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Preface

Why write yet another book on the thermodynamics of materials? The traditional
approach to such a text has been to focus on the phenomenology and mathematical
concepts of thermodynamics, while the use of examples demonstrating the thermo-
dynamic behaviour of materials has been less emphasized. Moreover, the few
examples given have usually been taken from one particular type of materials
(metals, for example). We have tried to write a comprehensive text on the chemical
thermodynamics of materials with the focus on cases from a variety of important
classes of materials, while the mathematical derivations have deliberately been
kept rather simple. The aim has been both to treat thermodynamics macroscopi-
cally and also to consider the microscopic origins of the trends in the energetic
properties of materials that have been considered. The examples are chosen to
cover a broad range of materials and at the same time important topics in current
solid state sciences.

The first three chapters of the book are devoted to basic thermodynamic theory
and give the necessary background for a thermodynamic treatment of phase dia-
grams and phase stability in general. The link between thermodynamics and phase
diagrams is covered in Chapter 4, and Chapter 5 gives the thermodynamic treat-
ment of phase stability. While the initial chapters neglect the effects of surfaces, a
separate chapter is devoted to surfaces, interfaces and adsorption. The three next
chapters on trends in enthalpy of formation of various materials, on heat capacity
and entropy of simple and complex materials, and on atomistic solution models,
are more microscopically focused. A special feature is the chapter on trends in the
enthalpy of formation of different materials; the enthalpy of formation is the most
central parameter for most thermodynamic analysis, but it is still neglected in most
thermodynamic treatments. The enthalpy of formation is also one of the focuses in
a chapter on experimental methods for obtaining thermodynamic data. Another
special feature is the final chapter on thermodynamic and materials modelling,
contributed by Professor Neil Allan, University of Bristol, UK – this is a topic not
treated in other books on chemical thermodynamics of materials.

xi



The present text should be suitable for advanced undergraduates or graduate stu-
dents in solid state chemistry or physics, materials science or mineralogy. Obvi-
ously we have assumed that the readers of this text have some prior knowledge of
chemistry and chemical thermodynamics, and it would be advantageous for stu-
dents to have already taken courses in physical chemistry and preferably also in
basic solid state chemistry or physics. The book may also be thought of as a source
of information and theory for solid state scientists in general.

We are grateful to Neil Allan not only for writing Chapter 11 but also for reading,
commenting on and discussing the remaining chapters. His effort has clearly
improved the quality of the book. Ole Bjørn Karlsen, University of Oslo, has also
largely contributed through discussions on phase diagrams and through making
some of the more complex illustrations. He has also provided the pictures used on
the front cover. Moreover, Professor Mari-Ann Einarsrud, Norwegian University
of Science and Technology, gave us useful comments on the chapter on surfaces
and interfaces.

One of the authors (TG) would like to acknowledge Professor Kenneth R.
Poeppelmeier, Northwestern University, for his hospitality and friendship during
his sabbatical leave during the spring semester 2002. One of the authors (S2)
would like to express his gratitude to Professor Fredrik Grønvold for being an
inspiring teacher, a good friend and always giving from his great knowledge of
thermodynamics.

Svein Stølen
Tor Grande

Oslo, October 2003
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1
Thermodynamic

foundations

1.1 Basic concepts

Thermodynamic systems

A thermodynamic description of a process needs a well-defined system. A thermo-
dynamic system contains everything of thermodynamic interest for a particular
chemical process within a boundary. The boundary is either a real or hypothetical
enclosure or surface that confines the system and separates it from its surroundings.
In order to describe the thermodynamic behaviour of a physical system, the interac-
tion between the system and its surroundings must be understood. Thermodynamic
systems are thus classified into three main types according to the way they interact
with the surroundings: isolated systems do not exchange energy or matter with their
surroundings; closed systems exchange energy with the surroundings but not matter;
and open systems exchange both energy and matter with their surroundings.

The system may be homogeneous or heterogeneous. An exact definition is difficult,
but it is convenient to define a homogeneous system as one whose properties are the
same in all parts, or at least their spatial variation is continuous. A heterogeneous
system consists of two or more distinct homogeneous regions or phases, which are sepa-
rated from one another by surfaces of discontinuity. The boundaries between phases are
not strictly abrupt, but rather regions in which the properties change abruptly from the
properties of one homogeneous phase to those of the other. For example, Portland
cement consists of a mixture of the phases b-Ca2SiO4, Ca3SiO5, Ca3Al2O6 and
Ca4Al2Fe2O10. The different homogeneous phases are readily distinguished from each
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other macroscopically and the thermodynamics of the system can be treated based
on the sum of the thermodynamics of each single homogeneous phase.

In colloids, on the other hand, the different phases are not easily distinguished
macroscopically due to the small particle size that characterizes these systems. So
although a colloid also is a heterogeneous system, the effect of the surface thermo-
dynamics must be taken into consideration in addition to the thermodynamics of
each homogeneous phase. In the following, when we speak about heterogeneous
systems, it must be understood (if not stated otherwise) that the system is one in
which each homogeneous phase is spatially sufficiently large to neglect surface
energy contributions. The contributions from surfaces become important in sys-
tems where the dimensions of the homogeneous regions are about 1 mm or less in
size. The thermodynamics of surfaces will be considered in Chapter 6.

A homogeneous system – solid, liquid or gas – is called a solution if the compo-
sition of the system can be varied. The components of the solution are the sub-
stances of fixed composition that can be mixed in varying amounts to form the
solution. The choice of the components is often arbitrary and depends on the pur-
pose of the problem that is considered. The solid solution LaCr1–yFeyO3 can be
treated as a quasi-binary system with LaCrO3 and LaFeO3 as components. Alterna-
tively, the compound may be regarded as forming from La2O3, Fe2O3 and Cr2O3 or
from the elements La, Fe, Cr and O2 (g). In La2O3 or LaCrO3, for example, the ele-
ments are present in a definite ratio, and independent variation is not allowed.
La2O3 can thus be treated as a single component system. We will come back to this
important topic in discussing the Gibbs phase rule in Chapter 4.

Thermodynamic variables

In thermodynamics the state of a system is specified in terms of macroscopic state
variables such as volume, V, temperature, T, pressure, p, and the number of moles of
the chemical constituents i, ni. The laws of thermodynamics are founded on the con-
cepts of internal energy (U), and entropy (S), which are functions of the state variables.
Thermodynamic variables are categorized as intensive or extensive. Variables that are
proportional to the size of the system (e.g. volume and internal energy) are called
extensive variables, whereas variables that specify a property that is independent of
the size of the system (e.g. temperature and pressure) are called intensive variables.

A state function is a property of a system that has a value that depends on the
conditions (state) of the system and not on how the system has arrived at those con-
ditions (the thermal history of the system). For example, the temperature in a room
at a given time does not depend on whether the room was heated up to that tempera-
ture or cooled down to it. The difference in any state function is identical for every
process that takes the system from the same given initial state to the same given
final state: it is independent of the path or process connecting the two states.
Whereas the internal energy of a system is a state function, work and heat are not.
Work and heat are not associated with one given state of the system, but are defined
only in a transformation of the system. Hence the work performed and the heat
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adsorbed by the system between the initial and final states depend on the choice of
the transformation path linking these two states.

Thermodynamic processes and equilibrium

The state of a physical system evolves irreversibly towards a time-independent state in
which we see no further macroscopic physical or chemical changes. This is the state of
thermodynamic equilibrium, characterized for example by a uniform temperature
throughout the system but also by other features. A non-equilibrium state can be
defined as a state where irreversible processes drive the system towards the state of equi-
librium. The rates at which the system is driven towards equilibrium range from
extremely fast to extremely slow. In the latter case the isolated system may appear to
have reached equilibrium. Such a system, which fulfils the characteristics of an equilib-
rium system but is not the true equilibrium state, is called a metastable state. Carbon in
the form of diamond is stable for extremely long periods of time at ambient pressure and
temperature, but transforms to the more stable form, graphite, if given energy sufficient
to climb the activation energy barrier. Buckminsterfullerene, C60, and the related C70
and carbon nanotubes, are other metastable modifications of carbon. The enthalpies of
three modifications of carbon relative to graphite are given in Figure 1.1 [1, 2].

Glasses are a particular type of material that is neither stable nor metastable.
Glasses are usually prepared by rapid cooling of liquids. Below the melting point the
liquid become supercooled and is therefore metastable with respect to the equilib-
rium crystalline solid state. At the glass transition the supercooled liquid transforms
to a glass. The properties of the glass depend on the quenching rate (thermal history)
and do not fulfil the requirements of an equilibrium phase. Glasses represent non-
ergodic states, which means that they are not able to explore their entire phase space,
and glasses are thus not in internal equilibrium. Both stable states (such as liquids
above the melting temperature) and metastable states (such as supercooled liquids
between the melting and glass transition temperatures) are in internal equilibrium
and thus ergodic. Frozen-in degrees of freedom are frequently present, even in crys-
talline compounds. Glassy crystals exhibit translational periodicity of the molecular
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centre of mass, whereas the molecular orientation is frozen either in completely
random directions or randomly among a preferred set of orientations. Strictly
spoken, only ergodic states can be treated in terms of classical thermodynamics.

1.2 The first law of thermodynamics

Conservation of energy

The first law of thermodynamics may be expressed as:

Whenever any process occurs, the sum of all changes in energy, taken over all
the systems participating in the process, is zero.

The important consequence of the first law is that energy is always conserved. This
law governs the transfer of energy from one place to another, in one form or another:
as heat energy, mechanical energy, electrical energy, radiation energy, etc. The
energy contained within a thermodynamic system is termed the internal energy or
simply the energy of the system, U. In all processes, reversible or irreversible, the
change in internal energy must be in accord with the first law of thermodynamics.

Work is done when an object is moved against an opposing force. It is equivalent
to a change in height of a body in a gravimetric field. The energy of a system is its
capacity to do work. When work is done on an otherwise isolated system, its
capacity to do work is increased, and hence the energy of the system is increased.
When the system does work its energy is reduced because it can do less work than
before. When the energy of a system changes as a result of temperature differences
between the system and its surroundings, the energy has been transferred as heat.
Not all boundaries permit transfer of heat, even when there is a temperature differ-
ence between the system and its surroundings. A boundary that does not allow heat
transfer is called adiabatic. Processes that release energy as heat are called exo-
thermic, whereas processes that absorb energy as heat are called endothermic.

The mathematical expression of the first law is

d d dU q w� ��� � � 0 (1.1)

where U, q and w are the internal energy, the heat and the work, and each summa-
tion covers all systems participating in the process. Applications of the first law
involve merely accounting processes. Whenever any process occurs, the net energy
taken up by the given system will be exactly equal to the energy lost by the sur-
roundings and vice versa, i.e. simply the principle of conservation of energy.

In the present book we are primarily concerned with the work arising from a change
in volume. In the simplest example, work is done when a gas expands and drives back
the surrounding atmosphere. The work done when a system expands its volume by an
infinitesimal small amount dV against a constant external pressure is

d dextw p V� � (1.2)
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The negative sign shows that the internal energy of the system doing the work
decreases.

In general, dw is written in the form (intensive variable)◊d(extensive variable) or
as a product of a force times a displacement of some kind. Several types of work
terms may be involved in a single thermodynamic system, and electrical, mechan-
ical, magnetic and gravitational fields are of special importance in certain applica-
tions of materials. A number of types of work that may be involved in a
thermodynamic system are summed up in Table 1.1. The last column gives the form
of work in the equation for the internal energy.

Heat capacity and definition of enthalpy

In general, the change in internal energy or simply the energy of a system U may
now be written as

d d d d non -eU q w wpV� � � (1.3)

where dw pV and d non -ew are the expansion (or pV) work and the additional non-
expansion (or non-pV) work, respectively. A system kept at constant volume
cannot do expansion work; hence in this case dw pV � 0. If the system also does not
do any other kind of work, then d non -ew � 0. So here the first law yields

d dU qV� (1.4)

where the subscript denotes a change at constant volume. For a measurable change,
the increase in the internal energy of a substance is

1.2 The first law of thermodynamics 5

Type of work Intensive variable Extensive variable Differential work in dU

Mechanical

Pressure–volume –p V –pdV

Elastic f l fdl

Surface s AS sdAS

Electromagnetic

Charge transfer Fi qi Fidqi

Electric polarization E p E�dp

Magnetic polarization B m B�dm

Table 1.1 Conjugate pairs of variables in work terms for the fundamental equation for the
internal energy U. Here f is force of elongation, l is length in the direction of the force, s is
surface tension, As is surface area, Fi is the electric potential of the phase containing spe-
cies i, qi is the contribution of species i to the electric charge of a phase, E is electric field
strength, p is the electric dipole moment of the system, B is magnetic field strength (mag-
netic flux density), and m is the magnetic moment of the system. The dots indicate scalar
products of vectors.



DU qV� (1.5)

The temperature dependence of the internal energy is given by the heat capacity
at constant volume at a given temperature, formally defined by

C
U

T
V

V

�
�

�

�

�
	




�
� (1.6)

For a constant-volume system, an infinitesimal change in temperature gives an
infinitesimal change in internal energy and the constant of proportionality is the
heat capacity at constant volume

d dU C TV� (1.7)

The change in internal energy is equal to the heat supplied only when the system
is confined to a constant volume. When the system is free to change its volume,
some of the energy supplied as heat is returned to the surroundings as expansion
work. Work due to the expansion of a system against a constant external pressure,
pext, gives the following change in internal energy:

d d d d dextU q w q p V� � � � (1.8)

For processes taking place at constant pressure it is convenient to introduce the
enthalpy function, H, defined as

H U pV� � (1.9)

Differentiation gives

d d d d d dH U pV q w V p p V� � � � � �( ) (1.10)

When only work against a constant external pressure is done:

d dextw p V� � (1.11)

and eq. (1.10) becomes

d d dH q V p� � (1.12)

Since dp = 0 (constant pressure),

d dH qp� (1.13)
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and

DH qp� (1.14)

The enthalpy of a substance increases when its temperature is raised. The tem-
perature dependence of the enthalpy is given by the heat capacity at constant
pressure at a given temperature, formally defined by

C
H

T
p

p

�
�

�

�

�
	




�
� (1.15)

Hence, for a constant pressure system, an infinitesimal change in temperature gives
an infinitesimal change in enthalpy and the constant of proportionality is the heat
capacity at constant pressure.

d dH C Tp� (1.16)

The heat capacity at constant volume and constant pressure at a given tempera-
ture are related through

C C
VT

p V
T

� �
a
k

2
(1.17)

where a andk T are the isobaric expansivity and the isothermal compressibility
respectively, defined by

a �
�

�

�

�
	




�
�

1

V

V

T p

(1.18)

and

k T
TV

V

p
� �

�

�

�

�
		




�
��

1
(1.19)

Typical values of the isobaric expansivity and the isothermal compressibility are
given in Table 1.2. The difference between the heat capacities at constant volume
and constant pressure is generally negligible for solids at low temperatures where
the thermal expansivity becomes very small, but the difference increases with tem-
perature; see for example the data for Al2O3 in Figure 1.2.

Since the heat absorbed or released by a system at constant pressure is equal to
its change in enthalpy, enthalpy is often called heat content. If a phase transforma-
tion (i.e. melting or transformation to another solid polymorph) takes place within

1.2 The first law of thermodynamics 7



the system, heat may be adsorbed or released without a change in temperature. At
constant pressure the heat merely transforms a portion of the substance (e.g. from
solid to liquid – ice–water). Such a change is called a first-order phase transition
and will be defined formally in Chapter 2. The standard enthalpy of aluminium rel-
ative to 0 K is given as a function of temperature in Figure 1.3. The standard
enthalpy of fusion and in particular the standard enthalpy of vaporization con-
tribute significantly to the total enthalpy increment.

Reference and standard states

Thermodynamics deals with processes and reactions and is rarely concerned with
the absolute values of the internal energy or enthalpy of a system, for example, only
with the changes in these quantities. Hence the energy changes must be well
defined. It is often convenient to choose a reference state as an arbitrary zero.
Often the reference state of a condensed element/compound is chosen to be at a
pressure of 1 bar and in the most stable polymorph of that element/compound at the

8 1 Thermodynamic foundations

Compound a /10–5 K–1 kT/10–12 Pa

MgO 3.12 6.17

Al2O3 1.62 3.97

MnO 3.46 6.80

Fe3O4 3.56 4.52

NaCl 11.8 41.7

C (diamond) 0.54 1.70

C (graphite) 2.49 17.9

Al 6.9 13.2

Table 1.2 The isobaric expansivity and iso-
thermal compressibility of selected compounds at
300 K.
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Figure 1.2 Molar heat capacity at constant pressure and at constant volume, isobaric
expansivity and isothermal compressibility of Al2O3 as a function of temperature.



temperature at which the reaction or process is taking place. This reference state is
called a standard state due to its large practical importance. The term standard
state and the symbol o are reserved for p = 1 bar. The term reference state will be
used for states obtained from standard states by a change of pressure. It is impor-
tant to note that the standard state chosen should be specified explicitly, since it is
indeed possible to choose different standard states. The standard state may even be
a virtual state, one that cannot be obtained physically.

Let us give an example of a standard state that not involves the most stable
polymorph of the compound at the temperature at which the system is considered.
Cubic zirconia, ZrO2, is a fast-ion conductor stable only above 2300 °C. Cubic zir-
conia can, however, be stabilized to lower temperatures by forming a solid solution
with for example Y2O3 or CaO. The composition–temperature stability field of this
important phase is marked by Css in the ZrO2–CaZrO3 phase diagram shown in
Figure 1.4 (phase diagrams are treated formally in Chapter 4). In order to describe
the thermodynamics of this solid solution phase at, for example, 1500 °C, it is con-
venient to define the metastable cubic high-temperature modification of zirconia
as the standard state instead of the tetragonal modification that is stable at 1500 °C.
The standard state of pure ZrO2 (used as a component of the solid solution) and the
investigated solid solution thus take the same crystal structure.

The standard state for gases is discussed in Chapter 2.

Enthalpy of physical transformations and chemical reactions

The enthalpy that accompanies a change of physical state at standard conditions is
called the standard enthalpy of transition and is denoted D trs

oH . Enthalpy changes
accompanying chemical reactions at standard conditions are in general termed stan-
dard enthalpies of reaction and denoted D r

oH . Two simple examples are given in
Table 1.3. In general, from the first law, the standard enthalpy of a reaction is given by
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where the sum is over the standard molar enthalpy of the reactants i and products j
(vi and vj are the stoichiometric coefficients of reactants and products in the chem-
ical reaction).

Of particular importance is the standard molar enthalpy of formation, D f m
oH ,

which corresponds to the standard reaction enthalpy for the formation of one mole
of a compound from its elements in their standard states. The standard enthalpies
of formation of three different modifications of Al2SiO5 are given as examples in
Table 1.4 [3]. Compounds like these, which are formed by combination of
electropositive and electronegative elements, generally have large negative
enthalpies of formation due to the formation of strong covalent or ionic bonds. In
contrast, the difference in enthalpy of formation between the different modifica-
tions is small. This is more easily seen by consideration of the enthalpies of forma-
tion of these ternary oxides from their binary constituent oxides, often termed the
standard molar enthalpy of formation from oxides, D f ox m

o
, H , which correspond

to D r m
oH for the reaction

SiO2 (s) + Al2O3 (s) = Al2SiO5 (s) (1.21)
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Reaction Enthalpy change

Al (s) = Al (liq) Dtrs m
oH = Dfus m

oH = 10789 J mol–1 at Tfus

3SiO2 (s) + 2N2 (g) = Si3N4 (s) + 3O2 (g) Dr
oH = 1987.8 kJ mol–1 at 298.15 K

Table 1.3 Examples of a physical transformation and a chemical reaction and their respec-
tive enthalpy changes. Here D fus m

oH denotes the standard molar enthalpy of fusion.



These are derived by subtraction of the standard molar enthalpy of formation of
the binary oxides, since standard enthalpies of individual reactions can be com-
bined to obtain the standard enthalpy of another reaction. Thus,

D D D

D

f,ox m
o

2 5 f m
o

2 5 f m
o

2 3

f m

Al SiO Al SiO Al OH H H

H

( ) ( ) ( )� �

� o
2SiO )(

(1.22)

This use of the first law of thermodynamics is called Hess’s law:

The standard enthalpy of an overall reaction is the sum of the standard
enthalpies of the individual reactions that can be used to describe the overall
reaction of Al2SiO5.

Whereas the enthalpy of formation of Al2SiO5 from the elements is large and
negative, the enthalpy of formation from the binary oxides is much less so.
D f,ox mH is furthermore comparable to the enthalpy of transition between the dif-
ferent polymorphs, as shown for Al2SiO5 in Table 1.5 [3]. The enthalpy of fusion is
also of similar magnitude.

The temperature dependence of reaction enthalpies can be determined from the
heat capacity of the reactants and products. When a substance is heated from T1 to
T2 at a particular pressure p, assuming no phase transition is taking place, its molar
enthalpy change from DH Tm ( )1 to DH Tm ( )2 is

1.2 The first law of thermodynamics 11

Reaction Df m
oH / kJ mol–1

2 Al (s) + Si (s) + 5/2 O2 (g) = Al2SiO5 (kyanite) –2596.0

2 Al (s) + Si (s) + 5/2 O2 (g) = Al2SiO5 (andalusite) –2591.7

2 Al (s) + Si (s) + 5/2 O2 (g) = Al2SiO5 (sillimanite) –2587.8

Table 1.4 The enthalpy of formation of the three polymorphs of Al2SiO5, kyanite, andalu-
site and sillimanite at 298.15 K [3].

Reaction D Dr m
o

f,ox m
oH H� / kJ mol–1

Al2O3 (s) + SiO2 (s) = Al2SiO5 (kyanite) –9.6

Al2O3 (s) + SiO2 (s) = Al2SiO5 (andalusite) –5.3

Al2O3 (s) + SiO2 (s) = Al2SiO5 (sillimanite) –1.4

Al2SiO5 (kyanite) = Al2SiO5 (andalusite) 4.3

Al2SiO5 (andalusite) = Al2SiO5 (sillimanite) 3.9

Table 1.5 The enthalpy of formation of kyanite, andalusite and sillimanite from the binary
constituent oxides [3]. The enthalpy of transition between the different polymorphs is also
given. All enthalpies are given for T = 298.15 K.
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This equation applies to each substance in a reaction and a change in the standard
reaction enthalpy (i.e. p is now po = 1 bar) going from T1 to T2 is given by

D D Dr
o

r
o

r m
o dH T H T C Tp

T

T

( ) ( ) ,2 1

1

2

� �  (1.24)

where D r p,m
oC is the difference in the standard molar heat capacities at constant

pressure of the products and reactants under standard conditions taking the
stoichiometric coefficients that appear in the chemical equation into consideration:

D r m
o

m
o

m
oC v C j v C ip j p

j
i p

i
, , ,( ) ( )� �� � (1.25)

The heat capacity difference is in general small for a reaction involving con-
densed phases only.

1.3 The second and third laws of thermodynamics

The second law and the definition of entropy

A system can in principle undergo an indefinite number of processes under the con-
straint that energy is conserved. While the first law of thermodynamics identifies
the allowed changes, a new state function, the entropy S, is needed to identify the
spontaneous changes among the allowed changes. The second law of thermody-
namics may be expressed as

The entropy of a system and its surroundings increases in the course of a
spontaneous change, DS tot � 0.

The law implies that for a reversible process, the sum of all changes in entropy,
taken over all the systems participating in the process, DS tot , is zero.

Reversible and non-reversible processes

Any change in state of a system in thermal and mechanical contact with its sur-
roundings at a given temperature is accompanied by a change in entropy of the
system, dS, and of the surroundings, dSsur:

d d surS S� � 0 (1.26)
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The sum is equal to zero for reversible processes, where the system is always
under equilibrium conditions, and larger than zero for irreversible processes. The
entropy change of the surroundings is defined as

d
d

surS
q

T
� � (1.27)

where dq is the heat supplied to the system during the process. It follows that for
any change:

d
d

S
q

T
� (1.28)

which is known as the Clausius inequality. If we are looking at an isolated system

dS � 0 (1.29)

Hence, for an isolated system, the entropy of the system alone must increase when
a spontaneous process takes place. The second law identifies the spontaneous
changes, but in terms of both the system and the surroundings. However, it is pos-
sible to consider the specific system only. This is the topic of the next section.

Conditions for equilibrium and the definition of Helmholtz and Gibbs
energies

Let us consider a closed system in thermal equilibrium with its surroundings at a
given temperature T, where no non-expansion work is possible. Imagine a change
in the system and that the energy change is taking place as a heat exchange between
the system and the surroundings. The Clausius inequality (eq. 1.28) may then be
expressed as

d
d

S
q

T
� � 0 (1.30)

If the heat is transferred at constant volume and no non-expansion work is done,

d
d

S
U

T
� � 0 (1.31)

The combination of the Clausius inequality (eq. 1.30) and the first law of thermo-
dynamics for a system at constant volume thus gives

T S Ud d� (1.32)

1.3 The second and third laws of thermodynamics 13



Correspondingly, when heat is transferred at constant pressure (pV work only),

T S Hd d� (1.33)

For convenience, two new thermodynamic functions are defined, the Helmholtz
(A) and Gibbs (G) energies:

A U TS� � (1.34)

and

G H TS� � (1.35)

For an infinitesimal change in the system

d d d dA U T S S T� � � (1.36)

and

d d d dG H T S S T� � � (1.37)

At constant temperature eqs. (1.36) and (1.37) reduce to

d d dA U T S� � (1.38)

and

d d dG H T S� � (1.39)

Thus for a system at constant temperature and volume, the equilibrium condition is

dAT V, � 0 (1.40)

In a process at constant T and V in a closed system doing only expansion work it
follows from eq. (1.32) that the spontaneous direction of change is in the direction
of decreasing A. At equilibrium the value of A is at a minimum.

For a system at constant temperature and pressure, the equilibrium condition is

dG T p, � 0 (1.41)

In a process at constant T and p in a closed system doing only expansion work it fol-
lows from eq. (1.33) that the spontaneous direction of change is in the direction of
decreasing G. At equilibrium the value of G is at a minimum.
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Equilibrium conditions in terms of internal energy and enthalpy are less appli-
cable since these correspond to systems at constant entropy and volume and at con-
stant entropy and pressure, respectively

dUS V, � 0 (1.42)

dHS p, � 0 (1.43)

The Helmholtz and Gibbs energies on the other hand involve constant tempera-
ture and volume and constant temperature and pressure, respectively. Most experi-
ments are done at constant T and p, and most simulations at constant T and V. Thus,
we have now defined two functions of great practical use. In a spontaneous process
at constant p and T or constant p and V, the Gibbs or Helmholtz energies, respec-
tively, of the system decrease. These are, however, only other measures of the
second law and imply that the total entropy of the system and the surroundings
increases.

Maximum work and maximum non-expansion work

The Helmholtz and Gibbs energies are useful also in that they define the maximum
work and the maximum non-expansion work a system can do, respectively. The
combination of the Clausius inequality T S qd d� and the first law of thermody-
namics d d dU q w� � gives

d d dw U T S� � (1.44)

Thus the maximum work (the most negative value of dw) that can be done by a
system is

d d dw U T Smax � � (1.45)

At constant temperature dA = dU – TdS and

w Amax � D (1.46)

If the entropy of the system decreases some of the energy must escape as heat in
order to produce enough entropy in the surroundings to satisfy the second law of
thermodynamics. Hence the maximum work is less than | |DU . DA is the part of the
change in internal energy that is free to use for work. Hence the Helmholtz energy
is in some older books termed the (isothermal) work content.

The total amount of work is conveniently separated into expansion (or pV) work
and non-expansion work.

d d dnon -ew w p V� � (1.47)
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For a system at constant pressure it can be shown that

d d dnon -e,maxw H T S� � (1.48)

At constant temperature dG = dH – TdS and

w Gnon -e,max � D (1.49)

Hence, while the change in Helmholtz energy relates to the total work, the change
in Gibbs energy at constant temperature and pressure represents the maximum
non-expansion work a system can do.

Since D r
oG for the formation of 1 mol of water from hydrogen and oxygen gas at

298 K and 1 bar is –237 kJ mol–1, up to 237 kJ mol–1 of ‘chemical energy’ can be
converted into electrical energy in a fuel cell working at these conditions using
H2(g) as fuel. Since the Gibbs energy relates to the energy free for non-expansion
work, it has in previous years been called the free energy.

The variation of entropy with temperature

For a reversible change the entropy increment is d dS q T� / . The variation of the
entropy from T1 to T2 is therefore given by

S T S T
q

T
T

T

( ) ( )2 1

1

2

� � 
d rev (1.50)

For a process taking place at constant pressure and that does not involve any non-
pV work

d d drevq H C Tp� � (1.51)

and

S T S T
C T

T
p

T

T

( ) ( )2 1

1

2

� � 
d

(1.52)

The entropy of a particular compound at a specific temperature can be determined
through measurements of the heat capacity as a function of temperature, adding
entropy increments connected with first-order phase transitions of the compound:

S T S
C T

T
T S

C T

T
Tp

T
p

T

T

( ) ( )
( ) ( )

� � � � 0
0

d dtrs m

trs

trs

D (1.53)
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The variation of the standard entropy of aluminium from 0 K to the melt at 3000 K
is given in Figure 1.5. The standard entropy of fusion and in particular the standard
entropy of vaporization contribute significantly to the total entropy increment.

Equation (1.53) applies to each substance in a reaction and a change in the stan-
dard entropy of a reaction (p is now po = 1 bar) going from T1 to T2 is given by
(neglecting for simplicity first-order phase transitions in reactants and products)

D D
D

r
o

r
o r m

o

dS T S T
C T

T
Tp

T

T

( ) ( )
( ),

2 1

1

2

� �  (1.54)

where D r m
oC Tp, ( ) is given by eq. (1.25).

The third law of thermodynamics

The third law of thermodynamics may be formulated as:

If the entropy of each element in some perfect crystalline state at T = 0 K is taken
as zero, then every substance has a finite positive entropy which at T = 0 K
become zero for all perfect crystalline substances.

In a perfect crystal at 0 K all atoms are ordered in a regular uniform way and the
translational symmetry is therefore perfect. The entropy is thus zero. In order to
become perfectly crystalline at absolute zero, the system in question must be able
to explore its entire phase space: the system must be in internal thermodynamic
equilibrium. Thus the third law of thermodynamics does not apply to substances
that are not in internal thermodynamic equilibrium, such as glasses and glassy
crystals. Such non-ergodic states do have a finite entropy at the absolute zero,
called zero-point entropy or residual entropy at 0 K.
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The third law of thermodynamics can be verified experimentally. The stable
rhombic low-temperature modification of sulfur transforms to monoclinic sulfur at
368.5 K (p = 1 bar). At that temperature, Ttrs, the two polymorphs are in equilib-
rium and the standard molar Gibbs energies of the two modifications are equal. We
therefore have

D D Dtrs m
o

trs m
o

trs trs m
oG H T S� � � 0 (1.55)

It follows that the standard molar entropy of the transition can be derived from the
measured standard molar enthalpy of transition through the relationship

D Dtrs m
o

trs m
o

trsS H T� / (1.56)

Calorimetric experiments give D trs m
oH � 401.66 J mol–1 and thus D trs m

oS � 1.09
J K–1 mol–1 [4]. The entropies of the two modifications can alternatively be derived
through integration of the heat capacities for rhombic and monoclinic sulfur given
in Figure 1.6 [4,5]. The entropy difference between the two modifications, also
shown in the figure, increases with temperature and at the transition temperature
(368.5 K) it is in agreement with the standard entropy of transition derived from the
standard enthalpy of melting. The third law of thermodynamics is thereby con-
firmed. The entropies of both modifications are zero at 0 K.

The Maxwell relations

Maxwell used the mathematical properties of state functions to derive a set of
useful relationships. These are often referred to as the Maxwell relations. Recall
the first law of thermodynamics, which may be written as

d d dU q w� � (1.57)
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For a reversible change in a closed system and in the absence of any non-expansion
work this equation transforms into

d d dU T S p V� � (1.58)

Since dU is an exact differential, its value is independent of the path. The same
value of dU is obtained whether the change is reversible or irreversible, and eq.
(1.58) applies to any change for a closed system that only does pV work. Equation
(1.58) is often called the fundamental equation. The equation shows that the
internal energy of a closed system changes in a simple way when S and V are
changed, and U can be regarded as a function of S and V. We therefore have

d d dU
U

S
S
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V
V

V S
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�
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It follows from eqs. (1.58) and (1.59) that
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and that

�

�

�

�
	




�
� � �

U

V
p

S

(1.61)

Generally, a function f(x,y) for which an infinitesimal change may be expressed
as

d d df g x h y� � (1.62)

is exact if
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Thus since the internal energy, U, is a state function, one of the Maxwell relations
may be deduced from (eq. 1.58):
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Using H U pV� � , A U TS� � and G H TS� � the remaining three Maxwell rela-
tions given in Table 1.6 are easily derived starting with the fundamental equation (eq.
1.58). A convenient method to recall these equations is the thermodynamic square
shown in Figure 1.7. On each side of the square appears one of the state functions
with the two natural independent variables given next to it. A change in the internal
energy dU, for example, is thus described in terms of dS and dV. The arrow from S to
T implies that TdS is a positive contribution to dU, while the arrow from p to V
implies that pdV is a negative contribution. Hence d d dU T S p V� � follows.

Properties of the Gibbs energy

Thermodynamics applied to real material systems often involves the Gibbs energy,
since this is the most convenient choice for systems at constant pressure and tem-
perature. We will thus consider briefly the properties of the Gibbs energy. As the
natural variables for the Gibbs energy are T and p, an infinitesimal change, dG, can
be expressed in terms of infinitesimal changes in pressure, dp, and temperature, dT.

d d dG
G

p
p

G

T
T

T p
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�
� (1.65)
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The Gibbs energy is related to enthalpy and entropy through G = H – TS. For an
infinitesimal change in the system

d d d dG H T S S T� � � (1.66)

Similarly, H = U + pV gives

d d d dH U p V V p� � � (1.67)

Thus in the absence of non-expansion work for a closed system, the following
important equation

d d dG V p S T� � (1.68)

is easily derived using also eq. (1.58). Equations (1.65) and (1.68) implies that the
temperature derivative of the Gibbs energy at constant pressure is –S:
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and thus that

G T G T S T
T

T

( ) ( )f i d

i

f

� �  (1.70)

where i and f denote the initial and final p and T conditions. Since S is positive for a
compound, the Gibbs energy of a compound decreases when temperature is
increased at constant pressure. G decreases most rapidly with temperature when S
is large and this fact leads to entropy-driven melting and vaporization of com-
pounds when the temperature is raised. The standard molar Gibbs energy of solid,
liquid and gaseous aluminium is shown as a function of temperature in Figure 1.8.
The corresponding enthalpy and entropy is given in Figures 1.2 and 1.5. The
melting (vaporization) temperature is given by the temperature at which the Gibbs
energy of the solid (gas) and the liquid crosses, as marked in Figure 1.8.

Equation (1.70) applies to each substance in a reaction and a change in the stan-
dard Gibbs energy of a reaction (p is now po = 1 bar) going from Ti to Tf is given by

D D Dr
o

f r
o

i r
od

i

f

G T G T S T
T

T

( ) ( )� �  (1.71)

D r
oS is not necessarily positive and the Gibbs energy of a reaction may increase

with temperature.
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The pressure derivative of the Gibbs energy (eq. 1.68) at constant temperature is
V:
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p
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(1.72)

and the pressure variation of the Gibbs energy is given as

G p G p V p
p

p

( ) ( )f i d

i

f

� �  (1.73)

Since V is positive for a compound, the Gibbs energy of a compound increases
when pressure is increased at constant temperature. Thus, while disordered phases
are stabilized by temperature, high-density polymorphs (lower molar volumes) are
stabilized by pressure. Figure 1.9 show that the Gibbs energy of graphite due to its
open structure increases much faster with pressure than that for diamond. Graphite
thus transforms to the much denser diamond modification of carbon at 1.5 GPa at
298 K.

Equation (1.73) applies to each substance in a reaction and a change in the Gibbs
energy of a reaction going from pi to pf is given by

D D Dr f r i r d

i

f

G p G p V p
p

p

( ) ( )� �  (1.74)
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DrV is not necessarily positive, and to compare the relative stability of the different
modifications of a ternary compound like Al2SiO5 the volume of formation of the
ternary oxide from the binary constituent oxides is considered for convenience.
The pressure dependence of the Gibbs energies of formation from the binary con-
stituent oxides of kyanite, sillimanite and andalusite polymorphs of Al2SiO5 are
shown in Figure 1.10. Whereas sillimanite and andalusite have positive volumes of
formation and are destabilized by pressure relative to the binary oxides, kyanite
has a negative volume of formation and becomes the stable high-pressure phase.
The thermodynamic data used in the calculations are given in Table 1.7 [3].1
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Figure 1.9 Standard Gibbs energy of graphite and diamond at T = 298 K relative to the
standard Gibbs energy of graphite at 1 bar as a function of pressure.
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Figure 1.10 The standard Gibbs energy of formation from the binary constitutent oxides of
the kyanite, sillimanite and andalusite modifications of Al2SiO5 as a function of pressure at
800 K. Data are taken from [3]. All three oxides are treated as incompressible.

1 Note that these three minerals, which are common in the Earth’s crust, are not stable at
ambient pressure at high temperatures. At ambient pressure, mullite (3Al2O3◊2SiO2), is
usually found in refractory materials based on these minerals.



1.4 Open systems

Definition of the chemical potential

A homogeneous open system consists of a single phase and allows mass transfer
across its boundaries. The thermodynamic functions depend not only on tempera-
ture and pressure but also on the variables necessary to describe the size of the
system and its composition. The Gibbs energy of the system is therefore a function
of T, p and the number of moles of the chemical components i, ni:

G G T p ni� ( , , ) (1.75)

The exact differential of G may be written
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The partial derivatives of G with respect to T and p, respectively, we recall are –S
and V. The partial derivative of G with respect to ni is the chemical potential of
component i, m i
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(1.77)

Equation (1.68) can for an open system be expressed as

d d d dG S T V p ni i
i

� � � � �m (1.78)

The internal energy, enthalpy and Helmholtz energy can be expressed in an analo-
gous manner:
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Compound Df m
oH

kJ mol–1
Sm

o

J K–1

mol–1

Vm
o

cm3 mol–1
Df,ox m

oH
kJ mol–1

Df,ox m
oS

J K–1

mol–1

Df,ox m
oG

J mol–1
Df,ox m

oV
cm3 mol–1

Sillimanite –2505.57 252.4 50.4 –3.32 0.1 –3400 1.3

Kyanite –2513.06 240.1 44.8 –10.81 –12.2 –1050 –4.3

Andalusite –2509.08 248.8 52.2 –6.83 –3.5 –4030 3.1

Al2O3 –1622.62 152.2 25.8

SiO2 –879.63 100.1 23.3

Table 1.7 Thermodynamic properties of the kyanite, sillimanite and andalusite poly-
morphs of Al2SiO5 at 800 K [3].



d d d dU T S p V ni i
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d d d dH T S V p ni i
i

� � � �m (1.80)

d d d dA S T p V ni i
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� � � � �m (1.81)

The chemical potential is thus defined by any of the following partial derivatives:
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Conditions for equilibrium in a heterogeneous system

Recall that the equilibrium condition for a closed system at constant T and p was
given by eq. (1.41). For an open system the corresponding equation is

( ) , ,dG T p ni
� 0 (1.83)

For such a system, which allows transfer of both heat and mass, the chemical poten-
tial of each species must be the same in all phases present in equilibrium; hence

m m ma b g
i i i� � �… (1.84)

Here a, b and g denote different phases in the system, whereas i denotes the dif-
ferent components of the system.

Partial molar properties

In open systems consisting of several components the thermodynamic properties
of each component depend on the overall composition in addition to T and p.
Chemical thermodynamics in such systems relies on the partial molar properties
of the components. The partial molar Gibbs energy at constant p, T and nj (eq. 1.77)
has been given a special name due to its great importance: the chemical potential.
The corresponding partial molar enthalpy, entropy and volume under the same
conditions are defined as
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Note that the partial molar derivatives may also be taken under conditions other
than constant p and T.

The Gibbs–Duhem equation

In the absence of non pV-work, an extensive property such as the Gibbs energy of a
system can be shown to be a function of the partial derivatives:
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In this context G itself is often referred to as the integral Gibbs energy.
For a binary system consisting of the two components A and B the integral Gibbs

energy eq. (1.88) is

G n n� �A A B Bm m (1.89)

Differentiation of eq. (1.89) gives

d d d d dA A A A B B B BG n n n n� � � �m m m m (1.90)

By using eq. (1.78) at constant T and p, G is also given by

d d dA A B BG n n� �m m (1.91)

By combining the two last equations, the Gibbs–Duhem equation for a binary
system at constant T and p is obtained:

n nA A B Bd dm m� � 0 i.e. ni i
i

dm �� 0 (1.92)

In general, for an arbitrary system with i components, the Gibbs–Duhem equa-
tion is obtained by combining eq. (1.78) and eq. (1.90):

S T V p ni i
i

d d d� � �� m 0 (1.93)

Expressions for the other intensive parameters such as V, S and H can also be
derived:

n Vi i
i

d� � 0 (1.94)
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n Si i
i

d� � 0 (1.95)

n Hi i
i

d� � 0 (1.96)

The physical significance of the Gibbs–Duhem equation is that the chemical
potential of one component in a solution cannot be varied independently of the
chemical potentials of the other components of the solution. This relation will be
further discussed and used in Chapter 3.
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2
Single-component systems

This chapter introduces additional central concepts of thermodynamics and gives
an overview of the formal methods that are used to describe single-component sys-
tems. The thermodynamic relationships between different phases of a single-com-
ponent system are described and the basics of phase transitions and phase diagrams
are discussed. Formal mathematical descriptions of the properties of ideal and real
gases are given in the second part of the chapter, while the last part is devoted to the
thermodynamic description of condensed phases.

2.1 Phases, phase transitions and phase diagrams

Phases and phase transitions

In Chapter 1 we introduced the term phase. A phase is a state that has a particular
composition and also definite, characteristic physical and chemical properties. We
may have several different phases that are identical in composition but different in
physical properties. A phase can be in the solid, liquid or gas state. In addition,
there may exist more than one distinct crystalline phase. This is termed polymor-
phism, and each crystalline phase represents a distinct polymorph of the substance.

A transition between two phases of the same substance at equilibrium is called a
first-order phase transition. At the equilibrium phase transition temperature the
equilibrium condition eq. (1.84) yields

m ma b
i i� (2.1)

where a and b denote the two coexisting phases. In this chapter we are only consid-
ering single component systems (i = 1) and for simplicity eq. (2.1) is expressed as
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m ma b� (2.2)

Thus the molar Gibbs energies of the two phases are the same at equilibrium.
Typical first-order phase transitions are for example melting of ice and vaporization of

water at p = 1 bar and at 0° and 99.999 °C, respectively. First-order phase transitions
are accompanied by discontinuous changes in enthalpy, entropy and volume. H, S and V
are thermodynamically given through the first derivatives of the chemical potential with
regard to temperature or pressure, and transitions showing discontinuities in these func-
tions are for that reason termed first-order. By using the first derivatives of the Gibbs
energy with respect to p and T, defined in eqs. (1.69) and (1.72), the changes in the slopes
of the chemical potential at the transition temperature are given as
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Here D trs mV , D trs mS and D trs mH are the changes in the molar volume, entropy
and enthalpy connected with the phase transition. Phases separated by a first-order
transition can be present together with a distinct interface, and the phases are thus
coexistent under certain conditions. For a single component system like H2O, ice
and water are coexistent at the melting temperature. The same is true at the first-
order transition between two crystalline polymorphs of a given compound. The
changes in heat capacity at constant pressure, enthalpy, entropy and Gibbs energy
at the first-order semi-conductor–metal transition in NiS [1] are shown in Figure
2.1. The heat capacity at constant pressure is the second derivative of the Gibbs
energy and is given macroscopically by the temperature increment caused by an
enthalpy increment; Cp = DH/DT. Since the first-order transition takes place at con-
stant temperature, the heat capacity in theory should be infinite at the transition
temperature. This is obviously not observed experimentally, but heat capacities of
the order of 107–108 J K–1 mol–1 are observed on melting of pure metals [2].

Transformations that involve discontinuous changes in the second derivatives of
the Gibbs energy with regard to temperature and pressure are correspondingly
termed second-order transitions. For these transitions we have discontinuities in
the heat capacity, isothermal compressibility and isobaric expansivity:
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where kT and a are the isothermal compressibility (eq. 1.19) and isobaric
expansivity (eq. 1.18).

Modifications separated by a second-order transition can never be coexistent.
One typical second-order transition, the displacive structural transition, is charac-
terized by the distortion of bonds rather than their breaking, and the structural
changes that occur are usually small. Typically, there is continuous variation in the
positional parameters and the unit cell dimensions as a function of temperature.
The structural changes in the system occur gradually as the system moves away
from the transition point. As well as a structural similarity, a symmetry relationship
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Figure 2.1 The temperature variation of the heat capacity, enthalpy, entropy, and Gibbs
energy close to the first-order semiconductor to metal transition in NiS [1].



exists between the two modifications.1 The a- to b-quartz transition may serve as an
example, and the two modifications of SiO2 are illustrated in Figure 2.2. a-quartz is
most easily considered as a distorted version of high-temperature b-quartz. When b-
quartz is cooled below 573 °C at 1 bar the framework of the structure collapses to the
denser a-configuration. The mean Si–O bond distances hardly change, but the
Si–O–Si bond angle decreases from 150.9° at 590 °C to 143.61° at room temperature
[3]. The variations of the unit cell volume [4], heat capacity, enthalpy, and Gibbs
energy with temperature in the transition region [5] are given in Figure 2.3. While the
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Figure 2.2 Crystal structure of a- (low) and b- (high) quartz (SiO2).
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Figure 2.3 The temperature variation of the Gibbs energy [5], unit-cell volume [4]
enthalpy and heat capacity [5] at the second-order a- to b-quartz transition of SiO2.
Second-order derivatives of the Gibbs energy like the heat capacity have discontinuities at
the transition temperature.

1 Second-order transitions have certain restrictions concerning the symmetry of the space group for
each of the two modifications. A second-order transition can only occur between two modifications
where the space group of the first is a sub-group of the space group of the second. First-order phase
transitions do not have any restrictions concerning the symmetries of the two phases.



transition is barely seen in the Gibbs energy, it gives rise to a change of slope in
enthalpy and volume and to a discontinuity in the heat capacity.

It is possible that both the first and second derivatives of the Gibbs energy are
continuous, and that the discontinuous changes occur in the third-order derivatives
of the Gibbs energy. The corresponding transition would be of third order. In prac-
tice, it is difficult to decide experimentally whether or not there is a discontinuity in
the heat capacity, thermal expansivity or isothermal compressibility at the transi-
tion temperature. Even small jumps in these properties, which are difficult to verify
experimentally, will signify a second-order transition. Hence it is common to call
all transitions with continuous first-order derivatives second-order transitions.
Similarly, it may be difficult to distinguish some first-order transitions from
second-order transitions due to kinetics.

Slopes of the phase boundaries

A phase boundary for a single-component system shows the conditions at which
two phases coexist in equilibrium. Recall the equilibrium condition for the phase
equilibrium (eq. 2.2). Let p and T change infinitesimally but in a way that leaves the
two phases a and b in equilibrium. The changes in chemical potential must be iden-
tical, and hence

d dm ma b� (2.8)

An infinitesimal change in the Gibbs energy can be expressed as dG = Vdp – SdT
(eq. 1.68) and eq. (2.8) becomes

	 
 � 	 
S T V p S T V pm m m md d d da a b b (2.9)

Equation (2.9) can be rearranged to the Clapeyron equation:
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At equilibrium D Dtrs m trs m trsS H T� / and the Clapeyron equation may be written
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The variation of the phase transition temperature with pressure can be calculated
from the knowledge of the volume and enthalpy change of the transition. Most
often both the entropy and volume changes are positive and the transition tempera-
ture increases with pressure. In other cases, notably melting of ice, the density of
the liquid phase is larger than of the solid, and the transition temperature decreases
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with pressure. The slope of the pT boundary for some first-order transitions is
shown in Figure 2.4.

It should be noted that the boiling temperature of all substances varies more rap-
idly with pressure than their melting temperature since the large volume change
during vaporization gives a small dp/dT. For a liquid–vapour or solid–vapour
boundary the volume of gas is much larger than the volume of the condensed phase,
and D vap m m

gasV V� is a reasonable approximation. For an ideal gas (see eq. 2.23),
V RT pm

gas � / and equation (2.11) rearrange to the Clausius–Clapeyron equation:

d
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�

D
2

(2.12)

The vapour pressure of Zn as a function of temperature, which implicitly also shows
the variation of the boiling temperature with pressure, is shown in Figure 2.5.
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Second-order transitions do not involve coexisting phases but are transitions in
which the structural properties gradually change within a single phase. The low-
and high-temperature modifications are here two modifications of the same phase.
Hence, although these transitions often are represented in phase diagrams, they are
not heterogeneous phases and do not obey Gibbs’ phase rule (see below). There is
no discontinuous change in the first derivatives of the Gibbs energy at the transition
temperature for a second-order transition, and the volumes of the two phases are
thus equal. The change in volume, dV, must be equal for both modifications if the
transition is to remain continuous. Taking into account that V is a function of tem-
perature and pressure and by using the definitions of the isobaric expansivity and
the isothermal compressibility:
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Thus the pT slope is for a second-order transition is given as
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Some selected examples of the variation with pressure of the transition tempera-
tures of second-order transitions are shown in Figure 2.6.

Phase diagrams and Gibbs phase rule

A phase diagram displays the regions of the potential space where the various
phases of the system are stable. The potential space is given by the variables of the
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system: pressure, temperature, composition and, if applicable, other variables such
as electric or magnetic field strengths. In this chapter we are considering single
component systems only. For a single-component system the phase diagram dis-
plays the regions of pressure and temperature where the various phases of this com-
ponent are stable. The lines separating the regions – the phase boundaries – define
the p,T conditions at which two phases of the component coexist in equilibrium.

Let us initially consider a single-component phase diagram involving a solid, a
liquid and a gaseous phase. The p,T phase diagram of H2O is given as an example in
Figure 2.7. The transformations between the different phases are of first order. The
liquid–vapour phase boundary shows how the vapour pressure of the liquid varies
with temperature. Similarly, the solid–vapour phase boundary gives the tempera-
ture variation of the sublimation vapour pressure of the solid.

The temperature at which the vapour pressure of a liquid is equal to the external
pressure is called the boiling temperature at that pressure. The standard boiling
temperature is the boiling temperature at 1 bar. Correspondingly, the standard
melting temperature is the melting temperature at 1 bar. Boiling is not observed
when a liquid is heated in a closed vessel. Instead, the vapour pressure increases
continuously as temperature is raised. The density of the vapour phase increases
while the density of the liquid decreases. At the temperature where the densities of
the liquid and the vapour become equal, the interface between the liquid and the
gas disappears and we have reached the critical temperature of the substance, Tc.
This is visualized by using volume (or if preferred, density) as a third variable in a
three-dimensional (p,T,V) phase diagram – see Figure 2.8. The vapour pressure at
the critical temperature is called the critical pressure. A single uniform phase, the
supercritical fluid, exists above the critical temperature.

For a single-component system p and T can be varied independently when only
one phase is present. When two phases are present in equilibrium, pressure and
temperature are not independent variables. At a certain pressure there is only one
temperature at which the two phases coexist, e.g. the standard melting temperature
of water. Hence at a chosen pressure, the temperature is given implicitly. A point
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where three phases coexist in equilibrium is termed a triple point; three phases are
in equilibrium at a given temperature and pressure. Ice, water and water vapour are
in equilibrium at T = 273.16 K and p = 611 Pa. None of the intensive parameters can
be changed. The observer cannot affect the triple point.

The relationship between the number of degrees of freedom, F, defined as the
number of intensive parameters that can be changed without changing the number
phases in equilibrium, and the number of phases, Ph, and components, C, in the
system is expressed through Gibbs phase rule:

F = C – Ph + 2 (2.15)

In Chapter 4 the determination of the number of components in complex systems
will be discussed in some detail. In this chapter we shall only consider single-com-
ponent systems. For a single-component system, such as pure H2O, C = 1 and F = 3
– Ph. Thus, a single phase (Ph = 1) is represented by an area in the p,T diagram and
the number of degrees of freedom F is 2. A line in the phase diagram represents a
heterogeneous equilibrium between two coexisting phases (Ph = 2) and F = 1,
while three phases (Ph = 3) in equilibrium are located at a point, F = 0.

Field-induced phase transitions

Various types of work in addition to pV work are frequently involved in experi-
mental studies. Research on chemical equilibria for example may involve surfaces
or phases at different electric or magnetic potentials [11]. We will here look briefly
at field-induced transitions, a topic of considerable interest in materials science.
Examples are stress-induced formation of piezoelectric phases, electric polariza-
tion-induced formation of dielectrica and field-induced order–disorder transitions,
such as for environmentally friendly magnetic refrigeration.

Magnetic contributions to the Gibbs energy due to an internal magnetic field are
present in all magnetically ordered materials. An additional energetic contribution
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arises in a magnetic field with field strength or magnetic flux density B. This contribu-
tion is proportional to the magnetic moment, m, of the system and thus is B◊dm. An
important additional complexity of external fields is that the field has a direction; the
field can be applied parallel to any of the three principal axes of a single crystal. The
magnetic moment and the magnetic field are thus vectors and represented by bold
symbols. The fundamental equation for the internal energy for a system involving
magnetic polarization is when the pV work is negligible (constant volume):

dU = TdS + B◊dm (2.16)

The corresponding equation for the Helmholtz energy is

dA = –SdT + B◊dm (2.17)

In order to focus on the driving force for phase transitions induced by a magnetic
field it is advantageous to use the magnetic flux density as an intensive variable.
This can be achieved through what is called a Legendre transform [12]. A trans-
formed Helmholtz energy is defined as

�A = A – B◊m = 0 (2.18)

Taking the differential of �A and substituting for dA in eq. (2.17):

d �A = dA – B◊dm – m◊dB = –SdT – m◊dB (2.19)

Assuming an isotropic system, the following Maxwell relation can be derived from
eq. (2.19), since d �A is an exact differential:
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The entropy of a ferromagnetically ordered phase decreases with increasing
magnetic field strength. The decrease is equal to the change in the magnetic
moment with temperature and hence is large close to the order–disorder tempera-
ture. This implies that a larger change in the magnetic moment with temperature at
constant field strength gives a higher entropy change connected with a field change
at constant temperature. The effect of a magnetic field on the Helmholtz energy of a
magnetic order–disorder transition thus clearly affects phase stability.

The application of n additional thermodynamic potentials (of electric, magnetic
or other origin) implies that the Gibbs phase rule must be rewritten to take these
new potentials into account:

F + Ph = C + 2 + n (2.21)
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The isobaric (1 bar) T,B-phase diagram of MnP with magnetic field parallel to
the crystallographic b-axis [13] is given in Figure 2.9. At isobaric conditions,
where one degree of freedom is lost, the number of phases and the number of
degrees of freedom are related by F + Ph = 3. Thus areas in the T,B diagram corre-
spond to a single phase; a line corresponds to two phases in equilibrium; and three
phases may exist in equilibrium at an invariant point, the triple point. It should be
noted that the fact that a magnetic field can be applied parallel to any of the three
principal axes of a single crystal implies that different phase diagrams will result in
each case for a non-cubic crystal.

2.2 The gas phase

Ideal gases

The thermodynamic properties of gases are given through equations of state (EoS)
which in general may be given as

p = f (T,V,n) (2.22)

For an ideal gas the equation of state is known as the ideal gas law:

p
nRT

V
� (2.23)

where R is the gas constant and n is the number of moles of gas. The Gibbs energy
of a gas at one pressure (pf) relative to that at another pressure (pi) is at constant
temperature given through
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Using the ideal gas law the Gibbs energy expression becomes
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For any single-component system such as a pure gas the molar Gibbs energy is
identical to the chemical potential, and the chemical potential for an ideal gas is
thus expressed as

m m m( ) ( ) ln lnp p RT
p

p
RT p� 
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where the standard chemical potential (m o) is the standard molar Gibbs energy of
the pure ideal gas at the standard pressure 1 bar (po).

The value of this standard molar Gibbs energy, m o( )T , found in data compila-
tions, is obtained by integration from 0 K of the heat capacity determined by the
translational, rotational, vibrational and electronic energy levels of the gas. These
are determined experimentally by spectroscopic methods [14]. However, contrary
to what we shall see for condensed phases, the effect of pressure often exceeds the
effect of temperature. Hence for gases most attention is given to the equations of
state.

Real gases and the definition of fugacity

Real gases do not obey the ideal gas law, but the ideal gas law is often a very good
approximation. The largest deviation from ideal gas behaviour is observed at high
pressures and low temperatures. Figure 2.10 displays schematically the pressure
dependence of the chemical potential. For practical reasons, it is advantageous to
have an expression for the chemical potential of the real gas, which resembles that
used for perfect gases. In order to obtain a simple expression for the chemical
potential we replace the ideal pressure in the expression for the chemical potential
(eq. 2.26) with the effective pressure, the fugacity, f, and we have

m m m( ) ( ) ln lnp p RT
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The standard state for a real gas is thus a hypothetical state in which the gas is at a
pressure of po = 1 bar and behaving ideally.
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Most applications in materials science are carried out under pressures which do
not greatly exceed 1 bar and the difference between f and p is small, as can be seen
from the fugacity of N2(g) at 273.15 K [15] given in Figure 2.11. Hence, the
fugacity is often set equal to the partial pressure of the gas, i.e. f � p. More accurate
descriptions of the relationship between fugacity and pressure are needed in other
cases and here equations of state of real, non-ideal gases are used.

Equations of state of real gases

Purely phenomenological as well as physically based equations of state are used to
represent real gases. The deviation from perfect gas behaviour is often small, and
the perfect gas law is a natural choice for the first term in a serial expression of the
properties of real gases. The most common representation is the virial equation of
state:

pV RT B p C pm � 
 � 
 � 
( )1 2 … (2.28)
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An alternative formulation is
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The coefficients B and C are the second and third virial coefficients, respectively,
the first virial coefficient being 1.

The compressibility factor of a gas is defined as

Z
pV

RT
� m (2.30)

For an ideal gas Z = 1. Departures from the value of unity indicate non-ideal behav-
iour. Z < 1 can be related to dominating attractive forces, whereas Z > 1 relates to
repulsive forces being dominant.

The simplest physically based equation of state for real gases, the van der Waals
equation, is based on two assumptions. As pressure is increased, the number of
atoms per unit volume also increases and the volume available to the molecules in
total is reduced, since the molecules themselves take up some space. The volume
taken up by the molecules is assumed to be proportional to the number of mole-
cules, n, and the volume occupied per atom, b. The equation of state is accordingly
modified initially to

p
nRT

V nb
�

	
(2.31)

Secondly, since the frequency and force of the collisions with the walls of the
container give the pressure, the change in these two factors with concentration
must be taken into account. The attractive forces working between the molecules
reduce both factors, the reduction being approximately proportional to the molar
concentration (n/V). The pressure is hence reduced by a factor proportional to the
square of this concentration and is then given as
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The equation can be written in a form resembling the ideal gas law (eq. 2.23):
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For 1 mol of gas, n = 1:
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The constants a and b can be related to the pressure (pc) temperature (Tc) and
volume (Vc) at the critical point by noting that at the critical point, by definition
(see Section 5.2)
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The following three equations are obtained:

RT
a

b
c �

8

27
(2.36)

p
a

b
c �

27 2
(2.37)

V bc � 3 (2.38)

Hence there must be one relation involving pc, Tc and Vc which is independent of
the parameters a and b. This relation defines the critical compressibility factor Zc:
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If p, T and V are measured in units of pc, Tc and Vc, the van der Waals equation
becomes

p
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V T
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where p p p� / c , T T T� / c and V V V� / c . This is a remarkable equation because it
does not explicitly contain any free parameter characteristic of the substance and
illustrates the law of corresponding states. All real gases should, according to this
equation, behave in the same manner. The van der Waals equation of state evidently
represents an approximation only, and although it works reasonably well for gases
composed of spherical molecules it fails in many other cases.
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Even though the van der Waals equation is not as accurate for describing the
properties of real gases as empirical models such as the virial equation, it has been
and still is a fundamental and important model in statistical mechanics and chem-
ical thermodynamics. In this book, the van der Waals equation of state will be used
further to discuss the stability of fluid phases in Chapter 5.

2.3 Condensed phases

For condensed phases (liquids and solids) the molar volume is much smaller than
for gases and also varies much less with pressure. Consequently the effect of pres-
sure on the chemical potential of a condensed phase is much smaller than for a gas
and often negligible. This implies that while for gases more attention is given to the
volumetric properties than to the variation of the standard chemical potential with
temperature, the opposite is the case for condensed phases.

Variation of the standard chemical potential with temperature

The thermodynamic properties of single-component condensed phases are tradi-
tionally given in tabulated form in large data monographs. Separate tables are
given for each solid phase as well as for the liquid and for the gas. In recent years
analytical representations have been increasingly used to ease the implementation
of the data in computations. These polynomial representations typically describe
the thermodynamic properties above room temperature (or 200 K) only.

Polynomial expressions are conveniently used to represent a condensed phase
which is stable in the whole temperature range of interest and which does not
undergo any structural, electronic or magnetic transformations. The Gibbs energy
of a compound is in the CALPHAD approach represented relative to the elements
in their defined standard state at 298.15 K as a power series in terms of temperature
in the form of [16]:

G T H a bT cT T d Tn
n

n

i

m
o

m
SER( ) ln( )	 � 
 
 


�
�

2

(2.41)

Here H m
SER is the sum (in the stoichiometric ratio of the compound in question) of

D 0
298 15. H m

o of the elements in their defined standard state. a, b, c and dn are coeffi-
cients and n integers. This form of expression is useful for storing thermodynamic
information in databases. A number of such expressions are often required for a
given phase to cover the whole temperature range of interest. From eq. (2.41) all
other thermodynamic functions can be derived, e.g.

S T b c c T nd Tn
n

n
m
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These thermodynamic functions implicitly given in analytical representations are
given numerically at selected temperatures in monographs, as shown for AlN in
Table 2.1 [17]. The analytical approach is exemplified by descriptions of three
modifications of aluminium in Table 2.2 [18]. The stable face-centred cubic modi-
fication of crystalline aluminium (FCC-Al) melts at 933.473 K. Hexagonal close-
packed aluminium is unstable at all temperatures, as evident from the graphical
representation of the Gibbs energy relatively to FCC-Al in Figure 2.12. The ther-
modynamic properties may still be needed to describe alloys with hexagonal
closed-packed structure where aluminium is a solute.

Representation of transitions

Thermodynamic representation of transitions often represents a challenge. First-
order phase transitions are more easily handled numerically than second-order
transitions. The enthalpy and entropy of first-order phase transitions can be calcu-
lated at any temperature using the heat capacity of the two phases and the enthalpy
and entropy of transition at the equilibrium transition temperature. Small pre-tran-
sitional contributions to the heat capacity, often observed experimentally, are most
often not included in the polynomial representations since the contribution to the
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log Kf

0 0. 0. –3.871 –312.980 –312.980 INFINITE

100 5.678 2.164 –3.711 –314.756 –306.283 159.986

200 19.332 10.267 –2.463 –316.764 –296.990 77.566

298.15 30.097 20.142 0. –317.984 –286.995 50.280

300 30.254 20.329 0.056 –318.000 –286.803 49.937

400 36.692 29.987 3.428 –318.594 –276.301 36.081

500 40.799 38.647 7.317 –318.808 –265.697 27.757

600 43.538 46.341 11.541 –318.811 –255.072 22.206

700 45.434 53.201 15.994 –318.727 –244.455 18.241

800 46.791 59.361 20.608 –318.648 –233.850 15.269

900 47.792 64.932 25.339 –318.647 –223.252 12.957

1000 48.550 70.008 30.158 –329.363 –211.887 11.068

2000 51.290 104.790 80.490 –328.119 –94.810 2.476

Table 2.1 Thermodynamic properties of AlN at selected temperatures (data are taken from
NIST-JANAF tables [17]). Enthalpy reference temperature = T = 298.15 K; po = 1 bar.



Gibbs energy is small. This contribution is instead incorporated empirically in the
enthalpy and entropy of transition.

It is more difficult to describe second-order transitions. Considerable short-range
order is in general present far above the transition temperature. Correspondingly,

46 2 Single-component systems

FCC_Al

(298.15 < T/K < 700)

–7976.15 + 137.093038 T – 24.3671976T ln(T) – 1.884662E–3 T2 – 0.877664E–6 T3 + 74092 T–1

(700 < T/K < 933.473)

–11276.24 + 223.048446 T – 38.5844296 T ln (T) + 18.531982E–3 T2 – 5.764227E–6 T3 + 74092 T–1

(933.473 < T/K < 2900)

–11278.378 + 188.684153 T – 31.748192 T ln (T) – 1.231E28 T–9

Liquid relatively to FCC_Al

(298.15 < T/K < 933.473)

11005.029 – 11.841867 T + 7.934E–20 T7

(933.473 < T/K < 2900)

10482.382 – 11.253974 T + 1.231E28 T–9

HCP_Al relative to FCC_Al

(298.15 < T/K < 2900)

5481 – 1.8 T

Table 2.2 CALPHAD-type representation of the thermodynamic properties of face-cen-
tred cubic (FCC), liquid and hexagonal close-packed (HCP) aluminium of the form (after
Dinsdale [18]):
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considerable disordering has taken place already far below the disordering temperature.
The magnetic order–disorder transition in non-stoichiometric wüstite, Fe1–yO, may
serve as an example. The magnetic transition is largely dependent on the stoichiometry
of the compound (see Figure 2.13), and is for the oxygen-rich compositions spread over
a considerable temperature range [19]. The disordering is far from abrupt.

The Inden model [20] is frequently used to describe second-order magnetic
order–disorder transitions. Inden assumed that the heat capacity varied as a loga-
rithmic function of temperature and used separate expressions above and below the
magnetic order–disorder transition temperature (Ttrs) in order to treat the effects of
both long- and short-range order. Thus for t = (T/Ttrs) < 1:
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For t > 1
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The two coefficients KL and KS are derived empirically. They are related through
the entropy of transition and constrained to reproduce the total enthalpy and
entropy increments accompanying the phase transition. Since, the Inden model
demands a series expansion in order to calculate the entropy, a simpler related
equation by Hillert and Jarl [21] is used in many computer programs.

Second-order structural transitions are less frequently represented in applied
thermodynamic calculations. Still, the Landau approach for determination of
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Figure 2.13 Heat capacity of wüstite around the Néel temperature [19]. �: Fe0.99O; �:
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Gibbs energy changes connected with second-order transitions has a long tradi-
tion. The central concept of the Landau theory is the order parameter, G, which
describes the course of the transition. The order parameter is related to the change
in some macroscopic property like strain, average site occupancy or crystallo-
graphic distortion through the phase transition. The measured physical property is,
however, not necessarily directly proportional to G, but most often scales as either
G or G 2 . The relationship between the order parameter and the measured physical
property is defined by the differences in symmetry between the high- and low-tem-
perature polymorphs [22].

We will consider a phase transition between two crystal structures with different
symmetry and where the space group of the low-symmetry structure is a sub-group
of the space group of the high-symmetry structure. Hence all symmetry elements of
the high-symmetry structure are present in the low-symmetry structure. An order
parameter, G, is used to describe the thermodynamic state of the low-symmetry
phase. The contribution from the phase transition to the total Gibbs energy, here
termed the transitional Gibbs energy DtrsG, is now given as a function of T, p and G
as

D Dtrs trsG G T p� ( , , )G (2.47)

G is scaled such that it is assigned the value 0 in the high-temperature modification
and 1 in the low-temperature form at 0 K. Thus, DtrsG = 0 for the high-temperature
polymorph. The variation of the order parameter with temperature describes the
transition thermodynamically. In general [23]:
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Here a, b, c, d etc. are coefficients that in general are functions of temperature and
pressure. The equilibrium behaviour of G through the phase transition is deter-
mined by minimizing DtrsG with respect to G. Furthermore, at equilibrium the
DtrsG(G) surface is concave upwards (discussed thoroughly in Section 5.2), hence
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D trsG
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These criteria can be used to get information on the coefficients of eq. (2.48). In the
high-symmetry phase, stable above the transition temperature, the order parameter
G = 0 and the equilibrium conditions imply that the two first constants in the poly-
nomial expansion are restricted to a = 0 and b > 0. If we assume that b < 0, the low-
symmetry phase is stable since G 2 > 0 then implies that DtrsG < 0. The transitional
Gibbs energy is thus reduced to
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The Landau theory predicts the symmetry conditions necessary for a transition to
be thermodynamically of second order. The order parameter must in this case vary
continuously from 0 to 1. The presence of odd-order coefficients in the expansion
gives rise to two values of the transitional Gibbs energy that satisfy the equilibrium
conditions. This is not consistent with a continuous change in G and thus corre-
sponds to first-order phase transitions. For this reason all odd-order coefficients
must be zero. Furthermore, the sign of b must change from positive to negative at the
transition temperature. It is customary to express the temperature dependence of b as
a linear function of temperature:

b B T T� 	( )trs (2.51)

Here B is a constant independent of temperature and pressure. The transitional
Gibbs energy is thus
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where d, f and higher-order coefficients all are assumed to be independent of tem-
perature and pressure. Normally two or three terms of this expression give a satis-
factory description of the transitional Gibbs energy using experimentally
determined values for the temperature variation of the order parameter.

When d > 0 the expansion describes a thermodynamic second-order transition.
The equilibrium condition neglecting higher order terms is
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which gives
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d
T T( )trs for T < Ttrs (2.54)

The form of the order parameter is given implicitly since by definition G =1 at 0 K
and hence

B

d T
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and thus
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The transitional Gibbs energy is for T � Ttrs
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The transitional entropy and heat capacity are readily derived by differentiation
with respect to temperature. For T � Ttrs
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The contribution of the transition to the thermodynamic functions can be evalu-
ated once the coefficients B and d have been determined. Experimental determina-
tion of the transition temperature and one additional thermodynamic quantity at
one specific temperature is sufficient to describe the transition thermodynamically
using this model.

It is easily shown that a first-order phase transition is obtained for cases were
d < 0, whereas behaviour at the borderline between first- and second-order transi-
tions, tricritical behaviour, is obtained for d = 0. In the latter case the transitional
Gibbs energy is
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Minimization of the transitional Gibbs energy with respect to G gives
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The variation of the order parameter with temperature thus distinguishes second-
order transitions from tricritical behaviour. In general the variation of the order
parameter with temperature for a continuous transition is described as
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50 2 Single-component systems



where b is the critical exponent. For our two ideal cases, second-order and
tricritical transitions, b � 1

2
(eq. 2.56) and 1

4
(eq. 2.61), respectively.

The transitional entropy, enthalpy and heat capacity for a tricritical transition is
for T � Ttrs:
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Orientational disordering of the carbonate groups in CaCO3 above 1260 K may
serve as an example of application of Landau theory. Below the transition tempera-
ture, alternate layers of planar CO3 groups point in opposite directions. In the high-
temperature modification they are free to rotate and become equivalent. The sym-
metry reduction on ordering is from space group R m3 to R c3 with doubling of the
c-axis length. Thus the transition gives rise to superlattice reflections in the diffrac-
tion patterns of the low-temperature phase. The intensities of these reflections are
according to symmetry considerations proportional to G2. It has been shown by
neutron diffraction that the order parameter is proportional to ( ) /T Ttrs 	 1 4 and thus
that the transition is tricritical [24]. Ttrs and the excess enthalpy determined by
drop calorimetry characterize the transition thermodynamically [25]. The contri-
bution from the transition to the total Gibbs energy and entropy (using B = 24 J
mol–1 K–1 and f = 30 kJ mol–1) are given in Figure 2.14.
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Figure 2.14 The contribution from the order–disorder transition of CaCO3(s) to the total
Gibbs energy and entropy [25].



Equations of state

Equations of state of condensed materials are seldom used in materials science but
are frequently used in geophysics and to an increasing degree also in solid state sci-
ences for high-pressure studies of phase transitions. A considerable amount of
work on equations of state of minerals has been reported in the geophysical and
geochemical literature. In the Earth’s mantle the pressure is several orders of mag-
nitude higher than ambient since pressure and temperature increase with
increasing depth within the Earth. Thus equation of state data is essential for ther-
modynamic calculations of phase equilibria in the Earth’s interior.

