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Û specific internal energy

vr, vh velocities in the r and h directions

vx, vy velocities in the x and y directions

v mass average velocity

va velocity relative to reference frame a

vo volume average velocity

v# velocity fluctuation (Sections 4.3 and 17.4)

v* molar average velocity

vi velocity of species i

V volume
�Vi partial molar or specific volume of species i

Vij fraction of molecular volume (Section 5.1)

W width

W work (Section 20.2)

Ws shaft work (Section 20.2)

x mole fraction in liquid of more volatile species (Chapters 12 and 13)

List of Symbols xv



xB, xD, xF mole fractions of more volatile species in bottoms, distillate and feed,

respectively (Chapters 12 and 13)

xi mole fraction of species i, especially in a liquid or solid phase

Xi generalized force causing diffusion (Section 7.2)

y mole fraction in vapor of more volatile species (Chapters 12 and 13)

yi mole fraction of species i in a gas

z position

|z| magnitude of charge (Section 6.1)

zi charge on species i

a thermal diffusivity (Chapters 20 and 21)

a thermal diffusion factor (Section 21.5)

a flake aspect ratio (Sections 6.4 and 9.5)

aij conversion factor (Section 7.1)

b diaphragm cell calibration constant (Sections 2.2 and 5.5)

b pervaporation selectivity (Section 18.4)

c interfacial influence (Section 6.3)

c surface tension (Section 6.4)

ci activity coefficient of species i

d thickness of thin layer, especially a boundary layer

d(z) Dirac function of z

dij Kronecker delta

e void fraction

e enhancement factor (Section 17.1)

eij interaction energy between colliding molecules (Sections 5.1 and 20.4)

f combined variable

g Murphree efficiency (Section 13.4)

g effectiveness factor (Section 17.1)

h dimensionless concentration

h fraction of unused adsorption bed (Section 15.3)

h fraction of surface elements (Section 9.2)

ji, j�i forward and reverse reaction rate constants respectively of reaction i

k length ratio (Section 6.4)

k heat of vaporization (Sections 12.3 and 13.3)

ki equivalent ionic conductance of species i (Section 6.1)

K equivalent conductance

l viscosity

li chemical potential of species i

li partial specific Gibbs free energy of species i, i.e., the chemical potential

divided by the molecular weight (Section 7.2)

m kinematic viscosity

m stoichiometric coefficient (Sections 16.5 and 17.2)

n dimensionless position

n correlation length (Section 6.3)Q
osmotic pressure (Section 18.3)

q total density, i.e., total mass concentration

qi mass concentration of species i

r rate of entropy production (Section 7.2)

xvi List of Symbols



r standard deviation (Sections 5.5 and 15.4)

r, r# reflection coefficients (Section 18.3)

r Soret coefficient (Section 21)

s diagonal matrix of eigenvalues (Chapter 7)

ri eigenvalue (Section 7.3)

rij collision diameter

s characteristic time

s tortuosity (Section 6.4)

s residence time for surface element (Section 9.2)

s shear stress (Chapter 21)

s0 shear stress at wall (Section 9.4)

/ Thiele modulus (Section 17.1)

/i volume fraction of species i

w electrostatic potential

c combined concentration (Section 7.3)

x jump frequency (Section 5.3)

x regular solution parameter (Section 6.3)

x coefficient of solute permeability (Section 18.3)

xi mass fraction of species i

X collision integral in Chapman–Enskog theory (Section 5.1)

List of Symbols xvii





Preface to the Third Edition

Like its earlier editions, this book has two purposes. First, it presents a clear

descriptionofdiffusion, themixingprocess causedbymolecularmotion.Second, it explains

mass transfer, which controls the cost of processes like chemical purification and environ-

mental control. The first of these purposes is scientific, explaining how nature works. The

second purpose is more practical, basic to the engineering of chemical processes.

While diffusion was well explained in earlier editions, this edition extends and clarifies

this material. For example, the Maxwell–Stefan alternative to Fick’s equation is now

treated in more depth. Brownian motion and its relation to diffusion are explicitly de-

scribed. Diffusion in composites, an active area of research, is reviewed. These topics are

an evolution of and an improvement over the material in earlier editions.

Mass transfer is much better explained here than it was earlier. I believe that mass

transfer is often poorly presented because it is described only as an analogue of heat

transfer. While this analogue is true mathematically, its overemphasis can obscure the

simpler physical meaning of mass transfer. In particular, this edition continues to em-

phasize dilute mass transfer. It gives a more complete description of differential distilla-

tion than is available in other introductory sources. This description is important because

differential distillation is now more common than staged distillation, normally the only

form covered. This edition gives a much better description of adsorption than has been

available. It provides an introduction to mass transfer applied in biology and medicine.

The result is an engineering book which is much more readable and understandable

than other books covering these subjects. It provides much more physical insight than

conventional books on unit operations. It explores the interactions between mass trans-

fer and chemical reaction, which are omitted by many books on transport phenomena.

The earlier editions are good, but this one is better.

The book works well as a text either for undergraduates or graduate students. For

a one-semester undergraduate chemical engineering course of perhaps 45 lectures plus

recitations, I cover Chapter 2, Sections 3.1 to 3.2 and 5.1 to 5.2, Chapters 8 to 10, 12 to

15, and 21. If there is time, I add Sections 16.1 to 16.3 and Sections 17.1 to 17.3. If this

course aims at describing separation processes, I cover crystallization before discussing

membrane separations. We have successfully taught such a course here at Minnesota for

the last 10 years.

For a one semester graduate course for students from chemistry, chemical engineer-

ing, pharmacy, and food science, I plan for 45 lectures without recitations. This course

covers Chapters 2 to 9 and Chapters 16 to 19. It has been a mainstay at many universities

for almost 30 years.

This description of academic courses should not restrict the book’s overall goal.

Diffusion and mass transfer are often interesting because they are slow. Their rate

controls many processes, from the separation of air to the spread of pollutants to the

size of a human sperm. The study of diffusion is thus important, but it is also fun. I hope

that this book catalyzes that fun for you.

xix





Preface to Second Edition

The purpose of this second edition is again a clear description of diffusion useful

to engineers, chemists, and life scientists. Diffusion is a fascinating subject, as central to

our daily lives as it is to the chemical industry. Diffusion equations describe the transport

in living cells, the efficiency of distillation, and the dispersal of pollutants. Diffusion is

responsible for gas absorption, for the fog formed by rain on snow, and for the dyeing of

wool. Problems like these are easy to identify and fun to study.

Diffusion has the reputation of being a difficult subject, much harder than, say, fluid

mechanics or solution thermodynamics. In fact, it is relatively simple. To prove this to

yourself, try to explain a diffusion flux, a shear stress, and chemical potential to some

friends who have little scientific training. I can easily explain a diffusion flux: It is how

much diffuses per area per time. I have more trouble with a shear stress. Whether I say it

is a momentum flux or the force in one direction caused by motion in a second direction,

my friends look blank. I have never clearly explained chemical potentials to anyone.

However, past books on diffusion have enhanced its reputation as a difficult subject.

These books fall into two distinct groups that are hard to read for different reasons. The

first group is the traditional engineering text. Such texts are characterized by elaborate

algebra, very complex examples, and turgid writing. Students cheerfully hate these

books; moreover, they remember what they have learned as scattered topics, not an

organized subject.

The second group of books consists of texts on transport processes. These books

present diffusion by analogy with fluid flow and heat transfer. They are much more

readable than the traditional texts, especially for the mathematically adroit. They do

have two significant disadvantages. First, topics important to diffusion but not to fluid

flow tend to be omitted or deemphasized. Such cases include simultaneous diffusion and

chemical reaction. Second, these books usually present diffusion last, so that fluid me-

chanics and heat transfer must be at least superficially understood before diffusion can

be learned. This approach effectively excludes students outside of engineering who have

little interest in these other phenomena. Students in engineering find difficult problems

emphasized because the simple ones have already been covered for heat transfer.

Whether they are engineers or not, all conclude that diffusion must be difficult.

In the first edition, I tried to describe diffusion clearly and simply. I emphasized

physical insight, sometimes at the loss of mathematical rigor. I discussed basic concepts

in detail, without assuming prior knowledge of other phenomena. I aimed at the scope of

the traditional texts and at the clarity of books on transport processes. This second

edition is evidence that I was partly successful. Had I been completely successful, no

second edition would be needed. Had I been unsuccessful, no second edition would be

wanted.

In this second edition, I’ve kept the emphasis on physical insight and basic concepts,

but I’ve expanded the book’s scope. Chapters 1–7 on diffusion are largely unchanged,

though some description of diffusion coefficients is abridged. Chapter 8 onmass transfer

xxi



is expanded to even more detail, for I found many readers need more help. Chapters

9–12, a description of traditional chemical processes are new. The remaining seven

chapters, a spectrum of topics, are either new or significantly revised. The result is still

useful broadly, but deeper on engineering topics.

I have successfully used the book as a text for both undergraduate and graduate

courses, of which most are in chemical engineering. For an undergraduate course on

unit operations, I first review the mass transfer coefficients in Chapter 8, for I find that

students’ memory of these ideas is motley. I then cover the material in Chapters 9–12 in

detail, for this is the core of the subject. I conclude with simultaneous heat and mass

transfer, as discussed in Chapters 19–20. The resulting course of 50 classes is typical of

many offered on this subject. On their own, undergraduates have used Chapters 2–3 and

8–9 for courses on heat and mass transfer, but this book’s scope seems too narrow to be

a good text for that class.

For graduate students, I give two courses in alternate years. Neither requires the other

as a prerequisite. In the first graduate course, on diffusion, I cover Chapters 1–7, plus

Chapter 17 (on membranes). In the second graduate course, on mass transfer, I cover

Chapters 8–9, Chapters 13–16, and Chapter 20. These courses, which typically have

about 35 lectures, are an enormous success, year after year. For nonengineering graduate

students and for various short courses, I’ve usually used Chapters 2, 8, 15–16, and any

other chapters specific to a given discipline. For example, for those in the drug industry, I

might cover Chapters 11 and 18.

I am indebted tomany who have encouragedme in this effort.My overwhelming debt

is to my colleagues at the University of Minnesota. When I become disheartened, I need

simply to visit another institution to be reminded of the advantages of frank discussion

without infighting.My students have helped, especially SameerDesai andDiane Clifton,

who each read large parts of the final manuscript. Mistakes that remain are my fault.

Teresa Bredahl typed most of the book, and Clover Galt provided valuable editorial

help. Finally, my wife Betsy gives me a wonderful rich life.
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CHAPTER 1

Models for Diffusion

If a few crystals of a colored material like copper sulfate are placed at the

bottom of a tall bottle filled with water, the color will slowly spread through the bottle.

At first the color will be concentrated in the bottom of the bottle. After a day it

will penetrate upward a few centimeters. After several years the solution will appear

homogeneous.

The process responsible for the movement of the colored material is diffusion, the

subject of this book. Diffusion is caused by random molecular motion that leads to com-

plete mixing. It can be a slow process. In gases, diffusion progresses at a rate of about 5 cm/

min; in liquids, its rate is about 0.05 cm/min; in solids, its rate may be only about 0.00001

cm/min. In general, it varies less with temperature than do many other phenomena.

This slow rate of diffusion is responsible for its importance. In many cases, diffusion

occurs sequentially with other phenomena. When it is the slowest step in the sequence, it

limits the overall rate of the process. For example, diffusion often limits the efficiency of

commercial distillations and the rate of industrial reactions using porous catalysts. It

limits the speed with which acid and base react and the speed with which the human

intestine absorbs nutrients. It controls the growth of microorganisms producing peni-

cillin, the rate of the corrosion of steel, and the release of flavor from food.

In gases and liquids, the rates of these diffusion processes can often be accelerated by

agitation. For example, the copper sulfate in the tall bottle can be completely mixed in

a few minutes if the solution is stirred. This accelerated mixing is not due to diffusion

alone, but to the combination of diffusion and stirring. Diffusion still depends on ran-

dom molecular motions that take place over smaller distances. The agitation or stirring

is not a molecular process, but a macroscopic process that moves portions of the fluid

over much larger distances. After this macroscopic motion, diffusion mixes newly ad-

jacent portions of the fluid. In other cases, such as the dispersal of pollutants, the

agitation of wind or water produces effects qualitatively similar to diffusion; these

effects, called dispersion, will be treated separately.

The description of diffusion involves a mathematical model based on a fundamental

hypothesis or ‘‘law.’’ Interestingly, there are two common choices for such a law. The

more fundamental, Fick’s law of diffusion, uses a diffusion coefficient. This is the law

that is commonly cited in descriptions of diffusion. The second, which has no formal

name, involves a mass transfer coefficient, a type of reversible rate constant.

Choosing between these twomodels is the subject of this chapter. Choosing Fick’s law

leads to descriptions common to physics, physical chemistry, and biology. These descrip-

tions are explored and extended in Chapters 2–7. Choosing mass transfer coefficients

produces correlations developed explicitly in chemical engineering and used implicitly in

chemical kinetics and in medicine. These correlations are described in Chapters 8–15.

Both approaches are used in Chapters 16–21.

We discuss the differences between the two models in Section 1.1 of this chapter.

In Section 1.2 we show how the choice of the most appropriate model is determined.
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In Section 1.3 we conclude with additional examples to illustrate how the choice between

the models is made.

1.1 The Two Basic Models

In this section we want to illustrate the two basic ways in which diffusion can be

described. To do this, we first imagine two large bulbs connected by a long thin capillary

(Fig. 1.1-1). The bulbs are at constant temperature and pressure and are of equal vol-

umes. However, one bulb contains carbon dioxide, and the other is filled with nitrogen.

To find how fast these two gases will mix, we measure the concentration of carbon

dioxide in the bulb that initially contains nitrogen. We make these measurements when

only a trace of carbon dioxide has been transferred, and we find that the concentration of

carbon dioxide varies linearly with time. From this, we know the amount transferred per

unit time.

We want to analyze this amount transferred to determine physical properties that will

be applicable not only to this experiment but also in other experiments. To do this, we

first define the flux:

carbon dioxide fluxð Þ ¼ amount of gas removed

time ðarea capillaryÞ

� �
ð1:1-1Þ

In other words, if we double the cross-sectional area, we expect the amount transported

to double. Defining the flux in this way is a first step in removing the influences of our

particular apparatus and making our results more general. We next assume that the flux

is proportional to the gas concentration:

ðcarbon dioxide fluxÞ ¼ k
carbon dioxide
concentration
difference

0@ 1A ð1:1-2Þ

The proportionality constant k is called a mass transfer coefficient. Its introduction

signals one of the two basic models of diffusion. Alternatively, we can recognize

Time

C
O

2 
C

on
ce

nt
ra

tio
n 

he
re

CO2

N2

Fig. 1.1-1. A simple diffusion experiment. Two bulbs initially containing different gases are

connected with a long thin capillary. The change of concentration in each bulb is a measure of

diffusion and can be analyzed in two different ways.
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that increasing the capillary’s length will decrease the flux, and we can then assume

that

ðcarbon dioxide fluxÞ ¼ D
carbon dioxide concentration difference

capillary length

� �
ð1:1-3Þ

The new proportionality constant D is the diffusion coefficient. Its introduction implies

the other model for diffusion, the model often called Fick’s law.

These assumptions may seem arbitrary, but they are similar to those made in many

other branches of science. For example, they are similar to those used in developing

Ohm’s law, which states that

current; or
area times flux
of electrons

0@ 1A ¼ 1

resistance

� � voltage; or
potential
difference

0@ 1A ð1:1-4Þ

Thus, the mass transfer coefficient k is analogous to the reciprocal of the resistance. An

alternative form of Ohm’s law is

current density
or flux of
electrons

0@ 1A ¼ 1

resistivity

� � potential
difference

length

0B@
1CA ð1:1-5Þ

The diffusion coefficient D is analogous to the reciprocal of the resistivity.

Neither the equation using the mass transfer coefficient k nor that using the diffusion

coefficient D is always successful. This is because of the assumptions made in

their development. For example, the flux may not be proportional to the concentration

difference if the capillary is very thin or if the two gases react. In the same way,

Ohm’s law is not always valid at very high voltages. But these cases are exceptions;

both diffusion equations work well in most practical situations, just as Ohm’s law

does.

The parallels with Ohm’s law also provide a clue about how the choice between

diffusion models is made. The mass transfer coefficient in Eq. 1.1-2 and the resistance

in Eq. 1.1-4 are simpler, best used for practical situations and rough measurements. The

diffusion coefficient in Eq. 1.1-3 and the resistivity in Eq. 1.1-5 are more fundamental,

involving physical properties like those found in handbooks. How these differences

guide the choice between the two models is the subject of the next section.

1.2 Choosing Between the Two Models

The choice between the two models outlined in Section 1.1 represents a com-

promise between ambition and experimental resources. Obviously, we would like to

express our results in the most general and fundamental ways possible. This suggests

working with diffusion coefficients. However, in many cases, our experimental measure-

ments will dictate a more approximate and phenomenological approach. Such approx-

imations often imply mass transfer coefficients, but they usually still permit us to reach

our research goals.
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This choice and the resulting approximations are best illustrated by two examples. In

the first, we consider hydrogen diffusion in metals. This diffusion substantially reduces

a metal’s ductility, so much so that parts made from the embrittled metal frequently

fracture. To study this embrittlement, we might expose the metal to hydrogen under

a variety of conditions and measure the degree of embrittlement versus these conditions.

Such empiricism would be a reasonable first approximation, but it would quickly flood

us with uncorrelated information that would be difficult to use effectively.

As an improvement, we can undertake two sets of experiments. First, we can saturate

metal samples with hydrogen and determine their degrees of embrittlement. Thus

we know metal properties versus hydrogen concentration. Second, we can measure

hydrogen uptake versus time, as suggested in Fig. 1.2-1, and correlate our measurements

as mass transfer coefficients. Thus we know average hydrogen concentration versus

time.

To our dismay, the mass transfer coefficients in this case will be difficult to interpret.

They are anything but constant. At zero time, they approach infinity; at large time, they

approach zero. At all times, they vary with the hydrogen concentration in the gas

surrounding the metal. They are an inconvenient way to summarize our results. More-

over, the mass transfer coefficients give only the average hydrogen concentration in the

metal. They ignore the fact that the hydrogen concentration very near the metal’s surface

will reach saturation but the concentration deep within the metal will remain zero. As

a result, the metal near the surface may be very brittle but that within may be essentially

unchanged.

We can include these details in the diffusion model described in the previous section.

This model assumed that

hydrogen
flux

� �
¼ D

hydrogen
concentration at z ¼ 0

� �
� hydrogen

concentration at z ¼ l

� �
ðthickness at z ¼ lÞ � ðthickness at z ¼ 0Þ

ð1:2-1Þ

Hydrogen
gas

Metal

Hydrogen
 concentration
     vs. time

z

Analyze as mass transfer

Flux = k Δ(concentration)

k is not constant;
variation with time
correlated; variation
with position ignored

Analyze as diffusion

D is constant;
variation with time and
position predicted

Flux = –D    (concentration)∂
∂z

Fig. 1.2-1. Hydrogen diffusion into a metal. This process can be described with either

a mass transfer coefficient k or a diffusion coefficient D. The description with a diffusion

coefficient correctly predicts the variation of concentration with position and time, and so

is superior.
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or, symbolically,

j1 ¼ D
c1 z¼0 � c1j jz¼l

l� 0
ð1:2-2Þ

where the subscript 1 symbolizes the diffusing species. In these equations, the distance l is

that over which diffusion occurs. In the previous section, the length of the capillary was

appropriately this distance; but in this case, it seems uncertain what the distance should

be. If we assume that it is very small,

j1 ¼ D lim
l!0

c1 z¼z � c1j jz¼zþl
z zþl � zj jz

¼ �Ddc1
dz

ð1:2-3Þ

We can use this relation and the techniques developed later in this book to correlate

our experimentswithonlyoneparameter, thediffusioncoefficientD.We then can correctly

predict the hydrogen uptake versus time and the hydrogen concentration in the gas. As

a dividend, we get the hydrogen concentration at all positions and times within the metal.

Thus the model based on the diffusion coefficient gives results of more fundamental

value than the model based on mass transfer coefficients. In mathematical terms, the

diffusion model is said to have distributed parameters, for the dependent variable (the

concentration) is allowed to vary with all independent variables (like position and time).

In contrast, the mass transfer model is said to have lumped parameters (like the average

hydrogen concentration in the metal).

These results would appear to imply that the diffusion model is superior to the mass

transfer model and so should always be used. However, in many interesting cases the

models are equivalent. To illustrate this, imagine that we are studying the dissolution of

a solid drug suspended in water, as schematically suggested by Fig. 1.2-2. The dissolution

of this drug is known to be controlled by the diffusion of the dissolved drug away from

the solid surface of the undissolvedmaterial.Wemeasure the drug concentration versus time

as shown, and we want to correlate these results in terms of as few parameters as possible.

One way to correlate the dissolution results is to use a mass transfer coefficient. To do

this, we write a mass balance on the solution:

accumulation
of drug in
solution

0@ 1A ¼ total rate of
dissolution

� �

V
dc1
dt
¼ Aj1

¼ Ak c1ðsatÞ � c1½ � ð1:2-4Þ

where V is the volume of solution, A is the total area of the drug particles, c1(sat) is the

drug concentration at saturation and at the solid’s surface, and c1 is the concentration in

the bulk solution. Integrating this equation allows quantitatively fitting our results with

one parameter, the mass transfer coefficient k. This quantity is independent of drug

solubility, drug area, and solution volume, but it does vary with physical properties like

stirring rate and solution viscosity. Correlating the effects of these properties turns out to

be straightforward.
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The alternative to mass transfer is diffusion theory, for which the mass balance is

V
dc1
dt
¼ A

D

l

� �
c1ðsatÞ � c1½ � ð1:2-5Þ

in which l is an unknown parameter, equal to the average distance across which diffusion

occurs. This unknown, called a film or unstirred layer thickness, is a function not only of

flow and viscosity but also of the diffusion coefficient itself.

Equations 1.2-4 and 1.2-5 are equivalent, and they share the same successes and short-

comings. In the former, wemust determine the mass transfer coefficient experimentally; in

the latter, we determine instead the thickness l. Those who like a scientific veneer prefer to

measure l, for it genuflects toward Fick’s law of diffusion. Those who are more pragmatic

prefer explicitly recognizing the empirical nature of the mass transfer coefficient.

The choice between the mass transfer and diffusion models is thus often a question of

taste rather than precision. The diffusion model is more fundamental and is appropriate

when concentrations are measured or needed versus both position and time. The mass

transfer model is simpler and more approximate and is especially useful when only

average concentrations are involved. The additional examples in section 1.3 should help

us decide which model is appropriate for our purposes.

Before going on to the next section, we should mention a third way to correlate the

results other than the two diffusion models. This third way is to assume that the disso-

lution shown in Fig. 1.2-2 is a first-order, reversible chemical reaction. Such a reaction

might be described by

Analyze as chemical reaction

κ is reaction rate
constant for a
fictitious reaction

 = κ [c1(sat) –c1]
dc1

dt

TimeD
ru

g 
co

nc
en

tr
at

io
n

Saturation

Solid
drug

Analyze as mass transfer

k varies with stirring.
Note that kA/V = κ

V =kA [c1(sat) –c1]
dc1

dt

Analyze as diffusion

l varies with stirring
and with D. Note
that D/ l = k

V = A [c1(sat) –c1]
dc1

dt
D

l

Fig. 1.2-2. Rates of drug dissolution. In this case, describing the system with a mass transfer

coefficient k is best because it easily correlates the solution’s concentration versus time.

Describing the system with a diffusion coefficient D gives a similar correlation but introduces

an unnecessary parameter, the film thickness l. Describing the system with a reaction rate

constant k also works, but this rate constant is a function not of chemistry but of physics.

dc1
dt
¼ jc1ðsatÞ � jc1 ð1:2-6Þ
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In this equation, the quantity jc1(sat) represents the rate of dissolution, jc1 stands for
the rate of precipitation, and j is a rate constant for this process. This equation is

mathematically identical with Eqs. 1.2-4 and 1.2-5 and so is equally successful. However,

the idea of treating dissolution as a chemical reaction is flawed. Because the reaction is

hypothetical, the rate constant is a composite of physical factors rather than chemical

factors. We do better to consider the physical process in terms of a diffusion or mass

transfer model.

1.3 Examples

In this section, we give examples that illustrate the choice between diffusion

coefficients and mass transfer coefficients. This choice is often difficult, a juncture where

many have trouble. I often do. I think my trouble comes from evolving research goals,

from the fact that as I understand the problem better, the questions that I am trying to

answer tend to change. I notice the same evolution in my peers, who routinely start work

with one model and switch to the other model before the end of their research.

We shall not solve the following examples. Instead, we want only to discuss which

diffusionmodel we would initially use for their solution. The examples given certainly do

not cover all types of diffusion problems, but they are among those about which I have

been asked in the last year.

Example 1.3-1: Ammonia scrubbing Ammonia, the major material for fertilizer, is made

by reacting nitrogen and hydrogen under pressure. The product gas can be washed with

water to dissolve the ammonia and separate it from other unreacted gases. How can you

correlate the dissolution rate of ammonia during washing?

Solution The easiest way is to use mass transfer coefficients. If you use dif-

fusion coefficients, you must somehow specify the distance across which diffusion

occurs. This distance is unknown unless the detailed flows of gases and the water are

known; they rarely are (see Chapters 8 and 9).

Example 1.3-2: Reactions in porous catalysts Many industrial reactions use catalysts

containing small amounts of noble metals dispersed in a porous inert material like silica.

The reactions on such a catalyst are sometimes slower in large pellets than in small ones.

This is because the reagents take longer to diffuse into the pellet than they do to react.

How should you model this effect?

Solution You should use diffusion coefficients to describe the simultaneous

diffusion and reaction in the pores in the catalyst. You should not use mass transfer coef-

ficients because you cannot easily include the effect of reaction (see Sections 16.1 and 17.1).

Example 1.3-3: Corrosion of marble Industrial pollutants in urban areas like Venice

cause significant corrosion of marble statues. You want to study how these pollutants

penetrate marble. Which diffusion model should you use?

Solution The model using diffusion coefficients is the only one that will allow

you to predict pollutant concentration versus position in the marble. The model using
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mass transfer coefficients will only correlate how much pollutant enters the statue, not

what happens to the pollutant (see Sections 2.3 and 8.1).

Example 1.3-4: Protein size in solution You are studying a variety of proteins that you

hope to purify and use as food supplements. You want to characterize the size of the

proteins in solution. How can you use diffusion to do this?

Solution Your aim is determining the molecular size of the protein molecules.

You are not interested in the protein mass transfer except as a route to these molecular

properties. As a result, you should measure the protein’s diffusion coefficient, not its

mass transfer coefficient. The protein’s diffusion coefficient will turn out to be propor-

tional to its radius in solution (see Section 5.2).

Example 1.3-5: Antibiotic production Many drugs are made by fermentations in which

microorganisms are grown in a huge stirred vat of a dilute nutrient solution or ‘‘beer.’’

Many of these fermentations are aerobic, so the nutrient solution requires aeration. How

should you model oxygen uptake in this type of solution?

Solution Practical models use mass transfer coefficients. The complexities of

the problem, including changes in air bubble size, flow effects of the non-Newtonian

solution, and foam caused by biological surfactants, all inhibit more careful study (see

Chapter 8).

Example 1.3-6: Facilitated transport across membranes Some membranes contain

a mobile carrier, a reactive species that reacts with diffusing solutes, facilitating their

transport across the membrane. Such membranes can be used to concentrate copper

ions from industrial waste and to remove carbon dioxide from coal gas. Diffusion

across these membranes does not vary linearly with the concentration difference

across them. The diffusion can be highly selective, but it is often easily poisoned.

Should this diffusion be described with mass transfer coefficients or with diffusion

coefficients?

Solution This system includes not only diffusion but also chemical reaction.

Diffusion and reaction couple in a nonlinear way to give the unusual behavior observed.

Understanding such behavior will certainly require the more fundamental model of

diffusion coefficients (see Section 18.5).

Example 1.3-7: Flavor retention When food products are spray-dried, they lose a lot of

flavor. However, they lose less than would be expected on the basis of the relative vapor

pressures of water and the flavor compounds. The reason apparently is that the drying

food often forms a tight gellike skin across which diffusion of the flavor compounds is

inhibited. What diffusion model should you use to study this effect?

Solution Because spray-drying is a complex, industrial-scale process, it is

usually modeled usingmass transfer coefficients. However, in this case you are interested

in the inhibition of diffusion. Such inhibition will involve the sizes of pores in the food

and of molecules of the flavor compounds. Thus you should use the more basic diffusion

model, which includes these molecular factors (see Section 6.4).
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Example 1.3-8: The smell of marijuana Recently, a large shipment of marijuana was

seized in the Minneapolis–St. Paul airport. The police said their dog smelled it. The

owners claimed that it was too well wrapped in plastic to smell and that the police

had conducted an illegal search without a search warrant. How could you tell who

was right?

Solution In this case, you are concerned with the diffusion of odor across the

thin plastic film. The diffusion rate is well described by either mass transfer or diffusion

coefficients. However, the diffusion model explicitly isolates the effect of the solubility of

the smell in the film, which dominates the transport. This solubility is the dominant

variable (see Section 2.2). In this case, the search was illegal.

Example 1.3-9: Scale-up of wet scrubbers You want to use a wet scrubber to remove

sulfur oxides from the flue gas of a large power plant. A wet scrubber is essentially a large

piece of pipe set on its end and filled with inert ceramic material. You pump the flue gas

up from the bottom of the pipe and pour a lime slurry down from the top. In the

scrubber, there are various reactions, such as

CaOþ SO2 ! CaSO3 ð1:2-6Þ

The lime reacts with the sulfur oxides to make an insoluble precipitate, which is dis-

carded. You have been studying a small unit and want to use these results to predict the

behavior of a larger unit. Such an increase in size is called a scale-up. Should you make

these predictions using a model based on diffusion or mass transfer coefficients?

Solution This situation is complex because of the chemical reactions and the

irregular flows within the scrubber. Your first try at correlating your data should be

a model based on mass transfer coefficients. Should these correlations prove unreliable,

you may be forced to use the more difficult diffusion model (see Chapters 9, 16, and 17).

1.4 Conclusions

This chapter discusses the two common models used to describe diffusion and

suggests how you can choose between these models. For fundamental studies where you

want to know concentration versus position and time, use diffusion coefficients. For

practical problems where you want to use one experiment to tell how a similar one will

behave, use mass transfer coefficients. The former approach is the distributed-parameter

model used in chemistry, and the latter is the lumped-parameter model used in engineer-

ing. Both approaches are used in medicine and biology, but not always explicitly.

The rest of this book is organized in terms of these two models. Chapters 2–4 present

the basic model of diffusion coefficients, and Chapters 5–7 review the values of the

diffusion coefficients themselves. Chapters 8–15 discuss the model of mass transfer

coefficients, including their relation to diffusion coefficients. Chapters 16–19 explore

the coupling of diffusion with heterogeneous and homogeneous chemical reactions,

using both models. Chapters 20–21 explore the simpler coupling between diffusion

and heat transfer.
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In the following chapters, keep both models in mind. People involved in basic research

tend to be overcommitted to diffusion coefficients, whereas those with broader objectives

tend to emphasize mass transfer coefficients. Each group should recognize that the other

has a complementary approach that may be more helpful for the case in hand.

Questions for Discussion

1. What are the dimensions in mass M, length L, and time t of a diffusion

coefficient?

2. What are the dimensions of a mass transfer coefficient?

3. What volume is implied by Ficks’s law?

4. What volume is implied when defining a mass transfer coefficient?

5. Can the diffusion coefficient ever be negative?

6. Give an example for a diffusion coefficient which is the same in all directions.

Give an example when it isn’t.

7. When a silicon chip is doped with boron, does the doping involve diffusion?

8. Does the wafting of smells of a pie baking in the oven involve diffusion?

9. How does breathing involve diffusion?

10. How is a mass transfer coefficient related to a reaction rate constant?

11. Will a heat transfer coefficient and a mass transfer coefficient be related?

12. Will stirring a suspension of sugar in water change the diffusion coefficient?

Will it change the density? Will it change the mass transfer coefficient?
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PART I

Fundamentals of Diffusion





CHAPTER 2

Diffusion in Dilute Solutions

In this chapter, we consider the basic law that underlies diffusion and its appli-

cation to several simple examples. The examples that will be given are restricted to dilute

solutions. Results for concentrated solutions are deferred until Chapter 3.

This focus on the special case of dilute solutions may seem strange. Surely, it would

seem more sensible to treat the general case of all solutions and then see mathematically

what the dilute-solution limit is like. Most books use this approach. Indeed, because

concentrated solutions are complex, these books often describe heat transfer or fluid

mechanics first and then teach diffusion by analogy. The complexity of concen-

trated diffusion then becomes a mathematical cancer grafted onto equations of energy

and momentum.

I have rejected this approach for two reasons. First, the most common diffusion

problems do take place in dilute solutions. For example, diffusion in living tissue almost

always involves the transport of small amounts of solutes like salts, antibodies, enzymes,

or steroids. Thus many who are interested in diffusion need not worry about the com-

plexities of concentrated solutions; they can work effectively and contentedly with the

simpler concepts in this chapter.

Second and more important, diffusion in dilute solutions is easier to understand in

physical terms. A diffusion flux is the rate per unit area at which mass moves. A con-

centration profile is simply the variation of the concentration versus time and position.

These ideas are much more easily grasped than concepts like momentum flux, which is

the momentum per area per time. This seems particularly true for those whose back-

grounds are not in engineering, those who need to know about diffusion but not about

other transport phenomena.

This emphasis on dilute solutions is found in the historical development of the basic

laws involved, as described in Section 2.1. Sections 2.2 and 2.3 of this chapter focus on

two simple cases of diffusion: steady-state diffusion across a thin film and unsteady-state

diffusion into an infinite slab. This focus is a logical choice because these two cases are so

common. For example, diffusion across thin films is basic to membrane transport, and

diffusion in slabs is important in the strength of welds and in the decay of teeth. These

two cases are the two extremes in nature, and they bracket the behavior observed

experimentally. In Section 2.4 and Section 2.5, these ideas are extended to other exam-

ples that demonstrate mathematical ideas useful for other situations.

2.1 Pioneers in Diffusion

2.1.1 Thomas Graham

Our modern ideas on diffusion are largely due to two men, Thomas Graham

and Adolf Fick. Graham was the elder. Born on December 20, 1805, Graham was the
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son of a successful manufacturer. At 13 years of age he entered the University of Glas-

gow with the intention of becoming a minister, and there his interest in science was

stimulated by Thomas Thomson.

Graham’s research on the diffusion of gases, largely conducted during the years 1828

to 1833, depended strongly on the apparatus shown in Fig. 2.1-1 (Graham, 1829; Gra-

ham, 1833). This apparatus, a ‘‘diffusion tube,’’ consists of a straight glass tube, one end

of which is closed with a dense stucco plug. The tube is filled with hydrogen, and the end

is sealed with water, as shown. Hydrogen diffuses through the plug and out of the tube,

while air diffuses back through the plug and into the tube.

Because the diffusion of hydrogen is faster than the diffusion of air, the water level in

this tube will rise during the process. Graham saw that this change in water level would

lead to a pressure gradient that in turn would alter the diffusion. To avoid this pressure

gradient, he continually lowered the tube so that the water level stayed constant. His

experimental results then consisted of a volume-change characteristic of each gas orig-

inally held in the tube. Because this volume change was characteristic of diffusion, ‘‘the

diffusion or spontaneous intermixture of two gases in contact is effected by an inter-

change of position of infinitely minute volumes, being, in the case of each gas, inversely

proportional to the square root of the density of the gas’’ (Graham, 1833, p. 222).

Graham’s original experiment was unusual because the diffusion took place at constant

pressure, not at constant volume (Mason, 1970).

Graham also performed important experiments on liquid diffusion using the equip-

ment shown in Fig. 2.1-2 (Graham, 1850); in these experiments, he worked with dilute

solutions. In one series of experiments, he connected two bottles that contained solutions

at different concentrations; he waited several days and then separated the bottles and

analyzed their contents. In another series of experiments, he placed a small bottle con-

taining a solution of known concentration in a larger jar containing only water. After

waiting several days, he removed the bottle and analyzed its contents.

Graham’s results were simple and definitive. He showed that diffusion in liquids was

at least several thousand times slower than diffusion in gases. He recognized that the

diffusion process got still slower as the experiment progressed, that ‘‘diffusion must

Stucco plug

Glass tube

Diffusing gas

Water

Fig. 2.1-1. Graham’s diffusion tube for gases. This apparatus was used in the best early study of

diffusion. As a gas like hydrogen diffuses out through the plug, the tube is lowered to ensure that

there will be no pressure difference.
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necessarily follow a diminishing progression.’’ Most important, he concluded from the

results in Table 2.1-1 that ‘‘the quantities diffused appear to be closely in proportion . . .
to the quantity of salt in the diffusion solution’’ (Graham, 1850, p. 6). In other words, the

flux caused by diffusion is proportional to the concentration difference of the salt.

2.1.2 Adolf Fick

The next major advance in the theory of diffusion came from the work of Adolf

Eugen Fick. Fick was born on September 3, 1829, the youngest of five children. His

father, a civil engineer, was a superintendent of buildings. During his secondary school-

ing, Fick was delighted by mathematics, especially the work of Poisson. He intended to

make mathematics his career. However, an older brother, a professor of anatomy at the

University of Marburg, persuaded him to switch to medicine.

In the spring of 1847, Fick went to Marburg, where he was occasionally tutored by

Carl Ludwig. Ludwig strongly believed that medicine, and indeed life itself, must have

a basis in mathematics, physics, and chemistry. This attitude must have been especially

appealing to Fick, who saw the chance to combine his real love, mathematics, with his

chosen profession, medicine.

In the fall of 1849, Fick’s education continued in Berlin, where he did a considerable

amount of clinical work. In 1851 he returned to Marburg, where he received his degree.

His thesis dealt with the visual errors caused by astigmatism, again illustrating his deter-

mination to combine science and medicine (Fick, 1852). In the fall of 1851, Carl Ludwig

became professor of anatomy in Zurich, and in the spring of 1852 he brought Fick along

as a prosector. Ludwigmoved to Vienna in 1855, but Fick remained in Zurich until 1868.

Glass
plate

(a) (b)

Fig. 2.1-2. Graham’s diffusion apparatus for liquids. The equipment in (a) is the ancestor of free

diffusion experiments; that in (b) is a forerunner of the capillary method.

Table 2.1-1 Graham’s results for liquid diffusion

Weight percent of
sodium chloride

Relative flux

1 1.00
2 1.99
3 3.01
4 4.00

Source: Data from Graham (1850).
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Paradoxically, the majority of Fick’s scientific accomplishments do not depend on

diffusion studies at all, but on his more general investigations of physiology (Fick, 1903).

He did outstanding work in mechanics (particularly as applied to the functioning of

muscles), in hydrodynamics and hemorheology, and in the visual and thermal function-

ing of the human body. He was an intriguing man. However, in this discussion we are

interested only in his development of the fundamental laws of diffusion.

In his first diffusion paper, Fick (1855a) codified Graham’s experiments through an

impressive combination of qualitative theories, casual analogies, and quantitative

experiments. His paper, which is refreshingly straightforward, deserves reading today.

Fick’s introduction of his basic idea is almost casual: ‘‘[T]he diffusion of the dissolved

material . . . is left completely to the influence of the molecular forces basic to the same

law . . . for the spreading of warmth in a conductor and which has already been applied

with such great success to the spreading of electricity’’ (Fick, 1855a, p. 65). In other

words, diffusion can be described on the same mathematical basis as Fourier’s law for

heat conduction or Ohm’s law for electrical conduction. This analogy remains a useful

pedagogical tool.

Fick seemed initially nervous about his hypothesis. He buttressed it with a variety of

arguments based on kinetic theory. Although these arguments are now dated, they show

physical insights that would be exceptional in medicine today. For example, Fick rec-

ognized that diffusion is a dynamic molecular process. He understood the difference

between a true equilibrium and a steady state, possibly as a result of his studies with

muscles (Fick, 1856). Later, Fick became more confident as he realized his hypothesis

was consistent with Graham’s results (Fick, 1855b).

Using this basic hypothesis, Fick quickly developed the laws of diffusion by means of

analogies with Fourier’s work (Fourier, 1822). He defined a total one-dimensional flux

J1 as

J1 ¼ Aj1 ¼ �AD
qc1
qz

ð2:1-1Þ

where A is the area across which diffusion occurs, j1 is the flux per unit area, c1 is

concentration, and z is distance. This is the first suggestion of what is now known as

Fick’s law. The quantity D, which Fick called ‘‘the constant depending of the nature of

the substances,’’ is, of course, the diffusion coefficient. Fick also paralleled Fourier’s

development to determine the more general conservation equation

qc1
qt
¼ D

q2c1
qz2
þ 1

A

qA
qz

qc1
qz

 !
ð2:1-2Þ

When the area A is a constant, this becomes the basic equation for one-dimensional

unsteady-state diffusion, sometimes called Fick’s second law.

Fick next had to prove his hypothesis that diffusion and thermal conduction can be

described by the same equations. He was by no means immediately successful. First, he

tried to integrate Eq. 2.1-2 for constant area, but he became discouraged by the numer-

ical effort required. Second, he tried to measure the second derivative experimentally.

Like many others, he found that second derivatives are difficult to measure: ‘‘the second

difference increases exceptionally the effect of [experimental] errors.’’

16 2 / Diffusion in Dilute Solutions



His third effort was more successful. He used a glass cylinder containing crystalline

sodium chloride in the bottom and a large volume of water in the top, shown as the lower

apparatus in Fig. 2.1-3. By periodically changing the water in the top volume, he was

able to establish a steady-state concentration gradient in the cylindrical cell. He found

that this gradient was linear, as shown in Fig. 2.1-3. Because this result can be predicted

either from Eq. 2.1-1 or from Eq. 2.1-2, this was a triumph.

But this success was by no means complete. After all, Graham’s data for liquids antic-

ipated Eq. 2.1-1. To try to strengthen the analogy with thermal conduction, Fick used the

upper apparatus shown in Fig. 2.1-3. In this apparatus, he established the steady-state

concentration profile in the samemanner as before.Hemeasured this profile and then tried

to predict these results using Eq. 2.1-2, in which the funnel area A available for diffusion

varied with the distance z. When Fick compared his calculations with his experimental

results, he found good agreement. These results were the initial verification of Fick’s law.

2.1.3 Forms of Fick’s Law

Useful forms of Fick’s law in dilute solutions are shown in Table 2.1-2. Each

equation closely parallels that suggested by Fick, that is, Eq. 2.1-1. Each involves the

same phenomenological diffusion coefficient. Each will be combined with mass balances

to analyze the problems central to the rest of this chapter.

One must remember that these flux equations imply no convection in the same

direction as the one-dimensional diffusion. They are thus special cases of the general

equations given in Table 3.2-1. This lack of convection often indicates a dilute solution.

In fact, the assumption of a dilute solution is more restrictive than necessary, for there are

many concentrated solutions for which these simple equations can be used without

inaccuracy.Nonetheless, for the novice, I suggest thinking of diffusion in a dilute solution.

2.2 Steady Diffusion Across a Thin Film

In the previous section we detailed the development of Fick’s law, the basic

relation for diffusion.Armedwith this law, we can nowattack the simplest example: steady
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Distance z

1.10

1.05

0

S
pe

ci
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zTube

Fig. 2.1-3. Fick’s experimental results. The crystals in the bottom of each apparatus saturate the

adjacent solution, so that a fixed concentration gradient is established along the narrow, lower part

of the apparatus. Fick’s calculation of the curve for the funnel was his best proof of Fick’s law.
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diffusion across a thin film. In this attack, we want to find both the diffusion flux and the

concentration profile. In otherwords, wewant to determine howmuch solutemoves across

the film and how the solute concentration changes within the film.

This problem is very important. It is one extreme of diffusion behavior, a counterpoint

to diffusion in an infinite slab. Every reader, whether casual or diligent, should try to

master this problem now. Many may be superficial because film diffusion is so simple

mathematically. Please do not dismiss this important problem; it is mathematically

straightforward but physically subtle. Think about it carefully.

2.2.1 The Physical Situation

Steady diffusion across a thin film is illustrated schematically in Fig. 2.2-1. On

each side of the film is a well-mixed solution of one solute, species 1. Both these solutions

are dilute. The solute diffuses from the fixed higher concentration, located at z< 0 on the

left-hand side of the film, into the fixed, less concentrated solution, located at z> l on the

right-hand side.

We want to find the solute concentration profile and the flux across this film. To do

this, we first write a mass balance on a thin layer Dz, located at some arbitrary position z

within the thin film. The mass balance in this layer is

solute
accumulation

� �
¼ rate of diffusion

into the layer at z

� �
�

rate of diffusion
out of the layer

at z þ Dz

0@ 1A

Table 2.1-2 Fick’s law for diffusion without convection

For one-dimensional diffusion in Cartesian coordinates �j1 ¼ D
dc1
dz

For radial diffusion in cylindrical coordinates �j1 ¼ D
dc1
dr

For radial diffusion in spherical coordinates �j1 ¼ D
dc1
dr

Note: More general equations are given in Table 3.2-1.

Δ z

z

c10

c1l

l

Fig. 2.2-1. Diffusion across a thin film. This is the simplest diffusion problem, basic to perhaps

80% of what follows. Note that the concentration profile is independent of the diffusion coefficient.
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Because the process is in steady state, the accumulation is zero. The diffusion rate is the

diffusion flux times the film’s area A. Thus

0 ¼ A j1jz � j1jzþDz

� �
ð2:2-1Þ

Dividing this equation by the film’s volume, ADz, and rearranging,

0 ¼ � j1jzþDz � j1jz
zþ Dzð Þ � z

� �
ð2:2-2Þ

When Dz becomes very small, this equation becomes the definition of the derivative

0 ¼ � d

dz
j1 ð2:2-3Þ

Combining this equation with Fick’s law,

� j1 ¼ D
dc1
dz

ð2:2-4Þ

we find, for a constant diffusion coefficient D,

0 ¼ D
d
2
c1

dz
2 ð2:2-5Þ

This differential equation is subject to two boundary conditions:

z ¼ 0; c1 ¼ c10 ð2:2-6Þ

z ¼ l; c1 ¼ c1l ð2:2-7Þ

Again, because this system is in steady state, the concentrations c10 and c1l are indepen-

dent of time. Physically, this means that the volumes of the adjacent solutions must be

much greater than the volume of the film.

2.2.2 Mathematical Results

The desired concentration profile and flux are now easily found. First, we in-

tegrate Eq. 2.2-5 twice to find

c1 ¼ aþ bz ð2:2-8Þ

The constants a and b can be found from Eqs. 2.2-6 and 2.2-7, so the concentration

profile is

c1 ¼ c10 þ c1l � c10ð Þ z
l

ð2:2-9Þ

This linear variation was, of course, anticipated by the sketch in Fig. 2.2-1. The flux is

found by differentiating this profile:

j1 ¼ �D
dc1
dz
¼ D

l
c10 � c1lð Þ ð2:2-10Þ

Because the system is in steady state, the flux is a constant.
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As mentioned earlier, this case is easy mathematically. Although it is very im-

portant, it is often underemphasized because it seems trivial. Before you conclude

this, try some of the examples that follow to make sure you understand what is

happening.

Example 2.2-1: Membrane diffusion Derive the concentration profile and the flux for

a single solute diffusing across a thin membrane. As in the preceding case of a film, the

membrane separates two well-stirred solutions. Unlike the film, the membrane is chem-

ically different from these solutions.

Solution As before, we first write a mass balance on a thin layer Dz:

0 ¼ A j1jz � j1jzþDz

� �
This leads to a differential equation identical with Eq. 2.2-5:

0 ¼ D
d
2
c1

dz
2

However, this new mass balance is subject to somewhat different boundary conditions:

z ¼ 0; c1 ¼ HC10

z ¼ l; c1 ¼ HC1l

where H is a partition coefficient, the concentration in the membrane divided by that in

the adjacent solution. This partition coefficient is an equilibrium property, so its use

implies that equilibrium exists across the membrane surface. In many cases, it can be

about equal to the relative solubility within the film compared with that outside. For

a film containing pores, H may just be the void fraction of the film.

The concentration profile that results from these relations is

c1 ¼ HC10 þH C1l � C10ð Þ z
l

which is analogous to Eq. 2.2-9. This result looks harmless enough. However, it suggests

concentration profiles likes those in Fig. 2.2-2, which contain sudden discontinuities at

the interface. If the solute is more soluble in the membrane than in the surrounding

c10

c10

c1l

c1l

µ10

µ1l

(a) (b) (c)
Fig. 2.2-2. Concentration profiles across thin membranes. In (a), the solute is more soluble in the

membrane than in the adjacent solutions; in (b), it is less so. Both cases correspond to a chemical

potential gradient like that in (c).
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solutions, then the concentration increases. If the solute is less soluble in the membrane,

then its concentration drops. Either case produces enigmas. For example, at the left-

hand side of the membrane in Fig. 2.2-2(a), solute diffuses from the solution at C10 into

the membrane at higher concentration.

This apparent quandary is resolved when we think carefully about the solute’s diffu-

sion. Diffusion often can occur from a region of low concentration into a region of high

concentration; indeed, this is the basis of many liquid–liquid extractions. Thus the jumps

in concentration in Fig. 2.2-2 are not as bizarre as they might appear; rather, they are

graphical accidents that result from using the same scale to represent concentrations

inside and outside membrane.

This type of diffusion can also be described in terms of the solute’s energy or, more

exactly, in terms of its chemical potential. The solute’s chemical potential does not

change across the membrane’s interface, because equilibrium exists there. Moreover,

this potential, which drops smoothly with concentration, as shown in Fig. 2.2-2(c), is the

driving force responsible for the diffusion. The exact role of this driving force is discussed

more completely in Sections 6.3 and 7.2.

The flux across a thin membrane can be found by combining the foregoing concen-

tration profile with Fick’s law:

j1 ¼
DH½ �
l

C10 � C1lð Þ

This is parallel to Eq. 2.2-10. The quantity in square brackets in this equation is called

the permeability, and it is often reported experimentally. The quantity ([DH]/l ) is called

the permeance. The partition coefficient H is often found to vary more widely than the

diffusion coefficient D, so differences in diffusion tend to be less important than the

differences in solubility.

Example 2.2-2: Membrane diffusion with fast reaction Imagine that while a solute is

diffusing steadily across a thin membrane, it can rapidly and reversibly react with other

immobile solutes fixed within the membrane. Find how this fast reaction affects the

solute’s flux.

Solution The answer is surprising: The reaction has no effect. This is an

excellent example because it requires careful thinking. Again, we begin by writing a mass

balance on a layer Dz located within the membrane:

solute
accumulation

� �
¼ solute diffusion in

minus that out

� �
þ amount produced

by chemical reaction

� �

Because the system is in steady state, this leads to

0 ¼ A j1jz � j1jzþDz

� �
� r1ADz

or

0 ¼ � d

dz
j1 � r1
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where r1 is the rate of disappearance of the mobile species 1 in the membrane. A similar

mass balance for the immobile product 2 gives

0 ¼ � d

dz
j2 þ r1

But because the product is immobile, j2 is zero, and hence r1 is zero. As a result, the mass

balance for species 1 is identical with Eq. 2.2-3, leaving the flux and concentration profile

unchanged.

This result is easier to appreciate in physical terms. After the diffusion reaches a steady

state, the local concentration is everywhere in equilibrium with the appropriate amount

of the fast reaction’s product. Because these local concentrations do not change with

time, the amounts of the product do not change either. Diffusion continues unaltered.

This case in which a chemical reaction does not affect diffusion is unusual. For

almost any other situation, the reaction can engender dramatically different mass trans-

fer. If the reaction is irreversible, the flux can be increased many orders of magnitude, as

shown in Section 17.1. If the diffusion is not steady, the apparent diffusion coefficient

can be much greater than expected, as discussed in Example 2.3-2. However, in the case

described in this example, the chemical reaction does not affect diffusion.

Example 2.2-3: Concentration-dependent diffusion The diffusion coefficient is remark-

ably constant. It varies much less with temperature than the viscosity or the rate of

a chemical reaction. It varies surprisingly little with solute: for example, most diffusion

coefficients of solutes dissolved in water fall within a factor of ten.

Diffusion coefficients also rarely vary with solute concentration, although there are

some exceptions. For example, a small solute like water may show a concentration-

dependent diffusion when diffusing into a polymer. To explore this, assume that

D ¼ D0c1
c10

Then calculate the concentration profile and the flux across a thin film.

Solution Finding the concentration profle is a complete parallel to the simpler

case of constant diffusion coefficient discussed at the start of this section.We again begin

with a steady-state mass balance on a differential volume ADz:

0 ¼ A j1 z � j1 zþDzjjð Þ

Dividing by this volume, taking the limit as Dz goes to zero and combining with Fick’s

law gives

0 ¼ dj1
dz
¼ � d

dz
�D0c1

c10

dc1
dz

� �
This parallels Equation 2.2-5, but with a concentration-dependentD. This mass balance

is subject to the boundary conditions

z ¼ 0; c1 ¼ c10

z ¼ l; c1 ¼ 0
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These are a special case of Eqs. 2.2-6 and 2.2-7. Integration gives the concentration

profile

c1 ¼ c10 1� z

l

� �1=2
This profile can be combined with Fick’s law to give the flux

j1 ¼ �D
dc1
dz
¼ �D0c1

c10

dc1
dz
¼ D0c10

2l

The flux is half that of the case of a constant diffusion coefficient D0.

The meaning of this result is clearer if we consider the concentration profile shown in

Fig. 2.2-3. The profile is nonlinear; indeed, its slope at z ¼ l is infinite. However, at that

boundary, the diffusion coefficient is zero because the concentation is zero. The product

of this infinite gradient and a zero coefficient is the constant flux, with an apparent

diffusion coefficient equal to (D0/2). This unexceptional average value illustrates why

Fick’s law works so well.

Example 2.2-4: Diaphragm-cell diffusion One easy way to measure diffusion coefficients

is the diaphragm cell shown in Fig. 2.2-4. These cells consist of two well-stirred volumes

separated by a thin porous barrier or diaphragm. In the more accurate experiments,

the diaphragm is often a sintered glass frit; in many successful experiments, it is just

a piece of filter paper (see Section 5.5). To measure a diffusion coefficient with this cell,

we fill the lower compartment with a solution of known concentration and the upper

compartment with solvent. After a known time, we sample both upper and lower com-

partments and measure their concentrations.

Find an equation that uses the known time and the measured concentrations to

calculate the diffusion coefficient.

0 0.5 1.0
z / l

c 1
 / c

10

Fig. 2.2-3. Concentration-dependent diffusion across a thin film. While the steady-state flux is

constant, the concentration gradient changes with position.
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Solution An exact solution to this problem is elaborate and unnecessary. The

useful approximate solution depends on the assumption that the flux across the dia-

phragm quickly reaches its steady-state value. This steady-state flux is approached even

though the concentrations in the upper and lower compartments are changing with time.

The approximations introduced by this assumption will be considered later.

In this pseudosteady state, the flux across the diaphragm is that given for membrane

diffusion:

j1 ¼
DH

l

� 	
C1;lower � C1;upper

� �
Here, the quantity H includes the fraction of the diaphragm’s area that is available for

diffusion. We next write an overall mass balance on the adjacent compartments:

Vlower
dC1,lower

dt
¼ �Aj1

Vupper
dC1,upper

dt
¼ þAj1

where A is the diaphragm’s area. If these mass balances are divided by Vlower and Vupper,

respectively, and the equations are subtracted, one can combine the result with the flux

equation to obtain

d

dt
C1,lower � C1,upper
� �

¼ Db C1;upper � C1;lower

� �
in which

b ¼ AH

l

1

Vlower
þ 1

Vupper

� �

Conc.
z

Well-stirred
solutions

Porous
diaphragm

Fig. 2.2-4. A diaphragm cell for measuring diffusion coefficients. Because the diaphragm

has a much smaller volume than the adjacent solutions, the concentration profile within the

diaphragm has essentially the linear, steady-state value.
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is a geometrical constant characteristic of the particular diaphragm cell being used. This

differential equation is subject to the obvious initial condition

t ¼ 0; C1;lower � C1;upper ¼ C
0
1;lower � C

0
1;upper

If the upper compartment is initially filled with solvent, then its initial solute concentra-

tion will be zero.

Integrating the differential equation subject to this condition gives the desired result:

C1;lower � C1;upper

C
0
1;lower � C

0
1;upper

¼ e
�bDt

or

D ¼ 1

bt
ln

C
0
1;lower � C

0
1;upper

C1;lower � C1;upper

 !

We can measure the time t and the various concentrations directly. We can also de-

termine the geometric factor b by calibration of the cell with a species whose diffusion

coefficient is known. Then we can determine the diffusion coefficients of unknown

solutes.

There are twomajor ways in which this analysis can be questioned. First, the diffusion

coefficient used here is an effective value altered by the tortuosity in the diaphragm.

Theoreticians occasionally assert that different solutes will have different tortuosities, so

that the diffusion coefficients measured will apply only to that particular diaphragm cell

and will not be generally usable. Experimentalists have cheerfully ignored these asser-

tions by writing

D ¼ 1

b0t
ln

C
0
1;lower � C

0
1;upper

C1;lower � C1;upper

 !

where b# is a new calibration constant that includes any tortuosity. So far, the exper-

imentalists have gotten away with this: Diffusion coefficients measured with the dia-

phragm cell do agree with those measured by other methods.

The second major question about this analysis comes from the combination of the

steady-state flux equation with an unsteady-state mass balance. You may find this

combination to be one of those areas where superficial inspection is reassuring, but

where careful reflection is disquieting. I have been tempted to skip over this point, but

have decided that I had better not. Here goes:

The adjacent compartments are much larger than the diaphragm itself because they

contain much more material. Their concentrations change slowly, ponderously, as a re-

sult of the transfer of a lot of solute. In contrast, the diaphragm itself contains relatively

little material. Changes in its concentration profile occur quickly. Thus, even if this

profile is initially very different from steady state, it will approach a steady state before

the concentrations in the adjacent compartments can change much. As a result, the profile

across the diaphragmwill always be close to its steady value, even though the compartment

concentrations are time dependent.
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These ideas can be placed on a more quantitative basis by comparing the relaxation

time of the diaphragm, l2/D, with that of the compartments, 1/(Db). The analysis used
here will be accurate when (Mills, Woolf, and Watts, 1968)

1� l
2
=Deff

1=ðbDeffÞ
¼ Vdiaphragm

voids

1

Vlower
þ 1

Vupper

� �
This type of ‘‘pseudosteady-state approximation’’ is common and underlies most mass

transfer coefficients discussed later in this book.

The examples in this section show that diffusion across thin films can be difficult to

understand. The difficulty does not derive frommathematical complexity; the calculation

is easy and essentially unchanged. The simplicity of the mathematics is the reason why

diffusion across thin films tends to be discussed superficially in mathematically oriented

books. The difficulty in thin-film diffusion comes from adapting the samemathematics to

widely varying situations with different chemical and physical effects. This is what is

difficult to understand about thin-film diffusion. It is an understanding that you must

gain before you can do creative work on harder mass transfer problems. Remember: this

case is the base for perhaps 80 percent of the diffusion problems in this book.

2.3 Unsteady Diffusion in a Semi-infinite Slab

We now turn to a discussion of diffusion in a semi-infinite slab, which is basic to

perhaps 10 percent of the problems in diffusion. We consider a volume of solution that

starts at an interface and extends a long way. Such a solution can be a gas, liquid, or

solid. We want to find how the concentration varies in this solution as a result of

a concentration change at its interface. In mathematical terms, we want to find the

concentration and flux as a function of position and time.

This type of mass transfer is sometimes called free diffusion simply because this is

briefer than ‘‘unsteady diffusion in a semi-infinite slab.’’ At first glance, this situation

may seem rare because no solution can extend an infinite distance. The previous thin-

film example made more sense because we can think of many more thin films than

semi-infinite slabs. Thus we might conclude that this semi-infinite case is not common.

That conclusion would be a serious error.

The important case of a semi-infinite slab is common because any diffusion problem

will behave as if the slab is infinitely thick at short enough times. For example, imagine

that one of the thin membranes discussed in the previous section separates two identical

solutions, so that it initially contains a solute at constant concentration. Everything is

quiescent, at equilibrium. Suddenly the concentration on the left-hand interface of the

membrane is raised, as shown in Fig. 2.3-1. Just after this sudden increase, the concen-

tration near this left interface rises rapidly on its way to a new steady state. In these first

few seconds, the concentration at the right interface remains unaltered, ignorant of the

turmoil on the left. The left might as well be infinitely far away; the membrane, for these

first few seconds, might as well be infinitely thick. Of course, at larger times, the system

will slither into the steady-state limit in Fig. 2.3-1(c). But in those first seconds, the

membrane does behave like a semi-infinite slab.

This example points to an important corollary, which states that cases involving an

infinite slab and a thin membrane will bracket the observed behavior. At short times,
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diffusion will proceed as if the slab is infinite; at long times, it will occur as if the slab is

thin. By focussing on these limits, we can bracket the possible physical responses to

different diffusion problems.

2.3.1 The Physical Situation

The diffusion in a semi-infinite slab is schematically sketched in Fig. 2.3-2. The

slab initially contains a uniform concentration of solute c1N. At some time, chosen as

time zero, the concentration at the interface is suddenly and abruptly increased,

although the solute is always present at high dilution. The increase produces the time-

dependent concentration profile that develops as solute penetrates into the slab.

We want to find the concentration profile and the flux in this situation, and so again

we need a mass balance written on the thin layer of volume ADz:

solute accumulation
in volume ADz

� �
¼ rate of diffusion

into the layer at z

� �
�

rate of diffusion
out of the layer

at zþ Dz

0@ 1A ð2:3-1Þ

In mathematical terms, this is

q
qt

ADzc1ð Þ ¼ A j1jz � j1jzþDz

� �
ð2:3-2Þ

Concentration profile in
a membrane at equilibrium

(a)

Concentration profile slightly
after the concentration on
the left is raised

(b)

Increase

Limiting concentration
profile at large time

(c)

Fig. 2.3-1. Unsteady- versus steady-state diffusion. At small times, diffusion will occur only

near the left-hand side of the membrane. As a result, at these small times, the diffusion will

be the same as if the membrane was infinitely thick. At large times, the results become those in

the thin film.
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We divide by ADz to find

qc1
qt
¼ � j1jzþDz � j1jz

zþ Dzð Þ � z

� �
ð2:3-3Þ

We then let Dz go to zero and use the definition of the derivative

qc1
qt
¼ � qj1

qz
ð2:3-4Þ

Combining this equation with Fick’s law and assuming that the diffusion coefficient is

independent of concentration, we get

qc1
qt
¼ D

q2c1
qz2

ð2:3-5Þ

This equation is sometimes called Fick’s second law, or ‘‘the diffusion equation.’’ In this

case, it is subject to the following conditions:

t ¼ 0; all z; c1 ¼ c1‘ ð2:3-6Þ

t>0; z ¼ 0; c1 ¼ c10 ð2:3-7Þ

z ¼ ‘; c1 ¼ c1‘ ð2:3-8Þ

Note that both c1N and c10 are taken as constants. The concentration c1N is constant

because it is so far from the interface as to be unaffected by events there; the concen-

tration c10 is kept constant by adding material at the interface.

Position z

c10 Δz

Time

c1∞

Fig. 2.3-2. Free diffusion. In this case, the concentration at the left is suddenly increased to

a higher constant value. Diffusion occurs in the region to the right. This case and that in

Fig. 2.2-1 are basic to most diffusion problems.
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2.3.2 Mathematical Solution

The solution of this problem is easiest using the method of ‘‘combination of

variables.’’ This method is easy to follow, but it must have been difficult to invent.

Fourier, Graham, and Fick failed in the attempt; it required Boltzmann’s tortured

imagination (Boltzmann, 1894).

The trick to solving this problem is to define a new variable

f ¼ zffiffiffiffiffiffiffiffi
4Dt
p ð2:3-9Þ

The differential equation can then be written as

dc1
df

qf
qt

� �
¼ D

d
2
c1

df2
qf
qz

� �2

ð2:3-10Þ

or

d
2
c1

df2
þ 2f

dc1
df
¼ 0 ð2:3-11Þ

In other words, the partial differential equation has been almost magically transformed

into an ordinary differential equation. The magic also works for the boundary condi-

tions: from Eq. 2.3-7,

f ¼ 0; c1 ¼ c10 ð2:3-12Þ

and from Eqs. 2.3-6 and 2.3-8,

f ¼ ‘; c1 ¼ c1‘ ð2:3-13Þ

With the method of combination of variables, the transformation of the initial and

boundary conditions is often more critical than the transformation of the differential

equation.

The solution is now straightforward. One integration of Eq. 2.3-11 gives

dc1
dn
¼ ae

�n2 ð2:3-14Þ

where a is an integration constant. A second integration and use of the boundary con-

ditions give

c1 � c10
c1‘ � c10

¼ erf f ð2:3-15Þ

where

erf f¼ 2ffiffiffi
p
p
Z f

0

e
�s2

ds ð2:3-16Þ

is the error function of f. This is the desired concentration profile giving the variation of

concentration with position and time.
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In many practical problems, the flux in the slab is of greater interest than the

concentration profile itself. This flux can again be found by combining Fick’s law with

Eq. 2.3-15:

j1 ¼ �D
qc1
qz
¼

ffiffiffiffiffiffiffiffiffiffiffi
D=pt

p
e
�z2=4Dtðc10 � c1‘Þ ð2:3-17Þ

One particularly useful limit is the flux across the interface at z ¼ 0:

j1jz¼ 0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
D=pt

p
ðc10 � c1‘Þ ð2:3-18Þ

This flux is the value at the particular time t and not that averaged over time. This

distinction will be important in Section 9.2.

At this point, I have the same pedagogical problem I had in the previous section: I

must convince you that the apparently simple results in Eqs. 2.3-15 and 2.3-18 are

valuable. These results are exceeded in importance only by Eqs. 2.2-9 and 2.2-10. For-

tunately, themathematics may be difficult enough to spark thought and reflection; if not,

the examples that follow should do so.

Example 2.3-1: Diffusion across an interface The picture of the process in Fig. 2.3-2

implies that the concentration at z ¼ 0 is continuous. This would be true, for example,

if when z > 0 there was a highly swollen gel, and when z <0 there was a stirred solution.

A much more common case occurs when there is a gas–liquid interface at z ¼ 0.

Ordinarily, the gas at z <0 will be well mixed, but the liquid will not. How will this

interface affect the results given earlier?

Solution Basically, it will have no effect. The only change will be a new

boundary condition, replacing Eq. 2.3-7:

z ¼ 0; c1 ¼ cx1¼ c
p10
H

where c1 is the concentration of solute in the liquid, x1 is its mole fraction, p10 is its partial

pressure in the gas phase, H is the Henry’s law constant, and c is the total molar

concentration in the liquid.

The difficulties caused by a gas–liquid interface are another result of the plethora of

units in which concentration can be expressed. These difficulties require concern about

units, but they do not demand new mathematical weapons. The changes required for

a liquid–liquid interface can be similarly subtle.

Example 2.3-2: Free diffusion with fast chemical reaction In many problems, the diffus-

ing solutes react rapidly and reversibly with surrounding material. The surrounding

material is stationary and cannot diffuse. For example, in the dyeing of wool, some dyes

can react quickly and reversibly with the wool as dye diffuses into the fiber. How does

such a rapid chemical reaction change the concentration profile and the flux?

Solution In this case, the chemical reaction can radically change the process

by reducing the apparent diffusion coefficient and increasing the interfacial flux of

solute. These radical changes stand in stark contrast to the steady-state result, where

the chemical reaction produces no effect.
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To solve this example, we first recognize that the solute is effectively present in two

forms: (1) free solute that can diffuse and (2) reacted solute fixed at the point of reaction.

If this reaction is reversible and faster than diffusion,

c2 ¼ Kc1

where c2 is the concentration of the solute that has already reacted, c1 is the concentra-

tion of the unreacted solute that can diffuse, and K is the equilibrium constant of the

reaction. If the reaction is minor, K will be small; as the reaction becomes irreversible, K

will become very large.

With these definitions, we now write a mass balance for each solute form. These mass

balances should have the form

accumulation
inADz

� �
¼ diffusion in

minus that out

� �
þ amount produced by

reaction inADz

� �

For the diffusing solute, this is

q
qt

ADzc1½ � ¼ A j1 z � j1 zþDzjjð Þ � r1ADz

where r1 is the rate of disappearance per volume of species 1, the diffusing solute. By

arguments analogous to Eqs. 2.2-2 to 2.2-5, this becomes

qc1
qt
¼ D

q2c1
qz2
� r1

The term on the left-hand side is the accumulation; the first term on the right is the

diffusion in minus the diffusion out; the term r1 is the effect of chemical reaction.

When we write a similar mass balance on the second species, we find

q
qt

ADzc2½ � ¼ �r1ADz

or

qc2
qt
¼ r1

We do not get a diffusion term because the reacted solute cannot diffuse. We get a re-

action term that has a different sign but the same magnitude, because any solute that

disappears as species 1 reappears as species 2.

To solve these questions, we first add them to eliminate the reaction term:

q
qt

c1 þ c2ð Þ ¼ D
q2c1
qz2
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We now use the fact that the chemical reaction is at equilibrium:

q
qt

c1 þ Kc1ð Þ ¼ D
q2c1
qz2

qc1
qt
¼ D

1 þ K

q2c1
qz2

This result is subject to the same initial and boundary conditions as before in Eqs. 2.3-6,

2.3-7, and 2.3-8. As a result, the only difference between this example and the earlier

problem is that D/(1+K) replaces D.

This is intriguing. The chemical reaction has left the mathematical form of the answer

unchanged, but it has altered the apparent diffusion coefficient. The concentration pro-

file now is

c1 � c10
c1‘ � c10

¼ erf
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 D= 1þ Kð Þ½ �
p

t

and the interfacial flux is

j1jz¼ 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1þ KÞ=pt

p
ðc10 � c1‘Þ

The flux has been increased by the chemical reaction.

These effects of chemical reaction can easily be several orders of magnitude. As will be

detailed in Chapter 5, diffusion coefficients tend to fall in fairly narrow ranges. Those

coefficients for gases are around 0.1 cm2/sec; those in ordinary liquids cluster about 10�5

cm2/sec. Deviations from these values of more than an order of magnitude are unusual.

However, differences in the equilibrium constant K of a million or more occur fre-

quently. Thus a fast chemical reaction can tremendously influence the unsteady diffusion

process.

Example 2.3-3: Determining diffusion coefficients from free diffusion experiments Diffu-

sion in an infinite slab is the geometry used for the most accurate measurements of

diffusion coefficients. These most accurate measurements determine the concentration

profile by interferometry. One relatively simple method, the Rayleigh interferometer,

uses a rectangular cell in which there is an initial step function in refractive index. The

decay of this refractive index profile is followed by collimated light through the cell to

give interference fringes. These fringes record the refractive index versus camera position

and time.

Find equations that allow this information to be used to calculate diffusion

coefficients.

Solution The concentration profiles established in the diffusion cell closely

approach the profiles calculated earlier for a semi-infinite slab. The cell now effectively

contains two semi-infinite slabs joined together at z¼ 0. The concentration profile is

unaltered from Eq. 2.3-15:

c1 � c10
c1‘ � c10

¼ erf
zffiffiffiffiffiffiffiffi
4Dt
p
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where c10 [= (c1N+ c1�N)/2] is the average concentration between the two ends of the cell.

How accurate this equation is depends on how exactly the initial change in concentration

can be realized; in practice, this change can be within 10 seconds of a true step function.

We must convert the concentration and cell position into the experimental measured

refractive index and camera position. The refractive index n is linearly proportional to

the concentration:

n ¼ nsolvent þ bc1

where nsolvent is the refractive index of the solvent and b is a constant determined from

experiment. Each position in the cameraZ is proportional to a position in the diffusion cell:

Z ¼ az

where a is the magnification of the apparatus. It is experimentally convenient not to

measure the position of one fringe but rather to measure the intensity minima between

the many fringes. These minima occur when

n� n0
n‘ � n0

¼ j

J=2

where nN and n0 are the refractive indices at z¼N and z¼ 0, respectively; J is the total

number of interference fringes, and j is an integer called the fringe number. This number is

most conveniently defined as zero at z¼ 0, the center of the cell. Combining these equations,

j

J=2
¼ erf

Zj

a
ffiffiffiffiffiffiffiffi
4Dt
p

where Zj is the intensity minimum associated with the jth fringe. Because a and t are

experimentally accessible, measurements of Zj ( j, J) can be used to find the diffusion

coefficient D. While the accuracy of interferometric experiments like this remains un-

rivaled, the use of these methods has declined because they are tedious.

2.4 Three Other Examples

The two previous sections describe diffusion across thin films and in semi-infinite

slabs. In this section, we turn to discussingmathematical variations of diffusion problems.

This mathematical emphasis changes both the pace and the tone of this book. Up to now,

we have consistently stressed the physical origins of the problems, constantly harping on

natural effects like changing liquid to gas. Now we shift to the more common text book

composition, a sequence of equations sometimes as jarring as a twelve-tone concerto.

In these examples, we have three principal goals:

(1) We want to show how the differential equations describing diffusion are derived.

(2) We want to examine the effects of spherical and cylindrical geometries.

(3) We want to supply a mathematical primer for solving these different diffusion

equations.

In all three examples, we continue to assume dilute solutions. The three problems ex-

amined next are physically important and will be referred to again in this book. How-

ever, they are introduced largely to achieve mathematical goals.
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2.4.1 Decay of a Pulse (Laplace Transforms)

As a first example, we consider the diffusion away from a sharp pulse of solute.

This example is the third truly important problem for diffusion. It complements the cases

of a thin film and the semi-infinite slab to form the basis of perhaps 95 percent of all the

diffusion problems which are encountered. The initially sharp concentration gradient

relaxes by diffusion in the z direction into the smooth curves shown in Fig. 2.4-1. We

want to calculate the shape of these curves. This calculation illustrates the development

of a differential equation and its solution using Laplace transforms.

As usual, our first step is to make a mass balance on the differential volume ADz as
shown:

solute
accumulation

inADz

0@ 1A ¼ solute
diffusion into
this volume

0@ 1A� solute
diffusion out of
this volume

0@ 1A ð2:4-1Þ

In mathematical terms, this is

q
qt

ADzc1½ � ¼ Aj1jz � Aj1jzþDz ð2:4-2Þ

Dividing by the volume and taking the limit as Dz goes to zero gives

qc1
qt
¼ � qj1

qz
ð2:4-3Þ

Combining this relation with Fick’s law of diffusion,

qc1
qt
¼ D

q2c1
qz2

ð2:4-4Þ

Δz

Time

Position z
Fig. 2.4-1. Diffusion of a pulse. The concentrated solute originally located at z¼ 0 diffuses as the

Gaussian profile shown. This is the third of the three most important cases, along with those in

Figs. 2.2-1 and 2.3-2.
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This is the same differential equation basic to diffusion in a semi-infinite slab and

considered in the previous section. The boundary conditions on this equation are dif-

ferent as follows. First, far from the pulse, the solute concentration is zero:

t > 0; z ¼ ‘; c1 ¼ 0 ð2:4-5Þ

Second, because diffusion occurs at the same speed in both directions, the pulse is

symmetric:

t > 0; z ¼ 0;
qc1
qz
¼ 0 ð2:4-6Þ

This is equivalent to saying that at z¼ 0, the flux has the same magnitude in the positive

and negative directions.

The initial condition for the pulse is more interesting in that all the solute is initially

located at z¼ 0:

t ¼ 0; c1 ¼
M

A
d zð Þ ð2:4-7Þ

where A is the cross-sectional area over which diffusion is occurring, M is the total

amount of solute in the system, and d(z) is the Dirac function. This can be shown to

be a reasonable condition by a mass balance:Z ‘

�‘

c1Adz ¼
Z ‘

�‘

M

A
d zð ÞAdz ¼M ð2:4-8Þ

In this integration, we should remember that d(z) has dimensions of (length)�1.

To solve this problem, we first take the Laplace transform of Eq. 2.4-4 with respect to

time:

ð2:4-9Þ

where �c1 is the transformed concentration. The boundary conditions are

z ¼ 0;
d�c1
dz
¼ �M=A

2D
ð2:4-10Þ

z ¼ ‘; �c1 ¼ 0 ð2:4-11Þ

The first of these reflects the properties of the Dirac function, but the second is routine.

Equation 2.4-9 can then easily by integrated to give

�c1 ¼ ae

� ffiffiffiffiffiffiffiffi
s=D

p
z
�
þ be

�
�

ffiffiffiffiffiffiffiffi
s=D

p
z
�

ð2:4-12Þ

where a and b are integration constants. Clearly, a is zero by Eq. 2.4-11. Using Eq.

2.4-10, we find b and hence �c1:

�c1 ¼
M=A

2D

ffiffiffiffiffiffiffiffi
D=s

p
exp

�
�

ffiffiffiffiffiffiffiffi
s=D

p
z
�

ð2:4-13Þ
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The inverse Laplace transform of this function gives

�c1 ¼
M=Affiffiffiffiffiffiffiffiffiffiffi
4pDt
p e

� z
2
=4Dt ð2:4-14Þ

which is a Gaussian curve. You may wish to integrate the concentration over the entire

system to check that the total solute present is M.

This solution can be used to solve many unsteady diffusion problems that have un-

usual initial conditions. More important, it is often used to correlate the dispersion of

pollutants, especially in the air, as discussed in Chapter 4.

2.4.2 Steady Dissolution of a Sphere (Spherical Coordinates)

Our second example, which is easier mathematically, is the steady dissolution of

a spherical particle, as shown in Fig. 2.4-2. The sphere is of a sparingly soluble material,

so that the sphere’s size does not change much. However, this material quickly dissolves

in the surrounding solvent, so that the solute’s concentration at the sphere’s surface is

saturated. Because the sphere is immersed in a large fluid volume, the concentration far

from the sphere is zero.

The goal is to find both the dissolution rate and the concentration profile around the

sphere. Again, the first step is a mass balance. In contrast with the previous examples,

this mass balance is most conveniently made in spherical coordinates originating from

the center of the sphere. Then we can make a mass balance on a spherical shell of

thickness Dr located at some arbitrary distance r from the sphere. This spherical shell

is like the rubber of a balloon of surface area 4pr2 and thickness Dr.
A mass balance on this shell has the same general form as those used earlier:

solute accumulation
within the shell

� �
¼ diffusion

into the shell

� �
� diffusion

out of the shell

� �
ð2:4-15Þ

r

Δr

Solute flux
away

C
on

ce
nt

ra
tio

n

S
ph

er
e 

ra
di

us

Distance from
sphere’s center

Fig. 2.4-2. Steady dissolution of a sphere. This problem represents an extension of diffusion

theory to a spherically symmetric situation. In actual physical situations, this dissolution

can be complicated by free convection caused by diffusion.
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In mathematical terms, this is

q
qt

4pr2Drc1
� �

¼ 0 ¼ 4pr2j1
� �

r
� 4pr2j1
� �

r þ Dr
ð2:4-16Þ

The accumulation on the left-hand side of this mass balance is zero because diffusion is

steady, not varying with time. Novices frequently make a serious error at this point by

canceling the r2 out of both terms on the right-hand side. This is wrong. The term r2j1 is

evaluated at r in the first term; that is, it is r2( j1|r). The term is evaluated at (r+ Dr) in the

second term; so it equals (r+ Dr)2( j1|r + Dr).

If we divide both sides of this equation by the spherical shell’s volume and take the

limit as Dr/0, we find

0 ¼ � 1

r
2

d

dr
r
2
j1

� �
ð2:4-17Þ

Combining this with Fick’s law and assuming that the diffusion coefficient is constant,

0 ¼ D

r
2

d

dr
r
2 dc1
dr

� �
ð2:4-18Þ

This basic differential equation is subject to two boundary conditions:

r ¼ R0; c1 ¼ c1 satð Þ ð2:4-19Þ

r ¼ ‘; c1 ¼ 0 ð2:4-20Þ

where R0 is the sphere radius. If the sphere were dissolving in a partially saturated

solution, this second condition would be changed, but the basic mathematical structure

would remain unaltered. One integration of Eq. 2.4-18 yields

dc1
dr
¼ a

r
2 ð2:4-21Þ

where a is an integration constant. A second integration gives

c1 ¼ b� a

r
ð2:4-22Þ

Use of the two boundary conditions gives the concentration profile

c1 ¼ c1 satð ÞR0

r
ð2:4-23Þ

The dissolution flux can then be found from Fick’s law:

j1 ¼ �D
dc1
dr
¼ DR0

r
2 c1 satð Þ ð2:4-24Þ

which, at the sphere’s surface, is

j1 ¼
D

R0
c1 satð Þ ð2:4-25Þ
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This example is a mainstay of the analysis of diffusion. It is a good mathematical

introduction of spherical coordinates, and it gives a result which is much like that for

steady diffusion across a thin film. After all, Eq. 2.4-25 is the complete parallel of

Eq. 2.2-10, but with the sphere radius R0 replacing the film thickness l. Thus most

teachers repeat this example as gospel.

Unfortunately, this result is only rarely supported by experiment. The reason is that

the dissolution of the sphere almost always causes a density difference in the surrounding

solution, which in turn causes flow by free convection. This flow accelerates the disso-

lution rate. For example, for dissolution in water, a density difference of 10�6 g/cm3,

almost too small to measure, causes a 400 percent increase in the dissolution expected

from Eqs. 2.4-25. Students should beware: don’t trust your teacher on this point.

2.4.3 Unsteady Diffusion into Cylinders (Cylindrical Coordinates

and Separation of Variables)

The final example, probably the hardest of the three, concerns the diffusion of

a solute into the cylinder shown in Fig. 2.4-3. The cylinder initially contains no solute. At

(c)

C
on

ce
nt

ra
tio

n

Position

Time

(a)

(b)

z

r

Δ r

Fig. 2.4-3. Waterproofing a fence post. This problem is modeled as diffusion in an infinite

cylinder, and so represents an extension to a cylindrically symmetric situation. In reality,

the ends of the post must be considered, especially because diffusion with the grain is faster

than across the grain.
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time zero, it is suddenly immersed in a well-stirred solution that is of such enormous

volume that its solute concentration is constant. The solute diffuses into the cylinder

symmetrically. Problems like this are important in the chemical treatment of wood.

We want to find the solute’s concentration in this cylinder as a function of time and

location. As in the previous examples, the first step is a mass balance; in contrast, this

mass balance is made on a cylindrical shell located at r, of area 2pLr, and of volume

2pLrDr, where L is the cylinder’s length. The basic balance

solute accumulation
in this cylindrical shell

� �
¼ solute diffusion

into the shell

� �
� solute diffusion

out of the shell

� �
ð2:4-26Þ

becomes in mathematical terms

q
qt

2prLDrc1ð Þ ¼ 2prLj1ð Þr� 2prLj1ð Þr þ Dr ð2:4-27Þ

We can now divide by the shell’s volume and take the limit as Dr becomes small:

q
qt

c1 ¼ �
1

r

q
qr

rj1ð Þ ð2:4-28Þ

Combining this expression with Fick’s law gives the desired mass balance

qc1
qt
¼ D

r

q
qr

r
qc1
qr

� �
ð2:4-29Þ

which is subject to the following conditions:

t < 0; all r; c1 ¼ 0 ð2:4-30Þ

t > 0; r ¼ R0; c1 ¼ c1 surfaceð Þ ð2:4-31Þ

r ¼ 0;
qc1
qr
¼ 0 ð2:4-32Þ

In these equations, c1(surface) is the concentration at the cylinder’s surface and R0 is the

cylinder’s radius. The first of the boundary conditions results from the large volume of

surrounding solution, and the second reflects the symmetry of the concentration profiles.

Problems like this are often algebraically simplified if they are written in terms of

dimensionless variables. This is standard practice in many advanced textbooks. I often

find this procedure confusing, because for me it produces only a small gain in algebra at

the expense of a large loss in physical insight. Nonetheless, we shall follow this procedure

here to illustrate the simplification possible. We first define three new variables:

dimensionless concentration : h ¼ 1� c1
c1 surfaceð Þ ð2:4-33Þ

dimensionless position : n ¼ r

R0
ð2:4-34Þ

dimensionless time: s¼ Dt

R
2
0

ð2:4-35Þ
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The differential equation and boundary conditions now become

qh
qs
¼ 1

n
q
qn

n
qh
qn

� �
ð2:4-36Þ

subject to

s ¼ 0; all n; h ¼ 1 ð2:4-37Þ

s>0; n ¼ 1; h ¼ 0 ð2:4-38Þ

n ¼ 0;
qh
qn
¼ 0 ð2:4-39Þ

For the novice, this manipulation can be more troublesome than it looks.

To solve these equations, we first assume that the solution is the product of two

functions, one of time and one of radius:

h s; nð Þ ¼ g sð Þ f nð Þ ð2:4-40Þ

When Eqs. 2.4-36 and 2.4-40 are combined, the resulting tangle of terms can be sepa-

rated by division with g(s)f (n):

f nð Þ dg sð Þ
ds
¼ g sð Þ

n
d

dn
n
df nð Þ
dn

1

g sð Þ
dg sð Þ
ds
¼ 1

n f nð Þ
d

dn
n
df nð Þ
dn

ð2:4-41Þ

Now, if one fixes n and changes s, f(n) remains constant but g(s) varies. As a result,

1

g sð Þ
dg sð Þ
ds
¼ �a2 ð2:4-42Þ

where a is a constant. Similarly, if we hold s constant and let n change, we realize

1

n f nð Þ
d

dn
n
df nð Þ
dn
¼ �a2 ð2:4-43Þ

Thus the partial differential Eq. 2.4-36 has been converted into two ordinary differential

Eqs. 2.4-42 and 2.4-43.

The solution of the time-dependent part of this result is easy:

g sð Þ ¼ a9e
�a2s ð2:4-44Þ

where a# is an integration constant. The solution for f (n) is more complicated, but

straightforward:

f nð Þ ¼ aJ0 anð Þ þ bY0 anð Þ ð2:4-45Þ
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where J0 and Y0 are Bessel functions and a and b are two more constants. From

Eq. 2.4-39 we see that b ¼ 0. From Eq. 2.4-38, we see that

0 ¼ aJ0 að Þ ð2:4-46Þ

Because a cannot be zero, we recognize that there must be an entire family of solutions

for which

J0 anð Þ ¼ 0 ð2:4-47Þ

The most general solution must be the sum of all solutions of this form found for

different integral values of n:

h s; nð Þ ¼
X‘

n¼1
aa9nð ÞJ0 annð Þe�a2ns ð2:4-48Þ

We now use the initial condition Eq. 2.4-37 to find the remaining integration constant

(aa#)n:

1 ¼
X‘

n¼1
aa9ð ÞnJ0 annð Þ ð2:4-49Þ

We multiply both sides of this equation by nJ0(ann) and integrate from n ¼ 0 to n ¼ 1 to

find (aa#). The total result is then

h ¼
X‘

n¼1

2

anJ1 anð Þ

� 	
J0 annð Þe�ans ð2:4-50Þ

or, in terms of our original variables,

c1
c1 surfaceð Þ ¼ 1� 2

X‘

n¼1

e
�Da2nt=R

2
0J0 anr=R0ð Þ

anJ1 anr=R0ð Þ ð2:4-51Þ

This is the desired result, though the an must still be found from Eq. 2.4-47.

This problem clearly involves a lot of work. The serious reader should certainly work

one more problem of this type to get a feel for the idea of separation of variables and for

the practice of evaluating integration constants. Even the serious reader probably will

embrace the ways of avoiding this work described in the next chapter.

2.5 Convection and Dilute Diffusion

In many practical problems, both diffusion and convective flow occur. In some

cases, especially in fast mass transfer in concentrated solutions, the diffusion itself causes

the convection. This type of mass transfer, a subject of Chapter 3, requires more com-

plicated physical and mathematical analyses.

There is another group of important problems in which diffusion and convection can

be more easily handled. These problems arise when diffusion and convection occur

normal to each other. In other words, diffusion occurs in one direction, and convective

2.5 / Convection and Dilute Diffusion 41



flow occurs in a perpendicular direction. Three of these problems are examined in this

section. The first, steady diffusion across a thin flowing film, parallels Section 2.2; the

second, diffusion into a liquid film, is a less obvious analogue to Section 2.3. These two

examples tend to bracket the observed experimental behavior, and they are basic to

theories relating diffusion and mass transfer coefficients (see Chapter 9).

2.5.1 Steady Diffusion Across a Falling Film

The first of the problems of concern here, sketched in Fig. 2.5-1, involves

steady-state diffusion across a thin, moving liquid film. The concentrations on both

sides of this film are fixed by electrochemical reactions, but the film itself is moving

steadily. I have chosen this example not because it occurs often but because it is simple.

I ask that readers oriented toward the practical will wait with later examples for results of

greater applicability.

To solve this problem, we make three key assumptions:

(1) The liquid solution is dilute. This assumption is the axiom for this entire chapter.

(2) The liquid is the only resistance to mass transfer. This implies that the electrode

reactions are fast.

(3) Mass transport is by diffusion in the z direction and by convection in the x

direction. Transport by the other mechanisms is negligible.

It is the last of these assumptions that is most critical. It implies that convection is

negligible in the z direction. In fact, diffusion in the z direction automatically generates

convection in this direction, but this convection is small in a dilute solution. The last

assumption also suggests that there is no diffusion in the x direction. There is such

diffusion, but it is assumedmuch slower and hencemuch less important in the x direction

than convection.

z

x

Convection

Diffusion

Δz

Δx

Direction of
diffusion

Moving liquid
film

Static electrode
at which solute
concentration
is c10

Moving electrode
at which solute
concentration is c1l

Fig. 2.5-1. Steady diffusion in a moving film. This case is mathematically the same as diffusion

across a stagnant film, shown in Fig. 2.2-1. It is basic to the film theory of mass transfer described

in Section 9.1.
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This problem can be solved by writing a mass balance on the differential volume

WDxDz, where W is the width of the liquid film, normal to the plane of the paper:

solute accumulation

inWDxDz

� �
¼

solute diffusing in at zminus

solute diffusing out at zþ Dz

� �

þ
solute flowing in at xminus

solute flowing out at xþ Dx

� �
ð2:5-1Þ

or, in mathematical terms,

q
qt
ðc1WDxDzÞ ¼½ð j1WDxÞz � ð j1WDxÞzþDz�

þ c1vxWDzð Þx� c1vxWDzð ÞxþDx

� �
ð2:5-2Þ

The term on the left-hand side is zero because of the steady state. The second term in

square brackets on the right-hand side is also zero, because neither c1 nor vx changes with

x. The concentration c1 does not change with x because the film is long, and there is

nothing that will cause the concentration to change in the x direction. The velocity vx
certainly varies with how far we are across the film (i.e., with z), but it does not vary with

how far we are along the film (i.e., with x).

After dividing by WDxDz and taking the limit as this volume goes to zero, the mass

balance in Eq. 2.5-2 becomes

0 ¼ �dj1
dz

ð2:5-3Þ

This can be combined with Fick’s law to give

0 ¼ D
d
2
c1

dz
2 ð2:5-4Þ

This equation is subject to the boundary conditions

z ¼ 0; c1 ¼ c10 ð2:5-5Þ

z ¼ l; c1 ¼ c1l ð2:5-6Þ

When these results are combined with Fick’s law, we have exactly the same problem as

that in Section 2.2. The answers are

c1 ¼ c10 þ ðc1l � c10Þ
z

l
ð2:5-7Þ

j1 ¼
D

l
ðc10 � c1lÞ ð2:5-8Þ

The flow has no effect. Indeed, the answer is the same as if the fluid was not flowing.

This answer is typical of many problems involving diffusion and flow. When the

solutions are dilute, the diffusion and convection often are perpendicular to each other

and the solution is straightforward. Youmay almost feel gypped; you girded yourself for
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a difficult problem and found an easy one. Rest assured that more difficult problems

follow.

2.5.2 Unsteady Diffusion into a Falling Film

The second problem of interest is illustrated schematically in Fig. 2.5-2. A thin

liquid film flows slowly and without ripples down a flat surface. One side of this film wets

the surface; the other side is in contact with a gas, which is sparingly soluble in the liquid.

We want to find out how much gas dissolves in the liquid.

To solve this problem, we again go through the increasingly familiar litany: we write

a mass balance as a differential equation, combine this with Fick’s law, and then in-

tegrate this to find the desired result. We do this subject to four key assumptions:

(1) The solution are always dilute.

(2) Mass transport is by z diffusion and x convection.

(3) The gas is pure.

(4) The contact between gas and liquid is short.

z
x

Convection

Diffusion

Δz

Δx

Liquid with
dissolved
solute gas

l

Liquid
solvent

Solute gasz
x

Fig. 2.5-2. Unsteady-state diffusion into a falling film. This analysis turns out to be

mathematically equivalent to free diffusion (see Fig. 2.3-2). It is basic to the penetration

theory of mass transfer described in Section 11.2.
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The first two assumptions are identical with those given in the earlier example. The third

means that there is no resistance to diffusion in the gas phase, only in the liquid. The final

assumption simplifies the analysis.

We nowmake a mass balance on the differential volume (WDxDz ), shown in the inset

in Fig. 2.5-2:

mass accumulation

withinWDxDz

� �
¼

mass diffusing in at zminus

mass diffusing out at zþ Dz

� �

þ
mass flowing in at xminus

mass flowing out at xþ Dx

� �
ð2:5-9Þ

where W is the width, taken perpendicular to the paper. This result is parallel to those

found in earlier sections:

q
qt
ðc1WDxDzÞ

� 	
¼ ½ðWDxj1Þz � ðWDj1ÞzþDz�

þ ½ðWDzc1vxÞx � ðWDzc1vxÞxþDx� ð2:5-10Þ

When the system is at steady state, the accumulation is zero. Therefore, the left-hand side

of the equation is zero. No other terms are zero, because j1 and c1 vary with both z and x.

If we divide by the volumeWDxDz and take the limit as this volume goes to zero, we find

0 ¼ � qj1
qz
� q
qx

c1vx ð2:5-11Þ

We now make two further manipulations. First, we combine this with Fick’s law. Sec-

ond, we set vx equal to its maximum value, a constant. This second change reflects the

assumption of short contact times. At such times, the solute barely has a chance to cross

the interface, and it diffuses only slightly into the fluid. In this interfacial region, the fluid

velocity reaches the maximum suggested in Fig. 2.5-2, so the use of a constant value is

probably not a serious assumption. Thus the mass balance is

qc1
qðx=vmaxÞ

¼ D
q2c1
qz2

ð2:5-12Þ

The left-hand side of this equation represents the solute flow out minus that in; the right-

hand side is the diffusion in minus that out.

This mass balance is subject to the following conditions:

x ¼ 0; all z; c1 ¼ 0 ð2:5-13Þ

x>0; z ¼ 0; c1 ¼ c1ðsatÞ ð2:5-14Þ

z ¼ l; c1 ¼ 0 ð2:5-15Þ

where c1(sat) is the concentration of dissolved gas in equilibrium with the gas itself, and l

is the thickness of the falling film in Fig. 2.5-2. The last of these three boundary con-

ditions is replaced with

x>0; z ¼ ‘; c1 ¼ 0 ð2:5-16Þ
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This again reflects the assumption that the film is exposed only a very short time. As

a result, the solute can diffuse only a short way into the film. Its diffusion is then un-

affected by the exact location of the other wall, which, from the standpoint of diffusion,

might as well be infinitely far away.

This problem is described by the same differential equation and boundary conditions

as diffusion in a semi-infinite slab. The sole difference is that the quantity x/vmax replaces

the time t. Because the mathematics is the same, the solution is the same. The concen-

tration profile is

c1
c1ðsatÞ

¼ 1� erf
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Dx=vmax

p ð2:5-17Þ

and the flux at the interface is

j1 z¼ 0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dvmax=px

p
c1ðsatÞ ð2:5-18Þ

These are the answers to this problem.

These answers appear abruptly because we can adopt the mathematical results of

Section 2.3. Those studying this material for the first time often find this abruptness

jarring. Stop and think about this problem. It is an important problem, basic to the

penetration theory of mass transfer discussed in Section 9.2. To supply a forum for

further discussion, we shall now consider this problem from another viewpoint.

The alternative viewpoint involves changing the differential volume on which we

make the mass balance. In the foregoing problem, we chose a volume fixed in space,

a volume through which liquid was flowing. This volume accumulated no solute, so its

use led to a steady-state differential equation. Alternatively, we can choose a differential

volume floating along with the fluid at a speed vmax. The use of this volume leads to an

unsteady-state differential equation like Eq. 2.3-5. Which viewpoint is correct?

The answer is that both are correct; both eventually lead to the same answer. The

fixed-coordinate method used earlier is often dignified as ‘‘Eulerian,’’ and the moving-

coordinate picture is described as ‘‘Lagrangian.’’ The difference between them can be

illustrated by the situation of watching fish swimming upstream in a fast-flowing river. If

we watch the fish from a bridge, we may see only slowmovement, but if we watch the fish

from a freely floating canoe, we realize that the fish are moving rapidly.

2.5.3 Free Convection Caused by Diffusion

A third, much more difficult, example of convection and diffusion occurs in the

apparatus shown schematically in Fig. 2.5-3. The apparatus consists of two well-stirred

reservoirs. The upper reservoir contains a dense solution, but the lower one is filled with

less dense solvent. Because solution and solvent are miscible, solute diffuses from the

upper reservoir into the lower one.

We want to know if the difference in densities between solution and solvent will cause

flow. From our experience, we expect that flow will occur if the tube diameter is large.

After all, gin tends to rise to the surface of a summer’s gin-and-tonic without completely

mixing, and vinegar falls below oil in salad dressing. Intuitively, we expect that such

flows will cease if the tube diameter becomes small. More speculatively, we might guess
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that whether or not flow occurs depends inversely on viscosity; high viscosity means less

chance to flow.

To analyze this problem more completely, we write a mass balance on the solute, an

overall mass balance on all species present, and a momentum balance to describe the

flow. We then imagine small perturbations in the concentration or in the flow. If our

balances indicate that these small perturbations get smaller with time, then the system is

stable. If these perturbations grow with time, then the system is unstable, and free

convection will occur.

We first write these balances for the unperturbed system in which no free convection

exists. These are

0 ¼ D=
2�c1 � �v � =�c1 ð2:5-19Þ

0 ¼ �= � �v ð2:5-20Þ

0 ¼ �=pþ �qg ð2:5-21Þ

where p is the pressure, q is the density, and g is the acceleration due to gravity; the

overbars refer to the unperturbed system. The solution of these equations for the situ-

ation shown in Fig. 2.5-3 is that expected:

�c1 � c10
c1l � c10

¼ �q� q0

ql � q0

¼ z

l
ð2:5-22Þ

�v ¼ 0 ð2:5-23Þ

�p ¼ p0þ
Z z

0

�qgdz ð2:5-24Þ

Although we do not need the details of these solutions in the following, I find them

reassuring.

z

Dense solution

Tube diameter 2R0

Less dense solvent

Fig. 2.5-3. Free convection in a vertical tube. A dense solution will not flow when the tube

diameter is small. Diffusion damps the tendency to flow.
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The corresponding equations for an incompressible but perturbed system are

qc1
qt
¼ D$2

c1�v � $c1 ð2:5-25Þ

0 ¼ �$ � v ð2:5-26Þ

q
qv
qt
¼ l$2

v�$pþqg ð2:5-27Þ

where l is the viscosity. We now rewrite these relations in terms of the perturbations

themselves. For example, for the mass balance, we define

c1 ¼ c1þ c91 ð2:5-28Þ

v ¼ v9 ð2:5-29Þ

where the primes signify perturbations from stable values of Eqs. 2.5-22 through

2.5-24. Remember that the stable value of the velocity is zero. We then insert these

definitions in Eq. 2.5-25, subtract Eq. 2.5-19, and neglect terms involving the squares of

perturbations:

qc91
qt
¼ D$2

c91 � v9z
d�c1
dz

ð2:5-30Þ

Equation 2.5-30 is subject to the boundary condition that the tube walls are solid:

r ¼ R0;
qc91
qr
¼ 0 ð2:5-31Þ

Similar arguments lead to a modified momentum balance:

l$2 � �q
q
qt

� �
v9¼� =p9þq9g¼� $p9þ gbc91 ð2:5-32Þ

in which the primed quantities are again perturbations and b(= qq/qc1) describes the
density increase caused by the solute. Equation 2.5-32 is subject to the condition

r ¼ R0; v9z ¼ 0 ð2:5-33Þ

This says that there is no vertical flow at the wall.

Equations 2.5-30 and 2.5-32 must now be solved simultaneously. A simple solution

requires two chief assumptions. The first is that the time derivatives in these equations

can be neglected; this is equivalent to the assertion that marginal stability can exist. The

second assumption is that the perturbations have their largest effects normal to the z

direction; this implies that any convection cells that occur will be long. I find these

assumptions reasonable, but hardly obvious. Because they are justified by experiment,

they are tributes to the genius of G. I. Taylor (1954), who had the gall to present the

answers to this problem without derivation.

Taylor found that for the perturbations to grow, the Rayleigh number Ra must be

Ra ¼ gR
4
0

lD

 !
qq
dz

>67:94 ð2:5-34Þ
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This value corresponds to the case in which solution is falling down one side of the tube

and solvent is rising through the other side.

This critical value of the Rayleigh number provides the limit for the stability in the

vertical tube.When the density difference is small enough so that the Rayleigh number is

less than 67.94, free convectionwill not occur.When the density difference is so large that

the Rayleigh number exceeds 67.94, then free convection does occur. This result also

supports our intuitive speculations at the beginning of this section. The chances for free

convection decrease sharply as the tube diameter decreases. They also decrease as the

viscosity or the diffusion coefficient increases. In every case, the change of a given variable

required to spark free convection can be predicted from this critical Rayleigh number.

2.6 A Final Perspective

This chapter is very important, a keystone of this book. It introduces Fick’s law for

dilute solutions and shows how this law can be combined with mass balances to calculate

concentrations and fluxes. Themass balances are made on thin shells. When these shells are

very thin, themass balances become the differential equations necessary to solve the various

problems. Thus the bricks from which this chapter is built are largely mathematical: shell

balances, differential equations, and integrations in different coordinate systems.

However, we must also see a different and broader blueprint based on physics, not

mathematics. This blueprint includes the two limiting cases of diffusion across a thin film

and diffusion in a semi-infinite slab. Most diffusion problems fall between these two

limits. The first, the thin film, is a steady-state problem, mathematically easy and some-

times physically subtle. The second, the unsteady-state problem of the thick slab, is

harder to calculate mathematically and is the limit at short times.

Inmany cases, we can use a simple criterion to decide which of the two central limits is

more closely approached. This criterion hinges on the magnitude of the Fourier number

ðlengthÞ2

diffusion
coefficient

� �
ðtimeÞ

This variable is the argument of the error function of the semi-infinite slab, it determines

the standard deviation of the decaying pulse, and it is central to the time dependence of

diffusion into the cylinder. In other words, it is a key to all the foregoing unsteady-state

problems. Indeed, it can be easily isolated by dimensional analysis.

This variable can be used to estimate which limiting case is more relevant. If it is much

larger than unity, we can assume a semi-infinite slab. If it is much less than unity, we

should expect a steady state or an equilibrium. If it is approximately unity, we may be

forced to make a fancier analysis. For example, imagine that we are testing a membrane

for an industrial separation. The membrane is 0.01 centimeters thick, and the diffusion

coefficient in it is 10–7 cm2/sec. If our experiments take only 10 seconds, we have an

unsteady-state problem like the semi-infinite slab; if they take three hours, we approach

a steady-state situation.

In unsteady-state problems, this same variable may also be used to estimate how far

or how long mass transfer has occurred. Basically, the process is significantly advanced
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when this variable equals unity. For example, imagine that we want to guess how far

gasoline has evaporated into the stagnant air in a glass-fiber filter. The evaporation has

been going on about 10 minutes, and the diffusion coefficient is about 0.1 cm2/sec. Thus

ðlengthÞ2

ð0:1 cm2
=secÞð600 secÞ

¼ 1; length ¼ 8 cm

Alternatively, suppose we find that hydrogen has penetrated about 0.1 centimeter into

nickel. Because the diffusion coefficient in this case is about 10–8 cm2/sec, we can estimate

how long this process has been going on:

ð10�1cm2Þ
ð10�8 cm2

=secÞðtimeÞ
¼ 1; time ¼ 10 d

This sort of heuristic argument is often successful.

A second important perspective between these two limiting cases results from com-

paring their interfacial fluxes given in Eqs. 2.2-10 and 2.3-18:

j1 ¼
D

l
Dc1 ðthin filmÞ

j1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
D=pt

p
Dc1 ðthick slabÞ

Although the quantities D/l and (D/pt)1/2 vary differently with diffusion coefficients,

they both have dimensions of velocity; in fact, in the life sciences, they sometimes are

called ‘‘the velocity of diffusion.’’ In later chapters, we shall discover that these quanti-

ties are equivalent to the mass transfer coefficients used at the beginning of this book.

Questions for Discussion

1. If the concentration difference for diffusion across a thin film is doubled, what

happens to the flux?

2. If it is doubled for diffusion into a semi-infinite slab, what happens to the flux?

3. If the diffusion coefficient across a thin film is doubled, what happens to the

flux?

4. If it is doubled for diffusion into a semi-infinite slab, what happens to the flux?

5. What is the average flux into a semi-infinite slab over a time t1?

6. What are some different ways in which an effective diffusion coefficient in

a porous medium could be defined?

7. Explain Fig. 2.2-2 to someone without scientific training.

8. Explain why the funnel data in Fig. 2.1-3 curve downwards.

9. Imagine that you have a thin film separating two identical well-stirred solutions.

At time zero, the solute concentration in one solution is doubled. Sketch the

concentration profiles in the film vs. position and time.

10. Estimate the flux in the previous question at a very short time.

11. Estimate it at a very long time.

12. How would the width of a spreading pulse change if the diffusion coefficient

doubled?
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13. Would the steady flux across a thin film increase if there was fast reaction

producing a mobile product?

14. Imagine you have two films clamped together. The diffusion coefficient in one

film is constant, but that in the other depends on concentration. If you reverse

the concentration difference, the flux will reverse. Will its magnitude change?

Problems

1. Water evaporating from a pond does so as if it were diffusing across an air film 0.15 cm
thick. The diffusion coefficient of water in 20 �C air is about 0.25 cm2/sec. If the air out
of the film is fifty percent saturated, how fast will the water level drop in a day?Answer:

1.24 cm/d.

2. In 1765, Benjamin Franklin made a variety of experiments on the spreading of oils on
the pond in Clapham Common, London. Franklin estimated the thickness of the oil
layers to be about 25 Å. Many more recent scientists have tried to use similar layers of
fatty acids and alcohols to retard evaporation from ponds and reservoirs in arid

regions. The monolayers used today usually are characterized by a resistance around
2 sec/cm. Assuming that they are the thickness of Franklin’s layer and that they can
dissolve up to 1.8% water, estimate the diffusion coefficient across the monolayers.

Answer: 7 � 10�6 cm2/sec.

3. The diffusion coefficient of NO2 into stagnant water can be measured with the appa-
ratus shown below. Although the water is initially pure, the mercury drop moves to
show that 0.82 cm3 of NO2 is absorbed in 3 minutes. The gas–liquid interface has an

area of 36.3 cm2, the pressure is 0.93 atm, the temperature is 16 �C, and theHenry’s law
constant is 37,000 cm3 atm/mol. What is the desired diffusion coefficient?
(J. Kopinsky) Answer: 5 � 10�6 cm2/sec.

4. About 85.6 cm2 of a flexible polymer film 0.051 cm thick is made into a bag, filled with
distilled water, and hung in an oven at 35 �C and 75% relative humidity. The bag is

weighed, giving the following data:

H2O

NO2

Mercury drop

Time (d) Bag weight (g)

0 14.0153
1 13.9855
4 13.9104
7 13.8156
8 13.7710

12 13.6492
14 13.5830
16 13.5256
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What is the permeability (DH) of the polymer film? (R. Contravas) Answer: 2.2 � 105
cm2/sec.

5. Diaphragm cells are frequently calibrated by allowing 1-M potassium chloride to dif-
fuse into pure water. The average diffusion coefficient in this case is 1.859 � 10�5 cm2/sec.
Your cell has compartment volumes of 42.3 cm3 and 40.8 cm3; the diaphragm is a glass

frit 2.51 cm in diameter, 0.16 cm thick, and of porosity 0.34. In one calibration exper-
iment, the concentration difference at 36 hr 6 min is 49.2% of that originally present.
(a) What is the cell’s calibration constant? Answer: 0.294 cm�2. (b) What is the effective

length of the diaphragm’s pores? Answer: 0.28 cm. (c) The current pores are about
2 � 10�4 cm in diameter. What is the effect of increasing the pore diameter ten times at
constant porosity?

6. Diffusion coefficients in gases can be measured by injecting a solute gas into a solvent
gas in laminar plug flow and measuring the concentration with a thermistor placed

downstream. The concentration downstream is given by

c1 ¼
Q

4pDz
e
� r

2
v=2Dz

where Q is the solute injection rate, z is the distance downstream, r is the

distance away from the z axis, and v is the gas flow. One series of measurements

involves the diffusion of helium in nitrogen at 25 �C and 1 atm. In one particular

measurement, the maximum concentration of helium is 0.48 wt% when z is

1.031 cm and Q is 0.045 cm3/sec. What is the diffusion coefficient? (H. Beesley)

Answer: 0.11 cm2/sec.

7. Low-carbon steel can be hardened for improved wear resistance by carburizing. Steel is

carburized by exposing it to a gas, liquid, or solid that provides a high carbon concen-
tration at the surface. The figure below [D. S. Clark and W. R. Varney, Physical Met-
allurgy for Engineers.Princeton,N.J.: VanNostrand (1962)] shows carbon content versus

depth in steel carburized at 930 �C. Estimate D from this graph, assuming diffusion
without reaction between carbon and iron. (H. Beesley) Answer: 5.3 � 10�7 cm2/sec.

8. The twin-bulb method of measuring diffusion is shown below. The bulbs, which are
stirred and of equal volume, initially contain binary gas mixtures of different compo-

sitions. At time zero, the valve is opened; at time t, the valve is closed, and the bulk
contents are analyzed. Explain how this information can be used to calculate the
diffusion coefficient in this binary gas mixture.
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9. Find the steady-state flux out of a pipe with a porous wall. The pipe has an inner radius

Ri and an outer radius Ro. The solute has a fixed, finite concentration c1i inside of the
pipe, but is essentially at zero concentration outside. As a result, solute diffuses
through the wall with a diffusion coefficient D. When you have found the result,

compare it with the results for steady-state diffusion across a thin slab and away from
a dissolving sphere. Answer: Dc1i [Ro 1n(Ro/Ri)]

�1.

10. Controlled release is important in agriculture, especially for insect control. One com-
mon example involves the pheromones, sex attractants released by insects. If you mix

this attractant with an insecticide, you can wipe out all of one sex of a particular insect
pest. A device for releasing one pheromone is shown schematically below. This pher-
omone does not subline instantaneously, but at a rate of

r0 ¼ 6 � 10�17½1� ð1:10 � 107cm3
=molÞc1� mol=sec

where c1 is the concentration in the vapor. The permeability of this material through
the polymer (DH) is 1.92 � 10�12 cm2/sec. The concentration of pheromone outside of

the device is essentially zero. (a) What is the concentration (moles per cubic centime-
ter) of pheromone in the vapor? (b) How fast is the pheromone released by this device?

11. Antique glass objects can be dated by measuring the amount of hydration near the

object’s surface. This amount can be measured using 15N nuclear magnetic resonance
[W. A. Lanford, Science, 196, 975 (1977)]. Derive equations for the total amount of
hydration, assuming that water reacts rapidly and reversibly with the glass to produce
an immobile hydrate. Discuss how this amount can provide a measure of the age of the

object.

12. One type of packaging film with thickness ‘‘l’’ has an immobile sacrificial reagent at
initial concentration c20 within the wall of the package. A solute at concentration
c10 outside of the film, like water, oxygen, or radioactive cesium, diffuses into the

film, reacting irreversibly with the sacrificial reagent as it goes. The product may be
mobile or immobile; since the reaction is irreversible, it does not matter. This
reaction shows the solute’s penetration across the film. (a) Write mass balances

for the solute and the immobile reagent. (b) Write possible initial and boundary
conditions for these equations. (c) If the reaction were infinitely fast, how would
your equations change?

13. Researchers in microelectronics have found that a slight scratch on the surface
of gallium arsenide causes a zinc dopant to diffuse into the arsenide. Apparently,

this occurs because the scratch increases crystal defects and hence the local diffusion
coefficient. When these devices are later baked at 850 �C, the small pulse may spread,
for its diffusion coefficient at this high temperature is about 10�11 cm2/sec. If it

spreads enough to increase the zinc concentration to 10 percent of the maximum at

Impermeable
holder

Solid pheromone

4 cm3 of pheromone vapor
well mixed by free convection

Polymeric diffusion barrier
of thickness 0.06 cm
and area 1.8 cm2
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4 � 10�4 cm away from the scratch, the device is ruined. How long can we bake the

device? (S. Balloge) Answer: 30 min.

14. Adolf Fick made the experiments required to determine the diffusion coefficient using
the equipment shown in Fig. 2.1-3. In these devices, he assumed that the salt concen-
tration reached saturation in the bottom and that it was always essentially zero in the

large solvent bath. As a result, the concentration profiles eventually reached steady
state. Calculate these profiles.

15. Consider a layer of bacteria contained between two semipermeable membranes that
allow the passage of a chemical solute S, but do not allow the passage of bacteria. The

movement of the bacteria B is described with a flux equation roughly parallel to
a diffusion equation:

jB ¼ �D0
d

dz
½B� þ v½B� d

dz
½S�

whereD0 and v are constant transport coefficients. In other words, the bacterial flux is
affected by [S], although the bacteria neither produce or consume S. If the concen-
trations of S are maintained at [S]0 and 0 at the upper and lower surfaces of the

bacterial suspension, (a) determine [S](z), and (b) determine [B](z).

16. Extraction of sucrose from food materials is often correlated in terms of diffusion
coefficients. The diffusion coefficients can be calculated assuming short times and an
infinite slab:

D ¼ p
4t

� � M

c10

� �2

where M is the total extracted per area and c10 is the sucrose concentration at satu-
ration. However, the diffusion coefficients found are not constant, as shown below (H.

G. Schwartzberg and R. Y. Chao, Food Technology, Feb. 1982, p. 73). The reason the
diffusion coefficient is not constant is not because of the failure of the approximation
of an infinite slab; it reflects the fact that beets and cane are not homogeneous. Instead,

they have a network of cells connected by vascular channels. Diffusion across the cell
wall is slow, and it dominates behavior in thin slices; diffusion through vascular
channels is much faster and supplements the flux for thick slices. Develop equations
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that justify these qualitative arguments. These equations will contain the diffusion

coefficient across cell walls Dw, the diffusion coefficient in channels Dc, and the frac-
tion of channels e.
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CHAPTER 3

Diffusion in Concentrated Solutions

Diffusion causes convection. To be sure, convective flow can have many

causes. For example, it can occur because of pressure gradients or temperature dif-

ferences. However, even in isothermal and isobaric systems, diffusion will always pro-

duce convection. This was clearly stated by Maxwell in 1860: ‘‘Mass transfer is

due partly to the motion of translation and partly to that of agitation.’’ In more

modern terms, we would say that any mass flux may include both convection and

diffusion.

This combination of convection and diffusion can complicate our analysis. The easier

analyses occur in dilute solutions, in which the convection caused by diffusion is van-

ishingly small. The dilute limit provides the framework within which most people ana-

lyze diffusion. This is the framework presented in Chapter 2.

In some cases, however, our dilute-solution analyses do not successfully correlate our

experimental observations. Consequently, we must use more elaborate equations. This

elaboration is best initiated with the physically based examples given in Section 3.1. This

is followed by a catalogue of flux equations in Section 3.2. These flux equations form the

basis for the simple analyses of diffusion and convection in Section 3.3 that parallel those

in the previous chapter.

After simple analyses, we move in Section 3.4 to general mass balances, sometimes

called the general continuity equations. These equations involve the various coordinate

systems introduced in Chapter 2. They allow solutions for the more difficult problems

that arise from the more complicated physical situation. Fortunately, the complexities

inherent in these examples can often be dodged by effectively exploiting selected read-

ings. A guide to these readings is given in Section 3.5.

The material in this chapter is more complicated than that in Chapter 2 and is un-

necessary for many who are not trying to pass exams in advanced courses. Nonetheless,

this material has fascinating aspects, as well as some tedious ones. Those studying these

aspects often tend to substitute mathematical manipulation for thought. Make sure that

the intellectual framework in Chapter 2 is secure before starting this more advanced

material.

3.1 Diffusion With Convection

The statement by Maxwell quoted earlier suggests that diffusion and convec-

tion always occur together, that one cannot occur without the other. This fact sets

diffusion apart from many other phenomena. For example, thermal conduction can

certainly occur without convection. In contrast, diffusion generates its own convection,

so that understanding the process can be much more complicated, especially in concen-

trated solutions.
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3.1.1 A Qualitative Example

To illustrate how diffusion and convection are interrelated, we consider the

example shown in Fig. 3.1-1. The physical system consists of a large reservoir of benzene

connected to a large volume of air by means of a capillary tube. Benzene evaporates and

moves through the capillary into the surrounding air.

At room temperature, notmuch benzene evaporates because its vapor pressure is low.

Benzene vapormoves slowly up the tube because of Brownianmotion, that is, because of

thermally induced agitation of the molecules. This is the process basic to diffusion

studied in the previous chapter.

At the boiling point, the situation is completely different. The liquid benzene boils

into vapor, and the vapor rushes up the capillary. This rush is clearly a pressure-driven

flow, a convection caused by the sharply increased volume of the vapor as compared

with the liquid. It has little to do with diffusion.

At intermediate temperatures, both diffusion and convection will be important, be-

cause the processes take place simultaneously. To understand such intermediate cases,

we must look at how mass transport works.

3.1.2 Separating Convection From Diffusion

The complete description of mass transfer requires separating the contributions

of diffusion and convection. The usual way of effecting this separation is to assume that

these two effects are additive:

totalmass
transported

� �
¼ mass transported

by diffusion

� �
þ mass transported

by convection

� �
ð3:1-1Þ

At 60°C, an intermediate case
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Fig. 3.1-1. Evaporation of benzene. This process is dominated by diffusion in dilute

solutions, but it includes both diffusion and convection in concentrated solutions.
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In more exact terms, we define the total mass flux n1 as the mass transported per area per

time relative to fixed coordinates. This flux, in turn, is used to define an average solute

velocity v1:

n1 ¼ c1v1 ð3:1-2Þ

where c1 is the local concentration. We then divide v1 into two parts:

n1 ¼ c1ðv1 � v
aÞ þ c1v

a ¼ j
a
1 þ c1v

a ð3:1-3Þ

where va is some convective ‘‘reference’’ velocity. The first term ja1 on the right-hand side

of this equation represents the diffusion flux, and the second term c1v
a describes the

convection.

Interestingly, there is no clear choice for what this convective reference velocity

should be. It might be the mass average velocity that is basic to the equations of motion,

which in turn are a generalization of Newton’s second law. It might be the velocity of the

solvent, because that species is usually present in excess. We cannot automatically tell.

We only know that we should choose va so that va is zero as frequently as possible. By

doing so, we eliminate convection essentially by definition, and we are left with a sub-

stantially easier problem.

To see which reference velocity is easiest to use, we consider the diffusion apparatus

shown in Fig. 3.1-2. This apparatus consists of two bulbs, each of which contains a gas or

liquid solution of different composition. The two bulbs are connected by a long, thin

capillary containing a stopcock. At time zero, the stopcock is opened; after an experi-

mentally desired time, the stopcock is closed. The solutions in the two bulbs are then

analyzed, and the concentrations are used to calculate the diffusion coefficient. The

equations used in these calculations are identical with those used for the diaphragm cell.

Here, we examine this apparatus to elucidate the interaction of diffusion and convec-

tion, not to measure the diffusion coefficient. The examination is easiest for the special

cases of gases and liquids. For gases, we imagine that one bulb is filled with nitrogen and

the other with hydrogen. During the experiment, the number of moles in the left bulb

always equals the number of moles in the identical right bulb because isothermal and

isobaric ideal gases have a constant number of moles per volume. The volume of the left

bulb equals the volume of the right bulb because the bulbs are rigid. Thus the average

velocity of the moles v* and the average velocity of the volume v0 are both zero.

In contrast, the average velocity of the mass v in this system is not zero. To see why

this is so, imagine balancing the apparatus on a knife edge. This edge will initially be

located left of center, as in Fig. 3.1-2(b), because the nitrogen on the left is heavier than

the hydrogen on the right. As the experiment proceeds, the knife edge must be shifted

toward the center because the densities in the two bulbs will become more nearly equal.

Thus, in gases, the molar and volume average velocities are zero but the mass average

velocity is not. Therefore, the molar and volume average velocities allow a simpler de-

scription in gases than the mass average velocity.

We now turn to the special case of liquids, shown in Fig. 3.1-2(c). The volume of the

solution is very nearly constant during diffusion, so that the volume average velocity is

very nearly zero. This approximation holds whenever there is no significant volume

change after mixing. In my experience, this is true except for some alcohol–water sys-

tems, and even in those systems it is not a bad approximation.
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The other two velocities are more difficult to estimate. To estimate these velocities for

one case, imagine allowing 50-weight percent glycerol to diffuse into water. The volume

changes less than 0.1 percent during this mixing, so that the volume average velocity is

very nearly zero. The glycerol solution has a density of about 1.1 g/cm3, as compared

with water at 1 g/cm3, so that the mass density changes about 10 percent. In contrast, the

glycerol solution has a molar density of about 33 mol/l, as compared with water at

55 mol/l; so the molar concentration changes about fifty percent. Thus the mass average

velocity will be nearer to zero than the molar average velocity.

Thus in this set of experiments, the molar and volume average velocities are zero for

ideal gases and the volume and mass average velocities are close to zero for liquids. The

mass average velocity is often inappropriate for gases, and the molar average velocity is

rarely used for liquids. The volume average velocity is appropriate most frequently, and

so it will be emphasized in this book.

3.2 Different Forms of the Diffusion Equation

The five most common forms of diffusion equations are given in Table 3.2-1.

Each of these forms uses a different way to separate diffusion and convection. Of course,
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Fig. 3.1-2. An example of reference velocities. Descriptions of diffusion imply reference to

a velocity relative to the system’s mass or volume. Whereas the mass usually has a nonzero

velocity, the volume often shows no velocity. Hence diffusion is best referred to the volume’s

average velocity.
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in many cases, such a separation is obvious. If we have some salt in the bottom of a jar

covered with stagnant water, then themovement of salt upwards is due to diffusion. If we

pump salt water through a pipe, the dissolved salt moves by convection. These cases are

straightforward.

However, in a few cases, the separation of diffusion and convection is more subtle.

One of these cases, the evaporation of benzene vapor, was detailed in the previous

section. To deal with these cases, we can use one of two strategies:

1. We can describe diffusion in ways which parallel Fick’s law. This strategy retains

the split between diffusion and convection and benefits from the physical in-

sight which results. However, it requires defining convection carefully.

2. We can describe diffusion in general ways which avoid reference to convection.

This strategy postpones the need for careful definition of convection, but

destroys some of the physical insight possible. It is often preferred by those

who seek a mathematically elegant description.

We give details of these strategies in the following paragraphs.

Table 3.2-1 Different forms of the diffusion equation

Choice Total flux
(diffusion +
convection)

Diffusion
equation

Reference
velocity

Where best used

Mass n1 ¼ jm1 þ q1v jm1 ¼ q1ðv1 � vÞ
¼ �Dq$x1

v ¼ x1v1 þ x2v2

qv ¼ n1þ n2

Constant-density
liquids; coupled
mass and
momentum
transport

Molar
n1 ¼ j*1þ c1v

* j*1¼ c1ðv1 � v*Þ
¼ �Dc$y1

v*¼ y1v1þ y2v2

cv*¼ n1þ n2

Ideal gases where
the total molar
concentration c
is constant

Volume
n1 ¼ j1þ c1v

0 j1 ¼ c1ðv1 � v0Þ
¼ �D$c1

v0 ¼ c1 �V1v1 þ c2 �V2v2

¼ �V1n1 þ �V2n2

Best overall;
good for
constant-density
liquids and for
ideal gases; may
use either mass
or mole
concentration

Solvent
n1 ¼ j

ð2Þ
1 þ c1v2 j

ð2Þ
1 ¼ c1ðv1 � v2Þ
¼ �D1$c1

v2
Rare except for
membranes;
note that D1 6¼
D2 6¼ D

Maxwell–
Stefan $y1 ¼

y1y2
D0
ðv2 � v1Þ

None Written for ideal
gases; difficult to
use in practice
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3.2.1 Fick’s Law Parallels

The common forms of diffusion equations given in Table 3.2-1 are those listed

in most books. The first, which gives diffusion relative to the mass average velocity, is

preferred in texts on fluid flow, where the mechanics of the situation is key. The second,

which gives diffusion relative to the molar average velocity, appears in descriptions for

the kinetic theory of gases, where the fact that ideal gases all have the same molar

concentration at the same pressure and temperature is the basic precept.

The most valuable of these forms is that defining diffusion relative to the volume

average velocity. This is because for systems of constant density, the volume average

velocity equals the mass average velocity. For systems of constant molar concentra-

tion, the volume average velocity equals the molar average velocity. Thus the volume

average velocity includes the two commonly given analyses as special cases in a more

general form.

To prove these assertions, we begin with the volume and mass average velocities. We

find it convenient to describe the concentration in these systems as qi, the mass of species

‘‘i’’ per volume; and as �Vi, the partial specific volume. Then

qi
�Vi ¼ qi

qV
qmi

� �
mj 6¼i

ð3:2-1Þ

wheremi is the mass of species ‘‘i.’’ This derivative is the change in volume with a change

in mass of species ‘‘i’’. If the system has constant density, this change is merely the

reciprocal of the density q, so

qi
�Vi ¼ qi=q ¼ xi ð3:2-2Þ

Thus, for constant q,

v
0 ¼ R

2

i¼1
qi

�Vivi ¼ R
2

i¼1
xivi ¼ v ð3:2-3Þ

The volume and mass average velocities are the same for a system of constant density.

The volume average velocity is equal to the molar average velocity for ideal gases.

Here, we find it convenient to describe concentration ci as the moles of species ‘‘i’’ per

volume; and as �Vi, the partial molar volume. Then

c1 �V1 ¼ c1
qV
qN1

� �
N2

¼ c1
q

qN1

RTðN1þN2Þ
p

� �� �
N 2

¼ c1
RT

p

� �
¼ c1

c
¼ y1 ð3:2-4Þ

For constant total molar concentration c,

v
0 ¼ R

2

i¼ 1
ci �Vivi ¼ R

2

i¼ 1
yivi ¼ v

� ð3:2-5Þ

The volume andmolar average velocities are the same for systems that, like the ideal gas,

have constant molar concentration.
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Finally, we consider the diffusion relative to the solvent average velocity, for which

from Table 3.2-1

j
ð2Þ
1 ¼ �D1=c1 þ c1v2

This expression is used almost exclusively for transport across membranes. To see why,

imagine that we are interested in transport of oxygen across a polyamide film.We choose

oxygen as species ‘‘1’’; we choose the polymer as the solvent species ‘‘2.’’ Because the

membrane is normally stationary, its velocity v2 is zero, simplifying our analysis. If the

membrane is nonporous,Dwill truly represent diffusion. If it has large pores, thenDwill

really be a measure of flow in the porous membrane. If the membrane has small pores,

smaller than the mean free path in the gaseous oxygen, then D will represent Knudsen

diffusion. Some details formembranes are given inChapter 18.We now turn to examples.

Example 3.2-1: One binary diffusion coefficient Prove that if the partial molar volumes

are constant, there is only one binary diffusion coefficient defined relative to the volume

average velocity. In other words, because we define

n1 ¼ �D1$c1 þ c1v
0

n2 ¼ �D2$c2 þ c2v
0

prove D1 equals D2.

Solution We begin by multiplying the first equation by �V1 and the second by
�V2. We then add these equations to find

½ �V1n1 þ �V2n2� ¼ �D1$c1 �V1 �D2$c2 �V2þ ½ðc1 �V1þ c2 �V2Þv0�

The quantity in square brackets on the left equals that in square brackets on the right.

Moreover, since ðc1 �V1þ c2 �V2Þ ¼ 1,

$c1 �V1 ¼ �$c2 �V2

Thus

D1 ¼ D2 ¼ D

There is one binary diffusion coefficient relative to the volume average velocity. This

result can be shown from the Gibbs–Duhem equation to be valid even when the partial

molar volumes are not constant.

Example 3.2-2: Two flux equations with the same diffusion coefficient If the partial

molar volumes are constant, rearrange the flux equation written in molar concentrations

n1¼�D$c1 þ c1v
0

into the form

n1¼�Dc=x1 þ c1v
�
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Do not assume that the total concentration, c, is constant in this rearrangement.

Solution We begin by writing the flux equation for the second species

n2¼�D$c2 þ c2v
0

Adding the flux equations, we find

ðn1 þ n2Þ ¼ �D$ðc1 þ c2Þþ ðc1 þ c2Þv0

cv
� ¼ �D$cþ cv

0

Now we rewrite the flux equation for the first species as

n1¼ �D$ðx1cÞþ c1v
0

¼ �Dc$x1þ x1ð�D=c þ cv
0Þ

By combining with our earlier result, we find

n1¼ �Dc$x1þ c1v
�

which is what we seek. A similar analysis for the diffusion equation relative to the mass

average velocity is possible for constant partial specific volumes.

Example 3.2-3: Different binary diffusion coefficients Some authors use flux equations

of the form

n1¼ �D1$q1þq1v

where q1 is the mass of species 1 per volume. Show that the coefficientD1 is not equal to

the D used in Table 3.2-1 and that this binary system involves two different diffusion

coefficients.

Solution To solve this example, we must rewrite the concentration q1 in terms

of the mass fraction x1. By definition

q1 ¼ x1q

¼ x1ðq1þq2Þ
But

x1
�V1 þ x2

�V2 ¼ 1

where the �Vi are the partial specific volumes, taken as constants. We now eliminate q2 to

find, after some rearrangement,

q1
�V2 ¼

x1

1�x1ð1� �V1= �V2Þ

Thus

$q1 ¼
1

�V2½1�x1ð1� �V1= �V2Þ�2
$x1
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By combining this with the flux equation above, and comparing the result with the first

diffusion equation in Table 3.2-1, we see that

D1 ¼ Dq �V2½1�q1ð1� �V1= �V2Þ�2

The coefficientsD1 andD are equal only if both partial specific volumes are equal to the

reciprocal of the density. By rotating subscripts, we see that D1 doesn’t equal D2. By

starting with molar concentrations and the molar average velocity, we can derive similar

expressions in terms of the molar average velocity. All these expressions are more com-

plicated than those referred to volume average velocity.

Example 3.2-4: Diffusion-engendered flow In the diffusion apparatus shown in Fig. 3.1-

2(b), one bulb contains nitrogen and the other hydrogen. The temperature and pressure

are such that the diffusion coefficient is 0.1 cm2/sec. The length l is 10 cm. Find v0, v*, and

v at the average concentration in the system.

Solution The volume in this system does not move, so v0 is zero. If the gases

are ideal, then the molar concentration is constant everywhere and v* ¼ 0. Because of

this, we can use the thin-film results from Section 2.2:

j1 ¼ c1v1 ¼
D

l
ðc10 � c1lÞ

If species 1 is nitrogen at an average concentration of 0.5c,

v1 ¼
D

l

� �
c10 � c1l

c1

� �
¼ 0:1 cm

2
=sec

10 cm

" #
1� 0

0:5

� �
¼ 0:02 cm=sec

By similar arguments, for hydrogen,

v2 ¼ �0:02 cm=sec

Note that these velocities vary as the average concentration c1 varies.

We next find the mass fractions of each species:

x1 ¼
c1 ~M1

c1 ~M1þ c2 ~M2

¼ 0:5ð28Þ
0:5ð28Þ þ 0:5ð2Þ ¼ 0:933

where M̃i is the molecular weight of species i. Similarly,

x2 ¼ 0:067

Then the mass average velocity is

v¼x1v1þx2v2 ¼ 0:9333 ð0:020Þþ 0:067ð�0:020Þ ¼ 0:017 cm=sec

The result is dominated by the nitrogen because of its higher molecular weight.
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3.2.2 Maxwell–Stefan Equations

We next want to describe an analysis of diffusion which avoids carefully de-

fining convection. After all, the reference velocities explored above are difficult, requir-

ing careful thought. We may appreciate that the volume average velocity equals molar

average velocity for ideal gases, and that the volume average velocity equals the mass

average velocity for systems of constant density. We may recognize that these compli-

cations normally vanish for dilute solutions. Still, we may yearn for a description of

diffusion which avoids these complexities, which sends reference velocities to the same

intellectual pergatory as standard-state chemical potentials and pressure-dependent

fugacity coefficients.

Such an apparently simpler description is provided by theMaxwell–Stefan equations,

the last result in Table 3.2-1. For a binary system, these may be written as

$y1 ¼
y1y2
D
0 v2 � v2ð Þ ð3:2-6Þ

where yi and vi are the mole fraction and velocity of species ‘‘i,’’ normally in the gas

phase, and D# is a new Maxwell–Stefan diffusion coefficient. The corresponding result,

for nonideal liquid solutions is

$l1 ¼
RTx2

D
00 v2 � v1ð Þ ð3:2-7Þ

where li and xi are the chemical potential and liquid mole fraction of species ‘‘i,’’ andD00

is another diffusion coefficient. A variety of other, similar forms have also been sug-

gested and have achieved some popularity, especially in Europe.

These Maxwell–Stefan equations have three significant advantages over the Fick’s

law parallels described earlier in this section. First, for dilute solutions, they quickly

reduce to the normal form of Fick’s law, so that all earlier dilute solution results can be

used without worry. Second, they avoid the issue of reference velocities by using the

velocity difference (v2 – v1). After our intellectual struggles with these references we may

find this a blessed relief. Third, for the special case of ideal gases, these equations are

easily generalized to multicomponent systems, as detailed in Section 7.1. These are three

significant advantages.

At the same time, this alternative formulation obscures any convection in the system.As

a result, it reduces the physical insight possible for many, including me. This loss of insight

can make solving simple problems harder. Some who can think clearly in abstract math-

ematical terms will find the Maxwell–Stefan form innately superior. I am not one of this

group. I will use the Fick’s law parallels because I need all the physical insight that I can get.

Example 3.2-5: Comparing diffusion coefficients Show how D# in Equation 3.2-6 is

related to D defined relative to the volume average velocity.

Solution Equation 3.2-6 may be rewritten as follows

$y1 ¼
y1y2
D
0 v2 � v1ð Þ

¼ 1

cD
0 y1n2 � y2n1ð Þ
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where c is the total concentration. By definition

v
0 ¼ c1 �V1 v1 þ c2 �V2 v2

¼ �V1 n1 þ �V2 n2

Thus

n2 ¼
�
0 � �V1 n1

�V2

Combining this with the flux equation, rearranging, and remembering that y1 �V1þð
y2 �V2Þ is (1/c), we find

n1 ¼ �D0 c2 �V2 =y1 þ c1 v
0

By comparing this with the results of Example 3.2-2, we see that

D ¼ D
0
c �V2

For an ideal gas, the partial molar volume of every gas is equal to the reciprocal of the

total molar concentration c. Thus c �V2 is one and

D ¼ D
0

The two diffusion coefficients are the same.

Example 3.2-6: The effect of non-ideal solutions Show how D0 in Equation 3.2-6 is

related to D00 in Equation 3.2-7.

Solution The chemical potential l1 is given by

l1 ¼ l0
1 þ RT ln c1x1

where l1
0 is a reference value and c1 is an activity coefficient. Thus at constant temper-

ature

=l1 ¼ RT 1þ q ln c1
q ln x1

� �
= ln x1

¼ RT

x1
1þ q ln c1

q ln x1

� �
= x1

Combining with Equation 3.2-6, we find

=x1 ¼
x1 x2

D
00

1þ q ln c1
q ln x1

� � v2 � v1ð Þ

Thus

D
0 ¼ D

00
1þ q ln c1

q ln x1

� �
The diffusion coefficients are related by an activity correction.
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The idea that diffusion is better described by a chemical potential gradient than

by a concentration gradient appears frequently. It is basic to estimates of diffusion

in liquids, as proposed by Einstein and discussed in Section 5.2. It is correct for

dilute solutions of electrolytes, covered in Section 6.1. However, it is certainly

wrong near spinodals or consolute points (Section 6.3), and it seems untested for

other, highly nonideal solutions. I use it confidently for dilute solutions but cautiously

elsewhere.

3.3 Parallel Diffusion and Convection

We now want to combine the equations developed above with mass balances to

calculate fluxes and concentration profiles. This is, of course, the same objective as in

Chapter 2. The difference here is that both diffusion and convection are significant. The

analysis of the more complicated problems of diffusion and convection is aided by the

parallels in the case of a thin film and an infinite slab around which Chapter 2 is

organized. Such parallels produce powerful pedagogy.

3.3.1 Fast Diffusion Through a Stagnant Film

The first problem that we consider involves the same rapid evaporation that was

used as the key example in Section 3.1. We recall that at intermediate temperatures, the

evaporation rate depends on both diffusion and convection up the tube.

We want to calculate the flux and the concentration profile where both diffusion and

convection are important. To make this calculation, we must parallel our earlier scheme,

but with a more exact physical understanding and a more complicated mathematical

analysis. Just as before, the scheme starts with a mass balance, combines this balance

with Fick’s law, and then runs through the math to the desired result.

This mass balance is written on the differential volume ADz shown in Fig. 3.3-1:

solute accumulated
in volumeADz

� �
¼ solute transported

in at z

� �
� solute transported

out at zþDz

� �
ð3:3-1Þ

In mathematical terms, this is

q
qt
ðADzc1Þ ¼ An1jz�An1jzþDz ð3:3-2Þ

If we divide by the volume ADz and take the limit as this volume goes to zero, we find

qc1
qt
¼ � qn1

qz
ð3:3-3Þ

At steady state, there is no accumulation, so

0 ¼ qn1
qz

ð3:3-4Þ
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This is easily integrated to show that n1 is constant. This sensibly says that at steady state,

the total flux up the tube is constant. Note that we have not shown that the diffusion flux

is constant.

We nowwant to combine this result with Fick’s law. However, because we are dealing

with fast evaporation and a potentially concentrated solution, we must consider both

diffusion and convection. For simplicity, we choose the volume average velocity v0 from

Table 3.2-1.

n1 ¼ j1þ c1v
0 ¼ �D dc1

dz
þ c1ðc1V1�1 þ c2V2�2Þ ð3:3-5Þ

By definition, c1 v1 equals n1, and c2 v2 equals n2. If the solvent vapor is stagnant, its flux

n2 and its velocity v2 must be zero. Thus

n1 ¼ �D
dc1
dz
þ c1 �V1n1 ð3:3-6Þ

Moreover, if the vapors in the capillary are ideal, then the total molar concentra-

tion is a constant and �V1 equals 1/c (see Eq. 3.2-4). Thus the differential equation we

seek is

n1ð1� y1Þ ¼ �Dc
dy1
dz

ð3:3-7Þ

Capillary of length l
and cross section A

Δz

z y1 =  y10 = y1 (sat)

Fast evaporation
by diffusion and
convection

Large volume of well-stirred
solvent 2

y1 =  y1l

Evaporating solute 1 in a
large liquid reservoir

Fig. 3.3-1. Fast evaporation in a thin capillary. This problem is analogous to that shown in

Fig. 2.2-1, but for a concentrated solution.
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This is subject to the two boundary conditions

z ¼ 0, y1 ¼ y10 ð3:3-8Þ

z ¼ l, y1 ¼ y1l ð3:3-9Þ

There are two boundary conditions for the first-order differential equation because n1 is

an unknown integration constant.

The flux and concentration profiles are now routinely found. The concentration pro-

file is exponential:

1� y1
1� y10

¼ 1� y1l
1� y10

� �z=l

ð3:3-10Þ

The total flux is constant and logarithmic:

n1 ¼
Dc

l
ln

1� y1l
1� y10

� �
ð3:3-11Þ

Note that doubling the concentration difference no longer automatically doubles the

total flux. Like the total flux, the diffusion flux is logarithmic, but it is not constant:

j1 ¼ �Dc
dy1
dz
¼ Dc

1� y10
l

� �
1� y1l
1� y10

� �z=l

ln
1� y1l
1� y10

� �
ð3:3-12Þ

The diffusion flux is smallest at the bottom of the capillary. It steadily rises to its largest

value at the top of the capillary.

If the solution is dilute, we can simplify these results. To do this, we first remember

that for small y1,

ð1� y1Þ
a ¼: 1� ay1 þ � � � ð3:3-13Þ

1

1� y1
¼: 1þ y1 þ � � � ð3:3-14Þ

and

lnð1� y1Þ ¼
: �y1 þ � � � ð3:3-15Þ

The concentration profile in Eq. 3.3-10 thus becomes

1� y1 ¼ ð1� y10Þð1� y1lþ y10 � � � � Þ
z=l

¼ 1� y10þ
z

l
ðy10�y1lÞþ � � � ð3:3-16Þ

This can be rewritten in more familiar terms bymultiplying both sides of the equation by

the total concentration c and rearranging:

c1 ¼ c10þðc1l � c10Þ
z

l
ð3:3-17Þ
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In other words, the concentration profile becomes linear, not exponential, as the solution

becomes dilute.

The total flux in dilute solution can be simplified in a similar fashion:

n1 ¼
Dc

l
lnð1� y1lÞ � lnð1� y10Þ½ �

¼: Dc

l
ðy10 � y1lÞ

¼: D

l
ðc10 � c1lÞ ð3:3-18Þ

which is, of course, the simple relation derived earlier in Eq. 2.2-10. The diffusion flux j1
equals n1 in this dilute limit. Thus Eqs. 3.3-10 and 3.3-11 are equivalent to Eqs. 2.2-9 and

Eqns. 2.2-10 in dilute solution.

The analysis above is not hard to understand one line at a time, but it may be hard to

understand in total. To supply this total understanding, we consider a special case of

benzene liquid at 60 �C evaporating through a capillary into pure air. At this tempera-

ture, the partial pressure of benzene is 400 mmHg, so the mole fraction of benzene at the

liquid vapor interface y10 is 400/760 ¼ 0.53. The mole fraction at the other end of the

capillary y1l is zero. Thus we can find the concentration profile from Eq. 3.3-10, the total

flux from Eq. 3.3-11, and the diffusion flux from Eq. 3.3-12.

The meaning of these results is much clearer from Fig. 3.3-2. The total flux is a

constant from z ¼ 0 to z ¼ l. The diffusion flux is smallest at z = 0, the liquid–vapor

interface, but rises to equal the total flux at z ¼ l, where diffusion is the only mass

transfer mechanism operating within the capillary. The concentration profile is nonlinear,

0.3

0.6

0.9

0
0 1

Distance z /l

F
lu

x 
• 

l/
D

C

Total flux

Diffusion flux
Mole    fraction x

1

Fig. 3.3-2. Concentration and flux in concentrated diffusion. The concentration profile is no

longer linear, as in Fig. 2.2-1. The constant total flux is the sum of diffusion and convection, each

of which varies.
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but its slope is still proportional to the diffusion flux. This slope is always negative, smallest

at z ¼ 0 where mass transfer by convection is greatest. Finally, note that the vertical

distance between the total flux and the diffusion flux is the convective flux c1v
o; it is largest

at the liquid–vapor interface, where z ¼ 0, and equals zero at the end of the capillary,

where z ¼ l. Please think about this figure carefully because it can help you understand

diffusion-induced convection.

3.3.2 Fast diffusion Into a Semi-infinite Slab

The second problem considered in this section is illustrated schematically in

Fig. 3.3-3. In this problem, a volatile liquid solute evaporates into a long gas-filled

capillary. The solvent gas in the capillary initially contains no solute. As solute evapo-

rates, the interface between the vapor and the liquid solute drops. However, the gas is

essentially insoluble in the liquid. We want to calculate the solute’s evaporation rate,

including the effect of diffusion-induced convection and the effect of the moving in-

terface (Arnold, 1944).

In this problem, we first choose the origin of our coordinate system (z ¼ 0) as the

liquid–vapor interface. We then write a mass balance for the solute 1 on the differential

volume ADz, shown in Fig. 3.3-3:

solute
accumulation

inADz

0@ 1A ¼ solute
transport

in

0@ 1A� solute
transport

out

0@ 1A ð3:3-19Þ

or, in symbolic terms,

q
qt
ðc1ADzÞ ¼ ðAn1Þz � ðAn1ÞzþDz ð3:3-20Þ

Fast unsteady
evaporation by
diffusion and
convectionΔz

Interface recedes
as evaporation occurs

Liquid solute

z

V
er

y 
lo

ng
 c

ap
ill

ar
y

fil
le

d 
w

ith
 s

ol
ve

nt
 g

as

Fig. 3.3-3. Fast diffusion in a semi-infinite slab. This problem is analogous to that shown in Fig.

2.3-2, but for a concentrated solution. Because of this higher concentration, the liquid–vapor

interface moves significantly, complicating the situation.
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Dividing by the differential volume and taking the limit as this volume goes to zero,

qc1
qt
¼ � qn1

qz
ð3:3-21Þ

We then split the diffusion and convection:

qc1
qt
¼ D

q2c1
qz2
� q
qz

c1v
0 ð3:3-22Þ

By definition, the volume average velocity is

v
0 ¼ c1 �V1v1 þ c2 �V2v2 ¼ �V1n1 þ �V2n2 ð3:3-23Þ

In the steady-state case treated earlier, we argued that the solvent was stagnant, so that

n2 was zero and the problemwas simple. Here, in an unsteady case, the solvent flux varies

with position and time; therefore, no easy simplification is possible.

We must write a continuity equation for the solvent gas 2:

qc2
qt
¼ � qn2

qz
ð3:3-24Þ

If we multiply Eqs. 3.3-21 and 3.3-24 by the appropriate partial molar volumes and add

them, we find

q
qt
ð �V1c1 þ �V2c2Þ ¼ �

q
qz
ð �V1n1 þ �V2n2Þ ð3:3-25Þ

But the quantity �V1c1 þ �V2c2 always equals unity, making the left-hand side of this

equation zero; thus �V1n1 þ �V2n2 must be independent of z. However, at the interface,

n2 is zero because the solvent gas 2 is insoluble in the liquid. Thus

�V1n1 þ �V2n2 ¼ �V1n1jz¼ 0 ¼ �V1 �D
qc1
qz

����
z¼ 0

þ c1 �V1n1jz¼ 0

� �
ð3:3-26Þ

When we combine this with Eq. 3.3-22 we find

qc1
qt
¼ D

q2c1
qz2

þ D �V1ðqc1=qzÞ
1 � c1 �V1

� �
z¼ 0

qc1
qz

ð3:3-27Þ

subject to the conditions

t ¼ 0; all z > 0; c1 ¼ 0 ð3:3-28Þ

t > 0; z ¼ 0; c1 ¼ c1ðsatÞ ð3:3-29Þ

z ¼ ‘; c1 ¼ 0 ð3:3-30Þ

The solute concentration c1(sat) is that in the vapor in equilibrium with the liquid.
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Like the problem of dilute diffusion in a semi-infinite slab, this problem is solved by

defining the combined variable

f ¼ z=
ffiffiffiffiffiffiffiffi
4Dt
p

ð3:3-31Þ

The differential equation now becomes

d
2
c1

df2
þ 2ðf�UÞ dc1

df
¼ 0 ð3:3-32Þ

subject to the conditions

f¼ 0; c1 ¼ c1ðsatÞ ð3:3-33Þ

f¼ ‘; c1 ¼ 0 ð3:3-34Þ

and in which

U¼� 1

2

�V1ðdc1=dfÞ
1� c1 �V1

� �
z¼0

ð3:3-35Þ

The constant U, a dimensionless velocity, characterizes both the convection engen-

dered by diffusion and the movement of the interface. If U is zero, convection effects

are zero.

Equation 3.3-32 can be integrated once to give

dc1
df
¼ ðconstantÞe�ðf�UÞ2 ð3:3-36Þ

A second integration and evaluation of the boundary conditions give

c1
c1ðsatÞ

¼ 1� erfðf�UÞ
1þ erfU

ð3:3-37Þ

We can calculate U from this result and Eq. 3.3-35:

�V1c1ðsatÞ ¼ 1þ 1ffiffiffi
p
p ð1þ erfUÞUe

U2

 !�1
ð3:3-38Þ

Aplot ofU versus concentration is shown in Fig. 3.3-4. Note that when c1(sat) is small,U
goes to zero. In other words, when the solution is dilute, convection is unimportant.

We also want to calculate the interfacial flux N1. To find this, we must again split

diffusion and convection, using Fick’s law:

N1 ¼ n1jz¼ 0 ¼ �
Dðqc1=qzÞ
1� c1 �V1

� �
z¼0

¼
ffiffiffiffiffiffiffiffiffiffiffi
D=pt

p 1

1� �V1c1ðsatÞ

� �
e
�U2

1þ erfU
c1ðsatÞ ð3:3-39Þ
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where U is still found from Eq. 3.3-38 or Fig. 3.3-4. The increase of this flux beyond that

in a dilute solution is also given in this figure.

Example 3.3-1: Errors caused by neglecting convection Consider the experiments shown

in Fig. 3.3-5. Howmuch error is caused by calculating the rate of benzene evaporation if

only diffusion is considered?

Solution The sizes of the errors depend on the concentrations and thus on the

temperature. At 6 �C, the vapor pressure of benzene is about 37 mm Hg. If the total

pressure is one atmosphere,

y1 ¼
c1
c
¼ p1ðsatÞ

p
¼ 37

760
¼ 0:049
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Volume fraction V1c1(sat)

Fig. 3.3-4. Flux and interfacial movement. As the solution becomes dilute, the interfacial

concentration c1(sat) becomes small, the actual flux approaches the dilute-solution limit

(see Eq. 2.3-18), and the velocity U becomes zero.

c1l =0

c10saturated at 6°C

Liquid benzene at 6°C

c1l =0

c10saturated at 60°C

Liquid benzene at 60 °C

Fig. 3.3-5. Examples of benzene diffusion and convection. In the dilute solution at the left,

the exact results are close to the approximate ones in Eq. 2.2-10. In the concentrated case at

the right, they are not.
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The total flux is, from Eq. 3.3-11,

n1 ¼
Dc

l
ln

1� 0

1� 0:049

� �
¼ 0:050Dc

l

The flux, assuming a dilute solution, calculated from Eq. 2.2-10, is

n1 ¼ j1 ¼
Dc

l
ð0:049� 0Þ

This two percent difference is well within the needs of most practical calculations. Thus

the dilute solution equations are more than adequate here.

At 60 �C, the choice is less obvious because the vapor pressure is about 395 mm Hg.

When we calculate the mole fraction in the same way, we find

n1 ¼
Dc

l
ln

1� 0

1� ð395=760Þ

� �
¼ 0:73

Dc

l

The dilute-solution estimate is

n1 ¼ j1 ¼
395

760

Dc

l
¼ 0:52

Dc

l

The dilute-solution equations underestimate the flux by a significant error of about forty

percent.

3.4 Generalized Mass Balances

As the problems that we discuss in this chapter become more and more com-

plex, the development of the differential equations becomes more and more tedious.

Such tedium can be avoided by using the generalized mass balances developed in this

section. These mass balances automatically include both steady- and unsteady-state

situations. They imply the usual variety of coordinate systems, and they reflect the

vectorial nature of mass fluxes. They are excellent weapons.

However, like most weapons, the generalized mass balances can injure those trying to

use them. Effective use requires uncommon skill in connecting the mathematical ideal

and the physical reality. Some seem born with this skill; more seem to develop it over

time. If you have trouble applying these equations, return to the shell balance method. It

may take longer, but it is safer. You can check your equations by later comparing them

with those found from the generalized results.

To find the generalized mass balances, we consider the small differential volume

located at (x, y, z) shown in Fig. 3.4-1. We want to write a mass balance on this volume:

mass of species 1
accumulating in

DxDyDz

0@ 1A ¼ mass flux of
species 1

inminus that out

0@ 1Aþ mass produced by
homogeneous

chemical reaction

0@ 1A
ð3:4-1Þ
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Themass fluxes relative to fixed coordinates include transport in all three directions. For

example, the mass flux out of the volume in the x direction, shown in Fig. 3.4-1, is

n1xDyDz, where DyDz is the area across which this flux occurs. In mathematical terms,

the mass balance is then

q
qt
ðc1DxDyDzÞ ¼ ðn1xDyDzÞx � ðn1xDyDzÞxþDx

þ ðn1yDxDzÞy � ðn1yDxDzÞyþDy

þ ðn1zDxDyÞz � ðn1zDxDyÞzþDz

þ r1DxDyDz ð3:4-2Þ

where r1 is the rate per unit volume of a homogeneous chemical reaction producing

solute 1. Dividing by the differential volume DxDyDz and taking the limit as this volume

goes to zero gives

q
qt

c1 ¼ �
q
qx

n1x �
q
qy

n1y �
q
qz

n1z þ r1 ð3:4-3Þ

or, in vectorial notation,

q
qt

c1 ¼ �$ � n1 þ r1 ð3:4-4Þ

We can also write the flux in terms of diffusion and convection:

n1 ¼ �D$c1 þ c1v
0 ð3:4-5Þ

z

x

y

n1x n1x

ΔyΔx

Δz

(x,y,z + Δz)

Fig. 3.4-1. The arbitrary volume for deriving the generalized mass balances. The fluxes in

the x direction are shown in this figure; fluxes in other directions are also included in the

derivation. The results are shown in Tables 3.4-1 and 3.4-2.
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where v0 is the volume average velocity. Combining,

qc1
qt
¼ D$2

c1 � $ � c1v0 þ r1 ð3:4-6Þ

This equation is the general form of all the shell balances derived to date.

The species mass balance represented by Eq. 3.4-6 is often effectively complemented

by the overall mass balance:

totalmass
accumulation
inDxDyDz

0@ 1A ¼ totalmass
flux inminus

that out

0@ 1A ð3:4-7Þ

This can be written in terms similar to those used earlier:

q
qt
ðqDxDyDzÞ ¼ ðqvxDyDzÞx � ðqvxDyDzÞxþDx

þ ðqvyDxDzÞy � ðqvyDxDzÞyþDy

þ ðqvzDxDyÞz � ðqvzDxDyÞzþDz

ð3:4-8Þ

in which vx, vy, and vz are components of the mass average velocity. Dividing by the

volume DxDyDz and taking the limit as each difference becomes small, we find

qq
qt
¼ � q

qx
qvx �

q
qy

qvy �
q
qz

qvz ð3:4-9Þ

In vectorial notation, this is

qq
qt
¼ �$ � qv ð3:4-10Þ

This result, called the continuity equation, has no reaction term because no total mass is

generated or destroyed by nonnuclear chemical reactions.

We would like to use the continuity equation to simplify the species mass balance. We

cannot do so directly because the continuity equation contains themass average velocity,

and the species mass balance involves the volume average velocity. Although some

investigators fuss about this difference, we should recognize that we can solve many

problems where these velocities are the same. They are the same at constant density, as

shown by Eq. 3.2-3.

