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Preface to the Third Edition

Like its earlier editions, this book has two purposes. First, it presents a clear
description of diffusion, the mixing process caused by molecular motion. Second, it explains
mass transfer, which controls the cost of processes like chemical purification and environ-
mental control. The first of these purposes is scientific, explaining how nature works. The
second purpose is more practical, basic to the engineering of chemical processes.

While diffusion was well explained in earlier editions, this edition extends and clarifies
this material. For example, the Maxwell-Stefan alternative to Fick’s equation is now
treated in more depth. Brownian motion and its relation to diffusion are explicitly de-
scribed. Diffusion in composites, an active area of research, is reviewed. These topics are
an evolution of and an improvement over the material in earlier editions.

Mass transfer is much better explained here than it was earlier. I believe that mass
transfer is often poorly presented because it is described only as an analogue of heat
transfer. While this analogue is true mathematically, its overemphasis can obscure the
simpler physical meaning of mass transfer. In particular, this edition continues to em-
phasize dilute mass transfer. It gives a more complete description of differential distilla-
tion than is available in other introductory sources. This description is important because
differential distillation is now more common than staged distillation, normally the only
form covered. This edition gives a much better description of adsorption than has been
available. It provides an introduction to mass transfer applied in biology and medicine.

The result is an engineering book which is much more readable and understandable
than other books covering these subjects. It provides much more physical insight than
conventional books on unit operations. It explores the interactions between mass trans-
fer and chemical reaction, which are omitted by many books on transport phenomena.
The earlier editions are good, but this one is better.

The book works well as a text either for undergraduates or graduate students. For
a one-semester undergraduate chemical engineering course of perhaps 45 lectures plus
recitations, I cover Chapter 2, Sections 3.1 to 3.2 and 5.1 to 5.2, Chapters 8 to 10, 12 to
15, and 21. If there is time, I add Sections 16.1 to 16.3 and Sections 17.1 to 17.3. If this
course aims at describing separation processes, I cover crystallization before discussing
membrane separations. We have successfully taught such a course here at Minnesota for
the last 10 years.

For a one semester graduate course for students from chemistry, chemical engineer-
ing, pharmacy, and food science, I plan for 45 lectures without recitations. This course
covers Chapters 2 to 9 and Chapters 16 to 19. It has been a mainstay at many universities
for almost 30 years.

This description of academic courses should not restrict the book’s overall goal.
Diffusion and mass transfer are often interesting because they are slow. Their rate
controls many processes, from the separation of air to the spread of pollutants to the
size of a human sperm. The study of diffusion is thus important, but it is also fun. I hope
that this book catalyzes that fun for you.

XX






Preface to Second Edition

The purpose of this second edition is again a clear description of diffusion useful
to engineers, chemists, and life scientists. Diffusion is a fascinating subject, as central to
our daily lives as it is to the chemical industry. Diffusion equations describe the transport
in living cells, the efficiency of distillation, and the dispersal of pollutants. Diffusion is
responsible for gas absorption, for the fog formed by rain on snow, and for the dyeing of
wool. Problems like these are easy to identify and fun to study.

Diffusion has the reputation of being a difficult subject, much harder than, say, fluid
mechanics or solution thermodynamics. In fact, it is relatively simple. To prove this to
yourself, try to explain a diffusion flux, a shear stress, and chemical potential to some
friends who have little scientific training. I can easily explain a diffusion flux: It is how
much diffuses per area per time. I have more trouble with a shear stress. Whether I say it
is a momentum flux or the force in one direction caused by motion in a second direction,
my friends look blank. I have never clearly explained chemical potentials to anyone.

However, past books on diffusion have enhanced its reputation as a difficult subject.
These books fall into two distinct groups that are hard to read for different reasons. The
first group is the traditional engineering text. Such texts are characterized by elaborate
algebra, very complex examples, and turgid writing. Students cheerfully hate these
books; moreover, they remember what they have learned as scattered topics, not an
organized subject.

The second group of books consists of texts on transport processes. These books
present diffusion by analogy with fluid flow and heat transfer. They are much more
readable than the traditional texts, especially for the mathematically adroit. They do
have two significant disadvantages. First, topics important to diffusion but not to fluid
flow tend to be omitted or deemphasized. Such cases include simultaneous diffusion and
chemical reaction. Second, these books usually present diffusion last, so that fluid me-
chanics and heat transfer must be at least superficially understood before diffusion can
be learned. This approach effectively excludes students outside of engineering who have
little interest in these other phenomena. Students in engineering find difficult problems
emphasized because the simple ones have already been covered for heat transfer.
Whether they are engineers or not, all conclude that diffusion must be difficult.

In the first edition, I tried to describe diffusion clearly and simply. I emphasized
physical insight, sometimes at the loss of mathematical rigor. I discussed basic concepts
in detail, without assuming prior knowledge of other phenomena. I aimed at the scope of
the traditional texts and at the clarity of books on transport processes. This second
edition is evidence that I was partly successful. Had I been completely successful, no
second edition would be needed. Had I been unsuccessful, no second edition would be
wanted.

In this second edition, I've kept the emphasis on physical insight and basic concepts,
but I've expanded the book’s scope. Chapters 1-7 on diffusion are largely unchanged,
though some description of diffusion coefficients is abridged. Chapter 8 on mass transfer

XX1



XXii Preface to Second Edition

is expanded to even more detail, for I found many readers need more help. Chapters
9-12, a description of traditional chemical processes are new. The remaining seven
chapters, a spectrum of topics, are either new or significantly revised. The result is still
useful broadly, but deeper on engineering topics.

I have successfully used the book as a text for both undergraduate and graduate
courses, of which most are in chemical engineering. For an undergraduate course on
unit operations, I first review the mass transfer coefficients in Chapter 8, for I find that
students’ memory of these ideas is motley. I then cover the material in Chapters 9-12 in
detail, for this is the core of the subject. I conclude with simultaneous heat and mass
transfer, as discussed in Chapters 19-20. The resulting course of 50 classes is typical of
many offered on this subject. On their own, undergraduates have used Chapters 2-3 and
8-9 for courses on heat and mass transfer, but this book’s scope seems too narrow to be
a good text for that class.

For graduate students, I give two courses in alternate years. Neither requires the other
as a prerequisite. In the first graduate course, on diffusion, I cover Chapters 1-7, plus
Chapter 17 (on membranes). In the second graduate course, on mass transfer, I cover
Chapters 8-9, Chapters 13-16, and Chapter 20. These courses, which typically have
about 35 lectures, are an enormous success, year after year. For nonengineering graduate
students and for various short courses, I've usually used Chapters 2, 8, 15-16, and any
other chapters specific to a given discipline. For example, for those in the drug industry, I
might cover Chapters 11 and 18.

I am indebted to many who have encouraged me in this effort. My overwhelming debt
is to my colleagues at the University of Minnesota. When I become disheartened, I need
simply to visit another institution to be reminded of the advantages of frank discussion
without infighting. My students have helped, especially Sameer Desai and Diane Clifton,
who each read large parts of the final manuscript. Mistakes that remain are my fault.
Teresa Bredahl typed most of the book, and Clover Galt provided valuable editorial
help. Finally, my wife Betsy gives me a wonderful rich life.



CHAPTER 1

Models for Diffusion

If a few crystals of a colored material like copper sulfate are placed at the
bottom of a tall bottle filled with water, the color will slowly spread through the bottle.
At first the color will be concentrated in the bottom of the bottle. After a day it
will penetrate upward a few centimeters. After several years the solution will appear
homogeneous.

The process responsible for the movement of the colored material is diffusion, the
subject of this book. Diffusion is caused by random molecular motion that leads to com-
plete mixing. It can be a slow process. In gases, diffusion progresses at a rate of about 5 cm/
min; in liquids, its rate is about 0.05 cm/min; in solids, its rate may be only about 0.00001
cm/min. In general, it varies less with temperature than do many other phenomena.

This slow rate of diffusion is responsible for its importance. In many cases, diffusion
occurs sequentially with other phenomena. When it is the slowest step in the sequence, it
limits the overall rate of the process. For example, diffusion often limits the efficiency of
commercial distillations and the rate of industrial reactions using porous catalysts. It
limits the speed with which acid and base react and the speed with which the human
intestine absorbs nutrients. It controls the growth of microorganisms producing peni-
cillin, the rate of the corrosion of steel, and the release of flavor from food.

In gases and liquids, the rates of these diffusion processes can often be accelerated by
agitation. For example, the copper sulfate in the tall bottle can be completely mixed in
a few minutes if the solution is stirred. This accelerated mixing is not due to diffusion
alone, but to the combination of diffusion and stirring. Diffusion still depends on ran-
dom molecular motions that take place over smaller distances. The agitation or stirring
is not a molecular process, but a macroscopic process that moves portions of the fluid
over much larger distances. After this macroscopic motion, diffusion mixes newly ad-
jacent portions of the fluid. In other cases, such as the dispersal of pollutants, the
agitation of wind or water produces effects qualitatively similar to diffusion; these
effects, called dispersion, will be treated separately.

The description of diffusion involves a mathematical model based on a fundamental
hypothesis or “law.” Interestingly, there are two common choices for such a law. The
more fundamental, Fick’s law of diffusion, uses a diffusion coefficient. This is the law
that is commonly cited in descriptions of diffusion. The second, which has no formal
name, involves a mass transfer coefficient, a type of reversible rate constant.

Choosing between these two models is the subject of this chapter. Choosing Fick’s law
leads to descriptions common to physics, physical chemistry, and biology. These descrip-
tions are explored and extended in Chapters 2-7. Choosing mass transfer coefficients
produces correlations developed explicitly in chemical engineering and used implicitly in
chemical kinetics and in medicine. These correlations are described in Chapters 8-15.
Both approaches are used in Chapters 16-21.

We discuss the differences between the two models in Section 1.1 of this chapter.
In Section 1.2 we show how the choice of the most appropriate model is determined.

1



2 1/ Models for Diffusion

In Section 1.3 we conclude with additional examples to illustrate how the choice between
the models is made.

1.1 The Two Basic Models

In this section we want to illustrate the two basic ways in which diffusion can be
described. To do this, we first imagine two large bulbs connected by a long thin capillary
(Fig. 1.1-1). The bulbs are at constant temperature and pressure and are of equal vol-
umes. However, one bulb contains carbon dioxide, and the other is filled with nitrogen.

To find how fast these two gases will mix, we measure the concentration of carbon
dioxide in the bulb that initially contains nitrogen. We make these measurements when
only a trace of carbon dioxide has been transferred, and we find that the concentration of
carbon dioxide varies linearly with time. From this, we know the amount transferred per
unit time.

We want to analyze this amount transferred to determine physical properties that will
be applicable not only to this experiment but also in other experiments. To do this, we
first define the flux:

(1.1-1)

o tof d
(carbon dioxide flux) = <amoun 07 asTEMOVe )

time (area capillary)

In other words, if we double the cross-sectional area, we expect the amount transported
to double. Defining the flux in this way is a first step in removing the influences of our
particular apparatus and making our results more general. We next assume that the flux
is proportional to the gas concentration:

carbon dioxide
(carbon dioxide flux) = k| concentration (1.1-2)
difference

The proportionality constant k is called a mass transfer coefficient. Its introduction
signals one of the two basic models of diffusion. Alternatively, we can recognize

COo Concentration here

Time

Fig. 1.1-1. A simple diffusion experiment. Two bulbs initially containing different gases are
connected with a long thin capillary. The change of concentration in each bulb is a measure of
diffusion and can be analyzed in two different ways.
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that increasing the capillary’s length will decrease the flux, and we can then assume
that

(carbon dioxide flux) — D (carbon dioxide concentration difference) (113)

capillary length

The new proportionality constant D is the diffusion coefficient. Its introduction implies
the other model for diffusion, the model often called Fick’s law.

These assumptions may seem arbitrary, but they are similar to those made in many
other branches of science. For example, they are similar to those used in developing
Ohm’s law, which states that

current, or 1 voltage, or
area times flux | = <7) potential (1.1-4)
of electrons resistance/ \ ifference

Thus, the mass transfer coefficient k is analogous to the reciprocal of the resistance. An
alternative form of Ohm’s law is

current density 1 (icf)ft:rr:;i
or flux of = < — > 1 h (1.1-5)
clectrons resistivity engt

The diffusion coefficient D is analogous to the reciprocal of the resistivity.

Neither the equation using the mass transfer coefficient k nor that using the diffusion
coefficient D is always successful. This is because of the assumptions made in
their development. For example, the flux may not be proportional to the concentration
difference if the capillary is very thin or if the two gases react. In the same way,
Ohm’s law is not always valid at very high voltages. But these cases are exceptions;
both diffusion equations work well in most practical situations, just as Ohm’s law
does.

The parallels with Ohm’s law also provide a clue about how the choice between
diffusion models is made. The mass transfer coefficient in Eq. 1.1-2 and the resistance
in Eq. 1.1-4 are simpler, best used for practical situations and rough measurements. The
diffusion coefficient in Eq. 1.1-3 and the resistivity in Eq. 1.1-5 are more fundamental,
involving physical properties like those found in handbooks. How these differences
guide the choice between the two models is the subject of the next section.

1.2 Choosing Between the Two Models

The choice between the two models outlined in Section 1.1 represents a com-
promise between ambition and experimental resources. Obviously, we would like to
express our results in the most general and fundamental ways possible. This suggests
working with diffusion coefficients. However, in many cases, our experimental measure-
ments will dictate a more approximate and phenomenological approach. Such approx-
imations often imply mass transfer coefficients, but they usually still permit us to reach
our research goals.
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Analyze as mass transfer
Flux = k A(concentration)

k is not constant;
Hydrogen Metal variation with time
gas correlated; variation
with position ignored

Hydrogen
concentration

vs. time Analyze as diffusion

Flux = —Daﬁz(concentration)

z Dis constant;
variation with time and
position predicted

Fig. 1.2-1. Hydrogen diffusion into a metal. This process can be described with either

a mass transfer coefficient k or a diffusion coefficient D. The description with a diffusion
coefficient correctly predicts the variation of concentration with position and time, and so
is superior.

This choice and the resulting approximations are best illustrated by two examples. In
the first, we consider hydrogen diffusion in metals. This diffusion substantially reduces
a metal’s ductility, so much so that parts made from the embrittled metal frequently
fracture. To study this embrittlement, we might expose the metal to hydrogen under
a variety of conditions and measure the degree of embrittlement versus these conditions.
Such empiricism would be a reasonable first approximation, but it would quickly flood
us with uncorrelated information that would be difficult to use effectively.

As an improvement, we can undertake two sets of experiments. First, we can saturate
metal samples with hydrogen and determine their degrees of embrittlement. Thus
we know metal properties versus hydrogen concentration. Second, we can measure
hydrogen uptake versus time, as suggested in Fig. 1.2-1, and correlate our measurements
as mass transfer coefficients. Thus we know average hydrogen concentration versus
time.

To our dismay, the mass transfer coefficients in this case will be difficult to interpret.
They are anything but constant. At zero time, they approach infinity; at large time, they
approach zero. At all times, they vary with the hydrogen concentration in the gas
surrounding the metal. They are an inconvenient way to summarize our results. More-
over, the mass transfer coefficients give only the average hydrogen concentration in the
metal. They ignore the fact that the hydrogen concentration very near the metal’s surface
will reach saturation but the concentration deep within the metal will remain zero. As
a result, the metal near the surface may be very brittle but that within may be essentially
unchanged.

We can include these details in the diffusion model described in the previous section.
This model assumed that

hydrogen _ ( hydrogen
hydrogen \ concentrationatz =0 concentrationatz =/
flux N (thicknessat z = /) — (thickness at z =0)

(1.2-1)



1.2 | Choosing Between the Two Models 5

or, symbolically,

ctlz=0 — ¢l

(1.2-2)
where the subscript 1 symbolizes the diffusing species. In these equations, the distance /is
that over which diffusion occurs. In the previous section, the length of the capillary was
appropriately this distance; but in this case, it seems uncertain what the distance should
be. If we assume that it is very small,

. .=z —c1,es de;
j; = Dlim : =l _p—
=0 z|.4—z|, dz

(1.2-3)

We can use this relation and the techniques developed later in this book to correlate
our experiments with only one parameter, the diffusion coefficient D. We then can correctly
predict the hydrogen uptake versus time and the hydrogen concentration in the gas. As
a dividend, we get the hydrogen concentration at all positions and times within the metal.

Thus the model based on the diffusion coefficient gives results of more fundamental
value than the model based on mass transfer coefficients. In mathematical terms, the
diffusion model is said to have distributed parameters, for the dependent variable (the
concentration) is allowed to vary with all independent variables (like position and time).
In contrast, the mass transfer model is said to have lumped parameters (like the average
hydrogen concentration in the metal).

These results would appear to imply that the diffusion model is superior to the mass
transfer model and so should always be used. However, in many interesting cases the
models are equivalent. To illustrate this, imagine that we are studying the dissolution of
asolid drug suspended in water, as schematically suggested by Fig. 1.2-2. The dissolution
of this drug is known to be controlled by the diffusion of the dissolved drug away from
the solid surface of the undissolved material. We measure the drug concentration versus time
as shown, and we want to correlate these results in terms of as few parameters as possible.

One way to correlate the dissolution results is to use a mass transfer coefficient. To do
this, we write a mass balance on the solution:

accumula_tlon total rate of
of drugin = . .
. dissolution
solution
dCl
V—=Aj
ds J1
= Aklci(sat) — ¢1] (1.2-4)

where V' is the volume of solution, 4 is the total area of the drug particles, ¢;(sat) is the
drug concentration at saturation and at the solid’s surface, and ¢, is the concentration in
the bulk solution. Integrating this equation allows quantitatively fitting our results with
one parameter, the mass transfer coefficient k. This quantity is independent of drug
solubility, drug area, and solution volume, but it does vary with physical properties like
stirring rate and solution viscosity. Correlating the effects of these properties turns out to
be straightforward.
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Analyze as chemical reaction

de
T;: K [cy(sat) —¢y]
Kk is reaction rate
Solid J&— constant for a
drug fictitious reaction
\”/ Analyze as mass transfer

d
VSt =KA [y(sat) ~ci]

k varies with stirring.
] Note that kKA/V =«

T Analyze as diffusion

Saturation

Drug concentration

de; p
Time V=" Alci(sat) —c]

| varies with stirring

and with D. Note

that D/l = k
Fig. 1.2-2. Rates of drug dissolution. In this case, describing the system with a mass transfer
coefficient k is best because it easily correlates the solution’s concentration versus time.
Describing the system with a diffusion coefficient D gives a similar correlation but introduces
an unnecessary parameter, the film thickness /. Describing the system with a reaction rate
constant k also works, but this rate constant is a function not of chemistry but of physics.

The alternative to mass transfer is diffusion theory, for which the mass balance is

V% =4 <§> [c1(sat) — ¢1] (1.2-5)
in which /is an unknown parameter, equal to the average distance across which diffusion
occurs. This unknown, called a film or unstirred layer thickness, is a function not only of
flow and viscosity but also of the diffusion coefficient itself.

Equations 1.2-4 and 1.2-5 are equivalent, and they share the same successes and short-
comings. In the former, we must determine the mass transfer coefficient experimentally; in
the latter, we determine instead the thickness /. Those who like a scientific veneer prefer to
measure /, for it genuflects toward Fick’s law of diffusion. Those who are more pragmatic
prefer explicitly recognizing the empirical nature of the mass transfer coefficient.

The choice between the mass transfer and diffusion models is thus often a question of
taste rather than precision. The diffusion model is more fundamental and is appropriate
when concentrations are measured or needed versus both position and time. The mass
transfer model is simpler and more approximate and is especially useful when only
average concentrations are involved. The additional examples in section 1.3 should help
us decide which model is appropriate for our purposes.

Before going on to the next section, we should mention a third way to correlate the
results other than the two diffusion models. This third way is to assume that the disso-
lution shown in Fig. 1.2-2 is a first-order, reversible chemical reaction. Such a reaction
might be described by

d

¢
d—tl = ke (sat) — ke (1.2-6)
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In this equation, the quantity rc;(sat) represents the rate of dissolution, x¢; stands for
the rate of precipitation, and « is a rate constant for this process. This equation is
mathematically identical with Egs. 1.2-4 and 1.2-5 and so is equally successful. However,
the idea of treating dissolution as a chemical reaction is flawed. Because the reaction is
hypothetical, the rate constant is a composite of physical factors rather than chemical
factors. We do better to consider the physical process in terms of a diffusion or mass
transfer model.

1.3 Examples

In this section, we give examples that illustrate the choice between diffusion
coefficients and mass transfer coefficients. This choice is often difficult, a juncture where
many have trouble. I often do. I think my trouble comes from evolving research goals,
from the fact that as I understand the problem better, the questions that I am trying to
answer tend to change. I notice the same evolution in my peers, who routinely start work
with one model and switch to the other model before the end of their research.

We shall not solve the following examples. Instead, we want only to discuss which
diffusion model we would initially use for their solution. The examples given certainly do
not cover all types of diffusion problems, but they are among those about which I have
been asked in the last year.

Example 1.3-1: Ammonia scrubbing Ammonia, the major material for fertilizer, is made
by reacting nitrogen and hydrogen under pressure. The product gas can be washed with
water to dissolve the ammonia and separate it from other unreacted gases. How can you
correlate the dissolution rate of ammonia during washing?

Solution The easiest way is to use mass transfer coefficients. If you use dif-
fusion coefficients, you must somehow specify the distance across which diffusion
occurs. This distance is unknown unless the detailed flows of gases and the water are
known; they rarely are (see Chapters 8 and 9).

Example 1.3-2: Reactions in porous catalysts Many industrial reactions use catalysts
containing small amounts of noble metals dispersed in a porous inert material like silica.
The reactions on such a catalyst are sometimes slower in large pellets than in small ones.
This is because the reagents take longer to diffuse into the pellet than they do to react.
How should you model this effect?

Solution You should use diffusion coefficients to describe the simultaneous
diffusion and reaction in the pores in the catalyst. You should not use mass transfer coef-
ficients because you cannot easily include the effect of reaction (see Sections 16.1 and 17.1).

Example 1.3-3: Corrosion of marble Industrial pollutants in urban areas like Venice
cause significant corrosion of marble statues. You want to study how these pollutants
penetrate marble. Which diffusion model should you use?

Solution The model using diffusion coefficients is the only one that will allow
you to predict pollutant concentration versus position in the marble. The model using
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mass transfer coefficients will only correlate how much pollutant enters the statue, not
what happens to the pollutant (see Sections 2.3 and 8.1).

Example 1.3-4: Protein size in solution You are studying a variety of proteins that you
hope to purify and use as food supplements. You want to characterize the size of the
proteins in solution. How can you use diffusion to do this?

Solution Y our aim is determining the molecular size of the protein molecules.
You are not interested in the protein mass transfer except as a route to these molecular
properties. As a result, you should measure the protein’s diffusion coefficient, not its
mass transfer coefficient. The protein’s diffusion coefficient will turn out to be propor-
tional to its radius in solution (see Section 5.2).

Example 1.3-5: Antibiotic production Many drugs are made by fermentations in which
microorganisms are grown in a huge stirred vat of a dilute nutrient solution or “beer.”
Many of these fermentations are aerobic, so the nutrient solution requires aeration. How
should you model oxygen uptake in this type of solution?

Solution Practical models use mass transfer coefficients. The complexities of
the problem, including changes in air bubble size, flow effects of the non-Newtonian
solution, and foam caused by biological surfactants, all inhibit more careful study (see
Chapter 8).

Example 1.3-6: Facilitated transport across membranes Some membranes contain
a mobile carrier, a reactive species that reacts with diffusing solutes, facilitating their
transport across the membrane. Such membranes can be used to concentrate copper
ions from industrial waste and to remove carbon dioxide from coal gas. Diffusion
across these membranes does not vary linearly with the concentration difference
across them. The diffusion can be highly selective, but it is often easily poisoned.
Should this diffusion be described with mass transfer coefficients or with diffusion
coefficients?

Solution This system includes not only diffusion but also chemical reaction.
Diffusion and reaction couple in a nonlinear way to give the unusual behavior observed.
Understanding such behavior will certainly require the more fundamental model of
diffusion coefficients (see Section 18.5).

Example 1.3-7: Flavor retention When food products are spray-dried, they lose a lot of
flavor. However, they lose less than would be expected on the basis of the relative vapor
pressures of water and the flavor compounds. The reason apparently is that the drying
food often forms a tight gellike skin across which diffusion of the flavor compounds is
inhibited. What diffusion model should you use to study this effect?

Solution Because spray-drying is a complex, industrial-scale process, it is
usually modeled using mass transfer coefficients. However, in this case you are interested
in the inhibition of diffusion. Such inhibition will involve the sizes of pores in the food
and of molecules of the flavor compounds. Thus you should use the more basic diffusion
model, which includes these molecular factors (see Section 6.4).
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Example 1.3-8: The smell of marijuana Recently, a large shipment of marijuana was
seized in the Minneapolis—St. Paul airport. The police said their dog smelled it. The
owners claimed that it was too well wrapped in plastic to smell and that the police
had conducted an illegal search without a search warrant. How could you tell who
was right?

Solution 1In this case, you are concerned with the diffusion of odor across the
thin plastic film. The diffusion rate is well described by either mass transfer or diffusion
coefficients. However, the diffusion model explicitly isolates the effect of the solubility of
the smell in the film, which dominates the transport. This solubility is the dominant
variable (see Section 2.2). In this case, the search was illegal.

Example 1.3-9: Scale-up of wet scrubbers You want to use a wet scrubber to remove
sulfur oxides from the flue gas of a large power plant. A wet scrubber is essentially a large
piece of pipe set on its end and filled with inert ceramic material. You pump the flue gas
up from the bottom of the pipe and pour a lime slurry down from the top. In the
scrubber, there are various reactions, such as

CaO + SO, — CaSO; (1.2-6)

The lime reacts with the sulfur oxides to make an insoluble precipitate, which is dis-
carded. You have been studying a small unit and want to use these results to predict the
behavior of a larger unit. Such an increase in size is called a scale-up. Should you make
these predictions using a model based on diffusion or mass transfer coefficients?
Solution This situation is complex because of the chemical reactions and the
irregular flows within the scrubber. Your first try at correlating your data should be
a model based on mass transfer coefficients. Should these correlations prove unreliable,
you may be forced to use the more difficult diffusion model (see Chapters 9, 16, and 17).

1.4 Conclusions

This chapter discusses the two common models used to describe diffusion and
suggests how you can choose between these models. For fundamental studies where you
want to know concentration versus position and time, use diffusion coefficients. For
practical problems where you want to use one experiment to tell how a similar one will
behave, use mass transfer coefficients. The former approach is the distributed-parameter
model used in chemistry, and the latter is the lumped-parameter model used in engineer-
ing. Both approaches are used in medicine and biology, but not always explicitly.

The rest of this book is organized in terms of these two models. Chapters 2—4 present
the basic model of diffusion coefficients, and Chapters 5-7 review the values of the
diffusion coefficients themselves. Chapters 8—15 discuss the model of mass transfer
coefficients, including their relation to diffusion coefficients. Chapters 16-19 explore
the coupling of diffusion with heterogeneous and homogeneous chemical reactions,
using both models. Chapters 20-21 explore the simpler coupling between diffusion
and heat transfer.
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In the following chapters, keep both models in mind. People involved in basic research
tend to be overcommitted to diffusion coefficients, whereas those with broader objectives
tend to emphasize mass transfer coefficients. Each group should recognize that the other
has a complementary approach that may be more helpful for the case in hand.

Questions for Discussion

1. What are the dimensions in mass M, length L, and time 7 of a diffusion
coefficient?
What are the dimensions of a mass transfer coefficient?
What volume is implied by Ficks’s law?
What volume is implied when defining a mass transfer coefficient?
Can the diffusion coefficient ever be negative?
Give an example for a diffusion coefficient which is the same in all directions.
Give an example when it isn’t.
When a silicon chip is doped with boron, does the doping involve diffusion?
Does the wafting of smells of a pie baking in the oven involve diffusion?
9. How does breathing involve diffusion?
10. How is a mass transfer coefficient related to a reaction rate constant?
11.  Will a heat transfer coefficient and a mass transfer coefficient be related?
12.  Will stirring a suspension of sugar in water change the diffusion coefficient?
Will it change the density? Will it change the mass transfer coefficient?
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PART I

Fundamentals of Diffusion






CHAPTER 2

Diffusion in Dilute Solutions

In this chapter, we consider the basic law that underlies diffusion and its appli-
cation to several simple examples. The examples that will be given are restricted to dilute
solutions. Results for concentrated solutions are deferred until Chapter 3.

This focus on the special case of dilute solutions may seem strange. Surely, it would
seem more sensible to treat the general case of all solutions and then see mathematically
what the dilute-solution limit is like. Most books use this approach. Indeed, because
concentrated solutions are complex, these books often describe heat transfer or fluid
mechanics first and then teach diffusion by analogy. The complexity of concen-
trated diffusion then becomes a mathematical cancer grafted onto equations of energy
and momentum.

I have rejected this approach for two reasons. First, the most common diffusion
problems do take place in dilute solutions. For example, diffusion in living tissue almost
always involves the transport of small amounts of solutes like salts, antibodies, enzymes,
or steroids. Thus many who are interested in diffusion need not worry about the com-
plexities of concentrated solutions; they can work effectively and contentedly with the
simpler concepts in this chapter.

Second and more important, diffusion in dilute solutions is easier to understand in
physical terms. A diffusion flux is the rate per unit area at which mass moves. A con-
centration profile is simply the variation of the concentration versus time and position.
These ideas are much more easily grasped than concepts like momentum flux, which is
the momentum per area per time. This seems particularly true for those whose back-
grounds are not in engineering, those who need to know about diffusion but not about
other transport phenomena.

This emphasis on dilute solutions is found in the historical development of the basic
laws involved, as described in Section 2.1. Sections 2.2 and 2.3 of this chapter focus on
two simple cases of diffusion: steady-state diffusion across a thin film and unsteady-state
diffusion into an infinite slab. This focus is a logical choice because these two cases are so
common. For example, diffusion across thin films is basic to membrane transport, and
diffusion in slabs is important in the strength of welds and in the decay of teeth. These
two cases are the two extremes in nature, and they bracket the behavior observed
experimentally. In Section 2.4 and Section 2.5, these ideas are extended to other exam-
ples that demonstrate mathematical ideas useful for other situations.

2.1 Pioneers in Diffusion
2.1.1 Thomas Graham

Our modern ideas on diffusion are largely due to two men, Thomas Graham
and Adolf Fick. Graham was the elder. Born on December 20, 1805, Graham was the

13
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son of a successful manufacturer. At 13 years of age he entered the University of Glas-
gow with the intention of becoming a minister, and there his interest in science was
stimulated by Thomas Thomson.

Graham’s research on the diffusion of gases, largely conducted during the years 1828
to 1833, depended strongly on the apparatus shown in Fig. 2.1-1 (Graham, 1829; Gra-
ham, 1833). This apparatus, a “diffusion tube,” consists of a straight glass tube, one end
of which is closed with a dense stucco plug. The tube is filled with hydrogen, and the end
is sealed with water, as shown. Hydrogen diffuses through the plug and out of the tube,
while air diffuses back through the plug and into the tube.

Because the diffusion of hydrogen is faster than the diffusion of air, the water level in
this tube will rise during the process. Graham saw that this change in water level would
lead to a pressure gradient that in turn would alter the diffusion. To avoid this pressure
gradient, he continually lowered the tube so that the water level stayed constant. His
experimental results then consisted of a volume-change characteristic of each gas orig-
inally held in the tube. Because this volume change was characteristic of diffusion, “‘the
diffusion or spontaneous intermixture of two gases in contact is effected by an inter-
change of position of infinitely minute volumes, being, in the case of each gas, inversely
proportional to the square root of the density of the gas” (Graham, 1833, p. 222).
Graham’s original experiment was unusual because the diffusion took place at constant
pressure, not at constant volume (Mason, 1970).

Graham also performed important experiments on liquid diffusion using the equip-
ment shown in Fig. 2.1-2 (Graham, 1850); in these experiments, he worked with dilute
solutions. In one series of experiments, he connected two bottles that contained solutions
at different concentrations; he waited several days and then separated the bottles and
analyzed their contents. In another series of experiments, he placed a small bottle con-
taining a solution of known concentration in a larger jar containing only water. After
waiting several days, he removed the bottle and analyzed its contents.

Graham’s results were simple and definitive. He showed that diffusion in liquids was
at least several thousand times slower than diffusion in gases. He recognized that the
diffusion process got still slower as the experiment progressed, that ““diffusion must

Z/ Stucco plug

l.— Glass tube

I+ Diffusing gas

| _—— Water

Fig. 2.1-1. Graham’s diffusion tube for gases. This apparatus was used in the best early study of
diffusion. As a gas like hydrogen diffuses out through the plug, the tube is lowered to ensure that
there will be no pressure difference.
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Fig. 2.1-2. Graham’s diffusion apparatus for liquids. The equipment in (a) is the ancestor of free
diffusion experiments; that in (b) is a forerunner of the capillary method.

Table 2.1-1 Graham’s results for liquid diffusion

Weight percent of Relative flux
sodium chloride

1 1.00

2 1.99

3 3.01

4 4.00

Source: Data from Graham (1850).

necessarily follow a diminishing progression.” Most important, he concluded from the
results in Table 2.1-1 that ““the quantities diffused appear to be closely in proportion ...
to the quantity of salt in the diffusion solution” (Graham, 1850, p. 6). In other words, the
flux caused by diffusion is proportional to the concentration difference of the salt.

2.1.2 Adolf Fick

The next major advance in the theory of diffusion came from the work of Adolf
Eugen Fick. Fick was born on September 3, 1829, the youngest of five children. His
father, a civil engineer, was a superintendent of buildings. During his secondary school-
ing, Fick was delighted by mathematics, especially the work of Poisson. He intended to
make mathematics his career. However, an older brother, a professor of anatomy at the
University of Marburg, persuaded him to switch to medicine.

In the spring of 1847, Fick went to Marburg, where he was occasionally tutored by
Carl Ludwig. Ludwig strongly believed that medicine, and indeed life itself, must have
a basis in mathematics, physics, and chemistry. This attitude must have been especially
appealing to Fick, who saw the chance to combine his real love, mathematics, with his
chosen profession, medicine.

In the fall of 1849, Fick’s education continued in Berlin, where he did a considerable
amount of clinical work. In 1851 he returned to Marburg, where he received his degree.
His thesis dealt with the visual errors caused by astigmatism, again illustrating his deter-
mination to combine science and medicine (Fick, 1852). In the fall of 1851, Carl Ludwig
became professor of anatomy in Zurich, and in the spring of 1852 he brought Fick along
as a prosector. Ludwig moved to Vienna in 1855, but Fick remained in Zurich until 1868.
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Paradoxically, the majority of Fick’s scientific accomplishments do not depend on
diffusion studies at all, but on his more general investigations of physiology (Fick, 1903).
He did outstanding work in mechanics (particularly as applied to the functioning of
muscles), in hydrodynamics and hemorheology, and in the visual and thermal function-
ing of the human body. He was an intriguing man. However, in this discussion we are
interested only in his development of the fundamental laws of diffusion.

In his first diffusion paper, Fick (1855a) codified Graham’s experiments through an
impressive combination of qualitative theories, casual analogies, and quantitative
experiments. His paper, which is refreshingly straightforward, deserves reading today.
Fick’s introduction of his basic idea is almost casual: “[T]he diffusion of the dissolved
material ... is left completely to the influence of the molecular forces basic to the same
law ... for the spreading of warmth in a conductor and which has already been applied
with such great success to the spreading of electricity” (Fick, 1855a, p. 65). In other
words, diffusion can be described on the same mathematical basis as Fourier’s law for
heat conduction or Ohm’s law for electrical conduction. This analogy remains a useful
pedagogical tool.

Fick seemed initially nervous about his hypothesis. He buttressed it with a variety of
arguments based on kinetic theory. Although these arguments are now dated, they show
physical insights that would be exceptional in medicine today. For example, Fick rec-
ognized that diffusion is a dynamic molecular process. He understood the difference
between a true equilibrium and a steady state, possibly as a result of his studies with
muscles (Fick, 1856). Later, Fick became more confident as he realized his hypothesis
was consistent with Graham’s results (Fick, 1855b).

Using this basic hypothesis, Fick quickly developed the laws of diffusion by means of
analogies with Fourier’s work (Fourier, 1822). He defined a total one-dimensional flux
Jy as

6c1
= Aj, = —AD— 2.1-1
Jl U1 az ( )

where A is the area across which diffusion occurs, j; is the flux per unit area, ¢ is
concentration, and z is distance. This is the first suggestion of what is now known as
Fick’s law. The quantity D, which Fick called “the constant depending of the nature of
the substances,” is, of course, the diffusion coefficient. Fick also paralleled Fourier’s
development to determine the more general conservation equation

dc; *c;  10A0c
o _ plea o4 212
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When the area A is a constant, this becomes the basic equation for one-dimensional
unsteady-state diffusion, sometimes called Fick’s second law.

Fick next had to prove his hypothesis that diffusion and thermal conduction can be
described by the same equations. He was by no means immediately successful. First, he
tried to integrate Eq. 2.1-2 for constant area, but he became discouraged by the numer-
ical effort required. Second, he tried to measure the second derivative experimentally.
Like many others, he found that second derivatives are difficult to measure: “the second
difference increases exceptionally the effect of [experimental] errors.”
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Fig. 2.1-3. Fick’s experimental results. The crystals in the bottom of each apparatus saturate the
adjacent solution, so that a fixed concentration gradient is established along the narrow, lower part
of the apparatus. Fick’s calculation of the curve for the funnel was his best proof of Fick’s law.

His third effort was more successful. He used a glass cylinder containing crystalline
sodium chloride in the bottom and a large volume of water in the top, shown as the lower
apparatus in Fig. 2.1-3. By periodically changing the water in the top volume, he was
able to establish a steady-state concentration gradient in the cylindrical cell. He found
that this gradient was linear, as shown in Fig. 2.1-3. Because this result can be predicted
either from Eq. 2.1-1 or from Eq. 2.1-2, this was a triumph.

But this success was by no means complete. After all, Graham’s data for liquids antic-
ipated Eq. 2.1-1. To try to strengthen the analogy with thermal conduction, Fick used the
upper apparatus shown in Fig. 2.1-3. In this apparatus, he established the steady-state
concentration profile in the same manner as before. He measured this profile and then tried
to predict these results using Eq. 2.1-2, in which the funnel area 4 available for diffusion
varied with the distance z. When Fick compared his calculations with his experimental
results, he found good agreement. These results were the initial verification of Fick’s law.

2.1.3 Forms of Fick’s Law

Useful forms of Fick’s law in dilute solutions are shown in Table 2.1-2. Each
equation closely parallels that suggested by Fick, that is, Eq. 2.1-1. Each involves the
same phenomenological diffusion coefficient. Each will be combined with mass balances
to analyze the problems central to the rest of this chapter.

One must remember that these flux equations imply no convection in the same
direction as the one-dimensional diffusion. They are thus special cases of the general
equations given in Table 3.2-1. This lack of convection often indicates a dilute solution.
In fact, the assumption of a dilute solution is more restrictive than necessary, for there are
many concentrated solutions for which these simple equations can be used without
inaccuracy. Nonetheless, for the novice, I suggest thinking of diffusion in a dilute solution.

2.2 Steady Diffusion Across a Thin Film

In the previous section we detailed the development of Fick’s law, the basic
relation for diffusion. Armed with this law, we can now attack the simplest example: steady
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Table 2.1-2 Fick’s law for diffusion without convection

For one-dimensional diffusion in Cartesian coordinates . de
-1 = dz

For radial diffusion in cylindrical coordinates . da
-1 = ar

For radial diffusion in spherical coordinates i = D%
dr

Note: More general equations are given in Table 3.2-1.

diffusion across a thin film. In this attack, we want to find both the diffusion flux and the
concentration profile. In other words, we want to determine how much solute moves across
the film and how the solute concentration changes within the film.

This problem is very important. It is one extreme of diffusion behavior, a counterpoint
to diffusion in an infinite slab. Every reader, whether casual or diligent, should try to
master this problem now. Many may be superficial because film diffusion is so simple
mathematically. Please do not dismiss this important problem; it is mathematically
straightforward but physically subtle. Think about it carefully.

2.2.1 The Physical Situation

Steady diffusion across a thin film is illustrated schematically in Fig. 2.2-1. On
each side of the film is a well-mixed solution of one solute, species 1. Both these solutions
are dilute. The solute diffuses from the fixed higher concentration, located at z < 0 on the
left-hand side of the film, into the fixed, less concentrated solution, located at z = [ on the
right-hand side.

We want to find the solute concentration profile and the flux across this film. To do
this, we first write a mass balance on a thin layer Az, located at some arbitrary position z
within the thin film. The mass balance in this layer is

( solute ) B ( rate of diffusion ) B rate of diffusion

. . out of the layer
1 hel
accumulation into the layerat z atz + Az

Cio

C1/

Fig. 2.2-1. Diffusion across a thin film. This is the simplest diffusion problem, basic to perhaps
80% of what follows. Note that the concentration profile is independent of the diffusion coefficient.
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Because the process is in steady state, the accumulation is zero. The diffusion rate is the
diffusion flux times the film’s area 4. Thus

OZA(jl‘z _jl|:+Az) (22-1)

Dividing this equation by the film’s volume, AAz, and rearranging,

()

When Az becomes very small, this equation becomes the definition of the derivative

d
0=——j 2.2-3
dzj1 ( )
Combining this equation with Fick’s law,
) de
= Dd—Zl (2.2-4)
we find, for a constant diffusion coefficient D,
d’c
0=D"1 (2.2-5)
dz
This differential equation is subject to two boundary conditions:
z = 0, C1 = C10 (22-6)
zZ= l, C] = Cyy (2.2-7)

Again, because this system is in steady state, the concentrations ¢y and c¢y; are indepen-
dent of time. Physically, this means that the volumes of the adjacent solutions must be
much greater than the volume of the film.

2.2.2 Mathematical Results

The desired concentration profile and flux are now easily found. First, we in-
tegrate Eq. 2.2-5 twice to find

o =a+bz (2.2-8)

The constants @ and » can be found from Eqgs. 2.2-6 and 2.2-7, so the concentration
profile is

e = cig + (1 = cio) (2.2-9)

~| N

This linear variation was, of course, anticipated by the sketch in Fig. 2.2-1. The flux is
found by differentiating this profile:

. dey D
J1 = —Dd—z1 = 7 (Cl() - Cu) (2'2'10)

Because the system is in steady state, the flux is a constant.
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As mentioned earlier, this case is easy mathematically. Although it is very im-
portant, it is often underemphasized because it seems trivial. Before you conclude
this, try some of the examples that follow to make sure you understand what is
happening.