Equations of state for solids are often cast in terms of the bulk modulus, KT,
which is the inverse of the isothermal compressibility, kT, and thus defined as

K V
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V
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T T

� � 	
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�
�

�

�
�

1

k
(2.66)

The two most usual equations of state for representation of experimental data at
high pressure are the Murnaghan and Birch–Murnaghan equations of state. Both
models are based on finite strain theory, the Birch–Murnaghan or Eulerian strain
[26]. The main assumption in finite strain theory is the formal relationship between
compression and strain [27]:
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The Murnaghan equation of state is given by
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while what is termed the third-order Birch–Murnaghan equation of state is given
by
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where K T ,0 and �K T ,0 are the isothermal bulk modulus and its pressure derivative at
T = 298 K at zero pressure, respectively. The third-order Birch–Murnaghan EoS
reduces to second order when � �K T ,0 4 and
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Volumetric data for four different substances represented by the third-order
Birch–Murnaghan equation of state are shown in Figure 2.15.

The equations discussed above are reliable for phases where the compressibility
does not change too fast with pressure, more specifically for 3.4 < �K T ,0 < 7.
The equations are thus suitable for a large range of crystalline substances but
not for liquids or low-dimensional materials, where �K T ,0 is often larger than 7.
In the latter cases the universal Vinet equation of state seems more appropriate
[28].

The effect of temperature on the equation of state is introduced through the iso-
baric thermal expansivity. It is generally assumed that isobaric expansivity and iso-
baric compressibility work independently of each order and the volume as a
function of T and p is then expressed as

V p T V p T( , ) ( ) ( )� 298
o f f (2.71)

Finally, it should be noted that the effect of the compressibility on the
thermodymanics of solids is small even at relatively high pressures. The molar
volume of magnetite, Fe3O4, at 1000 K is 46.0 cm3 mol–1 and VDp at p = 1 GPa is
46 kJ mol–1 if the compressibility of the compound is neglected. Taking compress-
ibility into account reduces this contribution to 45.88 kJ mol–1 [29].
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3
Solution thermodynamics

So far we have discussed the thermodynamic properties of materials, which have
been considered as pure and to consist of only a single component. We will now
continue with systems containing two or more components and thereby solutions.
Solutions are thermodynamic phases with variable composition, and are common
in chemical processes, in materials and in daily life. Alloys – solutions of metallic
elements – have played a key role in the development of human civilisation from
the Bronze Age until today. Many new advanced materials are also solutions.
Examples are tetragonal or cubic ZrO2, stabilized by CaO or Y2O3, with high
toughness or high ionic conductivity, and piezoelectric and dielectric materials
based on BaTiO3 or PbZrO3. In all these cases the mechanical or functional proper-
ties are tailored by controlling the chemical composition of the solid solution. The
chemical and thermal stability of these complex materials can only be understood
if we know their thermodynamic properties.

The understanding of how the chemical potential of a component is changed by
mixing with other components in a solution is an old and fascinating problem. The
aim of this chapter is to introduce the formalism of solution thermodynamics.
Models in which the solution is described in terms of the end members of the solu-
tion, solution models, are given special attention. While the properties of the end
members must be described following the methods outlined in the previous
chapter, the present chapter is devoted to the changes that occur on formation of the
solutions. In principle one could describe the Gibbs energy of a mixture without
knowing the properties of the end members, but since it is often of interest to apply
a solution model in thermodynamic calculations involving other phases, the solu-
tion model often is combined with descriptions of the Gibbs energies of the end
members to give a complete thermodynamic description of the system.
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3.1 Fundamental definitions

Measures of composition

The most important characteristic of a solution is its composition, i.e. the concen-
tration of the different components of the phase. The composition of a solution is
best expressed by the ratio of the number of moles of each component to the total
number of moles. This measure of the composition is the mole fraction of a com-
ponent. In the case of a binary solution consisting of the components A and B, the
mole fractions of the two components are defined as

x
n

n n
A

A

A B
�

�
and x

n

n n
B

B

A B
�

�
(3.1)

and it is evident that

x xA B� �1 (3.2)

For an infinitesimal change in composition of a binary solution the differentials of
the two mole fractions are related as

d dA Bx x� � (3.3)

In dealing with dilute solutions it is convenient to speak of the component
present in the largest amount as the solvent, while the diluted component is called
the solute.

While the mole fraction is a natural measure of composition for solutions of
metallic elements or alloys, the mole fraction of each molecule is chosen as the
measure of composition in the case of solid or liquid mixtures of molecules.1 In
ionic solutions cations and anions are not randomly mixed but occupy different
sub-lattices. The mole fractions of the atoms are thus an inconvenient measure of
composition for ionic substances. Since cations are mixed with cations and anions
are mixed with anions, it is convenient for such materials to define composition in
terms of ionic fractions rather than mole fractions. In a mixture of the salts AB and
AC, where A is a cation and B and C are anions, the ionic fractions of B and C are
defined through

X
n

n n
XB

B

B C
C�

�
� �1 (3.4)
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1 Note that volume fraction rather than mole fraction is recommended in mixtures of molecules
with significant different molecular mass. This will be discussed in Chapter 9.



In a binary solution AB–AC, the ionic fractions of B and C are identical to the
mole fractions of AB and AC. It may therefore seem unnecessary to use the ionic
fractions. However, in the case of multi-component systems the advantage of ionic
fractions is evident, as will be shown in Chapter 9.

Mixtures of gases

The simplest solution one can imagine is a mixture of ideal gases. Let us simplify
the case by assuming only two types of ideal gas molecules, A and B, in the mix-
ture. The total pressure in this case is the sum of the partial pressures of the two
components (this is termed Dalton’s law). Thus,

p p ptot A B� � (3.5)

where pA and pB are the partial pressures of the two gases and ptot is the total pres-
sure. By applying the ideal gas law (eq. 2.23), the volume of the gas mixture is

V n V n Vtot A m,A B m,B� � (3.6)

where nA and nB are the number of moles of A and B in the mixture and Vm,A and
Vm,B are the molar volumes of pure A(g) and B(g). In this case, where both A and B
are ideal gases, Vm,A = Vm,B. It follows that, for a mixture of ideal gases

p x pA A tot� (3.7)

The chemical potential of an ideal gas A is given by eq. (2.26) as
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where mA
o is the standard chemical potential of the pure ideal gas A at pA

o = 1 bar at
a given temperature T. For a mixture of the ideal gases A and B at constant pressure
(p ptot A

o bar� �1 ) the chemical potential of A for a given composition of the solu-
tion, xA, is, by using eq. (3.7)

m m mA A A
o A tot

A
o A

o
A( ) ln lnx RT

x p

p
RT x� �

�

�

�
�

�

�
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The difference between the chemical potential of a pure and diluted ideal gas is
simply given in terms of the logarithm of the mole fraction of the gas component.
As we will see in the following sections this relationship between the chemical
potential and composition is also valid for ideal solid and liquid solutions.
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In mixtures of real gases the ideal gas law does not hold. The chemical potential
of A of a mixture of real gases is defined in terms of the fugacity of the gas, ƒA. The
fugacity is, as discussed in Chapter 2, the thermodynamic term used to relate the
chemical potential of the real gas to that of the (hypothetical) standard state of the
gas at 1 bar where the gas is ideal:

m m mA A A
o A
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o A

o
A( ) ln ln( )x RT
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� � (3.10)

Solid and liquid solutions – the definition of activity

In the solid or liquid state the activity, a, is introduced to express the chemical
potential of the components of a solution. It is defined by

m mA A A� �* lnRT a (3.11)

where mA
* is the chemical potential of A in the reference state. For p = 1 bar m mA A

o* � .
One of the most important tasks of solution thermodynamics is the choice of an appro-
priate reference state, and this is the topic of one of the following sections.

3.2 Thermodynamics of solutions

Definition of mixing properties

The volume of an ideal gas mixture is given by eq. (3.6). Let us now consider only
solid or liquid mixtures. Our starting point is an arbitrary mixture of nA mole of
pure A and nB mole of pure B. The mixing process is illustrated in Figure 3.1. We
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Figure 3.1 Mixing of nA moles of A and nB moles of B at constant p and T. The molar vol-
umes of pure A and B are VA and VB. The partial molar volumes of A and B in the solution
are VA and VB, respectively.



will first derive the expressions for the volume of the system before and after the
mixing. The volume before mixing is

V n V n V( )before A m,A B m,B� � (3.12)

where Vm,A and Vm,B are the molar volumes of pure A and B. We now mix A and B
at constant pressure p and temperature T and form the solution as illustrated in
Figure 3.1. The expression for the volume of the solution is then

V n V n V( )after A A B B� � (3.13)

where VA and VB represent the partial molar volumes of A and B (defined by eq.
1.87) in the solution. These partial molar volumes may be seen as apparent vol-
umes that when weighted with the number of A and B atoms give the observed total
volume of the solution. The difference in the volume of the solution before and
after mixing, the volume of mixing, is designated D mixV :

D mix A A A B B B(after (beforeV V V n V V n V V� � � � � �) ) ( ) ( ) (3.14)

The volume of mixing for one mole of solution is termed the molar volume of
mixing, D mix mV , and is derived by dividing eq. (3.14) by the total number of moles
(n nA B� ) in the system

D D D Dmix m
mix

A B
A mix A B mix BV

V

n n
x V x V�

�
� �

( )
(3.15)

The molar volume of mixing of two binary systems is shown in Figure 3.2.
Pb–Sn shows positive deviation from the ideal behaviour at 1040 K [1] while the
volume of mixing of Pb–Sb at 907 K is negative, with a minimum at xPb 
 0.5 and
asymmetric with respect to the composition [2].
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Figure 3.2 Molar volume of mixing of molten Pb–Sn at 1040 K [1] and Pb–Sb at 907 K [2]
as a function of composition.



The phenomenology described above can be applied to any thermodynamic
extensive function, Yi , for a solution. The integral molar enthalpy, entropy and
Gibbs energy of mixing are thus

D D Dmix m A mix A B mix BH x H x H� � (3.16)

D D Dmix m A mix A B mix BS x S x S� � (3.17)

D D Dmix m A mix A B mix BG x G x G� � (3.18)

The three functions are interrelated by

D D Dmix m mix m mix mG H T S� � (3.19)

Since D mix A A A
oG � �m m , the integral molar Gibbs energy of mixing can alterna-

tively be expressed in terms of the chemical potentials as

D mix m A A A
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B B B
o

A A B BG x x RT x a x a� � � � � �( ) ( ) ( ln ln )m m m m

(3.20)

where mA
o and mB

o are the chemical potentials of pure A and B, whereas mA and mB
are the chemical potentials of A and B in the given solution. Using G = H – TS, the
partial molar Gibbs energy of mixing is given as

D D Dmix A mix A mix A A A
o

AG H T S RT a� � � � �m m ln (3.21)

The partial molar entropy, enthalpy or volume of mixing can be derived from eq.
(3.21) and are given by the relations
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Corresponding equations can be derived for the partial molar properties of B.
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Ideal solutions

In Section 3.1 we showed that the chemical potential of an ideal gas in a mixture
with other ideal gases is simply given in terms of a logarithmic function of the mole
fraction. By comparing eqs. (3.9) and (3.10) we see that the fugacity/activity of the
ideal gas is equal to the mole fraction. A solution (gas, liquid or solid) is in general
called ideal if there are no extra interactions between the different species in addi-
tion to those present in the pure components. Thermodynamically this implies that
the chemical activity is equal to the mole fraction, a xi i� , over the entire composi-
tion range. The molar Gibbs energy of mixing for an ideal solution then becomes

D mix
id

m A A BG RT x x x xB� �( ln ln ) (3.25)

The Gibbs energy of mixing of an ideal solution is negative due to the positive
entropy of mixing obtained by differentiation of D mix

id
mG with respect to

temperature:
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In the absence of additional chemical interactions between the different species
that are mixed the solution is stabilized entropically; the solution is more disor-
dered than a mechanical mixture of the components. The origin of the entropy con-
tribution is most easily understood by considering the distribution of two species
on a crystalline lattice where the number of lattice sites is equal to the sum of the
number of the two species A and B. For an ideal solution, a specific number of A
and B atoms can be distributed randomly at the available sites, i.e. in a large
number of different ways. This gives rise to a large number of different structural
configurations with the same enthalpy and thus to the configurational entropy
given by eq. (3.26). This will be discussed further in Chapter 9.

Two other characteristic properties of ideal solutions are
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Or in words: in the absence of additional chemical interactions between the two
types of atom, the enthalpy and volume of mixing are both zero.

The partial molar properties of a component i of an ideal solution are readily
obtained:
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The thermodynamic properties of an ideal binary solution at 1000 K are shown in
Figure 3.3. The integral enthalpy, entropy and Gibbs energy are given in Figure
3.3(a), while the integral entropy of mixing and the partial entropy of mixing of
component A are given in Figure 3.3(b). Corresponding Gibbs energies are given
in Figure 3.3(c). The largest entropic stabilization corresponds to the minimum
Gibbs energy of mixing, which for an ideal solution is RT ln( )1

2
or –RT ln 2, or

about 0.7 times the thermal energy (RT) at 1000 K.

Excess functions and deviation from ideality

Most real solutions cannot be described in the ideal solution approximation and it
is convenient to describe the behaviour of real systems in terms of deviations from
the ideal behaviour. Molar excess functions are defined as

D D Dmix
exc

m mix m mix
id

mY Y Y� � (3.31)

The excess molar Gibbs energy of mixing is thus

D Dmix
exc

m mix m A A B B

A A B

G G RT x x x x

RT x a x a
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� �

( ln ln )

( ln ln B A A B B) ( ln ln )� �RT x x x x
(3.32)

The activity coefficient of component i, g i , is now defined as a measure of the
deviation from the ideal solution behaviour as the ratio between the chemical
activity and the mole fraction of i in a solution.

g i
i

i

a

x
� or a xi i i� g (3.33)

For an ideal solution g i �1.
The partial molar Gibbs energy of mixing of a component i in a non-ideal mix-

ture can in general be expressed in terms of activity coefficients as

D mixG RT a RT x RTi i i i� � �ln ln ln g (3.34)
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Using eq. (3.34) the excess Gibbs energy of mixing is given in terms of the mole
fractions and the activity coefficients as

D D Dmix m A A B B mix
id

m mix
exc
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G RT x a x a G G

RT x
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�

( ln ln )

( ln ln ) ( ln ln )x x x RT x xA B B A A B B� � �g g
(3.35)

3.2 Thermodynamics of solutions 65

0.0 0.2 0.4 0.6 0.8 1.0

Gm

Sm

Hm

xB

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

mmixSD

–R ln xA

xB

0.0 0.2 0.4 0.6 0.8 1.0
–20

–15

–10

–5

0

mmixGD

RT ln xA

xB

o
AS

o
BS

o
AH

o
BH

o
Am

o
Bm

kJ
m

ol
-1

kJ
m

ol
-1

J
K

m
ol

-
-

1
1

J
K

m
ol

-
-

1
1

(a)

(b)

(c)

Figure 3.3 Thermodynamic properties of an arbitrary ideal solution A–B at 1000 K. (a)
The Gibbs energy, enthalpy and entropy. (b) The entropy of mixing and the partial entropy
of mixing of component A. (c) The Gibbs energy of mixing and the partial Gibbs energy of
mixing of component A.



Implicitly:

D mix
exc

m A A B BG RT x x� �( ln ln )g g (3.36)

Since D Dmix
id

m mix
id

mH V� � 0 (eqs. 3.27 and 3.28), the excess molar enthalpy and
volume of mixing are simply

D Dmix
exc

m mix mV V� (3.37)

D Dmix
exc

m mix mH H� (3.38)

The excess molar entropy of mixing is the real entropy of mixing minus the ideal
entropy of mixing. Using a binary A–B solution as an example, D mix

exc
mS is

D Dmix
exc

m mix m A B BS S R x x x xA� � �( ln ln ) (3.39)

For a large number of the more commonly used microscopic solution models it is
assumed, as we will see in Chapter 9, that the entropy of mixing is ideal. The dif-
ferent atoms are assumed to be randomly distributed in the solution. This means
that the excess Gibbs energy is most often assumed to be purely enthalpic in nature.
However, in systems with large interactions, the excess entropy may be large and
negative.

As shown above, the activity coefficients express the departure from ideality and
thus define the excess Gibbs energy of the solution. Deviation from ideality is said
to be positive when g �1(ln g is positive) and negative when g  1(ln g is negative).
A negative deviation implies a negative contribution to the Gibbs energy relatively
to an ideal solution and hence a stabilization of the solution relative to ideal solu-
tion behaviour. Similar arguments imply that positive deviations from ideality
result in destabilization relative to ideal solution behaviour.

The activities of Fe and Ni in the binary system Fe–Ni [3] and the corresponding
Gibbs energy and excess Gibbs energy of mixing are shown in Figures 3.4 and 3.5,
respectively. The Fe–Ni system shows negative deviation from ideality and is thus
stabilized relative to an ideal solution. This is reflected in the negative excess
Gibbs energy of mixing. The activity coefficients g i , defined by eq. (3.33) as a xi i/ ,
are readily determined from Figure 3.4. g Ni for the selected composition xNi = 0.4
is given by the ratio MQ/PQ. At the point of infinite dilution, xi = 0, the activity
coefficient takes the value g i

� . g i
� is termed the activity coefficient at infinite

dilution and is, as will be discussed in Chapter 4, an important thermodynamic
characteristic of a solution. The activity coefficient of a given solute at infinite
dilution will generally depend on the nature of the solvent, since the solute atoms at
infinite dilution are surrounded on average by solvent atoms only. This determines
the properties of the solute in the solution and thus g i

� .
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The formalism shown above is in general easily extended to multi-component
systems. All thermodynamic mixing properties may be derived from the integral
Gibbs energy of mixing, which in general is expressed as

D D Dmix m mix
id

m mix
exc

mG G G RT x a

RT x x RT

i i
i

i i
i

� � �

� �

�

�

ln

ln xi i
i

ln g�
(3.40)

3.3 Standard states

In solution thermodynamics the standard or reference states of the components of
the solution are important. Although the standard state in principle can be chosen
freely, the standard state is in practice not taken by chance, but does in most cases
reflect the type of model one wants to fit to experimental data. The choice of
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standard state is naturally influenced by the data available. In some cases the
vapour pressure of one of the components is known in the whole compositional
interval. In other cases the activity of the solute is known for dilute solutions only.

In the following, the Raoultian and Henrian standard states will be presented.
These two are the far most frequent standard states applied in solution thermody-
namics. Before discussing these standard states we need to consider Raoult’s and
Henry’s laws, on which the Raoultian and Henrian standard states are based, in
some detail.

Henry’s and Raoult’s laws

In the development of physical chemistry, investigations of dilute solutions have
been very important. A dilute solution consists of the main constituent, the solvent,
and one or more solutes, which are the diluted species. As early as in 1803 William
Henry showed empirically that the vapour pressure of a solute i is proportional to
the concentration of solute i:

p x ki i i� H, (3.41)

where xi is the mole fraction solute and k iH, is known as the Henry’s law constant.
Here we have used mole fraction as the measure of the concentration (alternatively
the mass fraction or other measures may be used).

More than 80 years later François Raoult demonstrated that at low concentra-
tions of a solute, the vapour pressure of the solvent is simply

p x pi i i� * (3.42)

where xi is the mole fraction solvent and pi
* is the vapour pressure of the pure

solvent.
Raoult’s and Henry’s laws are often termed ‘limiting laws’. This use reflects that

real solutions often follow these laws at infinite dilution only. The vapour pressure
above molten Ge–Si at 1723 K [4] is shown in Figure 3.6 as an example. It is evi-
dent that at dilute solution of Ge or Si, the vapour pressure of the dominant compo-
nent follows Raoult’s law. Raoult’s law is expressing that a real non-ideal solution
approaches an ideal solution when the concentration of the solvent approaches
unity. In the corresponding concentration region Henry’s law is valid for the solute.
The Ge–Si system shows positive deviation from ideality and the activity coeffi-
cients of the two components, given as a function of xi in Figure 3.6(b), are thus
positive for all compositions (using Si and Ge as standard states).

Raoult’s law is obeyed for a solvent at infinite dilution of a solute. Mathemati-
cally this implies

( / )d dA A A
a x x � �1 1 (3.43)
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In terms of activity coefficients eq. (3.43) can be transformed to

d

d

d

d
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A
A A
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x
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xx x

g g g�
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�
		 �

� �1 1

1 (3.44)

Since g A �1when xA �1the expression for Raoult’s law becomes

d

d
A

A
A

g
x x

�

�
��

�

�
		 �

�1

0 (3.45)

This is a necessary and sufficient condition for Raoult’s law.
A solute B obeys Henry’s law at infinite dilution if the slope of the activity curve

aB versus xB has a nonzero finite value when xB � 0:

( / )d dB B BB
a x x �

��0 g (3.46)
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Figure 3.6 (a) The vapour pressure above molten Si–Ge at 1723 K [4]. (b) The corre-
sponding activity coefficients of the two components.



The finite value of the slope when xB � 0, g B
� , is the activity coefficient at infi-

nite dilution defined earlier. In terms of activity coefficients eq. (3.46) becomes
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It follows that if Henry’s law behaviour is obeyed at infinite dilution:

x
x x
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B
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d
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�
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�0

0 (3.48)

Equation (3.48) is a necessary consequence of Henry’s law, but it is not a sufficient
condition. It can be shown that Raoult’s law behaviour of the solvent follows as a
consequence of Henry’s law behaviour for the solute, while the reverse does not
follow.

Raoultian and Henrian standard states

The Raoultian standard state is the most frequently used standard state for a com-
ponent in a solution. The Raoultian standard state implies that all thermodynamic
properties are described relative to those of the pure component with the same
structure as the solution. For liquids the specification of the structure seems artifi-
cial, but for solid solutions, which may have different crystal structures, this is of
great importance. The activity of Ni in molten Fe–Ni at 1850 K using the Raoultian
standard state is given in Figure 3.7 (ordinate given on the left-hand y-axis). The
activity of pure Ni is set as standard state and is thus unity. While the Raoultian
standard state represents a real physical reachable state, the Henrian standard state
is a hypothetical one. The Henrian standard state for Ni in the Fe–Ni solution is
found by extrapolation of the Henrian law behaviour at xNi 0� to xNi �1; see Figure
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3.7. The activity of Ni in molten Fe–Ni at 1850 K using the Henrian standard state
is also given in the figure (ordinate given on the right-hand y-axis).

If an arbitrary standard state is marked with *, a formal definition of a Raoultian
standard state for component A of a solution is

m mA A
R* � (3.49)

It follows that the activity coefficient with this standard state:

g A
R A

R

A
�

a

x
(3.50)

approaches 1 when the mole fraction xA approaches 1 or

( )g A
R

xA � �1 1 (3.51)

Correspondingly, a formal definition of a Henrian standard state for component
B of a solution is

m mB B
H* � (3.52)

The activity coefficient with this standard state:

g B
H B

H

B
�

a

x
(3.53)

approaches 1 when xB approaches 0 or

( )g B
H

Bx � �0 1 (3.54)

The activities on the two standard states are related since

m m mi i i i iRT a RT a� � � �R R H Hln ln (3.55)

which gives
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exp
( )m m

(3.56)
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The ratio of two activities defined on the basis of two different standard states is
constant and does not vary with the composition of the solution:

a
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x

x
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B
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B
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B
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� �
g

g

g

g
(3.57)

For the present case this constant can be deduced by using the conditions at infinite
dilution as a constraint, thus:
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g
g

gB
H B

R

B
R

�
�,

(3.59)

Whereas the total Gibbs energy of the solution is independent of the choice of the
standard state, the standard state must be explicitly given when it comes to the
mixing properties of a solution. The molar Gibbs energy of mixing of the Fe–Ni
system for which the activity of Ni is shown in Figure 3.7 is given in Figure 3.8.
The solid and dashed lines represent Gibbs energies of mixing based on the
Raoultian and Henrian standard states for Ni, respectively.
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3.4 Analytical solution models

Dilute solutions

Binary solutions have been extensively studied in the last century and a whole
range of different analytical models for the molar Gibbs energy of mixing have
evolved in the literature. Some of these expressions are based on statistical
mechanics, as we will show in Chapter 9. However, in situations where the inten-
tion is to find mathematical expressions that are easy to handle, that reproduce
experimental data and that are easily incorporated in computations, polynomial
expressions obviously have an advantage.

Simple polynomial expressions constitute the most common analytical model
for partial or integral thermodynamic properties of solutions:

Y x Q Q x Q x Q x Q xn
n

i
i

i

n
( )B B B B B� � � � � �

�
�0 1 2

2

0

… (3.60)

or
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0 0

1 1 2 (3.61)

The variable x is usually the mole fraction of the components. The last expression
was first introduced by Guggenheim [5]. Equation (3.60) is a particular case of the
considerably more general Taylor series representation of Y as shown by Lupis [6].
Let us apply a Taylor series to the activity coefficient of a solute in a dilute binary
solution:
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The derivatives of the Taylor series are all finite. It is not necessary to expand the
series at xB = 0, but it is most common and convenient for dilute solutions. The
Taylor series expansion of ln g B may be expressed in a different notation as

ln g B
B

B�
�
� J xi

i

i

n

0

(3.63)
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The coefficients J i
B are called interaction coefficients of order i. The coefficient of

zeroth order is just the value of ln g B at infinite solution. The first-order coefficient
is the most used and is often designated by e1

B [7]. This coefficient is a measure of
how an increase in the concentration of B changes ln g B, which explains why it is
called the self-interaction coefficient. The expression for ln g B with only three
coefficients is

ln lng g eB B
B

B
B

B� � ��
1 2

2x J x (3.65)

The orders of magnitude of the coefficients depend very much on the system
studied. Generally stronger atomic interactions give larger interaction coefficients.
An illustration of low order terms in the Taylor series expansion of ln g Tl in the
binary system Tl–Hg is given in Figure 3.9 [8].

The same type of polynomial formalism may also be applied to the partial molar
enthalpy and entropy of the solute and converted into integral thermodynamic
properties through use of the Gibbs–Duhem equation; see Section 3.5.

Solution models

The simplest model beyond the ideal solution model is the regular solution model,
first introduced by Hildebrant [9]. Here D mix mS is assumed to be ideal, while
D mix mH is not. The molar excess Gibbs energy of mixing, which contains only a
single free parameter, is then
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D Wmix
exc

m A BxG x� (3.66)

where W is named the regular solution constant or the interaction coefficient.
The molar Gibbs energy is in this approximation

G x x RT x x x x x xm A A
o

B B
o

A A B B A B� � � � �m m ( ln ln ) W (3.67)

The molar Gibbs energy of mixing

D Wmix m A A B B A BG RT x x x x x x� � �( ln ln ) (3.68)

thus consists of one entropic and one enthalpic contribution:

D mix m A A B BS R x x x x� � �( ln ln ) (3.69)

D Wmix m A BH x x� (3.70)

For ideal solutions W is zero and there are no extra interactions between the spe-
cies that constitute the solution. In terms of nearest neighbour interactions only, the
energy of an A–B interaction, uAB, equals the average of the A–A, uAA, and B–B,
uBB, interactions or

W � � �
�

��
�

��
zL u u uAB AA BB

1

2
( ) (3.71)

where z is the coordination number and L is Avogadro’s number. For the general
case of a non-ideal solution W < 0 gives an increased stability of the solution rela-
tive to an ideal solution, while W > 0 destabilizes the solution. It follows that W < 0
and W > 0 are usually interpreted as attraction and repulsion, respectively, between
the A and B atoms. Repulsion between the different atoms of the solution will
imply that the atoms do not mix at absolute zero, where the entropic contribution is
zero. Complete solubility will be obtained when the temperature is raised suffi-
ciently so that the entropy gain due to randomization of the atoms is larger than the
positive enthalpic contribution to the Gibbs energy. The integral Gibbs energies of
systems with W/RT larger and smaller than zero are shown in Figure 3.10.

The regular solution model can be extended to multi-component systems, in
which case the excess Gibbs energy of mixing is expressed as

D Wmix
exc

mG x xi j ij
j

m

i

m
�

��

�

��
11

1
(3.72)

Thus for a ternary system
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D W W Wmix
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mG x x x x x x� � �1 2 12 1 3 13 2 3 23 (3.73)

An additional ternary interaction term, W123, may be incorporated.
The regular solution model (eq. 3.68) is symmetrical about x xA B� � 0 5. . In

cases where the deviation from ideality is not symmetrical, the regular solution
model is unable to reproduce the properties of the solutions and it is then necessary
to introduce models with more than one free parameter. The most convenient poly-
nomial expression with two parameters is termed the sub-regular solution model.

D mix
exc

m A B A BG x x A x A x� �( )21 12 (3.74)

If more than two parameters are necessary a general polynomial expression may be
applied:
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The Redlich–Kister expression
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is a frequently used special case of this general polynomial approach. While the
first term is symmetrical about x = 0.5, the second term changes sign for x = 0.5.
The compositional variation of the third and fourth terms is given in Figure 3.11. In
all these models the entropy of mixing is assumed to be ideal and the excess Gibbs
energy is an analytical model for the enthalpy of mixing.

The entropy of mixing of many real solutions will deviate considerably from the
ideal entropy of mixing. However, accurate data are available only in a few cases.
The simplest model to account for a non-ideal entropy of mixing is the quasi-reg-
ular model, where the excess Gibbs energy of mixing is expressed as
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The sign of the excess entropy is given by the sign of t.

Derivation of partial molar properties

The partial molar properties of binary solutions may be determined by both analyt-
ical and graphical methods. In cases where analytical expressions for integral
extensive thermodynamic quantities are available, the partial molar quantities are
obtained by differentiation, but graphical determination of partial molar properties
also has a long history in thermodynamics. The molar Gibbs energy of mixing of
molten Si–Ge at 1500 K is given as a function of the mole fraction of Ge in Figure
3.12. Pure solid Si and pure liquid Ge are chosen as standard states. If we draw a
tangent to the curve at any composition, the intercept of this tangent upon the ordi-
nate xSi �1equals mSi and the intercept for xGe �1equals mGe .

In mathematical terms the partial molar properties of a binary system will in gen-
eral be given through

Y Y x
Y

x
A m B

m

B

d

d
� � (3.79)

and
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Application to the Gibbs energy of the two components of a binary solution there-
fore gives
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Taking the excess Gibbs energy of a regular solution as an example:

D Wmix
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m A BG x x� (3.83)

the partial excess Gibbs energies of the two components are
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D Wmix
exc

B
B A

G

RT RT
x� �ln g 2 (3.85)

In general, the chemical potential of species i for a multi-component system is
given as
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where d ij � 0 for i j
 and d ij �1for i = j.

3.5 Integration of the Gibbs–Duhem equation

In experimental investigations of thermodynamic properties of solutions, it is
common that one obtains the activity of only one of the components. This is in par-
ticular the case when one of the components constitutes nearly the complete
vapour above a solid or liquid solution. A second example is when the activity of
one of the components is measured by an electrochemical method. In these cases
we can use the Gibbs–Duhem equation to find the activity of the second
component.

We have already derived the Gibbs–Duhem equation in Chapter 1.4. At constant
p and T:

n nA A B Bd dm m� � 0 (3.87)

In terms of activity and mole fractions this yields

x a x aA A B Bd dln ln� � 0 (3.88)

or

x x x x x xA A A A B B B Bd d d dln ln ln ln� � � �g g 0 (3.89)
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A
B

B

B
A Bd d

d d
d dln ln� � � � � � 0 (3.90)

eq. (3.89) may be rewritten

x xA A B Bd dln lng g� � 0 (3.91)

or by integration

ln ln ( ) lng g gB B B
A

B
Ad

B

B

� � � �

�
�x

x

x
x

x

1
1

(3.92)
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If a Raoultian reference state is chosen for both A and B, ln g B � 0 when xB �1.
Now by plotting x xA B/ against ln g A , as done for the activity coefficient of Fe of
molten Fe–Ni at 1850 K in Figure 3.13, the Gibbs–Duhem equation may be inte-
grated graphically by determining the area between the limits. The challenge in our
case is that when xFe � 0, x xNi Fe/ � � and ln g Ni � 0. It may therefore be diffi-
cult to evaluate the integral accurately since this demands a large amount of experi-
mental data for xFe � 0.

We may also integrate the Gibbs–Duhem equation using an Henrian reference
state for B:

ln ln ( ) lng g gB B B
A

B
Ad

B

B

� � � �

�
�x

x

x
x

x

0
0

(3.93)

Henry’s law for B leads to ln g B � 0 when xB � 0.
An alternative method of integrating the Gibbs–Duhem equation was developed

by Darken and Gurry [10]. In order to calculate the integral more accurately, a new
function, a, defined as

a g
i

i

ix
�

�

ln

( )1 2
(i = A or B) (3.94)

was introduced for binary solutions, since this gave a convenient expression for the
much used regular solution model. An expression for d ln g A is obtained by
differentiation:

d d d dA A B A B B B Aln ( )g a a a� � �x x x x2 22 (3.95)
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By substituting eq. (3.95) into the Gibbs–Duhem equation (eq. 3.92) we obtain

ln g a aB A A B A B Ad d

B

B

B

B

� � �

� �
� �2

1 1

x x x x
x

x

x

x

(3.96)

Integrating by parts the second integral, we obtain

x x x x x x x
x

x

x
x

x

x

A B A A A B A A B A Bd d d

B

B

B

B

B

B

a a a a
�

�
�

� �� � �

1
1

1

[ ] x
x

x

B

B

B

�
�

1

(3.97)

which gives the following expression for ln g B (eq. 3.96):

ln ( )g a a a aB A A B A A B B A A B A Bd d

B

B

B

� � � � � � �

� �
�x x x x x x x x

x

x

x1 1

xB

� (3.98)

Integration of the Gibbs–Duhem equation applying the method by Darken and
Gurry is illustrated by using the Fe–Ni system as an example: see Figure 3.14. aNi
plotted against xFe gives a curve that is more easily integrated.

A graphical integration of the Gibbs–Duhem equation is not necessary if an ana-
lytical expression for the partial properties of mixing is known. Let us assume that
we have a dilute solution that can be described using the activity coefficient at infi-
nite dilution and the self-interaction coefficients introduced in eq. (3.64).

ln lng g eB B
B

B
B

B� � ��
1 2

2x J x (3.99)
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The Gibbs–Duhem equation can be modified to

( )
ln ln

1 0�
�

�
�

�

�
�x

x
x

x
B

A

B
B

B

B

g g
(3.100)

and thus if the first- and second-order terms in the Taylor series for the solvent are
termed J1

A and J2
A (i.e. ln g A

A
B

A
B
2� �J x J x1 2 ):

( )( ) ( )1 2 2 01 2 1 2� � � � �x J J x x J xB
A A

B B
B B

Be (3.101)

Hence this implies that

J1 0A � (3.102)

and

J2 1
1

2
A B� � e (3.103)

We are thus able to express the activity coefficient of the second component, A,
in terms of e2

B:

ln g eA
B

B
2� �

1

2 1 x (3.104)

All other properties follow. For example, the excess Gibbs energy of mixing is

D mix
exc

m B B
B

BG RT x x� � ��( ln g e1

2 1
2 higher order terms) (3.105)

The relationship between the different self-interaction coefficients of component
A and B, J i

A and J i
B, may in general be obtained in a similar way.

Although the Gibbs–Duhem equation due to the development of versatile and
user-friendly thermodynamic software packages is less central than before, it is
still of great value, for example for testing the consistency of experimental data and
also for systematization of thermodynamic data. The order of magnitude of the
major interaction coefficients discussed above may for alloy systems, for instance,
be estimated with a fair degree of confidence by looking at trends and by compar-
ison with data on similar systems.
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4
Phase diagrams

Thermodynamics in materials science has often been used indirectly through phase dia-
grams. Knowledge of the equilibrium state of a chemical system for a given set of condi-
tions is a very useful starting point for the synthesis of any material, for processing of
materials and in general for considerations related to material stability. A phase diagram
is a graphical representation of coexisting phases and thus of stability regions when
equilibrium is established among the phases of a given system. A material scientist will
typically associate a ‘phase diagram’ with a plot with temperature and composition as
variables. Other variables, such as the partial pressure of a component in the system, may
be given explicitly in the phase diagram; for example, as a line indicating a constant par-
tial pressure of a volatile component. In other cases the partial pressure may be used as a
variable. The stability fields of the condensed phases may then be represented in terms of
the chemical potential of one or more of the components.

The Gibbs phase rule introduced in Section 2.1 is an important guideline for the
construction and understanding of phase diagrams, and the phase rule is therefore
referred to frequently in the present chapter. The main objective of the chapter is to
introduce the quantitative link between phase diagrams and chemical thermody-
namics. With the use of computer programs the calculation of phase diagrams from
thermodynamic data has become a relatively easy task. The present chapter focuses
on the theoretical basis for the calculation of heterogeneous phase equilibria with
particular emphasis on binary phase diagrams.

4.1 Binary phase diagrams from thermodynamics

Gibbs phase rule

In chemical thermodynamics the system is analyzed in terms of the potentials
defining the system. In the present chapter the potentials of interest are T (thermal
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potential), p (mechanical potential) and the chemical potential of the components
m m m1 2, � �… N . We do not consider other potentials, e.g. the electrical and magnetic
potentials treated briefly in Section 2.1. In a system with C components there are
therefore C + 2 potentials. The potentials of a system are related through the
Gibbs–Duhem equation (eq. 1.93):

S T V p ni i
i

d d d� � �� m 0 (4.1)

and also through the Gibbs phase rule (eq. 2.15):

F + Ph = C + 2 (4.2)

The latter is used as a guideline to determine the relationship between the number
of potentials that can be varied independently (the number of degrees of freedom,
F) and the number of phases in equilibrium, Ph. Varied independently in this con-
text means varied without changing the number of phases in equilibrium.

For a single-component system, the Gibbs phase rule reads F + Ph = C + 2 = 3,
and we can easily construct a p,T-phase diagram in two dimensions (see Figure 2.7,
for example). To apply the Gibbs phase rule to a system containing two or more
components (C > 1) it is necessary to take into consideration the nature of the dif-
ferent variables (potentials), the number of components, chemical reactions and
compositional constraints. Initially we will apply the Gibbs phase rule to a binary
system (C = 2). The Gibbs phase rule is then F + Ph = C + 2 = 4, and since at least
one phase must be present, F is at most 3. Three dimensions are needed to show the
phase relations as a function of T, p and a compositional variable (or a chemical
potential). Here, we will use the mole fraction as a measure of composition
although in some cases the weight fraction and other compositional variables are
more practical. When a single phase is present (F = 3), T, p and the composition
may be varied independently. With two phases present (F = 2) a set of two intensive
variables can be chosen as independent; for example temperature and a composi-
tion term, or pressure and a chemical potential. With three phases present only a
single variable is independent (F = 1); the others are given implicitly. Finally, with
four phases present at equilibrium none of the intensive variables can be changed.
The observer cannot affect the chemical equilibrium between these four phases.

It is sometimes convenient to fix the pressure and decrease the degrees of
freedom by one in dealing with condensed phases such as substances with low
vapour pressures. Gibbs phase rule then becomes

F = C – Ph + 1 (4.3)

often called the reduced or condensed phase rule in metallurgical literature.
For a binary system at constant pressure the phase rule gives F = 3 – Ph and we need

only two independent variables to express the stability fields of the phases. It is most
often convenient and common to choose the temperature and composition, given for
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example as the mole fraction. An example is the phase diagram of the system Ag–Cu
shown in Figure 4.1 [1]. There are only three phases in the system: the solid solutions
Cu(ss) and Ag(ss) and the Ag–Cu liquid solution. Cu(ss) and Ag(ss) denote solid solu-
tions with Cu and Ag as solvents and Ag and Cu as solutes, respectively. When a single
phase is present, for example the liquid, F = 2 and both composition and temperature
may be varied independently. The stability fields for the liquid and the two solid solu-
tions are therefore two-dimensional regions in the phase diagram. With two phases in
equilibrium, the temperature and composition are no longer independent of each other.
It follows that the compositions of two phases in equilibrium at a given temperature are
fixed. In the case of a solid–liquid equilibrium the composition of the coexisting
phases are defined by the solidus and liquidus lines, respectively. This is illustrated in
Figure 4.1 where the composition of Cu(ss) in equilibrium with the liquid (also having
a distinct composition) for a given temperature, T2, is indicated by open circles. Since
F = 1 this is called a univariant equilibrium. Finally, when three phases are present at
equilibrium, F = 0 and the compositions of all three phases and the temperature are
fixed. In this situation there are no degrees of freedom and the three phases are there-
fore present in an invariant equilibrium. In the present example, the system Ag–Cu,
the two solid and the liquid phases coexist in an invariant eutectic equilibrium at 1040
K. The eutectic reaction taking place is defined in general for a two-component
system as one in which a liquid on cooling solidifies under the formation of two solid
phases. Hence for the present example the eutectic reaction is

liquid �Cu(ss) + Ag(ss) (4.4)

The temperature of the eutectic equilibrium is called the eutectic temperature and
is shown as a horizontal line in Figure 4.1.

It should be noted that we have here considered the system at constant pressure.
If we are not considering the system at isobaric conditions, the invariant equilib-
rium becomes univariant, and a univariant equilibrium becomes divariant, etc. A
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consequence is that the eutectic temperature in the Ag–Cu system will vary with
pressure. However, as discussed in Section 2.3, small variations in pressure give
only minor variations in the Gibbs energy of condensed phases. Therefore minor
variations in pressure (of the order of 1–10 bar) are not expected to have a large
influence on the eutectic temperature of a binary system.

One of the useful aspects of phase diagrams is that they define the equilibrium
behaviour of a sample on cooling from the liquid state. Assume that we start at high
temperatures with a liquid with composition x in the diagram shown in Figure 4.1.
On cooling, the liquidus line is reached at T1. At this temperature the first crystal-
lites of the solid solution Cu(ss) are formed at equilibrium. The composition of
both the liquid and Cu(ss) changes continuously with temperature. Further cooling
produces more Cu(ss) at the expense of the liquid. If equilibrium is maintained the
last liquid disappears at the eutectic temperature. The liquid with eutectic compo-
sition will at this particular temperature precipitate Cu(ss) and Ag(ss) simulta-
neously. The system is invariant until all the liquid has solidified. Below the
eutectic temperature the two solid solutions Cu(ss) and Ag(ss) are in equilibrium,
and for any temperature the composition of both solid solutions can be read from
the phase diagram, as shown for the temperature T3.

The relative amount of two phases present at equilibrium for a specific sample is
given by the lever rule. Using our example in Figure 4.1, the relative amount of
Cu(ss) and Ag(ss) at T3 when the overall composition is xCu , is given by the ratio

OP

OQ
Cu Cu

Ag

Cu
Cu

Cu
Ag

�
�

�

x x

x x

ss

ss ss

( )

( ) ( )
(4.5)

where x ss
Cu
Cu( ) and x ss

Cu
Ag( ) denote the mole fractions of Cu in the two coexisting

solid solutions. The lines OP and OQ are shown in the figure. An isothermal line in
a two-phase field, like the line OQ, is called a tieline or conode. As the overall
composition is varied at constant temperature between the points O and Q, the
compositions of the two solid phases remain fixed at O and Q; only the relative
amount of the two phases changes.

Conditions for equilibrium

Phase diagrams show coexistent phases in equilibrium. We have seen in Chapter 1
that the conditions for equilibrium in a heterogeneous closed system at constant
pressure and temperature can be expressed in terms of the chemical potential of the
components of the phases in equilibrium:

m m ma b g
i i i� � �… for i = 1, 2, ..., C (4.6)

Here a, b and g denote the different phases, whereas i denotes the different components
of the system and C the total number of components. The conditions for equilibrium
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between two phases a and b in a binary system A–B (at a given temperature and
pressure) are thus

m ma a b b
A A A A( ) ( )x x� (4.7)

and

m ma a b b
B A B A( ) ( )x x� (4.8)

where xA
a and xA

b are the mole fractions of A in the phases a and b at equilibrium
(remember that x xi i

A B� �1).
At a given temperature and pressure eqs. (4.7) and (4.8) must be solved simulta-

neously to determine the compositions of the two phases a and b that correspond to
coexistence. At isobaric conditions, a plot of the composition of the two phases in
equilibrium versus temperature yields a part of the equilibrium T, x-phase diagram.

Equations (4.7) and (4.8) may be solved numerically or graphically. The latter
approach is illustrated in Figure 4.2 by using the Gibbs energy curves for the liquid
and solid solutions of the binary system Si–Ge as an example. The chemical poten-
tials of the two components of the solutions are given by eqs. (3.79) and (3.80) as

mGe m Ge
m

Ge

d

d
� � �G x

G

x
( )1 (4.9)

mSi m Ge
m

Ge

d

d
� �G x

G

x
(4.10)

Here G m is the Gibbs energy of the given solution at a particular composition xGe.
The equilibrium conditions can now be derived graphically from Gibbs energy
versus composition curves by finding the compositions on each curve linked by a
common tangent (the common tangent construction). In the case shown in Figure
4.2(a) the solid and liquid solutions are in equilibrium; they are not in the case
shown in Figure 4.2(b). The compositions of the coexisting solid and liquid solu-
tions are marked by arrows in Figure 4.2(a).

The relationship between the Gibbs energy of the phases present in a given system
and the phase diagram may be further illustrated by considering the variation of the
Gibbs energy of the phases in the system Si–Ge with temperature. Similar common
tangent constructions can then be made at other temperatures as well using thermo-
dynamic data by Bergman et al. [2]. The phase diagram of the system is given in
Figure 4.3(a). A sequence of Gibbs energy–composition curves for the liquid and
solid solutions are shown as a function of decreasing temperature in Figures
4.3(b)–(f). The two Gibbs energy curves are broad and have shallow minima and the
excess Gibbs energies of mixing are small since Ge and Si are chemically closely
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related. This is often termed near-ideal behaviour. At high temperatures, e.g. at T1,
where the liquid solution is stable over the whole composition region, the Gibbs
energy of the liquid is more negative than that of the solid solution for all composi-
tions (Figure 4.3(b)). On cooling, the Gibbs energy of the solid solution, having
lower entropy than the liquid solution, increases more slowly than that of the liquid
solution. At T2, the Gibbs energies of pure liquid Si and pure solid Si are equal, and
the melting temperature of pure Si is reached (Figure 4.3(c)). For xSi < 1 the liquid
solution is more stable than the crystalline phase. Further cooling gives situations
corresponding to T3 or T4, where the solid solution is stable for the Si-rich composi-
tions and the liquid solution for the Ge-rich compositions. The Gibbs energy curves
at these two temperatures are shown in Figures 4.3(d) and (e). The compositions of
the two phases in equilibrium at these temperatures are given by the common tangent
construction, as illustrated in Figure 4.3(d). At T5 the liquid has been cooled down to
the melting temperature of pure Ge (see Figure 4.3(f)). Below this temperature the
solid solution is stable for all compositions. Since Ge and Si are chemically closely
related, Si–Ge forms a complete solid solution at low temperatures. The resulting
equilibrium phase diagram, shown in Figure 4.3(a), is a plot of the locus of the
common tangent constructions and defines the compositions of the coexisting
phases as a function of temperature. The solidus and liquidus curves here define the
stability regions of the solid and liquid solutions, respectively.

Ideal and nearly ideal binary systems

Let us consider a binary system for which both the liquid and solid solutions are
assumed to be ideal or near ideal in a more formal way. It follows from their near-
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ideal behaviour that the two components must have similar physical and chemical
properties in both the solid and liquid states. Two systems which show this type of
behaviour are the Si–Ge system discussed above and the binary system
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FeO–MnO1,2. However, we will initially look at a general A–B system. The chem-
ical potentials of component A in the liquid and solid states are given as

m mA
ss

A
s,o

A
ss� � RT aln (4.11)

m mA
liq

A
l,o

A
liq� � RT aln (4.12)

Similar expressions are valid for the chemical potential of component B of the two
phases. According to the equilibrium conditions given by eqs. (4.7) and (4.8), the
solid and liquid solutions are in equilibrium when m mA

ss
A
liq� and m mB

ss
B
liq� , giving

the two expressions

m mA
s,o

A
ss

A
l,o

A
liq� � �RT a RT aln ln (4.13)

m mB
s,o

B
ss

B
l,o

B
liq� � �RT a RT aln ln (4.14)

which may be rearranged as

ln
( )a

a RT

s
A
liq

A
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A
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�

	
	




�

�
�

� �
�Dm

(4.15)

and

ln
( )a

a RT

s
B
liq

B
ss

B
o l�

�

	
	




�

�
�

� �
�Dm

(4.16)

Here Dm i
so l( )� is the change in chemical potential or Gibbs energy on fusion of

pure i. By using G = H – TS we have

D D D Dm m mi
s

i i i i iG H T So l l,o s,o
fus

o
fus

o
fus

o( )� � � � � � (4.17)

At the melting temperature we have D fus
oG i � 0, which implies that D fus

oS i �
D fus

o
fus,H Ti i/ . If the heat capacity of the solid and the liquid are assumed to be

equal, the enthalpy of fusion is independent of temperature and eq. (4.17) becomes
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component system. This requires that the chemical potential of one of the three elements is
constant.
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Substitution of eq. (4.18) into eqs. (4.15) and (4.16) gives
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and
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(4.20)

If we furthermore assume that the solid and liquid solutions are ideal the activi-
ties can be replaced by mole fractions and eqs. (4.19) and (4.20) rearrange to
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(4.21)

and
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Analytical equations for the solidus and liquidus lines can now be obtained from
these equations by noting that x xA
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In this particular case of ideal solutions the phase diagram is defined solely by the
temperature and enthalpy of fusion of the two components.

Using the analytical equations derived above, we are now able to consider the
phase diagrams of the two nearly ideal systems mentioned above more closely. In
the calculations we will initially use only the melting temperature and enthalpy of
fusion of the two components as input parameters; both the solid and liquid solu-
tions are assumed to be ideal. The observed (solid lines) and calculated (dashed
lines) phase diagrams for the systems Si–Ge [2] and FeO–MnO [3] are compared in
Figure 4.4 and 4.5. Although the agreement is reasonable, the deviation between
the calculated and observed solidus and liquidus lines is significant.
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Let us now consider the effect of a difference between the heat capacity of pure
liquid i and pure solid i on the enthalpy and entropy of fusion and subsequently on
the phase diagram. This effect is easily taken into consideration by using eqs.
(1.24) and (1.54). Dm i

so l( )� is now given as
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where DC C Cp p p
o l,o s,o� � . We will use the system Si–Ge as example. Dm i

so l( )� for
Si and Ge with (solid lines) and without (dashed lines) taking the heat capacity dif-
ference into consideration are shown in Figure 4.6 [4], while the effect of DC p

o on
the calculated liquidus and solidus lines is shown in Figure 4.4 (dotted lines). In
this particular case, the liquids and solidus lines are shifted some few degrees up
and down in temperature, respectively, and the resulting two-phase field is only
slightly broader than that calculated without taking the heat capacity difference
between the liquid and the solid into consideration. The lack of quantitative agree-
ment between the experimentally observed phase diagram and the calculated ones
shows that significant excess Gibbs energies of mixing are present for one or both
of the solution phases in the Si–Ge system. This indicates what is in general true:
non-ideal contributions to the solution energetics in general have a much larger
effect on the calculated phase diagrams than the heat capacity difference between
the liquid and solid. This is reflected in the phase diagram for the binary system
KCl–NaCl shown in Figure 4.7(a) [5]. This system is characterized by negative
deviation from ideal behaviour in the liquid state and positive deviation from
ideality in the solid state (see the corresponding G–x curves for the solid and liquid
solutions in Figure 4.7(b)). In general a negative excess Gibbs energy of mixing
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corresponds to a stabilization of the solution and a deeper curvature of the G–x
curve compared to ideal solution behaviour. Correspondingly, a positive deviation
from ideal behaviour destabilizes the solution and the G–x curve becomes shal-
lower. These features affect the resulting phase diagrams and the liquidus and sol-
idus lines may show maxima or minima for intermediate compositions, as evident
for the KCl–NaCl system in Figure 4.7(a).

Simple eutectic systems

Ag–Cu (Figure 4.1) and many other inorganic systems give rise to simple eutectic
phase diagrams. In these systems the two solid phases have such different chemical
and physical properties that the solid solubility is limited. The phases may have dif-
ferent structures and hence be represented by different Gibbs energy curves, or
they may take the same structure but with a large positive enthalpic interaction
giving rise to phase separation or immiscibility at low temperatures. The latter situ-
ation, where two solid solutions are miscible at high temperatures, is more usual
for alloys and less usual in inorganic material systems. It is, however, a very useful
situation for illustrating the link between thermodynamics and phase diagrams, as
we will see in the next section on regular solution modelling. It is worth noting that
two components that have different properties in the solid state still may form a
near-ideal liquid solution.

The system MgO–Y2O3 [6] can be used to exemplify the link between Gibbs
energy curves and the characteristic features of a simple eutectic phase diagram.
The MgO–Y2O3 phase diagram is shown in Figure 4.8(a). MgO and Y2O3 have dif-
ferent crystal structures and the solid solubility of the two oxides is therefore lim-
ited. Furthermore, Y2O3 is found in both hexagonal and cubic polymorphs. Gibbs
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energy representations for the selected temperatures given in the phase diagram are
shown in Figures 4.8(b)–(f). At T1 the liquid is stable at all compositions (Figure
4.8(b)). At T2 solid MgO(ss) has become stable for MgO-rich compositions
(Figure 4.8(c)) and the two-phase field between MgO(ss) and the liquid is

4.1 Binary phase diagrams from thermodynamics 97

1.5OYx

1.5OYx
1.5OYx

1.5OYx
1.5OYx

1.5OYx
0.0 0.2 0.4 0.6 0.8 1.0

2200

2400

2600

2800

3000

3200

h-Y2O3(ss)

c-Y2O3(ss)

liq +
c-Y2O3(ss)

liq +
h-Y2O3(ss)

liquid

MgO(ss)

MgO(ss) + liq

T5

T4

T3

T2

T1

h-Y2O3(ss) + MgO(ss)

T
/K

0.0 0.2 0.4 0.6 0.8 1.0

–15

–10

–5

0

5

10 T1

liquid

c-Y2O3

MgO

G
m

/k
J

m
ol

–1

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25
T4

G
m

/k
J

m
ol

–1

c-Y2O3(ss)

h-Y2O3(ss)

MgO(ss) liquid

0.0 0.2 0.4 0.6 0.8 1.0

–10

–5

0

5

10

15 T2

G
m

/k
J

m
ol

–1 c-Y2O3(ss)

liquid

MgO(ss)

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25 T5

G
m

/k
J

m
ol

–1

h-Y2O3(ss)

MgO(ss) liquid

0.0 0.2 0.4 0.6 0.8 1.0

–5

0

5

10

15

20
T3

G
m

/k
J

m
ol

–1 c-Y2O3(ss)

h-Y2O3(ss)

MgO(ss)

liquid

(a) (b)

(d)

(f)

(c)

(e)

Figure 4.8 (a) Phase diagram of the binary system Y2O3–MgO at 1 bar defining the five
temperatures for the Gibbs energy curves shown in (b) T1; (c) T2; (d) T3; (e) T4; (f) T5. Ther-
modynamic data are taken from reference [6].



established by the common tangent construction. At T3 solid MgO(ss) is stable
for MgO-rich compositions, while the cubic polymorph of Y2O3(ss) is stable
for Y2O3-rich compositions. At intermediate compositions the liquid is stable.
The compositions of the liquid coexisting with MgO(ss) and Y2O3(ss) are
again defined by common tangent constructions. Cubic Y2O3(ss) transforms to
the hexagonal polymorph at the phase transition temperature given by the hori-
zontal line at T = 2540 K. This transition will be further considered below. At the
eutectic temperature, T4, three phases are in equilibrium (see Figure 4.8(e))
according to

liquid = h-Y2O3(ss) + MgO(ss) (4.26)

At an even lower temperature, T5, a sample in equilibrium will consist of the
crystalline phase h-Y2O3(ss), MgO(ss) or a two-phase mixture of these (see Figure
4.8(f)). The compositions of the two phases in equilibrium are again given by the
common tangent construction.

Regular solution modelling

The examples focused on so far have demonstrated that phase diagrams contain
valuable information about solution thermodynamics. We will illustrate this fur-
ther by using the regular solution model, introduced in Section 3.4, to calculate a
range of phase diagrams. Although the regular solution model may represent a very
crude approximation for a large number of real solutions, it has proven to be very
efficient in many respects.

The equilibrium conditions given by eqs. (4.15) and (4.16) can in general be
expressed through the activity coefficients. Using a solid–liquid phase equilibrium
as an example we obtain
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These expressions can be simplified since the activity coefficient in the particular
case of a regular solution can be expressed by the regular solution constant W
through eqs. (3.84) and (3.85):
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These two simultaneous equations can then be solved numerically to calculate the
solidus and liquidus lines.

It should be remembered that if we assume that a solution phase in a hypothetical
A–B system is regular, a positive interaction parameter implies that the different
types of atom interact repulsively and that if the temperature is not large enough
phase separation will occur. Let us first consider a solid solution only. The
immiscibility gap of the solid solution in the binary system V2O3–Cr2O3 [7] given
in Figure 4.9(a) can be described by a regular solution model and thus may be used
as an example. The immiscibility gap is here derived by using the positive interac-
tion parameter reported for the solid solution [7]. There is no solubility at absolute
zero. As the temperature is raised, the solubility increases with the solubility limits
given by the interaction coefficient, W , and by temperature. Figure 4.9(b) show the
Gibbs energy curves for the solid solution and the common tangent constructions
defining the compositions of the coexisting solid solutions at different selected
temperatures.

Let us now return to our hypothetical system A–B where we also consider the
liquid and where the solid and liquid solutions are both regular (following Pelton and

4.1 Binary phase diagrams from thermodynamics 99

0.0 0.2 0.4 0.6 0.8 1.0
400

600

800

1000

1200

1400

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

–3

–2

–1

0solid solution

V2O3(ss) – Cr2O3(ss)

T3

T1

T5

T4

T2

T1

T
/K

32OAlx
32OAlx

T5

T4

T3

T1

T2G
m

/k
J

m
ol

–1
D

m
ix

Figure 4.9 (a) Immiscibility gap of the binary solid solution V2O3–Cr2O3 as described by
the regular solution model. (b) Gibbs energy of mixing curve of the solid solution at the
temperatures marked in the phase diagram. Thermodynamic data are taken from reference
[7].



Thompson [8]). Pure A and B are assumed to melt at 800 and 1000 K with the
entropy of fusion of both compounds set to 10 J K–1 mol–1 (this is the typical entropy
of fusion for metals, while semi-metals like Ga, In and Sb may take quite different
values – in these three specific cases 18.4, 7.6 and 21.9 J K–1 mol–1, respectively).
The interaction coefficients of the two solutions have been varied systematically in
order to generate the nine different phase diagrams given in Figure 4.10.

In the diagram in the middle (Figure 4.10(e)), both the solid and liquid solutions
are ideal. Changing the regular solution constant for the liquid to –15 or +15 kJ
mol–1, while keeping the solid solution ideal evidently must affect the phase dia-
gram. In the first case (Figure 4.10(d)), the liquid is stabilized relative to the solid
solution. This is reflected in the phase diagram by a shift in the liquidus line to
lower temperatures and in this particular case a minimum in the liquidus tempera-
ture is present for an intermediate composition. Correspondingly, the positive
interaction energy for the liquid destabilizes the liquid relative to the solid solution
and the liquidus is in this case shifted to higher temperatures: see Figure 4.10(f).
For the composition corresponding to the maximum or minimum in the liquidus/
solidus line, the melt has the same composition as the solid. A solid that melts and
forms a liquid phase with the same composition as the solid is said to melt congru-
ently. Hence the particular composition that corresponds to the maximum or min-
imum is termed a congruently melting solid solution.

Positive deviations from ideal behaviour for the solid solution give rise to a mis-
cibility gap in the solid state at low temperatures, as evident in Figures 4.10(a)–(c).
Combined with an ideal liquid or negative deviation from ideal behaviour in the
liquid state, simple eutectic systems result, as exemplified in Figures 4.10(a) and
(b). Positive deviation from ideal behaviour in both solutions may result in a phase
diagram like that shown in Figure 4.10(c).

Negative deviation from ideal behaviour in the solid state stabilizes the solid solu-
tion. Wsol = –10 kJ mol–1, combined with an ideal liquid or a liquid which shows pos-
itive deviation from ideality, gives rise to a maximum in the liquidus temperature for
intermediate compositions: see Figures 4.10(h) and (i). Finally, negative and close to
equal deviations from ideality in the liquid and solid states produces a phase diagram
with a shallow minimum or maximum for the liquidus temperature, as shown in
Figure 4.10(g).

The mathematical treatment can be further simplified in one particular case, that
corresponding to Figure 4.10(a). As we saw in the previous section, in some binary
systems the two terminal solid solution phases have very different physical proper-
ties and the solid solubility may be neglected for simplicity. If we assume no solid
solubility (i.e. a aA

ss
B
ss� �1) and in addition neglect the effect of the heat capacity

difference between the solid and liquid components, eqs. (4.29) and (4.30) can be
transformed to two equations describing the two liquidus branches:
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The two branches intersect at the eutectic point and the phase diagram thus relies
on a single interaction parameter, Wliq, only.

In the present section we have focused on the calculation of phase diagrams from
an existing Gibbs energy model. We can turn this around and derive thermody-
namic information from a well-determined phase diagram. Modern computational
methods utilize such information to a large extent to derive consistent data sets for
complex multi-components systems using both experimental thermodynamic data
and phase diagram information. Still, it should be remembered that the phase dia-
gram data does not give absolute values for the Gibbs energy, but rather relative
values. A few well-determined experimental data points are, however, enough to
‘calibrate the scale’, and this allows us to deduce a large amount of thermodynamic
data from a phase diagram.

Invariant phase equilibria

In the examples covered so far several invariant reactions defined by zero degrees
of freedom have been introduced. For a two-component system at isobaric condi-
tions, F = 0 corresponds to three phases in equilibrium. Eutectic equilibria have
been present in several of the examples. Also, congruent melting for the solid solu-
tions with composition corresponding to the maxima or minima in the liquidus
lines present in Figures 4.10(f) and (d), for example, corresponds to invariant reac-
tions. At the particular composition corresponding to the maximum or minimum,
the system can be considered as a single-component system, since the molar ratio
n n x xA B A B/ /� remains constant in both the solid and liquid solutions. The molar
ratio between the two components is a stoichiometric restriction that reduces the
number of components from two to one. A third invariant reaction is the hexagonal
to cubic phase transition of pure Y2O3 represented in Figure 4.8(a). While pure
Y2O3 is clearly a single-component system, the solid solubility of the component
MgO in h-Y2O3(ss) and c-Y2O3(ss) increases the number of components by one
relative to pure Y2O3. Two coexisting condensed phases give one degree of
freedom and the solid–solid transition is no longer an invariant reaction according
to the phase rule, but occurs over a temperature interval. The two-phase region is,
however, narrow and not visible in Figure 4.8(a).

Several other invariant equilibria may take place. A peritectic reaction is
defined as a reaction between a liquid and a solid phase under the formation of a
second solid phase during cooling. Such an invariant reaction is seen in Figure
4.10(c), where the reaction

B(ss) + liquid �A(ss) (4.33)

takes place at T = 837 K. It is possible for a solid solution to play the role of the
liquid in a similar reaction. Equilibria of this type between three crystalline phases
are termed peritectoid. Similarly, eutectic reactions, where the liquid is replaced
by a solid solution (hence involving only solid phases), are termed eutectoid.

102 4 Phase diagrams



A miscibility gap in the liquid state in general results in another invariant reac-
tion in which a liquid decomposes on cooling to yield a solid phase and a new
liquid phase

liq1 �b(ss) + liq2 (4.34)

in a monotectic reaction.
Finally, a phase diagram showing phase separation in both the liquid and solid

states is depicted in Figure 4.11. Here a syntectic reaction (liq liq ss1 2� � a( ))
takes place at 1115 K.

Formation of intermediate phases

The binary systems we have discussed so far have mainly included phases that are
solid or liquid solutions of the two components or end members constituting the
binary system. Intermediate phases, which generally have a chemical composi-
tion corresponding to stoichiometric combinations of the end members of the
system, are evidently formed in a large number of real systems. Intermediate
phases are in most cases formed due to an enthalpic stabilization with respect to the
end members. Here the chemical and physical properties of the components are dif-
ferent, and the new intermediate phases are formed due to the more optimal condi-
tions for bonding found for some specific ratios of the components. The stability of
a ternary compound like BaCO3 from the binary ones (BaO and CO2(g)) may for
example be interpreted in terms of factors related to electron transfer between the
two binary oxides; see Chapter 7. Entropy-stabilized intermediate phases are also
frequently reported, although they are far less common than enthalpy-stabilized
phases. Entropy-stabilized phases are only stable above a certain temperature,
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where the entropy contribution to the Gibbs energy exceeds the enthalpy difference
between this phase and the phase or phase assemblage stable at lower tempera-
tures. One example is wüstite, Fe1–yO, which forms eutectoidally from Fe and
Fe3O4 at 850 K. The formation of intermediate phases will naturally significantly
influence the phase diagram of a given system.

Before we give some examples of phase diagrams involving intermediate phases,
it is useful to discuss the compositional variation of the Gibbs energy of such
phases. Some intermediate phases may be regarded as stoichiometric. Here the
homogeneity range or the compositional width of the single-phase region is
extremely narrow. This reflects the fact that the Gibbs energy curves rise extremely
rapidly on each side of the minimum, which is located at exactly the stoichiometric
composition of the phase. This is illustrated in Figure 4.12(a) for CaZrO3, which
may be seen as an intermediate phase of the system CaO–ZrO2 [9].3 The sharpness
of the G–x curve implies that CaZrO3 is represented by a vertical line in the
CaO–ZrO2 phase diagram shown in Figure 4.12(b). The fact that the solid solu-
bility or non-stoichiometry of CaZrO3 is negligible is understood by considering
the crystal structures of the compounds involved; CaZrO3 takes a perovskite-
related crystal structure, while the two end members ZrO2 and CaO have the fluo-
rite and rock salt structures, respectively. In the perovskite structure there are
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3 The system Ca–Zr–O is principally a ternary system. However, as long as the oxidation state
of Zr and Ca are the same in all phases, the system can be redefined as a two-component
system consisting of CaO and ZrO2.



unique lattice sites for both Ca and Zr, and neither interchange of Zr and Ca nor the
generation of vacant sites are thermodynamically favourable for CaZrO3.4 In opti-
mization of thermodynamic properties of stoichiometric compounds, the
compositional variation is often neglected and the Gibbs energy is simply given as
a function of temperature (and possibly pressure).

CaZrO3 melts congruently, i.e. the coexisting liquid and solid phases have the
exact same composition and CaZrO3 may hence be considered as a single-compo-
nent system. Here two phases present in equilibrium at constant pressure give zero
degrees of freedom. The congruent melting of CaZrO3 is therefore an invariant
equilibrium. Correspondingly, an incongruently melting compound melts under
the formation of a new solid phase and a liquid with composition different from the
original compound.

The phase diagram of the binary system Si–Ti shown in Figure 4.13 [10] is even
more complex. In this system several intermediate phases are formed. Solid solu-
bility is present for the intermediate phase Ti5Si3, while the other intermediate
phases Ti3Si, Ti5Si4, TiSi and TiSi2 all have very narrow homogeneity ranges. The
G–x curve for ‘Ti5Si3’ should therefore display a shallow minimum at the Ti5Si3
composition, while the G–x curve for the other intermediate phases should possess
sharp minima at the exact composition of the phases. In the thermodynamic
description of the Gibbs energy of the non-stoichiometric phase Ti5Si3, the varia-
tion of the Gibbs energy with composition must be taken into account explicitly in
order to calculate the homogeneity range. In this particular case, the Gibbs energy
model may contain several different sub-lattices (see Chapter 9) so that the distri-
bution of different species on the relevant sub-lattices is represented.
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Figure 4.13 Phase diagram of the system Si–Ti [10].

4 It should be mentioned that oxygen vacancies are often formed in the perovskite-type
structure ABO3 in cases where the B atom is a transition metal that readily exists in more than
one oxidation state.



The intermediate phases in the system Si–Ti display also a variety of other fea-
tures. While TiSi2 and Ti5Si3 are congruently melting phases, Ti5Si4 and TiSi melt
incongruently. Finally, Ti3Si decomposes to b-Ti and Ti5Si3 at T = 1170 K, in a
peritectoid reaction while b-Ti decomposes eutectoidally on cooling forming a-Ti
+ Ti3Si at T = 862 K.

Melting temperature: depression or elevation?

While until now we have considered relatively simple phase diagrams and the fun-
damentals of the connection between phase diagrams and thermodynamics, we are
here going to consider a somewhat more complex example, but only briefly.

The calculation of phase diagrams is possible if the equilibrium between the dif-
ferent phases can be evaluated as a function of the variables of the system. A rela-
tively simple case is obtained by considering the effect of impurities on the melting
temperature of a ‘pure metal’ following Lupis’s treatment of the calculation of the
phase boundaries in the vicinity of invariant points [11]. The impurity may be
solved both in the solid and liquid phases and the presence of impurities in a ‘pure’
metal leads to interval freezing. The fusion interval is generally offset towards
higher or lower temperatures depending on the nature of the impurity. These alter-
natives are discussed here with reference to binary phase diagrams exemplifying
either a eutectic-type or peritectic-type behaviour in the composition range
adjoining the pure metal. The term eutectic-like behaviour is used for all diagrams
with the liquidus line sloping downwards, and peritectic-like is used for all those
with the liquidus line sloping upwards. Monotectic diagrams, as well as those
that include intermediate phases decomposing peritectically below the fusion tem-
perature of the pure metal (e.g. SnSb in the phase diagram of the Sn–Sb system
in Figure 4.14) are presently classed in the eutectic-like category. Nearly ideal
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systems, with complete solid and liquid solubility, are categorized as peritectic if
the impurity fuses at a higher temperature than the pure metal.

The equilibrium compositions of an impurity B, xB
a and xB

b , in the two phases a
and b at a given temperature are given by eqs. (4.27) and (4.28), which may be
rewritten as

ln ln ln
(1

1
0

�

�

�

�

	
	




�

�
�

� � � �

�x

x RTA
B

B
A

A
o )a

b
a b

a b

g g
mD

(4.35)

ln ln ln
(x

x RT
B

B
B B

B
o )a

b
a b

a b

g g
m�

�

	
	




�

�
�

� � � �

�D
0 (4.36)

Here Raoultian standard states are used for both the pure metal and the impurity.
The slope d dBx T/ of the phase boundaries can now be derived by differentiation
with respect to temperature. Let f(xB) denote the left-hand side of eq. (4.35) or
(4.36); then (see Lupis, Further reading)
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where d dBx Ta / and d dBx Tb / are the slopes of the two phase boundaries [11]. Equa-
tion 4.37 is identical to zero since f(xB) is zero along the boundaries. The slope of
the phase boundaries can now be evaluated using eqs. (4.35) and (4.36). Further
treatment [11] gives the following equations for the slopes of the phase boundaries
– using a solid–liquid transition (melting) as an example:
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Here g B
,liq� and g B

,ss� are the activity coefficients of component B in the liquid and
solid solutions at infinite dilution with pure solid and liquid taken as reference
states. D fus A

oS is the standard molar entropy of fusion of component A at its fusion
temperature T fus,A and D fus B

oG is the standard molar Gibbs energy of fusion of
component B with the same crystal structure as component A at the melting tem-
perature of component A.

The melting temperature depression or enhancement may now be expressed in
terms of the melting temperature and the entropy of fusion of component A, the
activity coefficients of impurity B in the liquid and solid solutions at infinite dilu-
tion, and the total concentration of the impurity B, xB [12]:
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where F is the fraction of the sample melted at DT departure from T fus,A , and K is an
interaction coefficient. If the liquid standard state is used for the activity coeffi-
cient of component B in both solid and liquid solutions:
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In this case the equations are greatly simplified and the ratio of the slopes of the
two phase boundaries at xA �1 is given by the activity coefficients of B at infinite
dilution in the liquid and solid phases [11]:
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Eutectic behaviour persists for 0 > K > � �, that is for g gB
,liq

B
,ss� �� < 0. Peritectic

behaviour is obtained for 1 < K < �, that is for g gB
,liq

B
,ss� �� > 0.

