in the one-dimensional case, GPCE also includes the Jacobi polynomials 
for Beta distribution, Charlier polynomials for Poisson distribution, and others (Xiu 
and Karniadakis 2002). GPCE expansions have the following common form

 (10.3.38)

where Ψ
i
( )x{ }, the basis functions of the expansion, is the optimal orthogonal 

polynomial family for the given probability distribution of x . Obviously, expansion 
(10.3.35) is a special case of (10.3.38) when Hermite polynomials 

i
( )x{ } are used 

as Ψ
i
( )x{ } and the probability distribution is multivariate Gaussian. Moreover, any 

Ψ
i
( )x  can be obtained from its one-dimensional form by simply applying (10.3.36) 

but replacing the Hermite polynomials in the equation with the selected polynomials.

Example 10.4 Deriving Multivariate Legendre Polynomials
Assuming Ψ

i
( )x{ }  is the Legendre polynomial family, the optimal one for homo-

geneous distribution in hypercube [ , ]-1 1 m and the dimension of x  is m = 3.  Let 
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us find Ψ16
( )x . Because there are 3 first-order terms, 6 second-order terms, 9 third-

order terms, Ψ16
( )x  must be a third-order term with indexes i1 0= , i2 2= , and 

i
3

1= . Using the 1D Legendre polynomials listed before, we have

By following this way, we can find Ψi
( )x  for any polynomial chaos and any sub-

script i . ■

Although the types of probability distributions that GPCE can handle are com-
monly used, they are still limited. Recent research studies attempt to construct PCE 
for arbitrary distributions of input uncertainty (Eldred 2009). Loeven et al. (2007) 
demonstrated the use of the Golub-Welsh algorithm for arbitrary distributions and 
showed that exponential convergence can be obtained when the polynomials are 
orthogonal with respect to the PDF. In Wan and Karniadakis (2006), GPCE is used 
locally to multielements for arbitrary distributions. A data-driven formulation of 
PCE introduced in Oladyshkin and Nowak (2012) can construct up to nth order 
orthogonal polynomials of a random variable using a few moments. The distribu-
tion of the variable can be arbitrary: continuous, discrete, or given by a histogram. 
In practice, however, the limited data often does not support the construction of 
higher-order moments other than the first two.

If the random inputs are correlated, one methodology is to perform eigendecom-
position on the covariance matrix of correlated inputs to map them to uncorrelated 
random variables. This methodology is basically the mechanism underlying KL-
expansion or PCA, which can decompose correlated random processes into uncor-
related random variates. Another possible approach is to use nonlinear transfor-
mations to convert correlated random variables to uncorrelated standard Gaussian 
variables. For this purpose, the commonly used statistical transformation methods, 
such as Rosenblatt, Nataf, and Box-Cox transforms, can be applied (Xiu 2010).

10.3.2.4 Uncertainty Propagation

After having expansion (10.3.38), we can use it to generate metamodels for each 
input parameter q( )x  and each model output componentu( )x as

 
(10.3.39)

Then, use these metamodels to analyze the uncertainty propagation instead of us-
ing the original model. All of these steps are exactly the same as those used for 
one-dimensional PCE, except that the computational effort is increased exponen-
tially with the increase of random dimensions (curse of dimensionality).
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When the PCE approach is used for analyzing uncertainty propagation, a model 
u = [( ( )]q x  is replaced approximatly by ˆˆ [( ( )]u  q= x ,

 (10.3.40)

Here, as usual, we use the same number of terms and the same basis polynomials to 
represent the uncertainty of both model inputs and outputs. In principle, of course, 
we might use different expansions for them, but the analysis would become much 
more complicated. Note that our purpose is to find (̂ )u x  given q( )x , which can be 
done by finding all expansion coefficients u u u

N0 1
, , ,{ }  from (10.3.40).

To shorten expressions, we define the mathematical expectation of two functions 
f ( )x  and g( )x  as

 (10.3.41)

Using this notation, all coefficients in the PCE of a function f ( )x  can be obtained 
simply by projecting it onto the orthogonal polynomial basis. For any k , we have

 (10.3.42)

Now, let f ( )x  in the above equation be u( )x . By projecting it onto the polynomial 
basis, all coefficients in its PCE can be expressed explicitly by

 (10.3.43)

Equation (10.3.43) is a multivariate counterpart of (10.3.14) that is derived for the 
one-dimensional case. As shown in (10.3.16), once u u u

N0 1
, , ,{ }  are found, the 

statistics used to quantify the uncertainty of the model output can be calculated eas-
ily. The first two moments are

 (10.3.44)

High-order moments can also be calculated from these coefficients when needed. 
The remaining problem now is how to calculate the integrals in (10.3.43).

Intrusive Methods Calculating the integral (10.3.43) requires that ( ) [ ( )]u  q=x x  
be simple and be given explicitly. When [ ( )] q x  is the solution of a stochastic 
PDE given in (10.3.1), it is usually not given analytically. In this case, we can use 
the stochastic Galerkin projection approach to project the PDE model itself, rather 
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than its solution, onto the orthogonal polynomial basis. In other words, for a model 
( ), ( ) 0u qé ù =ê úë ûx x , we use

 (10.3.45)

This is a set of N +1  coupled deterministic PDEs with u u u
N0 1

, , ,{ }  as un-
knowns. In general, the structure of these equations is different from that of the 
original model equation. From a numerical programming perspective, the Galerkin 
projection method is an “intrusive” one, meaning new codes must be developed for 
solving the required PCE coefficients.

Example 10.5 Using Multivariate PCE for UQ 
Consider the following stochastic advection-dispersion model

 (10.3.46)

Let the PCEs of u D x V x( ), ( , ) ( , )x x x and  be given by

 (10.3.47)

Substituting these PCEs into the Galerkin projection equation (10.3.45) yields 
N +1  coupled deterministic equations:

 (10.3.48)
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Each of these equations is subject to the same deterministic initial and boundary 
conditions given in (10.3.46). The coefficients C

ijk
 in these equations are

 (10.3.50)

The form of coupled equations (10.3.49) is different from the original PDE (10.3.46). 
That is why the applications of intrusive methods are limited in practice. 

Nonintrusive Methods In comparison, nonintrusive methods only require running 
the original deterministic model. The departure point is to take a set of samples in 
the stochastic space

 (10.3.51)

and evaluate their corresponding model output values:

 (10.3.52)

These values are obtained by running the original model M times with different 
sample parameter values. We have two choices to use these sample output values to 
find the required PCE coefficients u u u

N0 1
, , ,{ }  of (̂ )u x :

• Numerical integration: Choosing an algorithm to calculate the integral on the 
right-hand side of (10.3.43) with the sample values in (10.3.52), an approximate 
value of coefficient u

k
 can be found.

• Linear regression: Using the sample values (10.3.52) as the “observed model 
output values” ( z u

j j
= ( )x , j M= 1 2, , , ), (10.3.40) gives a set of M linear 

equations

 (10.3.53)

 Here, the truncation error e
j
 plays the role of the observation error, ui  and Ψ

i  
play the roles of “weights” and “basis functions,” respectively (see Sect. 8.1.2). 
All expansion coefficients u u u

N0 1
, , ,{ }  can be solved from this linear system.

The above nonintrusive methods are attractive because (i) they are more efficient 
than the Monte Carlo sampling method and (ii) they can be completed using the 
original forward solution code without code modifications. Although understand-
ing the two methods is easy, implementing them is not easy. We have to know how 
many samples are needed and where to take these samples in (10.3.51). This prob-
lem is closely related to the stochastic collocation method (SCM) to be introduced 
in the next subsection.
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10.3.3  Stochastic Collocation Method

Collocation points refer to predefined nodes in the deterministic collocation finite 
element method. In the SCM, the term “collocation points” is borrowed to refer 
to the sample set in (10.3.51) because of the similarity between choosing optimal 
computation nodes for numerical solution and choosing optimal sampling locations 
for PCE and SCM.

SCM is actually an interpolation method for random functions. Assume that 
u( )x  is a function of an m-dimensional random vector x  defined in a region (W ). 
SCM finds a metamodel (̂ )u x  by interpolation based on M values of u( )x  evalu-
ated at M collocation points. In SCM, orthogonal polynomials are used as basis 
functions over the whole region to guarantee fast convergence, and (̂ )u x is directly 
used to replace u( )x for integration and uncertainty analysis.

10.3.3.1 One Random Dimensional SCM 

Let us start from one-dimensional case (m = 1 ). Lagrange polynomials for  
one-dimensional interpolation over M sampling (or collocation) points 
P

M
= { }x x x

1 2
, , ,  are defined by

 (10.3.54)

where L
j
 is equal to 1 when x x=

j
, and 0 when x x=

k
. The order of Lj P,  is 

M -1  and each collocation point is associated with one polynomial. Any smooth, 
one-dimensional function u( )x  can be approximated using a set of one-dimensional 
Lagrange polynomials as

 (10.3.55)

The above stochastic interpolation has the same form as PCE (10.3.18), but they 
are different. In PCE, the coefficients of expansion need to be determined, while 
in (10.3.55) only collocation points need to be determined, all coefficients are ob-
tained in (10.3.52) by running the deterministic forward model. As a result, after we 
have the metamodel (̂ )u x  in (10.3.55), statistics of u( )x  can be estimated immedi-
ately, for example, its expectation will be

 (10.3.56)
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This is a weighted summation of known function values with weights

 (10.3.57)

This integral is easy to calculate after the collocation points are determined. If the 
required order of approximation(10.3.55) is n, we should use M n= +1 colloca-
tion points. First, find the optimal M-orthogonal polynomial of p( )x , then find the 
roots of the polynomial and, finally, use these roots as the collocation point set P. 
This is the best selection for fast convergence.

Example 10.6 Using Legendre Polynomials for SCM 
Assume p( )x  is a uniform distribution over interval [ , ]-1 1  (when the integral 
region ( )Ω is a general interval [ , ]a b , use variable transformation to transfer it into 
the interval [ , ]-1 1 ). In this case, Legendre polynomial is the optimal selection. If 
the third-order approximation is required, we haveM = 4 . The four roots of Leg-
endre polynomial P

4
4 21

8
35 30 3( ) ( )x x x= − +  are

Using these points as collocation points in (10.3.54), all third-order Lagrange poly-
nomials L

j P,
( )x ( j = 1 2 3 4, , , ) are completely determined. Substituting them into 

(10.3.57) and completing the integration, we can obtain

  

10.3.3.2  Multiple Random Dimensional SCM 

Multidimensional interpolation formula can be derived from the one-dimensional 
formula simply by the tensor product approach, in which (10.3.55) is applied in 
sequence to all dimensions and a summation over all possible combinations is cre-
ated. Rewrite the one-dimensional interpolation formula for the ith dimension as an 
interpolation operator 

 (10.3.58)

where Mi  is the number of collocation points used. Lagrange interpolation for an 
m-dimensional stochastic function u( )x  is given by

 (10.3.59)
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where Mik
 represents the number of collocation points used in the kth dimension, 

x
j

i

l

k  is the jl -th collocation point in the ik -th  dimension, L
j

i

l

k  is the Lagrange poly-
nomial associated with this point, and ⊗  means the tensor product. By using one 
index to renumber all terms in (10.3.59), we have expansion

 (10.3.60)

whereM M M M
m

=
1 2
 , and  L

j P,
( )x , a multidimensional Lagrange polynomial 

associated with point x
j
, is a tensor product of one-dimensional Lagrange polyno-

mials (10.3.54). It can be obtained with exactly the same process as that used to 
derive the multidimensional Hermite polynomials from its one-dimensional form 
in (10.3.35).

Again, the multidimensional stochastic interpolation equation (10.3.60) has the 
same form as the multidimensional PCE (10.3.38). In fact, they are closely related 
but different. In PCE, the coefficients of expansion need to be determined, while in 
the SCM the collocation points need to be determined. After the roots of PCE bases 
are assigned as the collocation points, (10.3.60) is completely determined. Because 
of the use of a tensor product, the number of collocation points needed for interpola-
tion (i.e., the number of required function evaluations) increases exponentially with 
the increase of dimensions. For example, when the required order of approximation 
is n = 5  and the number of random dimensions is m = 10 , the number of colloca-
tion points generated by the tensor product will be 60466176 . Fortunately, we do 
not need so many collocation points. Points that contribute less to the accuracy of 
the estimation should be discarded.

Using Sparse Grids
Sparse grid method has been proposed as an alternative to the full tensor product 
method for high-dimensional random space (Fig. 10.6). It is based on the linear 
combination of tensor products using an integration formula originally proposed 
by Russian mathematician Smolyak (1963). The isotropic Smolyak formula for ap-
proximating a dependent variable u  in an m-dimensional space is

 (10.3.61)

where w  denotes the level of the Smolyak grid (or the depth of the interpolation), 
i = ( , , )i i

m1
 , with each index representing the number of collocation points used 

for each dimension, and i = + +i i
m1

 . Smolyak’s work did not attract much 
attention until Barthelmann et al. (2000) proved that Smolyak’s formula is optimal 
and is exact for all complete polynomials of order w , provided that nested grids are 
used. The level parameter of Smolyak grids thus represents the order of complete 
polynomials that can be interpolated.
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To evaluate 
,

( )
w m

u , we only need the knowledge of model outputs at colloca-
tion points of the following sparse grid

 (10.3.62)

where vi i
mi
i= ⊂ −{ , , } [ , ]x x

1
1 1  denotes a set of collocation points used by i .

The collocation points for constructing Smolyak sparse grids can be generated 
using several rules. One of the most commonly used is the Clenshaw–Curtis rule, 
for which the collocations are extrema of Chebyshev polynomials and are given for 
any choice of M

i
 as (Xiu and Hesthaven 2005)

 (10.3.63)

For the special case of Mi
= 1 , only one collocation point is needed (i.e., x1 0= ). 

The number of collocation points grows at each Clenshaw–Curtis grid level accord-
ing to

 (10.3.64)

With the particular growth rule given by (10.3.64), we obtain a nested set of abscis-
sae, namely  ( , ) ( , )w m w m⊂ +1 . The Clensaw-Curtis rule is appealing because 
its nestedness leads to computational savings in addition to the sparseness provided 
by the Smolyak construction.

After the number of required collocation points is reduced significantly, we can 
use the metamodel (̂ )u x  in (10.3.55) (or its counterpart  in (10.3.60) for the mul-
tidimensional case) to find the statistics of u( )x , such as its mean and variance. 
Moreover, we can simply use the function values evaluated at the collocation points 
to calculate sample mean and variance, or even to generate a histogram.

Algorithms for constructing sparse grids have been extensively studied. More 
in-depth discussion on Smolyak sparse grids can be found in Nobile et al. (2008) 
and Ma and Zabaras (2009). Numerical examples can be found in (Ma and Zabaras 
2009; Zhang et al. 2013; Ganapathysubramanian and Zabaras 2007). A Matlab tool-
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box for constructing sparse grids, SPINTERP, has been developed by Klimke and 
Wohlmuth (2005). A C++ library for performing sparse grids computations is avail-
able in the UQ framework DAKOTA (Eldred et al. 2007).

10.3.3.3 Numerical integration for PCE

Let us return to the nonintrusive method for evaluating the coefficients of PCE 
by numerical integration. Gaussian quadrature is a natural option for this purpose 
because it is also based on polynomial approximation. Detailed discussions on this 
topic can be found in many text books (e.g., Davis and Rabinowitz 2007; Stoer and 
Bulirsch 2002). The general form of the one-dimensional Gaussian quadrature rule 
is

 (10.3.65)

where f w( ) ( )x x  is the integrand,w( )x is a weighting function. The integral is 
approximated by a linear combination of function values f

j
( )x  at M Gaussian 

(quadrature) points x
j
 with weights w j Mj ( , , , )= 1 2 , and the accuracy of ap-

proximation depends on the number of terms M. The fundamental theorem of the 
Gaussian quadrature states that the optimal abscissae of the M quadrature points 
should be the roots of an M-order orthogonal polynomial that matches the weight-
ing function (or the optimal one for the weighting function) and the quadrature 
weights (w

j
) are derived from Lagrange interpolation under the requirement that 

(10.3.65) becomes exact when f ( )x  is a polynomial with a degree up to 2 1M - .
When the Gaussian quadrature (10.3.65) is used for one-dimensional PCE coef-

ficient estimation in (10.3.14), f ( )x  becomes u
i

( ) ( )ξ φ ξ , the probability distribu-
tion p( )x plays the role of weighting function w( )x , and the optimal polynomial can 
be found according to the given p( )x . For example, we can use Hermite polynomi-
als for Gaussian distribution over the interval ( , )−∞ +∞  and Legendre polynomi-
als for uniform distribution over the interval( , )− +1 1 . Note that if the order of the 
PCE of u( )x  is n , then the order of f ( )x  could reach 2n . Therefore, in order to 
achieve the nth order estimation accuracy, we have to use the roots of ( )n +1 -th 
order polynomials as the Gaussian quadrature points.

To estimate the coefficients of m-dimensional PCE, the m-dimensional integral 
in (10.3.43) has to be calculated. We can use the tensor product approach used 
in the above to derive the multidimensional Gaussian quadrature formula from its 
one-dimensional form. Let us rewrite (10.3.65) as an integral operator for the ith 
dimension

 (10.3.66)

f w d f w
a

b

j j
j

M

( ) ( ) ( ) ,ξ ξ ξ ξ∫ ∑≅
=1

 i
j
i

j
i

j

M

f f w
i

[ ( )] ( ) .x x=
=
∑

1



446 10 Model Uncertainty Quantification

Then, we have the following m-dimensional Gaussian quadrature formula

 (10.3.67)

For integration of (10.3.43), w p p p p
m

( ) ( ) ( ) ( ) ( )x x= = x x x
1 2

 . For isotropic case, 
the number of Gaussian points and their abscissae will be the same for all dimen-
sions. The total number of Gaussian points needed in the m-dimensional tensor 
product would be M Nm> , where N is the order of the PCE. When m is small, 
(10.3.67) can be used as a nonintrusive method for PCE estimation; when m is large, 
however, we have to use the nested Smolyak sparse grids introduced above to com-
plete the numerical integration with much smaller number of collocation points.

10.3.3.4 Regression for PCE

Let us return to the nonintrusive method of using regression to estimate the coef-
ficients of PCE. Random sampling or more efficient stratified sampling techniques 
can be used to generate sampling points in (10.3.53) (Reagan et al. 2003). For ex-
ample, LHS can be used to generate samples drawn from equiprobable partitioning 
of the probability space (see Sect. 10.1.4). It is recommended that the number of 
collocation points should be at least twice of the number of terms in PCE, (i.e., 
M N> +2 1( ) ) (Hosder et al. 2007). After forward solutions in (10.3.52) are ob-
tained, (10.3.53) is turned into an overdetermined system

 (10.3.68)

All PCE coefficients can then be solved from this system.

The Probability Collocation Method (PCM) This method uses roots of orthog-
onal polynomials as sampling (or collocation) points to construct a determined, 
instead of an overdetermined system (i.e., M N= +1  in (10.3.68)) (Li and Zhang 
2007; Tang et al. 2007). The collocation points are chosen from the roots of poly-
nomials at one degree higher than that used in the PCE of (̂ )u x . As an example, 
for second-order PCE using Hermite polynomials, the collocation points are chosen 
from the roots of the third-order Hermite polynomial x x3 3- , namely, - 3 0 3, , . 
Each collocation point is a permutation of these roots for each random variable. The 
number of possible permutations is ( )n m+1 , which is typically much greater than 
the number of unknowns (N +1 ). Therefore, only a subset of collocation points is 
selected in a way that ensures the resulting coefficient matrix stays full rank.
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Li and Zhang (2007) suggested a heuristic scheme for selecting collocation 
points, in which roots corresponding to high probability regions in each dimension 
are selected first before moving to other combinations involving lower probability 
regions. Thus, among all three roots in the third-order Hermite polynomial men-
tioned above, zero corresponds to the highest probability region of the standard 
Gaussian distribution and should be selected before the other two. Each time before 
a new collocation point is added, the resulting matrix is tested to ensure it remains 
full row rank. Otherwise, the new point is discarded and another combination is 
checked. The process is repeated until N +1  collocation points are selected. Ob-
viously, PCM needs less collocation points than other methods of PCE. Critiques 
of this approach are that it has no explicit control on approximation error and the 
resulting solution may be nonunique. This issue can be especially problematic for 
low-order expansion when fewer points are involved. In this case, the truncation 
error (i.e., the e  term in (10.3.53)), may cause significant estimation error. The 
other potential problem is the computational time required to check the matrix rank, 
which becomes prohibitive for high dimensions. Thus, the random dimensions of 
UQ problems considered are usually limited to be a small number (~10).

Example 10.7 Solving a One-Dimensional Problem Using PCM
Let us consider one-dimensional groundwater flow under confined conditions

 (10.3.69)

where h x t( , )  is hydraulic head, S = × −1 10 4  is storativity [-], Th  is transmissivity 
[L2/T], and the total domain length is l = 100 [L]. The domain is divided into three 
equal-length zones. A pumping well is placed at the boundary between zone 1 and 
2, and an injection well is placed at the boundary between zone 2 and 3 (Fig. 10.7). 
The pumping/injection rates are also labeled in Fig. 10.7. For illustration purposes, 
we assume that hydraulic conductivity values in all three zones are independent of 
each other. The random dimension for our problem is thus m = 3 .

Assuming that T
h

 of all three zones are uniformly distributed random variables, 
with their respective range of variations defined as
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Fig. 10.7  Problem settings for Example 10.10
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 (10.3.70)

We are interested in quantifying the uncertainty in hydraulic head, h x t( , ) . The 
Legendre polynomial basis will be used here because of the uniform distribution 
assumption.

Figure 10.8a shows the mean head obtained by PCM using different orders of 
polynomial expansion. For comparison, the ensemble mean obtained using 30,000 
Monte Carlo simulations is also shown (open circles) and is regarded as the “true” 
solution. For this example, the number of model runs required for orders n = 2 3 4, ,  
is 10, 20, and 35, respectively, according to Eq. (10.3.37). The mean head solution 
obtained by PCE essentially overlaps with that from the Monte Carlo simulation 
when n > 2 . Figure 10.8b compares the head variance obtained using both PCM 
and Monte Carlo simulation. The head variance obtained by PCM from the fourth-
order expansion (n = 4 ) reproduced the Monte Carlo solution well; however, sig-
nificant deviations can be observed in the other two cases.

This example shows also the importance of using matching (or optimal) basis. 
Figure 10.9a, b suggest that when Hermite basis (which is not optimal for uniform 
distribution) is used, a higher-order expansion is needed in-order to achieve the 
similar accuracy.

At last, we repeated the same exercise using the least squares method (i.e., the 
regression method) to solve an overdetermined system of equations. Figure 10.10 
shows the estimated head variance for different orders of expansion and different 
numbers of collocation points (indicated on the plot). Compared to Fig. 10.8b, we 
see that the overdetermined solutions for lower-order expansions are significantly 
improved. In summary, PCM requires a smaller number of runs, but may need a 
higher-order expansion, especially for highly nonlinear problems. On the other 
hand, the overdetermined method works well with low-order polynomial chaos 
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10 Model Uncertainty Quantification

Fig. 10.8  Comparison of a mean and b variance of hydraulic head obtained by PCM using Leg-
endre polynomial chaos and Monte Carlo simulation (open  circle)
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expansion, but usually requires at least twice (or even more) the number of runs 
than PCM does. When the computational cost is relatively low and the dimensions 
of random vector are large, we recommend that the user adopt the least squares 
method. Recently, Liao and Zhang (2014) proposed a location-based transformed 
probabilistic collocation method (xTPCM), which is shown to outperform the PCM 
for strongly nonlinear problems. The method uses a transform to map the model 
output values to a level set. 

10.4  Assessment of Model Structure Uncertainty

In Chap. 7, we considered the complicated problem of identifying model structures 
and unknown parameters simultaneously, namely, the EIP. The goal there was to 
identify an optimal model among a set of plausible models by solving a min-max 

10.4  Assessment of Model Structure Uncertainty 

Fig. 10.9  Comparison of a mean and b variance of hydraulic head obtained by PCM using Her-
mite polynomial chaos and Monte Carlo simulation (open  circle)

 

Fig. 10.10  Hydraulic head 
variance obtained using 
overdetermined PCM, where 
the order of expansion and 
number of collocation points 
( )N  are indicated on the plot
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problem and using either goodness-of-fit criterion or model selection criterion (e.g., 
AIC or BIC). There are situations, however, in which no single model exhibits clear 
superiority over others. Such situations can arise, for example, when data and con-
ceptualization uncertainties preclude selection of a single best model or, in the case 
of environmental management, when multiple working hypotheses and multiple 
competing models coexist. It may be advantageous in those situations to perform 
multimodel inference using a set of models, instead of just a single model. Such 
is the paradigm behind various model averaging techniques, which are concerned 
more about achieving the most robust outcome than about the best possible out-
come. That being said, however, prediction obtained from model averaging can 
often outperform that from a single model if the latter only explores partial model 
space. For example, we have seen in Chap. 8 that ensemble methods can be used to 
boost the performance of unstable methods such as ANN. The choice of combining 
multiple models is case-dependent and is ultimately related to how well the model 
space is represented via the selected model(s). Compared with the single model 
selection approach, an advantage of the multimodel formulation is that it naturally 
provides a framework for assessment of model uncertainty.

Breiman (1992) coined a special phase “quiet scandal of statistics” to refer to the 
lack of recognition of model selection uncertainty in the statistical inference, where 
confidence intervals were often calculated based on a calibrated single model. Al-
though the topic of combining model prediction has long been studied (Bates and 
Granger 1969; Leamer 1978), theoretical development only started to flourish in 
1990s, which are related to the Bayesian model averaging (BMA) theory (e.g., Gel-
fand and Dey 1994; Hoeting et al. 1999; Raftery 1996; Draper 1995) and MCMC 
(Besag and Green 1993; George and McCulloch 1993). Model structure identifica-
tion and uncertainty quantification also started to appear in the EWR community 
around the same era, such as in hydrologic modeling (Duan et al. 1992; Beven 
1993) and groundwater modeling (Sun and Yeh 1985; Sun 1994).

A main motivation in studying model averaging techniques is related to their 
ability to convey uncertainties in model structures. Here we distinguish between 
model structure uncertainty and the so-called deep uncertainty, which is reserved 
for describing unverifiable probabilities pertaining to long-term events (Lempert 
et al. 2006). The former is handled by assigning weights to models that describe 
the same underlying physical process and observations, but with different degrees 
of complexity. While in the case of the latter, it is often hard to construct a single 
model, not to mention multiple classes of models; therefore, the best one can do is 
to conduct a scenario analysis, with the hope that the resulting scenario set, espe-
cially the worst-case scenario, can sufficiently capture outcomes of future events in 
a manner that also minimizes the foreseen risk. Thus, although the two types of un-
certainties may both benefit from the use of multiple models, they represent differ-
ent applications. As a commonly used example, weather forecasting is often based 
on an ensemble of numerical weather forecast models, which is model averaging; 
on the other hand, global climate warming forecasts are based on multiple projec-
tions into the future that are dependent on different carbon emission scenarios.

Model averaging is an active research area and different methodologies have aris-
en from Bayesian, frequentist, and information theoretic frameworks. Interestingly, 
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EWR applications have played a prominent role in the evolvement and shaping 
of model averaging theories. In the following, we will focus on several dominant 
approaches often used in the EWR literature, including BMA, generalized linear 
unbiased estimation (GLUE), and multimodel inference.

10.4.1  Bayesian Modeling Averaging

BMA provides a general and elegant framework for incorporating both parameter 
and model structure uncertainties. It introduces a model space in addition to the 
parameter space that was introduced in Chap. 2 (Fig. 2.1) and discussed in details in 
Chaps. 4 and 7. A closed-model space, as defined in Sect. 7.1, consists of all feasible 
system models as well as the “real system” as its members. In practice, we can have 
access to at most a subset of the model space that may or may not contain the true 
model. In the extreme, information theorists completely abandon the notion of a 
“true model” because the reality is elusive, infinite-dimensional, and because mod-
eling in their eyes is only an “exercise in the approximation of explainable informa-
tion in the empirical data” (Burnham and Anderson 1998). The model construction 
process is, thus, driven either by the available data or by the planned model uses. 
We will mainly focus on the aspect of data-driven modeling in this section and turn 
to the objective-driven paradigm in Chap. 12.

Let us consider a set of K plausible models, say, { }
k k

K
=1 , where each model 


k  is in the form of the generic model given in u x=( , )q . For the time being, 

let us assume that we are able to assign a prior probability mass function P( )  on 
the model set such that

Also, we have knowledge of the prior probability mass function for parameters of 
each model, P

k k
( )q  . For ease of notation, we assume the parameter space is 

discrete. Switching to continuous parameter space is trivial. By applying the chain 
rule of conditional probability, the joint probability mass function of the model 
structure, parameter, and data can be decomposed into a product of three terms

 (10.4.1)

where d  denotes all observations. The right-hand side of (10.4.1) is a straightfor-
ward extension of the hierarchical Bayesian parameter estimation framework intro-
duced in Sect. 7.4, with the addition of model space. Therefore, BMA includes the 
hyperparameter estimation problem as a special case, in which all models share the 
same model structure, but with different hyperparameter values.

Following the data-driven paradigm, the weight of each model is quantified 
through some distance measure between data and model output (i.e., marginal 
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likelihood of the model 
k
), which is obtained by integrating over the model’s 

parameter space (Clyde and George 2004)

 (10.4.2)

where the summation is performed over the universe of parameters, Ω . The poste-
rior probability of each model under consideration is established in terms of likeli-
hood P

k
( )d   and the corresponding model prior probability P

k
( )

 (10.4.3)

Equation (10.4.3) reflects how well each model performs for the given data and in 
accordance with prior information. The posterior distribution of a random variable 
of interest, say, u, can then be expressed using the posterior model probabilities as 
weights

 (10.4.4)

Finally, the mean of BMA estimate can be obtained as a weighted sum of its mean 
value obtained under each model (Hoeting et al. 1999)

 (10.4.5)

and the associated BMA variance is

 (10.4.6)

Equations (10.4.2–10.4.6) consist of the backbone of the BMA framework which, 
although looks conceptually elegant, can be challenging and costly to implement in 
practice. In the following, we will briefly discuss some issues related to (i) the speci-
fication of model priors, P

k
( ) , (ii) calculation of model posteriors, and (iii) the ev-

er-lasting question, “what if the true model is not included in the candidate models.”

10.4.1.1 Specification of Models

We start by asking the question: Which models to include in a candidate set? As 
with any Baysesian approach, the effectiveness of BMA rests strongly on the choice 
of probability mass functions or, in the continuous case, the PDFs. Ideally, the prior 
distribution specified for parameters and models should provide a thorough repre-
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sentation of prior uncertainty. If all models are generated in a similar fashion, such 
as random realizations used in a Monte Carlo simulation, we may choose a uniform 
prior. In reality, we often have models from different model classes. By definition, 
a model class contains models with the same functional form that is parameterized 
with the same number and type of parameters.

Example 10.8 Model Classes in EWR
A large number of BMA studies in the statistical literature are concerned with mul-
tivariate regression. Here we present some examples of model classes in EWR ap-
plications. The division of model classes, as we will see from below, is by no means 
black and white.

In hydrometeorology, the concept of multimodel or ensemble prediction is wide-
ly adopted. Duan et al. (2007) and Renard et al. (2010) combined predictions of 
multiple conceptual rainfall-runoff models to quantify model structure uncertainty. 
The rainfall-runoff models considered by the authors are lumped-parameter models, 
each having different conceptualization and parameterization schemes. Thus, each 
conceptual rainfall-runoff model is considered a separate model class.

In hydrogeology, Ye et al. (2008) considered geostatistical modeling of a perme-
ability dataset. In their study, each permeability variogram model (e.g., exponential, 
power law, and spherical) is considered a separate model with its own hyperparam-
eters. Variogram models present a unique case because they represent covariance of 
the random variable under study, but not the direct causal relationship often seen in 
other BMA applications. On the other hand, variogram represents only one type of 
parameterization techniques that rely on the assumption of statistical stationarity of 
the underlying spatial field. Parameterization using any other techniques given in 
Chap. 6 may yield different model classes. Thus, Ye et al. (2008) largely dealt with 
one model class.

Singh et al. (2010) considered combining predictions of nine groundwater mod-
els. The models collected by Singh et al. (2010) are all distributed groundwater 
models solved by the code MODFLOW. Although the conceptual models reflect a 
combination of uncertainties in geologic frameworks and recharge mechanisms, the 
outcome is flux variations over the top layer and permeability variations in each of 
the numerical blocks after mapping the conceptual frameworks to the same numeri-
cal model. Therefore, on the one hand, one may argue that each model represents 
a distinct conceptualization; on the other hand, one may argue, from the numerical 
modeling perspective, that all nine models are largely from one model class (i.e., 
MODFLOW) and the authors mainly dealt with parametric uncertainty.

The few examples presented here give a glimpse of practical challenges of im-
plementing BMA, especially for distributed models. When the number of degrees 
of freedom (DOF) gets larger, model averaging can become increasingly challeng-
ing because of the inherent difficulty in enumerating and discriminating candidate 
models. ■

The first task of BMA is filtering out “meaningless” models to form a set of plau-
sible models. Failure to do so will lead to inclusion of many trivial or even wrong 
model members that could significantly “dilute” the contribution of more signifi-
cant model members. But how do we tell a “meaningless” model from a plausible 
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model? In the absence of substantive prior information, the model prior probability 
distribution is often elicited from domain experts, who may have contributed to the 
generation of models either in the same study or in similar studies. As mentioned 
before, critics of the Bayesian approach often question the objectivity of expert elic-
itation processes. Chipman et al. (2001) delineated several practical strategies for 
stepping away from a pure subjective approach. For example, one strategy involves 
constructing noninformative, semi-automatic priors and use subjective and empiri-
cal Bayes consideration only when needed. Chipman et al. (2001) recommended to 
start with a uniform prior over models and use imaginary training data to construct 
a more informative prior. In principle, such a procedure may be performed using 
historical data or data collected from analog studies.

10.4.1.2 Calculation of Posteriors

When information becomes available, we can calculate posterior model probabili-
ties. The principle underlying this step is essentially the same as that behind the 
importance-sampling filters (Chap. 9), which consists of repeated elimination and 
normalization steps. Madigan and Raftery (1994) suggested the use of Occam’s 
window method to eliminate inferior candidates for a given set of observations

 (10.4.7)

where C
 is a user-specified threshold and the nominator represents the maximum 

posterior model probability calculated using all candidate models. A potential issue 
associated with the one-pass, model-elimination procedure is that good candidates 
may be accidentally removed because of data limitations. In contrast, the sequential 
Monte Carlo approaches may be used to evolve an ensemble of models. Similarly, 
cross-validation may also be used to confirm the selection of models.

Because the model posterior PDF is rarely available in closed form for real ap-
plications, a number of MCMC schemes have been proposed to explore the model 
space. Examples include the direct simulation method (Chib 1995), the MCMC 
model composition method (MC3) (Madigan et al. 1995), the stochastic search vari-
able selection (SSVS) (George and McCulloch 1993), and the reversible jump sam-
pler (Green 1995). Various MCMC schemes differ in the specification of proposal 
distribution and the way model space and parameter space is sampled. For example, 
the popular reverse jump sampler proposed by Green (1995) jumps “between pa-
rameter subspaces of differing dimensionality” while preserving the balance within 
each move type. Thus, to move from model 

k
 with parameter q

k
 to model 

k
¢  

with parameter q
k
¢ , the acceptance probability is given as

 (10.4.8)
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where q(·)  is the proposal distribution. Furthermore, if the proposal distribution is 
separable, then the acceptance ratio is simplified to (Godsill 2001)

 (10.4.9)

One possible situation in which the proposal distribution is separable is when pa-
rameter space has a fixed dimension.

