
Developments in Mathematics

Mouffak Benchohra
Saïd Abbas

Advanced Functional 
Evolution Equations 
and Inclusions



Developments in Mathematics

VOLUME 39

Series Editors:
Krishnaswami Alladi, University of Florida, Gainesville, FL, USA
Hershel M. Farkas, Hebrew University of Jerusalem, Jerusalem, Israel

More information about this series at http://www.springer.com/series/5834

http://www.springer.com/series/5834




Mouffak Benchohra • Saïd Abbas

Advanced Functional
Evolution Equations
and Inclusions

123



Mouffak Benchohra
Department of Mathematics
University of Sidi Bel Abbes
Sidi Bel Abbes, Algeria

Saïd Abbas
Laboratoire de Mathématiques
Université de Saïda
Saïda, Algeria

ISSN 1389-2177 ISSN 2197-795X (electronic)
Developments in Mathematics
ISBN 978-3-319-17767-0 ISBN 978-3-319-17768-7 (eBook)
DOI 10.1007/978-3-319-17768-7

Library of Congress Control Number: 2015936330

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


We dedicate this book to our family members.
In particular, Saïd Abbas dedicates to the
memory of his father Abdelkader Abbas; and
Mouffak Benchohra makes his dedication to
the memory of his father Yahia Benchohra





Preface

Functional differential equations and inclusions occur in a variety of areas of
biological, physical, and engineering applications, and such equations have received
much attention in recent years. This book is devoted to the existence of local and
global mild solutions for some classes of functional differential evolution equations
and inclusions, and other densely and non-densely defined functional differential
equations and inclusions in separable Banach spaces or in Fréchet spaces. Some of
these equations and inclusions present delay which may be finite, infinite, or state-
dependent. Other equations are subject to impulses effect. The tools used include
classical fixed point theorems and the measure of non-compactness (MNC). Each
chapter concludes with a section devoted to notes and bibliographical remarks. All
the presented abstract results are illustrated by examples.

The content of the book is new and complements the existing literature devoted
to functional differential equations and inclusions. It is useful for researchers and
graduate students for research, seminars, and advanced graduate courses, in pure
and applied mathematics, engineering, biology, and all other applied sciences.

We are grateful to our colleagues and friends N. Abada, E. Alaidarous, S. Baghli,
A. Baliki, M. Belmekki, K. Ezzinbi, H. Hammouche, J. Henderson, I. Medjedj,
J.J. Nieto, and M. Ziane for their collaboration in research related to the problems
considered in this book. Last but not least, we are grateful to Elizabeth Loew and
Dahlia Fisch for their support and to Jeffin Thomas Varghese for his help during the
production of the book.

Sidi Bel Abbes, Algeria Mouffak Benchohra
Saïda, Algeria Saïd Abbas
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Introduction

Nonlinear evolution equations, i.e., partial differential equations with time t as
one of the independent variables, arise not only from many fields of mathematics,
but also from other branches of science such as physics, mechanics, and material
science. For example, Navier–Stokes and Euler equations from fluid mechanics,
nonlinear reaction-diffusion equations from heat transfers and biological sciences,
nonlinear Klein–Gordon equations and nonlinear Schrödinger equations from quan-
tum mechanics, and Cahn–Hilliard equations from material science, to name just
a few, are special examples of nonlinear evolution equations. See the books
[174, 176–178].

Functional differential equations and inclusions arise in a variety of areas of
biological, physical, and engineering applications, and such equations have received
much attention in recent years. A good guide to the literature for functional
differential equations is the books by Hale [131], Hale and Verduyn Lunel [133],
Kolmanovskii and Myshkis [148], and the references therein. During the last
decades, existence and uniqueness of mild, strong, classical, almost periodic,
almost automorphic solutions of semi-linear functional differential equations and
inclusions has been studied extensively by many authors using the semigroup
theory, fixed point argument, degree theory, and measures of non-compactness.
We mention, for instance, the books by Ahmed [16], Diagana [103], Engel and
Nagel [106], Kamenskii et al. [144], Pazy [168], Wu [184], Zheng [187], and the
references therein. In recent years, there has been a significant development in
evolution equations and inclusions; see the monograph of Perestyuk et al. [169],
the papers of Baliki and Benchohra [33, 37], Benchohra and Medjedj [55, 56],
Benchohra et al. [82], and the references therein.

Neutral functional differential equations arise in many areas of applied mathe-
matics and such equations have received much attention in recent years. A good
guide to the literature for neutral functional differential equations is the books by
Hale [131], Hale and Verduyn Lunel [133], Kolmanovskii and Myshkis [148], and
the references therein. Hernandez in [137] proved the existence of mild, strong, and
periodic solutions for neutral equations. Fu in [117, 118] studies the controllability
on a bounded interval of a class of neutral functional differential equations. Fu and
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x Introduction

Ezzinbi [119] considered the existence of mild and classical solutions for a class
of neutral partial functional differential equations with nonlocal conditions. Various
classes of partial functional and neutral functional differential equations with infinite
delay are studied by Adimy et al. [10–12], Belmekki et al. [52], and Ezzinbi [108].
Henriquez [136] and Hernandez [137, 138] studied the existence and regularity of
solutions to functional and neutral functional differential equations with unbounded
delay. Balachandran and Dauer have considered various classes of first and second
order semi-linear ordinary, functional and neutral functional differential equations
on Banach spaces in [43]. By means of fixed point arguments, Benchohra et al.
have studied various classes of functional differential equations and inclusions and
proposed some controllability results in [28, 33, 33, 37, 58, 72, 73, 75, 76, 80]. See
also the works by Gatsori [120], Li et al. [155], Li and Xue [156], and Li and
Yong [157].

Impulsive differential equations and inclusions appear frequently in applications
such as physics, aeronautic, economics, engineering, and population dynamics; see
the monographs of Bainov and Simeonov [39, 40], Benchohra et al. [81], Erbe
and Krawcewicz [107], Graef et al. [127], Samoilenko and Perestyuk [172], and
Perestyuk et al. [169], and the paper of Coldbeter et al. [95] where numerous
properties of their solutions are studied. In this way, they make changes of states
at certain moments of time between intervals of continuous evolution such changes
can be reasonably well approximated as being instantaneous changes of this state
which we will represent by impulses and then these processes are modeled by
impulsive differential equations and for this reason the study of this type of
equations has received great attention in the last years. There has been a significant
development in impulsive theory especially in the area of impulsive differential
equations with fixed moments. See, for instance, the monographs by Benchohra
et al. [81], Lakshmikantham et al. [150], and Samoilenko and Perestyuk [172].
There exists an extensive literature devoted to the case where the impulses are
absent (i.e., Ik D 0; k D 1; : : : ;m), see, for instance, the monograph by Liang
and Xiao [158] and the paper by Schumacher [158]. We mention here also the use
of impulsive differential equations in the study of oscillation and non-oscillation of
impulsive dynamic equations, see, for instance, the papers of Graef et al. [124, 125],
oscillation of dynamic equations with delay was considered in [13, 14]. During the
last 10 years impulsive ordinary differential inclusions and functional differential
equations and inclusions have attracted the attention of many mathematicians and
are intensively studied. At present the foundations of the general theory and such
kind of problems are already laid and many of them are investigated in detail in
[58, 59, 63, 79, 81, 107] and the references therein.

It is well known that the issue of controllability plays an important role
in control theory and engineering because they have close connections to pole
assignment, structural decomposition, quadratic optimal control, observer design,
etc. In recent years, the problem of controllability for various kinds of differential
and impulsive differential systems has been extensively studied by many authors
[71, 155–157, 186] using different approaches. Several authors have extended
the controllability concept to infinite dimensional systems in Banach space with
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unbounded operators, see the monographs [85, 98, 157, 186] and the references
therein. Sufficient conditions for controllability are established by Lasiecka and
Triggiani [153]. Fu in [117, 118] studied the controllability on a bounded interval of
a class of neutral functional differential equations. Fu and Ezzinbi [119] considered
the existence of mild and classical solutions for a class of neutral partial functional
differential equations with nonlocal conditions. Adimy et al. [10–12] studied some
classes of partial functional and neutral functional differential equations with infinite
delay. When the delay is infinite, the notion of the phase space B plays an important
role in the study of both qualitative and quantitative theory. A usual choice is a semi-
normed space satisfying suitable axioms, which was introduced by Hale and Kato in
[132], see also Corduneanu and Lakshmikantham [97] and Kappel and Schappacher
[145].

The literature related to ordinary and partial functional differential equations with
delay is very extensive. On the other hand, functional differential equations with
state-dependent delay appear frequently in applications as model of equations, and
for this reason the study of this type of equations has received great attention in the
last year, see, for instance [31, 183] and the references therein. The literature related
to partial functional differential equations with state-dependent delay is limited; see
[139, 171].

Several authors have considered extensively the problem

x0.t/ D A.t/x.t/C f .t; xt/

when A.t/ D A: Existence of mild solutions is developed by Heikkila and Laksh-
mikantham [134], Kamenski et al. [144], and the pioneer Hino and Murakami paper
[141] for some semi-linear functional differential equations with finite delay. By
means of fixed point arguments, Benchohra and his collaborators have studied many
classes of first and second order functional differential inclusions on a bounded
interval with local and nonlocal conditions in [59, 60, 62, 64, 65, 77, 78, 121].
Extension to the semi-infinite interval is given by Benchohra and Ntouyas in
[58, 61]. When A depends on time, Arara et al. [26, 28] considered a control
multi-valued problem on a bounded interval. Uniqueness results of mild solutions
for some classes of partial functional and neutral functional differential evolution
equations on the semi-infinite interval J D RC for a finite delay with local and
nonlocal conditions were given in [33, 37]. When the delay is infinite, existence and
uniqueness results for evolution problems are proposed in [33], and controllability
result of mild solutions for the evolution equations are given in [15, 36]. The case
when A is non-densely defined and generates an integrated semigroup was done
by Benchohra et al. [80]. Some global existence results for impulsive differential
equations and inclusions were obtained by Guo [129], Graef and Ouahab [126], and
the references therein.

Partial functional evolution equations and inclusions with infinite and state-
dependent delay, controllability on finite interval are our concerns. Our approach
is based upon the fixed point theory for multi-valued condensing maps under
assumptions expressed in terms of the MNC [144].
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In the last three decades, the theory of C0-semigroup has been developed
extensively, and the achieved results have found many applications in the theory
of partial differential equations, for instance see [106, 122, 168] and the papers of
Arara et al. [26, 27] and Benchohra et al. [74]. Recently, increasing interest has been
observed in applications to impulsive differential equations and inclusions, see Liu
[69, 159]. The case where the generator of the semigroup is non-densely defined,
the existence of integral solutions on compact intervals for differential equations
and inclusions were studied by Adimy et al. [8–10], Arendt [29, 30], Ezzinbi and
Liu [109, 110], and Henderson and Ouahab [135]. The model with multi-valued
jump sizes arises in a control problem where we want to control the jump sizes in
order to achieve given objectives. There are very few results for impulsive evolution
inclusions with multi-valued jump operator, see [161]. We present the existence of
solutions for both densely or non-densely defined impulsive functional differential
inclusions.

The multi-valued jumps (i.e., the difference operator �x
ˇ
ˇ
tDtk

2 Ik.x.t�k //) is a
natural model of an impulsive system where the jump sizes are not deterministic as
in [17–19, 161] but rather they are uncertain. However given the state x and time
ti; the set of possible jump sizes at this state is determined by the set Ik.x/: The
set-valued maps Ik may be given by the sub-differential of a lower semi-continuous
convex functional �i: In this case, the system is governed by evolution inequations
at the points of time tk:Another situation that may give rise to such a dynamic model
originates from the parametric uncertainty such as Ik.x/ D fIk.t; x/I t 2 Ig; where
fIkg is a suitable family of functions I � E ! E: To our knowledge, there are very
few results for impulsive evolution inclusions with multi-valued jump operators;
see [5, 19, 36]. The results of this book extend and complement those obtained in
the absence of the impulse functions Ik; and for those with single-valued impulse
functions Ik:

This book is arranged and organized as follows:
In Chap. 1, we introduce notations, definitions, and some preliminary notions. In

Sect. 1.1, we give some notations from the theory of Banach spaces. Section 1.2 is
concerned to recall some basic definitions and some properties in Fréchet spaces. In
Sect. 1.3, we recall some basic definitions and give some examples of Phase spaces.
Section 1.4 contains some properties of set-valued maps. In Sect. 1.5, we give some
preliminaries about evolution systems. Some definitions and properties of the theory
of semigroups are presented in Sect. 1.6. In Sect. 1.6.3, we give some properties
of the extrapolation method. The last section (Sect. 1.7) contains some fixed point
theorems.

In Chap. 2, we study some first order classes of partial functional, neutral
functional, integro-differential, and neutral integro-differential evolution equations
with finite delay on the positive real line. Section 2.2 deals with the existence
and uniqueness of mild solutions for some classes of partial evolution equations
with local and nonlocal conditions. We give some results based on the fixed point
theorem of Frigon in Fréchet spaces. An example will be presented at the last
illustrating the abstract theory. In Sect. 2.3, we study some neutral differential
evolution equations in Fréchet spaces. In Sect. 2.4, we give existence results for other
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classes of partial functional integro-differential evolution equations. Section 2.5
deals with uniqueness results of neutral functional integro-differential evolution
equations.

In Chap. 3, we provide sufficient conditions for the existence of the unique
mild solution on the positive half-line RC for some classes of first order partial
functional and neutral functional differential evolution equations with infinite
delay. In Sect. 3.2, we study the existence and uniqueness of mild solutions for
partial functional evolution equations in Fréchet spaces. Section 3.3 deals with the
controllability of mild solutions on finite interval for partial evolution equations.
In Sect. 3.4, we study the controllability of mild solutions on semi-infinite interval
for partial evolution equations. Section 3.5 deals with the existence of the unique
mild solution of neutral functional evolution equations. In Sect. 3.6, we study the
controllability of mild solutions on finite interval for neutral evolution equations.
Section 3.7 deals with the controllability of mild solutions on semi-infinite interval
for neutral evolution equations.

In Chap. 4, we shall be concerned by perturbed partial functional and neutral
functional evolution equations with finite and infinite delay on the semi-infinite
interval RC: Our main tool is the nonlinear alternative proved by Avramescu (1.30)
for the sum of contractions and completely continuous maps in Fréchet spaces
[32], combined with semigroup theory. In Sect. 4.2, we study the existence of
mild solutions for perturbed partial functional evolution equations with finite delay.
Section 4.3 deals with perturbed neutral functional evolution equations with finite
delay. In Sect. 4.4, we study the existence of mild solutions for perturbed partial
evolution equations with infinite delay.

In Chap. 5, we provide sufficient conditions for the existence of mild solutions
on the semi-infinite interval RC for some classes of first order partial functional
and neutral functional differential evolution inclusions with finite delay. In Sect. 5.2,
we study the existence of mild solutions for a class of functional partial evolution
equations. Section 5.3 deals with neutral partial evolution equations.

In Chap. 6, we study the existence of mild solutions on the semi-infinite interval
RC for some classes of first order partial functional and neutral functional differen-
tial evolution inclusions with infinite delay. In Sect. 6.2, we study functional partial
evolution equations. Section 6.3 deals with neutral partial evolution equations.

In Chap. 7, we are concerned by the existence of mild and extremal solutions of
some first order classes of impulsive semi-linear functional differential inclusions
with local and nonlocal conditions when the delay is finite in separable Banach
spaces. Using a recent theorem due to Dhage combined with the semigroup theory,
the existence of the mild and extremal mild solution are assured. The nonlocal case
is studied too. In Sect. 7.2, we study the existence of mild solutions with local
conditions. Section 7.3 deals with the existence of mild solutions with nonlocal
conditions. In Sect. 7.4, we give an application to the control theory.

In Chap. 8, we shall establish sufficient conditions for the existence of integral
solutions and extremal integral solutions for some non-densely defined impulsive
semi-linear functional differential inclusions in separable Banach spaces with local
and nonlocal conditions. In Sect. 8.2, we give some results for integral solutions
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of non-densely defined functional differential inclusions with local conditions.
Section 8.3 deals with extremal integral solutions with local conditions, and Sect. 8.4
deals with extremal integral solutions with nonlocal conditions. In Sect. 8.5, we give
an application to the control theory.

In Chap. 9, we study the existence of mild solutions impulsive semi-linear
functional differential equations. In Sect. 9.2, we study some existence results for
semi-linear differential evolution equations with impulses and delay. Section 9.3 is
devoted to some classes of impulsive semi-linear functional differential equations
with non-densely defined operators. In Sect. 9.4, we study impulsive semi-linear
neutral functional differential equations with infinite delay. Section 9.5 deals
with integral solutions of non-densely defined impulsive semi-linear functional
differential equations with state-dependent delay.

In Chap. 10, we shall establish sufficient conditions for the existence of mild,
extremal mild, integral, and extremal integral solutions for some impulsive semi-
linear neutral functional differential inclusions in separable Banach spaces. In
Sect. 10.2, we study some densely defined impulsive functional differential inclu-
sions. Section 10.3 deals with the existence of mild solutions for non-densely
defined impulsive neutral functional differential inclusions. In Sect. 10.4, we study
the controllability of impulsive semi-linear differential inclusions in Fréchet spaces.

In Chap. 11, we study functional differential inclusions with multi-valued jumps.
In Sect. 11.2, we study some existence of integral solutions for semi-linear func-
tional differential inclusions with state-dependent delay and multi-valued jump.
Section 11.3 deals with impulsive evolution inclusions with infinite delay and
multi-valued jumps. Section 11.4 deals with impulsive semi-linear differential
evolution inclusions with non-convex right-hand side. In Sect. 11.5, we study
some impulsive evolution inclusions with state-dependent delay and multi-valued
jumps. Section 11.6 deals with the controllability of impulsive differential evolution
inclusions with infinite delay.

In Chap. 12, we study functional differential equations and inclusions with delay.
In Sect. 12.2, we prove some global existence for functional differential equations
with state-dependent delay. Section 12.3 deals with global existence results for
neutral functional differential equations with state-dependent delay. In Sect. 12.4,
we give some global existence results for functional differential inclusions with
delay. Section 12.4.1 deals with global existence results for functional differential
inclusions with state-dependent delay.

In Chap. 13, we shall establish sufficient conditions for global existence results of
second order functional differential equations with delay. In Sect. 13.2, we give some
global existence results of second order functional differential equations with delay.

Keywords and Phrases: Evolution differential equations and inclusions, integro-
differential equations, densely and non-densely defined differential equations,
convex and non-convex valued multi-valued, mild solution, weak solution, initial
value problem, nonlocal conditions, contraction, existence, uniqueness, measure of
noncompactness, Banach space, Fréchet space, phase space, impulses, time delay,
state-dependent delay, fixed point.
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Chapter 1
Preliminary Background

In this chapter, we introduce notations, definitions, and preliminary facts which are
used throughout this book.

1.1 Notations and Definitions

Let RC D Œ0;C1/ be the positive real line, H D Œ�r; 0� be an interval with r > 0,
and .E; j � j/ be a real Banach space.

By C.H;E/ we denote the Banach space of continuous functions from H into E;
with the norm

kyk D sup
t2H

jy.t/j:

Let B.E/ be the space of all bounded linear operators from E into E, with the norm

kNkB.E/ D sup
jyjD1

jN.y/j:

A measurable function y W RC ! E is Bochner integrable if and only if jyj
is Lebesgue integrable. For properties of the Bochner integral, see for instance,
Yosida [185].
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2 1 Preliminary Background

As usual, by L1.RC;E/ we denote the Banach space of measurable functions
y W RC ! E which are Bochner integrable normed by

kykL1 D
Z C1

0

jy.t/jdt:

Let L1loc.RC;E/ be the space of measurable functions which are locally Bochner
integrable.

For any continuous function y defined on Œ�r;C1/ and any t 2 RC; we denote
by yt the element of C.H;E/ defined by

yt.�/ D y.t C �/ for � 2 H:

Here yt.�/ represents the history of the state from time t � r up to the present time t:

Definition 1.1. A function f W RC � E ! E is said to be an L1-Carathéodory
function if it satisfy:

(i) for each t 2 RC the function f .t; :/ W E ! E is continuous;
(ii) for each y 2 E the function f .:; y/ W RC ! E is measurable;

(iii) for every positive integer k there exists hk 2 L1.RC;RC/ such that

jf .t; y/j � hk.t/ for all jyj � k and almost each t 2 RC:

1.2 Some Properties in Fréchet Spaces

Let X be a Fréchet space with a family of semi-norms fk � kngn2N: Let Y � X; we
say that F is bounded if for every n 2 N; there exists Mn > 0 such that

kykn � Mn for all y 2 Y:

To X we associate a sequence of Banach spaces f.Xn; k � kn/g as follows: For every
n 2 N; we consider the equivalence relation �n defined by: x �n y if and only if
kx � ykn D 0 for all x; y 2 X: We denote Xn D .Xj�n ; k � kn/ the quotient space, the
completion of Xn with respect to k � kn: To every Y � X, we associate a sequence
fYng of subsets Yn � Xn as follows: For every x 2 X; we denote Œx�n the equivalence
class of x of subset Xn and we define Yn D fŒx�n W x 2 Yg: We denote Yn; intn.Yn/

and @nYn; respectively, the closure, the interior, and the boundary of Yn with respect
to k � k in Xn: We assume that the family of semi-norms fk � kng verifies:

kxk1 � kxk2 � kxk3 � : : : for every x 2 X:
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Definition 1.2 ([116]). A function f W X ! X is said to be a contraction if for each
n 2 N there exists kn 2 Œ0; 1/ such that:

kf .x/ � f .y/kn � kn kx � ykn for all x; y 2 X:

1.3 Phase Spaces

In this section, we will define the phase space B axiomatically, using ideas and
notations developed by Hale and Kato [132] and follow the terminology used
in [142], (see also Kapper and Schappacher [145] and Schumacher [173]). More
precisely, .B; k � kB/ will denote the vector space of functions defined from .�1; 0�

into E endowed with a semi norm denoted k:kB and satisfying the following axioms:

(A1) If y W .�1; b/ ! E; b > 0; is continuous on Œ0; b� and y0 2 B, then for every
t 2 Œ0; b/ the following conditions hold:

(i) yt 2 B;
(ii) There exists a positive constant H such that jy.t/j � HkytkB;

(iii) There exist two functions K.�/;M.�/ W RC ! RC independent of y.t/ with
K continuous and M locally bounded such that:

kytkB � K.t/ supf jy.s/j W 0 � s � tg C M.t/ky0kB:

Denote

Kb D supfK.t/ W t 2 Œ0; b�g and Mb D supfM.t/ W t 2 Œ0; b�g:

(A2) For the function y.:/ in .A1/, yt is a B-valued continuous function on Œ0; b�.
(A3) The space B is complete.

Remark 1.3. 1. (ii) is equivalent to j�.0/j � Hk�kB for every � 2 B.
2. Since k � kB is a seminorm, two elements �; 2 B can verify k� �  kB D 0

without necessarily �.�/ D  .�/ for all � � 0.
3. From the equivalence of (ii), we can see that for all �; 2 B such that

k� �  kB D 0: This implies necessarily that �.0/ D  .0/:

For any continuous function y and any t � 0; we denote by yt the element of B
defined by

yt.�/ D y.t C �/ for � 2 .�1; 0�:

We assume that the histories yt belong to some abstract phase space B:
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Consider the following space

BC1 D ˚

y W R ! E W yjRC
2 C.RC;E/; y0 2 B� ;

where yjRC/ is the restriction of y to Œ0;C1/.
Hereafter are some examples of phase spaces. For other details we refer, for

instance, to the book by Hino et al. [142].

Example 1.4. The spaces BC; BUC; C1, and C0: Let:

BC the space of bounded continuous functions defined from .�1; 0� to EI
BUC the space of bounded uniformly continuous functions defined from
.�1; 0� to EI

C1 WD
�

� 2 BC W lim
�!�1�.�/ exists in E

�

I

C0 WD
�

� 2 BC W lim
�!�1�.�/ D 0

�

; endowed with the uniform norm

k�k D supfj�.�/j W � � 0g:

We have that the spaces BUC; C1, and C0 satisfy conditions .A1/–.A3/: BC
satisfies .A2/; .A3/ but .A1/ is not satisfied.

Example 1.5. The spaces Cg; UCg; C1
g , and C0

g. Let g be a positive continuous
function on .�1; 0�. We define:

Cg WD
�

� 2 C..�1; 0�;E/ W �.�/
g.�/

is bounded on .�1; 0�

�

I

C0
g WD

�

� 2 Cg W lim
�!�1

�.�/

g.�/
D 0

�

; endowed with the uniform norm

k�k D sup

� j�.�/j
g.�/

W � � 0

�

:

We consider the following condition on the function g.

.g1/ For all a > 0; sup
0�t�a

sup

�
g.t C �/

g.�/
W �1 < � � �t

�

< 1:

Then we have that the spaces Cg and C0
g satisfy conditions .A3/. They satisfy

conditions .A1/ and .A2/ if g1 holds.

Example 1.6. The space C� . For any real constant � , we define the functional space
C� by

C� WD
�

� 2 C..�1; 0�;E/ W lim
�!�1 e���.�/ exist in E

�
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endowed with the following norm

k�k D supfe�� j�.�/j W � � 0g:

Then in the space C� the axioms .A1/–.A3/ are satisfied.

1.4 Set-Valued Maps

Let .X; d/ be a metric space. We use the following notations:

Pcl.X/ D fY 2 P.X/ W Y closedg; Pb.X/ D fY 2 P.X/ W Y boundedg;

Pcv.X/ D fY 2 P.X/ W Y convexg; Pcp.X/ D fY 2 P.X/ W Y compactg:

Consider Hd W P.X/ � P.X/ �! RC [ f1g, given by

Hd.A;B/ D max

�

sup
a2A

d.a;B/; sup
b2B

d.A; b/
�

;

where d.A; b/ D inf
a2A d.a; b/, d.a;B/ D inf

b2B d.a; b/. Then .Pb;cl.X/;Hd/ is a metric

space and .Pcl.X/;Hd/ is a generalized (complete) metric space (see [147]).

Lemma 1.7. If A and B are compact, then there exists either an a 2 A with
d.a;B/ D Hd.A;B/ or a b 2 B with d.A; b/ D Hd.A;B/

Definition 1.8. A multi-valued map G W RC ! Pcl.X/ is said to be measurable if
for each x 2 E, the function Y W RC ! X defined by

Y.t/ D d.x;G.t// D inffjx � zj W z 2 G.t/g

is measurable where d is the metric induced by the normed Banach space X.

Definition 1.9. A function F W RC �X �! P.X/ is said to be an L1loc-Carathéodory
multi-valued map if it satisfies:

(i) x 7! F.t; y/ is continuous for almost all t 2 RC;
(ii) t 7! F.t; y/ is measurable for each y 2 X;

(iii) for every positive constant k there exists hk 2 L1loc.RC;RC/ such that

kF.t; y/k � hk.t/ for all kykB � k and for almost all t 2 RC:

Let .X; k � k/ be a Banach space. A multi-valued map G W X ! P.X/ has convex
(closed) values if G.x/ is convex (closed) for all x 2 X. We say that G is bounded
on bounded sets if G.B/ is bounded in X for each bounded set B of X, i.e.,
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sup
x2B

fsupfkyk W y 2 G.x/gg < 1:

Finally, we say that G has a fixed point if there exists x 2 X such that x 2 G.x/:
For each y 2 C.RC;E/ let the set SF;y known as the set of selectors from F

defined by

SF;y D fv 2 L1.RC;E/ W v.t/ 2 F.t; y.t//; a:e: t 2 RCg:

For more details on multi-valued maps we refer to the books of Deimling
[101], Djebali et al. [104], Górniewicz [123], Hu and Papageorgiou [143], and
Tolstonogov [181].

Definition 1.10. A multi-valued map F W X ! P.X/ is called an admissible
contraction with constant fkngn2N if for each n 2 N there exists kn 2 Œ0; 1/

such that

i) Hd.F.x/;F.y// � kn kx � ykn for all x; y 2 X:
ii) for every x 2 X and every � 2 .0;1/n, there exists y 2 F.x/ such that

kx � ykn � kx � F.x/kn C �n for every n 2 N

Lemma 1.11 ([154]). Let X be a Banach space. Let F W Œa; b� � X �! Pcp;c.X/
be an L1-Carathéodory multi-valued map with SF;y 6D ; and let � be a linear
continuous mapping from L1.Œa; b�;X/ into C.Œa; b�;X/, then the operator

� ı SF W C.Œa; b�;X/ �! Pcp;c.C.Œa; b�;X//;
y 7�! .� ı SF/.y/ WD � .SF;y/

is a closed graph operator in C.Œa; b�;X/ � C.Œa; b�;X/:

Proposition 1.12 ([167]). Let the space E be separable and the multi-function ˚ W
Œ0; b� ! P.E/ be integrable bounded and 	.˚.t// � q.t/ for a.a t 2 Œ0; b� where
q.:/ 2 L1.Œ0; b�;RC/. Then

	

�Z 


0

˚.s/ds

�

�
Z 


0

q.s/ds; for all 
 2 Œ0; b�:

In particular, if the multi-function ˚ W Œ0; b� ! Pcl.E/ is measurable and integrable
bounded, then the function 	.˚.:// is integrable and

	

�Z 


0

˚.s/ds

�

�
Z 


0

	.˚.s//ds; for all 
 2 Œ0; b�:
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1.5 Evolution System

In what follows, for the family fA.t/; t � 0g of closed densely defined linear
unbounded operators on the Banach space E we assume that it satisfies the following
assumptions (see [16], p. 158).

(P1) The domain D.A.t// is independent of t and is dense in E:
(P2) For t � 0; the resolvent R.�;A.t// D .�I � A.t//�1 exists for all � with

Re� � 0, and there is a constant M independent of � and t such that

kR.t;A.t//k � M.1C j�j/�1; for Re� � 0:

(P3) There exist constants L > 0 and 0 < ˛ � 1 such that

k.A.t/ � A.�//A�1.
/k � Ljt � 
 j˛; for t; �; 
 2 J:

Lemma 1.13 ([16], p. 159). Under assumptions (P1)–(P3), the Cauchy problem

y0.t/ � A.t/y.t/ D 0; t 2 J; y.0/ D y0;

has a unique evolution system U.t; s/, .t; s/ 2 � WD f.t; s/ 2 J � J W 0 � s � t <
C1g satisfying the following properties:

1. U.t; t/ D I where I is the identity operator in E,
2. U.t; s/ U.s; 
/ D U.t; 
/ for 0 � 
 � s � t < C1,
3. U.t; s/ 2 B.E/ the space of bounded linear operators on E, where for every
.t; s/ 2 � and for each y 2 E, the mapping .t; s/ ! U.t; s/ y is continuous.

More details on evolution systems and their properties can be found in the books
of Ahmed [16], Engel and Nagel [106], and Pazy [168].

1.6 Semigroups

1.6.1 C0-Semigroups

Let E be a Banach space and B.E/ be the Banach space of linear bounded operators
on E.

Definition 1.14. A semigroup of class .C0/ is a one parameter family fT.t/ j t �
0g � B.E/ satisfying the conditions:

(i) T.0/ D I,
(ii) T.t/T.s/ D T.t C s/, for t; s � 0,

(iii) the map t ! T.t/.x/ is strongly continuous, for each x 2 E, i.e,̇

lim
t!0

T.t/x D x; 8x 2 E:
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A semigroup of bounded linear operators T.t/; is uniformly continuous if

lim
t!0

kT.t/ � Ik D 0:

Here I denotes the identity operator in E:

We note that if a semigroup T.t/ is class .C0/, then satisfies the growth condition

kT.t/kB.E/ � Meˇt; for 0 � t < 1 with some constants M > 0 and ˇ:

If, in particular M D 1 and ˇ D 0, i.e,̇ kT.t/kB.E/ � 1; for t � 0; then the semigroup
T.t/ is called a contraction semigroup .C0/.

Definition 1.15. Let T.t/ be a semigroup of class .C0/ defined on E. The infinites-
imal generator A of T.t/ is the linear operator defined by

A.x/ D lim
h!0

T.h/x � x

h
; for x 2 D.A/;

where D.A/ D fx 2 E j limh!0
T.h/.x/�x

h exists in Eg.

Let us recall the following property:

Proposition 1.16. The infinitesimal generator A is a closed, linear, and densely
defined operator in E. If x 2 D.A/, then T.t/.x/ is a C1-map and

d

dt
T.t/.x/ D A.T.t/.x// D T.t/.A.x// on Œ0;1/:

Theorem 1.17 (Hille and Yosida [168]). Let A be a densely defined linear oper-
ator with domain and range in a Banach space E. Then A is the infinitesimal
generator of uniquely determined semigroup T.t/ of class .C0/ satisfying

kT.t/kB.E/ � Me!t; t � 0;

where M > 0 and ! 2 R if and only if .�I � A/�1 2 B.E/ and

k.�I � A/�nk � M=.� � !/n; n D 1; 2; : : : ; for all � 2 R:

For more details on strongly continuous operators, we refer the reader to the
books of Ahmed [16], Goldstein [122], Fattorini [111], Pazy [168], and the papers
of Travis and Webb [179, 180].
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1.6.2 Integrated Semigroups

Definition 1.18 ([29]). Let E be a Banach space. An integrated semigroup is a
family of bounded linear operators .S.t//t�0 on E with the following properties:

(i) S.0/ D 0I
(ii) t ! S.t/ is strongly continuous;

(iii) S.s/S.t/ D
Z s

0

.S.t C r/ � S.r//dr; for all t; s � 0:

Definition 1.19 ([146]). An operator A is called a generator of an integrated
semigroup if there exists ! 2 R such that .!;1/ � �.A/ .�.A/; is the resolvent
set of A) and there exists a strongly continuous exponentially bounded family
.S.t//t�0 of bounded operators such that S.0/ D 0 and R.�;A/ WD .�I � A/�1 D
�

Z 1

0

e��tS.t/dt exists for all � with � > !:

Proposition 1.20 ([29]). Let A be the generator of an integrated semigroup
.S.t//t�0: Then for all x 2 E and t � 0;

Z t

0

S.s/xds 2 D.A/ and S.t/x D A
Z t

0

S.s/xds C tx:

Definition 1.21 ([146]).

(i) An integrated semigroup .S.t//t�0 is called locally Lipschitz continuous if, for
all 
 > 0 there exists a constant L such that

jS.t/ � S.s/j � Ljt � sj; t; s 2 Œ0; 
�:

(ii) An integrated semigroup .S.t//t�0 is called nondegenerate if S.t/x D 0; for all
t � 0 implies that x D 0:

Definition 1.22. We say that the linear operator A satisfies the Hille–Yosida
condition if there exists M � 0 and ! 2 R such that .!;1/ � �.A/ and

supf.� � !/nj.�I � A/�nj W n 2 N; � > !g � M:

Theorem 1.23 ([146]). The following assertions are equivalent:

(i) A is the generator of a nondegenerate, locally Lipschitz continuous integrated
semigroup;

(ii) A satisfies the Hille–Yosida condition.

If A is the generator of an integrated semigroup .S.t//t�0 which is locally
Lipschitz, then from [29], S.�/x is continuously differentiable if and only if x 2 D.A/
and .S0.t//t�0 is a C0 semigroup on D.A/:



10 1 Preliminary Background

1.6.3 Extrapolated Semigroups

Let A0 be the part of A in X0 D D.A/ which is defined by

D.A0/ D fx 2 D.A/ W Ax 2 D.A/g; and A0x D Ax; for x 2 D.A0/:

Lemma 1.24 ([106]). A0 generates a strongly continuous semigroup .T0.t//t�0 on
X0 and jT0.t/j � N0e!t; for t � 0: Moreover �.A/ � �.A0/ and R.�;A0/ D R
.�;A/=X0; for � 2 �.A/:

For a fixed �0 2 �.A/; we introduce on X0 a new norm defined by

kxk1 D jR.�0;A0/xj for x 2 D.A0/:

The completion X1 of .X0; k�k1/ is called the extrapolation space of X associated
with A: Note that k � k1 and the norm on X0 given by jR.�;A0/xj, for � 2 �.A/, are
extensions T1.t/ to the Banach space X1, and .T1.t//t�0 is a strongly continuous
semigroup on X1. .T1.t//t�0 is called the extrapolated semigroup of .T0.t//t�0, and
we denote its generator by .A1;D.A1//:

Lemma 1.25 ([130]). The following properties hold:

(i) jT.t/jB.X1/ D jT0.t/jL.X0/:
(ii) D.A1/ D X0:

(iii) A1 W X0 ! X1 is the unique continuous extension of A0 W D.A0/ � .X0; j:j/ !
.X0; k:k1/; and .� � A1/�1 is an isometry from .X0; j:j/ into .X0; k:k1/:

(iv) If � 2 �.A0/; then .�� A1/ is invertible and .�� A1/�1 2 B.X1/: In particular
� 2 �.A1/ and R.�;A1/=X0 D R.�;A0/

(v) The space X0 D D.A/ is dense in .X1; k � k1/: Hence the extrapolation space
X1 is also the completion of .X; k:k1/ and X ,! X1.

(vi) The operator A1 is an extension of A: In particular if � 2 �.A/; then
R.�;A1/=X D R.�;A/ and .� � A1/X D D.A/:

Abstract extrapolated spaces have been introduced by Da Prato and
Grisvard [99] and Engel and Nagel [106] and used for various purposes
[23–25, 160, 163, 164].

1.7 Some Fixed Point Theorems

First we will introduce the following compactness criteria in the space of continuous
and bounded functions defined on the positive half line.
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Lemma 1.26 (Corduneanu [96]). Let D � BC.Œ0;C1/;E/: Then D is relatively
compact if the following conditions hold:

(a) D is bounded in BC.
(b) The function belonging to D is almost equi-continuous on Œ0;C1/, i.e., equi-

continuous on every compact of Œ0;C1/:

(c) The set D.t/ WD fy.t/ W y 2 Dg is relatively compact on every compact of
Œ0;C1/:

(d) The function from D is equiconvergent, that is, given � > 0; responds T.�/ > 0
such that ju.t/ � lim

t!C1 u.t/j < �; for any t � T.�/ and u 2 D:

Lemma 1.27 (Nonlinear Alternative [105]). Let X be a Banach space with C � X
closed and convex. Assume U is a relatively open subset of C with 0 2 U and
G W U �! C is a compact map. Then either,

(i) G has a fixed point in U; or
(ii) there is a point u 2 @U and � 2 .0; 1/ with u D �G.u/.

The multi-valued version of Nonlinear Alternative

Lemma 1.28 ([105]). Let X be a Banach space with C � X a convex. Assume U
is a relatively open subset of C with 0 2 U and G W X ! Pcp;c.X/ be an upper
semi-continuous and compact map. Then either,

(a) there is a point u 2 @U and � 2 .0; 1/ with u 2 �G.u/, or
(b) G has a fixed point in U.

Theorem 1.29 (Nonlinear Alternative of Frigon and Granas [116]). Let X be a
Fréchet space and Y � X a closed subset in Y and let N W Y ! X be a contraction
such that N.Y/ is bounded.

Then one of the following statements holds:

.S1/ N has a unique fixed point;

.S2/ There exists � 2 Œ0; 1/, n 2 N and x 2 @nYn such that kx � � N .x/kn D 0.

The following nonlinear alternative is given by Avramescu in Fréchet spaces
which is an extension of the same version given by Burton [87] and Burton and
Kirk [88] in Banach spaces.

Theorem 1.30 (Nonlinear Alternative of Avramescu [32]). Let X be a Fréchet
space and let A;B W X ! X be two operators satisfying:

(1) A is a compact operator,
(2) B is a contraction.

Then either one of the following statements holds:

(S1) The operator A C B has a fixed point;
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(S2) The set

n

x 2 X; x D �A.x/C �B
� x

�

�o

is unbounded for � 2 .0; 1/:
Theorem 1.31 (Nonlinear Alternative of Frigon [114, 115]). Let X be a Fréchet
space and U an open neighborhood of the origin in X and let N W U ! P.X/ be an
admissible multi-valued contraction. Assume that N is bounded.

Then one of the following statements holds:

.S1/ N has a fixed point;

.S2/ There exists � 2 Œ0; 1/ and x 2 @U such that x 2 � N.x/.

The following fixed point theorem is due to Burton and Kirk.

Theorem 1.32 ([88]). Let X be a Banach space, and A;B two operators satisfy-
ing:

(i) A is a contraction, and
(ii) B is completely.

Then either

(a) the operator equation y D A.y/C B.y/ has a solution, or
(b) the set " D fu 2 X W �A. u

�
/C �B.u/g is unbounded for � 2 .0; 1/:

We need the following definitions in the sequel.

Definition 1.33. A nonempty closed subset C of a Banach space X is said to be a
cone if

(i) C C C � C;
(ii) �C � C for � > 0, and,

(iii) �C \ C D f0g:
A cone C is called normal if the norm k � k is semi-monotone on C, i.e., there

exists a constant N > 0 such that kxk � Nkyk, whenever x � y. We equip the space
X D C.J;E/ with the order relation � induced by a regular cone C in E, that is for
all y; y 2 X W y � y if and only if y.t/ � y.t/ 2 C; 8t 2 J: In what follows will
assume that the cone C is normal. Cones and their properties are detailed in [134].
Let a; b 2 X be such that a � b. Then, by an order interval Œa; b� we mean a set of
points in X given by

Œa; b� D fx 2 X j a � x � bg:

Definition 1.34. Let X be an ordered Banach space. A mapping T W X ! X is
called isotone increasing if T.x/ � T.y/ for any x; y 2 X with x < y. Similarly, T is
called isotone decreasing if T.x/ � T.y/ whenever x < y:
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Definition 1.35. We say that x 2 X is the least fixed point of G in X if x D Gx and
x � y whenever y 2 X and y D Gy. The greatest fixed point of G in X is defined
similarly by reversing the inequality. If both least and greatest fixed point of G in X
exist, we call them extremal fixed point of G in X.

The following fixed point theorem is due to Heikkila and Lakshmikantham.

Theorem 1.36. Let Œa; b� be an order interval in an order Banach space X and let
Q W Œa; b� ! Œa; b� be a nondecreasing mapping. If each sequence .Qxn/ � Q.Œa; b�/
converges, whenever .xn/ is a monotone sequence in Œa; b�, then the sequence of
Q-iteration of a converges to the least fixed point x� of Q and the sequence of Q-
iteration of a converges to the greatest fixed point x� of Q. Moreover

x� D minfy 2 Œa; b�; y � Qyg and x� D maxfy 2 Œa; b�; y � Qyg:

As a consequence, Dhage and Henderson have proved the following fixed point
theorem, which will be used to prove the existence of extremal solutions.

Theorem 1.37 ([102]). Let Œa; b� be an order interval in a Banach space X and let
B1;B2 W Œa; b� ! X be two functions satisfying:

(a) B1 is a contraction,
(b) B2 is completely continuous,
(c) B1 and B2 are strictly monotone increasing, and
(d) B1.x/C B2.x/ 2 Œa; b�; 8 x 2 Œa; b�.

Further if the cone C in X is normal, then the equation x D B1.x/C B2.x/ has a
least fixed point x� and a greatest fixed point x� 2 Œa; b�. Moreover x� D lim

n!1 xn

and x� D lim
n!1 yn, where fxng and fyng are the sequences in Œa; b� defined by

xnC1 D B1.xn/C B2.xn/; x0 D a and ynC1 D B1.yn/C B2.yn/; y0 D b:

Given a space X and metrics d˛; ˛ 2 V
; denote P.X/ D fY � X W Y 6D ;g,

Pcl.X/ D fY 2 P.X/ W Y closedg, Pb.X/ D fY 2 P.X/ W Y boundedg: We
denote by D˛; ˛ 2 V

; the Hausdorff pseudo-metric induced by d˛I that is, for
V;W 2 P.X/;

D˛.V;W/ D inf
n

" > 0 W 8x 2 V; 8y 2 W; 9Nx 2 V; Ny 2 W such that

d˛.x; Ny/ < "; d˛.Nx; y/ < "
o

;

with inf ; D 1: In the particular case where X is a complete locally convex space,
we say that a subset V � X is bounded if D˛.f0g;V/ < 1 for every ˛ 2 V :

Definition 1.38. A multi-valued map F W X ! P.E/ is called an admissible
contraction with constant fk˛g˛2V if for each ˛ 2 V

there exists k˛ 2 .0; 1/

such that
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i) D˛.F.x/;F.y// � k˛d˛.x; y/ for all x; y 2 X:
ii) for every x 2 X and every " 2 .0;1/

V

; there exists y 2 F.x/ such that

d˛.x; y/ � d˛.x;F.x//C "˛ for every˛ 2
^

:

Lemma 1.39 (Nonlinear Alternative, [113]). Let E be a Fréchet space and U an
open neighborhood of the origin in E, and let N W U ! P.E/ be an admissible
multi-valued contraction. Assume that N is bounded. Then one of the following
statements holds:

(C1) N has at least one fixed point;
(C2) there exists � 2 Œ0; 1/ and x 2 @U such that x 2 �N.x/:

Lemma 1.40 ([144]). If U is a closed convex subset of a Banach space E and
R W U ! Pcv;k.E/ is a closed ˇ-condensing multi-function, where ˇ is a nonsingular
MNC defined on the subsets of U. Then R has a fixed point.

The next results are concerned with the structure of solution sets for
ˇ-condensing u.s.c. multi-valued maps.

Lemma 1.41 ([144]). Let W be a closed subset of a Banach space E and R W W !
Pcv;k.E/ be a closed multi-function which is ˇ-condensing on every bounded subset
of W, where ˇ is a monotone MNC. If the fixed points set F ixR is bounded, then it
is compact.

The following theorem is due to Mönch.

Theorem 1.42 ([162]). Let E be a Banach space, U an open subset of E and 0 2 U.
Suppose that N W U ! E is a continuous map which satisfies Mönch’s condition
(i.e., if D 	 U is countable and D 	 co.f0g [ N.D//, then D is compact) and
assume that

x ¤ �N.x/; for x 2 @U and � 2 .0; 1/

holds. Then Nhas a fixed point in U.

Lemma 1.43 ([144, Theorem 2]). The generalized Cauchy operator G satisfies the
properties

(G1) there exists  � 0 such that

kGf .t/ � Gg.t/k � 

Z t

0

kf .s/ � g.s/kds; for every f ; g 2 L1.J;E/; t 2 J:

(G2) for any compact K 	 E and any sequence .fn/n�1 � L1.J;E/ such that for
all n � 1, fn.t/ 2 K, a. e. t 2 J, the weak convergence fn * f0 in L1.J;E/ implies
the convergence Gfn ! Gf0 in C.J;E/.
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Lemma 1.44 ([144]). Let S W L1.J;E/ ! C.J;E/ be an operator satisfying
condition (G2) and the following Lipschitz condition (weaker than (G1)).

(G1’)

kSf � SgkC.J;E/ � kf � gkL1.J;E/:

Then for every semi-compact set ffngC1
nD1 � L1.J;E/ the set fSfngC1

nD1 is relatively
compact in C.J;E/. Moreover, if .fn/n�1 converges weakly to f0 in L1.J;E/ then
Sfn ! Sf0 in C.J;E/.

Lemma 1.45 ([144]). Let S W L1.J;E/ ! C.J;E/ be an operator satisfying
conditions (G1), (G2) and let the set ffng1

nD1 be integrable bounded with the property
	.ffn.t/ W n � 1g/ � �.t/, for a.e. t 2 J, where �.:/ 2 L1.J;RC/ and 	 is the
Hausdorff MNC. Then

	.fSfn.t/ W n � 1g/ � 2

Z t

0

�.s/ds; for all t 2 J;

where  � 0 is the constant in condition (G1).

Let us recall the following result that will be used in the sequel.

Lemma 1.46 ([86]). Let E be a separable metric space and let G W E ! P
.L1.Œ0; b�;E// be a multi-valued operator which is lower semi-continuous and has
nonempty closed and decomposable values. Then G has a continuous selection, i.e.,
there exists a continuous function f W E ! L1.Œ0; b�;E/ such that f .y/ 2 G.y/ for
every y 2 E.



Chapter 2
Partial Functional Evolution Equations
with Finite Delay

2.1 Introduction

In this chapter, we study some first order classes of partial functional, neutral
functional, integro-differential, and neutral integro-differential evolution equations
on a positive line RC with local and nonlocal conditions when the historical interval
H is bounded, i.e., when the delay is finite. In the literature devoted to equations with
finite delay, the phase space is much of time the space of all continuous functions
on H for r > 0; endowed with the uniform norm topology. Using a recent nonlinear
alternative of Leray–Schauder type for contractions in Fréchet spaces due to Frigon
and Granas combined with the semigroup theory, the existence and uniqueness of
the mild solution will be obtained. The method we are going to use is to reduce the
existence of the unique mild solution to the search for the existence of the unique
fixed point of an appropriate contraction operator in a Fréchet space.

The nonlocal Cauchy problem has been studied first by Byszewski in 1991 [90]
(see also [89, 91, 92]). Then, Balachandran and his collaborators have considered
various classes of nonlinear integro-differential systems [44].

2.2 Partial Functional Evolution Equations

2.2.1 Introduction

In this section, we consider partial functional evolution equations with local and
nonlocal conditions where the existence of the unique mild solution is assured.
Firstly, in Sect. 2.2.2 we consider the following partial functional evolution system

© Springer International Publishing Switzerland 2015
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y0.t/ D A.t/y.t/C f .t; yt/; a.e. t 2 J D RC (2.1)

y.t/ D '.t/; t 2 H; (2.2)

where r > 0, f W J � C.H;E/ ! E and ' 2 C.H;E/ are given functions and
fA.t/gt�0 is a family of linear closed (not necessarily bounded) operators from E into
E that generate an evolution system of bounded linear operators fU.t; s/g.t;s/2J�J for
0 � s � t < C1 from E into E:

Later, we consider the functional evolution problem with a nonlocal condition of
the form

y0.t/ D A.t/y.t/C f .t; yt/; a.e. t 2 J D RC (2.3)

y.t/C ht.y/ D '.t/; t 2 H; (2.4)

where A.�/, f and ' are as in evolution problem (2.1)–(2.2) and ht W C.H;E/ ! E is
a given function.

Using the fixed point argument, Frigon applied its own alternative to some
differential and integral equations in [113]. In the literature devoted to equations
with A.�/ D A on a bounded interval, we can found the recent works by Benchohra
and Ntouyas for semi-linear equations and inclusions [58, 59, 65], controllability
results are established by Benchohra et al. in [26, 75, 76] and Li et al. in [156].

2.2.2 Main Result

Let us introduce the definition of the mild solution of the partial functional evolution
system (2.1)–(2.2).

Definition 2.1. We say that the continuous function y.�/ W Œ�r;C1/ ! E is a mild
solution of (2.1)–(2.2) if y.t/ D '.t/ for all t 2 H and y satisfies the following
integral equation

y.t/ D U.t; 0/ '.0/C
Z t

0

U.t; s/ f .s; ys/ ds; for each t 2 Œ0;C1/:

We will need the following hypotheses which are assumed hereafter:

(2.1.1) There exists a constant bM � 1 such that

kU.t; s/kB.E/ � bM

for every .t; s/ 2 � WD f.t; s/ 2 J � J W 0 � s � t < C1g;
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(2.1.2) There exist a continuous nondecreasing function  W RC ! .0;C1/ and
p 2 L1loc.Œ0;C1/;RC/ such that

jf .t; u/j � p.t/  .kuk/;

for a.e. t 2 Œ0;C1/ and each u 2 C.H;E/;
(2.1.3) For all R > 0, there exists lR 2 L1loc.Œ�r;C1/;RC/ such that

jf .t; u/ � f .t; v/j � lR.t/ ku � vk

for all u; v 2 C.H;E/ with kuk � R and kvk � R.

For every n 2 N, we define in C.Œ�r;C1/;E/ the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds; ln.t/ D bM ln.t/ and ln is the function from .2:1:3/:

Then C.Œ�r;C1/;E/ is a Fréchet space with the family of semi-norms
fk � kngn2N. In what follows we will choose 
 > 1.

Theorem 2.2 ([33]). Suppose that hypotheses (2.1.1)–(2.1.3) are satisfied and
moreover for n > 0

Z C1

c1

ds

 .s/
> bM

Z n

0

p.s/ ds; (2.5)

where c1 D bM k'k. Then the problem (2.1)–(2.2) has a unique mild solution.

Proof. Transform the problem (2.1)–(2.2) into a fixed point problem. Consider the
operator N W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:

.N1y/.t/ D

8

<̂

:̂

'.t/; if t 2 H;

U.t; 0/ '.0/C
Z t

0

U.t; s/ f .s; ys/ ds; if t 2 RC:

Clearly, the fixed points of the operator N1 are mild solutions of the problem
(2.1)–(2.2).

Let y be a possible solution of the problem (2.1)–(2.2). Given n 2 N and t � n,
then from .2:1:1/ and .2:1:2/ we have:

jy.t/j � jU.t; 0/j j'.0/j C
Z t

0

kU.t; s/kB.E/ jf .s; ys/jds
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� bM k'k C bM
Z t

0

p.s/  .kysk/ds:

We consider the function � defined by

�.t/ WD supf jy.s/j W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ�r; t� be such that �.t/ D jy.t�/j: If t� 2 Œ0; n�, by the previous inequality
we get

�.t/ � bM k'k C bM
Z t

0

p.s/  .�.s// ds; t 2 Œ0; n�:

If t� 2 H; then �.t/ D k'k and the previous inequality holds.
Let us take the right-hand side of the above inequality as v.t/: Then we have

�.t/ � v.t/ for all t 2 Œ0; n�:

From the definition of v, we get

c1 WD v.0/ D bMk'k and v0.t/ D bM p.t/  .�.t// a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we have

v0.t/ � bM p.t/  .v.t// a.e. t 2 Œ0; n�:

This implies that for each t 2 Œ0; n� and using (2.5) we get

Z v.t/

c1

ds

 .s/
� bM

Z t

0

p.s/ ds

� bM
Z n

0

p.s/ ds

<

Z C1

c1

ds

 .s/
:

Thus there exists a constant �n such that v.t/ � �n; t 2 Œ0; n� and hence �.t/ �
�n; t 2 Œ0; n�. Since for every t 2 Œ0; n�; kytk � �.t/, we have

kykn � maxfk'k; �ng WD �n:

Set

Y D f y 2 C.Œ�r;C1/;E/ W supfjy.t/j W 0 � t � ng � �n C 1 for all n 2 N g:
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Clearly, Y is a closed subset of C.Œ�r;C1/;E/.
We shall show that N1 W Y ! C.Œ�r;C1/;E/ is a contraction operator. Indeed,

consider y; y 2 C.Œ�r;C1/;E/; thus using .2; 1; 1/ and .2:1:3/ for each t 2 Œ0; n�
and n 2 N we get

j.N1y/.t/ � .N1y/.t/j �
Z t

0

kU.t; s/kB.E/ jf .s; ys/ � f .s; ys/j ds

�
Z t

0

bM ln.s/ kys � ysk ds

�
Z t

0

Œln.s/ e
 L�
n .s/ � Œe�
 L�

n .s/ kys � ysk� ds

�
Z t

0

"

e
 L�
n .s/




#0
ds ky � ykn

� 1



e
 L�

n .t/ ky � ykn:

Therefore,

k.N1y/ � .N1y/kn � 1



ky � ykn:

So, for 
 > 1, the operator N1 is a contraction for all n 2 N: From the choice of Y
there is no y 2 @Yn such that y D � N1.y/ for some � 2 .0; 1/. Then the statement
.S2/ in Theorem 1.29 does not hold. A consequence of the nonlinear alternative of
Frigon and Granas that .S1/ holds, we deduce that the operator N1 has a unique
fixed point y� which is the unique mild solution of the problem (2.1)–(2.2). ut

2.2.3 An Example

As an application of Theorem 2.2, we consider the following partial functional
differential equation

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

@z

@t
.t; x/ D a.t; x/

@2z

@x2
.t; x/C Q.t; z.t � r; x// t 2 Œ0;C1/; x 2 Œ0; ��

z.t; 0/ D z.t; �/ D 0 t 2 Œ0;C1/

z.t; x/ D ˚.t; x/ t 2 H; x 2 Œ0; ��;
(2.6)
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where r > 0; a.t; x/ W Œ0;1/� Œ0; �� ! R is a continuous function and is uniformly
Hölder continuous in t, Q W Œ0;C1/ � R ! R and ˚ W H � Œ0; �� ! R are
continuous functions.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D fw 2 E W w;w0 are absolutely continuous;w00 2 E; w.0/ D w.�/ D 0g:

Then A.t/ generates an evolution system U.t; s/ satisfying assumption .2:1:1/ (see
[112, 149]).

For x 2 Œ0; ��, we set

y.t/.x/ D z.t; x/ t 2 RC;

f .t; yt/.x/ D Q.t; z.t � r; x// t 2 RC

and

'.t/.x/ D ˚.t; x/ � r � t � 0:

Thus, under the above definitions of f , ' and A.�/, the system (2.6) can
be represented by the abstract partial functional evolution problem (2.1)–(2.2).
Furthermore, more appropriate conditions on Q ensure the existence of unique mild
solution for (2.6) by Theorems 2.2 and 1.29.

2.2.4 Nonlocal Case

In this section, we extend the above results about the existence and uniqueness
of mild solution to the partial functional evolution equations with nonlocal condi-
tions (2.3)–(2.4). The nonlocal condition can be applied in physics with better effect
than the classical initial condition y.0/ D y0. For example, ht.y/ may be given by

ht.y/ D
p
X

iD1
ci y.ti C t/; t 2 H

where ci; i D 1; : : :; p are given constants and 0 < t1 < � � � < tp < C1.
At time t D 0, we have

h0.y/ D
p
X

iD1
ci y.ti/:

Nonlocal conditions were initiated by Byszewski [90] to which we refer for
motivation and other references.
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Before giving the main result, we give first the definition of mild solution of the
nonlocal partial functional evolution problem (2.3)–(2.4).

Definition 2.3. A function y 2 C.Œ�r;C1/;E/ is said to be a mild solution
of (2.3)–(2.4) if y.t/ D '.t/ � ht.y/ for all t 2 H and y satisfies the following
integral equation

y.t/ D U.t; 0/ Œ'.0/ � h0.y/�C
Z t

0

U.t; s/ f .s; ys/ ds; for each t 2 Œ0;C1/:

We will need the following hypotheses on ht.�/ in the proof of the main result of
this section.

(2.3.1) For all n � 0, there exists a constant �n > 0 such that

jht.u/ � ht.v/j � �n ku � vk

for all t 2 H, u; v 2 C.Œ�r;1/;E/ with kuk � n and kvk � n;
(2.3.2) there exists � > 0 such that

jht.u/j � � for each u 2 C.H;E/; and t 2 J:

Theorem 2.4 ([33]). Assume that the hypotheses (2.1.1)–(2.1.3), (2.3.1), and
(2.3.2) hold and moreover for n > 0

Z C1

c2

ds

 .s/
> bM

Z n

0

p.s/ ds; (2.7)

where c2 D bM.k'k C �/. Then the nonlocal evolution problem (2.3)–(2.4) has a
unique mild solution.

Proof. Transform the problem (2.3)–(2.4) into a fixed point problem. Consider the
operator N2 W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:

.N2y/.t/ D

8

<̂

:̂

'.t/ � ht.y/; if t 2 H;

U.t; 0/ Œ'.0/ � h0.y/�C
Z t

0

U.t; s/ f .s; ys/ ds; if t 2 RC:

Clearly, the fixed points of the operator N2 are mild solutions of the problem (2.3)–
(2.4).

Then, by parallel steps of Theorem 2.2’s proof, we can easily show that the
operator N2 is a contraction which have a unique fixed point by statement .S1/ in
Theorem 1.29. The details are left to the reader. ut
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2.3 Neutral Functional Evolution Equations

2.3.1 Introduction

In this section, we investigate neutral functional evolution equations with local and
nonlocal conditions. First, we study in Sect. 2.3.2 the following neutral functional
evolution equations

d

dt
Œy.t/ � g.t; yt/� D A.t/y.t/C f .t; yt/I a.e. t 2 RC; (2.8)

y.t/ D '.t/I t 2 H; (2.9)

where r > 0; f ; g W J � C.H;E/ ! E and ' 2 C.H;E/ are given functions and
fA.t/gt�0 is a family of linear closed (not necessarily bounded) operators from E
into E that generate an evolution system of operators fU.t; s/g.t;s/2J�J for 0 � s �
t < C1:

An extension of these existence results will be given in Sect. 2.3.4 for the
following neutral functional evolution equation with nonlocal conditions

d

dt
Œy.t/ � g.t; yt/� D A.t/y.t/C f .t; yt/; a.e. t 2 J D RC (2.10)

y.t/C ht.y/ D '.t/; t 2 H; (2.11)

where A.�/, f , g, and ' are as in problem (2.8)–(2.9) and ht W C.Œ�r;1/;E/ ! E is
a given function.

Neutral equations have received much attention in recent years: existence and
uniqueness of mild, strong, and classical solutions for semi-linear functional
differential equations and inclusions has been studied extensively by many authors.
Hernandez in [138] proved the existence of mild, strong, and periodic solutions for
neutral equations. Fu in [117] studied the controllability on a bounded interval of a
class of neutral functional differential equations. Fu and Ezzinbi [119] considered
the existence of mild and classical solutions for a class of neutral partial functional
differential equations with nonlocal conditions.

Here we are interesting to give existence and uniqueness of the mild solution
for the neutral functional evolution equations (2.8)–(2.9) and the corresponding
nonlocal problem (2.10)–(2.11).

2.3.2 Main Result

We give first the definition of the mild solution of (2.8)–(2.9).
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Definition 2.5. We say that the continuous function y.�/ W Œ�r;C1/ ! E is a mild
solution of (2.8)–(2.9) if y.t/ D '.t/ for all t 2 H and y satisfies the following
integral equation

y.t/ D U.t; 0/ Œ'.0/ � g.0; '/�C g.t; yt/C
Z t

0

U.t; s/ A.s/ g.s; ys/ ds

C
Z t

0

U.t; s/ f .s; ys/ ds; for each t 2 Œ0;C1/:

We will need to introduce the following assumptions:

.G1/ There exists a constant M0 > 0 such that:

kA�1.t/k � M0 for all t � 0:

.G2/ There exists a constant 0 < L <
1

M0

, such that:

jA.t/ g.t; '/j � L .k'k C 1/ for all t > 0 and ' 2 C.H;E/:

.G3/ There exists a constant L� > 0 such that:

jA.s/ g.s; '/ � A.s/ g.s; '/j � L� .js � sj C k' � 'k/

for all s; s > 0 and '; ' 2 C.H;E/.
For every n 2 N, we define in C.Œ�r;C1/;E/ the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds; ln.t/ D bM Œ L� C ln.t/� and ln is the function from

.2:1:3/:

Then C.Œ�r;C1/;E/ is a Fréchet space with the family of semi-norms fk �
kngn2N. Let us fix 
 > 0 and assume

	

M0 L� C 1







< 1.

Theorem 2.6 ([37]). Suppose that hypotheses (2.1.1)–(2.1.3) and the assumptions
.G1/–.G3/ are satisfied. If

Z C1

c3;n

ds

s C  .s/
>

bM

1 � M0L

Z n

0

max.L; p.s//ds; for each n > 0 (2.12)



26 2 Partial Functional Evolution Equations with Finite Delay

with

c3;n D
bM.1C M0L/k'k C M0L.bM C 1/C bMLn

1 � M0L
:

Then the problem (2.8)–(2.9) has a unique mild solution.

Proof. Transform the problem (2.8)–(2.9) into a fixed point problem. Consider the
operator N3 W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:

.N3y/.t/ D

8

ˆ̂

<̂

ˆ̂

:̂

'.t/; if t 2 H

U.t; 0/ Œ'.0/ � g.0; '/�C g.t; yt/

C
Z t

0

U.t; s/A.s/g.s; ys/ds C
Z t

0

U.t; s/f .s; ys/ds; if t 2 RC:

Clearly, the fixed points of the operator N3 are mild solutions of the problem
(2.8)–(2.9).

We are going to use Theorem 1.29 in the following way. (i) Define a set
Y such that (2.8)–(2.9) does’nt have any solution out of Y . (ii) Show that (S2) of
Theorem 1.29 doesn’t hold under the above choice of Y , hence (S1) takes place.

Let y be such that y D �N3.y/ for � 2 Œ0; 1�. Given n 2 N and t � n, then from
.2:1:1/, .2:1:2/, .G1/ and .G2/ we have

jy.t/j � jU.t; 0/j j'.0/ � g.0; '/j C jg.t; yt/j

C
Z t

0

jU.t; s/j jA.s/ g.s; ys/j ds C
Z t

0

jU.t; s/j jf .s; ys/j ds

� bM k'k C bM kA�1.0/k jA.0/ g.0; '/j C kA�1.t/kjA.t/ g.t; yt/j

CbM
Z t

0

jA.s/ g.s; ys/j ds C bM
Z t

0

p.s/  .kysk/ ds

� bM k'k C bM M0 L.k'k C 1/C M0 L.kytk C 1/

CbM L
Z t

0

.kysk C 1/ ds C bM
Z t

0

p.s/  .kysk/ ds:

We consider the function � defined by

�.t/ WD supf jy.s/j W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ�r; t� be such that �.t/ D jy.t�/j: If t� 2 Œ0; n�, by the previous inequality
we get for t 2 Œ0; n�

�.t/ � bM k'k C bM M0 L.k'k C 1/C M0 L.�.t/C 1/

CbM
Z t

0

L .�.s/C 1/ ds C bM
Z t

0

p.s/  .�.s// ds:
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So

.1 � M0L/ �.t/ � bM k'k C bM M0 L k'k C bM M0 L C M0 L

CbM L n C bM
Z t

0

L�.s/ds C bM
Z t

0

p.s/  .�.s// ds:

Set

c3;n WD
bM.1C M0L/k'k C M0L.bM C 1/C bMLn

1 � M0L
;

then

�.t/ � 1

1 � M0L

h

bM.1C M0L/k'k C M0L.bM C 1/C bMLn
i

C
bM

1 � M0L

	Z t

0

L�.s/ds C
Z t

0

p.s/ .�.s//ds




D c3;n C
bM

1 � M0L

	Z t

0

L�.s/ds C
Z t

0

p.s/ .�.s//ds




:

If t� 2 H, then �.t/ D k'k and the previous inequality holds.
Let us take the right-hand side of the above inequality as v.t/. Then we have

�.t/ � v.t/ for all t 2 Œ0; n�:
From the definition of v, we get

v.0/ D c3;n and v0.t/ D
bM

1 � M0L
ŒL�.t/C p.t/ .�.t//� a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we have for a.e. t 2 Œ0; n�

v0.t/ �
bM

1 � M0L
ŒLv.t/C p.t/ .v.t//�:

This implies that for each t 2 Œ0; n� and using (2.12) we get

Z v.t/

c3;n

ds

s C  .s/
�

bM

1 � M0L

Z t

0

max.L; p.s//ds

�
bM

1 � M0L

Z n

0

max.L; p.s//ds

<

Z C1

c3;n

ds

s C  .s/
:
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Thus, there exists a constant �n such that v.t/ � �n; t 2 Œ0; n� and hence
�.t/ � �n; t 2 Œ0; n�. Since for every t 2 Œ0; n�; kytk � �.t/, we have kykn �
maxfk'k; �ng WD �n: Set

Y D f y 2 C.Œ�r;C1/;E/ W kykn � �n C 1 for each n 2 Ng:

Clearly, Y is an open subset of C.Œ�r;C1/;E/.
We shall show that N3 W Y ! C.Œ�r;C1/;E/ is a contraction operator. Indeed,

consider y; y 2 C.Œ�r;C1/;E/, thus using (2.1.1), (2.1.3), (G1) and (G3) for each
t 2 Œ0; n� and n 2 N we get

j.N3y/.t/ � .N3y/.t/j � jg.t; yt/ � g.t; yt/j

C
Z t

0

jU.t; s/j jA.s/ .g.s; ys/ � g.s; ys//j ds

C
Z t

0

jU.t; s/j jf .s; ys/ � f .s; ys/j ds

� kA�1.t/k jA.t/ g.t; yt/ � A.t/ g.t; yt/j

C
Z t

0

bM jA.s/ g.s; ys/ � A.s/ g.s; ys/j ds

C
Z t

0

bM jf .s; ys/ � f .s; ys/j ds

� M0 L� kyt � ytk C
Z t

0

bM L� kys � ysk ds

C
Z t

0

bM ln.s/ kys � ysk ds

� M0 L� kyt � ytk C
Z t

0

h

bM L� C bM ln.s/
i

kys � ysk ds

�
h

M0 L� e
 L�
n .t/
i h

e�
 L�
n .t/ kyt � ytk

i

C
Z t

0

h

ln.s/ e
 L�
n .s/
i h

e�
 L�
n .s/ kys � ysk

i

ds

�
h

M0 L� e
 L�
n .t/
i

ky � ykn C
Z t

0

"

e
 L�
n .s/




#0
ds ky � ykn:
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Then

j.N3y/.t/ � .N3y/.t/j �
h

M0 L� e
 L�
n .t/
i

ky � ykn C 1



e
 L�

n .t/ ky � ykn

�
	

M0 L� C 1







e
 L�
n .t/ ky � ykn:

Therefore,

kN3.y/ � N3.y/kn �
	

M0 L� C 1







ky � ykn:

So, for

	

M0 L� C 1







< 1, the operator N3 is a contraction for all n 2 N. From

the choice of Y there is no y 2 @Yn such that y D � N3.y/ for some � 2 .0; 1/:

Then the statement .S2/ in Theorem 1.29 does’nt hold. Thus statement .S1/ holds,
and hence the operator N3 has a unique fixed point y� in Y , which is the unique mild
solution of the neutral functional evolution problem (2.8)–(2.9). ut

2.3.3 An Example

As an application of our results we consider the following model

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@

@t

	

z.t; x/ �
Z t

�r

Z �

0

b.s � t; u; x/ z.s; u/ du ds




D a.t; x/
@2z

@x2
.t; x/C Q.t; z.t � r; x/;

@z

@x
.t � r; x//; t 2 Œ0;C1/; x 2 Œ0; ��

z.t; 0/ D z.t; �/ D 0; t 2 Œ0;C1/

z.t; x/ D ˚.t; x/; t 2 H; x 2 Œ0; ��
(2.13)

where r > 0; a.t; x/ is a continuous function and is uniformly Hölder continuous in
t, Q W Œ0;C1/ � R � R ! R and ˚ W H � Œ0; �� ! R are continuous functions.

Let

y.t/.x/ D z.t; x/; t 2 Œ0;1/; x 2 Œ0; ��;
'.�/.x/ D ˚.�; x/; � 2 H; x 2 Œ0; ��;

g.t; yt/.x/ D
Z t

�r

Z �

0

b.s � t; u; x/z.s; u/duds; x 2 Œ0; ��
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and

f .t; yt/.x/ D Q.t; z.�; x/;
@z

@x
.�; x//; � 2 H; x 2 Œ0; ��:

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D fw 2 E W w;w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0g:

Then A.t/ generates an evolution system U.t; s/ satisfying assumptions .2:1:1/ and
.G1/ (see [112, 149]).

Here we consider that ' W H ! E such that ' is Lebesgue measurable and
h.s/j'.s/j2 is Lebesgue integrable on H where h W H ! R is a positive integrable
function. The norm is defined here by:

k'k D j˚.0/j C
�Z 0

�r
h.s/j'.s/j2 ds

� 1
2

:

The function b is measurable on Œ0;1/ � Œ0; �� � Œ0; ��;

b.s; u; 0/ D b.s; u; �/ D 0; .s; u/ 2 Œ0;1/ � Œ0; ��;
Z �

0

Z t

�r

Z �

0

b2.s; u; x/

h.s/
dsdudx < 1

and sup
t2Œ0;1/

N .t/ < 1; where

N .t/ D
Z �

0

Z t

�r

Z �

0

1

h.s/

�

a.s; x/
@2

@x2
b.s; u; x/

�2

dsdudx:

Thus, under the above definitions of f , g, and A.�/, the system (2.13) can
be represented by the abstract neutral functional evolution problem (2.8)–(2.9).
Furthermore, more appropriate conditions on Q ensure the existence of at least one
mild solution for (2.13) by Theorems 2.6 and 1.29.

2.3.4 Nonlocal Case

In this section we give existence and uniqueness results for the neutral functional
evolution equation with nonlocal conditions (2.10)–(2.11). Nonlocal conditions
were initiated by Byszewski [89]. Before giving the main result, we give first the
definition of the mild solution.
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Definition 2.7. A function y 2 C.Œ�r;C1/;E/ is said to be a mild solution
of (2.10)–(2.11) if y.t/ D '.t/ � ht.y/ for all t 2 H and y satisfies the following
integral equation

y.t/ D U.t; 0/ Œ'.0/ � h0.y/ � g.0; '/�C g.t; yt/C
C
Z t

0

U.t; s/ A.s/ g.s; ys/ ds C
Z t

0

U.t; s/ f .s; ys/ ds; for t 2 RC:

We take here the same assumptions in Sect. 2.2.4 for the function ht.�/:
Theorem 2.8 ([37]). Assume that the hypotheses (2.1.1)–(2.1.3), .G1/–.G3/, .D1/,
and .D2/ hold. If

Z C1

c4;n

ds

s C  .s/
>

bM

1 � M0L

Z n

0

max.L; p.s//ds; for each n > 0 (2.14)

with

c4;n D
bM
��

1C M0L
 k'k C �

�C M0L.bM C 1/C bMLn

1 � M0L
I

Then the nonlocal neutral functional evolution problem (2.10)–(2.11) has a unique
mild solution.

Proof. Consider the operator N4 W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:

.N4y/.t/ D

8

ˆ̂

<̂

ˆ̂

:̂

'.t/ � ht.y/; if t 2 H;

U.t; 0/ Œ'.0/ � h0.y/ � g.0; '/�C g.t; yt/

C
Z t

0

U.t; s/A.s/g.s; ys/ds C
Z t

0

U.t; s/f .s; ys/ ds; if t 2 RC:

Clearly, the fixed points of the operator N4 are mild solutions of the problem
(2.10)–(2.11).

Then, by parallel steps of the Theorem 2.6’s proof, we can prove that the operator
N4 is a contraction which have a fixed point by statement .S1/ in Theorem 1.29. The
details are left to the reader. ut
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2.4 Partial Functional Integro-Differential Evolution
Equations

2.4.1 Introduction

In this section, we are interested by partial functional integro-differential evolution
equations with local and nonlocal conditions. First, we look for the class of partial
functional integro-differential evolution equations of the form

y0.t/ D A.t/y.t/C
Z t

0

K.t; s/ f .s; ys/ ds; a.e. t 2 J D RC (2.15)

y.t/ D '.t/; t 2 H; (2.16)

where K W J � J ! E, f W J � C.H;E/ ! E and ' 2 C.H;E/ are given functions
and fA.t/gt�0 is a family of linear closed (not necessarily bounded) operators from
E into E that generate an evolution system of operators fU.t; s/g.t;s/2J�J for 0 � s �
t < C1.

Also, an extension of these existence results is given for the following partial
functional integro-differential evolution problem with nonlocal conditions

y0.t/ D A.t/y.t/C
Z t

0

K.t; s/ f .s; ys/ ds; a.e. t 2 J D RC (2.17)

y.t/C ht.y/ D '.t/; t 2 H; (2.18)

where A.�/, f , K, and ' are as in evolution problem (2.15)–(2.16) and ht W C.H;E/ !
E is a given function.

The problem of proving the existence of mild solutions for integro-differential
equations and inclusions in abstract spaces has been studied by several authors;
see Balachandran and Anandhi [41, 42], Balachandran and Leelamani [45] and
Benchohra et al. [72, 77], Benchohra and Ntouyas [60, 61, 66], Ntouyas [165].

Here we are interested to study the existence and uniqueness of the mild
solution for the partial functional integro-differential evolution equations (2.15)–
(2.16) and the corresponding nonlocal problem (2.17)–(2.18). The motivation of
these problems is to look for the integro-differential equations considered in [33].

2.4.2 Main Result

Before stating and proving the main result, we give first the definition of
mild solution of the partial functional integro-differential evolution problem
(2.15)–(2.16).
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Definition 2.9. We say that the function y.�/ W Œ�r;C1/ ! E is a mild solution
of (2.15)–(2.16) if y.t/ D '.t/ for all t 2 H and y satisfies the following integral
equation

y.t/ D U.t; 0/ '.0/C
Z t

0

U.t; s/
Z s

0

K.s; 
/ f .
; y
 / d
 ds; for each t 2 RC:

We will need to add the following assumption:

(2.9.1) For each t 2 J, K.t; s/ is measurable on Œ0; t� and

K.t/ D ess supfjK.t; s/jI 0 � s � tg

is bounded on Œ0; n�I let Sn WD sup
t2Œ0;n�

K.t/:

For every n 2 N, we define in C.Œ�r;C1/;E/ the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds, ln.t/ D bM n Sn ln.t/ and ln is the function from .2:1:3/:

Then C.Œ�r;C1/;E/ is a Fréchet space with the family of semi-norms fk �
kngn2N. In what follows we will choose 
 > 1.

Theorem 2.10. Suppose that hypotheses (2.1.1)–(2.1.3) are satisfied and the
assumption .2:9:1/ holds. If

Z C1

c5

ds

 .s/
> bM n Sn

Z n

0

p.s/ ds; for each n > 0 (2.19)

with c5 D bM k'k. Then the problem (2.15)–(2.16) has a unique mild solution.

Proof. Transform the problem (2.15)–(2.16) into a fixed point problem. Consider
the operator N5 W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:

.N5y/.t/ D

8

<̂

:̂

'.t/; if t 2 H;

U.t; 0/ '.0/C
Z t

0

U.t; s/
Z s

0

K.s; 
/ f .
; y
 / d
 ds; if t 2 RC:

Clearly, the fixed points of the operator N5 are mild solutions of the problem
(2.15)–(2.16).
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Let y be a possible solution of the problem (2.15)–(2.16). Given n 2 N and t � n,
then from .2:1:1/, .2:1:2/ and .2:9:1/ we have:

jy.t/j � jU.t; 0/j j'.0/j C
Z t

0

kU.t; s/kB.E/

ˇ
ˇ
ˇ
ˇ

Z s

0

K.s; 
/ f .
; y
 / d


ˇ
ˇ
ˇ
ˇ

ds

� bM j'.0/j C bM
Z t

0

Z s

0

jK.s; 
/j jf .
; y
 /j d
 ds

� bM k'k C bM
Z t

0

Z s

0

jK.s; 
/j p.
/  .ky
k/ d
 ds

� bM k'k C bM n Sn

Z t

0

p.s/  .kysk/ ds:

We consider the function � defined by

�.t/ WD supf jy.s/j W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ�r; t� be such that �.t/ D jy.t�/j: If t� 2 Œ0; n�, by the previous inequality
we get

�.t/ � bM k'k C bM n Sn

Z t

0

p.s/  .�.s// ds; t 2 Œ0; n�:

If t� 2 H, then �.t/ D k'k and the previous inequality holds.
Let us take the right-hand side of the above inequality as v.t/. Then we have

�.t/ � v.t/ for all t 2 Œ0; n�:
From the definition of v, we get

c5 WD v.0/ D bMk'k and v0.t/ D bM n Sn p.t/  .�.t// a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we have

v0.t/ � bM n Sn p.t/  .v.t// a.e. t 2 Œ0; n�:

This implies that for each t 2 Œ0; n� and using (2.19) we get

Z v.t/

c5

ds

 .s/
� bM n Sn

Z t

0

p.s/ ds

� bM n Sn

Z n

0

p.s/ ds

<

Z C1

c5

ds

 .s/
:
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Thus, there exists a constant �n such that v.t/ � �n; t 2 Œ0; n� and hence
�.t/ � �n; t 2 Œ0; n�. Since for every t 2 Œ0; n�; kytk � �.t/, we have kykn �
maxfk'k; �ng WD �n: Set

Y D f y 2 C.Œ�r;C1/;E/ W supfjy.t/j W 0 � t � ng � �n C 1 for all n 2 N g:

Clearly, Y is a closed subset of C.Œ�r;C1/;E/.
We shall show that N5 W Y ! C.Œ�r;C1/;E/ is a contraction operator. Indeed,

consider y; y 2 C.Œ�r;C1/;E/, thus using .2:1:1/, .2:1:3/, and .2:9:1/ for each
t 2 Œ0; n� and n 2 N we get

j.N5y/.t/ � .N5y/.t/j D
ˇ
ˇ
ˇ
ˇ

Z t

0

U.t; s/
Z s

0

K.s; 
/ Œf .
; y
 / � f .
; y
 /� d
 ds

ˇ
ˇ
ˇ
ˇ

�
Z t

0

kU.t; s/kB.E/

Z s

0

jK.s; 
/j jf .
; y
 / � f .
; y
 /j d
 ds

�
Z t

0

bM
Z s

0

jK.s; 
/j jf .
; y
 / � f .
; y
 /j d
 ds

�
Z t

0

bM n Sn ln.s/ kys � ysk ds

�
Z t

0

Œln.s/ e
 L�
n .s/ � Œe�
 L�

n .s/ kys � ysk� ds

�
Z t

0

"

e
 L�
n .s/




#0
ds ky � ykn

� 1



e
 L�

n .t/ ky � ykn:

Therefore,

kN5.y/ � N5.y/kn � 1



ky � ykn:

So, for 
 > 1, the operator N5 is a contraction for all n 2 N. From the choice of
Y there is no y 2 @Yn such that y D � N5.y/ for some � 2 .0; 1/. Then the statement
.S2/ in Theorem 1.29 does not hold. A consequence of the nonlinear alternative
of Frigon and Granas [116] that .S1/ holds, we deduce that the operator N5 has a
unique fixed point y� in Y , which is the unique mild solution of the problem (2.15)–
(2.16). ut
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2.4.3 An Example

As an application of our results we consider the following partial functional integro-
differential equation

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

@z.t; x/

@t
D a.t; x/

@2z.t; x/

@x2

C
Z t

�r
˛.t; s/Q.s; z.s � r; x//ds; t � 0; x 2 Œ0; ��

z.t; 0/ D z.t; �/ D 0 t � 0

z.t; x/ D ˚.t; x/ t 2 H; x 2 Œ0; ��

(2.20)

where a.t; x/ is a continuous function and is uniformly Hölder continuous in t, ˛ W
Œ0;C1/ � Œ0;C1/ ! R, Q W Œ0;C1/ � R ! R and ˚ W H � Œ0; �� ! R are
continuous functions.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D fw 2 E W w; w0 are absolutely continuous;w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumption .2:1:1/ (see
[112, 149]).

For x 2 Œ0; ��, we have

y.t/.x/ D z.t; x/ t 2 RC;

K.t; s/ D ˛.t; s/ t; s 2 RC;

f .t; yt/.x/ D Q.t; z.t � r; x// t 2 RC

and

'.t/.x/ D ˚.t; x/ � r � t � 0:

Thus, under the above definitions of f , K, and A.�/, the system (2.20) can
be represented by the abstract partial functional integro-differential evolution
problem (2.15)–(2.16). Furthermore, more appropriate conditions on Q ensure the
existence of unique mild solution for (2.20) by Theorems 2.10 and 1.29.
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2.4.4 Nonlocal Case

In this section, we extend the above results of existence and uniqueness of
mild solution to the partial functional integro-differential evolution equations with
nonlocal conditions (2.17)–(2.18). Nonlocal conditions were initiated by Byszewski
[89]. First, we define the mild solution.

Definition 2.11. A function y 2 C.Œ�r;C1/;E/ is said to be a mild solution
of (2.17)–(2.18) if y.t/ D '.t/ � ht.y/ for all t 2 H and y satisfies the following
integral equation

y.t/ D U.t; 0/ Œ'.0/� h0.y/�C
Z t

0

U.t; s/
Z s

0

K.s; 
/ f .
; y
 / d
 ds; for t 2 RC:

Under the same assumptions in Sect. 2.2.4 for the function ht.�/, we establish
that:

Theorem 2.12. Assume that the hypotheses (2.1.1)–(2.1.3), (2.9.1), .D1/, and .D2/
hold and moreover

Z C1

c6

ds

 .s/
> bM n Sn

Z n

0

p.s/ ds; for each n > 0 (2.21)

where c6 D bM.k'k C �/. Then the nonlocal integro-differential evolution prob-
lem (2.17)–(2.18) has a unique mild solution.

Proof. Transform the problem (2.17)–(2.18) into a fixed point problem. Consider
the operator N6 W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:

.N6y/.t/ D

8

ˆ̂

<̂

ˆ̂

:̂

'.t/ � ht.y/; if t 2 H;

U.t; 0/ Œ'.0/ � h0.y/�

C
Z t

0

U.t; s/
Z s

0

K.s; 
/ f .
; y
 / d
 ds; if t � 0:

Clearly, the fixed points of the operator N6 are mild solutions of the problem
(2.17)–(2.18).

Then, by parallel steps of the Theorem 2.10’s proof, we can easily show that the
operator N6 is a contraction which have a unique fixed point by statement .S1/ in
Theorem 1.29. The details are left to the reader. ut
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2.5 Neutral Functional Integro-Differential Evolution
Equations

2.5.1 Introduction

In this section, we investigate neutral functional integro-differential evolution
equations with local and nonlocal conditions where the existence of the unique mild
solution is assured. Firstly, we study in Sect. 2.5.2 the neutral functional integro-
differential evolution equations of the form

d

dt
Œy.t/ � g.t; yt/� D A.t/y.t/C

Z t

0

K.t; s/ f .s; ys/ ds; a.e. t 2 J D RC (2.22)

y.t/ D '.t/; t 2 H; (2.23)

where K W J � J ! E; f ; g W J � C.H;E/ ! E and ' 2 C.H;E/ are given functions
and fA.t/gt�0 is a family of linear closed (not necessarily bounded) operators from
E into E that generate an evolution system of operators fU.t; s/g.t;s/2J�J :

An extension of these existence results, we consider the following neutral
functional evolution equation with nonlocal conditions

d

dt
Œy.t/ � g.t; yt/� D A.t/y.t/C

Z t

0

K.t; s/ f .s; ys/ ds; a.e. t 2 J D RC (2.24)

y.t/C ht.y/ D '.t/; t 2 H; (2.25)

where A.�/, K, f , g, and ' are as in problem (2.22)–(2.23) and ht W C.Œ�r;1/;E/ !
E is a given function.

The problem of proving the existence of mild solutions for integro-differential
equations and inclusions in abstract spaces has been studied by several authors; see
Balachandran and Anandhi [41, 42], Balachandran and Leelamani [45], Benchohra
et al. [72, 77], Benchohra and Ntouyas [60, 61, 66], Ntouyas [165]. We are motivated
by the mixed problems in [42, 64, 66].

Here we are interested to study of the existence and uniqueness of the mild
solution for the neutral functional integro-differential evolution equations (2.22)–
(2.23) and the corresponding nonlocal problem (2.24)–(2.25). These results are an
extension of [37] for the neutral case.

2.5.2 Main Result

We give first the definition of the mild solution of the neutral functional integro-
differential evolution problem (2.22)–(2.23).



2.5 Neutral Functional Integro-Differential Evolution Equations 39

Definition 2.13. We say that the continuous function y.�/ W Œ�r;C1/ ! E is
a mild solution of (2.22)–(2.23) if y.t/ D '.t/ for all t 2 H and y satisfies the
following integral equation

y.t/ D U.t; 0/ Œ'.0/ � g.0; '/�C g.t; yt/C
Z t

0

U.t; s/ A.s/ g.s; ys/ ds

C
Z t

0

U.t; s/
Z s

0

K.s; 
/ f .
; y
 / d
 ds for each t 2 RC:

For every n 2 N, we define in C.Œ�r;C1/;E/ the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds, ln.t/ D bM .L� C nSnln.t// and ln is the function from

(2.1.3).
Then C.Œ�r;C1/;E/ is a Fréchet space with the family of semi-norms

fk � kngn2N. Let us fix 
 > 0 and assume

	

M0 L� C 1







< 1.

Theorem 2.14. Suppose that hypotheses (2.1.1)–(2.1.3), (2.9.1), and .G1/–.G3/
are satisfied. If

Z C1

c7;n

ds

s C  .s/
>

bM

1 � M0L

Z n

0

max.L; nSnp.s//ds; for each n > 0 (2.26)

with

c7;n D
bMk'k.1C M0L/C M0L.bM C 1/C bMLn

1 � M0L
I

Then the neutral functional integro-differential evolution problem (2.22)–(2.23) has
a unique mild solution.

Proof. Transform the problem (2.22)–(2.23) into a fixed point problem. Consider
the operator N7 W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:

.N7y/.t/ D

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

'.t/; if t 2 H

U.t; 0/ Œ'.0/ � g.0; '/�C g.t; yt/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/
Z s

0

K.s; 
/ f .
; y
 / d
 ds; if t 2 RC.