The phase diagrams of the Sn–Bi and Sn–Sb systems are shown in Figure 4.14,
and they illustrate the effect of Bi and Sb on the melting temperature of pure Sn.
Experimental thermodynamic data for the Sn–Bi system gives lBi

,ss� � 7 5. and
lBi

,liq� �1 3. [13]; the slope of the Sn solidus is steeper than for the Sn liquidus,
K = –0.2, and a eutectic type behaviour is expected. For the Sn–Sb system
lSb

,ss� � 0 12. and lSb
,liq� � 0 27. [14], the slope of the Sn liquidus is steeper than that

for the Sn solidus, K = 1.8, and a peritectic-type behaviour is suggested. Both
results are in agreement with the experimental phase diagrams.

Activity coefficients at infinite dilution are in general very important and fre-
quently used in thermodynamic analyses. Examples are analyses of trace element
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partitioning between solids and melts in geological systems [15] and analyses of
the distribution of long-lived chemicals throughout the environment [16].

Minimization of Gibbs energy and heterogeneous phase equilibria

The heterogeneous phase equilibria considered in the preceding sections have
implicitly been derived by finding the phase or phase assemblage with the lowest
Gibbs energy. Heterogeneous phase equilibria in general are calculated by mini-
mizing the Gibbs energy, and computer software has been available for several
decades to perform similar calculations in multi-component systems consisting of
any number of components and phases. Generally, the Gibbs energy in a system
consisting of the components A, B, C, …, the stoichiometric phases a b g, , , ... and
the solution phases 1, 2, 3, … can be expressed as
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For a given set of constraints (for example temperature, pressure and overall
composition), the algorithm identifies the phases present and the relative amounts
of these phases, as well as the mole fraction of all the components in all phases. The
global minimum evidently must obey the Gibbs phase rule, and not all phases need
to be present at the global equilibrium.

A thorough description of strategies and algorithms for minimization of Gibbs
energy in multi-component systems is outside the scope of the present text. The
monograph by Smith and Missen (see Further reading) gives an excellent over-
view of the topic.

4.2 Multi-component systems

Ternary phase diagrams

For three-component (C = 3) or ternary systems the Gibbs phase rule reads Ph + F =
C + 2 = 5. In the simplest case the components of the system are three elements, but
a ternary system may for example also have three oxides or fluorides as compo-
nents. As a rule of thumb the number of independent components in a system can
be determined by the number of elements in the system. If the oxidation state of all
elements are equal in all phases, the number of components is reduced by 1. The
Gibbs phase rule implies that five phases will coexist in invariant phase equilibria,
four in univariant and three in divariant phase equilibria. With only a single phase
present F = 4, and the equilibrium state of a ternary system can only be represented
graphically by reducing the number of intensive variables.
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It is sometimes convenient to fix the pressure and decrease the degrees of
freedom by one in dealing with condensed phases such as substances with low
vapour pressure. The Gibbs phase rule for a ternary system at isobaric conditions is
Ph + F = C + 1 = 4, and there are four phases present in an invariant equilibrium,
three in univariant equilibria and two in divariant phase fields. Finally, three
dimensions are needed to describe the stability field for the single phases; e.g. tem-
perature and two compositional terms. It is most convenient to measure composi-
tion in terms of mole fractions also for ternary systems. The sum of the mole
fractions is unity; thus, in a ternary system A–B–C:

x x xA B C� � �1 (4.44)

and there are two independent compositional variables. A representation of com-
position, symmetrical with respect to all three components, may be obtained from
the equilateral composition triangle as shown for the system A–B–C in Figure
4.15. The three corners of the triangle correspond to the three pure components.
Along the three edges are found the compositions corresponding to the three binary
systems A–B, B–C and A–C. Lines of constant mole fraction of component A are
parallel to the B–C edge (exemplified by the broken line for xA � 0 2. ), while lines
of constant mole fraction of B and C are parallel to the A–C and A–B binary edges
respectively (exemplified by broken lines for xB � 0 2. and xC � 0 6. ). The three
lines intersect at the point marked X, which thus have the composition xA � 0 2. ,
xB � 0 2. , xC � 0 6. . Note that the sum of the lengths of the perpendiculars from any
composition point to the three edges is constant (using the point X as an example
once more, the perpendiculars are given by bold lines in the figure). It is upon this
property that the representation is based and the three perpendiculars are measures
of the mole fractions of the three components.
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To represent a ternary system at constant pressure completely, the effect of tem-
perature must be incorporated in the phase diagram. Such a ternary tempera-
ture–composition phase diagram at constant pressure may be plotted as a three-
dimensional space model using a triangular prism. The ternary composition tri-
angle would then form the base while temperature is given along the vertical axes
as shown in Figure 4.16(a) for a hypothetical ternary system A–B–C [17]. On
the three faces of the prism we find the phase diagrams of the three binary
systems A–B, B–C and A–C. In the hypothetical system illustrated in Figure
4.16(a) complete solid solubility is present in the close to ideal binary system A–B
(the solid solution phase is denoted a), while the two other binary systems B–C and
A–C are eutectic systems with a limited solubility of C in the solid solution phase
a.

Recall that the Gibbs phase rule gives F + Ph = C + 1 = 4 for a ternary system at
constant pressure. Within the prism two liquidus surfaces are shown: one descending
from the melting temperature of pure C and the other from the liquidus of a in the
binary A–B system. Compositions on the two surfaces corresponds to compositions
of the liquid in equilibrium with one of the two solid phases, C or a. For an equilib-
rium between a solid and the liquid, Ph = 2 and thus F = 2; the two surfaces are
divariant. The two liquidus surfaces intersect along the univariant line (F = 1)
starting from one of the binary eutectics (E1) and ending in the other (E2). The inter-
section of adjoining liquidus surfaces in a ternary phase diagram is generally termed
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(a)

(b)

Figure 4.16 (a) Triangular prism phase diagram for a ternary system A–B–C with the equi-
lateral triangular base giving composition. Temperature is given along the vertical axis
[17]. (b) Projection of the liquidus surface onto the ternary composition triangle. The bold
line is the intersection between the primary crystallization fields of C and the solid solution
a. The dashed line represents the extension of the solid solution a. Reprinted with permis-
sion of The American Ceramic Society, www.ceramics.org. Copyright [1984]. All rights
reserved.



a common boundary line. Along the univariant common boundary line three phases
(liq, C and a) are in equilibrium.

In the present case there are no ternary invariant equilibria in the system, partly
due to the complete solid solubility of the A–B system. In a ternary system com-
posed from three binary eutectic sub-systems, three univariant lines would meet in
a ternary eutectic equilibrium:

liq. � A(ss) + B(ss) + C(ss) (4.45)

which is an invariant equilibrium at isobaric conditions.
Phase diagrams based on the triangular prism give an illustrative representation

of isobaric ternary systems, but the construction of the diagram is very time-con-
suming and of less convenience. A more convenient two-dimensional representa-
tion of the ternary liquidus surface may be obtained by an orthogonal projection
upon the base composition triangle. This is shown for the system A–B–C in Figure
4.16(b) [17]. The lines of constant temperature are called liquidus isotherms. In
Figure 4.16(b) the bold line shows the common boundary line of the two liquidus
surfaces descending from the melting temperature of pure C and from the liquidus
of a in the binary A–B system discussed above. Often an arrow is used to indicate
the direction of decreasing temperature along univariant lines.

We will now apply Figure 4.16 to find the equilibrium behaviour of a sample
with overall composition marked P in the diagrams, when it is cooled from above
the liquidus surface to below the solidus temperature for the given overall composi-
tion. The point marked P lies within the primary crystallization field of a. That
is, it lies within the composition region in which a will be the first solid to precipi-
tate during cooling. When cooling the liquid, a will start to precipitate when
the liquidus temperature is reached just below 700 °C; see Figure 4.16(b). During
further cooling the amount of solid a will increase at the expense of the amount of
liquid. It is important to note that the composition of a is not constant during the
crystallization.

Two selected isothermal sections of the phase diagram that show relevant two-
phase equilibria are given in Figure 4.17 [17]. The thin lines illustrate the tielines
between the compositions of two phases in equilibrium (a + liq.) or (C + liq). The
tieline going through the overall composition point P in Figure 4.17(a) defines the
composition of the two conjugate phases, a and liquid, at that particular tempera-
ture. During cooling the composition of a is enriched on A and also the composi-
tion of the liquid changes. The two phases remain in equilibrium until the liquid
reaches the intersection of the primary crystallization fields of a and phase C. At
this temperature, the second solid phase, denoted phase C, will start to precipitate
in addition to a. On further cooling, the composition of the liquid is defined by the
common boundary line from E1 to E2 in Figure 4.16, where the liquid is in equilib-
rium with a and C. The compositions of the three phases in equilibrium are given
by a triangle in an isothermal section. This is illustrated for the temperature corre-
sponding to that where the liquid phase disappears, i.e. when P reaches the edge of
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the three-phase triangle in Figure 4.17(b). On further cooling the two solid phases
remain in equilibrium. Since the solubility limit of a decreases with decreasing
temperature, the relative amounts of the two phases in equilibrium also change.

A sample in the primary crystallization field of phase C will behave differently
during crystallization. Here phase C precipitates with composition identical to C
(no solid solubility) during cooling keeping the A:B ratio in the melt constant until
the melt hits the intersection of the two primary crystallization fields. At this tem-
perature a will start to precipitate together with further C and from this point on the
cooling process corresponds to that observed for the sample with overall composi-
tion P after this sample reaches the same stage of the crystallization path.

The relative amount of the different phases present at a given equilibrium is
given by the lever rule. When the equilibrium involves only two phases, the calcu-
lation is the same as for a binary system, as considered earlier. Let us apply the
lever rule to a situation where we have started out with a liquid with composition P
and the crystallization has taken place until the liquid has reached the composition
2 in Figure 4.17(a). The liquid with composition 2 is here in equilibrium with a
with composition �2 . The relative amount of liquid is then given by

y
P

liq �
�

�

2

2 2
(4.46)

where �2 P denotes the distance between �2 and P and �2 2 that from �2 to 2. The
amount of solid (a) ya is given by 1 � y liq . With three phases in equilibrium, the
relative amounts of the three phases are also given by the lever rule, but its use is
slightly more complex. In this case the relative amounts of the three phases are
determined in terms of a triangle defined by the composition of the three phases in
equilibrium. A line from each of the three corners is drawn through the point repre-
senting the overall composition of the sample to the opposite edge. The relative
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(a) (b)

Figure 4.17 Isothermal sections of the ternary phase diagram A–B–C shown in Figure 4.16
at (a) 650 °C and (b) 450 °C [17]. Here L denotes liq. Reprinted with permission of The
American Ceramic Society, www.ceramics.org. Copyright [1984]. All rights reserved.



amount of a given phase (represented as a corner in the diagram) is defined as the
length of the line from the overall composition to the opposite edge divided by the
total length from the corner to the edge. This is illustrated in Figure 4.15. Here
the relative amount of phase B for a sample with overall composition X is equal to
QX/QP. Similar procedures for the two other components give the relative amount
of all three phases in equilibrium.

Let us now consider two real ternary systems to illustrate the complexity of ter-
nary phase diagrams in some detail. While the first is a system in which the solid
state situation is rather simple and attention is primarily given to the liquidus sur-
faces, the solid state is the focus of the second example.

The phase diagram of the ternary system NaF–MgF2–CaF2 is shown in Figure
4.18 [18]. Of the three binary sub-systems NaF–CaF2 and MgF2–CaF2 are simple
eutectic systems, while an intermediate phase, NaMgF3, is formed in the third
system, NaF–MgF2. The latter can however be divided into two simple eutectic
subsystems: NaF–NaMgF3 and NaMgF3–MgF2. The overall system consists of
the four solid phases described above, all with their own primary crystallization
field and all four phases melt congruently. The borderline between the primary
crystallization fields of the phases are shown as bold lines. Two ternary eutectics
are shown with the eutectic compositions within the two ternary subsystems
NaF–CaF2–NaMgF3 and CaF2–MgF2–NaMgF3. The binary join between CaF2
and NaMgF3 is termed a true Alkemade line defined as a join connecting the com-
positions of two primary phases having a common boundary line. This Alkemade
line intersects the boundary curve separating the primary phases CaF2 and
NaMgF3. The point of intersection represents the temperature maximum on the
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Figure 4.18 Phase diagram for the ternary system NaF–MgF2–CaF2 [18]. Reprinted with
permission © 2001 by ASM International and TMS (The Minerals, Metals and Materials
Society).



boundary curve, while the liquidus along the Alkemade line has a minimum at the
same composition; hence the intersection represents a saddle point. If the
Alkemade line does not intersect the boundary curve, then the maximum on the
boundary curve is represented by that end which if prolonged would intersect the
Alkemade line. The binary join NaF–MgF2 is not an Alkemade line since these two
solid phases are not coexistent. Finally, the a–b CaF2 phase transition at 1151 °C is
shown as a bold line in the figure.

For ternary systems with complex phase behaviour in the solid state it is more
convenient to use only isothermal sections. This is shown for two temperatures for
the ternary system Ti–Si–C in Figure 4.19 [10]. In this system several binary and
ternary intermediate phases are stable, and the system is divided into several ter-
nary sub-systems. Tielines for two-phase equilibria are also shown in the two iso-
thermal sections.

Quaternary systems

In a quaternary system, three dimensions are required to represent composition and
a fourth dimension is needed for the temperature if the temperature dependence is
to be displayed. Since we live in a three-dimensional world this is awkward. The
dilemma is partly overcome by constructing a diagram, which is analogous to the
plane projection made for ternary systems. This is shown for the system A–B–C–D
in Figure 4.20. The phase diagram is a tetrahedron, and the four corners of the tetra-
hedron correspond to the four components. The four faces of the tetrahedron corre-
spond to the plane projections of the four limiting ternary systems. The Gibbs
phase rule for the quaternary system at isobaric conditions is Ph + F = C + 1 = 5.
With only a single phase present and for a given temperature, three composition
variables may be varied (i.e. F = 3), and the stability field for each phase is thus a
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(a) (b)

Figure 4.19 Isothermal sections of the ternary system C–Si–Ti at (a) 1400 °C and (b) 1800°C
[10]. Reprinted with permission of The American Ceramic Society, www.ceramics.org. Copy-
right [2000]. All rights reserved.



volume in the tetrahedron. Two phases are in equilibrium along surfaces, three
phases are present in univariant equilibria and finally there are four phases in
invariant equilibria.

The addition of further components makes the presentation of the phase dia-
grams increasingly complex. The principles are general, however, and calculation
of a vertical section in a quinternary system like Fe–Cr–Mo–W–C [19], for
example, is fairly easily done by the use of large computer programs for calculation
of phase diagrams based on thermodynamics.

Ternary reciprocal systems

A ternary reciprocal system is a system containing four components, but where
these components are related through a reciprocal reaction. One example is the
system LiCl–LiF–KCl–KF. Solid LiCl, LiF, KCl and KF are highly ionic materials
and take the rock salt crystal structure, in which the cations and anions are located
on separate sub-lattices. It is therefore convenient to introduce ionic fractions (Xi)
for each sub-lattice as discussed briefly in Section 3.1. The ionic fractions of the
anions and cations are not independent since electron neutrality must be fulfilled:

X X X X
F Cl Li K� � � �� � � �1 (4.47)

For this reason, the system is defined by the four neutral components LiCl, LiF,
KCl and KF, which in addition can be related by the reciprocal reaction
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Figure 4.20 Tetrahedron space model for the phase diagram of the quaternary system
A–B–C–D. The isotherms T1, T2, T3 are shown for the primary phase volume of component
A [17]. Reprinted with permission of The American Ceramic Society, www.ceramics.org.
Copyright [1984]. All rights reserved.



LiCl + KF = LiF + KCl (4.48)

The sign of the Gibbs energy of this reciprocal reaction determines which of the
two pairs of compounds are coexistent at a given temperature (and pressure). In our
specific case, the Gibbs energy of the reciprocal reaction is negative and the prod-
ucts are coexistent phases, while the reactants are not. A reciprocal ternary phase
diagram is in general constructed by the combination of two ternary systems that
both contain the two coexistent phases. Thus in the present case the ternary phase
diagrams of the systems LiF–KCl–LiCl and LiF–KCl–KF are combined. The cal-
culated phase diagram of the ternary reciprocal system considered is shown in
Figure 4.21 [20]. Here the sign of the reciprocal reaction is reflected in that the
stable diagonal in the system is LiF–KCl and not LiCl–KF.

Both the ternary systems are simple eutectic ones and the composition of the
system is represented by the ionic fraction of one of the cations and one of the
anions. In Figure 4.21 the ionic fraction of Li+ is varied along the X-axis, while the
ionic fraction of F– is varied along the Y-axis.

4.3 Predominance diagrams

In the preceding sections the phase diagrams have been represented in terms of
composition. Alternatively, the chemical potential of one or more of the compo-
nents may be used as variables. This gives rise to a range of similar diagrams that
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Figure 4.21 Calculated phase diagram of the ternary reciprocal system LiCl–LiF–KCl–KF
[20]. Reprinted with permission © 2001 by ASM International and TMS (The Minerals,
Metals and Materials Society).



have many applications in materials science. These will here be termed predomi-
nance diagrams. They are of great importance for understanding materials’ sta-
bility under hostile conditions (for example hot corrosion) and in planning the
synthesis of materials; for example for chemical vapour deposition. In addition to
being of great practical value, they also further illustrate the principles of Gibbs
energy minimization and the Gibbs phase rule.

In predominance diagrams one or more base elements are defined which must be
present in all the condensed phases. A predominance diagram for the binary system
Fe–O is shown in Figure 4.22. The diagram is divided into areas or domains of sta-
bility of the various solid phases of the Fe–O system. In this simple binary case the
base element is iron, which is present in all five condensed phases in the system:
three oxides and two solid modifications of Fe. The Gibbs phase rule reads Ph + F =
C + 2 = 4 if the pressure of oxygen is considered as the mechanical potential p.
Alternatively, ptot may be considered to be constant e.g. 1 bar. In the latter case, a
third component, an inert gas, must be added to the system to maintain the isobaric
condition. Thus Ph + F = C + 1, which for C = 3 again gives Ph + F = 4. In conclu-
sion, we may have a maximum of four phases in equilibrium: three condensed
phases and a gas phase. A univariant line (F = 1) is for this two component system a
phase boundary separating the domains of two condensed phases, for instance
Fe3O4 and Fe2O3. These univariant lines are defined by heterogeneous phase
equilibria like

4/3 Fe3O4(s) + 1/3 O2(g) = 2 Fe2O3(s) (4.49)

The stability fields for the condensed phases correspond to F = 2, which means that
both temperature and the partial pressure of O2 can be varied independently.

In order to derive the phase boundaries in Figure 4.22 we need the Gibbs energy
of formation of the oxides. This type of data is conveniently given in an Ellingham
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diagram [22,23] where the Gibbs energy ‘of formation’ of various oxides is
plotted versus the temperature, as shown in Figure 4.23. Note that the Gibbs energy
of formation is given per mole O2, which is not in accordance with the definition of
the energies of formation given in Chapter 1 and used frequently thereafter.

For a binary oxide like Fe2O3 the reaction in question is

4/3 Fe(s) + O2(g) = 2/3 Fe2O3(s) (4.50)

Assuming that the metal and oxygen are in their standard states, the equilibrium
constant corresponding to reaction (4.50) is given as

K p G RT� � �1/ exp( / )O r
o

2
D (4.51)

If the oxygen partial pressure is lower than p KO2
1� / the reactant (in our case Fe) is

stable. If it is higher, the product (in our case Fe2O3) is formed.
The slopes of the lines in the Ellingham diagram are given by the entropy change

of the formation reaction: �D r
oS . The entropy changes are in general negative due

to the consumption of gas molecules with higher entropy and the slopes are thus
positive. In the large scale of the plot the lines appear to be linear, suggesting
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constant entropies of the reactions (or in other words that the difference in heat
capacity between the reactants and products is zero). On a different scale the curva-
ture of the Gibbs energy curves is visible. Furthermore, it should be noted that the
breaks in the slopes of the curves are due to first-order phase transitions of the
metal or the oxide.

The Ellingham diagram contains a lot of useful information. By drawing a line
from the point P that intersects the Gibbs energy curve of a particular compound at
a temperature of interest, the partial pressure that corresponds to decomposition/
formation of the oxide from pure metal and gas at that particular temperature can
be derived. The partial pressure of oxygen is obtained by extrapolation to the
log pO2

scale on the right-hand side of the diagram. For example, at 1000 K the par-
tial pressure of oxygen corresponding to equilibrium between Zn and its mon-
oxide, ZnO, is 10–26 bar. From the diagram in Figure 4.23 it is evident that the
oxides with the more negative Gibbs energies of formation have the highest sta-
bility and are harder to reduce to the elemental state.

In materials science, the controlled partial pressure of oxygen is often obtained
by using gas mixtures. Here the ratio of the partial pressures of e.g. H2(g) and
H2O(g) or CO(g) and CO2(g) are varied to give the desired pO2

at a given tempera-
ture. The ratios p pH H O2 2

/ and p pCO CO2
/ are related to the partial pressure of O2 by

the reactions

2H2O(g) = 2H2(g) + O2(g) (4.52)

2CO2(g) = 2CO(g) + O2(g) (4.53)

Calculated ratios p pCO CO2
/ and p pH H O2 2

/ for selected partial pressures of oxygen
at a total pressure of 1 bar are given in Figure 4.24.

The equilibrium between a metal and an oxide in a CO–CO2 atmosphere can then
be obtained by combining the formation reaction of the oxide with reaction (4.53).
As an example the equilibrium between Co, O2 and CoO combined with reaction
(4.53) gives

Co(s) + CO2(g) = CO(g) + CoO(s) (4.54)

After finding the partial pressure of oxygen at a given temperature through Figure
4.23, the composition of the gas mixture is obtained from Figure 4.24(a).

Let us now include an additional component to the Fe–O system considered
above, for instance S, which is of relevance for oxidation of FeS and for hot corro-
sion of Fe. In the Fe–S–O system iron sulfides and sulfates must be taken into con-
sideration in addition to the iron oxides and ‘pure’ iron. The number of components
C is now 3 and the Gibbs phase rule reads Ph + F = C + 2 = 5, and we may have a
maximum of four condensed phases in equilibrium with the gas phase. A two-
dimensional illustration of the heterogeneous phase equilibria between the pure
condensed phases and the gas phase thus requires that we remove one degree of
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freedom. This can be done by keeping either the temperature or a chemical poten-
tial constant. To exemplify the former choice, the isothermal predominance dia-
gram for the Fe–S–O system at 800 K is shown in Figure 4.25. Here the partial
pressures of SO2 and O2 are used as variables. An univariant line (F = 1) or phase
boundary separates domains of two different condensed phases. For Fe2O3 and
FeSO4 this line is defined by the heterogeneous phase equilibrium
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1
2

Fe2O3(s) + SO2(g) + 1
4
O2(g) = FeSO4(s) (4.55)

Since

D r
o

SO O
1

2 2

G RT K RT
p p
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�

�
�
�

ln ln
/

1
4

(4.56)

the phase boundary is given by the line log log logK p p� � �SO O2 2
1
4

, where K is
the equilibrium constant for reaction (4.55). The domain of stability for each of the
condensed phases corresponds to two degrees of freedom (F = 2), while three con-
densed phases are in equilibrium with the gas phase at an invariant point (F = 0).
Three lines corresponding to three different univariant phase equilibria meet at an
invariant point.

As indicated above, rather than keeping the temperature constant, we can replace
the partial pressure of one of the gas components with the temperature as a variable.
Figure 4.26 is a diagram of the Fe–S–O system in which ln pO2

is plotted versus tem-
perature. Here pSO2

is fixed in order to allow a two-dimensional representation.
There are in principle no restrictions on the number of components in a predomi-

nance diagram and examples of four- and five-component systems are shown in
Figure 4.27. In Figure 4.27(a) the predominance diagram of the system Si–C–O–N
at 1500 K is given as a function of log pO2

and log pN2
. The system has four compo-

nents, and Si and C are the two base elements. The amount of Si is assumed to be in
excess relative to SiC. At constant temperature, the Gibbs phase rule gives Ph + F =
C + 1 = 5. Thus at an invariant point four condensed phases are in equilibrium with
the gas phase. Two such invariant points are evident in Figure 4.27(a). Three con-
densed phases are in equilibrium along the lines in the diagram (F = 1), whereas
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two condensed phases are coexistent in the two-dimensional phase fields. Si3N4
and SiC, which are often present in ceramic composites, are only thermodynami-
cally coexistent in a narrow log pN2

range at low partial pressures of O2. Thermo-
dynamic data for the oxynitride phase Si2ON2 are not available, but at 1500 K it has
a narrow stability region between SiO2 and Si3N4.

In Figure 4.27(b) the predominance diagram of the five-component system
Si–Al–C–O–N is shown as a function of log pCO2

and log pCO at a constant partial
pressure of N2 equal to 0.5 bar at 1700 K. The two base elements of the plot are Si
and Al (n nSi Al� 025. ). The Gibbs phase rule reads Ph + F = C + 2 = 7, which at con-
stant temperature and constant partial pressure of N2 gives Ph + F = 5. The predom-
inance diagram shown in Figure 4.27(b) is therefore analogous to the one shown in
Figure 4.27(a), in that the same number of phases is present for a certain degree of
freedom. Aluminium nitride is only stable at low partial pressures of CO and CO2.

Note that the gas mixture in the lower right corner in Figure 4.27(b) is unstable
due to the Boudouard reaction

C(s) + CO2(g) = 2 CO(g) (4.57)

At 1700 K the equilibrium constant for this reaction is

K p p� �6946 CO
2

CO2
/ (4.58)

The CO–CO2 gas mixture is therefore unstable at conditions below the line defined
by eq. (4.57) and will here lead to formation of graphite. It may be useful to note
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that in many commercial thermodynamic software packages it is not prohibited to
calculate phase equilibria for unstable gas compositions, and care should be taken.

In cases where ternary compounds, e.g. oxides, are being investigated, other
related types of diagrams may be more efficient. The thermodynamic stability of
ternary oxides at constant pressure, for example, is visually well represented in
three-dimensional chemical potential diagrams [24]. In Figure 4.28(a) the phase
relations in the system Co–Ti–O are plotted as a function of the chemical potential
of the three elements. At constant temperature, the Gibbs phase rule gives Ph + F =
3 + 1 = 4, and an invariant point corresponds to three condensed phases in equilib-
rium with the gas phase. The stability field of each single phase is given as a plane,
while two phases are in equilibrium along univariant lines. The same phase equi-
libria may also be represented in two dimensions, as exemplified by Figure 4.28(b).
Here the stability of the metallic elements and their binary oxides and double
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oxides are presented as areas in a log( / )a aA B versus log pO2
plot (at constant tem-

perature). Complex phase relations for double oxides are in this way visualized in a
clear and compact manner.
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5
Phase stability

When referring to a phase as stable in thermodynamics we usually mean the phase
that has the lowest Gibbs or Helmholtz energy at the given conditions. In Section
1.1 the concept of metastability was introduced. Both stable and metastable phases
are in local equilibrium, but only the thermodynamically stable phase is in global
equilibrium; a metastable state has higher Gibbs energy than the true equilibrium
state. We may also have unstable phases, and here, as will be described further
below, the nature of the instability is reflected in the second derivative of the Gibbs
energy with regard to the thermodynamic potentials defining the system.

Both stable and metastable states are in internal equilibrium since they can
explore their complete phase space, and the thermodynamic properties are equally
well defined for metastable states as for stable states. However, there is a limit to
how far we can extend the metastable region with regard to temperature, pressure
and composition. If we use temperature as a variable, there is a limit to super-
heating a crystal above its melting temperature or cooling a liquid below its
freezing temperature. A supercooled liquid will either crystallize or transform to a
glass. Glasses are materials out of equilibrium or in other words non-ergodic
states; glasses cannot explore their complete phase space and some degrees of
freedom are frozen in.

An analogous situation is obtained if we consider pressure as variable instead of
temperature. Some crystals may exist, as metastable phases, far above the pressure
where thermodynamically they should transform to a denser high-pressure
polymorph. However, there is a limit for ‘superpressurizing’ a crystal above its
transformation pressure. The phase will either recrystallize (in a non-equilibrium
transition) to the more stable phase, or transform to an amorphous state with higher
density. To make the analogy with superheating and supercooling complete, high-
pressure phases may remain as metastable states when the pressure is released.

127

Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects.
Svein Stølen and Tor Grande

Copyright  2004 John Wiley & Sons, Ltd. ISBN: 0-471-49230-2



However, at some specific pressure the high-density polymorph becomes mechani-
cally unstable. This low-pressure limit is seldom observed, since it often corre-
sponds to negative pressures. When the mechanical stability limit is reached the
phase becomes unstable with regard to density fluctuations, and it will either crys-
tallize to the low-pressure polymorph or transform to an amorphous phase with
lower density.

Phases may also become unstable with regard to compositional fluctuations, and
the effect of compositional fluctuations on the stability of a solution is considered
in Section 5.2. This is a theme of considerable practical interest that is closely con-
nected to spinodal decomposition, a diffusion-free decomposition not hindered by
activation energy.

Since the formation of a stable phase may be kinetically hindered, it is of interest
to calculate phase diagrams without the presence of a particular phase. This is an
exercise easily done using thermodynamic software for phase diagram analysis,
but the general effects can be understood based on Gibbs energy rationalizations.
Closely related to this topic is the thermal evolution of metastable states with time.
The reactivity of a metastable phase is governed by both thermodynamic and
kinetic factors. Although the transformation toward equilibrium is irreversible, the
direction is given, and the rate of transformation influenced, by the Gibbs energy
associated with the transformation. Finally, kinetic factors are also of great impor-
tance in many other applications of materials and kinetic demixing, and decompo-
sition of materials in potential gradients are briefly described in the last section of
the chapter.

5.1 Supercooling of liquids – superheating of crystals

It is well known that a liquid can be cooled below its equilibrium freezing tempera-
ture. The crystallization of the stable crystalline phase is hindered due to an activa-
tion barrier caused by the surface energy of the crystal nuclei. In some cases, such
as B2O3, stable crystals barely form, and the supercooled liquid turns into a glass
even at very slow cooling rates. In other cases high cooling rates are needed to pro-
duce glasses, notably metallic glasses where cooling rates of the order of 106 K s–1

might be needed. The supercooled liquid passes through a transition to a glass at
the glass transition temperature, Tg, which is typically 2

3
of the melting tempera-

ture, Tfus. At this transition some degrees of freedom are frozen in and the sample
becomes non-ergodic. Since, the transition is an out-of-equilibrium transition, the
properties of the resulting glass depend on its thermal history (see Section 8.5).

The entropy difference between the supercooled liquid and the crystal is given
by

D D
D

fus m
o

fus m
o

fus
p
o

d

fus

S T S T
C

T
T

T

T

( ) ( )� � � (5.1)
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where D fus m
o

fusS T( ) is the standard entropy of fusion at the melting temperature
and DC p

o is the difference between the standard heat capacity of the supercooled
liquid and the stable crystalline phase. Many supercooled liquids possess heat
capacities that substantially exceed those of the corresponding crystals, as in the
case of selenium shown in Figure 5.1(a) [1–3]. The entropy difference between a
crystal and the corresponding liquid, which is positive at the fusion temperature, is
reduced with decreasing temperature and become zero at some temperature below
the equilibrium freezing temperature. Although helium-3 melts exothermally [4], a
negative entropy of fusion is in general considered to be a paradox since the
entropy of the disordered phase then becomes lower than the entropy of the ordered
phase. This argument was first put forward by Kauzman [5] and is often referred to
as the Kauzmann paradox. By extrapolation of the heat capacity of the super-
cooled liquid below its Tg, the temperature at which the entropy of fusion becomes
zero can be calculated. This temperature is called the Kauzmann temperature,
TK, or the ideal glass transition temperature. The entropy of crystalline and
liquid selenium is shown as an example in Figure 5.1(b). Here the entropy of the
supercooled liquid crosses the entropy of crystalline Se at around T = 180 K.
Kauzmann proposed that this paradox is avoided through a non-equilibrium transi-
tion above the ideal glass transition temperature where a glass is formed. Experi-
ments have confirmed this prediction and all known glass-forming liquids display
a glass transition at temperatures above TK. For our example, Se, the glass transi-
tion temperature is approximately 120 K above the Kauzmann temperature.

Unlike supercooling of liquids, superheating of crystalline solids is difficult due
to nucleation of the liquid at surfaces. However, by suppressing surface melting,
superheating to temperatures well above the equilibrium melting temperature has
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been achieved. As for many other phenomena in physical sciences, superheating is
discussed using both kinetic and thermodynamic arguments. Of the early models,
those by Lindemann [6] and Born [7] are the most important. Lindemann [6] pro-
posed that bulk melting is caused by a vibrational instability in the crystal lattice
when the root mean displacement of the atoms reaches a critical fraction of the dis-
tance between them. Somewhat later, Born [7] proposed that a ‘rigidity catastro-
phe’ caused by a vanishing elastic modulus determines the melting temperature of
the bulk crystal in the absence of surfaces.

The conditions for mechanical instability can be derived from a set of criteria for
the stability of equilibrium systems put forward by Gibbs [8]. Considering insta-
bility with regard to temperature and pressure, the criteria for stability are
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Equation (5.2) requires that the bulk modulus is positive.
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When this criterion is fulfilled the compound is stable with respect to the sponta-
neous development of inhomogeneities in the average atomic density. The phase is
in other words stable with regard to infinitesimal density fluctuations. Equation
(5.3) requires that the heat capacity is positive.

Equation (5.2) also implies that a crystalline solid becomes mechanically
unstable when an elastic constant vanishes. Explicitly, for a three-dimensional
cubic solid the stability conditions can be expressed in terms of the elastic stiffness
coefficients of the substance [9] as

C C11 122 0�  (5.5)

C44 0 (5.6)

C C11 12 0�  (5.7)

The complexity of the stability conditions increases the lower the symmetry of
the crystal. For an isotropic condensed phase, such as a liquid or fluid the criteria
can be simplified. Here, C C C11 12 442� � and the stability conditions reduce to
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3 2 3 044 12K C CT � �  (5.8)

C44 0 (5.9)

where KT is the bulk modulus and C44 is the shear modulus.
The temperature dependences of the isothermal elastic moduli of aluminium are

given in Figure 5.2 [10]. Here the dashed lines represent extrapolations for T > Tfus.
Tallon and Wolfenden found that the shear modulus of Al would vanish at T =
1.67Tfus and interpreted this as the upper limit for the onset of instability of
metastable superheated aluminium [10]. Experimental observations of the extent
of superheating typically give 1.1Tfus as the maximum temperature where a crys-
talline metallic element can be retained as a metastable state [11]. This is consider-
ably lower than the instability limits predicted from the thermodynamic arguments
above.

In recent years other types of thermodynamic arguments for the upper limit for
superheating a crystal have also been proposed. One argument is based on the fact
that the heat capacity of the solid increases rapidly with temperature above the
melting temperature due to vacancy formation. Inspired by the Kauzmann paradox,
Fecht and Johnson [12] argued that the upper limit for superheating is defined by
the isoentropic temperature, at which the entropies for a superheated crystal and
the corresponding liquid become equal. The argument is thus the superheating
equivalent of the Kauzmann paradox. The temperature corresponding to this ‘en-
tropy catastrophe’ is again calculated using eq. (5.1) except that we now have to
extrapolate the heat capacity of the solid above the melting temperature. The
resulting entropies for liquid and solid aluminium [12] are shown in Figure 5.3.
Here, the temperature at which the entropy of supercooled liquid aluminium
reaches that of crystalline aluminium, the ideal glass transition temperature, is
0.24Tfus. Correspondingly, the temperature at which the entropy of the crystal on
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heating again becomes as large as that of the liquid is 1.38Tfus. The latter is far
lower than 1.67Tfus, obtained from the Born stability criteria [10]. The vacancy
concentration at the stability limit is approximately 10% and the volume effect of
this amount of vacancies corresponds to the volume change of melting at Tfus. It
has therefore been argued that the isentropic temperature in general may coincide
with the temperature at which the volume of the superheated crystal becomes equal
to the volume of the liquid.

Finally, Tallon [13] has suggested another instability point where the entropy of
the superheated crystal becomes equal to that for a superheated diffusionless liquid
(a glass) rather than that of the liquid. Since the glass has lower entropy than the
liquid, this instability temperature is lower than that predicted by Fetch and
Johnson [12].

5.2 Fluctuations and instability

The driving force for chemical reactions: definition of affinity

The equilibrium composition of a reaction mixture is the composition that corre-
sponds to a minimum in the Gibbs energy. Let us consider the simple chemical
equilibrium A � B, where A and B could for example be two different modifica-
tions of a molecule. The changes in the mole numbers dnA and dnB are related by
the stoichiometry of the reaction. We can express this relation as –dnA = dnB = dx
where the parameter dx represents an infinitesimal change in the extent of the reac-
tion and expresses the changes in mole numbers due to the chemical reaction. The
rate of reaction is the rate at which the extent of the reaction changes with time. The
driving force for a chemical reaction is called affinity and is defined as the slope of
the Gibbs energy versus the extent of reaction, x. The differential of the Gibbs

132 5 Phase stability

500 1000 1500

20

40

60

80

supercooled
liquid

Al liquid

crystal

Tlim. cryst.

TK

Tfus

S m
/J

K
–1

m
ol

–1

T / K

Figure 5.3 Entropy of liquid and crystalline aluminium in stable, metastable and unstable
temperature regions [12]. The temperatures where the entropy of liquid and crystalline alu-
minium are equal are denoted TK and Tlim cryst, respectively.



energy at constant T and p is (taking into consideration the Gibbs–Duhem equa-
tion, eq. (1.93))

d d d d d ( )r A A B B A B B AG n n d� � � � � � �m m m x m x m m x (5.10)

The affinity of the reaction, Ak, is defined as the difference between the chemical
potential of the reactant and the product at a particular composition of the reaction
mixture:

Ak A B� �m m (5.11)

Since the chemical potential varies with the fraction of the two molecules, the
slope of the Gibbs energy against extent of reaction changes as the reaction pro-
ceeds. The reaction A �B is spontaneous when m mA B , whereas the reverse reac-
tion, B � A, is spontaneous when m mB A . The different situations are illustrated
in Figure 5.4. The slope of the Gibbs energy versus the extent of the reaction is zero
when the reaction has reached equilibrium. At this point we have

m mA B� (5.12)

and the equilibrium criteria for a system at constant temperature and pressure given
by eq. (1.84) are thus fulfilled.

Stability with regard to infinitesimal fluctuations

In general, the first derivative of the Gibbs energy is sufficient to determine the
conditions of equilibrium. To examine the stability of a chemical equilibrium, such
as the one described above, higher order derivatives of G are needed. We will see in
the following that the Gibbs energy versus the potential variable must be upwards
convex for a stable equilibrium. Unstable equilibria, on the other hand, are
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characterized by a downward convex Gibbs energy versus the potential variable.
This is illustrated in Figure 5.5 where we have used a ball in a gravitational field as
an example. In example (a) the ball is in a stable equilibrium and is stable against
fluctuations in both directions. In (b) the ball is unstable towards fluctuations in
both directions and it follows that this is an unstable equilibrium. In (c) the ball is
stable for fluctuations to the left but unstable for fluctuations to the right. This is
defined as a spinodal equilibrium. Finally, in (d) the ball is located in a locally
stable but globally metastable equilibrium.

Let us assume the existence of a Taylor series for the Gibbs energy at the equilib-
rium point. This implies that the Gibbs energy and all its derivatives vary continu-
ously at this point. The Taylor series is given as
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where z is an infinitesimal fluctuation. In principle, the fluctuation could be a
fluctuation in concentration, temperature or pressure. Equilibrium is identified
when the affinity is zero, which means that the first derivative ( / )� � ��G z z 0 0. If
( / )� � ��

2 2
0 0G z z the sign of ( )� �Ak z 0 is the sign of ( / )� � �

2 2
0

2G z zz . Since z2

is always positive, the equilibrium is stable if
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The equilibrium is unstable if this second derivative is negative. If
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Figure 5.5 Ball in a gravitational field; illustration of (a) stable, (b) unstable, (c) spinodal
and (d) metastable equilibria.



we have to examine higher order derivatives. The affinity is then given as
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If ( / )� � ��
3 3

0 0G x x , it is possible to choose the sign ofz so that ( )� �Ak z 0 is nega-
tive. Hence the equilibrium is unstable since small compositional fluctuations can
have any sign. The stability criteria are summarized in Table 5.1.

The correspondence with a ball in a gravitational field illustrated in Figure 5.5 is
evident. The stable and unstable regions are defined as the regions where the
second derivative of the Gibbs energy with regard to z are positive and negative,
respectively, and correspond to upward and downward convexity of the Gibbs
energy with respect to z . When the second derivative is zero we have a situation
corresponding to the inflection point which separates the regions of instability and
stability with regard to small fluctuations. This inflection point represents a
spinodal equilibrium and is called a spinodal point.

Compositional fluctuations and instability

The criterion given in Table 5.1 may be used to consider the stability of different
compositions of a liquid or solid solution by looking at the variation of the Gibbs
energy with composition. As discussed in Section 4.1, the miscibility gap of a solu-
tion is usually due to a positive enthalpy of mixing balanced by the entropy incre-
ment obtained when a disordered solution is formed. The enthalpy is here a
segregation force, whereas the entropy is an opposing mixing force. At low temper-
atures the TDS term of the Gibbs energy is less important than DmixH, and segrega-
tion occurs. At high temperatures, the entropy gained by distributing different
species on a given lattice is large and complete solubility is obtained. If we start
from the absolute zero, the miscibility gap decreases with increasing temperature
until a certain temperature, called the critical temperature, Tc. Above the critical
temperature complete solubility in the liquid or solid state is obtained.
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Table 5.1 The criteria for stability of solutions with regard to infinitesimal fluctuations.



Let us initially consider the Gibbs energy of the solid solution Al2O3–Cr2O3 at
1200 K [14] given in Figure 5.6. The solution is partly miscible and the composi-
tion of the two coexisting solutions a and b is given by the equilibrium condition

m ma b
Al O Al O2 23 3

� and m ma b
Cr O Cr O2 23 3

� (5.17)

The phase boundaries at this specific temperature are given by the points x1 and x2
in Figure 5.6(a), defined by the common tangent (the dotted line). Three different
situations for the variation of the Gibbs energy of the solution with composition are
marked by the points A, B and C/ �C . A solution with composition A is stable with
regard to fluctuations in composition, while one with composition B is unstable. At
the two spinodal points (C and �C ) the second derivative of the Gibbs energy with
regard to composition changes sign (see Figure 5.6(b)) and in general
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where xB
s is the composition at the spinodal point. The samples with composition C

and �C are stable with regard to fluctuations in composition in one direction, but not
with regard to fluctuations in composition in the other direction. The compositions
of the two spinodal points vary with temperature and approach each other as the tem-
perature is raised, and the two points finally merge at the critical temperature, where

136 5 Phase stability

0.0 0.2 0.4 0.6 0.8 1.0

–3

–2

–1

0

0.0 0.2 0.4 0.6 0.8 1.0

–20

0

20

40

32OCrx
32OCrx

x2

x1
C'

C

B

A

D m
ix

G
m

/k
J

m
ol

–1

CC'

d2 D
m

ix
G

m
/d

x2
/k

J
m

ol
– 1

(a) (b)

Figure 5.6 (a) Gibbs energy of mixing of the system Al2O3–Cr2O3 at 1200 K [14]. A, B
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Here xB
c is the composition at the critical point. Let us now calculate the

immiscibility gap and the spinodal line for a regular solution A–B:

G x x RT x x x x x xm A A
o

B B
o

A A B B A B� � � � �m m ( ln ln ) W (5.20)

Let us for simplicity assume that m mB
o

A
o� � 0, for which case the immiscibility

gap is given by
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x
RT x x xm

B
B A B(ln ln ) ( )W 1 2 0 (5.21)

An analytical expression that defines the compositions of the two coexisting solu-
tions is easily derived:
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x RT
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B� � �

W
1 2 (5.22)

The spinodal line is correspondingly given using eq. (5.18) as
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and it follows that the spinodal line for a regular solution is a parabola:

x x x x
RT

A B B B� � �( )1
2W

(5.24)

At the critical point xA = xB = 0.5 and the critical temperature and the interaction
coefficient are related through

T Rc � W / 2 (5.25)

Both the binodal line, defining the immiscibility gap, and the spinodal line are
for a regular solution symmetrical about xA = xB = 0.5. This is shown in Figure
5.7(a), where theoretical predictions of the miscibility gaps in selected semicon-
ductor systems are given [15].
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Physically, the spinodal lines separate two distinct regions in a phase diagram.
Between the binodal and the spinodal lines (i.e. the compositional regions between
x1 and �C and between C and x2 in Figure 5.7(b)) the solution is in a metastable
state. Between the spinodal points or in the spinodal region (i.e. the compositional
regions between �C and C in Figure 5.7(b)), the solution is unstable. Samples with
overall composition within the metastable regions and within spinodal regions are
expected to behave differently on cooling from high temperatures where complete
solid solubility prevails.

Let us consider a portion of the Gibbs energy curve for a composition within and
outside the spinodal region in some detail. In Figure 5.8(a), we consider the Gibbs
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Figure 5.7 (a) Theoretical predictions of the unstable regions (miscibility gap) of the solid
solutions in the systems AlN–GaN, InN–GaN and AlN–InN [15]. For the system InN–GaN
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(b)(a)

G

extent of reaction, x

G

x

3

2
1

Figure 5.8 (a) Gibbs energy curve for an unstable system. (b) Gibbs energy of the unstable
system as a function of the extent of reaction during spinodal decomposition of a sample
with composition indicated by the arrow in figure (a).



energy in the vicinity of a composition that is well within the spinodal region.
Assume that a sample with the overall composition marked with an arrow is cooled
to below the critical temperature. Below the critical temperature, small fluctua-
tions in composition lead to a continuous decrease in the Gibbs energy, as illus-
trated in Figure 5.8(b), and the separation of the original homogeneous solution
occurs without nucleation of a new phase. Instead, two different regions with dif-
ferent composition emerge. As the system approaches equilibrium the difference in
the composition increases and approaches the difference between the two equilib-
rium compositions. The decomposition occurs without any thermal activation and
with continuous changes in composition. The decomposition of a homogeneous
solution resulting from infinitesimal concentration fluctuations is called spinodal
decomposition.

The decomposition of a solution with composition outside the spinodal region
but within the metastable region can be analyzed in a similar way. Let us assume
that a sample with composition in this region is cooled to low temperatures. Small
fluctuations in composition now initially lead to an increase in the Gibbs energy
and the separation of the original homogeneous solution must occur by nucleation
of a new phase. The formation of this phase is thermally activated. Two solutions
with different composition appear, but in this case the composition of the nucleated
phase is well defined at all times and only the relative amount of the two phases
varies with time.

Both decomposition mechanisms are used actively in the design of materials.
The two important commercial glasses in the system Na2B8O13–SiO2, Pyrex and
Vycor, represent striking examples. Figure 5.9 shows the relevant phase diagram
for the system Na2B8O13–SiO2 [16]. Here the liquid shows immiscibility below
the liquidus temperature of the system. On supercooling liquids with compositions
given by the arrows the immiscibility dome at some point is reached. The super-
cooled liquids are here still in internal equilibrium since the glass transition
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temperatures are even lower. On cooling the liquid further partial immiscibility is
obtained and the composition of the two liquids in metastable equilibrium at dif-
ferent temperatures are given by the dotted line in the figure.1

While Vycor has a composition within the spinodal region of the system, Pyrex
lies outside the spinodal region but within the binodal region. In Vycor, the
spinodal mechanism secures a complete connectivity of the two metastable liquid/
glass phases throughout the matrix. The Na2B8O13-rich phase can be etched out
with acid and a ‘close to pure’ silica glass is produced. Since the original
Na2B8O13–rich melt can be homogenized at relatively low temperatures compared
with pure SiO2 this secures a rather low production cost.

For Pyrex the composition of the melt is outside the spinodal region and the
Na2B8O13 phase is formed by nucleation and growth. Complete connectivity is not
obtained and spherical particles of an Na2B8O13-rich melt forms a minority phase
within the SiO2-rich matrix. A glass with low softening and melting temperatures
is thus produced.

The van der Waals theory of liquid–gas transitions

In Section 2.2 we introduced the van der Waals equation of state for a gas. This
model, which provides one of the earliest explanations of critical phenomena, is
also very suited for a qualitative explanation of the limits of mechanical stability of
a homogeneous liquid. Following Stanley [17], we will apply the van der Waals
equation of state to illustrate the limits of the stability of a liquid and a gas below
the critical point.

The van der Waals equation of state for one mole of gas is expressed in terms of
the critical pressure, temperature and volume by eq. (2.40) as

p
V

V T�
�

�
��

�
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3
3 1 8

2
( ) (5.26)

where p p p� / c , T T T� / c and V V V� / c .
For a simple gas comprised of spherical molecules, eq. (5.26) is fairly well

obeyed at low density or high temperature. At higher density the equation of state
become less accurate in describing real systems. Some p–V isotherms of the van
der Waals equation of state for H2O are shown in Figure 5.10(a). At high tempera-
tures the volume of the gas falls near asymptotically with increasing pressure, as
expected from the ideal gas law. At a particular temperature, corresponding to the
temperature at the critical point, the first derivative ( / )� � �p V T 0 becomes zero
for a given value of V . This is an inflection point where not only ( / )� � �2 2 0G p T ,
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place by reheating and annealing the glass between the glass transition and the critical
temperature.



but also ( / )� � �3 3 0G p T . This critical point is analogous to the critical point for the
miscibility gap of solutions that phase separate into two phases of different compo-
sition. In the present case, the supercritical fluid separates into a liquid and a gas
with different density.

For sub-critical isotherms (T T� c ), the parts of the isotherm where ( / )� � �p V T 0
become unphysical, since this implies that the thermodynamic system has nega-
tive compressibility. At the particular reduced volumes where ( / )� � �p V T 0,
( / )� � �2 2 0G p T and we have spinodal points that correspond to those discussed for
solutions in the previous section. This breakdown of the van der Waals equation of
state can be bypassed by allowing the system to become heterogeneous at equilib-
rium. The two phases formed at T T� c , liquid and gaseous H2O, must have the
same temperature and pressure in order to obey the equilibrium criteria.

The variation of the Helmholtz energy of the van der Waals equation of state for
H2O with volume can be calculated by
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(5.27)

Integration gives

A V p V
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f

(5.28)

The Helmholtz energy curves for three different isotherms are given in Figure
5.10(b). The volume of the two phases in equilibrium at a given temperature can be
derived in at least two different ways. In the first approach, we can apply a common
tangent construction to the Helmholtz energy curve as shown for T � 08. in Figure
5.10(b). The dashed line is tangent to the Helmholtz energy curve at the ‘high-den-
sity’ point A and at the ‘low-density’ point B. These volumes define the volumes of
the two phases (liquid and gas) in equilibrium. At a specific temperature, the pres-
sure is implicitly defined by these two volumes. Alternatively, the equilibrium
pressure for the coexistence of liquid and gas can be determined using what is
called the Maxwell equal-area construction. In practice, this is done by adjusting
the horizontal line in Figure 5.10(a), so that the areas marked C and D become
equal.

The equilibrium pressure for which liquid and gas are in equilibrium is given as a
function of temperature for the van der Waals equation of state for H2O in Figure
5.11(a). The corresponding equilibrium densities of the coexisting liquid and gas
are given in Figure 5.11(b). In these two figures the spinodal lines defining the
mechanical stability limits of the liquid and gas phases are shown as dotted curves.
The stable regions of the potential space for the liquid and gas phases are separated
by the equilibrium line for the heterogeneous phase equilibrium, while the
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spinodal lines define the maximum extension of the metastable regions for the
liquid and gas phase, respectively. For example, the liquid can be extended to nega-
tive pressure (liquid under tension) if nucleation of gas can be avoided. However,
below the spinodal line the liquid becomes mechanically unstable.

The T–r plot shown in Figure 5.11(b) resembles the T–x plot of a binary solution.
The equilibrium between the two phases is, as we have seen above, given by a sim-
ilar set of equilibrium conditions in both cases. Within the spinodal regions of the
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potential space, phase separation in the binary solution system is driven by concen-
tration fluctuations, while the formation of the stable state in the single-component
system is driven by density fluctuations.

Pressure-induced amorphization and mechanical instability

Pressure-induced amorphization of solids has received considerable attention
recently in physical and material sciences, although the first reports of the phenom-
enon appeared in 1963 in the geophysical literature (actually amorphization on
reducing the pressure [18]). During isothermal or near isothermal compression,
some solids, instead of undergoing an equilibrium transition to a more stable high-
pressure polymorph, become amorphous. This is known as pressure-induced
amorphization. In some systems the transition is sharp and mimics a first-order
phase transition, and a discontinuous drop in the volume of the substance is
observed. Occasionally it is strictly not an amorphous phase that is formed, but
rather a highly disordered denser nano-crystalline solid. Here we are concerned
with the situation where a true amorphous solid is formed.

The report of the pressure-induced amorphization and amorphous–amorphous
transition of porous Si captures most of the current understanding of this phenom-
enon [19]. In Figure 5.12(a) the p,T phase diagram of Si is shown. Three phases are
present: the four-coordinated low-pressure modification (diamond-type) and the
six-coordinated high-pressure modification (b–Sn-type) of crystalline Si, as well
as liquid Si. The behaviour of crystalline Si under compression is most easily
understood by considering the melting line, which is extended into the metastable
pressure region in Figure 5.12(a). This melting line has been extrapolated by using
a simple two-species lattice model for the liquid, first introduced by Rapoport [20,
21]. In this model the liquid is seen to consist of atoms that are all in one of two dif-
ferent possible states. These two states are described as two different species A and
B that, for the given liquid, are assumed to be in chemical equilibrium at any given
temperature and pressure. Thus,

Si SiA B� (5.29)

The Gibbs energy of reaction (5.29) is

D D D Dr Si,B Si,A r r rG G G H T S p V� � � � � (5.30)

Here G Si,A and G Si,B are the Gibbs energy of the ‘pure’ species A and B.
D r Si,B Si,AH H H� � , D r Si,B Si,AS S S� � and D r Si,B Si,AV V V� � are the corre-
sponding enthalpy, entropy and volume changes of reaction (5.29). The integral
Gibbs energy of the liquid is determined by the relative population of the two states
or in other words by the equilibrium constant for the reaction. We will deduce an
expression for this below.
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In the two-state model [20, 21] the two different species interact and the interac-
tion can be expressed using the regular solution model. Thus the Gibbs energy of
the liquid is

G x G x G RT x x xliq
Si,A Si,A Si,B Si,B Si,A Si,A Si,B� � � �[ ln ln x

x x

Si,B

Si,A Si,B

]

� W
(5.31)
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Dr Si,B Si,AV V V� � � �2 6. cm3 mol–1

Dr Si,B Si,AH H H� � � 30 kJ mol–1

Dr Si,B Si,AS S S� � � 21 J K–1 mol–1

W � 24 kJ mol–1

Dfus Si,A Si,A
solH H H� � � 26 4. kJ mol–1

Dfus Si,A Si,A
solS S S� � � 9 J K–1 mol–1

Dfus Si,A Si,A
solV V V� � � 0 95. cm3 mol–1

Table 5.2 Model parameters used in the thermo-
dynamic description of liquid Si.
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Figure 5.12 (a) The p-T phase diagram of Si. The melting lines for the low-pressure
polymorph of Si and the liquid–liquid phase transition are calculated by using the two-state
model and the parameters given in Table 5.2. (b) Iso-concentration lines for species B in the
p-T plane. (c)) The fraction of species B as a function of temperature at constant pressure p
= 2 GPa.



Here W is the regular solution constant and xSi,B the fraction of Si atoms in silicon
state B. By noting that x xSi,A Si,B� �1 , equation (5.31) becomes

G G x G G

RT x x

liq
Si,A Si,B Si,B Si,A

Si,B Si

� � �

� � �

( )

[( ) ln(1 1 ,B

Si,B Si,B Si,B Si,B

)

ln ] ( )� � �x x x xW 1

(5.32)

Equation (5.32) looks like the Gibbs energy for a regular binary solution. However,
it is important to note that xSi,B for the two-state model has a slightly different
interpretation than xB for a binary regular solution. In the latter case, xB is an
external parameter that describes the composition of the solution. For the two-state
model, on the other hand, xSi,B is an internal parameter describing the relative pop-
ulation of the two states present in the single-component system. The equilibrium
value of xSi,B is determined by minimizing G liq with respect to xSi,B:

�

�
� � � � �

�

G

x
G G x RT

x

x

liq

Si,B
Si,B Si,A Si,B

Si,B

Si
W( ) ln1 2

1 ,B

r Si,B
Si,B

Si,B
� � � �

�
�D WG x RT

x

x
( ) ln1 2

1
0

(5.33)

Equation (5.33) can alternatively be written in terms of the equilibrium constant
for reaction (5.29) as

K
G

RT

x

x RT
x5 29

1
1 2. exp exp ( )� �

�

�
�

�

	

 �

�
�

D Wr Si,B

Si,B
Si,B

�

��
�

��
(5.34)

The relative populations of the two states vary with temperature and pressure.
The species A which dominates at low temperature and low pressure has the larger
molar volume, while the denser species B becomes increasingly more favoured at
high pressures.

We are now able to use this model for the Gibbs energy of the liquid to calculate
the melting line for four-coordinated Si by using the Clapeyron equation (eq. 2.10):

d

d
fus

fus

T

p

V

S
�

D
D

(5.35)

When W is assumed to be independent of temperature and pressure the entropy
and volume of the liquid is given as
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and
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p
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T

liq
liq

Si,A Si,A Si,B Si,B�
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� � (5.37)

The slope of the melting curve follows:

d

d

liq sol

liq sol

Si,A Si,A Si,B Si,B
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x V x V V

�
�

�
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fus Si,A Si,B r

fus Si,A Si,B r

�

�
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�

D D
D D � � � �R x x x x[( ) ln( ) ln ]1 1Si,B Si,B Si,B Si,B

(5.38)

The parameters of the model, given in Table 5.2, are obtained by fitting expres-
sion (5.38) to the experimental melting line. The extensions of the melting line to
negative pressures and beyond the triple point between the liquid and the two solid
polymorphs are given by dotted lines in Figure 5.12(a). Note that the model is pre-
dicting a melting temperature maximum for Si at negative pressure (–3 GPa).

We are now in a position to analyze the behaviour of Si under compression. Com-
pression of crystalline Si at temperatures above that of the triple point will lead to
conventional melting of four-coordinated Si. Compression at temperatures
between that of the triple point and the glass transition temperature will also cause
melting of four-coordinated Si, but this melting is not an equilibrium reaction. The
reason is that the transformation of four-coordinated Si to the six-coordinated
polymorph (denoted b-Sn type in the figure) is kinetically hindered. Following this
argument, four-coordinated Si melts at the pressure corresponding to the extrapo-
lated melting line for the melting of four-coordinated Si, but with subsequent crys-
tallization of the stable six-coordinated high-pressure polymorph. Under
compression at temperatures below the glass transition, an ergodic liquid can no
longer be produced, since the thermal energy is too low for the needed structural
rearrangements. Still, at some given pressure four-coordinated crystalline Si
becomes unstable towards density fluctuations and an amorphous, non-ergodic
solid is formed. It follows that the pressure-induced amorphization at ambient
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temperature occurs at pressures exceeding those of the extension of the melting
line for four-coordinated crystalline Si. The amorphization is therefore not a two-
phase melting process, but occurs at the mechanical stability limit for the low-
pressure modification of crystalline Si.

On decompression, amorphous Si formed by mechanical amorphization under-
goes an amorphous–amorphous transition. The volume change associated with the
transition is large, reflecting a change in coordination of Si from six to four. Transi-
tions of this type between two different amorphous states have been reported in
other cases as well. One of the more studied transitions is that between low- and
high-pressure amorphous ice [22]. The existence of more than one amorphous
modification for a given substance has been given the name polyamorphism [23],
by analogy with polymorphism used for crystalline compounds.

A closely related topic is that of liquid–liquid transitions. The possible coexis-
tence of two modifications of a given liquid with the same chemical composition
but with different densities has been much discussed. While two coexisting chemi-
cally identical liquids with different densities have been reported in quenched
Y2O3–Al2O3 melts [24], a first-order-like liquid–liquid transition has been
reported in an in situ high-temperature–high-pressure study of liquid phosphorous
[25]. At ambient pressure molten phosphorus is a molecular liquid consisting of P4
molecules, while at high pressures molecular units with low density become
unstable and a denser liquid is formed [25].

The regular solution-type two-state model for the liquid induces two coexisting
liquids under certain p,T conditions when the interaction parameter, W, is positive.
Transitions between two amorphous states have for that reason been rationalized in
terms of the model. One example is the analysis of the transition between low and
high-density amorphous ice by Ponyatovsky et al. [26]. We will now consider the
transition between low- and high-density amorphous Si in a similar analysis. In the
following discussion we disregard the fact that the liquid becomes a glass below
the glass transition and thereby transforms to a non-ergodic state.

Below the critical temperature, G xliq
Si,B( ) has two minima that are interpreted

as representing two different liquids. The deeper minimum in Gibbs energy corre-
sponds to the equilibrium phase at a given temperature and pressure. Hence the two
different phases are stable in different parts of the p,T potential space. At the partic-
ular conditions where the Gibbs energies of the two minima are equal, the two liq-
uids coexist. Using the two-state model based on the regular solution expression,
the relative populations of state B in the two coexisting phases are related by
x xSi,B

liq.1
Si,B
liq.2� �1 since the regular solution expression is symmetrical about x = 0.5.

Let us now return to the relative population of the two states of the liquid given
by eq. (5.34). Iso-concentration lines (xSi,B = constant) in the p-T potential space
are shown in Figure 5.12(b) (data are taken from Table 5.2). At low temperature
and pressure (or even negative pressure) species A with high molar volume and low
entropy relatively to the denser polymorph is favoured and xSi,B is low. At
increasing pressure species B become increasingly more favoured and xSi,B is high
at high pressures irrespective of the temperature.
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Furthermore, Figure 5.12(b) illustrates the temperature–pressure conditions where
two liquids coexist in equilibrium. The temperature and pressure of both phases must
be equal at the transition point. In addition, the relative population of state B of the two
liquids in equilibrium must be related through x xSi,B

liq.1
Si,B
liq.2� �1since we use a regular

solution-type two-state model. This implies (using a specific example) that two liquids
coexist at the intersection point of the iso-concentration lines for xSi,B = 0.2 and 0.8.
On heating the liquid at the pressure corresponding to this intersection point (along the
dotted line in the figure), the population of state B, xSi,B, increases continuously until
reaching the temperature where the two liquids coexist in equilibrium. Here, xSi,B
jumps discontinuously from the value in the low temperature phase, xSi,B = 0.2, to that
of the high temperature phase, xSi,B = 0.8. Further heating results in a slow increase in
xSi,B. The variation of the population of state B with temperature for p = 2 GPa is given
in Figure 5.12(c). The dashed lines in the figure give the concentration of B for the two
liquids in the metastable regions limited by the spinodals (see below).

The equilibrium line for the liquid–liquid transition given in Figure 5.12(a) is
also given in Figure 5.12(b). This line goes through the intersections of all pairs of
lines that satisfy x xSi,B

liq.1
Si,B
liq.2� �1, e.g. the intersection of the lines for xSi,B = 0.1

and 0.9 and that for xSi,B = 0.2 and 0.8. These two specific examples represent two
discrete points on the equilibrium curve.

It can be shown that the equilibrium temperature for the liquid–liquid transition
is given as

T
x R

x x
trs

B,Si

B,Si B,Si
�

�

�

W( )/

ln( /( ))

1 2

1
(5.39)

This equilibrium line terminates at the critical point where the critical tempera-
ture is given by the two-state regular model as T Rc � W /2 . The pressure corre-
sponding to a given equilibrium temperature is given by

p
T S H

V
�

�trs r r

r

D D
D

(5.40)

We have now derived the phase boundary between the two liquids. By analogy
with our earlier examples, the two phases may exist as metastable states in a certain
part of the p,T potential space. However, at some specific conditions the phases
become mechanically unstable. These conditions correspond to the spinodal lines
for the system. An analytical expression for the spinodals of the regular solution-
type two-state model can be obtained by using the fact that the second derivative of
the Gibbs energy with regards to xSi,B is zero at spinodal points. Hence,
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The calculated spinodal lines are given together with the equilibrium phase
boundary in Figure 5.12(a). All three lines terminate at the critical point. The amor-
phous–amorphous transition observed during decompression of amorphous Si can
now be understood in terms of crossing the spinodal line for the high-pressure
amorphous phase on reducing pressure. Finally, it should be noted that a transition
similar to that shown in Figure 5.12(c) may illustrate what is observed during flash
heating of amorphous Si at ambient pressure [27]. Amorphous Si shows a ‘first-
order-like’ transition to supercooled liquid Si when crystallization of amorphous Si
is suppressed by a high heating rate. In spite of the apparent success of the two state
model, the model used gives a very simplistic description of a liquid and further
experimental and theoretical evidence is needed to confirm the very existence of
liquid–liquid transitions.

5.3 Metastable phase equilibria and kinetics

Metastable materials are becoming increasingly important as the use of extreme
far-from-equilibrium conditions during preparation is expanding. The formation
of a large fraction of these phases cannot be rationalized using thermodynamic
arguments. Most zeolites for example are kinetically stabilized through the use of
templates during synthesis. Another and more specific example is YMnO3, which
takes the perovskite structure under equilibrium conditions, but crystallizes in a
different structure as a thin film or powder prepared from precursors [28, 29].
While thermodynamic arguments may fail in cases like this, thermodynamic anal-
yses can in other cases be used to predict synthesis routes to new compounds, and
there are numerous examples of metastable alloys formed when the nucleation of
the stable phases is suppressed. In these cases the metastable phase equilibria can
be analysed thermodynamically, and may even be represented in phase diagrams.

Phase diagrams reflecting metastability

One of the classical examples of metastable heterogeneous phase equilibria occurs
in the system Fe–C. The eutectic between g-Fe and graphite shown in Figure
5.13(a) is important for many cast irons. If the C-level is low, as in steels, solidifi-
cation directly to d - or g -Fe may occur. On cooling, these steels become unstable
with regard to the formation of graphite. Although there is a driving force for pre-
cipitation of graphite, the volume change for this precipitation reaction in the solid
state is high and nucleation becomes difficult. For many conditions the metastable
phase Fe3C, cementite, is formed instead. Hence for practical purposes the
metastable Fe–Fe3C phase diagram is more important than the equilibrium Fe–C
phase diagram. In the section of the binary phase diagram Fe–C shown in Figure
5.13(a), both the stable phase boundaries and phase boundaries corresponding to
metastable phase equilibria involving cementite, Fe3C, are given. The stability
field of g-Fe when g-Fe is in metastable equilibrium with cementite is slightly
larger than when g-Fe is in the stable equilibrium with graphite [30]. This can be
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rationalized for a general situation through the schematic Gibbs energy diagram
given in Figure 5.13(b). The Gibbs energy of a metastable phase is higher than that
of the mixture of g-Fe and the stable phase. The result is that the common tangent
construction that determines the extension of the phase field of g-Fe touches the
Gibbs energy curve of g-Fe at a higher mole fraction of carbon for the metastable
case than is the case for the stable phase equilibrium. Cementite is marginally
metastable, and it follows that the effect on the phase boundaries is small.

Thermodynamic representations of phase diagrams may reveal such and more
complex metastable situations. The phase relations in the Sn–Sb system are shown
in Figure 5.14 [31]. The diagram on the right-hand side represent a metastable situ-
ation where the non-stoichiometric phase SnSb is considered as kinetically hin-
dered from formation. The terminal solid solubility of Sn in Sb and of Sb in Sn
increases; furthermore, Sn3Sb2 will in this case be apparently stable even at low
temperatures. Diagrams of this type may correspond to situations high in Gibbs
energy that are of little practical importance. In other situations they correspond to
phase equilibria close in Gibbs energy to the stable situation. Such situations may
be observed as metastable equilibria under certain conditions.

Thermal evolution of metastable phases

Although the formation of a large number of metastable materials that are far from
equilibrium cannot be explained thermodynamically, thermodynamics predicts
that they will with time transform to the stable phase or phase mixture, often via
intermediate phases. More than one hundred years ago, Ostwald pointed out that
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non-equilibrium thermodynamic systems appear to evolve through a sequence of
states of progressively lower Gibbs energy [32]. In this rationalization scheme, it is
not the most stable form of the material with the lowest Gibbs energy that is
obtained as the initial product, but the least stable that is nearest to the original in
Gibbs energy. If several metastable phases, or mixtures of phases, are possible,
they will follow one another in the order of a stepwise decrease in Gibbs energy.
Ostwald’s step rule has considerable value in materials science. This will be illus-
trated here by considering crystallization of metallic glasses in the system Fe–B
[33] and diffusional amorphization in the system Ni–Zr [34].

The glass formation ability in the system Fe–B is largest for alloys close to the
eutectic where a melt with xB = 0.20 on cooling solidifies under the formation of Fe
and Fe2B. The crystallization sequence observed depends on the composition of
the glass and often involves the metastable compound Fe3B [33]. A large portion of
the experimental observations can be rationalized using the schematic Gibbs
energy representation given in Figure 5.15. For an alloy with composition given by
the point A, primary crystallization of Fe(ss) is observed. The glass/supercooled
liquid near Tg is simultaneously enriched in B. On further thermal evolution, the
metastable phase equilibrium between Fe(ss) and Fe3B is reached. Only in a third
and final stage is the stable phase equilibrium between Fe(ss) and Fe2B obtained.
The three stages of the crystallization are marked in Figure 5.15 by arrows. In this
simple rationalization of the experimental observations, the fact that Fe can crys-
tallize in different structures which are close in Gibbs energy is not taken into con-
sideration. It has for example been shown that molten droplets of certain Fe–Ni
alloys crystallize in a bcc-type structure before transforming to the more stable fcc
structure [35]. Although the Gibbs energy rationalization can often predict the
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phase sequence formed, some phases may be kinetically hindered from formation,
as in the case of graphite in the system Fe–C described above.

Thermodynamic rationalization of diffusional amorphization similarly relies on
Ostwald’s step rule. One example is the formation of amorphous Ni–Zr alloys on
interdiffusion in stacks of thin –Ni–Zr–Ni–Zr– foils [34]. Since, the kinetics is
slow, the formation of intermetallic phases is prevented. The thermodynamic sta-
bility of the liquid determines whether or not a glass is formed. The Gibbs energy
of formation of the liquid must be intermediate in Gibbs energy between the Gibbs
energy of the mixture of the elements and the mixture of different intermetallic
compounds. Glass formation and growth in diffusion couples like this was first
observed for Ni–Zr in 1983, but has subsequently also been seen in a large number
of other intermetallic systems [36].

Materials in thermodynamic potential gradients

A last example of kinetic effects is given by the behaviour of materials in thermo-
dynamic potential gradients [37]. Materials are often applied in situations where
they are not in equilibrium with their immediate surroundings. Gradients in tem-
perature, chemical or electrical potential act as driving forces on atoms in a crystal-
line material, and fluxes of atoms across an initially homogeneous solid solution
result. This effect tends to separate the components if they have different mobilities
and is a phenomenon of practical significance. Materials subject to thermodynamic
potential gradients in general may demix or even decompose. One example is engi-
neering components subject to large temperature gradients like turbine blades
(Ludvig–Soret effect).

Let us initially look at a semiconducting binary oxide A1–d O in a chemical gra-
dient; an oxygen potential gradient. Reduction takes place on the low oxygen
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activity side with the result that the oxide loses oxygen at the surface. Oxygen mol-
ecules leave the oxide while the cations left behind move toward the higher oxygen
potential side; see Figure 5.16. Oxidation takes place at the high oxygen activity
side were cations are recombined with oxygen atoms from the gas and the oxide
grows. Both the oxide/gas surfaces move in the direction of the high oxygen
activity side (indicated by arrows in Figure 5.16) relative to the immobile oxygen
lattice. The composition, the vacancy concentration, of the binary oxide will vary
across the oxide due to the oxygen potential gradient.