10.4.1.3 Model Averaging Without the True Model 

Bernado and Smith (1994) defined two types of model sets, the closed set and the 
open set, with the former including the true model as a member. Many practitioners 
have associated BMA with the closed-model set and regarded it as the greatest 
limitation of BMA. It is true that BMA dwells on the idea that the specification of 
prior model PDF should adequately span the model space and allow the posteriori 
information to “recover” the true model, which implies that all candidate models 
should be in the neighborhood of the “true” data-generating model to begin with. 
The reverse is often not true—a high-probability model does not necessarily imply 
that the model is close to the true model.

Hoeting et al. (1999) argued that the basic principles of BMA do not restrict the 
applicability of the method to closed-model sets—BMA simply treats the model as 
another unknown parameter. Thus, Hoeting et al. (1999) proposed an adaptive set-
ting where, at each stage, models are continuously updated and decisions are made 
to either include or exclude certain models. Such a view is exactly the one behind 
sequential Monte Carlo methods. For most practical problems in EWR, it is hard to 
define a true model because the model structure, parameter, and measurement errors 
are highly intertwined. Thus, the BMA and other model averaging methods should 
be regarded mostly as a means for propagating model uncertainty, but not a means 
for uncovering the true model.

Example 10.9 Use BMA in Ensemble Forecasting
Raftery et al. (2005) extended BMA from regression models to dynamical mod-
els for ensemble weather forecasting. Sources of uncertainty in numerical weather 
forecasts may include uncertainty under initial conditions, lateral boundary condi-
tions, model physics, as well as discretization and integration methods. The effect of 
uncertainty is manifested as bias and additive error in the forecast variables. Raftery 
et al. (2005) used the following linear regression model to relate the kth forecast, 
f
k , to observations d

where e
k

 is the additive error, a
k

 and b
k

 are bias-correction parameters. Assuming 
normal observation errors, the BMA predictive mean is the weighted mean of all 
forecasts
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in which u  is the state variable such as temperature or sea-level pressure and w
k
 are 

weights. Bias correction parameters ak  and bk , as well as weights w
k
, are estimated 

using training data on fk . The BMA predictive variance is

where s2  is the variance of the error term; the first term on the right-hand side 
accounts for between-forecast variance, and the second term accounts for within-
forecast variance.

10.4.2  Other Model Averaging Approaches

10.4.2.1 Multimodel Inference

Multimodel inference uses model selection criteria to rank competing models and 
to weigh the relative support for each one (Ajami et al. 2007; Butts et al. 2004; 
Georgakakos et al. 2004; Li and Tsai 2009; Poeter and Anderson 2005). Burnham 
and Anderson (2002) used AIC to quantify the plausibility of each model. If the AIC 
difference between the kth model and that of the best performer of all candidate 
models is defined as

 (10.4.10)

then the Akaike weight of the kth model can be computed as

 (10.4.11)

In contrast to the model posterior probability used in BMA, multimodel inference 
assigns Akaike weights to candidate models. The application of multimodel infer-
ence generally involves two steps. In the first step, a set of models are generated 
and are calibrated using the available data. In the second step, model averaging is 
performed using Akaike weights. Thus, the multimodel average of a quantity of 
interest u  is

 (10.4.12)
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where û
k

 is the estimate obtained by the kth model.

10.4.2.2 Generalized Likelihood Uncertainty Estimation (GLUE)

GLUE, introduced by Keith Beven and co-workers in a series of papers (Beven 
1993; Beven and Binley 1992; Beven and Freer 2001), provides another methodol-
ogy for model averaging. The fundamental philosophy underlying GLUE is that no 
single optimal model or parameter set exists because of structural and parameter 
uncertainties. Beven et al. coined the term “equifinality” to refer such a notion of 
nonuniquess. The goal of GLUE is to find a set of models that satisfy some condi-
tions of acceptability. Thus, for a given set of candidate models, GLUE aims to find 
behavioral models that properly reflect the uncertainties arising from the modeling 
process and that reproduce the observations (Beven and Binley 1992). In their origi-
nal paper, Beven and Binley (1992) did not specify a specific likelihood measure for 
weighing model performance. Thus, not only Bayesian type of likelihood functions, 
but also other methods for ranking model performance (Nash-Sutcliff efficiency, 
possibility) may be used.

Toward the practical use of the GLUE framework, Beven (2012) envisioned a 
six-step process:

1. Define the range of model structures to be considered.
2. Reject model structures that cannot be justified as physically feasible based on a 

priori information.
3. Define parameter ranges for each model.
4. Reject parameter combinations that cannot be justified as physically feasible a 

priori.
5. Compare the predictions of each potential model with the available observed 

data and reject any models which produce unacceptable predictions, taking 
account of the estimated error in the observations.

6. Use the remaining behavioral models to perform prediction and model uncer-
tainty analysis.

The above process indicates that the outcome of GLUE analysis is an ensemble 
of behavioral models, each associated with a likelihood value. Prediction bounds 
(confidence intervals) can be estimated in GLUE by using the CDF of the likeli-
hoods of ensemble.

The main criticism of GLUE is that a significant level of subjectivity may go into 
steps 1–4. In the extreme (but not rare) case that none of the models considered are 
selected as behavioral models, an important and potentially costly decision must be 
made regarding whether to go back and revise models or data collection plans, or to 
relax the rejection criteria.

In hydrological applications, the model calibration often hinges on the assump-
tion that past historical data provide prediction of the future. However, models that 
do not perform well may not necessarily have incorrect structures; rather, the poor 
performance may be caused by epistemic uncertainty that was not accounted for 
during calibration. In a recent review of GLUE, Beven and Binley (2013) mentioned 

10.4 Assessment of Model Structure Uncertainty
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that “the debate between GLUE and formal statistical approaches is still on-going…
with no sign of real resolution because there is no right answer to the problem of 
epistemic uncertainties.” Thus, all UQ techniques mentioned in previous sections 
are relevant to the “correct” use of GLUE in practice.

To conclude this chapter, we emphasize that UQ plays an important role in virtu-
ally all aspects of EWR modeling. Because of uncertainty involved in most applica-
tions, UQ should be regarded as an experimental design tool for guiding informa-
tion improvement, rather than the ending point of a project (Fig. 10.1).

10.5  Review Questions

 1. How important is UQ in the modeling? Use a model in your study area to show 
what kinds of uncertainty are associated with the model and how these uncer-
tainties are currently quantified.

 2. In what situations, the Monte Carlo sampling techniques will become ineffi-
cient for UQ?

 3. Give the names, definitions, and explanations of V V V V S S
i i i j i i

T, , , , , ,
,-  respec-

tively, and the relationships between them.
 4. Show the algorithm of using GSA for UQ step by step, when the model to be 

considered has two inputs q q
1 2
,{ } and three outputs u u u

1 2 3
, ,{ } .

 5. Show the algorithm of using the Morris sampling method for UQ step by step. 
How can we make the method more accurate?

 6. Explain how GSA is used to screen input factors for a given model application. 
Should the screen results be different for different model applications?

 7. How do we determine the random dimension of a model?
 8. Assume that the initial condition of the model considered in Example 10.3 de-

pends on two germs, i.e., in equation (10.3.17), let u x t g x
t

( , , , ) | ( , , )x x x x
1 2 0 1 2= = . 

(a) Find the Hermite orthogonal expansion of u x t( , ; , )x x
1 2 , and (b) outline how 

the linear regression PCE can be used to find the UQ for this model.
 9. Give a detailed description of SCM for the two-random dimensional case. (a) 

Use SCM to find the UQ for the same model in the previous question, and (b) 
describe the differences between PCE and SCM.

10. Summarize how the multimodel methods are used in practice for modeling a 
complex system without knowing its real structure. Can the existing methods 
give a reliable UQ?

10 Model Uncertainty Quantification
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Chapter 11
Optimal Experimental Design

In environmental and water resource (EWR) engineering, different types of design 
problems exist, such as operation design, monitoring design, detection design, and 
remediation design. This chapter is devoted to the subject of experimental design 
for model calibration and parameter estimation. Experimental design plays a critical 
role in model construction because the reliability of a model is mainly dependent 
on the quantity and quality of data used for its calibration. The experimental design 
thus dictates how data should be collected in field campaigns and how many ob-
servations are needed. An optimal experimental design (OED), when it is executed, 
should provide the maximum amount of information with the minimum cost. Basic 
concepts, theories, and methods of OED are well established in statistics and have 
been applied to various scientific and engineering disciplines (Silvey 1980; Pázman 
1986; Kennedy and O’Hagan 2001; Melas 2006; Atkinson et al. 2007; Fedorov and 
Hackl 1997).

In EWR fields, however, OED is still a very challenging problem because of the 
following difficulties:

• A EWR model is usually nonlinear and governed by partial differential equations 
(PDEs)

• The unknown parameters are usually distributed
• The model scale is large but the impact range of an experiment is small
• Experimental and sampling costs are high
• Observation data are often correlated

Fortunately, in most real cases, historical observation data have been collected 
based on some preliminary design, a model has been developed with the existing 
data, and the reliability of the model has been assessed. In such cases, we do not 
need a completely new design (i.e., the prospective design); instead, we only need a 
revision of the previous design (i.e., the retrospective design). When the model per-
formance is satisfactory, the new design determines how to delete some observation 
points to save operating costs. On the other hand, when the model needs improve-
ment, the new design determines how to collect more observations to decrease the 
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model uncertainty. A retrospective design is suboptimal, but is easier to make than 
a prospective one.

In this chapter, besides introducing traditional methods of OED, special con-
siderations are given to EWR modeling. Section 11.1 introduces basic concepts 
of experimental design for inversion. OED is then formulated as a multiobjective 
optimization problem. Designing an experiment for model inversion must be done 
in light of prior information because less information is needed from the experi-
ment (less costs), if we have more prior information and vice versa. Therefore, it is 
natural to consider OED in the Bayesian framework. Section 11.2 is an introduction 
to OED for linear model inversion. Alphabetic optimality criteria are derived for 
both uniform and Gaussian prior information. Section 11.3 considers the design 
of experiments for nonlinear model inversion. This is a very challenging problem 
because the optimal design for parameter estimation becomes dependent on the true 
parameter to be estimated. Bayesian and max-min robust design approaches are 
introduced in this section, but they are difficult to be applied to large-scale systems. 
Section 11.4 gives more attention to EWR systems. Instead of parameter uncer-
tainty, the cost-effectiveness and prediction reliability are considered as the major 
objectives of experimental design. We will see that the OED for model inversion 
may not be the same as the OED for model prediction.

Many topics that we have covered in previous chapters, such as single and mul-
tiobjective optimization, statistical inversion, model differentiation, parameteriza-
tion, model reduction, and uncertainty analysis are necessary knowledge for reading 
this chapter.

11.1  Basic Concepts and Formulation

11.1.1  Decision Variables of an Experimental Design

An experimental design is a plan for obtaining an “excitation-response” relationship 
from a system to be modeled. It consists of two parts: the excitation part and the 
observation part. The former makes decisions (Dexc ) on how to excite the system, 
such as changing the sink/source term and/or boundary conditions naturally or arti-
ficially; the latter makes decisions (Dobs ) on where and how to measure the system 
responses, such as specifying the locations and times to observe system states. An 
experimental design problem is thus a decision-making problem involving a set 
of design variables D D Dexc obs= { }, , as well as experimental objectives. Obser-
vation network (sensor) design is a special case of experimental design when the 
excitation part is predetermined. Note that design variables can vary continuously 
or can take only discrete values. For example, in the design of aquifer pumping 
tests, continuous variables are injection/pumping rates and discrete variables are the 
set of observation wells to be selected from all existing wells or to be drilled from 
discrete spatial locations. A variable V that depends on an experimental design D 
will be denoted either by VD  as in previous chapters or by V D( )  when D is used to 
represent the design variables.
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As shown in Fig. 11.1, once an experimental design D is executed either in the 
field or in the lab, we can use the constructed model to simulate the experimental 
process, namely, using Dexc  as model inputs and using the model outputs prescribed 
by Dobs  to compare with the observed system responses. The inversion approaches 
covered in previous chapters can then be used to calibrate the model structure and 
estimate model parameters.

Example 11.1 Experimental design for identifying mass transport parameters
In Example 2.2, the identification of mass transport parameters { },L Rα=θ  based 
on concentration measurements in a 1D flow field is considered. Here, αL  is the 
longitudinal dispersivity and R is the reactive rate coefficient. The 1D mass trans-
port model has an analytical solution C C v R x tin L( , , , , , )α , which is shown in 
Eq. (1.2.2). For this problem, the design variables include:

• Concentration of the inflow water, Cin
• Flow velocity, v
• Locations and times of measurements, ( , ),( , ), ,( , )x t x t x tn n1 1 2 2 

The measured concentration values and their corresponding model outputs can be 
represented, respectively, by

 (11.1.1)

and

 (11.1.2)

The inverse solution can be obtained by minimizing (see Sect. 3.2.2)

 (11.1.3)

where 
0θ  is prior guess and λ  is the weighting coefficient.
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Fig. 11.1  Experimental designs for inversion
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Equation (11.1.3) implies that the inverse solution is dependent on design vari-
ables. An interesting problem is thus presented: How do we make an experimental 
design such that it minimizes the uncertainty of the identified parameters?

Example 11.2 Observation design for contaminant source identification
The release history of one or more point sources in an aquifer can be recovered with 
the concentration measurements taken from downstream of the source (Gorelick 
et al. 1983; Sun et al. 2006). In Example 2.2, it was shown that the unknown m-
dimensional source strength parameter vector θ  is the solution of a linear model

 (11.1.4)

where AD  is an n m×  matrix with elements A C x tD ij j i i, ( , )= 0  and dD  is the n-
dimensional observation vector with components d C x tD i D

obs
i i, ( , )= .

When the locations and times of measurement, ( , ) | , , ,x t i ni i ={ }1 2 , are con-
sidered as the design variables, an observation network design problem is thus pre-
sented: selecting locations and times of observations such that the uncertainty of the 
identified release history is minimized.

Example 11.3 Design of a double-well injection–extraction tracer test
This experiment uses two wells, an injection well and an extraction well, to col-
lect data for inverse solution. After a steady-state flow field is established between 
the two wells, a tracer is added to the injection well, and the concentration of the 
plume is measured in the extraction well. The so-obtained concentration time series 
are then used for estimating the hydraulic conductivity K, longitudinal dispersiv-
ity αL , and transverse dispersivity αT . Decision variables of this experimental 
design include:

• Distance between the two wells
• Depths of the two wells
• Pumping and injection rates
• Tracer concentration of injected water
• Duration of the experiment
• Time to start sampling
• Sampling frequency

This problem is more complicated than the previous two examples because the 
model is governed by nonlinear PDEs and subject to model structure uncertainty. It 
needs to determine whether a 2D model or a 3D model should be used for design. 
In this case, a sensitivity-based sequential design process is needed. For a detailed 
discussion on this experiment, readers may refer to Mercer and Faust (1981), Sun 
(1996), and Dietrich and Leven (2006).

Example 11.4 Design of environmental monitoring networks
Automated environmental monitoring networks play an increasingly important role 
nowadays. A generic goal of experimental design for this case is to place sensors 

θ ,DD =A d



46311.1  Basic Concepts and Formulation 

in such a way that anomalies can be detected in a timely manner while operating 
costs are minimized. The sensor placement problem bears similarity to the classic 
warehouse siting or p-median problem in operations research (Hakimi 1964). The 
design variables include sensor locations and observation frequencies.

The common objectives of the design may include: Contaminant releases should 
be detected as early as possible, the spatial extent of an existing contaminant plume 
should be delineated as accurately as possible, and the cost of network construc-
tion and operation should be minimized. If a model has already been constructed, 
we should consider how the network can gather useful data for data assimilation 
to further improve the model. When a remediation alternative is being conducted, 
we should consider how the network can gather useful evidence for adjusting the 
alternative in time. An additional desirable performance attribute of monitoring net-
works is that it should be robust against the worst-case scenario. Because multiple 
design criteria are involved, there is not a single optimal design, but a set of Pareto 
optimal designs instead.

11.1.2  Formulation of Optimal Experimental Design

When the term OED is used, we must have one or more objectives or criteria to 
compare different designs and find the optimal one. Commonly used objectives in 
EWR modeling include, but are not limited to:

• Minimize the detection time
• Maximize spatial coverage of monitoring networks
• Minimize the model uncertainty
• Minimize the time period of model construction
• Minimize the risk of management decisions
• Minimize the cost of experimental expenses

Some objectives depend directly on the design variables D, such as the cost-effec-
tiveness, but most objectives depend indirectly on the design variables through the 
estimated model parameters θ( )  and the predicted system states ( )u , such as the 
model reliability. In general, we can use f D( )  to represent an objective of design. 
Different designs may be obtained when different design objectives are consid-
ered. Effects of different objectives may be complementary or contradictory. For 
example, increasing the number of observations can decrease the uncertainty of the 
identified parameters and probably increase the reliability of model predictions, but 
at the expense of increased experimental costs. Therefore, it is natural to consider 
OED in the framework of multiobjective decision making (e.g., Hsu and Yeh 1989; 
Knopman and Voss 1989; Meyer et al. 1994; Reed and Minsker 2004; Sun et al. 
2013; Sun 1994; Wagner 1995). In this framework, OED is defined as a solution of 
the following multiobjective optimization (MOO) problem:

 (11.1.5)
{ }1 2Minimize

subject to 0 1 2≤ =




( ), ( ), , ( )

( ) ( , , , ),
K

l

f D f D f D

g D l L
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where f D i Ki( ) | , , ,={ }1 2  are K objectives and g D l Ll ( ) | , , ,={ }1 2  are L 
constraints of the design, respectively. In practice, problem (11.1.5) may involve 
linear or nonlinear objectives and continuous or discrete design decision variables 
with high dimensionality. As a result, its solution is very challenging. Multiobjec-
tive evolutionary algorithms (MOEA) learned in Sect. 3.6 and their modifications 
are recently used to solve the multiobjective design problems (Mayer et al. 2002). 
In recent years, several MOEA algorithms have been developed for solving multi-
objective network design problems related to groundwater quality monitoring (e.g., 
Kollat and Reed 2006; Reed et al. 2013)

This chapter introduces the basic theory and methods of OED for model con-
struction, especially for distributed parameter systems. We will start from consider-
ing only a single objective (e.g., minimizing the uncertainty of inverse solutions), 
and then adding more objectives (e.g., cost-effectiveness, accuracy of model predic-
tion, and the reliability of decision making).

11.2  Experimental Design for Linear Model Inversion

11.2.1  Design with Uniform Prior Distribution

Linear model inversion (or linear regression) was considered in the Bayesian frame-
work in Chap. 4. The observation equation of a linear model, θ=u A , is given by

 (11.2.1)

where uD
obs  is the observation vector corresponding to a design D, AD  is the design 

matrix depending on design variables, and eD  is the associated observation error 
vector. In Sect. 4.2.2, we showed that if the probability distribution of eD  is Gauss-
ian and the prior probability distribution of θ  is uniform in a given region, then the 
best unbiased estimate of θ  is given by

 (11.2.2)

and the covariance matrix of estimation is

 (11.2.3)

where CD
 is the covariance matrix of the observation error vector. Further, if the 

observation errors are i. i. d., the covariance becomes C ID = σ 2  and (11.2.3) be-
comes

 (11.2.4)

= + ,obs
D D Du A eθ

1 1 1θ [(ˆ ) ] ,T T obs
D D D D D D D

− − −= A C A A C u

1 1Cov ˆ( ) ( ) ,T
D D D D

− −= A C Aθ

2 1Cov θ( ) ( .ˆ )T
D D Dσ −= A A
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The covariance Cov(ˆ )Dθ  on the right-hand side of (11.2.3) or (11.2.4) measures 
the uncertainty of estimation and, thus, can be used as a measure of performance 
of a design. Equation. (11.2.2) shows that ˆ

Dθ  can be obtained only after a design 
is conducted, data are collected, and the inverse problem is solved. But (11.2.3) or 
(11.2.4) shows that Cov(ˆ )Dθ  is independent of observation data and can be calcu-
lated for each candidate design during the design stage. As a result, the performance 
of a design can be assessed before it is actually conducted. That is why the problem 
of OED makes sense. Let us discuss the OED problem for linear regression in detail 
below.

11.2.1.1 Information Matrix

In information theory, when the observation error is normally distributed, the in-
verse of the covariance matrix Cov(ˆ )Dθ  is called the Fisher Information Matrix 
(FIM) and denoted by

 (11.2.5)

When C ID = σ 2 , we have M A A( )D D
T

D= −σ 2 . With FIM, the OED of minimiz-
ing Cov(ˆ )Dθ  becomes a problem of maximizing M( )D . In fact, FIM measures 
the information content carried by observations of a design D for the estimation 
of unknown parameters. The “size” of a matrix is measured by a monotonically 
increased scalar function φ(·)  for defining the norm of a matrix (see below). A 
design D having a larger value of [ ( )]Dφ M  means that the designed observations 
carry more information content for parameter estimation and, thus, produce more 
reliable estimation results.

11.2.1.2 Optimality Criteria

For linear model inversion, a general form of OED is given by

 (11.2.6)

where Dad{ }  is a set of admissible experiments. Different optimality criteria are 
derived by selecting different definitions of φ . Some of them are given below.

D-optimality seeks to maximize the log-determinant of M( )D  by defining φ  in 
(11.2.6) as

 (11.2.7)

Or equivalently, we can minimize log det[ ( )]M−1 D . In Sect. 4.2.1, we learned how 
to measure the uncertainty of a normally distributed parameter vector. According 

M A C A( ) .D D
T

D D= −1

{ }φ= ∈* argmax [ ( )], ,adD
D D D DM

φ[ ( )] log det[ ( )].M MD D=



466 11 Optimal Experimental Design

to Eq. (4.1.10), D-optimality maximizes the information content for parameter 
estimation or minimizes the uncertainty of the estimated parameters. Therefore, 
D-optimality is the most popular criterion of OED. A geometric interpretation of 
the D-optimality criterion is that it seeks to minimize the volume of the confidence 
ellipsoid in the design space.

A-optimality seeks to minimize the trace of M−1( )D . Thus, φ  is defined by

 (11.2.8)

The trace of a matrix is the sum of all elements on its diagonal. This means that 
A-optimality minimizes the average variance of the estimated parameters. In geo-
metric terms, A-optimality seeks to minimize the average axis length of the confi-
dence ellipsoid. Unlike D-optimality, A-optimality ignores the correlations among 
the identified parameters.

E-optimality seeks to maximize the minimum eigenvalues of M( )D . Thus in 
E-optimality φ  is defined by

 (11.2.9)

We see that E-optimality is equivalent to minimizing the largest variance of the es-
timated parameters. In geometric terms, it seeks to minimize the largest axis length 
of the confidence ellipsoid. There are effective algorithms for E-optimality that do 
not require the differentiability of the objective function.

T-optimality seeks to maximize the trace of M( )D  and the corresponding φ  is

 (11.2.10)

T-optimality is an alternative to A-optimality, but easier to compute.
C-optimality seeks to minimize the variance of a linear combination g T= c θθ , 

where c is an m-dimensional vector. Because

C-optimality thus seeks to maximize

 (11.2.11)

For detailed discussions on these and more alphabetic optimality criteria, readers 
may refer to Silvey (1980), Pázman (1986), Atkinson et al. (2007), Pronzato (2008), 
and Franceschini and Macchietto (2008).

φ[ ( )] [ ( )].M MD D= − −trace 1

φ λ[ ( )] [ ( )].minM MD D=

φ[ ( )] [ ( )].M MD D= trace

1T −=min ( ) min [ ) ,ˆ ( ]T
DVar Dc c M cθ

φ[ ( )] [ ( )] .M c M cD DT= − −1
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11.2.1.3 Algorithms of OED for Linear Model Inversion

The OED problem (11.2.6) requires one to search for the best design among a very 
large number of possible designs. For instance, in an observation network design 
problem, design variables D may consist of the number, locations, and/or times of 
observations. The number of candidates grows exponentially as the total number 
of sensors/samples (i.e., rows in A) increases. This subset selection problem be-
longs to a type of combinatorial optimization problems, which are NP-hard and not 
amendable for exact solutions. For practical purposes, we are more interested in 
near-optimal solutions that can be obtained in meaningful computational time, but 
have guaranteed performance with respect to the chosen objective function. Classic 
approaches to the OED problem can be classified in three categories: convex op-
timization, greedy search methods, and heuristic methods. For instance, a solution 
of the OED problem (11.2.6) may be obtained by a local optimization algorithm 
(Sect. 2.3) or by a global optimization/search algorithm (Sect. 3.6), depending on 
whether the underlying objective function F D D( ) [ ( )]= φ M  is convex. In recent 
years, there is a renewed interest in using greedy methods to obtain near-optimal 
solutions (Krause and Guestrin 2007; Shamaiah et al. 2010; Krause et al. 2008). 
We will provide a brief survey of methods at the end of this subsection. Generally 
speaking, an OED algorithm consists of the following steps:

1. Generate an initial design with K observations, for which the locations and/or 
times of observation points ( xK ) are predetermined (e.g., to comply with regu-
lations). Alternatively, the initial set may be empty.

2. Optimize xK  according to the selected optimality criterion. For example, when 
D-optimality is used, the optimal xK*  are determined by

 (11.2.12)

3. Check if log det[ ( )]*M xK  is large enough such that the uncertainty of the estima-
tion is less than a predetermined value or such that the number of samples needed 
is met. If yes, stop.

4. Otherwise, increase the number of observations K and return to step 2.

In order to reduce the computational effort required for solving (11.2.12), xK  can 
be regarded as K movable points in the given spatial/temporal region. In each it-
eration, all or a part of them are moved to new locations to increase the value of 
log det[ ( )]M xK  as much as possible based on sensitivity analysis. This process is 
very similar to the adaptive model structure optimization algorithm described in 
Sect. 7.2, where the objective function (fitting residual) is minimized gradually by 
adding new Voronoi points and moving all or a part of them to their optimum loca-
tions. Network structure optimization is a type of structure optimization problem 
and is, thus, combinatorial in nature.

Similar design problems have been studied in environmental sensing. Krause 
and Guestrin (2007) showed that by gradually adding sensors that increase the sens-
ing quality of the network the most, a near-optimal solution can be obtained and, 

log det=* argmax [ ( )].
K

K Kx
x M x



468 11 Optimal Experimental Design

thus, more efficient greedy search algorithm like the one we delineated in the above 
can be used; the authors referred to problems amendable to such treatment as sub-
modular problems.

Let   be a finite set. For any two subsets A B⊆ ⊂   and an element i B∈  \ , 
a function F is submodular if it satisfies

 (11.2.13)

An example of submodular functions is the mutual information that is defined as the 
difference between two entropy measures (e.g., Shannon entropy)

where DA  and DU  are two sets of decision variables (e.g., potential monitoring 
well locations) and F A( )  measures the decrease in uncertainty in set U (e.g., unob-
served locations) because of the observations of set A (e.g., observed locations). The 
submodular function is attractive to be used as a cost function for greedy search. It 
can be shown that the greedy maximization of nondecreasing submodular functions 
is near-optimal and it guarantees a constant-factor approximation ( / )1 1− e  of the 
optimal solution in polynomial time (Nemhauser et al. 1978). Substituting the value 
e = 2 718. , we see that the greedy search gives an approximate solution that is at 
least 63 % of the optimal solution. Examples of submodular functions for environ-
mental sensing problems are given in Krause et al. (2008).

OED algorithms have been studied for many years. Variations and modifications 
of the above algorithm, as well as codes can be found, for example, in Atkinson 
et al. (2007).

Example 11.5 Optimal design for the source identification problem
Let us revisit the source identification problem considered in Example 2.3, in 
which a linear regression problem was formulated to identify the unknown source 
strengths in seven periods. As already mentioned in Example 11.2, the goal of our 
OED problem is to determine the best sampling locations and times. The design 
variables consist of the ranges of potential observation well locations 1 2 9…{ , , , }
[L] and observation times t = 1  to 16 [T] in 0.5 [T] intervals. The total number of 
possible samples is thus 279. We first generate a 279 7×  design matrix G using the 
unit-pulse method described in Example 2.3. Assuming that we only have a budget 
for collecting a small number of samples, we want to maximize the D-optimality 
criterion to find a subset of rows from G. It has been shown that the objective func-
tion (11.17) is monotone submodular (Shamaiah et al. 2010) and, thus, we can apply 
a greedy search algorithm. Starting from an empty set, we gradually select rows 
from G (without replacement) to maximize the D-optimality of the subset, until the 
number of desired samples is reached.

Figures 11.2a and b show the optimal designs for 10- and 30-point sam-
pling plans, respectively. For reference, we also show the actual concentration  

F A i F A F B i F B( ) ( ) ( ) ( ).+ − ≥ + −

F A D D DU U A( ) ( ) ( ),= − 
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contour generated using the true source vector, which exhibits a bimodal shape. 
In Fig. 11.2a, it is interesting to notice that the first few sampling points selected 
are late-time samples collected from the far field, although subsequently selected 
points are closer to the source. This is partly because the far-field late-time samples 
provide more information about the entire plume, but the near-field samples contain 
more information about the shape of the plume (therefore, source characteristics) 
before the plume is smoothed out. The matrix condition numbers of the selected 
design matrix are 2.56 and 2.66, respectively, for the two cases.

The example also shows that it is useful to have some knowledge of the topogra-
phy of the design space. When the dimension of the design space is low, the easiest 
way is to visualize it through pairwise contour map as we have done in Fig. 11.2.

Fig. 11.2  Contour of the concentration field as a function of observation well locations and times. 
The open circles are selected sample points for a 10- and b 30-point sampling design
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11.2.1.4 Choosing a Criterion

Note that OED is nonunique. Different optimality criteria generally lead to different 
designs, although their results may be equivalent under certain conditions (Atkin-
son et al. 2007). Each criterion has advantages but also disadvantages, and the best 
choice is often problem dependent (Franceschini and Macchietto 2008). For exam-
ple, Nordqvist (2000) shows that D-optimality is the best one for identifying mass 
transport parameters, E-optimality can give similar results with less computational 
effort, but T-optimality produces a significantly different design. Telen et al. (2012) 
noted that the widely used D-optimality is not always the best tool for different case 
studies; different criteria may even be in conflict. Ranieri et al. (2014) showed that 
the optimality criteria maximizing one objective (e.g., maximal entropy) may not 
yield the best design for other objectives (e.g., mean squared error, MSE). Since 
there is no single optimal criterion, a new approach is thus presented in the frame-
work of multiobjective optimization, in which several criteria are combined and the 
final design is found by a trade-off process.

11.2.2  Design with Gaussian Prior Distribution

We showed in Sect. 4.2.3 that when the prior probability distribution of θ  is Gauss-
ian

the parameter estimated from (11.2.1) is

 (11.2.14)

and the covariance matrix of estimation is given by

 (11.2.15)

where the information matrix M A C A( )D D
T

D D= −1  (same as in (11.2.5)) measures 
the information content provided by data and the covariance CP  measures the un-
certainty of prior information. To decrease the uncertainty of the estimated param-
eter, we can either increase the norm of M( )D  or decrease the norm of CP . The 
OED definition (11.2.6) now is modified to

 (11.2.16)

This is often called the Bayesian OED, in which prior information is incorporated 
explicitly into the objective function. In particular, the Bayesian D-optimality and 
Bayesian A-optimality criteria are given, respectively, by

0 0( ) ~ ( , ),Pp N Cθ θ

1 1 1 1 1− − − − −= + + 0( ) ( ),ˆ T T obs
D D D D P D D D PA C A C A C u Cθ θ

1 1 1 1 1Cov θ( ) ( ) ( ] ,ˆ [ )T
D D D D P PD− − − − −= + = +A C A C M C

{ }1* argmax [ ( ) ], .B P adD
D D D Dφ −= + ∈M C
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 (11.2.17)

and

 (11.2.18)

In practice, the prior covariance matrix CP
 cannot be known accurately. Bayesian 

OED is often used in such a situation that an inversion process is already completed 
with the existing data and the covariance matrix of the posterior distribution is ob-
tained, but the uncertainty of estimation is unsatisfied; and a new design is thus 
required to increase the reliability of the estimated parameters. In this case, the pos-
terior distribution of the previous estimation (if it is close to normal) can be used as 
the prior distribution for the new design. From the point of view of regularization, 
CP
−1  in (11.2.16) may be replaced by a general term αR , where α  is a weighting 

coefficient and matrix R  describes the reliability of the available prior information.

11.3  Experimental Design for Nonlinear Model Inversion

11.3.1  Linearization

Although the theory and methods of OED for linear model inversion have been well 
established, OED for nonlinear model inversion is still a very challenging problem. 
As shown below, the OED criteria for nonlinear model inversion depend on the 
parameter vector, which is unknown during the design stage. As a result, the uncer-
tainty of estimation cannot be known during the design stage.

11.3.1.1 Linearization

The observation equation based on a design D for inversion of a nonlinear mod-
el, θ( ),u u=  is given by

 (11.3.1)

After the model is linearized around the unknown parameter vector θ,  this equation 
can be replaced approximately by (Sect. 2.3)

 (11.3.2)

where θ θ( ) [ / ]D D= ∂ ∂J u  is the sensitivity matrix and θ θ( )D D D D= − +r u J e . 
The above equation has the same form as (11.2.1) if AD  is replaced by JD  and eD  
is replaced by rD . When the linearization error can be ignored, we have r eD D= .

D D D DBD D P ad
* argmax log det[ ( ) ], ,= + ∈{ }−M C 1

D D D DBA D P ad
* argmin [ ( ) ] , .= + ∈{ }− −traceM C 1 1

θ( ) .obs
D D D= +u u e

θ ,obs
D D D= +u J r
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The covariance of estimation in (11.2.3) now becomes

 (11.3.3)

Its inverse matrix defines the FIM of the nonlinear model

 (11.3.4)

which is dependent on the unknown parameter θ. When C ID = σ 2 ,  we have

 (11.3.5)

Minimizing the uncertainty of the estimated parameter vector is equivalent to maxi-
mizing a norm of FIM. The OED defined in (11.2.6) can now be rewritten as

 (11.3.6)

After linearization, we can apply the same optimality criteria for linear model in-
version to nonlinear model inversion after replacing by θ( )D DA J . For example, 
the D-optimality is defined by θ θ[ ( , )] log det[ ( , )]D Dφ =M M  and the T-optimality 
is defined by traceθ θ[ ( , )] [ ( , )]D Dφ =M M . T-optimality is also called the sensitiv-
ity criterion of design because the trace of FIM is the sum of squared sensitivities 
of observations to the identified parameters at the observation points. In fact, from 
(11.3.5), we have

 (11.3.7)

where u i nD i, | , , ,={ }1 2  are components of θ( )Du  and { }1 2θ = | , , ,j j m  are 
components of θ, respectively. This criterion tells us that the observation points 
should be placed at observation locations that are the most sensitive to the identified 
parameters.

11.3.1.2 Local Optimal Design

When an initial guess 0θ  is available from prior information or previous estimation, 
we can use it to replace the unknown parameter in (11.3.6) to make a design. Such 
a design is called a local OED because it is optimal only when the true parameter 
is close to 0θ . Toward this end, we can sample the admissible region randomly or 
based on a prior distribution to find how sensitive a local optimal design is with 
respect to the parameter variability (the Monte Carlo method). Surveys of local op-
timal design approaches are provided in Ford et al. (1989); Chaloner and Verdinelli 
(1995), and Papalambros and Wilde (2000).

1Cov θ θ θ( ) [ ( ) ( )ˆ ] .T
D D D D

− −= 1J C J

θ θ θ( , ) ( ) ( ),D D DD −= T 1M J C J

2σ −=( , ) ( ) ( ).T
D DDM J Jθ θ θ

{ }θ θ*( ) argmax [ ( , )], .adD
D D D Dφ= ∈M

2

2
1 1

1trace θ ,[ ( , )] ,
n m

D i

ji j

u
D

θσ = =

 ∂
=  

∂ 
∑∑M
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11.3.1.3 Sequential Design

When 0θ  is not close to θ  and the FIM is sensitive to 
0θ , a local OED may be far 

from the optimal one (Ford et al. 1989). In this case, a sequential design process can 
be used if it is feasible (Atkinson et al. 2007; Silvey 1980). This process consists of 
the following steps:

1. Use an initial guess 
0θ  to find a local OED.

2. Conduct the design and collect observation data accordingly.
3. Solve the inverse problem to obtain an updated parameter vector 1θ .
4. If −1 0θ θ  is less than a predetermined tolerance, stop; otherwise, replace 0θ  

by 1θ  and return to step 1.