Clearly, the fixed points of the operator N7 are mild solutions of the problem
(2.22)–(2.23).
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Let y be a possible solution of the problem (2.22)–(2.23). Given n 2 N and t � n,
then from (2.1.1), (2.9.1), .G1/, and .G2/, we have

jy.t/j � jU.t; 0/j j'.0/ � g.0; '/j C jg.t; yt/j C
Z t

0

kU.t; s/kB.E/ jA.s/ g.s; ys/j ds

C
Z t

0

kU.t; s/kB.E/

ˇ
ˇ
ˇ
ˇ

Z s

0

K.s; 
/ f .
; y
 / d
 ds

ˇ
ˇ
ˇ
ˇ

� bM k'k C bM kA�1.0/k kA.0/ g.0; '/k C kA�1.t/k kA.t/ g.t; yt/k

CbM
Z t

0

kA.s/ g.s; ys/k ds C bM
Z t

0

Z s

0

jK.s; 
/j jf .
; y
 /j d
 ds

� bM k'k C bM M0 L .k'k C 1/C M0 L .kyt/k C 1/

CbM L
Z t

0

.kysk C 1/ ds C bM
Z t

0

Z s

0

jK.s; 
/j p.
/ .ky
k/ d
 ds

� bM k'k.1C M0 L/C M0 L.bM C 1/C bM L n

CM0 Lkytk C bM L
Z t

0

kysk ds C bM n Sn

Z t

0

p.s/ .kysk/ ds:

We consider the function � defined by

�.t/ WD supf jy.s/j W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ�r; t� be such that �.t/ D jy.t�/j: If t� 2 Œ0; n�, by the previous inequality
we get for t 2 Œ0; n�

�.t/ � bMk'k.1C M0L/C M0L.bM C 1/C bMLn

CM0L�.t/C bML
Z t

0

�.s/ds C bMnSn

Z t

0

p.s/ .�.s//ds:

Then

.1 � M0L/�.t/ � bMk'k.1C M0L/C M0L.bM C 1/C bMLn

CbML
Z t

0

�.s/ds C bMnSn

Z t

0

p.s/ .�.s//ds:

Then

�.t/ � 1

1 � M0L

h

bMk'k.1C M0L/C M0L.bM C 1/C bMLn
i

C
bML

1 � M0L

Z t

0

�.s/ds C
bMnSn

1 � M0L

Z t

0

p.s/ .�.s//ds
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D c7;n C
bM

1 � M0L

	Z t

0

L�.s/ds C
Z t

0

nSnp.s/ .�.s//ds




:

If t� 2 H, then �.t/ D k'k and the previous inequality holds.
Let us take the right-hand side of the above inequality as v.t/. Then we have

�.t/ � v.t/ for all t 2 Œ0; n�: From the definition of v, we get

c WD v.0/ D c7;n and v0.t/ D bM

1 � M0L
ŒL�.t/C nSnp.t/ .�.t//� a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we have for a.e. t 2 Œ0; n�

v0.t/ �
bM

1 � M0L
ŒLv.t/C nSnp.t/ .v.t//� :

This implies that for each t 2 Œ0; n� and using (2.26) we get

Z v.t/

c7;n

ds

s C  .s/
�

bM

1 � M0L

Z t

0

max.L; nSnp.s//ds

�
bM

1 � M0L

Z n

0

max.L; nSnp.s//ds

<

Z C1

c7;n

ds

s C  .s/
:

Thus, there exists a constant �n such that v.t/ � �n; t 2 Œ0; n� and hence
�.t/ � �n; t 2 Œ0; n�. Since for every t 2 Œ0; n�; kytk � �.t/, we have kykn �
maxfk'k; �ng WD �n: Set

Y D f y 2 C.Œ�r;C1/;E/ W kyk1 � �n C 1 for all n 2 N g:

Clearly, Y is a closed subset of C.Œ�r;C1/;E/:
We shall show that N7 W Y ! C.Œ�r;C1/;E/ is a contraction operator. Indeed,

consider y; y 2 C.Œ�r;C1/;E/, thus using .2:1:1/; .2:1:3/; .2:9:1/; .G1/ and
.G3/ for each t 2 Œ0; n� and n 2 N, we get

j.N7y/.t/ � .N7y/.t/j � jg.t; yt/ � g.t; yt/j

C
Z t

0

kU.t; s/kB.E/jA.s/.g.s; ys/ � g.s; ys//jds

C
ˇ
ˇ
ˇ
ˇ

Z t

0

U.t; s/
Z s

0

K.s; 
/Œf .
; y
 / � f .
; y
 /�d
ds

ˇ
ˇ
ˇ
ˇ

� kA�1.t/kkA.t/g.t; yt/ � A.t/g.t; yt/k
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CbM
Z t

0

kA.s/g.s; ys/ � A.s/g.s; ys/kds

C
Z t

0

kU.t; s/kB.E/

Z s

0

jK.s; 
/jjf .
; y
 / � f .
; y
 /jd
ds

� bM0L�kyt � ytk C
Z t

0

bML�kys � yskds

C
Z t

0

bMnSnln.s/kys � yskds

� bM0L�kyt � ytk C
Z t

0

h

bML� C bMnSnln.s/
i

kys � yskds

� M0L�e
L�
n .t/Œe�
L�

n .t/kyt � ytk�

C
Z t

0

ln.s/e

L�

n .s/Œe�
L�
n .s/kys � ysk�ds

� M0L�e
L�
n .t/ky � ykn C

Z t

0

"

e
L�
n .s/




#0
dsky � ykn

� M0L�e
L�
n .t/ky � ykn C 1



e
L�

n .t/ky � ykn

�
	

M0L� C 1







e
L�
n .t/ky � ykn:

Therefore,

kN7.y/ � N7.y/kn �
	

M0 L� C 1







ky � ykn:

So, for

	

M0 L� C 1







< 1, the operator N7 is a contraction for all n 2 N. From

the choice of Y there is no y 2 @Yn such that y D � N7.y/ for some � 2 .0; 1/:

Then the statement .S2/ in Theorem 1.29 does not hold. A consequence of the
nonlinear alternative of Frigon and Granas [116] that .S1/ holds, we deduce that
the operator N7 has a unique fixed point y� in Y , which is the unique mild solution
of the problem (2.22)–(2.23). ut

2.5.3 An Example

As an application of our results we consider the following neutral functional integro-
differential evolution equation
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8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

llc @
@t

�

z.t; x/ � R t
�r

R �

0
b.s � t; u; x/ z.s; u/ du ds

� D a.t; x/ @
2z
@x2
.t; x/

C R t
0
˛.t; s/Q

�

s; z.s � r; x/; @z
@x .s � r; x/



ds; t � 0; x 2 Œ0; ��

z.t; 0/ D z.t; �/ D 0; t � 0

z.t; x/ D ˚.t; x/; t 2 H; x 2 Œ0; ��
(2.27)

where a.t; x/ is a continuous function and is uniformly Hölder continuous in t, ˛ W
Œ0;C1/� Œ0;C1/ ! R; Q W Œ0;C1/�R�R ! R and ˚ W H � Œ0; �� ! R are
continuous functions.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D fw 2 E W w; w0 are absolutely continuous;w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumptions .2:1:1/ and
.G1/ (see [112, 149]).

For x 2 Œ0; ��, we have

y.t/.x/ D z.t; x/ t 2 RC;

K.t; s/ D ˛.t; s/ t; s 2 RC;

f .t; yt/.x/ D Q.t; z.t � r; x// t 2 RC;

g.t; yt/.x/ D
Z t

�r

Z �

0

b.s � t; u; x/z.s; u/duds; x 2 Œ0; ��

and

'.t/.x/ D ˚.t; x/ t 2 H:

Here we consider that ' W H ! E is Lebesgue measurable and h k'k2 is
Lebesgue integrable on H where h W H ! R is a positive integrable function. The
norm is defined here by:

k'k D k˚.0/k C
�Z 0

�r
h.s/ k'k2 ds

� 1
2

:

(i) The function b is measurable and

Z �

0

Z t

�r

Z �

0

b2.s; u; x/

h.s/
dsdudx < 1:
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(ii) The function .
@b

@x
.s; u; x// and .

@2b

@x2
.s; u; x// are measurable, b.s; u; 0/ D

b.s; u; �// D 0 and sup
t2Œ0;b�

N .t/ < 1; where

N .t/ D
Z �

0

Z t

�r

Z �

0

1

h.s/

�

a.s; x/
@2

@x2
b.s; u; x/

�2

dsdudx:

Thus, under the above definitions of f , g, K, and A.�/; the system (2.27)
can be represented by the abstract neutral functional integro-differential evolution
problem (2.22)–(2.23). Furthermore, more appropriate conditions on Q ensure the
existence of a least one mild solution for (2.27) by Theorems (2.14) and (1.29).

2.5.4 Nonlocal Case

An extension of these results is given here for the neutral functional integro-
differential evolution equation with nonlocal conditions (2.24)–(2.25). Nonlocal
conditions were initiated by Byszewski [89]. Before giving the main result, we give
first the definition of the mild solution.

Definition 2.15. A function y 2 C.Œ�r;C1/;E/ is said to be a mild solution
of (2.24)–(2.25) if y.t/ D '.t/ � ht.y/ for all t 2 H and y satisfies the following
integral equation

y.t/ D U.t; 0/ Œ'.0/ � h0.y/ � g.0; '/�C g.t; yt/C
Z t

0

U.t; s/ A.s/ g.s; ys/ ds

C
Z t

0

U.t; s/
Z s

0

K.s; 
/ f .
; y
 / d
 ds; for each t 2 RC:

Under the same assumptions in Sect. 2.2.4 for the function ht.�/, we establish that

Theorem 2.16. Assume that the hypotheses (2.1.1)–(2.1.3), (2.9.1), .G1/–.G3/,
.D1/, and .D2/ hold. If

Z C1

c8;n

ds

 .s/
>

bM

1 � M0L

Z n

0

max .L; nSnp.s// ds; for each n > 0 (2.28)

with

c8;n D
bM
�k'k.1C M0L/C �

�C M0L.bM C 1/C bMLn

1 � M0L
:

Then the nonlocal neutral functional integro-differential evolution problem
(2.24)–(2.25) has a unique mild solution.
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Proof. Transform the problem (2.24)–(2.25) into a fixed point problem. Consider
the operator N8 W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:

.N8y/.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

'.t/ � ht.y/; if t 2 HI
U.t; 0/ Œ'.0/ � h0.y/ � g.0; '/�C

Z t

0

U.t; s/ A.s/ g.s; ys/ ds

C
Z t

0

U.t; s/
Z s

0

K.s; 
/ f .
; y
 / d
 ds; for each t � 0:

Clearly, the fixed points of the operator N8 are mild solutions of the problem
(2.24)–(2.25).

Then, by parallel steps of the Theorem 2.14’s proof, we can prove that the
operator N8 is a contraction which have a fixed point by statement .S1/ in
Theorem 1.29. The details are left to the reader. ut

2.6 Notes and Remarks

The results of Chap. 2 are taken from Baghli and Benchohra [33, 33, 37]. Other
results may be found in [41, 42, 44].



Chapter 3
Partial Functional Evolution Equations
with Infinite Delay

3.1 Introduction

In this chapter, we provide sufficient conditions for the existence of the unique mild
solution on the positive half-line RC for some classes of first order partial functional
and neutral functional differential evolution equations with infinite delay.

3.2 Partial Functional Evolution Equations

3.2.1 Introduction

In this section, we consider the following partial functional evolution equations with
infinite delay

y0.t/ D A.t/y.t/C f .t; yt/; a.e. t 2 J D RC (3.1)

y0 D � 2 B; (3.2)

where f W J � B ! E and � 2 B are given functions and fA.t/g0�t<C1 is a family
of linear closed (not necessarily bounded) operators from E into E that generate an
evolution system of operators fU.t; s/g.t;s/2J�J for 0 � s � t < C1. Here yt.�/
represents the history of the state from time t � r up to the present time t defined by
yt.�/ D y.t C �/ for � 2 .�1; 0�. We assume that the histories yt belongs to some
abstract phase space B.

© Springer International Publishing Switzerland 2015
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Here we are interested to give existence and uniqueness results of the mild solu-
tion for the partial functional evolution equations (3.1)–(3.2) by using Theorem 1.29
due to Frigon and Granas [116].

3.2.2 Existence and Uniqueness of Mild Solution

Before stating and proving the main result, we give first the definition of mild
solution of the partial functional evolution problem (3.1)–(3.2).

Definition 3.1. We say that the continuous function y.�/ W R ! E is a mild solution
of (3.1)–(3.2) if y.t/ D �.t/ for all t 2 .�1; 0� and y satisfies the following integral
equation

y.t/ D U.t; 0/ �.0/C
Z t

0

U.t; s/ f .s; ys/ ds; for each t 2 RC:

We will need to introduce the following hypotheses which are assumed here-
after:

(3.1.1) There exists a constant bM � 1 such that:

kU.t; s/kB.E/ � bM for every .t; s/ 2 �:
(3.1.2) There exist a function p 2 L1loc.J;RC/ and a continuous nondecreasing

function  W RC ! .0;1/ such that :

jf .t; u/j � p.t/  .kukB/ for a.e. t 2 J and each u 2 B:

(3.1.3) For all R > 0, there exists lR 2 L1loc.R;RC/ such that:

jf .t; u/ � f .t; v/j � lR.t/ ku � vkB
for all u; v 2 B with kukB � R and kvkB � R.

Consider the following space

BC1 D ˚

y W R ! E W yjŒ0;T� 2 C.Œ0;T�;E/; y0 2 B� ;

where yjŒ0;T� is the restriction of y to any real compact interval Œ0;T�.
For every n 2 N, we define in BC1 the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n�g

where L�
n .t/ D

Z t

0

ln.s/ ds ; ln.t/ D KnbMln.t/ and ln is the function from .3:1:3/:

Then BC1 is a Fréchet space with the family of semi-norms k � kn2N. In what
follows let us fix 
 > 1.



3.2 Partial Functional Evolution Equations 49

Theorem 3.2 ([33]). Suppose that hypotheses (3.1.1)–(3.1.3) are satisfied and
moreover

Z C1

c9;n

ds

 .s/
> KnbM

Z n

0

p.s/ ds; for each n > 0 (3.3)

with c9;n D .KnbMH C Mn/k�kB: Then the problem (3.1)–(3.2) has a unique mild
solution.

Proof. Consider the operator N9 W BC1 ! BC1 defined by:

.N9y/.t/ D

8

<̂

:̂

�.t/; if t � 0;

U.t; 0/ �.0/C
Z t

0

U.t; s/ f .s; ys/ ds; if t � 0:

Clearly, fixed points of the operator N9 are mild solutions of the problem (3.1)–(3.2).
For � 2 B, we will define the function x.:/ W R ! E by

x.t/ D
8

<

:

�.t/; if t 2 .�1; 0�I
U.t; 0/ �.0/; if t 2 J:

Then x0 D �. For each function z 2 C.J;E/, set

y.t/ D z.t/C x.t/:

It is obvious that y satisfies Definition 3.1 if and only if z satisfies z0 D 0 and

z.t/ D
Z t

0

U.t; s/ f .s; zs C xs/ ds; for t 2 J:

Let

B0C1 D fz 2 BC1 W z0 D 0g :

Define the operator F W B0C1 ! B0C1 by:

F.z/.t/ D
Z t

0

U.t; s/ f .s; zs C xs/ ds; for t 2 J:

Obviously the operator N9 has a fixed point is equivalent to F has one, so it turns to
prove that F has a fixed point.
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Let z 2 B0C1 be a possible fixed point of the operator F. By the hypotheses
.3:1:1/ and .3:1:2/; we have for each t 2 Œ0; n�

jz.t/j �
Z t

0

kU.t; s/kB.E/ jf .s; zs C xs/j ds

� bM
Z t

0

p.s/  .kzs C xskB/ ds:

Assumption .A1/ gives

kzs C xskB � kzskB C kxskB
� K.s/jz.s/j C M.s/kz0kB C K.s/jx.s/j C M.s/kx0kB
� Knjz.s/j C KnkU.s; 0/kB.E/j�.0/j C Mnk�kB
� Knjz.s/j C KnbMj�.0/j C Mnk�kB
� Knjz.s/j C KnbMHk�kB C Mnk�kB
� Knjz.s/j C .KnbMH C Mn/k�kB:

Set ˛n WD c9;n D .KnbMH C Mn/k�kB, then we have

kzs C xskB � Knjz.s/j C ˛n (3.4)

Using the nondecreasing character of  , we get

jz.t/j � bM
Z t

0

p.s/  .Knjz.s/j C ˛n/ ds:

Then

Knjz.t/j C ˛n � KnbM
Z t

0

p.s/ .Knjz.s/j C ˛n/ds C c9;n:

Consider the function � defined by

�.t/ WD sup f Knjz.s/j C ˛n W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ0; t� be such that �.t/ D Knjz.t�/j C ˛n: By the previous inequality, we
have

�.t/ � KnbM
Z t

0

p.s/  .�.s// ds C c9;n; for t 2 Œ0; n�:
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Let us take the right-hand side of the above inequality as v.t/. Then, we have

�.t/ � v.t/ for all t 2 Œ0; n�:

From the definition of v, we have

v.0/ D c9;n and v0.t/ D KnbMp.t/  .�.t// a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we get

v0.t/ � KnbM p.t/  .v.t// a.e. t 2 Œ0; n�:

This implies that for each t 2 Œ0; n� and using the condition (3.3), we get

Z v.t/

c9;n

ds

 .s/
� KnbM

Z t

0

p.s/ ds

� KnbM
Z n

0

p.s/ ds

<

Z C1

c9;n

ds

 .s/
:

Thus, for every t 2 Œ0; n�, there exists a constant �n such that v.t/ � �n and
hence �.t/ � �n. Since kzkn � �.t/, we have kzkn � �n: Set

Z D f z 2 B0C1 W supf jz.t/j W 0 � t � ng � �n C 1 for all n 2 Ng:

Clearly, Z is a closed subset of B0C1:
We shall show that F W Z ! B0C1 is a contraction operator. Indeed, consider

z; z 2 B0C1; thus using .3:1:1/ and .3:1:3/ for each t 2 Œ0; n� and n 2 N

j.Fz/.t/ � .Fz/.t/j D
ˇ
ˇ
ˇ
ˇ

Z t

0

U.t; s/ Œf .s; zs C xs/ � f .s; zs C xs/� ds

ˇ
ˇ
ˇ
ˇ

�
Z t

0

kU.t; s/kB.E/ jf .s; zs C xs/ � f .s; zs C xs/j ds

�
Z t

0

bM ln.s/ kzs C xs � zs � xskB ds

�
Z t

0

bM ln.s/ kzs � zskB ds:
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Using .A1/, we obtain

j.Fz/.t/ � .Fz/.t/j �
Z t

0

bM ln.s/ .K.s/ jz.s/ � z.s/j C M.s/ kz0 � z0kB/ ds

�
Z t

0

bM Kn ln.s/ jz.s/ � z.s/j ds

�
Z t

0

Œln.s/ e
 L�
n .s/ � Œe�
 L�

n .s/ jz.s/ � z.s/j� ds

�
Z t

0

"

e
 L�
n .s/




#0
ds kz � zkn

� 1



e
 L�

n .t/ kz � zkn:

Therefore,

kF.z/ � F.z/kn � 1



kz � zkn:

So, for 
 > 1, the operator F is a contraction for all n 2 N. From the choice of
Z there is no z 2 @Zn such that z D � F.z/ for some � 2 .0; 1/. Then the statement
.S2/ in Theorem 1.29 does not hold. A consequence of the nonlinear alternative of
Frigon and Granas that .S1/ holds, we deduce that the operator F has a unique fixed
point z�. Then y�.t/ D z�.t/C x.t/; t 2 R is a fixed point of the operator N9, which
is the unique mild solution of the problem (3.1)–(3.2). ut

3.2.3 An Example

Consider the following partial functional differential equation

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

@z

@t
.t; x/ D a.t; x/

@2z

@x2
.t; x/C Q.t; z.t � r; x// t � 0; x 2 Œ0; ��

z.t; 0/ D z.t; �/ D 0 t � 0

z.t; x/ D ˚.t; x/ t � 0; x 2 Œ0; ��;

(3.5)

where a.t; x/ is a continuous function and is uniformly Hölder continuous in t;
Q W RC � R ! R and ˚ W B � Œ0; �� ! R are continuous functions.
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Let

y.t/.x/ D z.t; x/; t 2 Œ0;1/; x 2 Œ0; ��;
�.�/.x/ D ˚.�; x/; � � 0; x 2 Œ0; ��

and

f .t; �/.x/ D Q.t; �.�; x//; � � 0; x 2 Œ0; ��:

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g:

Then A.t/ generates an evolution system U.t; s/ satisfying assumption .3:1:1/ (see
[112, 149]).

Thus, under the above definitions of f and A.�/, the system (3.5) can be
represented by the abstract evolution problem (3.1)–(3.2). Furthermore, more
appropriate conditions on Q ensure the existence of the unique mild solution of (3.5)
by Theorems 3.2 and 1.29.

3.3 Controllability on Finite Interval for Partial
Evolution Equations

3.3.1 Introduction

In this section, we give sufficient conditions to ensure the controllability of mild
solutions on a bounded interval JT WD Œ0;T� for T > 0 for the partial functional
evolution equations with infinite delay of the form

y0.t/ D A.t/y.t/C Cu.t/C f .t; yt/; a.e. t 2 JT (3.6)

y0 D � 2 B; (3.7)

where f W J�B ! E and � 2 B are given functions, the control function u.:/ is given
in L2.Œ0;T�;E/; the Banach space of admissible control functions with E be a real
separable Banach space with the norm j�j, C is a bounded linear operator from E into
E, and fA.t/g0�t�T is a family of linear closed (not necessarily bounded) operators
from E into E that generate an evolution system of operators fU.t; s/g.t;s/2J�J for
0 � s � t � T:
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3.3.2 Controllability of Mild Solutions

Before stating and proving the main result, we give first the definition of mild
solution of problem (3.6)–(3.7) and the definition of controllability of the mild
solution.

Definition 3.3. We say that the continuous function y.�/ W R ! E is a mild solution
of (3.6)–(3.7) if y.t/ D �.t/ for all t 2 .�1; 0� and y satisfies the following integral
equation

y.t/ D U.t; 0/�.0/C
Z t

0

U.t; s/Cu.s/ds C
Z t

0

U.t; s/f .s; ys/ds; for each t 2 Œ0;T�:

Definition 3.4. The problem (3.6)–(3.7) is said to be controllable on the interval
Œ0;T� if for every initial function � 2 B and Qy 2 E there exists a control u 2
L2.Œ0;T�;E/ such that the mild solution y.�/ of (3.6)–(3.7) satisfies y.T/ D Qy.

We will need to introduce the following hypotheses which are assumed
hereafter:

(3.4.1) U.t; s/ is compact for t � s > 0 and there exists a constant bM � 1 such that:

kU.t; s/kB.E/ � bM for every 0 � s � t � T:

(3.4.2) There exists a function p 2 L1.JT ;RC/ and a continuous nondecreasing
function  W RC ! .0;1/ such that:

jf .t; u/j � p.t/  .kukB/ for a.e. t 2 JT and each u 2 B:

(3.4.3) The linear operator W W L2.Œ0;T�;E/ ! C.Œ0;T�;E/ is defined by

Wu D
Z T

0

U.T; s/Cu.s/ds;

has a bounded inverse operator W�1 which takes values in L2.Œ0;T�;E/=
ker W and there exists positive constants QM and QM1 such that:

kCk � QM and kW�1k � QM1:

Remark 3.5. For the construction of W see the book of Carmichael and Quinn [93].

Consider the following space

BT D fy W .�1;T� ! E W yjJ 2 C.J;E/; y0 2 Bg ;

where yjJ is the restriction of y to J.



3.3 Controllability on Finite Interval for Partial Evolution Equations 55

Theorem 3.6. Suppose that hypotheses (3.4.1)–(3.4.3) are satisfied and moreover
there exists a constant M� > 0 such that

M�
c10;T C KTbM

�

bM QM QM1T C 1
�

 .M�/ kpkL1

> 1; (3.8)

with

c10;T D c10.�; Qy;T/ D
h

KTbMH
�

bM QM QM1T C 1
�

C MT

i

k�kB C KTbM QM QM1T jQyj :

Then the problem (3.6)–(3.7) is controllable on .�1;T�:

Proof. Transform the problem (3.6)–(3.7) into a fixed point problem. Consider the
operator N10 W BT ! BT defined by:

.N10y/.t/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

�.t/; if t 2 .�1; 0�;

U.t; 0/ �.0/C
Z t

0

U.t; s/ C uy.s/ ds

C
Z t

0

U.t; s/ f .s; ys/ ds; if t 2 Œ0;T�:

Clearly, fixed points of the operator N10 are mild solutions of the problem
(3.6)–(3.7).

Using assumption .3:4:3/; for arbitrary function y.�/, we define the control

uy.t/ D W�1
	

Qy � U.T; 0/ �.0/ �
Z T

0

U.T; s/ f .s; ys/ ds




.t/:

Noting that, we have

juy.t/j � kW�1k
	

jQyj C kU.T; 0/kB.E/j�.0/j C
Z T

0

kU.T; 
/kB.E/jf .
; y
 /jd




� QM1

	

jQyj C bMHk�kB C bM
Z T

0

jf .
; y
 /jd




� QM1

	

jQyj C bMHk�kB C bM
Z T

0

p.
/  .ky
kB/ d





:

For � 2 B; we will define the function x.:/ W R ! E by

x.t/ D
8

<

:

�.t/; if t 2 .�1; 0�I
U.t; 0/ �.0/; if t 2 JT :
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Then x0 D �. For each function z 2 BT , set y.t/ D z.t/C x.t/: It is obvious that y
satisfies Definition 3.3 if and only if z satisfies z0 D 0 and

z.t/ D
Z t

0

U.t; s/ C uz.s/ ds C
Z t

0

U.t; s/ f .s; zs C xs/ ds; for t 2 JT :

Let B0T D fz 2 BT W z0 D 0g : For any z 2 B0T we have

kzkT D supf jz.t/j W t 2 Œ0;T� g C kz0kB D supf jz.t/j W t 2 Œ0;T� g:

Thus .B0T ; k � kT/ is a Banach space.
Define the operator F W B0T ! B0T by:

.Fz/.t/ D
Z t

0

U.t; s/ C uz.s/ ds C
Z t

0

U.t; s/ f .s; zs C xs/ ds; for t 2 JT :

Obviously the operator N10 has a fixed point is equivalent to F has one, so it turns
to prove that F has a fixed point. The proof will be given in several steps.

Let us first show that the operator F is continuous and compact.

Step 1: F is continuous. Let .zn/n be a sequence in B0T such that zn ! z in B0T .
Then, we get

j.Fzn/.t/ � .Fz/.t/j �
Z t

0

kU.t; s/kB.E/ kCk juzn.s/ � uz.s/j ds

C
Z t

0

kU.t; s/kB.E/ jf .s; zns C xs/ � f .s; zs C xs/j ds

� bM QM
Z t

0

QM1
bM
Z T

0

jf .
; zn
 C x
 / � f .
; z
 C x
 /j d
 ds

CbM
Z t

0

jf .s; zns C xs/ � f .s; zs C xs/j ds

� bM2 QM QM1T
Z T

0

jf .s; zns C xs/ � f .s; zs C xs/j ds

CbM
Z T

0

jf .s; zns C xs/ � f .s; zs C xs/j ds

� bM
�

bM QM QM1T C 1
�

kf .�; zn�
C x�/ � f .�; z� C x�/kL1 :

Since f is continuous, we obtain by the Lebesgue dominated convergence
theorem

jF.zn/.t/ � F.z/.t/j ! 0 as n ! C1:

Thus F is continuous.
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Step 2: F maps bounded sets of B0T into bounded sets. For any d > 0, there exists
a positive constant ` such that for each z 2 Bd D fz 2 B0T W kzkT � dg we have
kF.z/kT � `. Let z 2 Bd, for each t 2 Œ0;T�, we have

j.Fz/.t/j �
Z t

0

kU.t; s/kB.E/ kCk juz.s/j ds C
Z t

0

kU.t; s/kB.E/ jf .s; zs C xs/j ds

� bM QM
Z t

0

juz.s/j ds C bM
Z t

0

jf .s; zs C xs/j ds

� bM QM
Z t

0

QM1

	

jQyj C bMHk�kB C bM
Z T

0

p.
/  .kz
 C x
kB/ d





ds

CbM
Z t

0

jf .s; zs C xs/j ds

� bM QM QM1T

	

jQyj C bMHk�kB C bM
Z T

0

p.s/  .kzs C xskB/ ds




CbM
Z t

0

p.s/  .kzs C xskB/ ds

� bM QM QM1T
h

jQyj C bMHk�kB
i

CbM
�

bM QM QM1T C 1
� Z T

0

p.s/  .kzs C xs/kB/ ds:

By (3.4) on JT , we get for each z 2 Bd

kzs C xskB � KTd C ˛T WD ıT : (3.9)

Then, using the nondecreasing character of  , we get for each t 2 Œ0;T�

j.Fz/.t/j � bM QM QM1T
h

jQyj C bMHk�kB
i

C bM
�

bM QM QM1T C 1
�

 .ıT/ kpkL1 WD `:

Thus there exists a positive number ` such that kF.z/kT � `: Hence F.Bd/ � Bd.

Step 3: F maps bounded sets into equi-continuous sets of B0T . We consider Bd as
in Step 2 and we show that F.Bd/ is equi-continuous. Let 
1; 
2 2 JT with 
2 > 
1
and z 2 Bd. Then

j.Fz/.
2/ � .Fz/.
1/j �
Z 
1

0

kU.
2; s/ � U.
1; s/kB.E/ kCk juz.s/j ds

C
Z 
1

0

kU.
2; s/ � U.
1; s/kB.E/ jf .s; zs C xs/j ds

C
Z 
2


1

kU.
2; s/kB.E/ kCk juz.s/j ds

C
Z 
2


1

kU.
2; s/kB.E/ jf .s; zs C xs/j ds:
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In the property of uy, we use (3.9) and the nondecreasing character of  to get

juz.t/j � QM1

h

jQyj C bMHk�kB C bM  .ıT/ kpkL1

i

WD !:

Then

j.Fz/.
2/ � .Fz/.
1/j � kCkB.E/ !

Z 
1

0

kU.
2; s/ � U.
1; s/kB.E/ ds

C .ıT/

Z 
1

0

kU.
2; s/ � U.
1; s/kB.E/ p.s/ ds

CkCkB.E/ !

Z 
2


1

kU.
2; s/kB.E/ ds

C .ıT/

Z 
2


1

kU.
2; s/kB.E/ p.s/ ds:

Noting that j.Fz/.
2/ � .Fz/.
1/j tends to zero as 
2 � 
1 ! 0 independently of
z 2 Bd. The right-hand side of the above inequality tends to zero as 
2 � 
1 ! 0.
Since U.t; s/ is a strongly continuous operator and the compactness of U.t; s/ for
t > s implies the continuity in the uniform operator topology (see [16, 168]). As a
consequence of Steps 1 to 3 together with the Arzelá–Ascoli theorem it suffices to
show that the operator F maps Bd into a precompact set in E.

Let t 2 JT be fixed and let � be a real number satisfying 0 < � < t. For z 2 Bd

we define

.F�z/.t/ D U.t; t � �/
Z t��

0

U.t � �; s/ C uz.s/ ds

CU.t; t � �/
Z t��

0

U.t � �; s/ f .s; zs C xs/ ds:

Since U.t; s/ is a compact operator, the set Z�.t/ D fF�.z/.t/ W z 2 Bdg is
precompact in E for every � sufficiently small, 0 < � < t. Moreover using the
definition of !, we have

j.Fz/.t/ � .F�z/.t/j �
Z t

t��
kU.t; s/kB.E/ kCk juz.s/j ds

C
Z t

t��
kU.t; s/kB.E/ jf .s; zs C xs/j ds

� kCkB.E/ !

Z t

t��
kU.t; s/kB.E/ ds

C .ıT/

Z t

t��
kU.t; s/kB.E/ p.s/ ds:
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Therefore there are precompact sets arbitrary close to the set fF.z/.t/ W z 2 Bdg.
Hence the set fF.z/.t/ W z 2 Bdg is precompact in E. So we deduce from Steps 1, 2,
and 3 that F is a compact operator.

Step 4: For applying Theorem 1.27, we must check .S2/: i.e., it remains to show
that the set

E D ˚

z 2 B0T W z D � F.z/ for some 0 < � < 1
�

is bounded.

Let z 2 E , for each t 2 Œ0;T� we have

jz.t/j �
Z t

0

kU.t; s/kB.E/ kCk juz.s/j ds C
Z t

0

kU.t; s/kB.E/ jf .s; zs C xs/j ds

� bM QM
Z t

0

QM1

	

jQyj C bMHk�kB C bM
Z T

0

p.
/  .kz
 C x
kB/ d





ds

CbM
Z t

0

p.s/  .kzs C xskB/ ds

� bM QM QM1T

	

jQyj C bMHk�kB C bM
Z T

0

p.s/  .kzs C xskB/ ds




CbM
Z t

0

p.s/  .kzs C xskB/ ds:

Using the inequality (3.4) over JT and the nondecreasing character of  , we get

jz.t/j � bM QM QM1T

	

jQyj C bMHk�kB C bM
Z T

0

p.s/  .KT jz.s/j C ˛T/ ds




CbM
Z t

0

p.s/  .KT jz.s/j C ˛T/ ds:

Then

KT jz.t/j C ˛T � ˛T C KTbM QM QM1T
	

jQyj C bMHk�kBbM
Z T

0

p.s/  .KT jz.s/j C ˛T/ ds




CKTbM
Z t

0

p.s/  .KT jz.s/j C ˛T/ ds:
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Set c10;T WD ˛T C KTbM QM QM1T
h

jQyj C bMHk�kB
i

, thus

KT jz.t/j C ˛T � c10;T C bM2KT QM QM1T
Z T

0

p.s/  .KT jz.s/j C ˛T/ ds

CKTbM
Z t

0

p.s/  .KT jz.s/j C ˛T/ ds:

We consider the function � defined by

�.t/ WD sup f KT jz.s/j C ˛T W 0 � s � t g; 0 � t � T:

Let t� 2 Œ0; t� be such that �.t/ D KT jz.t�/j C ˛T : If t� 2 Œ0;T�, by the previous
inequality, we have for t 2 Œ0;T�

�.t/ � c10;T C bM2KT QM QM1T
Z T

0

p.s/  .�.s// ds C KTbM
Z t

0

p.s/  .�.s// ds:

Then, we have

�.t/ � c10;T C KTbM
�

bM QM QM1T C 1
� Z T

0

p.s/  .�.s// ds:

Consequently,

kzkT

c10;T C KTbM
�

bM QM QM1T C 1
�

 .kzkT/ kpkL1

� 1:

Then by (3.8), there exists a constant M� such that kzkT ¤ M�. Set

Z D f z 2 B0T W kzkT � M� C 1 g:

Clearly, Z is a closed subset of B0T . From the choice of Z there is no z 2 @Z such
that z D � F.z/ for some � 2 .0; 1/. Then the statement .S2/ in Theorem 1.27
does not hold. As a consequence of the nonlinear alternative of Leray–Schauder
type [128], we deduce that .S1/ holds: i.e., the operator F has a fixed point z�. Then
y�.t/ D z�.t/ C x.t/, t 2 .�1;T� is a fixed point of the operator N10, which is a
mild solution of the problem (3.6)–(3.7). Thus the evolution system (3.6)–(3.7) is
controllable on .�1;T�. ut



3.3 Controllability on Finite Interval for Partial Evolution Equations 61

3.3.3 An Example

As an application of Theorem 3.6, we present the following control problem

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@v

@t
.t; �/ D a.t; �/

@2v

@�2
.t; �/C d.�/u.t/

C
Z 0

�1
P.�/r.t; v.t C �; �//d� t 2 Œ0;T� � 2 Œ0; ��

v.t; 0/ D v.t; �/ D 0 t 2 Œ0;T�

v.�; �/ D v0.�; �/ �1 < � � 0; � 2 Œ0; ��;

(3.10)

where a.t; �/ is a continuous function and is uniformly Hölder continuous in t ; P W
.�1; 0� ! R ; r W Œ0;T� � R ! R ; v0 W .�1; 0� � Œ0; �� ! R and d W Œ0; �� ! E
are continuous functions. u.�/ W Œ0;T� ! E is a given control.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; �/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumption .3:5:1/ (see
[112, 149]).

For the phase space B, we choose the well-known space BUC.R�;E/: the space
of uniformly bounded continuous functions endowed with the following norm

k'k D sup
��0

j'.�/j for ' 2 B:

If we put for ' 2 BUC.R�;E/ and � 2 Œ0; ��

y.t/.�/ D v.t; �/; t 2 Œ0;T�; � 2 Œ0; ��;

�.�/.�/ D v0.�; �/; �1 < � � 0; � 2 Œ0; ��;

and

f .t; '/.�/ D
Z 0

�1
P.�/r.t; '.�/.�//d�; �1 < � � 0; � 2 Œ0; ��

Finally let C 2 B.R;E/ be defined as

Cu.t/.�/ D d.�/u.t/; t 2 Œ0;T�; � 2 Œ0; ��; u 2 R; d.�/ 2 E:
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Then, problem (3.10) takes the abstract evolution form (3.6)–(3.7). In order to
show the controllability of mild solutions of system (3.10), we suppose the following
assumptions:

– There exists a continuous function p 2 L1.JT ;R
C/ and a nondecreasing

continuous function  W Œ0;1/ ! Œ0;1/ such that

jr.t; u/j � p.t/ .juj/; for t 2 JT ; and u 2 R:

– P is integrable on .�1; 0�:

By the dominated convergence theorem, one can show that f is a continuous
function mapping B into E: In fact, we have for ' 2 B and � 2 Œ0; ��

jf .t; '/.�/j �
Z 0

�1
jp.t/P.�/j .j.'.�//.�/j/d�:

Since the function  is nondecreasing, it follows that

jf .t; '/j � p.t/
Z 0

�1
jP.�/j d� .j'j/; for ' 2 B:

Proposition 3.7. Under the above assumptions, if we assume that condition (3.8)
in Theorem 3.6 is true, ' 2 B, then the problem (3.10) is controllable on .�1;T�.

3.4 Controllability on Semi-infinite Interval for Partial
Evolution Equations

3.4.1 Introduction

We obtain in this section the controllability of mild solutions on the semi-infinite
interval J D RC for the partial functional evolution equations with infinite delay of
the form

y0.t/ D A.t/y.t/C Cu.t/C f .t; yt/; a.e. t 2 J D RC (3.11)

y0 D � 2 .�1; 0�; (3.12)

where f W J � B ! E and � 2 B are given functions, the control function u.:/ is
given in L2.Œ0;1/;E/; the Banach space of admissible control function with E is
a real separable Banach space with the norm j � j for some n > 0, C is a bounded
linear operator from E into E, and fA.t/g0�t<C1 is a family of linear closed (not
necessarily bounded) operators from E into E that generate an evolution system of
operators fU.t; s/g.t;s/2J�J for 0 � s � t < C1:
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3.4.2 Controllability of Mild Solutions

In this section, we give controllability result for the system (3.11)–(3.12). Before
this, we introduce the the following type of solutions for the problem (3.11)–(3.12).

Definition 3.8. We say that the continuous function y.�/ W R ! E is a mild solution
of (3.11)–(3.12) if y.t/ D �.t/ for all t 2 .�1; 0� and y satisfies the following
integral equation

y.t/ D U.t; 0/�.0/C
Z t

0

U.t; s/Cu.s/ds C
Z t

0

U.t; s/f .s; ys/ds; for each t 2 RC

Definition 3.9. The evolution problem (3.11)–(3.12) is said to be controllable if for
every initial function � 2 B and Oy 2 E, there is some control u 2 L2.Œ0; n�;E/ such
that the mild solution y.�/ of (3.11)–(3.12) satisfies the terminal condition y.n/ D Oy:

We will consider the hypotheses (3.1.1)–(3.1.3) and we will need to introduce
the following one which is assumed hereafter:

(3.9.1) For each n 2 N, the linear operator W W L2.Œ0; n�;E/ ! E is defined by

Wu D
Z n

0

U.n; s/Cu.s/ds;

has a bounded inverse operator W�1 which takes values in L2.Œ0; n�;E/= ker W
and there exists positive constants QM and QM1 such that:

kCk � QM and kW�1k � QM1:

Remark 3.10. For the construction of W see [93].

Consider the following space

BC1 D ˚

y W R ! E W yjŒ0;T� 2 C.Œ0;T�;E/; y0 2 B� ;

where yjŒ0;T� is the restriction of y to any real compact interval Œ0;T�.
For every n 2 N, we define in BC1 the semi-norms by

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds ; ln.t/ D KnbM ln.t/ and ln is the function from .3:1:3/:

Then BC1 is a Fréchet space with the family of semi-norms fk � kngn2N. In what
follows let us fix 
 > 1.
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Theorem 3.11. Suppose that hypotheses (3.1.1)–(3.1.3), (3.9.1) are satisfied and
moreover there exists a constant M� > 0

M�

c11;n C KnbM.bM QM QM1n C 1/  .M�/ kpkL1
> 1; (3.13)

with

c11;n D c11.Oy; �; n/ WD
h

KnbMH
�

bM QM QM1n C 1
�

C Mn

i

k�kB C KnbM QM QM1n jOyj :

Then the evolution problem (3.11)–(3.12) is controllable on R:

Proof. Consider the operator N11 W BC1 ! BC1 defined by:

.N11y/.t/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

�.t/; if t � 0;

U.t; 0/ �.0/C
Z t

0

U.t; s/ C uy.s/ ds

C
Z t

0

U.t; s/ f .s; ys/ ds; if t � 0:

Using assumption .3:9:1/; for arbitrary function y.�/, we define the control

uy.t/ D W�1
	

Oy � U.n; 0/ �.0/ �
Z n

0

U.n; s/ f .s; ys/ ds




.t/:

Noting that, we have

juy.t/j � kW�1k
	

jOyj C kU.t; 0/kB.E/j�.0/j C
Z n

0

kU.n; 
/kB.E/jf .
; y
 /jd




� QM1

	

jOyj C bMHk�kB C bM
Z n

0

jf .
; y
 /jd




� QM1

	

jOyj C bMHk�kB C bM
Z n

0

p.
/  .ky
kB/ d





:

We shall show that using this control the operator N11 has a fixed point y.�/. Then
y.�/ is a mild solution of the evolution system (3.11)–(3.12).

For � 2 B, we will define the function x.:/ W R ! E by

x.t/ D
8

<

:

�.t/; if t � 0I
U.t; 0/ �.0/; if t � 0:
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Then x0 D �. For each function z 2 BC1, set y.t/ D z.t/ C x.t/: Then z satisfies
z0 D 0 and

z.t/ D
Z t

0

U.t; s/ C uzCx.s/ ds C
Z t

0

U.t; s/ f .s; zs C xs/ ds; for t � 0:

Let B0C1 D fz 2 BC1 W z0 D 0g : Define the operators F;G W B0C1 ! B0C1 by:

F.z/.t/ D
Z t

0

U.t; s/ C uzCx.s/ ds; for t � 0:

and

G.z/.t/ D
Z t

0

U.t; s/ f .s; zs C xs/ ds; for t � 0:

Obviously the operator N11 has a fixed point is equivalent to F C G has one, so it
turns to prove that F C G has a fixed point. The proof will be given in several steps.

We can show as in Sect. 3.3.2 that the operator F is continuous and compact.
We can prove also that the operator G is a contraction as in the proof of

Theorem 2.2).
For applying Theorem 1.30, it remains to show that .S2/ doesn’t hold: i.e., we

will prove that the following set is bounded

E D
n

z 2 B0C1 W z D � F.z/C � G
� z

�

�

for some 0 < � < 1
o

:

Let z 2 E , for each t 2 Œ0; n�, we have

jz.t/j � �

Z t

0

kU.t; s/kB.E/ kCk juzCx.s/j ds

C�
Z t

0

kU.t; s/kB.E/

ˇ
ˇ
ˇf
�

s;
zs

�
C xs

�ˇ
ˇ
ˇ ds:

Then

1

�
jz.t/j � bM QM

Z t

0

QM1

	

jOyj C bMHk�kB C bM
Z n

0

p.
/  .kz
 C x
kB/ d





ds

CbM
Z t

0

p.s/  
��
�
�

zs

�
C xs

�
�
�
B

�

ds

� bM QM QM1t

	

jOyj C bMHk�kB C bM
Z n

0

p.s/  .kzs C xskB/ ds




CbM
Z t

0

p.s/  
��
�
�

zs

�
C xs

�
�
�
B

�

ds
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� bM QM QM1n
h

jOyj C bMHk�kB
i

C bM2 QM QM1n
Z n

0

p.s/  .kzs C xskB/ ds

CbM
Z t

0

p.s/  
��
�
�

zs

�
C xs

�
�
�
B

�

ds:

Using the inequality (3.4) and the nondecreasing character of  , we get

1

�
jz.t/j � bM QM QM1n

h

jOyj C bMHk�kB
i

C bM2 QM QM1n
Z n

0

p.s/  .Knjz.s/j C ˛n/ ds

CbM
Z t

0

p.s/  

�
Kn

�
jz.s/j C ˛n

�

ds:

Then, we get

Kn

�
jz.t/j C ˛n � ˛n C KnbM QM QM1n

h

jOyj C bMHk�kB
i

CKnbM
2 QM QM1n

Z n

0

p.s/  .Knjz.s/j C ˛n/ ds

CKnbM
Z t

0

p.s/  

�
Kn

�
jz.s/j C ˛n

�

ds:

Set c11;n WD ˛n C KnbM QM QM1n
h

jOyj C bMHk�kB
i

. By the nondecreasing character of

 and for � < 1, we obtain

Kn

�
jz.t/j C ˛n � c11;n C KnbM

2 QM QM1n
Z n

0

p.s/  

�
Kn

�
jz.s/j C ˛n

�

ds

C KnbM
Z t

0

p.s/  

�
Kn

�
jz.s/j C ˛n

�

ds:

We consider the function � defined by

�.t/ WD sup

�
Kn

�
jz.s/j C ˛n W 0 � s � t

�

; 0 � t � n:

Let t� 2 Œ0; t� be such that �.t/ D Kn

�
jz.t�/j C ˛n: If t� 2 Œ0; n�, by the previous

inequality, we have for t 2 Œ0; n�

�.t/ � c11;n C KnbM
2 QM QM1n

Z n

0

p.s/  .�.s// ds C KnbM
Z t

0

p.s/  .�.s// ds:
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Then, we have

�.t/ � c11;n C KnbM.bM QM QM1n C 1/

Z n

0

p.s/  .�.s// ds:

Consequently,

kzkn

c11;n C KnbM.bM QM QM1n C 1/  .kzkn/ kpkL1
� 1:

Then by the condition (3.13), there exists a constant M� such that �.t/ � M�.
Since kzkn � �.t/, we have kzkn � M�: This shows that the set E is bounded, i.e.,
the statement .S2/ in Theorem 1.30 does not hold. Then the nonlinear alternative of
Avramescu [32] implies that .S1/ holds, i.e., the operator F C G has a fixed-point
z�. Then y�.t/ D z�.t/C x.t/, t 2 R is a fixed point of the operator N11, which is a
mild solution of the problem (3.11)–(3.12). Thus the evolution system (3.11)–(3.12)
is controllable. ut

3.4.3 An Example

As an application of Theorem 3.11, we present the following control problem

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@v

@t
.t; �/ D a.t; �/

@2v

@�2
.t; �/C d.�/u.t/

C
Z 0

�1
P.�/r.t; v.t C �; �//d� t � 0 � 2 Œ0; ��

v.t; 0/ D v.t; �/ D 0 t � 0

v.�; �/ D v0.�; �/ �1 < � � 0; � 2 Œ0; ��;

(3.14)

where a.t; �/ is a continuous function and is uniformly Hölder continuous in t ;
P W .�1; 0� ! R ; r W RC �R ! R ; v0 W .�1; 0�� Œ0; �� ! R and d W Œ0; �� ! E
are continuous functions. u.�/ W RC ! E is a given control.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; �/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumption .3:1:1/

(see [112, 149]).
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For the phase space B, we choose the well-known space BUC.R�;E/: the space
of uniformly bounded continuous functions endowed with the following norm

k'k D sup
��0

j'.�/j for ' 2 B:

If we put for ' 2 BUC.R�;E/ and � 2 Œ0; ��

y.t/.�/ D v.t; �/; t � 0; � 2 Œ0; ��;

�.�/.�/ D v0.�; �/; �1 < � � 0; � 2 Œ0; ��;

and

f .t; '/.�/ D
Z 0

�1
P.�/r.t; '.�/.�//d�; �1 < � � 0; � 2 Œ0; ��:

Finally let C 2 B.R;E/ be defined as

Cu.t/.�/ D d.�/u.t/; t � 0; � 2 Œ0; ��; u 2 R; d.�/ 2 E:

Then, problem (3.14) takes the abstract evolution form (3.11)–(3.12). Further-
more, more appropriate conditions on P and r ensure the controllability of mild
solutions on .�1;C1/ of the system (3.14) by Theorems 3.11 and 1.30.

3.5 Neutral Functional Evolution Equations

3.5.1 Introduction

In this section, we investigate the following neutral functional differential evolution
equation with infinite delay

d

dt
Œy.t/ � g.t; yt/� D A.t/y.t/C f .t; yt/; a.e. t 2 J D RC (3.15)

y0 D � 2 B; (3.16)

where A.�/, f , and � are as in problem (3.1)–(3.2) and g W J � B ! E is a given
function.
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3.5.2 Existence and Uniqueness of Mild Solution

We give first the definition of the mild solution of our neutral functional evolution
problem (3.15)–(3.16) before stating our main result and proving it.

Definition 3.12. We say that the continuous function y.�/ W R ! E is a mild
solution of (3.15)–(3.16) if y.t/ D �.t/ for all t 2 .�1; 0� and y satisfies the
following integral equation

y.t/ D U.t; 0/Œ�.0/ � g.0; �/�C g.t; yt/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/f .s; ys/ ds; for each t 2 RC:

We will need to introduce the following assumptions which are assumed
hereafter:

.G1/ There exists a constant M0 > 0 such that:

kA�1.t/kB.E/ � M0 for all t 2 J:

.G2/ There exists a constant 0 < L <
1

M0Kn
such that:

jA.t/ g.t; �/j � L .k�kB C 1/ for all t 2 J and � 2 B:

.G3/ There exists a constant L� > 0 such that:

jA.s/ g.s; �/ � A.s/ g.s; �/j � L� .js � sj C k� � �kB/
for all s; s 2 J and �; � 2 B.

Consider the following space

BC1 D ˚

y W R ! E W yjŒ0;T� 2 C.Œ0;T�;E/; y0 2 B� ;

where yjŒ0;T� is the restriction of y to any real compact interval Œ0;T�.
For every n 2 N, we define in BC1 the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds, ln.t/ D KnbMŒL� C ln.t/� and ln is the function from

(3.1.3).
Then BC1 is a Fréchet space with the family of semi-norms k � kn2N. Let us fix


 > 0 and assume that

	

M0L�Kn C 1







< 1.
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Theorem 3.13. Suppose that hypotheses (3.1.1)–(3.1.3) and assumptions
.G1/–.G3/ are satisfied and moreover

Z C1

c12;n

ds

s C  .s/
>

KnbM

1 � M0LKn

Z n

0

max.L; p.s//ds; for each n > 0 (3.17)

with

c12;n D
"

M0LKnbM

1 � M0LKn
C .KnbMH C Mn/

 

1C M0LKn

1 � M0LKn

!#

k�kB

C Kn

1 � M0LKn

h

M0L.bM C 1/C bMLn
i

;

then the problem (3.15)–(3.16) has a unique mild solution.

Proof. Let the operator N12 W BC1 ! BC1 be defined by:

.N12y/.t/ D

8

ˆ̂

<̂

ˆ̂

:̂

�.t/; if t � 0I
U.t; 0/ Œ�.0/ � g.0; �/�C g.t; yt/

C
Z t

0

U.t; s/A.s/g.s; ys/ds C
Z t

0

U.t; s/f .s; ys/ds; if t � 0:

Then, fixed points of the operator N12 are mild solutions of the problem (3.15)–
(3.16).

For � 2 B; we will define the function x.:/ W R ! E by

x.t/ D
8

<

:

�.t/; if t 2 .�1; 0�I
U.t; 0/ �.0/; if t 2 J:

Then x0 D �. For each function z 2 BC1, set y.t/ D z.t/C x.t/: It is obvious that
y satisfies Definition 3.12 if and only if z satisfies z0 D 0 and for t 2 J, we get

z.t/ D g.t; zt C xt/ � U.t; 0/g.0; �/

C
Z t

0

U.t; s/A.s/g.s; zs C xs/ds C
Z t

0

U.t; s/f .s; zs C xs/ds:

Let B0C1 D fz 2 BC1 W z0 D 0g : Define the operator F W B0C1 ! B0C1 by:

.Fz/.t/ D g.t; zt C xt/ � U.t; 0/g.0; �/

C
Z t

0

U.t; s/A.s/g.s; zs C xs/ds C
Z t

0

U.t; s/f .s; zs C xs/ds:
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Obviously the operator N12 has a fixed point is equivalent to F has one, so it turns
to prove that F has a fixed point.

Let z 2 B0C1 be a possible F fixed point of the operator . Then, using .3:1:1/,
.3:1:2/, .G1/ and .G2/, we have for each t 2 Œ0; n�

jz.t/j � jg.t; zt C xt/j C jU.t; 0/g.0; �/j C j
Z t

0

U.t; s/A.s/g.s; zs C xs/dsj

Cj
Z t

0

U.t; s/f .s; zs C xs/dsj

� kA�1.t/kB.E/kA.t/g.t; zt C xt/k C kU.t; 0/kB.E/kA�1.0/kkA.0/ g.0; �/k

C
Z t

0

kU.t; s/kB.E/kA.s/g.s; zs C xs/kds C
Z t

0

kU.t; s/kB.E/jf .s; zs C xs/jds

� M0L.kzt C xtkB C 1/C bMM0L.k�kB C 1/

CbM
Z t

0

L.kzs C xskB C 1/ds C bM
Z t

0

p.s/ .kzs C xskB/ds

� M0Lkzt C xtkB C M0L.bM C 1/C bMLn C bMM0Lk�kB

CbM
Z t

0

Lkzs C xskBds C bM
Z t

0

p.s/ .kzs C xskB/ds:

Using the inequality (3.4) and the nondecreasing character of  , we get

jz.t/j � M0L.Knjz.t/j C ˛n/C M0L.bM C 1/C bMLn C bMM0Lk�kB

CbM
Z t

0

L.Knjz.s/j C ˛n/ds C bM
Z t

0

p.s/ .Knjz.s/j C ˛n/ds

� M0LKnjz.t/j C M0L˛n C bMM0Lk�kB C M0L.bM C 1/C bMLn

CbM
Z t

0

L.Knjz.s/j C ˛n/ds C bM
Z t

0

p.s/ .Knjz.s/j C ˛n/ds:

Then

.1 � M0LKn/jz.t/j � M0L˛n C bMM0Lk�kB C M0L.bM C 1/C bMLn

CbM
Z t

0

L.Knjz.s/j C ˛n/ds C bM
Z t

0

p.s/ .Knjz.s/j C ˛n/ds:
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Set c12;n WD ˛nC Kn

1 � M0LKn

h

M0L
�

˛n C bMk�kB
�

C M0L.bM C 1/C bMLn
i

. Thus

Knjz.t/j C ˛n � c12;n C KnbM

1 � M0LKn

Z t

0

L.Knjz.s/j C ˛n/ds

C KnbM

1 � M0LKn

Z t

0

p.s/ .Knjz.s/j C ˛n/ds:

We consider the function � defined by

�.t/ WD sup f Knjz.s/j C ˛n W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ0; t� be such that �.t/ D Knjz.t�/j C ˛n: By the previous inequality, we
have

�.t/ � c12;n C KnbM

1 � M0LKn

	Z t

0

L�.s/ds C
Z t

0

p.s/ .�.s//ds;




for t 2 Œ0; n�:

Let us take the right-hand side of the above inequality as v.t/. Then, we have

�.t/ � v.t/ for all t 2 Œ0; n�:

From the definition of v, we have v.0/ D c12;n and

v0.t/ D KnbM

1 � M0LKn
ŒL�.t/C p.t/ .�.t//� a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we get

v0.t/ � KnbM

1 � M0LKn
ŒLv.t/C p.t/ .v.t//� a.e. t 2 Œ0; n�:

This implies that for each t 2 Œ0; n� and using the condition (3.17), we get

Z v.t/

c12;n

ds

s C  .s/
� KnbM

1 � M0LKn

Z t

0

max.L; p.s//ds

� KnbM

1 � M0LKn

Z n

0

max.L; p.s//ds

<

Z C1

c12;n

ds

s C  .s/
:
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Thus, for every t 2 Œ0; n�, there exists a constant �n such that v.t/ � �n and
hence �.t/ � �n. Since kzkn � �.t/, we have kzkn � �n: Set

Z D fz 2 B0C1 W supfjz.t/j 0 � t � ng � �n C 1 for all n 2 Ng:

Clearly, Z is a closed subset of B0C1.
Now, we shall show that F W Z ! B0C1 is a contraction operator. Indeed, consider

z; z 2 Z, thus for each t 2 Œ0; n� and n 2 N and using .3:1:1/, .3:1:3/; G1 and .G3/,
we get

jF.z/.t/ � F.z/.t/j � jg.t; zt C xt/ � g.t; zt C xt/j

C
Z t

0

kU.t; s/kB.E/jA.s/Œg.s; zs C xs/ � g.s; zs C xs/�jds

C
Z t

0

kU.t; s/kB.E/jf .s; zs C xs/ � f .s; zs C xs/jds

� kA�1.t/kB.E/ jA.t/g.t; zt C xt/ � A.t/g.t; zt C xt/j

C
Z t

0

kU.t; s/kB.E/jA.s/g.s; zs C xs/ � A.s/g.s; zs C xs/jds

C
Z t

0

kU.t; s/kB.E/jf .s; zs C xs/ � f .s; zs C xs/jds

� M0L�kzt � ztkB C
Z t

0

bML�kzs � zskBds

C
Z t

0

bMln.s/kzs � zskBds:

Using .A1/, we obtain

jF.z/.t/ � F.z/.t/j � M0L�.K.t/ jz.t/ � z.t/j C M.t/ kz0 � z0kB/

C
Z t

0

bMŒL� C ln.s/�.K.s/ jz.s/ � z.s/j C M.s/ kz0 � z0kB/ds

� M0L�Kn jz.t/ � z.t/j C
Z t

0

KnbMŒL� C ln.s/� jz.s/ � z.s/jds

� M0L�Kn jz.t/ � z.t/j C
Z t

0

ln.s/ jz.s/ � z.s/jds

�
h

M0L�Kn e
 L�
n .t/
i h

e�
 L�
n .t/ jz.t/ � z.t/j

i

C
Z t

0

h

ln.s/ e
 L�
n .s/
i h

e�
 L�
n .s/ jz.s/ � z.s/j

i

ds
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� M0L�Kn e
 L�
n .t/ kz � zkn C

Z t

0

"

e
 L�
n .s/




#0
ds kz � zkn

� M0L�Kn e
 L�
n .t/ kz � zkn C 1



e
 L�

n .t/ kz � zkn

�
	

M0L�Kn C 1







e
 L�
n .t/ kz � zkn:

Therefore,

kF.z/ � F.z/kn �
	

M0L�Kn C 1







kz � zkn:

So, for

	

M0L�Kn C 1







< 1, the operator F is a contraction for all n 2 N.

From the choice of Z there is no z 2 @Zn such that z D � F.z/ for some � 2 .0; 1/.
Then the statement .S2/ in Theorem 1.29 does not hold. We deduce that the operator
F has a unique fixed point z�. Then y�.t/ D z�.t/Cx.t/, t 2 R is a fixed point of the
operator N12, which is the unique mild solution of the problem (3.15)–(3.16). ut

3.5.3 An Example

As an application we consider the following neutral functional evolution equation

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

@

@t

	

z.t; x/ �
Z t

�1

Z �

0

b.s � t; u; x/ z.s; u/ du ds




D a.t; x/
@2z

@x2
.t; x/C Q.t; z.t � r; x/;

@z

@x
.t � r; x//; t � 0; x 2 Œ0; ��

z.t; 0/ D z.t; �/ D 0; t � 0

z.t; x/ D ˚.t; x/; t � 0; x 2 Œ0; ��

(3.18)

where r > 0, a.t; x/ is a continuous function and is uniformly Hölder continuous in
t, Q W RC � R � R ! R and ˚ W B � Œ0; �� ! R are continuous functions.

Let

y.t/.x/ D z.t; x/; t 2 Œ0;1/; x 2 Œ0; ��;

�.�/.x/ D ˚.�; x/; � � 0; x 2 Œ0; ��;

g.t; �/.x/ D
Z t

�1

Z �

0

b.s � t; u; x/�.s; u/duds; x 2 Œ0; ��
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and

f .t; �/.x/ D Q

�

t; �.�; x/;
@�

@x
.�; x/

�

; � � 0; x 2 Œ0; ��:

Consider E D L2Œ0; �� and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D f w 2 E = w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g:

Then A.t/ generates an evolution system U.t; s/ satisfying assumptions .3:1:1/
and .G1/ (see [112, 149]).

Here we consider that ' W .�1; 0� ! E such that ' is Lebesgue measurable
and h.s/j'.s/j2 is Lebesgue integrable on H where h W .�1; 0� ! R is a positive
integrable function. The norm is defined here by:

k'k D j˚.0/j C
�Z 0

�1
h.s/ j'.s/j2 ds

� 1
2

:

The function b is measurable on RC � Œ0; �� � Œ0; ��;

b.s; u; 0/ D b.s; u; �/ D 0; .s; u/ 2 RC � Œ0; ��;
Z �

0

Z t

�1

Z �

0

b2.s; u; x/

h.s/
dsdudx < 1;

and sup
t2RC

N .t/ < 1; where

N .t/ D
Z �

0

Z t

�1

Z �

0

1

h.s/

�

a.s; x/
@2

@x2
b.s; u; x/

�2

dsdudx:

Thus, under the above definitions of f , g, and A.�/, the system (3.18) can be
represented by the abstract neutral functional evolution problem (3.15)–(3.16).
Furthermore, more appropriate conditions on Q ensure the existence of the unique
mild solution of (3.18) by Theorem 3.13 and 1.29.

3.6 Controllability on Finite Interval for Neutral
Evolution Equations

3.6.1 Introduction

In this section, we give sufficient conditions ensuring the controllability of mild
solutions on a bounded interval JT WD Œ0;T� for T > 0 for the neutral functional
differential evolution equation with infinite delay of the form
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d

dt
Œy.t/ � g.t; yt/� D A.t/y.t/C Cu.t/C f .t; yt/; a.e. t 2 JT D Œ0;T� (3.19)

y0 D � 2 B; (3.20)

where A.�/, f , u, C, and � are as in problem (3.6)–(3.7) and g W JT � B ! E is a
given function.

3.6.2 Controllability of Mild Solutions

Before stating and proving the controllability result, we give first the definition of
mild solution of our evolution problem (3.19)–(3.20).

Definition 3.14. We say that the continuous function y.�/ W .�1;T� ! E is a
mild solution of (3.19)–(3.20) if y.t/ D �.t/ for all t 2 .�1; 0� and y satisfies the
following integral equation

y.t/ D U.t; 0/Œ�.0/ � g.0; �/�C g.t; yt/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/Cu.s/ds C
Z t

0

U.t; s/f .s; ys/ ds; for each t 2 Œ0;T�:

Definition 3.15. The neutral functional evolution problem (3.19)–(3.20) is said to
be controllable on the interval Œ0;T� if for every initial function � 2 B and Qy 2 E
there exists a control u 2 L2.Œ0;T�;E/ such that the mild solution y.�/ of (3.19)–
(3.20) satisfies y.T/ D Qy:

We consider the hypotheses (3.4.1)–(3.4.3) and we will need to introduce the
following assumptions which are assumed hereafter:

.fG1/ There exists a constant M0 > 0 such that:

kA�1.t/kB.E/ � M0 for all t 2 JT :

.fG2/ There exists a constant 0 < L <
1

M0KT
such that:

jA.t/ g.t; �/j � L .k�kB C 1/ for all t 2 JT and � 2 B:

.fG3/ There exists a constant L� > 0 such that:

jA.t/ g.s; �/ � A.t/ g.s; �/j � L� .js � sj C k� � �kB/

for all 0 � t; s; s � T and �; � 2 B.
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.fG4/ The function g is completely continuous and for any bounded set Q 	 BT

the set ft ! g.t; xt/ W x 2 Qg is equi-continuous in C.Œ0;T�;E/.
Consider the following space

BT D fy W .�1;T� ! E W yjJ 2 C.J;E/; y0 2 Bg ;

where yjJ is the restriction of y to J.

Theorem 3.16. Suppose that hypotheses (3.4.1)–(3.4.3) and assumptions .fG1/–
.fG4/ are satisfied and moreover there exists a constant M� > 0 with

M�

c13;T C KTbM
bM QM QM1T C 1

1 � M0LKT
ŒM� C  .M�/� kkL1

> 1; (3.21)

where .t/ D max.L; p.t// and

c13;T D c13.�; Qy;T/ D KT.bM QM QM1T C 1/

1 � M0LKT

h

M0L.bM C 1/C bMLT
i

C
"

KTbM

1 � M0LKT

�

M0L.bM QM QM1T C 1/C QM QM1T.bMH C M0LMT/
�

C.KTbMH C MT/

 

1C M0LKT

1 � M0LKT

!#

k�kB

CKTbM QM QM1T
1C M0LKT

1 � M0LKT
jQyj

then the neutral functional evolution problem (3.19)–(3.20) is controllable on
.�1;T�.

Proof. Consider the operator N13 W BT ! BT defined by:

N13.y/.t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

�.t/; if t 2 .�1; 0�I
U.t; 0/ Œ�.0/ � g.0; �/�C g.t; yt/

C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/Cuy.s/ds C
Z t

0

U.t; s/f .s; ys/ds; if t 2 JT :
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Using assumption .3:4:3/; for arbitrary function y.�/; we define the control

uy.t/ D W�1 ŒQy � U.T; 0/ .�.0/ � g.0; �// � g.T; yT/

�
Z T

0

U.T; s/A.s/g.s; ys/ds �
Z T

0

U.T; s/f .s; ys/ds




.t/:

Noting that

juy.t/j � kW�1k � jQyj C kU.t; 0/kB.E/
�j�.0/j C kA�1.0/kjA.0/g.0; �/j

CkA�1.T/kjA.T/g.T; yT/j C
Z T

0

kU.T; 
/kB.E/jA.
/g.
; y
 /jd


C
Z T

0

kU.T; 
/kB.E/jf .
; y
 /jd




� QM1

h

jQyj C bMHk�kB C bMM0L.k�kB C 1/C M0L.kyTkB C 1/
i

C QM1
bML

Z T

0

.ky
kB C 1/d
 C QM1
bM
Z T

0

jf .
; y
 /jd
:

From .3:4:2/, we get

juy.t/j � QM1

h

jQyj C bM.H C M0L/k�kB C M0L.bM C 1/C bMLT
i

C QM1M0LkyTkB C QM1
bML

Z T

0

ky
kB d
 C QM1
bM
Z T

0

jf .
; y
 /j d


� QM1

h

jQyj C bM.H C M0L/k�kB C M0L.bM C 1/C bMLT
i

C QM1M0LkyTkB C QM1
bML

Z T

0

ky
kBd
 C QM1
bM
Z T

0

p.
/ .ky
kB/d
:

It shall be shown that using this control the operator N13 has a fixed point y.�/. Then
y.�/ is a mild solution of the neutral functional evolution system (3.19)–(3.20).

For � 2 B, we will define the function x.:/ W R ! E by

x.t/ D
8

<

:

�.t/; if t 2 .�1; 0�I
U.t; 0/ �.0/; if t 2 JT :

Then x0 D �. For each function z 2 BT , set y.t/ D z.t/C x.t/: It is obvious that y
satisfies Definition 3.15 if and only if z satisfies z0 D 0 and for t 2 JT , we get

z.t/ D g.t; zt C xt/ � U.t; 0/g.0; �/C
Z t

0

U.t; s/A.s/g.s; zs C xs/ds

C
Z t

0

U.t; s/Cuz.s/ds C
Z t

0

U.t; s/f .s; zs C xs/ds:
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Define the operator F W B0T ! B0T by:

F.z/.t/ D g.t; zt C xt/ � U.t; 0/ g.0; �/C
Z t

0

U.t; s/ A.s/ g.s; zs C xs/ ds

C
Z t

0

U.t; s/ C uz.s/ ds C
Z t

0

U.t; s/ f .s; zs C xs/ ds:

Obviously the operator N13 has a fixed point is equivalent to F has one, so it turns
to prove that F has a fixed point. The proof will be given in several steps.

We can show that the operator F is continuous and compact. For applying
Theorem 1.27, we must check .S2/: i.e., it remains to show that the set

E D ˚

z 2 B0T W z D � F.z/ for some 0 < � < 1
�

is bounded.
Let z 2 E . By (3.4.1)–(3.4.3), .fG1/ and .fG2/, we have for each t 2 Œ0;T�

jz.t/j � kA�1.t/k jA.t/g.t; zt C xt/j C kU.t; 0/kB.E/ kA�1.0/k jA.0/g.0; �/j

C
Z t

0

kU.t; s/kB.E/jA.s/g.s; zs C xs/j ds C
Z t

0

kU.t; s/kB.E/ kCk juz.s/j ds

C
Z t

0

kU.t; s/kB.E/ jf .s; zs C xs/j ds

� M0L .kzt C xtkB C 1/C bMM0L .k�kB C 1/C bML
Z t

0

.kzs C xskB C 1/ ds

CbM QM
Z t

0

QM1

	

jQyj C bM.H C M0L/k�kB C M0L.bM C 1/C bMLT

C M0LkzT C xTkB C bML
Z T

0

kz
 C x
kBd
 C bM
Z T

0

p.
/ .kz
 C x
kB/d




ds

CbM
Z t

0

p.s/  .kzs C xskB/ ds

�
h

M0L.bM C 1/C bMLT
i

.bM QM QM1T C 1/C bM QM QM1T jQyj

CbM
h

M0L.bM QM QM1T C 1/C bM QM QM1TH
i

k�kB C bM QM QM1M0LTkzT C xTkB

CM0Lkzt C xtkB C bML
Z t

0

kzs C xskB ds C bM2 QM QM1LT
Z T

0

kzs C xskB ds

CbM2 QM QM1T
Z T

0

p.s/ .kzs C xskB/ ds C bM
Z t

0

p.s/ .kzs C xskB/ ds:
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Noting that we have kzT C xTkB � KT jQyj C MTk�kB and using (3.4) and by the
nondecreasing character of  , we obtain

jz.t/j �
h

M0L.bM C 1/C bMLT
i

.bM QM QM1T C 1/C bM QM QM1T
�

1C M0LKT
 jQyj

CbM
h

M0L.bM QM QM1T C 1/C QM QM1T
�

bMH C M0LMT

�i

k�kB
CM0L .KT jz.t/j C ˛T/

CbML
Z t

0

.KT jz.s/j C ˛T/ ds C bM2 QM QM1LT
Z T

0

.KT jz.s/j C ˛T/ ds

CbM2 QM QM1T
Z T

0

p.s/ .KT jz.s/j C ˛T/ ds

CbM
Z t

0

p.s/ .KT jz.s/j C ˛T/ ds:

Then

�

1 � M0LKT
 jz.t/j �

h

M0L.bM C 1/C bMLT
i

.bM QM QM1T C 1/

CbM QM QM1T
�

1C M0LKT
 jQyj C M0L˛T

CbM
h

M0L.bM QM QM1T C 1/

C QM QM1T
�

bMH C M0LMT

�i

k�kB

CbML
Z t

0

.KT jz.s/j C ˛T/ ds

CbM2 QM QM1LT
Z T

0

.KT jz.s/j C ˛T/ ds

CbM2 QM QM1T
Z T

0

p.s/ .KT jz.s/j C ˛T/ ds

CbM
Z t

0

p.s/ .KT jz.s/j C ˛T/ ds:

Set

c13;T WD ˛T C KT

1 � M0LKT

�
n h

M0L.bM C 1/C bMLT
i

.bM QM QM1T C 1/C bM QM QM1T
�

1C M0LKT
 jQyj

C M0L˛T C bM
h

M0L.bM QM QM1T C 1/C QM QM1T
�

bMH C M0LMT

�i

k�kB
o
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thus

KT jz.t/j C ˛T � c13;T C KTbM

1 � M0LKT

�
	

L
Z t

0

.KT jz.s/j C ˛T/ ds C bM QM QM1LT
Z T

0

.KT jz.s/j C ˛T/ ds

CbM QM QM1T
Z T

0

p.s/ .KT jz.s/j C ˛T/ ds C
Z t

0

p.s/ .KT jz.s/j C ˛T/ ds




:

We consider the function � defined by

�.t/ WD sup f KT jz.s/j C ˛T W 0 � s � t g; 0 � t � T:

Let t� 2 Œ0; t� be such that �.t/ D KT jz.t�/j C ˛T : If t� 2 Œ0;T�, by the previous
inequality, we have

�.t/ � c13;T C KTbM

1 � M0LKT

	

L
Z t

0

�.s/ ds C bM QM QM1LT
Z T

0

�.s/ ds

C bM QM QM1T
Z T

0

p.s/ .�.s// ds C
Z t

0

p.s/ .�.s// ds




:

Then, we have

�.t/ � c13;T C KTbM
bM QM QM1T C 1

1 � M0LKT

	

L
Z T

0

�.s/ ds C
Z T

0

p.s/ .�.s// ds




:

Set .t/ WD max.L; p.t// for t 2 Œ0;T�

�.t/ � c13;T C KTbM
bM QM QM1T C 1

1 � M0LKT

Z T

0

.s/ Œ�.s/C  .�.s//� ds:

Consequently,

kzkT

c13;T C KTbM
bM QM QM1T C 1

1 � M0LKT
ŒkzkT C  .kzkT/� kkL1

� 1:

Then by (3.21), there exists a constant M� such that kzkT ¤ M�. Set

QZ D f z 2 B0T W kzkT � M� C 1 g:



82 3 Partial Functional Evolution Equations with Infinite Delay

Clearly, QZ is a closed subset of B0T . From the choice of QZ there is no z 2 @ QZ such
that z D � F.z/ for some � 2 .0; 1/. Then the statement .S2/ in Theorem 1.27
does not hold. As a consequence of the nonlinear alternative of Leray–Schauder
type [128], we deduce that .S1/ holds: i.e., the operator F has a fixed point z�. Then
y�.t/ D z�.t/ C x.t/, t 2 .�1;T� is a fixed point of the operator N13, which is a
mild solution of the problem (3.19)–(3.20). Thus the evolution system (3.19)–(3.20)
is controllable on .�1;T�. ut

3.6.3 An Example

As an application of Theorem 3.16, we present the following control problem

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@

@t

	

v.t; �/ �
Z 0

�1
T.�/w.t; v.t C �; �//d�




D a.t; �/
@2v

@�2
.t; �/C d.�/u.t/

C
Z 0

�1
P.�/r.t; v.t C �; �//d� t 2 Œ0;T� � 2 Œ0; ��

v.t; 0/ D v.t; �/ D 0 t 2 Œ0;T�

v.�; �/ D v0.�; �/ �1 < � � 0; � 2 Œ0; ��;
(3.22)

where a.t; �/ is a continuous function and is uniformly Hölder continuous in t ;
T;P W .�1; 0� ! R ; w; r W Œ0;T� � R ! R ; v0 W .�1; 0� � Œ0; �� ! R and
d W Œ0; �� ! E are continuous functions. u.�/ W Œ0;T� ! E is a given control.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; �/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumptions .3:6:1/
and .fG1/ (see [112, 149]).

For the phase space B, we choose the well-known space BUC.R�;E/: the space
of uniformly bounded continuous functions endowed with the following norm

k'k D sup
��0

j'.�/j for ' 2 B:

If we put for ' 2 BUC.R�;E/ and � 2 Œ0; ��

y.t/.�/ D v.t; �/; t 2 Œ0;T�; � 2 Œ0; ��;
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�.�/.�/ D v0.�; �/; �1 < � � 0; � 2 Œ0; ��;

g.t; '/.�/ D
Z 0

�1
T.�/w.t; '.�/.�//d�; �1 < � � 0; � 2 Œ0; ��;

and

f .t; '/.�/ D
Z 0

�1
P.�/r.t; '.�/.�//d�; �1 < � � 0; � 2 Œ0; ��

Finally let C 2 B.R;E/ be defined as

Cu.t/.�/ D d.�/u.t/; t 2 Œ0;T�; � 2 Œ0; ��; u 2 R; d.�/ 2 E:

Then, problem (3.22) takes the abstract neutral functional evolution form (3.19)–
(3.20). In order to show the controllability of mild solutions of system (3.22), we
suppose the following assumptions:

– w is Lipschitz with respect to its second argument. Let lip.w/ denotes the
Lipschitz constant of w.

– There exist a function p 2 L1.JT ;R
C/ and a nondecreasing continuous function

 W Œ0;1/ ! Œ0;1/ such that

jr.t; u/j � p.t/ .juj/; for t 2 JT ; and u 2 R:

– T and P are integrable on .�1; 0�:

By the dominated convergence theorem, one can show that f is a continuous
function from B to E. Moreover the mapping g is Lipschitz continuous in its second
argument, in fact, we have

jg.t; '1/ � g.t; '2/j � M0L�lip.w/
Z 0

�1
jT.�/j d� j'1 � '2j ; for '1; '2 2 B:

On the other hand, we have for ' 2 B and � 2 Œ0; ��

jf .t; '/.�/j �
Z 0

�1
jp.t/P.�/j .j.'.�//.�/j/d�:

Since the function  is nondecreasing, it follows that

jf .t; '/j � p.t/
Z 0

�1
jP.�/j d� .j'j/; for ' 2 B:

Proposition 3.17. Under the above assumptions, if we assume that condition (3.21)
in Theorem 3.16 is true, ' 2 B, then the problem (3.22) is controllable on .�1;T�.
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3.7 Controllability on Semi-infinite Interval for Neutral
Evolution Equations

3.7.1 Introduction

We investigate in this section the controllability of mild solutions on the semi-
infinite interval J D RC for the following neutral functional evolution equations
with infinite delay

d

dt
Œy.t/ � g.t; yt/� D A.t/y.t/C Cu.t/C f .t; yt/; a.e. t 2 J D RC (3.23)

y0 D � 2 .�1; 0�; (3.24)

where A.�/, f , u, C, and � are as in problem (3.11)–(3.12) (Sect. 3.4) and g W J�B !
E is a given function.

Here we are interested to give an application of (3.15) in [33] to control
theory on the semi-infinite interval J D RC for the partial functional evolution
equations (3.23)–(3.24) by Theorem 1.30 due to Avramescu in [32] for sum of
compact and contraction operators in Fréchet spaces, combined with the semigroup
theory [16, 168].

3.7.2 Controllability of Mild Solutions

Before stating and proving the controllability result, we give first the definition of
mild solution of the evolution problem (3.23)–(3.24).

Definition 3.18. We say that the function y.�/ W R ! E is a mild solution of (3.23)–
(3.24) if y.t/ D �.t/ for all t 2 .�1; 0� and y satisfies the following integral
equation

y.t/ D U.t; 0/Œ�.0/ � g.0; �/�C g.t; yt/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/Cu.s/ds C
Z t

0

U.t; s/f .s; ys/ ds; for each t 2 RC:

Definition 3.19. The neutral functional evolution problem (3.23)–(3.24) is said to
be controllable if for every initial function � 2 B and Oy 2 E, there is some control
u 2 L2.Œ0; n�;E/ such that the mild solution y.�/ of (3.23)–(3.24) satisfies y.n/ D Oy.

We consider the hypotheses (3.3.1)–(3.1.3) given in Sect. 3.2.2 and the assump-
tion .3:9:1/ of Sect. 3.4.2 and we will need to introduce the following one which is
assumed hereafter:
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.G4/ The function g is completely continuous and for any bounded set Q 	 BT

the set ft ! g.t; xt/ W x 2 Qg is equi-continuous in C.RC;E/.

Consider the following space

BC1 D ˚

y W R ! E W yjŒ0;T� 2 C.Œ0;T�;E/; y0 2 B� ;

where yjŒ0;T� is the restriction of y to any real compact interval Œ0;T�.
For every n 2 N, we define in BC1 the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds, ln.t/ D KnbMŒL� C ln.t/�, and ln is the function from

.3:1:3/:

Then BC1 is a Fréchet space with the family of semi-norms k � kn2N. Let us fix


 > 0 and assume that

	

M0L�Kn C 1







< 1.

Theorem 3.20. Suppose that hypotheses (3.1.1)–(3.1.3), (3.9.1) and the assump-
tions .G1/–.G3/ are satisfied and moreover there exists a constant M� > 0 with

M�

c14;n C KnbM
bM QM QM1n C 1

1 � M0LKn
ŒM� C  .M�/�kkL1

> 1; (3.25)

with .t/ D max.L; p.t// and

c14;n D c14.˚; Oy; n/ D Kn.bM QM QM1n C 1/

1 � M0LKn

h

M0L.bM C 1/C bMLn
i

C
"

KnbM

1 � M0LKn

�

M0L.bM QM QM1n C 1/C QM QM1n.bMH C M0LMn/
�

C .KnbMH C Mn/

 

1C M0LKn

1 � M0LKn

!#

k�kB

CKnbM QM QM1n
1C M0LKn

1 � M0LKn
jOyj

Then the neutral functional evolution problem (3.23)–(3.24) is controllable on R.
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Proof. Consider the operator N14 W BC1 ! BC1 defined by:

.N14y/.t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

�.t/; if t � 0I
U.t; 0/ Œ�.0/ � g.0; �/�C g.t; yt/

C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/Cuy.s/ds C
Z t

0

U.t; s/f .s; ys/ds; if t � 0:

Using assumption .3:9:1/; for arbitrary function y.�/, we define the control

uy.t/ D W�1
	

Oy � U.n; 0/ .�.0/ � g.0; �// � g.n; yn/ �
Z n

0

U.n; s/A.s/g.s; ys/ds

�
Z n

0

U.n; s/f .s; ys/ds




.t/:

Noting that

juy.t/j � kW�1k � jOyj C kU.t; 0/kB.E/
�j�.0/j C kA�1.0/kjA.0/g.0; �/j

CkA�1.n/kjA.n/g.n; yn/j C
Z n

0

kU.n; 
/kB.E/jA.
/g.
; y
 /jd


C
Z n

0

kU.n; 
/kB.E/jf .
; y
 /jd




� QM1

h

jOyj C bMHk�kB C bMM0L.k�kB C 1/C M0L.kynkB C 1/
i

C QM1
bML

Z n

0

.ky
kB C 1/d
 C QM1
bM
Z n

0

jf .
; y
 /jd
:

Applying .3:1:2/, we get

juy.t/j � QM1

h

jOyj C bM
�

H C M0L
 k�kB C M0L.bM C 1/C bMLn

i

C QM1M0LkynkB C QM1
bML

Z n

0

ky
kB d
 C QM1
bM
Z n

0

jf .
; y
 /j d


� QM1

h

jOyj C bM
�

H C M0L
 k�kB C M0L.bM C 1/C bMLn

i

C QM1M0LkynkB C QM1
bML

Z n

0

ky
kBd
 C QM1
bM
Z n

0

p.
/ .ky
kB/d
:
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Using this control the operator N14 has a fixed point y.�/. Then y.�/ is a mild
solution of the neutral functional evolution system (3.23)–(3.24).

For � 2 B, we will define the function x.:/ W R ! E by

x.t/ D
8

<

:

�.t/; if t � 0I
U.t; 0/ �.0/; if t � 0:

Then x0 D �. For each function z 2 BC1, set y.t/ D z.t/C x.t/: It is obvious that y
satisfies Definition 3.19 if and only if z satisfies z0 D 0 and for t � 0, we get

z.t/ D g.t; zt C xt/ � U.t; 0/ g.0; �/C
Z t

0

U.t; s/ A.s/ g.s; zs C xs/ds

C
Z t

0

U.t; s/ C uzCx.s/ ds C
Z t

0

U.t; s/ f .s; zs C xs/ ds:

Let B0C1 D fz 2 BC1 W z0 D 0g : Define the operators F;G W B0C1 ! B0C1 by:

F.z/.t/ D g.t; zt C xt/ � U.t; 0/ g.0; �/C
Z t

0

U.t; s/ A.s/ g.s; zs C xs/ ds

C
Z t

0

U.t; s/ C uzCx.s/ ds:

and

G.z/.t/ D
Z t

0

U.t; s/ f .s; zs C xs/ ds:

Obviously the operator N14 has a fixed point is equivalent to the operator sum
F C G has one, so it turns to prove that F C G has a fixed point. The proof will be
given in several steps.

We can show as in above sections that the operator F is continuous and compact
and we have shown in Sect. 3.4.2 (Step 4) that the operator G is a contraction.

For applying Avramescu nonlinear alternative, we must check .S2/ in
Theorem 1.30: i.e., it remains to show that the following set

E D
n

z 2 B0C1 W z D �F.z/C �G
� z

�

�

for some 0 < � < 1
o

is bounded.
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Let z 2 E . Then, by (3.1.1)–(3.1.3), (3.9.1), .G1/, and .G2/, we have for each
t 2 Œ0; n�

jz.t/j � �

�

kA�1.t/k jA.t/g.t; zt C xt/j C kU.t; 0/kB.E/ kA�1.0/k jA.0/g.0; �/j

C
Z t

0

kU.t; s/kB.E/jA.s/g.s; zs C xs/j ds

C
Z t

0

kU.t; s/kB.E/ kCk juzCx.s/j ds

�

C �

Z t

0

kU.t; s/kB.E/

ˇ
ˇ
ˇf
�

s;
zs

�
C xs

�ˇ
ˇ
ˇ ds

� �

�

M0L .kzt C xtkB C 1/C bMM0L .k�kB C 1/

CbML
Z t

0

.kzs C xskB C 1/ ds

C bM QM
Z t

0

QM1

	

jOyj C bM
�

H C M0L
 k�kB C M0L.bM C 1/C bMLn

CM0Lkzn C xnkB C bML
Z n

0

kz
 C x
kBd


CbM
Z n

0

p.
/  .kz
 C x
kB/d




ds

CbM
Z t

0

p.s/  
��
�
�

zs

�
C xs

�
�
�
B

�

ds

�

:

Then

jz.t/j � �

� h

M0L.bM C 1/C bMLn
i

.bM QM QM1n C 1/C bM QM QM1n jOyj

C bM
h

M0L.bM QM QM1n C 1/C bM QM QM1nH
i

k�kB
C bM QM QM1M0Lnkzn C xnkB C M0Lkzt C xtkB C bML

�
Z t

0

kzs C xskB ds C bM2 QM QM1Ln
Z n

0

kzs C xskB ds

C bM2 QM QM1n
Z n

0

p.s/  .kzs C xskB/ ds

CbM
Z t

0

p.s/  
��
�
�

zs

�
C xs

�
�
�
B

�

ds

�

:



3.7 Controllability on Semi-infinite Interval for Neutral Evolution Equations 89

Noting that we have kzn C xnkB � Kn jOyj C Mnk�kB and using the inequality (3.4),
then by the nondecreasing character of  , we obtain

jz.t/j � �
nh

M0L.bM C 1/CbMLn
i

.bM QM QM1n C 1/CbM QM QM1n
�

1C KnM0L
 jOyj

CbM
h

M0L.bM QM QM1n C 1/C QM QM1n
�

bMH C M0LMn

�i

k�kB

CM0L .Knjz.t/j C ˛n/

CbML

	Z t

0

.Knjz.s/j C ˛n/ ds CbM QM QM1n

Z n

0

.Knjz.s/j C ˛n/ ds




CbM
	

bM QM QM1n

Z n

0

p.s/ .Knjz.s/j C ˛n/ ds C
Z t

0

p.s/ 

�
Knjz.s/j
�

C ˛n

�

ds


�

� M0LKnjz.t/j C �M0L˛n

C�
nh

M0L.bM C 1/CbMLn
i

.bM QM QM1n C 1/CbM QM QM1n
�

1C KnM0L
 jOyj

CbM
h

M0L.bM QM QM1n C 1/C QM QM1n
�

bMH C M0LMn

�i

k�kB

CbML

	Z t

0

.Knjz.s/j C ˛n/ ds CbM QM QM1n

Z n

0

.Knjz.s/j C ˛n/ ds




CbM
	

bM QM QM1n

Z n

0

p.s/ .Knjz.s/j C ˛n/ ds C
Z t

0

p.s/ 

�
Knjz.s/j
�

C ˛n

�

ds


�

:

Then,

jz.t/j
�

�

1 � M0LKn


� M0L˛n C
h

M0L.bM C 1/C bMLn
i

.bM QM QM1n C 1/C bM QM QM1n
�

1C KnM0L
 jOyj

C bM
h

M0L.bM QM QM1n C 1/C QM QM1n
�

bMH C M0LMn

�i

k�kB

C bML

	Z t

0

.Knjz.s/j C ˛n/ ds C bM QM QM1n
Z n

0

.Knjz.s/j C ˛n/ ds




C bM

	

bM QM QM1n
Z n

0

p.s/ .Knjz.s/j C ˛n/ ds C
Z t

0

p.s/ 

�
Kn

�
jz.s/j C ˛n

�

ds




:

Set

c14;n WD ˛n C Kn

1 � M0LKn

� ˚M0L˛n

C
h

M0L.bM C 1/C bMLn
i

.bM QM QM1n C 1/C bM QM QM1n
�

1C KnM0L
 jOyj

CbM
h

M0L.bM QM QM1n C 1/C QM QM1n
�

bMH C M0LMn

�i

k�kB
o

:



90 3 Partial Functional Evolution Equations with Infinite Delay

Thus

Knjz.t/j
�

C ˛n � c14;n C Kn

1 � M0LKn

�
�

bML

	Z t

0

.Knjz.s/j C ˛n/ ds C bM QM QM1n
Z n

0

.Knjz.s/j C ˛n/ ds




C bM

	

bM QM QM1n
Z n

0

p.s/ .Knjz.s/j C ˛n/ ds C
Z t

0

p.s/ 

�
Knjz.s/j
�

C ˛n

�

ds


�

:

By the nondecreasing character of  , we get for � < 1

Knjz.t/j
�

C ˛n � c14;n C KnbM

1 � M0LKn

�
�

L

	Z t

0

�
Knjz.s/j
�

C ˛n

�

ds C bM QM QM1n
Z n

0

�
Kn

�
jz.s/j C ˛n

�

ds




C
	

bM QM QM1n
Z n

0

p.s/ 

�
Knjz.s/j
�

C ˛n

�

ds C
Z t

0

p.s/ 

�
Knjz.s/j
�

C ˛n

�

ds


�

:

We consider the function � defined by

�.t/ WD sup

�
Kn

�
jz.s/j C ˛n W 0 � s � t

�

; 0 � t < C1:

Let t� 2 Œ0; t� be such that �.t/ D Kn

�
jz.t�/j C ˛n: If t� 2 Œ0; n�, by the previous

inequality, we have for t 2 Œ0; n�

�.t/ � c14;n C KnbM

1 � M0LKn

�

L

	Z t

0

�.s/ds C bM QM QM1n
Z n

0

�.s/ds




C
	

bM QM QM1n
Z n

0

p.s/ .�.s//ds C
Z t

0

p.s/ .�.s//ds


�

:

Then, we have

�.t/ � c14;n C KnbM
bM QM QM1n C 1

1 � M0LKn

	

L
Z n

0

�.s/ds C
Z n

0

p.s/ .�.s//ds




:

Set .t/ WD max.L; p.t// for t 2 Œ0; n�; then

�.t/ � c14;n C KnbM
bM QM QM1n C 1

1 � M0LKn

Z n

0

.s/ Œ�.s/C  .�.s//� ds:



3.7 Controllability on Semi-infinite Interval for Neutral Evolution Equations 91

Consequently,

kzkn

c14;n C KnbM
bM QM QM1n C 1

1 � M0LKn
Œkzkn C  .kzkn/��kkL1

� 1:

Then by the condition (3.25), there exists a constant M� such that �.t/ � M�.
Since kzkn � �.t/, we have kzkn � M�: This shows that the set E is bounded, i.e.,
the statement .S2/ in Theorem 1.30 does not hold. Then the nonlinear alternative of
Avramescu [32] implies that .S1/ holds: i.e., the operator F C G has a fixed-point
z�. Then y�.t/ D z�.t/C x.t/, t 2 R is a fixed point of the operator N14, which is a
mild solution of the problem (3.23)–(3.24). Thus the evolution system (3.23)–(3.24)
is controllable on R: ut

3.7.3 An Example

To illustrate the previous results, we consider the following model

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@

@t

	

v.t; �/ �
Z 0

�1
T.�/w.t; v.t C �; �//d�




D a.t; �/
@2v

@�2
.t; �/C d.�/u.t/

C
Z 0

�1
P.�/r.t; v.t C �; �//d� t � 0 � � 0

v.t; 0/ D v.t;C1/ D 0 t � 0

v.�; �/ D v0.�; �/ � � 0; � � 0;

(3.26)

where a.t; �/ is a continuous function and is uniformly Hölder continuous in t ;
T;P W .�1; 0� ! R ; w; r W R

C � R ! R ; v0 W .�1; 0� � RC ! R and
d W Œ0; �� ! E are continuous functions. u.�/ W RC ! E is a given control.