If we assume constant density, the overall continuity equation becomes

0 ¼ �$ � v ¼� $ � v0 ð3:4-11Þ

We then multiply this equation by c1 and subtract the result from Eq. 3.4-6:

qc1
qt
þ v

0 � $c1 ¼ D$2
c1 þ r1 ð3:4-12Þ

This result is frequently useful for problems of diffusion and convection.

This generalized equation is shown in different coordinate systems in Tables 3.4-1 and

Tables 3.4-2. The overall mass balance is given in Table 3.4-3. These equations include

3.4 / Generalized Mass Balances 77



the effects of chemical reaction, convection, and concentration-driven diffusion. How-

ever, they are not quite as general as their title suggests. For example, they do not include

the effects of electric or magnetic forces. Nonetheless, they often provide a useful route

to the differential equations for diffusion, as shown by the following examples.

Example 3.4-1: Fast diffusion through a stagnant film and into a semi-infinite slab Find

differential equations describing these two situations from the general equations in Tables

3.4-1 to 3.4-3. Compare your results with the shell-balance results in the previous section.

Solution The first of these cases, sketched in Fig. 3.1-1 or Fig. 3.3-1, concerns

the fast evaporation of a liquid solute through a stagnant vapor. This evaporation is in

Table 3.4-1 Mass balance for species 1 in various coordinate systems

Rectangular coordinates

qc1
qt
¼ � qn1x

qx
� qn1y

qy
� qn1z

qz
þ r1 ðAÞ

Cylindrical coordinates

qc1
qt
¼ � 1

r

q
qr
ðrn1rÞ �

1

r

qn1h
qh
� qn1z

qz
þ r1 ðBÞ

Spherical coordinates

qc1
qt
¼ � 1

r2
q
qr
ðr2n1rÞ �

1

r sin h
q
qh
ðn1h sin hÞ � 1

r sin h
qn1/
q/
þ r1 ðCÞ

Note: The rate r1 is for the production of species 1 per volume.

Table 3.4-2 Mass balance for species 1 combined with Fick’s law

Rectangular coordinates

qc1
qt
þ v0x

qc1
qx
þ v0y

qc1
qy
þ v0z

qc1
qz
¼ D

q2c1
qx2
þ q2c1

qy2
þ q2c1

qz2

� �
þ r1 ðAÞ

Cylindrical coordinates

qc1
qt
þ v0r

qc1
qr
þ v0h

r

qc1
qh
þ v0z

qc1
qz
¼ D

1

r

q
qr

r
qc1
qr

� �
þ 1

r2
q2c1
qh2
þ q2c1

qz2

� �
þ r1 ðBÞ

Spherical coordinates

qc1
qt
þ v0r

qc1
qr
þ v0h

qc1
qh
þ v0h
r sin h

qc1
q/
¼ D

1

r2
q
qr

r2
qc1
qr

� �
þ 1

r2 sin h
q
qh

sin h
qc1
qh

� ��
þ 1

r2 sin2 h

q2c1
q/2

�
þ r1 ðCÞ

Note: The diffusion coefficient D and the density q are assumed constant. In this case, the mass
average and volume average velocities are equal. Again, r1 is the rate of production of species 1
per volume.
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steady state, has no chemical reaction, and occurs only in the z direction. Thus Eq. A in

Table 3.4-1 becomes

0 ¼ qn1z
qz

Alternatively, for constant density, Eq. A in Table 3.4-2 becomes

v
0
z

q
qz

c1 ¼ D
q2c1
qz2

Either of these equations leads to a solution of the problem like that in Section 3.3.

The second example, shown schematically in Fig. 2.3-2, depends on the unsteady

evaporation of a liquid solute into a solvent gas. Again, the process is one-dimensional,

without chemical reaction. From Eq. A in Table 3.4-1, we find

qc1
qt
¼ � qn1z

qz

Alternatively, for constant density, Eq. A in Table 3.4-2 becomes

qc1
qt
þ v

0
z

q
qz

c1 ¼ D
q2c1
qz2

The first term on the left-hand side of this result represents accumulation and the second

is convection. The right-hand side represents diffusion. Again, the solution to these

equations parallels that in the previous section.

The reader whose primary interest is in diffusion may question why these generalized

equations are necessary and why the shell balances used before are not sufficient. I share

this skepticism, and I prefer the physical insight supplied by the shell-balance technique.

At the same time, students often plead to be taught the material in this section, even

though they may later question its utility. The students’ plea originates not from con-

siderations of mass transfer but from their studies of fluid mechanics. In fluid mechanics,

the generalized equations are extremely helpful, especially in cases of curved streamlines.

Table 3.4-3 Total mass balance in several coordinate systems

Rectangular coordinates

qq
qt
¼ � q

qx
ðqvxÞ �

q
qy
ðqvyÞ �

q
qz
ðqvzÞ ðAÞ

Cylindrical coordinates

qq
qt
¼ � 1

r

q
qr
ðqrvrÞ �

1

r

q
qh
ðqvhÞ �

q
qz
ðqvzÞ ðBÞ

Spherical coordinates

qq
qt
¼ � 1

r2
q
qr
ðqr2vrÞ �

1

r sin h
q
qh
ðqvh sin hÞ � 1

r sin h
q
q/
ðqv/Þ ðCÞ

Note: The velocity here is the mass average and not the volume average commonly
used with Fick’s law.
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Analogues of curved streamlines do not occur frequently in diffusion. Thus the math-

ematics of diffusion is easier than that of fluid mechanics, but the physical chemistry is

more difficult.

Example 3.4-2: Dissolution out of a coated hemisphere Orally taken drugs often result in

drug concentrations which oscillate dramatically with time. Soon after a pill is swal-

lowed, the drug concentration may be high, even toxic; four hours later, the concentra-

tion may be below that needed to be effective. Thus many have sought pills which would

give a more even drug release vs. time, a topic detailed in Chapter 19.

One such pill, shown schematically in Figure 3.4-2, consists of a coated hemisphere of

radius R1 with a central hole of radius R0. The hemisphere contains a solid drug at

concentration c20, which can dissolve to form a saturated solution at c1(sat). Solid drug

is immobile, but dissolved drug moves with a diffusion coefficient D. The entire hemi-

sphere is coated with an impermeable layer, except for the hole. At small times, diffusion

coming out the hole is reasonable because the drug doesn’t have far to go. At larger

times, diffusion is still reasonable: while the distance to diffuse is bigger, the area

supplying drug is bigger, too.

Develop differential equations describing this drug release.

Solution Diffusion in this case has spherical symmetry, with concentration

gradients only in the r-directions. If the drug is dilute, there is no convective flow. Thus

from Table 3.4-2 Eq. C we obtain for dissolved drug

qc1
qt
¼ D

r
2

q
qr

r
2 qc1

qr

� �
þ r1

For undissolved drug,

qc2
qt
¼ �r1

This is subject to the constraints

t ¼ 0; all r; c1 ¼ c1 satð Þ
t> 0; r ¼ R0; c1 ¼ 0

r ¼ R1;
qc1
qr
¼ 0

R0

R1

Fig. 3.4-2. Dissolution out of a coated hemisphere. The impermeable coating stops the

diffusion except out of an uncoated hole of radius R0.
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We will also need a condition on the total mass of undissolved drug present

t ¼ 0; all r; c2 ¼ c20

We must also specify the kinetics of the dissolution. These equations can be solved

numerically, but provide little insight without the solution.

An alternative strategy is to assume that, like many drugs the one used here dissolves

rapidly relative to diffusion. In this case, the dissolved drug concentration c1 will equal

c1(sat) everywhere that solid drug is present, i.e., where c2>0. In this case, the problem

is now simpler mathematically: the mass balance becomes

0 ¼ D

r
2

q
qr

r
2 qc1

qr

� �
subject to

r ¼ Ro; c1 ¼ 0

r ¼ R
0
; c1 ¼ c1 satð Þ

This is easily solved analytically. We must then find the variation of R0 with time fromZ t

0

j1 r¼R0
j rpR2

0

� 	
dt ¼

Z R0

R1

c20 4pr2
� 	

dr

This approximate solution should be used until we are forced by our experimental data

to solve the more difficult and more complete problem. In my experience, many working

on diffusion use mathematics which is more elaborate than their data justify. I urge you

to use the simplest description that you can until you have good reasons to need

elaboration.

Example 3.4-3: The flux near a spinning disc The final example in this section is the

spinning disc shown in Fig. 3.4-3. The disc is made of a sparingly soluble solute that

slowly dissolves in the flowing solvent. This dissolution rate is diffusion-controlled.

Calculate the rate at which the disc dissolves.

Flow

Solute from
dissolving disc

Spinning disc

Fig. 3.4-3. Diffusion near a spinning disc. The amount dissolving per unit area is found

to be the same everywhere on the disc’s surface. Such simplicity makes this disc a powerful

experimental tool.
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Solution This problem requires both mathematical skill and physical

intuition. The dissolution will reach a steady state only when the disc is rotating; if the disc

is not rotating, the problemwill be equivalent to the semi-infinite slab discussed in Example

3.4-1. To solve the rotating disc problem, we choose cylindrical coordinates centered on the

disc. The steady-state mass balance is found from Eq. B in Table 3.4-2:

v
0
r

qc1
qr
þ v

0
h

r

qc1
qh
þ v

0
z

qc1
qz
¼ D

1

r

q
qr

r
qc1
qr

� �
þ 1

r
2

q2c1
qh2
þ q2c1

qz2

" #

We recognize that the problem is angularly symmetric, so c1 does not vary with h. We

also assume that the disc is infinitely wide, so that the concentration is a function only

of z. I find this assumption mind-boggling, but it is justified by the success of the

following calculations.

With these simplifications, the mass balance becomes

vz
dc1
dz
¼ D

d
2
c1

dz
2

subject to the conditions

z ¼ 0; c1 ¼ c1ðsatÞ
z ¼ ‘; c1 ¼ 0

The first of these conditions implies equilibrium across the solid–fluid interface. Inte-

gration of the preceding equation gives

c1 ¼ a

Z z

0

e
�ð1=DÞ

Z r

0

vzðsÞds
� �

drþ b

where a and b are integration constants. From the foregoing conditions, b equals c1(sat),

so that

c1
c1ðsatÞ

¼ 1�
R z
0 e
�ð1=DÞ

Z r

0

vzðsÞds
� �

dr

R ‘

0 e
�ð1=DÞ

Z r

0

vzðsÞds
� �

dr

If we know the velocity vz(z), we can find the concentration profile. We then use Fick’s

law to find the reaction rate.

The calculation of vz(z) is a problem in fluid mechanics beyond the scope of this book,

but given in detail in the literature. When the values found for vz(z) are inserted into the

previous equations, the result is

c1
c1ðsatÞ

¼
RX
0 e
�u3

duR ‘

0 e
�u3

du
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in which

X ¼ z
1:82D

1=3
�
1=6

x1=2

 !�1

and � is the kinematic viscosity of the fluid and x is the angular velocity of the disc. The

diffusion flux is then

j1 z¼0j ¼ �D qc1
qz z¼0j ¼ 0:62

D
2=3x1=2

�
1=6

 !
c1ðsatÞ

This result is often written in terms of dimensionless groups:

� j1 ¼ 0:62
D

d

d
2xq
l

 !1=2
l

qD

� �1=3
24 35c1ðsatÞ

where d is the disc diameter. The first term in parentheses is the Reynolds number, and

the second is the Schmidt number.

To my delight, this analysis is verified by experiment. The dissolution varies with the

square root of the Reynolds number, as shown in Fig. 3.4-4. As a result, the assumption

that the flux is a function only of z is justified. Because the flux is independent of disc

diameter, it has the same value near the disc’s center and near its edge. Such a constant flux

is uncommon, and it makes the interpretation of experimental results unusually straight-

forward. It is this feature that makes the rotating disc a popular experimental tool.
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Fig. 3.4-4. Dissolution rate versus flow for a spinning disc. The dissolution rate and flow are

described as Sherwood and Reynolds numbers, respectively. The data fit the form predicted,

which should be valid over the unshaded region.
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3.5 A Guide to Previous Work

In many cases, detailed solutions to diffusion problems can be adapted from

calculations that have already been published, thus avoiding the mathematical detail

presented in the earlier sections in this chapter. These calculations involve the same

differential equations, with relatively minor changes of boundary conditions. They in-

clude elaborate but straightforward manipulations, like the integration of concentration

profiles to find average concentrations.

Unfortunately, the published results are limited because they are often based on

mathematical analogies with thermal conduction. Such analogies have merit; indeed,

they provided the original stimulus for Fick’s law of diffusion. However, in thermal

conduction, there is no analogy for diffusion-induced convection and rarely an analogy

for an effect like chemical reaction. On the other hand, in diffusion, there is no effect

parallel to thermal radiation. These differences are commonly ignored by teachers be-

cause they want the pedagogical benefits of analogy. In fact, convection, chemical re-

action, and radiation are frequently central in the problems studied.

Even with these limitations, the published solutions can be used to save considerable

effort. Besides individual papers, there are two important books that have collected and

compared this literature. The first, Crank’s The Mathematics of Diffusion (1975), dis-

cusses aspects of chemical reactions. The second, Carslaw and Jaeger’s The Conduction

of Heat in Solids (1986), must be used by analogy, but it includes a more complete

selection of boundary conditions. The notation used in these books is compared with

that used here in Table 3.5-1.

In the remainder of this section we give examples illustrating how this literature can

be used effectively.

Example 3.5-1: Diffusion through a polymer film Imagine that we are studying a poly-

mer film that is permeable to olefins like ethylene but much less permeable to aliphatic

hydrocarbons. Such a film could be used for selectively separating the ethylene produced

by dehydrogenation reactions. As part of our study, we use the diaphragm cell shown in

Table 3.5-1 Comparisons of notation between this book and two major references

Variable Our notation Crank’s
notation

Carslaw and Jaeger
analogue

Time t t t
Position x, y, z, r x, y, z, r x, y, z, r
Concentration c1 C Temperature t
Concentration at boundary c10, c1l, C10, ... C1, C0 Temperature at boundary u
Binary diffusion coefficient D D ‘‘Thermometric

conductivity’’ j
Flux relative to reference velocity j1 F Heat flux f
Flux relative to fixed coordinates n1 F Heat flux f
Flux at boundary N1 or n1|z ¼ 0 – Heat flux at boundary F0

Total amount diffusing from time
0 to t

Mt Mt –
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Fig. 3.5-1. This diaphragm cell consists of two compartments separated by the polymer

film of interest. The top compartment is initially evacuated, but the lower one is filled

with ethylene. We measure the ethylene concentration in the upper compartment as

a function of time.

The data obtained for ethylene transport are exemplified by those shown in the figure.

Initially, the pressure in the upper compartment varies in a complex way, but it will

eventually approach that in the lower compartment. At the moderate times of most of

our experiment, the pressure in the upper compartment is proportional to time, with

a known slope and a definite intercept. How are this slope and intercept related to

diffusion in the polymer film?

Solution The basic differential equation for this problem is that for a slab:

qc1
qt
¼ D

q2c1
qz2

subject to the conditions

t ¼ 0; all z; c1 ¼ 0

t > 0; z ¼ 0; c1 ¼ Hp0

z ¼ l; c1 ¼ Hpl ¼
:
0

in which l is the film’s thickness and H is a Henry’s law coefficient relating ethylene

pressure in the gas to ethylene concentration in the film. The solution to this equation

and the boundary conditions are given by Crank (1975, p. 50, Eq. 4-22):

c1
Hp0

¼ 1� z

l
� 2

p
R
‘

n¼ 1

sinðnpz=lÞ
n

� �
e
�Dn

2p2
t=l

2

Thus, almost before we have started, we have the concentration profile that we need.
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Slope

Initial pressure
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Polymer
film Initial pressure

zero

Pressure
gauge

Fig. 3.5-1. Diffusion across a polymer film. When the pressure in the top compartment is

determined as a function of time, the slope and intercept are measures of diffusion and solubility

of gas in the polymer.
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We now must cast the problem in terms of the actual experiment variables we are

using. First, from a mole balance on the top compartment,

dN1

dt
¼ V

RT

dp

dt
¼ �AD qc1

qz

����
z¼l

in which V and p are the volume and pressure of the upper compartment and A is the

film’s area. Combining this with the concentration profile, we integrate subject to the

condition that the upper compartment’s pressure is initially zero:

p ¼ ARTp0
Vl

HDtþ 2Hl
2

p2 +‘

n¼ 1

cos np

n
2 ð1� e

�Dn
2p2

t=l
2

Þ
" #

At large time, the exponential terms become small, and this result becomes

p ¼ ARTp0
Vl


 �
HDð Þ t � l

2

6D

" #

The quantity in braces is known experimentally. Thus the intercept of the data in Fig.

3.5-1 is related to the diffusion coefficient D. The slope of these data is related to the

permeability HD. I am always delighted that an experiment like this gives both an

equilibrium and a transport property.

This example has value well beyond the specific case studied. It shows how the

mathematical complexities inherent in the problem can be circumvented by carefully

using the literature. This circumventure focuses attention on the real difficulty of the

problem, which is connecting the specific physical situation with the more general math-

ematical abstraction. This is the connection where most of you will have trouble. You

can learn how to use the mathematics involved; you must think harder about connecting

them with the actual situation.

Example 3.5-2: Diffusion through an orifice As a second example, we consider an

orifice of radius R in a thin film. Diffusion is occurring through the orifice from a large

volume of high concentration c10 to a second large volume at zero concentration. Like

the case of a thin film, the diffusion is in steady state, so there are no unsteady com-

plications as in the previous example. Unlike the case of a thin film, however, the

diffusion is not one-dimensional, but necks down to pass through the orifice, as shown

in Figure 3.5-2. Because the film is extremely thin, there is no concentration gradient in

the orifice itself.

Calculate the steady state flux through this orifice.

Solution We first note that in the z-direction, the concentration changes

going into the orifice mirror those going out of the orifice. We thus calculate the flux

from one volume at concentration c10 to the orifice itself, taken to be a sink at concen-

tration c1¼ 0. We then will recognize that the flux we want will just be half that which we

have calculated.
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For this problem, diffusion is best described in terms of cylindrical coordinates, given

as Eq. B in Table 3.4-2. There is no flow, no change with time, no reaction, and no

angular variation, so this solute mass balance becomes

0 ¼ D

r

q
qr

r
qc1
qr

� �
þ q2c1

qz2

This is subject to the boundary conditions

z ¼ 0; r<R; c1 ¼ 0

r>R;
dc1
dz
¼ 0

z> 0; r ¼ ‘; c1 ¼ c10

z ¼ ‘; all r; c1 ¼ c10

The concentration profile for this problem is given by (Crank, p. 43)

c1 ¼ c10 1� 2

p
tan
�1 Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

�
r
2 þ z

2 � R
2

h 	ir
þ
n�

r
2 þ z

2 � R
2
	2
þ 4z

2
R

2
o1=2

0BBB@
1CCCA

The concentration gradient at the orifice itself is also given

qc1
qz

����
z¼0
¼ 2c10

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2 � r
2

p

z

r

c1l at z = +∞

c10 at z = –∞

Fig. 3.5-2. Diffusion through an orifice. The diffusing solute necks down to pass through a

circular hole.
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where r<R is within the orifice itself. To find the total flux J1, wemust integrate over the

entire surface of the orifice

J1 ¼
Z L1T

0

Z R

0

� D
qc1
qz z¼0j

� �
rdrdh

¼ �4DRc10

The flux is negative because it is in the (�z) direction. The flux per orifice area j1 is

j1 ¼
J1

pR2 ¼ �
4Dc10
pR

As the pore becomes smaller, the flux per area becomes larger, though the total amount

becomes smaller. Finally, the flux in and out of an orifice is

j1 ¼ �
2Dc10
pR

The flux into and out of the orifice is just half that into the orifice.

This example has two characteristics which are worth noting. First, while the problem

is carefully solved in the literature, the result given (the concentration profile) is not the

result we seek (the flux). This is often the case. The literature will reduce our mathemat-

ical burden, but it will not supply exactly what we want.

The second characteristic of this result is its strong parallel with the diffusion across

a thin film and diffusion away from a dissolving sphere. For diffusion across a thin film

of thickness l from a solution at c10 to a pure solvent with c1 ¼ 0, we found in Equation

2.2-10 that

j1 ¼
Dc10
l

For dissolution of a solute sphere of radius R which has a concentration at saturation of

c1(sat), in a solution of pure solvent, we found in Equation 2.4-25 that

j1 ¼
Dc10
R

These equations differ only from that derived for the orifice because of the factor (2/p),
a different characteristic length l or R, and a different direction for diffusion. Thus we

infer correctly that all steady-state diffusion problems will give very similar results. We

will use this inference to develop theories of mass transfer in more complicated geom-

etries, as detailed in Chapter 9.

Example 3.5-3: Effective diffusion coefficients in a porous catalyst pellet Imagine that we

have a porous catalyst pellet containing a dilute gaseous solution. We want to measure

the effective diffusion of solute by dropping this pellet into a small, well-stirred bath of

a solvent gas and measuring how fast the solute appears in this bath. How can we plot

these measurements to find the effective diffusion coefficient?

Solution Again, we begin with a mass balance, combine this with Fick’s law

and the appropriate boundary conditions, and then adapt the available mathematical
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hoopla to find the result. The only feature different from before is that we must do so for

both the pellet and the bath.

With the pellet, a mass balance on a spherical shell or one taken from Table 3.4-2

yields

qc1
qt
¼ Deff

r
2

q
qr

r
2 qc1
qr

This implicitly lumps any tortuous multidimensional diffusion into an ‘‘effective’’ one-

dimensional diffusion coefficient Deff. This equation is subject to

t ¼ 0; all r; c1 ¼ c10

t > 0; r ¼ 0;
qc1
qr
¼ 0

r ¼ R0; c1 ¼ C1ðtÞ

where R is the pellet radius and C1(t) is the bath concentration, a function of time. It is

this coupling of the sphere and bath concentrations that makes this problem interesting.

We now make a mass balance on the solute in the bath of volume VB:

VB
dC1

dt
¼ 4pR2

n1 r¼Rj ¼ �4pR2
Deff

qc1
qr r¼Rj

subject to

t ¼ 0; C1 ¼ 0

This mass balance contains no diffusion term because the bath is well mixed.

Problems that are mathematically analogous to this one are discussed by Carslaw and

Jaeger (1986) and Crank (1975). The most useful result given is that for the concentra-

tion in the bath:

C1 ¼
c10

1þ B
� 6Bc10 R

n¼ 1

e
�Deffa

2
nt

B
2
R

2a2n þ 9ðBþ 1Þ

in which

tanðR0anÞ ¼
3Ran

3þ BR
2a2n

and

B ¼ VB

ð4=3ÞpR3e

where e is the void fraction in the sphere.

The results are plotted in Fig. 3.5-3. To find the diffusion coefficient, we first calculate

B and C1(1 + B)/c10. We then read Defft=R
2 from the figure and calculate Deff.
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3.6 Conclusions

Diffusion in concentrated solutions is complicated by the convection caused by

the diffusion process. This convection must be handled with a more complete form of

Fick’s law, often including a reference velocity. The best reference velocity is the volume

average, for it is most frequently zero. The results in this chapter are valid for both

concentrated and dilute solutions; so they are more complete than the limits of dilute

solutions given in Chapter 2.

Nonetheless, those who study diffusion routinely think and work in terms of the

dilute-solution limit. You should also. The dilute limit is easier to understand and easier

to use for quick, qualitative calculations. It is the basis for finding how diffusion is

related to chemical reaction, dispersion, or mass transfer coefficients. You should be

aware of the problems that arise in nondilute cases; you should be able to work through

them if necessary; but you need not recall their details. Think dilute.

Questions for Discussion

1. How does the total flux n1 differ from the diffusion flux j1?

2. When does the volume average velocity v0 equal the mass average velocity v?

3. When does v0 equal the molar average velocity v*?

4. Is there convection in distillation?

5. Suggest a problem where the Fick’s law form of diffusion equation is easiest

to use.

6. Suggest one where theMaxwell–Stefan form of the diffusion equation is easiest.

7. What is the physical significance of each term in the first equation in Table

3.4-2?
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Fig. 3.5-3. Bath concentration versus time. A porous catalyst pellet containing a solute gas is

dropped into a stirred bath of solvent gas. The solute concentration in the bath measured versus

time provides a value for diffusion in the pellet. A similar graph for heat conduction is given by

Carslaw and Jaeger (1986, p. 241).
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8. Write the equations for steady-state diffusion across a flat membrane, across

the wall of a tube, and out of a spherical shell.

9. Show that these equations reduce to the same limit when the membrane, wall,

and shell are thin.

10. Heat and mass transfer are often said to be equivalent processes. What heat

transfer property corresponds to the diffusion coefficient?

11. What heat transfer property corresponds to chemical reaction?

12. What mass transfer variable corresponds to thermal radiation?

13. We usually expect that doubling the concentration difference in a single phase

will double the diffusion flux. When will this not be true?

14. Cooking times in minutes for a single brand of pasta are as follows

Capellini 2
Linguini 11
Fettucini 7
Spaghetti 12
Lasagna 9

Since all are made from the same flour, why are they different?

Problems

1. Dry ice is placed in the bottom of a capillary tube 6.2 cm long. Air is blown across the
top of the tube. Calculate the ratio of the total flux to the diffusion flux halfway up the

capillary for the following conditions: (a) A temperature of – 124 �C, where the vapor
pressure is 5 mm Hg. Answer: 1.00. (b) A temperature of – 86 �C, where the vapor
pressure is 400 mm Hg. Answer: 1.45.

2. Agas-oil feedstock is irreversibly and very rapidly cracked on a heatedmetal plate in an

experimental reactor. The cracking reduces the molecular weight by an average factor
of three. Calculate the rate of this process, assuming that the gas oil diffuses through
a thin unstirred film of thickness l near the plate. Note that the reagent must be
constantly diffusing against product moving away from the plate. Compare this rate

with that for diffusion through a thin film and with evaporation through a stagnant
solvent.

3. Imagine a long tube partially filled with liquid benzene at 60 �C. Beginning at time
zero, the benzene evaporates into the initially pure air with a diffusion coefficient of

about 0.104 cm2/sec. How fast does the liquid–vapor interface move with time?
Answer: 4 � 10�4 cm/sec at 1 second.

4. One interesting membrane reactor uses a homogeneous catalyst that cannot pass
through an ultrafiltration membrane. Reagents flow continuously toward the mem-

brane, but the catalyst is injected only at the start of the experiment. It forms the

Membrane

Products
moving
at v0

Reagents
moving
at v0

Catalyst
concentration
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concentration profile shown above. If the catalyst injected per membrane area isM/A,

find the concentration profile of the catalyst.

5. The diffusion coefficient relative to the volume average velocity is defined by

� j1 ¼ D=c1

That relative to the molar average velocity is defined by

� j
�
1 ¼ D*c=x1

Show that the diffusion coefficients in these two definitions are equal, even if the molar

concentration c is not constant.

6. Imagine a thick spherical shell of a relatively impermeable polymer. Inside the shell, at

radial positions less than Rin, there is a drug solution at c1 (sat), kept constant by the
presence of crystals of solid drug. This inside solution is well mixed by the relatively
rapid diffusion. Outside the shell, at radial positions greater than Rout, the drug
concentration is always essentially zero.

(a) Calculate the drug’s flux out of the spherical shell using the Fick’s law description

of diffusion.

(b) Calculate this flux using the Maxwell–Stefan description of diffusion.

(c) Implicitly, we have assumed a binary form of diffusion equation, i.e., we
have assumed drug (species ‘‘1’’) diffusing through the polymer shell (species
‘‘2’’). In fact, water (species ‘‘3’’) will also diffuse through this shell, from the
outside into the shell. Thus we are dealing with a ternary solution, to be dis-

cussed in detail in Chapter 7. Anticipating this discussion, describe how drug
diffusion should be described, both with Fick’s law and with the Maxwell–
Stefan equations.

7. You want to measure the permeability of an artificial membrane to oxygen. Such

membranes are often suggested as a possible means of separating air. To make this
measurement, you clamp a section of the membrane in the apparatus shown below.
The membrane section is 3 cm in diameter and only 35 mm thick. It is attached to

a backing layer that gives it mechanical stability, but it means that only 17.3% of the
membrane surface is available for diffusion. To begin an experiment, the gas volume of
68 cm3 is evacuated to less than 10�5 torr (1 torr [ 1 mm Hg.) The pressure is then
measured and found to be

pðmmHgÞ¼ 88ðt� 2:3Þ

where t is the total elapsed time in seconds. Find the Henry’s law coefficient and the

diffusion coefficient for oxygen in this membrane. Answer: D ¼ 9�10�7 cm2/sec.

Membrane
Pressure
gauge
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8. Kerkhof and Geboers in their paper ‘‘Toward a Unified Theory of Isotropic Molecular

Transport Phenomena’’ (AIChE Journal (2005), 51, 81) give the following equation:

qc1
qt
¼ �vz

qc1
qz
þD

r

q
qr

r
qc1
qr

� �
þD

q2c1
qz2

Please answer the following: (a) What physical system is implied? (b) What is the

differential volume on which this mass balance is written? (c) What is the meaning

of each of the four terms?

9. Youwant to measure the effectiveness of a porous solid desiccant. To do so, you attach
a slab of the desiccant 0.5 3 20 3 20 cm to a thin wire. You then attach the wire to an

analytical balance and suspend the slab in a chamber at 45 �C and twenty percent

relative humidity. You find that the slab weight varies with time as follows:
Find the permeability of water vapor in this desiccant. You will find that the data fit
neither a finite slab nor an infinite slab. One good alternative model is to postulate

pores in the slab. Answer: 3.5 cm2/sec.

10. Copper dispersed in porous low-grade ore pellets 0.2 cm in diameter is leached with

4-M H2SO4. The copper dissolves quickly, but diffuses slowly out of the pellets.
Because the ore is low grade, the porosity can be assumed constant, and the copper
concentration will be low in the acid outside of the pellets. Estimate how long it will

take to remove eighty percent of the copper if the effective diffusion coefficient of the
copper is 2.5 � 10�6 cm2/sec. Answer: 10 min.

11. A large polymer slab initially containing traces of solvent is exposed to excess fresh air
to allow solvent to escape. Find the concentration of solvent in the slab as a function of

position and time. Assume that the diffusion coefficient is a constant, but discuss how
you might expect it to vary. Try to solve this problem yourself, but compare your
answers with those in the literature.

12. One method of studying diffusion in liquids used by Thomas Graham is that shown in
Fig. 2.1-2(b). It consists of a small bottle of solution immersed in a large bath of

solvent. Calculate the solute concentration in the bath as a function of time, and show
how this variation can be used to determine the diffusion coefficient.

13. Wool is dyed by dropping it into a dyebath that contains dye at a concentrationC10 and
that has a volume V. The dye diffuses into the wool, so that its concentration in the

dyebath drops with time. You can measure this concentration change. You can also
measure the equilibrium uptake of the dye. How can you use measurements of this
change at small increments of time to find the diffusion coefficient of the dye in the wool?

Time(min) Slab weight(g)

0 166.25
10 167.03
20 167.59
30 168.07
40 168.48
50 168.88
60 169.25
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14. Sows love to dig truffles, the mushroom that shows up as a condiment in French

cooking. Apparently, sows do this because they smell in the truffles the sex attractant
or pheromone 5a-androst-16-en-3-ol, which is secreted by boars and by human males
[R. Claus, H. O. Hoppen, and H. Karg, Experimentia, 37, 1178 (1981); M. Kirk-Smith,

D. A. Booth, D. Carroll, and P. Davies, Res. Comm. Psychol. Psychiat. Behav., 3, 379
(1978)]. Imagine that the truffle is a point source located a distance d below the surface
of the ground. Calculate the flux of pheromone leaving the ground above.

15. Imagine that two immiscible substances containing a common dilute solute are

brought into contact. Solute then diffuses from one of these substances into the other.
Calculate the concentration profiles of the solute in each of the substances, assuming
that each substance behaves as a semi-infinite slab. (S. Gehrke)

16. Find the steady-state flux away from a rapidly dissolving drop that produces a concen-
trated solution. Compare your result with that found for a sparingly soluble sphere and

with the various results for diffusion across a stagnant film.
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CHAPTER 4

Dispersion

All thoughtful persons are justifiably concerned with the presence of chemicals

in the environment. In some cases, chemicals like pesticides and perfumes are deliber-

ately released; in other cases, chemicals like hydrogen sulfide and carbon dioxide are

discharged as the result of manufacturing; in still others, chemicals like styrene and

dioxin can be accidentally spilled. In all cases, everyone worries about the long-term

effects of such chemical challenges.

Public concern has led to legislation at federal, state, and local levels. This legislation

often is phrased in terms of regulation of chemical concentrations. These regulations

take different forms. Themaximum allowable concentrationmay be averaged over a day

or over a year. The acid concentration (as pH) can be held within a particular range, or

the number and size of particles going up a stack can be restricted. Those working with

chemicals must be able to anticipate whether or not these chemicals can be adequately

dispersed. They must consider the problems involved in locating a chemical plant on the

shore of a lake or at the mouth of a river.

The theory for dispersion of these chemicals is introduced in this short chapter.

As might be expected, dispersion is related to diffusion. The relation exists on two

very different levels. First, dispersion is a form of mixing, and so on a molecular level

it involves diffusion of molecules. This molecular dispersion is not understood in

detail, but it takes place so rapidly that it is rarely the most important feature of the

process. Second, dispersion and diffusion are described with very similar mathemat-

ics. This means that analyses developed for diffusion can often correlate results for

dispersion.

In Section 4.1, we give a simple example of dispersion to illustrate the similarities to

and differences from diffusion. We discuss dispersion coefficients for environmental and

industrial situations in Section 4.2. In Section 4.3, we discuss how diffusion and flow

interact to produce dispersion in turbulent flow. In Section 4.4, we make similar calcu-

lations for laminant flow. Overall, the material is presented at an elementary level, partly

because it is unevenly understood at any other level and partly because more detail seems

outside the scope of this book.

4.1 Dispersion From a Stack

Everyone has seen smoke pouring from a smokestack. On a cold, clear day, the

plume will climb high into the sky, spreading and fading. In a high wind, the plume will

be quickly dispersed, almost as if it never existed.

We want to explain these differences in dispersion so that we can anticipate the effects

of wind, weather, and different amounts of smoke. To do so, we need to model the

dispersion. Such a model should recognize the characteristics of the smoke as it moves

downwind. For example, wemight find characteristics like those in Fig. 4.1-1 for a plume
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in a 15-km/hr wind. The smoke concentration has roughly a Gaussian shape and has

a width of about 1 km when it is 10 km downwind.

Before we begin to model this plume, we should consider what we mean by ‘‘smoke

concentration.’’ Such a concentration is clearly some arbitrary average over all compo-

nents, be they present as molecules or as small particles. Such a concentration may affect

people in different ways. For example, if the smoke has an odor, doubling the smoke

concentration will make the odor less than twice as strong. If the smoke contains poi-

sons, doubling its concentration may more than double its toxicity. We should remem-

ber to consider the effects of smoke concentration carefully.

The obvious model for a plume like that in Fig. 4.1-1 is that developed in Section 2.4

for the one-dimensional decay from a pulse. In this model, we assume that x is the wind

direction and z is the horizontal direction normal to both the wind and ground. As a first

approximation, we assume that the smoke is well mixed in the vertical y direction. On

this basis, we can extend the solution given in Section 2.4 to the case of a steady release of

smoke S:

c1 ¼
S

4pDappx
e
�z2=4Dappt ð4:1-1Þ

where c1 is an average smoke concentration, with dimensions M/L3; S is the smoke

release rate, M/t; and Dapp is an apparent diffusion coefficient for the smoke.

This model does a good job of predicting the general shape of the smoke plume.

It predicts that themaximum smoke concentration (S/4pDappx) does drop as x increases.

It does predict that the smoke spreads out in a roughly Gaussian profile, just as is

observed. Thus diffusion theory apparently can be applied successfully to the release

of pollutants.

y

x
Wind

C
on

ce
nt

ra
tio

n

Fig. 4.1-1. Dispersion of smoke. Smoke discharged continuously from a stack has an average

concentration that is approximately Gaussian. This shape can be predicted from a diffusion

theory. However, the smoke is dispersed much more rapidly than would be expected from

diffusion coefficients.
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However, this model is a disaster at predicting how much the plume spreads. From

observation, we know that it actually has spread about 1 kilometer. From the arguments

in Section 2.4, we know that the width of this peak l should be about

l ¼
ffiffiffiffiffiffiffiffi
4Dt
p

ð4:1-2Þ

In gases, diffusion coefficients are about 0.1 cm2/sec, and the time is about 10 km/(15 km/

hr), or 40minutes. On this basis, l should be about 30 centimeters, 3,000 times less than the

observed width of 1 kilometer. A factor of 3,000 is a big error, even for engineers.

The explanation for this major discrepancy is the wind. In previous chapters, mixing

occurred by diffusion caused by molecular motion. Here, mixing occurs as the wind

blows the plume over woods, around hills, and across lakes. This mixing is more rapid

than diffusion because of the flow.

We now are in something of a quandary.We have a good diffusion model in Eq. 4.1-1

that explains most of the qualitative features of the plume, but this model grossly under-

predicts the effects. To resolve this, we assume that mass transport in the plume is

described by the flux equation

� j1 ¼ D
qc1
qz
þ E

qc1
qz

ð4:1-3Þ

whereD is the actual diffusion coefficient; and E is a dispersion coefficient caused by the

wind. In the smoke-stack case, the diffusion term in this equation must be small relative

to the dispersion term. However, the mass balance will have the samemathematical form

as before, subject to the same boundary conditions as before. Thus it will have the same

mathematical solution as Equation 4.1-1, but with the new dispersion coefficient E

replacing the diffusion coefficient D.

The new dispersion coefficient must usually be measured experimentally. Like the

diffusion coefficient, the dispersion coefficient has dimensions of (L2/t). Unlike the

diffusion coefficient, the dispersion coefficient is largely independent of chemistry. It

will not be a strong function of molecular weight or chemical structure, but will have

close to the same values for carbon monoxide, styrene, and smoke. Unlike the diffusion

coefficient, the dispersion coefficient will be a strong function of position. It will have

different values in different directions. Thus dispersion may look like diffusion, and it

may be described by the same kinds of equations, but it is a different effect.

The foregoing arguments may strike you as silly, a casual invention with a veneer of

equations. After all, diffusion is based on a ‘‘law.’’ To try to describe dispersion with

a diffusion equation seems like cheating.

Nonetheless, this is how dispersion is described. In the rest of this chapter, we explore

the details of this description more carefully. These details often lead to less accurate

predictions than those possible for diffusion. However, dispersion can be very impor-

tant, so that even an approximate solution can have considerable practical value.

4.2 Dispersion Coefficients

Dispersion coefficients are very different for turbulent and laminar flow. For

turbulent flow, we expect that the dispersion coefficient should be a function of the fluid’s
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velocity v and some characteristic length l. On dimensional grounds, we then expect that

the Péclet number for dispersion is

lv

E
¼ constant ð4:2-1Þ

This turns out to be approximately true for turbulent dispersion in pipelines of diameter

d, for which

dv

E
¼ 2 ð4:2-2Þ

This result implies that dispersion is not a function of the diffusion coefficientD, which is

verified by experiment. However, it also says that E is proportional to v. This is only

approximately true; in fact, E increases with v to a power slightly greater than one.

In contrast, the result for laminar flow on pipelines found both from theory and

experiment is

E

dv
¼ D

dv
þ dv

192D
ð4:2-3Þ

This sensibly says that at very low flow, the dispersion coefficient equals the diffu-

sion coefficient. However, at most nonzero flows, the second term on the right-hand

side of Equation 4.2-3 is dominant, and E becomes proportional to the flow v. Under

these circumstances, E is inversely proportional to D. For laminar flow, a small

diffusion coefficient results in large dispersion, and a large diffusion coefficient

produces small dispersion. Why this counterintuitive result is true is explained in

Section 4.4.

Other geometries combine the results of laminar and turbulent flow. In general, they

suggest that E varies linearly with velocity v and becomes independent ofD at high flow.

For example, dispersion coefficients in packed beds are most often presented as the sum

of the contributions of diffusion and flow:

E ¼ b1Dþ b2dv ð4:2-4Þ

where b1 and b2 are constants. While b1 is sometimes described as the reciprocal of

a tortuosity, its common value of around 0.7 is inconsistent with more direct experimen-

tal measures of this quantity. The common values of b2 cluster around 0.5, especially for

the dispersion of gases in beds of larger particles. Values of b2 rise for particles smaller

than 0.2 cm, possibly because of polydisperse diameters. Some data for packed beds,

presented in dimensionless form, are shown in Figure 4.2-1.

The quantity (dv/D) is the common Péclet number for diffusion, which in analytical

chemistry is usually called the ‘‘reduced velocity.’’ For fast flows, dispersion in gases and

liquids is similar, but at lower flows, dispersion in liquids is larger.

We can use these concepts of dispersion to describe a variety of problems. In this

description, we will normally know that our data have the form of diffusion from

a pulse, or of diffusion into a semi-infinite slab.We will try to write equations involving
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a dispersion coefficient that parallel those which use a diffusion coefficient. When I first

tried to solve problems like this, I felt that I was somehow stealing from the analysis of

diffusion. I was stealing, but in the same sense Fick stole Fourier’s description of heat

conduction in order to originally describe diffusion. Such ‘‘stealing,’’ which is an

attempt at understanding, often supplies new physical insight. Try it yourself by work-

ing the following examples, and you can get a better understanding of both diffusion

and dispersion.

Example 4.2-1: Cyanide dispersion A metal stamping company has inadvertently

spilled cyanide-containing waste into a small creek. Behaving responsibly, they notified

the local environmental authorities who arrived promptly to analyze the creek water.

These authorities find that the concentration 2 km downstream has a maximum of 860

ppm and a concentration 50 m from the maximum of 410 ppm. The stream is flowing at

0.6 km/hr. (a) What dispersion coefficient is implied by these results? How does it

compare with the diffusion coefficient? (b) What will the maximum concentration be

15 km downstream?

Solution We begin our analysis with a mass balance on the differential slice of

creek. However, we choose this slice as located near the maximum concentration but

moving at the average flow v. Thus

mass

accumulation

� �
¼

mass in� that out

by diffusion

and dispersion

264
375

qc1
qt
¼ � q

qz
j1

where c1 is the cyanide concentration and j1 is the flux relative to the flow. Note that the

position z is the actual location minus (vt), i.e., it is the position relative to the moving

fluid. Combining with Equation 4.1-2,

qc1
qt
¼ E

q2c1
qz2

Liquids

Gases

0.0 1.0 10 100 1000

dv /D

0.1

1.0

10

E
/d

v

Fig. 4.2-1. Axial dispersion in packed beds. Again, at high flow, the Péeclet number is about

constant.
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We have assumed the dispersion coefficient E is much larger than the diffusion coeffi-

cient D. This mass balance is subject to the conditions

t ¼ 0; all z; c1 ¼ M=Að Þd zð Þ
z ¼ ‘; c1 ¼ 0

z ¼ 0;
qc1
qz
¼ 0

The first condition describes the pulse caused by the spill. The second implies that the

creek contained a negligible concentration of cyanide before the spill. The third condi-

tion says that the concentration is largest when the moving coordinate z is zero. We are

now ready to solve the problem.

(a) Dispersion coefficient. The mass balance and its constraints are the same as those

for diffusion near a pulse, which was discussed in Section 2.4. Because the mathematical

description is the same, the solution is also the same but with D replaced by E:

c1 ¼
M=Affiffiffiffiffiffiffiffiffiffi
4pEt
p
� �

e
�
z
2

4Et

Note that the quantity in square brackets is the maximum concentration; remember that z

is the distance along the river away from that maximum. Thus inserting the values given

410 ppm=860 ppm e

� ð80mÞ2

4E �2 km
0:6 km=hr

� �
3600sec

hr

E=700 cm
2
=sec

This is much greater than the diffusion coefficient, which is about 10�5 cm2/sec. This large

difference underscores the difference between the physical origins of diffusion and dispersion.

Diffusion depends on molecular motion, but dispersion depends on velocity fluctuations.

b) Maximum concentration. This concentration is easily found from a ratio of con-

centrations

c1 max at t2ð Þ
c1 max at t1ð Þ ¼

ffiffiffiffi
t1
t2

r

c1 max at 15 kmð Þ
860 ppm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 km

15 km

r

c1 max at 15 kmð Þ ¼ 314 ppm

The solution to pollution is dilution.

Example 4.2-2: Dispersion in a pipeline We have a 10-cm pipeline 3 km long for moving

reagent gases at 5 m/sec from our wharf to our plant. We want to use this pipeline for

different gases, one after the other. How much will the gases mix?

Solution Imagine that we initially have the pipe filled with one gas and then

we suddenly start to pump in a second gas. Because the pipe has a much greater length

100 4 / Dispersion



than diameter, we can expect its contents to be well mixed radially. However, we do

expect that there will be significant concentration changes in the axial direction. To

describe these, we choose a coordinate system originally located at the initial interface

between the gases but moving with the average gas velocity. We then write a mass

balance around this moving point

qc1
qt
¼ E

q2c1
qz2

This mass balance is subject to the conditions

t ¼ 0; z>0; c1 ¼ c1‘

t> 0; z ¼ 0; c1 ¼ c10

z ¼ ‘; c1 ¼ c1‘

in which c10 is the average concentration between the gases. The derivation of

these relations is a complete parallel to that in Section 2.3. Indeed, the entire problem

is mathematically identical with this earlier one, although the diffusion coefficient

D used before is now replaced with the dispersion coefficient E. The results are, by

analogy,

c1 � c10
c1‘ � c10

¼ erf
zffiffiffiffiffiffiffiffi
4Et
p

The value for E is estimated from Equation 4.2-2

E ¼ 1

2
dv

E ¼ 0:5 10 cmð Þ 500 cm=secð Þ ¼ 2; 500 cm
2
=sec

The concentration change is significant when

z ¼
ffiffiffiffiffiffiffiffi
4Et
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 2500 cm

2
=sec

� �
3 kmð Þ= 500 cm=secð Þ½ � 1; 000m=kmð Þ 1m=100 cmð Þ

r
¼ 24m

About one percent of the pipeline will contain mixed gases.

4.3 Dispersion in Turbulent Flow

We now recognize that dispersion can be described by the mathematics of

diffusion but that it requires flow. When such flow exists, dispersion is much faster than

diffusion. It has a different physical origin than the small-scale, Brownian motion of

molecules. Interestingly, its physical origin is completely different for dispersion in

turbulent flow than in laminar flow.
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In this section we discuss the origins of dispersion in turbulent flow. This discussion is

especially relevant to problems common in environmental engineering, problems like

pollutant dilution in rivers or the spreading of plumes. Not surprisingly, the origin of the

effect turns out to be a consequence of turbulent fluctuations in velocity and concentra-

tion. The coupling between these fluctuations is the cause of dispersion. In more in-

formal terms, gusts and eddies cause dispersion.

To show how turbulence affects dispersion, we return to the mass balances developed

in general terms in Section 3.4. For example, for flow described in Cartesian coordinates,

we have from Table 3.4-2:

qc1
qt
¼ D

q2c1
qx2
þ q2c1

qy2
þ q2c1

qz2

 !
� q
qx

c1vx �
q
qy

c1vy �
q
qz

c1vz � jc1c2 ð4:3-1Þ

The left-hand side of this equation is the accumulation within a differential volume. The

first three terms on the right-hand side describe the amount that enters by diffusion

minus the amount that leaves by diffusion. The next three describe the same thing for

convection. The last term on the right-hand side is the amount of solute consumed by

a second-order chemical reaction, included for reasons that will become evident later.

The quantity j is the chemical rate constant of this reaction.

In turbulent flow, we expect both velocity and concentration to fluctuate. For the

smoke plume, the velocity fluctuations are the wind gusts, and the concentration fluc-

tuations can be reflected as sudden changes in odor. To rewrite this equation to include

these fluctuations, we define

c1 ¼ �c1 þ c91 ð4:3-2Þ

where c01 is the fluctuation and �c1 is the average value:

�c1 ¼
1

s

Z s

0

c1dt ð4:3-3Þ

Note that the time average of c91 is zero. By similar definitions,

vx ¼ �vx þ v9x ð4:3-4Þ

where v9x is the fluctuation, and

�vx ¼
1

s

Z s

0

vxdt ð4:3-5Þ

Again, the average of the fluctuations is zero. Definitions for v0y and v0z are similar.

We now insert these definitions into Eq. 4.3-1 and average this equation over the short

time interval s. In some cases, such a substitution is dull:

1

s

Z s

0

D
q2c1
qx2

 !
dt ¼ D

s
q2

qx2

Z s

0

c1dt ¼ D
q2�c1

qx2
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In other cases, it is intriguing:

1

s

Z s

0

jc
1
c
2
dt ¼ j

s

Z s

0

�c1 þ c91ð Þ �c2 þ c92ð Þdt

¼ j
s

Z s

0

�c1�c2 þ �c1c92 þ c91�c2 þ c91c92ð Þdt

¼ j
s

�c1�c2sþ 0þ 0þ
Z s

0

c91c92ð Þdt
� �

¼ j �c1�c2 þ c91c92
	 


ð4:3-6Þ

where the new term c01c02 represents the time average of the product of the fluctuations. In

practice, this new term may be almost as large as the term �c1�c2, but of opposite sign. In
a similar fashion,

1

s

Z s

0

q
qx

�vxc1dt ¼
q
qx

�vx�c1 þ
1

s
q
qx

Z s

0

v9xc91dt

¼ q
qx

�vx�c1 þ
q
qx

v9xc91 ð4:3-7Þ

Again, we have the prospect of coupled fluctuations, analogous to the Reynolds stresses

that are basic to theories of turbulent flow.

When we combine these averaged terms, we get the following mass balance:

q�c1
qt
¼ D

q2�c1

qx2
þ q2�c1

qy2
þ q2�c1

qz2

 !
� q

qx
�vx�c1 þ

q
qy

�vy�c1 þ
q
qz

�vz�c1

� �

� q
qx

v9xc91 þ
q
qy

v9yc91 þ
q
qz

v9zc91

� �
� j�c1�c2 � jc91c92 ð4:3-8Þ

Most of the terms are like those in Eq. 4.3-1, and they have the same physical signifi-

cance. The underlined terms are new. The last one deals with changes in reaction rate

effected by the fluctuations. The other three describe the mixing caused by turbulent

flow, that is, by the dispersion. They are the focus of this section.

We next remember the origin of the diffusion terms, that

D
q2�c1

qx2
¼ � q

qx
�j1x ð4:3-9Þ

or, more basically,

�j1x ¼ �D
q�c1
qx

ð4:3-10Þ
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By analogy, because the flux v9xc91 has a physical meaning similar to the diffusion flux �j1,
we may define

v9xc91 ¼ �Ex
q�c1
qx

ð4:3-11Þ

Definitions for other directions are made in similar ways. This always seems intellectu-

ally arrogant to me because I know that we define Ex, Ey, and Ez so that we will get

results that are mathematically parallel to diffusion. It seems a rationalization, jerry-

built on top of diffusion theory. It is all these things. It also is the best first approximation

of turbulent dispersion, the basis from which other theories proceed.

4.4 Dispersion in Laminar Flow: Taylor Dispersion

In earlier sections of this chapter we saw how components in smoke plumes and

pipelines sometimes spread much more rapidly than expected. The concentrations of

these component pulses could be described by diffusion equations but by using new

dispersion coefficients. In turbulent flow, these dispersion coefficients were the result

of coupled fluctuations of concentration and velocity.

Dispersion can also occur in laminar flow but for completely different reasons. This is

not surprising because laminar flow has no sudden concentration or velocity fluctua-

tions. In this section we discuss one example of dispersion in laminar flow. This leads to

an accurate prediction of the dispersion coefficient. This particular example is so in-

structive that it is worth including in detail.

The specific example concerns the fate of a sharp pulse of solute injected into a long,

thin tube filled with solvent flowing in laminar flow (Fig. 4.4-1). As the solute pulse

moves through the tube, it is dispersed. We want to calculate the concentration profile

resulting from this dispersion.

Because the complete analysis of this problem is complicated, we first give the results

and then the derivation. The concentration of the pulse averaged across the tube’s cross-

section will be shown to be

�c1 ¼
M=pR

2ffiffiffiffiffiffiffiffiffiffiffi
4pEt
p e

� z� vtð Þ2=4Et ð4:4-1Þ

in whichM is the total solute in the pulse,R is the tube’s radius, z is the distance along the

tube, v is the fluid’s velocity, and t is the time. This equation is a close parallel to Eq. 2.4-14,

except that the diffusion coefficient D is replaced by the dispersion coefficient E. This can

be shown explicitly to be

E ¼ Rvð Þ2

48D
ð4:4-2Þ

Note that E depends inversely on the diffusion coefficient.

This fascinating result indicates that rapid diffusion leads to small dispersion and that

slow diffusion produces large dispersion (Fig. 4.4-1). The reasons why this occurs are

sketched in Fig. 4.4-2. The initial pulse is sharp, like that shown in (a). The laminar flow
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quickly distorts the pulse, as in (b). If there is no diffusion, the distortion continues

unabated, and the pulse is widely dispersed. If, instead, there is rapid diffusion, material

in the center of the tube tends to diffuse outward, into a region of solvent that is moving

more slowly. Simultaneously, material that is left behind near the tube walls tends to

diffuse toward the center, into a region of faster flow. This radial diffusion thus inhibits

the dispersion induced by axial convection.

4.4.1 Analyzing Taylor Dispersion

To apply these ideas quantitatively, we again write a mass balance, add Fick’s

law, and manipulate the result mathematically. In this instance, I am reminded of

a cartoon by Thomas Nast, showing a virtuous soul laden with debt and responsibility,

staggering along a tortuous path. To the left of the path, the ground drops away into

ignorance; to the right, the ground disappears into chaos. In going through this next

analysis, you may feel like that poor soul, treading a very narrow path.

We begin this analysis with three assumptions:

(1) The solutions are dilute. This is assumed true even for the initial pulse.

(2) The laminar flow is unchanged by the pulse. This means that the velocity varies

only with radius.

Solute
pulse injected

Steady
solvent

flow

Solute
pulse measured

Fast diffusion

Slow diffusion

Δr
r

z

Δz

Fig. 4.4-1. Taylor dispersion. In this case, solvent is passing in steady laminar flow through

a long, thin tube. A pulse of solute is injected near the tube’s entrance. This pulse is dispersed by

the solvent flow, as shown.

(a)

r

z

(b) (c)
Fig. 4.4-2. Causes of Taylor dispersion. In Taylor dispersion, fast diffusion unexpectedly

produces little dispersion, and vice versa. The reasons for this are shown here. The initial solute

pulse (a) is deformed by flow (b). In fast-flowing regions, diffusion occurs outward, and in the

slow flow near the wall, diffusion occurs inward. Thus diffusion in the radial direction inhibits

dispersion caused by axial flow (c).
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(3) Mass transport is by radial diffusion and axial convection. Other transport

mechanisms are negligible.

The most important assumption is the last one, for it separates diffusion and convection.

It is accurate if

7:2
LD

R
2
v

 !
� 1 ð4:4-3Þ

where L is the tube length. This condition is valid for long, thin tubes.

We nowmake amass balance on the washer-shaped element shown in the inset in Fig.

4.4-1 to find

qc1
qt
¼ � 1

r

q
qr

rj1ð Þ �
q
qz

c1vzð Þ ð4:4-4Þ

The velocity vz is the laminar result and so is independent of z:

vz ¼ 2v 1� r

R

� �2� �
ð4:4-5Þ

When Eqs. 4.4-4 and 4.4-5 are combined with Fick’s law,

qc1
qt
¼ D

r

q
qr

r
qc1
qr
� 2v 1� r

R

� �2� �
qc1
qz

ð4:4-6Þ

This is subject to the conditions

t ¼ 0; all z; c1 ¼
M

pR2

 !
d zð Þ ð4:4-7Þ

t>0; r ¼ R; qc1=qr ¼ 0 ð4:4-8Þ

r ¼ 0; qc1=qr ¼ 0 ð4:4-9Þ

The initial condition is like that for the decay of a pulse.

We next define the new coordinates

g ¼ r

R
ð4:4-10Þ

f ¼ z� vtð Þ=R0 ð4:4-11Þ

In terms of these quantities, Eq. 4.4-6 becomes

D

g
q
qg

g
qc1
qg

� �
¼ 2vR

1

2
� g2

� �
qc1
qf

ð4:4-12Þ

One solution to Eq. 4.4-12 that satisfies Eq. 4.4-8 is

c1 ¼ c
1jg ¼ 0 þ

1

4

vR

D

qc1
qf

� �����
g ¼ 0

" #
g2 � 1

2
g4

� �
ð4:4-13Þ
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However, we want not the local concentration but the average across the tube:

�c1ðzÞ ¼
1

pR2

Z R

0

2prc1 r; zð Þdr

¼ 2

Z 1

0

gc1dg ð4:4-14Þ

Because of the pulse, the radial variations of concentration are small relative to the axial

ones, so

qc1
qf

_¼ q�c1
qf

ð4:4-15Þ

We now can write a new overall mass balance in terms of this average concentration:

q�c1
qt
¼ � qJ1

q fRð Þ ð4:4-16Þ

in which J1 is the averaged flux in the direction of flow

J1 ¼
1

pR2

Z R

0

2pr vz � vð Þ c1 � c1jg ¼ 0

� �
dr ð4:4-17Þ

Equation 4.4-16 can be written as

q�c1
q tv=Rð Þ ¼

q�c1
qs
¼ � q J1=vð Þ

qf

¼ � q
qf

4

Z 1

0

g
1

2
� g2

� �
c1dg

� �
ð4:4-18Þ

Combining this result with Eqs. 4.4-13 and 4.4-14, we find, after some work, that

q�c1
qs
¼ vR

48D

� �
q2�c1

qf2
ð4:4-19Þ

The quantity in parentheses is a Péclet number, giving the relative importance of axial

convection and radial diffusion. The conditions are now

s ¼ 0; all f; �c1 ¼
M

pR3 d fð Þ ð4:4-20Þ

s>0; f ¼ ‘; �c1 ¼ 0 ð4:4-21Þ

f ¼ 0;
q�c1
qf
¼ 0 ð4:4-22Þ
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Equations 4.4-19 to 4.4-22 for Taylor dispersion have exactly the same mathematical

form as those for the decay of a pulse in Section 2.4. As a result, they must have the same

solution. This solution is that given in Eq. 4.4-1.

4.4.2 Chromatography

Taylor dispersion has an important extension in chromatography. Chromatog-

raphy is a separation method often used for chemical analysis of complex mixtures. In

this analysis, a pulse of mixed solutes is injected into one end of a packed bed of

absorbent (the stationary phase) and washed through the bed with solvent (the mobile

phase). Because the solutes are absorbed to different degrees, they are washed out of the

bed (eluted) at different times.

The analysis of chromatography is usually empirical, a consequence of the normally

complex geometry of the absorbent. One special case where analysis is more exact

involves a solute pulse injected into fluid in laminar flow in a cylindrical tube, just like

the solute pulse shown in Fig. 4.4-1. Now, however, the walls of the tube are coated with

a thin film of absorbent. The injected solute is retarded by absorption in that thin layer.

Our goal is to determine the shape of the pulse eluted from this absorbent-coated

tube. To do so, we first recognize that the tube’s contents are subject to the mass

balance

qc1
qt
¼ D

1

r

q
qr

r
qc1
qr
þ q2c1

qz2

" #
� 2v 1� r

R

� �2� �
qc1
qz

ð4:4-23Þ

This mass balance is like that in Eq. 4.4-6 except that we have not neglected axial

diffusion. It is subject to the conditions:

t ¼ 0; all z; c1 ¼
M

pR2 d zð Þ ð4:4-24Þ

t>0; r ¼ 0; qc1=qr ¼ 0 ð4:4-25Þ

r ¼ R0; c91 ¼ Hc1 ð4:4-26Þ

D
0 qc91
qr
¼ D

qc1
qr

ð4:4-27Þ

where c91 and D# are the concentration and the diffusion coefficient of the solute in the

absorbent layer and H is an equilibrium constant between the tube’s contents and the

absorbent. Eqs. 4.4-24 and 4.4-25 are the same as Eqs. 4.4-7 and 4.4-9, respectively, but

Eqs. 4.4-26 and 4.4-27 are new, a reflection of the interaction between the tube’s contents

and the absorbent. Because of this interaction, we need a mass balance on the absorbent

as well:

qc91
qt
¼ D

0

r

q
qr

r
qc91
qr

ð4:4-28Þ
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Note that we are neglecting both convection and axial diffusion in the stationary absor-

bent. This mass balance in the absorbent is subject to the following conditions:

t ¼ 0; all r; c91 ¼ 0 ð4:4-29Þ

t > 0; r ¼ Rþd;
qc91
qz
¼ 0 ð4:4-30Þ

where d is the thickness of the absorbent layer.

The most useful solution to this extended form of Taylor dispersion is the limit where

the absorbed layer is thin. This limit, called the Golay equation, is

�c1 ¼
M=pR2ffiffiffiffiffiffiffiffiffiffiffiffi
4pEt0
p e

� z� vt0ð Þ2

4Et0 ð4:4-31Þ

where

t0 ¼
L

v
1þ k

0	 

ð4:4-32Þ

k
0 ¼ Hd=R ð4:4-33Þ

and where the dispersion coefficient E is now more complex

E ¼ D 1þk0
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2
vð Þ2

48D

1þ 6k
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0	 
2
1þ k

0

 !
þ d2 vð Þ2

3D
0

 !
k
0

1þ k
0

� �
ð4:4-34Þ

The physical significance of the terms in Eqs. 4.4-32 and 4.4-33 is straightforward: The

retention time t0 is the average residence time of the solute, and the capacity factor k# is
the equilibrium ratio of solute held in the absorbent to that inside the tube itself.

However, the physical significance of the dispersion coefficient E given by Eq. 4.4-34

is by far the most interesting. The first term on the right-hand side of this equation

represents the dispersion caused by axial diffusion. Note that a small diffusion coeffi-

cient contributes little to axial dispersion, and a large diffusion coefficient contributes

more. While this effect is neglected in the analysis leading to Eq. 4.4-2, it can be signif-

icant in chromatography and so is included here.

The second term on the right-hand side of Eq. 4.4-34 is due to Taylor dispersion, i.e.,

to coupled radial diffusion and axial convection. The dispersion from this source, which

is usually much larger than that caused by axial diffusion, is inversely proportional to the

diffusion coefficient. Thus a small diffusion coefficient contributes a lot to dispersion and

a large diffusion coefficient contributes less. This source of dispersion also depends on

the square of the tube’s radius, so making the tube 10 times smaller can reduce dispersion

100 times. This is why chromatography often uses absorbents with small channels.

The third term on the right-hand side of Eq. 4.4-34 represents dispersion caused by

retardation in the absorbent layer. If diffusion in the absorbent is very fast, the absorbent

won’t affect the dispersion much; if the layer is very thin (d/R <<1), the absorbent won’t

havemuch effect on dispersion either. Remember that the absorbentmay not directly affect

dispersion but will still indirectly dominate the separation if k# is much greater than one.
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Wenow can see fromEqs. 4.4-31 and 4.4-34 how chromatography can promise a good

separation and how this good separation can be compromised by dispersion. Remember

that in a chromatographic separation, a pulse of mixed solutes is injected at one end of

a packed column and then eluted out the other end by the mobile solvent phase. These

injected solutes will be eluted at different retention times t0 when their absorption is

different. The amount by which the retention times differ is largely controlled by the

difference in the capacity factors k#.
At the same time, the separation of these solutes can be compromised by dispersion. If

the dispersion coefficient E were near zero, then each solute would be eluted as a sharp

pulse. Because the dispersion coefficient is not zero, the solutes are eluted as broader

pulses. When these pulses overlap, our separation is compromised.

We can see how to reduce dispersion and aid our separation by considering the

various terms in Eq. 4.4-34. As a general rule, we can’t change the diffusion coefficients

much; we’re stuck with the physical properties of our solute and our absorbents. We can

use low velocities, which reduce Taylor dispersion and absorbent-caused dispersion. We

can use small channels – small values of R – though this often means large pressure

drops. We must recognize that even as v and R become very small, we will always have

dispersion from axial diffusion.

The cases of laminar flow in a straight tube are exceptions because we can calculate

the dispersion coefficient exactly. In some ways, they are like the friction factor for

laminar flow in a pipe, which also can be calculated explicitly. In general, we should

not expect such exact results, just as we do not expect to calculate a priori the friction

factors for laminar flow in packed beds or for turbulent flow in a pipe.We usually will be

forced to treat dispersion empirically.

4.5 Conclusions

This chapter discusses dispersion, an important effect caused by the coupling of

concentration differences and fluid flow. Dispersion frequently can be described by the

same mathematics used so effectively for diffusion; in this sense, this chapter represents

special cases of diffusion theory.

If you use the materials in this chapter, you should always remember that diffusion

and dispersion have very different physical origins and proceed at very different speeds.

Remembering this difference is especially important because some refer to both pro-

cesses as ‘‘diffusion.’’ Physicians speak of diffusion of drugs in the bloodstream, and

environmental engineers discuss diffusion of pollutants. Some of these processes may

include the narrower definition of molecular diffusion used in this book, but the process

dynamics cannot be predicted from diffusion theory alone. Be careful.

Questions for Discussion

1. What are the dimensions of the dispersion coefficient?

2. What is the difference between a diffusion coefficient and a dispersion

coefficient?

3. How will the maximum concentration in a stream vary with the distance

traveled?
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4. Why is the dispersion coefficient in turbulent flow independent of the diffusion

coefficient?

5. Why does the dispersion coefficient in laminar flow depend inversely on the

diffusion coefficient?

6. How does the dispersion coefficient vary with viscosity?

7. In a packed bed, radial dispersion is usually much larger than axial dispersion.

Why?

8. At what velocity will dispersion in turbulent flow be smallest?

9. At what velocity will dispersion in laminar flow be smallest?

10. When in chromatography a solute is absorbed, howwill its elution time change?

11. When in chromatography a solute is absorbed, how will its dispersion change?

12. What is the physical meaning of the capacity factor k0, defined by Equation

4.4-33?

13. What are the limits of the Golay equation (Equation 4.4-31) when the absorp-

tion is strong?

Problems

1. A dyeing plant is continuously discharging an aqueous waste saturated with xylene
into a river flowing at 0.16 m/sec. About 200 m downstream the maximum xylene
concentration is 130 ppm. Estimate the maximum value 2 km downstream.

2. You are pumping 1.7 kg/sec of a cold stream of monomer through 72 m of 2.5-cm-

diameter pipe to a reactor. At the entrance of the pipe, you inject 30 pulses per second
of catalyst with a small piston pump. When this stream reaches the reactor, the total
stream is quickly heated, and polymerization begins. The cold stream has a specific

gravity of 0.83 and a viscosity of 3.7 centipoises. Howwell will the catalyst be mixed by
flow through the pipe?

3. Youare studyingdispersion in a small air-lift fermentor. This fermentor is 1.6m tall, with
a 10-cm diameter. Air and pure water are fed into the bottom at superficial velocities of
11 and 0.78 cm/sec; under these conditions the gas bubbles occupy 45% of the column

volume. You continuously add 15 cm3/min of 1-M NaCl solution near the top of the
column. You find by conductance that the salt concentration halfway down the col-
umn is 2.32�10–3 M. What is the dispersion coefficient? Answer: 54 cm2/sec.

4. The best marathon in Minnesota is run by Grandma’s, a reformed brothel in Duluth.

In the 1981 race, 3,202 persons finished. One-quarter of the runners finished within
3 hr 6 min and half within 3 hr 26 min. If I ran the race in 2 hr 54 min 42 sec, what place
did I come in? Answer: 460 by experiment.

5. A handful of pheromone-impregnated pellets are being used to give an overall release
of 1.3 mol/hr into a 15-km/hr wind blowing in the z direction. In this case, the pher-

omone concentration is given by

c1 ¼
S

2pEz
e
�vr2=4Ez

where r is the width of release. Gypsy moths respond to this release over an area 25 km
long, with a maximum width of 8 km. What is the dispersion coefficient E of the
pheromone?
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6. Harvest ants inform each other of danger by releasing a pulse of pheromone. The

dispersion of this pheromone can be modeled using results like those in this chapter.
For harvest ants, the maximum distance over which this chemical alarm is effective is
6 cm; this occurs at a time of 32 sec. The alarm is no longer effective after 35 sec [E. O.

Wilson, Psyche, 65, 41 (1958)]. Assume that the pheromone is dispersed in a hemi-
spherical volume, so its concentration is

c1 ¼
2M

ð4pEtÞ3=2
e
�r2=4Et

Also assume that neighboring ants respond only when c1 exceeds c10. Then show that

R ¼ 6Dt ln
tfinal
t

� �h i1=2
whereR is the radius of communication at time t, and tfinal is the time when the signal is

ignored. Discuss how R varies with t. Estimate the dispersion coefficient E from the
values given, and compare it with your guess of a diffusion coefficient. Answer: E ¼ 2
cm2/sec.

7. In 1905, five muskrats escaped in Bohemia. These animals quickly spread over Europe
as shown below [J. G. Skellam, Biometrika, 38, 196 (1951)]:

Show that these results are consistent with a two-dimensional dispersion model

c1 ¼
M0

4pET
e
at� r

2
=4Et

where

growth rate
ofM

� �
¼ aM

E is the dispersion coefficient, and M0 is the original number of animals.

Year Area inhabited

1905 0

1909 50

1911 120

1915 300

1920 670

1927 1,720

Breslau

ViennaMunich

1927
1920
1915
1911
1909
1905

x
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8. Tomeasure backmixing in a tubular packed-bed chemical reactor, you inject a pulse of

carbon dioxide into nitrogen flowing through the reactor and measure the carbon
dioxide concentration in the effluent. The effluent concentration fits the equation

c

c0
¼ e
�ðt � 16 minÞ2

32 min

The reactor is 3.3 meters long. What is the dispersion coefficient?

9. Glacial moraines can be dated by their shape, described by the continuity equation:

qz
qt
¼ � qq

qx

where z is the vertical height of the moraine, x is the horizontal axis, and q is the soil

flux [B. Hallet and J. Putkonen, Science, 265, 937 (1994)]. The soil flux is in turn given
by

q ¼ �E qz
qx

whereE is the dispersion coefficient. For slopes a fewmeters tall,E is typically between

10�4 and 10�2 m2/yr. For taller slopes, however, E varies with distance:

E ¼ A þ Bx

whereA andB are 10�2 m2/yr and 10�4 m/yr, respectively. Use these values to estimate

how the shape of a moraine, which is originally a step 100m high, changes over time.
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PART II

Diffusion Coefficients





CHAPTER 5

Values of Diffusion Coefficients

Until now, we have treated the diffusion coefficient as a proportionality con-

stant, the unknown parameter appearing in Fick’s law. We have found mass fluxes and

concentration profiles in a broad spectrum of situations using this law. Our answers have

always contained the diffusion coefficient as an adjustable parameter.

Nowwe want to calculate values of the flux and the concentration profile. For this, we

need to know the diffusion coefficients in these particular situations. We must depend

largely on experimental measurements of these coefficients, because no universal theory

permits their accurate a-priori calculation. Unfortunately, the experimental measure-

ments are unusually difficult to make, and the quality of the results is variable. Accord-

ingly, we must be able to evaluate how good these measurements are.

Before we begin, we should list the guidelines that tend to stick in everyone’s mind.

Diffusion coefficients in gases, which can be estimated theoretically, are about 0.1 cm2/

sec. Diffusion coefficients in liquids, which cannot be as reliably estimated, cluster

around 10–5 cm2/sec. Diffusion coefficients in solids are slower still, 10–30 cm2/sec, and

they vary strongly with temperature. Diffusion coefficients in polymers and glasses lie

between liquid and solid values, say about 10–8 cm2/sec, and these values can be strong

functions of solute concentration.

The accuracy and origins of these guidelines are explored in this chapter. Gases,

liquids, solids, and polymers are discussed in Sections 5.1 through 5.4, respectively. In

these sections we give a selection of typical values, as well as one common method of

estimating these values. After we sketch the sources of these estimations, we explore

other concerns, like the pressure dependence of diffusion in gases or the concentration

variations of diffusion in liquids. Section 5.5 summarizes Brownian motion, showing

how random walks are related to diffusion. Section 5.6 discusses the common experi-

mental methods of measuring diffusion coefficients.

5.1 Diffusion Coefficients in Gases

Diffusion coefficients in gases are illustrated by the values in Table 5.1-1. At one

atmosphere and near room temperature, these values lie between 0.1 and 1 cm2/sec.

Indeed, given the variation of the chemistry, the values vary remarkably little. To a first

approximation, the coefficients are inversely proportional to pressure, so doubling the

pressure cuts the diffusion coefficient in half. They vary with the 1.5 to 1.8 power of the

temperature, so an increase of 300K triples the coefficients. They vary in a more com-

plicated fashion with factors like molecular weight.

The physical significance of diffusion coefficients of this size is best illustrated by

remembering unsteady-state diffusion problems like the semi-infinite slab discussed in

Chapter 2. In these problems, the key experimental variable is z2/4Dt.When this variable
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Table 5.1-1 Experimental values of diffusion coefficients in gases at one atmosphere

Gas pair Temperature (K) Diffusion coefficient
(cm2/sec)

Air–benzene 298.2 0.096
Air–CH4 282.0 0.196
Air–C2H5OH 273.0 0.102
Air–CO2 282.0 0.148
Air–H2 282.0 0.710
Air–H2O 289.1 0.282

298.2 0.260
312.6 0.277
333.2 0.305

Air–He 282.0 0.658
Air–n-hexane 294.0 0.080
Air–toluene 299.1 0.086
Air–aniline 299.1 0.074
Air–2-propanol 299.1 0.099
CH4–He 298.0 0.675
CH4–H2 298.0 0.726
CH4–H2O 307.7 0.292
CO–N2 295.8 0.212
12CO–14CO 373.0 0.323
CO–H2 295.6 0.743
CO–He 295.6 0.702
CO2–H2 298.2 0.646
CO2–N2 298.2 0.165
CO2–O2 296.0 0.156
CO2–He 298.4 0.597
CO2–CO 315.4 0.185
CO2–H2O 307.4 0.202
CO2–SO2 263.0 0.064
12CO2–

14CO2 312.8 0.125
CO2–propane 298.1 0.087
H2–N2 297.2 0.779
H2–O2 316.0 0.891
H2–He 317.0 1.706
H2–Ar 317.0 0.902
H2–Xe 341.2 0.751
H2–SO2 285.5 0.525
H2–H2O 307.1 0.915
H2–NH3 298.0 0.783
H2–ethane 298.0 0.537
H2–n-hexane 288.7 0.290
H2–cyclohexane 288.6 0.319
H2–benzene 311.3 0.404
N2–O2 316.0 0.230

293.2 0.220
N2–He 317.0 0.794
N2–Ar 316.0 0.216
N2–NH3 298.0 0.230
N2–H2O 298.2 0.293
N2–SO2 263.0 0.104
N2–ethane 298.0 0.148

(Continued )
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equals unity, the diffusion process has proceeded significantly. In other words, where z2

equals 4Dt, the diffusion has penetrated a distance z in the time t.

In gases, this penetration distance is much larger than in other phases. For example,

the diffusion coefficient of water vapor diffusing in air is about 0.3 cm2/sec. In 1 second,

the diffusion will penetrate 0.5 cm; in 1 minute, 4 cm; and in 1 hour, 30 cm.

5.1.1 Gaseous Diffusion Coefficients From the Chapman–Enskog Theory

The most common method for theoretical estimation of gaseous diffusion is

that developed independently by Chapman and by Enskog (Chapman and Cowling,

1970). This theory, accurate to an average of about eight percent, leads to the equation

D ¼ 1:86 � 10�3T 3=2ð1= ~M1 þ 1= ~M2Þ1=2

pr2
12X

ð5:1-1Þ

in whichD is the diffusion coefficient measured in cm2/sec, T is the absolute temperature

in Kelvin, p is the pressure in atmospheres, and the ~Mi are the molecular weights.

Table 5.1-1 (Continued)

Gas pair Temperature (K) Diffusion coefficient
(cm2/sec)

N2–n-butane 298.0 0.096
N2–isobutane 298.0 0.090
N2–n-hexane 288.6 0.076
N2–n-octane 303.1 0.073
N2–2,2,4-
trimethylpentane

303.3 0.071

N2–benzene 311.3 0.102
O2–He (He trace) 298.2 0.737
(O2–trace) 298.2 0.718
O2–He 317.0 0.822
O2–H2O 308.1 0.282
O2–CCl4 296.0 0.075
O2–benzene 311.3 0.101
O2–n-hexane 288.6 0.075
O2–n-octane 303.1 0.071
O2–2,2,4-
trimethylpentane

303.0 0.071

He–Ar 298.0 0.742
He–H2O 298.2 0.908
He–NH3 297.1 0.842
Ar–Ne 303.0 0.327
Ar–Kr 303.0 0.140
Ar–Xe 329.9 0.137
Ne–Kr 273.0 0.223
Ethylene–H2O 307.8 0.204

Source:Data fromHirschfelder et al. (1954),Marrero andMason (1972), and Poling et al. (2001).
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The quantities r12 and X are molecular properties characteristic of the detailed the-

ory. The collision diameter r12, given in angstroms, is the arithmetic average of the two

species present:

r12 ¼
1

2
ðr1 þ r2Þ ð5:1-2Þ

Values of r1 and r2 are listed in Table 5.1-2. The dimensionless quantity X is more

complex, but usually of order one. Its detailed calculation depends on an integration

of the interaction between the two species. This interaction is most frequently described

by the Lennard–Jones 12-6 potential. The resulting integral varies with the temperature

and the energy of interaction. This energy e12 is a geometric average of contributions

from the two species:

e12 ¼
ffiffiffiffiffiffiffiffi
e1e2
p ð5:1-3Þ

Values of the e12/kB are also given in Table 5.1-2. Once e12 is known, X can be found as

a function of kBT/e12 using the values in Table 5.1-3. The calculation of the diffusion

coefficients now becomes straightforward if the ri and the ei are known.

5.1.2 The Nature of Kinetic Theories

The results of the Chapman–Enskog theory are based on detailed analyses of

molecular motion in dilute gases. These analyses depend on the assumption that molec-

ular interactions involve collisions between only two molecules at a time (Fig. 5.1-1).

Such interactions are much simpler than the lattice interactions in solids or the less

regular and still more complex interactions in liquids.

The nature of theories of this type is best illustrated for a gas of rigid spheres of very

small molecular dimensions (Cunningham and Williams, 1980). For such a theory, the

diffusion flux has the following form:

n1 ¼ �
1

3
�vl
dc1
dz
þ c1v

0 ð5:1-4Þ

The second term on the right represents convection and the first indicates diffusion. The

diffusion term has three parts: �v, the average molecular velocity; l, the mean free path of

the molecules; and dc1/dz, the concentration gradient. This term makes physical sense:

the flux will certainly increase if either the velocity of the molecules or the average

distance they travel increases.

If we compare Eq. 5.1-4 with Fick’s law, we find

D ¼ 1

3
�vl ð5:1-5Þ

Both the average velocity �v and the mean free path l of the rigid spheres can be calculated.

The average velocity is

�v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
ð5:1-6Þ
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Table 5.1-2 Lennard–Jones potential parameters found from viscosities

Substance r(Å) e12/kB(K)

Ar Argon 3.542 93.3
He Helium 2.551 10.2
Kr Krypton 3.655 178.9
Ne Neon 2.820 32.8
Xe Xenon 4.047 231.0
Air Air 3.711 78.6
Br2 Bromine 4.296 507.9
CCl4 Carbon tetrachloride 5.947 322.7
CHCl3 Chloroform 5.389 340.2
CH2Cl2 Methylene chloride 4.898 356.3
CH3Cl Methyl chloride 4.182 350.0
CH3OH Methanol 3.626 481.8
CH4 Methane 3.758 148.6
CO Carbon monoxide 3.690 91.7
CO2 Carbon dioxide 3.941 195.2
CS2 Carbon disulfide 4.483 467.0
C2H2 Acetylene 4.033 231.8
C2H4 Ethylene 4.163 224.7
C2H6 Ethane 4.443 215.7
C2H5Cl Ethyl chloride 4.898 300.0
C2H5OH Ethanol 4.530 362.6
CH3OCH3 Methyl ether 4.307 395.0
CH2CHCH3 Propylene 4.678 298.9
C3H8 Propane 5.118 237.1
n-C3H7OH n-Propyl alcohol 4.549 576.7
CH3COCH3 Acetone 4.600 560.2
n-C4H10 n-Butane 4.687 531.4
iso-C4H10 Isobutane 5.278 330.1
n-C5H12 n-Pentane 5.784 341.1
C6H6 Benzene 5.349 412.3
C6H12 Cyclohexane 6.182 297.1
n-C6H14 n-Hexane 5.949 399.3
Cl2 Chlorine 4.217 316.0
HBr Hydrogen bromide 3.353 449.0
HCN Hydrogen cyanide 3.630 569.1
HCl Hydrogen chloride 3.339 344.7
HF Hydrogen fluoride 3.148 330.0
HI Hydrogen iodide 4.211 288.7
H2 Hydrogen 2.827 59.7
H2O Water 2.641 809.1
H2S Hydrogen sulfide 3.623 301.1
Hg Mercury 2.969 750.0
NH3 Ammonia 2.900 558.3
NO Nitric oxide 3.492 116.7
N2 Nitrogen 3.798 71.4
N2O Nitrous oxide 3.828 232.4
O2 Oxygen 3.467 106.7
SO2 Sulfur dioxide 4.112 335.4

Note: Data from Hirschfelder et al. (1954).
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in which m is the molecular mass. The mean free path l is

l ¼ kBT=p

p
4 r2
� � ð5:1-7Þ

in which r is the diameter of the spheres, and p/kBT is the concentration of molecules per

volume. Combining, we find

D ¼ 4
ffiffiffi
2
p

3p

� �
kBTð Þ3=2

m
1=2

pr2
ð5:1-8Þ

When we compare this result with Eq. 5.1-1, we see that the rigid-sphere theory predicts

essentially the same dependence on temperature, pressure, molecular weight, and mo-

lecular size. The Chapman–Enskog theory is an improvement over the simple theory

because the details of the collisions are explicitly included.

Table 5.1-3 The collision integral X

kBT/e12 X kBT/e12 X kBT/e12 X

0.30 2.662 1.65 1.153 4.0 0.8836
0.40 2.318 1.75 1.128 4.2 0.8740
0.50 2.066 1.85 1.105 4.4 0.8652
0.60 1.877 1.95 1.084 4.6 0.8568
0.70 1.729 2.1 1.057 4.8 0.8492
0.80 1.612 2.3 1.026 5.0 0.8422
0.90 1.517 2.5 0.9996 7 0.7896
1.00 1.439 2.7 0.9770 9 0.7556
1.10 1.375 2.9 0.9576 20 0.6640
1.30 1.273 3.3 0.9256 60 0.5596
1.50 1.198 3.7 0.8998 100 0.5130
1.60 1.167 3.9 0.8888 300 0.4360

Source: Data from Hirschfelder et al. (1954).

Fig. 5.1-1. Molecular motion in a dilute gas. In a gas, molecular collisions occur at low density,

and so may be treated as bimolecular. This simplicity facilitates development of good kinetic

theories for diffusion.
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5.1.3 Gaseous Diffusion Coefficients From Empirical Correlations

Predictions from the Chapman–Enskog kinetic theory tend to be limited in two

ways. First, the theory requires estimates of r12 and e12; such estimates are not available

for all gases. Second, the theory assumes nonpolar gases, and this excludes compounds

like water and ammonia. These interactions depend on replacing the Lennard–Jones

potential used to characterize the collision with more exact potentials. Such replacement

is often complex.

Instead, many authors have developed empirical relations. One effective example

(Fuller, Schettler, and Giddings, 1966) is

D ¼ 10
�3 T

1:75ð1= ~M1 þ 1= ~M2Þ1=2

p +iVi1

� �1=3þ +iVi2

� �1=3h i2 ð5:1-9Þ

in which T is in Kelvin, p is in atmospheres, and the Vij are the volumes of parts of the

molecule j, tabulated in Table 5.1-4. This correlation is about as successful as Eq. 5.1-1.

To me, the impressive feature is the similarity between the two equations: the pressure

and molecular-weight dependence are unchanged. The temperature dependence is not

much different when we remember that X is a function of temperature. The term for

diffusion volumes here parallels the term in r2. It is not surprising that the two equations

have similar success.

5.1.4 Gas Diffusion at High Pressure

The equations given earlier in this chapter allow prediction of diffusion coef-

ficients in dilute gases to within an average of eight percent. These predictions, which are

about twice as accurate as those for liquids, are often hailed as a final answer. However,

Table 5.1-4 Atomic diffusion volumes for use in Eq. 5.1-9

Atomic and structural diffusion-
volume increments Vij

Diffusion volumes for simple
molecules RVij

C 16.5 H2 7.07
H 1.98 He 2.88
O 5.48 N2 17.9
(N) 5.69 O2 16.6
(Cl) 19.5 Air 20.1
(S) 17.0 Ar 16.1
Aromatic ring –20.2 Kr 22.8
Heterocyclic ring –20.2 CO 18.9

CO2 26.9
N2O 35.9
NH3 14.9
H2O 12.7
(Cl2) 37.7
(SO2) 41.1

Note: Parentheses indicate that the value is uncertain.

Source: Adapted from Fuller, Schettler, and Giddings (1966).
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I have the nagging suspicion that their success is promulgated by those who have worked

hard on these methods or who have become intimidated by the intellectual edifice erected

by Maxwell, Enskog, and others. In fact, although these equations agree with experiment

at low pressures, they are much less successful at high pressures. At higher pressures,

few binary data are available; for self-diffusion, a sensible empirical suggestion is

pD ¼ p0D0 ð5:1-10Þ

in which the subscript 0 indicates values at low pressure at the same temperature. The

inverse relation between diffusion and pressure, consistent with Eq. 5.1-1, is a good

guideline.

Some more elaborate theories have attempted to correlate the product (pD) with the

reduced pressure and temperature, that is, with the pressure and temperature relative to

values at the critical point. Such a correlation, implicitly based on the theory of corre-

sponding states, can be applied to transport phenomena by assuming that thermody-

namic variables can be defined in nonequilibrium situations. We will make such an

assumption in the irreversible thermodynamics arguments in Section 7.2. In the current

case, however, this effort at correlation suggests significant corrections only when the

reduced temperature is less than 1.4. Under these circumstances, Fick’s law breaks down

because diffusion occurs not as single solute molecules but as a cluster of solute mole-

cules, as described in Section 6.3. In the face of this complexity, I would use Equation

5.1-10 with confidence when the temperature divided by the critical temperature is above

1.4 and make experiments at lower temperatures.

Some other aspects of gaseous diffusion remain unexplored. For example, diffusion

of molecules of very different sizes, like hydrogen and high molecular weight n-alkanes,

has not been sufficiently studied. Concentration-dependent diffusion in gases, al-

though a common phenomenon, has been largely ignored. These aspects deserve careful

inspection.

Example 5.1-1: Estimating diffusion with the Chapman–Enskog theory Calculate the

diffusion coefficient of argon in hydrogen at 1 atmosphere and 175 �C. The experimental

value is 1.76 cm2/sec.

Solution We first need to find r12 and e12. From the values in Table 5.1-2,

r12 ¼
1

2
ðr1 þ r2Þ

¼ 1

2
ð3:54þ 2:83Þ ¼ 3:18Å

and

e12
kBT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1=kBÞðe2=kBÞ

p
=T

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
124ð38:0Þ

p
448

¼ 0:166
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From Table 5.1-3, we find that X is 0.81. Thus, from Eq. 5.1-1,

D ¼ 1:86 � 10�3T 3=2ð1= ~M1 þ 1= ~M2Þ1=2

pr2
12X

¼ 1:86 � 10�3ð448Þ3=2ð1=39:9þ 1=2:02Þ1=2

ð1Þð3:18Þ2ð0:81Þ
¼ 1:55 cm

2
=sec

The theoretical prediction is about ten percent below the experimental observation.

Example 5.1-2: Comparing two estimates of gas diffusion Use the Chapman–Enskog

theory and the empirical correlation in Equation 5.1-9 to estimate the diffusion of

hydrogen in nitrogen at 21 �C and 2 atmospheres. The experimental value is 0.38 cm2/sec.

Solution For the Chapman–Enskog theory, the key parameters are

r12 ¼
1

2
ðrH2

þ rN2
Þ ¼ 1

2
ð2:92þ 3:68Þ ¼ 3:30 Å

and

e12
kBT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeH2

=kBÞðeN2
=kBÞ

p
T

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð38:0Þð91:5Þ

p
294

¼ 0:201

This second value allows interpolation from Table 5.1-3:

X ¼ 0:842

Combining these results with Eq. 5.1-1 gives

D ¼ 1:86 � 10�3T 3=2ð1= ~MH2
þ 1= ~MN2

Þ1=2

pr2X

¼ 1:86 � 10�3ð294Þ3=2ð1=2:02þ 1=28:0Þ1=2

2ð3:30Þ2ð0:842Þ
¼ 0:37 cm

2
=sec

The value is about three percent low, a very solid estimate.

For the Fuller correlation, the appropriate volumes are found from Table 5.1-4. The

results can then be combined with Eq. 5.1-9:

D ¼ 10
�3
T
1:75ð1= ~MH2

þ 1= ~MN2
Þ1=2

p VH2
ð Þ1=3þ VN2

ð Þ1=3
h i2

¼ 10
�3ð294Þ1:75ð1=2:02þ 1=28:0Þ1=2

2 7:07ð Þ1=3þ 17:9ð Þ1=3
h i2 ¼ 0:37 cm

2
=sec

Again, the error is about three percent.

5.1 / Diffusion Coefficients in Gases 125



Example 5.1-3: Diffusion in supercritical carbon dioxide Carbon dioxide, above its crit-

ical point, may become an important industrial solvent because it is cheap, nontoxic, and

nonexplosive. Estimate the diffusion of iodine in carbon dioxide at 0 �C and 33 atmos-

pheres. The diffusion coefficient measured under these conditions is 7 � 10–4 cm2/sec.

Solution The binary diffusion coefficient at 0 �C and 1 atmosphere can be

found from Eq. 5.1-1:

D0¼ 0:043 cm
2
=sec

From Eq. 5.1-10,

D ¼ 0:43 cm
2
=sec

1 atm

33 atm

� �
¼ 13 � 10�4 cm2

=sec

This is as accurate as we have any right to expect, especially because the critical point for

carbon dioxide is close, at 30 �C and 72 atmospheres.

5.2 Diffusion Coefficients in Liquids

Diffusion coefficients in liquids are exemplified by the values given in Tables 5.2-1

and 5.2-2. Most of these values fall close to 10–5 cm2/sec. This is true for common organic

solvents, mercury, and even molten iron. Exceptions occur for high molecular-weight

solutes like albumin and polystyrene, where diffusion can be 100 times slower. Actually,

the range of these values is remarkably small. At 25 �C, almost none are faster than 10 � 10–5
cm2/sec, and those significantly below 10–5 cm2/sec are macromolecules, like hemoglobin.

The reasons for this narrow range is that the viscosity of simple liquids like water and

hexane varies little, and that diffusion coefficients are only a weak function of solute size.

Diffusion coefficients in liquids are about ten thousand times slower than those in

dilute gases. To see what this means, we again calculate the penetration distance
ffiffiffiffiffiffiffi
4D
p

t,

which was the distance we found central to unsteady diffusion. As an example, consider

benzene diffusing into cyclohexane with a diffusion coefficient of about 2 � 10–5 cm2/sec.

At time zero, we bring the benzene and cyclohexane into contact. After 1 second, the

diffusion has penetrated 0.004 cm, compared with 0.3 cm for gases; after 1 minute, the

penetration is 0.03 cm, compared with 4 cm; after 1 hour, it is 0.3 cm, compared with 30 cm.

The sloth characteristic liquid diffusion means that diffusion often limits the overall

rate of processes occurring in liquids. In chemistry, diffusion limits the rate of acid–base

reactions; in physiology, diffusion limits the rate of digestion; in metallurgy, diffusion can

control the rate of surface corrosion; in the chemical industry, diffusion is responsible for

the rates of liquid–liquid extractions. Diffusion in liquids is important because it is slow.

5.2.1 Liquid Diffusion Coefficients From the Stokes–Einstein Equation

The most common basis for estimating diffusion coefficients in liquids is the

Stokes–Einstein equation. Coefficients calculated from this equation are accurate to
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only about twenty percent (Poling et al., 2001). Nonetheless, this equation remains the

standard against which alternative correlations are judged.

The Stokes–Einstein equation is

D ¼ kBT

f
¼ kBT

6plR0
ð5:2-1Þ

where f is the friction coefficient of the solute, kB is Boltzmann’s constant, l is the solvent

viscosity, and R0 is the solute radius. The temperature variation suggested by this equa-

tion is apparently correct, but it is much smaller than effects of solvent viscosity and

solute radius. A discussion of these larger effects follows.

The diffusion coefficient varies inversely with viscosity when the ratio of solute to

solvent radius exceeds five. This behavior is reassuring because the Stokes–Einstein

equation is derived by assuming a rigid solute sphere diffusing in a continuum of solvent.

Thus, for a large solute in a small solvent, Eq. 5.2-1 seems correct.

Table 5.2-1 Diffusion coefficients at infinite dilution in water at 25 �C

Solute D(�10–5 cm2/sec)

Acetic acid 1.21
Acetone 1.16
Ammonia 1.64
Argon 2.00
Benzene 1.02
Benzoic acid 1.00
Bromine 1.18
Carbon dioxide 1.92
Carbon monoxide 2.03
Chlorine 1.25
Ethane 1.20
Ethanol 0.84
Ethylene 1.87
Glycine 1.06
Helium 6.28
Hemoglobin 0.069
Hydrogen 4.50
Hydrogen sulfide 1.41
Methane 1.49
Methanol 0.84
n-Butanol 0.77
Nitrogen 1.88
Oxygen 2.10
Ovalbumin 0.078
Propane 0.97
Sucrose (0.5228 – 0.265c1)

a

Urea (1:380� 0:0782c1 þ 0:00464c21)
a

Urease 0.035
Valine 0.83

Note: aKnown to very high accuracy, and so often used for calibration; c1 is in moles per liter.

Source: Data from Cussler (1976) and Poling et al. (2001).
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When the solute radius is less than five times that of the solvent, Eq. 5.2-1 breaks

down (Chen et al., 1981). This failure becomes worse as the solute size becomes smaller

and smaller. Errors are especially large in high-viscosity solvents; the diffusion seems to

vary with a smaller power of viscosity often around (–0.7). In extremely high-viscosity

materials, diffusion becomes independent of viscosity: the diffusion of sugar in jello is

very nearly equal to the diffusion of sugar in water.

The reason for this altered viscosity dependence is that viscosity often depends onmuch

longer range interactions than diffusion. For example, in jello, the polymeric collagen

forms hydrogen bonds that form a three-dimensional elastic network, which of course has

very high viscosity. However, sugar and salts diffusing through this network are much

smaller than the distances between these hydrogen bonds, so these solutes behave just as if

they are diffusing through water. As evidence of this, the concentration dependence of the

diffusion coefficient of potassium chloride diffusing inwater–polyethylene glycolmixtures

is exactly the same as that in water. Diffusion reflects short-range interactions.

Table 5.2-2 Diffusion coefficients at infinite dilution nonaqueous liquids

Solvent Solutea D(�10–5 cm2/sec)

Chloroform Acetone 2.35
Benzene 2.89
Ethyl alcohol (15 �C) 2.20
Ethyl ether 2.14
Ethyl acetate 2.02

Benzene Acetic acid 2.09
Benzoic acid 1.38
Cyclohexane 2.09
Ethyl alcohol (15 �C) 2.25
n-Heptane 2.10
Oxygen (29.6 �C) 2.89
Toluene 1.85

Acetone Acetic acid 3.31
Benzoic acid 2.62
Nitrobenzene (20 �C) 2.94
Water 4.56

n-Heptane Carbon tetrachloride 3.70
Dodecane 2.73
n-Hexane 4.21
Propane 4.87
Toluene 4.21

Ethanol Benzene 1.81
Iodine 1.32
Oxygen (29.6 �C) 2.64
Water 1.24
Carbon tetrachloride 1.50

n-Butanol Benzene 0.99
p-Dichlorobenzene 0.82
Propane 1.57
Water 0.56

n-Heptane Benzene 3.40

Note: aTemperature 25 �C except as indicated.

Source: Data from Poling et al. (2001).
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As the standard, the Stokes–Einstein equation has often been extended and adapted.

Two adaptations deserve special mention. The first is for small solutes. For this case, the

factor 6p in Eq. 5.2-1 is often replaced by a factor of 4p or of two. The substitution of 4p
can be rationalized onmechanical grounds as signifying solvent slipping past the surface

of the solute molecule (Sutherland, 1905). The factor of two can be supported with the

theory of absolute reaction rates (Glasstone et al., 1941). Neither substitution always

works.

The second adaptation of the Stokes–Einstein equation is its use to estimate the size

and shape of proteins in dilute aqueous solution. Unfortunately, these estimates are

compromised in two ways. First, if the solute is hydrated, then the radius found will

refer to the solute–water complex, not to the solute itself. Second, if the solute is not

spherical, then the radius R0 will represent some average shape. Specifically, if the solute

is a prolate (football-shaped) ellipsoid, then (Perrin, 1936)

D
prolate
ellipsoid

� �
¼ kBT

6pl
ða2 � b

2Þ1=2

ln
aþða2 � b

2Þ1=2

b

 !
266664

377775
ð5:2-2Þ

in which a and b are the major and minor axes of the ellipsoid. For an oblate (disc-

shaped) ellipsoid,

D
oblate
ellipsoid

� �
¼ kBT

6pl
ða2 � b

2Þ1=2

tan
�1 a

2 � b
2

b
2

 !1=2
24 35

26666664

37777775

ð5:2-3Þ

These relations reduce to Eq. 5.2-1 for spheres when a equals b.

These diffusion coefficients are for normal translational diffusion, the subject of this

book. Ellipsoids can also rotate, a process described by a rotational diffusion coefficient.

This rotation implies a conservation equation like

qc1
qt
¼ Drot

q2c1
qh2

ð5:2-4Þ

where c1 is the concentration of solutes with a particular angular orientation h, an
orientation due, for example, to shear or due to an electrostatic potential. Note

that the new rotational diffusion coefficient Drot appearing in this equation has the

dimensions of reciprocal time, not of (length)2 per time, the normal units for transla-

tional diffusion. For a prolate ellipsoid with a� b, the rotational diffusion coefficient is

Drot ¼
3 ln 2a

b

� �
kBT

8pga3
ð5:2-5Þ
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For an oblate ellipsoid with a� b, it is

Drot ¼
3 kBT

32gb3
ð5:2-6Þ

These results are sometimes used to infer the shape of proteins in solution.

5.2.2 Deriving the Stokes–Einstein Equation

To predict diffusion in liquids, we do not account for molecular motion as in the

theories used for gases. Instead, we idealize our system as a single rigid solute sphere

moving slowly through a continuum of solvent (Fig. 5.2-1). We expect that the net

velocity of this sphere will be proportional to the force acting on it:

force ¼ f v1 ð5:2-4Þ

where f is defined as the friction coefficient. Because the sphere moves slowly, this

friction coefficient can be found from Stokes’ law (first published in 1850) to be

6plR0. The force was taken by Einstein to be the negative of the chemical potential

gradient (Einstein, 1905). Thus Eq. 5.2-4 can be rewritten:

� $l1 ¼ ð6plR0Þv1 ð5:2-5Þ

The chemical potential gradient, defined per molecule (not per mole), is often described

as a ‘‘virtual force,’’ a thermodynamic parallel to mechanical or electrostatic forces.

When the solution is dilute, we can assume that it is ideal:

l1 ¼ l0
1 þ kBT ln x1 ¼ l0

1þkBT ln
c1

c1 þ c2
¼: l0

1 þ kBT ln c1 � kBT ln c2 ð5:2-6Þ

In this result, we recognize that solvent concentration c2 far exceeds solute concentration

c1, so c2 is approximately constant. The gradient is then

$l1 ¼
kBT

c1
$c1 ð5:2-7Þ

Combining this with Eq. 5.2-5, we find

j1 ¼
:

n1 ¼ c1v1 ¼ �
kBT

6plR0
$c1 ð5:2-8Þ

Comparison with Fick’s law produces the Stokes–Einstein equation, Eq. 5.2-1.

The interesting assumption in this analysis is the way in which the velocity or flux is

assumed to vary with the chemical potential gradient. This type of assumption is made

frequently in studies of diffusion. It is central to the development of irreversible ther-

modynamics, and so it is at the core of the theories of multicomponent diffusion

described in Chapter 7. Interestingly, it is known experimentally to be wrong in the

highly nonideal solutions near critical points (see Section 6.3).
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Because the Stokes–Einstein equation is limited to cases in which the solute is larger

than the solvent, many investigators have developed correlations for cases in which

solute and solvent are similar in size. The impressive aspect of these efforts is their

similarly to the Stokes–Einstein equation. Almost all show the same temperature and

viscosity dependence. All authors claim marginally better accuracy, but for such in-

creased complexity that their results are rarely used. The exception is the Wilke–Chang

correlation (1955), which predicts

D ¼ 7:4 � 10�8 / ~M2

� �1=2
T

l �V 0:6
1

ð5:2-9Þ

where D is the diffusion coefficient of solute ‘‘1,’’ in cm2/sec; ~M2 is the molecular weight

of solvent ‘‘2,’’ in daltons;T is the temperature, inK; l is the viscosity, in centipoises; and
~V1 is the molar volume of the solute, in cm3/mol. The empirical parameter / is 1 for most

organic solvents, 1.5 for alcohols, and 2.6 for water. This result is widely used for fast

estimates.

At this point, the common conclusion is to bemoan the accuracy of the predictions in

liquids and to praise the accuracy of those in gases. In fact, the predictions in liquids are

only twice as inaccurate as those in gases, even though the complexity of solute–solvent

interactions in liquids is much greater. As a result, I do not share the frequent despair

about these estimates, but feel that care and good judgment can lead to success.

5.2.3 Diffusion in Concentrated Solutions

The Stokes–Einstein equation and its empirical extensions are limited to

infinitely dilute solutions. In fact, the diffusion coefficient in liquids varies with solute

concentration, frequently by several hundred percent and sometimes with a maximum

(a)  Actual situation

Stokes–Einstein model(b)

Fig. 5.2-1. Molecular motion in a liquid. In contrast with a gas, molecular motion in a liquid

takes place at high density (a). Diffusion is complex, involving many interactions and vacancies.

The available kinetic theories are good, but complex. To avoid this, many use the simple model

of a solute sphere in a solvent continuum (b).
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andminimum.We need a means of estimating these variations. Such estimations usually

involve two steps. First, we assume that Eq. 5.2-4 can be written

� v1 ¼
1

f
$l1 ¼

D0

RT
$l1 ð5:2-10Þ

where D0 is a new transport coefficient. For a nonideal solution,

l1 ¼ l0
1 þ kBT ln c1c1 ð5:2-11Þ

where c1 is an activity coefficient. Combining these two equations, we find

n1 ¼: j1 ¼
:
c1v1 ¼ � D0 1þ q ln c1

q ln c1

� �	 

$c1 ð5:2-12Þ

The quantity in brackets is the diffusion coefficient. This first step is a restatement of the

idea that the velocity of diffusion varies with the gradient of chemical potential.

The second step consists of empirical estimates of the quantity D0. These estimates are

based on diffusion coefficients in dilute solutions.One of themost frequently cited estimates,

used by Darken (1948), Hartley and Crank (1949), and others, is the arithmetic average:

D0 ¼ x1D0ðx1 ¼ 1Þ þ x2D0ðx2 ¼ 1Þ ð5:2-13Þ

Another estimate, suggested by Vignes (1966) is the geometric average:

D0 ¼ ½D0ðx1 ¼ 1Þ�x1 ½D0ðx2 ¼ 1Þ�x2 ð5:2-14Þ

The geometric average seems more successful than the arithmetic one.

I am not convinced that these efforts to correct diffusion coefficients with activity

coefficients are correct. I agree that some form of correction is indicated, and I

admit that much of the correction must be empirical. However, I have found that the

corrections suggested by Eq. 5.2-12 are usually too big. For example, if D drops with

increasing concentration c1, then the D0 inferred from this equation tends to rise

with increasing c1. In the same sense, if D rises with increasing c1, then D0 drops over the

same concentration range. Moreover, these corrections are wrong near the spinodal phase

boundary, as detailed in Section 6.3. Thus I always treat these corrections with caution.

Example 5.2-1: Oxygen diffusion in water Estimate the diffusion at 25 �C for oxygen

dissolved in water using the Stokes–Einstein equation and theWilke–Chang correlation.

Compare your results with the experimental value of 1.8 � 10–5 cm2/sec.

Solution For the Stokes–Einstein equation, the chief problem is to estimate

the radius of the oxygen molecule. If we assume that this is half the collision diameter in

the gas, then from Table 5.1-2,

R0 ¼
1

2
r1 ¼ 1:73 � 10�8 cm

When we insert this into the Stokes–Einstein equation,

D ¼ kBT

6plR0
¼ ð1:38 � 10

�16
g cm

2
=sec

2
KÞ298K

6pð0:01 g=cm secÞ1:73 � 10�8 cm
¼ 1:3 � 10�5cm2

=sec
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This value is thirty percent low. Replacing (6p) with (4p) gives a more accurate result;

replacing (6p) with (2) gives too high a value. TheWilke–Chang correlation is somewhat

better:

D ¼ 7:4 � 10�8 / ~MH2O

� �1=2
T

lH2O
�V
0:6
O2

¼
7:4 � 10�8 2:6 18 cm

3
=mol

� �h i1=2
298K

1 cpð25 cm3
=molÞ0:6

¼ 2:2 � 10�5 cm2
=sec

This is twenty percent high.

Example 5.2-2: Estimating molecular size from diffusion Fibrinogen has a diffusion

coefficient of about 2.0 � 10–7 cm2/sec at 37 �C. It is believed to be rod-shaped, about

thirty times longer than it is wide. How large is the molecule?

Solution Because themolecule is rod-shaped, it can be approximated as a pro-

late ellipsoid. Thus, from Eq. 5.2-2,

D ¼ kBT

6pla
½1� ðb=aÞ2�1=2

ln a

b
þ a

2

b
2 � 1

 !1=2
8<:

9=;

266666664

377777775

2:0 � 10�7 cm2
=sec ¼ ð1:38 � 10�16g cm

2
=sec

2
KÞð310KÞ

6p 0:00695 g=cm secð Þa ½1� ð1=30Þ2�1=2

ln½30þ ð302 � 1Þ1=2�

" #

Solving, we find that a equals 67 nm and b equals 2.2 nm. If fibrinogen were a sphere, its

radius would be about 16 nm.

Example 5.2-3: Diffusion in an acetone–water mixture Estimate the diffusion coefficient

in a 50-mole% mixture of acetone (1) and water (2). This solution is highly nonideal,

so that [q ln c1/q ln c1] equals –0.69. In pure acetone, the diffusion coefficient is 1.26 � 10–5
cm2/sec; in pure water, it is 4.68 � 10–5 cm2/sec. The experimental value in the mixture is

0.79 � 10–5 cm2 sec, less than both limits.

Solution We first must estimateD0. Because Eq. 5.2-14 is most often success-

ful, we use it here:

D0 ¼ ½D0ðx1 ¼ 1Þ�x1 ½D0ðx2 ¼ 1Þ�x2

¼ ð1:26 � 10�5 cm2
=secÞ0:5ð4:86 � 10�5 cm2

=secÞ0:5

¼ 2:43 � 10�5 cm2
=sec
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From Eq. 5.2-13,

D ¼ D0 1þ qln c1
qln c1

� �
¼ 2:43 � 10�5 cm2

=secð1� 0:69Þ
¼ 0:75 � 10�5 cm2

=sec

The agreement with the experimental value is unusually good.

5.3 Diffusion in Solids

Diffusion in solids is beyond the scope of this book. However, I want to give the

briefest synopsis to provide a comparison with gases and liquids. Diffusion in solids is

described by the same form of Fick’s law as gases or liquids. The diffusion coefficients,

however, are much, much smaller, as shown by the values in Table 5.3-1. These values do

increase quickly with temperature. The exception is hydrogen. In metals, diatomic

hydrogen first dissociates to form atomic hydrogen, which then loses its electron to

the electron cloud within the metals. Thus in this case, ‘‘hydrogen diffusion’’ refers to

the motion of naked protons, whose small size gives them an unusually large mobility.

The small value for diffusion coefficients in solids has two important consequences.

First, the values are so small that almost all significant transport occurs through flaws

and gaps in the solid, especially along grain boundaries. This is especially true for metals

and crystals. Second, transport in solids almost always approaches the limit of a semi-

infinite solid, rather than diffusion across a thin film. Again, hydrogen is the exception

because it is so fast. For example, diffusion of hydrogen across thin membranes of

palladium is sometimes suggested as a route to purify hydrogen.

The estimation of diffusion coefficients in solids is not accurate. In almost every case,

one must use experimental results. Methods for rough estimates based on the theory for

face-centered-cubic (FCC) metals are the standard by which other theories are judged,

Table 5.3-1 Diffusion coefficients at 25 �C in some characteristic solids

Solid Solute D (cm2/sec)

Iron (a Fe; BCC) Fe 3 � 10–48
C 6 � 10–21
H2 2 � 10–9

Iron (a Fe; FCC) Fe 8 � 10–55
C 3 � 10–31

Copper Cu 8 � 10–42
Zn 2 � 10�38

SiO2 H2 6 � 10–13
He 4 � 10–10

Note: In most cases, these values are extrapolated from values at higher temperatures.
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just as the Stokes–Einstein equation is the standard for liquids. The diffusion coefficient

in this case is

D ¼ R
2
0Nx ð5:3-1Þ

in whichR0 is the spacing between atoms;N is the fraction of sites vacant in the crystal;

and x is the jump frequency, the number of jumps per time from one position to the

next. Values for R0 are guessed from crystallographic data, and the fraction N is

commonly estimated from the Gibbs free energy of mixing. The frequency x is esti-

mated by

reaction-rate theories for the concentration of activated complexes, atoms midway

between adjacent sites. The results of these estimations are commonly expressed as

D ¼ D0e
�DH=RT ð5:3-2Þ

whereD0 and DH are estimated empirically. Values of DH are large, often above 100 kJ/

mol, so that diffusion increases much more with temperature than for gases or for

liquids.

Example 5.3-1: Diffusion of carbon in iron Experiments show that the diffusion of

carbon in body-centered cubic (BCC) iron is 2.4 � 10–8 cm2/sec at 500 �C, but 1.7 � 10–6
cm2/sec at 900 �C. Find an equation which allows estimating carbon diffusion at other

temperatures.

Solution The form of this relation is that of Equation 5.3-2

D ¼ D0e
�DH=RT

Inserting the values for D and T, we find

D ¼ 6:2 � 10�3 cm2
=sec

h i
exp
� 80 kJ=molð Þ=RT

The values for D0 and for DH are slightly smaller than those commonly observed.

5.4 Diffusion in Polymers

Diffusion coefficients in high polymers are closer to those for liquids than to

those for solids. This is true even for crystalline polymers, where the coefficients

reflect transport around, not through, the small crystals. Typical values for synthetic

high polymers are shown in Fig. 5.4-1. The values of these coefficients vary strongly

with concentration. Naturally occurring polymers like proteins are not included in

Fig. 5.4-1 because these species are best handled with the dilute-solution arguments in

Section 5.2.

The results in Fig. 5.4-1 show that very different limits exist. The first of these limits

occurs in dilute solution, where a polymer molecule is imagined as a solute sphere

moving through a continuum of solvent. The second limit is in highly concentrated

solution, where small solvent molecules squeeze through gaps in the polymer matrix.
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The third, not illustrated in Fig. 5.4-1, involves mixtures of two polymers. Each limit is

discussed briefly below.

5.4.1 Polymer Solutes in Dilute Solution

A polymer molecule dissolved in a low-molecular-weight solvent is imagined as

a necklace of spherical beads connected by a string that has no resistance to flow. The

necklace is floating in a neutrally buoyant solvent continuum. If the solution is very

dilute, the polymermolecules are greatly separated, so that they do not interact with each

other, but only with the solvent. In some cases, the solvent will expand the polymer

necklace in the solution; such a solvent is referred to as ‘‘good.’’ In other cases the solvent

and polymer will not strongly interact, and the polymer necklace will shrink into a small,

introspective blob; such a solvent is called ‘‘poor.’’

Between these two extremes, the polymer and solvent can interact just enough so that

the segments of the polymer necklace will be randomly distributed. This limit of a ‘‘ran-

dom coil’’ of polymer is conventionally chosen as the ‘‘ideal’’ polymer solution, and

a solvent showing these characteristics is called a h solvent. Under these conditions, the

diffusion of the polymer can be calculated as a correction to the Stokes–Einstein equation:

D ¼ kBT

6plRe
ð5:4-1Þ
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Fig. 5.4-1. Diffusion of high polymers. Diffusion in these systems has two interesting limits:

at very low and very high polymer concentrations. Interestingly, the diffusion coefficients in

these two limits may not be very different, even though the viscosity change is tremendous.
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where Re is the equivalent radius of the polymer. This radius is calculated to be

Re ¼ 0:676 ÆR2æ1=2 ð5:4-2Þ

in which ÆR2æ1=2 is the root-mean-square radius of gyration, the common measure of the

size of the polymer molecule in solution. This root-mean-square radius can be measured

in a variety of ways; one commonmethod is by light scattering. Equations 5.4-1 and 5.4-2

are confirmed by experiment. The measured ratio of equivalent radius to root-mean-

square radius is 0.68, which is very close to the 0.676 suggested theoretically.

In good solvents and poor solvents, the diffusion coefficient still is estimated from the

Stokes–Einstein equation, but the relation between the equivalent radius Re and the

root-mean-square radius ÆR2æ1=2 seems less well known. Moreover, in good solvents,

the diffusion coefficient can increase sharply with polymer concentration. This increase,

which occurs in the face of rapidly increasing viscosity, is apparently the result of a highly

nonideal solution. The increase is often estimated using parallels to Eq. 5.2-12. The

accuracy of these estimates is uncertain.

5.4.2 Low Molecular Weight Solutes in a Polymer Solvent

The second limiting case of polymer diffusion occurs when a small dilute solute

diffuses in a concentrated polymer solvent. Some examples are given on the right-hand

side of Fig. 5.4-1. In addition to its scientific interest, this case has considerable practical

value. It is important in devolatilization, that is, the removal of solvent and unreacted

monomer from commercial polymers. This is especially important for polymers with

consumer applications like food wrapping, because the volatile species may not be

benign. Diffusion in this second case is also central to drying many solvent-based coat-

ings. There, rapid solvent evaporation from the surface of the coating can produce

a concentrated polymer skin. Slower diffusion through this skin then limits the coating’s

drying.

This case of diffusion in polymers is described by ideas drawn from both diffusion in

liquids and diffusion in solids. The theoretical development takes place in two steps.

First, the binary diffusion coefficient D is corrected for the nonideal solution

D ¼ D0 1þ q ln c1
q ln/1

� �
ð5:4-3Þ

whereD0 is a new, ‘‘improved’’ coefficient; c1 is the activity coefficient of the small solute;

and /1 is its volume fraction, the appropriate concentration variable to describe con-

centrations in a polymer solution. We should remember that the activity correction in

parentheses has not often been critically examined. As stated above, it is often an over-

correction when it is used to describe diffusion in conventional liquids.

We now turn to predicting the corrected coefficientD0. We expect that this coefficient

must include consideration of the solute’s activation energy, which must be sufficient to

overcome any attractive forces that constrain it near neighbouring polymer segments.

We expect that this coefficient must vary with any space or ‘‘free volume’’ between the

polymer chains. Only a fraction of this free volume will be accessible to the solute as

a result of thermal fluctuations; it is this fraction which permits the diffusion.
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While the details of these free-volume arguments are beyond the scope of this book, we

can appreciate the arguments involved by looking at the form of the final prediction

D0 ¼ D90e
�E=RT

exp
�
�
ðx1 V10 þ x2 V20Þ=ðx1 K1 þ x2 K2Þ

�
ð5:4-4Þ

where D#0 is a constant preexponential factor, E is the solute–polymer attractive energy,

and the second exponential is the effect of free volume. More specifically, thexi are mass

fractions, the Vi0 are specific critical free volumes, and the Ki are additional free volume

parameters. These last parameters are strong functions of temperature. Equation 5.4-4 is

successful in correlating experimental data, especially above the polymer’s glass transi-

tion temperature.

One curious effect, called ‘‘non-Fickian diffusion’’ or ‘‘type II transport,’’ sometimes

occurs in the dissolution of high polymers by a good solvent. In these cases, diffusion

may not follow Fick’s law. For example, the speed with which the solvent penetrates into

a thick polymer slab may not be proportional to the square root of time, which is the

behavior expected from Fick’s law (see Section 2.3).

This effect is believed to result from configurational changes in the polymer. As the

solvent penetrates, the polymer molecules relax from their greatly hindered configura-

tion as a partially crystalline solid into the more randomly coiled shape characteristic of

a polymer dissolved in dilute solution. When this relaxation process is slower than the

diffusion process, the dissolution is controlled by the relaxation kinetics, not by Fick’s

law. Although the process does not involve any phase boundaries, it is similar to a slow

interfacial chemical reaction followed by fast diffusion. Again, it is common only in the

case of fast dissolution in good solvent.

5.4.3 A Polymer Solute in a Polymer Solvent

In the third limiting case of polymer diffusion, both the solute and the solvent

are polymers. This case has practical importance in adhesion, in material failure, and in

polymer fabrication. In the simplest terms, this case includes why glue sticks.

Efforts to explain this case of polymer diffusion begin with a model, developed by

Rouse, which represents the polymer chain as a linear series of beads connected by

springs. The diffusion coefficient derived from this model is

D ðRouseÞ¼ kBT

Nf
ð5:4-5Þ

where N is the degree of polymerization and f is a friction coefficient characteristic

of the interaction of a bead with its surroundings. Because N is proportional to the

molecular weight, this Rouse diffusion coefficient is proportional to the inverse of the

polymer’s molecular weight. In contrast, if the polymer were an untangled random

coil, D would depend on the inverse square root of the molecular weight; if the poly-

mer really condensed into one small sphere, D would vary with ~M
�1=3

. The Rouse pre-

diction is not verified experimentally except for polymers of low molecular weight. We

need a better model.
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The better model, called reptation, imagines the polymer chain confined within

a curved tube (deGennes, 1979). Within this tube, the Rouse model governs the chain

dynamics, but the polymer diffusion is governed by the time required to escape from the

tube. Because motion in the tube is one-dimensional, this escape time s is given by

L
2 ¼ 2DðRouseÞs ð5:4-6Þ

where L is the tube length, proportional to the polymer’s molecular weight. The mac-

romolecular diffusion coefficient D, in the three dimensions, can be found from

ÆR2æ ¼ 6Ds ð5:4-7Þ

where ÆR2æ is again the root-mean-square radius of gyration, proportional to the square

root of the molecular weight. Combining Eqs. 5.4-5 to 5.4-7, we find

D ¼ kBT

3f

� �
ÆR2æ
NL

2 } ~M
�2 ð5:4-8Þ

This result frequently comes close to predicting the molecular weight dependence of this

case of polymer–polymer diffusion.

5.5 Brownian Motion

The diffusion coefficients listed above are easy to accept as experimentally

valuable parameters, but they are harder to understand as a consequence of molecular

motion. These coefficients are most often experimental values. In some cases, they are

estimated from theories which imply models for the system involved. For gases, this is

the model of gas molecules colliding in space. For liquids, they most often imply

a solute sphere in a solvent soup. For solids, these estimates are based on a crystal

lattice. In every case, the diffusion coefficients are not very directly related to random

molecular motions.

In this short section, we want to reexamine these coefficients in terms of molecular

motions. Such random ‘‘Brownian’’ motions were first observed in pollen grains by

Robert Brown in June of 1827. He concluded that these motions ‘‘arose neither from

currents in the fluid nor from gradual evaporation but from the particles [themselves].’’

In our terms, diffusion comes from random molecular motions. Such random motions

are now widely studied, not only in physical science but in areas like fluctuations of

exchange rates of currencies.

In this section, we describe these random motions in terms of probability theory, and

so connect diffusion to this broader topic. Because we want a simple, easily understood

connection, we consider only the simplest case of one-dimensional motion. This simplest

case depends on three rules:

1. Each particle moves either to the right or the left every s seconds with a

velocity v.

2. The probability of moving right and that of moving left is 0.5. Moreover, the

particles do not remember their earlier steps.
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3. Each particle moves independently of the others. This is again our old friend,

the assumption of dilute solution.

The rules may be relaxed in many ways, but we are interested here only in this simplest

limit.

These three rules have two consequences. First, the average position of a particle does

not change. To demonstrate this, we consider a system of N independent particles. We

then consider zi(n), the position of the ith particle after n steps. This particle must have

arrived from a position either d larger or d smaller, i.e.,

ziðnÞ ¼ zi n � 1ð Þ 6 d ð5:5-1Þ

Because these steps are random, the mean displacement of these particles after n steps is

thus

ÆzðnÞæ ¼ 1

N
+
N

i¼1
zðnÞ

¼ 1

N
+
N

i¼1
zðn� 1Þ 6 d½ �

¼ 1

N
+
N

i¼1
zðn� 1Þ½ �

¼ Æzðn� 1Þæ ð5:5-2Þ

The average position of the particles doesn’t move. For example, if all the particles start

at zero, their average position stays at zero.

The second consequence of the three rules given above is the estimation of how much

the particles spread out. This can be described as the root mean square of the particle

position Æz2ðnÞæ1=2. To find this quantity, we note from Equation 5.5-1 that

z
2
i ðnÞ ¼ z

2
i n� 1ð Þ 6 2dzi ðn� 1Þ þ d2 ð5:5-3Þ

As before, we average this over all the N particles to find

Æz2ðnÞæ ¼ 1

N
+
N

i¼1
z
2
i ðnÞ

¼ Æz2ðn� 1Þæþ d2
ð5:5-4Þ

Now imagine we have zero steps, so

Æz2ð0Þæ ¼ 0 ð5:5-5Þ

For one step

Æz2ð1Þæ ¼ d2 ð5:5-6Þ

For two steps,

Æz2ð2Þæ ¼ Æz2ð1Þæ þ d2

¼ 2d2
ð5:5-7Þ
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For n steps

Æz2ðnÞæ ¼ nd2 ð5:5-8Þ

As we allow more and more steps, the particle spread becomes more and more.

We want to connect this result with the diffusion coefficients used elsewhere in this

book. To do so, we return to the example of the one-dimensional decay of a pulse, given

in Equation 2.4-14 as

c1 ¼
M=Affiffiffiffiffiffiffiffiffiffiffi
4pDt
p e

�z2=4Dt ð5:5-9Þ

For such a pulse, the standard deviation r is defined as

r2 ¼ 2Dt ð5:5-10Þ

But this standard deviation is exactly the same as themean square of the particle position

Æz2(n)æ. Moreover, the time t for the peak to spread is just (ns). Thus

Æz2ðnÞæ¼ t

s

� �
d2 ¼ 2Dt ð5:5-11Þ

and

D ¼ Æz2ðnÞæ
2s

ð5:5-12Þ

The diffusion coefficient is the mean square particle displacement divided by twice the

time for movement s. Another way to write this result recognizes that the mean square

distance per time is just the size of a step d times the time-averaged velocity v:

D ¼ Æz2ðnÞæ
2s

¼ dv
2

ð5:5-13Þ

This form is sometimes easier to apply than the previous equation. Like that previous

equation, it is written for one-dimensional diffusion.

These results can be extended in many ways. If the result for one dimension is

extended to diffusion in two dimensions

D ¼ Æz2ðnÞæ
4s

ð5:5-14Þ

For three dimensions, the result is

D ¼ Æz2ðnÞæ
6s

ð5:5-15Þ

More importantly, the small steps need not be by molecular diffusion but may also be

from turbulent velocity fluctuations. In that case, the diffusion coefficient will be

replaced by the dispersion coefficient as defined in Chapter 4. Alternatively, we can

consider random motions under some sort of external force so that the probability of

moving in one direction is different than that for movement in the opposite direction.
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While in these cases, this type of calculation will give only rough estimates, the calcula-

tion is so easy that it may still be very useful.

Example 5.5-1: Self-diffusion in water Estimate the diffusion at 25 �C of a trace of

tritium-labeled water in regular water. Water molecules are about 0.26 nm in diameter,

separated by 0.30 nm.

Solution The distance of a step will be 0.30 – 0.26 ¼ 0.04 nm.

The velocity is given by

1

2
mv

2 ¼ kBT

1

2

20g

6 � 1023
� �

v
2 ¼ 1:38 � 10�16 g cm

2

sec K

 !
298K

v ¼ 5 � 104 cm=sec

Thus from Eqs. 5.5-13 and 5.5-15

D ¼
0:04 � 10�7 cm 5 � 104cm=sec

� �
6

¼ 3 � 10�5cm2
=sec

This is close to the experimentally observed value.

Example 5.5-2: Random walks in a flake-filled film We are studying random motions in

a composite of aligned impermeable flakes like those shown in Figure 5.5-1(a). When

random motions like these are averaged over many trajectories, we get the mean square

displacement as a function of the total distance traveled, as shown in Figure 5.5-1(b). If

the distance occurs in steps of a unit distance per second, what diffusion coefficient is

inferred from these data?

Solution The key to this calculation is r2, the slope of the data in Figure

5.5-1(b), which is 0.014. The mean square displacement r2 varies linearly with the dis-

tance traveled, which in this case is numerically equal to the time in seconds. For

example, from Equation 5.5-10, we get,

D ¼ r2

2t
¼ 0:014

2 150ð Þ ¼ 4:7 � 10�5

Note this is for diffusion vertically, detouring around the plates. Diffusion in the hor-

izontal direction would give a different distance, and a different diffusion coefficient.

5.6 Measurement of Diffusion Coefficients

In this section, we want to discuss the most convenient ways in which diffusion

coefficients can be measured. This section is the counterpoint to the previous ones.
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Whereas the focus has been on using past experience to guide predictions, this section

replaces the hope of prediction with the necessity of accurate measurements.

Measuring diffusion coefficients is reputed to be difficult. For example, Tyrell (1961)

stated that ‘‘this is not an easy field of study in any sense. It took eighty years from the

time when Thomas Graham worked on diffusion before precise data on diffusion coef-

ficients began to be collected.’’ This suggests that measurements of diffusion are a Holy

Grail requiring noble knights who dedicate their lives to the quest.
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Fig. 5.5-1. Random walk in a flake-filled film. A typical path through the aligned flakes is

shown in (a). The distance traveled perpendicular to the flakes is shown vs. the total distance

travelled, which is proportional to time t.
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In fact, although measurements are rarely routine, diffusion coefficients usually can

be determined to within about five- or ten-percent accuracy without excessive effort.

Because such accuracy is sufficient for most situations, we should always consider mea-

suring the coefficients we need. The reputed difficulty of diffusion measurements stems

from inherent masochists, like me, who make many of the experiments. We are never

satisfied. When we attain coefficients accurate to 10%, we want 2%; when we achieve

2%, we want 0.5%.

If we have decided that measurements are essential, we must decide how to make

them. There are many methods available, all described in glowing terms by their pro-

ponents. An exhaustive description of these methods could fill this book.

Instead of such an oppresive list, we shall consider only those methods of measuring

diffusion that are reasonably accurate, that are easy to use, or that have some special

advantage. I have tried below to state concisely the advantages and disadvantages of

each method. I want to give the flavor of the laboratories themselves, and not just the

polished publications that result.

The most useful methods of studying diffusion are shown in Table 5.6-1. The first

three on this list are used most frequently. These three methods give accuracies sufficient

for most practical purposes. They and the other methods will be described in greater

detail in the following paragraphs.

5.6.1 Diaphragm Cell

The Stokes diaphragm cell is probably the best tool to start research on diffu-

sion in gases or liquids or across membranes. It is inexpensive to build, rugged enough to

use in an undergraduate lab, and yet capable of accuracies as high as 0.2%.

Diaphragm cells consist of two compartments separated either by a glass frit

[Fig. 5.6-1(a)] or by a porous membrane [Fig. 5.6-1(b)] (Stokes et al., 1950). The two

compartments are most commonly stirred at about 60 rpm with a magnet rotating

around the cell. Initially, the two compartments are filled with solutions of different

concentrations. When the experiment is complete, the two compartments are emptied

and the two solution concentrations are measured. The diffusion coefficient D is then

calculated from the equation

D ¼ 1

bt
ln
ðc1; bottom� c1; topÞinitial
ðc1; bottom� c1; topÞ at time t

	 

ð5:6-1Þ

in which b (in cm–2) is a diaphragm-cell constant, t is the time, and c1 is the solute

concentration under the various conditions given. The detailed derivation of this equa-

tion is given in Example 2.2-4.

Four points about the diaphragm cell deserve emphasis. First, calculation of the

diffusion coefficients requires accurate knowledge of the concentration differences,

not the concentrations themselves. This means that very accurate chemical analyses

may be required. For example, imagine we are measuring the diffusion of anthracene

in hot decalin. Using gas chromatography, we measure the anthracene concentration as

5.16 0.1% in the top solution and 6.16 0.1% in the bottom solution. The concentration

difference is then 1.0 6 0.2%, an error of twenty percent, even though our chemical
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analyses are accurate to two percent. As a result, we might do better to use a differential

refractometer to try to determine the concentration difference directly.

The second point about the diaphragm cell is the calibration constant b. This quantity
is

b ¼ A

l

1

Vtop
þ 1

Vbottom

� �
ð5:6-2Þ

in which A is the area available for diffusion, l is the effective thickness of the di-

aphragm, and Vtop and Vbottom are the volumes of the two cell compartments. We

should note that A is the total area open for diffusion and so is not a strong function of

the pore size in the diaphragm. As a rule, small pores are preferred. Large pores may

give a slightly larger area, but they often allow accidental mixing caused by flow

through the diaphragm. Because A and l are, as a rule, not exactly known, b must

be found by experiment. In liquids, this calibration is commonly made with KCl–water

or urea–water. Sucrose–water is less reliable because the solution often becomes con-

taminated by microorganisms. In gases, calibration depends on the method chosen to

measure concentration.

The time required for diaphragm-cell measurements is determined by the value of b
and hence by the nature of the diaphragm. For accurate work, the diaphragm should be

a glass frit, and the experiments may take several days; for routine laboratory work, the

diaphragm can be a piece of filter paper, and the experiments may take as little as a few

hours. For studies of membrane transport, a piece of membrane can be used in place of

the filter paper. For studies in gases, the entire diaphragm can be replaced by a long, thin

capillary tube, like the apparatus in Fig. 3.1-2.

The third point is that diffusion should always take place vertically. In other words,

the diaphragm should lie in the horizontal plane. If the diaphragm is vertical, free

convection can be generated, leading to spurious results. Interestingly, if the diaphragm

(a) (b)

Rotating
magnet
for
stirring

Glass
frit Magnetic

stirring
bars

Clamp
holding
porous
diaphragm

Fig. 5.6-1. Diaphragm cells. The cell on the left, which uses a porous glass frit as a diaphragm,

is more accurate than that on the right, which used filter paper as a diaphragm.However, the cell

with the glass frit requires a much longer experiment.
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is horizontal, then placing the more dense solution in the upper compartment may be

done without fear of free convection. Many investigators routinely do this, feeling that

they get superior results. At the same time, most investigators have done away with the

elaborate initial diffusion period suggested in early experiments. This period is signifi-

cant only when the diaphragm volume is about one-sixth of the compartment volumes

(Mills et al., 1968).

The final point about this method is its occasional unreliability. Every good experimen-

talist subjectively judges the quality of his experiments as he goes along.Most can correctly

estimate an experiment’s success even without detailed analysis. With the diaphragm cell,

however, I have never been able to guess. Experiments I expect to be erratic often are, but

experiments that I think are correct sometimes give answers that are in error by an order of

magnitude. One ofmy students minimized such unpleasant surprises by carefully wrapping

his cells in a particular brand of plastic bag purchased from a particular store in Cleveland,

Ohio. For him, this worked. I have never found a similar trick.

5.6.2 Infinite Couple

This experimental geometry, which is limited to solids, consists of two solid bars

of differing compositions, as shown in Fig. 5.6-2. To start an experiment, the two bars

are joined together and quickly raised to the temperature at which the experiment is to be

made. After a known time, the bars are quenched, and the composition is measured as

a function of position. In the past, this analysis was made by grinding off small amounts

of bar and determining the composition by a series of wet chemical tests; now, the

analysis is made more easily and quickly by an electron microprobe.

Because diffusion in solids is a slow process, the compositions at the ends of the solid

bars away from the interface do not change with time. As a result, the concentration

profile is that derived in Section 2.3:

c1 � �c1
c1‘ � �c1

¼ erf
zffiffiffiffiffiffiffiffi
4Dt
p
� �

ð5:6-3Þ

in which c1N is the concentration at that end of the bar where z ¼ N and �c1½¼
ðc1‘ þ c1�‘Þ=2� is the average concentration in the bars. The measured concentration

profile is fit numerically to find the diffusion coefficient.

It must be remembered that diffusion in solids can be more complex than these

paragraphs suggest. Some of this complexity stems from the different mechanisms by

which diffusion in solids can occur. More subtle complexities arise from factors like

residual stress in metal or the reference velocity on which diffusion is based. Such com-

plexities dictate caution.

The infinite couple is a goodmethod to measure diffusion in solids, but it is tedious. A

faster though less accurate method is simply to drop some solid particles into a liquid

solution and to measure the solution concentration c1 as a function of time. At small

times, the solute flux out of the solution and into the particles is given by

n1 ¼ j1 ¼ �
ffiffiffiffiffi
D

pt

r
Hc10 ð5:6-4Þ

148 5 / Values of Diffusion Coefficients



where c10 is the initial concentration in the solution (cf. Equation 2.3-18). From a mass

balance on the solution,

V
dc1
dt
¼ �An1 ¼ � A

ffiffiffiffiffi
D

pt

r
Hc10 ð5:6-5Þ

where V is the total volume of solution, A is the total area of particles, and H is the

partition coefficient between the solution and the solid particles. This mass balance is

subject to the initial condition that

t ¼ 0; c1 ¼ c10 ð5:6-6Þ

Integrating, we find that

c1
c10
¼ 1 � A

V

� � ffiffiffiffiffiffiffi
4D

p

r
Hc10

( ) ffiffi
t
p

ð5:6-7Þ

Thus a plot of (c1/c10) vs. the square root of time has a slope which is proportional to the

diffusion coefficient D.

I have given this example to illustrate the mathematical approximations which are

usually successful in making experimental measurements. In this case, three of these

approximations are especially obvious

1. The particles are taken as semi-infinite slabs, so that the flux is accurately de-

scribed by Equation 5.6-3. This is true only if the time for the experiments is

much less than (particle size)2/D.

2. The concentration c10 doesn’t change during the experiment so that the flux

remains that given by Equation 5.6-3. This assumption seems especially foolish

because our experiment depends on measuring changes in c1.

Joining two bars

Results in diffusion

Like this

–2 –1 0 +1 +2
–1

0

+1

z/ 4d t

(c
1 –

 c
1)

/(
c 1∞

 –
 c

1)

Fig. 5.6-2. The infinite couple. In this method, two solid bars of different compositions are

joined together at zero time. The concentration profiles shown develop with time and are

measured chemically.
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3. The solution is well mixed so its concentration c1 has the same value throughout

the liquid, even right up to the solid particles. This is often true even if the liquid

is not mixed because the diffusion coefficient in the liquid is so much greater

than that in the solid.

Each of these three assumptions is serious and initially not obvious. If any one of

these is not accurate, our calculations of diffusion using this method may be seriously

in error.

However, in my experience the use of Eq. 5.6-7 does give accurate values of the

diffusion coefficient. Thus the three assumptions above must be reasonably accurate,

and the chief limitation of the experiment is accurately measuring the concentration c1.

This accuracy is essential because we are basing our calculation on a concentration

difference (c10 – c1), a small difference between large numbers. This fact is the key for

this experiment, as it was for the diaphragm cell.

In my experience, most novices measuring diffusion do not concentrate on this

experimental measurement but rather on improving the mathematics behind Equation

5.6-7. These novices assume a finite slab and solve the diffusion equations for that case,

getting results like those in Section 3.5. They include the variation of solution concen-

tration with time, performing an analysis like that in Example 3.5-3. These novices are

then dismayed that their results are poorly reproduceable, and they conclude that their

mathematics is incorrect. It often isn’t; it is unnecessary. The novices need instead to

focus on their measurement of concentration.

The reason that so many novices make mistakes like this is that in their training, they

practice harder and harder mathematics. They rarely practice better and better experi-

mental accuracy. Thus this example has a moral: Please, when you start making meas-

urements, use the simplest analysis possible until you are sure from experiment that it is

inadequate.

5.6.3 Taylor Dispersion

We now turn to more complex and more expensive methods, which can also be

easier to run or which give more accurate results. The first of these is Taylor dispersion,

illustrated schematically in Fig. 5.6-3 (Ouano, 1972). This method, which is valuable for

both gases and liquids, employs a long tube filled with solvent that slowly moves in

laminar flow. A sharp pulse of solute is injected near one end of the tube.When this pulse

comes out the other end, its shape is measured with a differential refractometer. Except

for the refractometer, which can be purchased off the shelf, the apparatus is inexpensive

and moderately easy to build. This apparatus can be used routinely by those with little

training. It can be operated relatively easily at high temperature and pressure. It has the

potential to give results accurate to better than one percent.

The concentration profile found in this apparatus is that for the decay of a pulse (see

Section 4.2):

c1 ¼
M

pR2

exp
�ðz� vtÞ2=4Etffiffiffiffiffiffiffiffiffiffi

4pEt
p ð5:6-8Þ
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whereM is the total solute injected, R is the tube radius, v0 is the average velocity of the

flowing solvent, and E is a dispersion coefficient given by

E ¼ ðv
0
RÞ2

48D
ð5:6-9Þ

Because the refractive index varies linearly with the concentration, knowledge of the

refractive-index profile can be used to find the concentration profile and the diffusion

coefficient.

The fascinating aspect of this apparatus is the way in which the diffusion coefficient

appears. Equation 5.6-8 has the same mathematical form as Eq. 2.4-14, but the disper-

sion coefficient E replaces the diffusion coefficient. So far, as good. However, E varies

inversely withD, as explained in Section 4.4. Consequently, a widely spread pulse means

a large E and a small D. A very sharp pulse indicates small dispersion and hence fast

diffusion.

5.6.4 Spin Echo Nuclear Magnetic Resonance

The next twomethods, spin echo nuclear magnetic resonance and dynamic light

scattering, represent the adoption of expensive, complex equipment built to obtain

molecular information to the new task of measuring diffusion. Because neither method

tries only to measure diffusion coefficients, the accuracy is modest. Neither method

requires an initial concentration difference, a major convenience in highly viscous

A concentrated pulse
is injected here The dispersed pulse

is analyzed here

Solvent
heating section Dispersion section

Solvent
reservoir

Pump

Temperature
bath Outlet

Differential
refractometer

Fig. 5.6-3. The Taylor dispersion method. A sharp pulse is injected into a tube filled with

flowing solvent. The dispersed pulse is measured at the tube’s outlet. Interestingly, the pulse is

dispersed more if the diffusion is slow.
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systems. The real attraction of each system is the promise that existing equipment can be

reapplied to the new objective of measuring diffusion.

Diffusion coefficients can be measured with nuclear magnetic resonance to an accu-

racy of around five percent. To do so, we first place a homogeneous sample in a large

magnetic field. This external field aligns the magnetic moments of the atomic nuclei in

the solute of interest. When the magnetic field is slightly perturbed, the atomic moments

process, which can induce in an adjacent coil a small voltage of amplitude A oscillating

with time:

A ¼ A0 sinðt=sÞ ð5:6-10Þ

The period of this oscillation s is normally the focus of interest, for it gives information

about the local chemical environment.

Our interest is not in the period s but in the amplitudeA0. To study this amplitude, we

apply a second perturbation in the magnetic field. This second ‘‘pulsed gradient’’ is

applied not in time, but in space. It is applied first in one direction and then – after

a short time s# – in the opposite direction. If the solute molecules were fixed in space, the

two perturbations in space would produce no change in the amplitude A0. However,

these molecules aren’t fixed but are moving by Brownian motion, so the amplitude A0 is

reduced.

We can measure this amplitude reduction as a function of the time s# between the

gradient pulses. The slope of this variation is a direct measure of the Brownian motion

and hence of the diffusion coefficient. Thus if we make measurements on a solute of

known diffusion coefficient and a solute of unknown diffusion coefficient, we can find

the unknown as

D
�ðunknownÞ
D
�ðknownÞ ¼ ðqA0=qs

0ÞðunknownÞ
ðqA0=qs

0ÞðknownÞ
ð5:6-11Þ

Strictly speaking, such a measurement is not of the binary diffusion coefficient D but of

the tracer diffusion coefficientD* (cf. Section 7.5). In dilute solution, these have the same

value.

5.6.5 Dynamic Light Scattering

Like nuclear magnetic resonance, dynamic light scattering uses expensive

equipment for a relatively easy measurement of the diffusion coefficient. Like nuclear

magnetic resonance, the measurement requires no initial concentration difference, and

so is especially suited to viscous solutions. Unlike nuclear magnetic resonance, the

measurement is of the binary coefficient, not the tracer diffusion coefficient.

Dynamic light scattering depends on measuring the autocorrelation function of

scattered light as a function of scattering angle and time. To understand the method,

we must first consider what happens to a wave of light traveling through the solution

which we are studying. The wave will move in a constant direction until it strikes an

inhomogeneity. Then part of the wave may be scattered by a changed impedence, that

is, by an altered resistance to its motion that is proportional to the refractive index of

the solution. How the light is scattered depends on how the inhomogeneities in the
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solution are organized. If the solution contains a completely random array of inho-

mogeneities, then the scattering will be the same in all directions. However, if the

solution contains a perfectly ordered array of inhomogeneities, then the scattering will

exist only at particular angles, called Bragg diffraction angles. At these angles, scat-

tering results from constructive interference when scatterers are exactly an integral

number of wavelengths apart. At all other angles, scattering produces destructive in-

terference.

For the important case of concentrated polymer solutions, the scattering results from

a solution that is between a random array and an ordered array. Each monomer unit can

be considered a point scatterer; while the polymer molecules are randomly distributed in

the solution, monomer units are not because they are part of polymer chains. However,

the polymer molecules do move relative to each other because of Brownian motion.

Hence any apparent order in the solution will decay with time.

This decay of order is measured as an autocorrelation function by the dynamic light

scattering apparatus. Such a function gives the correlation between the solution’s order

at some arbitrary time zero and at some second time t. When t is near zero, the auto-

correlation function is near one: The order hasn’t changed much. When t becomes large

the autocorrelation function is near zero: Any apparent order has vanished, replaced by

a new apparent structure. In many cases, this decay can be described as a first-order

exponential:

ÆAð0ÞAðtÞæ} e
�q2Dt ð5:6-12Þ

where ÆA(0)A(t)æ is the autocorrelation function,D is the binary diffusion coefficient, t is

the time, and q is the ‘‘scattering vector’’:

q ¼ 4p
k
sin

h
2

� �
ð5:6-13Þ

where k is the wavelength of the scattered light and h is the scattering angle.

Thus measurements of the autocorrelation function versus time allow calculation of

the diffusion coefficient D. In practice, the range of diffusion coefficients that we can

measure is determined by the scattering vector q, which has dimensions of reciprocal

length. Roughly speaking, q–1 is a measure of the distance over which themeasurement is

being made. For visible light with a wavelength of 500 nanometers, we sample a distance

of around 100 nm; for neutrons with a wavelength of 1 nanometer, we sample distances

around 3 nm. Still, the important point is that the dynamic light scattering method

provides a measurement of binary diffusion especially suitable for polymer solutions.

5.6.6 Some Very Accurate Methods

So far, we have discussed three easy methods and three more highly instru-

mented methods for measuring diffusion coefficients. Each of these six methods can give

results accurate to a few percent, a suitable goal for most research. If higher accuracy is

needed, we should turn to the interferometers shown in Fig. 5.6-4. These instruments

depend on measuring an unsteady-state refractive index profile in a transparent system,
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and so they are most useful for liquids. Their high accuracy is purchased at a great cost of

both equipment and effort.

The interferometers differ optically. The Gouy interferometer, shown schematically

in Fig. 5.6-4(a), is themore highly developed, accurate to better than 0.1%. It is relatively

simple to build and easy to align. If one already has a method for measuring the inter-

ference fringes, this instrument is not particularly expensive. The Gouy method has been

so highly developed that the extremely specialized jargon used in its operation may

discourage newcomers. In fact, the experiments are simple to do; the hardest step is to

understand the theory well enough to write the appropriate computer program. Average

results with this instrument are at least equivalent to the best results obtained with any

other device.

The Gouy interferometer measures the refractive-index gradient between two

solutions that are diffusing into each other. The basic apparatus for measuring the

gradient uses the lenses L to send parallel light rays from a light source LS through

a diffusion cell C. If this cell contains a refractive-index profile, then light passing

through the center of the cell will be deflected to produce an interference pattern of

black horizontal lines, as shown at the right in Fig. 5.6-4(a). The amount of this

deflection is proportional to the refractive-index gradient, a function of cell position

and time.

The Mach–Zehnder and Rayleigh interferometers are solid alternatives to the Gouy

interferometer. Although they are difficult to construct and adjust, they give information

that is simpler to interpret. In the Mach–Zehnder apparatus, shown in Fig. 5.6-4(c),

(a) Gouy interferometer

LL

Top view

LS C p

pLL

Side view

LS C

(b) Rayleigh interferometer

LL

Top view

LS C p

LC

L

Side view

LS L C p

LC

(c) Mach–Zehnder interferometer

L

Top view

LS
p

C MM´

M´́M

pL

Side view

LS

C

M M

Fig. 5.6-4. Interferometers for accurate diffusion measurements. These three instruments can

be expensive to build and hard to operate, but they give very accurate results. Each produces

interference fringes like those shown at the right of each schematic. LS, light source; L,

collimating lens; C, diffusion cell; LC, cylindrical lens; M, mirror; M#, M$, half-silvered
mirrors.
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collimated light is split by the first half-silvered mirror M#. Half the light passes through

each of the twin cells C and is recombined by the second half-silvered mirror M$. In the

Rayleigh apparatus, these mirrors are replaced by a cylindrical lens, shown in Fig. 5.6-

4(b).

Both instruments measure refractive index versus cell position. If both cells contain

homogeneous solutions, the interference fringes are sets of parallel vertical lines; if one

cell contains a refractive-index gradient caused by diffusion, the interference fringes look

like those shown at the right of Figs. 5.6-4(b) and (c). For both interferometers, these

fringes can be used to calculate the diffusion coefficient.

5.6.7 Other Methods

The remaining common methods for measuring diffusion are listed in Table

5.6-1 roughly in order of their value. None of these methods is commonly superior to

those described above, although each may be useful in specific cases.

The capillary method is most suitable for measurements with radioactive tracers. It

uses a small diffusion cell made of precision-bore capillary tubing, perhaps 3 cm long and

0.05 cm in diameter. One end of this cell is sealed shut. After the cell is filled with

a solution of known concentration, it is dropped into a large, stirred, thermostated

solvent bath. At the end of the experiment, the cell is removed and the solute concen-

tration within the cell is measured. The diffusion coefficient D can then be found from

the equation

�c1
c10
¼ 8

p2 +
‘

n¼1

1

ð2n� 1Þ2
exp
�p2ð2n� 1Þ2ðDt=4l

2Þ ð5:6-14Þ

in which c10 and �c1 are the average concentrations in the cell at times zero and t,

respectively, and l is the length of the cell.

Four characteristics of this method deserve mention. First, with careful technique it is

accurate to better than 0.3%. The caveat is ‘‘careful technique’’; it is unusually easy to

fool yourself with this equipment, obtaining reproducible inaccurate results. Second, the

small size of the diffusion cell dictates careful chemical analysis of very small volumes of

solution. In practice, this suggests using either radioactive tracers or some other micro-

analytical method. Third, the power series in Eq. 5.6-14 converges rapidly. If you use

reasonably long experiments, you can base your analysis on the first term in the series.

Finally, for radioactive tracers this method may give an intradiffusion coefficient, not

a binary coefficient (cf. Section 7.5).

The spinning-disc method depends on a solid or liquid disc of solute slowly rotating

in a solvent volume (see Fig. 3.4-3). The solute concentrations in the solvent are

analyzed versus time. If the disc’s dissolution is diffusion-controlled, these concentra-

tions allow calculation of the diffusion coefficient from Example 3.4-3 (Levich, 1962).

If the disc’s dissolution is not diffusion-controlled, we must choose another

method.

The wedge interferometer is cheap and cute, a simple alternative to the expensive

interferometers described earlier. It consists of two microscope slides separated at one

edge with a coverslip. To start an experiment, one places drops of two different solutions
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next to each other on one slide. One then places the other slide and coverslip so that the

drops are in contact in a wedge-shaped channel. When this wedge is put in a microscope,

interference fringes indicate the concentration profile. Measuring the change of fringe

position versus time allows calculation of the diffusion coefficient simply, cheaply, and

approximately. Moreover, because only drops of solution are needed, one needs only

very small amounts of solute.

The last entry in Table 5.6-1 refers to steady-state methods. These methods are like

the diaphragm cell, but they replace the two well-stirred compartments with two flowing

solutions. In principle such a replacement gives a true steady state, simplifying the

analysis. In practice, the methods are a nightmare. The two solutions must flow at

exactly the same rate, so expensive pumps and valves are needed. The experiments

can consume huge amounts of solution. My advice is to choose a complex analysis

and a simple unsteady experiment.

5.7 A Final Perspective

The characteristics of diffusion coefficients described in this chapter are sum-

marized in Table 5.7-1. In general, diffusion coefficients in gases and in liquids can often

be accurately estimated, but coefficients in solids and in polymers cannot. In gases,

estimates based on the Chapman–Enskog kinetic theory are accurate to around ten

percent. In liquids, estimates are based on the Stokes–Einstein equation or its empirical

parallels. These estimates, accurate to around twenty percent, can be supplemented by

a good supply of experimental data. In solids and polymers, theories allow coefficients to

be correlated but rarely predicted.

These common generalizations help to solve only the routine problems with which we

are faced. Many problems remain. For example, we may want to know the rate at which

hydrochloric acid diffuses into oil-bearing sandstone. We may need to estimate the

drying speed of lacquer. We may seek the rate of flavor release from lemon pie filling.

All these examples depend on diffusion; none can be accurately estimated with the

common generalizations.

Table 5.7-1 A comparison of diffusion coefficients and their variations

Phase Typical
value
cm2/sec

Variations with Remarks

Temperature Pressure Solute size Viscosity

Gases 10–1 T 3/2 p�1 (Diameter)�2 l+1 Successful theoretical
predictions

Liquids 10–5 T Small (Radius)�1 l–1 Can be concentration
dependent

Solids 10–30 Large Small (Lattice
spacing)+2

Not
applicable

Wide range of values

Polymers 10–8 Large Small (Molecular
Weight)(�0.5 to –2)

Often
small

Involves different
special cases

Note: These heuristics summarize the more detailed discussions in this chapter.
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In some cases, diffusion coefficients can be adequately estimated by more carefully

considering the chemistry. Specific cases, discussed in the next chapter, include electro-

lytes and critical points. However, in most nonroutine problems the detailed chemistry is

not known and experiments are essential. The primer on experiments given in this

chapter should be your initiation.

Questions for Discussion

1. What are typical values of diffusion coefficients in gases, liquids, and solids?

2. If the diffusion of hydrogen in nitrogen gas is 0.78 cm2/sec at 1 bar, what will it

be at 50 bars?

3. Describe an experiment to measure the diffusion of oxygen in nitrogen. List any

equipment needed.

4. Diffusion in liquids commonly assumes a rigid sphere in a continuum. When

would this model be most accurate? When could it fail?

5. Howwould the diffusion coefficient of a protein vary with its molecular weight?

6. Describe an experiment to meaure the diffusion of glucose in water. List any

equipment needed.

7. What are the limits of the diffusion of an ellipsoid as the ratio of axes (a/b)

becomes very large?

8. Diffusion varies with viscosity to the (+1) power in gases but to the (–1) power

in liquids. Why?

9. Why does hydrogen diffuse so much faster in metals than other solutes do?

10. Diffusion in metals often varies strongly with temperature in metals with an

activation energy DH around 100 kJ/mol. What are the corresponding activa-

tion energies in gases and in liquids?

Problems

1. Estimate the diffusion coefficient of carbon dioxide in air at 740 mm Hg and 37 �C.
How does this compare with the experimental value of 0.177 cm2/sec? Answer: about
4% low.

2. As part of a course on diffusion, you are to measure the diffusion coefficient of am-
monia in 25 �C air, using the two-bulb capillary apparatus shown in Fig. 3.1-2. In your

apparatus, the bulbs have volumes of about 17 cm3, and the capillary is 2.6 cm long
and 0.083 cm in diameter. You are told that you should make your measurements
when the concentration difference is about half the initial value. (a) Use the Chapman–

Enskog theory to estimate how long you should run your experiment. Answer: 3.6 hrs
(b) Why are you told to make your measurement near this particular concentration
difference?

3. Estimate the diffusion coefficient at 25 �C of traces of ethanol in water and of traces of
water in ethanol. Compare your estimates with the experimental values of 0.84 � 10–5
cm2/sec and 1.24 � 10–5 cm2/sec, respectively.

4. Tobacco mosaic virus has been shown by electron microscopy to be shaped like
a cylinder 150 Å in diameter and 3,000 Å long. Its molecular weight is about 40million,
and its partial specific volume is 0.73 cm3/g. Estimate the diffusion coefficient of this
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material and compare with the experimental value at 25 �C of 3 � 10–8 cm2/sec.Answer:

2.7 � 10–8 cm2/sec.

5. Estimate the diffusion coefficient of lactic acid under each of the following conditions:

(a) in air at room temperature and pressure; (b) in milk in the refrigerator; (c) through
the wall of a plastic milk bottle.

6. In an experiment to determine the diffusion coefficient of urea in water at 25 �C with
the diaphragm cell, you find that a density difference of 0.01503 g/cm3 decays to

0.01090 g/cm3 after a time of 16 hrs and 23 min. The cell’s calibration constant is
0.397 cm–2. If the density of these solutions varies linearly with concentration, what is
the diffusion coefficient? Compare your answer with the value of 1.373 � 10–5 cm2/sec

obtained with the Gouy interferometer. Answer: 1.37 � 10–5 cm2/sec.

7. The concentration profile of Ni2SiO4 diffusing into Mg2SiO4 is given below [M.
Morioka, Geochim Cosmochim Acta, 45, 1573 (1981)]. These data were found after
20 hrs using an infinite couple at 1,350 �C. Calculate the diffusion coefficient in this
system. Answer: 1.2 � 10–11 cm2/sec.