Example 2.2-1: Membrane diffusion Derive the concentration profile and the flux for
a single solute diffusing across a thin membrane. As in the preceding case of a film, the
membrane separates two well-stirred solutions. Unlike the film, the membrane is chem-
ically different from these solutions.

Solution As before, we first write a mass balance on a thin layer Az:

0= A(/]‘z 7jl‘z+Az)

This leads to a differential equation identical with Eq. 2.2-5:

d*c
0=D—3
dz
However, this new mass balance is subject to somewhat different boundary conditions:
z = 07 Ccl = HClo
zZ = l, Ccl = HC]]

where H is a partition coefficient, the concentration in the membrane divided by that in
the adjacent solution. This partition coefficient is an equilibrium property, so its use
implies that equilibrium exists across the membrane surface. In many cases, it can be
about equal to the relative solubility within the film compared with that outside. For
a film containing pores, H may just be the void fraction of the film.

The concentration profile that results from these relations is

] = HC[(] +H(Cll - CIO)

~ N

which is analogous to Eq. 2.2-9. This result looks harmless enough. However, it suggests
concentration profiles likes those in Fig. 2.2-2, which contain sudden discontinuities at
the interface. If the solute is more soluble in the membrane than in the surrounding

C1o0
M0
Cio Gy
Cq/ <&l
(a) (b) (c)
Fig. 2.2-2. Concentration profiles across thin membranes. In (a), the solute is more soluble in the

membrane than in the adjacent solutions; in (b), it is less so. Both cases correspond to a chemical
potential gradient like that in (c).
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solutions, then the concentration increases. If the solute is less soluble in the membrane,
then its concentration drops. Either case produces enigmas. For example, at the left-
hand side of the membrane in Fig. 2.2-2(a), solute diffuses from the solution at C;, into
the membrane at higher concentration.

This apparent quandary is resolved when we think carefully about the solute’s diffu-
sion. Diffusion often can occur from a region of low concentration into a region of high
concentration; indeed, this is the basis of many liquid—liquid extractions. Thus the jumps
in concentration in Fig. 2.2-2 are not as bizarre as they might appear; rather, they are
graphical accidents that result from using the same scale to represent concentrations
inside and outside membrane.

This type of diffusion can also be described in terms of the solute’s energy or, more
exactly, in terms of its chemical potential. The solute’s chemical potential does not
change across the membrane’s interface, because equilibrium exists there. Moreover,
this potential, which drops smoothly with concentration, as shown in Fig. 2.2-2(c), is the
driving force responsible for the diffusion. The exact role of this driving force is discussed
more completely in Sections 6.3 and 7.2.

The flux across a thin membrane can be found by combining the foregoing concen-
tration profile with Fick’s law:

h= [DilH}(Clo - Cu)
This is parallel to Eq. 2.2-10. The quantity in square brackets in this equation is called
the permeability, and it is often reported experimentally. The quantity ([DH]//) is called
the permeance. The partition coefficient H is often found to vary more widely than the
diffusion coefficient D, so differences in diffusion tend to be less important than the
differences in solubility.

Example 2.2-2: Membrane diffusion with fast reaction Imagine that while a solute is
diffusing steadily across a thin membrane, it can rapidly and reversibly react with other
immobile solutes fixed within the membrane. Find how this fast reaction affects the
solute’s flux.

Solution The answer is surprising: The reaction has no effect. This is an
excellent example because it requires careful thinking. Again, we begin by writing a mass
balance on a layer Az located within the membrane:

solute _ ( solutediffusionin amount produced
accumulation / ~— \ minus that out by chemical reaction

Because the system is in steady state, this leads to
0= A(]llz 7jl|z+Az) - rlAAZ

or

= *&.]1 -
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where r; is the rate of disappearance of the mobile species 1 in the membrane. A similar
mass balance for the immobile product 2 gives

d.
02_&]2‘5"1

But because the product is immobile, j5 is zero, and hence r; is zero. As a result, the mass
balance for species 1 is identical with Eq. 2.2-3, leaving the flux and concentration profile
unchanged.

This result is easier to appreciate in physical terms. After the diffusion reaches a steady
state, the local concentration is everywhere in equilibrium with the appropriate amount
of the fast reaction’s product. Because these local concentrations do not change with
time, the amounts of the product do not change either. Diffusion continues unaltered.

This case in which a chemical reaction does not affect diffusion is unusual. For
almost any other situation, the reaction can engender dramatically different mass trans-
fer. If the reaction is irreversible, the flux can be increased many orders of magnitude, as
shown in Section 17.1. If the diffusion is not steady, the apparent diffusion coefficient
can be much greater than expected, as discussed in Example 2.3-2. However, in the case
described in this example, the chemical reaction does not affect diffusion.

Example 2.2-3: Concentration-dependent diffusion The diffusion coefficient is remark-
ably constant. It varies much less with temperature than the viscosity or the rate of
a chemical reaction. It varies surprisingly little with solute: for example, most diffusion
coefficients of solutes dissolved in water fall within a factor of ten.

Diffusion coefficients also rarely vary with solute concentration, although there are
some exceptions. For example, a small solute like water may show a concentration-
dependent diffusion when diffusing into a polymer. To explore this, assume that

p = Doc
€10
Then calculate the concentration profile and the flux across a thin film.
Solution Finding the concentration profle is a complete parallel to the simpler
case of constant diffusion coefficient discussed at the start of this section. We again begin
with a steady-state mass balance on a differential volume AAz:

0= A(jl|: _j1|Z+AZ)

Dividing by this volume, taking the limit as Az goes to zero and combining with Fick’s
law gives

0_%_,i _ Docrdey
dz dz cro dz

This parallels Equation 2.2-5, but with a concentration-dependent D. This mass balance
is subject to the boundary conditions

z =0, 1 = ¢y

ZI[, 6’1:0
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¢ le

|
0 0.5 1.0
z/1l
Fig. 2.2-3. Concentration-dependent diffusion across a thin film. While the steady-state flux is
constant, the concentration gradient changes with position.

These are a special case of Eqs. 2.2-6 and 2.2-7. Integration gives the concentration

profile
= clo(l — ;)1/2

This profile can be combined with Fick’s law to give the flux

. dey Dycider Docio
Jl = —Di = — _— =
dz o dz 2/

The flux is half that of the case of a constant diffusion coefficient D,,.

The meaning of this result is clearer if we consider the concentration profile shown in
Fig. 2.2-3. The profile is nonlinear; indeed, its slope at z = / is infinite. However, at that
boundary, the diffusion coefficient is zero because the concentation is zero. The product
of this infinite gradient and a zero coefficient is the constant flux, with an apparent
diffusion coefficient equal to (Dy/2). This unexceptional average value illustrates why
Fick’s law works so well.

Example 2.2-4: Diaphragm-cell diffusion One easy way to measure diffusion coefficients
is the diaphragm cell shown in Fig. 2.2-4. These cells consist of two well-stirred volumes
separated by a thin porous barrier or diaphragm. In the more accurate experiments,
the diaphragm is often a sintered glass frit; in many successful experiments, it is just
a piece of filter paper (see Section 5.5). To measure a diffusion coefficient with this cell,
we fill the lower compartment with a solution of known concentration and the upper
compartment with solvent. After a known time, we sample both upper and lower com-
partments and measure their concentrations.

Find an equation that uses the known time and the measured concentrations to
calculate the diffusion coefficient.



24 2/ Diffusion in Dilute Solutions

Well-stirred . Porous
solutions ~ diaphragm

Conc.

Fig. 2.2-4. A diaphragm cell for measuring diffusion coefficients. Because the diaphragm
has a much smaller volume than the adjacent solutions, the concentration profile within the
diaphragm has essentially the linear, steady-state value.

Solution An exact solution to this problem is elaborate and unnecessary. The
useful approximate solution depends on the assumption that the flux across the dia-
phragm quickly reaches its steady-state value. This steady-state flux is approached even
though the concentrations in the upper and lower compartments are changing with time.
The approximations introduced by this assumption will be considered later.

In this pseudosteady state, the flux across the diaphragm is that given for membrane
diffusion:

DH
h= |:T] (Cl«,lower - Clﬁupper)

Here, the quantity H includes the fraction of the diaphragm’s area that is available for
diffusion. We next write an overall mass balance on the adjacent compartments:

Vupper % = +Aj 1

where A is the diaphragm’s area. If these mass balances are divided by Viower and Vyppers
respectively, and the equations are subtracted, one can combine the result with the flux
equation to obtain

d

a (Cl,lower - Cl,upper) = D,B(Cl‘upper - Cl,lower)

in which

AH 1 1
b=+
/ Viower Vupper
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is a geometrical constant characteristic of the particular diaphragm cell being used. This
differential equation is subject to the obvious initial condition

0 0
1=0, Cilower — Cl,upper = Cl,lower - CLupper

If the upper compartment is initially filled with solvent, then its initial solute concentra-
tion will be zero.
Integrating the differential equation subject to this condition gives the desired result:

Cl,lower - Cl,upper _ e—ﬁDl‘
0 0 -
Cl.lower - Cl,upper

or

D= illl (C?,lower - C?,upper)

ﬁt Cl,lower - Cl,upper
We can measure the time ¢ and the various concentrations directly. We can also de-
termine the geometric factor f§ by calibration of the cell with a species whose diffusion
coefficient is known. Then we can determine the diffusion coefficients of unknown
solutes.

There are two major ways in which this analysis can be questioned. First, the diffusion
coefficient used here is an effective value altered by the tortuosity in the diaphragm.
Theoreticians occasionally assert that different solutes will have different tortuosities, so
that the diffusion coefficients measured will apply only to that particular diaphragm cell
and will not be generally usable. Experimentalists have cheerfully ignored these asser-
tions by writing

0 0
D= iln Cl,lower B Cl,upper
ﬁ/l Cl,lower - Cl,upper

where 8’ is a new calibration constant that includes any tortuosity. So far, the exper-
imentalists have gotten away with this: Diffusion coefficients measured with the dia-
phragm cell do agree with those measured by other methods.

The second major question about this analysis comes from the combination of the
steady-state flux equation with an unsteady-state mass balance. You may find this
combination to be one of those areas where superficial inspection is reassuring, but
where careful reflection is disquieting. I have been tempted to skip over this point, but
have decided that I had better not. Here goes:

The adjacent compartments are much larger than the diaphragm itself because they
contain much more material. Their concentrations change slowly, ponderously, as a re-
sult of the transfer of a lot of solute. In contrast, the diaphragm itself contains relatively
little material. Changes in its concentration profile occur quickly. Thus, even if this
profile is initially very different from steady state, it will approach a steady state before
the concentrations in the adjacent compartments can change much. As a result, the profile
across the diaphragm will always be close to its steady value, even though the compartment
concentrations are time dependent.
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These ideas can be placed on a more quantitative basis by comparing the relaxation
time of the diaphragm, /D, with that of the compartments, 1/(Df). The analysis used
here will be accurate when (Mills, Woolf, and Watts, 1968)

P /Dot ( 1 1 )
1> ———=== Viiaph —
1 / ([)) D Cff) la\?oiffsgm Vlower VUPPCT

This type of “pseudosteady-state approximation” is common and underlies most mass
transfer coefficients discussed later in this book.

The examples in this section show that diffusion across thin films can be difficult to
understand. The difficulty does not derive from mathematical complexity; the calculation
is easy and essentially unchanged. The simplicity of the mathematics is the reason why
diffusion across thin films tends to be discussed superficially in mathematically oriented
books. The difficulty in thin-film diffusion comes from adapting the same mathematics to
widely varying situations with different chemical and physical effects. This is what is
difficult to understand about thin-film diffusion. It is an understanding that you must
gain before you can do creative work on harder mass transfer problems. Remember: this
case is the base for perhaps 80 percent of the diffusion problems in this book.

2.3 Unsteady Diffusion in a Semi-infinite Slab

We now turn to a discussion of diffusion in a semi-infinite slab, which is basic to
perhaps 10 percent of the problems in diffusion. We consider a volume of solution that
starts at an interface and extends a long way. Such a solution can be a gas, liquid, or
solid. We want to find how the concentration varies in this solution as a result of
a concentration change at its interface. In mathematical terms, we want to find the
concentration and flux as a function of position and time.

This type of mass transfer is sometimes called free diffusion simply because this is
briefer than “unsteady diffusion in a semi-infinite slab.” At first glance, this situation
may seem rare because no solution can extend an infinite distance. The previous thin-
film example made more sense because we can think of many more thin films than
semi-infinite slabs. Thus we might conclude that this semi-infinite case is not common.
That conclusion would be a serious error.

The important case of a semi-infinite slab is common because any diffusion problem
will behave as if the slab is infinitely thick at short enough times. For example, imagine
that one of the thin membranes discussed in the previous section separates two identical
solutions, so that it initially contains a solute at constant concentration. Everything is
quiescent, at equilibrium. Suddenly the concentration on the left-hand interface of the
membrane is raised, as shown in Fig. 2.3-1. Just after this sudden increase, the concen-
tration near this left interface rises rapidly on its way to a new steady state. In these first
few seconds, the concentration at the right interface remains unaltered, ignorant of the
turmoil on the left. The left might as well be infinitely far away; the membrane, for these
first few seconds, might as well be infinitely thick. Of course, at larger times, the system
will slither into the steady-state limit in Fig. 2.3-1(c). But in those first seconds, the
membrane does behave like a semi-infinite slab.

This example points to an important corollary, which states that cases involving an
infinite slab and a thin membrane will bracket the observed behavior. At short times,
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(a) Concentration profile in
a membrane at equilibrium

(b) Concentration profile slightly
\ after the concentration on

T the left is raised
Increase

(c) Limiting concentration
\ profile at large time

Fig. 2.3-1. Unsteady- versus steady-state diffusion. At small times, diffusion will occur only
near the left-hand side of the membrane. As a result, at these small times, the diffusion will
be the same as if the membrane was infinitely thick. At large times, the results become those in
the thin film.

diffusion will proceed as if the slab is infinite; at long times, it will occur as if the slab is
thin. By focussing on these limits, we can bracket the possible physical responses to
different diffusion problems.

2.3.1 The Physical Situation

The diffusion in a semi-infinite slab is schematically sketched in Fig. 2.3-2. The
slab initially contains a uniform concentration of solute ¢; .. At some time, chosen as
time zero, the concentration at the interface is suddenly and abruptly increased,
although the solute is always present at high dilution. The increase produces the time-
dependent concentration profile that develops as solute penetrates into the slab.

We want to find the concentration profile and the flux in this situation, and so again
we need a mass balance written on the thin layer of volume AAz:

out of the layer | (2.3-1)

(solute accumulation) _ ( rate of diffusion
at z+ Az

rate of diffusion
in volume AAz into the layer at z) -

In mathematical terms, this is

0 o
5, (AAze) = (il = jil. o ac) (2.3-2)
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C1o

O——>Position z

Fig. 2.3-2. Free diffusion. In this case, the concentration at the left is suddenly increased to
a higher constant value. Diffusion occurs in the region to the right. This case and that in
Fig. 2.2-1 are basic to most diffusion problems.

We divide by AAz to find

Oct _ (hlza: = Ail:
or ((2+Az)fz (2.3-3)

We then let Az go to zero and use the definition of the derivative

aC] 611
ca__9 2.3-4
ot 0z (2.3-4)

Combining this equation with Fick’s law and assuming that the diffusion coefficient is
independent of concentration, we get

+ 2 +
% - D% (2.3-5)

This equation is sometimes called Fick’s second law, or “‘the diffusion equation.” In this
case, it is subject to the following conditions:

t=0, allz, €1 = Clo (2.3-6)
t>0, z=0, ¢ =cj (2.3-7)
Z=®, (] =Cl= (23-8)

Note that both ¢, and c¢jq are taken as constants. The concentration ¢, is constant
because it is so far from the interface as to be unaffected by events there; the concen-
tration ¢y is kept constant by adding material at the interface.
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2.3.2 Mathematical Solution

The solution of this problem is easiest using the method of “‘combination of
variables.” This method is easy to follow, but it must have been difficult to invent.
Fourier, Graham, and Fick failed in the attempt; it required Boltzmann’s tortured
imagination (Boltzmann, 1894).

The trick to solving this problem is to define a new variable

z
=— 2.39
¢ V4Dt ( )
The differential equation can then be written as
dey (¢ d’e; (a0\*
T ( ) Do o (2.3-10)
or
d Cl dCl
+ 20— 2.3-11
ar i = ( )

In other words, the partial differential equation has been almost magically transformed
into an ordinary differential equation. The magic also works for the boundary condi-
tions: from Eq. 2.3-7,

(=0, aa=co (2.3-12)
and from Egs. 2.3-6 and 2.3-8,
(=%, ¢ =c (2.3-13)

With the method of combination of variables, the transformation of the initial and
boundary conditions is often more critical than the transformation of the differential
equation.
The solution is now straightforward. One integration of Eq. 2.3-11 gives
dCl _52

—5 — dac

3 (2.3-14)

where « is an integration constant. A second integration and use of the boundary con-
ditions give

:]‘m;_i‘l(’o = erf{ (2.3-15)
where
2 rt _$
erf (= ﬁ/oe ds (2.3-16)

is the error function of {. This is the desired concentration profile giving the variation of
concentration with position and time.
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In many practical problems, the flux in the slab is of greater interest than the
concentration profile itself. This flux can again be found by combining Fick’s law with
Eq. 2.3-15:

d¢ 2
= 4)%: VD/mie™* /4Dt(clo — Cl) (2.3-17)
z
One particularly useful limit is the flux across the interface at z = 0:
Jil:—o = V/D/nt(cro — c12) (2.3-18)

This flux is the value at the particular time ¢ and not that averaged over time. This
distinction will be important in Section 9.2.

At this point, I have the same pedagogical problem I had in the previous section: I
must convince you that the apparently simple results in Eqgs. 2.3-15 and 2.3-18 are
valuable. These results are exceeded in importance only by Eqs. 2.2-9 and 2.2-10. For-
tunately, the mathematics may be difficult enough to spark thought and reflection; if not,
the examples that follow should do so.

Example 2.3-1: Diffusion across an interface The picture of the process in Fig. 2.3-2
implies that the concentration at z = 0 is continuous. This would be true, for example,
if when z = 0 there was a highly swollen gel, and when z < 0 there was a stirred solution.
A much more common case occurs when there is a gas—liquid interface at z = 0.
Ordinarily, the gas at z < 0 will be well mixed, but the liquid will not. How will this
interface affect the results given earlier?
Solution Basically, it will have no effect. The only change will be a new
boundary condition, replacing Eq. 2.3-7:

p
z =0, c1:cx1:cﬂ
H

where ¢ is the concentration of solute in the liquid, x is its mole fraction, p;q is its partial
pressure in the gas phase, H is the Henry’s law constant, and ¢ is the total molar
concentration in the liquid.

The difficulties caused by a gas—liquid interface are another result of the plethora of
units in which concentration can be expressed. These difficulties require concern about
units, but they do not demand new mathematical weapons. The changes required for
a liquid-liquid interface can be similarly subtle.

Example 2.3-2: Free diffusion with fast chemical reaction In many problems, the diffus-
ing solutes react rapidly and reversibly with surrounding material. The surrounding
material is stationary and cannot diffuse. For example, in the dyeing of wool, some dyes
can react quickly and reversibly with the wool as dye diffuses into the fiber. How does
such a rapid chemical reaction change the concentration profile and the flux?

Solution In this case, the chemical reaction can radically change the process
by reducing the apparent diffusion coefficient and increasing the interfacial flux of
solute. These radical changes stand in stark contrast to the steady-state result, where
the chemical reaction produces no effect.
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To solve this example, we first recognize that the solute is effectively present in two
forms: (1) free solute that can diffuse and (2) reacted solute fixed at the point of reaction.
If this reaction is reversible and faster than diffusion,

Cy = KC]

where ¢, is the concentration of the solute that has already reacted, ¢; is the concentra-
tion of the unreacted solute that can diffuse, and K is the equilibrium constant of the
reaction. If the reaction is minor, K will be small; as the reaction becomes irreversible, K
will become very large.

With these definitions, we now write a mass balance for each solute form. These mass
balances should have the form

accumulation \ diffusion in amount produced by
in AAz ~ \ minus that out reaction in AAz

For the diffusing solute, this is
0 ) .
a[AAZCl] = A(hl: = jilz+4:) — r1AAz

where r; is the rate of disappearance per volume of species 1, the diffusing solute. By
arguments analogous to Eqgs. 2.2-2 to 2.2-5, this becomes

d o’
ﬂ = Dic; — I
ot 0z
The term on the left-hand side is the accumulation; the first term on the right is the
diffusion in minus the diffusion out; the term r, is the effect of chemical reaction.
When we write a similar mass balance on the second species, we find

% [AAZCz] = —rlAAz

or

662
R
We do not get a diffusion term because the reacted solute cannot diffuse. We get a re-
action term that has a different sign but the same magnitude, because any solute that
disappears as species 1 reappears as species 2.

To solve these questions, we first add them to eliminate the reaction term:




32 2/ Diffusion in Dilute Solutions

We now use the fact that the chemical reaction is at equilibrium:

0 ey
&(Cl + KC]) = Dg

6(31 D 6201

o 1+ Ko

This result is subject to the same initial and boundary conditions as before in Egs. 2.3-6,
2.3-7, and 2.3-8. As a result, the only difference between this example and the earlier
problem is that D/(1 + K) replaces D.

This is intriguing. The chemical reaction has left the mathematical form of the answer
unchanged, but it has altered the apparent diffusion coefficient. The concentration pro-
file now is

1 —C1o
= erf

ce—cro /AD/(I+ K)|t

and the interfacial flux is

-—o=VD( + K)/mi(cio — c1)

The flux has been increased by the chemical reaction.

These effects of chemical reaction can easily be several orders of magnitude. As will be
detailed in Chapter 5, diffusion coefficients tend to fall in fairly narrow ranges. Those
coefficients for gases are around 0.1 cm?/sec; those in ordinary liquids cluster about 10>
cm?/sec. Deviations from these values of more than an order of magnitude are unusual.
However, differences in the equilibrium constant K of a million or more occur fre-
quently. Thus a fast chemical reaction can tremendously influence the unsteady diffusion
process.

i

Example 2.3-3: Determining diffusion coefficients from free diffusion experiments Diffu-
sion in an infinite slab is the geometry used for the most accurate measurements of
diffusion coefficients. These most accurate measurements determine the concentration
profile by interferometry. One relatively simple method, the Rayleigh interferometer,
uses a rectangular cell in which there is an initial step function in refractive index. The
decay of this refractive index profile is followed by collimated light through the cell to
give interference fringes. These fringes record the refractive index versus camera position
and time.

Find equations that allow this information to be used to calculate diffusion
coefficients.

Solution The concentration profiles established in the diffusion cell closely
approach the profiles calculated earlier for a semi-infinite slab. The cell now effectively
contains two semi-infinite slabs joined together at z=0. The concentration profile is
unaltered from Eq. 2.3-15:

c1 — Clo zZ

erf
Cle — €10 V4Dt
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where ¢1o[= (¢1 T ¢1_)/2]1s the average concentration between the two ends of the cell.
How accurate this equation is depends on how exactly the initial change in concentration
can be realized; in practice, this change can be within 10 seconds of a true step function.

We must convert the concentration and cell position into the experimental measured
refractive index and camera position. The refractive index # is linearly proportional to
the concentration:

n = Ngolvent + bey

where 7501ven¢ 18 the refractive index of the solvent and b is a constant determined from
experiment. Each position in the camera Z is proportional to a position in the diffusion cell:

Z=az

where a is the magnification of the apparatus. It is experimentally convenient not to
measure the position of one fringe but rather to measure the intensity minima between
the many fringes. These minima occur when

n—ny j

I’loc—l’lo_m

where n. and ny are the refractive indices at z= o and z =0, respectively; J is the total
number of interference fringes, and j is an integer called the fringe number. This number is
most conveniently defined as zero at z = 0, the center of the cell. Combining these equations,

I =erf Z

J/2 av/4Dt
where Z; is the intensity minimum associated with the jth fringe. Because a and ¢ are
experimentally accessible, measurements of Z; (j, J) can be used to find the diffusion
coefficient D. While the accuracy of interferometric experiments like this remains un-
rivaled, the use of these methods has declined because they are tedious.

2.4 Three Other Examples

The two previous sections describe diffusion across thin films and in semi-infinite
slabs. In this section, we turn to discussing mathematical variations of diffusion problems.
This mathematical emphasis changes both the pace and the tone of this book. Up to now,
we have consistently stressed the physical origins of the problems, constantly harping on
natural effects like changing liquid to gas. Now we shift to the more common text book
composition, a sequence of equations sometimes as jarring as a twelve-tone concerto.

In these examples, we have three principal goals:

(1) We want to show how the differential equations describing diffusion are derived.

(2) We want to examine the effects of spherical and cylindrical geometries.

(3) We want to supply a mathematical primer for solving these different diffusion
equations.

In all three examples, we continue to assume dilute solutions. The three problems ex-
amined next are physically important and will be referred to again in this book. How-
ever, they are introduced largely to achieve mathematical goals.
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2.4.1 Decay of a Pulse (Laplace Transforms)

As a first example, we consider the diffusion away from a sharp pulse of solute.
This example is the third truly important problem for diffusion. It complements the cases
of a thin film and the semi-infinite slab to form the basis of perhaps 95 percent of all the
diffusion problems which are encountered. The initially sharp concentration gradient
relaxes by diffusion in the z direction into the smooth curves shown in Fig. 2.4-1. We
want to calculate the shape of these curves. This calculation illustrates the development
of a differential equation and its solution using Laplace transforms.
As usual, our first step is to make a mass balance on the differential volume 4Az as
shown:

solute solute solute
accumulation | = | diffusioninto | — | diffusion out of (2.4-1)
in AAz this volume this volume

In mathematical terms, this is

0 . .
5 AAzal]l = Aj . = Al 1 4 (2.4-2)

Dividing by the volume and taking the limit as Az goes to zero gives

6614_ §!l

— = 2.4-
ot 0z (24-3)
Combining this relation with Fick’s law of diffusion,
acl 62c1
—=D— 2.4-4
ot 02 (2.4-4)
ff"'"

Time

4 Z
|
I
I
:
1
1
i
1
1
1

L

Position z

Fig. 2.4-1. Diffusion of a pulse. The concentrated solute originally located at z = 0 diffuses as the
Gaussian profile shown. This is the third of the three most important cases, along with those in
Figs. 2.2-1 and 2.3-2.
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This is the same differential equation basic to diffusion in a semi-infinite slab and
considered in the previous section. The boundary conditions on this equation are dif-
ferent as follows. First, far from the pulse, the solute concentration is zero:

t>0, z=o», ¢ =0 (2.4-5)

Second, because diffusion occurs at the same speed in both directions, the pulse is
symmetric:

>0, z=0, -1 =0 (2.4-6)

This is equivalent to saying that at z = 0, the flux has the same magnitude in the positive
and negative directions.

The initial condition for the pulse is more interesting in that all the solute is initially
located at z=0:

M
1207 Cl:;

o(z) (2.4-7)
where A is the cross-sectional area over which diffusion is occurring, M is the total
amount of solute in the system, and d(z) is the Dirac function. This can be shown to
be a reasonable condition by a mass balance:

oo o M
/ c1Adz :/ Zé(z)Adz =M (2.4-8)

In this integration, we should remember that 6(z) has dimensions of (length) .
To solve this problem, we first take the Laplace transform of Eq. 2.4-4 with respect to
time:

'l0

. d%
se1— ¢S 0) = “ (2.4-9)

dz2

where ¢ is the transformed concentration. The boundary conditions are

o odep M4
z=0, - ="5p (2.4-10)
z=0, =0 (2.4-11)

The first of these reflects the properties of the Dirac function, but the second is routine.
Equation 2.4-9 can then easily by integrated to give

e = ac(V5/D2) o (=+/5/D 2) (2.4-12)

where a and b are integration constants. Clearly, « is zero by Eq. 2.4-11. Using Eq.
2.4-10, we find b and hence ¢;:

: :f‘%‘mexp(— Vs/D z) (2.4-13)
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The inverse Laplace transform of this function gives

= M4 — 22/4Dt
= —— 2.4-14
“ vV 47IDIe ( )

which is a Gaussian curve. You may wish to integrate the concentration over the entire
system to check that the total solute present is M.

This solution can be used to solve many unsteady diffusion problems that have un-
usual initial conditions. More important, it is often used to correlate the dispersion of
pollutants, especially in the air, as discussed in Chapter 4.

2.4.2 Steady Dissolution of a Sphere (Spherical Coordinates)

Our second example, which is easier mathematically, is the steady dissolution of
a spherical particle, as shown in Fig. 2.4-2. The sphere is of a sparingly soluble material,
so that the sphere’s size does not change much. However, this material quickly dissolves
in the surrounding solvent, so that the solute’s concentration at the sphere’s surface is
saturated. Because the sphere is immersed in a large fluid volume, the concentration far
from the sphere is zero.

The goal is to find both the dissolution rate and the concentration profile around the
sphere. Again, the first step is a mass balance. In contrast with the previous examples,
this mass balance is most conveniently made in spherical coordinates originating from
the center of the sphere. Then we can make a mass balance on a spherical shell of
thickness Ar located at some arbitrary distance r from the sphere. This spherical shell
is like the rubber of a balloon of surface area 4mr* and thickness Ar.

A mass balance on this shell has the same general form as those used earlier:

solute accumulation \ diffusion _ diffusion 24-15)
within the shell ~ \ into the shell out of the shell (24-

//;”L" Solute flux
/ 7 away

*
Sphere radius

Concentration
¥

Distance from
sphere’s center
Fig. 2.4-2. Steady dissolution of a sphere. This problem represents an extension of diffusion
theory to a spherically symmetric situation. In actual physical situations, this dissolution
can be complicated by free convection caused by diffusion.
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In mathematical terms, this is

% (4711‘2Arcl) =0= (4nr2jl)r - (4711'2]'1),‘ A (2.4-16)

The accumulation on the left-hand side of this mass balance is zero because diffusion is
steady, not varying with time. Novices frequently make a serious error at this point by
canceling the r* out of both terms on the right-hand side. This is wrong. The term %, is
evaluated at rin the first term; that is, it is #2(,|,). The term is evaluated at (+ + Ar)in the
second term; so it equals (r + AP(jil, + ar)-

If we divide both sides of this equation by the spherical shell’s volume and take the
limit as Ar— 0, we find

0= —%% (rzjl) (2.4-17)

Combining this with Fick’s law and assuming that the diffusion coefficient is constant,

0= FQZ% <r2 %) (2.4-18)
This basic differential equation is subject to two boundary conditions:

r=Ry, ¢ =cj(sat) (2.4-19)

r=w, ¢ =0 (2.4-20)

where Ry is the sphere radius. If the sphere were dissolving in a partially saturated
solution, this second condition would be changed, but the basic mathematical structure
would remain unaltered. One integration of Eq. 2.4-18 yields

dey a

2@ 2.4-21
dl’ r2 ( )
where a is an integration constant. A second integration gives
o=b-2 (2.4-22)
,
Use of the two boundary conditions gives the concentration profile
R
o = cl(sat)7° (2.4-23)
The dissolution flux can then be found from Fick’s law:
d DR
i =—DSL =220 (sat) (2.4-24)
dl‘ I
which, at the sphere’s surface, is
D
J1 =—ci(sat) (2.4-25)

_RO
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This example is a mainstay of the analysis of diffusion. It is a good mathematical
introduction of spherical coordinates, and it gives a result which is much like that for
steady diffusion across a thin film. After all, Eq. 2.4-25 is the complete parallel of
Eq. 2.2-10, but with the sphere radius R, replacing the film thickness /. Thus most
teachers repeat this example as gospel.

Unfortunately, this result is only rarely supported by experiment. The reason is that
the dissolution of the sphere almost always causes a density difference in the surrounding
solution, which in turn causes flow by free convection. This flow accelerates the disso-
lution rate. For example, for dissolution in water, a density difference of 10~® g/em?,
almost too small to measure, causes a 400 percent increase in the dissolution expected
from Eqgs. 2.4-25. Students should beware: don’t trust your teacher on this point.

2.4.3 Unsteady Diffusion into Cylinders (Cylindrical Coordinates
and Separation of Variables)

The final example, probably the hardest of the three, concerns the diffusion of
a solute into the cylinder shown in Fig. 2.4-3. The cylinder initially contains no solute. At
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Fig. 2.4-3. Waterproofing a fence post. This problem is modeled as diffusion in an infinite
cylinder, and so represents an extension to a cylindrically symmetric situation. In reality,
the ends of the post must be considered, especially because diffusion with the grain is faster
than across the grain.
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time zero, it is suddenly immersed in a well-stirred solution that is of such enormous
volume that its solute concentration is constant. The solute diffuses into the cylinder
symmetrically. Problems like this are important in the chemical treatment of wood.

We want to find the solute’s concentration in this cylinder as a function of time and
location. As in the previous examples, the first step is a mass balance; in contrast, this
mass balance is made on a cylindrical shell located at r, of area 2nLr, and of volume
2nLrAr, where L is the cylinder’s length. The basic balance

solute accumulation | _ (‘solute diffusion) (solute diffusion (2.4-26)
in this cylindrical shell /) \ into the shell out of the shell -

becomes in mathematical terms

0
— (2arLArcy) = (2nrLj,),—(2nrLj;)

= (2.4-27)

r+ Ar

We can now divide by the shell’s volume and take the limit as Ar becomes small:

0 10 .
acl = —;5(’7]1) (2.4-28)

Combining this expression with Fick’s law gives the desired mass balance

a(:] _ D 6 ‘a(,’]
5 < ar> (2:4-29)

which is subject to the following conditions:

t<0, allr, ¢ =0 (2.4-30)

t >0, r=Ry, ¢ =c(surface) (2.4-31)
661

=0, &5 =0 2.4-32

=0, (24-32)

In these equations, ¢j(surface) is the concentration at the cylinder’s surface and Ry is the
cylinder’s radius. The first of the boundary conditions results from the large volume of
surrounding solution, and the second reflects the symmetry of the concentration profiles.

Problems like this are often algebraically simplified if they are written in terms of
dimensionless variables. This is standard practice in many advanced textbooks. I often
find this procedure confusing, because for me it produces only a small gain in algebra at
the expense of a large loss in physical insight. Nonetheless, we shall follow this procedure
here to illustrate the simplification possible. We first define three new variables:
¢

dimensionless concentration:0 =1 — ———
ci(surface)

(2.4-33)

dimensionless position: ¢ = RL (2.4-34)
0

. . . Dt
dimensionless time: 7= — (2.4-35)
0
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The differential equation and boundary conditions now become

00 10 [,00
o= e (65%) 2430
subject to
=0, all¢, 0=1 (2.4-37)
>0, é=1, 0=0 (2.4-38)
a0
—0 Y_ 2.4-
E=0, 5z =0 (2439

For the novice, this manipulation can be more troublesome than it looks.
To solve these equations, we first assume that the solution is the product of two
functions, one of time and one of radius:

0(r, &) = g(r) /1<) (2.4-40)

When Eqgs. 2.4-36 and 2.4-40 are combined, the resulting tangle of terms can be sepa-
rated by division with g(7)f(&):

dg(z) _g(o) d .df(¢)
£ & ¢ e ae

1dg(r) 1 d L df(9) _
g(t) dt — Ef(&)deT d¢ (2.4-41)

Now, if one fixes & and changes 7, f(¢) remains constant but g(t) varies. As a result,

Ldg(r) — _ o )
o0 dt (2.4-42)

where o is a constant. Similarly, if we hold t constant and let ¢ change, we realize

L4 de) o (2.4-43)

¢f(&deT d¢

Thus the partial differential Eq. 2.4-36 has been converted into two ordinary differential
Eqgs. 2.4-42 and 2.4-43.
The solution of the time-dependent part of this result is easy:

2
gly=ae " (2.4-44)

where a’ is an integration constant. The solution for f(£) is more complicated, but
straightforward:

S(&) = aJy(aé) + bYo(al) (2.4-45)
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where J, and Y, are Bessel functions and ¢ and b are two more constants. From
Eq. 2.4-39 we see that » = 0. From Eq. 2.4-38, we see that

0= aJo(x) (2.4-46)

Because a cannot be zero, we recognize that there must be an entire family of solutions
for which

Jo(ow) =0 (2.4-47)

The most general solution must be the sum of all solutions of this form found for
different integral values of n:

0(t, &) = i (aa’n)Jo(ocné)e_O‘if (2.4-48)

1

n

We now use the initial condition Eq. 2.4-37 to find the remaining integration constant
(aa"),:

%

1= (ad"),Jo(x&) (2.4-49)

n=1

We multiply both sides of this equation by £Jy(x,,£) and integrate from E=0to & =1 to
find (aa’). The total result is then

S 2 —0, T
= HZ:; {m} Tolod)e (2.4-50)

or, in terms of our original variables,

2,2
C1 - C_Da”t/ROJo(O(nr/Ro)

—=1-2

¢ (surface) o1 (o7 /Ro)

n=1

(2.4-51)

This is the desired result, though the o, must still be found from Eq. 2.4-47.

This problem clearly involves a lot of work. The serious reader should certainly work
one more problem of this type to get a feel for the idea of separation of variables and for
the practice of evaluating integration constants. Even the serious reader probably will
embrace the ways of avoiding this work described in the next chapter.

2.5 Convection and Dilute Diffusion

In many practical problems, both diffusion and convective flow occur. In some
cases, especially in fast mass transfer in concentrated solutions, the diffusion itself causes
the convection. This type of mass transfer, a subject of Chapter 3, requires more com-
plicated physical and mathematical analyses.

There is another group of important problems in which diffusion and convection can
be more easily handled. These problems arise when diffusion and convection occur
normal to each other. In other words, diffusion occurs in one direction, and convective
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flow occurs in a perpendicular direction. Three of these problems are examined in this
section. The first, steady diffusion across a thin flowing film, parallels Section 2.2; the
second, diffusion into a liquid film, is a less obvious analogue to Section 2.3. These two
examples tend to bracket the observed experimental behavior, and they are basic to
theories relating diffusion and mass transfer coefficients (see Chapter 9).

2.5.1 Steady Diffusion Across a Falling Film

The first of the problems of concern here, sketched in Fig. 2.5-1, involves
steady-state diffusion across a thin, moving liquid film. The concentrations on both
sides of this film are fixed by electrochemical reactions, but the film itself is moving
steadily. I have chosen this example not because it occurs often but because it is simple.
I ask that readers oriented toward the practical will wait with later examples for results of
greater applicability.

To solve this problem, we make three key assumptions:

(1) The liquid solution is dilute. This assumption is the axiom for this entire chapter.

(2) The liquid is the only resistance to mass transfer. This implies that the electrode
reactions are fast.

(3) Mass transport is by diffusion in the z direction and by convection in the x
direction. Transport by the other mechanisms is negligible.

It is the last of these assumptions that is most critical. It implies that convection is
negligible in the z direction. In fact, diffusion in the z direction automatically generates
convection in this direction, but this convection is small in a dilute solution. The last
assumption also suggests that there is no diffusion in the x direction. There is such
diffusion, but it is assumed much slower and hence much less important in the x direction
than convection.

Static electrode
at which solute
concentration
is Cyo

Direction of
diffusion

i

Moving electrode
at which solute
concentration is ¢y,

Diffusion

N
Moving liquid
film
Fig. 2.5-1. Steady diffusion in a moving film. This case is mathematically the same as diffusion
across a stagnant film, shown in Fig. 2.2-1. It is basic to the film theory of mass transfer described
in Section 9.1.
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This problem can be solved by writing a mass balance on the differential volume
WAxAz, where W is the width of the liquid film, normal to the plane of the paper:

( solute accumulation ) ( solute diffusing in at z minus )

in WAxAz solute diffusingoutatz + Az
( solute flowingin at x minus ) (25-1)
solute flowing out at x + Ax '
or, in mathematical terms,
0 . .
& (C] WAXAZ) :[(]1 WAX)Z - (]1 WAX)2+A2]
+ [(c1ve WAZ) —(c1ve WAZ) ., o] (2.5-2)

The term on the left-hand side is zero because of the steady state. The second term in
square brackets on the right-hand side is also zero, because neither ¢; nor v, changes with
x. The concentration ¢; does not change with x because the film is long, and there is
nothing that will cause the concentration to change in the x direction. The velocity v,
certainly varies with how far we are across the film (i.e., with z), but it does not vary with
how far we are along the film (i.e., with x).

After dividing by WAxAz and taking the limit as this volume goes to zero, the mass
balance in Eq. 2.5-2 becomes

dj,
__on 2.5-
0 & (2.5-3)
This can be combined with Fick’s law to give
rE
0=D"" (2.5-4)
dz
This equation is subject to the boundary conditions
zZ= 07 C1 = (o (2.5-5)
z = 17 Cl1 = Cq] (2.5-6)

When these results are combined with Fick’s law, we have exactly the same problem as
that in Section 2.2. The answers are

c1 = cio + (c1 = ¢io) (2.5-7)

~ | N

Ji == (c10 = cu) (2.5-8)

~|1o

The flow has no effect. Indeed, the answer is the same as if the fluid was not flowing.
This answer is typical of many problems involving diffusion and flow. When the

solutions are dilute, the diffusion and convection often are perpendicular to each other

and the solution is straightforward. You may almost feel gypped; you girded yourself for
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a difficult problem and found an easy one. Rest assured that more difficult problems
follow.

2.5.2 Unsteady Diffusion into a Falling Film

The second problem of interest is illustrated schematically in Fig. 2.5-2. A thin
liquid film flows slowly and without ripples down a flat surface. One side of this film wets
the surface; the other side is in contact with a gas, which is sparingly soluble in the liquid.
We want to find out how much gas dissolves in the liquid.

To solve this problem, we again go through the increasingly familiar litany: we write
a mass balance as a differential equation, combine this with Fick’s law, and then in-
tegrate this to find the desired result. We do this subject to four key assumptions:

(1) The solution are always dilute.

(2) Mass transport is by z diffusion and x convection.
(3) The gas is pure.

(4) The contact between gas and liquid is short.