The sequential design process requires conducting a sequence of experiments in the 
field that may not be feasible because of the high cost and long time period. In EWR 
fields, sequential design is used as a retrospective design process to modify the 
observation system and update the simulation model alternatively. The concept is 
similar to that behind the Kalman filter (Chap. 9) and active learning theory. In the 
latter, a learning algorithm is allowed to choose data or make queries from which it 
learns such that the algorithm will perform better with less training (Settles 2010). 
Sequential design is a “work assumption” used in the study of network design and 
remediation design.

When making a prospective design, however, we prefer to make the design more 
robust or less dependent on the unknown parameter vector. As shown in the fol-
lowing subsections, robust design approaches are developed in both statistical and 
deterministic frameworks.

11.3.2  Bayesian Experimental Design

11.3.2.1 Expectation-Based Experimental Design

During the design stage, all θ  in the admissible region Θad
 (determined by prior 

information) have certain probability to be the true parameter. Thus, for a non-
linear model, we have a set of objective functions { }φ ∈ Θ[ ( , )] | .adDM θ θ  If the 
probability density function (PDF) θ( )p  of θ  is available, we can use it as a weight 
function to find the expectation (probability average) of the function set,

 (11.3.8)

We have mentioned that, for nonlinear model inversion, the uncertainty of the esti-
mation cannot be known before the inverse problem is solved. But with (11.3.8), we 
can find the expected value of uncertainty during the design stage. In other words, 
the dependence on the unknown parameter is marginalized out in (11.3.8). The op-
timal design under probability average is defined by

{ }φ φ
Θ

= ∫[ ( , )] [ ( , )] ( ) .
ad

E D D dM M pθ θ θ θ θ
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 (11.3.9)

In particular, the D-optimality under probability average is

 (11.3.10)

Other optimality criteria under expectation can be derived similarly by choosing 
different φ(·) . Their performances, however, are compared only for simple nonlin-
ear models with a few unknown scalar parameters (Walter and Pronzato 1997; Foo 
et al. 2012; Uciński 2005).

Note that design (11.3.9) is independent of any individual θ  and, thus, is a robust 
design. But, on the other hand, it is not the optimal one for all θ . Because the true 
probability distribution θ( )p  is unknown during the design stage, we have to use a 
prior distribution to replace it in the calculation of (11.3.8). If the prior distribution 
is not concentrated to the true parameter vector, design (11.3.9) may be far from the 
optimal one. In practice, the Bayesian experimental design is often used as part of a 
closed-loop or sequential design process: After an inverse solution and its posterior 
distribution are obtained from the existing data, we want to design an experiment 
to collect new data to decrease the uncertainty of the estimated parameters through 
data assimilation (Chap. 9). In this case, the posterior distribution can be used as 

θ( )p  in (11.3.8) for the design of the next step. This means that the expectation-
based design method is more suitable to be used in a retrospective manner to make 
the new design robust.

Major steps of solving problem (11.3.9) include:

1. Select an optimality criterion φ(·) .
2. Determine a probability distribution θ( )p  as described above.
3. Solve the optimization problem (11.3.9). Assume that the design currently 

searched by the optimization method is D0 .
4. In order to find the value of objective function at D0  (i.e., { }0φ[ ( , )]E DMθ θ ), a 

Markov Chain Monte Carlo (MCMC) numerical integration method (Sect. 4.3) 
is used to calculate (11.3.8) for design D0 . This step includes sampling L param-
eter vectors { }1 2= | , , ,l l Lθ  and performing the following substeps:

 For l L= 1 2, , , ,

 do

 –  Use a model differentiation method (Chap. 5) to calculate the sensitivity ma-
trix 

0
θ( )DJ  evaluated at 

lθ , which is denoted by 0( , )lDJ θ . The forward 
problem must be solved many times during this process to generate the model 
outputs corresponding to design D0 .

 – Calculate 1
0 0 0

−=( , ) ( , ) ( , ).T
l l D D lD D DM J C Jθ θ θ

 – Calculate the value 0( , ) ( )l lD pM θ θ .

The expectation { }0φ[ ( , )]E DMθ θ  is obtained from (11.3.8).

{ } { }θ θ* argmax [ ( , )] , .E adD
D E D D Dφ= ∈M

{ } { }detθ θ* argmax log [( , )] , .ED adD
D E D D D= ∈
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5. Determine the convergence of the iteration process for solving (11.3.9). If yes, 
stop and use D DE0 as

* .  Otherwise, find the next candidate design D1  according 
to the optimization algorithm, replace D D0 1by , and return to step 4.

In this process, an m-dimensional integration in (11.3.8) must be calculated repeat-
edly that requires the calculation of sensitivity matrices for each candidate design 
and multiple samples of the unknown parameter vector. Although the MCMC sam-
pling methods introduced in Sect. 4.3 can be used here as a useful tool for numerical 
integration, the total computational effort becomes infeasible when the number of 
the unknown parameters is large or the number of the design variables is large.

11.3.2.2 General Bayesian Experimental Design

In the general form of the Bayesian experimental design, the usefulness of an ex-
periment for a given objective is described by a utility function ( , , )U D yθ , where 
D is the design variable vector, θ  is the unknown parameter vector, and y  is the 
vector of observation data. Utility, a concept originated from economics, provides 
a quantitative measure of the satisfaction of a customer after he/she receives certain 
goods or services. In the current context, the utility function quantifies the utility 
of a design from the perspective of the designer. Objectives of the design could be 
parameter estimation, state prediction, system management, and model discrimina-
tion. We see that the design for a linear model inversion with Gaussian prior distri-
bution (Sect. 11.2.2) and the abovementioned expectation-based design are special 
cases of this general framework. According to Lindley (1972), a good way to design 
experiments is to select a design that maximizes the expected utility, which has the 
following general form

 (11.3.11)

The optimal design seeks to maximize the expected utility

 (11.3.12)

When θ θ( , , ) [ ( , )]U D Dφ=y M , (11.3.11) reduces to (11.3.8), and the Bayesian de-
sign (11.3.12) becomes DE

*  in (11.3.9). When =( , , ) log[ ( | )]U D p Dyθ θ , (11.3.11) 
becomes the information content defined in Sect. 4.1.2. Furthermore, as shown in 
Eq. (4.10), when θ( | )p D  is Gaussian, we have

 (11.3.13)

θ θ θ[ ( )] ( , , ) ( , | ) .
adY

EU D U D D d
Θ

= ∫ ∫ y p y dy

{ }* argmax [ ( )], .B adD
D EU D D D= ∈

11 2 Cov
2 2

θ[ ( )] ( log ) log det[ ( ) .ˆ ]D

m
EU D π= − + −
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According to (11.2.15), in this case, design (11.3.12) becomes the Bayesian D-op-
timal design DBD

*  in (11.2.27).
When θ θ θ θ θˆ( , , ) ( ) ( )ˆT

D DU D = − − −y A , here A  is an asymmetric non-
negative definite matrix, and θ( | )p D  is Gaussian, integration of (11.3.11) gives 

trace Cov θ[ ( )] [ (ˆ )]DEU D = − A . In this case, when A I= , design (11.3.12) becomes 
the Bayesian A-optimal design DBA

*  in (11.2.18).
When A cc= T , we have EU D T[ ( )] ( )ˆ= −c cDCov θθ  and design (11.3.12) be-

comes the Bayesian C-optimal design

 (11.3.14)

For a uniform prior distribution, (11.3.14) becomes the C-optimal design in 
(11.2.11).

In summary, all criteria of OED, for either linear model inversion or nonlinear 
model inversion, can be derived in the framework of the Bayesian experimental 
design (Chaloner and Verdinelli 1995). The major steps used for solving problems 
(11.3.9) and (11.3.12) are the same, but the latter may become more complicated. A 
major challenge associated with Bayesian experimental design is the lack of effec-
tive algorithms. Reviews of recent developments in this area, including metamod-
eling-based design techniques for reducing computational demand, can be found 
in Wang and Shan (2007), Shan and Wang (2010), Huan and Marzouk (2013), and 
Brochu et al. (2010). Another problem associated with the Bayesian experimental 
design is its reliability. When prior information assigns a small probability to the 
true parameter, an inferior design will be generated and the data collected according 
to such a design will make the inverse solution unreliable. For applications having 
low tolerance to such risks, the designer may turn to the following max-min robust 
design approach.

11.3.3  Robust Experimental Design

Robust experimental design for nonlinear model inversion is an acceptable design 
for the identification of all parameters in a given region. It is based on the philoso-
phy of optimizing against the worst-case scenario. When there are uncertainties in 
model structure and model parameters, the concept of robustness is often used for 
experimental design and system control (Steinberg and Hunter 1984; Pronzato and 
Walter 1988; Rojas et al. 2007; Dror and Steinberg 2006). To date, studies and ap-
plications of robust experimental design are still very limited in the EWR fields 
(Uciński 2005; Sun and Yeh 2007).

The max-min robust experimental design is defined by

{ } { }1 1* argmax [ ( ) ] , .T
BC P adD

D D D D− −= − + ∈c M C c
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 (11.3.15)

where Θad{ }  is an admissible region of θθ determined by prior information. The 
above max-min problem can be rewritten as

 (11.3.16)

and

 (11.3.17)

where θD
  is called the worst-case parameter (WCP) associated with design D. 

From (11.3.17), θD
  has the maximum uncertainty compared with other parameters 

in the admissible region; in other words, it is the most difficult one to be identified 
for design D. From (11.3.16), robust design is the optimal design for the WCP. The 
concept of robust experimental design is now clear: The exact uncertainty of esti-
mation is unknown during the design stage, but we can make a conservative design 
to minimize its upper bound.

Although the concept of robust experimental design is relatively straightforward, 
the solution of the resulting max-min problem is not easy, unless the WCP is design-
independent (in that case, the robust design reduces to a local design). In the general 
case, when a global optimization algorithm is used to solve the maximization prob-
lem (11.3.16), for each candidate design D  the minimization problem (11.3.17) 
must be solved to find the value of objective function θ( ) [ ( , )]DF D Dφ= M  . Like 
the min-min problem discussed in Chap. 7, to make this iterative process com-
putationally feasible, Θad adD{ } { }and  must be represented by finite sets, and the 
computation effort of solving the inner minimization problem (11.3.17) must be 
significantly reduced. Prozato and Walter (1988) suggested the following relaxation 
process:

1. Choose an initial parameter vector 1θ , define the first set of representative values 
{ }1 = 1Z θ , and set k = 1 .

2. Solving the current max-min problem

 (11.3.18)

Note that the inner minimization problem is now easy to solve.

3. Solve the minimization problem

 (11.3.19)

{ } { }and 
θ

θ θ* argmax min [ ( , )], ,R d adD
D D D Dφ ∈ ∈ Θ= M

{ }θ* argmax [ ( , )],R D adD
D D D Dφ= ∈M 

{ }φ= ∈ Θ argmin [ ( , )], ,D adDM
θ

θ θ θ

{ } and 
θ

θ θargmax min [ ( , )], .k d kD
D D D Dφ= ∈ ∈M Z

{ }+1 θ
θ θ θargmin [ ( , )], .k adDφ= ∈ ΘM
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4. If +1 Z
φ φ ε

∈
≥ −[ ( , )] min [ ( , )]k k kD DM M

θ
θ θ

k

, where ε  is a small predetermined 

constant, then use Dk  as the robust experimental design; otherwise, add 1+kθ  to 

Zk , increase k by 1, and return to step 2.

Under certain assumptions, this procedure terminates after a finite number of itera-
tions (Shimizu and Aiyoshi 1980). A numerical example of using the above algo-
rithm for sensor location design of a distributed parameter system can be found in 
Uciński (2005). This algorithm will be inefficient when the number of unknown 
parameters or the number of design variables becomes large.

The algorithm presented in Körkel et al. (2004) is based on the assumption that 
the probability distribution of the unknown parameter vector is Gaussian with a 
known mean and covariance matrix, namely, 0=( ) ( , ).pp N Cθ θ  This can be con-
sidered as a prior distribution obtained by inversion using the existing data, as in the 
case of the Bayesian experimental design. The purpose is to make a robust experi-
mental design over the prior confidence ellipsoid, and (11.3.15) becomes

 (11.3.20)

Here, 1 1 2
0 0 0θ θ θ θ θ θ /[( ) ( )]

P

T
P
−− = − −

C
C  is the generalized L2 -norm and γ  is 

a positive number. In particular, when the objective function φ[ ( , )]M D θθ  is replaced 
by its first-order approximation in the prior confidence ellipsoid, the inner minimi-
zation problem can be solved explicitly, namely, we have

 (11.3.21)

The max-min robust design (11.3.20) is thus reduced to

 (11.3.22)

The right-hand side of the above equation consists of two terms: The first term is 
a local optimal design for 0θ  called “the nonrobust part” of the design; the second 
term is called the “robust part” of the design which can be seen as a penalty to the 
parameter variability. The radius γ  of the admissible region now becomes a weight 
coefficient between the two parts. This algorithm, of course, is not completely ro-
bust because of the use of first-order approximation.

In this section, major approaches of designing an experiment for nonlinear mod-
el inversion are reviewed. We should say that none of them is very satisfactory. 

{ } 0and φ γ ∈ ∈ − < 
 

max min [ ( , )], .
p

dD
D D D

C
M

θ
θ θ θ θ

0
0 0

0 0

0 0=

γ γ

φφ φ

φ γ φ

=− < − <

 ∂≈ + − ∂ 
∂+

∂
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To date, finding effective algorithms for Bayesian experimental design and robust 
experimental design is still a challenging topic (Atkinson et al. 2007; Franceschini 
and Macchietto 2008; Uciński 2005; Alaña and Theodoropoulos 2012), especially 
for distributed parameter systems and large-scale systems.

11.3.4  Interval Identifiability and Experimental Design

The ill-posed nature of the inverse problem must be considered when designing an 
experiment. In Sect. 2.2.3, we learned that without the support of sufficient data, 
the inverse solution will be nonunique and unstable. If the data collected from a 
designed experiment are insufficient, the design is unsuccessful. But, how sufficient 
is sufficient? And, can we answer this question before an experiment is actually 
conducted? The classical identifiability requires that the mapping between the in-
verse solution and observed data is an injection (i.e., one-to-one function). This 
requirement, of course, can never be satisfied in practice because of the existence of 
observation error. The quasi-identifiability defined in Chap. 2 allows the existence 
of observation error but requires the quasi-solution be unique and continuously de-
pendent on data. Finding an experiment to satisfy such a requirement may be very 
expensive, if not impossible. The interval identifiability (INI) introduced in Sun 
and Yeh (1990) does not require the uniqueness of inverse solution. Instead, it only 
requires that the identified parameter fall into an assigned region around the true 
parameter.

In this section, the concept of INI is used for finding a robust design with sig-
nificantly decreased computational effort. Moreover, if the model error can be ne-
glected, the data sufficiency problem can be addressed before the experiment is 
really conducted.

11.3.4.1 Interval Identifiability

A parameter vector ∈Pθ ad  is said to be interval identifiable for a given accuracy 
requirement ε > 0  if there is a design D that satisfies the condition below

 (11.3.23)

where ′ ∈ ,Pθ ad  and δ > 0  is a number to be assigned later. Equation (11.3.23) 
means that once the distance between ′( )Du θ  and ( )Du θ  is less than δ  in the ob-
servation space, the distance between ′θ  and θ  must be as close as required in the 
parameter space. In the study of INI, the weighted L2 -norm with wi

2 1=∑  (see 
Sect. 2.4.1) will be used for all spaces. For example, we can assign a small weight to 
a component of θ  if the required accuracy to that component is low, and assign the 

implies D δ  ε′ < − <′−( ) ( ) ,Du uθ θ θ θ
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small weight to a component of ( )Du θ  if the observation error associated with that 
component is large. Note that condition (11.3.23) is different from the continuity of 

= ( )u u θ  because the value of δ  is assigned and the value of −′( ) ( )Du uθ θD  is 
dependent on a design.

Condition (11.3.23) is equivalent to the following statement:

 (11.3.24)

But, this condition can be tested by solving the following minimization problem:

 (11.3.25)

If δ≥( )DS θ , then θ  is interval identifiable. Problem (11.3.25) can be solved by 
the Gauss–Newton method with a penalty term given by

 (11.3.26)

The concept of INI can be explained intuitively with Fig. 11.3. Region ε′ − ≤θ θ  
is an m-dimensional ellipsoid in the parameter space with center θ  and 

δ− ≤′( ) ( )Du uθ θD  is an n-dimensional ellipsoid in the state space with cen-
ter ( )Du θ . Condition (11.3.23) means that the image of the region ε′ − <θ θ  
in the observation space (shown by the dotted ellipse) must contain the region 

δ− <′( ) ( )Du uθ θD . The size of region D δ− <′( ) ( )Du uθ θ  depends on de-
sign D. It becomes smaller when the designed data provide more information and 
vice versa. After ε  and δ  are assigned, we can always modify the design to make 
the region D δ− <′( ) ( )Du uθ θ  just inside the image region corresponding to 

ε′ − <θ θ  in the observation space.

implies Dε  δ′ ′− ≥ − ≥( ) ( ) .Du uθ θ θ θ

s t  ε
′∈

′ ′= − − ≥( ) min ( ) ( ) , . . .D DS DP
u u

θ
θ θ θ θ θ

ad

2 2
2

22 2

2

where, ,

, 0

λ

ε

′ ′ ′

′

= − +

= − −′

( ) ( ) ( ) ( ),

( ) max( , ).            

D DS u u g

g

θ θ θ θ θ θ

θ θ θ θ
D

Fig. 11.3  Illustration of 
the interval identifiability 
concept
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With this geometric explanation, the INI condition for a design can be checked 
directly, for example, by finding out if the condition δ− ≥′( ) ( )Du uθ θD  is satis-
fied by all ′θ  located at the ends of each axis of the ellipsoid ε′ − ≤ .θ θ

INI is able to deal with the observation error. After a designed experiment is ac-
tually conducted, the observed data uD( )θθ  may contain the observation error eD ,

 (11.3.27)

Let η  be the upper bound of eD . If the model error can be ignored, we expect to 
find such a design D that satisfies

 (11.3.28)

A design satisfying (11.3.28) is called an INI design for identifying θ . It is a suf-
ficient design because the required reliability of INI can be assured before the de-
signed observation data are really collected. Let us show how an INI design can be 
found when there is an observation error. From the definition of INI, if there is a 
design D that can make θ  be interval identifiable for δ η= 2 , namely,

 (11.3.29)

then, for this design, once η− <′ ( ) ( )Du uθ θD  we must have

 (11.3.30)

From (11.3.29), ε′ − <θ θ  is obtained (i.e., D is an INI design for identifying θ). 
The optimal design then can be chosen from all sufficient designs based on other 
criteria, for instance, the cost-effectiveness. Note that INI requires that the observa-
tion data be sensitive enough to all components of the estimated parameter vector.

11.3.4.2 Robust INI Design 

For nonlinear model inversion, we need a robust INI design that is sufficient for 
the identification of all ad∈Pθ . As in the last subsection, we can define the worst-
case parameter (WCP) as the most difficult one to be identified in the admissible 
region. If a design is an INI design for identifying WCP, it must be an INI design 
for identifying all ad∈Pθ  and, thus, a robust INI design. From (11.3.25), WCP can 
be calculated by

 (11.3.31)

= + ( ) ( ) .D Du u eθ θD

impliesD η ε′ ′− < − <( ) ( ) .Du uθ θ θ θ

2 impliesD η ε′ < − <′−( ) ( ) ,Du uθ θ θ θ

η η δ
− ≤ − + −

< +
′

=
′  ( ) ( ) ( ) ( ) ( ) ( )

                      .
D D Du u u u u uθ θ θ θ θ θD D D

D ad= ∈ argmin ( ), .DS P
θ

θ θ θ
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In fact, we do not need to solve (11.3.31). Because the WCP for an INI design is 
the most insensitive parameter vector to the designed observations, it must be at 
an extreme point of the boundary of Pad (Hendrix and Boglárka 2010). Especially, 
when Pad  is an m-dimensional hyperbox, WCP must be located at a vertex of the 
hyperbox. In this case, if the dimension m is not high, we can simply compute and 
compare the values of ( )DS θ  at all its vertices. The vertex associated with the 
smallest value is WCP, and, if this value is not less than 2η,  we can conclude that 
design D is a robust INI design.

Example 11.6 Finding an INI robust design for hydraulic conductivity estimation
Let us consider the hypothetical aquifer described in Example 5.14. Assume that the 
hydraulic conductivity of the aquifer is parameterized into a three-zone structure by 
the Voronoi zonation method as shown in Fig. 11.4. Our purpose is to find an INI 
robust design for estimating the values of hydraulic conductivity, 1 2 3and   , ,K K K  
associated with the three zones. From prior information, the admissible region is 
defined as 1 2 320 40 30 50 10 30≤ ≤ ≤ ≤ ≤ ≤[ ; ; ]K K K  in [m/day], and the spe-
cific storage coefficient Ss = 0 0001.  m−1 is assumed to be given.

Our initial design ID  is (i) pumping at 500, 2000, 1000 m3/day from 

1 2 3W W and W   , , ,  respectively, with a total pumping rate of 3500 m3/day; (ii) the 
head values are taken from observation wells located in zone 1 and zone 2 only; and 
(iii) head observations are taken at 0.05, 0.1, 0.5, 1.0, and 3.0 days, respectively. 
The observation wells are placed in those areas where the heads are most sensitive 
with respect to the hydraulic conductivity (see Fig. 5.5).

In the definition of INI, we set ε = 3 0.  m/day as the root-mean-square error 
(RMSE) of parameter estimation and δ η= =2 0 1.  m. To test if a design D is an 
INI robust design, we need to find the WCP associated with the design first and then 
check if S WCPD( ) .≥ 0 1 . Since the WCP must be located at a vertex of the admis-

Fig. 11.4  Problem set up for Example 11.6
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sible region, we only need to test the eight vertices of the 3D admissible parameter 
region, as numbered in Table 11.1.

The calculated values of ( )DS θ  at the eight vertices of the initial design range 
from the minimum value 0.026 m at vertex #1 to the maximum value 0.057 m at 
vertex #8. This means that vertex #1 is the WCP and the initial design is not a robust 
design because S WCPD( ) . .= <0 026 0 1  m. From the calculation, we found that 
the smallness of ( )DS θ  is caused by the insensitivity of observations with respect 
to K3 . Then we tried to add observation wells to the zone associated with K3 , but 
that only caused S WCPD( )  to increase from 0.026 to 0.029 m. We also tried to in-
crease the pumping rate at Well W2  from 2000 to 8000 m3/day, but that only made 
S WCPD( )  to increase from 0.026 to 0.033 m.

For this case, in fact, adding a pumping well in zone 3 is the only effective meth-
od to increase the sensitivity of observations with respect to K3 . Let us consider a 
modified design that is the same as the initial design, but a new pumping well W4  
is added in zone 3 to replace pumping well W3  in zone 2 without changing the 
pumping rate (see Fig. 11.4). Now, there is a pumping well within each zone. The 
values of ( )DS θ  at the eight vertices for the modified design are shown in Fig. 11.5.

From Fig. 11.5, we can see that (i) the values of ( )DS θ  are significantly in-
creased without increasing the pumping rates, (ii) Vertex #1 is the WCP, and (iii) 

Fig. 11.5  Value of ( )DS θ  at 
the vertices of the admissible 
region in the modified design, 
where the dashed line corre-
sponds to the fitting residual 
requirement, 0 1δ = .  m

 

Table 11.1  The eight vertices of the admissible region
Vertex Number Vertex Number
(40,50,30) 1 (20,50,30) 5
(40,50,10) 2 (20,50,10) 6
(40,30,30) 3 (20,30,30) 7
(40,30,10) 4 (20,30,10) 8
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the modified design is still not a robust design because S WCPD( ) .= 0 088  m is less 
than δ = 0 1.  m. According to the conceptual diagram of INI design in Fig. 11.3a, 
cost-effective robust INI design can be found by systematically varying the pump-
ing rates of the three wells to make S WCPD( )  just larger than 0.1 m, but no more. 
The minimum pumping rates under this condition are 400, 2200, and 1150 m3/day, 
respectively, from 1 2 4W W and W   , , .  For this robust design, the calculated val-
ues of ( )DS θ  at the eight vertices are shown in Fig. 11.6. It shows that Vertex #1 
is still the WCP, where all K’s reach their upper bounds, (40, 50, 30) m/day, and 
S WCPD( ) .= 0 1  m.

To test the sufficiency and robustness of the design, we assume that the true 
parameter vector is (38, 48, 28) m/day, which is very close to the WCP. Using the 
forward solution to simulate the designed experiment, we obtained a set of designed 
“observation data.” Applying these data and the initial guess (30, 30, 30) m/day 
to solve the inverse problem, we terminated the iteration process when the fitting 
residual reached δ = 0 1.  m. At that time, the identified parameter vector is (36.76, 
43.97, 29.02) m/day, and the RMSE of is 2 50  ε =  .θ  m/day, which is indeed within 
the required interval (0, 3) m/day.

Through this example we learned that:

• Making a robust design for a distributed parameter model inversion may be dif-
ficult, computationally expensive, and even infeasible because it requires the de-
signed observations be sufficiently sensitive to all components of the unknown 
parameter vector in the admissible region.

• Prior information that determines the size of the admissible region plays an im-
portant role and can be incorporated into the INI robust design directly.

• In this example, we set the norm of the observation error to η = 0 05.  m, but 
in practice, the model structure error cannot be avoided in the estimation of a 
distributed parameter due to parameterization. We cannot simply combine the 
structure error into the observation error by increasing the value of η . In this 

Fig. 11.6  ( )DS θ  value at 
the vertices of the admissible 
region in the robust design

 



48511.4  Other Objectives of Optimal Experimental Design

example, when η  is increased from 0.05 to 0.1 m, the total pumping rate has to 
be increased from 3750 to 8800 m3/day in order to satisfy the INI requirement. 
The “sufficiency” of an INI design is under the no model error assumption. For 
the identification of a distributed parameter, we have to assume that the model 
structure error can be neglected, as in this example. The problem of designing an 
experiment for model structure identification will be discussed in Sect. 11.4 and 
also in the next chapter.

• In INI, the value of ε  is an accuracy requirement of the estimated parameters. 
A smaller value of ε  requires the observation data to provide more information 
for inversion. In this example, we set 3 0ε = .  m/day for identifying the hydraulic 
conductivity. But how is this value determined? In EWR modeling, this question 
cannot be answered directly because the identification of model parameters is 
usually not the ultimate objective of model development. In this case, the accu-
racy requirement of model parameters is determined indirectly by the reliability 
requirement of model application. ■

INI design has several advantages. First, for a complex system, finding an INI de-
sign is easier than finding an optimal design because INI design is only an ac-
ceptable design according to a preset accuracy requirement without considering the 
uniqueness and optimality. Second, using the data of an INI design, the iteration 
process of inversion can be terminated once the fitting residual is less than a preset 
value δ . Third, a robust INI design can be found effectively. And finally, the INI 
design process is independent of linearization. After the WCP is found, however, a 
linearization-based optimal design approach can be used to find the optimal design.

Using different methods and criteria, different experimental designs are obtained 
for the same problem. The accuracy of inverse solution is not the only criterion to 
assess the goodness of a design or to compare two different designs. In the next sec-
tion, we will see that experimental deigns should be tailored based on the objectives 
of model application.

11.4  Other Objectives of Optimal Experimental Design

11.4.1  Design for Cost-Effectiveness

11.4.1.1 Minimum Cost Design 

So far only a single objective, maximizing the information content of data or mini-
mizing the uncertainty of estimation, is used to define the optimal design. It implies 
that the cost of the experiment is not a problem. In practice, especially in EWR 
modeling, the budget of the experiment and the reliability of parameter estima-
tion should be considered simultaneously by the designer. As shown in Fig. 11.7, 
in such a case we have multiple Pareto optimal solutions and a tradeoff must be 
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made between the two conflicting objectives of a design: minimizing the cost of the 
experiment and minimizing the uncertainty of estimation.

Let Q D( )  be the cost of a design D and F D( )  be a measure of information con-
tent of data. For linear model inversion, let F D D( ) [ ( )]= φ M ; for nonlinear model 
inversion, let { }φ=( ) [ ( , )]F D E DMθ θ  when the Bayesian optimal design method 
is used, and φ= ( ) [ ( , )]DF D DM θ  when the max-min robust design method is used, 
where θD  is the WCP. The cost-effective optimal design for inversion can be for-
mulated as

 (11.4.1)

We can use the multiobjective optimization algorithms discussed in Chap. 3 to 
solve problem (11.4.1) (Schöneberger et al. 2010). One way to find the set of Pa-
reto optimal solutions is to solve a single-objective optimal design problem, either 
min ( ) or max ( ),Q D F D  repeatedly; in contrast, MOEA methods evolve an ap-
proximation to the Pareto optimal set simultaneously (Coello Coello 2007; Marler 
and Arora 2004; Reed et al. 2013). In practice, cost-effective design is often formu-
lated into constraint optimization problems, either

 (11.4.2)

where ε  is a tolerance on the uncertainty of estimation, or

 (11.4.3)

{ } { }  − ∈min ( ), ( ) , .adD
Q D F D D D

{ } 1s t Cov D    φ ε−∈ <min ( ), , . . [ ( ) ] ,adD
Q D D D θ

{ }1Cov s tD φ     − ∈ <min [ ( ) ], , . . (ˆ )adD
D D Q D Bθ

Fig. 11.7  Design as a 
multiobjective optimization 
problem
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where B is the limit of the budget. These problems are still hard to solve when the 
number of design variables and/or the number of the unknown parameters are large. 
For example, Hadka and Reed (2012) demonstrated that most modern MOEAs can 
fail in terms of both convergence and reliability on test problems with as few as four 
objectives. Moreover, for nonlinear models, the constraint in (11.4.2) is unknown 
during the design stage. In order to further decrease the computational effort, in 
many EWR case studies, such as the design of pumping tests or tracer tests, it is 
often assumed that (i) the number of the unknown parameters is low after reparam-
eterization; (ii) the optimal observation locations can be chosen only from a small 
number of candidate sites (the existing wells, for example); (iii) a suboptimal design 
obtained by a heuristic process is acceptable; and (iv) a local optimal design (not 
robust) is acceptable or a sequential design process would be conducted. Examples 
of using one or more of these assumptions to find a cost-effective design can be 
found in Alaña and Theodoropoulos (2012), Catania and Paladino (2009), Leven 
and Dietrich (2006), Altmann-Dieses et al. (2002), Knopman et al. (1991), Knop-
man and Voss (1989), Loaiciga et al. (1992), Nishikawa and Yeh (1989), Sun et al. 
(2013), Reed et al. (2000), and Meyer et al. (1994).

11.4.1.2 Cost-Effective INI Design

A cost-effective INI design is such a design that has the lowest cost among all robust 
designs for the given requirement of INI. It can be formulated into the following 
constrained optimization problem:

 (11.4.4)

where Dθ  is the WCP defined in (11.3.31). For a large-scale problem, we may use 
a heuristic process to find a suboptimal cost-effective design. Start with an initial 
design, if the design is not a robust INI design, modify the design parameters gradu-
ally to obtain a new design based on sensitivity analysis, including (i) increasing the 
excitations to the system, (ii) relocating the existing observations, and (iii) adding 
new observations to increase the contribution of observations to parameter identi-
fication as large as possible, with a slight increase of the cost. Then test if the new 
design is a robust INI design. This process is repeated until a robust INI design is 
obtained.

Example 11.7 Find a cost-effective robust design for Example 11.6
Let us consider how the experimental cost of the INI robust design in Example 11.6 
changes with different accuracy requirements of inversion. For simplification, the 
total pumping rate is used to measure the cost of the experiment. Let the pump-
ing rates of the three wells 1 2 4and   ,W W W  be the design variables and keep all 
other design settings the same as those given in Example 11.6. After systematically 
changing the value of ε  and finding the robust INI designs accordingly (i.e., find-

{ } s t 2    η∈ ≥min ( ), , . . ( ) ,ad D DD
Q D D D S θ



488 11 Optimal Experimental Design

ing the minimum pumping rates to make S WCPD( ) .> 0 10  m), we obtained a set 
of solutions as shown in Table 11.2. By translating the total pumping rate to cost, an 
L-curve related to the cost of the experiment and the accuracy requirement of INI is 
generated in Fig. 11.8. It shows that the cost of the experiment increases very fast 
with the increase of the accuracy requirement of INI or the decrease of ε . The prob-
lem is whether we really need to increase the cost of the experiment significantly 
for finding a more accurate inverse solution. To address this question, we need to 
consider other objectives of experimental design besides the cost-effectiveness.

11.4.2  Design for Model Prediction

In most real case studies, the ultimate objective of developing a model is to pre-
dict the states of a system when control variables and/or boundary conditions are 
changed. In this case, the major objective of designing an experiment for model 
calibration is the reliability of model prediction, rather than the accuracy of model 
parameters. Intuitively, a calibrated model that can minimize the uncertainty of 
model parameters should also minimize the uncertainty of model prediction. The 
problem is that the data provided by a design can only help us find approximate val-

Fig. 11.8  Total pumping 
rate (a proxy of experimental 
cost) vs. the parameter accu-
racy requirement of INI

 

Table 11.2  Robust INI design pumping rates for different values of ε
ε 1.0 2.0 3.0 4.0 5.0 6.0
W1 1900 800 400 300 250 200
W2 6100 3300 2200 1600 1350 950
W4 3900 2100 1200 800 600 450
Total 11,900 6200 3800 2700 2000 1600
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ues of the unknown parameters, instead of their true values. Although the objectives 
of making a design for parameter estimation and making a design for model predic-
tion are not in conflict with each other, the optimal design for them would not be the 
same, especially when the cost-effectiveness is considered. For example, a design 
based on E-optimality seeks to decrease the uncertainty of a parameter component 
that has the maximum uncertainty, but that parameter component may be insensi-
tive to the required model prediction. In this case, a design that seeks to decrease 
the uncertainty of the most sensitive parameter component to the required model 
prediction should be more effective. Moreover, because different model predictions 
are sensitive to different parameter components, the optimal design is different for 
different model predictions.

Let = ( , )u u qθ  be a model of a system, where parameters θ  need to be esti-
mated and q  is the control vector (sink/source and/or boundary conditions). De-
signing an experiment D for model prediction needs: (i) Use control variables qD  
that describe the conditions of the designed experiment as model inputs to run the 
simulation model, from which model outputs =( ) ( , )D Du u qθ θ  corresponding to 
the design are obtained; (ii) use = + ( ) ( )D DDu u eθ θ  as the “observed data” of 
the experiment, where eD  simulates observation errors, to find an inverse solution 
ˆ
Dθ ; (iii) use control variables qE  that describe the conditions of prediction and ˆDθ  

as inputs to run the simulation model, from which the required model prediction 
= ˆˆ ( , )E D Eu u qθ  is obtained. After knowing how to find ˆ

Dθ  and ûE  for a given 
design D, we now consider how to find the optimal design for model prediction.