8. The ionic diffusion coefficient D or, more exactly, the ionic conductivity k can frequently
be described by the equation

k ¼ a0
T
exp

�E =RT

For b-alumina, the following values are obtained:

[G. C. Farrington and J. L. Briant, Science, 204, 1371 (1979)]. (a) Calculate the ionic

conductivity at 25 �C for each of these ions. (b) Show that these conductivities can be

as large as that in l-M KCl, in which the diffusion coefficient is 2.0 � 10–5 cm2/sec. (c)
Because we usually expect transport in solids to be much slower than transport in

R0(Å) a0(K/ohm-cm) E(kcal/mol)

Li+ 0.68 54 2.9
Na+ 0.98 2,500 2.4
H3O

+ 1.32 81,000 11.9
K+ 1.33 1,500 4.6
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liquids, we recognize that b-alumina is an exceptional material. Discuss the factors

that might cause this effect.

9. Jeng-Ping Yao and D. N. Bennion [J. Phys. Chem., 75, 3586 (1971)] measured the

electrolytic conductance of aqueous solutions of tetra-n-amylammonium thiocyanate
at 55 �C. The data are most easily presented graphically (see below). Note that this salt
is a liquid at this temperature and is completely miscible with water; so the measure-

ments go all the way frommass transfer at infinite dilution through to mass transfer in
the molten salt. As detailed in Section 6.1, specific conductance is approximately
equivalent to the diffusion coefficient times the ionic concentration. Use your knowl-

edge of diffusion to suggest how the data at high salt concentration might be conve-
niently correlated.

10. Diffusion in molten silicate deep within the earth is central to many of the chemical
processes that take place there. However, the diffusion coefficients in such magma
seem to vary widely. For example, for cesium ion dissolved in obsidian at 2 kilobars

pressure,

D ¼ 8 � 10�2exp�49:9 kcal=RT ½¼�cm2
=sec

For cesium ion dissolved in obsidian containing 6 wt% water,

D ¼ 7 � 10�5exp�19:52 kcal=RT½¼�cm2
=sec

[E. B. Watson, Science, 205, 1259 (1979)]. (a) How much does the diffusion coefficient
at 800 �C differ in the dry and the water-saturated samples? (b) The reason for this

difference is not known. Assume that the water causes thin pores to form, and diffu-
sion in the pores is that in bulk water. What is the pore area per obsidian area?
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CHAPTER 6

Diffusion of Interacting Species

In this chapter, we turn to systems in which there are significant interactions

between diffusing molecules. These interactions can strongly affect the apparent diffu-

sion coefficients. In some cases, these effects produce unusual averages of the diffusion

coefficients of different solutes; in others, they suggest a strong dependence of diffusion

on concentration; in still others, they result in diffusion that is thousands of times slower

than expected.

The discussion of these interactions involves a somewhat different strategy than that

used earlier in this book. In Chapters 1–3, we treated the diffusion coefficient as an

empirical parameter, an unknown constant that kept popping up in a variety of math-

ematical models. In more recent chapters, we have focused on the values of these co-

efficients measured experimentally. In the simplest cases, these values can be estimated

from kinetic theory or from solute size; in more complicated cases, these values require

experiments. In all these cases, the goal is to use our past experience to estimate the

diffusion coefficients from which diffusion fluxes and the like can be calculated.

In this chapter, we consider the chemical interactions affecting diffusion much more

explicity, rather than hiding them as part of the empirically measured diffusion coeffi-

cient. The interactions affecting diffusion are conveniently organized into three groups.

As a first group, we consider in Section 6.1 solute–solute interactions, particularly in

strong electrolytes. We want to discover how sodium chloride diffusion is an average of

the diffusion of sodium ions and of chloride ions. In Section 6.2, we turn to the transport

of associating solutes like weak electrolytes and dyes. We want to know how the total

diffusion of acetic acid varies from dilute solutions, where it is almost completely ion-

ized, to concentrated solutions, where it is almost completely unionized.

The second group of interactions affecting diffusion involves solute–solvent interactions.

In Section 6.3, we explore the extremely large solute–solvent interactions which occur near

the spinodal limit, where phase separation is incipient. Diffusion in these regions leads to the

phenomenon of spinodal decomposition, which is also discussed in Section 6.3.

In the last section of this chapter, we summarize diffusion affected by solute–boundary

interactions, which is the third important group of interactions. Solute–boundary

interactions occur in porous solids with fluid-filled pores. They include such diverse

phenomena as Knudsen diffusion, capillary condensation, and molecular sieving. Be-

cause these phenomena promise high selectivity for separations, they are an active area

for research. They and the other interactions illustrate the chemical factors that can be

hidden in the diffusion coefficients which are determined by experiment.

6.1 Strong Electrolytes

Every high school chemistry student knows that when sodium chloride is dis-

solved in water, it is ionized. Sodium chloride in water does not diffuse as a single
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molecule; instead, the sodium ions and chloride ions move separately through the solu-

tion. The movement of the ions means that a 0.1-M sodium chloride solution passes an

electric current one million times more easily than water does. The large ion size relative

to electrons means that such a solution passes current ten thousand times less easily than

a metal does.

The diffusion of sodium chloride can be accurately described by a single diffusion

coefficient. Somehow this does not seem surprising, because we always refer to sodium

chloride as if it were a single solute and ignore the knowledge that it ionizes. We get away

with this selective ignorance because the sodium and chloride ions diffuse at the same

rate. If they did not do so, we could easily separate anions from cations.

Values of ionic diffusion coefficients are given in Table 6.1-1. These data, which are

hidden in the literature of electrochemistry, are obtained by a variety of experimental

methods, including tracer diffusion determinations. The table shows that different ions

have different diffusion coefficients. The proton and the hydroxyl ion are unusually fast;

big fat organic ions like tetrabutylammonium and tetraphenylborate are slow. Some-

what surprisingly, a potassium ion diffuses faster than a lithium ion does. This suggests

that in aqueous solution, a potassium ion is smaller than a lithium ion. These sizes are

unexpected from crystallographic measurements on the solid state that show the potas-

sium ion is larger. The sizes in solution occur because the potassium ion is less strongly

hydrated than the lithium, as discussed in Section 6.2-4.

The anomalously high value for protons merits discussion. This high value is in-

consistent with the ion’s size, which would suggest a more normal value. The reason

for this behavior is that proton transport occurs by a different ‘‘Grotthus’’ mechanism.

In this mechanism, shown schematically in Fig. 6.1-1, a proton does not move through

water as an intact entity. Instead, it reacts with a water molecule, forcing a proton off the

other side. This newly generated molecule reacts again to produce a third proton; this

third proton continues the chain reaction. This transport may also involve proton

tunnelling.

Another interesting result in Table 6.1-1 is that the sodium ion diffuses more slowly

than the chloride ion. In other words, the sodium ion does not have the same diffusion

Table 6.1-1 Diffusion coefficients of ions in water at 25 �C

Cation D Anion D

H+ 9.31 OH– 5.28
Li+ 1.03 F– 1.47
Na+ 1.33 Cl– 2.03
K+ 1.96 Br– 2.08
Rb+ 2.07 I– 2.05
Cs+ 2.06 NO�3 1.90
Ag+ 1.65 CH3COO� 1.09
NHþ4 1.96 CH3CH2COO� 0.95
NðC4H9Þþ4 0.52 BðC6H5Þ�4 0.53
Ca2+ 0.79 SO2�

4 1.06
Mg2+ 0.71 CO2�

3 0.92
La3+ 0.62 FeðCNÞ3�6 0.98

Note: Values at infinite dilution in 10�5 cm2/sec. Calculated from data of Robinson and Stokes

(1960).

162 6 / Diffusion of Interacting Species



coefficient as the chloride ion. However, because sodium chloride diffuses with only one

coefficient, the ionic diffusion coefficients must somehow be combined to give an aver-

age value. We shall now calculate this average, first for a simple 1-1 electrolyte like

sodium chloride and then formore complicated electrolytes.With these results as a basis,

we shall then briefly discuss electrical conductance.

6.1.1 Basic Arguments

Imagine a large, fat grandfather taking a small rambunctious girl for a walk.

The rate at which the two travel will be largely determined by the grandfather. He will

move slowly, even ponderously, toward their goal. The girl may run back and forth,

taking many more steps and so covering more distance, but her progress will be dom-

inated by her elder.

In the same way, the diffusion of a large, fat cation and a small, quick anion will be

dominated by the slower ion. The diffusion will proceed as does the walk, and the smaller

ion may move around more. However, the two ions are tied together electrostatically,

and so their overall progress will be the same and will tend to be dominated by the slower

ion (Fig. 6.1-2).

To examine this analogy more exactly, we must first write a flux equation for ion dif-

fusion. In this effort, we consider only dilute solutions, like those in Chapter 2, and so

ignore problems like the complicated reference velocities of Chapter 3. The obvious choice

of a flux equation is the simplest form of Fick’s law, which for a sodium ion will be

� jNa ¼ DNa$cNa (6.1-1)

However, we quickly realize that this choice is inadequate, for it suggests that an electric

field will not affect diffusion.

To include this electric field, we return to the argument used to derive the Stokes–

Einstein equation in Section 5.2: that the ion velocity is proportional to the sum of all

the forces acting on the ion. In symbolic terms, this is

ion
velocity

� �
¼ ion

mobility

� �
chemical
forces

�
þ electrical

forces

�

vi ¼ �uið$li þ ziF $wÞ (6.1-2)

H+
H+

Fig. 6.1-1. Proton diffusion in water. Proton diffusion occurs by the chain reaction shown

between water molecules. Such a jumpmechanism also exists in alcohol, but not in alcohol–water

mixtures.
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where ui is the ion mobility, zi is the ionic charge (equal to+1 for Na+), F is Faraday’s

constant, and w is the electrostatic potential.

Each of these terms deserves discussion. First, the mobility ui is a physical property of

the ion, a phenomenological coefficient that must be measured by experiment. This

mobility is often taken to be 1/6plR0, which, we recall, is a feature of the Stokes–Einstein

equation. In fact, the use of this value simply restates our ignorance of mobility in terms

of an effective ion radius, R0.

Because the mobility is almost equivalent to the diffusion coefficient, it is something

of a cultural artifact. It is included here because many papers dealing with electrolyte

transport report their results in terms of mobilities, not in terms of diffusion coefficients.

Faraday’s constant is even more of a cultural artifact: it is a unit conversion factor

explicitly included whenever this equation is written. The apparent supposition is that

no one can properly use electrostatic units without a warning.

The charge and potential in Eq. 6.1-2 make explicit the electrical effects connecting

the ions. Including the charge seems sensible; note that if the ion has a negative charge,

the direction of the electrical effect is reversed. The potential also looks sensible. It has

two distinct parts. One part includes the effect of any potential applied to the system, for

example, by electrodes attached to a battery. A second part is the potential generated by

the different diffusion rates of diffusion ions. For example, for sodium chloride, the

potential includes the electrostatic interaction of the quicker chloride ions and the

more sluggish sodium ions. It is thus the route by which we average ion diffusion

coefficients.

To rewrite Eq. 6.1-2 as a flux relation, we take advantage of the fact that we are

working in dilute solution and so assume that the solution is ideal:

$li ¼
RT

ci
$ci (6.1-3)

When this result is combined with Eq. 6.1-2, we get

� vi ¼
uiRT½ �
ci

=ci þ cizi
F=w
RT

� �
(6.1-4)

+

+
+

+

+

+
+

+

+

+

Fig. 6.1-2. Electrolyte diffusion. The two ions have the same charge and are present at the same

local concentration. The larger cations (the positive ions) inherently move more slowly than the

smaller anions (the negative ions). However, because of electroneutrality, both ions have the

same net motion and hence the same flux.
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which is equivalent to the flux equation

�ji ¼ �civi

¼ ½RTui� $ci þ cizi
F=w
RT

� �
¼ ½Di� $ci þ cizi

F=w
RT

� �
(6.1-5)

These relations, sometimes called the Nernst–Planck equations (Bard and Faulkner,

2000), could be written down directly as a definition for Di. If this were done, then the

restriction to dilute solutions in Eq. 6.1-3 and the implicit neglect of a reference velocity

in the first line of Eq. 6.1-5 would be hidden in the final flux equation, lumped into the

experimental coefficient Di. I find the derivation a sensible, reassuring rationalization,

even though I know that it is arbitrary.

6.1.2 1-1 Electrolytes

Wenowwant to describe the ion fluxes of a single strong 1-1 electrolyte. Such an

electrolyte ionizes completely, producing equal numbers of cations and anions. Al-

though the concentrations of anions and cations may vary through the solutions, the

concentrations and the concentration gradients of these species are equal everywhere

because of electroneutrality:

c1 ¼ c2

$c1 ¼ $c2 (6.1-6)

where 1 and 2 refer to cation and anion, respectively. Like the ion concentrations, the ion

fluxes are also related.

j1 � j2 ¼ i=jzj (6.1-7)

where |z| is the magnitude of the ionic charge and i is the current density in appropriate

units. This current density is defined as positive when it goes from positive to negative.

To find the electrolyte flux, we first return to the basic flux equation for each ion:

� j1 ¼ D1ð$c1 þ jzjc1F$w=RT Þ (6.1-8)

� j2 ¼ D2ð$c2 � jzjc2F$w=RT Þ (6.1-9)

These equations can be combined with Eq. 6.1-7 to find the current:

jzji¼D2$c2 �D1$c1 � ðD1c1 þD2c2ÞjzjF$w=RT (6.1-10)

But this equation now allows =w to be removed from the flux equations:

� j1 ¼
2D1D2

D1 þD2
$c1 �

D1

D1 þD2
ði=jzjÞ (6.1-11)

where we have used the fact that c1 ¼ c2 to simplify the final expression. A similar

equation for the anion flux j2 can be derived.
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Two important limits of the flux j1 exist. First, when there is no current,

j1 ¼ j2 ¼ �D$c1 ¼ �
2

1=D1 þ 1=D2

� �
$c1 (6.1-12)

The quantity in brackets is the average diffusion coefficient of the electrolyte. Because it

is a harmonic average of the diffusion coefficients of the individual ions, it is dominated

by the slower ion. However, there is only one diffusion coefficient for the two diffusing

ions because the ions are electrostatically coupled.

The second interesting limit of Eq. 6.1-11 occurs when the solution is well mixed, so

that no gradients of anion and cation exist. In this case,

j1 ¼ ½t1�ðjzjiÞ ¼
D1

D1 þD2

� �
ði=jzjÞ (6.1-13)

j2 ¼ ½t2�ð�jzjiÞ ¼ �
D2

D1 þD2

� �
ði=jzjÞ (6.1-14)

where the ti, equal to the quantities in brackets, are the transference numbers, that is,

the fractions of current transported by specific ions. Unlike the diffusion coefficient, these

transference numbers are arithmetic averages of the ion diffusion coefficients. As a result,

the transference numbers and the current in solution are both dominated by the faster ion.

Example 6.1-1: Diffusion of hydrogen chloride What is the diffusion coefficient at 25 �C
for a very dilute solution of HCl in water? What is the transference number for the

proton under these conditions?

Solution From the data in Table 6.1-1, the ionic diffusion coefficients are

9.31 � 10–5 cm2/sec for H+ and 2.03 � 10–5cm2/sec for Cl–. The electrolyte diffusion

coefficient is given by Eq. 6.1-12:

DHCl ¼
2

1=DH
þ þ 1=DCl

�

� �
¼ 3:3 � 10�5cm2

=sec

The slow ion dominates. The result is only 1.5 times greater than the chloride’s diffusion

coefficient, but it is 3.5 times less than the proton’s diffusion coefficient.

The transference number, tH+, can be found in a straightforward manner from

Eq. 6.1-13:

tHþ ¼
DH

þ

DH
þ þDCl

�
¼ 0:82

The faster protons carry eighty-two percent of the current.

6.1.3 Non-1-1 Electrolytes

We now turn from the simple 1-1 electrolytes to more complicated electrolytes.

Mathematical description of non-1-1 electrolytes is parallel to that developed earlier but

more complex algebraically. The basic flux equation is the same as Eq. 6.1-5:

� ji ¼ Dið$ci þ ciziF$w=RT Þ (6.1-15)
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The constraints on concentration and flux at zero current are

z1c1 þ z2c2 ¼ 0 (6.1-16)

and

z1 j1 þ z2 j2 ¼ 0 (6.1-17)

When the electrostatic potential is eliminated, the diffusion equation for ion 1 becomes

� j1 ¼ D$c1 ¼
D1D2ðz21c1 þ z

2
2c2Þ

D1z
2
1c1 þD2z

2
2c2

" #
$c1 (6.1-18)

where the quantity in brackets is D, the diffusion coefficient of the electrolyte.

This equation can be somewhat misleading because of the unequal charge. For ex-

ample, imagine that we are interested in the diffusion of very dilute solutions of calcium

chloride. If the calcium is ion 1, then its flux will be half the flux of chloride. When only

one electrolyte is present, we may wish to rewrite this equation in terms of the total

electrolyte flux jT and the total electrolyte concentration cT, defined as

jT ¼ j1=jz2j ¼ j2=jz1j (6.1-19)

cT ¼ c1=jz2j ¼ c2=jz1j (6.1-20)

The diffusion equation for a single non-1-1 electrolyte now becomes

� jT ¼ D$cT ¼
jz1j þ jz2j

jz2j=D1 þ jz1j=D2

� �
$cT (6.1-21)

where the quantity in brackets is again the diffusion coefficient of the non-1-1 electrolyte.

This diffusion forms a curious contrast with the special case of a 1-1 electrolyte de-

scribed by Eq. 6.1-12. Both equations involve a type of harmonic average of the ionic

diffusion coefficients. Thuswemight expect that both cases aremore strongly influenced by

the slower ion. However, if this slower ion has amuch larger charge than the faster ion, the

faster ion may come to dominate the diffusion, because the harmonic average is weighted

by the ion charge. The effect of this weighting can be more clearly shown by examples.

Example 6.1-2: Diffusion of lanthanum chloride What is the diffusion coefficient of

0.001-M lanthanum chloride?

Solution From Table 6.1-1, the diffusion coefficients of La3+ and Cl– are

0.62 � 10–5cm2/sec and 2.03 � 10–5cm2/sec, respectively. In water, the average coefficient

can be found either from Eq. 6.1-18 or from Eq. 6.1-21. From Eq. 6.1-21, taking La3+ as

ion 1 and chloride as ion 2, we get

D ¼ jz1j þ jz2j
jz1j=D2 þ jz2j=D1

¼ j3j þ j � 1j
j3j=2:03 � 10�5 þ j � 1j=0:62 � 10�5

" #
cm

2
=sec

¼ 1:29 � 10�5cm2
=sec
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From Eq. 6.1-18, because c1 ¼ 0.001 M and c2 ¼ 0.003 M, we can find the same

result.

Example 6.1-3: Diffusion of lanthanum chloride in excess sodium chloride How will the

result of the previous example be changed if the lanthanum chloride diffuses through

1 M NaCl?

Solution Answering this question requires the assumption that there are no

ternary diffusion effects in this system. These effects may arise because the diffusion of

sodium ion couples with the diffusion of chloride ion, which in turn affects the diffusion

of La3+. However, these effects vanish for any solute present in high dilution, as LaCl3 is

in this case (see Section 7.4).

Because of the added sodium chloride we cannot use Eq. 6.1-21, which is valid

only for a single non-1-1 electrolyte. We can use Eq. 6.1-18. If we again label lantha-

num as ion 1 and chloride as ion 2, we recognize that c1 equals 0.001 M, but c2 is about

1 M. These unequal concentrations mean that Eq. 6.1-18 becomes

�j1 ¼
D1D2ðz22c2Þ

D1z
2
1c1 þD2z

2
2c2

$c1

¼ D1$c1

In other words, the diffusion of the lanthanum chloride is 0.62 � 10–5cm2/sec, which is the

same as the solitary ion. Thus the diffusion of dilute LaCl3 in concentrated NaCl is

dominated by the diffusion of the uncommon ion, La3+.

6.1.4 Diffusion versus Conductance

Although diffusion is a very common process, diffusion coefficients can be

difficult to measure. This is true for most of the systems discussed in this book, including

solutions of electrolytes. However, for electrolyte solutions, the electrical resistance and

its reciprocal, the electrical conductivity, are very easy to measure. Nothing in my exper-

imental experience is as satisfying as a conductance experiment: I get fantastically accurate

results with embarrassingly little effort. Because diffusion and conductance give similar

information about the system, it is worth comparing the two processes in some detail.

The conductance of a single electrolyte in solution is most easily measured in cells like

those shown in Fig. 6.1-3. The electrical resistance of the stirred solution is measured

with a rapidly oscillating AC field of fixed maximum voltage, so that the solution

remains homogeneous throughout the experiment. The resistance is inversely propor-

tional to the current through the cell, but the current, in turn, is proportional to the ion

fluxes:

ðresistanceÞ�1 ¼ Kcell i¼Kcellðz1 j1 þ z2 j2Þ (6.1-22)

The proportionality constant Kcell in this relation is a function of the electrode area, the

electrode separation, and the cell shape. It is found by calibration of the cell, most

commonly with a potassium chloride solution.
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The ion fluxes in the cell are described by equations analogous to those used for ion

diffusion. First, we assume that the ion flux is proportional to the ion concentration:

ji ¼ civi (6.1-23)

We also assume that the ion velocity is proportional to the electrical force acting on the

ion:

vi ¼ �uiziF$w (6.1-24)

where, as in Eq. 6.1-2, ui is the ion mobility and w is the electrostatic potential acting on

the ions. Because in this case the solution is homogeneous, the concentration gradient is

zero. The only flux comes from the electrostatic potential applied by the electrodes.

We now can combine Eqs. 6.1-22 through 6.1-24 to find an expression for the

resistance in terms of the ion mobilities:

ðresistanceÞ�1 ¼ Kcellðz21c1u1 þ z
2
2c2u2ÞF$w (6.1-25)

The ion concentrations are related to the total concentration cT by

cT ¼ c1=jz2j ¼ c2=jz1j (6.1-26)

Equations 6.1-25 and 6.1-26 can now be combined and simplified to define the most

convenient measure of conductivity, the equivalent conductance:

K ¼ jz1ju1 þ jz2ju2

¼ fðresistanceÞ½KcellF$w�jz1z2jc�1T g (6.1-27)

The quantityK is most frequently reported in studies of conductance. It can bemeasured

by determining each of the quantities in the braces. Because the gradient is fixed, the

entire quantity in brackets can be treated as a cell constant.

The equivalent conductance K can be extremely accurately measured, often to

accuracies of 0.01%. It is known to vary slightly with concentration, as shown in Fig.

6.1-4. This variation follows the equation

K ¼ K0 � S
ffiffiffi
c
p

T þ EcT ln cT þ JcT þ J
0
c
3=2

T (6.1-28)

Fig. 6.1-3. Conductance cells. These cells are used to measure with extremely high accuracy

the resistance of an electrolyte solution. This information is related to the diffusion coefficient

of the electrolyte. As a result, a conductance experiment sometimes is a superior method of

studying diffusion.
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where K0, S, E, J, and J# are all constants. The limiting equivalent conductance K0 is

a property of the ions and is not well understood theoretically. The limiting slope S, first

calculated by Onsager, is a function only of the charges on the ions and is thus charac-

teristic of electrostatic interactions between the ions. The higher constants, E, J, and J#,
includemore electrostatic interactions, ion–solvent interactions, and the ion associations

more commonly encountered with weak electrolytes.

In many practical problems, the ion transport is well described by assuming that K is

a constant. After all, the concentration variations are less than twenty percent for

aqueous solutions of most strong electrolytes. Some solution chemists who attack this

assertion ignore the ion properties implicit in K0 and instead extol those contained in E,

J, and J#. If your purpose is knowledge of ion properties, listen to the chemists. If your

purpose is knowledge of mass transfer, assume that K is a constant.

We now want to relate the equivalent conductance K to ion properties and, more

specifically, to ion diffusion coefficients. First, because the ions migrate independently

in a dilute-solution conductance experiment, we can define, from Eq. 6.1-27,

K ¼ k1 þ k2 (6.1-29)

where

ki ¼ jzijui (6.1-30)

The ki, called equivalent ionic conductances, cannot be found from measurements of K
alone, but require other independent determinations, most commonly the transference
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Fig. 6.1-4. Equivalent conductance versus concentration. Conductance varies with

concentration, especially at high dilution. For strong electrolytes like KCl and CaCl2, these

variations are chemically interesting but practically unimportant. For weak electrolytes like

acetic acid, the variation is larger (see Section 6.2).
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numbers given in Eqs. 6.1-13 and 6.1-14. The ki depend not only on the ion mobility but

also on the charge. More specifically, if two cations have the same size but not the same

charge, they will have the same mobility, though not the same equivalent ionic conduc-

tance. Note also that K is related to the sum of the ionic properties ki and hence is an

arithmetic average of the ionic properties. In contrast, diffusion is a harmonic average,

as shown in Equations 6.1-12 and 6.1-21.

The equivalent ionic conductances are closely related to the ionic diffusion coeffi-

cients through the mobilities:

Di ¼ kBTui

¼ kBT

jzij

� �
ki (6.1-31)

This result is not often used, even though it is simple and valuable. Part of the reason for

this neglect is the ki are most commonly expressed in ‘‘conductance units,’’ which are

mercilessly square centimeters per mole ohm. The conversion at 25 �C is

Di ½¼�cm2
=sec

� �
¼ 2:662 � 10�7

jzij
ki ð½¼�cm2

=mol ohmÞ (6.1-32)

This relation was used to find some of the values in Table 6.1-1.

Equation 6.1-32 suggests that conductance measurements might be a substitute for

those of diffusion and other aspects of mass transfer. This would be appealing, because

conductance is much easier to measure. Why not measure conductance and forget

diffusion?

This idea has both merit and risk. The merit is the simplicity; the two methods do give

closely related information. The risk is that the solutes must ionize completely. This

effectively restricts these measurements to water, and that is why easily measured con-

ductance is less often reported than difficultly determined diffusion.

Example 6.1-5: Calcium chloride diffusion from conductance Estimate the diffusion

coefficient of CaCl2 from conductance measurements. The equivalent ionic conductance

at infinite dilution is 59.5 for Ca2+ and 76.4 for chloride. The experimental value of the

diffusion coefficient is about 1.32 � 10–5cm2/sec.

Solution From Eq. 6.1-32 we can find the ionic diffusion coefficients

DCa ¼ 0:79 � 10�5cm2
=sec

DCl ¼ 2:03 � 10�5cm2
=sec

The diffusion coefficient can be found from these ionic values by using Eq. 6.1-21:

DCaCl2 ¼
2þ 1

2=2:03ð Þ þ 1=0:79ð Þ

� �
�10�5

¼ 1:33 � 10�5cm2
=sec

This result is accurate in very dilute solution. At higher concentrations, the diffusion

coefficient drops to about 1.1 �10–5 cm2/sec at 0.2 M and then rises slightly.
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6.2 Associating Solutes

We now switch from solutes that dissociate completely to form ions to solutes

that associate to form aggregates. We again want to find the diffusion coefficient aver-

aged over the various species present.

The analysis of these systems began when Arrhenius (1884) suggested that materials

like acetic acid partially dissociate in water. Many who study diffusion vaguely remem-

ber this variation but ignore it in their experiments. Interestingly, the diffusion of such

solutes can lead to curious and dramatic results. These results have been scattered

through different academic disciplines and so have tended to be ignored. As an example,

consider diffusion of potassium chloride across two thin membranes. The first mem-

brane is just a thin layer of water. The steady-state flux across this membrane is given by

jKCl ¼ jK ¼ �D
dcK
dz

(6.2-1)

where cK=cCl=cKCl; and the diffusion coefficientD is the average of the ionic values (cf.

Eq. 6.1-12):

D ¼ 2

1

DK
þ 1

DCl

(6.2-2)

The flux equation is subject to the constraints

z ¼ 0; cKCl ¼ CKCl;0 (6.2-3)

z ¼ l; cKCl ¼ 0 (6.2-4)

where the CKCl,0 is the concentration adjacent to but outside the membrane, and in-

tegrating, we find the usual result:

jKCl ¼
D

l
CKCl;0 (6.2-5)

In other words, if we double the KCl concentration, we double the flux across this water-

filled membrane.

The results for the second thin membrane are different. This membrane consists of

a chloroform solution of amacrocyclic polyether, again separating two aqueous solutions.

Because the dielectric constant of this secondmembrane is low, the potassiumand chloride

ions are largely associated as ion pairs: The ions are stuck together with electrostatic glue.

The solute that is diffusing is now actually KCl, and not K+ and Cl–. To analyze

diffusion in this case, we again begin with the flux equation:

jKCl ¼ �D
dcKCl

dz
(6.2-6)

where the diffusion coefficient D is now that of the ion pairs, not an average of the ions.

The boundary considerations on this flux equation are:

z ¼ 0; cKCl ¼ KCKCCl ¼ KC
2
KCl (6.2-7)

z ¼ l; cKCl ¼ 0 (6.2-8)
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where the uppercase variables are outside the membrane, and K is a combined partition

coefficient and association constant across this membrane’s interface. Notice how Eq.

6.2-7 implicitly assumes the fast reaction:

K
þ
ion in water adjacent
to the membrane

� �
þ Cl

�
ion in water adjacent
to the membrane

� �

KÐ
KCl ion pairs at membrane boundary

but within the membrane

� �
(6.2-9)

It is just as if a chemical dimerization converted the ions into a new chemical species. As

before, we integrate Eq. 6.2-6 to find

jKCl ¼
DK

l
C

2
KCl;0

� �
(6.2-10)

The flux is now proportional to the square of the potassium chloride concentration. This

square dependence is verified experimentally, as shown in Fig. 6.2-1.

In some cases, wemay not be sufficiently astute to realize that the diffusing solutes are

associating. For example, if we still thought that the ions – not the ion pairs – were

diffusing, then we might analyze our data with the equation

jKCl ¼
Dapparent

l
CKCl;0 (6.2-11)

When we plotted our results, we would discover that this apparent coefficient varied

strongly with concentration. In the example given here, we easily see why this variation

occurs:

Dapparent ¼ DKCKCl;0 (6.2-12)

In other cases, we may not have the chemical insight to understand why the diffusion

coefficient varies with concentration. This section analyzes how concentration-dependent
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Fig. 6.2-1. Potassium chloride flux across an organic membrane. In these experiments, a

concentrated solution of KCl diffuses across a polyether–chloroform membrane into

pure water. The flux observed is not proportional to the salt’s concentration but to this

concentration squared. This effect occurs because potassium and chloride ions associate

within the membrane to form ion pairs. [Data from Reusch and Cussler (1973).]
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diffusion may result from solute association. Three cases are important: weak electrolytes,

detergents, and dyes. Each is discussed below.

6.2.1 Weak Electrolytes

Weak electrolytes will produce solutions of a cation, an anion and a molecule in

equilibrium with each other. For example, an aqueous solution of acetic acid contains

hydrated protons, acetate ions, and acetic acid molecules, all in local equilibrium as the

result of fast association.

Wewant to describe steady-state diffusion in this associating system. To do so, wewrite

mass balance on the acetate ions (species 1) and on the acetic acid molecules (species 2):

0 ¼ �dj1
dz
� r (6.2-13)

0 ¼ �dj2
dz
þ r (6.2-14)

where r is the rate of formation of themolecules (the ‘‘dimers’’). We add Eq. 6.2-13 to Eq.

6.2-14, and integrate to find the total flux jT:

� jT ¼ �j1 � j2 ¼ D1
dc1
dz
þD2

dc2
dz

(6.2-15)

where D1 is the average diffusion coefficient of the ions. For example, for protons and

acetate, it is

D1 ¼
2

1

DH
þ 1

DCH3COO

� � (6.2-16)

We assume Eq. 6.2-15 is subject to boundary conditions like those of a thin

membrane:

z ¼ 0; c1 ¼ C10; c2 ¼ C20 (6.2-17)

z ¼ l; c1 ¼ 0; c2 ¼ 0 (6.2-18)

Integrating again, we find

jT ¼
D1C10

l
þD2C20

l
(6.2-19)

In general, we do not know the species concentrations C10 and C20. We do know that

these are related to the total acetic acid concentration

CT ¼ C10 þ C20 (6.2-20)

We also know that they are interdependent:

C20 ¼ KC
2
10 ¼ KCH

þCCH3COO
� (6.2-21)
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whereK is the association constant for the diffusing species. We then can rewrite the flux

in terms of this constant to find

jT ¼
D1

2KCT
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4KCT

p� �
þ D2

4KCT
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4KCT

p� �2	 

CT

l
(6.2-22)

The quantity in braces is the apparent diffusion coefficient of the weak electrolyte.

The apparent diffusion coefficient of the weak electrolyte is concentration depen-

dent, the result of the solute–solute association. The physical significance of this con-

centration dependence may be clearer if we consider two limits. First, in dilute solutions

(4KCT � 1), the apparent coefficient equals D1, the ionic value. This makes sense

because dilute solutions will show complete ionization. Second, in concentrated solution

(4KCT� 1), the apparent coefficient reduces to D2: molecular diffusion is paramount.

Thus concentration-dependent diffusion of weak electrolytes shown by Fig. 6.2-2 reflects

association.

Example 6.2-1: Diffusion of acetic acid What is the diffusion coefficient of the acetic acid

molecule if the apparent diffusion coefficient of acetic acid is 1.80 � 10–5 cm2/sec at 25 �C
and 10 M? The pKa of acetic acid is 4.756.

Solution The pKa of a weak acid HA is defined as

pKa ¼ � log10
H
þ� �

A
�½ �

HA½ �
In this case, the [H+] and [A–] concentrations are equal. Comparing this with Eq. 6.2-21

we see that

K ¼ 10
pKa ¼ 5:70 � 104 l=mol
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Fig. 6.2-2. The diffusion coefficient of a dimerizing solute. As a solute dimerizes, its average

diffusion coefficient changes from that of the monomer to that of the dimer. The concentration

CT at which this occurs is roughly the reciprocal of the association constant K.
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If we insert this into Eq. 6.2-22, we find that the term containing D2 dominates com-

pletely, and

D2 ¼: 1:80 � 10�5cm2
=sec

In passing, note that the diffusion coefficient of the fully ionized acid found from Eq.6.1-

12 and Table 6.1-1 is 1.95 � 10–5 cm2/sec.

6.2.2 Micelle Formation

We now want to calculate the average diffusion coefficient for solutes that

aggregate much more than the simple weak electrolytes discussed earlier. Three cases

of this aggregation are shown in Fig. 6.2-3. The one dramatic case is the detergent

sodium dodecylsulfate (SDS). Molecules of this detergent remain separate at low con-

centration but then suddenly aggregate. The resulting aggregates, called ‘‘micelles,’’ are

most commonly visualized as an ionic hydrophilic skin surrounding an oily hydrophobic

core (Fig. 6.2-4(a)). In fact, detergents clean in this way: they capture oil-bearing par-

ticles in their cores.

In contrast, molecules of the dye Orange II aggregate gently, resulting in a slow and

steady deviation from the unaggregated limit. Such aggregation results from a stacking

of dye molecules, like that shown schematically in Fig. 6.2-4(b). When the ease of stack-

ing is the same for all sizes in the stack, this aggregation is called ‘‘isodesmic.’’ The third

case involving the bile salt taurodeoxycholate is intermediate between the other two.

The two situations of micelle formation and isodesmic stacking represent two limiting

forms of solute aggregation. These two limits are discussed in the following paragraphs.
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Fig. 6.2-3. Types of solute aggregation. The detergent sodium dodecylsulfate aggregates

abruptly to form micelles, and the dye Orange II has its isodesmic aggregates (see Fig. 6.2-4).

The bile salt sodium taurodeoxycholate falls between these two limits. These results were

obtained using ion-selective electrodes. [Data from Kale, Cussler, and Evans (1980).]
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The diffusion coefficient measured in a detergent solution represents an average over

the monomer and micelle present in solution. Steady-state diffusion in such a system of

monomer and micelle obeys the continuity equations.

0 ¼ D1
d
2
c1

dz
2 � nrm (6.2-23)

0 ¼ Dm
d
2
cm

dz
2 þ rm (6.2-24)

where the subscripts 1 and m refer to the monomer and the micelle, respectively and rm
represents the rate of formation of micelles. Equation 6.2-24 is multiplied by n, added to

Eq. 6.2-23 and integrated to give

� jT ¼ D1
dc1
dz
þ nDm

dcm
dz

(6.2-25)

The integration constant jT is the total flux of the solute.

Equation 6.2-25 is not useful because it is written in terms of the unknown gradients

of c1 and cm, rather than in terms of the known total solute gradient cT. To remove these

unknowns, we could assume that micelle formation is fast, so that

cm ¼ Kc
n
1 (6.2-26)

whereK is the equilibrium constant for the fast micelle-forming reaction. We would also

need the mass balance:

cT ¼ c1 þ ncm (6.2-27)

Aggregates of
many sizes

(b) Dyes (e.g.,                                )
S

N

N N

CH3 CH3

CH3 CH3

(a) Long-chain surfactants (e.g., CH3(CH2)11SO4)

Large aggregate
of one size

–

Fig. 6.2-4. Micelle formation and isodesmic aggregation. In the type of micelle formation

discussed here, n monomers combine to form an n-mer. No other sizes are present. In

isodesmic association, monomers add with equal facility to monomers or aggregates

of any size.
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We would like to combine Eqs. 6.2-25 through 6.2-27 to get the answer we want.

However, while we did this easily in the case of ionic association, we now have an

nth-order equation for micelle formation. We can’t solve this easily.

To get an approximate solution, we first recognize that detergent solutions typically

have physical properties like conductance and surface tension that suddenly change at

a critical concentration at which micelles start to form in significant numbers. Above this

‘‘critical micelle concentration’’ cCMC, the monomer concentration c1 is approximately

equal that at the critical micelle concentration, so from Eq. 6.2-27,

cm ¼
1

n
ðcT � cCMCÞ (6.2-28)

An estimate of c1 can now be found from Eq. 6.2-26:

c1 ¼
1

nK
ðcT � cCMCÞ

� �1=1n
(6.2-29)

Inserting these results into Eq. 6.2-25 we find

� jT ¼ Dm þ
D1

n

ðnKÞ1=n

ðcT � cCMCÞ1�ð1=nÞ

" #
dcT
dz

(6.2-30)

or, because n is large,

� jT ¼ Dm þ
D1ðnKÞ1=n

nðcT � cCMCÞ

" #
dcT
dz

(6.2-31)

which is the desired result. The quantity in square brackets is the apparent diffusion

coefficient found experimentally.

To my surprise, this analysis works for nonionic detergents. The apparent diffusion

coefficient does vary inversely with (cT – cCMC), as shown in Fig. 6.2-5. The intercept on
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Fig. 6.2-5. Diffusion of the detergent Triton X-100 at 25 �C. The variation with concentration is

predicted by Eq. 6.2-31. The intercept is the micelle’s diffusion coefficient, and the slope is related

to the monomer’s diffusion coefficient. [From Weinheimer et al. (1981), with permission.]
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this plot agrees closely with the micelle’s diffusion coefficient estimated in other ways.

The slope is consistent with independent measurements of K and n.

However, this analysis does not work for ionic detergents at low ionic strength. For

example, the diffusion coefficient of sodium dodecylsulfate increases significantly at

concentrations above the critical micelle concentration, as shown in Fig. 6.2-6. This

increase is of electrostatic origin, due to small relatively mobile counter ions. At high

ionic strength, these electrostatic effects are less important, and Eq. 6.2-31 is again

verified.

6.2.3 Isodesmic Association

As the next topic in this section, we want to calculate the average diffusion

coefficient for systems in which aggregation occurs one molecule at a time. The simplest

case is called the isodesmic model. It assumes that

ci ¼ Kci�1c1 (6.2-32)

where K is an equilibrium constant that is independent of the size of the aggregate. Note

that the equilibrium constant for forming dimers from two monomers is assumed to be

the same as that for forming heptamers from hexamers and monomers.

Equations 6.2-26 and 6.2-32 show why the isodesmic model and micelle formation

represent two extreme limits of solute aggregation. In the isodesmic case, aggregates of

any size form with equal facility because all the steps are equal. In the micelle case,

aggregates form only of that special micelle of n monomers; the equilibrium constants

are zero for all but that special size.
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Fig. 6.2-6. Diffusion of sodium dodecylsulfate (SDS) at 25 �C. The diffusion coefficients in this

case increase as SDS concentration and solution viscosity rise. This increase is the result of

aggregation and electrostatic interaction. [Data from Weinheimer et al. (1981).]
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To find the apparent diffusion coefficient of a solute associating isodesmically, we

again start with the steady-state continuity equations:

0 ¼ D1
d
2
c1

dz
2 � 2r2 � r3 � r4 � � � � (6.2-33)

0 ¼ D2
d
2
c2

dz
2 þ r2 � r3 (6.2-34)

0 ¼ D3
d
2
c3

dz
2 þ r3 � r4 (6.2-35)

..

.

Again, these equations can be added together to eliminate reaction terms:

0 ¼ R
‘

i¼1
iDi

d
2
ci

dz
2 (6.2-36)

Integrating this result gives

� jT ¼ R
‘

i¼1
iDi

dci
dz

(6.2-37)

where jT is again an integration constant physically equal to the total solute flux in both

aggregated and monomer forms.

As earlier in this section, we now rewrite the unknown concentrations {ci} in terms of

the known total concentration of solute. Doing this requires two constraints. One of

these is that of isodesmic equilibria (Eq. 6.2-32). The other is a mass balance:

cT ¼ c1 þ 2c2 þ 3c3 þ � � �

¼ R
‘

i¼1
ici (6.2-38)

When these constraints are combined, we find

cT ¼
c1

ð1� Kc1Þ2
(6.2-39)

This quadratic can be solved for c1 as a function of cT, and the result combined with Eqs.

6.2-32 and 6.2-37 gives the total flux jT as a function of total solute concentration cT. This

solution is an algebraic mess. A more useful form is the power series

� jT ¼ D1 � KcTð4D1 � 4D2Þ þ K
2
c
2
Tð15D1 � 24D2 þ 9D3Þ

n
�K3

c
3
Tð56D1 � 112D2 þ 72D3 þ 16D4 þ � � �g

dcT
dz

(6.2-40)

Note that the apparent diffusion coefficient given in braces does not vary with concen-

tration if the diffusion coefficients are all equal (i.e., if D1 ¼ D2 ¼ D3 ¼ � � �).
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6.2.4 Solvation

So far, we have been discussing the effects of solute–solute interactions on the

diffusion coefficient. These interactions can be electrostatic, like the case of strong

electrolytes. There, our goal was to find the apparent diffusion coefficient that averaged

the coefficients of the species present. These solute–solute interactions can also reflect

solute association. The association might form a dimer, as for weak electrolytes. The

association might produce larger aggregates, as for dyes and detergents. In that case, our

goal was to understand the apparent diffusion coefficient.

We now switch from solute–solute interactions to solute–solvent interactions. The

first of these occurs when solute and solvent combine to form a new species, which is that

actually diffusing. This combination is most carefully studied for water, where it is called

hydration. We will discuss other forms of solute–solute interactions in Section 6.3.

The idea of hydration is based on the following flux equation:

� j1 ¼ D0 1þ q ln c1
q ln c1

� �
$c1 ¼

kBT

6plR0
1þ q ln c1

q ln c1

� �
$c1 (6.2-41)

in whichD0 is a new diffusion coefficient, l is the solvent viscosity,R0 is the solute radius,

and c1 is an activity coefficient. This equation makes two implicit assumptions: that the

solute’s flux is proportional to chemical potential gradient and that the diffusion co-

efficient in dilute solution is given by the Stokes–Einstein equation.

Hydration can affect this equation in twoways. First, the solute radiusR0must be that

of the hydrated species. This can be related to the true solute radius R00 by the equation

4
3pR

3
0 ¼ 4

3pðR
0
0Þ3 þ n

�VH2O

~N

� �
(6.2-42)

in which �VH2O is the molar volume of water, n is the ‘‘hydration number,’’ the number of

water molecules bound to a solute, and ~N is Avagadro’s number. If the diffusion coef-

ficient at infinite dilution is known, R0 can be calculated, R00 can be estimated from

crystallographic data, and n can be calculated. This kind of hydration decreases diffusion.

Hydration can also be calculated from the concentration dependence of diffusion by

assuming that this concentration dependence is the result of hydration. Ideas like this

were first used by Scatchard (1921) to rationalize the activity coefficient of sucrose. To do

this, one assumes that the solute activity c1c1 equals the solute’s true mole fraction

corrected for hydration:

c1c1 ¼
number of hydrated solutemolecules

number of hydrated solute
molecules

� �
þ number of ‘‘free’’

water molecules

� �

¼ number of solutemolecules

ð1� nÞ number of solute
molecules

� �
þ total number of

water molecules

� �

¼ c1
ð1� nÞc1 þ c2

(6.2-43)
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The two concentrations are related through the partial molar volumes:

c1 �V1 þ c2 �V2 ¼ 1 (6.2-44)

Combining Eqs. 6.2-42, 6.2-43, and 6.2-44, we obtain

D ¼ D0 1� ð1� n� �V1


�V2Þc1

1


�V2 þ ð1� n� �V1=�V2Þc1

264
375 (6.2-45)

For dilute solutions, c1 is small; for solutions of constant density �V1= �V2 is unity, and

Eq. 6.2-45 becomes

D ¼ D0 1þ n �V2c1 þ � � �½ � (6.2-46)

This result is often decorated with viscosity and electrostatic corrections. However, the

basic message remains: hydration tends to increase diffusion.

These ideas are frequently qualitatively useful, but they are rarely quantitatively

applicable. The data in Table 6.2-1 illustrate this by comparing hydration numbers

found from diffusion, from activity coefficients, and from transference methods. Qual-

itatively, these values supply insights. For example, the diffusion of lithium is slower

than that of sodium, which is slower than that of potassium, etc. This suggests that

the radii of the diffusing solutes are in the order Li+>Na+>K+>Cs+, exactly the re-

verse of the ionic radii found in the solid state. Such inverted behavior seems to be the

result of hydration.

However, the hydration numbers make little quantitative sense. The values found

from Eq. 6.2-42 are shown in the third column of Table 6.2-1. Although these values are

often negative, we could force them to be positive by replacing the factor 6p in the

Table 6.2-1 Hydration numbers found by various methods

Ion Observed
diffusion
coefficient at
infinite
dilutiona

Hydration
numbers from
diffusion at
infinite
dilution

Hydration
numbers from
diffusion’s
concentration
dependenceb

Hydration
numbers from
activity
coefficientsc

Hydration
numbers from
transference
methodsc

H+ 9.33 –1.3 – 4 1
Li+ 1.03 1.3 2.8 4 14
Na+ 1.34 0.5 1.2 3 8
K+ 1.96 –0.1 0.9 1 5
Cs+ 2.06 –0.5 0.5 0 5
Cl– 2.03 –0.7 0 1 4
Br– 2.08 –0.9 0.2 1 5
I– 2.04 –1.2 0.7 2 2

Notes: a 3 10–5 cm2/sec.
bData of Robinson and Stokes (1960).
cData of Hinton and Amis (1971).
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Stokes–Einstein equation with some other theoretically rationalized value. The values

calculated from Eq. 6.2-45, shown in the fourth column, do have the courtesy to remain

positive, but they are far from being integers. I am always unsure how a cesium ion can

react with half a molecule of water. In addition, the hydration numbers found from

diffusion show little relation with those calculated from values from the other types of

experiments shown in Table 6.2-1. These ideas have only qualitative value.

6.3 Solute–Solvent Interactions

In every case, diffusion is about mixing. In almost every case in this book, we

are interested in what happens when twomiscible solutions are placed next to each other

and then allowed tomix without flow as the result of molecular motion. The speed of this

spontaneous mixing is described by diffusion. This diffusion is a consequence of free

energy decreases, of the second law of thermodynamics.

In some cases, diffusion occurs much more slowly than expected. This most com-

monly occurs near a phase boundary where the solution is supersaturated. An example

is diffusion in supersaturated solutions of sugar in water, shown in Fig. 6.3-1. Slow

diffusion also occurs in solutions near to a consolute point where two liquids first

become miscible. Examples of diffusion near consolute points are shown in Fig. 6.3-2.

Other related cases occur when an initially homogeneous solution is suddenly quenched

to cause a phase separation. This quenching is commonly effected by abruptly lowering

the temperature. The phase separation then occurs very rapidly, at a rate proportional to

the diffusion.

Each of these cases involves mass transfer driven by changes in free energy, or more

exactly, by gradients in chemical potential. Their description requires major changes in
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Fig. 6.3-1. Diffusion of sucrose (h) and urea (4) in aqueous solutions at 25 �C. The
sudden drops occur in supersaturated solutions as the concentration approaches the

spinodal limit.
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Fick’s law, including the effects of higher order terms in the gradients. In particular, the

form postulated for the flux j1 is

� j1 ¼
D0c1
kBT

=l1 � 2c$3
x1

h i
(6.3-1)

where D0 is a diffusion coefficient, due to Brownian motion and closely related to the

diffusion coefficients in normal solutions, c is an ‘‘interfacial influence,’’ which is a char-

acteristic of a phase separation, and x1 is the mole fraction of species 1. We discuss this

more general form of Fick’s law in the following paragraphs.

6.3.1 Diffusion Near Spinodal Limits

We begin our discussions by considering spinodal limits, including consolute

points. To focus the discussion, imagine we have two partially miscible liquids. When we

dissolve a trace of one ‘‘solute’’ liquid in the other ‘‘solvent’’ liquid, we get a true

solution. As we increase the amount of solute, we will saturate the solution. This satu-

ration limit is called the ‘‘binodal.’’ If we are careful, the solution will remain one super-

saturated phase. If we continue to increase the solute concentration, we will reach a new

limit of thermodynamic stability called the ‘‘spinodal.’’ At a specific temperature, the

spinodal will equal the binodal at a concentration called the ‘‘consolute point.’’ This

point is for liquid–liquidmixtures what the critical point is for gas–liquid phase behavior.

Diffusion coefficients in solutions near spinodal limits and consulate points drop

from normal values to near zero, as shown in Figures 6.3-1 and 6.3-2. However, the

concentration profiles still relax proportionally to the square root of time, as shown in
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Fig. 6.3-2. Diffusion near consolute temperatures. The squares are for triethylamine–water and

the circles represent hexane–nitrobenzene. At the consolute or critical-solution point the binary

diffusion coefficient is zero. (Data from Claersson and Sundelöf (1957) and Haase and Siry

(1968).)
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Fig. 6.3-3. They do not relax proportionally to the fourth root of time, which would be

significant if the interfacial influence were important. Thus only the first term in the

brackets of Equation 6.3-1 is required to explain diffusion near a consolute point.

We can put these ideas on a more quantitive basis by rewriting concentration gradient

� j1 ¼
D0c1
kBT

ql1

qc1

� �� �
$c1 (6.3-2)

where the quantity in square brackets is an effective diffusion coefficient. At any spinodal

limit, (ql1/qc1) is zero, and so the effective diffusion coefficient is zero. This explains the

limits of Figs. 6.3-1 and 6.3-2. Note that below any spinodal limit, (ql1/qc1) becomes

negative and the apparent diffusion coefficient is also negative. This indicates not mixing

but phase separation.Wewill return to this point whenwe discuss spinodal decomposition.

Alternatively, if we assume

l1 ¼ l0
1 þ kBT ln c1c1 (6.3-3)

we may rewrite Equation 6.3-2 as

� j1 ¼ D0 1þ q ln c1
q ln c1

� �� �
$c1 (6.3-4)

where again the quantity in square brackets is an effective diffusion coefficient, now

written in terms of the activity coefficient c1. At a spinodal limit, (q ln c1/q ln c1) equals

minus one, so the apparent diffusion coefficient is zero. The flux equation using the activity

coefficient is commonlymentioned though it does not seem to have been carefully checked.

However, neither Equation 6.3-2 nor 6.3-4 correctly predicts all aspects of diffusion

near the consolute point. To illustrate this, consider the system hexane–nitrobenzene, for
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Fig. 6.3-3. Concentration gradient versus time near a consolute point. If Fick’s law is valid,

the data should fall along a line of slope one-half. If a new diffusion law is involved, the data

should fall along a line of one-fourth. [Data from Brunel and Breuer (1971).]
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which results are given in Fig. 6.3-2. The chemical potential of this system is found by

experiment to fit the equation

l1 ¼ l0
1 þ kBT ln x1 þ xx

2
2 (6.3-5)

where x is a measure of interaction between solute and solvent. This type of chemical

potential is sometimes called a ‘‘regular solution.’’ At the consolute point of such a

solution,

ql1

qx1
¼ q2l1

qx21
¼ 0 (6.3-6)

As a result, x1 ¼ x2 ¼ 0.5 and x ¼ 2kBTC, where TC is the consolute temperature. Thus,

we find that at the consolute composition,

x1
kBT

ql1

qx1
¼ 1þ q ln c1

q ln x1
¼ 1� 4x1x2TC

T
¼ 1� TC

T
(6.3-7)

Combining this with Eq. 6.2-4 we obtain

D ¼ D0
T� TC

T

� �
(6.3-8)

Thus the diffusion coefficient is expected to drop as the temperature is cooled to the

consolute point. The coefficient is zero at the consolute point, consistent with Figure 6.3-2.

However, the linear temperature variation in brackets is not observed in Fig. 6.3-2 so

that Eqs. 6.3-2 and 6.3-8 are inconsistent with experiment.

The reason for this inconsistency is that long-range fluctuations dominate behavior

near any spinodal limit, including a consolute point. When fluctuations of concentration

and of fluid velocity couple, diffusion occurs. Under ordinary conditions, the concen-

tration fluctuations are dominated by motion of single molecules, but near the critical

point, these fluctuations exist even when the average fluid velocity is zero. The result is

like a turbulent dispersion coefficient but without flow.

When the details of these coupled fluctuations are considered, the diffusion coefficient

is found to be

D ¼ kBT

2pln
(6.3-9)

where the correlation length n is approximately the average size of a cluster. The approach

retains the same temperature and viscosity dependence as the Stokes–Einstein equation.

The factor 2p in place of 6p is not a major change. However, both the diffusion coefficient

D and the length n vary dramatically with the thermodynamic factor 1þ q ln c1=q lnx1ð Þ.
The calculation of n as a function of temperature and composition can proceed in two

different ways. The best way is to depend on scaling laws developed for phase transitions

that in turn are based most frequently on the Ising model. Such calculations give the

temperature dependence at the critical composition:

D}
T

TC
� 1

� �0:62

(6.3-10)
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Unfortunately, these calculations are not so complete as to give the concentration

dependence of n and D. The alternative, less accurate route in the calculation of n is

to use simple models of the chemical potential to find:

D ¼ D0 1þ A

x1x2

q ln x1
q ln c1x1

� 1

� �� ��1=2
(6.3-11)

in which A is a constant of the order of one-half.

The predictions based on coupled fluctuations are compared with those of

the more traditional result in Fig. 6.3-4. This figure includes data on four different

systems obtained in five different laboratories using four different experimental

methods. The data all appear consistent. They fall very close to the predictions of Eq.

6.3-10, which is based on the coupled fluctuations as described by scaling laws. They are

in reasonable agreement with the predications of Eq. 6.3-11, which uses simple statistical

models for chemical potential. These results support the explanation of diffusion near

the consolute point in terms of coupled fluctuations of concentration and velocity.

6.3.2 Spinodal Decomposition

The strong solute–solvent interactions that cause the diffusion coefficient to

drop so sharply near critical points are also central to spinodal decomposition. In many

phase separations, a homogeneous solution is cooled so that its equilibrium condition is

a two-phase mixture. As in the case discussed above, separation into these two phases

can begin as soon as the solution is cooled below its phase boundary or its ‘‘binodal.’’

The region just below this phase boundary is metastable, waiting for events that cause

the phase separation. The phase separation begins with nucleation of small droplets

of the new phase; these droplets grow with time.

In the case of spinodal decomposition, the original solution is rapidly quenched, so

that the equilibrium condition drops suddenly through the binodal and below the
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Fig. 6.3-4. Diffusion versus temperature near a consolute point. The classic theories shown

by the broken line are much less successful than the predictions of scaling laws (dotted line) or

of cluster diffusion (solid line). [From Cussler (1980), with permission.]
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spinodal curve. This spinodal curve, which lies within the two-phase region, is the lower

boundary of the metastable region. Below this curve, the solution is unstable and phase

separation is immediate. No small dust particles are needed to nucleate the phase sep-

aration; instead, the separation is spontaneous and fast.

Wewant to estimate the speed of this separation. Now, however, we do not begin with

an imposed chemical potential gradient as is the case in any diffusion experiment. Now,

we begin with a quenched system, which is initially homogeneous, of a constant but

unstable chemical potential. To describe this unstable system, we use the extended form

of Fick’s law given in Equation 6.3-1.

We can combine this with a mass balance to obtain

qc1
qt
¼ �= � j1

qx1
qt
¼ D0

kBT
$ � ql1

q ln x1
$x1 � 2cx1$

3
x1

� � (6.3-12)

where c is the interfacial influence characterizing the phase separation. Note that we have

divided both sides of this second equation by the total concentration c, which is assumed

constant. Next, we define a perturbation x from the original solution concentration x10

x ¼ x1 � x10 (6.3-13)

Inserting this into the previous relation, we find

qx
qt
¼ D0

kBT

ql1

q ln x1

� �
x10

$2
x� 2cx10$

4
x

" #
(6.3-14)

The first term in square brackets is the effect of diffusion; the second is the interfacial

influence.

The general solution of this equation for the concentration fluctuation is most easily

given as a Fourier series

x ¼ R
‘

i¼1
amplitude½ �i cos

2pr
Ki
� bi

� �
e
�t=si (6.3-15)

where r is the distance from some point, Ki is a characteristic distance, and si is a charac-
teristic parameter with the dimensions of time. The characteristic times are the key to this

problem. If a particular time is positive, the fluctuations in the concentration decay and the

solution stays homogeneous. If it is negative, then the concentration fluctuations grow

over time, and the phase separation proceeds. Thus our real interest is in the sign of these

characteristic times because they will govern whether spinodal decomposition does occur.

From the general characteristics of Fourier series, we may show that these times are

given by

si ¼
kBT

D0

ql1

q ln x1

� �
x
10

2p
Ki

� �2

þ2cx10
2p
Ki

� �4
" #�1

(6.3-16)

These times may be negative and the phase separation immediate if the derivative (ql1/

q ln x1)x10
is negative. This derivative is positive at temperatures above the spinodal, even
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in the metastable region between the spinodal and the solubility limit (i.e. the binodal). It

is negative below the spinodal.

We are most interested in the shortest negative time suggested by Eq. 6.3-16 because

this time will correspond to the fluctuation that grows fastest. By setting qsi/qKi equal to

zero, we can show that the largest characteristic length is

Kmax ¼ 4p � cx10
ql1=q ln x1ð Þx10

" #1=2
(6.3-17)

and that

smin ¼ �
8ckBT
D0x10

qx1
ql1

� �2

x10

(6.3-18)

While we don’t know the interfacial influence c, we do know the characteristic length

Kmax in the original solution: it is nothing more than the size of the molecules or clusters.

Thus we can combine these last relations to obtain

smin ¼
kBTK2

max

2p2
D0 ql1=q ln x1ð Þ

(6.3-19)

This gives the time characteristic of the fast spinodal decomposition.

The physical significance of this result may be clearer if we return to the case of

a regular solution defined by Eq. 6.3-6. Using the chemical potential derivative in Eq.

6.3-7, we find from Eq. 6.3-19 that

smin ¼
K2

max

2p2
D0 1� 4Tc

T
x1x2

� � (6.3-20)

Typical values might be Kmax equal to 10–7 cm, D0 equal to 10–5 cm2/sec, TC equal to

300 K and T of 299 K. In this case, smin will be [–10–8sec]: the phase separation will

effectively be immediate. This mechanism is rare in gases and ordinary liquids but

common in solid alloys and glasses.

Example 6.3-1: Diffusion through a consolute point Imagine a diaphragm cell of two

well-stirred compartments (see Example 2.2-4). One compartment contains water, and

the other contains triethylamine. Diffusion occurs across the diaphragm between the

two compartments. However, this experiment will be made at the consolute temperature

18.6 �C. As a result, somewhere within the diaphragm, the concentration must be that at

the consolute point, and the diffusion coefficient at that point will approach zero, as

shown in Fig. 6.3-2. What will happen in this experiment?

Solution If we make a mass between balance on a thin slice of the diaphragm,

we find that

0 ¼ �dn1
dz
¼ �dj1

dz
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This means that there will be a steady-state flux across the diaphragm.When we combine

this result with Fick’s law we find

� ji ¼ Dðc1Þ
dc1
dz
¼ constant

At the consolute concentrations, D(c1) approaches zero, so dc1/dz must approach in-

finity. Thus, in this experiment, the flux behaves normally but the concentration gradient

reflects the unusual properties of the consulate point.

6.4 Solute–Boundary Interactions

When a solute diffuses through small pores, its speed may be affected by the size

and the chemistry of the pores. For example, a solute will diffuse faster through a large

straight pore than through a small crooked one. It may diffuse differently if it adsorbs on

the pore’s wall and then scoots along the wall at a faster rate than it moves in the bulk.

In this section, we explore these effects in more detail. In some cases our simple goal is

to organize experimental results. In other cases we may have more ambitious goals,

especially where the altered diffusion is the result only of a different geometry. These

cases involve a wide variety of possible mechanisms. Some of these are shown in Figure

6.4-1 for the special case of a cylindrical pore. In the simplest case, shown at the top of

the figure, a pressure drop along the pores causes a convective flow. In the second case,

where there is no pressure drop but a concentration difference, transport occurs by

diffusion. In these two cases, the properties of the fluid in the pores are the same as

those of the fluid in the bulk.

In other cases shown in Figure 6.4-1, the basic mechanism of transport changes. For

example, it may involve gas diffusion where the gas molecules collide more often with the

Diffusion solubility

Molecular sieving

Capillary condensation

Surface diffusion

Knudsen diffusion

Viscous flow

Bulk diffusion

S
el

ec
tiv

ity
F

lu
x

Fig. 6.4-1. Pore diffusion effects, The pore size drops from the top of the figure to the bottom.

The selectivity is often larger for smaller pores.
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pore walls than with other gas molecules (‘‘Knudsen diffusion’’). In still other cases, gas

molecules may absorb on the walls and then diffuse (‘‘surface diffusion’’), or condense

within the pores and move as a liquid (‘‘capillary condensation’’). When the pores are of

molecular dimensions, one solute may dissolve in solvent held in liquid-filled pores and

then diffuse by a ‘‘diffusion-solubility mechanism.’’ Such a variety of effects is hard to

discuss as anything but a long series of examples.

I have tried to force an organization on these examples as follows. In Section 6.4.1,

I have discussed the simplest empirical methods of organizing experimental results. In

Section 6.4.2, I have reviewed theories for solute diffusion in a solvent trapped within

cylindrical pores in an impermeable solid. In this case, solute–solvent interactions still

control diffusion; and the solid only imposes boundary conditions. Cases where the

interactions are between the diffusion solute and the pores’ boundaries are covered in

Section 6.4.3. Finally, cases not of cylindrical pores but of other composite structures are

described in Section 6.4.4.

6.4.1 Empirical Descriptions

Imagine a solute diffusing through the fluid-filled pores of the porous solid

shown schematically in Fig. 6.4-2. Because the solid itself is impermeable, diffusion takes

place only through the cramped and tortuous pores of the composite. Because the pores

are not straight, the diffusion effectively takes place over a longer distance than it would

in a homogeneous material. Because the solid is impermeable, diffusion occurs over

a smaller cross-sectional area than that available in a homogeneous material.

The effects of longer pores and smaller areas are often lumped together in the defi-

nition of a new, effective diffusion coefficient Deff

Deff ¼ e
D

s
(6.4-1)

in which D is the diffusion coefficient in the bulk fluid, e is the void fraction, and s is the
tortuosity. The tortuosity attempts to account for the longer distance traversed in the

pores. Tortuosities usually range between two and six, averaging about three. These

values can be rationalized because solutes diffuse in three directions instead of one, so

they diffuse about three times as far. Such rationalization is suspect. I have measured

tortuosities as high as ten, which I find hard to justify on geometrical arguments alone.

Moreover, the tortuosity measured for diffusion may not correlate closely with the

Fig. 6.4-2. Diffusion in a composite. When the particles are impermeable, a diffusing particle

must travel a longer path through a reduced cross-sectional area.
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tortuosity measured for flow. Still, the great advantage of the tortuosity is its simplicity:

it does give a simple number showing how much diffusion will be retarded in a porous

solid.

6.4.2 Diffusion in Large Cylindrical Pores

We next turn to diffusion of a solution held within an array of cylindrical pores.

Normally, these large pores are assumed to span a thin film, and to all be perpendicular

to the surfaces of the film. By ‘‘large pores,’’ we imply that the solvent acts as a continuum

and that the solute diameter is much smaller than the pore diameter. Not surprisingly,

this idealized geometry has been the focus of considerable theoretical effort. In spite of

its idealizations, it does provide physical insight.

We first consider results for a gas. For large pores, gas transport through the pores

will be described by the Hagen–Poiseville law

v¼ ed2Dp
32ll

(6.4-2)

in which v is the superficial velocity, e is the void fraction, l is the gas viscosity, Dp is

the pressure drop across the pore, and d and l are the pore’s diameter and length,

respectively. If we multiply each side of this equation by the concentration of species

1, we find

n1 ¼ ec1v ¼ ec1d
2

32ll

" #
Dp ¼ ec1d

2
RT

32l

" #
Dc1
l

(6.4-3)

where Dc1 (=Dp/RT ) is the concentration difference of the ideal gas along the pore. If

instead, we have no overall pressure difference along the pores but only a partial pressure

difference, we have

n1¼ j1¼ eD½ �Dc1
l

(6.4-4)

Finally, if the pores are extremely short, we have

n1¼ j1¼
eDl

d

� �
Dc1
l

(6.4-5)

where d is the pore diameter. In this case, the limitations to diffusion are not actually in

the pore itself but in necking down to enter the pore. Details of this case are given in

Example 3.5-2.

In Equations 6.4-3 to 6.4-5, the quantity in square brackets is an apparent diffusion

coefficient. However, in Equation 6.4-3, it is actually due to convective flow, and

in Equation 6.4-5, it represents diffusion to the pore, not diffusion in the pore. Only

Equation 6.4-4 actually describes diffusion in the pore. These differences seem obvious

in this theoretically based discussion. However, when we have experimental data,
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we may find that it is more difficult to decide which of the three cases is actually

occurring.

Similar subtleties occur for the transport of liquids in large pores. There is no exact

parallel to Equation 6.4-3 because a difference in pressure does not cause a difference in

concentration. There is a complete parallel to Equation 6.4-5, where the key is diffusion

to a very short pore. However, there are new complexities to diffusion within a pore.

To understand these complexities, we consider a solvent at concentration c2 and

a solute at concentration c1. The solvent is much smaller than the pore’s diameter and

so can always be treated as a continuum, but the solute’s diameter 2R is a significant

fraction of the pore’s diameter d, i.e., k (= 2R/d) is less than one but of order one. In this

case, the solvent’s flux is

n2 ¼ ec2v2 ¼
e2c2d

2

32l

" #
Dp
l

(6.4-6)

This is much like the results for a gas, given in Equation 6.4-3.

However, the solute velocity v1 is different than v2 for two reasons. First, the solute

will not fit into the entire pore diameter but only into a smaller equivalent pore of

diameter (d – 2R). This implies that the void fraction for the solute will be smaller than

that for the solvent. Second, because the solute is forced to be more towards the center of

the pore, it will encounter average velocities somewhat higher than those averaged over

the entire diameter of the pore. One theory typical of efforts on this subject gives for the

solute velocity

v1
v2
¼ 1� kð Þ2 2� 1� kð Þ2

h i
e
� 0:71k2

(6.4-7)

where k is the ratio of the diameter of the solute to that of the pore. Remember that in

this case, transport is by convective flow. This result is important in ultrafiltration.

The results for diffusion in large liquid-filled pores are different. In this case, which is

sometimes called hindered diffusion, the solute is modeled as a rigid sphere in a solvent

continuum that fills the pore. The solute’s transport is retarded by the viscous drag of the

solvent, which is affected by the proximity of the pore walls. The diffusion coefficient D

is given by:

D

D0
¼ 1þ 9

8
k ln k� 1:54kþOðk2Þ (6.4-8)

whereD0 (= kBT/6pl R0) is the Stokes–Einstein diffusion coefficient. When k¼ 0.1, the

diffusion coefficient D is roughly half that in bulk solution; when k ¼ 0.2, Eq. 6.4-8 is

accurate to within about two percent.

6.4.3 Diffusion in Small Cylindrical Pores

Our next cases occur for small pores. By ‘‘small’’ we mean that the pore diameter

is of the same order ofmagnitude as themolecular size of both solvent and solute. Thus we

can no longer approximate the solvent as a continuum. Under this heading, we consider

four topics: Knudsen diffusion, surface diffusion, capillary condensation, and sieving.
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Knudsen Diffusion

In Knudsen diffusion, diffusing molecules collide with the walls of the pores

much more frequently than they collide with other molecules. This type of transport is

dominant whenever the distance between molecular collisions is greater than the pore

diameter. This ratio of distances is defined as a dimensionless group, the Knudsen

number Kn:

Kn ¼ l

d
(6.4-9)

in which l is now the mean free path and d is the pore diameter. If the Knudsen number is

small, diffusion has the same characteristics as it does outside of the pores, and it is

analyzed with the effective coefficients and tortuosities given earlier. If the Knudsen

number is large, diffusion is dominated by collisions with the boundaries; this requires

a different description.

For liquids, the mean free path is commonly a few angstroms, so the Knudsen

number is almost always small, and Knudsen diffusion is not important. In gases, the

mean free path l can be estimated from

l ¼ 4kBT

pr2
p

(6.4-10)

in which r is the collision diameter of the diffusing species. This mean free path can be

large. For example, for air at room temperature and pressure, it is over 60 nm; for hydrogen

at 300 �C and 1 atm, it is over 200 nm. Because pores smaller than these values often exist,

for example, in porous catalysts, Knudsen diffusion can be a significant effect in gases.

When the mean free path andKnudsen number are large, the diffusion coefficient can

be quickly estimated by arguments that parallel those for the kinetic theory of rigid

spheres. This theory predicts that

DKn ¼
1

3
dv (6.4-11)

where v is the molecular velocity. This prediction is the same as that in Eq. 5.1-5 but with

the mean free path l replaced by the pore diameter d. Because a molecule’s kinetic energy

ð12mv2Þ must equal kBT, we expect

v ¼
ffiffiffiffiffiffiffiffiffiffiffi
2kBT

m

r
(6.4-12)

where m is the molecular mass. Thus the Knudsen diffusion coefficient is given by

DKn ¼
d

3

2kBT

m

� �1
2

(6.4-13)

Unlike gas diffusion outside of the pores, the Knudsen diffusion coefficient is indepen-

dent of pressure and of the molecular weight of any solvent species.
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Surface Diffusion

Like Knudsen diffusion, surface diffusion is much more important for gases

than for liquids. In surface diffusion, gas molecules adsorb on the solid pore walls. When

the adsorption is physical, the adsorption energy is less than kBT, and the adsorbed

solutes are highly mobile. When the adsorption involves more specific chemical inter-

actions (chemisorption), the adsorption energy is greater than kBT and the adsorbed

species tend to be more tightly bound to specific sites. Such tightly bound species are

much less mobile than in physical adsorption, but instead are said to ‘‘hop’’ from one site

to the next.

Surface diffusion is most commonly measured in a form of diaphragm cell (cf. Section

5.5), with a sample of the porous solid serving as the diaphragm. This cell is used in two

ways. In the first way, we place a pure gas on one side of the diaphragm, and a vacuum on

the other side. We then measure concentration versus time to find the flux across the

membrane. In the secondway, we place two binary gasmixtures of different composition

but the same pressure on the opposite sides of the diaphragm. Again, we measure

concentration changes and use these to find the fluxes of each gas. Note that these fluxes

will usually not be of equal magnitude.

From these results, we calculate the surface diffusion flux as follows. As a standard,

we measure the flux of a gas that we expect will not adsorb. This gas is most commonly

helium. Then, expecting that nonsurface diffusion will occur by the Knudsen mecha-

nism, we calculate the expected flux for the test gas from:

j1ðnonsurfaceÞ ¼ jHe

ffiffiffiffiffiffiffiffiffiffi
~MHe

~M1

s
(6.4-14)

where ~M1 is the molecular weight of species i. We now estimate the surface diffusion

flux as the difference between the experimental measurement and the nonsurface

estimate:

j1ðsurfaceÞ ¼ j1ðexperimentalÞ �j1ðnonsurfaceÞ (6.4-15)

Typically, the flux inferred for surface diffusion is less than half of that measured

experimentally.

Measurements of surface diffusion can be correlated in terms of randomwalk, surface

mobility, and surface diffusion coefficients. Correlations in terms of surface diffusion

coefficients are most similar to the type of analysis used in this book. The surface

diffusion coefficient Ds is defined with the equation

j1ðsurfaceÞ ¼ �
lDs

A

dc1
dz

(6.4-16)

where l and A are the diaphragm thickness and cross-sectional area, respectively, and c1
is the surface concentration, in units of moles per area. Thus the surface diffusion co-

efficient has dimensions of (length)2/time, just like other diffusion coefficients.

Values of surface diffusion coefficients cluster around 10–5 cm2/sec, and so are similar

to values in liquids. However, these values vary widely. At room temperature, hydrogen

on tungsten has a value of 10–7 cm2/sec and propane on silica has a value of 10–3 cm2/sec.
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Surface diffusion coefficients are strong functions of temperature, a characteristic of

solids rather than liquids or gases. They are also strong functions of surface concentra-

tion: Typically, the surface diffusion coefficient increases sharply as surface coverage

increases.

Surface diffusion is often viewed as a step in gas–solid catalytic reactions. This

diffusion-based step is often fast relative to other, more selective chemical changes,

and hence it does not control the catalytic rate. As a result, surface diffusion is less

industrially important than the bulk diffusion described in the remainder of this book.

Capillary Condensation

While Knudsen diffusion and surface diffusion normally involve only gases,

capillary condensation involves the conversion from a gas into a liquid. It results from

the altered vapor pressure of a liquid inside a pore. This increased vapor pressure p is

given by the Kelvin equation

RT ln
p

p0
¼ 2c ~V

r
(6.4-17)

where p0 is the bulk vapor pressure, c is the surface tension, ~V is the solute’s molar

volume, and r is the radius of curvature of the liquid inside the pore. Once condensation

occurs, transport is by a combination of diffusion and convection across the pore. If the

pore completely fills with liquid, its apparent diffusion coefficient is

Dcap ¼
qLRT

~M

d
2

32lL

 !
1þ qLRT

~Mp

" #
(6.4-18)

where qL and lL are the density and viscosity of the condensed liquid, and p is the mean

pressure across the pore. This diffusion coefficient is roughly parallel to that for Pouise-

ville flow of a vapor given in Equation 6.4-3 but with the liquid properties replacing those

of a gas and with the added factor in square brackets. When the pore separates a gas at

high pressure from one at low pressure, the result is more complex.

This transport can be dramatically faster than that due to diffusion alone and is an

unexpected delight where it occurs experimentally. However, capillary condensation is

rarely important for two reasons. First, it exists only when a surface tension exists and

hence will not work for gases above their critical temperatures. For example, capillary

condensation will not work for separating air at room temperature; it will work only

below 155 K, the critical temperature of oxygen. Capillary condensation might be used

to separate carbon dioxide and methane at room temperature, for the critical tempera-

ture of carbon dioxide is 304 K. Second, capillary condensation is rarely important

because it is a small effect. For example, water vapor in 100 nanometer pores showing

a surface tension of 72 dynes will condense at 100.2 �C, not 100 �C. This means that only

very small pores will be effective.

Molecular Seiving

The final way in which pores can be physically selective also hinges on the

relative sizes of the diffusing species and the pore. Now, both solute and solvent are
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of sizes comparable to the pore. Small molecules pass through the pores but big mole-

cules are retained.

This sieving mechanism is rare but may be highly selective. One case where it is

definitely involved is in transport of linear and branched alkanes into zeolites. The linear

alkanes diffuse into the zeolites about fifteen times faster than the branched ones do. The

reason is that the linear alkanes have a smaller cross-section which can fit into the pores

in the zeolite crystal. This difference in diffusion is exploited in some forms of pressure

swing adsorption. If thin zeolite layers can be produced commercially, they will have

considerable value.

More frequently sieving is postulated as an alternative to what almost certainly is

a diffusion–solubility mechanism. For example, sieving is sometimes asserted to be re-

sponsible for the selectivity of cellulose acetate reverse osmosis membranes. Sieving is

consistent with the slow transport of larger salt ions compared to smaller water mole-

cules. It seems inconsistent with the fast transport of larger phenol molecules compared

to smaller water molecules. I would view any new claims of a sieving with skepticism

unless the pores have dimensions like those of the solute and the solvent.

6.4.4 Periodic Composites

The cases of diffusion in solids discussed in the previous paragraphs involve

a simple geometry – cylindrical pores – and a spectrum of chemistry – surface diffusion,

capillary condensation, etc. In this last subsection, we want to discuss cases with a more

complex geometry but with simpler chemistry. We will assume that diffusion in each

phase will be the same as if it were the only phase present.

We quickly recognize that specifying the geometry only in terms of a void fraction and

a tortuosity will not always be sufficient. To illustrate this, we consider two cases of dif-

fusion in a composite membrane containing permeable flakes as shown in Figure 6.4-3.

In the two cases, the flakes are present at the same volume fraction /. However, in the

case in Figure 6.4-3(a), the flakes are aligned perpendicularly to the membrane’s surface,

while in Figure 6.4-3(b), they are parallel. In the first case, the resistances to diffusion are

approximately in parallel so that the flux will be

j1 ¼ 1� /ð ÞDþ /DF½ �Dc1
l

(6.4-19)

(a)

(b)

Fig. 6.4-3. Diffusion through a suspension of impermeable flakes. The effective diffusion

coefficient varies sharply with orientations shown in (b), but is affected little by the

orientation in (a).
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where D and DF are the diffusion coefficients in the continuous phase and in the flakes,

respectively. In the second case, the resistances are more nearly in series

j1 ¼
1

1� /
D
þ /
DF

2664
3775Dc1

l
(6.4-20)

In both cases the quantity in brackets is an effective diffusion coefficient for the com-

posite. The results are very different, showing that volume fraction alone is not enough

to describe the composite system.

More exact descriptions of these effects require more exact geometries. One such case

occurs when the composite consists of periodically spaced spheres like those shown in

Fig. 6.4-4. In this case, we assume that diffusion can take place both in the interstitial

region between the spheres and through the spheres themselves. The effective diffusion

coefficient Deff can be calculated from

Deff

D
¼

2

Ds
þ 1

D
� 2/

1

Ds
� 1

D

� �
2

Ds
þ 1

D
þ /

1

Ds
� 1

D

� � (6.4-21)

in which D is the diffusion coefficient in the interstitial pores, Ds is the diffusion

coefficient through the spheres, and / is the volume fraction of the spheres in the

composite material (Maxwell, 1873). Strictly speaking, this equation is valid only for

dilute suspensions. However, it is routinely applied to experiments with / equal to as

high as 0.5 with reasonable agreement. Why this should be so is unclear.

Equation 6.4-21 is a fascinating result. It says that diffusion does not dependon the size

of the spheres but only on their volume fraction. It does not matter if the spheres are

birdshot or basketballs – the diffusion is the same if the volume fraction is the same.

A second interesting consequence of Eq. 6.4-21 is that the properties of the contin-

uous phase dominate the diffusion process. To demonstrate this, we imagine that the

spheres are impenetrable, so that Ds is zero. Then Eq. 6.4-21 becomes

Deff

D
¼ 1� /

1þ /=2
(6.4-22)

If / is 0.1, then Deff/D ¼ 0.86. The diffusion is eighty-six percent of what it would be

without the spheres.

Fig. 6.4-4. Diffusion through a periodic array of spheres. In this case, the spheres and the

surrounding continuum have different, nonzero permeabilities.
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Now consider the other limit in which diffusion through the spheres is extremely

rapid, so that Ds/N. In this case,

Deff

D
¼ 1þ 2/

1� /
(6.4-23)

If / is still 0.1, then Deff/D is 1.33. Thus changing the diffusion coefficient in the spheres

from zero to infinity changes Deff/D only by a factor of 1.6.

The results for impermeable spheres have been extended to impermeable cylinders

and impermeable flakes. For impermeable cylinders aligned periodically and parallel to

the membrane’s surfaces, the result is

Deff

D
¼ 1� /

1þ /
(6.4-24)

Again, the relative diffusion coefficient (Deff/D) is independent of D and of the cylin-

ders’ size. As in the case of the spheres, it doesn’t matter whether the cylinders are carbon

nanotubes or millimeter-sized glass fibers: the only variable is their volume fraction. The

change in diffusion for cylinders is smaller than that for spheres but only slightly. The

continuous phase still dominates diffusion.

The result for flakes is more complicated because it includes two limits. In both limits,

the flakes are aligned parallel to themembrane surfaces. In the first limit, the flakes are so

dilute that they do not overlap. The result is similar to that for spheres or cylinders

Deff

D
¼ 1

1þ a/
(6.4-25)

where a is the aspect ratio of the flakes. This ratio, equal to the flakes’ intermediate

dimension divided by the shortest dimension, characterizes the flakes’ shape.

The second limit occurs when the flakes overlap, even though they may still be dilute.

In this limit,/may still bemuch less than one, but a/ is greater than one. In this case, the

effective diffusion coefficient is given by

Deff

D
¼ 1

1þ a2/2
.
ð1� /Þ

(6.4-26)

Like the results for spheres and cylinders, Eq. 6.4-26 does not depend on flake size:

10 mm clay flakes will give the same result as 10 cm dead leaves when the volume fraction

and the aspect ratio are equal. However, unlike the previous results, the effective diffu-

sion coefficient depends not on the first power of the volume fraction but on the square.

This is because the flakes both increase the tortuosity and reduce the cross-sectional area

available for diffusion. Moreover, these effects can be significantly larger than those for

other shapes: a factor of ten is not uncommon.

6.4.5 Graham’s Law

To conclude this section, we turn to Graham’s law which states that at constant

pressure the ratio of fluxes of two diffusing gases in a porous medium is proportional to

the inverse square root of their molecular weights. This law, based on Graham’s original
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experiment described in Section 2.1, has limited application, but the inverse square root

dependence is characteristic of a wide range of situations. Thus this discussion gives us

a chance to compare and contrast the wide range of solute–boundary interactions. It

provides a summary of diffusion in composite media.

Before we begin our discussion, we review three characteristics of the kinetic theory of

gases. First, the actual velocity of gas molecules ui is of course proportional to the

temperature

1

2
miu

2
i ¼ kBT (6.4-27)

where mi is the molecular mass and kB is Boltzman’s constant. Rearranging

ui ¼
ffiffiffiffiffiffiffiffiffiffiffi
2kBT

mi

r
(6.4-28)

Second, the mean-free path li must be related to the total concentration ci, which is in

turn related to the pressure

p
4
d
2
i

� �
li ¼

1

ci
¼ kBT

pi
(6.4-29)

where d is the molecular diameter. Note that ci is the number of molecules per volume.

Third, the number of molecular collisions per area per time fi is given by

fi ¼ ciui (6.4-30)

We will use these three results to discuss five special cases.

The five cases of interest are shown schematically in Figure 6.4-5. In these cases, two

volumes are separated by some sort of porous medium. The volumes are bounded by

pistons which are normally fixed. Each volume normally contains a different gas. How-

ever, the transport mechanisms between the volumes may be very different.

We first consider diffusion at constant volume, illustrated schematically in Figure 6.4-

5(a). When the diameter of the pores is much larger than the mean free path, this is the

common case discussed in detail throughout this book. If one volume initially contains

only nitrogen and the other initially contains only hydrogen, diffusion will occur

between the two volumes until their concentrations are equal. During this time,

n1 ¼ n2 (6.4-31)

where ‘‘1’’ and ‘‘2’’ represent nitrogen and hydrogen, respectively. Each flux depends on the

same gas phase diffusion coefficient which is proportional to the square root of the har-

monic average of molecular weights. Second, we consider the familiar case of convection

shown in Figure 6.4-5(b). Now a mixed gas flows from left to right. Because the convective

velocity of both gases is the same, the ratio of the fluxes is just the ratio of the concentrations

v1 ¼
n1
c1
¼ v2 ¼

n2
c2

(6.4-32)

Diffusion is not involved in this second case.

The third case, in Figure 6.4-5(c), is Knudsen diffusion where the capillary diameter is

less than the mean free path. This is the case where a diffusing molecule collides much
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more frequently with the capillary walls than with other diffusing molecules. The diffu-

sion coefficient for each species is proportional to the inverse square root of its molecular

weight. Thus the ratio of fluxes is given by

n1
n2
¼

ffiffiffiffiffiffi
m2

m1

r
(6.4-33)

While this result does give the expected form, it actually is not Graham’s law.

To explore Graham’s law, we turn to the case shown in Figure 6.4-5(d). In

this case, the capillary is again large so that collisions are intermolecular and not

with the capillary walls. Now, however, the pistons bounding the volumes are mobile,

moved to insure that the pressure on both sides of the capillary is equal. In this par-

ticular case, because the hydrogen is more mobile than the nitrogen, the pistons

must both be moved to the left. Thus in this case, there is a convective velocity, and

this case is very different from the conventional diffusion analysis in Figure 6.4-5(a).

To analyze this fourth case, we recognize that because the pressure is constant,

there is no net momentum transfer between the left and the right volumes. Thus

momentumof
nitrogen

time

24 35 ¼ momentumof
hydrogen

time

24 35
momentumof

nitrogen

collision

24 35 collisions of
nitrogen

time

24 35 ¼ momentumof
hydrogen

collision

24 35 collisions of
hydrogen

time

24 35
m1v1f1 ¼ m2v2f2 (6.4-34)

(a) Constant volume diffusion

N2 H2
Fixed
pistons

(b) Convective flow

N2
H2

Fixed
pistons

Vacuum

(c) Knudsen diffusion

N2 H2
Fixed
pistons

Small capillary

N2 H2

(d) Graham’s law (constant pressure diffusion)

Moving pistons
keep pressure
constant

(e) Effusion

N2 H2
Fixed
pistons

Orifice replaces capillary

Fig. 6.4-5. Graham’s law and related phenomena. All these cases involve gases. Many show

a flux proportional to the inverse square root of the gas’s molecular weight.
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Combining with Equation 6.4-30

m1u1ð Þc1v1 ¼ m2u2ð Þc2v2 (6.4-35)

Note that the velocities ui and vi are very different. The molecular velocity ui is sonic,

perhaps around 104 cm/sec. The diffusion velocity vi is much slower, perhaps around 1

cm/sec. Rearranging the above, we find

n1
n2
¼ c1v1

c2v2
¼ m2u2

m1u1
(6.4-36)

Inserting the molecular velocities from Equation 6.4-28, we find

n1
n2
¼

ffiffiffiffiffiffi
m2

m1

r
(6.4-37)

This inverse square root relation, suggested in 1829, is Graham’s law.

Interestingly, there is still another, closely related mechanism called ‘‘effusion’’

which gives the same result for different reasons. In this case, shown in Figure 6.4-

5(e), the capillary is replaced by an orifice of zero thickness. Molecules now don’t diffuse

through a capillary, but just fly through the orifice. They don’t collide either with

other molecules or with the capillary walls. In this case, we can show that for a circular

hole,

n1 ¼
1

4
c1u1 ¼

1

4

p1
kBT

� �
2kBT

m1

� �1
2

(6.4-38)

A similar relation will exist for species ‘‘2.’’ If the pressures on both sides of the orifice are

equal, we see that

n1
n2
¼

ffiffiffiffiffiffi
m2

m1

r
(6.4-39)

This relation, called ‘‘Graham’s law of effusion,’’ has still another physical basis than the

cases discussed earlier.

At this point, you can be pretty confused by the nuances of these cases. To help you to

keep them distinct, consider the summary shown in Table 6.4-1. As the table shows,

many mechanisms can give similar results for different reasons, showing the subtlety of

the apparently simple mechanism of diffusion.

Example 6.4-1: Diffusion in a porous catalyst Imagine a catalyst sphere with 30 percent

voids to be used for the dehydrogenation reaction

C2H6 ! C2H4 þ H2

At 300 �C and 1 atmosphere, the effective diffusion coefficient of ethane in a 0.5-cm

sphere is 0.06 cm2/sec. What is the tortuosity?

Solution The chemical reaction produces a ternary mixture of ethane, eth-

ylene, and hydrogen. Such a mixture may require consideration of the multicomponent

diffusion equations in Chapter 7. However, if conversion is low, the diffusion coefficient
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can be estimated with the same precision as for a mixture of ethane and ethylene. From

Eq. 5.1-1, we find

D ¼ 1:86 � 10�3T 3=2ð1= ~M1 þ 1= ~M2Þ1=2

pr2
12X

¼ 1:86 � 10�3ð573Þ3=2ð1=28þ 1=26Þ1=2

ð1Þ½ð4:23þ 4:16Þ=2�2ð0:99Þ
¼ 0:40 cm

2
=sec

The tortuosity is then (cf. Eq. 6.4-1)

s ¼ eD
Deff
¼ ð0:3Þ0:4 cm

2
=sec

0:06 cm
2
=sec

¼ 2:0

This value is typical.

Example 6.4-2: Pores in cell walls Some experiments on living cells suggests that there

are pores 3 nm in diameter in the cell wall. Estimate the diffusion coefficient at 37 �C
through such a pore for a solute 0.5 nm in diameter.

Solution To find the solute’s diffusion coefficient in bulk solution, we use the

Stokes–Einstein equation to find D0. Combining this with Eq. 6.4-7, we find

D ¼ kBT

6plR0
1þ 9

8

2R0

d

� �
ln

2R0

d

� �
� 1:54

2R0

d

� �
þ � � �

� �

¼ 1:38 � 10�16g cm
2
=sec

2
K ð310KÞ

6pð0:01g=cm secÞð2:5 � 10�8 cmÞ

� 1þ 9

8

5

30

� �
ln

5

30

� �
� 1:54

5

30

� �
þ � � �

� �
¼ ð9:1 � 10�6cm2

=secÞð1� 0:33� 0:26þ � � �Þ

¼ 3:7 � 10�6cm2
=sec

Table 6.4-1 Graham’s Law and Related Phenomena

Effect Key idea Flux Ratio
n1 / n2

Remarks

Diffusion (Constant
Volume Diffusion)

No Flow �1 Not Graham’s Law

Convection Flow c1 / c2 Not Graham’s Law
Knudsen Diffusion Pore Smaller Than

Mean-Free Path

ffiffiffiffiffiffi
m2

m1

r Not Graham’s Law

Diffusion (Constant
Pressure Diffusion)

Flow ffiffiffiffiffiffi
m2

m1

r Graham’s Law!

Effusion Across Orifice ffiffiffiffiffiffi
m2

m1

r Not Graham’s Law
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Note that we have implicitly assumed that the pore is filled with water by using the

viscosity of water in this estimate.

Example 6.4-3: Diffusion of hydrogen in small pores Find the steady diffusion flux at

100 �C and 1 atm for hydrogen diffusing into nitrogen through a plug effectively 0.6 cm

thick with 13-nm pores. Then estimate the flux through 18.3 lm pores.

Solution The mean free path for hydrogen can be found from Eq. 6.4-10:

l¼ 4kBT

pr2
p

¼ 4ð1:38 � 10�16g cm2
=sec

2
KÞð373KÞ

pð2:83 � 10�8 cmÞ2ð1:01 � 106 g=cm sec
2Þ
¼ 800 nm

This mean free path is greater than the pore diameter, so the Knudsen number is large.

Thus diffusion takes place in the Knudsen regime. For steady-state transport, the flux is

found by applying Equation 6.4-13

n1 ¼ ½DKn�
Dc1
l

¼ 13 � 10�7cm
3

2 8:31 � 107g cm2
� �

sec
2
mol

373K

2g=sec

0BBBB@
1CCCCA

1
2

2666664

3777775
1mol

22:4 � 103cm3

273K

373K

� �
0:6 cm

8>><>>:
9>>=>>;

¼ 0:42 � 10�5mol=cm
2
sec

There are two interesting features of this result. First, hydrogen molecules spend their

time colliding with pore walls, not with nitrogenmolecules. Consequently, the properties

of nitrogen do not appear in the calculation. Second, we have assumed that the pores are

as long as the plug is thick, so the pores are implicitly taken to be straight. Any tortuosity

would reduce the flux.

For the 18.3 lmpores, the mean free path is much less than the pore diameter, and the

Knudsen number is small. In this case, the flux equation contains the usual diffusion

coefficient calculated from Eq. 5.1-1:

n1 ¼ j1 ¼ ½D�
Dc1
l

¼
1:86 � 10�3ð373Þ3=2 1

2:01
þ 1

28:0

� �1=2

1 atm
2:92þ 3:68

2

� �2

ð0:80Þ

1mol

22:4 � 103cm3

273K

273K

� �
0:6 cm

8>><>>:
9>>=>>;

¼ 6:1 � 10�5mol=cm
2
sec

This flux is greater than that in the Knudsen limit.
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Example 6.4-4: Effective diffusion in an inhomogeneous gel The diffusion coefficient of

KCl through a protein gel is 6 � 10–7 cm2/sec. However, the gel is not homogeneous,

because it contains water droplets about 10–2 cm in diameter that are separated by only

2 � 10–2 cm. The diffusion in these water droplets is about 2 � 10–5 cm2/sec. What is the

diffusion in the homogeneous gel?

Solution The volume fraction of water can be found by considering a unit

cell, 2 � 10–2 cm on a side s, drawn around each 10–2 cm droplet:

/ ¼
4

3
pr3

s
3 ¼

4

3
p

10
�2
cm

2

 !3

ð2 � 10�2 cmÞ3
¼ 0:065

The diffusion in the gel is found from Eq. 6.4-21.

Deff

D
¼

2

Ds
þ 1

D
� 2/

1

Ds
� 1

D

� �
2

Ds
þ 1

D
þ /

1

Ds
� 1

D

� �

6 � 10�7cm2
=sec

D
¼

2

2 � 10�5 cm2
=sec
þ 1

D
� 2ð0:065Þ 1

2 � 10�5cm2
=sec
� 1

D

 !
2

2 � 10�5 cm2
=sec
þ 1

D
þ 0:065

1

2 � 10�5cm2
=sec
� 1

D

 !
Solving, we find that D equals about 5 � 10–7 cm2/sec.

6.5 A Final Perspective

At the start of this book,we argued that the simplestway to look at diffusionwas as

a dilute solution of a particular solute moving through a homogeneous solvent. Such an

argument led to the idea of a diffusion coefficient, a particular property of solute and solvent.

In this chapter, we have discussed the effects on the diffusion coefficient of the solute’s

interaction with other parts of the system. Sometimes the solute’s flux is coupled with

that of other solutes. Sometimes, the solute combines with solvent molecules, but near

consolute points it avoids them. In a porous medium, the solute’s diffusion may be

slowed or accelerated; it may collide with pore walls during Knudsen diffusion, or be

adsorbed in surface diffusion. In every case, the changes in diffusion can be major.

In describing these effects, scientists have used many methods. For example, the

mathematics leading to the equation for hindered diffusion poses, for me, a truly for-

midable exercise. Obtaining the results of diffusion in composite media required the

genius of Clerk Maxwell. However, these descriptions are limited by the particular

models of the diffusion process. For example, the ideas of hydration are certainly in-

exact. The hindered diffusion equation depends on the model of a rigid solute sphere in

a solvent continuum. Almost all of these estimates mean making major approximations.

As a result, I believe that the results in this chapter are best applied when using your

scientific judgement. I do not think any of the ideas are gospel. Instead, they are
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approximations, subject to corrections found in future research. I wish you luck in

finding these corrections.

Questions for Discussion

1. For a 1-1 electrolyte, does the faster ion control diffusion?

2. For a 1-1 electrolyte, does the faster ion control conduction?

3. Why is proton diffusion so rapid?

4. Why does the diffusion of a soap suddenly drop as the soap concentration is

increased?

5. What is ‘‘isodermic association’’? How does it affect diffusion?

6. Compare diffusion vs. solute concentration of HCl in excess NaCl and of

sodium acetate in excess NaCl.

7. Why does the diffusion coefficient go to zero at a consolute point?

8. Does Brownian motion change near a consolute point?

9. What is spinodal decomposition?

10. What is the Knudsen number?

11. Compare the variation of the diffusion coefficient with pore diameter for small

and for large pores.

12. Compare this variation with pressure in small and large pores.

13. What is the change in diffusion caused by ten volume percent impermeable spheres?

14. What is it by the same concentrations of cylinders?

15. What is it for the same concentration of flakes whose aspect ratio is 30?

16. What is Graham’s law?

Problems

1. You are studying a thin film of 310 stainless steel that apparently is without pores. You
clamp this film in a diaphragm cell, put a hydrogen pressure of 0.43 atmospheres on

one side, and measure the much smaller hydrogen pressure on the other side. You find
the data shown below [N. R. Quick and H. H. Johnson, Metal Trans. A., 10A, 67
(1979)]. These data show that the flux depends on the square root of hydrogen pres-
sure, a dependence known as Sievert’s law. This is believed to occur because molecular

hydrogen dissociates into atomic hydrogen within the film. Use your knowledge of
diffusion to justify this conclusion.
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2. The ion diffusion coefficients at 25 �C of Na+, K+, Ca2+, and Cl– are 1.33, 1.9,

0.79, and 2.0 (all times 10–5 cm2/sec). Find the diffusion coefficients and trans-
ference numbers for NaCl, KCl, and CaCl2 in water and in excess KCl. Answer:
In water, the diffusion coefficients are 1.60, 1.95, and 1.32 respectively, all in 10–5

cm2/sec.

3. Calculate the diffusion coefficient at 25 �C of NH4OH versus concentration. The
relevant ionic diffusion coefficients are DNH4 ¼ 1.96 and DOH ¼ 5.28 cm2/sec. The
pKa of the NHþ4 is 9.245. Estimate the diffusion coefficient of the NH4OH molecule

from the Wilke–Chang correlation.

4. The uptake of drugs from the intestinal lumen is often strongly influenced by diffu-
sion. For example, consider a water-insoluble steroid for birth control that is solu-
bilized in detergent micelles. These micelles, aggregates of steroid and soap, have
a molecular weight of 24,000, an aggregation number of 80, a diameter of 26 ang-

stroms, and a charge of –27. The counter ion is Na+. (a) What is the diffusion
coefficient of the micelle in water at 37 �C? Answer: 1.10 � 10–5 cm2/sec. (b) What
is it in 0.1-M NaCl? Assume the micelle concentration is relatively low. Answer: 2.5 �
10–6 cm2/sec.

5. Electrolyte solutions can be highly nonideal. In these solutions, the flux equation for
a 1–1 univalent electrolyte is often written as

� jT ¼
D0cT
RT

$lT

where the chemical potential lT is given by

lT ¼ l0
T þ RT ln cTcT

and the activity coefficient cT in water at 25 �C is estimated from the Debye–Hückel
theory:

ln cT ¼ �1:02c
1=2
T

where cT is in moles per liter. Using the values in Table 6.1-1, estimate the variation

with concentration of the diffusion coefficient of potassium chloride and compare it
with the experimental values (J. Zasadzinski).

6. The analytical ultracentrifuge takes a homogeneous solution of a large solute – like
a buffered protein – and subjects it to a strong centrifugal field, at perhaps 100,000
rpm. The force exerted on a protein molecule is approximately mx2r, where m is the

molecular mass, corrected for buoyancy; x is the centrifuge’s angular velocity; and r is
its radius. (a) Parallel the development of the Nernst–Plank equations (Eq. 6.1-5) to
derive an extended form of Fick’s law that includes centrifugal force. (b) Calculate the

steady-state concentration profile that would exist in very long ultracentrifuge experi-
ments when diffusion and centrifugal force are balanced. You may not be able to
complete the integration involved; go as far as you can.

7. The following data have been reported for e-caprolactam diffusing in water at 25 �C
[E. L. Cussler and P. J. Dunlop, Austral. J. Chem., 19, 1661 (1966)]:
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This solute is believed to dimerize by forming hydrogen bonds. Estimate the equilib-
rium constant K for this reaction. (G. Jerauld) Answer: about 0.5 M�1.

8. Each molecule of sucrose in dilute aqueous solution is believed to combine with
about four molecules of water. Such hydration has two effects. First, it increases
the size of the sucrose solute and thus retards diffusion. Second, it increases the

mole fraction of sucrose and hence may accelerate diffusion. (a) Estimate how the
measured diffusion coefficient of sucrose differs from that of the unhydrated sucrose.
In this estimate, take the hydrated sucrose diffusion coefficient at infinite dilution

as 5.21 � 10–6 cm2/sec, its molecular weight as 342, and its solid density as 1.59 g/cm3.
Answer: about 5.7 � 10–6 cm2/sec. (b) Assume that the diffusion coefficient is given
by Eq. 6.2-46 times a viscosity correction. Find how the coefficient varies with

concentration.

9. A. Vignes [Ind. Engr. Chem. Fund., 5, 189 (1966)] suggested that the concentration

dependence of many liquid diffusion coefficients can be predicted with the equation

D ¼ D0 1þ q ln c1
q ln x1

� �
D0 ¼ D

x2
1 D

x1
2

where D1 is the diffusion coefficient of a trace of species 1 in excess species 2 and D2 is
that of a trace of species 2 in excess species 1. (a) Test the Vignes equation using the
following data for ethanol (1) and water (2) at 25 �C [B. R. Hammond and R. H.

Stokes, Trans. Faraday Soc., 49, 890 (1953)]:

(b) Using these same data, calculate D0 from Eq. 6.3-11. Compare how these quan-

tities vary with concentration.

x1 D(10–5cm2/sec) 1þ q ln c1
q lnx1

0.0 1.24 1.00
0.1 0.66 0.76
0.2 0.41 0.41
0.4 0.42 0.355
0.6 0.64 0.53
0.8 0.94 0.77
1.0 1.31 1.00

c(mol/dm3) D(10–5cm2/sec)

0.0514 0.8671
0.0515 0.8669
0.500 0.6978
0.991 0.5254
1.998 0.4160
3.003 0.3311
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10. At the consolute temperature of a regular solution, the diffusion coefficient is approx-

imately given by

D ¼ D0ð1� 4x1x2Þc

where D0 is a constant and xi is the mole fraction of species i. Assume that the
exponent c equals 0.5. Note that D is zero when x1 ¼ x2 ¼ 0.5. The volume average
velocity is zero, and the total concentration c is constant. Imagine that you are letting
pure solute (x1 ¼ 1) diffuse through a long thin capillary into an equally large volume

of pure solvent (x1 ¼ 0). You analyze your data as

j1 ¼
�D

l
ðc10 � c1lÞ

Show that �D equals D0/2.

11. You are separating globular proteins by gel permeation chromatography. One protein
has a diameter of 34 angstroms. How much will its diffusion coefficient be reduced by

diffusion in 417-angstrom pores?

12. The diffusion coefficients in water at 20 �C of hemoglobin and of catalase are 6.9 � 10–7
cm2/sec and 4.1 � 10–7 cm2/sec, respectively. They are 4.3 � 10–10 cm2/sec and 1.8 � 10–10
cm2/sec across a porous membrane. Estimate the pore size in this membrane. Answer:
30 nm.

13. Porous catalyst particles are often made by compressing the powdered catalyst into

a particle, the pore structure of which can be controlled by the compression process.
You are the engineer in charge of quality control at a catalyst manufacturing facility. You
are making catalyst with pore sizes around 3 micrometers in diameter. Unfortunately,

electron micrographs show one batch of product with pore sizes that are much smaller –
about 550 angstroms in diameter. Paradoxically, the catalyst still has the same surface
area per volume. The bad batch of particles was to be used in a diffusion-controlled

oxidation at 400 �Cand 1 atmosphere total pressure.As an estimate of the extent towhich
these particles will perform off-standard, calculate the diffusion coefficient of O2 in the
two different cylindrical pores. (S. Balloge) Answer: 0.13 cm2/sec in small pores.

14. To estimate the pore size of a porousmembrane, you plan to study the flux through the
membrane caused by a single gas on the feed side and a vacuum on the permeate side.

The pores in the membrane are near-circular cylinders formed by etching radiation
tracks. At high feed pressure, you expect normal laminar flow following the Hagen–
Poiseuille equation. At low feed pressure, you expect Knudsen diffusion. How do you

expect the flux to vary with pressure in each of these cases? (Remember that the
viscosity of dilute gases is independent of pressure.)
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CHAPTER 7

Multicomponent Diffusion

Throughout this book, we have routinely assumed that diffusion takes place in

binary systems. We have described these systems as containing a solute and a solvent,

although such specific labels are arbitrary.We often have further assumed that the solute

is present at low concentration, so that the solutions are always dilute. Such dilute

systems can be analyzed much more easily than concentrated ones.

In addition to these binary systems, other diffusion processes include the transport of

many solutes. One group of these processes occurs in the human body. Simultaneous

diffusion of oxygen, sugars, and proteins takes place in the blood. Mass transfer of bile

salts, fats, and amino acids occurs in the small intestine. Sodium and potassium ions

cross many cell membranes by means of active transport. All these physiological pro-

cesses involve simultaneous diffusion of many solutes.

This chapter describes diffusion for these and other multicomponent systems. The

formalism of multicomponent diffusion, however, is of limited value. The more elabo-

rate flux equations and the slick methods used to solve them are often unnecessary for an

accurate description. There are two reasons for this. First, multicomponent effects are

minor in dilute solutions, and most solutions are dilute. For example, the diffusion of

sugars in blood is accurately described with the binary form of Fick’s law. Second, some

multicomponent effects are often more lucid if described without the cumbersome equa-

tions splattered through this chapter. For example, the diffusion of oxygen and carbon

dioxide in blood is better described by considering explicitly the chemical reactions with

hemoglobin.

Nonetheless, some concentrated systems are best described using multicomponent dif-

fusion equations. Examples of these systems, which commonly involve unusual chemical

interactions, are listed inTable 7.0-1. They are best described using the equations derived in

Section 7.1. These equations can be rationalized using the theory of irreversible thermo-

dynamics, a synopsis of which is given Section 7.2. In most cases, the solution to multi-

component diffusion problems is automatically available if the binary solution is available;

the reasons for this are given in Section 7.3. Some values of ternary diffusion coefficients

are given in Section 7.4 as an indication of the magnitude of the effects involved. Finally,

tracer diffusion is detailed as an example of ternary diffusion in Section 7.5.

7.1 Flux Equations for Multicomponent Diffusion

Binary diffusion is often most simply described by Fick’s law relative to the

volume average velocity v0:

� ji ¼ ciðv0 � viÞ ¼ D$ci ð7:1-1Þ
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Inmany cases, multicomponent diffusion is described by generalizing this equation to an

n-component system:

� ji ¼ ciðv0 � viÞ ¼ R
n�1

j¼1
Dij$cj ð7:1-2Þ

in which the Dij are multicomponent diffusion coefficients. The relation between these

coefficients and the binary values is not known except for the dilute-gas limit, given for

ternary diffusion in Table 7.1-1. In general, the diffusion coefficients are not symmetric

(Dij 6¼Dji). The diagonal terms (theDii) are called the ‘‘main term’’ diffusion coefficients,

because they are commonly large and similar in magnitude to the binary values. The off-

diagonal terms (the Dij,i 6¼j), called the ‘‘cross-term’’ diffusion coefficients, are often ten

percent or less of the main terms. Each cross term gives a measure of the flux of one

solute that is engendered by the concentration gradient of a second solute.

For an n-component system, this equation contains (n – 1)2 diffusion coefficients.

This implies that one component must be arbitrarily designated as the solvent n. Because

of the Onsager reciprocal relations discussed in Section 7.2, the coefficients are not all

independent but instead are subject to certain restraints:

R
n�1

j¼ 1
R
n�1

l¼ 1

qll

qci

� �
ck 6¼ i;n

aljDjk ¼ R
n�1

j¼ 1
R
n�1

l¼ 1

qll

qck

� �
ci 6¼ k;n

aljDji ð7:1-3Þ

where

alj ¼ dlj þ
cj �Vl

cn �Vn

� �
ð7:1-4Þ

where �Vi is either a partial molar or partial specific volume, depending on whether the

concentration is in moles per volume or mass per volume. These restraints reduce the

number of diffusion coefficients required to describe diffusion to 1
2

� �
nðn� 1Þ½ � for an

n-component system. However, because application of these restraints requires detailed

thermodynamic information that is rarely available, the restraints are frequently impos-

sible to apply, and by default the system is treated as having (n – 1)2 independent

diffusion coefficients.

Equation 7.1-2 is themost useful form of themulticomponent flux equations. Because

of an excess of theoretical zeal, many who work in this area have nurtured a glut of

alternatives. These zealots most commonly use different driving forces or reference

Table 7.0-1 Systems with large multicomponent effects

Type of System Examples

Solutes of very different sizes Hydrogen–methane–argon
Polystyrene–cyclohexane–toluene

Solutes in highly nonideal
solutions

Mannitol–sucrose–water
Acetic acid–chloroform–water

Concentrated electrolytes Sodium sulfate–sulfuric acid–water
Hydrogen chloride–polyacrylic acid–water

Concentrated alloys Zinc–cadmium–silver
Chromium–nickel–cobalt
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velocities. Unfortunately, most of their answers are of limited value. The exception is

for some metal alloys.

The best alternative to Eq. 7.1-2 is the Maxwell–Stefan equation for dilute gases:

=yi ¼ R
n�1

j¼1

yiyj
Dij
ðvj � viÞ ð7:1-5Þ

This equation has twomajor advantages over Eq. 7.1-2. First, these diffusion coefficients

are the binary values found from binary experiments or calculated from the Chapman–

Enskog theory given in Section 5.1. Second, the Stefan–Maxwell equations do not re-

quire designating one species as solvent, which is sometimes an inconvenience when

using Eq. 7.1-2.

These advantages can be compromised for multicomponent liquid mixtures. There,

the nonideal solutions require a somewhat different form

=li

RT
¼ R

n�1

j¼1

xj

D0ij
vj � vi
� �

ð7:1-6Þ

For an ideal solution in which

li ¼ lo
i þ RT ln xi ð7:1-7Þ

this reduces to the ideal gas form. The newD0ij are a new set of diffusion coefficients often

believed to bemore closely related to the binary form. This belief seems tome to rest more

Table 7.1-1 Ternary diffusion coefficients: known functions of binary
values for ideal gases

D11 ¼

y1
D12
þ y2 þ y3
D23

y1
D12D13

þ y2
D12D23

þ y3
D13D23

2664
3775

D12 ¼
y1

1

D12
� 1

D13

� �
y1

D12D13
þ y2
D12D23

þ y3
D13D23

2664
3775

D21 ¼
y2

1

D12
� 1

D23

� �
y1

D12D13
þ y2
D12D23

þ y3
D13D23

2664
3775

D22 ¼

y1 þ y3
D13

þ y2
D12

y1
D12D13

þ y2
D12D23

þ y3
D13D23

2664
3775
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on faith than on data. Still, some researchers believe that this Maxwell–Stefan formula-

tion is superior to Equation 7.1-2 because it does not require designating a solvent.

At the same time, the Maxwell–Stefan form has a serious disadvantage. It is difficult

to combine with mass balances without designating one of the species as a solvent.

Moreover, in many cases we benefit from identifying transport in one direction as

occurring by diffusion and in the other direction as dominated by convection. When I

use the Maxwell–Stefan form, I can lose this physical insight. Thus in practice, the

advantage of this form is often lost. As a result, I feel Eq. 7.1-2 remains the most useful

form of flux equation. We next examine the origins of these equations more carefully

using irreversible thermodynamics.

7.2 Irreversible Thermodynamics

The multicomponent flux equations given in Eq. 7.1-2 are empirical general-

izations of Fick’s law that define a set of multicomponent diffusion coefficients. Because

such definitions are initially intimidating, many have felt the urge to rationalize the origin

of these equations and buttress this rationale with ‘‘more fundamental principles.’’ This

emotional need is often met with derivations based on irreversible thermodynamics.

Because the derivation of irreversible thermodynamics is straightforward, it seems on

initial reading to be extremely valuable. After all those years of laboring under the re-

straint of equilibrium, the treatment of departures from equilibrium seems like a new

freedom. Eventually one realizes that although irreversible thermodynamics does give the

proper form of the flux equations and clarifies the number of truly independent coeffi-

cients, this information is of little value because it is already known from experiment.

Irreversible thermodynamics tells us nothing about the nature and magnitude of the

coefficients in the multicomponent equations, nor the resulting size and nature of the

multicomponent effects. These are the topics in which we are interested. As a result,

irreversible thermodynamics has enjoyed an overoptimistic vogue, first in chemical phys-

ics, next in engineering, and then in biophysics. Subsequently, it has been deemphasized as

its limitations have become recognized. Because irreversible thermodynamics is of limited

utility in describing multicomponent diffusion, only the barest outline will be given here.

7.2.1 The Entropy Production Equation

Three basic postulates are involved in the derivation of Eq. 7.1-2 (Fitts, 1962).

The first postulate states that thermodynamic variables such as entropy, chemical

potential, and temperature can in fact be correctly defined in a differential volume of

a system that is not at equilibrium. This is an excellent approximation, except for systems

that are very far from equilibrium, such as explosions. In the simple derivation given

here, we assume a system of constant density, temperature, and pressure, with no net

flow or chemical reaction. More complete equations without these assumptions are

derived elsewhere (e.g., Haase, 1969).

The mass balance for each species in this type of system is given by

qci
qt
¼ �= � ni ¼ �= � ji ð7:2-1Þ

214 7 / Multicomponent Diffusion



In this continuity equation, we use the fact that at no net flow and constant density, ni
equals ji, the flux relative to the volume or mass average velocity. We also imply that the

concentration is expressed in mass per unit volume. The left-hand side of this equation

represents solute accumulation, and the right-hand side represents the solute diffusing in

minus that diffusing out. The energy equation is similar:

q
qĤ
qt
¼ �= � q� = � R

n

i¼1
�Hi ji ð7:2-2Þ

where q is the conductive heat flux, and �Hi is the partial specific enthalpy. The left-hand

side of this relation is the accumulation, the first term on the right-hand side is the energy

conducted in minus that conducted out, and the second term is the energy diffusing in

minus that diffusing out. Because we are assuming an isothermal system, q is presumably

zero; we include it here so that the equation will look more familiar.

By parallel arguments, we can write a similar equation for entropy:

q
qŜ
qt
¼ �= � Js þ r ð7:2-3Þ

By analogy, the term on the left must be the entropy accumulation. The first term on

the right includes Js, which is entropy in minus entropy out by both convection

and diffusion. The second term on the right, r, gives the entropy produced in the

process. This entropy production, which must be positive, is the quantitative measure

of irreversibility in the system and represents a novel contribution of irreversible

thermodynamics.

To find the entropy production, we first recognize that in this isothermal system,

dĜ ¼ dĤ� TdŜ ¼ 1

q
R
n

i¼1
lidci ð7:2-4Þ

in which li is the partial Gibbs free energy per unit mass, not the usual form of chemical

potential; and q is the total mass density. This equation suggests that

qT
qŜ
qt
¼ q

qĤ
qt
� R

n

i¼1
li

qci
qt

ð7:2-5Þ

Combining with Eqs. 7.2-1 and 7.2-2

qT
qŜ
qt
¼ �= � q�= � R

n

i¼1
�Hi ji � R

n

i¼1
lið= � jiÞ ð7:2-6Þ

However,

lið$ � jiÞ ¼ $ � ð �Hi � T �SiÞji � ð ji � $liÞ ð7:2-7Þ

Combining Eqs. 7.2-6 and 7.2-7,

q
qŜ
qt
¼ �$ � q

T
þ R

n

i¼1
�Si ji

� �
� 1

T
R
n

i¼1
ji � $li ð7:2-8Þ
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By comparison with the entropy balance, Eq. 7.2-3, we see that the entropy flux is

Js ¼
q

T
þ R

n

i¼1
Ŝi ji ð7:2-9Þ

The first and second terms on the right-hand side are the entropy flux by conduction and

by diffusion, respectively.

The entropy production can also be found by comparing Eqs. 7.2-3 and 7.2-8:

r ¼ � 1

T
R
n

i¼1
ji � $li ð7:2-10Þ

The terms in this equation have units of energy per volume per time per temperature.

Not all the fluxes and gradients in Eq. 7.2-1 are independent, because

R
n

i¼1
ji ¼ 0 ð7:2-11Þ

and, because the pressure and temperature are constant,

R
n

i¼1
ci$li ¼ 0 ð7:2-12Þ

Using these restraints, we can rewrite Eq. 7.2-10 in terms of n – 1 fluxes and gradients

relative to any reference velocity. In particular, for the mass average velocity, we can

show that

r ¼ � 1

T
R
n�1

i¼1
ji � Xi ð7:2-13Þ

with the more general driving forces Xi given by

Xi ¼ R
n�1

j¼1
dijþ

cj
cn

� �
$lj ð7:2-14Þ

Strictly speaking, Eqs. 7.3-13 and 7.3-14 apply only to the mass average reference ve-

locity and ji should be the flux relative to this velocity. Other reference velocities can also

be used with other general forces. For example, for the volume average velocity, we may

show that

r ¼ � 1

T
R
n�1

i¼1
ji � X

0
i ð7:2-15Þ

where ji is now relative to the volume average velocity, where

X
0
i ¼ R

n�1

j¼1
aij$lj ð7:2-16Þ

and where the aij are given by Eq. 7.1-4. Eq. 7.2-15 is identical with Eq. 7.2-13 for

a system of constant density, when the partial specific volumes all equal the reciprocal

216 7 / Multicomponent Diffusion



of the density, and volume and mass fractions are identical. We will use the volume

average velocity and the associated fluxes and forces in the remainder of this chapter

because these forms are those commonly used for fluids.

7.2.2 The Linear Laws

The second postulate in the derivation of irreversible thermodynamics is that

a linear relation exists between the forces and fluxes in Eq. 7.2-15

�ji ¼ R
n�1

j¼1
LijX

0
j ; ð7:2-17Þ

where the Lij have the mind-bending name of ‘‘Onsager phenomenological coefficients.’’

These Lij are strong functions of concentration, especially in dilute solution, where they

approach zero as ci/ 0. The linear law can be derived mathematically by use of a Taylor

series in which all but the first terms are neglected, but because I am unsure when this

neglect is justified, I prefer to regard the linear relation as a postulate.

7.2.3 The Onsager Relations

The third and final postulate is that the Lij are symmetric, that is,

Lij ¼ Lji ð7:2-18Þ

These symmetry conditions, called the Onsager reciprocal relations (Onsager, 1931), can

be derived by means of perturbation theory if ‘‘microscopic reversibility’’ is valid. The

physical significance of microscopic reversibility is best visualized for a binary collision

in which two molecules start in some initial positions, collide, and wind up in some new

positions. If the velocities of these molecules are reversed and if microscopic reversibility

is valid, the two molecules will move backward, retracing their paths through the col-

lision to regain their original initial positions, just like a movie running backward. Those

unfamiliar with the temperament of molecules running backward may be mollified by

recalling that the symmetry suggested by Eq. 7.2-18 has been verified experimentally.

Thus we can accept Eq. 7.2-18 as a theoretical result or as an experimentally verified

postulate.

7.2.4 The Flux Equations

Using these three postulates, we can easily complete the derivation of the mul-

ticomponent flux equations from irreversible thermodynamics. We first rewrite Eq. 7.2-

17 in terms of concentration gradients. Because the �Vi are partial extensive quantities,

R
n

i¼1
�Vi=ci ¼ 0 ð7:2-19Þ
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Those less well versed in thermodynamics can get the same result by assuming that the

partial molar volumes are constant. As a result, only n – 1 concentration gradients are

independent:

$li ¼ R
n�1

j¼1

qli

qcj

� �
ck 6¼j;n

$cj ð7:2-20Þ

Note that the concentrations that are held constant in this differentiation differ from

those that are commonly held constant in partial differentiation. If we combine Eqs.

7.2-16, 7.2-17, and 7.2-20, we obtain

� ji ¼ R
n�1

j¼1
Dij$cj ð7:2-21Þ

where

Dij ¼ R
n�1

k¼1
R
n�1

l¼1
Likakl

qll

qcj

� �
cm6¼j;n

ð7:2-22Þ

where the akl are those given by Eq. 7.1-4. Thus, by starting our argument with conser-

vation equations plus an equation for entropy production, we have derived multicom-

ponent diffusion equations using only three postulates.

We still know nothing from this theory about the diffusion coefficients Dij; we must

evaluate these from experiment. Finding these coefficients commonly requires solving

the flux equations with the techniques developed in the next section.

7.3 Solving the Multicomponent Flux Equations

In general, solving the multicomponent diffusion problems is not necessary if

the analogous binary problem has already been solved (Toor, 1964; Stewart and Prober,

1964). We can mathematically convert the multicomponent problem into a binary prob-

lem, look up the binary solution, and then convert this solution back into the multicom-

ponent one. In other words, multicomponent problems usually can be solved using

a cookbook approach; little additional work is needed. Some use this cookbook to

convert fairly comprehensible binary problems into multicomponent goulash that is

harder to understand than necessary.

In this section, we first give the results for ternary diffusion and then for the general

approach. By starting with the ternary results, we hope to help those who need to solve

simple problems. They should not have to dig through the matrix algebra unless they

decide to do so.

7.3.1 The Ternary Solutions

A binary diffusion problem has a solution that can be written as

Dc1 ¼ Dc10FðDÞ ð7:3-1Þ
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In this, Dc1 is a concentration difference that generally varies with position and time,

Dc10 is some reference concentration difference containing initial and boundary condi-

tions, and F(D) is the explicit function of position and time. For example, for the

diaphragm cell, the binary solution is (see Example 2.2-4)

ðc1B � c1AÞ ¼ ðc01B � c
0
1AÞe

�bDt ð7:3-2Þ

where c01i and c1i are the concentrations in the diaphragm-cell compartment i at times

zero and t, respectively, b is the cell calibration constant, and D is the diffusion

coefficient. By comparison of Eqs. 7.3-1 and 7.3-2, we see that Dc1 is c1B – c1A, Dc10 is
c01B � c01A, and F(D) is e–bDt.

Every binary diffusion problem has an analogous ternary diffusion problem that is

described by similar differential equations and similar initial and boundary conditions.

The differential equations differ only in the form of Fick’s law that is used. The con-

ditions are also parallel. For example, in a binary problem the solute concentration may

be fixed at a particular boundary, so in the corresponding ternary problem, solute

concentrations will also be fixed at the corresponding boundary. When this is true,

the ternary diffusion problems have the solutions

Dc1 ¼ P11Fðr1ÞþP12Fðr2Þ ð7:3-3Þ

and

Dc2 ¼ P21Fðr1ÞþP22Fðr2Þ ð7:3-4Þ

in which the concentration differences Dc1 and Dc10 are the dependent and independent

values in the binary problem, F(D) is again the solution to the binary problem, and the

values of ri and Pij are given in Table 7.3-1 (Cussler, 1976). The ri are the eigenvalues

(with relative weighting factors q) of the diffusion-coefficient matrix and hence are a type

of pseudobinary diffusion coefficient.

The calculation of the ternary diffusion profile is now routine. For example, the result

for solute 1 in the diaphragm cell will be

c1B � c1A ¼
ðD11 � r2Þðc01B � c

0
1AÞ þ D12ðc02B � c

0
2AÞ

r1 � r2
e
�r1dt

þðD11 � r1Þðc01B � c
0
1AÞ þ D12ðc02B � c

0
2AÞ

r2 � r1
e
�r2dt ð7:3-5Þ

The results for the second solute can be found fromEq. 7.3-4 or by rotating the indices in

Eq. 7.3-5.

Example 7.3-1: Fluxes for ternary free diffusion Find the fluxes and the concentration

profiles in a dilute ternary free-diffusion experiment. In such an experiment, one ternary

solution is suddenly brought into contact with a different composition of the same

ternary solution. Find the flux and the concentrations versus position and time at small

times.
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Solution When the two solutions come in contact for only a short time, they

are effectively infinitely thick. The binary solution of this problem is (see Eq. 2.3-15)

c1 � c10
c1‘ � c10

¼ erf
zffiffiffiffiffiffiffiffi
4Dt
p

in which c10 and c1N are the concentrations where the solutions are contacted (at z= 0)

and far into one solution (at z=N), respectively, z and t are the position and time,

and D is the binary diffusion coefficient. By comparison with Eq. 7.3-1, we see that Dc1
is c1 – c10, Dc10 is c1N – c10 and F(D) equals the error function of z=

ffiffiffiffiffiffiffiffi
4Dt
p

. As a result

the concentration profile for solute 1 will be

c1 � c10 ¼
ðD11 � r2Þðc1‘ � c10ÞþD12ðc2‘ � c20Þ

r1 � r2

� �
erf

zffiffiffiffiffiffiffiffiffi
4r1t
p

þ ðD11 � r1Þðc1‘ � c10ÞþD12ðc2‘ � c20Þ
r2 � r1

� �
erf

zffiffiffiffiffiffiffiffiffi
4r2t
p

The close similarity between this result and that for the diaphragm cell is obvious.

The fluxes can be found in the same manner as the concentration profile. Because the

solutions are dilute, there is negligible convection induced by diffusion, so

� n1 ¼: �j1 ¼ D11
qc1
qz
þD12

qc2
qz

Table 7.3-1 Factors for solution of ternary diffusion problems

Eigenvalues

r1 ¼ 1
2½D11 þD22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD11 �D22Þ2þ 4D12D21

q
�

r2 ¼ 1
2½D11 þD22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD11 �D22Þ2þ 4D12D21

q
�

Weighting factors

P11 ¼
D11 � r2

r1 � r2

� �
Dc10 þ

D12

r1 � r2

� �
Dc20

P12 ¼
D11 � r1

r2 � r1

� �
Dc10 þ

D12

r2 � r1

� �
Dc20

P21 ¼
D21

r1 � r2

� �
Dc10 þ

D22 � r2

r1 � r2

� �
Dc20

P22 ¼
D21

r2 � r1

� �
Dc10 þ

D22 � r1

r2 � r1

� �
Dc20

Note: For further definitions, see Eqs. 7.1-2, 7.3-1, 7.3-3, and 7.3-4.
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Combining this with Eqs. 2.3-17, 7.3-3, and 7.3-4,

� j1 ¼ ðD11P11þD12P21Þ
e
�z

2
=4r1tffiffiffiffiffiffiffiffiffi
pr1t
p

þðD11P12þD12P22Þ
e
�z2=4r2tffiffiffiffiffiffiffiffiffi

pr2t
p

where again the Pij are given in Table 7.3-1. These results are complex algebraically but

straightforward conceptually.

7.3.2 The General Solution

We now turn from the detail of ternary diffusion to the more general solution of

the multicomponent problems. The general solution of these equations is most easily

presented in terms of linear algebra, a notation that is not used elsewhere in this book. In

this presentation, we consider the species concentrations as a vector of c and the mul-

ticomponent diffusion coefficients as a matrix D.

In matrix notation, the multicomponent flux equations are

� j ¼ D � =c ð7:3-6Þ

The continuity equations for this case are

qc
qt
þð= � v0cÞ ¼ �= � j ð7:3-7Þ

These are subject to the initial and boundary conditions

Dcðx; y; z; t ¼ 0Þ ¼ Dc0 ð7:3-8Þ

DcðB; tÞ ¼ 0 ð7:3-9Þ

qc
qz
ðb; tÞ ¼ 0 ð7:3-10Þ

where B and b represent two boundaries of the system. Note that the boundary con-

ditions on all concentrations must have the same functional form. This is a serious

restriction only for the case of simultaneous diffusion and chemical reaction.

We now assume that there exists a nonsingular matrix t that can diagonalize D:

t
�1 �D � t ¼ r ¼

r1 0 0 : : :
0 r2 0 : : :
0 0 r3 : : :

..

. ..
. ..

.

26664
37775 ð7:3-11Þ

where t�1 is the inverse of t and r is the diagonal matrix of the eigenvalues of the

diffusion coefficient matrix D. The assumption that D can be put into diagonal form

is not necessary for a general mathematical solution, but because this assumption is
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valid for all cases encountered in practice, it is used here. For the case of ternary

diffusion,

t ¼ t11 t12
t21 t22

� �
¼

1
D12

D22 � r1
D22 � r2

D12
1

264
375

1� r2 �D22

r1 �D22

� �� � ¼
1

D11 � r1

D21
D21

D11 � r2
1

264
375

1� r1 �D11

r2 �D11

� �� � ð7:3-12Þ

Correspondingly,

t
�1 ¼

t
�1
11 t

�1
12

t
�1
21 t

�1
22

" #
¼

1
D12

r1 �D22
r2 �D22

D12
1

264
375

det t
� � ¼

1
r1 �D11

D21
D21

r2 �D11
1

264
375

det t
� � ð7:3-13Þ

where

det ðtÞ ¼ r1 � r2

r1 �D22
¼ r2 � r1

r2 �D11
ð7:3-14Þ

Remember that the product of t and its inverse t�1 is the unit matrix.

We now use this new matrix t to define a new combined concentration W

c ¼ t �W ð7:3-15Þ

We combine Eqs. 7.3-6, 7.3-7, and 7.3-15 and premultiply the equation by t�1 to obtain

qW
qt
þ= � v0W ¼ r � =2W ð7:3-16Þ

which represents a set of scalar equations

qWi

qt
þ= � v0Wi ¼ ri � =2Wi ð7:3-17Þ

In this operation, we have made the assumption that D and hence both t and r are not

functions of composition.

The initial and boundary conditions can also be written in terms of the new combined

concentration W:

DWðx; y; z; 0Þ ¼ DW0 ¼ t
�1 � Dc0 ð7:3-18Þ

DWðB; tÞ ¼ 0 ð7:3-19Þ

qW
qz
ðb; tÞ ¼ 0 ð7:3-20Þ
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Thus a set of coupled differential equations has been separated into uncoupled equations

written in terms of the new concentration W.

Equations 7.3-16 through 7.3-20 have exactly the same form as the associate binary

diffusion problem:

qc1
qt
þ $ � v0c1 ¼ D$2

c1 ð7:3-21Þ

which has the same initial and boundary conditions for each species as those given in

Eqs. 7.3-8 through 7.3-10. If this binary problem has the solution

Dc1 ¼ FðDÞDc10 ð7:3-22Þ

then Eqs. 7.3-17 through 7.3-20 must have the solution

DWi ¼ FðriÞDWi0 ð7:3-23Þ

where the eigenvalue ri is substituted everywhere that the binary diffusion coefficient

occurs in the binary solution. If we rewrite our solution in terms of the actual concen-

trations, we find that

Dc ¼ t � FðrÞ � t�1 � Dc0 ð7:3-24Þ

Thus we know the concentration profiles in the multicomponent system in terms of its

binary analogue. The results for the ternary case are given in Eqs. 7.3-3 and 7.3-4.

Many find this derivation difficult to grasp, even after they apparently understand every

step. Their trouble usually stems from a mathematical, not physical, problem. They do not

see why the derivation is more than a trick, a slick invention. The reason is that Eq. 7.3-17

and its associated conditions are shown to be mathematically the same as the binary

solution. If we change the symbol Wi to c1, Eq. 7.3-17 and Eq. 7.3-21 are exactly the same.

The physical circumstances in themulticomponent problemmaybemore elaborate, but the

identity of the differential equations signals that the mathematical solutions are identical.

Example 7.3-2: Steady-state multicomponent diffusion across a thin film In steady-state

binary diffusion, we found that the solute’s concentration varied linearly across a thin film.

Will solute concentrations vary linearly in themulticomponent case?What will the flux be?

Solution By comparison with Eq. 2.2-9, we see that

ðc1 � c10Þ ¼
z

l

	 

ðc1l � c10Þ

By comparing this with Eq. 7.3-22, we see that F(D) equals (z/l). FromEq. 7.3-24, for the

multicomponent case,

Dc ¼ t � z
l
d � t�1

	 

� Dc0 ¼

z

l

	 

Dc0

Thus the concentration profile of each solute remains linear. The flux is

�j ¼ D � =c

¼ D � Dc0
l
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or

ji ¼ R
n�1

j¼1

Dij

l
ðcj0� cjlÞ

Note that a solute’s flux can be in the opposite direction to that expected if other

gradients exist in the system.

7.4 Ternary Diffusion Coefficients

In this section, we report a variety of values for ternary diffusion coefficients.

These coefficients support the generalizations given at the beginning of this chapter that

multicomponent effects were significant when the system was concentrated and con-

tained interacting species. These interactions can originate from chemical reactions,

from electrostatic coupling, or from major differences in molecular weights.

Typical diffusion coefficients for gases are shown in Table 7.4-1. These values are not

experimental, but are calculated from the Chapman–Enskog theory (see Section 5.1) and

from Table 7.1-1. The first two rows in the table show how the values ofD12 andD21 are

larger as the solution becomes concentrated. The second and third rows refer to the same

solution but with a different species chosen as the solute. The difference in the diffusion

coefficients illustrates why ternary diffusion coefficients can be difficult to interpret. The

final three rows are other characteristic situations.

Table 7.4-1 Ternary diffusion coefficients in gases at 25�C

System D11 D12 D21 D22

Hydrogen (x1 ¼ 0.05)
Methane (x2 ¼ 0.05) 0.78 �0.00 0.03 0.22
Argon (x3 ¼ 0.90)

Hydrogen (x1 ¼ 0.2)
Methane (x2 ¼ 0.2) 0.76 �0.01 0.12 0.25
Argon (x3 ¼ 0.6)

Argon (x1 ¼ 0.6)
Methane (x2 ¼ 0.2) 0.64 �0.39 �0.12 0.37
Hydrogen (x3 ¼ 0.2)

Carbon dioxide (x1 ¼ 0.2)
Oxygen (x2 ¼ 0.2) 0.15 �0.00 �0.01 0.19
Nitrogen (x3 ¼ 0.6)

Hydrogen (x1 ¼ 0.2)
Ethylene (x2 ¼ 0.2) 0.56 0.00 0.11 0.13
Ethane (x3 ¼ 0.6)

Benzene (x1 ¼ 0.2)
Cyclohexane (x2 ¼ 0.2) 0.028 0.000 0.001 0.026
Hexane (x3 ¼ 0.6)

Note: All coefficients have units of square centimeters per second and are calculated from the

equations in Table 7.1-1.
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Ternary diffusion coefficients in liquids and solids cannot be found from binary

values, but only from experiments. When experiments are not available, which is usually

the case, one can make estimates by assuming that the Onsager phenomenological

coefficients are a diagonal matrix; that is,

Lij; i 6¼ j ¼ 0 ð7:4-1Þ

In addition, we can assume that the main-term coefficients are related to the binary

values given by

Lii ¼
Dici
RT

� �
ð7:4-2Þ

whereDi is the coefficient of species i in the solvent. These assumptions can be combined

with Eq. 7.1-4 and Eq. 7.2-20 to give

Dij ¼
Dici
RT

� �
R
n�1

l¼1
dilþ

cl �Vi

cn �Vn

� �
qll

qcj

� �
ck6¼j;n

ð7:4-3Þ

This is equivalent to saying that ternary effects result from activity coefficients. I rou-

tinely use this equation for making initial estimates.

Experimental values of ternary diffusion coefficients characteristic of liquids are

shown in Table 7.4-2. In cases like KCl–NaCl–water, KCl–sucrose–water, and tolu-

ene–chlorobenzene–bromobenzene, the cross-term diffusion coefficients are small, less

than ten percent of the main diffusion coefficients. In these cases, we can safely treat the

diffusion as a binary process.

The cross-term diffusion coefficients are much more significant for interacting sol-

utes. In cases like HBr–KBr–water and H2SO4–Na2SO4–water, this interaction is ionic;

in other cases, it may involve hydrogen-bond formation. Cross-term diffusion coeffi-

cients and the resulting ternary effects should be especially large in partially miscible

systems, where few measurements have been made.

The ternary diffusion coefficients in metals shown in Table 7.4-3 have the largest

cross-term values. As a result, the flux of one component in an alloy can be against its

concentration gradient, from low concentration into higher concentration. These effects

are especially interesting when they are superimposed on the elaborate phase diagrams

characteristic of alloys because they can lead to local phase separations that dramatically

alter the material’s properties. As in gases and liquids, the methods of estimating ternary

diffusion coefficients are risky. One must either rely on relations like Eq. 7.4-3 or

undertake the difficult experiments involved. As a result, many avoid ternary diffusion

even when they suspect it is important.

7.5 Tracer Diffusion

Imagine we want to study the diffusion of steroids like progesterone through

human blood. The amounts of these steroids will be very small, making direct chemical

analysis difficult. As a result, we synthesize steroids that contain carbon 14 as
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a radioactive label. We then measure the steroid concentration, and calculate diffusion

coefficients from these concentration measurements.

This measurement of tracer diffusion in dilute solution is a good strategy. Such a use

of radioactive tracers provides a near-unique opportunity for a specific chemical analysis

in highly dilute solution. Such analysis is especially important in biological systems,

where complex chemistry may compromise analysis. Moreover, in dilute solution, the

diffusion coefficients found with radioactive tracers are almost always indistinguishable

from those measured in other ways. Exceptions occur in those systems in which the

solute moves by a jump mechanism like that for protons (see Fig. 6.1.-1) or in which

the solute’s molecular weight is significantly altered by the isotopic mass.

Table 7.4-2 Ternary diffusion coefficients in liquids at 25 �Ca

System D11 D12 D21 D22

1.5-M KCl (1)
1.5-M NaCl (2) 1.80 0.33 0.10 1.39
H2O (3)b

0.10-M HBr (1)
0.25-M KBr (2) 5.75 0.05 �2.20 1.85
H2O (3)c

1-M H2SO4 (1)
1-M Na2SO4 (2) 2.61 �0.04 �0.51 0.91
H2O (3)d

0.06 g/cm3 KCl (1)
0.03 g/cm3 sucrose (2) 1.78 0.02 0.07 0.50
H2O (3)e

2-M urea (1)
O-M14 C-tagged urea (2) 1.24 0.01 0.00 1.23
H2O (3)f

32 mol% hexadecane (1)
35 mol% dodecane (2) 1.03 0.23 0.27 0.97
33 mol% hexane (3)g

25 mol% toluene (1)
50 mol% chlorobenzene (2) 1.85 �0.06 �0.05 1.80
25 mol% bromobenzene (3)h

0.326 g/cm3 benzene (1)
0.265 g/cm3 propanol (2) 1.64 0.78 0.17 1.33
Carbon tetrachloride (3)i

5 wt% cyclohexane (1)
5 wt% polystyrene (2) 2.03 �0.09 �0.02 0.09
90 wt% toluene (3) j

Notes: aAll values 3 10�5 square centimeters per second. bP. J. Dunlop, J. Phys. Chem., 63, 612

(1959). cA.Reojin, J. Phys. Chem., 76, 3419 (1972). dR. P.Wendt, J. Phys. Chem., 66, 1279 (1962).
eE. L. Cussler and P. J. Dunlop, J. Phys. Chem., 70, 1880 (1966). fJ. G. Albright and R. Mills, J.

Phys. Chem., 69, 3120 (1966). gT. K. Kett and D. K. Anderson, J. Phys. Chem., 73, 1268 (1969).
hJ. K. Burchard and H. L. Toor, J. Phys. Chem., 66, 2015 (1962). iR. A. Graff and T. B. Drew,

IEC Fund., 7, 490 (1968) (data at 200 �C). jE. L. Cussler and E. N. Lightfoot, J. Phys. Chem., 69,

1135 (1965).
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In concentrated solution, tracer diffusion is a much more complex process which may

not provide coefficients identical with those in the binary system. This is illustrated by

the data in Fig. 7.5-1. In this figure, we see that the diffusion coefficients using different

radioactive isotopes can differ from each other and from the binary diffusion coefficient.

On reflection, we realize that this is not surprising; the diffusion of radioactively tagged

benzene in untagged benzene is obviously a different process than the diffusion of tagged

cyclohexane in benzene.

Explaining these differences requires more careful definitions (Albright and Mills,

1965). Binary diffusion occurs with two chemically distinct species. In contrast, intra-

diffusion occurs with three distinguishable species. One of these species is chemically

different. The other two species are very similar, for they have the same chemical for-

mula, the same boiling point, the same viscosity, and so forth. They differ only in their

isotopic composition or their assymetrical structure. Nonetheless, this means that intra-

diffusion involves three species.

There are two important special cases of intradiffusion. The first, tracer diffusion, is

the limit when the concentration of one similar species is small. This is the usual situation

when one uses radioactive isotopes, for high concentrations of radioactive material are

expensive, risky, and unnecessary. The second special case, self-diffusion, occurs when

the system contains a radioactively tagged solute in an untagged but otherwise chemi-

cally identical solvent. This systemmay also contain traces of other solutes and so still may

have more than two components. These different definitions are identified in Fig. 7.5-1.

The best available description of these various forms of diffusion is supplied by the

multicomponent equations developed earlier in this chapter. Indeed, tracer diffusion is

a simple example by which you can test your understanding of these ideas. To begin this
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Fig. 7.5-1. Binary and tracer diffusion at 25 �C. The tracer diffusion coefficient equals the

binary coefficient only in certain special cases. All coefficients are 3 10�5 square centimeters

per second. [From Mills (1965), with permission.]
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description, we define the tracer as species 1, the identical unlabeled compound as species

2, and the different species as the solvent 3. The flux equations for this system are then

� j1 ¼ D11$c1 ð7:5-1Þ

� j2 ¼ D21$c1þD22$c2 ð7:5-2Þ

The coefficientD12 is zero because the tracer concentration c1 is always near zero. When

c1 and c2 are both very small, D11 is the tracer diffusion coefficient of species 1 in species

3. When c3 is very small, D11 is the self-diffusion coefficient of species 1 in species 2. We

will imitate the literature and relabel the coefficientD11 asD*, a reminder that it is often

radioactively tagged.

We can also reach conclusions about the coefficients D22 and D21. Since species 1 is

always present at vanishingly small concentrations, D22 must be the binary diffusion

coefficient D of species 2 in solvent 3. This has other implications. The total flux of

species 1 and 2 must be the sum of the fluxes above

� ðj1þ j2Þ ¼ ðD11þD21Þ$c1þD22$c2

¼ ðD� þD21Þ$c1þ D$c2 ð7:5-3Þ

But now imagine that our radiation detector is broken, so we can’t measure c1; we can

only measure (c1+c2). We can still measure the binary diffusion coefficient D using the

relation

� ðj1þ j2Þ ¼ D$ðc1þ c2Þ ð7:5-4Þ

By comparing Eqs. 7.5-3 and 7.5-4, we see that

D21 ¼ D�D
� ð7:5-5Þ

Thus in this special case of ternary diffusion, the four diffusion coefficients can be written

in terms of two: the tracer and the binary. This reduction to two coefficients is a conse-

quence of the chemical identity of the solutes 1 and 2.

The physical reasons why the tracer and the binary coefficients are different can

most easily by seen for the case of a dilute gas mixture of a tagged solute 1, an

untagged solute 2, and a solvent 3. Diffusion in this system is described in terms of

solute–solvent collisions and solute–solute collisions. Solute–solvent collisions are char-

acterized by collision diameters r13 and e13. Solute–solute collisions are described by

r12 and e12. With these diameters and energies, the binary diffusion coefficient can be

shown from Table 7.1-1 to be a function only of solute–solvent collisions:

D22 ¼ D ¼ Dðr23; r23Þ ¼ Dðr13; r13Þ ð7:5-6Þ

On the other hand, the intradiffusion coefficient D* is seen from this table to be

a weighted harmonic average of solute–solvent and solute–solute collisions:

D11 ¼ D
� ¼ 1

y3
Dðr23; r23Þ

þ y1þy2
Dðr12; r12Þ

ð7:5-7Þ
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Note that when (y1+y2) is nonzero,D* is not equal toD. In the limit of infinite dilution,

both y1 and y2 approach zero, and D* equals D.

Many investigators have tried to discover empirical connections between binary

diffusion and intradiffusion. The most common is the assertion that

D ¼ D
�

1 þ q ln c1
q ln c1

� �
ð7:5-8Þ

in which D is the binary diffusion coefficient, D* is the intradiffusion coefficient mea-

sured with a radioactive tracer, and the quantity in parentheses is the increasingly

familiar activity correction for diffusion. This empirical assertion is often buttressed

by theoretical arguments, especially those based on the irreversible thermodynamics

described in Section 7.2. Equation 7.5-8 does not always work experimentally, as shown

by the results in Fig. 7.5-2.

Why Eq. 7.5-8 sometimes fails is illustrated by the case of dilute gases. Binary diffu-

sion involves only solute–solvent interactions. Intradiffusion and tracer diffusion are the

result not only of solute–solvent interactions but also of solute–solute interactions. Thus

D* contains different information than D, information characteristic of dynamic colli-

sions as well as equilibrium activities. This difference means in general thatD* cannot be

found only from D and activity coefficients.

Example 7.5-1: Tracer and binary diffusion of hydrogen and benzene Find the tracer

diffusion coefficient of 14C-tagged benzene in gas mixtures of hydrogen and benzene. At

25 �C, the binary diffusion coefficient is 0.40 cm2/sec, and the self-diffusion coefficient of

benzene is 0.03 cm2/sec.
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Fig. 7.5-2. Binary diffusion predicted from tracer diffusion. In general, binary diffusion cannot

be predicted from tracer diffusion and activity data using empirical relations like Eq. 7.5-8. The

data, for chloroform–carbon tetrachloride at 25 �C, are square centimeters per second. [From

Kelly, Wirth, and Anderson (1971), with permission.]
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Solution To be consistent with the preceding development, let species 1, 2,

and 3 be radioactively tagged benzene, untagged benzene, and hydrogen, respectively.

Then, from Eq. 7.5-6, we see that the binary coefficient is

D ¼ 0:40 cm
2
=sec

This coefficient is independent of concentration. The tracer diffusion coefficient is found

from Eq. 7.5-7

D
� ¼ 1

y3
0:40

þ 1�y3
0:03

This result is shown versus hydrogen concentration in Fig. 7.5-3. In this case, the binary

and tracer values differ by an unusually large amount, a consequence of the exceptional

mobility of hydrogen.

7.6 Conclusions

Diffusion frequently occurs in multicomponent systems. When these systems are

dilute, the diffusion of each solute can be treated with a binary form of Fick’s law. In

concentrated solutions, the fluxes and concentration profiles deviate significantly from

binary expectations only in exceptional cases. These exceptions include mixed gases con-

taining hydrogen, mixed weak electrolytes, partially miscible species, and some alloys.

When multicomponent diffusion is significant, it is best described with a generalized

form of Fick’s law containing (n – 1)2 diffusion coefficients in an n-component system.

This form of diffusion equation can be rationalized using irreversible thermodynamics.

Concentration profiles in these multicomponent cases can be directly inferred from the

binary results. However, multicomponent diffusion coefficients are difficult to estimate,

and experimental values are fragmentary. As a result, you should make very sure that

you need the more complicated theory before you attempt to use it.
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Fig. 7.5-3. Binary versus tracer diffusion of hydrogen gas and benzene vapor. The benzene is

the species tagged with radioactivity. The differences between the binary and tracer values are

unusually large in this case.
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Questions for Discussion

1. In what multicomponent mixture can diffusion be accurately described with the

binary form of Fick’s law?

2. When are multicomponent diffusion coefficients different from the binary values?

3. What is a cross-term diffusion coefficient?

4. When can diffusion in one phase go from low concentration to higher concen-

tration?

5. What is an advantage and a disadvantage of the Fick’s law form of ternary

diffusion equations (Eq. 7.1-2)?

6. What is an advantage and a disadvantage of the Maxwell–Stefan form of

ternary diffusion equations (Eq. 7.1-5)?

7. What are the Onsager reciprocal relations?

8. Will multicomponent effects be greatest in gases, liquids, or solids?

9. How can you find a ternary concentration profile if you know the solution of an

analogous binary one?

10. When will tracer diffusion equal binary diffusion?

11. Imagine a system of equimolar amounts of hydrogen and ethylene containing

a trace of tritium. The diffusion coefficient of tritium would not equal the

diffusion coefficient of hydrogen. Explain why without using equations.

12. Diffusion of two gases in a porous medium can be treated as ternary diffusion,

where the third species is the porous medium itself. Write and simplify equa-

tions for this case.

Problems

1. Imagine a thin membrane separating two large volumes of aqueous solution. The mem-
brane is 0.014 cm thick and has a void fraction of 0.32. One solution contains 2-M
H2SO4 and the other 2-MNa2SO4. As a result, there is no gradient of sulfate across the

membrane. Ternary diffusion coefficients for this system are given in Table 7.4-2. What
is the sulfate flux? Answer: 5.6 � 10�7 mol/cm2 sec.

2. A solution of 12 mol% hexadecane (1), 55 mol% dodecane (2), and 33 mol% hexane
(3) is diffusing at 25 �C in a diaphragm cell into a solution of 52 mol% hexadecane (1),
15 mol% dodecane (2), and 33 mol% hexane (3). The cell constant of the cell is 3.62

cm–2, and the ternary diffusion coefficients are

D11 ¼ 1:03; D12 ¼ 0:23;

D21 ¼ 0:27; D22 ¼ 0:97

all times 10–5 cm2/sec. Plot the concentration differences Dc1 and Dc2 versus time.

3. In a two-bulb capillary diffusion apparatus like that in Fig. 3.1-2, one bulb contains

75% H2 and 25% C6H6, and the other contains 65% H2, 34.9% C6H6, and 0.1%
radioactively tagged C6H6. The system is at 0�C. We can measure diffusion in one of
two ways. First, we can measure the concentration change of all the benzene using

a gas chromatograph. Second, we can measure the concentration difference of the
radioactive isotopes. How different are these results? To answer this problem, let 1 be
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tracer, 2 be untagged benzene, and 3 be hydrogen solvent. (a) Find the ternary diffu-

sion coefficients assuming that the radioactive concentration is much less than the
nonradioactive. (b) Using the binary solution, write out the ternary one. (c) Combine
parts (a) and (b) to find Dc1 and Dc2 versus bt, where b is the cell constant of this

apparatus.

4. An iron bar containing 0.86 mol% carbon is joined with a bar containing 3.94 mol%
silicon. The two bars are then heated to 1,050 �C for 13 days; under these conditions,
there is only one equilibrium phase, FCC austenite. Calculate the carbon concentration

profile under these conditions using the values in Table 7.4-3. Remember that these
coefficients are relative to the solvent average velocity.

5. In practical work, air is often treated as if it is a pure species. This problem tests the
accuracy of this assumption for diffusion. Imagine a large slab of an isotropic porous
solid centered at z=0. To the left, at z<0, the solid’s pores initially contain pure

hydrogen; to the right, at z>0, they initially contain pure air. If air were really a single
component, then the mole fraction of hydrogen y1 would vary as follows (see Section
2.3, assuming that the total molar concentration c is a constant.):

y1 ¼
1

2
1� erf

zffiffiffiffiffiffiffiffi
4Dt
p

� �
Because air is really amixture, the exact solution involves ternary diffusion coefficients
that can be calculated from Table 7.1-1. Calculate the ternary concentration profile
and compare it with the binary one (S. Gehrke).

6. You are using the diaphragm cell to study diffusion in the ternary system sucrose(1)–

KC1(2)–water(3). Instead of measuring the concentration differences of each species
in these experiments, you find it convenient to measure the overall density and re-
fractive-index differences, defined as

Dq ¼ H1Dq1 þH2Dq2

Dn ¼ R1Dq1 þ R2Dq2

In separate experiments, you find H1=0.379, H2=0.602, R1=0.1414, and
R2=0.1255. You find the calibration constant of the cell to be 0.462 cm–2. Other
relevant data are in the following table: [E. L. Cussler and P. J. Dunlop, J. Phys.

Chem., 70, 1880 (1966)]:

Use these data to calculate the four ternary diffusion coefficients, and compare them
with the following values found with the Gouy interferometer:D11¼ 0.497,D12¼ 0.021,

Exp. 20 Exp. 26 Exp. 24 Exp. 22

Dq10 0.0000 0.00277 0.01111 0.01500
Dq20 0.0150 0.01250 0.00313 0.00000
Dn0 86.33 89.88 89.96 97.21
Dq0 0.00904 0.00856 0.00609 0.00569
Dn 28.24 33.56 46.34 55.38
Dq 0.00293 0.00299 0.00279 0.00315
10–5bt 0.627 0.620 0.9526 1.0598
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D21 ¼ 0.069, D22 ¼ 1.775 (all times 10–5 cm2/sec). Answer: D11 ¼ 0.498, D12 ¼ 0.022,

D21 ¼ 0.071, D22 ¼ 1.776 (all times 10–5 cm2/sec).

7. Ternary diffusion effects are expected to be common in the molten silicates that occur
in the center of the Earth. In a study of one suchmelt, Spera and Trial [Science 259, 204
(1993)] report for 40 mol% CaO (1)–20 mol% Al2O3–40 mol% SiO2 at 1500K that

D11 ¼ ð10:0 6 0:10Þ � 10�7cm2
=sec; D12 ¼ ð�2:8 6 0:8Þ � 10�7cm2

=sec;

D21 ¼ ð�4:2 6 0:8Þ � 10�7cm2
=sec; D22 ¼ ð7:3 6 0:4Þ � 10�7cm2

=sec;

Large coefficients like these provide a good chance to check the Onsager
reciprocal relations (cf. Eq. 7.2-18):

L12 ¼ L21

This is equivalent to

D11a12 þD21a22 ¼ D12a11 þD22a21

These authors also estimate that

a11 ¼ 8:15 � 106 J=kg; a12 ¼ 4:25 � 106 J=kg;
a21 ¼ 4:25 � 106 J=kg; a22 ¼ 4:00 � 106 J=kg;

Do the Onsager relations hold?
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PART III

Mass Transfer





CHAPTER 8

Fundamentals of Mass Transfer

Diffusion is the process by which molecules, ions, or other small particles

spontaneously mix, moving from regions of relatively high concentration into regions

of lower concentration. This process can be analyzed in two ways. First, it can be de-

scribed with Fick’s law and a diffusion coefficient, a fundamental and scientific descrip-

tion used in the first two parts of this book. Second, it can be explained in terms of amass

transfer coefficient, an approximate engineering idea that often gives a simpler descrip-

tion. It is this simpler idea that is emphasized in this part of this book.

Analyzing diffusion with mass transfer coefficients requires assuming that changes in

concentration are limited to that small part of the system’s volume near its boundaries. For

example, in the absorption of one gas into a liquid, we assume that gases and liquids are

well mixed, except near the gas–liquid interface. In the leaching of metal by pouring acid

over ore, we assume that the acid is homogeneous, except in a thin layer next to the solid

ore particles. In studies of digestion, we assume that the contents of the small intestine are

well mixed, except near the villi at the intestine’s wall. Such an analysis is sometimes called

a ‘‘lumped-parameter model’’ to distinguish it from the ‘‘distributed-parameter model’’

using diffusion coefficients. Both models are much simpler for dilute solutions.

If you are beginning a study of diffusion, you may have trouble deciding whether to

organize your results as mass transfer coefficients or as diffusion coefficients. I have this

trouble too. The cliché is that you should use themass transfer coefficient approach if the

diffusion occurs across an interface, but this cliché has many exceptions. Instead of

depending on the cliché, I believe you should always try both approaches to see which

is better for your own needs. In my own work, I have found that I often switch from one

to the other as the work proceeds and my objectives evolve.