Consider E D L2.RC;R/ and define A.t/ by A.t/w D a.t; �/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.C1/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumptions .3:1:1/ and
.G1/ (see [112, 149]).

For the phase space B, we choose the well-known space BUC.R�;E/: the space
of uniformly bounded continuous functions endowed with the following norm

k'k D sup
��0

j'.�/j for ' 2 B:
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If we put for ' 2 BUC.R�;E/ and � � 0

y.t/.�/ D v.t; �/; t � 0; � � 0;

�.�/.�/ D v0.�; �/; � � 0; � � 0;

g.t; '/.�/ D
Z 0

�1
T.�/w.t; '.�/.�//d�; � � 0; � � 0;

and

f .t; '/.�/ D
Z 0

�1
P.�/r.t; '.�/.�//d�; � � 0; � � 0:

Finally let C 2 L.R;E/ be defined as

Cu.t/.�/ D d.�/u.t/; t � 0; � � 0; u 2 R; d.�/ 2 E:

Then, problem (3.26) takes the abstract neutral functional evolution form
(3.23)–(3.24). Furthermore, more appropriate conditions on T , w, P, and r ensure
the controllability of mild solutions on .�1;C1/ of the system (3.26) by
Theorems 3.20 and 1.30.

3.8 Notes and Remarks

The results of Chap. 3 are taken from [15, 36]. Other results may be found in
[108, 141, 145].



Chapter 4
Perturbed Partial Functional Evolution
Equations

4.1 Introduction

Perturbed partial functional and neutral functional evolution equations with finite
and infinite delay are studied in this chapter on the semi-infinite interval RC:

4.2 Perturbed Partial Functional Evolution Equations
with Finite Delay

4.2.1 Introduction

In this section, we give the existence of mild solutions for the following perturbed
partial functional evolution equations with finite delay

y0.t/ D A.t/y.t/C f .t; yt/C h.t; yt/; a.e. t 2 J D RC (4.1)

y.t/ D '.t/; t 2 H; (4.2)

where r > 0, f ; h W J � C.H;E/ ! E and ' 2 C.H;E/ are given functions
and fA.t/gt�0 is a family of linear closed (not necessarily bounded) operators from
E into E that generate an evolution system of operators fU.t; s/g.t;s/2J�J for 0 � s �
t < C1.

Here we are interested to give the existence of mild solutions for the partial
functional perturbed evolution equations (4.1)–(4.2). This result is an extension of
the problem (2.1) in [33] when the delay is finite.
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4.2.2 Existence of Mild Solutions

Before stating and proving the main result, we give first the definition of mild
solution of our perturbed evolution problem (4.1)–(4.2).

Definition 4.1. We say that the continuous function y.�/ W R ! E is a mild solution
of (4.1)–(4.2) if y.t/ D '.t/ for all t 2 H and y satisfies the following integral
equation

y.t/ D U.t; 0/ '.0/C
Z t

0

U.t; s/ Œf .s; ys/C h.s; ys/� ds; for each t 2 RC:

We introduce the following hypotheses which are assumed hereafter:

(4.1.1) U.t; s/ is compact for t � s > 0 and there exists a constant OM � 1 such that:

kU.t; s/kB.E/ � OM for every .t; s/ 2 �:
(4.1.2) There exists a function p 2 L1loc.J;RC/ and a continuous nondecreasing

function  W RC ! .0;1/ such that:

jf .t; u/j � p.t/  .kuk/ for a.e. t 2 J and each u 2 C.H;E/:

(4.1.3) There exists a function � 2 L1.J;RC/ where k�kL1 <
1

OM such that:

jh.t; u/ � h.t; v/j � �.t/ku � vk for a.e. t 2 J and all u; v 2 C.H;E/:

For every n 2 N, we define in C.Œ�r;C1/;E/ the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds; ln.t/ D OM�.t/.
Then C.Œ�r;C1/;E/ is a Fréchet space with the family of semi-norms fk �

kngn2N. In what follows we will choose 
 > 1.

Theorem 4.2. Suppose that hypotheses (4.1.1)–(4.1.3) are satisfied and moreover

Z C1

c15;n

ds

s C  .s/
> OM

Z n

0

max.p.s/; �.s// ds; for each n > 0 (4.3)

with

c15;n D OMk'k C OM
Z n

0

jh.s; 0/jds;

then the problem (4.1)–(4.2) has a mild solution.
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Proof. Transform the problem (4.1)–(4.2) into a fixed point problem. Consider the
operator N15 W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:

N15.y/.t/ D

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

'.t/; if t 2 H;

U.t; 0/ '.0/C
Z t

0

U.t; s/ f .s; ys/ ds

C
Z t

0

U.t; s/ h.s; ys/ ds; if t � 0:

Clearly, the fixed points of the operator N15 are mild solutions of the problem
(4.1)–(4.2).

Define the operators F;G W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ by

.Fy/.t/ D

8

<̂

:̂

'.t/; if t � 0;

U.t; 0/ '.0/C
Z t

0

U.t; s/ f .s; ys/ ds; if t � 0:

and

.Gy/.t/ D
Z t

0

U.t; s/ h.s; ys/ ds:

Obviously the operator N15 has a fixed point is equivalent to F C G has one, so it
turns to prove that F C G has a fixed point. The proof will be given in several steps.

Let us first show that the operator F is continuous and compact.

Step 1: F is continuous. Let .yk/k be a sequence in C.Œ�r;C1/;E/ such that
yk ! y in C.Œ�r;C1/;E/. Then

jF.yk/.t/ � F.y/.t/j �
Z t

0

kU.t; s/kB.E/ jf .s; yks/ � f .s; ys/j ds

� OM
Z t

0

jf .s; yks/ � f .s; ys/j ds ! 0 as k ! C1:

Step 2: F maps bounded sets of C.Œ�r;C1/;E/ into bounded sets. It is enough
to show that for any d > 0, there exists a positive constant ` such that for each
y 2 Bd D fy 2 C.Œ�r;C1/;E/ W kyk1 � dg we have F.y/ 2 B`. Let y 2 Bd. By
.4:1:1/, .4:1:2/ and the nondecreasing character of  , we have for each t 2 J
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jF.y/.t/j � kU.t; s/kB.E/j'.0/j C
Z t

0

kU.t; s/kB.E/jf .s; ys/j ds

� OMk'k C OM
Z t

0

p.s/  .kysk/ ds

� OMk'k C OM  .d/
Z t

0

p.s/ds:

Then we have ŒjF.y/k1 � OMk'k C OM  .d/ kpkL1 WD `: Hence F.Bd/ � B`.
Step 3: F maps bounded sets into equi-continuous sets of C.Œ�r;C1/;E/.

We consider Bd as in Step 2 and we show that F.Bd/ is equi-continuous. Let

1; 
2 2 J with 
2 > 
1 and y 2 Bd. Then, by .4:1:1/, .4:1:2/ and the
nondecreasing character of  , we get

jF.y/.
2/ � F.y/.
1/j � jU.
2; 0/ � U.
1; 0/j j'.0/j

C
ˇ
ˇ
ˇ
ˇ

Z 
1

0

ŒU.
2; s/ � U.
1; s/� f .s; ys/ ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

Z 
2


1

U.
2; s/ jf .s; ys/j ds

ˇ
ˇ
ˇ
ˇ

� kU.
2; 0/ � U.
1; 0/kB.E/ k'k

C
Z 
1

0

kU.
2; s/ � U.
1; s/kB.E/ p.s/  .kysk/ ds

C
Z 
2


1

kU.
2; s/kB.E/ p.s/  .kysk/ds

� kU.
2; 0/ � U.
1; 0/kB.E/ k'k

C .d/
Z 
1

0

kU.
2; s/ � U.
1; s/kB.E/ p.s/ ds

C OM  .d/
Z 
2


1

p.s/ ds:

The right-hand of the above inequality tends to zero as 
2 � 
1 ! 0, since U.t; s/
is a strongly continuous operator and the compactness of U.t; s/ for t > s implies
the continuity in the uniform operator topology (see [20, 168]). As a consequence
of Steps 1–3 together with the Arzelá–Ascoli theorem it suffices to show that the
operator F maps Bd into a precompact set in E.



4.2 Perturbed Partial Functional Evolution Equations with Finite Delay 97

Let t 2 J be fixed and let � be a real number satisfying 0 < � < t. For y 2 Bd we
define

F�.y/.t/ D U.t; 0/ '.0/C
Z t��

0

U.t; s/ f .s; ys/ ds

D U.t; 0/ '.0/C U.t; t � �/
Z t��

0

U.t � �; s/ f .s; ys/ds:

Since U.t; s/ is a compact operator, the set Z�.t/ D fF�.y/.t/ W y 2 Bdg is
precompact in E for every �, 0 < � < t. Moreover by the nondecreasing character
of  , we get

jF.y/.t/ � F�.y/.t/j �
Z t

t��
kU.t; s/kB.E/jf .s; ys/jds

� OM  .d/
Z t

t��
p.s/ds:

Therefore the set Z.t/ D fF.y/.t/ W y 2 Bdg is totally bounded. Hence the set
fF.y/.t/ W y 2 Bdg is relatively compact E. So we deduce from Steps 1, 2, and 3 that
F is a compact operator.

Step 4: We can show that the operator G is a contraction for all n 2 N as in the
proof of Theorem 2.2).

Step 5: For applying Theorem 1.30, we must check .S2/: i.e., it remains to show
that the set

E D
n

y 2 C.Œ�r;C1/;E/ W y D �F.y/C �G
� y

�

�

for some 0 < � < 1
o

is bounded.

Let y 2 E . By (4.1.1)–(4.1.3), we have for each t 2 Œ0; n�

jy.t/j � � U.t; 0/'.0/C �

Z t

0

kU.t; s/kB.E/jf .s; ys/jds

C�
Z t

0

kU.t; s/kB.E/

ˇ
ˇ
ˇh
�

s;
ys

�

�

� h.s; 0/C h.s; 0/
ˇ
ˇ
ˇ ds

� �

�

OMk'k C � OM
Z t

0

p.s/  .kysk/ ds

C OM
Z t

0

�.s/
�
�
�

ys

�

�
�
� ds C OM

Z t

0

jh.s; 0/jds

�

:
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The nondecreasing character of  gives with the fact that 0 < � < 1

jy.t/j
�

� OMk'k C OM
Z n

0

jh.s; 0/jds

C OM
Z t

0

�.s/
�
�
�

ys

�

�
�
� ds C OM

Z t

0

p.s/  
��
�
�

ys

�

�
�
�

�

ds

Set c15;n WD OMk'k C OM
Z n

0

jh.s; 0/jds: Thus

jy.t/j
�

� c15;n C OM
Z t

0

�.s/
�
�
�

ys

�

�
�
� ds C OM

Z t

0

p.s/  
��
�
�

ys

�

�
�
�

�

ds:

Consider the function � defined by

�.t/ WD sup

� jy.s/j
�

W 0 � s � t

�

; 0 � t < C1:

Let t� 2 Œ0; t� be such that �.t/ D jy.t�/j
�

: By the previous inequality, we have

�.t/ � c15;n C OM
Z t

0

�.s/�.s/ds C OM
Z t

0

p.s/ .�.s//ds; for t 2 Œ0; n�:

Let us take the right-hand side of the above inequality as v.t/. Then, we have

�.t/ � v.t/ for all t 2 Œ0; n�:
From the definition of v, we have

v.0/ D c15;n and v0.t/ D OM�.t/�.t/C OMp.t/ .�.t// a.e. t 2 Œ0; n�:
Using the nondecreasing character of  , we get

v0.t/ � OMp.t/ .v.t//C OM�.t/v.t/ a.e. t 2 Œ0; n�:
This implies that for each t 2 Œ0; n� and using (4.3), we get

Z v.t/

c15;n

ds

s C  .s/
� OM

Z t

0

max.p.s/; �.s//ds

� OM
Z n

0

max.p.s/; �.s//ds

<

Z C1

c15;n

ds

s C  .s/
:
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Thus, for every t 2 Œ0; n�, there exists a constant �n such that v.t/ � �n and
hence �.t/ � �n: Since kykn � �.t/, we have kykn � �n: This shows that the set
E is bounded. Then statement .S2/ in Theorem 1.30 does not hold. The nonlinear
alternative of Avramescu implies that .S1/ holds, we deduce that the operator F CG
has a fixed point y� the fixed point of the operator N15, which is a mild solution of
the problem (4.1)–(4.2). ut

4.2.3 An Example

As an application of Theorem 4.2, we present the following partial functional
differential equation

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

@z

@t
.t; x/ D a.t; x/

@2z

@x2
.t; x/

CQ.t; z.t � r; x//C P.t; z.t � r; x// t 2 Œ0;C1/; x 2 Œ0; ��

z.t; 0/ D z.t; �/ D 0 t 2 Œ0;C1/

z.t; x/ D ˚.t; x/ t 2 H; x 2 Œ0; ��;
(4.4)

where a.t; x/ W Œ0;1/�Œ0; �� ! R is a continuous function and is uniformly Hölder
continuous in t, Q;P W Œ0;C1/ � R ! R and ˚ W H � Œ0; �� ! R are continuous
functions.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D fw 2 E W w; w0 are absolutely continuous;w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumption .4:1:1/ (see
[112, 149]).

For x 2 Œ0; ��, we set

y.t/.x/ D z.t; x/; t 2 RC;

f .t; yt/.x/ D Q.t; z.t � r; x//; t 2 RC
h.t; yt/.x/ D P.t; z.t � r; x//; t 2 RC

and

'.t/.x/ D ˚.t; x/; �r � t � 0:
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Thus, under the above definitions of f , h, ', and A.�/, the system (4.4) can
be represented by the abstract evolution problem (4.1)–(4.2). Furthermore, more
appropriate conditions on Q and P ensure the existence of mild solutions for (4.4)
by Theorems 4.2 and 1.30.

4.3 Perturbed Neutral Functional Evolution Equations
with Finite Delay

4.3.1 Introduction

In this section, we consider the following perturbed neutral functional evolution
equations with finite delay

d

dt
Œy.t/ � g.t; yt/� D A.t/y.t/C f .t; yt/C h.t; yt/; a.e. t 2 J D RC (4.5)

y.t/ D '.t/; t 2 H; (4.6)

where r > 0, A.�/, f , h, and ' are as in problem (4.1)–(4.2) and g W J �C.H;E/ ! E
is a given function.

Here we are interested to give the existence of mild solutions for the perturbed
neutral functional evolution equations (4.5)–(4.6). This result is an extension of the
problem (4.1) for the neutral case.

4.3.2 Existence of Mild Solutions

In this section, we give an existence result for the perturbed neutral functional
evolution problem (4.5)–(4.6). Firstly we define the mild solution.

Definition 4.3. We say that the continuous function y.�/ W R ! E is a mild solution
of (4.5)–(4.6) if y.t/ D '.t/ for all t 2 H and y satisfies the following integral
equation

y.t/ D U.t; 0/Œ'.0/ � g.0; '/�C g.t; yt/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/Œf .s; ys/C h.s; ys/� ds; for each t 2 RC:
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We consider the hypotheses (4.1.1)–(4.1.3) and in what follows we will need the
following additional assumptions:

.G1/ There exists a constant M0 > 0 such that:

kA�1.t/kB.E/ � M0 for all t 2 J:

.G2/ There exists a constant 0 < L <
1

M0

such that:

jA.t/ g.t; '/j � L .k'k C 1/ for all t 2 J and ' 2 H:

.G3/ There exists a constant L� > 0 such that:

jA.s/ g.s; '/ � A.s/ g.s; '/j � L� .js � sj C k' � 'k/

for all s; s 2 J and '; ' 2 H.

For every n 2 N, we define in C.Œ�r;C1/;E/ the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds; ln.t/ D Kn OMŒL� C �.t/�.

Then C.Œ�r;C1/;E/ is a Fréchet space with the family of semi-norms fk �
kngn2N. Let us fix 
 > 0 and assume that

	

M0L�Kn C 1







< 1.

Theorem 4.4. Suppose that hypotheses (4.1.1)–(4.1.3) and the assumptions .G1/–
.G3/ are satisfied and moreover

Z C1

c16;n

ds

s C  .s/
>

OM
1 � M0L

Z n

0

max.L; �.s/; p.s//ds; for each n > 0 (4.7)

with

c16;n WD 1

1 � M0L

	

M0L. OM C 1/C OMLn C OMM0Lk'k C OM
Z t

0

jh.s; 0/j ds




:

Then the problem (4.5)–(4.6) has a mild solution.

Proof. Transform the problem (4.5)–(4.6) into a fixed point problem. Consider the
operator N16 W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ defined by:
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N16.y/.t/ D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

'.t/; if t � 0I
U.t; 0/ Œ'.0/ � g.0; '/�C g.t; yt/

C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/Œf .s; ys/C h.s; ys/�ds; if t � 0:

Clearly, the fixed points of the operator N16 are mild solutions of the problem
(4.5)–(4.6).

Define the operators F;G W C.Œ�r;C1/;E/ ! C.Œ�r;C1/;E/ by

F.y/.t/ D

8

<̂

:̂

'.t/; if t � 0;

U.t; 0/ '.0/C
Z t

0

U.t; s/ f .s; ys/ ds; if t � 0:

and

G.y/.t/ D g.t; yt/ � U.t; 0/g.0; '/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/ h.s; ys/ ds:

Obviously the operator N16 has a fixed point is equivalent to F C G has one, so it
turns to prove that F C G has a fixed point. The proof will be given in several steps.

We can show that the operator F is continuous and compact. We can prove also
that the operator G is a contraction for all n 2 N as in the proof of Theorem 2.6.

For applying Theorem 1.30, we must check .S2/: i.e., it remains to show that
the set

E D
n

y 2 C.Œ�r;C1/;E/ W y D �F.y/C �G
� y

�

�

for some 0 < � < 1
o

is bounded.
Let y 2 E . Then, we have

jy.t/j � �

Z t

0

kU.t; s/kB.E/jf .s; ys/j ds

C�
nˇ
ˇ
ˇg
�

t;
yt

�

�ˇ
ˇ
ˇC kU.t; 0/kB.E/jg.0; '/j

C
Z t

0

kU.t; s/kB.E/

ˇ
ˇ
ˇA.s/g

�

s;
ys

�

�ˇ
ˇ
ˇ ds

C
Z t

0

kU.t; s/kB.E/

ˇ
ˇ
ˇh
�

s;
ys

�

�

� h.s; 0/C h.s; 0/
ˇ
ˇ
ˇ ds

�

:
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By the hypotheses (4.1.1)–(4.1.3), .G1/, and .G2/ we obtain

jy.t/j
�

� OM
Z t

0

f .s; ys/ ds C kA�1.s/k
ˇ
ˇ
ˇA.t/g

�

t;
yt

�

�ˇ
ˇ
ˇC OMkA�1.s/kjA.t/g.0; '/j

C OM
Z t

0

ˇ
ˇ
ˇA.s/g

�

s;
ys

�

�ˇ
ˇ
ˇ ds C OM

Z t

0

ˇ
ˇ
ˇh
�

s;
ys

�

�

� h.s; 0/
ˇ
ˇ
ˇ ds

C OM
Z t

0

jh.s; 0/j ds

� OM
Z t

0

p.s/ .kysk/ ds C M0L
��
�
�

yt

�

�
�
�C 1

�

C OMM0L.k'k C 1/

C OML
Z t

0

��
�
�

ys

�

�
�
�C 1

�

ds C OM
Z t

0

�.s/
�
�
�

ys

�

�
�
� ds C OM

Z t

0

jh.s; 0/j ds

� OM
Z t

0

p.s/ .kysk/ ds C M0L
�
�
�

yt

�

�
�
�C M0L. OM C 1/C OMLn C OMM0Lk'k

C OM
Z t

0

jh.s; 0/j ds C OM
Z t

0

L
�
�
�

ys

�

�
�
� ds C OM

Z t

0

�.s/
�
�
�

ys

�

�
�
� ds:

The nondecreasing character of  gives with the fact that 0 < � < 1

jy.t/j
�

� M0L
�
�
�

yt

�

�
�
�C M0L. OM C 1/C OMLn C OMM0Lk'k C OM

Z t

0

jh.s; 0/j ds

C OM
Z t

0

L
�
�
�

ys

�

�
�
� ds C OM

Z t

0

�.s/
�
�
�

ys

�

�
�
� ds C OM

Z t

0

p.s/ 
��
�
�

ys

�

�
�
�

�

ds:

Consider the function � defined by

�.t/ WD sup

� jy.s/j
�

W 0 � s � t

�

; 0 � t < C1:

Let t� 2 Œ0; t� be such that �.t/ D jy.t�/j
�

; by the previous inequality, we have

�

1 � M0L


�.t/ � M0L. OM C 1/C OMLn C OMM0Lk'k C OM
Z t

0

jh.s; 0/j ds

C OM
Z t

0

L�.s/ ds C OM
Z t

0

�.s/�.s/ ds

C OM
Z t

0

p.s/ .�.s// ds:
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Set c16;n WD 1

1 � M0L

	

M0L. OM C 1/C OMLn C OMM0Lk'k C OM
Z t

0

jh.s; 0/j ds




:

Thus, for each t 2 Œ0; n� we get

�.t/ � c16;n C
OM

1 � M0L

	Z t

0

L�.s/ ds C
Z t

0

�.s/�.s/ ds C
Z t

0

p.s/ .�.s// ds




:

Let us take the right-hand side of the above inequality as v.t/. Thus, we have

�.t/ � v.t/ for all t 2 Œ0; n�:

From the definition of v, we have

v.0/ D c16;n and v0.t/ D
OM

1 � M0L
ŒL�.t/C �.t/�.t/C p.t/ .�.t//�

a.e. t 2 Œ0; n�:

Using the nondecreasing character of  ; we get

v0.t/ �
OM

1 � M0L
ŒLv.t/C �.t/v.t/C p.t/ .v.t//� a.e. t 2 Œ0; n�:

This implies that for each t 2 Œ0; n� and using the condition (4.7), we get

Z v.t/

c16;n

ds;

s C  .s/
�

OM
1 � M0L

Z t

0

max.L; �.s/; p.s//ds

�
OM

1 � M0L

Z n

0

max.L; �.s/; p.s//ds

<

Z C1

c16;n

ds

s C  .s/
:

Thus, for every t 2 Œ0; n�, there exists a constant �n such that v.t/ � �n and
hence �.t/ � �n. Since kykn � �.t/, we have kykn � �n: This shows that
the set E is bounded. Then the statement .S2/ in Theorem 1.30 does not hold.
A consequence of the nonlinear alternative of Avramescu that .S1/ holds, we deduce
that the operator FCG has a fixed point y�. Then y�.t/ D y�.t/Cx.t/, t 2 Œ�r;C1/

is a fixed point of the operator N16, which is the mild solution of the problem
(4.5)–(4.6). ut
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4.3.3 An Example

Consider the following model

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

@

@t

	

z.t; x/ �
Z t

�r

Z �

0

b.s � t; u; x/ z.s; u/ du ds




D a.t; x/
@2z

@x2
.t; x/

CQ

�

t; z.t � r; x/;
@z

@x
.t � r; x/

�

CP

�

t; z.t � r; x/;
@z

@x
.t � r; x/

�

; t 2 Œ0;C1/; x 2 Œ0; ��

z.t; 0/ D z.t; �/ D 0; t 2 Œ0;C1/

z.t; x/ D ˚.t; x/; t 2 H; x 2 Œ0; ��
(4.8)

where r > 0; a.t; x/ is a continuous function and is uniformly Hölder continuous in
t, Q;P W Œ0;C1/ � R � R ! R and ˚ W H � Œ0; �� ! R are continuous functions.

Let

y.t/.x/ D z.t; x/; t 2 Œ0;1/; x 2 Œ0; ��;

g.t; yt/.x/ D
Z t

�r

Z �

0

b.s � t; u; x/z.s; u/duds; x 2 Œ0; ��;

f .t; yt/.x/ D Q

�

t; z.�; x/;
@z

@x
.�; x/

�

; � 2 H; x 2 Œ0; ��; t � 0;

h.t; yt/.x/ D P

�

t; z.�; x/;
@z

@x
.�; x/

�

; � 2 H; x 2 Œ0; ��; t � 0

and

'.�/.x/ D ˚.�; x/; � 2 H; x 2 Œ0; ��:

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D fw 2 E W w;w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g:

Then A.t/ generates an evolution system U.t; s/ satisfying assumptions .4:1:1/ and
.G1/ (see [112, 149]).

Here we assume that ' W H ! E is Lebesgue measurable and h.s/j'.s/j2 is
Lebesgue integrable on H where h W H ! R is a positive integrable function.
The norm is defined here by:

k'k D j˚.0/j C
�Z 0

�r
h.s/j'.s/j2 ds

� 1
2

:



106 4 Perturbed Partial Functional Evolution Equations

The function b is measurable on Œ0;1/ � Œ0; �� � Œ0; ��;

b.s; u; 0/ D b.s; u; �/ D 0; .s; u/ 2 Œ0;1/ � Œ0; ��;
Z �

0

Z t

�r

Z �

0

b2.s; u; x/

h.s/
dsdudx < 1

and sup
t2Œ0;1/

N .t/ < 1; where

N .t/ D
Z �

0

Z t

�r

Z �

0

1

h.s/

�

a.s; x/
@2

@x2
b.s; u; x/

�2

dsdudx:

Thus, under the above definitions of f , g, h, ', and A.�/, the system (4.8) can
be represented by the abstract evolution problem (4.5)–(4.6). Furthermore, more
appropriate conditions on Q and P ensure the existence of mild solutions for (4.8)
by Theorems 4.4 and 1.30.

4.4 Perturbed Partial Functional Evolution Equations
with Infinite Delay

4.4.1 Introduction

The existence of mild solutions is studied here for the following perturbed partial
functional evolution equations with infinite delay

y0.t/ D A.t/y.t/C f .t; yt/C h.t; yt/; a.e. t 2 J (4.9)

y0 D � 2 B; (4.10)

where f ; h W J �B ! E and � 2 B are given functions and fA.t/g0�t<C1 is a family
of linear closed (not necessarily bounded) operators from E into E that generate an
evolution system of operators fU.t; s/g.t;s/2J�J for 0 � s � t < C1:

4.4.2 Existence of Mild Solutions

Before stating and proving the main result, we give first the definition of mild
solution of our perturbed evolution problem (4.9)–(4.10).
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Definition 4.5. We say that the continuous function y.�/ W R ! E is a mild solution
of (4.9)–(4.10) if y.t/ D �.t/ for all t 2 .�1; 0� and y satisfies the following
integral equation

y.t/ D U.t; 0/ �.0/C
Z t

0

U.t; s/ Œf .s; ys/C h.s; ys/� ds; for each t 2 RC:

We introduce the following hypotheses which are assumed hereafter:

(4.1.1) U.t; s/ is compact for t � s > 0 and there exists a constant OM � 1 such that:

kU.t; s/kB.E/ � OM for every .t; s/ 2 �:

(4.1.2) There exists a function p 2 L1loc.J;RC/ and a continuous nondecreasing
function  W RC ! .0;1/ and such that:

jf .t; u/j � p.t/  .kukB/ for a.e. t 2 J and each u 2 B:

(4.1.3) There exists a function � 2 L1.J;RC/ where k�kL1 <
1

OM such that:

jh.t; u/ � h.t; v/j � �.t/ku � vkB for a.e. t 2 J and all u; v 2 B:

Consider the following space

BC1 D ˚

y W R ! E W yjŒ0;T� 2 C.Œ0;T�;E/; y0 2 B� ;

where yjŒ0;T� is the restriction of y to any real compact interval Œ0;T�.
For every n 2 N, we define in BC1 the semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds and ln.t/ D Kn OM�.t/.
Then BC1 is a Fréchet space with the family of semi-norms k � kn2N. In what

follows let us fix 
 > 1.

Theorem 4.6. Suppose that hypotheses (4.1.1)–(4.1.3) are satisfied and moreover

Z C1

c17;n

ds

s C  .s/
> Kn OM

Z n

0

max.p.s/; �.s// ds; for each n > 0 (4.11)

with

c17;n D .Kn OMH C Mn/k�kB C Kn OM
Z n

0

jh.s; 0/jds;

then the problem (4.9)–(4.10) has a mild solution.
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Proof. Consider the operator N17 W BC1 ! BC1 defined by:

N17.y/.t/ D

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

�.t/; if t � 0;

U.t; 0/ �.0/C
Z t

0

U.t; s/ f .s; ys/ ds

C
Z t

0

U.t; s/ h.s; ys/ ds; if t � 0:

Clearly, the fixed points of the operator N17 are mild solutions of the problem (4.9)–
(4.10).

For � 2 B, we will define the function x.:/ W R ! E by

x.t/ D
8

<

:

�.t/; if t 2 .�1; 0�I
U.t; 0/ �.0/; if t 2 J:

Then x0 D �. For each function z 2 BC1, set y.t/ D z.t/C x.t/: It is obvious that y
satisfies Definition 4.5 if and only if z satisfies z0 D 0 and

z.t/ D
Z t

0

U.t; s/ f .s; zs C xs/ ds C
Z t

0

U.t; s/ h.s; zs C xs/ ds; for t 2 J:

Let B0C1 D fz 2 BC1 W z0 D 0g : Define the operators F;G W B0C1 ! B0C1 by

F.z/.t/ D
Z t

0

U.t; s/ f .s; zs C xs/ ds; for t 2 J

and

G.z/.t/ D
Z t

0

U.t; s/ h.s; zs C xs/ ds; for t 2 J:

Obviously the operator N17 has a fixed point is equivalent to F C G has one, so it
turns to prove that F C G has a fixed point. The proof will be given in several steps.

We can show that the operator F is continuous and compact. We can prove also
that the operator G is a contraction for all n 2 N as in the proof of Theorem 3.2).

For applying Theorem 1.30, we must check .S2/: i.e., it remains to show that
the set

E D
n

z 2 B0C1 W z D �F.z/C �G
� z

�

�

for some 0 < � < 1
o

is bounded.
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Let z 2 E . By (4.1.1)–(4.1.3), we have for each t 2 Œ0; n�

jz.t/j � �

Z t

0

kU.t; s/kB.E/jf .s; zs C xs/jds

C�
Z t

0

kU.t; s/kB.E/

ˇ
ˇ
ˇh
�

s;
zs

�
C xs

�

� h.s; 0/C h.s; 0/
ˇ
ˇ
ˇ ds

� � OM
Z t

0

p.s/ .kzs C xskB/ ds

C� OM
Z t

0

�.s/
�
�
�

zs

�
C xs

�
�
�
B

ds C � OM
Z t

0

jh.s; 0/jds:

Using the inequality (3.4) and the nondecreasing character of  ,we get

1

�
jz.t/j � OM

Z t

0

p.s/ .Knjz.s/j C ˛n/ds

C OM
Z t

0

�.s/

�
Kn

�
jz.s/j C ˛n

�

ds C OM
Z t

0

jh.s; 0/jds:

The nondecreasing character of  gives with the fact that 0 < � < 1

Kn

�
jz.t/j C ˛n � ˛n C Kn OM

Z t

0

jh.s; 0/jds C Kn OM
Z t

0

p.s/ 

�
Kn

�
jz.s/j C ˛n

�

ds

CKn OM
Z t

0

�.s/

�
Kn

�
jz.s/j C ˛n

�

ds:

Set c17;n WD Kn OM
Z t

0

jh.s; 0/jds C ˛n; thus

Kn

�
jz.t/j C ˛n � c17;n C Kn OM

Z t

0

p.s/ 

�
Kn

�
jz.s/j C ˛n

�

ds

CKn OM
Z t

0

�.s/

�
Kn

�
jz.s/j C ˛n

�

ds:

We consider the function � defined by

�.t/ WD sup

�
Kn

�
jz.s/j C ˛n W 0 � s � t

�

; 0 � t < C1:
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Let t� 2 Œ0; t� be such that �.t/ D Kn

�
jz.t�/j C ˛n; by the previous inequality, we

have

�.t/ � c17;n C Kn OM
Z t

0

p.s/ .�.s//ds C Kn OM
Z t

0

�.s/�.s/ds; for t 2 Œ0; n�

Let us take the right-hand side of the above inequality as v.t/. Then, we have

�.t/ � v.t/ for all t 2 Œ0; n�:

From the definition of v, we have

v.0/ D c17;n and v0.t/ D Kn OMp.t/ .�.t//C Kn OM�.t/�.t/ a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we get

v0.t/ � Kn OMp.t/ .v.t//C Kn OM�.t/v.t/ a.e. t 2 Œ0; n�:

This implies that for each t 2 Œ0; n� and using (4.11), we get

Z v.t/

c17;n

ds

s C  .s/
� Kn OM

Z t

0

max.p.s/; �.s//ds

� Kn OM
Z n

0

max.p.s/; �.s//ds

<

Z C1

c17;n

ds

s C  .s/
:

Thus, for every t 2 Œ0; n�, there exists a constant �n such that v.t/ � �n and
hence �.t/ � �n. Since kzkn � �.t/, we have kzkn � �n: This shows that the set
E is bounded. Then statement .S2/ in Theorem 1.30 does not hold. The nonlinear
alternative of Avramescu implies that .S1/ holds, we deduce that the operator F CG
has a fixed point z�. Then y�.t/ D z�.t/C x.t/, t 2 R is a fixed point of the operator
N17, which is the mild solution of the problem (4.9)–(4.10). ut
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4.4.3 An Example

Consider the following model

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@v

@t
.t; �/ D a.t; �/

@2v

@�2
.t; �/

C
Z 0

�1
P.�/r.t; v.t C �; �//d�

C
Z 0

�1
Q.�/s.t; v.t C �; �//d� t 2 RC; � 2 Œ0; ��

v.t; 0/ D v.t; �/ D 0 t 2 RC

v.�; �/ D v0.�; �/ �1 < � � 0; � 2 Œ0; ��;
(4.12)

where a.t; �/ is a continuous function and is uniformly Hölder continuous in t; P;Q W
.�1; 0� ! RI r; s W .�1; 0� � R ! R and v0 W .�1; 0� � Œ0; �� ! R are
continuous functions.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; �/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumption .4:1:1/ (see
[112, 149]).

For the phase space B, we choose the well-known space BUC.R�;E/: the space
of uniformly bounded continuous functions endowed with the following norm

k'k D sup
��0

j'.�/j for ' 2 B:

If we put for ' 2 BUC.R�;E/ and � 2 Œ0; ��

y.t/.�/ D v.t; �/; t 2 RC; � 2 Œ0; ��;
�.�/.�/ D v0.�; �/; �1 < � � 0; � 2 Œ0; ��;

f .t; '/.�/ D
Z 0

�1
P.�/r.t; '.�/.�//d�; �1 < � � 0; � 2 Œ0; ��

and

h.t; '/.�/ D
Z 0

�1
Q.�/s.t; '.�/.�//d�; �1 < � � 0; � 2 Œ0; ��:
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Then, the problem (4.12) takes the abstract partial perturbed evolution
form (4.9)–(4.10). In order to show the existence of mild solutions of
problem (4.12), we suppose the following assumptions:

– The function s is Lipschitz continuous with respect to its second argument. Let
lip.s/ denote the Lipschitz constant of s.

– There exist p 2 L1.J;RC/ and a nondecreasing continuous function  W
Œ0;1/ ! Œ0;1/ such that

jr.t; u/j � p.t/ .juj/; for 2 J; and u 2 R:

– P and Q are integrable on .�1; 0�:

By the dominated convergence theorem, one can show that f is a continuous
function from B to E. Moreover the mapping h is Lipschitz continuous in its second
argument, in fact, we have

jh.t; '1/ � h.t; '2/j � lip.s/
Z 0

�1
jQ.�/j d� j'1 � '2j ; for '1; '2 2 B:

On the other hand, we have for ' 2 B and � 2 Œ0; ��

jf .t; '/.�/j �
Z 0

�1
jp.t/P.�/j .j.'.�//.�/j/d�:

Since the function  is nondecreasing, it follows that

jf .t; '/j � p.t/
Z 0

�1
jP.�/j d� .j'j/; for ' 2 B:

Proposition 4.7. Under the above assumptions, if we assume that condition (4.11)
in Theorem 4.6 is true, ' 2 B, then the problem (4.12) has a mild solution which is
defined in .�1;C1/.

4.5 Notes and Remarks

The results of Chap. 4 are taken from Adimy et al. [12], Baghli et al. [34], and
Balachandran and Anandhi [42]. Other results may be found in [8, 9, 50, 158].



Chapter 5
Partial Functional Evolution Inclusions
with Finite Delay

5.1 Introduction

In this chapter, we provide sufficient conditions for the existence of mild solutions
on the semi-infinite interval J D RC for some classes of first order partial functional
and neutral functional differential evolution inclusions with finite delay by using the
recent nonlinear alternative of Frigon [114, 115] for contractive multi-valued maps
in Fréchet spaces [116], combined with the semigroup theory [16, 20, 168].

5.2 Partial Functional Evolution Inclusions

5.2.1 Introduction

We establish here the existence of mild solutions for the partial functional evolution
inclusion of the form

y0.t/ 2 A.t/y.t/C F.t; yt/; a.e. t 2 J D RC (5.1)

y.t/ D '.t/; t 2 H; (5.2)

where F W J � C.H;E/ ! P.E/ is a multi-valued map with nonempty compact
values, P.E/ is the family of all subsets of E, ' 2 C.H;E/ is a given function,
and fA.t/g0�t<C1 is a family of linear closed (not necessarily bounded) operators
from E into E that generate an evolution system of operators fU.t; s/g.t;s/2J�J for
0 � s � t < C1.

This result is an extension of the problem (2.1) in [33] for multi-valued case.

© Springer International Publishing Switzerland 2015
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5.2.2 Existence of Mild Solutions

Let us introduce the definition of the mild solution of our partial functional evolution
inclusion system (5.1)–(5.2) before stating and proving our main result.

Definition 5.1. We say that the continuous function y.�/ W Œ�r;C1/ ! E is a mild
solution of the evolution system (5.1)–(5.2) if y.t/ D '.t/ for all t 2 H and the
restriction of y.�/ to the interval J is continuous and there exists f .�/ 2 L1.J;E/:
f .t/ 2 F.t; yt/ a.e. in J such that y satisfies the following integral equation:

y.t/ D U.t; 0/ '.0/C
Z t

0

U.t; s/ f .s/ ds; for each t 2 RC:

We will introduce the following hypotheses which are assumed afterwards

(5.1.1) There exists a constant bM � 1 such that:

kU.t; s/kB.E/ � bM for every .t; s/ 2 �:

(5.1.2) The multi-function F W J � C.H;E/ �! P.E/ is L1loc-Carathéodory with
compact and convex values for each u 2 C.H;E/ and there exist a function
p 2 L1loc.J;RC/ and a continuous nondecreasing function  W J ! .0;1/

and such that:

kF.t; u/kP.E/ � p.t/  .kuk/ for a.e. t 2 J and each u 2 C.H;E/:

(5.1.3) For all R > 0, there exists lR 2 L1loc.J;RC/ such that:

Hd.F.t; u/ � F.t; v// � lR.t/ ku � vk

for each t 2 J and for all u; v 2 C.H;E/ with kuk � R and kvk � R and

d.0;F.t; 0// � lR.t/ a.e. t 2 J:

For every n 2 N, we define in C.Œ�r;C1/;E/ the family of semi-norms by

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds; ln.t/ D bMln.t/ and ln is the function from .5:1:3/: Then

C.Œ�r;C1/;E/ is a Fréchet space with the family of semi-norms k � kn2N: In what
follows we will choose 
 > 1:
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Theorem 5.2. Suppose that hypotheses (4.1.1)–(4.1.3) are satisfied and moreover

Z C1

c19

ds

 .s/
> bM

Z n

0

p.s/ ds; for each n > 0 (5.3)

with c19 D bM k'k: Then the evolution inclusion problem (5.1)–(5.2) has a mild
solution.

Proof. Transform the problem (5.1)–(5.2) into a fixed point problem. Consider the
multi-valued operator N19 W C.Œ�r;C1/;E/ ! P.C.Œ�r;C1/;E// defined by:

N19.y/ D

8

ˆ̂

<̂

ˆ̂

:̂

h 2 C.Œ�r;C1/;E/ W h.t/ D

8

ˆ̂

<̂

ˆ̂

:̂

'.t/; if t 2 H;

U.t; 0/ '.0/

C
Z t

0

U.t; s/ f .s/ ds; if t � 0:

9

>>>=

>>>;

where f 2 SF;y D fv 2 L1.J;E/ W v.t/ 2 F.t; yt/ for a.e. t 2 Jg: Clearly, the fixed
points of the operator N19 are mild solutions of the problem (5.1)–(5.2). We remark
also that, for each y 2 C.Œ�r;C1/;E/, the set SF;y is nonempty since, by .5:1:2/,
F has a measurable selection (see [94], Theorem III.6).

Let y be a possible fixed point of the operator N19. Given n 2 N and t � n, then y
should be solution of the inclusion y 2 � N19.y/ for some � 2 .0; 1/ and there exists
f 2 SF;y , f .t/ 2 F.t; yt/ such that, for each t 2 RC, we have

jy.t/j � kU.t; 0/kB.E/ j'.0/j C
Z t

0

kU.t; s/kB.E/ jf .s/j ds

� bM k'k C bM
Z t

0

p.s/  .kysk/ ds:

Consider the function � defined by

�.t/ WD sup fky.s/j W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ�r; t� be such that �.t/ D jy.t�/j: If t� 2 Œ0; n�, by the previous inequality,
we have

�.t/ � bM k'k C bM
Z t

0

p.s/  .�.s// ds; for t 2 Œ0; n�:

If t� 2 H, then �.t/ D k'k and the previous inequality holds.
Let us take the right-hand side of the above inequality as v.t/. Then, we have

�.t/ � v.t/ for all t 2 Œ0; n�:
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From the definition of v, we have

c19 WD v.0/ D bM k'k and v0.t/ D bMp.t/  .�.t// a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we get

v0.t/ � bM p.t/  .v.t// a.e. t 2 Œ0; n�:

This implies that for each t 2 Œ0; n� and using the condition (5.3), we get

Z v.t/

c19

ds

 .s/
� bM

Z t

0

p.s/ ds

� bM
Z n

0

p.s/ ds

<

Z C1

c19

ds

 .s/
:

Thus, for every t 2 Œ0; n�, there exists a constant �n such that v.t/ � �n and
hence �.t/ � �n. Since kytk � �.t/, we have kykn � maxfk'kI�ng WD �n: Set

U D f y 2 C.Œ�r;C1/;E/ W supf jy.t/j W 0 � t � ng < �n C 1 for all n 2 Ng:

Clearly, U is an open subset of C.Œ�r;C1/;E/.
We shall show that N19 W U ! P.C.Œ�r;C1/;E// is a contraction and

an admissible operator. First, we prove that N19 is a contraction; Let y; y 2
C.Œ�r;C1/;E/ and h 2 N19.y/. Then there exists f .t/ 2 F.t; yt/ such that for
each t 2 Œ0; n�

h.t/ D U.t; 0/ '.0/C
Z t

0

U.t; s/ f .s/ ds:

From .5:1:3/ it follows that

Hd.F.t; yt/;F.t; yt// � ln.t/ kyt � ytk:

Hence, there is � 2 F.t; yt/ such that

jf .t/ � �j � ln.t/ kyt � ytk; t 2 Œ0; n�:

Consider U� W Œ0; n� ! P.E/, given by

U� D f� 2 E W jf .t/ � �j � ln.t/ kyt � ytkg:
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Since the multi-valued operator V.t/ D U�.t/ \ F.t; yt/ is measurable (in [94],
see Proposition III.4), there exists a function f .t/, which is a measurable selection
for V . So, f .t/ 2 F.t; yt/ and we obtain for each t 2 Œ0; n�

jf .t/ � f .t/j � ln.t/ kyt � ytk:
Let us define, for each t 2 Œ0; n�

h.t/ D U.t; 0/ '.0/C
Z t

0

U.t; s/ f .s/ds:

Then we can show as in previous sections that we have

kh � hkn � 1



ky � ykn:

By an analogous relation, obtained by interchanging the roles of y and y; it follows
that

Hd.N19.y/;N19.y// � 1



ky � ykn:

So, for 
 > 1, N19 is a contraction for all n 2 N.
It remains to show that N19 is an admissible operator. Let y 2 C.Œ�r;C1/;E/.

Consider N19 W C.Œ�r; n�;E/ ! P.C.Œ�r; n�;E/, given by

N19.y/ D

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

h 2 C.Œ�r;C1/;E/ W h.t/ D

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

'.t/; if t 2 HI
U.t; 0/ '.0/

C
Z t

0

U.t; s/ f .s/ ds; if t 2 Œ0; n�;

9

>>>>>=

>>>>>;

where f 2 Sn
F;y D fv 2 L1.Œ0; n�;E/ W v.t/ 2 F.t; yt/ for a.e. t 2 Œ0; n�g:

From (5.1.1) to (5.1.3) and since F is a multi-valued map with compact values,
we can prove that for every y 2 C.Œ�r; n�;E/; N19.y/ 2 Pcp.C.Œ�r; n�;E// and there
exists y� 2 C.Œ�r; n�;E/ such that y� 2 N19.y�/. Let h 2 C.Œ�r; n�;E/, y 2 U and
� > 0. Assume that y� 2 N19.y/; then we have

ky.t/ � y�.t/k � ky.t/ � h.t/k C ky�.t/ � h.t/k
� e
 L�

n .t/ ky � N19.y/kn C ky�.t/ � h.t/k:

Since h is arbitrary, we may assume that h 2 B.y�; �/ D fh 2 C.Œ�r; n�;E/ W
kh � y�kn � �g: Therefore,

ky � y�kn � ky � N19.y/kn C �:
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If y is not in N19.y/, then ky� � N19.y/k ¤ 0. Since N19.y/ is compact, there
exists x 2 N19.y/ such that ky� � N19.y/k D ky� � xk. Then we have

ky.t/ � x.t/k � ky.t/ � h.t/k C kx.t/ � h.t/k
� e
 L�

n .t/ ky � N19.y/kn C kx.t/ � h.t/k:
Thus,

ky � xkn � ky � N19.y/kn C �:

So, N19 is an admissible operator contraction. From the choice of U there is no
y 2 @U such that y D � N19.y/ for some � 2 .0; 1/. Then the statement .S2/ in
Theorem 1.31 does not hold. A consequence of the nonlinear alternative of Frigon
that .S1/ holds, we deduce that the operator N19 has a fixed point y� which is a mild
solution of the evolution inclusion problem (5.1)–(5.2). ut

5.2.3 An Example

Consider the following model

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@v

@t
.t; �/ 2 a.t; �/

@2v

@�2
.t; �/

C
Z 0

�r
P.�/R.t; v.t C �; �//d� � 2 Œ0; ��

v.t; 0/ D v.t; �/ D 0 t 2 RC

v.�; �/ D v0.�; �/ �r � � � 0; � 2 Œ0; ��;

(5.4)

where r > 0, a.t; �/ is a continuous function and is uniformly Hölder continuous in
t; P W H ! R and v0 W H � Œ0; �� ! R are continuous functions and R W RC �R !
P.R/ is a multi-valued map with compact convex values.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; �/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumption .4:1:1/; see
[112, 149].

For � 2 Œ0; ��, we have

y.t/.�/ D v.t; �/; t 2 RC;

'.�/.�/ D v0.�; �/; �r � � � 0;
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and

F.t; �/.�/ D
Z 0

�r
P.�/R.t; �.�/.�//d�; �r � � � 0:

Then, the problem (5.4) takes the abstract partial functional evolution inclusion
form (5.1)–(5.2). In order to show the existence of mild solutions of problem (5.4),
we assume the following assumptions:

– There exist p 2 L1.J;RC/ and a nondecreasing continuous function  W RC !
.0;C1/ such that

jR.t; �/j � p.t/ .j�j/; for 2 J; and � 2 R:

– P is integrable on H:

By the dominated convergence theorem, one can show that f 2 SF;y is a continuous
function from C.Œ�r;C1/;E/ to E. On the other hand, we have for � 2 R and
� 2 Œ0; ��

jF.t; �/.�/j �
Z 0

�r
jp.t/P.�/j .j.�.�//.�/j/d�:

Since the function  is nondecreasing, it follows that

kF.t; �/kP.E/ � p.t/
Z 0

�r
jP.�/j d� .j�j/; for � 2 R:

Proposition 5.3. Under the above assumptions, if we assume that condition (5.3)
in Theorem 5.2 is true, then the problem (5.4) has a mild solution which is defined
in Œ�r;C1/.

5.3 Neutral Functional Evolution Inclusions

5.3.1 Introduction

We investigate in this section the neutral functional evolution inclusion of the form

d

dt
Œy.t/ � g.t; yt/� 2 A.t/y.t/C F.t; yt/; a.e. t 2 J D RC (5.5)

y.t/ D '.t/; t 2 H; (5.6)
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where F W J � C.H;E/ ! P.E/ is a multi-valued map with nonempty compact
values, P.E/ is the family of all subsets of E, g W J �C.H;E/ ! E and ' 2 C.H;E/
is a given function. This result is an extension of the problem (5.1) for the neutral
case and also the multi-valued generalization of the neutral problem (2.8) in [37].

5.3.2 Existence of Mild Solutions

Definition 5.4. We say that the function y.�/ W Œ�r;C1/ ! E is a mild solution of
the neutral functional evolution system (5.5)–(5.6) if y.t/ D '.t/ for all t 2 H and
the restriction of y.�/ to the interval J is continuous and there exists f .�/ 2 L1.J;E/:
f .t/ 2 F.t; yt/ a.e. in J such that y satisfies the following integral equation

y.t/ D U.t; 0/Œ'.0/ � g.0; '/�C g.t; yt/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/f .s/ ds; for each t 2 RC:

We consider the hypotheses (5.1.1)–(5.1.3) and we will need the following
assumptions:

.G1/ There exists a constant M0 > 0 such that:

kA�1.t/kB.E/ � M0 for all t 2 J:

.G2/ There exists a constant 0 < L <
1

M0

such that:

jA.t/ g.t; '/j � L .k'k C 1/ for all t 2 J and ' 2 C.H;E/:

.G3/ There exists a constant L� > 0 such that:

jA.s/ g.s; '/ � A.s/ g.s; '/j � L� .js � sj C k' � 'k/

for all s; s 2 J and '; ' 2 C.H;E/.
For every n 2 N, let us take here ln.t/ D bMŒL� C ln.t/� for the family of

seminorm fk � kngn2N defined in Sect. 5.3. In what follows we fix 
 > 0 such that
	

M0L� C 1







< 1.
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Theorem 5.5. Suppose that hypotheses (5.1.1)–(5.1.3) and the assumptions .G1/–
.G3/ are satisfied and moreover

Z C1

c20;n

ds

s C  .s/
>

bM

1 � M0L

Z n

0

max.L; p.s//ds; for each n > 0 (5.7)

with

c20;n WD
bM.1C M0L/k'k C M0L.bM C 1/C bMLn

1 � M0L

then the neutral functional evolution problem (5.5)–(5.6) has a mild solution.

Proof. Transform the neutral functional evolution problem (5.5)–(5.6) into a fixed
point problem. Consider the multi-valued operator N20 W C.Œ�r;C1/;E/ !
P.C.Œ�r;C1/;E// defined by:

N20.y/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

h 2 C.Œ�r;C1/;E/ W h.t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

'.t/; if t � 0;

U.t; 0/ Œ'.0/ � g.0; '/�C g.t; yt/

C
Z t

0
U.t; s/A.s/g.s; ys/ds

C
Z t

0
U.t; s/f .s/ds; if t � 0;

9

>>>>>>>>=

>>>>>>>>;

where f 2 SF;y D fv 2 L1.J;E/ W v.t/ 2 F.t; yt/ for a.e. t 2 Jg:
Clearly, the fixed points of the operator N20 are mild solutions of the prob-

lem (5.5)–(5.6). We remark also that, for each y 2 C.Œ�r;C1/;E/, the set SF;y is
nonempty since, by .5:1:2/, F has a measurable selection (see [94], Theorem III.6).

Let y be a possible fixed point of the operator N20. Given n 2 N and t � n, then y
should be solution of the inclusion y 2 � N20.y/ for some � 2 .0; 1/ and there exists
f 2 SF;y , f .t/ 2 F.t; yt/ such that, for each t 2 RC, we have

jy.t/j � kU.t; 0/kB.E/j'.0/j C kU.t; 0/kB.E/kA�1.0/kkA.0/ g.0; '/k

CkA�1.t/kB.E/kA.t/g.t; yt/k C
Z t

0

kU.t; s/kB.E/kA.s/g.s; ys/kds

C
Z t

0

kU.t; s/kB.E/jf .s/jds

� bMk'k C bMM0L.k'k C 1/C M0L.kytk C 1/C bM
Z t

0

L.kysk C 1/ds

CbM
Z t

0

p.s/ .kysk/ds
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� bM.1C M0L/k'k C M0L.bM C 1/C bMLn

CM0Lkytk C bM
Z t

0

Lkyskds C bM
Z t

0

p.s/ .kysk/ds:

We consider the function � defined by

�.t/ WD supf jy.s/j W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ�r; t� be such that �.t/ D jy.t�/j: If t� 2 Œ0; n�, by the previous inequality
we have for t 2 Œ0; n�

�.t/ � bM.1C M0L/k'k C M0L.bM C 1/C bMLn

CM0L�.t/C bM
Z t

0

L�.s/ds C bM
Z t

0

p.s/ .�.s//ds:

Then

.1 � M0L/�.t/ � bM.1C M0L/k'k C M0L.bM C 1/C bMLn

CbM
Z t

0

L�.s/ds C bM
Z t

0

p.s/ .�.s//ds:

Set c20;n WD
bM.1C M0L/k'k C M0L.bM C 1/C bMLn

1 � M0L
, thus

�.t/ � c20;n C
bM

1 � M0L

Z t

0

ŒL�.s/C p.s/ .�.s//� ds:

If t� 2 H, then �.t/ D k'k and the previous inequality holds.
Let us take the right-hand side of the above inequality as v.t/. Then we have

�.t/ � v.t/ for all t 2 Œ0; n�:

From the definition of v, we have

v.0/ D c20;n and v0.t/ D
bM

1 � M0L
ŒL�.t/C p.t/ .�.t//� a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we get

v0.t/ �
bM

1 � M0L
ŒLv.t/C p.t/ .v.t//� a.e. t 2 Œ0; n�:
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This implies that for each t 2 Œ0; n� and using the condition (5.7), we get

Z v.t/

c20;n

ds

s C  .s/
�

bM

1 � M0L

Z t

0

max.L; p.s//ds

�
bM

1 � M0L

Z n

0

max.L; p.s//ds

<

Z C1

c20;n

ds

s C  .s/
:

Thus, for every t 2 Œ0; n�, there exists a constant �n such that v.t/ � �n and
hence �.t/ � �n. Since kytk � �.t/, we have

kykn � max fk'k; �ng WD �n:

We can show that N20 is an admissible operator and we shall prove now that
N20 W U ! P.C.Œ�r;C1/;E// is a contraction.

Let y; y 2 C.Œ�r;C1/;E/ and h 2 N20.y/. Then there exists f .t/ 2 F.t; yt/ such
that for each t 2 Œ0; n�

h.t/ D U.t; 0/Œ'.0/ � g.0; '/�C g.t; yt/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/f .s/ds:

From .5:1:3/ it follows that

Hd.F.t; yt/;F.t; yt// � ln.t/ kyt � ytk:

Hence, there is � 2 F.t; yt/ such that

jf .t/ � �j � ln.t/ kyt � ytk t 2 Œ0; n�:

Consider U� W Œ0; n� ! P.E/, given by

U� D f� 2 E W jf .t/ � �j � ln.t/ kyt � ytkg:

Since the multi-valued operator V.t/ D U�.t/ \ F.t; yt/ is measurable (in [94], see
Proposition III.4), there exists a function f .t/, which is a measurable selection for V .
So, f .t/ 2 F.t; yt/, and we obtain for each t 2 Œ0; n�

jf .t/ � f .t/j � ln.t/ kyt � ytk:
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Let us define, for each t 2 Œ0; n�

h.t/ D U.t; 0/Œ'.0/ � g.0; '/�C g.t; yt/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/f .s/ds:

Then we can show as in previous sections that we have for each t 2 Œ0; n� and
n 2 N

kh � hkn �
	

M0L� C 1







ky � ykn:

By an analogous relation, obtained by interchanging the roles of y and y; it
follows that

Hd.N20.y/;N20.y// �
	

M0L� C 1







ky � ykn:

So, for

	

M0L� C 1







< 1, the operator N20 is a contraction for all n 2 N and an

admissible operator. From the choice of U there is no y 2 @U such that y D � N20.y/
for some � 2 .0; 1/. Then the statement .S2/ in Theorem 1.31 does not hold. By
the nonlinear alternative due to Frigon we get that .S1/ holds, we deduce that the
operator N20 has a fixed point y� which is a mild solution of the neutral functional
evolution inclusion problem (5.5)–(5.6). ut

5.3.3 An Example

Consider the following model

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@

@t

	

v.t; �/ �
Z 0

�r
T.�/u.t; v.t C �; �//d�




2 a.t; �/
@2v

@�2
.t; �/

C
Z 0

�r
P.�/R.t; v.t C �; �//d� t 2 RC; � 2 Œ0; ��

v.t; 0/ D v.t; �/ D 0 t 2 RC

v.�; �/ D v0.�; �/ �r � � � 0; � 2 Œ0; ��;
(5.8)
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where r > 0, a.t; �/ is a continuous function and is uniformly Hölder continuous in
t; T;P W H ! R; u W H � R ! R and v0 W H � Œ0; �� ! R are continuous functions
and R W RC � R ! P.R/ is a multi-valued map with compact convex values.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; �/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumptions .5:1:1/ and
.G1/; see [112, 149].

For � 2 Œ0; ��, we have

y.t/.�/ D v.t; �/; t 2 RC;

'.�/.�/ D v0.�; �/; �r � � � 0;

g.t; �/.�/ D
Z 0

�r
T.�/u.t; �.�/.�//d�; �r � � � 0;

and

F.t; �/.�/ D
Z 0

�r
P.�/R.t; �.�/.�//d�; �r � � � 0:

Then, the problem (5.8) takes the abstract neutral functional evolution inclusion
form (5.5)–(5.6). In order to show the existence of mild solutions of problem (5.8),
we suppose the following assumptions:

– u is Lipschitz with respect to its second argument. Let lip.u/ denotes the Lipschitz
constant of u.

– There exist p 2 L1.J;RC/ and a nondecreasing continuous function  W RC !
.0;C1/ such that

jR.t; �/j � p.t/ .j�j/; for 2 J; and � 2 R:

– T;P are integrable on H:

By the dominated convergence theorem, one can show that f 2 SF;y is a continuous
function from C.H;E/ to E. Moreover the mapping g is Lipschitz continuous in its
second argument, in fact, we have

jg.t; �1/ � g.t; �2/j � M0L�lip.u/
Z 0

�r
jT.�/j d� j�1 � �2j ; for �1; �2 2 R:

On the other hand, we have for � 2 R and � 2 Œ0; ��

jF.t; �/.�/j �
Z 0

�r
jp.t/P.�/j .j.�.�//.�/j/d�:
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Since the function  is nondecreasing, it follows that

kF.t; �/kP.E/ � p.t/
Z 0

�r
jP.�/j d� .j�j/:

Proposition 5.6. Under the above assumptions, if we assume that condition (5.7)
in Theorem 5.5 is true, then the problem (5.8) has a mild solution which is defined
in Œ�r;C1/:

5.4 Notes and Remarks

The results of Chap. 5 are taken from Arara et al. [27, 28]. Other results may be
found in [1, 3, 51, 53, 74, 75].



Chapter 6
Partial Functional Evolution Inclusions
with Infinite Delay

6.1 Introduction

We are interested in this chapter by the study of the existence of mild solutions of
two classes of partial functional and neutral functional evolution inclusions with
infinite delay on the semi-infinite interval RC.

It is known that in the modeling of the evolution of some physical, biological,
and economic systems using functional and partial functional differential equations,
the response of the systems depends not only on the current state of the system but
also on the past history of the system. We assume that the histories yt belongs to
some abstract phase space B.

Sufficient conditions are provided to get existence results of mild solutions of the
partial functional and neutral functional differential evolution problems by applying
the recent nonlinear alternative of Frigon [114, 115] for contractive multi-valued
maps in Fréchet spaces [116], combined with the semigroup theory [16, 20, 168].

6.2 Partial Functional Evolution Inclusions

6.2.1 Introduction

In this chapter, we consider the partial functional evolution inclusions with infinite
delay of the form

y0.t/ 2 A.t/y.t/C F.t; yt/; a.e. t 2 J D RC (6.1)

y0 D � 2 B; (6.2)
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where F W J � B ! P.E/ is a multi-valued map with nonempty compact values,
P.E/ is the family of all subsets of E, � 2 B are given functions, and fA.t/g0�t<C1
is a family of linear closed (not necessarily bounded) operators from E into E that
generate an evolution system of operators fU.t; s/g.t;s/2J�J for 0 � s � t < C1:

6.2.2 Existence of Mild Solutions

Definition 6.1. We say that the function y.�/ W R ! E is a mild solution of the
evolution system (6.1)–(6.2) if y.t/ D �.t/ for all t 2 .�1; 0� and the restriction
of y.�/ to the interval J is continuous and there exists f .�/ 2 L1.J;E/: f .t/ 2 F.t; yt/

a.e. in J such that y satisfies the following integral equation:

y.t/ D U.t; 0/ �.0/C
Z t

0

U.t; s/ f .s/ ds; for each t 2 RC:

We will need to introduce the following hypotheses which are assumed here-
after:

(6.1.1) There exists a constant bM � 1 such that:

kU.t; s/kB.E/ � bM for every .t; s/ 2 �:

(6.1.2) The multi-function F W J � B �! P.E/ is L1loc-Carathéodory with compact
and convex values for each u 2 B and there exist a function p 2 L1loc.J;RC/
and a continuous nondecreasing function  W J ! .0;1/ and such that:

kF.t; u/kP.E/ � p.t/  .kukB/ for a.e. t 2 J and each u 2 B:

(6.1.3) For all R > 0, there exists lR 2 L1loc.J;RC/ such that:

Hd.F.t; u/ � F.t; v// � lR.t/ ku � vkB
for each t 2 J and for all u; v 2 B with kukB � R and kvkB � R and

d.0;F.t; 0// � lR.t/ a.e. t 2 J:

Consider the following space

BC1 D ˚

y W R ! E W yjŒ0;T� 2 C.Œ0;T�;E/; y0 2 B� ;

where yjŒ0;T� is the restriction of y to any real compact interval Œ0;T�.
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For every n 2 N, we define in BC1 the family of semi-norms by:

kykn WD sup f e�
 L�
n .t/ jy.t/j W t 2 Œ0; n� g

where L�
n .t/ D

Z t

0

ln.s/ ds; ln.t/ D KnbMln.t/ and ln is the function from .6:1:3/:

Then BC1 is a Fréchet space with the family of semi-norms k�kn2N. In what follows
we will choose 
 > 1:

Theorem 6.2. Suppose that hypotheses (6.1.1)–(6.1.3) are satisfied and moreover

Z C1

c21;n

ds

 .s/
> KnbM

Z n

0

p.s/ ds; for each n > 0 (6.3)

with c21;n D .KnbMH C Mn/k�kB. Then evolution problem (6.1)–(6.2) has a mild
solution.

Proof. Consider the multi-valued operator N21 W BC1 ! P.BC1/ defined by:

N21.y/ D

8

<̂

:̂

h 2 BC1 W h.t/ D

8

<̂

:̂

�.t/; if t � 0;

U.t; 0/ �.0/C
Z t

0

U.t; s/ f .s/ ds; if t � 0:

9

>=

>;

where f 2 SF;y D fv 2 L1.J;E/ W v.t/ 2 F.t; yt/ for a.e. t 2 Jg:
Clearly, the fixed points of the operator N21 are mild solutions of the prob-

lem (6.1)–(6.2). We remark also that, for each y 2 BC1, the set SF;y is nonempty
since, by .6:1:2/; F has a measurable selection (see [94], Theorem III.6).

For � 2 B; we will define the function x.:/ W R ! E by

x.t/ D
8

<

:

�.t/; if t 2 .�1; 0�I
U.t; 0/ �.0/; if t 2 J:

Then x0 D �. For each function z 2 BC1, set y.t/ D z.t/C x.t/: It is obvious that y
satisfies Definition 6.1 if and only if z satisfies z0 D 0 and

z.t/ D
Z t

0

U.t; s/ f .s/ ds; for t 2 J:

where f .t/ 2 F.t; zt C xt/ a:e: t 2 J.
Let

B0C1 D fz 2 BC1 W z0 D 0g :



130 6 Partial Functional Evolution Inclusions with Infinite Delay

Define in B0C1, the multi-valued operator F W B0C1 ! P.B0C1/ by:

F.z/ D
�

h 2 B0C1 W h.t/ D
Z t

0

U.t; s/ f .s/ ds; t 2 J

�

;

where f 2 SF;z D fv 2 L1.J;E/ W v.t/ 2 F.t; zt C xt/ for a.e. t 2 Jg:
Obviously the operator inclusion N21 has a fixed point is equivalent to the

operator inclusion F has one, so it turns to prove that F has a fixed point.
Let z 2 B0C1 be a possible fixed point of the operator F . Given n 2 N, then z

should be solution of the inclusion z 2 � F.z/ for some � 2 .0; 1/ and there exists
f 2 SF;z , f .t/ 2 F.t; zt C xt/ such that, for each t 2 Œ0; n�, we have

jz.t/j �
Z t

0

kU.t; s/kB.E/ jf .s/j ds

� bM
Z t

0

p.s/  .kzs C xskB/ ds:

Set c21;n WD .KnbMH C Mn/k�kB D ˛n, then using the inequality (3.4) and the
nondecreasing character of  , we get

jz.t/j � bM
Z t

0

p.s/  .Knjz.s/j C ˛n/ ds:

Then

Knjz.t/j C ˛n � KnbM
Z t

0

p.s/ .Knjz.s/j C ˛n/ds C c21;n:

We consider the function � defined by

�.t/ WD sup f Knjz.s/j C ˛n W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ0; t� be such that �.t/ D Knjz.t�/j C ˛n: By the previous inequality, we
have

�.t/ � KnbM
Z t

0

p.s/  .�.s// ds C c21;n; for t 2 Œ0; n�:

Let us take the right-hand side of the above inequality as v.t/. Then, we have

�.t/ � v.t/ for all t 2 Œ0; n�:
From the definition of v, we have

v.0/ D c21;n and v0.t/ D KnbMp.t/  .�.t// a.e. t 2 Œ0; n�:
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Using the nondecreasing character of  , we get

v0.t/ � KnbM p.t/  .v.t// a.e. t 2 Œ0; n�:

This implies that for each t 2 Œ0; n� and using the condition (6.3), we get

Z v.t/

c21;n

ds

 .s/
� KnbM

Z t

0

p.s/ ds

� KnbM
Z n

0

p.s/ ds

<

Z C1

c21;n

ds

 .s/
:

Thus, for every t 2 Œ0; n�, there exists a constant �n such that v.t/ � �n and
hence �.t/ � �n. Since kzkn � �.t/, we have kzkn � �n: Set

U D f z 2 B0C1 W supf jz.t/j W 0 � t � ng < �n C 1 for all n 2 Ng:

Clearly, U is an open subset of B0C1.
We shall show that F W U ! P.B0C1/ is a contraction and an admissible

operator.
First, we prove that F is a contraction; Let z; z 2 B0C1 and h 2 F.z/. Then there

exists f .t/ 2 F.t; zt C xt/ such that for each t 2 Œ0; n�

h.t/ D
Z t

0

U.t; s/ f .s/ ds:

From .5:1:3/ it follows that

Hd.F.t; zt C xt/;F.t; zt C xt// � ln.t/ kzt � ztkB:

Hence, there is � 2 F.t; zt C xt/ such that

jf .t/ � �j � ln.t/ kzt � ztkB t 2 Œ0; n�:

Consider U� W Œ0; n� ! P.E/, given by

U� D f� 2 E W jf .t/ � �j � ln.t/ kzt � ztkBg:
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Since the multi-valued operator V.t/ D U�.t/\F.t; ztCxt/ is measurable (in [94],
see Proposition III.4), there exists a function f .t/, which is a measurable selection
for V . So, f .t/ 2 F.t; zt C xt/ and using .A1/, we obtain for each t 2 Œ0; n�

jf .t/ � f .t/j � ln.t/ kzt � ztkB
� ln.t/ ŒK.t/ jz.t/ � z.t/j C M.t/ kz0 � z0kB�
� ln.t/ Kn jz.t/ � z.t/j

Let us define, for each t 2 Œ0; n�

h.t/ D
Z t

0

U.t; s/ f .s/ ds:

Then we can show as in previous sections that we have

kh � hkn � 1



kz � zkn:

By an analogous relation, obtained by interchanging the roles of z and z; it
follows that

Hd.F.z/;F.z// � 1



kz � zkB:

So, for 
 > 1, F is a contraction for all n 2 N.
It remains to show that F is an admissible operator. Let z 2 B0C1. Set, for every

n 2 N, the space

B0n WD ˚

y W .�1; n� ! E W yjŒ0;n� 2 C.Œ0; n�;E/; y0 2 B� ;

and let us consider the multi-valued operator F W B0n ! Pcl.B0n/ defined by:

F.z/ D
�

h 2 B0n W h.t/ D
Z t

0

U.t; s/ f .s/ ds; t 2 Œ0; n�
�

:

where f 2 Sn
F;y D fv 2 L1.Œ0; n�;E/ W v.t/ 2 F.t; yt/ for a.e. t 2 Œ0; n�g:

From (6.1.1) to (6.1.3) and since F is a multi-valued map with compact values,
we can prove that for every z 2 B0n, F.z/ 2 Pcl.B0n/ and there exists z� 2 B0n such
that z� 2 F.z�/. Let h 2 B0n, y 2 U and � > 0. Assume that z� 2 F.z/, then we
have

jz.t/ � z�.t/j � jz.t/ � h.t/j C jz�.t/ � h.t/j
� e
 L�

n .t/ kz � F.z/kn C kz� � hk:
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Since h is arbitrary, we may suppose that h 2 B.z�; �/ D fh 2 B0n W kh � z�kn � �g.
Therefore,

kz � z�kn � kz � F.z/kn C �:

If z is not in F.z/, then kz� � F.z/k ¤ 0. Since F.z/ is compact, there exists
x 2 F.z/ such that kz� � F.z/k D kz� � xk. Then we have

jz.t/ � z�.t/j � jz.t/ � h.t/j C jx.t/ � h.t/j
� e
 L�

n .t/ kz � F.z/kn C jx.t/ � h.t/j:

Thus,

kz � xkn � kz � F.z/kn C �:

So, F is an admissible operator contraction. From the choice of U there is no z 2 @U
such that z D � F.z/ for some � 2 .0; 1/. Then the statement .S2/ in Theorem 1.31
does not hold. A consequence of the nonlinear alternative due to Frigon we get
that .S1/ holds, we deduce that the operator F has a fixed point z�. Then y�.t/ D
z�.t/ C x.t/, t 2 R is a fixed point of the operator N21, which is a mild solution of
the evolution inclusion problem (6.1)–(6.2). ut

6.2.3 An Example

Consider the following model

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@v

@t
.t; �/ 2 a.t; �/

@2v

@�2
.t; �/

C
Z 0

�1
P.�/R.t; v.t C �; �//d� � 2 Œ0; ��

v.t; 0/ D v.t; �/ D 0 t 2 RC

v.�; �/ D v0.�; �/ �1 < � � 0; � 2 Œ0; ��;

(6.4)

where a.t; �/ is a continuous function and is uniformly Hölder continuous in tI P W
.�1; 0� ! R and v0 W .�1; 0� � Œ0; �� ! R are continuous functions and R W
RC � R ! P.R/ is a multi-valued map with compact convex values.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; �/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g
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Then A.t/ generates an evolution system U.t; s/ satisfying assumption .6:1:1/ (see
[112, 149]).

For the phase space B, we choose the well-known space BUC.R�;E/: the space
of uniformly bounded continuous functions endowed with the following norm

k'k D sup
��0

j'.�/j for ' 2 B:

If we put for ' 2 BUC.R�;E/ and � 2 Œ0; ��

y.t/.�/ D v.t; �/; t 2 RC; � 2 Œ0; ��;
�.�/.�/ D v0.�; �/; �1 < � � 0; � 2 Œ0; ��;

and

F.t; '/.�/ D
Z 0

�1
P.�/R.t; '.�/.�//d�; �1 < � � 0; � 2 Œ0; ��:

Then, the problem (6.4) takes the abstract partial functional evolution inclusion
form (6.1)–(6.2). In order to show the existence of mild solutions of problem (6.4),
we suppose the following assumptions:

– There exist p 2 L1.J;RC/ and a nondecreasing continuous function  W RC !
.0;C1/ such that

jR.t; u/j � p.t/ .juj/; for 2 J; and u 2 R:

– P is integrable on .�1; 0�:

By the dominated convergence theorem, one can show that f 2 SF;y is a
continuous function from B to .E/. On the other hand, we have for ' 2 B and
� 2 Œ0; ��

jF.t; '/.�/j �
Z 0

�1
jp.t/P.�/j .j.'.�//.�/j/d�:

Since the function  is nondecreasing, it follows that

kF.t; '/kP.E/ � p.t/
Z 0

�1
jP.�/j d� .j'j/; for ' 2 B:

Proposition 6.3. Under the above assumptions, if we assume that condition (6.3)
in Theorem 6.2 is true, ' 2 B, then the problem (6.4) has a mild solution which is
defined in .�1;C1/.
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6.3 Neutral Functional Evolution Inclusions

6.3.1 Introduction

A generalization of existence result of mild solutions to the neutral case is developed
in Sect. 6.3 where we look for the neutral functional evolution inclusions with
infinite delay of the form

d

dt
Œy.t/ � g.t; yt/� 2 A.t/y.t/C F.t; yt/; a.e. t 2 J (6.5)

y0 D � 2 B; (6.6)

where F W J � B ! P.E/ is a multi-valued map with nonempty compact values,
g W J � B ! E and � 2 B are given functions.

6.3.2 Existence of Mild Solutions

Definition 6.4. We say that the function y.�/ W R ! E is a mild solution of the
neutral functional evolution system (6.5)–(6.6) if y.t/ D �.t/ for all t 2 .�1; 0� and
the restriction of y.�/ to the interval J is continuous and there exists f .�/ 2 L1.J;E/:
f .t/ 2 F.t; yt/ a.e. in J such that y satisfies the following integral equation

y.t/ D U.t; 0/Œ�.0/ � g.0; �/�C g.t; yt/C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/f .s/ ds; for each t 2 RC:

We consider the hypotheses (6.1.1)–(6.1.3) and in what follows we will need the
following additional assumptions:

.G1/ There exists a constant M0 > 0 such that:

kA�1.t/kB.E/ � M0 for all t 2 J:

.G2/ There exists a constant 0 < L <
1

M0Kn
such that:

jA.t/ g.t; �/j � L .k�kB C 1/ for all t 2 J and � 2 B:

.G3/ There exists a constant L� > 0 such that:

jA.s/ g.s; �/ � A.s/ g.s; �/j � L� .js � sj C k� � �kB/

for all s; s 2 J and �; � 2 B.
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Consider the following space

BC1 D ˚

y W R ! E W yjŒ0;T� 2 C.Œ0;T�;E/; y0 2 B� ;

where yjŒ0;T� is the restriction of y to any real compact interval Œ0;T�.
For every n 2 N, let us take here ln.t/ D KnbMŒL� C ln.t/� for the family

of seminorm fk � kngn2N: In what follows we fix 
 > 0 and assume that
	

M0L�Kn C 1







< 1.

Theorem 6.5. Suppose that hypotheses (6.1.1)–(6.1.3) and the assumptions .G1/–
.G3/ are satisfied and moreover

Z C1

c22;n

ds

s C  .s/
>

KnbM

1 � M0LKn

Z n

0

max.L; p.s//ds; for each n > 0; (6.7)

with

c22;n D
"

M0LKnbM

1 � M0LKn
C .KnbMH C Mn/

 

1C M0LKn

1 � M0LKn

!#

k�kB

C Kn

1 � M0LKn

h

M0L.bM C 1/C bMLn
i

;

then the neutral functional evolution problem (6.5)–(6.6) has a mild solution.

Proof. Consider the multi-valued operator N22 W BC1 ! P.BC1/ defined by

N22.y/ D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

h 2 BC1 W h.t/ D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

�.t/; if t � 0;

U.t; 0/ Œ�.0/ � g.0; �/�C g.t; yt/

C
Z t

0

U.t; s/A.s/g.s; ys/ds

C
Z t

0

U.t; s/f .s/ds; if t � 0;

9

>>>>>>>=

>>>>>>>;

where f 2 SF;y D fv 2 L1.J;E/ W v.t/ 2 F.t; yt/ for a.e. t 2 Jg:
Clearly, the fixed points of the operator N22 are mild solutions of the prob-

lem (6.5)–(6.6). We remark also that, for each y 2 BC1, the set SF;y is nonempty
since, by .6:1:2/, F has a measurable selection (see [94], Theorem III.6).

For � 2 B, we will define the function x.:/ W R ! E by

x.t/ D
8

<

:

�.t/; if t 2 .�1; 0�I
U.t; 0/ �.0/; if t 2 J:
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Then x0 D �. For each function z 2 BC1, set y.t/ D z.t/C x.t/: It is obvious that y
satisfies Definition 6.4 if and only if z satisfies z0 D 0 and

z.t/ D g.t; zt C xt/ � U.t; 0/g.0; �/C
Z t

0

U.t; s/A.s/g.s; zs C xs/ds

C
Z t

0

U.t; s/f .s/ds:

where f .t/ 2 F.t; zt C xt/ a:e: t 2 J.
Let

B0C1 D fz 2 BC1 W z0 D 0g :

Define in B0C1, the multi-valued operator F W B0C1 ! P.B0C1/ by:

F.z/ D
�

h 2 B0C1 W h.t/ D g.t; zt C xt/ � U.t; 0/g.0; �/

C
Z t

0

U.t; s/A.s/g.s; zs C xs/ds C
Z t

0

U.t; s/f .s/ds; t 2 J

�

where f 2 SF;z D fv 2 L1.J;E/ W v.t/ 2 F.t; zt C xt/ for a.e. t 2 Jg:
Obviously the operator inclusion N22 has a fixed point is equivalent to the

operator inclusion F has one, so it turns to prove that F has a fixed point.
Let z 2 B0C1 be a possible fixed point of the operator F . Given n 2 N, then z

should be solution of the inclusion z 2 � F.z/ for some � 2 .0; 1/ and there exists
f 2 SF;z , f .t/ 2 F.t; zt C xt/ such that, for each t 2 Œ0; n�, we have

jz.t/j � kA�1.t/kB.E/kA.t/g.t; zt C xt/k C kU.t; 0/kB.E/kA�1.0/kkA.0/ g.0; �/k

C
Z t

0

kU.t; s/kB.E/kA.s/g.s; zs C xs/kds C
Z t

0

kU.t; s/kB.E/jf .s/jds

� M0L.kzt C xtkB C 1/C bMM0L.k�kB C 1/

CbM
Z t

0

L.kzs C xskB C 1/ds C bM
Z t

0

p.s/ .kzs C xskB/ds

� M0Lkzt C xtkB C M0L.bM C 1/C bMLn C bMM0Lk�kB
CbM

Z t

0

Lkzs C xskBds C bM
Z t

0

p.s/ .kzs C xskB/ds:
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Using the inequality (3.4) and the nondecreasing character of  , we obtain

jz.t/j � M0L.Knjz.t/j C ˛n/C M0L.bM C 1/C bMLn C bMM0Lk�kB
CbM

Z t

0

L.Knjz.s/j C ˛n/ds C bM
Z t

0

p.s/ .Knjz.s/j C ˛n/ds

� M0LKnjz.t/j C M0L.bM C 1/C bMLn C M0L˛n C bMM0Lk�kB
CbM

	Z t

0

L.Knjz.s/j C ˛n/ds C
Z t

0

p.s/ .Knjz.s/j C ˛n/ds




:

Then

.1 � M0LKn/jz.t/j � .bM C 1/M0L C bMLn C M0L˛n C bMM0Lk�kB
CbM

	Z t

0

L.Knjz.s/j C ˛n/ds C
Z t

0

p.s/ .Knjz.s/j C ˛n/ds




:

Set

c22;n WD ˛n C Kn

1 � M0LKn

h

.bM C 1/M0L C bMLn C M0L˛n C bMM0Lk�kB
i

:

Thus

Knjz.t/j C ˛n � c22;n

C KnbM

1 � M0LKn

	Z t

0

L.Knjz.s/j C ˛n/ds

C
Z t

0

p.s/ .Knjz.s/j C ˛n/ds




:

We consider the function � defined by

�.t/ WD sup f Knjz.s/j C ˛n W 0 � s � t g; 0 � t < C1:

Let t� 2 Œ0; t� be such that �.t/ D Knjz.t�/j C ˛n. By the previous inequality, we
have

�.t/ � c22;n C KnbM

1 � M0LKn

	Z t

0

L�.s/ds C
Z t

0

p.s/ .�.s//ds




for t 2 Œ0; n�:

Let us take the right-hand side of the above inequality as v.t/. Then, we have

�.t/ � v.t/ for all t 2 Œ0; n�:
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From the definition of v, we have v.0/ D c22;n and

v0.t/ D KnbM

1 � M0LKn
ŒL�.t/C p.t/ .�.t//� a.e. t 2 Œ0; n�:

Using the nondecreasing character of  , we get

v0.t/ � KnbM

1 � M0LKn
ŒLv.t/C p.t/ .v.t//� a.e. t 2 Œ0; n�:

This implies that for each t 2 Œ0; n� and using the condition (6.7), we get

Z v.t/

c22;n

ds

s C  .s/
� KnbM

1 � M0LKn

Z t

0

max.L; p.s//ds

� KnbM

1 � M0LKn

Z n

0

max.L; p.s//ds

<

Z C1

c22;n

ds

s C  .s/
:

Thus, for every t 2 Œ0; n�, there exists a constant �n such that v.t/ � �n and
hence �.t/ � �n. Since kzkn � �.t/, we have kzkn � �n:

We can show that F is an admissible operator and we shall prove now that QF W
U ! P.B0C1/ is a contraction.

Let z; z 2 B0C1 and h 2 F.z/. Then there exists f .t/ 2 F.t; zt C xt/ such that for
each t 2 Œ0; n�, we have

h.t/ D g.t; zt C xt/ � U.t; 0/g.0; �/C
Z t

0

U.t; s/A.s/g.s; zs C xs/ds

C
Z t

0

U.t; s/f .s/ds:

From .5:1:3/ it follows that

Hd.F.t; zt C xt/;F.t; zt C xt// � ln.t/ kzt � ztkB:

Hence, there is � 2 F.t; zt C xt/ such that

jf .t/ � �j � ln.t/ kzt � ztkB t 2 Œ0; n�:

Consider U� W Œ0; n� ! P.E/, given by

U� D f� 2 E W jf .t/ � �j � ln.t/ kzt � ztkBg:



140 6 Partial Functional Evolution Inclusions with Infinite Delay

Since the multi-valued operator V.t/ D U�.t/\F.t; ztCxt/ is measurable (in [94],
see Proposition III.4), there exists a function f .t/, which is a measurable selection
for V . So, f .t/ 2 F.t; zt C xt/ and using .A1/, we obtain for each t 2 Œ0; n�

jf .t/ � f .t/j � ln.t/ kzt � ztkB
� ln.t/ ŒK.t/ jz.t/ � z.t/j C M.t/ kz0 � z0kB�
� ln.t/ Kn jz.t/ � z.t/j:

Let us define, for each t 2 Œ0; n�

h.t/ D g.t; zt C xt/ � U.t; 0/g.0; �/C
Z t

0

U.t; s/A.s/g.s; zs C xs/ds

C
Z t

0

U.t; s/f .s/ds:

Then we can show as in previous sections that we have for each t 2 Œ0; n� and
n 2 N

kh � hkn �
	

M0L�Kn C 1







kz � zkn:

By an analogous relation, obtained by interchanging the roles of z and z; it
follows that

Hd.F.z/;F.z// �
	

M0L�Kn C 1







kz � zkB:

So, for

	

M0L�Kn C 1







< 1, the operator F is a contraction for all n 2 N and an

admissible operator. From the choice of U there is no z 2 @U such that z D � F.z/
for some � 2 .0; 1/. Then the statement .S2/ in Theorem 1.31 does not hold. By
the nonlinear alternative due to Frigon we get that .S1/ holds, we deduce that the
operator F has a fixed point z�. Then y�.t/ D z�.t/ C x.t/, t 2 R is a fixed point
of the operator N22, which is a mild solution of the neutral functional evolution
inclusion problem (6.5)–(6.6). ut
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6.3.3 An Example

Consider the following model

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

@

@t

	

v.t; �/ �
Z 0

�1
T.�/u.t; v.t C �; �//d�




2 a.t; �/
@2v

@�2
.t; �/

C
Z 0

�1
P.�/R.t; v.t C �; �//d� t 2 RC; � 2 Œ0; ��

v.t; 0/ D v.t; �/ D 0 t 2 RC

v.�; �/ D v0.�; �/ �1 < � � 0; � 2 Œ0; ��;
(6.8)

where a.t; �/ is a continuous function and is uniformly Hölder continuous in t; T;P W
.�1; 0� ! R; u W .�1; 0��R ! R and v0 W .�1; 0�� Œ0; �� ! R are continuous
functions and R W RC � R ! P.R/ is a multi-valued map with compact convex
values.

Consider E D L2.Œ0; ��;R/ and define A.t/ by A.t/w D a.t; �/w00 with domain

D.A/ D f w 2 E W w; w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0 g

Then A.t/ generates an evolution system U.t; s/ satisfying assumptions .4:1:1/ and
.G1/; see [112, 149].

For the phase space B, we choose the well-known space BUC.R�;E/: the space
of uniformly bounded continuous functions endowed with the following norm

k'k D sup
��0

j'.�/j for ' 2 B:

If we put for ' 2 BUC.R�;E/ and � 2 Œ0; ��

y.t/.�/ D v.t; �/; t 2 RC; � 2 Œ0; ��;
�.�/.�/ D v0.�; �/; �1 < � � 0; � 2 Œ0; ��;

g.t; '/.�/ D
Z 0

�1
T.�/u.t; '.�/.�//d�; �1 < � � 0; � 2 Œ0; ��;

and

F.t; '/.�/ D
Z 0

�1
P.�/R.t; '.�/.�//d�; �1 < � � 0; � 2 Œ0; ��:
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Then, the problem (6.8) takes the abstract neutral functional evolution inclusion
form (6.5)–(6.6). In order to show the existence of mild solutions of problem (6.8),
we suppose the following assumptions:

– u is Lipschitz with respect to its second argument. Let lip.u/ denotes the Lipschitz
constant of u.