Liquid
solvent

g Solute gas

V4
<<

Convection

Diffusion

AX

/

Liquid with
dissolved
solute gas

Fig. 2.5-2. Unsteady-state diffusion into a falling film. This analysis turns out to be
mathematically equivalent to free diffusion (see Fig. 2.3-2). It is basic to the penetration
theory of mass transfer described in Section 11.2.
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The first two assumptions are identical with those given in the earlier example. The third
means that there is no resistance to diffusion in the gas phase, only in the liquid. The final
assumption simplifies the analysis.
We now make a mass balance on the differential volume (WAxAz), shown in the inset
in Fig. 2.5-2:
(mass accumulation > ( mass diffusingin at z minus )

within WAxAz mass diffusingoutatz + Az

mass flowing in at x minus
(2.5-9)

mass flowing out at x + Ax

where W is the width, taken perpendicular to the paper. This result is parallel to those
found in earlier sections:

o (cmaxas)| = [(Wax). - (V80)., o]
+ [(WAzeyvy), — (WAze1vi) o) (2.5-10)

When the system is at steady state, the accumulation is zero. Therefore, the left-hand side
of the equation is zero. No other terms are zero, because j; and ¢; vary with both z and x.
If we divide by the volume WAxAz and take the limit as this volume goes to zero, we find

0=—————qcv, (2.5-11)

We now make two further manipulations. First, we combine this with Fick’s law. Sec-
ond, we set v, equal to its maximum value, a constant. This second change reflects the
assumption of short contact times. At such times, the solute barely has a chance to cross
the interface, and it diffuses only slightly into the fluid. In this interfacial region, the fluid
velocity reaches the maximum suggested in Fig. 2.5-2, so the use of a constant value is
probably not a serious assumption. Thus the mass balance is
acl 62c1

30/ Vo) =D - (2.5-12)
The left-hand side of this equation represents the solute flow out minus that in; the right-
hand side is the diffusion in minus that out.

This mass balance is subject to the following conditions:

x=0, allz;, ¢ =0 (2.5-13)
x>0, z=0, ¢ =c(sat) (2.5-14)
z=1 ¢ =0 (2.5-15)

where ¢;(sat) is the concentration of dissolved gas in equilibrium with the gas itself, and /
is the thickness of the falling film in Fig. 2.5-2. The last of these three boundary con-
ditions is replaced with

x>0, z=o, ¢ =0 (2.5-16)
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This again reflects the assumption that the film is exposed only a very short time. As
a result, the solute can diffuse only a short way into the film. Its diffusion is then un-
affected by the exact location of the other wall, which, from the standpoint of diffusion,
might as well be infinitely far away.

This problem is described by the same differential equation and boundary conditions
as diffusion in a semi-infinite slab. The sole difference is that the quantity x/v.x replaces
the time 7. Because the mathematics is the same, the solution is the same. The concen-
tration profile is

Vol erfe (2.5-17)

ci(sat) \/4DX [ vinax

and the flux at the interface is

j1|z:0 =V DVmax/Tcxcl (Sat) (2.5-18)

These are the answers to this problem.

These answers appear abruptly because we can adopt the mathematical results of
Section 2.3. Those studying this material for the first time often find this abruptness
jarring. Stop and think about this problem. It is an important problem, basic to the
penetration theory of mass transfer discussed in Section 9.2. To supply a forum for
further discussion, we shall now consider this problem from another viewpoint.

The alternative viewpoint involves changing the differential volume on which we
make the mass balance. In the foregoing problem, we chose a volume fixed in space,
a volume through which liquid was flowing. This volume accumulated no solute, so its
use led to a steady-state differential equation. Alternatively, we can choose a differential
volume floating along with the fluid at a speed v,.x. The use of this volume leads to an
unsteady-state differential equation like Eq. 2.3-5. Which viewpoint is correct?

The answer is that both are correct; both eventually lead to the same answer. The
fixed-coordinate method used earlier is often dignified as “Eulerian,” and the moving-
coordinate picture is described as “Lagrangian.” The difference between them can be
illustrated by the situation of watching fish swimming upstream in a fast-flowing river. If
we watch the fish from a bridge, we may see only slow movement, but if we watch the fish
from a freely floating canoe, we realize that the fish are moving rapidly.

2.5.3 Free Convection Caused by Diffusion

A third, much more difficult, example of convection and diffusion occurs in the
apparatus shown schematically in Fig. 2.5-3. The apparatus consists of two well-stirred
reservoirs. The upper reservoir contains a dense solution, but the lower one is filled with
less dense solvent. Because solution and solvent are miscible, solute diffuses from the
upper reservoir into the lower one.

We want to know if the difference in densities between solution and solvent will cause
flow. From our experience, we expect that flow will occur if the tube diameter is large.
After all, gin tends to rise to the surface of a summer’s gin-and-tonic without completely
mixing, and vinegar falls below oil in salad dressing. Intuitively, we expect that such
flows will cease if the tube diameter becomes small. More speculatively, we might guess
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-Dense solution

Tube diameter 2R,

Less dense solvent

Fig. 2.5-3. Free convection in a vertical tube. A dense solution will not flow when the tube
diameter is small. Diffusion damps the tendency to flow.

that whether or not flow occurs depends inversely on viscosity; high viscosity means less
chance to flow.

To analyze this problem more completely, we write a mass balance on the solute, an
overall mass balance on all species present, and a momentum balance to describe the
flow. We then imagine small perturbations in the concentration or in the flow. If our
balances indicate that these small perturbations get smaller with time, then the system is
stable. If these perturbations grow with time, then the system is unstable, and free
convection will occur.

We first write these balances for the unperturbed system in which no free convection
exists. These are

0=DVe —7 - V¢ (2.5-19)
0=-V-7 (2.5-20)
0=—Vp+pg (2.5-21)

where p is the pressure, p is the density, and g is the acceleration due to gravity; the
overbars refer to the unperturbed system. The solution of these equations for the situ-
ation shown in Fig. 2.5-3 is that expected:

a—¢o_pP—p _°= (2.5-22)
cu—cio pr—po !

7=0 (2.5-23)
P=po+ / . pgdz (2.5-24)

Although we do not need the details of these solutions in the following, I find them
reassuring.
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The corresponding equations for an incompressible but perturbed system are

0

Xl PV —v - Ve (2.5-25)
ot

0=-V-» (2.5-26)
ov 2

Pa = uVy—Vp+pg (2.5-27)

where p is the viscosity. We now rewrite these relations in terms of the perturbations
themselves. For example, for the mass balance, we define

¢y =c1+cl (2.5-28)

- (2.5-29)

where the primes signify perturbations from stable values of Eqgs. 2.5-22 through
2.5-24. Remember that the stable value of the velocity is zero. We then insert these
definitions in Eq. 2.5-25, subtract Eq. 2.5-19, and neglect terms involving the squares of
perturbations:

Oci oo, ,d¢
s DV ¢l —v! i (2.5-30)
Equation 2.5-30 is subject to the boundary condition that the tube walls are solid:
oci
=Ry, — =0 2.5-31
r 05 or ( )
Similar arguments lead to a modified momentum balance:
0
(uv2 - @) V= — Vo= — Vp'+ ghe (2532)

in which the primed quantities are again perturbations and (= 0p/Oc;) describes the
density increase caused by the solute. Equation 2.5-32 is subject to the condition

r = R07 vé = 0 (2.5'33)

This says that there is no vertical flow at the wall.

Equations 2.5-30 and 2.5-32 must now be solved simultaneously. A simple solution
requires two chief assumptions. The first is that the time derivatives in these equations
can be neglected; this is equivalent to the assertion that marginal stability can exist. The
second assumption is that the perturbations have their largest effects normal to the z
direction; this implies that any convection cells that occur will be long. I find these
assumptions reasonable, but hardly obvious. Because they are justified by experiment,
they are tributes to the genius of G. 1. Taylor (1954), who had the gall to present the
answers to this problem without derivation.

Taylor found that for the perturbations to grow, the Rayleigh number Ra must be

4
gRy\ 0p
Ra=|=—]-— >6794 2.5-34

“ (,uD) dz ( )
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This value corresponds to the case in which solution is falling down one side of the tube
and solvent is rising through the other side.

This critical value of the Rayleigh number provides the limit for the stability in the
vertical tube. When the density difference is small enough so that the Rayleigh number is
less than 67.94, free convection will not occur. When the density difference is so large that
the Rayleigh number exceeds 67.94, then free convection does occur. This result also
supports our intuitive speculations at the beginning of this section. The chances for free
convection decrease sharply as the tube diameter decreases. They also decrease as the
viscosity or the diffusion coefficient increases. In every case, the change of a given variable
required to spark free convection can be predicted from this critical Rayleigh number.

2.6 A Final Perspective

This chapter is very important, a keystone of this book. It introduces Fick’s law for
dilute solutions and shows how this law can be combined with mass balances to calculate
concentrations and fluxes. The mass balances are made on thin shells. When these shells are
very thin, the mass balances become the differential equations necessary to solve the various
problems. Thus the bricks from which this chapter is built are largely mathematical: shell
balances, differential equations, and integrations in different coordinate systems.

However, we must also see a different and broader blueprint based on physics, not
mathematics. This blueprint includes the two limiting cases of diffusion across a thin film
and diffusion in a semi-infinite slab. Most diffusion problems fall between these two
limits. The first, the thin film, is a steady-state problem, mathematically easy and some-
times physically subtle. The second, the unsteady-state problem of the thick slab, is
harder to calculate mathematically and is the limit at short times.

In many cases, we can use a simple criterion to decide which of the two central limits is
more closely approached. This criterion hinges on the magnitude of the Fourier number

(length)?
( diffusion )(time)

coefficient

This variable is the argument of the error function of the semi-infinite slab, it determines
the standard deviation of the decaying pulse, and it is central to the time dependence of
diffusion into the cylinder. In other words, it is a key to all the foregoing unsteady-state
problems. Indeed, it can be easily isolated by dimensional analysis.

This variable can be used to estimate which limiting case is more relevant. If it is much
larger than unity, we can assume a semi-infinite slab. If it is much less than unity, we
should expect a steady state or an equilibrium. If it is approximately unity, we may be
forced to make a fancier analysis. For example, imagine that we are testing a membrane
for an industrial separation. The membrane is 0.01 centimeters thick, and the diffusion
coefficient in it is 107 cm?/sec. If our experiments take only 10 seconds, we have an
unsteady-state problem like the semi-infinite slab; if they take three hours, we approach
a steady-state situation.

In unsteady-state problems, this same variable may also be used to estimate how far
or how long mass transfer has occurred. Basically, the process is significantly advanced
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when this variable equals unity. For example, imagine that we want to guess how far
gasoline has evaporated into the stagnant air in a glass-fiber filter. The evaporation has
been going on about 10 minutes, and the diffusion coefficient is about 0.1 cm?/sec. Thus

(length)?
(0.1 sz/ sec) (600 sec)

= 1; length = 8cm

Alternatively, suppose we find that hydrogen has penetrated about 0.1 centimeter into
nickel. Because the diffusion coefficient in this case is about 10~® cm?/sec, we can estimate
how long this process has been going on:

(loflcmz)
(107" cmz/sec)(time)

=1; time = 10d

This sort of heuristic argument is often successful.
A second important perspective between these two limiting cases results from com-
paring their interfacial fluxes given in Egs. 2.2-10 and 2.3-18:

D
ji="7Ac  (thin film)

Ji1 = v/ D/rtAc, (thickslab)

Although the quantities D// and (D/rr)"/? vary differently with diffusion coefficients,
they both have dimensions of velocity; in fact, in the life sciences, they sometimes are
called “‘the velocity of diffusion.”” In later chapters, we shall discover that these quanti-
ties are equivalent to the mass transfer coefficients used at the beginning of this book.

Questions for Discussion

1. If the concentration difference for diffusion across a thin film is doubled, what
happens to the flux?

2. Ifitis doubled for diffusion into a semi-infinite slab, what happens to the flux?

3. If the diffusion coefficient across a thin film is doubled, what happens to the
flux?

4. Ifitis doubled for diffusion into a semi-infinite slab, what happens to the flux?

5. What is the average flux into a semi-infinite slab over a time #;?

6. What are some different ways in which an effective diffusion coefficient in
a porous medium could be defined?

7. Explain Fig. 2.2-2 to someone without scientific training.

Explain why the funnel data in Fig. 2.1-3 curve downwards.

9. Imagine that you have a thin film separating two identical well-stirred solutions.
At time zero, the solute concentration in one solution is doubled. Sketch the
concentration profiles in the film vs. position and time.

10. Estimate the flux in the previous question at a very short time.

11. Estimate it at a very long time.

12.  How would the width of a spreading pulse change if the diffusion coefficient
doubled?

*
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13.

14.

Would the steady flux across a thin film increase if there was fast reaction
producing a mobile product?

Imagine you have two films clamped together. The diffusion coefficient in one
film is constant, but that in the other depends on concentration. If you reverse
the concentration difference, the flux will reverse. Will its magnitude change?

Problems

Water evaporating from a pond does so as if it were diffusing across an air film 0.15 cm
thick. The diffusion coefficient of water in 20 °C air is about 0.25 cm?/sec. If the air out
of the film is fifty percent saturated, how fast will the water level drop in a day? Answer:
1.24 cm/d.

In 1765, Benjamin Franklin made a variety of experiments on the spreading of oils on
the pond in Clapham Common, London. Franklin estimated the thickness of the oil
layers to be about 25 A. Many more recent scientists have tried to use similar layers of
fatty acids and alcohols to retard evaporation from ponds and reservoirs in arid
regions. The monolayers used today usually are characterized by a resistance around
2 sec/cm. Assuming that they are the thickness of Franklin’s layer and that they can
dissolve up to 1.8% water, estimate the diffusion coefficient across the monolayers.
Answer: 7-107% cm?/sec.

The diffusion coefficient of NO, into stagnant water can be measured with the appa-
ratus shown below. Although the water is initially pure, the mercury drop moves to
show that 0.82 cm® of NO, is absorbed in 3 minutes. The gas-liquid interface has an
area of 36.3 cm?, the pressure is 0.93 atm, the temperature is 16 °C, and the Henry’s law
constant is 37,000 cm® atm/mol. What is the desired diffusion coefficient?
(J. Kopinsky) Answer: 5 - 10~° cm?/sec.

f Mercury drop

NO,

H,O

About 85.6 cm? of a flexible polymer film 0.051 cm thick is made into a bag, filled with
distilled water, and hung in an oven at 35 °C and 75% relative humidity. The bag is
weighed, giving the following data:

Time (d) Bag weight (g)
0 14.0153
1 13.9855
4 13.9104
7 13.8156
8 13.7710
12 13.6492
14 13.5830

16 13.5256
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What is the permeability (DH) of the polymer film? (R. Contravas) Answer: 2.2 - 10°
2
cm~/sec.

Diaphragm cells are frequently calibrated by allowing 1-M potassium chloride to dif-
fuse into pure water. The average diffusion coefficient in this case is 1.859 - 10~ cm?/sec.
Your cell has compartment volumes of 42.3 cm® and 40.8 cm?; the diaphragm is a glass
frit 2.51 cm in diameter, 0.16 cm thick, and of porosity 0.34. In one calibration exper-
iment, the concentration difference at 36 hr 6 min is 49.2% of that originally present.
(a) What is the cell’s calibration constant? Answer: 0.294 cm™2. (b) What is the effective
length of the diaphragm’s pores? Answer: 0.28 cm. (¢) The current pores are about
2-10™* cm in diameter. What is the effect of increasing the pore diameter ten times at
constant porosity?

Diffusion coefficients in gases can be measured by injecting a solute gas into a solvent
gas in laminar plug flow and measuring the concentration with a thermistor placed
downstream. The concentration downstream is given by

—*y/2Dz
where Q is the solute injection rate, z is the distance downstream, r is the
distance away from the z axis, and v is the gas flow. One series of measurements
involves the diffusion of helium in nitrogen at 25 °C and 1 atm. In one particular
measurement, the maximum concentration of helium is 0.48 wt% when z is
1.031 cm and Q is 0.045 cm?/sec. What is the diffusion coefficient? (H. Beesley)
Answer: 0.11 cm?/sec.

Low-carbon steel can be hardened for improved wear resistance by carburizing. Steel is
carburized by exposing it to a gas, liquid, or solid that provides a high carbon concen-
tration at the surface. The figure below [D. S. Clark and W. R. Varney, Physical Met-
allurgy for Engineers. Princeton, N.J.: Van Nostrand (1962)] shows carbon content versus
depth in steel carburized at 930 °C. Estimate D from this graph, assuming diffusion
without reaction between carbon and iron. (H. Beesley) Answer: 5.3 - 1077 cm?/sec.

1.60
1.40
1.20
1.00
0.80
0.60
0.40

Carbon (percent)

L | L | L |
0 0.02 0.04 0.06
Depth below surface (in)
The twin-bulb method of measuring diffusion is shown below. The bulbs, which are
stirred and of equal volume, initially contain binary gas mixtures of different compo-
sitions. At time zero, the valve is opened; at time #, the valve is closed, and the bulk

contents are analyzed. Explain how this information can be used to calculate the
diffusion coefficient in this binary gas mixture.

——
A\
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10.

11.

12.

13.

Find the steady-state flux out of a pipe with a porous wall. The pipe has an inner radius
R; and an outer radius R,. The solute has a fixed, finite concentration ¢;; inside of the
pipe, but is essentially at zero concentration outside. As a result, solute diffuses
through the wall with a diffusion coefficient D. When you have found the result,
compare it with the results for steady-state diffusion across a thin slab and away from
a dissolving sphere. Answer: Dey; [Ro 1n(Ro/R)] ™.

Controlled release is important in agriculture, especially for insect control. One com-
mon example involves the pheromones, sex attractants released by insects. If you mix
this attractant with an insecticide, you can wipe out all of one sex of a particular insect
pest. A device for releasing one pheromone is shown schematically below. This pher-
omone does not subline instantaneously, but at a rate of

ro=6-10"""[1 = (1.10 - 10’cm’® /mol)¢,] mol/sec

where ¢y is the concentration in the vapor. The permeability of this material through
the polymer (DH) is 1.92 - 10~'? cm?/sec. The concentration of pheromone outside of
the device is essentially zero. (a) What is the concentration (moles per cubic centime-
ter) of pheromone in the vapor? (b) How fast is the pheromone released by this device?

Impermeable f 4 cm3 of pheromone vapor

holder well mixed by free convection
) (=]

Solid pheromone 7% Polymeric diffusion barrier

<~ of thickness 0.06 cm
— and area 1.8 cm?

Antique glass objects can be dated by measuring the amount of hydration near the
object’s surface. This amount can be measured using '’N nuclear magnetic resonance
[W. A. Lanford, Science, 196, 975 (1977)]. Derive equations for the total amount of
hydration, assuming that water reacts rapidly and reversibly with the glass to produce
an immobile hydrate. Discuss how this amount can provide a measure of the age of the
object.

One type of packaging film with thickness ““/”” has an immobile sacrificial reagent at
initial concentration ¢, within the wall of the package. A solute at concentration
c10 outside of the film, like water, oxygen, or radioactive cesium, diffuses into the
film, reacting irreversibly with the sacrificial reagent as it goes. The product may be
mobile or immobile; since the reaction is irreversible, it does not matter. This
reaction shows the solute’s penetration across the film. (a) Write mass balances
for the solute and the immobile reagent. (b) Write possible initial and boundary
conditions for these equations. (c) If the reaction were infinitely fast, how would
your equations change?

Researchers in microelectronics have found that a slight scratch on the surface
of gallium arsenide causes a zinc dopant to diffuse into the arsenide. Apparently,
this occurs because the scratch increases crystal defects and hence the local diffusion
coefficient. When these devices are later baked at 850 °C, the small pulse may spread,
for its diffusion coefficient at this high temperature is about 10~'! cm?/sec. If it
spreads enough to increase the zinc concentration to 10 percent of the maximum at
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14.

15.

16.

4.10"*cm away from the scratch, the device is ruined. How long can we bake the
device? (S. Balloge) Answer: 30 min.

Adolf Fick made the experiments required to determine the diffusion coefficient using
the equipment shown in Fig. 2.1-3. In these devices, he assumed that the salt concen-
tration reached saturation in the bottom and that it was always essentially zero in the
large solvent bath. As a result, the concentration profiles eventually reached steady
state. Calculate these profiles.

Consider a layer of bacteria contained between two semipermeable membranes that
allow the passage of a chemical solute S, but do not allow the passage of bacteria. The
movement of the bacteria B is described with a flux equation roughly parallel to
a diffusion equation:

d d
g = —Do—|B B]—|[S
o = —Do 5 [B] + £[B] £_[5
where Dy and y are constant transport coefficients. In other words, the bacterial flux is
affected by [S], although the bacteria neither produce or consume S. If the concen-
trations of S are maintained at [S]y and 0 at the upper and lower surfaces of the
bacterial suspension, (a) determine [S](z), and (b) determine [B](z).

Extraction of sucrose from food materials is often correlated in terms of diffusion
coefficients. The diffusion coefficients can be calculated assuming short times and an
infinite slab:

o ()2

where M is the total extracted per area and cyq is the sucrose concentration at satu-
ration. However, the diffusion coefficients found are not constant, as shown below (H.
G. Schwartzberg and R. Y. Chao, Food Technology, Feb. 1982, p. 73). The reason the
diffusion coefficient is not constant is not because of the failure of the approximation
of an infinite slab; it reflects the fact that beets and cane are not homogeneous. Instead,
they have a network of cells connected by vascular channels. Diffusion across the cell
wall is slow, and it dominates behavior in thin slices; diffusion through vascular
channels is much faster and supplements the flux for thick slices. Develop equations

8
7r Sugar beets 75°C
6 -
=
© 5l » Sugar cane
x / 75°C
o4} /  across grain
@ /
@ o
€ 3t /' nSugar cane
g ¢ 4 7 75°C
2r / p with grain
147
¥

1 1 1 1 1
0O 2 4 6 8 10

Slice thickness (mm)
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that justify these qualitative arguments. These equations will contain the diffusion
coefficient across cell walls D, the diffusion coefficient in channels D, and the frac-
tion of channels e.
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CHAPTER 3

Diffusion in Concentrated Solutions

Diffusion causes convection. To be sure, convective flow can have many
causes. For example, it can occur because of pressure gradients or temperature dif-
ferences. However, even in isothermal and isobaric systems, diffusion will always pro-
duce convection. This was clearly stated by Maxwell in 1860: “Mass transfer is
due partly to the motion of translation and partly to that of agitation.” In more
modern terms, we would say that any mass flux may include both convection and
diffusion.

This combination of convection and diffusion can complicate our analysis. The easier
analyses occur in dilute solutions, in which the convection caused by diffusion is van-
ishingly small. The dilute limit provides the framework within which most people ana-
lyze diffusion. This is the framework presented in Chapter 2.

In some cases, however, our dilute-solution analyses do not successfully correlate our
experimental observations. Consequently, we must use more elaborate equations. This
elaboration is best initiated with the physically based examples given in Section 3.1. This
is followed by a catalogue of flux equations in Section 3.2. These flux equations form the
basis for the simple analyses of diffusion and convection in Section 3.3 that parallel those
in the previous chapter.

After simple analyses, we move in Section 3.4 to general mass balances, sometimes
called the general continuity equations. These equations involve the various coordinate
systems introduced in Chapter 2. They allow solutions for the more difficult problems
that arise from the more complicated physical situation. Fortunately, the complexities
inherent in these examples can often be dodged by effectively exploiting selected read-
ings. A guide to these readings is given in Section 3.5.

The material in this chapter is more complicated than that in Chapter 2 and is un-
necessary for many who are not trying to pass exams in advanced courses. Nonetheless,
this material has fascinating aspects, as well as some tedious ones. Those studying these
aspects often tend to substitute mathematical manipulation for thought. Make sure that
the intellectual framework in Chapter 2 is secure before starting this more advanced
material.

3.1 Diffusion With Convection

The statement by Maxwell quoted earlier suggests that diffusion and convec-
tion always occur together, that one cannot occur without the other. This fact sets
diffusion apart from many other phenomena. For example, thermal conduction can
certainly occur without convection. In contrast, diffusion generates its own convection,
so that understanding the process can be much more complicated, especially in concen-
trated solutions.

56
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At 6°C, the benzene vapor is

] dilute, and evaporation is
M limited by diffusion

At 80.1°C, the benzene boils
~]| and flows; evaporation is
% controlled by convection

&\
©
g N
[ORN7)]
ES
2 . .
= At 60°C, an intermediate case

= occurs in which both diffusion

and convection are important

Fig. 3.1-1. Evaporation of benzene. This process is dominated by diffusion in dilute

solutions, but it includes both diffusion and convection in concentrated solutions.

3.1.1 A Qualitative Example

To illustrate how diffusion and convection are interrelated, we consider the
example shown in Fig. 3.1-1. The physical system consists of a large reservoir of benzene
connected to a large volume of air by means of a capillary tube. Benzene evaporates and
moves through the capillary into the surrounding air.

At room temperature, not much benzene evaporates because its vapor pressure is low.
Benzene vapor moves slowly up the tube because of Brownian motion, that is, because of
thermally induced agitation of the molecules. This is the process basic to diffusion
studied in the previous chapter.

At the boiling point, the situation is completely different. The liquid benzene boils
into vapor, and the vapor rushes up the capillary. This rush is clearly a pressure-driven
flow, a convection caused by the sharply increased volume of the vapor as compared
with the liquid. It has little to do with diffusion.

At intermediate temperatures, both diffusion and convection will be important, be-
cause the processes take place simultaneously. To understand such intermediate cases,
we must look at how mass transport works.

3.1.2 Separating Convection From Diffusion
The complete description of mass transfer requires separating the contributions

of diffusion and convection. The usual way of effecting this separation is to assume that
these two effects are additive:

totalmass \ [ mass transported mass transported (3.1-1)
transported / by diffusion by convection )
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In more exact terms, we define the total mass flux n; as the mass transported per area per
time relative to fixed coordinates. This flux, in turn, is used to define an average solute
velocity v;:

n = Cv (31-2)
where ¢; is the local concentration. We then divide v; into two parts:
n = C](V] — v”) —+ C]Vﬂ :jla + ¢ y! (31-3)

where »“ is some convective “reference” velocity. The first term j{ on the right-hand side
of this equation represents the diffusion flux, and the second term c¢»* describes the
convection.

Interestingly, there is no clear choice for what this convective reference velocity
should be. It might be the mass average velocity that is basic to the equations of motion,
which in turn are a generalization of Newton’s second law. It might be the velocity of the
solvent, because that species is usually present in excess. We cannot automatically tell.
We only know that we should choose v* so that v“ is zero as frequently as possible. By
doing so, we eliminate convection essentially by definition, and we are left with a sub-
stantially easier problem.

To see which reference velocity is easiest to use, we consider the diffusion apparatus
shown in Fig. 3.1-2. This apparatus consists of two bulbs, each of which contains a gas or
liquid solution of different composition. The two bulbs are connected by a long, thin
capillary containing a stopcock. At time zero, the stopcock is opened; after an experi-
mentally desired time, the stopcock is closed. The solutions in the two bulbs are then
analyzed, and the concentrations are used to calculate the diffusion coefficient. The
equations used in these calculations are identical with those used for the diaphragm cell.

Here, we examine this apparatus to elucidate the interaction of diffusion and convec-
tion, not to measure the diffusion coefficient. The examination is easiest for the special
cases of gases and liquids. For gases, we imagine that one bulb is filled with nitrogen and
the other with hydrogen. During the experiment, the number of moles in the left bulb
always equals the number of moles in the identical right bulb because isothermal and
isobaric ideal gases have a constant number of moles per volume. The volume of the left
bulb equals the volume of the right bulb because the bulbs are rigid. Thus the average
velocity of the moles v* and the average velocity of the volume »° are both zero.

In contrast, the average velocity of the mass v in this system is not zero. To see why
this is so, imagine balancing the apparatus on a knife edge. This edge will initially be
located left of center, as in Fig. 3.1-2(b), because the nitrogen on the left is heavier than
the hydrogen on the right. As the experiment proceeds, the knife edge must be shifted
toward the center because the densities in the two bulbs will become more nearly equal.

Thus, in gases, the molar and volume average velocities are zero but the mass average
velocity is not. Therefore, the molar and volume average velocities allow a simpler de-
scription in gases than the mass average velocity.

We now turn to the special case of liquids, shown in Fig. 3.1-2(c). The volume of the
solution is very nearly constant during diffusion, so that the volume average velocity is
very nearly zero. This approximation holds whenever there is no significant volume
change after mixing. In my experience, this is true except for some alcohol-water sys-
tems, and even in those systems it is not a bad approximation.
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Fig. 3.1-2. An example of reference velocities. Descriptions of diffusion imply reference to

a velocity relative to the system’s mass or volume. Whereas the mass usually has a nonzero
velocity, the volume often shows no velocity. Hence diffusion is best referred to the volume’s
average velocity.

The other two velocities are more difficult to estimate. To estimate these velocities for
one case, imagine allowing 50-weight percent glycerol to diffuse into water. The volume
changes less than 0.1 percent during this mixing, so that the volume average velocity is
very nearly zero. The glycerol solution has a density of about 1.1 g/cm?, as compared
with water at 1 g/em?, so that the mass density changes about 10 percent. In contrast, the
glycerol solution has a molar density of about 33 mol/l, as compared with water at
55 mol/I; so the molar concentration changes about fifty percent. Thus the mass average
velocity will be nearer to zero than the molar average velocity.

Thus in this set of experiments, the molar and volume average velocities are zero for
ideal gases and the volume and mass average velocities are close to zero for liquids. The
mass average velocity is often inappropriate for gases, and the molar average velocity is
rarely used for liquids. The volume average velocity is appropriate most frequently, and
so it will be emphasized in this book.

3.2 Different Forms of the Diffusion Equation

The five most common forms of diffusion equations are given in Table 3.2-1.
Each of these forms uses a different way to separate diffusion and convection. Of course,
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Table 3.2-1 Different forms of the diffusion equation

Choice

Total flux
(diffusion +
convection)

Diffusion
equation

Reference
velocity

Where best used

Mass

Molar

Volume

Solvent

n = ji'+py

3k *
np =j +cv

. 0
n =j+cv

(2)

n =j"+ c»

Maxwell-

Stefan

Ji =i =)
= —Dprl

K *
h=cam—v)
= —DcVy,

Jr=ai =)
—DVCl

fl = Cl(Vl - Vz)
= —D1V61

_ N

Vy, D

(2 —

Y = w1V + vy

py =n+ n

*
v =Y vi+ a2
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None

Constant-density
liquids; coupled
mass and
momentum
transport

Ideal gases where
the total molar
concentration ¢
is constant

Best overall;
good for
constant-density
liquids and for
ideal gases; may
use either mass
or mole
concentration

Rare except for
membranes;
note that D #
D>#D

Written for ideal
gases; difficult to
use in practice

in many cases, such a separation is obvious. If we have some salt in the bottom of a jar
covered with stagnant water, then the movement of salt upwards is due to diffusion. If we
pump salt water through a pipe, the dissolved salt moves by convection. These cases are
straightforward.

However, in a few cases, the separation of diffusion and convection is more subtle.
One of these cases, the evaporation of benzene vapor, was detailed in the previous
section. To deal with these cases, we can use one of two strategies:

1.

We can describe diffusion in ways which parallel Fick’s law. This strategy retains
the split between diffusion and convection and benefits from the physical in-
sight which results. However, it requires defining convection carefully.

We can describe diffusion in general ways which avoid reference to convection.
This strategy postpones the need for careful definition of convection, but
destroys some of the physical insight possible. It is often preferred by those
who seek a mathematically elegant description.

We give details of these strategies in the following paragraphs.
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3.2.1 Fick’s Law Parallels

The common forms of diffusion equations given in Table 3.2-1 are those listed
in most books. The first, which gives diffusion relative to the mass average velocity, is
preferred in texts on fluid flow, where the mechanics of the situation is key. The second,
which gives diffusion relative to the molar average velocity, appears in descriptions for
the kinetic theory of gases, where the fact that ideal gases all have the same molar
concentration at the same pressure and temperature is the basic precept.

The most valuable of these forms is that defining diffusion relative to the volume
average velocity. This is because for systems of constant density, the volume average
velocity equals the mass average velocity. For systems of constant molar concentra-
tion, the volume average velocity equals the molar average velocity. Thus the volume
average velocity includes the two commonly given analyses as special cases in a more
general form.

To prove these assertions, we begin with the volume and mass average velocities. We
find it convenient to describe the concentration in these systems as p;, the mass of species

[

i per volume; and as V;, the partial specific volume. Then

_ oV
Vi=p, 3.2-1
pi pl(anh)m#’ (3.2-1)

[TEREL)

where m; is the mass of species ““i.”” This derivative is the change in volume with a change
in mass of species “7”. If the system has constant density, this change is merely the
reciprocal of the density p, so

piVi=pi/p = (3.2-2)

Thus, for constant p,

0o 2 2
y = ‘21 p;Vivi= _21 wy;=» (3.2-3)
P =

The volume and mass average velocities are the same for a system of constant density.
The volume average velocity is equal to the molar average velocity for ideal gases.

I3

Here, we find it convenient to describe concentration ¢; as the moles of species “i”’ per
volume; and as V;, the partial molar volume. Then

o), (75
1V 1 N, N 1 N » Nz

RT c
= (] (7) = *1 =N (32-4)

4

For constant total molar concentration ¢,

_ 2
W=3X V=X yyi=v" (3.2-5)

i=1 i=1

The volume and molar average velocities are the same for systems that, like the ideal gas,
have constant molar concentration.
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Finally, we consider the diffusion relative to the solvent average velocity, for which
from Table 3.2-1

j§2> =-D/Vei +e1m

This expression is used almost exclusively for transport across membranes. To see why,
imagine that we are interested in transport of oxygen across a polyamide film. We choose
oxygen as species ““1”’; we choose the polymer as the solvent species “2.”” Because the
membrane is normally stationary, its velocity v, is zero, simplifying our analysis. If the
membrane is nonporous, D will truly represent diffusion. If it has large pores, then D will
really be a measure of flow in the porous membrane. If the membrane has small pores,
smaller than the mean free path in the gaseous oxygen, then D will represent Knudsen
diffusion. Some details for membranes are given in Chapter 18. We now turn to examples.

Example 3.2-1: One binary diffusion coefficient Prove that if the partial molar volumes
are constant, there is only one binary diffusion coefficient defined relative to the volume
average velocity. In other words, because we define

n =—D;Ve; + clvo
0
n, = —D,Ver + v

prove D; equals D.
Solution We begin by multiplying the first equation by ¥} and the second by
V,. We then add these equations to find

[V]nl =+ Vznz] =-D;V¢q 171 — D)Ve, 172 =+ [(Cl V] + Vz)vo}

The quantity in square brackets on the left equals that in square brackets on the right.
Moreover, since (¢1 V) +cV2) = 1,

VCl Vl = —VC2 Vz
Thus
Dy =D,=D

There is one binary diffusion coefficient relative to the volume average velocity. This
result can be shown from the Gibbs—Duhem equation to be valid even when the partial
molar volumes are not constant.

Example 3.2-2: Two flux equations with the same diffusion coefficient If the partial
molar volumes are constant, rearrange the flux equation written in molar concentrations

m=—DVc| + clvo
into the form

n = — DcVx + ey’
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Do not assume that the total concentration, c, is constant in this rearrangement.
Solution We begin by writing the flux equation for the second species

n=—DVec, + czvo
Adding the flux equations, we find
(my +my) = — DV(c; + ¢2) + (¢1 + )’
o' =—DVe+or’
Now we rewrite the flux equation for the first species as
ny = —DV(xc) +ep°
= —DcVx; +x1(—=DVe + cvo)
By combining with our earlier result, we find
n = —DcVx| +cpv'

which is what we seek. A similar analysis for the diffusion equation relative to the mass
average velocity is possible for constant partial specific volumes.

Example 3.2-3: Different binary diffusion coefficients Some authors use flux equations
of the form

n=—D\Vp, +p»

where p; is the mass of species 1 per volume. Show that the coefficient D, is not equal to
the D used in Table 3.2-1 and that this binary system involves two different diffusion
coefficients.

Solution To solve this example, we must rewrite the concentration p; in terms
of the mass fraction w;. By definition

py = o1p
= w1(p1+p2)
But
w1 171 —+ wy 172 =1
where the V; are the partial specific volumes, taken as constants. We now eliminate p to
find, after some rearrangement,

— ®1
1—601(1 — V]/Vz)

P1V2

Thus

1
Vo, == ——— Vu,
Vz[l*(})l(l — V]/Vz)]
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By combining this with the flux equation above, and comparing the result with the first
diffusion equation in Table 3.2-1, we see that

Dy = DpWa[l—p (1 — V1 /1))

The coefficients D; and D are equal only if both partial specific volumes are equal to the
reciprocal of the density. By rotating subscripts, we see that D; doesn’t equal D,. By
starting with molar concentrations and the molar average velocity, we can derive similar
expressions in terms of the molar average velocity. All these expressions are more com-
plicated than those referred to volume average velocity.

Example 3.2-4: Diffusion-engendered flow In the diffusion apparatus shown in Fig. 3.1-
2(b), one bulb contains nitrogen and the other hydrogen. The temperature and pressure
are such that the diffusion coefficient is 0.1 cm?/sec. The length /is 10 cm. Find v°, v¥, and
v at the average concentration in the system.

Solution The volume in this system does not move, so v’ is zero. If the gases
are ideal, then the molar concentration is constant everywhere and v* = 0. Because of
this, we can use the thin-film results from Section 2.2:

. D
Ji=civ = 7(010 —cuy)

If species 1 is nitrogen at an average concentration of 0.5c,

D] fero—cu\ 0.lcm2/sec 1-0\
vlf{l]( 0 )[ T0om G = 0.02cm/sec

By similar arguments, for hydrogen,

vy = —0.02cm/sec

Note that these velocities vary as the average concentration c¢; varies.
We next find the mass fractions of each species:

ClMl 05(28)
= S — 0.933
o1 oM+ c, M, 05(28) +05(2)

where M; is the molecular weight of species i. Similarly,
wy = 0.067
Then the mass average velocity is
v=awv; + wyv, = 0.933 X (0.020) 4+ 0.067(—0.020) = 0.017 cm/sec

The result is dominated by the nitrogen because of its higher molecular weight.
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3.2.2 Maxwell-Stefan Equations

We next want to describe an analysis of diffusion which avoids carefully de-
fining convection. After all, the reference velocities explored above are difficult, requir-
ing careful thought. We may appreciate that the volume average velocity equals molar
average velocity for ideal gases, and that the volume average velocity equals the mass
average velocity for systems of constant density. We may recognize that these compli-
cations normally vanish for dilute solutions. Still, we may yearn for a description of
diffusion which avoids these complexities, which sends reference velocities to the same
intellectual pergatory as standard-state chemical potentials and pressure-dependent
fugacity coefficients.

Such an apparently simpler description is provided by the Maxwell-Stefan equations,
the last result in Table 3.2-1. For a binary system, these may be written as

1y
Vy, = lD,Z

(r2 =) (3.2-6)
where y; and v; are the mole fraction and velocity of species ““7,”” normally in the gas
phase, and D’ is a new Maxwell-Stefan diffusion coefficient. The corresponding result,
for nonideal liquid solutions is

R TXQ

Viy :7

(VQ — vl) (32-7)
where y; and x; are the chemical potential and liquid mole fraction of species ““i,” and D"
is another diffusion coefficient. A variety of other, similar forms have also been sug-
gested and have achieved some popularity, especially in Europe.

These Maxwell-Stefan equations have three significant advantages over the Fick’s
law parallels described earlier in this section. First, for dilute solutions, they quickly
reduce to the normal form of Fick’s law, so that all earlier dilute solution results can be
used without worry. Second, they avoid the issue of reference velocities by using the
velocity difference (v, — v). After our intellectual struggles with these references we may
find this a blessed relief. Third, for the special case of ideal gases, these equations are
easily generalized to multicomponent systems, as detailed in Section 7.1. These are three
significant advantages.

At the same time, this alternative formulation obscures any convection in the system. As
a result, it reduces the physical insight possible for many, including me. This loss of insight
can make solving simple problems harder. Some who can think clearly in abstract math-
ematical terms will find the Maxwell-Stefan form innately superior. I am not one of this
group. I will use the Fick’s law parallels because I need all the physical insight that I can get.

Example 3.2-5: Comparing diffusion coefficients Show how D’ in Equation 3.2-6 is
related to D defined relative to the volume average velocity.
Solution Equation 3.2-6 may be rewritten as follows

i
=y

Vi, (v2 =)

1
= D (yim2 — yony)
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where c is the total concentration. By definition

v0 = 171 v+ Vzvz
=Vim + Vam
Thus

1/0 — 171 n
n=————
V>
Combining this with the flux equation, rearranging, and remembering that (y, V;+
¥, Va) is (1/¢), we find

n =-D Vs Vy, + ¢ y
By comparing this with the results of Example 3.2-2, we see that
D=D ¢V,

For an ideal gas, the partial molar volume of every gas is equal to the reciprocal of the
total molar concentration ¢. Thus ¢ V> is one and

D=D

The two diffusion coefficients are the same.

Example 3.2-6: The effect of non-ideal solutions Show how D’ in Equation 3.2-6 is
related to D" in Equation 3.2-7.
Solution The chemical potential y; is given by

=) + RTIny,x,

where pf is a reference value and y; is an activity coefficient. Thus at constant temper-
ature

0lny
V,uI:RT<1+ n/l)Vlnxl

0ln X1
X1 0ln X1

Combining with Equation 3.2-6, we find

X1 X2

o1y

61nx1

VX]

Thus

D/:D// 1+aan1
0 In x;

The diffusion coefficients are related by an activity correction.
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The idea that diffusion is better described by a chemical potential gradient than
by a concentration gradient appears frequently. It is basic to estimates of diffusion
in liquids, as proposed by Einstein and discussed in Section 5.2. It is correct for
dilute solutions of electrolytes, covered in Section 6.1. However, it is certainly
wrong near spinodals or consolute points (Section 6.3), and it seems untested for
other, highly nonideal solutions. I use it confidently for dilute solutions but cautiously
elsewhere.

3.3 Parallel Diffusion and Convection

We now want to combine the equations developed above with mass balances to
calculate fluxes and concentration profiles. This is, of course, the same objective as in
Chapter 2. The difference here is that both diffusion and convection are significant. The
analysis of the more complicated problems of diffusion and convection is aided by the
parallels in the case of a thin film and an infinite slab around which Chapter 2 is
organized. Such parallels produce powerful pedagogy.

3.3.1 Fast Diffusion Through a Stagnant Film

The first problem that we consider involves the same rapid evaporation that was
used as the key example in Section 3.1. We recall that at intermediate temperatures, the
evaporation rate depends on both diffusion and convection up the tube.