For ternary mixed cation oxides like (A,B)1–dO more pronounced effects may be
encountered in addition to growth at the high pO2

surface at the expense of the low
pO2

surface [37, 38]. Demixing of the different cations will occur in an applied
oxygen potential gradient in cases where the two cations have different mobility.
The result of these transport processes is concentration gradients and a material is
usually enriched in the more mobile cation species at the high oxygen potential
side. The degree of demixing increases with increasing difference in mobility
between the cations and with decreasing thickness of the material.

The segregation or demixing is a purely kinetic effect and the magnitude
depends on the cation mobility and sample thickness, and is not directly related to
the thermodynamics of the system. In some specific cases, a material like a spinel
may even decompose when placed in a potential gradient, although both potentials
are chosen to fall inside the stability field of the spinel phase. This was first
observed for Co2SiO4 [39]. Formal treatments can be found in references [37] and
[38].
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6
Surfaces, interfaces and

adsorption

In Chapter 1, heterogeneous systems were described as a set of homogeneous
regions separated by surfaces or interfaces. The surface or interface is chemically
different from the bulk material and the surface or interface energy represents an
excess energy of the system relative to the bulk. When considering the macro-
scopic thermodynamic properties of a system the surface/interface contribution
can be neglected as long as the homogeneous regions are large. ‘Large’ in this con-
text can be identified from Figure 6.1. Here the enthalpy of formation of NaCl is
shown as a function of the size of single crystals formed as cubes where a is the
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length of a cube edge. The enthalpy of formation of NaCl becomes less negative as
the cube size decreases because the surface energy is positive (energy is required to
form surfaces), and the relative contribution from the surface increases with
decreasing size of the cubes. However, the number of surface atoms is significant
only for very small cubes and the contribution from the surface energy becomes
measurable only when the cubes are smaller than ~1 mm. A thermodynamic system
can therefore be analyzed in terms of the bulk properties of the system when the
homogeneous regions are larger than roughly 1 mm.

Although the surface energy may be neglected in considering macroscopic sys-
tems, it is still very important for the kinetics of atomic mobility and for kinetics in
heterogeneous systems. Nucleation and crystal growth in solid or liquid phases and
sintering or densification in granular solids are largely influenced by the surface or
interface thermodynamics. In these cases the complexity of the situation further
increases since the curvature of the surfaces or interfaces is a key parameter in
addition to surface energy. Moreover, materials science is driven towards smaller
and smaller dimensions, and the thermodynamics of surfaces and interfaces are
becoming a key issue for materials synthesis and for understanding the properties
of nano-scale materials. For a cube containing only 1000 atoms, as many as 50% of
the atoms are at the surface and the surface energy is of great importance.

The purpose of this chapter is to introduce the effect of surfaces and interfaces on
the thermodynamics of materials. While interface is a general term used for
solid–solid, solid–liquid, liquid–liquid, solid–gas and liquid–gas boundaries, sur-
face is the term normally used for the two latter types of phase boundary. The ther-
modynamic theory of interfaces between isotropic phases were first formulated by
Gibbs [1]. The treatment of such systems is based on the definition of an isotropic
surface tension, s, which is an excess surface stress per unit surface area. The
Gibbs surface model for fluid surfaces is presented in Section 6.1 along with the
derivation of the equilibrium conditions for curved interfaces, the Laplace
equation.

Surfaces of crystals, which are inherently anisotropic in nature, are also briefly
treated. Gibbs’ treatment of interfaces was primarily related to fluid surfaces, and
the thermodynamic treatment of solid surfaces was not fully developed before the
second half of the 20th century [2]. While the thermodynamics of surfaces and
interfaces in the case of isotropic systems are defined in terms of the surface ten-
sion, surface energy is the term used for non-isotropic systems. The surface
energy, g, is defined as the energy of formation of a new equilibrium surface of unit
area by cutting a crystal into two separate parts. The surface energy according to
this definition cannot be isotropic since the chemical bonds broken due to the
cleavage depend on the orientation of the crystal. The consequences of surface
energy anisotropy for the crystal morphology are discussed. Trends in surface ten-
sion and average surface energy of the elements and some salt systems are
reviewed and finally the consequences of differences in surface energy/tension
between different phases in equilibrium on the morphology of the interface are
considered generally.
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In the last two sections the formal theory of surface thermodynamics is used to
describe material characteristics. The effect of interfaces on some important heter-
ogeneous phase equilibria is summarized in Section 6.2. Here the focus is on the
effect of the curvature of the interface. In Section 6.3 adsorption is covered. Phys-
ical and chemical adsorption and the effect of interface or surface energies on the
segregation of chemical species in the interfacial region are covered. Of special
importance again are solid–gas or liquid–gas interfaces and adsorption isotherms,
and the thermodynamics of physically adsorbed species is here the main focus.

6.1 Thermodynamics of interfaces

Gibbs surface model and definition of surface tension

A real interface region between two homogeneous phases a and b is schematically
illustrated in Figure 6.2(a). A hypothetical geometric surface termed the Gibbs
dividing surface, S, is constructed lying in the region of heterogeneity between
the two phases a and b, as shown in Figure 6.2(b). In the Gibbs surface model [1], S
has no thickness and only provides a geometrical separation of the two homoge-
neous phases. At first sight this simple description may seem to be inadequate for a
real interface, but in the following we will show the usefulness of the model. The
energetic contribution of the interface is obtained by assigning to the bulk phases
the values of these properties that would pertain if the bulk phases continued uni-
formly up to the dividing surface. The value of any thermodynamic property for the
system as a whole will then differ from the sum of the values of the thermodynamic
properties for the two bulk phases involved. These excess thermodynamic proper-
ties, which may be positive or negative, are assigned to the interface.

Let us now consider an interface between two isotropic multi-component phases.
The number of moles of a component i in the two phases adjacent to the interface
are given as ni

a and ni
b . Since the mass balance of the overall system must be

obeyed, it is necessary to assume that the dividing surface contains a certain
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number of moles of species i, ni
s , such that the total number of moles of i in the real

system, ni , is equal to

n n n ni i i i� � �a b s (6.1)

The surface excess moles or the number of moles of species i adsorbed or present
at the surface is then defined as

n n n ni i i i
s a b� � � (6.2)

ni
s divided by the area As of S yields the adsorption of i:

Gi in A� s / s (6.3)

Gi may become positive or negative, depending on the particular interface in ques-
tion. Other surface excess properties, such as the surface internal energy and sur-
face entropy, are defined similarly:

U U U Us a b� � � (6.4)

S S S Ss a b� � � (6.5)

Recall that the Gibbs dividing surface is only a geometrical surface with no thick-
ness and thus has no volume:

V V V Vs a b� � � � 0 (6.6)

It follows that the surface excess properties are macroscopic parameters only.
In order to define the surface tension we will consider the change in internal

energy connected with a reversible change in the system. For an open system dU is
given by eq. (1.79) as

d d d dU T S p V ni i
i

� � � �m (6.7)

For a reversible process, where the interfaces remain fixed, the volumes of the two
phases remain constant and eq. (6.7) becomes

d d dU T S ni i
i

� � �m (6.8)

An infinitesimal change in the surface internal energy

d d d dU U U Us a b� � � (6.9)
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can be expressed in terms of the changes in internal energy of the two homoge-
neous phases separated by the fixed boundary

d d dU T S ni i
i

C
a a am� �

�
�

1

(6.10)

d d dU T S ni i
i

Cb b bm� �
�
�

1

(6.11)

Here C is the number of components in the system. Combination of eqs. (6.9),
(6.10) and (6.11) yields

d d d d d d dU T S S S n n ni i i i
i

C
s a b a bm� � � � � �

�
�( ) ( )

1

(6.12)

The expressions in the two parentheses can be identified as the surface excess
moles and surface excess entropy defined by eqs. (6.2) and (6.5). Equation (6.12)
thus reduces to

d d dU T S ni i
i

C
s s sm� �

�
�

1

(6.13)

The exact position of the geometrical surface can be changed. When the location
of the geometrical surface S is changed while the form or topography is left unal-
tered, the internal energy, entropy and excess moles of the interface vary. The ther-
modynamics of the interface thus depend on the location of the geometrical surface
S. Still, eq. (6.13) will always be fulfilled.

The effect of variations in the form of the geometrical interface on the energy can
be deconvoluted into two contributions: changes in energy related to changes in the
area of the interface and changes in energy related to changes in the curvatures of
the interface [3]. The two principal curvatures c1 and c2 at a point Q on a arbitrary
surface are indirectly illustrated in Figure 6.3. Two planes normal to the surface at
Q are defined by the normal at point Q and the unit vectors in the two principal
directions, u and v. A circle can be constructed in each of the two planes which just
touches the surface at point Q. The radii r1 and r2 of the two circles are the two
principal radii at point Q and the two principle curvatures are defined as the recip-
rocal radii c r1 11� / and c r2 21� / . For systems where the thickness of the real phys-
ical interface is much smaller than the curvature of the interface, Gibbs [1] showed
that the dividing surface could be positioned such that the contribution from the
curvature of the interface is negligible. Assuming the surface to have such a posi-
tion, only the term related to a change in the interfacial area needs to be considered.
An infinitesimal change in the surface internal energy is
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d d d d sU T S n Ai i
i

s s sm s� � �� (6.14)

where s is the partial derivative of U with respect to the area As. We are now going
to investigate the significance of the variable s. For a reversible process dU is

d d d dU U U U� � �s a b (6.15)

The change in internal energy for the two phases adjacent to the interface is now

d d d dU T S n p Vi i
i

C
a a a a am� � �

�
�

1

(6.16)

d d d dU T S n p Vi i
i

Cb b b b bm� � �
�
�

1

(6.17)

Incorporating these two equations in eq. (6.15) yields the following expression for
the change in internal energy for the system:

d d d d

d d d d

U T S S S

n n n p V pi i i i
i

C

� � �

� � � � �
�
�

( )

( )

s a b

s a b a a bm
1

d d sV Ab s�
(6.18)

or

d d d d d d sU T S n p V p V Ai i
i

C
� � � � �

�
�m sa a b b

1

(6.19)
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where the surface tension, s, is

s
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�
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�

�
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��

U

A S V V ni
s , , ,

(6.20)

This is the definition of the surface tension according to the Gibbs surface model
[1]. According to this definition, the surface tension is related to an interface,
which behaves mechanically as a membrane stretched uniformly and isotropically
by a force which is the same at all points and in all directions. The surface tension is
given in J m–2. It should be noted that the volumes of both phases involved are
defined by the Gibbs dividing surface S that is located at the position which makes
the contribution from the curvatures negligible.

Equilibrium conditions for curved interfaces

The equilibrium conditions for systems with curved interfaces [3] are in part iden-
tical to those defined earlier for heterogeneous phase equilibria where surface
effects where negligible:

T T Ta b s� � (6.21)

and

m m ma b s
i i i� � (6.22)

Note that the chemical potential of a given component at the interface is equal to
that in the two adjacent phases. This is important since this implies that adsorption
can be treated as a chemical equilibrium, as we will discuss in Section 6.3.

To establish the equilibrium conditions for pressure we will consider a move-
ment of the dividing surface between the two phases a and b. The dividing surface
moves a distance dl along its normal while the entropy, the total volume and the
number of moles ni are kept constant. An infinitesimal change in the internal
energy is now given by

d d d d sU p V p V A� � � �a a b b s (6.23)

The changes in the volume of the two phases are related by

d d dsV A l Va b� � � (6.24)

and also the change in area of the surface is related to dl. dAs can be expressed in
terms of the two principal curvatures c1 and c2 of the interface [3]:
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d ds sA c c A l� �( )1 2 (6.25)

Substitution of eqs. (6.24) and (6.25) into eq. (6.23) yields

d d d ds s sU p p A l c c A l p p c c A l� � � � � � � �( ) ( ) [( ) ( )]b a b as s1 2 1 2

(6.26)

At equilibrium ( ) , ,dU S V ni
� 0, which leads to the equilibrium condition for pres-

sure expressed in terms of the two principal curvatures or alternatively in terms of
the two principal radii of curvature:

p p c c
r r

b a s s� � � � �
�

�
��

	



��( )1 2

1 2

1 1
(6.27)

Equation (6.27) is the Laplace equation, or Young–Laplace equation, which
defines the equilibrium condition for the pressure difference over a curved surface.
In Section 6.2 we will examine the consequences of surface or interface curvature
for some important heterogeneous phase equilibria.

For planar surfaces the pressure difference over the interface becomes zero and
the equilibrium condition for pressure, eq. (6.27) reduces to

p pb a� (6.28)

The surface tension for a planar surface thus is

s �
�

�

�

�
��

	



��

U

A S V ni
s , ,

(6.29)

and here only the total volume needs to be kept constant. The position of the geo-
metrical surface S no longer affects the definition of s, as for curved surfaces.

The surface energy of solids

The surface tension defined above was related to an interface that behaved mechan-
ically as a membrane stretched uniformly and isotropically by a force which is the
same at all points on the surface. A surface property defined this way is not always
applicable to the surfaces of solids and the surface energy of planar surfaces is
defined to take anisotropy into account. The surface energy is often in the literature
interchanged with surface tension without further notice. Although this may be
useful in practice, it is strictly not correct.

The surface energy can be derived by an alternative treatment. Let us initially
consider a large homogeneous crystal that contains N atoms and that has a planar
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surface. The change in energy on forming solid surfaces is often deconvoluted into
two contributions. The first contribution is due to a change in the surface area that
does not disturb the structural arrangement of the atoms and which thus leaves the
surface structure identical to that of the bulk. The second contribution is elastic in
nature, and relates to the deformation of the surface when relaxed or reconstructed.

To create a new surface we have to break bonds and remove the superfluous
atoms. At equilibrium at constant pressure and temperature the work demanded to
increase the surface area of a one-component system by an amount dAs is given as

d d sW AT p, � g (6.30)

where g is the surface energy (J m–2). This energy is the excess energy relative to
the bulk and depends on the number of bonds per unit area and the strength of these
bonds. The reversible work is equal to the change in Gibbs energy due to the forma-
tion of a surface, and the change in the Gibbs energy of a one-component system
can now be written as

d d d d sG S T V p A� � � � g (6.31)

where

g �
�

�

�

�
��

	



��

G

A T ps ,

(6.32)

For an isotropic phase there are no differences between surface energy and surface
tension. However, for crystals, which are anisotropic in nature, the relationship
between these two quantities is significant and also theoretically challenging, see
e.g. the recent review by Rusanov [2].

It is important to note that the formation of a surface always leads to a positive
Gibbs energy contribution. This implies that smaller particles are unstable relative
to larger particles and that the equilibrium shape of crystals is determined by the
tendency for surfaces of higher energy to be sacrificed while those of lower Gibbs
energy grow. This is the topic of the next section.

Anisotropy and crystal morphology

Basically, the surface energy is given by the number of bonds per unit surface area
and by the bond strength. Different crystal surfaces have different numbers of
bonds per unit surface area and the measured surface energies for crystals are often
an average value over many different crystal surfaces. Using a face-centred cubic
structure as an example, the density of atoms in specific planes generally decreases
with increasing Miller indices [hkl]. The exception is the close-packed [111] plane.
For a [111] plane there are six nearest neighbours in the plane, three above and
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three below the plane. Hence three bonds are broken for each surface atom when
the crystal is cut in two along [111]. For the [100] and [110] planes there are four
and six broken bonds respectively, and thus taking only nearest neighbours into
consideration the surface energies for these planes are larger. The different surface
energies for different types of crystal surfaces control the equilibrium shape of a
crystal, as first discussed by Wolf [11]. This important phenomenon occurs not
only for solid–gas interfaces but also for all other interfaces. For liquid–gas inter-
faces the surface tension is independent of orientation and the equilibrium shape is
a sphere. This represents the smallest surface area for a body of a given size. Exper-
imental studies indicate that spheres become energetically favourable also for
solids at high temperatures. Hence the difference in surface energy between
different surfaces is less important at high temperatures.

The equilibrium shape of a crystal can be constructed using the Wulff construc-
tion [4]. Consider a one-component system in which only the solid and gas phases
are present. Assume that the phases have their equilibrium volumes and can only
change their shape. Hence we need to be able to describe the volume of the crystal.
Let us start looking at a single crystal in the form of a polyhedron of some kind.
This is shown for a two-dimensional case in Figure 6.4. From some point O in the
interior of a crystal, normals to all crystal faces are drawn. The distance between O
and the face v is hv . If a straight line is drawn from O to each corner of the body, the
crystal will be divided into N pyramids of height hv , base Av and volume1 2/ A hv v .
Using a similar analysis, the volume of a three-dimensional crystal can be
expressed as

V A hv v
v

N
�

�
�

1

3 1

(6.33)

For a reversible change at constant temperature and volume of both phases and
for a constant number of moles of the components, the equilibrium shape can be
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found by minimization of the Helmholtz energy of the system. It can be shown that
the equilibrium morphology of a single crystal is given by [3]

g g g1

1

2

2h h h
N

N
� � �… (6.34)

Here g i is the surface energy of the crystal surface i. The equilibrium shape of a
crystal is thus a polyhedron where the area of the crystal facets is inversely propor-
tional to their surface energy. Hence the largest facets are those with the lowest sur-
face energy.

Equation (6.34), defining the equilibrium shape of crystals, is only relevant for
crystals of a certain size. For large crystals changes in shape involve diffusion of
large numbers of atoms and the driving force may not be sufficient, since the sur-
face contribution is small compared with the bulk. Hence metastable crystal shapes
are more likely to be reached. But even for small crystals the Wulff relationship
may break down. Here twinning may lead to configurations which lower the Gibbs
energy of the crystal, and this results in a different crystal morphology. Herring
[5, 6] and Mullins [7] give extended discussions of the topic.

The Laplace equation (eq. 6.27) was derived for the interface between two iso-
tropic phases. A corresponding Laplace equation for a solid–liquid or solid–gas
interface can also be derived [3]. Here the pressure difference over the interface is
given in terms of the factor that determines the equilibrium shape of the crystal:

p p
h h h

v

v

N

N

a b g g g
� � � � �2 2 21

1
… (6.35)

Comparing this expression with eq. (6.27), we see that g v vh/ for each crystal face
represents s divided by the radius of curvature for an isotropic spherical phase. As
a first approximation we may replace g v vh/ with g /r for near-spherical crystals. In
this case g represents an average surface energy of all possible crystal faces.

In the remaining part of the chapter we will use the term g for interfaces that
involve solids. It should then implicitly be understood that we are here considering
bulk solids that are treated as isotropic systems and that the surface energy thus
defined is the average value of the surface energies for different crystal surfaces.
Furthermore, we will consistently use superscripts to denote the phases adjacent to
the interface in the rest of Section 6.1 and in Section 6.2.

Trends in surface tension and surface energy

Periodic variations in the surface tension of liquid metals, s lg, are shown in Figure
6.5. The much higher surface tension of d-block metals compared to the s- and p-
block metals suggests that the surface tension relates to the strength of interatomic
bonding. Similar periodic trends can be found also for the melting temperature and
the enthalpy of vaporization, and the surface tension of liquid metals is strongly
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correlated with these and other physical properties that depend on the strength of
the interatomic bond. The correlation between the surface tension of the liquid
metals and their enthalpy of vaporization, in the form of D vap m

o
mH V� �2 3/ , first dis-

cussed by Shapski [9] and Grosse [10], is shown in Figure 6.6. Data for the average
surface energy of solid metals, g sg, are also included in this figure. It can be noted
that the average surface energy of solids has also been shown to correlate with
other cohesion-related properties like Young’s modulus and the Debye temperature
[11]. Surface tension and average surface energies for selected inorganic
compounds are given in Table 6.1.

In Figure 6.7, different interfacial tensions or energies of metals are correlated
with the fusion temperature in the form T Vfus m� �2 3/ . In general the ratio of the
average surface energy of the solid to the surface tension of the liquid is around 1.2
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at a given temperature. g sg for Al and Pt at 0 K are 1.2 and 2.55 J m–2 respectively,
while s lg at the melting temperature of the metals are 0.865 and 1.86 J m–2 [8].
Although less pronounced, similar trends can be found also for molten salts, as
shown in Figure 6.8 [14, 15].

g sl is as a first estimate proportional to the enthalpy of fusion and separate pro-
portionality coefficients are reported for metallic and semi-metallic elements [16].
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Substance slg /J m–2

NaCl(l) (1000 °C) 0.098

Al2O3(l) (2050 °C) 0.69

SiO2(l) (1800 °C) 0.307

P2O5(l) (100 °C) 0.06

Cu2S(l) (1200 °C) 0.4

NiS(l) (1200 °C) 0.577

PbS(l)(1200 °C) 0.2

Sb2S3(l) (1200 °C) 0.094

H2O(l) (25 °C) 0.072

g sg/J m–2

LiF(s) (25 °C) 0.34

CaF2(s) (25 °C) 0.45

NaCl(s) (25 °C) 0.227

MgO(s) (25 °C) 1.2

Table 6.1 Surface tension or average sur-
face energy of some solid and liquid sub-
stances [12, 13].
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The average interfacial energy between the solid and liquid forms of a given ele-
ment is generally lower than g sg and s lg, e.g. 0.093 and 0.24 J m–2 for Al and Pt.
For materials which change coordination number upon melting g sl is larger.

Solid–solid interface energies are normally termed grain boundary energies,
g ss = g gb, and they are comparable to solid–liquid interfacial energies. Average
grain boundary energies for some f.c.c. metals are given in Figure 6.7. Again a cor-
relation with T Vfus m� �2 3/ is observed.

We have now treated surface and interfacial energies without considering the
effect of temperature. The excess Gibbs energy of a surface is expected to decrease
with temperature since the excess entropy of the surface compared to the bulk is
expected to be positive. Intuitively, the surface atoms have more degrees of
freedom than atoms in the bulk and thus higher vibrational entropy. In addition, the
formation of vacancies and disorder in general at the surface gives a positive con-
figurational contribution to the entropy. Typically (dg sg /dT ) is –45 mJ m–2 K–1 for
pure solid elements and slightly less for liquid elements. A semi-empirical equa-
tion for predicting the temperature variation of the surface energy of liquids was
proposed by van der Waals [17] and Guggenheim [18]. The surface tension is here
given as

s slg
o
lg

c
� �

�

�
��

	



��1

T

T

n

(6.36)

The equation implies that the surface tension becomes zero at the critical tempera-
ture, Tc, where the two phases become indistinguishable. The exponent n has been
determined to be around 1.2 for metals [11].
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Morphology of interfaces

The equilibrium shape of a crystal is, as described above, a polyhedron where the
size of the crystal facets is inversely proportional to their surface energy, g sg . In the
present section we will consider other types of interfaces as well and we will show
that the interface energies determine the equilibrium morphology of interfaces in
general.

A two-dimensional illustration of three phases a, b and c in equilibrium is
shown in Figure 6.9. Two phases coexist in equilibrium in planes perpendicular to
the lines indicated in the two-dimensional figure and all three phases coexist along
a common line also perpendicular to the plane of the drawing. Each of the three
two-phase boundaries, which meet at the point of contact, has a characteristic inter-
facial tension, e.g. s ab for the a–b interface, which tends to reduce the area of the
boundary. Here we assume the interfacial tensions to be independent of the orienta-
tion and that the surface forces are the only ones present. The three forces for the
three boundaries are in mechanical equilibrium if

s s sab ab bc bc ac act t t� � � 0 (6.37)

where t ij is a unit vector tangent to the i–j boundary at the point of contact. Using
the three angles defined in Figure 6.9, the equilibrium condition becomes

s

q

s

q

s

q

ab

c

bc

a

ac

bsin sin sin
� � � 0 (6.38)

If the three interfacial tensions are equal, the three angles are also equal: q i = 120°.
The conditions for mechanical equilibrium can now be applied to a simple

case of great practical importance. Let us consider the interfaces that occur
when a liquid phase is brought into equilibrium with a solid surface in a gaseous
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Figure 6.9 Two-dimensional projection of equilibrium at a plane of contact between three
phases a, b and c where the angles between the three two-phase boundaries meeting in a
line of contact are denoted qa , qb and q c .



atmosphere. The wetting of a solid by a liquid drop is characterized by the contact
angle, q, defined in Figure 6.10. The condition for mechanical equilibrium can be
rearranged to give the surface energy balance:

g g s qsg sl lg� � �cos 0 (6.39)

Equation (6.39) was first derived by Young, and is often referred to as the
Young–Dupré equation. We usually distinguish between full (q  �90 ) and partial
wetting (q � �90 ) and an alternative measure of the same property is given by the
wetting coefficient:

k �
�

�
g g

s
q

sg sl

lg
cos (6.40)

A solid is not wetted if k � �1, partly wetted for �  1 1k and fully wetted for k �1.
Wetting is favoured when the difference (g sg – g sl) approaches and becomes larger
than s lg. In this case the interaction between the droplet and the substrate increases
and the contact angle decreases. It follows that materials with high surface energy
are better substrates for deposition of another phase than substrates with low sur-
face energy. One consequence is that metal surfaces are often readily wetted while
polymeric surfaces often are not.

The sessile drop technique for determination of interfacial energies is based on
the configuration shown in Figure 6.10. If the surface tension of the liquid is
known, the difference between the interfacial energies of the solid–gas and
solid–liquid interfaces can be determined directly by measurement of the contact
angle. Experimentally it is difficult to obtain reproducible data on wetting because
of two factors: the influence of the surface roughness and the sensitivity of the
interfacial energies to the presence of surface-active species. These species may be
introduced through contaminations from the surrounding atmosphere or they may
be present in the materials used.
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Interfacial tensions also play an important role in the distribution of phases in
polycrystalline solids. The presence of secondary phases is quite typical, since as grain
growth proceeds non-soluble impurities accumulate, usually at the grain boundaries.
In other cases the secondary phases may become embedded in the majority phase if the
grain boundaries are not pinned at the inclusions. In powder metallurgy and ceramic
technology secondary phases are often introduced on purpose in order to enhance
sintering or inhibit grain growth. Generally, an equilibrium situation is difficult to
obtain due to slow kinetics when governed by solid (bulk or grain boundary) diffusion.
When a secondary liquid phase is present the kinetics is governed by liquid diffu-
sion and equilibrium situations are more likely to be reached.

The distribution of the liquid is determined by the interfacial energy between the
liquid and the solid matrix relatively to the grain boundary energy. An example is
shown in Figure 6.11(a), where an important characteristic of grain boundaries, the
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in a polycrystalline solid. (b) Schematic illustration of the shape of an inclusion phase for
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dihedral angle f, is defined. The dihedral angle at the point O is at equilibrium
defined through

g g faa ab�
�

�
�

	



� �2

2
0cos (6.41)

Depending on the value of the two interfacial energies the dihedral angle can take
any value from 0 to 180°. The shapes taken by the secondary phase for different
dihedral angles are illustrated in Figure 6.11(b). Since the dihedral angle governs
the distribution of secondary phases, the mechanical properties of polycrystalline
solids are to a great extent determined by the interfacial energies, although it is also
evident that the amount of the secondary phase is important. In composites the
strength of the material can be modified by changing the interfacial tension and
thereby the distribution of phases. The fracture toughness of the material is here to
a large degree determined by the mechanical strength of the interface between the
two phases.

Our final example of the effect of interfacial energies relates to microscopic
studies of grain sizes and grain distributions in sintered materials. The materials
are typically polished and then thermally etched (annealing in air or an inert atmo-
sphere at temperatures significantly below the sintering temperature). After pol-
ishing, the grain boundaries are not easily seen by electron microscopy. On thermal
annealing the surface relaxes and the surface microstructure become modified. A
schematic illustration of the effect of thermal etching on a grain boundary is given
in Figure 6.12. The dihedral angle defines the microstructure after etching and the
relaxed surface microstructure is much more visible; the grain boundaries are
easily seen. The surface of the ceramic material La0.5Sr0.5Fe0.5Co0.5O3 shown in
Figure 6.13 constitutes an excellent example.

In cases where the interfacial energy is dependent on orientation, the equilibrium
condition (6.41) does not hold [19]. Some grain boundaries will then represent
higher Gibbs energies than others, and if kinetics allow for reorientation, certain
grain boundaries will become dominant. However, in most cases the kinetics of
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Figure 6.12 Grain boundary after polishing (a) and after the subsequent thermal etching
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reorientation of the crystal lattice in order to reduce the interfacial energy is slow
and the distribution of grain boundaries is thus not determined by thermodynamics.

6.2 Surface effects on heterogeneous phase equilibria

For small particles with large curvature the surface has, as previously stated, a sig-
nificant effect on the thermodynamics, and the concepts developed apply to all
types of interfaces between solid, liquid and gas.

The fact that the curvature of the surface affects a heterogeneous phase equilib-
rium can be seen by analyzing the number of degrees of freedom of a system. If two
phases a and b are separated by a planar interface, the conditions for equilibrium
do not involve the interface and the Gibbs phase rule as described in Chapter 4
applies. On the other hand, if the two coexisting phases a and b are separated by a
curved interface, the pressures of the two phases are no longer equal and the
Laplace equation (6.27) (eq. 6.35 for solids), expressed in terms of the two prin-
cipal curvatures of the interface, defines the equilibrium conditions for pressure:

p p c ca b abs� � �( )1 2 (6.42)

Equation (6.42) introduces a new independent variable of the system: the mean
curvature c c c� �1

2 1 2( ). This variable must be taken into account in the Gibbs
phase rule, which now reads F + Ph = C + 2 + 1. The number of degrees of freedom
(F) of a two-phase system (Ph = 2) with a curved interface is given by

F C� �1 (6.43)
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Figure 6.13 Surface of thermally etched La0.5Sr0.5Fe0.5Co0.5O3, a polycrystalline
ceramic material .



Effect of particle size on vapour pressure

In this first example, a single-component system consisting of a liquid and a gas
phase is considered. If the surface between the two phases is curved, the equilib-
rium conditions will depart from the situation for a flat surface used in most equi-
librium calculations. At equilibrium the chemical potentials in both phases are
equal:

m ml g� (6.44)

For any reversible change

d dl gm m� (6.45)

At constant temperature dm = Vdp and eq. (6.45) becomes

V p V pg g l ld d� (6.46)

Here V g and V l are the molar volume of the two phases, but the subscript m is not
used for simplicity. The pressure of the two phases is related by the Laplace equa-
tion (6.27), which for a spherical liquid droplet surrounded by its own vapour
becomes, in differential form,

d dg l
lg
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Here 2 1 11 2/ [( / ) ( / )]r r r� � since r r1 2� . Combining eqs. (6.46) and (6.47) yields
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Assuming the gas to be ideal (V RT pg g� / ) and noting that V V Vg l g� � we
obtain
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p rl
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lgd
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2s
(6.49)

If the pressure dependence of the molar volume of the liquid is neglected, inte-
gration from a flat interface (r � �) yields
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Equation (6.50) is often referred to as the Thomson’s (or Kelvin’s) equation. As
an example of the effect of this equation, the vapour pressure of a spherical droplet
of molten Zn at the melting temperature is shown as a function of the droplet radius
in Figure 6.14.

A consequence of the decreasing vapour pressure with increasing size of the
droplet is that in a distribution of droplets the larger droplets will grow at the
expense of the smaller ones; a fact that will be discussed more thoroughly below.

Effect of bubble size on the boiling temperature of pure substances

We now return to the equilibrium condition (eq. 6.44), and assume that the liquid is
subjected to a constant pressure, p l . For reversible changes eq. (6.44) becomes

� � � �S T V p S Tg g g ld d d (6.51)

which may be rearranged to

V p S S T H H
T

T
g g g l g ld d

d
� � � �( ) ( ) (6.52)

Let us consider a spherical bubble of vapour inside its coexisting liquid. Again
the gas phase is assumed to be ideal, and eq. (6.52) becomes
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The pressure can be substituted by the mean curvature through the Laplace equa-
tion, for which
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If the enthalpy of vaporization is assumed to be independent of the curvature, inte-
gration of eq. (6.54) from a flat surface (r � �) yields (T constant)
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The boiling temperature of molten Na is plotted versus the radius of the vapour
bubble in Figure 6.15. The boiling temperature is increased by several hundred
degrees for a gas bubble with radius 1 mm relative to a flat gas–liquid interface. If
the liquid is free of impurities and heterogeneous interfaces, substantial super-
heating of the liquid above its bulk boiling temperature is possible, as also dis-
cussed in Chapter 5.

The effect of curvature is much more pronounced for the thermodynamics of a
gas bubble than for the liquid droplet. The curvature is a pressure effect, which is
much larger for gases than for condensed phases, reflecting the much larger molar
volume of the gas.
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Figure 6.15 The boiling temperature of Na as a function of the radius of a vapour bubble
surrounded by molten Na. DvapHm = 101.3 kJ mol–1 and slg = 0.19 J m–2 [8].



Solubility and nucleation

We will now consider a case where a spherical crystal with radius r of a single com-
ponent solid phase is surrounded by a liquid with more than one component. The
differential of the Laplace equation (6.27) is

d ds l
sl

( )p p
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(6.56)

We will consider a reversible change in the system at constant temperature and
pressure of the liquid phase p l . Furthermore, we will assume that the equilibrium
concentration of all components in the liquid, except for the single component, i, of
the solid phase, is fixed. The equilibrium condition yields
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Assuming that Vi
s is independent of pressure we obtain

( ) ( )m m g
i r i r iV
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(6.58)

where ( )m i r
l is the chemical potential of i in the liquid in equilibrium with a solid

phase of radius r. By expressing the chemical potential in terms of activity (eq.
3.11), eq. (6.58) can be rewritten as
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Furthermore, if the liquid is assumed to be ideal the activity of a component is
equal to the mole fraction of the component. Now the mole fraction of i in the liquid
phase can be derived as a function of the radius of the solid phase:
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(6.60)

The important consequence of eq. (6.60) is that the solubility of the solid increases
with decreasing radius of crystal. Although the effect is small this illustrates the
need for super-saturation on homogeneous nucleation in a liquid. Super-saturation
is necessary in order to obtain nucleation since the solubility of the nuclei is higher
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than for the bulk. In addition, the interface energy is also important for the kinetics
of nucleation, as illustrated below by classical nucleation theory.

In classical nucleation theory the Gibbs energy of a nucleus is considered as the
sum of contributions from the bulk and the surface. Let us consider nucleation of a
spherical crystal from its liquid below its melting temperature at 1 bar. The differ-
ence in Gibbs energy between a nucleus with radius r and its liquid is

D Dl s fus m
sl

� � �
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M
G r

4

3
43 2p r p g (6.61)

where D fus mG is the molar Gibbs energy of melting, ( / )M r is molar volume (M is
molar mass and r is density), 4

3
3pr is the volume of the spherical nuclei and g sl is

the surface energy of the solid–liquid interface. Here the effect of curvature has
been neglected and the surface of the nucleus is assumed to be planar. Since the two
terms in eq. (6.61) have opposite sign, the Gibbs energy goes through a maximum
as a function of r, the surface term dominating for small r and the bulk term at large
r. This maximum corresponds to the thermodynamic barrier to nucleation. The
critical radius corresponding to a maximum in Gibbs energy is determined by dif-
ferentiating eq. (6.61) with respect to r:
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At the maximum d dl sD � �G r/ 0 and the critical radius is r M G* [ ( / ) ] /� 2 r g sl
fus mD .

Finally, by substituting r r� * into eq. (6.61) the thermodynamic barrier for nucle-
ation is obtained:
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Since D fus mG increases with decreasing temperature, the critical radius and the
thermodynamic barrier decrease with decreasing temperature. At the same time the
thermodynamic driving force for nucleation is increasing. This is illustrated for
crystallization of aluminium in Figure 6.16(a). The Gibbs energy of a nucleus of
aluminium is given as a function of the radius of the nucleus in Figure 6.16(b) (at
T T/ .fus � 095). For small nuclei the surface term dominates. Above the critical
radius the bulk contribution will stabilize the nuclei.

Ostwald ripening

During sintering of granular solids (for example ceramics or hard metals) grain
growth may occur by a dissolution–precipitation mechanism if a secondary liquid
phase is present. The chemical driving force for grain growth by this mechanism is
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derived by looking at the system we considered for our analysis of solubility and
nucleation. A spherical crystal with radius r of the single-component solid is sur-
rounded by a multi-component liquid phase. Equation (6.58) can be used to find an
expression for the difference in chemical potential between to particles of different
radii:
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1 1
(6.64)

Equation (6.64) shows that the chemical potential of i in the smaller grain ( �r ) is
higher than in the larger ( ��r ) and consequently larger grains will grow at the
expense of the smaller ones. This phenomenon is known as Ostwald ripening.
Ostwald ripening plays an important role in materials science, for example in rela-
tion to grain growth and elimination of pores (pore ripening) during the final stage
of sintering of refractory metals or ceramics. The difference in the chemical poten-
tial between a spherical Au particle with radius 10 mm and a smaller spherical Au
particle of radius r is shown in Figure 6.17. The Gibbs energy difference becomes
significant below 0.1 mm, i.e. when the ratio between the radius of the two particles
is larger than 100.

Effect of particle size on melting temperature

It is becoming increasingly more popular to prepare sub-micrometre sized artifi-
cially engineered structures with new properties. In particular, the tailoring of
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electronic properties of semiconductors by reducing the particle size is important.
The thermodynamics is also affected. It has been known for a relatively long time
that particle size affects the melting temperature of pure substances. Two simple
expressions for freezing temperature depression with origin in size have been
derived by Hansen [20] and Buffat and Borel [21]. In the first approach, the equilib-
rium between a solid and a liquid droplet with the same mass is considered. The
pressure and temperature contribution to the chemical potential can be expressed
as a power series:

m m m m
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where m* is the chemical potential at a chosen reference state at T * and p* . The
partial derivatives of the chemical potential with respect to temperature and pres-
sure are –S and V respectively, and the following expression for the chemical
potential is obtained:

m m
r

( , ) ( , ) ( ) ( )* * * * *T p T p S T T
M

p p� � � � � �… (6.66)

Here M/r is the molar volume of the substance. At equilibrium, the chemical poten-
tial of the liquid and solid droplet are equal:

m ms s l l( , ) ( , )T p T p� (6.67)
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Figure 6.17 The difference in the chemical potential of Au(s) between a spherical particle
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The equilibrium conditions require equal temperatures but different pressures due
to the curvature. Using eq. (6.66) for both phases, the equilibrium condition, eq.
(6.67), yields

m m
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Here r s and r l are the density of the solid and liquid and ps and p l the pressures
inside the solid and liquid droplets, respectively. Rearrangement of eq. (6.68)
yields

� � � � � � �
D fus m

l

l

s

sH

T
T T

M
p p

M
p p

*
* * *( ) ( ) ( )

r r
0 (6.69)

where D fus mH is the enthalpy of fusion of the substance. The pressures inside the
particles are given by the Laplace equation as
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where pg , the external pressure in the surrounding vapour, is set to p* . Substituting
eqs. (6.70) and (6.71) into (6.69) gives
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The difference in curvature between the liquid (r l ) and the solid (r s ) particles
can be found since they are related by r rl

l
s

sV V� and V ri i� 4
3

3p( ) which gives

r rl s

l

s�
�

�
��

	



��

r
r

1 3/

(6.73)

Here, we have used the fact that the masses of the liquid and solid droplet are equal.
Substituting eq. (6.73) in eq. (6.72) gives the following equation for the melting
temperature as a function of the radius r of the solid phase:
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where ( ) *T Trfus �� � and ( )T rfus are the melting temperature of a bulk material
and a particle with radius rs, respectively.

An alternative expression can be derived by an approach in which the solid par-
ticle is considered to be embedded in a thin liquid overlayer [20, 21]. Both models
give the same qualitative relationship between r and T fus , but the physical interpre-
tation is somewhat different. The calculated melting point of gold versus the radius
of the gold particle is shown in Figure 6.18. The estimated temperature of fusion
versus particle size is in relatively good agreement with experimental data [21].

The considerations presented above could in principle be extended to binary sys-
tems and phase diagrams. In this case one might imagine that the solid particle is
embedded in the coexisting liquid, and that the pressure gradient across the
solid–liquid interface is determined by the solid–liquid interfacial energy. Like the
bulk thermodynamics, the interfacial thermodynamics also depend on composition
[22]. An approach to estimating the effect of particle size on phase diagrams has
recently been reported [23, 24]. The estimates consider a hypothetical equilibrium
between spherical solid and liquid particles at constant pressure. The difference in
the Gibbs energy of the liquid and solid spheres is described by one bulk and one
surface term. Since the surface tension of liquids is usually lower than the surface
energy of solids, the liquidus and solidus lines are suppressed to lower
temperatures as the radius is reduced [23, 24].
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Figure 6.18 The suppression of the melting temperature of a spherical gold particle as a
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Particle size-induced phase transitions

It has been shown for several materials that synthesis of fine-grained powders has
resulted in the formation of a polymorph other than the stable bulk polymorph. A
typical example is that nanocrystalline alumina is usually found as g -Al2O3, while
the stable polymorph for bulk alumina is a-Al2O3. It is commonly assumed that
these metastable (relative to the bulk) structures are adopted in order to lower the
total Gibbs energy of the material through a decrease in surface energy. The
enthalpy difference between g -Al2O3 and a-Al2O3 is shown as a function of the
surface area in Figure 6.19. The average surface energy of g -Al2O3 is lower than
for a-Al2O3, and g -Al2O3 becomes energetically more stable than a-Al2O3 when
the surface area exceeds ~135 m2 g–1 (smaller than 12 nm grain size) [25].

A difference in surface energy will also affect the equilibrium transition temper-
ature between two polymorphs when measured as a function of the particle size. An
expression for the variation of the phase transition temperature between a high-sur-
face energy, low-temperature polymorph a and a low-surface energy, high-temper-
ature polymorph b can be described using the phenomenology of the solid–liquid
phase transition described above. The transition temperature versus the size of a
grain is now expressed as
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where ( )T rtrs �� and ( )T rtrs are the bulk transition temperature and the transition
temperature for a particle with radius r respectively. Equation (6.75) establishes
that depression of the phase transition temperature is only possible when
g g r ra b

a b
g g� ( / ) /2 3 . In Figure 6.20 the monoclinic to tetragonal phase transition
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Figure 6.19 The enthalpy of transition of g-Al2O3 to a-Al2O3 as a function of the surface
area of the nanocrystalline particles [25].



of ZrO2 is shown as a function of the grain size. Monoclinic zirconia becomes
stable below 20 nm grain size at room temperature, in reasonable agreement with
experimental observations [26].

Due to recent developments in synthesis, the preparation of nanocrystalline
polymorphs, which are usually unstable as bulk phases, has been achieved for sev-
eral materials such as ZrO2, TiO2 and various perovskites. The appearance of these
exotic materials does not necessarily mean that they are thermodynamically stable,
since the kinetics (templates and surfactants) are probably more important for the
processes than the thermodynamics. Adsorption of water may also play an impor-
tant role as in the case of alumina, but in the data given in Figure 6.19 the effect of
water has been accounted for [25].

6.3 Adsorption and segregation

The adsorption of gases on solids can be classified into physical and chemical
adsorption. Physical adsorption is accompanied by a low enthalpy of adsorption,
and the adsorption is reversible. The adsorption/desorption characteristics are in
these cases often described by adsorption isotherms. On the other hand, chemical
adsorption or segregation involves significantly larger enthalpies and is generally
irreversible at low temperatures. It is also often accompanied by reconstruction of
the surface due to the formation of strong ionic or covalent bonds.

Gibbs adsorption equation

The adsorption of an adsorbent of a solution b on an adsorbate a is formally
described below. The adsorbent is atoms or molecules and the solution a liquid or a
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gas, while the adsorbate is a solid or liquid phase. Both the solution b and the phase
a are in general multi-component systems. The concentration of the adsorbent at
the interface between the two phases is described in terms of the adsorption, G,
defined by equation (6.3). The following section will relate adsorption to surface
tension and in this section we will not use superscripts on s.

The internal energy of the system described in Figure 6.2 is

U TS p V p V n Ai i
i

C
� � � � �

�
�a a b b m s

1
s (6.76)

By subtracting the internal energy of the two homogeneous phases adjacent to the
dividing surface from equation (6.76) the internal energy of the dividing surface is
obtained:

U TS n Ai i
i

C
s s s m s� � �

�
�

1
s (6.77)

Differentiation of eq. (6.77), when combined with eq. (6.14), gives the
Gibbs–Duhem equation in internal energy for a system where the surface energy is
not negligible:

S T n Ai i
i

C
s s m sd d ds� � �

�
�

1

0 (6.78)

Reorganization of eq. (6.78) and using eq. (6.3) leads to the Gibbs adsorption
equation:

d d d
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i

C
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1

(6.79)

For solid–gas and liquid–gas interfaces, where b is a gas phase (eq. 6.79) can be
further simplified if the adsorbate contains only two components, A and B, since
changes in the chemical potential of the two components of the adsorbate due to a
change in mole fraction are related by eq. (1.92) as

d dA
B

A
Bm m� �

x

x
(6.80)

By substituting eq. (6.80) into eq. (6.79) we obtain at constant temperature
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where xA and xB are the mole fraction of A and B in the adsorbate a. This equation
can be further developed.

The adsorption G depends on the position of the Gibbs dividing surface and it is
therefore convenient to define a new function, the relative adsorption, that is not
dependent on the dividing surface. The absorption of component i at the interface is
defined by eq. (6.3) as
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1 1
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where c n Vi i
a a a� / and c n Vi i

b b b� / are the concentrations of i in the two phases
adjacent to the interface and V a and V b are the volumes of these phases. Since eq.
(6.82) can be rewritten in terms of the total volume as

Gi i i i iA
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s
[ ( ) ]a b a b (6.83)

the adsorption of component A can be expressed as
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A
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V b can be eliminated by combining eqs. (6.83) and (6.84). We thus obtain the fol-
lowing important expression:
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The advantage of this expression is that although the adsorption of each component
depends on the Gibbs dividing surface, the right-hand side is independent of its
position. We can thus define the relative adsorption of component B with respect
to component A:
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Since GB
A( ) is independent of the position of S, we can choose the position of S to

correspond to GA = 0, as illustrated for a schematic two-dimensional interface in
Figure 6.21. The two shaded areas, above and below the interface, are equal and
give zero adsorption of A. Recall that it is only for planar surfaces that the position
of the Gibbs dividing surface is arbitrary, and in the following we will restrict our
treatment to planar surfaces only.

Relative adsorption and surface segregation

We can now use the relative adsorption to describe a two-component system at con-
stant temperature. The relative adsorption of B with respect to A for GA = 0 is given
by eq. (6.81) as
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A

T

) s
m

(6.87)

Thus the adsorption of B at the interface is given by the variation of the surface ten-
sion with chemical potential.

Equation (6.87) is the basis for most adsorption measurements associated with
liquid solutions. When ( / )� �s mB T is negative, GB is positive and there is an excess
of the solute at the interface. For ( / )� � �s mB T 0, GB is negative and there is a defi-
ciency of the solute at the interface. In other words, solutes that reduce the surface
tension are enriched at the surface.

The relative adsorption of component B is clearly affected by its partial pressure.
Let us consider a binary system A–B where GA = 0 and B is an ideal gas with partial
pressure pB. The chemical potential of B can be expressed in terms of the partial
pressure of B and this is then also the case for the relative adsorption of B
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G GB B
(

B
� � �

�

�

�

�
��

	



��

A

TRT p
)

ln

1 s
(6.88)

The effect of an impurity on the surface energy is often discussed in terms of the
surface activity of the impurity B, jB, defined as the slope of the surface tension or
energy versus composition at infinite dilution:
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Using the Gibbs absorption equation and assuming Henry’s law (eq. 3.42)
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Experimentally jB is found to be finite. The slope of the relative adsorption versus
composition, which is also finite, is referred to as Henry’s law for surfaces. For
electronegative elements on metallic surfaces the surface activity becomes very
high, often of the order of 103. This means that very small amounts of these ele-
ments have a large effect on the surface energy, and that the experimental determi-
nation of reliable surface energies needs systems of extreme purity.

The effect of composition on s with a focus on the dilute limit, is shown for
selected systems in Figure 6.22. A considerable degree of segregation must be
expected for these example systems. Physically this situation corresponds to solute
atoms that have large positive size misfits, and/or large positive enthalpies of
mixing and these solutes are thus expected to segregate readily to the surface. Sub-
stances that have a large effect on the interfacial energy even at small concentra-
tions are called surface-active species. For most metals, oxygen, sulfur and other
elements of group 16 are generally strong surface-active species. Similarly, the sur-
face tension of liquid oxides or halides is strongly influenced by the addition of
small amounts of other components that have the opposite acid–base properties.
For example the surface tension of silicates is easily modified by addition of basic
oxides such as alkali or alkali earth metal oxides.
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In most systems the variation of the surface tension with composition is much
lower. Data for some binary liquids are shown in Figure 6.23. A limited degree of
segregation is expected in these systems.

Adsorption isotherms

Here we are considering the dynamic equilibrium between molecular species in the
gas phase and the adsorbed gas species on a surface. Let us consider the following
quasi-chemical equilibrium between the species B in the gas, Bg, and the available
sites at the surface of the adsorbate:

B V B
k

k
g MON MON

a

d

� � ��
� �� (6.91)
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Here VMON and BMON represent the available vacant sites and surface sites occu-
pied by B, respectively, of the first monolayer on a solid absorbate. The equilib-
rium constant KL for the reaction is given by the ratio of the rate constant for ka for
adsorption and kd for desorption

K
k

k a
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d

B

B
g

B
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B

� �
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(6.92)

where GB is the adsorption of B at the surface, G GB
sat

B� the concentration of vacant
sites in the monolayer and aB

g the activity of B in the gas phase. By introducing the
fractional coverage of the adsorbate surface q, eq. (6.92) can be transformed into
the Langmuir adsorption isotherm [30] given as
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where GB
max is the maximum adsorption. In this simplest physically realistic

adsorption isotherm it is assumed that adsorption cannot precede beyond a
monolayer coverage, all sites are equivalent and the ability of a molecule to adsorb
is independent of the occupation of the neighbouring sites, i.e. there are no mutual
interactions. Typical adsorption isotherms are shown in Figure 6.24 for different
values of KL.

The Langmuir model was extended to include interaction between the adsorbed
atoms/molecules by Fowler and Guggenheim [31]. The model now becomes
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where z is the number of nearest neighbours within the surface layer, w is the regular
solution parameter and aB

b is the activity of B in b. Forw � 0, the Fowler–Guggenheim
adsorption reduces to the Langmuir isotherm.

A major advance in adsorption theory generalized the treatment of monolayer
adsorption and incorporated the concept of multilayer adsorption. This is known as
the BET theory after Brunauer, Emmett and Teller [32]. The adsorption of a gas on
a solid surface can be described by

p

m p p m C
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where mA is the total amount of gas adsorbed and mMON is the quantity of gas
adsorbed corresponding to a monolayer. p and p0 are the pressure and saturation
pressure of the absorbent and C is a constant. A plot of p m p pA/[ ( )]0 � versus p p/ 0
gives a straight line with intercept1/m CMON and slope ( )/C m C�1 MON . The values
of C and mMON may then be obtained from a linear regression of experimental
points of mA versus p p/ 0 . By using the mean area per molecule adsorbent the sur-
face area of the solid can be calculated from mMON. This method is frequently used
to determine specific surface area of porous materials.

Experimentally the enthalpy of adsorption is observed to be a function of the frac-
tional surface coverage q since it depends on interactions between the adsorbent mole-
cules/atoms and rearrangements of the surface due to the formation of new chemical
bonds. In some cases, for example for CO adsorption on single crystal surfaces of
metals, the enthalpy of adsorption can change abruptly when the structure of the
absorbed layer changes [33]. Although the determination of accurate enthalpies of
adsorption is difficult and values reported often vary from one laboratory to another,
clear trends in the enthalpy of adsorption are often observed. It is clear that the
enthalpy of adsorption of gases like, CO, H2, N2 and NH3 on transition metals
decreases when going from left to right along a period [33]. For adsorption of metals
on metal oxides, as exemplified by Cu on the (100) surface of MgO, the low-coverage
heats of adsorption when the metals are mainly in two-dimensional islands correlate
with the bulk sublimation enthalpy of the adsorbent. This suggests that covalent
metal–Mg bonding dominates the interaction at low coverage [34]. On adsorption
beyond the first monolayer the enthalpy of adsorption approaches the enthalpy of sub-
limation of Cu. Accurate data on the enthalpy of adsorption are known in only a few
systems, and a recent report [35], which shows that the particle size has a much larger
effect on the energetics than predicted by equations of the type considered in Section
6.2, suggests that our knowledge on this complex topic is still limited.
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7
Trends in enthalpy of

formation

The standard enthalpy of formation, D f m
oH , of a compound at 0 K reflects the

strength of the chemical bonds in the compound relative to those in the constituent
elements in their standard state. The standard enthalpy of formation of a binary
oxide such as CaO is thus the enthalpy change of the reaction

Ca(s) + 1
2

O2 (g) = CaO(s) (7.1)

at p = 1 bar.
A number of theoretical approaches can account for the fact that an enthalpy of

formation of such a binary oxide or a ternary oxide is large and negative. The sta-
bility of a ternary oxide relative to the binary constituent oxides is, however, often
small, as demonstrated in Table 7.1 using Mg2SiO4 as an example [1]. The
enthalpy differences between the three different polymorphs of Mg2SiO4 – olivine,
b-phase and spinel – are less than 2% of the enthalpy of formation of the poly-
morphs. These enthalpy differences are comparable in magnitude to the enthalpy

197

2Mg(s) + Si(s) + 2O2(g) = Mg2SiO4 (olivine) –2170.41 kJ mol–1

2MgO + SiO2(s) = Mg2SiO4 (olivine) –56.61 kJ mol–1

Mg2SiO4 (olivine) = Mg2SiO4 (liq.) 114 kJ mol–1

Mg2SiO4 (olivine) = Mg2SiO4 (b) 29.9 kJ mol–1

Mg2SiO4 (b) = Mg2SiO4 (spinel) 9.1 kJ mol–1

Table 7.1 Magnitudes of enthalpies of various reactions of a ternary oxide using Mg2SiO4
as an example (after Navrotsky [1]).

Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects.
Svein Stølen and Tor Grande
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of formation of olivine from the binary oxides, and to the enthalpy of fusion of
olivine. The fact that different structural modifications of a given ternary oxide
may be close in enthalpy and thereby in Gibbs energy at low temperatures makes
predictions of phase diagrams far from trivial. Still, quantum mechanical
approaches have in recent years been increasingly able to derive the relative
enthalpies of different structural modifications of ordered compounds with a given
composition, see e.g. [2, 3] and also Chapter 11.

Although the existence of polymorphism is challenging to theory, the prediction
of the compositions of the phases that exist in a given binary or ternary system is in
general even more challenging. The Gibbs energy of formation of stoichiometric
and non-stoichiometric compounds in the system Ti3O5–TiO2, presented graphi-
cally in Figure 7.1 [4], constitutes an excellent example. A large number of phases
of the homologous series TinO2n–1 are close in Gibbs energy and the Gibbs energy
differences between different phases or phase mixtures are tiny. In general, a phase
with a given stoichiometry must be stable relative to other phases of the same com-
position, but also relative to the neighbouring phases. A large number of margin-
ally stable and marginally metastable phases exist in many material systems. It is in
general much more difficult to predict the compositions of the compounds that
exist in a given binary or multi-component system than the relative stability of
different polymorphs of a given composition.

The composition and crystal structure of the materials that are formed are com-
plex functions of a large number of factors. Solid compounds may be qualitatively
assigned to have ionic, covalent or metallic bonds, and although a number of com-
pounds exist in which one of these bonding schemes dominates, most compounds
do not belong to clear-cut categories and even for largely ionic compounds cova-
lent contributions must be taken into consideration. While the valence electrons
are localized in ionic and covalent compounds, they are highly delocalized in
metals. Schematically the character of bonding in any compound may be indicated
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in a triangular diagram, such as Figure 7.2, whose corners are the three extremes of
pure covalent, ionic and metallic bonding [5]. The electronegativity difference
between the components is a major factor and a number of rationalization schemes
have been proposed in which the energetics are characterized in terms of two fac-
tors, one related to size and one related to electronegativity.

Most energetic contributions are, as we have discussed, difficult to predict and
large experimental efforts have for that reason been devoted to derive systematic
trends in the energetics of classes of materials. In this chapter we will try to convey
an overview of periodic trends in the thermodynamic properties of inorganic com-
pounds and we will also present selected examples illustrating some of the more
usual rationalization schemes. Finally, trends in enthalpy of mixing are treated.
Also here we aim to look at trends and rationalization schemes. The chapter is by
no means exhaustive – only selected classes of compounds and selected rational-
ization schemes are discussed.

7.1 Compound energetics: trends

Prelude on the energetics of compound formation

Let us consider the enthalpy of formation of an ionic compound like NaCl, or in
general terms MX:

M(s) + 1
2

X2(g) = MX(s) (7.2)

This reaction may be analyzed through the thermodynamic cycle given in Figure
7.3 where the following five reactions and associated enthalpy changes are
involved:
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M+(g) + X–(g) = MX(s) –DlattHm (7.3)

M(s) = M(g) DatomHm (7.4)

M(g) = M+(g) + e–(g) DionHm (7.5)

1
2

X2(g) = X(g) DdissHm (7.6)

X(g) + e– = X–(g) DegHm (7.7)

The lattice enthalpy, DlattHm, is the molar enthalpy change accompanying the for-
mation of a gas of ions from the solid. Since the reaction involves lattice disruption
the lattice enthalpy is always large and positive. DatomHm and DdissHm are the
enthalpies of atomization (or sublimation) of the solid, M(s), and the enthalpy of
dissociation (or atomization) of the gaseous element, X2(g). The enthalpy of ioniza-
tion is termed electron gain enthalpy, DegHm, for the anion and ionization
enthalpy, DionHm, for the cation.

The enthalpy of formation of the compound MX is now the sum of these five
contributions:

DfHm(MX) = –DlattHm + DatomHm + DionHm + DdissHm + DegHm (7.8)

While the enthalpy of formation is the property of interest in chemical thermody-
namics of materials, many books focus on the lattice enthalpy when considering
trends in stability. The static non-vibrational part of the lattice enthalpy can be
deconvoluted into contributions of electrostatic nature, due to electron–electron
repulsion, dispersion or van der Waals attraction, polarization and crystal field
effects. The lattice enthalpy is in the 0 K approximation given as a sum of the
potential energies of the different contributions:
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Figure 7.3 Thermodynamic cycle for the formation of MX(s).



DlattHm = Felectrostatic + Frepulsion + Fdispersion + Fpolarization

+ Fcrystal field (7.9)

and trends in this property become evident only when the relative importance of
these different contributions are considered.

The largest contribution, the electrostatic interaction, is due to attraction
between ions with opposite charge and repulsion between ions of the same charge.
Using the NaCl-type crystal structure as an example, the electrostatic potential
energy is evaluated taking one particular M+ at the body centre of the unit cell as a
starting point and calculating the interaction between this particular ion and its
neighbours. The central M+ is surrounded by an octahedron of six X– ions with
each X– -ion at distance rMX. The attractive energy ignoring X––X– interactions is
then

6
2e q q

r
M X

MX
(7.10)

The next nearest neighbours to the central M+ are 12 M+ at distance 2r. The
repulsive cation–cation interaction term is given as

�12
2

2e q q

r
M X

MX

(7.11)

Correspondingly, the contribution from the third nearest neighbours, 8 X– at 3r is

8
3

2e q q

r
M X

MX

(7.12)

and so on. The net attractive energy between the central M+ and all other ions in the
crystals is thus given by the infinite series

F � � � � � � � �
�

�
��

�

	




e q q

r

2
6

12

2

8

3

6

4
M X

MX
(7.13)

The crystal arrangement is hence important for the lattice enthalpy and Velectrostatic
can be extracted for a specific crystal structure as

Felectrostatic =
NMe q q

r

2
M X

MX
(7.14)
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where M is the Madelung constant for a given structure and rMX is the shortest MX
distance. The Madelung constant depends only on the geometrical arrangement of
the point charges defined by the crystal structure.

A second and repulsive energy term must be introduced to take account of the
electron–electron repulsion that arises at very short interatomic distances. Several
models are used to describe this repulsive term. Often used is the Buckingham
potential, which, however, includes both attractive and repulsive components:

V r A
r C

r
ij

ij

ij

vdw( ) exp� �
�

�
�
�

�

	



 �

�r 6
(7.15)

Here the first term reproduces the effective two-body repulsion and the second the
effective two-body van der Waals attraction. rij is the interatomic distance, whereas
A, r and C are constants that are usually determined empirically. The repulsive
term is steeply increasing at low interatomic distances but quickly becomes negli-
gible beyond the nearest neighbour distance.

In general, the electrostatic terms contribute 75 to 90% to the total lattice
enthalpy, while the repulsive contribution is about 10 to 20%. It follows that the lat-
tice enthalpy depends largely on the charge and on the relative size of the cation
and anion, since these factors dominate the electrostatic term in eq. (7.14). This is
reflected in the lattice enthalpies presented in Figures 7.4(a) and (b). The lattice
enthalpy of the Na halides becomes less positive from NaF to NaI. Similarly, the
lattice enthalpy of the alkali iodides becomes less positive from LiI to CsI. While
this effect is clearly important when considering enthalpies of formation, this is not
the only factor to be taken into account [6, 7]. As indicated by the thermodynamic
cycle in Figure 7.3, the variation in the atomization and ionization enthalpies of the
metal atom and in the dissociation and electron gain enthalpies of the non-metal
atom must also be considered. The relevant data are given in Figures 7.4(c) and (d).

Periodic trends in the enthalpy of formation of binary compounds

Let us now consider trends in enthalpy of formation and first trends for the alkali
halides with a given halide ion, i.e. the alkali fluorides and the alkali iodides. The ease
with which a free gaseous ion is formed from the solid metal increases down group 1 of
the periodic system. Similarly, the ionization enthalpy becomes less positive as seen in
Figure 7.4(d). The enthalpy of formation analyzed in terms of eq. (7.8) involves the
formation of the compound from the gaseous ions and thus involves –DlattHm. The
effect of the lattice enthalpy is thus opposite to the trend in the atomization and ioniza-
tion enthalpies and as a result of the balance of these two opposing trends there is often
little change in the enthalpy of formation down these groups, as is evident in Figure
7.5(a). For the alkali fluorides the size of the anion implies that the most negative
enthalpy of formation is that of LiF. The less endothermic enthalpy of atomization and
ionization of Cs gives CsI the higher stability among the alkali iodides.
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Larger differences are observed when comparing the enthalpy of formation of
the different halides of a given alkali metal. The enthalpy of formation of gaseous
halide ions is exothermic since the exothermic electron gain enthalpy in absolute
value is larger than the endothermic dissociation enthalpy. Furthermore, the
enthalpy of formation of gaseous halide ions becomes less favourable with
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increasing size of the halogen atom. The trend in the lattice enthalpy amplifies this
effect and the enthalpy of formation of the Na halides varies much more with the
halide ion than the alkali iodides did with the alkali metal; see Figure 7.5(b).

The enthalpies of formation of the group 2 halides given in Figure 7.6 show
many of the same effects. The fluorides are more stable than the chlorides and the
stability increases with increasing size of the cation. The ease of atomization of the
metal here increases more on a relative scale than it did for the alkali metals. The
group 12 halides are also included in Figure 7.6. Their enthalpies of formation are
distinctly less exothermic than those of group 2. The reason for this is the increase
by +10 in nuclear charge between Ca and Zn and between Sr and Cd, and of +24
between Ba and Hg. These extra electrons are not screening the nuclear charge
effectively, resulting in a much higher ionization enthalpy for the group 12 ele-
ments and a less negative enthalpy of formation for the group 12 compounds com-
pared with the group 2 compounds. This destabilization effect is visible also in the
enthalpy of formation of the metal oxides of groups 2 and 12, 3 and 13, 4 and 14 and
5 and 15; see Figure 7.7. Here, the enthalpies of formation of the metal oxides of
group 13 and periods 4, 5 and 6 are much less exothermic than the for corre-
sponding metal oxides of group 3. The same argument is valid for metal oxides of
group 4 versus 14 and for group 5 versus 15.

While we have interpreted the trends observed using a simple thermodynamic
cycle where the electrostatic enthalpy is given in terms of formal charges of the
ions and their interatomic distance (eq. 7.14), most solid compounds cannot be
described properly without taking polarization into consideration. The larger the
electronegativity difference between the two elements of a compound, the more
polar the compound is. Polarization is more extensive for the lower coordination
numbers and depends on the polarizing power and the polarizability of the ions
involved in the bonding. The polarizing power increases the smaller the ion is and
the higher charge it has, while polarizability is usually larger for large ions – anions
with loosely bond electrons. Polarization always leads to a decrease in interatomic
distance and thus to an increase in the lattice enthalpy. The difference between
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lattice enthalpies derived using experimental data and the thermodynamic cycle
given in Figure 7.3 and calculated lattice enthalpies is often ascribed to polariza-
tion effects. However, the use of both pairwise potentials and models that neglect
anion–anion short-range interactions is in general questionable for compounds
where there is a covalent contribution and directionality of the bonds starts to play
a role.

In general, overlap of incompletely filled p orbitals results in large deviations
from pure ionic bonding, and covalent interactions result. Incompletely filled f
orbitals are usually well shielded from the crystal field and behave as essentially
spherical orbitals. Incompletely filled d orbitals, on the other hand, have a large
effect on the energetics of transition metal compounds and here the so-called
crystal field effects become important.

All the d orbitals are equal in energy for an isolated atom. In an electric field of
lower than spherical symmetry caused by the surrounding ligands, ligand field or
crystal field splitting is observed. In an octahedral environment the five d orbitals
of a transition metal are no longer degenerate but split into two groups; the lower
energy t2g and the higher energy eg groups. This splitting is, according to the
crystal field theory, due to the interaction between the negative charges on the lig-
ands and the electrons in the d orbitals. Electrons in the two d orbitals that are
pointing directly along the Cartesian axes, dx y2 2� and dz2 are repelled more
strongly by the negative charges on the ligands (which in the octahedral case are
placed along the Cartesian axes) than the electrons in the three d orbitals that are
pointing between the ligands: dxy, dxz, dyz. For a tetrahedral local environment (lig-
ands placed between the Cartesian axes) similar arguments give stabilization of the
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eg orbitals and destabilization of the t2g orbitals. The splitting is schematically
shown in Figure 7.8 for octahedral and tetrahedral symmetry. The extent of the
splitting is often called crystal field (ionic picture) or ligand field (covalent pic-
ture) splitting, and the accompanying energy is often given the symbol D. This
splitting energy measures the interaction between the cation and the surrounding
anions, and depends strongly on the interatomic distance that again depends on the
nature of the ligand. It is also affected by temperature, pressure, crystal structure
and composition of the compound. For an octahedral cation the crystal field stabili-
zation energy for one electron in the dxy, dxz or dyz orbital is –0.4Doct while an elec-
tron in a dz2 or dx y2 2� are destabilized by 0.6Doct; see Figure 7.8.

The energy effect of the crystal field is, although considerable, not necessarily
directly reflected in the enthalpy of formation of transition metal compounds;
other effects may dominate. Even so, the relative stability of the binary compounds
of the d elements varies in a characteristic way. The enthalpy of formation of transi-
tion metal dichlorides, difluorides and monoxides for the first series transition
metals are shown in Figure 7.9(a). The stabilization of the manganese (II) com-
pounds relative to their nearest neighbours in terms of d electrons, Cr and Fe, is
mainly due to a low atomization enthalpy for Mn (Figure 7.9(b)). The sum of the
first and second ionization enthalpies varies more regularly with the number of d
electrons (Figure 7.9(c)). By using the experimental enthalpies of formation, the
lattice enthalpies of the compounds can be derived. The data for the dichlorides
given in Figure 7.9(d) show a characteristic variation with the number of d elec-
trons that reflects crystal field stabilization. Ions that do not show crystal field sta-
bilization are the d0(Ca), d5(Mn) and d10(Zn) ions. For these three ions, the
distribution of d electrons around the core is spherically symmetric since the d
orbitals are either empty (Ca), singly (Mn) or doubly (Zn) occupied, and their lat-
tice enthalpies thus fall on the lower, dotted curve. Although the crystal field effect
is clearly present in the lattice enthalpies derived by the thermodynamic cycle
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using experimental enthalpies of formation, the effect is seen even more clearly
in the calculated lattice enthalpies given by filled symbols and a dashed line in
Figure 7.9(d). The stabilization due to the crystal field is considerable and for the
halides the stabilization increases in size from F to I in accordance with the
spectrochemical series. Water, oxide ions, hydroxide ions and fluoride ions have
comparable crystal field strengths and thus comparable stabilization energies. For
typical oxides and hydrates of divalent first row transition elements Doct is of the
order 8–15 kJ mol–1 and typically twice as large for the corresponding trivalent
ions. Values for second and third row transition elements are substantially higher
than for the first row elements.

Regularities corresponding to those observed for the transition metal com-
pounds are seen for the oxides, nitrates and chlorides of the lanthanide metals in
Figure 7.10(a). While the variation in the enthalpies of formation for the different
types of lanthanide compounds shows a large degree of similarity, small deviations
from a close to linear variation with the number of f electrons are observed for the
europium and ytterbium compounds in Figure 7.10(a). These ‘anomalous’ effects
are largely due to high ionization enthalpies for Eu and Yb (Figure 7.10(b)). The
relatively low atomization enthalpies (Figure 7.10(c)) of Eu and Yb counteract the
large ionization energies to a limited degree only. The calculated lattice enthalpies
for the lanthanide trichlorides are given in Figure 7.10(d).
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Transition metals are characterized by their ability to form compounds in sev-
eral oxidation states. We will here use the 3d transition metal oxides to illustrate
trends in stability with oxidation state. In general, there is a gradual decrease in
stability of the oxides in any given oxidation state relative to the metal across
the transition metal series, as shown in Figure 7.11(a). The decrease in stability
of oxides of a given oxidation state within a period is most marked in the higher
oxidation states. It follows that the ease of oxidation of metals, or of metals in a
lower oxidation state oxide to a higher oxidation state one, decreases going to
the right within a period. An analogous behaviour is observed for the metals in
acidic aqueous solutions where the complexes of the later transition metals are
powerful oxidizing agents. While the stability of an oxide is given in terms the
Gibbs energies of formation, the stability of the different species of an element
M in aqueous solutions can be represented in what is termed Frost diagrams.
Here the Gibbs energy is given in terms of the standard potential Eo as –NFEo,
where N is the oxidation number of the metal. In the Frost diagram NEo for the
reaction

M(N) + Ne– �M(0) (7.16)

is plotted versus the oxidation number N.
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The Frost diagrams for the first series of the d block elements in acidic solution,
pH = 0, given in Figure 7.11(b) show many similarities with the variation of the
enthalpy of formation of the oxides. Only the oxidation states observed for solid
oxides are included.

The relative stabilities of the dioxides, sesquioxides and monoxides for first
period transition metals are given in Figure 7.11(c). The stability of the higher oxi-
dation state oxides decreases across the period. As we will discuss later, higher oxi-
dation states can be stabilized in a ternary oxide if the second metal is a basic oxide
like an alkaline earth metal. The lines in Figure 7.11(c) can in such cases be used to
estimate enthalpies of formation for unstable oxidation states in order to determine
the enthalpy stabilization in the acid–base reactions; see below. Finally, it should
be noted that the relative stability of the oxides in the higher oxidation states
increases from the 3d via 4d to the 5d elements, as illustrated for the Cr, Mo and W
oxides in Figure 7.11(d).

We have in the preceding treatment largely confined our discussions to oxides
and halides. Similar arguments could also be used on sulfides or nitrides, for
example. The variation of the enthalpy of formation of selected binary compounds
of group 15 and 16 anions with a common cation are shown in Figure 7.12. The
enthalpy of formation becomes more negative the larger the electronegative differ-
ence, and thus with increasing group number and decreasing period number for the
anion.
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Intermetallic compounds and alloys

In metals the electrons lose their association with individual atoms and the number
of valence electrons is often used in rationalization schemes. Estimated enthalpies
of formation for equi-atomic alloys, M �M , of two elements of the first transition
metal series are given as a function of the difference in number of valence electrons
in Figure 7.13 [8]. Compounds of a given common metal are given a specific
symbol. For example, the scandium compounds Sc �M where �M = Ti, V, Cr, Mn, Fe,
Co, Ni and Zn, are given by open circles. The metal �M of the compound M �M is
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given by the difference in number of valence electrons between the specific metal
M (in our case Sc) and the other element �M . This difference in number of valence
electrons between M and �M is given as the ordinate in Figure 7.13. The data used
in the figure is, as mentioned above, estimated since this enables better visualiza-
tion of the trends in enthalpy of formation. Values are taken from the semi-empir-
ical two-parameter model by Miedema et al. [8] that have proven to give good
estimates of the enthalpy of formation of a large number of intermetallic com-
pounds and alloys. The insert to the figure shows the agreement between the esti-
mated and experimental values for selected intermetallic compounds as a function
of the enthalpy of formation of the compound.