– There exist p 2 L1.J;RC/ and a nondecreasing continuous function  W RC !
.0;C1/ such that

jR.t; x/j � p.t/ .jxj/; for 2 J; and x 2 R:

– T;P are integrable on .�1; 0�:

By the dominated convergence theorem, one can show that f 2 SF;y is a
continuous function from B to .E/. Moreover the mapping g is Lipschitz continuous
in its second argument, in fact, we have

jg.t; '1/ � g.t; '2/j � M0L�lip.u/
Z 0

�1
jT.�/j d� j'1 � '2j ; for '1; '2 2 B:

On the other hand, we have for ' 2 B and � 2 Œ0; ��

jF.t; '/.�/j �
Z 0

�1
jp.t/P.�/j .j.'.�//.�/j/d�:

Since the function  is nondecreasing, it follows that

kF.t; '/kP.E/ � p.t/
Z 0

�1
jP.�/j d� .j'j/; for ' 2 B:

Proposition 6.6. Under the above assumptions, if we assume that condition (6.7)
in Theorem 6.5 is true, ' 2 B, then the problem (6.8) has a mild solution which is
defined in .�1;C1/.

6.4 Notes and Remarks

The results of Chap. 6 are taken from [11, 12, 35, 45]. Other results may be found
in [10, 11, 54, 142, 145, 182].



Chapter 7
Densely Defined Functional Differential
Inclusions with Finite Delay

7.1 Introduction

In this chapter, we are concerned by the existence of mild and extremal solutions of
some first order classes of impulsive semi-linear functional differential inclusions
with local and nonlocal conditions when the delay is finite in a separable Banach
space .E; j � j/:

In the literature devoted to equations with finite delay, the phase space is much
of time the space of all continuous functions on H, endowed with the uniform norm
topology. We mention, for instance, the books of Ahmed [16], Engel and Nagel
[106], Kamenskii et al. [144], Pazy [168], and Wu [184].

7.2 Existence of Mild Solutions with Local Conditions

7.2.1 Introduction

In this section, we consider the following class of semi-linear impulsive differential
inclusions:

y0.t/ � Ay.t/ 2 F.t; yt/; t 2 J WD Œ0; b�; t ¤ tk (7.1)

�yjtDtk 2 Ik.y.t
�
k //; k D 1; : : : ;m (7.2)

y.t/ D �.t/; t 2 H; (7.3)

where F W J � D ! 2E is a closed, bounded, and convex valued multi-valued map,

© Springer International Publishing Switzerland 2015
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D D f W H ! E;  continuous everywhere except for a finite number of points
at which .s�/ and  .sC/ exist and  .s�/ D  .s/g; � 2 D, A W D.A/ �
E ! E is the infinitesimal generator of a strongly continuous semigroup T.t/; t �
0, E a real separable Banach space endowed with the norm j:j; 0 D t0 < t1 < � � � <
tm < tmC1 D b; Ik 2 C.E;E/; .k D 1; 2; : : :;m/:

7.2.2 Main Result

We assume that F is compact and convex valued multi-valued map. In order to define
the mild solution to the problem (7.1)–(7.3), we shall consider the following space

PC D
n

y W Œ0; b� ! E W yk 2 CŒJk;E�; k D 0; : : :;m such that

y.t�k /; y.t
C
k / exist with y.tk/ D y.t�k /; k D 1; : : :;m

o

;

which is a Banach space with the norm

kykPC WD maxfkykk1 W k D 0; : : :;mg;

where yk is the restriction of y to Jk D Œtk; tkC1�; k D 0; : : :;m:
Set

˝ D fy W Œ�r; b� ! E W y 2 D \ PCg:

Definition 7.1. A function y 2 ˝ is said to be a mild solution of system (7.1)–
(7.3) if y.t/ D �.t/ for all t 2 H, the restriction of y.�/ to the interval Œ0; b� is
continuous and there exists v.�/ 2 L1.Jk;E/; Ik 2 Ik.y.t�k // such that v.t/ 2 F.t; yt/

a.e t 2 Œ0; b�, and such that y satisfies the integral equation,

y.t/ D T.t/�.0/C
Z t

0

T.t � s/v.s/ds C
X

0<tk<t

T.t � tk/Ik; t 2 J:

We will need the following hypotheses which are assumed hereafter

(7.1.1) A W D.A/ � E ! E is the infinitesimal generator of a strongly continuous
semigroup fT.t/g, t 2 J which is compact for t > 0 in the Banach space E,
and there exists a constant M � 1, such that Let kT.t/kB.E/ � MI t � 0

(7.1.2) There exist constants ck � 0, k D 1; : : : ;m such that

Hd.Ik.y/ � Ik.x// � ckjy � xj for each x; y 2 E:

(7.1.3) F is L1-Carathéodory with compact convex values.
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(7.1.4) There exist a function k 2 L1.J;RC/ and a continuous nondecreasing
function  W Œ0;1/ ! .0;1/ such that

kF.t; x/k � k.t/ .kxkD/ for a.e. t 2 J and each x 2 D;

with
Z 1

C0

ds

 .s/
> C1kpkL1 ; (7.4)

where

C0 D
MŒk�kD C

mX

kD1
kIk.0/k�

1 �
mX

kD1
ck

(7.5)

C1 D M

1 �
mX

kD1
ck

: (7.6)

Theorem 7.2. Assume that (7.1.1)–(7.1.4) hold. If

M
mX

kD1
ck < 1 (7.7)

then the IVP (7.1)–(7.3) has at least one mild solution on Œ�r; b�:

Proof. Transform the problem (7.1)–(7.3) into a fixed point problem. Consider the
multi-valued operator: N W ˝ ! ˝ defined by

N.y/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

h 2 ˝ W h.t/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

�.t/; if t 2 H,

T.t/�.0/C
Z t

0
T.t � s/v.s/ds

C
X

0<tk<t

T.t � tk/Ik; v 2 SF;y;Ik 2 Ik.y.t
�
k // if t 2 J:

9

>>>>>>=

>>>>>>;

It is clear that the fixed points of N are mild solutions of the IVP (7.1)–(7.3).
Consider these multi-valued operators:

A;B W ˝ ! ˝
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defined by

A.y/ WD

8

<̂

:̂

h 2 ˝ W h.t/ D

8

<̂

:̂

0; if t 2 H;
X

0<tk<t

T.t � tk/Ik; Ik 2 Ik.y.t
�
k // if t 2 J;

9

>=

>;

and

B.y/ WD

8

ˆ̂

<̂

ˆ̂

:̂

h 2 ˝ W h.t/ D

8

ˆ̂

<̂

ˆ̂

:̂

�.t/; if t 2 H;

T.t/�.0/

C
Z t

0

T.t � s/v.s/ds; v 2 SF;y if t 2 J:

9

>>>=

>>>;

The problem of finding mild solutions of (7.1)–(7.3) is then reduced to finding mild
solutions of the operator inclusion y 2 A.y/ C B.y/: The proof will be given in
several steps.

Step 1: A is a contraction. Let y1; y2 2 ˝, then from (7.1.2) we have

Hd.A.y1/;A.y2// D Hd

0

@
X

0<tk<t

T.t � tk/Ik.y1.t
�
k //;

X

0<tk<t

T.t � tk/Ik.y2.t
�
k //

1

A

� M
kDmX

kD0
ckjŒy1.t�k / � y2.t

�
k /j

� M
kDmX

kD0
ckky1 � y2k˝:

From (7.7) it follows that A is a contraction.

Step 2: B has compact, convex values, and is completely continuous.

Claim 1: B has compact values.
The operator B is equivalent to the composition L ı SF of two operators on
L1.J;E/, where L W L1.J;E/ ! ˝ is the continuous operator defined by

L.v.t// D T.t/�.0/C
Z t

0

T.t � s/v.s/ds

Then, it suffices to show that L ı SF has compact values on ˝.
Let y 2 ˝ arbitrary, vn a sequence in SF;y, then by definition of SF, vn.t/
belongs to F.t; yt/; a:e:t 2 J. Since F.t; yt/ is compact, we may pass to a
subsequence.
suppose that vn ! v in L1.J;E/, where v.t/ 2 F.t; yt/; a:e:t 2 J.
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From the continuity of L, it follows that Lvn.t/ ! Lv.t/ point wise on J and
n ! 1:

In order to show that the convergence is uniform, we first show that fLvng is
an equi-continuous sequence.
Let 
1; 
2 2 J, then we have:

ˇ
ˇL.vn.
1// � L.vn.
2//

ˇ
ˇ D ˇ

ˇT.
1/�.0/ � T.
2/�.0/C
Z 
1

0

T.
1 � s/vn.s/ds

�
Z 
2

0

T.
2 � s/vn.s/ds
ˇ
ˇ

� ˇ
ˇ
�

T.
1/ � T.
2/


�.0/
ˇ
ˇ

C
Z 
1

0

ˇ
ˇ
�

T.
1 � s/ � T.
2 � s/
ˇ
ˇjvn.s/jds

C
Z 
2


1

jT.
2 � s/jjvn.s/jds:

As 
1 ! 
2, the right-hand side of the above inequality tends to zero. Since
T.t/ is a strongly continuous operator and the compactness of T.t/I t > 0;

implies the continuity in uniform topology. Hence fLvng is equi-continuous,
and an application of Arzéla–Ascoli theorem implies that there exists a
subsequence which is uniformly convergent. Then we have Lvnj ! Lv 2
.L ı SF/.y/ as j 7! 1, and so .L ı SF/.y/ is compact . Therefore B has
compact values.

Claim 2: B.y/ is convex for each y 2 ˝: Let h1; h2 2 B.y/, then there exists
v1; v2 2 SF;y such that, for each t 2 J we have

hi.t/ D

8

<̂

:̂

�.t/; if t 2 H,

T.t/�.0/C
Z t

0

T.t � s/vi.s/ds if t 2 J;i D 1; 2:

9

>=

>;

Let 0 � ı � 1: Then, for each t 2 J, we have

.ıh1 C .1� ı/h2/.t/ D

8

ˆ̂

<̂

ˆ̂

:̂

�.t/; t 2 H,

T.t/�.0/

C R t
0

T.t � s/Œıv1.s/C .1 � ı/v2.s/�ds t 2 J;

9

>>>=

>>>;

Since F.t; yt/ has convex values, one has

ıh1 C .1 � ı/h2 2 B.y/:
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Claim 3: B maps bounded sets into bounded sets in ˝ Let B D fy 2
˝I kyk1 � qg; q 2 R

C a bounded set in ˝. For each h 2 B.y/, for some
y 2 B, there exists v 2 SF;y such that

h.t/ D T.t/�.0/C
Z t

0

T.t � s/v.s/ds:

Thus

jh.t/j � Mj�.0/j C M
Z t

0

'q.s/ds

� Mj�.0/j C Mk'qkL1 ;

this implies that:

khk1 � Mj�.0/j C Mk'qkL1 :

Hence B.B/ is bounded.

Claim 4: B maps bounded sets into equi-continuous sets. Let B is a bounded
set as in Claim 3 and h 2 B.y/ for some y 2 B: Then, there exists v 2 SF;y

such that

h.t/ D T.t/�.0/C
Z t

0

T.t � s/v.s/ds; t 2 J

Let 
1; 
2 2 Jnft1; t2; : : :tmg; 
1 < 
2. Thus if � > 0, we have

jh.
2/ � h.
1/j � jŒT.
2/ � T.
1/��.0/j

C
Z 
1��

0

kT.
2 � s/ � T.
1 � s/kjv.s/jds

C
Z 
1


1��
kT.
2 � s/ � T.
1 � s/kjv.s/jds

C
Z 
2


1

kT.
2 � s/kjv.s/jds

� jŒT.
2/ � T.
1/��.0/j

C
Z 
1��

0

kT.
2 � s/ � T.
1 � s/k'q.s/ds

C
Z 
1


1��
kT.
2 � s/ � T.
1 � s/k'q.s/ds

CM
Z 
2


1

'q.s/ds:
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As 
1 ! 
2 and � becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since T.t/ is a strongly continuous operator and the
compactness of T.t/ for t > 0 implies the continuity in the uniform operator
topology.
This proves the equi-continuity for the case where t ¤ ti; i D 1; : : :;m C 1. It
remains to examine the equi-continuity at t D ti.
First we prove the equi-continuity at t D t�i , we have for some y 2 B, there
exists v 2 SF;y such that

h.t/ D T.t/�.0/C
Z t

0

T.t � s/v.s/ds; t 2 J

Fix ı1 > 0 such that ftk; k ¤ ig \ Œti � ı1; ti C ı1� D ;. For 0 < � < ı1, we
have

jh.ti � �/ � h.ti/j � jŒT.ti � �/ � T.ti/��.0/j
C
Z ti��

0

kT.ti � � � s/ � T.ti � s/kjv.s/jds

C
Z ti

ti��
M'q.s/ds

Which tends to zero as � ! 0.
Define

Oh0.t/ D h.t/; t 2 Œ0; t1�
and

Ohi.t/ D
8

<

:

h.t/; if t 2 .ti; tiC1�
h.tCi /; if t D ti:

9

=

;

Next, we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk;
k ¤ ig \ Œti � ı2; ti C ı2� D ;. Then

Oh.ti/ D T.ti/�.0/C
Z ti

0

T.ti � s/v.s/ds:

For 0 < � < ı2; we have

jOh.ti C �/ � Oh.ti/j � jŒT.ti C �/ � T.ti/��.0/j

C
Z ti

0

kT.ti C � � s/ � T.ti � s/kjv.s/jds

C
Z tiC�

ti

M'q.s/ds:
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The right-hand side tends to zero as � ! 0:

The equi-continuity for the cases 
1 < 
2 � 0 and 
1 � 0 � 
2 follows from
the uniform continuity of � on the interval H As a consequence of Claims 1–3
together with Arzelá–Ascoli theorem it suffices to show that B maps B into a
precompact set in E.
Let 0 < t� < b be fixed and let � be a real number satisfying 0 < � < t�. For
y 2 B, we define

h�.t
�/ D T.t�/�.0/C T.�/

Z t���

0

T.t� � s � �/v.s/ds;

where v 2 SF;y. Since T.t�/ is a compact operator, the set

H�.t�/ D fh�.t
�/ W h� 2 B.y/g

is precompact in E for every �; 0 < � < t�:Moreover, for every h 2 B.y/ we
have

jh.t�/ � h�.t
�/j D ˇ

ˇ

Z t�

0

T.t� � s/v.s/ds � T.�/
Z t���

0

T.t� � s � �/v.s/ds
ˇ
ˇ

D j
Z t�

t���
T.t� � s/v.s/dsj

� M
Z t�

t���
'q.s/ds:

Therefore, there are precompact sets arbitrarily close to the set H.t�/ D
fh.t�/ W h 2 B.y/g: Hence the set H.t�/ D fh.t�/ W h 2 B.B/g is precompact
in E. Hence the operator B is completely continuous.

Claim 5: B has closed graph. Let yn ! y�, hn 2 B.yn/, and hn ! h�. We shall
show that h� 2 B.y�/: hn 2 B.yn/ means that there exists vn 2 SF;yn such that

hn.t/ D T.t/�.0/C
Z t

0

T.t � s/vn.s/ds; t 2 J:

We must prove that there exists v� 2 SF;y�
such that

h�.t/ D T.t/�.0/C
Z t

0

T.t � s/v�.s/ds:

Consider the linear and continuous operator K W L1.J;E/ ! D defined by

.Kv/.t/ D
Z t

0

T.t � s/v.s/ds:
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We have

j.hn.t/�T.t/�.0// � .h�.t/ � T.t/�.0//j D jhn.t/ � h�.t/j
� khn � h�k1 ! 0; as n 7! 1:

From Lemma 1.11 it follows that K ı SF is a closed graph operator and from
the definition of K one has

hn.t/ � T.t/�.0/ 2 K ı SF;yn :

As yn ! y� and hn ! h�, there is a v� 2 SF;y�
such that

h�.t/ � T.t/�.0/ D
Z t

0

T.t � s/v�.s/ds:

Hence the multi-valued operator B is upper semi-continuous.

Step 3: A priori bounds on solutions. Now, it remains to show that the set

E D fy 2 ˝j y 2 �Ay C �By; 0 � � � 1g

is unbounded.
Let y 2 E be any element. Then there exist v 2 SF;y and Ik 2 Ik.y.t�k // such that

y.t/ D �T.t/�.0/C �

Z t

0

T.t � s/v.s/ds C �
X

0<tk<t

T.t � tk/Ik:

Then for each t 2 J

jy.t/j � Mj�.0/j C M
Z t

0

jv.s/jds C M
mX

kD0
jIkj

� Mk�kD C M
Z t

0

p.s/ .kysk/ds C M
mX

kD0
jIkj

� Mk�kD C M
Z t

0

p.s/ .kysk/ds C M
mX

kD0
ckjy.t�k /j C M

kDmX

kD0
jIk.0/j

� Mk�kD C M
Z t

0

p.s/ .kysk/ds C M
mX

kD0
jIk.0/j

CM
mX

kD0
ckjy.t�k /j:
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Set

C D M
�k�kD C

X

kD0
mjIk.0/j

�

:

Then, we have:

jy.t/j � C C M
mX

kD0
ckjy.t�k /j C M

Z t

0

p.s/ .kysk/ds: (7.8)

Consider the function �.t/ defined by

�.t/ D supfjy.s/j W �r � s � tg; 0 � t � b

Then, we have, for all t 2 J,kysk � �.t/.
Let t� 2 J such that �.t/ D jy.t�/j, then by the previous inequality we have, for
t 2 J;

�.t/ � C C M
mX

kD0
ckj�.t/j C M

Z t

0

p.s/ .k�sk/ds: (7.9)

Thus
 

1 � M
mX

kD0
ck

!

�.t/ � C C M
Z t

0

p.s/ .�.s//ds: (7.10)

It follows that

�.t/ � C0 C C1

Z t

0

p.s/ .�.s//ds: (7.11)

Then, we have

�.t/ � v.t/ for all t 2 J;

v.0/ D C0:

Differentiating both sides of the above equality, we obtain

v0.t/ D C1p.t/ .�.t//; a:e: t 2 J;

and using the nondecreasing character of the function  , we obtain

v0.t/ � C1p.t/ .v.t//; a:e: t 2 J;



7.2 Existence of Mild Solutions with Local Conditions 153

that is

v0.t/
 .v.t//

� C1p.t/; a:e: t 2 J: (7.12)

Integrating both sides of the previous inequality from 0 to t we get

Z t

0

v0.s/
 .v.s//

ds � C1

Z t

0

p.s/ds:

By a change of variables we get

Z v.t/

v.0/

du

 .u/
� C1kpkL1 �

Z 1

c0

du

 .u/
:

Hence there exists a constant K such that

�.t/ � v.t/ � K;

for all t 2 J: Now from the definition of � it follows that

kyk˝ D sup
t2Œ�r;b�

jy.t/j � �.b/ � K

for all y 2 E : This shows that the set E is bounded. As a consequence of
Theorem 1.32, we deduce that A C B has a fixed point y on Œ�r; b� which is
a mild solution of our problem. ut

7.2.3 Existence of Extremal Mild Solutions

In this subsection we prove the existence of maximal and minimal mild solutions
of problem (7.1)–(7.3) under suitable monotonicity conditions on the multi-valued
functions involved in it. Our proof is based upon the Theorem 1.37 due to Dhage.

Let us introduce the concept of lower and upper mild solutions for prob-
lem (7.1)–(7.3).

Definition 7.3. We say that a continuous function v W Œ�r; b� ! E is a lower mild
solution of problem (7.1)–(7.3) if there exist functions v 2 L1.J;E/ such that v.t/ 2
F.t; yt/; a.e. on J; y.t/ D �.t/; t 2 H; and

y.t/ � T.t/�.0/C
Z t

0

T.t � s/v.s/ds C
X

0<tk<t

T.t � tk/Ik..t
�
k //; t 2 J; t ¤ tk

and v.tCk /�v.t�k � Ik.v.tk//; t D tk; k D 1; : : :m: Similarly an upper mild solution
w of (7.1)–(7.3) is defined by reversing the order.



154 7 Densely Defined Functional Differential Inclusions with Finite Delay

Definition 7.4. A solution xM of IVP (7.1)–(7.3) is said to be maximal if for any
other solution x of IVP (7.1)–(7.3) on J, we have that x.t/ � xM.t/ for each t 2 J.

Similarly a minimal solution of IVP (7.1)–(7.3) is defined by reversing the order
of the inequalities.

We consider the following assumptions in the sequel.

(7.4.1) The multi-valued function F.t; y/ and is strictly monotone increasing in y
for almost each t 2 J.

(7.4.2) The IVP (7.1)–(7.3) has a lower mild solution v and an upper mild solution
w with v � w.

(7.4.3) T.t/ is preserving the order, that is T.t/v � 0 whenever v � 0.
(7.4.4) The multi-valued functions Ik; k D 1; : : :m are continuous and non-

decreasing.

Theorem 7.5. Assume that assumptions (7.1.11)–(7.1.4) and (7.4.1)–(7.4.4) hold.
Then IVP (7.1)–(7.3) has minimal and maximal solutions on Œ�r; b�.

Proof. It can be shown as in the proof of Theorem 7.2 that A is completely
continuous and B is a contraction on Œv;w�. We shall show that A and B are isotone
increasing on Œv;w�. Let y; y 2 Œv;w� be such that y � y; y 6D y: Then by (7.4.4), we
have for each t 2 J

A.y/ D fh 2 ˝ W h.t/ D
X

0<tk<t

T.t � tk/Ik; Ik 2 Ik.y.t
�
k //g

�P fh 2 ˝ W h.t/ D
X

0<tk<t

T.t � tk/Ik; Ik 2 Ik.y.t
�
k //g

D A.y/:

Similarly, by .7:4:1/; .7:4:3/

B.y/ D fh 2 ˝ W h.t/ D T.t/�.0/C
Z t

0

T.t � s/v.s/ds; v 2 SF;yg

�P fh 2 ˝ W h.t/ D T.t/�.0/C
Z t

0

T.t � s/v.s/ds; v 2 SF;yg

D B.y/:

Therefore A and B are isotone increasing on Œv;w�. Finally, let x 2 Œv;w� be any
element. By (7.4.2), (7.4.3) we deduce that

v � A.v/C B.v/ � A.x/C B.x/ � A.w/C B.w/ � w;

which shows that A.x/ C B.x/ 2 Œv;w� for all x 2 Œv;w�. Thus, A and B satisfy
all conditions of Theorem 7.5, hence IVP (7.1)–(7.3) has maximal and minimal
solutions on J: ut
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7.3 Existence of Mild Solutions with Nonlocal Conditions

In this section we consider the following class of semi-linear Impulsive differential
inclusions:

y0.t/ � Ay.t/ 2 F.t; yt/; t 2 J WD Œ0; b�; t ¤ tk (7.13)

�yjtDtk 2 Ik.y.t
�
k //; k D 1; : : : ;m (7.14)

y.t/C ht .y/ D �.t/; t 2 Œ�r; 0� ; (7.15)

where A F and Ik are as in the previous section, and ht W C.H;E/ ! E is a
given function. The nonlocal Cauchy Problem was introduced by Byszewski in [89],
and the importance of nonlocal conditions in different fields has been discussed in
[89, 90].

7.3.1 Main Result

Let us start by the definition of the mild solution of the problem (7.13)–(7.15)

Definition 7.6. A function y 2 ˝ is said to be a mild solution of problem (7.13)–
(7.15) if y.t/ D �.t/ � ht .y/ ; t 2 Œ�r; 0�; and the restriction of y.�/ to the interval
Œ0; b� is continuous and there exist v.�/ 2 L1.Jk;E/ and Ik 2 Ik.y.t�k // such that
v.t/ 2 F.t; yt/ a.e t 2 Œ0; b�, and y satisfies the integral equation,

y.t/ D T.t/ .�.0/ � h0 .y//C R t
0

T.t � s/v.s/ds C
X

0<tk<t

T.t � tk/Ik

Let us introduce the following assumptions.

(7.6.1) The function h is continuous with respect to t, and there exists a constant
˛ > 0 such that

kht.u/k � ˛; u 2 C.H;E/

and for each k > 0 the set

f�.0/ � h0.y/; y 2 C.H;E/; kyk � kg

is precompact in E.

Theorem 7.7. Assume that hypotheses (7.1.1)–(7.1.4) and (7.6.1) hold. Then the
IVP (7.13)–(7.15) has at least one mild solution on Œ�r; b�:
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Proof. Consider the two multi-valued operators A1B1: ˝ ! P.˝/

B1.y/ WD

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

f 2 ˝ W f .t/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

�.t/ � ht.y/; if t 2 H;

T.t/ .�.0/ � h0.y//

C
Z t

0

T.t � s/v.s/ds; v 2 SF;y

if t 2 J;

9

>>>>>>=

>>>>>>;

A1.y/ WD

8

<̂

:̂

f 2 ˝ W f .t/ D

8

<̂

:̂

0; if t 2 H;
X

0<tk<t

T.t � tk/Ik; Ik 2 Ik.y.t
�
k //; if t 2 J;

9

>=

>;

Then the problem of finding the solution of problem (8.8)–(8.11) is reduced to
finding the solution of the operator inclusion y 2 A1.y/C B1.y/: By parallel steps
of Theorem 7.2 we can show that the operators A1 and B1 satisfy all conditions of
Theorem 1.32. ut

7.4 Application to the Control Theory

This section is devoted to an application of the argument used in previous sections to
the controllability of a semi-linear functional differential inclusions. More precisely
we will consider the following IVP:

y0.t/ � Ay.t/ 2 F.t; yt/C Bu.t/; t 2 J WD Œ0; b�; t ¤ tk (7.16)

�yjtDtk 2 Ik.y.t
�
k //; k D 1; : : : ;m (7.17)

y.t/ D �.t/; t 2 H; (7.18)

where A and F are as in the previous section, the control function u.�/ is given in
L2.J;U/, a Banach space of admissible control functions, with U as a Banach space.
Finally B is a bounded linear operator from U to E. In the case of single-valued
functions Ik, the problem (7.16–7.18) has been recently studied in the monographs
by Ahmed [16], and Benchohra et al. [81], and in the papers [18, 19].

7.4.1 Main Result

Before stating and proving our result we give the meaning of mild solution of our
problem (7.16)–(7.18).
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Definition 7.8. A function y 2 ˝ is said to be a mild solution of system (7.16)–
(7.18) if y.t/ D �.t/ for all t 2 H, the restriction of y.�/ to the interval Œ0; b� is
continuous and there exists v.�/ 2 L1.Jk;E/ and Ik 2 Ik.y.t�k //, such that v.t/ 2
F.t; yt/ a.e Œ0; b�, and such that y satisfies the integral equation,

y.t/ D T.t/�.0/C
Z t

0

T.t � s/v.s/ds C
Z t

0

T.t � s/Buy.s/ds

C
X

0<tk<t

T.t � tk/Ik; t 2 J:

Theorem 7.9. Assume that hypotheses (7.1.1)–(7.1.3) hold. Moreover we suppose
that:

(C1) the linear operator W W L2.J;U/ ! E; defined by

Wu D
Z b

0

T.b � s/Bu.s/ds;

has a bounded inverse operator W�1 which takes values in L2.J;U/nKerW, and
there exist positive constants M; M1 such that kBk � M and kW�1k � M1.

(C2) F has closed, bounded and convex values, and there exists a function l 2
L1.J;RC/ such that

Hd
�

F.t; y/;F.t; x/
 � l.t/ky � xkD; for a.e. t 2 J; x; y 2 D

(C3) There exist a function k 2 L1.J;RC/ and a continuous nondecreasing
function  W Œ0;1/ ! .0;1/ such that

kF.t; x/kP � k.t/ .kxkD/ for a.e. t 2 J and each x 2 D;

with
Z 1

C�
0

ds

s C  .s/
D 1; (7.19)

where

C�
0 D C�

1 �
mX

kD0
ck

;

with

C� D Mk�kD C MMM1b
�jy1j C Mk�kD

�

C�M2MM1b C M
� X

0<tk<s

jIk.0/j:
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If

MMM1b
�
�`kL1 C M2MM1b

mX

kD0
ck C M

mX

kD0
ck < 1;

then the IVP (7.16)–(7.18) is controllable on Œ�r; b�:

Proof. Using hypothesis (C1) for each arbitrary function y.�/ define the control

uy.t/ D W�1
2

4y1 � T.b/�.0/ �
Z b

0

T.b � s/v.s/ds �
X

0<tk<t

T.b � tk/Ik

3

5 .t/;

where v 2 SF;y and Ik 2 Ik.y.t�k //. We shall show that the operator N W ˝ ! P.˝/
defined by

N.y/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

f 2 ˝ W f .t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

�.t/; if t 2 H,

T.t/�.0/C
Z t

0
T.t � s/v.s/ds

C
Z t

0
T.t � s/.Buy/.s/ds

C
X

0<tk<t

T.t � tk/Ik;Ik 2 Ik.y.t
�
k //; v 2 SF;y if t 2 J

9

>>>>>>>>>>>=

>>>>>>>>>>>;

has a fixed point. This fixed point is then the mild solution of the IVP (7.16)–(7.18).
Consider the multi-valued operators:

A;B W ˝ ! P.˝/

defined by

A.y/ WD

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

f 2 ˝ W f .t/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

0; if t 2 H;
Z t

0

T.t � s/.Buy/.s/ds

C
X

0<tk<t

T.t � tk/Ik; Ik 2 Ik.y.t
�
k // if t 2 J;

9

>>>>>>=

>>>>>>;

and

B.y/ WD

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

f 2 ˝ W f .t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�.t/; if t 2 H;

T.t/�.0/C
Z t

0

T.t � s/v.s/ds; v 2 SF;y

if t 2 J.

9

>>>>=

>>>>;
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It is clear that

N D A C B:

Similarly, as in Theorem 7.2, we can prove that A is a contraction operator, and B is
a completely continuous operator with compact convex values. Now, we prove that
the set:

E D fy 2 ˝j y 2 �Ay C �By; 0 � � � 1g

is unbounded.
Let y 2 E be any element. Then there exist v 2 SF;y and Ik 2 Ik.y.t�k // such that

y.t/ D �T.t/�.0/C �

Z t

0

T.t � s/v.s/ds C �

Z t

0

T.t � s/Buy.s/ds

C�
X

0<tk<t

T.t � tk/Ik:

This implies by (C1)–(C3) that

jy.t/j � Mk�kD C M
Z t

0

k.s/ .kysk/ds C MMM1b
�jy1j C Mk�kD

�

CM2MM1b
Z t

0

k.s/ .kysk/ds C M2MM1

Z t

0

X

0<tk<m

jIkjds

CM
kDmX

kD0
jIkj:

Thus

jy.t/j � C C M2MM1

Z t

0

X

0<tk<s

ckjy.t�k /jds (7.20)

CM
kDmX

kD0
ckjy.t�k /j C �

M2MM1b C M
�
Z t

0

k.s/ .kysk/ds:

Consider the function �.t/ defined by

�.t/ D supfjy.s/j W �r � s � tg; 0 � t � b
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Then, we have, for all t 2 J,kysk � �.t/: Let t� 2 J such that �.t/ D jy.t�/j; then
by (7.20) we have, for t 2 J;

�.t/ � C� C M2MM1

Z t

0

X

0<tk<s

ck�.s/ds (7.21)

CM
kDmX

kD0
ck�.t/C �

M2MM1b C M
�
Z t

0

p.s/ .�.s//ds:

From (7.21) we obtain

�

1 � M
mX

kD0
ck


�.t/ � C� C M2MM1

Z t

0

X

0<tk<s

ck�.s/ds (7.22)

C�M2MM1b C M
�
Z t

0

p.s/ .�.s//ds:

Let

C�
0 D C�

1 � M
mX

kD0
ck

; C�
1 D M2MM1

1 � M
mX

kD0
ck

; C�
2 D M2MM1b C M

1 � M
mX

kD0
ck

(7.23)

It follows from (7.22) and (7.23) that

�.t/ � C�
0 C C�

1

Z t

0

X

0<tk<s

ck�.s/ds

CC�
2

Z t

0

p.s/ .�.s//ds

� C�
0 C

Z t

0

OM.s/��.s/C p.s/ .�.s//
�

ds;

where

OM.s/ D max
�

C�
1

X

0<tk<s

ck;C
�
2 k.s/



.s/

Let

v.t/ D C�
0 C

Z t

0

OM.s/��.s/C  .�.s//
�

ds: (7.24)
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Then, we have �.t/ � v.t/ for all t 2 J Differentiating both sides of (7.24), we
obtain

v0.t/ D OM.t/Œ�.t/C  .�.t//�; a:e: t 2 J

and

v.0/ D C�
0 :

Using the nondecreasing character of the function  , we obtain

v0.t/ � OM.t/Œv.t/C  .v.t//�; a:e: t 2 J;

that is

v0.t/
v.t/C  .v.t//

� OM.t/; a:e: t 2 J: (7.25)

Integrating from 0 to t both sides of (7.25) we get

Z t

0

v0.s/
v.s/C  .v.s//

ds �
Z t

0

OM.s/ds:

By a change of variables we get

Z v.t/

v.0/

du

u C  .u/
� k OMkL1 � 1:

From (7.19) there exists a constant K such that

�.t/ � v.t/ � K for all t 2 J:

Now from the definition of � it follows that

kyk˝ D sup
t2Œ�r;b�

jy.t/j � �.b/ � K for all y 2 E :

This shows that the set E is bounded. As a consequence of Theorem 1.32 ACB has
a fixed point which is a mild solution of problem (7.16)–(7.18).

Thus, the problem (7.16)–(7.18) is controllable on the interval Œ�r; b�: ut
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7.4.2 Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

@

@t
z.t; x/ D @2

@x2
z.t; x/

CQ.t; z.t � r; x/C Bu.t/; x 2 Œ0; ��; t 2 Œ0; b�nft1; t2; : : : ; tmg:
(7.26)

z.tCk ; x/ � z.t�k ; x/ 2 bkjz.t�k ; x/jB.0; 1/; x 2 Œ0; ��; k D 1; : : : ;m (7.27)

z.t; 0/ D z.t; �/ D 0; t 2 J WD Œ0; b� (7.28)

z.t; x/ D �.t; x/; t 2 H; x 2 Œ0; ��; (7.29)

where bk > 0; k D 1; : : : ;m; � 2 D D f N W H � Œ0; �� ! RI N is continuous
everywhere except for a countable number of points at which N .s�/; N .sC/ exist
with N .s�/ D N .s/g; 0 D t0 < t1 < t2 < � � � < tm < tmC1 D b; z.tCk / D

lim
.h;x/!.0C;x/

z.tk C h; x/; z.t�k / D lim
.h;x/!.0�;x/

z.tk C h; x/, where Q W J � R ! P.R/;
is a multi-valued map with compact values. Here B.0; 1/ denotes the closure of the
unit ball. Let

y.t/ D z.t; :/I t 2 J;

Ik W R ! PR such that

Ik.y.t
�
k // D bkjz.t�k ; :/jB.0; 1/; k D 1; : : : ;m

and

F.t; yt/.x/ D Q.t; z.t � r; x//; t 2 Œ0; b�; x 2 Œ0; ��:

Take E D L2Œ0; ��, and define the linear operator A W D.A/ � E ! E by Aw D w00
with domain

D.A/ D fw 2 E;w;w0are absolutely continuous;w00 2 E;w.0/ D w.�/ D 0g:

Then

Aw D
1X

nD1
n2.w;wn/wn; w 2 D.A/
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where .:; :/ is the inner product in L2Œ0; �� and wn.s/ D
q

2
�

sin ns: n D 1; 2P:
is the orthogonal set eigenvectors in A. It is well known (see [168]) that A is the
infinitesimal generator of an analytic semigroup T.t/; t 2 .0; b� in E given by

T.t/w D
1X

nD1
exp.�n2t/.w;wn/wn; w 2 E:

Since the analytic semigroup T.t/; t 2 .0; b� is compact, there exists a constant
M � 1 such that

kT.t/kB.E/ � M:

Assume that B W U ! Y;U � Œ0;1/ is a bounded linear operator and the operator
W defined by

Wu D
Z b

0

T.b � s/Bu.s/ds

has a bounded invertible operator W�1 which takes values in L2.Œ0; b�;U/nkerW.
Also assume that there exists an integrable function � W Œ0; b� ! RC such that

jQ.t;w.t � r//j � �.t/˝.jwj/

where ˝ W Œ0;1/ ! .0;1/ is continuous and nondecreasing with

Z 1

1

ds

s C˝.s/
D 1

Assume that there exists Ql 2 L1.Œ0; b�;RC/ such that

Hd.Q.t;w.t � r; x//;Q.t; Nw.t � r; x/// � Qljw � NwjI t 2 Œ0; b�; w; Nw_nR

We can show that problem (7.16)–(7.18) is an abstract formulation of prob-
lem (7.26)–(7.29). Since all the conditions of Theorem 7.7 are satisfied, the
problem (7.26)–(7.27) has a solution z on Œ�r; b� � Œ0; ��:

7.5 Notes and Remarks

The results of Chap. 7 are taken from Abada et al. [4, 6]. Other results may be found
in [53, 54].



Chapter 8
Non-densely Defined Functional Differential
Inclusions with Finite Delay

8.1 Introduction

In this chapter, we shall establish sufficient conditions for the existence of integral
solutions and extremal integral solutions for some non-densely defined impulsive
semi-linear functional differential inclusions in separable Banach spaces with local
and nonlocal conditions. We shall rely on a fixed point theorem for the sum of
completely continuous and contraction operators. The question of controllability of
these inclusions with both multi-valued and single valued jump and the topological
structure of the solutions set are considered too.

8.2 Integral Solutions of Non-densely Defined Functional
Differential Inclusions with Local Conditions

We will consider the following first order impulsive semi-linear differential inclu-
sions of the form:

y0.t/ � Ay.t/ 2 F.t; yt/; a:e: t 2 J D Œ0; b� ; t ¤ tk; k D 1; : : : ;m (8.1)

�yjtDtk 2 Ik.y.t
�
k //; k D 1; : : : ;m (8.2)

y.t/ D �.t/; t 2 Œ�r; 0� ; (8.3)

where F W J � D ! P.E/, D, Ik W E ! P.E/ are as in the previous chapter and
A W D.A/ � E ! E is a non-densely defined closed linear operator on E.
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In order to define a integral solution of problems (8.1)–(8.3) and (8.14)–(8.16),
we shall consider the space

PC D
n

y W Œ0; b� ! D.A/ W yk 2 C.Jk;D.A//; k D 0; : : : ;m such that

y.t�k /; y.t
C
k / exist with y.tk/ D y.t�k /; k D 1; : : : ;m

o

which is a Banach space with the norm

kykPC D maxfkykk1; k D 1; : : : ;mg

where yk is the restriction of y to Jk D Œtk; tkC1�; k D 0; : : : ;m:
Set

˝ D fy W Œ�r; b� ! D.A/ W y 2 D \ PCg:

Then ˝ is a Banach space with norm

kyk˝ D max.kykD; kykPC/:

8.2.1 Main Results

We assume that the multi-valued F has compact and convex values. Let us first
define the concept of integral solution of (8.1)–(8.2).

Definition 8.1. We say that y W Œ�r; b� ! E is an integral solution of (8.1)–
(8.3) if

(i) y 2 ˝:
(ii)

Z t

0

y.s/ds 2 D.A/ for t 2 J,

(iii) y.t/ D �.t/ for all t 2 H there exist v 2 L1.J;E/ and Ik 2 Ik
�

y.t�k /


such that
v.t/ 2 F.t; yt/ a:e t 2 J and

y.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s; /dsC
X

0<tk<t

S0 .t � tk/ Ik t 2 J: (8.4)

We notice also that if y satisfies (8.4), then

y.t/ D S0.t/�.0/C lim
�!1

Z t

0

S0.t � s/B�v.s/ds C
X

0<tk<t

S0 .t � tk/ Ik; t 2 J:
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In what follows we will assume (without lost of generality) that w > 0. Let us
introduce the following hypotheses:

(8.1.1) A satisfies Hille–Yosida condition;
(8.1.2) There exist constants ck > 0; k D 1; : : : ;m such that for each y; x 2 D.A/

Hd.Ik.y/; Ik.x// � ckjy � xj

(8.1.3) The multi-valued map F is L1-Carathéodory, with compact convex values.
(8.1.4) The operator S0.t/ is compact in D.A/ wherever t > 0I
(8.1.5) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! .0;1/ such that

kF.t; x/k � p.t/ .kxkD/; a:e: t 2 J; for all x 2 D

and

C1

Z b

0

e�!tp.t/dt <
Z 1

C0

du

 .u/
; (8.5)

where

C1 D Me!b

1 � Me!b

mX

kD1
e�!tk ck

; (8.6)

C0 D C

1 � Me!b

mX

kD1
e�!tk ck

; (8.7)

and

C D Me!b

 

k�k C
mX

kD1
e�!tk ck jIk.0/j

!

: (8.8)

Theorem 8.2. Assume that (8.1.1)–(8.1.5) hold and �.0/ 2 D.A/. If

Me!b
mX

kD1
e�!tk ck < 1; (8.9)

then the problem (8.1)–(8.3) has at least one integral solution on Œ�r; b� :
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Proof. Consider the multi-valued operator N W ˝ ! P.˝/ defined by

N.y/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

h 2 ˝ W h.t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

�.t/; if t 2 H;

S0.t/�.0/

C d

dt

Z t

0

S.t � s/v.s/ds

C
X

0<tk<t

S0.t � tk/Ik; Ik 2 Ik.y.t
�
k //I v 2 SF;y if t 2 J:

9

>>>>>>>>=

>>>>>>>>;

Obviously the fixed points of the operator N are integral solutions of the IVP
(8.1)–(8.3). Consider the multi-valued operators A; B W ˝ ! P.˝/ defined by

A.y/ WD

8

<̂

:̂

h 2 ˝ W h.t/ D

8

<̂

:̂

0; if t 2 HI
X

0<tk<t

S0.t � tk/Ik; Ik 2 Ik.y.t
�
k //; if t 2 J;

9

>=

>;

and

B.y/ WD

8

<̂

:̂

h 2 ˝ W h.t/ D

8

<̂

:̂

�.t/; if t 2 H;

S0.t/�.0/C
Z t

0

S.t � s/v.s/ds; v 2 SF;y if t 2 J:

9

>=

>;

It is clear that

N D A C B

The problem of finding integral solutions of (8.1)–(8.3) is reduced to finding integral
solutions of the operator inclusion y 2 A.y/CB.y/. We shall show that the operators
A and B satisfy all conditions of the Theorem 1.32. The proof will be given in
several steps.

Step 1: A is a contraction. Let y1; y2 2 ˝, then by (8.1.2) we have

Hd
�A.y1/;A.y2/

 D Hd

0

@
X

0<tk<t

S0.t � tk/Ik.y1.t
�
k //;

X

0<tk<t

S0.t � tk/Ik.y2.t
�
k //

1

A

� Me!t
mX

kD1
e�!tk ckjy1.t�k / � y2.t

�
k /j

� Me!b
mX

kD1
e�!tk ckky1 � y2kD:

Hence by (8.9), A is a contraction.
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Step 2: B has compact, convex values, and it is completely continuous. This will be
given in several claims.

Claim 1: B has compact values. The operator B is equivalent to the composition
LıSF of two operators on L1.J;E/;where L W L1.J;E/ ! ˝ is the continuous
operator defined by

L.v.t// D S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds; t 2 J:

Then, it suffices to show that L ı SF has compact values on ˝.
Let y 2 ˝ arbitrary, vn a sequence in SF;y, that is vn.t/ 2 F.t; yt/; a:e: t 2 J.
Since F.t; yt/ is compact, we may pass to a subsequence if necessary to get
that vn ! v weakly in L1w.J;E/ and v.t/ 2 F.t; yt/, a.e. t 2 J. An application
of Mazur’s Lemma implies that vn converges strongly to v in L1.J;E/. From
the continuity of L, it follows that Lvn.t/ ! Lv.t/ pointwise on J as n ! 1.
In order to show that the convergence is uniform, we first show that fLvng is
an equi-continuous sequence. Let 
1; 
2 2 J, then we have:

ˇ
ˇL.vn.
1// � L.vn.
2//

ˇ
ˇ D ˇ

ˇS0.
1/�.0/ � S0.
2/�.0/

C d

dt

Z 
1

0

S.
1 � s/vn.s/ds

� d

dt

Z 
2

0

S.
2 � s/vn.s/ds
ˇ
ˇ

� ˇ
ˇ
�

S0.
1/ � S0.
2/


�.0/
ˇ
ˇ

Cˇˇ lim
�!1

Z 
1

0

�

S0.
1 � s/ � S0.
2 � s/
�

B�vn.s/jds
ˇ
ˇ

�ˇˇ lim
�!1

Z 
2


1

S0.
2 � s/B�vn.s/jds
ˇ
ˇ:

As 
1 ! 
2, the right-hand side of the above inequality tends to zero. Since
S0.t/ is a strongly continuous operator and the compactness of S0.t/; t > 0,
implies the continuity in uniform topology (see [16], Lemma 3.4.1, p. 104,
[168]). Hence fLvng is equi-continuous, and an application of Arzelá–
Ascoli theorem implies that there exists a subsequence which is uniformly
convergent. Then we have Lvnj ! Lv 2 .L ı SF/.y/ as j 7! 1, and so
.LıSF/.y/ is compact. Therefore B is a compact valued multi-valued operator
on ˝.

Claim 2: B.y/ is convex for each y 2 ˝:
Let h1; h2 2 B.y/, then there exist v1; v2 2 SF;y such that, for each t 2 J
we have
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hi.t/ D

8

<̂

:̂

�.t/; if t 2 H,

S0.t/�.0/C d

dt

Z t

0

S.t � s/vi.s/ds; if t 2 J; i D 1; 2:

9

>=

>;

Let 0 � ı � 1: Then, for each t 2 J, we have

.ıh1C.1�ı/h2/.t/ D

8

ˆ̂

<̂

ˆ̂

:̂

�.t/; if t 2 H,

S0.t/�.0/

C d

dt

Z t

0

S.t � s/Œıv1.s/C .1 � ı/v2.s/�ds if t 2 J:

9

>>>=

>>>;

Since F.t; yt/ has convex values, one has

ıh1 C .1 � ı/h2 2 B.y/:

Claim 3: B maps bounded sets into bounded sets in ˝
Let Bq D fy 2 ˝I kyk˝ � qg; q > 0 be a bounded set in ˝. For each
h 2 B.y/, there exists v 2 SF;y such that

h.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds:

Then for each t 2 J

jh.t/j � Me!bj�.0/j C Me!t
Z t

0

e�!s'q.s/ds

� Me!bj�.0/j C Me!b
Z b

0

e�!s'q.s/ds;

this further implies that

khk1 � Me!bj�.0/j C Me!b
Z b

0

e�!s'q.s/ds:

Then, for all h 2 B.y/ � B.Bq/ D S

y2Bq
B.y/: Hence B.Bq/ is bounded.

Claim 4: B maps bounded sets into equi-continuous sets.
Let Bq be, as above, a bounded set and h 2 B.y/ for some y 2 Bq: Then, there
exists v 2 SF;y such that

h.t/ D S0.t/�.0/C lim
�!1

Z t

0

S0.t � s/B�v.s/ds; t 2 J:
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Let 
1; 
2 2 Jnft1; t2; : : :; tmg; 
1 < 
2. Thus if � > 0, we have

jh.
2/ � h.
1/j � jŒS0.
2/ � S0.
1/��.0/j

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1��

0

kS0.
2 � s/ � S0.
1 � s/B�v.s/ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1


1��
�

S0.
2 � s/ � S0.
1 � s/
�

B�v.s/ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
2


1

S0.
2 � s/B�v.s/ds

ˇ
ˇ
ˇ
ˇ
:

As 
1 ! 
2 and � becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since S0.t/ is a strongly continuous operator and the
compactness of S0.t/ for t > 0 implies the continuity in the uniform operator
topology (see [168]).

This proves the equi-continuity for the case where t ¤ ti; i D 1; : : :;mC1.
It remains to examine the equi-continuity at t D ti. First we prove the equi-
continuity at t D t�i , we have for some y 2 Bq, there exists v 2 SF;y such
that

h.t/ D S0.t/�.0/C lim
�!1

Z t

0

S0.t � s/B�v.s/ds; t 2 J:

Fix ı1 > 0 such that ftk; k ¤ ig \ Œti � ı1; ti C ı1� D ;. Let 0 < � < ı1:

First we prove equi-continuity at t D t�i . Fix ı1 > 0 such that ftk W k ¤ ig \
Œti � ı1; ti C ı1� D ;. For 0 < � < ı1 we have

jh.ti � �/ � h.ti/j � j �S0.ti � �/ � S0.ti/


�.0/j

C lim
�!1

Z ti��

0

j �S0.ti � � � s/ � S0.ti � s/


B�v.s/jds

CMe!b .q/
Z ti

ti��
e�!sp.s/ dsI

which tends to zero as � ! 0. Define

Oh0.t/ D h.t/; t 2 Œ0; t1�
and

Ohi.t/ D
�

h.t/; if t 2 .ti; tiC1�
h.tCi /; if t D ti:
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Next we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk W k ¤ ig \
Œti � ı2; ti C ı2� D ;. For 0 < � < ı2 we have

jOh.ti C �/ � Oh.ti/j � j �S0.ti C �/ � S0.ti/


�.0/j

C lim
�!1

Z ti

0

j �S0.ti C � � s/ � S0.ti � s/


B�v.s/jds

CMe!b .q/
Z tiC�

ti

e�!sp.s/ ds:

The right-hand side tends to zero as � ! 0. The equi-continuity for the cases

1 < 
2 � 0 and 
1 � 0 � 
2 follows from the uniform continuity of � on
the interval Œ�r; 0�. As consequence of Claims 3 and 4 together with Arzelá–
Ascoli theorem it suffices to show that B maps Bq into a precompact set in E.

Let 0 < t� < b be fixed and let � be a real number satisfying 0 < � < t�.
For y 2 Bq we define

h�.t
�/ D S0.t/�.0/C S0.�/ lim

�!1

Z t��

0

S0.t � s � �/B�v.s/ds:

where v 2 SF;y. Since
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z t��

0

S0.t � s � �/B�v.s/ ds

ˇ
ˇ
ˇ
ˇ

� Me!b .q/
Z t��

0

e�!sp.s/ds:

and S0.t/ is a compact operator for t > 0, the set

H�.t�/ D fh�.t
�/ W h� 2 B.y/g

is precompact in E for every �; 0 < � < t�:Moreover, for every h 2 B.y/ we
have

jh.t�/ � h�.t
�/j � Me!b .q/

Z t�

t���
e�!sp.s/ds:

Therefore, there are precompact sets arbitrarily close to the set H�.t�/ D
fh.t�/ W h 2 B.y/g: Hence the set H.t�/ D fh.t�/ W h 2 B.Bq/g
is precompact in E. Hence the operator B W ˝ ! P.˝/ is completely
continuous.

Claim 5: B has closed graph. Let fyng be a sequence such that yn ! y� in
˝; hn 2 B.yn/, and hn ! h�. We shall show that h� 2 B.y�/. hn 2 B.yn/

means that there exists vn 2 SF;yn such that

hn.t/ D S0.t/�.0/C lim
�!1

Z t

0

S0.t � s/B�vn.s/ds; t 2 J:
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We must prove that there exists v� 2 SF;y�
such that

h�.t/ D S0.t/�.0/C lim
�!1

Z t

0

S0.t � s/B�v�.s/ds; t 2 J:

Consider the linear and continuous operator K W L1.J;E/ ! C.J;E/
defined by

.Kv/.t/ D lim
�!1

Z t

0

S0.t � s/B�v.s/ds; t 2 J:

Then we have

j.hn.t/ � S0.t/�.0// � .h�.t/ � S0.t/�.0//j D jhn.t/ � h�.t/j
� khn � h�k1 ! 0; as n 7! 1:

From Lemma 1.11 it follows that K ı SF is a closed graph operator and from
the definition of K one has

hn.t/ � S0.t/�.0/ 2 K ı SF;yn :

As yn ! y� and hn ! h�, there is a v� 2 SF;y�
such that

h�.t/ � S0.t/�.0/ D lim
�!1

Z t

0

S0.t � s/B�v�.s/ds; t 2 J:

Hence the multi-valued operator B is upper semi-continuous.

Step 3: A priori bounds. Now it remains to show that the set

E D fy 2 ˝ W y 2 ˛A.y/C ˛B for some 0 < ˛ < 1g

is bounded. Let y 2 E ; then there exist v 2 SF;y and Ik 2 Ik.y.t�k // such that

y.t/ D ˛S0.t/�.0/C ˛ lim
�!1

Z t

0

S0.t � s/B�v.s/ds C ˛
X

0<tk<t

S0 .t � tk/ Ik

for some 0 < ˛ < 1: Thus, by (8.1.2), (8.1.5) for each t 2 J; we have

jy.t/j � Me!tj�.0/j C Me!t
Z t

0

e�!sp.s/ .kysk/ds

CMe!t
mX

kD1
e�!tk jIkj



174 8 Non-densely Defined Functional Differential Inclusions with Finite Delay

� Me!bk�k C Me!b
Z t

0

e�!sp.s/ .kysk/ds

CMe!b
mX

kD1
e�!tk ckjy.t�k /j C Me!t

mX

kD1
e�!tk ckjIk.0/j

� C C Me!b
Z t

0

e�!sp.s/ .kysk/ds

CMe!b
mX

kD1
e�!tk ckjy.t�k /j:

Now we consider the function � defined by

�.t/ D supfjy.s/j W �r � s � tg; 0 � t � b:

Then kysk � �.t/ for all t 2 J and there is a point t� 2 Œ�r; t� such that �.t/ D
jy.t�/j. If t� 2 Œ0; b�, by the previous inequality we have for t 2 Œ0; b� (note
t� � t)

�.t/ � C C Me!b
Z t

0

e�!sp.s/ .�.s//ds C Me!b
mX

kD1
e�!tk ck�.t/:

Then
 

1 � Me!b
mX

kD1
e�!tk ck

!

�.t/ � C C Me!b
Z t

0

e�!sp.s/ .�.s//ds:

Thus by (8.6) and (8.7) we have

�.t/ � C0 C C1

Z t

0

e�!sp.s/ .�.s//ds: (8.10)

Let us take the right-hand side of (8.10) as v.t/: Then we have

�.t/ � v.t/ for all t 2 J;

with

v.0/ D C0;

and

v0.t/ D C1e
�!tp.t/ .�.t//; a:e: t 2 J:
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Using the increasing character of  we get

v0.t/ � C1e
�!tp.t/ .v.t//; a:e: t 2 J:

Integrating from 0 to t we get
Z t

0

.v.s//0

 .v.s//
ds � C1

Z t

0

e�!tp.s//ds:

By a change of variable we get
Z v.t/

v.0/

du

 .u/
� C1

Z t

0

e�!tp.s//ds

� C1

Z b

0

e�!tp.s//ds:

Hence by (8.5) there exist a constant N such that

�.t/ � v.t/ � N for all t 2 J:

Now from the definition of � it follows that

kyk˝ � max.k�kD;N/; for all y 2 E :
This shows that the set E is bounded. As a consequence of Theorem 1.32 we
deduce that ACB has a fixed point y defined on the interval Œ�r; b� which is the
integral solution of problem (8.1)–(8.3). ut
We now present another existence result for the problem (8.1)–(8.3) where a

Lipschitz condition on the multi-valued F with respect to its second variable is
assumed instead of a Wintner growth condition used in Theorem 8.2.

Theorem 8.3. Assume that (8.1.1)–(8.1.4), ˚.0/ 2 D.A/ hold and the condition

(8.3.1) There exists a function l 2 L1.J;RC/ such that:

Hd.F.t; u/;F.t; Nu// � l.t/ku � NukD a.e. t 2 J; and for all u; Nu 2 D;

and

Hd.0;F.t; 0// � l.t/ for a.e. t 2 J;

where
Z b

0

e�!sl.s/ds < 1,

C�
0 D

Me!b

 

k�k C
mX

kD1
e�!tk ck jIk .0/j C

Z b

0

e�!sl.s/ds

!

1 � Me!b

mX

kD1
e�!tk ck

(8.11)
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and

C�
1 D Me!b

1 � Me!b

mX

kD1
e�!tk ck

: (8.12)

If

Me!b
mX

kD1
e�!tk ck < 1; (8.13)

then the problem (8.1)–(8.3) has at least one integral solution on Œ�r; b� :

Proof. Let A and B the operators defined in Theorem 8.2. It can be shown, as in the
proof of Theorem 8.2 that B is completely continuous and upper semi-continuous
and A is a contraction. Now we prove that

E D fy 2 ˝ W y 2 ˛A.y/C ˛B.y/; for some 0 < ˛ < 1g

is bounded.
Let y 2 E ; then there exist v 2 SF;y and Ik 2 Ik.y.t�k // such that for each t 2 J

y.t/ D ˛S0.t/�.0/C ˛
d

dt

Z t

0

S.t � s/v.s/ds C ˛
X

0<tk<t

S0 .t � tk/ Ik;

for some 0 < ˛ < 1: Thus, by (8.1.2), (8.3.1), for each t 2 J; we have

jy.t/j � Me!tj�.0/j C Me!t
Z t

0

e�!sjv.s/jds C Me!t
mX

kD1
e�!tk jIkj

� Me!tj�.0/j C Me!t
Z t

0

e�!sl.s/kyskds

CMe!t
Z t

0

e�!sl.s/ds C Me!t
mX

kD1
e�!tk ckjy.t�k /j

CMe!t
mX

kD1
e�!tk ckjIk.0/j

� Me!b

 

k�k C
Z t

0

e�!sl.s/ds C
mX

kD1
e�!tk ckjIk .0/ j

!

CMe!b
Z t

0

e�!sl.s/kyskds C Me!b
mX

kD1
e�!tk cky

�

t�k


:
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Now we consider the function � defined by

�.t/ D supfjy.s/j W �r � s � tg; 0 � t � b:

Then kysk � �.t/ for all t 2 J and there is a point t� 2 Œ�r; t� such that �.t/ D
jy.t�/j. If t� 2 Œ0; b�, by the previous inequality we have for t 2 Œ0; b� (note t� � t)

�.t/ � Me!b

 

k�k C
Z t

0

e�!sl.s/ds C
mX

kD1
e�!tk ckjIk .0/ j

!

CMe!b
Z t

0

e�!sl.s/�.s/ds C Me!b
mX

kD1
e�!tk ck�.t/:

Then

�.t/ � C�
0 C C�

1

Z t

0

e�!sl.s/�.s/ds:

By Gronwall inequality ([131]) we get for each t 2 J

�.t/ � C�
0 exp

�

C�
1

Z t

0

e�!sl.s/ds

�

:

Hence

k�k1 � C�
0 exp

�

C�
1

Z b

0

e�!sl.s/ds

�

WD M�:

Thus

kyk˝ � max.k�kD;M
�/:

This shows that the set E is bounded. As a consequence of Theorem 1.32 we deduce
that A C B has a fixed point which is a integral solution of problem (8.1)–(8.3).

The following result concerns the compactness property of the solutions set of
problem (8.1)–(8.3). ut
Theorem 8.4. Under assumptions (8.1.1)–(8.1.4), and

(8.4.1) There exists p 2 C.J;RC/ such that

kF.t; u/k � p.t/ for each t 2 J; and each u 2 D:

the solution set of (8.1)–(8.3) in not empty and compact in ˝.
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Proof. Let

S D fy 2 ˝ W y is solution of (8.1)–(8.3)g:
From Theorem 8.2, S 6D ;. Now, we prove that S is compact. Let .yn/n2N 2 S; then
there exist vn 2 SF;yn and In

k 2 Ik.yn.t�k // such that

yn.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/vn.s/ds C
X

0<tk<t

S0 .t � tk/ In
k :

From .8:1:2/; .8:4:1/; we can prove that there exists an M1 > 0 such that

kynk1 � M1; for every n � 1:

As in Claim 4 in Theorem 8.2, we can easily show using (7.1.2), (8.4.1) that the
set fyn W n � 1g is equi-continuous in ˝; hence by Arzelá–Ascoli Theorem we can
conclude that, there exists a subsequence (denoted again by fyng) of fyng such that yn

converges to y in˝:We shall show that there exist v.:/ 2 F.:; y:/ and Ik 2 Ik.y.t�k //
such that

y.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds C
X

0<tk<t

S0 .t � tk/ Ik:

Since F.t; :/ is upper semi-continuous, then for every " > 0, there exists n0.�/ � 0

such that for every n � n0; we have

vn.t/ 2 F.t; ynt/ � F.t; yt/C "B.0; 1/; a.e. t 2 J:

Since F.:; :/ has compact values, there exists subsequence vnm.:/ such that

vnm.:/ ! v.:/ as m ! 1
and

v.t/ 2 F.t; yt/; a.e. t 2 J:

It is clear that

jvnm.t/j � p.t/; a.e. t 2 J:

By Lebesgue’s dominated convergence theorem, we conclude that v 2 L1.J;E/
which implies that v 2 SF;y: Also, since Ik has closed graph we get Ik 2 Ik.y.t�k //.
Thus

y.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds C
X

0<tk<t

S0 .t � tk/ Ik:

Then S 2 Pcp.˝/: ut
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8.3 Extremal Integral Solutions with Local Conditions

In this section we shall prove the existence of maximal and minimal integral
solutions of problem (8.1)–(8.3) under suitable monotonicity conditions on the
functions involved in it. Let us give the definition of the extremal integral solutions
of the problem (8.1)–(8.3)

Definition 8.5. We say that a continuous function u W Œ�r; b� ! E is a lower
integral solution of problem (8.1)–(8.3) if there exist v 2 L1.J;E/ and Ik 2
Ik.u.t�k // such that v.t/ 2 F.t; ut/ a.e. on J; y.t/ D �.t/; t 2 H; and

u.t/ � S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds C
X

0<tk<t

S0 .t � tk/ Ik; t 2 J; t ¤ tk

and u.tCk / � u.t�k / � Ik; k D 1; : : : ;m. Similarly an upper integral solution w of
problem (8.1)–(8.3) is defined by reversing the order.

Definition 8.6. A solution xM of problem (8.1)–(8.3) is said to be maximal if for
any other solution x of problem (8.1)–(8.3) on J, we have that x.t/ � xM.t/ for each
t 2 J. Similarly a minimal solution of problem (8.1)–(8.3) is defined by reversing
the order of the inequalities.

Definition 8.7. A multi-valued function F.t; x/ is called strictly monotone increas-
ing in x almost everywhere for t 2 J, if F.t; x/ � F.t; y/ a.e. t 2 J for all x; y 2 D
with x < y. Similarly F.t; x/ is called strictly monotone decreasing in x almost
everywhere for t 2 J, if F.t; x/ � F.t; y/ a.e. t 2 J for all x; y 2 D with x < y.

Let us the following assumptions.

(8.7.1) The multi-valued function F.t; y/ is strictly monotone increasing in y for
almost each t 2 J.

(8.7.2) S0.t/ is preserving the order, that is S0.t/v � 0 whenever v � 0.
(8.7.3) The multi-valued functions Ik, k D 1; : : :;m are strictly monotone increas-

ing.
(8.7.4) The problem (8.1)–(8.3) has a lower integral solution v and an upper integral

solution w with v � w.

Theorem 8.8. Assume that assumptions (8.1.1)–(8.1.4) and (8.7.1)–(8.7.4) hold.
Then problem (8.1)–(8.3) has a minimal and a maximal integral solutions on Œ�r; b�.

Proof. It can be shown, as in the proof of Theorem 8.3, that B is completely
continuous and upper semi-continuous and A is a contraction on Œv;w�. We shall
show that A and B are isotone increasing on Œv;w�. Let y; y 2 Œv;w� be such that
y � y; y 6D y: Then by (8.7.2), (8.7.3), we have for each t 2 J
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A.y/ D
8

<

:
h 2 ˝ W h.t/ D

X

0<tk<t

S0.t � tk/Ik; Ik 2 Ik.y.t
�
k //;

9

=

;

�
8

<

:
h 2 ˝ W h.t/ D

X

0<tk<t

S0.t � tk/Ik; Ik 2 Ik.Ny.t�k //;
9

=

;

D A.Ny/:

Similarly, by (8.7.1) and (8.7.2) and

B.y/ W D
�

h 2 ˝ W h.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds; v 2 SF;y

�

�
�

h 2 ˝ W h.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds; v 2 SF;Ny
�

D B.Ny/:

Therefore A and B are isotone increasing on Œv;w�. Finally, let x 2 Œv;w� be any
element. By (8.7.4) we deduce that

v � A.v/C B.v/ � A.x/C B.x/ � A.w/C B.w/ � w;

which shows that A.x/ C B.x/ 2 Œv;w� for all x 2 Œv;w�. Thus, A and B satisfy
all conditions of Theorem 1.32, hence problem (8.1)–(8.3) has a maximal and a
minimal integral solutions on Œ�r; b�. This completes the proof. ut

8.4 Integral Solutions with Nonlocal Conditions

In this section we prove existence results for problem of the form

y0.t/ � Ay.t/ 2 F.t; yt/; a:e: t 2 J D Œ0; b� ; t ¤ tk; k D 1; : : : ;m (8.14)

�yjtDtk 2 Ik.y.t
�
k //; k D 1; : : : ;m (8.15)

y.t/C ht .y/ D �.t/; t 2 Œ�r; 0� ; (8.16)

where ht W ˝ ! D.A/ is a given function, A, F, and Ik are as above.
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8.4.1 Main Result

Definition 8.9. A function y 2 ˝ is said to be an integral solution of prob-
lem (8.14)–(8.16) if y.t/ D �.t/� ht .y/ ; t 2 Œ�r; 0�; and there exist v.:/ 2 L1.J;E/
and Ik 2 Ik.y.t�k // such that v.t/ 2 F.t; yt/ a.e. t 2 J, and y satisfies the integral
equation,

y.t/ D S0.t/ .�.0/ � h0.y//C d

dt

Z t

0

S.t � s/v.s/ds C
X

0<tk<t

S0.t � tk/Ik:

Theorem 8.10. Assume that hypotheses (8.1.1)–(8.1.4) hold and moreover

(A1) The function h is continuous with respect to t, and there exists a constant
˛ > 0 such that

jht.u/j � ˛; u 2 ˝

and for each k > 0 the set

f�.0/ � h0.y/; y 2 ˝; kyk˝ � kg

is precompact in E;
(A2) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! .0;1/ such that

kF.t; x/k � p.t/ .kxkD/; a:e: t 2 J; for all x 2 D

with
Z 1

QC0
du

 .u/
> QC1

Z b

0

e�!sp.s/ds; (8.17)

where

QC0 D
Me!bŒk�kD C ˛ C

mX

kD1
e�!tk ckjIk.0/j�

1 � Me!b

mX

kD1
e�!tk ck

; (8.18)

and

QC1 D Me!b

1 � Me!b

mX

kD1
e�!tk ck

: (8.19)
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Moreover, we suppose that

Me!b
mX

kD1
e�!tk ck < 1: (8.20)

Then the problem (8.14)–(8.16) has at least one integral solution on Œ�r; b�:

Proof. Consider the multi-valued operators A1; B1 W ˝ ! P.˝/:

B1.y/ WD

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

f 2 ˝ W f .t/ D

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

�.t/ � ht.y/; if t 2 H;

S0.t/ .�.0/ � h0.y//

C d

dt

Z t

0

S.t � s/v.s/ds; v 2 SF;y if t 2 J;

9

>>>>>=

>>>>>;

and

A1.y/ WD

8

<̂

:̂

f 2 ˝ W f .t/ D

8

<̂

:̂

0; if t 2 H;
X

0<tk<t

S0.t � tk/Ik; Ik 2 Ik.y.t
�
k // if t 2 J:

9

>=

>;

Then the problem of finding the solution of problem (8.14)–(8.16) is reduced
to finding the solution of the operator inclusion y 2 A1.y/ C B1.y/. As in the
previous section, it can be shown that the operators A1 and B1 satisfy all conditions
of Theorem 1.32. ut

8.5 Application to the Control Theory

In this section we treat the controllability of impulsive functional differential
inclusions using the argument of the previous sections. More precisely we will
consider the following problem:

y0.t/�Ay.t/ 2 F.t; yt/CBu.t/; a:e: t 2 J D Œ0; b� ; t ¤ tk; k D 1; : : : ;m (8.21)

�yjtDtk 2 Ik.y.t
�
k //; k D 1; : : : ;m (8.22)

y.t/ D �.t/; t 2 Œ�r; 0� ; (8.23)

where A, F, and Ik are as above, the control function u .�/ is given in L2 .J;U/ a
Banach space of admissible control functions with U as a Banach. Finally B is a
bounded linear operator from U to D.A/:
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Definition 8.11. A function y 2 ˝ is said to be an integral solution of prob-
lem (8.21)–(8.23) if y.t/ D �.t/; t 2 Œ�r; 0�; and there exist v.:/ 2 L1.J;E/ and
Ik 2 Ik.y.t�k // such that v.t/ 2 F.t; yt/ a.e. t 2 J, and y satisfies the impulsive
integral equation,

y.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds

C d

dt

Z t

0

S.t � s/Bu.s/ds C
X

0<tk<t

S0.t � tk/Ik:

Definition 8.12. The system (8.21)–(8.23) is said to be controllable on the interval
Œ�r; b� if for every initial function � 2 D and every y1 2 D.A/, there exists a control
u 2 L2.J;U/, such that the integral solution y.t/ of system (8.21)–(8.23) satisfies
y.b/ D y1.

8.5.1 Main Result

Let us the following assumptions

(B1) The linear operator W W L2 .J;U/ ! D.A/, defined by

Wu D d

dt

Z b

0

S.b � s/Bu.s/ds;

has a bounded inverse operator W�1 which takes values in L2.J;U/nKerW, and
there exist positive constants M; M1; such that kBk � M and kW�1k � M1:

(B2) F has compact and convex values, and there exists a function l 2 L1.J;RC/
such that

Hd.F.t; x/;F.t; y// � l.t/kx � ykD for a.e. t 2 J; and for all x; y 2 D;

with

Hd.0;F.t; 0// � l.t/; a:e: t 2 J:

(B3) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing
function  W Œ0;1/ ! .0;1/ such that

kF.t; x/k � p.t/ .kxkD/; a:e: t 2 J; for all x 2 D

with
Z b

0

e�!sp.s/ds < 1,

Z 1

C�
0

ds

s C  .s/
D 1 (8.24)



184 8 Non-densely Defined Functional Differential Inclusions with Finite Delay

where

C�
0 D C�

1 � Me!b

mX

kD1
e�!tk ck

; (8.25)

C� D Me!b.1C MMM1e
!bb/k�kD C Me!bMM1bjy1j

C.Me!b C MMM1e
2!bb/

mX

kD1
e�!tk ckjIk.0/j:

Theorem 8.13. Assume that hypotheses (8.1.1)–(8.1.4) hold. Moreover we suppose
that

M2e2!bMM1b
Z b

0

e�!sl.s/ds C Me!b.1C Me!bMM1b/
mX

kD1
e�!tk ck < 1: (8.26)

Then the problem (8.21)–(8.23) is controllable on Œ�r; b�.

Remark 8.14. The construction of operator W�1 and its properties are discussed in
[170].

Proof. Using hypothesis (B1) for an arbitrary function y .:/ we define the control

uy.t/ D W�1
	

y1 � S0.b/�.0/ � lim
�!1

Z b

0

S0.b � s/B�v.s/ds

�
mX

kD1
S0.b � tk/Ik

#

.t/;

where v 2 SF;y and Ik 2 Ik.y.t�k //. Consider the multi-valued operators defined
from ˝ to P.˝/ by:

A.y/ WD

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

f 2 ˝ W f .t/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

0; if t 2 H;

d

dt

Z t

0

S.t � s/.Buy/.s/ds

C
X

0<tk<t

S0.t � tk/Ik; if t 2 J;

9

>>>>>>=

>>>>>>;

and

B.y/ WD

8

<̂

:̂

f 2 ˝ W f .t/ D

8

<̂

:̂

�.t/; if t 2 H;

S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds if t 2 J:

9

>=

>;
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As in Theorem 8.2, we can prove that the operators A is a contraction operator,
and B is completely continuous and upper semi-continuous with compact convex
values.

Now, we prove that the set

E D fy 2 ˝j y 2 ˛Ay C ˛By; 0 � ˛ � 1g
is bounded.

Let y 2 E : be any element, then there exists v 2 SF;y and such that

y.t/ D ˛S0.t/�.0/C ˛
d

dt

Z t

0

S.t � s/v.s/ds

C˛ d

dt

Z t

0

S.t � s/Buy.s/ds C ˛
X

0<tk<t

S0.t � tk/Ik:

This implies by (B1)–(B3) that, for each t 2 J; we have

jy.t/j � Me!b

"

.1C MMM1be!b/k�kD

CMM1bjy1j C .Me!b C M2MM1be!b/

mX

kD1
e�!tk ckjIk.0/j

#

CŒMe!b C M2MM1be2!b�

Z t

0

e�!sp.s/ .kysk/ds

CM2MM1be2!b
Z t

0

e�!s
X

0<tk<s

e�!tk ckjy.t�k //jds

CMe!b
mX

kD1
e�!tk ckjy.t�k /j:

Consider the function � defined by

�.t/ D supfjy.s/j W �r � s � tg; 0 � t � b:

Then kysk � �.t/ for all t 2 J and there is a point t� 2 Œ�r; t� such that
�.t/ D jy.t�/j. If t� 2 Œ0; b�, by the previous inequality we have for t 2 Œ0; b� (note
t� � t)

�.t/ � C� C �

Me!b C M2MM1be2!b
�
Z t

0

e�!sp.s/ .�.s//ds

CMe!b
mX

kD1
e�!tk ck�.t/

CM2MM1be2!b
Z t

0

e�!s
X

0<tk<s

e�!tk ck�.s/ds:
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Then
"

1 � Me!b
mX

kD1
e�!tk ck

#

�.t/ � C� C M2MM1be2!b
Z t

0

e�!s
X

0<tk<s

e�!tk ck�.s/ds

C �

Me!b C M2MM1be2!b
�
Z t

0

e�!sp.s/ .�.s//ds:

Thus we have

�.t/ � C�
0 C C�

1

Z t

0

e�!s
X

0<tk<s

e�!tk ck�.s/ds

CC�
2

Z t

0

e�!sp.s/ .�.s//ds

� C�
0 C

Z t

0

OM.s/Œ�.s/C  .�.s//�ds;

where

OM.s/ D max.C�
1 e�!s

X

0<tk<s

e�!tk ck;C
�
2 e�!sp.s//:

Set

v.t/ D C�
0 C

Z t

0

OM.s/Œ�.s/C  .�.s//�ds: (8.27)

Then we have

�.t/ � v.t/ for all t 2 J:

Differentiating the both sides of (8.27) we get

v0.t/ D OM.t/Œ�.t/C  .�.t//�; a:e: t 2 J;

and

v.0/ D C�
0 :

Using the nondecreasing character of  we obtain

v0.t/ � OM.t/Œv.t/C  .v.t//�; a:e: t 2 J;

that is

v0.t/
v.t/C  .v.t//

� OM.t/:
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Integrating from 0 to t both sides of this inequality, we get

Z t

0

v0.s/
v.s/C  .v.s//

ds �
Z t

0

OM.s/ds:

By a change of variables we get

Z v.t/

v.0/

du

u C  .u/
� k OMkL1 < 1:

Consequently, by (8.24), there exists a constant d such that �.t/ � v.t/ � d; t 2 J
and hence from the definition of � it follows that

kyk˝ � max.k�kD; d/:

This shows that the set E is bounded. As a consequence of Theorem 1.32 we deduce
that A C B has a fixed point which is a integral solution of problem (8.21)–(8.23).
Thus the system (8.21)–(8.23) is controllable on Œ�r; b�. ut

8.5.2 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

@

@t
z.t; x/ 2 @2

@x2
z.t; x/

C ŒQ1.t; z.t � r; x//;Q2.t; z.t � r; x//�; x 2 Œ0; ��; t 2 Œ0; b�nft1; t2; : : : ; tmg:
(8.28)

z.tCk ; x/ � z.t�k ; x/ 2 bkjz.t�k ; x/jB.0; 1/; x 2 Œ0; ��; k D 1; : : : ;m (8.29)

z.t; 0/ D z.t; �/ D 0; t 2 J WD Œ0; b� (8.30)

z.t; x/ D �.t; x/; t 2 H; x 2 Œ0; ��; (8.31)

where bk > 0; k D 1; : : : ;m; � 2 D D f N W H � Œ0; �� ! RI N is continuous
everywhere except for a countable number of points at which N .s�/; N .sC/ exist
with N .s�/ D N .s/g; 0 D t0 < t1 < t2 < � � � < tm < tmC1 D b; z.tCk / D

lim
.h;x/!.0C;x/

z.tk C h; x/; z.t�k / D lim
.h;x/!.0�;x/

z.tk C h; x/, where Q1; Q2 W J � R !
R; are given functions, and B.0; 1/ the closed unit ball. We assume that for each
t 2 J; Q1.t; �/ is lower semi-continuous (i.e, the set fy 2 R W Q1.t; y/ > �g is open
for each � 2 R), and assume that for each t 2 J; Q2.t; �/ is upper semi-continuous
(i.e., the set fy 2 R W Q2.t; y/ < �g is open for each � 2 R).
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Let

y.t/.x/ D z.t; x/; t 2 J; x 2 Œ0; ��;
Ik.y.t�k //.x/ D bkz.t�k ; x/; x 2 Œ0; ��; k D 1; : : : ;m

F.t; �/.x/ D ŒQ1.t; �.�; x//;Q2.t; �.�; x//�; � 2 H; x 2 Œ0; ��;

and

�.�/.x/ D �.�; x/; � 2 H; x 2 Œ0; ��:

It is clear that F is compact and convex valued, and it is upper semi-continuous
(see [101]). Assume that there are p 2 C.J;RC/ and  W Œ0;1/ ! .0;1/

continuous and nondecreasing such that

max.jQ1.t; y/j; jQ2.t; y/j/ � p.t/ .jyj/; t 2 J; and y 2 R;

and
Z 1

1

ds

 .s/
D C1:

Consider E D C.Œ0; ��/, the Banach space of continuous function on Œ0; �� with
values in R. Define the linear operator A on E by

Az D @2

@x2
z;

on

D.A/ D fz 2 C.Œ0; ��/ W z.0/ D z.�/ D 0;
@2

@x2
z 2 C.Œ0; ��/g:

Now, we have

D.A/ D C0.Œ0; ��/ D fv 2 C.Œ0; ��/ W v.0/ D v.�/ D 0g ¤ C.Œ0; ��/:

It is well known from [100] that A is sectorial, .0;C1/ 	 �.A/ and for � > 0

kR.�;A/kB.E/ � 1

�
:

It follows that A generates an integrated semigroup .S.t//t�0 and that kS0.t/kB.E/ �
e��t for t 2 J for some constant � > 0 and A satisfied the Hille–Yosida condition.
Assume that there exist functionsel1; el2 2 L1.J;RC/ such that

jQ1.t;w/ � Q1.t;w/j � el1.t/jw � wj; t 2 J; w;w 2 R;
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and

jQ2.t;w/ � Q2.t;w/j � el2.t/jw � wj; t 2 J; w;w 2 R:

We can show that problem (8.21)–(8.23) is an abstract formulation of prob-
lem (8.28)–(8.31). Since all the conditions of Theorem 8.2 are satisfied, the
problem (8.28)–(8.31) has a solution z on Œ�r; b� � Œ0; ��:

8.6 Notes and Remarks

The results of Chap. 8 are taken from Abada et al. [2, 4]. Other results may be found
in [51, 54, 74, 109, 110].



Chapter 9
Impulsive Semi-linear Functional
Differential Equations

9.1 Introduction

In this chapter, we shall prove the existence of mild solutions of first order impulsive
functional equations in a separable Banach space. Our approach will be based for
the existence of mild solutions, on a fixed point theorem of Burton and Kirk [88] for
the sum of a contraction map and a completely continuous map.

9.2 Semi-linear Differential Evolution Equations
with Impulses and Delay

9.2.1 Introduction

In this section, we shall establish sufficient conditions for the existence of mild and
extremal mild solutions of first order impulsive functional equations in a separable
Banach space .E: j:j/ of the form:

y0.t/ � Ay.t/ D f .t; yt/; a:e: t 2 J D Œ0; b� ; t ¤ tk; k D 1; : : : ;m (9.1)

�yjtDtk D Ik.y.t
�
k //; k D 1; : : : ;m (9.2)

y.t/ D �.t/; t 2 Œ�r; 0� ; (9.3)

where f W J � D ! E is a given function, D D f W Œ�r; 0� ! E;  is continuous
everywhere except for a finite number of points s at which  .s�/ ;  

�

sC exist and
 .s�/ D  .s/g, � 2 D; 0 < r < 1; 0 D t0 < t1 < � � � < tm < tmC1 D b;

© Springer International Publishing Switzerland 2015
M. Benchohra, S. Abbas, Advanced Functional Evolution Equations
and Inclusions, Developments in Mathematics 39,
DOI 10.1007/978-3-319-17768-7_9

191
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Ik 2 C .E;E/ ; k D 1; 2; : : : ;m; A W D.A/ � E ! E is the infinitesimal
generator of a C0-semigroup T.t/; t � 0, and E a real separable Banach space
with norm j:j : In the case where the impulses are absent (i.e., Ik D 0; k D 1; : : : ;m)
and F is a single or multi-valued map and A is a densely defined linear operator
generating a C0-semigroup of bounded linear operators the problem (9.1)–(9.3) has
been investigated on compact intervals in, for instance, the monographs by Ahmed
[16], Hu and Papageorgiou [143], Kamenskii et al. [144], and Wu [184], and the
papers of Benchohra and Ntouyas [58, 60, 63].

Next, we study the impulsive functional differential equations with nonlocal
initial conditions of the form

y0.t/ � Ay.t/ D f .t; yt/; a:e: t 2 J D Œ0; b� ; t ¤ tk; k D 1; : : : ;m (9.4)

�yjtDtk D Ik.y.t
�
k //; k D 1; : : : ;m (9.5)

y.t/C ht .y/ D �.t/; t 2 Œ�r; 0� ; (9.6)

where ht W PC.Œ�r; b�;E/ ! E is a given function. The nonlocal condition can be
applied in physics with better effect than the classical initial condition y .0/ D y0.
For example, ht .y/ may be given by

ht .y/ D
p
X

iD1
ciy.ti C t/; t 2 Œ�r; 0�

where ci; i D 1; : : : ; p; are given constants and 0 < t1 < � � � < tp � b:

9.2.2 Existence of Mild Solutions

Definition 9.1. A function y 2 PC .Œ�r; b� ;E/ is said to be a mild solution of
problem (11.15)–(11.17) if y.t/ D �.t/; t 2 Œ�r; 0�; and y is a solution of impulsive
integral equation

y.t/ D T.t/�.0/C
Z t

0

T.t � s/f .t; ys/ds C
X

0<tk<t

T.t � tk/Ik.y.t
�
k //; t 2 J:

Let us introduce the following hypotheses:

(9.1.1) A W D.A/ � E ! E is the infinitesimal generator of a C0-semigroup
fT.t/g, t 2 J which is compact for t > 0 in the Banach space E. Let
M D supfkT.t/kB.E/ W t 2 Jg;
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(9.1.2) There exist constants dk > 0; k D 1; : : : ;m with M
mX

kD1
dk < 1 such that

for each y; x 2 E

jIk.y/ � Ik.x/j � dk jy � xj

(9.1.3) The function f W J � D ! E is Carathéodory;
(9.1.4) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! .0;1/ such that

jf .t; x/j � p.t/ .kxkD/; a:e: t 2 J; for all x 2 D;

with
Z 1

Do

ds

 .s/
> D1 kpkL1 ;

where

D0 D
M.k�k C

mX

kD1
jIk.0/j/

1 � M
mX

kD1
dk

; D1 D M

1 � M
mX

kD1
dk

:

Theorem 9.2. Assume that (9.1.1)–(9.1.4) hold. Then the problem (9.1)–(9.3) has
at least one mild solution on Œ�r; b�:

Proof. Consider the two operators:

A;B W PC .Œ�r; b� ;E/ ! PC .Œ�r; b� ;E/ :

defined by

A.y/ .t/ WD

8

<̂

:̂

0; if t 2 H;
X

0<tk<t

T .t � tk/ Ik
�

y
�

t�k


; if t 2 J;

and

B.y/ .t/ WD

8

<̂

:̂

�.t/; if t 2 H;

T.t/�.0/C
Z t

0

T.t � s/f .s; ys/ ds; if t 2 J:
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Then, the problem of finding the solution of problem (9.1)–(9.3) is reduced to
finding the solution of the operator equation A .y/ .t/CB .y/ .t/ D y .t/ ; t 2 Œ�r; b�.
We shall show that the operators A and B satisfy all the conditions of Theorem 1.32
For better readability, we break the proof into a sequence of steps.

Step 1: B is continuous.

Let fyng be a sequence such that yn ! y in PC.Œ�r; b�;E/. Then for t 2 J

jB.yn/.t/ � B.y/.t/j D
ˇ
ˇ
ˇ
ˇ

Z t

0

T.t � s/Œf .s; yns/ � f .s; ys/�ds

ˇ
ˇ
ˇ
ˇ

� M
Z b

0

jf .s; yns/ � f .s; ys/j ds:

Since f .s; �/ is continuous for a.e. s 2 J, we have by the Lebesgue dominated
convergence theorem

jB.yn/.t/ � B.y/.t/j ! 0 as n ! 1:

Thus B is continuous.

Step 2: B maps bounded sets into bounded sets in PC.Œ�r; b�;E/.

It is enough to show that for any q > 0 there exists a positive constant l such that
for each y 2 Bq D fy 2 PC.Œ�r; b�;E/ W kyk � qg we have kB .y/k � l: So choose
y 2 Bq; then we have for each t 2 J;

jB.y/.t/j D
ˇ
ˇ
ˇ
ˇ
T.t/�.0/C

Z t

0

T.t � s/f .s; ys/ds

ˇ
ˇ
ˇ
ˇ

� Mj�.0/j C M .q/
Z b

0

p.s/ ds:

Then we have

kB.y/k � Mk�k C M .q/kpkL1 WD l:

Step 3: B maps bounded sets into equi-continuous sets of PC.Œ�r; b�;E/:

We consider Bq as in step 2 and let 
1; 
2 2 Jn ft1; : : : ; tmg ; 
1 < 
2. Thus if
� > 0 and � � 
1 < 
2 we have

jB.y/.
2/ � B.y/.
1/j � jT.
2/�.0/ � T.
1/�.0/j

C .q/
Z 
1��

0

kT.
2 � s/ � T.
1 � s/kB.E/p.s/ds

C .q/
Z 
1


1��
kT.
2 � s/ � T.
1 � s/kB.E/p.s/ds

C .q/
Z 
2


1

kT.
2 � s/kB.E/p.s/ds:
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As 
1 ! 
2 and � become sufficiently small, the right-hand side of the above
inequality tends to zero, since T.t/ is a strongly continuous operator and the
compactness of T.t/ for t > 0 implies the continuity in the uniform operator
topology [16]. This proves the equi-continuity for the case where t ¤ ti; k D
1; 2; : : : ;m C 1. It remains to examine the equi-continuity at t D ti.

First we prove equi-continuity at t D t�i . Fix ı1 > 0 such that ftk W k ¤ ig \
Œti � ı1; ti C ı1� D ;. For 0 < h < ı1 we have

jB.y/.ti � h/ � B.y/.ti/j � j .T.ti � h/ � T.ti// �.0/j

C
Z ti�h

0

j .T.ti � h � s/ � T.ti � s// f .s; ys/jds

C .q/M
Z ti

ti�h
p.s/dsI

which tends to zero as h ! 0. Define

OB0.y/.t/ D B.y/.t/; t 2 Œ0; t1�;

and

OBi.y/.t/ D
� B.y/.t/; if t 2 .ti; tiC1�
B.y/.tCi /; if t D ti:

Next we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk W k ¤ ig \
Œti � ı2; ti C ı2� D ;. For 0 < h < ı2 we have

j OB.y/.ti C h/ � OB.y/.ti/j � j .T.ti C h/ � T.ti// �.0/j

C
Z ti

0

j .T.ti C h � s/ � T.ti � s// f .s; ys/jds

C .q/M
Z tiCh

ti

p.s/ds:

The right-hand side tends to zero as h ! 0. The equi-continuity for the cases

1 < 
2 � 0 and 
1 � 0 � 
2 follows from the uniform continuity of � on the
interval H:

As a consequence of Steps 1–3 together with Arzelá–Ascoli theorem, it suffices
to show that B maps B into a precompact set in E.

Let 0 < t < b be fixed and let � be a real number satisfying 0 < � < t. For
y 2 Bq we define

B�.y/.t/ D T.t/�.0/C T.�/
Z t��

0

T.t � s � �/f .s; ys/ds:
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Since T.t/ is a compact operator, the set

Y�.t/ D fB�.y/.t/ W y 2 Bqg

is precompact in E for every �; 0 < � < t: Moreover, for every y 2 Bq we have

jB.y/.t/ � B�.y/.t/j �  .q/
Z t

t��
kT.t � s/kB.E/p.s/ds

�  .q/M
Z t

t��
p.s/ds:

Therefore, there are precompact sets arbitrarily close to the set Y�.t/ D fB�.y/.t/ W
y 2 Bqg: Hence the set Y.t/ D fB.y/.t/ W y 2 Bqg is precompact in E. Hence the
operator B W PC .Œ�r; b� ;E/ ! PC .Œ�r; b� ;E/ is completely continuous.

Step 4: A is a contraction

Let x; y 2 PC.Œ�r; b�;E/. Then for t 2 J

jA.y/.t/ � A.x/.t/j D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

0<tk<t

T .t � tk/
�

Ik
�

y
�

t�k
 � Ik

�

x
�

t�k


ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� M
X

0<tk<t

ˇ
ˇIk
�

y
�

t�k
 � Ik

�

x
�

t�k
ˇ
ˇ

� M
mX

kD1
dk

ˇ
ˇy
�

t�k
 � x

�

t�k
ˇ
ˇ

� M
mX

kD1
dk ky � xk :

Then

kA.y/ � A.x/k � M
mX

kD1
dk ky � xk ;

which is a contraction, since M
mP

kD1
dk < 1.