This chapter discusses mass transfer coefficients for dilute solutions; extensions to

concentrated solutions are deferred to Section 9.5. In Section 8.1, we give a basic defini-

tion for a mass transfer coefficient and show how this coefficient can be used experimen-

tally. In Section 8.2, we present other common definitions that represent a thicket of

prickly alternatives rivaled only by standard states for chemical potentials. These various

definitions are why mass transfer often has a reputation with students of being a difficult

subject. In Section 8.3, we list existing correlations of mass transfer coefficients; and in

Section 8.4, we explain how these correlations can be developed with dimensional anal-

ysis. Finally, in Section 8.5, we discuss processes involving diffusion across interfaces,

a topic that leads to overall mass transfer coefficients found as averages of more local

processes. This last idea is commonly called mass transfer resistances in series.

8.1 A Definition of a Mass Transfer Coefficient

The definition of mass transfer is based on empirical arguments like those used

in developing Fick’s law in Chapter 2. Imagine we are interested in the transfer of mass
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from some interface into a well-mixed solution.We expect that the amount transferred is

proportional to the concentration difference and the interfacial area:

rate of mass
transferred

� �
¼ k

interfacial
area

� �
concentration
difference

� �
ð8:1-1Þ

where the proportionality is summarized by k, called a mass transfer coefficient. If we

divide both sides of this equation by the area, we can write the equation in more familiar

symbols:

N1¼ k ðc1i� c1Þ ð8:1-2Þ
where N1 is the flux at the interface and c1i and c1 are the concentrations at the interface

and in the bulk solution, respectively. The flux N1 includes both diffusion and convec-

tion; it is like the total flux n1 except that it is located at the interface. The concentration

c1i is at the interface but in the same fluid as the bulk concentration c1. It is often in

equilibrium with the concentration across the interface in a second, adjacent phase; we

will defer discussion of transport across this interface until Section 8.5.

The physical meaning of themass transfer coefficient is clear: it is the rate constant for

moving one species from the boundary into the bulk of the phase. A large value of k

implies fast mass transfer, and a small one means slow mass transfer. The mass tranfer

coefficient is like the rate constant of a chemical reation, but written per area, not per

volume. As a result, its dimensions are of velocity, not of reciprocal time. Those learning

about this subject sometimes call the mass transfer coefficient the ‘‘velocity of diffusion.’’

The flux equation in Eq. 8.1-2 makes practical sense. It says that if the concentration

difference is doubled, the flux will double. It also suggests that if the area is doubled, the

total amount of mass transferred will double but the flux per area will not change. In

other words, this definition suggests an easy way of organizing our thinking around

a simple constant, the mass transfer coefficient k.

Unfortunately, this simple scheme conceals a variety of approximations and ambi-

guities. Before introducing these complexities, we shall go over some easy examples.

These examples are important. Study them carefully before you go on to the harder

material that follows.

Example 8.1-1: Humidification Imagine that water is evaporating into initially dry air in

the closed vessel shown schematically in Fig. 8.1-1(a). The vessel is isothermal at 25 �C,
so the water’s vapor pressure is 3.2 kPa. This vessel has 0.8 l of water with 150 cm2 of

surface area in a total volume of 19.2 l. After 3 min, the air is five percent saturated. What

is the mass transfer coefficient? How long will it take to reach ninety percent saturation?

Solution The flux at 3 min can be found directly from the values given:

N1 ¼

vapor

concentration

� �
air

volume

� �
liquid

area

� �
timeð Þ

¼
0:05

3:2

101

� �
1 mol

22:4 liters

� �
273

298

� �
18:4 litersð Þ

150 cm
2

� �
180 secð Þ

¼ 4:4 � 10�8 mol=cm
2
sec
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The concentration difference is that at the water’s surface minus that in the bulk solu-

tion. That at the water’s surface is the value at saturation; that in bulk at short times is

essentially zero. Thus, from Eq. 8.1-2, we have

4:4 �10�8 mol=cm
2
sec ¼ k

3:2

101

1 mol

22:4 �103 cm3

273

298
� 0

� �

k ¼ 3:4 � 10�2cm=sec
This value is lower than that commonly found for transfer in gases. The time required for

ninety percent saturation can be found from a mass balance:

accumulation
in gas phase

� �
¼ evaporation

rate

� �
d

dt
Vc1 ¼ �AN1 ¼ �kA c1 satð Þ � c1½ �

The air is initially dry, so

t ¼ 0, c1¼ 0

We use this condition to integrate the mass balance:

c1
c1 satð Þ ¼ 1� e

� kA=Vð Þt

Rearranging the equation and inserting the values given, we find

t ¼ � V

kA
ln 1 � c1

c1 satð Þ

� �

(a) Humidification (b) Packed bed

(c) Liquid drops (d) A gas bubble

c1(t)

air

water z z z + Δz
c,(z)

c1(t) Size = f(t)

Fig. 8.1-1. Four easy examples. We analyze each of the physical situations shown in terms of

mass transfer coefficients. In (a), we assume that the air is at constant humidity, except near the

air–water interface. In (b), we assume that water flowing through the packed bed is well mixed,

except very close to the solid spheres. In (c) and (d), we assume that the liquid solution, which is

the continuous phase, is at constant composition, except near the droplet or bubble surfaces.

¼ � 18:4 � 103 cm3

3:4 � 10�2 cm=sec
� �

� 150 cm
2

� � ln 1 � 0:9ð Þ

¼ 8:3 � 103 sec ¼ 2:3 hr

It takes over two hours to saturate the air this much.
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Example 8.1-2: Mass transfer in a packed bed Imagine that 0.2-cm diameter spheres of

benzoic acid are packed into a bed like that shown schematically in Fig. 8.1-1(b). The

spheres have 23 cm2 surface per 1 cm3 of bed. Pure water flowing at a superficial velocity

of 5 cm/sec into the bed is 62% saturated with benzoic acid after it has passed through

100 cm of bed. What is the mass transfer coefficient?

Solution The answer to this problem depends on the concentration difference

used in the definition of the mass transfer coefficient. In every definition, we choose this

difference as the value at the sphere’s surface minus that in the solution. However,

we can define different mass transfer coefficients by choosing the concentration differ-

ence at various positions in the bed. For example, we can choose the concentration

difference at the bed’s entrance and so obtain

N1 ¼ k c1 satð Þ � 0½ �

0:62 c1 satð Þ 5 cm=secð Þ A
23 cm

2
=cm

3
� �

100 cmð ÞA
¼ kc1 satð Þ

where A is the bed’s cross-section. Thus

k ¼ 1:3 � 10�3cm=sec

This definition for the mass transfer coefficient is infrequently used.

Alternatively, we can choose as our concentration difference that at a position z in

the bed and write a mass balance on a differential volume ADz at this position:

accumulationð Þ ¼ flow in
minus flow out

� �
þ amount of

dissolution

� �

0 ¼ A c1v
0

z � c1v
0
zþDzj

���� �
þ ADzð ÞaN1

where a is the sphere surface area per bed volume. Substituting for N1 from Eq. 8.1-2,

dividing by ADz, and taking the limit as Dz goes to zero, we find

d c1
d z
¼ k a

v
0 c1 satð Þ � c1½ �

This is subject to the initial condition that

z ¼ 0, c1 ¼ 0

Integrating, we obtain an exponential of the same form as in the first example:

c1
c1 satð Þ ¼ 1 � e

�ðka=v0Þz
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Rearranging the equation and inserting the values given, we find

k ¼ v
0

a z

 !
ln 1 � c1

c1 satð Þ

� �
¼ � 5 cm=sec

23 cm
2
=cm

3
� �

100 cmð Þ
ln 1� 0:62ð Þ

¼ 2:1� 10�3 cm=sec

This value is typical of those found in liquids. This type of mass transfer coefficient

definition is preferable to that used first, a point explored further in Section 8.2.

A tangential point worth discussing is the specific chemical system of benzoic acid

dissolving in water. This system is academically ubiquitous, showing up again and again

in problems of mass transfer. Indeed, if you read the literature, you can get the impres-

sion that it is a system where mass transfer is very important, which is not true. Why is it

used so much?

Benzoic acid is studied thoroughly for three distinct reasons. First, its concentration is

relatively easily measured, for the amount present can be determined by titration with

base, by ultraviolet spectrophotometry of the benzene ring, or by radioactively tagging

either the carbon or the hydrogen. Second, the dissolution of benzoic acid is accurately

described by one mass transfer coefficient. This is not true of all dissolutions. For

example, the dissolution of aspirin is essentially independent of events in solution. Third,

and most subtle, benzoic acid is solid, so mass transfer takes place across a solid–fluid

interface. Such interfaces are an exception in mass transfer problems; fluid–fluid inter-

faces are much more common. However, solid–fluid interfaces are the rule for heat

transfer, the intellectual precursor of mass transfer. Experiments with benzoic acid

dissolving in water can be compared directly with heat transfer experiments. These three

reasons make this chemical system popular.

Example 8.1-3: Mass transfer in an emulsion Bromine is being rapidly dissolved in

water, as shown schematically in Fig. 8.1-1(c). Its concentration is about half saturated

in 3 minutes. What is the mass transfer coefficient?

Solution Again, we begin with a mass balance:

d

dt
V c1 ¼ AN1 ¼ Ak c1 satð Þ � c1½ �

dc1
dt
¼ ka c1 satð Þ � c1½ �

where a (=A/V) is the surface area of the bromine droplets divided by the volume of

aqueous solution. If the water initially contains no bromine,

t ¼ 0; c1¼ 0

Using this in our integration, we find

c1
c1 satð Þ ¼ 1� c

�kat
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Rearranging,

ka ¼ � 1

t
ln 1 � c1

c1 satð Þ

� �
¼ � 1

3 min
ln 1 � 0:5ð Þ

¼ 3:9 � 10�3 sec�1

This is as far as we can go; we cannot find the mass transfer coefficient, only its product

with a.

Such a product occurs often and is a fixture of many mass transfer correlations. The

quantity ka is very similar to the rate constant of a first-order reversible reaction with an

equilibrium constant equal to unity. This particular problem is similar to the calculation

of a half-life for radioactive decay.

Example 8.1-4: Mass transfer from an oxygen bubble A bubble of oxygen originally 0.1 cm

in diameter is injected into excess stirred water, as shown schematically in Fig. 8.1-1(d).

After 7 min, the bubble is 0.054 cm in diameter. What is the mass transfer coefficient?

Solution This time, we write a mass balance not on the surrounding solution

but on the bubble itself:

d

dt
c1

4

3
pr3

� �
¼ AN1

¼ �4pr2k½c1ðsatÞ � 0�

This equation is tricky; c1 refers to the oxygen concentration in the bubble, 1 mol/22.4 l

at standard conditions, but c1(sat) refers to the oxygen concentration at saturation in

water, about 1.5 � 10–3 mol/l under similar conditions. Thus

dr

dt
¼ � k

c1 satð Þ
c1

¼ �0:034k

This is subject to the condition

t ¼ 0; r ¼ 0:05 cm

so integration gives

r ¼ 0:05 cm� 0:034 kt

Inserting the numerical values given, we find

0:027 cm ¼ 0:05 cm� 0:034k ð420 secÞ

k ¼ 1:6 � 10�3cm=sec
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Remember that this coefficient is defined in terms of the concentration in the liquid. It

would be numerically different if it were defined in terms of the gas-phase concentration.

8.2 Other Definitions of Mass Transfer Coefficients

We now want to return to some of the problems we glossed over in the simple

definition of a mass transfer coefficient given in the previous section. We introduced

this definition with the implication that it provides a simple way of analyzing complex

problems. We implied that the mass transfer coefficient will be like the density or the

viscosity, a physical quantity that is well defined for a specific situation.

In fact, the mass transfer coefficient is often an ambiguous concept, reflecting nuances

of its basic definition. To begin our discussion of these nuances, we first compare the

mass transfer coefficient with the other rate constants given in Table 8.2-1. The mass

transfer coefficient seems a curious contrast, a combination of diffusion and dispersion.

Because it involves a concentration difference, it has different dimensions than the

diffusion and dispersion coefficients. It is a rate constant for an interfacial physical

reaction, most similar to the rate constant of an interfacial chemical reaction.

Unfortunately, the definition of the mass transfer coefficient in Table 8.2-1 is not so

well accepted that the coefficient’s dimensions are always the same. This is not true for

the other processes in this table. For example, the dimensions of the diffusion coefficient

are always taken as L2/t. If the concentration is expressed in terms of mole fraction or

Table 8.2-1 Mass transfer coefficient compared with other rate coefficients

Effect Basic
equation

Rate Force Coefficient

Mass transfer N1 ¼ kDc1 Flux per area
relative to
an interface

Difference of
concentration

The mass transfer
coefficient k ([¼]L/t)
is a function of flow

Diffusion �j1 ¼ D$c1 Flux per area
relative to the
volume average
velocity

Gradient of
concentration

The diffusion
coefficient
D ([¼]L2/t) is
a physical property
independent of flow

Dispersion � c19v19 ¼ E=�c1
Flux per area
relative to the
mass average
velocity

Gradient of
time averaged
concentration

The dispersion
coefficient
E ([¼]L2/t) depends
on the flow

Homogeneous
chemical
reaction

r1 ¼ j1c1 Rate per
volume

Concentration The rate constant
j1 ([¼]1/t) is a
chemical property
independent of flow

Heterogeneous
chemical
reaction

r1 ¼ j1c1 Flux per
interfacial
area

Concentration The rate constant
j1 ([¼]L/t) is a
chemical surface
property often
defined in terms of
a bulk concentation
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partial pressure, then appropriate unit conversions are made to ensure that the diffusion

coefficient keeps the same dimensions.

This is not the case for mass transfer coefficients, where a variety of definitions are

accepted. Four of the more common of these are shown in Table 8.2-2. This variety is

largely an experimental artifact, arising because the concentration can be measured in so

many different units, including partial pressure, mole and mass fractions, and molarity.

In this book, we will frequently use the first definition in Table 8.2-2, implying that

mass transfer coefficients have dimensions of length per time. If the flux is expressed in

moles per area per time we will express the concentration in moles per volume. If the flux

is expressed in mass per area per time, we will give the concentration in mass per volume.

This choice is the simplest for correlations of mass transfer coefficients reviewed in this

chapter and for predictions of these coefficients given in Chapter 9. Expressing the mass

transfer coefficient in dimensions of velocity is also simplest in the cases of chemical

reaction and simultaneous heat and mass transfer described in Chapters 16, 17, and 21.

However, in some other cases, alternative forms of the mass transfer coefficients lead

to simpler final equations. This is especially true for gas adsorption, distillation, and

extraction described in Chapters 10–14. There, we will frequently use kx, the third form

in Table 8.2-2, which expresses concentrations in mole fractions. In some cases of gas

absorption, we will find it convenient to respect seventy years of tradition and use kp,

with concentrations expressed as partial pressures. In the membrane separations in

Chapter 18, we will mention forms like kx but will carry out our discussion in terms

of forms equivalent to k.

Themass transfer coefficients defined in Table 8.2-2 are also complicated by the choice

of a concentration difference, by the interfacial area for mass transfer, and by the treat-

ment of convection. The basic definitions given in Eq. 8.1-2 or Table 8.2-1 are ambiguous,

for the concentration difference involved is incompletely defined. To explore the ambi-

guity more carefully, consider the packed tower shown schematically in Fig. 8.2-1. This

tower is basically a piece of pipe standing on its end and filled with crushed inert material

like broken glass. Air containing ammonia flows upward through the column. Water

trickles down through the column and absorbs the ammonia: ammonia is scrubbed out of

the gas mixture with water. The flux of ammonia into the water is proportional to the

Table 8.2-2 Common definitions of mass transfer coefficients

Basic equation Typical units of ka Remarks

N1 ¼ kDc1 cm/sec Common in the older literature; used here
because of its simple physical significance

N1 ¼ kpDp1 mol/cm2 sec Pa Common for a gas adsorption; equivalent
forms occur in medical problems

N1 ¼ kxDx1 mol/cm2 sec Preferred for practical calculations, especially
in gases

N1 ¼ kDc1+c1v
0 cm/sec Rarely used; an effort to include

diffusion-induced convection
(cf. k in Eq. 9.5-2 et seq.)

Notes: a In this table, N1 is defined as moles/L2t, and c1 as moles/L3. Parallel definitions where N1 is in

terms of M/L2t and c1 is M/L3 are easily developed. Definitions mixing moles and mass are infrequently

used.
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ammonia concentration at the air–water interface minus the ammonia concentration in

the bulk water. The proportionality constant is the mass transfer coefficient. The con-

centration difference between interface and bulk is not constant but can vary along the

height of the column. Which value of concentration difference should we use?

In this book, we always choose to use the local concentration difference at a particular

position in the column. Such a choice implies a ‘‘local mass transfer coefficient’’ to

distinguish it from an ‘‘averagemass transfer coefficient.’’ Use of a local coefficientmeans

that we often must make a few extra mathematical calculations. However, the local

coefficient is more nearly constant, a smooth function of changes in other process vari-

ables. This definition was implicitly used in Examples 8.1-1, 8.1-3, and 8.1-4 in the pre-

vious section. It was used in parallel with a type of average coefficient in Example 8.1-2.

Another potential source of ambiguity in the definition of themass transfer coefficient

is the interfacial area. As an example, we again consider the packed tower in Fig. 8.2-1.

The surface area between water and gas is often experimentally unknown, so that the flux

per area is unknown as well. Thus the mass transfer coefficient cannot be easily found.

This problem is dodged by lumping the area into the mass transfer coefficient and

experimentally determining the product of the two. We just measure the flux per column

volume. This may seem like cheating, but it works like a charm.

Finally, mass transfer coefficients can be complicated by diffusion-induced convec-

tion normal to the interface. This complication does not exist in dilute solution, just as it

does not exist for the dilute diffusion described in Chapter 2. For concentrated solutions,

there may be a larger convective flux normal to the interface that disrupts the concen-

tration profiles near the interface. The consequence of this convection, which is like the

concentrated diffusion problems in Section 3.3, is that the flux may not double when the

concentration difference is doubled. This diffusion-induced convection is the motivation

for the last definition in Table 8.2-2, where the interfacial velocity is explicitly included.

Fortunately, many transfer-in processes like distillation often approximate equimolar

counterdiffusion, so there is little diffusion-induced convection. Also fortunately, many

other solutions are dilute, so diffusion induced convection is minor. We will discuss the

few cases where it is not minor in Section 9.5.

I find these points difficult, hard to understand without careful thought. To spur this

thought, try solving the examples that follow.

Air with only
traces of
ammonia

Pure
water

The concentration
difference of
ammonia here...

... may be very
different than
that here

Water nearly
saturated
with
ammonia

Fig. 8.2-1. Ammonia scrubbing. In this example, ammonia is separated by washing a gasmixture

with water. As explained in the text, the example illustrates ambiguities in the definition of mass

transfer coefficients. The ambiguities occur because the concentration difference causing the

mass transfer changes and because the interfacial area between gas and liquid is unknown.
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Example 8.2-1: The mass transfer coefficient in a blood oxygenator Blood oxygenators

are used to replace the human lungs during open-heart surgery. To improve oxygenator

design, you are studying mass transfer of oxygen into water in one specific blood oxy-

genator. From published correlations of mass transfer coefficients, you expect that the

mass transfer coefficient based on the oxygen concentration difference in the water is

3.3 � 10–3 cm/sec. You want to use this coefficient in an equation given by the oxygenator

manufacturer

N1 ¼ kp pO2
� p

�
O2

� �
where pO2

is the actual oxygen partial pressure in the gas, and p�O2
is the hypothetical

oxygen partial pressure (the ‘‘oxygen tension’’) that would be in equilibrium with water

under the experimental conditions. The manufacturer expressed both pressures in mm Hg.

You also know the Henry’s law constant of oxygen in water at your experimental

conditions:

pO2
¼ 44,000 atm xO2

where xO2
is the mole fraction of the total oxygen in the water.

Find the mass transfer coefficient kp.

Solution Because the correlations are based on the concentrations in the

liquid, the flux equation must be

N1 ¼ 3:3 � 10�3 cm=sec cO2i
� cO2

ð Þ

where cO2i
and cO2

refer to concentrations in the water at the interface and in the bulk

aqueous solution, respectively. We can convert these concentrations to the oxygen ten-

sions as follows:

cO2
¼ c xO2

¼ q
~M

pO2

H

� �
where c is the total concentration in the liquid water, q is the liquid’s density, H is the

Henry’s law constant, and ~M is its average molecular weight. Because the solution is dilute,

cO2
¼ 1 g=cm

3

18 g=mol

1

4:4 � 104 atm
atm

760 mm Hg

" #
pO2

Combining with the earlier definitions, we see

N1 ¼ 3:3 � 10�3 cm

sec

1:67 � 10�9 mol

cm
3
mm Hg

" #
pO2
� p

�
O2

� �

¼ 5:5 � 10�12 mol

cm
2
sec mm Hg

� �
pO2
� p

�
O2

� �
The new coefficient kp equals 5.5 � 10–12 in the units given.
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Example 8.2-2: Converting units of ammonia mass transfer coefficients Apacked tower is

being used to study ammonia scrubbing with 25 �C water. The mass transfer coefficients

reported for this tower are 1.18 lb mol NH3/hr ft
2 for the liquid and 1.09 lb mol NH3/hr

ft2 atm for the gas. What are these coefficients in centimeters per second?

Solution From Table 8.2-2, we see that the units of the liquid-phase coeffi-

cient correspond to kx. Thus

k ¼
~M2

q
kx

¼ 18 lb=lb mol

62:4 lb=ft
3

 !
1:18 lb mol NH3

ft
2
hr

� �
30:5 cm

ft

� �
hr

3,600 sec

� �

¼ 2:9 � 10�3cm = sec

For the gas phase, we see from Table 8.2-2 that the coefficient has the units of kp. Thus

k ¼ RTkp

¼ 1:314 atm ft
3

lb mol K

 !
1:09 lb mol

hr ft
2
atm

� �
30:5 cm

ft

� �
hr

3,600 sec

� �
298Kð Þ

¼ 3:6 cm=sec

These conversions take time and thought, but are not difficult.

Example 8.2-3: Averaging a mass transfer coefficient Imagine two porous solids whose

pores contain different concentrations of a particular dilute solution. If these solids are

placed together, the flux N1 from one to the other will be (see Section 2.3)

N1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D=p t

p
D c1

By comparison with Eq. 8.1-2, we see that the local mass transfer coefficient is

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D=p t

p
Note that this coefficient is initially infinite.

We want to correlate our results not in terms of this local value but in terms of a total

experimental time t0. This implies an average coefficient, �k, defined by

�N1 ¼ �kD c1

where �N1 is the total solute transferred per area divided by t0. How is �k related to k?

Solution From the problem statement, we see that

�N1 ¼
R t0
0 N1dtR t0
0 dt

¼
R t0
0

ffiffiffiffiffiffiffiffiffiffiffiffi
D=p t

p
D c1 dt

t0
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=p t0

p
Dc1
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Thus

�k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=p t0

p
which is twice the value of k evaluated at t0. Note that ‘‘local’’ refers here to a particular

time rather than a particular position.

Example 8.2-4: Log mean mass transfer coefficients Consider again the packed bed of

benzoic acid spheres shown in Fig. 8.1-1(b) that was basic to Example 8.1-2.Mass transfer

coefficients in a bed like this are sometimes reported in terms of a log mean driving force:

N1 ¼ klog
D c1,inlet � D c1,outlet

ln
D c1,inlet
D c1,outlet

� �
0BB@

1CCA
For this specific case,N1 is the total benzoic acid leaving the bed per time divided by the

total surface area in the bed. The bed is fed with pure water, and the benzoic acid

concentration at the sphere surfaces is at saturation; that is, it equals c1(sat). Thus

N1 ¼ klog
c1 satð Þ � 0½ � � c1 satð Þ � c1 outð Þ½ �

ln
c1 satð Þ � 0

c1 satð Þ � c1 outð Þ

� �
Show how klog is related to the local coefficient k used in the earlier problem.

Solution By integrating a mass balance on a differential length of bed, we

showed in Example 8.1-2 that for a bed of length L,

c1 outð Þ
c1 satð Þ ¼ 1 � e

�kaL=v0

Rearranging, we find

c1 satð Þ � c1 outð Þ
c1 satð Þ � 0

¼ e
�kaL=v0

Taking the logarithm of both sides and rearranging,

v
0 ¼ kaL

ln
c1 satð Þ � 0

c1 satð Þ � c1 outð Þ

� �
Multiplying both sides by c1(out),

c1 outð Þv0 ¼ kaL
c1 satð Þ � 0½ � � c1 satð Þ � c1 outð Þ½ �

ln
c1 satð Þ � 0

c1 satð Þ � c1 outð Þ

� �
0BB@

1CCA
By definition,

N1 ¼
c1 outð Þ v0A

a ALð Þ

248 8 / Fundamentals of Mass Transfer



where A is the bed’s cross-section and AL is its volume. Thus

N1 ¼ k
c1 satð Þ � 0½ � � c1 satð Þ � c1 outð Þ½ �

ln
c1 satð Þ � 0

c1 satð Þ � c1 outð Þ

� �
and

klog ¼ k

The coefficients are identical.

Many argue that the log mean mass transfer coefficient is superior to the local value

usedmostly in this book. Their reasons are that the coefficients are the same or (at worst)

closely related and that klog is macroscopic and hence easier to measure. After all, these

critics assert, you implicitly repeat this derivation every time you make a mass balance.

Why bother? Why not use klog and be done with it?

This argument has merit, but it makes me uneasy. I find that I need to think through

the approximations of mass transfer coefficients every time I use them and that this

review is easily accomplished by making a mass balance and integrating. I find that most

students share this need. My advice is to avoid log mean coefficients until your calcu-

lations are routine.

8.3 Correlations of Mass Transfer Coefficients

In the previous two sections we have presented definitions of mass transfer

coefficients and have shown how these coefficients can be found from experiment. Thus

we have amethod for analyzing the results ofmass transfer experiments. This method can

be more convenient than diffusion when the experiments involve mass transfer across

interfaces. Experiments of this sort include liquid–liquid extraction, gas absorption, and

distillation.

However, we often want to predict how one of these complex situations will behave.

We do not want to correlate experiments; we want to avoid experiments if possible. This

avoidance is like that in our studies of diffusion, where we often looked up diffusion

coefficients so that we could calculate a flux or a concentration profile. We wanted to use

someone else’s measurements rather than painfully make our own.

8.3.1 Dimensionless Numbers

In the same way, we want to look up mass transfer coefficients whenever

possible. These coefficients are rarely reported as individual values, but as

correlations of dimensionless numbers. These numbers are often named, and they are

major weapons that engineers use to confuse scientists. These weapons are effective

because the names sound so scientific, like close relatives of nineteenth-century organic

chemists.

The characteristics of the common dimensionless groups frequently used in

mass transfer correlations are given in Table 8.3-1. Sherwood and Stanton numbers

involve the mass transfer coefficient itself. The Schmidt, Lewis, and Prandtl numbers
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involve different comparisons of diffusion, and the Reynolds, Grashof, and Peclet

numbers describe flow. The second Damköhler number, which certainly is the

most imposing name, is one of many groups used for diffusion with chemical

reaction.

A key point about each of these groups is that its exact definition implies a specific

physical system. For example, the characteristic length l in the Sherwood number

Table 8.3-1 Significance of common dimensionless groups

Groupa Physical meaning Used in

Sherwood number
kl

D

mass transfer velocity

diffusion velocity
Usual dependent
variable

Stanton number
k

v0
mass transfer velocity

flow velocity
Occasional
dependent
variable

Schmidt number
�

D

diffusivity of momentum

diffusivity of mass
Correlations of gas
or liquid data

Lewis number
a
D

diffusivity of energy

diffusivity of mass
Simultaneous
heat and
mass transfer

Prandtl number
�

a
diffusivity of momentum

diffusivity of mass
Heat transfer;
included here for
completeness

Reynolds number
lv

�

inertial forces

viscous forces
or Forced convection

flow velocity

‘‘momentum velocity’’

Grashof number
l3 gDq = q

�2
buoyancy forces

viscous forces
Free convection

Péclet number
v0l

D

flow velocity

diffusion velocity
Correlations of
gas or
liquid data

Second Damköhler
number or

(Thiele modulus)2
jl2

D

reaction velocity

diffusion velocity

Correlations
involving reactions
(see Chapters
16–17)

Note: a The symbols and their dimensions are as follows: D diffusion coefficient (L2/t);

g acceleration due to gravity (L/t2); k mass transfer coefficient (L/t); l characteristic

length (L); v0 fluid velocity (L/t); a thermal diffusivity (L2/t); j first-order reaction

rate constant (t�1); � kinematic viscosity (L2/t); Dq/q fractional density change.
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kl/D will be the membrane thickness for membrane transport, but the sphere diameter

for a dissolving sphere. A good analogy is the dimensionless group ‘‘efficiency.’’

An efficiency of thirty percent has very different implications for a turbine and for

a running deer. In the same way, a Sherwood number of 2 means different things for

a membrane and for a dissolving sphere. This flexibility is central to the correlations that

follow.

8.3.2 Frequently Used Correlations

Correlations of mass transfer coefficients are conveniently divided into

those for fluid–fluid interfaces and those for fluid–solid interfaces. The correlations

for fluid–fluid interfaces are by far the more important, for they are basic to

absorption, extraction, and distillation. These correlations of mass transfer coefficients

are also important for aeration and water cooling. These correlations usually have

no parallel correlations in heat transfer, where fluid–fluid interfaces are not

common.

Some of themore useful correlations for fluid–fluid interfaces are given in Table 8.3-2.

The accuracy of these correlations is typically of the order of thirty percent, but

larger errors are not uncommon. Raw data can look more like the result of a shotgun

blast than any sort of coherent experiment because the data include wide ranges of

chemical and physical properties. For example, the Reynolds number, that characteristic

parameter of forced convection, can vary 10,000 times. The Schmidt number, the

ratio (�/D), is about 1 for gases but about 1000 for liquids. Over a more moderate

range, the correlations can be more reliable. Still, while the correlations are useful

for the preliminary design of small pilot plants, they should not be used for the design

of full-scale equipment without experimental checks for the specific chemical systems

involved.

Many of the correlations in Table 8.3-2 have the same general form. They

typically involve a Sherwood number, which contains the mass transfer coefficient,

the quantity of interest. This Sherwood number varies with Schmidt number, a charac-

teristic of diffusion. The variation of Sherwood number with flow is more complex

because the flow has two different physical origins. In most cases, the flow is caused

by external stirring or pumping. For example, the liquids used in extraction are rapidly

stirred; the gas in ammonia scrubbing is pumped through the packed tower; the blood in

an artificial kidney is pumped through the dialysis unit. This type of externally driven

flow is called ‘‘forced convection.’’ In other cases, the fluid velocity is a result of the mass

transfer itself. The mass transfer causes density gradients in the surrounding solution;

these in turn cause flow. This type of internally generated flow is called ‘‘free convection.’’

For example, the dispersal of pollutants and the dissolution of drugs are often accelerated

by free convection.

The dimensionless form of the correlations for fluid–fluid interfaces may disguise the

very real quantitative similarities between them. To explore these similarities, we con-

sider the variations of the mass transfer coefficient with fluid velocity and with diffusion

coefficient. These variations are surprisingly uniform. The mass transfer coefficient

varies with about the 0.7 power of the fluid velocity in four of the five correlations

for packed towers in Table 8.3-2. It varies with the diffusion coefficient to the
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0.5 to 0.7 power in every one of the correlations. Thus any theory that we derive for mass

transfer across fluid–fluid interfaces should imply variations with velocity and diffusion

coefficient like those shown here.

Some frequently quoted correlations for fluid–solid interfaces are given in Table 8.3-3.

These correlations are rarely important in common separation processes like absorption

and extraction. They can be important in leaching, in membrane separations, and in

adsorption. However, the chief reason that these correlations are quoted in undergraduate

and graduate courses is that they are close analogues to heat transfer. Heat transfer is an

older subject, with a strong theoretical basis and more familiar nuances. This analogy lets

lazy lecturers merely mumble, ‘‘Mass transfer is just like heat transfer’’ and quickly com-

pare the correlations in Table 8.3-3 with the heat transfer parallels.

The correlations for solid–fluid interfaces in Table 8.3-3 are much like their heat

transfer equivalents. More significantly, these less important, fluid–solid correlations

are analogous but more accurate than the important fluid–fluid correlations in Table

8.3-2. Accuracies for solid–fluid interfaces are typically average 6 10%; for some corre-

lations like laminar flow in a single tube, accuracies can be 6 1%. Such precision, which

is truly rare for mass transfer measurements, reflects the simpler geometry and more

stable flows in these cases. Laminar flow of one fluid in a tube is much better understood

than turbulent flow of gas and liquid in a packed tower.

The correlations for fluid–solid interfaces often showmathematical forms like those for

fluid–fluid interfaces. The mass transfer coefficient is most often written as a Sherwood

number, though occasionally as a Stanton number. The effect of diffusion coefficient

is most often expressed as a Schmidt number. The effect of flow is most often ex-

pressed as a Reynolds number for forced convection, and as a Grashof number for free

convection.

These fluid–solid dimensionless correlations can conceal how the mass transfer co-

efficient varies with fluid flow v0 and diffusion coefficient D, just as those for fluid–fluid

interfaces obscured these variations. Often k varies with the square root of v0. The

variation is lower for some laminar flows and higher for some turbulent flows. Usually,

k is said to vary withD2/3, though this variation is rarely checked carefully by those who

develop the correlations. Variation of k with D2/3 does have some theoretical basis,

a point explored further in Chapter 9.

Example 8.3-1: Gas scrubbing with a wetted-wall column Air containing a water-soluble

vapor is flowing up and water is flowing down in the experimental column shown in

Fig. 8.3-1. The water flow in the 0.07-cm-thick film is 3 cm/sec, the column diameter is

10 cm, and the air is essentially well mixed right up to the interface. The diffusion

coefficient in water of the absorbed vapor is 1.8 � 10–5 cm2/sec. How long a column is

needed to reach a gas concentration in water that is 10% of saturation?

Solution The first step is to write a mass balance on the water in a differential

column height Dz:

ðaccumulationÞ ¼ ðflow inminus flowoutÞ þ ðabsorptionÞ

0 ¼ pdlv0c1
h i

z
� pdlv0c1
h i

zþDz
þ pdDzk c1 satð Þ � c1½ �
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in which d is the column diameter, l is the film thickness, v0 is the flow, and c1 is the vapor

concentration in the water. This balance leads to

0 ¼ �lv0 dc1
dz
þ k c1 satð Þ � c1½ �

From Table 8.3-2, we have

k ¼ 0:69
Dv

0

z

 !1=2

We also know that the entering water is pure; that is, when

z ¼ 0, c1 ¼ 0

Combining these results and integrating, we find

c1
c1 satð Þ ¼ 1 � e

�1:38ðDz=l
2
v
0Þ1=2

Inserting the numerical values given,

z ¼ l
2
v
0

1:38D

 !
ln 1 � c1

c1 satð Þ

� �� �2

¼ 0:07 cmð Þ2 3 cm= secð Þ
1:38ð Þ 1:8 � 10�5cm2

= sec

 !
ln 1 � 0:1ð Þ½ �2

¼ 6:6 cm

This type of system has been studied extensively, though its practical value is small.

z

Δz

Almost pure
air

Pure water

Air and water-
soluble vapor

Vapor dissolved
in water

Fig. 8.3-1. Gas scrubbing in a wetted-wall column. A water-soluble gas is being dissolved

in a falling film of water. The problem is to calculate the length of the column necessary

to reach a liquid concentration equal to ten percent saturation.
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Example 8.3-2: Dissolution rate of a spinning disc A solid disc of benzoic acid 2.5 cm in

diameter is spinning at 20 rpm and 25 �C. How fast will it dissolve in a large volume of

water? How fast will it dissolve in a large volume of air? The diffusion coefficients are

1.00 � 10–5 cm2/sec in water and 0.233 cm2/sec in air. The solubility of benzoic acid in

water is 0.003 g/cm3; its equilibrium vapor pressure is 0.30 mm Hg.

Solution Before starting this problem, try to guess the answer. Will the mass

transfer be higher in water or in air?

In each case, the dissolution rate is

N1 ¼ kc1ðsatÞ

where c1(sat) is the concentration at equilibrium. We can find k from Table 8.3-3:

k ¼ 0:62D
x
v

� �1=2 �

D

� �1=3
For water, the mass transfer coefficient is

k ¼ 0:62 1:00 � 10�5cm2
=sec

� � 20=60ð Þ 2p=secð Þ
0:01cm

2
=sec

 !1=2
0:01cm

2
=sec

1:00 � 10�5cm2
=sec

 !1=3

¼ 0:90 � 10�3cm=sec

Thus the flux is

N1 ¼ ð0:90 � 10�3 cm=secÞð0:003 g=cm3Þ

¼ 2:7 � 10�6 g=cm2
sec

For air, the values are very different:

k ¼ 0:62 0:233 cm
2
=sec

� � 20=60ð Þ 2p=secð Þ
0:15 cm

2
=sec

 !1=2
0:15 cm

2
=sec

0:23 cm
2
=sec

 !1=3

¼ 0:47 cm=sec

which is much larger than before. However, the flux is

N1 ¼ 0:47 cm=secð Þ 0:3 mm Hg

760 mm Hg

� �
1 mol

22:4 � 103 cm3

� �
273

298

� �
122 g

mol

� �� �

¼ 0:9 � 10�6g=cm2
sec

The flux in air is about one-third of that in water, even though the mass transfer

coefficient in air is about 500 times larger than that in water. Did you guess this?
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8.4 Dimensional Analysis: The Route to Correlations

The correlations in the previous section provide a useful and compact way of

presenting experimental information. Use of these correlations quickly gives reasonable

estimates of mass transfer coefficients. However, when we find the correlations inade-

quate, we will be forced tomake our own experiments and develop our own correlations.

How can we do this?

Mass transfer correlations are developed using a method called dimensional analysis.

This method can be learned via the two specific examples that follow. Before embarking

on this description, I want to emphasize that most people go through three mental states

concerning this method. At first they believe it is a route to all knowledge, a simple

technique by which any set of experimental data can be greatly simplified. Next they

become disillusioned when they have difficulties in the use of the technique. These

difficulties commonly result from efforts to be too complete. Finally, they learn to use

the method with skill and caution, benefiting both from their past successes and from

their frequent failures. I mention these three stages because I am afraid many may give

up at the second stage and miss the real benefits involved. We now turn to the examples.

8.4.1 Aeration

Aeration is a common industrial process and yet one in which there is often

serious disagreement about correlations. This is especially true for deep-bed fermentors

and for sewage treatment, where the rising bubbles can be the chief means of stirring. We

want to study this process using the equipment shown schematically in Fig. 8.4-1. We

plan to inject pure oxygen into a variety of aqueous solutions and measure the oxygen

concentration in the bulk solution with oxygen selective electrodes. We expect to vary

the average bubble velocity v, the solution’s density q and viscosity l, the entering bubble
diameter d, and the depth of the bed L. Of course, we also expect that mass transfer will

Aqueous solution in

Solution out

c1(sat)

c1(bulk)

Oxygen
electrodes

Oxygen sparger

z

O2
gas

Fig. 8.4-1. An experimental apparatus for the study of aeration. Oxygen bubbles from

the sparger at the bottom of the tower partially dissolve in the aqueous solution. The

concentration in this solution is measured with electrodes that are specific for dissolved oxygen.

The concentrations found in this way are interpreted in terms of mass transfer coefficients; this

interpretation assumes that the solution is well mixed, except very near the bubble walls.
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vary with the diffusion coefficient, but because the solute is always oxygen, we ignore this

constant coefficient here.

We measure the steady-state oxygen concentration as a function of position in the

bed. These data can be summarized as a mass transfer coefficient in the following way.

From a mass balance, we see that

0 ¼ �v dc1
dz
þ ka c1 satð Þ � c1½ � ð8:4-1Þ

where a is the total bubble area per column volume. This equation, a close parallel to the

many mass balances in Section 8.1, is subject to the initial condition

z ¼ 0, c1 ¼ 0 ð8:4-2Þ

Thus

ka ¼ v

z
ln

c1 satð Þ
c1 satð Þ � c1 zð Þ

� �
ð8:4-3Þ

Ideally, we would like to measure k and a independently, separating the effects of mass

transfer and geometry. This would be difficult here, so we report only the product ka.

Our experimental results now consist of the following:

ka ¼ kaðv, q, l, d, zÞ ð8:4-4Þ

We assume that this function has the form

ka ¼ ½constant� vaqblc
d

d
z
e� ð8:4-5Þ

where both the constant in the square brackets and the exponents are dimensionless.

Now the dimensions or units on the left-hand side of this equation must equal the

dimensions or units on the right-hand side. We cannot have centimeters per second

on the left-hand side equal to grams on the right. Because ka has dimensions of the

reciprocal of time (1/t), v has dimensions of length/time (L/t), q has dimensions of mass

per length cubed (M/L3), and so forth, we find

1

t
¼½ � L

t

� �a
M

L
3

� �b
M

Lt

� �c

Lð Þd Lð Þe ð8:4-6Þ

The only way this equation can be dimensionally consistent is if the exponent on time on

the left-hand side of the equation equals the sum of the exponents on time on the right-

hand side:

� 1 ¼ �a� c ð8:4-7Þ

Similar equations hold for the mass:

0 ¼ bþ c ð8:4-8Þ

and for the length:

0 ¼ a� 3b� rþ dþ e ð8:4-9Þ
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Equations 8.4-7 to 8.4-9 give three equations for the five unknown exponents.

We can solve these equations in terms of the two key exponents and thus simplify

Eq. 8.4-5. We choose the two key exponents arbitrarily. For example, if we choose the

exponent on the viscosity c and that on column height e, we obtain

a ¼ 1� c ð8:4-10Þ

b ¼ �c ð8:4-11Þ

c ¼ c ð8:4-12Þ

d ¼ �c� e� 1 ð8:4-13Þ

e ¼ e ð8:4-14Þ

Inserting these results into Eq. 8.4-5 and rearranging, we find

kad

v

� �
¼ constant½ � dvq

l

� ��c
z

d

� �e
ð8:4-15Þ

The left-hand side of this equation is a type of Stanton number. The first term in

parentheses on the right-hand side is the Reynolds number, and the second such term

is a measure of the tank’s depth.

This analysis suggests how we should plan our experiments. We expect to plot our

measurements of Stanton number versus two independent variables: Reynolds number

and z/d. We want to cover the widest possible range of independent variables. Our

resulting correlation will be a convenient and compact way of presenting our results,

and everyone will live happily ever after.

Unfortunately, it is not always that simple for a variety of reasons. First, we had to

assume that the bulk liquid was well mixed, and it may not be. If it is not, we shall be

averaging our values in some unknown fashion, and we may find that our correlation

extrapolates unreliably. Second, wemay find that our data do not fit an exponential form

like Eq. 8.4-5. This can happen if the oxygen transferred is consumed in some sort of

chemical reaction, which is true in aeration. Third, we do not know which independent

variables are important. We might suspect that ka varies with tank diameter, or sparger

shape, or surface tension, or the phases of the moon. Such variations can be included in

our analysis, but they make it complex.

Still, this strategy has produced a simple method of correlating our results. The

foregoing objections are important only if they are shown to be so by experiment. Until

then, we should use this easy strategy.

8.4.2 Drug Dissolution

A standard test for drug dissolution uses a cylindrical basket made of 40 mesh

316 stainless steel and immersed in a larger vessel of degassed water at a fixed pH and at

37 �C. Tablets of drug are placed in the basket. The basket is then rotated at a fixed

speed. Samples are drawn from the water and analyzed. If the amount of drug dissolved

is reproduceable, these tablets may be acceptable for marketing.
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To impove reproduceability, we are interested in analyzing this dissolution test in

more detail. We want a dimensional analysis suitable for organizing our results. How-

ever, this problem is sufficiently broad that many variables could be involved. For

example, we would normally expect that water’s properties like viscosity and pH will

be important. However, if we include all these properties, we will get such an elaborate

correlation that we really won’t be able to test it much.

Thus we want to guess an answer which implies neglecting less important factors. In

the case of water, we will at least temporarily assume that its viscosity doesn’t change

much and so can’t be that big of a factor. We also assume that the major effect of pH is

a change in drug solubility and not a change in mass transfer coefficient.

We then try to guess the answer. Right away, we can see two possibilities. First,

dissolution may be limited by mass transfer from the tablets to the edge of the basket.

This says the basket radius R will be important. Second, dissolution may be limited by

mass transfer from the basket to the surrounding solution. Then the basket rotation will

be important.

To put these ideas on a more quantitative basis, we postulate that the mass transfer

coefficient for drug dissolution k is

k ¼ kðR,x, d,DÞ ð8:4-16Þ

where R is the basket radius, x is the angular rotation of the basket, d is the tablet

diameter, and D is the drug’s diffusion coefficient in water. We also assume that

k ¼ ½constant�Raxb
d

c
D

d ð8:4-17Þ

On dimensional grounds, this says

L

t
¼½ � Lð Þa 1

t

� �b

Lð Þc L
2

t

 !d

As before, the dimensions on the left-hand sidemust equal those on the right. For lengthL,

1 ¼ a þ c þ 2d

For time t

� 1 ¼ �b � d

There is no equation formassM, because it appears in none of the variables. If we choose

as key exponents b and c, we have

a ¼ �1þ 2b� c

b ¼ b

c ¼ c

d ¼ 1� b
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Inserting these values into the above and rearranging, we have

kR

D
¼ constant½ � R

2x
D

 !b
d

R

� �c

The dimensionless group raised to the b power is a Péclet number; that raised to the c
power is a ratio of lengths.

This correlation will be successful only if we have guessed the right key variables. It

may work if the tablets remain intact. It probably won’t work if they disintegrate. Still,

the analysis gives us a good first step in organizing our results.

8.5 Mass Transfer Across Interfaces

We now turn to mass transfer across interfaces, from one fluid phase to the

other. This is a tricky subject, one of the main reasons that mass transfer is felt to be

a difficult subject. In the previous sections, we used mass transfer coefficients as an easy

way of describing diffusion occurring from an interface into a relatively homogeneous

solution. These coefficients involved approximations and sparked the explosion of

definitions exemplified by Table 8.2-2. Still, they are an easy way to correlate experi-

mental results or to make estimates using the published relations summarized in Tables

8.3-2 and 8.3-3.

In this section, we extend these definitions to transfer across an interface, from one

well-mixed bulk phase into another different one. This case occurs more frequently than

does transfer from an interface into one bulk phase; indeed, I had trouble dreaming up

the examples earlier in this chapter. Transfer across an interface again sparks potentially

major problems of unit conversion, but these problems are often simplified in special

cases.

8.5.1 The Basic Flux Equation

Presumably, we can describe mass transfer across an interface in terms of the

same type of flux equation as before:

N1¼ KDc1 ð8:5-1Þ

where N1 is the solute flux relative to the interface, K is called an ‘‘overall mass transfer

coefficient,’’ and Dc1 is some appropriate concentration difference. But what is Dc1?
Choosing an appropriate value of Dc1 turns out to be difficult. To illustrate this,

consider the three examples shown in Fig. 8.5-1. In the first example in Figure

8.5-1(a), hot benzene is placed on top of cold water; the benzene cools and the water

warms until they reach the same temperature. Equal temperature is the criterion for

equilibrium, and the amount of energy transferred per time turns out to be proportional

to the temperature difference between the liquids. Everything seems secure.

As a second example, shown in Fig. 8.5-1(b), imagine that a benzene solution of

bromine is placed on top of water containing the same concentration of bromine. After

a while, we find that the initially equal concentrations have changed, that the bromine
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concentration in the benzene is much higher than that in water. This is because the

bromine is more soluble in benzene, so that its concentration in the final solution is

higher.

This result suggests which concentration difference we can use in Eq. 8.5-1.We should

not use the concentration in benzene minus the concentration in water; that is initially

zero, and yet there is a flux. Instead, we can use the concentration actually in benzene

minus the concentration that would be in benzene that was in equilibriumwith the actual

concentration in water. Symbolically,

N1 ¼ K½c1ðin benzeneÞ �Hc1ðinwaterÞ� ð8:5-2Þ

whereH is a partition coefficient, the ratio at equilibrium of the concentration in benzene

to that in water. Note that this does predict a zero flux at equilibrium.

A better understanding of this phenomenonmay come from the third example, shown

in Fig. 8.5-1(c). Here, bromine is vaporized from water into air. Initially, the bromine’s

concentration in water is higher than that in air; afterward, it is lower. Of course, this

reversal of the concentration in the liquid might be expressed in moles per liter and that

in gas as a partial pressure in atmospheres, so it is not surprising that strange things

happen.

As you think about this more carefully, you will realize that the units of pressure or

concentration cloud a deeper truth: Mass transfer should be described in terms of the

more fundamental chemical potentials. If this were done, the peculiar concentration

differences would disappear. However, chemical potentials turn out to be difficult to

use in practice, and so the concentration differences for mass transfer across interfaces

will remain complicated by units.

Hot

Cold

Benzene

Water

Initial

Warm

Final

Warm

(a) Heat transfer

Equal

Benzene

Water

Initial

Conc

Final

Dilute

(b) Bromine extraction

Equal

Conc

Air

Water

Initial

Conc

Final

Dilute

(c) Bromine vaporization

Dilute

Fig. 8.5-1. Driving forces across interfaces. In heat transfer, the amount of heat transferred

depends on the temperature difference between the two liquids, as shown in (a). In mass transfer,

the amount of solute that diffuses depends on the solute’s ‘‘solubility’’ or, more exactly, on its

chemical potential. Two cases are shown. In (b), bromine diffuses from water into benzene

because it is much more soluble in benzene; in (c), bromine evaporates until its chemical

potentials in the solutions are equal. This behavior complicates analysis of mass transfer.
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8.5.2 The Overall Mass Transfer Coefficient

We want to extend these qualitative observations in more exact equations. To

do this, we consider the example of the gas–liquid interface in Fig. 8.5-2. In this case, gas

on the left is being transferred into the liquid on the right. The flux in the gas is

N1 ¼ kpðp1 � p1iÞ ð8:5-3Þ

where kp is the gas-phase mass transfer coefficient (in, for example, mol/cm2 sec Pa), p1 is

the bulk pressure, and p1i is the interfacial pressure. Because the interfacial region is thin,

the flux across it will be in steady state, and the flux in the gas will equal that in the liquid.

Thus,

N1 ¼ kxðx1i � x1Þ ð8:5-4Þ

where the liquid-phase mass transfer coefficient kx is, for example, in mol/cm2 sec, and

x1i and x1 are the interfacial and bulk mole fractions, respectively.

We now need to eliminate the unknown interfacial concentrations from these equa-

tions. In almost all cases, equilibrium exists across the interface:

p1i ¼ Hx1i ð8:5-5Þ

where H is a type of Henry’s law or partition constant (here in units of pressure).

Combining Eqs. 8.5-3 through 8.5-5, we can find the interfacial concentrations

x1i ¼
p1i
H
¼ kpp1 þ kxx1

kpHþ kx
ð8:5-6Þ

Gas Liquid

p10

c10

c1i

Flux

p1i

Fig. 8.5-2. Mass transfer across a gas–liquid interface. In this example, a solute vapor is

diffusing from the gas on the left into the liquid on the right. Because the solute concentration

changes both in the gas and in the liquid, the solute’s flux must depend on a mass transfer

coefficient in each phase. These coefficients are combined into an overall flux equation in the text.

8.5 / Mass Transfer Across Interfaces 263



and the flux

N1 ¼
1

1=kp þH=kx
p1 �Hx1ð Þ ð8:5-7Þ

You should check the derivations of these results because they are important.

Before proceeding further, we make a quick analogy. This result is often compared to

an electric circuit containing two resistances in series. The flux corresponds to the cur-

rent, and the concentration difference p1 – Hx1 corresponds to the voltage. The resis-

tance is then 1/kp + H/kx which is roughly a sum of two resistances in series. This is

a good way of thinking about these effects. You must remember, however, that the

resistances 1/kp and 1/kx are not directly added, but always weighted by partition coef-

ficients like H.

We now want to write Eq. 8.5-7 in the form of Eq. 8.5-1. We can do this in two ways.

First, we can write

N1 ¼ Kx x
�
1 � x1


 �
ð8:5-8Þ

where

Kx ¼
1

1=kx þ 1=kpH
ð8:5-9Þ

and

x
�
1 ¼

p1
H

ð8:5-10Þ

Kx is called an ‘‘overall liquid-side mass transfer coefficient,’’ and x�1 is the hypothetical
liquid mole fraction that would be in equilibrium with the bulk gas. Alternatively,

N1 ¼ Kp p1 � p
�
1


 �
ð8:5-11Þ

where

Kp ¼
1

1=kp þH=kx
ð8:5-12Þ

and

p
�
1 ¼ Hc10 ð8:5-13Þ

Kp is an ‘‘overall gas-side mass transfer coefficient,’’ and p�1 is the hypothetical partial

pressure that would be in equilibrium with the bulk liquid.

8.5.3 Details of the Partition Coefficient

The analysis above is standard, a fixture of textbooks on transport phenomena

and unit operations. It can be reproduced by almost everyone who studies the subject.
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However, I know that it is unevenly understood in physical terms, both by students and

by experienced professionals. Indeed, explaining this repeatedly is a large part of my

consulting practice. As a result, I want to pause in the standard development and go over

the two tricky points again, in more detail.

The first of the tricky points comes from the basic flux equation, given by (for

example)

N1 ¼ KL c
�
1 � c1


 �
ð8:5-14Þ

In this equation, the flux across the interface is proportional to a concentration

difference. The concentration difference is confusing. Clearly, c1 is the bulk concentra-

tion of species ‘‘1,’’ for example, in the liquid phase. The other concentration c�1 is harder
to understand. Saying that it is ‘‘the concentration that would exist in the liquid if the

other phase were in equilibrium’’ is true but may not help much. Alternatively, we can

ask what c�1 will be when the flux is zero. Then, c�1 equals c1 and we are in equilibrium.

The second tricky point in the analysis comes from the partition coefficientH. I have

casually describedH as a partition coefficient or a Henry’s law coefficient, neglecting the

complex units which can be involved. To illustrate these, we can compare three common

forms of partition coefficients, defined at equilibrium

p1 ¼ Hx1 ð8:5-15Þ

y1 ¼ mx1 ð8:5-16Þ

c1G ¼ H#c1L ð8:5-17Þ

Here, p1 is the partial pressure of species ‘‘1’’ in the gas; x1 and y1 are the corresponding

mole fractions in the liquid and gas, respectively; and c1L and c1G are the molar concen-

trations of species ‘‘1’’ in the liquid and gas, respectively. The quantitiesH,m, andH# are
all partition coefficients, and all can describe the same equilibrium between gas and

liquid. However, they don’t always have the same dimensions; and they are not numer-

ically equal even when they do have the same dimensions.

To illustrate these differences, we consider the system of oxygen gas which is partly

dissolved in water. From equilibrium experiments, we find

p1 ¼ 43000 atm½ � x1 ð8:5-18Þ

where p1 is the partial pressure of oxygen, and x1 is the mole fraction of oxygen dissolved

in water. To convert this into a ratio of mole fractions, we remember that

p1
p
¼ y1 ¼

H

p

� �
x1 ð8:5-19Þ

Thus at atmospheric pressure, m is 42000. We can also reform Henry’s law in terms of

molar concentrations

c1G ¼
p1
RT
¼ H

cLRT

� �
c1L ð8:5-20Þ
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where cL is the total molar concentration in the liquid, about 55M for water. BecauseH#
equals the quantity in parentheses, at 298 K, H# is 31.

We now turn to a variety of examples illustrating mass transfer across an interface.

These examples have the annoying characteristic that they are initially difficult to do, but

they are trivial after you understand them. Remember that most of the difficulty comes

from that ancient but common curse: unit conversion.

Example 8.5-1: Oxygen mass transfer Use Equation 8.5-9 to estimate the overall liquid-

side mass transfer coefficientKx at 25 �C for oxygen fromwater into air. In this estimate,

assume that the film thickness is 10�2 cm in liquids but 10�1 cm in gases.

Solution For oxygen in air, the diffusion coefficient is 0.23 cm2/sec; for oxy-

gen in water, the diffusion coefficient is 2.1 � 10–5 cm2/sec. The Henry’s law constant in

this case is 4.2 � 104 atmospheres. We need only calculate kx and kp and plug these values

into Eq. 8.5-9. Finding kx is easy:

kx ¼ kLcL ¼
DLcL
0:01 cm

¼ 2:1 � 10�5 cm2
=sec

0:01 cm

mol

18 cm
3

� �

¼ 1:2 � 10�4 mol=cm
2
sec

Finding kp involves the unit conversions given in Table 8.2-2:

kp ¼
kG
RT
¼ DG

0:1 cmð Þ RTð Þ

¼ 0:23 cm
2
= sec

0:1 cmð Þ 82 cm
3
atm=mol K

� �
298Kð Þ

¼ 9:4 � 10�5mol=cm
2
sec atm

Inserting these results into Eq. 8.5-9, we find

Kx ¼
1

1=kx þ 1=kpH

¼ 1

cm
2
sec

1:2 � 10�4 mol

 !
þ cm

2
sec atm

9:4 � 10�5 mol 43000 atmð Þ

¼ 1:2 � 10�4mol=cm
2
sec

The mass transfer is completely dominated by the liquid-side resistance. This would also

be true if we calculated the overall gas-side mass transfer coefficient, Kp.Gas absorption

is commonly controlled by mass transfer in the liquid and is one reason that reactive

liquids are effective.
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Example 8.5-2: Benzene mass transfer Estimate the overall liquid-side mass transfer

coefficient in the distillation of benzene and toluene. At the concentrations used, you

expect a temperature of 90 �C and (at equilibrium)

y
�
1 ¼ 0:70x1 þ 0:39

The molar volume of the liquid is about 97 cm3/mol. As in the previous problem, assume

that the film thickness in the liquid is 0.01 cm and in the gas is 0.1 cm.

Solution In the vapor, the diffusion coefficient is about 0.090 cm2/sec; in the

liquid, it is 1.9 � 10�5 cm2/sec. As in the previous example,

kx ¼ kLcL ¼
DLcL
0:01 cm

¼
1:9 � 10�5 cm2

=sec
1mol

97 cm
3

� �
0:01 cm

¼ 2:0 � 10�5 mol

cm
2
sec

If the distillation is at atmospheric pressure, the Henry’s law constant is 0.70 atm

(cf. Equations 8.5-18 and 8.5-19). Then

kp ¼
kG
RT
¼ DG

0:1 cm RTð Þ

¼ 0:090 cm
2
= sec

0:1 cm 82 cm
3
atm=molK

� �
363 Kð Þ

¼ 3:0 � 10�5mol=cm
2
sec atm

Inserting these results into Equation 8.5-9 gives

Kx ¼
1

1=kx þ 1=kpH

¼ 1

cm
2
sec

2:0 � 10�5 mol

 !
þ cm

2
sec atm

3:0 � 10�4 mol 0:70 atmð Þ

¼ 1:8 � 10�5mol=cm
2
sec

The distillation is about equally controlled by the liquid and the vapor. This is typical.

Example 8.5-3: Perfume extraction Jasmone (C11H16O) is a valuable material in the

perfume industry, used in many soaps and cosmetics. Suppose we are recovering this
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material from a water suspension of jasmine flowers by an extraction with toluene. The

aqueous phase is continuous, with suspended flowers and toluene droplets. The mass

transfer coefficient in the toluene droplets is 3.0 � 10–4 cm2/sec; the mass transfer co-

efficient in the aqueous phase is 2.4 � 10–3 cm2/sec. Jasmone is about 150 times more

soluble in toluene than in the suspension. What is the overall mass transfer coefficient?

Solution For convenience, we designate all concentrations in the toluene

phase with a prime and all those in the water without a prime. The flux is

N1 ¼ k c10 � c1ið Þ ¼ k9 c91i � c910ð Þ

The interfacial concentrations are in equilibrium:

c91i ¼ Hc1i

Eliminating these interfacial concentrations, we find

N1 ¼
1

1=k
0 þH=k

� �
Hc10 � c910ð Þ

The quantity in square brackets is the overall coefficientK# that we seek. This coefficient
is based on a driving force in toluene. Inserting the values,

K9 ¼ 1
1

3:0 � 10�4 cm=sec
þ 150

2:4 � 10�3 cm=sec

¼ 1:5 � 10�5cm=sec

Similar results for the overall coefficient based on a driving force in water are easily found.

Two points about this problem deservemention. First, the result is a complete parallel

to Eq. 8.5-12, but for a liquid–liquid interface instead of a gas–liquid interface. Second,

mass transfer in the water dominates the process even though the mass transfer coeffi-

cient in water is larger because jasmone is so much more soluble in toluene.

Example 8.5-4: Overall mass transfer coefficients in a packed tower We are studying gas

absorption into water at 2.2 atm total pressure in a packed tower containing Berl

saddles. From earlier experiments with ammonia and methane, we believe that for

both gases the mass transfer coefficient times the packing area per tower volume is

18 lb mol/hr ft3 for the gas side and 530 lb mol/hr ft3 for the liquid side. The values for

these two gases may be similar because methane and ammonia have similar molecular

weights. However, their Henry’s law constants are different: 75 atm for ammonia and

41,000 atm formethane.What is the overall gas-sidemass transfer coefficient for each gas?

Solution This is essentially a problem in unit conversion. Although you can

extract the appropriate equations from the text, I always feel more confident if I repeat

parts of the derivation.

The quantity we seek, the overall gas-side transfer coefficient Ky, is defined by

N1a ¼ Kya y1 � y
�
1


 �
¼ kya y1 � y1ið Þ
¼ kxa x1i � x1ð Þ
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where y1 and x1 are the gas and liquid mole fractions.

The interfacial concentrations are related by Henry’s law:

p1i ¼ py1i ¼ Hx1i

When these interfacial concentrations are eliminated, we find that

1

Kya
¼ 1

kya
þ H=p

kxa

In passing, we recognize that y�1 must equal Hx10/p.

We can now find the overall coefficient for each gas. For ammonia,

1

Kya
¼ 1

18 lbmol=hr ft
3 þ

75 atm=2:2 atm

530 lbmol=hr ft
3

Kya ¼ 8:3 lb mol=hr ft
3

The overall resistance is affected by resistances in both the gas and the liquid. For

methane,

1

Kya
¼ 1

18 lbmol =hr ft
3 þ

41,000 atm = 2:2 atm

530 lbmol =hr ft
3

Kya ¼ 0:03 lb mol =hr ft
3

The overall mass transfer coefficient for methane is smaller and is dominated by the

liquid-side mass transfer coefficient.

8.6 Conclusions

This chapter presents an alternative model for diffusion, one using mass trans-

fer coefficients rather than diffusion coefficients. The model is most useful for mass

transfer across phase boundaries. It assumes that large changes in the concentration

occur only very near these boundaries and that the solutions far from the boundaries are

well mixed. Such a description is called a lumped-parameter model.

Mass transfer coefficients provide especially useful descriptions of diffusion in com-

plex multiphase systems. They are basic to the analysis and design of industrial processes

like absorption, extraction, and distillation. Mass transfer coefficients are not useful in

chemistry when the focus is on chemical kinetics or chemical change. They are not useful

in studies of the solid state, where concentrations vary with both position and time, and

lumped-parameter models do not help much.

In this chapter, we have shown how experimental results can be analyzed in terms of

mass transfer coefficients. We have also shown how values of these coefficients can be

efficiently organized as dimensionless correlations, and we have cataloged published

correlations that are commonly useful. These correlations are complicated by problems

with units that come out of a plethora of closely related definitions. These complications
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are most confusing for mass transfer across fluid–fluid interfaces, from one well-mixed

phase into another.

All in all, the material in this chapter is a solid alternative for analyzing diffusion near

interfaces. It is basic stuff for chemical engineers, but it is an unexplored method for

many others. It repays careful study.

Questions for Discussion

1. What are the dimensions of a mass transfer coefficient?

2. What are the dimensions of a diffusion coefficient?

3. How can you convert from a mass transfer coefficient based on a concentration

difference to one based on a partial pressure difference?

4. Which is typically bigger, a mass transfer coefficient in a liquid or one in a gas?

5. Why do overall mass transfer coefficients vary with partition coefficients, but

overall heat transfer coefficients do not?

6. If the flow doubles, how much will the mass transfer coefficient typically

change?

7. If the diffusion coefficient doubles, howmuch does the mass transfer coefficient

change?

8. If you have a system with the same solute concentration everywhere, will mass

transfer occur?

9. Whenwill a bulk concentration equal an interfacial concentration?Whenwon’t it?

10. What are typical units for partition coefficients?

Problems

1. Awet t-shirt hung on a hanger has a total surface area of about 0.6 m2. It loses water as

follows:

If the saturation vapor pressure of the water of 20 mmHg gives a water concentration
of 20 g/m3 and the room has a relative humidity of 30%, estimate the mass transfer

coefficient from the t-shirt.

2. Water flows through a thin tube, the walls of which are lightly coated with benzoic
acid. The benzoic acid is dissolved very rapidly and so is saturated at the pipe’s wall.
The water flows slowly, at room temperature and 0.1 cm/sec. The pipe is 1 cm in

diameter. Under these conditions, the mass transfer coefficient k varies along the pipe:

kd

D
¼ 1:62

d
2
v

DL

 !1=3

time (pm) Weight (g)

3:15 661
3:20 640
3:48 580
4:00 553
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where d and L are the diameter and length of the pipe and v is the average velocity in

the pipe. What is the average concentration of benzoic acid in the water after 2 m of
pipe?

3. Water containing 0.1-M benzoic acid flows at 0.1 cm/sec through a 1-cm-diameter
rigid tube of cellulose acetate, the walls of which are permeable to small electrolytes.
These walls are 0.01 cm thick; solutes within the walls diffuse as through water. The

tube is immersed in a large well-stirred water bath. Under these conditions, the flux of
benzoic acid from the bulk to the walls can be described by the correlation in Problem
8.2. After 50 cm of tube, what fraction of a 0.1-M benzoic acid solution has been

removed? Remember that there is more than one resistance to mass transfer in this
system.

4. Howmuch is the previous answer changed if the benzoic acid solution in the tube is in
benzene, not water?

5. A disk of radioactively tagged benzoic acid 1 cm in diameter is spinning at 20 rpm in
94 cm3 of initially pure water. We find that the solution contains benzoic acid at

7.3 � 10�4 g/cm3 after 10 hr 4 min and 3.43 � 10�3 g/cm3 after a long time (i.e., at satu-
ration). (a) What is the mass transfer coefficient? Answer: 8 � 10�4 cm/sec. (b) How
long will it take to reach 14% saturation? (c) How closely does this mass transfer

coefficient agree with that expected from the theory in Example 3.4-3?

6. As part of the manufacture of microelectronic circuits, silicon wafers are partially
coated with a 5,400-Å film of a polymerized organic film called a photoresist. The
density of this polymer is 0.96 g/cm3. After the wafers are etched, this photoresist must

be removed. To do so, the wafers are placed in groups of twenty in an inert ‘‘boat,’’
which in turn is immersed in strong organic solvent. The solubility of the photoresist in
the solvent is 2.23 � 10�3 g/cm3. If the photoresist dissolves in 10 minutes, what is its
mass transfer coefficient? (S. Balloge) Answer: 4 � 10�5 cm/sec.

7. You are studying mass transfer of a solute from a gas across a gas–liquid interface into

a reactive liquid. Themole fraction in the bulk gas is 0.01; that in the bulk liquid is 0.00;
and the equilibrium across the interface is

y
�
i ¼

xi
3

The individual mass transfer coefficient ky and kx are 0.50 and 0.60 mol/m2 sec,
respectively. (a)What is the interfacial concentration in the vapor? (b) Sketch, to scale,

the mole fractions in both phases across the interface.

8. Calculate the fraction of the resistance to SO2 transport in the gas and liquid mem-
brane phases for an SO2 scrubber operating at 100 �C. The membrane liquid, largely
ethylene glycol, is 5 � 10�3 cm thick. In it, the SO2 has a diffusion coefficient of about
0.85 � 10�5 cm2/sec and a solubility of

0:026mol SO2=l

mmHgof SO2

In the stack gas, there is an unstirred film adjacent to the membrane 0.01 cm thick, and

the SO2 has a diffusion coefficient of 0.13 cm2/sec. (W. J. Ward)

9. Estimate the average mass transfer coefficient for water evaporating from a film
falling at 0.82 cm/sec into air. The air is at 25 �C and 2 atm, and the film is
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186 cm long. Express your result in cubic centimeters of H2O vapor at STP/

(hr cm2 atm).

10. Find the dissolution rate of a cholesterol gallstone 1 cm in diameter immersed in

a solution of bile salts. The solubility of cholesterol in this solution is about
3.5 � 10�3 g/cm3. The density difference between the bile saturated with cholesterol
and that containing no cholesterol is about 3 � 10�3 g/cm3; the kinematic viscosity of

this solution is about 0.06 cm2/sec; the diffusion coefficient of cholesterol is
1.8 � 10�6 cm2/sec. Answer: 0.2 g per month.

11. Air at 100 �C and 2 atm is passed through a bed 1 cm in diameter composed of iodine
spheres 0.07 cm in diameter. The air flows at a rate of 2 cm/sec, based on the empty

cross-section of bed. The area per volume of the spheres is 80 cm2/cm3, and the vapor
pressure of the iodine is 45 mmHg. How much iodine will evaporate from a bed 13 cm
long, assuming a bed porosity of 40%? Answer: 5.6 g/hr.

12. The largest liquid–liquid extraction process is probably the dewaxing of lubricants.
After they are separated by distillation, crude lubricant stocks still contain significant

quantities of wax. In the past, these waxes were precipitated by cooling and separated
by filtration; now, they are extracted with mixed organic solvents. For example, one
such process uses a mixture of propane and cresylic acid. You are evaluating a new

mixed solvent for dewaxing that has physical processes like those of catechol. You are
using a model lubricant with properties characteristic of hydrocarbons. Waxes are 26.3
times more soluble in the extracting solvent than they are in the lubricant. You know

from pilot-plant studies that the mass transfer coefficient based on a lubricant-side
driving force is

KLa ¼ 16,200 lb=ft
3
hr

What will it be (per second) if the driving force is changed to that on the solvent

side?

13. You need to estimate an overall mass transfer coefficient for solute adsorption from an
aqueous solution of density 1.3 g/cm3 into hydrogel beads 0.03 cm in diameter. The
coefficient sought Ky is defined by

N1 ¼ K yðy� y
�Þ

whereN1 has the units of g/cm
2 sec, and the y’s have units of solute mass fraction in the

water. The mass transfer coefficient kS in the solution is 10�3 cm/sec; that within the
beads is given by

kB ¼
6D

d

where d is the particle diameter and D is the diffusion coefficient, equal here to
3 � 10�6 cm2/sec. Because the beads are of hydrogel, the partition coefficient is one.
Estimate Ky in the units given.

14. A horizontal pipe 10 inches in diameter is covered with an inch of insulation that is
36% voids. The insulation has been soaked with water. The pipe is now drying slowly

and hence almost isothermally in 80 �F air that has a relative humidity of about 55%.
Estimate how long it will take the pipe to dry, assuming that capillarity always brings
any liquid water to the pipe’s surface. (H. A. Beesley)
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CHAPTER 9

Theories of Mass Transfer

In this chapter we want to connect mass transfer coefficients, diffusion coeffi-

cients, and fluid flow. In seeking these connections, we are combining the previous

chapter, which deals with mass transfer, with the first two sections of the book, which

dealt with diffusion.

To find these connections, we will develop theories of mass transfer. These theories

are rarely predictive, but they clarify the chemistry and physics which are involved. They

are less predictive because they are most often for fluid–fluid interfaces whose geometry

is not well known. They are much more successful for solid–fluid interfaces, which are

much better defined. Unfortunately, fluid–fluid interfaces are much more important for

mass transfer than fluid–solid interfaces are.

Before reviewing the common theories, we should identify exactly what we want to

predict. Almost always, we want to predict the mass transfer coefficient k as a function of

the diffusion coefficientD and the fluid velocity v. In many cases, convection will be forced,

i.e., the velocity will be caused by mechanical forces like pressure drop imposed from

outside the system. In occasional cases, convection will be free, the consequence of gravity

driven flows often caused by themass transfer itself.While wewill discuss both cases, wewill

stress forced convection because it is more important and more common in chemical

processing.

We can infer what we most want to predict by looking at the mass transfer correla-

tions for fluid–fluid interfaces given in the previous chapter. The most important are

those for gas treating, both by absorption and by stripping. Those correlations are in

Table 8.3-2. For liquids, k most commonly varies with D to the 0.5 power. For gases, k

varies with D to the (2/3) power. For liquids, k varies with v to the 0.45, 0.67, and 0.70

power. For gases, k varies with v to the 0.50 to 0.8 power, most often around the (2/3)

power. Thus we would be pleased with a theory which predicted that

k} v
2=3

D
1=2 ð9:0-1Þ

We will seek such a prediction in this chapter.

We can also seek predictions based on solid–fluid interfaces, although these have less

practical value. We will also consider mass transfer within a short tube, which is impor-

tant for artificial kidneys and blood oxygenators; andmass transfer on a flat plate, which

is important because of strong parallels with heat transfer. However, while these solid–

fluid interfaces are often detailed pedagogically, they are less significant than the results

for fluid–fluid interfaces.

The sections of this chapter are different attempts to give a prediction of Equation

9.0-1. In Sections 9.1 and 9.2, we discuss the film theory, based on diffusion across

a thin film; and the penetration and surface-renewal theories, based on diffusion into

a semi-infinite slab. In Section 9.3, we discuss why these theories do not predict Equa-

tion 9.0-1, and how this disagreement may be resolved. In Section 9.4, we talk about
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mass transfer in a short tube and from a flat plate. In Section 9.5, we discuss mass

transfer with diffusion-generated convection. The result is an overview of theories of

mass transfer.

Before we begin this exploration, we should sound a caution. Mass transfer

theories are rarely, if ever, a substitute for experiment. I know that many are

tempted to use them as such; and I recognize that they are often helpful for inter-

polation and extrapolation. However, don’t let professors’ pride in their calculations

obscure the fact that these theories make poor predictions. Their value is not as

an alternative to experiment; their value is an increased appreciation for what is

happening.

9.1 The Film Theory

The simplest theory for interfacial mass transfer, shown schematically in Fig.

9.1-1, assumes that a stagnant film exists near every interface. This film, also called an

unstirred layer, is almost always hypothetical, for fluid motions commonly occur right

up to even a solid interface. Nonetheless, such a hypothetical film, suggested first by

Nernst in 1904, gives the simplest model of the interfacial region.

We now imagine that a solute present at high dilution is slowly diffusing across this

film. The restriction to high dilution allows us to neglect the diffusion-induced convec-

tion perpendicular to the interface, so we can use the simple results in Chapter 2, rather

than the more complex ones in Chapter 3. The steady-state flux across this thin film can

be written in terms of the mass transfer coefficient:

N1 ¼ k c1i � c1ð Þ ð9:1-1Þ

in which N1 is the flux relative to the interface, k is the mass transfer coefficient, and c1i
and c1 are the interfacial and bulk concentrations in the fluid to the right of the interface.

Gas

Bulk liquid
p1

z = 0

c1=c1

c1i

Liquid
film

z = l

Fig. 9.1-1. The film theory for mass transfer. In this model, the interfacial region is idealized as

a hypothetical film or ‘‘unstirred layer.’’ Mass transfer involves diffusion across this thin film.

Note that the constant value c10 implies no resistance to mass transfer in the gas.
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The flux across this film can also be calculated in terms of the diffusion coefficient (see

Section 2.2):

N1 ¼ n1
��
z¼ 0 _¼ j1

��
z¼ 0 ¼

D

l
c1i � c1ð Þ ð9:1-2Þ

The approximation that the total flux n1 equals the diffusion flux j1 reflects the assump-

tion that the solution is dilute. If we compare Eq. 9.1-1 and Eq. 9.1-2, we see that

k ¼ D

l
ð9:1-3Þ

This result can be dignified as

Sherwood
number

� �
¼ kl

D
¼ 1 ð9:1-4Þ

Such dignity seems silly now but will be useful later.

This simplest theory says that the mass transfer coefficient k is proportional to the

diffusion coefficient D and independent of the fluid velocity v. Doubling diffusion dou-

bles mass transfer; doubling flow has no effect. This is not at all what we set out to

predict, given in Equation 9.0-1. Of course, the variation of k with v has been lumped

into the unknown film thickness l. This thickness is almost never known a priori, but

must be found from measurements of k and D. But if we cannot predict k from the film

theory, what value has this theory?

The film theory is valuable for two reasons. First, it provides simple physical insight

into mass transfer, for it shows in very simple terms how resistance to mass transfer

might occur near an interface. Second, it often accurately predicts changes in mass

transfer caused by other factors, like chemical reaction or concentrated solution. As

a result, the film theory is the picture around which most people assemble their ideas. In

fact, we have already implicitly used it in the correlations of mass transfer coefficients in

Chapter 8. These correlations are almost always written in terms of the Sherwood

number:

Sherwood

number

� �
¼

mass transfer

coefficient

� �
a characteristic

length

� �
diffusion

coefficient

� �
¼ F

other system

variables

� �
ð9:1-5Þ

By using a characteristic length, we imply a form equivalent to Eq. 9.1-3:

mass transfer
coefficient

� �
¼ diffusion coefficientð Þ

characteristic lengthð Þ
some correction

factor

� �
ð9:1-6Þ

In some theories, we predict a mass transfer coefficient divided by the fluid velocity, so

that a Stanton number seems to be the natural variable. Still, we religiously rewrite our

results in terms of a Sherwood number, genuflecting toward the film theory.
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Example 9.1-1: Finding the film thickness Carbon dioxide is being scrubbed out of a gas

using water flowing through a packed bed of 1-cm Berl saddles. The carbon dioxide is

absorbed at a rate of 2.3 � 10–6 mol/cm2 sec. The carbon dioxide is present at a partial

pressure of 10 atm, the Henry’s law coefficientH is 600 atms, and the diffusion coefficient

of carbon dioxide in water is 1.9 � 10–5 cm2/sec. Find the film thickness.

Solution We first find the interfacial concentration of carbon dioxide:

p1 ¼ Hx1 ¼ H
c1i
c

� �
10 atm ¼ 600 atm

c1i

mol = 18 cm
3

� �
0@ 1A

Thus c1i equals 9.3 � 10–4 mol/cm3. We use Eq. 9.1-1 to find the mass transfer coefficient:

N1 ¼ kðc1i � c1Þ

2:3 � 10�6 mol=cm
2
sec ¼ k½ð9:3 � 10�4 mol=cm

3Þ � 0�

As a result, k is 2.5 � 10–3 cm/sec. Finally, we use Eq. 9.1-3 to find the film thickness:

l ¼ D

k
¼ 1:9 � 10�5 cm2

=sec

2:5 � 10�3 cm=sec
¼ 0:0076 cm

Values around 10–2 cm are typical of many mass transfer processes in liquids.

9.2 Penetration and Surface-Renewal Theories

These theories provide a better physical picture of mass transfer than the film

theory in return for a modest increase in mathematics. The net gain in understanding is

often worth the price. Moreover, although the physical picture is still limited, similar

equations can be derived from other, more realistic physical pictures.

9.2.1 Penetration Theory

The model basic to this theory, suggested by Higbie in 1935, is shown schemat-

ically in Fig. 9.2-1. As before, we define the mass transfer coefficient into this film as

N1¼ kðc1i � c1Þ ð9:2-1Þ

where N1 is the flux across the interface; c1i is the interfacial solute concentration

in the liquid in equilibrium with the well-stirred gas; and c1 is the bulk solute concentra-

tion, far into the liquid. The diffusion flux shown in Fig. 9.2-1 can be calculated using the

arguments in Section 2.5. The key assumption is that the falling film is thick. Other

important assumptions are that in the z direction, diffusion is much more important

than convection, and in the x direction, diffusion is much less important than convection.
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These assumptions lead to an equation for the interfacial flux:

N1 ¼ n1 z¼ 0 ¼: j1j jz¼ 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dvmax=px

p
ðc1i � c1Þ ð9:2-2Þ

where vmax is the interfacial velocity of the water. One should remember that here N1 is

the flux at the interface and that the flux will have smaller values within the fluid.

Moreover, it is a point value for some specific x. The interfacial flux averaged over x

is given by

N1 ¼
1

WL

Z L

0

Z W

0

n1 z ¼ 0 dydxj ð9:2-3Þ

where W and L are the width and length of the exposed film shown in Fig. 9.2-1.

Combining this with the foregoing, we see that the average flux is

N1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dvmax=pL

p
ðc1i � c1Þ ð9:2-4Þ

Comparing this with Eq. 9.2-1, we see that the mass transfer coefficient is

k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dvmax=pL

p
ð9:2-5Þ

The quantity L/vmax, sometimes called the contact time, will not be known a priori in

complicated situations, just as the film thickness l was unknown in film theory.

Equation 9.2-5 is often written in terms of dimensionless groups using the fact that the

average velocity in the film v0 is two-thirds the maximum velocity vmax. The result (where

� is the kinematic viscosity of the fluid) is

Gas

p1

z

c1i

Flowing liquid

x

c1i

z=∞

c1

(Larger time)

c1(Small time)

Fig. 9.2-1. The penetration theory for mass transfer. Here, the interfacial region is imagined

to be a very thick film continuously generated by flow. Mass transfer now involves diffusion

into this film. In this and other theories, the interfacial concentration in the liquid is assumed

to be in equilibrium with that in the gas.

kL

D
¼ 6

p

� �1=2
Lv

0

D

 !1=2
¼ 6

p

� �1=2
Lv

0

�

 !1=2
�

D

� �1=2
ð9:2-6Þ
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or

Sherwood
number

� �
¼ 6

p

� �1=2
Péclet
number

� �1=2
¼ 6

p

� �1=2
Reynolds
number

� �1=2
Schmidt
number

� �1=2
ð9:2-7Þ

The use of the Sherwood number suggests a film theory, even though nothing like

a film exists here.

We should expect that the penetration theory result in Equation 9.2-5 and the film

theory result in Equation 9.1-3 should bracket all observed mass transfer conditions.

After all, the penetration theory is based on transfer into a semi-infinite fluid, and the

film theory is based on transfer across a thin film. All of nature should fall between these

two limits of semi-infinite slab and thin film.

However, in practice, our success is limited. As we explained at the start of the

chapter, we expect that the mass transfer coefficient k should vary with the square root

of the diffusion coefficient D (cf. Equation 9.0-1). This is consistent with the penetration

theory. We also expect that k should vary with the two-thirds power of the fluid velocity

v. This is larger than that expected by both film and penetration theories. This short-

coming will be explored more in Section 9.3.

9.2.2 Surface-Renewal Theory

Before we explore why experiments show a larger velocity variation than these

theories predict, we want to discuss the physical picture of the penetration theory in more

depth. This theory does successfully predict the square root dependence of k onD, but on the

basis of the naı̈ve and unrealistic physical picture in Figure 9.2-1. As a result, we can sensibly

ask if there isn’t a better physical picture which gives the same square root dependence.

Such a picture, suggested by Dankwerts in 1951, is the surface-renewal theory. The

model used for the surface-renewal theory is shown schematically in Fig. 9.2-2. The

specific geometry used in the film and penetration theories is replaced with the vaguer

picture of two regions. In one ‘‘interfacial’’ region, mass transfer occurs by means of the

penetration theory. However, small volumes or elements of this interfacial region are not

static, but are constantly exchanged with new elements from a second ‘‘bulk’’ region.

This idea of replacement or ‘‘surface renewal’’ makes the penetration theory a part of

a more believable process.

Themathematical description of this surface renewal depends on the length of time that

small fluid elements spend in the interfacial region. The concept suggests the definition

EðtÞdt ¼
the probability that a given

surface elementwill be at the surface
for time t

0@ 1A ð9:2-8Þ

The quantityE(t) is the residence-time distribution used so often in the description of the

chemical kinetics of stirred reactors. Obviously, the sum of these probabilities is unity:Z ‘

0

EðtÞdt ¼ 1 ð9:2-9Þ
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We now assume that the transfer of different interfacial elements into the bulk region is

random. Stated another way, we assume that the interfacial region is uniformly acces-

sible, so that any surface element is equally likely to be withdrawn. In this case, the

fraction of surface elements h remaining at time t must be

h ¼ e
�t=s ð9:2-10Þ

in which s is a characteristic constant. This fraction h must also be the sum of the

probabilities from time t to infinity

h ¼
Z ‘

t

EðtÞdt ð9:2-11Þ

Thus the residence time distribution of surface elements is

EðtÞ ¼ e
�t=s

s
ð9:2-12Þ

The physical significance of s in these equations is an average residence time for an

element in the interfacial region.

Armed with these probabilities, we can average the mass transfer coefficient over

time. In the interfacial region, the flux is that for diffusion into an infinite slab:

n1 z¼ 0j ¼:
ffiffiffiffiffiffiffiffiffiffiffi
D=pt

p
ðc1i � c1Þ ð9:2-13Þ

Of course, the interfacial region is anything but infinite, but when the surface is quickly

renewed and s is small, it momentarily behaves as if it were. The average flux is then

N1 ¼
Z ‘

0

EðtÞn1 z¼ 0dtj ¼
ffiffiffiffiffiffiffiffiffi
D=s

p
ðc1i � c1Þ ð9:2-14Þ

By comparison with Eq. 9.2-1, we see that

p1

c1i

Liquid

Interfacial
region

Gas
c1

Well-mixed
bulk region
at c1

Fig. 9.2-2. The surface-renewal theory for mass transfer. This approach tries to apply the

mathematics of the penetration theory to a more plausible physical picture. The liquid is

pictured as two regions, a large well-mixed bulk and an interfacial region that is renewed so

fast that it behaves as a thick film. The surface renewal is caused by liquid flow.

k ¼
ffiffiffiffiffiffiffiffiffi
D=s

p
ð9:2-15Þ
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As in the penetration theory, doubling the diffusion coefficient increases the mass trans-

fer coefficient by
ffiffiffi
2
p

.

At this point, some conclude that the surface-renewal theory is much ado about

nothing. It predicts the same variation with diffusion as the penetration theory, and

the new residence time s is as unknown as the film thickness l introduced in the film

theory. This new theory may at first seem of small value.

The value of the surface-renewal theory is that the simple math basic to the penetra-

tion theory is extended to a more realistic physical situation. Although the result is less

exact than we might wish, the surface-renewal theory does suggest reasonable ways to

think about mass transfer in complex situations. Such thoughts can lead to more effec-

tive correlations and to better models.

Example 9.2-1: Finding the adjustable parameters of the penetration and surface-renewal

theories What are the contact time L/vmax and the surface residence time s for the

carbon dioxide scrubber described in Example 9.1-1?

Solution In this earlier example, we were given that D was 1.9 � 10–5 cm2/sec,

and we calculated that k was 2.5 � 10–3 cm/sec. Thus, from Eq. 9.2-5,

2:5 � 10�3 cm=sec ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1:9 � 10�5 cm2

=secÞ=p�ðvmax=LÞ
q

L

vmax
¼ 3:9 sec

Similarly, from Eq. 9.2-15,

2:5 � 10�3 cm=sec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:9 � 10�5 cm2

=secÞ=s
q

s ¼ 3:0 sec

Deciding whether these values are physically realistic requires additional information.

9.3 Why Theories Fail

Themass transfer theories developed in the previous sections of this chapter are

not especially successful. To be sure, the penetration and surface-renewal theories do

predict that mass transfer does vary with the square root of the diffusion coefficient,

consistent with many correlations. However, neither the film theory nor the surface-

renewal theory predicts how mass transfer varies with flow. The penetration theory

predicts variation with the square root of flow, less than that indicated by most corre-

lations. This failure to predict the variation of mass transfer with flow is especially

disquieting: the film and penetration theories should bracket all behavior because a thin

film and a semi-infinite slab bracket all possible geometries.

Something is seriously wrong. To see what, imagine that we are removing traces of

ammonia from a gas with aqueous sulfuric acid. The absorption takes place in a packed

tower where the gas flows upwards and the acid trickles countercurrently downwards.
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In our case, the absorption is effectively irreversible and controlled by diffusion in the gas

phase. We can describe this absorption by a mass balance on the ammonia in a differ-

ential volume of gas in the tower

Accumulation ¼ ðammonia flow in� outÞ� ðammonia absorbedÞ

¼ � v
dc1
dz
� ka c1 � 0ð Þ ð9:3-1Þ

where a is the interfacial area per tower volume. The concentration difference is (c1 – 0)

because absorption by the acid is irreversible, i.e., c1
* is zero. Note also that k is

the coefficient in the gas, not an overall coefficient. This is because reaction with

acid so accelerates ammonia uptake within the liquid that the liquid resistance is

small. This mass balance is subject to the boundary condition where the gas enters the

tower

z ¼ 0, c1 ¼ c10 ð9:3-2Þ

Integration leads to the familiar result

c1
c10
¼ e

�kaz=v ð9:3-3Þ

This ammonia concentration drops exponentially as we move along the tower.

If we were trying to measure the mass transfer coefficients in this tower, we would use

a rearranged form of this result.

k ¼ v

az

� �
ln

c10
c1

ð9:3-4Þ

We would then measure the concentration c1 at different velocities and calculate the

mass transfer coefficients. Measurements like these are the basis of the correlations given

in Tables 8.3-2 and 8.3-3. At the same time, these measurements are those giving values

of k which vary too strongly with velocity.

The reason why, suggested by Schlunder in 1977, is that the gas flow in the packed

tower is not as uniform as we are implicitly assuming when we rattle off the analysis

above. To illustrate the consequences of an uneven velocity, imagine that the gas flow

consists of the two parts suggested in Fig. 9.3-1. Part of this flow – a fraction (1 – h) – is so
intimately contacted with the acid that all ammonia is removed. The rest of flow – the

remaining fraction h – channels past the acid so quickly that no ammonia is removed.

Then the exiting concentration is

c1 ¼ 1� h½ � 0 þ h½ � c10 ð9:3-5Þ

If we insert this result into Equation (9.3-4), we find

k ¼ v

az

� �
ln h�1
� �

ð9:3-6Þ

If the fraction h stays constant with changes in flow, and if we stupidly believe that flow is

uniform, then we will find that k varies linearly with v. Many of the correlations in
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Chapter 8 predict that k does vary with v more strongly than expected, and hence

are presumably compromised by effects like those Schlunder postulates. This suggests

we should always view correlations skeptically, as the following example suggests.

Example 9.3-1: Apparent mass transfer coefficients caused by bypassing. This example

illustrates how uneven flow can give apparent variations of mass transfer coefficients

with flow which are larger than those expected from the theories described earlier. These

flow variations are close to those reported in popular correlations.

(a) Imagine we have a system in which the mass transfer coefficient k is 10–3 cm/sec,

the velocity v is 1 cm/sec, and the product al is 103. However, half the flow in this system

bypasses the region where mass transfer occurs. What will the apparent mass transfer

coefficient be?

Solution From the relations above, we expect that

Product gas with
some ammonia

Part of flow (θ)
bypasses absorber
so none is absorbed

Part of flow (1−θ)
effectively contacted
so all ammonia absorbed

Feed gas
with ammonia

Fig. 9.3-1. Ammonia absorption in a poorly functioning column. The ammonia which

bypasses gives a misleading mass transfer correlation.

cl
c10
¼ 0 þ 1 � 0ð Þe�kal=v

¼ 0:5 þ 1 � 0:5ð Þ exp�10
�3
cm=sec3

�
1000=

�
1 cm=sec

		
¼ 0:684
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Then from Equation 9.3-6.

ðapparent kÞ ¼ 1 cm=sec

1000
ln

1

0:684

� �

¼ 0:38 � 10�3 cm=sec

The apparent mass transfer coefficient is 60 percent less than the true value in that part

of the system where mass transfer actually occurs.

(b) Now imagine that we increase the flow three times. The true mass transfer co-

efficient increases according to the penetration theory, that is, with the square root of

velocity or by a factor of
ffiffiffi
3
p

. However, if we don’t realize that half the flow is bypassing

the mass transfer region, we will calculate a new apparent mass transfer coefficient. If we

use this new coefficient and that of part (a), how will we conclude that mass transfer

varies with velocity?

Solution Parallel to part (a), we find

c1
c10
¼ 0:5 þ 1 � 0:5ð Þ exp

�
�

ffiffiffiffi
3
p
� 10�3cm=sec 1000ð Þ

	
=ð3 cm=secÞ

¼ 0:781

Thus the apparent coefficient is

ðapparent kÞ ¼ 3 cm=sec

1000
ln

1

0:781

� �
¼ 0:74 � 10�3 cm=sec

From these values of the apparent k, we find

apparent k } v
0:65

This apparent velocity variation is larger than the actual square root dependence. It is

a consequence of uneven flow causing bypassing in the experiments.

9.4 Theories for Solid–Fluid Interfaces

While mass transfer most commonly takes place across fluid–fluid interfaces,

many well-developed theories are based on fluid–solid interfaces. There are two reasons

for this. First, fluid–solid interfaces are more easily specified: they normally do not wave

or ripple but sit right where they were. Second, fluid–solid interfaces are common for

heat transfer, so results calculated and verified for heat transfer can be confidently

converted to mass transfer.

In this section we develop two such theories. The first is for mass transfer out of

a solution in laminar flow in a short tube. This ‘‘Graetz–Nusselt problem’’ finds some

application for blood oxygenators and artificial kidneys. The second example is the
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‘‘boundary layer theory’’ for flow across a dissolving, sharp-edged plate. This exam-

ple has almost no value for mass transfer, but is an analogue of an important heat

transfer problem. In sketching the development of this theory, I have abridged

the mathematical development more than in other parts of the book. This is because

both theories are tangential to mass transfer and discussed in detail in heat transfer

references.

9.4.1 The Graetz–Nusselt Problem

This theory calculates how the mass transfer coefficient varies with the fluid’s

flow and the solute’s diffusion. In other words, it finds the mass transfer as a function of

quantities like Reynolds and Schmidt numbers.

The problem, shown schematically in Fig. 9.4-1, again assumes a dilute solute, so that

the velocity profile is parabolic, as expected for laminar flow. The detailed solution

depends on the exact boundary conditions involved. The most important case assumes

fixed solute concentration at the wall of a short tube. In this case, a mass balance on the

solute gives

solute
accumulation

� �
¼

solute inminus
solute out
by diffusion

0@ 1Aþ solute inminus
solute out

by convection

0@ 1A ð9:4-1Þ

or, in symbolic terms,

0 ¼ D
1

r

q
qr

r
qc1
qr
þ q2c1

qz2

 !
� 2v

0
1� r

R

� �2� �
qc1
qz

ð9:4-2Þ

where r is the radial position and R is the tube radius. This equation can be found either

by a mass balance on the washer-shaped region (2prDrDz) or by the appropriate sim-

plification of the general mass balance given in Table 3.4-2.

z
r

Sparingly soluble walls
dissolve into fluid

Fluid in
laminar flow

Volume (2πrΔrΔz)
for mass balance

Fig. 9.4-1. The Graetz–Nusselt problem. In this case, a pure solvent flowing laminarly in

a cylindrical tube suddenly enters a section where the tube’s walls are dissolving. The problem

is to calculate the wall’s dissolution rate and hence the mass transfer coefficient. The problem’s

solutions, based on analogies with heat transfer, are useful for designing artificial kidneys

and blood oxygenators.
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For short tubes, solute diffusion occurs mainly near the wall and the bulk of the

fluid near the tube’s axis is pure solvent. As a result, axial diffusion is small and

q2c1/qz
2 can be neglected. We then define a new coordinate:

s ¼ R� r ð9:4-3Þ

Rewriting the mass balance in terms of this variable,

0 ¼ D
q2c1
qs2
� 4v

0
s

R

qc1
qz

ð9:4-4Þ

In this, we have used the fact that s/R is much less than unity near the wall, so the wall

curvature and the velocity variation can be ignored. The boundary conditions for this

differential equation are the following:

z ¼ 0, all s, c1 ¼ 0 ð9:4-5Þ

z > 0, s ¼ 0, c1 ¼ c1i ð9:4-6Þ

z > 0, s ¼ ‘, c1 ¼ 0 ð9:4-7Þ

The intriguing condition is, of course, the third one, because this implies that the tube

be short.

To solve this problem, we define the new dimensionless variable

n ¼ s
4v

0

9DRz

 !1=3

ð9:4-8Þ

The differential equation now becomes

0 ¼ d
2
c1

dn2
þ 3n2

dc1
dn

ð9:4-9Þ

subject to

n ¼ 0, c1 ¼ c1i ð9:4-10Þ

n ¼ ‘, c1 ¼ 0 ð9:4-11Þ

Integration and use of the boundary conditions gives

c1 ¼ c1i

R ‘

n e
�n3

dn

C 4
3

� 	 ð9:4-12Þ

The numerator in this expression is the incomplete gamma function. We now know

the concentration profile.

To find the mass transfer coefficient k, we again compare the definition

N1 ¼ kðc1i � 0Þ ð9:4-13Þ
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with the value found from Fick’s law:

N1 ¼ n1 r¼Rj ¼: �D qc1
qr r¼Rj ¼ D

qc1
qs s¼ 0j

¼ D
4v

0

9DRz

 !1=3
qc1
qn n¼ 0j ¼ D

4v
0

9DRz

 !1=3
C

4

3

� � ðc1i � 0Þ ð9:4-14Þ

Comparison gives

k ¼ D

C 4
3

� 	 4v
0

9DRz

 !1=3
ð9:4-15Þ

an important limit due to Lévique.

As in the penetration theory, this k is a local value located at fixed z. If we average this

coefficient over a pipe length L, we find, after rearrangement, the average mass transfer

coefficient kavg

kavgd

D
¼ 3

1=3

C 4
3

� 	 d
2
v
0

DL

 !1=3

¼ 3
1=3

C 4
3

� 	 dv
0

�

 !1=3
�

D

� �1=3 d

L

� �1=3
ð9:4-16Þ

where d (=2R) is the diameter. Eq. 9.4-16 may be written as

Sherwood
number

� �
¼ 1:62

Reynolds
number

� �1=3
Schmidt
number

� �1=3
diameter
length

� �1=3
ð9:4-17Þ

Mass transfer experiments give a numerical coefficient of 1.64, close to the predicted value.

Example 9.4-1: Mass transfer of benzoic acid Water is flowing at 6.1 cm/sec through

a pipe 2.3 cm in diameter. The walls of a 14-cm section of this pipe are made of benzoic

acid, whose diffusion coefficient in water is 1.00 � 10–5 cm2/sec. Find the average mass

transfer coefficient kavg over this section.

Solution From Equation 9.4-16, we find

kavg ¼
3
1=3

C 4
3

� � D

d

� �
d
2
v
0

DL

 !1=3

¼ 1:62
1 � 10�5 cm2

=sec

2:3 cm

 !
ð2:3 cmÞ26:1 cm=sec
1 � 10�5 cm2

=secÞ14 cm

 !1=3
¼ 4:3 � 10�4 cm=sec
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This will be correct if the flow is laminar and the tube is short. The Reynolds number is

d v
0q

l
¼ ð2:3 cmÞð6:1 cm=secÞð1 g=cm

3Þ
0:01 g=cm sec

¼ 1,400

That is less than 2,100, the transition to turbulent flow. If the pipe is short

s� R

(i.e., diffusion never penetrates very far from the wall). By dimensional arguments or by

analogies with Chapter 2, we guess a characteristic value of s:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DL=v

0
q

� R

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1:00 � 10�5cm2

=secÞð14 cmÞ=ð6:1 cm=secÞ
q

¼ 0:01 cm� 1:15 cm

Thus the benzoic acid dissolution does take place in a short pipe, where short is defined

in terms of diffusion.

9.4.2 Mass Transfer From a Plate

We now turn to a second example of mass transfer at solid–fluid interfaces: that

of dissolution of a sharp-edged plate. In the Graetz–Nusselt example given directly

above, we assumed the parabolic velocity profile was already established, and we then

calculated the concentration profile. Here, we need to calculate both the velocity and the

concentration profiles.

In this case, we imagine that a plate, made of a sparingly soluble solute, is immersed in

a rapidly flowing solvent. We want to find the rate at which solute dissolves. In more

scientific terms, we want to calculate how the Sherwood number varies with the

Reynolds and Schmidt numbers.

This physical situation is shown in the oft-quoted schematic in Fig. 9.4-2(a). The flow

over the top of the plate is disrupted by the drag caused by the plate; this region of

disruption, called a boundary layer, becomes larger as the flow proceeds down the plate.

The boundary layer is usually defined as the locus of distances over which 99% of the

disruptive effect occurs. Such specificity is obviously arbitrary. While this flow pattern

develops, the sparingly soluble solute dissolves off the plate. This dissolution produces

the concentration profiles shown in Figure 9.4-2(b). The distance that the solute pene-

trates defines a new concentration boundary layer, but this layer is not the same as that

observed for flow.

Our theoretical development involves the calculation of these two boundary layers.

We first calculate that for flow. We begin by assuming a velocity profile for the fluid

flowing parallel to the flat plate:

vx ¼ a0 þ a1yþ a2y
2 þ a3y

3 þ � � � ð9:4-18Þ
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where y is the distance normal to the plate and the ai are constants. These constants are

independent of y, but may vary with x. The velocity described by this equation is subject

to four boundary conditions:

y ¼ 0, vx ¼ 0 ð9:4-19Þ

q2vx
qy2
¼ 0 ð9:4-20Þ

y ¼ ‘, vx ¼ v
0 ð9:4-21Þ

qvx
qy
¼ 0 ð9:4-22Þ

The first of these conditions says that the fluid sticks to the plate, and the second says that

because the plate is solid, the stress on it is a constant. The other two conditions say that

far from the plate, the plate has no effect.

As an approximation, we can replace Eqs. 9.4-21 and 9.4-22 with

y ¼ d, vx ¼ v
0 ð9:4-23Þ

To calculate the effect
of flow on dissolution,
use the control volume
shown

(c)

Slow dissolution of the
plate also affects a
thinner region near
the plate

(b)

l

y x

Δx

Concentration boundary layer

T
ur

bu
le

nt
re

gi
on

Fluid drag on a flat
plate generates a
“boundary layer”

(a)

Laminar region

Boundary layer

T
ur

bu
le

nt
re

gi
on

Fig. 9.4-2. The boundary layer theory for mass transfer. In this theory, both the flow and

the diffusion are analyzed for specific geometries like that of a flat plate. The results are accurate

for the specific case, but are purchased with considerable mathematical effort.

qvx
qy
¼ 0 ð9:4-24Þ
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Now we can find the constants in Eq. 9.4-18: a0 is zero by Eq. 9.4-19; a2 is zero by Eq.

9.4-20, and so

vx

v
0 ¼

3

2

y

d

� �
� 1

2

y

d

� �3
ð9:4-25Þ

At this point, I always feel that I have gotten something for nothing, until I

remember that d is an unknown function of x. Moreover, we should remember that

Eq. 9.4-18 was arbitrarily truncated and that more accurate calculations might require

more terms.

We now turn to the overall mass and momentum balances. Because the solute is

sparingly soluble; its dissolution has a negligible effect on the overall mass balance.

Because the process is in steady state, the accumulation is zero. Thus the mass

balance is

0 ¼
Z l

0

Wqvxdy

� �
x

�
Z l

0

Wqvxdy

� �
xþDx
�qvyWDx ð9:4-26Þ

in whichW and l are the width and length of the plate. Dividing byWDx, taking the limit

as this area goes to zero, and assuming q is constant gives

vy ¼ �
d

dx

Z l

0

vxdy ð9:4-27Þ

This overall mass balance can be supplemented by an x-momentum balance which

in symbolic terms becomes

0 ¼
Z l

0

Wqvxvxdy

� �
x

�
Z l

0

Wqvxvxdy

� �
xþDx


 �

þ ð0� qv0vyWDxÞ þ ðs0WDxÞ

ð9:4-28Þ

Dividing by WDx, and taking the limit as this area goes to zero, and using Equation

9.4-27 to eliminate vy, we find

� s0 ¼
d

dx

Z l

0

ðv0 � vxÞqvxdy ð9:4-29Þ

When y is greater than the boundary layer d, v0 equals vx.Moreover, the stress s0 is given
by Newton’s law of viscosity. Thus

l
qvx
qy y¼ 0

�� ¼ d

dx

Z d

0

ðv0 � vxÞqvxdy ð9:4-30Þ

The left-hand side of this equation comes from the shear force; the right-hand

side represents momentum convection, rewritten with the help of the overall mass

balance.
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We now combine Eqs. 9.4-25 and 9.4-30 to find a differential equation for the bound-

ary layer:

d
qd
qx
¼ 140

13

l

qv0

� �
ð9:4-31Þ

This is subject to the boundary condition

x ¼ 0, d ¼ 0 ð9:4-32Þ

Integration is straightforward:

d
x
¼ 280

13

� �1=2
xv

0q
l

 !�1=2
ð9:4-33Þ

Because we know d, we now know vx from Eq. 9.4-25. Thus we have solved the fluid

mechanics part of this example.

Next, we must calculate the smaller boundary layer for the concentration. We begin

by assuming this boundary layer is given by:

c1 ¼ a0 þ a1yþ a2y
2 þ a3y

3 þ � � � ð9:4-34Þ

We know this function must be subject to the boundary conditions

y ¼ 0, c1 ¼ c1i ð9:4-35Þ

q2c1
qy2
¼ 0 ð9:4-36Þ

y ¼ ‘, c1 ¼ 0 ð9:4-37Þ

qc1
qy
¼ 0 ð9:4-38Þ

The first two conditions indicate that both concentration and flux are constant at the

plate’s surface. The last two conditions apply deep into the fluid, where the plate has no

effect; they can be replaced by

y ¼ dc, c1 ¼ 0 ð9:4-39Þ

qc1
qy
¼ 0 ð9:4-40Þ
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where dc is the concentration boundary layer. Note that this distance is less than the

boundary layer d, caused by fluid drag. Using these conditions, we quickly discover

c1
c1i
¼ 1� 3

2

y

dc

� �
þ 1

2

y

dc

� �3
ð9:4-41Þ

This type of manipulation should seem familiar, for it is completely parallel to that used

to find the flow boundary layer. As before, we make a mass balance on the solute in

a control volume lWDx

0 ¼
Z l

0

Wc1vxdy

� �
x

�
Z l

0

Wc1vxdy

� �
xþDx


 �
þ ðN1WDx� 0Þ ð9:4-42Þ

Dividing by the area WDx and taking the limit as this area becomes small, we find

�N1 ¼ �n1 y¼ 0

�� ¼ � d

dx

Z l

0

c1vxdy ð9:4-43Þ

This equation is simplified in two ways: by replacing n1 with Fick’s law and by remem-

bering that c1 is zero from dc to l. The result is

D
qc1
qy y¼ 0

�� ¼ � d

dx

Z dc

0

c1vxdy ð9:4-44Þ

We combine Eqs. 9.4-25, 9.4-33, 9.4-41, and 9.4-44 to find a differential equation for the

concentration boundary layer. In this combination we assume that dc is smaller than d,
an approximation whose chief justification must be experimental. The result can be

written as

4

3
x
d

dx

dc
d

� �3
þ dc

d

� �3
¼ Dq

l

� �
ð9:4-45Þ

If dc is smaller, it must develop more slowly than d, and the boundary on this equation

is

x ¼ 0,
dc
d
¼ 0 ð9:4-46Þ

Integration leads to:

dc
d

� �3
¼ Dq

l

� �
ð9:4-47Þ

Combining this with Eq. 9.4-33 gives dc as a function of position.

The final manipulation in this analysis is the reformulation of the boundary layer as

the mass transfer coefficient. By definition,

N1 ¼ kðc1i � 0Þ ð9:4-48Þ
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and by Fick’s law,

N1 ¼ n1 y¼ 0

�� ¼: �D qc1
qy y¼ 0

�� ð9:4-49Þ

We have the concentration profile in terms of dc in Eq. 9.4-41, so

N1 ¼
3Dc1i
2dc

ð9:4-50Þ

Note again how this result parallels the film theory, with 2dc/3 equivalent to the film

thickness. Combining this with Eq. 9.4-33 and 9.4-47, we find

N1 ¼ 0:323
Dc1i
x

xv
0q
l

 !1=2
l

qD

� �1=3
ð9:4-51Þ

Comparing this with Eq. 9.4-48,

kx

D
¼ 0:323

xv
0q
l

 !1=2
l

qD

� �1=3
ð9:4-52Þ

We can average this result at a particular x over a length L to find

kavgL

D
¼ 0:646

Lv
0q

l

 !1=2
l

qD

� �1=3
ð9:4-53Þ

The prediction agrees with experiments for a flat plate when the boundary layer is

laminar, which occurs when the Reynolds number (xv0q/l) is less than 300,000.

Example 9.4-2: Calculation of mass transfer coefficients from boundary layer theory

Water flows at 10 cm/sec over a sharp-edged plate of benzoic acid. The dissolution of

benzoic acid is diffusion-controlled, with a diffusion coefficient of 1.00 � 10–5 cm2/sec.

Find (a) the distance at which the laminar boundary layer ends, (b) the thickness of the

flow and concentration boundary layers at that point, and (c) the local mass transfer

coefficients at the leading edge and at the position of transition.

Solution (a) The length before turbulence begins can be found from

xv
0q
l
¼ xð10 cm=secÞð1 g=cm3Þ

0:01 g=cm sec
¼ 300,000

Thus the transition occurs when x is 300 cm.

(b) The boundary layer for flow can be found from Eq. 9.4-33:

d ¼ 280

13

� �1=2
x

l

xv
0q

� �1=2

¼ 280

13

� �1=2
ð300 cmÞ 0:01 g=cm sec

ð300 cmÞð10 cm=secÞð1 g=cm3Þ

 !1=2
¼ 2:5 cm
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The boundary layer for concentration is given by Eq. 9.4-47:

dc ¼
Dq
l

� �1=3
d

¼ ð1:00 � 10�5cm2
=secÞð1 g=cm3Þ

0:01 g=cm sec

 !1=3
ð2:5 cmÞ ¼ 0:25 cm

The concentration boundary layer is thinner, just as was assumed in the derivation given

earlier.

(c) The local mass transfer coefficients can be found from Eqs. 9.4-52. At the sharp

edge of the plate, the local mass transfer coefficient is infinity. Where the transition to

turbulent flow occurs, the value is given by

k ¼ 0:323
D

x

xv
0q
l

 !1=2
l

qD

� �1=3
¼ 0:323

1:00 � 10�5cm2
=sec

300 cm

 !

� ð300,000Þ1=2 0:01 g=cm sec

ð1 g=cm3Þð1:00 � 10�5cm2
=secÞ

 !1=3

¼ 5:9 � 10�5cm=sec

Again, this result is for a solid–water interface.

9.5 Theories for Concentrated Solutions

By this time, we should recognize one omnipresent assumption in all of the

foregoing theories: the assumption of a dilute solution. Restricting our arguments to

dilute solution allows a focus on diffusion and a neglect of the convection that diffusion

itself can generate. In terms of this book, the restriction to dilute solution uses the simple

ideas in Chapter 2, not the more complex concepts in Chapter 3.

The restriction to dilute solution is less serious than it might first seem. While corre-

lations of mass transfer coefficients like those in Chapter 8 are often based on dilute

solution experiments, these correlations can often be successfully used in concentrated

solutions as well. For example, in distillation, the concentrations at the vapor–liquid

interface may be large, but the large flux of the more volatile component into the vapor

will almost exactly equal the large flux of the less volatile component out of the vapor.

There is a lot of mass transfer, but not much diffusion-induced convection. Thus con-

stant molar overflow in distillation implies a small volume average velocity normal to the

interface, and mass transfer correlations based on dilute solution measurements should

still work for these concentrated solutions.

In a few cases, however, these simple ideas of mass transfer fail. This failure is most

commonly noticed as a mass transfer coefficient k that depends on the driving force. In

other words, we define as before

N1 ¼ kDc1 ¼ Kðc1i � c1Þ ð9:5-1Þ
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where c1i is the concentration at the interface and c1 is that in the bulk. As expected, we

find that k is a function of Reynolds and Schmidt numbers. However, when mass transfer

is fast, kmay also be a function of Dc1.. Stated another way, if we double Dc1, we may not

double N1 even when the Reynolds and Schmidt numbers are constant.

These shortcomings lead to alternative definitions of mass transfer coefficients that

include the effects of diffusion-induced convection. One such definition is

N1 ¼ kðc1i � c1Þ þ c1iv
0

¼ kðc1i � c1Þ þ c1ið�V1N1 þ�V2N2Þ ð9:5-2Þ

in which k is now the mass transfer coefficient for rapid mass transfer, �Vi is the partial

molar volume of species i, and v0 is the velocity at the interface. Note that the convective

term is defined in terms of the interfacial concentration c1i, not in terms of some average

value.

We want to calculate this new coefficient, just as we calculated the dilute coefficient in

earlier sections of this chapter. In general, we might expect to repeat the whole chapter,

producing an entirely new series of equations for the film, penetration, and surface-

renewal, and boundary-layer theories. However, these calculations not only would be

difficult but also would retain the unknown parameters like film thickness and contact

time.

To avoid these unknowns, we adopt a new strategy, one that we shall use more later,

especially in the study of coupled mass transfer and chemical reaction. We assume that

from experiments we know the mass transfer coefficient in dilute solution. We then

calculate the corrections caused by fast mass transfer in concentrated solution, as

predicted by the film theory. In other words, we find the ratio of the mass transfer

coefficient in concentrated solution to that in dilute solution. The ratio found from

the film theory turns out to be close to that found from other theories. Thus the film

theory gives a reasonable estimate of the changes engendered by diffusion-induced

convection.

Tomake this calculation, imagine a thin film like that shown schematically in Fig. 9.5-1.

A mass balance on a thin shell Dz thick shows that the total flux is a constant:

0 ¼ �dn1
dz

ð9:5-3Þ

Integrating and combining with Fick’s law gives

n1 ¼ �D
dc1
dz
þ c1v

0 ¼ �Ddc1
dz
þ c1ð�V1n1 þ�V2n2Þ ð9:5-4Þ

The first term on the right-hand side is the flux due to diffusion, and the second term is

the flux due to diffusion-induced convection. This equation is subject to the boundary

conditions

z ¼ 0, c1 ¼ c1i ð9:5-5Þ

z ¼ l, c1 ¼ c1 ð9:5-6Þ
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In dilute solution, c1 is small, and the diffusion-induced convection is negligible, so Eq.

9.5-4 is easily integrated to give Eq. 9.1-2. As a result, the mass transfer coefficient in

dilute solution k0 is D/l, as stated in Eq. 9.1-3.

In concentrated solutions, c1 is large and no easy simplifications are possible. How-

ever, because n1 and n2 are constants, v
0 is as well, and Eq. 9.5-4 can be integrated to give

c1 � n1=v
0

c1i � n1=v
0 ¼ e

v
0
l=D ð9:5-7Þ

This equation can be rearranged:

N1 ¼ n1 z¼ 0j ¼ v
0

e
v
0
l=D � 1

 !
ðc1i � c1Þ þ c1iv

0 ð9:5-8Þ

If we compare this result with Eq. 9.5-1, we find

k ¼ v
0

e
v
0
l=D � 1

ð9:5-9Þ

We then can eliminate the unknown l by using the dilute-solution coefficient k0 given by

Eq. 9.1-3:

k
0 ¼ D

l
ð9:5-10Þ

Combining this with Eq. 9.5-9, we find

Gas

Bulk liquidp1

z = 0

c1

c1i

z = l
Fig. 9.5-1. The film theory for fast mass transfer. When mass transfer is rapid, the

formulations of mass transfer given in earlier parts of this chapter can break down. This is

because the diffusion process itself can generate convection normal to the interface. As a

result, the simple concentration profile shown in Fig. 9.1-1 for the film theory becomes more

complicated. Still, correction factors for fast mass transfer based on this simple theory turn

out to be reasonably accurate.

k

k
0 ¼

v
0
=k

0

e
v
0
=k

0

� 1
ð9:5-11Þ
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or, in terms of a power series,

k ¼ k
0

1� v
0

2k
0 þ

ðv0Þ2

12ðk0Þ2
� � � �

 !
ð9:5-12Þ

Note that the mass transfer coefficient k can be either increased or decreased in concen-

trated solution. If a large convective flux blows from the interface into the bulk, then v0 is

positive and k is less than k0. If a large flux sucks into the interface from the bulk, then v0

is negative andk is greater than k0. These changes aremade clearer by the following example.

Before proceeding to this example, we compare these film results with those found

from other mass transfer theories (Bird et al., 2002) in Fig. 9.5-2. All theories give similar

results. To be sure, more complex theories provide greater detail in the form of a

Schmidt-number dependence, but this is rarely a major factor. The corrections given

by the film theory are sufficient in many cases.

Example 9.5-1: Fast benzene evaporation Benzene is evaporating from a flat porous

plate into pure flowing air. Using the film theory, estimate how much a concentrated

solution increases the mass transfer rate beyond that expected for a simple theory. Then

calculate the resulting change in the mass transfer coefficient defined by Eq. 9.5-2. In

other words, find N1/k
0c1i and k/k0 as a function of the vapor concentration of benzene

at the surface of the plate.

Solution The benzene evaporates off the plate into air flowing parallel to the

plate. Thus the air flux n2 is zero. Moreover, if air and benzene behave as ideal gases,�
V1 ¼ �V2 ¼ c�1, and v0 ¼ n1/c. In addition, c1 ¼ 0. Thus from Eq. 9.5-7,

Penetration theory
Boundary-layer theory
Film theory

3

1

0.3
0.01 0.1 1.0

Flux toward
interface (sucking)

Flux away from
interface (blowing)

v0/k0

k
/k

0

Fig. 9.5-2. Correction factors for rapid mass transfer. This figure gives the mass transfer

coefficient k as a function of the interfacial convection v0. In dilute solution, v0 is small and

k approaches the slow mass transfer limit k0. In concentrated solution, k may reach a new

value, although estimates of this value from different theories are about the same. (The boundary

layer theory shown is for a Schmidt number of 1,000.)

N1 ¼ n1 z¼ 0j ¼ Dc

l
ln

c

c� c1i

� �
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This is equivalent to the result in Equation 3.3-11. In dilute solution, the flux will be

Dc1i/l, and k0 will be D/l; thus

N1

k
0
c1i
¼ � 1

x1i
lnð1� x1iÞ

Values for this flux are given in Fig. 9.5-3. The values of mass transfer coefficient can be

found by combining these results with Eq. 9.5-11:

k

k
0 ¼

N1=ck
0

e
N1=ck

0

� 1

¼ � 1� x1i
x1i

� �
lnð1� x1iÞ

Note that k/k0 is less than unity. Values of this ratio are also given in Fig. 9.5-3.

9.6 Conclusions

By this time, the catalog of theories given in this chapter may cloud perspective.

We may understand each step and each equation but still be confused about the argu-

ments used. We can gain insight by stepping back, reviewing our goals, and seeing what

we have accomplished.

Our goal was to predict the experimentally based correlations of mass transfer coef-

ficients. This prediction would then clarify the basis of mass transfer, giving us a physical

picture relating mass transfer and diffusion coefficients. Such a picture could potentially

show us how to make mass transfer faster and more efficient.

The different theoretical efforts to achieve this goal are summarized in Table 9.6-1.

These efforts predict mass transfer coefficients vary with diffusion coefficients to powers

ranging from 0.0 to 1.0, and clustering around 0.5. This is close to the average of the

various correlations. This implies that the physical picture of the penetration and

surface-renewal theories is superior to that of the film theory.

The theoretical efforts in Table 9.6-1 are much less resassuring when applied to the

variation of themass transer coefficient with velocity. Theories predict that mass transfer

3

1

0.3
0.01 0.1 1.0

k/k0

N1/k0c1i

0 20 40 60 80

Benzene temperature, °C

Interfacial mole fraction

Fig. 9.5-3. Fast benzene evaporation. This figure gives the fluxN1 and mass transfer coefficient k

for fast benzene evaporation through stagnant air relative to values expected for slow mass

transfer. These estimates are based on the film theory, although other estimates would be similar.
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varies with the 0 to 0.5 power of velocity. Because these theories range from thin films to

semi-infinite slabs, we expect experiments should fall somewhere between these limits.

They don’t: they show a higher velocity dependence. This is likely the result of uneven

flow, and so represents an opportunity for improving equipment. Indeed, more modern

tower packing, especially structured packing, does show smaller velocity variations than

that in older correlations. We will return to this situation in the discussions of industrial

operations in subsequent chapters.

Questions for Discussion

1. Theories of mass transfer try to predict the mass transfer coefficient k from

a variety of process variables. What velocity dependence do they predict?

2. What do theories predict for the variation of k with diffusion coefficient D?

3. How does the mass transfer coefficient vary with viscosity?

4. What variation of k with D and velocity v does the film theory predict?

5. Both the penetration theory and the surface-renewal theory presume diffusion

into a semi-infinite slab. What is the difference between them?

6. Mass transfer data often show larger variations of k with velocity v than

expected. Why?

7. Could the mass transfer coefficient k ever decrease as the velocity increases?

8. When will the Leveque limit of the Graetz–Nusselt problem (Equation 9.4-15)

be valid?

9. Will the absorption of NH3 from a concentrated vapor be affected by diffusion-

induced convection?

10. Will the mass transfer in differential distillation be affected by diffusion-induced

convection?

11. Does mass transfer of a concentrated solute in a solvent decrease or increase the

mass transfer coefficient?

12. If mass transfer theories aren’t accurate, what good are they?

Problems

1. As part of a study of O2 absorption in water in a small packed tower, you find that the

outlet concentration of O2 is 1.1 � 10–3 M. The partial pressure of O2 in the tower is
about 0.21 atm; the total area in the tower is 1.37 m2; the liquid flow rate is 1.62 l/min.
(The diffusion coefficient of oxygen in water is 1.8 � 10–5 cm2/sec.) Find (a) the film

or unstirred-layer ‘‘thickness,’’ (b) the ‘‘contact time,’’ and (c) the ‘‘average
residence time on the surface.’’ Assume no gas-phase resistance. Answer: 0.005 cm,
1.6 sec, 1.2 sec.

2. The mass transfer coefficient in gas–solid fluidized beds has been correlated with the

dimensionless expression [J. C. Chu, J. Kalil, andW.A.Wetteroth,Chem. Engr. Prog.,
49, 141 (1953)]

kp
G

l
qD

� �2=3

¼ 1:77
dG ~M

lð1� eÞ

� ��0:44
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where kp is the mass transfer coefficient (moles per (length)2 time pressure), G is
total convective flux (moles per (length)2 time pressure), d is particle diameter,

and e is bed porosity. You are studying 0.1-cm particles of coal burning in a
bed with e ¼ 0.42 fluidized by air at 1,250 �C. The air flux at 1.7 atm is 380 lb/ft2

hr. What is the film or unstirred-layer thickness around these particles? (H. Beesley)

Answer: 0.03 cm.

3. Copper is adsorbed from a stream flowing at 5.1 l/hr using a countercurrent flow of 23
lb/hr ion-exchange resin. The bed has a volume of 160 l. The resin area per volume is 40
cm2/cm3, and its density is 1.1 g/cm3. The equilibrium concentration of copper in

solution varies with that in the resin as follows:

The resin enters without copper. The copper solution flows in at 0.40 M, but leaves at

0.056M.What is the mass transfer coefficient and the penetration time into the beads?
(R. Contraras) Answer: 7 � 10–3 cm/sec and 0.2 sec.

4. Ether and water are contacted in a small stirred tank. An iodine-like solute is originally

present in both phases at 3 � 10–3 M. However, it is 700 times more soluble in ether.
Diffusion coefficients in both phases are around 10–5 cm2/sec. Resistance to mass
transfer in the ether is across a 10–2-cm film; resistance to mass transfer in the water
involves a surface renewal time of 10 sec. What is the solute concentration in the ether

after 20 minutes? Answer: 5 � 10–3 mol/l.

5. One handbook gives the following correlation for mass transfer into a flow fluid from
a single solid sphere:

kRTd

Dp
¼ 0:276

dvq
l

� �1=2 l
Dq

� �1=3
( )

In one set of experiments in air for a napthalene sphere 1.26 cm in diameter, the

function of the Reynolds and Schmidt numbers in braces equals 980. The diffusion
coefficient of napthalene in air is 0.074 cm2/sec. What is the film thickness for mass
transfer? What is the surface-renewal time?

6. Hikita et al. [Chemical Engr. Sci., 45, 437–442 (1990)] report Sherwood numbers for

a laminar wave-free falling film entering a wetted wall column. Their result is

kl

D
¼ 2ffiffiffi

p
p l

g

�
2

� �1=3
( )

�

Dt
�

� �1=2

c(solution), (mol/l) c(beads), (g Cu/g beads)

0.02 0.011
0.10 0.043
0.25 0.116
2.40 0.200
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where l is the liquid thickness, g is the acceleration due to gravity, and t* is a complex

dimensionless time. Briefly describe how or if this is consistent with your knowledge of
mass transfer.

7. To grow embryos, eggs must breathe, a process limited by oxygen diffusion through

pores in the shell. Data from a large number of birds, from warblers to ostriches,
suggest that

oxygen uptake,
cm

3
=daymmHg

� �
¼ 0:02 eggmass;gð Þ

and

pore area,mm
2

� 	
¼ 0:04 eggmass, gð Þ

Pore length varies from 0.1 to 1 mm and is correlated by

pore length,mmð Þ ¼ 0:03 eggmass, gð Þ1=2

[H. Rahn, A. Ar, and C. V. Paganelli, Sci. Amer., 240(2), 46 (1979)]. Do these results

make sense in terms of the film theory of mass transfer?

8. Develop the intermediate steps from which you can use the film theory for fast mass
transfer in concentrated solution. More specifically, (a) integrate Eq. 9.5-4 to find Eq.
9.5-7, (b) rearrange this result to give Eq. 9.5-8, and (c) show that Eq. 9.5-10 can be

expanded to give Eq. 9.5-11.

9. A large pancake-shaped drop of water loses 18% of its area in two hours of sitting at
24 �C in air at 10% relative humidity. The drop’s thickness is about constant. If the

same drop were placed in an 80 �C oven containing air at the same absolute humidity,
how long would it take to lose the same fraction of its area? (G. Jerauld).

10. In this book, we routinely assume that there is no slip at a solid–fluid interface (i.e.,
that at a stationary solid interface, the fluid velocity is zero). This leads to expressions

for mass transfer in laminar flow in short tubes like

k ¼ D

Cð43Þ
4v

0

9DRz

 !1=3

(see Eq. 9.4-15). However, for some polymer solutions, this assumption is not valid,

and the solutionwill slip along a smoothwall [A.M.Kraynik andW.R. Schowalter, J.
Rheology, 25, 95 (1981)]. Find the mass transfer coefficient in the case of total slip, and
calculate the ratio of this slippery case and the more common one.

11. Methylene chloride, a solvent used in the photographic and drug industries, is a major

pollutant and a potent carcinogen. Accordingly, there is currently a national effort
aimed at finding substitutes for this solvent. Failing this, there is interest in designing
packed towers using excess dry air to strip this solvent out of water and feed the

resulting vapor stream to an incinerator. The problem is that the methylene chloride
is to be stripped under conditions where large quantities of water evaporate simulta-
neously. In other words, the mass transfer of the methylene chloride may be altered by
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the mass transfer of the water. (a) Present equations giving the water flux under these

conditions. Use these to calculate the diffusion-induced convection. (b) Show how this
convection alters the flux of methylene chloride, even though the methylene chloride is
dilute. (c) To make this quantitative, assume the maximum water concentration in the

vapor is half the total concentration and that both mass transfer coefficients are equal.
What is the change in methylene chloride flux?
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CHAPTER 10

Absorption

The most common use of the mass transfer coefficients developed in Chapter 8

is the analytical description of large-scale separation processes like gas absorption and

distillation. These mass transfer coefficients can describe the absorption of a solute

vapor like SO2 or NH3 from air into water. They describe the distillation of olefins

and alkanes, the extraction of waxes from lubricating oils, the leaching of copper from

low-grade ores, and the speed of drug release.

Mass transfer coefficients are useful because they describe how fast these separations

occur. They thus represent a step beyond thermodynamics, which establishes the max-

imum separations that are possible. They are a step short of analyses using diffusion

coefficients, which have a more exact fundamental basis. Mass transfer coefficients are

accurate enough to correlate experimental results from industrial separation equipment,

and they provide the basis for designing new equipment.

All industrial processes are affected by mass transfer coefficients but to different

degrees. Gas absorption, the focus of this chapter, is an example of what is called

‘‘differential contacting’’ and depends directly on mass transfer coefficients. Many me-

chanical devices, including blood oxygenators and kidney dialyzers, are analyzed sim-

ilarly, as discussed in the next chapter. Distillation, the most important separation, is

idealized in two ways. In the first, it is treated as ‘‘differential contracting’’ and analyzed

in a parallel way to absorption, as described in Chapter 12. In the second idealization,

distillation is approximated as a cascade of near equilibrium ‘‘stages.’’ Such ‘‘staged

contacting,’’ is detailed in Chapter 13. The efficiency of these stages, included in that

chapter, again depends on mass transfer coefficients. Other separation processes, often

treated as either differential or staged contacting, are described in later chapters.

Understanding absorption is the key to all these operations. This understanding is

usually clouded by presenting the ideas largely in mathematical terms. All chemistry and

all simple limits are implied rather than explained. As a result, novices often understand

every step of the analysis but have a poor perspective of the overall problem. To avoid

this dislocation, we begin in Section 10.1 with a description of the gases to be absorbed

and the liquid solvents that absorb them. A few of these liquids depend only on the

solubility of the gas; many more liquids react chemically with the components of the gas.

Once this chemical problem is stated, we must decide two dimensions of the column:

how fat and how tall. (I know this sounds like an on-line dating service, but these really

are the questions.) To decide how fat a column is needed, we turn in Section 10.2 to the

physical equipment used. This physical equipment is simple, but it is constrained by the

fluid mechanics of the gas and liquid flowing past each other. These flows are compli-

cated, described by largely empirical correlations. The best strategy may be to follow the

turnkey procedure to resolve the fluid mechanics.

Once we know how fat the column should be, we turn to the issue of how tall. In

Section 10.3 we begin with the simple case of dilute absorption and in Section 10.4 extend

this to the parallel case of concentrated absorption. For the dilute solution case, we
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assume a linear isotherm, that is, that a solute’s solubility in liquid is directly propor-

tional to its partial pressure in the gas. This leads to a simple analytical solution. For the

concentrated case, we expect that the isotherm is nonlinear and we recognize that the

liquid and gas flows change within the equipment. Now the solution requires numerical

integration. These two sections mirror our earlier discussion of diffusion, where the

simple case of dilute diffusion in Chapter 2 gave way to the concentrated and more

general results in Chapter 3. Understanding the dilute case is the key to the concen-

trated case.

10.1 The Basic Problem

When you drive by a chemical plant at night, the most impressive part is the

lights. They outline every piece of equipment. When you look more closely, you can

often see three types of silhouettes. The tallest are the thin distillation columns, which are

described in Chapter 12 and 13. The next tallest are the fat gas absorption columns,

which are the subject of this chapter. Ironically, the shortest silhouettes are the chemical

reactors, charged with reagents to make the desired products.

This relative size has a moral: while the chemical plant would not exist without the

chemical reactors, the biggest expense – the biggest equipment – will often be in the

separation equipment. This separation equipment centers on distillation and gas absorp-

tion, the two most important unit operations. The analysis and the design of these

operations is central to the entire chemical industry.

I have found that distillation is better understood than gas absorption. I believe that

this is because everyone knows that distillation is how you concentrate ethanol from

water: Distillation is how you turn wine into brandy. In contrast, few know what gas

absorption is for. What specific gases are absorbed, anyway? What liquids absorb the

gases? What happens to the liquids afterwards? I find this ignorance ironic because of

increased environmental concerns. Gas absorption is the chief method for controlling

industrial air pollution, yet many with environmental interests remain ignorant of its

nature.

In this section, I want to begin to remove this ignorance. I want to list the gases that

we most often seek to remove and to give rough limits for the inlet and exit concen-

trations. I want to explain where these gas mixtures occur. I will do so qualitatively,

without equations; there are more than enough equations in later sections. I do want to

make one point now about cost. In these systems, the cost of absorption is usually log

linear. It costs twice as much to remove 99% as it does to remove 90%, and it costs three

times as much to remove 99.9% as it does to remove 90%. This increasing cost should be

a key in environmental legislation.

10.1.1 Which Gases are Absorbed

Most gas absorption aims at separation of acidic impurities from mixed gas

streams. These acidic impurities include carbon dioxide (CO2), hydrogen sulfide (H2S),

sulfur dioxide (SO2), and organic sulfur compounds. The most important of these are

CO2 and H2S, which occur at concentrations of five to fifty percent. The organic sulfur
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compounds include carbonyl sulfide (COS) andmerceptans, which are like alcohols with

a sulfur atom in place of the oxygen. Merceptans stink: For example, butyl merceptan is

responsible for the stench of skunks.

Other impurities vary widely. One common impurity is water, which can be removed

by either absorption or adsorption. Another is ammonia (NH3), which is basic, rather

than acidic. Sulfur trioxide (SO3), prussic acid (HCN), and nitrogen oxides (NOx) are of

concern because of their high chemical reactivity. Oxygen must be removed from some

reagent streams, and nitrogen can be absorbed to upgrade natural gas.

The occurrence of some of these streams and the targets for their removal are sum-

marized in Table 10.1-1. The ubiquitous presence of H2S reflects the fact that fossil fuels,

especially coal and petroleum, contain large amounts of sulfur. Moreover, as the world

becomes more industrialized, the targets will decrease. This is particularly true for SO2 in

flue gas, which is the source of acid rain.

10.1.2 Liquids Used as Absorbents

The choice of a liquid absorbent depends on the concentrations in the feed gas

mixture and on the percent removal desired. If the impurity concentration in the feed gas

is high, perhaps ten to fifty percent, we can often dissolve most of the impurity in

a nonvolatile, nonreactive liquid. Such a nonreactive liquid is called a physical solvent.

If the impurity concentration is lower, around one to ten percent, we will tend to use

a liquid capable of fast, reversible chemical reaction with the gas to be removed. Such

a reversibly reactive liquid is referred to as a ‘‘chemical solvent.’’ If the concentration of

the gas to be removed is lower still, we may be forced to use an adsorbent that reacts

irreversibly, an expensive alternative that may produce solid waste.

These generalizations may be clearer if we consider the case of H2S. If we have

a concentrated feed stream, we can dissolve the H2S in liquids like ethylene glycol or

propylene carbonate, which are physical solvents. At lower feed concentrations of H2S,

we would commonly use aqueous solutions of alkylamines. One common example is

Table 10.1-1 Gas treating in major industrial processes

Process
Gases to be
removed

Common targets
(% Acid gas)

Ammonia manufacture CO2, NH3, H2S <10 ppm CO2

Coal gas:
High Btu gas CO2, H2S, COS 500 ppm CO2; 0.01 ppm H2S
Low Btu gas H2S 100 ppm H2S

Ethylene manufacture H2S, CO2 <1 ppm H2S, 1 ppm CO2

Flue gas desulfurization SO2 90% removal

Hydrogen manufacture CO2 <0.1% CO2

Natural gas upgrading H2S, CO2, N2, RSH <4 ppm H2S; <1% CO2

Oil desulfurization H2S 100 ppm H2S

Refinery desulfurization CO2, H2S, COS 10 ppm H2S

Syn gas for chemicals
feedstock

CO2, H2S <500 ppm CO2; <0.01
ppm H2S
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monoethanol amine: H2NCH2 CH2 OH. As you can see, this is like ammonia but with

one proton replaced with ethanol. Such species react reversibly with acid gases like H2S,

so their aqueous solutions are chemical solvents. Finally, if the H2S is present only in

traces, we can remove these traces with an aqueous solution of NaOH. This will produce

a waste stream of NaHS, which is discarded.

Gas absorption processes produce a liquid containing high concentrations of the

impurity. This commonly is removed – stripped – by heating the liquid so that the

impurity bubbles out. Often, this removal is accelerated by pumping an inert gas –

a sweep stream – through the hot liquid. Recently, chemical companies have been

bothered by the high cost of heating the large volumes of absorbing liquids. To avoid

these costs, they have begun using absorbents whose chemical reactivity is pressure

sensitive. Because swings in pressure can be less expensive than swings in temperature,

I expect that the switch to pressure-sensitive absorbents will continue.

Both temperature and pressure swings yield a concentrated impurity requiring dis-

posal. The disposal is again illustrated by the example of H2S. The H2S is normally

stripped from amines by heating; the concentrated H2S stream is split into two. The first

stream is burned:

H2S þ
3

2
O2 ! SO2 þ H2O

This product gas is reacted catalytically with the H2S remaining in the second stream:

SO2 þ 2H2S ! 3S þ 2H2O

In these two steps the H2S is converted into solid sulfur which can be sold. This ‘‘Claus

process’’ has been the key to sulfur recovery for almost a century.

Thus gas absorption centers on removing an impurity from a gas stream into a liquid.

In the rest of this chapter, we will discuss the analysis and design of equipment for this

task. Our discussion will be entirely on physical solvents, that is, on nonreactive liquids.

Gas absorption in physical solvents is perhaps twenty times less common than absorp-

tion in chemical solvents, that is, in reacting liquids. We focus our discussion on physical

solvents because they are much simpler; we will explore chemical solvents in Chapter 17.

10.2 Absorption Equipment

Gas absorption at an industrial scale is most commonly practiced in packed

towers like that shown in Fig. 10.2-1. A packed tower is essentially a piece of pipe set on

its end and filled with inert material or ‘‘tower packing.’’ Liquid poured into the top of

the tower trickles down through the packing; gas pumped into the bottom of the tower

flows countercurrently upward. The intimate contact between gas and liquid achieved in

this way effects the gas absorption.

Analyzing a packed tower involves both mass transfer and fluid mechanics. The mass

transfer, detailed in Section 10.3, determines the height of the packed tower. In other

words, it determines how tall the tower needs to be. This mass transfer is described as

molar flows, partly because of the chemical reactions that often occur. The fluid me-

chanics, described in this section, determines the cross-sectional area of the packed
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tower. The fluid mechanics is described as mass flows, a consequence of the physics that

control the process. It controls how fat the tower needs to be. To describe the physics,

we discuss the tower packing, the flows themselves, and the estimation of the tower’s

cross-section.

10.2.1 Tower Packing

The fluid mechanics in the packed tower is dominated by the inert material in

the packed tower. This material can be small pieces dumped randomly or larger struc-

tures carefully stacked inside the tower. Random packing is cheaper and common;

structured packing is more expensive but more efficient. The efficiency is typically im-

proved by around 30%, a significant gain when producing commodity chemicals at low

margins.

Typical random packings, shown in Fig. 10.2-2, replace the crushed material used in

early chemical processing. The earliest packing, the Raschig ring, was modeled on the

necks of broken wine bottles available along the lower Rhine River. Tower packings try

to permit both high fluid flow and high interfacial area between the gas and the liquid.

These goals are in conflict: High fluid flow implies a few large channels through the

tower, and high interfacial area requires many small channels. Thus tower packings are

compromises, developed with 80 years of empiricism. The Raschig rings and the Berl

saddles are described as first-generation packings, the Intalox saddles and Pall rings are

second generation, and the Nutter rings are third generation. All aim at the same goal:

fast flow with big area.

Typical structured packings consist of larger assemblies, which often look like louvers

and are shown in Fig. 10.2-3. These larger structures are stacked inside the column rather

than dumped into it. In some cases, a single large assembly will be lowered into the

column as a unit. Structured packing seems to give an interfacial area between gas and

liquid which is about the same as that through random packing. However, it gives much

more even flows so that both gas and liquid move past each other countercurrently with

less bypassing.

Gas out

Liquid in

Gas in
Liquid out

Fig. 10.2-1. A packed tower used for gas absorption. A gas mixture enters the bottom of the

tower and flows out the top. Part of this mixture is absorbed by liquid flowing countercurrently,

from top to bottom.

308 10 / Absorption



I find that I can appreciate the differences between random and structured packing by

looking at boxes of pasta in the supermarket. The Raschig rings are like penne or

rigatoni; the Berl saddles are like farfalle and orecchiette; the Pall and Nutter rings

are more like rotari and radiatori. All pasta are intended to catch the sauce, to spread

it out, and to retard its flow. Random packings try to spread out the liquid, giving a large

interfacial area.

Structured packing is like lasagna. Interestingly, a 500 g box of lasagna is smaller than

500 g boxes of the other random types. This is because the spaces between the lasagna

noodles are more regular, not random; and so the box is more evenly and efficiently

packed. The same regular spacing in structured tower packing is a main cause for its

improved absorption efficiency.

10.2.2 Tower Fluid Mechanics

The liquid and gas flows through these tower packings cannot be arbitrarily set

but must be adjusted within a narrow, empirically defined range. To see why this range is

important, imagine you have a tall glass filled with ice. You blow air into the bottom of

Raschig ring Berl saddle Intalox saddle

Pall ring Nutter ringHy-Pak ring

Fig. 10.2-2. Six types of random packing. These packings aim to resolve the conflicting goals

of fast flow and large interfacial areas.

Fig. 10.2-3. Typical structured packing. More expensive packings like this offer excellent

mass transfer and greater capacity.
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the glass through a straw, and you pour cola into the glass at the same time. You watch

what happens.

If you pour the cola at a very slow rate, it won’t flow evenly downward through the ice

but will run down in only a few places. Such a flow, called ‘‘channeling,’’ occurs when the

gas or liquid flow is much greater at some points than at others. Such channeling is

undesirable, for it can substantially reduce interfacial area and hence mass transfer. It is

usually minor in crushed solid packing and is minimal in commercially purchased ran-

dom packing, except at very low liquid flows.

If you now pour the cola faster (remember to keep blowing), you get a case where the

cola flows through all the ice more evenly, with your breath bubbling up through it. The

conditions where these relatively even flows begin, called ‘‘loading,’’ is a requirement for

good mass transfer. When loading begins, the flows may slightly decrease, but the

dramatic increase in the gas–liquid area means that mass transfer is fast. You almost

always want to operate a packed tower in this loaded condition.

However, if you now begin blowing much harder, you will push in so much air that

the cola can’t flow into the column, but splashes backward, out of the top of the glass.

This condition is called ‘‘flooding.’’ It not only reduces mass transfer but also decreases

the cola that is flowing into the glass.

These same three conditions – channeling, loading, and flooding – can exist inside

of any packed tower. You will want to use liquid flows that are high enough to avoid

channeling and achieve loading. You will want to use gas flows that are low enough to

avoid flooding. But you will also want flows that are large enough for a specific task, for

example, large enough to treat 600 m3/min of flue gas. You must choose the packing and

the shape of the packed tower to allow these flows without flooding.

The constraint of flooding is especially important because it governs the maximum

flows that can pass through the column. We can see why flooding occurs by considering

some special cases. First, imagine that at a given gas flow we increase the liquid flow

causing thicker liquid films on the packing and, hence, smaller gaps between the packing.

The gas pressure builds so that the liquidmay suddenly start to flow backwards, flooding

the column. The second special case is the reverse, where at constant liquid flow we in-

crease the gas flow. This increases drag on the liquid, slowing its flow, and increasing the

liquid thickness. Again, the liquid plugs the gaps between the packing, and the tower floods.

10.2.3 Tower Cross-Sectional Area

At this point, we should restate our objective. We aim to analyze industrial gas

absorption in packed towers. This analysis depends most strongly on mass balances and

rate equations given in subsequent sections of this chapter. It also depends on the fluid

mechanics within the tower, which is the subject of this section.

In most cases, the absorption process that interests us will have specified flows of

gases and liquids. These flows must load but not flood the tower. They normally will

cause a pressure drop of around 1.0 in H2O per ft packing. We achieve these conditions

by changing the tower’s cross-sectional area. This changes the gas and liquid fluxes, that

is, the amount of fluid per cross-sectional area per time. By increasing the cross-sectional

area at constant flows, we decrease the pressure drop, the fluxes, and the velocities of the

gas and liquid flowing past each other.
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The correlations often used for estimating tower cross-sections are shown in Fig.

10.2-4. This figure is tricky, a mixture of dimensionless and dimensional quantities.

The abscissa, often called the ‘‘flow parameter,’’ is dimensionless:

L
00

G
00

ffiffiffiffiffiffi
qG

qL

r
¼

1

2
qLv

2
L

1

2
qGv

2
L

264
375
1
2

ð10:2-1Þ
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Fig. 10.2-4. Correlation for estimating tower cross-section. The figure plots the capacity factor

on the ordinate vs. the flow parameter on the abscissa for random packing (a) and for

structured packing (b).
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where L$(= qLvL) and G$(= qGvG) are the mass fluxes of liquid and gas, respectively;

qL and qG are the corresponding densities; and vL and vG are the superficial velocities.

Two points about this abscissa merit mention. First, while L$ and G$ are mass fluxes

and hence depend on the tower’s cross-sectional area, their ratio L$/G$ does not depend

on this area. Second, the flow parameter is a measure of relative kinetic energy: It is the

square root of the ratio of the liquid’s kinetic energy to that in the gas.

For the random packing described by Figure 10.2-4(a), the capacity factor is defined as

capacity
factor

� �
¼ G0F

0:5
�
0:05

qL � qGð Þ0:5
ð10:2-2Þ

whereG$ is the vapor flux, in lb/ft2 sec; F is the packing factor, in ft�1; � is the kinematic

viscosity, in centistokes, and qL and qG are the liquid and vapor densities, in lb/ft3. The

packing factorF, which is roughly inversely proportional to the packing size, is tabulated

for some common packings in Table 10.2-1.

For the structured packing shown in Figure 10.2-4(b), the corresponding definition

of the capacity factor is

capacity
factor

� �
¼ G0

qL � qGð Þ0:5
ð10:2-3Þ

whereG$, qL and qG have the same definitions and the same units. I cannot stress enough

that these definitions and these figures are not dimensionless but must be used with the

particular units given. This melange of mixed metric and English units is a historical

artifact born in the largely American development of the petrochemical industry.

Table 10.2-1 Packing factors F and areas per volume (per foot) for random packings

Nominal packing size (in)

1

2

5

8

3

4
1 1

1

4
1
1

2
2 3

Raschig rings 580 380 255 179 93 65 37
(ceramic) (111) (100) (80) (58) (38) (28) (19)
Raschig rings 300 170 155 115
(1/32 in metal) (128) (84) (63)
Raschig rings 410 300 220 144 83 57 32
(1/16 in metal) (118) (72) (57) (41) (31) (21)
Berl saddles 240 170 110 65 45
(ceramic) (142) (82) (76) (44) (32)
Pall rings 81 56 40 27 18
(metal) (104) (63) (39) (31)
Pall rings 95 55 40 26 17
(plastic) (104) (63) (39) (31) (26)
Intalox saddles 200 145 92 52 40 22
(ceramic) (190) (102) (78) (60) (36)
Hy-Pak rings 45 29 26 16
(metal) (69) (42) (33) (31)

Note: The areas per volume are given in parentheses. (Abstracted from Strigle, 1987.)
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The physical significance of the ordinate is obscure. We recognize that for random

packing it is dominated by the ratio

G0F
0:5

qL

}

1

2
qGv

2
G

qLg packing sizeð Þ

264
375
1=2

ð10:2-4Þ

Where g is the acceleration due to gravity. This suggests that the ordinate can be

regarded as the ratio of the kinetic energy in the gas to the potential energy in the liquid.

The other factors, like �0.05 in Eq. 10.2-2, are later empiricisms. The history of the

correlation is also curious. The original form, due to Sherwood, Shipley, and Holloway,

gives only the flooding limit. The curves at constant pressure drop were added by Leva.

More recently, many have quarreled over the form, correctly feeling that something with

a better-defined physical significance would be preferable. While I agree, I recognize that

Fig. 10.2-4 is the starting point for most who are working on absorption design, so I have

retained it here. More recent work suggests using a simple expression for random pack-

ing at this limit:

Dp floodingð Þ ¼ 0:12 F
0:7 ð10:2-5Þ

whereDp(flooding) is the pressure drop at flooding, again in H2O/ft packing; and F is the

packing factor, in ft�1.

To use Fig. 10.2-4 to find the tower’s cross-sectional area, we must first know the gas

and liquid flows and hence the flow parameter on the figure’s ordinate. After we choose

a packing from the myriad available, we want to choose a pressure drop in the tower. In

conventional practice, absorbers are designed to operate at pressure drops of 0.2 to 0.6 in

H2O/ft. The lower pressure drop will minimize foaming. Alternatively, we can calculate

the column’s performance at flooding and arbitrarily choose to operate at a gas flux

equal to half the flooding value. In both this method and the previous one, wemust make

sure to design the tower for the point where the maximum flows of gas and liquid occur.

For absorption, this is normally at the tower’s bottom; for stripping, it is normally at

the top.

Using Fig. 10.2-4 for estimating the tower’s cross-section is straightforward though

complicated. Remember this figure has two major limitations. First, it implies that at

large gas flows, the cross-sectional area should become independent of liquid flux. It is

simply flow through a packed bed. Second, this figure is largely based on liquid and gas

density differences like those of water and air. These tend to give optimistic predictions

for nonaqueous systems (i.e., smaller than optimal tower cross-sections). Thus in non-

aqueous systems, like those involving ethylene and propylene, you may need different

methods. Again, make early estimates with the methods in this section, and then discuss

your case with equipment suppliers.

Example 10.2-1: Estimating a tower cross-section You are planning to reduce the 2%

carbon dioxide in 23 lb/sec of a natural gas stream using absorption in aqueous diethyl-

amine flowing at 40 lb/sec. You want to use either 1½ inch Raschig rings or 1½ inch Pall
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rings. In either case, you want to design for a pressure drop of 0.25 in H2O/ft, so that

foaming is minimized. Under operating conditions, the densities of the gas and the liquid

are 2.8 and 63 lb/ft3, respectively; the liquid’s viscosity is 2 centistokes.

What should the tower’s cross-sectional area be?

Solution This problem illustrates the routine use of Fig. 10.2-4. We first

calculate the flow parameter:

L0

G0

ffiffiffiffiffiffi
qG

qL

r
¼ 40 lb=sec

23 lb=sec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:8 lb=ft

3

63 lb=ft
3

s
¼ 0:37

From Fig. 10.2-4, the capacity factor is thus

capacity

factor

" #
¼ G$F0:5

�
0:05

qL � qGð Þ0:5

0:92 ¼
G$

93

ft

� �0:5

2 csð Þ0:05

63 � 2:8 lb=ft
3

� �0:5
G0 ¼ 0:72 lb=ft

2
sec

Thus the tower has a cross-section of (23/0.72) ¼ 32 ft2. This corresponds to a diameter

of 6.4 ft2. For the Pall rings, the packing factor is 40 ft�1, so the diameter is smaller,

about 5.2 ft. However, while there is little difference in the tower diameter for these two

packings, there may be a considerable change in the tower height.

10.3 Absorption of a Dilute Vapor

We now return to the analysis of gas absorption in a packed tower. In many

cases, we will want to use the analysis to estimate the tower’s height. In other cases, we

will want to use our analysis to organize experimental results as mass transfer coeffi-

cients. In any case, we will build on the fluid mechanics described in the earlier section,

a description that allowed estimating the tower’s cross-section.

To simplify our analysis, we will begin with the case of a dilute solute vapor absorbed

from a gas into a liquid. This focus on the dilute limit makes the physical significance

clearest. Because the vapor is dilute, the molar gas flux G and the molar liquid flux L

are both constants everywhere within the tower. With this simplification, we then need

three key equations:

(1) a solute mole balance on both gas and liquid,

(2) a solute equilibrium between gas and liquid, and

(3) a solute mole balance on either gas or liquid.

These three keys are traditionally called an operating line, an equilibrium line, and a rate

equation, respectively.
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10.3.1 Analytical Description of Dilute Absorption

Webegin with amole balance on the solute in both gas and liquid.Wemake this

balance on a small tower volume ADz located at position z in the tower:

solute entering

minus that leaving

in the gas

0B@
1CA ¼ solute entering

minus that leaving

in the liquid

0B@
1CA

GA y zþDzj � y zjð Þ ¼ LA x zþDzj � x zjð Þ

ð10:3-1Þ

where y and x are the mole fractions in the gas and liquid, respectively. When we divide

by the volume ADz, we find

G
dy

dz
¼ L

dx

dz
ð10:3-2Þ

Rearranging,

dy

dx
¼ L

G
ð10:3-3Þ

subject to (at z ¼ 0),

x ¼ x0, y ¼ y0 ð10:3-4Þ

where the subscript 0 indicates the streams at the top of the tower. Remember that the

gas is leaving and the liquid is entering at this position. Integrating,

y ¼ y0 þ
L

G
x � x0ð Þ ð10:3-5Þ

This first key equation, which is nothing more than a mole balance, is called the ‘‘oper-

ating line.’’

The second key equation for analyzing absorption is an equilibrium relation for the

solute in the gas and in the liquid. Because the solute is dilute, this has the form

y* ¼ mx ð10:3-6Þ

where m is closely related to a Henry’s law constant. This relation, briefly discussed in

Section 8.5.3, is a frequent source of error because the units of the concentrations are not

carefully considered. Remember also that y* does not exist at the same tower position as

x. In fact, x is the actual liquid mole fraction, y* is the gas mole fraction which would be

in equilibrium with that liquid, and y is the actual gas mole fraction. This second key

equation is called the ‘‘equilibrium line.’’

The third key relation, the rate equation, is found by another solute mole balance on

the differential volume ADz but on the gas only:

solute
accumulation

� �
¼ solute flow

in minus that out

� �
� solute lost

by absorption

� �
ð10:3-7Þ
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In symbolic terms, this can be written as

0 ¼ GA y zþDzj � y zjð Þ � Kya ADzð Þ y � y*ð Þ ð10:3-8Þ

in which a represents the packing area per volume and Ky is the overall gas phase mass

transfer coefficient. Values for a are given in parentheses for a variety of common

packings in Table 10.2-1. Again, we divide this equation by the volume ADz and take

the limit as this volume goes to zero:

0 ¼ G
dy

dz
� Kya y � y*ð Þ ð10:3-9Þ

This rate equation, a mole balance on the solute in the vapor, is the third key in our

analysis.

We now complete our analysis by integrating Eq. 10.3-9. To do so, we first combine

it with the equilibrium line in Eq. 10.3-6 and rearrange the result:

l ¼
Z l

0

dz ¼ G

Kya

Z yl

y0

dy

y � y*
¼ G

Kya

Z yl

y0

dy

y � mx
ð10:3-10Þ

where l is the tower height. We further combine this with the operating line, Eq. 10.3-5:

l ¼ G

Kya

Z yl

y0

dy

y � m x0 þ
G

L
y � y0ð Þ

� � ð10:3-11Þ

The important result can be written in a variety of useful forms:

l ¼ G

Kya

1

1 � mG

L

0B@
1CA ln

yl � y
l
*

y0 � y
0
*

 !264
375

¼ G

Kya

1

1 � mG

L

0B@
1CA ln

yl � mxl
y0 � mx0

� �264
375

ð10:3-12Þ

Solving for the height l is as easy as plugging in the numbers.

This result merits reflection. First, although the analysis repeatedly exploits the as-

sumption of dilute solution, the extension to concentrated solutions is straightforward.

Second, we have implied mass transfer of a solute vapor from a gas into a liquid; such

a process is called ‘‘gas scrubbing.’’ We can repeat the identical analysis for mass transfer

of a vapor from a liquid into a gas; such a reversed process is called ‘‘stripping.’’ Third,

we have written the preceding equations in terms of gas-phase mole fractions; we could

write completely analogous equations for liquid-phase mole fractions:

l ¼ L

Kxa

1

1 � L
mG

 !
ln

xl � yl =m

x0 � y0 =m

� �" #
ð10:3-13Þ

Note that the overall mass transfer coefficient is different in Eqs. 10.3-12 and 10.3-13.