The enthalpy of formation of M �M varies in a systematic way for all the elements of
the first transition metal series. Small differences in the number of valence electrons
correspond to small differences in electronegativity and thereby a low degree of stabi-
lization due to a small degree of electron transfer between the two elements. The size
mismatch between the two elements is in this case the more important enthalpy contri-
bution, giving a destabilization effect. The strain energy due to size mismatch is fur-
ther discussed in Section 7.3. Larger differences in the number of valence electrons
and thus in electronegativity give more negative enthalpies of formation.

Data for Mo and W compounds (Mo �M and W �M ) are included in Figure 7.13 to
show the effect of going from one period to the next. The variation in enthalpy of
formation with the difference in number of valence electrons is similar; however,
the enthalpies of formation are more exothermic for the Mo �M and W �M com-
pounds compared with the corresponding first transition metal series element com-
pounds Cr �M . Finally, it should be added that the enthalpies of formation of
equiatomic alloys of elements of the same group are close to zero.

7.2 Compound energetics: rationalization schemes

Acid–base rationalization

Although periodic trends in enthalpies of formation are often striking, these trends
can in general not be used to estimate accurate data for compounds where experi-
mental data are not available. Other schemes are frequently used and these esti-
mates are often based on atomic size and electronegativity-related arguments. As
an example, the enthalpy of formation of a ternary oxide from the binary constit-
uent oxides, i.e. the enthalpy of a reaction like

AO + BxOy = ABxO1+y (7.17)

is often interpreted in terms of factors related to electron transfer between the two
oxides. The electron donor/acceptor quality of an oxide is considered in terms of
acidity/basicity. A basic oxide, e.g. Na2O, is one that easily transfers its oxygens to
the coordination sphere of an acid oxide like SiO2 forming a complex, well-defined
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covalently bonded anion SiO4
2 � . The larger the difference in acidity of AO and

BxOy, the more exothermic is the enthalpy of reaction (7.17). This concept, devel-
oped by Flood and Førland [9, 10], following the initial idea of Lux [11], is fre-
quently used in modified form, not only for oxides (see e.g. Navrotsky [1]), but
even for alloys [8, 12]. In many ways this approach is analogous to what we observe
in aqueous solutions. Still, in oxides the complex ions formed are often not easily
defined and the oxygen atoms are bonded to several types of cations. Although the
arguments are mostly used qualitatively, a quantitative optical basicity scale has
been developed based on UV–visible spectroscopy and redox properties in general
[13].

While the s block oxides are usually basic, the p block oxides are acidic. The
basicity increases when going down a specific group e.g. MgO < CaO < SrO < BaO.
The same trend is observed for the p block oxides and the oxides in general become
more acidic across a specific period, e.g. Al < Si < P < S. The acidity/basicity of
transition metal oxides depends on several factors. The acidity increases with
increasing number of d electrons and with the oxidation state. It follows that oxides
of the early transition elements in their lower oxidation states are the more basic
ones. Using these simple rules the relative stability of the ternary ‘oxides’ pre-
sented in Fig. 7.14 is rationalized. BaO is the most basic oxide among those consid-
ered and the ternary Ba oxides have the most negative enthalpy of formation in the
three cases considered. Similarly, the sulfates are more stable than the carbonates
and aluminates relative to the binary constituent oxides, since the acidity of SO3 is
larger than for CO2 and Al2O3. For compounds consisting of binary oxides of sim-
ilar basicity, the enthalpy of formation is much smaller in magnitude. Here the
enthalpy difference between the ternary oxide and its binary constituent oxides is
small and the entropy of formation may become decisive for the stability. A ternary
oxide like mullite 3Al2O3◊2SiO2, where the enthalpy of formation from the oxides
is positive, is stabilized by entropy [14].
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Two other examples of acid–base rationalizations are given in Figure 7.15.
Figure 7.15(a) shows a large amount of data on the enthalpy of formation of ternary
oxides and nitrides from the binary constituents. For both types of materials the
enthalpy of formation scales with the acid–base ratio. The difference in acidity is
here represented in terms of ionic potentials. The ionic potential is defined as the
formal charge divided by the ionic radius. A rough grouping relating acidity and
ionic potential can be made as follows: q/r < 2, strongly basic; 2 < q/r < 4, basic; 4 <
q/r < 7, amphoteric; q/r > 7, acidic (here r is given in Å) [15]. The stabilization
observed for a given ratio of ionic potential appears to be larger for nitrides than for
oxides. The slope obtained using data for over 80 ternary oxides is smaller in mag-
nitude than the slope observed for the ternary nitrides considered; see Figure
7.15(a) [16]. The difference may result from the greater polarizability of the N3–

anion and the related higher degree of covalency in the bonding in the ternary
nitrides.

Figure 7.15(b) show the Gibbs energy of the oxide–sulfide equilibrium

AyO (s) + 1
2

S2(g) = AyS(s) + 1
2

O2(g) (7.18)

for group 1 and 2 metals at 1773 K as a function of the optical basicity of the metal.
The linear relation observed shows the applicability of these concepts for such
reactions and acid–base arguments are often successfully used in considerations of
metal–slag systems [17].
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Atomic size considerations

Systematization of thermodynamic data in terms of the relative atomic size of the
different ions in a compound or in terms of the ionic radius of a given cation of an
iso-structural series of compounds are frequently seen. The perovskite-type struc-
ture ABO3 named after the mineral with ideal composition CaTiO3 is a well-known
example. The crystal structure of the perovskite is shown in Figure 7.16. A is in the
perovskite-type structure 12-coordinated, while B is octahedrally surrounded by
oxygen atoms. The BO6 octahedra are linked via corners and form a network. The
bond lengths and angles of the BO6 octahedra can be distorted to allow a wide
range of cation sizes to be accommodated into the structure compared to what
would have been possible for a purely cubic arrangement. For a cubic perovskite,
the tolerance factor, t, introduced already in 1926 by Goldschmidt [18], is defined
as

t
r

r

r r

r r
� �

�

�

AO

BO

A O

B O2 2( )
(7.19)

where ri is the ionic radius of species i. Although t = 1 correspond to the optimum
cation–anion bond length, values in the range 0.8 < t < 1.1 are common.

The enthalpies of formation of selected perovskite-type oxides are given as a
function of the tolerance factor in Figure 7.17. Perovskites where the A atom is a
Group 2 element and B is a d or f element that readily takes a tetravalent state
[19, 20] show a regular variation with the tolerance factor. Empirically, it is sug-
gested that the cations that give t close to 1 have the most exothermic enthalpies
of formation. When t is reduced, the crystal structure becomes distorted from
cubic symmetry and this also appears to reduce the thermodynamic stability of the
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Figure 7.16 The perovskite-type structure. Small black circles represent the B atom, large
grey circles represent O atoms and open circles represent the A atom.



compound. Although this rationalization may be useful for chemically related
compounds, compounds that are significantly different in chemical nature should
not be expected to follow the same correlation. This is evident from the insert,
which shows enthalpies of formation of selected perovskite-type oxides that are
chemically different from those considered in the main graph. Here, the A atom is a
trivalent lanthanide metal [21] or a divalent alkaline earth metal [22], whereas the
B atom is a late transition metal atom or Ga/Al. However, even here we could draw
a curve roughly parallel to the one for the oxides in the main figure. Hence this
rationalization scheme works well for chemically related compounds, but should
in general be used with care. Similar thermodynamic regularities have been
reported for the structurally closely related K2NiF4-type oxides [23].

This and related schemes require that we have well-defined ionic radii for the
different elements. There have been many reports on approaches for deriving inter-
nally consistent radii from bond lengths and atomic, ionic, covalent and metallic
radii are found in literature. The radii reported by Shannon and Prewitt [24] are
commonly used for oxides and fluorides. Cation radii vary much more than anion
radii and increase markedly when we move down a group in the periodic table. It
decreases with increasing cation charge for a given element and the radii of ions of
the same charge decreases across a period. Finally, the cation radius increases with
increasing coordination number.

Electron count rationalization

Experimental studies have shown that in many alloy systems the number of valence
electrons is the dominant factor. Electron density is usually taken to denote the
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number of valence electrons per unit cell (provided all atomic sites are occupied),
or alternatively it may be taken as the ratio of all valence electrons to the number of
atoms. The trends in the enthalpy of formation of intermetallic compounds clearly
relates to this factor. Importantly, the same type of arguments may also be used for
less metallic compounds. The enthalpy of formation of complex binary carbides
and diborides [25, 26] are shown in Figure 7.18. A good correlation with the
average number of valence electrons per atom, ne, is observed. A similar variation
with the average number of valence electrons is also observed for nitrides. Zhukov
et al. [27] showed that an observed linear decrease in the enthalpy of formation of
selected NiAs-type oxides and carbides for 4 < ne < 5.5 could be understood from
simple electron band structure considerations. TiC with ne = 4 has a high enthalpy
of formation since the Fermi level falls in a pronounced gap in density of electronic
states separating bonding and anti-bonding electron bands. Further increase in the
number of valence electrons reduces the enthalpy of formation since anti-bonding
states are filled. Correspondingly, the decrease in enthalpy of formation at lower
electron concentrations shown by Fernandez-Guillermet and Grimvall [28] is due
to a reduced number of electrons in the bonding states. This general approach can
be used also for more complex structures.

Volume effects in microporous materials

Microporous materials is an important class of compounds with many applications
and also interesting since the energetic factors affecting the enthalpy of formation
must be expected to be different from those considered in the previous sections.
Although most zeolites are kinetically stabilized through the use of templates
during synthesis, there are several aspects of the energetics that are worth noting.

Pure silica zeolites or molecular sieves are metastable with regards to the ther-
modynamic stable polymorph at ambient conditions, a-quartz. However, they are
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only 7–14 kJ mol–1 less stable than a-quartz and only 0.5–7 kJ mol–1 less stable
than dense SiO2 glass [29]. The low barrier between different local energy minima
explains the number of structural polymorphs. There exist around 30 different pure
SiO2 structures. The enthalpy of formation correlates well with framework density
and with molar volume [29]; see Figure 7.19. The packing of the tetrahedra is thus
the main factor for structural stability and this relates directly to the internal sur-
face area of the zeolites. It has been shown that the enthalpy differences between
the stable modification, a-quartz and the metastable silica zeolites can be
described based on an average internal surface enthalpy of 0.093  0.0009 J m–2

[30]. This surface energy is similar to that reported for various amorphous silicas.
The correlation between framework density and enthalpy of formation is repro-
duced in lattice enthalpy calculations on 26 structures with widely different frame-
work densities [31]. While the enthalpy is largely dependent on the framework
density, the standard entropies of the zeolites at 298 K are not. They are only
slightly higher (3–4 J K–1 mol–1) than for a-quartz despite the much larger molar
volume [32] since the local structural elements are the same as in the denser com-
pounds; the structures are built as rigid frameworks of SiO4 tetrahedra that is
expected to have similar vibrational characteristics that does not vary largely with
connectivity. From the magnitudes of the enthalpy and entropy contributions it can
be concluded that the Gibbs energies of the zeolites relative to a-quartz are in total
within twice the thermal energy at 298 K.

The importance of framework density and molar volume is evident also for
large pore, mesoporous silica [33] and for AlPO4 polymorphs [34]. Data for the
latter are included in Figure 7.19. For mesoporous silica a transition from a regime
where cages and pores affects the energetics to one in which the large pores act as
inert diluent is reported. A further increase in pore diameter does not appear to
increase the enthalpy of the compound [33]. The similarity in enthalpy of many dif-
ferent structures shows that the synthesis of metastable microporous framework
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structures is not limited by energetic constraints. Similar effects have been shown,
e.g. for layered manganese dioxides [35] and iron oxides [36].

7.3 Solution energetics: trends and rationalization schemes

Solid solutions: strain versus electron transfer

The factors that affect the energetics of solid solutions and indirectly solid solu-
bility are to a large extent the same as those that control the enthalpy of formation
of compounds. Most often the differences between the atomic radii of the partici-
pating elements, in electronegativity and in valence electron density are consid-
ered for solutions of elements. For solid solutions of binary compounds, similar
factors are used, but some measure of the volume of the compounds is often used
instead of atomic radii.

Two elements or compounds that do not adopt the same crystal structure cannot
exhibit complete solid solubility except when one of the space groups is a subgroup
of the other. The energetics of solid solutions of compounds with different struc-
tures are obviously difficult to treat systematically and trends may be impossible to
obtain, since the energetics is largely related to structural short-range order. We
will thus confine our discussion of solid solutions to systems where the two end-
members take the same crystal structure.

Let us first consider metallic alloys. The enthalpies of formation of intermetallic
compounds, and also the enthalpy of mixing of solid intermetallic solutions, can
largely be interpreted in terms of the relative atomic size of the elements being
mixed and the difference in electronegativity. The difference in size generates a
local misfit or distortion and thus results in a strain energy that increases with the
size difference. The empirically derived rule of Hume-Rothery states that
restricted solid solubility is expected if the difference between the atomic sizes of
the component elements forming the alloy exceeds 15% [37]. A second and nega-
tive term is related to the electronegativity of the elements. The more
electronegative elements tend to attract the electrons from the less electronegative
elements on compound or solution formation and the excess enthalpy of mixing
varies from large negative values in systems with large electron transfer between
the two elements, e.g. Pd–Zr, to about zero for elements of similar size and similar
electronegativity, e.g. Ti–Zr. A large negative enthalpy of formation implies that
different atoms attract each other, and a consequence of this is that compound for-
mation becomes more likely. Generally, the number of intermetallic phases found
in a binary system correlates with the enthalpy of mixing. An empirically
relationship is shown in Figure 7.20 [8].

For ionic solutions the strain energy seem to be relatively more important than
for the metallic alloy systems [38–40] and the size difference between the two com-
ponents being mixed dominates the energetics, although other factors are also of
importance. In cases where the the covalency or ionicity of the components being
mixed are largely different a limited solid solubility also must be expected, even
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when the ions being mixed are of similar size. It follows that both the NaCl–AgCl
and NaBr–AgBr systems show large positive enthalpies of mixing, although
atomic size considerations would indicate the opposite. The oxidation state of the
components of the ionic solution is also important, higher valence difference
leading to lower solubility. Finally, the electron configuration is of particular
importance for transition metal systems, where a similar electron configuration is
necessary for a large degree of solid solubility.

Still, the strain enthalpy is of particular importance. An elastic continuum model
for this size mismatch enthalpy shows that, within the limitations of the model, this
enthalpy contribution correlates with the square of the volume difference [41, 42].
The model furthermore predicts what is often observed experimentally: for a given
size difference it is easier to put a smaller atom in a larger host than vice versa. Both
the excess enthalpy of mixing and the solubility limits are often asymmetric with
regard to composition. This elastic contribution to the enthalpy of mixing scales
with the two-parameter sub-regular solution model described in Chapter 3 (see eq.
3.74):

D D D
mix m A B A

A
B A B

B
H x x c

V

V
x x c

V

V
� �2

2
2

2

3 3
(7.20)

where VA and VB are the molar volumes of A and B and DV is volume change on
solution formation.The proportionality constants cA and cB are related to the shear
and bulk moduli of the two components [42]. The suggested proportionality
between the enthalpy of mixing and the square of the volume mismatch is also sup-
ported by computer simulations [43].

An analysis of a large amount of experimental data by Davies and Navrotsky has
also shown that the enthalpy of mixing of ionic solid solutions correlates with the
volume mismatch [39]. The volume mismatch was in the simplest case assumed to
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correlate with the interaction coefficient W of the regular solution model. Within
the experimental accuracy of the data, a close to linear relationship was observed
for rock salt oxides and chalcogenide solid solutions, and also for alkali halide
solutions. The deduced experimental enthalpies of mixing of selected NaCl-type
systems involving the alkali earth oxides are compared with theoretical expecta-
tions in Figure 7.21. The experimental data do not allow discrimination between
variation with volume mismatch or with the square of the volume mismatch. In
addition, other contributions to the enthalpy of mixing than the strain enthalpy will
affect the experimental data.

The importance of the size of the solute relative to that of the solvent mentioned
above is evident also from experimental determinations of the extent of solid solu-
bility in complex oxides and from theoretical evaluations of the enthalpy of solu-
tion of large ranges of solutes in a given solvent (e.g. a mineral). The enthalpy of
solution for mono-, di- and trivalent trace elements in pyrope and similar systems
shows an approximately parabolic variation with ionic radius [44]. For the pure
mineral, the calculated solution energies always show a minimum at a radius close
to that of the host cation.

Solubility of gases in metals

For interstitial solid solutions, too, the criteria used historically for the degree of
solid solubility relates to elastic and electronic interactions. Experimentally
observed maximum interstitial solubilities of H, B, C and N in Pd are inversely pro-
portional to the sum of the s and p electrons, and hence are controlled by the
valence electron concentration. Thus the electronic interactions dominate the
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energetics; the electronic interaction between solute and matrix is more important
than the elastic contribution [45].

The solubility of gases in metals is of particular importance. In these systems,
the concentration of a solute like hydrogen can be varied by controlling the temper-
ature and partial pressure of the solute in the gas phase. Hydrogen dissolves inter-
stitially in many metals, and at low concentrations the solubility of a diatomic gas
is proportional to the square root of its partial pressure. At higher concentrations of
hydrogen, large repulsive interactions between the hydrogen atoms give rise to
immiscibility at low temperatures. The resulting two-phase regions are reflected in
the corresponding partial pressure–composition isotherms.

Focusing on the low concentrations situation, all isotherms are characterized by

x p� (7.21)

The slope is, for a specific system, given by the enthalpy and entropy of solution of
hydrogen in the metal; in other words by the energetics of the following reaction

M + x
2

H2(g) = MHx (7.22)

The relationship between the concentration of hydrogen in the metal and the par-
tial pressure of hydrogen is now
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This relation is termed Sievert’s law.
Values for the enthalpy of solution of hydrogen in transition metals at infinite

dilution shown in Figure 7.22 are more negative for the early transition metals. It
should be noted that the enthalpies of solution in general are functions of the con-
centration of the solute. Still, the values at infinite dilution are useful when looking
for systematic variations, particularly since changes with composition are often
limited.

Non-stoichiometry and redox energetics

Hydrides of variable composition are not only formed with pure metals as solvents.
A large number of the binary metal hydrides are non-stoichiometric compounds.
Non-stoichiometric compounds are in general common for d, f and some p block
metals in combination with soft anions such as sulfur, selenium and hydrogen, and
also for somewhat harder anions like oxygen. Hard anions such as the halides, sul-
fates and nitrides form few non-stoichiometric compounds. Two factors are impor-
tant: the crystal structures must allow changes in composition, and the transition
metal must have accessible oxidation states. These factors are partly related. FeO,
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CoO and NiO all take the NaCl-type structure and the difference in non-
stoichiometry relates to the relative stability of the formal di- and trivalent oxida-
tion states. The stability of the trivalent state and the degree of non-stoichiometry
decreases from Fe3+ to Ni2+. Hence the non-stoichiometric nature of Fe1–yO is
made possible by the relatively high stability of Fe3+ that is reflected in the fact that
Fe2O3 is a stable compound in the Fe–O system, whereas Ni2O3 is not in the Ni–O
system. This relative stability of the different oxidation states is also reflected in
Figure 7.11(c).

As indicated above, the crystal structure is also important and the difference
between hexagonal and cubic SrMnO3–d may serve as example. Acid–base factors
affect the relative stability of the different oxidation states of a given metal, and in
general the redox energetics of ternary oxides must be expected to be quite dif-
ferent from that of the binary ones. As an example Fe(IV) is stabilized in SrFeO3,
and while iron dioxide is a non-existing binary compound, the enthalpy of oxida-
tion of Fe(III) to Fe(IV) in SrFeO3–d is large and negative, –120 kJ per mol O2 at
800 K [46]. Similarly, the enthalpy of oxidation of Mn(III)2O3 to Mn(IV)O2 is
–158 kJ per mol O2 , while the corresponding enthalpies of oxidation for CaMnO3-d
and SrMnO3-d are –356 and –293 kJ per mol O2 [47]. Hence Mn(IV) is stabilized
by the basic alkaline earth oxide relative to Mn(III).

Even though the difference in enthalpy of formation between the cubic and hex-
agonal modification of SrMnO3 is only about 6 kJ mol–1, the temperature of initial
reduction of the hexagonal modification in air takes place 600 K above the temper-
ature where the initial reduction appears for cubic SrMnO3. This difference is due
to a large difference in the relative Gibbs energy of the oxidized and reduced lim-
iting compounds of the two solid solutions. While cubic SrMnO2.50 is relatively
stable (can be prepared in the laboratory), hexagonal SrMnO2.50 is unstable. The
Gibbs energy difference between the oxidized and reduced compounds is hence
much larger for the hexagonal case than for the cubic case. The reason for this can
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be understood by taking the structure of hexagonal SrMnO3 into consideration.
While the Mn–O6 octahedra share corners in the usual cubic perovskite-type struc-
ture, they share faces in the hexagonal structure: see Figure 7.23. Reduction of the
cubic structure gives rise to square pyramidal coordinated manganese while reduc-
tion of the hexagonal structure in the end would lead to face-shared octahedra with
high vacancy concentrations in localized areas of the crystal structure. The latter
structure must be expected to be energetically unfavourable. In conclusion, the
redox energetics of a phase depends strongly on the crystal structure, a fact that
should be taken into account when looking for trends in redox properties. In terms
of defect chemistry the defect–defect interaction energy is much larger for hexag-
onal SrMnO3 than for cubic SrMnO3. The enthalpy of oxidation of Mn(III) to
Mn(IV) for hexagonal SrMnO3–d is estimated to be –590 kJ per mol O2 , i.e. twice
the value for the cubic structure [47].

Liquid solutions

In the crystalline state the solution is restricted by the crystal structures taken by
the solid solution. The coordination numbers of the atoms or ions are not allowed to
change unless the solid solution involve occupation of interstitial lattice sites.
Liquid solutions, on the other hand, have in principle no such structural restrictions
and an endothermic enthalpy of mixing is overcome by the entropy of mixing, pro-
vided the temperature is high enough. However, in cases where the positive
enthalpy of mixing is large, the solubility of one liquid in the other is limited.
Liquid immiscibility occurs typically when the two liquids have significantly dif-
ferent chemical and physical properties. One type of system that shows limited sol-
ubility is mixtures of liquid metals and molten salts.

Another classical example of demixing in the liquid state occurs in the system
CaO–SiO2 and other binary silicate systems where SiO2 is mixed with basic
oxides. While the solubility of SiO2(l) in the basic oxide is high, there is a
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Figure 7.23 Connectivity of transition metal BO6 octahedra in (a) cubic and (b) hexagonal
perovskite SrMnO3.



immiscibility gap at high SiO2 concentrations. In some of these systems the
immiscibility occurs in the metastable supercooled region, as discussed for the
system Na2B8O13–SiO2 in Chapter 5. The solubility of CaO(l) in SiO2(l) is
strongly limited, since Si4+ in SiO2 is 4-coordinated, while Ca2+ would prefer a
near 6-coordinated environment, as in CaO(l). Thus, Ca2+ is energetically not
favoured to replace Si4+ in the covalently bonded liquid SiO2, where a high degree
of short-range order is present. On the other hand, the solubility of SiO2(l) in
CaO(l) or other basic oxides is energetically strongly favourable. This reflects the
different acid–base properties of CaO and SiO2 [9–11].

The enthalpy of mixing of several binary silicate systems is shown in Figure
7.24(a) [48]. The enthalpies of mixing of SiO2 with alkali and alkali earth oxides
are exothermic and become increasingly more exothermic with increasing basicity
of the alkali and alkali earth oxide. The shape of the curves reflects the local struc-
ture of the liquid. A relatively sharp minimum is evident near the ortho-silicate
composition, for example Ca2SiO4. Here a high degree of local order exists in the
liquid that consists of Ca2+ cations and SiO4

4� anions. At higher concentration of
the basic oxide, SiO4

4� is mixed with O2– on an anion quasi-lattice, and the
enthalpy of mixing becomes less exothermic. Moreover, the SiO4

4� complex anions
start to polymerize to form, for example, dimer Si O2 7

6� or linear chains of
(SiO3

2 � )n . Even though the enthalpy of mixing increases with increasing concen-
tration of SiO2, melts with compositions corresponding to meta-silicates, e.g.
CaSiO3, also show large negative enthalpies of mixing; see Figure 7.24(a). At even
higher concentrations of SiO2 the enthalpy of mixing increases rapidly and the
immiscibility at high SiO2 concentration is reflected by a change in sign of the
second derivative (inflection point) of the enthalpy of mixing that is not, however,
that easily seen at the resolution of the figure. The strong local order found in
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Figure 7.24 Enthalpy of mixing of (a) binary silicate [48] (reprinted by permission of A.
Navrotsky) and (b) fluoride systems [49].



silicate systems due to the energetically preferred structural SiO4 entity is also a
characteristic of other types of system, such as phosphates and borates where PO4

3�

and BO4
5� are the energetically preferred entities. In borate melts, local order due to

formation of planar trigonal BO3 entities is also known.
A crude analysis of the enthalpy of mixing based on the acidity/basicity of the

end members involved in the solution can also be applied for fluoride melts. One
example is the alkali fluoride–zirconium fluoride mixtures in Figure 7.24(b). Here
the enthalpies of mixing of several systems are displayed [49]. ZrF4 can be
regarded as a strong Lewis acid, while the basicity of the alkali fluoride increases
with increasing size of the alkali metal. The enthalpy of mixing becomes increas-
ingly more exothermic with increasing basicity of the alkali metal, and for all the
systems a minimum is evident near the composition corresponding to the complex
anion ZrF6

2 � . The minima become increasingly more pronounced with increasing
basicity of the alkali metal. Other complexes may also be present in the liquid [49].
The similarity to the binary oxide mixtures shown in Figure 7.24(a) is evident.

The enthalpies of mixing of other binary halide or oxide systems that have an
asymmetrical charge distribution display similar behaviour. The enthalpy of
mixing becomes more exothermic with increasing difference in acidity, and a sharp
minimum in the enthalpy of mixing for a given composition points to a high degree
of local order corresponding to a particular complex anion. Most halide systems
are ionic in nature. Still, halides like AlCl3 and BeF2 are characterized by forma-
tion of liquids with a high degree of local order due to a preference for fourfold
coordination. While, BeF2 has a similar local structure to SiO2, AlCl3, is a molec-
ular liquid consisting of Al2Cl6 molecules. AlCl3–XCl melts, where X is an alkali
metal, are dominated by the formation of AlCl4

� complex anions.
Large sets of experimental data exist also for simpler ionic solutions such as mix-

tures of simple molten salt of alkali or alkali earth cations and halogen anions or
complex anions like NO3

� , CO3
2 � and SO4

2 � . Enthalpies of mixing of such systems
are reviewed by Kleppa [50]. Generally, the enthalpy of mixing is small in the range
of a few kJ mol–1 at x � 05. . For charge symmetrical systems, where the cations and
anions have equal charge, the enthalpy of mixing can be understood in terms of
Coulombic interactions and polarization of the ions. These interactions are
described using the size parameter d � � �( ) / ( )d d d dA B A B , where dA and dB are
the sums of the cation and anion radii of the two salts A and B [50]. For most systems
with a common anion, the enthalpy of mixing is exothermic, while with common cat-
ions, anion–anion repulsion may dominate, leading to a positive enthalpy of mixing.

The energetics of liquid metal alloys mimics the energetics of the solid state, and
the semi-empirical approach by Miedema and co-workers seems to be in reason-
able agreement with experimental observations [8]. However, for mixtures con-
taining d block metals, a third interaction due to p–d hybridization must be added
[51]. Generally, the enthalpy of mixing is strongly exothermic in systems, in which
intermediate compounds are stable, while the lack of intermediate phases reflects a
less exothermic enthalpy of mixing in accordance with Figure 7.20. One example
of a system where no intermetallic phases are formed is the binary system Au–Ag,
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where the enthalpy of mixing at xAg = 0.50 is about 4.0 kJ mol–1 [51]. The forma-
tion of intermediate compounds also implies that the liquid phase will be energeti-
cally stabilized relative to the end members.
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8
Heat capacity and entropy

The Gibbs energy of formation of a compound can be expressed as

D D D Df m
o

f m
o

f m
o

f m
oG H T S p V� � � (8.1)

At low temperatures the enthalpy of formation usually constitutes the largest ener-
getic contribution. And while high pressures favour the formation of dense com-
pounds, the entropy become increasingly more important at high temperatures. We
saw in the previous chapter that the enthalpy of formation of a ternary oxide from
the binary constituent oxides is small compared to the enthalpy of formation from
the elements and comparable to the enthalpy of melting and to the enthalpy differ-
ence between different modifications of the compound. Similarly, small differ-
ences in the enthalpy of formation are observed between different structure types
of metallic compounds. These small differences in enthalpy of formation explain
the occurrence of several polymorphs of many substances, which again points to
the importance of entropy and volume contributions to the total Gibbs energy. Even
for simple elements complex phase relations are observed. Using bismuth as an
example, five different polymorphs are known, as shown in the p,T phase diagram
in Figure 8.1.

The absolute value of the entropy of a compound is obtained directly by integra-
tion of the heat capacity from 0 K. The main contributions to the heat capacity
and thus to the entropy are discussed in this chapter. Microscopic descriptions of
the heat capacity of solids, liquids and gases range from simple classical
approaches to complex lattice dynamical treatments. The relatively simple
models that have been around for some time will be described in some detail.
These models are, because of their simplicity, very useful for estimating heat
capacities and for relating the heat capacity to the physical and chemical

229

Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects.
Svein Stølen and Tor Grande

Copyright  2004 John Wiley & Sons, Ltd. ISBN: 0-471-49230-2



characteristics of the phases. Gases are briefly treated, followed by a more thor-
ough discussion of the heat capacity of solids. Here we focus on physically based
models, some of which may be used to deduce trends in the vibrational contribu-
tion to the entropy. Finally, heat capacity contributions of electronic origin and
treatments of disordered systems are considered.

8.1 Simple models for molecules and crystals

Let us first look at a monoatomic perfect gas consisting of N atoms. The internal
energy of the gas is

U mi i
i

N

N� �
�
�

1

2
2

1
1 2 3c r r r rF( , , , ..., ) (8.2)

where c(cx,cy,cz) and r(rx,ry,rz) are the velocity and position of atom i. For a per-
fect monoatomic gas there are no atomic interactions and the potential energy,
Fp( , , , ..., )r r r r1 2 3 N , is negligible. The thermal energy of the system is thereby the
mean of the kinetic energy of the atoms, and is given by the first term in eq. (8.2). A
monoatomic gas has three translational degrees of freedom represented by three
independent quadratic variables in the internal energy. Each of these contributes
1
2

k TB to the total internal energy, and the mean internal energy per atom follows:

1

2

3

2
2m

k T
� � �c B (8.3)

The molar internal energy of a monoatomic ideal gas is therefore

U L k T RTm B� �
3

2

3

2
(8.4)
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and the heat capacity at constant volume, obtained by differentiation with respect
to temperature, is
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2
(8.5)

The internal energy is, as indicated above, connected to the number of degrees of
freedom of the molecule: that is the number of squared terms in the Hamiltonian
function or the number of independent coordinates needed to describe the motion
of the system. Each degree of freedom contributes 1

2
RT to the molar internal

energy in the classical limit, e.g. at sufficiently high temperatures. A monoatomic
gas has three translational degrees of freedom and hence, as shown above,
U RTm � 3 2/ and C RV ,m � 3 2/ .

A linear gas molecule can in addition rotate about any pair of directions perpen-
dicular to each other and perpendicular to the axis of the linear molecule. A
diatomic molecule therefore has two additional rotational degrees of freedom.
Non-linear polyatomic molecules, which can rotate about the three principal axes,
have three rotational degrees of freedom and a total of six degrees of freedom of
translational and rotational nature. In addition, the molecular vibrations must be
taken into account. The energy of each mode of vibration has associated with it two
terms: one kinetic and one potential energy term. Each mode therefore contributes
R to the molar heat capacity. In general, a polyatomic molecule has (3n – 6) vibra-
tional modes, where n is equal to the number of atoms in the molecule. If the mole-
cule is linear the number of modes is (3n – 5). The number of translational,
rotational and vibrational modes and the resulting limiting molar heat capacities of
gases at constant volume and at constant pressure are given in Table 8.1. The differ-
ence between the heat capacity at constant pressure and constant volume, the
dilational heat capacity, is, for an ideal gas:

C C
TV

Rp V
T

,m ,m� � �
a
k

2
(8.6)

where a and k T are the isobaric expansivity and isothermal compressibility
respectively. The molar heat capacities at constant pressure of H(g), H2(g) and
H2O(g) are given in Figure 8.2. The classical heat capacity is in each case marked
with open symbols at T = 5000 K. Monoatomic H(g) with only translational
degrees of freedom is already fully excited at low temperatures. The vibrational
frequencies (n) of H2(g) and H2O(g) are much higher, in the range of 100 THz, and
the associated energy levels are significantly excited only at temperatures above
1000 K. At room temperature only a few molecules will have enough energy to
excite the vibrational modes, and the heat capacity is much lower than the classical
value. The rotational frequencies are of the order 100 times smaller, so they are
fully excited above ~10 K.
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The statistical treatment of the vibrational degrees of freedom of crystals is far
more difficult compared to gases. Let us initially consider a monoatomic crystal.
An atom in a crystal vibrates about its equilibrium lattice position. In the simplest
approach, three non-interacting superimposed linear harmonic oscillators repre-
sent the vibrations of each atom. The total energy, given by the sum of the kinetic
and potential energies for the harmonic oscillators, is

U mc Kx mA t KA t� � � �1
2

2 1
2

2 1
2

2 2 2 1
2

2 2w w wcos sin (8.7)

where m is the mass of the atom, w is the angular frequency of the harmonic oscil-
lator, A is the amplitude and x A t� sin w is the time-dependent displacement of the
atom from its equilibrium lattice position. The angular frequency of the harmonic
oscillator is given by the force constant K and the mass m of the atom:
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Number of modes Classical

Translational Rotational Vibrational CV,m/R Cp,m/R

A(g) 3 3/2 5/2

AB(g) 3 2 1 7/2 9/2

AB2(g)
non-linear

3 3 3 6 7

AB2(g)
linear

3 2 4 13/2 15/2

ABn–1(g)
non-linear

3 3 (3n – 6) 3 + (3n – 6) 4 + (3n – 6)

ABn–1(g)
linear

3 2 (3n – 5) 7/2 + (3n – 6) 9/2 + (3n – 6)

Table 8.1 Number of modes and heat capacity of gases in the classical limit.
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Figure 8.2 Molar heat capacity at constant pressure of H(g), H2(g) and H2O(g). The open
symbols at 5000 K represent the limiting classical heat capacity.



w pn� �2
K
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(8.8)

Since w2 � K m/ , the mean potential and kinetic energy terms are equal and
the total energy of the linear oscillator is twice its mean kinetic energy. Since
there are three oscillators per atom, for a monoatomic crystal U RTm � 3 and
C RV ,m � �3 2494. J K–1 mol–1. This first useful model for the heat capacity of crys-
tals (solids), proposed by Dulong and Petit in 1819, states that the molar heat
capacity has a universal value for all chemical elements independent of the atomic
mass and crystal structure and furthermore independent of temperature.
Dulong–Petit’s law works well at high temperatures, but fails at lower tempera-
tures where the heat capacity decreases and approaches zero at 0 K. More thorough
models are thus needed for the lattice heat capacity of crystals.

8.2 Lattice heat capacity

The Einstein model

The decrease in the heat capacity at low temperatures was not explained until 1907,
when Einstein demonstrated that the temperature dependence of the heat capacity
arose from quantum mechanical effects [1]. Einstein also assumed that all atoms in
a solid vibrate independently of each other and that they behave like harmonic
oscillators. The motion of a single atom is again seen as the sum of three linear
oscillators along three perpendicular axes, and one mole of atoms is treated by
looking at 3L identical linear harmonic oscillators. Whereas the harmonic oscil-
lator can take any energy in the classical limit, quantum theory allows the energy of
the harmonic oscillator (e n ) to have only certain discrete values (n):

e wn n� �( )1
2
� (8.9)

The probability that an oscillator at a given temperature occupies a given energy
state, e n , is given by Bose–Einstein statistics (see e.g. C. Kittel and H. Kroemer,
Further reading) and the mean value of n at a given temperature is given by

n
k T

�
�

1

1exp( / )�w B
(8.10)

In the Einstein model, all the independent oscillators have the same angular fre-
quency, wE, and the average total internal energy is

U N n N
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The heat capacity is derived by differentiation with respect to temperature:
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where QE , the Einstein temperature, is defined by

QE
E

B
�
�w
k

(8.13)

This model, the Einstein model for heat capacity, predicts that the heat capacity is
reduced on cooling and that the heat capacity becomes zero at 0 K. At high temper-
atures the constant-volume heat capacity approaches the classical value 3R. The
Einstein model represented a substantial improvement compared with the classical
models. The experimental heat capacity of copper at constant pressure is compared
in Figure 8.3 to C V ,m calculated using the Einstein model with QE = 244 K. The
insert to the figure shows the Einstein frequency of Cu. All 3L vibrational modes
have the same frequency, n = 32 THz. However, whereas CV,m is observed experi-
mentally to vary proportionally with T3 at low temperatures, the Einstein heat
capacity decreases more rapidly; it is proportional to exp( / )QE T at low tempera-
tures. In order to reproduce the observed low temperature behaviour qualitatively,
one more essential factor must be taken into account; the lattice vibrations of each
individual atom are not independent of each other – collective lattice vibrations
must be considered.
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Figure 8.3 Experimental heat capacity of Cu at constant pressure compared with CV ,m cal-
culated by the Einstein model using QE = 244 K. The vibrational frequency used in the Ein-
stein model is shown in the insert.



Collective modes of vibration

A first impression of collective lattice vibrations in a crystal is obtained by consid-
ering one-dimensional chains of atoms. Let us first consider a chain with only one
type of atom. The interaction between the atoms is represented by a harmonic force
with force constant K. A schematic representation is displayed in Figure 8.4. The
average interatomic distance at equilibrium is a, and the equilibrium rest position
of atom n is thus u nan � . The motion of the chain of atoms is described by the time-
dependent displacement of the atoms, u tn ( ), relative to their rest positions. We
assume that each atom only feels the force from its two neighbours. The resultant
restoring force (F) acting on the nth atom of the one dimensional chain is now in
the harmonic approximation

F K u u u un n n n� � � � �� �( )1 1 (8.14)

The equation of motion of this nth atom is given by

m
u

t

U

u
F K u u un

n
n n n

�

�
� �

�

�
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2

2 1 12( ) (8.15)

Let us describe the displacement of the nth atom from its equilibrium rest position by
a cosine-wave with amplitudeu0 , angular frequency w and wave vector q = 2p/l:1

u u t qnan � �0 cos( )w (8.16)

Substituting this expression into the equation of motion (eq. 8.15) we obtain the
expression for the angular frequency of the vibrational modes as a function of the
wave vector:

w( ) sinq
K

m

qa
�

�
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4

2
(8.17)

The frequency versus wave vector graph, shown in Figure 8.5, is known as a dis-
persion curve. We only need to consider waves with wave vectors lying between
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Figure 8.4 One-dimensional chain of atoms with interatomic distance a and force
constant K.

1 In two and three dimensions q is a vector. Usually q is also referred to as a vector even in one
dimension.



–p/a < q < p/a. This range of wave vectors is within what is termed the first
Brillouin zone of the one-dimensional lattice. At longer wave vectors or shorter
wavelengths, | | /q a� p , the periodicity of the wave is shorter than the interatomic
distance. This has no physical meaning.

For short wave vectors (or long wavelengths) corresponding to waves in the
acoustic or ultrasonic range, eq. (8.17) reduces to

w � a
K

m
|q| (8.18)

The group velocity, d dw / q, is constant and independent of the wavelength, as
shown in Figure 8.5. The discontinuous nature of matter can be neglected, and for
these wavelengths the vibrational characteristics of the material can be described
by its macroscopic properties (density and elastic constants). The group velocity is
here equal to the speed of sound in the solid.

At short wavelengths the frequency is no longer proportional to q and the
velocity of propagation decreases as q increases. This is called dispersion and is
reflected in Figure 8.5. The wavelength becomes comparable to the interatomic
distance and the discrete nature of the atoms becomes important. The vibration fre-
quency has its maximum value at the Brillouin zone boundary where q = p/a and
the group velocity, d dw / q, is equal to zero. Thus here the wave vector corresponds
to a standing wave. Successive atoms have displacements of alternating sign.

The linear model can be extended to include more distant neighbours and to three
dimensions. Let us consider an elastic lattice wave with wave vector q. The collective
vibrational modes of the lattice are illustrated in Figure 8.6. The formation of small
local deformations (strain) in the direction of the incoming wave gives rise to
stresses in the same direction (upper part of Figure 8.6) but also perpendicular (lower
part of Figure 8.6) to the incoming wave because of the elasticity of the material. The
cohesive forces between the atoms then transport the deformation of the lattice to the
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neighbourhood. It is clear that the waves are vibrating not independently but collec-
tively. When a wave propagates along q, entire planes of atoms move in phase with
displacements either parallel or perpendicular to the direction of the wave vector. For
each wave vector there are three modes: one of longitudinal polarization (longitu-
dinal mode) and two of transverse polarization (transverse modes). For an isotropic
solid the two transverse waves are degenerate. Also, in crystals of high symmetry,
there are three-, four- or six-fold rotation axes along the direction of the wave vector,
where the two transverse modes will be degenerate. When the symmetry of the
crystal or a specific symmetry operator is lower, the complexity of the vibrational
modes will increase. The dispersion relations in the [100], [110] and [111] directions
for Pb (fcc structure) at 100 K [2] are given in Figure 8.7. The two transverse modes
are degenerate for [100] and [111], which are four- and three-fold rotation axes, but
not for [110], which is a two-fold rotation axis.

The method delineated in the preceding sections can readily be extended to the
case of two atoms in the chain. An illustration of the diatomic chain model is given
in Figure 8.8. The two atoms are characterized by having different masses m1 and
m2. The two equations of motion obtained (one for each type of atom) must be
solved simultaneously, giving two solutions for the angular frequency known as
the acoustic and optic branches
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The dispersion curve for a diatomic chain is given in Figure 8.9. The curve con-
sists of two distinct branches: the acoustic and the optic. In the first of these the fre-
quency varies from zero to a maximumw1. The second one has a maximum value of
w 0 at q = 0 and decreases to w2 at q q� max. There are no allowed frequencies in the
gap between w1 and w2 .

The solution for the acoustic branch approaches zero as q goes to zero, and for
small q:

w a �
�

a
K

m m
q

2

1 2
| | (8.21)

For m1 = m2, the expression reduces to that obtained for a monoatomic chain (eq.
8.18). When q approaches zero, the amplitudes of the two types of atom become
equal and the two types of atom vibrate in phase, as depicted in the upper part of
Figure 8.10. Two neighbouring atoms vibrate together without an appreciable vari-
ation in their interatomic distance. The waves are termed acoustic vibrations,
acoustic vibrational modes or acoustic phonons. When q is increased, the unit
cell, which consists of one atom of each type, becomes increasingly deformed. At
qmax the heavier atoms vibrate in phase while the lighter atoms are stationary.
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The optical branch takes a non-zero limiting value at q = 0:

w o( )
( )

q
K m m

m m
� �

�
0

2 1 2

1 2
(8.22)

Close to this limit the displacements of the two types of atom have opposite sign
and the two types of atom vibrate out of phase, as illustrated in the lower part of
Figure 8.10. Thus close to q = 0, the two atoms in the unit cell vibrate around their
centre of mass which remains stationary. Each set of atoms vibrates in phase and
the two sets with opposite phases. There is no propagation and no overall displace-
ment of the unit cell, but a periodic deformation. These modes have frequencies
corresponding to the optical region in the electromagnetic spectrum and since the
atomic motions associated with these modes are similar to those formed as
response to an electromagnetic field, they are termed optical modes. The optical
branch has frequency maximum at q = 0. As q increases w slowly decreases and
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approaches a minimum at qmax. As q increases the vibration becomes a mixture of
displacement and deformation of the unit cell. For q = qmax the heavier atoms are
stationary, whereas the lighter atoms vibrate in phase.

Although acoustic and optic mode behaviour can be distinguished at the zone
centre, this is not generally so at other values of q. Nevertheless, the convention is
to refer to the whole branch as being optic or acoustic.

In three dimensions, transverse and longitudinal optic and acoustic modes result.
The dispersion curve for CuCl along [100] of the cubic unit cell [3] is shown in
Figure 8.11(a) as an example. The number of discrete modes with frequencies in a
defined interval can be displayed as a function of the frequency. This gives what is
termed the density of vibrational modes or the vibrational density of states (DoS).
The vibrational DoS of CuCl is given in Figure 8.11(b).

In general a crystal that contains n atoms per unit cell have a total of 3L◊n vibra-
tional modes. Of these there are 3L acoustic modes in which the unit cell vibrates as
an entity. The remaining 3L(n – 1) modes are optic and correspond to different
deformations of the unit cell. At high temperatures where classical theory is valid
each mode has an energy kBT and the total heat capacity is 3R, in line with the
Dulong–Petit law.

The collective modes of vibration of the crystal introduced in the previous para-
graph involve all the atoms, and there is no longer a single vibrational frequency, as
was the case in the Einstein model. Different modes of vibration have different fre-
quencies, and in general the number of vibrational modes with frequency between
n and n n� d are given by
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3N gA d( )n n where g( )n nd �
�

� 1
0

(8.23)

and g( )n is the density of vibrational modes at a particular frequency. When the
density of vibrational modes is known as a function of n, the total internal energy
can be calculated and the heat capacity obtained through differentiation with
respect to temperature.

The Debye model

The quantization of vibrational energy implies that at low temperatures only the
low-frequency modes of lattice vibrations will be appreciably excited. The usual
very low-frequency vibrations of a solid are the acoustic modes with wavelengths
much longer than the atomic dimensions. Debye calculated the distribution of fre-
quencies that result from the propagation of acoustic waves of permitted wave-
lengths in a continuous isotropic solid and assumed the same distribution to hold in
a crystal [4]. The distribution of frequencies is then given by (see e.g. Grimvall,
Further reading)

g( )w w

w
�

3 2

3
D

for w wD � (8.24)

g( )w � 0 for w w� D (8.25)

The limiting angular vibrational frequency, w D, that exists defines the Debye tem-
perature, QD, as

QD
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k
2 (8.26)

and it can be shown that the heat capacity corresponding to the Debye model is
given by
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where x k T� �w / B .
Whereas the Debye heat capacity is equal to 3R at high temperatures, it reduces

to
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at low temperatures. When the temperature approaches 0 K, the heat capacity tends
to zero as T3, in agreement with experiment.

The experimental constant-pressure heat capacity of copper is given together
with the Einstein and Debye constant volume heat capacities in Figure 8.12 (recall
that the difference between the heat capacity at constant pressure and constant
volume is small at low temperatures). The Einstein and Debye temperatures that
give the best representation of the experimental heat capacity are QE = 244 K and
QD = 315 K and schematic representations of the resulting density of vibrational
modes in the Einstein and Debye approximations are given in the insert to Figure
8.12. The Debye model clearly represents the low-temperature behaviour better
than the Einstein model.

Both the Einstein and the Debye temperatures reflect the bonding strength in a
particular compound. A higher characteristic temperature represents stronger
bonding between the atoms and the classical limit will be reached at higher temper-
atures. The lattice heat capacity of different polymorphs of carbon is displayed in
Figure 8.13. The soft molecule C60 with weak intermolecular bonds has a low
Debye temperature (QD = 46 K) [5]. Graphite with weak van der Waals bonds
between the graphite layers has considerably higher QD = 760 K, while diamond
with only strong covalent bonds between all the C atoms displays a very high
Debye temperature (2050 K). Hence, while C60 approaches the classical value 3R
(per carbon atom) far below 100 K, the heat capacity of diamond is only 20% of this
value at 300 K.
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Since the vibrational contribution is generally the largest contribution to the heat
capacity, trends in the Debye temperature largely defines trends in entropy. Peri-
odic variations of the Debye temperature of the elements, and for Li, Na, K and Rb
halides, are given in Table 8.2 and Figure 8.14, respectively. The Debye tempera-
ture for the halides decreases with the mass of both the cation and anion. The
charge of the ions is constant and the variation in QD reflects the interatomic dis-
tance and the bonding strength. The fluorides, which in Chapter 7 were shown to
have the more negative enthalpy of formation among the halides, have the highest
Debye temperatures and thus the lowest entropies.

Although the Debye model reproduces the essential features of the low- and
high-temperature behaviour of crystals, the model has its limitations. A tempera-
ture-dependent Debye temperature, QD(T), can be calculated by reproducing the
heat capacity at each single temperature using the equation

CV,Debye(T, QD) = CV,exper(T) (8.29)

A dip in QD versus temperature is typically observed for QD/50 < T/K < QD/2. It
follows that a constant Debye temperature is not able to reproduce the experi-
mental observations over large temperature ranges.

More importantly, the Debye model and also the Einstein model work best for
materials that take crystal structures of high symmetry, for pure elements as well as
for binary compounds where the two elements have similar masses and bonding.
The approach is less applicable to complex materials that contain elements that
differ largely in chemical bonding, coordination and/or mass. Furthermore, groups
like carbonate anions and the SiO4 tetrahedra in silicates will retain their intrinsic
properties to a large degree even in complex compounds. An alternative is to repre-
sent the massive vibrational modes of the unit cell as a whole by a Debye function
and the internal vibrational modes of covalent groups by one or more Einstein
functions. This approach will be further discussed below.
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The relationship between elastic properties and heat capacity

Both the Einstein and Debye theories show a clear relationship between apparently
unrelated properties: heat capacity and elastic properties. The Einstein tempera-
ture for copper is 244 K and corresponds to a vibrational frequency of 32 THz.
Assuming that the elastic properties are due to the sum of the forces acting between
two atoms this frequency can be calculated from the Young’s modulus of copper,
E = 13 × 1010 N m–2. The force constant K is obtained by dividing E by the number
of atoms in a plane per m2 and by the distance between two neighbouring planes of
atoms. K thus obtained is 14.4 N m–1 and the Einstein frequency, obtained using
the mass of a copper atom into account, 18 THz, is in reasonable agreement with
that deduced from the calorimetric Einstein temperature.
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Table 8.2. Debye temperature (QD in K) and electronic heat capacity coefficient (see Sec-
tion 8.4) (g in mJ K–1 mol–1) of the elements.
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Even better agreement is observed between calorimetric and elastic Debye tem-
peratures. The Debye temperature is based on a continuum model for long wave-
lengths, and hence the discrete nature of the atoms is neglected. The wave velocity
is constant and the Debye temperature can be expressed through the average speed
of sound in longitudinal and transverse directions (parallel and normal to the wave
vector). Calorimetric and elastic Debye temperatures are compared in Table 8.3 for
some selected elements and compounds.

Dilational contributions to the heat capacity

In general, C V is obtained from Cp by taking the isobaric expansivity and iso-
thermal compressibility of the crystal into consideration:

C C
VT

p V
T

, ,m m� �
a
k

2
(8.30)

The thermal expansivity of a solid is in general low at low temperatures and the
anharmonic contribution to the heat capacity is therefore small in this temperature
region and C CV p, , .m m� At high temperatures the difference between the heat
capacity at constant pressure and at constant volume must be taken into
consideration.

The heat capacity models described so far were all based on a harmonic oscil-
lator approximation. This implies that the volume of the simple crystals considered
does not vary with temperature and C V ,m is derived as a function of temperature
for a crystal having a fixed volume. Anharmonic lattice vibrations give rise to a
finite isobaric thermal expansivity. These vibrations contribute both directly and
indirectly to the total heat capacity; directly since the anharmonic vibrations them-
selves contribute, and indirectly since the volume of a real crystal increases with
increasing temperature, changing all frequencies. The constant volume heat
capacity derived from experimental heat capacity data is different from that for a
fixed volume. The difference in heat capacity at constant volume for a crystal that
is allowed to relax at each temperature and the heat capacity at constant volume for
a crystal where the volume is fixed to correspond to that at the Debye temperature
represents a considerable part of C Cp V, ,m m� . This is shown for Mo and W [6] in
Figure 8.15.

8.2 Lattice heat capacity 245

Ag Cu Al NaCl KBr LiF

QD(Elastic) 226.4 344.4 428.2 321.9 182.8 834.1

QD(CV) 226.2 345.1 426 320 184 838

Table 8.3 Comparison of Debye temperatures derived from heat capacity data and from
elastic properties.



In order to calculate the dilational contribution exactly a considerable quan-
tity of data is needed. The temperature dependence of the volume, the iso-
baric expansivity and the isothermal compressibility is seldom available from 0 K
to elevated temperatures and approximate equations are needed. The
Nernst–Lindeman relationship [7] is one alternative. In this approximation
C Cp V, ,m m� is given by

C C
V

C
C T AC Tp V

T p
p p, ,

,
, ,m m

m
m m� � �

a

k

2

2
2 2 (8.31)

The parameter A is nearly constant over a wide range of temperatures and A can
be calculated at any temperature if the data needed to derive its value are available
at one temperature. The equation can be used over a wide temperature range
without introducing large errors.

In an alternative approach [7], applicable if the isobaric thermal expansivity is
known as a function of temperature, C Cp V, ,m m� is given by

C C C Tp V V, , ,m m G m� � g a (8.32)

where g G is the Grüneisen parameter, defined as
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g G is largely independent of temperature at high temperatures.
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Estimates of heat capacity from crystallographic, elastic and
vibrational characteristics

Most thermodynamic data are limited to a certain range in temperature and pres-
sure and cannot be extrapolated to other p,T conditions. The data tabulated in major
data compilations and thermodynamic tables are often obtained by fitting non-
physical models to experimental data and the fits are only valid over the tempera-
ture and pressure ranges where measurements have been carried out. Extrapola-
tions to other T and p conditions are frequently done using simplified models of the
vibrational density of states. These estimation schemes have been shown often to
be accurate at temperatures above about 200 K. A model is typically developed by
taking available crystallographic, vibrational and thermoelastic data into consider-
ation and can be used over larger pressure and temperature ranges.

Kieffer has estimated the heat capacity of a large number of minerals from
readily available data [8]. The model, which may be used for many kinds of mate-
rials, consists of three parts. There are three acoustic branches whose maximum
cut-off frequencies are determined from speed of sound data or from elastic con-
stants. The corresponding heat capacity contributions are calculated using a modi-
fied Debye model where dispersion is taken into account. High-frequency optic
modes are determined from specific localized internal vibrations (Si–O, C–O and
O–H stretches in different groups of atoms) as observed by IR and Raman spectros-
copy. The heat capacity contributions are here calculated using the Einstein model.
The remaining modes are ascribed to an optic continuum, where the density of
states is constant in an interval from nL to nH and where the frequency limits nL and
nH are estimated from Raman and IR spectra.

This approach can be briefly illustrated through an analysis of the heat capacity
of calcite. The primitive unit cell contains two CaCO3 formula units (10 atoms) and
calcite thus has 30 degrees of freedom. Among these modes, 3 are acoustic and 12
are internal modes related to the vibrations of the two CO3

2 � groups (with 3n – 6
vibrational modes), whereas the remaining 15 are optic modes that will be taken
into account by the optic continuum. Directly measured acoustic velocities are
available. The frequency of the internal optic modes represented by Einstein oscil-
lators and the limits of the optic continuum are derived from the IR and Raman
spectra given in Figures 8.16(a) and (b). The resulting approximate phonon density
of states is shown in Figure 8.16(c), while the heat capacity and the relative contri-
bution from the acoustic and internal optic modes and the modes of the optic con-
tinuum are given in Figure 8.16(d).

The Kieffer approach uses a harmonic description of the lattice dynamics in
which the phonon frequencies are independent of temperature and pressure. A fur-
ther improvement of the accuracy of the model is achieved by taking the effect of
temperature and pressure on the vibrational frequencies explicitly into account.
This gives better agreement with experimental heat capacity data that usually are
collected at constant pressure [9].
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8.3 Vibrational entropy

The Einstein and Debye models revisited

The vibrational heat capacity is the largest contribution to the total heat capacity
and determines to a large extent the entropy. Analytical expressions for the entropy
of the models described in the previous section can be derived. The entropy corre-
sponding to the Einstein heat capacity is

S R
T

T
TE

E

E
E�

�
� � �

�

�
�

�

�
�3

1
1

Q
Q

Q/

[exp( / ) ]
ln[ exp( / )] (8.34)

where q wE E B� � /k .
Similarly, the expression for the entropy of the Debye model is
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and here q wD D B� � /k and x k T� �w / B .
Whereas the latter expression must be solved numerically for low temperatures,

the entropy at high temperatures can be derived by a series expansion [4]. For the
Debye or Einstein models the entropy is essentially given in terms of a single
parameter at high temperature:
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The entropy of a monoatomic solid is given as a function of the Debye tempera-
ture and the thermodynamic temperature in Figure 8.17.

An alternative to deriving the Debye temperature from experimental heat capaci-
ties is to derive an entropy-based Debye temperature by calculation of the QS that
reproduces the observed entropy for each single temperature using

SDebye(T, QS) = Sexper(T) (8.37)

This relation yields QS(T), in an analogous manner to the heat capacity-based
Debye temperature (eq. 8.29). While the derivation of Debye temperatures from
heat capacities is done using low-temperature data, the entropy-based Debye tem-
perature can be derived from high-temperature data since the vibrational part of the
standard entropy usually dominates at high temperatures. As evident from eq.
(8.36), at high temperatures the entropy depends on the logarithmic average of the
phonon frequency. These phonon frequencies, as we have seen, depend on the
interatomic forces and the atomic masses. The logarithmic average can be
deconvoluted so that the effect of atomic mass is separated from the effect of the
interatomic force constant. The entropy contribution related to the force constant
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depends on the electronic structure of the compounds and strong regularities are
observed when chemically related materials are compared. The method was devel-
oped for estimation of the entropy of materials (stable and metastable) for which
experimental entropy data are not available. A large number of compounds have
been analyzed. Trends observed in the entropy Debye temperature are given for the
alkaline earth dihalides [10] and transition metal carbides [11] in Figure 8.18. A
close resemblance is observed between the trends for the normal Debye tempera-
ture of the alkali halides in Figure 8.14 and the entropy Debye temperatures for the
alkaline earth dihalides in Figure 8.18(a).

Effect of volume and coordination

First-order estimates of entropy are often based on the observation that heat capaci-
ties and thereby entropies of complex compounds often are well represented by sum-
ming in stoichiometric proportions the heat capacities or entropies of simpler
chemical entities. Latimer [12] used entropies of elements and molecular groups to
estimate the entropy of more complex compounds: see Spencer for revised tabulated
values [13]. Fyfe et al. [14] pointed out a correlation between entropy and molar
volume and introduced a simple volume correction factor in their scheme for estima-
tion of the entropy of complex oxides based on the entropy of binary oxides. The
latter approach was further developed by Holland [15], who looked into the effect of
volume on the vibrational entropy derived from the Einstein and Debye models.

Even though the Einstein and Debye models are not exact, these simple one-
parameter models illustrate the properties of crystals and should give reliable esti-
mates of the volume dependence of the vibrational entropy [15]. The entropy is
given by the characteristic vibrational frequency and is thus related to some kind of
mean interatomic distance or simpler, the volume of a compound. If the unit cell
volume is expanded, the average interatomic distance becomes larger and the
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bonding strength is usually reduced. Weaker bonding strength obviously results in
a reduced vibrational frequency for the longitudinal phonons.

The effect of a change in volume on the entropy is given by the ratio of the iso-
baric expansivity and isothermal compressibility of a compound:
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The volume dependence of the entropy can alternatively be expressed as a function
of the Einstein or Debye temperature as
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( / )� �S TQ is given by differentiation of eqs. (8.34) or (8.35), while the variation of
the characteristic temperature with volume is given by [15]
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Here Qo is the characteristic temperature at volume Vo. An average value for the
volume dependence of the standard entropy at 298 K for around 60 oxides based on
the Einstein model is 1.1 � 0.1 J K–1 cm–3 [15]. A corresponding analysis using the
Debye model gives approximately the same numeric value.

In the preceding treatment we have assumed a volume change without taking the
structure of the material into consideration; for a phase transition where the cation
coordination is preserved DtrsS generally has the same sign as DtrsV and the transition
temperature increases with pressure since dp/dT = DtrsS/DtrsV . A different conclu-
sion can be derived for phase transitions which involves a change in the nearest coor-
dination number. The vibrational properties of an atom will to a large degree depend
on the local environment and a change in coordination necessarily implies a change
in the vibrational density of states. For a transition that increases the coordination,
the interatomic distances in the first coordination sphere become longer. Although
the number of bonds increases, the vibrational density of states is generally shifted to
lower frequencies. The denser compound thus has higher entropy than otherwise
expected and may even in some cases have a higher entropy than the less dense modi-
fication, i.e. the Clapeyron slope becomes negative since DtrsS > 0 for DtrsV < 0.

The effect of coordination may be illustrated by the vibrational properties of the
four modifications of MgSiO3 [16]. Above 1000 K, the entropy of these modifica-
tions of MgSiO3 decreases in the order

pyroxene > perovskite > garnet > ilmenite
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The density increases in the order

pyroxene < garnet < ilmenite < perovskite

Thus garnet, ileminite and perovskite are modifications stabilized by pressure and
they are all stable at some specific pressure–temperature conditions.

Using the volume argument, pyroxene is the high-entropy modification, in line
with experiments. On the other hand, the perovskite should have the lowest
entropy. This is not observed and this reflects the opposing effect of a coordination
change. All the Si atoms are tetrahedrally coordinated in pyroxene, while 50% are
tetrahedrally coordinated and 50% octahedrally coordinated in garnet. In the
ilmenite and perovskite modifications all Si atoms are octahedrally coordinated.
When Si transforms from a tetrahedral to an octahedral coordination, the frequency
of the Si–O stretching modes decreases from typically 900–1100 cm–1 (SiO4 tetra-
hedra) to 600–800 cm–1 (SiO6 octahedra). The bonds are stronger in the tetrahedra
than in the octahedra [16]. A lower bond strength gives larger vibrational ampli-
tudes, lower frequencies and thereby a larger entropy for the 6-coordinated com-
pounds. These factors explain why the perovskite has higher entropy than the
garnet at high temperatures and that the slope of the p–T phase boundary between
the two phases is negative.

8.4 Heat capacity contributions of electronic origin

Electronic and magnetic heat capacity

Quantization is important also for understanding the electronic contribution to the
heat capacity. In classical theory the electrons were considered as small particles
moving freely through the crystal, and the three translational degrees of freedom
were expected in total to contribute 3/2R to the total heat capacity. The heat
capacity of a monovalent metal, like copper, was by these considerations expected
to be 3R + 3/2R. The experimental heat capacity is, however, as we have seen, close
to 3R. The small electronic contribution to the heat capacity is due to quantization.
Electrons follow Fermi–Dirac statistics (see e.g. C. Kittel and H. Kroemer, Further
reading) and only electrons near the Fermi level can be excited at a given tempera-
ture. When the temperature rises from 0 K to T the total increase in internal energy
is roughly

DU N k T� 1 B (8.41)

where N1 is the number of electrons that are excited by the thermal energy kBT.
These electrons occupy electron states in a band of thickness kBT about the Fermi
level, e F , as visualized in Figure 8.19, where the energy distribution for a free elec-
tron gas is given. It follows that the number of excited electrons, N1, at a given tem-
perature is given by
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N n k T1 � ( )e F B (8.42)

where n(eF) is the density of electronic states at the Fermi level. The internal
energy of the electrons follows

DU n k TB� ( )e F
2 2 (8.43)

Using this simple argument, the electronic heat capacity, C E , of a free electron gas
is

C
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T
n k TE F B
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D
2 ( )e (8.44)

An exact derivation that takes into account the variation of the Fermi level with
temperature gives basically the same result:

C n k TE F B�
p e

2
2

3
( ) (8.45)

The electronic heat capacity thus varies linearly with temperature and is often
represented as

C TE � g (8.46)
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where g is termed the electronic heat capacity coefficient. The variation of g across
the periodic table is given in Table 8.2.

The electronic heat capacity for the free electron model is a linear function of
temperature only for T�� TF = eF / kB. Nevertheless, the Fermi temperature TF is of
the order of 105 K and eq. (8.46) holds for most practical purposes. The population
of the electronic states at different temperatures as well as the variation of the elec-
tronic heat capacity with temperature for a free electron gas is shown in Figure
8.20. Complete excitation is only expected at very high temperatures, T > TF. Here
the limiting value for a gas of structureless mass points 3/2R is approached.

Since the lattice contribution to the heat capacity varies with T3, the total heat
capacity at low temperatures (typically T < 10 K or lower) to a first approximation
is given by

C T TV � �b g3 (8.47)

A plot of C TV / against T2 should therefore give a straight line as illustrated for Cu
in Figure 8.21. From this plot the electronic density of states at the Fermi level can
be calculated, and calorimetry has frequently been used for this purpose. A striking
example is the electronic heat capacity coefficients observed for Rh–Pd–Ag alloys
given in Figure 8.22 [17]. In the rigid band approach the addition of Ag to Pd gives
an extra electron per atom of silver and these electrons fill the band to a higher
energy level. Correspondingly, alloying with Rh gives an electron hole per Rh atom
and the Fermi level is moved to a lower energy. The variation of the electronic heat
capacity coefficient with composition of the alloy maps approximately the shape of
such an electron band. The electronic density of states for Rh–Pd–Ag alloys can be
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understood by the superposition of a narrow 4d band on a flat 5s band. This is also
indicated in Figure 8.22; the solid line represents the 5s band and the dotted line the
4d band.

Whereas the vibrational and electronic contributions to the heat capacity are
readily treated in terms of simple models, the treatment of the heat capacity due to
excitation of collective magnetic excitation modes of ordered magnetic struc-
tures, often termed spin waves or magnons, is more complex. The ideally ordered
magnetic states exist only in the absence of thermal agitation. At finite tempera-
tures the spins at some sites are excited. By analogy with collective vibrational
modes, spin waves are formed. If the magnon frequency for a particular wave
vector is n(q) and gmagn(n) is the density of states of magnon frequencies, the
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magnetic heat capacity can be expressed by analogy with that for the lattice heat
capacity as (see e.g. Grimvall, Further reading)
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21( )
( )w w (8.48)

where x k T� �w / B . The magnon density of states is in general not easily calcu-
lated and the functional variation depends on the type of magnetic order. It can be
shown that the magnetic frequencies for a ferromagnetic insulator scale with the
square of the wave vector. The magnetic heat capacity resulting from this charac-
teristic is proportional to T3/2 at low temperature. The heat capacity of an anti-
ferromagnet shows a T3 variation at low temperatures. At higher temperatures,
interactions between the magnons give rise to other terms.

Electronic and magnetic transitions

Electronic transitions like insulator–metal transitions, magnetic order–disorder
transitions, spin transitions and Schottky-type transitions (due to crystal field split-
ting in the ground state in f element-containing compounds) profoundly influence
the phase stability of compounds. A short description of the main characteristics of
these transitions will be given below, together with references to more thorough
treatments.

The electronic heat capacity naturally has a pronounced effect on the energetics
of insulator–metal transitions and the entropy of a first-order transition between
an insulating phase with g = 0 and a metallic phase with g = gmet at Ttrs is in the first
approximation Dins–metSm = gmetTtrs.

Differences in the Debye temperature, or in other words the vibrational character
of the two phases, will modify the transitional entropy to some extent. Still, this
entropy change is normally not large for transitions where the coordination number
is preserved.

Magnetic order–disorder transitions give rise to a heat capacity and entropy
contribution of configurational nature. While the magnon heat capacity is complex,
a very general expression is available for the maximum total order–disorder entropy.
A particle with Nun unpaired electrons and total spin quantum number S = S 1

2 unN
has (2 S + 1) quantized orientations. While all spins have the same orientation at
low temperatures for an ordered magnetic structure, all orientations are degenerate
in the paramagnetic state. The entropy change corresponding to this disordering is
thus kB ln(2 S + 1) per particle or

DS R� �ln( )2 1S (8.49)

for one mole of atoms. For Fe3+ (d5) in its electronic ground state S = 5/2 and
D S = R ln 6 = 14.89 J K–1 mol–1. If the disordering takes place through a second-
order transition, the entropy contribution at a given temperature may be estimated
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from Landau theory (see Section 2.3). It should in this context be noted that a mag-
netic transition that takes place at high temperatures may give significant contribu-
tions to the entropy at temperatures far below TC, as evident from the deconvoluted
heat capacity of Fe2O3 in Figure 8.23 [18]. Although the spin-only approximation
has been shown to give reasonable estimates for iron oxides, for example, devia-
tions from the spin-only entropy must in general be expected as for example shown
for MnO [19]. An alternative approximation for the maximum magnetic entropy
frequently used in thermodynamic representations of phase diagrams involves the
saturation magnetization at 0 K instead of the spin quantum number [20].

Transitions with large entropy changes take place also in the paramagnetic state.
Octahedrally coordinated transition metal ions having electronic configurations
d4, d5, d6 or d7 can exist in the low-spin or high-spin ground state depending on the
strength of the ligand field. The same is the case for tetrahedrally coordinated tran-
sition metal ions with d3, d4, d5 or d6 configuration. Temperature-induced spin
transitions are expected in compounds where the ligand field splitting energy is
comparable to the thermal energy and larger than the electron spin-pairing energy.
The ligand field splitting energy depends on the metal, its valence and the ligand,
and for a given metal in a given oxidation state, the ligand determines the spin state.
Some trivalent oxides of cobalt (for example Co2O3) are found to be in a high-spin
state at all temperatures, others are in a low-spin state (for example ZnCo2O4 and
LiCoO2), while others show temperature-induced spin transitions (for example
Co3O4 and LaCoO3). The ligand field splitting is in general smaller for iron than
for cobalt, and although Co3+ and Fe2+ have the same electronic configuration, all
iron oxides are in a high-spin state at ambient pressure. Reviews focusing on
metal–organic compounds by Gütlich et al. [21] and by Sorai [22] give more
detailed accounts of the physics of spin transitions.

Large entropy increments accompany the spin transitions. For Co3+ in an octahe-
dral crystal field the high-spin state has a degeneracy of 15 (the product of orbital

8.4 Heat capacity contributions of electronic origin 257

200 400 600 800 1000
0

50

100

150

200

Cp, m(magnetic)

total Cp, m

CV, m+ Cdil

CV, m

Fe2O3

T / K

,m
/J

K
m

ol
p

C
-

-
1

1

Figure 8.23 Heat capacity of Fe2O3 [18]. The heat capacity is deconvoluted to show the
relative magnitude of the main contributions. Cdil = Cp,m – CV,m = a2TV/kT.



and spin degeneracy), whereas the low-spin state is singly degenerate. A transition
from the low-spin to the high-spin ground state should thus give a configurational
entropy increment of R ln 15 = 22.5 J◊K–1 mol–1 in the high-temperature limit and
also substantial contributions to the heat capacity. The experimental heat capacity
for Co3O4, which undergoes a temperature-induced spin transition at high temper-
atures is shown in Figure 8.24 [23–25]. The normal spinel contains Co2+ at tetrahe-
dral sites and low-spin Co3+ at octahedral sites. The heat capacity effect observed
at T � 900K is in part a low- to high-spin transition of the Co3+ ions and in part a
partial transition from normal toward random distribution of Co3+ and Co2+ on the
tetrahedral and octahedral sites of the spinel structure. The entropy change con-
nected with the spin change is by far the largest contribution to the transitional
entropy. The insert to the figure shows the magnetic order–disorder transition of
Co3O4 at around 30 K.

The magnetic entropies are large and indicate the need for thermodynamic
models, atomistic or purely mathematical, that can handle these effects. Although
spin transitions in principle may be simple two-level transitions, they may also be
affected by spin–orbit coupling (frequently observed for cobalt ions), magnetic
ordering, and associated changes in the crystal structure. Since the spin transition
affects the bonding in the crystal and thus the vibrational frequencies, an associ-
ated change in the Debye temperature of the compound must be expected. The size
of this effect is limited for inorganic compounds. For organometallic compounds,
on the other hand, the entropy connected with this lattice effect often is larger than
the entropy of the spin state transition itself [22].