Step 5: A priori bounds. Now it remains to show that the set

E D
n

y 2 PC.Œ�r; b�;E/ W y D �B.y/C �A
� y

�

�

for some 0 < � < 1
o

is bounded. Let y 2 E ; then y D �B.y/C �A
� y

�

�

for some 0 < � < 1: Thus, for

each t 2 J;
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y.t/ D �T.t/�.0/C �

tZ

0

T.t � s/f .s; ys/ds C �
X

0<tk<t

T .t � tk/ Ik

� y

�

�

t�k
�

:

This implies by (9.1.2) and (9.1.4) that, for each t 2 J; we have

jy.t/j � �Mj�.0/j C �M

tZ

0

p.s/ .kysk/ds C �M
mX

kD1

ˇ
ˇ
ˇIk

� y

�

�

t�k
�
ˇ
ˇ
ˇ

� �Mk�k C �M

tZ

0

p.s/ .kysk/ds

C�M
mX

kD1

ˇ
ˇ
ˇIk

� y

�

�

t�k
� � Ik.0/

ˇ
ˇ
ˇC �M

mX

kD1
jIk .0/j

� �M

 

k�k C
mX

kD1
jIk.0/j

!

C �M

tZ

0

p.s/ .kysk/ds

C�M
mX

kD1
dk

ˇ
ˇ
ˇ

y

�

�

t�k

ˇ
ˇ
ˇ

� M

 

k�k C
mX

kD1
jIk.0/j

!

C M

2

4

tZ

0

p.s/ .kysk/ds C
mX

kD1
dk

ˇ
ˇy
�

t�k
ˇ
ˇ

3

5 :

Now we consider the function � defined by

�.t/ D supfjy.s/j W �r � s � tg; 0 � t � b:

Then kysk � �.t/ for all t 2 J and there is a point t� 2 Œ�r; t� such that �.t/ D
jy.t�/j. If t� 2 Œ0; b�, by the previous inequality we have for t 2 Œ0; b� (note t� � t)

�.t/ � M

 

k�k C
mX

kD1
jIk.0/j

!

C M

tZ

0

p.s/ .�.s//ds C M
mX

kD1
dk�.t/:

Then

 

1 � M
mX

kD1
dk

!

�.t/ � M

 

k�k C
mX

kD1
jIk.0/j

!

C M

tZ

0

p.s/ .�.s//ds:

Thus we have
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�.t/ � D0 C D1

tZ

0

p.s/ .�.s//ds:

Let us take the right-hand side of the above inequality as v.t/. Then we have

�.t/ � v.t/ for all t 2 J;

v.0/ D D0;

and

v0.t/ D D1p.t/ .�.t//; a:e: t 2 J:

Using the nondecreasing character of  we get

v0.t/ � D1p.t/ .v.t//; a:e: t 2 J:

That is

v0.t/
 .v.t//

� D1p .t/ ; a:e: t 2 J:

Integrating from 0 to t we get
Z t

0

v0.s/
 .v.s//

ds � D1

Z t

0

p .s/ ds:

By a change of variable we get

Z v.t/

v.0/

du

 .u/
� D1

Z b

0

p .s/ ds D D1kpkL1 <

Z 1

D0

du

 .u/
:

Hence there exists a constant N such that

�.t/ � v.t/ � N for all t 2 J:

Now from the definition of � it follows that

kyk D sup
t2Œ�r;b�

jy.t/j � �.b/ � N; for all y 2 E :

This shows that the set E is bounded. As a consequence of Theorem 1.32 we deduce
that A C B has a fixed point which is a mild solution of problem (11.15)–(11.17).

ut
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9.2.3 Existence of Extremal Mild Solutions

In this section we shall prove the existence of maximal and minimal solutions
of problem (9.1)–(9.3) under suitable monotonicity conditions on the functions
involved in it.

We need the following definitions in the sequel.

Definition 9.3. We say that a function v 2 PC.Œ�r; b�;E/ is a lower mild solution
of problem (9.1)–(9.3) if v.t/ D �.t/; t 2 H; and

v.t/ � T.t/�.0/C
Z t

0

T.t � s/f .s; vs/ ds C
X

0<tk<t

T.t � tk/Ik.v.t
�
k //; t 2 J; t ¤ tk

and v.tCk / � v.t�k / � Ik.v.tk//; t D tk; k D 1; : : : ;m. Similarly an upper mild
solution w of problem (9.1)–(9.3) is defined by reversing the order.

Definition 9.4. A solution xM of problem (9.1)–(9.3) is said to be maximal if for
any other solution x of problem (9.1)–(9.3) on J, we have that x.t/ � xM.t/ for each
t 2 J.

Similarly a minimal solution of problem (9.1)–(9.3) is defined by reversing the
order of the inequalities.

Definition 9.5. A function f .t; x/ is called strictly monotone increasing in x almost
everywhere for t 2 J, if .t; x/ � f .t; y/ a.e. t 2 J for all x; y 2 D with x < y.
Similarly f .t; x/ is called strictly monotone decreasing in x almost everywhere for
t 2 J, if f .t; x/ � f .t; y/ a.e. t 2 J for all x; y 2 D with x < y.

We consider the following assumptions in the sequel.

(9.10.1) The function f .t; y/ is strictly monotone increasing in y for almost each
t 2 J.

(9.10.2) T.t/ is preserving the order, that is T.t/v � 0 whenever v � 0.
(9.10.3) The function Ik, k D 1; : : : ;m are continuous and nondecreasing.
(9.10.4) The problem (9.1)–(9.3) has a lower mild solution v and an upper mild

solution w with v � w.

Theorem 9.6. Assume that assumptions (9.1.1)–(9.1.4) and (9.10.1)–(9.10.4) hold.
Then problem (9.1)–(9.3) has minimal and maximal solutions on Œ�r; b�.

Proof. It can be shown, as in the proof of Theorem 9.2, that B is completely
continuous and A is a contraction on Œv;w�. We shall show that A and B are isotone
increasing on Œv;w�. Let y; y 2 Œa; b� be such that y � y; y 6D y: Then by (9.10.1),
(9.10.2), we have for each t 2 J

B.y/ .t/ D T.t/�.0/C
Z t

0

T.t � s/f .s; ys/ ds

� T.t/�.0/C
Z t

0

T.t � s/f .s; ys/ ds

D B.y/ .t/ :
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and by (9.10.3), we have for each t 2 J

A.y/ .t/ D
X

0<tk<t

T .t � tk/ Ik
�

y
�

t�k


�
X

0<tk<t

T .t � tk/ Ik
�

y
�

t�k


D A.y/ .t/ :
Therefore A and B are isotone increasing on Œv;w�. Finally, let x 2 Œv;w� be any
element. By (9.10.4) we deduce that

v � A.v/C B.v/ � A.x/C B.x/ � A.w/C B.w/ � w;

which shows that A.x/C B.x/ 2 Œv;w� for all x 2 Œv;w�. Thus, A and B satisfy all
conditions of Theorem 1.32, hence problem (9.1)–(9.3) has maximal and minimal
solutions on Œ�r; b�: ut

9.2.4 Impulsive Differential Equations with Nonlocal
Conditions

In this section we shall prove the existence results for problem (9.4)–(9.6). Nonlocal
conditions were initiated by Byszewski [89] when he proved the existence and
uniqueness of mild and classical solutions of nonlocal Cauchy problems.

Definition 9.7. A function y 2 PC .Œ�r; b� ;E/ is said to be a mild solution of
problem (9.4)–(9.6) if y.t/ D �.t/ � ht .y/ ; t 2 Œ�r; 0�; and

y.t/ D T.t/ .�.0/ � h0 .y//C
Z t

0

T.t � s/f .s; ys/ ds

C
X

0<tk<t

T .t � tk/ Ik
�

y
�

t�k


; t 2 J:

Theorem 9.8. Assume that hypotheses (9.1.1)–(9.1.3) hold and moreover

(A1) The function h is continuous with respect to t, and there exists a constant ˛ > 0
such that

jht.u/j � ˛; u 2 PC.Œ�r; b�;E/

and for each k > 0 the set

f�.0/ � h0.y/; y 2 PC.Œ�r; b�;E/; kyk � kg
is precompact in E
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(A2) There exists a function p 2 L1.J;RC/ and a continuous nondecreasing
function  W Œ0;1/ ! .0;1/ such that

jf .t; x/j � p.t/ .kxkD/; a:e: t 2 J; for all x 2 D

with
Z 1

QD0
ds

 .s/
> D1 kpkL1 ;

and

QD0 D
MŒk�kD C ˛ C

mX

kD1
jIk.0/j�

1 � M
mX

kD1
dk

:

Then the problem 9.4)–(9.6) has at least one mild solution on Œ�r; b�:

Proof. Consider the two operators: B1 W PC .Œ�r; b� ;E/ ! PC .Œ�r; b� ;E/
defined by

B1.y/.t/ D

8

<̂

:̂

�.t/ � ht.y/; if t 2 H;

T.t/ .�.0/ � h0.y//C
Z t

0

T.t � s/f .s; ys/ ds; if t 2 J;

and

A1.y/.t/ D

8

<̂

:̂

0; if t 2 H;
X

0<tk<t

T.t � tk/Ik.y.t
�
k //; if t 2 J:

Then the problem of finding the solution of problem (9.4)–(9.6) is reduced to finding
the solution of the operator equation A1 .y/ .t/CB2 .y/ .t/ D y .t/ ; t 2 Œ�r; b�. As
in Sect. 9.3, we can show that the operators A1 and B1 satisfy all conditions of
Theorem 1.32. ut

9.2.5 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form
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@

@t
z.t; x/ D @2

@x2
z.t; x/ (9.7)

CQ.t; z.t � r; x//; x 2 Œ0; ��; t 2 Œ0; b�nft1; t2; : : : ; tmg:
z.tCk ; x/ � z.t�k ; x/ D bkz.t�k ; x/; x 2 Œ0; ��; k D 1; : : : ;m (9.8)

z.t; 0/ D z.t; �/ D 0; t 2 Œ0; b� (9.9)

z.t; x/ D �.t; x/; t 2 H; x 2 Œ0; ��; (9.10)

where bk > 0; k D 1; : : : ;m; � 2 D D f W H � Œ0; �� ! RI is continuous
everywhere except for a countable number of points at which  .s�/;  .sC/ exist
with  .s�/ D  .s/g; 0 D t0 < t1 < t2 < � � � < tm < tmC1 D b; z.tCk / D

lim
.h;x/!.0C;x/

z.tk C h; x/; z.t�k / D lim
.h;x/!.0�;x/

z.tk C h; x/ and Q W Œ0; b� � R ! R is a

given function.
Let

y.t/.x/ D z.t; x/; t 2 J; x 2 Œ0; ��;
Ik.y.t�k //.x/ D bkz.t�k ; x/; x 2 Œ0; ��; k D 1; : : : ;m

F.t; �/.x/ D Q.t; �.�; x//; � 2 H; x 2 Œ0; ��;
�.�/.x/ D �.�; x/; � 2 H; x 2 Œ0; ��:

Take E D L2Œ0; �� and define A W D.A/ � E ! E by Aw D w00 with domain
D.A/ D fw 2 E;w;w0 are absolutely continuous, w00 2 E;w.0/ D w.�/ D 0g:
Then

Aw D
1X

nD1
n2.w;wn/wn; w 2 D.A/

where ( , ) is the inner product in L2 and wn.s/ D
q

2
�

sin ns; n D 1; 2; : : : is
the orthogonal set of eigenvectors in A: It is well known (see [168]) that A is the
infinitesimal generator of an analytic semigroup T.t/; t 2 Œ0; b� in E and is given by

T.t/w D
1X

nD1
exp.�n2t/.w;wn/wn; w 2 E:

Since the analytic semigroup T.t/ is compact, there exists a constant M � 1 such
that

kT.t/kB.E/ � M:

Also assume that there exists an integrable function � W Œ0; b� ! RC such that

jQ.t;w.t � r; x//j � �.t/˝.jwj/
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where ˝ W Œ0;1/ ! .0;1/ is continuous and nondecreasing with
Z 1

1

ds

s C˝.s/
D C1:

Assume that there exists a function Ql 2 L1.Œ0; b�;RC/ such that

jQ.t;w/ � Q.t;w/j � Ql.t/jw � wj; t 2 Œ0; b�; w;w 2 R:

We can show that problem (11.15)–(11.17) is an abstract formulation of problem
(9.7)–(9.10). Since all the conditions of Theorem 9.2 are satisfied, the problem
(9.7)–(9.10) has a solution z on Œ�r; b� � Œ0; ��:

9.3 Impulsive Semi-linear Functional Differential
Equations with Non-densely Defined Operators

9.3.1 Introduction

In this section, we shall be concerned with the existence of integral solutions
and extremal integral solutions defined on a compact real interval for first order
impulsive semi-linear functional equations in a separable Banach space. We will
consider the following first order impulsive semi-linear differential equations of the
form:

y0.t/ � Ay.t/ D f .t; yt/; a:e: t 2 J D Œ0; b� ; t ¤ tk; k D 1; : : : ;m (9.11)

�yjtDtk D Ik.y.t�k //; k D 1; : : : ;m (9.12)

y.t/ D �.t/; t 2 Œ�r; 0� ; (9.13)

where f W J � D ! E is a given function, D D f W Œ�r; 0� ! E;  is continuous
everywhere except for a finite number of points s at which  .s�/ ;  

�

sC exist and
 .s�/ D  .s/g, � 2 D, .0 < r < 1/, 0 D t0 < t1 < � � � < tm < tmC1 D b,
Ik W E ! E .k D 1; 2; : : : ;m/, A W D.A/ � E ! E is a non-densely defined closed
linear operator on E, and E a real separable Banach space with norm j:j:

We shall prove the existence of extremal integral solutions of the problem
(11.15)–(11.17), and our approach here is based on the concept of upper and
lower solutions combined with a fixed point theorem on ordered Banach spaces
established recently by Dhage [102]. Next, we study the impulsive functional
differential equations with nonlocal initial conditions of the form

y0.t/ � Ay.t/ D f .t; yt/; a:e: t 2 J D Œ0; b� ; t ¤ tk; k D 1; : : : ;m (9.14)

�yjtDtk D Ik.y.t�k //; k D 1; : : : ;m (9.15)

y.t/C ht .y/ D �.t/; t 2 Œ�r; 0� ; (9.16)
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where ht W PC.Œ�r; b�;D.A// ! D.A/ is a given function. The nonlocal condition
can be applied in physics with better effect than the classical initial condition y .0/ D
y0. For example, ht .y/ may be given by

ht .y/ D
p
X

iD1
ciy.ti C t/; t 2 Œ�r; 0� (9.17)

where ci; i D 1; : : : ; p; are given constants and 0 < t1 < � � � < tp � p:

9.3.2 Examples of Operators with Non-dense Domain

In this section we shall present examples of linear operators with non-dense domain
satisfying the Hille–Yosida estimate. More details can be found in the paper by
Da Prato and Sinestrari [100].

Example 9.9. Let E D C.Œ0; 1�;R/ and the operator A W D.A/ ! E defined by
Ay D y0, where

D.A/ D fy 2 C1..0; 1/;R/ W y.0/ D 0g:
Then

D.A/ D fy 2 C..0; 1/;R/ W y.0/ D 0g 6D E:

Example 9.10. Let E D C.Œ0; 1�;R/ and the operator A W D.A/ ! E defined by
Ay D y00, where

D.A/ D fy 2 C2..0; 1/;R/ W y.0/ D y.1/ D 0g:
Then

D.A/ D fy 2 C..0; 1/;R/ W y.0/ D y.1/ D 0g 6D E:

Example 9.11. Let us set for some ˛ 2 .0; 1/

E D C˛
0 .Œ0; 1�;R/ D fy W Œ0; 1� ! R W y.0/ D 0 and sup

0�t<s�1
jy.t/ � y.s/j

jt � sj˛ < 1g

and the operator A W D.A/ ! E defined by Ay D �y0, where

D.A/ D fy 2 C1C˛..0; 1/;R/ W y.0/ D y0.0/ D 0g:

Then

D.A/ D h˛0 .0; 1/;R/ D fy W Œ0; 1� ! R W lim
ı!0

sup
0<jt�sj�ı

jy.t/ � y.s/j
jt � sj˛ D 0g 6D E:
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Here

C1C˛.Œ0; 1�;R/ D fy W Œ0; 1� ! R W y0 2 C˛.Œ0; 1�;R/g:

The elements of h˛..0; 1/;R/ are called little Holder functions and it can be
proved that the closure of C1..0; 1/;R/ in C˛..0; 1/;R/ is h˛..0; 1/;R/ (see [175],
Theorem 5.3).

Example 9.12. Let ˝ � Rn be a bounded open set with regular boundary � and
define E D C.˝;R/ and the operator A W D.A/ ! E defined by Ay D �y, where

D.A/ D fy 2 C.˝;R/ W y D 0 on � I �y 2 C.˝;R/g:

Here � is the Laplacian in the sense of distributions on ˝. In this case we have

D.A/ D fy 2 C.˝;R/ W y D 0 on � g 6D E:

9.3.3 Existence of Integral Solutions

Definition 9.13. We say that y W Œ�r;T� ! E is an integral solution of (9.11)–
(9.13) if

(i) y.t/ D �.0/C A
Z t

0

y.s/ds C
Z t

0

f .s; ys/ds C
X

0<tk<t

Ik
�

y
�

t�k


; t 2 J:

(ii)
Z t

0

y.s/ds 2 D.A/ for t 2 J, and y.t/ D �.t/; t 2 H:

From the definition it follows that y.t/ 2 D.A/, for each t � 0; in particular
�.0/ 2 D.A/: Moreover, y satisfies the following variation of constants formula:

y.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/f .s; ys/ds C
X

0<tk<t

S0 .t � tk/ Ik
�

y
�

t�k


t � 0:

(9.18)
We notice also that if y satisfies (9.18), then

y.t/ D S0.t/�.0/C lim
�!1

Z t

0

S0.t � s/B�f .s; ys/ds

C
X

0<tk<t

S0 .t � tk/ Ik
�

y
�

t�k


; t � 0:

Let us introduce the following hypotheses:

(9.17.1) A satisfies Hille–Yosida condition;
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(9.17.2) There exist constants dk > 0; k D 1; : : : ;m such that for each y; x 2 D.A/

jIk .y/ � Ik .x/j � dk jy � xj
(9.17.3) The function f W J � D ! E is Carathéodory;
(9.17.4) The operator S0.t/ is compact in D.A/ wherever t > 0I
(9.17.5) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! .0;1/ such that

jf .t; x/j � p.t/ .kxkD/; a:e: t 2 J; for all x 2 D

with
Z b

0

e�!sp.s/ds < 1,

Z 1

c0

du

 .u/
> c1

Z b

0

e�!sp .s/ ds: (9.19)

where

c0 D
e!bM

�

k�k C
mP

kD1
jIk .0/j

�

1 � Me!b
mP

kD1
dk

; (9.20)

and

c1 D Me!b

1 � Me!b
mP

kD1
dk

: (9.21)

Theorem 9.14. Assume that (9.17.1)–(9.17.5) hold. If

Me!b
mX

kD1
dk < 1; (9.22)

then the problem (9.11)–(9.13) has at least one integral solution on Œ�r; b�.

Proof. Consider the two operators:

A;B W PC
�

Œ�r; b� ;D.A/
�

! PC
�

Œ�r; b� ;D.A/
�

defined by

A.y/ .t/ WD

8

<̂

:̂

0; if t 2 H;
X

0<tk<t

S0 .t � tk/ Ik
�

y
�

t�k


; if t 2 J;
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and

B.y/ .t/ WD

8

ˆ̂

<̂

ˆ̂

:̂

�.t/; if t 2 H;

S0.t/�.0/

C d

dt

Z t

0

S.t � s/f .s; ys/ ds; if t 2 J:

The problem of finding the solution of problem (9.11)–(9.13) is reduced to finding
the solution of the operator equation A .y/ .t/CB .y/ .t/ D y .t/ ; t 2 Œ�r; b�. We
shall show that the operators A and B satisfy all the conditions of Theorem 1.32.
For better readability, we break the proof into a sequence of steps.

Step 1: B is continuous. Let fyng be a sequence such that yn ! y in
PC.Œ�r; b�;D.A//. Then for ! > 0 (if ! < 0 one has e!t < 1)

jB.yn/.t/ � B.y/.t/j D
ˇ
ˇ
ˇ
ˇ

d

dt

Z t

0

S.t � s/Œf .s; yns/ � f .s; ys/�ds

ˇ
ˇ
ˇ
ˇ

� Me!b
Z b

0

e�!s jf .s; yns/ � f .s; ys/j ds:

Since f .s; �/ is continuous for a.e. s 2 J, we have by the Lebesgue dominated
convergence theorem

jB.yn/.t/ � B.y/.t/j ! 0 as n ! 1:

Thus B is continuous.

Step 2: B maps bounded sets into bounded sets in PC.Œ�r; b�;D.A//: It is enough
to show that for any q > 0 there exists a positive constant l such that for each
y 2 Bq D fy 2 PC.Œ�r; b�;D.A// W kyk � qg we have kB .y/k � l: So choose
y 2 Bq; then we have for each t 2 J

jB.y/.t/j D
ˇ
ˇ
ˇ
ˇ
S0.t/�.0/C d

dt

Z t

0

S.t � s/f .s; ys/ds

ˇ
ˇ
ˇ
ˇ

� Me!bj�.0/j C Me!b .q/
Z b

0

e�!sp.s/ ds:

Then we have

jB.y/.t/j � Me!bk�k C Me!b .q/
Z b

0

e�!sp.s/ ds WD l:

Step 3: B maps bounded sets into equi-continuous sets of PC.Œ�r; b�;D.A//:
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We consider Bq as in Step 2 and let 
1; 
2 2 Jn ft1; : : : ; tmg ; 
1 < 
2.Thus if
� > 0 and � � 
1 < 
2 we have

jB.y/.
2/ � B.y/.
1/j � jS0.
2/�.0/ � S0.
1/�.0/j

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1��

0

ŒS0.
2 � s/ � S0.
1 � s/�B�f .s; ys/ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1


1��
ŒS0.
2 � s/ � S0.
1 � s/�B�f .s; ys/ ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
2


1

S0.
2 � s/B�f .s; ys/ ds

ˇ
ˇ
ˇ
ˇ
:

As 
1 ! 
2 and � become sufficiently small, the right-hand side of the above
inequality tends to zero, since S0.t/ is a strongly continuous operator and the com-
pactness of S0.t/ for t > 0 implies the continuity in the uniform operator topology.
This proves the equi-continuity for the case where t ¤ ti; k D 1; 2; : : : ;m C 1. It
remains to examine the equi-continuity at t D ti.

First we prove equi-continuity at t D t�i . Fix ı1 > 0 such that

ftk W k ¤ ig \ Œti � ı1; ti C ı1� D ;:
For 0 < h < ı1 we have

jB.y/.ti � h/ � B.y/.ti/j � j �S0.ti � h/ � S0.ti/


�.0/j

C lim
�!1

Z ti�h

0

k �S0.ti � h � s/�S0.ti � s/


B�f .s; ys/kds

CMe!b .q/
Z ti

ti�h
e�!sp.s/ dsI

which tends to zero as h ! 0. Define

OB0.y/.t/ D B.y/.t/; t 2 Œ0; t1�
and

OBi.y/.t/ D
� B.y/.t/; if t 2 .ti; tiC1�
B.y/.tCi /; if t D ti:

Next we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk W k ¤ ig \
Œti � ı2; ti C ı2� D ;. For 0 < h < ı2 we have

j OB.y/.ti C h/ � OB.y/.ti/j � j �S0.ti C h/ � S0.ti/


�.0/j

C lim
�!1

Z ti

0

k �S0.ti C h � s/ � S0.ti � s/


B�f .s; ys/kds

CMe!b .q/
Z tiCh

ti

e�!sp.s/ ds:
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The right-hand side tends to zero as h ! 0. The equi-continuity for the cases

1 < 
2 � 0 and 
1 � 0 � 
2 follows from the uniform continuity of � on the
interval Œ�r; 0�. As a consequence of steps 1–3 together with Arzelá–Ascoli theorem
it suffices to show that B maps Bq into a precompact set in E.

Let 0 < t < b be fixed and let � be a real number satisfying 0 < � < t. For
y 2 Bq we define

B�.y/.t/ D S0.t/�.0/C S0.�/ lim
�!1

Z t��

0

S0.t � s � �/B�f .s; ys/ds:

Note
�

lim
�!1

Z t��

0

S0.t � s � �/B�f .s; ys/ ds W y 2 Bq

�

is a bounded set since
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z t��

0

S0.t � s � �/B�f .s; ys/ ds

ˇ
ˇ
ˇ
ˇ

� Me!b .q/
Z t��

0

e�!sp.s/ds:

Since S0.t/ is a compact operator, the set

Y�.t/ D fB�.y/.t/ W y 2 Bqg
is precompact in E for every �; 0 < � < t: Moreover, for every y 2 Bq we have

jB.y/.t/ � B�.y/.t/j � Me!b .q/
Z t��

t
e�!sp.s/ds:

Therefore, there are precompact sets arbitrarily close to the set Y�.t/ D fB�.y/.t/ W
y 2 Bqg: Hence the set Y.t/ D fB.y/.t/ W y 2 Bqg is precompact in E. Hence the

operator B W PC
�

Œ�r; b� ;D.A/
�

! PC
�

Œ�r; b� ;D.A/
�

is completely continuous.

Step 4: A is a contraction. Let x; y 2 PC.Œ�r; b�;D.A//. Then for t 2 J

jA.y/.t/ � A.x/.t/j D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

0<tk<t

S0 .t � tk/
�

Ik
�

y
�

t�k
 � Ik

�

x
�

t�k


ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� Me!b
X

0<tk<t

ˇ
ˇIk
�

y
�

t�k
 � Ik

�

x
�

t�k
ˇ
ˇ

� Me!b
mX

kD1
dk

ˇ
ˇy
�

t�k
 � x

�

t�k
ˇ
ˇ

� Me!b
mX

kD1
dk ky � xk :
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Then

kA.y/ � A.x/k � Me!b
mX

kD1
dk ky � xk ;

which is a contraction from (9.22).

Step 5: A priori bounds. Now it remains to show that the set

E D
n

y 2 PC.Œ�r; b�;D.A// W y D �B.y/C �A
� y

�

�

for some 0 < � < 1
o

is bounded.

Let y 2 E : Then y D �B.y/ C �A
� y

�

�

for some 0 < � < 1: Thus, for each

t 2 J;

y.t/ D �S0.t/�.0/C �
d

dt

tZ

0

S.t � s/f .s; ys/ds C �
X

0<tk<t

S0 .t � tk/ Ik

� y

�

�

t�k
�

:

This implies by (9.17.2), (9.17.5) that, for each t 2 J; we have

jy.t/j � �Me!tj�.0/j C �Me!t

tZ

0

e�!sp.s/ .kysk/ds

C�Me!t
mX

kD1

ˇ
ˇ
ˇIk

� y

�

�

t�k
�
ˇ
ˇ
ˇ

� �Me!tk�k C �Me!t

tZ

0

e�!sp.s/ .kysk/ds

C�Me!t
mX

kD1

ˇ
ˇ
ˇIk

� y

�

�

t�k
� � Ik .0/

ˇ
ˇ
ˇ

C�Me!t
mX

kD1
jIk .0/j

� �Me!t

 

k�k C
mX

kD1
jIk .0/j

!

C�Me!t

tZ

0

e�!sp.s/ .kysk/ds

C�Me!t
mX

kD1
dk

ˇ
ˇ
ˇ

y

�

�

t�k

ˇ
ˇ
ˇ

� ce!t C Me!t

2

4

tZ

0

e�!sp.s/ .kysk/ds C
mX

kD1
dk

ˇ
ˇy
�

t�k
ˇ
ˇ

3

5 ;
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where

c D M

 

k�k C
mX

kD1
jIk .0/j

!

: (9.23)

Now we consider the function � defined by

�.t/ D supfjy.s/j W �r � s � tg; 0 � t � b:

Then kysk � �.t/ for all t 2 J and there is a point t� 2 Œ�r; t� such that �.t/ D
jy.t�/j. If t� 2 Œ0; b�, by the previous inequality and (9.23) we have for t 2 Œ0; b�
(note t� � t).

�.t/ � ce!b C Me!b

tZ

0

e�!sp.s/ .�.s//ds C Me!b
mX

kD1
dk�.t/:

Then
 

1 � Me!b
mX

kD1
dk

!

�.t/ � ce!b C Me!b

tZ

0

e�!sp.s/ .�.s//ds:

Thus from (9.20) and (9.21) we have

�.t/ � c0 C c1

tZ

0

e�!sp.s/ .�.s//ds: (9.24)

Let us take the right-hand side of (9.24) as v.t/. Then we have

�.t/ � v.t/ for all t 2 J;

v.0/ D c0;

and

v0.t/ D c1e
�!tp.t/ .�.t//; a:e: t 2 J:

Using the nondecreasing character of  we get

v0.t/ � c1e
�!tp.t/ .v.t//; a:e: t 2 J:

That is

v0.t/
 .v.t//

� c1e
�!tp.t/; a:e: t 2 J:

Integrating from 0 to t we get

Z t

0

v0.s/
 .v.s//

ds � c1

Z t

0

e�!sp .s/ ds:
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By a change of variable and (9.19) we get

Z v.t/

v.0/

du

 .u/
� c1

Z b

0

e�!sp .s/ ds <
Z 1

c0

du

 .u/
:

Hence there exists a constant N such that

�.t/ � v.t/ � N for all t 2 J:

Now from the definition of � it follows that

kyk D sup
t2Œ�r;b�

jy.t/j � max.k�k;N/ for all y 2 E :

This shows that the set E is bounded. As a consequence of Theorem 1.32 we deduce
that A C B has a fixed point which is a integral solution of problem (9.11)–(9.13).

ut
Now we give a result where f Lipschitz with respect to y.

Theorem 9.15. Assume that (9.17.1)–(9.17.4) hold and the condition

(9.19.1) There exists a function l 2 L1.J;RC/ such that:

jf .t; x/ � f .t; y/j � l.t/kx � ykD a.e. t 2 J; and for all x; y 2 D;

with
Z b

0

e�!sl.s/ds < 1,

c�
0 D

Me!b

�

k�k C
mP

kD1
jIk .0/j C

Z b

0

e�!sjf .s; 0/jds

�

1 � Me!b
mP

kD1
dk

(9.25)

and

c�
1 D Me!b

1 � Me!b
mP

kD1
dk

: (9.26)

If

Me!b
mX

kD1
dk < 1;

then the problem (9.11)–(9.13) has at least one integral solution on Œ�r; b�.
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Proof. Let A and B the operator defined in Theorem 9.14. It can be shown that B is
completely continuous and A is a contraction. Now we prove that

E D
n

y 2 PC.Œ�r; b�;D.A// W y D �B.y/C �A
� y

�

�

for some 0 < � < 1
o

is bounded.
Let y 2 E : Then y D �B.y/ C �A

� y

�

�

for some 0 < � < 1: Thus, for each

t 2 J;

y.t/ D �S0.t/�.0/C �
d

dt

tZ

0

S.t � s/f .s; ys/ds C �
X

0<tk<t

S0 .t � tk/ Ik

� y

�

�

t�k
�

:

This implies by (9.17.2) and (9.19.1) that, for each t 2 J; we have

jy.t/j � �Me!tj�.0/j C �Me!t

tZ

0

e�!sjf .s; ys/ � f .s; 0/jds

C�Me!t

tZ

0

e�!sjf .s; 0/jds C �Me!t
mX

kD1

ˇ
ˇ
ˇIk

� y

�

�

t�k
�
ˇ
ˇ
ˇ

� �Me!tk�k C �Me!t

tZ

0

e�!sl.s/kyskds C �Me!t

tZ

0

e�!sjf .s; 0/jds

C�Me!t
mX

kD1

ˇ
ˇ
ˇIk

� y

�

�

t�k
� � Ik .0/

ˇ
ˇ
ˇC �Me!t

mX

kD1
jIk .0/j

� Me!t

0

@k�k C
tZ

0

e�!sjf .s; 0/jds C
mX

kD1
jIk .0/ j

1

A

CMe!t

tZ

0

e�!sl.s/kyskds C Me!t
mX

kD1
dky

�

t�k


:

Now we consider the function � defined by

�.t/ D supfjy.s/j W �r � s � tg; 0 � t � b:
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Then kysk � �.t/ for all t 2 J and there is a point t� 2 Œ�r; t� such that �.t/ D
jy.t�/j. If t� 2 Œ0; b�, by the previous inequality we have for t 2 Œ0; b� (note t� � t)

�.t/ � Me!t

0

@k�k C
tZ

0

e�!sjf .s; 0/jds C
mX

kD1
jIk .0/ j

1

A

CMe!t

tZ

0

e�!sl.s/�.s/ds C Me!t
mX

kD1
dk�.t/:

Then

 

1 � Me!b
mX

kD1
dk

!

�.t/ � Me!t

0

@k�k C
tZ

0

e�!sjf .s; 0/jds

C
mX

kD1
jIk .0/ j

!

CMe!b

tZ

0

e�!sl.s/�.s/ds:

Thus by (9.25) and (9.26) we have

�.t/ � c�
0 C c�

1

tZ

0

e�!sl.s/�.s/ds:

By Gronwall inequality [131] we get for each t 2 J

�.t/ � c�
0 exp

�

c�
1

Z t

0

e�!sl.s/ds

�

:

Thus

kyk � c�
0 exp

�

c�
1

Z b

0

e�!sl.s/ds

�

WD M�:

This shows that the set E is bounded. As a consequence of Theorem 1.32 we deduce
that A C B has a fixed point which is a integral solution of problem (9.11)–(9.13).

ut
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9.3.4 Existence of Extremal Integral Solutions

In this section we shall prove the existence of maximal and minimal integral
solutions of problem (9.11)–(9.13) under suitable monotonicity conditions on the
functions involved in it. We need the following definitions in the sequel.

Definition 9.16. We say that a continuous function v W Œ�r; b� ! E is a lower
integral solution of problem (9.11)–(9.13) if v.t/ D �.t/; t 2 H; and

v.t/ � S0.t/�.0/C A
Z t

0

v.s/ds C
Z t

0

f .s; vs/ds

C
X

0<tk<t

S0 .t � tk/ Ik
�

v
�

t�k


; t 2 J; t ¤ tk

and v.tCk / � v.t�k / � Ik.v.tk//; t D tk; k D 1; : : : ;m. Similarly an upper integral
solution w of problem (11.15)–(11.17) is defined by reversing the order.

Definition 9.17. A solution xM of problem (9.11)–(9.13) is said to be maximal if
for any other solution x of problem (9.11)–(9.13) on J, we have that x.t/ � xM.t/
for each t 2 J.

Similarly a minimal solution of problem (9.11)–(9.13) is defined by reversing the
order of the inequalities.

Definition 9.18. A function f .t; x/ is called strictly monotone increasing in x almost
everywhere for t 2 J, if f .t; x/ � f .t; y/ a.e. t 2 J for all x; y 2 D with x < y.
Similarly f .t; x/ is called strictly monotone decreasing in x almost everywhere for
t 2 J, if f .t; x/ � f .t; y/ a.e. t 2 J for all x; y 2 D with x < y:

We consider the following assumptions in the sequel.

(9.22.1) The function f .t; y/ is strictly monotone increasing in y for almost each
t 2 J.

(9.22.2) S0.t/ is preserving the order, that is S0.t/v � 0 whenever v � 0.
(9.22.3) The functions Ik, k D 1; : : : ;m are continuous and nondecreasing.
(9.22.4) The problem (11.15)–(11.17) has a lower integral solution v and an upper

integral solution w with v � w.

Theorem 9.19. Assume that assumptions (9.17.1)–(9.17.5) and (9.12.1)–(9.12.4)
hold. Then problem (9.11)–(9.13) has a minimal and a maximal integral solutions
on Œ�r; b�.

Proof. It can be shown, as in the proof of Theorem 9.14, that B is completely
continuous and A is a contraction on Œv;w�. We shall show that A and B are isotone
increasing on Œv;w�. Let y; y 2 Œa; b� be such that y � y; y 6D y: Then by (9.22.1),
(9.22.2), we have for each t 2 J
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B.y/ .t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/f .s; ys/ ds

� S0.t/�.0/C d

dt

Z t

0

S.t � s/f .s; ys/ ds

D B.y/ .t/ :

and by (9.22.3), we have for each t 2 J

A.y/ .t/ D
X

0<tk<t

S0 .t � tk/ Ik
�

y
�

t�k


�
X

0<tk<t

S0 .t � tk/ Ik
�

y
�

t�k


D A.y/ .t/ :

Therefore A and B are isotone increasing on Œv;w�. Finally, let x 2 Œv;w� be any
element. By (9.22.4) we deduce that

v � A.v/C B.v/ � A.x/C B.x/ � A.w/C B.w/ � w;

which shows that A.x/ C B.x/ 2 Œv;w� for all x 2 Œv;w�. Thus, problem (9.11)–
(9.13) has a maximal and a minimal integral solutions on Œ�r; b�: ut

9.3.5 Impulsive Differential Equations
with Nonlocal Conditions

In this section we shall prove existence results for problem (9.14)–(9.16).

Definition 9.20. A function y 2 PC
�

Œ�r; b� ;D.A/
�

is said to be a integral solution

of problem (9.14)–(9.16) if y.t/ D �.t/ � ht .y/ ; t 2 H; and

y.t/ D S0.t/ .�.0/ � h0 .y//C
Z t

0

T.t � s/f .s; ys/ ds

C
X

0<tk<t

T .t � tk/ Ik
�

y
�

t�k


; t 2 J:

Theorem 9.21. Assume that hypotheses (9.17.1)–(9.17.4) and the following
hypotheses hold:

(A1) The function h is continuous with respect to t, and there exists a constant ˛ > 0
such that
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jht.u/j � ˛; u 2 PC.Œ�r; b�;D.A//

and for each k > 0 the set

f�.0/ � h0.y/; y 2 PC.Œ�r; b�;D.A//; kyk � kg

is precompact in E
(A2) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing function

 W Œ0;1/ ! .0;1/ such that

jf .t; x/j � p.t/ .kxkD/; a:e: t 2 J; for all x 2 D

with

Z 1

Qc0
du

 .u/
> Qc1

Z b

0

e�!sp.s/ds;

where

Qc0 D
Me!bŒk�kD C ˛ C

mX

kD1
jIk.0/j�

1 � Me!b

mX

kD1
dk

;

and

Qc1 D Me!b

1 � Me!b

mX

kD1
dk

:

Moreover, we suppose that

Me!b
mX

kD1
dk < 1;

then the problem (9.14)–(9.16) has at least one integral solution on Œ�r; b�:

Proof. Consider the two operators: B1 W PC
�

Œ�r; b� ;D.A/
�

! PC
�

Œ�r; b� ;D.A/
�

B1.y/.t/ WD

8

<̂

:̂

�.t/ � ht.y/; if t 2 H;

S0.t/ .�.0/ � h0.y//C d

dt

Z t

0

S.t � s/f .s; ys/ ds if t 2 J;
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A1.y/.t/ D

8

<̂

:̂

0; if t 2 H;
X

0<tk<t

S0.t � tk/Ik.y.t
�
k //; if t 2 J:

Then the problem of finding the solution of problem (9.14)–(9.16) is reduced to
finding the solution of the operator equation A1 .y/ .t/CB2 .y/ .t/ D y .t/ ; t 2
Œ�r; b�. As in Sect. 9.3, we can show that the operators A1 and B1 satisfy all
conditions of Theorem 1.32. ut

9.3.6 Applications to Control Theory

This section is devoted to an application of the argument used in the previous
sections to the controllability of impulsive functional differential equations. More
precisely we will consider the following problem:

y0.t/�Ay.t/ D f .t; yt/CBu.t/; a:e: t 2 J D Œ0; b� ; t ¤ tk; k D 1; : : : ;m (9.27)

�yjtDtk D Ik.y.t
�
k //; k D 1; : : : ;m (9.28)

y.t/ D �.t/; t 2 Œ�r; 0� ; (9.29)

where A, f , and Ik are as in Sect. 9.3, the control function u .�/ is given in L2 .J;U/
a Banach space of admissible control functions with U as a Banach. Finally B is a
bounded linear operator from U to D.A/.

Definition 9.22. A function y 2 PC
�

Œ�r; b� ;D.A/
�

is said to be a integral solution

of problem (9.27)–(9.29) if y.t/ D �.t/; t 2 Œ�r; 0�; and y is a solution of impulsive
integral equation

y.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/f .s; ys/ ds C d

dt

Z t

0

S.t � s/Bu .s/ ds

C
X

0<tk<t

S0 .t � tk/ Ik
�

y
�

t�k


; t 2 J:

Definition 9.23. The system (9.27)–(9.29) is said to be controllable on the interval
Œ�r; b� if for every initial function � 2 D and every y1 2 D.A/, there exists a control
u 2 L2 .J;U/, such that the mild solution y .t/ of system (9.27)–(9.29) satisfies
y .b/ D y1.

Our main result in this section is the following.
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Theorem 9.24. Assume that hypotheses (9.17.1)–(9.17.4) hold. Moreover we sup-
pose that

(B1) The linear operator W W L2 .J;U/ ! D.A/ defined by

Wu D
bZ

0

T .b � s/Bu .s/ ds;

has a bounded inverse operator W�1 which takes values in L2 .J;U/ nKerW,
and there exist positive constants M; M1; such that kBk � M and
�
�W�1�� � M1:

(B2) There exists a function l 2 L1.J;RC/ such that

jf .t; x/ � f .t; y/j � l.t/kx � ykD for a.e. t 2 J; and for all x; y 2 D;

with

M2e2!bMM1b

bZ

0

e�!sl.s/ds C Me!b.1C Me!bMM1b/
mX

kD0
dk < 1

(B3) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing function
 W Œ0;1/ ! .0;1/ such that

jf .t; x/j � p.t/ .kxkD/; a:e: t 2 J; for all x 2 D

with
Z b

0

e�!sp.s/ds < 1,

1Z

c3

ds

s C  .s/
> k OmkL1 (9.30)

where

c3 D c2

1 � Me!b.1C MMM1be!b/
mP

kD1
dk

; (9.31)

c2 D M.1C MMM1e
!bb/k�k

CMMM1bjy1j C M.1C MMM1e
!bb/

mX

kD1
jIk.0/j; (9.32)

Om .s/ D maxf!; c4p.s/g; (9.33)
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and

c4 D M C M2MM1e!bb

1 � Me!b.1C MMM1be!b/
mP

kD1
dk

: (9.34)

Then the problem (9.27)–(9.29) is controllable on Œ�r; b�:

Remark 9.25. The construction of operator W�1 and its properties are discussed
in [93].

Proof. Using hypothesis (B1) for an arbitrary function y .:/ we define the control

uy .t/ D W�1
	

y1 � S0 .b/ � .0/ � lim
�!1

Z b

0

S0.b � s/B�f .s; ys/ds

�
X

0<tk<t

S0 .b � tk/ Ik
�

y
�

t�k


3

5 .t/ :

Consider the two operators:

A;B W PC
�

Œ�r; b� ;D.A/
�

! PC
�

Œ�r; b� ;D.A/
�

defined by

A.y/ .t/ WD

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

0; if t 2 H;

d

dt

Z t

0

S.t � s/Bu.s/ds

C
X

0<tk<t

S0 .t � tk/ Ik
�

y
�

t�k


; if t 2 J;

and

B.y/ .t/ WD

8

ˆ̂

<̂

ˆ̂

:̂

�.t/; if t 2 H;

S0.t/�.0/

C d

dt

Z t

0

S.t � s/f .s; ys/ ds; if t 2 J:

We can prove that A is a contraction operator and B is completely continuous. Now,
we prove that

E D
n

y 2 PC.Œ�r; b�;D.A// W y D �B.y/C �A
� y

�

�

for some 0 < � < 1
o

is bounded.
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Let y 2 E : Then y D �B.y/ C �A
� y

�

�

for some 0 < � < 1: Thus, for each

t 2 J;

y.t/ D �S0.t/�.0/C �
d

dt

tZ

0

S.t � s/f .s; ys/ds

C� d

dt

tZ

0

S.t � s/Buy .s/ ds

C�
X

0<tk<t

S0 .t � tk/ Ik

� y

�

�

t�k
�

:

This implies by (B1)–(B3) that, for each t 2 J; we have

jy.t/j � �Me!tj�.0/j C �Me!t

tZ

0

e�!sp.s/ .kysk/ds

C�Me!t

tZ

0

e�!s
ˇ
ˇBuy .s/

ˇ
ˇ ds C �Me!t

mX

kD0

ˇ
ˇ
ˇIk

� y

�

�

t�k
�
ˇ
ˇ
ˇ

� �Me!t
�

.1C MMM1be!b/k�k C MM1bjy1j
�

C�Me!t

tZ

0

e�!sp.s/ .kysk/ds

C�M2M1Mbe!te!b

tZ

0

e�!sp.s/ .kysk/ds

C�M2M1Mbe!te!b
mX

kD1
jIk.

y

�
.t�k //j

C�Me!t
mX

kD1

ˇ
ˇ
ˇIk

� y

�

�

t�k
�
ˇ
ˇ
ˇ

� �Me!tŒ.1C MMM1be!b/k�k

CMM1bjy1j C Me!t.1C MMM1be!b/

mX

kD1
jIk.0/j�
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C�Me!t

tZ

0

e�!sp.s/ .kysk/ds

C�M2e!tMM1be!b

tZ

0

e�!sp.s/ .kysk/ds

C�Me!t.1C MMM1be!b/

mX

kD1
jy.t�k //j:

Set

˛ D M.1C MMM1e
!bb/k�k C MMM1bjy1j

CM.1C MMM1e
!bb/

mX

kD1
jIk.0/j:

Consider the function � defined by

�.t/ D supfjy.s/j W �r � s � tg; 0 � t � b:

Then kysk � �.t/ for all t 2 J and there is a point t� 2 Œ�r; t� such that �.t/ D
jy.t�/j: If t� 2 Œ0; b�; by the previous inequality we have for t 2 Œ0; b� (note t� � t)

�.t/ � ˛e!t C Me!t

tZ

0

e�!sp.s/ .�.s//ds

CM2e!tMM1be!b

tZ

0

e�!sp.s/ .�.s//ds

C�Me!t.1C MMM1be!b/

mX

kD1
dk�.t/:

Then

Œ1 � Me!b.1C MMM1be!b/

mX

kD1
dk��.t/ � ˛e!t

CMe!t.1C MMM1be!b/

tZ

0

p.s/ .�.s//ds:



9.3 Impulsive Semi-linear Functional Differential Equations. . . 223

Thus by (9.31), (9.32), (9.34) we have

e�!t�.t/ � c3 C c4

tZ

0

p.s/ .�.s//ds: (9.35)

Let us take the right-hand side of (9.35) as v.t/. Then we have

�.t/ � e!tv.t/ for all t 2 J;

v.0/ D c3;

and

v0.t/ D c4p.t/ .�.t//; a:e: t 2 J:

Using the nondecreasing character of  we get

v0.t/ � c4p.t/ .e
!tv.t//; a:e: t 2 J:

Then by (9.33) for a.e. t 2 J we have

.e!tv.t//0 D !e!tv.t/C v0.t/e!t

� !e!tv.t/C c4p.t/e
!t .e!tv.t//

� Om.t/Œe!tv.t/C  .e!tv.t//�:

Thus (9.30) gives

Z e!tv.t/

v.0/

du

u C  .u/
�
Z b

0

Om.s/ds D k OmkL1 <

Z 1

c3

du

u C  .u/
:

Consequently, by (B3), there exists a constant d such that e!tv.t/ � d; t 2 J
and hence kyk � d: This shows that the set E is bounded. As a consequence of
Theorem 9.14 we deduce that ACB has a fixed point which is a integral solution of
problem (9.27)–(9.29). Thus the system (9.27)–(9.29) is controllable on Œ�r; b�: ut

9.3.7 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form
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@

@t
z.t; x/ D @2

@x2
z.t; x/

CQ.t; z.t � r; x//CBu.t/; x 2 Œ0; ��; t 2 Œ0; b�nft1; t2; : : :; tmg: (9.36)

z.tCk ; x/ � z.t�k ; x/ D bkz.t�k ; x/; x 2 Œ0; ��; k D 1; : : : ;m (9.37)

z.t; 0/ D z.t; �/ D 0; t 2 Œ0; b� (9.38)

z.t; x/ D �.t; x/; t 2 H; x 2 Œ0; ��; (9.39)

where bk > 0; k D 1; : : : ;m; � 2 D D f W H � Œ0; �� ! RI is continuous
everywhere except for a countable number of points at which  .s�/;  .sC/ exist
with  .s�/ D  .s/g; 0 D t0 < t1 < t2 < � � � < tm < tmC1 D b; z.tCk / D

lim
.h;x/!.0C;x/

z.tk C h; x/; z.t�k / D lim
.h;x/!.0�;x/

z.tk C h; x/ and Q W Œ0; b� � R ! R; is a

given function.
Let

y.t/.x/ D z.t; x/; t 2 Œ0; b�; x 2 Œ0; ��;
Ik.y.t�k //.x/ D bkz.t�k ; x/; x 2 Œ0; ��; k D 1; : : : ; m

F.t; �/.x/ D Q.t; �.�; x//; � 2 H; x 2 Œ0; ��;
and

�.�/.x/ D �.�; x/; � 2 H; x 2 Œ0; ��:

Consider E D C.˝/, the Banach space of continuous function on ˝ with values in
R. Define the linear operator A on E by

Az D @2

@x2
z; in D.A/ D fz 2 C.˝/ W z D 0 on @˝;

@2

@x2
z 2 C.˝g

Now, we have

D.A/ D C0.˝/ D fv 2 C.˝/ W v D 0 on @˝g ¤ C.˝/:

It is well known from [100] that A is sectorial, .0;C1/ 	 �.A/ and for � > 0

kR.�;A/kB.E/ � 1

�
:

It follows that A generates an integrated semigroup .S.t//t�0 and that kS0.t/kB.E/ �
e��t for t � 0 for some constant � > 0 and A satisfied the Hille–Yosida condition.

Assume that the operator B W U ! Y;U � Œ0;1/; is a bounded linear operator
and the operator
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Wu D
Z b

0

T.b � s/Bu.s/ds

has a bounded inverse operator W�1 which takes values in L2.Œ0; b�;U/nkerW: Also
assume that there exists an integrable function � W Œ0; b� ! RC such that

jQ.t;w.t � r; x//j � �.t/˝.jwj/

where ˝ W Œ0;1/ ! .0;1/ is continuous and nondecreasing with

Z 1

1

ds

s C˝.s/
D C1:

Assume that there exists a function Ql 2 L1.Œ0; b�;RC/ such that

jQ.t;w.t � r; x// � Q.t;w.t � r; x//j � Ql.t/jw � wj; t 2 Œ0; b�; w;w 2 R:

We can show that problem (8.21)–(8.23) is an abstract formulation of problem
(9.36)–(9.39). Since all the conditions of Theorem 9.24 are satisfied, the problem
(9.36)–(9.39) has a solution z on Œ�r; b� � Œ0; ��:

9.4 Impulsive Semi-linear Neutral Functional Differential
Equations with Infinite Delay

9.4.1 Introduction

In this section we shall be concerned with the existence of mild solutions as well as
integral solutions defined on a compact real interval for first order impulsive semi-
linear functional equations in a separable Banach space. More precisely we consider
the initial value problem

d

dt
Œy.t/ � g.t; yt/� D AŒy.t/ � g.t; yt/� (9.40)

Cf .t; yt/; a:e: t 2 J D Œ0; b� ; t ¤ tk; k D 1; : : : ;m

�yjtDtk D Ik.y.t�k //; k D 1; : : : ;m (9.41)

y.t/ D �.t/; t 2 .�1; 0�; (9.42)

where f ; g W J�D ! E is a given function, D D f W Œ�1; 0� ! E;  is continuous
everywhere except for a finite number of points s at which  .s�/ ;  

�

sC exist and
 .s�/ D  .s/g, � 2 D, .0 < r < 1/, 0 D t0 < t1 < � � � < tm < tmC1 D b,
Ik 2 C .E;E/ .k D 1; 2; : : : ;m/, A is a closed linear operator on E, and E a real
separable Banach space with norm j:j.
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9.4.2 Existence of Mild Solutions

This section is devoted to the case when the operator A generates a .C0/-semigroup.
Before starting and proving our main result, we will give the definition of the mild
solution.

Definition 9.26. We say that a function y W .�1; b� ! E is a mild solution of
problem (9.40)–(9.42) if y0 D � and the restriction of y.�/ to the interval Œ0; b� is
continuous; and

y.t/ D g.t; yt/C T.t/Œ�.0/ � g.0; �/�C
Z t

0

T.t � s/f .s; ys/ds

C
X

0<tk<t

T.t � tk/Ik
�

y
�

t�k
 �

X

0<tk<t

T.t � tk/�g.tk; ytk/; t 2 J:
(9.43)

Let us introduce the following hypotheses:

(9.30.1) A is the infinitesimal generator of a .C0/�semigroup fT.t/gt2J , which is
compact for t > 0 in the Banach space E. Let M D supfkT.t/kB.E/ W t 2 Jg:

(9.30.2) There exist constants ˛1; ˛2 � 0 and lg � 0 such that:

(i) jg.t; u/ � g.t; u/j � lgku � ukD; t 2 J; and u; u 2 D, and
(ii) jg.t; u/j � ˛1kukD C ˛2; t 2 J; for a.e. t 2 J; and each u 2 D:

(9.30.3) f W J � D ! E is Carathéodory function;
(9.30.4) There exist constants dk > 0; k D 1; : : : ;m such that for each y; x 2 E

jIk .y/ � Ik .x/j � dk jy � xj
(9.30.5) There exists a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! Œ0;1/ such that

jf .t; u/j � p.t/ .kukD/; a:e: t 2 J; for all u 2 D:

with
Z 1

C�
1

ds

 .s/
> C�

2 kpkL1 ;

where

C�
1 D Kb

C1
C

C .MKb C Mb/k�k; C�
2 D MKb

C
(9.44)

with

C D 1 � ˛1Kb � M
mX

kD1
dk � 2MmlgKb;
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and

C1 D ˛1.MKb C Mb/k�k C .1C M/˛2 C M
mX

kD1
dkk�k

CM
mX

kD1
jIk.0/j C 2Mmlg.MKb C Mb/k�k C M

mX

kD1
j�g.tk; 0/j

Theorem 9.27. Assume that (9.30.1)–(9.30.5) hold. Suppose that

Kb max .lg; ˛1/C M
mX

kD1
dk C 2mMlgKb < 1 (9.45)

Then the problem (9.40)–(9.42) has at least one mild solution.

Proof. Consider the operator N W Db ! Db defined by:

.Ny/.t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

�.t/; t 2 .�1; 0�;

T.t/Œ�.0/ � g.0; �/�C g.t; yt/

C R t
0

T.t � s/f .s; ys/ds C
X

0<tk<t

T.t � tk/Ik
�

y
�

t�k


�
X

0<tk<t

T.t � tk/�g.tk; ytk/; t 2 J:

For � 2 D, we define the function:

Q�.t/ D
8

<

:

�.t/I t 2 .�1; 0�;

T.t/�.0/I t 2 J;

Then Q� 2 Db. Set

y.t/ D x.t/C Q�.t/:

It is clear to see that y satisfies (9.43) if and only if x satisfies x0 D 0; and

x.t/ D g.t; xt C Q�t/ � T.t/g.0; �/

C
Z t

0

T.t � s/f .s; xs C Q�s/ds C
X

0<tk<t

T.t � tk/Ik
�

x
�

t�k
C Q� �t�k



�
X

0<tk<t

T.t � tk/�g.tk; xtk C Q�tk/; t 2 J:
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Let

D0
b D fx 2 Db W x0 D 0 2 Dg :

For any x 2 D0
b,we have

kxkb D kx0kD C sup fjx.s/j W 0 � s � bg D sup fjx.s/j W 0 � s � bg :

Thus .D0
b; k � kb/ is a Banach space. Define the two operators A;B W D0

b ! D0
b by:

B.x/.t/ D
Z t

0

T.t � s/f .s; xs C Q�s/ds; t 2 J

and

A.x/.t/ D g.t; xt C Q�t/ � T.t/g.0; �/C
X

0<tk<t

T.t � tk/Ik
�

x
�

t�k
C Q� �t�k



�
X

0<tk<t

T.t � tk/�g.tk; xtk C Q�tk/; t 2 J:

Obviously the operator N has a fixed point is equivalent to A C B has one, so it
turns to prove that A C B has a fixed point.We shall show that the operators A and
B satisfy all the conditions of Theorem 1.32. The proof will be given in several
steps.

Step 1: B is continuous. Let fxng be a sequence such that xn ! x in D0
b. Then

jB.xn/.t/ � B.x/.t/j D
ˇ
ˇ
ˇ
ˇ

Z t

0

T.t � s/Œf .s; xns C Q�s/ � f .s; xs C Q�s/�ds

ˇ
ˇ
ˇ
ˇ

� M
Z b

0

ˇ
ˇf .s; xns C Q�s/ � f .s; xs C Q�s/

ˇ
ˇ ds:

Since f .s; �/ is continuous for a.e. s 2 J, we have by the Lebesgue dominated
convergence theorem

jB.xn/.t/ � B.x/.t/j ! 0 as n ! 1:

Thus B is continuous.

Step 2: B maps bounded sets into bounded sets in D0
b. It is enough to show that

for any q > 0 there exists a positive constant l such that for each x 2 Bq D fx 2
D0

b W kxk � qg we have kB .x/k � l. Let x 2 Bq; then
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kxs C Q�skD � kxskD C k Q�skD
� Kbq C KbMj�.0/j C Mbk�kD
D q�:

Then we have for each t 2 J

jB.x/.t/j D j
Z t

0

T.t � s/f .s; xs C Q�s/dsj

� M
Z t

0

p.s/ .kxs C Q�sk/ds

� M
Z t

0

p.s/ .q�/ds

� M .q�/
Z t

0

p.s/ds:

Taking the supremum over t we obtain

kB.x/kb � M .q�/kpkL1 WD l:

Step 3: B maps bounded sets into equi-continuous sets inD0
b.

We consider Bq as in step 2 and let 
1; 
2 2 Jn ft1; : : : ; tmg ; 
1 < 
2.Thus if
� > 0 and � � 
1 < 
2 we have We consider Bq as in step 2 and let 
1; 
2 2
Jn ft1; : : : ; tmg ; 
1 < 
2.Thus if � > 0 and � � 
1 < 
2 we have

jB.x/.
2/ � B.x/.
1/j �  .q�/
Z 
1��

0

kT.
2 � s/ � T.
1 � s/kB.E/p.s/ds

C .q�/
Z 
1


1��
kT.
2 � s/ � T.
1 � s/kB.E/p.s/ds

C .q�/
Z 
2


1

kT.
2 � s/kB.E/p.s/ds:

As 
1 ! 
2 and � become sufficiently small, the right-hand side of the above
inequality tends to zero, since T.t/ is a strongly continuous operator and the com-
pactness of T.t/ for t > 0 implies the continuity in the uniform operator topology.
This proves the equi-continuity for the case where t ¤ ti; k D 1; 2; : : : ;m C 1. It
remains to examine the equi-continuity at t D ti.

First we prove equi-continuity at t D t�i . Fix ı1 > 0 such that ftk W k ¤ ig \
Œti � ı1; ti C ı1� D ;. For 0 < h < ı1 we have
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jB.x/.ti � h/ � B.x/.ti/j �
Z ti�h

0

j .T.ti � h � s/ � T.ti � s// f .s; xs C Q�s/jds

C .q�/M
Z ti

ti�h
p.s/dsI

which tends to zero as h ! 0. Define

OB0.x/.t/ D B.x/.t/; t 2 Œ0; t1�

and

OBi.x/.t/ D
� B.x/.t/; if t 2 .ti; tiC1�
B.x/.tCi /; if t D ti:

Next we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk W k ¤ ig \
Œti � ı2; ti C ı2� D ;. For 0 < h < ı2 we have

j OB.x/.ti C h/ � OB.x/.ti/j �
Z ti

0

j .T.ti C h � s/ � T.ti � s// f .s; xs C Q�s/jds

C .q�/M
Z tiCh

ti

p.s/ds:

The right-hand side tends to zero as h ! 0. The equi-continuity for the cases

1 < 
2 � 0 and 
1 � 0 � 
2 follows from the uniform continuity of � on the
interval Œ�r; 0�.

As a consequence of steps 1–3 together with Arzelá–Ascoli theorem it suffices
to show that B maps B into a precompact set in E.

Let 0 < t < b be fixed and let � be a real number satisfying 0 < � < t. For
y 2 Bq we define

B�.x/.t/ D T.�/
Z t��

0

T.t � s � �/f .s; xs C Q�s/ds:

Since T.t/ is a compact operator, the set

X�.t/ D fB�.x/.t/ W x 2 Bqg

is precompact in E for every �; 0 < � < t: Moreover, for every y 2 Bq we have

jB.x/.t/ � B�.x/.t/j �  .q�/
Z t

t��
kT.t � s/kB.E/p.s/ds

�  .q�/M
Z t

t��
p.s/ds:
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Therefore, there are precompact sets arbitrarily close to the set X�.t/ D fB�.x/.t/ W
x 2 Bqg: Hence the set X.t/ D fB.x/.t/ W x 2 Bqg is precompact in E. Hence the
operator B is completely continuous.

Step 4: A is a contraction

Let x1; x2 2 D0
b. Then for t 2 J

jA.x1/.t/ � A.x2/.t/j � jg.t; x1t C Q�t/ � g.t; x2t C Q�t/j
CM

X

0<tk<t

ˇ
ˇIk
�

x1
�

t�k
 � Ik

�

x2
�

t�k
ˇ
ˇ

CM
X

0<tk<t

j�g.tk; x1tk C Q�tk/ ��g.tk; x2tk C Q�tk/j

� lgkx1t � x2tk C M
mX

kD1
dk

ˇ
ˇx1
�

t�k
 � x2

�

t�k
ˇ
ˇ

C2Mlg

mX

kD1
jx1tk � x2tk j

�
 

M
mX

kD1
dk C lgKb C 2mMlgKb

!

kx1 � x2k :

Then

kA.x1/ � A.x2/k � .M
mX

kD1
dk C lgKb C 2mMlgKb/ kx1 � x2k ;

which is a contraction, since

Kblg C M
mX

kD1
dk C 2mMlgKb � Kb max .lg; ˛1/C M

mX

kD1
dk C 2mMlgKb < 1:

Step 5: A priori bounds.

Now it remains to show that the set E is bounded.
Let x 2 E ; then x D �B.x/C�A

� x

�

�

for some 0 < � < 1: Thus, for each t 2 J;

x.t/ D �

tZ

0

T.t � s/f .s; xs C Q�s/ds � �T.t/g.0; �/C �g.t;
xt

�
C Q�t/

C�
X

0<tk<t

T .t � tk/ Ik

� x

�

�

t�k
C Q�.tk/

�

��
X

0<tk<t

T .t � tk/�g.tk;
xtk

�
C Q�tk/:
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This implies by (9.30.2) and (9.30.4) that, for each t 2 J; we have

jx.t/j � �M

tZ

0

p.s/ .kxs C Q�sk/ds

C�jg.t; xt

�
C Q�t/j C �M

mX

kD1

ˇ
ˇ
ˇIk

� x

�

�

t�k
C Q�.t�k /

�ˇ
ˇ
ˇ

C�M
mX

kD1
j�g.tk;

xtk

�
C Q�tk/j C �Mg.tk;

xtk

�
C Q�tk/j C �Mjg.0; �/j

� �M

tZ

0

p.s/ .Kbjxsj C .MKb C Mb/k�k/ds C �˛1kxt

�
C Q�tk C �˛2

C�M
mX

kD1
jIk

� x

�
.t�k /C Q�.t�k /

�

� Ik.0/j C �M
mX

kD1
jIk.0/j

C2�M
mX

kD1
lgjxtk

�
C Q�tk j C �M

mX

kD1
j�g.tk; 0/j C �M˛2

� �M

tZ

0

p.s/ .Kbjx.s/j C .MKb C Mb/k�k/ds

C�˛1
�

Kb

ˇ
ˇ
ˇ
ˇ

x.t/

�

ˇ
ˇ
ˇ
ˇ
C .MKb C Mb/k�k

�

C�˛2 C �M
mX

kD1
dk

�ˇ
ˇ
ˇ
ˇ

x.t/

�

ˇ
ˇ
ˇ
ˇ
C k�k

�

C �M
mX

kD1
jIk.0/j

C2�M
mX

kD1
lg

�

Kb

ˇ
ˇ
ˇ
ˇ

x.t/

�

ˇ
ˇ
ˇ
ˇ
C .MKb C Mb/k�k

�

C�M
mX

kD1
j�g.tk; 0/j C �M˛2

� M

tZ

0

p.s/ .Kbjx.s/j C .MKb C Mb/k�k/ds

C˛1 .Kb jx.t/j C .MKb C Mb/k�k/
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C˛2 C M
mX

kD1
dkjx.t/j C M

mX

kD1
dkk�k C M

mX

kD1
jIk.0/j C M˛2

C2MmlgKbjx.t/j C 2Mmlg.MKb C Mb/k�k C M
mX

kD1
j�g.tk; 0/j:

Then
 

1 � ˛1Kb � M
mX

kD1
dk � 2MmlgKb

!

jx.t/j

� M

tZ

0

p.s/ .Kbjx.s/j C .MKb C Mb/k�k/ds

C˛1 .MKb C Mb/ k�k C .1C M/˛2

CM
mX

kD1
dkk�k C M

mX

kD1
jIk.0/j

C2Mmlg .MKb C MB/ k�k C M
mX

kD1
j�g.tk; 0/j:

Thus

Kbjx.t/j C .MKb C Mb/ k�k � C�
1 C C�

2

tZ

0

p.s/ .Kbjx.s/j

C.MKb C Mb/k�k/ds

We consider the function � defined by

�.t/ D supfKbjx.s/j C .MKb C Mb/k�k W 0 � s � tg; 0 � t � b:

Let t� 2 Œ0; t� be such that �.t/ D Kbjx.t�/j C .MKb C Mb/k�k, by the previous
inequality we have for t 2 Œ0; b�

�.t/ � C�
1 C C�

2

tZ

0

p.s/ .�.t//ds: (9.46)

Let us take the right-hand side of (9.46) as v.t/. Then we have

v.0/ D C�
1 ; �.t/ � v.t/ for all t 2 J;
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and

v0.t/ D C�
2 p.t/ .�.t//; a:e: t 2 J:

Using the nondecreasing character of  we get

v0.t/ � p.t/ .v.t//; a:e: t 2 J:

Thus

Z v.t/

C�
1

ds

 .s/
�
Z b

0

p.s/ds D kpkL1 <

Z 1

C�
1

ds

 .s/
:

Consequently, by assumption .9:30:5/, there exists a constant N such that
v.t/ � N; t 2 J and hence there exists a constant � such that kzkb � �: This
shows that the set E is bounded. As a consequence of Theorem 1.32, we deduce
that F C G has a fixed point z�. Then z�.t/ D x�.t/ C Q�.t/; t 2 .�1; b� is a
fixed point of the operator N, which gives rise to a mild solution of the problem
(9.40)–(9.42). ut

9.4.3 Existence of Integral Solutions

In the previous section we considered the same problem, when the operator
was non-densely defined. However, as indicated in [100], we sometimes need to
deal with non-densely defined operators. For example, when we look at a one-

dimensional heat equation with Dirichlet conditions on Œ0; 1� and consider A D @2

@x2
in C.Œ0; 1�;R/ in order to measure the solutions in the sup-norm, then the domain,

D.A/ D f� 2 C2.Œ0; 1�;R/ W �.0/ D �.1/ D 0g;

is not dense in C.Œ0; 1�;R/ with the sup-norm. Before starting and proving this one,
we give the definition of its integral solution.

Definition 9.28. We say that y W .�1; b� ! E is an integral solution of (9.40)–
(9.42) if

(i)
Z t

0

Œy.s/ � g.s; ys/�ds 2 D.A/ for t 2 J,

(ii) y.t/ D �.t/; t 2 .�1; 0�:

(iii) y.t/ D �.0/ � g.0; �/ C g.t; yt/ C A
Z t

0

Œy.s/ � g.s; ys/�ds C
Z t

0

f .s; ys/ds C
X

0<tk<t

Ik.y.t
�
k // �

X

0<tk<t

�g.tk; ytk/; t 2 J:
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From the definition it follows that y.t/ � g.t; yt/ 2 D.A/;8 t � 0; in particular
�.0/ � g.0; �/ 2 D.A/. Moreover, y satisfies the following variation of constants
formula:

y.t/ D g.t; yt/C S0.t/.�.0/ � g.0; �//C d

dt

Z t

0

S.t � s/f .s; ys/ds

C
X

0<tk<t

S0.t � tk/Ik.y.t
�
k // �

X

0<tk<t

S0.t � tk/�g.tk; ytk/; t � 0:
(9.47)

Let B� D �R.�;A/ WD �.�I � A/�1: Then [146] for all x 2 D.A/;B�x ! x as
� ! 1: Also from the Hille–Yosida condition (with n D 1) it easy to see that
lim
�!1 jB�xj � Mjxj; since

jB�j D j�.�I � A/�1j � M�

� � ! :

Thus lim
�!1 jB�j � M. Also if y is given by (9.47), then

y.t/ D g.t; yt/C S0.t/.�.0/ � g.0; �//C lim
�!1

Z t

0

S0.t � s/B�f .s; ys/ds

C
X

0<tk<t

S0.t � tk/Ik.y.t
�
k // �

X

0<tk<t

S0.t � tk/�g.tk; ytk/; t 2 J:
(9.48)

The key tool in our approach is the following form of the fixed point theorem of
Dhage [102].

Let Db�
the set of all functions that belong in Db and have values in D.A/. Let us

introduce the following hypotheses:

(C1) A satisfies Hille–Yosida condition;
(C2) The operator S0.t/ is compact in D.A/ whenever t > 0I
(C3) There exists a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! Œ0;1/ such that

jf .t; u/j � p.t/ .kukD/; for a.e. t 2 J; and each u 2 D:

with

Z 1

C�
1

du

 .u/
> C�

2

Z b

0

e�!tp.t/dt

where

C�
1 D Kb

C1
C

C .MKb C Mb/k�k; C�
2 D Me!bKb

C
(9.49)
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with

C D 1 � ˛1Kb � Me!b
mX

kD1
e�!tk dk � 2Me!blgKb

mX

kD1
e�!tk (9.50)

and

C1 D ˛1.MKb C Mb/k�k C ˛2 C Me!b
mX

kD1
e�!tk dkk�k

CMe!b
mX

kD1
e�!tk jIk.0/j C Me!b˛2

C2Me!blg.MKb C Mb/

mX

kD1
e�!tk k�k C Me!b

mX

kD1
e�!tk j�g.tk; 0/j:

Theorem 9.29. Assume that (9.30.2)–(9.30.4) and (C1)–(C3) hold. If

Kb max .lg; ˛1/C Me!b
mX

kD1
e�!tk dk C 2MlgKbe!b

mX

kD1
e�!tk < 1; (9.51)

then the problem (9.40)–(9.42) has at least one integral solution on .�1; b�:

Proof. Transform the problem (9.40)–(9.42) into a fixed point problem. Consider
the operator N W Db�

! Db�
defined by:

.Ny/.t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

�.t/; t 2 .�1; 0�;

S0.t/Œ�.0/ � g.0; �/�C g.t; yt/

C d

dt

Z t

0

S.t � s/f .s; ys/ds C
X

0<tk<t

S0.t � tk/Ik
�

y
�

t�k


�
X

0<tk<t

S0.t � tk/�g.tk; ytk/; t 2 J:

For � 2 D, we define the function:

Q�.t/ D
8

<

:

�.t/; t 2 .�1; 0�;

S0.t/�.0/; t 2 J;

Then Q� 2 Db. Set

y.t/ D x.t/C Q�.t/:
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It is clear that x satisfies x0 D 0 and

x.t/ D g.t; xt C Q�t/ � S0.t/g.0; �/

C d

dt

Z t

0

S.t � s/f .s; xs C Q�s/ds C
X

0<tk<t

S0.t � tk/Ik
�

x
�

t�k
C Q� �t�k



�
X

0<tk<t

S0.t � tk/�g.tk; xtk C Q�tk/; t 2 J:

Let D0
b�

D fx 2 Db�
W x0 D 0g : For any x 2 D0

b�
we have

kxkb D kx0kD C sup fjz.s/j W 0 � s � bg D sup fjx.s/j W 0 � s � bg :

Thus .D0
b�
; k � kb/ is a Banach space.

Define the two operators A;B W D0
b�

! D0
b�

by:

B.x/.t/ D d

dt

Z t

0

S.t � s/f .s; xs C Q�s/ds; t 2 J

and

A.z/.t/ D g.t; xt C Q�t/ � S0.t/g.0; �/C
X

0<tk<t

S0.t � tk/Ik
�

x
�

t�k
C Q� �t�k



�
X

0<tk<t

S0.t � tk/�g.tk; xtk C Q�tk/; t 2 J:

Obviously the operator N has a fixed point is equivalent to ACB has one, so it turns
to prove that A C B has a fixed point. We shall show that the operators A and B
satisfy all the conditions of Theorem 1.32. The proof will be given in several steps.

Step 1: B is continuous.

Let fxng be a sequence such that xn ! x in D0
b�

. Then

jB.xn/.t/ � B.x/.t/j D
ˇ
ˇ
ˇ
ˇ

d

dt

Z t

0

S.t � s/Œf .s; xns C Q�s/ � f .s; xs C Q�s/�ds

ˇ
ˇ
ˇ
ˇ

� Me!b
Z b

0

e!s
ˇ
ˇf .s; xns C Q�s/ � f .s; xs C Q�s/

ˇ
ˇ ds:

Since f .s; �/ is continuous for a.e. s 2 J, we have by the Lebesgue dominated
convergence theorem

jB.xn/.t/ � B.x/.t/j ! 0 as n ! 1:

Thus B is continuous.
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Step 2: B maps bounded sets into bounded sets in D0
b�

.

It is enough to show that for any q > 0 there exists a positive constant l such that
for each x 2 Bq D fy 2 D0

b�
W kxk � qg we have kB .x/k � l. Let x 2 Bq; then

kxs C Q�skB � kxskD C k Q�skD
� Kbq C KbMj�.0/j C Mbk�kD
D q�:

Then we have for each t 2 J

jB.x/.t/j D j d

dt

Z t

0

S.t � s/f .s; xs C Q�s/dsj

� Me!b
Z b

0

e!sp.s/ .kxs C Q�sk/ds

� Me!b .q�/
Z b

0

e!sp.s/ds WD l:

Step 3: B maps bounded sets into equi-continuous sets in D0
b�

.

We consider Bq as in step 2 and let 
1; 
2 2 Jn ft1; : : : ; tmg ; 
1 < 
2.Thus if
� > 0 and � � 
1 < 
2 we have We consider Bq as in step 2 and let 
1; 
2 2
Jn ft1; : : : ; tmg ; 
1 < 
2. Thus if � > 0 and � � 
1 < 
2 we have

jB.x/.
2/ � B.x/.
1/j �
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1��

0

ŒS0.
2 � s/ � S0.
1 � s/�B�f .s; xs C Q�s/ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1


1��
ŒS0.
2 � s/ � S0.
1 � s/�B�f .s; xs C Q�s/ ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
2


1

S0.
2 � s/B�f .s; xs C Q�s/ ds

ˇ
ˇ
ˇ
ˇ

�  .q�/
Z 
1��

0

kS0.
2 � s/ � S0.
1 � s/kB.E/p.s/ds

C .q�/
Z 
1


1��
kS0.
2 � s/ � S0.
1 � s/kB.E/p.s/ds

C .q�/
Z 
2


1

kS0.
2 � s/kB.E/p.s/ds:

As 
1 ! 
2 and � become sufficiently small, the right-hand side of the above
inequality tends to zero, since S0.t/ is a strongly continuous operator and the
compactness of S0.t/ for t > 0 implies the continuity in the uniform operator
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topology. This proves the equi-continuity for the case where t ¤ ti; k D
1; 2; : : : ;m C 1: It remains to examine the equi-continuity at t D ti:

First we prove equi-continuity at t D t�i . Fix ı1 > 0 such that ftk W k ¤ ig \
Œti � ı1; ti C ı1� D ;. For 0 < h < ı1 we have

jB.x/.ti � h/ � B.x/.ti/j � lim
�!1

Z ti�h

0

j �S0.ti � h � s/�S0.ti � s/


B�f .s; xsC Q�s/jds

CMe!b .q�/
Z ti

ti�h
e!sp.s/dsI

which tends to zero as h ! 0. Define

OB0.x/.t/ D B.x/.t/; t 2 Œ0; t1�

and

OBi.x/.t/ D
� B.x/.t/; if t 2 .ti; tiC1�
B.x/.tCi /; if t D ti:

Next we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk W k ¤ ig \
Œti � ı2; ti C ı2� D ;. For 0 < h < ı2 we have

j OB.x/.ti C h/� OB.x/.ti/j � lim
�!1

Z ti

0

k �S0.ti C h � s/�S0.ti�s/


B�f .s; xs C Q�s/kds

CMe!b .q/
Z tiCh

ti

e�!sp.s/ds:

The right-hand side tends to zero as h ! 0: The equi-continuity for the cases

1 < 
2 � 0 and 
1 � 0 � 
2 follows from the uniform continuity of � on
the interval Œ�r; 0� : As a consequence of steps 1–3 together with Arzelá–Ascoli
theorem it suffices to show that B maps B into a precompact set in E.

Let 0 < t < b be fixed and let � be a real number satisfying 0 < � < t. For
y 2 Bq we define

B�.x/.t/ D S0.�/ lim
�!1

Z t��

0

S0.t � s � �/B� f .s; xs C Q�s/ds:

Since S0.t/ is a compact operator, the set

X�.t/ D fB�.x/.t/ W x 2 Bqg
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is precompact in E for every �; 0 < � < t: Moreover, for every y 2 Bq we have

jB.x/.t/ � B�.x/.t/j � Me!b .q�/
Z t

t��
e�!sp.s/ds:

Therefore, there are precompact sets arbitrarily close to the set X�.t/ D fB�.x/.t/ W
x 2 Bqg: Hence the set X.t/ D fB.x/.t/ W x 2 Bqg is precompact in E. Hence the
operator B is completely continuous.

Step 4: A is a contraction. Let x1; x2 2 D0
b�

. Then for t 2 J

jA.x1/.t/ � A.x2/.t/j � jg.t; x1t C Q�t/ � g.t; x2t C Q�t/j
CMe!b

X

0<tk<t

e�!tk
ˇ
ˇIk
�

x1
�

t�k
 � Ik

�

x2
�

t�k
ˇ
ˇ

CMe!b
X

0<tk<t

e�!tk j�g.tk; x1tk C Q�tk/

��g.tk; x2tk C Q�tk/j

� lgkx1t � x2tk C Me!b
mX

kD1
e�!tk dk

ˇ
ˇx1
�

t�k
 � x2

�

t�k
ˇ
ˇ

C2Me!blg

mX

kD1
e�!tk jx1tk � x2tk j

� .Me!b
mX

kD1
e�!tk.dk C 2lgKb/C lgKb/ kx1 � x2kB :

Then

kA.x1/ � A.x2/k �
 

M
mX

kD1
dk C lgKb C 2mMlgKb

!

kx1 � x2k ;

which is a contraction, since

Kblg C M
mX

kD1
dk C 2mMlgKb � Kb max .lg; ˛1/C M

mX

kD1
dk C 2mMlgKb < 1:

Step 5: A priori bounds.

Now it remains to show that the set

E D
n

x 2 D0
b W x D �B.x/C �A

� x

�

�

for some 0 < � < 1
o

is bounded.
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Let x 2 E ; then x D �B.x/C�A
� x

�

�

for some 0 < � < 1: Thus, for each t 2 J;

x.t/ D �

tZ

0

T.t � s/f .s; xs C Q�s/ds � �T.t/g.0; �/C �g.t;
xt

�
C Q�t/

C�
X

0<tk<t

T .t � tk/ Ik

� x

�

�

t�k
C Q�.tk/

�

��
X

0<tk<t

T .t � tk/�g.tk;
xtk

�
C Q�tk/:

This implies by (9.30.2) and (9.30.4) that, for each t 2 J; we have

jx.t/j � �M

tZ

0

p.s/ .kxs C Q�sk/ds

C�jg.t; xt

�
C Q�t/j C �M

mX

kD1

ˇ
ˇ
ˇIk

� x

�

�

t�k
C Q�.t�k /

�ˇ
ˇ
ˇ

C�M
mX

kD1
j�g.tk;

xtk

�
C Q�tk/j C �Mg.tk;

xtk

�
C Q�tk/j C �Mjg.0; �/j

� �M

tZ

0

p.s/ .Kbjxsj C .MKb C Mb/k�k/ds

C�˛1kxt

�
C Q�tk C �˛2

C�M
mX

kD1
jIk

� x

�
.t�k /C Q�.t�k /

�

� Ik.0/j C �M
mX

kD1
jIk.0/j

C2�M
mX

kD1
lgjxtk

�
C Q�tk j C �M

mX

kD1
j�g.tk; 0/j C �M˛2

� �M

tZ

0

p.s/ .Kbjx.s/j C .MKb C Mb/k�k/ds

C�˛1
�

Kb

ˇ
ˇ
ˇ
ˇ

x.t/

�

ˇ
ˇ
ˇ
ˇ
C .MKb C Mb/k�k

�

C�˛2 C �M
mX

kD1
dk

�ˇ
ˇ
ˇ
ˇ

x.t/

�

ˇ
ˇ
ˇ
ˇ
C k�k

�

C �M
mX

kD1
jIk.0/j



242 9 Impulsive Semi-linear Functional Differential Equations

C2�M
mX

kD1
lg

�

Kb

ˇ
ˇ
ˇ
ˇ

x.t/

�

ˇ
ˇ
ˇ
ˇ
C .MKb C Mb/k�k

�

C�M
mX

kD1
j�g.tk; 0/j C �M˛2

� M

tZ

0

p.s/ .Kbjx.s/j C .MKb C Mb/k�k/ds

C˛1 .Kb jx.t/j C .MKb C Mb/k�k/

C˛2 C M
mX

kD1
dkjx.t/j C M

mX

kD1
dkk�k C M

mX

kD1
jIk.0/j C M˛2

C2MmlgKbjx.t/j C 2Mmlg.MKb C Mb/k�k C M
mX

kD1
j�g.tk; 0/j

Then
 

1 � ˛1Kb � M
mX

kD1
dk � 2MmlgKb

!

jx.t/j

� M

tZ

0

p.s/ .Kbjx.s/j C .MKb C Mb/k�k/ds

C˛1 .MKb C Mb/ k�k C .1C M/˛2

CM
mX

kD1
dkk�k C M

mX

kD1
jIk.0/j

C2Mmlg .MKb C MB/ k�k C M
mX

kD1
j�g.tk; 0/j:

Thus by (9.49) we have

Kbjx.t/j C .MKb C Mb/ k�k � C�
1

CC�
2

tZ

0

p.s/ .Kbjx.s/j C .MKb C Mb/k�k/ds

We consider the function � defined by

�.t/ D supfKbjx.s/j C .MKb C Mb/k�k W 0 � s � tg; 0 � t � b:
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Let t� 2 Œ0; t� be such that �.t/ D Kbjx.t�/j C .MKb C Mb/k�k, by the previous
inequality we have for t 2 Œ0; b�

�.t/ � C�
1 C C�

2

tZ

0

p.s/ .�.t//ds (9.52)

Let us take the right-hand side as v.t/. Then we have

v.0/ D C�
1 ; �.t/ � v.t/ for all t 2 J;

and

v0.t/ D C�
2 p.t/ .�.t//; a:e: t 2 J:

Using the nondecreasing character of  we get

v0.t/ � p.t/ .v.t//; a:e: t 2 J;

Thus

Z v.t/

C�
1

ds

 .s/
�
Z b

0

p.s/ds D kpkL1 <

Z 1

C�
1

ds

 .s/
:

Consequently, by assumption .9:30:5/, there exists a constant N such that v.t/ �
N; t 2 J and hence there exists a constant � such that kzkb � �: This shows that
the set E is bounded. As a consequence of Theorem 1.32, we deduce that F C G has
a fixed point z�. Then z�.t/ D x�.t/ C Q�.t/; t 2 .�1; b� is a fixed point of the
operator N, which gives rise to a mild solution of the problem (9.40)–(9.42). ut

9.4.4 An Example

In this section we apply some of the results established in this section. We begin by
mentioning an example of phase space.

The Phase Space

Let h.:/ W .�1;�r� ! R be a positive Lebesgue integrable function and D WD
PCr �L2.h;E/; r � 0; be the space formed of all classes of functions ' W .�1; 0� !
E such that 'jH 2 PC.H;E/, '.:/ is Lebesgue-measurable on .�1;�r� and hj'jp
is Lebesgue integrable on .�1;�r�. The semi-norm in k:kD is defined by
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k'kD D sup
�2H

k'.�/k C
�Z �r

�1
h.�/k'.�/kpd�

�1=p

(9.53)

Assume that h.:/ satisfies conditions (g-6) and (g-7) in the terminology of [142].
Proceeding as in the proof of ([142], Theorem 1.3.8) it follows that D is a phase
space which verifies the axioms (A1)–(A2) and (A3). Moreover, when r D 0 this
space coincides with C0� L2.h;E/ and the parameters H D 1I M.t/ D �.�t/1=2 and

K.t/ D 1C
�R 0

�t h.�/d�
�1=2

, for t � 0 (see [142]). Let E D L2.Œ0; ��/ and let A be

the operator given by Af D f 00 with domain

D.A/ WD ˚

f 2 L2.Œ0; ��/ W f 00 2 L2.Œ0; ��/; f .0/ D f .�/ D 0
�

(9.54)

It is well known that A is the infinitesimal generator of a C0-semigroup on E, which
will be denoted by .T.t//t�0. Moreover, A has discrete spectrum, the eigenvalues are
�n2; n 2 N; with corresponding normalized eigenvectors zn.�/ WD . 2

�
/1=2sin.n�/

and the following properties hold:

(a) fzn W n 2 Ng is an orthonormal basis of E.
(b) For f 2 E;T.t/f D P1

nD1 e�n2thf ; zni and Af D P1
nD1 �n2hf ; znizn when

f 2 D.A/:

A First Order Neutral Equation

We study the first order neutral differential equation with unbounded delay

d

dt

	

u.t; �/C
Z t

�1

Z �

0

b.t � s; �; �/u.s; �/d�ds




D @2

@�2

	

u.t; �/C
Z t

�1

Z �

0

b.t � s; �; �/u.s; �/d�ds




C
Z t

�1
F.t; t � s; �; u.s; �//ds; t 2 Œ0; a�; � 2 Œ0; �� (9.55)

u.t; 0/ D u.t; �/ D 0; t 2 Œ0; a�; (9.56)

u.
; �/ D '.
; �/; 
 � 0; 0 � � � �; (9.57)

�u.ti/.�/ D R ti
�1 ai.ti � s/u.s; �/ds; (9.58)

where ' 2 C0 � L2.h;E/; 0 < t1 < � � � < tn < a and
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(a) The function b.s; �; �/; @b.s;�;�/
@�

are measurable, b.s; �; �/ D b.s; �; 0/ D 0 and

lg WD max

(�Z �

0

Z 0

�1

Z �

0

1

h.s/
.
@ib.s; �; �/

@� i
/d�dsd�

�1=2

W i D 0; 1

)

< 1
(9.59)

(b) The function F W R4 !* R is continuous and there are continuous functions
� W R3 ! R and � W R2 ! R such that

jF.t; s; �; x/j � �.t; s; �/C �.t; s/jxj; .t; s; �; x/ 2 R3I (9.60)

(c) The functions ak 2 C.Œ0;1/;R/ and dk WD .
R 0

�1
.ak/

2

h.s/ ds/1=2 < 1 for all
i D 1; : : : ;m:

Assuming that conditions .a/ � �.c/ are verified, our problem can be modeled as
the abstract impulsive problem (9.40)–(9.42) by defining

g.t;  /.�/ WD R 0

�1
R �

0
b.s; �; �/ .s; �/d�ds; (9.61)

f .t;  /.�/ WD R 0

�1 F.t; s; �;  .s; �//ds; (9.62)

Ik. /.�/ WD R 0

�1 ak.s/ .s; �/ds: (9.63)

Moreover, f .t; :/; Ik; i D 1; : : : ;m; are bounded linear operators, and kg.t;  /k �
˛2 C ˛1k kB, where

˛1 WD
�Z �

0

Z 0

�1

Z �

0

1

h.s/
jb.s; �; �/j2d�dsd�

�1=2

; ˛2 WD 0:

Hence, the problem has a mild solution in .�1; b�:

9.5 Non-densely Defined Impulsive Semi-linear Functional
Differential Equations with State-Dependent Delay

9.5.1 Introduction

In this section, we shall be concerned with existence of integral solutions defined
on a compact real interval for first order impulsive semi-linear functional equations
with state-dependent delay in a separable Banach space of the form:
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y0.t/ D Ay.t/C f .t; y�.t;yt//; t 2 I D Œ0; b�; (9.64)

y.t/ D � t 2 .�1; 0�; (9.65)

� y.ti/ D Ik.ytk/; k D 1; 2; : : : ;m; (9.66)

where f W J � D ! E is a given function, D D f W .�1; 0� ! E;  is continuous
everywhere except for a finite number of points s at which  .s�/ ;  

�

sC exist and
 .s�/ D  .s/g, � 2 D, .0 < r < 1/, 0 D t0 < t1 < � � � < tm < tmC1 D b,
Ik W D ! E .k D 1; 2; : : : ;m/, � W I � D ! .�1; b�, A W D.A/ � E ! E is
a non-densely defined closed linear operator on E, and E a real separable Banach
space with norm j:j.