Understanding the difference between the coefficients takes care.
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10.3.2 Alternative Descriptions of Dilute Absorption

Equations 10.3-12 and 10.3-13 are the basis of most modern analyses of dilute

absorption. They are especially appropriate for chemical solvents because reactions of

the absorbing solute can be incorporated into the overall mass transfer coefficient.

However, the equations above are usually supplemented in two alternative ways.

The first supplement to these equations is to look at the operating line and the

equilibrium line in graphical terms, as shown in Figure 10.3-1. The operating line, which

is of course the mole balance, is a plot of x vs. y, a straight line with slope (L/G). One end

of the line, at the top of the column, is at x0; y0ð Þ; the other end of the line, at the bottom

of the column, is at xl; ylð Þ. The equilibrium line, which is an equilibrium energy balance,

is a plot y* vs. x. It starts at the origin and has slopem. At a given value of x, the distance

between operating and equilibrium lines (y – y*) is the driving force for the mass trans-

fer. This type of construction is extremely valuable because it shows visually what the

equations describe more abstractly.

Plots of operating and equilibrium lines are especially useful because they illustrate

features of the separation which may be harder to see algebraically. For example, imag-

ine that the species being absorbed ionizes when it dissolves in the liquid as, for example,

ammonia may do. Then the equilibrium line may be nonlinear, and the distance between

operating and equilibrium lines may be much smaller in some ranges. Such a ‘‘pinch,’’

which can make the separation more difficult, is easy to see on a plot like that in Fig.

10.3-1.

This type of plot is also useful for anticipating the effect of changing flows in the

column. For example, we will often design our process so that the liquid flow is about

1.5 times the minimum liquid flow required. This minimum liquid flow would normally

be so slow that it would exit in near equilibrium with the entering gas. Such a flow is

x

(x0,y0)

(x0,y0*)

(xl,yl)

(xl,yl*)

Operatin
g lin

e; s
lope L/G

Equilibrium line; slope m

y 
or

 y
*

Fig. 10.3-1. Graphical representation of absorption. The vertical difference between the oper-

ating and equilibrium line is (y – y*), the driving force for absorption.
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easily seen in Fig. 10.3-1 as the dashed line. Of course, if we did use such aminimum flow,

we would need an infinitely tall tower. Such a flow is impractical in practice but often

useful as a basis for design. This type of graph is an important supplement to the

equations.

The second way to supplement Eqs. 10.3-12 and 10.3-13 breaks them into a column

efficiency and a separation difficulty. In particular, Eq. 10.3-12 can be rearranged as

l ¼ HTU �NTU ð10:3-14Þ

where HTU is a height of a transfer unit defined as

HTU ¼ G

Kxa
ð10:3-15Þ

and NTU is a ‘‘number of transfer units’’ given by

NTU ¼ 1

1 � mG

L

ln
yl � mxl
y0 � mx0

ð10:3-16Þ

Other definitions of HTU and NTU can be based on other forms of the overall mass

transfer coefficients. The use of ‘‘transfer units’’ is a rough parallel with the use of

‘‘stages’’ in distillation or the term ‘‘theoretical plates’’ in chromatography. As such, it

is a historical genuflection by the more recent absorption analyses in the direction of the

older equilibrium stage separation analysis.

The use of HTUs and NTUs does have a sound physical interpretation. The NTUs

are a measure of the difficulty of the separation, of the distance the final streams will

be from equilibrium. If the NTUs are large, the separation is hard. The HTUs, on the

other hand, give an idea of the efficiency of the equipment. A small HTU is a sign of

a good tower, implying, for example, a large interfacial area per volume or fast mass

transfer. Moreover, because the overall mass transfer coefficient often depends on

the velocity, the HTU can be largely independent of flow over the practical range: It

tends to be between 0.3 m and 1.0 m. Learn to use Eq. 10.3-12 and the idea of an HTU

interchangeably.

Example 10.3-1: Carbon dioxide absorption A packed tower uses an organic amine to

absorb carbon dioxide. The entering gas, which contains 1.26mol%CO2, is to leave with

only 0.04 mol% CO2. The amine enters pure, without CO2. If the amine left in equilib-

rium with the entering gas (which it doesn’t), it would contain 0.80 mol% CO2. The gas

flow is 2.3 mol/sec, the liquid flow is 4.8 mol/sec, the tower’s diameter is 40 cm, and the

overall mass transfer coefficient times the area per volume Kya is 5 � 10–5 mol/cm3 sec.

How tall should this tower be?

Solution We first make an overall carbon dioxide balance to find the exiting

liquid concentration:

GA yl � y0ð Þ ¼ LA xl � x0ð Þ
2:3 mol=sec 0:0126 � 0:0004ð Þ ¼ 4:8 mol=sec x0 � 0ð Þ

x0 ¼ 0:00585
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Next we find the equilibrium constant

y0 ¼ mx0*

0:0126 ¼ m 0:0080ð Þ
m ¼ 1:58

Now we insert the values given into Eq. 10.3-12:

l ¼ 2:3 mol=sec
p
4

40 cmð Þ2
h i

5 � 10�5 mol=cm
3
sec

1

1 � 1:58 2:3ð Þ
4:8

0B@
1CA

264
ln

0:0126 � 1:58 :00585ð Þ
0:0004 � 1:58 0ð Þ

� ��
¼ 3:2 m

The meaning of this result is underscored by its graphical representation in Fig. 10.3-2.

Note in particular the concentrations at the top and the bottom of the column. Note how

the driving force (y – y*) is smallest at the top, where the CO2 free solution enters.

Example 10.3-2: Oxygen stripping You are testing a new packed tower to strip oxygen

from water using excess nitrogen. The oxygen-free water is to be used in microelectric

manufacture. Your tower is small, about 2 m high and 0.6 m in diameter, filled with 1-in

Hy-Pak rings. You expect the value ofmG for oxygen is large and the dominant transfer

coefficient in the liquid will be 2.2 � 10–3 cm/sec. The water flow is to be 300 cm3/sec. How

much oxygen can we remove with this tower?

Solution To begin, we recognize that because the nitrogen gas flow is in

excess, y0 and yl are zero, and (L/mG) is much less than one. As a result, the operating

line is horizontal, as shown in Figure 10.3-3. Because we are now dealing with stripping,

the operating line is below the equilibrium line. This is because the solute oxygen is being

transferred from liquid to gas. In the case of gas absorption in Figures 10.3-1 and 10.3-2,

the operating line lay above the equilibrium line, showing that solute was transferred

from gas to liquid.

x
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Fig. 10.3-2. Carbon dioxide absorption. The upper and lower lines are again the operating and

equilibrium lines.

10.3 / Absorption of a Dilute Vapor 319



In this case, Eq. 10.3-13 becomes

l ¼ L

Kxa
ln

x0
xl

� �� �
From Table 8.2-2 and the fact that mass transfer in the liquid is controlling,

Kx = kx = kLcL

From Table 10.2-1, a is 60 ft2/ft3, or 2.26 cm2/cm3. Thus

200 cm ¼
300 cm

3
=sec

� �
cL

p
4

60 cmð Þ2 2:2 � 10�3 cm=sec cL
ln

x0
xl

� �
xl
x0
¼ 8 � 10�5

We’re removing over 99.9% of the oxygen. An interesting exercise is to check the

nitrogen flow implied by this calculation.

Example 10.3-3: Alternative forms of absorption equations Show that Eq. 10.3-12 can be

rewritten in the form

l ¼ vG
KGa

1

1 � HvG
vL

ln
c1G,0 �Hc1L,l
c1G,0 �Hc1L,l

� �2664
3775

where vG and vL are the superficial velocities of gas and liquid, where KG is defined by

N1 ¼ KG c1G � c1G*ð Þ

x

slope L/G = 0

slo
pe

 m

y 
or

 y
*

Fig. 10.3-3. Oxygen stripping. Because oxygen is being transferred from liquid to excess gas, the

driving force is now (y* � y), and the operating line is below the equilibrium line.
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and where the Henry’s law constant H is given by

c1G* ¼ Hc1L

Solution We first recognize that

G ¼ cGvG

L ¼ cLvL

where cG and cL are the total molar concentrations in gas and liquid, respectively. We

then rewrite Eq. 10.3-6 as

c1G*

cG
¼ m

c1L
L

so

H ¼ mcG
cL

Finally, from Table 8.2-2,

Ky = KGcG,

Inserting the values of m, Ky, G, and L into Eq. 10.3-12 gives the desired result.

10.4 Absorption of a Concentrated Vapor

In this section, we want to extend the preceding analysis to the case of a con-

centrated vapor. As before, we plan to accomplish this absorption using a packed tower.

As before, we must decide on an appropriate tower packing and on liquid and gas fluxes

that will avoid flooding. As before, we depend on a variety of mole balances, though now

for concentrated solutions.

Before we develop these new mass balances, we can benefit by looking at our analysis

for a dilute vapor in a somewhat different way. This analysis depended on three key

equations. The first key equation, the operating line, came from amole balance for solute

in both gas and liquid. The second key equation, the equilibrium line, gave the concen-

tration which would exist if the gas were in equilibrium with the liquid. The third key

equation involved the rate of mass transfer and was a mass balance written on only one

phase, which in our case was the gas.

We could represent the first and second key equations graphically, as shown in Fig.

10.4-1. The operating line in this figure plots y vs. x; and the equilibrium line plots y* vs.

x. Thus we can read off values of the driving force (y – y*) and integrate the rate

equation. Of course, in the dilute case, all the equations are linear so integration is easily

analytical.

For concentrated absorption, the analysis depends on the same three key equations.

However, because a lot of solute is transferred, the gas fluxG gets smaller as the gas flows

up the column, and the liquid flux L gets larger as it flows down the column. As a result,
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the slope of the operating line L/G changes as we go from bottom z ¼ lð Þ to the top of

the column z ¼ 0ð Þ. The operating line is no longer linear.

For concentrated absorption, the equilibrium line reflects complex chemistry and so is

normally nonlinear. This complexity may include solute ionization which can cause the

plot of y* vs. x to curve upwards. It may include either positive or negative deviations to

Raoult’s law, which may cause the equilibrium line to curve in either direction.

Calculating the tower height for concentrated absorption again involves finding val-

ues of the driving force (y – y*) and plugging them into the rate equation. The only

change is that the driving force now varies in a more complicated way, as suggested by

Fig. 10.4-2. Everything else is the same, although the integration of the rate equation

must now be numerical.

We can put these ideas on a somewhat more quantitative basis by making a mole

balance on both gas and liquid. The result is a parallel to Eq. 10.3-2:

0 ¼ � d

dz
Gyð Þ þ d

dz
Lxð Þ ð10:4-1Þ

Before, the flux of gasG and that of liquid Lwere nearly constant because the absorbing

species was always dilute. Now, however, we expect that

G0 ¼ G 1� yð Þ ð10:4-2Þ

where G0 is the flux of the nonabsorbing gas. For example, if we are using water to

absorb SO2 out of air, G0 is the flux of air. Similarly,

L0 ¼ L 1� xð Þ ð10:4-3Þ

where L0 is the flux of the nonvolatile liquid. When we combine these equations and

integrate, we find

y ¼

y0
1 � y0

þ L0

G0

x

1 � x
� x0

1 � x0

� �
1 þ y0

1 � y0

� �
þ L0

G0

x

1 � x
� x0

1 � x0

� � ð10:4-4Þ

This mole balance is the operating line for a concentrated vapor, the analog of Eq. 10.3-5.

It reduces to this equation as the concentrations become small. However, in general, its

shape is more like that in Fig. 10.4-2.

x

xl,yl

Operating
line

Equilibrium
line of slope m

xl,yl*

x0,y0*

x0,y0

y 
or

 y
*

Fig. 10.4-1. Designing an absorption tower for a dilute vapor. The height of the tower is based on

the values shown. The straight equilibrium and operating lines reflect the dilute solutions.
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The next step is the specification of a new equilibrium relation analogous to Eq.

10.3-6:

y* ¼ y*ðxÞ ð10:4-5Þ

This relation is often not written in an analytical form, but simply presented as a table or

graph of experimental results. The important point is that y* and x are no longer directly

proportional, related by a single, constant coefficient. Instead, they vary nonlinearly, as

exemplified by the equilibrium line in Fig. 10.4-2.

The final step is the rate equation, a mole balance on the gas in a differential tower

volume:

0 ¼ d

dz
Gyð Þ � Kya y � y*ð Þ ð10:4-6Þ

We combine this result with Eq. 10.4-2 to find

0 ¼ � G0

1 � yð Þ2
dy

dz
� Kya y � y*ð Þ ð10:4-7Þ

where Ky is the overall coefficient based on a mole fraction driving force. Rearranging,

l ¼
Z l

0

dz ¼ G0

Kya

Z yl

y0

dy

1 � yð Þ2 y � y*ð Þ
ð10:4-8Þ

This result for concentrated solutions reduces to Eq. 10.3-11 for dilute solutions, where

(1 – y) is about unity.

The tower height l can be found by integrating Eq. 10.4-8, using values of y and y*

read from a plot like Fig. 10.4-2. The integration is limited by two key assumptions made

during the analysis. These subtle assumptions merit review. First, we are assuming

absorption of a single vapor from an inert gas into a nonvolatile liquid. The gas is inert

x

xl,yl
Operating
line

Equilibrium line

xl,yl*

x0,y0*

x0,y0

y 
or

 y
*

Fig. 10.4-2. Designing an absorption tower for a concentrated vapor. The height of the

tower is again based on the values in the figure. The curved equilibrium and operating lines

reflect the fact that both gas and liquid are concentrated solutions.
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in the sense that only negligible amounts dissolve in the liquid; the liquid is nonvolatile in

the sense that only negligible amounts evaporate into the gas.

The second key assumption in this analysis is that a single value of mass transfer

coefficient can adequately express themass transfer in a concentrated solution. There are

two reasons why this may not be true. Most obviously, this overall coefficient is a func-

tion of the equilibrium line

1

Ky
¼ 1

ky
þ m

kx
ð10:4-9Þ

where ky and kx are the individual mass transfer coefficients in the gas and liquid,

respectively; and m is the slope of the equilibrium line. But because this varies, Ky

may vary. Second, concentrated absorption involves transport of large amounts of

vapor through thin layers of stagnant inert gas. This leads to diffusion-engendered

convection normal to the surface, a topic detailed in Sections 3.1 and 9.5. These factors

are commonly ignored in practice.

Example 10.4-1: Ammonia scrubbing A gas mixture at 0 �C and 1 atm flowing at 1.20

m3/sec, and containing 37% NH3, 16% N2, and 47% H2 is to be scrubbed with water

containing a little sulfuric acid at 0 �C. The exit gas should contain 1%NH3 and the exit

liquid 23 mol% NH3.

Design a packed tower to carry out this task. The tower should use 2-in Berl saddles,

which have a surface area per volume 105 m2/m3 (cf. Table 10.2-1). It should operate

with a pressure drop of 0.5 in H2O per foot of packing. Pilot-plant data suggest that the

overall gas-side mass transfer coefficient in this tower will be 0.0032 m/sec; this value is

larger than normal because of the chemical reaction of ammonia with water.

In this design, answer the following specific questions: (a) What is the flow of pure

water into the top of the tower? (b) What tower diameter should be used? (c) How tall

should the tower be?

Solution (a) We first find the total flow AG0 of the nonabsorbed gases (i.e., of

N2 and H2):

AG0 ¼ 0:63
1:20 m

3
=sec

22:4 m
3
=kgmol

 !

¼ 0:0338 kgmol=sec

We then find the ammonia transferred:

NH3

absorbed

� �
¼ 0:37

1:20 m
3
=sec

22:4 m
3
=kgmol

 !
� 0:01 0:0338 kgmol=secð Þ

0:99

� �
¼ 0:0195 kgmol=sec

From this, we find the desired water flow AL0:

AL0 ¼
0:77

0:23

� �
0:0195 kgmol=secð Þ

¼ 0:0652 kgmol=sec
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(b) The risk of flooding is greatest at the bottom of the tower where the flows are

greatest. Moreover, because flooding is determined by fluid mechanics, it depends on

mass flows, not molar flows. To make this conversion, we first find that the average

molecular weight of the gas is 11.7. Then we see that

total flow

of gas

� �
¼ 11:7 kg

kgmol

0:0338 kgmol=sec

0:63

� �
¼ 0:628 kg=sec

The average molecular weight of the liquid stream (neglecting any H2SO4) is 17.8 kg, so

total flow

of liquid

� �
¼ 17:8 kg

kgmol

0:0652 kgmol=sec

0:77

� �
¼ 1:51 kg=sec

Thus

liquid flow

gas flow

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qG=qL

p
¼ 1:51 kg=sec

0:628 kg=sec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:522 kg=m

3
=10

3
kg =m

3
q

¼ 0:055

Remembering that the values found from Fig. 10.2-2 imply specific dimensions, we find

the capacity factor is

1:3 ¼ G
00
F
0:5
�
0:05

ðqL � qGÞ
0:5

¼ G
00ð45Þ0:510:05

ð62:4� 0Þ0:5

Thus in the units implicit in this figure

G
00
= 1:53 lb=ft

2
sec

In units appropriate to this problem, this is equivalent to

G
00
= 0:062 kg=m

2
sec

But the total is so that 0.628 kg/sec, so the cross-sectional areaA is about 10 m2. In other

words, the tower diameter is about 3.6 m.

(c) The calculation of the tower’s height can begin with Eq. 10.4-8. Because Ky equals

KG cG

HTU ¼ G0

KGacG

¼
0:0338 kgmol=sec½ � = 10m

2
h i

0:0032 m=secð Þ 105 m
2
=m

3
� �

1 kgmol=22:4 m
3

� �
¼ 0:23 m
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To find the number of transfer units NTU, we first plot values of y versus x using Eq.

10.4-4, shown as the operating line in Fig. 10.4-2. We also plot y* versus x, shown as the

equilibrium line in the figure. We then read off values of y versus y* at fixed x, and

integrate Eq. 10.4-8 from y0 ¼ 0.37 to yl ¼ 0.01. The result is

l ¼ 10 m

Problems of stripping gases are very similar except that the operating line falls below the

equilibrium line.

10.5 Conclusions

This chapter analyzes gas absorption, an important separation process in

chemical manufacture and pollution control. Gas absorption commonly is effected

in packed towers filled with inert packing that gives a large interfacial area between gas

and liquid. The gas rises through the tower; the liquid trickles countercurrently down-

ward. The liquid is often chemically reactive, binding the solutes being absorbed. For

example, acid gases like H2S are absorbed into aqueous solutions of amines. However,

the analysis in this chapter implies nonreactive liquids; reactive liquids are discussed in

Chapter 17.

The analysis of gas absorption depends on fluid mechanics and on mass transfer.

The fluid mechanics determines the acceptable range of gas and liquid fluxes, which are

adjusted by changing the cross-sectional area of the tower. The mass transfer coeffi-

cients determine the rate of absorption and hence the height of the packed tower. This

height can be estimated by either algebraic or geometric methods. The algebraic for-

mulation is simple for the common case of a dilute solute, a case detailed in Section

10.3. This case depends on three key relations: an overall mole balance, a thermody-

namic equilibrium, and a rate equation. This dilute case is the easiest way to learn

about absorption.

The geometric analysis of absorption is suitable for either dilute or concentrated

systems. It also depends on the same three key relations. Almost perversely, the over-

all mole balance is now called the operating line and the thermodynamic equilibrium

is called the equilibrium line. The rate equation sometimes has the mass transfer

coefficients rewritten in terms of new quantities called HTUs, height of transfer units,

which are measures of the efficiency of the packed tower. These new terms provide

occasional physical insight; simultaneously, they are effective at discouraging the

inexperienced from trying to learn about gas absorption. If you are inexperienced,

don’t give up. Work hard on the dilute limit; be encouraged by the fact that the

concentrated limit and the geometric analysis are more complicated, but involve no

new ideas.

Questions for Discussion

1. In absorption, what are two gases which are commonly absorbed?

2. What are two species which are stripped?
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3. What is the flow parameter? What is the capacity factor?

4. How can you avoid flooding in existing equipment?

5. What is an advantage and a disadvantage of using a smaller size of random

packing?

6. What is the basis of the operating line?

7. When will the assumption of constant liquid and gas fluxes be accurate?

8. How can the slope of the operating line be changed?

9. What is the basis of the equilibrium line?

10. How can the slope of the equilibrium line be changed?

11. What does the number of transfer units NTU signify?

12. Do you want to have a small height of transfer unit HTU?

13. How can you reduce the HTU?

14. What is the effect on tower operation of the heat of absorption?

15. You are given an overall mass transfer coefficient, based on gas side driving

force of 0.08 cm/sec. You use this in a tower where the area/volume is 6.6 cm�1

and the gas flux 7 � 10�4 mol/cm2 sec. What is the HTU (based on the gas side

driving force)?

Problems

1. A packed tower is being used to scrub ammonia out of a stream containing only 3% of

that gas. The tower contains 1-cmRaschig rings; it is 50 cm in diameter and 4.3 m high.

The gas flow of 0.93 kg/sec is at 30 �C and is largely air at 100% relative humidity and

1,100 mmHg; it leaves the tower with only 2.2 � 10�6%NH3. The liquid flow of 6.7 kg/

sec is also at 30 �C. The Henry’s law constant under these conditions is yNH3
¼

0.85xNH3
. What is the mass transfer coefficient KG in this tower?

2. A process gas containing 4% chlorine (average molecular weight 30) is being scrubbed

at a rate of 14 kg/min in a 13.2-m packed tower 60 cm in diameter with aqueous

sodium carbonate at 850 kg/min. Ninety-four percent of the chlorine is removed.

The Henry’s law constant (yCl2/xCl2) for this case is 94; the temperature is a constant

10 �C, and the packing has a surface area of 82 m2/m3. (a) Find the overall mass

transfer coefficient KG. (b) Assume that this coefficient results from two thin films

of equal thickness, one on the gas side and one on the liquid. Assuming that the

diffusion coefficients in the gas and in the liquid are 0.1 cm2/sec and 10�5 cm2/sec,

respectively, find this thickness. (c) Which phase controls mass transfer?

3. Find the height of a packed tower that uses air to strip hydrogen sulfide out of a water

stream containing only 0.2%H2S. In this design, assume that the temperature is 25 �C,
the liquid flow is 58 kg/sec, the liquid out contains only 0.017 mol%H2S, the air enters

with 9.3% H2S, and the entire tower operates at 90 �C. The tower diameter and the

packing are 50-cm and 1.0-cm Raschig rings, respectively, and the air flow should be

50% of the value at flooding. The value of KLa is 0.23 sec�1, and the Henry’s law

constant (yH2S
/xH2S

) is 1,440.

4. Chlorinating drinking water kills microbes but produces trace amounts of chloroform.

You want to remove this chloroform by air stripping, that is, by blowing air through
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the water to remove the chloroform as vapor. Such a process is the opposite of gas

absorption. You know the equilibrium line is

y* ¼ 170x

You know that the mass transfer coefficients in the vapor and the liquid in your equip-

ment are 0.16 cm/sec and 8.2 � 10�3 cm/sec. You also know the gas velocity is 16 cm/sec

and the packing has a¼ 6.6 cm�1. (a) Sketch typical equilibrium and operating lines for

this process. (b) Find the HTU based on an overall gas-phase driving force.

5. A 2-ft diameter packed column with a packing of 20 ft of 1-in Berl saddles contains air

at 1 atm and 20 �C. The tower is apparently close to flooding, and Dp ¼ 24 in of H2O.

The mass velocity of liquid is 8.5 times that of the gas. (a) If the tower is repacked with

1 1
2 in polypropylene Pall rings, what would the pressure drop be? (b) How much

higher a liquid flow rate could be used if the pressure drop were the same as it was

with the Berl saddles?

6. You want to remove 90% of the SO2 in a flue gas stream using a packed tower that is

0.7 m in diameter. The tower has an HTU, based on the gas-side resistance, of 0.26 m.

This low value, for structured packing, is partly due to a buffered absorbing liquid for

which

y ¼ 8:4x

This liquid enters without containing SO2. If you adjust the flow of the liquid so that

the driving force (y – y*) is constant, how tall a tower will you need?

7. A process gas containing 0.18% sulfur oxides is being scrubbed countercurrently and

differentially with an aqueous solution of completely unloaded hindered amines in

a tower packed with structured packing. The height of a transfer unit, based on an

overall gas-side mole fraction driving force, is 41 cm. The amine solution, flowing at

twice the minimum rate, has an equilibrium line of

y* ¼ 0:03x

If the exit sulfur oxide concentration is 0.001%, what is the concentration of

sulfur oxides in the exiting amine solution?

8. You have a gaseous effluent containing a mole fraction 860 � 10�6 H2S which you

need to process to under a mole fraction of 2 � 10�6 before you will be permitted to

discharge it. You have a caustic solution for an absorption which initially has no H2S

and which has an equilibrium line of

y* ¼ 0:083x

You plan to use a liquid flow which is twice the minimum to carry out this task.

(At the minimum flow, you would need an infinitely tall tower.) Because you

are using a third-generation packing, the area per volume is large, 200 m2/m3.

The overall mass transfer coefficient KL is 4.6 � 10�6 m/sec, based on a liquid
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side driving force. The total gas and liquid concentrations are 50 mol/m3 and

17,000 mol/m3 respectively and the gas flux is 16.8 mol/m2 sec. How tall should

this tower be?

9. You want to use an existing 7.4-m packed column to remove 99% of the methylene

chloride from an entering stream containing 114 ppm. The methylene chloride will be

absorbed by mineral oil in which it is extremely soluble (i.e., m is very small). The

column has a surface area per volume of 5 cm2/cm3, and a mass transfer coefficient

KG of 8.1 � 10�4 cm/sec, based on a gas-side driving force. You plan to use an air flux of

1.4 � 10�5 mol/cm2 sec. (a) Will this column work? (b) You have a ten-stage absorption

tower with which you may also achieve the same separation. If you still want 99%

removal, what absorption factor A (= L/mG) should you use?

10. As the result of liquid–liquid extractions for antibiotics, we produce 63,000 mol/hr of

water containing 0.2 mol% isobutanol. Because the charge for putting this stream in

the sewer is going to be dramatically increased, we want to strip the alcohol out of the

water with 62,000 mol/hr of air. We will then use the air in our power plant and thus

burn the butanol.

We have a 25-m packed tower, 0.7 m in diameter, which we can use for the stripping.

We expect the overall mass transfer coefficient in this tower will be about

KGa ¼ 1290=hr

or

Kya ¼ 1:60 � 10�5 mol=cm
3
sec

or

HTU0,y ¼ 2:80m

We expect to run the tower at 1 atm and hot, where the vapor pressure of isobutanol is

400 mm Hg. What percent of the isobutanol can we remove?

11. A fragrance is stripped out of flowers using 5 mol of air. This fragrance is to be

recovered with 1 mol of oil, which is initially fragrance free. The equilibrium for the

fragrance between the air and oil is given by

y* ¼ 0:2x

You want to evaluate two possible separations. (a) First, imagine that you mix air and

oil in a stirred tank. At equilibrium, what percentage of fragrance is in the oil? (b) Now

imagine that air and oil are contacted countercurrently in a packed tower at 0.5 mol

air/hr and 0.1 mol oil/hr. Draw operating and equilibrium lines, and label the slopes.

(c) If the tower and themass transfer coefficient give six transfer units, what percentage

of the fragrance is now in the oil?

12. Increasingly, natural gas wells contain significant amounts of nitrogen in the desired

methane. These gases could easily be separated by cryogenic distillation because

their boiling points are �196 and �164 �C for N2 and CH4, respectively. However,
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this is too expensive. As an alternative, you are testing kerosene solutions of a new

compound which reacts with the nitrogen and so allows its removal by gas absorp-

tion. In one experiment, 6 mol/sec feed containing 10% N2 is scrubbed with 26 mol/

sec of absorbent solution in a 3 m tower. Eighty-eight percent of the nitrogen is

removed. Equilibrium experiments show that the mole fraction in the gas is four

times larger than that in the liquid. What is the HTU in this column (based on gas

concentrations)?

13. You have been running experiments in the pilot plant to remove a mercaptan from

a gas stream. (Mercaptans are, among other things, responsible for the smells of garlic

and skunks.) You find that with a gas feed containing 100 ppm, you can remove 90%

of the mercaptan in a tower 18 m tall if you run countercurrently with a pure liquid

water feed, using a flowwhichmakes the operating line parallel to the equilibrium line,

which is

y* ¼ mx

where y* and x are given in ppm. (a) What is the value of the HTU based on (y – y*)?

(b) You are now ready to scale up this process to 100 greater flow and 99% removal.

You will handle the greater flowwith a bigger tower diameter, so the fluxesG andL are

the same. You also plan to add a reactive solute to the water so that the equilibrium

line is now

y* ¼ 0

If the HTU is expected to be 2 m, how tall should the process tower be?

14. You are using a small tower packed with Berl saddles to effect absorption of 99% of

the H2S in an effluent gas. The equilibrium line for the absorbing liquid you are

using is

y1* ¼ 8x1

The HTU in this tower is expected to be around 1.2 m; the gas enters with 630 ppm.

The absorbing liquid enters pure. The gas flux per liquid flux G/L is 0.025. (a) How

many transfer units are needed? (b) What height of tower is required?

15. You have successfully developed a small column which removes 99% of the H2S in

an effluent stream. The HTU in this tower is around 1.2 m; the gas enters with 630

ppm. The absorbing liquid enters pure. The gas flux per liquid flux G/L is 0.025.

While this tower is running well, you now need to remove 99.9% of the H2S to meet

governmental requirements. To do so, you plan to use a new absorbing liquid which

reacts instantaneously with the H2S, reducing the liquid-side mass transfer resis-

tance by 90%; this liquid-side resistance had been 80% of the total. The new

equilibrium line with this reactive liquid is y* ¼ x. (a) What is the new HTU? b)

Assume the tower is 8 m high. What flow of gas per reactive liquid G/L will be

required now?
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CHAPTER 11

Mass Transfer in Biology and Medicine

The ideas of mass transfer covered in the previous three chapters provide a strong

framework for describingmass transfer in a wide variety of situations. One obvious example

is gas absorption, which is one route to controlling the carbon dioxide emissions that

contribute to global warming. The ideas of mass transfer are also basic to many physiologic

functions. For example, they are key to respiration, to digestion, and to drug metabolism.

The descriptions of mass transfer developed in this book are detailed and accurate

because they were developed for well-defined problems in the chemical industry. In that

highly competitive industry, small improvements in chemical processing can mean large

increases in profits. This promise of higher profits led engineers to examine the details of

mass transfer and to get highly quantitative results.

The descriptions of mass transfer developed in biology and medicine took place largely

independently of those in chemistry and engineering. These biologically andmedically based

descriptions have often provided good insight into rate processes in living systems. How-

ever, these descriptions rarely take advantage of insights provided by the deeper engineering

analyses. There are two reasons for this. First, the accuracy of data in living systems is often

uncertain because living systems vary more widely. After all, the weight of a person varies

more than the weight of a nitrogen molecule. As a result, details of mass transfer known

from engineeringmay not be that useful. For example, if biological data are only accurate to

30 percent, then an analysis offering improvements of 10 percent has little value.

The second reason that those in medicine and biology take little advantage of the

engineering results is that those results are buried within dense, highly mathematical engi-

neering curricula. These curricula assume that any student entering the introductory class

will normally take all the subsequent classes offered. As a result, outsiders trained in other

fields – like biology – can find it hard suddenly to dip into the engineering curriculum to

study, for example, mass transfer or reaction kinetics. They conclude – correctly, I think –

that the only way to learn the stuff is to take the entire program, and that it is not worth it.

This chapter tries to bridge this gap. It gives an overview of mass transfer for those

with little mathematics beyond elementary differential equations. This chapter does not

completely stand alone; it probably will require the complete novice to consult other

sections to understand completely the basic ideas involved. Still, it can give the biologist

an easier introduction, and the engineer a good review.

We begin the review as follows. Mass transfer describes the amount of solute moving

from one region to another. For example, it describes how a solute like glucose moves

from the lumen of the small intestine into the blood. The solute fluxN1 is the amount of

solute per area per time. It is given by

N1 ¼ KDc1 ð11:0-1Þ

whereK is an overall mass transfer coefficient andDc1 is a concentration difference. Each
of these quantities is complex and merits review.
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Any flux includes transport both by convective flow and by diffusion. However, in

general, one of these routes is much more important than the other. For example,

glucose transport along the length of the small intestine is almost completely by flow,

but glucose transfer across the intestinal wall is almost completely by diffusion.

The overall mass transfer coefficient K is a rate constant, a measure of how fast the

process occurs. It is a close parallel to the rate constant of a first-order chemical reaction,

or to the half life of radioactive decay. It is different from these chemical rate constants in

two important ways. First, K is defined per unit area, and chemical rate constants are

normally defined per unit volume. One consequence is that we will sometimes work with

Ka, where a is the interfacial area per system volume. The productKa has the same units

of reciprocal time as a first-order chemical rate constant.

The second important difference between K and a chemical rate constant is that the

former varies with physics and the latter with chemistry. Thus K is a function of stirring

but changes little with temperature. A chemical rate constant is independent of stirring

and a strong function of temperature. If these ideas are unfamiliar, you may wish to

review Section 8.1.

The overall mass transfer coefficient K often involves diffusion across interfaces. For

example, in the lung, oxygen is transported from the air in the alveolus to the alveolus

wall, across that wall, and into the blood. These different steps are often described as

different mass transfer resistances. Thus, (1/K) is the overall resistance to mass transfer,

and equals the sum of the other mass transfer resistances. If this idea is new or not

completely clear, then you may wish to review Section 8.5.

The concentration difference Dc1 given in Equation 11.0-1 is the hardest idea in mass

transfer. It is not normally the concentration on one side of an interface minus that on

the other side of the interface. To see why this is not true, imagine you are studying

transport of a lipophilic drug from water into fat. The drug is initially present in the

water but not in the fat. As time proceeds, the drug will diffuse from the water into the

fat. After a while, the concentration in the water drops, and that in the fat rises. But

transport does not stop when the concentrations are equal; instead, the concentration in

the water continues to drop, and that in the fat continues to rise. At large times, the small

concentration in the water may reach equilibrium with the large concentration in the fat.

The difference Dc1 may be defined as the concentration in the water c1 minus that which

would be in the water if it were in equilibrium with the fat c�1. This difficult point, also
covered in Section 8.5, will be discussed throughout the chapter.

The chapter itself is organized as follows. In Section 11.1, we discuss experiments in

which data can be organized using mass transfer coefficients. Section 11.2 describes

blood oxygenators and artificial kidneys, mass transfer devices whose geometry is ex-

actly known. Section 11.3 discusses the role of mass transfer in pharmacokinetics, where

the system’s geometry is unknown, lumped into other parameters which may include the

mass transfer coefficient. Thus the chapter provides an introduction for life scientists to

important engineering ideas.

11.1 Mass Transfer Coefficients

This book is based on two complementary models which describemass transfer.

One of these is diffusion, described by the diffusion coefficient. This model, widely used
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in science, describes how the concentration of a solute varies with position and time. For

example, it can describe how a drug penetrates human tissue.

The second model for describing mass transfer is a mass transfer coefficient, an

engineering idea which is infrequently used in science. This is unfortunate because, for

fluid systems, it is probably of greater value than models using a diffusion coefficient.

The mass transfer coefficient describes solute movement from one region into another

region. The solute concentration in each region is assumed to have an average value, and

the flux between the two regions is related to the difference between these average

concentrations. Because of this use of average concentrations, mass transfer coefficients

are used to describe how the concentration changes with position or how concentration

changes with time. For example, mass transfer can describe how fast a drug is taken from

the blood into tissue. Thus mass transfer coefficients are a form of ‘‘lumped parameter

model,’’ while diffusion coefficients are an example of a ‘‘distributed parameter model.’’

In this section, we use four examples to illustrate the use of mass transfer coefficients.

These examples, which supplement those given in Chapter 8, have a basis in biology and

medicine. They serve to introduce the ideas involved. They are an overview, and for the

complete novice, may require referring to earlier sections of the book.

Example 11.1-1: Intestinal uptake Starch in the human diet is digested in the stomach

and small intestine into monosaccharides, which are the only formwhich can be absorbed.

For lactose, enzymatic activity limits the rate of absorption. For other sugars, diffusion is

rate limiting. For one set of experiments, the rate of uptake of glucose is 1.6 3 10–10 mol/

cm2 sec from a solution containing 2.7 3 10–4 M. What is the mass transfer coefficient?

Solution The mass transfer coefficient K is defined by

N1 ¼ Kðc10 � c
�
1Þ

If the amount of glucose in the blood is relatively small, the concentration c�1 is near zero
and

1:6 � 10�10 mol

cm
2
sec
¼ K

2:7 � 10�4 mol

1000 cm
3 � 0

 !
K ¼ 6 � 10�4 cm=sec

This is a typical value.

Three points about this definition merit discussion. First, the concentration c�1 may be

near zero even when the solute concentration in the blood is more than zero. This is

especially true for solutes whose properties, like solubility, are pH dependent. For the

case of glucose, however, the solubility in chyme and blood is about the same, and so c�1
will be close to the actual glucose concentration in blood.

The second point about this example is that the flux is given per a projected area of

intestine. Because of the brush border, we could argue that a more appropriate flux

would be defined per villi area. Either definition will work; the only danger is that we do

not specify which we are using.

The third point about this analysis is that the results are rarely interpreted in this

fashion. Instead, they are reported as an ‘‘unstirred layer thickness’’ l, defined as

K ¼ D

l
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where D is the solute’s diffusion coefficient. This is an identical concept to that used

successfully for the film theory of mass transfer described in Section 9.1. It’s a good

concept, useful because it gives a simple picture of mass transport. The only danger is

that we will forget that the film thickness does not actually exist. It is simply an alter-

native way of expressing the mass transfer coefficient.

To illustrate this, imagine that we are comparing the absorption of glucose with

a small peptide. If we measure mass transfer at the same infusion rate (i.e., at equal

intestinal flow), we will usually find different unstirred layer thicknesses. There are

several reasons why this could occur. First, while glucose is controlled by uptake in

the intestinal lumen, peptide uptake may be controlled by transport across the intestinal

wall. Even if mass transfer of both solutes is controlled by rates in the lumen, the mass

transfer coefficient rarely depends linearly on the diffusion coefficientD. A more typical

dependence is on the square root of D. If this is so, then the unstirred layer thickness l

depends on D, which makes little sense physically.

I feel that data are better correlated as mass transfer coefficientsK, where our approx-

imations are acknowledged. I feel that using the idea of an unstirred layer pretends more

knowledge than we have.

Example 11.1-2: Lung capacity One method to evaluate lung capacity is to ask the

patient to take a deep breath of air spiked with traces of gases like neon and carbon

monoxide. The patient holds his breath for a standard time and then quickly exhales into

a gas chromatograph. The concentrations of Ne and CO are then measured.

Explain how these data can be used to find the mass transfer coefficient in the lung.

Solution Answering this question requires mass balances on each of the trace

gases. Because neon (species 2) is not absorbed, its concentrations allow finding the

residual volume in the lung:

ðneon inÞ ¼ ðneon outÞ
c20V ¼ c2ðVþ V0Þ

where c20 and c2 are the neon concentrations in the inhaled and exhaled gases, respec-

tively; V is the volume of the breath; and V0 is the volume of the lungs before taking the

breath. We can measure the breath volume V and the concentrations c2 and c20; thus we

can calculate the lung volume V0.

Note that this mass balance implies that taking the breath produces complete mixing

in the lungs. Parenthetically, we could check this assumption by measuring the concen-

tration after a second breath, which is given from the mass balance

c2ðone breathÞV0 ¼ c2 ðtwo breathsÞ ðVþ V0Þ

If the values of V0 found after one and two breaths are the same, we have justified the

assumption of perfect mixing.

With the lung volume V0, we can now find the mass transfer coefficient from a mass

balance on carbon monoxide while the patient is holding his breath:

�
carbonmonoxide

lost from lung

�
¼

�
carbonmonoxide

absorption into the blood

�
Vþ V0ð Þ dc1

dt
¼ �KA c1� c

�
1

� �
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where K is the overall transfer coefficient in the lung, A is the total lung area, c1 is the

concentration in the lung, and c�1 is that lung concentration which would exist at equi-

librium. Because the trace of CO present reacts irreversibly with the relatively large

amount of hemoglobin in the blood, c�1 is zero. This mass balance is subject to the initial

condition

t ¼ 0, c1 ¼ c10

Integrating the mass balance subject to this condition, we have the familiar result

c1
c10
¼ e
�kAt

Rearranging

KA ¼ 1

t
ln

c10
c1

� �
Because all quantities on the right-hand side of this equation are known, the quantityKA

is easily found.

Again, some points about this result deserve attention. First, the product KA is

normally called the ‘‘diffusing capacity,’’ which is descriptive but conceals its relation

to mass transfer. Second, K includes mass transfer resistances in the lung gas, across the

alveoli walls, and into the blood. The resistance in the gas is probably small because

diffusion in gases is fast. The resistance in the blood may be small because of the fast

reaction between CO and hemoglobin which accelerates mass transfer; this acceleration

is discussed in detail in Chapter 17. The resistance across the membrane may be rate

controlling.

Finally, we note that KA appears only as a product. Thus we will not normally know

whether a relatively slow uptake indicates a patient with a compromised lung area A or

a slow mass transfer coefficient K. Clinically this doesn’t matter. If the value of the

product KA is relatively small, then the patient’s breathing will be compromised.

Example 11.1-3: Mass transfer to leaves Leaves are the chief route by which plants

absorb carbon dioxide and reject oxygen during photosynthesis. They provide the plants

with the large surface area per volume required to make this transfer efficient. Not

surprisingly, plants grow leaves until the mass transfer around the leaves is not a major

resistance, at least in well-ventilated canopies. For plants growing in more protected

environments, like greenhouses, this resistance may be more significant.

What do engineering correlations of mass transfer suggest about the effects of diffu-

sion, velocity, and leaf size for plants growing in sheltered environments?

Solution To explore this issue, we must first choose a characteristic geometry

for the leaves. The common choice is to assume a flat plate, for which the mass transfer

coefficient k is given by

kl

D

� �
¼ 0:646

lv

�

� �1=2
�

D

� 	1=2
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in which l is the size of the plate in the direction of the flow v, and � and D are the

kinematic viscosity of the air and the diffusion coefficient in the air, respectively. This

classical result, derived in Section 9.4, has an unusually strong theoretical basis. The

terms in parentheses, which are dimensionless, occur frequently and so are called the

Sherwood, Reynolds, and Schmidt numbers, respectively.

We seek how k varies with D, v, and l. The correlation says that k is proportional to

the two-thirds power ofD. While this expectation is almost always quoted, it has a weak

experimental basis, although it does have a strong theoretical basis. However, becauseD

varies little, this uncertainty is not important.

The variation of k and v is more interesting and more complicated. It is valid only at

Reynolds numbers below about 20,000. In this case, the flow is laminar. Because the

Reynolds number itself depends on l, this means that even at the same flow the corre-

lation above may work for a small leaf, but not for a big one. For large leaves with

Reynolds numbers above 20,000, a better correlation is:

kl

D

� �
¼ 0:036

lv

�

� �0:8
�

D

� 	1=3
The velocity has a larger effect at high flow than at low flow. In addition, at very low

flow, the wind velocity v is less important than that caused by small differences in density

due to adsorption or desorption. Now, the correlation is

kl

D

� �
¼ 0:5

l
2
g Dq=qð Þ
�D

 !1=4
where (Dq/q) is the fractional density difference caused by the mass transfer itself. Thus

a plot of the logarithm of k vs. the logarithm of vwill have a slope of zero at small v, of 0.5

at intermediate v, and of 0.8 at large v. Delightfully, this is true over an enormous range

of experimental conditions.

Finally, we consider how l varies with leaf shape. After all, leaves aren’t really flat

plates, and it may seem startling that we have had the success so far with such a simple

geometry. To see what the effect of leaf shape could be, consider flow across the leaf

shown in Fig. 11.1-1. Moderate flow at the position A will effect a smaller mass transfer

per area than flow at position B. The reason is the k is proportional to l�1/2, and l forA is

larger than l for B. At the same time, flow at A will contact the leaf for a longer time

because l is larger at the position. This suggests an average value of l given by

l ¼
R
x yð ÞdyR ffiffiffiffiffiffiffiffiffi
x yð Þ

p
dy

" #2

This seems to describe the available data for moderate flow. For high flow or very low

flow, the results will differ.

Example 11.1-4: Skin transport Mass transfer across skin is another good example,

illustrating both the relation between the mass transfer coefficient and the diffusion
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coefficient and the complexity possible in an apparently simple case. We will start with

the simplest case, and then add complexity.

Imagine that we expose a sample of human skin to a dilute antiseptic gas in air. We

want to estimate the uptake of the gas into tissue which originally contains no antiseptic.

The flux of the gas N1 is given by

N1 ¼ Kðc1 � c
�
1Þ

where K is an overall mass transfer coefficient; c1 is the antiseptic concentration in the

gas; and c�1 is proportional to the concentration in the tissue. Since the concentration in

the tissue is zero, c�1 is zero.
The mass transfer coefficient in this case is often dominated by transport across the

skin itself. In this limit, the overall coefficient K is given by (cf. Section 9.1)

K ¼ Kskin ¼
DH

l

whereD is the diffusion coefficient in the skin;H is the partition coefficient, the quotient

of the concentration in the skin divided by the concentration in the adjacent air; and l is

the thickness of the skin.

Mass transfer coefficients like that directly above occur commonly. As a result, they

are often described by a separate vocabulary codified for membrane transport. The

productDH is called the permeability; the variable (DH/l) is called the permeance. Note

that the permeability is a physical property of the skin, but the permeance refers to

a specific skin sample.

We can make additional estimates of transport for different gases by considering the

properties of the skin itself. Skin is a layered structure. The top layer, the stratum

corneum, is commonly believed to be the greatest resistance to transdermal transfer.

This layer includes relatively impermeable protein flakes immersed in a lipid continuum.

Because the flakes are aligned parallel to the surface of the skin, the diffusion across this

layer is (cf. Section 6.4):

D0

D
¼ 1 þ a2/2

1� /

x

y

B

x

A

Fig. 11.1-1. Mass transfer from a leaf. Mass transfer rates can be accurately estimated from

boundary layer theory.
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where D0 is the diffusion coefficient of solute in the pure lipids, a is the aspect ratio, i.e.

the shape of the flakes, and / is the volume fraction of flakes. Note that the right-hand

side of this equation is independent of D0. Thus the diffusion coefficient in the skin

changes by the same relative amount for any solute.

Diffusion coefficients in dense, noncrystalline solids don’t change that much (cf.

Sections 5.2 and 5.3). Thus any difference in mass transfer must come more from the

partition coefficientH than from the diffusion coefficient D. These differences are often

approximated as the relative solubility in octanol, chosen to approximate the skin lipids.

If a second test gas has a lipid solubility ten times higher than the first, then we expect the

mass transfer coefficient K, equivalent to the permeance DH/l, to be 10 times larger for

the second more soluble gas than for the first.

11.2 Artificial Lungs and Artificial Kidneys

In this section, we discuss two types of artificial organs. Artificial lungs, or

‘‘blood oxygenators,’’ are used during surgery to add oxygen and remove carbon

dioxide from blood. Artificial kidneys, ‘‘blood dialyzers,’’ are used to remove toxins,

including urea, which accumulate in blood as the result of renal failure. In their current

mode, artificial lungs and kidneys are not intended permanently to replace the patient’s

organs. Artificial lungs are used only during and directly after surgery, for perhaps twelve

hours.Artificial kidneys are used longer, until a kidney suitable for transplantation can be

located. This time will normally be several months and is rarely longer than three years.

Both artificial lungs and artificial kidneys are designed using the ideas ofmass transfer

taught in this book. Improvements in design will also derive from the same ideas.

Moreover, because these artificial organs have exact physical dimensions and known

chemical behavior, their design can be unusually quantitative. This does not mean that

biology and medicine are not important: for example, the damage caused to blood

proteins and any resulting clotting is extremely important. However, the known prop-

erties and dimensions of the artificial organs make these designs unusually exact.

In this section, we first consider the overall mass transfer coefficient in these devices.

This coefficient includes three resistances, each of which can be quickly estimated. We

then develop our design based on which resistances are most important. For blood

oxygenators the only important resistance is in the blood, and so the design is straight-

forward. For blood dialyzers, there are several important resistances, so the design

includes more subtle compromise. Details of these ideas are given below.

Fluxes in These Devices

Both blood oxygenators and blood dialyzers seek a large mass transfer flux in

a small volume. The large flux is desired to easily add oxygen to or remove toxins from

the patient’s blood. In more quantitative terms, the flux per volume N1a is given by

N1a ¼ Ka ðc1 � c
�
1Þ ð11:2-1Þ

where K is the overall mass transfer coefficient, a is the area per volume, and (c1 – c�1) is
a concentration difference. For blood oxygenators, a is the interfacial area per volume

between the air and the blood. For blood dialyzers, a is the interfacial area between the
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blood and the dialyzing solution, which is normally saline.Wewant to build devices with

a large a.

The concentration difference (c1 – c
�
1) can be a more difficult concept. For dialyzers, it

is the concentration of a toxin like urea in the blood minus that which would exist in

blood which was in equilibrium with the dialysate. Because both blood and dialysate are

largely water, this is often just the toxin concentration in blood minus that in dialysate.

That doesn’t seem like a difficult idea.

The difficulty is more obvious for the blood oxygenator. There, (c1 – c�1) is the con-
centration of oxygen in air minus that in air which is in equilibrium with the blood. The

concentration of oxygen in air is of course 21% at 37 �C, or

0:21 mol

22:4 l

273K

273 þ 37K

� �
¼ 8:3 � 10�3 mol=l ð11:2-2Þ

The mole fraction of oxygen in water in equilibrium with pure oxygen is 1.9 � 10–5; thus
the concentration of oxygen in equilibrium with air at this temperature is

0:21 xO2
c ¼ 0:21 1:9 � 10�5

� 	 mol

0:018 l

¼ 2:2 � 10�4 mol

l
ð11:2-3Þ

At equilibrium, oxygen is (8.3 � 10–3/2.2 � 10–4¼ 37) times more concentrated in air than

in water. Thus in this case,

c1 � c
�
1 ¼

conc in
air

� �
� 37

conc in
water

� �
ð11:2-4Þ

Similar results for blood will be functions of the hematocrit.

We now turn to the specific geometries used for blood oxygenators and dialyzers.

These devices are now commonly based on hollow fiber membranes assembled in mod-

ules as shown schematically in Fig. 11.2-1. Hollow fibers are like small pipes with perme-

able walls. One fluid flows up the bore of the fibers – the ‘‘lumen’’ – as shown in the

figure. The other fluid washes around the outside of the fibers, called ‘‘the shell side’’ by

analogy with heat exchangers of similar geometry.

Two characteristics of hollow fiber membranes are important in the design of these

devices. First, we seek a large area per volume a, because Eq. 11.2-1 says that this will

give a large flux. For the cylindrical hollow fibers, this area is given by

a ¼ membrane area

fiber volume
¼ fiber volume

module volume
¼ pdl

p
4
d
2
l
� / ¼ 4/

d
ð11:2-5Þ

where d and l are the fiber diameter and length, respectively; and / is the volume frac-

tion of hollow fibers. Typically, d is about 400 lm and / is around 0.3, so a is perhaps

30 cm2/cm3.

The second characteristic of the hollow fiber membranes is the overall mass transfer

coefficient K. For blood oxygenators, this coefficient describes diffusion of oxygen from

the air to the membrane, from one side of the membrane to the other side, and from the

membrane–blood interface into the bulk blood. For blood dialyzers, the coefficient K
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describes diffusion of toxins from the blood to the membrane, across the membrane, and

into the dialysate. How we get large values of K is described next.

Mass Transfer Coefficients in Blood Oxygenators

As mentioned above, the heart and lungs often need to be bypassed during

open-heart surgery. The heart is replaced by a pump, and the lungs are replaced by

a blood oxygenator. The oxygenator must add oxygen, remove carbon dioxide, and

minimally damage the blood. Adding oxygen is harder than removing carbon dioxide

and so will be the focus here.

Building a blood oxygenator requires getting a large oxygen flux, which in turn

requires a large area per volume a and a large overall mass transfer coefficient K, just

as suggested by Eq. 11.2-1. While the obvious way to get a large a is to form small air

bubbles in the blood, this also causes considerable damage to the blood. This damage

One oxygenator design

Blood

Air

Blood

Membrane

Air

One dialyzer design

Dialysate
out

Blood

Membrane

Dialysate

Blood

Dialysate
in

Blood

Fig. 11.2-1. Blood oxygenators and kidney dialyzers.Most designs use hollow fibers, small tubes

with permeable walls giving a large area per volume for mass transfer.
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results in blood clots, which can cause strokes. As a result, current oxygenators are based

on membranes, which separate the air and the blood. These membranes dramatically

reduce clotting at the blood–air interface. Most current designs are based on hollow

fibers, like that shown schematically in Fig. 11.2-1.

We want to maximize the overall mass transfer coefficient in this type of device. The

overall mass transfer coefficient involves three sequential steps. Each step retards the

mass transfer. These steps parallel those of getting dressed in the morning: getting out of

bed, putting on your pants, lacing up your shoes. If getting out of bed takes much longer

than all the other steps, then it is the most important, ‘‘rate-limiting,’’ step. The mass

transfer resistances contribute similarly to the overall rate. In quantitative terms, this can

be expressed by

1

K
¼ 1

k airð Þ þ
1

k membraneð Þ þ
1

k bloodð Þ ð11:2-6Þ

where, for example, [1/k(air)] is the resistance to oxygen transfer in air, and k(air) is the

mass transfer coefficient in the air next to the membrane.

We can use the large engineering literature to make estimates of these three coeffi-

cients. To begin, we recognize that

k airð Þ ¼ D airð Þ
l airð Þ ð11:2-7Þ

where l(air) is an unstirred layer or boundary layer thickness, which is typically about

0.01 cm. Because the diffusion coefficient in gases is typically about 0.1 cm2/sec,

k airð Þ ¼ 0:1 cm
2
=sec

0:01 cm
¼ 10 cm=sec ð11:2-8Þ

Because the hydrophobicmembrane typically contains a void fraction e of 30%poreswhich

have an effective length l of 0.01 cm, the mass transfer coefficient for the membrane is

k membraneð Þ ¼ D airð Þ e
l
0 ¼ 0:1 cm

2
=sec 0:3ð Þ

0:01 cm

¼ 3 cm=sec ð11:2-9Þ

Thus the membrane’s resistance is about three times larger than that in the feed air.

We now need only calculate the resistance for oxygen being transferred from the

membrane into the blood. We will do this in two steps: as a quick approximation, and

then as a more quantitative effort. Quickly, as before,

k bloodð Þ ¼ D bloodð Þ
l
00H

ð11:2-10Þ

where l
00
is again a boundary layer, andH is the concentration of oxygen in air divided by

that in blood (cf. Section 2.1, 8.5, or 9.1). The diffusion in liquids is about 10–5 cm2/sec, l
00

is still around 0.01 cm, and H was estimated above to be 37. Thus

k bloodð Þ ¼ 10
�5

cm
2
=sec

0:01 cm ð37Þ ¼ 3 � 10�5 cm=sec ð11:2-11Þ
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The resistance in blood is 100,000 times bigger than the other resistances. It is the only

resistance that matters.

This result raises other questions, of which we will discuss three. First, hemoglobin

will react with oxygen and accelerate oxygen mass transfer. This acceleration can be

a factor of ten, which is certainly significant but not enough to change the blood re-

sistance so it is not the key factor. Second, carbon dioxide is about 30 times more soluble

in water than oxygen, so H is of order one. This means that k(CO2 in blood) is thirty

times larger than that for oxygen, but it is still the dominant resistance. Finally, note that

new membranes which were more permeable would not change the mass transfer of

oxygen significantly. Making k(membrane) ten times bigger wouldn’t change K much,

and so would not alter N1a.

Mass Transfer Coefficients in Blood Dialyzers

Like a blood oxygenator, a blood dialyzer is usually based on hollow fiber

membranes. Blood flows down one side of each membrane, usually in the hollow fiber

bore, or lumen. An aqueous solution, or ‘‘dialysate,’’ normally containing salts at about

the same concentration as in the blood, flows on the other side of the membrane,

normally the outside. The membrane itself is somewhat hydrophilic, swollen with water,

so that urea and other toxins can diffuse out of the blood across the membrane and into

the dialysate. Any dialysate loaded with toxins is discarded.

The mass transfer in blood dialyzers also is characterized by an overall mass transfer

coefficient K, which is in turn the result of three resistances:

1

K
¼ 1

k bloodð Þ þ
1

k membraneð Þ þ
1

k dialysateð Þ ð11:2-12Þ

where k(blood), k(membrane), and k(dialysate) are the mass transfer coefficients out of

the blood, across the membrane, and into the dialysate. Parenthetically, k(membrane) is

sometimes called the membrane’s ‘‘permeance,’’ or archaically, its ‘‘permeability.’’

Equation 11.2-12 is a close parallel to Eq. 11.2-6 for blood oxygenators. However, unlike

blood oxygenators, the three mass transfer coefficients for blood dialyzers are all about

the same size. No single coefficient dominates mass transfer. Thus if by some invention,

we made mass transfer in the blood infinitely fast, we would make k(blood) much larger,

but we would increase K only around 30 percent. If we made the membrane extremely

thin and thus made k(membrane) very large, we still would increase K only about

30 percent.

Oxygenator and Dialyzer Performance

Wenow have estimates of mass transfer coefficients of these devices.We can use

these estimates to see how either oxygenators or dialyzers will behave. As an example, we

consider the dialyzer of length l shown schematically in Figure 11.2-2. Blood enters at the

bottom of this dialyzer with toxins at concentration c1l and leaves with toxins at the

reduced concentration c10. Dialysate flows countercurrently, i.e., in the opposite direc-

tion, entering without toxins (C10 ¼ 0) and leaving with toxins at the concentration C1l.

Wewant to find how the toxin concentrations change with themodule length l and the

mass transfer coefficient K. To do so, we write three equations: an overall mass balance,

an expression of thermodynamic equilibrium, and a rate equation. We have already
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successfully used this strategy to describe gas absorption in the previous chapter. Here,

the mass balance is written on both blood and dialysate between the top of the dialyzer

and some arbitrary position:

B c1� c10ð Þ ¼ D C1� 0ð Þ

c1 ¼ c10 þ
D

B
C1 ð11:2-13Þ

where B and D are the superficial velocities of blood and of dialysate. The equilibrium

relation is simple:

c
�
1 ¼ C1 ð11:2-14Þ

At equilibrium, the toxin concentrations in blood and dialysate are equal because each is

a dilute aqueous solution. Finally, the rate of toxin removal is found from a steady-state

mass balance on the blood alone:

accumulation

of toxin

" #
¼

toxin flow in

minus that out

" #
�

toxin transferred

from blood to dialysate

" #

0 ¼ B
dc1
dz
� Ka c1 � c

�
1

� �
ð11:2-15Þ

where z is the distance from the top of the dialyzer downwards (cf. Fig. 11.2-2).

Blood containing toxins
c1l

Pure dialysate in
C10 = 0

Spent dialysate out
C1l

z

Purified blood
c10

Fig. 11.2-2. Blood dialyzer performance. Mass balances and equilibrium constraints allow

estimation of dialyzer behavior.
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We can integrate this rate equation by substituting C1 for c
�
1 using the equilibrium

relation in Eq. 11.2-13, and then substituting C1(c1) using the overall balance given in

Eq. 11.2-14. This integration is subject to the boundary conditions

z ¼ 0; c1 ¼ c10; C1 ¼ 0 ð11:2-16Þ

z ¼ l; c1 ¼ c1l; C1 ¼ C1l ð11:2-17Þ

The result is

c10
c1l � C1l

¼ e
�Kal 1

B
� 1

D

� �
ð11:2-18Þ

This is equivalent to the gas absorption result but withm¼ 0 and x0¼ 0. It is a key for the

design of blood dialyzers.

Three characteristics of this result may clarify its physical significance. First, when the

dialysate flow D is very high, C1 is always near zero and Eq. 11.2-18 becomes

c10
c1l
¼ e
� Kal

B ð11:2-19Þ

This is equivalent to what happens in a blood oxygenator. There, air is free, and so excess

air is used to oxygenate the blood as fast as possible. Here, dialysate costs money, so we

probably will not use a huge dialysate flow. The second characteristic of Eq. 11.2-18

occurs when the blood and the dialysate flows are equal. In this limit, (c1 –C1) is a con-

stant, equal to c10, and Equation 11.2-15 can be directly integrated to give

c10
c1l
¼ 1

1 þ Kal
B

ð11:2-20Þ

Larger flows will remove less toxin because the time for mass transfer is reduced.

The third characteristic of Eq. 11.2-18 is a geometric representation, rather than an

algebraic one. Equation 11.2-14 makes a parallel with gas absorption, and so is most

useful for those trying to understand both processes. This characteristic is an ‘‘equilibrium

line,’’ the 45� diagonal on a plot of c1 vs.C1. Equation 11.2-13 is an ‘‘operating line,’’ which

on the same c1 vs.C1 coordinates has a positive intercept and a slope of (B/D). The vertical

distance between these lines c1 � c�1
� �

is the driving force responsible for mass transfer. As

you become skilled in this analysis, you may find a sketch of these lines gives you physical

insight into the analysis not only of blood dialyzers but of any mass transfer device.

Example 11.2-1: The best location for blood flow in an oxygenatorKnowing that the mass

transfer in a blood oxygenator is dominated by the resistance in the blood immediately

raises another question: should the blood flow be inside or outside of the hollow fibers?

Make estimates to answer this question.

Solution We recognize that themodule will be run with excess air flow, so that

the oxygen concentration in the air will always be around 21 percent. Thus the oxygen
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concentration of the air is the same everywhere. In more quantitative terms, the value of

c�1 is a constant.

With this in mind, we answer this question using correlations developed for mass

transfer, some of which were summarized in Section 8.3. In particular, for blood flow

inside the hollow fibers

kd

D
¼ 1:62

d
2
v

Dl

 !1=3
where k is the mass transfer coefficient in the blood,D is the diffusion coefficient, and v is

the average velocity through a fiber of diameter d and length l. This result, which has an

unusually strong theoretical and experimental basis, is derived in Section 9.4. To make it

more specific, imagine that the liquid velocity is 1 cm/sec through fibers 400 lm in

diameter and 30 cm long. Then we can estimate k as

k 400 � 10�4 cm
� 	
10
�5

cm
2
=sec

¼ 1:62
400 � 10�4 cm
� 	2

1 cm=sec

10
�5

cm
2
=sec 30 cmð Þ

0B@
1CA
1=3

k ¼ 0:71 � 10�3 cm=sec

This is a typical value for mass transfer in the liquid.

Alternatively, we can design the blood oxygenator so that the blood flows outside of

the fibers. Blood flow outside and parallel to the fibers is usually compromised by uneven

hollow fiber spacing. Blood flow outside and perpendicular to the fibers tends to be more

reliable. In this geometry, the mass transfer coefficient k is correlated by

kd

D
¼ 0:8

dv

�

� �0:47
�

D

� 	1=3
where � is the kinematic viscosity. Using the typical values suggested above, we find

k 400 � 10�4 cm
� 	
10
�5

cm
2
=sec

¼ 0:8
400 � 10�4 cm
� 	2

1 cm=sec

0:01 cm
2
=sec

0B@
1CA

0:47

0:01 cm
2
=sec

10
�5

cm
2
=sec

 !1=3

k ¼ 3:8 � 10�3 cm=sec

Thus having the blood flow across the outside of the hollow fibers gives about five times

faster mass transfer. This is the strategy used by most but not all blood oxygenators.

Example 11.2-2: Toxin removal vs. dialysate flow A hollow fiber dialyzer is 30 cm long,

3.8 cm in diameter, and contains a volume fraction of hollow fibers / of 0.2 which are

200 lm in diameter. The overall mass transfer coefficient j in these fibers is 3.6 � 10–4 cm/

sec, and can be assumed independent of blood and dialysate flows.

If the blood flow is 4.1 cm/sec, what percentage of toxins is removed for a dialysate

flow equal to the blood flow, twice the blood flow, and much greater than the blood

flow?
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Solution From the data given, the area per volume a can be calculated from

Equation 11.2-5

a ¼ 4/
d
¼ 4 0:2ð Þ

200 � 10�4 cm
¼ 40 cm

2
=cm

3

The blood flux B is given by the volumetric flow divided by the module’s cross-sectional

area

B ¼ 4:1 cm
3
=sec

p
4

3:8 cmð Þ2
¼ 0:36 cm=sec

Thus

kal

B
¼

3:6 � 10�4 cmsec
� 	

40
cm 30 cmð Þ

0:36 cm=sec
¼ 1:2

We now can find the fraction of toxins removed. When D equals B, Equation 11.2-20

gives

c10
c1l
¼ 1

1 þ 1:2
¼ 0:45

so 55% of the toxins are removed. When D equals 2B, Equations 11.2-13 and 11.2-14

show that C1l equals (c1l – c10/2). Equation 11.2-18 then says that

2c10
c1l þ c10

¼ e
�kal=2B ¼ e

�0:6

c10
c1l
¼ 0:38

so 62% of the toxins are removed. When L is large, Equation 11.2-19 gives

c10
c1l
¼ e

� 1:2 ¼ 0:30

Seventy percent of the toxins are removed. The price of greater removal is of course more

dialysate used.

11.3 Pharmacokinetics

Pharmacokinetics is the study of the distribution and metabolism of drugs in

living organisms. It tries to estimate the drug concentrations in blood and tissue as a func-

tion of dosage and time. The basic tools, parallels of those in chemical reaction engineer-

ing, are mass balances written on regions or ‘‘compartments’’ in the system being studied.

In some cases, the compartments may refer to particular organs, like the stomach or the

brain; more frequently, they just refer to approximate regions, like the blood or the tissue.
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The mass balances used in pharmacokinetics often contain rate constants which may

include overall mass transfer coefficients and interfacial areas per volume. In cases like

this, the relation between drug mass transfer and the more exact engineering coefficients

is not known because the geometry implied in the pharmacokinetic models may not be

known. In this case, we cannot use engineering correlations to predict pharmacokinetic

behavior. We can only see whether drug concentration vs. time varies in roughly the

manner expected for mass transfer.

In this section we review some of the simplest pharmacokinetic models which

contain mass transfer coefficients. We do so only to illustrate the basic ideas involved;

more complete analyses for specific drugs are beyond the scope for this book. To

begin, we consider how we can easily measure blood flow in one artery. One way is

to inject a known mass M of a nonadsorbing solute into the artery and measure the

downstream concentration c1 spectrophotometrically as a function of time. From

a mass balance

M ¼
Z ‘

0

Qc1dt ¼ Q

Z ‘

0

c1dt ð11:3-1Þ

where Q is the volumetric flow in the artery. If we divide the area under a plot of

concentration vs. time into the total solute mass M, we find the flow Q. This can be

the start of our analysis.

We now want to approximate the distribution of a drug or other marker in the body.

As the simplest case, we consider an inert, nonabsorbing marker injected into one organ

of volume V. We will also make the conventional assumption that the contents of the

organ are well mixed, just to give us a simple starting point. If blood flows in and out of

the organ at a volumetric flow rate Q, then a mass balance on the marker in the organ

gives an equation for the drug concentration c1:

drug

accumulation

� �
¼

drug

flow in

� �
�

drug

flowout

� �
V
dc1
dt
¼ 0 � Qc1 ð11:3-2Þ

This is subject to the initial condition

t ¼ 0; c1 ¼ c10 ð11:3-3Þ

Integrating

c1
c10
¼ e
�Q

V
t

ð11:3-4Þ

The drug concentration decays exponentially. The rate constant for this decay (Q/V),

which is the reciprocal of the residence time in the organ, has nothing to do with mass

transfer. Thus it should be the same for any marker, independent of, for example, the

marker’s size or hydrophilicity.

The second example involves removing a drug from an organ which has two

compartments. One compartment of volume V is perfused with a steady flow Q in

and out. The second compartment of volume V# quickly absorbs and desorbs the drug.
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However, the drug is significantly metabolized in neither compartment. The mass

balance is now

drug

accumulation

� �
¼

drug

flow in

� �
�

drug

flowout

� �
d

dt
c1V þ c

0
1V#

� �
¼ 0� Qc1 ð11:3-5Þ

The drug concentration c01 in the unperfused compartment is in rapid equilibrium with

the concentration c1 in the perfused compartment

c
0
1 ¼ Hc1 ð11:3-6Þ

whereH is a partition coefficient, which may be much greater than one. Again, the mass

balance is subject to an initial condition

t ¼ 0; c1 ¼ c10 ð11:3-7Þ

Integration gives

c1
c10
¼ e
� Q

V þ HV
0

� �
t

ð11:3-8Þ

where (V+HV#) is a virtual volume of the two compartments. Obviously, Eqs. 11.3-4 and

11.3-8 have the samemathematical form. Thus to tell if we in fact have one or two compart-

ments, we must make experiments with two solutes which have different values of H.

Finally, we consider the same two compartments but with mass transfer which is not

instantaneous. We still consider drug metabolism to be relatively slow. The mass bal-

ances on the two compartments are now

V
dc1
dt
¼ � Qc1 þ KA

c
0
1

H
� c1

� �
ð11:3-9Þ

V
0 dc

0
1

dt
¼ KA c1 �

c
0
1

H

� �
ð11:3-10Þ

where A is the area for mass transfer between the two compartments, the overall mass

transfer coefficient K is

1

K
¼ 1

k compartment Vð Þ þ
1

Hk compartment V
0� � ð11:3-11Þ

While we don’t know much about particular values for the individual mass transfer

coefficients k, we do know that they do not vary much. Thus most of the change in

the mass transfer resistance is likely to come from the value ofH. Parenthetically, this is

the same as in liquid–liquid extraction, where the overall mass transfer coefficient is most

influenced by the partition coefficient (cf. Section 14.3).

The integration of Eqs. 11.3-9 to 11.3-11 is straightforward but complicated. It leads

to a plot of concentration vs. time which is a weighted sum of two decaying exponentials.

To understand what this means, we are better off to consider a couple of special cases.
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First, if KA/Q>>1, then mass transfer is fast enough to let c1 and c#1 approach equilib-

rium. Then this example reduces to the second one, described by Eq. 11.3-8.

The more interesting case is the antithesis, when KA/Q<<1. Now, the concentration

c1 in the perfused compartment is small, and the concentration in the compartment

regulated by mass transfer is

c
0
1

c
0
10

¼ e
�KAt=V0 ð11:3-12Þ

As a result, the small exiting concentration c1 is approximately

c1
c#10
¼ KA

Q
e
� KAt=V

0
ð11:3-13Þ

Now, the apparent residence time (V#/KA) is a function of the mass transfer, and not of

the flow.

This glimpse of pharmacokinetics shows both the advantage and the shortcoming of

the approach. The advantage is that we can easily generate a mathematical model which

can explain drug distribution. This model includes parameters which are physically

plausible, describing topics like the flow, the mass transfer, and the partition between

two regions. Moreover, the predictions of this mathematical model often give a good fit

to the experimental data, which are often subject to considerable error. This is not

a criticism because data on living systems are often hard to obtain.

The shortcoming of this approach is equally major. While the agreement between

the model and the data may be good, the parameters found are often impossible to

check independently. For example, we may not be able to distinguish between the

residence times of [(V + HV)/ Q] and [V#/KA] (Eqs. 11.3-8 and 11.3-13, respectively).

We often will not really know what these residence times mean. Thus we run the risk

of curve fitting our data without any real understanding. In this case, the analysis of

data for living systems is not aided by the knowledge of diffusion and mass transfer

developed for nonliving systems, the knowledge of which is the subject of the other

chapters in this book.

11.4 Conclusions

The ideas of mass transfer developed in Chapters 8–10 can be effectively used in

biology andmedicine. They can be used to organize rates of digestion or breathing. They

can serve as a guide for the design of blood oxygenators or the effectiveness of blood

dialyzers. In cases where the geometry of the mass transfer device is well known, the new

device can often be effectively designed by borrowing results for mass transfer in other,

nonliving systems.

Mass transfer ideas can also be used in other in vivo situations. Their use often

provides successful strategies for correlating data. However, because the geometry

and chemistry of living systems is not often well defined, the physical meaning of the

parameters used is much less clear. Knowledge of in vitro mass transfer, the subject of

earlier and later chapters of this book, cannot be easily and effectively used in these other

cases. We must make judgments to be effective.
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Questions for Discussion

1. Will the mass transfer coefficient be larger for big leaves or for small ones?

2. Would the mass transfer correlation suggested for leaves work for tall grasses?

3. Would inhaling at different speeds change measurements of the apparent lung

volume and of the lung mass transfer coefficient?

4. Why are better membranes a poor goal for research on blood oxygenators?

5. To maximize mass transfer, where should blood flow in a blood oxygenator?

6. Where should it flow in a hollow fiber dialyzer?

7. How canmass transfer be affected by the intestinal villi, i.e., the uneven surfaces

of the small intestine?

8. The dissolution of many drugs is said to be diffusion controlled. How could you

test this for a new drug?

9. Describe experiments which let you test if a drug’s dissolution is partly con-

trolled by diffusion and partly by a surface reaction.

10. How can mass transfer in the blood and in the tissue ever be separated in

pharmacokinetic studies?

Problems

1. Find the dissolution rate of a cholesterol gallstone 1 cm in diameter immersed
in a solution of bile salts. The solubility of cholesterol in this solution is about
3.5 � 10–3 g/cm3. The density difference between the bile saturated with cholesterol

and that containing no cholesterol is about 3 � 10–3 g/cm3; the kinematic viscosity of
this solution is about 0.06 cm2/sec; the diffusion coefficient of cholesterol is 1.8 � 10–6
cm2/sec. Answer: 0.2 g per month.

2. You need to estimate an overall mass transfer coefficient for solute adsorption from
an aqueous solution of density 1.3 g/cm3 into hydrogel beads 0.03 cm in diameter.

The coefficient sought Ky is defined by

N1 ¼ Kyðy� y
�Þ

whereN1 has the units of g/cm
2 sec, and the y’s have units of solute mass fraction in the

water. The mass transfer coefficient kS in the solution is 10–3 cm/sec; that within the
beads is given by

kB ¼ 6D

d

where d is the particle diameter andD is the diffusion coefficient, equal here to 3 � 10–6
cm2/sec. Because the beads are of hydrogel, the partition coefficient is one. EstimateKy

in the units given.

3. Giardia, a microbial disease, infects most large animals in the western United States.

When you canoe in northern Minnesota, you risk this ‘‘beaver fever’’ if you drink
lake water infected with giardia cysts. A commercial device to remove these cysts
consists of a small bed of ion exchange beads loaded with I�3 . When you suck water

through the bed into your mouth, you quickly kill the cysts. (a) Write a differential
equation giving the percent of cysts killed versus flow. (b) Imagine the bed is of
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constant volume and operates at a given flow. Explain why a tall skinny bed is better

than a short fat bed. (c) In fact, the short fat bed is used. Explain why.

4. In the lab, we have been testing artificial gills for breathing underwater. In one of

these gills, exhaled air containing 10% oxygen flows at 2 cm/sec past 20-cm long
hollow fibers containing excess air saturated water. Oxygen in the water is transferred
across the fibers into the air. The fibers have a surface area per gill volume of 16 cm2/

cm3. The mass transfer coefficient across the fibers is 0.01 cm/sec. The air saturated
water contains y*¼ 10–7 mol air per mol total. (a) Derive an equation giving the
oxygen concentration coming out. (b) Estimate this exit concentration.
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CHAPTER 12

Differential Distillation

Distillation is the process of heating a liquid solution to drive off a vapor and

then collecting and condensing this vapor. It is the most common method of chemical

separation, the workhorse of the chemical process industries. Distillation columns are

ubiquitous; they are the brightly lighted towers that rise from chemical plants, and they

are the stills used by moonshiners.

Distillation is carried out in two ways: differential distillation and staged distillation.

The difference is what is inside of the distillation column. In differential distillation, the

column contains packing like that used for gas absorption. In small laboratory columns,

this packing is usually random, of Raschig rings or even glass beads. Such distillation

aims to provide small amounts of very pure chemicals. In larger differential distillation

columns, the column internals are usually structured packing. These distillations aim to

produce large amounts of commodity chemicals at the lowest possible cost.

The second way to effect these separations is staged distillation. In staged distillation,

the column internals are completely different than those normally used for gas absorp-

tion. Now these internals consist of a series of compartments or ‘‘trays,’’ where liquid

and vapor are contacted intimately, in the hope that they will approach equilibrium.

Now, the liquid and vapor concentrations in the column do not vary continuously, but

discretely, jumping to new values on each tray. Staged distillation was an innovation for

commodity chemicals a century ago, and was the standard during the rapid growth of

the chemical industry. While it is still the standard in universities, it has been eclipsed by

differential distillation in many areas of industrial practice.

I will describe differential distillation in this chapter, and I will develop staged distilla-

tion in the next chapter. I have tried to make the chapters separate, so that either may be

read without the other. At the same time, I have also tried to keep them parallel, so that

ideas for one of the methods may be reinforced by comparison with the other method.

In this chapter on differential distillation, we cover in Section 12.1 what is distilled and

what equipment is used. In Section 12.2, we consider only distillation of very pure prod-

ucts, which is a close parallel to dilute absorption. Because we begin with dilute distilla-

tion, we can focus on the physics and chemistry without complex mathematics. In Section

12.3 we discuss the changes caused by a feed in the center of the column. In Section 12.4,

we analyze concentrated distillation, which normally requires numerical computation.

12.1 Overview of Distillation

12.1.1 What is Distilled

In distillation, we heat a liquid to make a vapor enriched in the more volatile

component. By doing this repeatedly, we can separate the more volatile and less volatile

species.
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Distillation is a ubiquitous process, used for a huge variety of chemical separations. In

the popular imagination, it is associated with the production of ethanol. Wine is distilled

to make brandy; beer is distilled to make whiskey; and corn mash is distilled to make gin,

vodka and other white spirits. Distillation originated in efforts to increase the alcohol

concentration of wine, thus making the wine more stable to heat. Many cultures seem to

have been involved: the stills shown on the labels of Irish whiskey bottles are ‘‘aliqui-

taras,’’ a form of Spanish still based on designs by the Moors, who are believed to have

gotten their ideas from the Chinese.

Today, distillation is a key to production of most commodity chemicals. It is used to

make gasoline from crude oil. It is basic to the four most important separations of

organics: aliphatic from aromatic hydrocarbons, linear from branched hydro-

carbons, olefins from alkanes, and alcohols from water. One essay on choosing

separation processes starts with the question ‘‘Why not distillation?’’ After then discus-

sing over fifty other processes, it repeats, ‘‘Are you sure you do not want to use distil-

lation?’’

In this environment, we should discuss which species are not successfully separated by

distillation. The normal rule is any species which is nonvolatile or harmed by heat. This

will include most drugs, dyes, and detergents. It will include many high value-added

materials with molecular weights above perhaps 700 daltons. For such solutes, separa-

tion by adsorption or crystallization will be preferred. For other mixtures, we should

always consider distillation.

12.1.2 The Distillation Process

Distillation normally takes place in one of three different ways, as shown in Fig.

12.1-1. In the simplest, in Fig. 12.1-1(a) a saturated vapor is fed to the bottom of

a column. The vapor passes up the column and is collected and condensed at the top.

Part of this condensed distillate is passed back into the column where it flows counter-

currently downwards, past the rising vapor. The separation occurs because the more

volatile species evaporates out of the falling liquid into the vapor, and the less volatile

species condenses from the vapor into the liquid.

The distillation shown in Fig. 12.1-1(a) is a close parallel to the process of gas

absorption. The two other forms of distillation shown in Fig. 12.1-1 are similar. In

Fig. 12.1-1(b), a saturated liquid feed enters the top of the column and flows downwards

into a heated kettle, called a reboiler. The reboiler produces a vapor, which passes up the

column, countercurrently to the falling liquid. The liquid ‘‘bottoms’’ product drawn out

of the reboiler is normally in thermodynamic equilibrium with the vapor leaving the

reboiler to go up the column. This type of distillation would be effective in removing

a trace of impurity, like a ‘‘volatile organic compound (VOC)’’ from a less volatile

solvent like water.

The final form of distillation, in Fig. 12.1-1(c), is just the other two set on top of each

other. This is the most important form of distillation because it can produce highly

purified distillate and bottoms out of a concentrated feed. This process is the workhorse

of most of the commodity chemical industry. Because its analysis is somewhat more

complex, we will analyze the other two cases in the next section, and defer development

of this harder case until Section 12.3.
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12.1.3 Distillation Equipment

As described above, the basic equipment has three parts: a reboiler, a condenser,

and the column itself. The reboiler is nothing more than a kettle, most commonly heated

with steam. The condenser, which is equally standard, most commonly liquifies all of the

vapor.

The column internals for differential distillation are usually selected from the same

group as those used for gas absorption. Again, the key question is the estimation of the

maximum flows which can be tolerated without flooding. Pressure drop is important.

These problems are resolved by adjusting the column’s cross-sectional area, and hence

changing the convective fluxes. This is the same way in which the fluid mechanics of gas

absorption was resolved.

In spite of these parallels, there has been a major recent change in the internals of

distillation columns. Many of those who are responsible for column performance have

replaced the stages in large columns with structured packing. This has typically pro-

duced 10 to 30 percent increased capacity and allowed the same separations with less

reboiler heat (i.e., with a reduced reflux ratio.) Some have hesitated in making these

retrofits because of the high cost of structured packing. Because some of the patents on

these packings have expired, the price of the packing is expected to fall.

(a) Condenser

Distillate

Vapor
feed

Liquid
product

Reboiler
Bottoms

Vapor
product

Liquid
feed

(b)

Condenser

Distillate

Reboiler
Bottoms

Feed

(c)

Fig. 12.1-1. Three forms of distillation. The process in (c) is most common and most

important. The processes in (a) and (b), for highly pure products, are easier to analyze and

so are the starting point here.
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12.2 Very Pure Products

We now switch from questions of the column’s cross-section to the column’s

height. In other words, we have chosen how fat the tower is; we want to estimate how tall

it should be. To do so, we first consider the details of a distillation column like that in Fig.

12.2-1. In this column, a saturated vapor enters the tower producing a distillate and

a bottoms. As in absorption, we want to analyze the concentration changes occurring in

the column. Now, however, we will follow only the concentration of the more volatile

species. We will describe this concentration as a mole fraction in the gas y and as a mole

fraction in the liquid x. We will use subscripts on these concentrations to indicate where

in the column we are, and not the component we are considering. Thus feed contains

a high concentration of the more volatile species yl: this mole fraction may be close to

one. The distillate concentration xD is higher still, but the bottoms concentration xl
must, of course, be less pure.

We want to calculate the height of column needed to make this separation. To do so,

we need three key equations: a mole balance on the more volatile species, an energy

balance, and a rate equation. The overall mole balance is easy

G ¼ LþD ð12:2-1Þ

where G and L are the vapor and liquid fluxes, respectively; and D is the distillate per

column cross-section. Expressing each flow per column cross-section simplifies the form

of the equations which follow. The balance on the more volatile species, written as

a column height Dz, is not much harder:

d

dz
Gyð Þ ¼ d

dz
Lxð Þ ð12:2-2Þ

If we assume that the fluxes G and L are constants, we have

dy

dx
¼ L

G
ð12:2-3Þ

G,yl

L,xl

D,xD

Fig. 12.2-1. Distillation producing a very pure condensate. This column is fed at the bottom

with a saturated vapor.

356 12 / Differential Distillation



This is subject to the condition that at the top of the column

z ¼ 0 y0 ¼ x0 ¼ xD ð12:2-4Þ

These concentrations are equal because the condenser liquefies all the vapor, returning

some condensate to the top of the column. Integrating, we find

y ¼ y0 �
L

G
x0

� �
þ L

G
x ð12:2-5Þ

This is commonly rewritten as

y ¼ xD
1þ RD

þ RD

1þ RD
x ð12:2-6Þ

where RD (= L/D) is the reflux ratio of the column. This ratio can be adjusted to change

the way the column is operating.

Eq. 12.2-6 is an important result called the ‘‘operating line’’ of the column. Like the

operating line for absorption, it is based onmole balances. It has two important features.

First, the reflux ratioRDwhich appears in this equation is amajor factor in the control of

this type of column. Obviously, we can vary RD between zero and infinity by changing

the amount of condensate we send back into the column. If we send none back, RD is

zero, and we get little separation. If we send all of it back except one tiny drop of

distillate, then RD is infinity and the tiny drop will be the purest product possible with

this column.

The second important feature of Eq. 12.2-6 is the assumption that the vapor and

liquid fluxes G and L are constants. I never understand why this should be a good

assumption, but it turns out in practice to be remarkably good. For the time being,

we will not worry about why it works, but be content that it does.

In addition to the operating line, based on mole balances, we need a second key

equation based on energy balances. This says that the vapor concentration y* in equi-

librium with the local liquid concentration x is given by

y
� ¼ aþmx ð12:2-7Þ

where a and m are constants. Note that m is closely related to a Henry’s law constant,

except for a solution concentrated in the more volatile component. Note that when x¼ 1,

y* ¼ 1; hence a and m add up to one. Obviously, the linear relation in Eq. 12.2-7 is an

approximation, which will need to be replaced when the components being distilled are

present in more equal amounts. Finally, remember that this line expresses a vapor–liquid

equilibrium at constant pressure and so is implicitly at a varying temperature.

We need our third key equation, a mole balance on the vapor phase alone. Again, we

consider themoles of themore volatile species entering and leaving the vapor in a column

section ADz:

accumulation½ � ¼
moles

flowing in

� �
�

moles flowing

out

� �
þ

moles

evaporating

� �

0 ¼ GAyð ÞzþDz� GAyð ÞzþKya ADzð Þ y
� � yð Þ ð12:2-8Þ

12.2 / Very Pure Products 357



As expected, we divide by the volume (ADz) and take the limit as this volume goes to

zero:

0 ¼ G
dy

dz
þ Kya y

� � yð Þ ð12:2-9Þ

This is subject to the boundary conditions

z ¼ 0, y ¼ y0 ¼ xD ð12:2-10Þ

z ¼ l, y ¼ yl ð12:2-11Þ

We can now integrate this equation. In this integration, we find y* as a function of x from

Eq. 12.2-7, and x as a function of y from Equation 12.2-6. The result is

l ¼
Z l

0

dz ¼ G

Kya

Zy0
yl

dy

y
� � y

¼ G

Kya

� �
1

1�mG

L

ln
y
�
l � yl

y
�
0 � y0

� �0B@
1CA

¼ G

Kya

� �
1

1�m RD þ 1ð Þ
RD

ln
aþmxlð Þ � yl
aþmxDð Þ � xD

� �0BB@
1CCA ð12:2-12Þ

Just as in gas absorption, this result is often rewritten in different terms:

l ¼ ½HTU� � ðNTUÞ ð12:2-13Þ

The height of a transfer unit HTU, given in square brackets in these equations, measures

the column efficiency

HTU ¼ G

Kya
ð12:2-14Þ

A small HTU is evidence of efficient column internals. The number of transfer units

NTU, given in parentheses, describes the difficulty of the separation

NTU ¼ 1

1�m RD þ 1ð Þ
RD

ln
y
�
l � yl

y
�
0 � y0

ð12:2-15Þ

A small NTU signals an easy distillation.

As with gas absorption, the characteristics of this distillation can be clarified graphically.

To do so, we make a plot of y vs. x as given by the operating line in Eq. 12.2-5 or Eq. 12.2-6.

This plot passes through the 45� diagonal at the point (xD, xD), as shown in Fig. 12.2-2; its

slope is (L/G), or (RD /(RD+ 1)). On the same coordinates, we plot y* vs. x, as given by the

equilibrium line in Eq. 12.2-7. This plot passes through the point (1,1) and has slope m.

The difference between the two lines (y* � y) in Fig. 12.2-2 is the driving force for

distillation. When this difference is large, the vapor concentration will change rapidly
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over the column length.When the difference is small, the concentration will change more

slowly because the mass transfer will be slower. If the operating and equilibrium lines

cross, the separation is not possible. This type of plot often gives important insight into

what is happening in the distillation.

This plot can also provide important information about the operation of the column.

Normally, we will know the feed concentration, and we will want to specify the distillate

concentration. We are given an equilibrium line by the chemistry of the system. If we

have an infinitely tall column, the liquid exiting the column would be in equilibrium with

the feed. In graphical terms, this means that the operating line passes through the points

(xD, xD) and (((yl – a)/m), yl). The slope of this operating line corresponds to the

minimum reflux at which the separation is possible. We will often design the column

to operate at a reflux ratio which is 1.1 to 1.8 times larger than this minimum reflux.

These ideas are illustrated in the examples that follow.

Example 12.2-1: Mass transfer in a small still We want to remove acetic acid from

acetone to be used to rinse electronic devices. Our still is 1.22 m high and 0.088 m in

diameter, fed with saturated vapor at about 0.026 mol/sec. With a feed of 1.1% acetic

acid, the best that we can get from a distillate is 0.04% acetic acid. We believe that the

equilibrium line for this system is

y
� ¼ 0:93þ 0:07x

where y* and x are acetone mole fractions. (a) What is the mass transfer coefficient per

volume Kya in this still? (b) How can we get a purer distillate?

Solution (a)We will solve this problem in terms of mole fractions of acetone,

which is the more volatile species. To get the best separation, we must make the con-

centration difference (y* � y) as large as possible. We do so by operating at infinite

reflux, with G equal to L. Thus we are collecting a vanishingly small amount of distillate,

y

y*
(1,1)

(xD,xD)

0 1
x

y 
or

 y
*

Fig. 12.2-2. Performance of a column producing a very pure condensate. All mole fractions

involved are close to one. Note the equilibrium line is above the operating line.
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and the operating line is the 45� diagonal. In this case, the vapor and liquid concentra-

tions x and ymust be equal everywhere in the column. Equation 12.2-12 now reduces to

l ¼ G

Kya

� �
1

1�mG

L

ln
0:93þ 0:07ylð Þ � yl
0:93þ 0:07y0ð Þ � y0

� �0B@
1CA

¼ G

Kya

� �
1

1�m
ln

1� yl
1� y0

� �� �
Inserting the values given

1:22 m ¼
0:026 mol=sec
p
4

0:088 mð Þ2

Kya

2664
3775 1

1� 0:07
ln

0:011

0:0004

� �� �

Thus

Kya ¼ 12:5mol=m
3
sec

Note that this is mass transfer per volume, not the more normal mass transfer per area.

(b) To improve this separation, we must make the still more efficient. More quanti-

tatively, we see from Eq. 12.2-13 that because l is fixed, we must reduce the HTU to

increase the NTU. The easy way to do this is to decrease the feed flux G. We should

remember that such a decrease will also reduceKy and potentially a, so wemay not get as

much benefit as we hope.

Example 12.2-2: Benzene purification You are distilling modest quantities of a 95 per-

cent benzene feed to get a purer feedstock for catalytic experiments. The equilibrium line

for this concentration and higher is approximately

y
� ¼ 0:58þ 0:42x

(a) You want to make a 99% pure product using a reflux which is 1.5 times the minimum.

Howmany transfer units will you need? (b) You have a 2m columnwith anHTUof 0.34m.

What is the best separation of this feed that is possible with this column?

Solution (a)When the reflux ratio is the minimum possible, the operating line

must run from the point (xD, xD) to the point x�l , yl
� �

. In quantitative terms, it runs from

the point (0.99, 0.99) to the point
0:95� 0:58

0:42
,0:95

� �
. The slope of this line is

Dy
Dx
¼ L

G
¼ RD minð Þ

1þ RD minð Þ ¼
0:99� 0:95

0:99� 0:881

Thus

RDðminÞ ¼ 0:579
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and under our operating conditions,

RD ¼ 1:5RDðminÞ ¼ 0:869

From an overall balance, we can find the concentration of the exiting liquid:

Gyl ¼ Lxl þDxD

ðRD þ 1Þyl ¼ RDxl þ xD

1:869ð0:95Þ ¼ 0:869xl þ 0:99

As a result

xl ¼ 0:904

Finally, from Eq. 12.2-15

NTU ¼ 1

1�m RD þ 1ð Þ
RD

ln
y
�
l � yl

y
�
0 � y0

� �

¼ 1

1� 0:42 1:869ð Þ
0:869

ln
0:58þ 0:42 0:904ð Þð Þ � 0:95

0:58þ 0:42 0:99ð Þð Þ � 0:99

� �

¼ 5:3

This is a typical number.

(b) To find the best possible separation, we first recognize from Equation 12.2-13 that

NTU ¼ l=HTU ¼ 2:0=0:34 ¼ 5:88

Under these conditions, we run a total reflux, so RD is infinite. Equation 12.2-15 then

gives

5:88 ¼ 1

1� 0:42
ln

0:58þ 0:42 0:95ð Þð Þ � 0:95

0:58þ 0:42 xDð Þð Þ � xD

� �
Thus

xD ¼ 0:998

At total reflux, we can get a better separation than that in part (a).

Example 12.2-3: Differential stripping Extend the analysis for the vapor-fed rectifying

column in Figs. 12.1-1(a) and 12.2-1 to a liquid-fed stripping column shown in Fig. 12.1-

1(b). In particular, develop equations for the operating line, the equilibrium line, and the

rate equation. Combine these to find the HTU, the NTU, and the column height.
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Solution We begin with an overall balance, a parallel to Equation 12.2-1

L ¼ Bþ G

where B is the bottoms stream, again normalized by dividing by the cross-section of the

column. We then make a species balance from the bottom part of the column to some

arbitrary position to find

G y� ylð Þ ¼ L x� xlð Þ

y ¼ yl þ
L

G
x� xlð Þ

In this analogue of Eq. 12.2-5, we note that L/G is equal to or greater than one. In the

earlier case, it was equal to or less than one. The equilibrium line is now

y
� ¼ mx

a contrast with Eq. 12.2-7. Note that y�l equals mxB because the reboiler usually func-

tions at very near equilibrium.

We now turn to the rate equation, which is the same as Eq. 12.2-9

0 ¼ G
dy

dz
þ Kya y

� � yð Þ

We integrate this between the ends of the column to find

l ¼ G

Kya

� �
1

1�mG

L

ln
y
�
l � yl

y
�
0 � y0

� �0B@
1CA

¼ HTU½ � � NTUð Þ

The concentrations at the top of the column y0 and x0 will normally be known or can

be calculated from an overall mass balance. Once x0 is known, y�0 is found from the

equilibrium line. The concentration yl is in equilibrium with the bottoms concentration

xB. The concentration xl can often be found by a mass balance on the column alone, and

y�l is then found from xl using the equilibrium line. Thus the NTU and the column height

l can be calculated.

12.3 The Column’s Feed and its Location

Inmost cases, we will want to separate a feed of two components into a distillate

which is largely the more volatile component and a bottoms which is mostly the less

volatile component. To do so, we will normally use a distillation column fitted with both

a condenser and a reboiler. Thus we commonly will be interested in more complex cases

than in the previous section. There, a column was fed at the bottom with a vapor, or at

the top with a liquid.

In the more common case, we will feed the column somewhere in the middle. Such

a column, which was shown schematically in Fig. 12.1-1(c), requires a more complex

analysis than that for a column fed at the top or the bottom. All three key equations basic
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to the analysis are usually altered. The operating line, based on mole balances, changes

because the feed alters the flows within the column. The equilibrium line becomes non-

linear, a result of the more concentrated solutions that are involved. The rate equation is

different because the fluxes like G can change because of the more central feed. Changes

in fluxes can also change the individual mass transfer coefficients, and hence the overall

mass transfer coefficient Ky.

In this section, we focus on changes to the operating line.We defer discussing the other

changes to the description of concentrated differential distillation in Section 12.4. To

understand the changes in operating line, we first refer to the schematic of a column shown

in Fig. 12.3-1. By convention, that part of the column above the feed is called the

‘‘rectifying section’’; that below is termed the ‘‘stripping section.’’ The vapor and liquid

fluxes above the feed location are calledG andL; those below the feed are calledG0 andL0.
We begin with the case of a saturated liquid feed. Such a feed does not change the

vapor flow up the column; it only alters the liquid flow down the column. In other words,

G equals G0 and L0 equals (L+F ) where F is the feed per time per column cross-section.

This means that the slope of the operating line must change at the feed point, from (L/G)

to ((L+F )/G).

However, other types of feed are obviously possible, as illustrated schematically in

Fig. 12.3-2. For example, if the feed is a cold liquid that is below the saturation temper-

ature at the composition on that stage, then the feed will necessarily condense some of

the vapor rising up through the column. In this case, G0 will be greater than G. In the

same sense, if the feed is a superheated vapor, then it will vaporize some of the liquid

moving down the column, and L will be greater than L0.

L´

D

L

G

B

L´

G´

G´

LG

F

Fig. 12.3-1. Differential distillation separating a concentrated feed. The central feed changes

the flows of vapor and liquid in the column.
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To see how these new feeds alter the distillation, we define a new quantity q as equal to

the moles of liquid produced per mole of feed:

q ¼ L
0�L
F

ð12:3-1Þ

By comparison with Fig. 12.3-2, we see that q ¼ 1 if the feed is a saturated liquid.

Similarly, q equals zero if the feed is a saturated vapor. However, for feeds that are

subcooled liquids or superheated vapors, we need a more complete energy balance. For

a feed of subcooled liquid, we recognize that

energy supplied
by condensation

� �
¼ energy needed to heat the liquid feed to

its saturation temperature

� �
ð12:3-2Þ

More specifically,�
moles vapor

condensed

�
heat of

vaporization k

� �
¼
�
heat capacity per

mole liquid ~Cp

�

3

�
bubble feed

temperatureTB
� temperatureTF

��
moles
feed

� ð12:3-3Þ

Rearranging, we see

moles vapor condensed

moles feed
¼

~CpðTB�TFÞ
k

ð12:3-4Þ

From the definition of q, we know

q ¼ moles feedþmoles vapor condensed

moles feed
ð12:3-5Þ

Combining, we obtain the desired result for a subcooled liquid feed:

q ¼ 1þ
~CpðTB�TFÞ

k
ð12:3-6Þ

Remember that the heat capacity ~Cp is that for the liquid. Note also that when the feed

temperature equals the temperature at the bubble point, q¼1, consistent with our ex-

pectation above.

F
L G

L'=L+F

{
F

L G

G'

F
L {G =F+G'

F
L G

G'

Feed saturated
liquid

Feed cold
liquid

Feed saturated
vapor

Feed hot
vapor

Fig. 12.3-2. The effects of different feeds. The conditions at which the feed enters affect the

flows in the column as shown.
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We can obtain similar results for superheated vapor feed by arguments that are

completely parallel. The result is

q ¼
~CpðTD�TFÞ

k
ð12:3-7Þ

in which ~Cp is now the heat capacity of the vapor,TD is the temperature at the dew point,

and TF is the temperature of the feed. Because for a superheated vapor the feed tem-

perature is greater than the temperature at the dew point, q is negative for this case.

However, when the feed is a vapor fed at saturation, TF¼TD and q is zero, again

consistent with our qualitative argument above.

We now want to describe how different feeds affect the operating line. We begin by

writing mass balances from the feed stage up to and including the ends of the column.

For the upper ‘‘rectifying’’ section, we have an operating line

Gy ¼ LxþDxD ð12:3-8Þ

For the lower ‘‘stripping’’ section,

L
0
x ¼ G

0
yþ BxB ð12:3-9Þ

Our interest is in the intersection of these two operating lines, where x has the same value

in the rectifying and stripping sections, and y does also. Thus our interest is in the sum of

the last two equations:

G� G
0� �
y ¼ DxD þ BxB½ � þ L�L0

� �
x

¼ FxF½ � þ L�L0
� �

x ð12:3-10Þ

where xF is the concentration in the feed of the more volatile component.

In this expression, we have used the overall solute balance to rewrite the quantity in

square brackets in terms of the feed. From Eq. 12.3-1, we expect that (L – L#) ¼ (– qF);

from an overall balance of the feed location we see that

G� G
0 ¼ L� L

0� �
þ F

¼ �qFþ F

¼ F 1� qð Þ

ð12:3-11Þ

By combining Eqs. 12.3-10 and 12.3-11 and rearranging, we get a new ‘‘feed line’’ which

gives the intersection of the operating lines

y ¼ xF
1� q

þ � q

1� q

� �
x ð12:3-12Þ

Note that this equation is a straight line passing through the point (xF, xF).

The new feed line has simple behavior for a number of special cases. For a saturated

liquid feed, q ¼ 1 and the feed line is vertical. For the case of a saturated vapor feed,

q¼ 0 and the feed line is horizontal. For the case of a subcooled liquid, q>1and the slope

of the feed line is positive. For the case of a superheated vapor, q<0 and the feed line

again has a positive slope. Finally, for the case of the feed which is a mixed vapor and

liquid in equilibrium with each other, the feed line has a negative slope.
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The feed line marks the change from the operating line for the upper, rectifying

section and that for the lower, stripping section. In other words, it passes both through

the point (xF, xF), as suggested by Eq. 12.3-12, and through the intersection of the feed

lines. We will use this feature in calculating the column height in the next section.

12.4 Concentrated Differential Distillation

We now turn to the full complexities of differential distillation of a concentrated

feed into a distillate which is highly enriched in the more volatile component and a bot-

toms streamwhich contains very little of this volatile component.We do so by effectively

placing a rectifying column like that in Fig. 12.1-1(a) on top of a stripping column

sketched in Fig. 12.1-1(b). The feed enters at the junction between these two columns.

Like the analysis of dilute differential distillation, the analysis of concentrated differential

distillation depends on three equations: an operating line, an equilibrium line, and a rate

equation. Each is changedwhen the feed is concentrated. The changes to the operating lines,

whichwere detailed in the previous section, are greatest. Above the feed, the operating line is

y ¼ DxD
G
þ L

G
x

¼ xD
1þ RD

þ RD

1þ RD
x

ð12:4-1Þ

where RD (=L/D) is the reflux ratio. Below the feed, the operating line is

y ¼ �BxB

G
0 þ

L
0

G
0 x ð12:4-2Þ

whereL0andG0 are the liquid and vapor fluxes in the lower, stripping portion of the column.

Remember that in general, these fluxes will differ from those above the feed. For exam-

ple, for the common case of a saturated liquid feed,L0 is (L+F), even thoughG0 equalsG.
The changes in the equilibrium line and the rate equation are equally major, but they

may be easier to understand. The equilibrium line is now nonlinear

y
� ¼ y

� ðxÞ ð12:4-3Þ

At small x, we expect

y
� ¼ mx ð12:4-4Þ

and at large x, we can assume

y
� ¼ aþm

0
x ð12:4-5Þ

However, m and m0 will be far from equal. Often, we will expect m to be much greater

than m0. This complicates our analysis but still involves the same thinking.

The rate equation for concentrated cases still has the familiar form of a steady-state

mass balance on the volatile component alone:

accumulation½ � ¼ ½moles flowing in� � ½moles flowing out� þ ½moles transferred�

0 ¼ G
dy

dz
þ Kya y

� � yð Þ

ð12:4-6Þ
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For the upper section of the column, this is subject to

z ¼ 0, y ¼ xD ð12:4-7Þ

z ¼ l � l9, y ¼ y
0 ð12:4-8Þ

where l� l9ð Þ is the height of just the rectifying section and y0 is the vapor concentration
at the feed point. As we showed in the previous section of this chapter, y0 will be given by

the intersection of the feed line with the operating line in the upper section. This equation

can be integrated to give

l� l# ¼
Z l� l#

0

dz ¼ G

Kya

� � Z y#

xD

dy

y
� � y

� �
ð12:4-9Þ

As before, the quantity in square brackets corresponds to the HTU, and that in

parentheses is the NTU for the rectifying section of the column. As before, the HTU

measures the efficiency of the distillation equipment and the NTU indicates the difficulty of

the separation.

The results for the lower, stripping section of the column are analogous. A steady-

state mass balance gives

0 ¼ G
0 dy

dz
þ Kya y

� � yð Þ ð12:4-10Þ

where the vapor flux G0 may differ from that in the top of the column. This is subject to

the constraints

z ¼ l � l
0
, y ¼ y

0 ð12:4-11Þ

z ¼ l, yl ¼ y
�
xBð Þ ð12:4-12Þ

The first of these constraints asserts that the vapor concentration varies continuously

from the rectifying to the stripping sections of the column. Note that this implies no

major perturbation caused by the feed: it enters andmixes very quickly, causing a sudden

change in flow but not in concentration. The second of these conditions repeats our

expectation that the reboiler acts like a single equilibrium stage. Thus the vapor con-

centration yl leaving the reboiler is in equilibrium with the liquid concentration xB
leaving the reboiler.

The rate equation for the stripping section can also be integrated

l
0 ¼

Z l

l�l
dz ¼ G

0

Kya

� � Z yl xBð Þ

y
0

dy

y
� � y

 !
ð12:4-13Þ

Again, the quantity in parentheses is the NTU, now for the stripping section of the

column. The quantity in square brackets is the HTU. We would normally expect that

the HTU in the top of the column will be somewhat different than in the bottom. This

occurs for three reasons. First, because the flows of vapor and liquid will change, the

individual mass transfer coefficients ky and kx can change. Second, because the slope of

the equilibrium line m is different, the weighting of mass transfer resistances in gas and
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liquid will be different. Third, unless the feed is a saturated liquid, the vapor flowsG0 and
G will be different. These factors are often ignored, and the HTU is assumed constant

over the height of the column.

When the HTU is constant, we can combine Eq. 12.4-9 and 12.4-13 to find the total

height of the tower:

l ¼
Z l

0

dz ¼ HTU �NTU ð12:4-14Þ

where

NTU ¼
Z yl xBð Þ

xD

dy

y
� � yð Þ ð12:4-15Þ

Once we know the equilibrium and operating lines, we now just evaluate (y*�y) vs. y and

perform this integration numerically. Remember that a large NTU signals a difficult

separation, and a small NTU is an easy one. Note also that by integrating numerically

between y0(=xD) and an intermediate value of y, we can find how the vapor composition

varies with tower position z.

In the analysis of distillation, we will normally specify the feed, distillate and bot-

toms concentrations. We will specify the reflux ratio, usually as between 1.2 and 1.8

times the minimum.With this information, we can evaluate the integral in Eq. 12.4-15,

and hence the total height of the column. These ideas are illustrated in the following

example.

Example 12.4-1: Benzene–toluene distillation in a packed tower You want to separate

a saturated liquid feed of 3500 mol/hr containing 40% benzene into a distillate contain-

ing 98% benzene and a bottoms with 2% benzene. The reflux ratio should be 1.5 times

the minimum; the packing has an HTU of 0.2 m.

How tall a tower is needed?

Solution We begin our analysis with overall balances for a basis of one hour

and a column of cross-sectional area A

3500mol=hr ¼ DAþ BA

0:4ð3500mol=hrÞ ¼ 0:98DAþ 0:02 BA

Thus

DA ¼ 1400mol=hr

BA ¼ 2100mol=hr

Next, we calculate the feed line, which for a saturated liquid feed with q¼ 1 can be found

from Eq. 12.3-12:

x ¼ 0:40
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The equilibrium line giving the mole fraction of benzene in the vapor y* vs. that in the

liquid x is the curve shown in Fig. 12.4-1. The feed line contacts this equilibrium line at

the point (0.40, 0.625). When the reflux ratio RD has its minimum value, the operating

line above the feed must pass through the point (0.40, 0.625) and through the point

(xD, xD), or in this case (0.97, 0.97). From Eq. 12.4-1, we see

RDðminÞ
1 þ RDðminÞ ¼

Dy
Dx
¼ 0:97� 0:625

0:97� 0:40

Hence

RDðminÞ ¼ 1:59

This is the smallest reflux ratio at which a separation is possible, and requires an in-

finitely tall column. We want to operate at 1.5 times this minimum:

RD ¼ 1:5ð1:59Þ ¼ 2:39

Thus, in the upper rectifying part of the column, LA and GA are 3330 and 4730 mol/hr,

respectively. The operating line for this region is found from Eq. 12.4-1:

y ¼ 0:287þ 0:704x

0 0.5 1
x

0

0.5

1

y 
or

 y
*

(0.4, 0.4)

(0.02, 0.02)

(0.97, 0.97)

Fig. 12.4-1. Differential distillation of benzene and toluene. The objective is finding the

number of transfer units from value of (y* � y). A parallel problem using stages is given

in Example 13.3-1.
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Below the feed, in the rectifying part of the column, the flows L0A and G0A are 6830 and

4730 mol/hr, respectively; G0 equals G because the feed is a saturated liquid. The oper-

ating line for this stripping part of the column is given by Eq. 12.4-2:

y ¼ � 0:009þ 1:444x

Together, these operating lines show how the vapor and liquid concentrations vary

along the column.

We can now use the operating and equilibrium lines to perform the integration in Eq.

12.4-15. Because xB is 0.02, we find the concentration of vapor leaving the reboiler y*(xB)

is 0.085. This is the concentration of the vapor entering the bottom of the column, and

sets the upper limit of the integral. Making the integration, we find

NTU ¼ 13:9

Thus the tower height for this separation

l ¼ 0:2m 13:9ð Þ ¼ 2:8m

This is what we seek.

We can gainmore insight into this separation by calculating how the separation varies

with column height, as shown in Fig. 12.4-2. As expected, the vapor concentration is 0.97

at the top of the column, when z/z(l + l#) is zero. It is 0.02 at the bottom. It varies more

slowly with position at the top, near the feed, and at the bottom, because these are the

0 0.5 1
z/( l + l ')

y

0

0.5

1

Fig. 12.4-2. Benzene vapor composition vs. tower position. The concentration changes more

slowly near the top of the column (z ¼ 0) because the driving force (y*�y) is smaller.
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points where the driving force (y*�y) is smaller. In this case, these differences are not

major; in other separations, they may be. Parenthetically, this same separation is ana-

lyzed for staged distillation in Example 13.3-1.

12.5 Conclusions

Distillation separates a feed solution by means of volatility differences.

When the feed is at the top or the bottom of the column, the analysis parallels that

for gas absorption. In the most common cases, the feed is in the middle of the column,

and the feed is separated into a distillate enriched in the volatile component and

a bottoms depleted in this component. In all cases, the analysis begins with mole

balances, called operating lines; and with free energy balances, called equilibrium

lines.

How the analysis of distillation proceeds further depends on the internals of the

distillation column equipment. In almost all laboratory columns and in many modern

commercial columns, these internals are random or structured packing. The packing in

small columns is often the same as the random packing used for absorption. The packing

in commercial columns is more commonly structured because it permits higher flows at

modest pressure drops. In both cases, the analysis uses amass balance on one phase. This

mass balance depends on rates of mass transfer summarized as an overall mass transfer

coefficient. The analysis then is a close parallel to that used for absorption. When the

distillation involves a dilute solution, the column size can often be estimated analytically.

When the distillation involves a concentrated solution, the estimation of column size is

similar but requires numerical integration.

This form of distillation is an example of ‘‘differential contacting.’’ Sometimes, the

column contains discrete, separate compartments called ‘‘stages.’’ Such ‘‘staged contact-

ing’’ is discussed in the next chapter.

Questions for Discussion

1. What are some specific chemicals that are separated by distillation?

2. What effects allow distillation to be effective?

3. Why would you not choose distillation to separate a mixture?

4. When will distillation of two volatile species fail?

5. How could you tell if a differential distillation column will flood?

6. How are the vapor and liquid concentrations at the top of a distillation column

related?

7. How are the concentrations in and out of the reboiler related?

8. What is the reflux ratio?

9. What is an advantage and a disadvantage of a large reflux ratio?

10. What is an advantage and a disadvantage of increasing the amount reboiled?

11. Why is there one operating line in some distillation columns and two operating

lines in others?

12. Are the operating lines in a distillation column dependent on column internals?

13. Discuss the limits of the equilibrium line when the mole fraction of the volatile

species x is near zero and near one.
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14. Would it ever make sense to run a distillation with a partial condenser?

15. Could the height of a transfer unit change over the length of a column?

16. Compare differential distillation with gas absorption.

Problems

1. Distillation is being carried out in a packed column to produce 99.9% benzene from
a feed of 99%benzene and 1% toluene fed directly to the reboiler. The equilibrium line

over this concentration range is

y
� ¼ 0:58þ 0:42 x

The feed is 100 mol/hr, and the bottoms is 16 mol/hr. The condenser is not total, but
produces equal amounts of a product and a liquid returned to the top of the tower.

These streams are approximately in equilibrium. (a) How much distillate is produced?
(b) What is the reflux ratio? (c) What is the vapor concentration coming out of the top
of the tower? (d) What is the vapor concentration going into the bottom of the tower?

(e) What number of transfer units (NTU) is involved?

2. You want to remove traces of a volatile solvent and make ultrapure water by dis-
tillation in a column filled with structured packing and fitted with a condenser and
a reboiler. Note the reboiler operates as an equilibrium stage. Your bottoms

should contain less than 10�5 mole fraction solvent; your distillate should be
0.02 mole fraction solvent; and the equilibrium curve is

y
� ¼ 6:1x

You plan to operate at high reflux. How many transfer units are needed?

3. You have a saturated vapor feed containing 5% water and 95% methanol. You want
to feed this to the bottom of a column to make 99.99% product methanol and a waste
of 90% methanol. The equilibrium line in this case is

y
� ¼ 0:60þ 0:40x

(a) What is the reflux ratio in the column? (b) You want to use differential

distillation with packing, which gives an HTU of 0.3 m. How tall will the distillation
tower be?

4. You are making a pigment for ink-jet printing in a stirred tank reactor containing one
nonvolatile reagent dissolved in a halogenated aromatic. You are slowly adding a sec-

ond nonvolatile reagent dissolved in acetone and keeping the total volume small by
boiling off extra solvent. The acetone concentration in this mixture is 0.12; the equi-
librium line is

y
� ¼ 0:82þ 0:18x

Unfortunately, you are losing too much aromatic. To solve this, you plan to add a 1.2
m packed column and a condenser to the top of this reactor. You expect the HTU for
the column to be 0.26 m. If you run with a high reflux, what will the mole fraction of
acetone be in the distillate?

5. The wash liquid from your paint shop produces 3000 mol/day of a 40% solution of
methanol in water. You have been dumping this in the sewer as a 10% solution, just by
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diluting this. Still, methanol’s expensive so you’d like to recover some of it, at least as

a 90% solution. You can buy an old 6-m packed column including a reboiler, with an
HTU of 0.33 m. It has the feed directly to the reboiler and a reflux ratio of six.
Equilibrium data for this system are as follows:

(a) What is the composition of the bottoms stream? (b) Assuming a saturated liquid
feed, what would it be if you switched the feed to the optimum location?

6. Your company produces ca. 7000 kg mol/day of a 10% solution of methanol–water,
for which the vapor–liquid data are in the previous problem. Thismethanol stream is to

be distilled to produce concentrates for two purposes: a pigment precipitation using 200
kg mol/day of 90%methanol, and a recrystallization using the rest as 40%methanol.
As a result, your boss suggests a column like that shown below.

Your job is to size the column. (a) How much new methanol do you need per day? (b)
What are the values of the liquid and vapor flows? (c) What are the slopes of the
operating lines? Plot the operating lines on the y-x diagram. (d) How many transfer

units are needed? (e) Where should the column be fed?

x y

0.10 0.41
0.20 0.57
0.30 0.67
0.40 0.73
0.50 0.77
0.60 0.84
0.80 0.93
1.00 1.00

Saturated liquid feed
xF = 0.10

RD = 10

Distillate for
precipitation
xD = 0.90

Sidestream for
recrystallization
xs = 0.40

Waste stream for sewer
xB = 0.03 
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CHAPTER 13

Staged Distillation

As outlined in the previous chapter, distillation is a separation based on vola-

tility differences. It is by far the most important separation. In North America alone,

distillation consumes over one million barrels of oil per day, or about four percent of the

continent’s energy consumption. It is estimated to be only eleven percent efficient, and so

offers an opportunity for increased energy efficiency.

Distillation normally involves three pieces of equipment: a column, a condensor on

top of the column, and a reboiler at the bottom of the column. The reboiler, often

a steam-jacketed kettle, is heated so that much of its contents evaporate and flow

upwards through the column. The vapors passing out of the column are liquefied in

the condensor andmuch of this condensate is sent back downwards through the column.

This countercurrent flow of vapor and condensate is common to all forms of distillation.

The internals of the column itself can differ dramatically. In many columns, including

almost all found in the laboratory, the columns’ internals are random or structured pack-

ing. These packed columns were described in detail in Chapter 12. In many other columns,

especially older, large-scale equipment, the column’s internals are ‘‘stages,’’ volumes pro-

viding close contact between vapor and condensate. In most cases, the stages are designed

so that liquid and vapor leave to each stage nearly in equilibrium with each other.

This chapter discusses staged distillation. In such a process, the concentrations of vapor

and liquid do not change continuously from one end of the column to the other as they do in

adsorption or differential distillation. Instead, the vapor and liquid concentrations have only

discrete values, with new values on each stage. As shown below, such ‘‘staged contacting’’ is

analyzed very differently than ‘‘differential contacting’’ discussed in the previous chapters.

We normally begin each chapter on separation processes with a discussion of what

species needs to be separated. However, we already had such a discussion in the previous

chapter, on differential distillation. Instead, we begin in Section 13.1 with a discussion of

the diameter of a column needed for a given distillation. Estimating this tower diameter

is based on fluid mechanics, and so parallels the estimation of the diameter of an ab-

sorption tower given in Section 10.2.

We next turn to estimating the tower’s height. In practice, the height of each stage is

normally fixed, inNorthAmerica at 0.6m. As a result, estimating the height is equivalent

to estimating the number of stages required. In addition, the number of stages is often

approximated first as being that at equilibrium, and then later corrected with a mass

transfer-dependent efficiency. It is like a calculation in physics, which is first made

neglecting friction, and then is later corrected for the presence of friction.

We calculate the number of stages for a dilute feed in Section 13.2. In Section 13.3, we

describe the effect of a concentrated feed, commonly located somewhere in the middle of

the column; and we use this description to calculate the number of stages for concen-

trated, staged distillation. We explore howmass transfer compromises this ‘‘equilibrium

stage’’ model in Section 13.4. In all these sections, we are implicitly calculating the height

of the distillation tower, because this height is just the number of stages times 0.6 m.
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13.1 Staged Distillation Equipment

The design of distillation columns is commonly phrased in terms of vapor and

liquid flows. For example, we will speak of vapor flow of 600 mol/sec of 99.7% propylene

coming out of the top of a propylene–propane distillation tower.Wewill consider the effect

of changing the product purity by changing the reflux ratio, and hence the ratio of liquid to

vapor flows in the column. We will evaluate the effect of partially vaporizing some of our

feed, and hence reducing the liquid flow in the lower, stripping section of our column.

These concerns are important, but they do not explore how large the equipment

should be. We do not worry about the effect of 6000 mol/sec instead of 600 mol/sec.

We don’t focus on the effect of cutting the feed in half. In other words, our common

distillation design aims at the number of stages or how tall the column is. Our common

design does not focus on the column’s diameter, on how fat the column is.

In this section, we want to emphasize column diameter. Doing so is not a question of

mass transfer or of thermodynamics, but of fluid mechanics. It is not a question of mass

and energy balances, but of physics. To see why, we consider the schematic drawing of

liquid and vapor in Fig. 13.1-1. The liquid, which is shown shaded, is flowing down the

column. It flows across each tray to the downcomer, where it gushes down to the tray

below. Vapor flows upwards, passing through holes in each tray and forming bubbles

which froth upwards. The whole thing has the tumultuous turbulence of a waterfall in

the forests of northern Minnesota.

The performance of a staged distillation column is thus a precarious balance be-

tween the rising vapor and the falling liquid. The liquid flow should be kept on the

trays, and the vapor flow must be high enough to keep the liquid from leaking through

the holes in the trays, but not so high that liquid drops get entrained in the rising vapor.

Downcomer

Liquid on tray

Sieve tray

Fig. 13.1-1. Fluid mechanics on sieve trays. Liquid condensate flows across each stage, while

vapor bubbles upwards, through the sieves and the flowing liquid.
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Not surprisingly, there is a vivid vocabulary to explain this precarious balance. This

includes

(i) entrainment flooding, when liquid drops are swept upwards;

(ii) downcomer flooding, when the liquid can’t flow downwards;

(iii) weeping, when liquid drops fall through the holes in the sieve;

(iv) dumping, when the drops become streams; and

(v) turndown ratio, which is the maximum vapor flow divided by the minimum

vapor flow.

These descriptors always seem as appropriate for a dating service as for a distillation

column.

The two more important column characteristics are entrainment flooding and turn-

down ratio. To see when entrainment of droplets will be a problem, we make a force

balance on a drop which is suspended, without movement:

gravity force down½ � ¼ drag force up½ �

p
6
d
3 qL � qGð Þ g ¼ f

1

2
qGm2G

� �
p
4
d
2

� �
ð13:1-1Þ

were d is the drop diameter; qL and qG are the densities of liquid and vapor, respectively;

g is the acceleration due to gravity; f is the friction factor; and vG is the vapor velocity.

Rearranging this

vG ¼ C½ � qL � qG

qG

� �1=2

¼ 4

3

d g

f

� �1=2
" #

qL � qG

qG

� �1=2

ð13:1-2Þ

where C is the capacity factor, the parameter in square brackets. Note that in this

parameter, both the droplet size d and the friction factor f are normally not known.

Values of C can be measured experimentally. Results are normally correlated vs. the

flow parameter, defined as

L
00

G
00

ffiffiffiffiffiffi
qG

qL

r
¼

1
2qLm2L
1
2qGm2G

" #1
2

ð13:1-3Þ

where L00 and G00 are the mass fluxes of liquid and vapor. The use of mass rather than

mole fluxes is a consequence of the basis of C in fluid mechanics, not in vapor–liquid

equilibrium used to find the height of the tower.

Typical experimental values are shown in Fig. 13.1-2 for a variety of tray spacings.

Note that the values of C have the dimensions of velocity; note also that the curve for

0.6 m (i.e., 24 in) is the standard for NorthAmerica and hence themost important line on

the graph. Not surprisingly, there are many efforts to improve this figure, like correc-

tions for surface tension, for foaming, and for tower cross-section.

The physical significance of the variations shown in Fig. 13.1-2 is complicated, but

certainly related to the friction factor f. From Eq. 13.1-2, we note that C is inversely

proportional to f. At high gas flow, we expect that f will be constant because turbulence
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and formdrag aremost important. At high gas flow,we then expect thatCwill be constant,

first as is reported in Fig. 13.1-2 and as suggested by Eq. 13.1-2. At low gas flow, we expect

that f will vary inversely with velocity. Because C in turn varies inversely with f, we expect

thatC should be proportional with gas velocity. Figure 13.1-2 plots C vs. the reciprocal of

gas velocity, and shows that at low gas flow, C is proportional to velocity, just as expected

on the basis of friction factor. However, our self-satisfaction at this variation of C with f

must be tempered by our neglect of the changes in bubble size d and liquid flux L0.

In addition to entrainment flooding, we need to be concerned with the turndown

ratio, the maximum vapor flow divided by the minimum vapor flow. This ratio is im-

portant because it determines the flexibility of our distillation column. In an ideal world,

we would want to operate our separation at full capacity all the time. In a real world, we

will not always have a high, steady demand for our product, or wemay have a fluctuating

feedstock. In this real world, we may want to run at less than full capacity without the

possibility of problems like weeping.

Our flexibility, expressed as this turndown ratio, will depend on the type of trays

which we chose. Not surprisingly trays which are expensive have a higher turndown

ratio. From experiments, bubble-cap trays have a turndown ratio of about eight, valve

trays of about five, and sieve trays of two. Frustratingly, sieve trays are the cheapest, the

most efficient and the least flexible.

Example 13.1-1: Pentane–heptane distillation You want to separate 10 mol/sec of 50%

pentane in heptane into a distillate of 90% pentane and a bottoms of 15% pentane.

Following laboratory studies, you expect to use a columnwith six stages. You plan to use

a saturated liquid as a feed, with a reflux ratio of 3.5. This means that the liquid flow in

the top of the column will be 3.5 times the distillate.

What diameter of column should be used?

0.01

L"/G" (ρG/ρL)1/2

0.03

0.05

0.2

0.3

0.4

0.02 0.04 0.07 0.1 0.2 0.3 0.7 1.00.5 2.0

0.07

0.1

0.5
0.6
0.7

C
, f

t/s
ec

Plate spacing

24 in

12 in

6 in

Fig. 13.1-2. Capacity factor vs. flow parameter for sieve trays. The common tray spacing is

24 in, or 0.6 m.
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Solution Wefirstmustmakemole balances to find the flows in the column.We

then convert these intomass flows and calculate the flow parameter. Using Fig. 13.1-2, we

find the capacity factor and hence the gas velocity. This gives us the column diameter.

Beginning with mole balances,

10 ¼ D þ B

0:50ð10Þ ¼ 0:90D þ 0:15B

Thus

D ¼ 4:67mol=sec

B ¼ 5:33mol=sec

The total molar flows are thus

L ¼ 3:5D ¼ 16:3mol=sec

G ¼ L þ D ¼ 21:0mol=sec

Below the feed, the liquid flow is increased by the feed, but the vapor flow is the same

L
0 ¼ 26:3mol=sec

G
0 ¼ 21:0mol=sec

For these larger flows, the flow parameter is

L
0 ~M

G
0 ~M

ffiffiffiffiffiffi
qG

qL

r
¼ 26:3 mol=sec

21:0 mol=sec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:1 �10�3 g=cm3

0:65 g=cm
3

s
¼ 0:086

FromFig. 13.1-2 at a tray spacing of 0.6m (i.e., 24 in),C is 0.35 ft/sec or 0.11m/sec. Thus

from Eq. 13.1-2

vG ¼
0:11 m

sec

0:65

3:1 � 10�3
� �1

2

¼ 1:6 m=sec

Finally, we find the column diameter

1:6 m=sec
p
4
d
2

� �
¼ 21 mol=sec

22:4 � 10�3m3

mol

 !
340K

273K

d ¼ 0:7 m

Note that this result is based on the lower section of the column, where the flows are

larger.

13.2 Staged Distillation of Nearly Pure Products

The simplest case of staged distillation is that of a nearly pure feed from which

we want to make an even purer product. Often that product is a distillate, as shown in
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Fig. 13.2-1(a); sometimes it is a bottoms stream, as shown in Fig. 13.2-1(b). In either case,

the other stream containsmore of the impurities than the feed.Wewill emphasize the case

of the highly pure distillate; the case of a highly pure bottoms is an easy analogue.

As before, we base our calculation with a mole balance, called an operating line, and

an energy balance, called an equilibrium line. For the moment, we will assume that the

stages reach equilibrium. This implies that the mass transfer is very fast. In this limit, we

have no need for a rate equation.

We begin by defining the concentrations on a single stage as shown in Fig. 13.2-2. The

concentration of the more volatile species in the liquid leaving a particular stage n is xn;

that in the vapor leaving the same stage is call yn. Note that for staged separations, the

subscripts indicate the location in the column. This is a different meaning than that used

earlier in this book, where the subscripts refer to a specific species, like a solute or

a solvent. Note also that some of the concentrations may not exist in the column itself.

For example, in Fig. 13.2-1(a), the concentration yN+1 does not exist in a column which

L, xN

G, y1

L, x0

D, xD

(a)  Vapor feed at bottom of column

F = G, yN+1

G, y1

B,  xB = xN+1

(b)  Liquid feed at top of column

F = L, x0

Fig. 13.2-1. Staged distillation producing very pure products. These processes are not common,

but are easier to analyze and hence a good starting point.
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has a total number of stagesN. The concentration yN+1 is that in the vapor feed entering

the column.

With these definitions, we can write operating lines around stages ‘‘1’’ through ‘‘n’’ in

Fig. 13.2-1(a). An overall mole balance gives

Gnþ1 þ L0 ¼ G1 þ Ln ð13:2-1Þ

where Gn and Ln represent the total vapor and liquid fluxes leaving stage n. For now

we can define these either as fluxes, in moles per area per time, or as flows, in moles

per time. Either definition works well. Later, when we will worry about nonequilibrium

stages, we will need to make this distinction. In addition, because we are dealing with

flows of nearly pure materials, we will assume these fluxes are constant, that for

example,

Gnþ1 ¼ Gn ¼ . . . ¼ G1 ¼ G ð13:2-2Þ

This will greatly simplify our analysis.

We next consider a mass balance on the more volatile species in stages ‘‘1’’ to ‘‘n’’ at

the top of our column:

Gynþ1 þ Lx0 ¼ Gy1 þ Lxn ð13:2-3Þ

where xn and yn refer to the mole fractions of the more volatile component on stage n.

Rearranging,

ynþ1 ¼ y1 �
L

G
x0

� �
þ L

G
xn ð13:2-4Þ

However, because y1 equals x0 and xD, this can be rewritten as

ynþ1 ¼
D

G
xD þ

L

G
xn ¼

1

1 þ RD

� �
xD þ

RD

1 þ RD
xn ð13:2-5Þ

This operating line has the same form as Eq. 12.2-6 for differential distillation. Remem-

ber that the subscripts (n + 1) and n now refer to particular stages in the tower.

Gn +1, yn +1

Gn, yn Ln –1, xn –1

Ln, xn

Fig. 13.2-2. Concentrations in a single stage. The concentrations yn and xn are defined as those of

vapor and liquid leaving stage n.
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We now need an equilibrium line, which for nearly pure streams of the more volatile

species has an especially simple form

yn ¼ y
�
n ¼ aþmxn ð13:2-6Þ

where a and m are constants. Note that because yn
* is the equilibrium value, this

idealizes the stages as being unaffected by mass transfer. The quantity m is closely

related to the partition coefficients and Henry’s law coefficients used elsewhere to

describe transport across interfaces. Note that for a nearly pure material, a and m

sum to one.

We can now combine the operating and equilibrium lines in Eqs. 13.2-5 and 13.2-6 to

give

ynþ1 ¼ y1�
L

G

y0 � a

m

h i� �
þL

G

yn � a

m

h i
ð13:2-7Þ

or

ynþ1 ¼ y1 � Ay0þAyn ð13:2-8Þ

where the reciprocal ofA (=mG/L¼m(1+RD)/RD) is often called the absorption factor.

Note that y0 is the vapor concentration that would be in equilibrium with the

liquid concentration x0. This vapor concentration y0 is hypothetical: it does not physically

exist.

We now write out Eq. 13.2-8 for each of the stages in the column. For the first stage

(n ¼ 1),

y2 ¼ y1 � Ay0þAy1 ¼ 1þAð Þy1 � Ay0 ð13:2-9Þ

For the second (n ¼ 2),

y3 ¼ y1 � Ay0 þ Ay2 ¼ 1þ Aþ A
2

� �
y1 � Aþ A

2
� �

y0 ð13:2-10Þ

For the entire cascade (n ¼ N),

yNþ1 ¼ y1 � Ay0 þ AyN

¼ 1þ Aþ A
2 þ � � � þ A

N
� �

y1 � Aþ A
2 þ � � � þ A

N
� �

y0

¼ 1� A
Nþ1

1� A

" #
y1 �

Að1� A
NÞ

1� A

" #
y0 ð13:2-11Þ

This result is often easier to use in rearranged form. From an overall balance (i.e., n¼N

in Eq. 13.2-8):

yNþ1 � y1
yN � y0

¼ L

mG
¼ A ð13:2-12Þ
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Combining the last two equations leads to

N ¼
ln

yNþ1 � yN
y1 � y0

� �
ln A

ð13:2-13Þ

or

N ¼
ln

yNþ1 � yN
y1 � y0

� �
ln

yNþ1 � y1
yN � y0

� � ð13:2-14Þ

This result lets us estimate the number of ideal stages for separating a less volatile

impurity from a more volatile solute.

Equations 13.2-11, 13.2-13, and 13.2-14 are called the Kremser equations, relations

for estimating the number of equilibrium stages for a linear equilibrium line. The results

are most useful for highly dilute solutions, though they can be applied over any

small concentration range over which the equilibrium line can be approximated as

linear.

This development has been phased completely in terms of concentrations in the

vapor. Obviously, we could have phased the development in terms of concentrations

in the liquid. Had we done so, we would derive a completely parallel set of equations

containing a stripping factor, which is no more than the reciprocal of the absorption

factor. When I try to use this second set of equations, I often confuse myself. As a result,

I find it easier simply to recognize that labeling the phases is arbitrary, and just plug into

the Kremser equation in the form given.

These ideas are best illustrated in examples.

Example 13.2-1: Benzene purification We wish to produce 99.99% benzene from a feed

containing 99% benzene and 1% toluene. We plan to use a staged column operated with

a total condenser. Over this concentration range, the equilibrium line is approximately

y
�
n ¼ 0:58þ 0:42xn

where the mole fractions are those of the more volatile benzene.

If the reflux ratio is three, what is the number of ideal stages required for the separation?

Solution We can find the number of stages from the Kremser equation. To do

so, we first find the slope of the operating line

L

G
¼ RD

1 þ RD
¼ 3

1 þ 3
¼ 0:75

Thus A equals (0.75/0.42). We then find the various vapor concentrations. We are given

y1 ¼ 0.9999. For a total condenser, x0 equals y1; thus from the equilibrium line,

y0 ¼ 0:58 þ 0:42ð0:9999Þ

¼ 0:999958
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We are also given yN+1 ¼ 0.99. To find xN and hence yN, we make an overall mass

balance parallel to Eq. 13.2-5:

0:99 ¼ 1

1 þ 3

� �
0:9999þ 3

1 þ 3

� �
xn

xn ¼ 0:9867

From the equilibrium line

yN ¼ 0:58 þ 0:42ð0:9867Þ
¼ 0:99441

Inserting these values into Eq. 13.2-13,

N ¼
ln

0:99 � 0:99441

0:9999 � 0:999958

� �
ln

0:75

0:42

� � ¼ 7:5

We will require eight stages for this purification.

Example 13.2-2: Hydrocarbon removal from process water We have a process water

containing a mole fraction of a volatile hydrocarbon equal to x0 = 0.0082 which we must

reduce to a bottoms concentration xB¼ 10–4. To do so, we plan to feed the process water as

a saturated liquid to the top of a distillation column mounted above a reboiler. The equi-

librium line for this system is y* ¼ 36x. If we adjust the heat added to the reboiler to give

a vapor flux three times the minimum, how many stages will we need to achieve this

separation?

Solution At the minimum reboiler heating, the exiting vapor will be in equi-

librium with the entering liquid:

y0 ¼ 36x0 ¼ 0:2952

As a basis, we assume the liquid flow L equals one mole. Thus overall and hydrocarbon

balances give

1 ¼ G þ B

0:0082 ¼ 0:2952G þ 10
�4

B

or

G ¼ 0:0274mol

We want to operate at three times this flow:

G ¼ 0:0823mol

From an overall balance, the actual bottoms flow is

B ¼ 1 � G ¼ 0:9177
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We now find the concentration of the vapor effluent leaving the column

1mol ð0:0082Þ ¼ 0:0823mol ðy1Þ þ 0:9177mol ð10�4Þ
y1 ¼ 0:0985

We know the vapor entering the column is in equilibrium with the liquid in the bottoms

yNþ1 ¼ 36xB ¼ 0:0036

A species balance on the column without the reboiler gives the unknown concentration

xN

0:0823mol ð0:0985 � 0:0036Þ ¼ 1mol ð0:0082 � xNÞ
xN ¼ 0:00039

Thus

yN ¼ 36xN ¼ 0:0140

Finally, we can apply one of the Kremser equations, Eq. 13.2-14, to find

N ¼
ln

0:0036 � 0:0140

0:0985 � 0:2952

� �
ln

0:0036� 0:00985

0:0140� 0:2952

� � ¼ 0:8

We will need only one stage, plus the reboiler.

13.3 Concentrated Staged Distillation

Most staged distillations separate a concentrated feed into a distillate enriched in

themore volatile species and a bottoms enriched in the less volatile species. The equipment

consists of a staged column, with a total condenser mounted on the top, and a heated

reboiler below. The condenser usually liquefies all the vapor coming out of the top of the

column and returns most of the condensate back down the column. The reboiler boils

much of the liquid coming out of the bottom of the column and sends the vapor back into

the column. The feed normally enters somewhere in the middle of the column.

We want to analyze the performance of such a common column. We may want to

improve the separation achieved, or reduce the energy required, or design a larger col-

umn for the same separation. Like other separation processes, our analysis will be

grounded in operating lines (i.e., mole balances) and in equilibrium lines (i.e., free energy

balances). For a separation using stages which reach equilibrium, which is the ideal

assumed here, we don’t even need the rate equation required for gas absorption or for

differential distillation.

The equilibrium line for such a distillation is not linear. Normally, it starts at the point

(x ¼ 0, y ¼ 0) with a slope greater than one; and it ends at the point (x ¼ 1, y ¼ 1) with

a slope less than one. In most cases, the equilibrium line will be the result of careful

experiments. In some cases, the equilibrium line can be calculated with software de-

veloped for thermodynamic estimates. These calculations are especially reliable for

simple hydrocarbons. Here, we will assume that this equilibrium line is known.
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The operating line, again based on mole balances, is complicated by the feed on

a stage somewhere in the middle of this column. This feed means that the flows of vapor

and liquid are different above and below the feed stage. But this is not hard; it just is

a complication which we must consider carefully.

We begin with overall and species mole balances on the entire column using the

notation in Fig. 13.3-1:

F ¼ DþB ð13:3-1Þ
FxF ¼ DxDþBxB ð13:3-2Þ

Arbitrarily, we assume that these mole fractions refer to the more volatile component. In

addition, the feed F, distillate D, and bottoms B can be treated either as flows, in moles

per time, or as fluxes, in moles per tower cross-section per time. For equilibrium-staged

separations this distinction does not matter. These overall balances must hold, nomatter

what happens inside the column.

We next develop mole balances over parts of the column itself using the notation

suggested by Fig. 13.3-2. We initially consider only what is happening between the top

of the tower and nth stage, which is above the feed stage. In this ‘‘rectifying’’ section of

the column, we assume that the vapor flux G and the liquid flux L are constant between

the top of the tower and this nth stage. We define xn and yn as the liquid and vapor

mole fractions of the more volatile component leaving the nth stage. Remember that

these definitions are the same as those used earlier in this chapter but are different than

those used in other chapters in this book, where subscripts like these refer to component

n or to position z. Because the more volatile component is moving up the column, xn is

greater than xn+1, and yn is greater than yn+1. Consistent with this convention, we call

the composition of the vapor leaving the first stage y1 and the composition of the liquid

entering the first stage x0.

Condenser

Reflux RD

Distillate D
Composition xD

Composition xF

Feed F

Rectifying
section

Stripping
section

Reboiler
or still

Composition xB

Bottoms B

Fig. 13.3-1. Staged distillation separating a concentrated feed. Because the feed changes the

flows within the column, the operating lines above and below the feed stage differ.
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We now write a mole balance on the more volatile component between the nth stage

and the top of the column, that is, on the control volume in Fig. 13.3-2. Because the

column is operating in steady state, this is

Gynþ1þLx0 ¼ Gy1þLx ð13:3-3Þ

or

ynþ1¼ y1 �
L

G
x0

� �
þ L

G

� �
xn ð13:3-4Þ

This important result relates the vapor composition on the (n + 1)th stage yn+1 to the

liquid composition on the nth stage xn. It says that yn+1 varies linearly with xn; the slope

of this line is L/G, and the intercept is the quantity in square brackets.

Equation 13.3-4 can be simplified by considering the condenser in more detail. In

many cases, all the vapor leaving the top of the column is condensed. Part of the

condensate is the product distillate; the remainder, the reflux L, is returned to the top

of the tower. In this normal case, the vapor composition y1 leaving the top plate will

equal the liquid composition entering the top plate x0.

Occasionally, the condenser at the top of the tower may condense just part of the

vapor and reflux this more easily condensed fraction. A condenser operating in this way

has a delightful name: a ‘‘dephlegmator.’’ The remaining vapor becomes the distillate. In

most elementary texts, the liquid and vapor leaving the dephlegmator are assumed in

equilibrium. This is equivalent to assuming that the partial condenser is an additional

stage, and this is a significant approximation. We refer those interested in the effects of

Vapor at
composition y l

Recycled liquid distillate
composition x0

Control volume for
mole balances

Liquid composition xn
and vapor composition yn

Feed liquid or vapor

Stage #1

Stage #2

Stage n –1

Stage n

Stage n +1

Fig. 13.3-2. The distillation column itself. The analysis depends on mole balances between

the top of the column and the nth stage (i.e., over that part of the system surrounded by the

dotted line). The analysis given is simplified by the assumption that the vapor flux G and the

liquid flux L are constants.
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partial condensers to the more specialized books and restrict our discussion here to total

condensers.

For the case of a total condenser, we can rewrite Eq. 13.3-4 in a form that will be

useful later. From Fig. 13.3-3, we see that xD ¼ x0 ¼ y1 and that

G ¼ DþL ð13:3-5Þ

When we combine this with Eq. 13.3-4, we obtain

ynþ1¼
1

1þRD

� �
xDþ

RD

1þRD
xn ð13:3-6Þ

where RD (=L/D) is the reflux ratio. This important result is called ‘‘the operating line

of the rectifying section.’’ Essentially a mole balance, it is more useful than Eq. 13.3-4

because it is written in terms of experimentally controlled quantities. The concentra-

tion xD is usually specified, and the reflux ratio RD can be changed with the twist of

a value. In addition, becauseRD is positive, Eq. 13.3-6 says that a plot of yn+1 versus xn
has a positive intercept and a slope less than unity. We shall come back to this equation

later.

These mole balances on the rectifying section have parallels in the lower stripping

section. Differences exist because the feed results in different flow rates of vapor G# and
liquid L#. Parallel to the foregoing, we assume that G# and L# are constant through the

stripping section. The mole balance that results is

ynþ1¼ yNþ1 �
L
0

G
0 xN

� �
þ L

0

G
0

� �
xn ð13:3-7Þ

where N is the total number of stages in the column, yN+1 is the vapor composition

entering the bottom of the column, and xN is the liquid composition leaving this

stage.

We next consider what happens in the reboiler at the bottom of the column. There, the

liquid leaving the column is boiled and partially evaporated. The vapor is returned to the

column, and the liquid is removed as product. To a reasonable approximation, vapor

(a)  Total condenser

Coolant

1st stage

G, y1

L, x0 D, xD = x0

(b)  Reboiler

Heating

B, xB

L', xNG', yN+1

Fig. 13.3-3. The ends of the distillation column. The vapor leaving the top of the column is

condensed, as suggested by (a). Part of this condensate is recycled to the column as liquid. The

liquid leaving the bottom of the column is partially vaporized in the reboiler, shown in (b). This

reboiler effectively serves as an extra stage in the column.
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and liquid are in equilibrium, so the reboiler simply acts as an additional stage. The

notation used in this region is shown in Fig. 13.3-3(b).

We find it useful to rewrite Eq. 13.3-5 in terms of the flows around the reboiler. Mole

balances give

L
0 ¼ G

0 þB ð13:3-8Þ
L
0
xN ¼ G

0
yNþ1þBxB ð13:3-9Þ

Combining with Eq. 13.3-7, we obtain

ynþ1 ¼ �
B

G
0

� �
xB þ 1þ B

G
0

� �
xn ð13:3-10Þ

This result, called the ‘‘operating line of the stripping section,’’ is also important and will

be used later. Note that in contrast to the rectifying section, a plot of yn+1 versus xn in the

stripping section has a negative intercept and a slope greater than unity.

Finally, we consider the feed plate in more detail. The nature of the feed strongly

influences what happens in the column. If the feed is entirely saturated liquid, it simply

joins the liquid flowing down the column; if it is entirely saturated vapor, it will join

the vapor stream and flow upward. If the feed is a liquid cooled below saturation, then

it will both join the liquid stream and condense some vapor to produce additional

liquid.

These changes in column flows are best described in terms of the variable q, defined as

q ¼ amount liquid produced

amount feed
¼ L

0 � L

F
ð13:3-11Þ

This quantity was also used to analyze concentrated differential distillation in Section

12.4. Here we can use an analysis identical to that given earlier to find the locus of

intersection between the operating and equilibrium lines above and below the feed:

yn ¼
xF

1 � q
� 1

1 � q

� �
xn ð13:3-12Þ

This ‘‘q-line’’ changes with changes in the flows within the column, including those

caused by the feed. Note that this result passes through the point (xF, xF). When the

feed is a saturated liquid, q is one and the q-line is vertical. When the feed is a saturated

vapor, q is zero and the q-line is horizontal. Other cases were discussed in Section 12.4.

We can now calculate the number of ideal stages needed for a particular separation.

This calculation often assumes that the reflux ratio RD is between 1.2 and 1.8 times the

minimum required. We will assume a typical value of 1.5 times the minimum. Then the

number of stages needed can often be found from the following template:

1. Plot the equilibrium line y*(x). Locate the points (xD, xD), (xF, xF), and (xB, xB).

2. Plot the q-line in given Eq. 13.3-12. Draw this from the point (xF, xF) until it

intersects the equilibrium line. For example, for a saturated liquid feed, this

intersection occurs at (xF, y
*(xF)).

3. Connect this intersection with the point (xD, xD) to find the operating line for

minimum reflux. Calculate this minimum reflux ratio using Eq. 13.3-6. Then

find the reflux ratio which will actually be used.
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4. Draw the actual operating line for the upper rectifying section, running through

(xD, xD) with a slope of RD/(1+RD). This operating line stops when it inter-

sects the q-line.

5. Draw the operating line for the lower, stripping section of the column between

this q-line intersection and the point (xB, xB).

6. From these operating and equilibrium lines, we can now find the number of

stages and the concentrations on each stage as detailed below.

I do not maintain that this template is always the best way to find the number of stages.

However, I have found that it is often the best way to learn this standard analysis, often

called the McCabe–Thiele method.

Stepping off the stages in the last step of the template is illustrated by the detail in Fig.

13.3-4. In this figure, the top curve is the equilibrium line, the next line is the operating

line, and the lower line is the 45� diagonal, included only as a reference. We begin with

the point on the operating line (x0 ¼ xD, y1 ¼ xD). We read horizontally to the point on

the equilibrium line (x1, y1), which is the concentration on the first stage. We then read

vertically to the point (x1, y2) on the operating line and then horizontally to find (x2, y2),

the composition on the second stage. We continue along the column until we reach

a stage concentration lower than xB. This is the total number of stages needed, including

the reboiler. The number of stages needed in the column is one less than this total.

Before we turn to examples, I want to review the results summarized by the template

and by Fig. 13.3-4 in more detail. I do so partly because they can be superficially clear,

and still obscure some of the information implicit in the analysis. To disperse some of the

obscurity, I’ll discuss four specific points: the optimum feed stage location, the effect of

a different feed location, the minimum number of plates required, and the minimum

reflux ratio. Each of these four points is instructive.

To examine the location of the feed stage, we consider one of the steps in Fig. 13.3-4 in

the greater detail in Fig. 13.3-5. The actual concentration differences in this detailed figure

represent the concentration changes from stage to stage in the column. We want these

changes to be as large as possible, so wewant to switch fromone operating line to the other

as soon as possible. Thus we want to locate the feed on the stage where the two operating

lines meet.

The second point worth discussing is the effect of feeding at someother location than the

optimum. If the feedwere below the optimum location, then the upper, rectifying section of

the column would still have the same vapor and liquid flows and hence the same operating

line as if the feedwere optimal.As a result, the concentrations at the stages in the upper part

of the columnwould still be given by the same type of graphical analysis, exemplified by the

dashed lines in Fig. 13.3-6. When the feed stage is finally reached, the concentrations

tumble onto those given by the operating line for the lower, stripping section in the column.

This results in requiring more stages than those dictated by the optimal feed location.

The third implication of the McCabe–Thiele analysis is the estimation of the minimum

number of stages. The minimum number of stages will occur when the concentration

changes between stages are largest. This implies that the distance between the equilibrium

and operating lines is as large as possible, which in turn suggests that the reflux ratio RD

(= L/D) be infinite. Under these conditions, the operating lines for both the upper recti-

fying section and the lower stripping section collapse to the forty-five degree diagonal. Such

a reflux ratio means that the vapor and liquid flows are equal; such total reflux means that
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the amount of feed, distillate, and bottoms are near zero. All the vapor going up the column

is condensed and sent down again; all the liquid running into the reboiler is evaporated.

At first glance, it may seem silly to operate a distillation column under these con-

ditions. After all, we are paying a lot to run the column, and we are making next to

nothing as product. However, if our purpose in a research laboratory is to make a few

drops of especially pure product, we may wish to run our distillation column under these

conditions just to get the maximum purification possible with the number of stages that

we actually have. Note that under these conditions, we can add our few drops of feed

(a)  The concentrations for a typical stage

(xn, yn)
(xn – 1, yn)

(xn, yn + 1)

(b)  The optimal feed where the
operating lines intersect

(xn, yn)

(xn, yn + 1)

(xn – 1, yn)

slope L'/G'

slope L/G

Fig. 13.3-5. Details of a single stage. Each point in the diagram either relates equilibrium con-

centrations or reflects mole balances.

y n
+

1 
or

 y
n 

=
 y

n*

(x2, y2)

(x1, y1)

x1, y2

x2, y3

xD, yD

xn

Fig. 13.3-4. Determining the concentrations of the equilibrium stages. The concentrations (xD,

xD ¼ y1, x0) are given by the operating line; the concentrations (x1, y1, ¼ y�1) are given by the

equilibrium line; etc.
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anywhere because the operating lines are both the same diagonal. These conditions

define the minimum number of stages required for the separation.

The antithesis of this case of the minimum number of stages is the case of a minimum

reflux ratio. To explore this case, imagine that we decrease the reflux ratio RD coming

out of the condenser. This decrease will reduce the slope of the operating line in

the rectifying section and increase that in the stripping section. Eventually, the intersection

of these lines will collide at the equilibrium line. The slopes of the operating lines at this

point give the minimum reflux at which a separation is possible. This reflux is never used,

for it requires an infinite number of stages. However, columns are often specified at reflux

ratios which are about 1.2 to 1.8 times the minimum, depending on the relative costs of

capital and energy. If capital is relatively cheap, we want to use a low reflux, which implies

using a larger column with more stages but a lower energy requirement in the reboiler. If

energy is relatively cheap, we will prefer a smaller column with fewer stages, a large reflux,

and hence a larger energy requirement in the reboiler.

Example 13.3-1: Distillation of benzene and toluene We wish to distill 3500 mol/hr

containing 40 mol% benzene into streams containing 97 mol% benzene and 98 mol%

toluene. The column uses a total condenser and a reflux ratio of 3.5, and the feed is

a saturated liquid. How many stages will be required?

Solution We begin bymakingmole balances on the entire column. FromEqs.

13.3-1 and 13.3-2,

3500mol=hr ¼ DþB

0:4ð3500mol=hrÞ ¼ 0:97Dþ 0:02B

Thus D is 1400 mol/hr, and B is 2100 mol/hr. Within the column, L is 3.5(1400) ¼
4900 mol, L0 is (3500+ 4900)¼ 8400 mol, and G and G0 are (1400 + 4900)¼ 6300 mol.

From these values the operating lines, found from Eqs. 13.3-6 and 13.3-10, are plotted as

shown in Fig. 13.3-7. The equilibrium line is added, and the difference calculation is

made as shown. The result is that the column should have fourteen stages, including the

reboiler. The feed should be added to the seventh stage.

slope L'/G'

slope L/G

Optimum feed
on stage #2

Concentrations
if feed
on stage #4

Fig. 13.3-6. The effect of different feed locations. When the feed is in the optimal location, the

concentration differences are larger and the number of stages required is reduced.
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13.4 Stage Efficiencies

The design strategies given above for stage-wise contacting depend on one huge

assumption: that the streams leave each stage in equilibrium. In particular, the basic

analysis of staged distillation developed in Sections 13.2 and 13.3 assumes that the vapor

composition yn and the liquid composition xn leave the nth stage in equilibriumwith each

other. This assumption is the basis of the entire strategy, including the graphical methods

exemplified by Fig. 13.3-4.

In fact, the concentration of themore volatile species leaving a particular stagemay fall

well short of the equilibrium value. To see why, imagine we have a liquid and vapor in

a closed container, as shown in Fig. 13.4-1(a). The initial concentration in the vapor yn+1

rises with time towards an equilibrium limit y�n. How close we approach this limit depends

on the time and how quickly the rise takes place. This in turn depends on the mass transfer

coefficient and the interfacial area between liquid and vapor.

A similar situation for this closed container will exist on a typical stage, as shown in

Fig. 13.4-1(b). Again, the concentration rises from the value flowing in yn+1 towards an

equilibrium value of y�n. Now, the plot is not vs. time, but rather vs. some residence time

on the stage. The rate of rise is again a function of the mass transfer coefficient and the

interfacial area between liquid and vapor.

We can put these ideas on a more quantitative basis by defining stage efficiency. If the

efficiency is equal to one, the stage will be at equilibrium; if it is less than one, it will

operate without achieving equilibrium. Three definitions of stage efficiency are common.

First, we can define an overall efficiency

g0 ¼
number of equilibrium stages

number of actual stages
ð13:4-1Þ

For example, if theMcCabe–Thiele analysis says that we need six stages, andwe discover

that we actually need twelve, then our overall stage efficiency is 0.5, or 50%.
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Fig. 13.3-7. Distillation of benzene and toluene. The column is calculated to require 13 stages

plus the reboiler. The calculation made here assumes that vapor and liquid are in equilibrium on

each stage, an assumption relaxed in Section 13.4.
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This definition of overall efficiency is more empirical than I want to use in this text.

However, I am impressed with a dimensional correlation suggested by Lockett for g0:

g0 ¼ 0:49 ðalLÞ
�0:25 ð13:4-2Þ

where a is the relative volatility of the species being separated, and lL is the liquid

viscosity, in centipoises. For example, for benzene–toluene, a is about 2.5, and lL is

around 0.3 cp, so g0 is about 0.5. This illustrates how far from ideal equilibrium stages we

will normally operate.

A second useful definition is the Murphree efficiency, named after a director of re-

search at Standard Oil of New Jersey. This definition assumes that each fluid is well

mixed on every stage, and so can be described by a single average concentration. We can

then define

g ¼ yn � ynþ1
y
�
n � ynþ1

ð13:4-3Þ

Clearly, this efficiency is the fraction of the concentration difference between feed and

equilibrium which the stage manages to obtain. Remember that the concentrations are

averages over the entire volume of the stage. The Murphree efficiency is a valuable

concept, but the use of average concentrations is a serious approximation, which can

in unusual cases lead to measured efficiencies over 100% when vapor and liquid are

contacted countercurrently.

We can avoid this embarrassment by defining a third, local efficiency based on local

concentrations. However, these local concentrations are almost always unknown, so

these efficiencies can rarely be used. Rather, we can only recognize that the average of

the local efficiency over the stage volume is the Murphree efficiency, and the average of

the Murphree efficiency over the column height is the overall efficiency.

The Murphree efficiencies will be the focus of the development in this section. They

have two characteristics that we want to discuss. First, they are obviously related to the

speed of diffusion, expressed as mass transfer coefficients. Second, they affect the design
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Fig. 13.4-1. Concentrations approaching equilibrium. If the time is sufficiently long, the vapor

concentration reaches equilibrium, and the analysis in the previous sections is valid.
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of distillation columns outlined in the previous section. We discuss these characteristics

sequentially.