11.4.2.1 Optimality Criteria for Model Prediction 

First, assume the model is linear with respect to θ  and the required model predic-
tions are represented by a k-dimensional vector =E Eu A θ , where AE  is a k m×  
matrix and m is the dimension of θ . Because θ  is unknown, model prediction uE  
can only be estimated by = ˆˆ DE Eu A θ , where ˆDθ  is an estimation of θ  satisfying 
the observation equation = +ˆobs

D D D Du A eθ . In this case, the optimal design D 
should minimize a norm of Cov(ˆ )uE . Using (11.2.3), we have

 (11.4.5)

in which CD  is the covariance matrix of the observation error vector (see 
Eq. (11.2.3)). The G-optimality criterion for model prediction seeks to minimize 
the maximum variance of the matrix Cov(ˆ )uE . Let d d dk1 2, , ,  all be diagonal 
elements of Cov(ˆ )uE , the G-optimal design is the solution of the following opti-
mization problem:

 (11.4.6)

1 1

Cov Cov Cov
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= =

=
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Another design criterion for model prediction is the I-optimality that seeks to mini-
mize the average prediction variance,

 (11.4.7)

which is similar to the A-optimality for inversion that minimizes the trace of 
Cov(ˆ )Dθ  (see Sect. 11.2).

When the model used for prediction is nonlinear, the optimality criteria will 
depend on the unknown parameter vector θ. Using the linearization technique 
described in Sect. 11.3.1, we have ≈ ˆˆ DE Eu J θ  and ≈ +ˆobs

D D D Du J eθ , where 
= ∂ ∂[ / ]E EJ u θ  and = ∂ ∂[ / ]D DJ u θ  are Jacobian matrices evaluated at θ. Re-

placing by and by       ( ) ( )D D E EA J A Jθ θ  in (11.4.5), we obtain

 (11.4.8)

The G-optimal design for nonlinear model prediction is then given by

 
(11.4.9)

where 1 2 ( ), ( ), , ( )kd d dθ θ θ  are diagonal elements of Cov ˆ[ ( )]Eu θ . Equa-
tion (11.4.8) clearly shows that the optimal design for inversion and the optimal 
design for prediction are different because of the effect of the sensitivity matrix on 
prediction.

To deal with the difficulty of nonlinearity, we can (i) use the approaches de-
scribed in Sect. 11.3.1 to find a local G-optimal design with a guessed 0θ , (ii) con-
duct a sequential experiment process, or (iii) find a Bayesian or a max-min robust 
G-optimal design. For a given θ, the optimization problem (11.4.9) can be solved 
by a global optimization method, and the Jacobian matrices and  ( ) ( )D EJ Jθ θ  in 
(11.4.8) can be calculated by a model differentiation method given in Chap. 5.

11.4.2.2 Cost-Effective Design for Model Prediction 

In EWR modeling, two objectives, the reliability of model prediction and the cost-
effectiveness of data collection, are often combined when we design an experiment 
for model parameter estimation. For example, we want to predict the development 
of a contaminant plume with a model, but the model parameters need to be esti-
mated first by performing site characterization. The problem is how we can mini-
mize the cost of observation and at the same time minimize the uncertainty of model 
prediction. Toward this end, Wagner (1995) considered the problem of predicting 
the development of a contaminant plume in groundwater, in which the bi-objective 
optimal design problem is solved by constrained optimization,

 (11.4.10)

{ }trace Cov  = ∈* ˆargmin [ ( )],I E ad
D

D D Du

1 1Cov − −=ˆ[ ( )] ( )[ ( ) ( )] ( ).E D D
T T

E D Eu J J C J Jθ θ θ θ θ

{ } { }1  = ≤ ≤ ∈* ( ) argmin max ( ) , , ,G i adiD
D d i k D Dθ θ

{ } { }0 0 0
1

0
1trace  − − ∈min ( )[ ( ) ( )] ( ) ,T T

E D D D E adD
D DJ J C J Jθ θ θ θ
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subject to

 (11.4.11)

where D is a network design that prescribes where and when to measure the con-
taminant plume. Equation (11.4.10) means that the I-optimality criterion is used to 
find a local optimal design at a given 0=θ θ . In (11.4.11), cl  is the cost of obtain-
ing the l-th measurement; zl  is a binary variable associated with l-th measurement, 
for which zl = 1 when the measurement is taken and zl = 0  otherwise; and B  is 
the network design budget. By changing the value of B, we can obtain a set of Pa-
reto optimal solutions.

In this problem, the components of θ  consist of hydraulic conductivity, porosity, 
and dispersion coefficients used in the coupled groundwater flow and mass trans-
port model (See Example 5.9 in Sect. 5.3.3). The Jacobian = ∂ ∂[ / ]D DJ u θ  can be 
calculated by a model differentiation method, where ( )Du θ  is the model outputs 
assigned by the design (i.e., the model calculated concentration values at a set of 
assigned locations/times). The Jacobian = ∂ ∂[ / ]E EJ u θ  is obtained by the same 
method, but ( )Eu θ  is the model outputs required by the prediction problem (the 
model predicted concentration values at a set of locations/ times). For searching 
the local optimal design at 0=θ θ , both JD  and JE  in (11.4.10) are evaluated at 

0θ , and the constrained optimization problem can be solved by genetic algorithm 
(GA) or other global optimization methods. A detailed description and a numerical 
example for this problem can be found in Wagner (1995).

The methodology of experimental design for prediction was applied to the Death 
Valley regional groundwater flow model by Tiedeman et al. (2003) for decreasing 
the uncertainty of predicted head distribution. Janssen et al. (2008) used travel time 
as a state variable to minimize the uncertainty of the predicted contaminant break-
through, in which the probability distribution of the unknown parameter (hydraulic 
conductivity) is assumed to be Gaussian and known.

11.4.2.3 INI Design for Model Prediction 

The INI-based design approach in Sect. 11.3.4 can be extended from parameter 
estimation to model prediction (Sun and Yeh 1990). It has two advantages: The 
data sufficiency can be assessed during the design stage, and a robust design can be 
found effectively. Let us introduce the following definition:

A parameter vector ∈ adPθ  is said to be interval identifiable for a given predic-
tion vector ( )Eu θ  and an accuracy requirement γ > 0 , if there is a design D such 
that

 (11.4.12)

c z Bl l
l

≤∑ ,

impliesδ γ− < ′ − <′( ) ( ) ( ) ( ) ,D ED Eu u u uθ θ θ θ
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where ′ ∈ adPθ , δ > 0  is a number to be assigned.
Equation (11.4.12) means the distance between ′( )Eu θ  and ( )Eu θ  in the pre-

diction space must be less than a required value ( )γ  provided that the distance 
between ′( )Du θ  and ( )Du θ  in the state space is less than a assigned number ( ).δ  
All results in Sect. 11.3.4 now can be derived in parallel for INI prediction. The fol-
lowing is a brief description.

If there is an observation error but no model error, we can assign δ η= 2  in 
(11.4.12) to find a design D and show that

 (11.4.13)

where  ( )Du θ  is defined in (11.3.27). We call such a design an INI design for predic-
tion. It is a sufficient design because once it is conducted, the designed data are col-
lected, and the fitting residual is less than η , the inverse solution must give reliable 
prediction results. To determine whether a design D is an INI design for prediction, 
we can solve the following optimization problem

 (11.4.14)

If 2η≥( )DS θ , we can conclude that D is an INI design for prediction associated 
with parameter vector θ. This optimization problem can be solved by the same ap-
proach used for solving the problem (11.3.26) but changing 2 ′( , )g θ θ  to

 (11.4.15)

An INI design problem for prediction can be transformed into an INI design prob-
lem for inversion considered in Sect. 11.3.4. For each given θ  in the admissible re-
gion, after linearization, the region γ− ≥′( ) ( )E Eu uθ θ  in the prediction space is 
mapped onto a region ε− ≥′ ( )θ θ θ  (the surface of an ellipsoid) in the parameter 
space (Sun and Yeh 1990). The problem (11.4.14) is thus converted into problem 
(11.3.25), but with accuracy requirement ε( )θ .

Figure 11.9 shows the relationship between prediction, observation, and param-
eter spaces, as well as the process of finding an INI design for prediction. A sim-
plified algorithm consists of two steps: First, finding an ellipsoid ε− ≤′ ( )θ θ θ  
in the parameter space such that its image in the prediction space (bounded by the 
dotted curve) is just within the ellipsoid γ− ≤′( ) ( )E Eu uθ θ . Note that in this 
step we need only run the prediction model because the relation between ε( )θ  
and γ  is independent of observation data. Second, finding the image of ellipsoid 

ε− ≤′ ( )θ θ θ  in the observation space based on an initial design. If the image 
does not completely contain the ellipsoid δ− ≤′( ) ( )D Du uθ θ , modify the initial 
design to make the observation data more sensitive to θ. As a result, the size of the 
ellipsoid will be decreased but the cost of the experiment will be increased. Other-
wise, modify the initial design to make the size of the ellipsoid larger to decrease 

impliesη  γ− < − <′ ′( ) ( ) ( ) ( ) ,D ED Eu u u uθ θ θ θ

s t   γ
∈

= − =′ −′ ′ ≥( ) min ( ) ( ) , . . ( , ) ( ) ( ) .
ad

D D E EP D ES Su u u u
θ

θ θ θ θ θ θ θ

22 2 0γ= −′ ′( , ) max( ( , ), ).ESg θ θ θ θ
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the cost of the experiment. Ideally, the ellipsoid should be just within the image of 
ε− ≤′ ( )θ θ θ  in the observation space as shown in Fig. 11.9.

Finding a robust design for prediction is challenging when the model is nonlinear 
and governed by PDEs, because of the complexity and high-computational demand 
involved. In contrast, finding an INI robust design for prediction is relatively easy. 
As explained in Sect. 11.3.4, when the admissible region of θ  is an m-dimensional 
hyperbox, WCP must be located at a vertex of the hyperbox. After WCP is found, 
the robust INI design problem reduces to a local INI design problem. Moreover, 
a cost-effective robust design for prediction has the same formulation as (11.4.4) 
when ( )DS θ  is defined by (11.4.14).

Example 11.8 Find a robust INI design for the reliability of model prediction
The hypothetical design problem in Example 11.6 is used here to show how a robust 
design for the prediction is made. Assume that the objective of parameter estima-
tion is to predict the drawdowns in the three pumping wells 1 2 4and , ,W W W  at 
the steady state when their pumping rates reach the planned maximum values of 
2000, 10,000, and 3000 m3/day, respectively. It is required that the RMSE of predic-
tion not to exceed γ = 1.0 m. A robust INI design for this problem should satisfy 
S WCPD( ) .≥ =2 0 1η  m.

Using the aforementioned algorithm, we find that the WCP for prediction is ver-
tex #8 of the admissible region where all K’s reach their lower bounds. As shown 
in Fig. 11.10, the value of ε( )θ  at vertex #8 is 2.2 m/day which is less than that of 

Fig. 11.9  Process of finding an INI design for prediction
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other vertices. Comparing to Fig. 11.5, the WCP for inversion is vertex #1 where 
all K’s reach their upper bounds, and the parameter vector at vertex #8 is the easiest 
one to be identified.

We can also find how the experimental cost depends on the accuracy require-
ment of prediction. Table 11.3 shows the values of ε( )θ  for different accuracy 
requirements of model prediction.

After ε( )θ  is found, we can move to the second step to find a robust design for 
prediction (i.e., find a local INI design for ε( )WCP ). Table 11.4 shows the neces-

Table 11.3  Values of ε( )θ  for different prediction accuracy requirement

γ  (m) Vertex #
1 2 3 4 5 6 7 8

0.5 4.9 3.4 3.3 2.1 4.0 1.9 3.2 1.2
1.0 8.0 5.6 6.2 3.8 6.5 3.6 5.6 2.2
1.5 11.2 8.0 8.7 5.7 8.7 5.5 7.7 3.6
2.0 13.3 10.4 11.1 7.7 11.2 7.5 9.4 5.2

Fig. 11.10  Values of ε( )θ  at the eight vertices of the admissible region for prediction accuracy 
requirement γ = 1.0 m
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sary pumping rates from the three pumping wells in order to satisfy the condition 
S WCPD( ) .> 0 1  m for different accuracy requirements of prediction. In particular, 
for γ =1 0.  m, the robust design is to pump 450, 2350, and 500 m3/day, respectively, 
from wells 1 2 4and  , ,W W W

As a test, assume that the true parameter vector is θ  = (22, 32, 12) m/day, which 
is close to WCP = (20, 30, 10) m/day and the accuracy requirement is γ = 1 2.  m. 
Using interpolation between γ = 1 0.  m and γ = 1 5.  m in Table 11.4, we obtain the 
pumping rates of the robust design are 390, 2010, and 440 m3/day, respectively, 
from wells W W W1 2 4, , .and  After running the simulation model with the true pa-
rameter vector and the designed pumping rates as model inputs and finding the 
designed “observation data” from the model output, we can solve the inverse prob-
lem. During the inverse solution process, we find the identified parameter vector 

= 25 3 31 4 12 4  ′ ( . , . , . )θ  m/day when the fitting residual 0 11 δ= >′( , ) .DS θ θ . Then 
we use ′θ  as the input parameter vector to run the prediction model to find the 
steady-state head values at wells W W W1 2 4, , and  when the pumping rates of them 
reach their planned maximum values 2000, 10000, and 3000 m3/day, respectively. 
We find that the prediction error 1 13=′( , ) .ES θ θ  m, which is indeed less than the 
required error γ = 1 2.  m.

The relation between the cost of the experiment (the total pumping rate) and the 
accuracy of prediction is plotted in Fig. 11.11, and the relation between andε γ  
(i.e., the last column in Table 11.3) is shown in Fig. 11.12.

From this example, we see that the most effective designs for prediction and 
the most effective design for inversion are generally different. The WCPs of them 
are different too because the most difficult parameter to be estimated may not be 
the most sensitive parameter for model prediction. Moreover, the most effective 
designs are different for different objectives and different accuracy requirements of 
model prediction. Therefore, when accurate estimation of model parameters is not 
the ultimate objective of an experimental design, the objective of model prediction 
or, more generally, the objective of model application, should be taken into account 
during the data collection stage. INI design provides an effective tool for this pur-
pose.

Table 11.4  Pumping rates for different accuracy requirements of prediction

γ 0.5 1.0 1.5 2.0

ε( )WCP 1.2 2.2 3.6 5.2

W1
1000 450 300 200

W2
4050 2350 1500 1100

W4
850 500 350 300

Total 5900 3300 2150 1600
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11.4.2.4 Retrospective Design for Prediction 

In EWR it is often the case that a previously designed observation system already 
exists, data provided by the system have been used to calibrate the model for predic-
tion, and the results of model prediction have been validated by real observations. 
At this point, if the results are satisfied, we may ask how to decrease observa-
tion locations and times to save the operation cost. Otherwise, we may ask how to 
increase observation locations and times to improve the reliability of model predic-
tion. The problem of retrospective design for prediction is thus presented. It is easier 
to solve than a prospective design problem because (i) the objectives of design are 

 Fig. 11.12  Relation between 
parameter accuracy require-
ment ε  and prediction accu-
racy requirement γ

Fig. 11.11  Cost of experi-
ment vs. accuracy require-
ments of prediction

 



49711.4  Other Objectives of Optimal Experimental Design 

specified, (ii) the number of design variables is relatively small; (iii) a local optimal 
design would be sufficient, and (iv) the work on model modification becomes less.

There are different criteria to formulate a retrospective design problem. When 
data are sufficient, we may use

 (11.4.16)

where Q D( )  is the cost of the experiment, ˆ( )DEu θ  are the required model predic-
tions after the model is calibrated by the data of a new design D, uE

obs  are the corre-
sponding real observations, and Dad{ }  contains all possible changes to the original 
observation system. In order to make the solution of (11.4.16) easier, the observa-
tion locations and/or times are deleted, gradually, one or more at a time. The design 
obtained from (11.4.16) is only a suboptimal one. When the original observation 
data are insufficient, we may use the following formulation

 (11.4.17)

The observation locations and/or times are added, gradually, one or more at a time. 
Note that the prediction vector may consist of several state variables. For example, 
in a groundwater remediation project, we need to predict the total mass of contami-
nants, the high concentration areas, and arrival times to assigned locations. In this 
case, (11.4.17) is a multiobjective optimization problem (Zhang et al. 2005; Mayer 
et al. 2002; Kollat et al. 2011; Reed and Minsker 2004).

11.4.3  Design for Decision Making

11.4.3.1 Optimality Criteria of Experimental Design For Model Application 

When the ultimate goal of constructing a model is to solve an application problem 
rather than the identification of model parameters, we can design an experiment to 
increase the reliability of a model application while reducing the cost of the experi-
ment. Water resources management and contaminated aquifer remediation are typi-
cal examples of model applications related to decision making. Model prediction 
considered in the last subsection can be seen as a simple case of model application. 
Let the k-dimensional vector ( )Eg θ  represent k objectives of a given model appli-
cation, where θ  is the model parameter vector. After an experimental design D 
is conducted, the designed observation data  ( )Du θ  are collected, and the inverse 
solution ˆ

Dθ  is obtained, we have the model-calculated values of model application 
=ˆ ( )ˆ

E E Dg g θ . The problem is how to minimize the uncertainty of ĝE .

{ } s t   ε∈ − <min ( ), , . . ( )ˆ ,obs
ad E D ED

Q D D D u uθ

{ } s t     − ∈ <min ( ) , , .ˆ . ( ) .obs
E D E adD

D D Q D Bu uθ
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Comparing the problem considered in the last subsection and the problem con-
sidered here, we see that the only difference between them is that the model pre-
diction vector ( )Eu θ  is replaced by a general model application vector ( )Eg θ . 
Therefore, all results derived for the former can be derived in parallel for the latter. 
For example, according to (11.4.8), we have

 (11.4.18)

where = ∂ ∂[ / ]E EJ g θ . The G-optimality and I-optimality criteria for model ap-
plication can then be obtained.

11.4.3.2 Remediation Design 

Model-based remediation design is one of the major areas of model application in 
the EWR and has been studied for more than three decades. Because of the com-
plexity and difficulty of aquifer cleanups, remediation design is a critical compo-
nent. There are many different remediation techniques, such as hydraulic capture, 
pump-and-treat, bioremediation, soil vapor extraction, in situ chemical treatment, 
and natural attenuation. Because the applicability of a specific remediation tech-
nique is site dependent, a model-based feasibility study is needed. Let us use the 
pump-and-treat (PnT) technique as an example to show how the optimal remedia-
tion design is formulated, especially, how OED for model calibration and parameter 
estimation is used in a remediation design.

Decision variables
Besides extraction wells, injection wells may also be needed when a hydraulic wall 
is needed to prevent the contaminated plume from migrating to the downstream 
areas. Thus, decision variables of a PnT design consist of the pumping rate of each 
potential well, q t i Ii( )( , , , ).= 1 2  The rate is negative for extraction wells, posi-
tive for injection wells, and zero for inactive wells. For simplification, we assume 
that the total remediation period is divided into J intervals [ , ]( , , , )t t j Jj j− =1 1 2  
and all q ti( ) ’s are constant in each interval 1when  −= ≤ <,( ( ) , ),i i j j jq t q t t t  where 

0 0 and  = =J ft t t  are the initial and final times of the remediation period, respec-
tively. The decision variable vector thus becomes

 (11.4.19)

Simulation model
The forward model is a coupled groundwater flow and mass transport model that 
simulates the movement and change of the contaminant plume caused by the 

1 1Cov − −=ˆ[ ] [ ] ,T T
E E D D D Eg J J C J J

qE i jq i I j J= = ={ }, | , , , ; , , .1 2 1 2 
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designed remediation activities. After incorporating the design variables, the model 
in Example 5.9 becomes

 (11.4.20)

where φ  is the porosity, QN  is a natural sink/source term, and QP  are the designed 
pumping rates defined by

 (11.4.21)

All other notations in (11.4.20) have been explained in Example 5.9. Inputs of the 
model include PnT decisions, model parameters, and initial and boundary condi-
tions. Outputs of the model are head and concentration distributions.

Model parameters
The components of the parameter vector θ  of the model may consist of parameter-
ized hydraulic conductivity, porosity, and dispersivity. The geostatistical parameter-
ization method is often used for heterogeneous aquifers. When initial and boundary 
conditions are known, the model-simulated concentration distribution can be rep-
resented by ( , ; , )EC q xθ t . The uncertainty in θ  will lead to uncertainty in the con-
centration distribution and ultimately affect the remediation design. For example, a 
deviation in hydraulic conductivity may cause the model predicted high concentra-
tions to appear at incorrect locations and/or times. As a result, the designed pump-
ing wells for remediation will not be as effective as expected. In this case, the main 
purpose of data collection for inversion becomes minimizing the uncertainty of the 
optimal remediation design.

Objectives and constraints
Cost-effectiveness and remediation-effectiveness are usually used as two objectives 
for the PnT design. They are given, respectively, by

 (11.4.22)
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and

 (11.4.23)

In (11.4.22), f Ecost( )q  is the total cost of remediation, cio  is the capital cost of 
ith  well, and ci  is the cost of the pumping unit volume of water from the well. In 
(11.4.23), f Ereme( )q  is the total remaining contaminant mass in the aquifer at the 
ending time of the remediation, ρ  is the density of the contaminant, M is the total 
number of elements, Vm  and φm  are the volume and porosity of mth  element, 
respectively, and ( , ; )m EC q θ ft  is the model-calculated concentration of the ele-
ment at the ending time. The optimal PnT design is a Pareto optimal solution of the 
following MOO problem

 (11.4.24)

According to the actual conditions of the case under study, various constraints can 
be added to the MOO problem. For example, the upper and lower bounds of the 
groundwater level in each pumping well, the maximum pumping capacity of each 
pumping well, and the maximum concentration at the ending time. For detailed 
discussions on PnT design, including decision variables, objectives and constraints, 
solution methods, and case studies, readers may refer to Ahlfeld et al. (1988), Huang 
and Mayer (1997), Zheng and Wang (1999), Mayer et al. (2002), Bear and Sun 
(1998), Chang et al. (2007), Singh and Chakrabarty (2010), and He et al. (2008).

Dealing with parameter uncertainty
Equation (11.4.24) clearly shows that the optimal remediation decision qE

o  depends 
on the model parameter vector θ . The uncertainty on θ  will propagate to qE

o  and 
further through qE

o  to the optimal remediation objectives

 (11.4.25)

A model-based remediation design without considering the uncertainty of model 
parameters is unreliable. An example of combining parameter estimation and opti-
mal PnT design is given in Sun et al. (1998). There are several approaches to deal-
ing with this problem:

• If the model parameters are not estimated by inverse solution, we can use the 
method of this section to design an experiment aimed at minimizing the un-
certainty of the remediation design. Let ˆ

Dθ  be the estimated parameter vector 
after the experiment is conducted and the inverse problem is solved. For PnT 
design, the objective vector of model application is defined by (11.4.25), i.e., 

{ }1 2= , ,( ) ( ), ( )D DE ED Eg gg θ θ θ . Let =ˆ ( )ˆ
E E Dg g θ , the optimal experimental 

design D should minimize a norm of Cov[ˆ ]gE  in (11.4.18), where the sensitivity 
matrix = ∂ ∂[ / ]E EJ g θ  can be calculated by a model differentiation method. 
Because of the nonlinearity of ( )Eg θ , a robust optimal design is required.
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• If the model parameters are estimated previously, we can use the estimated 
mean, θ̂ , as θ  to solve the PnT design problem (11.4.24) and use the covari-
ance matrix Cov[ˆ]θ  of estimation to complete a posterior sensitivity analysis 
for assessing the reliability of the resulting PnT design (i.e., using (11.4.18) to 
calculate Cov[ ( )]ˆ

Eg θ ). If the confidence interval is not satisfied, we can design 
a new experiment for inversion to decrease the uncertainty of those parameter 
components that are most sensitive to the objectives of remediation. In practice, 
because PnT is a long-term activity, instead of designing a new experiment, we 
can use the data collected from a stress period of the remediation process to cali-
brate the simulation model and then modify the remediation design for the next 
stress period accordingly. For example, in the PnT design problem considered 
by Baú and Mayer (2008), the measurements of cumulative contaminant mass 
pumped out from each extraction well are used as new data to continuously con-
dition the simulation model and modify future pumping strategies.

• Incorporate the model uncertainty into the MOO remediation design problem. In 
this type of methods, multiple realizations of the unknown parameter are gen-
erated and used to obtain the statistics of the objective functions for each can-
didate design qE . In the MOO problem (11.4.24), the value of reme( , )Ef q θ  is 
considered as a random variable with known mean and variance, and the Pareto 
optimal solution is in the probabilistic sense. Singh and Minsker (2008) present 
a so-called probabilistic multiobjective genetic algorithm for PnT design and ap-
plies their method to a case study.

11.4.3.3 INI Design for Decision Making 

INI design for model prediction can be extended to INI design for general model 
applications. A parameter vector ∈ adPθ  is said to be interval identifiable for a 
given model application vector ( )g θ  and an accuracy requirement γ > 0 if there is 
a design D such that

 (11.4.26)

where 0δ∈ >′ ,adPθ  is a number to be assigned, and   is the prediction space. 
When there is no model error, all discussions on INI design for model prediction 
can be derived in parallel for general model applications, including finding a suf-
ficient INI design and a robust INI design. Figure 11.9 can still be used but changing 
the model prediction space to a model application space. Besides using weighted or 
generalized least squares norms, the accuracy requirement of a model application 
may be stated in ∞L -norm (Sect. 2.4.1) or in the form of the relative error. An ex-
ample of using INI design for groundwater remediation design can be found in (Sun 
and Yeh 1990). In McPhee and Yeh (2004), INI design is used to solve a multiobjec-
tive groundwater resources management problem. We will return to INI design in 
the next chapter for model structure identification.

impliesδ γ−′ < <′ −( ) ( ) ( ) ( ) ,DDu u g gθ θ θ θ
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11.4.4  Design for Geostatistical Inversion

In geostatistical inversion method (Sect. 7.4.3), the unknown parameter θ( )x  is 
regarded as a realization of a parameterized random field. After discretization, the 
random field becomes an N-dimensional random vector θ , where N is the number 
of nodes. Usually, it is assumed that θ  has a multi-Gaussian distribution, its mean 
is parameterized by trend parameters ββ  and its covariance matrix is characterized 
by statistical parameters ψψ . After ββ  and ψψ are estimated by MLE with the data set 
zD
obs , the unknown parameter vector θ  is then estimated by co-kriging with the 

same data set. These estimations thus depend on how the data set is collected (i.e., 
an experimental design D). The OED for geostatistical inversion should minimize 
the uncertainty of these estimations. To date, however, studies on this topic are still 
very limited.

11.4.4.1 For trend Estimation 

Assume the model is linear, i.e., and then= = =( ) , ( ) .u A X u AXθ θ θ β θ β  In this 
case, the observation equation is = +obs

D DDz A X eβ , where zD
obs  is an l -dimen-

sional measurement vector, AD  is an l N×  matrix, X  is an N k×  matrix, β  is 
a k -dimensional trend vector, and eD  is an l -dimensional error vector with zero 
mean and covariance matrix CD . When ββ  is a normally distributed random vector 
with prior distribution 

00 ββ( ) ~ ( , )p N Cβ β , according to Sect. 11.2.2, the estimated 
ββ  is

 (11.4.27)

and the covariance of estimation is

 (11.4.28)

The OED seeks to minimize a norm of Cov(ˆ )Dβ . By defining information matrix 
M X A C A Xβ ( )D T

D
T

D D= −1 , all Bayesian optimality criteria in Sect. 11.2.2 can be 
applied to the estimation of β . For example, the Bayesian D-optimality and A-
optimality are given, respectively, by

 (11.4.29)

and

 (11.4.30)

When the dimension k of β  is not high, a cost-effective OED can be found with 
affordable computational effort.

1 1 1 1 1
0ββ ββ

− − − − −= + +( ) (ˆ )T T T T obs
D D D DD D DX A C A X C X A C z Cβ β

1 1 1Cov ββ
− − −= +( ) ( ) .ˆ T T

D D DD X A C A X Cβ

{ }1
β ββ

−= + ∈* argmax log det[ ( ) ],BD adD
D D D DM C

{ }1 1trace β ββ
− −= + ∈* argmin [ ( ) ] , .BA adD

D D D DM C
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11.4.4.2 For Co-Kriging Estimation 

The problem of designing an experiment for estimating statistical parameters ψ  
through inversing measurements zD

obs  is very difficult because the relationship 
between them is highly nonlinear and nonunique. Usually, ψ  is estimated by fit-
ting a variogram model with some measurements of the estimated θ( )x  directly 
(Sect. 6.2.3) other than by model inversion. Detailed discussion on optimal sam-
pling design for variogram parameter estimation can be found in Müller (2007).

11.4.4.3 For Geostatistical Inversion 

In geostatistical inversion, the collected data ( )zD
obs  are used twice, first to deter-

mine a random field ( and )β ψ  and then to determine a realization of the field. A 
design that is optimal for estimating the random field may not be the optimal one 
for estimating a realization.

In principle, the optimality criteria used for β  estimation can also be used for 
θ  estimation. But, there are some important differences: The dimensions of θ  are 
very high that may make the computational effort unaffordable and, because ββ  is 
estimated from data, its uncertainty will propagate to θ  and thus increase the uncer-
tainty of θ . In this case, the prior covariance matrix of P, ,Cθ  should be replaced by 
the following generalized covariance matrix (Kitanidis 1993):

 (11.4.31)

Using Gθθ  to replace Cθθ  in (11.2.15), we will have

 (11.4.32)

The optimality criteria of design for estimating ˆ
Dθ  then can be obtained. For 

example, the D-optimality and A-optimality can be obtained from (11.2.17) and 
(11.2.18), respectively. In Nowak et al. (2010), these and other optimality criteria 
for geostatistical inversion are reviewed and compared. The authors commented 
that D-optimality is unacceptable computationally because of the large size of ma-
trix Gθθ , while the A-optimality is relatively efficient and valid for non-Gaussian 
and nonlinear problems.

There are effective methods for finding a suboptimal retrospective design for 
geostatistical inversion. On the one hand, we can find terms in (7.4.57) that make 
very small contributions to the summation. Then we can find which observation 
points (location/time) are associated with these terms. Deleting those observation 
points from the design will cause only insignificant effect to the variance of esti-
mation. For example, if the data provided by two observation points are strongly 
correlated, then one of them can be deleted. On the other hand, when new observa-
tion points are needed, they should be selected such that the absolute value of the 

G C XC Xθθ ββ= +P
T .

1 1 1Cov ββ
− − −= + +( ) [ (ˆ ) ] .T T

D D D D PA C A C XC Xθ



504 11 Optimal Experimental Design

summation in (7.4.57) will be increased as large as possible after their contribution 
is added.

11.4.4.4 Observation Design for the Pilot Point Method 

OED can be used to the pilot point method (Sect. 7.4.4) to solve the following two 
design problems:

• Assuming that the number and locations of pilot points are given, find the OED 
for state observation.

• Assuming that the data of state observation are given, find the optimal locations 
for a certain number of pilot points.

The first problem is an experimental design problem for inverse solution, the sec-
ond one is needed in the pilot point algorithms, and both of them can be solved 
by the classical OED approach. For the first problem, the Jacobian matrix used to 
calculate the FIM in (11.3.4) is given by

 (11.4.33)

where D is a design that determines how n state observations ( )Du θ  will be gen-
erated, and θ  is the unknown parameter vector associated with the m given pilot 
points, which is independent of the design.

For the second problem, the Jacobian matrix used in the FIM becomes

 (11.4.34)

where D is a design that determines how m pilot points are located, Dθ  is the un-
known parameter vector associated with these pilot points, and ( )Du θ  is the model 
outputs corresponding to the n given state observations, which are independent of 
the design.

Once the FIM is calculated and an optimality criterion is selected, a local optimal 
design can then be obtained by solving an optimization problem. For example, in 
Jung et al. (2011), the D-optimality criterion is used to solve the second problem 
mentioned above a numerical example is given.

In practice, however, both the number of data ( n) and the number of pilot points 
( m) are unknown and should be considered as a part of design. A more general de-
sign problem for the pilot point method is to design an observation network without 
knowing m and n. The number m depends on the complexity of the model structure 
and the number n, in turn, depends on m because identifying a more complex model 
needs more data. We will consider such a design problem related to the determina-
tion of model complexity in the next chapter.

= ∂ ∂( ) [ / ],D DJ uθ θ

= ∂ ∂( ) [ / ],D DJ uθ θ
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11.4.5  Design for Model Structure Identification

So far in this chapter, we have assumed that there is no model error or the model 
error can be neglected. But this assumption is generally impractical for modeling a 
distributed parameter system or a large-scale system encountered in EWR model-
ing. After parameterization, model calibration requires the identification of not only 
physical parameters, but also model structure parameters and/or hyperparameters. 
The ODE problem for extended inverse problem (EIP) is thus presented. In Chap. 7, 
the solution of EIP for identifying an entire model is given by

 (11.4.35)

where ν  is a k-dimensional shape vector characterizing the model structure, θ  is 
an m-dimensional parameter vector associated with the structure, and α ,( )R ν θ  is a 
regularization term including prior information. The observation equation for inver-
sion can be written as

 (11.4.36)

After linearization and using ( ),ν θ  to replace θ  in (11.3.3), we obtain

 (11.4.37)

where is an   
 ∂ ∂

= × + 
∂ ∂  

( , )   ( )D D
D n k m

u u
J ν θ

ν θ
 matrix. According to Eqs. (7.2.9) 

and (7.2.10), all elements of the matrix can be calculated by

 (11.4.38)

and

 (11.4.39)

where N is the node number of the numerical model, θN i,  is the parameter value at 
node i, and all sensitivity coefficients ( / ), ,∂ ∂uD l N iθ  can be obtained effectively 
by the adjoint-state method of model differentiation. After obtaining (11.4.37), at 
least in principle, we can define the FIM and then define the alphabetic optimality 
criteria as what we have done in Sect. 11.3.1. But, such an extension is not very 
useful because of the following inherent difficulties: (i) Model output ,( )Du ν θ  
could be highly nonlinear with respect to shape parameters, a linearization-based 

{ }
 

    ν α= − + ∈
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( , ) argmin ( , )ˆˆ ( , , ( ) ,) ,obs
D D adRu u

ν θ
ν θ θ ν θ ν θ M

= +( , ) .obs
D D Du u eν θ
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OED may become useless; (ii) a small change in shape parameters may cause a sig-
nificant change to the OED, a robust design may not exist; and (iii) because shape 
parameters may have no physical meaning, we do not know how to make them 
close their “true” values. Therefore, during the design stage, we should avoid using 
shape parameters unless they have certain physical meanings, for example, when a 
structure is parameterized by zonation, the boundaries between zones that we want 
to locate can be explained in geology.

In the case that a distributed parameter needs to be estimated and no prior struc-
ture information on it is available, a multiscale design process can be used, for 
which, the objective of the design is to estimate the nodal parameter values over a 
coarse and homogeneous grid (see Fig. 7.6). Because there is no structural param-
eter involved, classical methods of OED can be used in this case. After the designed 
data is collected, of course, any parameterization method in Chap. 7 can be used for 
solving the EIP. The key of using this method is to determine an appropriate scale 
of the grid or an appropriate resolution of the identified parameter. The cost of the 
experiment will significantly increase with the increase of the node number. In other 
words, we have to pay for the “cost of complexity” (Hjalmarsson 2009; Rojas et al. 
2011).

We have shown in Sects. 11.4.2 and 11.4.3, when the ultimate objective of model 
construction is model prediction or model application rather than parameter estima-
tion, the OED will become goal (or objective)-dependent. In fact, when the struc-
ture of the real system is complex and unknown, determining an appropriate model 
complexity according to the given objective of model application is the most im-
portant thing and needs to be considered first in model construction. Developing 
goal (or objective)-oriented models is the topic of the next chapter, in which goal-
oriented experimental design is completed after goal-oriented model complexity is 
determined.

11.5  Review Questions

1. Try to list as many objectives of OED for model construction as possible.
2. Use geometric terms to explain the meanings of D-optimality, A-optimality, and 

E-optimality. Explain how these explanations are obtained.
3. Derive Eqs. (11.2.14) and (11.2.15). What assumptions are needed for the 

derivation?
4. In what cases the sequential design method is feasible and acceptable? And, in 

what cases, a global OED becomes necessary?
5. What are the limitations of the Bayesian experimental design? Is it a robust 

design for nonlinear model inversion? What are the perspective ways to make 
this design method practical?