We want to calculate the flux and the concentration profile where both diffusion and
convection are important. To make this calculation, we must parallel our earlier scheme,
but with a more exact physical understanding and a more complicated mathematical
analysis. Just as before, the scheme starts with a mass balance, combines this balance
with Fick’s law, and then runs through the math to the desired result.

This mass balance is written on the differential volume AAz shown in Fig. 3.3-1:

soluteaccumulated | _ (solute transported  (solute transported (3.3-1)
involume AAz )~ inatz outatz+ Az '

In mathematical terms, this is

0
§(AAZCI) = An1|z—An1|Z+AZ (33-2)

If we divide by the volume AAz and take the limit as this volume goes to zero, we find

acl - 61’11
o= (3.3-3)
At steady state, there is no accumulation, so
0
0= (3.3-4)

T oz
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Large volume of well-stirred
solvent 2

Yy =yl

Capillary of length /

. Fast evaporation
and cross section A P

by diffusion and
convection

Az

A

Z[ L— Y1 =Y =Y (sat)

Evaporating solute 1 in a
\ large liquid reservoir

ALV

Fig. 3.3-1. Fast evaporation in a thin capillary. This problem is analogous to that shown in
Fig. 2.2-1, but for a concentrated solution.

This is easily integrated to show that ; is constant. This sensibly says that at steady state,
the total flux up the tube is constant. Note that we have not shown that the diffusion flux
is constant.

We now want to combine this result with Fick’s law. However, because we are dealing
with fast evaporation and a potentially concentrated solution, we must consider both
diffusion and convection. For simplicity, we choose the volume average velocity v° from
Table 3.2-1.

d
ga + C1(C1 Vivi + ¢ V)llg) (3.3-5)

. 0
ny = v =-—D
1=J1tc dz

By definition, ¢; v; equals n;, and ¢, v, equals n,. If the solvent vapor is stagnant, its flux
n, and its velocity v, must be zero. Thus

d _
dev v (3.3-6)

=-D
m dz

Moreover, if the vapors in the capillary are ideal, then the total molar concentra-
tion is a constant and ¥, equals 1/c (see Eq. 3.2-4). Thus the differential equation we
seek is

dy,

m(1 = y) = ~Det

i (3.3-7)
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This is subject to the two boundary conditions
z=0, y1=yp (3.3-8)
z=1 yi=yy (3.3-9)

There are two boundary conditions for the first-order differential equation because n; is
an unknown integration constant.

The flux and concentration profiles are now routinely found. The concentration pro-
file is exponential:

z/l
L= _ (1 _y“) / (3.3-10)
1=y 1=y

The total flux is constant and logarithmic:

De, (1-
n o= (21 (3.3-11)
) 1=y

Note that doubling the concentration difference no longer automatically doubles the
total flux. Like the total flux, the diffusion flux is logarithmic, but it is not constant:

_ _ 2/l _
Ji :7Dc%:Dc<1 ylo)(l y”> 1n<1 y”) (3.3-12)
dz / 1 -y [T

The diffusion flux is smallest at the bottom of the capillary. It steadily rises to its largest
value at the top of the capillary.

If the solution is dilute, we can simplify these results. To do this, we first remember
that for small y,,

(1—y)'=1—ay, +--- (3.3-13)
! =14y +- - (3.3-14)
1=y
and
In(l—y)=-y;+ - (3.3-15)

The concentration profile in Eq. 3.3-10 thus becomes

z/l
L=y =0 =y)d=yy+y0— ") /
z
=1=yo+ ?(yl()_yll) + o (3.3-16)

This can be rewritten in more familiar terms by multiplying both sides of the equation by
the total concentration ¢ and rearranging:

c1 = cio+ (e — ¢io) (3.3-17)

~I N
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In other words, the concentration profile becomes linear, not exponential, as the solution
becomes dilute.
The total flux in dilute solution can be simplified in a similar fashion:

Dc
ny = 7 [In(1 - yy;) —In(1 - y,,)]
. Dc
= T(J’lo —J/U)
D
iT(Clo —c1) (3.3-18)

which is, of course, the simple relation derived earlier in Eq. 2.2-10. The diffusion flux j;
equals 7 in this dilute limit. Thus Eqgs. 3.3-10 and 3.3-11 are equivalent to Egs. 2.2-9 and
Eqns. 2.2-10 in dilute solution.

The analysis above is not hard to understand one line at a time, but it may be hard to
understand in total. To supply this total understanding, we consider a special case of
benzene liquid at 60 °C evaporating through a capillary into pure air. At this tempera-
ture, the partial pressure of benzene is 400 mm Hg, so the mole fraction of benzene at the
liquid vapor interface y,q is 400/760 = 0.53. The mole fraction at the other end of the
capillary yy,is zero. Thus we can find the concentration profile from Eq. 3.3-10, the total
flux from Eq. 3.3-11, and the diffusion flux from Eq. 3.3-12.

The meaning of these results is much clearer from Fig. 3.3-2. The total flux is a
constant from z = 0 to z = /. The diffusion flux is smallest at z = 0, the liquid—vapor
interface, but rises to equal the total flux at z = [, where diffusion is the only mass
transfer mechanism operating within the capillary. The concentration profile is nonlinear,

0.9

Total flux

Flux ¢ I/DC

Distance z//

Fig. 3.3-2. Concentration and flux in concentrated diffusion. The concentration profile is no
longer linear, as in Fig. 2.2-1. The constant total flux is the sum of diffusion and convection, each
of which varies.
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but its slope is still proportional to the diffusion flux. This slope is always negative, smallest
at z = 0 where mass transfer by convection is greatest. Finally, note that the vertical
distance between the total flux and the diffusion flux is the convective flux ¢;v°; it is largest
at the liquid—vapor interface, where z = 0, and equals zero at the end of the capillary,
where z = [. Please think about this figure carefully because it can help you understand
diffusion-induced convection.

3.3.2 Fast diffusion Into a Semi-infinite Slab

The second problem considered in this section is illustrated schematically in
Fig. 3.3-3. In this problem, a volatile liquid solute evaporates into a long gas-filled
capillary. The solvent gas in the capillary initially contains no solute. As solute evapo-
rates, the interface between the vapor and the liquid solute drops. However, the gas is
essentially insoluble in the liquid. We want to calculate the solute’s evaporation rate,
including the effect of diffusion-induced convection and the effect of the moving in-
terface (Arnold, 1944).
In this problem, we first choose the origin of our coordinate system (z = 0) as the
liquid—vapor interface. We then write a mass balance for the solute 1 on the differential
volume AAz, shown in Fig. 3.3-3:

solute solute solute
accumulation | = | transport | — | transport (3.3-19)
in AAz in out

or, in symbolic terms,

0
a (C]AAZ) = (AI’Z])Z — (An1)2+Az (33-20)
[2]
@
> O
s €
=8
g S Fast unsteady
s evaporation by
§% diffusion and
>o | Az convection
o2
>E

oN
[

Interface recedes
| as evaporation occurs

4 —Liquid solute

Fig. 3.3-3. Fast diffusion in a semi-infinite slab. This problem is analogous to that shown in Fig.
2.3-2, but for a concentrated solution. Because of this higher concentration, the liquid—vapor
interface moves significantly, complicating the situation.
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Dividing by the differential volume and taking the limit as this volume goes to zero,

% 6n1

= (3.3-21)
We then split the diffusion and convection:

dcy e 0

= = g_éclv (3.3-22)
By definition, the volume average velocity is

W= Vivi + eaVavy = Ving + Vamy (3.3-23)

In the steady-state case treated earlier, we argued that the solvent was stagnant, so that
n, was zero and the problem was simple. Here, in an unsteady case, the solvent flux varies
with position and time; therefore, no easy simplification is possible.

We must write a continuity equation for the solvent gas 2:

662 o anz

=5 (3.3-24)

If we multiply Eqgs. 3.3-21 and 3.3-24 by the appropriate partial molar volumes and add
them, we find

0, _ 0 - _

&(Vlcl + Vaea) = *&(Vlnl + Vamy) (3.3-25)
But the quantity ¥jc; + Vaco always equals unity, making the left-hand side of this
equation zero; thus Vin; + V,n, must be independent of z. However, at the interface,
n, is zero because the solvent gas 2 is insoluble in the liquid. Thus

_ _ _ _ 0 _
Ving + Vony = V]I/l1|_.:0 =1 (—D£ + ¢ V1n1|2:0> (3.3-26)
z=0
When we combine this with Eq. 3.3-22 we find
0cy % DV1(0c; /3z) 0cy
ol p2 =l AR Sl Vil I 3.3-27
o P2 T\ an ) (3.3-27)
subject to the conditions
t=0, allz>0, ¢=0 (3.3-28)
t >0, z=0, ¢ =c(sat) (3.3-29)
z=wo, ¢ =0 (3.3-30)

The solute concentration c;(sat) is that in the vapor in equilibrium with the liquid.
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Like the problem of dilute diffusion in a semi-infinite slab, this problem is solved by
defining the combined variable

{ = z/v/4D1 (3.3-31)
The differential equation now becomes

TPV SIPAL O (3.3-32)

d¢’ d¢ '

subject to the conditions
(=0, ¢ =c(sat) (3.3-33)
(= =0 (3.3-34)

and in which

1 (Vi(de; /dQ)
®=— (ﬁ) 0 (3.3-35)

The constant @, a dimensionless velocity, characterizes both the convection engen-
dered by diffusion and the movement of the interface. If @ is zero, convection effects
are zero.

Equation 3.3-32 can be integrated once to give

doy

_ —(-®)’ i
Q- (constant)e (3.3-36)

A second integration and evaluation of the boundary conditions give

i 1 —erf({~D)

ci(sat)  14erf® (3.3-37)
We can calculate @ from this result and Eq. 3.3-35:
| -1
V(1 + erf @)de

A plot of ®@ versus concentration is shown in Fig. 3.3-4. Note that when ¢, (sat) is small, ®
goes to zero. In other words, when the solution is dilute, convection is unimportant.

We also want to calculate the interfacial flux N;. To find this, we must again split
diffusion and convection, using Fick’s law:

D(0c¢y/0z)
Mmoo =-(T55057)

_@?
- W/D/m(l ! ) c ¢ (sat) (3.3-39)

— Viei(sat) ) 1 +erf®
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Volume fraction V4cq(sat)

Fig. 3.3-4. Flux and interfacial movement. As the solution becomes dilute, the interfacial
concentration ¢(sat) becomes small, the actual flux approaches the dilute-solution limit
(see Eq. 2.3-18), and the velocity ® becomes zero.

where @ is still found from Eq. 3.3-38 or Fig. 3.3-4. The increase of this flux beyond that
in a dilute solution is also given in this figure.

Example 3.3-1: Errors caused by neglecting convection Consider the experiments shown
in Fig. 3.3-5. How much error is caused by calculating the rate of benzene evaporation if
only diffusion is considered?

Solution The sizes of the errors depend on the concentrations and thus on the
temperature. At 6 °C, the vapor pressure of benzene is about 37 mm Hg. If the total
pressure is one atmosphere,

c1_ pi(sat) 37

= = =—=10.049
e c P 760
¢1=0 ¢y=0
ciosaturated at 6°C cqpSaturated at 60°C

Liquid benzene at 6°C Liquid benzene at 60 °C

Fig. 3.3-5. Examples of benzene diffusion and convection. In the dilute solution at the left,
the exact results are close to the approximate ones in Eq. 2.2-10. In the concentrated case at
the right, they are not.
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The total flux is, from Eq. 3.3-11,

n *&ln 71_0
P\ 2 0.049

~0.050Dc¢
T

The flux, assuming a dilute solution, calculated from Eq. 2.2-10, is

D
mo=j = 2 (0.049 — 0)
This two percent difference is well within the needs of most practical calculations. Thus
the dilute solution equations are more than adequate here.
At 60 °C, the choice is less obvious because the vapor pressure is about 395 mm Hg.
When we calculate the mole fraction in the same way, we find

D¢ 1-0 D¢
= (T ) =073
e “(14395/760)) 07135

The dilute-solution estimate is

The dilute-solution equations underestimate the flux by a significant error of about forty
percent.

3.4 Generalized Mass Balances

As the problems that we discuss in this chapter become more and more com-
plex, the development of the differential equations becomes more and more tedious.
Such tedium can be avoided by using the generalized mass balances developed in this
section. These mass balances automatically include both steady- and unsteady-state
situations. They imply the usual variety of coordinate systems, and they reflect the
vectorial nature of mass fluxes. They are excellent weapons.

However, like most weapons, the generalized mass balances can injure those trying to
use them. Effective use requires uncommon skill in connecting the mathematical ideal
and the physical reality. Some seem born with this skill; more seem to develop it over
time. If you have trouble applying these equations, return to the shell balance method. It
may take longer, but it is safer. You can check your equations by later comparing them
with those found from the generalized results.

To find the generalized mass balances, we consider the small differential volume
located at (x, y, z) shown in Fig. 3.4-1. We want to write a mass balance on this volume:

mass of species 1 mass flux of mass produced by
accumulatingin | = species 1 + homogeneous
AxAyAz in minus that out chemical reaction

(3.4-1)
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(xy,z+ A2)

z

Fig. 3.4-1. The arbitrary volume for deriving the generalized mass balances. The fluxes in
the x direction are shown in this figure; fluxes in other directions are also included in the
derivation. The results are shown in Tables 3.4-1 and 3.4-2.

The mass fluxes relative to fixed coordinates include transport in all three directions. For
example, the mass flux out of the volume in the x direction, shown in Fig. 3.4-1, is
n1AyAz, where AyAz is the area across which this flux occurs. In mathematical terms,
the mass balance is then

0
a(cleAyAz) = (n1,AyAz), — (n1,AyAz) 4,
+ (n1,AxAz), — (m,AxAz) 0,

+ (m.AxAy). — (m.AxAY). 5.
+ r1AxAyAz (3.4-2)

where ry is the rate per unit volume of a homogeneous chemical reaction producing
solute 1. Dividing by the differential volume AxAyAz and taking the limit as this volume
goes to zero gives

0 0 0 0
. . 34-3
T T ™ Ty Tt (3.4-3)
or, in vectorial notation,
0 \Y + (3.4-4)
~ca==V-n +r 4-
e 1 1

We can also write the flux in terms of diffusion and convection:

n = —DVc¢ + c1v0 (3.4-5)
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where ° is the volume average velocity. Combining,

o1

= DV, =V’ 41 (3.4-6)

This equation is the general form of all the shell balances derived to date.
The species mass balance represented by Eq. 3.4-6 is often effectively complemented
by the overall mass balance:

total mass total mass
accumulation | = [ fluxin minus (3.4-7)
in AxAyAz that out

This can be written in terms similar to those used earlier:

0
a (PAXAyAz) = (pviAyAz), — (pvxAyAz) A,

+ (pryAxAz), — (pvyAxAz) 0, (3.4-8)

=+ (/)VZAXAy)Z - (szAxAy):JrAz

in which v,, v,, and v. are components of the mass average velocity. Dividing by the
volume AxAyAz and taking the limit as each difference becomes small, we find
op 0 0

d
= =, =y, 4
ar T T (34-9)

In vectorial notation, this is

Z—f =-V.pr (3.4-10)
This result, called the continuity equation, has no reaction term because no total mass is
generated or destroyed by nonnuclear chemical reactions.

We would like to use the continuity equation to simplify the species mass balance. We
cannot do so directly because the continuity equation contains the mass average velocity,
and the species mass balance involves the volume average velocity. Although some
investigators fuss about this difference, we should recognize that we can solve many
problems where these velocities are the same. They are the same at constant density, as
shown by Eq. 3.2-3.

If we assume constant density, the overall continuity equation becomes

0=-V.yv=—V.y (3.4-11)
We then multiply this equation by ¢; and subtract the result from Eq. 3.4-6:

0
% Ve, = DV + 1 (3.4-12)
This result is frequently useful for problems of diffusion and convection.

This generalized equation is shown in different coordinate systems in Tables 3.4-1 and
Tables 3.4-2. The overall mass balance is given in Table 3.4-3. These equations include
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Table 3.4-1 Mass balance for species 1 in various coordinate systems

Rectangular coordinates
Ocy _ Onix  Onyy  Onp n
ot  ox dy 0z

acl _ 1 6 ]al’lm anl_,

o e Ty o T ®
Spherical coordinates

acl _ 10 1 0 1 6n1¢

2= e ) rnaae 0 g T ©

Note: The rate r is for the production of species 1 per volume.

Table 3.4-2 Mass balance for species 1 combined with Fick’s law

Rectangular coordinates

ocy 0 0c 00ci 0 0ci %, %¢; 0%

— =D|— A
o P Ty T = (6x2+6 T2 )t (A)
Cylindrical coordinates

dci o0 Wder  (0c {1 0 ( 661) 1 %¢ 6261:|
P = : +r

et 0 T e " e sr ) TR a2

Spherical coordinates

ocy acl 0 0ci vg ocy 10 (,0c 1 0 /. _0c
hadl had} X _pl ()~ g—L
e Tt rsneas ~ Pla U ar) smaae 05

1 6261
+ — |+ C
12 sin2 0 0¢)° } ! ©

Note: The diffusion coefficient D and the density p are assumed constant. In this case, the mass
average and volume average velocities are equal. Again, r; is the rate of production of species 1
per volume.

the effects of chemical reaction, convection, and concentration-driven diffusion. How-
ever, they are not quite as general as their title suggests. For example, they do not include
the effects of electric or magnetic forces. Nonetheless, they often provide a useful route
to the differential equations for diffusion, as shown by the following examples.

Example 3.4-1: Fast diffusion through a stagnant film and into a semi-infinite slab Find
differential equations describing these two situations from the general equations in Tables
3.4-1 to 3.4-3. Compare your results with the shell-balance results in the previous section.

Solution The first of these cases, sketched in Fig. 3.1-1 or Fig. 3.3-1, concerns
the fast evaporation of a liquid solute through a stagnant vapor. This evaporation is in
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Table 3.4-3 Total mass balance in several coordinate systems

Rectangular coordinates
dp 0 0 ]
i Gl o (pvy) =5 (pv:) (A)
Cylindrical coordinates
0p 10 10 0
i —;a(l)”’r) —;@(pve) —é(PV:) (B)
Spherical coordinates
op 10, , 1 0 . 1 0
o~ e " rngee P~ ngag () ©

Note: The velocity here is the mass average and not the volume average commonly

used with Fick’s law.

steady state, has no chemical reaction, and occurs only in the z direction. Thus Eq. A in

Table 3.4-1 becomes

_ anl:

Oiaz

Alternatively, for constant density, Eq. A in Table 3.4-2 becomes

00 %,
— i =D——
'z 6261 622

Either of these equations leads to a solution of the problem like that in Section 3.3.

The second example, shown schematically in Fig. 2.3-2, depends on the unsteady
evaporation of a liquid solute into a solvent gas. Again, the process is one-dimensional,

without chemical reaction. From Eq. A in Table 3.4-1, we find

% _ 6nlz
or 0z
Alternatively, for constant density, Eq. A in Table 3.4-2 becomes
GISE o’er
it o =D—
o Y 0z

The first term on the left-hand side of this result represents accumulation and the second
is convection. The right-hand side represents diffusion. Again, the solution to these

equations parallels that in the previous section.

The reader whose primary interest is in diffusion may question why these generalized
equations are necessary and why the shell balances used before are not sufficient. I share
this skepticism, and I prefer the physical insight supplied by the shell-balance technique.

At the same time, students often plead to be taught the material in this section, even
though they may later question its utility. The students’ plea originates not from con-
siderations of mass transfer but from their studies of fluid mechanics. In fluid mechanics,
the generalized equations are extremely helpful, especially in cases of curved streamlines.
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Fig. 3.4-2. Dissolution out of a coated hemisphere. The impermeable coating stops the
diffusion except out of an uncoated hole of radius R,.

Analogues of curved streamlines do not occur frequently in diffusion. Thus the math-
ematics of diffusion is easier than that of fluid mechanics, but the physical chemistry is
more difficult.

Example 3.4-2: Dissolution out of a coated hemisphere Orally taken drugs often result in
drug concentrations which oscillate dramatically with time. Soon after a pill is swal-
lowed, the drug concentration may be high, even toxic; four hours later, the concentra-
tion may be below that needed to be effective. Thus many have sought pills which would
give a more even drug release vs. time, a topic detailed in Chapter 19.

One such pill, shown schematically in Figure 3.4-2, consists of a coated hemisphere of
radius R; with a central hole of radius R,. The hemisphere contains a solid drug at
concentration ¢,g, which can dissolve to form a saturated solution at ¢;(sat). Solid drug
is immobile, but dissolved drug moves with a diffusion coefficient D. The entire hemi-
sphere is coated with an impermeable layer, except for the hole. At small times, diffusion
coming out the hole is reasonable because the drug doesn’t have far to go. At larger
times, diffusion is still reasonable: while the distance to diffuse is bigger, the area
supplying drug is bigger, too.

Develop differential equations describing this drug release.

Solution Diffusion in this case has spherical symmetry, with concentration
gradients only in the r-directions. If the drug is dilute, there is no convective flow. Thus
from Table 3.4-2 Eq. C we obtain for dissolved drug

S _D o (%)
or S or or !

For undissolved drug,

%, _
or

—r

This is subject to the constraints

t=0, allr, c) = ¢ (sat)
t >0, r = Ry, =0
0
V:Rl, l =0

or
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Spinning disc

Solute from
dissolving disc

Y

Fig. 3.4-3. Diffusion near a spinning disc. The amount dissolving per unit area is found
to be the same everywhere on the disc’s surface. Such simplicity makes this disc a powerful
experimental tool.

We will also need a condition on the total mass of undissolved drug present
t=0, allr, ¢ =-cy

We must also specify the kinetics of the dissolution. These equations can be solved
numerically, but provide little insight without the solution.

An alternative strategy is to assume that, like many drugs the one used here dissolves
rapidly relative to diffusion. In this case, the dissolved drug concentration ¢; will equal
ci(sat) everywhere that solid drug is present, i.e., where ¢, > 0. In this case, the problem
is now simpler mathematically: the mass balance becomes

0 D 0 2 aC1
= = — r —
7~ or or

subject to

r=2R, ¢ =0

r=~R, ¢ = ¢ (sat)
This is easily solved analytically. We must then find the variation of R’ with time from

Ro

/ij]|,:R0 (rnRé)dt = /R1 C20 (47‘51‘2) dr

This approximate solution should be used until we are forced by our experimental data
to solve the more difficult and more complete problem. In my experience, many working
on diffusion use mathematics which is more elaborate than their data justify. I urge you
to use the simplest description that you can until you have good reasons to need
elaboration.

Example 3.4-3: The flux near a spinning disc The final example in this section is the
spinning disc shown in Fig. 3.4-3. The disc is made of a sparingly soluble solute that
slowly dissolves in the flowing solvent. This dissolution rate is diffusion-controlled.
Calculate the rate at which the disc dissolves.
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Solution This problem requires both mathematical skill and physical
intuition. The dissolution will reach a steady state only when the disc is rotating; if the disc
is not rotating, the problem will be equivalent to the semi-infinite slab discussed in Example
3.4-1. To solve the rotating disc problem, we choose cylindrical coordinates centered on the
disc. The steady-state mass balance is found from Eq. B in Table 3.4-2:

0 0cy vg ocy 0 0cy 10 [/ Oc 1 6201 azcl
had BTN td } o pla= (22 Halindihd S ERting 4
o 0 T e roror ) TR T o

We recognize that the problem is angularly symmetric, so ¢; does not vary with . We
also assume that the disc is infinitely wide, so that the concentration is a function only
of z. I find this assumption mind-boggling, but it is justified by the success of the
following calculations.

With these simplifications, the mass balance becomes

yda _ pdia
dz 47

subject to the conditions

z=0, ¢ =ci(sat)

Z = %, 01:0

The first of these conditions implies equilibrium across the solid—fluid interface. Inte-
gration of the preceding equation gives

0

where a and b are integration constants. From the foregoing conditions, b equals ¢(sat),
so that

_(1/D) [ /0 r vz(s)ds} dr

C1 1 fge

c1(sat)

Jo e /D) [ /0 ,- V:(S)ds} dr

If we know the velocity v.(z), we can find the concentration profile. We then use Fick’s
law to find the reaction rate.

The calculation of v.(z) is a problem in fluid mechanics beyond the scope of this book,
but given in detail in the literature. When the values found for v.(z) are inserted into the
previous equations, the result is

o —u
o foe " du

ci(sat) fx e_u3du
0
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Fig. 3.4-4. Dissolution rate versus flow for a spinning disc. The dissolution rate and flow are
described as Sherwood and Reynolds numbers, respectively. The data fit the form predicted,
which should be valid over the unshaded region.

in which

182036\ !
Q=z(——7 —
/2
(03]

and v is the kinematic viscosity of the fluid and o is the angular velocity of the disc. The
diffusion flux is then

9 D312
co=-DL . =0.62 (“’ ¢1(sat)

J1

oz 1/1/6

This result is often written in terms of dimensionless groups:

1/2 13
D dzwp u
—j;=10.62— [ —— — t
/ 00 d < M ) (PD> c1(sat)

where d is the disc diameter. The first term in parentheses is the Reynolds number, and
the second is the Schmidt number.

To my delight, this analysis is verified by experiment. The dissolution varies with the
square root of the Reynolds number, as shown in Fig. 3.4-4. As a result, the assumption
that the flux is a function only of z is justified. Because the flux is independent of disc
diameter, it has the same value near the disc’s center and near its edge. Such a constant flux
is uncommon, and it makes the interpretation of experimental results unusually straight-
forward. It is this feature that makes the rotating disc a popular experimental tool.
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3.5 A Guide to Previous Work

In many cases, detailed solutions to diffusion problems can be adapted from
calculations that have already been published, thus avoiding the mathematical detail
presented in the earlier sections in this chapter. These calculations involve the same
differential equations, with relatively minor changes of boundary conditions. They in-
clude elaborate but straightforward manipulations, like the integration of concentration
profiles to find average concentrations.

Unfortunately, the published results are limited because they are often based on
mathematical analogies with thermal conduction. Such analogies have merit; indeed,
they provided the original stimulus for Fick’s law of diffusion. However, in thermal
conduction, there is no analogy for diffusion-induced convection and rarely an analogy
for an effect like chemical reaction. On the other hand, in diffusion, there is no effect
parallel to thermal radiation. These differences are commonly ignored by teachers be-
cause they want the pedagogical benefits of analogy. In fact, convection, chemical re-
action, and radiation are frequently central in the problems studied.

Even with these limitations, the published solutions can be used to save considerable
effort. Besides individual papers, there are two important books that have collected and
compared this literature. The first, Crank’s The Mathematics of Diffusion (1975), dis-
cusses aspects of chemical reactions. The second, Carslaw and Jaeger’s The Conduction
of Heat in Solids (1986), must be used by analogy, but it includes a more complete
selection of boundary conditions. The notation used in these books is compared with
that used here in Table 3.5-1.

In the remainder of this section we give examples illustrating how this literature can
be used effectively.

Example 3.5-1: Diffusion through a polymer film Imagine that we are studying a poly-
mer film that is permeable to olefins like ethylene but much less permeable to aliphatic
hydrocarbons. Such a film could be used for selectively separating the ethylene produced
by dehydrogenation reactions. As part of our study, we use the diaphragm cell shown in

Table 3.5-1 Comparisons of notation between this book and two major references

Variable Our notation  Crank’s  Carslaw and Jaeger
notation analogue

Time t t t

Position X, Y, Z, T X, V2,8 X, Y, Z, T

Concentration 1 C Temperature v

Concentration at boundary 105 €1 Cros ... C1, Co Temperature at boundary ¢

Binary diffusion coefficient D D “Thermometric

conductivity” k

Flux relative to reference velocity  j; F Heat flux f

Flux relative to fixed coordinates  n; F Heat flux f

Flux at boundary Nyormyl-—o — Heat flux at boundary F,

Total amount diffusing from time M, M, -

Otot
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Fig. 3.5-1. Diffusion across a polymer film. When the pressure in the top compartment is
determined as a function of time, the slope and intercept are measures of diffusion and solubility
of gas in the polymer.

Fig. 3.5-1. This diaphragm cell consists of two compartments separated by the polymer
film of interest. The top compartment is initially evacuated, but the lower one is filled
with ethylene. We measure the ethylene concentration in the upper compartment as
a function of time.

The data obtained for ethylene transport are exemplified by those shown in the figure.
Initially, the pressure in the upper compartment varies in a complex way, but it will
eventually approach that in the lower compartment. At the moderate times of most of
our experiment, the pressure in the upper compartment is proportional to time, with
a known slope and a definite intercept. How are this slope and intercept related to
diffusion in the polymer film?

Solution The basic differential equation for this problem is that for a slab:

6c1 o 6261
o o
subject to the conditions

t=0, allz, ¢ =0
t>0, z=0, ¢ =Hp,
z=I1, cq=Hp, =0

in which / is the film’s thickness and H is a Henry’s law coefficient relating ethylene
pressure in the gas to ethylene concentration in the film. The solution to this equation
and the boundary conditions are given by Crank (1975, p. 50, Eq. 4-22):

Hp, B / n

a gz 2y (sm<m/z>> D P
Tn=

Thus, almost before we have started, we have the concentration profile that we need.
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We now must cast the problem in terms of the actual experiment variables we are
using. First, from a mole balance on the top compartment,

le_ Vdp_ 661
@ rrd - AP

z=[

in which ¥ and p are the volume and pressure of the upper compartment and A4 is the
film’s area. Combining this with the concentration profile, we integrate subject to the
condition that the upper compartment’s pressure is initially zero:

_ ARTp,

2HP .. cosnm _ Dttt/ P
Vi HD’Jr?Zn:liz(l*e /"y

At large time, the exponential terms become small, and this result becomes

p= {5 D)

l2
- —
6D

The quantity in braces is known experimentally. Thus the intercept of the data in Fig.
3.5-1 is related to the diffusion coefficient D. The slope of these data is related to the
permeability AD. I am always delighted that an experiment like this gives both an
equilibrium and a transport property.

This example has value well beyond the specific case studied. It shows how the
mathematical complexities inherent in the problem can be circumvented by carefully
using the literature. This circumventure focuses attention on the real difficulty of the
problem, which is connecting the specific physical situation with the more general math-
ematical abstraction. This is the connection where most of you will have trouble. You
can learn how to use the mathematics involved; you must think harder about connecting
them with the actual situation.

Example 3.5-2: Diffusion through an orifice As a second example, we consider an
orifice of radius R in a thin film. Diffusion is occurring through the orifice from a large
volume of high concentration ¢ to a second large volume at zero concentration. Like
the case of a thin film, the diffusion is in steady state, so there are no unsteady com-
plications as in the previous example. Unlike the case of a thin film, however, the
diffusion is not one-dimensional, but necks down to pass through the orifice, as shown
in Figure 3.5-2. Because the film is extremely thin, there is no concentration gradient in
the orifice itself.
Calculate the steady state flux through this orifice.

Solution We first note that in the z-direction, the concentration changes
going into the orifice mirror those going out of the orifice. We thus calculate the flux
from one volume at concentration ¢, to the orifice itself, taken to be a sink at concen-
tration ¢; = 0. We then will recognize that the flux we want will just be half that which we
have calculated.
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Cipat z=—oeo

Cijat z= +oo

Fig. 3.5-2. Diffusion through an orifice. The diffusing solute necks down to pass through a
circular hole.

For this problem, diffusion is best described in terms of cylindrical coordinates, given
as Eq. B in Table 3.4-2. There is no flow, no change with time, no reaction, and no
angular variation, so this solute mass balance becomes

D 2 [ 0 ey
=T %)

This is subject to the boundary conditions

z=0, r=R, c1=0

dCl
r>R, —=0
dz
z=0, r=oo, c]1 = C10
Z =90, all r, 1 = C10

The concentration profile for this problem is given by (Crank, p. 43)

\/% [(r2 +27 - Rz)} - {(ﬁ +27 - R2)2+ 422R2}

The concentration gradient at the orifice itself is also given

= 1 2t ;
Cc1 = Clo —; an 12

6c1 2610

oz =0 a vV R -/
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where r < Ris within the orifice itself. To find the total flux J;, we must integrate over the
entire surface of the orifice

[ (o

= —4DR61()

J1

-7()) rdrd0

The flux is negative because it is in the (—z) direction. The flux per orifice area j; is

. J1 - 4D61()
Jl*nsz R

As the pore becomes smaller, the flux per area becomes larger, though the total amount
becomes smaller. Finally, the flux in and out of an orifice is

2DC10
TR

Ji=-—

The flux into and out of the orifice is just half that into the orifice.

This example has two characteristics which are worth noting. First, while the problem
is carefully solved in the literature, the result given (the concentration profile) is not the
result we seek (the flux). This is often the case. The literature will reduce our mathemat-
ical burden, but it will not supply exactly what we want.

The second characteristic of this result is its strong parallel with the diffusion across
a thin film and diffusion away from a dissolving sphere. For diffusion across a thin film
of thickness / from a solution at ¢ to a pure solvent with ¢; = 0, we found in Equation
2.2-10 that

Dcig
[

For dissolution of a solute sphere of radius R which has a concentration at saturation of
ci(sat), in a solution of pure solvent, we found in Equation 2.4-25 that

Ji =

_ DCl()
1= R

These equations differ only from that derived for the orifice because of the factor (2/n),
a different characteristic length / or R, and a different direction for diffusion. Thus we
infer correctly that all steady-state diffusion problems will give very similar results. We
will use this inference to develop theories of mass transfer in more complicated geom-
etries, as detailed in Chapter 9.

Example 3.5-3: Effective diffusion coefficients in a porous catalyst pellet Imagine that we
have a porous catalyst pellet containing a dilute gaseous solution. We want to measure
the effective diffusion of solute by dropping this pellet into a small, well-stirred bath of
a solvent gas and measuring how fast the solute appears in this bath. How can we plot
these measurements to find the effective diffusion coefficient?

Solution Again, we begin with a mass balance, combine this with Fick’s law
and the appropriate boundary conditions, and then adapt the available mathematical



3.5 | A Guide to Previous Work 89

hoopla to find the result. The only feature different from before is that we must do so for
both the pellet and the bath.

With the pellet, a mass balance on a spherical shell or one taken from Table 3.4-2
yields

et _ Deir 8 50c;
ot 2o or

This implicitly lumps any tortuous multidimensional diffusion into an “effective” one-
dimensional diffusion coefficient Dg. This equation is subject to

t=0, allr, 1 = Clo
6c1
t > = —_— =
0, r=0, or 0

r= RO, 1= Cl(t)

where R is the pellet radius and C;(?) is the bath concentration, a function of time. It is
this coupling of the sphere and bath concentrations that makes this problem interesting.
‘We now make a mass balance on the solute in the bath of volume Vg:

qc oc
Vo<t = 4nRm|—gx = —4nR*Den'5 - |-
subject to
t=0, C;=0

This mass balance contains no diffusion term because the bath is well mixed.

Problems that are mathematically analogous to this one are discussed by Carslaw and
Jaeger (1986) and Crank (1975). The most useful result given is that for the concentra-
tion in the bath:

—Defftxzt
C10 (& n
Ci=———6Bcj X
'T 1+ B S BRE +9(B+1)
in which
3R,
tan(R()OCn) = 70(22
3+ BR o,
and
(4/3)nR’¢

where ¢ is the void fraction in the sphere.
The results are plotted in Fig. 3.5-3. To find the diffusion coefficient, we first calculate
Band Cy(1 + B)/cyo. We then read Degt/R? from the figure and calculate Deg.
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Fig. 3.5-3. Bath concentration versus time. A porous catalyst pellet containing a solute gas is
dropped into a stirred bath of solvent gas. The solute concentration in the bath measured versus
time provides a value for diffusion in the pellet. A similar graph for heat conduction is given by
Carslaw and Jaeger (1986, p. 241).

3.6 Conclusions

Diffusion in concentrated solutions is complicated by the convection caused by
the diffusion process. This convection must be handled with a more complete form of
Fick’s law, often including a reference velocity. The best reference velocity is the volume
average, for it is most frequently zero. The results in this chapter are valid for both
concentrated and dilute solutions; so they are more complete than the limits of dilute
solutions given in Chapter 2.

Nonetheless, those who study diffusion routinely think and work in terms of the
dilute-solution limit. You should also. The dilute limit is easier to understand and easier
to use for quick, qualitative calculations. It is the basis for finding how diffusion is
related to chemical reaction, dispersion, or mass transfer coefficients. You should be
aware of the problems that arise in nondilute cases; you should be able to work through
them if necessary; but you need not recall their details. Think dilute.

Questions for Discussion

How does the total flux n; differ from the diffusion flux j,?

When does the volume average velocity v* equal the mass average velocity v?

When does v equal the molar average velocity v*?

Is there convection in distillation?

Suggest a problem where the Fick’s law form of diffusion equation is easiest
to use.

Suggest one where the Maxwell-Stefan form of the diffusion equation is easiest.
7.  What is the physical significance of each term in the first equation in Table
3.4-27

R

o
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10.
11.
12.
13.

14.

Write the equations for steady-state diffusion across a flat membrane, across
the wall of a tube, and out of a spherical shell.

Show that these equations reduce to the same limit when the membrane, wall,
and shell are thin.

Heat and mass transfer are often said to be equivalent processes. What heat
transfer property corresponds to the diffusion coefficient?

What heat transfer property corresponds to chemical reaction?

What mass transfer variable corresponds to thermal radiation?

We usually expect that doubling the concentration difference in a single phase
will double the diffusion flux. When will this not be true?

Cooking times in minutes for a single brand of pasta are as follows

Capellini 2
Linguini 11
Fettucini 7
Spaghetti 12
Lasagna 9

Since all are made from the same flour, why are they different?

Problems

Dry ice is placed in the bottom of a capillary tube 6.2 cm long. Air is blown across the
top of the tube. Calculate the ratio of the total flux to the diffusion flux halfway up the
capillary for the following conditions: (a) A temperature of — 124 °C, where the vapor
pressure is 5 mm Hg. Answer: 1.00. (b) A temperature of — 86 °C, where the vapor
pressure is 400 mm Hg. Answer: 1.45.

A gas-oil feedstock is irreversibly and very rapidly cracked on a heated metal plate in an
experimental reactor. The cracking reduces the molecular weight by an average factor
of three. Calculate the rate of this process, assuming that the gas oil diffuses through
a thin unstirred film of thickness / near the plate. Note that the reagent must be
constantly diffusing against product moving away from the plate. Compare this rate
with that for diffusion through a thin film and with evaporation through a stagnant
solvent.

Imagine a long tube partially filled with liquid benzene at 60 °C. Beginning at time
zero, the benzene evaporates into the initially pure air with a diffusion coefficient of
about 0.104 cm?/sec. How fast does the liquid—vapor interface move with time?
Answer: 4 - 107* cm/sec at 1 second.

One interesting membrane reactor uses a homogeneous catalyst that cannot pass
through an ultrafiltration membrane. Reagents flow continuously toward the mem-
brane, but the catalyst is injected only at the start of the experiment. It forms the

> Products
—> moving
at v/

Reagents —>
moving —>
at vo

e

Catalyst Membrane

concentration
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5.

concentration profile shown above. If the catalyst injected per membrane area is M/ A4,
find the concentration profile of the catalyst.

The diffusion coefficient relative to the volume average velocity is defined by

_jl = DVC[
That relative to the molar average velocity is defined by
—j] = D*cVx,

Show that the diffusion coefficients in these two definitions are equal, even if the molar
concentration ¢ is not constant.

Imagine a thick spherical shell of a relatively impermeable polymer. Inside the shell, at
radial positions less than R;,, there is a drug solution at ¢; (sat), kept constant by the
presence of crystals of solid drug. This inside solution is well mixed by the relatively
rapid diffusion. Outside the shell, at radial positions greater than R, the drug
concentration is always essentially zero.

(a) Calculate the drug’s flux out of the spherical shell using the Fick’s law description
of diffusion.

(b) Calculate this flux using the Maxwell-Stefan description of diffusion.

(c) Implicitly, we have assumed a binary form of diffusion equation, i.e., we
have assumed drug (species ““1°’) diffusing through the polymer shell (species
©“2”). In fact, water (species ““3”") will also diffuse through this shell, from the
outside into the shell. Thus we are dealing with a ternary solution, to be dis-
cussed in detail in Chapter 7. Anticipating this discussion, describe how drug
diffusion should be described, both with Fick’s law and with the Maxwell—
Stefan equations.

You want to measure the permeability of an artificial membrane to oxygen. Such
membranes are often suggested as a possible means of separating air. To make this
measurement, you clamp a section of the membrane in the apparatus shown below.
The membrane section is 3 cm in diameter and only 35 mm thick. It is attached to
a backing layer that gives it mechanical stability, but it means that only 17.3% of the
membrane surface is available for diffusion. To begin an experiment, the gas volume of
68 cm? is evacuated to less than 107> torr (1 torr = 1 mm Hg.) The pressure is then
measured and found to be

p(mmHg) =88(r — 2.3)

where 7 is the total elapsed time in seconds. Find the Henry’s law coefficient and the
diffusion coefficient for oxygen in this membrane. Answer: D = 9-1077 cm?/sec.

Pressure
Membrane~_, gauge
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8.

10.

11.

12.

13.

Kerkhof and Geboers in their paper “Toward a Unified Theory of Isotropic Molecular
Transport Phenomena” (4IChE Journal (2005), 51, 81) give the following equation:

o " traler o2

dcy 3 DO ( 661) e
Please answer the following: (a) What physical system is implied? (b) What is the
differential volume on which this mass balance is written? (¢) What is the meaning
of each of the four terms?

You want to measure the effectiveness of a porous solid desiccant. To do so, you attach
a slab of the desiccant 0.5 X 20 X 20 cm to a thin wire. You then attach the wire to an
analytical balance and suspend the slab in a chamber at 45 °C and twenty percent

Time(min) Slab weight(g)
0 166.25

10 167.03

20 167.59

30 168.07

40 168.48

50 168.88

60 169.25

relative humidity. You find that the slab weight varies with time as follows:
Find the permeability of water vapor in this desiccant. You will find that the data fit
neither a finite slab nor an infinite slab. One good alternative model is to postulate
pores in the slab. Answer: 3.5 cm?/sec.

Copper dispersed in porous low-grade ore pellets 0.2 cm in diameter is leached with
4-M H,SO,. The copper dissolves quickly, but diffuses slowly out of the pellets.
Because the ore is low grade, the porosity can be assumed constant, and the copper
concentration will be low in the acid outside of the pellets. Estimate how long it will
take to remove eighty percent of the copper if the effective diffusion coefficient of the
copper is 2.5 - 107% cm?/sec. Answer: 10 min.