13.4.1 Stage Efficiencies and Mass Transfer

We can begin to see how the Murphree efficiency is related to diffusion and

mass transfer by returning to the concentration variations shown in Fig. 13.4-1(b). This

figure plots the vapor phase concentration yn as a function of the residence time on the

stage. The vapor enters from the (n + 1)th stage with a mole fraction yn+1. This mole

fraction rises, first quickly and then more slowly.

We will get the most effective separation if the concentration yn reaches the equilib-

rium limit y�n. This implies building a column whose stages permit long residence times.

However, such a column will be big and hence expensive. We may prefer to build

a smaller, cheaper column. We may be willing to accept a smaller concentration change

per stage if it means a much smaller equipment cost.

With this potential savings in mind, we turn to the detailed shape of the curve in

Fig. 13.4-1(b). We want that curve to jump upward fast, to rise from yn+1 to near y�n
with a small residence time on the stage. In other words, we want to have high Murphree

efficiency for a short residence time. Intuitively, we expect that the Murphree efficiencies

should be a function ofmass transfer and of flow. Ifmass transfer between liquid and vapor

is fast, these phases should almost be in equilibrium, and the efficiency should approach

unity. If the liquid and vapor flow slowly past each other, then these phases again should

almost be in equilibrium, and again the efficiency should be about 100 percent.

Converting this intuition into a more quantitative form requires a more detailed phys-

ical model. Two such models are frequently used. In the first, simpler model, both the

liquid and vapor are assumedwell mixed. In the secondmodel, the liquid is again assumed

to be well mixed, but the gas is assumed to move in plug flow. Each is detailed below.

When both liquid and vapor are well mixed, the relation between the Murphree

efficiency and the mass transfer coefficient is especially straightforward. To find this

relation, we make a mass balance on the vapor:

accumulationð Þ ¼ solute in minus
that out in vapor

� �
þ solute gained by

mass transfer from liquid

� �
0 ¼GAðynþ1 � ynÞ þ KyaAlðy�n � ynÞ ð13:4-4Þ

whereG is the constant vapor flux up the column, inmoles per area per time;A and l are the

cross-sectional area and the depth of the liquid–vapor froth, respectively; a is the interfacial

area per volume between the froth of gas and liquid on the stage; andKy is an overall mass

transfer coefficient. Like the mass transfer coefficients used in gas absorption, Ky is based

on a gas-phase concentration difference expressed in terms of mole fractions.

We rewrite this equation as

Gðyn � ynþ1Þ ¼ Kyalððy�n � ynþ1Þ � ðyn � ynþ1ÞÞ ð13:4-5Þ

Rearranging

ðGþ KyalÞðyn � ynþ1Þ ¼ Kyalðy�n � ynþ1Þ ð13:4-6Þ
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By definition

g ¼ yn � ynþ1
y
�
n � ynþ1

¼ 1

1þ G

Kyal

ð13:4-7Þ

This is the desired result. Note that the Murphree efficiency is high at low molar flow G

(and hence at high residence time). It is high for rapid mass transfer and for a high

interfacial area per stage volume between the vapor and liquid. This prediction of Mur-

phree efficiencies is consistent with our intuitive expectations about the effects of resi-

dence time and mass transfer.

Our alternative approach to the well-mixed result given in Eq. 13.4-7 is the partially

mixed model. In this model, the liquid on the stage is well mixed; but the gas bubbles

change their compositions as they rise through the liquid. To examine the effect of this

change, wemake amass balance on the volatile species in a differential volume located at

z and Dz thick:

accumulationð Þ ¼ volatile species in minus
that out by convection

� �
þ species gained by mass

transfer from liquid

� �
ð13:4-8Þ

or

0 ¼GAðyjz�yjÞzþDzþKyaðADzÞðy�n � yÞ ð13:4-9Þ

where y is the local mole fraction in the vapor, A is the cross-sectional area of the stage,

and the other variables are parallel to those defined in Eq. 13.4-4. Dividing by ADz and
taking the limit as this volume goes to zero, we find

0 ¼ G
dy

dz
þKyaðy�n � yÞ ð13:4-10Þ

This is subject to the condition that

z ¼ 0; y ¼ ynþ1 ð13:4-11Þ
z ¼ l; y ¼ yn ð13:4-12Þ

where l is again the depth of the liquid–vapor froth on the stage. Integrating, we easily find

y
�
n � yn

y
�
n � ynþ1

¼ e
�Kyal=G ð13:4-13Þ

When we combine this with the definition of theMurphree efficiency given in Eq. 13.4-3,

we see that

g ¼ 1� e
�Kyal=G ð13:4-14Þ

Like Eq. 13.4-7, this predicts high efficiencies for low vapor flux G, for large mass transfer

coefficient Ky, and for large surface area per volume a.We can also derive corresponding

relations for other assumed flows for cases when neither liquid nor vapor is well mixed.
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All of these analyses show that the approach to equilibrium in distillation is a strong

function of the overall mass transfer coefficient. The analyses also use an overall mass

transfer coefficient which varies with the Henry’s law coefficientm, which in turn changes

with the changing concentrations along the length of the column. However, all of the

analyses depend on inexact assumptions about the nature of the flow and the mixing on

each stage. Often, these flows aren’t known, so the analyses are hard to apply.

As a result, we should focus on how to use experimentally measured Murphree

efficiencies. We should appreciate how these efficiencies change with Ky and other rel-

evant variables. This qualitative appreciation can be based on simple models. We should

not expect accurate a-priori predictions of these efficiencies.

13.4.2 Stage Efficiencies and Column Design

We now want to show how Murphree efficiencies are used to improve our

calculations of the number of stages needed for a given separation. To begin, we graph

the equilibrium and operating lines as usual. We remember that for a given value of xn,

the vertical distance between the equilibrium and operating lines is y�n � ynþ1
	 


, as shown

in the inset of Fig. 13.4-2. But from Eq. 13.4-4, this distance times the Murphree effi-

ciency is yn – yn+1. Thus we can plot a new, nonequilibrium line, shown as the dashed

curve in Fig. 13.4-2. When we design a distillation column, we can use this dashed curve

and the operating lines to calculate the number of stages required. This calculation is

illustrated in the second of the examples that follow.

Calculations based onMurphree efficiencies are about as far as mass transfer models

can be pushed. These calculations may not always be reliable, even though they are

based on a huge number of experimental results. The reason is that a single overall mass

transfer coefficient may be inadequate to describe all aspects of the flow and diffusion

occurring in a single stage. Still, the value of any scientific effort is the product of the

importance of the problem and the quality of the solution. Distillation is very important;

although concepts of efficiency are certainly imperfect, they seem to me to remain

valuable.

Example 13.4-1: Finding mass transfer coefficients from stage efficiencies On one tray of

an acetone–water distillation we find that yn equals 0.84, xn equals 0.70, and yn+1 equals

0.76. The stage is at 59 �C and 1 atm; it has a vapor flow of 0.14 kg mol/sec and a froth

volume of 0.04 m3. Assuming that both vapor and liquid are well mixed, estimate the

Murphree efficiency and the mass transfer coefficient on this stage.

Solution From vapor–liquid equilibrium data for acetone–water, we find that

whenxn equals 0.70, y
�
n equals 0.874. TheMurphree efficiency is then found fromEq. 13.4-3:

g ¼ yn � ynþ1
y
�
n � ynþ1

¼ 0:84� 0:76

0:874� 0:76

¼ 0:70
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If the stage is well mixed, then the relation between the efficiency and the mass

transfer coefficient is that in Eq. 13.4-7, which is easily rearranged to give:

Kya ¼
GA

Al
1

g
� 1

� �
¼ 0:14 kgmol=sec

0:04m
3 1

0:70
� 1

� �
¼ 8:2 kgmol=m

3
sec:

We cannot calculate the mass transfer coefficient itself without knowing the surface area

per volume a.

Example 13.4-2: Distillation design usingMurphree efficiencies A solution containing 47

mol% carbon disulfide in carbon tetrachloride is to be separated in a distillation tower

operated at very high reflux. The distillate and bottoms should contain 97 mol%CS2 and

five mol%CS2, respectively. The average molar volume in the liquid is about 80 cm3/mol.

The trays in the tower, which are of a proprietary design, were installed to separate

another system. Experiments on this other system suggest operating with a gas flow of

59 mol/sec gives a froth volume of 10 l/stage. These experiments also show that the

mass transfer is not fast enough to reach equilibrium, but is characterized by a kGa of

440 per second and a kLa of 1.7 per second. These coefficients are inferred from efficiencies

measured for the other system by assuming the liquid is well mixed but the vapor is not.

(a) Find the number of stages that would be required in this column if mass transfer was

fast enough to reach equilibrium. (b) Estimate the number of stages required if the stages are

not ideal but are described by Murphree efficiencies estimated from the available mass

transfer data. In solving the second part of this problem, you may assume that the total

molar concentrations are constant, equal to the value at 60 �Cand at the feed concentration.

x

y

Equilibrium
line

Operating
lines

yn+1

yn*

yn

xn

Fig. 13.4-2. Using Murphree efficiencies. Murphree efficiencies effectively lower the solid equi-

librium line to the dashed line. They do so because the vapor composition yn leaving a particular

stage is less than the equilibrium value y�n. Remember that these efficiencies may not have the

same value in each stage.
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Solution (a) Because the system is operating at a very high reflux, both op-

erating lines become equal to the diagonal. We then can plot these lines and the equi-

librium line as shown in Fig. 13.4-3. By making the usual graphical calculation, we find

that the system should contain six stages plus the reboiler.

(b) When the mass transfer is considered, we must correct the equilibrium line for the

inefficiencies of the distillation. To do this, we must first find the overall mass transfer

coefficients. From an analysis like that leading to Eq. 8.5-7, we have

1

Kya
¼ RT

kGap
þ m

kLaCL

¼

8:31 kg m
2

sec
2
molK

333Kð Þ

440

sec
101 � 102 kg

m sec
2

� � 10
6
cm

3

m
3 þ m

1:7

sec

� �
mol

80 cm
3

� �

¼ 62
cm

3
sec

mol
þ 47

cm
3
sec

mol
m

We can find the values of m for different values of x using the equilibrium curves in Fig.

13.4-3. For example, for x ¼ 0.2, m ¼ 1.41, and

Kya ¼ 7:8mol=l sec :

This and other values are then used to find the Murphree efficiency g, which requires

assuming the nature of the flow on the stages. If we assume plug flow of the liquid, we can

calculate the efficiencies from Eq. 13.4-14. For example, for x ¼ 0.2,

y

Equilibrium
line

Operating
lines

0
x

0.5 1.0

0.5

0

1.0(a)

y 
or

 η

Efficiencies

Operating
lines

0
x

0.5 1.0

0.5

0

1.0(b)

Fig. 13.4-3. Distillation of carbon disulfide and carbon tetrachloride. If liquid and vapor reached

equilibrium, this separation would require seven stages, including the reboiler. When the stage

efficiencies are considered, the separation requires nine stages. Note how the stage efficiency drops

at the lower end of the column as the result of higher values of the Henry’s law parameter H.

g ¼ 1� exp

�KyaVs

GA

� �

¼ 1� exp

� 7:8 mol
‘ sec 10 ‘

59 mol
sec

" #

¼ 0:73
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where we have recognized that the stage volume Vs equals the cross-sectional area of the

stages A times the depth l. Other values are shown in Fig. 13.4-3(b). Using these values,

we calculate the new y–x curve in this same figure and we find that the number of stages

required is now eight plus the reboiler.

13.5 Conclusions

Distillation, the most important separation process for commodity chemicals,

can be accomplished using two methods. In the first, the vapor and liquid move coun-

tercurrently through a packed bed, and the analysis closely parallels that for gas absorp-

tion. This analysis was the focus of the previous chapter, and rests directly on the rates

dictated by mass transfer coefficients.

In the secondmethod, the vapor and liquid againmove countercurrently, but through

a series of well-mixed stages. The goal is to have vapor and liquid approach equilibrium

in each stage. When this equilibrium is closely approximated, the analysis results in

expressions like the Kremser equations and the McCabe–Thiele method. In many cases,

however, the stages do not approach equilibrium. In these cases, the analysis usually

makes a correction using an efficiency, which is a function of mass transfer coefficients.

The corrections suggested by these efficiencies are large, often around a factor of two.

Unfortunately, they are rarely well enough known to be predictive, but are instead a way

to rationalize and organize experimental results.

However, while ideal equilibrium stages may be a poor approximation, they are

usually the language in which distillation problems are discussed. Thus anyone

who studies distillation should analyze any target separation in terms of a McCabe–

Thiele analysis even though he knows that this analysis may not be that close to what

actually happens. The graphical picture of what is happening is just too good to

abandon.

Questions for Discussion

1. Why is distillation such a widely used separation process?

2. What is a Kremser equation?

3. Could you run a distillation column without a reboiler?

4. How in distillation do you get the maximum separation?

5. Any regions where the operating and equilibrium lines are close together are

called ‘‘pinch points.’’ Discuss why.

6. Why does sending some liquid back down the column improve the separation

by distillation?

7. Most distillation is carried out adiabatically. Why?

8. When would structured packing be a better choice for distillation?

9. When would stages be a better choice?

10. Will increases in reflux ratio always improve the separation?

11. How could you define the efficiency of a distillation?

12. Define a Murphree efficiency.

13. Plot the Murphree efficiency vs. the overall mass transfer coefficient.

14. Will diffusion-induced convection be important in concentrated distillation?
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Problems

1. You want to distill a feed of fifty percent saturated vapor containing 30% n-pentane

and 70% n-heptane, for which vapor–liquid equilibrium data are

The overhead should contain 95 mol% pentane, and the bottoms 10 mol% pentane;

the reflux ratio should be 1.3 times the minimum. (a) How many ideal stages are re-

quired? (b) On which ideal stage should you feed the vapor? (c) Sketch the effect on

the equilibrium line of a Murphree efficiency of 67%, but don’t use this for parts (a)

and (b).

2. You want to separate methanol and water into a distillate containing 90 mol% meth-

anol and a bottoms containing 5 mol% methanol. Vapor–liquid equilibrium data for

this system are:

For this purpose, you want a column designed for a recycle 1.5 times the minimum. All

stages in this column are near-ideal. The trouble is that you have two feeds to this

column. One is 100 mol/sec, a saturated liquid containing 60 mol% methanol. The

second is 70 mol/sec, a saturated vapor containing 30 mol%methanol. (a) How much

x (methanol) y (methanol)

0.0 0.0
0.10 0.417
0.20 0.579

0.30 0.669
0.40 0.727
0.50 0.780

0.60 0.825
0.70 0.871
0.80 0.915

0.90 0.959
1.00 1.000

x (pentane) y (pentane)

0.0 0.0
0.059 0.271

0.145 0.521
0.254 0.701
0.398 0.836

0.594 0.925
0.867 0.984
1.000 1.000
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distillate is produced? (b) Write an operating line above both feed plates. (c) Find an

operating line below both feed plates. (d) Howmany stages, including the reboiler, will

be needed? (e) Where should each feed enter?

3. As part of applying paint, you produce a large amount of methanol vapor. You

recover the methanol by absorbing the vapor in water, and then distilling the water–

methanol mixture in an old six-stage column plus reboiler. (Vapor–liquid equilibria

are given in the previous problem.) You have an old description of the column

which says that the Murphree efficiency of the top three stages is 50%, but that

of the bottom three and the reboiler is 100%. The man who wrote the report

died last year, only eleven months after retiring. Company policy dictates a reflux

1.5 times the minimum. You need to process 1200 kg/hr of a 32 mol% methanol

feed. You want a distillate that is 90 mol% methanol. What is the concentration of

the bottoms?

4. You want to distill acetone and ethanol, whose vapor–liquid equilibrium data are

You plan to produce a bottoms product containing 90 mol% ethanol using another old

six-plate column (plus reboiler and a total condenser) which has aMurphree efficiency of

75%; you plan to use a very high reflux. The feed, containing 50 mol% acetone, is 36

mol% vapor. (a) What will the distillate concentration be? (b) How much bottoms

product will be produced per mole of feed?

5. A saturated liquid solution of 40mol% acetone and 60mol% acetic acid is fed at a rate

of 100 lb mol/hr to a distillation column. The desired separation of acetone is a 96

mol% distillate concentration and a 5 mol% bottoms concentration. The column is

operated at 1.6 times the minimum reflux ratio, so RD ¼ 0.44. The average column

temperature is 95 �C and the average liquid density is 0.95 g/cm3. The liquid depth on

a tray is 1.5 cm, and the tower diameter is 30 cm. Themass transfer coefficients are kGa

¼ 505 sec-1 and kLa ¼ 1.8 sec–1. Equilibrium data for acetone and acetic acid are

x (acetone) y (acetone)

0.0 0.0
0.05 0.15

0.10 0.26
0.20 0.41
0.30 0.54

0.40 0.60
0.60 0.74
0.70 0.80
0.80 0.87

0.90 0.93
1.00 1.00
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Determine the Murphree efficiency from Eq. 13.4-7, and then find the number of

stages and the feed tray location for this column. (D. McCullum).

6. To make a photochemically active pigment, you are feeding reagent plus 1 mol/min

methanol into a batch reactor containing dilute solutes, 10 mol% methanol, and 90

mol% chlorobenzene. This reaction mixture is boiling, producing a vapor containing

82 mol%methanol and 18 mol% chlorobenzene. Above this methanol concentration,

the y–x diagram is near linear. Unfortunately, this chlorobenzene loss means that you

presently must continuously feed extra chlorobenzene, an inconvenience and a risk

(because chlorobenzene is a carcinogen). To reduce this inconvenience, you plan to put

some distillation stages on top of the reactor. The stages are to be nearly ideal and use

a reflux that is large. (a) How much chlorobenzene must you feed to keep constant the

solvent concentration in the reboiler without any stages? (b) How much must be fed

with one stage? (c) How much must be fed with three stages?

Further Reading

Geankoplis, G. J. (2003). Transport Processes and Separation Process Principles, 4th ed. Upper

Saddle River, NJ: Prentice Hall.

Humphrey, J. L. andKeller, G. E. (1997). Separation Process Technology. NewYork:McGraw-

Hill.

McCabe, W. L. Smith, J. C., and Harriott, P. (2004). Unit Operations of Chemical Engineering,

7th ed., New York: McGraw-Hill.

Seader, J. D. and Henley, E. J. (2006). Separation Process Principles, 2nd ed. New York: Wiley.

Wankat, P. C. (2006). Separation Process Engineering. Upper Saddle River, NJ: Prentice Hall.

x (acetone) y (acetone)

0.0 0.0

0.05 0.162
0.10 0.306
0.20 0.557

0.30 0.725
0.40 0.840
0.50 0.912
0.60 0.947

0.70 0.969
0.80 0.984
0.90 0.993

1.00 1.000
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CHAPTER 14

Extraction

Extraction treats a feed with a liquid solvent to remove and concentrate a valu-

able solute. When the feed is a liquid, the process is called ‘‘liquid–liquid extraction,’’ or

more commonly just ‘‘extraction.’’ When the feed is a solid, the process is called ‘‘solid–

liquid extraction,’’ or more commonly ‘‘leaching.’’ In either case, the original solution is

commonly called the feed; after the extraction, this stream is called the raffinate. Sim-

ilarly, the second solvent is called the extract once it contains solute.

Extraction is almost never the first choice as a separation process. If the solute of

interest is a gas, then we will first try gas absorption or stripping. If the solute of interest

is volatile under convenient conditions, then we will attempt distillation. We will nor-

mally try extraction only after we fail at absorption and distillation. Still, we have

included a separate chapter on extraction for two reasons. First, it is an important

process, central to some petrochemical, pharmaceutical, and metallurgical processes.

We discuss these in Section 14.1. Second and more importantly, extraction gives an

extended example of the generalization of the analyses of absorption and distillation.

When extraction is carried out in differential contactors like packed towers, its analysis is

similar to gas absorption. When extraction is carried out in staged contactors, its anal-

ysis parallels staged distillation. Thus we can test our understanding of absorption and

distillation by discussing extraction.

At the same time, we want to focus on the role of diffusion in extraction, for that is the

subject of this book. As a result, we emphasize the case of a dilute solute being extracted

between two immiscible liquids. This defers complicated issues of ternary phase equi-

libria to more specialized texts and lets us focus on the issues of mass transfer, which can

be obscured in those texts. Specifically, we discuss extraction equipment in Section 14.2,

we analyze differential extractors as a parallel to gas absorption in Section 14.3, and we

describe staged extraction in Section 14.4. Leaching, which can be either staged or

differential, is treated in Section 14.5. The result is a brief summary that emphasizes

the role of mass transfer.

14.1 The Basic Problem

Extraction is a common separation process used where distillation and gas

absorption fail. Most obviously, extraction can be used for nonvolatile components like

metal ions. It is effective for valuable solutes like flavors, which can be unstable at

distillation temperatures. Less obviously, extraction is useful for volatile solutes that

have nearly equal boiling points or that show azeotropes.

Some common extractions are listed in Table 14.1-1. When I look at this table, I think

of three specific applications as a way to organize my thinking. The first specific appli-

cation is the dewaxing of lubricants. Lubricants are made from particular fractions

collected during distillation of crude oil. These fractions are the most valuable part of
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the barrel. Crude oil produced in Pennsylvania historically had a larger fraction of

lubricants than crude oil produced in other locations, which is why the names of several

motor oil companies refer to Pennsylvania.

Unfortunately, these lubricating fractions contain a significant amount of linear

hydrocarbons. When such a fraction becomes cold, as in a Minnesota winter, these

linear hydrocarbons precipitate as wax crystals. When the wax crystals are present in

motor oil, the oil is a poor lubricant, so removing these waxes is important. While

a huge number of solvents – including supercritical solvents – have been used for this

purpose, this remains a competitive area, for it represents the largest single extraction

process.

The second specific application is purification of penicillin. Penicillin is produced by

fermentation. The result is a cloudy broth, which looksmuch like a beermade at home or

in a small microbrewery. Themicrobes are first removed by filtration. The clarified broth

is then extracted with an alkyl acetate, commonly amyl acetate. If the aqueous broth is

acetic, the penicillin partitions into the acetate. If the organic solution is then contacted

with dilute aqueous base, the penicillin will partition back into the base. After about four

such transfers, the purified penicillin is crystallized to produce the final product.

The third specific application of extraction that merits emphasis is the concentration

of copper. Originally, copper was produced by roasting copper sulfide to produce cupric

oxide. The cupric oxide was dissolved in acid and further purified by electrowinning.

This process is no longer practiced because current ores have too small a concentration

of copper sulfide to be economically roasted. Instead, low-grade ores are leached with

sulfuric acid to produce dissolved copper. This dissolved copper is present at such a low

concentration that it cannot be economically recovered without further concentration. It

is concentrated by extraction from the dilute acid solution into a kerosene solution of

liquid ion exchangers. The copper is recovered from this kerosene solution by a second

extraction with still more concentrated acid. The result is a copper solution concentrated

enough for economical electrowinning. Similar processes are used for uranium and other

rare earths.

These three examples – dewaxing lubricants, isolating penicillin, and concentrating

copper – suggest the criteria for how an extraction solvent should be chosen. First, the

solvent should have a favorable equilibrium: the solute concentration in the extract

should be greater than the solute concentration in the raffinate. Second, the extract

should be easy to separate. For example, in the extraction of oils from soybeans, the

hexane in the extract is easily removed by distillation. The third criterion for choosing an

extraction solvent must be the degree of environmental insult. Solvents that are sus-

pected carcinogens, such as methylene chloride and toluene, should be used sparingly.

These generalizations will always have exceptions. For example, acetic acid is

extracted from water using methyl ethyl ketone, even though the equilibrium is unfavor-

able. In other words, the concentration of the acetic acid in water is higher at equilibrium

than the concentration in the ketone. In this case, the extract of acetic acid and the

ketone is much more easily separated by distillation than are extracts with alternative

solvents. Methyl ethyl ketone is chosen in spite of its poor equilibrium.

Similar concerns have also inhibited the adoption of unconventional solvents. Two

good examples are supercritical carbon dioxide and two-phase aqueous systems. Super-

critical carbon dioxide can be effectively used to decaffeinate coffee. However, its broad

adoption has been inhibited by the major capital cost of the equipment. Two-phase
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aqueous extraction most often uses an aqueous solution of a polymer like dextran

and a second aqueous solution of phosphates. These solutions are immiscible even

though each contains more than 90 percent water. When several proteins are dis-

solved in these solutions, they partition unequally, so that single proteins can be sepa-

rated. The separation is gentle, and often does not denature the proteins. However, this

gentleness is compromised by themajor difficulty of later separating the protein from the

dextran.

The chemistry of extraction frequently involves nonlinear equilibria between the

raffinate and extract. This reflects the extraction chemistry, which is often more com-

plicated than that for absorption or dilute distillation. The nonlinear equilibria fre-

quently result from specific chemical reactions. For example, benzoic acid can be

extracted from water into benzene. The benzoic acid in water can ionize to form a mix-

ture of benzoic acid, benzoate anions, and protons. Benzoic acid in benzene can di-

merize. The ionization and dimerization may result in an equilibrium that is nonlinear

and strongly dependent on concentration, pH, and temperature.

In a similar way, much metal purification involves ion exchange. For example, in the

case of copper extraction mentioned above, the equilibrium is:

Cu
2þðaqueousÞ þ 2HX ðin keroseneÞ Ð CuX2ðin keroseneÞ

þ 2H
þðaqueousÞ

ð14:1-1Þ

where HX represents the liquid ion exchanger dissolved in kerosene and X represents the

anion of that exchanger. Thus any equilibrium between copper in water and in kerosene

should include variables like the concentration of the ion exchanger.

In spite of these complexities, most analyses of extraction assume linear equilibria.

The detailed chemistry appears as a concentration-dependent partition coefficient.

While such concentration-dependent partition coefficients are beyond the scope of this

book, they are well understood and discussed in detail in more specialized references.

14.2 Extraction Equipment

Liquid–liquid extraction and leaching use different equipment, even though the

analysis of this equipment can be similar. Liquid–liquid extraction can be accomplished

either in differential contactors or in staged extractors (Godfrey and Slater, 1995). The

differential contactors are analyzed in ways that parallel the analysis of gas absorption;

the staged extractors depend heavily on ideas developed for distillation. In both cases, an

enormous variety of equipment is used, with specific apparatus often being optimized for

particular separations.

Rather than survey themany types, we will discuss the four characteristic types shown

in Fig. 14.2-1. The first three types are differential contactors. The simplest is the spray

column shown in Fig.14.2-1(a). In the configuration shown, the light extraction solvent

is pumped through a sparger – an inverted shower nozzle – into a column filled with the

aqueous feed. Drops of the solvent rise slowly through heavy feed. At the same time, the

feed moves downward through the column. The result is countercurrent contacting

between the lighter extraction solvent and the heavier feed.
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Similar contacting can use a packed column like that shown in Fig. 14.2-1(b). In

general, a packed column has better mass transfer but lower capacity than a spray

column. As before, the heavy feed enters the top of the column and the light solvent

enters the bottom. Now, a larger interfacial area is generated between the feed and

solvent by the packing. The packing should be wet by the phase that we want to be

continuous, and not by the phase that we want to be discontinuous. Choosing which

phase we want to be continuous depends on which configuration will give us the faster

mass transfer.

Both spray columns and packed columns are seriously compromised by flooding. In

flooding, the feed and solvent streams do not flow evenly and countercurrently past each

other, but both simply gush out one end of the column. Flooding is a more serious risk in

extraction than in absorption because of the smaller density difference between the two

fluids. This density difference is typically less than 0.1 g/cm3, about 10 times less than

that common in gas absorption. As a result, countercurrent flows that are routine in gas

absorption will be difficult to realize in liquid–liquid extraction.

Both spray columns and packed columns routinely perform much less well than

expected. There are two main reasons for this. First, the two liquid phases may not flow

evenly past each other but mix more randomly together. In that case, they will behave

more like a stirred tank than a packed bed, and have very few numbers of transfer units

(NTU) or equivalent stages. Indeed, the fact that spray columns can show less mass

transfer than even one equilibrium stage signals first how poor the contact between the

two liquids can be.

The second reason that spray and packed columns perform poorly is their risk

of bypassing caused by using large drops of the discontinuous fluid. While these drops

(a)
Light liquid out

Heavy liquid in

Interface

Light liquid in

Heavy liquid out

(b)

(d)

Light liquid out

Heavy liquid in

Stage
3

Stage
2

Stage
1

Heavy liquid out
Light liquid in

Light
liquid 
out

Heavy
liquid in

Wire mesh
packing

Light
liquid in

Heavy
liquid out

(c)

Heavy
liquid in

Light
liquid
out

Heavy
liquid
out

Light
liquid
in

Fig. 14.2-1. Four important types of extraction equipment. Types (a) – (c) are differential

contactors, described in the samemanner as gas absorption. Type (d), a three-stage mixer-settler,

depends on stages, as does distillation.
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flow faster, they have a smaller surface area per volume and hence reduced mass

transfer. Small drops, which have a higher area per volume and hence faster mass trans-

fer, flow more slowly and risk flooding. To reduce the risk of flooding, we can use

centrifugal extractors, like that shown in Fig. 14.2-1(c). In this case, the two liquids

are forced past each other by centrifugal force. Because centrifugal extraction has mod-

est capacity and high equipment cost, it tends to be used only for high value added

products.

When constraints like flooding are severe, we are driven to look at mixer-settlers like

those shown in Fig. 14.2-1(d). These are nothing more than tanks whose contents are

stirred to reach equilibrium. The contents are then pumped into unstirred tanks where

the two fluid phases separate slowly. Such tanks always work and are not expensive. The

advantages and disadvantages of this and the other three types are summarized in Table

14.2-1. We will refer to this table in the analysis of extraction problems given in the next

two sections.

14.3 Differential Extraction

Differential liquid–liquid extraction, like differential distillation a form of rate-

dependent, differential contacting, is analyzed in ways that parallel the analysis of

countercurrent gas absorption. This analysis is complicated by two factors. First, the

Table 14.2-1 Characteristics for common extraction equipment

Apparatus suitable for
conditions given

Type Features Applications Number
of stages

Flow
rate,
m3/hr

Density
difference,
g/cm3

Spray columns Low capital and
operating cost;
handles corrosive
material

Petrochemical,
chemical

<1 <100 >0.05

Packed columns Less capacity but
more mass
transfer than
spray columns;
restricted by
flooding

Petrochemical,
pharmaceutical

<10 <50 >0.05

Centrifugal
extractors

High capital cost;
short contact
times

Pharmaceutical,
nuclear

<5 <10 >0.01

Mixer-settlers High capacity and
flexibility;
handles high
viscosity

Petrochemical,
metallurgical

Any
value

>250 >0.10

Note: Abstracted from Lo and Baird, 1993.
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solute concentrations at equilibrium in the raffinate and the extract are not linearly

proportional. This nonlinear behavior most often reflects a chemical change, like ion-

ization or chemical reaction. The second factor complicating the analysis of extraction

is that the feed and the solvent used for extraction are partly miscible. For example, in

the extraction of aqueous acetic acid, the water is significantly soluble in the methyl

ethyl ketone commonly used as the extraction solvent. This mutual solubility means

that the analysis depends on ternary-phase equilibria, often expressed on ternary coor-

dinates.

We minimize these complications here by considering only the extraction of dilute

solutes between immiscible solvents. Though this limit misses some problems of practical

interest, it focuses our attention on dilute solutions of expensive materials. In the dilute

limit, we again have three key equations:

(1) a mass balance on both liquids, called the operating line;

(2) a free energy balance for the solute, again called the equilibrium line; and

(3) a rate equation, derived from a mass balance on only one liquid phase.

These three equations are the basis for our analysis of dilute extraction.

The mass balance on both liquid phases is written on a control volume, located from

some arbitrary position z to the end of the extractor where the solvent enters. For con-

venience, we will call the mass flux of feed and raffinate streams G, and the solvent and

extract streams L; this notation stresses the parallel with gas absorption. The mass

balance is

Gyþ Lx0 ¼ Gy0 þ Lx ð14:3-1Þ

where y and x are solute concentrations of the feed and solvent phases, respectively;

and y0 and x0 are the corresponding values where the solvent enters at the end of the

extractor.

In absorption and distillation, y and x were usually mole fractions. This may also be

true for extraction. Often, however, y and x will be expressed as mass fractions or

mass ratios. For example, x may be defined as mass of solute per mass of solvent. This

is especially true when the solute is a chemical mixture, like a wax in glycol. The mass

balance in Eq. 14.3-1 is easily rearranged to give

y ¼ y0 �
L

G
x0

� �
þ L

G
x ð14:3-2Þ

This mass balance or ‘‘operating line’’ is the mathematical equivalent of Eq. 10.3-5,

developed for gas absorption. As in that case, this operating line says that y varies

linearly with x, with a slope of (L / G).

In addition to this operating line, we need a free-energy balance or equilibrium line.

For the dilute case, this is still a simple linear relation:

y
� ¼ mx ð14:3-3Þ

where m is a partition coefficient. As before, this partition coefficient is dimensionless.

The third key relation for dilute extraction is a rate equation, a mass balance written

on only one liquid phase. For example, for the feed, this steady-state mass balance is
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written on a differential volume (ADz) located at an arbitrary position zmeasured from

the end of the extractor:

solute
accumulation

� �
¼ solute flow

in� that out

� �
� amount

extracted

� �
0 ¼ GAyjz þ Dz � GAyjz � KyaðADzÞðy� y

�Þ ð14:3-4Þ

in which Ky is an overall mass transfer coefficient and a is a liquid–liquid interfacial area

per extractor volume. Dividing by the differential volume (ADz) and taking the limit as

this volume goes to zero, we find

0 ¼ G
dy

dz
� Kyaðy� y

�Þ ð14:3-5Þ

subject to the conditions

z ¼ 0; y ¼ y0; x ¼ x0 ð14:3-6Þ

z ¼ l; y ¼ yl; x ¼ xl ð14:3-7Þ

Equations 14.3-2, 14.3-3, and 14.3-5 are the basis for analyzing dilute absorption.

We can now find the size l of the differential extractor by integrating Eq. 14.3-5. To do

so, we first rearrange this equation to getZ l

0

dz ¼ G

Kya

Z yl

y0

dy

y� y
� ð14:3-8Þ

or

l ¼ G

Kya

Z yl

y0

dy

y�mx
¼ G

Kya

1

1�mG
L

ln
yl �mxl
y0 �mx0

� �264
375 ð14:3-9Þ

The quantity L / mG, often of order one, is called the extraction factor E. For liquid

extraction, this parallels Eq. 10.3-12 for gas absorption.

In this discussion, we have repeatedly stressed the mathematical parallels between

extraction and absorption because these help understanding the developments. How-

ever, these mathematical parallels should not obscure physical differences. Some are

straightforward: The concentrations for extraction are commonly expressed as mass

fractions, but those in absorption are more frequently mole fractions. Other differences

are more subtle. The equilibrium constant m is a good example. Obviously, m is a linear

approximation that can be inaccurate if the chemistry includes ionization or complex

formation. Less obviously, the dimensionlessm requires careful definition. For example,

imagine we are given

mole fraction
in aqueous phase

� �
¼ m9

mole fraction
in solvent

� �
ð14:3-10Þ
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We want to find the m defined by

mass fraction
in aqueous phase

� �
¼ m

mass fraction
in solvent

� �
ð14:3-11Þ

For dilute solutions, we can show that

m ¼ m9
molecular weight ofL

molecular weight ofG

� �
ð14:3-12Þ

The relation is more complex for concentrated solutions.

Other subtle differences occur in the mass transfer coefficient. By arguments that

parallel those in Section 8.5, we may show that

1

Ky
¼ 1

ky
þ m

kx

¼ 1

kGqG

þ m

kLqL

ð14:3-13Þ

where ky and kx are defined in terms of differences ofmass fractions, kG and kL are defined

in terms of differences of mass concentrations, and qG and qL are the densities of the

raffinate and extract phases, respectively. In practice, kG and kL are of similar magnitude,

around 10�3 cm/sec; and qG and qL are obviously also about equal, around 1 g/cm3.

Thus the limiting resistance to mass transfer depends most critically on m. If m is

much less than one, which is normally what we seek in an extraction solvent, then the

rate of extraction will be controlled by the mass transfer in the raffinate phase. If m is

much more than one, then the extraction rate will be dominated by mass transfer in the

extract phase. This situation is different than that in absorption, where the mass transfer

in the gas is usually so fast that it doesn’t affect the overall mass transfer coefficient. We

explore these ideas further in the following example.

Example 14.3-1: Steroid extraction We are trying to isolate a steroid like sitosterol from

an aqueous vegetable feed. To do so, we pump 6.5 kg/hr of the feed upward through

a packed column 0.61 m high and 0.1 m in diameter. We spray 3.0 kg/hr of pure meth-

ylene chloride to trickle downward through the bed. We find by experiment that m is

0.14; even so, we get only a 53% recovery. (a) What is the value of Kya? (b) How long

should we make the tower for a 90% recovery?

Solution (a) We begin by calculating the exit concentration in the methylene

chloride from Eq. 14.3-1

xl ¼
6:5

3:0
ðyl � 0:47ylÞ

xl ¼ 1:15yl

Thus from Eq. 14.3-9

0:61m ¼
ð6:5 kgÞ= 3600 sec p=4ð0:1mÞ2

� �
Kya

24 35� 1

1� 0:14ð6:5Þ
3:0

ln
yl � 0:14ð1:15ylÞ

0:47yl � 0

� �( )
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Thus

Kya ¼ 0:31 kg=m
3
sec

(b) As in (a), we first calculate the exit concentration x0, but for 90% recovery:

3:0xl ¼ 6:5ðyl � 0:1ylÞ
xl ¼ 1:95yl

We then use Eq. 14.3-9 to find

lð90% recoveryÞ
lð53% recoveryÞ ¼

ln yl � 0:14 1:95ylð Þð Þ=0:1yl½ �
ln yl � 0:14 1:15ylð Þð Þ=0:47yl½ � ¼ 3:4

Thus

lð90% recoveryÞ ¼ 2:1m

We achieve a better extraction by making the column longer.

14.4 Staged Extraction

The alternative to differential extraction is staged extraction. This frequently

uses the mixer-settlers shown in Fig. 14.2-1(d), but it can also use column extractors

containing the equivalent of sieve trays. In these cases, extraction is analyzed using the

same concepts of equilibrium stages used in the analysis of distillation. Such an equilib-

rium stage analysis depends on mass transfer only tangentially. As a result, we will

quickly review the analysis and then discuss how mass transfer is involved.

To begin, we consider the staged cascade shown schematically in Fig. 14.4-1. As

before, G and L are the fluxes of the immiscible feed and extract, respectively; y and x

are the concentrations of the dilute solute being transferred from G to L.We again label

the solute concentrations with subscripts giving the stage where they originate. Thus

for stage n, the enteringmass fractions are xn – 1 and yn + 1; the exitingmass fractions are

xn and yn.

We are interested first in the limit where the exiting concentrations are in equilibrium.

Because the solute is dilute, we expect this equilibrium is linear:

yn ¼ y
�
n ¼ mxn ð14:4-1Þ

n n – 1 2 1
G,yn + 1

L,xn

G,yn

L,xn – 1 L,xn – 2

G,yn – 1

L,x2

G,y3

L,x1

G,y2
G,y1

L,x0 = 0

Fig. 14.4-1. An idealized staged countercurrent extraction. The feedH and extractant L flow at

constant rates in the limit of the dilute solutions considered here. As in distillation, the concen-

trations in these streams are identified by the stage where each originates.
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Wealso recognize that each stage is subject to amassbalance.For example, for the first stage,

Gy2 þ Lð0Þ ¼ Gy1 þ Lx1 ð14:4-2Þ

Combining this with the equilibrium, we find

y2 ¼ 1þ L

mG

� �
y1

¼ 1þ Að Þ y1 ð14:4-3Þ

whereA (=L/mG) is the reciprocal of an absorption factor like that used in Section 13.2.

Other analogous factors can be used as well. For example,A is often called an extraction

factor E or a stripping factor S. Here, we will use A so that all our equations for staged

operations remain closely parallel.

As an analogue to Eq. 14.4-3 for the first stage, we can write for the second stage,

Gy3 þ Lx1 ¼ Gy2 þ Lx2 ð14:4-4Þ

This leads to

y3 ¼ 1þ Að Þ y2 � Ay1

¼ 1þ Aþ A
2

� �
y1 ð14:4-5Þ

For N stages, the result is

yNþ 1 ¼ 1þ Aþ A
2 þ � � �AN

� �
y1

¼ 1� A
Nþ 1

1� A

" #
y1 ð14:4-6Þ

This is the desired result, a special case of Eq. 13.2-11 for distillation. This result allows

estimation of the number of equilibrium stages required to achieve a desired separation.

In many cases, Eqs. 14.4-5 and 14.4-6 are reasonably accurate, for each stage comes

close to equilibrium. This is because the expense of the solute makes long times on each

stage attractive. In these cases, we will find it advantageous to use an absorption factor

that is close to one. In other cases, the time spent in individual stages is not long enough

to reach equilibrium. In these cases, we can parallel our analysis for distillation to again

define a Murphree efficiency g

g ¼ yn � ynþ 1

y
�
n � ynþ 1

ð14:4-7Þ

where yn is the actual exiting concentration and y�n is the concentration that would exit at

equilibrium. If mass transfer is rapid, we will be near equilibrium and g will equal one; if

the mass transfer is slow, yn and yn+1 will be almost the same and g will be near zero.

The relation between the Murphree efficiency and the mass transfer coefficient is

simplest when the stages are well mixed. In this case, we can parallel the development

leading to Eq. 13.4-7 to find

g ¼ 1

1þ GA

KyaV

ð14:4-8Þ
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where GA is the total raffinate flow, in mass per time; a is the liquid–liquid surface area

per mixer volume; V is the mixer volume; and Ky is the overall mass transfer coefficient.

The value of the overall mass transfer coefficient Ky, and hence the Murphree efficiency,

is most strongly influenced by the partition coefficient m. To see why, we return to the

definition of Ky, given by

1

Ky
¼ 1

ky
þ m

kx

¼ 1

kGqG

þ m

kLqL

ð14:4-9Þ

For extraction, the values of kG and kL are usually around 10�3 cm/sec, and the densities

of feed qG and extract qL are often around 1 g/cm3. Thus if we knowm, we can estimate

Ky, and hence make guesses on the stage volume required to give high Murphree effi-

ciencies.

Sometimes, however, the extractions in staged cascades are much less effective than

expected even when the mass transfer is fast. In other words, the Murphree efficiencies

are much less than one even when the quantity (KyaV/GA) is expected to bemuch greater

than one. Such poor performance is often due to backflow of either the raffinate or the

extract. Such backflow may occur because of entrained liquid. While the cause varies,

the effect is the same: a lower apparent stage efficiency. We explore these ideas in the

example that follows.

Example 14.4-1: Actinomycin extraction A clarified fermentation broth (G) containing

260 mg/l of actinomycin is to be extracted using butyl acetate (L). Because the beer’s pH

is 3.5, the equilibrium constant m is 0.018. You plan to set G at 450 l/hr and L at 37 l/hr.

You want to recover 99% of the antibiotic in the feed. (a) How many equilibrium stages

will you need to accomplish this separation? (b) How many will you need if the Mur-

phree efficiency is 60%?

Solution (a) The factor A can be calculated from the values given:

A ¼ L

mG
¼ 37 l=hr

0:018 450 l=hrð Þ ¼ 4:57

The number of stages is easily found from Eq. 14.4-6:

yNþ 1

y1
¼ 1� A

Nþ 1

1� A

" #

100 ¼ 1� 4:57
Nþ 1

1� 4:57

" #

Thus

N ¼ 2:9

We need about three ideal stages.
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(b) To find the result in terms of inefficient stages, we parallel Eqs. 14.4-1, 14.4-2, and

14.4-7 as follows:

Gðy2 � y1Þ ¼ Lx1

¼ Ly
�
1

m

¼ L

m
½ y2 þ

1

g
ðy1 � y2Þ�

Rearranging, we find

y2 ¼ 1þ 1

mG

L
þ 1

g
� 1

� �
2664

3775 y1

This is analogous to Eq. 14.4-3 but with the new factor shown in parentheses. Othermass

balances give similar results. Because

mG

L
þ 1

g
� 1

� ��1
¼ 0:018ð450Þ

37
þ 1

0:60
� 1

� ��1
¼ 1:13

we find from Eq. 14.4-6 that

N ¼ 21 stages

The separation which looked easy has become harder.

14.5 Leaching

We now turn from liquid–liquid extraction to solid–liquid extraction. In

more casual terms, we turn from extraction to leaching. As expected, we can use the

same ideas of differential and staged separations to handle this case as well. We begin

with target separations, we list separation equipment, and we then describe differen-

tial and staged leaching. The summary leads to the case of unsteady-state leaching,

a transitional case best handled by parallels with the analysis of adsorption in the next

chapter.

The target separations achieved by leaching usually involve feedstocks from nature.

Many of these feedstocks are agricultural products. Soybean oil, the main cooking oil in

North America, is obtained by leaching soybeans with hexane. Sugar is leached out of

beets or sugar cane with water. Caffeine is removed from coffee beans with methylene

chloride, ethyl acetate, or supercritical carbon dioxide. Less benignly, cocaine is recov-

ered from cocoa leaves with acetone.

The other major group of solutes recovered by leaching are minerals. Gold is recov-

ered from low-grade ores with aqueous sodium cyanide. Copper is recovered by leaching

the ore with acid and then extracting the dissolved copper with kerosene solutions of

oximes. Nickel can be leached with combinations of sulfuric acid and ammonia.
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Characteristic equipment for leaching is shown in Fig. 14.5-1. The soybean oil ex-

tractor shown places the flaked soybeans in a shallow layer on a conveyer belt, and

washes them with a solvent in cross flow. Sugar-beet extraction is similar; sliced beets

move countercurrently to water as the sugar is extracted.

Staged leaching is used in the washing of solids. The equipment used, called a ‘‘thick-

ener,’’ first suspends the solid in the solvent, and then allows the solid to settle out under

gravity. The resulting solid paste entrains a significant amount of liquid, which will

normally have the same concentration of the desired solute as the clear solution on

top of it. Thus in these stages, the entrained solution is what is really being washed;

the solid just goes along for the ride.

Differential Leaching

We can put these ideas on a more quantitative level by considering a differential

process shown in Figure 14.5-2(a). In this idealization, the dry solid feed enters with

a flux F but is contacted with solvent to produce a flux G and a solute concentration yl.

This wet feed is extracted with pure solvent entering at flux L, but leaving at a smaller

flux E.

We can use the description in Fig. 14.5-2(a) to estimate the size of the apparatus. The

simplest case occurs for a dilute solute, so that solid and solvent flows are constant within

the equipment. In this case, the size is estimated just as it would be for dilute adsorption:

l ¼ HTU½ � � NTUf g

¼ G

Kya

� �
� 1

1�mG

L

ln
yl � y

�
l

y0 � y
�
0

8><>:
9>=>; ð14:5-1Þ

where HTU andNTU are again the height and number of transfer units;G andL are the

solid and solvent fluxes; m is the slope of the equilibrium line; and the y0s are the

concentrations. Remember that this analysis presumes constant L and G within the

apparatus. Normally, the solid will retain some solvent, so G will be greater than the

dry feed F, and L will be greater than the extract removed E.

Solids

Solvent

Extract
Fig. 14.5-1. Soybean leaching. The beans, moving on a screen, are washed with fresh solvent

flowing in cross flow.

14.5 / Leaching 417



While the analysis of differential leaching is much like that of differential gas ab-

sorption or differential distillation, the definitions of the concentrations vary. The

concentration x in the solvent stream is easy enough: it is just the amount of solute

per amount of solvent. It may be expressed as a mole fraction, a mass fraction, or

a mass ratio. The concentration y in the feed is harder. When the solute is being

extracted from the solid itself, y will be expressed as amount of solute per amount of

solid. When the solute completely dissolves in the solvent to leave none in the solid,

then the concentration y will be expressed as solute per retained solvent, and the slope

of the equilibrium line will be one. We will return to this point below, in the discussion

of staged leaching.

Staged Leaching

The second case of leaching uses stages, that is, mixer-settlers or thickeners.

These are analyzed in a way similar to staged distillation, but without the complexities

introduced by a central feed, a reboiler, and a condenser. The basic scheme, shown in

Fig. 14.5-2(b), can use either countercurrent flow or cross flow. As expected, counter-

current flow gives a more efficient separation, but cross flow is simpler and is sometimes

used for expensive products. We will stress the countercurrent case here.

As before, our normal goal is to find the number of stages required for a given

separation. The most important special case of countercurrent leaching occurs when

all the solute quickly dissolves in the solvent. The spent solid itself then has no solute left

and is just moving through the process as an inert. In this case, the concentration in the

extracting solution leaving a particular stage equals the concentration in the solution

retained by the solid leaving that stage. The reason is that the concentrations are really in

the same solution; the only difference is that part of this solution has been trapped within

voids between solid particles. As a result,

L

G

L,x0

G,y0

E,xl

F,yl

(a)  Differential leaching

(b)  Staged leaching

L,x0

G,y1

2 1

E,xN

F,y
N + 1

N N – 1

L,xN – 1

G,yN

Fig. 14.5-2. Two idealizations of leaching. The flows of solids G and solvent L change because

some liquid is entrained by the solids.

yn ¼ xn
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i.e., the equilibrium line is the 45� diagonal. This part of the analysis of staged leaching

is easy.

The part of the analysis that is not easy centers on theNth stage. The reason is that the

feed normally enters dry but usually leaves containing solvent. As a result, the mass

balances on this nth stage must normally be made separately. Once these are complete,

the remaining number of stages may be calculated either from aMcCabe–Thiele analysis

or from one of the Kremser equations.

Unsteady Leaching

The third type of leaching is by far the simplest. In this type, we simply pour

a solvent on top of a packed bed of solids, and collect the solution, which trickles

through. The leaching of low-grade ores and coffee are two good examples. If we plot

the concentration of eluted solutes vs. time, we usually get a breakthrough followed by

an exhaustion, just as occurs in adsorption, detailed in the next chapter. This curve is

a function of the mass transfer, whose rate-controlling step may change as the solute in

the solid particles become depleted. This type of solid–liquid extraction is best analyzed

by extending the methods used for adsorption in the next chapter.

Example 14.5-1: Gold recovery from waste electronics We are trying to recover 99%

of the gold in a chipped solid, electronic waste which contains 80 ppm gold. We plan to

use a cyanide-containing acid solution as a solvent. This solvent, which initially contains

no gold, enters at 5 kg per kg of dry waste. While the waste enters dry, it leaves with 2 kg

of solvent for each kilogram of solid.

How many equilibrium stages would be required? Should we expect the stages to

approach equilibrium?

Solution Assuming a basis of 1 kg waste, we first make an overall balance on

the solvent

5 kg fed ¼ 2 kg entrained

kgwaste

� �
1 kgwasteþ E

E ¼ 3 kg extract

From the problem statement, we find the concentration in the raffinate y1:

0:01ð80 ppmÞ 1 kgwaste ¼ y1ð Þ 2 kg solvent
y1 ¼ 0:04 ppm

We can now find the solvent concentration xN leaving the feed stage

ð80 ppmÞ1 kg waste ¼ xN 3 kg solventð Þ þ 0:4 ppm 2kg solventð Þ
xN ¼ 25:4ppm

A balance on the gold in the feed stage gives xN�1

ð80 ppmÞ1kgwaste ¼ xN�1 5 kg solventð Þ
¼ 26:4 ppm 3kg extractð Þ þ 26:4 ppm 2kg entrained solventð Þ

xN�1 ¼ 10:4

14.5 / Leaching 419



Finally, we find the number of stages from Equation 13.2-13:

N� 1 ¼ ln
yN � yN�1
y1 � y0

� ��
ln

L

mG

� �

¼ ln
xN � xN�1
y1 � 0

� ��
ln

L

G

� �

¼ ln
26:4� 10:4

0:4� 0

� ��
ln

5

2

� �
¼ 4:0

We need a little more than five stages, including the feed stage. We can probably get

the stages to approach equilibrium if all the gold is on exposed surfaces within the

solid waste. If so, it will dissolve quickly. If not, this analysis may be seriously in

error.

14.6 Conclusions

The synopsis of extraction presented in this chapter is important for two

reasons. First, extraction is an important separation process in its own right. It is

used for petrochemicals, pharmaceuticals, and metals. Because it uses solvents which

are often environmentally threatening, it is under close scrutiny, especially for uncon-

fined applications existing in, for example, some mining operations. However, it will

probably remain central to many fine-chemical purifications, including those of anti-

biotics.

The second reason that extraction is important is intellectual, not practical. We

can analyze extraction in two different ways. First, we can treat extraction with an

analysis like that used for gas absorption in Chapter 10. This form of analysis, developed

for extraction in Section 14.3, is called differential contacting. Alternatively, we can

treat extraction with an analysis like that basic to staged distillation, as described in

Chapter 13. This form of analysis, given for extraction in Section 14.4, is called staged

contacting.

The analysis of extraction in these two different ways exemplifies the analysis of

almost any separation process. To be sure, one form of analysis may be strongly implied

by the physical situation. For example, if we had enthusiastically stirred mixer-settlers,

we would be sensibly inclined to analyze these as staged contacting. Frequently, the

choice is less obvious. For example, if we had a large number of inefficient mixer-settlers,

we might get a simpler correlation of data via the analysis of differential contacting.

Thus extraction is important not only for itself but as an illustration of these alternative

strategies.

Questions for Discussion

1. What is the difference between extraction and leaching?

2. What concentration variables are best for extraction?
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3. Differential extractors are much less common than staged extractors. Discuss

why.

4. Is a mixer-settler a differential or a staged contactor?

5. Is a Podbielniak extractor a differential or a staged contactor?

6. Is a coffee maker a differential or a staged contactor?

7. Howwill the analysis of extraction change if the operating and equilibrium lines

are parallel?

8. How will extraction vary with temperature?

9. Extraction is often accused of being environmentally abusive. Explain why.

10. What concentration variables are best for leaching?

11. The leaching of soybeans with hexane depends critically on finely flaking the

soybeans. Discuss why.

12. Leaching is uses acid as a leachant; less commonly, it uses base. Discuss why.

13. How would you analyze leaching from a large pile of low-grade ore sprayed

with acid?

Problems

1. You are planning to extract a mushroom flavor from the hexane solution made by
leaching beans. Your extraction solvent is a modified cyclodextrin solution in an
aqueous base. This has an extremely small partition coefficient m (= y/x), so that

at this pH, the adsorption is nearly irreversible.
Because of this, you plan to use a differential extractor 1.85 m tall. When the hexane

solution flows through at 0.16 m/s, you know from the model experiments that the

overall mass transfer coefficient KGa (based on the hexane feed) is 0.14 s�1. What
percent recovery of the flavor do you expect?

2. You want to extract 99% of a new anti-inflammatory drug from a dilute reaction
mixture. You will do this with mixer-settlers operated countercurrently, using pure

solvent feed. The equilibrium line is

y
�
n ¼ 0:2xn

(a) What is the minimum ratio for solvent flow to raffinate flow?
(b) If the solvent flow is twice the minimum, how many stages will you need?

3. You have a three-stage extractor with which you are isolating a therapeutic protein

with physical properties similar to myoglobin from 9400 l of clarified beer. The ex-
traction solvent is an organic solution of inverted micelles of Aerosol OT in dodeca-
nol, which at pH 6.2 has a partition coefficient given by

m ¼ y*

x
¼ 0:0056

How much solvent will you need to recover 95% of the protein?

4. You are extracting a highly dilute rare earth from aqueous solution with

mixed organic phosphates that enter free of rare earths. You can get a 63%
recovery in three stages. What percent recovery can you get in twice as many
stages?
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5. You have 30,000 l of a fermentation broth containing 66 mg/l of an enzyme used to

control biofilms in the paper industry. You plan to extract this enzyme with an iso-
osmotic polyethylene glycol solution which does not dissolve significantly in the
broth. The equilibrium for this extraction at the operating pH of 6.6 is

y ¼ 103x

where y and x are the concentrations in polyethylene glycol and beer,
respectively. You plan to extract 99% of this enzyme with staged cross flow (not

countercurrent) extraction. In such an extraction, you use pure, enzyme-free extrac-
tion in each stage. How much extractant should you use to achieve your goal in
four stages?

6. Sugar in beets containing 0.26 kg sugar/kg vegetable matter is leached using pressur-

ized vessels called ‘‘diffusers’’ operating about 75 �C. The extracting liquid is pure
water, fed at a rate of 2 kg water/kg vegetable matter. In one test, these diffusers are
operated countercurrently, yielding a waste stream containing 0.5 kg entrained water/

kg vegetable matter. The beets are fed without entrained water. How many stages are
needed to recover 99% of the sugar?

7. You are extracting two rare earths with the four-stage cascade shown in part (a) of the
figure below. For the first rare earth A,

y ¼ y
� ¼ 1:5x

For the second B,

y ¼ y
� ¼ 0:5x

The aqueous feed enters with equal concentrations of the rare earths, and the ratio
G/L is one. Each stage has a Murphree efficiency of 0.80. (a) What is the fraction

recovered of each rare earth? (b) What is the purity y4A/(y4A + y4B)? (c) To improve
this purity, you attach a second four-stage cascade as shown in part (b) of the figure
below. These stages have the same properties as the first four. What is the fraction

recovered now? (d) What is the purity now?

4 3 2 1

L,x4

G,y5

L,x0

G,y1

8

L,x8

G,y9=0

L,x0

2G,y1

7

(a)

(b)

6 5 4 3 2 1

G,yF
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CHAPTER 15

Adsorption

Adsorption is very different from absorption, distillation, and extraction. These

three processes, detailed in the five previous chapters, typically involve two fluids flowing

steadily in opposite directions. In absorption, a gas mixture flows upward through

a packed columnwhile an absorbing liquid trickles down. In distillation, a liquidmixture

is split into a more volatile liquid distillate and a less volatile bottoms stream. In extrac-

tion, two liquid streams move countercurrently to yield an extract and a raffinate. To be

sure, in some cases, the contacting may involve near-equilibrium states, and in other

cases it may be described with nonequilibrium ideas like mass transfer coefficients. Still,

all three units operations involve two fluids at steady state.

In contrast, adsorption is almost always an unsteady process involving a fluid and

a solid. The use of a solid is a major difference because solids are hard to move. They

abrade pipes and pumps; they break into fine particles which are hard to retain. As

a result, we usually pump the feed fluid through a stationary bed of solid particles to

effect a separation by adsorption.

Thus adsorption asks a different kind of question than the questions asked in ab-

sorption, distillation, or extraction. In absorption or differential distillation, the basic

question is how tall a tower is needed. This question is answered with a mass transfer

analysis, including an operating line and an equilibrium line. The mass transfer analysis

includes overall and individual coefficients summarized by dimensionless correlations.

In staged distillation or extraction, the basic question is how many stages are needed.

This question is resolved largely with operating and equilibrium lines, with the mass

transfer aspects conveniently compressed into an efficiency. In absorption, distillation,

and extraction, the analysis is sufficiently reliable to answer the questions without

experiment.

In adsorption, the analysis is less reliable and is rarely made without experiment. The

initial experiment, made on a small scale, leads to the basic question of adsorption: how

will a large bed behave? Answering this question commonly presumes a knowledge of

adsorbents and isotherms like that given in this chapter. In Section 15.1, we summarize

the systems where adsorption is often chosen for separation. In Section 15.2, we describe

the solid adsorbents themselves and how the amount they capture depends on concen-

tration. This relation between the amount adsorbed on the solid and the concentration

in the fluid is called an isotherm. In Section 15.3, we turn to the basic behavior of

adsorption, which is usually summarized as a plot of solute concentration eluted from

the bed as a function of time. This plot is called a breakthrough curve, implying that

solute has forced its way past an adsorption zone. Section 15.4 describes how break-

through curves are affected by mass transfer, and Section 15.5 concludes the chapter

with more complex cases. The entire chapter is thus an easy introduction to this different

separation process.
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15.1 Where Adsorption is Important

Adsorption is important because it can be effective in dilute solution. Many

other separations are not. The ability to treat dilute solutions easily is uncommon and is

what makes adsorption especially valuable. To illustrate this, consider the costs of the

enormous variety of solutes shown in Fig. 15.1-1. The prices of these solutes shown on

the abcissca vary by over 10 orders of magnitude, from about $0.01/kg to

$1,000,000,000/kg. These prices are strikingly well correlated with the feed concentra-

tions of the various products, shown on the ordinate. The correlation between feed

concentration and price is almost perfectly inverse, i.e., the feed concentration varies

with the product price to the (�1.0) power. Therefore, separation processes which can

concentrate valuable products from dilute solutions will have special value.

Adsorption is often the best choice for separation from a dilute solution. Not sur-

prisingly, it is expensive because the free-energy changes from dilute to concentrated

solution are larger than those involved in most distillations or absorptions. This higher

price is often felt to be justified in the relatively simple process. Adsorption can be used to

separate more concentrated mixtures as well, as suggested by Table 15.1-1. These pro-

cesses have considerable value. However, many highly valuable adsorption-based sep-

arations are used for the expensive compounds in Fig. 15.1-1, and these are harder to list

in a table. These are where new interest in adsorption will lie. It is for these expensive

compounds that we will need the analysis given in the remainder of this chapter.
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Fig. 15.1-1. Feed concentration vs. price of final product. Concentration and price are inversely

related over almost twelve orders of magnitude.

15.1 / Where Adsorption is Important 425



Adsorption uses a bed of porous solid particles. The particles’ pores are small, giving

a surface area of several hundred square meters per gram. When a solution of liquid or

gas flows through the bed, solutes are adsorbed from the solution onto the surface of the

particles.

Many learning about this topic want to knowmore details about why solutes bond to

adsorbents. To be sure, solutes bond because the free energy of the adsorbed species is

lower than that in solution, but this truth supplies little physical insight. To get such

insight, we can imagine five types of bonds in adsorption. First, adsorption can occur

because of van derWaals bonds in a spectrum of hydrophobic–hydrophillic interactions.

In simpler words, greasy solutes stick to greasy surfaces, and hydrophilic solutes adsorb

on more polar, hydrated surfaces. Second, ions will often adsorb on fixed ion-exchange

sites of opposite charge. Examples are Ca2+ adsorbing onto sulfonated polystyrene, and

Cl� adsorbing onto resins containing cross-linked tetraalkylammonium groups. Third,

adsorption can involve the formation of strong covalent bonds between the solute and

sites on the adsorbents’ surfaces. These bonds will require large changes of temperature

or pH to desorb the solute and hence regenerate the ion exchanger.

In addition to these three simple forms of adsorption, two other types of bonds are

important but harder to explain. In some cases, adsorption depends on solute shape. One

good example is adsorption of antibiotics on custom-synthesized ion-exchange resins.

There, successful separation can involve solute adsorption on several adjacent, non-ionic

sites. Such multiple site adsorption tends to reflect the solute’s molecular shape and,

hence, is of special value for expensive solutes.

Finally, some adsorption depends on rates of uptake, rather than only on the equi-

librium amount adsorbed. One dramatic example is the adsorption of oxygen and ni-

trogen on zeolites. If the adsorption is run slowly using zeolite NaLiX, then nitrogen is

adsorbedmore than oxygen, and the separation is controlled by equilibrium. In contrast,

if the adsorption is run quickly using zeolite A, then oxygen is adsorbed more rapidly

than nitrogen, and the separation is controlled by kinetics. This enormous variety in

Table 15.1-1 Typical large scale adsorption processes

Separation Typical adsorbent

1. Liquid purifications
Color (e.g., in sugars) Carbons
Antibiotics Ion exchangers
Water softening Ion exchangers

2. Gas Purification
Water removal (drying) Silica, alumina
Solvent stripping Activated carbons
Odor removal Activated carbons
SO2 capture Zeolites

3. Gas bulk separations
Air Zeolites
Hydrocarbon isomers Zeolites
Water–ethanol Zeolites

Note: By ‘‘purification,’’ we imply that only small solute concentrations are removed. By ‘‘bulk

separations,’’ we imply high solute concentrations.
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what is adsorbed and under what conditions is why we will treat adsorption phenome-

nologically, starting with experimental data taken at small scales and then trying to

design separations for much larger scales.

15.2 Adsorbents and Adsorption Isotherms

Molecules adsorb on virtually all surfaces. The amount they adsorb is roughly

proportional to the amount of the surface. As a result, commercial adsorbents are highly

porous, with surface areas typically of several hundred square meters per gram. Some

specialized adsorbents have surface areas as high as 3000 m2/g.

In discussing these highly porous materials, we have two goals. First, we must

describe what the materials actually are. Though there are a very wide variety of adsorb-

ents, this description must be brief to be within the scope of the book. Second, we are

interested in the isotherm, in how the amount adsorbed varies with the concentration in

solution. Both adsorbents and isotherms are discussed in the following paragraphs.

15.2.1 Adsorbents

Adsorbents are conveniently divided into three classes: carbons, inorganic

materials, and synthetic polymers. The carbons have nonpolar surfaces that are used

to adsorb nonpolar molecules, especially hydrocarbons. They are manufactured from

both organic and inorganic sources, including coal, petroleum coke, wood, and coconut

shells. Decolorizing carbons tend to be based on a mixture of sawdust and pumice.

Carbons used for gas adsorption can be made from vegetable sources like coconut shells

and fruit pits. Activated carbons, which use manufacturing conditions to control pore

size more exactly, can be used to recover solvent vapors, to filter gases, and to purify

water. Overall, carbons are a broad and important class of adsorbents.

Inorganic materials vary widely. Activated alumina, which has a polar surface, is used

largely as a dessicant. It is also used for laboratory-scale chromatography. Silica gel,

consisting of amorphous silicon dioxide, is also used as a dessicant. Clays are used as

inexpensive adsorbents; for some petroleum-based applications, they have in the past

been used once and discarded. Fuller’s earth is used to purify oils, an echo of its original

purpose to adsorb lanolin from fleece.

The most important class of inorganic adsorbents is the zeolites, a subclass of mo-

lecular sieves. These are crystalline aluminosilicates with specific pore sizes located

within small crystals. Two common classes have simple cubic crystals (type A) or

body-centered cubic crystals (type X). Sometimes, the type is assigned a number equal

to a nominal pore size in the crystals. For example, zeolite 5A with a nominal 5 Å pore

size is used to separate normal from branched paraffins.

Adsorbents based on synthetic polymers also vary widely. Ion-exchange polymers

with a fixed negative charge are most commonly made by treating styrene–divinylben-

zene copolymers with sulfuric acid. These polymers, as well as acrylic ester polymers, are

used for water treatment. Polymers with a fixed positive charge are frequently based on

alkylammonium groups. In either case, the adsorbing polymers tend to capture poly-

valent ions in preference to monovalent ones. They are also surprisingly useful for
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adsorbing hydrophobic materials, including highly valued solutes like drugs and

pigments.

15.2.2 Isotherms

The isotherms for these various materials are shown schematically in Fig. 15.2-1.

Any isotherm with a downward curvature is referred to as favorable, and any isotherm

with an upward curvature is referred to as unfavorable. These terms imply that adsorp-

tion will frequently be used to capture small amounts of solutes from dilute solutions. A

highly favorable isotherm will be especially effective in dilute solutions, whereas a highly

unfavorable isotherm will be particularly ineffective under those conditions. While these

terms are useful, one must remember that an isotherm that is strongly favorable for

adsorption will be strongly unfavorable when it is time to elute the adsorbed species.

Such elution is necessary if the adsorbent is to be reused.

Three commonly cited isotherms are the linear, Langmuir, and Freundlich types.

Each merits discussion. The simple linear isotherm assumes:

q ¼ Ky ð15:2-1Þ

where q is the concentration in the adsorbent and y is the concentration in the solution. As

in other separation processes, the units of these concentrations are tricky. The solution

concentration y is most commonly given as moles of solute per volume of solution. The

concentration on the adsorbent q is commonly in units of moles of solute per dry mass of

adsorbent. Thus the equilibrium constant K will often have units of a reciprocal density.

There is one important case of the linear isotherm which merits more discussion. This

is ion exchange, when one ion of a given charge is exchanged for a second ion, usually of

a different charge. To discuss this case, we will focus on the exchange of Ca2+ for Na+

bound to a cation exchanger made of cross-linked, sulfonated polystyrene. This partic-

ular exchange is the key to water softening.

To begin our discussion, we consider the ionic concentrations in aqueous solution

near the surface of the exchanger. These are shown schematically in Fig. 15.2-2. The

sodium ion concentration is elevated near the exchanger surface; and the chloride con-

centration is reduced. Far from the surface, the concentrations of Na+ and Cl– are equal.
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Fig. 15.2-1. Typical schematic isotherms. While the Freundlich isotherm often gives the best fit

of data, the linear isotherm is assumed in most simple theories.
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The sodium concentrations near to and far from the surface area are in equilibrium, so if

sodium is species ‘‘1,’’

l1 bulkð Þ ¼ l1 surfaceð Þ
l0
1 þ kBT ln c1 bulkð Þ ¼ l0

1 þ kBT ln c1 surfaceð Þ þ z1/e
ð15:2-2Þ

where kB is Boltzmann’s constant, c1 is the Na+ ion concentration, z1 is the ionic charge,

/ is the surface potential, and e is the electronic charge. Rearranging this,

c1 surfaceð Þ
c1 bulkð Þ ¼ e

�z1/e = kBT ð15:2-3Þ

The electronic charge is 1.6 � 10�19J/V; u is typically around –0.1 V for an anionic

exchanger; and the temperature is normally about 298 K. Thus

c1 surfaceð Þ
c1 bulkð Þ ¼ e

4z1 ð15:2-4Þ

This implies the values shown in Table 15.2-1. This is why an anionic exchanger loaded

with Na+ will adsorb Ca2+ and release Na+, even when the calcium is dilute.

We now return from this special case of the linear isotherm to the common, favorable

Langmuir isotherm. The Langmuir isotherm has a clear theoretical basis. This isotherm

assumes that the limited number of sites on the adsorbent are subject to a mass balance

total
sites

� �
¼ filled

sites

� �
þ empty

sites

� �
ð15:2-5Þ

Moreover, these sites are assumed to be subject to a chemical equilibrium

bulk
solute

� �
þ empty

site

� �
#

filled
site

� �
ð15:2-6Þ

or in more quantitative terms

filled
site

� �
¼ K

0 empty
site

� �
bulk
solute

� �
ð15:2-7Þ

+

+

+

+

+

+

+

+
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Fig. 15.2-2. Ionic concentrations near the surface of an ion-exchange resin. For the negatively

charged surface shown, the cation concentration is elevated, and the anion concentration is

depressed.
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where K# is the equilibrium constant for the chemical equilibrium. Combining these

relations, we find

filled
site

� �
¼

K 9
total
sites

� �
bulk
solute

� �
1þ K 9

bulk
solute

� � ð15:2-8Þ

This is more easily written in terms of the concentrations defined earlier

q ¼ q0y

Kþ y
ð15:2-9Þ

In this equation q0 is the total concentration of sites and K is the reciprocal of the

equilibrium constant K#. Note that Eq. 15.2-9 implies that the reciprocal of q should

vary linearly with the reciprocal of y. The intercept on this plot is q�10 ; the slope on the

plot is (K/q0). We can use such a plot to test whether an adsorbent exhibits a Langmuir

isotherm.

The third of the common isotherms, called the Freundlich isotherm, is given by

q ¼ Ky
n ð15:2-10Þ

where bothK and n are empirical constants. In cases where the isotherm is favorable, n is

less than one. This isotherm suggests that a plot of q versus y should be linear on log–log

coordinates. This is the most successful common isotherm, even though its theoretical

base is vague. How this isotherm compares with others is shown in the example that

follows.

Example 15.2-1: Selective copper adsorption Cross-linked copolymers of allylacetyla-

cetone and hydroxyethylmethylacrylate (HEMA) selectively bind Cu(II) preferentially

over other cations such as Mg(II) and Ni(II). This mechanism differs from normal ion

exchange, which is almost completely based on charge. Equilibrium data are shown

below.

Which isotherm best fits these data?

Table 15.2-1 Characteristic concentrations for water softening

Salt Bulk concentration Surface concentration

10�3 M NaCl 10�3 M Na+ 55 � 10�3 M Na+

10�3 M Cl� 0.018 � 10�3 M Cl�

10�3 M CaCl2 10�3 M Ca2+

2 � 10�3 M Cl�
2980 � 10�3 M Ca2+

0.034 � 1�3 M Cl�

Note: These imply a negatively charged sulfonated polystyrene–divinylbenzene copolymer, the

most common case.
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Solution Plots testing the linear, Langmuir, and Freundlich isotherms are

given in Fig. 15.2-3. The linear isotherm is a flop, fitting only data in very dilute solution.

The Langmuir isotherm seems somewhat better, at least for concentrated solutions. The

Freundlich isotherm works best.

15.3 Breakthrough Curves

Adsorption is normally carried out in a packed bed. A fluid solution is forced

into one end of the bed; solute is adsorbed out of the solution within the bed, and an

eluent with very little solute flows out of the other end of the bed. Adsorption in

a packed bed normally gives a much better separation than adsorption in a stirred

tank. Adsorption in a packed bed is like differential distillation, and adsorption in
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Fig. 15.2-3. Copper ion adsorption on poly(allylacetylacetone-co-hydroxyethylmethylacrylate).

The Freundlich isotherm gives the best description.

[Cu(II)] in solution (M) [Cu(II)] in polymer (M)

9.03 � 10�6 6.13 � 10�3
1.90 � 10�5 6.76 � 10�3
3.91 � 10�5 8.72 � 10�3
5.00 � 10�4 1.92 � 10�2
1.00 � 10�3 2.11 � 10�2
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a stirred tank is like flash distillation. Differential distillation normally gives better

separation than flash distillation.

We can illustrate the major gain from adsorption in a packed bed from the following

idealized example. Imagine that we have 30 l of a solution containing 10–4 g/l gentamicin,

an antibiotic used to treat eye infections. We want to recover 99% of this material using

a custom ion-exchange resin for which the isotherm is

q ¼ 20 l

g

� �
y ð15:3-1Þ

where q and y are the concentrations in the exchanger and solution, respectively. We

want to know howmuch of the expensive exchanger we will need if we run the adsorption

in a stirred tank or in a packed bed.

For stirred-tank adsorption, we know that for 99% recovery, only 1% of the antibi-

otic is left in solution, i.e., y is 10–6 g/l. From the isotherm, the concentration in the

adsorbent q is 20 � 10�4 g/g.We can find the weight of adsorbentW from amass balance:

(Total antibiotic) ¼ (antibiotic in solution) + (antibiotic in adsorbent)

30 l
10
�4
g

l

 !
¼ 30 l 10

�6 g

l

� �
þW 20 � 10�6 g

g

� �
W ¼ 150 g

ð15:3-2Þ

We need about 0.15 kg adsorbent.

For packed-bed adsorption, we need to make an additional assumption. We expect

that we will feed solution to the packed bed and collect an effluent from it. We assume

that there is no solute in this effluent until the bed is completely saturated. Thus, the

concentration in solution within the bed is the feed concentration 10–4 g/l, and that in the

adsorbent is 20 � 10–4 g/g.We expect that the amount of solution in the packed bedwill be

small, close to zero. A mass balance now gives

(Total antibiotic) ¼ (antibiotic in effluent) + (antibiotic in adsorbent)

30 l
10
�4
g

l

 !
¼ 30 l 0

g

l

� �
þW 20 � 10�4 g

l

� �
W ¼ 1:5 g

ð15:3-3Þ

Using a packed bed may mean using one hundred times less of the expensive adsorbent.

This is normally a major saving.

However, the advantages of a packed bed rest squarely on our additional assumption, that

no solute comes out until the bed is saturated. We need to examine this assumption carefully

in two steps. In the first step in the next few paragraphs, we look at the accuracy of this

assumption in terms of the concentration of the effluent vs. time, called a ‘‘breakthrough

curve.’’ Later, in the second step of our examination, we quantify the approximation in terms

of a new idea, an ‘‘unused bed length.’’ These two steps are basic to our analysis of adsorption.

15.3.1 Ideal vs. Actual Breakthrough Curves

We start our analysis of packed bed adsorption by imagining a plot of effluent

concentration vs. time. If adsorption were completely efficient, the effluent concentration
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would be zero for a long time. Then at some breakthrough time tB, the concentration

would suddenly jump to the value in the feed. At this point, the bed would be completely

saturated, and adsorbent throughout the bed would be in equilibrium with solution which

has the feed’s concentration.

In this ideal, completely efficient limit, the breakthrough curve would behave like the

step function shown schematically in Fig. 15.3-1(a). This step function at the end of the

column implies the concentration profiles shown within the column. Each of these is also

a step function: at small times, the concentration drops to zero near the column’s entry;

at larger times, the step function pushes its way through the column. Note that the rate at

which the bed gets saturated is usually much slower than the rate that the feed solution is

flowing through the bed.

Of course, real breakthrough curves are not completely efficient and don’t have the

shape of step functions. The effluent concentration still stays zero for a while, then

becomes significant at some time tB, and finally reaches the feed concentration at some

longer ‘‘exhaustion time’’ tE. An example is shown in Fig. 15.3-1(b). In a few cases, the

real breakthrough curve will be close to a step; but in many more cases, it will be much

more gradual, so tE may be 30 to 100% bigger than tB. Often, the breakthrough will

initially be fast and then increase more slowly.

A real breakthrough curve implies a history of concentration profiles like those shown

in the figure. As expected, when solution is first fed, it is like a step function, but this

rapidly becomes a dispersed ramp. However, stunningly, the amount the ramp disperses

may not continue to get worse as it proceeds down the bed. To be sure, the ramp is not

perfectly sharp, but it doesn’t get worse either. It is self-sharpening. We will discuss why

this happens later in this section.

Position
0

y

(a)  An ideal concentration
profile like this:

Time

Time
0

y

gives a breakthrough curve
like this:

tB

Position
0

y

(b) An actual concentration
profile like this:

Time

Time
0

y

gives a breakthrough
curve like this:

tB

tE

Fig. 15.3-1. Breakthrough curves. The concentration profile within the bed, suggested at the left

of these figures, leads to the concentrations eluted that are shown on the right of these figures. The

sudden step in (a) is less common than the gentle rise in (b).
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Before doing this, we should point out that plotting breakthrough curves as eluent

concentration vs. time is the norm only in some branches of engineering. In many areas

of science, breakthrough curves are plotted as eluent concentration vs. number of bed

volumes. This number is simply the volumetric flow rate times the time divided by the

volume of the adsorbent bed itself. This method is especially useful in analytical chro-

matography, where the adsorbent particle size and volumetric flow are restricted to

a narrow range. It is less useful for scale-up of adsorption.

Example 15.3-1: Alternative plots of breakthrough curves You are planning a series of test

experiments using a new adsorbent. You hope to use this adsorbent at a commercial scale,

and so plan to let many process variables vary widely. In particular, you plan to determine

breakthrough curves at the manufacturer’s recommended velocity and at twice this veloc-

ity. (a) If the breakthrough curves at different velocities are ideal, without dispersion, what

will they look like when plotted vs. time? (b)What will they look like plotted vs. number of

bed volumes? (c) How will they change if the breakthrough curves do show dispersion?

Solution The results are shown in Fig. 15.3-2. If there is no dispersion, dou-

bling the velocity means that the breakthrough occurs at half the time. Plotting vs. number

of bed volumes will superimpose these curves. However, if dispersion is significant, the

breakthrough will often be velocity dependent, and superposition will not occur.

15.3.2 Why Breakthrough Curves Disperse

In practice, the sharp breakthrough curves shown in Fig. 15.3-2 are not a goal

but a dream. They will sometimes be approached under laboratory conditions, but they

will be rare in commercial operations. In most cases, breakthrough will be much more

gradual and will often tail off, only slowly creeping up to the feed concentration.

There are four important phenomena which are responsible for the extent of disper-

sion. Each merits discussion:

(a) Axial diffusion. Most obviously, solute flowing into an adsorbent bed will diffuse

in the direction of flow. After all, it is being fed at high concentration into a bed which is

originally solute free. It will diffuse down its concentration gradient. However, while this

is true, the dispersion from axial diffusion which results is rarely significant, especially at

an industrial scale.

(a) Ideal vs. time

y/
y 0

1

0
tB

at 2v

at v

Time

tB
2

(b) Ideal vs. bed volumes

1

0

at 2 v

at v

Bed volumes

y/
y 0

y/
y 0

1

0

at 2 v

at v

Bed volumes0

(c) Real vs. bed volumes

Fig. 15.3-2. Simplifying breakthrough curves. If bed behavior is nearly ideal, curves can be

simplified by plotting vs. bed volumes, rather than vs. time. This is less effective for non ideal

breakthrough curves.
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(b) Dispersion. This can occur for two reasons. Clearly, it can result from a carelessly

packed bed, one with large voids or an uneven distribution of solids.While these packing

problems weremajor in the past, modern adsorbents are of nearly equal particle size, and

effective packing procedures are well known.

Dispersion can also result from the Taylor–Aris mechanism discussed in detail in

Section 4.4. This important mechanism involves a coupling between axial flow, which

broadens the front, and radial diffusion, which tends to sharpen it. This effect is a major

reason why breakthrough curves blur.

(c) Adsorption kinetics. If the rate of adsorption is slow, the breakthrough curve will

spread. This is occasionally due to slow chemical kinetics between the adsorbing solute

and the adsorbent’s sites. It is more often caused by slow mass transfer, i.e., by the long

time that it takes for the solute to diffuse through the pores to the sites. This effect is

sometimes important, especially for large adsorbent particles.

(d) The isotherms themselves. This important factor is surprising. Linear and un-

favorable isotherms blur the breakthrough curves; but favorable isotherms tend to make

breakthrough sharper. Because most isotherms are favorable, this is a very important

and positive effect. Indeed, most breakthroughs are a balance beween the sharpening

caused by the favorable isotherm and the blurring caused by dispersion.

We need to consider why a favorable isotherm tends to correct all of the problems

caused by axial diffusion, Taylor–Aris dispersion, and slow mass transfer into the

adsorbent particles. To see why this occurs, imagine a concentrated solution flowing

through a bed of solute-free adsorbent. The solution flowing very near to the adsorbent

particles’ surface is adsorbed, but that flowing far from this surface is swept ahead. This

blurs the front. In other words, flow near the wall is slow; flow far from the wall is faster;

thus the front spreads.

If the isotherm is linear or unfavorable, this front spreads more and more as the flow

continues through the bed. However, if the isotherm is favorable, the solute swept ahead

to fresh adsorbent is especially avidly adsorbed. The solute left behind is in contact with

nearly saturated adsorbent and so is not retarded that much. For a favorable isotherm,

the front doesn’t spread. This difference, illustrated schematically in Fig. 15.3-3, is a key

to designing adsorption columns, the topic of the next paragraphs.

Position z
0

y/
y 0

y/
y 0

(a)  Linear isotherm

Time

Position z
0

(b)  Favorable isotherm

Time

Fig. 15.3-3. Dispersion for two types of isotherms. Breakthrough curves for favorable isotherms

are self-sharpening, and so don’t disperse more in longer beds (i.e., larger z).
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15.3.3 Designing Adsorption Columns

The design of adsorption columns uses a breakthrough curve measured at small

scale to estimate performance at a large scale. The experiment is essential because the

effects of the isotherm and the dispersion cannot normally be predicted. In this regard,

adsorption is less well understood than staged distillation or dilute absorption. For

staged distillation, the key information is thermodynamic, summarized as a y–x dia-

gram. For simple absorption, the information is both thermodynamic (a Henry’s

law coefficient) and kinetic (a mass transfer correlation), but the dilute analysis

leads to simple, reliable answers. Adsorption is more complex and requires that first

experiment.

The result of the first experiment is a breakthrough curve, a plot of concentration

vs. time like that shown in Fig. 15.3-4. We can learn a lot about the adsorption from

the shape of this curve. The total amount fed to the bed from time zero to time t is of

course

total fed ¼
ðt
0

Qy0 dt ¼ Qy0t ð15:3-1Þ

where Q is the volumetric flow rate. The total adsorbed when the bed is completely

saturated is the amount fed minus the amount that escapes:

total
adsorbed

at saturation

24 35 ¼ ð‘

0

Q y0 � yð Þ dt ð15:3-2Þ

This integral corresponds to the horizontally shaded region in the figure. The total

adsorbed until the breakthrough time is

total adsorbed
at breakthrough

� �
¼
ðtB
0

Q y0 � yð Þ dt ð15:3-3Þ

y/
y 0

Time, t

tB

tE

Fig. 15.3-4. Analyzing breakthrough curves. The horizontally shaded region is proportional to

the bed’s capacity. The vertically shaded region measures the amount adsorbed at breakthrough.
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This corresponds to the vertically shaded part of the figure. Thus the fraction h of the bed
saturated at tB is

h ¼ vertically shaded area

horizontally shaded area
ð15:3-4Þ

These equations are approximate because they do not consider in detail the concentra-

tion of the solution between the adsorbent particles. Because the adsorbent normally has

much more solute than the solution – that is why it is a good adsorbent – this approx-

imation is minor.

The fraction saturated h is easily calculated from numerical integration of the break-

through curve. In practice, some adsorbent manufacturers suggest an easier short cut. They

assume that the breakthrough curve is a ramp, starting at a breakthrough time tB and ending

at an exhaustion time tE. Then the amount adsorbed at breakthrough in Eq. 15.3-3 is

total adsorbed
at breakthrough

� �
¼ Qy0 tB ð15:3-5Þ

This approximates the vertically shaded part of Fig. 15.3-4 as a rectangle. The amount

adsorbed at exhaustion is

total adsorbed
at exhaustion

� �
¼ Qy0 tB þ

1

2
Qy0 tE � tBð Þ ð15:3-6Þ

This approximates the horizontally shaded region as the rectangle plus a triangle. Thus

the fraction of the bed saturated is

h ¼ tB

tB þ 1
2 tE � tBð Þ ¼

2tB
tB þ tE

ð15:3-7Þ

When the breakthrough is reasonably sharp, this manufacturer-endorsed relation is

surprisingly accurate.

At this point, the analysis of adsorption takes a wonderful, intuitive leap. We assume

that we can approximate the concentration in the column at two zones, a large saturated

zone, and a smaller ‘‘unused’’ zone.We then assert that when the column gets longer, the

size of the saturated zone will change, but the size of the unused zone will not. In the

terms commonly used, the ‘‘ length of the unused bed’’ is constant.

The basis of this intuitive assertion is the shape of the concentration profiles in Fig.

15.3-3. On the left-hand side of this figure, the results for a linear isotherm show that

dispersion grows with time as the solute moves down the bed. On the right-hand side, the

results for a favorable isotherm show that the dispersion stays the same as the adsorption

continues. This favorable isotherm is self-sharpening, with the effects of dispersion and

adsorption in balance. Thus the length of unused bed l# is a constant, found easily from

the fraction of bed saturated, h

l# ¼ l 1 � hð Þ ð15:3-8Þ

where l is the actual length of the bed. Indeed, l# is the main information we get from our

basic experiment. If we made a second experiment with a longer bed, we would expect

a new h but the same l#.
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We use this idea as the basis for the design of adsorption colums, as illustrated in the

following examples. The examples suggest that long beds are better than short beds.

After all, in a short bed we do not use that part of the bed summarized as the length of

unused bed. In a long bed, we waste about the same unused bed length, but this is

a smaller percentage of the total bed length. Thus, in a longer bed the percentage of

the bed used will be larger. Moreover, for a given amount of adsorption, a long bed will

have a smaller diameter and hence be easier to feed.

In practice, long beds are not always better because greater length means greater

pressure drop. When adsorbent particles are large, this greater pressure drop is easily

tolerated, but adsorbent particles are often made small (< 300 lm) to minimize disper-

sion. In addition, adsorbent particles are sometimes not rigid but deform at higher

pressures. In particular, doubling the pressure may not double the flow but still sharply

increase the dispersion. Still, the basic conclusion suggested above is often correct: long

adsorbent beds are better than short ones.

Example 15.3-2: Selective ferric adsorption A packed bed of ion exchanger is selective

for ferric ion over nickel ion. In the separation of these two species, the nickel breaks

through at 1.5 min and the ferric ion at 23 min. The ferric ion exhausts the bed at 33 min.

If the bed is 120 cm long, what length is unused?

Solution From Eq. 15.3-7,

h ¼ 2 tB
tB þ tE

¼ 2ð23Þ
23 þ 33

¼ 0:8

Thus from Eq. 15.3-8

l# ¼ l 1 � hð Þ ¼ 120 cm 1 � 0:8ð Þ ¼ 24 cm

The length of unused bed should be constant, even with a longer bed. Such simple

characterization is common.

Example 15.3-3: Cesium adsorption Tests of a new selective ion exchanger for cesium

adsorption use a bed 12 cm long with a 1 cm2 cross-section. These tests show a break-

through time of 10 min and an exhaustion time of 14 min. We hope to scale up this

process 10,000 times. (a) How much adsorbent is needed if the bed is kept 12 cm deep?

(b) How much is needed if the bed is 10 m long?

Solution We begin by calculating the length of the unused bed from our tests.

From Eq. 15.3-7, we see that the fraction of the bed saturated h is

h ¼ 2 10 minð Þ
10 min þ 14 min

¼ 5

6

The length of the unused bed is found from Eq. 15.3-8

l# ¼ l 1 � hð Þ ¼ 12 cm 1 � 5

6

� �
¼ 2 cm
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We can now estimate the amount of adsorbent for the two cases. (a) For the 12 cm

‘‘pancake’’ bed, the amount of the bed which is used is still 10 cm. The volume of adsor-

bent used is thus 10,000 times that used in one test. Thus the total volume needed is

V ¼ 10; 000 ð1 cm2Þ ð10þ 2Þ cm ¼ 0:12m
3

This implies a bed about 357 cm in diameter. The pressure drop in the bed is unchanged.

(b) For a bed 10m long, the length of unused bed is still 2 cm, so the fraction of bed which

is used is 0.998. The volume of adsorbent used is still 10,000 times the 10 cm3 in our test,

or 0.1 m3. Since the length of bed used is 9.98 m, we can find the bed diameter d

9:98 m
p
4
d
2

� �
¼ 0:1m

3
d ¼ 11:3 cm

The total amount of adsorbent needed will be

V ¼ 0:1 m
3 10 m

9:98 m

� �
¼ 0:1002m

3

By building the longer bed, we need about 20% less adsorbent. We also have a narrower

bed which will be much easier to feed. However, to sustain the same bed velocity, we will

need a pressure drop which is about 100 times larger.

15.4 Mass Transfer Effects

We now turn to estimating the effects of mass transfer on the breakthrough

curves. These effects are complicated because of the unsteady-state process and the

nonlinear isotherms. This means that the analysis is more elaborate than for the sepa-

ration processes discussed in earlier chapters. Because of this complexity, we consider

only one approximate analysis: we assume that the adsorption is irreversible. While the

analysis is not especially valuable quantitatively, it does let us estimate how the quality of

the separation will change with variables like solution flow and adsorbent particle size.

To begin this analysis, we consider not the breakthrough curve but the concentration

profiles inferred within the adsorbent bed. These profiles, sketched in Fig. 15.4-1, can be

idealized as three zones. First, the bed takes some time to reach saturation at all. Second, at

larger times, the bed contains a growing region where the adsorbent is saturated. The

Adsorption
zone

z

y

lsat l

(a) Actual profile

0
0

Saturation
zone

z

y

lsat z = l

(b) Idealized profile

0
0

yB

Fig. 15.4-1. A model for irreversible adsorption. The actual concentration profile is approxi-

mated by the two zones shown. The third zone, related to the time to reach saturation, is

relatively short, and so is not shown. The concentration yB is that at breakthrough.
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saturation zone normally growsmuchmore slowly than solution is flowing through the bed.

Finally, at the leading edge of this saturation zone, the adsorption has not yet approached

saturation. It is in this adsorption zone where mass transfer and dispersion are important.

We can estimate each of these three zones. First, the time tsat to saturate even the

entrance of the bed can be found from a mass balance:

amount adsorbed

mass adsorbent

� �
mass adsorbent

volume bed

� �
volume bed½ �

¼ flux½ � area

volume

h i
volume bed½ � tsat½ �

q0 q 1 � eð Þ½ � ¼ k y � 0ð Þ a tsat

tsat ¼
q0 q 1 � eð Þ

k a y0

ð15:4-1Þ

where q0 is the solute concentration in the saturated adsorbent; q is the adsorbent

density; e is the bed’s volume fraction; k is the solute’s mass transfer coefficient; a is

the adsorbent’s area per volume; and y0 is the feed concentation. This equation makes

sense: for example, if the saturation concentration q0 is small or if the mass transfer

coefficient k is large, then tsat should be small.

Estimating the velocity of the saturation zone vsat is also based on a mass balance

(amount solute fed) ¼ (amount adsorbed)

y0v (cross-sectional area) (t – tsat) ¼ q0 q(1 � e) vsat(cross-sectional area) (t � tsat)

vsat ¼ v
y0

q0 q 1 � eð Þ

� �
ð15:4-2Þ

As mentioned above, the saturation velocity vsat is often much less than the feed velocity

v because y0 is much less than q0. Equation 15.4-2 also lets us estimate how far the

saturation zone extends:

lsat ¼ vsat t � tsatð Þ ð15:4-3Þ

where lsat is the length of the saturation zone. When lsat reaches the end of the column,

the column is exhausted.

Finally, we turn to the trickiest part of this estimate, the calculation of the adsorption

zone. The calculation is tricky because of the implications of the assumptions made in

the calculation, not because of themathematics.We begin with amass balance on a small

volume within the adsorption zone:

(accumulation) ¼ (flow in) – (flow out) – (amount adsorbed)

e
qy
qt
¼ � v

qy
qz
� ka y � y

�ð Þ ð15:4-4Þ

We now assume that the accumulation in solution is small relative to the amount of

adsorption so that the left-hand side of this equation is zero. This assumption will be

good for most favorable adsorbents, which do try dramatically to concentrate the solute

(i.e., q0q >> y0). We also assume that adsorption is irreversible, so the concentration at
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equilibrium y* is zero. This assumption means that our predicted breakthrough curve

will fit the data only near the breakthrough time. Finally, we assume that Eq. 15.4-4 is

subject to the constraint that

z ¼ lsat y ¼ y0 ð15:4-5Þ

This implies that the adsorption zone is moving much more slowly than the fluid is

flowing.

With these assumptions, the concentration in the adsorption zone is easily calculated

y

y0
¼ e

�
ka

v
z � lsatð Þ

ð15:4-6Þ

If desired, we can now combine this relation with Eq. 15.4-1 to 15.4-2 to find our estimate

of the concentration profile in the bed. This estimate says that the profile will rise

exponentially with time until it reaches y0. This is a significant approximation, as Fig.

15.4-1 shows.

However, the real point of Eq. 15.4-6 is not its accuracy but what it says about the

adsorption zone. It says that the key to this zone is a quantity (v/ka), which is a close

parallel to the length of unused bed l and to the height of transfer unit (HTU) used for

differential adsorption and distillation:

v

ka
_¼ l# _¼ HTU ð15:4-7Þ

Like the HTU, the quantity (v/ka) is a measure of the efficiency of the adsorption. A

small value of (v/ka) indicates an efficient adsorption, and a large value signals an

inefficient one.

We then must consider how (v/ka) or l# will vary with process conditions. This

depends most directly on the mechanism responsible for k. In deriving Eq. 15.4-6,

we implied that k was a mass transfer coefficient, but we now should realize that

it depends on all factors which change the shape of the breakthrough curve. As we

discussed in Section 15.3, these factors include mass transfer to and within the

adsorbent particles and dispersion in the bed itself. As the particle size increases,

the mass transfer coefficient decreases and the dispersion increases, so the adsorption

zone gets longer. As the velocity increases, the mass tranfer coefficient may go up a little,

but the time for adsorption goes down, so the adsorption zone gets longer. As the velocity

increases, the dispersion increases, so the adsorption zone gets longer. These factors,

explored in the examples which follow, are discussed in more detail in the next section.

Example 15.4-1: Odor removal We have been removing odor from aMinnesota resort’s

water supply using a bed of activated carbon. The bed’s breakthrough is in 38 days, and

its exhaustion is in 46 days. Because of seasonal demand, we want to double the water

flow through the bed. We suspect that the mass transfer coefficient will be constant. If it

is, when will breakthrough occur now?

Solution To estimate the breakthrough, we will combine the concept of l# and
(v/ka) summarized by Eq. 15.4-7. From Eq. 15.3-7,
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h ¼ 2 38ð Þ
38 þ 46

¼ 0:90

From Equation 15.3-8,

l#

l
¼ 0:10

When the velocity is doubled, we expect from Equation 15.4-7,

l#

l
¼ 0:20 ¼ 2 tB

tB þ tE

The capacity of the bed is unchanged by the higher flow:

y0 Q 38 þ 1

2
46 � 38ð Þ

� �
¼ y0 2Qð Þ tB þ

1

2
tE � tBð Þ

� �
Solving these two equations, we find

tB ¼ 4:2 days

Note that this is less than the 21 days expected from the increased flow without the

increased l# caused by altered dispersion.

Example 15.4-2: Steroid recovery We have made a significant amount of chemically

modified steroid for use as a topical anti-inflammatory like hydrocortizone, which is used

for reducing allergic reactions such as that to poison ivy.Whenwemeasure the adsorption

of this hormone,we obtain the data shown inFig. 15.4-2(a). These data are for a superficial

velocity of 1 cm/min through a packed bed of 310 lm spheres with a void fraction of 0.4.

The saturation concentration per volume q0q is 300 times the feed concentration y0. (a)

Are these data consistent with the model for irreversible adsorption? (b) What is the rate

constant ka? (c) Is this rate constant consistent with literature estimates?

Solution (a) The irreversible model, given by Eqs. 15.4-1 to 15.4-3 and 15.4-6,

predicts that the logarithmof concentration should vary linearlywith time.AsFig. 15.4-2(b)

shows, it does, supporting the irreversible model. Note that it does so only at small times,

and that only half the data in Fig. 15.4-2(a) fit this irreversible limit. Still, for a valuable

Time, hr

a) Breakthrough curve

0
0

2 4 6 8

1
y B

/y
0

Time, hr

b) Test of model
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 y

B
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0

Fig. 15.4-2. Steroid adsorption vs. time. This breakthrough curve is the basis of Example 15.4-2.
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product like this, we will probably stop the adsorption at a short time when the irre-

versible limit still works.

(b) The data in Fig. 15.4-2(b) follow the relation

ln
yB
y0
¼ �6:72þ 0:93

hr

� �
t

From the time dependence of the breakthrough curve

0:93

hr
¼ ka

v
lsatð Þ ¼ ka y0

q0qð1� eÞ

¼ ka

300 ð1� 0:4Þ
ka ¼ 0:047 sec

�1

(c) We compare this with values from an earlier correlation in Table 8.3-2:

kd

D
¼ 1:17

dv

�

� �0:58
�

D

� �0:33
We estimate the diffusion coefficient D to be 5 � 10–6 cm2/sec; we assume the kinematic

viscosity � is 0.01cm2/sec. Using these values,

kð310:10�4 cmÞ
5:10

�6
cm

2
= sec

¼ 1:17
310:10

�4
cm

1 cm

60 sec
0:01 cm

2
= sec

0B@
1CA
0:58

0:01 cm
2
=sec

5:10
�6

cm
2
= sec

 !0:33

k ¼ 4:1 � 10�4cm= sec

The particle area per bed volume is

a ¼ pd2

4

3
p

d

2

� �3

26664
37775ð1� eÞ ¼ 6

d
ð1� eÞ ¼ 6ð1� 0:4Þ

310:10
�4
cm
¼ 116 cm

2

cm
3

Thus

ka ¼ 0:048 sec
�1

This value is almost identical to that found for that data in Fig. 15.4-2, analysed in part

(b), suggesting that the adsorption is controlled by mass transfer from the bulk solution

to the surface of the particles.

15.5 Other Characteristics of Adsorption

The earlier material in this chapter reviews the standard topics that are covered

in adsorption: isotherms, the length of unused bed, and the effects of mass transfer. In
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this section, we want to cover three additional topics. First, we will discuss the more

general behavior of an adsorption column including not only mass transfer but also

dispersion and nonlinear isotherms. Each of these can contribute to the spread of the

breakthrough curves. Second, we will discuss elution chromatography, a technique com-

mon in chemistry but uncommon in engineering. Elution chromatography is like ad-

sorption but with a different initial condition. Finally, we will qualitatively discuss

pressure swing adsorption, a technique for gas separation which was slow to develop

but has become common; and simulated moving beds, a method for drug purification

that has developed because of the ease of electronic control.

15.5.1 General Behavior

We first explore how we might obtain better approximations to the break-

through curve than those possible with the analysis in earlier sections. Such a general

analysis depends upon the equation

e
qy
qt
¼ �v qy

qz
� kaðy� y�Þ þ ðDþ EÞ q

2
y

qz2
ð15:5-1Þ

As in Eq. 15.4-4, the left-hand side of this relation represents the accumulation of the

solute within the solution in a differential column volume. The first term on the right-

hand side represents solute convection in minus out and is also common with the earlier

analysis. The second term on this side represents material lost from the solution into the

adsorbent. The overall mass transfer coefficient k may include not only diffusion from

the bulk solution to the adsorbent but both diffusion and reaction within the adsorbent.

The surface area per volume a usually is taken to represent external adsorbent area per

volume of bed; however, if the mass transfer is dominated by reaction within the particle,

this area can be more conveniently defined as the actual surface area of the microporous

adsorbent per volume of bed. The concentration y* is as usual that concentration that

would exist in the liquid if it were at equilibrium with the solid. It is this concentration

that includes the nonlinear isotherms.

The third term on the right-hand side is new. It describes axial diffusion and dispersion in

the columnduring the adsorption.Radial dispersion also occurs, but this radial dispersion is

presumed to be so great that the concentration across the bed’s radius is about constant. The

dispersion coefficient E that appears in this term has the same dimensions as the diffusion

coefficientD, that is, length squared per time. It is a strong function of the physical processes

in the bed, with only a weak dependence on any solute chemistry. It can be estimated using

the techniques summarized in Chapter 4. We will return to this estimation later.

The solution to Eq. 15.5-1 is, in general, complicated. It can be approximated by

a breakthrough curve of the form

y� y

y0 � y
¼ erf

t� �tffiffiffi
2
p

r
ð15:5-2Þ

where t is the time, �t is the time required to elute the average concentration �y, and r is the

standard deviation, the square root of the variance r2. Both �t and r merit discussion.
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The time �t necessary to elute the average concentration is most easily found from

a mass balance by assuming the breakthrough curve is a step function

total amount
fed into bed

� �
¼ amount left in

saturated bed

� �
y0Av�t ¼ ½ey0 þ ð1� eÞq0�Al ð15:5-3Þ

where l is the length andA is the cross-sectional area of the bed. Thus the average time �t is
given by

�t ¼ l
e
v
þ q0q 1� eð Þ

y0v

� �
ð15:5-4Þ

The first term within brackets is the reciprocal of the actual velocity in the bed, not the

superficial velocity. The second term in the brackets is the reciprocal of the velocity of the

saturation zone given in Eq. 15.4-2.

The standard deviation r gives the spread of the breakthrough curve. If it equals

zero, a step function into the column will be eluted as a step function out of the column.

If r is large, then the breakthrough out of the bed will be gradual and the adsorbent in

the bed will not be efficiently used. The physical significance of r is most easily seen if we

rewrite this quantity as a dispersion coefficient, like those developed in Chapter 4. In

particular, we can rewrite the concentration profile in terms of position, rather than

time

y � �y

y0 � �y
¼ erf

z � �zffiffiffiffiffiffiffiffiffi
4E �t
p ð15:5-5Þ

By comparing this with Equation 15.5-2, we see thatffiffiffi
2
p

vr ¼
ffiffiffiffiffiffiffiffiffi
4E �t
p

ð15:5-6Þ

as v ¼ z/�t.
We will find it easiest to frame our remaining discussion in terms of the dispersion

coefficient E. Like the standard deviation, the dispersion coefficient describes the spread

of the breakthrough curve. If it is zero, the breakthrough is a step function; if it is large,

the breakthrough is gradual.

The dispersion coefficient has three physical causes in adsorption: axial diffusion,

adsorption kinetics, and Taylor–Aris dispersion:

E ¼ Ediffusion þ Ekinetics þ ETaylorAris ð15:5-7Þ

The contribution from axial diffusion is most straightforward

Ediffusion ¼ eD 1 þ k
0	 


ð15:5-8Þ

where

k
0 ¼ q0q 1 � eð Þ

y0e
ð15:5-9Þ
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where k# is called the ‘‘capacity factor,’’ that is, the capacity for the solute in the solid per

bed volume divided by the capacity for the solute in the solution, also per bed volume.

In physical terms, the quantity eD is just the effective axial diffusion coefficient in the

adsorbent bed. This contribution to dispersion is normally minor.

The contribution to dispersion from kinetics can be shown to be

Ekinetics ¼
v
2

e2 ka

k
0

1 þ k
0

� �
ð15:5-10Þ

Remember that the mass transfer coefficient k will include both diffusion to and into

the particle, and any chemical reaction within the particle. Often, kwill depend inversely

on the particle diameter d; the adsorbent area per bed volume a also depends inversely

on d; so the dispersion caused by kinetics often depends on the square of the particle

size. Big particles mean big dispersion and, hence, gradual breakthrough.

The final source of dispersion, that associated with Taylor and Aris, is often the

largest. In the early days of adsorption, dispersion often occurred because of unevenly

packed adsorbent beds, but this cause has largely been minimized by careful packing.

Now, the dispersion comes from the coupling of axial flow and radial diffusion detailed

in Section 4.3. The result is

ETaylor�Aris ¼
d
2
v
2

192 e2D

1 þ 6k
0 þ 11 k

0� �2� �
1 þ k

0 ð15:5-11Þ

Note how dispersion varies inversely with the diffusion coefficientD, which is exactly the

opposite of the axial diffusion mechanism given in Eq. 15.5-8. Big particles and big flows

cause more dispersion. All these mechanisms in Eq. 15.5-7 tend to spread out the con-

centration front; only the favorable isotherm works against this trend. This balance

between dispersion and self-sharpening is why the length of unused bed is constant as

long as the flow and particle size are fixed.

15.5.2 Chromatography

We now turn to chromatography, where we must first define the process

involved. The definitions for this process differ in engineering and in chemistry. In

engineering, the common process is the adsorption just described. In this process, the

feed concentration is a step function and the concentrated feed is continued until break-

through. In engineering, the uncommon process, called chromatography, uses a pulse of

feed with several solutes. This pulse is then washed through the column with additional

solvent to effect a separation.

In chemistry, both these processes are called chromatography. The process that uses

a step function in the feed is referred to as frontal chromatography. In chemistry, frontal

chromatography is relatively uncommon. The more common chemical process, which

uses a pulse of feed solution, is called elution chromatography. Unfortunately, the word

chromatography is sometimes used without distinguishing between these two processes

so that one must read the details of the experiments to discover which case is involved.
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The analysis of elution chromatography is a close parallel to that for adsorption.

The best theoretical development, due to Golay, assumes the process takes place not

in a packed bed but in a thin cylindrical tube with adsorbent-coated walls. Solvent

moves steadily in laminar flow through the tube. At time zero a pulse of solutes is

injected at one end of the tube. Each solute elutes with a concentration profile given by

Eq. 4.4-31

c1 ¼
M=Affiffiffiffiffiffiffiffiffiffiffiffi
4pE �t
p e

�
z � v�tð Þ2

4E �t ð15:5-12Þ

where M is the amount of solute injected, A is the cross-section of the tube, and �t is the
time where the maximum concentration exits, given by Eq. 4.4-32.

Because the solutes are dilute, the concentration profile for a second solute would

have the same mathematical form as the first, although values like k# and D would of

course be different. Now, for two solutes, we seek peaks which are not broadly spread

but eluted separately. This is the goal of this process.

Sharp peaks in chromatography, like sharp breakthrough curves in adsorption,

depend on the dispersion coefficient E, given in Eq. 4.4-34.

E ¼ D 1 þ k
0� �
þ d2v2

3D
0

k
0

1 þ k
0

� �
þ d

2
v
2

192D

1 þ 6k
0 þ 11 k

0� �2
1 þ k

0

 !
ð15:5-13Þ

whereD0 is the diffusion coefficient in the adsorbent. This equation is a complete analogue

to Eqs. 15.5-8, 15.5-10, and 15.5-11: the three terms on the right-hand side correspond to

dispersion from axial diffusion, from mass transfer, and from Taylor–Aris dispersion.

The results of elution chromatography are frequently described in terms of ideas

similar to those used for absorption and distillation. The numbers of theoretical plates

N, a rough parallel to the number of transfer units (NTU), can be defined by

N ¼ NTU ¼ l
2

4E �t
¼ lv

4E 1 þ k
0� � ð15:5-14Þ

Thus a very sharp peak, that is, a small amount of dispersion, implies a large number of

theoretical plates. Values of several million plates are not uncommon in analytical

systems. This plate number is used to define the height of an equivalent theoretical plate

(HETP), a parallel to the height of a transfer unit:

HETP ¼ HTU ¼ l

NTU
ð15:5-15Þ

This term is used to define a reduced plate height h defined as

h ¼ HETP=d ð15:5-16Þ

Note that the characteristic length for the reduced plate height is the tube diameter d.

Finally, this reduced plate height is frequently written in terms of a reduced velocity,
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which is another name for a Péclet number. To calculate this height, we combine Eqs.

15.5-13 and 15.5-16 to obtain

h ¼ O
dv

D

� �
þO

0 D

dv

� �
ð15:5-17Þ

The result of this type of analysis is commonly given by a plot like that in Fig. 15.5-1. The

minimum in this plot represents the smallest reduced plate height and hence the largest

number of theoretical plates. Alternatively, one could say it represents the smallest

amount of dispersion and the sharpest peaks. This minimum is the goal of elution

chromatography, though not necessarily of adsorption.

15.5.3 Other Adsorption Processes

Two other separations that are based on adsorption merit mention even though

their details are beyond the scope of this book. In each case, the processes’ efficiencies are

compromised by mass transfer effects like those that compromise conventional adsorp-

tion and chromatography.

These two processes are the simulated moving bed and pressure swing adsorption.

The simulated moving bed uses the same packed bed as conventional adsorption,

but changes the feed point. This altered feed point means that the stationary

adsorbent has a concentration profile more like that which would exist if the feed

point were fixed and the adsorbent were moving. The results approximate those that

would be possible with countercurrently moving adsorbent but without the curse

of particle attrition. This process, developed especially by the American chemical com-

pany UOP, is used for the separation of liquid n-paraffins from branched paraffins. It

is also used to separate xylene, cymene, and cresol isomers, and aqueous solutions of

racemates.
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Fig. 15.5-1. Plate height versus velocity in cylindrical capillaries. The increased height at low

flow is due to axial diffusion; that at high flow results from Taylor–Aris dispersion. The lowest

line is for capillaries of exactly the same diameter, and the upper lines are for polydisperse

diameters given as the ratio of the standard deviation of the diameter divided by the diameter

itself. (Schisla et al., 1993).
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The second process, pressure swing adsorption or PSA, is used as an alternative to

cryogenic distillation for separating gases. Its original form, which is still in use, is the

basis of several similar processes. It offers exceptionally high purity because of a large

number of equivalent stages.

One typical process, shown in Fig. 15.5-2, has four steps. In the first step, the bed

is pressurized with the feed gas mixture. At the beginning of the second step, a valve at

the exit end of the bed is opened to allow a continuous flow of feed and product at

the elevated pressure. This product is enriched in the weakly adsorbing species. The

third and fourth steps constitute the regeneration of the adsorbent bed. During

the third ‘‘blowdown’’ step, the bed is countercurrently depressurized to release the

adsorbed species. During the fourth step, a low-pressure gas dilute in the adsorbed

component is fed countercurrently to the feed direction in order to purge the adsorbed

species from the bed. The blowdown and purge steps, run countercurrently to the

feed, move the concentration front of the adsorbed species away from the product

end of the bed. After the fourth step, the column is repressurized and the cycle begins

again. Although this particular example contains a single bed, the original Skarstrom

process consists of two beds operated at one-half cycle apart. This two-bed process

enables a portion of the product gas from one bed to serve as the purge gas for the

second bed.

In the original form of the process, pressure swing adsorption was run slowly, near

equilibrium. The concentrations obtained were then less a function of mass transfer and

hence largely independent of diffusion. More recently, pressure swing adsorption beds

have operated much more rapidly. For example, in Skarstrom’s original work, the cycle

time for the beds was around 20 minutes; in more recents efforts, the cycle time can be 10

seconds. With these rapidly cycled beds, the separation depends not only on differences

in adsorption but also on differences in mass transfer. The extensions of this rapid

process, beautifully detailed by Yang, are beyond the scope of this chapter. I did want

to mention the process because I believe it is still emerging.
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Fig. 15.5-2. Pressure swing adsorption. This process, an effective way to separate gases without

cryogenic distillation, involves the four steps shown and described in the text.
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15.6 Conclusions

Adsorption is a different separation process from absorption, distillation, and

extraction discussed in earlier chapters. Adsorption takes place at unsteady state with

nonlinear isotherms. Because of these complexities, adsorption depends more on experi-

ments than other separations. For the common case of a favorable isotherm, these

experiments are used to determine the ‘‘length of unused bed,’’ a measure of the sepa-

ration’s efficiency. This length is independent of the total bed length and so serves as the

basis of adsorption scale-up.

The length of unused bed results from the combined effects of the isotherm and of

dispersion.A favorable isotherm tends to sharpen the concentration profile in the bed, and

dispersion tends to blur it. The dispersion comes from axial diffusion, mass transfer into

the adsorbent, and coupled axial convection and radial diffusion (Taylor–Aris dispersion).

Understanding these effects is the key to improving the efficiency of adsorption.

Questions for Discussion

1. What is the difference between an isotherm and an equilibrium line?

2. What is a good adsorbent for removing water vapor? What is a good one for

removing color?

3. What are typical units for q and y?

4. How can you tell if your equilibrium data fit a Langmuir isotherm?

5. How can you tell if they fit a Freundlich isotherm?

6. Why is packed-bed adsorption usually superior to stirred-tank adsorption?

7. Whenwould packed-bed adsorption be less effective than stirred-tank adsorption?

8. What is the length of unused bed? Why is it often constant with increasing bed

length?

9. When will the length of unused bed increase with increasing bed length?

10. Would you ever deliberately use an unfavorable isotherm?

11. If you double the flow rate, what will happen to the breakthrough curve?

12. If you double the adsorbent particle size, what will happen to the breakthrough

curve?

13. Why are moving beds of adsorbents used rarely?

14. Explain PSA to someone not trained in engineering or science.

15. Compare separations by means of adsorption and extraction.

Problems

1. A modified dextran will adsorb up to 8 � 10�8 mol of immunoglobulin G per cm3

dextran. The adsorption follows a Langmuir isotherm with a constant K equal to
2 3 10�8 mol/l. How much dextran do you need to adsorb 90% of the protein in
1.2 l of solution initially containing 4 � 10�6 mol/l?

2. You need to adsorb phenol in 5300 kg of an unexpected waste stream, reducing the

concentration to meet the environmental standard of 10 ppm (i.e., 10 � 10�6 kg/kg).
You plan to use an activated carbon for which

q ¼ 0:53 y
0:23
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where y is in kg phenol/kg solution and q is in kg phenol/kg carbon. (a) If the feed

concentration is 730 ppm, how much carbon do you need if you carry out this con-
tacting in a well-stirred tank? (b) How much carbon will you need if you use a packed
bed but get no dispersion? (In other words, the breakthrough curve is a step function.)

3. Data for drying nitrogen with molecular sieve type 4A are given below:

The nitrogen feed is 12.0 kg mol/hr m2; the bed density is 0.66 g/cm3; its length is 4.2

cm. Calculate the saturation capacity from the breakthrough curve, and determine the
fraction of unused bed based on a breakthrough concentration y/y0 of 0.05.

4. You want to adsorb a brown color from a toner solution by letting the solution flow
through a bed of activated carbon. In tests on a 32 cm bed of 1 cm2 cross-section, you

find that color breakthrough occurs after a volume of 140 cm3, and that the bed is
exhausted after 280 cm3. The breakthrough curve is about linear. You can keep the
same flow in the bed up to a bed length of 175 cm, but you want 1000 times greater

capacity. (a) What is the percent saturation of the test bed? (b) What is its unused
length? (c) What should be the diameter of the new bigger bed? (d) What volume of
adsorbent should you buy?

5. Youwant to scale up an adsorption which, in a lab column 1 cm in diameter and 20 cm

long, showed a breakthrough at 40 min and exhaustion at 52 min. Other experiments
suggest that the unused bed length is about equal to an HTU, and you expect mass
transfer coefficients in this bed to vary with the square root of the flow. In your new

column, you must have 10,000 times greater capacity and a bed 130 cm long (to
minimize pressure drop). You plan to increase the flow 17 times. What should the
bed diameter be?

6. You are carrying out the separation of a pharmacologically active polypeptide by

adsorption from dilute aqueous solution on beads of a cross-linked dextran gel. The
gel beads, which have a diameter around 620 lm,work well in the lab. Using a pressure
drop of 80 kPa, you find with a cylindrical column of 1.0 cm diameter and 20 cm length

that you have an unused bed length of 8 cm and can process 600 cm3 in 2 hr. You now
want to filter 2000 l of the same concentration of peptide solution in 7 hr. The obvious
solution is to increase the bed length and run at larger pressure drop, expecting that the

unused bed length will stay the same. This is especially attractive because the cross-
linked dextran beads are expensive, so you don’t want to use more than you must.
However, when you call the dextran gel supplier, she says that while the unused bed

length should remain constant, the gel is compressible, so that the specific cake re-
sistance is given by

a ¼ a0 Dp0:43

where Dp is in kPa. She suggests that the pressure drop should always be below 1000
kPa/m bed. What length and diameter should you use for this bed?

t, hr 15 15.4 15.6 16
c, ppm <1 6 30 140
t, hr 16.4 16.6 16.8 17 17.2 18 24
c, ppm 430 610 800 990 1100 1400 1500
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7. Your company has recently developed a microorganism which produces large

amounts of an enzyme for oxidizing phenolics. Such an enzyme can be used in
a fixed-bed reactor to improve the taste of drinking water. For such a use, it must
be unusually pure. To isolate the enzyme, you plan to adsorb it on a custom-synthe-
sized ion-exchange resin. The isotherm of the resin is such that, at a liquid velocity of

10 cm/hr, you get no solute out of the bed for 3 hr and the feed concentration at 4 hr.
The outlet concentration between these limits is nearly linear. Everything’s great. Then
because of unexpected demand, you are asked to double the velocity yet lose only 10%

of the feed. Your experiments show that the slope of the linear region of a plot of exit
concentration versus time varies inversely with velocity. How long should you run the
bed? Answer: 2.5 hr.

8. You have isolated a protein to be used as a vaccine by absorption from a buffer on

a packed bed of a custom-synthesized ion-exchange resin. The resin consists of 0.011
cm spheres, with a void fraction of 0.37. It is packed in a 100 cm column, 83 cm in
diameter, fed at a velocity of 0.052 cm/sec. Under these conditions, the protein is

adsorbed with a mass transfer coefficient of 6 3 10�6 cm/sec and an adsorption
equilibrium constant of 27. After this bed is completely loaded, you plan to elute it
with a more acidic buffer. This new buffer has an adsorption constant of 0.22, but all

other conditions are unchanged. How long must you elute until the concentration is
10% of the maximum? Answer: 40 min.
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PART IV

Diffusion Coupled With Other Processes





CHAPTER 16

General Questions and Heterogeneous

Chemical Reactions

In the previous chapters, we have discussed how diffusion involves physical

factors. We calculated the gas diffusion through a polymer film, or sized a packed

absorption column, or found how diffusion coefficients were related to mass transfer

coefficients. In every case, we were concerned with physical factors like the film’s thick-

ness, the area per volume of the column’s packing, or the fluid flow in the mass transfer.

We were rarely concerned with chemical change, except when this change reached equi-

librium, as in solvation.

In this chapter, we begin to focus on chemical changes and their interaction with

diffusion. We are particularly interested in cases in which diffusion and chemical

reaction occur at roughly the same speed. When diffusion is much faster than chemical

reaction, then only chemical factors influence the reaction rate; these cases are detailed in

books on chemical kinetics. When diffusion is not much faster than reaction, then

diffusion and kinetics interact to produce very different effects.

The interaction between diffusion and reaction can be a large, dramatic effect. It is the

reason for stratified charge in automobile engines, where imperfect mixing in the com-

bustion chamber can reduce pollution. It is the reason for the size of a human sperm. It

can reduce the size needed for an absorption tower by 100 times. The interaction between

diffusion and reaction can even produce diffusion across membranes from a region of

low concentration into a region of high concentration.

In this and the following chapters, we explore interactions between diffusion and

chemical reaction. For heterogeneous reactions, we shall find that diffusion and reaction

occur by steps in series, steps that can produce results much like mass transfer across

an interface. For homogeneous reactions, we shall find that diffusion and reaction

occur by steps partially in parallel, steps that are different than processes considered

before. In both cases, we shall find that non-first-order stoichiometries lead to unusual

results.

We begin with two surprisingly subtle questions. First, in Section 16.1, we discuss

whether a chemical reaction is heterogeneous or homogeneous. The answer turns out to

be a question of judgement; we must decide which aspects of the chemistry to ignore and

choose the type of description leading to the simplest result. This choice leads in Section

16.2 to the concept of a diffusion-controlled reaction, an idea with as many manifesta-

tions as Vishnu. After these general questions, we turn to a more explicit discussion of

heterogeneous reactions. In Section 16.3, we calculate simplest results for first-order

heterogeneous reactions. We extend these results to reactions producing ash in Section

16.4, and to different stoichiometries in Section 16.5. The results supply a synopsis of the

heterogeneous results.
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16.1 Is the Reaction Heterogeneous or Homogeneous?

We first want to discuss the difference between heterogeneous and homoge-

neous reactions. On first inspection, this difference seems obvious. Heterogeneous reac-

tions must involve two different phases, with the chemical reactions occurring at the

interface. Homogeneous reactions take place in a single phase, and the reaction occurs

throughout.

In practice, this distinction is less obvious. As an example, imagine a spherical coal

particle burning in a fluidized bed. All the reaction initially takes place on the sphere’s

surface. This initial reaction is best modeled as heterogeneous. If it were first-order in, for

example, oxygen, then the rate equation might be

combustion rate
per particle

area

0@ 1A ¼ j1
oxygen concentration

at the surface

� �
ð16:1-1Þ

in which j1 is the heterogeneous rate constant. If the oxygen concentration is in moles

per volume, the constant j1 has dimensions of length per time, the same dimensions as

the mass transfer coefficient.

However, as the combustion proceeds, the particle may become porous, and the

chemical reaction may occur not only at the surface but on all pore walls throughout

the particle. In some cases, the pore area may far exceed the particle’s superficial surface

area. The combustion is now occurring throughout the particle as if the reaction were

homogeneous; its rate is best modeled as

combustion rate

per particle

volume

0B@
1CA ¼ j1

oxygen concentration

per volume

� �
ð16:1-2Þ

The oxygen concentration can be defined either per pore volume or per particle volume.

In either case, the homogeneous rate constant has units of reciprocal time. Such con-

stants are fixtures of elementary chemistry textbooks.

Thus combustion of the coal particle can be modeled as heterogeneous or homoge-

neous, depending on how the coal is burning. The choice of a model for the reaction is

usually subjective, but rarely explicitly stated in the research literature. Instead, it must

be inferred. The key for inference is the continuity equation. If this equation has the

form

qc1
qt
¼ D=

2
c1 � = � c1v0 ð16:1-3Þ

then any reactions appear in the boundary conditions. Such reactions are being modeled

as heterogeneous. If the continuity equation is

qc1
qt
¼ D=

2
c1 � = � c1v0 þ r1 ð16:1-4Þ

the reactions r1 can occur in every differential volume in this system. Such a reaction is

being modeled as homogeneous.
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In your own work, you must use your judgement about which model is most appro-

priate. This judgement can be tested with the following spectrum of examples:

(1) Particles of low-grade lead sulfide are roasted to produce a porous lead oxide

ash. At the center of the ore particles is a core of unreacted sulfide. The oxygen

permeability in this core is much less than in the ash. Thus this reaction is best

modeled as heterogeneous, occurring at the interface between ore and ash.

(2) Traces of ammonia are scrubbed out of air with water. The reaction to produce

ammonium hydroxide will take place within the liquid phase, and the reaction is

best modeled as homogeneous.

(3) Aspirin dissolves in chyme. The aspirin hydrates at the solid surfaces and then

diffuses away into the solution. This case is best treated as a heterogeneous

hydration followed by diffusion.

(4) Ethane is dehydrogenated on a single platinum crystal. The reaction, which

takes place on the crystal’s surface, is best modeled as heterogeneous.

(5) Ethane is dehydrogenated on a porous platinum catalyst. Here, the ethane can

diffuse through the catalyst pores at a rate similar to diffusion in the surround-

ing gas. The reaction takes place on pore walls within the catalyst pellet. This

reaction is usually treated as homogeneous, even though the chemistry is similar

to the previous example.

(6) Sulfur oxides are scrubbed out of stack gas with an aqueous lime slurry. Here,

sulfur oxides and dissolved lime both will have about the same diffusion coef-

ficients in the water. Lime is not very soluble, so its concentration is low. You

need to know more chemistry before you can guess where the reaction takes

place, and whether it is best modeled as heterogeneous or homogeneous.

We discuss models of heterogeneous reactions in this chapter and models of homoge-

neous reactions in the next chapter. This artificial division finesses the embarrassing

question of which model we should use. This is usually not a major problem. We shall

find that the choice between heterogeneous and homogeneous models is often obvious,

one that we shall make almost automatically.

16.2 What is a Diffusion-Controlled Reaction?

Throughout science and engineering we find references to diffusion-controlled

mass transfer and diffusion-controlled chemical reaction. Those using these terms often

have very specific cases in mind or are not aware of how broadly and loosely these terms

are used. In this short section, we want to describe the cases to which these terms most

commonly refer. Each of these cases will be analyzed in detail later.

A diffusion-controlled process always involves various sequential steps. For example,

the dehydrogenation of ethane on a single platinum crystal involves the diffusion of the

ethane to the solid followed by the reaction on the solid surface. The reaction between

protons and hydroxyl ions in water first has these species diffusing together, and then

reacting.

Reactions like these are said to be diffusion-controlled when the diffusion steps take

much longer than the reaction steps. Four cases inwhich this is true are shown inFig. 16.2-1.

For the heterogeneous reaction in Fig. 16.2-1(a) reagent diffuses to the surface; the
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reagent quickly reacts to form product, and the product diffuses away (Aris, 1975). The

overall rate is determined by the diffusion steps weighted by the equilibrium constant of

the surface reaction. Cases like these, exemplified by ethane dehydrogenation on a single

catalyst crystal, are the subject of the later sections of this chapter.

A second, very different type of diffusion-controlled reaction occurs in the case of

a porous catalyst, shown schematically in Fig. 16.2-1(b). Here, the reagent must diffuse

into the pores to reach catalytically active sites, where it reacts quickly. The overall rate

of reaction depends on this diffusion. This case, central not only to catalysis but also to

many scrubbing and extraction systems, is a subject of the next chapter.

Both these processes can be diffusion controlled, but the ways in which the control

is exerted are very different. One way to see this difference is to examine electrical

analogues of the two processes. For the heterogeneous reaction, this analogue is just

the three resistors in series, shown at the top of Fig. 16.2-2. For the porous catalyst,

the analogue is the much more elaborate arrangement shown at the bottom of Fig.

16.2-2. Unlike the single-crystal case, this combination is not simply a sequence of

diffusion and reaction steps in series. It has some characteristics of diffusion and

reaction steps in series. It has some characteristics of diffusion and reaction in parallel.

In my own lectures, I have sometimes urged students to think in these helpful but

inexact terms.

In each of these cases, the reactions are said to be diffusion-controlled if the resistance

to diffusion is much greater than the resistance to reaction. However, these cases will

clearly lead to very different combinations of these resistances.

(a)

Reagent
diffusion

Product diffusion

Fast reaction

(b)

(c) (d)

Product
diffusion

Reagent
diffusion

Fast reaction
in pore

Fast
reaction

Fast reaction

Slow
complex
diffusion

Fig. 16.2-1. Four types of diffusion-controlled reactions. In (a), a reagent slowly diffuses

to a solid surface and quickly reacts there; this case occurs frequently in electrochemistry.

In (b), a reagent slowly diffuses into the pores of a catalyst pellet, quickly reacting all along

the way; this reaction is modeled as if it were homogeneous. In (c), a circular solute quickly

reacts with a mobile carrier, thus facilitating the solute’s diffusion across the membrane.

In (d), two solutes rapidly react by diffusing together after a perturbation caused by fast

reaction methods.
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In addition to these two cases, other very different situations can also be diffusion-

controlled. Two more examples are the case of facilitated diffusion across membranes

and that of reactions controlled by Brownian motion. In the facilitated-diffusion case,

shown schematically in Fig. 16.2-1(c), one solute quickly reacts with a second carrier

solute to form a complex; this complex then diffuses across the membrane. The overall

transport rate is governed by complex diffusion weighted by the equilibrium constant for

complex formation. This case is discussed in Section 18.5.

Still another diffusion-controlled process is called in chemistry a diffusion-controlled

reaction, although it is very different from the other cases. In this case, shown schemat-

ically in Fig. 16.2-1(d), the system is an initially homogeneous mixture of two types of

molecules. These species react instantaneously whenever they collide, so that their

reaction rate is controlled by their molecular motion, that is, by their diffusion. This

process is described in detail in Section 17.4; a similar dispersion-controlled process is

described in Section 17.5.

By this point, we should try to find the common thread through this tweed of diffu-

sion control. The key feature in all these cases is the coupling between chemical kinetics

and diffusion. In every case, the overall rate is a function of the diffusion coefficient.

Sometimes this rate depends on little else; more frequently, it also includes aspects of

chemical dynamics. In any case, the idea of diffusion control is obviously indefinite

without reference to a more specific situation. Make sure you know which definition

is being implied before trying to understand what is happening.

16.3 Diffusion and First-Order Heterogeneous Reactions

After these general concerns, we turn to the analysis of diffusion and hetero-

geneous chemical reaction. The simplest case is the first-order mechanism shown

Heterogeneous reaction on a flat catalyst surface

Reagent
diffusion

Product
diffusion

Surface
chemical
reaction

“Homogeneous” reaction within a porous catalyst

Reagent diffusion

Product diffusion

Chemical
reaction

Fig. 16.2-2. Electrical analogues of two reactions affected by diffusion. These two cases

correspond to those shown in Fig. 16.2-1(a) and 16.2-1(b), respectively. If the reactions

are diffusion-controlled, then the resistances to chemical reaction will be relatively small.
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schematically in Fig. 16.3-1. The reaction mechanism, the standard against which other

ideas are measured, depends on three sequential steps. First, reagent diffuses to the

surface; second, it reacts reversibly at the surface; finally, product diffuses away from

the surface. The first and third steps depend on physical factors like reagent flow and

fluid viscosity. The second step depends largely on chemistry, including adsorption and

electron transfer.

This particular case occurs with surprising frequency. The most common practical

example is an electrochemical reaction. For example, anions diffuse to the anode; these

anions react there, and any products diffuse away. Because this kind of reaction often

takes place in aqueous solution and at moderately high voltage, its rate is often governed

by the diffusion steps.

Wewant to calculate the overall rate of the reaction shown in Fig. 16.3-1. To do so, we

must calculate the rate of each of the three steps shown.More specifically, at steady state,

the overall reaction rate per area r2 equals the diffusion fluxes:

r2 ¼ n1 ¼ k1ðc1 � c1iÞ

¼ �n2 ¼ k3ðc2i � c2Þ ð16:3-1Þ

in which c1 and c2 are the bulk concentrations, c1i and c2i are the concentrations at the

surface, and k1 and k3 are the mass transfer coefficients of steps 1 and 3 in Fig. 16.3-1. In

passing, note that the concentrations c1i and c2i have the same units as c1 and c2. For

example, they might be moles per cubic decimeter.

The surface reaction, step 2 in Fig 16.3-1, is first order:

species 1%
j2

j�2
species 2 ð16:3-2Þ

Step 1  Reagent 1
diffuses to the solid
surface.

Step 2  It reacts on
the surface to
produce species 2.

Step 3  The product 2
diffuses away.

1

1

1
1

1

1
2

2
2

2

Fig. 16.3-1. Diffusion and heterogeneous chemical reaction. The reaction involved is

first-order and reversible. The overall reaction rate depends on a sum of resistances,

not unlike those involved in interfacial mass transfer.
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The rate constants j2 and j�2 refer to the forward and reverse reactions, respectively.

In the rest of the chapter, we will use j to signal chemical rate, and k to indicate the

effect of diffusion, a physical rate process. Such a reaction is described by the rate

equation

r2 ¼ j2c1i � j�2c2i ð16:3-3Þ

Because this reaction rate has units of moles per area per time and the concentrations

have units of moles per volume, the rate constants both have units of length per time.

Two interesting points in these equations merit emphasis. First, the units used in these

equations bother some readers, who feel that a surface reaction should be written in

terms of surface concentrations. Such concentrations would have units of moles per

area. Some make a fuss over this; they rewrite everything in terms of these surface

concentrations, or claim that the surface concentrations are in equilibrium with c1i
and c2i in the bulk. Because none of this affects the form of the final result, the argument

is tangential.

The second interesting idea comes from comparing Eq. 16.3-3 with Eq. 16.3-1. In Eq.

16.3-3, the forward and reverse reaction rate constants are different. These differences

lead to an equilibrium constant for the chemical reaction:

K2 ¼
j2

j�2
ð16:3-4Þ

In contrast, in Eq. 16.3-1, the rate constants of the forward and reverse steps are the

same. As a result, the equilibrium constant for the diffusion step 1 is

K1 ¼
k1
k1
¼ 1 ð16:3-5Þ

In other words, diffusion is like a heterogeneous reversible first-order reaction with an

equilibrium constant of unity.

We now return to our objective, finding the overall reaction rate. We can measure

the bulk concentrations c1 and c2, but not the surface concentrations c1i and c2i. Ac-

cordingly, we combine Eqs. 16.3-1 and 16.3-3 to eliminate these unknowns. This com-

bination is a complete parallel to that in Section 8.5, simple but algebraically elaborate.

The result is

r2 ¼ n1 ¼ ½K� c1 �
c2
K2

� �
ð16:3-6Þ

in which the overall rate constant K is given by

K ¼ 1

1=k1 þ 1=j2 þ 1=k3K2
ð16:3-7Þ

This is resistances in series again. It looks just like mass transfer across an interface;

the heterogeneous reaction is just another step in the series.

Some parallels between heterogeneous reaction and interfacial mass transfer are

obvious. Steps 1, 2, and 3 do occur in series, and resistances like 1/k1 and 1/j2 do add

to the total resistance 1/K. Moreover, the quantity c2/K2 is chemically equivalent to the
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concentration of species 1 that would be in equilibrium with the existing bulk concen-

tration of species 2. I find this chemical equivalence easier to grasp than the physical one

of c�1 and p�1, those elusive pseudo concentrations that characterize interfacial transport.

Another parallel between heterogeneous reaction and interfacial transport is more

subtle. The reaction equilibrium constant K2 is roughly parallel to the Henry’s law co-

efficientH that characterizes phase changes. Both K2 andH vary widely, easily covering

a range of 106 or more for different systems. Thus it is the equilibrium constant K2 that

determines the relative impact of k1 and k3. The implications of this are best seen from

the examples that follow.

Example 16.3-1: Limits of a first-order heterogeneous reaction What is the overall rate

for a first-order heterogeneous reaction under each of the conditions: (a) fast stirring,

(b) high temperature, and (c) an irreversible reaction? Express this rate as r2.

Solution Each of these cases is a limit of Eqs. 16.3-6 and 16.3-7. For rapid

stirring (a), k1 and k3 become very large. Thus

r2 ¼ ½j2� c1 �
c2
K2

� �
In this case, physics is unimportant and chemistry is omnipotent. For the case of high

temperature (b), j2 and j�2 become much larger than k1 and k3. Thus

r2 ¼
1

1=k1 þ 1=k3K2

� �
c1 �

c2
K2

� �
The effect of the reaction is still very much there, but as the equilibrium constant.

Finally, for an irreversible reaction (c), K2 becomes infinite, and

r2 ¼
1

1=k1 þ 1=j2

� �
c1

Only in this case are the resistances so simply additive. In other cases, these resistances

are weighted with equilibrium constants.

Example 16.3-2: The rate of ferrocyanide oxidation We are studying electrochemical

kinetics using a flat platinum electrode 0.3 cm long immersed in a flowing aqueous

solution. In one series of experiments, the solution is 1-M KCl containing traces of

potassium ferrocyanide. The ferrocyanide is reduced by means of the reaction

FeðCNÞ4�6 ! FeðCNÞ3�6 þ e
�

When the solution is flowing at 70 cm/sec and the potential is at some fixed value, the

overall mass transfer coefficient is 0.0087 cm/sec. Estimate the rate of constant of this

reaction, assuming that the solution has the properties of water.

Solution The overall mass transfer coefficient K found experimentally is

K ¼ 1

1=k1 þ 1=j2
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We want to find j2, so must calculate k1. We can do this from Eq. 9.4-53 and the

diffusion coefficient in Table 6.1-1:

k1 ¼ 0:646
D

L

� �
Lv

0

�

 !1=2
�

D

� �1=3

¼ 0:646
0:98 � 10�5cm2

=sec

0:3 cm

 !
ð0:3 cmÞð70 cm=secÞ

10
�2
cm

2
=sec

 !1=2

10
�2
cm

2
=sec

0:98 � 10�5cm2
=sec

 !1=3

¼ 0:97 � 10�2cm=sec

Inserting this value and that for K into the preceding equation, we find

0:0087 cm=sec ¼ 1
sec

0:0097 cm
þ 1

j2

j2 ¼ 0:08 cm=sec

Obviously, other values will be found at other potentials.

This type of experiment can be used to give reliable values of the mass transfer co-

efficient, but not the rate constant. The reason is that the electrode surface is usually

contaminated in some fashion. Instead, electrochemists commonly use the more reliable

method of cyclic voltametry, in which the potential is not held constant, but cycled

sinusoidally. The results are complex, but they give considerable qualitative information

about the chemistry involved.

Example 16.3-3: Cholesterol solubilization in bile Bile is the body’s detergent, respon-

sible for solubilization of water-insoluble materials. It is the key to fat digestion and the

principal route of cholesterol excretion. Indeed, the failure of bile to effect excretion of

available cholesterol is implicated in the formation of cholesterol gallstones.

Pharmacological experiments have shown that gallstones can be dissolved without

surgery by feeding patients specific components of bile. These experiments have sparked

the study of the dissolution rates of these gallstones. These rates are conveniently

studied with a spinning disc of radioactively tagged cholesterol, like that described in

Example 3.4-3. In one experiment with such a disc, the cholesterol dissolution rate was

found to be 5.37 � 10–9 g/cm2 sec in a solution containing 5 wt% sodium taurodeoxy-

cholate, a 4 : 1molar ratio of this bile salt to lecithin, and 0.15-MNaC1. The solubility of

cholesterol in this solution is 1.48 � 10–3 g/cm3, and the diffusion coefficient is about

2 � 10–6 cm2/sec. The disc was 1.59 cm in diameter, spinning rapidly with a Reynolds

number of 11,200. The kinematic viscosity of this model bile is about 0.036 cm2/sec,

and the density of a cholesterol-saturated solution is 1.0 � 10–5 g/cm3 greater than bile

containing no cholesterol.

Find the rate of the surface reaction, assuming that this reaction is irreversible. Then

find the dissolution rate for a 1-cm gallstone in unstirred bile.
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Solution As in the previous example, we first need to find the mass transfer

coefficient in this solution. From Table 8.3-3,

k1 ¼ 0:62
D

d

d
2x
�

 !1=2
�

D

� �1=3

¼ 0:62
2 � 10�6cm2

=sec

1:59 cm
ð11; 200Þ1=2 0:036 cm

2
=sec

2 �10�6 cm2
=sec

 !1=3

¼ 2:16 � 10�3cm=sec

The overall rate constant is the sum of this resistance and that of the surface reaction:

K ¼ 1

1=k1 þ 1=j2

5:37 � 10�9g=cm2
sec

1:48 � 10�3g=cm3 ¼ 1

sec

2:16 � 10�3cm
þ 1

j2

Thus,

j2 ¼ 3:6 � 10�6cm=sec

Note that the experimentally measured rate is dominated by the surface reaction.

We nowwant to use this surface rate constant to find the dissolution rate if a spherical

stone is immersed in this unstirred model bile. This bile is probably affected by free

convection. Thus, from Table 8.3-3,

k1d

D
¼ 2þ 0:6

d
3Dqg

q�2

 !1=4
�

D

� �1=3
k1ð1 cmÞ

2 � 10�6cm2
sec
¼ 2þ 0:6

ð1 cmÞ3ð1:0 � 10�5g=cm3Þð980 cm=secÞ
ð1 g=cm3Þð0:036 cm2

=secÞ2

 !1=4

0:036 cm
2
=sec

2 �10�6 cm2
=sec

 !1=3

k1 ¼ 5:6 � 10�5cm=sec

We then find the overall rate as before:

K ¼ 1

sec

5:6 � 10�5cm
þ sec

3:6 � 10�6cm

¼ 3:4 � 10�6 cm=sec

In unstirred bile, the rate is also controlled by reaction.
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16.4 Finding the Mechanism of Irreversible Heterogeneous Reactions

The simple ideas of the previous section are the benchmark of this entire chap-

ter, the standard against which more complex concepts are compared. Our basic strategy

has been to assume a simple mechanism and calculate the overall reaction rate for this

situation. The result is a close parallel to the results for interfacial mass transfer.

However, in some ways, the strategy of the previous section is misleading, for it

implies that the mechanism is known. This is often not the case. In many situations,

we already have experimental results, and we want to find which mechanisms are

consistent with these results. In other words, the arguments of the previous section

are backwards.

In this section, we want to explore how the mechanism of an irreversible reaction

can be inferred from the overall reaction rate, instead of the other way around. This

exploration can be complicated, hampered by elaborate algebra. As a result, we con-

sider only special cases of the two types of heterogeneous reactions shown in Fig.

16.4-1. These types differ in the products produced by the reaction. In some cases,

these products are fluid, and hence diffuse away. More commonly, the products form

a layer of ash around an unreacted core; this second case is sometimes called a top-

ochemical model.

To reduce algebraic complexity, we consider only limits in which the overall rate

is controlled by a single diffusion or reaction step. The five limits we consider are

tabulated in Table 16.4-1. In cases A and C, we assume that the surface reaction

gaseous
species 1

� �
þ solid

species 2

� �
! various

products

� �
ð16:4-1Þ

is described by the rate equation

r2 ¼ �j2c2c1 ð16:4-2Þ

Time

Shrinking particle model

Time

Shrinking core or “topochemical” model

Ash

Fig. 16.4-1. Two basic models for heterogeneous reaction. Many solid–gas non-catalytic

reactions follow one of these two limiting models. Note that ‘‘ash’’ can be any solid product.

Some characteristics of these models are given in Table 16.4-1.
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Note the concentration of the solid, c2, is essentially constant, so that the reaction

behaves as if it were first order. In such an equation, the rate constant j2 has dimensions

of L4/mol t. We now can write a mass balance on one particle of radius R:

d

dt

4

3
pR3

c2

� �
¼ 4pR2

r2 ð16:4-3Þ

Combining the previous two equations,

d

dt
R ¼ �j2c1 ð16:4-4Þ

This equation, subject to the conditions that c1 is constant and r is initially R0, is easily

integrated:

R ¼ R0 � j2c1t ð16:4-5Þ

The particle size is proportional to time.

The other three cases are more interesting. When diffusion outside of a shrinking

particle is rate controlling (case B), the key variable becomes the mass transfer coeffi-

cient. This coefficient is a function of particle size; for example, for a single particle, it is

often assumed to be (see Table 8.3-3)

kd

D
¼ 2:0þ 0:6

dv

�

� �1=2
�

D

� �1=3
ð16:4-6Þ

where d is the particle diameter, D is the diffusion coefficient of the reacting gas, v is the

fluid’s velocity, and � is the fluid’s kinematic viscosity. For very small particles, this

implies

k ¼ D

R
ð16:4-7Þ

a relation derived in Section 2.4. The mass balance on a single particle is now

d

dt

4

3
pR3

c2

� �
¼ �ð4pR2ÞDc1

R
ð16:4-8Þ

Again, this can be integrated, with the condition that r is initially R0, to give

R
2 ¼ R

2
0 �

2Dc1
c2

� �
t ð16:4-9Þ

For larger particles, the mass transfer coefficient is

k ¼ 0:42v
1=2

D
2=3

�
1=6

 !
1

R
1=2

� �
ð16:4-10Þ
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and the resulting variation of R is

R
3=2 ¼ R

3=2
0 �

0:64v
1=2

D
2=3

�
1=6

 !
c1
c2

� �
t ð16:4-11Þ

Equations 16.4-9 and 16.4-11 are both for a diffusion-controlled reaction on the surface

of a shrinking particle.

The results are different for a particle of constant size with a shrinking core of

unreacted material. In such a topochemical model, there are two diffusional resistances

in series. First, material must diffuse from the bulk to the particle’s surface; second, it

must diffuse from the surface through ash to the unreacted core.

When diffusion in the bulk controls (case D), the reaction rate is again determined by

the mass transfer coefficients around the particle. Because the particle size is constant,

this mass transfer coefficient is also constant. The mass balance is still

d

dt

4

3
pR3

c2

� �
¼ �ð4pR2Þkc1 ð16:4-12Þ

This can be easily integrated using the same initial size of particle R0:

R ¼ R0 � k
c1
c2

� �
t ð16:4-13Þ

Although this result has the same variation with time as do the cases where surface

reaction controls, it shows a square-root dependence on flow. It also shows a smaller

variation with temperature, for mass transfer coefficients vary much less with temper-

ature than reaction-rate constants.

When ash diffusion controls (case E), the mass transfer coefficient depends on

the thickness of the ash layer. The usual assumption is that this coefficient is

k ¼ D

R0 � R
ð16:4-14Þ

in which D is now an effective value for diffusion through the ash. This assumption is

tricky, for it implies that diffusion across the ash layer is a steady-state process. At the same

time, we are assuming that the particle size varies with time. These assumptions imply that

the diffusion through the ash is much faster than the combustion of the entire particle.

The mass balance on the particle now becomes

d

dt

4

3
pR3

c2

� �
¼ �ð4pR2Þ Dc1

R0 � R
ð16:4-15Þ

Integrating this result yields, after some rearrangement,

R ¼ R0 �
2Dc1
c2

t

� �1=2

ð16:4-16Þ

The particle size now varies with the square root of time. The differences between these

cases and others in this section are considered in the example that follows.
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Example 16.4-1: Mechanisms of coal gasification with steam The gasification of coal

particles using steam is being studied in a batch fluidized-bed reactor. In this reactor, the

steam concentration is held constant, and the average particle size is monitored versus

time. A plot of the logarithm of this size versus time has a slope of 0.6; the slope does

show some variation with the gas flow used to maintain fluidization. What is the rate-

controlling step for this gasification?

Solution The variation of reaction rate with flow indicates that the process is

controlled by diffusion outside of particle. By inference, the resistance of any ash

formed is apparently negligible. At the same time, the variation of particle radius with

time is in the range suggested by case B in Table 16.4-1; checking this point further

requires using a mass transfer correlation in fluid beds parallel to Eq. 16.4-6. Although

no dependence on temperature is mentioned, we would expect this dependence to

be small.

16.5 Heterogeneous Reactions of Unusual Stoichiometries

In the previous sections we discussed how the overall rate of reaction was

affected by the rates of diffusion and reaction. The rate of diffusion could be altered

by changes in factors like fluid flow or diffusion coefficient or ash thickness. The overall

rate of reaction was always assumed to be first order, always doubling when the reagent

concentration was doubled.

In this section we want to consider two examples of other chemistries that can alter

the simple combinations of diffusion and reaction developed earlier. The first example is

an irreversible second-order reaction. The second involves fast reactions of concentrated

reagents and products.

16.5.1 A Second-Order Heterogeneous Reaction

The case considered here, shown schematically in Fig. 16.5-1, involves two

sequential steps. The first of these steps is simple mass transfer, but the second step is

a second-order irreversible chemical reaction. As before, we want to calculate the overall

rate r1 of this heterogeneous reaction. In mathematical terms, this rate is

r1 ¼ n1 ¼ k1ðc1 � c1iÞ ð16:5-1Þ

where c1 and c1i are again the bulk and interfacial concentrations, respectively. This

rate is also

r1 ¼ j2c
2
1i ð16:5-2Þ

We can combine these two equations to find the unknown interfacial concentration:

c1i ¼
k1
2j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4j2c1=k1

p
� 1

� �
ð16:5-3Þ
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This can, in turn, be used to find the overall reaction rate:

r1 ¼ k1c1 1� k1
2j2c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4j2c1=k1

p
� 1

� �� �
ð16:5-4Þ

This expression is obviously very different from the corresponding result for a first-order

reaction, given by Eq. 16.3-6.

The conclusion drawn from this result is that resistances in series are no longer

additive. This is true whenever any of the resistances is not first order. In electrical or

thermal systems, resistances are almost always first order. However, in chemical systems,

resistances will not be first order when there are non-first-order chemical reactions. This

occurs frequently.

16.5.2 Heterogeneous Reactions in Concentrated Solutions

In the simple cases in Sections 16.3 and 16.4, we assumed that the mass transfer

coefficient k1 was independent of the reaction rate. This is actually an implicit approxi-

mation, valid only in dilute solution or for reagents producing one mole of product for

every mole of reagent. To see where this approximation might be inaccurate, consider the

two solid–gas reactions shown in Fig. 16.5.-2. In the first, a reagent is split into many

smaller parts:

species 1 /
j2

� ðspecies 2Þ ð16:5-5Þ

where v is a stoichiometric coefficient. In the second, the converse occurs:

1

2

1

1

1

1

1

1

2

Step 1  Reagent 1
diffuses to the
surface.

Step 2  This
reagent undergoes
a second-order,
irreversible
reaction.

Other steps
Because the
reaction is
irreversible,
other steps
are not involved.

Fig. 16.5-1. A second-order heterogeneous reaction. When the simple stoichiometry used

earlier in this chapter is not followed, the overall rate no longer depends on a simple sum of

the resistances of the various steps.

� ðspecies 1Þ/j2
species 2 ð16:5-6Þ
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The first of these is an idealization of a cracking reaction, and the second of a reforming

reaction.

The difficulty in both cases is that the mass transfer step must include both diffusion

and convection. In the case of the cracking reaction, this convection is away from the

surface, so that the reacting species must diffuse against the current, swimming upstream

to reach the reactive surface. For the reforming reaction, the opposite is true; the reacting

species are buoyed along, swept toward the surface by the reaction.

To estimate the size of the effect, we idealize the region near the reactive surface as a thin

stagnant gas film of thickness l, as in Section 9.5. At the outside of this film, located at z¼ 0,

the reagent concentration is the bulk value, and the product concentration is zero. At the

solid surface, at z¼ l, the reaction occurs. The overall rate of reaction r1 across this film is

r 1 ¼ n 1 ¼ �
n 2

�
¼ j2c1i ð16:5-7Þ

If the stoichiometric coefficient � is greater than unity, we have the cracking reaction; if �
is less than unity, we have the reforming reaction; if � equals unity, we have the simple

case discussed in Section 16.3.

We nowmust calculate the flux n1. In dilute solutions, this hinged onEq. 16.3-1; but in

these concentrated solutions, we must return to the continuity equation

0 ¼ �dn 1

dz
ð16:5-8Þ

Integrating and combining with Fick’s law,

2

Step 1  A large reagent
diffuses to the surface.1

1

2
2

2

(a) Cracking

Step 2  It reacts to produce
many smaller products.

Result  The reagent must
swim upstream against the
flux of product.

Step 1  Small reagents
diffuse to the surface.

2

1

(b) Reforming

Step 2  They combine to
form product.

Result  The reagents are
carried toward the surface
both by diffusion and by
convection.

1 1

1
1

Fig. 16.5-2. Diffusion-induced convection can alter heterogeneous reaction rates. Because

cracking increases the number of moles in the system, reagents must diffuse against a convective

flow out of the surface, as shown in (a). Because reforming decreases the number of moles,

reagents are swept towards the surface, as shown in (b).

n 1 ¼ �D
dc1
dz
þ c1v

0 ð16:5-9Þ
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where v0 is the volume average velocity, which in this case is the convection caused by the

reaction. For a gas,

cv
0 ¼ n1 þ n2 ¼ ð1� vÞn1 ð16:5-10Þ

where c is the total concentration. Inserting this result into the previous equation and

integrating to find n1, we have

r1 ¼ n1 ¼ �
k1c

ð� � 1Þ ln
1þ ð� � 1Þn1=j2c

1þ ð� � 1Þc10=c

� �
ð16:5-11Þ

in which k1 (=D/l) is the mass transfer coefficient and c10 is the concentration of reagent

in the bulk. The rate relative to that in dilute solution is shown for a variety of stoi-

chiometries in Fig. 16.5-3 for the limit of diffusion control (i.e., j2c10/n1 is large).

Example 16.5-1: Limiting behavior of a second-order heterogeneous reaction Describe what

happens to Eq. 16.5-4 if the dimensionless group j2c1/k1 is either very large or very small.

Solution When j2c1/k1 is very large, the reaction will become diffusion-

controlled. Under these conditions,

lim
j2c1=k1!‘

r1 ¼ k1c1 1� k1
2j2c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2c1=k1

p	 

¼ k1c1

On the other hand, when j2c1/k1 is small, the reaction will be unaffected by diffusion:

lim
j2c1=k1!0

r1 ¼ k1c1 1� k1
2j2c1

1þ 1

2

4j2c1
k1

� �
� 1

8

4j2c1
k1

� �2
"(

þ 1

16

4j2c1
k1

� �3

� � � � �1
#)

¼ j2c
2
1 1� 2j2c1

k1
þ � � �

� �
In this case, the chemical reaction controls the overall rate.
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Fig. 16.5-3. Effect of diffusion-induced convection. This graph gives the change in reaction

rate for a diffusion-controlled reaction producing v moles of product per mole of reagent.

The product concentration in the bulk is zero; that of the reagent is c10.
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Example 16.5-2: Thermal cracking of gas oil Thermal cracking of a gas oil is being

studied on a hot plate immersed in a rapidly flowing gas stream. The plate is so hot that

the reaction is essentially diffusion-controlled. The molecular weight of the product is

only 23% of that of the reagent. By how much will convection introduced by cracking

change the reaction rate?

Solution In this case, the change in molecular weight implies that

1molecule of gas oil! 1=0:23molecules of smaller size

Moreover, because the gas oil is undiluted, c10/c is unity. Thus, from Fig. 16.5-3, the

actual rate will be about 45% of that expected from reactions or mass transfer coeffi-

cients measured in dilute solution.

16.6 Conclusions

This chapter has two principal parts. In the first part (Sections 16.1 and 16.2),

the focus is on the modeling of systems containing reaction and diffusion. One question

concerns whether a reaction is heterogeneous or homogeneous; the answer depends

more on the physical geometry involved and less on the chemistry at a molecular level.

A second question concerns what diffusion-controlled reactions are; the answer is that

they are reactions in which the time for diffusion is more than that for chemical change.

However, how these times are combined depends on the specific situation involved.