6. Explain why the design defined in Eq. (11.3.15) is robust. Compare the algo-
rithms of this max-min problem to that of the min-min problem for solving the 
EIP.
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 7. Use Fig. 11.3 to explain: (1) whats is INI, (2) how the numbers ε  and δ  are 
determined, (3) how INI depends on a design, and (4) why Eq. (11.3.24) is 
equivalent to Eq. (11.3.23). Moreover, is δ≥( )DS θ  a sufficient condition or a 
necessary condition? How the observation error is counted in INI? In the con-
cept, what are the differences between the INI design and the optimal design?

 8. Compare the computational effort for generating the L-curve in Fig. 11.7 by (1) 
solving the biobjective optimization problem in Eq. (11.4.2) or (11.4.3), and (2) 
solving the cost-effective INI design problem in Eq. (11.58).

 9. Give the details of deriving the G-optimal design in Eq. (11.4.9). Then, formu-
late the robust G-optimal design.

10. Use Fig. 11.9 to explain how model inversion and prediction reliability are 
related to the sufficiency of data in the INI design.

11. Give an outline on how to use INI to design a PnT system (or any model-based 
decision-making problem considered in your study area).

12. Formulate D-optimality criteria, respectively, for solving the two kinds of OED 
problems associated with the pilot point method.
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Chapter 12
Goal-Oriented Modeling
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Two criteria are traditionally used for model parameter estimation and model struc-
ture identification: (C-1) fitting observation data; and (C-2) honoring prior informa-
tion. As we have shown in Chaps. 3 and 7, these two criteria cannot determine a 
model uniquely by solving either classical inverse problem (CIP) or extended in-
verse problem (EIP) when observation error and model error exist. Models that can-
not be rejected by prior information and observed data are called data-acceptable 
models (Sambridge 2001). In EWR modeling, because the real system structure is 
complex and unknown, there may be infinite combinations of model structures and 
model parameters that can fit the existing data equally well. Different modelers may 
construct different models for the same system based on the same data (Refsgaard 
et al. 2006). As we explained in Chap. 10, this type of model nonuniqueness is 
called equifinality by Beven and coworkers (Beven and Binley 1992).

Ideally, a model of a system should be able to produce the same responses as 
the real system does for any excitation (see Chap. 1), but a data-acceptable model 
is tested only by incomplete system responses (observed data) and limited excita-
tions. As a result, there is no guarantee that it would produce the same responses 
as the real system does for all other excitations unseen during model training or 
calibration. In other words, a model that cannot be rejected by existing data may not 
be acceptable for prediction and management purposes. In Chap. 8, the structural 
risk minimization principle was used in support vector machine (SVM) algorithms 
to bound the predictive error, whereas in Chap. 10, we attempted to find all data-
acceptable models for uncertainty analysis. We may collect more data to decrease 
the number of data-acceptable models and thus to decrease the model uncertainty. 
But in EWR modeling, we cannot find all data-acceptable models for uncertainty 
analysis because the number of acceptable model structures is infinite and, more 
importantly, the real structure of the modeled system is usually not accessible be-
cause of its complexity and multiscale variability. As a consequence, an appropriate 
model structure cannot be determined before a model is constructed, and a poste-
rior uncertainty analysis cannot guarantee the model’s reliability. From the discus-
sion herein, we can see that constructing a universally reliable EWR model is a 
very difficult or even infeasible task, although new data collection techniques and 
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computational capacity will keep enhancing our capability to create more realistic 
models in the future.

“Goal-oriented modeling” or “objective-oriented modeling” is a paradigm that 
attempts to find a representative model (or a metamodel) for the system under study 
such that the model is only useful for some preset goals or objectives of model ap-
plication. A goal-oriented model is not a model in the original sense because it gives 
the same “responses” as the real system does only for some “specified excitations,” 
instead of for “any excitations.” But a goal-oriented model is useful in practice 
and can be constructed with limited data. In this chapter, we will give a general 
introduction on how to construct goal-oriented models, especially, for large-scale 
distributed parameter systems.

The goal-oriented forward problem (GFP) introduced in Sect. 12.1 assumes that 
the model parameters are known and considers how to solve the forward problem 
more effectively and accurately for a preset goal, including adaptive model order 
reduction, adaptive mesh optimization, and adaptive upscaling or homogenization 
(Bui-Thanh et al. 2007; Fang et al. 2010; Oden and Vemaganti 2000). In Sect. 12.2, 
the goal-oriented inverse problem (GIP) presented in Sun and Sun (2002), Sun 
(2005), and Sun and Yeh (2007a) is formulated by three criteria: In addition to (C-1) 
and (C-2), it requires also (C-3) (i.e., the constructed model should be reliable for 
the preset goals of model application). Section 12.3 gives theory, methods, and al-
gorithms for the solution of GIP, including the discussions on identifiability, model 
complexity, and data sufficiency. Finally, Sect. 12.4 is contributed to the problem of 
goal-oriented experimental design, in which the interval identifiability (INI) design 
method is extended to include the determination of the model structure.

12.1  Goal-Oriented Forward Problem

12.1.1  Goal-Oriented Model Reduction

Before a model is constructed, the modeler should know why the model is needed 
and how it will be used. When a model is used to solve a goal-oriented engineer-
ing problem (Van Lamsweerde 2001), goals (or objectives) and their accuracy re-
quirements provide important information to guide the construction of a customized 
model. The following goals are commonly seen in EWR engineering:

• Prediction. To predict the values of state variables at specified locations and/
or times when planned changes to the system are taken place. For example, to 
estimate the peak concentration in a well when the concentration of inflow water 
from a boundary is changed to a specified value.

• Management. To control a system to reach a predetermined state. For example, 
to decrease the contaminant level of a site to a specified value.
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• Decision making. To compare different scenarios for controlling a system ac-
cording to certain criteria. For example, to assess the feasibility of remediation 
alternatives for cleaning-up a contaminated site.

• Design. To determine the optimal design variables for engineering purposes. For 
example, to design a monitoring network or a remediation plan.

Presently, a numerical model used for modeling a complex and large-scale EWR 
system may have 10 104 6~  or even more nodes. When such a high-order model 
is used for optimal design or decision making, the computational time and cost 
may not be affordable. GFP attempts to make the forward solution more effective 
and sufficiently accurate for a preset goal (or goals) of model application. A preset 
goal of model application may be represented in general by a function g u q( , , )q ,  
where u is the system state, q  is the system parameter, and q is the control or de-
cision variable. For a distributed system, u u q t= ( , , , )q x  is the forward solution 
of a model L u q t( , , , , )q x = 0 . In most practical cases, q  and q  do not appear in 
the goal expression explicitly, but they impact the goal implicitly through u (i.e., 
g g u q= [ ( , )]q ).

As shown in Sect. 1.2.2, when a numerical method (finite element method 
(FEM), for example) is used for solving partial differential equations (PDEs), after 
spatial discretization, the forward problem becomes the solution of a set of ordinary 
differential equations (ODEs). The entire goal-oriented model consists of a dynamic 
system model with a preset goal, viz.
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(12.1.1)

where u∈N  is the unknown state vector associated with N nodes and u
0

 is its 
initial values,  MÎ θ  is the parameter vector associated with M elements, and 
q Î r  is the control vector; θ  and q  are model inputs, and g is the model outputs. 
The coefficient matrix E  may depend on parameter vector θ  and boundary condi-
tions. For nonlinear models, E  depends also on the unknown state vector. The grid 
scale of the numerical model (12.1.1) is assumed to be fine enough (or the node 
number N is large enough) such that ( , , ) pg u qθ Î   can be used accurately as an 
approximation of g u q( , , )q . Now, we want to find a reduced-order model to replace 
the original high-order model (12.1.1) for the same goal. Let
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where ˆ ( )u Î k k N<<  and <<( )ˆ m m MÎ θ . Model (12.1.2) is called an ac-
ceptable model for goal g  if the following reliability requirement is satisfied

 (12.1.3)ε Θˆˆ ˆ( , , ) ( , , ) ,   for ,  g Q- < Î Îg u q g u q qθ θ θ
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Here, ·  is a norm furnished in the goal space  , ε  is a preset tolerance of error 
in goal, QandQ  are given ranges of andqθ , respectively. In the study of a goal-
oriented optimal control or decision-making problem, θ  is fixed and the reduced-
order model is required to be acceptable for all q ÎQ ; while in the study of a 
goal-oriented parameter uncertainty problem, q  is fixed and the reduced-order 
model is required to be acceptable for all Î Qθ . Obviously, acceptable models 
for a goal are nonunique, and, for the same system, a model that is acceptable for 
one goal may not be acceptable for other goals. Several adaptive methods have 
been developed that allow us to find the lowest-order acceptable model for a given 
goal.

Example 12.1 A goal-oriented linear dynamic system control problem
The following model can be seen in an optimal control problem when the dynamic 
system model (12.1.1) and the goal g u q( , )  are both linear

 

E u Au Bq u 0

g Cu Dq

d
dt

= + =

= +

, ( )0

 
(12.1.4)

where E A C D, , and  are N N N N p N p r´ ´ ´ ´, , , and  matrices, respectively. 
The reduced-order system (12.1.2) and the corresponding goal ˆ(ˆ, )g u q  are given by

 

ˆ ˆ ˆ ˆ ˆ , ˆ( )

ˆ ˆˆ ˆ

E
u

Au Bq u 0

g Cu Dq

d

dt
= + =

= +

0

 

(12.1.5)

where ˆ, ˆ, ˆ ˆE A C Dand  are k k k k p k p r´ ´ ´ ´, , , and  matrices, respectively. Us-
ing Laplace transformation [ ( ) ( ), ( ) / ( )]u u u ut s t dt s s® ®d  to the linear system 
in (12.1.4), we have s s s sEu Au Bq( ) ( ) ( )= + . Thus, u E A Bq( ) ( ) ( )s s s= − −1 , and 
g Cu Dq Gq( ) ( ) ( ) ( )s s s s= + = , where

is called the transfer function. Applying the same process to the reduced-order lin-
ear model (12.1.5), we obtain

 (12.1.6)

where ˆ ˆ( ˆ ˆ) ˆ ˆG C E A B D= − +−s 1 . This equation provides an upper bound of the 
model error in goal g for each reduced-order k.

G C E A B D= − +−( )s 1

g g Gq Gq G G q− = − ≤ −ˆ ˆ ˆ ,
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12.1.2  Goal-Oriented Multiscale Modeling

A large-scale EWR numerical model may need a huge number of nodes in order 
to describe the details of a distributed parameter at fine scales. In this case, finding 
a reduced-order model for a preset goal depends on how the heterogeneity of the 
parameter affects the accuracy of the calculated goal. The adaptive mesh refine-
ment process described in Sect. 7.3 for multiscale inversion can be used here for 
multiscale goal-oriented modeling. As in Sect. 7.3, the adjoint-state method of sen-
sitivity analysis plays an important role in the selection of appropriate elements for 
refinement. The sensitivity of goal g to a parameter component q

j
 in the fine scale 

is given by

 (12.1.7)

It means that if g is insensitive to u
i
 ( / )¶ ¶g u

i
is small  and/or u

i
 is insensitive 

to q q
j i j

u(¶ ¶/  is small) in a region, we can coarsen the mesh in that region to de-
crease the computational effort, otherwise, we should use a refined mesh to increase 
the accuracy of g. As shown in Fig. 12.1, although θ  and θ̂  are not close in the 
parameter space and u  and û  are not close in the state space, g  and ĝ  might still 
be close in the goal space.

The goal-oriented adaptive mesh refinement process consists of the following 
major steps:

1. Start with a coarse mesh, estimate the model error in state, u u- ˆ , and then 
estimate the model error in goal, g g- ˆ , through the adjoint sensitivity analysis.

2. If the model error in goal is less than the given tolerance, stop.
3. Refine the elements where the fine-scale parameter heterogeneity gives the most 

significant effect to the goal; then, return to step 1 with the refined mesh.

∂
∂

=
∂
∂

∂

∂=
∑g g

q q
j i

i

ji

N

u

u

1

.

Fig. 12.1  Two parameter vectors are not close in the parameter space, and their images in the state 
space are not close either, but their images in the goal space are as close as required
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Theories, algorithms, and applications exist in the literature on the estimation of 
error in goal g g- ˆ  and on the implementation of the adaptive mesh refinement 
process. For a detailed discussion on this topic, readers may refer to Oden and 
Zohdi (1997), Oden and Vemaganti (2000), Venditti and Darmofal (2000), among 
others. Recent studies and reviews can be found in Fang et al. (2010), Prudhomme 
and Oden (2011), Jhurani and Demkowicz (2012).

12.1.3  Goal-Oriented Principal Component Analysis

The PCA- or proper orthogonal decomposition (POD)-based model order reduc-
tion method that was used for effective inversion in Sect. 6.4.3 can also be used 
here for effective goal-oriented modeling. Depending on the problem being con-
sidered, snapshots and accurate ( , , )g u qθ  values are obtained by solving the fine-
scale model with different θ  and/or q  sampled from their given ranges. For each 
reduced-order model obtained by truncated singular value decomposition (TSVD), 
we can calculate ˆˆ ˆ( , , )g u qθ  and check the accuracy requirement (12.1.3) to deter-
mine if the model order (number of PCs) should be increased or decreased. Detailed 
discussions and recent studies on this topic can be found in Bui-Thanh et al. (2007), 
Fang et al. (2010), and Carlberg and Farhat (2011).

In summary, it is critical to be able to control the level of model complexity for 
distributed parameter models. When we introduced model order reduction tech-
niques in Chap. 6, we did not answer when to stop increasing the model order. 
When we introduced multiscale modeling in Chap. 7, we did not answer when we 
should stop refining the grid. In Chap. 8, the model complexity is reduced, but we 
did not answer how to determine the model dimensions. Now, we find that these 
questions can be answered by incorporating the goals of model application and their 
accuracy requirement as the third criterion into the inverse problem formulation, not 
only for parameter estimation, but also for structure identification.

12.2  Goal-Oriented Inverse Problem

12.2.1  Basic Problems in Model Construction

There are several basic but challenging problems in the construction of a useful 
model, as shown in the following hypothetical example.

Example 12.2 A goal-oriented prediction problem (from Sun and Yeh 2007a)
Consider again the 2-D confined aquifer used in Example 5.14 and Example 11.7. As 
shown in Fig. 12.2, it is 3000 m long in the x direction, 2000 m wide in the y direc-
tion, and with a constant thickness of 20 m. The head is fixed at 100 m on boundary 
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sections AB and CD and there is no flow across other boundary sections. The initial 
head is 100 m everywhere.

The goal (g) of constructing a groundwater flow model for this aquifer is to pre-
dict the steady-state hydraulic heads in three pumping wells W

1
, W

2
, and W

3
 when 

their pumping rates (the control variable q) reach their planned maximum values 
2000, 10,000, and 4000m3/day, respectively. It requires that the difference between 
the true (unknown) and the model-predicted heads in the three wells be less than 
1 0.  m (the accuracy tolerance 

g
ε ).

Assume that from prior information, the values of hydraulic conductivity K x y( , ) 
(the parameter q ) in the aquifer may vary from a lower bound of 10 m/day to an up-
per bound of 50 m/day, but its structure is unknown. The true structure of the aquifer 
may be a continuously varying structure, a randomly distributed structure with or 
without a trend, or a discrete structure with or without fractures. The number of pos-
sible structures is actually infinite. If we do not have more information to narrow 
the possible range of K x y( , ), the uncertainty of model prediction can be estimated 
directly by running the prediction model twice using the lower bound K x y( , )= 10
m/day and the upper bound K x y( , )= 50  m/day, respectively. The difference in 
model outputs between the two runs gives the following ranges of model-predicted 
steady-state heads in the three wells:

These uncertainty ranges are obviously unacceptable based on the given accuracy 
requirement ( 1.0

g
=ε m). In order to decrease the uncertainty of model prediction, 

1 2

3

49.3m ( ) 90.0m, 25.3m ( ) 85.2m,

47.7m ( ) 89.7m
E E

E

h W h W

h W

£ £ £ £
£ £

 Fig. 12.2  Problem configuration of the numerical example
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a pumping test is conducted that consists of (i) pumping 500, 2000, and 1000 m3/
day, respectively, from wells W

1
, W

2
, and W

3
; (ii) five observation locations at W1, 

W
2
, W3, O1

, and O
2
; and (iii) heads at these locations are measured at time t =  0.05, 

0.1, 0.5, 1.0, and 3.0 day, respectively. These data will then be used to estimate the 
unknown hydraulic conductivity K x y( , ).

At this point, modelers may ask the following questions:

• How do we parameterize the structure of K x y( , )  without knowing its true struc-
ture?

• How can we assure that the identified K x y( , )  is reliable for the given goal of 
model prediction?

• Are the existing data sufficient for constructing a reliable model?
• If the existing data are insufficient, how do we design a cost-efficient test for new 

data collection?

These questions are generally referred to as the model complexity problem, the mod-
el reliability problem, the data sufficiency problem, and the experimental design 
problem, respectively. Of the four basic problems of model construction, answering 
the first one (i.e., model complexity) is the key. Without knowing an appropriate 
level of model complexity, the model reliability cannot be assessed because the 
model error is unknown, the data sufficiency cannot be judged because a more 
complex model needs more data to calibrate, and, finally, without knowing the data 
sufficiency, designing a cost-effective experiment would become meaningless.

But, what is “an appropriate level of model complexity” when the true structure 
of the modeled system is unknown? Model complexity, of course, depends on the 
complexity of the modeled system and available data. But an appropriate model 
complexity should depend more on the goal of model application and its accuracy 
requirement. CIP assumes that the model structure is predetermined (called a con-
ceptual model) and only a number of scalar model parameters are identified by 
data. The model complexity problem is not considered. In EIP, the model structure 
is obtained by an optimization process that extracts as much as possible informa-
tion from data and prior information to avoid over- and under-parameterization. 
A model structure determined by EIP is “appropriate” for the existing data, but 
may not be appropriate for prediction or other goals of model application. In other 
words, a model generated by solving CIP or EIP is a data-acceptable model, but a 
data-acceptable model may not be a goal-acceptable one. In contrast, GIP uses the 
goal of model application and its accuracy requirement to determine an appropriate 
level of complexity in the model structure and then determines the data sufficiency.

12.2.2  Formulation of GIP

Following the notations from Chap. 7, let us use ( , )S θ  to denote a distributed pa-
rameter model to be identified, where S  represents a model structure and θ  is the 



12.2 Goal-Oriented Inverse Problem 517

model parameter vector associated with the structure. GIP uses the following three 
kinds of information for model identification:

• Prior information, such as an initial estimation of the model, 0 0( , )S θ , or an ad-
missible region determined by upper and lower bounds, θ θ θ£ £ .

• A set of state observations, u
D
obs, taken at different times and/or locations. These 

data are the observed system responses to an excitation characterized by a con-
trol variable q

D
 used to set, for example, boundary conditions and/or sources 

terms.
• A set of goals of model application, g u( ) , and their accuracy requirement:

 (12.2.1)

Here, ( , )t tS θ  is the true (accurate) model of the unknown parameter, q
E

 is a 
planned control variable used to generate the required state u for calculating g u( ), 
g

ε  is a preset accuracy requirement, [ ( , , )]t t
Eg u S qθ  is the true g u( )  but unknown, 

and [ ( , , )]
E

g u S qθ  is the model-generated g u( ). It is assumed that ( , )t tS θ  and ( ,S θ) 
include all nodes or elements of the numerical model used for solving the distrib-
uted state u.

With these three types of information, GIP is formulated by three criteria:
(C-1) In the parameter space , the model should not be too far from it initial 

guess, namely, the parameter deviation satisfies the following condition

 
(12.2.2)

where 
P

ε  is the required closeness. This criterion can be replaced by requiring the 
model to be in the admissible region.

(C-2) In the observation space , the model outputs should be close to the ob-
served system state, namely, the fitting residual satisfies

 (12.2.3)

where ( , )
D

u S θ  are the values of the model output ( , , )
D

u S qθ  at observation lo-
cations and times, and 

d
ε  is the required upper bound of the fitting residual that 

should be larger than the norm of observation error.
(C-3) In the goal space , the model calculated goal ( , )

E
g S θ  should be reliable, 

namely, the accuracy requirement (12.2.1) should be satisfied or the model applica-
tion error is constrained by

 (12.2.4)

The solution of GIP thus becomes a multiobjective optimization (MOO) problem 
with three objectives, namely, minimization of PE, RE, and AE. From Sect. 3.1, 
when the weighted sum method is used, the GIP solution is given by

ε[ ( , , )] [ ( , , )] .t t
E E g- <g u S q g u S qθ θ

ε0 0( , ) ( , ) ( , ) ,
p

PE S S Sθ θ θº - <

ε( , ) ( , ) ,obs
D D d

RE S u u Sθ θº - <

ε( , ) ( , ) ( , ) .t t
E E g

AE S g S g Sθ θ θº - <
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(12.2.5)

where

 (12.2.6)

and µ ν λ, and  are weights. If we set 0m =  in (12.2.6), GIP reduces to EIP. In 
this case, the reliability of the model application is not taken into account during the 
inverse solution. When the ε -constraint method is used and minimization of AE is 
required, the GIP solution is given by

 

( , )

ˆ ˆ( , ) argmin ( , ),

subject to ( , ) and ( , ) .
d p

AE

RE PE

=

< <
S

S S

S S
θ

θ θ

θ θε ε
 

(12.2.7)

If minimization of the fitting residual is required, the GIP solution is given by

 

( , )

ˆˆ( , ) argmin ( , ),

subject to ( , ) and ( , ) .
g p

RE

AE PE

=

< <
S

S S

S S

q
θ

θ

θ θε ε
 

(12.2.8)

A fundamental challenge in the solution of GIP is that the term ( , )t tg S θ  in the 
definition of GIP is unknown because ( , )t tS θ  is unknown. This makes the model 
application error ( , )AE S θ  incomputable and, as a result, all optimization problems 
in the GIP formulation become undetermined. Theories and methods are given in 
the next section for dealing with this difficulty.

12.3  Goal-Oriented Inversion

12.3.1  Model Structure Reduction and Model Application 
Error

The complexity of a model structure is measured by its dimensions (the number of 
degrees of freedom, DOF). In the worst case, if we do not have any prior informa-
tion on the model structure, the dimensions of St  may be as large as the number of 
grid blocks, M, of the numerical model. Such a complex model, of course, cannot 
be identified by limited data. In Chap. 7, the true model ( , )t tS θ  is replaced by a 
parameterized model ( , )

m m
S θ , where m M , and the latter is then identified by 

solving EIP. A model structure error is thus introduced. The objectives of EIP and 
GIP are different: The former is to minimize the fitting residual and the latter is to 
find a reliable model for the preset goals. However, the adaptive structure identifi-
cation methods described in Chap. 7 can be used to solve both EIP and GIP.

( , )

ˆ ˆ( , ) argmin ( , ),f
S

S S=
θ

θ θ

( , ) ( , ) ( , ) ( , )f AE RE PES S S Sθ θ θ θm n l= + +
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To solve GIP, first of all, we have to deal with the incomputable problem of AE 
because ( , )t tS θ  is unknown. The dependence of AE on the true model can be ex-
pressed explicitly by

 ( , ; , ) ( , ) ( , ) .t t t t
m m E E m m

AE S S g S g Sθ θ θ θº -  (12.3.1)

If the true model structure St  is known, we can use the following method to find 
the maximum model application error when structure St  is reduced to structure S

m
.  

Let the admissible ranges of tθ  and 
m

θ  be Q( )St  and Q( )S
m

, respectively. Note 
that Q( )St  and Q( )S

m
 have different dimensions. The model application error of 

replacing ( , )t tS θ  by a model with structure S
m

 can be minimized by solving the 
following CIP

 
(12.3.2)

where ˆ( , )
m m

S θ  is the closest one to the true model in all admissible models having 
the structure S

m
 and is called the projection of ( , )t tS θ  onto S

m
. Because tθ  is un-

known, what we can do is to find the following maximum model application error 
resulting from reducing the true structure St  to structure S

m
, i.e.,

  

                   and  

≡

∈Θ ∈Θ

( , ) max min ( , ; , )

( ) ( ).

t
m

t t t
m m m

t t
m m

AE AES S S S

S S
θθ

θ θ

θ θ
 (12.3.3)

In the worst case, when there is no structure information available, St  is considered 
as S

M
, where M is the number of grid blocks, i.e., the maximum DOF of the nu-

merical model. Now, we can use the computable term AE
M m

( , )S S  to replace the 
incomputable model application error (12.3.1) for GIP solution. But, in this case, 
solving the max-min problem (12.3.3) directly is computationally prohibitive. Con-
cepts and methods are given below for dealing with this difficulty.

12.3.2  Measure the Difference Between Two Model Structures

Let us consider two models ( , )
A A

S θ  and ( , )
B B

S θ , where structures S
A

 and S
B

 
may have different dimensions and patterns. When L

2
-norm is used, the structure 

error resulting from replacing S
A

 with S
B

 is defined as

 
 

s . t .         and 

=

∈Θ ∈Θ

( , ) max min ( , ; , )

( ) ( ),
A B

A B A A B B

A A B B

SE dS S S S

S S
θ θ

θ θ

θ θ  (12.3.4)

 = ∈Θˆ( , ; , ) min ( , ; , ), ( ),
m

t t t t
m m m m m mAE AES S S S S

θ
θ θ θ θ θ
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where

 

{
}

22

2

1/2
2 22 2

2 2

( , ; , ) ( , ) ( , )

+ ( , ) ( , ) ( , ) ( , ) .

A A B B E A A E B B

D A A D B B A A B B

d S S g S g S

u S u S S S

θ θ θ θ

θ θ θ θ

m

n l

= -

- + -
 

(12.3.5)

From the above definition, it is easy to deduce the following:

• In general, SE SE
A B B A

( , ) ( , )S S S S¹ .
• When S

B
 is a simplification of S

A
, we have SE

B A
( , )S S = 0.

• If both SE
A B

( , )S S  and SE
B A

( , )S S  are less than a given tolerance, the two 
structures are said to be equivalent. When S

B
 is a simplification of S

A
, we only 

need to calculate SE
A B

( , )S S  to determine their equivalence.
• If S

C
 is a simplification of S

B
, then SE SE

A B A C
( , ) ( , )S S S S£  (i.e. SE

A B
( , )S S  

decreases with the increase of the complexity of S
B

).
• Because the homogeneous structure, S

1
, can be seen as a simplification of any 

structure, we always have 0
1

£ £SE SE
A B A

( , ) ( , )S S S S . In other words, the ho-
mogenization error, SE

A
( , )S S

1
, gives the maximum structure error when struc-

ture S
A

 is replaced by another structure.

The structure errors measured in the goal and observation spaces when S
A

 is re-
placed by S

B
, are denoted, respectively, by AE

A B
( , )S S  and RE

A B
( , )S S . The for-

mer can be obtained from (12.3.4) by setting µ ν λ= = =1 0 0, and  in (12.3.5), 
while the latter can be obtained by setting µ ν λ= = =0 1 0, and . The maximum 
model application error (12.3.3) is a special case of AE

A B
( , )S S  when S

A
 is the 

true model structure St  (or S
M

) and S
B

 is the reduced-model structure S
m

.

12.3.2.1 The Worst-Case Parameter 

The model ( , )
B AB

S θ  is called a projection of the model ( , )
A A

S θ  onto structure S
B
, 

if 
AB

θ  is the solution of the following minimization problem

 
(12.3.6)

Finding 
AB

θ  from (12.3.6) is equivalent to solving a CIP (i.e., searching for a pa-
rameter 

B
θ  with a fixed parameter structure S

B
 to minimize the distance between 

the two models).
Next, we define the worst-case parameter (WCP) of structure S

A
 as

 (12.3.7)

Substituting 
A

θ  obtained in the above equation and its projection 
AB

θ  obtained in 
(12.3.6) into the definition of the structure error (12.3.4), we have

argmin ( , ; , ), s. t. ( ).
B

AB A A B B B B
d= ÎQS S S

θ
θ θ θ θ

argmax ( , ; , ), s. t. ( ).
A

A A A B AB A A
d= ÎQS S S

θ
θ θ θ θ



12.3 Goal-Oriented Inversion 521

 (12.3.8)

Thus, once the WCP 
A

θ  of S
A

 is known, the structure error SE
A B

( , )S S  can be 
calculated by solving a single min problem (12.3.6), in lieu of the max-min problem 
(12.3.4). Figure 12.3 explains the concepts behind (12.3.6) to (12.3.8). But, how 
do we find the WCP in the first place? The following proposition is shown in Sun 
(2005) and Sun and Yeh (2007a):

Proposition: When Q( )S
A

 is a hyperbox determined by the lower and upper bounds 
of its components, the WCP associated with S

A
 must be a vertex of the box when 

structure S
A

 is replaced by a structure S
B
.

With this proposition, the WCP of structure S
A

 can be found by searching only all 
vertices of the hyperbox, instead of searching the entire box. Letting the dimensions 
of S

A
 be k and the set of all 2k  vertices of Q( )S

A
 be ˆ( )Q S

A
, then the WCP can be 

found by solving the following discrete optimization problem:

 
(12.3.9)

where the hat symbol is used to denote vertices, and 
AB

θ  is the projection of ˆ( , )
A A

S θ  
onto S

B
. When k is small, we can directly compare the values of ˆ ˆ( , ; , )

A A B AB
d S Sθ θ  

at all 2k  vertices of Q( )S
A

 to find the WCP. For a medium size k, we can use ge-
netic algorithm (GA) to search for the WCP. When k is large, the problem becomes 
hard to solve. For this case, a multiscale method can be used to find an approxima-
tion of the WCP as shown in the next subsection.

( , ) ( , ; , ).
A B A A B AB

SE dS S S Sθ θ=  

 s. t. = ∈Θ

ˆ
ˆ ˆ ˆ ˆargmax ( , ; , ), ( )

A
A A A B AB A Ad S S S

θ
θ θ θ θ

Fig. 12.3  Projection of 
model ( , )

A A
S θ  onto structure 

S
B, where ( , ; , )A A B Bd S Sθ θ  

is the distance between two 
models. The structure error 
SE

A B
( , )S S  can be found 

by using the WCP 
A

θ  and its 
projection on S

B
, 

AB
θ ,
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12.3.2.2 Calculation of Structure Error 

To calculate the structure error SE
A B

( , )S S  of replacing S
A

 by S
B

 we need a 
forward solution code, a model application code, a CIP solution code, and a GA 
optimization (or any other global optimization) code. The main computation ef-
fort is to search for WCP by solving the maximization problem (12.3.9) with 
GA, the structure error is then obtained directly from (12.3.8). When the admis-
sible region Q( )S

A
 is a hyperbox, GA generates a series of vertices of the re-

gion, k k k
r1 2

, , , ,  , for finding the WCP, and the following steps are completed 
for each vertex to be searched:

1. Let the distributed parameter at a vertex be ˆ( , )
A A

S θ  and use it as the input to run 
the forward solution code that simulates the designed experiment to obtain the 
model simulated observations ˆ( , )

D A A
u S θ .

2. Use ˆ( , )
A A

S θ  again as the input parameter to run the application code to obtain 
the model-predicted goal values ˆ( , )

E A A
g S θ .

3. Use the CIP solution code to find the projection of ˆ( , )
A A

S θ  onto the structure 
S
B

 (i.e., ( ˆ,
B AB

S θ )) defined by (12.3.6).
4. Repeat steps 1 and 2 but change the input parameter to ( ˆ,

B AB
S θ ) to run the 

forward code and the application code to obtain ˆ( , )
D B AB

u S θ  and ˆ( , )
E B AB

g S θ , 
respectively.

5. Calculate the value of the objective function ˆ ˆ( , ; , )
A A B AB

d S Sθ θ  in (12.3.9) 
according to (12.3.5), then return this value to GA for searching the next vertex.

Example12.3 Structure error of replacing a structure by another structure
Let us return to Example 12.2 and consider how to assess the difference between 
two parameter structures of hydraulic conductivity K x y( , ). Figure 12.4 shows a 
three-zone structure S

3
 and a six-zone structure S

6
. In the definition of the struc-

ture error (12.3.5), we set 1m = , n = 10 , and l = 0  according to the accuracy 
requirement ε 1.0

g
= , the norm of the observation error ε 0.1

d
= , and the assump-

tion of no prior structure information. In this case, only the parameter range is given, 
which is 10 50£ £K x y( , ) m/day.

Because the dimensions of the two structures are low, the numbers of WCP can-
didates of S

3
 and S

6
 are only 8 and 64, respectively. Using the abovementioned 

algorithm, it is easy to do an exhaustive search to obtain the following results:

• For the case of replacing S
6
 by S

3
, the WCP of S

6
 and its projection to S

3
 

are shown in Fig. 12.4a. The structure error is SE( , ) .S S
6 3

6 42=  with 
RE( , ) .S S

6 3
0 57=  and AE( , ) .S S

6 3
2 98= .

• For the case of replacing S
3
 by S

6
, the WCP of S

3
 and its projection to S

6
 

are shown in Fig. 12.4b. The structure error is SE( , ) .S S
3 6

0 69=  with 
RE( , ) .S S

3 6
0 07=  and AE( , ) .S S

3 6
0 18= .

These results clearly show that the two models are not equivalent, and S
6
 cannot be 

replaced by S
3
 for the given goal of model application because ε

6 3
( , )

g
AE >S S . 

But S
3
 can be replaced by S

6
 because ε

3 6
( , )

g
AE <S S .
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The WCP of replacing one model structure by another model structure depends 
on many factors. Besides the dimensions and patterns of the two structures, it also 
depends on the methods of parameterization, the ranges of their admissible regions, 
the goals of model application, as well as the boundary conditions. Readers may 
refer to Sun and Yeh (2007a) for detailed discussions.

12.3.3  Solution Process

When the e-constraint method (12.2.8) is used to solve GIP, the solution process 
is basically the same as that of solving EIP, but with an extra goal-acceptable con-
straint. During this process, a series of model structures is constructed:

 (12.3.10)

In this series, the structure complexity is increased gradually and adaptively until 
a goal-acceptable model structure is found. Let us give some explanations before 
introducing an algorithm for constructing such a series.

How to Increase the Structure Complexity The adaptive parameterization 
method used in EIP for model structure identification can be used here to generate 
(12.3.10) but with different criteria: The former is data-oriented, while the latter is 
goal-oriented. For example, we can construct a binary-tree structure series by the 

S S S S
1 2 1
, , , , , . 

m m+

Fig. 12.4  a Replacing S6  by S3. Left: the WCP of S
6
; right: its projection onto S3; b Replacing 

S3  by S6. Left: the WCP of S3; right: its projection onto S6
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zone refinement method (Sect. 7.2.3), in which S
m+1

 is generated by partitioning 
one (or several) selected zone of S

m
 into two zones. The problem is: Which zone 

should we select to partition? In EIP, a zone where the parameter value is most sen-
sitive to the objective function of data fitting is selected. In contrast, in GIP, a zone 
where the parameter value is most sensitive to the given goal of the model applica-
tion is selected. This can be done by comparing ¶ ¶g

E j
/ q  for all zones of S

m
, 

where q
j
 is the parameter value of zone j. Similarly, we can construct a multiscale 

structure series, in which S
m+1

 is generated by refining a selected block of S
m

. In 
this case, a block where the parameter value is most sensitive to the given goal of 
model application is refined. We can also use the nearest neighboring parameteriza-
tion method to construct a series of Voronoi diagrams (see Sect. 7.2.2), in which 
S
m+1

 is generated from S
m

 by adding new generators to an area where the param-
eter value is most sensitive to the given goal of model application. In this case, the 
structural series is non-nested. As in EIP, we can optimize the structural pattern to 
make the structural series converge faster, for example, by optimizing the locations 
of generators.