9.5.2 Existence of Integral Solutions

Definition 9.30. We say that y W .�1;T� ! E is an integral solution of (9.64)–
(9.66) if

(i) y.t/ D �.0/C A
Z t

0

y.s/ds C
Z t

0

f .s; y�.s;ys//ds C
X

0<tk<t

Ik .ytk/ ; t 2 J:

(ii)
Z t

0

y.s/ds 2 D.A/ for t 2 J, and y.t/ D �.t/; t 2 .�1; 0�:

From the definition it follows that y.t/ 2 D.A/, for each t � 0; in particular
�.0/ 2 D.A/. Moreover, y satisfies the following variation of constants formula:

y.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/f .s; y�.s;ys//ds C
X

0<tk<t

S0 .t � tk/ Ik .ytk/ t � 0:

(9.67)
We notice also that if y satisfies (9.67), then

y.t/ D S0.t/�.0/C lim
�!1

Z t

0

S0.t � s/B�f .s; y�.s;ys//ds

C
X

0<tk<t

S0 .t � tk/ Ik .ytk/ ; t � 0:

Our main result in this section is based upon the fixed point theorem due to Burton
and Kirk [88]. We always assume that � W I � D ! .�1; b� is continuous.
Additionally, we introduce the following hypotheses:

(H') The function t ! 't is continuous from R.��/ D f�.s; '/ W .s; '/ 2
J � D; �.s; '/ � 0g into D and there exists a continuous and bounded
function L� W R.��/ ! .0;1/ such that k�tkD � L�.t/k�kD for every
t 2 R.��/.
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(9.34.1) A satisfies Hille–Yosida condition;
(9.34.2) There exist constants dk > 0; k D 1; : : : ;m such that for each y; x 2 D

kIk .y/ � Ik .x/ k � dkky � xkD
(9.34.3) The function f W J � D ! E is Carathéodory;
(9.34.4) The operator S0.t/ is compact in D.A/ wherever t > 0I
(9.34.5) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! .0;1/ such that

jf .t; x/j � p.t/ .kxkD/; a:e: t 2 J; for all x 2 D

with
Z b

0

e�!sp.s/ds < 1,

Z 1

c1

du

 .u/
> c2

Z b

0

e�!sp .s/ ds: (9.68)

where

c1 D ce!bKb

1 � Me!bKb

mP

kD1
dk

C �

Mb C L� C MKb
 k�k; (9.69)

and

c D
mX

kD1

�jIk.0/j C dk
�

Mb C L� C MKb
 k�kD

�

: (9.70)

c2 D MKbe!b

1 � Me!bKb

mP

kD1
dk

: (9.71)

The next result is a consequence of the phase space axioms.

Lemma 9.31 ([139], Lemma 2.1). If y W .�1; b� ! E is a function such that
y0 D � and yjJ 2 PC.J W D.A//, then

kyskD � .Ma C L�/k�kD C Ka supfky.�/kI � 2 Œ0; maxf0; sg�g; s 2 R.��/[ J;

where L� D supt2R.��/ L�.t/, Ma D supt2J M.t/ and Ka D supt2J K.t/.
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Theorem 9.32. Assume that (H') and (9.34.1)–(9.34.5) hold. If

Me!bKb

mX

kD1
dk < 1; (9.72)

then the problem (9.64)–(9.66) has at least one integral solution on .�1; b�:

Proof. Consider the operator N W PC
�

.�1; b�;D.A/
�

! PC
�

.�1; b�;D.A/
�

defined by:

.Ny/.t/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

�.t/; t 2 .�1; 0�;

S0.t/�.0/C d

dt

Z t

0

S.t � s/f
�

s; y�.s;ys/



ds

C
X

0<tk<t

S0.t � tk/Ik.ytk/; t 2 J:

Let Q�.:/ W .�1; b� ! E be the function defined by

Q�.t/ D
8

<

:

�.t/; t 2 .�1; 0�;

S0.t/�.0/; t 2 J:

Then Q�0 D �. For each x 2 Bb with x.0/ D 0, we denote by x the function defined by

x.t/ D
8

<

:

0; t 2 .�1; 0�;

x.t/; t 2 J;

We can decompose it as y.t/ D Q�.t/C x.t/; 0 � t � b, which implies yt D xt C Q�t,
for every 0 � t � b and the function x.:/ satisfies

x.t/ D d

dt

Z t

0

S.t � s/f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�

ds

C
X

0<tk<t

S0.t � tk/Ik
�

xtk C Q�tk



t 2 J:

Let

B0b D fx 2 Bb W x0 D 0 2 Dg:
For any x 2 B0b we have

kxkb D kx0kD C supfjx.s/j W 0 � s � bg D supfjx.s/j W 0 � s � bg:
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Thus .B0b; k�kb/ is a Banach space. We define the two operators A;B W B0b ! B0b by:

B.x/.t/ D d

dt

Z t

0

S.t � s/f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�

ds; t 2 J

and

A.x/.t/ D
X

0<tk<t

S0.t � tk/Ik
�

xtk C Q�tk



; t 2 J:

Obviously the operator N has a fixed point is equivalent to A C B has one, so it
turns to prove that A C B has a fixed point. We shall show that the operators A and
B satisfies all the conditions of Theorem 1.32. For better readability, we break the
proof into a sequence of steps.

Step 1: B is continuous.
Let fxng be a sequence such that xn ! x in B0b . Then for ! > 0 (if ! < 0 one has
e!t < 1).
At first, we study the convergence of the sequences .xn

�.s;xn
s
/n2N; s 2 J: If s 2 J

is such that �.s; xs/ > 0 for every n > N. In the case, for n > N we see that

kxn
�.s;xn

s /
� x�.s;xs/kD � kxn

�.s;xn
s /

� x�.s;xn
s /

kD C kx�.s;xn
s /

� x�.s;xs/kD
� Kbkxn � xkD C kx�.s;xn

s /
� x�.s;xs/kD:

Which prove that xn
�.s;xn

s /
! x�.s;xs/ in D as n ! 1 for every s 2 J such that

�.s; xs/ > 0: Similarly, if�.s; xs/ < 0 and n 2 N is such that �.s; xn
s / < 0 for

every n > N, we get

kxn
�.s;xn

s /
� x�.s;xs/kD D k��.s;xn

s /
� ��.s;xs/kD D 0

Which also shows that xn
�.s;xn

s /
! x�.s;xs/ in D as n ! 1 for every s 2 J such that

�.s; xs/ < 0. Combining the previous arguments, we can prove that xn
�.s;xn

s /
! �

for every s 2 J such that �.s; xs/ D 0: Finalely,

jB.xn/.t/ � B.x/.t/j D
ˇ
ˇ
ˇ
ˇ

d

dt

Z t

0

S.t � s/
h

f
�

s; xn
�.s;xn

s C Q�s/
C Q��.s;xn

s C Q�s/

�

�f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�i

ds
ˇ
ˇ
ˇ

� Me!b
Z t

0

e�!s
ˇ
ˇ
ˇf
�

s; xn
�.s;xn

s C Q�s/
C Q��.s;xn

s C Q�s/

�

�f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�ˇ
ˇ
ˇ ds
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� Me!b
Z t

0

e�!s
ˇ
ˇ
ˇf
�

s; xn
�.s;xn

s C Q�s/
C Q��.s;xn

s C Q�s/

�

�f
�

s; x�.s;xn
s C Q�s/

C Q��.s;xn
s C Q�s/

�ˇ
ˇ
ˇ ds

CMe!b
Z t

0

e�!s
ˇ
ˇ
ˇf
�

s; x�.s;xn
s C Q�s/

C Q��.s;xn
s C Q�s/

�

�f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�ˇ
ˇ
ˇ ds

We infer that f .s; xn
�.s;xn

s /
/ ! f .s; x�.s;xs// as n ! 1, for every s 2 J. Now,

a standard application of the Lebesgue dominated convergence theorem proves
that

kB.xn/.t/ � B.x/.t/kb ! 0 as n ! 1:

Thus B is continuous.

Step 2: B maps bounded sets into bounded sets in B0b .

It is enough to show that for any q > 0 there exists a positive constant l such that
for each x 2 Bq D fx 2 B0b W kxkb � qg we have kB .y/kb � l: So choose x 2 Bq;

then

kx�.t;xtC Q�t/
C Q��.t;xtC Q�t/

kD � Kbq C .Mb C L�/k�kD C KbMj�.0/j D q�

Then we have for each t 2 J

jB.x/.t/j D
ˇ
ˇ
ˇ
ˇ

d

dt

Z t

0

S.t � s/f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�

ds

ˇ
ˇ
ˇ
ˇ

� Me!b
Z b

0

e�!sp.s/ 
�

kx�.t;xtC Q�t/
C Q��.t;xtC Q�t/

kD
�

:

Then we have

kB.x/.t/kb � Me!b .q�/
Z b

0

e�!sp.s/ds WD l:

Step 3: B maps bounded sets into equi-continuous sets of B0b:
We consider Bq as in Step 2 and let 
1; 
2 2 Jn ft1; : : : ; tmg ; 
1 < 
2.Thus if

� > 0 and � � 
1 < 
2 we have

jB.x/.
2/ � B.x/.
1/j

�
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1��

0

ŒS0.
2 � s/ � S0.
1 � s/�B�f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�

ds

ˇ
ˇ
ˇ
ˇ
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C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1


1��
ŒS0.
2 � s/ � S0.
1 � s/�B�f

�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�

ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
2


1

S0.
2 � s/B�f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�

ds

ˇ
ˇ
ˇ
ˇ

�  .q�/
Z 
1��

0

jS0.
2 � s/ � S0.
1 � s/jp.s/ds

C .q�/
Z 
1


1��
jS0.
2 � s/ � S0.
1 � s/jp.s/ds

CMe!b .q�/
Z 
2


1

e�!sp.s/ds:

As 
1 ! 
2 and � become sufficiently small, the right-hand side of the above
inequality tends to zero, since S0.t/ is a strongly continuous operator and the com-
pactness of S0.t/ for t > 0 implies the continuity in the uniform operator topology.
This proves the equi-continuity for the case where t ¤ ti; k D 1; 2; : : : ;m C 1.
It remains to examine the equi-continuity at t D ti.

First we prove equi-continuity at t D t�i . Fix ı1 > 0 such that

ftk W k ¤ ig \ Œti � ı1; ti C ı1� D ;:

For 0 < h < ı1 we have

jB.x/.ti � h/ � B.x/.ti/j

� lim
�!1

Z ti�h

0

k �S0.ti � h � s/ � S0.ti � s/


B�f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�

kds

CMe!b .q�/
Z ti

ti�h
e�!sp.s/ dsI

which tends to zero as h ! 0. Define

OB0.x/.t/ D B.x/.t/; t 2 Œ0; t1�

and

OBi.x/.t/ D
� B.x/.t/; if t 2 .ti; tiC1�
B.x/.tCi /; if t D ti:
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Next we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk W k ¤ ig \
Œti � ı2; ti C ı2� D ;. For 0 < h < ı2 we have

j OB.x/.ti C h/ � OB.x/.ti/j

� lim
�!1

Z ti

0

k �S0.ti C h � s/ � S0.ti � s/


B�f
�

s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

�

kds

CMe!b .q�/
Z tiCh

ti

e�!sp.s/ dsI

The right-hand side tends to zero as h ! 0. The equi-continuity for the cases

1 < 
2 � 0 and 
1 � 0 � 
2 follows from the uniform continuity of � on the
interval Œ�r; 0�. As a consequence of steps 1–3 together with Arzelá–Ascoli theorem
it suffices to show that B maps Bq into a precompact set in E. Let 0 < t < b be fixed
and let � be a real number satisfying 0 < � < t. For x 2 Bq we define

B�.x/.t/ D S0.�/ lim
�!1

Z t��

0

S0.t � s � �/B�f .s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

/ds:

Note
�

lim
�!1

Z t��

0

S0.t � s � �/B�f .s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

/ ds W y 2 Bq

�

is a bounded set since
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z t��

0

S0.t � s � �/B�f .s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

/ ds

ˇ
ˇ
ˇ
ˇ

� Me!b .q�/
Z t��

0

e�!sp.s/ds:

Since S0.t/ is a compact operator, the set

X�.t/ D fB�.x/.t/ W x 2 Bqg

is precompact in E for every �; 0 < � < t: Moreover, for every y 2 Bq we have

jB.x/.t/ � B�.x/.t/j � Me!b .q�/
Z t��

t
e�!sp.s/ds:
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Therefore, there are precompact sets arbitrarily close to the set X�.t/ D fB�.x/.t/ W
x 2 Bqg: Hence the set X.t/ D fB.x/.t/ W x 2 Bqg is precompact in E. Hence the
operator B W B0b ! B0b is completely continuous.

Step 4: A is a contraction

Let x1; x2 2 B0b . Then for t 2 J

jA.x1/.t/ � A.x2/.t/j D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

0<tk<t

S0 .t � tk/
�

Ik.x
1
tk C Q�tk/ � Ik.x

2
tk C Q�tk/



ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� Me!b
X

0<tk<t

ˇ
ˇIk.x

1
tk/ � Ik.x

2
tk/
ˇ
ˇ

� Me!b
mX

kD1
dkkx1tk � x2tk kD

� Me!bKb

mX

kD1
dk kx1 � x2kD :

Then

kA.x1/ � A.x2/kb � Me!bKb

mX

kD1
dk kx1 � x2kD ;

which is a contraction from (9.72).

Step 5: A priori bounds.

Now it remains to show that the set

E D
n

x 2 B0b W x D �B.x/C �A
� x

�

�

for some 0 < � < 1
o

is bounded.
Let x 2 E : Then x D �B.x/ C �A

� x

�

�

for some 0 < � < 1: Thus, for each

t 2 J;

x.t/ D �
d

dt

tZ

0

S.t � s/f .s; x�.s;xsC Q�s/
C Q��.s;xsC Q�s/

/ds

C�
X

0<tk<t

S0 .t � tk/ Ik

�xtk

�
C Q�tk

�

:
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This implies by (9.34.2), (9.34.5) that, for each t 2 J; we have

jx.t/j � �Me!t

tZ

0

e�!sp.s/ .kx�.s;xsC Q�s/
C Q��.s;xsC Q�s/

kD/ds

C�Me!t
mX

kD1

ˇ
ˇ
ˇIk

�xtk

�
C Q�tk

�ˇ
ˇ
ˇ

� �Me!t

tZ

0

e�!sp.s/ 
�

Kbjx.s/j C .Mb C L� C MKb/k�kD


ds

C�Me!t
mX

kD1

ˇ
ˇ
ˇIk

�xtk

�
C Q�tk

�

� Ik.0/
ˇ
ˇ
ˇ

C�Me!t
mX

kD1
jIk.0/j

� �Me!t

tZ

0

e�!sp.s/ 
�

Kbjx.s/j C .Mb C L� C MKb/k�kD


ds

C�Me!t
mX

kD1
jIk.0/j C �Me!t

mX

kD1
dk
�

Kbjx.s/j C .Mb C L� C MKb/k�kD


� ce!t C Me!t

2

4

tZ

0

e�!sp.s/ 
�

Kbjx.s/j C .Mb C L� C MKb/k�kD


ds

CKb

mX

kD1
dk jx.t/j

#

;

where

c D M

 
mX

kD1

�jIk.0/j C dk.Mb C L� C MKb/k�kD
�

!

: (9.73)

Therefore,

 

1 � Me!bKb

mX

kD1
dk

!

jx.t/j � ce!t C Me!t

tZ

0

e�!sp.s/ .Kbjx.s/j

C.Mb C L� C MKb/k�kD


ds:
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Thus from (9.69) and (9.71) we have

.Mb C L� C MKb/k�kD C Kbjx.s/j � c1 C c2

tZ

0

e�!sp.s/ .Kbjx.t/j

C.Mb C L� C MKb/k�kD


ds:

We consider the function � defined by

�.t/ D supfKbjx.s/j C .Mb C L� C MKb/k�kD W 0 � s � tg; 0 � t � b:

t� 2 Œ0; t� be such that �.t/ D Kbjx.t�/j C .Mb C L� C MKb/k�kD, by the previous
inequality we have for t 2 Œ0; b�

�.t/ � c1 C c2

tZ

0

e�!sp.s/ .�.s//ds: (9.74)

Let us take the right-hand side of (9.74) as v.t/. Then we have

�.t/ � v.t/ for all t 2 J;

v.0/ D c1;

and

v0.t/ D c2e
�!tp.t/ .�.t//; a:e: t 2 J:

Using the nondecreasing character of  we get

v0.t/ � c2e
�!tp.t/ .v.t//; a:e: t 2 J:

That is

v0.t/
 .v.t//

� c2e
�!tp .t/ ; a:e: t 2 J:

Integrating from 0 to t we get

Z t

0

v0.s/
 .v.s//

ds � c2

Z t

0

e�!sp.s/ds:

By a change of variable and (9.68) we get

Z v.t/

v.0/

du

 .u/
� c2

Z b

0

e�!sp .s/ ds <
Z 1

c1

du

 .u/
:
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Hence there exists a constant N such that

�.t/ � v.t/ � N for all t 2 J:

Now from the definition of � it follows that

kxkb � N� for all x 2 E :

This shows that the set E is bounded. As a consequence of Theorem 1.32 we deduce
that A C B has a fixed point which is a integral solution of problem (9.64)–(9.66).

ut

Phase Spaces

Let g W .�1; 0� ! Œ1;1/ be a continuous, nondecreasing function with g.0/ D 1,
which satisfies the conditions (g-1), (g-2) of [142]. This means that the function

G.t/ D sup
�1<���t

g.t C �/

g.�/

is locally bounded for t � 0 and that lim
�!�1 g.�/ D 1:

We said that � W Œ�1; 0� ! E is normalized piecewise continuous, if � is left
continuous and the restriction of � to any interval H is piecewise continuous.

Next we modify slightly the definition of the spaces Cg;C0
g of [142]. We denote

by PCg.E/ the space formed by the normalized piecewise continuous functions �

such that
�

g
is bounded on .�1; 0� and by PC0g the subspace of PCg.E/ formed by

the functions � such that

lim
�!�1

�.�/

g.�/
D 0:

It is easy to see that D D PCg.E/ and D D PC0g.E/ endowed with the norm

k�kD D sup
�2.�1;0�

k�.�/k
g.�/

are phase spaces. Moreover, in these cases K.s/ D 1 for s � 0.
Let 1 � p < 1; 0 � r < 1, and g.�/ is a Borel nonnegative measurable

function on .�1; r/ which satisfies the conditions (g-5)–(g-6) in the terminology
of [142]. This means that g.�/ is locally integrable on .�1;�r/ and there exists
a nonnegative and locally bounded function G on .�1; 0� such that g.� C �/ �
G.�/g.�/ for all � � 0 and � 2 .�1;�r/nN� , where N� � .�1;�r/ is a set with
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Lebesgue measure 0. Let D WD PCr � Lp.g;E/; r � 0; p > 1, be the space formed
of all classes of functions � W .�1; 0� ! E such that �jH 2 PC.H;E/; �.�/ is
Lebesgue measurable on .�1;�r� and gj�jp is Lebesgue integrable on .�1;�r�:
The seminorm in k � kD is defined by

k�kD WD sup
�2H

k�.�/k C
�Z �r

�1
g.�/k�.�/kpd�

� 1
p

:

Proceeding as in the proof of ([142], Theorem 1.3.8), it follows that D is a phase
space which satisfies Axioms (A) and (B). Moreover, for r D 0 and p D 2 this space
coincides (see [142]) with C0 � L2.g;E/; H D 1; M.t/ D G.�t/

1
2 and

K.t/ D 1C
�Z 0

�t
g.s/ds

� 1
2

; for t � 0:

A First Order Partial Functional Differential Equations

To apply our abstract results, we consider the partial functional differential equations
with state dependent delay of the form

@

@t
v.t; �/ D � @

@�
v.t; �/C m.t/a.v.t � �.v.t; 0//; �//; � 2 Œ0; ��; t 2 Œ0; b�;

(9.75)
v.t; 0/ D v.t; �/ D 0; t 2 Œ0; b�; (9.76)

v.�; �/ D v0.�; �/; � 2 Œ0; ��; � 2 .�1; 0�; (9.77)

�v.ti/.�/ D
Z ti

�1
�i.ti � s/v.s; �/ds (9.78)

where v0 W .�1; 0�� Œ0; �� ! R is an appropriate function, �i 2 CŒ0;1/;R/; 0 <

t1 < t2 < � � � < tn < b: The functions m W Œ0; b� ! R; a W R� J ! R; � W R ! RC
are continuous and we assume the existence of positive constants b1; b2 such that
jb.t/j � b1jtj C b2 for every t 2 R.

Let A be the operator defined on E D C.Œ0; ��;R/ by

D.A/ D fg 2 C1.Œ0; ��;R/ W g.0/ D 0gI Ag D g0:

Then

D.A/ D C0.Œ0; ��;R/ D fg 2 C.Œ0; ��;R/ W g.0/ D 0g:
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It is well known from [100] that A is sectorial, .0;C1/ 	 �.A/ and for � > 0

kR.�;A/kB.E/ � 1

�
:

It follows that A generates an integrated semigroup .S.t//t�0 and that kS0.t/kB.E/ �
e��t for t � 0 for some constant � > 0 and A satisfied the Hille–Yosida condition.

Set � > 0. For the phase space, we choose D to be defined by

D D C� D f� 2 C..�1; 0�;E/ W lim
�!�1 e���.�/ exists in Eg

with norm

k�k� D sup
�2.�1;0�

e�� j�.�/j; � 2 C� :

By making the following change of variables

y.t/.�/ D v.t; �/; t � 0; � 2 .0; ��;
�.�/.�/ D v0.�; �/; � � 0; � 2 Œ0; 1�;

F.t; '/.�/ D m.t/b.'.0; �//; � 2 Œ0; ��; � 2 C�

�.t; '/ D t � �.'.0; 0//
Ik.ytk/ D R 0

�1 �k.s/v.s; �/ds;

the problem (9.75)–(9.78) takes the abstract form (9.64)–(9.66). Moreover, a simple
estimate shows that

kf .t; '/k � m.t/Œb1k'kD C b2�
1=2� for all .t; '/ 2 I � D

with
Z 1

1

ds

 .s/
D
Z 1

1

ds

b1s C b2�1=2
D C1:

and

dk D
�Z 0

�1
.�k.s//2

e�s
ds

�1=2

< 1
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Theorem 9.33. Let ' 2 D be such that H' is valid and t ! 't is continuous on
R.��/, then there exists a integral solution of (9.75)–(9.78) whenever

 

1C
�Z 0

�1
e�sds

�1=2
!

mX

kD1
dk < 1:

9.6 Notes and Remarks

The results of Chap. 9 are taken from Abada et al. [1, 3, 4]. Other results may be
found in [124, 151, 152, 159].



Chapter 10
Impulsive Functional Differential Inclusions
with Unbounded Delay

10.1 Introduction

In this chapter, we shall establish sufficient conditions for the existence of mild,
extremal mild, integral, and extremal integral solutions for some impulsive semi-
linear neutral functional differential inclusions in separable Banach spaces. We shall
rely on a fixed point theorem for the sum of completely continuous and contraction
operators.

10.2 Densely Defined Impulsive Functional
Differential Inclusions

10.2.1 Introduction

We shall be concerned with existence of mild solutions, integral, and extremal inte-
gral solutions defined on a compact real interval for first order impulsive semi-linear
neutral functional inclusions in a separable Banach space. We will consider the
following first order impulsive semi-linear neutral functional differential inclusions
of the form:

d

dt
Œy.t/ � g.t; yt/� � AŒy.t/ � g.t; yt/� 2 F.t; yt/;

a:e: t 2 J D Œ0; b�; t ¤ tk; k D 1; : : : ;m (10.1)
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�yjtDtk 2 Ik.y.t
�
k //; k D 1; : : : ;m (10.2)

y.t/ D �.t/; t 2 .�1; 0�; (10.3)

where F W J � D ! 2E is a closed, bounded, and convex valued multi-valued map,
g W J � D ! E is a given function, � 2 D where D is the phase space that will be
specified later Ik 2 C .E;E/ ; .k D 1; 2; : : : ;m/ ; A W D.A/ � E ! E is a densely
defined closed linear operator on E, and E a real separable Banach space with norm
j:j: Consider the space

PC D
n

y W .�1; b� ! E; y.t�k /; y.t
C
k /; exist with y.tk/ D y.t�k /;

y.t/ D �.t/; t � 0; yk 2 C.Jk;E/
o

;

where yk is the restriction of y to Jk D .tk; tkC1�; k D 0; : : : ;m: Let k � kPC be the
norm in PC defined by

kykPC D supfjy.s/j W 0 � s � bg; y 2 PC:

We will assume that D satisfies the following axioms:

(A) If y W .�1; b� ! E; b > 0 and y.t�k /; y.tCk /, exist with y.tk/ D y.t�k /; k D
1; : : : ;m and y0 2 D; then for every t in Œ0; b/nft1; : : : ; tmg the following
conditions hold:

(i) yt is in DI and yt is continuous on Œ0; b�nft1; : : : ; tmg
(ii) kytkD � K.t/ supfjy.s/j W 0 � s � tg C M.t/ky0kD;

(iii) jy.t/j � HkytkD

where H � 0 is a constant, K W Œ0;1/ ! Œ0;1/ is continuous,
M W Œ0;1/ ! Œ0;1/ is locally bounded and H;K;M are independent of y.�/.

(A-1) For the function y.�/ in .A/; yt is a D-valued continuous function on
Œ0; b/nft1; : : : ; tmg:

(A-2) The space D is complete.

Set

Db D fy W .�1; b� ! Ej y 2 PC \ Dg;

and let k � kb be the seminorm in Db defined by

kykb WD ky0kD C supfjy.t/j W 0 � s � bg; y 2 Db:

Denote

Kb D supfK.t/ W t 2 Jg and Mb D supfM.t/ W t 2 Jg:
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10.2.2 Mild Solutions

In order to define the mild solutions of the problem (10.1)–(10.3) we assume that F
is compact and convex valued multi-valued map.

Now, we can define a meaning of the mild solution of problem (10.1)–(10.3).

Definition 10.1. A function y 2 Db is said to be a mild solution of system (10.1)–
(10.3) if y.t/ D �.t/ for all t 2 .�1; 0�, the restriction of y.�/ to the interval
Œ0; b� is continuous, and there exist v.�/ 2 L1.Jk;E/ and Ik 2 Ik.y.t�k //, such that
v.t/ 2 F.t; yt/ a.e t 2 Œ0; b�, and y satisfies the integral equation,

y.t/ D T.t/ .�.0/ � g.0; �.0///C g.t; yt/C
Z t

0

T.t � s/v.s/ds

C
X

0<tk<t

T.t � tk/Ik; t 2 J:

We introduce the following hypotheses:

(10.1.1) A W D.A/ � E ! E is the infinitesimal generator of a strongly continuous
semigroup fT.t/g, t 2 J which is compact for t > 0 in the Banach space E,
and there exist constant M, such that:

kT.t/kB.E/ � MI t 2 J

(10.1.2) There exist constants ck � 0, k D 1; : : : ;m such that

Hd.Ik.y/; Ik.x//j � ckjy � xj for each x; y 2 E:

(10.1.3) F is L1-Carathéodory with compact convex values.
(10.1.4) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! .0;1/ such that

kF.t; x/k D supfjvj=v 2 F.t; x/g � p.t/ .kxkD/ for a.e. t 2 J and each x 2 D;

with
Z 1

C0

ds

 .s/
> C1kpkL1 ;

where

C0 D
"

M˛1 C M2

mX

kD0
ck

#

k�kD

CM
mX

kD0
jIk.0/j C ˛2.1C M/
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C1 D C0

1 � M
mX

kD0
ck � Kb˛1

C
.MKb C Mb/M

mX

kD0
ck

.1 � M
mX

kD0
ck � Kb˛1/

./k�kD

C2 D M

1 � M
mX

kD0
ck � Kb˛1

(10.1.5) The function g.t; :/ is continuous on J and there exists a constant lg > 0

such that

jg.t; u/ � g.t; v/j � lgku � vk for each u; v 2 D:

(10.1.6) There exist constants ˛1 and ˛2 such that

kg.t; u/k � ˛1kukD C ˛2 for each .t; u/ 2 Œ0; b� � D:

Theorem 10.2. Assume that (10.1.1)–(10.1.6) hold. If lg C M
mX

1

ck < 1; and

˛1Kb C
mX

1

ck < 1, then the IVP (10.1)–(10.3) has at least one mild solution on

.�1; b�:

Proof. Consider the multi-valued operator:
N W D ! P.D/ defined by

N.y/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

h 2 D W h.t/ D

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

�.t/; if t � 0;

T.t/ .�.0/� g.0; �.0///C g.t; yt/C
Z t

0

T.t � s/v.s/ds

C X

0<tk<t

T.t � tk/Ik; v 2 SF;y;Ik 2 Ik.y.t
�
k // if t 2 J;

9

>>>>>>=

>>>>>>;

Has a fixed point . This fixed point is then the mild solution of the IVP (10.1)–(10.3).
For � 2 D define the function x.�/ W .�1; b� ! E such that:

x.t/ D
8

<

:

�.t/; if t � 0

T.t/�.0/; if t 2 J
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Then x.�/ is an element of Db, and x0 D �.0/.
Set

y.t/ D z.t/C x.t/:

Obviously if y satisfies the integral equation

y.t/ D T.t/ .�.0/ � g.0; �.0///C g.t; yt/C
Z t

0

T.t � s/v.s/ds

C
X

0<tk<t

T.t � tk/Ik; t 2 J;

then z satisfies z0 D 0 and

z.t/ D g.t; zt C xt/ � T.t/g.0; �.0//

C
Z t

0

T.t � s/v.s/ds C
X

0<tk<t

T.t � tk/Ik; t 2 J:

where v.t/ 2 F.t; zt C xt/ a.e. t 2 Œ0; b� and Ik 2 Ik.z.t�k C x.t�k /.
Let

D0
b D fz 2 Db W z0 D 0g :

For any z 2 D0
b, we have

kzkb D kz0kD C sup fjz.s/j W 0 � s � bg D sup fjz.s/j W 0 � s � bg :

Thus .D0
b; k � kb/ is a Banach space.

Let the operator P W D0
b ! P.D0

b/ defined by

P.z/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

h 2 D0bjh.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0 if t 2 .�1; 0�I

g.t; zt C xt/ � T.t/g.0; �.0//

C R t
0 T.t � s/v.s/ds C

X

0<tk<t

T.t � tk/Ik; if t 2 J:

9

>>>>=

>>>>;

The operator N has a fixed point is equivalent to P has one, so it turns to prove that
P has a fixed point. Consider these multi-valued operators:

A;B W D0
b ! P.D0

b/
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defined by

A.z/ WD

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

h 2 D0b W h.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; if t � 0;

g.t; zt C xt/ � T.t/g.0; �.0//

C
X

0<tk<t

T.t � tk/Ik;Ik 2 Ik.z.t
�
k /C x.t�k // if t 2 J;

9

>>>>=

>>>>;

and

B.z/ WD

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

h 2 D0
b W h.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; if t � 0;
Z t

0

T.t � s/v.s/ds

if t 2 J;

9

>>>>=

>>>>;

where

v 2 SF;z D fv 2 L1.Œ0; b�;E/ W v.t/ 2 F.t; zt C xt/ for a.e. t 2 Œ0; b�g:

It is clear that

P D A C B

Then the problem of finding mild solutions of (10.1)–(10.3) is then reduced to
finding mild solutions of the operator inclusion z 2 A.z/ C B.z/. We shall show
that the operators A and B satisfy all conditions of the Theorem 1.32. The proof
will be given in several steps.

Step 1: A is a contraction
Let z1; z2 2 D0

b, then from .10:1:1/

Hd
�A.z1/;A.z2/

 � kg.t; z1t C xt/ � g.t; z2t C xt/k

CHd

 
X

0<tk<t

T.t � tk/Ik.z1.t
�
k /C x.t�k /;

X

0<tk<t

T.t � tk/Ik.z2.t
�
k /C x.t�k /

!

� lgkz1 � z2k C M
mX

1

jz1.t�k / � z2.t
�
k /j

� �

lg C M
mX

1

ck
kz1 � z2k;
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which is a contraction since

lg C M
mX

1

ck < 1:

Step 2: B has compact, convex values, and it is completely continuous. This will
be given in several claims.

Claim 1: B has compact values. The operator B is equivalent to the composition
LıSF of two operators on L1.J;E/ L W L1.J;E/ ! D0

b is the continuous operator
defined by

L.v.t// D
Z t

0

T.t � s/v.s/ds; t 2 J:

Then, it suffices to show that L ı SF has compact values on D0
b.

Let z 2 D0
b arbitrary, vn a sequence in SF;z, then by definition of SF, vn.t/ belongs

to F.t; zt/; a:e:t 2 J. Since F.t; zt/ is compact, we may pass to a subsequence.
Suppose that vn ! v in L1.J;E/, where v.t/ 2 F.t; zt/; a:e:t 2 J.
From the continuity of L, it follows that Lvn.t/ ! Lv.t/ pointwise on J as
n ! 1.
In order to show that the convergence is uniform, we first show that fLvng is an
equi-continuous sequence.
Let 
1; 
2 2 J, then we have:

ˇ
ˇL.vn.
1// � L.vn.
2//

ˇ
ˇ D ˇ

ˇ

Z 
1

0

T.
1 � s/vn.s/ds

�
Z 
2

0

T.
2 � s/vn.s/ds
ˇ
ˇ

�
Z 
1

0

ˇ
ˇ
�

T.
1 � s/ � T.
2 � s/
ˇ
ˇjvn.s/jds

C
Z 
2


1

jT.
2 � s/jjvn.s/jds

As 
1 ! 
2, the right-hand side of the above inequality tends to zero. Since T.t/
is a strongly continuous operator and the compactness of T.t/,t > 0, implies
the continuity in uniform topology. Hence fLvng is equi-continuous, and an
application of Arzéla-Ascoli theorem implies that there exists a subsequence
which is uniformly convergent. Then we have Lvnj ! Lv 2 .L ı SF/.z/ as
j 7! 1, and so .L ı SF/.z/ is compact . Therefore B is a compact valued multi-
valued operator on D0

b.
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Claim 2: B.z/ is convex for each z 2 D0
b: Let h1; h2 2 B.z/, then there exists

v1; v2 2 SF;z such that, for each t 2 J we have

hi.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; if t 2 .�1; 0�,
Z t

0

T.t � s/vi.s/ds

if t 2 J;i D 1; 2:

9

>>>>=

>>>>;

Let 0 � ı � 1: Then, for each t 2 J, we have

.ıh1 C .1 � ı/h2/.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; if t 2 .�1; 0�,

Z t

0
T.t � s/Œıv1.s/C .1 � ı/v2.s/�ds

if t 2 J;

9

>>>>=

>>>>;

Since F.t; zt/ has convex values, one has

ıh1 C .1 � ı/h2 2 B.z/:

Claim 3: B maps bounded sets into bounded sets in D0
b

Let B D fz 2 D0
bI kzk1 � qg; q 2 R

C a bounded set in D0
b. We know that for

each h 2 B.z/, for some z 2 B, there exists v 2 SF;z such that

h.t/ D
Z t

0

T.t � s/v.s/ds:

v 2 SF;z D fv 2 L1.Œ0; b�;E/ W v.t/ 2 F.t; zt C xt/

From (10.1.4) we have

kzs C xskD � kzskD C kxskD

� Kbq C KbMj�.0/j C Mbk�kD

D q�:

Then

jh.t/j � M .q�/
Z t

0

p.s/ds

� M .q�/kpkL1 D l;

This further implies that:

khk1 � l

Then, for all h 2 B.z/ � B.B/ D S

z2B B.z/: Hence B.B/ is bounded.
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Claim 4: B maps bounded sets into equi-continuous sets.

Let B be, as above, a bounded set and h 2 B.z/ for some z 2 B: Then, there exists
v 2 SF;z such that

h.t/ D
Z t

0

T.t � s/v.s/ds; t 2 J

Let 
1; 
2 2 Jnft1; t2; : : : ; tmg; 
1 < 
2. Thus if � > 0, we have

jh.
2/ � h.
1/j �
Z 
1��

0

kT.
2 � s/ � T.
1 � s/kjv.s/jds

C
Z 
1


1��
kT.
2 � s/ � T.
1 � s/kjv.s/jds

C
Z 
2


1

kT.
2 � s/kjv.s/jds

�  .q�/
Z 
1��

0

kT.
2 � s/ � T.
1 � s/kB.E/p.s/ds

C .q�/
Z 
1


1��
kT.
2 � s/ � T.
1 � s/kB.E/p.s/ds

C .q�/
Z 
2


1

kT.
2 � s/kB.E/p.s/ds:

As 
1 ! 
2 and � becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since T.t/ is a strongly continuous operator and the
compactness of T.t/ for t > 0 implies the continuity in the uniform operator
topology.

This proves the equi-continuity for the case where t ¤ ti; i D 1; : : : ;m C 1. It
remains to examine the equi-continuity at t D ti.

First we prove the equi-continuity at t D t�i , we have for some z 2 B, there exists
v 2 SF;z such that

h.t/ D
Z t

0

T.t � s/v.s/ds; t 2 J

Fix ı1 > 0 such that ftk; k ¤ ig \ Œti � ı1; ti C ı1� D ;. For 0 < � < ı1, we have

jh.ti � �/ � h.ti/j �
Z ti��

0

kT.ti � � � s/ � T.ti � s/kjv.s/jds

C .q�/M
Z ti

ti��
p.s/ds;

which tends to zero as � ! 0.
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Define

Oh0.t/ D h.t/; t 2 Œ0; t1�

and

Ohi.t/ D
8

<

:

h.t/; if t 2 .ti; tiC1�
h.tCi /; if t D ti

9

=

;

Next, we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk; k ¤ ig \ Œti �
ı2; ti C ı2� D ;. Then

Oh.ti/ D
Z ti

0

T.ti � s/v.s/ds;

For 0 < � < ı2, we have

jOh.ti C �/ � Oh.ti/j �
Z ti

0

kT.ti C � � s/ � T.ti � s/kjv.s/jds

C .q�/M
Z tiC�

ti

p.s/ds

The right-hand side tends to zero as � ! 0.
The equi-continuity for the cases 
1 < 
2 � 0 and 
1 � 0 � 
2 follows from

the uniform continuity of � on the interval .�1; 0� As a consequence of Claims
1–3 together with Arzelá–Ascoli theorem it suffices to show that B maps B into a
precompact set in E.

Let 0 < t < b be fixed and let � be a real number satisfying 0 < � < t. For z 2 B,
we define

h�.t/ D T.�/
Z t��

0

T.t � s � �/v.s/ds;

where v 2 SF;z. Since T.t/ is a compact operator, the set

H�.t/ D fh�.t/ W h� 2 B.z/g
is precompact in E for every �; 0 < � < t: Moreover, for every h 2 B.z/ we have

jh.t/ � h�.t/j D ˇ
ˇ

Z t

0

T.t � s/v.s/ds � T.�/
Z t��

0

T.t � s � �/v.s/ds
ˇ
ˇ

D j
Z t

t��
T.t � s/v.s/dsj

� M .q�/
Z t

t��
p.s/ds
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Therefore, there are precompact sets arbitrarily close to the set H.t/ D fh.t/ W h 2
B.z/g: Hence the set H.t/ D fh.t/ W h 2 B.B/g is precompact in E. Hence the
operator B is totally bounded.

Claim 5: B has closed graph.

Let zn ! z�, hn 2 B.zn/, and hn ! h�. We shall show that h� 2 B.z�/: hn 2
B.zn/ means that there exists vn 2 SF;zn such that

hn.t/ D
Z t

0

T.t � s/vn.s/ds; t 2 J:

We must prove that there exists v� 2 SF;z�
such that

h�.t/ D
Z t

0

T.t � s/v�.s/ds:

Consider the linear and continuous operator K W L1.J;E/ ! D0
b defined by

.Kv/.t/ D
Z t

0

T.t � s/v.s/ds:

We have

j.hn.t/ � .h�.t// � khn � h�k1 ! 0; as n 7! 1:

From Lemma 1.11 it follows that K ı SF is a closed graph operator and from the
definition of K one has

hn.t/ 2 K ı SF;zn :

As zn ! z� and hn ! h�, there is a v� 2 SF;z�
such that

h�.t/ D
Z t

0

T.t � s/v�.s/ds:

Hence the multi-valued operator B is upper semi-continuous.

Step 3: A priori bounds on solutions. Now, it remains to show that the set

E D fz 2 D0
bj z 2 �Az C �Bz; 0 � � � 1g

is unbounded.

Let z 2 E be any element. Then there exist v 2 SF;z and Ik 2 Ik.z.t�k // such that

z.t/ D �g.t; zt C xt/ � �T.t/g.0; �.0//

C�
Z t

0

T.t � s/v.s/ds C �
X

0<tk<t

T.t � tk/Ik:
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Then

jz.t/j � ˛1kzt C xtk C ˛2 C M.˛1k�kD C ˛2/

CM
Z t

0

p.s/ .kzs C xsk/ds C M
mX

kD0
ckjz.t�k /C x.t�k /j C M

kDmX

kD0
jIk.0/j

� ˛1
�

Kbjz.t/j C .MKb C Mb/k�kD
C ˛2

CM.˛1k�kD C ˛2/C M
Z t

0

p.s/ 
�

Kbjz.s/j C .MKb C Mb/k�kD


/ds

CM
mX

kD0
ckjz.t/j C M

mX

kD0
ckjx.t/j

CM
kDmX

kD0
jIk.0/j

� ˛1
�

Kbjz.t/j C .MKb C Mb/k�kD
C ˛2 C M

�

˛1k�kD C ˛2


CM
Z t

0

p.s/ .Kbjz.s/j C .MKb C Mb/k�kD//ds C M
mX

kD0
ckjz.tj/

CM2

mX

kD0
ckk�kD C M

kDmX

kD0
jIk.0/j:

Then, we have:

jz.t/j � C0 C ˛1
�

.Kbjz.t/j C .MKb C Mb/k�kD


/

CM
Z t

0

p.s/ 
�

Kbjz.s/j C .MKb C Mb/k�kD


/ds C M
mX

kD0
ckjz.tj/

Since

M
mX

kD0
ck < 1;

then

Kbjz.t/j C .MKb C Mb/k�kD � C1 C C2

Z t

0

p.s/ 
�

Kbjz.s/j

C.MKb C Mb/k�kD


ds
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Consider the function �.t/ defined by

�.t/ D supfKbjz.s/j C .MKb C Mb/k�kD W 0 � s � tg; 0 � t � b

Then, we have, for all t 2 J,kKbjz.t/j C .MKb C Mb/k�kDk � �.t/.
Let t� 2 J such that �.t/ D Kbjz.t�/j C .MKb C Mb/k�kD, then by the previous

inequality we have, for t 2 J;

�.t/ � C1 C C2

Z t

0

p.s/ .k�sk/ds:

Let us note the right-hand side of the above inequality by v.t/, i.e.,

v.t/ D C1 C C2

Z t

0

p.s/ .�.s//ds:

Then, we have

�.t/ � v.t/ for all t 2 J

v.0/ D C1

Differentiating both sides of the above equality, we obtain

v0.t/ D C2p.t/ .�.t//; a:e: t 2 J

and using the nondecreasing character of the function  , we obtain

v0.t/ � C2p.t/ .v.t//; a:e: t 2 J;

that is

v0.t/
 .v.t//

� C2p.t/; a:e: t 2 J:

Integrating from 0 to t we get

Z t

0

v0.s/
 .v.s//

ds � C2

Z t

0

p.s/ds:

By a change of variables we get

Z v.t/

v.0/

du

 .u/
� C2kpkL1 �

Z 1

c1

du

 .u/
:
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Hence there exists a constant K such that

�.t/ � v.t/ � K for all t 2 J:

Now from the definition of � it follows that

kKbjz.t/j C .MKb C Mb/k�kDk � �.b/ � K for all z 2 E ;

which means that E is bounded. As a consequence of Theorem 1.32, A.z/ C B.z/
has a fixed point z� on the interval .�1; b�, so y� D z� C x is a fixed point of the
operator N which is the mild solution of problem (10.1)–(10.3). ut

10.2.3 Extremal Mild Solutions

In this section we shall prove the existence of maximal and minimal solutions of
problem (10.1)–(10.3) under suitable monotonicity conditions on the multi-valued
functions involved in it. We need the following definitions in the sequel.

Definition 10.3. We say that a continuous function Qv 2 Db is a lower mild
solution of problem (10.1)–(10.3) if Qv.t/ D �.t/; t 2 .�1; 0�; and there exist
v.�/ 2 L1.Jk;E/ and Ik 2 Ik. Qv.t�k //, such that v.t/ 2 F.t; Qvt/ a.e t 2 Œ0; b�, and Qv
satisfies,

Qv.t/ � T.t/ .�.0/ � g.0; �.0///C g.t; Qvt/C
Z t

0

T.t � s/v.s/ds

C
X

0<tk<t

T.t � tk/Ik; t 2 J; t ¤ tk:

and Qv.tCk / � Qv.t�k � Ik where Ik 2 Ik. Qv.tk//; t D tk; k D 1; : : : ;m Similarly an
upper mild solution Qw of IVP (10.1)–(10.3) is defined by reversing the order.

Definition 10.4. A solution xM of IVP (10.1)–(10.3) is said to be maximal if for
any other solution x of IVP (10.1)–(10.3) on J, we have that x.t/ � xM.t/ for each
t 2 J.

Similarly a minimal solution of IVP (10.1)–(10.3) is defined by reversing the
order of the inequalities.

We consider the following assumptions in the sequel.

(10.4.1) The multi-valued function F.t; y/ is strictly monotone increasing in y for
almost each t 2 J.

(10.4.2) The IVP (10.1)–(10.3) has a lower mild solution Qv and an upper mild
solution Qw with Qv � Qw.

(10.4.3) T.t/ is preserving the order, that is T.t/v � 0 whenever v � 0.
(10.4.4) The functions Ik; k D 1; : : : ;m are continuous and nondecreasing.
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Theorem 10.5. Assume that assumptions (10.1.1)–(10.1.6) and (10.4.1)–(10.4.4)
hold. Then IVP (10.1)–(10.3) has minimal and maximal solutions on Db.

Proof. We can write Qv and Qw as

Qv.t/ D v�.t/C x.t/

Qw.t/ D w�.t/C x.t/

where v� 2 D0
b and w� 2 D0

b and x.t/ is defined in the above section.
Then Qv is lower solution to IVP (10.1)–(10.3) if v�satisfies

v�.t/ � �T.t/g.0; �.0//C g.t; v�
t C x.t//C

Z t

0

T.t � s/v.s/ds

C
X

0<tk<t

T.t � tk/Ik; t 2 J; t ¤ tk:

and v�.tCk / � v�.t�k � Ik such that IkIk.v
�.tk//; t D tk; k D 1; : : : ;m respectively

( Qw) is upper solution to IVP (10.1)–(10.3) if w� satisfies the reversed inequality. It
can be shown, as in the proof of Theorem 10.2, that A is completely continuous and
B is a contraction on Œv�;w��. We shall show that A and B are isotone increasing
on Œv�;w��. Let z; z 2 Œv�;w�� be such that z � z; z 6D z: Then by (10.4.4), we have
for each t 2 J

A.z/ D
(

h 2 D0
b W h.t/ D �T.t/g.0; �.0//C g.t; zt C xt/

C
X

0<tk<t

T.t � tk/Ik;2 Ikz.t�k /
)

�
(

h 2 D0
b W h.t/ D �T.t/g.0; �.0//C g.t; zt C xt/

C
X

0<tk<t

T.t � tk/Ik; Ik 2 Ik.z.t
�
k //

)

D A.z/:
Similarly, by .10:4:1/; .10:4:3/

B.z/ D
(

h 2 D0
b W h.t/ D

Z t

0

T.t � s/v.s/ds; v 2 SF;z

)

�
(

h 2 D0
b W h.t/ D

Z t

0

T.t � s/v.s/ds; f 2 SF;z

)

D B.z/:
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Therefore A and B are isotone increasing on Œv�;w��. Finally, let y 2 Œv�;w�� be
any element. By (10.4.2), (10.4.3) we deduce that

v� � A.v�/C B.v�/ � A.y/C B.y/ � A.w�/C B.w�/ � w�;

which shows that A.y/ C B.y/ 2 Œv�;w�� for all y 2 Œv�;w��. Thus, A and B
satisfy all the conditions of Theorem 1.37, hence IVP (10.1)–(10.3) has maximal
and minimal solutions on J: ut

10.2.4 Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

@

@t

	

v.t; �/ �
Z 0

�1
K1.�/g1.t C �; �/d�




D @2

@�2

	

v.t; �/ �
Z 0

�1
K1.�/g1.t C �; �/d�




C
Z 0

�1
K2.�/ ŒQ1.t; v.t C �; �/;Q2.t; v.t C �; �/d��

for � 2 Œ0; ��; t 2 Œ0; b�nft1; t2; : : : ; tmg: (10.4)

v.tCk ; �/ � z.t�k ; �/ 2 bkjz.t�k ; �/jB.0; 1/; � 2 Œ0; ��; k D 1; : : : ;m (10.5)

v.t; 0/ �
Z 0

�1
K1.�/g1.t C �; 0/d� D 0; t 2 J WD Œ0; b� (10.6)

v.t; �/�
Z 0

�1
K1.�/g1.tC�; �/d� D �.t; x/; t 2 J WD Œ0; b�; � 2 Œ0; ��; (10.7)

v.�; �; / D v0.�; �/ fot � 1 < � � 0 and � 2 Œ0; ��; (10.8)

where bk > 0; k D 1; : : : ;m; K1 W .�1; 0� ! R;K2 W .�1; 0� ! R and
g1 W J � R ! R and v0 W .�1; 0�XŒ0; �� ! R are continuous functions, 0 D
t0 < t1 < t2 < � � � < tm < tmC1 D b; v.tCk / D lim

.h;x/!.0C;x/
v.tk C h; x/; v.t�k / D

lim
.h;x/!.0�;x/

v.tk Ch; x/, where Q1; Q2 W J �R ! R; are given functions, and B.0; 1/

the closed unit ball. We assume that for each t 2 J; Q1.t; �/ is lower semi-continuous
(i.e., the set fy 2 R W Q1.t; y/ > �g is open for each � 2 R), and assume that for
each t 2 J; Q2.t; �/ is upper semi-continuous (i.e., the set fy 2 R W Q2.t; y/ < �g is
open for each � 2 R).
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Let

y.t/.�/ D v.t; �/; t 2 J; � 2 Œ0; ��;
Ik.y.t�k //.�/ D bkv.t�k ; �/; � 2 Œ0; ��; k D 1; : : : ;m

F.t; �/.x/ D R 0

�1 K2.�/
�

Q1.t; v.t C �; �/;Q2.t; v.t C �; �/d�
�

;

� 2 .�1; 0�; � 2 Œ0; ��;
h..t; �/ D R 0

�1 K1.�/g1.t C �; �/d�;

and

�.�/.�/ D �.�; �/; � 2 .�1; 0�; � 2 Œ0; ��:

E D L2Œ0; �� and define A W D.A/ � E ! E by Aw D w00 with domain

D.A/ D fw 2 E;w;w0 are absolutely continuous, w00 2 E;w.0/ D w.�/ D 0g:

Then

Aw D
1X

nD1
n2.w;wn/wn; w 2 D.A/

where .�; �/ is the inner product in L2 and wn.s/ D
q

2
�

sin ns; n D 1; 2; : : : is
the orthogonal set of eigenvectors in A: It is well known (see [168]) that A is the
infinitesimal generator of an analytic semigroup T.t/; t 2 .0; b� in E and is given by

T.t/w D
1X

nD1
exp.�n2t/.w;wn/wn; w 2 E:

Since the analytic semigroup T.t/; t 2 .0; b� is compact, there exists a constant
M � 1 such that

kT.t/kB.E/ � M:

It is clear that F is compact and convex valued, and it is upper semi-continuous (see
[101]). Assume that there are p 2 C.J;RC/ and  W Œ0;1/ ! .0;1/ continuous
and nondecreasing such that

max.jQ1.t; y/j; jQ2.t; y/j/ � p.t/ .jyj/; t 2 J; and y 2 R:



278 10 Impulsive Functional Differential Inclusions with Unbounded Delay

Assume that there exist functions Ql1; Ql2 2 L1.J;RC/ such that

jQ1.t;w/ � Q1.t;w/j � Ql1.t/jw � wj; t 2 J; w;w 2 R;

and

jQ2.t;w/ � Q2.t;w/j � Ql2.t/jw � wj; t 2 J; w;w 2 R:

We can show that problem (10.1)–(10.3) is an abstract formulation of problem
(10.4)–(10.8). Since all the conditions of Theorem 10.2 are satisfied, the problem
(10.4)–(10.8) has a solution z on .�1; b� � Œ0; ��:

10.3 Non-densely Defined Impulsive Neutral Functional
Differential Inclusions

In this section, we use the extrapolation method combined with a fixed point
theorem for the sum of completely continuous and contraction operators, to
establish sufficient conditions for the existence of mild solutions and extremal mild
solutions for some classes of non-densely defined impulsive semi-linear neutral
functional differential inclusions in separable Banach spaces with infinite delay.
More precisely, we will consider the following first order impulsive semi-linear
neutral functional differential inclusions of the form:

d

dt
Œy.t/ � g.t; yt/� � AŒy.t/ � g.t; yt/� 2 F.t; yt/;

a:e: t 2 J D Œ0; b�; t ¤ tk; k D 1; : : : ;m (10.9)

�yjtDtk 2 Ik.y.t
�
k //; k D 1; : : : ;m (10.10)

y.t/ D �.t/; t 2 .�1; 0�; (10.11)

where F W J�D ! 2E is a compact and convex valued multi-valued map,g W J�D !
E is a given function, � 2 D where D is the phase space that will be specified later
Ik 2 C .E;E/ ; .k D 1; 2; : : : ;m/ are bounded valued multi-valued maps, P.E/ is
the collection of all E-subsets, A W D.A/ � E ! E is a non-densely defined closed
linear operator on E, and E a real separable Banach space with norm j:j:
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10.3.1 Mild Solutions

We shall consider the space

Db D fy W .�1; b� ! Ej y 2 PC \ Dg;

and let k � kb be the seminorm in Db defined by

kykb WD ky0kD C supfjy.t/j W 0 � s � bg; y 2 Db:

Assume that F is compact and convex valued multi-valued map.
Let us start by defining what we mean by a solution of problem (10.9)–(10.11).

Definition 10.6. A function y 2 Db is said to be a mild solution of system (10.9)–
(10.11) if y.t/ D �.t/ for all t 2 .�1; 0�, the restriction of y.�/ to the interval
Œ0; b� is continuous, and there exist v.�/ 2 L1.Jk;E/ and Ik 2 Ik.y.t�k //, such that
v.t/ 2 F.t; yt/ a.e t 2 Œ0; b�, and y satisfies the integral equation,

y.t/ D T0.t/ .�.0/ � g.0; �.0///C g.t; yt/C
Z t

0

T1.t � s/v.s/ds

C
X

0<tk<t

T1.t � tk/Ik; t 2 J: (10.12)

Before beginning our result, we shall introduce the following hypotheses:

(10.6.1) There exists a constant M, such that:

kT1.t/kB.E/ � MI t 2 J

(10.6.2) There exist constants ck � 0, k D 1; : : : ;m such that

Hd.Ik.y/; Ik.x//j � ckjy � xj for each x; y 2 E:

(10.6.3) F is L1-Carathéodory with compact convex values.
(10.6.4) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! .0;1/ such that

kF.t; x/k D supfjvj=v 2 F.t; x/g � p.t/ .kxkD/ for a.e. t 2 J and each x 2 D;

with

lim sup
u!1

 

1 � ˛1Kb � M
mX

kD1
ck

!

u

C0 C MkpkL1 .Kbu C .MKb C Mb/k�kD/
> 1; (10.13)
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where

C0 D ˛1.MKb C Mb/k�kD C ˛2 C M.˛1k�kD C ˛2/

CM2

mX

kD0
ckk�kD C M

mX

kD0
jIk.0/j:

(10.6.5) The function g.t; :/ is continuous on J and there exists a constant lg > 0

such that

jg.t; u/ � g.t; v/j � lgku � vk for each u; v 2 D:

(10.6.6) There exist constants ˛1 and ˛2 such that

kg.t; u/k � ˛1kukD C ˛2 for each .t; u/ 2 Œ0; b� � D:

Theorem 10.7. Assume that (10.6.1)–(10.6.6), � 2 D and �.0/ 2 X0; g.0; �.0// 2
X0 hold. If lg C M

mX

1

ck < 1; then the IVP (10.9)–(10.11) has at least one mild

solution on .�1; b�:

Proof. Transform the problem (10.9)–(10.11) into a fixed point problem. Consider
the multi-valued operator: N W D ! P.D/ defined by

N.y/ D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

h 2 D W h.t/ D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

�.t/; if t � 0;

T0.t/ .�.0/� g.0; �.0///C g.t; yt/C
Z t

0
T1.t � s/v.s/ds

C X

0<tk<t

T1.t � tk/Ik; v 2 SF;y;Ik 2 Ik.y.t
�
k // if t 2 J:

9

>>>>>>>=

>>>>>>>;

Now we shall show that the operator N has a fixed point . This fixed point is then
the mild solution of the IVP (10.9)–(10.11).

For � 2 D define the function x.�/ W .�1; b� ! E such that:

x.t/ D
8

<

:

�.t/; if t � 0

T0.t/�.0/; if t 2 J:

Then x is an element of Db,and x0 D �.0/.
Set

y.t/ D z.t/C x.t/:
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Obviously if y satisfies the integral equation

y.t/ D T0.t/ .�.0/ � g.0; �.0///C g.t; yt/C
Z t

0

T1.t � s/v.s/ds

C
X

0<tk<t

T1.t � tk/Ik; t 2 J:

then z satisfies z0 D 0 and

z.t/ D g.t; zt C xt/ � T0.t/g.0; �.0//

C
Z t

0

T1.t � s/v.s/ds C
X

0<tk<t

T1.t � tk/Ik; t 2 J:

where v.t/ 2 F.t; zt C xt/ a.e t 2 Œ0; b�. and Ik 2 Ik.z.t�k C x.t�k /
Let

D0
b D fz 2 Db W z0 D 0g :

For any z 2 D0
b; we have

kzkb D kz0kD C sup fjz.s/j W 0 � s � bg D sup fjz.s/j W 0 � s � bg :

Thus .D0
b; k � kb/ is a Banach space.

Let the operator P W D0
b ! P.D0

b/ defined by

P.z/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

h 2 D0bjh.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0 if t 2 .�1; 0�I

g.t; zt C xt/ � T0.t/g.0; �.0//

C R t
0 T1.t � s/v.s/ds C

X

0<tk<t

T1.t � tk/Ik; if t 2 J:

9

>>>>=

>>>>;

The operator N has a fixed point is equivalent to P has one, so it turns to prove that
P has a fixed point. Consider these multi-valued operators:

A;B W D0
b ! P.D0

b/

defined by

A.z/ WD

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

h 2 D0b W h.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; if t � 0;

g.t; zt C xt/ � T0.t/g.0; �.0//

C
X

0<tk<t

T1.t � tk/Ik;Ik 2 Ik.z.t
�
k /C x.t�k // if t 2 J;

9

>>>>=

>>>>;
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and

B.z/ WD

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

h 2 D0
b W h.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; if t � 0;
Z t

0

T1.t � s/v.s/ds

if t 2 J;

9

>>>>=

>>>>;

where

v 2 SF;z D fv 2 L1.Œ0; b�;E/ W v.t/ 2 F.t; zt C xt/ for a.e. t 2 Œ0; b�g:

It’s clear that

P D A C B

Then the problem of finding mild solutions of (10.9)–(10.11) is then reduced to
finding mild solutions of the operator inclusion z 2 A.z/CB.z/. We shall show that
the operators A and B satisfy all conditions of the Theorem 1.32. The proof will be
given in several steps.

Step 1: A is a contraction
Let z1; z2 2 D0

b, then from .10:6:2/ and 10:6:5

Hd .A.z1/;A.z2// � kg.t; z1t C xt/ � g.t; z2t C xt/k

CHd

 
X

0<tk<t

T1.t � tk/Ik.z1.t
�
k /C x.t�k /;

X

0<tk<t

T1.t � tk/Ik.z2.t
�
k /C x.t�k /

!

� lgkz1 � z2k C M
mX

1

jz1.t�k / � z2.t
�
k /j

�
 

lg C M
mX

1

ck

!

kz1 � z2k;

which is a contraction since

lg C M
mX

1

ck < 1:

Step 2 B has compact, convex values, and it is completely continuous. This will
be given in several claims.
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Claim 1: B has compact values. The operator B is equivalent to the composi-
tion L ı SF of two operators on L1.J;E/ L W L1.J;E/ ! D0

b is the continuous
operator defined by

L.v.t// D
Z t

0

T1.t � s/v.s/ds; t 2 J

Then, it suffices to show that L ı SF has compact values on D0
b.

Let z 2 D0
b arbitrary, vn a sequence in SF;z, then by definition of SF, vn.t/ belongs

to F.t; zt/; a:e:t 2 J. Since F.t; zt/ is compact, we may pass to a subsequence.
Suppose that vn ! v in L1.J;E/, where v.t/ 2 F.t; zt/; a:e:t 2 J.
From the continuity of L, it follows that Lvn.t/ ! Lv.t/ point wise on J as
n ! 1.
In order to show that the convergence is uniform, we first show that fLvng is an
equi-continuous sequence.
Let 
1; 
2 2 J, then we have:

ˇ
ˇL.vn.
1// � L.vn.
2//

ˇ
ˇ D ˇ

ˇ

Z 
1

0

T1.
1 � s/vn.s/ds

�
Z 
2

0

T1.
2 � s/vn.s/ds
ˇ
ˇ

�
Z 
1

0

ˇ
ˇ
�

T1.
1 � s/ � T1.
2 � s/
ˇ
ˇjvn.s/jds

C
Z 
2


1

jT1.
2 � s/jjvn.s/jds:

As 
1 ! 
2, the right-hand side of the above inequality tends to zero. Since
T1.t/ is a strongly continuous operator and the compactness of T1.t/,t > 0,
implies the continuity in uniform topology. Hence fLvng is equi-continuous, and
an application of Arzéla-Ascoli theorem implies that there exist a subsequence
which is uniformly convergent. Then we have Lvnj ! Lv 2 .L ı SF/.z/ as
j 7! 1, and so .L ı SF/.z/ is compact. Therefore B is a compact valued multi-
valued operator on D0

b.

Claim 2: B.z/ is convex for each z 2 D0
b: Let h1; h2 2 B.z/, then there exists

v1; v2 2 SF;z such that, for each t 2 J we have

hi.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; if t 2 .�1; 0�,
Z t

0

T1.t � s/vi.s/ds

if t 2 J;i D 1; 2:

9

>>>>=

>>>>;
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Let 0 � ı � 1: Then, for each t 2 J, we have

.ıh1 C .1 � ı/h2/.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; if t 2 .�1; 0�,

Z t

0
T1.t � s/Œıv1.s/C .1 � ı/v2.s/�ds

if t 2 J;

9

>>>>=

>>>>;

Since F.t; zt/ has convex values, one has

ıh1 C .1 � ı/h2 2 B.z/:

Claim 3: B maps bounded sets into bounded sets in D0
b Let B D fz 2 D0

bI kzk1 �
qg; q 2 R

C a bounded set in D0
b. We know that for each h 2 B.z/, for some z 2 B,

there exists v 2 SF;z such that

h.t/ D
Z t

0

T1.t � s/v.s/ds:

v 2 SF;z D fv 2 L1.Œ0; b�;E/ W v.t/ 2 F.t; zt C xt/

From (10.6.4) we have

kzs C xskD � kzskD C kxskD

� Kbq C KbMj�.0/j C Mbk�kD

D q�:

Then

jh.t/j � M .q�/
Z t

0

p.s/ds

� M .q�/kpkL1 D l;

This further implies that:

khk1 � l

Then, for all h 2 B.z/ � B.B/ D S

z2B B.z/: Hence B.B/ is bounded.

Claim 4: B maps bounded sets into equi-continuous sets.

Let B be, as above, a bounded set and h 2 B.z/ for some z 2 B: Then, there exists
v 2 SF;z such that

h.t/ D
Z t

0

T.t � s/v.s/ds; t 2 J
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Let 
1; 
2 2 Jnft1; t2; : : : tmg; 
1 < 
2. Thus if � > 0, we have

jh.
2/ � h.
1/j �
Z 
1��

0

kT1.
2 � s/ � T1.
1 � s/kjv.s/jds

C
Z 
1


1��
kT1.
2 � s/ � T1.
1 � s/kjv.s/jds

C
Z 
2


1

kT1.
2 � s/kjv.s/jds

�  .q�/
Z 
1��

0

kT1.
2 � s/ � T1.
1 � s/kB.E/p.s/ds

C .q�/
Z 
1


1��
kT1.
2 � s/ � T1.
1 � s/kB.E/p.s/ds

C .q�/
Z 
2


1

kT1.
2 � s/kB.E/p.s/ds:

As 
1 ! 
2 and � becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since T1.t/ is a strongly continuous operator and the
compactness of T1.t/ for t > 0 implies the continuity in the uniform operator
topology.

This proves the equi-continuity for the case where t ¤ ti; i D 1; : : : ;m C 1.
It remains to examine the equi-continuity at t D ti.

First we prove the equi-continuity at t D t�i , we have for some z 2 B, there exists
v 2 SF;z such that

h.t/ D
Z t

0

T1.t � s/v.s/ds; t 2 J

Fix ı1 > 0 such that ftk; k ¤ ig \ Œti � ı1; ti C ı1� D ;. For 0 < � < ı1, we have

jh.ti � �/ � h.ti/j �
Z ti��

0

kT1.ti � � � s/ � T1.ti � s/kjv.s/jds

C .q�/M
Z ti

ti��
p.s/ds

which tends to zero as � ! 0.
Define

Oh0.t/ D h.t/; t 2 Œ0; t1�
and

Ohi.t/ D
8

<

:

h.t/; if t 2 .ti; tiC1�
h.tCi /; if t D ti

9

=

;
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Next, we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk; k ¤ ig \
Œti � ı2; ti C ı2� D ;. Then

Oh.ti/ D
Z ti

0

T1.ti � s/v.s/ds;

For 0 < � < ı2, we have

jOh.ti C �/ � Oh.ti/j �
Z ti

0

kT1.ti C � � s/ � T1.ti � s/kjv.s/jds

C .q�/M
Z tiC�

ti

p.s/ds

The right-hand side tends to zero as � ! 0.
The equi-continuity for the cases 
1 < 
2 � 0 and 
1 � 0 � 
2 follows from

the uniform continuity of � on the interval .�1; 0� As a consequence of Claims
1–3 together with Arzelá–Ascoli theorem it suffices to show that B maps B into a
precompact set in E.

Let 0 < t < b be fixed and let � be a real number satisfying 0 < � < t. For z 2 B,
we define

h�.t/ D T1.�/
Z t��

0

T1.t � s � �/v.s/ds;

where v 2 SF;z. Since T1.t/ is a compact operator, the set

H�.t/ D fh�.t/ W h� 2 B.z/g
is precompact in E for every �; 0 < � < t: Moreover, for every h 2 B.z/ we have

jh.t/ � h�.t/j D ˇ
ˇ

Z t

0

T1.t � s/v.s/ds � T1.�/
Z t��

0

T1.t � s � �/v.s/ds
ˇ
ˇ

D j
Z t

t��
T1.t � s/v.s/dsj

� M .q�/
Z t

t��
p.s/ds:

Therefore, there are precompact sets arbitrarily close to the set H.t/ D fh.t/ W h 2
B.z/g: Hence the set H.t/ D fh.t/ W h 2 B.B/g is precompact in E. Hence the
operator B is totally bounded.

Claim 5: B has closed graph.

Let zn ! z�, hn 2 B.zn/, and hn ! h�. We shall show that h� 2 B.z�/: hn 2
B.zn/ means that there exists vn 2 SF;zn such that

hn.t/ D
Z t

0

T1.t � s/vn.s/ds; t 2 J:
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We must prove that there exists v� 2 SF;z�
such that

h�.t/ D
Z t

0

T1.t � s/v�.s/ds:

Consider the linear and continuous operator K W L1.J;E/ ! D0
b defined by

.Kv/.t/ D
Z t

0

T1.t � s/v.s/ds:

We have

j.hn.t/ � .h�.t// � khn � h�k1 ! 0; as n 7! 1:

From Lemma 1.11 it follows that K ı SF is a closed graph operator and from the
definition of K one has

hn.t/ 2 K ı SF;zn :

As zn ! z� and hn ! h�, there is a v� 2 SF;z�
such that

h�.t/ D
Z t

0

T1.t � s/v�.s/ds:

Hence the multi-valued operator B is upper semi-continuous.

Step 3: A priori bounds on solutions. Now, it remains to show that the set

E D fz 2 D0
bj z 2 �Az C �Bz; 0 � � � 1g

is unbounded.

Let z 2 E be any element. Then there exist v 2 SF;z and Ik 2 Ik.z.t�k // such that

z.t/ D �g.t; zt C xt/ � �T0.t/g.0; �.0//

C�
Z t

0

T1.t � s/v.s/ds C �
X

0<tk<t

T1.t � tk/Ik:

Then

jz.t/j � ˛1kzt C xtk C ˛2 C M
�

˛1k�kD C ˛2


CM
Z t

0

p.s/ .kzs C xsk/ds C M
mX

kD0
ckjz.t�k /C x.t�k /j

CM
kDmX

kD0
kIk.0/k
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� ˛1
�

Kbjz.t/j C .MKb C Mb/k�kD
C ˛2 C M

�

˛1k�kD C ˛2


CM
Z t

0

p.s/ 
�

Kbjz.s/j C .MKb C Mb/k�kD


/ds

CM
mX

kD0
ckjz.t/j C M

mX

kD0
ckjx.t/j C M

kDmX

kD0
kIk.0/k

� ˛1
�

Kbjz.t/j C .MKb C Mb/k�kD
C ˛2 C M

�

˛1k�kD C ˛2


CM
Z t

0

p.s/ 
�

Kbjz.s/j C .MKb C Mb/k�kD


ds C M
mX

kD0
ckjz.tj/

CM
mX

kD0
ckjx.t/j C M

kDmX

kD0
kIk.0/k:

Then, we have:

jz.t/j � ˛1 ..Kbjz.t/j C .MKb C Mb/k�kD//

CM
Z t

0

p.s/ 
�

Kbjz.s/j C .MKb C Mb/k�kD


ds C M
mX

kD0
ckjz.tj/

CM2

mX

kD0
ckk�kD C M

kDmX

kD0
kIk.0/k:

Thus

�

1 � ˛1Kb � M
mX

kD0
ck
kzkD0b

� ˛1 C .MKb C Mb/k�kD C ˛2 C M.˛1k�kD C ˛2/

CMkpkL1 
�

KbkforzkD0b
C .MKb C Mb/k�kD



CM2

mX

kD0
ckk�kD C M

kDmX

kD0
kIk.0/k

D C0 C MkpkL1 
�

KbkzkD0b
C .MKb C Mb/k�kD
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By the previous inequality we have,

 

1 � ˛1Kb � M
mX

kD0
ck

!

kzkD0b

C0 C MkpkL1 
�

KbkzkD0b
C .MKb C Mb/k�kD

 � 1 (10.14)

From (10.13) it follows that there exists a constant R > 0 such that for each z 2 E
with kzkD0b

> R the propriety is not satisfied. Hence kzkD0b
� R for each z 2 E which

means that E is bounded. As a consequence of Theorem 1.32, A C B has a fixed
point z� on the interval .�1; b�, so y� D z� C x is a fixed point of the operator N,
which is the mild solution of problem (10.9)–(10.11). ut

10.3.2 Extremal Mild Solutions

In this section we shall prove the existence of maximal and minimal solutions of
problem (10.9)–(10.11) under suitable monotonicity conditions on the multi-valued
functions involved in it. We need the following definitions in the sequel.

Definition 10.8. We say that a continuous function Qv 2 Db is a lower mild solution
of problem (10.9)–(10.11) if Qv.t/ D �.t/; t 2 .�1; 0�; and there exist v.�/ 2
L1.Jk;E/ and Ik 2 Ik. Qv.t�k //, such that v.t/ 2 F.t; Qvt/ a.e t 2 Œ0; b�, and Qv satisfies,

Qv.t/ � T0.t/ .�.0/ � g.0; �.0///C g.t; Qvt/C
Z t

0

T1.t � s/v.s/ds

C
X

0<tk<t

T1.t � tk/Ik; t 2 J; t ¤ tk;

and Qv.tCk / � Qv.t�k � Ik where Ik 2 Ik. Qv.tk//; t D tk; k D 1; : : : ;m Similarly an
upper mild solution Qw of IVP (10.9)–(10.11) is defined by reversing the order.

Definition 10.9. A solution xM of IVP (10.9)–(10.11) is said to be maximal if for
any other solution x of IVP (10.9)–(10.11) on J, we have that x.t/ � xM.t/ for
each t 2 J.

Similarly a minimal solution of IVP (10.9)–(10.11) is defined by reversing the
order of the inequalities.

We consider the following assumptions in the sequel.

(10.9.1) The multi-valued function F.t; y/ is strictly monotone increasing in y for
almost each t 2 J.

(10.9.2) The IVP (10.9)–(10.11) has a lower mild solution Qv and an upper mild
solution Qw with Qv � Qw.

(10.9.3) T1.t/ is preserving the order, that is T1.t/v � 0 whenever v � 0.
(10.9.4) The functions Ik; k D 1; : : : ;m are continuous and nondecreasing.
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Theorem 10.10. Assume that assumptions (10.6.1)–(10.6.6) and (10.9.1)–(10.9.4)
hold. If � 2 D, �.0/ 2 X0 and g.0; �.0// 2 X0, then IVP (10.9)–(10.11) has minimal
and maximal solutions on Db.

Proof. We can write Qv and Qw as

Qv.t/ D v�.t/C x.t/

Qw.t/ D w�.t/C x.t/;

where v� 2 D0
b and w� 2 D0

b and x.t/ is defined in the above section.
Then Qv is a lower solution to IVP (10.9)–(10.11) if v� satisfies

v�.t/ � �T0.t/g.0; �.0//C g.t; v�
t C x.t//C

Z t

0

T1.t � s/v.s/ds

C
X

0<tk<t

T1.t � tk/Ik; t 2 J; t ¤ tk;

and v�.tCk / � v�.t�k � Ik such that Ik 2 Ik.v
�.tk//; t D tk; k D 1; : : : ;m.

Respectively Qw is upper solution to IVP (10.9)–(10.11) if w� satisfies the reversed
inequality.

It can be shown, as in the proof of Theorem 10.2, that A is completely continuous
and B is a contraction on Œv�;w��. We shall show that A and B are isotone increasing
on Œv�;w��.

Let z; z 2 Œv�;w�� be such that z � z; z 6D z: Then by (10.9.4), we have for
each t 2 J

A.z/ D
(

h 2 D0
b W h.t/ D �T0.t/g.0; �.0//C g.t; zt C xt/

C
X

0<tk<t

T1.t � tk/Ik;2 Ikz.t�k /
)

�
(

h 2 D0
b W h.t/ D �T0.t/g.0; �.0//C g.t; zt C xt/

C
X

0<tk<t

T1.t � tk/Ik; Ik 2 Ik.z.t
�
k //

)

D A.z/:
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Similarly, by .10:9:1/; .10:9:3/

B.z/ D
(

h 2 D0
b W h.t/ D

Z t

0

T1.t � s/v.s/ds; v 2 SF;z

)

�
(

h 2 D0
b W h.t/ D

Z t

0

T1.t � s/v.s/ds; f 2 SF;z

)

D B.z/:

Therefore A and B are isotone increasing on Œv�;w��.
Finally, let y 2 Œv�;w�� be any element. By (10.9.2), (10.9.3) we deduce that

v� � A.v�/C B.v�/ � A.y/C B.y/ � A.w�/C B.w�/ � w�;

which shows that A.y/ C B.y/ 2 Œv�;w�� for all y 2 Œv�;w��. Thus, A and B
satisfy all the conditions of Theorem 10.7, hence IVP (10.9)–(10.11) has maximal
and minimal solutions on J: ut

10.3.3 Example

To apply our previous results, we consider the following impulsive partial neutral
functional differential equation

@

@t

	

v.t; �/ �
Z 0

�1
K1.�; v.t C �/; �/d�




D @2

@t2

	

v.t; �/ �
Z 0

�1
K1.�; v.t C �/; �/d�




C
Z 0

�1
K2.�/ŒQ1.t; �.�; �//;Q2.t; �.�; �//�d� I

t 2 J D Œ0; b�; t ¤ tk; k D 1; : : : ;m; 0 � � � 1; (10.15)

v.tCk ; �/ � v.t�k ; �/ 2 bkjv.t�k ; �/j NB.0; 1/; � 2 Œ0; 1�; k D 1; : : : ;m (10.16)

v.t; 0/ �
Z 0

�1
K1.�; v.t C �/; 0/d� D 0; t 2 J; (10.17)

v.t; 1/ �
Z 0

�1
K1.�; v.t C �/; 1/d� D 0; t 2 J; (10.18)

v.�; �/ D v0.�; �/ � 1 < � � 0; 0 � � � 1; (10.19)
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where bk > 0; k D 1; : : : ;m; K1 W .�1; 0� � R ! R; K2 W .�1; 0� !
R; Q1; Q2 W J � R ! R and v0 W .�1; 0� � Œ0; 1� ! R are continuous functions,
v.t�k / D lim

.h;�/!.0�;�/
v.tk C h; �/; v.tCk / D lim

.h;�/!.0C;�/
v.tk C h; �/ and NB.0; 1/ the

closed unit ball. We assume that for each t 2 J; Q1.t; �/ is lower semi-continuous
(i.e., the set fy 2 R W Q1.t; y/ > �g is open for each � 2 R), and assume that for
each t 2 J; Q2.t; �/ is upper semi-continuous (i.e., the set fy 2 R W Q2.t; y/ < �g is
open for each � 2 R).

We choose E D C.Œ0; 1�;R/ endowed with the uniform topology and consider
the operator A W D.A/ � E ! E defined by:

D.A/ D fy 2 C2.Œ0; 1�;R/ W y.0/ D y.1/ D 0g Ay D y00:

It is well known (see [100]) that the operator A satisfies the Hille–Yosida condition
with .0;C1/ � �.A/; k.�I � A/�1k � 1

�
for � > 0, and

X0 D D.A/ D fy 2 E W y.0/ D y.1/ D 0g ¤ E:

So the extrapolation method can be applied. We define:

Ik.y.t�k //.�/ D bkjv.t�k ; �/j NB.0; 1/; � 2 Œ0; 1�; k D 1; : : : ;m

F.t; �/.�/ D
Z 0

�1
K2.�/ŒQ1.t; �.�; �//;Q2.t; �.�; �//�d�; t 2 J; � 2 Œ0; 1�;

g.t; �/.�/ D R 0

�1 K1.�; �.�/.�//d�; t 2 J; � 2 Œ0; 1�;
y.t/.�/ D v.t; �/; t 2 J; � 2 Œ0; 1�;

�.�/.�/ D v0.�; �/; � � 0; � 2 Œ0; 1�:

Then problem (10.1)–(10.3) is an abstract formulation of the problem (10.15)–
(10.19) with F compact and convex values, and it is upper semi continuous (see
[101]). Assume that there are p 2 C.J;RC/ and  W Œ0;1/ ! .0;1/ continuous
and nondecreasing such that

max.jQ1.t; y/j; jQ2.t; y/j/ � p.t/ .jyj/; t 2 J; and y 2 R:

Under suitable conditions, the problem (10.15)–(10.19) has by Theorem 10.7 a
solution on .�1; b� � Œ0; 1�:
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10.4 Controllability of Impulsive Semi-linear Differential
Inclusions in Fréchet Spaces

In this section, we use the extrapolation method combined with a recent nonlinear
alternative of Leray-Schauder type for multi-valued admissible contractions in
Fréchet spaces to study the existence of the mild solution for a class of non-densely
defined first order semi-linear impulsive functional differential inclusions with finite
delay in the semi-infinite interval J WD Œ0;1/; and with single valued jump. More
precisely we consider the first order semi-linear impulsive functional differential
inclusions of the form:

y0.t/ � Ay.t/ 2 F.t; yt/C Bu.t/; a:e: t 2 Jnft1; t2; : : :g (10.20)

�yjtDtk D Ik.y.t
�
k //; k D 1; : : : ; (10.21)

y.t/ D �.t/; t 2 H; (10.22)

where J WD Œ0;1/, F W J � D ! P.E/ is a multi-valued map with compact values,
.E; j � j/, D, P.E/,B, u.�/, �, yt are as in the above section and A W D.A/ � E ! E is
a non-densely defined closed linear operator on E

Let A0 the dense part of A, and let .T0.t//t�0 the strongly continuous semigroup
generated by A0defined on X0 D D.A/and let .T1.t//t�0 the extrapolated semigroup
of .T0.t//t�0 whose generator is .A1;D.A1//:

10.4.1 Main Result

We shall consider the space

PC D
n

y W Œ�r;1/ ! E W y.t/ is continuous everywhere except for some

tk at wich y.t�k /; y.t
C
k / exist with y.tk/ D y.t�k /; k D 1; : : :

o

Set

˝ D fy W Œ�r;1/ ! E W y 2 PC \ Dg

Definition 10.11. We say that the function y 2 ˝ is a mild solution of system
(10.20)–(10.22) if y.t/ D �.t/ for all t 2 Œ�r; 0�, the restriction of y.�/ to the interval
Œ0;1/ is continuous and there exists v.�/ 2 L1loc.Œ0;1/;E/, such that v.t/ 2 F.t; yt/

a.e Œ0;1/, and such that y satisfies the integral equation,

y.t/ D T0.t/�.0/C
Z t

0

T1.t � s/v.s/ds C
Z t

0

T1.t � s/Buy.s/ds

C
X

0<tk<t

T1.t � tk/Ik.y.t
�
k //; 0 � t < 1: (10.23)
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Definition 10.12. The system (10.20)–(10.22) is said to be infinite controllable on
the interval Œ�r;1/nftkg; k D 1; : : : if for every initial function � 2 D and every
y1 2 E; and for each n 2 N, there exists a control u 2 L2.Œ0; tn�;U/; such that the
mild solution y.t/ of (10.20)–(10.22) satisfies y.tn/ D y1:

Let us introduce the following hypotheses:

(10.12.1) The function F W J �˝ ! Pcp.E/ is an L1-Carathéodory map.
(10.12.2) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! Œ0;1/ such that

kF.t; x/k � p.t/ .kxkD/ for a.e. t 2 J and each x 2 D;

with
Z 1

1

ds

s C  .s/
D 1:

(10.12.3) There exists M > 0 such that

kT1.t/kB.E/ � M for each t > 0:

(10.12.4) For all R > 0 there exists lR 2 L1loc.Œ0;1/;RC/ such that

Hd.F.t; x/;F.t; x// � lR.t/kx � xkD for all x; x 2 D with kxk; kxk � R;

and

d.0;F.t; 0// � lR.t/ for a.e. t 2 J:

(10.12.5) There exist constants ck � 0, k D 1; : : : ; such that

jIk.y/ � Ik.x/j � ckjx � xj for each x; x 2 E:

(10.12.6) For every n > 0, the linear operator W W L2.Jn;U/ ! E .Jn D Œ0; tn�/;
defined by

Wu D
Z tn

0

T.tn � s/Bu.s/ds;

has a bounded inverse operator W�1 which takes values in L2.Jn;U/n
KerW, and there exist positive constants M; M1 such that kBk � M and
kW�1k � M1:

Theorem 10.13. Assume that hypotheses (10.12.1)–(10.12.6) hold. If M
1X

kD1
ck < 1,

then the IVP (10.20)–(10.22) is infinite controllable on Œ�r;1/:
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Proof. Using hypothesis (10.12.6) for each y.�/ define the control

uy.t/ D W�1
2

4y1 � T.tn/�.0/ �
Z tn

0

T.tn � s/v.s/ds

�
X

0<tk<s

T.s � tk/Ik.y.t
�
k //

3

5 .t/;

where

v 2 SF;y D fv 2 L1.J;E/ W v.t/ 2 F.t; yt/ a:e t 2 Jg;

We shall now show that when using this control, the operator N W ˝ ! P.˝/
defined by

N.y/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

h 2 ˝ W h.t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

�.t/; if t 2 H,

T0.t/�.0/C
Z t

0

T1.t � s/v.s/ds

C
Z t

0

T1.t � s/.Buy/.s/ds

C
X

0<tk<t

T1.t � tk/Ik.y.t
�
k //; if t 2 J;

9

>>>>>>>>>>=

>>>>>>>>>>;

has a fixed point. This fixed point is then the mild solution of the IVP (10.20)–
(10.22)

We define on ˝ a family of semi-norms, thus rendering ˝ into Fréchet space.
Let 
 be sufficiently large, then 8n 2 N we define in ˝ the semi-norm:

kykn D sup
˚

e�
Ln.t/jy.t/j W �r � t � tn
�

;

where

Ln D
Z t

�r

Oln.s/ds;

with

Oln.t/ D

8

ˆ̂
<

ˆ̂
:

0; if t 2 H,

ln.t/
�

M2M M1tn C M
�C M2M M1

tX

kD0
ck; if t 2 Œ0; tn�;
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Thus ˝ D
[

n�1
˝n where

˝n D
n

y W Œ�r; tn� ! E W y 2 D
\

PCn.J;E/
o

and

PCn D
n

y W Œ0; tn� ! E W y.t/ is continuous everywhere except for some

tk at wich y.t�k /; y.t
C
k / exist with y.tk/ D y.t�k /; k D 1; : : : n � 1

o

Then ˝ is a Fréchet space with the family of the semi-norms fk:kngn2IN .
Now, using the Frigon alternative, we are able to prove that the operator N has a

fixed point.
Let y 2 �N.y/ for some � 2 Œ0:1�, and for some v 2 SF;y. For each n 2 IN and

t 2 Œ0; tn� we have:

y.t/ D �

	

T0.t/�.0/C
Z t

0

T1.t � s/v.s/ds C
Z t

0

T1.t � s/Buy.s/ds

C
X

0<tk<t

T1.t � tk/Ik.y.t
�
k //

3

5

then, we have

jy.t/j � kT0kk�kD C
Z t

0

jT1.t � s/jkv.s/kds C
Z t

0

jT1.t � s/jjBuy.s/jds

C
X

0<tk<t

jT1.t � tk/jjIk.y.t
�
k //j

� Mk�kD C M
Z t

0

p.s/ .kysk/ds C M
Z t

0

kBkkuy.s/kds

CM
nX

kD1
jIk.y.t

�
k //j

� Mk�kD C M
Z t

0

p.s/ .kysk/ds C MM
Z t

0

ˇ
ˇ
ˇW�1

2

4y1 � T0.tn/�.0/

�
Z tn

0

T1.tn � 
/v.
/d
 �
X

0<tk<


T1.
 � tk/Ik.y.t
�
k //

3

5 .s/
ˇ
ˇ
ˇds

CM
nX

kD1
jIk.y.t

�
k //j
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� Mk�kD C M
Z t

0

p.s/ .kysk/ds C MM M1

Z t

0

2

4jy1j C kT0.tn/kk�.0/k

CM
Z tn

0

p.
/ .ky
k/d
 C M
X

0<tk<s

jIk.y.t
�
k //j

3

5 ds

CM
nX

kD1
jIk.y.t

�
k //j

� Mk�kD C M
Z t

0

p.s/ .kysk/ds C MM M1tnjy1j C MM M1tnMk�kD

CM2M M1tn

Z t

0

p.
/ .ky
k/d
 C M2M M1

Z t

0

X

0<tk<s

jIk.y.t
�
k //jds

CM
nX

kD1
jIk.y.t

�
k //j:

It follows that

jy.t/j � MM M1tnjy1j C
h

M C MM M1tn
i

k�kD

C
h

M C M2M M1tn
i Z t

0

p.s/ .kysk/ds

CM2M M1

Z t

0

X

0<tk<s

jIk.y.t
�
k //jds C M

nX

kD1
jIk.y.t

�
k //j

� MM M1tnjy1j C
h

M C MM M1tn
i

k�kD

C
h

M C M2M M1tn
i Z t

0

p.s/ .kysk/ds

CM2M M1

Z t

0

X

0<tk<s

�jIk.y.t
�
k // � Ik.0/j C jIk.0/j



ds

CM
nX

kD1

�jIk.y.t
�
k // � Ik.0/j C jIk.0/j



� MM M1tnjy1j C
h

M C MM M1tn
i

k�kD

C
h

M C M2M M1tn
i Z t

0

p.s/ .kysk/ds

CM2M M1

Z t

0

X

0<tk<s

jIk.y.t
�
k // � Ik.0/jds
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CM
nX

kD1
jIk.y.t

�
k // � Ik.0/j C M2M M1

Z t

0

X

0<tk<s

jIk.0/jds

CM
nX

kD1
kIk.0/k

� MM M1tnjy1j C
h

M C MMtnM1

i

k�kD

C �

M C M2M M1tn
� X

kD1n

kIk.0/k

C
h

M C M2MtnM1

i Z t

0

p.s/ .kysk/ds C M2M M1

Z t

0

nX

kD1
ckjy.t�k /jds

CM
nX

kD1
ckjy.t�k /j:

Set

C D MM M1tnjy1j C
h

M C MMtnM1

i

k�kD C
h

M C M2MtnM1

i nX

kD1
kIk.0/k:

Now, we consider the function � defined by:

�.t/ D sup
n

jy.s/j W �r � s � t
o

; t � tn

Let t� 2 Œ�r; tn� such that �.t/ D jy.t�j
It is clear that:
if t� 2 H, then �.t/ D k�kD

if t� 2 Œ0; tn�, we have for each t 2 Œ0; tn�

�.t/ � C C
h

M C M2MtnM1

i Z t

0

p.s/ ..�s//ds

CM2M M1

Z t

0

X

0<tk<s

ck�.s/ds C M
nX

kD1
ck�.t/:

Then

h

1 � M
nX

kD1
ck

i

�.t/ � C C
h

M C M2MtnM1

i Z t

0

p.s/ .�.s//ds

CM2M M1

Z t

0

X

0<tk<s

ck�.s/ds:
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Thus we have

�.t/ � C1 C
Z t

0

OM.s/
�

�.s/C  .�.s//
�

;

where

C1 D C

1 � M
nX

kD1
ck

;

and

OM.s/ D 1

1 � M
nX

kD1
ck

2

4

h

M C M2M M1tn
i

p.s/C M2M M1

X

0<tk<s

ck

3

5 :

Let us take the right-hand side of the above inequality as v.t/, then we have:

v.0/ D C1; �.t/ � v.t/ 8t 2 Œ0; tn�

and

v
0

.t/ D OM.t/.�.t/C  .�.t///:

Using the nondecreasing character of  , we get:

v
0

.t/ � OM.t/.v.t/C  .v.t///a:et 2 Œ0; tn�:

This implies that for each t 2 Œ0; tn�
Z v.t/

v.0/

ds

s C  .s/
�
Z tn

0

OM.s/ds �
Z 1

v.0/

ds

s C  .s/
:

Thus from .10:12:2/ there exists a constant Mn such that

v.t/ � Mn; 8t 2 Œ0; tn�
From the definition of �, we conclude that

sup
n

jy.t/j; t 2 Œ0; tn�
o

� Mn
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Set

U0 D
n

y 2 ˝n; kykn � Mn C 1
o

Clearly U0 is a closed subset of ˝n. We shall show that N W U0 ! P.U0/ is a
contraction and an admissible operator.