The second part of the chapter (Sections 16.3 through 16.5) is concerned with

heterogeneous reactions. The key point is that the overall rate frequently varies with

a sum of resistances in series. The results are similar to those involved in interfacial

mass transport, but with chemical equilibrium constants replacing the Henry’s law

constants. Although this simplicity can be compromised by unusual stoichiometry or

by concentrated solutions, the analogy with interfacial mass transfer is useful and worth

remembering.

Questions for Discussion

1. What is a heterogeneous reaction?

2. What is a homogeneous reaction?

3. If the mass balance used in a research paper is,

0 ¼ D

r

q
qr

r
qc1
qr

� �
� r1

is the reaction being treated as heterogeneous or homogeneous?

4. Acid–base reactions are said to be ‘‘diffusion controlled.’’ What does this mean?

5. The oxidation of ammonia in excess air over a silver wire catalyst makes NOx,

the precursor to nitric acid. This reaction is described as ‘‘irreversible’’ and

‘‘diffusion controlled.’’ What does this mean?

6. Suggest electrical circuits which are analogous to each of the four cases in

Fig. 16.2-1.
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7. For a heterogeneous reaction influenced by mass transfer, how will the rate

change as the temperature is raised?

8. For a first-order heterogeneous chemical reaction, will the rate-controlling step

change as the reagent concentration increases?

9. For a second-order heterogeneous chemical reaction, will the rate-controlling

step change as the reagent concentration increases?

10. Heterogeneous reactions within the surface of porous catalysts are modeled as

if they are homogeneous. How is this reflected in the analysis?

11. Compare the effect of the reaction equilibrium constant for a heterogeneous

reaction with the partition coefficient involved in interfacial transport.

12. Digestion in humans is enhanced by villi, small protrusions on the intestinal

wall which increase the intestine’s area 30 times. Discuss why villi have evolved.

Problems

1. The solubilization rates of 14C-tagged linoleic acid can be measured in 1% sodium
taurodeoxycholate using a spinning liquid disc, for which

kd

D
¼ 0:62

d
2x
�

 !1=2
�

D

� �1=3
where k is the mass transfer coefficient, D is the diffusion coefficient, d and x are the
disc diameter and rotation speed, and � is the kinematic viscosity. These data can be

explained as a heterogeneous reaction followed by mass transfer. The solubility of
linoleic acid in this solution is 2.23 � 10�3 g/cm3. Find the rate constant of the hetero-
geneous chemical reaction. Answer: 7 � 10�4 cm/sec.

2. The oxidation

Ce
3þ ! Ce

4þ þ e
�

has a rate constant of 4 � 10�4 cm/sec when effected on platinum in 1-M H2SO4. You

carry out this reaction by suddenly applying a potential across a large stagnant volume
of this solution. Estimate how long you can reliably measure the kinetics before
diffusion becomes important. Answer: 20 sec.

3. As part of a study of electrochemical kinetics, you insert a gold electrode into a solution
at 25 �C containing 0.5-M H2SO4 and small amounts of ferrous ion. You then apply
a potential between this electrode and a second, reversible electrode, so that at the gold
the iron is oxidized:

Fe
2þ ! Fe

3þ þ e
�

You measure the current density i (amp/cm2) under a fixed potential and find that, to
a first approximation,

c1
i
¼ 2þ 50t

1=2

where c1 is the ferrous concentration inmoles per liter and t is the time inminutes. Find

the rate constant of the surface reaction and the diffusion coefficient of the ferrous ion.
Answer: D ¼ 0.81 � 10–5 cm2/sec.
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4. A single potassium chloride crystal about 0.063 cm in diameter, which is immersed in

a 5.2% supersaturated solution containing about 25 wt% potassium chloride, is grow-
ing at a rate of 0.0013 cm/min. If the system is well mixed, this growth is second order,
presumably because both potassium and chloride ions are involved. In our case, the

solution may not be well mixed; it flows past the crystal at 6 cm/sec. The solution’s
viscosity is about 1.05 cp; its density is 1.2 g/cm3, and the crystal’s density is 1.984 g/
cm3. Does diffusion influence the rate of crystal growth? Answer: Diffusion is about

25% of the total resistance.

5. When copper and silicon are placed together, a layer of Cu3Si grows at the interface.
W. J. Ward and K.M. Carroll [J. Electrochem. Soc., 129, 227 (1982)] reported that the

thickness of this layer l at 350 �C is

l ¼ ð1:4 � 10�4cm= sec1=2Þt1=2

They argued that the layer forms by reaction of Cu at the Cu3Si–Si interface. They also

maintained that this reaction is controlled by diffusion of Cu through Cu3Si. (a) Show
that the variation of thickness versus time is consistent with a diffusionmechanism. (b)
Discuss what reaction stoichiometry would be required to produce this same varia-
tion. (c) Calculate the diffusion coefficient and compare it with other values for dif-

fusion in solids. In this experiment, the driving force of Cu3Si is believed to be 1.10
mol% Cu. Answer: 2 � 10–6 cm2/sec.

6. Diffusion out of the intestinal lumen may be governed by two resistances in series [K.

W. Smithson, D. B. Millar, L. R. Jacobs, and G. M. Gray, Science, 214, 1241 (1981)].
The first is mass transfer in the lumen itself, which is described by j1¼ k(c1 – c1i), where
k is the mass transfer coefficient. The second is mass transfer across the intestinal wall,

which in this case is governed by a rate equation:

j1 ¼
�maxc1i
Km þ c1i

where �max and Km are parameters measured in well-mixed experiments unaffected by
mass transfer. (a) To avoid complexities, these authors assumed that

j1 ¼
vmaxc1
Ka þ c1

where Ka is found from the slope of a plot of 1/j1 versus 1/c1. Discuss the approx-
imations in this plot. (b) These authors then found the mass transfer coefficient k from
‘‘Winne’s equation’’:

k ¼ 0:5vmax

Ka � Km

Justify this equation and comment on its accuracy.

7. Petrochemical processing involves two major types of chemical reactions: cracking
and reforming. In cracking, large hydrocarbon molecules of perhaps 20 carbons are

broken (‘‘cracked’’) into much smaller ones, with about 4 carbons. In reforming, these
are put together again to make C8’s, the standard for gasoline. Imagine that you are
studying a very active solid catalyst for reforming. This catalyst is so active that the
reaction is both fast and irreversible. Thus C4’s diffuse from an almost pure stream of

C4’s of total concentration c to the solid surface, where they react instantaneously.
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The products – C8’s – diffuse away. This diffusion takes place across a film of thickness

l between the bulk and the surface, which always has the same value. (a) What is the
total flux of C4’s towards the surface? (b) What would it be if the system were diluted
a lot with nitrogen?

8. Part of the manufacture of a long-lived light bulb consists of the high-temperature
system shown below. Barium oxide is steadily produced by a zero-order reaction in the
ceramic. It then diffuses both out into the sink and through the interface to the

support. At the support, it reacts rapidly and irreversibly at the support’s surface.
There is no reaction in the interface, and the diffusion coefficient there is different than
that in the ceramic. What is the flux of barium oxide at the support?

9. While he was practicing for his oral qualifying exam, Ranil Wickramasinghe was
asked by a classmate about interfacial resistances to mass transfer. Such resistances

are rare, usually due to a molecularly compact interfacial film. Transfer across such an
interface is like a reversible heterogeneous first-order reaction. For example, for gas
absorption, it is

solute in gas
at interface

� �
%

j2

j�2

solute in liquid
at interface

� �
In addition, there is resistance to mass transfer in the gas (1/k1) and in the liquid (1/k3).

What is the mass transfer for such a process?

10. Obsidian is a volcanic glass used by primitive peoples for arrowheads, knife blades,
and the like. The depth of water penetration into artifacts made of obsidian can be

measured by cleaving the object and examining its surface under a microscope.
Because the hydrate has a greater specific volume, there is a stress crack at the
hydrated–unhydrated interface. This depth of the hydrate is a measure of the age
of the artifact; so obsidian is sometimes called ‘‘the dating stone.’’ Most investigators

[I. Friedman and F. W. Trembour, Amer. Sci., 66, 44 (1978)] have reported that the
depth of hydration is proportional to the square root of time. Show that this is
consistent with diffusion of water through the hydrate followed by very fast heter-

ogenous chemical reaction at the hydrated–unhydrated interface. In this, assume
that the humidity outside the obsidian is constant but that at the interface it is
essentially zero.

11. Ancient air is trapped in bubbles deep within polar ice. The bubbles get fewer and
smaller as the depth of ice gets deeper. These decreases are the result of the formation
of an air hydrate phase. However, both bubbles and air hydrate coexist, even when

only the hydrate phase is expected to form. P. B. Price [Science, 267, 1802 (1995)]
explains this by postulating a layer of air hydrate around each bubble. To form more

Sink

Ceramic

z = -a z = 0 z = b

Support

“Interface”

476 16 / General Questions and Heterogeneous Chemical Reactions



hydrate, water must diffuse through the hydrate to the inner surface of the bubble; the

diffusion coefficient for this process is

D ¼ 2100
cm

2

sec
exp
�1:5 � 10�19 J=kBT

As the water reaches the inner surface of the hydrate, it reacts to formmore hydrate, so
the resistance to water diffusion increases with time. Estimate the time to react all the
air at –46 �C (the temperature of South Pole ice) in a 0.01-cm bubble of air at 1 atm.

Repeat the estimate for a 0.10-cm bubble.
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CHAPTER 17

Homogeneous Chemical Reactions

Diffusion rates can be tremendously altered by chemical reactions. Indeed,

these alterations are among the largest effects discussed in this book, routinely changing

the mass fluxes by orders of magnitude. The effects of a chemical reaction depend on

whether the reaction is homogeneous or heterogeneous. This question can be difficult to

answer. In well-mixed systems, the reaction is heterogeneous if it takes place at an

interface and homogeneous if it takes place in solution. In systems that are not well

mixed, diffusion clouds this simple distinction, as detailed in Section 16.1.

The effects of chemical reactions are exemplified by the data for ammonia adsorption

in water summarized in Fig. 17.0-1. The overall mass transfer coefficient, in cm/sec, is

based on a liquid side driving force given in mol/cm3. The specific values shown are for

a hollow-fibermembrane contactor, though similar valueswould be obtained in a packed

tower or other more conventional apparatus.

The different mass transfer coefficients shown in Fig. 17.0-1 represent different forms

of ammonia and different rate-controlling steps for mass transfer. At pH above 5, the

mass transfer coefficient is small, somewhat less than typical values for liquids. BelowpH

4, the mass transfer coefficient rises. This rise, which is linear in the concentration of acid,

occurs because the NH3 that is transferred is being converted into NHþ4 . Below pH 1,

the mass transfer coefficient again approaches an asymptote. This asymptote occurs

because mass transfer in the liquid has been accelerated so much that the overall co-

efficient is now limited by diffusion in the gas.

The overall rate of a homogeneous reaction like that of ammonia is determined by

a nonlinear combination of effects of diffusion and chemical reaction. The effects of such

a reaction on the rates of mass transfer are analyzed in the first two sections of this

chapter. In Section 17.1, we describe the simplest case, that of a first-order irreversible

chemical reaction. We also summarize extensions of this case, extensions that produce

significant gains only at the cost of major effort. In Section 17.2, we describe some results

for second-order reactions. In Section 17.3, we apply these ideas to a specific case, that of

H2S scrubbing with amines.

The last two sections in this chapter are concerned with reactions commonly

described as ‘‘fast’’ or ‘‘diffusion controlled.’’ In Section 17.4, we discuss chemical reac-

tions whose rates are controlled not by chemical kinetics but by Brownian motion of the

reagents. These reactions are studied by suddenly changing the temperature or pressure

andmeasuring the decay of the resulting perturbation. In Section 17.5, we investigate the

speed of second-order reactions in turbulent flow. If these reactions are fast, their speed

depends on mixing, not on chemistry. Thus their reaction rates are determined not

by chemical kinetics but by the turbulent dispersion summarized in Chapter 4. These

reactions can be described with mathematics like that for diffusion, and so are best

treated here.
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17.1 Mass Transfer with First-Order Chemical Reactions

Chemical reaction increases the rate of interfacial mass transfer. The reaction

reduces the reagent’s local concentration, thus increasing its concentration gradient

and its flux. Because chemical reaction rates can be very fast, the increase in mass

transfer can be large.

In this section we want to calculate the increasedmass transfer caused by a first-order,

irreversible chemical reaction. This special case is the limit with which more elaborate

calculations are compared. As a result, we shall go over the calculation in considerable

detail so that its nuances are explicitly stated.

One might wonder why we make such a fuss over first-order reactions. After all, these

reactions are uncommon. Real chemical reactions involve two reagents, like sodium

hydroxide plus hydrochloric acid or methane plus oxygen. This focus on first-order

reactions may seem a scientific ploy, emphasizing problems we can solve rather than

problems that are important.

This skepticismhas some justification, for there certainly are important reactions that are

not first order. However, in many cases, all but one of the reagents will be present in excess;

in stoichiometric terms, only one of the reagents is limiting. In this case, we can accurately

approximate the reactions as first order. For the examples given earlier, we might have

reaction
rate

� �
¼ ½j1cHCl�cNaOH ð17:1-1Þ

for excess hydrogen chloride, or

reaction
rate

� �
¼ ½j1cNaOH�cHCl ð17:1-2Þ

for excess sodium hydroxide, or

reaction
rate

� �
¼ ½j1cO2

�cCH4
ð17:1-3Þ
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Fig. 17.0-1. The overall mass transfer coefficient KL for ammonia absorption into water. At

high pH, the mass transfer is small, unaffected by ionization of ammonia. At lower pH, it is

increased by instantaneous reaction until it is limited by the gas phase resistance.
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for excess oxygen. In each case, the quantity in square brackets is a pseudo-first-order

reaction-rate constant, with, of course, a different numerical value in each case. Under

the circumstances given, each of these reactions can be treated as if it were first order.

We are interested in how a first-order chemical reaction alters the mass transfer in

industrial equipment. For example, imagine that we are scrubbing ammonia out of air

with water, using equipment like that shown in Fig. 10.2-1. To increase our equipment’s

capacity, we are considering adding small amounts of hydrogen chloride to the water. We

want to predict the effect of this acid. However, the a-priori prediction of mass transfer in

a scrubber is a tremendously difficult problem, requiring expensive numerical calculation.

As a result, we are much better off to use existing experimental correlations for mass

transfer without reaction and to calculate a correction factor for the chemical reaction.

Calculating this correction turns out to be easy for a first-order system. Moreover, we

make good use of the 50 years of empirical correlations carefully obtained for industrial

equipment. We next detail how this is achieved.

17.1.1 Irreversible Reactions

To calculate the correction to mass transfer due to reaction, we again adopt the

simple film model shown in Fig. 17.1-1. In this model, a liquid is in contact with a well-

mixed gas containing the material to be absorbed. The liquid is not well mixed. Near its

surface, there is a thin film across which the absorbing species 1 is diffusing steadily. At

the gas–liquid interface, this solute species is in equilibrium with the gas; at the other side

of the film, its concentration is zero.

We can easily write a mass balance on this film. If there is no chemical reaction, this is

0 ¼ � d

dz
n1 _¼� dj1

dz
¼ D

d
2
c1

dz
2 ð17:1-4Þ

This is subject to the boundary conditions

z ¼ 0, c1 ¼ c1i ð17:1-5Þ

z ¼ l, c1 ¼ 0 ð17:1-6Þ

Integration and evaluation of the diffusion flux is easy, just as it was in Sections 2.2

and 9.1:

c1 ¼ c1i 1� z

l

� �
ð17:1-7Þ

as shown by the dotted line in Fig. 17.1-1. The flux is

j1 ¼
D

l
ðc1i � 0Þ ð17:1-8Þ

The mass transfer coefficient is the same old friendly value:

k
0 ¼ D

l
ð17:1-9Þ
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where the superscript 0 indicates no chemical reaction. Note that we have again implic-

itly made the familiar assumption of dilute solution.

However, if there is a homogeneous, first-order chemical reaction, the mass balance

becomes

0 ¼ D
d
2
c1

dz
2 � j1c1 ð17:1-10Þ

Integration of this equation gives

c1 ¼ ae

ffiffiffiffiffiffiffiffiffiffiffi
j1=D

p
z þ be

�
ffiffiffiffiffiffiffiffiffiffiffi
j1=D

p
z ð17:1-11Þ

Evaluation of the integration constants a and b using the boundary conditions in Eqs.

17.1-5 and 17.1-6 gives

c1
c1i
¼ sinh

ffiffiffiffiffiffiffiffiffiffiffi
j1=D

p
ðl� zÞ

� �
sinh

ffiffiffiffiffiffiffiffiffiffiffi
j1=D

p
l

� � ð17:1-12Þ

This concentration profile is curved like the solid line in Fig. 17.1-1. Note that

lim
j1!0

c1
c1i
¼

ffiffiffiffiffiffiffiffiffiffiffi
j1=D

p
ðl� zÞ þ : : :ffiffiffiffiffiffiffiffiffiffiffi

j1=D
p

þ : : :

¼ 1� z

l
ð17:1-13Þ

As the reaction gets slow, the concentration profile approaches the usual film result in

Eq. 17.1-7.

Liquid
film

Gas

Bulk liquid

p
1

c1i

c1= 0

z = 0 z = l
Fig. 17.1-1. Mass transfer with first-order chemical reaction. Species 1 is being absorbed from

a gas into a liquid. If this species reacts in the liquid, its concentration profile changes from the

dashed line to the solid line. Such a reaction increases the rate of mass transfer. The picture shown

here implies the film theory.
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The dimensionless group (j1l
2/D)which first appears in these equations is important,

a key to many problems involving diffusion and chemical reaction. In physical terms, it

can be rewritten as

diffusion time

reaction time
¼ j1l

2

D
¼ l

2
=D

1=j1

" #
ð17:1-14Þ

In discussions of mass transfer, this ratio is called the second Damköhler number and

given the symbol Dm. In discussions of catalysis, it is called the square of the Thiele

modulus and given the symbol/2. In either case, it is central to the description of coupled

diffusion and homogeneous chemical reaction.

The flux in the presence of reaction is found by combining this concentration profile

with Fick’s law:

j1 ¼ �D
dc1
dz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dj1c1i
p cosh

ffiffiffiffiffiffiffiffiffiffiffi
j1=D

p
ðl� zÞ

� �
sinh

ffiffiffiffiffiffiffiffiffiffiffi
j1=D

p
l

� � !
ð17:1-15Þ

At the interface, where z ¼ 0, this is

j1 ¼
ffiffiffiffiffiffiffiffiffi
Dj1

p
coth

ffiffiffiffiffi
j1

D

r
l

� �	 

c1i ð17:1-16Þ

Thus, in the case of chemical reaction, the mass transfer coefficient is

k ¼
ffiffiffiffiffiffiffiffiffi
Dj1

p
coth

ffiffiffiffiffi
j1

D

r
l

� �
¼

ffiffiffiffiffiffiffiffiffi
Dj1

p
coth

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j1D

k
0

� �2
vuut

0B@
1CA ð17:1-17Þ

This result reduces to Eq. 17.1-9 as j1 becomes small.

This important result is now used in two very different applications. First, it is used to

calculate the enhanced mass transfer caused by the reaction. Second, it is used to calcu-

late the reduced reaction which takes place in catalysis. I know it sounds strange that in

one case the rate is said to be enhanced, and in the other it is felt to be reduced. As you

will see, it is the same effect but with a different standard of comparison.

17.1.2 Mass Transfer: Enhancement Factors

We first consider the amount that the mass transfer is increased by chemical

reaction. In other words, we are interested in the enhancement factor e of the mass

transfer with reaction k compared to that without k0:

e ¼ k

k
0 ð17:1-18Þ
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By combining Eqs. 17.1-9, 17.1-18 and 17.1-17, we find

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dj1

k
0

� �2
vuut coth

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dj1

k
0

� �2
vuut ð17:1-19Þ

Note that we can calculate this enhancement factor using information that we already

have. The diffusion coefficient D and the reaction rate j1 will normally be known from

experiment. The mass transfer coefficient without reaction k0 can be estimated from

correlations like those in Chapter 8.

Two limits of Eq. 17.1-19 are instructive. First, when the reaction is slow, j1 is small,

e is one, and

k ¼ k
0 ð17:1-20Þ

Second, when the chemical reaction is fast, j1 is large, the hyperbolic cotangent equals
one and

k ¼
ffiffiffiffiffiffiffiffiffi
Dj1

p
ð17:1-21Þ

Themass transfer coefficient now has nothing to do with k0, but is simply the square root

of the diffusion coefficient times the rate constant. I find this one of the most charming

results in engineering.

Of course, these results did assume the film model. Because this model is an unsat-

isfying method for calculating mass transfer coefficients, we might expect it to be in-

accurate. We can, with considerable effort, show that predicted corrections for chemical

reaction are all nearly the same, independent of the specific model chosen. Some of these

are shown in Fig. 17.1-2. Differences are minor, so the use of the film theory is justified.

This coupling between diffusion and reaction means that the mass transfer coefficient

in a rapidly reacting system can vary sharply with temperature. If the reaction rate

doubles every 10 �C, then themass transfer will double every 20 �C. In contrast, doubling
the mass transfer coefficient when no reaction is present usually requires increasing the

temperature about 50 �C.

17.1.3 Catalysis: Effectiveness Factors

The second application of this result is the estimation of the extent that a cat-

alytic reaction is compromised by diffusion. In other words, we are interested in the ratio

of reaction with mass transfer to that without any limitations of mass transfer. This ratio

is called an effectiveness factor g:

g ¼ flux into catalystð Þ
reaction per volumeð Þ

areaAð Þ
volume

¼ j1 z¼ 0jð Þ A
ðj1c1ð Þ Al ð17:1-22Þ

By inserting the flux found from Eq. 17.1-16, we find

g ¼
ffiffiffiffiffiffiffiffi
D

j1l
2

s
coth

ffiffiffiffiffiffiffiffi
j1l

2

D

s
ð17:1-23Þ

This equation gives the reduction in reaction rate due to diffusion.
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Like the expressions for the enhancement factor, Eq. 17.1-22 for the effectiveness factor

turns out to be more valuable than expected. It is derived for a first-order, irreversible

chemical reaction occurring in a flat microporous catalyst pellet. However, making the

catalyst pellet cylindrical or spherical doesn’t mattermuch, as shown in Fig. 17.1-3. Chang-

ing the reaction order has a larger effect but even that is not that dramatic. In particular, for

a reaction which is of order m in the reagent ‘‘1’’, the effectiveness factor does not change

much, as shown in Fig. 17.1-4. Effectiveness factors are thus reliably estimated.

To me, the intriguing aspect is the difference between the enhancement factor and the

effectiveness factor. While both are based on the same derivation, the enhancement

1 100.1
1.0

10

Film
Penetration
Surface renewal

k
/

k
0

κ1D

k0

Fig. 17.1-2. Mass transfer corrected for first-order reaction. For slow reaction, the mass transfer

coefficient is unchanged; for fast reaction, it equals
ffiffiffiffiffiffiffiffiffi
j1D
p

. Note that all theories give very similar

results. (Redrawn from Sherwood et al., 1975, with permission.)
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Fig. 17.1-3. Effectiveness factor for a first-order reaction. The factor gives the amount that the

reactivity is compromised by diffusion within a porous catalyst particle. It varies little with

particle shape. (Redrawn from Aris, 1975, with permission.)
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factor increases and the effectiveness factor decreases as the reaction gets faster. The

reason is not the way diffusion and reaction interact but the different standard of

definition. The enhancement factor, calculated relative to diffusion without reaction,

increases as the reaction rate increases. The effectiveness factor, calculated relative to

reaction unlimited by diffusion, decreases as the reaction rate increases. The reason is

not a different coupling between diffusion and reaction, but the different basis. These

ideas are illustrated by the examples that follow.

Example 17.1-1: Mass transfer required for kinetic studies We are planning a series of

experiments of the reactions of methyl iodide with pyridine and similar compounds:

We are going to contact these reagents in a small laboratory reactor by bubbling methyl

iodide vapor diluted with nitrogen through benzene solutions containing around 0.1

mol/l pyridine.We expect the rate constant of this and similar reactions to be about 1.46 �
10–4 l/mol sec at 60 �C (Grimm et al., 1931). How large must the mass transfer coefficient

be to make sure we are studying the chemical kinetics?

Solution If the methyl iodide vapor is present at much lower concentrations

than the pyridine, we can approximate this as a first-order reaction whose rate r1 is

r1 ¼ � j9cpyridine
� �

cCH3I

¼ � ð1:46 � 10�4l=mol secÞð0:1mol=lÞ
h i

cCH3I

¼ � 1:46 � 10�5

sec
cCH3I

Zero-order
First-order

Second-order
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Fig. 17.1-4. Effectiveness factor for different reaction orders. The Thiele modulus in this case

varies with the surface concentration c1. (Redrawn from Aris, 1975, with permission.)
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From Eq. 17.1-17 or Fig. 17.1-2, we see that the transition from usual mass transfer to

the reaction-limited case occurs when

Dj1

ðk0Þ2
¼ 1

The diffusion coefficient of methyl iodide in benzene is about 2.0 � 10–5 cm2/sec. Thus

ð1:46 � 10�5=secÞð2:0 � 10�5cm2
=secÞ

ðk0Þ2
¼ 1

k
0 ¼ 1:7 � 10�5cm=sec

Because mass transfer coefficients are usually around 10�3 cm/sec, we can saturate

the liquid with the methyl iodide. We can successfully study the chemical kinetics in

this way.

Example 17.1-2: The reaction rate in a large catalyst pellet We want to set up a packed-

bed laboratory reactor to study a first-order reaction for which the rate constant is 18.6

sec�1. We plan to use 0.6 cm spheres of a porous catalyst for this gas-phase reaction. The

diffusion coefficient of reagents in these particles is about 0.027 cm2/sec.

How much will diffusion reduce the speed of reaction in these spheres?

Solution We first need to calculate a characteristic size for these spheres,

which is

l ¼
4
3pR3

4pR2 ¼
R

3
¼ 0:6=2ð Þ cm

3
¼ 0:1 cm

The Thiele modulus is

/2 ¼ j1l
2

D
¼ 18:6=sec 0:1 cmð Þ2

0:027 cm
2
=sec

¼ 6:9

From Figure 17.1-3, we see that

g ¼ 0:3

This diffusion will reduce the speed of the reaction by roughly a factor of three.

Example 17.1-3: Finding the reaction-rate constant from mass transfer data In studies

with a wetted-wall absorption column, we find that the mass transfer coefficient for chlorine

intowater is 16 � 10–3 cm/sec. The chlorine presumably is irreversibly reactingwith thewater:

Cl2þH2O! Cl
�þH

þ þHOCl

From similar experiments with nonreacting systems, we expect that the mass transfer

coefficient without reaction is around 1 � 10–3 cm/sec. What is the rate constant for this

reaction?
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Solution To solve this problem, we must make two assumptions. First, we

assume that the reaction kinetics are first order and irreversible. In other words, we

linearize the reaction:

rCl ¼ � j9cH2O½ �cCl2 ¼ � j1½ �cCl2
We identify the quantity in brackets with a first-order rate constant j1, thus assuming

that the water concentration changes little. Second, we assume that because the coeffi-

cient with reaction is higher than expected, mass transfer is influenced by reaction.

Because the diffusion coefficient of Cl2 in water is 1.25 � 10–5 cm2/sec, we find

k ¼
ffiffiffiffiffiffiffiffiffi
j1D
p

16 � 10�3cm=sec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1ð1:25 � 10�5cm2

=secÞ
q

j1 ¼ 20 sec
�1

The value obtained from a more complete study of mass transfer is 14 sec–1; that found

from fast-reaction techniques is 25 sec–1.

Example 17.1-4: Variation of mass transfer with fluid flow Imagine a spinning disc of

reagent 1 immersed in a dilute solution containing reagent 2.We plan tomeasure reagent 1

lost from the disc as a function of the rotation speed of the disc. Howwill this rate vary if

the reagent dissolves and then irreversibly reacts, that is, if the reaction is homogeneous?

How will it vary if the reaction is heterogeneous?

Solution The answer in this case depends on how the mass transfer coefficient

varies with fluid flow, or, in more general terms, on how the Sherwood number varies

with the Reynolds number. This variation depends on the specific experimental situa-

tion. For the spinning disc described in Section 3.4,

k
0
d

D
¼ b

dv

�

� �1=2

The quantity b includes variables like the Schmidt number.

For a first-order irreversible homogeneous reaction, this flow dependence can be

combined with Eq. 17.1-17 to give

k ¼
ffiffiffiffiffiffiffiffiffi
Dj1

p
coth

1

b

j1d�

Dv

� �1=2
" #

At low flow, the hyperbolic cotangent is a constant, and thus k is also constant. At high

flow, the hyperbolic cotangent approaches the reciprocal of its argument, and k varies

with the square root of flow. This behavior is shown in Fig. 17.1-5.

The behavior for a heterogeneous reaction is completely different, a special case of

Eq. 16.3-7:

1

k
¼ 1

j2
þ 1

k3

¼ 1

j2
þ 1

a

dv

D
2
�

� �1=2

where a is the interfacial area per volume. Note that the same symbol j2 is used here
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to represent a heterogeneous rate constant. The results in this case are also given in

Fig. 17.1-5.

The completely different variation with flow that results provides an easy way to

distinguish between heterogeneous and homogeneous reactions. I have found it espe-

cially useful in biochemical systems, where ambiguity between the two types of reactions

is frequent.

17.2 Mass Transfer with Second-Order Chemical Reactions

Like first-order reactions, second-order reactions can enhance interfacial mass transfer.

Unlike the situation with first-order reactions, this enhancement cannot be easily calcu-

lated. Because second-order reactions are common and important, we resort to a variety

of limiting cases to predict mass transfer coefficients in these situations.

The reason that predictions are difficult for second-order reactions is again best illus-

trated by the film theory, as shown in Fig. 17.2-1(a). The mass balances in this film are

0 ¼ D1
d
2
c1

dz
2 � j1c1c2 ð17:2-1Þ

and

0 ¼ D2
d
2
c2

dz
2 � j1c1c2 ð17:2-2Þ

The boundary conditions are typically

z ¼ 0, c1 ¼ c1i,
dc2
dz
¼ 0 ð17:2-3Þ

z ¼ l, c1 ¼ 0, c2 ¼ c2l ð17:2-4Þ
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Fig. 17.1-5. Mass transfer for different types of reactions. At low flow, the mass transfer co-

efficient is dominated by chemical kinetics if the reaction is homogeneous, but it is independent of

kinetics if the reaction is heterogeneous. At high flow, the reverse is true.
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where c1i and c2l are the appropriate concentrations at the interface and in the bulk, respec-

tively. Solving these equations is difficult because of the nonlinear reaction term. Various

numerical solutions are available, but I never really understand what they are saying.

Amore satisfying strategy is to consider three limiting cases. Themost obvious limit, shown

inFig. 17.2-1(b), occurswhen reagent 2 is present in excess, so that the second-order reaction

is equivalent to a first-order reaction. This limit was discussed in the previous section.

A second, more interesting limit occurs when the reaction is very fast and irreversible.

Here, finite concentrations of the two reagents cannot coexist, but simultaneously dis-

appear at the reaction front, shown schematically in Fig. 17.2-1(c). The result is like two

film theories, slapped one on top of the other.

Finding the mass transfer in this case is easy. For example, for the reaction

species
1

� �
þ � species

2

� �
! productsð Þ ð17:2-5Þ

(where � is a stoichiometric coefficient) we have

n1 ¼
D1

zc
ðc1iÞ ð17:2-6Þ

n2 ¼ �
D2

l� zc
ðc2lÞ ð17:2-7Þ

and

�n1 þ n2 ¼ 0 ð17:2-8Þ
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chemical reaction
increases mass
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If c2 is present in
excess, then c2
is almost constant

z = l

(a)

z = 0

c1i

c1= 0

c2=c2l

(b)

z = lz = 0

c1i
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do not coexist
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Fig. 17.2-1. Mass transfer with second-order chemical reaction. The mass transfer coefficients for

the general case (a) cannot be easily calculated. They can be found for the special cases (b) and (c).
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The distance zc is the location of the reaction front. Combining these results to eliminate

zc, we find

n1 ¼
D1

l
1þ D2c2l

�D1c1i

� �	 

c1i ð17:2-9Þ

The quantity in the square brackets corresponds to the mass transfer coefficient with

chemical reaction. Remembering that the mass transfer coefficient without reaction k0

equals D1/l, we have

k

k
0 ¼ 1þ D2c2l

�D1c1i
ð17:2-10Þ

which is the desired result. Again, we can extend this result to, for example, penetration

and surface-renewal theories of mass transfer (Astarita et al., 1983). I believe that these

extensions rarely produce significant improvements.

The third limit occurs when the second-order reaction is very fast and reversible, so

that it essentially reaches equilibrium. The exact form of the result depends on the

stoichiometry. As an example, consider the reaction

ðspecies 1Þ þ ðspecies 2Þ#ðspecies 3Þ ð17:2-11Þ

so

c3 ¼ Kc1c2 ð17:2-12Þ

where K is the equilibrium constant of the reaction. If species 2 and 3 are nonvolatile,

their fluxes are zero at the gas–liquid interface. The calculation of the mass transfer in

this case is similar to that for facilitated diffusion, given in detail in Section 18.5.

Accordingly, only the result is given here:

k

k
0 ¼ 1þD3

D1

Kc2l
1þ KðD3=D2Þc1i

� �
ð17:2-13Þ

where k/k0 represents the correction to the mass transfer coefficient caused by this kind

of chemical reaction.

Example 17.2-1: Oxygen uptake by a synthetic blood Oxygen uptake by blood is faster

than oxygen uptake by water because of the reaction of oxygen and hemoglobin. Many

chemists have dreamed of inventing a new compound capable of fast, selective reaction

with oxygen. Aqueous solutions of this compound, of molecular weight around 500,

could then be used as the basis of a process for oxygen separation from air. Such

a compound would complex with oxygen at low temperatures, but would give up the

oxygen at high temperatures.

How concentrated would this solution have to be to increase the oxygen concentra-

tion in water 50 times? How much faster would oxygen mass transfer into this solution

be? The diffusion coefficient of oxygen in water is 2.1 � 10–5 cm2/sec; that of the new

compound would be about 5 � 10–6 cm2/sec.

490 17 / Homogeneous Chemical Reactions



Solution The solubility of oxygen in water is 3 � 10–7 mol/cm3 so we want

a solubility of 1.5 � 10–5 mol/cm3. This implies approximately a 0.7 wt% solution of our

new compound. If the stoichiometric coefficient � for this compound is one, the rate of

mass transfer can now be estimated from Eq. 17.2-10:

k

k
0 ¼ 1þ ð5 � 10

�6
cm

2
=secÞð1:5 � 10�5mol=cm

3Þ
ð2:1 � 10�5cm2

=secÞð3 � 10�7mol=cm
3Þ

¼ 13

There is about a 13-fold increase in rate.

Example 17.2-2: Sulfur dioxide absorption in a packed tower We are using an ab-

sorption tower 12 m high and 2 m in diameter to remove sulfur dioxide from a proc-

ess gas. From previous experiments on nonreacting systems, we know that when

the tower uses 2�C water at the desired rate, the gas-side mass transfer is characterized

by a k0Ga of 1.7 sec–1 and the liquid-side mass transfer by a k0La of 3.8 � 10–3 sec–1. We

also know that under the current process conditions, sulfur dioxide is present at a par-

tial pressure of around 10 mm Hg, producing a solution that contains 0.1 wt% at

equilibrium.

We want to know how much the mass transfer in this column will be improved

if we replace water with dilute solutions of sodium hydroxide. For this case, we

expect

SO2 þ 2NaOH ! Na2SO3

Estimate the size of these improvements as a function of NaOH concentration.

Solution Because acid–base reactions like this are essentially instantaneous,

we can estimate the improved mass transfer in the liquid from Eq. 17.2-10. Because c1i in

this equation is the interfacial value, we are forced to parallel the derivation in Section

8.5.

The flux across the interface must be

j1 ¼ kpð p1 � p1iÞ

¼ kLðc1i � 0Þ

¼ k
0
L c1i þ

D2c2l
�D1

� �
where the subscripts 1 and 2 refer to SO2 and NaOH, respectively. We know that the gas

and liquid concentrations at the interface are in equilibrium:

p1i ¼ Hc1i

We now can find the interfacial concentration:

c1i ¼
k
0
pp1 � kLðD2c2l=�D1Þ

kpHþ k
0
L
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Note that this interfacial concentration is zero when

c2l >
kp�D1

k
0
LD2

 !
p1

When it is greater than zero, the flux is

j1 ¼ KLð p1=HÞ
where

KLa ¼
1þD2c2lH=�D1p1

1=kpaHþ 1=k
0
La

From the problem statement, we know that k0La is 3.8 � 10–3 sec–1. We can find kpa by

converting units:

kpa ¼
1:7=sec

ð82 atm cm
3
=molKÞð293KÞ

¼ 7:1 � 10�5mol=cm
3
sec atm

The Henry’s law constant involves other unit conversions:

p1 ¼ Hc1

ð10mmHgÞ atm

760mmHg

� �
¼H

0:001 g

cm
3

� �
mol

64 g

� �
H¼ 840 cm

3
atm=mol

The diffusion coefficient for NaOH is 2.1 � 10–5 cm2/sec; that for SO2 is about 1.9 � 10–5
cm2/sec. To produce sulfite, � ¼ 2.

Using these values, we find the cli equals zero when c2l is 0.44 mol/l. At smaller

hydroxide concentrations, the change in the overall mass transfer coefficient is

KLa

K
0
La
¼ 1þD2c2lH

�D1p1

¼ 1þð2:1 � 10
�5
cm

2
=secÞc2lð840cm3

atm=molÞðl=1000 cm3Þ
2ð1:9 � 10�5cm2

=secÞð10=760 atmÞ
¼ 1þ ð35 l=mÞc2l

The results are shown in Table 17.2-1. At low hydroxide concentrations, the overall

coefficient approaches the limit of no reaction; after an increase of a factor of 16, it

becomes limited by mass transfer in the gas phase.

17.3 Industrial Gas Treating

In the previous two sections, we showed howmass transfer can be accelerated by a chem-

ical reaction. We showed that for a first-order irreversible reaction, the mass transfer
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coefficient can become independent of the mass transfer coefficient without reaction,

varying instead with the square root of the rate constant of the chemical reaction. We

also showed that when the reaction became so fast that the various reagents cannot

coexist, the mass transfer is proportional to the value without reaction times a correction

factor involving ratios of concentrations in solution. These two limits describe much of

the effect of chemical reaction on mass transfer, so most books stop at this point.

I want to go beyond this point because I believe there is still a large step between these

idealizedmodels and what actually happens in industrial gas treatment. In doing so, I am

trying to avoid the usual chemical reaction of

Aþ B! C ð17:3-1Þ

which some have suggested represents argon reacting with boron to produce carbon.

Instead, I want to talk about what actual gas mixtures are treated and how chemical

reactions can improve the treatment. In so doing, I am temporarily breaking the mold of

most of this book, which is phrased in abstract terms. I am trying instead to talk about

how the mathematical abstractions can be connected with real chemistry.

To make this connection, we first need to ask what gas mixtures we want to treat.

There are three common targets. First, we frequently have chemical process gas streams

containing 5 to 50% carbon dioxide and somewhat smaller amounts of hydrogen sulfide.

Wewant to reduce the carbon dioxide concentration to around 0.1%.Wewant to cut the

hydrogen sulfide concentration even further, to below 0.01% or 100 ppm. A second

target is flue-gas desulfurization. Flue gas is produced by burning a hydrocarbon fuel

that contains sulfur. As a result, the gas that goes up the stack contains typically 0.25%

sulfur dioxide. We want to remove 90% of this sulfur dioxide. A third common target is

the removal of organic sulfur compounds, like carbonyl sulfide (COS) or mercaptans,

which are organic materials with an SH group instead of an OH group. Because these

compounds have noxious odors, we generally want to reduce their concentration in any

effluent to less than 1 ppm.

Gas mixtures like these occur widely. They occur in hydrogen manufacture, petro-

leum desulfurization and coal liquifaction. They occur in the manufacture of ammonia.
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They occur frequently in natural-gas purification, both in the upgrading of pipeline gas

and in the purification of liquid natural gas (LNG). Gas streams like these occur in the

manufacture of such commodity organic chemicals like ethylene and ethyl acetate.

The current treatment of these materials depends on the concentration of the un-

desired gas to be removed in the mixed feed. When this undesired gas concentration is

high, above perhaps 20%, the gas to be removed can often be absorbed in nonreactive

liquids. Such nonreactive liquids are called ‘‘physical solvents.’’ When the concentration

in the feed is smaller, the free energy required for any separation will be larger. In this

case, the solubility in nonreactive liquids is frequently insufficient to achieve the desired

separation in reasonably sized equipment. Instead, we must absorb the target species in

reactive liquids, which are called ‘‘chemical solvents.’’

We should stress that in many cases, other separation processes will be competitive to

gas absorption, even gas absorption with highly reactive chemical solvents. Gases can

frequently be separated using adsorbents, along the lines outlined in Chapter 15.

Pressure-swing adsorption (PSA) can produce highly purified gases. Alternatively,

where high purity is less important, the inexpensive membrane separations described

in Chapter 18 may be appropriate. This is especially true in the upgrading of natural gas.

In this section, however, we want to focus on the treatment of gas mixtures by

absorption in chemical solvents. To make this discussion easier to understand, we will

focus on the particular example of the absorption of hydrogen sulfide into aqueous

solutions of amines. Gas streams containing significant amounts of hydrogen sulfide

are produced from sour crude oil by hydrodesulfurization. In most cases, we want to

reduce the hydrogen sulfide concentration in the gas streams to less than 4 ppm.

As suggested above, the particular solvents in which we choose to carry out this gas

absorption depend on the concentration in the feed stream. If the hydrogen sulfide

concentration is greater than 20%, we will depend purely on solubility and choose

physical solvents. If the hydrogen sulfide concentration is between 5 and 20%, we will

choose aqueous amines. These are the focus of the discussion below. If the hydrogen

sulfide concentration is less than about 5%, we may use solutions or slurries of carbo-

nates, especially potassium carbonate. Finally, when we are anxious to remove the final

traces of hydrogen sulfide, we will choose to use strong bases like sodium hydroxide,

even though these cannot be easily regenerated, and so represent a solid waste stream.

A dramatically simplified diagram of one overall process for removing hydrogen

sulfide with amines is shown in Fig. 17.3-1. In this process, the mixed gas feed enters

the bottom of the gas absorber on the left-hand side of the figure. The hydrogen sulfide

reacts with the amine solution that trickles down within this packed absorption tower.

The sulfide–amine mixture passes out of the bottom of the tower into a second, warmer

tower, where the hydrogen sulfide is driven off by heat. The hydrogen sulfide removed in

this warmer tower goes to a Claus plant containing two reactors. Part of this hydrogen

sulfide enters one reactor where it is burned to sulfur dioxide:

2H2Sþ 3O2 ! 2SO2þ 2H2O ð17:3-2Þ

The gas exiting from this reactor is mixed with more hydrogen sulfide in the second

reactor to make elemental sulfur:

2H2Sþ SO2 ! 3S þ 2H2O ð17:3-3Þ
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Thus the overall process essentially adds oxygen to hydrogen sulfide to make sulfur:

2H2SþO2 ! 2Sþ 2H2O ð17:3-4Þ

While this Claus process is tangential to our interest in gas scrubbing, it represents

established, reliable technology.

The design of a gas absorber like that in Fig. 17.3-1 is straightforward. It depends on

the same three key equations that we used in our discussion of gas absorption in Chapter

10: a rate equation, an operating line, an equilibrium line, and a value of the mass

transfer coefficient. The rate equation giving the height of the tower l is

l ¼ G

Kya

� �Z y0

yl

dy

y� y
� ð17:3-5Þ

As in Section 10.3, the quantity in the parentheses corresponds to the height of a transfer

unit and the integral corresponds to the number of transfer units. The operating line is

just amass balance given by Eq. 10.3-5 and will not be discussed further. The equilibrium

line can be determined completely by experiment, but often is facilitated by considering

the chemistry along the lines given below. The overall mass transfer coefficient, which has

units of moles per area per time, is based on a gas-side mole-fraction driving force. It is

related to the individual mass transfer coefficients based on concentration differences as

described in Section 8.5. The liquid-side individual coefficient, which is affected by the che-

mical reaction, will be discussed after we explore the chemistry of the equilibrium line.

To find the equilibrium line, wemust decide which forms of hydrogen sulfide are most

important. To do so, we first consider the ionization of hydrogen sulfide in solution. This

ionization involves two steps

H2S#H
þ þHS

� ð17:3-6Þ

HS
�#H

þ þ S
2� ð17:3-7Þ

Absorber

Other gases

H2S
Other gases

Stripper

Aqueous
amines

O2

ReactorReactor

S,H2O

H2SH2S and
amines

Fig. 17.3-1. Hydrogen sulfide removal with aqueous amines. This schematic process makes

elemental sulfur in a Claus plant shown as the two reactors.
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We can decide which of these steps is more important by looking at the association

constants of these different ions, and, more specifically, at their pKa’s. The association

constant Ka for the first reaction is defined as

Ka ¼
H
þ� �

HS
�½ �

H2S½ � ð17:3-8Þ

In this expression, we have used square brackets to indicate the concentration of the

various species; thus [HS–] indicates the concentration of bisulfide in the system. The

associated pKa is defined by

pKa ¼ � log10 Ka ð17:3-9Þ

Notice that the logarithm in this case is base 10 and is not the natural logarithm. In this

sense, the pKa echos the definition of the pH.

The pKa is a convenient measure of how easily a particular species like H2S ionizes. A

large pKa implies a small association constant Ka and hence a small degree of ionization.

Phrased in other terms, a large pKa implies a weak acid. One way to see this is to imagine

that the pH is equals to the pKa. This implies that in the case given above, the concen-

tration of bisulfide equals the concentration of hydrogen sulfide. In other words, hydro-

gen sulfide is about half ionized. Thus, when the pH is much less than the pKa, very little

of the acid will be ionized. When the pH is much greater than the pKa, almost all of the

acid will be ionized.

In this particular case, the pKa of hydrogen sulfide (H2S) is about 7, and the pKa of the

bisulfide (HS–) is about 12. Thus hydrogen sulfide is the main species below pH 7,

bisulfide is central between pH 7 and pH 12, and sulfide is key above pH 12. Since most

amine solutions are around pH 10, bisulfide is the chief form here.

We now return to the estimation of the equilibrium line. We are trying to decide how

the concentration of H2S in the vapor will vary with the total concentration of sulfides.

We expect the fundamental reaction with the amine (B) will be of the form

H2Sþ B#
K

BH
þþHS

� ð17:3-10Þ

where the equilibrium constant K is defined by

K ¼ BH
þ� �

HS
�½ �

H2S½ � B½ � ð17:3-11Þ

We expect that the total concentration of amine ½�B� will be the sum of the free

amine [B] and the protonated amine [BH+]. The amount of protonated amine will

equal the amount of bisulfide in the system. In addition, we expect that the

concentration of hydrogen sulfide in solution will be proportional to the concentration

in the gas:

y
�
H2S
¼ mxH2S

¼ m

c

� �
H2S½ � ð17:3-12Þ
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in whichm is a Henry’s law constant and c is the total molar concentration in the liquid.

Combining Eq. 17.3-11 with the various mass balances, we find the equilibrium line

y
�
H2S
¼ m

K

� � x
2
HS�

B
� �

=c�xHS

� � ð17:3-13Þ

where xHS is the mole fraction of bisulfide (HS�) in the liquid. This relation says that

the equilibrium concentration in the gas phase be quadratic at low concentrations of

bisulfide and vary still more strongly with bisulfide concentration at higher concentration.

This prediction gives a reasonably good fit for the data, which always surprises me a little.

We now turn to the mass transfer coefficients themselves and the degree to which they

are affected by chemical reaction. The experimental values of these coefficients for the

reaction of H2S with aqueous amines are given in Fig. 17.3-2. These figures show that the

mass transfer coefficient varies linearly with the concentration of amine
�
B
� �

. We want to

explain this result.

There are two possibilities, suggested by the results of Sections 17.1 and 17.2. Because

in the liquid the amine is present in excess, the reaction is essentially first-order in H2S,

with an apparent first-order rate constant equal to the rate constant for the second-order

reaction times the amine concentration. If this reaction is fast, the mass transfer co-

efficient can be found from an extension of Eq. 17.1-21.

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dj1

�
B
� �q

ð17:3-14Þ

where D is the diffusion coefficient of the H2S in the aqueous scrubbing solution, and j1

is the second-order rate constant for the reaction between the H2S and the amine. Note

that the second-order rate constant has units of reciprocal concentration per time, so its

product with the concentration ½�B� has dimensions of reciprocal time and the mass

transfer coefficient has dimensions of length per time. Alternatively, the analysis in

Section 17.2 showed for an instantaneous, irreversible, second-order reaction, the mass

transfer coefficient should be:

k ¼ k
0

1þ DBH
�
B
� �

DH2S H2S½ �

� �
ð17:3-15Þ

where k0 is the mass transfer coefficient in the absence of chemical reaction. The data in

Fig. 17.3-2 are inconsistent with the first of these two relations but consistent with the

second of these two relations. The experimental data in the figure show that the mass

transfer coefficient varies linearlywith the amine concentration, as predicted byEq. 17.3-15.

This qualitative agreement is difficult to make more quantitative. To attempt this

quantification, we could look at the slope of the data shown in Fig. 17.3-2. This slope,

which should correspond to the ratio of the diffusion coefficients, is equal to about 1.8. If

we use the result in Eq. 17.3-15, which is based on the film theory, we find that the ratio of

the diffusion coefficients of amine to hydrogen sulfide is 1.5 (cf. Chapter 5), less than the

experimental result. The ratio of the diffusion coefficients of hydroxide to hydrogen

sulfide is 3.7, greater than the experimental result. Alternatively, if we use the penetration

theory rather than the film theory to derive a relationship equivalent to Eq. 17.3-15, we

predict that the ratio of the diffusion coefficients should be replaced by the same ratio

raised to the 1/2 power. For the amine and hydrogen sulfide, this implies a slope of the

17.3 / Industrial Gas Treating 497



data in Fig. 17.3-2 of 1.2, less than experiment. If we assume that important species are

hydroxide and hydrogen sulfide, we predict that this ratio should be 1.9. This result is

closest to the experimental value. Still, so many alternative predictions make everything

seem like guessing.

My own conclusion is to accept the predictions of Sections 17.1 and 17.2 as qualitative

guides that are not quantitatively exact. In other words, I use them more to make initial

approximations and to organize experimental results than I use them to make a-priori

predictions. This is especially true because the kinetics in many cases may not fall cleanly

into the limit of a fast reaction or an instantaneous one. Here, the half life of the reaction

is believed to be about 10�9 seconds, so that this reaction is effectively instantaneous. In

contrast, the reaction of carbon dioxide is less easy to characterize. Even with sodium

hydroxide, this reaction can fall in the transition between the fast and the instantaneous

limits. Some of the difficulties with a carbon dioxide system are explored in the example

that follows.

Example 17.3-1: Carbon dioxide absorption with amines In many industrial processes,

carbon dioxide must be removed from a gas mixture. This removal is frequently accom-

plished by scrubbing with aqueous solutions of pH 8 to 10 containing compounds like

monoethanol amine:

NH2CH2CH2OH

Carbon dioxide can react with both hydroxyl and the amine groups. However, the pKa

of the hydroxyl group is about 11, so that this reaction will be important only at a pH

above 11. Such extremely basic conditions occur infrequently.

Reaction with the amine group involves a plethora of possibilities:

CO2þH2O#H2CO3 K ¼ 1 � 103

H2CO3#H
þ þHCO

�
3 K ¼ 4 � 10�7 mol=l

HCO
�
3 #H

þþCO
2�
3 K ¼ 4 � 10�11 mol=l

RNH2þH
þ#RNH

þ
3 K ¼ 3 � 109 l=mol

RNH2þHCO
�
3 #RNH

þ
3þCO

2�
3 K ¼ 8 � 10�2 l=mol

RNH2þHCO
�
3 #RNHCOO

�þH2O ; K ¼ 50 l=mol

0 0.5 1.0
Amine concentration, mol / l

0

5

10

15

H
2S

 f
lu

x

Fig. 17.3-2. Hydrogen sulfide uptake with amines. The data are consistent with an instantaneous

reaction but not with a fast reaction.
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In these equations, RNH2 represents the monoethanol amine, and the K’s are the equi-

librium constants of the various reactions. For example, the last one is

RNHCOO
�½ � ¼ 50 RNH2½ � HCO

�
3

� �
where the square brackets signify concentrations. Note that water does not appear in

these equilibria because it is assumed to be present in excess.

How will the rate of mass transfer in these systems vary with the total amine concen-

tration?

Solution The key aspect in this problem is making some sense out of all the

possible chemical alternatives. First, we need to know in which forms the carbon dioxide

occurs. For example,

H
þ� �

HCO
�
3

� �
¼ 4 � 10�7 H2CO3½ �

Over the pH range to be used, [H+] will be 10�8 to 10�10 mol/l; thus HCO�3
� �

will far

exceed [H2CO3]. Similar reasoning shows that HCO�3
� �

will exceed CO2�
3

� �
. Turning to

the reactions with amine, we expect [RNH2] to be relatively large, certainly greater than

10�2 mol/l. Thus RNHþ3
� �

and [RNHCOO�] are the chief reaction products, and the

overall reaction involved here is

CO2þ 2RNH2#RNH
þ
3 þRNHCOO

�

This reaction is restricted to the pH range studied.

We next need to approximate the kinetics involved in this reaction. Because it is

an acid–base reaction, we expect the reaction to be instantaneous, described by Eq.

17.2-10:

k

k
0 ¼ 1þ D2c2

�D1c1i

where 1 and 2 refer to carbon dioxide and amine at the boundaries of the interfacial

reaction region. In a given experiment, we expect c1i to be fixed and

c2 ¼ �c2ð1� hÞ

where �c2 is the total amine concentration and h is the fraction of the amine already

combined with carbon dioxide. Thus we expect

k

k
0 ¼ 1þ D2�c2

2D1c1i
ð1� hÞ

This prediction is verified for industrial absorption towers, for which

k

k
0 ¼ 1þ 5:56 l

9mol
�c2ð1� hÞ

This holds over the pH range of 8 to 10; outside of this range, other chemical reactions

may be more important. Note that the difficulty in this problem, and many like it, is not

in the mathematics but in the chemistry.
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17.4 Diffusion-Controlled Fast Reactions

In this section, we turn to chemical reactions that take place faster than a few

milliseconds, often faster than microseconds. The most common example is the reaction

of acid and base; other good examples are the combustion of methane and the action of

the enzyme urease. These reactions occur so quickly that in industrial situations they are

always diffusion controlled. However, they are of scientific interest.

To see how these fast reactions can be studied, we turn to the specific example of the

temperature-jump apparatus shown in Fig. 17.4-1. In this apparatus, a cell containing

perhaps 0.3 cm3 of conducting solution is suddenly heated by discharging a capacitor

through the solution. This heating, typically about 10 �C, shifts any reactions in the cell

away from equilibrium. These reactions then move to a new equilibrium at the new,

higher temperature. The speed with which they reach this new state is measured with

a spectrophotometer attached to an oscilloscope.

One reaction studied with this temperature-jump apparatus is

H
þ þOH

�#H2O ð17:4-1Þ

T
SX

X

V

C
G

(a)  Apparatus

(b)  Typical output

Oscilloscope
output

0 2 4 6
Time, μsec

Fig. 17.4-1. The temperature-jump apparatus. Two large electrodes (X) are placed in a small cell

(C) containing the solution of interest. The electrodes are charged with a power supply (V) until

a spark flashes across the gap (G). The sudden current rapidly increases the cell’s temperature,

perturbing any reaction equilibria. These perturbations are recorded with the spectrophotometer

(S) and displayed on an oscilloscope as a trace (T). A typical trace is also shown.
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To study this reaction, the cell might be filled with an aqueous solution of KCl and a pH

indicator. The KCl makes the solution conducting, so that capacitors can discharge; the

indicator must be chosen so that its color change is still more rapid than the acid–base

reaction. When the temperature is suddenly increased, the ionization of water is slightly

increased, so that the indicator’s color will slightly change. This change, monitored by

the oscilloscope, can be used to find the rate constant j1.

In the remainder of this section, we shall describe how the oscilloscope trace can be

related to the rate constant and how the rate constant varies with the diffusion coefficient.

17.4.1 Finding the Rate Constant

The experimental signal found on the oscilloscope is rarely a smooth, exactly

defined curve. Far more frequently it contains considerable noise, more than that shown

in Fig. 17.4-1(b). One method of reducing this noise is to repeat the experiment and to

average electronically the various signals obtained. Even so, the signal remains inexactly

known.

As a result, the signals obtained in this sort of experiment are almost always analyzed as

if they are a first-order exponential decay. In other words, the logarithm of the signal’s

intensity is plotted versus time; the slope of this plot is themeasured parameter. This slope,

which has the units of reciprocal time, is a pseudo-first-order rate constant. These slopes

are rarely reported; instead, their reciprocals, called relaxation times s, are the data given.
We want to relate these relaxation times to kinetic rate constants. Such relations

depend on the particular stoichiometry involved. As an illustration, we consider the

reaction

ðspecies 1Þ þ ðspecies 2Þ#
j1

j�1
ðspecies 3Þ ð17:4-2Þ

For this case, a mass balance on the cell gives

dc1
dt
¼ �j1c1c2 þ j�1c3 ð17:4-3Þ

We now let c91 be the small perturbation in concentration caused by the change in

temperature:

c1 ¼ �c1 þ c#1 ð17:4-4Þ

c2 ¼ �c2 þ c#1 ð17:4-5Þ

c3 ¼ �c3 � c#1 ð17:4-6Þ

where the �ci are the equilibrium concentrations at the new, higher temperature. Com-

bining these relations,

dc#1
dt
¼ �j1ð�c1 þ c#1Þð�c2 þ c#1Þ þ j�1ð�c3 � c#1Þ ð17:4-7Þ
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However, at equilibrium,

0 ¼ j1�c1�c2 � j�1�c3 ð17:4-8Þ

We now subtract these equations and, recognizing that c01 is small, neglect any terms in

(c01)
2:

dc#1
dt
¼ � j1ð�c1 þ �c2Þ þ j�1½ �c#1 ð17:4-9Þ

Integrating, we see that

ln c#1 ¼ ðconstantÞ � j1ð�c1 þ �c2Þ þ j1½ �t ð17:4-10Þ

Thus the relaxation time s is

1

s
¼j1ð�c1 þ �c2Þ þ j�1 ð17:4-11Þ

In cases like this, we also know the equilibrium constant K (=j1/j�1). Thus, from
measurements of s, we can find both the forward rate constant j1 and the reverse rate

constant j�1. Note also that for this stoichiometry, s–1 varies linearly with �c1 þ �c2ð Þ,
permitting another experimental check of this argument.

17.4.2 Relating the Relaxation Time and the Diffusion Coefficient

At this point, we have described the temperature-jump method, a fast-reaction

technique, and we have found relations between the relaxation times found from this

method and the rate constants implied by the reaction’s stoichiometry. In general, these

rate constants will depend on factors like electronic structure.However, if the two reagents

are very reactive, then they will react whenever they collide. In this case, their reaction rate

depends not on electronic structure but on how often they collide (i.e., on their diffusion).

To explore this dependence of reaction rate on diffusion, we consider the forward

reaction in Eq. 17.4-2. Imagine that species 2 is dilute and stationary. We then choose as

a system a volume 1=c2 ~N having a molecule of species 2 at its center. We assume that

whenever a molecule of species 1 reaches this center, it reacts. We then write a mass

balance on species 1 in this system:

reaction
volume

� �
system
volume

� �
¼

diffusion
flux into
system

0@ 1A
ðr1Þ

1

c2 ~N

� �
¼ 4pr2j1 ð17:4-12Þ

where r is the approximate radius of the system. The flux of species 1 for such a system

has already been calculated (see Eq. 2.4-24):

j1 ¼ �
D1r12

r
2

� �
c1 ð17:4-13Þ
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in which r12 is the collision distance between the two species and c1 is the concentration

in the bulk, far away from species 2. Thus

r1 ¼ �4pD1r12
~Nc1c2 ð17:4-14Þ

However, species 2 is not actually stationary; if it too is allowed to move, this relation

must be modified:

r1 ¼ �4pðD1þD2Þr12
~Nc1c2 ð17:4-15Þ

Now the forward reaction rate is

r1 ¼ �j1c1c2 ð17:4-16Þ

Thus the forward rate constant for this type of diffusion-controlled reaction is

j1 ¼ 4pðD1þD2Þr12
~N ð17:4-17Þ

This is the desired result.

The foregoing derivation – due to Smoluchowski (1917); see also Debye (1942) – is

approximate. Most obviously, it neglects any potential surrounding the two species,

a potential that might greatly accelerate or inhibit their interaction. It also ignores

molecular shape. Because differently shaped reagents might need to rotate before they

react with each other, the diffusion coefficients in Eq. 17.4-17 might include rotational

contributions. Still, this derivation provides a first approximation for diffusion-con-

trolled fast reactions.

Example 17.4-1: Diffusion-controlled reactions Which of the following reactions is

diffusion controlled?

(a) Reaction of a proton and a hydroxyl:

H
þ þOH

� ! H2O; j1 ¼ 1:4 � 1011l=mol sec

(b) Reaction of ethylenediaminetetraacetic acid:

OH
� þEDTA

3� ! EDTA
4�
; j1 ¼ 3:8 � 107l=mol sec

Solution As a rule of thumb, reactions are diffusion controlled if their rate

constants are faster than 109 l/mol sec. To make this more quantitative, we can insert

into Eq. 17.4-17 estimates of diffusion coefficients from Chapters 5 and 6 and sizes from

solid-state radii and thus estimate the rate constants if the reactions are diffusion con-

trolled. For reaction (a),

j1 ¼ 4pðD1þD2Þr12
~N

¼ 4pð9:3þ 5:3Þ 10
�5 cm

2

sec

 !
ð2:8 � 10�8cmÞ l

10
3
cm

3

� �
6:02 � 1023

mol

 !
¼ 3 � 1010 l=mol sec
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The experimental value is still more rapid, apparently because of the electrostatic in-

teraction. Thus reaction (a) is diffusion controlled. For reaction (b),

j1 ¼ 4pð5:3þ 0:8Þ 10
�5 cm

2

sec

 !
ð5 � 10�8cmÞ l

10
3
cm

3

� �
6:02 � 1023

mol

 !
¼ 2 � 1010 l=mol sec

This estimate, based on the assumption that the reaction is diffusion controlled, is much

faster than the experimentally observed rate constant. Thus the kinetics of reaction (b) is

not controlled by diffusion, but by chemical factors.

17.5 Dispersion-Controlled Fast Reactions

As the final topic in this chapter, we consider the rates of chemical reaction in

turbulent flow. Such flow produces rapidmixing, so that the fluid appears homogeneous.

Such mixing turns out to be only macroscopic. In other words, if we take 10 samples,

each of 1 cm3, we find that the average concentrations of the samples differ by only a few

tenths of a percent. However, if we take ten samples of 10�12 cm3, we find that their

concentrations vary widely. For example, if we are mixing acid and base, we might find

that some samples contain 10�2 mol/l H+, and other have 10�12 mol/l H+.

Such microscopic heterogeneity can sharply reduce the rate of a chemical reaction.

Such reductions are not automatically bad. For example, in an automobile engine, wemay

wish to slow the combustion in order to reduce the maximum temperature and hence

retard the formation of nitrogen oxide pollutants. It is important to know how this altered

reaction rate can be estimated. Such estimates are the subject of this section.

To begin these estimates, imagine that we continuously inject a small amount of

a concentrated solution of dye into a rapidly flowing solvent. We measure the dye

concentration downstream of this injection. Far downstream, the dye’s concentration

will be a uniform value of �c1, as shown in Fig. 17.5-1. Closer to the injection point, the

concentration c1 will fluctuate, both in position and time. The concentration fluctuations

c1� �c1ð Þ will sometimes be positive and sometimes negative; their average over time will

be zero. However, the squares of these fluctuations will always be positive. We can

characterize the size of an average fluctuation as a root mean square

c1��c1ð Þ2 ¼ 1

s

Z s

o

c1� �c1ð Þ2 dt ð17:5-1Þ

Measurements of these fluctuations are reported as fluctuation sizes divided by the

average concentration

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 � �c1ð Þ2

q
�c1

ð17:5-2Þ

The relative fluctuation size h provides a measure of the effectiveness of the turbulent

mixing in our particular experiment.

504 17 / Homogeneous Chemical Reactions



We can plot our measurements of dimensionless fluctuations h vs. downstream po-

sition z, divided by the fluid velocity v. Typically, we get a plot like that shown in Fig.

17.5-2, which often has the form of an exponential decay. In other words, a plot of log h
varies linearly with (z/v). Such a plot implies a characteristic decay time s. In other

words, we find from our mixing experiment that

h ¼ h0e
� z

vs ð17:5-3Þ

where h0 is the fluctuation size where mixing starts. The experimentally determined

relaxation time s is a measure of how good our mixing really is. It shows that no matter

how hard we try, we cannot get instantaneous mixing; we will always need some time.

This time s is then one easy way to compare mixers. For example, we can compare static

mixers, which are vanes set in the flow to promote mixing. Vanes which give smaller

values of s are providing better mixing.

Now imagine a different experiment in which we inject acid into a rapidly flowing

solution of base. As before, wemeasure concentration (as pH); as before, wemeasure the

size of fluctuations (as h). As before, we find values of h drop with z/v. But we also find

that the fluctuations of the acid hacid are exactly the same as the fluctuations caused by

mixing alone

hacid ¼ h ð17:5-4Þ

In other words, fluctuations in the reacting acid–base system decay at the same rate as

fluctuations in dye concentration. Indeed, if we injected hot water into cold water, we

would find that the temperature fluctuations decayed in very much the same way, with

the same time constant s.
At first glance, it may seem startling that fluctuations in a nonreacting system, in

a reacting system, and of heat, all fit the same equation. On reflection, this becomes less

surprising. The reaction is so fast that acid and base never coexist, but at least one is

destroyed as soon as contact is made. Thus how fast acid and base react does not depend

on reaction kinetics, but only on turbulent mixing. How fast they react is a function of

physics, but not of chemistry.
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Fig. 17.5-1. Concentration fluctuations in turbulent flow. The concentration of continuously

injected dye first varies wildly but reaches an average value after mixing.
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We now want to turn to the estimation of the relaxation time s. Normally, we will

want to measure s by experiment because it will be peculiar to the specific turbulent flow

which is involved. However, we can anticipate that this relaxation will involve two

mutually dependent mechanisms. The first is the time s# to cause the formation of small

packets of fluid, estimated by

s9 ¼ d
2

4E
ð17:5-5Þ

where d is a characteristic of the reactor size, typically the reactor diameter; and E is the

dispersion coefficient in the flow. The second mechanism involves the time s## to diffuse

into these packets

s0 ¼ l
2

4D
ð17:5-6Þ

where l is the packet size, normally around 30 lm; and D is the normal diffusion

coefficient, about 10�5 cm2/sec in normal liquids. Because these two mechanisms

occur sequentially, the total relaxation time for the process s is just the sum of the

steps:

s ¼ s9 þ s0 ð17:5-7Þ

Often, one of these relaxation times will be longer than the other, and hence control the

process. These ideas are illustrated in the example which follows.

Example 17.5-1: Acid and base mixing A small amount of aqueous 1-M nitric acid is

injected into excess aqueous 0.1-M sodium hydroxide, flowing at 2 m/sec in a 5 cm pipe.

Estimate the relaxation time s in this case.

z / v

θ

Fig. 17.5-2. Average fluctuation size vs. residence. Fluctuations often decay exponentially as

turbulent mixing becomes more complete.
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Solution We first calculate the Reynolds number Re

Re ¼ dv

�
¼ 5 cm 200 cm=secð Þ

0:01 cm
2
=sec

¼ 10
5

The flow is highly turbulent. Under this situation, we find from Eq. 4.2-2 that

dv

E
¼ 2

5 cm 200 cm=secð Þ
E

¼ 2

E ¼ 500 cm
2
=sec

We can find the time s# from Eq. 17.5-5:

s0 ¼ d
2

4E
¼ 5 cmð Þ2

4 500 cm
2
=sec

� �
¼ 0:013 sec

The diffusion coefficient of nitric acid found from Section 6.1 is 3.2 � 10�5 cm2/sec, so

s0 ¼ l
2

4D
¼

30 � 10�4 cm
� �2

4 3:2 � 10�5 cm2
=sec

� �
¼ 0:070 sec

Thus s from Equation 17.5-7 is about 0.08 sec and is largely documented by diffusion

within the small packets generated by the turbulent flow.

17.6 Conclusions

The material in this chapter describes how homogeneous chemical kinetics can

alter rates of mass transfer and how mass transfer can alter rates of chemical reaction.

The first three sections of the chapter emphasize how these altered rates affect the pro-

duction of industrial chemicals. These sections distinguish between a ‘‘fast reaction’’ and

an ‘‘instantaneous reaction.’’ At first such a distinction may seem silly: after all, if a re-

action is instantaneous, it must be fast, right? But what is meant by this distinction is

more subtle and merits thought.

In this chapter, a ‘‘fast reaction’’ is one whose chemical kinetics is the same speed or

faster than diffusion, but one where the reagents can coexist. In this case, the actual rate

is a function both of diffusion coefficients and of reaction rate constants, as detailed in

Section 17.1. This interaction leads both to the enhancement factors used in reactive gas

treating and to the effectiveness factors important for porous catalysts.

In contrast, an ‘‘instantaneous reaction’’ has chemical kinetics that is so fast that

the reagents do not coexist. It is the ultimate chemical civil war: as soon as the reagents
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are together, at least one is completely exterminated. In this case, the actual reaction rate

depends on diffusion coefficients but not on reaction rate constants, as described in

Section 17.2. The way in which these two limits interact in one practical situation is

covered in Section 17.3.

These sections go beyond industrial chemical production to raise more fundamental

questions about whether a reaction is heterogeneous or homogeneous. An instantaneous

reaction can certainly involve reagents in solution without any physical interface be-

tween phases. However, such an instantaneous reaction occurs only at a ‘‘reaction

front,’’ like that shown in Figure 17.2-1(c). If it takes place only at such a front, it is

really behaving as if it is heterogeneous. These fronts may be created as perturbations, as

they are in the case of diffusion-controlled fast reaction. They can be generated as the

result of turbulent mixing. In each case, they push the limits of what is meant by

‘‘diffusion controlled.’’ That is why the material in this chapter is so interesting.

Questions for Discussion

1. What is the difference between a fast reaction and an instantaneous one?

2. What is the difference between a second Damköhler number and a Thiele

modulus?

3. If the rate constant of a fast reaction is increased 10 times, how much does the

mass transfer coefficient increase?

4. If the rate constant of an instantaneous reaction is increased 10 times, how

much does the mass transfer coefficient increase?

5. What is an enhancement factor?

6. What is the effectiveness factor?

7. Why do different models of mass transfer give such similar results for the mass

transfer coefficient with fast reaction?

8. Why do differently shaped catalyst particles give similar results for fast chemical

reaction?

9. Sketch how the mass transfer coefficient of carbon dioxide in flue glass will vary

with the kinetics of a reactive liquid solution.

10. Why do so many acid–base reactions have similar rate constants?

11. If you wanted to study acid–base kinetics by mixing aqueous acid with aqueous

base, what reactor design would you use?

12. How can experimental measurements mixing hot and cold water be used to

predict the kinetics of mixing acid and base?

Problems

1. You have been recovering an antibiotic from a fermentation broth by adsorption on

activated carbon and have found that the mass transfer coefficient for this adsorption
is 6.1 � 10�4 cm/sec. In an effort to accelerate this adsorption, you switch to a cation-
exchange resin of the same size beads and keep all details of your experiment the same.

You find that the coefficient is now 1.03 � 10–2 cm/sec. Because this coefficient is highly
temperature-dependent, you suspect that it is influenced by chemical reaction. The
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antibiotic has a diffusion coefficient of about 9.4 � 10�7 cm2/sec. What is the rate

constant for the reaction? (E. Frieden)

2. (a) Estimate the change in mass transfer coefficient k/k0 for 1.2-atm partial pressure

H2S being quickly absorbed by large quantities of 0.1-M monoethanolamine in water
instead of by pure water. The chief reaction

H2SþRNH2#HS
� þRNH

þ
3

has an equilibrium constant of 275; the Henry’s law constant for H2S in water is 545.

(H. Beesley) (b) How large an error is made if the reaction is assumed to be irrevers-
ible? (S. Gehrke)

3. The hydrocracking of a heavy oil at 1,080 �C and 1 atm uses a porous catalyst
and excess hydrogen. Batch experiments with finely divided catalyst show a half life

for the oil of 0.082 sec. Moreover, the oil has a diffusion coefficient of 0.014 cm2/sec
in the catalyst. Estimate the apparent rate constant in 0.1-cm spherical catalyst
pellets.

4. The reaction

COþ 3H2 ! CH4 þH2O

has a rate on a single nickel crystal given by [D. W. Goodman, R. D. Kelley, T. E.
Madey, and J. T. Yates, Jr., J. Catal., 63, 226 (1980)]

rate ½¼�molecules

sec site

� �
¼ 2:2 � 108eð�24:7 kcal=molÞ=RT

pH2

0:77
pCO

�0:31

where the pressures are in atmospheres. This rate is known to be the same as that for
a supported nickel catalyst [M. A. Vannice, J. Catal., 37, 449 (1975)]. With this in

mind, estimate the reaction rate at 430 �C for a feed containing 1 atm each of CO and
H2 and a catalyst containing 1.1 � 1014 sites/cm3 in 1.6-cm spherical pellets.

5. The plasmamembranes of cells in a suspension 0.7 cm deep are stained with an organic
dye by layering the dye in a tetradecane solution on top of an agar-stabilized suspen-
sion in a 10-cm Petri dish. The dye has a diffusion coefficient of 2.8 � 10�6 cm2/sec.

Its concentration in the tetradecane solution is 0.1 M, and the partition coefficient
between the tetradecane and the suspending medium is 13. The cells are roughly
spherical, approximately 2.1 � 10�6 meters in diameter and present at a volume fraction

of 0.05. In the range of dye concentrations being considered, the concentration of
dye on the cells c2 is proportional to the dye concentration in the suspending medium
c1:

c2 ¼ 3:4 � 103c1

The dye cannot penetrate the cell membrane. How much dye will have entered the
solution after 30 min? (K. H. Keller)

6. The data in the figure below give the moisture content of rough brown rice as a func-
tion of time [Bakshi and Singh, J. Food Sci., 45, 1387 (1980)]. Estimate the mass

transfer coefficient versus temperature in the rice. Compare this temperature depen-
dence with that expected if the water did not react with starch in the rice.
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7. Imagine mass transfer across a thin film like that shown in Fig. 17.1-1. A zero-order
reaction is taking place with the film. (a) What is the mass transfer coefficient in the
absence of chemical reaction? (b) What is the differential equation and boundary
conditions for the concentration in the film? The reaction is

r1 ¼ �j when c1 > 0

r1 ¼ 0 when c1 ¼ 0

(c) What is the mass transfer coefficient in this second situation?

8. Hydrogen sulfide is being removed from a hydrocarbon stream by washing with excess
reactive liquid amine. The reaction is irreversible and fast but not instantaneous; its

approximate form is

H2SþRNH2 ! RNH
þ
3 þHS

�

Sketch the logarithm of the mass transfer coefficient in this liquid versus the logarithm
of the reaction rate constant, and versus the logarithm of the velocity. Discuss differ-

ent regions of these sketches.

9. Ammonia in dilute solution is often air-stripped in packed towers as amethod of water
pollution control. The stripping is a strong function of pH because of the equilibrium

NH
þ
4 #NH3 þH

þ

Use the film theory to derive an expression giving the overall mass transfer coefficient
as a function of pH, the total ammonia concentration c, and the mass transfer coef-

ficients in the liquid and the gas. (a) Write continuity equations in terms of c1 (=
[NH3]) and ð¼ ½NHþ4 �Þ. Integrate these to find the total flux J in terms of concentra-
tions on either side of the film. (You may assume all species have equal diffusion
coefficients.) (b) Use boundary conditions at x ¼ l within the liquid to rewrite the flux
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equation in terms of known bulk concentrations. (c)Write boundary conditions at z¼
0, but don’t use them. Instead, assume the acid concentration c3 is in excess. As a result

c1ic3 ¼ Kc2i

Use this to find J in terms of c1i, c and k0 (=D/ l). (d) Remove c1i by including a mass

transfer resistance in the gas kG to find the overall coefficient KL(kL, kG, c, pH).

10. The absorption of CO2 from gas into mixed concentrated aqueous carbonates has the
stoichiometry

CO2 þH2Oþ CO
2�
3 ! 2HCO

�
3

This reaction can be inhibited by slow reaction kinetics; this inhibition can be reduced
using hypochlorite ions (ClO�) as a catalyst. The resulting reaction rate is

r ¼ 1:5þ 2700 l

mol
½ClO��

� �
sec
�1

 �
½CO2�

where the concentration [CO2] is in the liquid, not in the gas.

Estimate the change in mass transfer caused by this chemical reaction using the
penetration theory. In particular, (a) write an appropriate mass balance and boundary
conditions for CO2. (b) One integrated form of this result is

j1jz¼0 ¼
ffiffiffiffiffiffiffi
Dk
p

½CO2� erfðjtÞ1=2 þ e
�jtffiffiffiffiffiffiffi
pjt
p

 �
Find the limits of this result for fast and slow reactions.

11. Under one set of experimental conditions, oxygen diffuses to the surface of carbon
particles and reacts to form carbon monoxide:

O2 þ 2C ðsolidÞ!j2
2CO

As the carbon monoxide diffuses away, it rapidly reacts to form carbon dioxide:

O2 þ 2CO!j3
2CO2

In the region where this second reaction occurs, carbon monoxide has a much higher
concentration than oxygen. Use the film theory to estimate the flux of oxygen as
a function of both rate constants.

12. In the text, we used the film theory to show that for a fast irreversible second-order
reaction,

k

k
0 ¼ 1þ D2c20

�D1c10

This derivation assumed implicitly that the system was always dilute, so that there was
no diffusion-engendered convection (i.e., n1¼ j1). Imagine, instead, that the solution is

concentrated, diluted only with product c3. The stoichiometry is simple:

ðspecies 1Þ þ ðspecies 2Þ ! ðspecies 3Þ

Find the mass transfer coefficient in this case, assuming that diffusion obeys binary
equations, with diffusion coefficients that are the same for all species.
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13. In 1874, Louis Pasteur was commissioned by Napoleon III to determine why opening

a bottle of full-bodied red wine hours before it is to be consumed gives the wine a more
‘‘mature’’ flavor than the same wine when drunk immediately after opening. Pasteur
reported that the aging process is associated with a reaction consuming oxygen. More
recently, some investigators have argued that this process involved oxygen diffusion

into the wine. They used the oxygen concentration profile for unsteady diffusion
without reaction in the wine and claimed justification of Pasteur’s conclusions. (a)
Write the differential equation and boundary conditions for this problem without

chemical reaction. (b) Solve this equation, or determine the key dimensionless varia-
bles. (c) Use typical values for diffusion coefficients and wine bottles to discuss this
result. (d) Qualitatively describe the effect of chemical reaction.
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CHAPTER 18

Membranes

Diffusion across thin membranes can sometimes produce chemical and physical

separations at low cost. These low costs have spurred rapid development of membrane

separations, especially during the last 20 years. This rapid development has sought both

high fluxes and high selectivities. It has included the separation of gases, of sea water,

and of azeotropic mixtures. It has used hollow fibers and spiral wound modules; it has

centered on asymmetric membranes with selective layers as thin as 10 nm. This rapid

development is a sharp contrast to other diffusion-based separations like absorption,

where the basic ideas have been well established for 50 years.

We will describe membrane separations in this chapter. In this description, we must

recognize that membrane separations usually employ a somewhat different vocabulary

than that used on other separations. The stream that flows into anymembrane module is

sensibly called the feed. That part of the feed retained by the membrane is called the

retentate rather than the raffinate. That part of the feed that crosses the membrane is

called the permeate. Any stream added to improve permeate flow is usually called

a sweep.

Our description of membrane separations also involves two overlapping traditions:

filtration and diffusion. These traditions use a vocabulary that is confusing. The biggest

confusion comes from the term permeability. In ultrafiltration, the solvent’s permeabil-

ity relates the solvent flow through the membrane’s pores to the pressure drop across the

membrane. As such, it is like a Darcy’s law permeability for flow through porous media.

In contrast, in gas separations, the permeability results from a gas flux across a non-

porous membrane. This permeability is the product of the diffusion coefficient and

a partition coefficient. In some cases, those using the term permeability do not know

which effect they are discussing. Not surprisingly, this makes learning about these effects

more difficult.

With this warning, we now bravely embark on our description. In Section 18.1, we

discuss membrane construction and the membrane modules used for the separations. In

Section 18.2, we describe gas separations. These separations use a gas feed at high

concentration diffusing across a membrane into a gas permeate at low concentration.

The only unusual idea is that the high concentration is expressed as a high partial

pressure, and the low concentration as a low partial pressure.

In Section 18.3, we discuss reverse osmosis and ultrafiltration, two separations that

are accomplished in similar ways. In doing so, we invite the confusion mentioned above:

reverse osmosis is commonly believed to depend on pore-free diffusion, but ultrafiltra-

tion is a form of filtration with small pores. We will stress how these processes are similar

and how they differ. In Section 18.4, we describe pervaporation, in which a liquid feed

yields a vapor permeate. This method contrasts with distillation because the less volatile

species may be in higher concentration in the permeate vapor.

Finally, we turn to membranes capable of both diffusion and a variety of chemical

reactions. Such membranes, analyzed in Section 18.5, can aid – or ‘‘facilitate’’ – the
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transport of specific solutes. All these membrane processes imply new ways to effect

separations.

18.1 Physical Factors in Membranes

In this section, we want to describe the fundamentals of diffusion across mem-

branes and the actual physical construction of the membrane. We will extend these basic

ideas to specific types of separations in latter sections. The fundamentals of diffusion

across membranes include the effects of partition coefficients, concentration units, and

resistances in series. The physical construction of membranes includes both the mem-

branes themselves and the modules in which the membranes are used. The membranes

themselves may be symmetric or asymmetric; the modules include hollow fibers, spiral-

wound elements, and plate-and-frame assemblies.

18.1.1 Fundamentals of Diffusion

The basic flux across the membrane is exactly that for transport across a thin

film. The flux j1 is proportional to the concentration difference

j1 ¼
D

l
ðc10 � c1lÞ ð18:1-1Þ

in which D is the diffusion coefficient, l is the membrane’s thickness, c10 is the concen-

tration in the membrane on the feed side of the membrane, and c1l is the concentration

within the membrane on the permeate side of the membrane. The quantityD/l obviously

corresponds to a mass transfer coefficient. If we were to double the diffusion coefficient

in the membrane, the flux would double. If we were to double the thickness of the

membrane, the flux would be cut in half. If we were to double the concentration differ-

ence across the membrane, the flux would double.

There are four key points about the basic equation that are relevant for membrane

separations. First, the separations are inherently based on rate of transport. They de-

pend on diffusion. In this sense, they are like absorption and adsorption. They are much

less like the analysis of staged distillation, which depends largely on thermodynamics.

The second key point about this membrane separation is that it is strongly influenced

by the partition of the solute between the membrane and the adjacent solution. This

means that Eq. 18.1-2 must be replaced by

j1 ¼
DH

l
ðC10 � C1lÞ ð18:1-2Þ

where H is the partition coefficient or ‘‘solubility’’ between the membrane and the

adjacent solution, defined by

c1 ¼ HC1 ð18:1-3Þ

In these equations, the concentration C10 is the concentration in the fluid adjacent to the

feed surface of themembrane. Similarly, the concentrationC1l is the concentration in the
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fluid adjacent to the permeate surface of the membrane. These partition coefficients

mean that the concentration within the membrane may be higher or lower than the

concentration in the adjacent solution. As such, this focus on partition is an echo of

Example 2.2-1.

The third key point in the analysis of membrane behavior is that the simple Eqs.

18.1-1 and 18.1-2 are often obscured by the use of different concentration units. For

example, for gas separations, concentrations are not ordinarily expressed in terms of

moles per volume, but in terms of partial pressures because partial pressures are conve-

nient. The gas separation parallel to Eq. 18.1-2 still retains the basic phenomenology

characteristic of diffusion. But while the phenomenology may be the same, the units of

the coefficients involved are now very different. Previously, the coefficient was D/l,

which was equivalent to a mass transfer coefficient. The mass transfer coefficient had

the dimensions of velocity. Now, the coefficient is the quantity [DH/lRT ] which is

sometimes called the permeance. The dimensions of the permeance are no longer those

of velocity, butmust bemodified to reflect the expression of the concentration as a partial

pressure.

The fourth key point is that the membrane itself is always one of several resistances in

series, as suggested in Fig. 18.1-1. In the past, the membrane has been the principal mass

of the transfer resistance, dominating the resistances in the feed and in the permeate.

However, as those working in the area have become more skilled, they have reduced the

membrane resistance, sometimes by increasing the partition coefficient, but most fre-

quently by dramatically reducing themembrane thickness. Twenty years ago, membrane

thicknesses were as much as 100 lm.Now, they are often less than 1 lm. Thus the overall

flux will be

j1 ¼
C10 � C1l

1

k1
þ l

DH
þ 1

k3

ð18:1-4Þ

where k1 and k3 are the mass transfer coefficients in the feed and permeate, respectively.

These four key points about membrane diffusion will occur again and again in the more

specific membrane descriptions in subsequent sections of this chapter.

Feed

Membrane

Permeate

c10

c1l

Fig. 18.1-1. The concentration profile. The membrane resistance, the dominant element in the

past, is increasingly similar in size to the resistances in the feed and in the permeate.
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18.1.2 Membrane Architecture

We now turn to the membranes themselves. These are most easily subdivided

into symmetric and asymmetric structures. The symmetric membranes, which are less

important, may be nonporous or porous. Nonporous symmetric membranes are typi-

cally made by spreading a polymer solution on a glass plate and allowing the solvent

slowly to evaporate. Typically, 10 percent polymer dissolved in a volatile solvent like

chloroform works well.

Porous symmetric membranes can be made by radiation, by stretching, and by leach-

ing. To make a membrane by radiation, a homogeneous polymer film is exposed to

a source of alpha particles. After exposure, the membrane is treated with chemicals like

hydrofluoric acid to leach away the polymer structure damaged by the radiation. The

result is a membrane with very homogeneous pores, like those shown in Fig. 18.1-2(a).

Membranes with higher concentrations of more regularly packedmondisperse pores can

also bemade by self-assembly of some block copolymers, as shown in Fig. 18.1-2(b). The

practical value of these membranes is uncertain. In still another case, polymers like

polypropylene can be stretched at 143 �C to form tiny tears characteristically about 30

nanometers across. After the membrane is torn, it is then exposed to a second heat

treatment to allow the polymer chains to relax in this slightly torn form. The result is

a membrane like that shown in Fig. 18.1-2(c). Alternatively, suspended solids in polymer

films can be removed by chemical leaching, which generates a structure similar to the

membranes made by stretching.

Asymmetric membranes, which are more important commercially, come in a wide

variety of types. I will discuss three types here. The first type of asymmetric membrane is

that made by phase inversion. This process, originally developed by Leob and Sourirajan,

involves spreading a polymer solution on a moving web. The polymer solution typically

contains 20% polymer in a volatile solvent like acetone. Some of the solvent evaporates

to form a thin skin of polymer. The moving web then dips into a nonsolvent like water

(a) (b) (c)

Fig. 18.1-2. Three porous membranes. The pores are formed (a) by radiation followed by

etching; (b) by self-assembly followed by leaching; or (c) by stretching followed by heat

treatments. These pores all have about 10 nm diameters.
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and the remaining polymer is precipitated. The resulting membrane, shown schemati-

cally in Fig. 18.1-3(a), is idealized as two layers. The selective layer, perhaps one lm
thick, frequently consists of glassy polymer. The remaining part of the membrane,

typically 30 lm thick, is a spongy support that is usually assumed to have no resistance

to mass transfer but that mechanically stabilizes the membrane. The thin, selective skin

on membranes made in this way often contains defects. One can sometimes repair these

defects by coating the membrane with a second permeable polymer layer, especially one

of polydimethylsiloxane. This technique, used in some gas separation membranes, is

suggested schematically in Fig. 18.1-3(b).

A second important type of asymmetric membrane is made by interfacial polymer-

ization. In one example of this method, an asymmetric microporous support is impreg-

nated with a polyamine. This polyamine is then exposed to a diisocyanate to form

a cross-linked polymer film. This cross-linked layer can be extremely thin, perhaps

around 0.1 lm. It is responsible for the membrane’s selectivity. The microporous sup-

port, again typically 30 lm, provides mechanical stability.

The third method of making an asymmetric membrane is the most exotic. It consists

of spreading a dilute polymer solution on a liquid like water. The resulting film can be

extremely thin, perhaps 10 nm. As such, it is close to a monolayer. Such monolayers,

sometimes called Langmuir–Blodgett films, are a popular research topic because they

represent the thinnest possible membranes and because they are believed to be a model

for some biological membranes. Fragile membranes like this have been produced com-

mercially for one device that produces oxygen-enriched air for patients with emphysema.

The unstated disadvantage of these ultrathin membranes is that their selectivity is often

compromised by boundary layers adjacent to the membrane.

18.1.3 Membrane Modules

All the different types of membranes described above can be used in the three

kinds of membrane modules shown in Fig. 18.1-4. One common type is based on hollow

fibers. Hollow fibers are essentially very small pipes, typically 300 lm in diameter with

(a)

(b)

Defects

Selective layer

Microporous support layer

Permeable coating
Selective layer
Microporous support layer

Fig. 18.1-3. Asymmetric membranes made by phase inversion. The membrane in (a) has

a thin selective layer mechanically supported by a thicker spongy layer. Sometimes, a thin coating

on top of this structure can repair membrane defects, as shown in (b).
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a 30 lmwall. They can be melt-spun, wet-spun or formed by interfacial polymerization.

Often they are coated with a selective layer. Hollow-fiber membrane modules offer the

greatest surface area per volume and hence the most efficient type of membrane sepa-

ration. They are widely used for gas separations, although they plug easily and must be

discarded if only a few of the fibers rupture.

The second type of membrane module, which is the hardest to visualize, is the spiral-

wound element. This module essentially consists of a large membrane envelope loosely

rolled like a jelly roll. The feed stays outside the envelope and products are harvested

from the inside via a central tube. In some more sophisticated designs, many envelopes

may come out from the central tube, so that a cross-section of the module would look

like a daisy with petals twisted in a circular direction. This type of module has become

the dominant geometry for reverse osmosis. While it has less membrane area per volume

than a hollow-fiber module, it plugs less easily. However, even if only part of the mem-

brane fails, the entire module must be discarded.

(a) Hollow-fiber module

Permeate

Hollow-fiber membranes

Feed across
fibers

Retentate

Permeate
flow

Feed

Retentate

Permeate
collection
pipe

Membrane envelope

(b) Spiral wound module

(c) Plate-and-frame module

Feed

Membrane

Sweep

Permeate

Retentate

Spacers

Fig. 18.1-4. Membrane modules. The three principal types are based on hollow fibers,

spiral-wound elements, or plate-and-frame assemblies.
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The third type of membrane module is the plate-and-frame assembly, which closely

parallels that used in filtration. Such a module has a high capital cost but is resistant to

fouling. Moreover, if the membrane in one of the plates fails, it can be individually

replaced; the entire module does not have to be discarded. This geometry is often used

for ultrafiltration and has been used for pervaporation. I would expect its use for

physical separations to be sustained but its use for diffusion-based separations to

wane.

These module characteristics are summarized in Table 18.1-1. Manufacturing costs

are lowest for hollow fibers, but operating costs are usually lowest for plate-and-frame

units. In the past, new membrane technologies have tended to begin with the plate-and-

frame geometry, then move to the spiral-wound geometry, and finally evolve to the

hollow-fiber geometry. After that evolution, they return to the geometry that is cost

effective for the specific application. I expect this trend to continue.

Example 18.1-1: Aeration of a fermentation broth You are currently using a sparger in

a small fermenter to carry out an aerobic fermentation. With no microorganisms pres-

ent, you measure the oxygen concentration in this fermenter and obtain

½O2� ¼ ½O2�satð1 � e
�katÞ

where ka equals 0.09 sec�1. As an alternative, you want to aerate the fermentation with

a hollow-fiber module. The microporous hollow fibers that you plan to use have no

membrane resistance; the only resistance is in the boundary layers adjacent to the hollow

fibers. You decide to feed the beer normal to the fibers and to blow excess air through the

bore of each fiber. In this case, the only significant mass transfer resistance is in the broth,

where the mass transfer coefficient is given by

kd

D
¼ 0:8

dv

�

� �0:47
�

D

� �0:33
You plan to use a velocity past the fibers of 10 cm/sec; and you expect the diffusion

coefficient of oxygen in your beer to be the same as that of water, 2.1 3 10–5 cm2/sec.

Each fiber diameter is 240 lm, and the void fraction in the module is 0.5.

How much more rapidly can you aerate the fermentation beer with the hollow-fiber

modules?

Table 18.1-1 Characteristics of membrane module designs

Hollow-fiber Spiral-wound Plate-and-frame

Manufacturing cost Moderate High High
Packing density High Moderate Low
Resistance to fouling Poor Moderate Good
High pressure operation Yes Yes Difficult
Limited to specific membranes Yes No No
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Solution The mass transfer coefficient in the beer is:

kð240 � 10�4cmÞ
2:1 � 10�5cm2

=sec
¼ 0:8

240� 10�4cmð10 cm=secÞ
0:01 cm

2
=sec

 !0:47

3
0:01 cm

2
=sec

2:1 � 10�5cm2
=sec

 !0:33
k ¼ 0:024 cm=sec

The surface area per volume a of module is

a ¼ ðpdlÞ ð1� eÞ
p
4
d
2
l

¼ 4ð1� eÞ
d

where e is the void fraction in the module. Thus

a ¼ 4ð0:5Þ
240 � 10�4 cm

¼ 83 cm
�1

Thus the product ka is 2.0 sec–1, roughly 20 times that of the sparger. This is a typical

result. The improvement in the membrane module comes not from an improved mass

transfer coefficient, which would be the same as or smaller than that in conventional

equipment. The improvement comes from the greater surface area per volume. That this

area is much larger than those offered conventionally can be easily seen by comparison

with the areas for conventional packing like those listed in Table 10.2-1.

18.2 Gas Separations

In this section, we apply the general ideas of diffusion presented in the pre-

vious section to the separation of gaseous mixtures. In principle, these separations are

straightforward: one simply pumps a high-pressure mixture down one side of a membrane.

The membrane is commonly a hollow fiber, though it can equally be a spiral-wound

element or plate-and-frame array. Some components in the gas mixture dissolve in the

membrane and diffuse across it faster than other components. The more permeable species

can be collected in the permeate; the less permeable species are concentrated in the retentate.

To put these ideas in a more quantitative basis, we return to the basic flux equation

given in Eq. 18.1-2, which can be rewritten as

j1 ¼
DH

l
ðC10 � C1lÞ

¼ P

l
ðp10 � p1lÞ ð18:2-1Þ

where p1 is the partial pressure of gas ‘‘1,’’ equal to RTC1; and P is the permeability,

equal to (DH/RT). In some cases the membrane’s thickness is known, so the permeabil-

ity can be calculated from measurements of flux and partial pressure.
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Typical permeabilities for carbon dioxide and nitrogen are given for some common

polymers in Table 18.2-1. While the permeability is a simple quantity, its units are not.

These units are most commonly given in terms of barrers. A barrer is defined as:

1 barrer¼ 10
�10

cm
3
gasðSTPÞ ðcm thicknessÞ

ðcm2
membrane areaÞ ðcmHgpressureÞsec

ð18:2-2Þ

Such a unit was originally defined for convenience because many polymer membranes

had permeabilities around 1 barrer. In the cases where the membrane thickness is not

known, the permeance (P/l ) becomes the operating parameter. In its simplest form, the

permeance is just the mass transfer coefficient for the membrane, with dimensions of

velocity. Like the permeability, however, more common dimensions are gas permeation

units (GPU), defined as

1GPU¼ 10
�6

cm
3 ðSTPÞ

ðcm2
membrane areaÞsecðcm Hg pressureÞ

ð18:2-3Þ

Thus a membrane with a permeability of 1 barrer and a thickness of 1 lm has a perme-

ance of 1 GPU.

18.2.1 Target Separations

Four groups of gas mixtures have most often been targets of membrane sepa-

ration. The first group involves the separation of hydrogen from nitrogen, methane, and

carbon monoxide. These separations have been successful, especially using hollow

fibers. Their success depends on the high permeability of hydrogen, which is a conse-

quence of hydrogen’s low molecular weight and high mobility. Applications exist in

ammonia purge gas, in oil refining, and in synthesis-gas manufacture. These separations

seem mature, important because they were the earliest examples commercialized.

The second group of gas separations concerns the removal of carbon dioxide and

hydrogen sulfide from low-grade natural gas. This includes gas produced by drilling land

fills to collect the methane produced by the long-term degradation of garbage. Appli-

cations using spiral-wound modules have been compromised by the membrane selectiv-

ity. More selective membranes seem feasible, so this area should grow.

Table 18.2-1 Nitrogen and carbon dioxide permeabilities in various polymers at 30 �C

Film Pco231011 PN2
31011 Selectivity

Saran 0.29 0.009 31
Mylar 1.5 0.05 31
Nylon 1.6 0.010 16
Neoprene 250 12 21
Polyethylene 350 19 19
Natural rubber 1310 80 16

Note: The permeabilities are given in barrers (see Eq. 18.2-2).
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A third important area for gas separation is the removal of water vapor from air or

from hydrocarbons. This separation is easily accomplished using adsorption, but the

adsorbent beds require periodic regeneration. Membranes, which do not require this

regeneration, show selectivities over air and hydrocarbons of thousand to one. Hydro-

carbon losses, which are significant now, should improve as the membranes evolve.

The largest potential market for gas membrane separations is the separation of air. At

present, 95% nitrogen can be effectively produced from a variety of commercially avail-

able membrane units. This particular separation has been used for producing inert

atmospheres used, for example, to fill grain elevators. Doing so stops rats from living

in the grain elevators and prevents the spontaneous dust explosions which could occur in

the past. The production of oxygen with membranes has proved more difficult. Small

units producing oxygen-enriched air are commercially available, but membrane separa-

tions for 90% oxygen remain elusive. Doing so requires membranes with an oxygen/

nitrogen selectivity around 50, well beyond that available now.

18.2.2 Rubbery Polymer Membranes

Four kinds of membranes are used to effect gas separations: rubbery polymers,

glassy polymers, porous membranes, andmembranes capable of capillary condensation.

Rubbery polymer membranes can be single polymers or copolymers. Their behavior is

essentially that of a viscous liquid. Gas molecules diffusing in these membranes tend to

have diffusion coefficients of the order of 10�7 cm2/sec. Any selectivity in these mem-

branes tends to come from differences in the partition coefficients.

Some of the rubbery membranes are chemically simple, but others are considerably

more exotic. For example, membranes of polyvinylammonium thiocyanate

are highly selective for ammonia over nitrogen and hydrogen. While the exact selectivity

is not known, it is probably greater than a thousand to one. As a second example,

copolymers of

and

are selective for aromatics. The selectivity of toluene over isooctane is about seven.

Again, the difference in the selectivity of rubberymembranes is dominated by differences

in the partition coefficient, and not by differences in the diffusion coefficient.
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18.2.3 Glassy Polymer Membranes

Glassy polymer membranes are a contrast to rubbery ones. These consist of

ultrathin polymer layers that are supported on inert microporous layers. The ultrathin

layer, which is responsible for the membrane’s selectivity, contains no large crystals, but

smaller structures sometimes described as fringed micelles. In these membranes, the

partition coefficient H correlates closely with the critical temperature of the diffusing

gas, as shown in Fig. 18.2-1. Thus much of the selectivity between species with similar

critical temperatures must be dominated by differences in diffusion. The diffusion coef-

ficients in glassy polymers are smaller than in rubbery polymers, characteristically

around 10�10 cm2/sec. These small diffusion coefficients are of course why these mem-

branes must be used as ultrathin layers.

The design of membrane structures capable of selective diffusion has been a research

focus over the last decade. There seem to be three keys in this development:

(1) Inhibiting chain packing and tortional mobility around flexible linkages tends

to increase both the permeability and the selectivity.

(2) Reducing the concentration of the mobile linkages in the polymer backbone

tends to sustain the permeability and to increase the selectivity.

(3) Exposing the membrane to high gas concentrations can temporarily alter

membrane selectivity. This ‘‘membrane conditioning’’ disappears with time.

These heuristics are empirical, the best that one can currently offer. They may not prove

infallible in the future.

18.2.4 Microporous Membranes

Microporous membranes for gas separations are often very fragile inorganics,

intended for use at higher temperatures. The pores in these membranes are often small.

When they are smaller than the mean free path in the feed gas, their selectivity is modest,

the result of Knudsen diffusion.

He

N2

O2

CO

NH3

SO2
C4H10

C2H2

C2H6

C2H4

CH4

100 200 300 400
critical temperature, K

0.01

10

1

0.1

H

Fig. 18.2-1. Partition coefficients vs. critical temperature for various diffusing gases. This

correlation means that major permeability differences must often come from differences in

diffusion coefficient.
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However, when their pores are of molecular dimensions, their selectivity can be

much higher. Typical molecular sizes for gases that are common separation

targets are given in Table 18.2-2. Membranes with pores of these sizes are potentially

extremely selective. For example, one report of a zeolite membrane suggests a selectivity

of seventeen between normal pentane and isopentane. Such promised selectivity has

made these membranes an active area for research, even though their fragility remains

a concern.

18.2.5 Capillary Condensation

Another separationmechanism inmicroporous membranes depends on the fact

that the vapor pressure of a liquid in a pore p is different than the vapor pressure of the

bulk liquid p0.

p ¼ p0 exp
� 2c cos h=CLRTr ð18:2-4Þ

where c is the liquid’s surface tension, cL is its molar concentration, h is the contact

angle of the liquid in the pore, and r is the pore radius. As an example, imagine water

vapor in contact with a hydrophilic membrane with pores 4 nm in diameter. Because the

water is hydrophilic, the contact angle h is zero; water’s surface tension at room temper-

ture is around 70 dyne/cm. Thus the saturation vapor pressure p is around half of the

equilibrium vapor pressure.We can use this effect to remove condensable components at

partial pressures below their equilibrium vapor pressure. We explore separations like

these in the examples which follow.

Example 18.2-1: Alternative units of membrane permeability The permeability of a spe-

cificmembrane is given as one barrer at 25 �C.What would this permeability be in square

centimeters per second?

Solution Because the partial pressure p1 equals RTC1, we see from Eq. 18.2-1

that

DH ¼ PRT

Table 18.2-2 Sizes of typical gas molecules

Solute Molecular
diameter/Å

H2 2.89
CO2 3.30
O2 3.46
N2 3.64
CH4 3.80

Note: When these sizes are similar to the pore sizes in porous membranes, the

membranes may be highly selective.
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From the definition of a barrer,

DH ¼ 10
�10

cm
3ðSTPÞcm

cm
2
sec cmHg

mol

22:4 � 103cm3

� �
6240 cmHg cm

3

molK

" #
298K

¼ 8:3 � 10�9cm2
=sec

If the partition coefficient H were also one, a permeability of one barrer would imply

a diffusion coefficient typical of a rubbery polymer.

Example 18.2-2: Ammonia recovery Astreamcontaining4mol%NH3, 72mol%H2, and

24 mol% of N2 at 135 atm and 35�C is being recycled to an ammonia synthesis reactor.

You want to explore passing this stream through an ammonia-selective hollow-fiber

module to recover 90 mol% of the ammonia. The module has the following properties:

How long should the gas spend in the module?

Solution We assume that the ammonia pressure in the permeate is much less

than that in the feed. We then write a mass balance on the hollow-fiber module:

0 ¼ �v dC1

dz
� P

l

� �
aC1

where v is the feed velocity, C1 is the concentration in the high-pressure stream, and a is

the surface area per module volume, equal to 4(1 – e)/d. This is subject to the initial

condition

z ¼ 0#; C1 ¼ C10

where C10 is the concentration entering the module.

Integrating, we find

ln
C10

C1
¼ P

l

� �
a

z

v

� �
To find the residence time (z/v), we remember that we want to recover 90% of ammonia

ln
1

0:1

� �
¼ 1 � 10�4 cm

2
=sec

2:3 �10�4 cm

 !
4ð0:5Þ

320 �10�4 cm

z

v

� �
Thus

z

v
¼ 0:08 sec

The gas is effectively separated in this module.

fiber diameter d 320 lm
module void fraction e 0.50
membrane permeability P 1 � 10�4cm2/sec (12,000 barrers)
membrane thickness l 2.3 lm
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18.3 Reverse Osmosis and Ultrafiltration

Reverse osmosis and ultrafiltration are processes for separating liquid solu-

tions. The driving force for these separations comes from a pressure difference. This

pressure difference does increase the chemical potentials on the feed side, but it does not

dramatically alter the concentrations on this side. As a result, these separations are

different than the gas separations described in the previous section, where the feed

concentrations are directly proportional to the feed pressure.

Traditionally, the difference between ultrafiltration and reverse osmosis was defined

in terms of solute size. More recently, reverse osmosis tends to be restricted to separa-

tions that occur by a diffusion–solubility mechanism like that for gas separations.

Ultrafiltration implies transport through actual pores within the membrane and hence

is related more to fluid flow than to diffusion. With this distinction in mind, we suggest

approximate size ranges for ultrafiltration and reverse osmosis shown in Fig. 18.3-1.

These are not universally accepted and so should be used with caution.

18.3.1 Target Separations

Reverse osmosis and ultrafiltration are already well-developed separation pro-

cesses with definedmarket niches. They are expected to show continued growth, but they

seem past their rapid expansion. However, this may change if the world’s crisis in water

supplies develops more quickly than expected.

Reverse osmosis continues to be dominated by desalination, that is, by removing salt

fromwater. The substantial range of applications includes seawater, brackish water, and

reclamation of municipal waste water. Similar membranes can be used to pretreat boiler

feed water, desirable because pretreated water forms scale in boilers more slowly. There
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Fig. 18.3-1. Solute size for reverse osmosis and ultrafiltration. These processes use a high flow

across the membrane surface to avoid the equivalent of the filter cake in conventional filtration.

(Redrawn from Baker, 2004.)
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is an emerging market for ultrapure water, both for semiconductors and for injectable

pharmaceuticals. Other markets include water for domestic use, sweetener concentra-

tion, fruit-juice concentration, and fermentation product recovery. In the short term,

these markets will grow more rapidly than conventional large-scale desalination.

Ultrafiltration is currently dominated by two large applications, the recovery of

electropaint waste water and the recovery of proteins from dairy wastes. The former

application results from the use of solvent-free paints, especially for automobiles. These

paints are electrostatically applied. Any wash water is then processed to recover sus-

pended pigments and other colloidal material. In the dairy industry, cheese whey can be

concentrated and purified. In some cases, ultrafiltration concentrates valuable albumins

that are lost in conventional processes.

Other applications of ultrafiltration are scattered. Not surprisingly there is a growing

market in microelectronics, where smaller and smaller integrated circuits require purer

and purer water. There is also a market in pyrogen removal for pharmaceuticals.

Ultrafiltration is used to sterilize beer without heating and hence to produce draft beer

in cans. Enzyme recovery, gelatin concentration, and juice clarification are possible, but

their success depends on specific situations.

18.3.2 Three Basic Effects

The analysis of reverse osmosis and ultrafiltration depends on three phenomena

that are tangential in other processes but are central here. Many descriptions of these

membrane processes presume that everyone understands these phenomena. When I

began research in this area, I did not understand them. Because I suspect others may

be in my original position, I review them here.

The first of these phenomena is osmotic pressure. This pressure occurs whenever

a membrane separates a solvent from a solution, as illustrated schematically in Fig.

18.3-2. For simplicity, we regard the membrane as permeable to solvent but completely

impermeable to solute. In this case, the pure solvent has a higher free energy than that in

the solution, and so it will tend to flow from left to right. It will continue to flow until the

pressure in the solution rises enough to hold back this flow. When the flow ceases, the

system is in equilibrium, with the osmotic pressure difference giving a measure of

the concentration.

We want to know the relation between osmotic pressure and concentration more

explicitly. To find this, we recognize that at equilibrium, the solvent’s chemical potential

must be constant:

l2ðT; pÞ ¼ l2ðT; pþ DPÞ ð18:3-1Þ

where DP is the osmotic pressure. The chemical potential of the pure solvent is, of

course, already the standard state, but that of the solution must be corrected for both

solute concentration and pressure:

l0
2ðT; pÞ ¼ l0

2ðT; pþ DPÞ þ RT ln x2

¼ l0
2ðT; pÞ þ �V2DPþ RT lnð1� x1Þ ð18:3-2Þ
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where the superscript 0 signifies the standard state, �V2 is the partial molar volume of

solvent, and x2 and x1 are the mole fractions of solvent and solute, respectively. Note

that Eq. 18.3-2 implies an ideal solution. Thus osmotic pressure and solute concentration

are related by

�V2DP ¼ �RT lnð1� x1Þ ’ RTx1 þ � � � ð18:3-3Þ

For a dilute solution, the partial molar volume of water �V2 equals the reciprocal of the

total molar concentration c. Thus the mole fraction of solute x1 divided by this partial

molar volume equals the solute concentration C1 and

DP ¼ RTC1 þ � � � ð18:3-4Þ

This relation, restricted to dilute ideal solutions, is called van’t Hoff ’s law. When it was

first proposed, it excited enormous interest, for it looked similar to the ideal-gas law. As

its restrictions to dilute ideal solutions were realized, it has been deemphasized. For our

purposes, it remains a central precept.

The second key experimental observation is for solute diffusion across a thin mem-

brane at constant temperature and pressure. The flux j1 due to this diffusion is like that

calculated in Section 18.1:

j1 ¼
DH

l
C10 � 0ð Þ ð18:3-5Þ
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Fig. 18.3-2. Osmotic pressure. At equilibrium, the pressure on the solution must be higher than

that on the solvent. This increased pressure, a measure of solution free energy, is often simply

related to solute concentration. The specific data shown are for a polyethylene glycol (molecular

weight ca. 20,000) dissolved in water.
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in which D is the diffusion coefficient, H is the partition coefficient between membrane

and adjacent solution, and l is the membrane thickness. For reverse osmosis, it is con-

venient to write this in a different form:

j1 ¼ xDP ð18:3-6Þ

where the osmotic pressure difference now equals RT(C10 – 0), and the solute perme-

ability x is given by

x ¼ DH

lRT
ð18:3-7Þ

This solute permeability typically has dimensions of moles per area per time per pres-

sure, but it is another form of mass transfer coefficient like those in Chapter 8. However,

x is the money of biophysics, and mass transfer coefficients are the coin of engineering,

and these currencies are almost never exchanged.

The third basic effect concerns not solute diffusion but solvent transport. Imagine

we were using a pressure difference to force pure water across the membrane. The flux

of water could be described by

jv ¼
volume water=time

areamembrane
¼ v2 ð18:3-8Þ

where v2 is the velocity of water. Thus jv is a volumetric flux, in units of volume per

area per time, as opposed to the molar and mass fluxes used elsewhere in this book.

Reverse osmosis is one of the few cases where this type of flux is used.

The water flux jv can occur either by diffusion or by flow through pores in the

membrane. If it occurs by diffusion, we expect the water flux in moles per area per time

to be given by

j2 ¼ C2 jv ¼
D

l
Dc2 ð18:3-9Þ

where C2 is the water concentration outside of the membrane and Dc2 is the water

concentration difference within the membrane. Calculating this difference is tricky.

We begin by assuming equilibrium across each membrane interface, so that the pressure

and the water’s chemical potential are each constant:

l0
2 þ �V

0
2 pþ RT lnC2 ¼ l�2 þ �V

�
2 pþ RT ln c2 ð18:3-10Þ

where the superscripts 0 and * refer to the solvent and the membrane phases, respec-

tively. This condition can be rearranged to give

c2 ¼ He

�
�V2
0 � �V �2

	
ðp� �pÞ=RT

� �
C2 ð18:3-11Þ

where H is the partition coefficient at some average reference pressure �p

H ¼ exp
½l0

2 � l�2 þ ð �V
0
2 � �V

�
2Þ�p�=RT ð18:3-12Þ
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We can expand these relations as a Taylor series in pressure to find

c2 ¼ H 1þ
�V 0
2 � �V �2
RT

ðp� �pÞ
" #

C2 ð18:3-13Þ

Dc2 ¼
HC2ð �V 0

2 � �V �2Þ
RT

" #
Dp ð18:3-14Þ

whereDp is the pressure difference across themembrane.Whenwe combine this with Eq.

18.3-9, we obtain

jv ¼
DHð �V 0

2 � �V �2Þ
RTl

" #
Dp

¼ LpDp ð18:3-15Þ

where Lp is called the coefficient of solvent permeability.

Equation 18.3-15 describes the solvent transport across the membrane by means of

pressure-driven diffusion. However, we can also describe this solvent flow in a very

different way if we assume the membrane contains small cylindrical pores – tubes – of

diameter d. In this case, the velocity across the membrane would be given by the Hagen–

Pouiseuille law:

v2 ¼ e
Dpd2

32ll

 !
ð18:3-16Þ

where e is the void fraction occupied by the tubes and l is the fluid’s viscosity. This

result presumes laminar flow within the membrane’s pores, which, because of their small

size, is accurate. When we combine this relationship with the definition in Eq. 18.3-8, we

obtain

jv ¼
ed 2

32ll

" #
Dp

¼ LpDp ð18:3-17Þ

The parameters that contribute to this new solvent permeability are a dramatic contrast

to those that contribute to the diffusion-based value in Eq. 18.3-15.

We might feel that it should be easy to distinguish between the diffusion-based and

the flow-based explanations for solvent permeability. In fact, it often is difficult to do so.

The reason is that the partition coefficient or the diameter of any pores in a thin selective

layer is difficult to measure. Even the membrane thickness is frequently not exactly

known. As a result, there has been considerable controversy over which of these explan-

ations is correct. For reverse osmosis, the consensus is strongly in favor of the diffusion-

solubility mechanism of Eq. 18.3-15. For ultrafiltration, there is an overwhelming belief

that the membrane does contain pores and hence should be described with Eq. 18.3-17,
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modified by appropriate tortuosity factors. Fortunately, this controversy does not affect

the development of flux equations, which is our next objective.

18.3.2 Flux Equations

The flux equations for membrane transport can now be developed by combin-

ing the effects of osmotic pressure, solute diffusion, and solvent transport. To do this,

we consider the situation shown schematically in Fig. 18.3-3. In this situation, a concen-

trated solution at high pressure is being forced across a membrane into a dilute solution

at lower pressure. The membrane is more permeable to solvent than to solute, and so

a concentration difference develops. This concentration difference in turn produces an

osmotic pressure opposing the flow.

We want flux equations describing the total flux across the membrane and the flux of

solute alone. The solvent flux jv must be that caused by the applied pressure minus that

caused in the opposite direction by the osmotic pressure:

jv ¼ LpðDp� rDP Þ ð18:3-18Þ

where r is a new ‘‘reflection coefficient’’ characteristic of the membrane. If the mem-

brane is permeable to solvent but completely impermeable to solute, r equals unity. If

the membrane is equally permeable to both solute and solvent, r equals zero. The solute

flux j1, defined relative to themembrane, is again viewed as that due to diffusion plus that

caused by convection:

j1 ¼ x D Pþ ð1� r9ÞC1 jv ð18:3-19Þ

in which �C1 is the average solute concentration (C10+C1l)/2, and r9 is a second

reflection coefficient to be discussed later.

Osmotic
flow

Solvent
passes through

Solute
largely
rejected

High pressure Low pressure

Fig. 18.3-3. Transport across a semipermeable membrane. Here, the solvent flux can be reduced

by osmotic pressure and the solute flux can be altered by convection. Describing this transport

process requires at least three independent coefficients.
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These two new flux equations are strongly parallel to the common result for binary

diffusion:

n1 ¼ �D=c1 þ c1v
0 ð18:3-20Þ

Both Eq. 18.3-19 and Eq. 18.3-20 describe the solute flux, and =c1 and DP both reflect

changes in solute concentration. The quantities v0 and jv represent the amount of con-

vection. At the same time, there are differences between Eqs. 18.3-18 and 18.3-19 for

reverse osmosis and Eq. 18.3-20 for binary diffusion. These differences are reflected by

the number of transport coefficients involved. For binary diffusion, there is one: D. For

reverse osmosis, there are four: Lp, r, x, and 1 – r#. This is because there is only one

force, the concentration gradient, responsible for binary diffusion. For reverse osmosis,

there are two independent forces, the concentration difference and the pressure differ-

ence. Reverse osmosis is more like ternary diffusion, where the three components are the

solute, the solvent, and the membrane.

There is an alternative way of formulating these flux equations that is parallel to

ternary diffusion and based on irreversible thermodynamics. The basic strategy is iden-

tical to that given in Section 7.2, so details are not given here. The key results are the

water flux

jv ¼ ðLpÞD pþ ð�LprÞDP ð18:3-21Þ

and a solute flux jD relative to the water flux

jD ¼
j1
�C1
� jv

¼ ð�Lpr
0ÞDpþ x

�C1
þ Lpr r0

� �
D P ð18:3-22Þ

Although these equations are inconvenient in practice, they have interesting theoretical

implications. These center on the relation between the coefficients r and r#. If the

Onsager reciprocal relations are valid across membranes, then these two are equal. In

this case, the number of coefficients necessary to describe membrane diffusion will drop

from four to three. However, some studies suggest that the Onsager reciprocal relations

are not always valid across membranes. As a result, I use Eqs. 18.3-18 and 18.3-19

assuming that r and r# are not equal, unless there is experimental evidence that they

are. We next explore these ideas by means of examples.

Example 18.3-1: Fruit-juice concentration Some farmers produce a variety of fruit

juices which they wish to dehydrate to prolong shelf life and facilitate transportation.

One dehydration method is to put the juice in a plastic bag and drop the bag into brine at

10 �C. If the bag is permeable to water, but not to salt or juice components, then osmotic

flow will concentrate the juice.

Is the osmotic pressure generated in this way significant? Assume that the juice con-

tains solids equivalent to 1 wt% sucrose and that the brine contains 35 g of sodium

chloride per 100 g of water.

532 18 / Membranes



Solution For simplicity, assume that the juice and brine are ideal solutions.

Then the osmotic pressure difference is

DP ¼ RT
�V2

ln
ð1� x1Þjuice
ð1� x1Þbrine

� �

¼ ð0:082 l atm=mol KÞð283 KÞ
0:018 l=mol

3 ln

1� ð0:01 gÞ=ð342 g=molÞ
ð0:01 g=ð342 g=molÞ þ ð0:99 gÞ=ð18 g=molÞ

1� 2½ð35gÞ=ð58:5g=molÞ�
2½ð35gÞ=ð58:5g=molÞ� þ ð100 gÞ=ð18 g=molÞ

0BB@
1CCA ¼ 250 atm

This large pressure can cause rapid dehydration.

Example 18.3-2: Finding membrane coefficients for ultrafiltration To study the trans-

port properties of glucose and water across an ultrafiltration membrane, we clamp

a piece of the membrane across one end of a tube 0.86 cm in diameter and immerse

the tube 2.59 cm into a large beaker of buffered water. We then fill the tube with a 0.03

mol/l glucose solution. The result is somewhat like the diaphragm-cell apparatus de-

scribed in Sections 2.2 and 5.6-1.

We make two experiments, both at 25 �C. In the first, we adjust the tube so that the

solution and solvent levels are initially the same and we leave both solution and solvent

open to the atmosphere. We find that the solute concentration drops 0.4% in 1.62 h, and

the total volume of solution increases 0.35%. In the second experiment, we initially

adjust the solution level to be the same as the solvent level and leave the solution open

to the atmosphere, but pull a vacuum of 733 mm Hg on the solvent. In this case, after

0.49h, the solute concentration decreases 0.125%, and the solution volume also

decreases 0.5%. Find the transport coefficients across this membrane.

Solution These experiments have beenmade over such short times than neither

volume nor concentration has changed much. As a result, we can use the flux equations

directly, without integration. We first consider the total flow. In the first experiment, there

is no applied pressure difference, so from Eqs. 18.3-4 and 18.3-18

jv ¼ �ð0:0035Þ
pð0:43 cmÞ2ð2:59 cmÞ

pð0:43 cmÞ2ð1:62 hrÞð3;600 sec=hrÞ

 !
¼ �Lpr C1RTð Þ
¼ �Lpr 0:03mol=lð Þ 0:082 l atm=mol Kð Þ 298 Kð Þ½ �

Lpr ¼ 2:1� 10�6cm=sec atm

In the second experiment, there are both pressure and osmotic differences; so

jv ¼ ð0:005Þ
2:59 cm

ð0:490 hrÞð3; 600 sec=hrÞ

� �
¼ LpDp1 � LprDP

¼ Lp
733mmHg

760mmHg=atm

� �
� 2:1 � 10�6 cm

sec atm

 !
0:03mol

l

� �
0:082 l atm

mol K

� �
ð298KÞ

� �
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Thus

Lp ¼ 2:4 � 10�6 cm=atm sec

and

r ¼ 0:90

About 90% of the glucose is rejected by this membrane.

Next, we turn to the glucose flux. From Eq. 18.3-19, we have

j1 ¼ xD Pþ ð1� r0Þ �C1 jv

Using the values of jv from the foregoing, we obtain

0:004
ð2:59 cmÞð3 � 10�5 mol=cm

3Þ
1:62 hr ð3600 sec=hrÞ

 !

¼ x½ð0:03mol=lÞð0:082 l atm=molKÞð298KÞ�
þ ð1� r0Þð0:015mol=1000 cm

3Þð�1:55 � 10�6cm=secÞ

for the first experiment, and

0:00125
ð2:59 cmÞð3 � 10�5 mol=cm

3Þ
0:490 hrð3600 sec=hrÞ

 !

¼ ½ð0:03mol=lÞð0:082 l atm=mol KÞð298KÞ�
þ ð1� r9Þð0:015mol=1000 cm

3Þð�0:73 � 10�6cm=secÞ

for the second. Solving these,

x ¼ 7:4 � 10�11 mol=cm
2
sec atm

r9¼ 0:95

Whether or not r# equals r depends in this case on the experimental errors involved.

18.4 Pervaporation

Wenow turn to pervaporation, anothermembrane separation. In pervaporation,

a liquid mixture fed on one side in the membrane produces a vapor permeate on the

other side of the membrane. The basic pervaporation process is shown schematically in

Fig. 18.4-1. In this figure, a liquid feed enters the membrane module, shown schematically

as a box with a diagonal line through it. The diagonal line represents the membrane. The

liquid that does not pass through this membrane – the retentate – exits from the module.

The liquid that passes through the membrane evaporates to exit as a vapor permeate. This

vapor permeate is at least partially condensed to produce a liquid product. Any uncon-

densable vapor is purged from the system. Because the amount of uncondensable vapor is

usually small, the pumping required for this method is frequently minor.

534 18 / Membranes



This method is a complement to the gas separations and reverse osmosis discussed in

Sections 18.2 and 18.3, respectively. In the gas separations, a gas feed produces a gas

permeate. In reverse osmosis, a liquid feed yields a liquid permeate. In pervaporation,

a liquid feed produces a vapor permeate.

Pervaporation may initially seem rather like a single-stage distillation and hence in-

capable of providing much selectivity. This is incorrect: the selectivity possible with the

one stage distillationmay be dramatically improved by a selective membrane. The classic

example is the separation of ethanol–water mixtures across a polyvinyl alcohol perva-

poration membrane, which was the original application of pervaporation. The effect of

this pervaporation process is contrasted with that of distillation in Fig. 18.4-2. In this

figure, the ethanol concentration in the vapor is plotted versus the ethanol concentration

in the liquid. The dotted line in the figure gives the conventional vapor–liquid equilib-

rium. For example, if the feed contains 20 mol% ethanol, the vapor in a single-stage

distillation contains about 65 mol% ethanol. At a feed-liquid concentration of around

85 mol%, the vapor liquid equilibrium shows an azeotrope. At liquid concentrations

below this azeotrope, the vapor is enriched in ethanol. At liquid compositions above this

azeotrope, the vapor is depleted in ethanol. Azeotropes like this can make distillation

difficult.

The behavior of the pervaporation process, shown as the solid line in Fig. 18.4-2, is

a vivid contrast. Now, the vapor phase is always depleted in ethanol. For example, if the

liquid feed contains 20 mol% ethanol, the vapor permeate will contain about 17 mol%

ethanol. If the liquid contains 85 mol% ethanol, the vapor permeate contains less than

5 mol% ethanol. There is no azeotrope: The difficulties of distillation have been circum-

vented. Moreover, the less volatile component can be the one enriched in the permeate.

This means that pervaporation will be especially appropriate for removing small traces

of high-boiling impurities from large amounts of water.

18.4.1 Pervaporation Targets

Industrial pervaporation is currently dominated by separations of alcohol and

water. Initially, this may be surprising because alcohol and water are relatively com-

pletely separated by simple distillation. However, they do form an azeotrope that can be

avoided by pervaporation. Other systems where pervaporation is attractive are diverse.

Purge

Liquid
permeate

Retentate

Membrane

Feed

Fig. 18.4-1. A schematic representation of pervaporation. The membrane, represented by the

diagonal, separates a liquid feed into a vapor permeate and a liquid retentate.
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Major oil companies have looked at separating aliphatic and aromatic hydrocarbons

because this could offer a major energy saving. Others have looked at the separation of

ketones from olefins, of acidic acid from water, and of cumene from phenol. Still, the

future scale of pervaporation is uncertain.

18.4.2 Basic Equations

The basic analysis of pervaporation is complicated by the existence of two kinds

of partition coefficients. First, there are partition coefficients from the liquid feed into

the membrane. Second, there are partition coefficients from the membrane into the gas.

We begin by defining the selectivity b of the pervaporation membrane

b ¼ j1=j2
C10=C20

ð18:4-1Þ

where ji is the flux of species i and Ci0 is its concentration in the liquid feed. The flux of

each species will be proportional to the concentration of that species times the convective

velocity, both on the permeate side

ji ¼ Cilv ð18:4-2Þ

Moreover, because the permeate is a vapor at low pressure, its concentration Cil is

proportional to its partial pressure:

Cil ¼
pil
RT

ð18:4-3Þ

Thus, the selectivity of this pervaporation process is

b ¼ p1l=p2l
C10=C20

ð18:4-4Þ

0

20

40

60

80

100

Equilibrium

PermeateV
ap

o
r 

co
n

ce
n

tr
at

io
n

0 20 40 60 80 100
Liquid concentration

Fig. 18.4-2. Distillation versus pervaporation. The vapor–liquid equilibrium is given by the

dotted line and the pervaporation into vacuum is given by the solid line. The data are for

ethanol–water using a polyvinyl alcohol membrane. Note there is no azeotrope for pervaporation.
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We are concerned with two major limits of this selectivity: the case where the total

permeate pressure is close to the equilibrium vapor pressure and the case where the total

permeate pressure is near zero. We consider these two cases sequentially.

When the total permeate pressure is close to the equilibrium vapor pressure, the

membrane has no effect. In this case, the partial pressures in the vapor are in equilibrium

with the partial pressures in the liquid:

p1l ¼ H1
0
C10 ð18:4-5Þ

p2l ¼ H
0
2C20 ð18:4-6Þ

where the H0i is the volatility of species i. The selectivity of the pervaporation is

now

b ¼ H
0
1

H
0
2

ð18:4-7Þ

This selectivity is the same as that for a conventional single-stage distillation. When the

permeate pressure approaches the vapor pressure, there is absolutely no reason to use

a membrane at all.

The second case, when the total permeate pressure is close to zero, is more interesting.

This case is far from equilibrium and is influenced by the membrane permeability.

In particular, the flux of species 1 is given by

j1 ¼
D1

l
ðc1jz ¼ 0 � c1jz ¼ lÞ ð18:4-8Þ

where the concentrations c1|z are those within the membrane at one of the two interfaces.

We want to write out what these concentrations are in terms of the actual liquid and

vapor concentrations in the column. Writing this out is tricky. At the liquid side of the

membrane, where the coordinate z begins

z ¼ 0; c1jz ¼ 0 ¼ H1p10

¼ H1H
0
1C10

ð18:4-9Þ

where H1 is the partition coefficient relating the concentration within the membrane

to the partial pressure p10 outside of the membrane. This partial pressure is hypo-

thetical; it does not exist at the membrane interface. However, this hypothetical

partial pressure is related to the actual liquid concentration C10 by the volatility H 01.
Thus the concentration inside the membrane c1|z=0 is related to the real liquid concen-

tration C10 by the expression given in Eq. 18.4-9.

Similarly, at the permeate side of the interface we may write

z¼l; c1jz¼ l ¼ H1p1l

¼H1H
0
1C1l

ð18:4-10Þ

This expression relates the concentration inside the membrane at the permeate interface

to the partial pressure p1l, which actually exists adjacent to the membrane. By analogy
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with Eq. 18.4-9 we can use the volatilityH 01 to relate this concentration in the membrane

to a hypothetical concentration C1l, the concentration of the liquid that would be in

equilibrium with the actual partial pressure of species 1 on the permeate side of the

membrane.

After we write parallel equations for species 2, we combine these to find the relative

flux across the membrane

j1
j2
¼ D1H1

D2H2

� �
H
0
1

H
0
2


 �
C10 � p1l=H

0
1

C20 � p2l=H
0
2

� �
ð18:4-11Þ

The permeate partial pressures p1l and p2l are both small because we are pulling a vacuum

on the permeate side. Hence we can combine this relationship with Eq. 18.4-1 to find the

selectivity of the pervaporation

b ¼ D1H1

D2H2

� �
H
0
1

H
0
2


 �
ð18:4-12Þ

This shows that pervaporation depends on two sources of selectivity. The first source,

given in the square brackets, is the relative permeability across the membrane. As

expected, this relative permeability is the product of diffusion and partition coefficients.

Second, the selectivity of the pervaporation is influenced by the relative volatility given in

the braces. This volatility, a thermodynamic factor, is independent of any dynamic

concerns. This combination of dynamic and equilibrium factors explains why the less

volatile species may be concentrated in the permeate stream of a pervaporation process.

Example 18.4-1: Volatile organic carbon (VOC) recovery You want to reduce trichlo-

roethylene concentration from 0.1% to 0.001% in a stream of water flowing at 1 l/sec. To

do so, you are testing a pervaporation membrane which is 1.3 lm thick (excluding the

support). The membrane has the following properties

What is the membrane’s selectivity? What membrane process might be effective?

Solution The membrane selectivity is easily found:

b ¼ D1H1

D2H2

� �
H
0
1

H
0
2


 �

¼ 3:0 � 10�7cm2
=sec ð0:18mol=cm

3
atmÞ

1:4 � 10�6cm2
=sec ð2:2 � 10�3mol=cm

3
atmÞ

" #
13 atm cm

3
=mol

0:6 atm cm
2
=mol

( )

¼ 380

Solvent Trichloroethane Water

D, cm2/sec 3.0 � 10�7 1.4 � 10�6
H, mol/cm3 atm 0.18 2.2 � 10�3
H# atm cm3=mol 13 0.6
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The selectivity favors trichloroethylene 20 times more than volatility alone. The selec-

tivity is augmented by the membrane even though the trichloroethylene has a smaller

diffusion coefficient in the membrane. One possible process for this separation is a

hollow-fiber module, in which there is a liquid feed down the hollow-fiber bore, and

a vapor permeate on the shell side of the hollow-fiber module.

18.5 Facilitated Diffusion

Some membranes are much more selective than would be expected. For example,

membranes containing tertiary amines can bemuchmore selective for copper than for nickel

and other metal ions. Ion-exchange membranes can be much more selective for olefins than

for alkanes. Solid membranes containing synthetic porphyrins are sometimes reported to be

highly selective for oxygen over nitrogen. In some cases, the membranes actually move

specific solutes from a region of low concentration to a region of high concentration.

Many of these highly selective membranes are believed to operate by mechanisms

different than more commonmembranes. As detailed above, more commonmembranes

often function by a diffusion–solubility mechanism. In such a mechanism, the flux is

proportional to the product of the diffusion coefficient and a partition coefficient, some-

times called the solubility. In contrast, these highly selective membranes sometimes

function not only as a consequence of diffusion and solubility but also as a consequence

of chemical reaction. Transport by combined diffusion and reaction is called facilitated

diffusion.

These membranes often function by means of a ‘‘mobile carrier,’’ a reactive species

imprisoned by solubility within the membrane. The simplest way in which one of these

chemically well-defined mobile carriers operates is shown schematically in Fig. 18.5-1.

The two vertical lines bounding the cross-hatched area represent the membrane, which

separates a concentrated solution on the left-hand side from a dilute solution on the

right-hand side. Almost all the solute transported across the membrane is transported

via complex formation with the mobile carrier. This mechanism qualitatively explains

why the fluxes are much more selective than expected, and why they reach a constant

value at high concentration differences.

In this section, we first describe where facilitated diffusion might be used for commer-

cially attractive separations. We then develop equations for the mobile-carrier mechanism

shown in Fig. 18.5-1. Finally, we describe other characteristics of this type of transport.

18.5.1 Target Separations

Facilitated transport does not have any significant commercial applications. It

has failed commercially because the membranes used do not have the three-year lifetime

normally demanded for practical processes. Even under ideal circumstances, membrane

lifetimes are less than a month. In most cases, they are much shorter.

Still, the high selectivity promised by these membranes continues to encourage re-

search. The targets are those where other types of membrane separations have been

found to be limiting. Among commodity chemicals, these include the separation of air

and of olefins and alkanes. The recovery of carbon dioxide from flue gas will receive

18.5 / Facilitated Diffusion 539



renewed attention as global warming continues. The recovery and purification of metals,

including copper, nickel, and gold, may be revisited if the price of these compounds

makes new efforts attractive.

Other applications of facilitated transport at a smaller scale may also be attractive.

One possibility is controlled release because facilitated transport can give a steady flux,

independent of the concentration difference. Another possibility is chemical signal

amplification because a target solute can be concentrated by this mechanism. These

small-scale applications may require a long shelf life but not a membrane stable under-

operating conditions for three years. Nonetheless, until membrane stability is improved,

facilitated transport will not be widely used commercially.

18.5.2 Basic Equations

As before, we consider the simplest case for detailed analysis, and later explore

extensions to more complex situations. We assume that solute and carrier are nonionic

and constantly reacting within the membrane:

ðsolute 1Þþ ðcarrier s Þ #ðcomplex 1s Þ ð18:5-1Þ

These three components must satisfy the continuity equations for one-dimensional

steady-state transport across the membrane:

0 ¼ D
d
2
c1

dz
2 � r1s ð18:5-2Þ

s

1s

s

s

1

1

High
conc

1

Low
conc

1
1

1

flux

Step 1  Carrier s reacts with
solute 1.

Step 2  The complexed carrier
diffuses across the membrane.

Step 3  Because the adjacent
solution is dilute, the solute– 
carrier reaction is reversed,
releasing solute 1.

Step 4  The carrier returns
across the membrane.

Step 5  Uncomplexed solute can
not diffuse across the membrane
because of low solubility.

Result The reaction with the mobile
carrier enhances or “facilitates”
the flux of solute.

Fig. 18.5-1. The simple mobile-carrier mechanism. This scheme can explain why facilitated

diffusion is unexpectedly rapid, unusually selective, and nonlinear in the concentration difference

across the membrane.

0 ¼ D
d
2
cs

dz
2 � r1s ð18:5-3Þ

0 ¼ D
d
2
c1s

dz
2 þ r1s ð18:5-4Þ
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where r1s is the rate of formation of the complex within themembrane. Note that we have

assumed that the diffusion coefficients of all species in the membrane are equal. This

assumption is not necessary, but it greatly simplifies the analysis and focuses attention on

the effects of the solute–carrier reaction.

These continuity equations are subject to the restraints that

z ¼ 0; c1 ¼ HC10 ð18:5-5Þ

z ¼ l; c1 ¼ 0 ð18:5-6Þ

where 0 and l denote the two sides of the membrane. Thus C10 is the concentration

outside of the membrane at the upstream side, where z is zero. From a mass balance on

all forms of carrier,

1

l

Z l

0

ðcs þ c1sÞdz ¼ �c ð18:5-7Þ

where �c is the average carrier concentration in the membrane.

For a complete solution, three more restraints are needed. To simplify the mathe-

matics, we also assume that the rate of complex formation is so fast that

c1s ¼ Kc1cs ð18:5-8Þ

where K is the equilibrium constant of the reaction in Eq. 18.5-1. This means that

z ¼ 0; l; js þ jls ¼ 0

�D
dcs
dz
þ dc1s

dz

� �
¼ 0 ð18:5-9Þ

at the membrane boundaries. Equations 18.5-8 and 18.5-9 are missing restraints.

Because these assumptions seem reasonable, we should briefly discuss why they cannot

be exact. Equation 18.5-9 is the key. This relation implies that uncomplexedmobile-carrier

molecules diffuse right up to the membrane wall, instantaneously react, andmove away at

the same rate but in the opposite direction. The molecules never have zero velocity; they

instantaneously change from positive to negative velocity. This will be approximately true

only when the second Damköhler number is large:

l
2

Dt1=2
� 1 ð18:5-10Þ

where t1/2 is the half-time of either forward or reverse mobile-carrier reaction. When l is

several micrometers, this condition is easily satisfied. For a membrane 10 nm thick, this

condition is stringent: for example, if the reaction half-time is 10�7 seconds, the deriva-

tion presented here is in error by about 10%.

With these approximations, the flux across the membrane can be found in a straight-

forward fashion. Equations 18.5-3 and 18.5-4 are added, integrated, combined with Eq.

18.5-9, integrated again, and combined with Eq. 18.5-7 to give

cs þ c1s ¼ �c ð18:5-11Þ
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everywhere throughout the membrane. This result and Eq. 18.5-8 are then combined

with the sum of Eqs. 18.5-2 and 18.5-3 and integrated once:

� ð j1 þ j1sÞ ¼ D
dc1
dz
þ d

dz

K�cc1
1þ Kc1

� �� �
ð18:5-12Þ

where the integration constant j1+ j1s represents the total flux of solute 1. When this

result is integrated from z ¼ 0 to z ¼ l,

j1 þ j1s ¼
DH

l
C10 þ

DH

l

K�cC10

ð1þHKC10Þ

� �
ð18:5-13Þ

The first term on the right-hand side represents the flux due to uncomplexed solute, and

the second is the flux caused by carrier-assisted diffusion.

This result explains the experimental characteristics for facilitated diffusion listed at

the start of this section. Frequently the diffusion of uncomplexed solute is much less

than that of complexed solute, so that only the second term on the right-hand side of

Eq. 18.5-13 is experimentally significant. When C10 is small, the flux is

j1 þ j1s ¼
:
j1s ¼

DHK �c

l

� �
C10 ð18:5-14Þ

This flux is larger and more selective because it is proportional to K�c and thus is altered

by the chemical reaction. If C10 becomes large, the flux reaches a constant value;

j1 þ j1s ¼
:
j1s ¼

D�c

l
ð18:5-15Þ

which again is consistent with experiment. If the solute–carrier reaction is irreversible, K

becomes infinite, and

j1 þ j1s ¼
:
j1 ¼

DH

l
ðC10 � C1lÞ ð18:5-16Þ

The carrier-assisted flux is effectively poisoned by an irreversible reaction. However,

when the reacton is fast, strong, but reversible, the possibility of much more selective

membranes remains undimmed.

18.5.3 Special Cases

As explained above, the enormous attraction of facilitated diffusion is the chance that

chemical reaction can be used to enhance membrane selectivity. This has sparked im-

mense theoretical and experimental research on this topic. In these paragraphs, I want to

review some of the results of this research.

One result is an explanation for permeabilities that decrease with concentration,

which are reported frequently. In these reports, the permeability is defined as

P ¼ j1=ðC10 � 0Þ ð18:5-17Þ

542 18 / Membranes



At low concentrations, P is observed to be constant, independent ofC10; but at highC10,

P drops. Because this is consistent with Eq. 18.5-13, some experimentalists conclude that

they are observing a mobile-carrier mechanism. They may, but often they cannot, iden-

tify possible chemical species. In such cases, their invocation of this mechanism is usually

just curve fitting.

A second result is the presence of facilitated transport in solid, reactive membranes. If

such solid membranes can be made, they could circumvent the main failure of current

commercial applications of facilitated tranport where membranes are unstable. Over the

last 20 years, there have been over 200 claims of mobile carriers in solid membranes. So

far, none have withstood experimental scrutiny in laboratories where they were not

invented. Moreover, there are major theoretical objections asserting that such mem-

branes are unlikely to exist. Nonetheless, these efforts continue to show small glitters

of promise.

A third result is the restraint offered by the assumption of fast reaction made for

the simple case above in Eq. 18.5-8. The antithesis of this assumption is the

opposite limit, that fast diffusion mixes all species in the membrane and that the re-

action-rate kinetics limits transport. In this case, the continuity equation for solute 1

becomes

0 ¼ D
d
2
c1

dz
2 � j1c1�cs þ j�1�c1s ð18:5-18Þ

where �cs and �c1s are the constant concentrations of carrier and complex in the membrane

and j1 and j�1 are the forward and reverse rate constants for the reaction in Eq. 18.5-1.

Because c1 is the only variable, this equation can be integrated directly. The total flux of

solute 1 is then found by differentiating the concentration profile:

� ð j1 þ j1sÞ ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1

�CsD
p� � 1þ coshðj1

�C2l
2
=DÞ1=2

2 sinhðj1
�C2l

2
=DÞ1=2

 !
ðC10 � 0Þ ð18:5-19Þ

where

�cs ¼
j�1

j1�c1 þ j�1
�c ð18:5-20Þ

�c1s ¼
j1�c1

j1�c1 þ j�1
�c ð18:5-21Þ

and

�c1 ¼
H

2
ðC10 þ C1lÞ ð18:5-22Þ

As before, �c represents the average total carrier concentration. This situation, which

also implies that the flux does not always vary linearly with the concentration

difference, occurs much less frequently than the fast-reaction case discussed

earlier.
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Example 18.5-1: Analyzing data for facilitated diffusion The data shown inTable 18.5-1

were obtained for glucose transfer across a human erythrocyte. How can these data be

analyzed to determine characteristic coefficients of facilitated diffusion?

Solution Presumably, glucose concentration on one side of the membranes is

small, and facilitated diffusion is the dominant transport mechanism. In this case, we can

use Eq. 18.5-13 to find

1

ð j1 þ j1sÞ
¼ l

D�c
þ 1

DK �c

� �
1

C10

or in notation more commonly used in biology

1

ð j1 þ j1sÞ
¼ 1

vmax
þ Km

vmax

� �
1

C10

Where vmax andKm are diffusion-based analogues of the maximum rate and theMichaelis

constant in enzyme kinetics. We should plot the reciprocal of the total flux versus the

reciprocal of the concentration. The plot, which is roughly linear, gives values of 0.56M/

min for l=DA�c or vmax and 190M�1 forKAwhereA is the erythrocyte area. These values

are consistent with a large number of experiments.

Example 18.5-2: The flux in facilitated diffusion Lithium, sodium, or potassium

chloride is diffusing from a 0.1-M aqueous solution across a 32 lm organic membrane

into pure water. The membrane is largely made of liquid chlorinated hydrocarbons,

but it also contains as a mobile carrier 6.8 � 10�3 M of the macrocyclic carrier

dibenzo-18-crown-6. This carrier selectively complexes alkalai metals. For lithium chlo-

ride, the association constant is 260 l/mol; for sodium chloride, it is 1.3 � 104 l/mol;

for potassium chloride, it is 4.7 � 106 l/mol. The partition coefficients of the various

salts are 4.5 � 10�4, 3.4 � 10�4, and 3.8 � 10�4, respectively. Assume that all salts and

complexes have diffusion coefficients of 2 � 10�5 cm2/sec. Find the total flux for each of

these salts.

Table 18.5-1 Glucose uptake in a human erythrocyte at 37 �C

Glucose concentration
(3 10�3M)

Glucose flux
(3 10�3 mol/min)

1.0 0.09
1.5 0.12
2.0 0.14
3.0 0.20
4.3 0.25
5.0 0.28

Note: This uptake is consistent with facilitated diffusion.
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Solution These fluxes are easily found from Eq. 18.5-13, which for these cases

reduces to

j1 þ j1s ¼
DHC10

l
þ DHK �cC10

lð1þHKC10Þ

For lithium chloride, this is

j1þ j1s ¼
2 � 10�5 cm2

=sec

32 � 10�4 cm
ð4:5 � 10�4Þð10�4mol=cm

3Þ

þ

2 � 10�5 cm2

sec

 !
ð4:5 � 10�4Þ 2:6 � 105 cm3

mol

 !
6:8 � 10�6mol

cm
3

 !
10
�4

mol

cm
3

 !

ð32 � 10�4 cmÞ 1þð4:5 � 10�4Þ 2:6 � 105cm3

mol

 !
10
�4

mol

cm
3

 !" #
¼ ð2:8 � 10�10þ 4:9 � 10�10Þmol=cm

2
sec

¼ 7:7 � 10�10mol=cm
2
sec

Thus ordinary diffusion is responsible for about one-third of lithium transport. For

sodium chloride, the total flux is 1.32 � 10�8 mol/cm2 sec, and for potassium chloride,

it is 4.25 � 10�8 mol/cm2 sec. For both sodium and potassium chloride, facilitated trans-

port is dominant.

18.6 Conclusions

Diffusion across membranes is an alternative route to separations where trans-

port rates can enhance thermodynamic differences. In most cases, membrane diffusion

depends on the permeability, which is the product of a diffusion coefficient and a parti-

tion coefficient, often called a solubility. Such membranes, coated onto porous support

to providemechanical strength, may be used as hollow fibers or in spiral-woundmodules

to increase the area per volume and hence increase the flux per volume.

Membrane separations vary with the mixture to be separated. Gases fed at high

pressure are usually separated through thin glassy polymer films. Reverse osmosis of

liquid mixtures also depends on pressure to overcome osmotic pressure. Pervaporation

uses a warm liquid feed to give a cooler vapor permeate. Facilitated diffusion couples

diffusion and chemical reaction to enhance membrane selectivity. This catalog of mem-

brane separations both reviews the ideas of mass transfer and suggests new commercial

opportunities.

Questions for Discussion

1. What are the dimensions in mass M, length L, and time t of a permeability?

2. What are they of a permeance?

3. Membranes often have a thin, selective skin over a porous, mechanically strong

substrate. Describe how such a structure can be made.
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4. What is an advantage and a disadvantage of a spiral-wound membrane mod-

ule?

5. Describe how to make a hollow fiber.

6. If a gas separationmembrane is said to have a permeance of 68 GPU, what is its

mass transfer coefficient in cm/sec?

7. Will a glassy membrane normally be better for separating air than a rubbery

membrane?

8. Membranes for separating air are normally more permeable to oxygen than

nitrogen (molecular diameters 3.46 Å and 3.64 Å, respectively). Discuss the

mechanism for separation, remembering that these membranes are nonporous.

9. If you blow up a balloon with oxygen and then let it sit in air, it will get smaller

with time. If you blow it up with nitrogen, it can get bigger with time. Why?

10. The sea contains about 0.5 M NaCl. Estimate its osmotic pressure.

11. Plot solvent flow through a reverse osmosis membrane vs. the pressure differ-

ence across the membrane.

12. Phenol is more permeable through reverse osmosis membranes than sodium

chloride even though phenol is a larger molecule. How can this be?

13. What is responsible for the selectivity of pervaporation?

14. Facilitated diffusion is often said to describe how oxygen and hemoglobin

interact in blood. Discuss whether this is true.

Problems

1. You are studying a membrane said to be selective for oxygen, whose oxygen perme-

ability is given as 63 barrers at 40 �C. From measurements of gas absorption, you
determine that the Henry’s law constant is 3600 atm. What is the diffusion coefficient
in this membrane?

2. You are using a hollow-fiber membrane module made of the membranes in the pre-
vious problem. The 1.8 m module contains 30,000 hollow fibers 340 lm in diameter,
packed with 41% voids. Each membrane has an active coating on the wall of 7.2 lm
(i.e., the selective part of the membrane is 7.2 lm thick). This gives a membrane

permeance or overall mass transfer coefficient of 7.6. 10�3 cm/sec, based on the fiber
area per module volume. The membrane’s selectivity for oxygen over nitrogen is said
to be 8, the feed pressure is 120 psi, the permeate pressure is small, and the shell side is

under vacuum.Howmuch gas containing 95mol% nitrogen can this module make per
hour?

3. To get better product purity, an engineer at the drug company, Pfizer, was recently

carrying out a reaction in a glove bag. This is a large, clear, plastic bag with gloves put
into the wall so that an engineer can work in the bag in an oxygen-free environment.
To get this environment, the engineer continuously and steadily had nitrogen flowing

in and out of the bag.
It didn’t work; the oxygen concentration was still too high. He checked carefully for

leaks; it still didn’t help. He bought super-pure nitrogen, but the nitrogen concentra-
tion in the outlet didn’t change.

After three months of frustration, he finally wondered if oxygenwas diffusing across
the wall of the bag. (a) If this is true, sketch how you expect the oxygen concentration
in the bag will change with the flow of nitrogen. (b) Derive a differential equation for
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the oxygen concentration in the bag of volume V, and area A, and thickness l as

a function of nitrogen flow Q, the permeability (DH), and the time t.

4. A stream at 220 atm and 100 �C containing 27.2%NH3, 54.5%H2, and 18.2%NH3 is
currently being recycled to an ammonia synthesis reactor. You want to feed it through

a hollow-fiber module with a fiber volume fraction of 0.5 to recover 90% of the
ammonia. The module’s membranes are 240 lm in diameter, have a permeability P
of 4.0 � 10�5 cm2/sec, and a selective layer thickness l equal to 35 lm. How long should

gas spend in this module?

5. Imagine a thin hydrogel membrane consisting largely of water separating two well-
stirred organic solutions. One of the solutions contains acetic acid, which diffuses

across the membrane. (a) If the acetic acid concentration is very high, it will largely
be un-ionized everywhere. What is the flux across the membrane in terms of the
concentrations in the organic phases? (b) If the acetic acid concentration is moderate,

it will be un-ionized outside themembrane, but ionized in it. Again, what is the flux? (c)
If the acetic acid concentration is very low, it will be ionized everywhere. What is the
flux now? (d) Use the results of (a)–(c) to plot log (flux) versus log (concentration

difference). What is the slope on this graph?

6. One commercially available ultrafiltrationmembrane is claimed to have a permeability
of 0.62 m3/m2 day under a pressure difference of 3.4 atm. This membrane initially

rejects 96% of a 3 wt% suspension of partially hydrolyzed starch (molecular weight
17,000). However, if 4.2 cm2 of membrane separates 65 cm3 of a starch solution from
the same volume of pure water, the volumetric flow is zero, and the osmotic difference
is 85% of the original value in one week. Assuming the temperature is 25 �C, find the

permeability Lp, the solute permeabilty x, and the reflection coefficient r. Answer: Lp

¼ 0.2 m/day atm, x ¼ 0.4 mol/m2 day atm, r ¼ 0.985.

7. You are using a 64 m2 spiral-wound module to remove 90% of the water in 6.8 m3 of

a feed containing of 0.082% polyethylene glycol of 18,000 molecular weight. For pure
water, the membrane has a flux of 0.6 m3/m2 day at a pressure drop of 5500 kPa. How
long will it take to remove 90% of the water?

8. A water-cooling process evaporates a small amount of water, which is replenished
from a river. As a result, dissolved species in the river water slowly accumulate in the
recycled cooling water stream until they precipitate in the heat exchangers and slow the

heat transfer.
To avoid this fouling, the process water must be periodically removed from the

cooling-water system and treated to remove dissolved impurities. Such ‘‘cooling-tower

blowdown’’ can be treated by a variety of methods. For an unsaturated feed at 0.2–0.4
m3/min, the recommended method is reverse osmosis (RO) plus crystallization. In
your case, you have a volume of 0.26 m3 in 10 min at a temperature of 20 �C, initially
containing solutes at 0.16N, with a solubility limit of 10.92N. You plan to concentrate

this feed until the concentration in the water is 0.60 N by rapidly recycling it through
a reverse osmosis unit using a pressure drop of 2400 kPa and amembrane which rejects
nearly all the salt. Because the salt concentration will not be constant, youmay assume

that net osmotic pressure is the average at the start and end of the run. If the mem-
brane’s permeance is 1.3 � 10�6 m/kPa min, how large a membrane area is needed?

9. In the text, we calculate the flux in facilitated diffusion by homogeneous chemical

reaction with amobile carrier. Rework this analysis, assuming that the carrier reaction
is very fast but heterogeneous, occurring only at the membrane boundaries (J. Zasad-
zinzki).
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10. Imagine a thin liquid film bounded by porous electrodes. The film contains Fe2+ and

Fe3+. At one electrode, there is the reaction

Fe
3+

+e
� fast/ Fe

2+

At the other electrode this reaction is quickly reversed. Thus the electrodes engender
fluxes of Fe2+ and Fe3+ within the film. Both sides of the film are exposed to equal
pressures of nitric oxide (NO) gas. The following reversible reaction occurs in the
liquid:

NO+Fe
2+ #FeNO

2+

The following reaction does not occur:

NO+Fe
3+ #FeNO

3+

The net result will be a flux of NO, even though there is no NO concentration differ-
ence between the gases. Find the size of this flux and how it is related to the electrode
current.
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CHAPTER 19

Controlled Release and Related Phenomena

Controlled-release technologies are used to supply compounds like drugs, pes-

ticides, or fragrances at prescribed rates. The prescribed rates offer improved efficacy,

safety, and convenience. Themost commonly cited example is that of a drug dosed either

by periodic pills or by a controlled-release technology. The concentration of the drug in

the blood is shown schematically in Fig. 19.0-1. When the drug is given in a pill form, its

concentration rises abruptly right after the pill is taken. This rise can carry the drug

concentration past the effective level and briefly above the toxic level. The concentration

then drops below the effective level. In contrast, when the drug is delivered by controlled

release, its concentration rises above the level required to be effective and stays there,

without sudden excursions to toxic or ineffective levels. Such delivery is often called

zero-order release.

Typical products using controlled release are listed in Table 19.0-1. In the case of

drugs, we normally want to release a single solid species, typically with a molecular

weight greater than 600 daltons. The water solubility of these molecules is often strongly

pH dependent because of pendant carboxylic acid or amino groups. The molecules

normally will have several chiral centers. While this species is normally nonvolatile, it

is usually unstable if it is warmed. It is often crystalline but may be a polymorph. As the

previous paragraph suggests, we most often will seek to release the drug at a constant

rate, although in some cases, we may want a periodic discharge.

The second case, agrochemicals, includes fertilizers, pesticides and herbicides. The

fertilizers are mostly low molecular weight organics and inorganics, which may have

a significant solubility in water. The insecticides and herbicides are often halogenated

organics. These compounds may be either solids or liquids. The form of controlled-

release sought may be zero order but may also be a burst, triggered by monsoon rains

or by the first day of spring. Unlike the case of drugs, the cost of any controlled-release

system for agrochemicals is important.