A low-spin to high-spin transition relates to the crystal field splitting of the d-
orbitals in an octahedral or tetrahedral crystal field. However, even in cases where
the energy difference between two spin states is much larger, electronic transitions
are observed. An atom with total spin quantum number S has (2 S + 1) orienta-
tions. In a magnetic field the atom will have a number of discrete energy levels with
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energy spacing dependent on the strength of the magnetic field. Although the
crystal field experienced by a metal-atom in a crystal is small compared to what can
be achieved by external magnets, the crystal-field typically induces splitting of the
f-electron levels in actinides, and the effects of this are visible in the heat capacity
in large temperature regions at relatively high temperatures [26]. Similar heat
capacity effects are observed also in hydrated paramagnetic salts used for magnetic
cooling [27]. The spins on transition metals like Ni and Fe are here localized since
they are diluted by the presence of non-magnetic ions. This dilution gives well-
defined localized energy levels and thus sharp heat capacity effects.

The heat capacity of transitions of this type is given by the energy level splitting
in an electrostatic field and by the degeneracy of the energy levels. Let us for sim-
plicity assume that we have a system with two levels with energy spacing e/kB. For
T�� e/kB the upper level is occupied to a negligible extent only. For T �� e/kB both
levels will be approximately equally occupied. Using Boltzmann statistics the heat
capacity is
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where g0 and g1 are the degeneracies of the ground level and the excited level,
respectively. Experimental Schottky-type heat capacities for Nd2S3 [28] and
ErFeO3 [29] are shown in Figure 8.25. While the transition in the sulfide is spread
over a large temperature range, the ErFeO3 transition is at low temperatures and
occurs over a narrow range. A large number of experimental studies by Westrum
and co-workers have shown that the energies of the different energy levels can be
derived from accurate heat capacity data [26]. In these analyses, the number of
energy levels and their corresponding degeneracies are derived based on the sym-
metry of the lanthanide cations in the particular compounds by crystal field theory.
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The derived energy levels are shown to correspond closely to those obtained by
spectroscopy [26]. Calorimetrically and spectroscopically obtained energy levels
for Nd2S3 are given as an example in Table 8.4 [28].

8.5 Heat capacity of disordered systems

Crystal defects

Real crystals contain lattice defects and other extended defects at temperatures
above absolute zero (see e.g. Wollenberger, Further reading). The creation of an
intrinsic defect is always an endothermic process. However, as the temperature is
raised the increased entropy associated with the large number of possible positions
for the defect becomes important. Thus the counteracting effects of the entropy and
enthalpy of defect formation determine the variation of the Gibbs energy with con-
centration of defects, which will have a minimum for a given defect concentration
at a specific temperature. For a stoichiometric compound the temperature-induced
intrinsic disorder may be due to the formation of Frenkel or Schottky defects. This
defect formation gives rise to a heat capacity contribution given by the molar
entropy and enthalpy of formation of the defects, which for the Schottky defect
case is given by
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Here D vac S and D vac H are the molar entropy and enthalpy of formation of the
defects. Using a pure metal like aluminium as an example, the fractional number of
defects, heat capacity and enthalpy due to defect formation close to the fusion tem-
perature are 5◊10–4, 0.3 J K–1 mol–1 and 30 J mol–1 [30].

In other cases more complex disordering mechanisms are observed. Non-
stoichiometric oxides in which the oxygen vacancies are ordered at low tempera-
tures illustrate convergent disordering. The oxygen atoms and oxygen vacancies
are here distributed at the same sub-lattice at high temperatures. An example is
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E / cm–1

Level Degeneracy Spectroscopy Calorimetry

0 2 0 0

1 2 76 80

2 2 140 140

3 2 180 180

4 2 358 340

Table 8.4 Energy levels of Nd2S3 [28].



Sr2Fe2O5 in which the entropy of the first-order disordering reaction suggests that
the oxygen atoms are far from randomly distributed at high temperatures [31].
Computer simulations described in Section 11.1 suggest that the disorder may be
described in terms of a mixture of different structural entities: FeO4 tetrahedra,
FeO5 square pyramids and FeO6 octahedra [32]. Cation disorder by what is termed
non-convergent disordering takes place in other systems, e.g. in spinels. Here the
cations occupy two different sub-lattices, which also remain distinct in the disor-
dered high-temperature state. This will be discussed further in Section 9.2.

Fast ion conductors, liquids and glasses

Fast ion conductors have many physical properties, typical of solids, while others are
to some extent similar to those of liquids. For some fast ionic conductors, for
example AgI, the high ionic conductivity is associated with a first-order phase transi-
tion where the sub-lattice associated with the mobile Ag ion becomes almost com-
pletely disordered. The other sub-lattice remains unaffected and constitutes a
structural frame, which gives the substance the expected mechanical properties of a
solid. In some cases, the entropy of the order–disorder transition forming the fast ion
conductor is larger than the entropy of the subsequent melting of the disordered fast
ion conductor [33]. The large degree of disorder on the sub-lattice of the mobile spe-
cies results in a high configurational entropy. This is a characteristic property of liq-
uids as well. Another similarity between liquids and some fast ion conductors is a
decreasing heat capacity with increasing temperature. This is observed for many liq-
uids and also for some fast ion conductors like Cu2S [34] and Ag2S [35].

In contrast to crystalline solids characterized by translational symmetry, the
vibrational properties of liquid or amorphous materials are not easily described.
There is no firm theoretical interpretation of the heat capacity of liquids and
glasses since these non-crystalline states lack a periodic lattice. While this lack of
long-range order distinguishes liquids from solids, short-range order, on the other
hand, distinguishes a liquid from a gas. Overall, the vibrational density of state of a
liquid or a glass is more diffuse, but is still expected to show the main characteris-
tics of the vibrational density of states of a crystalline compound.

The most characteristic feature of liquids relative to crystalline solids is the con-
figurational entropy associated with the large degree of disorder in the liquid state.
The high configurational entropy allows for fast motion by rotation or diffusion,
and liquids are usually non-viscous in the stable region above the freezing point.
The viscous properties of SiO2 and some other glass-forming liquids are rare
exceptions, but in this case the configurational entropy associated with the melting
transition is unusually low [36].

The heat capacity of liquids at constant pressure appears in general to go through
a broad minimum as a function of temperature. A classic example is Se, for which
the heat capacity is given in Figure 5.1. The heat capacity is expected to decrease at
high temperatures, where the intermolecular bonding becomes weaker and vibra-
tional degrees of freedom may be lost when the short-range order is gradually
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destroyed. Finally, it is worth noting that the heat capacity of inorganic and
metallic liquids is not that well established experimentally and considerable spread
is present even in the data reported for pure metallic elements like Cd [37] and Zn
[38].

Two aspects of the thermodynamics of supercooled liquids have generated con-
siderable interest: the non-equilibrium transition to the glassy state at the glass
transition [39] as well as the heat capacity of the glass close to the absolute zero of
temperature. As already discussed, the vibrational density of states of glasses
resembles that of the stable crystalline compound. This is especially true for the
vibrational modes associated with short-range order. Still, anomalous heat
capacity behaviour is often observed close to absolute zero. This effect is ascribed
to excitations in a two-level system associated with highly anharmonic atomic con-
figurations [40]. The ‘anomalous’ heat capacity effects observed for Se [41] and
B2O3 [42–44] glasses are shown in Figure 8.26. For a normal Debye-like solid the
heat capacity divided by the cube of the temperature should be approximately con-
stant, as indicated for crystalline B2O3 by a dotted line. The glasses show heat
capacities that largely exceed this Debye-like value.

The glass transition has also received much attention since it is most easily
observed experimentally by measurement of the heat capacity and because it is an
important characteristic of glasses. The heat capacity displays a jump at the glass
transition associated with the onset of the configurational degrees of freedom of
the liquid, as exemplified using a range of types of glass in Figure 8.27 [45–49].
The glass transition is a non-equilibrium transition and the glass transition temper-
ature is observed experimentally to depend on the thermal history of the glass. The
heat capacities of glassy B2O3 observed on heating at different heating rates are
shown in Figure 8.28 [50].
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This effect of thermal history is also illustrated schematically in Figure 8.29,
where the entropy of a liquid during cooling is displayed. Above the glass transition
temperature the liquid is ergodic and the entropy is not dependent on the thermal his-
tory. The departure from equilibrium behaviour in the glass transition region
depends on the cooling rate. At fast cooling rates the supercooled liquid is trans-
formed into a glass at higher temperature relative to a liquid cooled at a slow cooling
rate. Slow reheating of a glass prepared by fast cooling may relax, as shown by the
short dotted line in Figure 8.29. This is a characteristic of ageing of glasses, which
means that the entropy of the glass relaxes towards the entropy of the equilibrium
supercooled liquid shown by the dotted line. The relaxation effect is reflected by a
peak in the heat capacity at the glass transition temperature, as seen in Figure 8.28

8.5 Heat capacity of disordered systems 263

700 750 800 850 900

90

120

150

180

–40 K min–1

–10 K min–1

–2.5 K min–1

T / K

/J
K

m
ol

p
C

-
-

1
1

Figure 8.28 Heat capacity of glassy B2O3 at different heating rates [50].
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for B2O3. This effect is thus a kinetic phenomenon and the effect becomes more pro-
nounced with increasing heating rate. The current understanding of relaxation of
glass-forming liquids and amorphous solids is reviewed in [51].

The rate of loss of the configurational entropy of a supercooled liquid on cooling
has been used to categorize different glass-forming liquids into fragile and strong
[52]. Originally, this was a pure kinetic concept based on the non-Arrhenius behav-
iour of the viscosity in a Tg-scaled Arrhenius plot. Fragile liquids are strongly non-
Arrhenius, while the viscosity of strong liquids follows the Arrhenius law. During
heating a fragile liquid becomes non-viscous at a considerably lower temperature
than a strong glass with a comparable glass transition temperature. A corre-
sponding thermodynamic fragility is defined by plotting the excess configurational
entropy of a supercooled liquid as a function of the reciprocal temperature divided
by Tg. The configurational entropy of the supercooled liquid is scaled by the
frozen-in configurational entropy at the glass transition. A fragile liquid displays a
fast loss of configurational entropy during cooling (a high excess heat capacity rel-
ative to the crystalline solid), while strong liquids lose the scaled configurational
entropy at a much lower rate (small excess heat capacity of the supercooled liquid
relatively to the crystalline solid). The concept of thermodynamic and kinetic fra-
gility therefore seems to open up a qualitative correlation between the
thermodynamic and dynamic behaviour of liquids [52].
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9
Atomistic solution models

The formalism of the thermodynamics of solutions was described in Chapter 3. In
this chapter we shall revisit the topic of solutions and apply statistical mechanics to
relate the thermodynamic properties of solutions to atomistic models for their
structure. Although we will not give a rigorous presentation of the methods of sta-
tistical mechanics, we need some elements of the theory as a background for the
solution models to be treated. These elements of the theory are presented in Section
9.1.

Statistical mechanical models for solutions were first derived for binary solu-
tions where the two components were distributed and mixed in a single lattice with
a fixed number of lattice sites and constant coordination number. We will here con-
fine our discussion to substitutional solutions, although similar models are appli-
cable to interstitial solutions. The models are presented starting with the ideal
solution model and continuing with the regular and quasi-chemical models. The
latter is interesting in that it introduces some degree of order in the solutions.
Finally, the Flory model for polymeric solutions is presented. The thermodynamics
of polymers have not been considered in this book before, but the Flory model
illustrate a simple approach for the statistical mechanical treatment of solutions of
molecules/entities with substantial variation in molecular weight and volume.
Here the entropy of mixing is a function of the volume fractions of the components
rather than the mole fractions.

In simple solutions such as binary alloys, the components are distributed on a
single lattice. More complex solutions may consist of two or more sub-lattices, and
in a solution of simple ionic salts like NaCl and NaBr there is one sub-lattice for
cations and one for anions. In these cases the interactions considered in the models
are between next neighbouring pairs of atoms rather than nearest neighbour atoms,
as is the case with a single lattice. Two sub-lattice models can also be applied to
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treat order–disorder in solid solutions. Here the given species are distributed on
two different sub-lattices in the ordered structures at low temperatures. These sites
may become crystallographically equivalent in the disordered structure at high
temperatures and the disordering process in such cases is termed convergent. The
treatment of non-convergent disordering, e.g. in spinels, where the crystallo-
graphic sites remain distinct even in the disordered high-temperature state, is
closely related. For that reason order–disorder in spinels is briefly described.

The final topic of the chapter is materials with a significant concentration of
vacant lattice sites. Attention is given to statistical models giving a quantitative
link between defect equilibria and chemical thermodynamics. The significance of
such a link is seen by the fact that mixed conductor ceramics, for example, a large
group of materials that include oxygen permeable membranes, are both electronic
and ionic conductors. Both the electrical conductivity and the stability of these
materials are governed by the defect chemistry and a link to chemical thermody-
namics is thus important.

9.1 Lattice models for solutions

Partition function

The thermodynamics of a system consisting of N interacting particles is in statis-
tical mechanics given in terms of the partition function, Z, which is defined as [1]

Z
U

k Tj

j
� �

�

�
�
�

�

�
�
�	 exp

B
(9.1)

HereU j is the energy of the system in the state j, kB is Boltzmann’s constant and T
is the temperature. The summation is over all possible energy states of the system.
If the summation were instead allowed over all energy levels i, Z would be written

Z
U

k T
i

i

i

� �
�

�
��

�

�
��	g

B
exp (9.2)

where gi is the number of states (the degeneracy) with energy i.
All thermodynamic properties can be derived from the partition function. It can

be shown that the Helmholtz energy, A, is related to Z by the simple expression

A k T Z� � B ln (9.3)

The contribution from the partition function (right-hand side of eq. (9.3)) should be
interpreted as the value of the Helmholtz energy relative to its value in the lowest
energy state, or in other words at the absolute zero of temperature, A(0). In the fur-
ther discussion we will only consider the values relative to 0 K. Thus
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A A T A� �( ) ( )0 (9.4)

The Gibbs energy, G, is often a more appropriate variable at isobaric conditions.
For condensed systems, G can be assumed to be equivalent to A because their dif-
ference, the term pV, is usually negligible. The Gibbs energy of condensed phases
can therefore in most cases be approximated as

G k T Z
 � B ln (9.5)

Here again G = G(T) – G(0). Other thermodynamic functions such as enthalpy,
entropy and volume may be derived by the thermodynamic relationships discussed
in Chapter 1.

Ideal solution model

In Section 3.2 the ideal solution model was introduced. The essential assumption
of the ideal model is that there is no energy change associated with rearrangements
of the atoms A and B. In other words the energies associated with a random distri-
bution of A and B atoms and a severely non-random distribution, in which the A
and B atoms are clustered, are equal.

We are now going to consider such an ideal solution using statistical mechanics.
Whereas eq. (9.3) defines the energy relative to the absolute zero, we are now inter-
ested in the variation of the energy and the degeneracy with composition at a given
temperature. The average energy of an atom A or B is at this temperature uA and
uB , respectively. These energies are defined by the partition functions for the two

types of atoms taking into consideration all kind of excitations: vibrational, mag-
netic, electronic and others. The ideal solution is described, taking these energy
states as a starting point. It is assumed that the non-configurational part of the
entropy is not affected by the mixing and this term is thus not considered in the
simplest treatments of solutions.

The ideal solution has only one energy level for a given composition and the
average internal energy of this state is simply given in terms of the weighted
average internal energies of the A and B atoms before mixing:

U N u N u U U� � � �A A B B A B (9.6)

Here N A and N B are the number of A and B atoms in the mixture. Each distinguish-
able arrangement of the atoms represents a unique state, and to obtain the degen-
eracy for the single energy state of an ideal solution with a specific composition we
need to calculate the number of distinguishable states.

Let us assume that we have N atoms to distribute over N lattice sites
(N N N� �A B). A two-dimensional illustration for N NA B� is shown in Figure 9.1.
The sites are numbered and we will fill them one by one. We have a choice of N
atoms to fill the first site. For the second site there are therefore only N – 1 atoms to
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choose from. For the third, there are N – 2, etc. The total number of possible
arrangements is therefore the product of the number of atoms available to fill all
lattice sites one at a time: N N N N( )( ) ... !� � �1 2 1 . Thus, there are N! possible ways
to distribute N atoms among N lattice sites. If one type of atom only is distributed
on the N sites, all these distributions are indistinguishable. In a lattice containing
two types of atom (A and B) a number of distinguishable distributions are obtained.
We will term these distinguishable distributions configurations.

The number of configurations may be derived indirectly. The switch of two A
atoms between two sites containing A atoms leads to an indistinguishable distribu-
tion. Therefore if there are NA sites filled with A atoms there are also NA! ways
of redistributing the A atoms among the NA sites. Correspondingly, there are
NB! ways of redistributing the B atoms among the NB sites filled with B atoms. Since
the switching of like atoms does not contribute to the distinguishable distributions,
the total number of distinguishable arrangements or configurations in an ideal A–B
solution is N!/NA!NB!. The partition function for the ideal solution now can be
written as

Z g
U
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U U
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where U takes a specific value for a given number of A and B atoms. The Gibbs
energy of the ideal solution is given through the partition function as

G A k T Z k T
N

N N
U U
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�
�� � �B B

A B
A Bln ln

!

! !
(9.8)
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Figure 9.1 Two-dimensional lattice model for a solution of two different atoms of similar
radius.



and the Gibbs energy of mixing is obtained by subtracting the enthalpy contribu-
tion from the pure elements, H U
 :

D mix B
A B

G k T
N

N N
� �

�

�
��

�

�
��ln

!

! !
(9.9)

Using Sterling’s approximation (ln ! lnM M M M� � for M large), the Gibbs
energy of mixing becomes
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(9.10)

where xA and xB are the mole fractions of A and B respectively. The molar Gibbs
energy of mixing for an ideal solution of A and B is obtained by multiplication by
[ /( )]L N NA B� :

D mix m A A B BG RT x x x x� �[ ln ln ] (9.11)

The molar entropy of mixing for the ideal solution follows as

D D
mix m

mix m
A A B BS

G

T
R x x x x
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� �
�
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�

�
�

�

�
� � � �[ ln ln ] (9.12)

whereas the molar enthalpy of mixing is given through the relation G = H – TS as

D D Dmix m mix m mix mH G T S� � � 0 (9.13)

This is in accordance with the definition of an ideal solution given in Section 3.2.
The ideal solution approximation is well suited for systems where the A and B

atoms are of similar size and in general have similar properties. In such systems a
given atom has nearly the same interaction with its neighbours, whether in a mix-
ture or in the pure state. If the size and/or chemical nature of the atoms or molecules
deviate sufficiently from each other, the deviation from the ideal model may be
considerable and other models are needed which allow excess enthalpies and pos-
sibly excess entropies of mixing.

Regular solution model

The regular solution model, originally introduced by Hildebrand [2] and further
developed by Guggenheim [3], is the most used physical model beside the ideal
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solution model. In a regular solution A–B, the A and B atoms are assumed to be
randomly distributed on the same lattice or quasi-lattice just as was the case for the
ideal solution model. Each atom is surrounded by a number of neighbouring atoms,
and this nearest neighbour coordination number of the lattice is termed z. There are
no vacant lattice sites, and the energy of the system is calculated as a sum of
pairwise interactions between atoms on neighbouring sites. For the two-dimen-
sional lattice shown in Figure 9.1, there are six pair interactions to be considered
for each atom since the nearest-neighbour coordination number z is 6. The numbers
of AA, BB and AB pairs are denoted by NAA, NBB and NAB, and the interaction
energies of each pair are uAA, uBB and uAB, respectively. All other contributions to
the energy are neglected, including intermediate and long-range interactions. The
total number of pairs in the lattice is the product of the number of sites and the coor-
dination number divided by 2 to avoid each pair being counted twice. The average
internal energies of the pure substances A and B before mixing, UA and UB, can
now be given in terms of the interaction energies as 1

2
zN uA AA and 1

2
zN uB BB

respectively. Let us now find an expression for the energy of a solution per atom
after mixing a certain number of A and B atoms.

An atom A generates z pairs of either the AA or AB type. Summing over all A
atoms gives zNA numbers of pairs, which is expressed as

zN N NA AA AB� �2 (9.14)

Summing over all B atoms gives similarly

zN N NB BB AB� �2 (9.15)

The total number of pairs 1
2

zN yields

1
2

z N N N N N( )B A AA BB AB� � � � (9.16)

The average internal energy of the system for a given composition is now

U N u N u N u� � �AA AA BB BB AB AB (9.17)

If NAA and NBB are expressed in terms of eqs. (9.14) and (9.15), U becomes

U zN N u zN N u N u

zN u
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A AA zN u N u u uB BB AB AB AA BB( )� � �[ ]1
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(9.18)

It is now convenient to introduce the parameter wAB, defined as

w AB AB AA BB� � �u u u1
2

( ) (9.19)
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wAB is closely related to the regular solution constant defined in Section 3.4. Using
eq. (9.19), the average internal energy of the system can be expressed as

U U U N� � �A B AB ABw (9.20)

U varies with the number of AB pairs in the solution and is a function of the overall
composition. As was the case for the ideal solution, the atoms are assumed to be
randomly distributed and NAB can be derived. For a random distribution of the A
and B atoms, the probability of finding an atom A at a given lattice site is equal to
the mole fraction of A. Consequently, the probability of finding a B atom on a
neighbouring site is xB. The probability of finding an AB pair is therefore 2xAxB,
since both AB and BA pairs must be counted. NAB is now the product of the total
number of pairs (1

2
zN) and the probability of finding an AB (or BA) pair among

these pairs

N zN x x z
N N

N
AB A B

A B� �
�

�
�

�

�
�1

2
2 (9.21)

Since the A and B atoms are assumed to be randomly distributed, the partition func-
tion becomes
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The Gibbs energy for the regular solution of an arbitrary number of A and B atoms
follows

G A k T
N

N N
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zN N

N

 � �
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A B
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A B
ABln
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Note that UA (= 1
2

zN uA AA ) and UB (= 1
2

zN uB BB) depend on the number of A and B
atoms in the system. Subtracting the energy for the two pure elements and multipli-
cation by [L/(N NA B� )] gives the molar Gibbs energy of mixing of the regular
solution A–B:

D Wmix m A A B B AB A BG RT x x x x x x� � �[ ln ln ] (9.24)

Here WAB is the molar interaction coefficient defined in Chapter 3 (eq. 3.71):

W AB AB� zLw (9.25)
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The excess Gibbs energy of the regular solution, as pointed out in Chapter 3, is a
purely enthalpic term:

D D Wmix m mix m AB A BH U x x
 � (9.26)

The entropy of mixing is the same as for the ideal solution model.
The chemical potential of A is given as

m mA A
o

A A AB B
2� � � �RT a RT x xln ln W (9.27)

The activity coefficient for component A is thus

RT xln g A AB B
2� W (9.28)

Similar expressions can be derived for the partial molar Gibbs energy of mixing
and the activity coefficient of component B.

The model was first described in Chapter 3 and the molar Gibbs energy of mixing
using different values for W AB/RT is shown as a function of composition in Figure
3.10. For large and positive values of W AB/RT the solution becomes unstable and
segregates into two solutions. The ideal solution model is obtained for
W AB/RT � 0. Finally, for negative values the solutions is stabilized relative to the
pure components, since the unlike atoms attract each other. The activity and
activity coefficient for A, using different values for W AB/RT , are shown as a func-
tion of composition in Figures 9.2(a) and (b). For positive values of W AB/RT , the
activity coefficient may become larger than unity, while negative values give
activity coefficients smaller than one.
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In the derivation of the regular solution model the vibrational contribution to the
excess properties has been neglected. However, as a first approximation the vibra-
tional contribution can be taken as independent of the interaction between the dif-
ferent atoms, and this contribution can be factored out of the exponential and taken
into account explicitly. The partition function of the solution is then given as

Z gZ Z
U

k T
N N� �

��

�
��

�

�
��A B

B

A B exp (9.29)

where �U is the average internal energy of eq. (9.20) minus the vibrational contribu-
tion and ZA and ZB, the vibrational partition functions of the pure atoms A and B.
The Gibbs energy now becomes

G k T Z U k T g k T Z ZN N
 � 
 � � �B B B A B
A Bln ln ln (9.30)

where the two last terms are entropic contributions to the Gibbs energy of mixing.
The entropy of mixing may be divided into two terms; the configurational and the
non-configurational contributions. The molar configurational entropy is

D mix
conf

BS Lk g R g� �ln ln (9.31)

which when assuming a random distribution of atoms corresponds to the ideal
entropy of mixing. The second term, the non-configurational entropy, is assumed
to be proportional to x xA B and is given as

D mix
non -conf

m B A B A B AB
A BS k L Z Z zLx xN N� � 
(ln ln ) h (9.32)

where hAB is a constant. The excess molar Gibbs energy of mixing of the quasi-
regular solution results:

D mix
exc

m A B AB ABG zLx x T� �( )w h (9.33)

Here the first term is the excess enthalpy of mixing and the second term is the
excess entropy of mixing. Just as for the regular solution model, the quasi-regular
model is symmetrical about xA = xB = 0.5 and it is furthermore often convenient to
express the excess Gibbs energy through the ratio t w h� AB AB/ , which for one
mole of solution gives

D Wmix
exc

m A B ABG x x
T

� �
�

�
�

�

�
�1

t
(9.34)
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It is generally observed that as the temperature increases, real solutions tend to
become more ideal and t can be interpreted as the temperature at which a regular
solution becomes ideal. To give a physically meaningful representation of a systemt
should be a positive quantity and larger than the temperature of investigation. The
activity coefficient of component A for various values of W AB is shown as a function
of temperature fort � 3000K and x xA B� � 0 5. in Figure 9.3. The model approaches
the ideal model as T � t.

Quasi-chemical model

In the models considered until now, the configurational entropy is calculated by
assuming that the different species distribute randomly on the relevant lattice sites.
While this is a reasonable assumption for the ideal solution case, a large positive or
negative interaction energy in the regular solution model suggest that the species
are not completely randomly distributed. The quasi-chemical model, developed by
Guggenheim [3], aims at giving a more realistic representation of the degeneracy,
g. This model has frequently been applied to metallic systems where the deviations
from ideality are often limited, but also to salt systems where the interactions are
large and lead to the formation of ternary compounds.

While a random distribution of atoms is assumed in the regular solution case, a
random distribution of pairs of atoms is assumed in the quasi-chemical approxima-
tion. It is not possible to obtain analytical equations for the Gibbs energy from the
partition function without making approximations. We will not go into detail, but
only give and analyze the resulting analytical expressions.

In the approximate analytical expression for the Gibbs energy of mixing, the pair
exchange reaction

(A–A) + (B–B) = 2(A–B) (9.35)
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is an essential parameter [4]. The non-configurational Gibbs energy change for reac-
tion (9.35), termed g AB, contains both an enthalpic �w AB and an entropic �hAB term:

g w hAB AB AB� � � �T (9.36)

where � �w wAB AB2 and � �h hAB AB2 . Using eq. (9.36), the Gibbs energy of the
solution is expressed as

G N N T S
N

� � � �A A
o

B B
o

mix
conf AB

ABm m gD
2

(9.37)

where NAB, as earlier, is the number of A–B pairs in the solution. It is important to
note that NAB is no longer equal to the value calculated on the assumption of a
random distribution of atoms and thus is not easily derived. Furthermore, the degen-
eracy is a function of NAB, which again is a function of the interaction energy, g AB.

Another important feature of the quasi-chemical model is that the model allows
for mixing of A and B with different coordination numbers, zA and zB. The number
of pairs generated by the total number of A and B atoms is then

z N N NA A AA AB� �2 (9.38)

z N N NB B BB AB� �2 (9.39)

When z zA B� , these two equations reduce to eqs. (9.14) and 9.15).
The configurational entropy of the solution can now be expressed in terms of the

pair fractions, Xij , defined by

X
N

N N N
ij �

� �

ij
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(9.40)

and the coordination equivalent fractions defined as
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for solutions where z zA B� , Y xA A� and Y xB B� .
The resulting configurational entropy is
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Equation (9.42) is an approximation frequently used for three-dimensional lat-
tices, but it is exact only in the one-dimensional case [4].

The equilibrium distribution of pairs is calculated by minimizing the Gibbs
energy at a given composition. This gives

( )
exp

1
2

X

X X k T

AB
2

AA BB

AB

B
� �

�

�
��

�

�
��

g
(9.43)

In eq. (9.43) the relative number of pair interactions is given in terms of the
‘equilibrium constant’ for the pair exchange reaction we are considering. The name
quasi-chemical model thus recognizes the equivalence between this mass action
type expression and similar expressions for chemical equilibria in general. For a
given g AB, eq. (9.43) gives the relative number of pair interactions which are
needed to calculate the Gibbs energy or other thermodynamic properties of the
solution using eq. (9.37) as a starting point.

Let us first consider a highly ordered solution. This implies that the Gibbs
energy for the pair exchange reaction is large and negative. For a solution with
z zA B� and using the extreme condition g AB � ��, the solution should be com-
pletely ordered for x xA B� � 05. . This implies that the expression for the
configuratonal entropy, eq. (9.42), must be zero at this composition. The expres-
sion for the configurational entropy at these conditions becomes D mix

conf
mS �

� �RN zAB[ ( / )] ln1 2 2, and the configurational entropy is zero only if z � 2. For z � 2
the configurational entropy becomes negative and thus unphysical. On the other
hand it may be argued that the use of coordination number z � 2 in three dimensions
is non-physical. Still, it is recommended to set z equal to 2 for highly ordered
solutions [4].

Using z zA B� � 2, the molar entropy and enthalpy of mixing for different values
of g AB is shown in Figures 9.4(a) and (b), whereas the corresponding pair distribu-
tions are shown as a function of composition in Figure 9.4(c). As g AB becomes pro-
gressively more negative the solution becomes more ordered. The ‘m’ and ‘V’
shapes of the entropy and enthalpy of mixing are characteristic features of short-
range ordering when the order involves structural entities with composition AB. In
cases where other structural entities like AB2 or A2B are preferred enthalpically
(for z zA B� ), the same general features are observed, but the shapes of the curves
change.

For solutions with only a small degree of ordering, and particularly for solutions
with g AB � 0, which exhibits immiscibility, the value of z may be taken from the
structure of the components of the solution. A solution of Sn and Cd may for
example be modelled using zSn = 10 and zCd = 8 [5].

If the second term in the configurational entropy of mixing, eq. (9.42), is zero,
the quasi-chemical model reduces to the regular solution approximation. Here,
N AB is given by (eq. (9.21). If in addition g AB � 0the ideal solution model results.
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Finally, it should be noted that the model can be extended to multi-component
systems [6]. Furthermore, the Gibbs energy of the pair exchange reaction may
depend on the relative proportions of the different pairs. In this case gAB is a poly-
nomial function of the pair fractions XAA and XBB [4].

Flory model for molecules of different sizes

So far we have considered mixtures of atoms or species of similar size and shape.
Now we will consider a mixture of a polymeric solute and a solvent of monomers
[7, 8]. The ideal entropy of mixing used until now cannot possibly hold for this
polymer solution, in which the solute molecule may be thousands or more times the
size of the solvent. The long chain polymer may be considered to consist of r chain
segments, each of which is equal in size to the solvent molecule. Therefore r is also
equal to the ratio of the molar volumes of the solute and the solvent. The solute and
the solvent can be distributed in a lattice where each lattice site can contain one sol-
vent molecule. The coordination number of a lattice site is z.

A set of r contiguous sites in the lattice is required for accommodation of the
polymer molecule, while the monomers are freely distributed on the remaining lat-
tice sites not occupied by the solute. The situation is illustrated in Figure 9.5,
where a large polymeric solute molecule is represented by black circles and the sol-
vent molecules by open circles. The total number of lattice sites, N, is equal to
N rNM P� , where N M and N P are the number of monomers and polymer molecules
in the solution. The degeneracy of the solution is considered as the g distinguish-
able ways of arranging the solute molecules in N P sets of r contiguous sites in the
lattice. The N M! possible arrangements of the solvent on the remaining (N – rNP)
sites do not contribute to the entropy of mixing.
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Let vi be the number of sets of r contiguous lattice sites available to each
polymer molecule. If each of the N P polymer molecules added to the lattice were
distinguishable from those already present, the number of ways in which all of
them could be arranged in the lattice would be given by the product of the vi for
each molecule added consecutively to the lattice. The degeneracy is then given as

g
N

vi
i

N
�

�
�

1

1P

P

!
(9.44)

If we distribute NP polymer molecules over NP sets of r consecutive lattice sites and
then permute the polymer molecules on these fixed sets of consecutive sites, we
will overestimate the degeneracy. The factor 1/NP in eq. (9.44) takes into account
that the configurations obtained by this kind of permutation are indistinguishable.

We will now calculate vi . Suppose that i polymer molecules have been previ-
ously inserted randomly in the lattice. There then remain a total of N ri� vacant
sites in which to place the first segment of molecule (i �1). The second segment
could be assigned to any of z neighbouring sites of the site containing the first seg-
ment, unless the site is already occupied by a segment of some of the preceding i
molecules. Let fi represent the probability that a given site adjacent to the site con-
taining the first segment of molecule (i �1) is occupied. The number of sites avail-
able for the second segment is then z f i( )1 � . The probable number of cells available
as sites for the third and succeeding segments will be ( )( )z f i� �1 1 . Here the possi-
bility that a segment other than the immediately preceding one of the same chain
occupies one of the cells in question has been disregarded. The number of sets of r
contiguous sites available to molecule vi�1 is then

v N ri z z fi
r

i
r

�
� �� � � �1

2 11 1( ) ( ) ( ) (9.45)
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Figure 9.5 Two-dimensional illustration of the lattice model for polymer solutions. Black
sites are occupied by the polymer chain, white sites by solvent monomers.



The average probability, f i , that a lattice site is occupied by a segment of one of
the (i �1) preceding molecules at random is given by the number of vacant sites
1 � � �f N ri Ni ( )/ . Using this mean field approximation f i is replaced by f i , even
though the former is somewhat smaller than the latter. The expression for vi�1 then
becomes

v
z

z

z

N
N rii

r
r

�

�

�
�

��

�
�

��
�1

1

1

1( )
( ) (9.46)

This expression can be further simplified by using
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and

z
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1
1 (9.48)

By substituting eqs. (9.47) and (9.48) into eq. (9.46) vi�1 becomes
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The degeneracy factor for the arrangement of N P identical polymer molecules on
the lattice consisting of N sites is now obtained by substituting eq. (9.49) in eq.
(9.44) [7]:
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and the Gibbs energy of the solution can be expressed through the partition func-
tion as
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By using Stirling’s approximation, the Gibbs energy of mixing becomes, after
some algebra
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The formation of the polymer solution takes place in two separate steps. In the
first the polymer molecules are disordered or disorientated, and subsequently this
disordered or disoriented polymer is mixed with the solvent. The entropy of the
first step, the disorientation process, is given by eq. (9.52) when we neglect the
effect of having solute molecules present by setting N M � 0, thus:

D dis B PS k N r r z� � � � �[ln ( )[ln( ) ]]1 1 1 (9.53)

When r is large, the first term becomes negligible compared to the second, and the
entropy of disorientation per segment reduces to

D dis

P
B

S

rN
k z
 � �[ln( ) ]1 1 (9.54)

Although the disorientation process might be looked upon as a melting process,
eq. (9.54) does not give a good estimate of the entropy of fusion of polymers. A
more reasonable approach is to introduce the mean square displacement length of
the actual chain in its unperturbed state [7]. The number of such units would then
replace r in eq. (9.54), but one still needs to determine the coordination number z in
an independent manner.

The entropy of mixing of the disoriented polymer and the solvent, the monomer,
is obtained by subtracting eq. (9.54) from eq. (9.52) giving

D mix B M M P P(S k N N� � �ln ln )f f (9.55)

Here f M and f P are the volume fraction of the solvent and the solute defined as

f fM P
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N rN
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Equation (9.55) is the expression for the entropy of mixing of polymer solutions
introduced first by Flory [7]. NM and NP can be related through xM + xP = 1, which
for one mole of molecules (polymers + monomers) gives
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(9.57)
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Equation (9.57) is similar in form to eq. (9.12); note that whereas the entropy of a
mixture of two atoms of similar size is given in terms of the logarithm of the mole
fraction in eq. (9.12), the logarithm of the volume fraction is used in eq. (9.57). For
r = 1, fi = xi and the two equations become equal.

Alternatively, the entropy of mixing can be expressed as

D mix M P B M M P P(S N rN k� � � �( ) ln ln )f f f f (9.58)

The entropies of mixing of hypothetical binary polymer solutions where the
solute is characterized by r = 1, 10, 100 and 1000 are shown in Figure 9.6(a). The
entropy of mixing for one mole of molecules (polymers + monomers) increases
with the size of the polymer and it is significantly larger than for an ideal solution
of two species of similar size for which r = 1. If we instead consider the entropy of
mixing per lattice size ( )N rNM P� , the entropy takes its maximum value for r = 1.
The entropy of mixing curves when plotted as a function of mole fraction of the
polymer are far from symmetrical about xP = 0.5, while they are symmetrical about
fP = 0.5 when plotted as a function of the volume fraction.

For an ideal solution DmixG = �T DmixS and the partial molar Gibbs energy of
mixing of the solute and solvent is obtained from eq. (9.57) as
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conditions.



and

m m f fP P
o

P P� � � � �RT r[ln ( )( )]1 1 (9.60)

The activities of the polymer and monomer of the hypothetical solutions given in
Figure 9.6(a) are shown in Figure 9.6(b). While r = 1 corresponds to Raoult law
behaviour, strong negative deviations are observed for r = 10, 100 and 1000.

A regular solution type parameter can be added to the ideal polymer model
giving [7, 9]

D mix B M M P P MP M PG k T N N z N� � �( ln ln )f f w f (9.61)

The enthalpy of mixing in this case is

D mix MP M PH z N� w f (9.62)

where w MP is the difference in pair interaction energy w MP MP MM PP� � �u u u1
2

( )
in analogy with the regular solution parameters used earlier. The partial molar
Gibbs energies of mixing (eqs. 9.59 and 9.60) now become
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and

m m f f fP P
o

P P MP P� � � � � � �RT r r[ln ( )( )] ( )1 1 1 2W (9.64)

The interaction energy WMP = zLw MP is often needed to reproduce experimental
activity data. One example is shown in Figure 9.7. Here the experimental vapour
pressure of benzene over a binary rubber–benzene mixture [10, 11] is compared
with activities obtained from the ideal model with r � � (eq. 9.59). While mole
fractions were used as the compositional variable in Figure 9.6, volume fractions
are used in Figure 9.7. The vapour pressure of the solvent using the ideal model
cannot reproduce the experimental data and a regular solution term must be added.
The dashed line in Figure 9.7 is obtained using eq. (9.63) with W MP / .RT � 0 43. The
dotted line represents the Raoult solution behaviour where the activity of the
monomer is assumed to be given by its mole fraction.

Finally, it should be noted that although we have used a model in which the
liquid solution conceptually has been divided into a lattice, Hildebrand [12] has
shown that a similar expression may be derived without resorting to a hypothetical
lattice.
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9.2 Solutions with more than one sub-lattice

Let us now consider a solid or liquid with more than one sub-lattice, typically ionic
solutions like NaCl–KBr or compounds like spinels AB2O4. In the former case Na+

and K+ are distributed at the cation sub-lattice, and Cl– and Br– on the anion sub-
lattice. In the spinel there are two types of cation that occupy different crystallo-
graphic positions. The A atoms in a normal spinel occupy tetrahedral lattice sites,
while the B atoms occupy octahedral lattice sites. On heating a certain degree of
disordering may take place, but the two sub-lattices remain distinct. Hence we
must consider configurational contributions to the entropy from each of the two
separate sub-lattices. These can be treated independently of each other. Sub-lat-
tices that contain only one type of atom (and no vacancies) will not contribute to
the configurational entropy. This is the case for the third sub-lattice in the spinel
case; the oxygen lattice is not affected by disorder.

Ideal solution model for a two sub-lattice system

Temkin was the first to derive the ideal solution model for an ionic solution con-
sisting of more than one sub-lattice [13]. An ionic solution, molten or solid, is con-
sidered as completely ionized and to consist of charged atoms: anions and cations.
These anions and cations are distributed on separate sub-lattices. There are strong
Coulombic interactions between the ions, and in the solid state the positively
charged cations are surrounded by negatively charged anions and vice versa. In the
Temkin model, the local chemical order present in the solid state is assumed to be
present also in the molten state, and an ionic liquid is considered using a quasi-lat-
tice approach. If the different anions and the different cations have similar physical
properties, it is assumed that the cations mix randomly at the cation sub-lattice and
the anions randomly at the anion sub-lattice.
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A binary ionic solution must contain at least three kinds of species. One example
is a solution of AC and BC. Here we have two cation species A � and B� and one
common anion species C � . The sum of the charge of the cations and the anions
must be equal to satisfy electro-neutrality. Hence N N N N

A B C� � �� � � where
N

A� , N
B� and N

C� are the total number of each of the ions and N is the total
number of sites in each sub-lattice. The total number of distinguishable arrange-
ments of A � and B� cations on the cation sub-lattice is N N N

A B
!/ ! !� � . The expres-

sion for the molar Gibbs energy of mixing of the ideal ionic solution AC-BC is thus
analogous to that derived in Section 9.1 and can be expressed as
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Here X
A� and X

B� are the ionic fraction of A � and B� respectively defined as
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The entropy of mixing is obtained by differentiation of eq. (9.65) with regard to
temperature.

D mix m A A B B
S R X X X X� � �� � � �[ ln ln ] (9.67)

An analogous expression can be derived for an ionic solution with a common
cation, and the ideal entropy for a system AC–BD is twice as large as that for the
AC–BC system. This approach can also be used for an alloy A B C1�x x , where the
atoms A and B are randomly distributed on one sub-lattice and C fills completely
the second separate sub-lattice.

Regular solution model for a two sub-lattice system

The regular model for an ionic solution is similarly analogous to the regular solu-
tion derived in Section 9.1. Recall that the energy of the regular solution model
was calculated as a sum of pairwise interactions. With two sub-lattices, pair inter-
actions between species in one sub-lattice with species in the other sub-lattice
(nearest neighbour interactions) and pair interactions within each sub-lattice (next
nearest neighbour interactions), must be accounted for.

Let us first derive the regular solution model for the system AC–BC considered
above. The coordination numbers for the nearest and next nearest neighbours are
both assumed to be equal to z for simplicity. The number of sites in the anion and
cation sub-lattice is N, and there are 1

2
zN nearest and next nearest neighbour inter-

actions. The former are cation–anion interactions, the latter cation–cation and
anion–anion interactions. A random distribution of cations and anions on each of
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the two sub-lattices is assumed, and the average internal energy of the AC–BC mix-
ture expressed in terms of pairwise interactions is

U N u N u N u N u

N

� � � �

�

� � � � � � � � � � � � � � � �

�

A A A A B B B B A B A B C C C C

A C� � � � � � ��u N u
A C B C B C

(9.68)

where N ij and uij are the number and internal energy of pair interaction ij. The
number of C C� � interactions is simply 1

2
zN, while the number of A C� � and B C� �

interactions are 1
2

zN
A� and 1

2
zN

B� . The number of A A� � and B B� � interactions
are 1

2 A A B
(zN N� � �� ) and 1

2 B A B
(zN N� � �� ), by analogy with the regular solution

model for a single lattice system derived in Section 9.1. Substituting these expres-
sions in eq. (9.68), the internal energy for the ionic solution becomes

U z N u N u Nu N u N u� � � � �

�

� � � � � � � � � � � � � �
1
2

[ ]
A A A B B B C C A A C B B C

N u u u
A B A B A A B B

( )� � � � � � � �� �[ ]1
2

(9.69)

Introducing once more a pairwise interaction parameter w
A B� �

w
A B A B A A B B� � � � � � � �� � �u u u1

2
( ) (9.70)

and the internal energy for the pure neutral components AC and BC

U zN u u uAC A A A C C A C
� � �� � � � � �

1
2

[ ] (9.71)

U zN u u uBC B B B C C B C
� � �� � � � � �

1
2

[ ] (9.72)

eq. (9.69) becomes

U U U N� � � � � � �AC BC A B A B
w (9.73)

N
A B� � is easily derived when the cations are assumed to be randomly distributed

on the cation sub-lattice. The probability of finding an AB (or BA) pair is
2 X X

A B� � in analogy with the derivation of the regular solution in Section 9.1.
N

A B� � is then the product of the total number of cation–cation pairs multiplied by
this probability

N zN X X z
N N

N
AB A B

A B� �
�

�

�
�

�

�

�
�� �

� �1
2

2 (9.74)

The partition function for the regular ionic solution model is now

Z
N

N N

U U zN N N

k T
� �

� ��


�

�

�� �

� � � �!

! !
exp

[ ( / ) ]

A B

AC BC A B A B

B

w
� (9.75)
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and the Gibbs energy of the solution results:

G A k T
N

N N
U U

zN N

N

 � �

�
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�

�
�
�

� � �
� �

� �
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AC BC
A B

A B
ln

!

! !
w (9.76)

By subtracting the enthalpy (H 
 U) for the pure compounds AC and BC and
multiplying by [ /( )]L N N

A B� �� the molar Gibbs energy of mixing is obtained:

D Wmix m A A B B A B A B
G RT X X X X X X� � �� � � � � � � �[ ln ln ] (9.77)

The first term is the ideal entropy of mixing while the second term is the enthalpy
of mixing in the regular solution approximation:

D D Wmix m mix m A B A B
H U X X
 � � � � � (9.78)

where W
A B A B� � � �� zLw . The partial Gibbs energy of mixing of one of the com-

ponents, e.g. AC, can be derived by differentiation with respect to the number of
AC neutral entities, which is equal to the number of A � cations:

m mAC AC
o

A A B B

AC A B BC

� � �

� �

� � � �

� �

RT X X

RT x x

ln

ln

W

W

2

2
(9.79)

The equations for the regular solution model for a binary mixture with two sub-
lattices are quite similar to the equations derived for a regular solution with a single
lattice only. The main difference is that the mole fractions have been replaced by
ionic fractions, and that while the pair interaction is between nearest neighbours in
the single lattice case, it is between next nearest neighbours in the case of a two
sub-lattice solution.

Reciprocal ionic solution

Let us now consider a slightly more complex system, the system AC–BD. The ideal
configurational entropy of a system like this that contains two cations A � and B�

and two anions C � and D� is readily derived as

D mix m A A B B C C D D
S R X X X X X X X X� � � � �� � � � � � � �[ ln ln ln ln ]

(9.80)

With DmixHm = 0 the ideal Temkin model for ionic solutions [13] is obtained. If
deviations from ideality are observed, a regular solution expression for this mix-
ture that contains two species on each of the two sub-lattices can be derived using
the general procedures already discussed. The internal energy is again calculated
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from the sum of the pairwise interactions between nearest and next nearest neigh-
bours. The numbers of each interaction can be derived since the different species
on the different sub-lattices are assumed to be randomly distributed. The expres-
sion for the average molar internal energy of the AB–CD solution becomes

U X X U X X U X X U

X X U

m A C AC,m A D AD,m B C BC,m

B D BD,m

� � �

�

� � � � � �

� � � �� � � � � � � �( )X X X X
A B A B C D C D

W W
(9.81)

where W
C D� � is defined by analogy with W

A B� � .U ij ,m is the molar internal energy
of the pure salts ij. The corresponding molar Gibbs energy of the solution is

G A X X U X X U X X U

X X U

m m A C AC,m A D AD,m B C BC,m

B D B


 � � �

�

� � � � � �

� � D,m A B A B C D C D

A A B B

� �

� �

� � � � � � � �

� � � �

( )

( ln ln

X X X X

RT X X X X

W W

� �� � � �X X X X
C C D D

ln ln )

(9.82)

In the preceding treatments we have neglected the difference between enthalpy
and internal energy and between Gibbs energy and Helmholtz energy. More impor-
tantly, we have neglected the non-configurational entropy, since we have assumed
this contribution not to be affected by the mixing. The different components have
been described in terms of internal energy/enthalpy only, since we have focused on
the mixing properties and thus subtracted the properties of the pure components. In
the following example, the energetics of the components are included as a param-
eter in the model and we can no longer neglect the vibrational entropy. A modified
version of eq. (9.82) in which the internal energies of the four salts are exchanged
with the Gibbs energies is

G X X G X X G X X G X X Gm A C AC,m A D AD,m B C BC,m B D BD,m� � � �� � � � � � � �

� �

� � �

� � � � � � � �

� � � �

( )

( ln ln

X X X X

RT X X X X X
A B A B C D C D

A A B B C

W W

� � � ��ln ln )X X X
C D D

(9.83)

The regular solution parameters are still assumed to be enthalpic in nature. In other
words, the vibrational entropy is, as earlier, considered not to be affected by the
mixing. The last term of eq. (9.83), the configurational entropy, is also unaffected
by this modification.

Let us now look at this slightly more complex case where the Gibbs energy of
the components are needed. Until now we have mixed one salt like AC with another
like BD. This implies that the fraction of A atoms on the cation sub-lattice has
been equal to the fraction of C atoms on the anion sub-lattice. Let us consider a
composition like that marked with a cross in Figure 9.8. There are several possible
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combinations of the four neutral components AC, AD, BC and BD that can repre-
sent this particular composition in this ternary reciprocal system. The particular
mixture can for example be made from the three components AC–AD–BC or alter-
natively from AC–AD–BD. This is important in experimental studies of such sys-
tems, where the most suitable choice of standard state is given by the
characteristics of the particular experiment in question. In a thermodynamic anal-
ysis of the system on the other hand, all four components are often considered.

In the case of reciprocal systems, the modelling of the solution can be simplified
to some degree. The partial molar Gibbs energy of mixing of a neutral component,
for example AC, is obtained by differentiation with respect to the number of AC
neutral entities. In general, the partial derivative of any thermodynamic function Y
for a component AaCc is given by

�

�

�

�

�
�

�

�

�
�

�
�

�

�

�
��

�

�
�� �

�

�

�

�
��

�

�

Y

n
a

Y

n
c

Y

n
n nA C A Ca c

Aa Cc
�
�� (9.84)

Using AC as an example, the chemical potential relative to the standard state
(pure AC) can be shown to be

m mAC AC
o

A C B B A B D D C D

B D

� � � �

�

� � � � � � � � � �

�

RT X X X X X X

X

ln ( )W W

� � � �[ ]G G G GBC,m AD,m AC,m BD,m

(9.85)

This expression can be simplified by introducing, D rG, the Gibbs energy of the
reciprocal reaction

AC BD AD BC� � � (9.86)
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for which eq. (9.85) becomes

m mAC AC
o

A C B B A B D D C D

B

- W W� � �

�

� � � � � � � � � �

�

RT X X X X X X

X X

ln ( )

D r� D G
(9.87)

For the ideal solution W W
A B C D� � � �� � 0 and the partial Gibbs energy of AC is

m mAC AC
o

AC A C B D r� � � �� � � �RT a RT X X X X Gln ln D (9.88)

The activity of AC in the ionic mixture AC–BD using eq. (9.88) is shown in Figure
9.9 for different values of D rG. The curves for large positive values for the recip-
rocal reaction show that immiscibility in these cases must be expected at low
temperatures.

The reciprocal lattice model as derived above is the basis for many different vari-
ants. For simplicity we have assumed the interactions between the next nearest
neighbours A B� �� and C D� �� to be independent of composition, even though
experiments have shown that this is often not the case. It is relatively simple to
introduce parameters which allow the interaction energy, for example between A+

and B+, to depend on the concentration of C– and D– [14]. One may also include
other terms that take into account excess enthalpies that are asymmetric with
regard to composition and the effects of temperature and pressure.

Equation (9.83) is also the basis for the compound energy model. The excess
energy of the mixture is here represented by any type of equation, for example a
power series [15, 16]. Equation (9.83) has also been derived using the conformal
solution theory after Blander [14] and as an extension of the molten salts models
presented by Flood, Førland and Grjotheim [17].
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9.3 Order–disorder

Bragg–Williams treatment of convergent ordering in solid solutions

In cases where W AB is negative, the enthalpy of mixing is also negative and the
solution is stable over its entire compositional region. Since such a negative
D mix mH implies that the attraction between unlike species is larger than between
like atoms, the formation of fully ordered structures is often observed in these sys-
tems on cooling. This tendency to order often causes crystallographic sites, which
are equivalent in the disordered state, to transform into two or more crystallo-
graphically distinct sites in the ordered low-temperature state. This situation is
called convergent ordering, since the two sites are identical when randomly occu-
pied. Bragg and Williams used the regular solution model to describe low-tempera-
ture convergent ordering in solid solutions [18, 19]. The model considers an AB
solution consisting of two sub-lattices termed a and b, where the pairwise interac-
tions between nearest neighbours give rise to long-range order in the
stoichiometric compound AB at low temperatures. In the fully ordered structure,
all the a sites are occupied by A atoms and all the b sites are occupied by B atoms.
An order parameter, s, is defined so that it is 1 in the long-range ordered structure
and 0 in the disordered structure. The fraction of atoms A on the correct sites in the
ordered state is now given by 1

2
(1 + s), and the fraction on incorrect sites by 1

2
(1 –

s).
Long-range ordering on cooling suggests a cooperative mechanism in which the

behaviour of the different atoms is correlated. Considerable short-range order may
exist in real materials close to the ordering temperature, but here the domains are
not correlated. Furthermore, the size of the domains will decrease with increasing
temperature. This type of short-range order may be present even far above the tran-
sition temperature and is governed by the balance between the enthalpic and
entropic terms, minimizing the Gibbs energy. Such short-range order is often not
considered in theoretical models like the Bragg–Williams approach, which we will
now use to describe the variation in the degree of order, s, in the low-temperature
phase with temperature.

Let us assume that there are N sites in the two lattices a and b. Thus
N N NA B� � 2 and there are a total of zN interactions between nearest neighbours.
The energy of the system in the disordered state is for a given composition given by
eq. (9.17):

U N u N u N u� � �AA AA BB BB AB AB (9.89)

where N ij is the number of ij pairs and uij is the energy of the ij interaction, respec-
tively. The numbers of each interaction can be calculated by the occupancy in the
two lattices, as for the regular solution model. However, in the present case the A
and B atoms are not randomly distributed. Instead, the number of AA interactions
is given by product of the occupancy of A atoms on the two lattice sites multiplied
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by the total number of interactions. The occupancy is described by the degree of
order s and thus

N N NAA z z� � �
�

�
�

��
� �

�

�
�

��
1

2
1

1

2
1

1

4
1 2( ) ( ) ( )s s s (9.90)

Taking into account that N NAA BB� and N zN N NAB AA BB� � � the energy of the
disordered solid solution becomes

H U zN u u u( ) ( ) ( ) ( ) ( )s s s s s
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2
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��
(9.91)

Since the enthalpy of the fully ordered state corresponding to s = 1 is zNuAB, the
enthalpy for the disordering process is

D dis AB

AA BB

H H H H zNu

zN u u
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( ) ( ) ( )
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s s s
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2
1 2w s

(9.92)

The ideal entropy of mixing of A and B atoms on the a lattice is
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�� (9.93)

The configurational entropy on the b lattice is given by an identical equation. For
the perfect long-range ordered modification the configurational entropy is zero,
and the entropy change due to disorder is thus

D dis BS k N� � � � � � � �[( ) ln( ) ( ) ln( ) ln ]1 1 1 1 2 2s s s s (9.94)

Combining the entropy and enthalpy of the disordering process, the Gibbs energy
of disordering is

D D Ddis dis dis AB BG H T S zN k TN� � � � � � �1
2

21 1 1w s s s( ) [( ) ln( )

� � � �( ) ln( ) ln ]1 1 2 2s s
(9.95)

For D mixH � 0the Gibbs energy is reduced by ordering, and the degree of order is
obtained by d dmix( )/D G s � 0 which yields

ln
1

1

2�

�
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s
s

s w sz

k T

T

T
AB

B

trs (9.96)
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The variation of order with temperature is shown in Figure 9.10. As the tempera-
ture is raised, a high degree of order remains until close to the transition tempera-
ture, where the disorder is induced rapidly. This cooperative behaviour is due to the
fact that the energy associated with the disordering becomes progressively less as
the disorder takes place. The transition is of second order. No short-range order
remains above the transition temperature.

Non-convergent disordering in spinels

Non-convergent disordering is, in contrast to convergent disordering, a process
where the crystallographic sites are distinct even when randomly occupied. Let us
use spinels as an example. The spinel-type structure contains one tetrahedral and
two octahedral cations per formula unit, AB2O4. While some A atoms prefer a tet-
rahedral local environment, others prefer an octahedral environment, and all sorts
of distributions of the two cations on the two cation sub-lattices may result. The
composition of a spinel is thus in general represented by A1–xBx[AxB2–x]O4, where
x may vary from 0 to 1. x = 0 corresponds to what is termed a normal spinel
( ) ( )A B Otetr octa

2 4 , while x = 1 represents an inverse spinel ( ) ( )B A,B Otetr octa
4 . For

x = 2/3 the A and B atoms are randomly distributed on the two sub-lattices and the
spinel is said to be a random spinel.

The molar configurational entropy of a spinel can be expressed in terms of the
composition parameter x as

D config mS R x x x x x
x

x� � � � � �
�

�
�

�

�
� � �ln ( ) ln( ) ln ( ) ln1 1

2
2 1 �

�

�
�

�

�
�

�


�

�

�
�

x

2
(9.97)

While the configurational entropy of the normal spinel (x = 0) is 0, a large configu-
rational entropy is obtained for the random spinel (x = 2/3); see Figure 9.11(a). The
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inverse spinel is characterized by a single type of atom on the tetrahedral lattice,
while equal numbers of A and B atoms are distributed on the octahedral sites and
the entropy for x = 1 is, although lower than for the random distribution,
substantial.

Both ordered and normal spinels should disorder at high temperature, since the
entropy of the random spinel is larger. The disordering reaction for a normal spinel
can be described by a quasi-chemical reaction

(A)tetr + (B)octa = (A)octa + (B)tetr (9.98)

The Gibbs energy of this defect reaction defines the degree of disorder through
the equilibrium constant.

D D Ddis dis disG H T S RT K� � � � ln (9.99)

K
x

x x
�

� �

2

1 2( )( )
(9.100)

Since the entropy of a normal spinel is zero, DdisS = DconfigS. The corresponding
enthalpy term can be interpreted in terms of site preference enthalpies; different
cations prefer different crystallographic positions. It follows that the degree of dis-
order is a function of the site preference enthalpy and temperature [20]. Equilib-
rium distributions of A and B atoms are given as a function of the enthalpy of
reaction (9.98) and temperature in Figure 9.11(b). Although the enthalpy term
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supports ordering, while the entropy term gives disordering, solid state equilibria
of this type may of course be kinetically hindered at lower temperatures.

Similar methods have been used in other cases as well, and a recent example is an
analysis of the cation distribution in the complex oxide, LaSr2–xCaxCu2GaO7.
Here site preference enthalpies for La, Sr and Ca have been derived [21].

9.4 Non-stoichiometric compounds

Mass action law treatment of defect equilibria

Analyses of the defect chemistry and thermodynamics of non-stoichiometric phases
that are predominately ionic in nature (i.e. halides and oxides) are most often made
using quasi-chemical reactions. The concentrations of the point defects are consid-
ered to be low, and defect–defect interactions as such are most often disregarded,
although defect clusters often are incorporated. The resulting mass action equations
give the relationship between the concentrations of point defects and partial pressure
or chemical activity of the species involved in the defect reactions.

Consider a simple non-stoichiometric perovskite-type oxide, ABO3–d. In the
perovskite crystal structure the A and B cations occupy two different cation sub-
lattices with coordination numbers 12 and 6, respectively; see Figure 7.16. The
oxygen anions occupy a third sub-lattice, and the oxygen atoms and vacancies are
considered randomly distributed on this oxygen lattice. The oxygen non-
stoichiometry leads to valence defects on the B sub-lattice. If the A site ion is triva-
lent, all the B atoms are trivalent for d = 0 (i.e. in ABO3) and divalent for d = 0.5
(i.e. in ABO2.5). We disregard any effect of intrinsic disorder, of ionic or electronic
type. The removal of oxygen atoms results in the reduction of B atoms, and for
many systems this can be expressed in terms of a defect chemical reaction using the
Kröger–Vink notation [22] as

2 4 2 4 2O B V B O gO B O B
x x� � � � ��� ( ) (9.101)

where OO
x and VO

�� are an oxygen ion and an oxygen vacancy (with effective charge
+2) on the oxygen sub-lattice and BB

x and �BB are trivalent and divalent B-ions on
the B sub-lattice. The equilibrium constant (K) for the quasi-chemical reaction is

K p
x x

�
�

�
��[ ] [ ]

[ ] [ ]
( )

V B

O B
O gO B

O B

2 4

2 4 2 (9.102)

where [i] denotes the concentration, usually given as site fractions, of defect i. The
temperature dependence of the equilibrium constant is, as always, given through

D D DG H T S RT Ko o o� � � � ln (9.103)
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from which the oxygen partial pressure corresponding to a certain value of d can be
deduced:

log ( ) log ( ) ( ] logp KO g 4[log log )
3

2 1 2 2 2� � � � �
�

�

�
�

�

�
�d d d

d
(9.104)

Here the site fractions of the defects in eq. (9.102) are expressed in terms of the
oxygen non-stoichiometry parameter d.

This type of defect equilibrium treatment has been used extensively to model the
defect chemistry and non-stoichiometry of inorganic substances and has the great
advantage that it easily takes several simultaneous defect equilibria into account
[22]. On the other hand, the way the mass action laws are normally used they are
focused on partial thermodynamic properties and not on the integral Gibbs energy.
The latter is often preferred in other types of thermodynamic analyses. In such
cases the following solid solution approach is an alternative.

Solid solution approach

For thermochemical uses, an expression for the integral Gibbs energy of formation
of the compound ABO3–d can be derived by integration of eq. (9.104), but in order
to show clearly some of the main implications of the model a more detailed anal-
ysis starting from the partition function is preferred [23].

It can be shown that the partition function in this case can be expressed as

Z
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��
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�
��		 	exp expc,s

Bsc

c

Bc

(9.105)

The summation over the enthalpy, Hc,s, is running over all the vibrational states, s,
for all the different atomic configurations, c, of the system. The summation over
the enthalpy for a particular atomic configuration is related to the Gibbs energy of
that particular configuration, Gc and the total partition function, Z, is given as the
summation of the Gibbs energy of all the different atomic configurations of the
system. The Gibbs energy of formation for a given composition can now be derived
by summation over all configurations that have a certain Gibbs energy of forma-
tion, D f cG , and an associated degeneracy, gc.

D D
f B B c

f c

Bc

G k T Z k T g
G

k T
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�

�
��

�

�
��	ln ln exp (9.106)

The configurational entropy term, given by the degeneracy, gc, is included in D fG
but not in D f cG . Let us assume the existence of two compounds with different
formal oxidation states for the B atom, ABO3 and ABO2.5. The two compounds
have the same (perovskite-type) structure and the non-stoichiometric phase
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ABO3–d is seen as a solution of these two end members. Often only one of the lim-
iting compounds is physically realizable.

If we assume that the non-stoichiometric ABO3–d can be described as an ideal
solution of the two limiting compounds, ABO3 and ABO2.5, all configurations
with a certain composition have the same Gibbs energy of formation since there are
no defect–defect interactions. The Gibbs energy of formation of a configuration,
D f cG , is for a certain composition given as

D D Df c f m
o

f m
oABO ABO ABOG G G( ) ( ) ( ) ( ).3 3 2 51 2 2� � � �d d d (9.107)

The pure elements at one bar and at a particular temperature are chosen as the stan-
dard state. Since all configurations with a given composition have the same Gibbs
energy of formation, the total Gibbs energy of formation of a material with a specific
composition is given by taking the number of configurations for that composition
into consideration. In the ideal solution approach a random distribution of the dif-
ferent species on the different sub-lattices are assumed. Let us assume that oxygen
atoms and oxygen vacancies on the oxygen sub-lattice and B2+ and B3+ (thus A =
A3+) on the B sub-lattice are randomly distributed. In this case, the degeneracy, gc , is
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where N is the number of B atoms, N VO
is the number of oxygen vacancies and

N
B2� is the number of B2+ in ABO3–d.
By substitution of eqs. (9.107) and (9.108) in eq. (9.106) an expression for the total

Gibbs energy of formation of the oxide in the ideal solution approximation is obtained:
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D f
o ABOG ( ),2 5 is here the standard Gibbs energy of formation of each of all pos-

sible configurations of perovskite-type ABO2.5. The fact that we have a number of
configurations with this Gibbs energy of formation gives rise to the contribution of
configurational origin given in the square brackets. For d = 0.5 this term represents
(in the present ideal solution approximation) the entropy connected with disor-
dering of ordered ABO2.5 giving a completely random distribution of oxygen
atoms and oxygen vacancies on the oxygen sub-lattice. Hence the total Gibbs
energy of formation of an oxide with a certain composition is given as a sum of a
non-configurational term and a configurational term.

The chemical potential of oxygen can now be derived and the related quantity
log pO2 expressed as a function of d:
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The first term on the right-hand side is in this ideal solution approach given by the
standard Gibbs energy of oxidation

4 43 2 5D D D D Df m
o

f m
o

ox
o

ox
o

ox
oABO ABOG G G H T S( ) ( ).� � � � (9.111)

which corresponds to the reaction

4ABO perovskite O g ABO perovskite2 5 2 3 004. .( ) ( ) ( )� � (9.112)

In the ideal solid solution model used, the enthalpy and entropy of oxidation are
independent of composition.

By comparing eq. (9.110) with eq. (9.104), a thermodynamic expression for the
equilibrium constant of the defect reaction, eq. (9.101), is obtained:
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In the ideal limit, the two models (the mass action law and the solid solution
model) are identical: one focuses on the partial thermodynamic properties, the other
on the integral properties. Non-ideal terms giving an excess enthalpy of mixing can
be incorporated into the solid solution model [23]. This will enable us to take
compositional effects on the Gibbs energy of oxidation into consideration and the
Gibbs energy of oxidation will no longer be directly related to eq. (9.112). The mass
action law treatment does not usually consider interaction terms explicitly.

Both the reduced and the oxidized compounds in eq. (9.112) take the same struc-
ture. In the present case (the perovskite-type), the enthalpy of formation of
ABO2.50 is the enthalpy of formation of a disordered phase with many possible
configurations that, however, all have the same enthalpy of formation (the ideal
solution approach). With regard to the redox entropy it should be noted that the last
two terms in eq. (9.110) represent the partial configurational entropy of oxygen.
Hence the entropic contribution to the Gibbs energy of the redox reaction (9.112)
should not include the structural configurational contribution, since this term is
included explicitly in the configurational part of eq. (9.110). Thus, when com-
paring calorimetric entropies with entropies deduced from equilibration studies,
the configurational entropy should be subtracted from the calorimetric entropy.
This is in many ways analogous to the treatment of polymer solutions considered in
Section 9.1 where the entropy of disorientation of the polymer and the entropy of
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the subsequent mixing of the monomer and the disoriented polymer were treated
separately. It should also be noted that similar solution models may be applied for
less ionic compounds like sulfides, selenides and tellurides. Here, the electrons are
considered to be delocalized and the configurational entropy due to valence defects
is thus negligible [24].

The enthalpies of oxidation of a number of perovskite-type oxides,
La1–xAxBO3–d (A = Sr, Ca, B = Cr, Mn, Fe, Co), deduced by applying eq. (9.110) to
experimental data for the variation of the non-stoichiometry with the partial pres-
sure of oxygen are given in Figure 9.12(a) [23]. Calorimetric data are also given
where available. Note that the redox reactions considered involve B3+ and B4+.
Examples of the agreement between experimental and calculated non-
stoichiometry data are given in Figure 9.12(b) [23].

Non-stoichiometry in solid solutions may also be handled by the compound
energy model: see for example a recent review by Hillert [16]. In this approach the
end-member corresponding to vacancies is an empty sub-lattice and it may be
argued that the model loses its physical significance. Nevertheless, this model rep-
resents a mathematically efficient description that is often incorporated in thermo-
dynamic representations of phase diagrams.
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10
Experimental

thermodynamics

Thermodynamics is largely an experimental science, although computational and
theoretical methods are in rapid development (see Chapter 11). The term experi-
mental thermodynamics encompasses all experimental investigations that allow
the determination of parameters from which thermodynamic data can be extracted.
The field of experimental thermodynamics covers direct determination of
enthalpy, entropy and Gibbs energy of substances, phase transitions or reactions,
but also thermodynamically directed studies of phase equilibria and volumetric
properties. In this chapter, most attention is given to experimental techniques for
direct determination of thermodynamic properties, but methods for studying phase
equilibria and volumetric properties are also treated shortly. In addition brief treat-
ments of the measurement of temperature and pressure are given. These two inten-
sive properties are of special importance in thermodynamics and profoundly affect
and often completely determine the state of a system.

10.1 Determination of temperature and pressure

Techniques for accurate and reproducible measurement of temperature and tem-
perature differences are essential to all experimental studies of thermodynamic
properties. Ideal gas thermometers give temperatures that correspond to the funda-
mental thermodynamic temperature scale. These, however, are not convenient in
most applications and practical measurement of temperature is based on the defini-
tion of a temperature scale that describes the thermodynamic temperature as accu-
rately as possible. The analytical equations describing the latest of the
international temperature scales, the temperature scale of 1990 (ITS–90) [1, 2]
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contains a number of parameters that are determined by calibration of the measure-
ment probe using the fixed points on ITS–90. These fixed points correspond to situ-
ations where two or three phases at a specific pressure are in equilibrium at a
constant temperature. The fixed points for the ITS–90 are given in Table 10.1.

Between the triple point of equilibrium hydrogen (13.8033 K) and the freezing
point of silver (1234.93 K), T90 is defined by means of platinum resistance ther-
mometers calibrated at specific sets of defining fixed points. The temperatures are
given in terms of the ratio of the resistance of the thermometer at temperature T90 to
the resistance at the triple point of water:

W T
R T

R
( )

( )

( . )
90

90

27316
�

K
(10.1)

The temperature T90 for a specific resistance thermometer is calculated from the
equation

W(T90) = Wr(T90) + DW(T90) (10.2)

where W(T90) is the resistance ratio of the thermometer measured at the tempera-
ture T90, Wr(T90) is the thermometer-independent resistance ratio calculated from a
reference function [1, 2], and DW(T90) is a difference function obtained by calibra-
tion of the thermometer using the temperature fixed points. The reference function
is given as complex polynomials, with different polynomials being used in dif-
ferent temperature regimes. For example, the difference function for the tempera-
ture region from 273.15 to 933.473 K is

DW(T90) = a[W(T90) – 1] + b[W(T90) – 1]2 + c[W(T90) – 1]3 (10.3)

304 10 Experimental thermodynamics

Type of
transition

Compound T in K Type of
transition

Compound T in K

Ttrp e-H2 13.8033 Tfre In 429.7485

Ttrp Ne 24.5561 Tfre Sn 505.078

Ttrp O2 54.3584 Tfre Zn 692.677

Ttrp Ar 83.8058 Tfre Al 933.473

Ttrp Hg 234.3156 Tfre Ag 1234.93

Ttrp H2O 273.16 Tfre Au 1337.33

Tfus Ga 302.9146 Tfre Cu 1357.77

Ttrp = triple point temperature
Tfus = fusion temperature
Tfre = freezing temperature

Table 10.1 Temperature fixed points for ITS-90.



where a, b and c are determined from the triple point of water and the freezing
points of Sn, Zn and Al. For high accuracy the effect of trace impurities on the tem-
perature fixed points should be remembered [3] and the calibration must be per-
formed with very pure metals using procedures recommended by the Comité
Consultatif de Thermométrie [2, 4].

The resistance of platinum increases with temperature. Above 30 K the resis-
tance–temperature slope is high, giving a high sensitivity. Below 30 K the slope
of resistance versus temperature is much lower, a fact that make accurate and sen-
sitive temperature measurements difficult, and alternative thermometers like ger-
manium and rhodium with 0.5 at. % iron are frequently used. The resistivity of an
intrinsic semiconductor like germanium follows an exponential law. However,
since trace impurities greatly affect the transport properties, donor- or acceptor-
doped germanium is used for thermometry. The typical resistance versus temper-
ature response for Pt, n-type Ge and Rh–Fe resistance thermometers are com-
pared in Figure 10.1. The slope of the curve gives the sensitivity of the
thermometer.