How to Calculate the Structure Error Because S
m+1

 is generated from S
m

 by 
increasing the complexity slightly and locally, the difference between them is easy 
to account. For example, when S

m+1
 is generated by partitioning one zone of S

m
 

into two zones, to find the projection of 1 1+ +
ˆ( , )m mS θ  onto S

m
 for calculating the 

WCP by (12.3.9), we only need to solve a CIP with one unknown parameter com-
ponent. When S

m+1
 and S

m
 are different in k zones, where k is a small number, to 

find the projection of 1 1+ +
ˆ( , )m mS θ  onto S

m
, we only need to solve a CIP with k 

unknown parameter components (see Example 12.3). As a result, the WCP can be 
found easily and the structure error can be calculated effectively.

How to Find a Complex Enough Model Structure The maximum model applica-
tion error AE

M m
( , )S S  in the GIP problem (12.2.8) is used as a constraint. When 
ε( , )

M m g
AE <S S , we can conclude that S

m
 can be used to replace the true model 

structure for identifying a goal-acceptable model. Using the abovementioned pro-
cess of increasing the structure complexity, the structure error decreases gradually 
and tends to zero. Therefore, with the increase of m, we can use ε( , )

m k m g
AE + <S S ,  

where k ³ 1, as a criterion to determine the goal-acceptance of structure S
m

.

How to Complete the Process of GIP Solution The GIP solution is obtained by 
solving inverse problems (12.2.8) for a series of goal-oriented model structures. 
There are two options: with and without optimizing the structural pattern. For the 
former, we have to solve EIP

 (12.3.11)

For the latter, the problem is reduced to CIP

 
(12.3.12)

( , )

ˆ ˆ( , ) arg min  ( , ) , 1,2, .
m m

obs
m m D D m m

m= - =
S

S u u S 

θ
θ θ

ˆ ˆ( , ) argmin  ( , ) , 1,2, .
m

obs
m m D D m m

m= - =S u u S 

θ
θ θ
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The former needs more computational effort to optimize the pattern of a structure in 
(12.3.10) but the series converges faster, while the latter needs less computational 
effort to generate a structure but the series converges slower.

In the adaptive structure identification process described in Sect. 7.2.2, we con-
tinuously increase the model complexity until a stopping criterion is met or the 
existing data cannot support the identification of a more complex model. But for 
GIP, our purpose is to find a goal-acceptable model. If this purpose can be achieved 
by a simple model structure, we do not need to search for more complex model 
structures even the existing data can support to do so. On the other hand, if the 
existing data cannot support to reach this goal, new data must be collected. The 
data insufficiency problem appears when (i) the fitting residual becomes small, i.e., 

1 1 1 2ε+ + += − <ˆ ˆ( , )obs
m D D m m dRE u u S θ , in this case, no more information can be 

extracted from the existing data; or (ii) the fitting residual does not decrease with 
the increase of model complexity, i.e., ε

1
2

m m d
RE RE +- < , in this case, the exist-

ing data are insensitive to the newly added complexity.

Algorithm The Solution of GIP

Based on the e -constraint method (12.2.8), the GIP solution can be obtained using 
the following stepwise regression process starting from m = 1:

1. Solve EIP (12.3.11) to obtain a model ˆ( ,ˆ )m mS θ . Let RE
m

 be the fitting residual.
2. Generate a more complex structure Ŝ

m+1
 from Ŝ

m
, solve EIP (12.3.11) to obtain 

a model 1 1+ +
ˆ ˆ( , )m mS θ , obtain the fitting residual RE

m+1
, and then calculate the 

structural error for model application AE AE
m m mm
= +(ˆ , ˆ )S S

1
.

3. Consider three cases:

i. If ε
m g

AE ³  and the existing data can support the identification of a more 
complex model structure, replace m by m +1 and return to step 1.

ii. If ε
m g

AE ³  but the existing data cannot support the identification of a more 
complex model structure, go to step 4.

iii. If ε
m g

AE < , stop, and use ˆ ˆ( , )m mS θ  as the GIP solution ˆ ˆ( , )S θ .

4. Design an experiment for new data collection.

Without structural pattern optimization, EIP (12.3.11) reduces to CIP (12.3.12), the 
optimized structure Ŝ

m
 in the above algorithm becomes a fixed structure S

m
, and 

AE
m m

( , )S S+1  is used as AE
m

 in step 2. In this case, more iteration steps are needed.
Comparing the adaptive model structure identification algorithm in Chap. 7 for 

EIP with the above algorithm for GIP, we can find that their refinement criteria and 
stopping criteria are different. In the former, the identified model structure is data-
oriented and there is no criterion to judge the sufficiency of data, but in the latter, the 
identified model structure is goal-oriented and we can judge the sufficiency of the 
existing data. Examples of solving GIP are given in the next subsection.
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12.3.4  The Maximum Homogenization Error

In the solution of GIP, it is important to calculate the maximum structure error when 
a complex structure is replaced by a simple one. For the true model structure St , the 
maximum structure error is its homogenization error SE t( , )S S

1
. If we do not have 

prior structure information, the dimensions of St  could be as high as the number of 
grid blocks of the simulation model. The calculation of SE t( , )S S

1
 is thus a very 

hard problem. In this case, we can use a multigrid process to find the WCP associ-
ated with SE t( , )S S

1
 gradually and approximately. Let us consider a series of grids 

with gradually increased numbers of blocks

 (12.3.13)

The number of blocks of a grid is the maximum DOF of the unknown parameter at 
that scale, and M  is the number of blocks of the finest grid used in the simulation 
model. For simplicity, let WCP M

k
( )  be the WCP associated with the homogeni-

zation error SE M SE M
k k

( ) [ ( ), ]= S S
1

. When M
k

 is not large (less than 50, for 
example), we can use GA to search the vertices of a M

k
-dimensional box to find 

WCP M
k

( )  and obtain SE M
k

( )  according to (12.3.9). Assume that we have found

 (12.3.14)

and

 (12.3.15)

The structure error series (12.3.15) is a monotonically increasing series and tends 
to SE M SE t( ) ( , )= S S

1
. If we find that the difference between SE M

k
( ) and 

SE M
k

( )-1  becomes very small, we may stop and use WCP M
k

( )  as an approxima-
tion of WCP M( ) for calculating the maximum structure error SE M( ). As shown 
in the following example, series (12.3.15) often converges very fast. Otherwise, if 
the series does not converge until M

k
 becomes large, the computational effort of 

using GA to find WCP M
k

( ) will become unaffordable. Fortunately, WCP often 
has a cluster structure (see the following example). After the WCP is found for one 
scale, we can use GA to search only the border elements of the cluster structure for 
the next finer scale. We can also use any available prior information on the model 
structure to reduce the population of possible model structures.

Example 12.4 Calculating the maximum homogenization error
Let us return again to the problem presented in Example 12.2. Because there is no 
prior structure information, the number of DOF of K x y( , ) could be as high as the 
number of blocks (M = 1 281, ) of the numerical model. Attempting to use GA to 
find the WCP by searching all 21281 vertices of the admissible region is infeasible. 
Using the multiscale method for M

1
3= , M2 = 6, M

3
24=  and M

4
96= , we obtain 

M M M M
k1 2

, , , , , . 

WCP M WCP M WCP Mk( ), ( ), , ( )1 2 

SE M SE M SE M
k

( ), ( ), , ( ).
1 2
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WCP( ),3  WCP(6), WCP( )24 , and WCP( )96 , as shown in Fig. 12.5a, b, c, and d, 
respectively, where the parameter reaches its lower bound (10 m/day) in the shaded 
area and upper bound (50 m/day) in the white colored area. WCP( ),3  WCP(6) and 
WCP( )24  are obtained with GA by searching all vertices of the 3D, 6D, and 24D 
hyperboxes, respectively, but WCP( )96  is obtained by searching only the border 
blocks of WCP( )24 . Their corresponding homogenization errors, SE( )3 , SE( )6 , 
SE( )24 , and SE( )96 , are listed in Table 12.1. All of these results are obtained based 
on the algorithm and data used in Example 12.3 but letting S S

A M
= , S S

B
=

1
, and 

setting µ ν λ= = =1 0 0,  and . We can find from Table 12.1 that the structure 
error series (12.3.15) converges very fast. WCP( )96 , or even WCP( )24 , can be 
used as an approximation of WCP M( ), and the maximum homogenization error of 
K x y( , )  for the given model application can be estimated as 18 m.

Example 12.5 Solving GIP for identifying the WCP in Example 12.4
Let us find the GIP solution by assuming WCP( )96  obtained in Example 12.4 is the 
true parameter. The “accurate heads” are obtained by running the forward model to 
simulate the experimental design D described in Example 12.2 with WCP( )96  as 
the input parameter. The “observed data” used for inversion are then obtained by 
adding random observation error with ε 0.1d =  m to the accurate head. Following 
the above algorithm of solving GIP, we carry out the following steps.

Fig. 12.5  The WCPs for different scales: a WCP( ),3  b WCP( ),6  c WCP( ),24  and d WCP( )96

 

Table 12.1  Homogenization error versus structure complexit
Structure 
complexity

SE( )1 SE( )3 SE( )6 SE( )24 SE( )96

Homogeniza-
tion error

0. 16.79 17.28 17.41 17.67
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• The homogeneous structure S
1

 is used to fit the observed data. By solving CIP, 
the optimal parameter value can be obtained as shown in Fig. 12.6a. The fitting 
residual RE

1
1 44= .  m.

• Because RE
1
 is larger than ε2

d
, the data can support the identification of a two-

zone structure. By solving the EIP with two zones, the optimal structure pattern 
Ŝ
2

(based on Voronoi diagram parameterization) and associated parameter val-
ues are shown in Fig. 12.6b. The fitting residual is RE

2
0 22= .  m. The model 

application error of using the single-zone model to replace the two-zone model 
is AE

1
9 62= .  m, which is the distance between the two known models in the 

model application space.
• Because RE

2
 is still larger than ε2

d
, the data can support the identification of a 

three-zone structure. By solving the EIP with three zones, the optimal structure 
pattern Ŝ

3
 and associated parameter values are shown in Fig. 12.6c. The fitting 

residual RE
3

0 07= .  m and the application error AE
2

0 84= .  m.
• At this point, because ε

2
1.0

g
AE < = , we can stop our search and use the three-

zone model as the GIP solution and conclude that the data are sufficient for 
identifying a goal-oriented model.

If we continue the GIP solution process, a four-zone model is identified, as shown 
in Fig. 12.6d. This calculation is not really necessary because RE3  is already less 

Fig. 12.6  The GIP solution: a the identified single-zone model, b two-zone model, c three-zone 
model, and d four-zone model
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than ε2
d
. In other words, although the four-zone model and the three-zone model 

are different in the parameter space, they are equivalent for the given goal of model 
application.

In this example, the reliability of the GIP solution can be verified because the 
“true” parameter is known. Running the prediction model with WCP( )96  as the 
model input parameter and increasing the pumping rates to the assigned values, 
the “true steady-state heads” in the three wells are 87.34, 57.77, and 86.54 m, re-
spectively, while the corresponding results given by the three-zone model are 87.53, 
58.04, and 86.44 m. The norm of the error is 0.35 m, which is indeed less than the 
accuracy requirement ε 1.0

g
=  m. All the GIP solution and verification results of 

this example are summarized in Table 12.2.

Example12.6 GIP solution of a mass transport problem
Accurately predicting the evolution and transport of a contaminant plume in a het-
erogeneous aquifer is not easy because detailed knowledge of the spatial distribu-
tion of hydraulic conductivity is required. For the objectives of groundwater quality 
management and remediation design, however, we may care only about some 
indicators, such as the arrival times and peak concentrations at assigned locations, 
instead of the actual shape of the plume. In this case, developing a goal-oriented 
model will be more practical and cost effective.

Let us return to Example 12.2 again and assume that W
2
 is the only pumping 

well, which is labeled as • in Fig. 12.7a. Now, suppose that the inflow water from 
the boundary section AB is contaminated and we want to estimate the arrival time 
(τ

a
) to the pumping well W

2
. Here, the concentration of inflow water is assumed to 

be C
B
= 100 g/lm  and τ

a
 is defined as the time when concentration of the pumped 

water at W
2
 starts to exceed 5  g/lm . We find that when the value of hydraulic con-

ductivity varies between 10  and 50  m/day, τ
a

 may vary from a minimum of 176 
days to a maximum of 929 days. Now we want to find a representative hydraulic 
conductivity ( ,̂ ˆ)S θθ  such that the following accuracy requirement can be satisfied

Table 12.2  The GIP solution and verification results
– RE (m) AE (m) Predicted head (m)
– – – W1 W2 W3

WCP(96) 0 0 87.34 57.77 86.54
S1 1.44 – 78.51 68.39 77.83

S2 0.22 9.62 88.00 57.45 86.08

S3 0.07 0.84 87.53 58.04 86.44

S4 0.06 0.19 87.41 57.94 86.55
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(12.3.16)

This requirement actually is very difficult to satisfy because of the unknown vari-
ability of the hydraulic conductivity. A pumping test is designed for this goal-orient-
ed inversion that includes one pumping well (•) and four existing observation wells 
(o) as shown in Fig. 12.7a. We find that the WCP for this coupled flow and mass 
transport problem is not identifiable even if the pumping test lasts for 3 days and 
the pumping rate increases to 20000  m3/day. Information content of the pumping 
test can be increased by increasing the number of observation wells instead of sim-
ply increasing the pumping rate. After adding seven new observation wells (x) as 
shown in Fig. 12.7a for head observations, the WCP becomes identifiable when the 
pumping rate reaches 8100 m3/day. Figure 12.7b shows the WCP associated with 
a 24-zone structure and obtained by a GA search. It still has a cluster structure but 
its shape is more complicated than that of the flow problem considered in Example 
12.5. In other words, it contains more degrees of freedom.

The sufficiency of a design for WCP identification can be tested by solving a GIP 
as what we did in the last example. We find that a seven-zone structure shown in 
Fig. 12.7c can be used to replace the WCP for the given goal of model application. 
During this process, for each increase of model structure complexity, the following 
EIP must be solved to optimize the structure pattern:

  .
 − =  

+ −  
( , )

( , )
ˆ ˆ( , ) arg min

( , )m m

obs
h D D m m

m m obs
C D D m m

w

wS

h h S
S

C C Sθ

θ
θ

θ
 (12.3.17)

We set the weighting coefficients w w
h C
= =1 0and  in this example because 

there is no concentration observation. But a mass transport model must be involved 
in the calculation of the model application error 1 1τ τ+ + −( , ) ( , )a m m a m mS Sθ θ . The 
dispersion parameters can only be roughly estimated in the mass transport model 
unless a tracer test is conducted.

This numerical example tells us that: (i) Constructing a goal-oriented mass 
transport model is feasible but more difficult than constructing a goal-oriented flow 
model because the structure of WCP associated with mass transport is generally 
more complex; (ii) if the dispersion parameters can be estimated roughly, the hy-
draulic conductivity identified from the head observations only can be used for 
mass transport modeling provided that the goals of model application are specified 
and incorporated into the solution of GIP.

A real case study on using GIP for conjunctive use planning of surface water and 
groundwater is presented in Chiu et al. (2009).

10 [d]. τ τ ε− < =ˆ ˆ( , ) ( , )t t
a a gS Sθ θ
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12.4  Goal-Oriented Experimental Design

12.4.1  Goal-Oriented Identifiability

A more complex model has more parameters, the identification of more parameters 
would need the support of more data, and to provide more data would require the 
increase of experimental cost. This relationship is called “the cost of complexity” 
in the field of dynamic system control (Rojas et al. 2010). The cost could be very 
high, or even unaffordable, for identifying a complexity system, especially when a 

Fig. 12.7  a Pumping and 
observation wells of the 
pumping test design; b the 
identified WCP; and c the 
representative structure of 
the WCP
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distributed parameter system with multiscale variability is involved. The problem is 
how to quantify the cost and reduce it.

If the goal of model construction is for a preset model application instead of 
parameter identification, the data requirement or the experimental cost can be sig-
nificantly decreased. As we have seen in the last chapter, the preset model applica-
tion may be sensitive only to a part of the model parameters and the insensitive 
parameters are allowed to have large uncertainty. Toward this end, INI-based ex-
perimental designs are derived in Sects. 11.4.2 and 11.4.3 under the assumption of 
no model structure error. In this chapter, we have found another way to decrease the 
experimental cost based on model reduction, in which the original system is repre-
sented by a goal-acceptable model that has less complexity and thus needs less data 
to make it identifiable. The goal-oriented identifiability introduced below considers 
the existence of the model structure error (Sun 2005; Sun and Yeh 2007b).

An experimental design D is said to be a sufficient design for GIP solution, if it 
can provide sufficient data to support the identification of a goal-acceptable model 

ˆ( , )
m m

S θ  by inverse solution, namely,

 (12.4.1)

When such a design exists, the unknown parameter is said to be goal-oriented 
identifiable. We defined the “identifiability” for CIP in Chap. 2 that requires ex-
istence and uniqueness of the inverse solution and thus is difficult to be achieved. 
In contrast, the goal-oriented identifiability is easier to achieve because (i) it does 
not require the uniqueness; (ii) a goal-acceptable model structure S

m
 can always 

be found from the condition ε( , )t
gm

AE <S S ; and (iii) identifying a model with a 
simplified structure needs less data. Sun (2005) gives the following condition on 
goal-oriented identifiability:

Proposition: If we can find a model structure S
m

 and an experimental design D 
such that the following condition is satisfied for any two models 

,1
( , )

m m
S θ  and 

,2
( , )

m m
S θ :

 
ε

ε
− < +

− < −
,1 ,2

,1 ,2

( , ) ( , ) 2[ ( , ) ]

implies ( , ) ( , ) ( , ),

t
D m m D m m m d

t
E m m E m m g m

RE

AE

u S u S S S

g S g S S S

θ θ

θ θ  (12.4.2)

then the unknown parameter must be goal-oriented identifiable (i.e., condition 
(12.4.1) is satisfied). In the above equation, RE(·,·) and AE(·,·) are defined in 
Sect. 12.3.2.

In fact, using the following inequalities

 ε

− ≤ −

≤ − + −

≤ +

 



ˆ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ,

t t t t t
D D m m D D m m

t t t t t t t
D D D D m m

t
m dRE

u S u S u S u S

u S u S u S u S

S S

θ θ θ θ

θ θ θ θ

 

(12.4.3)

εˆ( , ) ( , ) .t t
E E m m g

- <g S g Sθ θ
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where u
D

 means that observation error is added to u
D

 and ( , )t
m m

S θ  is the projec-
tion of ( , )t tS θ  onto Sm , we have

 2 ε

− ≤ −

+ − + −

≤ +

 

ˆ( , ) ( , ) ( , ) ( , )

ˆ( , ) ( , ) ( , ) ( , )

[ ( , ) ].

t t t t
D m m D m m D m m D

t t t t t t
D D D D m m

t
m dRE

u S u S u S u S

u S u S u S u S

S S

θ θ θ θ

θ θ θ θ

 

(12.4.4)

Replacing 
,1m

θ  by t
m

θ  and 
,2m

θ  by ˆ
m

θ  in (12.4.4) and substituting it into (12.4.2), 
we have

 (12.4.5)

Then, because of

 (12.4.6)

finally, we obtain

 
                               + ε

− ≤ −

− <

ˆ( , ) ( , ) ( , ) ( , )

ˆ( , ) ( , ) .

t t t t t
E E m m E E m m

t
E m m E m m g

g S g S g S g S

g S g S

θ θ θ θ

θ θ
 

(12.4.7)

The goal-oriented identifiable condition (12.4.1) is thus satisfied.
Condition (12.4.2) shows that the information contained in the data must be able 

to counteract the effects of both observation and structure errors. If ε( , )t
m g

AE ³S S
(i.e., when the complexity of a model is insufficient), it is not qualified to be a goal-
acceptable model no matter how its parameters are identified. When the complexity 
of Sm  is increased continuously, the structure error SE t

m
( , )S S  will become small-

er and smaller. When both AE t
m

( , )S S  and RE t
m

( , )S S  can be ignored, Condition 
(12.4.2) reduces to

 

(12.4.8)

This condition clearly shows the requirement of data sufficiency: For any two mod-
els, if they cannot be differentiated in the observation space, they must be as close 
as required in the goal space. We can recognize that (12.4.8) is exactly the same as 
Eq. (11.4.26) in Sect. 11.4.3 used to define the INI in the case without the model 
error. Equation (12.4.2) is a general form of goal-oriented INI when the model error 
exists.

ε− < −ˆ( , ) ( , ) ( , ).t t
E m m E m m g m

AEg S g S S Sθ θ

− ≤( , ) ( , ) ( , ),t t t t
E E m m m

AEg S g S S Sθ θ

1 2

1 2

2

              implies ε

ε

<

− <

−
, ,

, ,

( , ) ( , )

,( , ) ( , )
D m m D m m d

E m gm m E m

u S u S

g S g S

θ θ

θ θ
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12.4.2  Data Sufficiency for GIP

We learned that the algorithm of GIP solution itself provides the answer for whether 
or not the existing data are sufficient. First, we need to find a model structure S

m
 

that is complex enough for replacing the true model structure St , and second, we 
must have sufficient data to support the identification of a parameter vector ˆ

m
θ  such 

that ˆ( , )
m m

S θ  is an goal-acceptable model. But, can we answer the data sufficiency 
problem before the data are actually collected and the GIP is solved? This ques-
tion is difficult to answer because the model structure is unknown, and a sufficient 
design must be robust not only to the unknown parameter values, but also to the 
unknown model structures.

For a given design, of course, we can use condition (12.4.2) to test its suffi-
ciency. But this condition is too difficult to test for all admissible structures. The 
Monte Carlo-based method is also ineffective for this case because of the infinite 
variability in model complexity and structure pattern. Fortunately, there is another 
alternative.

When ¢S  is a simplified structure of St , we have RE RE
m

t
m

( , ) ( , )′ ≤S S S S  and 
AE AE

m
t

m
( , ) ( , )′ ≤S S S S . Therefore, if Condition (12.4.2) holds for St , it must 

hold for ¢S  because the right-hand side of its first equation increases and the right-
hand side of its second equation decreases when St  is replaced by ¢S . We have seen 
in Sect. 12.2.2 that the homogenization error AE t( , )S S

1
 is the maximum structure 

error of model application, the WCP associated with AE t( , )S S
1

 is the most dif-
ficult one to be replaced by a simplified model, and its identification needs more 
information than the identification of any other parameter vectors in the admissible 
region. Thus, we have the following proposition (Sun 2005):

Proposition: If a design D can make the WCP associated with AE t( , )S S
1

 to 
be goal-oriented identifiable, the design must be sufficient to make all parameters 
in the admissible region with the structure St  or a simplification of St  to be goal-
oriented identifiable.

In other words, a sufficient design for the WCP associated with AE t( , )S S
1

 is a 
robust design. But how it can be found because St  is unknown? If we do not have 
any prior information on the true model structure, as explained in Sect. 12.3.3, we 
can use a multiscale process to find an approximation of the WCP and its associated 
homogenization error, such as WCP M

k
( )  and AE M

k
( )  in (12.3.14) and (12.3.15), 

respectively. Once the WCP associated with AE t( , )S S1  is found, according to the 
above proposition, the data sufficiency problem of a design or the identifiability 
problem of the WCP can be tested directly by solving a GIP.

Algorithm Test the Sufficiency of a Design for GIP Solution

1. Find the WCP associated with AE t( , )S S
1

 according to the given goals of model 
application.

2. Use the WCP as a model parameter vector to simulate the experimental design 
(with control variable q

D
) to generate “observation data” u u

D
obs

D
WCP=  ( ).
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3. Use the WCP as a model parameter vector to simulate the model application 
(with control variable q

E
) to generate the “goal values” g g

E
t

E
WCP= ( ).

4. Use the algorithm of GIP solution to test the data sufficiency. After ˆ ˆ( , )
m m

S θ  is 
identified from (12.3.11), we have ˆ ˆ( ) ( , )

m E E m m
AE WCPg g S θ= - . Consider 

three cases: (a) If m gAE ε≥  and the “observation data” u
D
WCP( )  can support 

the identification of a more complex model structure, move to the next structure 
S
m+1

; (b) if m gAE ε≥  but u
D
WCP( ) cannot support the identification of a more 

complex model structure, we can conclude that the design may not be sufficient; 
and (c) if m gAE ε< , we can conclude that the design is sufficient for identifying 
the WCP and thus a robust one.

Example 12.5 shows that the design given in Example 12.2 is a robust design for the 
required head prediction, and Example 12.6 shows how to find a robust design for 
predicting the arrival time according to a given accuracy requirement.

12.4.3  Cost-Effective Experimental Design for GIP

After we have learned how to determine the sufficiency of a design for GIP solution, 
the remaining problem is how to make a design for new data collection when the 
existing data are insufficient. A cost-effective goal-oriented optimal experimental 
design problem is formulated in Sun (2005) and Sun and Yeh (2007b). It consists of 
two objectives: minimizing the total cost and minimizing the uncertainty of model 
application, which are also subject to the robustness and feasibility constraints,

 { }
1  

  

φ −

∈

min ( )

min [ ( ) ]

. .

D
T T

E D D ED

ad

Q D

s t D D

J J J J
 

(12.4.9)

where Q D( )  is the total cost of the experiment; f(·)  is a matrix norm depending on 
which optimality criterion is selected, such as the G-optimality or the I-optimality 
in Sect. 11.4.3; [ / ]E EJ g= ∂ ∂θ , = ∂ ∂[ / ]D DJ u θ , and both of which are evaluated 
at the WCP associated with AE t( , )S S

1
. The admissible region D

ad{ } consists of 
all feasible and robust designs (sufficient for making the WCP to be goal-oriented 
identifiable).

Solving the problem (12.4.9) by finding a set of Pareto optimal solutions could 
be computationally difficult because of the robustness constraint. The values of its 
two objective functions cannot be assigned arbitrarily because of the robustness 
constraint. When this constraint is not satisfied, the cost of the experiment must 
be increased and the information content must be maximized at the new cost level. 
The following heuristic algorithm can find a solution of (12.4.9) for nonlinear and 
distributed parameter systems with less computational effort.
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Algorithm Find the OED for GIP Solution

1. Collect the existing data and prior information on both model structures and 
parameter values and find the WCP associated with AE t( , )S S

1
 according to the 

given goals of model application.
2. Determine an initial experimental design D

0
 and calculate its cost Q

0
.

3. Test if D
0

 is a sufficient design for making the WCP goal-oriented identifi-
able. If yes, decrease the cost to Q Q Q

1 0
= −∆ , otherwise, increase the cost to 

Q Q Q
1 0
= +∆ .

4. Solve the following optimal experimental design (OED) problem to obtain a 
modified design

 (12.4.10)

This is a linear problem because all sensitivity coefficients in this equation are 
evaluated at the WCP and is independent of D.

5. Use the modified design to replace D
0

 and return to step 3 with the gradually 
decreased value of DQ  until a cost-effective and robust design is found.

Example 12.7 Find the OED for the GIP problem in Example 12.2
For this problem, the WCP associated with the maximum model application error 
has been represented approximately by WCP(96) in Example 12.4 and shown in 
Fig. 12.4d. Our purpose is to design a cost-effective pumping test for identifying a 
goal-accepted model of K x y( , ). Design variables of the test consist of the pumping 
rates, the pumping period, and the locations/frequencies of head observations. Based 
on the results of sensitivity analysis and also the purpose of decreasing the cost of 
the experiment, five existing wells shown in Fig. 12.2 will be used as observation 
wells. Thus, we only need to design the pumping rates [ ( ), ( ), ( )]qW qW qW

1 2 3
 of the 

three pumping wells, observation frequencies, and the pumping period T . The fea-
sibility of a design requires that the total pumping rate be less than 6000 m /d3  and 
the pumping period less than 4 days. Furthermore, assuming the cost of the experi-
ment is proportional to the total amount of pumped water,

 (12.4.11)

The effect of the observation frequency to the cost is ignored.
The pumping test mentioned in Example 12.2 is used as the initial design that in-

cludes (1) pumping 500, 2000, and 1000 m3/day, respectively, from wells W
1
, W

2
, and 

W
3
; (2) five observation locations at W

1
, W

2
, W

3
, O

1
, and O

2
; (3) the heads at these 

locations are measured at times t =  0.05, 0.1, 0.5, 1.0, and 3.0 days, respectively, 
and the total pumping period is 3 days. Obviously, this is a feasible design. And, 
as shown in Example 12.5, it is also a sufficient design. But, is it the most cost-
effective design? Using the above algorithm, we can find the answer.

With increments ∆Q = 100 m3/day and ∆T = 0 5. d in the algorithm, the re-
sults of solution are summarized in Table 12.3. The region of all feasible and robust 
designs is shown in Fig. 12.8. Any design in the region is acceptable for the GIP 

1
1   s. t. φ − ≤min [ ( ) ], ( )T T

E D D ED
Q D QJ J J J

Q D q W q W q W T( ) [ ( ) ( ) ( )] .∝ + +1 2 3
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solution, but the most cost-effective one, according to Fig. 12.8 and Table 12.3, con-
sists of (1) one day pumping; (2) pumping 525, 2625, and 1050 m3/day, respective-
ly, from wells W

1
, W

2
, and W

3
, and (3) 12 observation times at t = 0.01, 0.05, 0.10, 

0.15, 0.20, 0.25, 0.30, 0.40, 0.55, 0.70, 0.85, and 1.00 days. We can also find from 
the table that the design with a 0.5-day pumping period is more cost-effective. But, 
it is infeasible because the required pumping rate exceeds the pumping capacity.

Detailed discussions of this numerical example can be found in Sun and Yeh 
(2007b), where the reliability of the optimal design is tested by many different 
structures of K x y( , ), including various types of continuous, discrete, and randomly 
generated structures.

Fig. 12.8  Region ( )R  is the 
set of all feasible and suf-
ficient designs

 

Table 12.3  Solutions of the goal-oriented design problem.
Pumping period 
(days)

Pumping rates 
(m3/day)

Total volume 
pumped (m3 )

Sufficiency Feasibility

0.5 7,600 3800 Yes No
1.0 4200 4200 Yes Yes
1.5 3300 4900 Yes Yes
2.0 3000 6000 Yes Yes
3.0 2800 8400 Yes Yes
5.0 2600 13,000 Yes No
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12.5  Statistical Goal-Oriented Inverse Problem

12.5.1  Formulation of GIP in the Statistical Framework

In the statistical framework, the unknown parameter is considered as a random vec-
tor and the inverse problem is formulated with the Bayesian inference

 (12.5.1)

where M represents the model to be estimated, D represents a set of data, and I 
represents prior information. In the formulation of statistical CIP (Sect. 4.1), it was 
assumed that the model structure is known exactly and only the value vector θ  
needs to be estimated. In that case, the unknown model M is θ  and its posterior 
distribution can be obtained by rewriting (12.5.1) into

 (12.5.2)

In the formulation of EIP (Sect. 7.1), it required that both the model structure S  and 
the value vector θ  be estimated from prior information and data. In that case, the 
unknown model M is ( , )S θ  and its joint posterior distribution can be obtained by 
rewriting (12.5.1) into

 (12.5.3)

In GIP, however, we have an additional dataset, the goals of model application. The 
Bayesian inference with two datasets is given by (Sect. 4.2.5)

 (12.5.4)

Let the model M be ( , )S θ , dataset D
1
 be uD

obs , dataset D2  be ( )t
E

g θ , prior infor-
mation I be 0 0( , )S θ , and assume that the distributions of errors in I, D

1
, and D

2
 are 

all Gaussian, the maximum a posteriori (MAP) estimate obtained from (12.5.4) is 
given by

 (12.5.5)

where

 
(12.5.6)

When the norms in the observation and goal spaces are defined by 
2 1T

D
-= C  


, and 

2 1T
E
-= C  


, respectively, where C I

D D
= s2 , C I

E E
= s2 , and C I

P P
= s2 , equa-

p M D I p M I p D M I( | , ) ( | ) ( | , ),∝

* 0( ) ( ) ( ).p p L∝θ θ θ

* 0( , ) ( , ) ( , ).p p L∝S S Sθ θ θ

p M D D I p M I p D M I p D M D I( | , , ) ( | ) ( | , ) ( | , , )1 2 1 2 1∝

( , )

ˆ ˆ( , ) argmin ( , ),f=
S

S S
θ

θ θ

1

1

0 0 1 0 0

( , ) [ ( , )] [ ( , )]

+[ ( , ) ( , )] [ ( , ) ( , )]

+[( , ) ( , )] [( , ) ( , )]

obs T obs
D D D D D

t t T t t
E E E E E

T
P

f -

-

-

= - -

- -

- -

S u u S C u u S

g S g S C g S g S

S S C S S

q θ θ
θ θ θ θ

θ θ θ θ
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tions (12.5.5) and (12.5.6) are identical to Eqs. (12.2.5) and (12.2.6) derived in 
the deterministic framework with µ σ= 1 2/

D
, ν σ= 1 2/

E
 and λ σ= 1 2/

P
. Therefore, 

in the statistical framework, these weights (as hyperparameters) can be estimated 
objectively.

In the statistical framework, when the ε -constraint method is used for GIP solu-
tion, the goal constraint in (12.2.8) is replaced by

 (12.5.7)

where ( )%1-a  is a given confidence coefficient, for example, 95 %.

12.5.2  Geostatistical Parameterization for GIP

In geostatistical inversion (Sect. 7.4.3), the estimated random field is approximat-
ed by a representative random field or parameterized by a few statistical structure 
parameters. Geostatistical inversion actually is a conditioning process. First, after 
conditioned by prior information, we obtain an admissible region Q

I
 containing 

all models that cannot be rejected by prior information. Second, after conditioned 
by parameter measurements, we obtain a subset Θ ΘP I⊂  containing all models 
that cannot be rejected by these parameter measurements; the uncertainty of the 
estimated parameter is decreased. Third, after conditioned by state observations, 
we obtain a subset Θ ΘD P⊂  containing all models that cannot be rejected by these 
state observations; the uncertainty of the estimated parameter is further decreased. 
Figure 12.9 illustrates the conditioning process described herein and the hierarchy 
of subsets.

Without the parameterization error, the variance of estimation is given by cokrig-
ing estimation variance, Eq. (7.4.57),

Var C Ct
i

i

m

D i j
j

n

D u
[ (̂ ) ( )] ( ) ( , ) ( )

, ,
θ θ σ λ µθ θθ θx x x x x x− = − −

= =
∑ ∑2

1 1

(( , ).x x
j  

(12.5.8)

{ }ε= − < > −( , ) ( , ) ( , ) 1 ,t t
E E g

prob AE aS g S g Sθ θ θ

Fig. 12.9  Geostatistical 
inversion as a conditioning 
process
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This equation gives a confidence region of the estimated (̂ )q x , which can be used as 
Q

D
. Now, if we can identify a set Q

G
 containing all models that cannot be rejected 

by the preset goals of a model application and that Q
D

 is a subset of Q
G

 as shown 
in Fig. 12.10a, we can conclude that the model estimated by geostatistical inversion 
based on the existing data is goal-acceptable. Otherwise, as shown in Fig. 12.10b, 
we need more data to support the estimation of a more complex model. Unfortu-
nately, because ( , )t t

E
g S θ  are the results of model application, we do not have 

actual measurement data for the identification of Q
G

. Furthermore, because Q
D

 
is a continuum containing not only plausible realizations but also other parameter 
distributions, a Monte Carlo-based sampling method in this case will be ineffective 
for testing whether or not Q

D
 is a subset of Q

G
. As a result, geostatistical inversion 

gives only an “as is” model determined by the existing data; the effect of the model 
structure error and the reliability of model application are not taken into account. 
Moreover, when we find that the identified model is not reliable because of the large 
model structure error, there is no effective way to increase the model complexity 
and judge the data sufficiency. In this case, we can use the goal-oriented pilot point 
method to be introduced in the next subsection.