A large polymer slab initially containing traces of solvent is exposed to excess fresh air
to allow solvent to escape. Find the concentration of solvent in the slab as a function of
position and time. Assume that the diffusion coefficient is a constant, but discuss how
you might expect it to vary. Try to solve this problem yourself, but compare your
answers with those in the literature.

One method of studying diffusion in liquids used by Thomas Graham is that shown in
Fig. 2.1-2(b). It consists of a small bottle of solution immersed in a large bath of
solvent. Calculate the solute concentration in the bath as a function of time, and show
how this variation can be used to determine the diffusion coefficient.

Wool is dyed by dropping it into a dyebath that contains dye at a concentration C;y and
that has a volume V. The dye diffuses into the wool, so that its concentration in the
dyebath drops with time. You can measure this concentration change. You can also
measure the equilibrium uptake of the dye. How can you use measurements of this
change at small increments of time to find the diffusion coefficient of the dye in the wool?
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14.

15.

16.

Sows love to dig truffles, the mushroom that shows up as a condiment in French
cooking. Apparently, sows do this because they smell in the truffles the sex attractant
or pheromone 5a-androst-16-en-3-ol, which is secreted by boars and by human males
[R. Claus, H. O. Hoppen, and H. Karg, Experimentia, 37, 1178 (1981); M. Kirk-Smith,
D. A. Booth, D. Carroll, and P. Davies, Res. Comm. Psychol. Psychiat. Behav., 3, 379
(1978)]. Imagine that the truffle is a point source located a distance d below the surface
of the ground. Calculate the flux of pheromone leaving the ground above.

Imagine that two immiscible substances containing a common dilute solute are
brought into contact. Solute then diffuses from one of these substances into the other.
Calculate the concentration profiles of the solute in each of the substances, assuming
that each substance behaves as a semi-infinite slab. (S. Gehrke)

Find the steady-state flux away from a rapidly dissolving drop that produces a concen-
trated solution. Compare your result with that found for a sparingly soluble sphere and
with the various results for diffusion across a stagnant film.

Further Reading

Arnold, J. H. (1944). Transactions of the American Institute of Chemical Engineers, 40, 361.
Carslaw, H. S. and Jaeger, J. C. (1986). The Conduction of Heat in Solids, 2nd ed. Oxford:

Clarendon Press.

Crank, J. (1975). The Mathematics of Diffusion, 2nd ed. Oxford: Clarendon Press.
Levich, V. (1962). Physicochemical Hydrodynamics. New York: Prentice-Hall.

Maxwell, J. C. (1860). Philosophical Magazine, 19, 19; 20, 21.

Maxwell, J. C. (1952). Scientific Papers Vol. 2, ed. W. D. Niven, p. 629. New York: Dover.



CHAPTER 4

Dispersion

All thoughtful persons are justifiably concerned with the presence of chemicals
in the environment. In some cases, chemicals like pesticides and perfumes are deliber-
ately released; in other cases, chemicals like hydrogen sulfide and carbon dioxide are
discharged as the result of manufacturing; in still others, chemicals like styrene and
dioxin can be accidentally spilled. In all cases, everyone worries about the long-term
effects of such chemical challenges.

Public concern has led to legislation at federal, state, and local levels. This legislation
often is phrased in terms of regulation of chemical concentrations. These regulations
take different forms. The maximum allowable concentration may be averaged over a day
or over a year. The acid concentration (as pH) can be held within a particular range, or
the number and size of particles going up a stack can be restricted. Those working with
chemicals must be able to anticipate whether or not these chemicals can be adequately
dispersed. They must consider the problems involved in locating a chemical plant on the
shore of a lake or at the mouth of a river.

The theory for dispersion of these chemicals is introduced in this short chapter.
As might be expected, dispersion is related to diffusion. The relation exists on two
very different levels. First, dispersion is a form of mixing, and so on a molecular level
it involves diffusion of molecules. This molecular dispersion is not understood in
detail, but it takes place so rapidly that it is rarely the most important feature of the
process. Second, dispersion and diffusion are described with very similar mathemat-
ics. This means that analyses developed for diffusion can often correlate results for
dispersion.

In Section 4.1, we give a simple example of dispersion to illustrate the similarities to
and differences from diffusion. We discuss dispersion coefficients for environmental and
industrial situations in Section 4.2. In Section 4.3, we discuss how diffusion and flow
interact to produce dispersion in turbulent flow. In Section 4.4, we make similar calcu-
lations for laminant flow. Overall, the material is presented at an elementary level, partly
because it is unevenly understood at any other level and partly because more detail seems
outside the scope of this book.

4.1 Dispersion From a Stack

Everyone has seen smoke pouring from a smokestack. On a cold, clear day, the
plume will climb high into the sky, spreading and fading. In a high wind, the plume will
be quickly dispersed, almost as if it never existed.

We want to explain these differences in dispersion so that we can anticipate the effects
of wind, weather, and different amounts of smoke. To do so, we need to model the
dispersion. Such a model should recognize the characteristics of the smoke as it moves
downwind. For example, we might find characteristics like those in Fig. 4.1-1 for a plume

95
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Concentration

Fig. 4.1-1. Dispersion of smoke. Smoke discharged continuously from a stack has an average
concentration that is approximately Gaussian. This shape can be predicted from a diffusion
theory. However, the smoke is dispersed much more rapidly than would be expected from
diffusion coefficients.

in a 15-km/hr wind. The smoke concentration has roughly a Gaussian shape and has
a width of about 1 km when it is 10 km downwind.

Before we begin to model this plume, we should consider what we mean by “smoke
concentration.” Such a concentration is clearly some arbitrary average over all compo-
nents, be they present as molecules or as small particles. Such a concentration may affect
people in different ways. For example, if the smoke has an odor, doubling the smoke
concentration will make the odor less than twice as strong. If the smoke contains poi-
sons, doubling its concentration may more than double its toxicity. We should remem-
ber to consider the effects of smoke concentration carefully.

The obvious model for a plume like that in Fig. 4.1-1 is that developed in Section 2.4
for the one-dimensional decay from a pulse. In this model, we assume that x is the wind
direction and z is the horizontal direction normal to both the wind and ground. As a first
approximation, we assume that the smoke is well mixed in the vertical y direction. On
this basis, we can extend the solution given in Section 2.4 to the case of a steady release of
smoke S:

2
S 4 /4D ppt

)=
4AnDyppX

(4.1-1)
where ¢, is an average smoke concentration, with dimensions M/L’; S is the smoke
release rate, M/t; and Dy, is an apparent diffusion coefficient for the smoke.

This model does a good job of predicting the general shape of the smoke plume.
It predicts that the maximum smoke concentration (S/47D,,,X) does drop as x increases.
It does predict that the smoke spreads out in a roughly Gaussian profile, just as is

observed. Thus diffusion theory apparently can be applied successfully to the release
of pollutants.
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However, this model is a disaster at predicting how much the plume spreads. From
observation, we know that it actually has spread about 1 kilometer. From the arguments
in Section 2.4, we know that the width of this peak / should be about

= 4Dt (4.1-2)

In gases, diffusion coefficients are about 0.1 cm?/sec, and the time is about 10 km/(15 km/
hr), or 40 minutes. On this basis, / should be about 30 centimeters, 3,000 times less than the
observed width of 1 kilometer. A factor of 3,000 is a big error, even for engineers.

The explanation for this major discrepancy is the wind. In previous chapters, mixing
occurred by diffusion caused by molecular motion. Here, mixing occurs as the wind
blows the plume over woods, around hills, and across lakes. This mixing is more rapid
than diffusion because of the flow.

We now are in something of a quandary. We have a good diffusion model in Eq. 4.1-1
that explains most of the qualitative features of the plume, but this model grossly under-
predicts the effects. To resolve this, we assume that mass transport in the plume is
described by the flux equation

—J :D%JFE% (4.1-3)
where D is the actual diffusion coefficient; and E is a dispersion coefficient caused by the
wind. In the smoke-stack case, the diffusion term in this equation must be small relative
to the dispersion term. However, the mass balance will have the same mathematical form
as before, subject to the same boundary conditions as before. Thus it will have the same
mathematical solution as Equation 4.1-1, but with the new dispersion coefficient E
replacing the diffusion coefficient D.

The new dispersion coefficient must usually be measured experimentally. Like the
diffusion coefficient, the dispersion coefficient has dimensions of (L?/f). Unlike the
diffusion coefficient, the dispersion coefficient is largely independent of chemistry. It
will not be a strong function of molecular weight or chemical structure, but will have
close to the same values for carbon monoxide, styrene, and smoke. Unlike the diffusion
coefficient, the dispersion coefficient will be a strong function of position. It will have
different values in different directions. Thus dispersion may look like diffusion, and it
may be described by the same kinds of equations, but it is a different effect.

The foregoing arguments may strike you as silly, a casual invention with a veneer of
equations. After all, diffusion is based on a “law.” To try to describe dispersion with
a diffusion equation seems like cheating.

Nonetheless, this is how dispersion is described. In the rest of this chapter, we explore
the details of this description more carefully. These details often lead to less accurate
predictions than those possible for diffusion. However, dispersion can be very impor-
tant, so that even an approximate solution can have considerable practical value.

4.2 Dispersion Coefficients

Dispersion coefficients are very different for turbulent and laminar flow. For
turbulent flow, we expect that the dispersion coefficient should be a function of the fluid’s
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velocity v and some characteristic length /. On dimensional grounds, we then expect that
the Péclet number for dispersion is

)
Ev, = constant (4.2-1)

This turns out to be approximately true for turbulent dispersion in pipelines of diameter
d, for which

F=2 (4.2-2)

This result implies that dispersion is not a function of the diffusion coefficient D, which is
verified by experiment. However, it also says that E is proportional to v. This is only
approximately true; in fact, F increases with v to a power slightly greater than one.

In contrast, the result for laminar flow on pipelines found both from theory and
experiment is

E D dv

& dv 192D (4.2-3)

This sensibly says that at very low flow, the dispersion coefficient equals the diffu-
sion coefficient. However, at most nonzero flows, the second term on the right-hand
side of Equation 4.2-3 is dominant, and E becomes proportional to the flow v. Under
these circumstances, E is inversely proportional to D. For laminar flow, a small
diffusion coefficient results in large dispersion, and a large diffusion coefficient
produces small dispersion. Why this counterintuitive result is true is explained in
Section 4.4.

Other geometries combine the results of laminar and turbulent flow. In general, they
suggest that E varies linearly with velocity v and becomes independent of D at high flow.
For example, dispersion coefficients in packed beds are most often presented as the sum
of the contributions of diffusion and flow:

E = pD + Pydv (4.2-4)

where f; and 5, are constants. While f; is sometimes described as the reciprocal of
a tortuosity, its common value of around 0.7 is inconsistent with more direct experimen-
tal measures of this quantity. The common values of 5, cluster around 0.5, especially for
the dispersion of gases in beds of larger particles. Values of f3, rise for particles smaller
than 0.2 cm, possibly because of polydisperse diameters. Some data for packed beds,
presented in dimensionless form, are shown in Figure 4.2-1.

The quantity (dv/D) is the common Péclet number for diffusion, which in analytical
chemistry is usually called the “reduced velocity.” For fast flows, dispersion in gases and
liquids is similar, but at lower flows, dispersion in liquids is larger.

We can use these concepts of dispersion to describe a variety of problems. In this
description, we will normally know that our data have the form of diffusion from
a pulse, or of diffusion into a semi-infinite slab. We will try to write equations involving
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Fig. 4.2-1. Axial dispersion in packed beds. Again, at high flow, the Péeclet number is about
constant.

a dispersion coefficient that parallel those which use a diffusion coefficient. When I first
tried to solve problems like this, I felt that I was somehow stealing from the analysis of
diffusion. I was stealing, but in the same sense Fick stole Fourier’s description of heat
conduction in order to originally describe diffusion. Such ‘“‘stealing,” which is an
attempt at understanding, often supplies new physical insight. Try it yourself by work-
ing the following examples, and you can get a better understanding of both diffusion
and dispersion.

Example 4.2-1: Cyanide dispersion A metal stamping company has inadvertently
spilled cyanide-containing waste into a small creek. Behaving responsibly, they notified
the local environmental authorities who arrived promptly to analyze the creek water.
These authorities find that the concentration 2 km downstream has a maximum of 860
ppm and a concentration 50 m from the maximum of 410 ppm. The stream is flowing at
0.6 km/hr. (a) What dispersion coefficient is implied by these results? How does it
compare with the diffusion coefficient? (b) What will the maximum concentration be
15 km downstream?

Solution We begin our analysis with a mass balance on the differential slice of
creek. However, we choose this slice as located near the maximum concentration but
moving at the average flow v. Thus

mass in — that out

mass o
[ . } = by diffusion
accumulation . .
and dispersion
fa_ 0,
or oz

where ¢ is the cyanide concentration and j, is the flux relative to the flow. Note that the
position z is the actual location minus (vt), i.e., it is the position relative to the moving
fluid. Combining with Equation 4.1-2,

acl _ 6261

o o7
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We have assumed the dispersion coefficient £ is much larger than the diffusion coeffi-
cient D. This mass balance is subject to the conditions

t=0, allz, c1=(M/A)(z)

Z = >, c; =0
661

=0 — =0

R

The first condition describes the pulse caused by the spill. The second implies that the
creek contained a negligible concentration of cyanide before the spill. The third condi-
tion says that the concentration is largest when the moving coordinate z is zero. We are
now ready to solve the problem.

(a) Dispersion coefficient. The mass balance and its constraints are the same as those
for diffusion near a pulse, which was discussed in Section 2.4. Because the mathematical
description is the same, the solution is also the same but with D replaced by E:

2
o = [ M / A ] e—m
VArE!
Note that the quantity in square brackets is the maximum concentration; remember that z
is the distance along the river away from that maximum. Thus inserting the values given

(80m)?
4E( —2km ) 3600sec
410 ppm = 860 ppm e 0.6 km /hr hr

E = 700 cm?/sec

This is much greater than the diffusion coefficient, which is about 10~ cm?/sec. This large
difference underscores the difference between the physical origins of diffusion and dispersion.
Diffusion depends on molecular motion, but dispersion depends on velocity fluctuations.

b) Maximum concentration. This concentration is easily found from a ratio of con-
centrations

ci(maxat 1) 0
cl(maxat [1) o H

ci(max at 15km)  /2km
860 ppm ~ V15km

¢y(max at 15 km) = 314 ppm

The solution to pollution is dilution.

Example 4.2-2: Dispersion in a pipeline We have a 10-cm pipeline 3 km long for moving
reagent gases at 5 m/sec from our wharf to our plant. We want to use this pipeline for
different gases, one after the other. How much will the gases mix?

Solution Imagine that we initially have the pipe filled with one gas and then
we suddenly start to pump in a second gas. Because the pipe has a much greater length



4.3 ) Dispersion in Turbulent Flow 101

than diameter, we can expect its contents to be well mixed radially. However, we do
expect that there will be significant concentration changes in the axial direction. To
describe these, we choose a coordinate system originally located at the initial interface
between the gases but moving with the average gas velocity. We then write a mass
balance around this moving point

de1_ g0
o o

This mass balance is subject to the conditions

t=0, z>0, ¢ =cC
t>0, z=0, c1 = Clo

Z=®, €l = Cl»

in which ¢jy is the average concentration between the gases. The derivation of
these relations is a complete parallel to that in Section 2.3. Indeed, the entire problem
is mathematically identical with this earlier one, although the diffusion coefficient
D used before is now replaced with the dispersion coefficient E. The results are, by
analogy,

1 —clo

z
=erf
Cleo — €10 VAEt

The value for E is estimated from Equation 4.2-2

1
E= EdV
E = 0.5(10cm)(500 cm/sec) = 2, 500 cm?/sec

The concentration change is significant when

z = VA4Et

= \/4 (2500 cmz/sec) [(3 km) /500 cm/sec)](1,000 m/km)(1 m/100 cm)
=24m

About one percent of the pipeline will contain mixed gases.

4.3 Dispersion in Turbulent Flow

We now recognize that dispersion can be described by the mathematics of
diffusion but that it requires flow. When such flow exists, dispersion is much faster than
diffusion. It has a different physical origin than the small-scale, Brownian motion of
molecules. Interestingly, its physical origin is completely different for dispersion in
turbulent flow than in laminar flow.
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In this section we discuss the origins of dispersion in turbulent flow. This discussion is
especially relevant to problems common in environmental engineering, problems like
pollutant dilution in rivers or the spreading of plumes. Not surprisingly, the origin of the
effect turns out to be a consequence of turbulent fluctuations in velocity and concentra-
tion. The coupling between these fluctuations is the cause of dispersion. In more in-
formal terms, gusts and eddies cause dispersion.

To show how turbulence affects dispersion, we return to the mass balances developed
in general terms in Section 3.4. For example, for flow described in Cartesian coordinates,
we have from Table 3.4-2:

2 2 2
% = D(Z;—i—%}?—k%;) - %clvx — %clv}, — %clvz —Kci6) (4.3-1)
The left-hand side of this equation is the accumulation within a differential volume. The
first three terms on the right-hand side describe the amount that enters by diffusion
minus the amount that leaves by diffusion. The next three describe the same thing for
convection. The last term on the right-hand side is the amount of solute consumed by
a second-order chemical reaction, included for reasons that will become evident later.
The quantity x is the chemical rate constant of this reaction.

In turbulent flow, we expect both velocity and concentration to fluctuate. For the
smoke plume, the velocity fluctuations are the wind gusts, and the concentration fluc-
tuations can be reflected as sudden changes in odor. To rewrite this equation to include
these fluctuations, we define

g =¢1 +cf (4.3-2)

where ¢] is the fluctuation and ¢, is the average value:

C1 :1/ cdt (4'3'3)
0

T

Note that the time average of ¢j is zero. By similar definitions,
Vy = Yy + vy (4.3-4)

where vy is the fluctuation, and

Vy = l/ de[ (43-5)
0

T
Again, the average of the fluctuations is zero. Definitions for v} and v, are similar.

We now insert these definitions into Eq. 4.3-1 and average this equation over the short
time interval 7. In some cases, such a substitution is dull:

1 [ & Do [° e
(0528, e
T Jo ox T0ox" Jo Ox
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In other cases, it is intriguing:

1 [ K [*
f/ we,eydi = f/ (@ + ) (@ + ch)dr
TJo TJo

T

L A i,

:;/ (C182 + €1¢h + cier + cich)dt
0

=K [E@r 1040 +/ (ciCé)dt]
T 0

= k(162 + c{cd) (4.3-6)

where the new term ¢’ c5 represents the time average of the product of the fluctuations. In
practice, this new term may be almost as large as the term ¢, ¢,, but of opposite sign. In
a similar fashion,

/avcldt vclJr—a—/vcl

0 fo—
= Vi1 + o vecl (4.3-7)
Again, we have the prospect of coupled fluctuations, analogous to the Reynolds stresses

that are basic to theories of turbulent flow.
When we combine these averaged terms, we get the following mass balance:

oe _ e +62El +azal o L9 9 sl )
i et — | = [ =—V,C v,C v-C
ot oxr ot o ox ! oy’ A

0o— 0 0
. /\_‘/ T == NN 4.3-
(Tﬁxv' c1+a vc1+a vc1> KCi1Cy — KC[Ch (4.3-8)

Most of the terms are like those in Eq. 4.3-1, and they have the same physical signifi-
cance. The underlined terms are new. The last one deals with changes in reaction rate
effected by the fluctuations. The other three describe the mixing caused by turbulent
flow, that is, by the dispersion. They are the focus of this section.

We next remember the origin of the diffusion terms, that

o’z -
DS == (4.3-9)
or, more basically,
- ocy
iy = —D—— 4.3-10
Jix ax ( )
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By analogy, because the flux vic{ has a physical meaning similar to the diffusion flux j;,
we may define

¥ci = —E, —x (4.3-11)

Definitions for other directions are made in similar ways. This always seems intellectu-
ally arrogant to me because I know that we define E., E,, and E. so that we will get
results that are mathematically parallel to diffusion. It seems a rationalization, jerry-
built on top of diffusion theory. It is all these things. It also is the best first approximation
of turbulent dispersion, the basis from which other theories proceed.

4.4 Dispersion in Laminar Flow: Taylor Dispersion

In earlier sections of this chapter we saw how components in smoke plumes and
pipelines sometimes spread much more rapidly than expected. The concentrations of
these component pulses could be described by diffusion equations but by using new
dispersion coefficients. In turbulent flow, these dispersion coefficients were the result
of coupled fluctuations of concentration and velocity.

Dispersion can also occur in laminar flow but for completely different reasons. This is
not surprising because laminar flow has no sudden concentration or velocity fluctua-
tions. In this section we discuss one example of dispersion in laminar flow. This leads to
an accurate prediction of the dispersion coefficient. This particular example is so in-
structive that it is worth including in detail.

The specific example concerns the fate of a sharp pulse of solute injected into a long,
thin tube filled with solvent flowing in laminar flow (Fig. 4.4-1). As the solute pulse
moves through the tube, it is dispersed. We want to calculate the concentration profile
resulting from this dispersion.

Because the complete analysis of this problem is complicated, we first give the results
and then the derivation. The concentration of the pulse averaged across the tube’s cross-
section will be shown to be

2
g = M/n R —(z—vi)’ /4Et (44-1)
Van Et '

in which M is the total solute in the pulse, R is the tube’s radius, z is the distance along the
tube, vis the fluid’s velocity, and ¢ is the time. This equation is a close parallel to Eq. 2.4-14,
except that the diffusion coefficient D is replaced by the dispersion coefficient E. This can
be shown explicitly to be

_ (Rv)’
"~ 48D

(4.4-2)

Note that E depends inversely on the diffusion coefficient.

This fascinating result indicates that rapid diffusion leads to small dispersion and that
slow diffusion produces large dispersion (Fig. 4.4-1). The reasons why this occurs are
sketched in Fig. 4.4-2. The initial pulse is sharp, like that shown in (a). The laminar flow
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Fig. 4.4-1. Taylor dispersion. In this case, solvent is passing in steady laminar flow through

a long, thin tube. A pulse of solute is injected near the tube’s entrance. This pulse is dispersed by
the solvent flow, as shown.

r[? j}

(a) (b) ()
Fig. 4.4-2. Causes of Taylor dispersion. In Taylor dispersion, fast diffusion unexpectedly
produces little dispersion, and vice versa. The reasons for this are shown here. The initial solute
pulse (a) is deformed by flow (b). In fast-flowing regions, diffusion occurs outward, and in the
slow flow near the wall, diffusion occurs inward. Thus diffusion in the radial direction inhibits
dispersion caused by axial flow (c).

quickly distorts the pulse, as in (b). If there is no diffusion, the distortion continues
unabated, and the pulse is widely dispersed. If, instead, there is rapid diffusion, material
in the center of the tube tends to diffuse outward, into a region of solvent that is moving
more slowly. Simultaneously, material that is left behind near the tube walls tends to
diffuse toward the center, into a region of faster flow. This radial diffusion thus inhibits
the dispersion induced by axial convection.

4.4.1 Analyzing Taylor Dispersion

To apply these ideas quantitatively, we again write a mass balance, add Fick’s
law, and manipulate the result mathematically. In this instance, I am reminded of
a cartoon by Thomas Nast, showing a virtuous soul laden with debt and responsibility,
staggering along a tortuous path. To the left of the path, the ground drops away into
ignorance; to the right, the ground disappears into chaos. In going through this next
analysis, you may feel like that poor soul, treading a very narrow path.

We begin this analysis with three assumptions:

(1) The solutions are dilute. This is assumed true even for the initial pulse.
(2) The laminar flow is unchanged by the pulse. This means that the velocity varies
only with radius.
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(3) Mass transport is by radial diffusion and axial convection. Other transport
mechanisms are negligible.

The most important assumption is the last one, for it separates diffusion and convection.
It is accurate if

72 (Lf) > 1 (443)
R™v

where L is the tube length. This condition is valid for long, thin tubes.
We now make a mass balance on the washer-shaped element shown in the inset in Fig.
4.4-1 to find

oc) 10, . 0

o v (rj1) — 5 (e1v:) (4.4-4)

The velocity v. is the laminar result and so is independent of z:

r 2
v =2y {1 - (%) } (44-5)
When Eqgs. 4.4-4 and 4.4-5 are combined with Fick’s law,
O0c; DO dc \2] Ocy
or  ror or 2‘){1 Bl (R) } 0z (4.4-6)

This is subject to the conditions

M
t=0, all z;, ¢ = (2) d(z) (4.4-7)
R
t>0, r=R, Oc/or=0 (4.4-8)
r=0, 0Oc/or=0 (4.4-9)

The initial condition is like that for the decay of a pulse.
We next define the new coordinates
r
S 4.4-1
n=g (4.4-10)

{=(z—1)/Ro (4.4-11)

In terms of these quantities, Eq. 4.4-6 becomes

D3 [ dc\ I 2\ 0c
0 o (11 611) = 2VR(2 n ) ot (4.4-12)

One solution to Eq. 4.4-12 that satisfies Eq. 4.4-8 is

1|vR aC] 2 1 4

G=Cp=0ty

4
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However, we want not the local concentration but the average across the tube:

_ b
TR’

R
a(z) / 2nrey (r, z)dr
0

1
= 2/ neidn (4.4-14)
0
Because of the pulse, the radial variations of concentration are small relative to the axial
ones, o

ocy B ocy
67C = (4.4-15)

We now can write a new overall mass balance in terms of this average concentration:

ocy . oJ1

o~ R (4.4-16)
in which Jj is the averaged flux in the direction of flow
1 R
Ji = W/o 2rr(v, — v) (cl — ¢ |,1:0)dr (4.4-17)

Equation 4.4-16 can be written as

661 o 66‘1 o a(]l/\/)
o(ev/R) ot &

-2 {4 /0 ' ,7(%_,12)6@1] (4.4-18)

Combining this result with Eqgs. 4.4-13 and 4.4-14, we find, after some work, that

ocy . VR 6251

The quantity in parentheses is a Péclet number, giving the relative importance of axial
convection and radial diffusion. The conditions are now

1=0, all{ o = %5(«:) (4.4-20)
TR

>0, (=0, =0 (4.4-21)

(=0, g (4.4-22)
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Equations 4.4-19 to 4.4-22 for Taylor dispersion have exactly the same mathematical
form as those for the decay of a pulse in Section 2.4. As a result, they must have the same
solution. This solution is that given in Eq. 4.4-1.

4.4.2 Chromatography

Taylor dispersion has an important extension in chromatography. Chromatog-
raphy is a separation method often used for chemical analysis of complex mixtures. In
this analysis, a pulse of mixed solutes is injected into one end of a packed bed of
absorbent (the stationary phase) and washed through the bed with solvent (the mobile
phase). Because the solutes are absorbed to different degrees, they are washed out of the
bed (eluted) at different times.

The analysis of chromatography is usually empirical, a consequence of the normally
complex geometry of the absorbent. One special case where analysis is more exact
involves a solute pulse injected into fluid in laminar flow in a cylindrical tube, just like
the solute pulse shown in Fig. 4.4-1. Now, however, the walls of the tube are coated with
a thin film of absorbent. The injected solute is retarded by absorption in that thin layer.

Our goal is to determine the shape of the pulse eluted from this absorbent-coated
tube. To do so, we first recognize that the tube’s contents are subject to the mass
balance

dcr 10 0c 62c1 r\2| 0cy

This mass balance is like that in Eq. 4.4-6 except that we have not neglected axial
diffusion. It is subject to the conditions:

M
t=0, allz, €] =——>0(2) (4.4-24)
nR
t>0, r=0, 0c/or=0 (4.4-25)
r= Ry, ¢t = Hey (44-26)
60’1 601
D—=D— 4.4-27
or or ( )

where ¢} and D’ are the concentration and the diffusion coefficient of the solute in the
absorbent layer and H is an equilibrium constant between the tube’s contents and the
absorbent. Eqgs. 4.4-24 and 4.4-25 are the same as Eqs. 4.4-7 and 4.4-9, respectively, but
Eqgs. 4.4-26 and 4.4-27 are new, a reflection of the interaction between the tube’s contents
and the absorbent. Because of this interaction, we need a mass balance on the absorbent
as well:

o D'd dc

o ror or (4.4-28)
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Note that we are neglecting both convection and axial diffusion in the stationary absor-
bent. This mass balance in the absorbent is subject to the following conditions:

t=0, allr, =0 (4.4-29)

oci

t >0, r=R+to, —
7’ +7 aZ

=0 (4.4-30)
where 0 is the thickness of the absorbent layer.

The most useful solution to this extended form of Taylor dispersion is the limit where
the absorbed layer is thin. This limit, called the Golay equation, is

& = \/“/T”_ER;OC 4E1, (4.4-31)
where

to = % (14K (4.4-32)

kK = HS/R (4.4-33)

and where the dispersion coefficient £ is now more complex

/ n2 o ’
£ D(14¥) L ROP <1+6k +11(K) >+<bz(v)2)< K ) 4a3d)

48D 1+ K 3D 1+Kk

The physical significance of the terms in Eqs. 4.4-32 and 4.4-33 is straightforward: The
retention time ¢, is the average residence time of the solute, and the capacity factor k' is
the equilibrium ratio of solute held in the absorbent to that inside the tube itself.

However, the physical significance of the dispersion coefficient £ given by Eq. 4.4-34
is by far the most interesting. The first term on the right-hand side of this equation
represents the dispersion caused by axial diffusion. Note that a small diffusion coeffi-
cient contributes little to axial dispersion, and a large diffusion coefficient contributes
more. While this effect is neglected in the analysis leading to Eq. 4.4-2, it can be signif-
icant in chromatography and so is included here.

The second term on the right-hand side of Eq. 4.4-34 is due to Taylor dispersion, i.e.,
to coupled radial diffusion and axial convection. The dispersion from this source, which
is usually much larger than that caused by axial diffusion, is inversely proportional to the
diffusion coefficient. Thus a small diffusion coefficient contributes a lot to dispersion and
a large diffusion coefficient contributes less. This source of dispersion also depends on
the square of the tube’s radius, so making the tube 10 times smaller can reduce dispersion
100 times. This is why chromatography often uses absorbents with small channels.

The third term on the right-hand side of Eq. 4.4-34 represents dispersion caused by
retardation in the absorbent layer. If diffusion in the absorbent is very fast, the absorbent
won’t affect the dispersion much; if the layer is very thin (6/R << 1), the absorbent won’t
have much effect on dispersion either. Remember that the absorbent may not directly affect
dispersion but will still indirectly dominate the separation if &’ is much greater than one.
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We now can see from Eqs. 4.4-31 and 4.4-34 how chromatography can promise a good
separation and how this good separation can be compromised by dispersion. Remember
that in a chromatographic separation, a pulse of mixed solutes is injected at one end of
a packed column and then eluted out the other end by the mobile solvent phase. These
injected solutes will be eluted at different retention times 7, when their absorption is
different. The amount by which the retention times differ is largely controlled by the
difference in the capacity factors k'.

At the same time, the separation of these solutes can be compromised by dispersion. If
the dispersion coefficient E were near zero, then each solute would be eluted as a sharp
pulse. Because the dispersion coefficient is not zero, the solutes are eluted as broader
pulses. When these pulses overlap, our separation is compromised.

We can see how to reduce dispersion and aid our separation by considering the
various terms in Eq. 4.4-34. As a general rule, we can’t change the diffusion coefficients
much; we’re stuck with the physical properties of our solute and our absorbents. We can
use low velocities, which reduce Taylor dispersion and absorbent-caused dispersion. We
can use small channels — small values of R — though this often means large pressure
drops. We must recognize that even as v and R become very small, we will always have
dispersion from axial diffusion.

The cases of laminar flow in a straight tube are exceptions because we can calculate
the dispersion coefficient exactly. In some ways, they are like the friction factor for
laminar flow in a pipe, which also can be calculated explicitly. In general, we should
not expect such exact results, just as we do not expect to calculate a priori the friction
factors for laminar flow in packed beds or for turbulent flow in a pipe. We usually will be
forced to treat dispersion empirically.

4.5 Conclusions

This chapter discusses dispersion, an important effect caused by the coupling of
concentration differences and fluid flow. Dispersion frequently can be described by the
same mathematics used so effectively for diffusion; in this sense, this chapter represents
special cases of diffusion theory.

If you use the materials in this chapter, you should always remember that diffusion
and dispersion have very different physical origins and proceed at very different speeds.
Remembering this difference is especially important because some refer to both pro-
cesses as “‘diffusion.” Physicians speak of diffusion of drugs in the bloodstream, and
environmental engineers discuss diffusion of pollutants. Some of these processes may
include the narrower definition of molecular diffusion used in this book, but the process
dynamics cannot be predicted from diffusion theory alone. Be careful.

Questions for Discussion

1. What are the dimensions of the dispersion coefficient?

2. What is the difference between a diffusion coefficient and a dispersion
coefficient?

3. How will the maximum concentration in a stream vary with the distance
traveled?
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10.
I1.
12.

13.

Why is the dispersion coefficient in turbulent flow independent of the diffusion
coefficient?

Why does the dispersion coefficient in laminar flow depend inversely on the
diffusion coefficient?

How does the dispersion coefficient vary with viscosity?

In a packed bed, radial dispersion is usually much larger than axial dispersion.
Why?

At what velocity will dispersion in turbulent flow be smallest?

At what velocity will dispersion in laminar flow be smallest?

When in chromatography a solute is absorbed, how will its elution time change?
When in chromatography a solute is absorbed, how will its dispersion change?
What is the physical meaning of the capacity factor k’, defined by Equation
4.4-33?

What are the limits of the Golay equation (Equation 4.4-31) when the absorp-
tion is strong?

Problems

A dyeing plant is continuously discharging an aqueous waste saturated with xylene
into a river flowing at 0.16 m/sec. About 200 m downstream the maximum xylene
concentration is 130 ppm. Estimate the maximum value 2 km downstream.

You are pumping 1.7 kg/sec of a cold stream of monomer through 72 m of 2.5-cm-
diameter pipe to a reactor. At the entrance of the pipe, you inject 30 pulses per second
of catalyst with a small piston pump. When this stream reaches the reactor, the total
stream is quickly heated, and polymerization begins. The cold stream has a specific
gravity of 0.83 and a viscosity of 3.7 centipoises. How well will the catalyst be mixed by
flow through the pipe?

You are studying dispersion in a small air-lift fermentor. This fermentor is 1.6 m tall, with
a 10-cm diameter. Air and pure water are fed into the bottom at superficial velocities of
11 and 0.78 cm/sec; under these conditions the gas bubbles occupy 45% of the column
volume. You continuously add 15 cm?/min of 1-M NaCl solution near the top of the
column. You find by conductance that the salt concentration halfway down the col-
umn is 2.32-1073 M. What is the dispersion coefficient? Answer: 54 cm?/sec.

The best marathon in Minnesota is run by Grandma’s, a reformed brothel in Duluth.
In the 1981 race, 3,202 persons finished. One-quarter of the runners finished within
3 hr 6 min and half within 3 hr 26 min. If I ran the race in 2 hr 54 min 42 sec, what place
did I come in? Answer: 460 by experiment.

A handful of pheromone-impregnated pellets are being used to give an overall release
of 1.3 mol/hr into a 15-km/hr wind blowing in the z direction. In this case, the pher-
omone concentration is given by

S _wP/4E:z
a= 27TEZe
where r is the width of release. Gypsy moths respond to this release over an area 25 km
long, with a maximum width of 8 km. What is the dispersion coefficient £ of the
pheromone?
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Harvest ants inform each other of danger by releasing a pulse of pheromone. The
dispersion of this pheromone can be modeled using results like those in this chapter.
For harvest ants, the maximum distance over which this chemical alarm is effective is
6 cm; this occurs at a time of 32 sec. The alarm is no longer effective after 35 sec [E. O.
Wilson, Psyche, 65, 41 (1958)]. Assume that the pheromone is dispersed in a hemi-
spherical volume, so its concentration is

. 2M 4"2/4Et
= (e

Also assume that neighboring ants respond only when ¢; exceeds ¢;o. Then show that
a2
= foon ()

where R is the radius of communication at time ¢, and 7g,,; is the time when the signal is

ignored. Discuss how R varies with 7. Estimate the dispersion coefficient E from the

values given, and compare it with your guess of a diffusion coefficient. Answer: E=2
2

cm~/sec.

In 1905, five muskrats escaped in Bohemia. These animals quickly spread over Europe
as shown below [J. G. Skellam, Biometrika, 38, 196 (1951)]:

Year Area inhabited
1905 0

1909 50

1911 120

1915 300

1920 670

1927 1,720

Show that these results are consistent with a two-dimensional dispersion model

o Mo ar—r?/aE;
"' 4nET

where

growth rate |
( of M ) = oM

E is the dispersion coefficient, and M| is the original number of animals.

Breslau
1927
1920
1915
) 1911
Munich Vienn 1909

10N
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8. Tomeasure backmixing in a tubular packed-bed chemical reactor, you inject a pulse of
carbon dioxide into nitrogen flowing through the reactor and measure the carbon
dioxide concentration in the effluent. The effluent concentration fits the equation

(t — 16 min)’
‘e 32 min

Co
The reactor is 3.3 meters long. What is the dispersion coefficient?

9. Glacial moraines can be dated by their shape, described by the continuity equation:

0z %

ot ox

where z is the vertical height of the moraine, x is the horizontal axis, and ¢ is the soil
flux [B. Hallet and J. Putkonen, Science, 265, 937 (1994)]. The soil flux is in turn given
by

Oz
ox

q=-E

where E is the dispersion coefficient. For slopes a few meters tall, E is typically between
10~* and 102 m?/yr. For taller slopes, however, E varies with distance:

E =4+ Bx

where 4 and Bare 1072 m?/yr and 10~* m/yr, respectively. Use these values to estimate
how the shape of a moraine, which is originally a step 100 m high, changes over time.
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CHAPTER 5

Values of Diffusion Coefficients

Until now, we have treated the diffusion coefficient as a proportionality con-
stant, the unknown parameter appearing in Fick’s law. We have found mass fluxes and
concentration profiles in a broad spectrum of situations using this law. Our answers have
always contained the diffusion coefficient as an adjustable parameter.

Now we want to calculate values of the flux and the concentration profile. For this, we
need to know the diffusion coefficients in these particular situations. We must depend
largely on experimental measurements of these coefficients, because no universal theory
permits their accurate a-priori calculation. Unfortunately, the experimental measure-
ments are unusually difficult to make, and the quality of the results is variable. Accord-
ingly, we must be able to evaluate how good these measurements are.

Before we begin, we should list the guidelines that tend to stick in everyone’s mind.
Diffusion coefficients in gases, which can be estimated theoretically, are about 0.1 cm?/
sec. Diffusion coefficients in liquids, which cannot be as reliably estimated, cluster
around 107 cm?/sec. Diffusion coefficients in solids are slower still, 10°° cm?/sec, and
they vary strongly with temperature. Diffusion coefficients in polymers and glasses lie
between liquid and solid values, say about 10 cm?/sec, and these values can be strong
functions of solute concentration.

The accuracy and origins of these guidelines are explored in this chapter. Gases,
liquids, solids, and polymers are discussed in Sections 5.1 through 5.4, respectively. In
these sections we give a selection of typical values, as well as one common method of
estimating these values. After we sketch the sources of these estimations, we explore
other concerns, like the pressure dependence of diffusion in gases or the concentration
variations of diffusion in liquids. Section 5.5 summarizes Brownian motion, showing
how random walks are related to diffusion. Section 5.6 discusses the common experi-
mental methods of measuring diffusion coefficients.

5.1 Diffusion Coefficients in Gases

Diffusion coefficients in gases are illustrated by the values in Table 5.1-1. At one
atmosphere and near room temperature, these values lie between 0.1 and 1 cm?/sec.
Indeed, given the variation of the chemistry, the values vary remarkably little. To a first
approximation, the coefficients are inversely proportional to pressure, so doubling the
pressure cuts the diffusion coefficient in half. They vary with the 1.5 to 1.8 power of the
temperature, so an increase of 300 K triples the coefficients. They vary in a more com-
plicated fashion with factors like molecular weight.

The physical significance of diffusion coefficients of this size is best illustrated by
remembering unsteady-state diffusion problems like the semi-infinite slab discussed in
Chapter 2. In these problems, the key experimental variable is z*/4Dr. When this variable

117
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Table 5.1-1 Experimental values of diffusion coefficients in gases at one atmosphere

Gas pair Temperature (K) Diffusion coefficient
(cmz/sec)
Air-benzene 298.2 0.096
Air—-CHy 282.0 0.196
Air—-C,HsOH 273.0 0.102
Air—-CO, 282.0 0.148
Air-H, 282.0 0.710
Air-H,O 289.1 0.282
298.2 0.260
312.6 0.277
333.2 0.305
Air-He 282.0 0.658
Air-n-hexane 294.0 0.080
Air-toluene 299.1 0.086
Air—aniline 299.1 0.074
Air—2-propanol 299.1 0.099
CH,He 298.0 0.675
CH4H, 298.0 0.726
CH,H,0O 307.7 0.292
CO-N, 295.8 0.212
2co-"“co 373.0 0.323
CO-H, 295.6 0.743
CO-He 295.6 0.702
CO,-H, 298.2 0.646
CO»-N, 298.2 0.165
CO,-0, 296.0 0.156
CO,—He 298.4 0.597
CO,—CO 3154 0.185
CO,-H,0 307.4 0.202
CO,-SO, 263.0 0.064
2C0,-'*C0, 312.8 0.125
CO,—propane 298.1 0.087
H,—N, 297.2 0.779
H,-0, 316.0 0.891
H,-He 317.0 1.706
Hy-Ar 317.0 0.902
H,—Xe 341.2 0.751
H»-SO, 285.5 0.525
H,-H,0 307.1 0.915
H,—NH; 298.0 0.783
Hj,—ethane 298.0 0.537
H>—n-hexane 288.7 0.290
H,—cyclohexane 288.6 0.319
H>-benzene 311.3 0.404
N,-O, 316.0 0.230
293.2 0.220
N,-He 317.0 0.794
N>—Ar 316.0 0.216
N,—NH3 298.0 0.230
N>-H,O 298.2 0.293
N,-SO, 263.0 0.104
N,—ethane 298.0 0.148

(Continued)
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Table 5.1-1 (Continued)

Gas pair Temperature (K) Diffusion coefficient
(cm?/sec)
N,—n-butane 298.0 0.096
N,-isobutane 298.0 0.090
N,-n-hexane 288.6 0.076
N,—n-octane 303.1 0.073
N,-2,2,4- 303.3 0.071
trimethylpentane
N,—benzene 311.3 0.102
O,—He (He trace) 298.2 0.737
(Oy—trace) 298.2 0.718
O,-He 317.0 0.822
0,-H,0 308.1 0.282
0,-CCly 296.0 0.075
O,—benzene 311.3 0.101
O,—n-hexane 288.6 0.075
O,-n-octane 303.1 0.071
0,-2,2,4- 303.0 0.071
trimethylpentane
He-Ar 298.0 0.742
He-H,0 298.2 0.908
He-NH; 297.1 0.842
Ar-Ne 303.0 0.327
Ar—Kr 303.0 0.140
Ar-Xe 329.9 0.137
Ne—Kr 273.0 0.223
Ethylene—-H,O 307.8 0.204

Source: Data from Hirschfelder ez al. (1954), Marrero and Mason (1972), and Poling ez al. (2001).

equals unity, the diffusion process has proceeded significantly. In other words, where z*
equals 4Dz, the diffusion has penetrated a distance z in the time ¢.