At relatively high temperatures thermocouple thermometers are most commonly
used to measure temperature. The thermoelectric power of three frequently used
thermocouples is compared in Figure 10.2. The choice of thermocouple depends
on the temperature range, the chemistry of the problem in question, sensitivity
requirements and resistance towards thermal cycling. The temperature range and
typical uncertainty of some of the most commonly used thermocouple
thermometers are given in Table 10.2.

Above the freezing point of silver, T90 is defined in terms of a defining fixed
point and the Planck radiation law, and optical pyrometers are frequently used as
temperature probes. The Comité Consultatif de Thermométrie gives a thorough
discussion of the different techniques for approximation of the international tem-
perature scale of 1990 [2, 4].

Pressure has dimensions of force per unit area, and pressure multiplied by
volume has the dimensions of energy. The SI unit of pressure is the pascal (Pa) and
the standard pressure is set to 1 bar (equal to 105 Pa or 0.1 MPa). Methods for mea-
suring pressure are outside the scope of this book. A thorough discussion of pres-
sure measurements in different pressure regimes are found in Goodwin et al.,
Measurements of the Thermodynamic Properties of Single Phases (see Further
reading). Pressure measurements in the GPa range are briefly mentioned in relation
to the high-pressure techniques described in Section 10.2.

10.2 Phase equilibria

The strategy that is followed for mapping a phase diagram depends on the specific
problem considered. In general there are two complementary approaches that must
be used. In the first, samples prepared at a particular temperature–pressure condi-
tion and subsequently quenched from these conditions are analyzed, typically by
optical or electron microscopy and X-ray diffraction. This approach does not
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necessarily, however, give the equilibrium phase or phase mixture at the annealing
conditions and must therefore be combined with dynamic techniques that allows
for mapping phase changes with temperature and pressure, such as thermal anal-
ysis and in situ diffraction and spectroscopy. Thermal analysis is convenient and
frequently used to determine liquidus/solidus curves as well as solid–solid trans-
formation temperatures [5]. A short description of the main techniques, differential
thermal analysis (DTA) and differential scanning calorimetry (DSC), is given in
Section 10.3. The development of high-intensity synchrotron radiation facilities
has also made in situ X-ray diffraction studies of reactions more applicable [6].

Annealing at temperatures up to and above 2000 K is easily achieved due to the
availability of different furnaces. Studies at high pressure demand more complex
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and specialized equipment. Some of the main techniques with characteristic pres-
sure ranges are listed in Table 10.3. For static compression the sample is contained
in a pressure vessel. The maximum pressure is limited by the construction of the
vessel and apparatus and the mechanical properties of the materials used.

Pressures up to 4–6 GPa can be obtained by piston–cylinder devices, where the
pressure is generated by pushing a piston against the sample cell [7]. Pressure is
measured directly from the force applied and the cross-sectional area of the piston,
but calibration of the pressure scale using the phase transition pressure between
polymorphs of, for example, Bi is some times necessary. Large sample masses can
be used; in industrial diamond synthesis tens of cm3 samples are used in belt
devices. The method allows internal probes for acoustic velocity measurements,
but the sample is inaccessible to X-ray and spectroscopic probes. Higher pressures
are obtained in multi-anvil presses [8] that contain anvils made of high-strength
materials like tungsten, boron carbide, sapphire or sintered diamond. With an anvil
base to tip ratio of 100, 30 GPa can be reached with tungsten carbide, 60 GPa with
sintered diamond and 140 GPa with single crystal diamond [9]. In addition to the
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Thermometer Usual T-range Typical uncertainty

Resistance thermometers

Pt 14–1235 K 0.5 mK

Ge 1–100 K DT/T < 2◊10–4

Rh–Fe 0.5–30 K 0.3 mK

C 0.5–30 K DT/T < 5◊10–3

Thermocouples

S: Pt10%Rh/Pt 223–1873 K 0.3 K < 1273 K
1 K > 1273 K

R: Pt13%Rh/Pt 223–1873 K 0.3 K < 1273 K
1 K > 1273 K

B: Pt30%Rh/Pt 573–2073 K 0.5 to 2 K

T: Cu/Cu–Ni 73–623 K 0.1 K

E: Ni–Cr/Cu–Ni 73–1143 K 1 K < 300 K
1 K > 300 K

J: Fe/Cu–Ni 273–1033 K 0.5 K < 300 K
2 K > 300 K

K: Ni–Cr/Ni–Al 73–1533 K 1 K < 1273 K
3 K > 1273 K

N: Ni–Cr–Si/Ni–Si 273–1573 K 0.5 K < 1273 K
3 K > 1273 K

W5%Re/W20%Rh 1273–2473 K 3–10 K

Radiation

373–3273 K 1 K < 1273 K
5 K > 1273 K

Table 10.2 Characteristics of some frequently used thermometers.



exceptional strength of single-crystal diamond, diamonds are essentially trans-
parent to radiation in the UV–visible–IR region (below 5 eV), and to X-ray radia-
tion above 10 keV, and in situ spectroscopy and X-ray diffraction are facilitated.

In general, the sample volume is proportional to the size of the anvil and the
press. Above 15 GPa large sample devices refer to millimetre and centimetre sized
samples. This will require anvils of the order of decimetres to metres and presses
from 200 to 50 000 tons.

In situ studies at high pressure and temperature are to a large degree performed
using diamond anvil cells [10] and the Paris–Edinburgh device [11]. A sche-
matic illustration of a piston–cylinder type diamond anvil cell is given in Figure
10.3. In diamond anvil cells two small opposing single crystal diamonds compress
a gasket that contain the sample chamber in centre. The gasket experiences a gra-
dient in pressure from ambient to the peak pressure. The sample is within the
sample chamber contained in a pressure-transmitting medium that under ideal con-
ditions gives approximately hydrostatic pressure conditions. Pressure is often mea-
sured with an internal calibration substance with an accurately determined
equation of state or from the pressure shift of the ruby fluorescence wavelength of a
tiny ruby grain added to the sample [12]. The ruby scale has been calibrated to 180
GPa [13].

10.3 Energetic properties

A large number of techniques have been used to investigate the thermodynamic
properties of solids, and in this section an overview is given that covers all the
major experimental methods. Most of these techniques have been treated in spe-
cialized reviews and references to these are given. This section will focus on the
main principles of the different techniques, the main precautions to be taken and
the main sources of possible systematic errors. The experimental methods are
rather well developed and the main problem is to apply the different techniques to
systems with various chemical and physical properties. For example, the thermal
stability of the material to be studied may restrict the experimental approach to be
used.
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Devices Approx. sample
volume cm3

Approx. p-range
GPa

Approx. T-range
K

Autoclaves 103 0–0.1 200–600

Sealed pressure vessels 102 0–0.5 300–1200

Piston cylinder 10–1 0–5 300–2000

Multi-anvil 10–2 0–25 300–2000

Paris–Edinburgh 10–3 0–8 200–2000

Diamond anvil 10–4 0–100 200–3000

Shock apparatus 0–300 300–3000

Table 10.3 Characteristics of the main high-pressure devices.



Calorimetric, electrochemical and vapour pressure methods are treated sepa-
rately. The different techniques are to a large extent complementary. In general,
enthalpy and entropy are measured most accurately by calorimetry, while electro-
chemical and vapour pressure techniques represent efficient direct methods for
determination of activities and Gibbs energies.

Thermophysical calorimetry

The entropy of a compound can only be derived directly by calorimetry through
integration of the heat capacity of the compound, and accurate entropy data rely on
accurate determination of the heat capacity from 0 K. Different techniques are pre-
ferred in different temperature regimes. Calorimeters with electrically heated
shields, which follow the surface temperature of the calorimeter with its contained
sample (adiabatic calorimeters), offer unique possibilities for accurate determi-
nation of heat capacity and enthalpies of transition [14] and are the most accurate
instruments below 1000 K. Absolute values are determined through accurate deter-
mination of the electrical energy provided and the corresponding temperature
rise of the calorimeter. Minimization of the heat leak between the calorimeter and
the immediate surroundings, the adiabatic shields, are of primary importance to
the accuracy of the measurements. The high-temperature calorimeter used at the
University of Oslo since the early 1960s [15, 16] has two shields: an inner
adiabatic shield and an outer guard shield as shown in Figure 10.4. Both shields are
divided into three different parts that are regulated independently. For adiabatic
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calorimeters, instrumental temperature drift rates, characterizing the heat leak, of
the order of < 0.15 mK◊s–1 and < 1.5 mK◊s–1 are readily obtainable at 100 K [17] and
800 K [16], respectively. Sophisticated low-temperature instruments have an accu-
racy of 0.1% or less below 300 K [17], whereas corresponding high-temperature
calorimeters may be accurate to 0.2% from 300 to 1000 K [16]. These calorimeters
can be operated either with stepwise energy inputs preceded and followed by equil-
ibration periods as illustrated in Figure 10.5, or alternatively with continuous input
of energy. Stepwise heating secures thermal equilibrium in the sample and these
instruments may be used to follow exothermal reactions taking place in a sample.

Adiabatic calorimeters are complex home-made instruments, and the measure-
ments are time-consuming. Less accurate but easy to use commercial differential
scanning calorimeters (DSCs) [18, 19] are a frequently used alternative. The
method involves measurement of the temperature of both a sample and a reference
sample and the ‘differential’ emphasizes the difference between the sample and the
reference. The two main types of DSC are heat flux and power-compensated instru-
ments. In a heat flux DSC, as in the older differential thermal analyzers (DTA), the
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Figure 10.4 Adiabatic high-temperature calorimeter [15]. 1: Calorimeter proper; 2: Silver
guard; 3: Silver shield; 4: Shield heater; 5: Thermocouple sleeve; 6: Silica glass container;
7: Sample; 8: Calorimeter heater; 9: Pt resistance thermometer; 10: Silica ring spacer; 11:
Type S thermocouple; 12: Guard heater; 13: Removable bottom. Reproduced by permission
of F. Grønvold.



temperature difference between sample and reference material is measured and
there is no clear distinction between DSCs of the heat flux type and DTA instru-
ments. Only a part of the heat released or absorbed during a phase transition is
detected, and the thermocouple system is of crucial importance for the quality of
the instrument. The relationship between heat flux DSCs and classical DTAs is
seen in a number of DSC constructions, where both the sample and the reference
material are contained within a single furnace chamber: see Figure 10.6(a). The
temperature sensors in these constructions are typically placed in a disc of good
thermal conductivity. A quite different approach is used in Calvet type apparatuses
[20] where two cylindrical sample chambers are placed in a common calorimeter
block and the heat flux in or out of the two chambers is determined by differential
thermopiles.

Whereas the heat flux DSC measures the temperature difference between the
sample and the reference sample, power-compensated DSCs are based on compensa-
tion of the heat to be measured by electrical energy. Here the sample and the refer-
ence are contained in separate micro-furnaces, as shown in Figure 10.6(b). The time
integral over the compensating heating power is proportional to the enthalpy
absorbed by or released from the sample.

Proper calibration of the DSC instruments is crucial. The basis of the enthalpy cali-
bration is generally the enthalpy of fusion of a standard material [21, 22], but electrical
calibration is an alternative. A resistor is placed in or attached to the calorimeter cell
and heat peaks are produced by electrical means just before and after a comparable
effect caused by the sample. The different heat transfer conditions during calibration
and measurement put limits on the improvement. DSCs are usually limited to tempera-
tures from liquid nitrogen to 873 K, but recent instrumentation with maximum temper-
atures close to 1800 K is now commercially available. The accuracy of these
instruments depends heavily on the instrumentation, on the calibration procedures, on
the type of measurements to be performed, on the temperature regime and on the
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properties of the material to be investigated. On careful calibration, heat capacities can
be determined with an accuracy of 1–2% in the optimal temperature regime (300–600
K), while enthalpies of first-order transitions can be determined even more accurately
[21].

Heat capacities at high temperatures, T > 1000 K, are most accurately deter-
mined by drop calorimetry [23, 24]. Here a sample is heated to a known tempera-
ture and is then dropped into a receiving calorimeter, which is usually operated
around room temperature. The calorimeter measures the heat evolved in cooling
the sample to the calorimeter temperature. The main sources of error relate to tem-
perature measurement and the attainment of equilibrium in the furnace, to evalua-
tion of heat losses during drop, to the measurements of the heat release in the
calorimeter, and to the reproducibility of the initial and final states of the sample.
This type of calorimeter is in principle unsurpassed for enthalpy increment deter-
minations of substances with negligible intrinsic or extrinsic defect concentrations
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in the region of interest, like high-purity synthetic sapphire, a-Al2O3, except in the
vicinity of the melting point.

A special form of drop calorimetry has been developed for high-temperature
studies of metals and alloys. At high temperatures reactions between the sample
and the container may lead to serious errors. They may be avoided by electromag-
netic levitation of the sample in a vacuum furnace, and levitation drop calorim-
etry is a very powerful high-temperature technique [25]. Conventional steady state
and quasi-steady state techniques for accurate measurement of heat capacity are
generally limited to temperatures below 2000 K. A special technique for studies of
metals at very high temperature is the so-called pulse calorimetry, in which the
sample reaches high temperatures and different thermophysical properties are
recorded in short times – sub-microsecond techniques have been reported [26]. The
accuracy is lower than obtained by drop calorimetry and it seems reasonable to
assume an uncertainty of about 3–5%. Modulation calorimetry has proven
extremely useful for studies of phase transitions [27]. Two popular modulated tech-
niques are AC calorimetry [28], and temperature-modulated DSC [29]. The latter
technique proves especially useful in characterization of glasses.

Thermochemical calorimetry

Most thermochemical calorimetric methods are used to determine enthalpy
changes of chemical reactions. The reaction may give the enthalpy of interest
directly or may represent a step in a thermodynamic cycle needed to obtain an
enthalpy of interest. These techniques are also very suitable for direct determina-
tion of enthalpy of mixing in the liquid state or indirect determination of enthalpy
of mixing in the solid state. Calorimetric methods for studies of chemical reactions
involving solids can be divided into three main categories:

� solution calorimetry
� combustion calorimetry
� direct reaction calorimetry

The measurement of an enthalpy change is based either on the law of conserva-
tion of energy or on the Newton and Stefan–Boltzmann laws for the rate of heat
transfer. In the latter case, the heat flow between a sample and a heat sink main-
tained at isothermal conditions is measured. Most of these isoperibol heat flux cal-
orimeters are of the twin type with two sample chambers, each surrounded by a
thermopile linking it to a constant temperature metal block or another type of heat
reservoir. A reaction is initiated in one sample chamber after obtaining a stable sta-
tionary state defining the baseline from the thermopiles. The other sample chamber
acts as a reference. As the reaction proceeds, the thermopile measures the tempera-
ture difference between the sample chamber and the reference cell. The rate of heat
flow between the calorimeter and its surroundings is proportional to the tempera-
ture difference between the sample and the heat sink and the total heat effect is pro-
portional to the integrated area under the calorimetric peak. A calibration is thus
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needed to transform the calorimetric signal into an enthalpy. Calibration can be
obtained by dropping a substance with known heat capacity into the calorimeter or
by electrical calibration. A thermopile system and a typical calorimetric signal are
shown in Figure 10.7.

Measurements based on the law of conservation of energy are of two main types.
In phase change calorimetry the enthalpy of the reaction is exactly balanced by the
enthalpy of a phase change of a contained compound surrounded by a larger reser-
voir of the same compound used to maintain isothermal conditions in the calorim-
eter. The latter enthalpy, the measurand, is often displayed indirectly through the
change in the volumetric properties of the heat reservoir compound, e.g. ice/water.

Adiabatic calorimetry uses the temperature change as the measurand at nearly
adiabatic conditions. When a reaction occurs in the sample chamber, or energy is
supplied electrically to the sample (i.e. in heat capacity calorimetry), the tempera-
ture rise of the sample chamber is balanced by an identical temperature rise of the
adiabatic shield. The heat capacity or enthalpy of a reaction can be determined
directly without calibration, but corrections for heat exchange between the calo-
rimeter and the surroundings must be applied. For a large number of isoperibol
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solution and combustion calorimeters the temperature change of the calorimeter
during a reaction is recorded. From the corrected temperature change and the
energy equivalent of the calorimeter (determined by electrical calibration in a sep-
arate experiment) the enthalpy of a reaction can be calculated [30, 31].

The basic principle of solution calorimetry is simple. In one experiment the
enthalpy of solution of, for example, LaAlO3(s) [32] is measured in a particular
solvent. In order to convert this enthalpy of solution to an enthalpy of formation, a
thermodynamic cycle, which gives the formation reaction

1
2

La2O3(s) + 1
2

Al2O3(s) = LaAlO3(s) (10.4)

must be set up. The enthalpy of formation of LaAlO3(s) can be obtained from three
enthalpy of solution measurements that correspond to the following reactions:

LaAlO3 (s,T) + solvent (T) = solution (T) (10.5)

1
2

La2O3 (s,T) + solvent (T) = solution (T) (10.6)

1
2

Al2O3 (s,T) + solvent (T) = solution (T) (10.7)

The enthalpy of formation of the ternary compound is given by

D D D Df m
o
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o
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o
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oLaAlO , s, 10.5 [ 10.6 1H T H H H( ) ( ) ( ) (3 � � � 0.7 ]

La O , s, Al O , s,f m
o

2 3 f m
o

2 3

)

[ ( ) ( )]� �1
2

D DH T H T
(10.8)

Integral and partial molar enthalpies of mixing in solid solutions may be derived
by similar investigations of a series of solid solutions with systematic variation in
composition.

The solution experiments may be made in aqueous media at around ambient tem-
peratures, or in metallic or inorganic melts at high temperatures. Two main types of
ambient temperature solution calorimeter are used: adiabatic and isoperibol.
While the adiabatic ones tend to be more accurate, they are quite complex instru-
ments. Thus most solution calorimeters are of the isoperibol type [33]. The choice
of solvent is obviously crucial and aqueous hydrofluoric acid or mixtures of HF
and HCl are often-used solvents in materials applications. Very precise enthalpies
of solution, with uncertainties approaching �0.1% are obtained. The effect of dilu-
tion and of changes in solvent composition must be considered. Whereas low tem-
perature solution calorimetry is well suited for hydrous phases, its ability to handle
refractory oxides like Al2O3 and MgO is limited.

High-temperature solution calorimeters [34–36] are in general of the twin
heat flux type. They are applicable from around 900 K to around 1500 K and a
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precision of about �1% is often obtained. Although of lower precision than lower
temperature solution calorimeters, the effect of dilution is small and a large range
of materials can be studied. The main development of recent years is related to
measurements on smaller samples. Samples with masses of the order of 10–15 mg
are routinely used, and sensitive calorimeters for samples present only in very
small quantities, 1–5 mg [37] have been developed. Solution calorimetry has been
used to study metals and alloys since the early 1950s [38, 39], and has been applied
to oxides since 1964 [40].

A large number of solvents are used. Solubility, kinetics, thermal history, par-
ticle size, stirring and heat flow sizes are all factors that must be considered. For
solution of oxides, buffer-type systems are used [41, 42]. Lead borate
(2PbO◊B2O3), alkali tungstates or molybdates (3Na2O◊4MoO3) and alkali borates
(LiBO3◊NaBO3) are all solvents for oxides [34]. Lead borate is the usual solvent,
but a number of oxides dissolve slowly (oxides of Ti, Zr and rare earth elements)
and other solvents have in such cases proven more useful. Alkali molybdates and
tungstates are used for relatively basic oxides and also for nitrides. The redox prop-
erties of the solvent are of particular importance for transition metal compounds,
since the oxidation state of the transition metal after solution depends on the sol-
vent and the atmosphere. While Cr2O3 dissolves in molten lead borate near 1000 K
giving Cr(VI) in O2, Cr(III) is formed in Ar. MnO2 will, in the same solvent, give
Mn(III) in O2 [34].

Low melting metals (Sn and also Bi, In, Pb, and Cd) are extensively used as sol-
vents in calorimetric studies of metallic phases [35]. Transition metals do not, how-
ever, dissolve readily in tin [43] and other solvents such as Cu and Al have been
used. An experimental probe for high-temperature solution calorimetry is shown in
Figure 10.8.

In drop solution calorimetry the sample may not necessarily be equilibrated at
the calorimeter temperature prior to dissolution. It is often useful to drop the
sample into the calorimeter from room temperature [34]. This method is preferred
when the sample might decompose at the calorimeter temperature. In drop solution
calorimetry the enthalpy increment of the sample and its enthalpy of solution at the
calorimetric temperature are determined. The difference in the enthalpy of solution
of products and reactants gives the enthalpy of reaction at room temperature. This
method has been used for determination of the enthalpy of formation of carbonates
and hydrates [44, 45].

In solute–solvent calorimetry the compound to be studied is present as a mix-
ture with another element or compound in solid form at room temperature and
dropped into a hot calorimeter with resulting formation of a liquid product [35]. In
order to determine the enthalpy of formation of LaB6, Pt was added in a proportion
that gave the composition of a low melting eutectic. The liquid phase formed
enhanced the reaction rate and enabled the energetic parameters to be extracted
[46].
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In combustion calorimetry [47, 48] the enthalpies of chemical reactions of ele-
ments and compounds with reactive gases like oxygen or fluorine are determined.
Examples are [49, 50]:

GeS2(cr) + 8F2(g) = GeF4(g) + 2SF6(g) (10.9)

TiN(s) + 2O2(g) = TiO2(s) + NO2(g) (10.10)

The technique is versatile and can be used for a large number of compounds, and
recent examples are given in [47, 51, 52].

In many cases the measured enthalpies must be corrected for impurities present
in the original sample, often in an ill-defined state. A carbon impurity present in an
Si3N4 sample may reasonably be assumed to be present as SiC [53]. The carbon-
containing species in VSi2, for example, is more uncertain: it may be SiC, but it
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may also be present in the form of vanadium carbide or may even be present in its
elemental form [47].

Incomplete combustion and several reaction products represent another diffi-
culty, which may increase the uncertainty. Whereas sulfur-containing compounds
invariably produce SF6(g) at room temperature and the combustion yield when flu-
orinating GeS2 is high, oxygen combustion is often less ideal and the combustion
yield rather low. Furthermore, several different oxides are often present in the reac-
tion product. Combustion calorimetry seems in general to work better for fluorine
compared with oxygen combustion for inorganic solids. Metal fluorides are often
stoichiometric, and moreover the combustion yield is generally higher than for
oxygen combustion. However, difficulties are also observed for fluorides. Whereas
S, Se, Te, P, As, I, Ge and Si invariably produce only one reaction species at room
temperature [47], uranium-containing compounds may produce not only UF6, but
also UF5, UF4, UF3, U2F9 and U4F17 [54].

In combustion calorimetry the chemical reactions are usually ignited and the cal-
orimeters are most often of the isoperibol type working at around room tempera-
ture. The energetics of solid–gas reactions may also be studied at high
temperatures in heat flux or in adiabatic calorimeters, these techniques may be
described under the heading direct reaction calorimetry. The enthalpy of forma-
tion of nitrides (e.g. Na3WN3) has been determined indirectly through measure-
ment of the enthalpy of oxidation of the nitride at high temperature [55].

Na3WN3(s, 298 K) + 9/4O2(g, 977 K)
= 3/2Na2O(soln, 977 K) + WO3(soln, 977 K) + 3/2N2(g, 977 K)(10.11)

Enthalpies of oxidation of stoichiometric and even non-stoichiometric oxides
may similarly be obtained by heating reduced oxides in air in an adiabatic calorim-
eter to a temperature at which the oxidation proceeds sufficiently fast [56]:

SrMnO2.50(s) + 0.25 O2(g) = SrMnO3(s) (10.12)

By controlling the partial pressure of the volatile species, partial enthalpies of
solid–gas reactions such as oxidation and hydrogenation can also be obtained. The
partial enthalpies of solution of hydrogen and deuterium in metals and alloys have
been measured by high-temperature heat flux calorimetry [57, 58]. In both cases
the calorimetric technique was combined with the determination of pressure–com-
position isotherms. A recent construction used for determination of the partial
molar enthalpy of oxygen for the high-temperature superconductor YBa2Cu3Oz
simultaneously measures the heat effect owing to a small change in oxygen partial
pressure and the corresponding change in stoichiometry [59]. Two separate instru-
ments, a calorimeter and a thermobalance, are placed in series in the gas path. The
obvious advantage of this is that the mass change is measured directly and not
derived from the partial derivative of the compositional variation of the
equilibrium partial pressure.
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Enthalpies of formation of metallic compounds and alloys can also be deter-
mined directly through reactions such as [60]:

Al(s, T1) + Ce(s, T1) � AlCe(liq, T) (10.13)

AlCe(s, T1) � AlCe(liq, T) (10.14)

D D Df m 1 f f(AlCe, s, TH H H) ( . ) ( . )� �1013 1014 (10.15)

In recent years a range of refractory intermetallic compounds have been studied
[35, 61]. The main criterion for a good result is that the reaction should go to com-
pletion in a reasonable time.

Electrochemical methods

Wagner pioneered the use of solid electrolytes for thermochemical studies of solids
[62]. Electrochemical methods for the determination of the Gibbs energy of solids
utilize the measurement of the electromotive force set up across an electrolyte in a
chemical potential gradient. The electrochemical potential of an electrochemical
cell is given by:

E
RT

q F
t a

i
i

a

a

� � ion d ln

1

2

(10.16)

where

t ion ion tot� s s/ (10.17)

is the transference number of the mobile ion in the electrolyte, sion and stot are the
ionic and total (ionic + electronic) conductivity, and qi is the ionic charge of spe-
cies i and F is Faraday’s constant. a1 and a2 are the activities of the ionic con-
ducting species at the two electrodes. If the activity of a species at one electrode is
fixed, the activity of the species on the other electrode is determined from the
observed electrochemical potential.

Solid electrolytes are frequently used in studies of solid compounds and solid
solutions. The establishment of cell equilibrium ideally requires that the electro-
lyte is a pure ionic conductor of only one particular type of cation or anion. If such
an ideal electrolyte is available, the activity of that species can be determined and
the Gibbs energy of formation of a compound may, if an appropriate cell is con-
structed, be derived. A simple example is a cell for the determination of the Gibbs
energy of formation of NiO:

Pt Ni, NiO ZrO (CaO) Pt,air2 (10.18)
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The left-hand side of the cell, the working electrode, has its pO2
fixed by the Ni +

NiO equilibrium pressure, while on the right-hand side the reference electrode has
pO2

given by the air atmosphere. Alternatively, a buffer may be used on the reference
electrode side. The left- and right-hand side half-cell reactions are respectively

O Ni(s) NiO(s) 2e2 � �� � � (10.19)

1
2 2

22O g e O( ) � �� � (10.20)

and the total cell reaction is:

Ni(s) O g NiO(s)� �2 ( ) (10.21)

When a perfect ionic conductor electrolyte is used,

D f m
o o oNiOG nFE FE( ) � � � �2 (10.22)

where n is the number of electrons involved in the cell reaction and Eo is the stan-
dard potential or the electromotive force of the cell reaction. The electromotive
force (EMF) should be independent of time and whether the cell temperature is
approached from above and below. The EMF should furthermore be measured at
zero current and the same value should be obtained when passing a small current in
either direction.

The choice of electrolyte is crucial and a few are widely used for galvanic cell
studies. In order to be used for thermochemical experiments, a solid electrolyte
should have an ionic conductivity exceeding 10–4 S◊m–1 [63] and a transference
number larger than 0.99. In other words, only pure ionic fast-ion conductors are
suitable for EMF measurements. Outside of the purely ionic regime of the electro-
lyte electron or hole conduction becomes significant, and although corrected, elec-
trochemical potentials may be obtained if the transference numbers are known.
These corrections are however complex [64, 65]. In addition, the presence of elec-
tronic conduction allows the cell reaction to proceed spontaneously, even with an
open external circuit. This gives a net transfer of material between the electrodes
and often precludes stable EMFs. Hence both the electrolyte and the temperature
and partial pressure regimes of the measurements should be considered. The ionic
conductivity for selected oxygen, silver, fluorine and proton-conducting electro-
lytes are shown in Figure 10.9(a). The partial pressure ranges of pure ionic conduc-
tion for some of the more usual solid electrolytes are shown in Figure 10.9(b) [66].

Among the oxygen ion conductors, CaO or Y2O3 stabilized ZrO2 (CSZ and
YSZ) [67, 68], and Y2O3 or La2O3 stabilized ThO2 [69] are frequently used. CSZ
and YSZ are limited to oxygen partial pressures in the range from 10–13 to 1010 Pa
at 1273 K [68]. Lower partial pressures are allowed with the thoria-based
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electrolytes, which are limited to the range from 10–20 to 10–11 Pa at 1273 K [69].
The electronic properties of the thoria-based electrolytes depend to a large extent
on trace impurities in the particular material. The most widely used fluoride elec-
trolyte is CaF2 [67]. The transference number for fluorine in CaF2 is > 0.99 for cal-
cium activities below 6◊10–6 at 1113 K [70] and fluorine partial pressures down to
10–43 Pa at 1073 K and to 10–65 Pa at 767 K [71]. A third group of much used solid
electrolytes are the b-aluminas. In Na-b-alumina [72] Na+ is the ion-conducting
species situated in oxygen-deficient layers separating the four oxide layers thick
‘spinel blocks’ of the structure.

Although the experimental setup is simple in principle, several factors make con-
struction of electrochemical cells difficult: sealing of the cell, gas permeability,
and materials stability and compatibility in general. Experimental cell designs
have been discussed by Kleykamp [73] and Pratt [67]. In single-compartment cells,
a cell stack is kept in a common protective atmosphere. Transport of the ionic con-
ducting species via the gas phase should be insignificant; it can be obtained by
choosing a reference electrode with potential similar to that of the working elec-
trode. An electrolyte may also be used in the form of a crucible in order to increase
the gas phase path distance between the electrodes. However, in cases where the
difference in equilibrium pressure is large, sealing of the cell is necessary. This can
be done by sealing one electrode with an alumina-based cement or with a fused
gasket of a high melting glass, or by using O-rings outside the furnace.

Commonly used cells use Pt/O2 or Pt/air as reference electrodes. At very low
partial pressures of oxygen, care must be taken to avoid direct permeation of
oxygen through stabilized zirconia from the air (or reference electrode) [74, 75].
The effect may be avoided by applying reference electrodes with activity near that
observed at the working electrode. A well-defined buffer system like a metal–metal
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oxide or a metal–metal fluoride mixture is one solution to the problem. The ther-
modynamic properties of these buffer systems are well known over extended tem-
perature ranges. Direct permeation of oxygen through the electrolyte may also be
avoided by controlled continuous adjustment of activity at the reference elec-
trodes. By containing the sample in the inner of two concentric zirconia tubes, the
electrodes on the outer tube may be used to measure and control the oxygen partial
pressure between the two tubes and the reference electrode potential [76].

It is also important to consider the materials’ stability and compatibility. If inter-
facial reactions between the electrode and electrolyte are known to occur, direct
contact between the electrolyte and the electrode must be avoided by using, for
example, a compatible intermediate material. Liquid silver has been used to sepa-
rate an Fe–O–SiO2 electrode from the ZrO2 electrolyte [77]. Correspondingly, the
choice of reference and working electrode is important and knowledge of the phase
equilibria in the system of interest is essential for a valid interpretation of electro-
chemical cell measurement. The species present at the working electrode should be
coexisting phases in the system of interest. Care must be taken since the coexisting
phases may change with temperature. In the Fe–Mo–O system Fe and Mo2Fe3 are
in equilibrium with Fe2Mo3O8 below 1189 K, and with Fe2MoO4 above 1189 K;
see [78].

Many materials have been used as electrical connectors. By far the most common
is Pt, but Pt forms very stable intermediate phases with actinides and lanthanides,
and in these cases W or Mo electrical connectors have been used. Correspondingly,
W may react with refractory oxides like Rh2O3 forming WO2, and an intermediate
layer of Rh has been proposed to prevent this [73].

The activity of the mobile species in a closed electrolyte cell can be controlled
[79, 80]. Ions can be pumped in or out of a closed compartment and the change in
composition determined accurately. The composition of a non-stoichiometric
compound can therefore be changed in small steps and both the composition and
the activity of the species are simultaneously determined. Detailed information
about the compositional dependence of the partial Gibbs energy under isothermal
conditions can thus be obtained by this technique, termed coulometric titration.
The technique is most commonly used to study phases with properties that are
highly dependent on small changes in stoichiometry. Early examples are studies of
sulfides, selenides and tellurides [80, 81], while more recent ones include careful
studies of the partial Gibbs energy of oxygen in U1–yGdyO2–x [82]. In order to
reach equilibrium in a reasonable time the material to be studied must have a high
diffusion coefficient for the conducting ion of the electrolyte. An additional advan-
tage of the technique is that phase boundaries can be determined accurately, and
this has been used for simultaneous mapping of phase equilibria and
thermodynamic properties.
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Vapour pressure methods

A heterogeneous phase equilibrium involving a gas phase represents a convenient
way of determining the Gibbs energy of a substance. A substance may evaporate
congruently:

AB2(s) = AB2(g) (10.23)

or non-congruently

AB2(s) = AB(s) + B(g) (10.24)

Vapour pressure methods are used to determine the pressure pi of the volatile
species i in equilibrium with a solid compound with a well-defined composition.
The activity can then be deduced through

a
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(10.25)

where fi and pi are the fugacity and the partial pressure of the species i, and f i
o and

pi
o are the fugacity and activity of the species i in its standard state. The activity is

determined directly by measurement of the vapour pressure of an element or a com-
pound at a certain temperature (static or effusion methods) or indirectly, through
equilibration of the sample with a well-defined gas phase. The techniques are here
considered under two main headings: effusion and equilibration methods.

The most usual effusion methods are based on equilibration of a substance in a
Knudsen cell. A small fraction of the vapour molecules effuse through a small effu-
sion orifice in the lid of the cell (diameter from 0.1 to 1 mm), ideally without
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disturbing the equilibrium in the cell; see Figure 10.10. The equilibrium partial
vapour pressure of species i is given by the steady state evaporation rate [83]:
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(10.26)

where (dmi/dt) and Mi are the mass rate of effusion and the molar mass of the
effusing species, A is the area of Knudsen cell orifice and f is a correction factor, the
Clausing factor [83]. The methods are used successfully in the vapour pressure
range between 10–7 and 10 Pa for temperatures up to 2800 K [84].

The mass loss technique [83] gives the total vapour pressure only and is suitable
mainly for samples that evaporate congruently, or compounds that vaporize incon-
gruently but with one dominating vapour species. The evaporation rate is deduced
from the mass loss or through collecting and analyzing the vapour effusing from
the cell.

The momentum sensor techniques [85] are based on the force transferred from
a gas to a surface on impact or recoil. Impact momentum sensors [86] are generally
not very sensitive, partly because molecules simultaneously condense and
revaporize from the target. Recoil-based techniques are hence preferred. In one
version, the vapour pressure is deduced from the change in mass of a Knudsen cell
that is observed on opening/shutting the orifice at the measuring temperature [87].
In the torsion recoil method [88] the Knudsen cell is suspended on a fibre. Two ori-
fices are made in the cell perpendicular to the fibre and in opposite directions. The
vapour pressure is deduced from the torsion force that results from the vapour
effusing through the two orifices. The recoil of the anti-parallel effusing vapour
twists the supporting torsion fibre to a degree determined by the elastic torsion
momentum of the fibre. The deflection angle is the measurand. A third variant is
based on measurement of the recoil momentum of a linear pendulum [89].

Mass spectrometry techniques are the most usual and versatile methods for
analysis of the gas [90]. Here the effusing vapour is ionized by an ionization source
and the product analyzed with a mass spectrometer. The different vapour species
are identified and the partial pressures of all species determined. The partial pres-
sure of species i of a compound or a solution with a specific composition is at a
specific temperature:

p k I Ti
i

i�
1

s
(10.27)

where k is a pressure calibration factor, si is the ionization cross-section of species
i, and Ii is the intensity of species i. The pressure calibration factor may be deter-
mined in situ by use of a twin-type Knudsen cell with the sample in one cell and the
reference materials in the other or through separate experiments on the reference
material [91]. For binary alloys the pure metal whose activity is measured is the
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natural reference. Since high temperatures may be used, the choice of the Knudsen
cell material is important and reactions between the sample and the cell must be
avoided. Care must also be taken to avoid fragmentation of the gas molecules on
ionization [90]. The mass spectrometric analysis allows detailed thermodynamic
studies of compounds where the vapour consists of more than one species, e.g. for
NaDyI4(s), where the main gaseous species are NaI(g) and DyI3(g) [92].

A number of techniques are based on direct measurement of the total vapour
pressure in equilibrium with a compound at a given temperature, i.e. equilibration
methods. The most usual methods are based on the use of pressure gauges covering
pressures from 10–7 to 100 kPa [93]. Methods based on thermogravimetric deter-
mination of the mass of the vapour [94] and on atomic absorption spectroscopy
have also been reported [95].

The equilibrium vapour pressures may also be determined indirectly, for
example through measurement of the exact composition of a non-stoichiometric
compound in equilibrium with a gas with a well-defined activity of the volatile spe-
cies. While Knudsen effusion studies by mass spectrometry depends on complex
and expensive instrumentation, some equilibration studies are readily performed in
rather simple experimental setups. For example, the composition of a non-
stoichiometric compound can be determined as a function of the vapour pressure of
a volatile species such as oxygen in the case of La2–xSrxCuO4–d by
thermogravimetry [96] and the technique is complementary to coulometric titra-
tion. While only certain discrete partial pressures of oxygen in practice are feasible
by thermogravimetry, oxygen permeability and materials compatibility problems
in general is less of a problem.

The temperature of decomposition of carbonates of the YBCO high-temperature
superconductor to oxides [97]:

2YBa2Cu3O6.3(CO2) 0.19(s) + 2.62CO2(g) + 0.2O2(g)
= 5CuO(s) + 3BaCO3(g) + Y2BaCuO5(s) (10.28)

at different well-defined partial pressures of CO2(g) also facilitates determination
of thermodynamic properties through second or third law treatments of the equilib-
rium pressure data. The main systematic error is often related to inadequate equili-
bration, and it is important that the equilibrium pressure is obtained both on
decomposition (i.e. on heating) and on carbonatization (i.e. on cooling). It is often
advantageous to start out with a partly decomposed sample in order to reduce
nucleation problems.

A range of different methods measures the solubility of hydrogen in metals and
alloys. Manometric methods [98] and gas volumetric methods [99] have been
used to determine pressure–composition isotherms at selected temperatures for a
range of alloys [100–103].

In the isopiestic method two condensed phases are equilibrated via the gas
phase [104,105]. The composition and pressure of the gas phase are determined by
use of a reference compound for which the partial pressure of a volatile component
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is known as a function of temperature and composition. Experiments can be per-
formed isothermally by equilibration of one sample with the reference sample
[106]. The sample is taken out and its composition determined analytically. Alter-
natively, several samples are equilibrated at the same time in a temperature gra-
dient. This method is well suited for studies of non-stoichiometric compounds and
alloys. Various binary and ternary systems with Zn, Cd, As, Sb or Te as volatile
components have been studied [105].

In the dew point method, the sample is kept in an evacuated silica glass tube,
which is placed in a temperature gradient [93]. The sample is contained in the hot
end and the temperature of the cold end controlled to the temperature where the
vapour of the volatile component just starts to condense. The activity of the volatile
species in the compound is given from the dew point temperature.

Some words on measurement uncertainty

It is evident that the accuracy of an enthalpy determined by direct reaction calorim-
etry will depend largely on the completeness of the reaction and on the corrections
made in order to take this source of systematic error into consideration. Local satu-
ration and precipitation are similarly possible sources for systematic errors in solu-
tion calorimetry. Correspondingly, obvious and less obvious sources of systematic
errors may be found for all experimental techniques. It is difficult to give a definite
common uncertainty to a particular measurement technique and the uncertainty is
to a large extent determined not only by the technique itself but also by the temper-
ature of the reaction, the type of compound studied and so on. Therefore it is diffi-
cult to estimate the uncertainty of an experiment, and results obtained by different
methods often do not agree within the stated uncertainties or reproducibilities. The
enthalpy of formation, determined by calorimetry, of LaNi5 obtained by leading
scientific groups using combustion calorimetry, solution calorimetry and direct
reaction calorimetry are given in Table 10.4. Four of the five data for LaNi5 are
equal within the stated estimate of the uncertainty. In other cases, like GeSe2 and
Si3N4, larger systematic errors in some data are inferred. The F-combustion mean
value for GeSe2 [112, 113] is 18.7 kJ◊mol–1, 22% more negative than the value
obtained by direct reaction calorimetry [114]. The combined uncertainty of the F-
combustion and direct reaction values is 4.8 kJ ◊mol–1. For b-Si3N4, the
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Compound DfHm / kJ mol–1 Method Reference

LaNi5 –126.3 � 7.5 HCl solution Semenko [107]

–159.1 � 8.3 HCl solution O’Hare [108]

–165.6 � 10.2 Al solution Colinet [109]

–161.4 � 10.8 Al solution Colinet [110]

–157.8 � 18.1 Liquid reaction Kleppa [111]

Table 10.4 Selected experimental determinations of the standard enthalpy of formation of
LaNi5 at 298.15 K.



F-combustion values are 24.2 kJ◊mol–1 [115, 116], 3% more positive than those
obtained by solution calorimetry [117] and again larger than the combined
estimated uncertainties.

Considerable spread is also observed in reported enthalpies of transition in
single-component systems. As an example, the reported enthalpy of the first-order
transition giving the fast ionic conductor phase of AgI at 420 K are compared in
Table 10.5. In general, the agreement between the results obtained by adiabatic or
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Dtrs m
oH / J mol–1 Year Method Reference

6319 1954 Adiabatic 118

6402 1957 Adiabatic 119

5920 1963 Adiabatic 120

6319 1968 Adiabatic 121

6277 1969 Drop 122

6153 1969 Adiabatic 123

6308 1989 Adiabatic 124

6302 1989 Adiabatic 124

5072 1958 Clapeyron 125

6319 1966 DTA 126

6485 1967 DTA 127

8398 1970 DTA 128

6061 1981 DSC 129

5404 1983 EMF 130

Table 10.5 Selected experimental determinations of the enthalpy of transition of AgI (a-
AgI = b-AgI).
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Figure 10.11 Gibbs energy of formation of BaZrO3 reported in literature.



drop calorimetry is good, while considerable spread is observed for other tech-
niques. This result is also true for enthalpy and entropy increments due to a change
in temperature.

The next question is: how do the results of calorimetry, electrochemical and
vapour pressure methods compare? The formation properties of BaZrO3 have been
extensively studied. The directly measured Gibbs energy of the reaction

BaO(s) + ZrO2(s) = BaZrO3(s) (10.29)

is given in Figure 10.11. Some data are obtained by electrochemical measurements
[131–133] and others by Knudsen effusion mass spectrometry [134–136].
Although deconvolution of directly measured Gibbs energies to enthalpic and
entropic contributions is in general difficult, the agreement with two sets of calori-
metric determinations [137, 138] is reasonable; see Table 10.6.

10.4 Volumetric techniques

A number of different techniques are used for density measurements and the
method of choice will depend largely on the physical and chemical properties of
the material to be studied [139]. The Archimedes method is often used. For solid
materials the volume can be derived by measuring the weight difference between a
solid body in air and immersed in a liquid with known density. The apparent loss
of weight yields the volume when using large single crystals, but also for
polycrystalline materials that do not contain closed porosity. The method may also
be applied to measure the density of liquids. In this case a solid body with known
density and volume is immersed in the liquid in question and the weight difference
between the solid body in air and immersed in the liquid is measured.

In pycnometry, the sample is weighted in a calibrated pycnometer before and
after this is filled with a liquid of known density. The volume of the sample and
thus its mass is determined. Powders may be used, and it is often advantageous to
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Compound Df,oHm / kJ mol–1 Method Reference

BaZrO3 –89.3 � 13 EMF [131]

–90.4 � 0.3 EMF [132]

–103.9 � 2.4 EMF [133]

–106.7 � 20.9 KEMS [134]

–76.1 � 0.7 KEMS [135]

–97.5 � 0.8 KEMS [136]

–117.3 � 3.7 HF/HNO3 solution [137]

–119.7 � 0.4 F-combustion [138]

Table 10.6 Selected experimental determinations of the standard enthalpy of formation of
BaZrO3 from oxides.



use a liquid with low surface tension, since this facilitates the removal of gas bub-
bles that frequently occur on filling the liquid.

The gradient tube technique is based on immersion of the solid in a liquid with
a gradient in density. When one liquid is placed on another of higher density, a
linear density gradient develops near the interface. If convection is not allowed the
diffusion is taking place very slowly and the gradient remains virtually constant for
long periods of time (of the order of months). A crystal introduced into the tube
will sink until it reaches a level of density corresponding to its own density. At this
level the crystals remain stationary.

Alternatively, the density of a crystal can be determined indirectly by diffrac-
tion [140]. Here the unit cell, defined as the smallest repeating unit which shows
the full symmetry of the crystal structure, is determined from the observed diffrac-
tion pattern. The density is subsequently obtained from the unit cell volume by
taking into consideration the number of formula units in the unit cell. X-ray dif-
fraction is frequently used also to determine the density or rather the molar volume
as a function of temperature. This implicitly gives the isobaric expansivity, also
termed the thermal volume expansion coefficient, a. Accurate data are only
obtained through accurate temperature determination. Temperature can be moni-
tored either directly by placing a thermocouple in the vicinity of the sample or by
mixing the sample with an inert standard for which the unit cell volume is known as
a function of temperature. High-temperature X-ray diffraction to above 1500 K is
readily performed using both commercial diffractometers and in large-scale X-ray
synchrotron facilities. Diffraction is also frequently used to measure the volume
change connected with first-order phase transitions through careful measurement
of the unit cell volume of the phases above and below the phase transition
temperature.

Besides high-temperature X-ray diffraction, dilatometry is a common tech-
nique for determination of the isobaric expansivity and for volumetric changes of
phase transition [141]. In this technique one may use a single crystal or a
polycrystalline sample with near theoretical density (negligible porosity). While
the linear expansion along each of the unit cell axes can be determined in the case
of single crystals, only the average linear expansion is obtained for polycrystalline
materials. The material is typically heated at a constant heating rate and the elonga-
tion of the sample is measured as a function of temperature. A dilatometer is usu-
ally calibrated with regard to expansion using the volumetric properties of known
substances such as sapphire, while temperature is calibrated by using accurately
known phase transition temperatures such as the melting temperatures of Au or Ag.
Dilatometers that allow good control of the sample atmosphere may also be used to
study the volumetric properties (isothermally) as a function of the chemical poten-
tial of a volatile species such as oxygen. At high temperatures reactions between
sample and container may lead to serious systematic errors.

Other methods are obviously needed for liquids. In the simplest approach the
thermal expansivity is derived by measurements of the density as a function of tem-
perature. It is then necessary to correct for the thermal expansion of the solid body
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used in the measurements. The Archimedes method is difficult to apply in cases
when the vapour pressure above the liquid becomes substantial. In these cases the
liquid can be contained in a closed container (e.g. of quartz), where the liquid is
allowed to expand into a narrow cylinder. This technique allows for direct reading
of the liquid volume as a function of temperature [142]. The volume of the con-
tainer is calibrated before the measurement by using a liquid with known density.
At high temperatures the main obstacle to proper measurements of volumetric
properties of liquids is the lack of inert container materials.

Several methods are also available for determination of the isothermal compress-
ibility of materials. High pressures and temperatures can for example be obtained
through the use of diamond anvil cells in combination with X-ray diffraction tech-
niques [10].k T is obtained by fitting the unit cell volumes measured as a function
of pressure to an equation of state. Very high pressures in excess of 100 GPa can be
obtained, but the disadvantage is that the compressed sample volume is small and
that both temperature and pressure gradients may be present across the sample.

The compressibility may alternatively be measured by shock compression
[143] or sound velocity experiments [144]. In the latter, acoustic sound is propa-
gated through a medium by longitudinal waves with a wave velocity that is related
to the compressibility and density of the material. In the former case a shock wave
is produced by, for example, a piston propelled toward the sample. The shock wave
travels through the material. Behind the shock wave the material is compressed and
a series of subsequent shock waves having increasingly higher velocity is gener-
ated. This train of shock waves eventually coalesces into a single wave front that
proceeds at the speed of sound in the material. Application of the principles of con-
servation of mass, momentum and energy across the wavefront relates the charac-
teristics of the waves to the thermodynamic variables of interest, pressure, volume
and internal energy through the Hugoniot equations [144].
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11
Thermodynamics and

materials modelling

Neil L. Allan, University of Bristol

The previous chapter discussed experimental methods for determining thermody-
namic properties of materials. An increasingly attractive option is to calculate
these quantities directly. Thanks to both the tremendous increase in computer
power – the ratio of performance to price increasing typically by an order of magni-
tude every five years – and the development of powerful software, theoretical pre-
diction of thermodynamic properties may rival experimental measurement in some
specific areas. Values can be obtained for properties either under conditions inac-
cessible to experiment (e.g. the elevated temperatures and high pressures deep in
the Earth’s mantle) or too dangerous for experiment (e.g. radioactive materials). In
addition, molecular modelling can provide unique insights into the behaviour of
the material at the atomic level, enabling us to examine the underlying reasons for
the trends in properties from one material to another. Why, for example, does a par-
ticular compound adopt a particular structure rather than the myriad of other possi-
bilities? Again, why do some materials contract on heating while most expand?
Much of this book has been concerned with macroscopic thermodynamic quanti-
ties – enthalpies, entropies and so on – and what information about atoms and mol-
ecules can be obtained from these data. Here we go in the opposite direction, and
obtain macroscopic quantities from the calculation of atomic properties.

There are many computational techniques available, covering many orders of
magnitude of length and time-scales, as shown schematically in Figure 11.1. Poten-
tial-based methods depend on the use of analytical expressions for the interaction
energies between the atoms in the molecule or solid under study. These are
parametrized by fitting either to experiment or to the results of quantum mechanical
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calculations. Classical energy minimization (also known as molecular
mechanics), lattice dynamics, molecular dynamics and Monte Carlo techniques
all use these potentials. Molecular dynamics is unique in following explicitly the
evolution in time of a system over the pico- and nanosecond time-scales, by using the
potentials together with Newton’s laws of motion. More accurate are first principles
quantum mechanical methods which solve the Schrödinger equation directly to
obtain the energy of the molecule or periodic system with no recourse to interatomic
potentials; but they are much more computationally expensive.

There is thus an inevitable trade-off between speed and accuracy. This often
presents an acute problem for materials modelling, where we are normally inter-
ested in assemblies of large numbers of atoms or molecules! In particular, for
glasses and other amorphous systems we must use large simulation cells to repre-
sent the long-range disorder. A further challenge is the difficulty of calculating
entropies and Gibbs energies, and allowing for the effects of temperature. We are
often forced to ignore atomic vibrations entirely and work in the static limit, which
refers to a temperature of absolute zero and in the absence of vibrations.
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We start in this chapter with potential-based methods, the computationally
cheapest approach, which can be applied to large assemblies of molecules. We then
move on to the use of quantum mechanical techniques, as used for problems
involving smaller numbers of atoms. The aim is to give a brief overview of the sub-
ject and its applications, and to show what type of information can be obtained from
the different methods. The reader is referred to specialist texts for fuller details.

11.1 Interatomic potentials and energy minimization

We would ideally tackle all problems in molecular-level modelling by using
quantum mechanics to calculate the wavefunction and the energy of the system.
However, the size of many systems is such that the computer requirements (com-
puter time and memory) make this totally unfeasible and we have to resort to a dif-
ferent approach. All potential-based methods (often referred to in pharmaceutical
modelling as force-field methods) take no explicit account of the electronic
motion. Instead, making the Born–Oppenheimer approximation, they calculate the
energy of the system as a function of the nuclear positions only. Essentially, we
view the solid or liquid as comprised of a set of interacting spheres,1 the motions of
which can then be treated using the laws of classical rather than quantum physics.
Of course, these methods are incapable of providing any information about
bonding, charge transfer, reaction pathways or electronic properties; but such
details are often not required per se for calculation of thermodynamic properties,
and potential-based methods can sometimes provide answers to an accuracy com-
parable with that of the highest-level quantum mechanical methods. But such suc-
cess depends crucially on the accuracy of the potentials describing the interactions
between the atomic ‘spheres’. If these potentials are poor, then so will be the results
of the simulation.

Intermolecular potentials

In general there is no analytic expression for the energy of a molecule or solid in
terms of the positions of the atoms. Instead we assume that the potential energy F
of the system can be written as a sum of various interactions (Figure 11.2), as
follows:

F �
� � � � � �
� � �V V Vij
i j

ijk
i j k

ijkl
i j k l

+ + +

over
all p

…

airs of
atoms

over all
3 atom

combinations

over all
4 atom

combinations
2-body potential 3-body potential 4-body potential

(11.1)
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1 Einstein’s comments on quantum mechanics include his belief that God does not play dice.
God may have a weakness for snooker and billiards.



where each subscript label specifies a particular atom.
Consider, for example, Figure 11.3, which shows four atoms in a molecule or a

solid. Using eq. (11.1) the potential energy for these four atoms is given by

F � � � � � � �V V V V V V V12 13 14 23 24 34 12

2 -body
� ������� ������� 3 124 134 234 1234� � � �V V V V

3-body 4-body
� ����� ����� ���

(11.2)

Extension to a molecule with more than four atoms or to a solid is straightfor-
ward. Usually the two-body terms are much larger than the three-body terms,
which in turn are greater than the four-body. For ionic solids, for example, the
three-body and four-body terms are often neglected. In contrast, for metals and
semiconductors including only two-body terms leads to very poor results (see
Sutton (Further reading)).

The next step is to assume particular functional forms for the various terms.
These can be extremely elaborate, but most are usually based on a simple, chemi-
cally intuitive model of the interactions, e.g. stretching of bonds, changes in bond
and torsion angles, Coulomb forces and van der Waals intermolecular interactions.
Thus, for a molecular solid comprised of discrete molecules, we might well use
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The first three of the terms on the right-hand side of eq. (11.3) all involve solely
intramolecular interactions (Figure 11.4). The first is the (two-body) interaction
between pairs of directly bonded atoms in the molecules. The particular form
chosen here is harmonic. The force constant for each bond is kr, the bond length is r
and r0 is a constant (the bond length adopted by the bond when all other terms in
the force field are zero). The second term is the three-body contribution, again har-
monic, involving the summation over all the bond (valence) angles q in the mole-
cules. The third is the four-body torsion term, which changes with rotation about
the various bonds in the molecules. There is a contribution from each quartet of
bonded atoms A–B–C–D: w is the torsion angle, n is a constant reflecting the peri-
odicity of rotation (3 for ethane), and x is a phase factor determining the particular
values of the torsion angle for which this term is a minimum.

The fourth term on the right-hand side of eq. (11.3) is the electrostatic interac-
tion (Coulomb’s law) between pairs of charged atoms i and j, separated by distance
rij. Since electrostatic interactions fall off slowly with r (only as r–1) they are
referred to as long-range and, for an infinite system such as a periodic solid, spe-
cial techniques, such as the Ewald method, are required to sum up all the electro-
static interactions (cf. Section 7.1) (see e.g. Leach, Jensen (Further reading)). The
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final term represents the van der Waals interactions between pairs of non-bonded
atoms, both those in different molecules (intermolecular forces) and also those in
the same molecule. In eq. (11.3) we have chosen the well-known Lennard-Jones
functional form for this van der Waals term (Figure 11.5), in which the attractive
part representing the dispersion interactions varies as r-6 and a short-range repul-
sive part (Pauli repulsion) varies as r–12.

For ionic solids, where directional bonding is largely absent, three- and four-
body terms are often neglected, and eq. (11.1) becomes

F �
�
�

over
all pairs of ions

Vij
i j

(11.4)

where the interaction Vij between any pair of ions i and j is given by the sum of the
electrostatic interaction and the van der Waals term, Vvdw:

V
q q

r
V rij

i j

ij
ij� �

4 0pe vdw( ) (11.5)

Vvdw may be represented by a potential of Lennard-Jones form (as in the last
term of eq. (11.3)). A common alternative is the Buckingham form:

V r A r
C

r
ij ij

ij

vdw( ) exp( / )� � �r
6

(11.6)

where an exponential replaces the r–12 term in the Lennard-Jones potential and A, r
and C are constants. Increasingly, ionic models of this type also include extra terms
to allow for the polarization (distortion) of the electron cloud around ions in low-
symmetry environments; one used for many years is the shell model [1].

The quality of any force field and set of interatomic potentials depends crucially
on the values chosen for all the parameters in the various potential functions and
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the assignment of charges to the individual atoms or ions. This task is far from
trivial, and much care is needed. Even for a binary oxide such as CaO, using
Buckingham potentials, we must assign charges to the Ca and O ions (usually +2
and –2 in agreement with the usual valence rules) and decide values for A, r and C
for the Ca–Ca potential, the Ca–O potential and the O–O potential. One general
approach is to obtain these values by fitting to observed quantities such as
enthalpies of formation, experimental unit cell dimensions, bond lengths, angles,
vibrational frequencies and so on, for a small set of compounds. A second approach
growing considerably in importance is to fit to potential energy surfaces generated
by quantum mechanical techniques. This is useful when it is necessary to ensure
that the potentials are accurate over wide ranges of internuclear separations, since
only a few distances may be sampled in the molecules or solids used in the fitting
method. This is often crucial when simulating interfaces or defects in materials
where the interatomic distances at equilibrium may be very different from those in
the perfect bulk crystal. Transferability is generally a key requirement of any set of
potentials, for it is often vital that a set of parameters obtained from a small number
of cases can be applied to a much wider range of problems, often involving much
more complex systems.

Given the potentials we can evaluate the potential energy F of the system for any
input structure using eq. (11.1). We now turn to examine a range of techniques all
of which use this quantity.

Energy minimization, molecular mechanics and lattice statics

Given an input structure for our periodic solid we calculate F (typically per unit
cell) using the interatomic potentials. We are usually interested in minimum points
on the potential energy hypersurface. Comparison of the relative energies of two or
more possible structures following energy minimization enables us to predict the
likely structure for a given material. Such energy minimization is often referred to
in pharmaceutical modelling as molecular mechanics.

In lattice statics simulations all vibrational effects are neglected2 and the
internal energy of the solid U is simply equal to F, and the entropy is zero. Such
minimizations give the crystal structure and internal energy (often referred to as
the lattice energy) of the low-temperature phase. In the static limit at 0 K and zero
pressure3 the crystal structure is thus determined by the equation

� � �� � �U Z Zi i/ /F 0 (11.7)
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2 The inclusion of vibrational terms is dealt with later. We note in passing the fascinating
example of solid He, where lattice statics is completely inappropriate. The binding forces are
so weak that even at the lowest temperatures solidification occurs only at pressures of at least
2.5 MPa, and it is the zero-point vibrational energy that stabilizes the structure.

3 For all practical purposes in modelling condensed phases the difference between zero
pressure and one atmosphere can be ignored. At zero pressure, also, U and H are equal.



where the Zi are all the variables that define the structure, namely the lengths of the
three lattice vectors, the angles between these vectors, and the positions of the
atoms in the unit cell.

Considerable effort has been made to develop efficient algorithms for quick and
efficient minimization; there is a vast literature on the subject. Minimization
methods are divided into two classes – those that use derivatives of the energy with
respect to the variables defining the structure (useful for providing information
about the shape of the energy surface and thus enhancing the efficiency of the
minimization), and those that do not. Considerable care is often needed in the
choice of minimizer.

A typical example of energy minimization using interatomic potentials is a study
[2] of the ternary fluorides AMF3 (A = Li+–Cs+, M = Mg2+–Ba2+). Not all these
compounds have been reported experimentally. The computational study was
based on structures adopted by AMO3 oxides, since the oxide and fluoride ions
have similar ionic radii. The possible structures, shown in Figure 11.6, fall into two
classes:

1. The first arises when A is large enough for the formation of close-packed layers
AF3, which can be stacked in various ways. The simplest such structure is the
cubic perovskite (Figure 11.6) in which the AF3 layers are cubic close-packed.
Known fluorides with this structure include KMgF3, RbMgF3, RbCaF3,
CsCaF3 and LiBaF3. In all except the last of these the larger univalent ion is 12-
coordinate occupying the position labelled A in the centre of the unit cell in
Figure 11.6(a); the distance to its nearest anion neighbours is a0 2/ , where a0
is the cubic unit cell parameter. The divalent ions occupy the position marked M
and are 6-coordinate with a smaller nearest-neighbour distance of a0/2. In con-
trast, LiBaF3 has an ‘inverse perovskite’ structure in that the large Ba2+ ion is
12-coordinate and the smaller Li+ ion 6-coordinate. Orthorhombic perovskites,
in which the M–F–M bridges linking the MF6 octahedra are not linear (Figure
11.6(b)), are also common. In the three hexagonal fluoride structures known –
RbNiF3, CsCoF3 and CsNiF3 – there are other stacking sequences of the AF3
layers (Figure 11.6(c)).

2. In ternary oxides AMO3 the second class of structures arises when A and M are
the same size and the size is suitable for octahedral co-ordination. These adopt
structures in which both ions are 6-coordinate. An example is the lithium nio-
bate structure, which contains hexagonally packed anion layers (Figure
11.6(d)). Surprisingly, no known fluoride adopts such a structure.

In [2] all the possible structures listed above were considered for each ternary fluo-
ride. The potentials for A+–F– and M2+–F– were exactly those derived for the
binary systems AF and MF2, all of which were based on a single F––F– potential.
These potentials were assumed to be transferable unchanged to the ternary
fluorides.
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(a) (b)

(c)

(d)

Figure 11.6 AMF3 crystal structures. (a) ‘Ideal’ cubic perovskite structure. (b) Tilting of
MX6 octahedra in orthorhombically distorted AMF3 perovskites. (c) RbNiF3, CsCoF3 and
CsNiF3 crystal structures. (d) Crystal structure of lithium niobate.



Table 11.1 lists the resulting low-temperature phases calculated for this set of
compounds. Where experimental data are available (marked with a star) the pre-
dicted structures are those observed at low temperatures. ‘Inverse’ denotes a
perovskite structure in which a large divalent ion is 12-coordinate and a smaller
univalent ion 6-coordinate. Unit cell dimensions are predicted to within 1% of the
measured values.

Five of the compounds in which the univalent and divalent cations are of compa-
rable size (LiMgF3, NaCaF3, KSrF3, KBaF3 and RbBaF3) are predicted to adopt
the lithium niobate structure, in agreement with simple ion size arguments.
Lithium niobate itself is an important ferroelectric material, so the question of a
possible fluoride analogue is of particular interest.

To investigate this further the enthalpies of formation Df,fluH of all the ternary
fluorides from the binary fluorides,

AF + MF2 �AMF3 (11.8)

were calculated using the lattice energies obtained for each compound from lattice
statics minimizations. The calculated values of DH for all the known ternary fluo-
rides marked with a star in Table 11.1 are negative, with the exception of KCaF3
which is small and positive. Of those that are apparently unknown, the enthalpies
of formation of LiMgF3 and CsSrF3 from the binary fluorides are calculated to be
negative, while LiCaF3 has a positive value close to that of KCaF3. The remaining
systems NaCaF3, KSrF3 and KBaF3, which are predicted to have the lithium nio-
bate structure, all have large positive enthalpies of formation from binary fluo-
rides. These values of Df,fluH suggest in general why fluorides with the lithium
niobate structure have not been reported, but leave open the tantalizing question of
why LiMgF3, also predicted to adopt this structure but with a negative enthalpy of
formation from LiF and MgF2, is unknown.
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Ion A Ion M

Mg2+ Ca2+ Sr2+ Ba2+

Li+ LiNbO3 Orthorhombic
(Inverse)

Orthorhombic
(Inverse)

Cubic* (Inverse)

Na+ Orthorhombic* LiNbO3 Orthorhombic
(Inverse)

Orthorhombic
(Inverse)

K+ Cubic* Orthorhombic* LiNbO3 LiNbO3

Rb+ RbNiF3* Cubic* Orthorhombic LiNbO3

Cs+ CsNiF3* Cubic* Cubic Orthorhombic

Table 11.1 Calculated low-temperature phases of AMF3 compounds. The * denotes
compounds for which there are experimental crystallographic data.



High pressure

Thermodynamic properties at high pressures are of great interest for instance to
Earth scientists who wish to understand the behaviour of the Earth’s mantle, where
pressures reach 100 GPa. To carry out energy minimizations in the static limit at
non-zero pressures we minimize the enthalpy H = U + pV with respect to all the
variables that define the structure, where p is the applied pressure and V the
volume. When p is zero we regain eq. (11.7).

Figure 11.7 shows schematically the resulting calculated variation of H with p
for the NaCl-type and the CsCl-type phases of CaO. The NaCl-type structure,
which is stable at low pressures, is the rock salt structure in which the Ca and O
atoms are 6-coordinate. In the CsCl structure, stable at high pressures, both cation
and anion are 8-coordinate. In the static limit where the entropy is set to zero, the
thermodynamically most stable phase at any pressure is that with the lowest value
of H; at the thermodynamic transition pressure, ptrs, the enthalpies of the two
phases are equal. For CaO the particular set of potentials used in Figure 11.7 indi-
cates a transition pressure of 75 GPa between the NaCl-type and CsCl-type struc-
tures, which compares with experimental values in the range 60–70 GPa.

Changes in phase have important consequences for other thermodynamic prop-
erties and thus geophysical implications. For example, the bulk modulus at any
pressure p in the static limit is given by the value of V(d2U/dV2) (at that pressure);
for CaO this increases markedly across the phase boundary.

Elevated temperatures and thermal expansion: Helmholtz, Gibbs
energies and lattice dynamics

How can these calculations be extended to finite temperatures? How can we calcu-
late, for example, how a material expands with temperature? Temperature can be
included in simulations in several ways. Two of these, Monte Carlo and molecular
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Figure 11.7 H vs. p for the NaCl and CsCl phases of CaO.



dynamics, will be deferred until the next section. They avoid the direct calculation
of the Helmholtz energy, which is much more challenging than that of the internal
energy. Helmholtz and Gibbs energies cannot be determined accurately from
Monte Carlo and molecular dynamics simulations because they do not sample ade-
quately high-energy regions of phase space which make important contributions to
these energies. For periodic solids, particularly at temperatures some way below
the melting temperature, a valuable alternative is the use of lattice dynamics to
calculate vibrational frequencies and hence, combined with the lattice statics con-
tributions, to give absolute Helmholtz and Gibbs energies and their various deriva-
tives directly. Such calculations are computationally much more expensive than
the static energy minimizations, but are still nevertheless orders of magnitude
cheaper than molecular dynamics or Monte Carlo simulations, which require long
runs for similar precision.

The equilibrium structure at applied pressure p and temperature T can be found
by minimizing the Gibbs energy, G, given by

G = U – TS + pV (11.9)

simultaneously with respect to all the variables that define the structure. At zero
pressure this reduces to minimizing the Helmholtz energy A:

A = U – TS (11.10)

The Helmholtz energy thus plays a key role. In the quasiharmonic approxima-
tion it is assumed that at temperature T this can be written as the sum of static and
vibrational contributions

A A� �Fstat vib (11.11)

where Fstat is the potential energy of the static lattice calculated in the previous
section and Avib the vibrational contribution obtained from statistical thermody-
namics and the partition function for the simple harmonic oscillator (see e.g.
Atkins and de Paula (Further reading)). This is given by

A h k T h k Tj j
j

vib B B� � � ��{ ( ) ln[ exp( ( ) / )]}
,

1
2

1n nq q
q

(11.12)

where the nj(q) are the vibrational (phonon) frequencies for wave vector q (see
Chapter 8). The first term on the right of eq. (11.12) is the zero point energy.

The vibrational frequencies are obtained from the force-field using the second
derivatives of the potential energy with respect to displacements of the atoms (in a
more elaborate version of the argument used in Section 8.2 for the one-dimensional
chain); the calculation is analogous to the calculation of normal mode frequencies
for molecules. The resulting vibrational frequencies can be compared with those
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obtained experimentally by inelastic neutron scattering, and infrared and Raman
spectroscopy. In practice for an ionic solid, it is essential to include ionic polariza-
tion using, for example, the shell model; otherwise the frequencies are too high. We
must sum over sufficient wave vectors q in the Brillouin zone to ensure conver-
gence in the desired thermodynamic property. For efficient minimization of the
Helmholtz energy we also require its derivatives, as obtained from the derivatives
of the vibrational frequencies with respect to the variables that define the structure;
the calculation of these can be a formidable task.

Given Avib and Fstat, we thus obtain the equilibrium structure (and the corre-
sponding volume) at any pressure and temperature, and the corresponding values
of the Gibbs and Helmholtz energies. The quasiharmonic approximation implicit
in eqs. (11.11) and (11.12) usually holds at low temperatures, and often up to one-
half or two-thirds of the melting temperature. Above this the vibrations become
strongly anharmonic and eq. (11.12) breaks down.

Given A, V and T (or G, p and T), all other thermodynamic properties can be
obtained by appropriate thermodynamic manipulations. For example, given the
variation of volume with temperature (at given pressure) it is straightforward to
calculate the isobaric expansivity a given by

a �
�

�

�

�
�

	



�

1

V

V

T p

(11.13)

By way of example, Figure 11.8 shows a comparison [3] of calculated and exper-
imental expansion coefficients for MgF2, which has the rutile structure.

Furthermore, this type of simulation provides a convenient route to the calcula-
tion of key quantities such as the entropies and heat capacities discussed
throughout this book. Since S A T V� � � �( / ) , and C U TV V� � �( / ) it follows that
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Figure 11.8 Calculated and experimental thermal expansion of MgF2 [3].
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Entropies and heat capacities can thus now be calculated using more elaborate
models for the vibrational densities of states than the Einstein and Debye models
discussed in Chapter 8. We emphasize that the results are only valid in the
quasiharmonic approximation and can only be as good as the accuracy of the
underlying force-field; calculation of such properties can thus be a very sensitive
test of interatomic potentials.

Negative thermal expansion

Not all substances expand on heating. Some contract markedly over a wide range of
temperature. Lattice dynamics simulations can provide insight into this puzzle and
reveal the mechanisms operating at the atomic level that are responsible. Probably
the most familiar example of negative thermal expansion (negative isobaric
expansivity) from everyday life is the increase in density of liquid water between
0 °C and 4 °C, which is crucial for the preservation of aquatic life during very cold
weather. The phenomenon is however found more often in solids, and interest in
the subject was renewed by the dramatic discovery of Sleight and co-workers in
1996 [4] that cubic zirconium tungstate, ZrW2O8, contracts on heating from below
15 K up to its decomposition temperature of �1500 K. Negative thermal expansion
materials with practical applications (from astronomical telescope mirrors to
cooking ware) include b-eucryptite (LiAlSiO4), cordierite (Mg2Al2Si5O18), b-
spodumene (Li2Al2O4.nSiO2) and the NZP (NaZr2P3O12)–CTP (Ca0.5Ti2P3O12)
family. A useful procedure is to mix materials having negative expansion with
others having positive expansion so as to generate a mixture having a net expansion
of approximately zero.

The contraction of solids on heating seems anomalous because it offends the
intuitive concept that atoms will need more room to move as the vibrational ampli-
tudes of the atoms increase. However, this argument is incomplete. Figure 11.9
plots schematically the variation of A with V at two temperatures, for both positive
and negative thermal expansion. The volumes marked explicitly on the V-axis give
the minima of each A vs. V isotherm. These are the equilibrium volumes at temper-
atures T1 and T2 respectively (T2 > T1) and zero pressure.

It is useful to relate the expansivity to the volume dependence of the entropy.
This is readily seen by manipulating the expression for the isobaric expansivity, a,
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in eq. (11.13). The Maxwell relationship (Section 1.3), ( / ) ( / )� � � � � �V T S pp T ,
gives
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kT is the isothermal compressibility and is always positive (a thermodynamic sta-
bility condition; Section 5.1). So the change in volume on heating will always be in
the direction of increasing entropy: a negative a thus indicates that the entropy
increases when the substance is compressed isothermally. Entropy (disorder)
would normally be expected to increase with volume, and usually a is indeed posi-
tive. Only in this limited sense is negative thermal expansion ‘anomalous’. In an
ideal gas, a is always positive; the origin of negative thermal expansion must there-
fore lie in the interactions between the particles. For example, the negative expan-
sion of liquid water below 4 °C is associated with an increase of entropy on
compression due to the break-up of tetrahedral H-bonding with increasing temper-
ature, which over this temperature range more than compensates for other effects
tending to decrease the entropy.