12.5.3  A Goal-Oriented Pilot Point Method

With the pilot point method (Sect. 7.4.4), the model complexity can be increased 
by adding more pilot points. Using the idea of the last section, we can develop an 
effective goal-oriented pilot point method, in which the number of pilot points and 
their locations are determined by the criteria of GIP. The unknown parameter is 
parameterized in the pilot point method by

 

(12.5.9)(̂ ) ( ) ( , , ), ( )θ θ λx x x x= ∈
=
∑ i
i

m

i
1

νν ψψ    Ω

Fig. 12.10  a Q
D

 is a subset of Q
G

; b Q
D

 is not a subset of Q
G
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where λi( , , )x νν ψψ{ } are the kriging coefficients that are functions of shape parame-
ters ν  (the coordinates of pilot points) and statistical parameters ψ . Model (12.5.9) 
can be represented by ( , )

m m
S θ , where , ,

m
m= ( )S ν ψ  is the model structure and 

{ }( )
m i

q= xθ  is the parameter value vector at the locations of pilot points. Note 
that, unlike in the deterministic framework, here ( , )

m m
S θ  is not a single model 

when the effect of plausibility is considered (Sect. 7.4.4). The purpose of the goal-
oriented pilot point method is to find an appropriate model complexity under the 
support of data such that Θ Θ

D G
⊂  would be satisfied (i.e., a model must be a goal-

acceptable one if it cannot be rejected by data).
As in the deterministic framework, the goal-oriented pilot point method con-

structs a series of structures

 (12.5.10)

The structure complexity in this series is increased gradually by adding more and 
more pilot points until a termination criterion is satisfied. We explain below how 
this series can be constructed.

How to Generate a Structure Series Let the number of pilot points of S
m

 be k
m
. In 

the original pilot point method, the locations of pilot points are considered as shape 
parameters to be identified or simply determined based on the sensitivity analysis 
of observations with respect to the estimated parameter (Sect. 11.4.4). But, for GIP 
solution, they are determined based on the sensitivity analysis of both observations 
(u

D
) and goals (g

E
) with respect to the estimated parameter. After model ˆ( , )

m m
S θ  is 

obtained in the series, we can use the adjoint-state method to calculate { }/
D

u θ¶ ¶  
and { }/

E
g θ¶ ¶  evaluated at ˆ

m
θ  by running the simulation model and the applica-

tion model, respectively, and then calculate the following weighted sensitivities for 
all nodes j N= 1 2, , , :

 
(12.5.11)

where n is the number of observations, p is the number of goals, and 0 1< <w  is 
a weight. The nodes that are associated with the first km+1  largest values of s

j{ } 
will be used as the locations of pilot points to define the structure S

m+1
. In order to 

decrease the computational effort and also to prevent the pilot points from cluster-
ing in only a few local areas, we prefer to use a coarse grid for pilot point locating, 
where the block length is a half or a quarter of the correlation length.

During this process, pilot points are added gradually to those areas where the pa-
rameter values have a significant effect on the designed observations and the preset 
goals of model application.

Successively Conditioning the Confidence Region As mentioned in the last sub-
section, after conditioned by data with geostatistical inversion (kriging/cokriging), 
we obtain a confidence region Q

D,0
. When the reliability requirement Θ Θ

D G,0
⊂  

is not satisfied, pilot point models with structures in (12.5.10) are identified one by 

S S S S
1 2 1
, , , , , . 

m m+

s w u w g
j D i j

i

n

E k j
k

p
2 2

1

2

1

1= ∂ ∂ + − ∂ ∂
= =
∑ ∑( / ) ( ) ( / )

, ,
q q
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one and the confidence region of estimation is shrunken gradually. As a result, we 
have a series of confidence regions,

 (12.5.12)

If the existing data can support the identification of such a model ˆ( , )
m m

S θ  that 
,D m GΘ ⊂ Θ  is satisfied, then stop and use the model as a GIP solution, otherwise, 

new data have to be collected.

How to Calculate the Structure Error The problem now becomes how to deter-
mine whether or not Θ Θ

D m G,
⊂  is true. Using a sampling approach to find the 

conclusion is infeasible because Q
D m,

 is an M-dimensional hyperbox, where M is 
the number of grid blocks; as a continuum, Q

D m,
 contains not only the plausible 

realizations, but also other realizations.
To deal with this difficulty, we can borrow the concepts and methods used in 

the deterministic framework to define the structure error of replacing S
m+1

 by S
m

 
(12.5.13)

Where 1 1+ +∈ Θ

,m D mθ  is the WCP of replacing Sm+1  by S
m

. It generates the maxi-
mum model application error when S

m+1
 is reduced to S

m
. Therefore, when S

m+1
 

can be regarded as the true parameter structure and ε
1

A ( , )
m m g

E + <S S , we can con-
clude that Θ Θ

D m G,
⊂ .

But, how do we find 
1m

θ +
 ? Because the difference between Θ

D m, +1
 and Q

D m,
 

is limited to those areas where new pilot points are added, we can find 1+


mθ  from 


mθ  by searching only a part of the vertices of Θ
D m, +1

.

Algorithm The Goal-Oriented Pilot Point Method

This algorithm is basically the same as that is given in Sect. 12.3.4, except that the 
pilot point method is used to solve the CIP, the model complexity is increased by 
adding new pilot points, and a different method is used to calculate the structure 
error. Starting from m = 1, the algorithm consists of the following major steps:

1. Use the pilot point inversion method to obtain a model ˆ( , )
m m

S θ  and estimate its 
( )1-a  confidence region Q

D m,
. Let ˆ( , ) obs

m D m m D
RE = -u S uθ  be the fitting 

residual.
2. Generate a more complex structure S

m+1
 from S

m
 by adding new pilot points, use 

the pilot point inversion method to obtain a new model 
1 1

ˆ( , )
m m

S θ+ + , estimate its 
( )1-a  confidence region Θ

D m, +1
, calculate the fitting residual RE

m+1
, and then 

calculate AE AE
m m m
= +( , )S S

1
 by (12.5.13).

3. Consider three cases:

i. If 
m g

AE ³ ε  and the existing data can support the identification of a more 
complex model structure, replace m by m +1  and return to step 1.

ii. If 
m g

AE ³ ε  but the existing data cannot support the identification of a more 
complex model structure (either 2

m d
RE < ε  or 1

2
m m d

RE RE +- < ε ), go 
to step 4.

Θ Θ Θ Θ
D D D m D m, , , ,

··· .
0 1 1
⊃ ⊃ ⊃ ⊃+ 

1 1 1  ,  + + +Α = − ∈ Θ

,( , ) min ( , ) ( , )
m

m m E m m E m m m D mE S S g S g S
θ

θ θ θ
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iii. If 
m g

AE < ε , stop, and use ˆ( , )
m m

S θ  as the GIP solution.

4. Design an experiment for new data collection.

Identifiability, Data Sufficiency, and Experimental Design In the statistical 
framework, a model is said to be goal-oriented identifiable, if the data can support 
the identification of a realization ˆ( , )

m m
S θ  such that all parameter vectors within its 

confidence region are goal-acceptable. This means that the GIP solution is a robust 
one: Even if the representative random field and the model structure are inexact, the 
model could still be useful. The above algorithm itself can answer whether or not 
the existing data are sufficient for so defined identifiability.

When Case (ii) in step 3 of the above algorithm is seen for a number m, we need 
to design an experimental design to collect more data to make the WCP of Θ

D m, +1
 

identifiable. The designed observations should be as sensitive as possible to the 
parameters associated with the new pilot points.

Note that the sufficiency of a design can be tested before the experiment is actu-
ally conducted. As in the deterministic framework, after we have a WCP, we can 
use it as the input parameter vector to generate the “observations” by running the 
simulation model and predict the “goal values” by running the application model. 
Then, we can use these data in the goal-oriented pilot point algorithm to find out 
if the WCP is identifiable. If the answer is yes, the design is sufficient and we can 
consider how to modify it to decrease the experimental cost; otherwise, we have to 
modify the design to provide more information with the minimum increase of the 
experimental cost.

Example 12.8 A numerical example on the goal-oriented pilot point method

Problem Setup The groundwater flow model in Example 12.2 is used here again, 
but we now assume that the unknown hydraulic conductivity K x y( , )  is a realization 
of a random field. Further, assume that the random field Y K x y= ln ( , ) is Gaussian 
and characterized by three statistical parameters: mean 3.0

Y
m = , standard devia-

tion s
Y
= 0 8. , and correlation distance 

Y
= 250 m. In this case, the 95 % confi-

dence interval of K x y( , ) is (4.18, 96.38). Comparing with the deterministic case, 
its values now vary in a larger range but all of them are realizations of a given 
probability distribution.

The goal of the model application is to predict the steady-state heads at ten as-
signed locations (□ in Fig. 12.11) when the pumping rate of the three pumping 
wells, W W W

1 2 3
, , and , reaches their planned maximum values 2000, 10000, and 

4000 m3/day, respectively. It requires that the maximum difference between the true 
(unknown) and the model-predicted heads at all these locations is less than 1.0 m.

The data used for inversion are provided by a designed experiment that includes: 
(1) pumping 500, 2000, and 1000 m3/day, respectively, from wells W

1
, W

2
, and W

3
; 

(2) heads are observed at 10 locations that are the same locations assigned by the 
goal of model prediction (□ in Fig. 12.11); (3) heads at these locations are mea-
sured at times t= 0.05, 0.5, and 2.0 days, respectively.
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Randomly sampling the Y-field, we obtain a realization as shown in Fig. 12.11. 
For testing purposes, this realization will be regarded as the true parameter. Using 
this as the model input to simulate the experiment, a set of model calculated obser-
vations are obtained. After adding 5 % observation error, a set of “observed data” 
used for inversion is obtained.

Solution The first estimation 
0 0

ˆ( , )S θ  shown in Fig. 12.12 is obtained by the geo-
statistical inversion method (see Sect. 7.4.3). Let its confidence region be Q

D,0
. 

The problem is how to find out if this estimation is goal-acceptable. Using a Monte 
Carlo-based approach to determine the reliability of model prediction is ineffective 
in this case because of the high dimensionality and the variability in model struc-
tures. The goal-oriented pilot point method constructs a series of model structures 
(12.5.10). In this example, two pilot points are added each time when increasing the 
model complexity. Thus, S

1
 has only one pilot point, S

2
 has three pilot points, S

3
 

has five pilot points, and so forth. According to the rank of { }s
j

 defined in (12.5.11), 
the selected 11 pilot points for the structure S

6
 are shown as   in Fig. 12.13.

With the goal-oriented pilot point algorithm, the confidence regions in (12.5.12) 
are generated one by one for the structure series, the WCP associated with them are 
identified, and the structure errors between the structures are calculated. With the 
increase of pilot points, the confidence region of estimation is shrunken gradually, 
the range of WCP is decreased gradually, and the structure error becomes smaller 
and smaller. Figure 12.14 shows Q

D,1
, Q

D,3
, and Q

D,6
. Figure 12.15 shows their 

WCPs. The corresponding model application errors are listed in Table 12.4. Because 
AE

4
 is already less than 1.0 m, we can accept model 

6 6
ˆ( , )S θ  as a GIP solution of 

the problem. A further increase of the number of pilot points is unnecessary.

Fig. 12.11  The “true” parameter distribution to be estimated, in which the square symbols denote 
locations where accurate head predictions are required
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The identified model 
6 6

ˆ( , )S θ  is shown in Fig. 12.16a. It is a modification of the 
initial geostatistical inversion model shown in Fig. 12.12 by appropriately increas-
ing the model complexity and extracting more information from the data. Both the 
structure pattern and parameter values are optimized based on the three criteria 
of GIP. As a result, the inverse solution is not only goal-acceptable but also data-

Fig. 12.12  The initial model obtained by geostatistical inversion

 

Fig. 12.13  Weighted sensitivity distribution and pilot points (circles) of S6
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acceptable, and in fact, more accurate. Figure 12.16b shows the difference between 
the “true” parameter distribution in Fig. 12.11 and the identified model 

6 6
ˆ( , )S θ  in 

Fig. 12.16a.
Table 12.5 shows the reliability and stability of the identified model. Without the 

observation error, the errors of model prediction at the ten assigned locations are 
negligible. After randomly adding relative errors up to 5 and 10 % to the observa-
tion data, the model prediction errors are still acceptable. Generally, GIP solution 

Fig. 12.14  Confidence regions associated with (a) S1, (b) S3, and (c) S6
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Table 12.4  The reduction of the model application error with the increase of pilot points
Measure AE1 AE2 AE3 AE4 AE5 AE6

L2 -norm 1.97 1.15 0.89 0.56 0.46 0.28

L∞
-norm 2.94 1.70 1.38 0.91 0.67 0.57

Fig. 12.15  WCPs for (a) S1, (b) S3, and (c) S6
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has better stability because it seeks the simplest structure to satisfy the accuracy 
requirement of a given model application. During the solution process, only one or 
two pilot points are added at a time, and once a goal-acceptable model complexity 
is found, the search process is ended. Otherwise, the algorithm prompts to collect 
new data. The overparameterization problem can thus be automatically avoided.

Robustness In the above goal-oriented inversion algorithm, the search process is 
stopped after the structure S

6
 is found. Our logic is when the WCP associated with 

Q
D,6

 is within the goal-acceptable region Q
G

, we must have Θ Θ
D G,6

⊂ ; therefore, 
all elements of Q

D,6
 are goal-oriented identifiable. Because the unknown parameter 

is an element of Q
D,6

, it must be goal-oriented identifiable. Note that “all elements 
of Q

D,6
 are goal-oriented identifiable” is a robust inference as Q

D,6
 is a continuum 

that contains not only the unknown parameter and its plausible realizations but also 

Fig. 12.16  a The identified model 6 6
ˆ( , )S θ , and b difference (δ) between the “true” parameter and 

the identified model
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others. Let us consider several important cases to verify the robustness of the identi-
fied structure.

Statistically speaking, 95 % realizations of the nominal random field should be 
goal-oriented identifiable with structure S

6
. For testing, a hundred realizations are 

generated as the “true” parameter to be identified with structure S
6
. We find that 

the inverse solutions of them are all goal-acceptable, even after a 5 % relative error 
is randomly added to the observation data. The maximum head prediction error at 
the 10 assigned locations is 0.86 m and the average head prediction error is only 
0.28 m.

We have known in Chap. 7 that accurately estimating the hyperparameters of a 
random field is not easy. Fortunately, we find that goal-acceptable inverse solutions 
can still be obtained when there are significant deviations in 

Y
m , s

Y
, and 

Y
. For 

testing, we use a set of erroneous statistical parameters 3.5
Y
m¢ = , 2.0

Y
s ¢ = , and 



Y
' = 500 m to replace their accurate values during inversion. This means that the 

true parameter and the inverse solution are from two different lognormal random 
fields. Using the same structure S

6
 for parameter estimation, a model '

6 6
ˆ( , )S θ  

is obtained, where the optimal θ̂'  is different from θ̂. We find that this model is 
goal-acceptable too because its corresponding maximum head prediction error at 
the 10 assigned locations is 0.69 m and the average head prediction error is 0.39 m, 
both of which satisfy the given accuracy requirement. In this case, the effect of 
inaccurate hyperparameters is compensated by adjusting the parameter values au-
tomatically during inversion. As a result, the accuracy requirement on the hyperpa-
rameters is not very strict for GIP solution.

Moreover, when the estimated parameter is not a realization of a random field, 
then with a 95 % chance it can be goal-oriented identifiable, provided that it is with-
in the confidence region Q

D,6
. For testing, spatially homogeneous ±10%  relative 

fluctuations are added to the “true” parameter. As a result, it is no longer a realiza-
tion of a lognormal random field. After it is estimated with structure S

6
, we find 

that the inverse solution is indeed goal-acceptable. After randomly adding a 5 % 
relative observation error, the maximum head prediction error at the 10 assigned 

Location No obs. error 5 % obs. 
error

10 % obs. 
error

1 0.09 0.26 0.41
2 0.03 0.23 0.38
3 0.02 0.36 0.61
4 0.04 0.35 0.54
5 0.07 0.25 0.33
6 0.06 0.27 0.41
7 0.04 0.21 0.22
8 0.05 0.32 0.57
9 0.01 0.31 0.47
10 0.02 0.12 0.37

Table 12.5  Errors of model 
prediction at the 10 assigned 
locations for different levels 
of observation error
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locations is 0.38 m and the average head prediction error is only 0.21 m. The preset 
accuracy requirement is satisfied. When 10 % observation error is added, however, 
the maximum prediction error becomes 1.51 m. The preset accuracy requirement 
is violated.

In summary, this example shows that the objective-oriented pilot point method is 
different from the traditional pilot point method in many aspects: It can determine 
the number of pilot points and their locations automatically during the solution 
process; it can determine whether or not the existing data are sufficient; and it can 
guarantee the reliability of model application in a robust sense, not only to plausible 
realizations, but also to errors in the assumed statistical distribution and its hyper-
parameters. The cost of data collection for constructing a goal-oriented model is 
minimized but the computational demand is significantly increased, and different 
models must be constructed for different goals of model application.

12.6  Review Questions

1. Answer the following questions: Why is finding the reduced-order models or 
metamodels necessary in EWR modeling; why is finding an application-inde-
pendent reduced-order model generally impossible; and why does finding an 
application-dependent model make sense?

2. Explain: How is the model complexity problem treated in CIP, EIP, and GIP; 
why is CIP a special case of EIP and EIP a special case of GIP; and why does the 
solution of GIP need the solution of EIP and the solution of EIP the solution of 
CIP?

3. Identify the three types of information (i.e., prior information, observation data, 
and model application goals) given in Example 12.2.

4. What is the motivation that we introduce the concept of the structure error in 
Sect. 12.3.1? Prove all statements on the structure error listed in below equation 
(12.2.5).

5. Explain the meanings of all notations in Fig. 12.3 by their definitions given in 
the text. Then, use this figure to explain the algorithm of calculating the structure 
error.

6. Give the details of calculating AE
m

 in step 2 of the GIP algorithm. Can we use 
1 1

ˆ ˆ ˆ ˆ( , ; , )
m m m m

AE S Sθ θ+ +  to simply replace AE
m

 in the algorithm?
7. Why is it important to find the homogenization error of a structure? How is the 

homogenization error calculated?
8. Four types of identifiability are defined: the classical identifiability (CI), the 

quasi-identifiability (QI), the interval identifiability (INI), and the goal-oriented 
identifiability (GOI). Give their definitions. What are the differences between 
them? Why is INI a special case of GOI? If a model is not identifiable, what can 
we do to make it identifiable? Between INI and QI, which one needs more data? 
Between INI and GOI, which one needs more data?
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 9. Explain why the OED problem for GIP becomes easier for nonlinear models 
after the WCP associated with homogenization WCP is found.

10. Compare the goal-oriented statistical problem defined in this chapter and the 
classical geostatistical inverse problem learned in Chap. 4.

11. What are the disadvantages associated with the geostatistical inversion method 
learned in Chap. 7?

12. Compare the algorithm learned in Chap. 7 for the pilot point method and the 
algorithm for the goal-oriented pilot point algorithm. How the identifiability, 
data sufficiency, and experimental design are included in the latter?



553

Appendix

Appendix A: Functional Spaces and Mapping

In this Appendix, the basic concepts, including vector, length, distance, series, 
limit, inner product, and coordinates that we are already familiar with in the study 
of 2-D or 3-D spaces, are extended to infinite-dimensional function spaces where a 
point or a vector can be a series, a function, a data file, or other things. The concepts 
and methods of vector algebra and calculus can then be generalized.

A.1 Function Spaces

A.1.1 Linear Space

Let   be a set formed by a collection of elements, in which, the operations of ad-
dition and scalar multiplication are defined, i.e., (i) ( )x x1 2+ ∈   for any two ele-
ments x1 ∈   and x2 ∈  , and (ii) xλ ∈   for any real number λ  and x ∈  . If 
the following conditions are valid:

 

(A.1)

1 2 2 1

1 2 3 1 2 3
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where x x x x1 2 3, , ,  are any elements of   and λ  and µ  are any numbers, then   
is called a linear space or a vector space. Note that elements of a linear space can be 
numbers, vectors, functions, matrices, data files, pictures, and other things.

Example A.1 It is easy to verify that an n-dimensional Euclidean space n  is a 
linear space with all n-dimensional vectors as its elements.

Example A.2 All functions defined on a three-dimensional region ( )Ω  form a lin-
ear space Ω Ω= { }f x y z( , , ) | all functions defined on ( ) . Each function is an ele-
ment or a “point” of the space. Its subspace formed by continuous functions only, 
Ω Ω= { }f x y z( , , ) | all continuous functions on ( ) , is also a linear space.

A.1.2 Normed Space

The concept of length defined for an n-dimensional Euclidean space n  can be 
extended to the general case. For a linear space  , if a real number x  is defined 
for each of its element x  and the following conditions are valid:

 

(A.2)

Then   is called a normed linear space and ·  a norm to be furnished. The same 
space can be furnished by different norms.

Example A.3 The Euclidean length of a vector x = ( , , , )x x xn1 2   is an often used 
norm of n , which is called the L2 -norm and denoted by

 
(A.3)

In fact, L2-norm is a special case of the weighted lp -norm ( )1 ≤ ≤ ∞p  defined by

 

(A.4)

where w w wn1 2, , ,{ }  is a set of weights. In particular, we have x
1

1

=
=
∑ w xi i
i

n

 
and x

∞ ≤ ≤
= max

1 i n i iw x .

Example A.4 For each element f x y z( , , )  of the function space 
Ω

 in Example 
A.2, its L2 -norm is defined by

 (A.5)
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A.1.3 Metric Space

The concept of distance between any two points can be extended to the general 
function space. If a real number d( , )x x1 2  is defined for any two elements x1  and 
x2  of a function space  , and the following conditions are satisfied:

 

(A.6)

then   is called a metric space and d(·,·) a metric to be defined. Obviously, a 
normed linear space must be metric space because we can define

 (A.7)

After defining the distance, the concept limit is ready to be extended to the metric 
spaces. Let

 (A.8)

be a sequence in a metric space  . If for any 0ε > , there exists an integer n0 , 
such that d n m( , )x x < ε  for all n n≥ 0  and m n≥ 0 , then xn{ }  is called a Cauchy 
sequence. A Cauchy sequence must converge to a limit x̂  (i.e., d n( , ˆ)x x → 0  when 
n → ∞ ), but there is no guarantee that x̂  must be a member of  . For example, let 
  be a space of all rational numbers, a sequence of rational numbers may converge 
to an irrational number. A metric space   with metric d is complete if each Cauchy 
sequence of it converges to a limit in it.

Definition: A complete normed linear space is called a Banach space.

Example A.5 It is easy to verify that an n-dimensional space n  with Euclidean 
norm is a Banach space. But Banach space is usually named for infinite dimensional 
function spaces. A direct extension of n  is the l2  space that consists of all series 

x | ( , , , , )x x xn1 2  { }  having finite xi
i

2

1=

∞

∑ . It is a Banach space with the norm 
defined by

 
(A.9)

Example A.6 The space Ω  defined in Example A.2 is incomplete because a series 
of continuous functions may converge to a discontinuous function.
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A.1.4 Inner Product Space

Let   be a linear space. If a real number denoted by ( , )x x1 2  is defined for any two 
elements x1  and x2  in the space, and the following conditions are satisfied

 

(A.10)

then ( , )x x1 2  is called the inner product of elements x1  and x2  and   are inner 
product space. An inner product space must be a metric space because we can define 
x x x= ( , ).

Example A.7 In n-dimensional space n , the inner product x  and y  is defined by

 
(A.11)

Example A.8 The function space 2( )L Ω  consists of all square-integrable functions 
on a region ( )Ω , i.e., for any element f L∈ 2( )Ω , we must have

 
(A.12)

For any two elements f ( )x  and g( )x  in the space, their inner production can be 
defined by

 (A.13)

Because f g f g≤ +( )1
2

2 2 , the so defined inner product does make sense. Note 

that 2( )L Ω  contains not only continuous functions, but also some discontinuous 
functions. From (A.13), we have

 
(A.14)

Therefore, if two functions f ( )x  and g( )x  are equal almost everywhere, then 
f g− = 0 , and we should consider them as the same element in the space 2( )L Ω .

Definition: A complete inner product space is called a Hilbert space.
Obviously, n  is a Hilbert space. The completeness of 2( )L Ω  is given by the 
Riesz–Fischer theorem (Meise, Vogt 1997). Therefore, 2( )L Ω  is a Hilbert space.
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A.1.5 Basis of a Hilbert Space

Two elements (vectors) e1  and e2  of a Hilbert space are said to be orthogonal if 
their inner product is zero. A set of vectors ei i| , ,={ }1 2  is called an orthogonal 
system if any two members of the set are orthogonal and the norms of all of them 
are equal to one, viz.

 
(A.15)

An orthogonal system is called the complete if there is no another vector in the 
space that is orthogonal to all of vectors of the system. A complete orthogonal sys-
tem forms a basis of the space.

Example A.9 The basis of n  consists of n vectors: ( , , , , )1 0 0 0 , ( , , , , ),0 1 0 0  
 ,( , , , , )0 0 0 1 . An infinite-dimensional space, such as the l2  space in Example 
A.5 has infinite basis elements: ( , , , , )1 0 0 0 , ( , , , , ),( , , , , ),0 1 0 0 0 0 1 0   .

Example A.10 The basis of a Hilbert function space is a set of functions 
φ φ φ1 2( ), ( ), , ( ),x x xn { }  and not unique. For the 2( )L Ω  space in Example A.8, 

when ( )Ω  is in interval [ , ]0 1 , a possible selection of its basis is:

In this book, we will see other types of basis functions used for the 2( )L Ω  space.

A.1.6 Expansion and Approximation in Hilbert Spaces

Let φ φ φ1 2( ), ( ), , ( ),x x x n{ } , where x ∈ ( )Ω , be a set of complete basis func-
tions of a Hilbert function space. Each element f ( )x  in the space can be repre-
sented by an expression of these basis functions as

 
(A.16)

Calculating the inner production of f ( )x  and φn ( )x  gives

 
(A.17)
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Therefore, the inner production ( , )f nφ  can be seen as the projection of an element 
(vector) f onto a basis function φn  (an axis direction), and cn  the corresponding 
coordinate.

From the point of view of function approximation, if we want to use a linear 
combination of N basis functions,

 
(A.18)

as an approximation of a given function f ( )x , the norm of approximation error is

 

(A.19)

This equation shows that the norm of approximation error will be minimized if we 
choose c fi i= ( , )φ  for all i N= 1 2, , ,  in (A.18). Therefore, after a set of basis 
functions of a function space is selected, the best approximation of a given func-
tion in the space is a truncation of its expansion (A.16), the truncation error tends 
to zero when N → ∞ , and the rate of convergence depends on the basis functions 
to be selected.

A.2 Mappings and Operators

A.2.1 Mapping

Let   and   be two arbitrary spaces. A rule   that associates each element (prei-
mage) x ∈ ⊂ ad  with a unique element (image) y ∈   is termed a mapping or 
a transformation from   to   and denoted by y x= ( ) , x ∈  , y ∈  , or by 

: →  . The subset ad  is its definition domain, and the subset formed by all 
images, ⊂  , is named its range. Obviously, mapping is a generalized concept 
of function. The preimages and images of a mapping can be elements of function 
spaces, data files, figures, and others.

Example A.11 A scalar form of transformation : n m→  is given by
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(A.20)

Example A.12 A mathematical model with a distributed parameter θ ∈1  and a 
distributed state variable u ∈2, where 1  and 2  are two Hilbert spaces, can be 
represented by a mapping u =( )θ , or  : 1 → 2 .

Many concepts and methods established for functions can be extended to the 
general mappings, for example, the concept of continuity. A mapping y x= ( )  
from a metric space   to a metric space   is continuous at an element x0  if for 

every ε > 0  there is a δ > 0  such that x x− <0 δ implies  ( ) ( )x x− <0 ε.

Inverse Mapping In the above definition of mapping, it is required that each preim-
age can have only one image. The inverse statement, however, may not be true. An 
image may have multiple preimages. If the correspondence between the elements 
of ad  and   is one-to-one, then   is said to be injective. In this case,   has 
a unique inverse mapping to be denoted by x y= − 1( ).

A.2.2 Operator

An operator is a mapping from one vector space (or module) to another vector 
space. It is often used to represent an operation on a function that generates another 
function. For example, the differential operator (D Dx x, ,∂ ) accepts a differentiable 
function and returns a derivative function.

Example A.13 If we define an operator as

 
(A.21)

the 1-D advection-diffusion PDE

 
(A.22)

can be represented shortly by an operator equation ( )u = 0  or u = 0.
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A.2.3 Linear Operator

The most common kind of operator encountered is linear operator. Let   and   
be vector spaces. An operator : →   is called linear if

 (A.23)

where f g and ∈  ,  f g and ∈  , and α β and  are any numbers. Accord-
ing to this definition, any linear PDE, such as the convection-diffusion equation in 
(A.21), is represented by a linear operator.

A linear operator  :  1 2→  , where 1  and 2  are two Hilbert spaces, is 
called a bounded operator, if there is a real number k such that

 (A.24)

The norm of a linear operator  :  1 2→   denoted by   is the smallest num-
ber k satisfying the above equation, i.e.,

 
(A.25)

It can be shown that a linear operator  :  1 2→   is continuous if and only if it 
is bounded (Griffel 2002).

For a Hilbert space  , the inner product ( , )f g  is a linear mapping from  →  .  
Because ( , )f g f g≤ , from (A.25), we have ( , )f g g= . The Riesz represen-
tation theorem states: for any linear mapping ( )f  defined on  , there exists a 
unique element g ∈ , such that ( ) ( , )f f g=  for all f ∈ . Proof of this theo-
rem can be found, for example, in Debnath and Mikusinski (1999).

A.2.4 Adjoint Operator

Let  :  1 2→   be a bounded linear operator. The inner product ( , )f g  
on 2  is a linear mapping ( )f , where g ∈2  and for any f ∈1 . Accord-
ing to the Riesz representation theorem, there exists a unique g* ∈1 , such that 
( ) ( , )*f f g= , i.e.,
 (A.26)

Now, we can introduce a new operator * :  2 1→  , which is called the adjoint 
operator of   and defined by
 (A.27)

Substituting (A.27) into (A.26), we have
 (A.28)

  ( ) ,α β α βf g f g+ = +

f k f f≤ ∈, . for all 1

L
Lf

ff
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≠
sup .
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For any bounded linear operator   on a Hilbert space, its adjoint operator *  is 
existent and unique. When  = * ,   is called self-adjoint.

For more detailed discussions on function spaces and operators, we refer the reader 
to the text books of Griffel (2002), Conway (1997), Meise and Vogt (1997), Hirsch 
and Lacombe (1999), Debnath and Mikusinski (1999), and Stein, Shakarchi (2011).

Appendix B: Probability, Statistics, and Random Fields

This appendix reviews some very basic concepts and results from the probability 
theory and statistics covered by college-level text books (Dekking 2005; Menden-
hall et al. 2009; Walpole 2007). With this preliminary knowledge, readers are ex-
pected to have no essential difficulty in understanding the advanced statistical tools 
introduced in this book.

B.1 Random Variables and Probability Distributions

B.1.1 Probability

A sampling space   is a set that includes all possible outcomes for a random selec-
tion from a specified population. An event is a subset of a sample space. A probabil-
ity is a numerically valued mapping P :  →  [0,1] that assigns a number P A( )  to 
every event A subject to the following conditions:

1. P A( ) ≥ 0 , for any A ⊂ 
2. P A( ) ≥ 0
3. If A A1 2, ,  is a sequence of mutually exclusive events, then

 
(B.1)

From the above definition, we can show that:

• If A and B are mutually exclusive events, then

• If A B⊆ , then

• P( )∅ = 0

P A P Ai i i
i

( ) ( ) =
∞

=

∞

= ∑1
1

P A B P A P B( ) ( ) ( )∪ = +

( ) ( )P A P B≤
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B.1.2 Random Variables

A continuous random variable is a variable that may take any value in a finite or an 
infinite interval due to uncontrollable factors. For example, when we measure the 
water level of a well many times, the outcomes may be any value within a range 
even the groundwater flow is in the steady state. A continuous random variable X  
is characterized completely by its probability density function (PDF), p xX ( ) , satis-
fying the following conditions:

• p x xX ( ) > 0 for all 

• p x dxX ( )
−∞

∞

∫ = 1

• P a X b p x dxXa

b
( ) ( )≤ ≤ = ∫

The cumulative distribution function (CDF) of X , P xX ( ) , is defined as the prob-
ability of X x≤ , i.e.,

 
(B.2)

In the following, the subscript X  of pX  and PX  will be omitted so that no confu-
sion should occur. With PDF, the probability of the values of X  falls in an interval 
[ , ]a b  is given by

 (B.3)

Example B.1 The life length of a bacterium is a random variable. Its PDF is given 
by an exponential function:

 (B.4)

where λ > 0  is a constant parameter. When λ = 1 2/ , the probability of the life 
length of a bacterium being 2 4  h is

According to (B.2), the CDF of the random variable is

 
(B.5)

P x P X x p t dt xX X

x
( ) ( ) ( ) , .= ≤ = −∞ < < ∞

−∞∫

P a x b p x dx P b P a
a

b
( ) ( ) ( ) ( ).< ≤ = = −∫

p x e x p xx( ) , ; ( ) ,= > =−λ λ  when  elesewhere,0 0

P x e dxx( ) . ./2 4 1
2

0 2332

2

4
< ≤ = =−∫

P x e x P x xx( ) , ; ( ) , .= − ≥ = <−1 0 0 0λ  when  when 
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B.1.3 The Expected Value and Variance of a Random Variable

The expected value of a random variable X is defined by

 
(B.6)

where f x( )  is the PDF of X. The expected value is used to measure the mean of a 
random variable and often denoted by Xµ , or simply, by µ .

The variance of random variable X with PDF p x( )  is defined by

 
(B.7)

The variance is used to measure the spread of a random variable and often denoted 
by σX

2 , or simply σ 2 , where σ  is called the standard deviation. From the defini-
tions (B.6) and (B.7), it is easy to show that V X E X( ) ( )= −2 2µ .

Example B.2 The mean life length of a bacterium considered in Example B.1 is

The variance of the random variable is

Random variable Y aX b= +  is a linear transformation of random variable X, 
where a and b are constant. It is easy to show that

• E aX b aE X b( ) ( )+ = +

• V aX b a V X( ) ( )+ = 2

B.1.4 Some Important Continuous Probability Distributions

The Normal Distribution The most widely used continuous probability distribution 
is the normal distribution. Its PDF is given below

 
(B.8)

E X xp x dx( ) ( ) ,=
−∞

∞

∫

2 2µ µ
∞

−∞
= − = −∫( ) [( ) ] ( ) ( )Var X E X x p x dx

0

1λλ
λ

∞ −= =∫( ) .xE X xe dx

2
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2 1λλ
λ λ

∞ −= − =∫( ) ( ) xV X x e dx
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x
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,= −
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where µ σ and  are two parameters. Using (B.6) and (B.7), it is easy to show that

 
(B.9)

A normally distributed random variable is often indicated simply by  ( , )µ σ .

The Lognormal Distribution A random variable X is said to have a lognormal dis-
tribution if Y X= ln  is normally distributed. The PDF of lognormal distribution 
is given by

 
(B.10)

where ∝  and σ  are two parameters. The probability ( )P X x≤  can be calculated 
by

 (B.11)

where Y is normal distribution  ( , )µ σ . The mean and variance of a lognormal 
distribution (B.10) are

 
(B.12)

The Gamma Distribution The PDF of the Gamma distribution with is given by

 
(B.13)

where α β and  are two parameters, and 1

0

αα
∞ − −Γ = ∫( ) xx e dx  is the Gamma func-

tion. The mean and variance of Gamma distribution are

 (B.14)

The Beta Distribution The PDF of Beta distribution is given by

 
(B.15)
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=
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The mean and variance of Beta distribution are

 
(B.16)

More theoretical distributions can be found in the standard probability and statistics 
text books. In practice, to determine which kind of a probability distribution that a 
random variable may have, we can draw a histogram based on sample data and find 
a theoretical distribution to fit it.

B.2 Multivariate Probability Distributions

For the same sampling space, there may be two or more random variables. In many 
cases, they may have relationships in the sense of probability. For example, when 
a sample has a large value of one random variable X, probably it would also have a 
large value of another random variable Y. In this case, the two variables are said to 
be positively correlated. Similarly, when a sample has a large value of X , probably, 
it would have a small value of Y , they are negatively correlated. In this section, we 
will consider how to quantitatively describe the correlation relationships between a 
set of random variables.