First, we prove that N is a contraction; that is, there exists � < 1; such that

Hd.N.y/;N.y
�// � �ky � y�kn; for each y; y� 2 U0:

Let y; y� 2 U0 and h 2 N.y/. Then there exists v.t/ 2 F.t; yt/ such that for each
t 2 Œ0; tn�

h.t/ D T0.t/�.0/C
Z t

0

T1.t � s/v.s/ds C
Z t

0

T1.t � s/Buy.s/ds

C
X

0<tk<t

T1.t � tk/Ik.y.t
�
k /:

From (10.12.4) it follows that

Hd.F.t; yt/;F.t; y
�
t // � ln.t/kyt � y�

t kD:

Hence there exists v� 2 F.t; y�
t / such that

jv.t/ � v�.t/j � ln.t/kyt � y�
t kD; 8t 2 Œ0; tn�:

Let us define 8t 2 Œ0; tn�

h�.t/ D T0.t/�.0/C
Z t

0

T1.t � s/v�.s/ds C
Z t

0

T1.t � s/Buy�.s/ds

C
X

0<tk<t

T1.t � tk/Ik.y
�.t�k //:

Then we have

jh.t/ � h�.t/j D
ˇ
ˇ
ˇ

Z t

0

T1.t � s/Œv.s/ � v�.s/�ds C
Z t

0

T1.t � s/ŒB.uy � uy�/.s/�ds

C
X

0<tk<t

T1.t � tk/ŒIk.y.t
�
k / � Ik.y

�.t�k //�
ˇ
ˇ
ˇ
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� M
Z t

0

ln.s/kys � y�
s kDds C MM

Z t

0

juy.s/ � uy�.s/jds

CM
X

0<tk<t

ckjy.t�k / � y�.t�k /j

� M
Z t

0

ln.s/kys � y�
s kDds

CMM
Z t

0

ˇ
ˇ
ˇW�1h

Z tn

0

T1.t � 
/�v.
/ � v�.
/
�

d


C
X

0<tk<


T1.t � 
/Ik.y.t
�
k / � y�.t�k //

iˇ
ˇ
ˇds

CM
X

0<tk<t

ckjy.t�k / � y�.t�k /j

� M
Z t

0

ln.s/kys � y�
s kDds

CM2M M1tn

Z t

0

ln.s/kys � y�
s kDds

CM2M M1

Z t

0

X

0<tk<s

ckjy.t�k / � y�.t�k /jds

C
X

0<tk<t

ckjy.t�k / � y�.t�k /jds

�
h

M C M2M M1tn
i Z t

0

ln.s/kys � y�
s kDds

CM2M M1

Z t

0

X

0<tk<s

ckjy.t�k / � y�.t�k /jds

C
X

0<tk<t

ckjy.t�k / � y�.t�k /jds

�
h

M C M2M M1tn
i Z t

0

ln.s/e

Ln.s/ky � y�knds

CM2M M1

Z t

0

e
Ln.s/
X

0<tk<s

ckky � y�knds

CMe
Ln.t/
X

0<tk<t

ckky � y�knds;
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which gives:

jh.t/ � h�.t/j �
2

43

Z t

0

Oln.s/e
Ln.s/ds C Me
Ln.t/
X

0<tk<t

ck

3

5 ky � y�kn

�
"

3



e
Ln.s/jt0 C Me
Ln.t/

nX

kD1
ck

#

ky � y�kn

�
"

3



e
Ln.t/ � 3



C Me
Ln.t/

nX

kD1
ck

#

ky � y�kn:

As 
 is sufficiently large, thus

jh.t/ � h�.t/j �
"

3



C M

nX

kD1
ck

#

e
Ln.t/ky � y�kn:

Then, it follows

jh.t/ � h�.t/je�
Ln.t/ �
"

3



C M

nX

kD1
ck

#

ky � y�kn:

Therefore,

kh � h�kn �
"

3



C M

nX

kD1
ck

#

ky � y�kn:

By an analogous relation, obtained by interchanging the roles of y and y�; it
follows that

Hd.N.y/;N.y
�// �

 

3



C M

nX

kD1
ck

!

ky � y�kn:

So, N is a contraction.
Now, N W ˝n ! Pcp.˝n/ is given by

N.y/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

h 2 ˝n W h.t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

0; if t 2 H,
Z t

0

T1.t � s/v.s/ds

C
Z t

0

T1.t � s/.Bun
y/.s/ds

C
X

0<tk<t

T1.t � tk/Ik.y.t
�
k //; if t 2 Œ0; tn�;

9

>>>>>>>>>>=

>>>>>>>>>>;
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where v 2 Sn
F;y D fu 2 L1.Œ0; tn�;E/ W u 2 F.t; yt/ a:e: t 2 Œ0; tn�g: From (10.12.4)–

(10.12.6) and since F is compact valued, we can prove that for every y 2 ˝n, N.y/ 2
Pcp.˝n/, and there exists y� 2 ˝n such that y� 2 N.y�/: Let h 2 ˝n; y� 2 U0 and
" > 0. Now, if Ny 2 N.y�/; then we have

ky� � Nykn � ky� � hkn C kNy � hkn:

Since h is arbitrary we may suppose that h 2 B.Ny; "/ D fk 2 ˝n W kk � Nykn � "g:
Therefore,

ky� � Nykn � ky� � N.y�/kn C ":

On the other hand, if Ny 62 N.y�/; then kNy � N.y�/k 6D 0: Since N.y�/ is compact,
there exists x 2 N.y�/ such that kNy � N.y�/kn D kNy � xkn: Then we have

ky� � xkn � ky� � hkn C kx � hkn:

Therefore,

ky� � xkn � ky� � N.y�/kn C ":

So, N is an admissible operator contraction. Finally, by Lemma 1.27, N has at least
one fixed point, y; which is a mild solution to (10.20)–(10.22). ut

10.4.2 Example

As an application of our above result, we consider the following impulsive partial
functional inclusion,

@z.t; x/

@t
� d4z.t; x/ 2 F.t � r; x/C Bu.t/; a:e: t 2 Jnft1; t2; : : :g; x 2 ˝ (10.24)

bkz.t�k ; x/ D z.tCk / � z.t�k /; k D 1; : : : ; x 2 @˝ (10.25)

z.t; x/ D 0; t 2 Œ0;1/nft1; t2; : : :g; x 2 ˝ (10.26)

z.t; x/ D �.t; x/; t 2 H; x 2 ˝ (10.27)

where d,r,bk are positive constants, ˝ is a bounded open in IRn with regular

boundary @˝, 4 D
nX

iD1

@2

@x2i
, � 2 D D f W H � ˝ ! IRI is continuous

everywhere except for a countable number of points at which  .s�/;  .sC/ exist
with  .s�/ D  .s/, and j .�; x/j < 1g, 0 D t0 < t1 < t2 < � � � < tm < � � � ,
z.tCk / D lim

.h;x/!.0C;x/
z.tk C h; x/ ,z.t�k / D lim

.h;x/!.0�;x/
z.tk � h; x/, F W Œ0;1/ � IRn !

P.IRn/ is a multi-valued map with compact values.
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Consider E D C.˝; IRn/ the Banach space of continuous functions on ˝ with
values in IRn, y.t/ D z.t; :/. Let A the operator defined in E by Ay D d4y; Ik W
E ! D.A/ such that Ik.y.t�k // D bky.t�k /, then the problem (10.24)–(10.27) can be
written as

y0.t/ � Ay.t/ 2 F.t; yt/C Bu.t/ a:e: t 2 Jnft1; t2; : : :g; (10.28)

�yjtDtk D Ik.y.t
�
k //; k 2 f1; 2; : : :g (10.29)

y.t/ D �.t/ t 2 H (10.30)

We have,

D.A/ D fy W y 2 E; 4y 2 E and yj@˝ D 0g;

and

X0 D D.A/ D fy W y 2 E; yj@˝ D 0g ¤ E

So, we can apply the extrapolation method.
It is well known from [100] that 4 satisfies the properties:

i) .0;1/ � �.4/
ii) kR.�;4/k � 1

�
for some � > 0

It follows that 4 satisfies .Hy/.
Also from [106], the family

T0.t/f .s/ D .4�/
�n
2

Z

IRn
e

�js�
j2

4t f .
/d


for t > 0; s 2 Rn, and f 2 X0 with T.0/ D I, define a strongly continuous
semigroup on E, its generator A0 coincides with the closure of the Laplacian
operator with domain X0, and there exist constants N0 > 0,! > 0 such that
kT0k � N0e!t for t > 0.

Thus under appropriate conditions on the function F and the operator B as those
mentioned in hypotheses (10.12.1)–(10.12.6) the problem (10.24)–(10.27) has at
least one mild solution.

10.5 Notes and Remarks

The results of Chap. 10 are taken from Abada et al. [1, 3]. Other results may be
found in [54, 74, 107].



Chapter 11
Functional Differential Inclusions
with Multi-valued Jumps

11.1 Introduction

In this chapter, we are concerned by the existence of mild solutions of functional
differential inclusions with delay and multi-valued jumps in a Banach space.

11.2 Semi-linear Functional Differential Inclusions with
State-Dependent Delay and Multi-valued Jump

11.2.1 Introduction

In this section, we shall be concerned with the existence of integral solutions defined
on a compact real interval for first order impulsive semi-linear functional inclusions
with state-dependent delay in a separable Banach space of the form:

y0.t/ 2 Ay.t/C F.t; y�.t;yt//; t 2 I D Œ0; b�; (11.1)

�y.ti/ 2 Ik.ytk/; k D 1; 2; : : : ;m; (11.2)

y.t/ D �; t 2 .�1; 0�; (11.3)

where F W J � D ! E is a given multi-valued function, D D f W .�1; 0� !
E;  is continuous everywhere except for a finite number of points s at which
 .s�/ ;  

�

sC exist and  .s�/ D  .s/g, � 2 D,where D is the phase space
that will be specified later .0 < r < 1/, 0 D t0 < t1 < � � � < tm < tmC1 D b,
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Ik W D ! E .k D 1; 2; : : : ;m/, � W I � D ! .�1; b�, A W D.A/ � E ! E is
a non-densely defined closed linear operator on E, and E a real separable Banach
space with norm j:j:

11.2.2 Existence of Integral Solutions

In this section, we will employ an axiomatic definition for the phase space D which
is similar to those introduced in [142]. Specifically, D will be a linear space of
functions mapping .�1; 0� into E endowed with a semi norm k:kD, and satisfies
the following axioms introduced at first by Hale and Kato in [132]:

(A1) There exist a positive constant H and functions K.�/, M.�/ W R
C ! R

C
with K continuous and M locally bounded, such that for any b > 0, if
y W .�1; b� ! E, y 2 D, and y.�/ is continuous on Œ0; b�, then for every
t 2 Œ0; b� the following conditions hold:

(i) yt is in DI
(ii) jy.t/j � HkytkDI

(iii) kytkD � K.t/ supfjy.s/j W 0 � s � tg C M.t/ky0kD; and H;K and M are
independent of y.�/:

Denote

Kb D supfK.t/ W t 2 Jg and Mb D supfM.t/ W t 2 Jg:

(A) The space D is complete.

11.2.3 Main Results

Before starting and proving our main theorem for the initial value problem (11.1)–
(11.3), we give the definition of the integral solution.

Definition 11.1. We say that y W .�1; b� ! E is an integral solution of (11.1)–
(11.3) if y.t/ D �.t/ for all t 2 .�1; 0�, the restriction of y.�/ to the interval
Œ0; b� is continuous, and there exist v.�/ 2 L1.Jk;E/ and Ik 2 Ik.y.tk//; such that
v.t/ 2 F.t; y�.t;yt// a.e t 2 Œ0; b�, and y satisfies the integral equation,

(i) y.t/ D �.0/C A
Z t

0

y.s/ds C
Z t

0

v.s/ds C
X

0<tk<t

S0.t � tk/Ik; t 2 J:

(ii)
Z t

0

y.s/ds 2 D.A/ for t 2 J,
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From the definition it follows that y.t/ 2 D.A/, for each t � 0; in particular
�.0/ 2 D.A/. Moreover, y satisfies the following variation of constants formula:

y.t/ D S0.t/�.0/C d

dt

Z t

0

S.t � s/v.s/ds C
X

0<tk<t

S0 .t � tk/ Ik t � 0: (11.4)

We notice also that if y satisfies (11.4), then

y.t/ D S0.t/�.0/C lim
�!1

Z t

0

S0.t � s/B�v.s/ds C
X

0<tk<t

S0 .t � tk/ Ik; t � 0:

we always assume that � W I � D ! .�1; b� is continuous. Additionally, we
introduce following hypotheses:

(H') The function t ! 't is continuous from R.��/ D f�.s; '/ W .s; '/ 2
J � D; �.s; '/ � 0g into D and there exists a continuous and bounded
function L� W R.��/ ! .0;1/ such that k�tkD � L�.t/k�kD for every
t 2 R.��/.

(11.1.1) A satisfies Hille–Yosida condition;
(11.1.2) There exist constants ck � 0, k D 1; : : : ;m such that

Hd.Ik.y/; Ik.x//j � ckjy � xj for each x; y 2 D:

(11.1.3) The valued multi-valued map F W J �D ! E is convex and Carathéodory;
(11.1.4) the operator S0.t/ is compact in D.A/ wherever t > 0I
(11.1.5) There exist a function p 2 L1.J;RC/ and a continuous nondecreasing

function  W Œ0;1/ ! .0;1/ such that

kF.t; x/kP D supfjvj W v 2 F.t; x/g � p.t/ .kxkD/ for a.e. t 2 J and each x 2 D;

with
Z b

0

e�!sp.s/ds < 1,

lim sup
u!C1

�

.Mb C L� C MKb/k�kD C Kb
�

u

c1 C c2
tR

0

e�!sp.s/ .Kbu C .Mb C L� C MKb/k�kD/ ds

> 1;

(11.5)

where

c1 D ce!bKb

1 � Me!bKb

mP

kD1
ck

C �

Mb C L� C MKb
 k�kD; (11.6)
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and

c D
mP

kD1
�jIk.0/j C ck

�

Mb C L� C MKb
 k�kD

�

: (11.7)

c2 D MKbe!b

1�Me!bKb

mP

kD1

ck

: (11.8)

The next result is a consequence of the phase space axioms.

Lemma 11.2 ([139], Lemma 2.1). If y W .�1; b� ! E is a function such that
y0 D � and yjJ 2 PC.J W D.A//, then

kyskD � .Ma C L�/k�kD C Ka supfky.�/kI � 2 Œ0; maxf0; sg�g; s 2 R.��/[ J;

where L� D supt2R.��/ L�.t/, Ma D supt2J M.t/ and Ka D supt2J K.t/.

Theorem 11.3. Assume that (H') and (11.1.1)–(11.1.5) hold. If

Me!bKb

mX

kD1
ck < 1; (11.9)

then the problem (11.1)–(11.3) has at least one integral solution on .�1; b�:

Proof. Consider the multi-valued operator:

N W PC
�

.�1; b�;D.A/
�

! P.PC
�

.�1; b�;D.A/
�

/ defined by

N.y/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

h 2 PC
�

.�1; b�;D.A/
 W h.t/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

�.t/; if t � 0;

S0.t/�.0/C d
dt

Z t

0
S.t � s/v.s/ds

C X

0<tk<t

S0.t � tk/Ik; v 2 SF;y�.s;ys/
;Ik 2 Ik.y.t

�
k //

if t 2 J;

9

>>>>>>>>>=

>>>>>>>>>;

For � 2 D define the function Q� W .�1; b� ! E such that:

Q�t D
8

<

:

�.t/; if t � 0

S0.t/�.0/; if t 2 J:



11.2 Semi-linear Functional Differential Inclusions with State-Dependent. . . 309

Then Q�0 D �. For each x 2 Bb with x.0/ D 0, we denote by x the function defined by

x.t/ D
8

<

:

0; t 2 .�1; 0�;

x.t/; t 2 J;

We can decompose it as y.t/ D Q�.t/C x.t/; 0 � t � b, which implies yt D Q�t C xt,
for every 0 � t � b and the function x.:/ satisfies

x.t/ D d

dt

Z t

0

S.t � s/v.s/ds

C
X

0<tk<t

S0.t � tk/Ik t 2 J;

where:
v.s/ 2 SF;x�.s;xsC Q�s/

C Q��.s;xsC Q�s/
and Ik 2 Ik

�

xtk C Q�tk



Let

B0b D fx 2 Bb W x0 D 0 2 Dg:

For any x 2 B0b we have

kxkb D kx0kD C supfjx.s/j W 0 � s � bg D supfjx.s/j W 0 � s � bg:

Thus .B0b; k � kb/ is a Banach space. We define the two multi-valued operators A;B W
B0b ! P.B0b/ by:

A.x/ WD

8

ˆ̂
<

ˆ̂
:

h 2 B0b W h.t/ D

8

ˆ̂
<

ˆ̂
:

0; if t 2 .�1; 0�;

X

0<tk<t

S0.t � tk/Ik; Ik 2 Ik

�

xtk C Q�tk



; if t 2 J;

9

>>=

>>;

and

B.x/ WD

8

ˆ̂
<

ˆ̂
:

h 2 B0b W h.t/ D

8

ˆ̂
<

ˆ̂
:

0; if t 2 .�1; 0�I
d

dt

Z t

0
S.t � s/v.s/ds; v.s/ 2 SF;x�.s;xsC Q�s/

C Q��.s;xsC Q�s/
if t 2 J:

9

>>=

>>;

Obviously to prove that the multi-valued operator N has a fixed point is reduced
that the operator inclusion x 2 A.x/ C B.x/ has one, so it turns to show that the
multi-valued operators A and B satisfy all conditions of Theorem 1.32. For better
readability, we break the proof into a sequence of steps.
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Step 1: A is a contraction. Let x1; x2 2 B0b . Then for t 2 J

Hd .A.x1/;A.x2// D Hd

0

@
X

0<tk<t

S0.t � tk/Ik.x
1
tk C Q�tk/;

X

0<tk<t

S0 .t � tk/ Ik.x
2
tk C Q�tk/

1

A

� Me!b
X

0�tk�t

ˇ
ˇIk.x

1
tk/ � Ik.x

2
tk/
ˇ
ˇ

� Me!b
mX

kD1
ckkx1tk � x2tk kD

� Me!bKb

mX

kD1
ck kx1 � x2kD :

Hence by (11.9) A is a contraction.

Step 2: B has compact, convex values, and it is completely continuous. This will
be given in several claims.

Claim 1: B has compact values. The operator B is equivalent to the composition
L ı SF on L1.J;E/, where L W L1.J;E/ ! B0b is the continuous operator
defined by

L.v/.t/ D d

dt

Z t

0

S.t � s/v.s/ds; t 2 J:

Then, it suffices to show that L ı SF has compact values on B0b .

Let x 2 B0b arbitrary and vn a sequence such that vn.t/ 2 SF;x�.t;xtC Q�t/
C Q��.t;xtC Q�t/

, a.e.

t 2 J. Since F.t; x�.t;xtC Q�t/
C Q��.t;xtC Q�t/

/ is compact, we may pass to a subsequence.
Suppose that vn ! v in L1w.J;E/ (the space endowed with the weak topology),
where v.t/ 2 F.t; x�.t;xtC Q�t/

C Q��.t;xtC Q�t/
/, a.e. t 2 J. An application of Mazur’s

theorem [185] implies that the sequence vn converges strongly to v and hence v.t/ 2
SF;x�.t;xtC Q�t/

C Q��.t;xtC Q�t/
: From the continuity of L, it follows that Lvn.t/ ! Lv.t/

pointwise on J as n ! 1. In order to show that the convergence is uniform, we
first show that fLvng is an equi-continuous sequence. Let 
1; 
2 2 J, then we have:

jL.vn.
1// � L.vn.
2//j D
ˇ
ˇ
ˇ
ˇ

d

dt

Z 
1

0

S.
1 � s/vn.s/ds

� d

dt

Z 
2

0

S.
2 � s/vn.s/ds

ˇ
ˇ
ˇ
ˇ
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�
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1

0

ŒS0.
1 � s/ � S0.
2 � s/�B�vn.s//ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
2


1

S0.
2 � s/B�vn.s/ds

ˇ
ˇ
ˇ
ˇ
:

As 
1 ! 
2, the right-hand side of the above inequality tends to zero. Since S0.t/
is a strongly continuous operator and the compactness of S0.t/; t > 0, implies
the uniform continuity (see [16, 168]). Hence fLvng is equi-continuous, and an
application of Arzéla-Ascoli theorem implies that there exists a subsequence which
is uniformly convergent. Then we have Lvnj ! Lv 2 .L ı SF/.x/ as j 7! 1, and
so .L ı SF/.x/ is compact. Therefore B is a compact valued multi-valued operator
on B0b .

Claim 2: B.x/ is convex for each z 2 D0
b: Let h1; h2 2 B.x/, then there exist

v1; v2 2 SF;x�.t;xtC Q�t/
C Q��.t;xtC Q�t/

; such that, for each t 2 J we have

hi.t/ D

8

<̂

:̂

0; if t 2 .�1; 0�,

d
dt

Z t

0

S.t � s/vi.s/ds if t 2 J;

9

>=

>;

; i D 1; 2:

Let 0 � ı � 1: Then, for each t 2 J, we have

.ıh1 C .1� ı/h2/.t/ D

8

ˆ̂
<

ˆ̂
:

0; if t 2 .�1; 0�,

d
dt

Z t

0
S.t � s/Œıv1.s/C .1� ı/v2.s/�ds if t 2 J:

9

>>=

>>;

Since F has convex values, one has

ıh1 C .1 � ı/h2 2 B.x/:

Claim 3: B maps bounded sets into bounded sets in B0b
Let Bq D fx 2 B0b W kxkb � qg q 2 RC a bounded set in B0b .

It is equivalent to show that there exists a positive constant l such that for each
x 2 Bq we have kB .x/kb � l: So choose x 2 Bq; then for each h 2 B.x/, and each
x 2 Bq, there exists v 2 SF;x�.t;xtC Q�t/

C Q��.t;xtC Q�t/
. such that

h.t/ D d

dt

Z t

0

S.t � s/v.s/ds:

From (A) we have

kx�.t;xtC Q�t/
C Q��.t;xtC Q�t/

kD � Kbq C .Mb C L�/k�kD C KbMj�.0/j D q�
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Then by (11.1.6) we have

jh.t/j � Me!b .q�/
Z t

0

e�!sp.s/ds WD l:

This further implies that

khkB0b � l:

Hence B.B/ is bounded.

Claim 4: B maps bounded sets into equi-continuous sets.

Let Bq be, as above, a bounded set and h 2 B.x/ for some x 2 B: Then, there
exists v 2 SF;x�.t;xtC Q�t/

C Q��.t;xtC Q�t/
. such that

h.t/ D d

dt

Z t

0

S.t � s/v.s/ds; t 2 J:

Let 
1; 
2 2 Jnft1; t2; : : : ; tmg; 
1 < 
2. Thus if � > 0, we have

jh.
2/ � h.
1/j �
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1��

0

ŒS0.
2 � s/ � S0.
1 � s/�B�v.s/ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
1


1��
ŒS0.
2 � s/ � S0.
1 � s/�B�v.s/ds

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

lim
�!1

Z 
2


1

S0.
2 � s/B�v.s/ds

ˇ
ˇ
ˇ
ˇ

�  .q�/
Z 
1��

0

kS0.
2 � s/ � S0.
1 � s/kB.E/p.s/ds

C .q�/
Z 
1


1��
kS0.
2 � s/ � S0.
1 � s/kB.E/p.s/ds

CMe!b .q�/
Z 
2


1

e�!sp.s/ds:

As 
1 ! 
2 and � becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since S0.t/ is a strongly continuous operator and the
compactness of S0t/ for t > 0 implies the uniform continuity. This proves the equi-
continuity for the case where t ¤ ti; i D 1; : : : ;m C 1. It remains to examine the
equi-continuity at t D ti. First we prove the equi-continuity at t D t�i , we have for
some x 2 Bq, there exists v 2 SF;x�.t;xtC Q�t/

C Q��.t;xtC Q�t/
; such that

h.t/ D d

dt

Z t

0

S.t � s/v.s/ds; t 2 J:
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Fix ı1 > 0 such that ftk; k ¤ ig \ Œti � ı1; ti C ı1� D ;. For 0 < � < ı1, we have

jh.ti � �/ � h/.ti/j � lim
�!1

Z ti��

0

k �S0.ti � � � s/ � S0.ti � s/


B�v.s/kds

CMe!b .q�/
Z ti

ti��
e�!sp.s/ dsI

which tends to zero as � ! 0: Define

Oh0.t/ D h.t/; t 2 Œ0; t1�
and

Ohi.t/ D
8

<

:

h.t/; if t 2 .ti; tiC1�
h.tCi /; if t D ti:

9

=

;

Next, we prove equi-continuity at t D tCi . Fix ı2 > 0 such that ftk; k ¤ ig \
Œti � ı2; ti C ı2� D ;. Then

Oh.ti/ D
Z ti

0

T.ti � s/v.s/ds:

For 0 < � < ı2, we have

jOh.ti C �/ � Oh.ti/j � lim
�!1

Z ti

0

k �S0.ti C � � s/ � S0.ti � s/


B�v.s/ds

CMe!b .q�/
Z tiC�

ti

e�!sp.s/ dsI

The right-hand side tends to zero as � ! 0. The equi-continuity for the cases 
1 <

2 � 0 and 
1 � 0 � 
2 follows from the uniform continuity of � on the interval
.�1; 0� As a consequence of Claims 1–3 together with Arzelá–Ascoli theorem it
suffices to show that B maps B into a precompact set in E:

Let 0 < t < b be fixed and let � be a real number satisfying 0 < � < t. For
x 2 Bq, we define

h�.t/ D S0.�/ lim
�!1

Z t��

0

S0.t � s � �/B�v.s/ds;

where v 2 SF;x�.t;xtC Q�t/
C Q��.t;xtC Q�t/

. Since

ˇ
ˇ
ˇ
ˇ

lim
�!1

Z t��

0

S0.t � s � �/B�v.s/ds

ˇ
ˇ
ˇ
ˇ

� Me!b .q�/
Z t��

0

e�!sp.s/ds:
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the set
�

lim
�!1

Z t��

0

S0.t � s � �/B�v.s/ds W v 2 SF;x�.t;xtC Q�t/
C Q��.t;xtC Q�t/

:x 2 Bq

�

is bounded
Since S0.t/ is a compact operator for t > 0, the set

H�.t/ D fh�.t/ W h� 2 B.x/g

is precompact in E for every �; 0 < � < t: Moreover, for every h 2 B.x/ we have

jh.t/ � h�.t/j � Me!b .q�/
Z t��

t
e�!sp.s/ds:

Therefore, there are precompact sets arbitrarily close to the set H.t/ D fh.t/ W h 2
B.x/g: Hence the set H.t/ D fh.t/ W h 2 B.Bq/g is precompact in E. Hence the
operator B is totally bounded.

Step 3: A priori bounds.

Now it remains to show that the set

E D ˚

x 2 B0b W x 2 �A.x/C �B.x/ for some 0 < � < 1
�

is bounded.
Let x 2 E : Then there exist v 2 SF;x�.t;xtC Q�t/

C Q��.t;xtC Q�t/
and Ik 2 Ik

�

xtk C Q�tk



such

that for each t 2 J;

x.t/ D �
d

dt

tZ

0

S.t � s/v.s/C �
X

0<tk<t

S0 .t � tk/ Ik:

This implies by (11.1.2), (11.1.5) that, for each t 2 J; we have

jx.t/j � �Me!t

tZ

0

e�!sp.s/ .kx�.s;xsC Q�s/
C Q��.s;xsC Q�s/

kD/ds

C�Me!t
mX

kD1

ˇ
ˇIk
�

xtk C Q�tk

ˇ
ˇ

� �Me!t

tZ

0

e�!sp.s/ 
�

Kbjx.s/j C .Mb C L� C MKb/k�kD


ds
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C�Me!t
mX

kD1

ˇ
ˇIk
�

xtk C Q�tk

 � Ik.0/
ˇ
ˇ

C�Me!t
mX

kD1
jIk.0/j

� �Me!t

tZ

0

e�!sp.s/ 
�

Kbjx.s/j C .Mb C L� C MKb/k�kD


ds

C�Me!t
mX

kD1
jIk.0/j C �Me!t

mX

kD1
ck
�

Kbjx.s/j C .Mb C L� C MKb/k�kD


� ce!t C Me!t

2

4

tZ

0

e�!sp.s/ 
�

Kbjx.s/j C .Mb C L� C MKb/k�kD


ds

CKb

mX

kD1
ck jx.t/j

#

:

Hence from (11.6) to (11.8) we have

.Mb C L� C MKb/k�kD C Kbjx.s/j � c1 C c2

tZ

0

e�!sp.s/ .Kbjx.t/j

C.Mb C L� C MKb/k�kD


ds:

Thus

.Mb C L� C MKb/k�kD C KbkxkB0b
c1 C c2

tR

0

e�!sp.s/ .Kbjx.t/j C .Mb C L� C MKb/k�kD/ ds:

� 1: (11.10)

From (11.5) it follows that there exists a constant R > 0 such that for each x 2 E with
kxkB0b > R the condition (11.10) is violated. Hence kxkB0b � R for each x 2 E , which
means that the set E is bounded. As a consequence of Theorem 1.32, A C B has
a fixed point x� on the interval .�1; b�, so y� D x� C Q� is a fixed point of the
operator N which is the mild solution of problem (11.1)–(11.3). ut
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11.2.4 Example

To illustrate our previous result we consider the partial functional differential
equations with state dependent delay of the form

@

@t
v.t; �/ D � @

@�
v.t; �/C m.t/a.v.t � �.v.t; 0//; �//;

� 2 Œ0; ��; t 2 Œ0; b�; (11.11)

v.t; 0/ D v.t; �/ D 0; t 2 Œ0; b�; (11.12)

v.�; �/ D v0.�; �/; � 2 Œ0; ��; � 2 .�1; 0�; (11.13)

�v.ti/.�/ D R ti
�1 �i.ti � s/v.s; �/ds; (11.14)

where v0 W .�1; 0�� Œ0; �� ! R is an appropriate function, �i 2 CŒ0;1/;R/; 0 <

t1 < t2 < � � � < tn < b: the function m W Œ0; b� ! R; a W R � J ! R; � W R ! RC
are continuous and we assume the existence of positive constants b1; b2 such that
jb.t/j � b1jtj C b2 for every t 2 R.

Let A be the operator defined on E D C.Œ0; ��;R/ by

D.A/ D fg 2 C1.Œ0; ��;R/ W g.0/ D 0gI Ag D g0:

Then

D.A/ D C0.Œ0; ��;R/ D fg 2 C.Œ0; ��;R/ W g.0/ D 0g:

It is well known from [100] that A is sectorial, .0;C1/ 	 �.A/ and for � > 0

kR.�;A/kB.E/ � 1

�
:

It follows that A generates an integrated semigroup .S.t//t�0 and that kS0.t/kB.E/ �
e��t for t � 0 for some constant � > 0 and A satisfied the Hille–Yosida condition.

Set � > 0. For the phase space, we choose D to be defined by

D D C� D f� 2 C..�1; 0�;E/ W lim
�!�1 e���.�/ exists in Eg

with norm

k�k� D sup
�2.�1;0�

e�� j�.�/j; � 2 C� :
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By making the following change of variables

y.t/.�/ D v.t; �/; t � 0; � 2 .0; ��;
�.�/.�/ D v0.�; �/; � � 0; � 2 Œ0; 1�;

F.t; '/.�/ D m.t/b.'.0; �//; � 2 Œ0; ��; � 2 C�

�.t; '/ D t � �.'.0; 0//
Ik.ytk/ D R 0

�1 �k.s/v.s; �/ds;

the problem (11.11)–(11.14) takes the abstract form (11.1)–(11.3). Moreover, a
simple estimates shows that

kf .t; '/k � m.t/Œb1k'kD C b2�
1=2� for all .t; '/ 2 I � D;

with
Z 1

1

ds

 .s/
D
Z 1

1

ds

b1s C b2�1=2
D C1;

and

dk D
�Z 0

�1
.�k.s//2

e�s
ds

�1=2

< 1:

Theorem 11.4. Let ' 2 D be such that H' is valid and t ! 't is continuous on
R.��/, then there exists a integral solution of (11.11)–(11.14) whenever

 

1C
�Z 0

�1
e�sds

�1=2
!

mX

kD1
dk < 1:

11.3 Impulsive Evolution Inclusions with Infinite Delay
and Multi-valued Jumps

11.3.1 Introduction

In this section, we are concerned by the existence of mild solution of impulsive
semi-linear functional differential inclusions with infinite delay and multi-valued
jumps in a Banach space E: More precisely, we consider the following class of
semi-linear impulsive differential inclusions:

x0.t/ 2 A.t/x.t/C F.t; xt/; t 2 J D Œ0; b�; t ¤ tk; (11.15)
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�x
ˇ
ˇ
tDtk

2 Ik.x.t
�
k //; k D 1; : : : ;m (11.16)

x.t/ D �.t/; t 2 .�1; 0�; (11.17)

where fA.t/ W t 2 Jg is a family of linear operators in Banach space E generating
an evolution operator, F be a Carathéodory type multi-function from J � B to the
collection of all nonempty compact convex subset of E, B is the phase space defined
axiomatically which contains the mapping from .�1; 0� into E, � 2 B, 0 D t0 <
t1 < � � � < tm < tmC1 D b, Ik W E ! P.E/, k D 1; : : : ;m are multi-valued
maps with closed, bounded and convex values, x.tCk / D limh!0C x.tk C h/ and
x.t�k / D limh!0C x.tk �h/ represent the right and left limits of x.t/ at t D tk. Finally
P.E/ denotes the family of nonempty subsets of E:

11.3.2 Existence Results

Definition 11.5. A function x 2 � is said to be a mild solution of system (11.15)–
(11.17) if there exists a function f 2 L1.J;E/ such that f 2 F.t; xt/ for a.e. t 2 J

(i) x.t/ D T.t; 0/�.0/ C R t
0

T.t; s/f .s/ds C P

0<tk<t T.t; tk/Ik.x.tk//I a.e. t 2
J; k D 1; : : : ;m

(ii) x.t/ D �.t/; t 2 .�1; 0�,

with Ik 2 Ik.x.t
C
k //.

We will need to introduce the following hypothesis which are assumed hereafter.

(A) fA.t/ W t 2 Jg be a family of linear (not necessarily bounded) operators,
A.t/ W D.A/ � E ! E, D.A/ not depending on t and dense subset of E
and T W � D f.t; s/ W 0 � s � t � bg ! L.E/ be the evolution operator
generated by the family fA.t/ W t 2 Jg.

(11.5.1) The multi-function F.:; x/ has a strongly measurable selection for every
x 2 B.

(11.5.2) The multi-function F W .t; :/ ! Pcv;k.E/ is upper semi-continuous for
a.e. t 2 J.

(11.5.3) There exists a function ˛ 2 L1.J;RC/ such that

kF.t;  /k � ˛.t/.1C k kB/ for a.e. t 2 JI

(11.5.4) There exists a function ˇ 2 L1.J;RC/ such that for all ˝ � B, we have

	.F.t;D// � ˇ.t/ sup
�1�s�0

	.˝.s// for a.e. t 2 J;

where ˝.s/ D fx.s/I x 2 ˝g and 	 is the Hausdorff MNC.
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(11.5.5) There exist constants ak > 0; k D 1; : : : ;m such that

kIkk � ak; where Ik 2 Ik.x.t
C
k //:

Remark 11.6. Under conditions (11.5.1)–(11.5.3) for every piecewise continuous
function v W J ! B the multi-function F.t; v.t// admits a Bochner integrable
selection (see [144]).

Let

�b D fx 2 � W x0 D 0g :

For any x 2 �b we have

kxkb D kxkB C sup
0�s�b

kxk D sup
0�s�b

kxk:

Thus .�b; k:kb/ is a Banach space.
We note that from assumptions (11.5.1) and (11.5.3) it follows that the superpo-

sition multi-operator S1F W �b ! P.L1.J;E// defined by

S1F D ff 2 L1.J;E/ W f .t/ 2 F.t; xt/; a.e. t 2 Jg

is nonempty set (see [144]) and is weakly closed in the following sense.

Lemma 11.7. If we consider the sequence .xn/ 2 �b and ffngC1
nD1 � L1.J;E/,

where fn 2 S1F.:;xn/
such that xn ! x0 and fn ! f 0 then f 0 2 S1F.

Now we state and prove our main result.

Theorem 11.8. Under assumptions (A) and (11.5.1)–(11.5.5), the problem
(11.15)–(11.17) has at least one mild solution.

Proof. To prove the existence of a mild solution for (11.15)–(11.17) we introduce
the integral multi-operator N W �b �! P.�b/; defined as

N.x/ D

8

ˆ̂
<

ˆ̂
:

y W y.t/ D T.t; 0/�.0/C R t
0

T.t; s/f .s/ds
P

0<tk<t T.t; tk/Ik.x.tk//; t 2 J

y.t/ D �.t/; t 2 .�1; 0�;

(11.18)

where S1F and Ik 2 Ik.x/:
It is clear that the integral multi-operator N is well defined and the set of all mild

solution for the problem (11.15)–(11.17) on J is the set F ixN D fx W x 2 N.x/g:
We shall prove that N satisfies all the hypotheses of Lemma 1.40. The proof will

be given in several steps.
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Step 1. Using in fact that the maps F and I has a convex values it easy to check
that N has convex values.

Step 2. N has closed graph.

Let fxngC1
nD1 , fzngC1

nD1 , xn ! x�, zn 2 N..xn/; n � 1/ and zn ! z�. Moreover, let
ffngC1

nD1 � L1.J;E/ an arbitrary sequence such that fn 2 S1F for n � 1.
Hypothesis (11.5.3) implies that the set ffngC1

nD1 integrably bounded and for a.e.
t 2 J the set ffn.t/gC1

nD1 relatively compact, we can say that ffngC1
nD1 is semi-compact

sequence. Consequently ffngC1
nD1 is weakly compact in L1.J;E/, so we can assume

w.l.g that fn * f �.
From Lemma 1.43 we know that the generalized Cauchy operator on the interval

J, G W L1.J;E/ ! C.J;E/; defined by

Gf .t/ D
Z t

0

T.t; s/f .s/ds; t 2 J: (11.19)

satisfies properties (G1) and (G2) on J.
Note that set ffngC1

nD1 is also semi-compact and sequence .fn/
C1
nD1 weakly con-

verges to f � in L1.J;E/. Therefore, by applying Lemma 1.44 for the generalized
Cauchy operator G of (11.19) we have in C.J;E/ the convergence Gfn ! Gf . By
means of (11.19) and (11.18), for all t 2 J we can write

zn.t/ D T.t; 0/�.0/C
Z t

0

T.t; s/fn.s/ds C
X

0<tk<t

T.t; tk/Ik.x
n.tk//

D T.t; 0/�.0/C
Z t

0

T.t; s/fnds C
X

0<tk<t

T.t; tk/Ik.x
n.tk//

D T.t; 0/�.0/C Gfn.t/C
X

0<tk<t

T.t; tk/Ik.x
n.tk///

where S1F; and Ik 2 Ik.x/. By applying Lemma 1.43, we deduce

zn ! T.:; 0/�.0/C Gf C T.:; t/Ik.x
�.tk//

in C.J;E/ and by using in fact that the operator S1F is closed, we get f � 2 S1F.
Consequently

z�.t/ ! T.t; 0/�.0/C Gf C T.t; t/Ik.x
�.tk//;

therefore z� 2 N.x�/. Hence N is closed.
With the same technique, we obtain that N has compact values.

Step 3. We consider the MNC defined in the following way. For every bounded
subset ˝ � �b
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�1.˝/ D max
˝2�.˝/.�1.˝/; mod C.˝//; (11.20)

where �.˝/ is the collection of all the denumerable subsets of ˝;

�1.˝/ D sup
t2J

e�Lt	.fx.t/ W x 2 ˝g/I (11.21)

where mod C.˝/ is the modulus of equi-continuity of the set of functions ˝ given
by the formula

mod C.˝/ D lim
ı!0

sup
x2˝

max
jt1�t2j�ı

kx.t1/ � x.t2/kI (11.22)

and L > 0 is a positive real number chosen such that

q WD M

 

2 sup
t2J

Z t

0

e�L.t�s/ˇ.s/ds C eLt
mX

kD1
ck

!

< 1 (11.23)

where M D sup.t;s/2� kT.t; s/k:
From the Arzelá–Ascoli theorem, the measure �1 gives a nonsingular and regular

MNC (see [144]).
Let fyngC1

nD1 be the denumerable set which achieves that maximum �1.N.˝//, i.e.;

�1.N.˝// D .�1.fyngC1
nD1 /; mod C.fyngC1

nD1 //:

Then there exists a set fxngC1
nD1 � ˝ such that yn 2 N.xn/, n � 1. Then

yn.t/ D T.t; 0/�.0/C
Z t

0

T.t; s/f .s/ds C
X

0<tk<t

T.t; tk/Ik.x.tk//; (11.24)

where f 2 S1F and Ik 2 Ik.xn/, so that

�1.fyngC1
nD1 / D �1.fGfngC1

nD1 /:

We give an upper estimate for �1.fyngC1
nD1 /.

Fixed t 2 J by using condition (11.5.4), for all s 2 Œ0; t� we have

	.ffn.s/gC1
nD1 / � 	.F.s; fxn.s/gC1

nD1 //

� 	.fF.s; xn.s//gC1
nD1 /

� ˇ.s/	.fxn.s/gC1
nD1 /

� ˇ.s/eLs sup
t2J

e�Lt	.fxn.t/gC1
nD1 /

D ˇ.s/eLs�1.fxngC1
nD1 /:
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By using condition (11.5.3), the set ffngC1
nD1 is integrably bounded. In fact, for every

t 2 J, we have

kfn.t/k � kF.t; xn.t//k
� ˛.t/.1C kxn.tk/:

The integrably boundedness of ffngC1
nD1 follows from the continuity of x in Jk and

the boundedness of set fxngC1
nD1 � ˝. By applying Lemma 1.45, it follows that

	.fGfn.s/gC1
nD1 / � 2M

Z s

0

ˇ.t/eLt.�1.fxngC1
nD1 //dt

D 2M�1.fxngC1
nD1 /

Z s

0

ˇ.t/eLt:

Thus, we get

�1.fxngC1
nD1 / � �1.fyngC1

nD1 / D �1.fGfn.s/gC1
nD1 /

D sup
t2J

e�Lt2M�1.fxngC1
nD1 /

Z s

0

ˇ.t/eLtM�1.fxngC1
nD1 /e

Lt
mX

kD1
ck

� q�1.fxngC1
nD1 /;

(11.25)

and hence �1.fxngC1
nD1 / D 0, then �1.fxn.t/gC1

nD1 / D 0; for every t 2 J: Consequently

�1.fyngC1
nD1 / D 0:

By using the last equality and hypotheses (11.5.3) and (11.5.4), we can prove that set
ffngC1

nD1 is semi-compact. Now, by applying Lemmas 1.43 and 1.44, we can conclude
that set fGfngC1

nD1 is relatively compact. The representation of yn given by (11.24)
yields that set fyngC1

nD1 is also relatively compact in �b, therefore �1.˝/ D .0; 0/.
Then ˝ is a relatively compact set.

Step 4. A priori bounds.

We will demonstrate that the solutions set is a priori bounded. Indeed, let x 2 N.
Then there exists f 2 S1F.:;xt.://

and Ik 2 Ik.x/ such that for every t 2 J we have

kx.t/k D �
�T.t; 0/�.0/C

Z t

0

T.t; s/f .s/ds C
X

0<tk<t

T.t; tk/Ik.x.tk//
�
�

� M.k�.0/k C
X

0<tk<t

kakk/C M
Z t

0

f .s/ds

� M.k�.0/k C
X

0<tk<t

kakk/C M
Z b

0

˛.s/.1C kxŒ��sk/ds:
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Using condition (A1) we have

kx.t/k � M.k�.0/kC
X

0<tk<t

kakk/CM
Z t

0

˛.s/.1C Nbk�kB C Kb sup
0���s

kx.�/k/ds

� M.k�.0/k C
mX

kD1
kakk/C M.1C Nbk�kB/k˛kL1.J/

C MKb

Z t

0

˛.s/ sup
0���s

kx.�/kds:

Since the last expression is a nondecreasing function of t, we have that

sup
0���t

kx.�/k � kM.k�.0/k C
mX

kD1
kakk/C M.1C Nbk�kB/k˛kL1.J/

C MKb

Z t

0

˛.s/ sup
0���s

kx.�/kds:

Invoking Gronwall’s inequality, we get

sup
0���t

kx.�/k � eMKbk˛kL1 ;

where

 D M.k�.0/k C
mX

kD1
kakk/C M.1C Nbk�kB/k˛kL1.J/: ut

11.3.3 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

@
@t z.t; x/ 2 a.t; x/ @

2

@x2
z.t; x/C R 0

�1 P.�/r.t; z.t C �; x//d�;

x 2 Œ0; ��; t 2 Œ0; b�; t ¤ tk; (11.26)

z.tCk ; x/ � z.t�k ; x/ 2 Œ�bkjz.t�k ; x/; bkjz.t�k ; x/�;
x 2 Œ0; ��; k D 1; : : : ;m; (11.27)

z.t; 0/ D z.t; �/ D 0; t 2 J WD Œ0; b�; (11.28)

z.t; x/ D �.t; x/; �1 < t � 0; x 2 Œ0; ��; (11.29)
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where a.t; x/ is continuous function and uniformly Hölder continuous in t,
bk > 0, k D 1; : : : ;m, � 2 D, D D f W .�1; 0� � Œ0; �� !
RI  is continuous everywhere except for a countablenumber of points at which 
.s�/;  .sC/ exist with  .s�/ D  .s/g, 0 D t0 < t1 < t2 < � � � < tm <

tmC1 D b, z.tCk / D lim.h;x/!.0C;x/ z.tk C h; x/, z.t�k / D lim.h;x/!.0�;x/ z.tk C h; x/,
P W .�1; 0� ! R a continuous function, r W R � R ! Pcv;k.R/ a Carathéodory
multi-valued map.

Let

y.t/.x/ D z.t; x/; x 2 Œ0; ��; t 2 J D Œ0; b�;

Ik.y.t�k //.x/ D Œ�bkjz.t�k ; x/; bkjz.t�k ; x/�; x 2 Œ0; ��; k D 1; : : : ;m;

F.t; �/.x/ D R 0

�1 P.�/r.t; z.t C �; x//d�

�.�/.x/ D �.�; x/; �1 < t � 0; x 2 Œ0; ��:
Consider E D L2Œ0; �� and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D fw 2 E W w;w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0g:
Then A.t/ generates an evolution system U.t; s/ satisfying assumptions (11.5.1) and
(11.5.3). We can show that problem (11.26)–(11.29) is an abstract formulation of
problem (11.15)–(11.17). Under suitable conditions, the problem (11.15)–(11.17)
has at least one mild solution.

11.4 Impulsive Semi-linear Differential Evolution
Inclusions with Non-convex Right-Hand Side

11.4.1 Introduction

In this section, we shall be concerned by the existence of mild solution of
impulsive semi-linear functional differential inclusions with infinite delay in a
separable Banach space E. First, we consider the following class of semi-linear
impulsive differential inclusions:

x0.t/ 2 A.t/x.t/C F.t; xt/; t 2 J D Œ0; b�; t ¤ tk; (11.30)

�x
ˇ
ˇ
tDtk

2 Ik.x.t�k //; k D 1; : : : ;m (11.31)

x.t/ D �.t/; t 2 .�1; 0� (11.32)

where fA.t/ W t 2 Jg is a family of linear operators in Banach space E generating
an evolution operator, F be a lower semi-continuous multi-function from J � B to
the collection of all nonempty closed compact subset of E, B is the phase space
defined axiomatically which contains the mapping from .�1; 0� into E, � 2 B,
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0 D t0 < t1 < � � � < tm < tmC1 D b, Ik W E ! P.E/, k D 1; : : : ;m are
multi-valued maps with closed and bounded values, x.tCk / D limh!0C x.tk C h/ and
x.t�k / D limh!0� x.tk Ch/ represent the right and left limits of x.t/ at t D tk. Finally
P.E/ denotes the family of nonempty subsets of E. We mention that the model with
multi-valued jump sizes may arise in a control problem where we want to control
the jump sizes in order to achieve given objectives.

11.4.2 Existence Results

In this section, we give our main existence result for problem (11.30)–(11.32).
Before stating and proving this result, we give the definition of the mild solution.

Definition 11.9. A function x 2 � is said to be a mild solution of system (11.15)–
(11.17) if there exist a function f 2 L1.J;E/ such that f 2 F.t; xt/ for a.e. t 2 J and
Ik 2 Ik.x.t

C
k //

(i) x.t/ D T.t; 0/�.0/ C R t
0

T.t; s/f .s/ds C P

0<tk<t T.t; tk/Ik; a.e. t 2 J; k D
1; : : : ;m

(ii) x.t/ D �.t/; t 2 .�1; 0�,

We will assume the following hypothesis

(A) fA.t/ W t 2 Jg be a family of linear (not necessarily bounded) operators,
A.t/ W D.A/ � E ! E, D.A/ not depending on t and dense subset of E
and T W � D f.t; s/ W 0 � s � t � bg ! L.E/ be the evolution operator
generated by the family fA.t/ W t 2 Jg.

Let F be a multi-function defined from J �B to the family of nonempty
closed convex subsets of E such that

(11.9.1) .t; x/ 7! F.:; x/ is L ˝ Bb-measurable (Bb is Borel measurable).
(11.9.2) The multi-function F W .t; :/ ! Pk.E/ is lower semi-continuous for a.e.

t 2 J.
(11.9.3) there exists a function ˛ 2 L1.J;RC/ such that

kF.t;  /k � ˛.t/; for a.e. t 2 J; 8 2 BI
(11.9.4) There exists a function ˇ 2 L1.J;RC/ such that for all D � B, we have

	.F.t;D// � ˇ.t/ sup
�1�s�0

	.D.s// for a.e. t 2 J;

where, D.s/ D fx.s/I x 2 Dg and 	 is the Hausdorff MNC.
(11.9.5) There exist constants ak; ck � 0, k D 1; : : : ;m, such that

kIkk � akkxk C bk; where Ik 2 Ik.x.t
C
k //:

	.Ik.D// � ck	.Ik.D//.
with 1 � M

P

0<tk<t kakk > 0.
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Remark 11.10. Under conditions (11.9.1)–(11.9.3) for every for every piecewise
continuous function v W Œ0; b� ! B the multi-function F.t; v.t// admits a Bochner
integrable selection (see [144]).

Now we state and prove our main result.

Theorem 11.11. Under assumptions (A) and (11.9.1)–(11.9.5), the problem
(11.30)–(11.32) has at least one mild solution.

We note that from assumptions (11.9.1) and (11.9.3) it follows that the superpo-
sition multi-operator

S1F W � ! P.L1.J;E//;
defined by

S1F.:;x/ D S1F D ff 2 L1.J;E/ W f .t/ 2 F.t; xt/; a.e. t 2 Jg
is nonempty set (see [144]).

Proof. We break the proof into a sequence of steps.

Step 1. The Mönch’s condition holds. Suppose that ˝ 	 Br is countable and
˝ 	 co.f0g [ N.˝// We will prove that ˝ is relatively compact.

We consider the MNC defined in the following way. For every bounded subset
˝ � �

�1.˝/ D max
D2�.˝/.�1.D/; mod C.D//; (11.33)

where �.˝/ is the collection of all the denumerable subsets of ˝;

�1.D/ D sup
t2J

e�Lt	.fx.t/ W x 2 Dg/I (11.34)

where mod C.D/ is the modulus of equi-continuity of the set of functions D given
by the formula

mod C.D/ D lim
ı!0

sup
x2D

max
jt1�t2j�ı

kx.t1/ � x.t2/kI (11.35)

and L > 0 is a positive real number chosen so that

q WD M

 

2 sup
t2J

Z t

0

e�L.t�s/ˇ.s/ds C eLt
mX

kD0
ck

!

< 1 (11.36)
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where M D sup.t;s/2� kT.t; s/k:
From the Arzelá–Ascoli theorem, the measure �1 give a nonsingular and regular

MNC (see [144]).
Let fyngC1

nD1 be the denumerable set which achieves that maximum �1.N.˝//,
i.e.;

�1.N.˝// D .�1.fyngC1
nD1 /; mod C.fyngC1

nD1 //:

Then there exists a set fxngC1
nD1 � ˝ such that yn 2 N.xn/, n � 1. Then

yn.t/ D T.t; 0/�.0/C
Z t

0

T.t; s/f .s/ds C
X

0<tk<t

T.t; tk/Ik; (11.37)

where f 2 S1F and Ik 2 Ik.x/, so that

�1.fyngC1
nD1 / D �1.fGfngC1

nD1 /:

We give an upper estimate for �1.fyngC1
nD1 /.

Fixed t 2 J by using condition (11.9.4), for all s 2 Œ0; t� we have

	.ffn.s/gC1
nD1 / � 	.F.s; fxn.s/gC1

nD1 //

� ˇ.s/	.fxn.s/gC1
nD1 /

� ˇ.s/eLs sup
t2J

e�Lt	.fxn.t/gC1
nD1 /

D ˇ.s/eLs�1.fxngC1
nD1 /:

By using condition (11.9.3), the set ffngC1
nD1 is integrably bounded. In fact, for every

t 2 J, we have

kfn.t/k � kF.t; xn.t//k
� ˛.t/:

By applying Lemma 1.45, it follows that

	.fGfn.s/gC1
nD1 / � 2M

Z s

0

ˇ.t/eLt.�1.fxngC1
nD1 //dt

D 2M�1.fxngC1
nD1 /

Z s

0

ˇ.t/eLtdt:
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Thus, we get

�1.fxngC1
nD1 / � �1.fyngC1

nD1 /

D sup
t2J

e�Lt2M�1.fxngC1
nD1 /

Z t

0

ˇ.s/eLsds C M�1.fxngC1
nD1 eLt

mX

kD1
ck

� q�1.fxngC1
nD1 /:

(11.38)
Therefore, we have that

�1.fxngC1
nD1 / � �1.˝/ � �1.f0g [ N.˝//�1.fyngC1

nD1 / � q�1.fxngC1
nD1 /:

From (11.36), we obtain that

�1.fxngC1
nD1 / D �1.˝/ D �1.fyngC1

nD1 /

Coming back to the definition of �1, we can see

	.fxngC1
nD1 / D 	.fyngC1

nD1 / D 0:

By using the last equality and hypotheses (11.9.3) and (11.9.4) we can prove
that set ffngC1

nD1 is semi-compact. Now, by applying Lemmas 1.43 and 1.44, we can
conclude that set fGfngC1

nD1 is relatively compact in C.J;E/.
The representation of yn given by (11.37) yields that set fyngC1

nD1 is also relatively
compact in C.J;E/; since �1 is a monotone, nonsingular, regular MNC, we have that

�1.˝/ � �1.co.f0g [ N.˝/// � �1.N.˝// D �1.fyngC1
nD1 / D .0; 0/:

Therefore, ˝ is relatively compact.

Step 2. It is clear that the superposition multioperator S1F has closed and
decomposable values. Following the lines of [144], we may verify that S1F is
l.s.c.

Applying Lemma 1.46 to the restriction of S1F on � we obtain that there exists a
continuous selection

w W � ! L1.J;E/

We consider a map N W � ! � defined as

x.t/ D T.t; 0/�.0/C
Z t

0

T.t; s/w.x/.s/ds:

Since the Cauchy operator is continuous, the map N is also continuous; therefore, it
is a continuous selection of the integral multi-operator.



11.4 Impulsive Semi-linear Differential Evolution Inclusions: : : 329

Step 3. A priori bounds.

We will demonstrate that the solutions set is a priori bounded. Indeed, let x 2 �N1
and � 2 .0; 1/. There exists f 2 S1F and Ik 2 Ik.x/ such that for every t 2 J we have

kx.t/k D �
��T.t; 0/�.0/C �

Z t

0

T.t; s/f .s/ds C �
X

0<tk<t

T.t; tk/Ik

�
�

� M

 

k�.0/k C kxk
mX

kD1
kakk C

mX

kD1
kbkk

!

C M
Z t

0

˛.s/ds;

hence,

 

1 � M
mX

kD1
kakk

!

kxk � M

 

k�.0/k C k˛k C
mX

kD1
kbkk

!

:

Consequently

kxk � M.k�.0/k C k˛k CPm
kD1 kbkk/

1 � M
Pm

kD1 kakk D C:

So, there exists N� such that kxk ¤ N�, set

U D fx 2 � W kxk < N�g:

From the choice of U there is no x 2 @U such that x D �N1x for some � 2 .0; 1/.
Thus, we get a fixed point of N1 in NU due to the Mönch’s Theorem. ut

11.4.3 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

@
@t z.t; x/ 2 a.t; x/ @

2

@x2
z.t; x/C R 0

�1 P.�/r.t; z.t C �; x//d�;

x 2 Œ0; ��; t 2 Œ0; b�; t ¤ tk; (11.39)

z.tCk ; x/ � z.t�k ; x/ 2 Œ�bkjz.t�k ; x/; bkjz.t�k ; x/�;
x 2 Œ0; ��; k D 1; : : : ;m; (11.40)

z.t; 0/ D z.t; �/ D 0; t 2 J WD Œ0; b�; (11.41)

z.t; x/ D �.t; x/; �1 < t � 0; x 2 Œ0; ��; (11.42)
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where a.t; x/ is continuous function and uniformly Hölder continuous in t, bk > 0,
k D 1; : : : ;m, � 2 D.

D D f W .�1; 0� � Œ0; �� ! RI  is continuous everywhere except for
a countable number of points at which  .s�/;  .sC/ exist with  .s�/ D  .s/g,
0 D t0 < t1 < t2 < � � � < tm < tmC1 D b, z.tCk / D lim.h;x/!.0C;x/ z.tk C h; x/,
z.t�k / D lim.h;x/!.0�;x/ z.tk C h; x/, P W .�1; 0� ! R a continuous function, r W
R � R ! Pcv;k.R/ a multi-valued map.

Let

y.t/.x/ D z.t; x/; x 2 Œ0; ��; t 2 J D Œ0; b�;

Ik.y.t�k //.x/ D Œ�bkjz.t�k ; x/; bkjz.t�k ; x/�; x 2 Œ0; ��; k D 1; : : : ;m;

F.t; �/.x/ D R 0

�1 P.�/r.t; z.t C �; x//d�

�.�/.x/ D �.�; x/; �1 < t � 0; x 2 Œ0; ��:
Consider E D L2Œ0; �� and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D fw 2 E W w;w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0g:

Then A.t/ generates an evolution system U.t; s/ satisfying assumption (11.9.1) and
(11.9.3). We can show that problem (11.39)–(11.42) is an abstract formulation of
problem (11.30)–(11.32). Under suitable conditions, the problem (11.30)–(11.32)
has at least one mild solution.

11.5 Impulsive Evolution Inclusions with State-Dependent
Delay and Multi-valued Jumps

11.5.1 Introduction

In this section, we are concerned by the existence of mild solution of impulsive
semi-linear functional differential inclusions with state-dependent delay and multi-
valued jumps in a Banach space E. More precisely, we consider the following class
of semi-linear impulsive differential inclusions:

x0.t/ 2 A.t/x.t/C F.t; x�.t;xt//; t 2 J D Œ0; b�; t ¤ tk; (11.43)

�x
ˇ
ˇ
tDtk

2 Ik.x.t�k //; k D 1; : : : ;m (11.44)

x.t/ D �.t/; t 2 .�1; 0�; (11.45)

where fA.t/ W t 2 Jg is a family of linear operators in Banach space E generating
an evolution operator, F be a Carathéodory type multi-function from J � B to the
collection of all nonempty compact convex subset of E, B is the phase space, which
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contains the mapping from .�1; 0� into E, � 2 B, 0 D t0 < t1 < � � � <
tm < tmC1 D b, Ik W E ! P.E/, k D 1; : : : ;m are multi-valued maps with
closed, bounded and convex values, x.tCk / D limh!0C x.tk C h/ and x.t�k / D
limh!0C x.tk � h/ represent the right and left limits of x.t/ at t D tk. � W J � B !
.�1; b�.

Our goal here is to give existence results for the problem (11.43)–(11.45) without
any compactness assumption. We prove existence and compactness of solutions
set for problem (11.43)–(11.45), and we provide a conditions which guarantee the
existence of a mild solution by using a fixed point theorem du to Mönch [162].

11.5.2 Existence Results for the Convex Case

In this section we shall prove the existence of mild solutions of problem
(11.43)–(11.45). We assume that the multi-valued nonlinearity of upper
Carathéodory semi-continuous type satisfies a regularity condition expressed in
terms of the measures of non-compactness. We apply the theory of condensing
multi-valued maps to obtain global and compactness of the solutions set.

We need the following definition in the sequel.

Definition 11.12. A function x 2 � is said to be a mild solution of system (11.15)–
(11.17) if there exist a function f 2 L1.J;E/ such that f 2 F.t; x�.t;xt// for a.e. t 2 J

(i) x.t/ D T.t; 0/�.0/ C R t
0

T.t; s/f .s/ds C P

0<tk<t T.t; tk/Ik.x.tk//; a.e. t 2
J; k D 1; : : : ;m

(ii) x.t/ D �.t/; t 2 .�1; 0�,

with Ik 2 Ik.x.t
C
k //.

we introduce the following hypotheses.

(A) fA.t/ W t 2 Jg be a family of linear (not necessarily bounded) operators,
A.t/ W D.A/ � E ! E, D.A/ not depending on t and dense subset of E
and T W � D f.t; s/ W 0 � s � t � bg ! L.E/ be the evolution operator
generated by the family fA.t/ W t 2 Jg.

(H�) The function t ! �t is continuous from R.��/ D f�.s; '/ W .s; '/ 2
J � B; �.s; '/ � 0g into B and there exists a continuous and bounded
function L� W R.��/ ! .0;1/ such that k�tkB � L�.t/k�kB for every
t 2 R.��/.

(11.12.1) The multi-function F.:; x/ has a strongly measurable selection for
every x 2 B.

(11.12.2) The multi-function F W .t; :/ ! Pcv;k.E/ is upper semi-continuous for
a.e. t 2 J.

(11.12.3) there exists a function ˛ 2 L1.J;RC/ such that

kF.t;  /k � ˛.t/.1C k kB/ for a.e. t 2 JI
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(11.12.4) There exists a function ˇ 2 L1.J;RC/ such that for all ˝ � B, we have

	.F.t; ˝// � ˇ.t/ sup
�1�s�0

	.˝.s// for a.e. t 2 J;

where, ˝.s/ D fx.s/I x 2 ˝g and 	 is the Hausdorff MNC.
(11.12.5) There exist constants ak; ck > 0; k D 1; : : : ;m such that

1) kIkk � ak; where Ik 2 Ik.x.t
C
k //:

2) 	.Ik.D// � ck	.D/ for each bounded subset D of E.

The next result is a consequence of the phase space axioms.

Lemma 11.13 ([139], Lemma 2.1). If y W .�1; b� ! R is a function such that
y0 D � and yjJ 2 PC.J;R/, then

kyskB � .Mb C L�/k�kB C Kb supfky.�/kI � 2 Œ0; maxf0; sg�g; s 2 R.��/ [ J;

where

L� D sup
t2R.��/

L�.t/:

Remark 11.14. We remark that condition .H�) is satisfied by functions which are
continuous and bounded. In fact, if the space B satisfies axiom C2 in [142] then
there exists a constant L > 0 such that k�kB � L supfk�.�/k W � 2 .�1; 0�g
for every � 2 B that is continuous and bounded (see [142], Proposition 7.1.1) for
details. Consequently,

k�tkB � L
sup��0 k�.�/k

k�kB k�kB; for every � 2 B n f0g:

Remark 11.15. Under conditions (H�) and (11.12.1)–(11.12.3) for every piecewise
continuous function v W J ! B the multi-function F.t; v.t// admits a Bochner
integrable selection (see [144]).

Let

�b D fx 2 � W x0 D 0g :
For any x 2 �b we have

kxkb D kxkB C sup
0�s�b

kxk D sup
0�s�b

kxk:

Thus .b; k:kb/ is a Banach space.
We note that from assumptions (11.12.1) and (11.12.3) it follows that the

superposition multi-operator S1F W �b ! P.L1.J;E// defined by

S1F D ff 2 L1.J;E/ W f .t/ 2 F.t; x�.t;xt//; a.e. t 2 Jg
is nonempty set (see [144]) and is weakly closed in the following sense.
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Lemma 11.16. If we consider the sequence .xn/ 2 �b and ffngC1
nD1 � L1.J;E/,

where fn 2 S1F.:;xn
�.:;xn

: /
/

such that xn ! x0 and fn ! f 0 then f 0 2 S1F.

Now we state and prove our main result.

Theorem 11.17. Under assumptions (A)–(H�) and (11.12.1)–(11.12.5), the prob-
lem (11.43)–(11.45) has at least one mild solution.

Proof. To prove the existence of a mild solution for (11.43)–(11.45) we introduce
the integral multi-operator N W �b �! P.�b/; defined as

N.x/ D

8

ˆ̂
<

ˆ̂
:

y W y.t/ D T.t; 0/�.0/C R t
0

T.t; s/f .s/ds
P

0<tk<t T.t; tk/Ik.x.tk//; t 2 J

y.t/ D �.t/; t 2 .�1; 0�;

(11.46)

where S1F and Ik 2 Ik.x/.
It is clear that the integral multioperator N is well defined and the set of all mild

solution for the problem (11.43)–(11.45) on J is the set F ixN D fx W x 2 N.x/g.
We shall prove that the integral multioperator N satisfies all the hypotheses of

Lemma 1.40. The proof will be given in several steps.

Step 1. Using in fact that the maps F and I has a convex values it easy to check
that N has convex values.

Step 2. N has closed graph.

Let fxngC1
nD1 � �b, fzngC1

nD1 , xn ! x�, zn 2 N..xn/; n � 1/ and zn ! z�. Moreover,
let ffngC1

nD1 � L1.J;E/ an arbitrary sequence such that fn 2 S1F for n � 1.
Hypothesis (11.12.3) implies that the set ffngC1

nD1 integrably bounded and for a.e.
t 2 J the set ffn.t/gC1

nD1 relatively compact, we can say that ffngC1
nD1 is semi-compact

sequence. Consequently ffngC1
nD1 is weakly compact in L1.J;E/, so we can assume

that fn * f �.
From Lemma 1.43 we know that the generalized Cauchy operator on the interval

J, G W L1.J;E/ ! �b; defined by

Gf .t/ D
Z t

0

T.t; s/f .s/ds; t 2 J (11.47)

satisfies properties (G1) and (G2) on J.
Note that set ffngC1

nD1 is also semi-compact and sequence .fn/
C1
nD1 weakly con-

verges to f � in L1.J;E/. Therefore, by applying Lemma 1.44 for the generalized
Cauchy operator G of (11.19) we have the convergence Gfn ! Gf . By means of
(11.19) and (11.18), for all t 2 J we can write

zn.t/ D T.t; 0/�.0/C
Z t

0

T.t; s/fn.s/ds C
X

0<tk<t

T.t; tk/Ik.x
n.tk//
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D T.t; 0/�.0/C
Z t

0

T.t; s/fnds C
X

0<tk<t

T.t; tk/Ik.x
n.tk//

D T.t; 0/�.0/C Gfn.t/C
X

0<tk<t

T.t; tk/Ik.x
n.tk///;

where S1F, and Ik 2 Ik.x/.
By applying Lemma 1.43, we deduce

zn ! T.:; 0/�.0/C Gf C T.:; t/Ik.x
�.tk//

in �b and by using in fact that the operator S1F is closed, we get f � 2 S1F.
Consequently

z�.t/ ! T.t; 0/�.0/C Gf C T.t; t/Ik.x
�.tk//;

therefore z� 2 N.x�/. Hence N is closed.
With the same technique, we obtain that N has compact values.

Step 3. We consider the MNC defined in the following way. For every bounded
subset ˝ � �b

�1.˝/ D max
˝2�.˝/.�1.˝/; mod C.˝//; (11.48)

where �.˝/ is the collection of all the denumerable subsets of ˝;

�1.˝/ D sup
t2J

e�Lt	.fx.t/ W x 2 ˝g/I (11.49)

where mod C.˝/ is the modulus of equi-continuity of the set of functions ˝
given by the formula

mod C.˝/ D lim
ı!0

sup
x2˝

max
jt1�t2j�ı

kx.t1/ � x.t2/k; (11.50)

and L > 0 is a positive real number chosen such that

q WD M

 

2 sup
t2J

Z t

0

e�L.t�s/ˇ.s/ds C eLt
mX

kD1
ck

!

< 1 (11.51)

where M D sup.t;s/2� kT.t; s/k.

From the Arzelá–Ascoli theorem, the measure �1 gives a nonsingular and regular
MNC (see [144]).

Let fyngC1
nD1 be the denumerable set which achieves that maximum �1.N.˝//, i.e.;
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�1.N.˝// D .�1.fyngC1
nD1 /; mod C.fyngC1

nD1 //:

Then there exists a set fxngC1
nD1 � ˝ such that yn 2 N.xn/, n � 1. Then

yn.t/ D T.t; 0/�.0/C
Z t

0

T.t; s/f .s/ds C
X

0<tk<t

T.t; tk/Ik.x.tk//; (11.52)

where f 2 S1F and Ik 2 Ik.xn/, so that

�1.fyngC1
nD1 / D �1.fGfngC1

nD1 /:

We give an upper estimate for �1.fyngC1
nD1 /.

Fixed t 2 J by using condition (11.12.4), for all s 2 Œ0; t� we have

	.ffn.s/gC1
nD1 / � 	.F.s; fxn.s/gC1

nD1 //

� 	.fF.s; xn.s//gC1
nD1 /

� ˇ.s/	.fxn.s/gC1
nD1 /

� ˇ.s/eLs sup
t2J

e�Lt	.fxn.t/gC1
nD1 /

D ˇ.s/eLs�1.fxngC1
nD1 /:

By using condition (11.12.3), the set ffngC1
nD1 is integrably bounded. In fact, for every

t 2 J, we have

kfn.t/k � kF.t; xn.t//k
� ˛.t/.1C kxn.tk/:

The integrably boundedness of ffngC1
nD1 follows from the continuity of x in Jk and

the boundedness of set fxngC1
nD1 � ˝. By applying Lemma 1.45, it follows that

	.fGfn.s/gC1
nD1 / � 2M

Z s

0

ˇ.t/eLt.�1.fxngC1
nD1 //dt

D 2M�1.fxngC1
nD1 /

Z s

0

ˇ.t/eLt:
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Thus, we get

�1.fxngC1
nD1 / � �1.fyngC1

nD1 / D �1.fGfn.s/gC1
nD1 /

D sup
t2J

e�Lt2M�1.fxngC1
nD1 /

Z s

0

ˇ.t/eLtM�1.fxngC1
nD1 /e

Lt
mX

kD1
ck

� q�1.fxngC1
nD1 /;

(11.53)

and hence �1.fxngC1
nD1 / D 0, then �1.fxn.t/gC1

nD1 / D 0, for every t 2 J. Consequently

�1.fyngC1
nD1 / D 0:

By using the last equality and hypotheses (11.12.3) and (11.12.4) we can prove
that set ffngC1

nD1 is semi-compact. Now, by applying Lemmas 1.43 and 1.44, we can
conclude that set fGfngC1

nD1 is relatively compact. The representation of yn given by
(11.24) yields that set fyngC1

nD1 is also relatively compact in �b, therefore �1.˝/ D
.0; 0/. Then ˝ is a relatively compact set.

Step 4. A priori bounds.

We will demonstrate that the solutions set is a priori bounded. Indeed, let x 2 N.
Then there exists f 2 S1F and Ik 2 Ik.x/ such that for every t 2 J we have

kx.t/k D �
�T.t; 0/�.0/C

Z t

0

T.t; s/f .s/ds C
X

0<tk<t

T.t; tk/Ik.x.tk//
�
�

� M

 

k�.0/k C
mX

kD1
ak

!

C M
Z t

0

f .s/ds

� M

 

k�.0/k C
mX

kD1
ak

!

C M
Z b

0

˛.s/.1C kxŒ���.t;xt/k/ds:

Using Lemma 11.13, we have

kx.t/k � M

 

k�.0/k C
mX

kD1
ak

!

C M
Z t

0

˛.s/

 

1C .Mb C L�/k�kB

C Kb sup
0���s

kx.�/k
!

ds

� M

 

k�.0/k C
mX

kD1
ak

!

C M.1C .Mb C L�/k�kB/k˛kL1.J/

C MKb

Z t

0

˛.s/ sup
0���s

kx.�/kds:
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Since the last expression is a nondecreasing function of t, we have that

sup
0���t

kx.�/k � M

 

k�.0/k C
mX

kD1
ak

!

C M.1C .Mb C L�/k�kB/k˛kL1.J/

C MKb

Z t

0

˛.s/ sup
0���s

kx.�/kds:

Invoking Gronwall’s inequality, we get

sup
0���b

kx.�/k � eMKbk˛kL1Œ0;b� ;

where

 D M

 

k�.0/k C
mX

kD1
ak

!

C M.1C .Mb C L�/k�kB/k˛kL1.J/:

ut

11.5.3 Existence Results for the Non-convex Case

This section is devoted to proving the existence of solutions for (11.43)–(11.45)
with a non-convex valued right-hand side. Our result is based on Mönch’s fixed
point theorem combined with a selection theorem due to Bressan and Colombo (see
[86]). We will assume the following hypotheses: Let F be a multi-function defined
from J � B to the family of nonempty closed convex subsets of E such that

(11.18.1) .t; x/ 7! F.:; x/ is L ˝ Bb-measurable (Bb is Borel measurable).
(11.18.2) The multi-function F W .t; :/ ! Pk.E/ is lower semi-continuous for a.e.

t 2 J;
(11.18.3) there exists a function ˛ 2 L1.J;RC/ such that

kF.t;  /k � ˛.t/; for a.e. t 2 J; 8 2 BI

(11.18.4) There exists a function ˇ 2 L1.J;RC/ such that for all ˝ � B, we have

	.F.t; ˝// � ˇ.t/ sup
�1�s�0

	.˝.s// for a.e. t 2 J;

where, ˝.s/ D fx.s/I x 2 ˝g and 	 is the Hausdorff MNC,
(11.18.5) There exist constants ak; bk; ck � 0, k D 1; : : : ;m, such that

1) kIkk � akkxk C bk; where Ik 2 Ik.x.t
C
k //:

2) 	.Ik.D// � ck	.D/ for each bounded subset D of E.

Now we state and prove our main result.
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Theorem 11.18. Assume that (A)–(H�) and (11.18.1)–(11.18.5) hold. If

M
mX

kD1
ak < 1:

Then the problem (11.43)–(11.45) has at least one mild solution.

Proof. We note that from assumptions (11.18.1) and (11.18.3) it follows that the
superposition multi-operator

S1F W �b ! P.L1.J;E//;

defined by

S1F D ff 2 L1.J;E/ W f .t/ 2 F.t; x�.t;xt//; a.e. t 2 Jg

is nonempty set (see [144]).
Clearly, fixed points of the operator N are mild solutions of the problem

(11.43)–(11.45).
The proof will be given in several steps.

Step 1. The Mönch’s condition holds.

Suppose that ˝ 	 Br is countable and ˝ 	 co.f0g [ N.˝// We will prove that
˝ is relatively compact. We consider the MNC defined in (11.48) and L > 0 is a
positive real number chosen such that

q WD M

 

2 sup
t2J

Z t

0

e�L.t�s/ˇ.s/ds C eLt
mX

kD1
ck

!

< 1 (11.54)

where M D sup.t;s/2� kT.t; s/k.
From the Arzelá–Ascoli theorem, the measure �1 give a nonsingular and regular

MNC (see [144]).
Let fyngC1

nD1 be the denumerable set which achieves that maximum �1.N.˝//, i.e.;

�1.N.˝// D .�1.fyngC1
nD1 /; mod C.fyngC1

nD1 //:

Then there exists a set fxngC1
nD1 � ˝ such that yn 2 N.xn/, n � 1. Then

yn.t/ D T.t; 0/�.0/C
Z t

0

T.t; s/f .s/ds C
X

0<tk<t

T.t; tk/Ik; (11.55)
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where f 2 S1F and Ik 2 Ik.xn/, so that

�1.fyngC1
nD1 / D �1.fGfngC1

nD1 /:

We give an upper estimate for �1.fyngC1
nD1 /.

Fixed t 2 J by using condition (11.18.4), for all s 2 Œ0; t� we have

	.ffn.s/gC1
nD1 / � 	.F.s; fxn.s/gC1

nD1 //

� ˇ.s/	.fxn.s/gC1
nD1 /

� ˇ.s/eLs sup
t2J

e�Lt	.fxn.t/gC1
nD1 /

D ˇ.s/eLs�1.fxngC1
nD1 /:

By using condition (11.18.3), the set ffngC1
nD1 is integrably bounded. In fact, for every

t 2 J, we have

kfn.t/k � kF.t; xn.t//k
� ˛.t/:

By applying Lemma 1.45, it follows that

	.fGfn.s/gC1
nD1 / � 2M

Z s

0

ˇ.t/eLt.�1.fxngC1
nD1 //dt

D 2M�1.fxngC1
nD1 /

Z s

0

ˇ.t/eLtdt:

Thus, we get

�1.fxngC1
nD1 / � �1.fyngC1

nD1 /

D sup
t2J

e�Lt2M�1.fxngC1
nD1 /

Z t

0

ˇ.s/eLsds C M�1.fxngC1
nD1 /e

Lt
mX

kD1
ck

� q�1.fxngC1
nD1 /:

(11.56)
Therefore, we have that

�1.fxngC1
nD1 / � �1.˝/ � �1.f0g [ N.˝//�1.fyngC1

nD1 / � q�1.fxngC1
nD1 /:

From (11.51), we obtain that

�1.fxngC1
nD1 / D �1.˝/ D �1.fyngC1

nD1 /
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Coming back to the definition of �1, we can see

	.fxngC1
nD1 / D 	.fyngC1

nD1 / D 0

By using the last equality and hypotheses (11.18.3) and (11.18.4) we can prove
that set ffngC1

nD1 is semi-compact. Now, by applying Lemmas 1.43 and 1.44, we can
conclude that set fGfngC1

nD1 is relatively compact.
The representation of yn yields that set fyngC1

nD1 is also relatively compact in �b,
since �1 is a monotone, nonsingular, regular MNC, we have that

�1.˝/ � �1.co.f0g [ N.˝/// � �1.N.˝// D �1.fyngC1
nD1 / D .0; 0/:

Therefore, ˝ is relatively compact.

Step 2. It is clear that the superposition multioperator S1F has closed and
decomposable values. Following the lines of [144], we may verify that S1F is
l.s.c..

Applying Lemma 1.46 to the restriction of S1F on �b we obtain that there exists
a continuous selection

w W �b ! L1.J;E/

We consider a map N W �b ! �b defined as

x.t/ D T.t; 0/�.0/C
Z t

0

T.t; s/w.x/.s/ds

Since the Cauchy operator is continuous, the map N is also continuous, therefore, it
is a continuous selection of the integral multi-operator.

Step 3. A priori bounds.

We will demonstrate that the solutions set is a priori bounded. Indeed, let x 2 �N1
and � 2 .0; 1/. There exists f 2 S1F and Ik 2 Ik.x/ such that for every t 2 J we have

kx.t/k D �
��T.t; 0/�.0/C �

Z t

0

T.t; s/f .s/ds C �
X

0<tk<t

T.t; tk/Ik

�
�;

� M

 

k�.0/k C kxk
mX

kD1
ak C

mX

kD1
bk

!

C M
Z t

0

˛.s/ds;

hence,

 

1 � M
mX

kD1
ak

!

kxk � M

 

k�.0/k C k˛kL1 C
mX

kD1
bk

!

:
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Consequently

kxk � M.k�.0/k C k˛kL1 CPm
kD1 bk/

1 � M
Pm

kD1 ak
D C:

So, there exists N� such that kxk ¤ N�, set

U D fx 2 �b W kxk < N�g:
From the choice of U there is no x 2 @U such that x D �Nx for some � 2 .0; 1/:

Thus, we get a fixed point of N1 in NU due to the Mönch’s Theorem. ut

11.5.4 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

@

@t
z.t; x/ 2 a.t; x/

@2

@x2
z.t; x/C m.t/b.t; z.t � �.z.t; 0///; x/;

x 2 Œ0; ��; t 2 Œ0; b�; t ¤ tk; (11.57)

z.tCk ; x/ � z.t�k ; x/ 2 Œ�bkjz.t�k ; x/; bkjz.t�k ; x/�;
x 2 Œ0; ��; k D 1; : : : ;m; (11.58)

z.t; 0/ D z.t; �/ D 0; t 2 J WD Œ0; b�; (11.59)

z.t; x/ D �.t; x/; �1 < t � 0; x 2 Œ0; ��; (11.60)

where a.t; x/ is continuous function and uniformly Hölder continuous in t, bk > 0,
k D 1; : : : ;m, � 2 D,

D D f W .�1; 0� � Œ0; �� ! RI  is continuous everywhere except for a
countable number of points at which  .s�/;  .sC/ exist with  .s�/ D  .s/g,
0 D t0 < t1 < t2 < � � � < tm < tmC1 D b, z.tCk / D lim.h;x/!.0C;x/ z.tk C h; x/,

z.t�k / D lim.h;x/!.0�;x/ z.tk C h; x/; b W R � R ! Pcv;k.R/ a Carathéodory multi-
valued map, � W R ! RC.

Let

y.t/.x/ D z.t; x/; x 2 Œ0; ��; t 2 J D Œ0; b�;

Ik.y.t�k //.x/ D Œ�bkjz.t�k ; x/; bkjz.t�k ; x/�; x 2 Œ0; ��; k D 1; : : : ;m;

F.t; �/.x/ D b.t/a.t; z.t � �.z.t; 0///; x/
�.�/.x/ D �.�; x/; �1 < t � 0; x 2 Œ0; ��;

�.t; �/ D t � �.�.0; 0//:
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Consider E D L2Œ0; �� and define A.t/ by A.t/w D a.t; x/w00 with domain

D.A/ D fw 2 E W w;w0 are absolutely continuous; w00 2 E; w.0/ D w.�/ D 0g:

Then A.t/ generates an evolution system U.t; s/ satisfying assumption (11.12.1) and
(11.12.3). For the phase space, we choose B D B� defined by

B� D
�

� 2 D W lim
�!�1 e���.�/ exists

�

with the norm

k�k� D sup
�2.�1;0�

e��k�.�/k:

Notice that the phase space B� satisfies axioms (A1) and (A3) (see [142] for more
details).

We can show that problem (11.57)–(11.60) is an abstract formulation of problem
(11.43)–(11.45). Under suitable conditions, the problem (11.43)–(11.45) has at least
one mild solution.

11.6 Controllability of Impulsive Differential Evolution
Inclusions with Infinite Delay

11.6.1 Introduction

In this section,we are concerned by a controllability problem for a system governed
by a semi-linear functional differential inclusion in a separable Banach space E in
the presence of impulse effects and infinite delay.

x0.t/ 2 A.t/x.t/C F.t; xt/C .Bu/.t/; t 2 J D Œ0; b�; t ¤ tk; (11.61)

�x
ˇ
ˇ
tDtk

2 Ik.x.t�k //; k D 1; : : : ;m (11.62)

x.t/ D �.t/; t 2 .�1; 0�: (11.63)

Assuming that the compactness of the evolution operator generated by the linear
part (11.61)–(11.61) is not required. Our aim here is to give global existence and
controllability results for the above problem.
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11.6.2 Existence and Controllability Results

In this section, we shall establish sufficient conditions for the controllability of the
first order functional semi-linear differential inclusions (11.61)–(11.63).

We define what we mean by an mild solution of problem (11.61)–(11.63).

Definition 11.19. A function x 2 � is said to be a mild solution of the system
(11.15)–(11.17) if there exist a function f 2 L1.J;E/ such that f 2 F.t; xt/ for
a.e. t 2 J

(i) x.t/ D T.t; 0/�.0/C R t
0

T.t; s/ Œ.Bxu/.s/C f .s/� ds CP

0<tk<t T.t; tk/Ik.x.tk//;
a.e. t 2 J; k D 1; : : : ;m

(ii) x.t/ D �.t/; t 2 .�1; 0�,

with Ik 2 Ik.x.t
C
k //.

Let us introduce the following hypotheses:

(A) fA.t/ W t 2 Jg be a family of linear (not necessarily bounded) operators,
A.t/ W D.A/ � E ! E, D.A/ not depending on t and dense subset of E
and T W � D f.t; s/ W 0 � s � t � bg ! L.E/ be the evolution operator
generated by the family fA.t/ W t 2 Jg.

(11.19.1) The multi-function F.:; x/ has a strongly measurable selection for every
x 2 B.

(11.19.2) The multi-function F W .t; :/ ! Pcv;k.E/ is upper semi-continuous for
a.e. t 2 J.

(11.19.3) there exists a function ˛ 2 L1.J;RC/ such that

kF.t;  /k � ˛.t/.1C k kB/ for a.e. t 2 JI

(11.19.4) There exists a function ˇ 2 L1.J;RC/ such that for all bounded ˝ � B,
we have

	.F.t;D// � ˇ.t/ sup
�1�s�0

	.˝.s// for a.e. t 2 J;

where, ˝.s/ D fx.s/I x 2 ˝g and 	 is the Hausdorff MNC.
(11.19.5) There exist constants ak; k D 1; : : : ;m such that

1) kIkk � ak; where Ik 2 Ik.x.t
C
k //:

2) Ik are completely continuous.

Remark 11.20. Under conditions (11.19.1)–(11.19.3) and ( NA1) for every piecewise
continuous function v W J ! B the multi-function F.t; v.t// admits a Bochner
integrable selection (see [144]).

Before stating and proving our main result in this section, we define controllability
on the interval J:
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Definition 11.21. The system (11.61)–(11.63) is said to be controllable on the
interval J, if for every x0; x1 2 E there exists a control u 2 L2.J;U/, such that
there exists a mild solution x.t/ of (11.61)–(11.63) satisfying x.b/ D x1:

Let

�b D fx 2 � W x0 D 0g :
For any x 2 �b we have

kxkb D kxkB C sup
0�s�b

kxk D sup
0�s�b

kxk:

Thus .�b; k:kb/ is a Banach space .
We note that from assumptions (11.19.1) and (11.19.3) it follows that the

superposition multi-operator S1F W �b ! P.L1.J;E// defined by

S1F D ff 2 L1.J;E/ W f .t/ 2 F.t; xt/; a.e. t 2 Jg

is nonempty set (see [144]) and is weakly closed in the following sense.

Lemma 11.22. If we consider the sequence .xn/ 2 �b and ffngC1
nD1 � L1.J;E/,

where fn 2 S1F.:;xn
: /

such that xn ! x0 and fn ! f 0 then f 0 2 S1F.

Now, we are able to state and prove our main theorem:

Theorem 11.23. Assume that hypotheses (11.19.1)–(11.19.5) hold. Moreover we
suppose that

(C1) B is a continuous operator from U to X and the linear operator W W
L2.J;U/ ! X, defined by

Wu D
Z b

0

T.t; s/Bu.s/ ds;

has a bounded inverse operator W�1 W X ! L2.J;U/=KerW such that kBk �
M1 and kW�1k � M2, for some positive constants M1;M2.

(C2) There exists a function  2 L1.J;RC/ such that for all ˝ 2 Pb.E/, we have

	U.W
�1.˝/.t// � .t/	E.˝/ for a.e. t 2 J;

Then the problem (11.61)–(11.63) has at least one mild solution.