In most solids vibrations parallel to bond directions decrease in frequency as the
volume increases and the entropy (eq. (11.14)) increases with volume; ( / )� �S V T
and the thermal expansion are positive. Negative thermal expansion is usually
associated with more open structures where coordination numbers are low and
vibrations perpendicular to bond directions can dominate the change in entropy
with volume and thus the derivative ( / )� �S V T .
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Consider ZrW2O8. The expansivity is shown as a function of temperature in Figure
11.10, and the crystal structure is shown in Figure 11.11. The crystal is cubic, with a
rather complex structure. WO4 tetrahedra and ZrO6 octahedra are linked so that each
ZrO6 unit shares its corners with six different WO4 units, while each WO4 unit shares
only three of its corners with ZrO6 units. The remaining oxygen in each WO4 tetrahe-
dron is formally singly coordinate. Gibbs energy minimizations [5] have reproduced
the negative expansivity and indicate ( / )� �S V T is negative for ZrW2O8. This is largely
due to the presence of the two-coordinate bridging oxygens which form Zr–O–W link-
ages. The Zr–O–W transverse vibrations increase in frequency with increasing
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volume – compare the transverse vibrations of a violin string which increase in fre-
quency when it is stretched). Called the tension effect (Figure 11.12), the increased
frequencies lead to lower entropies at larger volumes, and so ( / )� �S V T is negative.

Around 400 K there is a phase transition to a disordered but still cubic structure
associated with the ‘terminal’ oxygen atom in a WO4 tetrahedron which can
migrate to another tetrahedron, thereby reversing the direction in which a pair of
tetrahedra point. Nevertheless the same general atomic mechanisms are respon-
sible for the negative thermal expansion up to the decomposition temperature.

Gibbs energy minimization has also predicted negative isobaric expansion coef-
ficients for certain crystalline zeolite framework structures, which subsequently
were confirmed experimentally [6]. Many solids show negative thermal expansion
at very low temperatures, including even some alkali halides (Barron and White
(Further reading)). Many other solids on heating expand in some directions and
contract in others.

Configurational averaging – solid solutions and grossly non-
stoichiometric oxides

The use of energy minimization can be extended to solid solutions and highly non-
stoichiometric compounds. In principle the method is simple: we take a suitable ther-
modynamic average over the results of minimizations of different possible arrange-
ments of the atoms. The overall procedure for a solution A0.5B0.5 is then as follows:

1. For a given unit cell size (supercell) generate different individual arrangements
(configurations) k. For the alloy A0.5B0.5 these will comprise all arrangements
with 50% of the atoms of type A and 50% type B.

2. Minimize the Gibbs energy Gk of each supercell at temperature T with respect to
all the lattice vectors and atom positions.

3. Determine the thermodynamic properties of the system by taking a thermody-
namic average. For example, the enthalpy is given by

H

H G k T

G k T

k k
k

K

k
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(11.17)
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where overall there are K possible arrangements for the unit cell size chosen. Hk
is the enthalpy for the relaxed structure of each possible arrangement within the
supercell. The Gibbs energy is given by

G k T G k Tk
k

K
� � �

�
�B Bln exp( / )

1

(11.18)

4. Check convergence with supercell size. This presents a major problem since small
supercells – for which it is possible to carry out minimizations for all possible arrange-
ments – exclude many possible arrangements by imposing an artificial short-range peri-
odicity. The number of possible arrangements rises sharply with supercell size. In our
example the total number of arrangements K is given by (NA + NB)!/(NA!NB!) where NA
and NB are the number of atoms of type A and B respectively. For a 50:50 composition, K
equals 6 for a 4-atom supercell, 70 for a 8-atom supercell and 6 × 108 for a 64-atom
supercell. Thus for even moderately sized supercells it is not feasible to carry out
minimizations for other than a small fraction of arrangements. One strategy for solutions
that are not too strongly non-ideal is to select a subset of configurations at random for a
given supercell, and check convergence with the number of randomly chosen configura-
tions. When restricted to �K configurations, eqs. (11.17) and (11.18) become
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and
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See also discussions of the related cluster variation method [7].

An example of this method is shown in Figure 11.13, in which the calculated
enthalpy, entropy and Gibbs energy of mixing of MnO–MgO at 1000 K determined
using a supercell containing 128 ions and 250 configurations is plotted as a func-
tion of composition [3]. The enthalpy of mixing is positive at all compositions. The
entropy of mixing is slightly in excess of the ideal value; it is important to realize
that this includes both configurational and vibrational contributions. The calcula-
tions indicate the vibrational contribution is typically about 10% of the total
entropy of mixing; the configurational contribution is about 10% less than the ideal
value reflecting the tendency of the cations of the same type to cluster together.

The same general approach can be applied to grossly non-stoichiometric oxides
[8]. For an oxygen deficient perovskite such as SrFeO2.5 this involves an explicit
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average, for a given cell size, over the different possible arrangements of the
oxygen vacancies. In this example oxygen vacancy–vacancy interactions are con-
siderable. These lead to the stabilization, at low temperature, of an orthorhombic
structure, containing 4- and 6-coordinate Fe atoms. The order–disorder transition
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Figure 11.13 (a) Enthalpy, (b) entropy and (c) Gibbs energy of mixing of MnO–MgO at
1000 K, all calculated using the configurational averaging technique.



at high temperature appears to be associated with the generation of a large concen-
tration of 5-coordinate Fe; the number of Fe atoms with coordination numbers
lower than four is negligible. The concept of an ideal solution of oxygen vacancies
in such systems is thus highly questionable. It is better to describe the disordered
system in terms of disordered arrangements of square pyramids containing 5-coor-
dinate Fe as well as the structural entities present in the ordered structure at low
temperatures.

11.2 Monte Carlo and molecular dynamics

The energy minimization techniques we have discussed produce minimum energy
configurations for the system of interest. In contrast, in a Monte Carlo simulation
configurations are generated by making random changes to the positions of the
atoms or molecules present and as the calculation proceeds statistical averages are
calculated to obtain the thermodynamic properties of the system. In addition,
molecular dynamics methods directly probe time-dependent behaviour.

In both Monte Carlo and molecular dynamics methods a box is set up containing
the atoms or molecules of interest (typically of the order of thousands and up to 106

using modern computers). To simulate a liquid or solid the box is usually sur-
rounded with replicas of the original box, thus avoiding an unwanted interface at
the sides. This use of periodic boundary conditions is shown in Figure 11.14.
Whenever a particle leaves the box through one of its faces, its image arrives
through the opposite face so that the total number of particles remains constant.

Monte Carlo

If we wish to calculate a particular property Q of a system with a constant number
of particles, temperature and volume (the canonical ensemble – usually referred to
as NVT). Classical statistical mechanics shows that the average value of that prop-
erty Q is given by

Q Q Z P Z Z� � ( ) ( ) d (11.21)
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where P(Z) is the Boltzmann weighted probability, U(Z) the internal energy and Z
represents all possible states of the system of interest.

We might have thought we could find the values of these integrals by simply
sampling different configurations of the system, i.e., just moving atoms at random.
From the energies calculated at each move it would be possible to obtain estimates
of Q(Z)P(Z), and then take the average to get Q . But this plan is seriously flawed!
Since P(Z) is proportional to the Boltzmann factor exp(–U(Z)/kBT), only configu-
rations with low energies will make a significant contribution to P(Z). In this naïve
approach we have just outlined states – both of high and low energy – that are gen-
erated with equal probability and then assigned a weight exp(–U(Z)/kBT). Thus
many of the configurations generated will have little significance, so efficient sam-
pling of the states of the system has not been achieved.

What we do instead is to adopt the famous Metropolis algorithm, in which the
generation of configurations is biased towards those that make the most significant
contribution to the integral. The method generates states with a probability propor-
tional to exp(–F(Z)/kBT) (equal to their Boltzmann probability) and then counts
each of them equally.

So the Monte Carlo method generates configurations randomly and uses a spe-
cial set of criteria (usually the Metropolis scheme) to decide whether or not to
accept each new configuration. These criteria ensure that the probability of
obtaining a given configuration is equal to its Boltzmann factor exp(–F(Z)/kBT).
F(Z) is calculated as in molecular mechanics using a given set of interatomic/
intermolecular potentials. Configurations with a low energy are thus generated
with a higher probability than configurations with a higher energy. For each config-
uration that is accepted the values of the desired properties are calculated, and as
the simulation proceeds the averages of these properties are obtained by simply
averaging over the number M of values calculated, i.e.

Q
M

Q Z
i

M
�

�
�

1

1

( ) (11.23)

In a Monte Carlo simulation each new configuration of the system may be gen-
erated by randomly moving a single atom or molecule. Sometimes new configu-
rations may also be obtained by moving several atoms or molecules, or by
rotating about one of more bonds. F(Z) is then calculated for the new configura-
tion. Then:

� If the energy of the new configuration is lower than the energy of its prede-
cessor then the new configuration is accepted.

11.2 Monte Carlo and molecular dynamics 357



� If the energy of the new configuration is higher then the energy of its prede-
cessor then the Boltzmann factor of the energy difference is calculated:
exp( / )�DF k TB . A random number between 0 and 1 is then generated and com-
pared with this Boltzmann factor. If the random number is higher than the
Boltzmann factor then the move is rejected and the original configuration
retained for the next iteration. If the random number is lower then the move is
accepted and the new configuration becomes the next state. This procedure
has the effect of permitting moves to states of higher energy. The smaller the
uphill move, i.e. the smaller is DU, the greater is the probability that the move
will be accepted. For more details see, for example, the book by Frenkel and
Smit (Further reading).

It is also straightforward to carry out Monte Carlo simulations with a constant
number of particles, temperature and pressure (the NPT ensemble). In such simula-
tions, in addition to random moves of the atoms or molecules random changes in
the volume of the simulation cell are also attempted, and in the Metropolis step
F(Z) + pV replaces F(Z). Monte Carlo calculations, both NVT and NPT, have thus
been extremely useful in establishing equations of state.

Monte Carlo simulations are also useful for the study of solid solutions, yielding
information such as enthalpies of mixing and detailed information about the struc-
ture of such solutions. In these explicit exchanges of the different types of atoms
present in the alloy are attempted, thus sampling many different configurations or
atomic arrangements (see e.g, Binder (Further Reading). For a useful summary of
work on mineral solid solutions see Warren et al. [9]. Figure 11.15 shows the
enthalpy of mixing of MnO and MgO calculated using Monte Carlo in this way [3];
compare Figure 11.13.

Much attention has been paid to Monte Carlo simulations of magnetic ordering,
and its variation with temperature. Such models assume a particular form for the
magnetic interactions, e.g. the Ising or Heisenberg Hamiltonian (see e.g. Binder

358 11 Thermodynamics and materials modelling

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

xMn

o
m

ix
m

/k
J

m
ol

H
-

D
1

Figure 11.15 Enthalpy of mixing of MnO–MgO at 1000 K calculated using Monte Carlo.



(Further reading)). Monte Carlo simulations have thus played, for example, an
important role in developing an understanding of behaviour approaching critical
points, and provided valuable insights, for instance, into the fundamental physics
responsible for the values of critical exponents.

Problems involving adsorption are also conveniently tackled using grand-
canonical Monte Carlo. In these simulations the chemical potential, volume and
temperature are kept constant; the number of particles may change during the sim-
ulation. The three basic moves in such a simulation are attempts to move an atom,
to remove (annihilate) a particle, and to create a particle at a random position.
Grand-canonical Monte Carlo has proved very useful for the calculation of iso-
therms for the adsorption of noble gases and hydrocarbons in zeolites, since the
pressure can be directly calculated from the input chemical potential (see Frenkel
and Smit, Further reading). Such calculations have also provided valuable insight
into the underlying atomic mechanisms responsible for the selectivity of a given
zeolite.

Molecular dynamics

Temperature effects are included explicitly in molecular dynamics simulations by
including kinetic energy terms – the balls representing the atoms are now on the
move! The principles are simple. In the microcanonical ensemble (NVE):

1. We generate the ‘start-up’ configuration – all particles in the box are assigned
positions ri and velocities vi. Velocities are randomly distributed according to a
Maxwellian distribution for some given temperature.

2. The force fi on each particle i is calculated using the interatomic potentials.

3. We specify a time step, during which the forces are assumed to remain constant.
Then ri and vi are updated. There are several schemes for this to overcome prob-
lems associated with finite rather than infinitesimal time steps. The force (and
thus the acceleration) is assumed to remain constant throughout the time step Dt.
For example, in the Leapfrog Verlet algorithm (e.g. Allen and Tildesley, Further
reading),
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where mi is the mass of atom i.
The choice of time step is crucial. It must be smaller than the time-scale of any

important dynamical processes, so it must be at least an order of magnitude
smaller than the typical period of atomic vibrations (10–12–10–13 s). But too
small a time step leads to very long computer times as the calculation samples
phase space too slowly. Too large a time step leads to large truncation errors;
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instabilities may arise as atoms approach too closely and the simulation may
‘blow up’. A typical commonly used value is 10–15 s.

4. Step 3 is repeated many thousands of times, leading to equilibration when
system properties have converged to equilibrium values and do not change sig-
nificantly with further time steps. For example, the temperature of the simula-
tion is calculated from the kinetic energies of all the atoms in the system:

3
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1

2
Nk T mi i

i
B

2v� � (11.25)

5. In the production stage the simulation is continued, recording velocities and
coordinates of all the atoms at successive time steps.

Properties of interest, such as the mean square displacement of an atom or mole-
cule from its starting position,� �r2 , may thus be determined. Since we know this
as a function of time, we have a direct route to diffusion coefficients (� �r2 = 6Dt,
where D is the diffusion constant).

Similar schemes to the above can be used in molecular dynamics simulations in
other ensembles such as those at constant temperature or constant pressure (see
Frenkel and Smit, and Allen and Tildesley (Further reading)). A molecular
dynamics simulation is computationally much more intensive than an energy
minimization. Typically with modern computers the ‘real time’ sampled in a simu-
lation run for large cells is of the order of nanoseconds (106 time steps). Dynamical
processes operating on longer time-scales will thus not be revealed.

An interesting application of molecular dynamics reveals the mechanisms
responsible for the dramatic properties of fast-ionic (‘superionic’) conductors and
the consequences for thermodynamic properties. The motion of the ions in these
structures is sufficiently fast to probe the details of the underlying atomic mecha-
nisms by following the movements of ions over a few picoseconds. For example, at
419 K, b-AgI undergoes a phase transition to the superionic a-AgI phase; the
entropy change which accompanies the phase transition is large, equal in magni-
tude to approximately half the entropy of fusion of NaCl. Molecular dynamics sim-
ulations confirm the existence of a disordered cation sublattice in a-AgI – there is a
body-centred arrangement of I– ions with two Ag+ ions per unit cell distributed
over 42 possible sites – and give much detailed information related to rapid diffu-
sion of the Ag+ ions.

The investigation of structure at high temperatures is particularly well suited for
attack by molecular dynamics, as exemplified by the large number of studies on sil-
icate glasses. Such studies start with either a crystalline structure or a random
atomic distribution within the simulation cell, and the system is first run at a suffi-
ciently high temperature in order to generate a simulated melt with no memory of
the initial input configuration. Cooling then takes place, rescaling the velocities to
the desired temperature for some appropriate number of time steps. Results for
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silica (SiO2) glass suggest that five- and six-membered rings (containing five and
six SiO4 tetrahedra respectively in a closed loop) dominate the structure, although
there are also some three-membered rings, which are thought to be responsible for
the 606 cm–1 peak in the Raman spectrum. No edge-sharing tetrahedra are seen in
bulk simulations, although they are seen in surface simulations, consistent with
experiment. Molecular dynamics simulations have also provided an atomic level
explanation for the decrease in ionic conductivity of alkali glasses when more than
one alkali metal cation is present (the mixed alkali effect) based on an increased
activation energy for hopping (e.g. Catlow, Further reading).

Several recent molecular dynamics simulations (e.g. [10] and references therein)
have focussed on the wetting of interfaces (Section 6.1) and, for example, the
behaviour of very small droplets at the nanoscale. Such simulations are able to
relate the atomistic behaviour directly to relevant macroscopic parameters such as
the contact angle and are able to show the dramatic effects at this length scale of
addition of surfactant molecules or roughening of the surface.

As mentioned above, unlike lattice dynamics, it is very difficult to obtain abso-
lute Gibbs and Helmholtz energies from Monte Carlo and molecular dynamics sim-
ulations. The reason here is that such calculation requires summation over regions
of phase space of the system corresponding to higher energies (we need the
ensemble average <exp(U/kBT)>, rather than <U>), and these are the regions
which Monte Carlo and molecular dynamics simulations are designed to neglect.
As a result, considerable attention has been paid to methods that give Gibbs and
Helmholtz energy differences, which are often all that is required, e.g. for calcula-
tion of phase diagrams, Gibbs energies of binding and partition coefficients. Two
powerful methods, to which we now turn, are thermodynamic perturbation and
thermodynamic integration.

Thermodynamic perturbation

The difference in Helmholtz energy of two systems A and B is given by

A A k T Z k T Z k T
Z

Z
A B B A B B B

A

B
� � � � � �ln ln ln (11.26)

and so

A A k T U U k TA B B A B B� � � � ��ln( exp( ( ) / )) (11.27)

remembering the definition of a partition function Z. In the course of a Monte Carlo
or molecular dynamics calculation this can be calculated as an ensemble average:

A A k T U U k TA B B A B B B
� � � � �ln exp( ( ) / ) (11.28)
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The exponential in this equation involves the difference of two energies, rather
than an energy itself, and as long as this is sufficiently small compared with kBT, a
typical simulation run is able to provide a good estimate of the difference in
Helmholtz energy of A and B using eq. (11.28).

So overall we carry out a simulation of B, and as this simulation proceeds we eval-
uate this ensemble average using the potential functions appropriate for A. Alterna-
tively we can carry out a simulation of A and as this proceeds evaluate the ensemble
average using the potential functions appropriate for B. Suppose B corresponds to
MgO and A to a mixture of MnO and MgO. The Helmholtz energy difference can be
obtained from a simulation of pure MgO in which we not only calculate the value of
the energy for each configuration as usual but also the energy it has when some of the
Mg2+ ions are temporarily assigned the potential parameters for Mn2+. Alternatively,
and also as a very useful check, we can carry out a simulation of the mixture in which
we not only calculate the value of the energy at each step as usual, but also the energy
each individual configuration has when all the Mn2+ ions are temporarily assigned the
potential parameters for Mg2+. It is important to appreciate that the transformation of
A to B need not correspond to any transformation that is physically realizable.4

If the energy difference is larger we can introduce a number of intermediate
states between A and B by using a coupling parameter l (0 1� �l ) such that

U U U( ) ( )l l l� � �A B1 (11.29)

Successive values of the coupling parameter should be chosen so that each
ensemble average is performed over energy changes comparable with kBT. The dif-
ference in Helmholtz energy between any two intermediate states is given by eq.
(11.28) and the overall difference between A and B simply given by their sum.
Again the intermediate states will often have no physical meaning.

Thermodynamic integration

It is also possible to show that

A A
U

A B d� �
�

��
( )l
l

l
0

1

(11.30)

In practice this integral is turned into a discrete summation over particular values
of l between 0 and 1, so we use

A A
U

l
A B� �

�

�
�

( )l
l

lD (11.31)
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The difference between this result and the thermodynamic perturbation result is that
in the former (eq. (11.28)) the average is taken of (finite) differences in energy while
eq. (11.31) averages over a differentiated energy function; often the required deriva-
tive of the energy with respect to the coupling parameter can be obtained analytically
and the averaging involved here is no more complicated than with eq. (11.28).

Considerable use has been made of the thermodynamic perturbation and thermo-
dynamic integration methods in biochemical modelling, calculating the relative
Gibbs energies of binding of inhibitors of biological macromolecules (e.g. pro-
teins) with the aid of suitable thermodynamic cycles. Some applications to mate-
rials are described by Alfè et al. [11].

11.3 Quantum mechanical methods

One of the greatest challenges of condensed matter theory is to obtain accurate
approximate solutions of the many-electron Schrödinger equation. Quantum
chemistry and physics are complex and rapidly moving subjects needing volumes
to themselves; see the texts listed under ‘Further reading’. Space permits us only
the briefest of overviews, and precludes, for example, discussion of periodic sys-
tems. Readers may well wish to skip this section, which necessarily requires some
familiarity with the subject, and move on to the next section, where we discuss
some representative recent applications for which, from a thermodynamic view-
point, we need appreciate only that the ground state energy of the system is calcu-
lated using a quantum mechanical (also referred to as ab initio or first principles)
method. Ab initio calculations are orders of magnitude more expensive in terms of
computer time than the potential-based methods described earlier.

The basic problem is to solve the time-independent electronic Schrödinger equa-
tion. Since the mass of the electrons is so small compared to that of the nuclei, the
dynamics of nuclei and electrons can normally be decoupled, and so in the
Born–Oppenheimer approximation the many-electron wavefunction Y and corre-
sponding energy may be obtained by solving the time-independent Schrödinger
equation in which the nuclear positions are fixed. We thus solve

�H EY Y� (11.32)

where the non-relativistic Hamiltonian �H in atomic units takes the form:
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in which ri denotes the electron positions, da the nuclear positions and Za the nuclear
charges. These four terms represent respectively the kinetic energy of the electrons,
the electron–nuclear attractions, the electron–electron repulsions and the
nuclear–nuclear repulsion (a constant since the nuclei are assumed to be frozen).
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For all but the simplest systems the Schrödinger equation must be solved approx-
imately. It is assumed that the true wavefunction, which is too complicated to be
found directly, can be approximated by a simpler function. For some types of func-
tion it is then possible to solve the electronic Schrödinger equation numerically.
Provided the assumption made regarding the form of the function is not too drastic,
a good approximation will be obtained to the correct solution. Electronic structure
theory consists of designing sensible approximations to the wavefunction, with an
inevitable trade-off between accuracy and computational cost.

The energy of an approximate wavefunction Y is given by the expectation value
of the Hamiltonian �H:
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�
�

Y Y

Y Y

* �

*

d

d

t

t
(11.34)

The best wavefunction is that which gives the lowest value of E – this is the famous
variational principle.

The many-electron wavefunction must obey the Pauli Principle, i.e. possess the
right permutation symmetry, such that it changes sign when any two electrons are
exchanged, i.e.

Y Y( , , , , , , ) ( , , , , , , )x x x x x x x xi j j i1 2 1 2… … … … … …� � (11.35)

where xi = {ri,si} represents the space and spin coordinates of an electron. Due to
the antisymmetry no two electrons can possess the same set of quantum numbers.

Hartree–Fock theory

The most usual starting point for approximate solutions to the electronic
Schrödinger equation is to make the orbital approximation. In Hartree–Fock (HF)
theory the many-electron wavefunction is taken to be the antisymmetrized product
of one-electron wavefunctions (spin-orbitals):

Y( , , ...) ( )x x xi
i

N

i1 2
1

�
�

�A y (11.36)

Here A is the antisymmetrizer which ensures that the Pauli Principle is obeyed. A
convenient way of writing eq. (11.36) is as a Slater determinant:
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The spin-orbitals are the products of spatial and spin factors, i.e.

y y a si i i i ix( ) ( ) ( )� r or y y b si i i i ix( ) ( ) ( )� r (11.38)

where a and b are spin functions. The spatial orbitalsy i i( )r are generally approxi-
mately expanded in a basis set, as a linear combination either of atomic functions
or plane waves:
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(11.39)

Given the trial wavefunction – the Slater determinant eq. (11.37) – we then use
the variational principle to minimize the energy – the expectation value of the
Hamiltonian �H – with respect to the orbital coefficients cij (eq. (11.39)). This leads
after a fair amount of algebra to the self-consistent Hartree–Fock equations:

�f i i iy e y� (11.40)

where ei are the orbital energies and �f , the Fock operator, is given by
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The terms on the right-hand side of eq. (11.41) denote the kinetic energy, the elec-
tron–nuclear potential energy, the Coulomb (J) and exchange (K) terms respec-
tively. Together J and K describe an effective electron–electron interaction. The
prime on the summation in the expression for K exchange term indicates summing
only over pairs of electrons of the same spin. The Hartree–Fock equations (11.40)
are solved iteratively since the Fock operator �f itself depends on the orbitals yi.

Hartree–Fock theory is relatively simple but does require the evaluation of a
large number of six-dimensional integrals involving1 / | |r r� � . In semi-empirical
methods such as Hückel theory, tight-binding and MNDO (see e.g. Leach, Further
reading), a large number of these integrals are simplified or neglected. Often some
of the integrals are given empirical values, adjusted to reproduce some known ther-
modynamic properties of certain simple atoms, molecules or solids.

In Hartree–Fock theory, electrons interact only with the average positions of the
other electrons, so this inevitably leads to an incorrect treatment of the electron–
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electron repulsion. The correlation between the electronic motions caused by instan-
taneous electron–electron repulsion is neglected. Correlation energies are a small frac-
tion of the total energy, but can be a large percentage of binding energies. There are
many post Hartree–Fock methods that aim to rectify this. One method commonly used
in molecular calculations and capable of high accuracy is the use of a linear combina-
tion of determinants rather than a single determinant. The main problem with such
expansions is the very large number of determinants that are required. For solids more
use is made of density functional theory, to which we now turn.

Density functional theory

Possibly the most popular method at present for calculating the electronic proper-
ties of large molecules and solids is density functional theory (DFT). The basis of
density functional theory is a famous theorem due to Hohenberg and Kohn [12]
which states that the ground-state properties of a many-electron system can be
obtained by minimizing an energy functional E[r] of the electron density r(r). The
minimum value of the functional is the exact ground-state energy obtained when
r(r) is the exact ground-state density.

Kohn and Sham later introduced the idea of an auxiliary non-interacting system
with the same electron density as the real system. They were able to express the
electron density of the interacting system in terms of the one-electron
wavefunctions of the non-interacting system:
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The energy functional is then written in the form
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On the right-hand side of eq. (11.43) the terms in order are the kinetic energy of the
non-interacting system with electron density r(r), the electron–nuclear attraction,
the Coulomb term and the exchange-correlation energy. Minimizing the total
energy functional of eq. (11.43) gives rise to a self-consistent set of one-electron
equations for the yi, that can again be solved iteratively, and thus the ground state
electron density and energy can be obtained.

The problem is that the exchange correlation functional Exc is unknown.
Approximate forms have to be used. The most well-known is the local density
approximation (LDA) in which the expressions for a uniform electron gas are
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used. This approximation surprisingly also works well even when the electron den-
sity is clearly not uniform and highly inhomogeneous, such as in molecules and at
surfaces.

More refined functionals (generalized gradient approximation (GGA)) use
the gradient of the charge density as well as the charge density itself. There are also
many hybrid schemes such as the popular B3LYP functional which combines some
of the Hartree–Fock exchange with density functional exchange and correlation.

11.4 Applications of quantum mechanical methods

Carbon nitride

Molecular modelling is a particularly attractive way of predicting new compounds
and novel forms of matter. Superhard materials are one such area which has
received considerable attention due to their potential industrial applications. A
useful rule of thumb is that materials with a bulk modulus KT (V(d2U/dV2)) (in
excess of �250 GPa) can be considered as superhard. The large bulk modulus of
diamond (442 GPa), associated with the three-dimensional ‘giant’ network of
strong covalent bonds, suggests that similarly hard materials might be formed from
materials containing neighbours of C in the Periodic Table, such as B, C or N.

Nitrides of silicon or carbon have been studied extensively. A representative and
interesting study is that of C3N4 by Teter and Hemley [13], who calculated E vs. V
curves for five possible structures, using density functional theory and LDA. Four
were diamond-like with 4-coordinated carbon: the a-, b-(b-Si3N4), cubic (high-
pressure willemite-II Zn2SiO4), and pseudocubic (a-CdIn2Se4) forms. The fifth
was a graphitic structure. At zero pressure the calculated lowest energy phase is the
graphitic (Figure 11.16(a)), and the next lowest the a-form. A transition to a cubic
C3N4 phase is predicted at 12 GPa. This cubic phase, shown in Figure 11.16(b), is
predicted to have a very high bulk modulus as much as 50 GPa in excess of that of
diamond (442 GPa). High thermal conductivity is also expected. Unfortunately a
bulk synthesis of C3N4 remains elusive!

More recently, similar calculations [14] have been carried out for C3P4, for
which in contrast to C3N4 the lowest energy phase at zero pressure was predicted to
be the pseudocubic (Figure 11.16(c)). Structures such as the pseudocubic which
are high in energy for C3N4 are low in energy for C3P4, reflecting the different
structural preferences of N and P, as seen in their molecular chemistry.

Nanostructures

There has been tremendous interest in the study of atomic nanostructures over the
last few years. At the atomic scale nanomanipulation is increasingly opening up a
new world of nanosize clusters and structures, many of which have properties dis-
tinct both from those of the macroscopic solid materials and also from those of small
molecules. The nanoscale is often the critical size at which properties start to change
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from molecular to solid-like. Determination of the structure of nanomaterials is par-
ticularly important since it governs so many other properties, but is a difficult experi-
mental task.

Recent first principles calculations for example have helped to understand
monoatomic gold wires, which can be produced, for instance, with the tip of a scan-
ning tunnelling microscope. Particularly puzzling was the spacing (�5 Å) between
gold atoms in wires containing just a few atoms. This was almost twice the typical
Au–Au distance; linear chains were predicted to break when the interatomic sepa-
ration exceeds 3 Å. Density functional theory results [15] have resolved this
apparent paradox by showing that the binding energy of the chain is larger for a
zigzag rather than linear geometry. The calculations also revealed that the barrier
to rotation of the zigzag chain was very small, and thus the transmission electron
microscopy images would show only an average of the rotating atoms. Thus the 5 Å
apparent separation corresponds to the distance between odd-numbered atoms in
the wire and so is much larger than the real interatomic distance between adjacent
gold atoms. This example illustrates nicely our increasing understanding of the
interplay between energy (and thus chemical and physical behaviour), and details
of structure and dynamics at the atomic level.
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Figure 11.16 The (a) graphitic, (b) cubic and (c) pseudocubic forms of C3N4. Carbon
atoms are dark and nitrogen atoms light.



Lithium batteries

Modelling techniques have recently been used to study the electrodes in lithium
ion battery systems. Such cells use typically a lithium anode (either as the pure
metal, a compound, or most usually a graphite bronze) and the cathode is a transi-
tion metal oxide. Examples of cathode materials include LiCoO2, LiMn2O4 and
V2O5, all of which have structures with layers or cavities that allow intercalation of
Li+ ions. Organic polymers with good ionic conducting properties are used as the
electrolyte. A key property is the voltage at which Li can be inserted in the cathode.

For example, lithium ion intercalation into the transition metal oxide cathode
system V6O13 has been studied by Braithwaite et al. [16]. Optimized structures
were obtained using periodic density functional theory for LixV6O13 (x = 0.0, 0.5,
1.0, 2.0, 4.0), identifying sites for the Li ions in initial geometries on the basis of
potential-based calculations. Li intercalation into V6O13 leads to the selective
reduction of V atoms that lie on the edges of cavities occupied by the Li. From the
calculated ab initio energies of the series it is possible to work out the internal
energy change accompanying the intercalation reaction:

LixV2O5 + yLi �Lix+yV2O5 (11.44)

per intercalated lithium ion for a range of x. Neglecting entropic contributions to
the Gibbs energy, average cell voltages can then be estimated using the well-known
equation

DG nFE� � cell (11.45)

Calculated voltages are somewhat lower than the experimental values, but the
underestimation is consistent and trends are reproduced well.

The advantage of modelling here is that traditionally the determination of
the voltage of a new material requires laborious synthesis and electrochemical
measurement for each composition. These modelling studies provide a very cost-
effective alternative. For example, Ceder et al. [17] have studied Li intercalation
into LiCoO2 and the effects of replacing Co with other metals. Most transition
metal oxides were predicted to have a lower voltage than LixCoO2 and they also
predicted that including some aluminium raised the voltage, while also
decreasing the density of the material. This has subsequently been confirmed
experimentally.

Ab initio molecular dynamics

The overall scheme of ab initio molecular dynamics is similar to that of classical
molecular dynamics described earlier; but instead of using interatomic potentials,
the Schrödinger equation is solved to provide the energy and the forces acting on
the particles. The computational cost is huge and most studies are limited to small
simulation cells (< 100 atoms) and time-scales of a few picoseconds. Within
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density functional theory, a useful scheme is that of Car and Parrinello [18] in
which electronic and nuclear dynamics are carried out simultaneously. The number
of applications is growing rapidly. Ab initio molecular dynamics is contributing
significantly to our understanding of liquid water, indicating for example that the
anisotropy in the electron density is reduced in the liquid phase compared to the
free molecule. The technique is particularly useful for problems where bonds are
broken or created. Such properties are completely beyond the scope of the classical
technique. It is also valuable where interatomic potentials are difficult to obtain,
e.g. for the properties of iron under the conditions appropriate to the Earth’s core
(e.g. [19]). A further application of geological interest has been to the equation of
state and elastic properties of the perovskite MgSiO3, which, although unstable
under ambient conditions, is now accepted to be the most abundant mineral in the
Earth’s lower mantle. With a simulation cell containing 80 atoms, under mantle
conditions the structure is predicted to be an orthorhombic perovskite with space
group Pbnm; the adoption of possible alternative symmetries at very high
temperatures is still an area of active debate (compare e.g. [20] and [21]).

An interesting recent application [22] has involved the application of ab initio
molecular dynamics (see below) together with thermodynamic integration to the
problem of the temperature and composition of the Earth’s core, both of which are
major uncertainties in Earth Sciences. Determination of the difference in Gibbs
energy between the solid and liquid phases gives the variation of the melting point
of iron with pressure. By calculating the chemical potential of an impurity in both
liquid and solid as a function of composition and imposing equality of chemical
potential of all species in liquid and solid phases, it is possible to determine the par-
tition of the impurity between solid and liquid. In this way Alfè et al. [22] show that
the core could not have been formed from a binary mixture of Fe with S, Si or O and
propose a ternary or quaternary mixture with 8–10% of S/Si in both liquid and solid
and an additional 8% of oxygen in the liquid, suggesting a temperature at the
boundary between the solid inner core and the liquid outer core of 5650 � 600 K.

Surfaces and defects

Increasingly, computational techniques are able to provide detailed thermody-
namic information about defect processes and the creation of extended defects
such as interfaces. A striking example relating to surfaces, first established by
static energy minimization but subsequently confirmed by detailed density func-
tional theory calculations and then by neutron diffraction experiments, is the struc-
ture of the {0001} surface of the important ceramic material a-Al2O3 (Figure
11.17) under vacuo. These results were obtained by minimization of the static
energy of a slab of the material with respect to the positions of the ions in the slab
by letting the ions ‘relax’ from the positions they would occupy if the surface was a
‘perfect’ termination of the bulk. The surface lattice vectors were kept fixed. From
the difference in energy between slab and bulk we can work out the surface
energies before and after relaxation.
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The minimizations reveal dramatic atomic relaxations accompanying a large
reduction in surface energy from that given by a ‘perfect’ termination of the bulk
structure. As Table 11.2 makes clear, interatomic distances in the outermost layers
can change by over 50% relative to the bulk values!

Surface relaxation thus has several effects. It modifies and reconstructs the sur-
face atomic structure. Surface energies are reduced (possibly by as much as a factor
of three in the above example – from 6.0 to 2.0 J m–2). More generally, it can
reorder the relative stability of different surfaces and thus have a profound effect on
the crystal morphology.

Considerable attention has also been paid to modelling the thermodynamics of
defects. This includes, for example, studies of the enthalpies of formation of
vacancies or interstitial atoms and the association energies associated with the
clustering of such defects. It is usually crucial to allow for the relaxation of the
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Figure 11.17 (a) The {0001} surface of a-Al2O3 and (b) the stacking sequence perpendic-
ular to this surface.

Layer Energy minimization (using
interatomic potentials) [23]

ab initio (DFT) [24] Experiment [25]

(1) Al

–59 –86 –51

(2) O

2 3 16

(3) Al

–49 –54 –29

(4) Al

26 25 20

(5) O

Table 11.2 Comparison of theoretical and experimental surface relaxations (%) in the dis-
tances between layers in a-Al2O3 {0001}. Inner surface layers are numbered sequentially
according to increasing distance from the surface (Figure 11.17(b)).



atoms surrounding a defect from the positions they occupy in the undefective struc-
ture. These studies can be very useful in determining the fundamental defects
present in a given material and thus in the interpretation of conductivity and diffu-
sion experiments and diffraction data. Further examples of defect calculations are
of energies associated with the incorporation of trace elements and dopants, either
by substitution or in interstitial sites. Results for the incorporation of trace ele-
ments in the garnets have been presented in an earlier chapter.

Defect thermodynamics is by no means just of academic interest. For example,
graphite is used in nuclear reactors and irradiation produces defects such as vacan-
cies. The defects can associate in exothermic processes, leading to dangerous
releases of energy implicated in, for example, the fire at the Windscale nuclear
reactor in the UK in 1957. This energy release is expected to involve the recombi-
nation of interstitials and vacancies and energies calculated using ab initio density
functional theory are playing an important contribution in unravelling the details
of the process [26] and revealing quite unexpected behaviour as the formation of
vacancy complexes in graphite over the large interlayer distances.

Quantum Monte Carlo

An exciting development of increasing importance offering the calculation of ener-
gies to very high accuracy and very high precision in the treatment of electron cor-
relation energies is quantum Monte Carlo [27]. One such technique is diffusion
Monte Carlo which starts from the time-dependent Schrödinger equation:
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Replacing t by –it yields the imaginary-time Schrödinger equation
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which is analogous to the well-known diffusion equation:
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So eq. (11.47) can be viewed as a diffusion equation in the spatial coordinates of
the electrons with a diffusion coefficient D equal to 1

2
. The source and sink termS

is related to the potential energy V. In regions of space where V is attractive (nega-
tive) the concentration of diffusing ‘material’ (here the wavefunction) will accu-
mulate and it will decrease where V is positive. It turns out that if we start from an
initial trial wavefunction and propagate it forward in time using eq. (11.47),

372 11 Thermodynamics and materials modelling



simulating a random walk, it will eventually at large t be dominated by the ground-
state wavefunction, thus yielding the ground-state energy. In order to generate an
antisymmetric total wavefunction in keeping with the Pauli principle, the positions
of the nodes (from e.g. a Hartree–Fock trial wavefunction) are kept fixed.

Impressive results have been obtained for cohesive (binding) energies of tetra-
hedrally bonded semiconductors. Other examples include studies of the relative
stabilities of the high-pressure monoatomic phases of solid hydrogen which have
highlighted the importance made by zero-point energies. There is a trade-off
between the electronic energy term, which favours low coordination numbers, and
the zero-point energy, favouring higher coordination numbers. A transition to an
atomic diamond-like phase is predicted at �300 GPa [28].

11.5 Discussion

Computational materials science is a rapidly evolving area and there remains much
to be done. For many applications much more accurate energies are required –
especially for large molecules or solids. For example, entropies and Gibbs ener-
gies, excited states, processes involving bond-breaking and making and extremes
of temperature and pressure all still present major challenges. Length scales and
time-scales remain serious problems.

Structure prediction

A fundamental challenge so far largely unfaced is the prediction of structure ab
initio, i.e. just from the molecular formula. In the examples considered above, and
indeed almost throughout the literature, chemical intuition and the structures of
related compounds are used to guess a set of suitable input structures, which all
turn out to be local minima on the potential energy hypersurface. Calculations gave
the relative energies of all of these candidate structures, but an ever-present danger
is that a further structure which is even lower in energy has been missed! Given the
number of variables involved this enormous challenge of global optimization
remains for the future. There are several possible approaches. In simulated
annealing the temperature of a molecular dynamics or Monte Carlo simulation is
first increased to a very high value, making greater motion possible and more states
accessible to the system; this is then followed by a rapid quench to low tempera-
tures. Beginning to be explored is the use of genetic algorithms. The basic idea is
to have a large ‘population’ of structures (starting configurations), which each pos-
sess a set of ‘genes’. These parent structures generate children having a mixture of
the parent genes, i.e. the starting configurations ‘evolve’ according to a simple cost
function based, for example, on target coordination numbers. Thanks to the cost
function, low-energy structures are more likely to contribute to the next generation
than ones high in energy. Limited mutation is usually allowed, i.e. structures are
randomly changed to produce structural features outside the range in the current
population. It is worth mentioning brave attempts such as those of Bush et al. [29]
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and Woodley et al. [30]. For example, Bush et al. [29] solved the structure of the
complex ternary oxide Li3RuO4, which had previously eluded structure
determination, using a combination of genetic algorithm techniques and energy
minimization.

There may be no single global energy minimum. Garzón et al. [31] have studied
gold nanoclusters (Aun, n = 38, 55, 75) using dynamic and genetic optimization
methods. The search for minima was carried out using potential-based models, but
the most stable structures were further studied using density functional calcula-
tions. For these three clusters no single ordered structure with a definite symmetry
was obtained as the global minimum. Instead, several isomers with almost iden-
tical energies were found. Most of these have little symmetry and are effectively
amorphous and glass-like.
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Symbols and data

Symbol Meaning

ai activity of component i

a i
a activity of component i in phase a

ai
H activity of component i with Henrian standard state

ai
R activity of component i with Raoultian standard state

A Helmholtz energy

Ak affinity

As surface area

a isobaric expansivity

B magnetic flux density

b critical exponent

ci principal curvature of a surface

c velocity vector

ci
a concentration of component i in phase a

C number of components

Cij elastic stiffness coefficients

C44 shear modulus

Cp heat capacity at constant pressure

Cp,m molar heat capacity at constant pressure

CV heat capacity at constant volume

CV,m molar heat capacity at constant volume

CE electronic heat capacity
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Cdil dilational heat capacity

D diffusion constant

Eo standard potential

E energy

E electric field strength

Ecell cell voltage (electromotive force) (Chapter 11 only)

Exc exchange–correlation energy

en energy of nth state of an oscillator

eF Fermi energy

e1
B self-interaction coefficient

eo vacuum permittivity

ei orbital energy

f force of elongation
�f Fock operator

fi fugacity of component i, force acting on particle i (Chapter 11
only)

F number of degrees of freedom (of system)

f dihedral angle

fi volume fraction of component i

fj atomic or plane wave basis function (Chapter 11 only)

F potential energy (of system)

Fi electric potential of particle i

gi degeneracy of energy state i

g g( ); ( )n w vibrational density of state

G Gibbs energy

g electronic heat capacity coefficient

g ; gab surface energy; surface energy between phase a and b
gi activity coefficient of component i

g i
H activity coefficient of component i with Henrian standard state

g i
R activity coefficient of component i with Raoultian standard state

g i
� activity coefficient of component i at infinite dilution

gG Grüneisen parameter

Gi adsorption of component i

GB
(A) relative adsorption of component B with respect to component A
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� = h/2p Planck’s constant

H enthalpy
�H Hamiltonian operator

J Coulomb operator

ji surface activity of component i

k wetting coefficient

kB Boltzman’s constant

ki rate constant of reaction i

k iH, Henry’s law constant for component i

kr bond force constant

kq angle force constant

K equilibrium constant; force constant; exchange operator

KT isothermal bulk modulus

KT,0 isothermal bulk modulus at zero pressure

�K T ,0 pressure derivative of isothermal bulk modulus at zero pressure

kT isothermal compressibility

L Avogadro’s number

l length in direction of a force f

l wavelength; coupling parameter (Chapter 11 only)

mi mass of atom i

m magnetic moment

mi chemical potential of component i

m i
o standard chemical potential of component i

ma
i chemical potential of component i in phase a

m i
* chemical potential of component i in a given standard state

m i
H chemical potential of component i with Henrian standard state

m i
R chemical potential of component i with Raoultian standard state

ni number of mole of component i

N total number of atoms

Ni number of atoms i

Nij number of pair interactions ij

n frequency

p pressure
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pc critical pressure

pi partial pressure of component i

po standard pressure (1 bar)

pext external pressure

ptot total pressure

p p/pc

P electric dipole moment

Ph number of phases in a system

q heat

qrev heat of a reversible process

q wave vector

qi electric charge of species i

q contact angle, fractional coverage

q bond (valence) angle

QD Debye temperature

QE Einstein temperature

ri principal radius of curvature of surface

rij distance between atoms i and j

r position vector

R gas constant

r density; electron density (Chapter 11 only)

S entropy

S total spin quantum number

DS sur entropy change of the surroundings of a system

DS tot entropy change of a system and its surroundings

sion ionic conductivity

s tot total conductivity

s ; sab surface tension; surface tension between phase a and b
si spin coordinate (of electron i)

S Gibbs dividing surface

t time

tion transference number of ion

T temperature
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Tc critical temperature

TC Curie temperature

Tfus melting temperature

TF Fermi temperature

Tg glass transition temperature

TK Kauzman temperature

TN Néel temperature

Ttrs transition temperature

T T/Tc

t entropy term in the quasi-regular solution model

V volume

Vc critical volume

Vm molar volume

Vtot total volume of a system

Vij interaction energy between atoms i and j (two-body potential)

Vijk interaction energy between atoms i, j and k (three-body potential)

Vijkl interaction energy between atoms i, j, k and l (four-body potential)

Vn torsion barrier

Vnuc electron-nuclear potential energy

Vvdw van der Waals energy

V V/Vc

w work

wmax maximum work

wpV pV-work

wnon-e non-expansion work

wnon-e, max maximum non-expansion work

w angular frequency

wAB interaction energy [uAB – 1
2

(uAA + uBB)]

W regular solution constant

Wa regular solution constant for phase a
uij interaction energy between i and j

un atomic position

U internal energy
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xi mole fraction of component i

Xij pair fraction of pair ij

Xi ionic fraction of ion i

Yi coordination equivalent fractions of component i

Z partition function; compressibility factor

Za atomic number (of nucleus a)

Zc critical compressibility factor

z coordination number

x extent of reaction

y spatial wavefunction

y many-electron wavefunction

Notation for extensive thermodynamic properties exemplified
by enthalpy, H

H enthalpy

Hm molar enthalpy

H m
o standard molar enthalpy

D 0 m
oT H standard molar enthalpy at temperature T relative to zero K

H i partial molar enthalpy

D f m
oH standard molar enthalpy of formation

D fus m
oH standard molar enthalpy of fusion

D vap m
oH standard molar enthalpy of vaporisation

D trs m
oH change in standard molar enthalpy of a phase transition

DlattH lattice enthalpy

DatomH enthalpy of atomization

DionH ionization enthalpy

DegH electron gain enthalpy

DdissH enthalpy of dissociation

DoxH enthalpy of oxidation

D f,ox m
oH standard molar enthalpy of formation (of a ternary oxide) from

(binary) oxides

D r
oH change in standard enthalpy of reaction

D mix mH molar enthalpy of mixing

D mix
id

mH ideal molar enthalpy of mixing
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D mix
exc H i excess molar enthalpy of mixing

D mix mH partial molar enthalpy of mixing of component i

D vac H enthalpy of vacancy formation

Hs surface enthalpy

Hk enthalpy of an individual configuration k

Prefixes

pico 10–12

nano 10–9

micro 10–6

milli 10–3

kilo 103

mega 106

giga 109

tera 1012

Fundamental constants

Gas constant R = 8.31451 J K–1 mol–1

Avogadro’s number L = 6.02214 × 1023 mol–1

Boltzmann’s constant kB = 1.38066 × 10–23 J K–1

Faraday’s constant F = 9.64853 × 104 C mol–1

Elementary charge e = 1.602177 × 10–19 C
Planck’s constant h = 6.62620 × 10–34 J s

� = h /2p

Pressure units

pascal 1 Pa 1 N m–2

bar 1 bar 105 Pa
atmosphere 1 atm 101 325 Pa
torr 1 torr 133.32 Pa
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Index

ab initio molecular dynamics 369
acidity of oxides 211

relation to ionic potential 213
acid–base stabilization 211
activity

definition of 60
Henry’s law 71
integration (Gibbs–Duhem equation) for

79–82
Raoult’s law 71

activity coefficients
change of standard state 71
conditions for Henry’s law 70
conditions for Raoult’s law 69
definition of 64
at infinite dilution 66, 107, 108
integration (Gibbs–Duhem) for 79–82
of quasi-regular solution 276
of regular solution 78, 274
Taylor series representation 73–4

adiabatic 4
adsorbate 186
adsorbent 186
adsorption

chemical 186
definition of 160
enthalpy of 193
isotherms 191–2
physical 186
relative 188

affinity
definition of 133

Ag–Cu
phase diagram 87

AgI
enthalpy of transition 327
simulation of fast-ion conductivity

360

Al
CALPHAD representation of stability

46
defect concentration 260
elastic stiffness coefficients 131
enthalpy 9, 10
entropy 17, 132
Gibbs energy 22, 46
nucleation 181

Alkemade line 114
AlN

thermodynamic table 45
AlN–GaN

phase diagram 138
AlN–InN

phase diagram 138
Al2O3

g-a transition 185
kT and a 8
Cp–CV 8
effect of particle size on stability 185
termination of surface – simulation

370–1
Al2O3–Cr2O3

immiscibility gap 136
AlPO4

enthalpy of formation 217
Al–Si–C–O–N

predominance diagram 123
Al2SiO5

enthalpy of formation, polymorphs 11
Gibbs energy, effect of pressure 23–4

AMF3
energy minimization 344

amorphous–amorphous transition 147
angular frequency 233
Archimedes method 328
atomic weights of the elements 384
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Au
effect of particle size on Tfus 184
Ostwald ripening 181
nanowires 367–8
nanoclusters 374

Avogadro’s number 383

B2O3
heat capacity 262–3

base elements 118
basicity of oxides 211
BaZrO3

Gibbs energy of formation 327–8
benzene–rubber

Flory model 285
vapour pressure 285

BET theory 193
Bi

p,T phase diagram 229
binary phase diagrams 85–109

calculation of 90–6, 98–102, 106–9
equilibrium behaviour on cooling 88
ideal or near ideal 90–6
interpretation 86–7
simple eutectic systems 96–8

binodal line
decomposition mechanism 139
definition of 137

boiling temperature 36
dT/dp-slope 34
effect of bubble size 177

Boltzmann factor for energy difference 358
Boltzmann’s constant 383
Boltzmann weighted probability 357
Born–Oppenheimer approximation 363
Boudouard reaction 123
Bragg–Williams model 292–4
Brillouin zone 236
Buckingham potential 202, 342
bulk modulus 52

calculation 367
mechanical stability condition 130

C
Debye temperatures 243
defects 372
Gibbs energy, effect of pressure 23
heat capacity of polymorphs 243
polymorphism; enthalpy of formation 3,

23
p–V data 53

calorimetry
measuring principles

adiabatic 309, 314
calibration 311
drop 312
heat flux 311, 313

phase change 314
thermochemical 313–19

combustion 317
direct reaction 318
solution 315

thermophysical 309–13
adiabatic 309
differential scanning 310
drop 311

CALPHAD approach 44
canonical ensemble 356
CaCO3

density of vibrational modes 247–8
orientational disordering 51

CaO
simulation of high-pressure behaviour

347
CaO–SiO2

enthalpy of mixing 223
Car–Parrinello scheme 370
chemical activity see activity
chemical potential

of condensed phases 60
curvature effect on 179, 181
definition 24–5
effect of pressure 40
Flory model 283–4
ideal gas 40, 59
ideal gas mixture 59
at interfaces 183
real gas 40–1, 60
real gas mixture 60

chemical potential diagrams 124
Clapeyron equation 33
classical nucleation theory 180
Clausius–Clapeyron equation 34
Clausius inequality 13
closed system 1
cluster-variation method 354
C3N4

calculation of high pressure polymorphs
367

CO/CO2 equilibrium 121
collective lattice vibrations 235–41
coloumetric titration 322
common boundary line 112
common tangent construction 90
compressibility see isothermal

compressibility
compressibility factor 42
components

choice of 2
definition 2, 86
restrictions in ternary systems 109

compound energetics
rationalization schemes 211–18
trends 199–211

386 Index



compound energy model 291, 300
configurational averaging 353
configurational entropy 63, 270–1
congruent melting 100, 105
conode see tieline
conservation of energy 4
contact angle 172
convergent ordering 292–4
Co3O4

heat capacity; low-spin–high-spin 258
coordination equivalent fraction 277
coupling parameter 362
Co–Ti–O

chemical potential diagram 124
critical point 36

p,T,V representation 37, 142
critical temperature of solution 136
crystal field effects 205
crystal morphology 165
C–Si–Ti

phase diagram 115
Cu

electronic heat capacity 254
heat capacity 234, 242

CuCl
dispersion relations 240

Dalton’s law 59
Debye model 241–3
Debye temperature

and bonding strength 242
elastic 244
of elements 244
entropy-based 249
limitations 243

defects
defect equilibria 296
in graphite 372
simulation of 370–2

degeneracy
definition of 268
derivation for random distribution 270
in Flory model 280

degrees of freedom
for molecules 231–2
related to Gibbs phase rule 37, 86

density fluctuations 143, 146
density functional theory 366–7
density of states

electronic at Fermi level 253
vibrational 240

diamond anvil cell 308–9
dihedral angle 173–4
dilational heat capacity 231, 245

constant volume versus fixed volume
245

dilatometry 329

dilute solutions
calculation of phase boundary 106–9
thermodynamic representation 73

dispersion curve 235
diatomic chain 239
monoatomic chain 236
for Pb 238

driving force for reactions 132
Dulong–Petit’s law 233

Einstein model 233–4
heat capacity of Cu 233

Einstein temperature 234
elastic stiffness constants 130
electrochemical methods 319–22
electron count rationalizations

and compound stability 215–16
and solution stability 218–20

electronic heat capacity
coefficient of elements 244
of free electron gas 254

electrolyte
oxide ion conductors 321
requirements for 320

electrostatic potential energy 201
Ellingham diagram 119
endothermic 4
energy see internal energy
energy minimization 109, 343
enthalpy

acid–base stabilization 211
of adsorption 193
atomization 200
definition 6
dissociation 200
electron gain 200
of formation

from binary oxides 10
definition of 10
intermetallic compounds 210–11
periodic trends 199–209

ionization 200
lattice see lattice enthalpy
of liquid solutions 223–6
mixing 62

partial molar 62
of quasi-chemical model 279

of oxidation 222, 300
partial molar 25
reaction 9
size mismatch 219
sublimation 200
temperature dependence 12
of transition 9

entropy
configurational 63, 269–70
and convergent ordering 293
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Debye model 249
definition of 12
effect of coordination 251
effect of volume 250
excess

of mixing 66
of surfaces 170

of fusion of metals 100
mixing 62

Flory model 283
partial molar 62
of quasi-chemical model 279

partial molar 25
polymer solution 282–3
residual 17
reversible processes 13
spin disordering 256
and spontaneous change 12
temperature dependence 16
variation with temperature 16
vibrational see vibrational entropy
zero point 17

equation of state
Birch–Murnaghan 52
ideal gas 39
Murnaghan 52–3
van der Waals 42–4, 140–3
virial 41

equilibrium
global 3, 127
in heterogeneous system 25, 88–9
local 127
minimization of Gibbs energy 109

equilibrium conditions
for binary systems 88–9
for curved interfaces 163–4
general 13–15
graphical solution 90
for heterogeneous systems 25
for pressure; dividing surface 163

ErFeO3
heat capacity; Schottky effect 259

ergodic 3
eutectic reaction 87, 112
eutectic temperature 87
eutectoid reaction 102
exact differential 19
excess functions

definition of 64
expansivity see isobaric expansivity
exothermic 4
extensive variables 2
extent of reaction 132, 138

Faraday’s constant 383
fast ion conductors

heat capacity 261

Fe–B
crystallization of glass 152

Fe–C
effect of metastability on phase diagram

150
Fe–Ni

activity of molten 67
choice of reference state 70

Gibbs energy of mixing 67
effect of reference state 72

Fe–O
predominance diagram 118

Fe1–yO
heat capacity at TN 47

FeO–MnO
calculation of phase diagram 94

Fe2O3
deconvolution of heat capacity 257

Fermi level 253
Fe–S–O

predominance diagram 121–2
first law of thermodynamics 4
first-order phase transition 8

definition 29–30
p,T slope of 33–4

Flory model 279–84
entropy of mixing 282–3

force-field methods see potential-based
methods

free electron gas
energy distribution 253
heat capacity 254

Frost diagram 208
fugacity

definition of 40
fundamental equation 19

gas
chemical potential 40
equation of state 41–3
heat capacity 230–2
ideal gas 39
ideal gas law 39
real gases 40
solubility in metals 220–1
standard state 40

Ge
Gibbs energy of fusion 95

generalized gradient approximation 367
GeSe2

heat capacity 263
genetic algorithms 373
Gibbs adsorption equation 187
Gibbs dividing surface 159, 189
Gibbs–Duhem equation

derivation of 26–7
integration of 79–82
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Darken and Gurry’s method 80–1
Taylor series 81–2

Gibbs energy
CALPHAD representation 44
curves and phase diagram 88–109
definition of 14
as equilibrium conditions 14
excess; of mixing 64
ideal gas 40
integral 26
minimization of 109
of mixing 62
partial molar; of mixing 62

see also chemical potential
from partition function 269
pressure dependence of 22
properties of 20–3
simulation of 348
temperature dependence of 21

Gibbs phase rule 37–8, 85–6
and phase diagrams 110, 118, 120, 123,
substances with low vapour pressure 86

Gibbs surface model 159
glass 3

glass transition 128, 263
heat capacity 262–3

grain boundary energy 169
grand-canonical Monte Carlo 359
group velocity 236
Grüneisen parameter 246

H
heat capacity 232

H2
heat capacity 232

Hamiltonian 363
harmonic oscillator

energy of
classical 232
quantum mechanics 233

partition function 348
Hartree–Fock theory 364–6
heat

definition 4
heat capacity

at constant pressure 7
at constant volume 6
Debye 241–4
deconvolution of 257
of defect formation 260
dilational 231, 245–6
Einstein 233–4
electronic see electronic heat capacity
estimates from auxiliary data 247
of fast ion conductors 261
of glasses 262–3
of liquids 261

magnetic see magnetic heat capacity
magnetic transitions 47
of monoatomic ideal gas 230
of polyatomic gas molecules 230–1
polynomial representation 45
of reactions 12
relationship to elastic properties 244–5
of solids 233–48

Helmholtz energy
definition 14
effect of magnetic field 38
as equilibrium conditions 14
from partition function 268
simulation of 348

Henrian standard state
definition of 70–2

Henry’s law
definition of 68–70
for surfaces 190

Hess law 11
heterogeneous phase equilibria

effect of interfaces 175–86
equilibrium conditions 25

heterogeneous system 1
H2/H2O equilibrium 121
H2O

heat capacity 232
Helmholtz energy 142
liquid–gas transition 140–3
p,T phase diagram 36, 142
p,V isotherms 142
r,T-phase diagram 142

homogeneity range 104, 222
homogeneous system 1

ideal gas law 39
ideal glass transition temperature 129
ideal solution

definition of 63–4
mixing properties 63
as statistical model 269–71
thermodynamic properties 65
two sub-lattice model 285–6

immiscibility gap, calculation of 99,
135–9

incongruent melting 105
Inden model 47
InN–GaN

immiscibility gap 138
insulator–metal transition 256
instability

and compositional fluctuations 135
criteria for 130
and density fluctuations 143, 146
pressure 143–9
temperature 128–32

intensive variables 2
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interaction coefficient 74–5
interatomic potentials

derivation of 343
interfaces 158

morphology 171
intermediate phases

and phase diagrams 103–6
intermetallic compounds

enthalpy of formation 210–11
intermolecular potentials

for molecular solids 339–43
internal energy

definition 4
internal equilibrium 3
intramolecular interactions 341
invariant equilibrium 87, 102
ionic fraction 58
ionic potential 213
ionic radii 215
isobaric expansivity

definition 7
simulation 349, 350
table with examples 8

isolated system 1
isothermal compressibility

definition 7
table with examples 8

isothermal section 112

Kauzmann paradox 129
Kauzmann temperature 129
KCl–NaCl

phase diagram and Gibbs energy 96
Kelvin equation see Thomson’s equation
Kieffer model 247
kinetic decomposition

Co2SiO4 153
kinetic demixing 152–3

LaNi5
enthalpy of formation 326

Landau theory 47–51
order parameter 48
tricritical behaviour 50

Langmuir adsorption isotherm 192
Laplace equation 164, 167
lattice dynamics 348
lattice enthalpy 200
lattice heat capacity 233–47
lattice models for solutions 268-
lattice statics 343
law of corresponding states 43
Legendre transform 38
Lennard-Jones potential 342
lever rule

binary system 88
ternary system 113–14

LiCl–LiF–KCl–KF
reciprocal phase diagram 117

ligand field theory see crystal field theory
liquid–gas transition

H2O 142
van der Waals theory 140–3

liquid–liquid transition
two-state model 143–9

liquid solutions
factors affecting enthalpy of mixing 223
silicate systems with basic oxides 223–6

liquidus
isotherms 111
line 87
surface 112

LixV6O13
simulation of intercalation 369

local density approximation 366
longitudinal vibrational modes 237
Ludvig–Soret effect 152

Madelung constant 202
magnetic heat capacity

antiferromagnet 256
ferromagnet 256

magnetic transition 38–9
order–disorder 256

magnons 255
mass action law 296
materials in potential gradients 152
maximum non-expansion work 16
maximum work 15
Maxwell relations 18–20
Maxwell’s equal-area construction 141
mean curvature 175
measurement uncertainty 326–8
mechanical stability limit 130–1
melting temperature 36

effect of additional component 106
effect of particle size 181
effect of solubility 106

metastable phase equilibria
phase diagrams reflecting metastability

149
thermal evolution 150–2

metastable state 3
Metropolis algorithm 357
MgF2

simulation of expansivity 349
MgSiO3

simulation of high-pressure behaviour
370

p–V data 53
vibrational properties 251

Mg2SiO4
enthalpy of formation of polymorphs

197
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microcanonical ensemble 359
microporous materials

enthalpy of formation 216–18
mixing properties

definition 60–7
effect of change in standard state 70–2

MnO–MgO
simulation of enthalpy of mixing 354,

358
MnP

B,T phase diagram 39
Mo

dilational heat capacity 246
molecular dynamics 359–61
molecular mechanics see energy

minimization
mole fraction 58, 110
monotectic reaction 103
Monte Carlo techniques 356–9

grand-canonical 359
multi-anvil press 307
multi-component system 109–25

N2(g)
fugacity of 41

Na
effect of bubble size on boiling

temperature 178
Na2B8O13–SiO2

glass formation, phase diagram 139
NaCl

enthalpy of formation; effect of size 157
NaF–MgF2–CaF2

phase diagram 114
Nd2S3

heat capacity; Schottky effect 259
energy levels 260

negative thermal expansion
ZrW2O8 350–3

Nernst–Lindeman relationship 246
NiS

semiconductor to metal transition 30–1
Ni–Zr

diffusional amorphization 151
non-convergent disordering model 294–6
non-equilbrium state 3, 127
non-ergodic 3, 127
non-stoichiometry

factors affecting 221
mass-action treatment 296
redox energetics 222
solid solution approach for perovskites

297

open system 1, 24
optical basicity scale 212
optic branch 237

order–disorder transitions 38–9
convergent 292–4
non-convergent 294–6
simulation through configurational

averaging 353–4
structural entities 261

order parameter 48, 292
Ostwald ripening 180
Ostwald’s step rule 152

crystallization of Fe–B glasses 151
diffusional amorphization of Ni–Zr alloys

152

P
liquid–liquid transition 147

pair fraction 277
Paris–Edinburgh device 308
partial molar properties

definition 24–5
derivation for binary solutions 77
graphical derivation for binary solutions

78
partition function 268, 297

harmonic oscillator 348
Pb

dispersion relations 238
Pb–Sb

molar volume of mixing 61
Pb–Sn

molar volume of mixing 61
periodic boundary conditions 356
peritectic reaction 102
peritectoid reaction 102
perovskite-type oxides

enthalpy of formation 215
mass action law treatment 296
redox energetics 222, 300
solution modelling 297–300

phase
definition of 1, 29

phase boundary
liquid–vapour 36
slope of 33
solid–vapour 36
in vicinity of invariant points 106

phase diagram
binary 85–109
calculation of

using ideal solution approximation
92–4

using regular solution modelling
98–102

effect of heat capacity of components
94–6

effect of intermediate phases 103–6
effect of magnetic field 37–9
effect of particle size 184

Index 391



equilibrium behaviour on cooling 88,
112

Gibbs phase rule 85–6
ideal or nearly ideal systems 90–6
mapping 305
predominance diagrams 117–25
quaternary 115–16
relationship with Gibbs energy 88–109
simple eutectic system 96–8
single component system 35–7
ternary 109–15
ternary reciprocal systems 116–17

phase stability 127
phase transitions

definition 29–30
field-induced 37–9
particle size induced 185
thermodynamic representation 45–51

phonons 238
piston cylinder 307
Planck’s constant 383
polyamorphism 147
potential-based methods 337
potential energy 339
potential space 35
potential gradients

effect on stability 152–3
predominance diagrams 117–25
pressure

measurement 305
units 383

pressure-induced amorphization 143
of porous Si 143–9

primary crystallization field 112
principal curvatures 161
principal radii 161
pycnometry 328
Pyrex

fabrication 140

quantum mechanical methods 363–73
quantum Monte Carlo 372–3
quasi-chemical model 276–9
quasi-harmonic approximation 348
quasi-regular solution 76

as statistical model 275
quaternary system 115

Raoultian standard state
definition of 70–2

Raoult’s law
as consequence of Henry’s law behaviour

70
definition of 68–70

real gases 40–4
equations of state 41–3
standard state of 40

reciprocal ionic systems 288, 299
reciprocal reaction 116, 290
Redlich–Kister expression 76
redox energetics of oxides 208, 300

acid–base stabilization 211
effect of crystal structure 222

reference state
definition 8

regular solution 74
constant 75

physical interpretation 75
excess enthalpy 75
excess Gibbs energy 78
Gibbs energy of mixing 76
modelling phase diagrams 98–102
partial excess Gibbs energies 78, 274
as statistical model 271–6
two sub-lattice model 286–8

residual entropy 17
ruby scale 308

S
heat capacity and entropy of 18

Schottky effects 259
Schrödinger equation 363
Se

heat capacity and entropy of 129
heat capacity of glass 262

second law of thermodynamics 12
second-order transition

definition 30–3
p,T slope 35

segregation 186
self interaction coefficient 74
sessile drop technique 172
shear modulus 131
shell model 342
Si

Gibbs energy of fusion 95
pressure-induced amorphization 143–9
p,T phase diagram 144

Sievert’s law 221
Si–C–O–N

predominance diagram 123
Si–Ge

activity coefficients 69
calculation of phase diagram 91, 94
Gibbs energy 78, 90–1
vapour pressure 69

silicate glasses
heat capacity 263
short-range order 360

silica zeolites
enthalpy of formation 216
standard entropy 216

simulated annealing 373
simulation

392 Index



elevated temperatures 347–50
high pressure 347

SiO2
a–b quartz transition 32
quartz, Stishovite p–V data 53

Si–Ti
phase diagram 105

size mismatch enthalpy
effect on solution energetics 219
trace elements in pyrope 220

Sn–Bi
calculation of phase diagram 106–9

Sn–Sb
calculation of phase diagram 106–9
phase diagram reflecting metastability

150–1
solidus line 87
solubility

factors affecting solubility 218–20
of gases in metals 220
and nucleation 179

solute 58
solution models

Bragg–Williams 292–4
Flory 279–85
ideal 63–5, 269–71, 285–6
non-stoichiometry 297–300
quasi-chemical 276–9
quasi-regular 76–7, 275–6
reciprocal ionic 288–91
Redlich–Kister 76
regular 74–6, 271–5, 286–8
sub-regular 76, 219
Taylor series representation of dilute

solutions 73–4
solutions

definition 2
mixtures of gases 59–60
simulation 353–6
stability 135–40

solvent 58
spinels

order–disorder 294–6
spinodal

and compositional fluctuations
135–40

decomposition 128, 139
and density fluctuations 143, 146
equilibrium 134
point 135

spin only approximation 256
spin transition 257–8
spin waves see magnons
Sr2Fe2O5

order–disorder transition 261, 354
SrMnO3–d

redox energetics 222

standard state 9, 67
for gases 40, 59
for solid and liquid solutions 60, 70–2

state function 2
state variable 2
static limit 343
Sterling’s approximation 271
stoichiometric phase 104
strain energy

ionic solutions 218
metals 218

structure prediction 344, 373
sub-lattice

definition of 267
supercooling of liquids 128–9
supercritical fluid 36
superheating of crystals 131–2
surface-active species 190–1
surface activity 190
surface energy 158

calculation 371
definition of 165
temperature variation 170
trends in 167–70

surface excess properties
definition of 160

surfaces 158
curved 161
effect of boiling temperature 177
effect on melting temperature 181
effect on phase transitions 185
effect on solubility and nucleation 179
effect on vapour pressure 176
Ostwald ripening 180

surface segregation 189
surface tension 158

definition of 163–4
trends in 167–70

syntectic reaction 103
system 1

Temkin model 288
temperature 303–5

fixed points 304
international temperature scale of 1990

303
tension effect 353
ternary phase diagrams 109–15
ternary reciprocal systems 116, 290
theory

lattice dynamics 347–53
molecular dynamics 359–61
molecular mechanics methods 343–6
Monte Carlo 356–9

solid solutions 358
quantum mechanics methods 363–7

thermal analysis 306

Index 393



thermal expansion see isobaric expansivity
thermodynamic averages 353–4,356
thermodynamic equilibrium 3
thermodynamic integration 362–3
thermodynamic perturbation 361–2
thermodynamic representation

condensed single component phases
44–5

dilute solutions 73–4
equations of state of condensed phases

52–3
gases 41–4
solutions 74–6
transitions 45–51

thermodynamic systems 1
thermometers 303–7

resistance 303–5
thermocouples 305–7

third law of thermodynamics 17
experimental verification 18

Thomson’s equation 177
tieline 88, 112
Ti3O5–TiO2

Gibbs energies of formation 198
Tl–Hg

activity coefficients 74
tolerance factor 214
transference number 319
transitions

thermodynamic representation 45–51
transverse modes 237
triclinic behaviour 80
triple point 37, 39
two species lattice model 143–9

univariant equilibrium 87

vapour pressure
effect of particle size 176
measurement 323–6

van der Waals attraction (or dispersion)
202, 342

van der Waals equation of state 42
law of corresponding states 43
liquid–gas transition 140–3

variational principle 364
vibrational entropy

Debye model expression 248
effect of coordination 251
effect of volume 250
Einstein model expression 248
of mixing 354
negative thermal expansion 350–3

vibrational modes
chain of atoms models 235, 238
effect of coordination 251
effect of volume 251

frequency of
estimates from elastic data 247
estimates from IR and Raman

spectroscopy 247
longitudinal 237
negative thermal expansion 350–3
transverse 237

V2O3–Cr2O3
phase diagram; regular solution modelling

99
volume

of mixing, definition of 61
partial molar 26
solids; effect of pressure 52–3

volume fractions 282
volumetric techniques 328–30
Vycor

fabrication 140

W
dilational heat capacity 246

wave vector 235
wetting coefficient 172
work

definition of 4
non-expansion work 5
maximum non-expansion work 16
maximum work 15

Wulff construction 166

YBCO
carbonatisation 325

Y2O3–Al2O3
liquid–liquid transition 147

Y2O3–MgO
phase diagram – Gibbs energy 97

Young–Dupré equation 172
Young–Laplace equation 164

zeolites
enthalpy of formation 216–18
negative thermal expansion 353
standard entropy 217

zero-point energy 348
Zn

effect of particle size 177
vapour pressure of 34

ZnCl2
heat capacity 263

ZrO2
effect of particle size on phase transition

temperature 185–6
standard state 10

ZrO2–CaO
phase diagram 10, 104

ZrO2–CaZrO3
x,T phase diagram, Gibbs energy 10

394 Index



ZrW2O8
negative thermal expansion 351–3

ZrF4–AF
enthalpy of mixing 224

Index 395
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