In gases, this penetration distance is much larger than in other phases. For example,
the diffusion coefficient of water vapor diffusing in air is about 0.3 cm?/sec. In 1 second,
the diffusion will penetrate 0.5 cm; in 1 minute, 4 cm; and in 1 hour, 30 cm.

5.1.1 Gaseous Diffusion Coefficients From the Chapman—Enskog Theory

The most common method for theoretical estimation of gaseous diffusion is
that developed independently by Chapman and by Enskog (Chapman and Cowling,
1970). This theory, accurate to an average of about eight percent, leads to the equation

p_ 186 107721/ My + 1/ My)'?
- 2
po1,Q2

(5.1-1)

in which D is the diffusion coefficient measured in cm?/sec, T'is the absolute temperature
in Kelvin, p is the pressure in atmospheres, and the M; are the molecular weights.
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The quantities o1, and Q are molecular properties characteristic of the detailed the-
ory. The collision diameter o5, given in angstroms, is the arithmetic average of the two
species present:

—_—

o =5(01 +02) (5.1-2)

2
Values of ¢, and g, are listed in Table 5.1-2. The dimensionless quantity Q is more
complex, but usually of order one. Its detailed calculation depends on an integration
of the interaction between the two species. This interaction is most frequently described
by the Lennard—Jones 12-6 potential. The resulting integral varies with the temperature
and the energy of interaction. This energy &, is a geometric average of contributions
from the two species:

g2 = Vel (5.1-3)

Values of the ¢;,/kp are also given in Table 5.1-2. Once &5 is known, Q can be found as
a function of kpT/e > using the values in Table 5.1-3. The calculation of the diffusion
coefficients now becomes straightforward if the o; and the ¢; are known.

5.1.2 The Nature of Kinetic Theories

The results of the Chapman—Enskog theory are based on detailed analyses of
molecular motion in dilute gases. These analyses depend on the assumption that molec-
ular interactions involve collisions between only two molecules at a time (Fig. 5.1-1).
Such interactions are much simpler than the lattice interactions in solids or the less
regular and still more complex interactions in liquids.

The nature of theories of this type is best illustrated for a gas of rigid spheres of very
small molecular dimensions (Cunningham and Williams, 1980). For such a theory, the
diffusion flux has the following form:

m :—%W%—i—clvo (5.1-4)
The second term on the right represents convection and the first indicates diffusion. The
diffusion term has three parts: v, the average molecular velocity; /, the mean free path of
the molecules; and dc;/dz, the concentration gradient. This term makes physical sense:
the flux will certainly increase if either the velocity of the molecules or the average
distance they travel increases.
If we compare Eq. 5.1-4 with Fick’s law, we find

1

D=3 (5.1-5)

Both the average velocity v and the mean free path / of the rigid spheres can be calculated.
The average velocity is

V=1 2kgT/m (5.1-6)
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Table 5.1-2 Lennard—Jones potential parameters found from viscosities
Substance a(A) e12/kp(K)
Ar Argon 3.542 93.3
He Helium 2.551 10.2
Kr Krypton 3.655 178.9
Ne Neon 2.820 32.8
Xe Xenon 4.047 231.0
Air Air 3.711 78.6
Br, Bromine 4.296 507.9
CCly Carbon tetrachloride 5.947 322.7
CHCl; Chloroform 5.389 340.2
CH,Cl, Methylene chloride 4.898 356.3
CH;(Cl Methyl chloride 4.182 350.0
CH;0H Methanol 3.626 481.8
CH, Methane 3.758 148.6
CO Carbon monoxide 3.690 91.7
CO, Carbon dioxide 3.941 195.2
CS, Carbon disulfide 4.483 467.0
C,H, Acetylene 4.033 231.8
C,Hy Ethylene 4.163 224.7
C,Hgq Ethane 4.443 215.7
C,H;Cl Ethyl chloride 4.898 300.0
C,HsOH Ethanol 4.530 362.6
CH;0CH; Methyl ether 4.307 395.0
CH,CHCHj; Propylene 4.678 298.9
C;Hg Propane 5.118 237.1
n-C3H,OH n-Propyl alcohol 4.549 576.7
CH;COCH; Acetone 4.600 560.2
n-C4Hyq n-Butane 4.687 531.4
is0-C4H g Isobutane 5.278 330.1
n-CsH» n-Pentane 5.784 341.1
CgHg Benzene 5.349 412.3
Ce¢H > Cyclohexane 6.182 297.1
n-CgH 4 n-Hexane 5.949 399.3
Cl, Chlorine 4.217 316.0
HBr Hydrogen bromide 3.353 449.0
HCN Hydrogen cyanide 3.630 569.1
HCl Hydrogen chloride 3.339 344.7
HF Hydrogen fluoride 3.148 330.0
HI Hydrogen iodide 4.211 288.7
H, Hydrogen 2.827 59.7
H,O Water 2.641 809.1
H,S Hydrogen sulfide 3.623 301.1
Hg Mercury 2.969 750.0
NH; Ammonia 2.900 558.3
NO Nitric oxide 3.492 116.7
N, Nitrogen 3.798 71.4
N>,O Nitrous oxide 3.828 232.4
0O, Oxygen 3.467 106.7
SO, Sulfur dioxide 4.112 3354

Note: Data from Hirschfelder et al. (1954).
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Table 5.1-3 The collision integral Q

kBT/812 Q kBT/Slz Q kBT/Slz Q

0.30 2.662 1.65 1.153 4.0 0.8836
0.40 2.318 1.75 1.128 4.2 0.8740
0.50 2.066 1.85 1.105 4.4 0.8652
0.60 1.877 1.95 1.084 4.6 0.8568
0.70 1.729 2.1 1.057 4.8 0.8492
0.80 1.612 2.3 1.026 5.0 0.8422
0.90 1.517 2.5 0.9996 7 0.7896
1.00 1.439 2.7 0.9770 9 0.7556
1.10 1.375 2.9 0.9576 20 0.6640
1.30 1.273 33 0.9256 60 0.5596
1.50 1.198 3.7 0.8998 100 0.5130
1.60 1.167 3.9 0.8888 300 0.4360

Source: Data from Hirschfelder et al. (1954).

in which m is the molecular mass. The mean free path / is
_ kB T/p
z 2
()

in which ¢ is the diameter of the spheres, and p/kgT is the concentration of molecules per
volume. Combining, we find

/

(5.1-7)

Q

Fig. 5.1-1. Molecular motion in a dilute gas. In a gas, molecular collisions occur at low density,
and so may be treated as bimolecular. This simplicity facilitates development of good kinetic
theories for diffusion.

D= (4“5) (D)’ (5.1:8)

3n ) mPpe
When we compare this result with Eq. 5.1-1, we see that the rigid-sphere theory predicts
essentially the same dependence on temperature, pressure, molecular weight, and mo-
lecular size. The Chapman—Enskog theory is an improvement over the simple theory

because the details of the collisions are explicitly included.
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5.1.3 Gaseous Diffusion Coefficients From Empirical Correlations

Predictions from the Chapman—Enskog kinetic theory tend to be limited in two
ways. First, the theory requires estimates of ¢, and ¢;,; such estimates are not available
for all gases. Second, the theory assumes nonpolar gases, and this excludes compounds
like water and ammonia. These interactions depend on replacing the Lennard—Jones
potential used to characterize the collision with more exact potentials. Such replacement
is often complex.

Instead, many authors have developed empirical relations. One effective example
(Fuller, Schettler, and Giddings, 1966) is

T (1M, + 1/M,)'?
P[E )+ ()

in which T is in Kelvin, p is in atmospheres, and the V'; are the volumes of parts of the
molecule j, tabulated in Table 5.1-4. This correlation is about as successful as Eq. 5.1-1.
To me, the impressive feature is the similarity between the two equations: the pressure
and molecular-weight dependence are unchanged. The temperature dependence is not
much different when we remember that Q is a function of temperature. The term for
diffusion volumes here parallels the term in ¢°. It is not surprising that the two equations
have similar success.

D=10" (5.1-9)

5.1.4 Gas Diffusion at High Pressure

The equations given earlier in this chapter allow prediction of diffusion coef-
ficients in dilute gases to within an average of eight percent. These predictions, which are
about twice as accurate as those for liquids, are often hailed as a final answer. However,

Table 5.1-4 Atomic diffusion volumes for use in Eq. 5.1-9

Atomic and structural diffusion- Diffusion volumes for simple
volume increments V; molecules XV;
C 16.5 H, 7.07
H 1.98 He 2.88
o 5.48 N, 17.9
N) 5.69 0, 16.6
(@) 19.5 Air 20.1
S) 17.0 Ar 16.1
Aromatic ring -20.2 Kr 22.8
Heterocyclic ring -20.2 CO 18.9
CO, 26.9
N,O 35.9
NH; 14.9
H,O 12.7
(Cly) 37.7
(SO») 41.1

Note: Parentheses indicate that the value is uncertain.
Source: Adapted from Fuller, Schettler, and Giddings (1966).
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I have the nagging suspicion that their success is promulgated by those who have worked
hard on these methods or who have become intimidated by the intellectual edifice erected
by Maxwell, Enskog, and others. In fact, although these equations agree with experiment
at low pressures, they are much less successful at high pressures. At higher pressures,
few binary data are available; for self-diffusion, a sensible empirical suggestion is

D = pyDo (5.1-10)

in which the subscript 0 indicates values at low pressure at the same temperature. The
inverse relation between diffusion and pressure, consistent with Eq. 5.1-1, is a good
guideline.

Some more elaborate theories have attempted to correlate the product (pD) with the
reduced pressure and temperature, that is, with the pressure and temperature relative to
values at the critical point. Such a correlation, implicitly based on the theory of corre-
sponding states, can be applied to transport phenomena by assuming that thermody-
namic variables can be defined in nonequilibrium situations. We will make such an
assumption in the irreversible thermodynamics arguments in Section 7.2. In the current
case, however, this effort at correlation suggests significant corrections only when the
reduced temperature is less than 1.4. Under these circumstances, Fick’s law breaks down
because diffusion occurs not as single solute molecules but as a cluster of solute mole-
cules, as described in Section 6.3. In the face of this complexity, I would use Equation
5.1-10 with confidence when the temperature divided by the critical temperature is above
1.4 and make experiments at lower temperatures.

Some other aspects of gaseous diffusion remain unexplored. For example, diffusion
of molecules of very different sizes, like hydrogen and high molecular weight n-alkanes,
has not been sufficiently studied. Concentration-dependent diffusion in gases, al-
though a common phenomenon, has been largely ignored. These aspects deserve careful
inspection.

Example 5.1-1: Estimating diffusion with the Chapman—Enskog theory Calculate the
diffusion coefficient of argon in hydrogen at 1 atmosphere and 175 °C. The experimental
value is 1.76 cm?/sec.

Solution We first need to find o1, and ¢;,. From the values in Table 5.1-2,

g1 = (0'1 +0'2)

(3.54 4 2.83) = 3.18A

N — N =

and

R o) T
_V/I2%0380) _

448
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From Table 5.1-3, we find that Q is 0.81. Thus, from Eq. 5.1-1,

b 186 107 T2 (1/ M, + 1/51,)"?
- 2
poH,Q

1.86-10°(448)%7(1/39.9 4 1/2.02)'
B (1)(3.18)%(0.81)

= 1.55cm”/sec

The theoretical prediction is about ten percent below the experimental observation.

Example 5.1-2: Comparing two estimates of gas diffusion Use the Chapman—Enskog

theory and the empirical correlation in Equation 5.1-9 to estimate the diffusion of

hydrogen in nitrogen at 21 °C and 2 atmospheres. The experimental value is 0.38 cm?/sec.
Solution For the Chapman—Enskog theory, the key parameters are

—_
—_

012 = 5 (0n, +on,) = 5 (292 +3.68) = 3.30A

and

o2 _ /(ems/ke)(en: /ke) _ /38.0)OLS) _

kT T 294

This second value allows interpolation from Table 5.1-3:
Q =0.842

Combining these results with Eq. 5.1-1 gives

1.86 - 10T (1/ My, + 1/My,)"?
= 2
poQ

1.86-10°(294)*7(1/2.02 4 1/28.0)'/

3 =0.37 crnZ/sec
2(3.30)°(0.842)

The value is about three percent low, a very solid estimate.
For the Fuller correlation, the appropriate volumes are found from Table 5.1-4. The
results can then be combined with Eq. 5.1-9:

o 107 TP (1M, + 1/My,)"?
13 1/3]2
14 (Vl‘lz) +(VN2)

107°(294)"7(1/2.02 + 1/28.0) '/

5 =0.37 cmz/sec
2[(7.07)‘/3 + (17.9)‘/3}

Again, the error is about three percent.
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Example 5.1-3: Diffusion in supercritical carbon dioxide Carbon dioxide, above its crit-
ical point, may become an important industrial solvent because it is cheap, nontoxic, and
nonexplosive. Estimate the diffusion of iodine in carbon dioxide at 0°C and 33 atmos-
pheres. The diffusion coefficient measured under these conditions is 7 - 10~ cm?/sec.

Solution The binary diffusion coefficient at 0°C and 1 atmosphere can be
found from Eq. 5.1-1:

Dy=0.043 cmz/sec

From Eq. 5.1-10,

1 atm
D= 0.43cm’
cm”/sec <33 atm>

=13-107* cmz/sec

This is as accurate as we have any right to expect, especially because the critical point for
carbon dioxide is close, at 30 °C and 72 atmospheres.

5.2 Diffusion Coefficients in Liquids

Diffusion coefficients in liquids are exemplified by the values given in Tables 5.2-1
and 5.2-2. Most of these values fall close to 10> cm?/sec. This is true for common organic
solvents, mercury, and even molten iron. Exceptions occur for high molecular-weight
solutes like albumin and polystyrene, where diffusion can be 100 times slower. Actually,
the range of these values is remarkably small. At 25 °C, almost none are faster than 10 - 10
cm?/sec, and those significantly below 10> cm?/sec are macromolecules, like hemoglobin.
The reasons for this narrow range is that the viscosity of simple liquids like water and
hexane varies little, and that diffusion coefficients are only a weak function of solute size.

Diffusion coefficients in liquids are about ten thousand times slower than those in
dilute gases. To see what this means, we again calculate the penetration distance v/4Dz,
which was the distance we found central to unsteady diffusion. As an example, consider
benzene diffusing into cyclohexane with a diffusion coefficient of about 2 - 107> cm?/sec.
At time zero, we bring the benzene and cyclohexane into contact. After 1 second, the
diffusion has penetrated 0.004 cm, compared with 0.3 cm for gases; after 1 minute, the
penetration is 0.03 cm, compared with 4 cm; after 1 hour, it is 0.3 cm, compared with 30 cm.

The sloth characteristic liquid diffusion means that diffusion often limits the overall
rate of processes occurring in liquids. In chemistry, diffusion limits the rate of acid—base
reactions; in physiology, diffusion limits the rate of digestion; in metallurgy, diffusion can
control the rate of surface corrosion; in the chemical industry, diffusion is responsible for
the rates of liquid-liquid extractions. Diffusion in liquids is important because it is slow.

5.2.1 Liquid Diffusion Coefficients From the Stokes—Einstein Equation

The most common basis for estimating diffusion coefficients in liquids is the
Stokes—Einstein equation. Coefficients calculated from this equation are accurate to
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Table 5.2-1 Diffusion coefficients at infinite dilution in water at 25°C

Solute D(-10°% cm?/sec)
Acetic acid 1.21

Acetone 1.16

Ammonia 1.64

Argon 2.00

Benzene 1.02

Benzoic acid 1.00

Bromine 1.18

Carbon dioxide 1.92

Carbon monoxide 2.03

Chlorine 1.25

Ethane 1.20

Ethanol 0.84

Ethylene 1.87

Glycine 1.06

Helium 6.28
Hemoglobin 0.069

Hydrogen 4.50

Hydrogen sulfide 1.41

Methane 1.49

Methanol 0.84

n-Butanol 0.77

Nitrogen 1.88

Oxygen 2.10

Ovalbumin 0.078

Propane 0.97

Sucrose (0.5228 — 0.265¢;)“
Urea (1.380 — 0.0782¢; + 0.00464¢3)"
Urease 0.035

Valine 0.83

Note: “Known to very high accuracy, and so often used for calibration; ¢; is in moles per liter.
Source: Data from Cussler (1976) and Poling ez al. (2001).

only about twenty percent (Poling ez al., 2001). Nonetheless, this equation remains the
standard against which alternative correlations are judged.
The Stokes—Einstein equation is

kT _ kT
[ 6muR

where /s the friction coefficient of the solute, kg is Boltzmann’s constant, p is the solvent
viscosity, and Ry is the solute radius. The temperature variation suggested by this equa-
tion is apparently correct, but it is much smaller than effects of solvent viscosity and
solute radius. A discussion of these larger effects follows.

The diffusion coefficient varies inversely with viscosity when the ratio of solute to
solvent radius exceeds five. This behavior is reassuring because the Stokes—Einstein
equation is derived by assuming a rigid solute sphere diffusing in a continuum of solvent.
Thus, for a large solute in a small solvent, Eq. 5.2-1 seems correct.

D (5.2-1)
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Table 5.2-2 Diffusion coefficients at infinite dilution nonaqueous liquids

Solvent Solute” D(-107° cm?/sec)
Chloroform Acetone 2.35
Benzene 2.89
Ethyl alcohol (15°C) 2.20
Ethyl ether 2.14
Ethyl acetate 2.02
Benzene Acetic acid 2.09
Benzoic acid 1.38
Cyclohexane 2.09
Ethyl alcohol (15°C) 2.25
n-Heptane 2.10
Oxygen (29.6 °C) 2.89
Toluene 1.85
Acetone Acetic acid 3.31
Benzoic acid 2.62
Nitrobenzene (20 °C) 2.94
Water 4.56
n-Heptane Carbon tetrachloride 3.70
Dodecane 2.73
n-Hexane 4.21
Propane 4.87
Toluene 4.21
Ethanol Benzene 1.81
Todine 1.32
Oxygen (29.6°C) 2.64
Water 1.24
Carbon tetrachloride 1.50
n-Butanol Benzene 0.99
p-Dichlorobenzene 0.82
Propane 1.57
Water 0.56
n-Heptane Benzene 3.40

Note: “Temperature 25 °C except as indicated.
Source: Data from Poling et al. (2001).

When the solute radius is less than five times that of the solvent, Eq. 5.2-1 breaks
down (Chen et al., 1981). This failure becomes worse as the solute size becomes smaller
and smaller. Errors are especially large in high-viscosity solvents; the diffusion seems to
vary with a smaller power of viscosity often around (-0.7). In extremely high-viscosity
materials, diffusion becomes independent of viscosity: the diffusion of sugar in jello is
very nearly equal to the diffusion of sugar in water.

The reason for this altered viscosity dependence is that viscosity often depends on much
longer range interactions than diffusion. For example, in jello, the polymeric collagen
forms hydrogen bonds that form a three-dimensional elastic network, which of course has
very high viscosity. However, sugar and salts diffusing through this network are much
smaller than the distances between these hydrogen bonds, so these solutes behave just as if
they are diffusing through water. As evidence of this, the concentration dependence of the
diffusion coefficient of potassium chloride diffusing in water—polyethylene glycol mixtures
is exactly the same as that in water. Diffusion reflects short-range interactions.
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As the standard, the Stokes—Einstein equation has often been extended and adapted.
Two adaptations deserve special mention. The first is for small solutes. For this case, the
factor 6min Eq. 5.2-1 is often replaced by a factor of 4w or of two. The substitution of 47
can be rationalized on mechanical grounds as signifying solvent slipping past the surface
of the solute molecule (Sutherland, 1905). The factor of two can be supported with the
theory of absolute reaction rates (Glasstone et al., 1941). Neither substitution always
works.

The second adaptation of the Stokes—Einstein equation is its use to estimate the size
and shape of proteins in dilute aqueous solution. Unfortunately, these estimates are
compromised in two ways. First, if the solute is hydrated, then the radius found will
refer to the solute-water complex, not to the solute itself. Second, if the solute is not
spherical, then the radius R, will represent some average shape. Specifically, if the solute
is a prolate (football-shaped) ellipsoid, then (Perrin, 1936)

prolate \ kgT
b ( ellipsoid ) N (52-2)

(@ — b))\

YNYE
ln<a+(a bb) )

in which a and b are the major and minor axes of the ellipsoid. For an oblate (disc-
shaped) ellipsoid,

oblate \ kgT
b (ellipsoid ) = (52-3)

6mpu

(@ — b))

61

These relations reduce to Eq. 5.2-1 for spheres when a equals b.

These diffusion coefficients are for normal translational diffusion, the subject of this
book. Ellipsoids can also rotate, a process described by a rotational diffusion coefficient.
This rotation implies a conservation equation like

2
% = Do % (5.2-4)
where ¢ is the concentration of solutes with a particular angular orientation 6, an
orientation due, for example, to shear or due to an electrostatic potential. Note
that the new rotational diffusion coefficient D,,, appearing in this equation has the
dimensions of reciprocal time, not of (length)? per time, the normal units for transla-
tional diffusion. For a prolate ellipsoid with a > b, the rotational diffusion coefficient is

311’12?‘]) kBT

Diot = ( (5.2-5)

87ma3
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For an oblate ellipsoid with a < b, it is

3kgT
32b°

Droy = (5.2-6)

These results are sometimes used to infer the shape of proteins in solution.

5.2.2 Deriving the Stokes—Einstein Equation

To predict diffusion in liquids, we do not account for molecular motion as in the
theories used for gases. Instead, we idealize our system as a single rigid solute sphere
moving slowly through a continuum of solvent (Fig. 5.2-1). We expect that the net
velocity of this sphere will be proportional to the force acting on it:

force = fv (5.2-4)

where f is defined as the friction coefficient. Because the sphere moves slowly, this
friction coefficient can be found from Stokes’ law (first published in 1850) to be
6muRy. The force was taken by Einstein to be the negative of the chemical potential
gradient (Einstein, 1905). Thus Eq. 5.2-4 can be rewritten:

— Vi, = (6muRy)vy (5.2-5)

The chemical potential gradient, defined per molecule (not per mole), is often described
as a ““virtual force,” a thermodynamic parallel to mechanical or electrostatic forces.
When the solution is dilute, we can assume that it is ideal:

¢
U = ,uo1 +kgTInx; = ,u(i—Q—kBTln !

=1’ +kgTlne, —kgTlne,  (5.2-6)
LT

In this result, we recognize that solvent concentration ¢, far exceeds solute concentration
¢1, SO ¢; is approximately constant. The gradient is then

Vi, =22 ve (5.2-7)
1

Combining this with Eq. 5.2-5, we find

_ ksT
67 Ry

Ji=m=cv = Ve (5.2-8)

Comparison with Fick’s law produces the Stokes—Einstein equation, Eq. 5.2-1.

The interesting assumption in this analysis is the way in which the velocity or flux is
assumed to vary with the chemical potential gradient. This type of assumption is made
frequently in studies of diffusion. It is central to the development of irreversible ther-
modynamics, and so it is at the core of the theories of multicomponent diffusion
described in Chapter 7. Interestingly, it is known experimentally to be wrong in the
highly nonideal solutions near critical points (see Section 6.3).
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(a) Actual situation

(b) Stokes—Einstein model

Q

—
Fig. 5.2-1. Molecular motion in a liquid. In contrast with a gas, molecular motion in a liquid
takes place at high density (a). Diffusion is complex, involving many interactions and vacancies.

The available kinetic theories are good, but complex. To avoid this, many use the simple model
of a solute sphere in a solvent continuum (b).

Because the Stokes—Einstein equation is limited to cases in which the solute is larger
than the solvent, many investigators have developed correlations for cases in which
solute and solvent are similar in size. The impressive aspect of these efforts is their
similarly to the Stokes—FEinstein equation. Almost all show the same temperature and
viscosity dependence. All authors claim marginally better accuracy, but for such in-
creased complexity that their results are rarely used. The exception is the Wilke-Chang
correlation (1955), which predicts

74107 (a1)' T

D _
pvye

(5.2:9)

where D is the diffusion coefficient of solute <“1,” in cm?/sec; M is the molecular weight
of solvent ““2,”” in daltons; T'is the temperature, in K; u is the viscosity, in centipoises; and
V7, is the molar volume of the solute, in cm®/mol. The empirical parameter ¢ is 1 for most
organic solvents, 1.5 for alcohols, and 2.6 for water. This result is widely used for fast
estimates.

At this point, the common conclusion is to bemoan the accuracy of the predictions in
liquids and to praise the accuracy of those in gases. In fact, the predictions in liquids are
only twice as inaccurate as those in gases, even though the complexity of solute—solvent
interactions in liquids is much greater. As a result, I do not share the frequent despair
about these estimates, but feel that care and good judgment can lead to success.

5.2.3 Diffusion in Concentrated Solutions

The Stokes—Einstein equation and its empirical extensions are limited to
infinitely dilute solutions. In fact, the diffusion coefficient in liquids varies with solute
concentration, frequently by several hundred percent and sometimes with a maximum
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and minimum. We need a means of estimating these variations. Such estimations usually
involve two steps. First, we assume that Eq. 5.2-4 can be written

Dy

1
:7V = —
H RT

7

where Dy is a new transport coefficient. For a nonideal solution,

- Viy (5.2-10)

w =1 +kgTln ey, (5.2-11)

where 7y, is an activity coefficient. Combining these two equations, we find

0l
no=j, = = —{D0<1 + 271)] Ve, (5.2-12)
¢l

The quantity in brackets is the diffusion coefficient. This first step is a restatement of the
idea that the velocity of diffusion varies with the gradient of chemical potential.

The second step consists of empirical estimates of the quantity Dy. These estimates are
based on diffusion coefficients in dilute solutions. One of the most frequently cited estimates,
used by Darken (1948), Hartley and Crank (1949), and others, is the arithmetic average:

Dy = X|D0(X1 = ]) +X2D()(X2 = ]) (52-13)
Another estimate, suggested by Vignes (1966) is the geometric average:
Dy = [Do(x1 = 1)}\] [D()(Xz = 1)]xz (52-14)

The geometric average seems more successful than the arithmetic one.

I am not convinced that these efforts to correct diffusion coefficients with activity
coefficients are correct. I agree that some form of correction is indicated, and I
admit that much of the correction must be empirical. However, I have found that the
corrections suggested by Eq. 5.2-12 are usually too big. For example, if D drops with
increasing concentration c¢;, then the D, inferred from this equation tends to rise
with increasing ¢;. In the same sense, if D rises with increasing c;, then Dy drops over the
same concentration range. Moreover, these corrections are wrong near the spinodal phase
boundary, as detailed in Section 6.3. Thus I always treat these corrections with caution.

Example 5.2-1: Oxygen diffusion in water Estimate the diffusion at 25°C for oxygen
dissolved in water using the Stokes—Finstein equation and the Wilke—Chang correlation.
Compare your results with the experimental value of 1.8 - 10> cm?/sec.

Solution For the Stokes—Einstein equation, the chief problem is to estimate
the radius of the oxygen molecule. If we assume that this is half the collision diameter in
the gas, then from Table 5.1-2,

1 _
Ry=301=173-10 em
When we insert this into the Stokes—FEinstein equation,

16, 22
D= ksT _ (1.38- 10" "gem™/sec K)Zj;8K 13 1()75cm2/sec
6muRy  6m(0.01 g/cm sec)1.73-10 " cm
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This value is thirty percent low. Replacing (67) with (4n) gives a more accurate result;
replacing (67) with (2) gives too high a value. The Wilke—Chang correlation is somewhat
better:

N -8 3 1/2
T4 10_8(¢MH20)1/2T: 7.4-10 {2.6(18 cm’/mol } 298K
11,0 17(())'2’ 1¢p(25 cm’/mol)*
=2.2-10"" cm?/sec

This is twenty percent high.

Example 5.2-2: Estimating molecular size from diffusion Fibrinogen has a diffusion
coefficient of about 2.0 - 107 cm?/sec at 37°C. It is believed to be rod-shaped, about
thirty times longer than it is wide. How large is the molecule?

Solution Because the molecule is rod-shaped, it can be approximated as a pro-
late ellipsoid. Thus, from Eq. 5.2-2,

kT

D=

6mua

(1.38-10'°g cm*/sec” K)(310K)

[1— (1/30))"
In[30 + (30° — 1)'/?]

2.0-1077 cmz/sec =

67(0.00695 g/cm sec)a {

Solving, we find that a equals 67 nm and b equals 2.2 nm. If fibrinogen were a sphere, its
radius would be about 16 nm.

Example 5.2-3: Diffusion in an acetone—water mixture Estimate the diffusion coefficient
in a 50-mole% mixture of acetone (1) and water (2). This solution is highly nonideal,
so that [0 In y,/0 In ¢,] equals —0.69. In pure acetone, the diffusion coefficient is 1.26 - 10~
cm?/sec; in pure water, it is 4.68 - 10> cm?/sec. The experimental value in the mixture is
0.79 - 107 cm? sec, less than both limits.

Solution We first must estimate Dy. Because Eq. 5.2-14 is most often success-
ful, we use it here:

Do = [Do(x1 = 1)]" [Do(x2 = 1)
=(126-10"° cmz/sec)0'5(4.86 107 cmz/sec)o‘5
= 24310 cm?/sec
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From Eq. 5.2-13,

aln'yl
D=Dy(1
0( +alncl)

—2.43.10° cm?/sec(1 — 0.69)
=0.75-10"" cmz/sec

The agreement with the experimental value is unusually good.

5.3 Diffusion in Solids

Diffusion in solids is beyond the scope of this book. However, [ want to give the
briefest synopsis to provide a comparison with gases and liquids. Diffusion in solids is
described by the same form of Fick’s law as gases or liquids. The diffusion coefficients,
however, are much, much smaller, as shown by the values in Table 5.3-1. These values do
increase quickly with temperature. The exception is hydrogen. In metals, diatomic
hydrogen first dissociates to form atomic hydrogen, which then loses its electron to
the electron cloud within the metals. Thus in this case, “hydrogen diffusion” refers to
the motion of naked protons, whose small size gives them an unusually large mobility.

The small value for diffusion coefficients in solids has two important consequences.
First, the values are so small that almost all significant transport occurs through flaws
and gaps in the solid, especially along grain boundaries. This is especially true for metals
and crystals. Second, transport in solids almost always approaches the limit of a semi-
infinite solid, rather than diffusion across a thin film. Again, hydrogen is the exception
because it is so fast. For example, diffusion of hydrogen across thin membranes of
palladium is sometimes suggested as a route to purify hydrogen.

The estimation of diffusion coefficients in solids is not accurate. In almost every case,
one must use experimental results. Methods for rough estimates based on the theory for
face-centered-cubic (FCC) metals are the standard by which other theories are judged,

Table 5.3-1 Diffusion coefficients at 25 °C in some characteristic solids

Solid Solute D (cm?/sec)
Iron (a Fe; BCC) Fe 3.1048
C 610
H, 2.107°
Iron (o Fe; FCC) Fe 8107
C 3.10°"
Copper Cu 810
Zn 2107
Si0, H, 6.10"3
He 41010

Note: In most cases, these values are extrapolated from values at higher temperatures.
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just as the Stokes—Einstein equation is the standard for liquids. The diffusion coefficient
in this case is

D= RNo (5.3-1)

in which Ry is the spacing between atoms; N is the fraction of sites vacant in the crystal;
and o is the jump frequency, the number of jumps per time from one position to the
next. Values for R, are guessed from crystallographic data, and the fraction N is
commonly estimated from the Gibbs free energy of mixing. The frequency w is esti-
mated by

reaction-rate theories for the concentration of activated complexes, atoms midway
between adjacent sites. The results of these estimations are commonly expressed as

D = Dye M/RT (5.3-2)

where Dy and AH are estimated empirically. Values of AH are large, often above 100 kJ/
mol, so that diffusion increases much more with temperature than for gases or for
liquids.

Example 5.3-1: Diffusion of carbon in iron Experiments show that the diffusion of
carbon in body-centered cubic (BCC) iron is 2.4 - 10 cm?/sec at 500°C, but 1.7 - 10°°
cm?/sec at 900 °C. Find an equation which allows estimating carbon diffusion at other
temperatures.

Solution The form of this relation is that of Equation 5.3-2

D— Doe—AH/RT
Inserting the values for D and 7, we find

D= [6.2 1073 sz/sec} exp—(SO kJ/mol)/RT

The values for Dy and for AH are slightly smaller than those commonly observed.

5.4 Diffusion in Polymers

Diffusion coefficients in high polymers are closer to those for liquids than to
those for solids. This is true even for crystalline polymers, where the coefficients
reflect transport around, not through, the small crystals. Typical values for synthetic
high polymers are shown in Fig. 5.4-1. The values of these coefficients vary strongly
with concentration. Naturally occurring polymers like proteins are not included in
Fig. 5.4-1 because these species are best handled with the dilute-solution arguments in
Section 5.2.

The results in Fig. 5.4-1 show that very different limits exist. The first of these limits
occurs in dilute solution, where a polymer molecule is imagined as a solute sphere
moving through a continuum of solvent. The second limit is in highly concentrated
solution, where small solvent molecules squeeze through gaps in the polymer matrix.
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Fig. 5.4-1. Diffusion of high polymers. Diffusion in these systems has two interesting limits:
at very low and very high polymer concentrations. Interestingly, the diffusion coefficients in
these two limits may not be very different, even though the viscosity change is tremendous.

The third, not illustrated in Fig. 5.4-1, involves mixtures of two polymers. Each limit is
discussed briefly below.

5.4.1 Polymer Solutes in Dilute Solution

A polymer molecule dissolved in a low-molecular-weight solvent is imagined as
a necklace of spherical beads connected by a string that has no resistance to flow. The
necklace is floating in a neutrally buoyant solvent continuum. If the solution is very
dilute, the polymer molecules are greatly separated, so that they do not interact with each
other, but only with the solvent. In some cases, the solvent will expand the polymer
necklace in the solution; such a solvent is referred to as “good.” In other cases the solvent
and polymer will not strongly interact, and the polymer necklace will shrink into a small,
introspective blob; such a solvent is called “poor.”

Between these two extremes, the polymer and solvent can interact just enough so that
the segments of the polymer necklace will be randomly distributed. This limit of a “‘ran-
dom coil” of polymer is conventionally chosen as the “ideal” polymer solution, and
a solvent showing these characteristics is called a 0 solvent. Under these conditions, the
diffusion of the polymer can be calculated as a correction to the Stokes—Einstein equation:

_ kgT
"~ 6muR.

(5.4-1)
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where R, is the equivalent radius of the polymer. This radius is calculated to be
R. = 0.676 (R*)!/? (5.4-2)

in which (R2>1/ 2 is the root-mean-square radius of gyration, the common measure of the
size of the polymer molecule in solution. This root-mean-square radius can be measured
in a variety of ways; one common method is by light scattering. Equations 5.4-1 and 5.4-2
are confirmed by experiment. The measured ratio of equivalent radius to root-mean-
square radius is 0.68, which is very close to the 0.676 suggested theoretically.

In good solvents and poor solvents, the diffusion coefficient still is estimated from the
Stokes—Einstein equation, but the relation between the equivalent radius R, and the
root-mean-square radius (R2>l/ 2 seems less well known. Moreover, in good solvents,
the diffusion coefficient can increase sharply with polymer concentration. This increase,
which occurs in the face of rapidly increasing viscosity, is apparently the result of a highly
nonideal solution. The increase is often estimated using parallels to Eq. 5.2-12. The
accuracy of these estimates is uncertain.

5.4.2 Low Molecular Weight Solutes in a Polymer Solvent

The second limiting case of polymer diffusion occurs when a small dilute solute
diffuses in a concentrated polymer solvent. Some examples are given on the right-hand
side of Fig. 5.4-1. In addition to its scientific interest, this case has considerable practical
value. It is important in devolatilization, that is, the removal of solvent and unreacted
monomer from commercial polymers. This is especially important for polymers with
consumer applications like food wrapping, because the volatile species may not be
benign. Diffusion in this second case is also central to drying many solvent-based coat-
ings. There, rapid solvent evaporation from the surface of the coating can produce
a concentrated polymer skin. Slower diffusion through this skin then limits the coating’s
drying.

This case of diffusion in polymers is described by ideas drawn from both diffusion in
liquids and diffusion in solids. The theoretical development takes place in two steps.
First, the binary diffusion coefficient D is corrected for the nonideal solution

B Olny,
D= D()(l + 6111(],')1) (54-3)

where Dy is a new, “improved” coefficient; vy, is the activity coefficient of the small solute;
and ¢, is its volume fraction, the appropriate concentration variable to describe con-
centrations in a polymer solution. We should remember that the activity correction in
parentheses has not often been critically examined. As stated above, it is often an over-
correction when it is used to describe diffusion in conventional liquids.

We now turn to predicting the corrected coefficient Dy. We expect that this coefficient
must include consideration of the solute’s activation energy, which must be sufficient to
overcome any attractive forces that constrain it near neighbouring polymer segments.
We expect that this coefficient must vary with any space or “free volume” between the
polymer chains. Only a fraction of this free volume will be accessible to the solute as
a result of thermal fluctuations; it is this fraction which permits the diffusion.
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While the details of these free-volume arguments are beyond the scope of this book, we
can appreciate the arguments involved by looking at the form of the final prediction

—E/RT w1 Vig + o2 Vo) /(01 Ky + o Kz)] (5.4-4)

Dy = Dje exp [(
where Dy is a constant preexponential factor, E is the solute—polymer attractive energy,
and the second exponential is the effect of free volume. More specifically, the w; are mass
fractions, the Vg are specific critical free volumes, and the K; are additional free volume
parameters. These last parameters are strong functions of temperature. Equation 5.4-4 is
successful in correlating experimental data, especially above the polymer’s glass transi-
tion temperature.

One curious effect, called ““‘non-Fickian diffusion” or “type Il transport,” sometimes
occurs in the dissolution of high polymers by a good solvent. In these cases, diffusion
may not follow Fick’s law. For example, the speed with which the solvent penetrates into
a thick polymer slab may not be proportional to the square root of time, which is the
behavior expected from Fick’s law (see Section 2.3).

This effect is believed to result from configurational changes in the polymer. As the
solvent penetrates, the polymer molecules relax from their greatly hindered configura-
tion as a partially crystalline solid into the more randomly coiled shape characteristic of
a polymer dissolved in dilute solution. When this relaxation process is slower than the
diffusion process, the dissolution is controlled by the relaxation kinetics, not by Fick’s
law. Although the process does not involve any phase boundaries, it is similar to a slow
interfacial chemical reaction followed by fast diffusion. Again, it is common only in the
case of fast dissolution in good solvent.

5.4.3 A Polymer Solute in a Polymer Solvent

In the third limiting case of polymer diffusion, both the solute and the solvent
are polymers. This case has practical importance in adhesion, in material failure, and in
polymer fabrication. In the simplest terms, this case includes why glue sticks.

Efforts to explain this case of polymer diffusion begin with a model, developed by
Rouse, which represents the polymer chain as a linear series of beads connected by
springs. The diffusion coefficient derived from this model is

D (Rouse) = % (5.4-5)

where N is the degree of polymerization and ( is a friction coefficient characteristic
of the interaction of a bead with its surroundings. Because N is proportional to the
molecular weight, this Rouse diffusion coefficient is proportional to the inverse of the
polymer’s molecular weight. In contrast, if the polymer were an untangled random
coil, D would depend on the inverse square root of the moleculNaLV\%eight; if the poly-
mer really condensed into one small sphere, D would vary with M '". The Rouse pre-
diction is not verified experimentally except for polymers of low molecular weight. We
need a better model.
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The better model, called reptation, imagines the polymer chain confined within
a curved tube (deGennes, 1979). Within this tube, the Rouse model governs the chain
dynamics, but the polymer diffusion is governed by the time required to escape from the
tube. Because motion in the tube is one-dimensional, this escape time 7 is given by

L* = 2D(Rouse)t (5.4-6)
where L is the tube length, proportional to the polymer’s molecular weight. The mac-
romolecular diffusion coefficient D, in the three dimensions, can be found from

(R*) = 6Dt (5.4-7)

where (R?) is again the root-mean-square radius of gyration, proportional to the square
root of the molecular weight. Combining Eqs. 5.4-5 to 5.4-7, we find

D_(3C)NL2 M (5.4-8)

This result frequently comes close to predicting the molecular weight dependence of this
case of polymer—polymer diffusion.

5.5 Brownian Motion

The diffusion coefficients listed above are easy to accept as experimentally
valuable parameters, but they are harder to understand as a consequence of molecular
motion. These coefficients are most often experimental values. In some cases, they are
estimated from theories which imply models for the system involved. For gases, this is
the model of gas molecules colliding in space. For liquids, they most often imply
a solute sphere in a solvent soup. For solids, these estimates are based on a crystal
lattice. In every case, the diffusion coefficients are not very directly related to random
molecular motions.

In this short section, we want to reexamine these coefficients in terms of molecular
motions. Such random “Brownian” motions were first observed in pollen grains by
Robert Brown in June of 1827. He concluded that these motions “arose neither from
currents in the fluid nor from gradual evaporation but from the particles [themselves].”
In our terms, diffusion comes from random molecular motions. Such random motions
are now widely studied, not only in physical science but in areas like fluctuations of
exchange rates of currencies.

In this section, we describe these random motions in terms of probability theory, and
so connect diffusion to this broader topic. Because we want a simple, easily understood
connection, we consider only the simplest case of one-dimensional motion. This simplest
case depends on three rules:

1. Each particle moves either to the right or the left every 7 seconds with a
velocity v.

2. The probability of moving right and that of moving left is 0.5. Moreover, the
particles do not remember their earlier steps.
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3. Each particle moves independently of the others. This is again our old friend,
the assumption of dilute solution.