To prove the controllability of the problem. Using hypothesis (C1) for an arbitrary
function x.�/ define the control

ux.t/ D W�1hx1 � T.b; 0/�.0/ �
NX

kD1
T.b; tk/Ik.x.tk// �

Z b

0

T.b; 
/f .
/ ds
i

.t/;
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where ux.�/ 2 L2.J;E/. We introduce the integral multi-operator N W �b �!
P.�b/; defined as

N.x/ D

8

ˆ̂
<

ˆ̂
:

y W y.t/ D T.t; 0/�.0/C R t
0

T.t; s/ Œf .s/C Bux.s/� ds

CP

0<tk<t T.t; tk/Ik.x.tk//; t 2 J

y.t/ D �.t/; t 2 .�1; 0�;

(11.64)

where S1F and Ik 2 Ik.x/.
It is clear that the integral multi-operator N is well defined and the set of all mild

solution for the problem (11.61)–(11.63) on J is the set F ixN D fx W x 2 N.x/g.
Consider now the operator G� W L1.J;E/ ! C.J;E/ defined by

.G�f /.t/ D
Z t

0

T.t; s/BW�1hx1 � T.b; 0/�.0/ �
Z b

0

T.b; 
/f .
/ ds
i

.t/ (11.65)

Lemma 11.24 ([84]). The operator G� satisfies the proprieties (G1’)–(G2).

We shall prove that the integral multi-operator N satisfies all the hypotheses of
Lemma 1.40.

Proof. We break the proof into a sequence of steps.

Step 1. Using the fact that the maps F and I has a convex values it easy to check
that N has convex values.

Step 2. N has closed graph.

Let fxngC1
nD1 � �b, fzngC1

nD1 , xn ! x�, zn 2 N..xn/; n � 1/ and zn ! z�. Moreover,
let ffngC1

nD1 � L1.J;E/ an arbitrary sequence such that fn 2 S1F for n � 1.
Hypothesis (11.19.3) implies that the set ffngC1

nD1 is integrably bounded and for
a.e. t 2 J the set ffn.t/gC1

nD1 is relatively compact, we can say that ffngC1
nD1 is semi-

compact sequence. Consequently ffngC1
nD1 is weakly compact in L1.J;E/, so we can

assume that fn * f �.
From Lemma 1.43 we know that the generalized Cauchy operators, G;G� W

L1.J;E/ ! �b; defined by

Gf .t/ D R t
0

T.t; s/f .s/ds; t 2 J (11.66)

.G�f /.t/ D R t
0

T.t; s/BW�1
h

x1 � T.b; 0/�.0/ � R b
0

T.b; 
/f .
/ ds
i

.t/

(11.67)

satisfies properties (G1) and (G2) on J.
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Note that set ffngC1
nD1 is also semi-compact and sequence .fn/

C1
nD1 weakly con-

verges to f � in L1.J;E/. Therefore, by applying Lemmas 1.44 and 11.67 we have
the convergence Gfn ! Gf and G�fn ! G�f . By means (11.18), for all t 2 J we
can write

zn.t/ D T.t; 0/�.0/C Gfn.t/C G�fn.t/

�
Z t

0

T.t; s/BW�1
 

NX

kD1
T.b; tk/Ik.x.tk//

!

C
X

0<tk<t

T.t; tk/Ik.x
n.tk///;

(11.68)
where S1F, Ik 2 Ik.x/ and

By applying Lemma 1.43, we deduce

zn.t/ D T.:; 0/�.0/C Gfn.:/C G�fn.:/ � GBW�1
 

NX

kD1
T.b; tk/Ik.x

n.tk//

!

C
X

0<tk<t

T.t; tk/Ik.x
n.tk///

zn ! T.:; 0/�.0/C Gf C G�f � GBW�1
 

NX

kD1
T.b; tk/Ik.x

�.tk//
!

C
X

0<tk<t

T.:; t/Ik.x
�.tk//

in �b and by using in fact that the operator S1F is closed, we get f � 2 S1F.
Consequently

z�.t/ D T.t; 0/�.0/C Gf C G�f � GBW�1
 

NX

kD1
T.b; tk/Ik.x

�.tk//
!

C
X

0<tk<t

T.t; s/Ik.x
�.tk//;

therefore z� 2 N.x�/. Hence N is closed.
With the same technique, we obtain that N has compact values.

Step 3. We consider the MNC defined in the following way. For every bounded
subset ˝ � �b

�.˝/ D .�.˝/;modC.˝//; (11.69)
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� is the modulus of fiber non-compactness

�.˝/ D sup
t2J
	E.fx.t/ W x 2 ˝g/; (11.70)

where ˝.t/ D fy.t/ W y 2 ˝g.

modC.˝/ is the modulus of equi-continuity of the set of functions ˝ given by the
formula

modC.˝/ D lim
ı!0

sup
x2˝

max
jt1�t2j�ı

kx.t1/ � x.t2/kI (11.71)

and Nq > 0 is a positive real number chosen such that

Nq WD
�

NM C NM2 NM1

Z b

0

.s/ds

��Z b

0

ˇ.s/ds

�

< 1: (11.72)

From the Arzelá–Ascoli theorem, the measure � give a nonsingular and regular
MNC , see [144].

Let ˝ � �b be a bounded subset such that

�.N.˝// � �.˝/: (11.73)

For any t 2 Œ0; b� we have

N.˝/.t/ � T.:; 0/�.0/C .G C G�/ ı S1F.˝/:

From the boundedness of the operators fT.t; s/g0�s;t�b and B. Obviously there
exist constants NM; NM1 such that

kT.t; s/k.	/ � NM � M; for every 0 � s; t � b (11.74)

kBk.	/ � NM1 � M1: (11.75)

We give an upper estimate for �.N.˝//. By using (11.6.4) and (11.74)–(11.75)

	.fT.t; s/f .s/g/ � NMˇ.s/ sup
�1�s�0

	.˝Œ��s/

� NMˇ.s/�.˝/:
Where f 2 S1F.˝/ and ˝Œ��s D fxŒ��s W x 2 ˝g.

Applying the Proposition 1.12, we have

	.G ı S1F.˝/.t// � NM�.˝/
Z t

0

ˇ.s/ds

� NM�.˝/
Z b

0

ˇ.s/ds:

(11.76)
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By using the condition (C2) and the estimates (11.74)–(11.76) we obtain

	

��

T.t; s/BW�1Œx1 � T.b; 0/�.0/ �
Z b

0

T.t; 
/f .
/d
�

��

� NM NM1.s/	

��Z b

0

T.t; 
/f .
/d


��

� NM2 NM1�.˝/

�Z b

0

ˇ.s/ds

�

.s/

f 2 S1F.˝/. By Proposition 1.12, we have

	
�

G� ı S1F.˝/.t/
�

� NM2 NM1�.˝/

�Z b

0

ˇ.s/ds

��Z b

0

.s/ds

�

:

Thus, we get

	E.N.˝/.t// �
�

NM C NM2 NM1

Z b

0

.s/ds

��Z b

0

ˇ.s/ds

�

�.˝/:

Then

�.N.˝// � Nq�.˝/:

Where Nq is the constant in (11.72), consequently �.˝/ D 0:

By using the last equality and hypotheses (11.19.3) and (11.19.4) we can prove
that set ffngC1

nD1 is semi-compact. Now, by applying Lemmas 1.43 and 1.44, we can
conclude that set f.G C G�/fngC1

nD1 is relatively compact. Therefore �.˝/ D .0; 0/

and modC.˝/ D 0. Then ˝ is a relatively compact set.

Step 4. A priori bounds.

Let x 2 �N.x/; 0 < � � 1, then we have

kx.t/k � �
�T.t; 0/�.0/C

Z t

0

T.t; s/Œf .s/C Bux.s/�ds

C
X

0<tk<t

T.t; tk/Ik.x.tk//
�
�

� Mk�.0/k C M
X

0<tk<t

kIkk C M
Z t

0

kf .s/kds C MM1

Z t

0

kux.s/kds

D Mk�.0/k C M
X

0<tk<t

kIkk C M
Z t

0

kf .s/kds
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C MM1

Z t

0

kW�1hx1 � T.b; 0/�.0/ �
NX

kD1
T.b; tk/Ik.x.tk//

�
Z b

0

T.b; 
/f .
/ ds
i

.s/kds

� Mk�.0/k C M
X

0<tk<t

kIkk C M
Z t

0

kf .s/kds

C MM1kW�1hx1 � T.b; 0/�.0/ �
NX

kD1
T.b; tk/Ik.x.tk//

�
Z b

0

T.b; 
/f .
/ ds
i

.s/kL1.J;U/

� Mk�.0/k C M
X

0<tk<t

kIkk C M
Z t

0

kf .s/kds

C MM1

p
bkW�1hx1 � T.b; 0/�.0/ �

NX

kD1
T.b; tk/Ik.x.tk//

�
Z b

0

T.b; 
/f .
/ ds
i

.s/kL2.J;U/

� Mk�.0/k C M
mX

kD1
ak C M

Z t

0

kf .s/kds

C MM1M2

p
b

"

kx1k C Mk�.0/k C M
mX

kD1
ak C M

Z b

0

kf .
/k d


#

Using the hypothesis (11.19.3) and the condition (A1) we have

kx.t/k � Mk�.0/k C M
mX

kD1

ak C M
Z t

0

˛.s/.1C kxŒ��sk/ds

C MM1M2

p
b

"

kx1k C Mk�.0/k C M
mX

kD1

ak C M
Z b

0

˛.s/.1C kxŒ��sk/ds

#

� Mk�.0/k C M
mX

kD1

ak C M
Z t

0

˛.s/.1C Nbk�kB C Kb sup
0���s

kx.�/k/ds

C MM1M2

p
b

"

kx1k C Mk�.0/k C M
mX

kD1

ak C M
Z b

0

˛.s/.1C Nbk�kB
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CKb sup
0���s

kx.�/k/ds

#

� C� C M
Z t

0

˛.s/ sup
0���s

kx.�/k/ds C M2M1M2

p
b
Z b

0

˛.s/ sup
0���s

kx.�/k/ds;

where

C1 D M.1C MM1M2

p
b/
Pm

kD1 ak;

C2 D M
�

k�.0/k C M1M2

p
b/Œkx1k C Mk�.0/k�

�

;

C3 D M .1C Nbk�kB// .1C MM1M2

p
b/k˛kL1.J/;

and C� D C1 C C2 C C3: Consider the function �.t/ D sup0���t kx.�/k, so the
function

v.t/ D
Z t

0

˛.s/�.s/ds (11.77)

is nondecreasing and we have

v0.t/ D ˛.t/�.t/; for a.e. t 2 J: (11.78)

Applying the last inequality

v0.t/ � ˛.t/.C� C M2M1M2

p
bv.b/C Mv.t//; (11.79)

multiplying both sides of (11.79) by the function L.t/ D exp
��M

R t
0
˛.s/ds



, we
obtain

v0.t/L.t/ � ˛.t/L.t/.C� C M2M1M2

p
bv.b/C Mv.t//:

It follows that

.v.t/L.t//0 � ˛.t/L.t/.C� C M2M1M2

p
bv.b//: (11.80)

Integrating from 0 to b both sides of (11.80) we get

v.b/ exp

�

�M
Z b

0

˛.s/ds

�

� .C� C M2M1M2

p
bv.b//

Z b

0

˛.t/L.t/dt:
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Thus

`v.b/ � C�
Z b

0

˛.t/L.t/dt;

where ` be a constant such that

` D exp

�

�M
Z b

0

˛.s/ds

�

� M2M1M2

p
b
Z b

0

˛.t/L.t/dt > 0:

Consequently

v.b/ � C� R b
0
˛.t/L.t/dt

`
D C: (11.81)

Using the nondecreasing character of v, we obtain

v.t/ � C; for all t 2 J:

Then

kx.t/k � C� C M
�

1C MM1M2

p
b
�

C: ut

11.6.3 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

@

@t
z.t; x/ 2 a.t; x/

@2

@x2
z.t; x/C m.t/

Z t

�1
��.t; x; s � t/ds;

x 2 Œ0; ��; t 2 Œ0; b�; t ¤ tk; (11.82)

z.tCk ; x/ � z.t�k ; x/ 2 Œ�bkjz.t�k ; x/; bkjz.t�k ; x/�;
x 2 Œ0; ��; k D 1; : : : ;m; (11.83)

z.t; 0/ D z.t; �/ D 0; t 2 J WD Œ0; b�; (11.84)

z.t; x/ D �.t; x/; �1 < t � 0; x 2 Œ0; ��; (11.85)

where a.t; x/ is continuous function and uniformly Hölder continuous in t, bk > 0,
k D 1; : : : ;m, � 2 D,
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D D f W .�1; 0� � Œ0; �� ! RI  is continuous everywhere except for a
countable number of points at which  .s�/;  .sC/ exist with  .s�/ D  .s/g,
0 D t0 < t1 < t2 < � � � < tm < tmC1 D b, z.tCk / D lim.h;x/!.0C;x/ z.tk C h; x/,

z.t�k / D lim.h;x/!.0�;x/ z.tk C h; x/, b W R � R ! Pcv;k.R/ a Carathéodory multi-
valued map, � W R ! RC.

Let

y.t/.x/ D z.t; x/; x 2 Œ0; ��; t 2 J D Œ0; b�;

Ik.y.t�k //.x/ D Œ�bkjz.t�k ; x/; bkjz.t�k ; x/�; x 2 Œ0; ��; k D 1; : : : ;m;

F.t; �/.x/ D m.t/
R t

�1 ��.t; x; s � t/ds

�.�/.x/ D �.�; x/; �1 < t � 0; x 2 Œ0; ��:

Consider E D L2Œ0; �� and define A.t/ by A.t/w D a.t; x/w00 with domain
D.A/ D fw 2 E W w;w0 are absolutely continuous, w00 2 E; w.0/ D w.�/ D 0g.
Then A.t/ generates an evolution system U.t; s/ satisfying assumption (11.19.1) and
(11.19.3).

Assume that B W U ! Y , U 	 J is a bounded linear operator and the operator

Wu D
Z b

0

T.t; s/Bu.s/ ds;

has a bounded inverse operator W�1 W E ! L2.J;U/= ker W.
For the phase space, we choose B D Bh defined by Bh D ˚

� W .�1; 0� !
E W For a > 0 �.�/ is bounded and measurable function onŒ�a; 0�; and

R 0

�1 h.s/
sups���0 j�.�/jd�� where h W .�1; 0� ! .0;C1/ is a continuous function with

l D
Z 0

�1
h.s/ds < C1;

endowed with the norm

k�kh D
Z 0

�1
h.s/ sup

s���0
j�.�/jd�:

Notice that the phase space Bh is Banach space (see [142] for more details).
We can show that problem (11.26)–(11.29) is an abstract formulation of problem

(11.15)–(11.17). Under suitable conditions, the problem (11.61)–(11.63) has at least
one mild solution.

11.7 Notes and Remarks

The results of Chap. 11 are taken from Benchohra et al. [68, 70]. Other results may
be found in [7].



Chapter 12
Functional Differential Equations
and Inclusions with Delay

12.1 Introduction

In this chapter, we shall prove the existence of solutions of some classes of
functional differential equations and inclusions. Our investigations will be situated
in the Banach space of real functions which are defined, continuous, and bounded on
the real axis R:We will use some fixed point theorems combined with the semigroup
theory.

12.2 Global Existence for Functional Differential Equations
with State-Dependent Delay

12.2.1 Introduction

In this section we will use Schauder’s fixed point theorem combined with the
semigroup theory to have the existence of solutions of the following functional
differential equation with state-dependent delay:

y0.t/ D Ay.t/C f .t; y�.t;yt//; a.e. t 2 J WD RC (12.1)

y.t/ D �.t/; t 2 .�1; 0�; (12.2)

where f W J � B ! E is given function, A W D.A/ � E ! E is the infinitesimal
generator of a strongly continuous semigroup T.t/; t 2 J; B is the phase space to be
specified later, � 2 B, � W J � B ! R, and .E; j:j/ is a real Banach space.

© Springer International Publishing Switzerland 2015
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12.2.2 Existence of Mild Solutions

Now we give our main existence result for problem (12.1)–(12.2). Before starting
and proving this result, we give the definition of the mild solution.

Definition 12.1. We say that a continuous function y W .�1;C1/ ! E is a mild
solution of problem (12.1)–(12.2) if y.t/ D �.t/; t 2 .�1; 0� and the restriction of
y.:/ to the interval RC is continuous and satisfies the following integral equation:

y.t/ D T.t/�.0/C
Z t

0

T.t � s/f .s; y�.s;ys//ds; t 2 J:

Set

R.��/ D f�.s; �/ W .s; �/ 2 J � B; �.s; �/ � 0g:

We always assume that � W J � B ! R is continuous. Additionally, we introduce
the following hypothesis:

.H�/ The function t ! �t is continuous from R.��/ into B and there exists a
continuous and bounded function L� W R.��/ ! .0;1/ such that

k�tk � L�.t/k�k for every t 2 R.��/:

Remark 12.2. The condition .H�/ is frequently verified by functions continuous
and bounded. For more details, see for instance [142].

Lemma 12.3 ([140], Lemma 2.4). If y W R ! E is a function such that y0 D �,
then

kyskB � .M C L�/k�kB C l supfjy.�/j W � 2 Œ0;maxf0; sg�g; s 2 R.��/ [ J;

where L� D sup
t2R.��/

L�.t/.

Let us introduce the following hypotheses:

(12.3.1) A W D.A/ � E ! E is the infinitesimal generator of a strongly continuous
semigroup T.t/; t 2 J which is compact for t > 0 in the Banach space E.
Let M0 D supfkTkB.E/ W t � 0g:

(12.3.2) The function f W J � B ! E is Carathéodory.
(12.3.3) There exists a continuous function k W J ! RC such that:

jf .t; u/ � f .t; v/j � k.t/ku � vkB; t 2 J; u; v 2 B;
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and

k� WD sup
t2J

Z t

0

k.s/ds < 1: (12.3)

(12.3.4) The function t ! f .t; 0/ D f0 2 L1.J;RC/ with F� D kf0kL1 :

Theorem 12.4. Assume that (12.3.1)–(12.3.4), .H�/ hold. If k�M0l < 1; then the
problem (12.1)–(12.2) has at least one mild solution on BC.

Proof. Consider the operator N W BC ! BC defined by:

.Ny/.t/ D

8

<̂

:̂

�.t/; if t 2 .�1; 0�,

T.t/ �.0/C
Z t

0

T.t � s/ f .s; y�.s;ys// ds; if t 2 J:

Let x.:/ W R ! E be the function defined by:

x.t/ D
8

<

:

�.t/; if t 2 .�1; 0�;

T.t/ �.0/; if t 2 J;

then x0 D �: For each z 2 BC with z.0/ D 0, we denote by z the function

z.t/ D
8

<

:

0; if t 2 .�1; 0�;

z.t/; if t 2 J:

If y satisfies y.t/ D .Ny/.t/, we can decompose it as y.t/ D z.t/C x.t/; t 2 J, which
implies yt D zt C xt for every t 2 J and the function z.:/ satisfies

z.t/ D
Z t

0

T.t � s/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds; t 2 J:

Set

BC0
0 D fz 2 BC0 W z.0/ D 0g

and let

kzkBC0
0

D supfjz.t/j W t 2 Jg; z 2 BC0
0:

BC0
0 is a Banach space with the norm k:kBC0

0
: We define the operator A W BC0

0 !
BC0

0 by:

A.z/.t/ D
Z t

0

T.t � s/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds; t 2 J:
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We shall show that the operator A satisfies all conditions of Schauder’s fixed point
theorem. The operator A maps BC0

0 into BC0
0; indeed the map A.z/ is continuous on

RC for any z 2 BC0
0, and for each t 2 J we have

jA.z/.t/j � M0
Z t

0

jf .s; z�.s;zsCxs/ C x�.s;zsCxs// � f .s; 0/C f .s; 0/jds

� M0
Z t

0

jf .s; 0/jds C M0
Z t

0

k.s/kz�.s;zsCxs/ C x�.s;zsCxs/kBds

� M0F� C M0
Z t

0

k.s/.ljz.s/j C .m C L� C lM0H/k�kB/ds:

Set

C WD .m C L� C lM0H/k�kB:

Then, we have

jA.z/.t/j � M0F� C M0C
Z t

0

k.s/ds C M0
Z t

0

ljz.s/jk.s/ds

� M0F� C M0Ck� C M0lkzkBC0
0
k�:

Hence, A.z/ 2 BC0
0:

Moreover, let r > 0 be such that

r � M0F� C M0Ck�

1 � M0k�l
;

and Br be the closed ball in BC0
0 centered at the origin and of radius r: Let z 2 Br

and t 2 RC: Then

jA.z/.t/j � M0F� C M0Ck� C M0k�lr:

Thus

kA.z/kBC0
0

� r;

which means that the operator A transforms the ball Br into itself.
Now we prove that A W Br ! Br satisfies the assumptions of Schauder’s fixed

theorem. The proof will be given in several steps.

Step 1: A is continuous in Br.

Let fzng be a sequence such that zn ! z in Br: At the first, we study the
convergence of the sequences .zn

�.s;zn
s /
/n2N; s 2 J:
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If s 2 J is such that �.s; zs/ > 0, then we have,

kzn
�.s;zn

s /
� z�.s;zs/kB � kzn

�.s;zn
s /

� z�.s;zn
s /

kB C kz�.s;zn
s /

� z�.s;zs/kB
� Lkzn � zkB C kz�.s;zn

s /
� z�.s;zs/kB;

which proves that zn
�.s;zn

s /
! z�.s;zs/ in B as n ! 1 for every s 2 J such that

�.s; zs/ > 0. Similarly, is �.s; zs/ < 0, we get

kzn
�.s;zn

s /
� z�.s;zs/kB D k�n

�.s;zn
s /

� ��.s;zs/kB D 0

which also shows that zn
�.s;zn

s /
! z�.s;zs/ in B as n ! 1 for every s 2 J such that

�.s; zs/ < 0. Combining the pervious arguments, we can prove that zn
�.s;zs/

! � for
every s 2 J such that �.s; zs/ D 0: Finally,

jA.zn/.t/ � A.z/.t/j

� M0
Z t

0

jf .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs// � f .s; z�.s;zsCxs/ C x�.s;zsCxs//jds

� M0
Z t

0

jf .s; z�.s;zn
s Cxs/ C x�.s;zn

s Cxs// � f .s; z�.s;zsCxs/ C x�.s;zsCxs//jds:

Then by .12:3:2/ we have

f .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs// ! f .s; z�.s;zsCxs/ C x�.s;zsCxs//; as n ! 1;

and by the Lebesgue dominated convergence theorem we get,

kA.zn/ � A.z/kBC0
0

! 0; as n ! 1:

Thus A is continuous.

Step 2: A.Br/ � Br this is clear.
Step 3: A.Br/ is equi-continuous on every compact interval Œ0; b� of RC for
b > 0. Let 
1; 
2 2 Œ0; b� with 
2 > 
1; we have:

jA.z/.
2/ � A.z/.
1/j

�
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/jf .s; z�.s;zsCxs/ C x�.s;zsCxs//jds

C
Z 
2


1

kT.
2 � s/kB.E/jf .s; z�.s;zsCxs/ C x�.s;zsCxs//jds

�
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/jf .s; z�.s;zsCxs/ C x�.s;zsCxs// � f .s; 0/jds

C
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/jf .s; 0/jds
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C
Z 
2


1

kT.
2 � s/kB.E/jf .s; z�.s;zsCxs/ C x�.s;zsCxs// � f .s; 0/jds

C
Z 
2


1

kT.
2 � s/kB.E/jf .s; 0/jds

� C
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/k.s/ds

CrL
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/k.s/ds

C
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/jf .s; 0/jds

CC
Z 
2


1

kT.
2 � s/kB.E/k.s/ds

CrL
Z 
2


1

kT.
2 � s/kB.E/k.s/ds

C
Z 
2


1

kT.
2 � s/kB.E/jf .s; 0/jds:

When 
2 ! 
1, the right-hand side of the above inequality tends to zero, since
T.t/ is a strongly continuous operator and the compactness of T.t/ for t > 0

implies the continuity in the uniform operator topology (see [168]), this proves
the equi-continuity.

Step 4: A.Br/.t/ is relatively compact on every compact interval of t 2 Œ0;1/.
Let t 2 Œ0; b� for b > 0 and let " be a real number satisfying 0 < " < t: For
z 2 Br we define

A".z/.t/ D T."/
Z t�"

0

T.t � s � "/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds:

Note that the set
�Z t�"

0

T.t � s � "/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds W z 2 Br

�

is bounded.
Since T.t/ is a compact operator for t > 0, the set,

fA".z/.t/ W z 2 Brg

is precompact in E for every ", 0 < " < t. Moreover, for every z 2 Br we have
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jA.z/.t/ � A".z/.t/j

�
Z t

t�"
T.t � s/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds

� M0F�"C M0C
Z t

t�"
k.s/ds C rM0

Z t

t�"
lk.s/ds;

! 0 as " ! 0:

Therefore, the set fA.z/.t/ W z 2 Brg is precompact, i.e., relatively compact.

Step 5: A.Br/ is equi-convergent.

Let t 2 RC and z 2 Br, we have,

jA.z/.t/j � M0
Z t

0

jf .s; z�.s;zsCxs/ C x�.s;zsCxs//jds

� M0F� C M0C
Z t

0

k.s/ds C M0r
Z t

0

Lk.s/ds

� M0F� C M0C
Z t

0

k.s/ds C M0rl
Z t

0

k.s/ds:

Then by .12:3:4/; we have

jA.z/.t/j ! M� � M0F� C M0Ck� C M0rlk�; as t ! C1:

Hence,

jA.z/.t/ � A.z/.C1/j ! 0; as t ! C1:

As a consequence of Steps 1–4, with Lemma 1.26, we can conclude that
A W Br ! Br is continuous and compact. From Schauder’s theorem, we deduce
that A has a fixed point z�: Then y� D z� C x is a fixed point of the operators N;
which is a mild solution of the problem (12.1)–(12.2). ut

12.2.3 An Example

Consider the following functional partial differential equation

@

@t
z.t; x/ � @2

@x2
z.t; x/ D e�t

Z 0

�1
z

�

s � �1.t/�2
�Z �

0

a.�/jz.t; �/j2d�
�

; x

�

ds;

x 2 Œ0; ��; t 2 RC (12.4)

z.t; 0/ D z.t; �/ D 0; t 2 RC; (12.5)

z.�; x// D z0.�; x/; t 2 .�1; 0�; x 2 Œ0; ��; (12.6)
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where z0 © 0. Set

f .t;  /.x/ D
Z 0

�1
e�t .s; x/ds;

and

�.t;  / D t � �1.t/�2
�Z �

0

a2.�/j .t; �/j2d�
�

;

�i W RC ! RC; i D 1; 2 and a W R ! R are continuous functions.
Take E D L2Œ0; �� and define A W E ! E by A! D !00 with domain

D.A/ D f! 2 E; !; !0are absolutely continuous; !00 2 E; !.0/ D !.�/ D 0g:

Then

A! D
1X

nD1
n2.!; !n/!n; ! 2 D.A/

where !n.s/ D
q

2
�

sin ns; n D 1; 2; : : : is the orthogonal set of eigenvectors in
A: It is well known (see [168]) that A is the infinitesimal generator of an analytic
semigroup T.t/; t � 0 in E and is given by

T.t/! D
1X

nD1
exp.�n2t/.!; !n/!n; ! 2 E:

Since the analytic semigroup T.t/ is compact, there exists a positive constant M
such that

kT.t/kB.E/ � M:

Let B D BCU.R�;E/ and � 2 B; then .H�/:

The function f .t;  /.x/ is Carathéodory, and

jf .t;  1/.x/ � f .t;  2/.x/j � e�tj 1.t; x/ �  2.t; x/j;

thus k.t/ D e�t, moreover we have

k� D sup

�Z t

0

e�sds; t 2 RC
�

D 1; f0 
 0:
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Then the problem (12.1)–(12.2) is an abstract formulation of the problem (12.4)–
(12.6), and conditions (12.3.1)–(12.3.4), .H�/ are satisfied. Theorem 12.4 implies
that the problem (12.4)–(12.6) has at least one mild solutions on BC:

12.3 Global Existence Results for Neutral Functional
Differential Equations with State-Dependent Delay

12.3.1 Introduction

In this section we prove the existence solutions of a functional differential equation.
Our investigations will be situated in the Banach space of real functions which
are defined, continuous, and bounded on the real axis R. We will use Schauder’s
fixed point theorem combined with the semigroup theory to have the existence
of solutions of the following functional differential equation with state-dependent
delay:

d

dt
Œy.t/ � g.t; y�.t;yt//� D AŒy.t/ � g.t; y�.t;yt//�C f .t; y�.t;yt//; a.e. t 2 J WD RC

(12.7)

y.t/ D �.t/; t 2 .�1; 0�; (12.8)

where f ; g W J � B ! E are given functions, A W D.A/ � E ! E is the infinitesimal
generator of a strongly continuous semigroup T.t/; t 2 J; B is the phase space to be
specified later, � 2 B, � W J � B ! R, and .E; j:j/ is a real Banach space.

12.3.2 Existence of Mild Solutions

Definition 12.5. We say that a continuous function y W .�1;C1/ ! E is a mild
solution of problem (11.15)–(11.16) if y.t/ D �.t/; t 2 .�1; 0� and the restriction
of y.:/ to the interval RC is continuous and satisfies the following integral equation:

y.t/ D T.t/Œ�.0/ � g.0; �.0//�C g.t; y�.t;yt//C
Z t

0

T.t � s/f .s; y�.s;ys//ds; t 2 J:

Set

R.��/ D f�.s; �/ W .s; �/ 2 J � B; �.s; �/ � 0g:
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We always assume that � W J �B ! R is continuous. Additionally, we introduce
the following hypothesis:

.H�/ The function t ! �t is continuous from R.��/ into B and there exists a
continuous and bounded function L� W R.��/ ! .0;1/ such that

k�tk � L�.t/k�k for every t 2 R.��/:

Remark 12.6. The condition .H�/ is frequently verified by functions continuous
and bounded.

Lemma 12.7 ([139]). If y W R ! E is a function such that y0 D �, then

kyskB � .M C L�/k�kB C l supfjy.�/j W � 2 Œ0;maxf0; sg�g; s 2 R.��/ [ J;

where L� D sup
t2R.��/

L�.t/.

Let us introduce the following hypotheses:

(12.7.1) A W D.A/ � E ! E is the infinitesimal generator of a strongly continuous
semigroup T.t/; t 2 J which is compact for t > 0 in the Banach space E.
Let M0 D supfkTkB.E/ W t � 0g:

(12.7.2) The function f W J � B ! E is Carathéodory.
(12.7.3) There exists a continuous function k W J ! RC such that:

jf .t; u/ � f .t; v/j � k.t/ku � vkB; t 2 J; u; v 2 B

and

k� WD sup
t2J

Z t

0

k.s/ds < 1:

(12.7.4) The function t ! f .t; 0/ D f0 2 L1.J;RC/ with F� D kf0kL1 :

(12.7.5) The function g.t; �/ is continuous on J and there exists a constant kg > 0

such that

jg.t; u/ � g.t; v/j � kgku � vkB; for each; u; v 2 B

and

g� WD sup
t2J

jg.t; 0/j < 1:

(12.7.6) For each t 2 J and any bounded set B � B, the set fg.t; u/ W u 2 Bg is
relatively compact in E

(12.7.7) For any bounded set B � B, the function ft ! g.t; yt/ W y 2 Bg is equi-
continuous on each compact interval of RC.



12.3 Global Existence Results for Neutral Functional Differential Equations. . . 363

Remark 12.8. By the condition .12:7:3/; .12:7:4/ we deduce that

jf .t; y/j � k.t/kukB C F�; t 2 J; u 2 B;
and by .12:7:5/ we deduce that:

jg.t; u/j � kgkukB C g� t 2 J; u 2 B:

Theorem 12.9. Assume that (12.7.1)–(12.7.7) and .H�/ hold. If l.M0k� C ˛1/ < 1;

then the problem (12.1)–(12.2) has at least one mild solution on BC.

Proof. Transform the problem (12.1)–(12.2) into a fixed point problem. Consider
the operator N W BC ! BC defined by:

.Ny/.t/ D

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

�.t/I if t 2 .�1; 0�,

T.t/ Œ�.0/ � g.0; �.0//�

Cg.t; y�.t;yt//C
Z t

0

T.t � s/ f .s; y�.s;ys// dsI if t 2 J:

Let x.:/ W R ! E be the function defined by:

x.t/ D
8

<

:

�.t/I if t 2 .�1; 0�;

T.t/ �.0/I if t 2 J;

then x0 D �: For each z 2 BC with z.0/ D 0, we denote by z the function

z.t/ D
8

<

:

0I if t 2 .�1; 0�;

z.t/I if t 2 J:

If y satisfies y.t/ D .Ny/.t/, we can decompose it as y.t/ D z.t/C x.t/; t 2 J, which
implies yt D zt C xt for every t 2 J and the function z.:/ satisfies

z.t/ D g.t; z�.t;ztCxt/ C x�.t;ztCxt// � T.t/g.0; �.0//

C
Z t

0

T.t � s/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds; t 2 J:

Set

BC0
0 D fz 2 BC0 W z.0/ D 0g

and let

kzkBC0
0

D supfjz.t/j W t 2 Jg; z 2 BC0
0:
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BC0
0 is a Banach space with the norm k:kBC0

0
: We define the operator A W BC0

0 !
BC0

0 by:

A.z/.t/ D g.t; z�.t;ztCxt/ C x�.t;ztCxt// � T.t/g.0; �.0//

C
Z t

0

T.t � s/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds; t 2 J:

We shall show that the operator A satisfies all conditions of Schauder’s fixed point
theorem. The operator A maps BC0

0 into BC0
0; indeed the map A.z/ is continuous on

RC for any z 2 BC0
0, and for each t 2 J we have

jA.z/.t/j � jg.t; z�.t;ztCxt/ C x�.t;ztCxt//j C M0jg.0; �.0//j

CM0
Z t

0

jf .s; z�.s;zsCxs/ C x�.s;zsCxs// � f .s; 0/C f .s; 0/jds

� M0.kgk�kB C g�/C kgkz�.t;ztCxt/ C x�.t;ztCxt/kB C g�

CM0
Z t

0

jf .s; 0/jds C M0
Z t

0

k.s/kz�.s;zsCxs/ C x�.s;zsCxs/kBds

� M0.kgk�kB C g�/C kg.ljz.t/j C .m C L� C lM0H/k�kB/C g�

CM0F� C M0
Z t

0

k.s/.ljz.s/j C .m C L� C lM0H/k�kB/ds:

Set

C1 WD .m C L� C lM0H/k�kB:
C2 WD M0.kgk�kB C g�/C kg.m C L� C lM0H/k�kB C g� C M0F�:

Then, we have

jA.z/.t/j � C2 C kgljz.t/j C M0C1
Z t

0

k.s/ds C M0
Z t

0

ljz.s/jk.s/ds

� C2 C kglkzkBC0
0

C M0Ck� C M0lkzkBC0
0
k�:

Hence, A.z/ 2 BC0
0:

Moreover, let r > 0 be such that

r � C2 C M0Ck�

1 � l.M0k� C ˛1/
;



12.3 Global Existence Results for Neutral Functional Differential Equations. . . 365

and Br be the closed ball in BC0
0 centered at the origin and of radius r: Let z 2 Br

and t 2 RC: Then

jA.z/.t/j � C2 C kglr C M0Ck� C M0k�lr:

Thus

kA.z/kBC0
0

� r;

which means that the operator A transforms the ball Br into itself.
Now we prove that A W Br ! Br satisfies the assumptions of Schauder’s fixed

theorem. The proof will be given in several steps.

Step 1: A is continuous in Br.

Let fzng be a sequence such that zn ! z in Br: At the first, we study the
convergence of the sequences .zn

�.s;zn
s /
/n2N; s 2 J:

If s 2 J is such that �.s; zs/ > 0, then we have,

kzn
�.s;zn

s /
� z�.s;zs/kB � kzn

�.s;zn
s /

� z�.s;zn
s /

kB C kz�.s;zn
s /

� z�.s;zs/kB
� lkzn � zkBr C kz�.s;zn

s /
� z�.s;zs/kB;

which proves that zn
�.s;zn

s /
! z�.s;zs/ in B as n ! 1 for every s 2 J such that

�.s; zs/ > 0. Similarly, is �.s; zs/ < 0, we get

kzn
�.s;zn

s /
� z�.s;zs/kB D k�n

�.s;zn
s /

� ��.s;zs/kB D 0

which also shows that zn
�.s;zn

s /
! z�.s;zs/ in B as n ! 1 for every s 2 J such that

�.s; zs/ < 0. Combining the pervious arguments, we can prove that zn
�.s;zs/

! � for
every s 2 J such that �.s; zs/ D 0: Finally,

jA.zn/.t/ � A.z/.t/j
� jg.t; zn

�.t;zn
t Cxt/

C x�.t;zn
t Cxt// � g.t; z�.t;ztCxt/ C x�.t;ztCxt//j

C M0
Z t

0

jf .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs// � f .s; z�.s;zsCxs/ C x�.s;zsCxs//jds

� jg.t; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs// � g.t; z�.s;zsCxs/ C x�.s;zsCxs//j

CM0
Z t

0

jf .s; z�.s;zn
s Cxs/ C x�.s;zn

s Cxs// � f .s; z�.s;zsCxs/ C x�.s;zsCxs//jds:

Then by .12:7:2/; .12:7:5/ we have

f .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs// ! f .s; z�.s;zsCxs/ C x�.s;zsCxs//; as n ! 1;

g.t; zn
�.t;zn

t Cxt/
C x�.t;zn

t Cxt// ! g.t; z�.t;ztCxt/ C x�.t;ztCxt//; as n ! 1;
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and by the Lebesgue dominated convergence theorem we get,

kA.zn/ � A.z/kBC0
0

! 0; as n ! 1:

Thus A is continuous.

Step 2: A.Br/ � Br: This is clear.
Step 3: A.Br/ is equi-continuous on every compact interval Œ0; b� of RC for
b > 0. Let 
1; 
2 2 Œ0; b� with 
2 > 
1; we have:

jA.z/.
2/ � A.z/.
1/j
� jg.
2; z�.
2;z
2Cx
2 /

C x�.
2;z
2Cx
2 /
/ � g.
1; z�.
1;z
1Cx
1 /

C x�.
1;z
1Cx
1 /
/j

CkT.
2/ � T.
1/kB.E/jg.0; �.0//j

C
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/jf .s; z�.s;zsCxs/ C x�.s;zsCxs//jds

C
Z 
2


1

kT.
2 � s/kB.E/jf .s; z�.s;zsCxs/ C x�.s;zsCxs//jds

� jg.
2; z�.
2;z
2Cx
2 /
C x�.
2;z
2Cx
2 /

/ � g.
1; z�.
1;z
1Cx
1 /
C x�.
1;z
1Cx
1 /

/j
CkT.
2/ � T.
1/kB.E/.kgk�kB C g�/

C
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/jf .s; z�.s;zsCxs/ C x�.s;zsCxs// � f .s; 0/jds

C
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/jf .s; 0/jds

C
Z 
2


1

kT.
2 � s/kB.E/jf .s; z�.s;zsCxs/ C x�.s;zsCxs// � f .s; 0/jds

C
Z 
2


1

kT.
2 � s/kB.E/jf .s; 0/jds

� kgjg.
2; z�.
2;z
2Cx
2 /
C x�.
2;z
2Cx
2 /

/ � g.
1; z�.
1;z
1Cx
1 /
C x�.
1;z
1Cx
1 /

/j
CkT.
2/ � T.
1/kB.E/.kgk�kB C g�/

CC1

Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/k.s/ds

CrL
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/k.s/ds

C
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/jf .s; 0/jds
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CC1

Z 
2


1

kT.
2 � s/kB.E/k.s/ds

CrL
Z 
2


1

kT.
2 � s/kB.E/k.s/ds

C
Z 
2


1

kT.
2 � s/kB.E/jf .s; 0/jds:

When 
2 ! 
1, the right-hand side of the above inequality tends to zero. Since
.12:7:7/ and T.t/ is a strongly continuous operator and the compactness of T.t/
for t > 0; implies the continuity in the uniform operator topology (see [168]),
this proves the equi-continuity.

Step 4: The set A.Br/.t/ is relatively compact on every compact interval of
Œ0;1/. Let t 2 Œ0; b� for b > 0 and let " be a real number satisfying 0 < " < t:
For z 2 Br we define

A".z/.t/ D g.t; z�.t;ztCxt/ C x�.t;ztCxt/// � T."/.T.t � "/g.0; �.0///

CT."/
Z t�"

0

T.t � s � "/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds:

Note that the set

fg.t; z�.t;ztCxt/ C x�.t;ztCxt// � T.t � "/g.0; �.0//

C
Z t�"

0

T.t � s � "/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds W z 2 Brg

is bounded.

jg.t; z�.t;ztCxt/ C x�.t;ztCxt// � T.t � "/g.0; �.0//:

C
Z t�"

0

T.t � s � "/f .s; z�.s;zsCxs/ C x�.s;zsCxs//dsj � r

Since T.t/ is a compact operator for t > 0, and .12:7:6/ we have that the set,

fA".z/.t/ W z 2 Brg

is precompact in E for every ", 0 < " < t. Moreover, for every z 2 Br we have

jA.z/.t/ � A".z/.t/j

�
Z t

t�"
T.t � s/f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds
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� M0F�"C M0C
Z t

t�"
k.s/ds C rM0

Z t

t�"
lk.s/ds;

! 0 as " ! 0:

Therefore, the set fA.z/.t/ W z 2 Brg is precompact, i.e., relatively compact.

Step 5: A.Br/ is equi-convergent.

Let t 2 RC and z 2 Br, we have,

jA.z/.t/j � jg.t; z�.t;ztCxt/ C x�.t;ztCxt//j C M0jg.0; �.0//j

CM0
Z t

0

jf .s; z�.s;zsCxs/ C x�.s;zsCxs//jds

� C2 C kglr C M0C
Z t

0

k.s/ds C M0rl
Z t

0

k.s/ds:

Then we have

jA.z/.t/j ! C3 � C2 C kglr C M0Ck� C M0lrk�; as t ! C1:

Hence,

jA.z/.t/ � A.z/.C1/j ! 0; as t ! C1:

As a consequence of Steps 1–5, we can conclude that A W Br ! Br is continuous
and compact. From Schauder’s theorem, we deduce that A has a fixed point z�:
Then y� D z� C x is a fixed point of the operators N; which is a mild solution of the
problem (12.7)–(12.8). ut

12.3.3 An Example

Consider the following neutral functional partial differential equation:

@

@t
Œz.t; x/ � g.t; z.t � �.t; z.t; 0//; x//� D @2

@x2
Œz.t; x/ � g.t; z.t � �.t; z.t; 0//; x//�

f .t; z.t � �.t; z.t; 0//; x//; x 2 Œ0; ��; t 2 RC (12.9)

z.t; 0/ D z.t; �/ D 0; t 2 RC; (12.10)

z.�; x/ D z0.�; x/; t 2 .�1; 0�; x 2 Œ0; ��; (12.11)

where f ; g is a given functions, and � W R ! RC: Take E D L2Œ0; �� and define
A W E ! E by A! D !00 with domain

D.A/ D f! 2 E; !; !0are absolutely continuous; !00 2 E; !.0/ D !.�/ D 0g:
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Then

A! D
1X

nD1
n2.!; !n/!n; ! 2 D.A/;

where !n.s/ D
q

2
�

sin ns; n D 1; 2; : : : is the orthogonal set of eigenvectors in A:
It is well known that A is the infinitesimal generator of an analytic semigroup
T.t/; t � 0 in E and is given by

T.t/! D
1X

nD1
exp.�n2t/.!; !n/!n; ! 2 E:

Since the analytic semigroup T.t/ is compact for t > 0, there exists a positive
constant M such that

kT.t/kB.E/ � M:

Let B D BCU.R�;E/ and � 2 B; then .H�/; where �.t; '/ D t � �.'/:
Hence, the problem (12.1)–(12.2) is an abstract formulation of the problem

(12.9)–(12.11), and if the conditions (12.3.1)–(12.3.6), .H�/ are satisfied.
Theorem 12.9 implies that the problem (12.9)–(12.11) has at least one mild solutions
on BC:

12.4 Global Existence Results for Functional Differential
Inclusions with Delay

12.4.1 Introduction

In this section we are going to prove the existence of solutions of a class of semi-
linear functional evolution inclusion with delay. Our investigations will be situated
in the Banach space of real continuous and bounded functions on the real half
axis RC. We will use Bohnenblust–Karlin’s fixed theorem, combined with the
Corduneanu’s compactness criteria. More precisely, we will consider the following
problem

y0.t/ � Ay.t/ 2 F.t; yt/; a.e. t 2 J WD RC (12.12)

y.t/ D �.t/; t 2 H; (12.13)

where F W J � C.H;E/ ! P.E/ is a multi-valued map with nonempty compact
values, P.E/ is the family of all nonempty subsets of E; A W D.A/ � E ! E is the
infinitesimal generator of a strongly continuous semigroup T.t/; t 2 J; � W H ! E
is given continuous function, and .E; j:j/ is a real Banach space.
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12.4.2 Existence of Mild Solutions

Let us introduce the following hypotheses:

(12.5.1) A W D.A/ � E ! E is the infinitesimal generator of a strongly continuous
semigroup T.t/; t 2 J which is compact for t > 0 in the Banach space E.
Let M D supfkT.t/kB.E/ W t � 0g:

(12.5.2) The multi-function F W J � C.H;E/ �! P.E/ is Carathéodory with
compact and convex values.

(12.5.3) There exists a continuous function k W J ! RC such that:

Hd.F.t; u/;F.t; v// � k.t/ku � vk;
for each t 2 J and for all u; v 2 C.H;E/ and

d.0;F.t; 0// � k.t/;

with

k� WD sup
t2J

Z t

0

k.s/ds < 1: (12.14)

Theorem 12.10. Assume that (12.5.1)–(12.5.3) hold. If k�M < 1; then the problem
(12.12)–(12.13) has at least one mild solution on BC:

Proof. Consider the multi-valued operator N W BC ! P.BC/ defined by:

N.y/ WD

8

ˆ̂

<̂

ˆ̂

:̂

h 2 BC W h.t/ D

8

ˆ̂

<̂

ˆ̂

:̂

�.t/; if t 2 H;

T.t/�.0/

C
Z t

0

T.t � s/ f .s/ ds; f 2 SF;y if t 2 J:

9

>>>=

>>>;

(12.15)

The operator N maps BC into BCI for any y 2 BC, and h 2 N.y/ and for each t 2 J,
we have

jh.t/j � Mk�k C M
Z t

0

jf .s/jds

� Mk�k C M
Z t

0

.k.s/kysk C kF.s; 0/k/ds

� Mk�k C M
Z t

0

k.s/.kysk C 1/ds

� Mk�k C M.kykBC C 1/k� WD c:

Hence, h.t/ 2 BC:
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Moreover, let r > 0 be such that r � Mk�kCMk�

1�Mk� ; and Br be the closed ball in BC
centered at the origin and of radius r: Let y 2 Br and t 2 RC: Then,

jh.t/j � Mk�k C Mk� C Mk�r:

Thus,

khkBC � r;

which means that the operator N transforms the ball Br into itself.
Now we prove that N W Br ! Br satisfies the assumptions of Bohnenblust–

Karlin’s fixed theorem. The proof will be given in several steps.

Step 1: We shall show that the operator N is closed and convex. This will be
given in two claims.

Claim 1: N.y/ is closed for each y 2 Br: Let .hn/n�0 2 N.y/ such that hn ! Qh
in Br: Then for hn 2 Br there exists fn 2 SF;y such that:

hn.t/ D T.t/�.0/C
Z t

0

T.t � s/fn.s/ds:

Since F has compact and convex values and from hypotheses .12:5:2/; .12:5:3/, an
application of Mazur’s theorem [185] implies that we may pass to a subsequence
if necessary to get that fn converges to f 2 L1.J;E/ and hence f 2 SF;y: Then for
each t 2 J;

hn.t/ ! Qh.t/ D T.t/�.0/C
Z t

0

T.t � s/f .s/ds:

So, Qh 2 N.y/:

Claim 2: N.y/ is convex for each y 2 Br:

Let h1; h2 2 N.y/; the there exists f1; f2 2 SF;y such that, for each t 2 J we have:

hi.t/ D T.t/�.0/C
Z t

0

T.t � s/fi.s/ds; i D 1; 2:

Let 0 � ı � 1: Then, we have for each t 2 J:

.ıh1 C .1 � ı/h2/.t/ D T.t/�.0/C
Z t

0

T.t � s/Œıf1.s/C .1 � ı/f2.s/�ds:

Since F.t; y/ is convex, one has

ıh1 C .1 � ı/h2 2 N.y/:
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Step 2: N.Br/ � Br this is clear.
Step 3: N.Br/ is equi-continuous on every compact interval Œ0; b� of RC for
b > 0: Let 
1; 
2 2 Œ0; b� with 
2 > 
1; we have

jh.
2/ � h.
1/j � kT.
2 � s/ � T.
1 � s/kB.E/k�k

C
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/jf .s/jds

C
Z 
2


1

kT.
2 � s/kB.E/jf .s/jds

� kT.
2 � s/ � T.
1 � s/kB.E/k�k

C
Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/.k.s/kysk C jF.s; 0/j/ds

C
Z 
2


1

kT.
2 � s/kB.E/.k.s/kysk C jF.s; 0/j/ds

� kT.
2 � s/ � T.
1 � s/kB.E/k�k

C.r C 1/

Z 
1

0

kT.
2 � s/ � T.
1 � s/kB.E/k.s/ds

C.r C 1/

Z 
2


1

kT.
2 � s/kB.E/k.s/ds:

When 
2 ! 
1, the right-hand side of the above inequality tends to zero, since
T.t/ is a strongly continuous operator and the compactness of T.t/ for t > 0;

implies the continuity in the uniform operator topology (see [168]). This proves
the equi-continuity.

Step 4: N.Br/ is relatively compact on every compact interval of RC: Let t 2
Œ0; b� for b > 0 and let " be a real number satisfying 0 < " < t: For y 2 Br; let
h 2 N.y/; f 2 SF;y and define

h".t/ D T.t/�.0/C T."/
Z t�"

0

T.t � s � "/f .s/ds:

Note that the set
�

T.t/�.0/C
Z t�"

0

T.t � s � "/f .s/ds W y 2 Br

�

is bounded.

jT.t/�.0/C
Z t�"

0

T.t � s � "/f .s/dsj � r:
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Since T.t/ is a compact operator for t > 0, the set,

H".t/ D fh".t/ W h" 2 N.y/; y 2 Brg

is precompact in E for every ", 0 < " < t. Moreover, for every y 2 Br we have

jh.t/ � h".t/j � M
Z t

t�"
jf .s/jds

� M
Z t

t�"
.k.s/kysk C jF.s; 0j/ds

� M.1C r/
Z t

t�"
k.s/ds

! 0 as " ! 0:

Therefore, the set H.t/ D fh.t/ W h 2 N.y/; y 2 Brg is precompact, i.e., relatively
compact. Hence the set H.t/ D fh.t/ W h 2 N.Br/g is relatively compact.

Step 5: N has closed graph.

Let fyng be a sequence such that yn ! y�; hn 2 N.yn/ and hn ! h�: We shall
show that h� 2 N.y�/: hn 2 N.yn/ means that there exists fn 2 SF;yn such that

hn.t/ D T.t/ �.0/C
Z t

0

T.t � s/ fn.s/ ds; t 2 J:

We must prove that there exists f�

h�.t/ D T.t/ �.0/C
Z t

0

T.t � s/ f�.s/ ds; t 2 J:

Consider the linear and continuous operator K W L1.J;E/ ! BC defined by

K.v/.t/ D
Z t

0

T.t � s/v.s/ds:

We have

jK.fn/.t/ � K.f�/.t/j D
j.hn.t/ � T.t/ �.0// � .h�.t/ � T.t/ �.0//j D jhn.t/ � h�.t/j

� khn � h�k1 ! 0; as n ! 1:

From Lemma 1.11 it follows that K ı SF is a closed graph operator and from the
definition of K has

hn.t/ � T.t/�.0/ 2 K ı SF;yn :
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As yn ! y� and hn ! h�, there exist f� 2 SF;y�
such that:

h�.t/ � T.t/�.0/ D
Z t

0

T.t � s/ f�.s/:

Hence the multi-valued operator N has closed graph, which implies that it is upper
semi-continuous.

Step 6: N.Br/ is equi-convergent. Let h 2 N.y/, there exists f 2 SF;y such that
for each t 2 RC and y 2 Br we have

jh.t/j � Mk�k C M
Z t

0

jf .s/jds

� Mk�k C Mk� C Mr
Z t

0

k.s/ds

� Mk�k C Mk� C Mrk�:

Then,

jh.t/j ! l � Mk�k C Mk�.1C r/; as t ! C1:

Hence,

jh.t/ � h.C1/j ! 0; as t ! C1:

As a consequence of Steps 1 � 6, and Lemma 1.26, we conclude from
Bohnenblust–Karlin’s theorem that N has a fixed point y which is a mild solution
of the problem (12.12)–(12.13).

ut

12.4.3 An Example

Consider the functional partial differential inclusion

@

@t
z.t; x/ � @2

@x2
z.t; x/ 2 F.t; z.t � r; x//; x 2 Œ0; ��; t 2 J WD RC; (12.16)

z.t; 0/ D z.t; �/ D 0; t 2 J; (12.17)

z.t; x/ D �.t/; t 2 H; x 2 Œ0; ��; (12.18)

where F is a given multi-valued map. Take E D L2Œ0; �� and define A W E ! E by
A! D !00 with domain

D.A/ D f! 2 EI!;!0are absolutely continuous; !00 2 E; !.0/ D !.�/ D 0g:
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Then,

A! D
1X

nD1
n2.!; !n/!n; ! 2 D.A/

where !n.s/ D
q

2
�

sin ns; n D 1; 2; : : :, is the orthogonal set of eigenvectors in A:
It is well known (see [168]) that A is the infinitesimal generator of an analytic
semigroup T.t/; t � 0 in E and is given by

T.t/! D
1X

nD1
exp.�n2t/.!; !n/!n; ! 2 E:

Since the analytic semigroup T.t/ is compact for t > 0, there exists a positive
constant M such that

kT.t/kB.E/ � M:

Then the problem (12.12)–(12.13) is the abstract formulation of the problem
(12.16)–(12.18). If conditions (12.5.1)–(12.5.3) are satisfied, Theorem 12.10
implies that the problem (12.16)–(12.18) has at least one global mild solution
on BC:

12.5 Global Existence Results for Functional Differential
Inclusions with State-Dependent Delay

12.5.1 Introduction

In this section we are going to prove the existence of solutions of a functional
differential inclusion. Our investigations will be situated in the Banach space of
real functions which are defined, continuous, and bounded on the real axis R.
We will use Bohnenblust–Karlin’s fixed theorem, combined with the Corduneanu’s
compactness criteria. More precisely we will consider the following problem:

y0.t/ � Ay.t/ 2 F.t; y�.t;yt//; a.e. t 2 J WD RC (12.19)

y.t/ D �.t/; t 2 .�1; 0�; (12.20)

where F W J � B ! P.E/ is a multi-valued map with nonempty compact values,
P.E/ is the family of all nonempty subsets of E; A W D.A/ � E ! E is the
infinitesimal generator of a strongly continuous semigroup T.t/; t 2 J; and .E; j:j/
is a real Banach space. B is the phase space, � 2 B, � W J � B ! R.
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12.5.2 Existence of Mild Solutions

Now we give our main existence result for problem (12.19)–(12.20). Before starting
and proving this result, we give the definition of the mild solution.

Definition 12.11. We say that a continuous function y W .�1;C1/ ! E is a mild
solution of problem (12.19)–(12.20) if y.t/ D �.t/ for all t 2 .�1; 0�; and the
restriction of y.�/ to the interval J is continuous and there exists f .�/ 2 L1.J;E/:
f .t/ 2 F.t; y�.t;yt// a.e. in J such that y satisfies the following integral equation

y.t/ D T.t/�.t/ �
Z t

0

T.t � s/ f .s/ ds for each t 2 J: (12.21)

Set

R.��/ D f�.s; �/ W .s; �/ 2 J � B; �.s; �/ � 0g:
We always assume that � W J � B ! R is continuous. Additionally, we introduce
the following hypothesis:

.H�/ The function t ! �t is continuous from R.��/ into B and there exists a
continuous and bounded function L� W R.��/ ! .0;1/ such that

k�tk � L�.t/k�k for every t 2 R.��/:

Remark 12.12. The condition .H�/, is frequently verified by functions continuous
and bounded.

Let us introduce the following hypotheses:

(12.11.1) A W D.A/ � E ! E is the infinitesimal generator of a strongly continuous
semigroup T.t/; t 2 J which is compact for t > 0 in the Banach space E.
Let M0 D supfkTkB.E/ W t � 0g:

(12.11.2) The multi-function F W J � B �! P.E/ is Carathéodory with compact
and convex values.

(12.11.3) There exists a continuous function k W J ! RC such that:

Hd.F.t; u/;F.t; v// � k.t/ ku � vkB
for each t 2 J and for all u; v 2 B and

d.0;F.t; 0// � k.t/

with

k� WD sup
t2J

Z t

0

k.s/ds < 1: (12.22)
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Theorem 12.13. Assume that (12.11.1)–(12.11.3),.H�/ hold. If k�M0L < 1; then
the problem (12.19)–(12.20) has at least one mild solution on BC.

Proof. Consider the multi-valued operator N W BC ! P.BC/ defined by:

N.y/ WD

8

<̂

:̂

h 2 BC W h.t/ D

8

<̂

:̂

�.t/; if t 2 .�1; 0�;

T.t/ �.0/C
Z t

0
T.t � s/ f .s/ ds; if t 2 J;

9

>=

>;

where f 2 SF;y�.s;ys/
:

Let x.�/ W R ! E be the function defined by:

x.t/ D
8

<

:

�.t/; if t 2 .�1; 0�;

T.t/ �.0/; if t 2 J:

Then x0 D �: For each z 2 BC with z.0/ D 0, we denote by z the function

z.t/ D
8

<

:

0; if t 2 .�1; 0�;

z.t/; if t 2 J;

if y.�/ satisfies (12.21), we can decompose it as y.t/ D z.t/ C x.t/; t 2 J, which
implies yt D zt C xt for every t 2 J and the function z.�/ satisfies

z.t/ D
Z t

0

T.t � s/f .s/ds; t 2 J;

where f 2 SF;z�.s;zsCxs/Cx�.s;zsCxs/
:

Set

BC0
0 D fz 2 BC0 W z.0/ D 0g

and let

kzkBC0
0

D supfjz.t/j W t 2 Jg; z 2 BC0
0:

BC0
0 is a Banach space with the norm k � kBC0

0
:

We define the operator A W BC0
0 ! P.BC0

0/ by:

A.z/ WD

8

<̂

:̂

h 2 BC0
0 W h.t/ D

8

<̂

:̂

0; if t � 0;
Z t

0

T.t � s/ f .s/ ds; if t 2 J;

9

>=

>;
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where f 2 SF;z�.s;zsCxs/Cx�.s;zsCxs/
:

The operator A maps BC0
0 into BC0

0; indeed the map A.z/ is continuous on RC
for any z 2 BC0

0, h 2 A.z/ and for each t 2 J we have

jh.t/j � M0
Z t

0

jf .s/jds

� M0
Z t

0

.k.s/kz�.s;zsCxs/ C x�.s;zsCxs/kB C jF.s; 0/j/ds

� M0
Z t

0

k.s/ds C M0
Z t

0

k.s/.Ljz.s/j C .M C L� C LM0H/k�kB/ds

� M0k� C M0
Z t

0

k.s/.Ljz.s/j C .M C L� C LM0H/k�kB/ds:

Set

C WD .M C L� C LM0H/k�kB:

Then, we have

jh.t/j � M0k� C M0C
Z t

0

k.s/ds C M0
Z t

0

Ljz.s/jk.s/ds

� M0k� C M0Ck� C M0LkzkBC0
0
k�:

Hence, A.z/ 2 BC0
0:

Moreover, let r > 0 be such that

r � M0k� C M0Ck�

1 � M0k�L
;

and Br be the closed ball in BC0
0 centered at the origin and of radius r: Let z 2 Br

and t 2 RC: Then

jh.t/j � M0k� C M0Ck� C M0k�Lr:

Thus

khkBC0
0

� r;

which means that the operator A transforms the ball Br into itself.
Now we prove that A W Br ! P.Br/ satisfies the assumptions of Bohnenblust–

Karlin’s fixed theorem. The proof will be given in several steps.
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Step 1: We shall show that the operator A is closed and convex. This will be
given in several claims.

Claim 1: A.z/ is closed for each z 2 Br:

Let .hn/n�0 2 A.z/ such that hn ! Qh in Br: Then for hn 2 Br there exists
fn 2 SF;z�.s;zsCxs/Cx�.s;zsCxs/

such that for each t 2 J;

hn.t/ D
Z t

0

T.t � s/fn.s/ds:

Using the fact that F has compact values and from hypotheses .12:11:2/; .12:11:3/
we may pass a subsequence if necessary to get that fn converges to f 2 L1.J;E/ and
hence f 2 SF;z�.s;zsCxs/Cx�.s;zsCxs/

: Then for each t 2 J;

hn.t/ ! Qh.t/ D
Z t

0

T.t � s/f .s/ds:

So, Qh 2 A.z/:
Claim 2: A.z/ is convex for each z 2 Br:

Let h1; h2 2 A.z/; the there exists f1; f2 2 SF;z�.s;zsCxs/Cx�.s;zsCxs/
such that, for each

t 2 J we have:

hi.t/ D
Z t

0

T.t � s/fi.s/ds; i D 1; 2:

Let 0 � ı � 1: Then, we have for each t 2 J:

.ıh1 C .1 � ı/h2/.t/ D
Z t

0

T.t � s/Œıf1.s/C .1 � ı/f2.s/�ds:

Since F has convex values, one has

ıh1 C .1 � ı/h2 2 A.z/

Step 2: A.Br/ � Br this is clear.
Step 3: A.Br/ is equi-continuous on every compact interval Œ0; b� of RC for
b > 0. Let 
1; 
2 2 Œ0; b�; h 2 A.z/ with 
2 > 
1; we have:

jh.
2/ � h.
1/j

�
Z 
1

0
kT.
2 � s/ � T.
1 � s/kB.E/jf .s/jds

C
Z 
2


1

kT.
2 � s/kB.E/jf .s/jds



380 12 Functional Differential Equations and Inclusions with Delay

�
Z 
1

0
kT.
2 � s/ � T.
1 � s/kB.E/.k.s/kz�.s;zsCxs/ C x�.s;zsCxs/kB C jF.s; 0/j/ds

C
Z 
2


1

kT.
2 � s/kB.E/.k.s/kz�.s;zsCxs/ C x�.s;zsCxs/kB C jF.s; 0/j/ds

� C
Z 
1

0
kT.
2 � s/ � T.
1 � s/kB.E/k.s/ds

CrL
Z 
1

0
kT.
2 � s/ � T.
1 � s/kB.E/k.s/ds

C
Z 
1

0
kT.
2 � s/ � T.
1 � s/kB.E/k.s/ds

CC
Z 
2


1

kT.
2 � s/kB.E/k.s/ds

CrL
Z 
2


1

kT.
2 � s/kB.E/k.s/ds

C
Z 
2


1

kT.
2 � s/kB.E/k.s/ds:

When 
2 ! 
2, the right-hand side of the above inequality tends to zero, since
T.t/ is a strongly continuous operator and the compactness of T.t/ for t > 0

implies the continuity in the uniform operator topology (see [168]), this proves
the equi-continuity.

Step 4: A.Br/ is relatively compact on every compact interval of Œ0;1/.

Let t 2 Œ0; b� for b > 0 and let " be a real number satisfying 0 < " < t: For
z 2 Br we define

h".t/ D T."/
Z t�"

0

T.t � s � "/f .s/ds:

Note that the set
�Z t�"

0

T.t � s � "/f .s/ds W z 2 Br

�

is bounded.
ˇ
ˇ
ˇ
ˇ

Z t�"

0

T.t � s � "/f .s/ds

ˇ
ˇ
ˇ
ˇ

� r:

Since T.t/ is a compact operator for t > 0, the set,

fh".t/ W z 2 Brg
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is precompact in E for every ", 0 < " < t. Moreover, for every z 2 Br we have

jh.t/ � h".t/j

� M0
Z t

t�"
jf .s/jds

� M0
Z t

t�"
k.s/ds C M0C

Z t

t�"
k.s/ds C rM0

Z t

t�"
Lk.s/ds;

! 0 as " ! 0:

Therefore, the set fh.t/ W z 2 Brg is precompact, i.e., relatively compact.

Step 5: A has closed graph.
Let fzng be a sequence such that zn ! z�; hn 2 A.zn/ and hn ! h�: We shall

show that h� 2 A.z�/: hn 2 A.zn/ means that there exists fn 2 SF;zn
�.s;zn

s Cxs/
Cx�.s;zn

s Cxs/

such that

hn.t/ D
Z t

0

T.t � s/ fn.s/ ds;

we must prove that there exists f�

h�.t/ D
Z t

0

T.t � s/ f�.s/ ds:

Consider the linear and continuous operator K W L1.J;E/ ! Br defined by

K.v/.t/ D
Z t

0

T.t � s/v.s/ds:

we have

jK.fn/.t/ � K.f�/.t/j D jhn.t/ � h�.t/j � khn � h�k1 ! 0; as n ! 1

From Lemma 2:2 it follows that K ı SF is a closed graph operator and from the
definition of K has

hn.t/ 2 K ı SF;zn
�.s;zn

s Cxs/
Cx�.s;zn

s Cxs/
:

As zn ! z� and hn ! h�, there exist f� 2 SF;z�

�.s;z�s Cxs/
Cx�.s;z�Cxs/

such that:

h�.t/ D
Z t

0

T.t � s/ f�.s/ds:

Hence the multi-valued operator A is upper semi-continuous.
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Step 6: A.Br/ is equi-convergent.
Let z 2 Br, we have, for h 2 A.z/:

jh.t/j � M0
Z t

0

jf .s/jds

� M0k� C M0C
Z t

0

k.s/ds C M0r
Z t

0

Lk.s/ds

� M0k� C M0C
Z t

0

k.s/ds C M0rL
Z t

0

k.s/ds:

Then by (12.22), we have

jh.t/j ! l � M0k�.1C C C rL/; as t ! C1:

Hence,

jh.t/ � h.C1/j ! 0; as t ! C1:

As a consequence of Steps 1–4, with Lemma 1.26, we can conclude that A W Br !
P.Br/ is continuous and compact. From Bohnenblust–Karlin’s fixed theorem, we
deduce that A has a fixed point z�: Then y� D z� Cx is a fixed point of the operators
N; which is a mild solution of the problem (12.19)–(12.20). ut

12.5.3 An Example

Consider the following functional partial differential equation

@
@t z.t; x/ � @2

@x2
z.t; x/ 2 F.t; z.t � �.t; z.t; 0//; x//

x 2 Œ0; ��; t 2 RC (12.23)

z.t; 0/ D z.t; �/ D 0; t 2 RC; (12.24)

z.�; x/ D z0.�; x/; t 2 .�1; 0�; x 2 Œ0; ��; (12.25)

where F is a given multi-valued map, and � W R ! RC is continuous.
Take E D L2Œ0; �� and define A W E ! E by A! D !00 with domain

D.A/ D f! 2 E; !; !0are absolutely continuous; !00 2 E; !.0/ D !.�/ D 0g:
Then

A! D
1X

nD1
n2.!; !n/!n; ! 2 D.A/
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where !n.s/ D
q

2
�

sin ns; n D 1; 2; : : : is the orthogonal set of eigenvectors in A:
It is well known (see [168]) that A is the infinitesimal generator of an analytic
semigroup T.t/; t � 0 in E and is given by

T.t/! D
1X

nD1
exp.�n2t/.!; !n/!n; ! 2 E:

Since the analytic semigroup T.t/ is compact, there exists a positive constant M
such that

kT.t/kB.E/ � M:

12.6 Notes and Remarks

The results of Chap. 12 are taken from [2, 5, 46–49, 70]. Other results may be found
in [139, 171].



Chapter 13
Second Order Functional Differential
Equations with Delay

13.1 Introduction

In this chapter, we present some existence of global mild solutions for some classes
of second order semi-linear functional equations with delay.

13.2 Global Existence Results of Second Order Functional
Differential Equations with Delay

13.2.1 Introduction

In this section we provide sufficient conditions for the existence of global mild
solutions for two classes of second order semi-linear functional equations with
delay. Our investigations will be situated in the Banach space of real continuous and
bounded functions on the real half axis RC. First, we will consider the following
problem

y00.t/ D Ay.t/C f .t; yt/I a.e. t 2 J WD RC (13.1)

y.t/ D �.t/I t 2 H; y0.0/ D '; (13.2)

where f W J � C.H;E/ ! E is given function, A W D.A/ � E ! E is the
infinitesimal generator of a strongly continuous cosine family of bounded linear
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operators .C.t//t2R; on E; � W H ! E is given continuous function, and .E; j:j/ is a
real Banach space. Later, we consider the following problem

y00.t/ D Ay.t/C f .t; y�.t;yt//I a.e. t 2 J WD RC (13.3)

y.t/ D �.t/ 2 BI y0.0/ D '; (13.4)

where f W J � B ! E is given function, A W D.A/ � E ! E as in problem (11.25)–
(7.1), � 2 B, � W J �B ! R, and .E; j:j/ is a real Banach space. The main results are
based upon Schauder’s fixed theorem combined with the family of cosine operators.

Our purpose in this section is to consider a simultaneous generalization of the
classical second order abstract Cauchy problem studied by Travis and Weeb in
[179, 180]. Additionally, we observe that the ideas and techniques in this section
permit the reformulation of the problems studied in [38, 67] to the context of partial
second order differential equations.

13.2.2 Existing Result for the Finite Delay Case

In this section by BC WD BC.Œ�r;C1//we denote the Banach space of all bounded
and continuous functions from Œ�r;C1/ into R equipped with the standard norm

kykBC D sup
t2Œ�r;C1/

jy.t/j:

Now we give our main existence result for problem (13.1)–(13.2). Before starting
and proving this result, we give the definition of a mild solution.

Definition 13.1. We say that a continuous function y W Œ�r;C1/ ! E is a mild
solution of problem (11.25)–(7.1) if y.t/ D �.t/; t 2 H; y.:/ and y0.0/ D '; and

y.t/ D C.t/�.0/C S.t/' C
Z t

0

C.t � s/f .s; ys/ds; t 2 J:

Let us introduce the following hypotheses:

(13.1.1) C.t/ is compact for t > 0 in the Banach space E. Let

M D supfkCkB.E/ W t � 0g; and M0 D supfkSkB.E/ W t � 0g:

(13.1.2) The function f W J � C.H;E/ ! E is Carathéodory.
(13.1.3) There exists a continuous function k W J ! RC such that:

jf .t; u/ � f .t; v/j � k.t/ku � vk; t 2 J; u; v 2 C.H;E/

and

k� WD sup
t2J

Z t

0

k.s/ds < 1:
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(13.1.4) The function t ! f .t; 0/ D f0 2 L1.J;RC/ with F� D kf0kL1 :

(13.1.5) For each bounded B � BC and t 2 J the set:

fC.t/�.0/C S.t/' C
Z t

0

C.t � s/f .s; yt/ds W y 2 Bg

is relatively compact in E:

Theorem 13.2. Assume that (13.1.1)–(13.1.5) hold. If K�M < 1; then the problem
(13.1)–(13.2) has at least one mild solution on BC.

Proof. Let the operator: N W BC ! BC be defined by:

.Ny/.t/ D

8

<̂

:̂

�.t/; if t 2 H,

C.t/ �.0/C S.t/' C
Z t

0

C.t � s/ f .s; ys/ ds; if t 2 J:

The operator N maps BC into BCI indeed the map N.y/ is continuous on Œ�r;C1/

for any y 2 BC, and for each t 2 J, we have

j.Ny/.t/j � Mk�k C M0k'k C M
Z t

0

jf .s; ys/ � f .s; 0/C f .s; 0/jds

� Mk�k C M0k'k C M
Z t

0

jf .s; 0/jds C M
Z t

0

k.s/kyskds

� Mk�k C M0k'k C MF� C M
Z t

0

k.s/kyskds

� Mk�k C M0k'k C MF� C MkykBCk� WD c:

Let

C D Mk�k C M0k'k:

Hence, N.y/ 2 BC:
Moreover, let r > 0 be such that r � CCMF�

1�Mk� ; and Br be the closed ball in BC
centered at the origin and of radius r: Let y 2 Br and t 2 RC: Then,

j.Ny/.t/j � C C MF� C Mk�r:

Thus,

kN.y/kBC � r;

which means that the operator N transforms the ball Br into itself.
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Now we prove that N W Br ! Br satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: N is continuous in Br.

Let fyng be a sequence such that yn ! y in Br: We have

j.Nyn/.t/ � .Ny/.t/j � M
Z t

0

jf .s; ysn/ � f .s; ys/jds:

Then by (13.1.2) we have f .s; ysn/ ! f .s; ys/; as n ! 1; for a.e. s 2 J, and by the
Lebesgue dominated convergence theorem we have

k.Nyn/ � .Ny/kBC ! 0; as n ! 1:

Thus, N is continuous.

Step 2: N.Br/ � Br this is clear.
Step 3: N.Br/ is equi-continuous on every compact interval Œ0; b� of RC for
b > 0. Let 
1; 
2 2 Œ0; b� with 
2 > 
1; we have

jN.y/.
2/ � N.y/.
1/j
� kC.
2 � s/ � C.
1 � s/kB.E/k�k C kS.
2 � s/ � S.
1 � s/kB.E/k'k

C
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/jf .s; ys/jds

C
Z 
2


1

kC.
2 � s/kB.E/jf .s; ys/jds

� kC.
2 � s/ � C.
1 � s/kB.E/k�k C kS.
2 � s/ � S.
1 � s/kB.E/k'k

C
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/jf .s; ys/ � f .s; 0/C f .s; 0/jds

C
Z 
2


1

kC.
2 � s/kB.E/jf .s; ys/ � f .s; 0/C f .s; 0/jds

� kC.
2 � s/ � C.
1 � s/kB.E/k�k C kS.
2 � s/ � S.
1 � s/kB.E/k'k

Cr
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/k.s/ds

C
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/jf .s; 0/jds

Cr
Z 
2


1

kC.
2 � s/kB.E/k.s/ds

C
Z 
2


1

kC.
2 � s/kB.E/jf .s; 0/jds:
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When 
2 ! 
2, the right-hand side of the above inequality tends to zero, since
C.t/; S.t/ are a strongly continuous operator and the compactness of C.t/; S.t/ for
t > 0; implies the continuity in the uniform operator topology (see [179, 180]).
This proves the equi-continuity.

Step 4:N.Br/ is relatively compact on every compact interval of Œ0;1/ by
.13:1:5/:

Step 5: N.Br/ is equi-convergent.

Let y 2 Br, we have:

j.Ny/.t/j � Mk�k C M0k'k C M
Z t

0

jf .s; ys/jds

� C C MF� C Mr
Z t

0

k.s/ds

� C C MF� C Mr
Z t

0

k.s/ds:

Then

j.Ny/.t/j ! C1 � C C MF� C Mk�r; as t ! C1:

Hence,

j.Ny/.t/ � .Ny/.C1/j ! 0; as t ! C1:

As a consequence of Steps 1–5, with Lemma 1.26, we can conclude that
N W Br ! Br is continuous and compact. From Schauder’s theorem, we deduce
that N has a fixed point y� which is a mild solution of the problem (13.1)–(13.2).

ut

13.2.3 Existing Results for the State-Dependent Delay Case

In this section by BC WD BC.R/ we denote the Banach space of all bounded and
continuous functions from R into E equipped with the standard norm

kykBC D sup
t2R

jy.t/j:

Finally, by BC0 WD BC0.RC/ we denote the Banach space of all bounded and
continuous functions from RC into E equipped with the standard norm

kykBC0 D sup
t2RC

jy.t/j:
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Now we give our main existence result for problem (13.3)–(13.4). Before starting
and proving this result, we give the definition of a mild solution.

Definition 13.3. We say that a continuous function y W .�1;C1/ ! E is a
mild solution of problem (11.15)–(11.16) if y.t/ D �.t/; t 2 .�1; 0�; y.:/ is
continuously differentiable and y0.0/ D ' and

y.t/ D C.t/�.0/C S.t/' C
Z t

0

C.t � s/f .s; y�.t;yt//ds; t 2 J:

Set

R.��/ D f�.s; �/ W .s; �/ 2 J � B; �.s; �/ � 0g:

We always assume that � W J � B ! R is continuous. Additionally, we introduce
the following hypothesis:

.H�/ The function t ! �t is continuous from R.��/ into B and there exists a
continuous and bounded function L� W R.��/ ! .0;1/ such that

k�tk � L�.t/k�k for every t 2 R.��/:

Remark 13.4. The condition .H�/ is frequently verified by functions continuous
and bounded.

Let us introduce the following hypotheses:

(13.3.1) C.t/; S.t/ are compact for t > 0 in the Banach space E. Let M D
supfkCkB.E/ W t � 0g; and M0 D supfkSkB.E/ W t � 0g:

(13.3.2) The function f W J � B ! E is Carathéodory.
(13.3.3) There exists a continuous function k W J ! RC such that:

jf .t; u/ � f .t; v/j � k.t/ku � vk; t 2 J; u; v 2 B

and

k� WD sup
t2J

Z t

0

k.s/ds < 1:

(13.3.4) The function t ! f .t; 0/ D f0 2 L1.J;RC/ with F� D kf0kL1 :

(13.3.5) For each bounded B � BC0 and t 2 J the set:

fS.t/' C
Z t

0

C.t � s/f .s; y�.t;yt//ds W y 2 Bg

is relatively compact in E:
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Theorem 13.5. Assume that (13.3.1)–(13.3.5),.H�/ hold. If K�Ml < 1; then the
problem (13.3)–(13.4) has at least one mild solution on BC.

Proof. Consider the operator: N W BC ! BC define by:

.Ny/.t/ D

8

<̂

:̂

�.t/; if t 2 .�1; 0�,

C.t/ �.0/C S.t/' C
Z t

0

C.t � s/ f .s; y�.t;yt// ds; if t 2 J:

Let x.:/ W R ! E be the function defined by:

x.t/ D
8

<

:

�.t/I if t 2 .�1; 0�;

C.t/ �.0/I if t 2 J;

then x0 D �: For each z 2 BC with z.0/ D 0; y0.0/ D ' D z0.0/ D '1; we denote
by z the function

z.t/ D
8

<

:

0I if t 2 .�1; 0�;

z.t/I if t 2 J:

If y satisfies y.t/ D .Ny/.t/, we can decompose it as y.t/ D z.t/C x.t/; t 2 J, which
implies yt D zt C xt for every t 2 J and the function z.:/ satisfies

z.t/ D S.t/'1 C
Z t

0

C.t � s/ f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds; t 2 J:

Set

BC0
0 D fz 2 BC0 W z.0/ D 0g

and let

kzkBC0
0

D supfjz.t/j W t 2 Jg; z 2 BC0
0:

BC0
0 is a Banach space with the norm k:kBC0

0
: We define the operator A W BC0

0 !
BC0

0 by:

A.z/.t/ D S.t/'1 C
Z t

0

C.t � s/ f .s; z�.s;zsCxs/ C x�.s;zsCxs//ds; t 2 J:

We shall show that the operator A satisfies all conditions of Schauder’s fixed point
theorem. The operator A maps BC0

0 into BC0
0; indeed the map A.z/ is continuous on

RC for any z 2 BC0
0, and for each t 2 J we have
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jA.z/.t/j � M0k'1k C M
Z t

0

jf .s; z�.s;zsCxs/ C x�.s;zsCxs// � f .s; 0/C f .s; 0/jds

� M0k'1k C M
Z t

0

jf .s; 0/jds C M
Z t

0

k.s/kz�.s;zsCxs/ C x�.s;zsCxs/kBds

� M0k'1k C MF� C M
Z t

0

k.s/.ljz.s/j C .m C L� C lMH/k�kB/ds:

Let

C D .m C L� C lMH/k�kB:
Then, we have:

jA.z/.t/j � M0k'1k C MF� C MC
Z t

0

k.s/ds C Ml
Z t

0

k.s/jz.s/jds

� M0k'1k C MF� C MCk� C MlkzkBC0
0
k�:

Hence, A.z/ 2 BC0
0:

Moreover, let r > 0 be such that r � M0k'1kCMF�CMCk�

1�Mlk� ; and Br be the closed ball
in BC0

0 centered at the origin and of radius r: Let y 2 Br and t 2 RC: Then,

jA.z/.t/j � M0k'1k C MF� C MCk� C Mlk�r:

Thus,

kA.z/kBC0
0

� r;

which means that the operator N transforms the ball Br into itself.
Now we prove that A W Br ! Br satisfies the assumptions of Schauder’s fixed

theorem. The proof will be given in several steps.

Step 1: A is continuous in Br.

Let fzng be a sequence such that zn ! z in Br: At the first, we study the convergence
of the sequences .zn

�.s;zn
s /
/n2N; s 2 J:

If s 2 J is such that �.s; zs/ > 0, then we have,

kzn
�.s;zn

s /
� z�.s;zs/kB � kzn

�.s;zn
s /

� z�.s;zn
s /

kB C kz�.s;zn
s /

� z�.s;zs/kB
� lkzn � zkBr C kz�.s;zn

s /
� z�.s;zs/kB;

which proves that zn
�.s;zn

s /
! z�.s;zs/ in B as n ! 1 for every s 2 J such that

�.s; zs/ > 0. Similarly, is �.s; zs/ < 0, we get

kzn
�.s;zn

s /
� z�.s;zs/kB D k�n

�.s;zn
s /

� ��.s;zs/kB D 0
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which also shows that zn
�.s;zn

s /
! z�.s;zs/ in B as n ! 1 for every s 2 J such that

�.s; zs/ < 0. Combining the pervious arguments, we can prove that zn
�.s;zs/

! � for
every s 2 J such that �.s; zs/ D 0: Finally,

jA.zn/.t/ � A.z/.t/j

� M
Z t

0

jf .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs// � f .s; z�.s;zsCxs/ C x�.s;zsCxs//jds:

Then by (13.3.2) we have

f .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs// ! f .s; z�.s;zsCxs/ C x�.s;zsCxs//; as n ! 1;

and by the Lebesgue dominated convergence theorem we get,

kA.zn/ � A.z/kBC0
0

! 0; as n ! 1:

Thus A is continuous.

Step 2: A.Br/ � Br this is clear.
Step 3: A.Br/ is equi-continuous on every compact interval Œ0; b� of RC for
b > 0. Let 
1; 
2 2 Œ0; b� with 
2 > 
1; we have

jA.z/.
2/ � A.z/.
1/j
� kS.
2 � s/ � S.
1 � s/kB.E/k'1k

C
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/jf .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs//jds

C
Z 
2


1

kC.
2 � s/kB.E/jf .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs//jds

� kS.
2 � s/ � S.
1 � s/kB.E/k'1k

C
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/jf .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs// � f .s; 0/jds

C
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/f .s; 0/jds

C
Z 
2


1

kC.
2 � s/kB.E/jf .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs// � f .s; 0/jds

C
Z 
2


1

kC.
2 � s/kB.E/jf .s; 0/jds

� kS.
2 � s/ � S.
1 � s/kB.E/k'1k

CC
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/k.s/ds
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Clr
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/k.s/ds

C
Z 
1

0

kC.
2 � s/ � C.
1 � s/kB.E/jf .s; 0/jds

CC
Z 
2


1

kC.
2 � s/kB.E/k.s/ds

Clr
Z 
2


1

kC.
2 � s/kB.E/k.s/ds

C
Z 
2


1

kC.
2 � s/kB.E/jf .s; 0/jds:

When 
2 ! 
2, the right-hand side of the above inequality tends to zero, since
C.t/ are a strongly continuous operator and the compactness of C.t/ for t > 0

implies the continuity in the uniform operator topology (see [179, 180]). This
proves the equi-continuity.

Step 4: N.Br/ is relatively compact on every compact interval of Œ0;1/. This is
satisfied from (13.1.5).
Step 5: N.Br/ is equi-convergent.

Let y 2 Br, we have:

jA.z/.t/j � M0k'1k C M
Z t

0

jf .s; zn
�.s;zn

s Cxs/
C x�.s;zn

s Cxs//jds

� M0k'1k C MF� C MCk� C Mrl
Z t

0

k.s/ds:

Then

jA.z/.t/j ! C1 � M0k'1k C MF� C Mk�.C C lr/; as t ! C1:

Hence,

jA.z/.t/ � A.z/.C1/j ! 0; as t ! C1:

As a consequence of Steps 1–5, with Lemma 1.26, we can conclude that
A W Br ! Br is continuous and compact. we deduce that A has a fixed point z�:
Then y� D z� C x is a fixed point of the operators N; which is a mild solution of the
problem (13.3)–(13.4). ut
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13.2.4 Examples

Example 1. Consider the functional partial differential equation of second order:

@2

@t2
z.t; x/ D @2

@x2
z.t; x/C f .t; z.t � r; x//; x 2 Œ0; ��; t 2 J WD RC; (13.5)

z.t; 0/ D z.t; �/ D 0; t 2 RC; (13.6)

z.t; x/ D �.t/; @z.0;x/
@t D w.x/; t 2 H; x 2 Œ0; ��; (13.7)

where f is a given map. Take E D L2Œ0; �� and define A W E ! E by A! D !00 with
domain

D.A/ D f! 2 EI!;!0 are absolutely continuous; !00 2 E; !.0/ D !.�/ D 0g:

It is well known that A is the infinitesimal generator of a strongly continuous
cosine function .C.t//t2Ron E, respectively. Moreover, A has discrete spectrum, the
eigenvalues are �n2; n 2 N with corresponding normalized eigenvectors zn.
/ WD
. 2
�
/
1
2 sin n
; and the following properties hold:

(a) fzn W n 2 Ng is an orthonormal basis of E:
(b) If y 2 E; then Ay D �P1

nD1 n2 < y; zn > zn:

(c) For y 2 E;C.t/y D P1
nD1 cos.nt/ < y; zn > zn; and the associated sine family is

S.t/y D
1X

nD1

sin.nt/

n
< y; zn > zn

which implies that the operator S.t/ is compact for all t > 0 and that

kC.t/k D kS.t/k � 1; for all t � 0:

(d) If ˚ denotes the group of translations on E defined b ˚.t/y.�/ D Qy.�C t/ where
Qy is the extension of y with period 2� , then C.t/ D 1

2
.˚.t/C ˚.�t//I A D B2;

where B is the infinitesimal generator of the group ˚ on

X D fy 2 H1.0; �/ W y.0/ D x.�/ D 0g:

Then the problem (13.1)–(13.2) is an abstract formulation of the problem (13.5)–
(13.7). If conditions (13.1.1)–(13.1.5) are satisfied. Theorem 13.2 implies that the
problem (13.5)–(13.7) has at least one mild solution on BC:

Example 2. Take E D L2Œ0; ��IB D C0 � L2.g;E/ and define A W E ! E by
A! D !00 with domain

D.A/ D f! 2 EI!;!0 are absolutely continuous; !00 2 E; !.0/ D !.�/ D 0g:
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It is well known that A is the infinitesimal generator of a strongly continuous
cosine function .C.t//t2R on E, respectively. Moreover, A has discrete spectrum, the
eigenvalues are �n2; n 2 N with corresponding normalized eigenvectors zn.
/ WD
. 2
�
/
1
2 sin n
; and the following properties hold:

(a) fzn W n 2 Ng is an orthonormal basis of E:
(b) If y 2 E; then Ay D �P1

nD1 n2 < y; zn > zn:

(c) For y 2 E;C.t/y D P1
nD1 cos.nt/ < y; zn > zn; and the associated sine family is

S.t/y D
1X

nD1

sin.nt/

n
< y; zn > zn

which implies that the operator S.t/ is compact for all t > 0 and that kC.t/k D
kS.t/k � 1 for all t 2 R:

(d) If ˚ denotes the group of translations on E defined by

˚.t/y.�/ D Qy.� C t/;

where Qy is the extension of y with period 2� , then

C.t/ D 1

2
.˚.t/C ˚.�t//; A D B2;

where B is the infinitesimal generator of the group ˚ on

X D fy 2 H1.0; �/ W y.0/ D x.�/ D 0g:
Consider the functional partial differential equation of second order:

@2

@t2
z.t; x/ D @2

@x2
z.t; x/C

Z 0

�1
a.s � t/z.s � �1.t/�2.kz.t/k/; x/ds;

x 2 Œ0; ��; t 2 J WD RC; (13.8)

z.t; 0/ D z.t; �/ D 0; t 2 RC; (13.9)

z.t; x/ D �.t/;
@z.0; x/

@t
D !.x/; t 2 H; x 2 Œ0; ��; (13.10)

where �i W Œ0;1/ ! Œ0;1/; aIR ! R be continuous, and Lf D
�Z 0

�1
a2.s/

g.s/
ds

�

1
2

< 1: Under these conditions, we define the function

f W J � B ! E; � W J � B ! R by

f .t;  /.x/ D
Z 0

�1
a.s/ .s; x/ds;

�.s;  / D s � �1.s/�2.k .0/k;

we have kf .t; :/kB � Lf :
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Then the problem (13.3)–(13.4) is an abstract formulation of the problem (13.8)–
(13.10). If conditions (13.1.1)–(13.1.5) are satisfied. Theorem 12.4 implies that the
problem (13.8)–(13.10) has at least one mild solution on BC:

13.3 Notes and Remarks

The results of Chap. 13 are taken from Alaidarous et al. [21, 22] and Benchohra
et al. [55–57, 82, 83]. Other results may be found in [111, 166].
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