B.2.1 Joint Probability Density Function

The joint probability distribution of two random variables, X and Y, is a function 
p x y( , )  satisfying the following conditions:

• p x y x y( , ) ≥ 0 for any  and 

• p x y dxdy( , ) =
−∞

∞

−∞

∞

∫∫ 1

• ( ; ) ( , )
b d

a c
P a X b c Y d p x y dxdy≤ ≤ ≤ ≤ = ∫ ∫

Marginal PDF The marginal PDF for X is defined by

 
(B.17)

E X

V X

( )

( )
( ) ( )

=
+

=
+ + +

α
α β

αβ

α β α β2 1

p x p x y dy( ) ( , )=
−∞

∞

∫
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which gives the PDF of X without respect to Y. Similarly, the marginal PDF for Y 
is defined by

 
(B.18)

Therefore, the PDF of any individual random variable can be obtained from the 
joint PDF with other random variables.

Conditional PDF Let us consider how to find the probability distribution of a ran-
dom variable X when the value of a random variable Y is fixed, for example, finding 
the PDF of height distribution for a population having a certain weight. Conditional 
probability is one of the most fundamental and important concept in probability 
theory. The conditional probability of X being in an interval ( , )a b  for a fixed value 
of Y y= , when 0≠( )p y , can be calculated by

 
(B.19)

Thus, the conditional PDF of X for a fixed value of Y y=  should be defined as

 
(B.20)

With this definition, Eq. (B.19) can be rewritten as

 
(B.21)

Independence Two random variables are said to be independent of each other, if

 
(B.22)

From this condition, we can find that

 (B.23)

The independence of two random variables can also be understood from the mean-
ings of marginal PDF and conditional PDF. When the independence condition 
(B.22) is satisfied, we will have

 
(B.24)

p y p x y dx( ) ( , )=
−∞

∞

∫

P a X b Y y
p x y dx
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b
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b
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( , )

( , )

( , )
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.≤ ≤ = = =

∫
∫

∫
−∞

∞

p x y
p x y

p y
( | )

( , )

( )
.=

P a X b Y y p x y dx
a

b
( ; ) ( | ) .≤ ≤ = = ∫

p x y p x p y( , ) ( ) ( ).=

P a X b c Y d P a X b P c Y d( ; ) ( ) ( )≤ ≤ ≤ ≤ = ≤ ≤ ≤ ≤

P a X b P a X b P Y( ) ( ) ( )≤ ≤ = ≤ ≤ −∞ ≤ ≤ ∞
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and

 (B.25)

B.2.2 Random Vectors

The above concepts defined for two random variables can be extended to the 
general case of a set of m random variables or an m-dimensional random vector 
X = { }X X Xm1 2, , , . The joint PDF of X , p( )x , satisfies

• p( )x ≥ 0 , where x = { }x x xm1 2, , ,

• p d
m

( )x x


∫ = 1 , where m  is the entire m-dimensional space

• P p d( ) ( )X x x∈ = ∫Ω
Ω

, for any Ω ⊂ m

The marginal PDFs are determined by

 (B.26)

where p xi( ) is the marginal PDF of Xi  and the subscript −i  means Xi  is excluded. 
The random variables X X Xm1 2, , ,{ }  are called a set of independent variables 
if and only if

 (B.27)

The conditional PDF of Xi  for fixed values x−i  of all other random variables is 
denoted by

 (B.28)

B.2.3 Expected Value, Variance, and Covariance

Besides PDF, there are other numerical measurements used to characterize a set of 
random variables. Let us first consider the bivariate case: there are only two random 
variables X and Y.

Expected Values The marginal means of X and Y are defined as

 
(B.29)
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Generally, the expected value of a mapping g X Y( , )  ( 2 →  ) is defined as

 
(B.30)

Example B.3 It is easy to show the following properties

 (B.31)

 (B.32)

Variances and Covariance The marginal variances of X and Y are defined as

 
(B.33)

The covariance between two random variables X and Y is defined as

 (B.34)

From this definition and (B.32), it is easy to derive the following properties:

 (B.35)

Therefore, if and only if X and Y are independent, we will have

 
(B.36)

Multivariate Random Variables The above discussions are easy to be extended to 
the case having more than two random variables. Let X = { }X X Xm1 2, , ,  be a 
random vector. The expected value of a mapping g( )X  is given by

 
(B.37)

E g X Y g x y p x y dxdy[ ( , )] ( , ) ( , ) .=
−∞

∞

−∞

∞

∫∫

E aX bY aE X bE Y a b( ) ( ) ( ),+ = +  where  and  are constant

E XY E X E Y X Y( ) ( ) ( ),=  if  and  are independent

2 2

2 2

σ µ

σ µ

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

= = −

= = −

∫ ∫
∫ ∫

( ) ( ) ( , )

( ) ( ) ( , )

X X

Y Y

Var X x p x y dxdy

Var Y y p x y dxdy

Cov X Y E X Y

E XY
X Y

X Y

( , ) [( )( )]

( )

≡ − −
= −

µ µ
µ µ

Cov X Y X Y

Cov X Y

( , ) ,

( , )

= 0  if and only if  and  are independent
==
=

+ = + +

Cov Y X

Cov X X Var X

Var aX bY a Var X b Var Y abC

( , )

( , ) ( )

( ) ( ) ( )2 2 2 oov X Y( , )

Var X Y Var X Var Y( ) ( ) ( ).+ = +

E g g p d
m

[ ( )] ( ) ( ) .x x x x= ∫




569Appendix B: Probability, Statistics, and Random Fields 

Especially, when g( )X X≡ , we have the mean of X , viz.

 (B.38)

All Cov X Xi j( , ) , i j m, , , ,= 1 2 , form the following m m×  symmetric matrix 
called the covariance matrix of X :

 

(B.39)

When all components of X  are independent of each other, Cov( )X  reduces to a 
diagonal matrix. Furthermore, if Var( )Xi = σ 2  for all i m= 1 2, , , , Cov( )X  be-
comes σ 2I , where I  is the m m×  identity matrix. Sometimes, we use a shortcut 
notation CX  to represent Cov( )X .

Example B.4 The joint PDF of an m-dimensional normal distribution (or a multi-
variate Gaussian distribution) is given by

 
(B.40)

B.3 Bayes’ Theorem

Let X and Y be two random variables. Using the conditional PDF of X given Y de-
fined in (B.20), we have

 (B.41)

On the other hand, using the conditional PDF of Y given X, we have

 (B.42)

Combination of above two equations yields the well-known Bayes’ theorem:

 
(B.43)
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Because p y( )  is the marginal PDF of Y, using (B.18) and (B.42), we obtain

 
(B.44)

Thus, the Bayes’ theorem can be rewritten as

 
(B.45)

Calculating the denominator in (B.45) is not easy, but fortunately it is not neces-
sary. In fact, the denominator only plays the role of a normalizing constant to assure 

p x y dx( | ) =
−∞

∞

∫ 1 . Let its value be 1/c , the Bayes’ theorem then becomes

 (B.46)

The Bayes’ theorem for two random vectors X  and Y  can be derived by the same 
way and is given by

 (B.47)

Bayes’ theorem is the basis of Bayesian inference approach introduced in Chap. 4 
of this book.

B.4  Random Fields, Auto- and Cross-Covariance 
Functions

After considering random variables and random vectors, we finally introduce the 
concepts of random fields. A random field (or a stochastic field) is a function that 
varies randomly in a time interval and/or a spatial domain. At each point of its 
definition domain, its value is a random variable, but its values at different points 
are generally correlated in one way or another. For examples, the influx to a like 
is a random field of time, the hydraulic conductivity of a heterogeneous aquifer is 
a random field of location, and the precipitation rate is a random function of both 
time and location.

We will use X( ), ( )t t∈ T  to denote a random field, where t  represents inde-
pendent (time and/or spatial) variables and ( )T  is the definition domain of the ran-
dom field. The covariance between two random variables X( )t1  and X( )t2 , i.e., 
Cov X X[ ( ), ( )]t t1 2 , where 1 2, ( )∈ Τt t , is called the auto-covariance of X( )t  associ-
ated with the two points. When t t1 2= , it becomes the variance of X( )t  at a point. 
Auto-covariance characterizes the correlation structure within a random field.
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∫ ∫
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∞
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Furthermore, let X( )t  and Y( )t  be two random fields defined on the same do-
main. For any points t t1 2, ( )∈ Τ , the covariance between two random variables 
X( )t1  and Y( )t2 , (i.e.,Cov X Y[ ( ), ( )]t t1 2 ) is called a cross-covariance of X( )t  and 
Y( )t  associated with the two points. Cross-covariance characterizes the correlation 
structure between two random fields.

Random field is one of most important tool used for distributed parameter esti-
mation. More details on this topic are given in Chap. 6 of this book, including the 
use of Gaussian Random Field, Markov Random Field, and others.

Appendix C Matrix Algebra and Matrix Calculus

The first section of this appendix is a brief review on matrix algebra, including basic 
operation rules, matrix inversion, norms, orthogonality, and eigenvalue decomposi-
tion, and etc. The second section is a brief introduction on matrix calculus. Using 
the notations of vector and matrix, differentiation and other operations on multivari-
ate functions, or more generally, on mappings will become more concise and clear. 
This appendix covers only materials that are needed for reading this book. For more 
advanced topics, readers are referred to Laub (2005) and Gentle (2007).

C.1 Matrix Algebra

C.1.1 Definitions and Important Operation Rules

• Matrix: A matrix with m rows and n columns is denoted by A = ×[ ]aij m n, where 
aij  represents an element located at the cross of row i and column j. We assume 
that all elements are real numbers. If a aij ji=  for all i and j, A is called symmet-
ric matrix. If all aij = 0 when i j≠ , A  is called a diagonal matrix; Further, if 
all aii = 1, the diagonal matrix is called an identity matrix and denoted by I.

• Transpose: The transpose of a matrix is defined as AT = ×[ ] .aji n m

• Vector: An m-dimensional column vector is defined as a = [ , , , ]a a am1 2 
T which 

can be seen as a m ×1 matrix, while an m-dimensional row vector aT  can be 
seen as a 1×m  matrix.

• Addition: Let A = ×[ ]aij m n  and B = ×[ ]bij m n  be two m n×  matrices. The summa-
tion of them denoted by A B+  is a matrix C = ×[ ]cij m n, where c a bij ij ij= + .

• Multiplication: Let A = ×[ ]air m k  and B = ×[ ]brj k n . The product of them, denoted 

by AB , is a matrix C = ×[ ]cij m n , where c a bij ir rj
r

k
=

=
∑

1
.

The following definitions are applicable only to square matrices.
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• Determinant: The determinant of a square matrix A  is denoted by det( )A . If 
det( )A = 0, A  is called a singular matrix.

• Inverse matrix: For a m m×  square matrix A , if there is a m m×  square ma-
trix B  such that AB BA I= = , then B  is called the inverse of A  and de-
noted by A−1 . When A−1  exists, A  is called invertible. A nonsingular matrix 
is invertible. For a rectangular matrix, we can find its generalized inverse (see 
Sect. 2.2.2).

• Orthogonality: A square matrix A  is orthogonal when A A AA IT T= = . In 
other words, for an orthogonal matrix A , we must have A AT = −1 .

• Positive definite matrix: A symmetric m m×  square matrix A  is called positive 
definite, if the quadratic form Q ≡ >x AxT 0  for any m-dimensional column 
vector x . For the case of Q ≥ 0, A  is called positive semidefinite. Similarly, 
we can define negative definite and negative semi-definite matrices according to 
Q < 0 and 0Q ≤ , respectively.

• Trace: The trace of an m m×  square matrix A  is the summation of all elements 
on its diagonal, namely, Tr( )A =

=
∑aii
i

m

1
.

From the above definitions, the following important matrix operation rules can be 
obtained directly:

• A B B A+ = +
• ( ) ( )A B C A B C+ + = + +

• A BC AB C( ) ( )=
• In general, ≠AB BA
• A B C AB AC( )+ = +
• α α α( )A B A B+ = + , where α  is a scalar
• α α α( ) ( ) ( )AB A B A B= = α
• ( )A AT T =
• ( )α αA AT T=
• ( )A B A B+ = +T T T

• ( )AB B AT T T=

• ( )A A-1 -1 =
• ( ) ( )A A-1 T T= −1

• ( )AB B A-1 -1 -1=
• Tr Tr(( ) )α αA A=
• Tr Tr( Tr(( ) ) )A B A B+ = +
• Tr Tr(( ) )AB BA=
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C.1.2 Eigenvalue Decomposition

The eigenvalues and their associated eigenvectors of an m m×  square matrix A  
satisfy the eigenvector equation

 (C.1)

All nonzero eigenvalues then can be solved from the following characteristic equa-
tion

 (C.2)

The MATLAB command eig can be used to find all eigenvalues and associated 
eigenvectors of a square matrix. Eigenvalue-eigenvector pairs have the following 
important properties:

• Matrix A and all eigenvalues of a symmetric matrix are real.
• The value of det( )A  is equal to the product of the absolute values of all eigen-

values of A . Thus, if all eigenvalues are nonzero, then det 0( ) ≠A , and as a 
result, A  is nonsingular and invertible.

• Matrix A  and its inverse A−1  have the same eigenvalues.
• Eigenvectors corresponding to different eigenvalues are linear independent of 

each other. Furthermore, when the matrix is symmetric, these vectors are perpen-
dicular to each other.

Now assume that matrix A  has m nonzero eigenvalues λ λ λ1 2, , , m{ }  with corre-
sponding linear independent eigenvectors x x x1 2, , , m{ } . Using x x x1 2, , , m{ }  
as columns and using λ λ λ1 2, , , m{ }  as diagonals, respectively, we can compose a 
matrix Q  and a diagonal matrix ΛΛ  as shown below

 

(C.3)

Using (C.1), we have

 (C.4)
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This equation gives the following eigenvalue decomposition of A

 (C.5)

When a matrix A  has the above eigenvalue decomposition, it is called a diago-
nalizable matrix. Not all matrices are diagonalizable. But, according to the above 
mentioned properties of eigenvalues, symmetric matrices must be diagonalizable, 
and moreover, because all eigenvectors of a symmetric matrix are perpendicular to 
each other, we have Q Q-1 T= . Therefore, for a symmetric matrix A , (C.5) can be 
replaced by the following and easier to be calculated form

 (C.6)

Powers of a Matrix For a square matrix A, its k power, Ak , is the product of k A
’s, (i.e., A AA2 = ), A AAA3 = , and so forth. When k is large, Ak  is not easy to be 
calculated. But, for a diagonal matrix A =  aii , it is easy to find that Ak

ii
ka= 



.  

Furthermore, when A is diagonalizable, we can use its eigenvalue decomposition 
(C.5) to find

 (C.7)

where the diagonal matrix Λ  =  
k k

iλ .

The Square Root of a Matrix A matrix B is said to be the square root of a square 
matrix A  and denoted by A1 2/  if BB A= . For a diagonal matrix A =  aii , we 

have A1 2 1 2/ /= 



aii . When A  is diagonalizable, we have A Q Q1 2 1 2 1/ /= −ΛΛ . Fur-

thermore, when A  is symmetric and positive definite, its square root is unique and 

given by A Q Q1 2 1 2/ /= ΛΛ T .

C.1.3 Matrix Norms

We have defined the concept norm for general function spaces in Appendix A. Let 
us consider an operator space   consisting of all real matrices with m rows and n 
columns. Each element A ∈   is an operator that transforms vector x ∈ n  into 
vector y ∈ m . With the Lp  norms defined in Example A.3, for any vector x ∈ n, 
we have

 (C.8)

A Q Q= −ΛΛ 1.

A Q Q= ΛΛ T .

1 1 1 1Λ Λ Λ Λ− − − −= = ,k kA Q Q Q Q Q Q Q Q

.
p p

c≤Ax x
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Moreover, from the operation rules given in C.1.1, for any two vectors x1 ∈ 
n  and 

x2 ∈ 
n

, we have

 (C.9)

Comparing the above two equations with Eq. (A.23) and Eq. (A.24), we know that 
matrix A  is a bounded linear operator. Thus, according to Eq. (A.25), the norm of 
A  can be defined as

 (C.10)

Especially, for p = ∞1 2, , , we have

 (C.11)

 (C.12)

 (C.13)

Two norms, · ·
p q

and , are called equivalent if there are constant numbers c and 
d such that the following inequality is satisfied:

 (C.14)

An equivalent and alternative norm of A
2

2
 given in (C.12) is the Frobenius norm 

defined by

 (C.15)

C.2 Matrix Calculus

C.2.1 Definitions

We have known how to differentiate a smooth scalar function y f x= ( )  with a sca-
lar variable x . When the input and output relationships of a mode are considered 

A x x Ax Ax( ) .α β α β1 2 1 2+ = +

A
Ax

xxp

p

p

≡
≠

sup .
0

1 1
1

 the maximum of the comumn sums,
≤ ≤

=

= ∑max ,
m

ijj n
i

aA

2 T T
2

the maximum eigenvalue of = max( ), ,λA A A A A

1
1

 the maximum of the row sums.
∞ ≤ ≤

=

= ∑max ,
n

iji m
j

aA

· · · .
q p q

c d≤ ≤

2 2

1 1

Tr the trace of ( )
= =

= =∑∑ ( ), .
m n
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ijF

i j
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as a transformation y x= ( ) , differentiation of vector and matric functions will 
becomes necessary. Let us consider several cases used in this book.

Scalar w.r.t. Vector y f m= →



( ) :x     In this case, y is a scalar and x is an 

m-dimensional column vector (or an m ×1 matrix),

 (C.16)

The gradient of f ( )x  is defined as the following column vector (or m ×1 matrix):

 (C.17)

The second-order gradient or the Hessian matrix of f ( )x  is defined as

 (C.18)

Vector w.r.t. scalar y f= →



( ) :x n    In this case, x  is a scalar variable and 

y  is an n-dimensional column vector

 (C.19)

The gradient of y  w.r.t x  is defined as the following row vector

 (C.20)

while the second-order gradient of y  is

 (C.21)
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Vector w.r.t. Vector y f x= →



( ) :   

m n  In this case, vector x is defined in 
(C.16) and vector y  is defined in (C.19). The derivative of y w.r.t. x is defined as 
the following Jacobian matrix

 (C.22)

Scalar w.r.t. Matrix y f m n= →





×( ) :X   
 In this case, y  is a scalar and X  is 

an m n×  matrix xij



 . The gradient of y  w.r.t. X  is defined as

 (C.23)

Matrix w.r.t. scalar Y = →





×f x m n( ) :     In this case, x  is a scalar and Y  is 

an m n×  matrix yij



 , and the gradient of Y  w.r.t. x  is defined as

 (C.24)

Other types of differentiation, such as the gradient of vector with respect to matrix 
and various high-order gradients, are not required for reading this book.
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C.2.2 Important Operation Rules

The operation rules on matrix differentiation, including the chain rules, can be de-
rived directly from the definitions of gradients given above. For the gradient of 
scalar w.r.t vector, ∂

∂
f ( )x
x

, we have

∂
∂

=
∂
∂

( )au
a
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x x
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x x x
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u
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T u u x= ( )
v v x= ( )

∂
∂

=
∂
∂

∂
∂

g g

u

u

x x

g g u= ( ( ))x , Chain rule

∂
∂

=
( )x Ax

x
Ax

T
2

A  is a matrix independent of x

∂

∂
= +

2

2

( )x Ax

x
A A

T
T

For the gradient of vector w.r.t scalar, ∂
∂
f( )x

x
, we have

∂
∂

=
∂
∂

( )a

x
a

x

u u a  is a constant
u u= ( )x

∂
∂

=
∂
∂

( )Au u
A

x x
T A  is a matrix independent of x

∂
∂

=
∂
∂











u uT T

x x

u u= ( )x

∂
∂

=
∂
∂

∂
∂

g u g
ux x

g g u= ( ( ))x

For the gradient of vector w.r.t vector, ∂
∂
f x
x
( ) , we have



579Appendix C Matrix Algebra and Matrix Calculus 
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C.2.3 The Gradient of a Parameterized Matrix

Let A( ) ( )α α= 



aij  be an m n×  matrix parameterized by a parameter α . The 

gradient of A  w.r.t. parameter α  is

 (C.25)

Because we always have A A I− =1 , differentiate this equation yields

 (C.26)

From this equation, we can obtain

 (C.27)
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Local sensitivity analysis, 142, 177, 183, 416, 
418

Local sensitivity analysis for uncertainty 
quantification, 416

Localization, 195, 201, 402
Localization of EnKF, 402
Location-dependent shape parameter, 193
Logistic sigmoid function, 323
Lumped parameter model, 8, 152, 453
Lumped parameter rainfall-runoff model, 3, 

101
1L -norm, 115–117, 316

2L -norm, 37, 40, 58–63, 65, 74, 81, 89, 120, 
307

M
Marginalized maximum a posteriori estimate, 

291, 292
Markov chain Monte Carlo (MCMC), 107, 

126, 317, 414, 474
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Markov process, 127, 366, 367
Markov random field (MRF), 186, 204–207
Mass transport model, 6, 11, 23, 27, 29, 66, 

70, 86, 92, 93, 165, 421, 491, 498, 
528

Maximum a posteriori (MAP) estimate, 117, 
538

Maximum homogenization error, 526–531
Mean squared error (MSE), 118, 312, 470
Measure the difference between two model 

structures, 519–521
Measures of uncertainty, 412–414
Metamodels, 49, 332, 336, 427, 428, 437
Metropolis ratio, 128
Metropolis-Hastings algorithm, 107, 127, 128, 

135–137
Minimum cost design, 485
Minimum relative entropy (MRE) estimator, 

123, 124
Minimum variance estimation, 379, 381
Model application error, 517–520, 528, 530, 

542, 544
Model averaging without the true model, 455
Model complexity problem, 22, 248, 516
Model complexity selection, 252
Model complexity selection with statistical 

criteria, 254
Model complexity selection with singular 

value decomposition, 254
Model differentiation

application of
dimensionless sensitivity analysis, 182, 

183
local sensitivity analysis, 177–182
numerical optimization, 176, 177

adjoint-state method (see Adjoint-state 
method)

automatic differentiation (see Automatic 
differentiation)

perturbation method (see Perturbation 
method)

sensitivity equation method, 143–149
Model reliability, 1, 2

goal-oriented modeling, 23, 24
model uncertainty analysis, 20, 21
problems and difficulties in model 

construction, 21–23
Model structure error, 15, 18, 19, 21, 31, 42, 

51, 70, 93, 252, 256, 303, 336
Model structure identification, 19, 20, 186, 

247
Model structure parameterization

extended inverse problem, 250–252
model complexity selection, 252–255
model structure representation, 248, 249

Model structure reduction, 305, 518
Model uncertainty propagation, 411
Moment equation, 294, 373
Monod model, 2
Monte Carlo integration, 126, 127, 403
Monte Carlo method for Bayesian inference

exploring the posterior distribution, 125, 
126

Markov chain Monte Carlo sampling 
techniques, 126–133

sampling for inverse solution, 134–137
simulated annealing, 137–139

Monte Carlo simulation for uncertainty 
quantification, 414

Morris sampling, 425
Multilayer perceptron network, 322, 323
Multimodel inference, 450, 456
Multiobjective design problems, 464
Multiobjective evolutionary algorithm 

(MOEA), 70, 71, 104, 105, 464
Multiobjective optimization (MOO), 19, 24, 

69–71
algorithms for

deterministic methods, 96–98
genetic algorithm, 99–103
multiobjective evolutionary algorithm, 

103–105
Multiple random dimensional polynomial 

chaos expansion, 434–440
Multipoint statistics, 186, 202, 203, 213, 

222–226, 243
Multiscale inversion, 20, 202, 252

multiscale modeling, 278–281
multiscale refinement, 276, 277

Multistart method, 97
Multistate modeling, 86, 87
Multistate models, 159–166

Bayesian inversion for, 124
parameter identification of

coupled inverse problems, 86–90
multistate modeling, 86, 87
solution of coupled inverse problems, 

90–92

N
Natural neighbor interpolation, 198, 199
Nearest-neighbor interpolation, 196–198
Necessary condition of minimization, 55, 120, 

223, 288
Neutral compromise solution of multiobjective 

optimization, 90
Noninferior solution, 70, 71
Non-informative priors, 116
Nonintrusive methods for PCE, 440
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Nonlinear models, 35, 80, 135, 168, 184, 292, 
315, 347, 474, 486, 509

Nonlinear model identification
algorithm for local optimization, 51–58
basic concepts of numerical optimization, 

48–51
inverse solution and optimization, 46, 47
norm selection, 58–61

Nonlinear regression, 187, 321
Nonlinear system filtering

extended Kalman filter, 381–385
Gaussian sum filter, 390–392
unscented Kalman filter, 386–390

Nonparametric function, 186
Norm selection. See under Nonlinear model 

identification
Normal equation, 34, 37, 40, 43
Numerical approximation techniques for 

sequential data assimilation, 369
Numerical differentiation, 49, 174, 257, 382
Numerical integration for PCE, 444–446
Numerical optimization, 47–49

first-order methods, 52
second-order methods, 52
zero-order methods, 51, 52

O
Observation error, 114, 115
Observation operator, 26
Observation space, 26–28, 31, 43, 51, 58, 59, 

65, 69, 74, 86, 108, 109, 120, 253, 
256, 479, 480, 493, 515, 518, 532

One-step transition PDF, 366, 367
Open system, 2
Optimal design with Gaussian prior 

distribution, 470, 471
Optimal design with uniform prior 

distribution, 464–470
Optimal excitation design, 460
Optimal experimental design (OED), 19, 22

formulation of, 463, 464
other objectives of

design and cost-effectiveness, 485–488
design for decision making, 497–501
design for geostatistical inversion, 

502–504
design for model prediction, 488–497
design for model structure 

identification, 505, 506
Optimal observation design, 460
Optimality criteria for model application

G-optimality, 498
I-optimality, 498

Optimality criteria of experimental design
A-optimality, 466, 471, 490, 503
C-optimality, 466
D-optimality, 465–468, 470–474, 502, 503
E-optimality, 466, 470, 489
T-optimality, 466, 470, 472

Optimality for model prediction
G-optimality, 489
I-optimality, 490

Optimization approach for level set inversion, 
274

Ordinary kriging (OK), 217–219
Ordinary least squares (OLS), 120
Orthogonal expansion, 187, 435
Orthogonal polynomial expansion in 

probability space, 428
Over-believing the prior information, 73
Overdetermined, 17, 35, 37, 38, 40, 190, 446, 

448, 449
Overfitting, 73, 77, 81, 85, 267, 306, 315, 327, 

339, 341, 343, 344, 347

P
Pairwise-interaction Markov random field, 

205
Parameter error specification, 373
Parameter evolution equation, 371, 374, 382
Parameter identification (estimation), 86–92
Parameter identification with multiobjectives, 

93–96
Parameter space, 26, 39, 43, 117, 137, 256, 

332
Parameterization

of a deterministic function, 186–190
of a stochastic function, 206
of a system model, 249, 250

Pareto front, 70, 73, 103, 104
Pareto optimal solution, 70–73, 77, 88, 90, 93, 

96, 104, 485, 486, 491, 499, 500, 
534

Partial variance, 418, 419
Particle filters, 392, 403–405
Particle tracking methods, 13
Performance function, 150–153, 159, 160, 164
Perturbation equation, 293–295
Perturbation expansion, 294
Perturbation method, 142, 143
Physics-based model, 7, 8, 11, 20, 305, 321, 

331–333, 335–337, 363
Pilot point method, 222, 248, 299--302, 504

goal-oriented, 540–550
Plausibility, 248, 299, 302, 456
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Point estimation
Bayesian inversion for multistate models, 

124
estimators with Gaussian prior distribution, 

121, 122
estimators with uniform prior distribution, 

119–121
maximum a posteriori estimate, 117–119
minimum relative entropy estimator, 

122–124
Point estimator, 118, 119, 124, 125
Polynomial chaos expansion (PCE), 428
Posterior PDF, 107, 112, 113, 206, 207, 301, 

367–369, 371–373, 382, 390, 403, 
454

Precision matrix, 205, 206
Principal component analysis (PCA), 226–238
Prior information, 14, 72, 77, 247, 411, 484, 

515
Prior PDF, 108, 112, 113, 207, 223, 299, 366, 

369, 373, 374, 389
Probability collocation method (PCM), 446
Probability density function (PDF), 473
Probability distribution of observation error, 

114, 115
Probability distribution of prior information, 

116, 117
Proper orthogonal decomposition (POD), 226, 

514

Q
Quasi-identifiable, 30, 32, 47, 72
Quasi-solution, 25, 28–32, 38, 40, 46, 51, 58, 

59, 71, 77, 79, 88, 119, 479

R
Radial basis function (RBF), 199

Gaussian, 200
Generalized multiquadric, 200
Thin-plate spline, 200, 201

Radial basis function network (RBFN), 329
Random dimension of a stochastic model, 8, 

427, 428
Random error, 38, 114
Random field

parameterization of, 202
Gaussian random field, 202–204
geostatistical, 220–226
Markov random field, 204–207
multipoint statistics, 222–226
variogram, 211–220

Random function (RF), 16, 108, 202, 217, 
220, 235, 354, 429, 432, 441

Range measure of uncertainty, 412
Recursive process, 98, 324, 377
Reduced-rank filters, 363, 369

classical ensemble Kalman filter, 392–398
variants of the EnKF, 399–402

Reducing the dimension of a parameter vector, 
233, 134

Reducing the dimension of a random field, 
235–238

Reducing the dimension of model states, 234, 
235

Regression, 192, 198, 203
Gaussian (see Gaussian process regression)
linear (see Linear regression)
nonlinear (see Nonlinear regression)
SVR (see Support vector regression 

(SVR))
Regression for PCE, 446–449
Regression kriging (RK), 219, 220
Regularization coefficient, 78, 286, 288, 304, 

321
selection of, 80–86

Regularization for linear model, 79, 80
Regularization for smoothing, 79
Regularization for well-posedness, 79
Relative information entropy, 111, 413
Release history identification, 38, 98
Relevance vector machine (RVM), 306, 

347–351
Reliability assessment problem, 22, 23
Remediation design, 459, 473, 497–501, 527
Response surface methods (RSM), 408, 427
Retrospective design for prediction, 496, 497
Ridge regression, 316, 317, 346
Robust experimental design, 476–478
Robust INI design, 481

for cost-effectiveness, 485–488
for decision making, 497–501
for model prediction, 488–497

Robust least square method (RLS), 82, 83
Root-mean-square error (RMSE), 38, 327, 482
Rules of adjoint operation, 152–158

S
Saint Venant equations, 3, 4
Sample covariance, 135, 209, 227, 229, 230, 

237, 239, 241, 394, 414
Sample mean, 118, 126, 132, 134, 135, 214, 

243, 316, 388, 394, 415, 425, 444
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Sample variance, 118, 372, 425
Sampling distribution, 118, 119
Sampling for inverse solution, 134–136
Scale dependence problem, 21
Screening input factors of a model

Morris sampling-based measure, 424–426
variance-based measure, 424

Screen input factors for model application, 
426

Search along a direction, 52, 53
Second-order stationarity, 208
Selection of regularization coefficient

discrepancy method, 81, 82
L-curve method, 80, 81
robust least square method, 82–86

Semivariogram, 202, 209, 210, 212, 220
Sensitivity analysis for structure parameters, 

179
Sensitivity equation

method, 143, 144
for a multistate model, 147
for an ODE, 145
for a PDE, 146

Sequential data assimilation (SDA), 361–363, 
365, 367, 369, 376, 377, 381

Sequential data assimilation algorithms, 363, 
365–369

Sequential experimental design, 490
Sequential importance resampling (SIR), 405
Shannon entropy measure of uncertainty, 412, 

413
Shape parameter, 197, 302
Shrinkage methods, 315–318, 343
Simple kriging (SK), 216, 217
Simulated annealing (SA), 137, 138, 209, 260
Single-objective optimization (SOO), 28, 70
Single-state model, 8, 69, 142, 149–159, 179
Singular value decomposition (SVD), 19, 25, 

38, 41, 72, 80, 512
Smolyak formula, 443
Sobol’ algorithm for global sensitivity 

analysis, 420
Solution of EIP

by global optimization, 259
by local optimization, 259
by min-min optimization, 259

Specific variance, 230
Square root EnKF, 400, 402
Stability, 13
State space, 26, 86, 362, 365, 378
Stationary point, 48, 49

Statistical GIP
formulation of, 538, 539
geostatistical parameterization for, 539, 

540
goal-oriented pilot point method, 540–550

Statistical inverse problem
Bayesian inference for inverse selection, 

111–114
information content and uncertainty, 

109–111
probability distribution of observation 

error, 114, 115
probability distribution of prior 

information, 116, 117
statement of, 108, 109

Statistical parameterization, 202–204, 226, 
282, 283

Statistical structure parameter estimation
geostatistical inversion, 289–299
hierarchical Bayesian inversion, 285–289
pilot-point method, 299–302
statistical parameterization and 

hyperparameters, 282–285
Steady-state model, 8, 294
Stochastic collocation method (SCM), 440

multiple random dimensional, 442–445
one random dimensional, 441, 442

Stochastic Galerkin projection, 438
Stochastic global optimization, 137
Stochastic response surface methods (SRSM), 

408
Stochastic variable identification, 16
Stopping criteria of numerical optimization, 

50, 51
Strength Pareto evolutionary algorithm 

(SPEA), 104
Strongly stationary, 203
Sufficient condition of minimization, 49
Sufficient design for GIP, 532
Support vector regression (SVR), 341

e-SVR, 343–347, 350, 357
Support vector machine (SVM), 339–351
System error, 114
System identification, 16, 249

T
Target distribution, 126–128, 131, 134
The Kullback-Leibler (K-L) relative entropy, 

123
Tikhonov regularization, 78, 79, 86, 122
Total variance, 227, 418, 419, 424
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Training of an ANN
backpropagation algorithm, 324–328
the training process, 323, 324

Transient model, 8
Transition kernel, 126, 128, 130, 131
Trial-and-error method, 17–19, 89
Truncated singular value decomposition 

(TSVD), 41–43
Types of data assimilation

filtering, 368
prediction, 368
smoothing, 368

U
Uncertainty of a multivariate Gaussian 

distribution, 110
Uncertainty of a uniform distribution, 109
Uncertainty propagation through a linear 

model, 416
Uncertainty propagation through a linearized 

model, 416
Uncertainty propagation through a multioutput 

model, 433
Uncertainty quantification (UQ), 9, 83, 188, 

407
assessment of model structure uncertainty, 

449–457
definitions and taxonomy, 409–411
sensitivity-based methods, 416–426
stochastic methods for uncertainty 

propagation, 426–449
Unconstrained optimization for inversion, 47
Underdetermined, 35
Under-fitting, 306
Undirected graph, 208, 209
Uniquely determined, 35
Uniqueness, 13

Universal approximation theorem, 323
Unscented Kalman filter (UKF), 386

implementation, 387
assimilation, 388
forecast, 387

Unscented transform, 386
Upscaling, 282
Use ANN for inverse solution, 332–337

V
Van Genuchten model, 57, 58
Vapnik-Chervonenkis (VC) dimension, 341
Variance-based measure of uncertainty, 413, 

424
Variance decomposition, 418
Variogram. See under Random field, 

parameterization of
Variogram model for categorical variables, 

216
Variogram models, 214–216
Variogram models for space-time processes, 

219
Variogram parameters, 215, 224
Vector evaluated genetic algorithm (VEGA), 

104
Voronoi diagram, 189, 199–202, 264, 268, 

522, 526

W
Weighted least squares (WLS), 119, 151, 169, 

205
Weighted sum method of MOO, 515
Well-posedness, 29

of the forward problem, 13, 14
of the quasi-solution, 30–32

Worst-case parameter (WCP), 476, 481, 518
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