The rules may be relaxed in many ways, but we are interested here only in this simplest
limit.

These three rules have two consequences. First, the average position of a particle does
not change. To demonstrate this, we consider a system of N independent particles. We
then consider z;(n), the position of the ith particle after n steps. This particle must have
arrived from a position either J larger or ¢ smaller, i.e.,

zi(n)=zi(n — 1) = o (5.5-1)

Because these steps are random, the mean displacement of these particles after n steps is
thus
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(5.5-2)

The average position of the particles doesn’t move. For example, if all the particles start
at zero, their average position stays at zero.

The second consequence of the three rules given above is the estimation of how much
the particles spread out. This can be described as the root mean square of the particle
position (zz(n))l/z. To find this quantity, we note from Equation 5.5-1 that

Z(n)=z(n—1) =20z, (n—1) + & (5.5-3)
As before, we average this over all the N particles to find

1

G = 350 554
=Fn—-1)+ &

Now imagine we have zero steps, so

(Z2(0))=0 (5.5-5)
For one step

)y =0 (5.5-6)
For two steps,

=) + & (557

= 25
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For n steps
(Z(n)y = nd* (5.5-8)

As we allow more and more steps, the particle spread becomes more and more.

We want to connect this result with the diffusion coefficients used elsewhere in this
book. To do so, we return to the example of the one-dimensional decay of a pulse, given
in Equation 2.4-14 as

2
M/A_ 7Dy

= 5.5-9
“ VAanDt ( )

For such a pulse, the standard deviation ¢ is defined as
o’ = 2Dt (5.5-10)

But this standard deviation is exactly the same as the mean square of the particle position
(z?(n)). Moreover, the time 7 for the peak to spread is just (nt). Thus

E(n))= (g) & = 2Di (5.5-11)

and

((n))
2t

D= (5.5-12)
The diffusion coefficient is the mean square particle displacement divided by twice the
time for movement 7. Another way to write this result recognizes that the mean square
distance per time is just the size of a step J times the time-averaged velocity v:

2
(zZ(m)y  Ov
D=—— = — 5.5-13
271 2 ( )
This form is sometimes easier to apply than the previous equation. Like that previous
equation, it is written for one-dimensional diffusion.
These results can be extended in many ways. If the result for one dimension is
extended to diffusion in two dimensions

)
D= 5.5-14
4z ( )
For three dimensions, the result is
Q)
D=—= 5.5-15
P ( )

More importantly, the small steps need not be by molecular diffusion but may also be
from turbulent velocity fluctuations. In that case, the diffusion coefficient will be
replaced by the dispersion coefficient as defined in Chapter 4. Alternatively, we can
consider random motions under some sort of external force so that the probability of
moving in one direction is different than that for movement in the opposite direction.
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While in these cases, this type of calculation will give only rough estimates, the calcula-
tion is so easy that it may still be very useful.

Example 5.5-1: Self-diffusion in water Estimate the diffusion at 25°C of a trace of
tritium-labeled water in regular water. Water molecules are about 0.26 nm in diameter,
separated by 0.30 nm.
Solution The distance of a step will be 0.30 — 0.26 = 0.04 nm.
The velocity is given by

1
3 my’ = kgT

1/ 20g 2 1 gem’
7( 23) = (1381070 2 ) 208k
2\6 - 10 sec K

v=75-10" cm/sec

Thus from Egs. 5.5-13 and 5.5-15

0.04-10" cm (5 : 104cm/sec)
D =
6

= 3. 1075cm2/sec

This is close to the experimentally observed value.

Example 5.5-2: Random walks in a flake-filled film We are studying random motions in
a composite of aligned impermeable flakes like those shown in Figure 5.5-1(a). When
random motions like these are averaged over many trajectories, we get the mean square
displacement as a function of the total distance traveled, as shown in Figure 5.5-1(b). If
the distance occurs in steps of a unit distance per second, what diffusion coefficient is
inferred from these data?

Solution The key to this calculation is ¢°, the slope of the data in Figure
5.5-1(b), which is 0.014. The mean square displacement ¢ varies linearly with the dis-
tance traveled, which in this case is numerically equal to the time in seconds. For
example, from Equation 5.5-10, we get,

2
¢ 0.014 s
D=5 = s ~ 4710

Note this is for diffusion vertically, detouring around the plates. Diffusion in the hor-
izontal direction would give a different distance, and a different diffusion coefficient.

5.6 Measurement of Diffusion Coefficients

In this section, we want to discuss the most convenient ways in which diffusion
coefficients can be measured. This section is the counterpoint to the previous ones.
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Fig. 5.5-1. Random walk in a flake-filled film. A typical path through the aligned flakes is
shown in (a). The distance traveled perpendicular to the flakes is shown vs. the total distance
travelled, which is proportional to time ¢.

Whereas the focus has been on using past experience to guide predictions, this section
replaces the hope of prediction with the necessity of accurate measurements.

Measuring diffusion coefficients is reputed to be difficult. For example, Tyrell (1961)
stated that “this is not an easy field of study in any sense. It took eighty years from the
time when Thomas Graham worked on diffusion before precise data on diffusion coef-
ficients began to be collected.” This suggests that measurements of diffusion are a Holy
Grail requiring noble knights who dedicate their lives to the quest.
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In fact, although measurements are rarely routine, diffusion coefficients usually can
be determined to within about five- or ten-percent accuracy without excessive effort.
Because such accuracy is sufficient for most situations, we should always consider mea-
suring the coefficients we need. The reputed difficulty of diffusion measurements stems
from inherent masochists, like me, who make many of the experiments. We are never
satisfied. When we attain coefficients accurate to 10%, we want 2%; when we achieve
2%, we want 0.5%.

If we have decided that measurements are essential, we must decide how to make
them. There are many methods available, all described in glowing terms by their pro-
ponents. An exhaustive description of these methods could fill this book.

Instead of such an oppresive list, we shall consider only those methods of measuring
diffusion that are reasonably accurate, that are easy to use, or that have some special
advantage. I have tried below to state concisely the advantages and disadvantages of
each method. I want to give the flavor of the laboratories themselves, and not just the
polished publications that result.

The most useful methods of studying diffusion are shown in Table 5.6-1. The first
three on this list are used most frequently. These three methods give accuracies sufficient
for most practical purposes. They and the other methods will be described in greater
detail in the following paragraphs.

5.6.1 Diaphragm Cell

The Stokes diaphragm cell is probably the best tool to start research on diffu-
sion in gases or liquids or across membranes. It is inexpensive to build, rugged enough to
use in an undergraduate lab, and yet capable of accuracies as high as 0.2%.

Diaphragm cells consist of two compartments separated either by a glass frit
[Fig. 5.6-1(a)] or by a porous membrane [Fig. 5.6-1(b)] (Stokes et al., 1950). The two
compartments are most commonly stirred at about 60 rpm with a magnet rotating
around the cell. Initially, the two compartments are filled with solutions of different
concentrations. When the experiment is complete, the two compartments are emptied
and the two solution concentrations are measured. The diffusion coefficient D is then
calculated from the equation

D— i]n (Cl y bottom — C1, top)initial (56-1 )
‘Bl (Cl, bottom — ¢y, tOp) attime 7

in which § (in cm?) is a diaphragm-cell constant, 7 is the time, and ¢, is the solute
concentration under the various conditions given. The detailed derivation of this equa-
tion is given in Example 2.2-4.

Four points about the diaphragm cell deserve emphasis. First, calculation of the
diffusion coefficients requires accurate knowledge of the concentration differences,
not the concentrations themselves. This means that very accurate chemical analyses
may be required. For example, imagine we are measuring the diffusion of anthracene
in hot decalin. Using gas chromatography, we measure the anthracene concentration as
5.1 £0.1% in the top solution and 6.1 = 0.1% in the bottom solution. The concentration
difference is then 1.0 = 0.2%, an error of twenty percent, even though our chemical
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Fig. 5.6-1. Diaphragm cells. The cell on the left, which uses a porous glass frit as a diaphragm,
is more accurate than that on the right, which used filter paper as a diaphragm. However, the cell
with the glass frit requires a much longer experiment.

analyses are accurate to two percent. As a result, we might do better to use a differential
refractometer to try to determine the concentration difference directly.
The second point about the diaphragm cell is the calibration constant . This quantity

is
ﬁzé(l L ! ) (5.6-2)

Vtop Vbottom

in which A is the area available for diffusion, / is the effective thickness of the di-
aphragm, and Viop, and Viogom are the volumes of the two cell compartments. We
should note that A is the total area open for diffusion and so is not a strong function of
the pore size in the diaphragm. As a rule, small pores are preferred. Large pores may
give a slightly larger area, but they often allow accidental mixing caused by flow
through the diaphragm. Because A4 and / are, as a rule, not exactly known, f§ must
be found by experiment. In liquids, this calibration is commonly made with KCl-water
or urea—water. Sucrose—water is less reliable because the solution often becomes con-
taminated by microorganisms. In gases, calibration depends on the method chosen to
measure concentration.

The time required for diaphragm-cell measurements is determined by the value of f
and hence by the nature of the diaphragm. For accurate work, the diaphragm should be
a glass frit, and the experiments may take several days; for routine laboratory work, the
diaphragm can be a piece of filter paper, and the experiments may take as little as a few
hours. For studies of membrane transport, a piece of membrane can be used in place of
the filter paper. For studies in gases, the entire diaphragm can be replaced by a long, thin
capillary tube, like the apparatus in Fig. 3.1-2.

The third point is that diffusion should always take place vertically. In other words,
the diaphragm should lie in the horizontal plane. If the diaphragm is vertical, free
convection can be generated, leading to spurious results. Interestingly, if the diaphragm
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is horizontal, then placing the more dense solution in the upper compartment may be
done without fear of free convection. Many investigators routinely do this, feeling that
they get superior results. At the same time, most investigators have done away with the
elaborate initial diffusion period suggested in early experiments. This period is signifi-
cant only when the diaphragm volume is about one-sixth of the compartment volumes
(Mills et al., 1968).

The final point about this method is its occasional unreliability. Every good experimen-
talist subjectively judges the quality of his experiments as he goes along. Most can correctly
estimate an experiment’s success even without detailed analysis. With the diaphragm cell,
however, I have never been able to guess. Experiments I expect to be erratic often are, but
experiments that I think are correct sometimes give answers that are in error by an order of
magnitude. One of my students minimized such unpleasant surprises by carefully wrapping
his cells in a particular brand of plastic bag purchased from a particular store in Cleveland,
Ohio. For him, this worked. I have never found a similar trick.

5.6.2 Infinite Couple

This experimental geometry, which is limited to solids, consists of two solid bars
of differing compositions, as shown in Fig. 5.6-2. To start an experiment, the two bars
are joined together and quickly raised to the temperature at which the experiment is to be
made. After a known time, the bars are quenched, and the composition is measured as
a function of position. In the past, this analysis was made by grinding off small amounts
of bar and determining the composition by a series of wet chemical tests; now, the
analysis is made more easily and quickly by an electron microprobe.

Because diffusion in solids is a slow process, the compositions at the ends of the solid
bars away from the interface do not change with time. As a result, the concentration
profile is that derived in Section 2.3:

¢ —Cp z
— =erf [ ——= 5.6-3
Clo — C] o (\/4Dt) ( )

in which ¢ is the concentration at that end of the bar where z = © and ¢|[=
(c10 + ¢1-=)/2] is the average concentration in the bars. The measured concentration
profile is fit numerically to find the diffusion coefficient.

It must be remembered that diffusion in solids can be more complex than these
paragraphs suggest. Some of this complexity stems from the different mechanisms by
which diffusion in solids can occur. More subtle complexities arise from factors like
residual stress in metal or the reference velocity on which diffusion is based. Such com-
plexities dictate caution.

The infinite couple is a good method to measure diffusion in solids, but it is tedious. A
faster though less accurate method is simply to drop some solid particles into a liquid
solution and to measure the solution concentration ¢; as a function of time. At small
times, the solute flux out of the solution and into the particles is given by

. D
m=j=- \/;HCIO (5.6-4)
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Results in diffusion
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Like this
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Fig. 5.6-2. The infinite couple. In this method, two solid bars of different compositions are
joined together at zero time. The concentration profiles shown develop with time and are
measured chemically.

where ¢ is the initial concentration in the solution (cf. Equation 2.3-18). From a mass
balance on the solution,

d D
VEL = _any = — A= Heyg (5.6-5)
dt nt

where V is the total volume of solution, A4 is the total area of particles, and H is the
partition coefficient between the solution and the solid particles. This mass balance is
subject to the initial condition that

t =0, c=cpo (5.6-6)

Integrating, we find that

5—1‘0 =1 - {(If/) 47DHc10} Vi (5.6-7)

Thus a plot of (¢/c10) vs. the square root of time has a slope which is proportional to the
diffusion coefficient D.

I have given this example to illustrate the mathematical approximations which are
usually successful in making experimental measurements. In this case, three of these
approximations are especially obvious

1. The particles are taken as semi-infinite slabs, so that the flux is accurately de-
scribed by Equation 5.6-3. This is true only if the time for the experiments is
much less than (particle size)?/D.

2. The concentration ¢;y doesn’t change during the experiment so that the flux
remains that given by Equation 5.6-3. This assumption seems especially foolish
because our experiment depends on measuring changes in c;.
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3. The solution is well mixed so its concentration ¢, has the same value throughout
the liquid, even right up to the solid particles. This is often true even if the liquid
is not mixed because the diffusion coefficient in the liquid is so much greater
than that in the solid.

Each of these three assumptions is serious and initially not obvious. If any one of
these is not accurate, our calculations of diffusion using this method may be seriously
in error.

However, in my experience the use of Eq. 5.6-7 does give accurate values of the
diffusion coefficient. Thus the three assumptions above must be reasonably accurate,
and the chief limitation of the experiment is accurately measuring the concentration c;.
This accuracy is essential because we are basing our calculation on a concentration
difference (ci19 — ¢1), a small difference between large numbers. This fact is the key for
this experiment, as it was for the diaphragm cell.

In my experience, most novices measuring diffusion do not concentrate on this
experimental measurement but rather on improving the mathematics behind Equation
5.6-7. These novices assume a finite slab and solve the diffusion equations for that case,
getting results like those in Section 3.5. They include the variation of solution concen-
tration with time, performing an analysis like that in Example 3.5-3. These novices are
then dismayed that their results are poorly reproduceable, and they conclude that their
mathematics is incorrect. It often isn’t; it is unnecessary. The novices need instead to
focus on their measurement of concentration.

The reason that so many novices make mistakes like this is that in their training, they
practice harder and harder mathematics. They rarely practice better and better experi-
mental accuracy. Thus this example has a moral: Please, when you start making meas-
urements, use the simplest analysis possible until you are sure from experiment that it is
inadequate.

5.6.3 Taylor Dispersion

We now turn to more complex and more expensive methods, which can also be
easier to run or which give more accurate results. The first of these is Taylor dispersion,
illustrated schematically in Fig. 5.6-3 (Ouano, 1972). This method, which is valuable for
both gases and liquids, employs a long tube filled with solvent that slowly moves in
laminar flow. A sharp pulse of solute is injected near one end of the tube. When this pulse
comes out the other end, its shape is measured with a differential refractometer. Except
for the refractometer, which can be purchased off the shelf, the apparatus is inexpensive
and moderately easy to build. This apparatus can be used routinely by those with little
training. It can be operated relatively easily at high temperature and pressure. It has the
potential to give results accurate to better than one percent.

The concentration profile found in this apparatus is that for the decay of a pulse (see
Section 4.2):

2
M exp_(Z —vt)"JAEt
W VarEt

(5.6-8)

1 =
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Fig. 5.6-3. The Taylor dispersion method. A sharp pulse is injected into a tube filled with
flowing solvent. The dispersed pulse is measured at the tube’s outlet. Interestingly, the pulse is
dispersed more if the diffusion is slow.

where M is the total solute injected, R is the tube radius, v° is the average velocity of the
flowing solvent, and E is a dispersion coefficient given by
("*R)?

g= U0 (5.69)

Because the refractive index varies linearly with the concentration, knowledge of the
refractive-index profile can be used to find the concentration profile and the diffusion
coefficient.

The fascinating aspect of this apparatus is the way in which the diffusion coefficient
appears. Equation 5.6-8 has the same mathematical form as Eq. 2.4-14, but the disper-
sion coefficient E replaces the diffusion coefficient. So far, as good. However, E varies
inversely with D, as explained in Section 4.4. Consequently, a widely spread pulse means
a large F and a small D. A very sharp pulse indicates small dispersion and hence fast
diffusion.

5.6.4 Spin Echo Nuclear Magnetic Resonance

The next two methods, spin echo nuclear magnetic resonance and dynamic light
scattering, represent the adoption of expensive, complex equipment built to obtain
molecular information to the new task of measuring diffusion. Because neither method
tries only to measure diffusion coefficients, the accuracy is modest. Neither method
requires an initial concentration difference, a major convenience in highly viscous
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systems. The real attraction of each system is the promise that existing equipment can be
reapplied to the new objective of measuring diffusion.

Diffusion coefficients can be measured with nuclear magnetic resonance to an accu-
racy of around five percent. To do so, we first place a homogeneous sample in a large
magnetic field. This external field aligns the magnetic moments of the atomic nuclei in
the solute of interest. When the magnetic field is slightly perturbed, the atomic moments
process, which can induce in an adjacent coil a small voltage of amplitude A4 oscillating
with time:

A = Aysin(t/7) (5.6-10)

The period of this oscillation 7 is normally the focus of interest, for it gives information
about the local chemical environment.

Our interest is not in the period 7 but in the amplitude 4. To study this amplitude, we
apply a second perturbation in the magnetic field. This second ‘““pulsed gradient” is
applied not in time, but in space. It is applied first in one direction and then — after
a short time t’ — in the opposite direction. If the solute molecules were fixed in space, the
two perturbations in space would produce no change in the amplitude 4,. However,
these molecules aren’t fixed but are moving by Brownian motion, so the amplitude A is
reduced.

We can measure this amplitude reduction as a function of the time 7’ between the
gradient pulses. The slope of this variation is a direct measure of the Brownian motion
and hence of the diffusion coefficient. Thus if we make measurements on a solute of
known diffusion coefficient and a solute of unknown diffusion coefficient, we can find
the unknown as

D" (unknown) (0A4,/07") (unknown)
D'(known)  (34y/07")(known) (5.6-11)

Strictly speaking, such a measurement is not of the binary diffusion coefficient D but of
the tracer diffusion coefficient D” (cf. Section 7.5). In dilute solution, these have the same
value.

5.6.5 Dynamic Light Scattering

Like nuclear magnetic resonance, dynamic light scattering uses expensive
equipment for a relatively easy measurement of the diffusion coefficient. Like nuclear
magnetic resonance, the measurement requires no initial concentration difference, and
so is especially suited to viscous solutions. Unlike nuclear magnetic resonance, the
measurement is of the binary coefficient, not the tracer diffusion coefficient.

Dynamic light scattering depends on measuring the autocorrelation function of
scattered light as a function of scattering angle and time. To understand the method,
we must first consider what happens to a wave of light traveling through the solution
which we are studying. The wave will move in a constant direction until it strikes an
inhomogeneity. Then part of the wave may be scattered by a changed impedence, that
is, by an altered resistance to its motion that is proportional to the refractive index of
the solution. How the light is scattered depends on how the inhomogeneities in the
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solution are organized. If the solution contains a completely random array of inho-
mogeneities, then the scattering will be the same in all directions. However, if the
solution contains a perfectly ordered array of inhomogeneities, then the scattering will
exist only at particular angles, called Bragg diffraction angles. At these angles, scat-
tering results from constructive interference when scatterers are exactly an integral
number of wavelengths apart. At all other angles, scattering produces destructive in-
terference.

For the important case of concentrated polymer solutions, the scattering results from
a solution that is between a random array and an ordered array. Each monomer unit can
be considered a point scatterer; while the polymer molecules are randomly distributed in
the solution, monomer units are not because they are part of polymer chains. However,
the polymer molecules do move relative to each other because of Brownian motion.
Hence any apparent order in the solution will decay with time.

This decay of order is measured as an autocorrelation function by the dynamic light
scattering apparatus. Such a function gives the correlation between the solution’s order
at some arbitrary time zero and at some second time z. When ¢ is near zero, the auto-
correlation function is near one: The order hasn’t changed much. When ¢ becomes large
the autocorrelation function is near zero: Any apparent order has vanished, replaced by
a new apparent structure. In many cases, this decay can be described as a first-order
exponential:

(A(0) A1)y e ™" (5.6-12)

where (4(0)A4(¢)) is the autocorrelation function, D is the binary diffusion coefficient, ¢ is
the time, and ¢ is the “‘scattering vector:

4
q= 7nsin <g) (5.6-13)

where A is the wavelength of the scattered light and 6 is the scattering angle.

Thus measurements of the autocorrelation function versus time allow calculation of
the diffusion coefficient D. In practice, the range of diffusion coefficients that we can
measure is determined by the scattering vector ¢, which has dimensions of reciprocal
length. Roughly speaking, ¢! is a measure of the distance over which the measurement is
being made. For visible light with a wavelength of 500 nanometers, we sample a distance
of around 100 nm; for neutrons with a wavelength of 1 nanometer, we sample distances
around 3 nm. Still, the important point is that the dynamic light scattering method
provides a measurement of binary diffusion especially suitable for polymer solutions.

5.6.6 Some Very Accurate Methods

So far, we have discussed three easy methods and three more highly instru-
mented methods for measuring diffusion coefficients. Each of these six methods can give
results accurate to a few percent, a suitable goal for most research. If higher accuracy is
needed, we should turn to the interferometers shown in Fig. 5.6-4. These instruments
depend on measuring an unsteady-state refractive index profile in a transparent system,
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(a) Gouy interferometer
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Fig. 5.6-4. Interferometers for accurate diffusion measurements. These three instruments can
be expensive to build and hard to operate, but they give very accurate results. Each produces
interference fringes like those shown at the right of each schematic. LS, light source; L,
collimating lens; C, diffusion cell; LC, cylindrical lens; M, mirror; M’, M”, half-silvered
mirrors.

and so they are most useful for liquids. Their high accuracy is purchased at a great cost of
both equipment and effort.

The interferometers differ optically. The Gouy interferometer, shown schematically
in Fig. 5.6-4(a), is the more highly developed, accurate to better than 0.1%. It is relatively
simple to build and easy to align. If one already has a method for measuring the inter-
ference fringes, this instrument is not particularly expensive. The Gouy method has been
so highly developed that the extremely specialized jargon used in its operation may
discourage newcomers. In fact, the experiments are simple to do; the hardest step is to
understand the theory well enough to write the appropriate computer program. Average
results with this instrument are at least equivalent to the best results obtained with any
other device.

The Gouy interferometer measures the refractive-index gradient between two
solutions that are diffusing into each other. The basic apparatus for measuring the
gradient uses the lenses L to send parallel light rays from a light source LS through
a diffusion cell C. If this cell contains a refractive-index profile, then light passing
through the center of the cell will be deflected to produce an interference pattern of
black horizontal lines, as shown at the right in Fig. 5.6-4(a). The amount of this
deflection is proportional to the refractive-index gradient, a function of cell position
and time.

The Mach—Zehnder and Rayleigh interferometers are solid alternatives to the Gouy
interferometer. Although they are difficult to construct and adjust, they give information
that is simpler to interpret. In the Mach—Zehnder apparatus, shown in Fig. 5.6-4(c),
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collimated light is split by the first half-silvered mirror M’. Half the light passes through
each of the twin cells C and is recombined by the second half-silvered mirror M”. In the
Rayleigh apparatus, these mirrors are replaced by a cylindrical lens, shown in Fig. 5.6-
4(b).

Both instruments measure refractive index versus cell position. If both cells contain
homogeneous solutions, the interference fringes are sets of parallel vertical lines; if one
cell contains a refractive-index gradient caused by diffusion, the interference fringes look
like those shown at the right of Figs. 5.6-4(b) and (c). For both interferometers, these
fringes can be used to calculate the diffusion coefficient.

5.6.7 Other Methods

The remaining common methods for measuring diffusion are listed in Table
5.6-1 roughly in order of their value. None of these methods is commonly superior to
those described above, although each may be useful in specific cases.

The capillary method is most suitable for measurements with radioactive tracers. It
uses a small diffusion cell made of precision-bore capillary tubing, perhaps 3 cm long and
0.05 cm in diameter. One end of this cell is sealed shut. After the cell is filled with
a solution of known concentration, it is dropped into a large, stirred, thermostated
solvent bath. At the end of the experiment, the cell is removed and the solute concen-
tration within the cell is measured. The diffusion coefficient D can then be found from
the equation

L I 7 (2n — 1)*(D1/4F) (5.6-14)

o w ; (2n — 1)
in which ¢;o and ¢; are the average concentrations in the cell at times zero and ¢z,
respectively, and / is the length of the cell.

Four characteristics of this method deserve mention. First, with careful technique it is
accurate to better than 0.3%. The caveat is ““careful technique’; it is unusually easy to
fool yourself with this equipment, obtaining reproducible inaccurate results. Second, the
small size of the diffusion cell dictates careful chemical analysis of very small volumes of
solution. In practice, this suggests using either radioactive tracers or some other micro-
analytical method. Third, the power series in Eq. 5.6-14 converges rapidly. If you use
reasonably long experiments, you can base your analysis on the first term in the series.
Finally, for radioactive tracers this method may give an intradiffusion coefficient, not
a binary coefficient (cf. Section 7.5).

The spinning-disc method depends on a solid or liquid disc of solute slowly rotating
in a solvent volume (see Fig. 3.4-3). The solute concentrations in the solvent are
analyzed versus time. If the disc’s dissolution is diffusion-controlled, these concentra-
tions allow calculation of the diffusion coefficient from Example 3.4-3 (Levich, 1962).
If the disc’s dissolution is not diffusion-controlled, we must choose another
method.

The wedge interferometer is cheap and cute, a simple alternative to the expensive
interferometers described earlier. It consists of two microscope slides separated at one
edge with a coverslip. To start an experiment, one places drops of two different solutions
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next to each other on one slide. One then places the other slide and coverslip so that the
drops are in contact in a wedge-shaped channel. When this wedge is put in a microscope,
interference fringes indicate the concentration profile. Measuring the change of fringe
position versus time allows calculation of the diffusion coefficient simply, cheaply, and
approximately. Moreover, because only drops of solution are needed, one needs only
very small amounts of solute.

The last entry in Table 5.6-1 refers to steady-state methods. These methods are like
the diaphragm cell, but they replace the two well-stirred compartments with two flowing
solutions. In principle such a replacement gives a true steady state, simplifying the
analysis. In practice, the methods are a nightmare. The two solutions must flow at
exactly the same rate, so expensive pumps and valves are needed. The experiments
can consume huge amounts of solution. My advice is to choose a complex analysis
and a simple unsteady experiment.

5.7 A Final Perspective

The characteristics of diffusion coefficients described in this chapter are sum-
marized in Table 5.7-1. In general, diffusion coefficients in gases and in liquids can often
be accurately estimated, but coefficients in solids and in polymers cannot. In gases,
estimates based on the Chapman—Enskog kinetic theory are accurate to around ten
percent. In liquids, estimates are based on the Stokes—FEinstein equation or its empirical
parallels. These estimates, accurate to around twenty percent, can be supplemented by
a good supply of experimental data. In solids and polymers, theories allow coefficients to
be correlated but rarely predicted.

These common generalizations help to solve only the routine problems with which we
are faced. Many problems remain. For example, we may want to know the rate at which
hydrochloric acid diffuses into oil-bearing sandstone. We may need to estimate the
drying speed of lacquer. We may seek the rate of flavor release from lemon pie filling.
All these examples depend on diffusion; none can be accurately estimated with the
common generalizations.

Table 5.7-1 A comparison of diffusion coefficients and their variations

Phase  Typical Variations with Remarks
Zﬁig /esec Temperature Pressure Solute size Viscosity
Gases 10! 7372 p! (Diameter) 2 pt! Successful theoretical
predictions
Liquids 107 T Small (Radius) ™! ! Can be concentration
dependent
Solids 10°°  Large Small (Lattice Not Wide range of values
spacing) "2 applicable
Polymers 10°® Large Small (Molecular Often Involves different
Weight) =% © 2 small special cases

Note: These heuristics summarize the more detailed discussions in this chapter.
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In some cases, diffusion coefficients can be adequately estimated by more carefully
considering the chemistry. Specific cases, discussed in the next chapter, include electro-
lytes and critical points. However, in most nonroutine problems the detailed chemistry is
not known and experiments are essential. The primer on experiments given in this
chapter should be your initiation.

Questions for Discussion

What are typical values of diffusion coefficients in gases, liquids, and solids?
If the diffusion of hydrogen in nitrogen gas is 0.78 cm?/sec at 1 bar, what will it
be at 50 bars?

Describe an experiment to measure the diffusion of oxygen in nitrogen. List any
equipment needed.

Diffusion in liquids commonly assumes a rigid sphere in a continuum. When
would this model be most accurate? When could it fail?

How would the diffusion coefficient of a protein vary with its molecular weight?
Describe an experiment to meaure the diffusion of glucose in water. List any
equipment needed.

What are the limits of the diffusion of an ellipsoid as the ratio of axes (a/b)
becomes very large?

Diffusion varies with viscosity to the (+ 1) power in gases but to the (1) power
in liquids. Why?

Why does hydrogen diffuse so much faster in metals than other solutes do?
Diffusion in metals often varies strongly with temperature in metals with an
activation energy AH around 100 kJ/mol. What are the corresponding activa-
tion energies in gases and in liquids?

Problems

Estimate the diffusion coefficient of carbon dioxide in air at 740 mm Hg and 37°C.
How does this compare with the experimental value of 0.177 cm?/sec? Answer: about
4% low.

As part of a course on diffusion, you are to measure the diffusion coefficient of am-
monia in 25 °C air, using the two-bulb capillary apparatus shown in Fig. 3.1-2. In your
apparatus, the bulbs have volumes of about 17 cm?, and the capillary is 2.6 cm long
and 0.083 cm in diameter. You are told that you should make your measurements
when the concentration difference is about half the initial value. (a) Use the Chapman—
Enskog theory to estimate how long you should run your experiment. Answer. 3.6 hrs
(b) Why are you told to make your measurement near this particular concentration
difference?

Estimate the diffusion coefficient at 25 °C of traces of ethanol in water and of traces of
water in ethanol. Compare your estimates with the experimental values of 0.84 - 107
cm?/sec and 1.24 - 107> cm?/sec, respectively.

Tobacco mosegic virus has been shovzn by electron microscopy to be shaped like
acylinder 150 A in diameter and 3,000 A long. Its molecular weight is about 40 million,
and its partial specific volume is 0.73 cm®/g. Estimate the diffusion coefficient of this
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material and compare with the experimental value at 25 °C of 3 - 1078 cm?/sec. Answer:
2.7 107 em?/sec.

Estimate the diffusion coefficient of lactic acid under each of the following conditions:
(a) in air at room temperature and pressure; (b) in milk in the refrigerator; (c) through
the wall of a plastic milk bottle.

In an experiment to determine the diffusion coefficient of urea in water at 25 °C with
the diaphragm cell, you find that a density difference of 0.01503 g/cm® decays to
0.01090 g/cm? after a time of 16 hrs and 23 min. The cell’s calibration constant is
0.397 cm . If the density of these solutions varies linearly with concentration, what is
the diffusion coefficient? Compare your answer with the value of 1.373 - 10> cm?/sec
obtained with the Gouy interferometer. Answer: 1.37 - 107> cm?/sec.

The concentration profile of Ni,SiO,4 diffusing into Mg,SiOy, is given below [M.
Morioka, Geochim Cosmochim Acta, 45, 1573 (1981)]. These data were found after
20 hrs using an infinite couple at 1,350 °C. Calculate the diffusion coefficient in this
system. Answer: 1.2 - 10" cm?/sec.

[00]
o

Concentration, mol %
N
o

Position, um

The ionic diffusion coefficient D or, more exactly, the ionic conductivity A can frequently
be described by the equation

A= @e’cpr/RT
¢

For f-alumina, the following values are obtained:

[G. C. Farrington and J. L. Briant, Science, 204, 1371 (1979)]. (a) Calculate the ionic

Ro(A) ao(K Johm-cm) E(kcal/mol)
Lit 0.68 54 2.9
Na™* 0.98 2,500 2.4
H;0" 1.32 81,000 11.9
K* 1.33 1,500 4.6

conductivity at 25 °C for each of these ions. (b) Show that these conductivities can be
as large as that in I-M KCl, in which the diffusion coefficient is 2.0 - 107> em?/sec. (c)
Because we usually expect transport in solids to be much slower than transport in
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liquids, we recognize that f-alumina is an exceptional material. Discuss the factors
that might cause this effect.

Jeng-Ping Yao and D. N. Bennion [J. Phys. Chem., 75, 3586 (1971)] measured the
electrolytic conductance of aqueous solutions of tetra-n-amylammonium thiocyanate
at 55 °C. The data are most easily presented graphically (see below). Note that this salt
is a liquid at this temperature and is completely miscible with water; so the measure-
ments go all the way from mass transfer at infinite dilution through to mass transfer in
the molten salt. As detailed in Section 6.1, specific conductance is approximately
equivalent to the diffusion coefficient times the ionic concentration. Use your knowl-
edge of diffusion to suggest how the data at high salt concentration might be conve-
niently correlated.

101 . . T . 104
8 2
c )
£ _102f 1108 &
6 £103 1102 <=
o = =
es Z
S 104 110! §
o (7]
(%) -

10 i >

104 10° 102 107 100 10!
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Diffusion in molten silicate deep within the earth is central to many of the chemical
processes that take place there. However, the diffusion coefficients in such magma
seem to vary widely. For example, for cesium ion dissolved in obsidian at 2 kilobars
pressure,

D = 810 %exp ¥kal/RT [=]em?/sec
For cesium ion dissolved in obsidian containing 6 wt% water,
D=7. 1O—SCXp—19.52kczll/RT[:}Cm2/seC

[E. B. Watson, Science, 205, 1259 (1979)]. (a) How much does the diffusion coefficient
at 800 °C differ in the dry and the water-saturated samples? (b) The reason for this
difference is not known. Assume that the water causes thin pores to form, and diffu-
sion in the pores is that in bulk water. What is the pore area per obsidian area?
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CHAPTER 6

Diffusion of Interacting Species

In this chapter, we turn to systems in which there are significant interactions
between diffusing molecules. These interactions can strongly affect the apparent diffu-
sion coefficients. In some cases, these effects produce unusual averages of the diffusion
coefficients of different solutes; in others, they suggest a strong dependence of diffusion
on concentration; in still others, they result in diffusion that is thousands of times slower
than expected.

The discussion of these interactions involves a somewhat different strategy than that
used earlier in this book. In Chapters 1-3, we treated the diffusion coefficient as an
empirical parameter, an unknown constant that kept popping up in a variety of math-
ematical models. In more recent chapters, we have focused on the values of these co-
efficients measured experimentally. In the simplest cases, these values can be estimated
from kinetic theory or from solute size; in more complicated cases, these values require
experiments. In all these cases, the goal is to use our past experience to estimate the
diffusion coefficients from which diffusion fluxes and the like can be calculated.

In this chapter, we consider the chemical interactions affecting diffusion much more
explicity, rather than hiding them as part of the empirically measured diffusion coeffi-
cient. The interactions affecting diffusion are conveniently organized into three groups.
As a first group, we consider in Section 6.1 solute—solute interactions, particularly in
strong electrolytes. We want to discover how sodium chloride diffusion is an average of
the diffusion of sodium ions and of chloride ions. In Section 6.2, we turn to the transport
of associating solutes like weak electrolytes and dyes. We want to know how the total
diffusion of acetic acid varies from dilute solutions, where it is almost completely ion-
ized, to concentrated solutions, where it is almost completely unionized.

The second group of interactions affecting diffusion involves solute—solvent interactions.
In Section 6.3, we explore the extremely large solute—solvent interactions which occur near
the spinodal limit, where phase separation is incipient. Diffusion in these regions leads to the
phenomenon of spinodal decomposition, which is also discussed in Section 6.3.

In the last section of this chapter, we summarize diffusion affected by solute-boundary
interactions, which is the third important group of interactions. Solute-boundary
interactions occur in porous solids with fluid-filled pores. They include such diverse
phenomena as Knudsen diffusion, capillary condensation, and molecular sieving. Be-
cause these phenomena promise high selectivity for separations, they are an active area
for research. They and the other interactions illustrate the chemical factors that can be
hidden in the diffusion coefficients which are determined by experiment.

6.1 Strong Electrolytes

Every high school chemistry student knows that when sodium chloride is dis-
solved in water, it is ionized. Sodium chloride in water does not diffuse as a single

161



162 6 | Diffusion of Interacting Species

molecule; instead, the sodium ions and chloride ions move separately through the solu-
tion. The movement of the ions means that a 0.1-M sodium chloride solution passes an
electric current one million times more easily than water does. The large ion size relative
to electrons means that such a solution passes current ten thousand times less easily than
a metal does.

The diffusion of sodium chloride can be accurately described by a single diffusion
coefficient. Somehow this does not seem surprising, because we always refer to sodium
chloride as if it were a single solute and ignore the knowledge that it ionizes. We get away
with this selective ignorance because the sodium and chloride ions diffuse at the same
rate. If they did not do so, we could easily separate anions from cations.

Values of ionic diffusion coefficients are given in Table 6.1-1. These data, which are
hidden in the literature of electrochemistry, are obtained by a variety of experimental
methods, including tracer diffusion determinations. The table shows that different ions
have different diffusion coefficients. The proton and the hydroxyl ion are unusually fast;
big fat organic ions like tetrabutylammonium and tetraphenylborate are slow. Some-
what surprisingly, a potassium ion diffuses faster than a lithium ion does. This suggests
that in aqueous solution, a potassium ion is smaller than a lithium ion. These sizes are
unexpected from crystallographic measurements on the solid state that show the potas-
sium ion is larger. The sizes in solution occur because the potassium ion is less strongly
hydrated than the lithium, as discussed in Section 6.2-4.

The anomalously high value for protons merits discussion. This high value is in-
consistent with the ion’s size, which would suggest a more normal value. The reason
for this behavior is that proton transport occurs by a different “Grotthus” mechanism.
In this mechanism, shown schematically in Fig. 6.1-1, a proton does not move through
water as an intact entity. Instead, it reacts with a water molecule, forcing a proton off the
other side. This newly generated molecule reacts again to produce a third proton; this
third proton continues the chain reaction. This transport may also involve proton
tunnelling.

Another interesting result in Table 6.1-1 is that the sodium ion diffuses more slowly
than the chloride ion. In other words, the sodium ion does not have the same diffusion

Table 6.1-1 Diffusion coefficients of ions in water at 25 °C

Cation D Anion D

H* 9.31 OH™ 5.28
Li* 1.03 F 1.47
Na* 1.33 Ccr 2.03
K" 1.96 Br 2.08
Rb* 2.07 I 2.05
Cs* 2.06 NOj; 1.90
Ag' 1.65 CH;COO~ 1.09
NH; 1.96 CH;CH,CO0O™ 0.95
N(C4Ho); 0.52 B(C¢Hs), 0.53
Ca®* 0.79 soi; 1.06
Mg> " 0.71 CO3~ 0.92
La’* 0.62 Fe(CN)}™ 0.98

Note: Values at infinite dilution in 107> cm?/sec. Calculated from data of Robinson and Stokes
(1960).
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Fig. 6.1-1. Proton diffusion in water. Proton diffusion occurs by the chain reaction shown
between water molecules. Such a jump mechanism also exists in alcohol, but not in alcohol-water
mixtures.

coefficient as the chloride ion. However, because sodium chloride diffuses with only one
coefficient, the ionic diffusion coefficients must somehow be combined to give an aver-
age value. We shall now calculate this average, first for a simple 1-1 electrolyte like
sodium chloride and then for more complicated electrolytes. With these results as a basis,
we shall then briefly discuss electrical conductance.

6.1.1 Basic Arguments

Imagine a large, fat grandfather taking a small rambunctious girl for a walk.
The rate at which the two travel will be largely determined by the grandfather. He will
move slowly, even ponderously, toward their goal. The girl may run back and forth,
taking many more steps and so covering more distance, but her progress will be dom-
inated by her elder.

In the same way, the diffusion of a large, fat cation and a small, quick anion will be
dominated by the slower ion. The diffusion will proceed as does the walk, and the smaller
ion may move around more. However, the two ions are tied together electrostatically,
and so their overall progress will be the same and will tend to be dominated by the slower
ion (Fig. 6.1-2).

To examine this analogy more exactly, we must first write a flux equation for ion dif-
fusion. In this effort, we consider only dilute solutions, like those in Chapter 2, and so
ignore problems like the complicated reference velocities of Chapter 3. The obvious choice
of a flux equation is the simplest form of Fick’s law, which for a sodium ion will be

—Jna = DnaVena (6.1-1)

However, we quickly realize that this choice is inadequate, for it suggests that an electric
field will not affect diffusion.

To include this electric field, we return to the argument used to derive the Stokes—
Einstein equation in Section 5.2: that the ion velocity is proportional to the sum of all
the forces acting on the ion. In symbolic terms, this is

ion _ ion chemical n electrical
velocity / — \ mobility forces forces

vi = (Vi + 2 F Vi) (6.1-2)
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Fig. 6.1-2. Electrolyte diffusion. The two ions have the same charge and are present at the same
local concentration. The larger cations (the positive ions) inherently move more slowly than the
smaller anions (the negative ions). However, because of electroneutrality, both ions have the
same net motion and hence the same flux.

@@ °®

where u; is the ion mobility, z; is the ionic charge (equal to + 1 for Na™), F is Faraday’s
constant, and  is the electrostatic potential.

Each of these terms deserves discussion. First, the mobility u; is a physical property of
the ion, a phenomenological coefficient that must be measured by experiment. This
mobility is often taken to be 1/6muR,, which, we recall, is a feature of the Stokes—FEinstein
equation. In fact, the use of this value simply restates our ignorance of mobility in terms
of an effective ion radius, R,.

Because the mobility is almost equivalent to the diffusion coefficient, it is something
of a cultural artifact. It is included here because many papers dealing with electrolyte
transport report their results in terms of mobilities, not in terms of diffusion coefficients.
Faraday’s constant is even more of a cultural artifact: it is a unit conversion factor
explicitly included whenever this equation is written. The apparent supposition is that
no one can properly use electrostatic units without a warning.