The third group of compounds targeted for controlled release is flavors. These are

normally hydrophobic organic liquids of molecular weights less than 250. Here, our

biggest concern is protecting these compounds from oxidation or retarding their evap-

oration. If this is achieved, wemay seek release as a burst rather than as zero order. These

release systems must be made at modest cost and of food-grade ingredients.

The actual release tends to occur from two types of systems. The first is a microcap-

sule. In its simplest form, this is just a small bubble with a solid, usually glassy, shell and

a fluid or gel core. Because diffusion of the active species is much slower in the shell than

in the core, release is often controlled by diffusion of the active species through the shell.

In the second type of system, the active species is distributed throughout solid particles.

Release is controlled either by diffusion out of the active species or because of diffusion

in a solvent, commonly water, which releases the active species.

In this chapter, we have divided our discussion as cases of diffusion out of the active

species, and of diffusion in solvent. More specifically, in Section 19.1, we describe cases
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regulated by diffusion of solutes like drugs. In Section 19.2, we analyze cases controlled

by diffusion of solvent, most commonly water. The first section is the simplest, a direct

extension of material in earlier chapters. The second section involves more invention,

and includes a discussion of osmotic pumps. Both sections include situations used com-

mercially.

We should stress that some cases of controlled release are not regulated by diffusion

and are not detailed in this chapter. Some involve release controlled by chemical kinetics.

For example, imagine a drug suspended in a water-insoluble polymer. The polymer

slowly reacts with water and then dissolves. As the polymer dissolves, the drug will be

released at a rate controlled by the polymer’s hydrolysis. Alternatively, imagine an

implantable pump that releases a drug in response to the patient’s demand. While these

cases involve controlled release, neither is controlled by diffusion, so neither is discussed

here.

Other applications of diffusion are also discussed in this chapter. In Section 19.3, we

discuss diffusion barriers. These are the antithesis of controlled release because our

objective is to retard diffusion, rather than regulate it. The most obvious method of

retardation is to choose the barrier so that it is impermeable to any solute. For example,

Periodic doses

Toxic level

Controlled release

Effective level
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Fig. 19.0-1. Drug concentrations vs. time. Periodic dosages, like pills, can cause the

concentration to go above the toxic level and below the effective level. Controlled release

mitigates this burst effect.

Table 19.0-1 Targets for controlled release

Drugs Agrochemicals Flavors

Target species Single compound Single compound Mixtures
Typical properties Organic solids;eM>600

Organic and
inorganic solids and
liquids; eM<200

Hydrophobic,
organic liquids;eM<250

Desired release Zero order Zero order or burst Burst in mouth or
food matrix

Desired protection Water, oxygen Water, light Oxygen, evaporation
Major constraint Safety Cost Food-grade

ingredients
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we could try to make a crystalline paint to keep out water, and hence retard corrosion.

However, such a paint would tend to crack and so be easily breeched. How we can

achieve flexible barriers is discussed in this section.

Finally, in Section 19.4 we describe problems involving diffusion and phase change.

In many of these systems, diffusion causes solid dissolution. In others, diffusion can

produce precipitation or spontaneous emulsification, even when the initial and final

solutions are only a single phase. These unusual situations extend our understanding

of diffusion.

19.1 Controlled Release by Solute Diffusion

In most cases, we want the release rate of a solute, like a drug, to be constant

with time. This constant release rate will often give a constant concentration when in use,

as suggested by Fig. 19.0-1. Often, we will test for this type of release rate by placing this

solute, or a device containing solute, in a beaker of stirred solvent. We will measure

the solute concentration versus time. We hope for a linear variation, for this would

mean a constant release rate. Such a variation is called ‘‘zero-order release,’’ as shown

in Fig. 19.1-1.

We usually do not get this constant release rate without careful work. If we

directly place a drug in water, its dissolution rate will often be mass-transfer con-

trolled. As a result, the amount released M will vary with time t according to the

relation

M ¼MðsatÞ 1� e
� kA t

V

� �
ð19:1-1Þ

whereM(sat) is the drug dissolved at saturation, k is its mass transfer coefficient, A is its

total solid surface area, and V is the volume of water (cf. Section 8.1). This type of

behavior, where the logarithm of (M(sat) – M) varies linearly with time, is often called

first-order release, an echo of a first-order chemical reaction. This dissolution is fastest at

short times and then slowly approaches zero. It is far from what we want partly because

the release of the active will normally be too fast.
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First order

Zero order

Fig. 19.1-1. Mass of drug released by different mechanisms. The steady zero-order release

is the common target.
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We would prefer a system where we could alter the release rate more systematically.

Three systems where we can systematically alter drug dissolution are shown schemat-

ically in Fig. 19.1-2. In the first example, we could make small microcapsules containing

a solution of the drug. We would find that the drug’s release followed the same math-

ematical form as Eq. 19.1-1. Before, however, themass transfer coefficient kwould refer

to the drug itself in the stirred solvent. Now, the mass transfer coefficient would be

given by

k ¼ P

l
¼ DH

l
ð19:1-2Þ

whereP is the drug’s permeability in the microcapsule’s wall,D is its diffusion coefficient

in the wall,H is the drug’s partition coefficient between the solvent and the wall, and l is

the wall’s thickness. Because by varying the wall’s material we can vary D, H, and l, we

now can control the release. However, this release will still be first order and not the zero

order which we seek.

As an alternative, we could disperse the drug evenly in a slab of water-swollen poly-

mer.When this slab is dropped into water, the drug will diffuse out through the polymer.

If the drug is initially dissolved at concentration c1, as shown in the center of Fig.19.1-2,

the amount released M will change at small times according to

M ¼
ffiffiffiffiffiffiffiffi
4Dt

p

r
ðAc1Þ ð19:1-3Þ

where A is now the surface area of the polymer slab and D is the drug’s diffusion

coefficient (cf. Section 2.3). If the drug is initially present as small particles, as shown

at the right of Fig. 19.1-2, the amount released at small times will be approximately

M ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtc10c1ðsatÞ

p
ð19:1-4Þ

where c10 and c1(sat) are the total initial drug concentration and the saturation con-

centration, respectively. Because in these two cases M is proportional to the square

root of time, this release is sometimes called t1/2 kinetics. While this release may be

slower than that of the pure drug, it will still be very fast at the beginning and get slower

Drug suspended
in solid

Drug solution
in microcapsule

Drug dissolved
in solid

Fig. 19.1-2. Three devices not giving zero-order release. These methods all depend on solute

diffusion.
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and slower. At small times it will show what in French is called ‘‘le burst effect’’ and be

far from the zero-order release which we seek. This type of release is not what we want

either.

The contrast between the zero-order release which we seek and the other orders which

we usually get is vividly shown in Fig. 19.1-1. We clearly need other ways to control

release. The first-order release rate, which depends on the drug’s solubility and mass

transfer, is often too fast and decreases with time. The t1/2 release rate can be slower, but

is still time dependent, difficult to change.

However, there are many ways in which we can both control drug release and get the

zero-order behavior. Three common ways are a reservoir system, an altered device

geometry, and an altered initial concentration profile. These three, shown schematically

in Figure 19.1-3, are analyzed in the paragraphs that follow.

19.1.1 Reservoir Systems

The simplest system, shown in Fig. 19.1-3(a), consists of a reservoir of satu-

rated drug solution that contains extra solid drug. The drug is released from the

reservoir by diffusion across the surrounding permeable membrane into a large volume

with near-zero drug concentration. The solution inside remains saturated because the

solid keeps quickly dissolving; thus the drug’s flux is a constant, and the amount

released is given by

M ¼ DH

l
c1ðsatÞ

� �
At ð19:1-5Þ

where (DH ) and l are the membrane’s permeability and thickness, respectively. We now

have the adjustable, constant release rate that we seek.

Reservoir systems have a major advantage and a major disadvantage. The advantage

is the enormous flexibility allowed by the choice of membrane properties. This allows the

constant drug release rates to be adjusted over a wide range. The disadvantage is the risk

of rupture. If this rupture occurs, all the drug may be quickly released, which can be

dangerous. While there are ways to guard against the quick release, the risk has often

meant reservoirs are not chosen.

(a)

Saturated
solution

Solid
solute

Permeable
membrane

(b)
Open hole

Impermeable
membrane

(c)

Initial
concentration
profile

Impermeable
membrane

Fig. 19.1-3. Three devices giving near zero-order release. These methods are often superior to

those in the previous figure.
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19.1.2 Coated Hemispheres

The second system, shown in Fig. 19.1-3(b), consists of a hemisphere of in-

soluble polymer containing a drug solution. Dissolved drug can diffuse easily in the

polymer, which often is slightly swollen with water. However, all of the outer surface

of the polymer hemisphere – except a small central hole – is coated with an impermeable

barrier. Dissolved drug diffusing within the polymer can only diffuse out of the hemi-

sphere through this small central hole.

Now imagine what happens when this device is placed in water. Often, the drug

concentration in this surrounding water will be near zero, at least compared with that

in the polymer. As a result, the drug diffuses radially inward, at first with a fast flux, but

later with a slower and slower flux. However, while the flux per area is dropping, the area

supplying the drug is at the same time increasing. The total drug released M is approx-

imately given by

M ¼ ½4pDR0c1�t ð19:1-6Þ

where R0 is the radius of the inner hole, which is much smaller than the radius of the

device; and c1 is the initial uniform drug concentration. Note that this device is less prone

to problems caused by accidental rupture: if the hemisphere breaks open, release can be

faster, but not as fast as in a reservoir device.

19.1.3 Uneven Initial Profiles

The third system for achieving steady drug release, shown in Fig. 19.1-3(c),

again uses a polymer slab with dissolved drug. Now, however, the drug is not initially

present uniformly, but is present at varying low concentrations within the slab. During

storage, the slab is kept dry, so that its concentration profile decays only very slowly,

perhaps over years. Once the slab is wet, it quickly hydrates uniformly, and the drug

starts diffusing out. That near the surface has only a small driving force, that is, a small

concentration gradient; but it doesn’t have far to diffuse to get out of the slab. The drug

deep within the slab has a larger driving force and a larger distance to diffuse. Thus the

amount released can be nearly constant with time.

This system also has significant advantages and disadvantages. It is cheap to manu-

facture. It is little affected by accidental rupture. It may be hard to store: After all, those

initial concentration profiles will be decaying, leading to a uniform concentration profile

and hence non-zero order release.

Example 19.1-1: Cattle ear tags Ear tags for protecting cattle from horn flies can reduce

the annoyance from the flies and hence enhance weight gain by the cattle. The ear tag

consists of a reservoir of mixed permethrin (molecular weight 391 daltons) and piperonyl

butoxide, surrounded by 12 cm2 of a 63-lm-thick membrane. The permethrin is the

actual insecticide, whose release is enhanced by the presence of the second compound.

The permethrin’s release is a constant 19 lg per day; its vapor pressure is estimated to be

0.045 pascal at 25 �C.
What is the permeability of the membrane (in m2/sec)?
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Solution This solution is a routine application of Eq. 19.1-5; the only problem

is the units:

dM1

dt
¼ P

l
c1ðsatÞ

� �
A

19 � 10�6g
24ð3600Þsec 391 g

mol

¼ P

63 � 10�6m
0:045 � 10�3kg=msec

2

8:31kg

sec
2

m
2

molK
298K

26664
37775 12 � 10�4 m2

P ¼ 1:6 � 10�6m2
=sec:

The large value of P results from a very large partition coefficient.

Example 19.1-2: Bollworm pheromones You have been using 1.0-mm-diameter micro-

capsules filled with a saturated solution of the pheromone gossyplure, for the pink

bollworm. When the capsules contain excess solid pheromone, they attract bollworm

moths into insecticide-loaded traps for 27 days.

You are considering trying to increase the catch by using the samemass of pheromone

in an equal mass of 50-lmmicrocapsules that have the same thin wall thickness (i.e., the

same P/l ). How long will the smaller microcapsules last?

Solution Because the wall of the microcapsules is thin and all other properties

are unchanged, the gossyplure flux per area out of the capsules is constant. However, the

surface area per mass of the 50 lm capsules is larger. In particular, if the microcapsules

have about the same density qM, independent of their size, then

surface area

mass
¼ 1

qM

pd2

4

3
p

d

2

� �3

26664
37775 ¼ 6

dqM

where d is the diameter of the capsules. Since the 50-lm particles are 20 times smaller

than the 1-mm particles, they will only last 5% as long, or about half a day.

19.2 Controlled Release by Solvent Diffusion

We can also regulate the release of a solute, again like a drug, by diffusion of

solvent. As in the previous section, we will usually want the solute’s release rate to be

nearly constant over time. Unlike the cases in the previous section, we want to use

solvent or polymer diffusion, not solute diffusion, to control the solute’s release.

19.2.1 Swelling-Controlled Systems

The two common ways to achieve this result are swelling-controlled systems

and so-called osmotic pumps. Swelling-controlled systems are simpler. The most com-

mon case consists of a slab of a dry, water-soluble polymer containing a dispersion of

19.2 / Controlled Release by Solvent Diffusion 555



small particles of drug. Before the slab is wet, drug diffusion is slow. When this slab is

dropped in water, the polymer starts to dissolve and the drug is released.

How this release occurs depends critically on the particular polymer–water interac-

tions. For most polymers (but not for most used to control release), the polymer will

swell in water even while its edges dissolve in water. In this case, the drug will usually

diffuse through the ever-increasing layer of water-swollen gel. The release rate will not be

constant; it will often decrease with the square root of time. If this were the only behavior

observed, swelling of a drug-containing polymer slab would be a poor route to con-

trolled release.

Interestingly, polymer dissolution does not always involve polymer swelling. In some

cases, the polymer must react before it will dissolve. This reaction may be a solvation; in

other cases, it may involve hydrolysis of the polymer chain to produce smaller, more

mobile segments. Often, the polymer reacts with dilute acid or base in the water.

The polymer dissolution now involves two sequential steps, much like those described

for mass transfer and heterogeneous reactions in Section 16.3. In the first step, the

reacted, water-soluble polymer must disentangle and detach from other polymer mole-

cules at the surface. In some cases, this detachment may include aspects of non-Fickian

diffusion, i.e., type II transport. In the second step, the dissolved polymer must diffuse

away from the surface into the surrounding bulk. The polymer’s dissolution rate will

depend on the overall resistance to mass transfer of these two steps.

In this situation, the drug follows the behavior of the polymer. It remains trapped

within the polymer and away from the solution until the polymer reacts; then it is

released at the rate of polymer dissolution. This release will normally be at zero order.

Moreover, because the drug’s release is controlled by the properties of the polymer and

not of the drug, this swelling system can be successful for many drugs. This is an

advantage compared with the reservoir systems discussed above.

19.2.2 Osmotic Pumps

The second method of obtaining constant drug release with solvent diffusion is

the osmotic pump, shown schematically in Fig. 19.2-1. In its simplest form, this device

consists of a rigid housing, one end of which is covered by a semipermeable membrane.

The other end of the housing is open only through a small hole, which leads into a bag

filled with a solution or a dispersion of the drug. The elastic bag does not completely fill

the housing; the remainder is filled with salt crystals suspended in saturated brine.

The osmotic pump works as follows. The hole attached to the drug reservoir is so

small that little drug diffuses out of it. Salt can’t diffuse out of the semipermeable

Saturated brine

Extra
salt

Semipermeable
membrane

Bag containing
drug

Fig. 19.2-1. An idealized osmotic pump. The drug release does not depend on drug properties,

but on those of the semipermeable membrane.
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membrane, either. However, water can diffuse across this membrane into the pump. If

themembrane is truly semipermeable and at uniform pressure, then the volumetric water

flux jv is:

jm ¼ LpDP ð19:2-1Þ

where Lp is the solvent’s permeability and DP is the osmotic pressure. However DP is

proportional to the salt concentration (cf. Eq. 18.3-4), and this concentration is always

saturated because the solution contains suspended salt crystals. As more water enters,

more salt dissolves; because water diffusion is slower than the salt dissolution, the

osmotic pressure remains constant. Thus jv is constant, independent of time.

The constant water flux jv now squeezes the drug-containing bag, ejecting drug solu-

tion at a constant rate. This ejection is much faster than any drug diffusion. More

importantly, the drug ejection is not only constant, but independent of the properties

of the drug. It depends only on the rate of osmosis, on the rate of water uptake by the salt

solution. Like the dissolving polymer, this form of controlled release is generic because

all kinds of drugs can be released at the same fixed constant rate. This fixed rate depends

on properties like the geometry and water permeability of the semipermeable membrane.

These properties can be adjusted independently of the drug properties.

The osmotic pump is an important method of controlled release. Its disadvantages are

similar to those of other reservoir systems. The chief one is again the risk of rupture,

which might accidentally release all of the drug in the device at once. This release is

potentially dangerous and can be a major deterrent to the use of this technology.

Example 19.2-1: Steady delivery of a water-insoluble drug We want to develop a device

to deliver nifedipine, a calcium channel blocker with extremely low water solubility (<10

ppm). We need to deliver the drug as a 0.006 g/cm3 suspension at a rate of 25 lg/hr using
an osmotic pump functioning like that shown in Fig. 19.2-1. The osmotic pump uses

a brine whose saturated concentration is 10–3M. If the semipermeable membrane that

you plan to use has permeance (P/l ) of 1.4 � 10–4 cm/sec, what membrane area will we

need?

Solution The volume of drug solution per time is just the drug delivery rate

divided by the concentration:

25 � 10�6 g
hr

hr

3600 sec

� �
cm

3

0:006 g
¼ 1:16 � 10�6 cm

3

sec

This flow of drug suspension equals the osmotic flow of water:

1:16 � 10�6 cm
3

sec

mol

18 cm
3

� �
¼ 6:43 � 10�8 mol

sec
¼ P

l

� �
ADc1

¼ 1:4 � 10�4 cm
sec

 !
A

0:006 equivalent

cm
3

� �
A ¼ 0:075 cm

2

You need a membrane that if square is about 3 mm on a side.
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19.3 Barriers

The other sections of this chapter, indeed the rest of this book, are largely

concerned with making diffusion as rapid as possible. This is because diffusion coeffi-

cients are commonly small, and so limit the rate at which the process occurs. Such slow

speeds are a major limitation for chemical separations. Diffusion limits the rate of acidgas

treating and the rate of leaching of soybeans. Diffusion causes nonideal breakthrough

curves in adsorption and makes distillation inefficient. Thus most of this book is con-

cerned with ways to increase diffusion, for example, by stirring or by chemical reaction.

In contrast, this section aims to decrease diffusion, often by as much as possible. This

decrease is often important to retain flavors in foods, or to ensure chemical stability of

herbicides or pesticides. Such decreases, a key part of the packaging business, are most

obviously identified by considering the flux j1 across a thin film

j1 ¼
DH

l
Dc1 ð19:3-1Þ

whereD is the solute’s diffusion coefficient in the film;H is its partition coefficient; l is the

film’s thickness; andDc1 is the concentration difference across the film, often fixed by the

particular situation. Obviously, we can get a smaller flux by using a thicker film, or by

choosing a film material with a smallH. These obvious first steps are the sensible way to

start.

Sometimes, however, we want a smaller flux than changes in l andH can provide. To

do so, we must reduce the effective value ofD, at least at short times. To see how we can

do so, we consider the system shown in Fig. 3.5-1. We imagine that the upper volume in

this figure is the interior of our package, and that the lower volume is the surroundings.

The volume of the package will, of course, be much smaller than the volume of the

surroundings, but that does not affect the arguments below. We see by analogy with

Example 3.5-1 that the concentration in the package is given by

c1 ¼
Ac10
V

� �
DH

l
t� tlag
� �

ð19:3-2Þ

The quantity in square brackets is a geometrical parameter, characteristic of this exper-

iment. Thus data like those in Figure 3.5-1 can be described with two parameters: a leak

rate (DH/l) and a large time tlag.

We can retard diffusion either by decreasing the leak rate or by increasing the lag

time. In the paragraphs below, we discuss three specific cases. First, we look at ways to

choose materials with smaller values of the diffusion coefficient D. Second, we look at

decreasing D – and increasing the lag tlag – by using composite films. Third, we consider

how films with sacrificial reagents can increase tlag.

19.3.1 Smaller Diffusion Coefficients

The most obvious way to reduce diffusion in packaging is to use a metal foil.

Such a foil, made of the solid metal, has a diffusion coefficient millions of times smaller

than that in a polymer film. However, such films are expensive and opaque. For most

consumer packaging we strongly prefer transparent films. We want not metals but high

polymers.
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We can reduce diffusion by working with polymers with a high glass transition

temperature Tg. Above the Tg, the polymer behaves as a viscous liquid, with diffusion

coefficients typically around 10–7 cm2/sec. Below the Tg, the polymer forms a glass

willing to form small crystals whose growth is inhibited by the polymer chains running

between crystals. Diffusion in such crystals is small, like that inmetals; diffusion between

crystals includes Knudsen transport and diffusion in a viscous liquid.

We will normally choose materials which are below their Tg to be diffusion barriers.

For flavors, this means choosing amorphous carbohydrates, especially mallodextrins.

We will choose high molecular weight materials to get robust mechanical properties but

lower molecular weight materials to have fewer intercrystalline flaws. Fewer flaws mean

lower permeabilities for solutes like oxygen. We will often manufacture these systems by

spray drying to produce 100-lm capsules containing 1-lm dispersed droplets of the

flavor. While I know this is only an approximation, I think of these systems as hard

candy with dispersed flavor.

19.3.2 Composite Films

The second route for a diffusion barrier is to add an impermeable filler to

a polymer particle. Fillers of sand or clay are good choices if their particle size is below

the wavelength of visible light. Under these conditions, the film will remain transparent.

If the volume fraction of the fillers is high, the mechanical properties of the film, like

Young’s modulus, can be compromised. This should not be crippling because we can, in

principle, reduce the permeability and match the Young’s modulus by starting with

a polymer with a smaller Young’s modulus.

The problem with composites is that the continuous phase dominates the diffusion.

For example, (impermeable) spherical particles of sand have little effect on diffusion, as

shown in Section 6.4.4. The largest exception, summarized by Eq. 6.4-26, is for films with

aligned impermeable flakes. There, we can achieve reductions in diffusion of 10–50 times

as shown in Fig. 19.3-1.

1 10 100
1 + α2φ2/(1–φ)

1

10

100

D
0/

D

Mica in PVA
Mmt in PEG
Vermiculite in PVA
Mica
Silicate in PUU
Polyamide in LDPE
x = y

Fig. 19.3-1. Diffusion across films of aligned, impermeable flakes. The flakes increase the lag

before permeation and reduce permeation once it occurs. The permeation reductions shown vary

with the amount and shape of the flakes. (Data from De Rocher et al., 2004.)
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19.3.3 Sacrificial Reagents

A third way to build a diffusion barrier is to include a sacrificial reagent within

the film. For example, we can use a polymer with unsaturated double bonds to consume

diffusing oxygen or a film with suspended particles of an inorganic base to capture and

consume acids. If the reaction is rapid and irreversible, it will delay the penetration of the

oxygen or the acid across the film. It will increase the lag, though it will not change the

steady-state leak rate.

To estimate the size of this effect, we assume that the barrier includes a diffusion zone

of thickness l#within a film of thickness l. The immobile sacrificial reagent is at a constant

concentration c20 throughout the zone (l – l#). At the position z¼ l#, the reaction occurs

species ‘‘1’’þ species ‘‘2’’ ! products ð19:3-3Þ

In the diffusion zone z<l#, the concentration c2 is zero, all consumed by the solute c1.

This unwanted solute, which we are trying to exclude, is diffusing through this zone to

the reaction front where z ¼ l
0
.

We can now write a mass balance on the sacrificial reagent to find how these zones

change with time

amount of

reagent ‘‘2’’

consumed

264
375 ¼ diffusion

flux of

solute ‘‘1’’

264
375

d

dt
Al#
� �

c20
	 


¼ DHA

l#
c10 � 0ð Þ

ð19:3-4Þ

and A is the cross-sectional area. This is subject to the initial condition:

t ¼ 0; l#¼ 0 ð19:3-5Þ

Integrating, we find

l# ¼
2DHc10t

c20

� �1
2

ð19:3-6Þ

When the sacrificial reagent is completely consumed, l# equals the total thickness l, and
the film will start to leak. The time when the leak begins is

tlag ¼
l
2
c20

2DHc10
ð19:3-7Þ

Estimates of this lag time are in close agreement with those measured experimentally, as

shown in Fig. 19.3-2.

The case of an immobile sacrificial reagent, which is useful for barriers, stands in

sharp contrast to films with mobile reagents, as summarized in Table 19.3-1. These

results are most easily discussed in terms of the leak rate and the lag time. If the reagent

is immobile, the leak rate is not altered from the case of simple diffusion, as shown in the

second column of the table. The leak rate is the same as a nonreactive film. However, the

560 19 / Controlled Release and Related Phenomena



lag time does increase far beyond that expected for a reagent-free film. This is how an

immobile reagent can improve a barrier.

The results for a reversible reaction with an immobile species are similar, as also

shown in Table 19.3-1. Again, the steady-state leak rate is the same as the nonreactive

case. The lag can increase dramatically, as discussed in Example 2.3-2. Again, with an

immobile reagent, the lag can increase, but the leak is unchanged.
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Fig. 19.3-2. Diffusion of hydrochloric acid across films with sacrificial zinc oxide. The

graph plots vs. time the acid concentration downstream, which is initially acid free. The sacrificial

zinc oxide greatly increases the lag before acid permeation occurs, but has much less effect

on the permeation after the oxide is exhausted. (Data from Yang, et al., 2001.)

Table 19.3-1 Barrier properties of different reactive films.

System Leak rate Lag time

Simple diffusion
j1 ¼

DHC10

l
l 2

6D

Diffusion and irreversible reaction with
immobile species j1 ¼

DHC10

l
l 2

6D
1 þ 3c20

HC10

� �

Diffusion and reversible reaction with
immobile species j1 ¼

DHC10

l
l 2 1 þ Kð Þ

6D

Diffusion and reversible reaction with
mobile species

j1 ¼
Dc20
l

l 2

6D 1 þ KC10ð Þ

In this table, the diffusion coefficient is assumed to have the same value D for all mobile species.

19.3 / Barriers 561



In contrast, a mobile reactant which binds reversibly increases the leak rate and

decreases the lag time. The limits shown in Table 19.3-1, for a strongly reactive mobile

species, are an example of facilitated diffusion, detailed in Section 18.4. Now the leak

rate depends on the concentration of mobile reagent c20 and becomes independent of the

concentration of diffusing species. The lag is shorter, not longer, in the presence of

mobile reactant because the process now occurs as a form of facilitated diffusion.Mobile

reagents make barriers worse, not better.

Example 19.3-1: Cesium barriers Cesium-137 is one of the most dangerous species in

nuclear waste not because it is especially radioactive, but because it is water-soluble. One

way to capture this species is by selective adsorption on crystalline silicon titanate (CST).

If we add 10 wt% CST to a geotextile used to retard accidental cesium releases, by how

much will the lag time be increased?

Solution From Table 19.3-1, we see that

lagwithCST

lagwithoutCST
¼ 1þ K

With a feed concentration of 10–3MCsNO3, we expectKwill be about 20. Thus the ratio

of lags should also be about 20. By experiment, we find the ratio is about 30. The

performance is better than predicted, possibly because of the nonlinear adsorption

isotherm for cesium on CST.

19.4 Diffusion and Phase Equilibrium

Thus far in this chapter, we have described diffusion as a means of controlling

or retarding release of solutes like drugs or flavors. These solutes may initially be present

as a solution or a suspension. If the suspension dissolves quickly, diffusion is key. We

now turn to other cases of diffusion in two-phase systems. Like controlled release, these

cases can show dramatic and unexpected behavior. Like controlled release, this behavior

is the consequence of rapid chemical reactions.

The effects we want to discuss are exemplified by the dissolution of slaked lime,

Ca(OH)2, in aqueous solutions of a strong acid like HCl:

CaðOHÞ2 þ 2H
þ#Ca

2þ þ 2H2O ð19:4-1Þ

How this dissolution proceeds depends on the relative speed of diffusion and reaction.

When the bulk of the solution next to the solid is rapidly stirred, the acid can diffuse to the

solid’s surface very quickly. It then reacts with the solid’s surface. If the solid is essentially

impermeable, containing a very few pores, then any ions produced by the dissolution are

quickly swept back into the bulk solution. Because diffusion and chemical reaction occur

sequentially, the overall dissolution rate is like that of a heterogeneous reaction, depending

on the sum of the resistances of diffusion and of reaction (see Chapter 16). Such a process

represents an important limit of corrosion and is that usually studied.

Alternatively, the solution next to the solid may not be well stirred, and the solid

may be highly porous, as shown schematically by Fig. 19.4-1. In this case, the acid
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concentration will drop as it approaches the solid’s surface and continue to drop within

the solid’s pores. The ions produced as the result of the acid–solid reactionwill be present

in highest concentration near the solid’s surface. From this maximum, they can diffuse

out into the bulk solution or further into the porous solid.Within the solid, diffusion and

reaction occur simultaneously, so that the overall dissolution rate is like that of a homo-

geneous reaction, not a simple sum of the resistances of diffusion and reaction (see

Chapter 17).

To calculate the dissolution rate of the porous solid r1, we write continuity equations

for calcium ions (species 1) and protons (species 2):

qc1
qt
¼ D

q2c1
qz2
þ r1 ð19:4-2Þ

qc2
qt
¼ D

q2c2
qz2
� 2r1 ð19:4-3Þ

where, as before, we assume that the diffusion coefficients are equal.We also assume that

the reaction in Eq. 19.4-1 is so fast that it reaches equilibrium:

½Ca2þ� ¼ K9½CaðOHÞ2�
½H2O�2

( )
½Hþ�2 ð19:4-4Þ

whereK9 is the equilibrium constant of the dissolution. The Ca(OH)2 is solid and of unit

activity; the water is present in excess; so everything in the braces is a new equilibrium

constant K. Thus

c1 ¼ Kc
2
2 ð19:4-5Þ

qc1
qt
¼ 2Kc2

qc2
qt

ð19:4-6Þ

Acid

Metal ion

z

Fig. 19.4-1. Dissolution of a porous solid. In this schematic representation, acid diffusing

from left to right is consumed by chemical reaction with the solid. The metal ions produced

by this reaction can, under some conditions, diffuse into the pores and precipitate as more

solid. (Data from Cussler and Featherstone, 1981, with permission.)
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and

q2c1
qz2
¼ 2K

qc2
qz

� �2

þ c2
q2c2
qz2

" #
ð19:4-7Þ

Inserting these into Eq. 19.4-2 and then combining with Eq. 19.4-3, we find the disso-

lution rate:

r1 ¼ �
2Dc1ðq ln c2=qzÞ
1þ 4ðc1=c2Þ

2
" #

ð19:4-8Þ

The exact values depend on the particular boundary conditions involved.

The remarkable feature about Eq. 19.4-8 is that it predicts that the dissolution rate

within the pores is negative, because all terms in the brackets in Eq. 19.4-8 are positive. In

physical terms, this means that Ca(OH)2 will precipitate in front of the acid wave shown

in Fig. 19.4-1. This predication is verified experimentally: dissolution can produce pre-

cipitation.

To explain the origin of these effects in more physical terms, we imagine that the

boundary conditions in the porous solid are those of free diffusion (see Section 2.3):

t<0, all z, c1 ¼ 0, c2 ¼ 0 ð19:4-9Þ

t > 0, z ¼ 0, c1 ¼ c10, c2 ¼ c20 ð19:4-10Þ

z ¼ ‘, c1 ¼ 0, c2 ¼ 0 ð19:4-11Þ

For the moment, we pretend that there is no reaction, so r1 ¼ 0. Then, if both species

have the same diffusion coefficient D,

c1
c10
¼ c2

c20
¼ 1� erf

zffiffiffiffiffiffiffiffi
4Dt
p ð19:4-12Þ

We thus know c1 as a function of z and t.We also know c1 as a function of c2, and we can

graph this variation as the diffusion path in Fig. 19.4-2.

However, when there is a reaction, the concentrations in the system must follow the

equilibrium in Eq. 19.4-5, producing a path that is also shown in Fig. 19.4-2. This equi-

librium line is essentially a phase diagram. If at fixed acid concentration c2, the dissolved

calcium concentration c1 is below this equilibrium line, then solid will dissolve to produce

more c1. If at fixed c2, c1 is above this line, then solid will precipitate to reduce c2.
When we compare the equilibrium and the diffusion paths, we see that diffusion of

H+ into porous Ca(OH)2 will tend to carry us into the two-phase region, and so produce

precipitation in front of the acid wave. In contrast, for the reaction

CaCO3 þH
þ#Ca

2þ þHCO
�
3 ð19:4-13Þ

we might write

c
2
1 ¼ Kc2 ð19:4-14Þ

564 19 / Controlled Release and Related Phenomena



where 1 is Ca2+ or HCO3
�
and 2 is H+. Here, the equilibrium curve would show the

opposite curvature, and we would expect dissolution both at the solid’s surface and

within the pores.

This type of effect, which is intuitively surprising, is also responsible for spontaneous

emulsification in liquids (Ruschak and Miller, 1972), for some phase separations in

metals (Kirkaldy and Brown, 1963), and for the formation of fogs in gases (Toor,

1971). These problems are conceptually parallel, but their details are more complex.

This complexity comes largely from the replacement of simple stoichiometric relations

like Eqs. 19.4-1 and 19.4-13 by more complicated phase diagrams. In many interesting

cases, these phase diagrams do not have a single species present in excess, and so they

require representation on triangular coordinates. The phase diagrams may also imply

additional interfaces. This area contains unsolved problems of practical significance.

19.5 Conclusions

This short chapter suggests how diffusion and phase changes can sometimes in-

teract. For example, when drug release is controlled by slow drug diffusion across a mem-

brane, the rate of release can be constant if the drug concentration on one side of the

membrane is kept saturated, refreshed by the solid drug quickly dissolving. When acid

diffuses into a porous solid, the acid can dissolve the solid’s surface while it effects pre-

cipitation of the same solid below the surface. While the examples discussed here are not

exhaustive, they illustrate the more basic ideas in the book that find broad application.

Questions for Discussion

1. What is zero-order release? Why is it desirable?

2. Briefly explain why the coated hemisphere shown in Fig. 19.1-3(b) can give

approximately zero-order release.
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Fig. 19.4-2. How dissolution can cause precipitation. When no solid is present, the calcium

and proton concentrations are approximately linearly related, as shown by the dashed

diffusion path. When solid is present, they are related by the equilibrium solubility, although

diffusion constantly tries to push the system into the two-phase region.
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3. How does an osmotic pump work?

4. Write equations describing flavor release from a spherical microcapsule.

5. Estimate flavor release from a microcapsule which is flavor impermeable but

which is burst by osmotic flow.

6. Write equations describing release from a polymer–drug matrix whose disso-

lution is controlled by polymer hydrolysis.

7. How much will 10 vol% spheres reduce the permeability?

8. How much will 10 vol% flakes of aspect ratio 30 reduce the permeability?

9. Imagine you have an activated carbon which can absorb 1% of its weight in

polychlorinated biphenyls (PCBs). Howmuch should such a carbon retard PCB

release across a 0.2-cm sheet of polyethylene?

10. Imagine a polymer layer containing 1% suspended particles of NaOH. If such

a film is challenged with acid, will extra NaOH precipitate in advance of the

reaction front?

Problems

1. Drugs are sometimes administered as solid particles suspended in water and trapped
inmicrocapsules like those shown at the left of Fig. 19.1-3. Because the drug concentration
in the surrounding solution is near zero, the flux of drug is constant with time. In some

cases, this allows the drug dosage to be dramatically reduced. (a) Assuming the capsule
wall is thin, find the total steady-state flux in moles per time out of the microcapsule. You
may neglect the osmotic flow and diffusion of water. (b) Sketch this flux versus the wall
thickness (R0 – Ri). (c) Explain the previous result in physical terms. (d) Now consider

diffusion as a ternary system of drug, water, and wall. How could the flux change?

2. Microcapsules are small polymer bubbles in which a thin polymer wall surrounds
a core of active solute. These microcapsules are often used to deliver special ingredients
as part of a product. For example, in a hand soap, microcapsules could release perfume

while one is washing their hands.
The trouble with these capsules is that the thin polymer wall of thickness l is often

very slightly porous with porosity e. In this case, perfume diffuses through the non-

porous part of the wall, which has a diffusion coefficient D and a partition coefficient
H. It also diffuses through the pores with a different diffusion coefficient D#. (a) If the
perfume concentration inside the capsules is a (roughly) constant c10, what is the total
flux j across the wall? (b) What is the total resistance across the wall?
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CHAPTER 20

Heat Transfer

In this chapter, we briefly describe fundamental concepts of heat transfer. We

begin in Section 20.1 with a description of heat conduction. We base this description on

three key points: Fourier’s law for conduction, energy transport through a thin film, and

energy transport in a semi-infinite slab. In Section 20.2, we discuss energy conservation

equations that are general forms of the first law of thermodynamics. In Section 20.3, we

analyze interfacial heat transfer in terms of heat transfer coefficients, and in Section 20.4,

we discuss numerical values of thermal conductivities, thermal diffusivities, and heat

transfer coefficients.

Thismaterial is closely parallel to the ideas about diffusion presented in the rest of this

book. This parallelism is not unexpected, for heat transfer and mass transfer are de-

scribed with equations that are very similar mathematically. The material in Section 20.1

is like that in Chapter 2, and the general equations in Section 20.2 are conceptually sim-

ilar to those in Chapter 3. The material on heat transfer coefficients in Section 20.3

closely resembles the mass transfer material in Chapters 9 through 15, and the numerical

values in Section 20.4 are parallel to those in Chapters 5 and 8.

Thus we are abstracting ideas of heat transfer in a few sections, whereas we detailed

similar ideas of mass transfer over many chapters. This represents a tremendous abridg-

ment. As those skilled in heat transfer recognize, the heat transfer literature is immense,

of far greater size than the mass transfer literature. To be sure, this book is about

diffusion, and so an emphasis on mass transfer is appropriate. But if the description

of heat transfer is to be so terse, why include it at all?

I have included the description of heat transfer because I want to discuss simulta-

neous heat and mass transfer in the next chapter. This simultaneous transport process is

important practically and is interesting intellectually, with implications ranging beyond

the particular problems presented. However, to discuss this simultaneous process, we

need to assure a background in heat transfer. I expect that many who read this book will

not have such a background, for this topic is usually buried well inside the engineering

curriculum. Accordingly, this chapter is a synopsis to provide this background.

20.1 Fundamentals of Heat Conduction

The fundamental understanding of heat conduction rests on the work of Jean

Joseph Fourier, whowas bornMarch 21, 1768. Orphaned before 10 years of age, Fourier

got an education by joining the church. He started teaching school but then advanced

rapidly through the government bureaucracy as the French Revolution eliminated those

above him. It was a risky business, and Fourier spent some time in prison. Nonetheless,

under Napoleon he became prefect of the department of Isère. He did his work on heat

conduction while holding that position. It was as if the governor ofMinnesota was doing

first-rate mathematical physics in his spare time, during evenings and on weekends.
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In 1807, Fourier presented his work to the most qualified doctoral committee in

history, including Laplace, Lagrange, and Monge. Poisson was also involved. Lagrange

was critical; so Fourier’s degree was delayed.

In his 1807 paper, Fourier used the experiments of Biot to argue that the heat flux q

should be proportional to the temperature gradient =T:

q ¼ �kT=T ð20:1-1Þ

where the proportionality constant kT is the thermal conductivity. Note that the dimen-

sions of kT are not simple, but are commonly energy per length temperature time. This

equation is a close parallel to Fick’s law; indeed, as explained in Section 2.1, Fick de-

veloped the diffusion law by analogy with Fourier’s work.

To calculate heat fluxes or temperature profiles, we make energy balances and then

combine these with Fourier’s law. The ways in which this is done are best seen in terms of

two examples: heat conduction across a thin film and into a semi-infinite slab. The choice

of these two examples is not casual. As for diffusion, they bracket most of the other

problems, and so provide limits for conduction.

20.1.1 Steady Heat Conduction Across a Thin Film

As a first example, consider a thin solid membrane separating two well-stirred

fluids, as shown schematically in Fig. 20.1-1. Because one fluid is hotter than the other,

energy will be conducted from left to right across the thin film. To find the amount of con-

duction,wemake a steady-state energy balance on a thin layer located between z and z+Dz:

z = 0 z = l

Tl

Hot
stirred
fluid

Cool
stirred
fluid

T0

Δz

Solid
film

Fig. 20.1-1. Steady heat conduction across a thin film. Heat conduction across a thin film is

like diffusion across a membrane (see Section 2.2). The resulting temperature profile is linear,

and the flux is constant and inversely proportional to the film thickness l.

energy
accumulation

� �
¼ energy

conducted in

� �
� energy

conducted out

� �
ð20:1-2Þ
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At steady state, this is

0 ¼ Aqjz � Aqjz þ Dz ð20:1-3Þ
where A is the cross-sectional area and q is the heat flux in the z direction. Divid-

ing by the layer’s volume ADz and taking the limit as this volume goes to zero, we find

0 ¼ �dq

dz
ð20:1-4Þ

Combining with Fourier’s law for conduction in the z direction, we find

0 ¼ kT
d
2
T

dz
2 ð20:1-5Þ

This differential equation is subject to the boundary conditions

z ¼ 0, T ¼ T0 ð20:1-6Þ

z ¼ l, T ¼ Tl ð20:1-7Þ
Integration to find the temperature profile is simple:

T ¼ T0 þ Tl � T0ð Þ z
l

ð20:1-8Þ

Note that this profile, shown in Fig. 20.1-1, does not depend on the thermal conductivity.

Finding the heat flux is also easy:

q ¼ �kT
dT

dz

¼ kT
l

T0 � T1ð Þ ð20:1-9Þ

This is a complete parallel to Eq. 2.2-10.

The results in Eqs. 20.1-8 and 20.1-9 are extraordinarily useful, the basis of much

thinking about heat transfer. Still, you may have trouble taking them seriously because

you are not mathematically intimidated by the derivation. To test your understanding,

try to answer the following questions.

(1) How is the temperature profile changed if the fluid at z ¼ 0 and T0 is replaced

by a different liquid that is at the same temperature? There is no change as long as

the interfacial temperature is constant.

(2) What will the temperature profile look like across two thin slabs of different

materials that are clamped together? In steady state, the heat flux is constant.

Thus the temperature drop across the poorly conducting slab will be larger

than that across the better conductor.

(3) Imagine that for the system in Fig. 20.1-1 the fluid at z ¼ l has a small volume,

V, but the fluid at z ¼ 0 has a very large volume. How will Tl change with time?

To answer this, we write an energy balance on the fluid at z ¼ l:

d

dt
qVĈpTl

� �
¼ Aqjz ¼ l

¼ A
kT
l

T0 � Tlð Þ ð20:1-10Þ
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in which qV is the mass of fluid located at z ¼ l, Ĉp is the specific heat capacity of this

fluid, and A is the area available for heat transfer. Initially, the temperatures are known:

t ¼ 0, Tl ¼ Tl t ¼ 0ð Þ ð20:1-11Þ

Integrating,

Tl ¼ Tl t ¼ 0ð Þ þ T0 � Tl t ¼ 0ð Þ½ �ð1� e
�ðkTA=lqVĈpÞtÞ ð20:1-12Þ

The temperature rises to a limit of T0. Note that in this analysis, we use the steady-state

result for a thin film in conjunction with an unsteady energy balance on the fluid. The

justification for this is that the film volume is much less than the fluid volume. The same

justification was used for the diaphragm-cell method of measuring diffusion coefficients

(see Example 2.2-4).

20.1.2 Unsteady Heat Conduction into a Thick Slab

Our second example involves thermal conduction into the large solid slab

shown in Fig. 20.1-2. This slab is the antithesis of the thin film discussed earlier. To

be sure, both the slab and the film are in contact at z¼ 0 with hot fluid atT0; but here, the

slab has no other boundary. Instead, far within the slab the temperature remains equal to

the initial value TN.

To solve this problem, we againmake an energy balance on a differential layer located

between z and z + Dz:

accumulation
of energy

� �
¼ energy

conduction in

� �
� energy

conduction out

� �
ð20:1-13Þ

When I derive these equations, I find it easiest to build up the terms I want:

z = 0

Initially
cool solid

T= T0

Δz

TimeHot
stirred
fluid

T∞

Fig. 20.1-2. Unsteady heat conduction into a semi-infinite slab. The temperature profile in

this case is an error function, just like the concentration profile in Section 2.3. This profile

depends on the variable z/
ffiffiffiffiffiffiffi
4at
p

;where a ð=kT=qĈpÞ is the thermal diffusivity.
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ADz is the volume of the differential layer,

qADz is the mass,

qADzĈv is its energy per temperature,

qADzĈvT is its energy, and

q/qt(qADzĈvT)is the energy accumulation.

Thus

q
qt

qADzĈvT
� �

¼ Aqjz � Aqjz þ Dz ð20:1-14Þ

Dividing by qADzĈv and taking the limit as Dz becomes small,

qT
qt
¼ � 1

qĈv

qq
qz

ð20:1-15Þ

Combining with Fourier’s law and making the accurate assumption that in a solid the

heat capacities at constant volume and at constant pressure are the same, i.e. Cv ¼ Cp,

qT
qt
¼ a

q2T

qz2
ð20:1-16Þ

where a ð¼ kT=qĈpÞ is the thermal diffusivity, with dimensions of length squared per

time. This equation occurs so frequently that it is sometimes called ‘‘the heat conduction

equation,’’ as if there were no other forms.

For the specific case of interest here, Eq. 20.1-16 is subject to the initial condition

t ¼ 0, all z, T ¼ T‘ ð20:1-17Þ
and to the boundary conditions

t > 0, z ¼ 0, T ¼ T0 ð20:1-18Þ

z ¼ ‘, T ¼ T‘ ð20:1-19Þ
For these boundary conditions, the solution to Eq. 20.1-16 is easily obtained by

combination of variables, just as was discussed in Section 2.3. The results are

T� T0

T‘ � T0
¼ erf

zffiffiffiffiffiffiffi
4at
p ð20:1-20Þ

qjz¼0 ¼ �kT
qT
qz

����
z ¼ 0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTqĈp=pt

q
T0 � T‘ð Þ ð20:1-21Þ

The temperature profile is the same as that for diffusion but with the thermal diffusivity

replacing the diffusion coefficient.

As in the case of the thin film, this result may be so familiar that it is difficult to think

about carefully. As before, you can test your understanding by trying to answer these

three questions:

(1) To what depth does the temperature change penetrate in, for example, a steel slab?

To a first approximation, the temperature changes occur to a depth where z2/4at
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equals unity. For steel, a equals about 0.1 cm2/sec; if the steel is heated for 10min,

the temperature penetrates about 15 cm. This result is independent of heating

or cooling, and it is like similar arguments for diffusion (see Section 2.6).

(2) How does the flux vary with physical properties for the thick slab as compared with

the thin film? Doubling the temperature difference doubles the heat flux in both

cases. Doubling the thermal conductivity increases the flux by
ffiffiffi
2
p

for the thick slab

and by 2 for the thin film. Doubling the heat capacity increases the flux by
ffiffiffi
2
p

for

the thick slab, but has no effect for the steady-state conduction across a thin film.

(3) Howmuch heat is transferred over a time t0? To find this, we integrate Eq. 20.1–21

over time:

total heat
transferred
per area

0@ 1A ¼ Z t0

0

qjz ¼ 0dt

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTqĈpt0=p

q
T0 � T‘ð Þ ð20:1-22Þ

To double the heat transferred in t0, we need to wait four times as long.

The limits of heat conduction across a thin film and into a thick slab are the two most

important cases of a rich variety of examples. This variety largely consists of solutions of

Eq. 20.1-16 for different geometries and boundary conditions. The geometries include

slabs, spheres, and cylinders, as well as more exotic shapes like cones. The boundary

conditions are diverse. For example, they include boundary temperatures that vary

periodically because this is important for diurnal temperature variations of the earth.

They include boundary conditions in which the heat flux at the surface is related to the

temperature of the surroundings, Tsurr; for example,

� kT
qT
qz

����
z ¼ 0

¼ h Tjz ¼ 0 � Tsurr

� 	
ð20:1-23Þ

where h is an individual transfer coefficient, a rough analogue to an individual mass

transfer coefficient. This type of constraint is sometimes called a radiation condition.

At the same time, Eq. 20.1-16 is only one of a wide variety of energy balances that are

useful. These more general balances are the subject of the next section, which comes after

some simple examples.

Example 20.1-1: Determining thermal diffusivity A thick slab of a polymer composite

at 40 �C is immersed in a large stirred oil bath kept at 4 �C. A thermocouple 1.3 cm

below the slab’s surface reads 26.2 �C after 3 min. What is the thermal diffusivity of

the slab?

Solution Because the slab is thick, we can use Eq. 20.1-20:

T� T0

T‘ � T0
¼ erf

zffiffiffiffiffiffiffi
4at
p

26:2� 4

40� 4
¼ erf

1:3 cmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4að180 secÞ

p

20.1 / Fundamentals of Heat Conduction 573



Thus, a ¼ 3.1�10�3 cm2/sec, a typical value for this type of material.

Example 20.1-2: Heat loss from a well-insulated pipe Imagine a well-insulated pipe

used to transport saturated steam (Fig. 20.1-3). How much will the heat loss through

the pipe’s walls be reduced if the insulation thickness is doubled? Assume that the

thermal conductivity of the pipe’s walls is much higher than that of the insulation.

Solution We begin this problem by making a steady-state energy balance on

a cylindrical shell of insulation of volume 2prDrL:

energy

accumulation

� �
¼

energy inminus energy out

by conduction

� �
0 ¼ ð2prLqÞr � ð2prLqÞrþDr

where r is the radial distance measured from the centre of the shell.

Dividing by the shell’s volume and taking the limit as Dr goes to zero,

0 ¼ � d

dr
ðrqÞ

Integration gives

rq ¼ R0q0

where q0, an integration constant, is equal to the heat flux at the pipe’s outer surface.

Combining this with Fourier’s law, we find

� rkT
dT

dr
¼ R0q0

2Ri

2R0

Region for
energy
balance

Ti

T0

L

Fig. 20.1-3. Heat loss from an insulated pipe. This problem illustrates the extension of ideas

of heat transfer to systems with cylindrical symmetry. When the pipe’s diameter is large, the

results approach the limit of the thin film shown in Fig. 20.1-1.
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or, after rearrangement,

q0 ¼ �
kT
R0

R T0

Ti
dTR R0

Ri

dr
r

The limits of the integrals are those shown in Fig. 20.1-3. Thus

q0 ¼
kT Ti � T0ð Þ
R01n R0=Rið Þ

But we want to know the effect of doubling the insulation thickness. In other words, we

want to double d (= R0/Ri – 1). We can rearrange the foregoing equation to show

fluxwith double insulation

fluxwith single insulation

� �
¼ ð1þ dÞ1nð1þ dÞ
ð1þ 2dÞ1nð1þ 2dÞ

which is the desired result. A good exercise is to show that this ratio approaches 0.5 as the

pipe diameter Ri becomes large (i.e., as d goes to zero).

20.2 General Energy Balances

Energy balances can be more complicated and more difficult to understand

than mass balances. Mass balances are easy because chemical compounds are uniquely

defined. For example, glucose not only has a particular ratio of atoms of carbon, hy-

drogen, and oxygen but also has a specific structure of these atoms. Making a mass

balance on glucose is straightforward, and any appearance or disappearance of glucose

is described by a chemical reaction.

Energy balances can be more difficult because energy and work can take so many dif-

ferent forms. Internal, kinetic, potential, chemical, and surface energies are all important.

Work can involve forces of pressure, gravity, and electrical potential. As a result, a truly

general energy balance is extraordinarily complicated, so much so that it is difficult to use.

As a result, most people do not try to use truly general energy balances, but use

simplified versions appropriate for special problems. I find this specialization reminis-

cent of a Tibetan painting that hangs on the wall of my study. The top of the painting

shows the Buddha of the Yellow Cap, sitting like a star on a Christmas tree. Other

manifestations of the god are spread out below him like the tree’s ornaments. These

demigods are vividly represented. Some are ferocious, some look ineffective, others seem

kind and approachable.

These different forms of the Buddha are like the different forms of the energy equa-

tion. All forms of this equation are derived from the same difficult and complex spirit.

These derived forms can look very different. Some are much more tractable than others

and are more useful for solving specific problems.

In this section, we shall focus our discussion on energy balances for a single pure

component, possibly a fluid, that has internal and kinetic energy. The use of a pure fluid

is equivalent to our earlier assumption of dilute solution, for the physical properties will

20.2 / General Energy Balances 575



be those of the one component. The discussion hinges on three forms of the energy

balance. The most general form is

q
qt

q Ûþ 1

2
v
2

� �
¼ �= � qv Ûþ 1

2
v
2

� �
� = � qð Þ þ q v � gð Þ

energy

accumulation

� �
¼

energy convection

inminus that out

� �
þ conductionð Þ �

work by

gravity

� �
� = � qv

p

q

� �
� = � t � v½ �ð Þ

�
work by

pressure

forces

0B@
1CA � work by

viscous

forces

0B@
1CA

ð20:2-1Þ

This scalar equation can be simplified by subtracting the mechanical energy balance and

thus removing the kinetic terms:

qðqÛÞ
qt
¼ �ð= � qvÛÞ � ð= � qÞ

energy

accumulation

� �
¼

energy

convection

inminus that out

0B@
1CAþ conductionð Þ

� pð= � vÞ � ðt : =vÞ

�
reversible

work

� �
�

irreversible

work

� �
ð20:2-2Þ

A third useful form can be derived by combining the energy convection and the

reversible work as the enthalpy:

qðÛÞ
qt
¼ �ð= � qvĤÞ � ð= � qÞ

energy

accumulation

� �
¼

enthalpy

convection

inminus that out

0B@
1CA þ ðconductionÞ

þ ðv � =pÞ � ðt : =vÞ

�
part of the

enthalpy

definition

0B@
1CA � irreversible

work

� �
ð20:2-3Þ

in which Ĥð¼ Û þ p=qÞ is the specific enthalpy.
These equations are formidable, and so may best be understood by comparing them

with more easily remembered results. For example, consider the form of the first law

most commonly remembered by scientists:

DU ¼ QþW ð20:2-4Þ
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This equation is for a batch systemwith no flow in or out, and it is restricted to changes in

internal energy only. If we simplify Eq. 20.2-2 for these conditions, we have

q
qÛ
qt
¼ �ð$ � qÞ� pð$ � vÞ þ t : $v½ � ð20:2-5Þ

The term DU on the left-hand side of Eq. 20.2-4 corresponds to the accumulation in

Eq. 20.2-5; the term Q in Eq. 20.2-4 refers to the conduction (– = � q) in Eq. 20.2-5; the

work �W is represented by the quantity in brackets in Eq. 20.2-5. Equation 20.2-4 is

extensive, referring to the total system. In contrast, Eq. 20.2-5 is intensive, written on

a small differential volume within the system.

Another familiar form of the first law used largely by engineers is that for a steady-

state open system of fixed volume

DH ¼ QþWs ð20:2-6Þ

where DH is the enthalpy change from inlet to outlet andWs is the shaft work. For such

a system, Eq. 20.2-3 becomes

0 ¼ �ð= � qvĤÞ � ð= � qÞ � ðt : =vÞ ð20:2-7Þ

The enthalpy and conduction terms in this equation are analogous, but the work terms

here include subtle differences.

At this point, you may justifiably wonder why the more complex equations have been

introduced at all. Such wonder is legitimate because these equations are rarely as useful

as the simpler energy balances used for conduction problems in the previous section.

They are much less useful than the corresponding equations used for fluid mechanics.

Still, I find these equations a reliable way to check my derivation of energy balances,

especially in cases of simultaneous conduction and flow. Some of these are illustrated in

the examples that follow.

Example 20.2-1: Conduction in a thin film and a thick slab Derive Eq. 20.1-5 for a thin

film and Eq. 20.1-16 for a thick slab from the generalized energy balance in Eq. 20.2-2.

Solution For the thin film, the conduction is in steady state; so accumulation

is zero. The film is solid, so there is no energy convection or work. Thus

0 ¼ �= � q

Because transport is one dimensional,

0 ¼ � d

dz
q

When we combine with Fourier’s law,

0 ¼ kT
d
2

dz
2 T
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This is the desired result.

For a solid slab of constant density, again there is no convection, so Eq. 20.2-2 becomes

q
qÛ
qt
¼ �$ � q

Transport is still one dimensional, and q can be restated in terms of Fourier’s law. In

addition, for a solid,

Û ¼ Ĉv T� ðsome reference temperatureÞ½ �

For solids, Ĉv equals Ĉp and is almost a constant, so

qĈp
qT
qt
¼ kT

d
2
T

dz
2

which is the same as Eq. 20.1-16. In both cases, deriving the differential equation is easy;

solving it for particular boundary conditions may be difficult.

Example 20.2-2: Heating a flowing solution A viscous solution in laminar flow is flowing

steadily through a narrow pipe. At a known distance along the pipe, the pipe’s wall is

heated with condensing steam. Find a differential equation from which the temperature

distribution in the pipe can be calculated.

Solution Because this is a flow system, we decide to begin with the general

energy balance in Eq. 20.2-3. The system is in steady state, so the accumulation is zero.

We usually can anticipate that heating due to viscous dissipation is small, and so take

s : $vð Þ as nearly zero. Equation 20.2-3 then becomes

0 ¼ �ð= � qvĤÞ � ð= � qÞ

To solve this problem, we often assume that the energy transfer along the pipe

axis is largely by convection and that energy transport in the radial direction is by

conduction:

0 ¼ � q
qz

qvĤ� 1

r

q
qr

rq

We expect that

Ĥ ¼ Ĉp T� ðsome reference temperatureÞ½ �

and that q, v, and Ĉp are constants. With these simplifications, we combine with Four-

ier’s law to find

q
qz

T ¼ kT

qĈpv

 !
1

r

q
qr

r
qT
qr

Solutions of a somewhat similar diffusion problem were discussed in Section 9.4.
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20.3 Heat Transfer Coefficients

The material presented in the first two sections focused on Fourier’s law of heat

conduction. This law, which is especially useful for heat conduction in solids, allows

calculation of the temperature and heat flux at any position and time. It has been

tremendously useful, a pillar of scientific thought. However, it can be difficult to use

in fluid systems, especially when heat is transferred across phase boundaries.

Instead, we often use a different model for heat transfer, one better suited to approx-

imate calculations of the heat transferred across interfaces. In this model, the separate

phases are imagined to be well mixed, and hence isothermal. The only temperature

gradients are close to the interface, in some vaguely defined interfacial region. The heat

flux in this model is assumed to be

q ¼ UDT ð20:3-1Þ

where the heat flux q is taken as normal to the interface, the temperature difference DT is

from one bulk phase across the interface into a second bulk phase, and the proportion-

ality constant U is called the overall heat transfer coefficient.

This newmodel is similar to that using mass transfer coefficients (see Chapter 8). Like

the mass transfer model, it is comprised of a variety of definitions using different tem-

perature differences. One common choice of temperature difference is based on that at

some particular position z:

qðzÞ ¼ UDTðzÞ ð20:3-2Þ

This local definition is that applied in this book except where explicitly stated otherwise.

Another common choice is an arithmetic average temperature difference:

q ¼ U
0 DTðinletÞ þ DTðoutletÞ

2
ð20:3-3Þ

where U# is a different overall heat transfer coefficient, related to U but not normally

equal to it. This definition is sometimes used for correlations of data on full-size

industrial equipment.

The overall heat transfer coefficient across an interface is often the average of several

sequential steps. One classic example of this averaging is shown in Fig. 20.3-1. In this

example, energy is transferred from a hot fluid to a solid wall, is conducted across the

wall, and then is transferred into a cooler fluid. The heat flux in this case is

q ¼ h1ðT1 � T1iÞ
¼ h2ðT1i � T3iÞ
¼ h3ðT3i � T3Þ

ð20:3-4Þ

where the various temperatures and heat transfer coefficients are defined in the figure.

The various hi, called individual heat transfer coefficients, are characteristics of the fluids

near the wall and of the wall itself.

We now want to calculate the overall heat transfer coefficientU as a function of these

individual coefficients. We do this in two steps. First, we compare the second line of

Eq. 20.3-4 with Eq. 20.1-9 to discover that
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h2 ¼
kT2

l2
ð20:3-5Þ

where kT2
is the thermal conductivity and l2 is the thickness of the solid wall. Second, we

can combine the various equalities in Eq. 20.3-4 and eliminate the interfacial temper-

atures T1i and T3i. The final result is (after some algebra)

q ¼ T1 � T3

1=h1 þ l2=kT2
þ 1=h3

ð20:3-6Þ

By comparison with Eq. 20.3-2, we see that

U ¼ 1

1=h1 þ l2=kT2
þ 1=h3

ð20:3-7Þ

The overall coefficient is a harmonic average of the individual coefficients.

Two features of this result are noteworthy. First, this heat transfer problem is a com-

plete analogue to the electrical problem of three resistances in series. The heat flux q

corresponds to the current, and the temperature DT (= T1 – T3) is like the voltage. The

reciprocal of the overall heat transfer coefficient is analogous to the overall resistance.

This overall resistance equals the sum of the resistances of the individual steps 1/h1,

l2/kT2
, and 1/h3. This parallel is schematically suggested in Fig. 20.3-1.

At the same time, the overall heat transfer coefficient is simpler than the overall

mass transfer coefficient developed in Section 8.5. Both coefficients are related to

a sum of resistances, but the mass transfer case also involves weighting factors that are

often confusing. These factors relate the concentrations on different sides of the inter-

face. In the heat transfer case, the interfacial temperature in, for example, the hot fluid at

the wall equals the interfacial temperature of the solid wall in contact with the hot fluid.

This equality means no weighting factors and a simpler mathematical form.

We now illustrate the use of these coefficients by means of several simple examples.

Electrical analogue

Hot fluid
heat transfer
coefficient
h1

T3

T3i

T1

T1i

Cold fluid
heat transfer
coefficient
h3

Solid
wall
coeff

h2

Fig. 20.3-1. Heat transfer across an interface. The overall heat transfer coefficient is a

harmonic average of the individual heat transfer coefficients for the hot fluid, the wall, and the

cold fluid. This averaging, which corresponds to the electrical problem of several resistances in

series, is simpler than the corresponding mass transfer problem examined in Section 8.5.
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Example 20.3-1: Finding the overall heat transfer coefficient A total of 18 cm3/hr crude

oil flows in a heat exchanger with forty tubes 0.05 m in diameter and 2.8 m long (Fig.

20.3-2). The oil, which has a heat capacity of 2 J/kg K and a specific gravity of 900 kg/m3,

is heated with 240 �C steam from 20 �C to 140 �C. The steam is condensed at 240 �C but is

not cooled much below that temperature. What is the overall heat transfer coefficient

based on the local temperature difference? What is it when based on the average tem-

perature difference?

Solution We begin with an energy balance on the volume (p/4)d2Dz, as shown
in Fig. 20.3-2:

energy
accumulation

� �
¼ energy inminus energy out

by convection

� �
þ energy transferred

through tubewalls

� �
At steady state, this is

0 ¼ p
4
d
2

� �
ðvqĈpTjz � vqĈpTjzþDzÞ þ ðpdDzÞUð240� TÞ

whereU is the value defined by Eq. 20.3-2. The velocity in these equations is the average

value in one of the tubes. Dividing by the volume (p/4)d2Dz, taking the limit asDz goes to
zero, and rearranging the result,

dT

dz
¼ 4U

vqĈpd

 !
ð240� TÞ

This is subject to the condition that

z ¼ 0, T ¼ 20 8C

Δz
dVolume for

energy balance

Water out

Cold oil
in

Steam in

Hot oil
out

Fig. 20.3-2. A heat exchanger for crude oil. The oil flows through the tubes of the exchanger and

is heated with condensing steam. The problem is to calculate the overall heat transfer coefficient

from data given in the text.
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Integrating,

ln
240� 20

240� T

� �
¼ 4Uz

vqĈpd

All data are given except v, which is easily found from the total flow:

v ¼ 18 m
3

3600 sec 40 p
4 ð0:05mÞ

2
h i

¼ 0:064 cm= sec

Inserting this and the other values given,

U ¼ vqĈpd

4z
ln

240� 20

240� T

� �

¼
ð0:064 m

sec

900 kg

m
3 ð2

J

kgK
Þð0:05mÞ

4ð2:80mÞ ln
240� 20

240� 140

� �
¼ 0:41 W=m

2
K

This value is based on the local temperature difference.

Alternatively, we might base the heat transfer coefficient on the average temperature

difference (see Eq. 20.3-3):

DT ¼ 1

2
ðDTin þ DToutÞ

¼ 1

2
ð220 8Cþ 100 8CÞ

¼ 160 8C

The heat flux is easily found:

q ¼

18 m
3

3600 sec

900 kg

m
3

� �
2 J

kgK
ð140 8C� 20 8CÞ

40p ð0:05 mÞð2:8 mÞ

¼ 61
W

m
2

Thus the overall heat transfer coefficient is

U
0 ¼ 0:38 W=m

2
K

The difference between this value and that found earlier illustrates the importance of

making sure which definition we are using.

Example 20.3-2: The time for tank cooling A 100-gallon tank filled with water initially at

80 �F sits outside in air at 10 �F. The overall heat transfer coefficient for heat lost from
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the water-containing tank is 3.6 Btu/hr ft2 �F, and the tank’s area is 27 ft2. How long can

we wait before the water in the tank starts to freeze?

Solution As before, we begin with an energy balance on the tank:

energy

accumulation

� �
¼

heat loss

from tank

� �
d

dt
ðqVĈvTÞ ¼ �UAðT� 10 8FÞ

where q and Cv are the density and heat capacity of the water, V and A are the volume

and area of the tank, and T is the water’s temperature. This equation is subject to the

initial condition

t ¼ 0; T ¼ 80 8F

We can use this condition in integrating the previous equation to find

T� 10 8F

80 8F� 10 8F
¼ e
�ðUA=qVĈvÞt

We want the time at which freezing will begin:

32 8F� 10 8F

80 8F� 10 8F
¼ exp � ð3:6Btu=hr ft2 8FÞð27 ft2Þ

ð8:31 lb=galÞð100 galÞð1Btu=lb 8FÞ

 !
t

" #
t ¼ 10 hr

The tank will probably be safe overnight, but not much longer. Note that we implicitly

assume that the tank’s contents are isothermal and hence well mixed.

Example 20.3-3: The effect of insulation Insulation advertisements claim that, in Min-

nesota, we can save 40% on our heating bills by installing 10 in of glass wool as insu-

lation. The glass wool has a thermal conductivity of about 0.03 Btu/hr ft �F; the average
winter temperature in Minnesota is 15 �F, and the house temperature is 68 �F. If the
advertisements are true, and if heat loss from doors and windows is minor, how much

can we save with 2 ft of insulation?

Solution Imagine that the heat loss in our current home is

q ¼ hDT

By adding 10 in of glass wool, we have, from Eq. 20.3-6,

0:6q ¼ 1

ð1=hÞ þ ð10=12 ftÞ=ð0:03Btu=hr ft 8FÞDT

Dividing these equations, we find that

h ¼ 0:024Btu=hr ft
2

8F

With the thicker insulation, we have a heat loss q# of
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q
0 ¼ 1

ðhr ft 8F=0:024BtuÞ þ ð2 ftÞ=ð0:03Btu=hr ft 8FÞDT

¼ ð0:0092Btu=hr ft2 8FÞDT

This represents a saving of about 36%over the house with 10 in of insulation. Obviously,

the additional gain should be balanced against the insulation’s cost.

Example 20.3-4: Heat loss from a bar M. P. Crosland wrote in 1970 that ‘‘in 1804 Biot

carried out an experimental investigation of the conductivity of metal bars by maintain-

ing one end at a high known temperature and taking readings of thermometers placed

in holes along the bar. . . [He found] that the steady state temperature decreased expo-

nentially along the bar.’’ Biot could not explain this; Fourier could. Can you?

Solution To solve this problem, we make an energy balance on a differential

length Dz of the bar shown in Fig. 20.3-3:

energy
accumulation

� �
¼ energy inminus energy out

by conduction

� �
� energy lost to

the surroundings

� �
Because we are at steady state, the accumulation is zero, and

0 ¼Wlqjz �WlqjzþDz � 2ðWþ lÞDzhðT� T‘Þ

where W is the bar width, l is its vertical height, and h is the heat transfer coefficient

between the bar and the surroundings.We now divide by the volumeWlDz, take the limit

as Dz goes to zero, and combine the result with Fourier’s law:

0 ¼ kT
d
2
T

dz
2 �

h

L
ðT� T‘Þ

where L equals Wl/(2W + 2l). This equation is easily integrated to give

T� T‘ ¼ ae

ffiffiffiffiffi
h

kTL

p
z
þ be

�

ffiffiffiffiffi
h

kTL

p
z

T0

Δ z
z

T (z)

Air at T∞

T∞

Fig. 20.3-3. Heat loss from a heated bar. The long bar shown is heated by contact with the

large body at the left, which is at the high temperature T0. The temperature in the bar drops

exponentially along the bar. This situation is important historically, for it gave Fourier a major

clue in developing his law for heat conduction.

584 20 / Heat Transfer



where a and b are integration constants. These constants can be found from the bound-

ary conditions

z ¼ 0, T ¼ T0

z ¼ ‘, T ¼ T‘

We can show that a is zero by use of the second condition, equivalent to the assumption

of a long bar. From the first condition, we find that

T� T‘

T0 � T‘

¼ e
�
ffiffiffiffiffi
h

kTL

p
z

Thus the temperature drops off exponentially as we get farther and farther away from

the bar’s base. This is what Biot observed experimentally.

This problem is difficult because of the boundary condition that the bar is very long

and because of the term in the energy balance for heat loss into the air. This second

aspect gave Fourier himself a lot of trouble, so if it is not clear the first time, try again.

20.4 Rate Constants for Heat Transfer

Up to this point, we have treated the thermal conductivity kT, the thermal

diffusivity a, and the heat transfer coefficient h as unknowns, adjustable parameters in

any calculation. In fact, we often want to use previously measured values of these

quantities to make predictions about new situations. Values for gases can be predicted

from kinetic theory, and values for liquids and solids are best found by experiment.

In this section, we report a few selected values of these quantities.

Estimatesof thermal conductivitiesofgasesdependonthe following resultofkinetic theory:

kT ¼
1:99 � 10�4

ffiffiffiffiffiffiffiffiffiffiffi
T= ~M

q
r2Xk

ð20:4-1Þ

inwhich the thermal conductivity kT is in cal/cm sec K, r is the collision diameter in Å,T

is the temperature in Kelvin, and ~M is the molecular weight. The dimensionless quantity

Xk is of order 1 and a weak function of kBT/e where e is an energy of interaction. Values

of r and e are given in Table 5.1-2; some selected values of Xk are given in Table 20.4-1.

These calculations are straightforward, completely parallel to those in Section 5.1.

Typical values of thermal conductivities and thermal diffusivities in gases, liquids,

and solids are given in Table 20.4-2. Some of the values are expected from experience; for

example, the thermal conductivities of metals are much higher than those of liquids or

gases. Less obviously, the thermal diffusivities of nonmetallic solids and liquids are more

nearly the same, indicating that unsteady heat transfer proceeds at more similar rates in

these materials.

The effective thermal conductivity of composite materials tends to be dominated by

the continuous phase, just as in the case of diffusion (see Section 6.4.4). Composite

materials that can partially melt show anomalous thermal diffusivities; examples include

some hydrated salts and foods like ice cream. Still, thermal conductivities like those in

Table 20.4-2 represent a norm from which there are few departures.
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Some common correlations of heat transfer coefficients are reported in Table 20.4-3.

These all refer to heat transfer across a solid–fluid interface because other situations

either are rare or are described in different terms. Like the mass transfer correlations in

Section 8.3, these are best presented in terms of dimensionless groups. The two most

Table 20.4-1 Selected values of the collision integral Xk for use in Eq. 20.4-1

kBT/e Xk

0.4 2.49
0.6 2.07
0.8 1.78
1.0 1.59
1.2 1.45
1.4 1.35
1.6 1.28
2.0 1.18
3.0 1.04
4.0 0.97
6.0 0.90
10.0 0.82

Source: Hirschfelder et al. (1954).

Table 20.4-2 Thermal conductivities and thermal diffusivities of various materials

T (K) kt (10
�4 cal/cm sec K) a (cm2/sec)

Gases
Hydrogen 273 4.03 1.55
Nitrogen 273 0.57 0.22
Oxygen 273 0.58 0.22
Carbon dioxide 273 0.35 0.11

Liquids
Water 293 14.3 0.0014
Ethanol 293 4.4 0.00093
Hexane 293 2.9 0.0011
Octane 293 3.5 0.0010
Toluene 293 3.6 0.0010
Mercury 293 210 0.46

Solids
Steel, 1% carbon 293 1000 0.12
Copper 293 9500 1.17
Silver 293 10,200 1.71
Silver bromide 273 25 0.0055
Sodium chloride 273 88 0.020
Brick (masonry) 293 16 0.0046
Concrete (dry) 293 3.1 0.0049
Glass wool (q ¼ 200
kg/m3)

293 1.0 0.0028

Glass (window) 293 19 0.0034

Source: Data from Handbook of Chemistry and Physics (2008), and International Critical Tables (1933).
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important new groups are the Nusselt number and Prandtl number. TheNusselt number

explicitly contains the heat transfer coefficient:

Nusselt
number

� �
¼ hl

kT
ð20:4-2Þ

where l is some characteristic length. The Prandtl number is more complex:

Prandtl
number

� �
¼ lĈp

kT
¼ �

a
ð20:4-3Þ

It essentially represents the relative importance of viscosity and thermal conductivity.

These groups are closely parallel to the Sherwood and Schmidt numbers for mass trans-

fer, a point detailed in Section 21.1. Now we turn to illustrations of heat transfer using

these numerical values.

Example 20.4-1: The overall heat transfer coefficient of a heat exchanger As part of

a chemical process, we plan to use a shell-tube heat exchanger of twenty banks of 0.05

m outside-diameter steel tubes with 3 mmwalls. Outside the tubes, we plan to use 400 �C
flue gas; inside, we expect to be heating aromatics like benzene and toluene fed at around

30 �C. The gas flow will be 17 m/sec, and the liquid flow will be 2.7 m/sec. What overall

heat transfer coefficient can we expect in this exchanger?

Solution From Eq. 20.3-7, we see that

U ¼ 1

1=h1 þ l2=kT2
þ 1=h3

where h1 is the coefficient in the hot flue gas, kT2
/l2 refers to the steel wall, and h3 is the

coefficient in the liquid.

These coefficients are easily calculated. For h1, we assume that the flue gas has the

properties of nitrogen, so, from Eq. 20.4-1,

kT ¼
1:99�10�4

ffiffiffiffiffiffiffiffiffiffiffi
T= ~M

q
r2Xk

¼ 1:99 � 10�4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
673 8K=28

p
ð3:80 A

8Þ2ð0:87Þ
¼ 0:77 � 10�4 cal=cm secK ¼ 0:032 W=mK

We then use the correlation for flow over tube banks in Table 20.4-3:

h1 ¼ 0:33
kT
d

� �
dvq
l

� �0:6 lĈp

k

 !0:3
¼ 0:33

0:032 W=mK

0:05m

� �
:
ð0:05mÞð17m=secÞð051 kg=m3Þ

3:3 � 10�5 kg=cm sec

 !0:6

:
ð3:3 � 10�5 kg=m secÞ

�
1100 J

kgK

�
:032 W

mK

0@ 1A0:33

¼ 65 W=m
2
K
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The value for the steel wall, h2, is easily found using data from Table 20.4-2:

h2 ¼
kT2

l2
¼

42 W
mK

3 � 10�3m
¼ 14; 000 W=m

2
K

The value for the liquid inside the tube comes again from Table 20.4-3:

h3 ¼ 0:027
kT
d

� �
dvq
l

� �0:8 lĈp

k

 !0:33

¼ 0:027
0:15 W

mK

0:044 m

� �

:
0:044mð2:7m=secÞ870 kg=cm3

5:3 � 10�4 kg=m sec

 !0:8

:
5:3 � 10�4 kg

m sec
1700 J
kgK

0:15 J
m sec K

0@ 1A0:33

¼ 1, 100 W=m
2
K

Combining,

U ¼ 1
1
65þ 1

14,000þ 1
11,000

¼ 64 W=m
2
K

Note that thegas-sideheat transfer coefficient is less than thaton the liquid side,which in turn

is less than that of the wall. This is the usual sequence; heat transfer in gases tends to limit the

overall process. In contrast, mass transfer in liquids tends to be the rate-limiting step.

Example 20.4-2: The design of storm windows Rising energy prices have led to a renais-

sance in the insulation of houses. Advertisements state that the cost of home heating can

be substantially reduced by using two sets of storm windows. In other words, these

advertisements urge the use of windows with three layers of glass in existing window

frames, which are about 3 cm deep and 1 m long. Use your knowledge of heat transfer to

decide whether or not this is a good idea. Assume that the outside temperature is –10 �C
and the room temperature is +20 �C.

Solution The physical situation in this problem is illustrated schematically in

Fig. 20.4-1. In the simplest case, the window consists of a single pane of glass. Heat loss

through this window depends mostly on the thermal conductivity of this pane, for the

adjacent air tends to be stirred by free convection.

The heat loss might be substantially reduced using storm windows of two or more

panes of glass. Ideally, we would hope that this loss would now be governed by heat

conduction across the gap between the panes. In fact, free convection stirs the air in this

gap, so that the heat loss is much greater than that due to conduction. Still, this new

resistance to heat transfer sharply reduces heat loss.

20.4 / Rate Constants for Heat Transfer 589



We want to know if the heat loss is further reduced by an additional pane of glass

added between those in a conventional two-pane storm window. To answer this ques-

tion, we first find the heat transfer coefficient for a two-pane storm window, using

correlations for free convection given in Table 20.4-3. These correlations involve the

Grashöf number, which for air is

l
3
gqDp

l2 ¼ l
3
gðDq=qÞ
�
2 ¼ l

3
g

�
2

Dðp eM=RTÞ
p eM=RT

¼ l
3
g

�
2

DT
T

Thus, for a window with two panes 3 cm apart with a 30 �C temperature drop and filled

with air of kinematic viscosity v equal to 0.14 cm2/sec

h
two

pane

� �
¼ 0:065

kT
l

� �
l
3
g

�
2

DT
T

 !1=3
l

L

� �1=9

¼ 0:065
0:57 � 10�4 cal=cm secK

3 cm

 !

� ð3 cmÞ
3ð980 cm=sec2Þ

ð0:14 cm2
=secÞ2

30

278

� � !1=3
3 cm

100 cm

� �1=9

¼ 0:44 � 10�4 cal=cm2
secK

In contrast, the gaps in a three-pane window will be 1.5 cm. For each gap, the temper-

ature drop will be about 15 �C and the heat transfer coefficient will be

Single
pane

Cold Hot

Double
glazed

Cold Hot

Triple
glazed

Cold Hot

Fig. 20.4-1. Heat loss through storm windows. The heat loss through one pane of glass is much

greater than the heat loss through two. Interestingly, the heat loss through two panes is greater

than that through three, even though the thermal conductivity of air is less than that of the third

pane of glass. This result illustrates the importance of free convection.

h
one gap of

three pane

� �
¼ 0:065

0:57 � 10�4cal=cm secK

1:5 cm

 !

� ð1:5 cmÞ
3ð980 cm=sec2Þ

ð0:14 cm2
= secÞ2

15

278

� � !1=3
1:5cm

100 cm

� �1=9
¼ 0:32 � 10�4 cal=cm2

secK
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Because there are two such gaps, the overall heat transfer coefficient is

U
three
pane

� �
¼ 0:16 � 10�4 cal=cm2

secK

Having an additional pane of glass cuts the heat loss through the windows by over half.

20.5 Conclusions

This chapter contains a synopsis of heat transfer. Although the presentation is

brief, the chapter can supply a review or a summary for those already skilled in diffusion.

The sections here are like those earlier in the book: a basic law, differential equations leading

to fluxes, approximatemodels of interfacial transport, and values of the various coefficients.

The analysis of heat transfer is parallel to that for diffusion because heat transfer and

diffusion are described with the same mathematical equations. Indeed, many experts

argue that because of this mathematical identity, the two are identical. I do not agree

with this view because the two processes are so different physically. For example, heat

conduction is faster in liquids than in gases, but diffusion is faster in gases than in

liquids. This relation between the mathematical similarity and the physical difference

affects the problems involving both heat and mass transfer, problems central to the next

chapter.

Questions for Discussion

1. Compare Fourier’s law of heat conduction with Fick’s law of diffusion.

2. What are the dimensions in massM, length L, time t, and temperature T of the

thermal conductivity kT, the thermal diffusivity a, and the heat transfer co-

efficient h?

3. Will the thermal conductivity kT be changed by stirring? Will the overall heat

transfer coefficient U?

4. How could you measure a thermal conductivity?

5. How could you measure a heat transfer coefficient?

6. If you double the thermal conductivity, how much will the heat flux across

a thin film change?

7. How much will it change for conduction into a thick slab?

8. Which has the highest thermal conductivity, air, water, or steel? Which has the

smallest thermal diffusivity?

9. Compare an overall heat transfer coefficient with an overall mass transfer

coefficient.

10. What are the more common dimensionless groups used in heat transfer

correlations?

Problems

1. Find the heat lost per external area from a house at 18 �C on a winter day at –14 �C.
The house is insulated with the equivalent of 8 cm of glass wool. The resistance to heat
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transfer at the inner walls is negligible, but that at the outer walls is controlled by an air

layer equivalent to 0.2 cm.

2. Find the heat loss per external area from a water pipe containing water at 18 �C
on a winter day at –14 �C. The pipe has a diameter of 5 cm and is insulated with an
8-cm layer of polymer foam. The resistances to heat transfer inside the pipe and of the
pipe wall are negligible. That outside the pipe is controlled by an air layer equivalent

to 0.2 cm.

3. The values given below are abstracted from [Wind Chill: Equivalent Temperatures.
Washington, DC: NOAA (1974)] of windchill versus temperature.

Windchill is popularly interpreted as how cold the weather ‘‘feels’’ at the true temper-
ature and the given wind. In fact, these values are based on the time to freeze water in
a sausage casing hung over a Quonset hut in Antarctica. Since these results were

published, several have asserted that they are equivalent to the heat loss from a cylinder,
and so can be predicted from standard engineering correlations. Test this assertion
using the values in the table.

4. The energy balance on a differential volume can be written in a variety of ways,
including

q
qt

q Ûþ 1
2v

2
� �

¼ �= � qv Ûþ 1
2v

2
� �

� ð= � qÞþqðv � gÞ � = � pv� ð= � ½t � v�Þ

q
qÛ
qt
¼ q

qÛ
qt
þ v � =Û

 !
¼ �ð= � qÞ � pð= � vÞ � ðt : =vÞ

q
qt

qÛ ¼ �ð= � qvĤÞ � ð= � qÞ � ðt : =vÞþ v � =p

Prove that these equations are equivalent.

5. Assume that a straight wire in a large volume of fluid is suddenly connected to an

electrical power supply that puts a constant wattage through the wire. The resistance
of the wire is then measured as a function of time. Because this resistance is a function
of temperature and the wire’s temperature depends on the thermal conductivity, this

measurement of resistance provides a way of determining the thermal conductivity.
Derive an equation that allows calculation of thermal conductivity from this resistance

Windchill

Wind velocity (mph)

Dry-bulb temperature (�F)

20 0 �20 �40

4 20 0 �20 �40
10 3 �22 �46 �71
20 �10 �39 �67 �95
30 �18 �49 �79 �109
40 �21 �53 �84 �115

Note: The perceived temperature is given as a function of the wind velocity and the actual

‘‘dry-bulb’’ temperature.
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[as references, see H. Ziebland. in: Thermal Conductivity, ed. R. P. Tye. London:

Academic Press (1969); J. K. Horrocks and E. McLaughlin (1963), Proc. Roy. Soc.,
A273, 259].

6. Polymer fibers are often melt-spun by forcing a polymer melt through small holes into
cold air. The specific polymer is first a rubber and then becomes a glass at Tg; this
transition involves a negligible enthalpy of fusion, but does result in altering thermal

diffusivity from a1 to a2. At the same time, the polymer surface quickly reaches the
temperature of the surrounding air. Find the radius where the transition occurs as
a function of time.

8. One possible automotive improvement would be a radiator based on hollow fibers.

Such a device offers a huge surface area per volume, and hence a smaller, lighter
radiator for the same job. However, because of the small diameter of the hollow fibers,
coolant flow will be laminar. Use your knowledge of interfacial transport to suggest
appropriate correlations for the overall heat transfer coefficient in such a device.
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CHAPTER 21

Simultaneous Heat and Mass Transfer

Processes involving coupled heat and mass transfer occur frequently in nature.

They are central to the formation of fog, to cooling towers, and to the wet-bulb ther-

mometer. They are important in the separation of uranium isotopes and in the respira-

tion of water lilies. This chapter analyzes a few of these processes. Not unexpectedly,

such processes are complex, for they involve equations for both diffusion and heat

conduction. These equations are coupled, often in a nonlinear way. As a result, our

descriptions will contain approximations to reduce the complexities involved.

We begin this chapter with a comparison of the mechanisms responsible for mass and

heat transfer. The mathematical similarities suggested by these mechanisms are dis-

cussed in Section 21.1, and the physical parallels are explored in Section 21.2. The similar

mechanisms of mass and heat transfer are the basis for the analysis of drying, both of

solids and of sprayed suspensions. However, the detailed models differ, as shown by the

examples in Section 21.3. In Section 21.4, we outline cooling-tower design as an example

based on mass and heat transfer coefficients. Finally, in Section 21.5, we describe ther-

mal diffusion and effusion.

21.1 Mathematical Analogies Among Mass, Heat, and Momentum

Transfer

Analogies amongmass, heat, andmomentum transfer have their origin either in

the mathematical description of the effects or in the physical parameters used for quan-

titative description. The mathematically based analogies are useful for two reasons.

First, they can save mathematical work; if the solution to a heat conduction problem

is known, the solution to the corresponding diffusion problem is also known. We have

already discussed this type of analogy in Section 3.5. Second, mathematical analogies

often suggest dimensionless groups that are helpful in correlating the results of physical

experiments. It is this second use that has broad scope and that is of interest in this

section.

To explore these analogies, we remember that the diffusion of mass and the conduc-

tion of heat obey very similar equations. In particular, diffusion in one dimension is

described by the following form of Fick’s law:

� j1 ¼ D
dc1
dz

ð21:1-1Þ

where D is the diffusion coefficient. If this diffusion takes place into a semi-infinite slab,

as shown in Fig. 21.1-1, the concentration profile can be shown to be (see Section 2.3)

c1 � c10
c1‘ � c10

¼ erf
zffiffiffiffiffiffiffiffi
4Dt
p ð21:1-2Þ
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where c10 and c1N are the concentrations at the slab’s surface and far within the slab,

respectively. Similarly, heat conduction is described by Fourier’s law:

� q ¼ kT
dT

dz
ð21:1-3Þ

where kT is the thermal conductivity. If heat conduction takes place into the semi-infinite

slab in Fig. 21.1-1, the temperature profile is (see Section 20.1)

T� T0

T‘ � T0
¼ erf

zffiffiffiffiffiffiffi
4at
p ð21:1-4Þ

where a ð¼ kT=qĈpÞ is the thermal diffusivity and T0 and TN are the temperatures of the

surface of the slab and far within the slab, respectively.
Although we have not discussed momentum transport in this book, we should men-

tion that this process is also described within the same framework. The basic law is due to

Newton:

� s ¼ l
dv

dz
ð21:1-5Þ

z

TimeA large reservoir
of concentrated
solution
c10

c1∞

z

TimeA flat plate
instantly
set moving
at constant
speedV v = 0

z

A large reservoir
of hot, well-
stirred fluid
T0

T∞

Time

Fig. 21.1-1. Profiles for concentration, temperature, and fluid velocity. The diffusion of mass,

the conduction of heat, and the laminar flow of fluids all obey laws of the same mathematical

form. Accordingly, for mathematically identical boundary conditions, like those shown for

a semi-infinite system, the profiles of concentration, temperature, and velocity are the same.
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where s is the momentum flux or the shear stress and l is the viscosity. If a flat plate is

suddenly moved in an initially stagnant fluid, the velocity v of the fluid is

� � V

0� V
¼ erf

zffiffiffiffiffiffiffi
4�t
p ð21:1�6Þ

where the plate’s velocity isV, the fluid’s velocity far from the plate is zero, and the fluid’s

kinematic viscosity is �.
At this point it has become conventional to draw an analogy among mass, heat, and

momentum transfer. Each process uses a simple law combined with a mass or energy or

momentum balance. If each process is described by the same mathematical equations

and is subject to the mathematically equivalent boundary conditions, then each leads to

results of the same mathematical form. Many believe it is more elegant to say that each

process depends on combining a linear constitutive equation and a conservation relation

to yield mathematically congruent results. The phenomenological coefficients of diffu-

sion D, of thermal conductivity kT and of viscosity l are thus analogous.

As a student, I found this conventional analogy confusing. Sure, Eqs. 21.1-1, 21.1-3, and

20.1-5 all say that a flux varies with a first derivative. Sure, Eqs. 21.1-2, 21.1-4, and 21.1-6 all

have an error function in them. ButD, kT, and l do not have the same physical dimensions.

Moreover, D appears in both Eq. 21.1-1 and Eq. 21.1-2. In contrast, kT appears in Eq.

21.1-3, but it must be replaced by the thermal diffusivity a in Eq. 21.1-4. The viscosity l in

Eq. 21.1-5 is replaced by the kinematic viscosity � in Eq. 21.1-6. These changes confused

me, and initially they undercut any value that these analogies might have.

The source of my confusion stemmed from the ways in which the basic laws are

written. In Fick’s law (Eq. 21.1-1), the mass flux is proportional to the gradient of mass

per volume, or the molar flux varies with the gradient in moles per volume. To be

analogous, the energy flux q should be proportional to the gradient of the energy per

volume ðqĈpTÞ. In other words, Eq. 21.1-3 should be rewritten as

�q ¼ kT

qĈp

d

dz
ðqĈpTÞ

¼ a
d

dz
ðqĈpTÞ ð21:1-7Þ

(In suggesting this alternative form, we imply that Ĉp equals Ĉv, which is nearly true for

liquid and solids.) If we use Eq. 21.1-7 instead of Eq. 21.1-3, then mass flux and heat

conduction are truly analogous. Just as Eq. 21.1-2 follows from Eq. 21.1-1, so Eq. 20.1-4

follows from Eq. 21.1-7.

Newton’s law for momentum transport can also be rewritten so that the momentum

flux is proportional to the gradient of the momentum per volume (qv), that is, by

replacing Eq. 21.1-5 with

� s ¼ l
q

d

dz
ðqvÞ

¼ �
d

dz
ðqvÞ ð21:1-8Þ
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where � is the kinematic viscosity. This new form, which implies a constant density, leads

directly to Eq. 21.1-6.

Just as the fundamental laws for mass, heat, and momentum transfer can be made

more nearly parallel, so can expressions for mass transfer coefficients and heat transfer

coefficients. The interfacial mass flux already varies with the difference in mass per

volume:

N1 ¼ n1 z ¼ 0j ¼ kðc10 � c1iÞ ð21:1-9Þ

The interfacial heat flux must be modified so that the energy flux varies with the energy

difference per volume:

qjz ¼ 0¼ hDT

¼ h

qĈp

DðqĈpTÞ
ð21:1-10Þ

Thus the mass transfer coefficient k corresponds less directly to the heat transfer co-

efficient h than to the quantity h=qĈp. The appropriate parallel for momentum transfer is

the dimensionless friction factor f, defined as

sjz ¼ 0 ¼ f
1

2
qv2

� �

¼ fv

2

� �
ðqv� 0Þ ð21:1-11Þ

Thus fv/2 is like k and h=qĈp.

When these equations are written in these parallel forms, they automatically suggest

the most common dimensionless groups. For example, the ratio of the coefficient in Eq.

21.1-8 to that in Eq. 21.1-1 is �/D, the Schmidt number. The ratio of the coefficient in Eq.

21.1-9 to that in Eq. 21.1-11 is [k/v (2/f)]. Because 2/f is itself dimensionless, this is

equivalent to (k/v), the Stanton number.

These and other dimensionless groups formed in this way are shown in Table 21.1-1.

Some of these analogies used to be surprising to me as a student; I never understood the

assertion that the Prandtl number lĈp=kT is analogous to the Schmidt number l/qD,

although I learned to give that answer on exams. When I look at Eqs. 21.1-9, 21.1-7 and

20.1-1, I see that the Prandtl number � /a and the Schmidt number �/D are simply ratios

of the coefficients of these equations. By similar arguments, the two Stanton numbers in

the table represent the same kinds of ratios.

Thus the parallels in the descriptions of these processes suggest not only ways to

save mathematical work but also parallels between different kinds of measurement

(e.g., between heat transfer coefficients and mass transfer coefficients). These similar-

ities suggest that the numerical values of these different kinds of coefficients are also

similar. This more powerful quantitative analogy is the subject of the following

section.
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Example 21.1-1: Cooling metal spheresWewant to quench a liquidmetal quickly tomake

fine powder. We plan to do this by spraying metal drops into an oil bath. How can we

estimate the cooling speed of the drops?

Solution Noheat transfer correlation for this situation is given in Table 20.4-3.

However, several mass transfer correlations for drops are given in Table 8.3-2. For

example, for large drops without stirring,

kd

D
¼ 0:31

d
3Dqg

q�2

 !1=3
�

D

� �1=2
where d and � are the drop’s diameter and the fluid’s kinematic viscosity. From Table

21.1-1, we see that the Sherwood number kd/D is equivalent to the Nusselt number hd/kT
and that the Schmidt number �/D is analogous to the Prandtl number �/a or lĈp=kT.
Thus we expect as a heat transfer correlation

hd

k
¼ 0:31

d
3Dqg

q�2

 !1=3
lĈp

kT

 !1=2

This correlation will be reliable only if the Grashof number for the cooling falls in the

same range as that used to develop the mass transfer correlation.

Example 21.1-2: Heat transfer from a spinning disc Imagine that a spinning metal disc

electrically heated to 30 �C is immersed in 1,000 cm3 of an emulsion at 18 �C. The disc
is 3 cm in diameter and is turning at 10 rpm. The emulsion’s kinematic viscosity is

0.082 cm2/sec. After an hour, the emulsion is at 21 �C. What is its thermal diffusivity?

Solution We begin with an energy balance on the emulsion:

energy

accumulation

� �
¼

energy gained

fromdisc

� �
ðqĈpVÞ

dT

dt
¼ ðpR2

0Þq

¼ ðpR2
0ÞhðTdisc � TÞ

where V is the emulsion volume, T and Tdisc are the emulsion and disc temperatures,

respectively, R0 is the disc radius, and h is the heat transfer coefficient. We have also

assumed that Ĉv equals Ĉp. This equation is subject to the initial condition

t ¼ 0; T ¼ T0

Integrating,

Tdisc � T

Tdisc � T0
¼ e
�ðh=qĈpÞðpR2

0=VÞt

Inserting the numbers given,

30� 21

30� 18
¼ e
�ðh=qĈpÞ½pð1:5 cmÞ2=ð1; 000 cm

3Þ�ð3; 600 secÞ
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Thus

h

qĈp

¼ 0:011 cm=sec

We now need to relate this quantity to the thermal diffusivity. We have no direct way to

do so. We do have a similar correlation for mass transfer away from a spinning disc (see

Table 8.3-3):

kd

D
¼ 0:62

d
2x
�

 !1=2
�

D

� �1=3
Using Table 21.1-1, we see that the corresponding correlation must be

ðh=qĈpÞd
a

¼ 0:62
d
2x
�

 !1=2
�

a

� �1=3
or

a ¼ 1

0:62

h

qĈp

 !
�
1=6x�1=2

" #3=2

Inserting the numerical values,

a ¼ 1

0:62
0:011

cm

sec

� �
0:082

cm
2

sec

 !1=6
2pð10Þ
60 sec

� ��1=224 353=2

¼ 1:2 � 10�3 cm2
=sec

This value is comparable to those given in Table 20.4-2.

21.2 Physical Equalities Among Mass, Heat, and Momentum

Transfer

In this section, we want to discuss situations in which mass transfer, heat trans-

fer, and fluid flow occur at the the same rate. Such equivalencemay be startling, formuch

of our earlier discussion emphasized differences between these processes. To be sure, the

previous section described the parallel equations called Fick’s law, Fourier’s law, and

Newton’s law; but this parallelism was one of mathematics. The diffusion coefficient, the

thermal conductivity or diffusivity, and the viscosity all had different numerical values,

and so should give different rates.

21.2.1 The Reynolds Analogy

Nonetheless, the rates of mass, heat, and momentum transfer can be essentially

the same for fluids in turbulent flow. This subject was first studied by the Englishman
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Osborne Reynolds, who lived from 1842 to 1912. The descendant of generations of

clergy who had served in the same Irish parish, Reynolds deliberately went to work in

mechanical engineering before going to Cambridge University. Shortly after his gradu-

ation in 1867, Reynolds became professor of engineering at Owens College, Manchester,

where he remained for his entire professional life.

Reynolds argued that mass or heat transport into a flowing fluid must involve two

simultaneous processes: ‘‘1. the natural diffusion of the fluid when at rest [and] 2. the

eddies caused by visible motion which mixes the fluid up and brings fresh particles into

contact with the surface.’’ He went on: ‘‘The first of these causes is independent of the

velocity of the fluid [but] the second cause, the effect of eddies, arises entirely from the

motion of the fluid.’’ Note that Reynolds implies that any flowing fluid contains eddies.

Nine years later, Reynolds discovered the distinction between laminar flow and turbu-

lent flow, and that eddies occur only in the latter.

These arguments have considerable value even when restricted to turbulent flow.

To see this, we write expressions for the various fluxes. For example, the mass flux

should be

N1 ¼ kDc1 ¼ ½aþ bv�Dc1 ð21:2-1Þ

where the quantity in brackets is equivalent to the mass transfer coefficient k. This

coefficient has two parts: a, which is due to diffusion, the ‘‘natural internal diffusion,’’

and bv, which represents the effect of eddies ‘‘which mix the fluid up.’’ This seems very

simple but very sensible.

In a similar fashion, we can write other flux equations. For energy, we find

q ¼ hDT ¼ ½a9þ b9v�DðqĈpTÞ ð21:2-2Þ

where the heat transfer coefficient h reflects heat conduction a# and the effect of eddies

b#v. For momentum, we write

s ¼ f 1
2qv

2
� �

¼ fv

2

� �
qv

¼ ½a0þ b0v�qv ð21:2-3Þ

where the friction factor f is made of a viscous contribution a$ and the effects of eddies

b$v.
We now turn to the limit of rapid turbulent flow, where the effect of eddies will

dominate any diffusion, conduction, or viscosity. In other words, a, a#, and a$ have

very little effect. However, if the eddies dominate, then all transport is due to that

‘‘mixing up’’ and is independent of any diffusion coefficient or thermal conductivity

or viscosity. All transport is due to the same turbulent mechanism. In Reynolds’s words,

these ‘‘various considerations lead to the supposition that’’

b ¼ b9 ¼ b0 ð21:2-4Þ

Although this always seems to me a big intuitive leap, it does make more sense as I think

about it.
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This supposition provides a relation between the various transport coefficients. From

Eq. 21.2-1, because a is relatively small,

k ¼ bv ð21:2-5Þ

We can make similar arguments for the other coefficients:

h

qĈp

¼ b9v ð21:2-6Þ

fv

2
¼ b0v ð21:2-7Þ

We then use Eq. 21.2-4 to combine the results:

k

v
¼ h

qĈpv
¼ f

2
ð21:2-8Þ

This result is called the ‘‘Reynolds analogy.’’

The Reynolds analogy is interesting because it suggests a simple relation between

different transport phenomena. This relation should be accurate when transport occurs

bymeans of turbulent eddies. In this situation, we can estimate mass transfer coefficients

from heat transfer coefficients or from friction factors.

The Reynolds analogy is found by experiment to be accurate for gases, but not for

liquids. We can rationalize this on the basis of the transport coefficients involved. We

expect turbulent mixing to take place at two levels: a macroscopic level, where eddies are

dominant, and a microscopic level, where diffusion, conduction, and viscosity are im-

portant. For gases, these microscopic processes are about the same because

D _¼ a _¼ � _¼ 0:1 cm
2
=sec ð21:2-9Þ

In the more dignified terms of dimensionless groups, the Schmidt and Prandtl numbers

of gases are equal:

�

D
_¼ �

a
_¼ 1 ð21:2-10Þ

However, for liquids, these groups are significantly different; the Schmidt number is

about 1,000, but the Prandtl number is around 10. Thus the ‘‘mixing up’’ of turbulence

may be nearly the same for gases, but it will not be for liquids.

21.2.2 The Chilton–Colburn Analogy

Because the Reynolds analogy was practically useful, many authors have tried

to extend it to liquids. These extensions often included elaborate theoretical rationaliza-

tions. However, the most useful extension is the simple empiricism suggested by Chilton

and Colburn.

Chilton and Colburn recognized that the Reynolds analogy worked well for gases but

not for liquids. They also believed that the changes in liquids could best be represented as
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Prandtl and Schmidt numbers. By an analysis of experimental data, they showed that

Eq. 21.2-6 was better replaced by

b9 ¼ h

qĈpv

�

a

� �2=3
ð21:2-11Þ

By mathematical analogy, they extended this to mass transfer by replacing Eq. 21.2-5

by

b ¼ k

v

�

D

� �2=3
ð21:2-12Þ

Thus from Eq. 21.2-4 and Eq. 21.2-7

k

v

�

D

� �2=3
¼ h

qĈpv

�

a

� �2=3
¼ f

2
ð21:2-13Þ

This ‘‘Chilton–Colburn analogy’’ reduces to the Reynolds analogy (Eq. 21.2-8) for gases

whose Schmidt and Prandtl numbers equal unity.

Because the Chilton–Colburn analogy turned out to be successful experimentally,

we sometimes forget the frailty of its original basis. It was justified by available data

for both fluid flow and heat transfer at solid walls. It was much more of a guess for

mass transfer, where the important cases involved transfer across the fluid–fluid inter-

faces common to absorption and extraction. The mass transfer correlation at fluid–solid

walls was based on just five data points. Clearly, Chilton and Colburn made an inspired

guess.

Two other historical asides about this result are interesting. First, the dimensionless

quantities b and b# suggested by Reynolds were renamed j-factors by Chilton and

Colburn. These factors are common in the older literature, especially as jD and jH.

Second, the exponent of 2
3 on the Schmidt and Prandtl number is frequently subjected

to theoretical rationalization, especially using boundary-layer theory. Chilton is said to

have cheerfully conceded that the value of 2
3
was not even equal to the best fit of the data,

but was chosen because the slide rules in those days had square-root and cube-root

scales, but no other easy way to take exponents.

21.2.3 The Wet-Bulb Thermometer

The best example of simultaneous heat and mass transfer using these analogies

is the analysis of the wet-bulb thermometer. This convenient device for measuring rel-

ative humidity of air consists of two conventional thermometers, one of which is clad in

a cloth wick wet with water. The unclad dry-bulb thermometer measures the air’s tem-

perature. The clad wet-bulb thermometer measures the colder temperature caused by

evaporation of the water. This colder temperature is like that you feel by licking your

finger and waving it about.

We want to use this measured temperature difference to calculate the relative humid-

ity in air. This relative humidity is defined as the amount of water actually in the air
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divided by the amount at saturation at the dry-bulb temperature. To find this humidity,

we first write equations for the mass and energy fluxes:

N1 ¼ kðc1i � c1Þ ¼ kcðy1i � y1Þ ð21:2-14Þ

q ¼ hðTi � TÞ ð21:2-15Þ

where c1i and c1 are the concentrations of water vapor at the wet bulb’s surface and in the

bulk, y1i and y1 are the correspondingmole fractions,Ti is the wet-bulb temperature, and

T is the bulk dry-bulb temperature. Note that y1i is the value at saturation atTi. Themass

and energy fluxes are coupled:

N1D ~Hvap ¼ �q ð21:2-16Þ

where D ~Hvap is the heat of vaporization of the evaporating water. Thus

kD ~Hvapcðy1i � y1Þ ¼ hðT� TiÞ ð21:2-17Þ

From Eq. 21.2-13, the Chilton–Colburn analogy,

k ¼ h

qĈp

D

�

� �2=3

¼ h

c ~Cp

D

�

� �2=3

ð21:2-18Þ

where q is the mass concentration, that is, the density; c is the molar concentration; Ĉp is

the specific heat capacity, that is, per mass; and ~Cp is the molar heat capacity, that is, per

mole. For gases, the Lewis number a/D is about unity. Combining Eqs. 20.2-17 and 20.2-

18 and rearranging, we find that

y1 ¼ y1i �
~Cp

D ~Hvap

 !
ðT� TiÞ ð21:2-19Þ

or

relative
humidity

� �
¼ p1

p1ðsat atTÞ
¼ y1

y1ðsat atTÞ

¼ 1

y1ðsat atTÞ
y1iðsat atTiÞ �

~Cp

D ~Hvap

 !
ðT� TiÞ

" #
ð20:2-20Þ

Thus the relative humidity should be independent of the flow past the thermometers

and should vary with the temperature difference between the wet-bulb and dry-bulb

readings.

21.3 Drying

Armed with the analogies above, we are now able to analyze many forms of

drying. In this section, we give a synopsis of these analyses. We begin by discussing how
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the mass of a wet solid changes as it dries, and from this infer the mechanism of drying.

We show how this mechanism affects the results of various batch and continuous dryers.

We then discuss the time required for batch drying and spray drying. The case of batch

drying is really a generalization of the ideas of mass and heat transfer used in the wet-

bulb thermometer example. The case of spray drying extends these ideas back into the

concept of diffusion.

In many cases, the mass of a wet solid varies with time as shown in Fig. 21.3-1. Two

points merit explanation. First, the plot vs. time is appropriate for a batch dryer. How-

ever, we could equally well plot mass vs. position divided by velocity, that is, vs. the

residence time of a steady-state dryer. Second, while the liquid being evaporated

can be any solvent, we will discuss only the most common case when that solvent is

water.

The actual variation of the mass with time is on the left of the figure. After a brief

induction time, the mass drops linearly with time, often until 90 percent or more of the

water has evaporated. It then drops at a slower rate. This linear drop is the norm and is

strikingly accurate: to test it for yourself, just hang a wet tee shirt on a lab balance and

record the weight vs. time.

Ironically, the simple behavior on the left of Fig. 21.3-1 is often replotted in the more

complicated way on the right of the figure. This right-hand way plots the rate of drying

vs. the moisture concentration. In both cases, a constant drying region begins at point A

and ends at point B, which is sometimes called the ‘‘critical drying concentation.’’ In this

region, the evaporating water is no different than any other bulk water. That is why it

evaporates at a constant rate: it is the same pure water evaporating from the constant

surface area of the solid. This period of constant drying rate of ‘‘free’’ water ends at point

B in the figures.

At larger times, that is, at lower moistures, the drying slows. In this ‘‘falling rate’’

period, the water is more and more difficult to remove. It may be trapped within the

solid, escaping only slowly through small pores; or it may be chemically bound to the

solid, and require a greater enthalpy of vaporization to pry it loose. ‘‘Free’’ water may be

drawn quickly to the surface by capillarity; but ‘‘bound’’ water is stuck in place, some-

times because it is part of a chemical compound. Evaporating the ‘‘free’’ watermay cause

90 percent of the total change in mass, but evaporating the ‘‘bound’’ water may take 90

percent of the total drying time.
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Fig. 21.3-1. Drying curves. The mass of a wet solid drops with drying time. Often, these data

are replotted as drying rate vs. moisture concentration.

21.3 / Drying 605



The evaporation of free and bound water affects the temperatures in most commer-

cial dryers. During constant-rate drying, the solid temperature retains a constant wet-

bulb temperature, just as for the wet-bulb thermometer. The gas temperature often

varies. To illustrate the ideas involved, we consider the cases of batch drying and spray

drying in the next two subsections.

21.3.1 Batch Dryer Analysis

We first consider the easiest case of a batch of wet solid dried with excess hot air.

In this case, the heat flux q and the mass flux N1 are

q ¼ hðT� TiÞ ð21:3-1Þ

N1 ¼ kðc
1i
� c1Þ ¼ kyðy1i

� y
1
Þ ð21:3-2Þ

where the subscript i indicates a temperature or concentration in the vapor but at the

interface. As before, the mass transfer coefficients k and ky are easily related

kc ¼ ky ð21:3-3Þ

where c is the total concentration in the vapor. When the dryer is adiabatic, the heat and

mass fluxes are coupled by

q ¼ N1D ~Hvap ð21:3-4Þ

whereD ~Hvap is the molar enthalpy of the evaporation of water. This coupling means that

we can solve drying problems either in terms of heat transfer or in terms of mass transfer.

Normally, temperature is easier to measure than concentration, and the mass flux (i.e.,

the moles of water lost per time) is easier to measure than heat flux. We will use this to

make solving the problems easier, as the following example shows.

Example 21.3-1: Drying titania Pans containing a 4-cm deep layer of titania particles

are dried in an oven. The voids between the particles (e ¼ 0.36) contain pure water, but

there is no water inside of the particles themselves. If the air flow is 3 m/sec, the heat

transfer coefficient above the bed is about 30 W/m2 �C. Because the pans have little

contact with the racks in the dryer, the drying is essentially adiabatic. How long will it

take to dry this titania using excess air at 75 �C and a humidity of 0.01 kg water/kg air?

Solution Because only free water is evaporating, we will have constant rate

drying, so that we can calculate the flux as the total amount of water removed per drying

time. From the temperature and humidity given, the wet-bulb temperature is 31 �C. The
drying time t can then be found from Eqs. 21.3-1 and 21.3-4,

N1 ¼
q

D ~Hvap

¼ h

D ~Hvap

T� Tið Þ

0:04m 0:36ð Þ
t

10
3
kg

m
3 ¼ 30W=m

2
8C sec

2300 � 103 J=kg
75� 31ð Þ 3600 sec

hr

t ¼ 19 hr

The drying takes the better part of a day.
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21.3.2 Spray Dryer Analysis

The ideas used for the simple case of batch drying of wet solid can be extended

to more complex situations like spray drying. We review one example of this intellectual

extension in the following.

Spray drying involves pumping a slurry into hot air. The liquid trapped between

particles in the slurry evaporates adiabatically, normally in a lot of air. Air flow can

be concurrent, countercurrent, or amixture of the two. The process is used tomake dried

milk, dried eggs, and dry grain. It is the basis of manufacturing instant coffee and

laundry detergent.

The slurry particles which are dried are typically 30 to 100 lm. They can be produced

either with nozzles or, more frequently, on the top of discs perhaps 0.3 m in diameter

spinning at 5000 rpm. The gas used, which is typically 100 to 700 �C, must be cool

enough not to compromise product stability. In many cases, the spray drying will pro-

duce both larger particles and a fine dust, and so the dryer must have some form of dust

collection, often in a cyclone. Sometimes, when a fine powder is desired, all of the

product will be captured in a cyclone.

We want to estimate the drying time for such a spray. Our objective is to dry the spray

so quickly that a hard skin forms on the outside of each particle. This hard skin will often

slow further removal of water, and so is something that we normally try to avoid. Here,

however, we want to make the drying as fast as possible for two reasons. First, we

want to retain product ‘‘quality.’’ Sometimes, this means that we want to retain

chemical integrity; at other times, we may want to inhibit flavor evaporation. Another

common measure of quality is consistency, i.e., a uniform powder which is suitable for

immediate packaging.

The second reason that we want the drying to be fast is to prevent agglomeration.

Partially dried slurry particles are sticky, and tend to aggregate. They stick to each other,

and they stick to the dryer walls. In extreme cases, they fuse together, filling the entire

dryer with one huge chunk of porous solid. Obviously, fast drying which avoids this

clogging is desirable.

To estimate the drying time, we assume that droplets in the spray are heated quickly,

and dry more slowly. This implies that the thermal diffusivity is much greater than

the diffusion coefficient. The concentration of water c1 within one slurry droplet is

described by

qc1
qt
¼ D

r
2

q
qr

r
2 qc1
qr

� �
¼ D

q2c1
qz2

ð21:3-5Þ

where r is the distance out from the center of the droplet, and z is the distance from the

surface of the particle towards the center. Note that the use of the z coordinate system

neglects the droplet’s curvature, which is appropriate because we are more interested in

early stages of drying.

This equation is subject to the initial condition

t ¼ 0; all z; c1 ¼ c1‘ ð21:3-6Þ
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where c1N is the initial concentration. It is also subject to the boundary conditions

t > 0; z ¼ ‘; c1 ¼ c1‘ ð21:3-7Þ

z ¼ 0;�D
qc1
qz
¼ k c10 � c

�
1

	 

ð21:3-8Þ

where c10 is the surface concentration of water and c1
* is the concentration that would be

in the drop if it were in equilibrium with the surrounding air. The first of these boundary

conditions repeats our focus on the initial stages of drying, because it says the concen-

tration well below the surface doesn’t change much. The second condition includes the

effective diffusion coefficientD and the mass transfer coefficient k. This latter is for mass

transfer in the surrounding gas, but is based on the liquid concentrations in the slurry

particle

k ¼ kGH ð21:3-9Þ

where kG is the more normal mass transfer coefficient in the gas, and H is the molar

concentration of water at equilibrium in the gas divided by that in the particle. Because I

think that H is best explained by an example, I ask that you accept k for the moment as

a mass transfer coefficient.

The solution to Eqs. 21.3-5 to 21.3-8 is known but complex. The concentration at the

surface is somewhat simpler

c10 � c1‘

c
�
1 � c1‘

¼ 1� e
k
2
t=D

1� erf k

ffiffiffiffi
t

D

r� �� �
ð21:3-10Þ

In many cases, we are interested in the time when c1 is 10% of its initial value, because at

this point, the product starts to behave as a solid powder. When

c10 � c1‘

c
�
1 � c1‘

¼ 0:1 ð21:3-11Þ

we find

k
2
t

D
¼ 30 ð21:3-12Þ

If we know k andD, we can estimate the drying time t. This key result for spray drying is

illustrated by the following example.

Example 21.3-2: Drying a particle of soap powder A spray dryer injects 100 lmparticles

containing 30% water into air at 60 �C and a relative humidity of 70%. The diffusion

coefficient within the particles is 3 � 10�7 cm2/sec; that in the surrounding gas is 0.3

cm2/sec; and the gas flow is 10 m/sec. (a) What is the mass transfer coefficient k in this

system? (b) How long will it take to dry the particle?

Solution Calculating the mass transfer coefficient requires a correlation for

mass transfer from a sphere:

kGd

D
¼ 2þ 0:6

dv

�

� �1=2
�

D

� �1=3
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For this case

kG 100 � 10�4 cm
0:2 cm

2
=sec

¼ 2þ 0:6
100 � 10�4 cm 10

�3
cm

2
=sec

0:2 cm
2
=sec

 !1=2

� 0:2 cm
2
=sec

0:3 cm
2
=sec

 !1=3
kG ¼ 170 cm=sec

We must now change this to a value based on a concentration difference in the wet

particle, rather than in air

k ¼ kGH

where H is a partition coefficient, defined here as

H ¼ molar conc in gas

molar conc in particle

At 60 �C, this is

H ¼

150mmHg

760mmHg

1 mol

22:4 � 103 cm3

� �
273

333

0:3 g H2O

cm
3
particle

� �
mol

18 cm
3

� �
¼ 4:3 � 10�4

Thus

k ¼ 170 (4.3 � 10�4) ¼ 0.074 cm/sec

From Eq. 21.3-12,

k
2
t

D
¼ 0:074 cm=secð Þ2 t

3 � 10�7 cm2
=sec

¼ 30

t ¼ 0:002 sec

The particle is dried quickly. This is an interesting case because fast mass transfer in the gas

and slow diffusion within the particle mean that a dry skin on the particle is easily formed.

21.4 Design of Cooling Towers

The final practical problem in this chapter is the cooling of water. Chemical

processes typically require large quantitites of cool water, which is why chemical plants

are sited near rivers or lakes. Frequently, the river’s water is too warm to cool the process

efficiently, and cooling the water with refrigeration is prohibitably expensive. Cool water

must be found in some other way.

Cooling towers like those shown in Fig. 21.4-1 are the cheapest way to cool large

quantities of water. They are among the largest mass transfer devices in common use.
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The basic operation of one common form of cooling tower is shown schematically in Fig.

21.4-2. The tower is packed with inert material, commonly with wooden slats. Hot water

sprayed into the top of the tower trickles down through the wood, partially evaporating

as it goes. Air enters the bottom of the tower and rises up through the packing. In smaller

towers, the air can be pumped with a fan; in larger ones, it is often allowed to rise by

natural convection.

Wewant to calculate the size of a tower required to cool a given amount of water. This

calculation is roughly parallel to that for gas absorption. That earlier problem involved

three equations: a mass balance or operating line; an energy balance or equilibrium line;

and a rate equation. However, for water cooling, these equations are written in terms of

gas enthalpy and water temperature, as discussed below.

Air inlet

Water
outlet

Air outlet

Air
inlet
Water
outlet

Water
inlet

Fan

Air outlet
Drift
eliminators

Fill

Water
outlet

Air inlet
Fill

Water
inlet

Air outlet

Fan
Drift eliminators

Water
inlet

Fig. 21.4-1. Cooling towers. These devices, which are among the largest made for mass transfer,

cool large quantities of water by evaporation of a small fraction of the water.

z

Cold water out

Control volume
AΔz at z

Hot water in

Fig. 21.4-2. Modeling a small cooling tower. We want to calculate the size of a cooling tower

required to cool a given amount of water. We base this calculation on mass and energy balances

on the small volume shown.
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21.4.1 The Operating Line

To begin, we assume that the cooling tower operates adiabatically, so that any

heat and mass exchange is between the liquid water and the wet air, and not with the

outer walls of the tower. If this is true, we see that

energy
accumulation

� �
¼ energy gained

by wet air

� �
þ energy lost

by liquid water

� �
ð21:4-1Þ

0 ¼ � G
d ~H

dz
� L ~Cp;L

dTL

dz
ð21:4-2Þ

whereG andL are the fluxes of dry air and liquid water, respectively; ~H is the enthalpy of

wet air per mole of dry air; ~Cp;L is the molar enthalpy of liquid water; and TL is the

temperature of liquid water. Note that in this equation both G and L are taken to be

constant. While the flux of dry air is nearly constant, the flux of liquid water certainly is

not because some of the water is evaporating. After all, that is where the cooling comes

from. However, because the heat of vaporization is large, the flow of liquid water doesn’t

change that much, and this assumption turns out to be reasonable.

We now can integrate this energy balance between the top of the column and some

arbitrary position to find

~H ¼ ~H0 �
L

G
~Cp;L TL;0

� �
þ L

G
~Cp;L

� �
TL ð21:4-3Þ

where ~H0 andTL,0 are, respectively, the molar gas enthalpy and liquid temperature, both

at the top of the column where the liquid enters. A plot of ~H vs. TL is linear. For this

operating line, the slope (L/G) is an echo of that for other separation processes. Note that
~Cp;LT
	 


is the molar liquid enthalpy, and hence echoes our development of analogies in

Section 21.2.

21.4.2 The Equilibrium Line

Wenext seek an equilibrium line which gives themolar enthalpy of the wet air in

equilibrium with the liquid water, that is, at the liquid water temperature. To start to

understand this, we need to examine the definition of the enthalpy of the wet air ~Hmore

carefully:

~H ¼ ~CpTþ ~Hvapy ð21:4-4Þ

The first term on the right-hand side is the enthalpy due to heating the air; the

second represents the enthalpy increase caused by adding water vapor to the dry air.

While the exact values of the enthalpy will, of course, depend on the reference values

for zero enthalpy, we will ignore these because they do not affect the results of our

calculations.

We are especially interested in the enthalpy of the wet air in equilibrium with the

liquid water. Because the thermal conductivity of the liquid water is much greater than

that of the air, the temperature of the air–water interface is almost that of the bulk liquid
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water. Then the concentration y must be in equilibrium with the saturation vapor

pressure, which is in turn a function of TL. Thus

~Hi ¼ ~H
� ¼ ~CpTL þ D ~Hvapy TLð Þ ð21:4-5Þ

A plot of ~Hi vs. TL curves upwards because the vapor pressure vs. temperature also

curves upwards. This result is the equilibrium line which we seek.

The meaning of this equilibrium line and the operating line in Eq. 21.4-3 may be

clearer if we plot both as shown in Fig. 21.4-3. The line AB is the operating line; the

enthalpy ~H shown by this line is that actually present at the liquid temperature TL.

(The point A0 is the dew point of the water at the bottom of the tower.) The line CD

is the equilibrium line, giving the enthalpy ~Hi which would be present if air and liquid

water were in equilibrium. The difference between these lines ( ~Hi � ~H) is the enthalpy

driving force responsible for water cooling.

21.4.3 The Rate Equation

The rate equation for water cooling is a combined mass and energy balance. To

find this, we begin with a mass balance on the differential volume ADz shown schemat-

ically in Fig. 21.4-2. This volume, located at z, is filled with packing having a surface area

per volume equal to a.We canmake a mass balance on the water vapor in this volume as

follows:

water
accumulation

� �
¼

water
convection in
minus that out

0@ 1Aþ water
added by

evaporation

0@ 1A ð21:4-6Þ
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Fig. 21.4-3. Sizing a cooling tower. These calculations depend on evaluating the wet air’s

humidity vs. the water’s temperature, shown as the line AB. They also involve the interfacial

humidity vs. water temperature, shown as the lineCD. The linesAB andCD are sometimes called

the operating and equilibrium lines by analogy with gas absorption. Note thatA0 is the dew point

of the entering air.
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or

0 ¼ GyjzþDz � Gyjz
	 


þ ðDzaÞkyðyi � yÞ ð21:4-7Þ

where y and yi are the water vapor concentrations in the bulk and at the air–liquid

interface, respectively; G is again the molar air flux; and ky is the mass transfer co-

efficient for the water vapor. Strictly speaking, the concentration y is defined as moles

of water per mole of dry air, and the flux G is the flux of dry air. However, because the

water vapor is normally dilute, this detail is often not important. The mass transfer

coefficient refers just to the gas phase and is based on a mole fraction driving force. It is

related to other forms of mass transfer coefficients by the usual relations given in

Section 8.2. We take the limit of Eq. 21.4-7 by dividing by Dz and letting this distance

go to zero,

0 ¼ d

dz
ðGyÞ þ kyaðyi � yÞ ð21:4-8Þ

This is the first part of our rate equation. This mass balance is basic to the calculations

that follow.

We next make an energy balance on the wet air in the same differential volume ADz:

energy
accumulation

� �
¼

energy
convection in
minus that out

0@ 1Aþ energy
added by

heat transfer

0@ 1A ð21:4-9Þ

0 ¼ GĈp
dT

dz
þ haðTL � TÞ ð21:4-10Þ

where T and TL are the temperatures of the bulk air and the air–water interface, ~Cp is the

heat capacity of the air, and h is the heat transfer coefficient.

We now want to combine the mass and energy balances in a way that allows us to size

the cooling tower. To do so, we multiply Eq. 21.4-8 by the heat of vaporization of water

D ~Hvap and add the result to Eq. 21.4-10 to obtain

G
d

dz
ð ~CpTþ D ~HvapyÞ ¼ haðTL � TÞ þ kyaD ~Hvapðy i � yÞ ð21:4-11Þ

The Chilton–Colburn analogy is

k

v

�

D

� �2=3
¼ h

qĈp; airv

�

a

� �2=3
ð21:4-12Þ

For gases, the Lewis number a/D is about unity, qĈp equals c ~Cp, and kc equals ky. Thus

h ¼ ðqĈpÞk ¼ ðc ~CpÞky=c ð21:4-13Þ

Inserting this into the previous equation and rearranging, we find

G
d

dz
ð ~HÞ ¼ kyað ~Hi � ~HÞ ð21:4-14Þ
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where

~H ¼ ~CpTþ D ~Hvapy ð21:4-15Þ

~Hi ¼ ~H
� ¼ ~CpTL þ D ~Hvapyi ð21:4-16Þ

In physical terms, ~H is the enthalpy of the wet air per mole of dry air. Correspondingly,

the quantity ~Hi is the enthalpy of wet air per mole dry air at the interface, where the air is

saturated. Note that the mole fraction at this interface is the saturation value and hence

is a function only of the water’s temperature TL.

Equation 21.4-14 can be numerically integrated to find the desired height of the

cooling tower l:

l ¼
Z l

0

dz ¼ G

kya

� � Z~Hl

~H0

d ~H
~Hi � ~H

¼ HTU½ �
Z~Hl

~H0

d ~H

~H
� � ~H

ð21:4-17Þ

This integration depends on the operating and equilibrium lines like those shown in

Fig. 21.4-3. It is similar mathematically to the integration used in the gas absorption

analysis in Chapter 10, except that the enthalpy replaces the gas concentration y, and the

liquid temperature replaces the liquid concentration x. How the integation is accom-

plished is shown in the example below.

Example 21.4-1: Design of a cooling tower A countercurrent cooling tower is needed to

cool water flowing at 2,150 kg/min. The water enters at 60 �C and is to be cooled to

25 �C. The air is fed at 60 mol/m2 sec, with a dry-bulb temperature of 30 �C and a dew

point of 10 �C. The water flux should be 40% lower than the maximum allowed ther-

modynamically. The tower is packed with wood slats giving an HTU of 3 m. Find the

height of tower required.

Solution We begin by plotting the enthalpy of water-saturated air ~H
�
vs.

temperature, as shown in Fig. 21.4-4. We know that ~H for the entering air is based on

a mole fraction of water equal to the saturated value at 10 �C, the wet-bulb temperature;

we also know that the water temperature at this point is 25 �C. Thus we locate the point
A. We can then solve for the specific values given.

We begin by remembering that the operating line is a plot of ~H vs. liquid temperature

TL. The slope of this line is the liquid flux L times the liquid heat capacity C̃p divided by

the gas flux G. If we increase the water flux, we increase the slope of this operating line.

We can increase this water flux until the operating line is tangential to the equilibrium

line, that is to the line
—

AB# shown in Fig. 21.4-4. Any higher water flow would give an

enthalpy of wet air higher than the equilibrium value. Thus from Fig. 21.4-4, we find

slope
AB
0

� �
¼

~Cp;LL

G
¼ 230 J=g mol

8
C ð21:4-18Þ

The flux G equals 60 mol/m2 sec, and ~Cp;L is 75 J/mol �C; so L is 180 mol H2O/m2 sec.

The actual flow is to be 40% less:

L ¼ 110mol H2O=m
2
sec
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Using this value, we can draw the actual operating line AB. The tower’s height can then

be found from Eq. 21.4-17:

l ¼ HTU½ �
Z ~H; out

~H; in

d ~H
~Hi � ~H

Values of ~Hi and ~H can easily be read off lines CD and AB in Fig. 21.4-3; the integral

found by numerical integration of these data equals 2.7. Thus

l ¼ 3mð Þð2:7Þ
¼ 8:1m

This is the desired result.

21.5 Thermal Diffusion and Effusion

This section discusses several ways in which temperature gradients effect a sol-

ute flux. The phenomena involved occur in the absence of convection and are treated

with models like those developed for diffusion in Chapters 2 and 3. Thus the approach is

again based on a distributed-parameter model and is more fundamental than the ap-

proach based on mass transfer coefficients and used in earlier sections of this chapter.

The first effect, thermal diffusion, is exemplified by the two experiments shown in

Fig. 21.5-1. In the first, a tall column of salt solution is heated at the top and cooled at the

bottom. The salt’s concentration is initially uniform, but later becomes more concen-

trated near the bottom of the tube. This experiment was originally made in 1856 by

Fick’s mentor, Carl Ludwig; more complete experiments were later made by Charles

Soret, after whom this effect is named. A similar experiment, shown schematically in Fig.
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Fig. 21.4-4. Design of a cooling tower. The line AB0 is used to find the minimum air flow.

The line AB, which determines the actual enthalpy ~H, is key to finding the height of tower

required.
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21.5-1(b), consists of two bulbs, both of which initially contain the same gaseous mix-

ture. When one bulb is heated and the other is cooled, the gas no longer has the same

mole fractions throughout. This experiment was originally made to check the theoretical

prediction of its existence. It is a rare occurrence when the experiment follows the theory,

rather than the other way around.

Results of experiments like these are often reported in slightly different ways. For

liquids, the results are usually given in terms of the flux equation:

� j1 ¼ Dcð=x1 � rx1x2=TÞ ð21:5-1Þ

The Soret coefficient r, which has the dimensions of reciprocal temperature, can be

either positive or negative. For gases, the results are correlated using the equation

� j1 ¼ Dc =x1 � ax1x2
=T

T

� �
ð21:5-2Þ

The dimensionless thermal diffusion factor a obviously equals the Soret coefficient times

the temperature. Both r and a are positive when species 1 concentrates in the hot region.

Two aspects of these equations are interesting. First, we are now writing the diffusion

flux in terms of the gradient of mole fraction, not molar concentration. This is because

we know that the molar concentration varies with temperature, but the mole fraction is

much more nearly constant, independent of temperature. Such a flux equation implies

a different reference frame than the volume average velocity emblazoned through this

book. Second, we deliberately introduce a factor x1x2 into the expression for thermal

diffusion. This anticipates observations that the effect disappears rapidly for dilute

solutions and is largest when solute and solvent concentrations are similar.

A few experimental values of a are shown in Table 21.5-1. The values of a are

frequently small, especially in dilute solution. They are largest for solutes of very differ-

ent molecular weights or for highly nonideal solutions. They are more nearly constant

for near-ideal solutions and are concentration-dependent in nonideal liquid mixtures. In

short, they behave much like the ternary diffusion coefficients discussed in Chapter 7.

They are usually of minor practical importance, even though they can be used to effect

surprisingly good separations.

Heated

Cooled

NaCl

H2O

NaCl
H2O

Heated

Cooled

CO2

H2

CO2

H2

(a) (b)

Fig. 21.5-1. Thermal diffusion. If a tall column of initially homogeneous salt solution is heated

at the top and cooled at the bottom, the mole fraction of salt will become slightly greater at the

bottom. If two bulbs connected with a capillary are filled with the same gas mixture and only one

bulb is heated, the gas compositions will become unequal.
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This table of values does not explain why the thermal diffusion occurs. This is not an

easy explanation to give briefly, and so it is carefully avoided by authors whose knowl-

edge of this field is much greater than mine. We can give a vague explanation by again

referring to the gaseous experiment in Fig. 21.5-1(b). In steady state, the flux of mole-

cules from left to right must equal that from right to left. These fluxes must have two

parts: that due to thermal motion and that caused by the bulk flow necessary to maintain

equal pressure. The thermal motion varies with the molecular weight of the particular

species, but the second varies only with the average molecular weight. When the mole-

cules interact as rigid spheres, the net flux is greater for the heavier molecules than for the

lighter ones, so these heavier molecules usually will concentrate in the cooler region.

Even this qualitative argument is compromised for more elaborate intermolecular

potentials, for nonideal liquid solutions, and for solids. No simple, more general expla-

nation seems possible.

Thermal diffusion, which has just been discussed, occurs in mixtures in which mol-

ecules of solute and solvent interact with each other. Thermal effusion, the effect dis-

cussed next, occurs when the molecules of a pure gas react largely with surroundings.

Thermal effusion is most clearly illustrated by the schematic drawings in Fig. 21.5-2.

In these drawings, a pure gas is placed in a closed tube and separated into two volumes

by a porous diaphragm. The gas on one side of the diaphragm is heated, so the gas pres-

sure changes. After a while, the pressure reaches a constant value and can be measured.

Two distinctly different cases are observed. The first occurs when the gas pressure is

high and the diaphragm has large pores. When the gas is heated, its pressure initially

Table 21.5-1 Thermal diffusion coefficients

Mixturea Temperature (K) ab

Gases
(1) 50% H2–(2) 50% D2 290–370 +0.17
(1) 50% H2–(2) 50% He 273–700 +0.15
(1) 50% H2–(2) 50% CH4 300–500 +0.29
(1) 50% H2–(2) 50% O2 293 +0.02
(1) 50% H2–(2) 50% CO2 290–400 +0.05
Liquids
(1) 20% cyclohexane–(2) 80% CCl4 313 +1.3
(1) 50% cyclohexane–(2) 50% CCl4 313 +1.3
(1) 80% cyclohexane–(2) 20% CCl4 313 +1.3
(1) 20% cyclohexane–(2) 80% benzene 313 �0.1
(1) 50% cyclohexane–(2) 50% benzene 313 �0.4
(1) 80% cyclohexane–(2) 20% benzene 313 �0.6
(1) 25% water–(2) 75% ethanol 298 �0.9
(1) 60% water–(2) 40% ethanol 298 �1.5
(1) 90% water–(2) 10% ethanol 298 +0.3
0.01–M KCl in (2) H2O 303 �0.6
0.01–M NaCl in (2) H2O 303 �0.9

Notes: aConcentrations in mole percent, except as noted.
bTaken as positive if the first species given concentrates in the hot region.

Source: Tyrrell (1961).
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increases, but this increase is quickly reduced by flow through the diaphragm. This flow

can be described by Darcy’s law, for the gas molecules collide largely with each other. At

steady state, no pressure difference remains.

The second case involves a dilute gas and very small pores. Here, any gas molecules in

the diaphragm collide mainly with the pore walls, not with other gas molecules. When

the temperature is increased, the molecular velocity u in these collisions also increases;

from kinetic theory, we can show that this velocity increases with temperature:

u }

ffiffiffiffiffiffiffiffiffiffiffi
T= ~M

q
ð21:5-3Þ

However, the concentration is decreased by temperature:

c ¼ n

V
¼ p

RT
ð21:5-4Þ

where n is the number of moles in the system. The flux out of the hot region is the product

of the hot velocity and the hot concentration; that out of the cold side is analogous. Thus

the total flux is

j ¼ cu� c9u9

}
p

RT

ffiffiffiffiffiffiffiffiffi
T= ~M

q
� p9

RT9

ffiffiffiffiffiffiffiffiffiffiffi
T9= ~M

q� �

(a) Large pores

Initial state

Cool Cool

Steady state

Hot Cool

(b) Small pores

Initial state

Cool Cool

Steady state

Hot Cool

Fig. 21.5-2. Thermal effusion. When the gas on one side of a porous diaphragm is heated, its

pressure may change to a new steady state value. If the diaphragm has large pores, this pressure

on the hot side is the same as that on the colder side. If the diaphragm has small pores, the

pressure on the hot side remains higher, an effect called thermal effusion.

}
pffiffiffiffi
T
p � p9ffiffiffiffiffi

T
0p

� �
ð21:5-5Þ
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where the primed and unprimed value refer to the cold and hot regions, respectively. At

steady state, this implies

pffiffiffiffi
T
p ¼ p9ffiffiffiffiffi

T
0p ð21:5-6Þ

The pressure on the hot side will be greater than the pressure on the cold side. The key to

this process is that the holes in the diaphragm are very small. Thus thermal effusion is to

Knudsen diffusion as thermal diffusion is to ordinary diffusion. Both thermal effusion

and diffusion are illustrated in the following examples.

Example 21.5-1: The size of thermal diffusion Thermal diffusion is being studied in

a two-bulb apparatus like that on the right of Fig. 21.5-1. Each bulb is 3 cm3 in volume;

the capillary is 1 cm long and has an area of 0.01 cm2. The left-hand bulb is heated to

50 �C, and the right-hand bulb is kept at 0 �C. The entire apparatus is initially filled with

an equimolar mixture, either of hydrogen–methane or of ethanol–water. How much

separation is achieved? About how long does this separation take?

Solution At steady state, the net flux must be zero. Thus we can rewrite Eq.

21.5-2 for a gas mixture to find

0 ¼ Dc =y1 � ay1y2
=T

T

� �
Because we are in steady state, the temperature gradient can be replaced by the temper-

ature difference divided by the tube length. This equation then simplifies to

y1jhot � y1jcold ¼ ay1y2
Thot � Tcold

Tavg

� �
For the gas mixture, this is

y1jhot � y1jcold ¼ ð0:29Þð0:50Þð0:50Þ
50K

298K

� �
¼ 0:012

For the liquid system water–ethanol, we can use Eq. 21.5-2 as written, and find by

interpolation that

x1jhot � x1jcold ¼ ð�1:3Þð0:50Þð0:50Þ
50K

298K

� �
¼ �0:05

The separations obtained are both small; that with liquids is slightly larger, but in the

opposite direction.

We now turn to the time required for this separation to occur. To find this time, we

parallel the analysis given for the diaphragm cell in Example 2.2-4. In this analysis,

we assume that the temperature difference is suddenly applied at time zero. We also
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assume that in spite of this difference, the total molar concentration c is a constant. Thus

for the left-hand bulb of volume VB, we find

VB
dx1B
dt
¼ A

c
ji ¼ �

AD

l
½ðx1B � x1AÞ þ b�

where b [=ax1x2(T1B � T1A)/Tavg] is the effect of thermal diffusion. For the right-hand

bulb, of volume VA

VA
dx1A
dt
¼ þAD

l
½ðx1B � x1AÞ þ b�

Combining these equations,

d

dt
ðx1B � x1AÞ ¼ �Dbðx1B � x1A þ bÞ

where b [=(A/l)(1/VB + 1/VA)] was previously used as the calibration constant of the

cell. Note that b depends only on average concentrations and constant temperatures, so

this result can be integrated directly.

Alternatively, we note that (Db)–1 is essentially the relaxation time of this cell. If the

experiment takes less than this time, the steady state is still far away; if the experiment

takes much longer than this time, then the steady state will be approached.

Thus, for gases (bD)–1 is about 500 sec, and the steady state is reached in a few hours.

For liquids, (bD)–1 is half a year, and reaching the steady state requires a very long time.

These slow rates and small separationsmean that thermal diffusion usually is a bad route

for separations.

Example 21.5-2: Flow in water lily stems Some water lilies generate flow through their

hollow stems in order to facilitate oxygen transfer to their roots. This flow represents an

‘‘internal wind’’ that can reach 50 cm/min. It is believed to occur because of differences in

pore sizes between young and old lily leaves, as shown schematically in Fig. 21.5-3. Use

kinetic theory to show how the warm young leaf can generate this pressure difference.

Solution The explanation of this effect (Dacey, 1980) asserts that the flow is

caused by thermal effusion. Sun strikes the lily, warming both old and young leaves. The

Cool roots

Flow Flow

Warm young leaf
(small pores)

Old leaf
(large pores)

Fig. 21.5-3. Thermal effusion in water lilies. This effect apparently causes a flow of as much

as 50 cm/min through the lily’s hollow stems. This flow supplies the roots with oxygen.
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small pores in the young leaves produce a higher pressure, as suggested by Fig. 21.5-2

and Eq. 21.5-6. The larger pores in the older leaves do not produce any pressure change.

Thus gas flows into the young leaves, down the stems, and out the older leaves. I find this

delightful.

21.6 Conclusions

Simultaneous heat and mass transfer, the subject of this chapter, is a compli-

cated process. Analyzing this process to find simple but useful results depends onmaking

effective approximations. The approximations exploit both the similar mathematics

used for the processes and the similar numerical values of the transport coefficients.

This can be true for both distributed and lumped-parameter models. More specifically,

for gases, D and a are nearly equal, and k and h=qĈp are very similar.

This strategy for analysis immediately raises the question of the similar effects pos-

sible in liquids and solids. Here, the mathematics remain similar, but the transport

coefficients are very different: D is much less than a, and k is much smaller than

h=qĈp. What should you do now?

For liquids and solids, the heat transfer is much more rapid than the mass transfer,

and so proceeds as if the mass transfer did not exist. In other words, for liquids and

solids, the two processes are essentially uncoupled. As an example, imagine that both

mass and energy are being transferred from awell-stirred reservoir into a thick solid slab.

The energy will be transferred much more rapidly than the mass. In the region where the

mass flux is large enough to be interesting, the temperature will be essentially constant,

equal to the reservoir temperature.

This difference between gases and other phases illustrates the different analytical

strategies possible. Your success in exploring problems like these rests on your ability

to make effective approximations. Good luck in your efforts.

Questions for Discussion

1. What are Fick’s law of diffusion, Fourier’s law of heat conduction, and

Newton’s law of viscosity?

2. Mass transfer is described by the diffusion coefficient, and momentum transfer

is described by the viscosity. Since these quantities have different dimensions,

why are they regarded as parallel transport properties?

3. What quantity is the heat transfer parallel of the Sherwood number (kd/D)?

4. What quantity is the heat transfer parallel of the Schmidt number (l/qD)?

5. What quantity is the momentum transfer parallel of the Stanton number (k/v)?

6. Reynolds assumed that the ‘‘mixing up’’ of eddies was the same for mass,

energy, and momentum transfer. Justify this assumption.

7. How would you plot mass and heat transfer coefficients to test whether they fit

the same form of correlation?

8. Sketch a drying curve, i.e., wet solid mass vs. time. Describe the drying mech-

anism for each part of this curve.

9. Estimate how wet solid mass will vary with time during falling rate drying.
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10. Water cooling is often described by enthalpy balances. Review the assumptions

made in deriving these balances.

11. How is the HTU for mass transfer related to that for water cooling?

12. How would you analyze water cooling that was accomplished in stages?

Problems

1. You want to use a wet-bulb thermometer wet with carbon tetrachloride to determine

the carbon tetrachloride concentration in air at 2 atm flowing at 62 �C. The wet bulb
reads 23 �C. What is the carbon tetrachloride concentration?

2. Predict the mass transfer coefficient in cm/sec for liquid n-butyl alcohol vaporizing

into air at 80 �F and 1 atm. You know that the heat transfer coefficient in the same
system in 56 Btu/hr ft2 �F.

3. Ameteor is falling through the earth’s atmosphere and burning as it falls. The burning
can be approximated as a diffusion-controlled first-order chemical reaction oxidizing

iron at the meteor’s surface. Find the meteor’s temperature in terms of only the heat of
this reaction, the concentration of iron oxide vapor near the surface, and the properties
of the air.

4. Antibiotic crystals in a filter cake are placed in trays at a depth of 2.0 cm and dried with

excess solvent-free air at 40 �C (dry bulb). The crystals have a wet density of 0.77 g
crystal/cm3 cake and each tray originally contains 8.0 wt% acetone whose vapor
concentration c in mol/cm3 is approximated by the equation

c(in mol/cm3) ¼ 4.0 � 10�6 + 0.24 � 10�6 T (in �C)

The heat of vaporization of acetone is about 7.8 kcal/mol; its molecular weight is 58;
the heat capacity of air is about 5 cal/mol K. The final solvent concentration should be
less than 0.6 wt%. Past experiments suggest that this drying should occur at constant

rate, with a mass transfer coefficient (based on the vapor) equal to 1.8 cm/sec.
How long does it take to dry these crystals?

5. Chemical plants will increasingly operate under the restraint of ‘‘zero discharge’’, so
that they can no longer take processed water from the river next to the plant, use it to

cool the heat exchangers, and dump it back into the river (cf. J.A. Dalan, Chemical
Engineering Progress, November 2000, p. 71–76). Instead, the plants must install cooling
towers, which cool the heat exchanger effluent and allow its recycle. This problem

deals with such a water treatment system.
Seven thousand kilograms of water per minute at 61 �C is to be cooled to 20 �C in

a tower fed with dry air entering at 25 �C. The entering air flow is 50% greater than the
minimum. (a) What is the total air flow in the cooling tower? (b) If the HTU in this

tower is 2 m, estimate how tall it should be. In this estimate, you may assume that the
equilibrium line is linear between ~H

�
0 and

~H
�
l .

6. You need to cool 50 gmol/sec of 60 �C water to 30 �C. To do so, you plan to build
a cooling tower which has an HTU of 3 m, and operates at twice the minimum flow of

air entering with an enthalpy of 1 kJ/mol. The equipment supplier suggests that the
water flux in the tower should not exceed 80 gmol/m2 sec, and that the average
enthalpy difference can be approximated as half the average of the enthalpy differ-

ences at the tower’s inlet and at the outlet. The heat capacity of liquid water can be
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taken as 0:075 kJ=molK. (a) What should the diameter of the tower be? (b) What

should the total air flow be? (c) What should its height be?

7. Your plant has available a countercurrent cooling tower 10 m high and 6 m in
diameter. The tower packing has a surface area per volume of about 63 m�1. At
present, it is effectively cooling water at 3200 kg/min from 66 �C to 20 �C, using air

at 80 mol/m2 sec at 18 �C and 20% relative humidity. (a) What is the mass transfer
coefficient in this tower? (b) You need 1000 kg/min water at 15 �C or less to cool
a new chemical reactor. By how much should you reduce the water flow to get this
output?

8. Imagine that you fill the two-bulb capillary apparatus (see Fig. 3.1-2) with an equi-
molar mixture of hydrogen and methane. Each bulb has a volume of 270 cm3; the
vertical capillary is 6 cm long. You place the lower bulb in ice water and heat the upper

one with steam. (a) What is the maximum concentration difference due to thermal
diffusion? Answer: Dy1 ¼ 0.02. (b) How many moles of hydrogen are there in the hot
bulb? How many in the cold?

9. Track-etchedmembranes are made by exposingmica or polycarbonate sheets 15 � 10�4
cm thick to an a-radiation source and then etching the sheet in hydrofluoric acid. The
resulting membrane can have about 0.4% of its area pierced by 120-nm cylindrical
pores. Imagine that you place a track-etched membrane across one end of a 2-cm-

diameter glass pipe 36 cm long. You cover the other end with a filter that has a high
Darcy’s law permeability. If you set the pipe in the sun, air will flow into the pipe by
thermal effusion through the track-etched membrane and out of the pipe by Darcy’s
law flow through the filter. How fast will the air flow if the air in the pipe is 47 �C and

the surrounding air is 23 �C?

10. Extend the analysis for fast mass transfer given in Section 9.5 to include the effect of
diffusion-engendered convection on heat transfer. Use the film theory in this exten-
sion. (a) Show that the energy equation in this situation is

0 ¼ � d

dz
ðqþ qĈpTvÞ

subject to

z ¼ 0; T ¼ T0

z ¼ l; T ¼ Tl

(b) Integrate this to find

qjz¼0 ¼ qĈpv
Tl � T0

1� e
vl=a

 !

(c) Defining

qjz¼0 ¼ hðT0 � TlÞ þ qĈpT0v

show that

h ¼ qĈpv

e
vl=a � 1
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11. The thermal conductivity of reacting gas mixtures is sometimes found to be larger than
would be expected from molecular considerations. If a temperature gradient exists in
a gas, then in different temperature regions, the concentrations of reactive species may

be different; this concentration gradient can augment conduction because there is
a transport of energy by molecular diffusion. A convenient system to study this phe-
nomenon utilizes nitrogen dioxide. The reaction

2NO2 #N2O4

is very rapid in both directions, and for most studies, the mixture may always be

assumed to be in chemical equilibrium. (a) Assume two horizontal parallel plates
separated by a distance of 0.16 cm. The gap is filled with a NO2–N2O4 mixture. The
lower plate is at 40 �C, so the mole fraction of [NO2] next to this plate is 0.48. The
upper plate is at 80 �C; so the mole fraction of [NO2] adjacent to this plate is 0.85. If

the diffusion coefficient of both species is 0.07 cm2/sec, find the flux of [NO2] across the
gap. (b) Find the molar average velocity across this gap. (c) Calculate the temperature
profile, including that due to diffusion. (d) The thermal conductivity of these mixtures

is about 4 � 10�5 cal/cm sec K, and their heat capacity is about 7 cal/mol K. How
much will the reaction in this system increase the heat flux?

12. Imagine a thin layer of gas of thickness l across which heat transfer occurs. The heat
transfer is facilitated by a reactive gas 1 within the film. At the hot surface atT0 and z¼
0, the gas reacts catalytically, rapidly, and endothermally:

ð2 moles of gas 1Þ þ ðheatÞ ! ð1 mol of gas 2Þ

At the cold surface at Tl and z ¼ l, the reaction is rapidly reversed:

ð1 mol of gas 2Þ ! ð2 moles of gas 1Þ þ ðheatÞ

Heat conduction also occurs, but free convection does not. Only gas 1 and gas 2 are in
the film, and the thermal conductivity is constant. Also assume that the thermal

conductivity at the boundaries is much greater than in the bulk. Find the heat transfer
coefficient across this thin film in three steps: (a) Find the concentration profiles in the
film. (b) Find the temperature profile corrected for mass transfer. (c) Find the heat flux
at the boundary z ¼ 0.
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irreversible, 439, 441

isotherms, 428

pressure swing, 449

simulated moving bed, 448
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sudden, 176
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containing sacrificial reagents, 560
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biology, mass transfer in 332

boundary layers,
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for flow, 290, 293

breakthrough curves, 431, 432, 434
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ternary, 212, 217, 219

thermal, 615
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dimensionless numbers, 39, 249, 250, 587, 598

dimerization, 174, 207

dispersion,

basic model, 96, 103
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to measure diffusion, 150
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fast reaction limit, 540, 542
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nonlinear extensions, 184

with chemical reactions, 460, 469, 481, 483,
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Fick’s second law, 16, 28

film theory, 275, 294
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binary diffusion across, 17, 42, 67, 334, 514

falling, 44, 252

heat conduction across, 570, 623

multicomponent diffusion across, 222

flakes, 142, 197, 559

flat plate, 288

flooding, 310, 313, 377, 408

flow parameter, 311, 377

fluid mechanics,

analogies, with other processes 594, 601

in packed towers, 308, 355, 408

in staged columns, 376

for boundary layer flows, 288

flux,

across a thin film, 19, 21, 23, 43, 69, 223

into a semi-infinite slab, 30, 46, 73, 220

through an orifice, 88, 618

flux equations, 18, 59, 60, 210, 216, 531,

569

fog, 565

forced convection, 42, 252, 254, 284

Fourier, Joseph, 568, 584

Fourier’s law, 16, 569, 595

Fourier number, 49

free convection, 38, 46, 147, 252, 254

free diffusion, 26, 148, 218

Freundlich isotherm, 430

friction factors, 377, 597, 601

frictional coefficient, 127, 130, 138

gas separations,

by absorption, 305, 306

by adsorption, 425

with membranes, 520, 521

gills, 351

Golay equation, 109, 447

Graetz–Nusselt problem, 284

Graham, Thomas, 13, 15, 199

Graham’s law, 199, 202

Grotthus mechanism, 162

Hagen-Poiseuille law, 192, 530

heat conduction,

across a thin film, 570, 577

into a thick slab, 572, 578

results for various geometries, 84, 573

heat transfer,

across interfaces, 579, 588

analogies with other processes, 253, 594, 597, 602,
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heat transfer coefficients,

empirical correlations, 587

individual, 579, 597, 601

overall, 579, 588

height of transfer unit (HTU), 318, 358, 367, 441

high pressure diffusion, 124

hindered diffusion, 193

hollow fibers, 340, 517, 519

humidification, 238, 609

hydration, 181, 182

hydration number, 181, 182

infinite couple, 148

insulation, 583, 589, 591

interfaces, 261, 460, 515, 579

interfacial influence, 184, 188

intestine, 207, 332, 334, 475

intradiffusion, 227

interferometers, 32, 154, 155

ion exchange, 406, 428

ion pairs, 172

irreversible thermodynamics, 213, 532

isodesmic model, 176, 179

isotherms, 428, 435

j-factors, 603

jump mechanism, 163

kidneys, 339, 343

kinetic theory of gases, 119, 120, 123, 194, 585

Knudsen diffusion, 194

Kremser equations, 383, 414

lag time, 86, 560

Langmuir isotherm, 429

leaching, 416, 417

length of unused bed, 437, 441

Lennard–Jones potential, 120, 121

light scattering, 137, 152

loading, 310

log-mean mass transfer coefficients, 248

lumped-parameter models, 237, 334

lungs, 335, 339

main term diffusion coefficients, 211, 224

marathons, 111

mass balances, 18, 27, 75, 78, 79, 213

mass transfer,

in absorption, 316, 323

in adsorption, 439, 440

across interfaces, 261, 264

analogies with other processes, 243, 253, 333

in biology, 332

with chemical reaction, 455, 461, 479, 488

in concentrated solutions, 245, 294, 324

in distillation, 357, 367, 395

in extraction, 411

theories for, 275, 277, 279, 285, 288, 299

mass transfer coefficients,

average values, 245, 247, 278, 280, 287

from boundary layer theory, 287, 336

correlations, 252, 254

definitions, 237, 243, 244

from film theory, 275, 296, 481, 514

from Graetz–Nussult theory, 287

from penetration theory, 278

from surface renewal theory, 280

in stage efficiency, 396

limits of, 276, 279

overall, 261, 264, 324, 342, 343, 412, 461

relations to diffusion coefficients, 274, 298, 299

units, 244, 246, 247

variation with flow, 274, 299

with chemical reaction, 459, 478, 493

Maxwell–Stefan equations, 65, 212

McCabe–Thiele analysis, 390

membranes,

architecture, 516

diffusion across, 20, 514

for gas separations, 92, 520, 521

reference velocity for, 60

rubbery vs. glassy, 522, 559

membrane modules, 340, 517, 519

meteors, 622

micelles, 176, 178

microcapsules, 549, 552

microscopic reversibility, 216

minimum reflux, 359, 389

mixer-settlers, 408, 409

mobile carriers, 539

mobility, 163, 169, 171
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momentum transfer, 290, 595, 597, 601

moraines, 113

multicomponent diffusion,

flux equations, 211, 212, 217
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Murphree efficiency, 394, 397, 414

Nernst–Plank equations, 165

Newton’s law of viscosity, 290, 595

non-Fickian diffusion, 138, 184

nuclear magnetic resonance, 151

number of transfer units, 318, 358, 441, 614
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Onsager phenomenological coefficients, 216, 224

Onsager reciprocal relations, 211, 216, 532
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for absorption, 315, 322

for distillation, 357, 366, 381, 388
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for water cooling, 611, 614
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osmotic pressure, 527, 531, 533, 557

osmotic pumps, 556
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fluid mechanics, 309, 313, 355
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reaction in, 483
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reaction mechanisms
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analysis of, 527, 531

typical separations by, 526

Reynolds analogy, 602
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rotational diffusion, 129

sacrificial reagents, 560

scrubbing, 316, 324

self-diffusion, 227

separation of variables, 38

Sherwood plot, 424

shrinking particle model, 465

Sievert’s law, 206
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simulated moving beds, 448

skin, 337
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binary diffusion into, 26, 44, 71, 148,
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heat conduction into, 571

ternary diffusion into, 218

slip, 302

Smoluchowski mechanism, 503

solvation, 181

Soret coefficient, 616

spheres,

diffusion around, 36, 88, 198, 502

diffusion of, 127, 130
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spinodal decomposition, 184, 187
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spontaneous emulsification, 565

spray drying, 607, 608
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Stokes-Einstein equation, 127, 130, 136, 163
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in distillation, 361, 363, 367, 384, 386

of gases, 307, 316, 319, 327
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surface diffusion, 195
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temperature profiles, 570, 572

ternary diffusion,
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concentration profiles, 218
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thermal diffusion, 615, 619

thermal diffusivity, 572, 573, 586

thermodynamics,

first law of, 214, 575

second law of, 214
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type II transport, 138
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