The charge and potential in Eq. 6.1-2 make explicit the electrical effects connecting
the ions. Including the charge seems sensible; note that if the ion has a negative charge,
the direction of the electrical effect is reversed. The potential also looks sensible. It has
two distinct parts. One part includes the effect of any potential applied to the system, for
example, by electrodes attached to a battery. A second part is the potential generated by
the different diffusion rates of diffusion ions. For example, for sodium chloride, the
potential includes the electrostatic interaction of the quicker chloride ions and the
more sluggish sodium ions. It is thus the route by which we average ion diffusion
coefficients.

To rewrite Eq. 6.1-2 as a flux relation, we take advantage of the fact that we are
working in dilute solution and so assume that the solution is ideal:

Vu, =—Ve; (6.1-3)

Ci
When this result is combined with Eq. 6.1-2, we get

_[wRT] (o . FVV
v = ; Ve + ¢z RT (6.1-4)
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which is equivalent to the flux equation

—Ji = GV

FVy
= [RTu] (Vc, + ciz; RT )

FVy
[D](Vcl+cz, RT) (6.1-5)
These relations, sometimes called the Nernst—Planck equations (Bard and Faulkner,
2000), could be written down directly as a definition for D,. If this were done, then the
restriction to dilute solutions in Eq. 6.1-3 and the implicit neglect of a reference velocity
in the first line of Eq. 6.1-5 would be hidden in the final flux equation, lumped into the
experimental coefficient D;. I find the derivation a sensible, reassuring rationalization,
even though I know that it is arbitrary.

6.1.2 1-1 Electrolytes

We now want to describe the ion fluxes of a single strong 1-1 electrolyte. Such an
electrolyte ionizes completely, producing equal numbers of cations and anions. Al-
though the concentrations of anions and cations may vary through the solutions, the
concentrations and the concentration gradients of these species are equal everywhere
because of electroneutrality:

Cl = C
Ve = Ve, (61-6)

where 1 and 2 refer to cation and anion, respectively. Like the ion concentrations, the ion
fluxes are also related.

Jr=1i/lz| (6.1-7)

where |z| is the magnitude of the ionic charge and i is the current density in appropriate
units. This current density is defined as positive when it goes from positive to negative.
To find the electrolyte flux, we first return to the basic flux equation for each ion:

—ji = Di(Vey + |z|e\ FVY/RT) (6.1-8)

—j» = Ds(Ves — |z|ex FVY/RT) (6.1-9)
These equations can be combined with Eq. 6.1-7 to find the current:

|zli=DyVey — D1 Vey — (Dyey + Daca)|z| FVY /RT (6.1-10)
But this equation now allows Vi to be removed from the flux equations:

2D\ D,

D+ D, (i/lz]) (6.1-11)

—h = 1 — D + D>
where we have used the fact that ¢; = ¢, to simplify the final expression. A similar

equation for the anion flux j, can be derived.
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Two important limits of the flux j; exist. First, when there is no current,

ji=j»=—DVe| = — {1/0721/02} \ (6.1-12)
The quantity in brackets is the average diffusion coefficient of the electrolyte. Because it
is a harmonic average of the diffusion coefficients of the individual ions, it is dominated
by the slower ion. However, there is only one diffusion coefficient for the two diffusing
ions because the ions are electrostatically coupled.

The second interesting limit of Eq. 6.1-11 occurs when the solution is well mixed, so
that no gradients of anion and cation exist. In this case,

i = (0 =5 2 6113
o = [a)(—leli) = [%} (/2] 6.1-14)

where the 7;, equal to the quantities in brackets, are the transference numbers, that is,
the fractions of current transported by specific ions. Unlike the diffusion coefficient, these
transference numbers are arithmetic averages of the ion diffusion coefficients. As a result,
the transference numbers and the current in solution are both dominated by the faster ion.

Example 6.1-1: Diffusion of hydrogen chloride What is the diffusion coefficient at 25 °C
for a very dilute solution of HCI in water? What is the transference number for the
proton under these conditions?

Solution From the data in Table 6.1-1, the ionic diffusion coefficients are
9.31 - 10°cm?/sec for H" and 2.03 - 10 °cm?/sec for CI". The electrolyte diffusion
coefficient is given by Eq. 6.1-12:

2
} =33. 10750m2/sec

D = |l
Hl |:1/DH+ + I/DC]*

The slow ion dominates. The result is only 1.5 times greater than the chloride’s diffusion
coefficient, but it is 3.5 times less than the proton’s diffusion coefficient.
The transference number, ty+, can be found in a straightforward manner from
Eq. 6.1-13:
Dy

fe =——H =082
H DH* —+ Dcr

The faster protons carry eighty-two percent of the current.

6.1.3 Non-1-1 Electrolytes

We now turn from the simple 1-1 electrolytes to more complicated electrolytes.
Mathematical description of non-1-1 electrolytes is parallel to that developed earlier but
more complex algebraically. The basic flux equation is the same as Eq. 6.1-5:

—ji = Di(Vei + ¢z FVYRT) (6.1-15)
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The constraints on concentration and flux at zero current are

z1c1 + 22600 =0 (6.1-16)
and

2t + 22, =0 (6.1-17)
When the electrostatic potential is eliminated, the diffusion equation for ion 1 becomes

2 2
D1D2(2161 + 22(32)

2 2
Dizicr + Dyz500

—j, =DVe, = Ve, (6.1-18)

where the quantity in brackets is D, the diffusion coefficient of the electrolyte.

This equation can be somewhat misleading because of the unequal charge. For ex-
ample, imagine that we are interested in the diffusion of very dilute solutions of calcium
chloride. If the calcium is ion 1, then its flux will be half the flux of chloride. When only
one electrolyte is present, we may wish to rewrite this equation in terms of the total
electrolyte flux jr and the total electrolyte concentration ct, defined as

Jr =J/|z2l = /|21 (6.1-19)

CT:C1/|22|:Cz/|Zl| (6.1-20)
The diffusion equation for a single non-1-1 electrolyte now becomes

|21] + |22

—_— = V¢ 6.1-21
221/D1 1 |z11/Da) T (6.1-21

_jT = DVCT =
where the quantity in brackets is again the diffusion coefficient of the non-1-1 electrolyte.
This diffusion forms a curious contrast with the special case of a 1-1 electrolyte de-
scribed by Eq. 6.1-12. Both equations involve a type of harmonic average of the ionic
diffusion coefficients. Thus we might expect that both cases are more strongly influenced by
the slower ion. However, if this slower ion has a much larger charge than the faster ion, the
faster ion may come to dominate the diffusion, because the harmonic average is weighted
by the ion charge. The effect of this weighting can be more clearly shown by examples.

Example 6.1-2: Diffusion of lanthanum chloride What is the diffusion coefficient of
0.001-M lanthanum chloride?

Solution From Table 6.1-1, the diffusion coefficients of La®>* and CI™ are
0.62 - 10 °cm?/sec and 2.03 - 10 >cm?/sec, respectively. In water, the average coefficient
can be found either from Eq. 6.1-18 or from Eq. 6.1-21. From Eq. 6.1-21, taking La* " as
ion 1 and chloride as ion 2, we get

I ]
|z1]/D2 + |z2| /Dy
Bl +[-1
13]/2.03-107° + | — 1]/0.62 - 10
1.29- 1075cm2/sec

— sz/ sec
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From Eq. 6.1-18, because ¢; = 0.001 M and ¢, = 0.003 M, we can find the same
result.

Example 6.1-3: Diffusion of lanthanum chloride in excess sodium chloride How will the
result of the previous example be changed if the lanthanum chloride diffuses through
1 M NaCI?

Solution Answering this question requires the assumption that there are no
ternary diffusion effects in this system. These effects may arise because the diffusion of
sodium ion couples with the diffusion of chloride ion, which in turn affects the diffusion
of La®* . However, these effects vanish for any solute present in high dilution, as LaCls is
in this case (see Section 7.4).

Because of the added sodium chloride we cannot use Eq. 6.1-21, which is valid
only for a single non-1-1 electrolyte. We can use Eq. 6.1-18. If we again label lantha-
num as ion 1 and chloride as ion 2, we recognize that ¢; equals 0.001 M, but ¢, is about
1 M. These unequal concentrations mean that Eq. 6.1-18 becomes

D]Dz(Z%Cz)

=5 VC]
Dlzlcl +D22262

=1

= Dch1

In other words, the diffusion of the lanthanum chloride is 0.62 - 107 sz/ sec, which is the
same as the solitary ion. Thus the diffusion of dilute LaCl; in concentrated NaCl is
dominated by the diffusion of the uncommon ion, La®*.

6.1.4 Diffusion versus Conductance

Although diffusion is a very common process, diffusion coefficients can be
difficult to measure. This is true for most of the systems discussed in this book, including
solutions of electrolytes. However, for electrolyte solutions, the electrical resistance and
its reciprocal, the electrical conductivity, are very easy to measure. Nothing in my exper-
imental experience is as satisfying as a conductance experiment: I get fantastically accurate
results with embarrassingly little effort. Because diffusion and conductance give similar
information about the system, it is worth comparing the two processes in some detail.

The conductance of a single electrolyte in solution is most easily measured in cells like
those shown in Fig. 6.1-3. The electrical resistance of the stirred solution is measured
with a rapidly oscillating AC field of fixed maximum voltage, so that the solution
remains homogeneous throughout the experiment. The resistance is inversely propor-
tional to the current through the cell, but the current, in turn, is proportional to the ion
fluxes:

(resistance)fl = Keen i = Keent (21 j1 + 22J5) (6.1-22)

The proportionality constant K in this relation is a function of the electrode area, the
electrode separation, and the cell shape. It is found by calibration of the cell, most
commonly with a potassium chloride solution.
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Fig. 6.1-3. Conductance cells. These cells are used to measure with extremely high accuracy
the resistance of an electrolyte solution. This information is related to the diffusion coefficient
of the electrolyte. As a result, a conductance experiment sometimes is a superior method of
studying diffusion.

The ion fluxes in the cell are described by equations analogous to those used for ion
diffusion. First, we assume that the ion flux is proportional to the ion concentration:

ji = (CiV; (61-23)

We also assume that the ion velocity is proportional to the electrical force acting on the
ion:

vi = —uizi FVY (6.1-24)

where, as in Eq. 6.1-2, u; is the ion mobility and  is the electrostatic potential acting on
the ions. Because in this case the solution is homogeneous, the concentration gradient is
zero. The only flux comes from the electrostatic potential applied by the electrodes.

We now can combine Egs. 6.1-22 through 6.1-24 to find an expression for the
resistance in terms of the ion mobilities:

(resistance)71 = ce“(zfclul +z§czu2)}'Vlﬁ (6.1-25)
The ion concentrations are related to the total concentration ¢ by
cr = c1/]za| = /|2 (6.1-26)

Equations 6.1-25 and 6.1-26 can now be combined and simplified to define the most
convenient measure of conductivity, the equivalent conductance:

A= |Z||u1 -+ |22|u2

— {(resistance) [Keen FVY]|z122]¢7' } (6.1-27)

The quantity A is most frequently reported in studies of conductance. It can be measured
by determining each of the quantities in the braces. Because the gradient is fixed, the
entire quantity in brackets can be treated as a cell constant.

The equivalent conductance A can be extremely accurately measured, often to
accuracies of 0.01%. It is known to vary slightly with concentration, as shown in Fig.
6.1-4. This variation follows the equation

A = Ao — SVer+ Ecrlner + Jer + "¢ (6.1-28)
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Fig. 6.1-4. Equivalent conductance versus concentration. Conductance varies with
concentration, especially at high dilution. For strong electrolytes like KCI and CaCl,, these
variations are chemically interesting but practically unimportant. For weak electrolytes like
acetic acid, the variation is larger (see Section 6.2).

where Ao, S, E, J, and J' are all constants. The limiting equivalent conductance A is
a property of the ions and is not well understood theoretically. The limiting slope S, first
calculated by Onsager, is a function only of the charges on the ions and is thus charac-
teristic of electrostatic interactions between the ions. The higher constants, E, J, and J’,
include more electrostatic interactions, ion—solvent interactions, and the ion associations
more commonly encountered with weak electrolytes.

In many practical problems, the ion transport is well described by assuming that A is
a constant. After all, the concentration variations are less than twenty percent for
aqueous solutions of most strong electrolytes. Some solution chemists who attack this
assertion ignore the ion properties implicit in Ao and instead extol those contained in E,
J, and J'. If your purpose is knowledge of ion properties, listen to the chemists. If your
purpose is knowledge of mass transfer, assume that A is a constant.

We now want to relate the equivalent conductance A to ion properties and, more
specifically, to ion diffusion coefficients. First, because the ions migrate independently
in a dilute-solution conductance experiment, we can define, from Eq. 6.1-27,

A=J4+ o (6.1-29)
where
)vl' = |Zj|l/lj (61-30)

The 4;, called equivalent ionic conductances, cannot be found from measurements of A
alone, but require other independent determinations, most commonly the transference



6.1 | Strong Electrolytes 171

numbers given in Egs. 6.1-13 and 6.1-14. The 4; depend not only on the ion mobility but
also on the charge. More specifically, if two cations have the same size but not the same
charge, they will have the same mobility, though not the same equivalent ionic conduc-
tance. Note also that A is related to the sum of the ionic properties A; and hence is an
arithmetic average of the ionic properties. In contrast, diffusion is a harmonic average,
as shown in Equations 6.1-12 and 6.1-21.

The equivalent ionic conductances are closely related to the ionic diffusion coeffi-
cients through the mobilities:

Di = kB Tu,-

_ {kBT} i (6.1-31)

|zi]

This result is not often used, even though it is simple and valuable. Part of the reason for
this neglect is the A; are most commonly expressed in “‘conductance units,”” which are
mercilessly square centimeters per mole ohm. The conversion at 25 °C is

-7
D; ([:]cmz/sec) = %2[ (|=]em?/mol ohm) (6.1-32)
1
This relation was used to find some of the values in Table 6.1-1.

Equation 6.1-32 suggests that conductance measurements might be a substitute for
those of diffusion and other aspects of mass transfer. This would be appealing, because
conductance is much easier to measure. Why not measure conductance and forget
diffusion?

This idea has both merit and risk. The merit is the simplicity; the two methods do give
closely related information. The risk is that the solutes must ionize completely. This
effectively restricts these measurements to water, and that is why easily measured con-
ductance is less often reported than difficultly determined diffusion.

Example 6.1-5: Calcium chloride diffusion from conductance Estimate the diffusion
coefficient of CaCl, from conductance measurements. The equivalent ionic conductance
at infinite dilution is 59.5 for Ca>" and 76.4 for chloride. The experimental value of the
diffusion coefficient is about 1.32 - 10 °cm?/sec.

Solution From Eq. 6.1-32 we can find the ionic diffusion coefficients

Dc, =0.79 - 10750m2/sec
D¢ =2.03- 10750m2/sec
The diffusion coefficient can be found from these ionic values by using Eq. 6.1-21:

D B 2+1
CaCh = 1(2/2.03) + (1/0.79)
=133. 10750m2/sec

1073

This result is accurate in very dilute solution. At higher concentrations, the diffusion
coefficient drops to about 1.1 -10~> cm?/sec at 0.2 M and then rises slightly.
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6.2 Associating Solutes

We now switch from solutes that dissociate completely to form ions to solutes
that associate to form aggregates. We again want to find the diffusion coefficient aver-
aged over the various species present.

The analysis of these systems began when Arrhenius (1884) suggested that materials
like acetic acid partially dissociate in water. Many who study diffusion vaguely remem-
ber this variation but ignore it in their experiments. Interestingly, the diffusion of such
solutes can lead to curious and dramatic results. These results have been scattered
through different academic disciplines and so have tended to be ignored. As an example,
consider diffusion of potassium chloride across two thin membranes. The first mem-
brane is just a thin layer of water. The steady-state flux across this membrane is given by

. . dCK
Jka =Jk = —DE (6.2-1)

where cx = c¢c1 = ckcr; and the diffusion coefficient D is the average of the ionic values (cf.
Eq. 6.1-12):

D=—— 2-2
I I (6.2-2)

- + -
Dk~ Da
The flux equation is subject to the constraints

z=0, cxa = Ckaypo (6.2-3)

zZ = l, CKCl — 0 (62'4)

where the Cxcip is the concentration adjacent to but outside the membrane, and in-
tegrating, we find the usual result:

. D
Jxa =7 Ckcio (6.2-5)

In other words, if we double the KCl concentration, we double the flux across this water-
filled membrane.

The results for the second thin membrane are different. This membrane consists of
a chloroform solution of a macrocyclic polyether, again separating two aqueous solutions.
Because the dielectric constant of this second membrane is low, the potassium and chloride
ions are largely associated as ion pairs: The ions are stuck together with electrostatic glue.
The solute that is diffusing is now actually KCI, and not K" and Cl". To analyze
diffusion in this case, we again begin with the flux equation:

deker
dz

where the diffusion coefficient D is now that of the ion pairs, not an average of the ions.
The boundary considerations on this flux equation are:

Jka =—D (6.2-6)

2=0, cxa=KCxkCa = KCig (6.2-7)

z = l, CKCl = 0 (6.2-8)
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where the uppercase variables are outside the membrane, and K is a combined partition
coefficient and association constant across this membrane’s interface. Notice how Eq.
6.2-7 implicitly assumes the fast reaction:

K ion in water adjacent CI" ion in water adjacent
to the membrane to the membrane

(6.2-9)

=

k | KClion pairs at membrane boundary
= but within the membrane

It is just as if a chemical dimerization converted the ions into a new chemical species. As
before, we integrate Eq. 6.2-6 to find

DK 2 } (6.2-10)

Jkcl = [T Ckaip

The flux is now proportional to the square of the potassium chloride concentration. This
square dependence is verified experimentally, as shown in Fig. 6.2-1.

In some cases, we may not be sufficiently astute to realize that the diffusing solutes are
associating. For example, if we still thought that the ions — not the ion pairs — were
diffusing, then we might analyze our data with the equation

Dy
Jran == Crarg (6.2-11)
When we plotted our results, we would discover that this apparent coefficient varied

strongly with concentration. In the example given here, we easily see why this variation
occurs:

Dapparem = DKCKCLO (6.2-]2)

In other cases, we may not have the chemical insight to understand why the diffusion
coefficient varies with concentration. This section analyzes how concentration-dependent

10.0
1.0

0.1

Flux, arbitrary units

0.01 0.1 1.0 10.0
Molar concentration

Fig. 6.2-1. Potassium chloride flux across an organic membrane. In these experiments, a
concentrated solution of KCl diffuses across a polyether—chloroform membrane into
pure water. The flux observed is not proportional to the salt’s concentration but to this
concentration squared. This effect occurs because potassium and chloride ions associate
within the membrane to form ion pairs. [Data from Reusch and Cussler (1973).]
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diffusion may result from solute association. Three cases are important: weak electrolytes,
detergents, and dyes. Each is discussed below.

6.2.1 Weak Electrolytes

Weak electrolytes will produce solutions of a cation, an anion and a molecule in
equilibrium with each other. For example, an aqueous solution of acetic acid contains
hydrated protons, acetate ions, and acetic acid molecules, all in local equilibrium as the
result of fast association.

We want to describe steady-state diffusion in this associating system. To do so, we write
mass balance on the acetate ions (species 1) and on the acetic acid molecules (species 2):

_dj
0=-1—; (6.2-13)
o= Y2, (6.2-14)
dz

where r is the rate of formation of the molecules (the ““dimers”). We add Eq. 6.2-13 to Eq.
6.2-14, and integrate to find the total flux j-

. . . dey dey
—jr=—ji—jy=Dj——+ Dy—— 6.2-15
Jr J1— 2 "4z + D> iz ( )

where D, is the average diffusion coefficient of the ions. For example, for protons and
acetate, it is

) (6.2-16)
‘ ]
Dy Dchscoo

We assume Eq. 6.2-15 is subject to boundary conditions like those of a thin
membrane:

z2=0, ¢ =Chp, ==0Cy (6.2-17)
z = l, ] = 0, C) = 0 (6.2-18)
Integrating again, we find

D, C D,C
= 11 0, 21 20 (6.2-19)

In general, we do not know the species concentrations Ciq and C»g. We do know that
these are related to the total acetic acid concentration

Cr=Cio+ Cy (6.2-20)
We also know that they are interdependent:

Cy = KC}y = KCyy+ Cenycoo- (6.2-21)
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where K is the association constant for the diffusing species. We then can rewrite the flux
in terms of this constant to find

= {2KC (-1+ VIFaKG) + 4KCT( 1+ /T+4KCr) }TT (6.2-22)

The quantity in braces is the apparent diffusion coefficient of the weak electrolyte.

The apparent diffusion coefficient of the weak electrolyte is concentration depen-
dent, the result of the solute—solute association. The physical significance of this con-
centration dependence may be clearer if we consider two limits. First, in dilute solutions
(4KCt < 1), the apparent coefficient equals D;, the ionic value. This makes sense
because dilute solutions will show complete ionization. Second, in concentrated solution
(4KCt > 1), the apparent coefficient reduces to D,: molecular diffusion is paramount.
Thus concentration-dependent diffusion of weak electrolytes shown by Fig. 6.2-2 reflects
association.

Example 6.2-1: Diffusion of acetic acid What is the diffusion coefficient of the acetic acid
molecule if the apparent diffusion coefficient of acetic acid is 1.80 - 10> cm?/sec at 25 °C
and 10 M? The pK, of acetic acid is 4.756.

Solution The pK, of a weak acid HA is defined as

[HT][A7]
[HA]

In this case, the [H"] and [A'] concentrations are equal. Comparing this with Eq. 6.2-21
we see that

K =10"% =570-10*1/mol

pK, = —logy,

0.5

0.25

|
0.01 1 100

Fig. 6.2-2. The diffusion coefficient of a dimerizing solute. As a solute dimerizes, its average
diffusion coefficient changes from that of the monomer to that of the dimer. The concentration
Cr at which this occurs is roughly the reciprocal of the association constant K.
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If we insert this into Eq. 6.2-22, we find that the term containing D, dominates com-
pletely, and

D, =1.80- 10" cm?/sec

In passing, note that the diffusion coefficient of the fully ionized acid found from Eq.6.1-
12 and Table 6.1-1is 1.95 - 10> cm?/sec.

6.2.2 Micelle Formation

We now want to calculate the average diffusion coefficient for solutes that
aggregate much more than the simple weak electrolytes discussed earlier. Three cases
of this aggregation are shown in Fig. 6.2-3. The one dramatic case is the detergent
sodium dodecylsulfate (SDS). Molecules of this detergent remain separate at low con-
centration but then suddenly aggregate. The resulting aggregates, called “‘micelles,” are
most commonly visualized as an ionic hydrophilic skin surrounding an oily hydrophobic
core (Fig. 6.2-4(a)). In fact, detergents clean in this way: they capture oil-bearing par-
ticles in their cores.

In contrast, molecules of the dye Orange II aggregate gently, resulting in a slow and
steady deviation from the unaggregated limit. Such aggregation results from a stacking
of dye molecules, like that shown schematically in Fig. 6.2-4(b). When the ease of stack-
ing is the same for all sizes in the stack, this aggregation is called “isodesmic.” The third
case involving the bile salt taurodeoxycholate is intermediate between the other two.

The two situations of micelle formation and isodesmic stacking represent two limiting
forms of solute aggregation. These two limits are discussed in the following paragraphs.

o Dodecylsulfate

o Orange Il &
s | 4 Taurodeoxycholate Q)qu}‘\
- N
S Ofogq
< <
= 102
Q
8] A
c
(o]
o -
o
S
g
S 104
=
| 1 | 1 |
104 102 1

Total concentration, M

Fig. 6.2-3. Types of solute aggregation. The detergent sodium dodecylsulfate aggregates
abruptly to form micelles, and the dye Orange II has its isodesmic aggregates (see Fig. 6.2-4).
The bile salt sodium taurodeoxycholate falls between these two limits. These results were
obtained using ion-selective electrodes. [Data from Kale, Cussler, and Evans (1980).]
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(a) Long-chain surfactants (e.g., CH3(CH2)11S03)

Large aggregate
of one size A0 =

CHs3 CHs;
\N S N/
(0) Dyes (.9 o L X T J g, )

Aggregates of

. —_
many sizes @; =

Fig. 6.2-4. Micelle formation and isodesmic aggregation. In the type of micelle formation
discussed here, » monomers combine to form an n-mer. No other sizes are present. In
isodesmic association, monomers add with equal facility to monomers or aggregates

of any size.

The diffusion coefficient measured in a detergent solution represents an average over
the monomer and micelle present in solution. Steady-state diffusion in such a system of
monomer and micelle obeys the continuity equations.

d201
0= D] ? — Ny (62-23)
dem
0= Dn Tcz . (6.2-24)
z

where the subscripts 1 and m refer to the monomer and the micelle, respectively and r,
represents the rate of formation of micelles. Equation 6.2-24 is multiplied by #, added to
Eq. 6.2-23 and integrated to give

—jr =D e, dém (6.2-25)
dz dz
The integration constant jr is the total flux of the solute.
Equation 6.2-25 is not useful because it is written in terms of the unknown gradients
of ¢y and ¢y, rather than in terms of the known total solute gradient ct. To remove these
unknowns, we could assume that micelle formation is fast, so that

cm = Kci (6.2-26)

where K is the equilibrium constant for the fast micelle-forming reaction. We would also
need the mass balance:

cT = €1 + nen (6.2-27)
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We would like to combine Eqs. 6.2-25 through 6.2-27 to get the answer we want.
However, while we did this easily in the case of ionic association, we now have an
nth-order equation for micelle formation. We can’t solve this easily.

To get an approximate solution, we first recognize that detergent solutions typically
have physical properties like conductance and surface tension that suddenly change at
a critical concentration at which micelles start to form in significant numbers. Above this
“critical micelle concentration” ccmce, the monomer concentration ¢ is approximately
equal that at the critical micelle concentration, so from Eq. 6.2-27,

1
Cm — Z (CT — CCMC) (62-28)

An estimate of ¢; can now be found from Eq. 6.2-26:

1 1/1n
cl = [ﬁ( (L’T — CCMC)} (62-29)

Inserting these results into Eq. 6.2-25 we find

. D nk)'"/" de
Cp= Dy 2K T d—T (6.2-30)
n (cr — ceme) z
or, because 7 is large,
) Di(nK)"" | dey
=D, 4+ L 6.2-31
T m + I’l(CT — CCMC) dz ( )

which is the desired result. The quantity in square brackets is the apparent diffusion
coefficient found experimentally.

To my surprise, this analysis works for nonionic detergents. The apparent diffusion
coefficient does vary inversely with (¢t — comc), as shown in Fig. 6.2-5. The intercept on

10.0
o L
(0]
g
€ 8.0F
o
~" M
= L
% [¢)
Q 6.0
| | | | |
0.0 2.0 4.0 6.0

1/(C1—Cemc)

Fig. 6.2-5. Diffusion of the detergent Triton X-100 at 25 °C. The variation with concentration is
predicted by Eq. 6.2-31. The intercept is the micelle’s diffusion coefficient, and the slope is related
to the monomer’s diffusion coefficient. [From Weinheimer ez a/. (1981), with permission.]
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this plot agrees closely with the micelle’s diffusion coefficient estimated in other ways.
The slope is consistent with independent measurements of K and ».

However, this analysis does not work for ionic detergents at low ionic strength. For
example, the diffusion coefficient of sodium dodecylsulfate increases significantly at
concentrations above the critical micelle concentration, as shown in Fig. 6.2-6. This
increase is of electrostatic origin, due to small relatively mobile counter ions. At high
ionic strength, these electrostatic effects are less important, and Eq. 6.2-31 is again
verified.

6.2.3 Isodesmic Association

As the next topic in this section, we want to calculate the average diffusion
coefficient for systems in which aggregation occurs one molecule at a time. The simplest
case is called the isodesmic model. It assumes that

¢ = Kci_qc1 (6.2-32)

where K is an equilibrium constant that is independent of the size of the aggregate. Note
that the equilibrium constant for forming dimers from two monomers is assumed to be
the same as that for forming heptamers from hexamers and monomers.

Equations 6.2-26 and 6.2-32 show why the isodesmic model and micelle formation
represent two extreme limits of solute aggregation. In the isodesmic case, aggregates of
any size form with equal facility because all the steps are equal. In the micelle case,
aggregates form only of that special micelle of » monomers; the equilibrium constants
are zero for all but that special size.

5 T T T T T T T
In water
4 o 4
(&)
)
Q
€
G 3r B
©
o)
x
Q,l i
] In 0.1-M salt
T I I I I

1 1
0.02 0.04 0.06 0.08
SDS Concentration, mol/l
Fig. 6.2-6. Diffusion of sodium dodecylsulfate (SDS) at 25 °C. The diffusion coefficients in this
case increase as SDS concentration and solution viscosity rise. This increase is the result of
aggregation and electrostatic interaction. [Data from Weinheimer et al. (1981).]
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To find the apparent diffusion coefficient of a solute associating isodesmically, we
again start with the steady-state continuity equations:

2

d

0=0 % oy ry (6.2-33)
dz
d2

0=D"24r —r (6.2-34)
dz
d2

0=Ds"F4r—r (6.2-35)
dz

Again, these equations can be added together to eliminate reaction terms:

x . dz(,','
0=2XiDi— (6.2-36)
i=1 dz
Integrating this result gives
0 d i
—jr= 3D, Y (6.2-37)
i=1 dz

where jr is again an integration constant physically equal to the total solute flux in both
aggregated and monomer forms.

As earlier in this section, we now rewrite the unknown concentrations {c¢;} in terms of
the known total concentration of solute. Doing this requires two constraints. One of
these is that of isodesmic equilibria (Eq. 6.2-32). The other is a mass balance:

ecr=c+2c+3c3+ -

e (6.2-38)

i=1
When these constraints are combined, we find
C1

ke (6.2-39)

T =

This quadratic can be solved for ¢; as a function of ¢t, and the result combined with Egs.
6.2-32 and 6.2-37 gives the total flux jr as a function of total solute concentration ct. This
solution is an algebraic mess. A more useful form is the power series

—jr = {D1 — Kep(4D) — 4D,) + K2A(15D) — 24D, + 9D3)

dCT
R
Note that the apparent diffusion coefficient given in braces does not vary with concen-
tration if the diffusion coefficients are all equal (i.e., if Dy = D, = D3 = - ).

—K’¢3(56D) — 112D, + 72D5 + 16Dy + - (6.2-40)
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6.2.4 Solvation

So far, we have been discussing the effects of solute—solute interactions on the
diffusion coefficient. These interactions can be electrostatic, like the case of strong
electrolytes. There, our goal was to find the apparent diffusion coefficient that averaged
the coefficients of the species present. These solute—solute interactions can also reflect
solute association. The association might form a dimer, as for weak electrolytes. The
association might produce larger aggregates, as for dyes and detergents. In that case, our
goal was to understand the apparent diffusion coefficient.

We now switch from solute—solute interactions to solute—solvent interactions. The
first of these occurs when solute and solvent combine to form a new species, which is that
actually diffusing. This combination is most carefully studied for water, where it is called
hydration. We will discuss other forms of solute—solute interactions in Section 6.3.

The idea of hydration is based on the following flux equation:

. aln'))l kBT aln"/l
—j1=Do|1 Ve = 1 Ve 6.2-41
N 0< Jrfilncl) “ 67r,uRo< +Zﬁlncl “ ( )

in which Dy is a new diffusion coefficient, i is the solvent viscosity, Ry is the solute radius,
and y; is an activity coefficient. This equation makes two implicit assumptions: that the
solute’s flux is proportional to chemical potential gradient and that the diffusion co-
efficient in dilute solution is given by the Stokes—Einstein equation.

Hydration can affect this equation in two ways. First, the solute radius Ry must be that
of the hydrated species. This can be related to the true solute radius R’y by the equation

nRy = (R )’ +n <V NO> (6.2-42)

in which VHZO is the molar volume of water, 7 is the “hydration number,” the number of
water molecules bound to a solute, and N is Avagadro’s number. If the diffusion coef-
ficient at infinite dilution is known, R, can be calculated, R’y can be estimated from
crystallographic data, and n can be calculated. This kind of hydration decreases diffusion.

Hydration can also be calculated from the concentration dependence of diffusion by
assuming that this concentration dependence is the result of hydration. Ideas like this
were first used by Scatchard (1921) to rationalize the activity coefficient of sucrose. To do
this, one assumes that the solute activity c¢;y; equals the solute’s true mole fraction
corrected for hydration:

number of hydrated solute molecules

= 7 humber of hydrated solute number of “free”
molecules water molecules

B number of solute molecules
- (1 - n) (number of solute) (total number of)

molecules water molecules

— Cl -
= ToweTa (6.2-43)
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The two concentrations are related through the partial molar volumes:
aVi+al,=1 (6.2-44)
Combining Eqs. 6.2-42, 6.2-43, and 6.2-44, we obtain

(1 —n— 171/172)61
1/[72 + (1 —n— 171/172)61

D=Dy|1— (6.2-45)

For dilute solutions, ¢; is small; for solutions of constant density ¥;/¥, is unity, and
Eq. 6.2-45 becomes

D = Dy[l +nVye; +--1] (6.2-46)

This result is often decorated with viscosity and electrostatic corrections. However, the
basic message remains: hydration tends to increase diffusion.

These ideas are frequently qualitatively useful, but they are rarely quantitatively
applicable. The data in Table 6.2-1 illustrate this by comparing hydration numbers
found from diffusion, from activity coefficients, and from transference methods. Qual-
itatively, these values supply insights. For example, the diffusion of lithium is slower
than that of sodium, which is slower than that of potassium, etc. This suggests that
the radii of the diffusing solutes are in the order Li">Na* >K" >Cs", exactly the re-
verse of the ionic radii found in the solid state. Such inverted behavior seems to be the
result of hydration.

However, the hydration numbers make little quantitative sense. The values found
from Eq. 6.2-42 are shown in the third column of Table 6.2-1. Although these values are
often negative, we could force them to be positive by replacing the factor 67 in the

Table 6.2-1 Hydration numbers found by various methods

Ton Observed Hydration Hydration Hydration Hydration
diffusion numbers from  numbers from  numbers from  numbers from
coefficient at  diffusion at diffusion’s activity transference
infinite infinite concentration  coefficients® methods®
dilution” dilution dependence”

H* 9.33 -1.3 - 4 1

Li* 1.03 1.3 2.8 4 14

Na* 1.34 0.5 1.2 3 8

K* 1.96 -0.1 0.9 1 5

Cs" 2.06 -0.5 0.5 0 5

Cl 2.03 -0.7 0 1 4

Br- 2.08 -0.9 0.2 1 5

I 2.04 -1.2 0.7 2 2

Notes: ¢ X 107 cm?/sec.
*Data of Robinson and Stokes (1960).
‘Data of Hinton and Amis (1971).
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Stokes—Einstein equation with some other theoretically rationalized value. The values
calculated from Eq. 6.2-45, shown in the fourth column, do have the courtesy to remain
positive, but they are far from being integers. I am always unsure how a cesium ion can
react with half a molecule of water. In addition, the hydration numbers found from
diffusion show little relation with those calculated from values from the other types of
experiments shown in Table 6.2-1. These ideas have only qualitative value.

6.3 Solute—Solvent Interactions

In every case, diffusion is about mixing. In almost every case in this book, we
are interested in what happens when two miscible solutions are placed next to each other
and then allowed to mix without flow as the result of molecular motion. The speed of this
spontaneous mixing is described by diffusion. This diffusion is a consequence of free
energy decreases, of the second law of thermodynamics.

In some cases, diffusion occurs much more slowly than expected. This most com-
monly occurs near a phase boundary where the solution is supersaturated. An example
is diffusion in supersaturated solutions of sugar in water, shown in Fig. 6.3-1. Slow
diffusion also occurs in solutions near to a consolute point where two liquids first
become miscible. Examples of diffusion near consolute points are shown in Fig. 6.3-2.
Other related cases occur when an initially homogeneous solution is suddenly quenched
to cause a phase separation. This quenching is commonly effected by abruptly lowering
the temperature. The phase separation then occurs very rapidly, at a rate proportional to
the diffusion.

Each of these cases involves mass transfer driven by changes in free energy, or more
exactly, by gradients in chemical potential. Their description requires major changes in
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Fig. 6.3-1. Diffusion of sucrose ((J) and urea (A) in aqueous solutions at 25 °C. The
sudden drops occur in supersaturated solutions as the concentration approaches the
spinodal limit.
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Fig. 6.3-2. Diffusion near consolute temperatures. The squares are for triethylamine—water and
the circles represent hexane—nitrobenzene. At the consolute or critical-solution point the binary
diffusion coefficient is zero. (Data from Claersson and Sundeldf (1957) and Haase and Siry
(1968).)

Fick’s law, including the effects of higher order terms in the gradients. In particular, the
form postulated for the flux j; is

. Doy
= keT

[Vm ) V3x1} (6.3-1)

where Dy is a diffusion coefficient, due to Brownian motion and closely related to the
diffusion coefficients in normal solutions, y is an “interfacial influence,” which is a char-
acteristic of a phase separation, and x; is the mole fraction of species 1. We discuss this
more general form of Fick’s law in the following paragraphs.

6.3.1 Diffusion Near Spinodal Limits

We begin our discussions by considering spinodal limits, including consolute
points. To focus the discussion, imagine we have two partially miscible liquids. When we
dissolve a trace of one “‘solute” liquid in the other “solvent” liquid, we get a true
solution. As we increase the amount of solute, we will saturate the solution. This satu-
ration limit is called the “binodal.” If we are careful, the solution will remain one super-
saturated phase. If we continue to increase the solute concentration, we will reach a new
limit of thermodynamic stability called the ““spinodal.” At a specific temperature, the
spinodal will equal the binodal at a concentration called the ‘“‘consolute point.” This
pointis for liquid-liquid mixtures what the critical point is for gas—liquid phase behavior.

Diffusion coefficients in solutions near spinodal limits and consulate points drop
from normal values to near zero, as shown in Figures 6.3-1 and 6.3-2. However, the
concentration profiles still relax proportionally to the square root of time, as shown in
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Fig. 6.3-3. Concentration gradient versus time near a consolute point. If Fick’s law is valid,

the data should fall along a line of slope one-half. If a new diffusion law is involved, the data
should fall along a line of one-fourth. [Data from Brunel and Breuer (1971).]

Fig. 6.3-3. They do not relax proportionally to the fourth root of time, which would be
significant if the interfacial influence were important. Thus only the first term in the
brackets of Equation 6.3-1 is required to explain diffusion near a consolute point.

We can put these ideas on a more quantitive basis by rewriting concentration gradient

. |Doct (O i
= { o (acl Ve (6.3-2)

where the quantity in square brackets is an effective diffusion coefficient. At any spinodal

limit, (Ou;/0cy) is zero, and so the effective diffusion coefficient is zero. This explains the

limits of Figs. 6.3-1 and 6.3-2. Note that below any spinodal limit, (Ou;/0c;) becomes

negative and the apparent diffusion coefficient is also negative. This indicates not mixing

but phase separation. We will return to this point when we discuss spinodal decomposition.
Alternatively, if we assume

w = +kgTIn ¢y, (6.3-3)

we may rewrite Equation 6.3-2 as

—j, = |Do LV (6.3-4)
6lnc1

where again the quantity in square brackets is an effective diffusion coefficient, now
written in terms of the activity coefficient y;. At a spinodal limit, (0 In y;/0 In ¢;) equals
minus one, so the apparent diffusion coefficient is zero. The flux equation using the activity
coefficient is commonly mentioned though it does not seem to have been carefully checked.

However, neither Equation 6.3-2 nor 6.3-4 correctly predicts all aspects of diffusion
near the consolute point. To illustrate this, consider the system hexane—nitrobenzene, for
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which results are given in Fig. 6.3-2. The chemical potential of this system is found by
experiment to fit the equation

= 1) +kgT In x| + ox; (6.3-5)

where o is a measure of interaction between solute and solvent. This type of chemical
potential is sometimes called a “regular solution.” At the consolute point of such a
solution,

oy 62#1
— = 0 6.3-6
0xy ax% ( )
As aresult, x; = x, = 0.5 and w = 2kg T, where T¢ is the consolute temperature. Thus,
we find that at the consolute composition,
X1 ﬁ,ul O ln 1 o _4X1X2TC7 TC

JRAE NS E— = =1-— 3-
kBT6x1 0 In X1 T T (6 3 7)

Combining this with Eq. 6.2-4 we obtain

- (6.3-8)

D = Dy [T - TC}
Thus the diffusion coefficient is expected to drop as the temperature is cooled to the
consolute point. The coefficient is zero at the consolute point, consistent with Figure 6.3-2.
However, the linear temperature variation in brackets is not observed in Fig. 6.3-2 so
that Eqgs. 6.3-2 and 6.3-8 are inconsistent with experiment.

The reason for this inconsistency is that long-range fluctuations dominate behavior
near any spinodal limit, including a consolute point. When fluctuations of concentration
and of fluid velocity couple, diffusion occurs. Under ordinary conditions, the concen-
tration fluctuations are dominated by motion of single molecules, but near the critical
point, these fluctuations exist even when the average fluid velocity is zero. The result is
like a turbulent dispersion coefficient but without flow.

When the details of these coupled fluctuations are considered, the diffusion coefficient
is found to be

 keT
 2mué

where the correlation length & is approximately the average size of a cluster. The approach
retains the same temperature and viscosity dependence as the Stokes—Einstein equation.
The factor 27 in place of 67 is not a major change. However, both the diffusion coefficient
D and the length ¢ vary dramatically with the thermodynamic factor (1 + 01lny, /01nx;).

The calculation of £ as a function of temperature and composition can proceed in two
different ways. The best way is to depend on scaling laws developed for phase transitions
that in turn are based most frequently on the Ising model. Such calculations give the
temperature dependence at the critical composition:

0.62
Do (l_ 1) (6.3-10)

(6.3-9)
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Unfortunately, these calculations are not so complete as to give the concentration
dependence of & and D. The alternative, less accurate route in the calculation of ¢ is
to use simple models of the chemical potential to find:

A 1 -2
p=pyl14+ A (LSlnx (6.3-11)
x1x2 \0 In y;x;

in which 4 is a constant of the order of one-half.

The predictions based on coupled fluctuations are compared with those of
the more traditional result in Fig. 6.3-4. This figure includes data on four different
systems obtained in five different laboratories using four different experimental
methods. The data all appear consistent. They fall very close to the predictions of Eq.
6.3-10, which is based on the coupled fluctuations as described by scaling laws. They are
in reasonable agreement with the predications of Eq. 6.3-11, which uses simple statistical
models for chemical potential. These results support the explanation of diffusion near
the consolute point in terms of coupled fluctuations of concentration and velocity.

6.3.2 Spinodal Decomposition

The strong solute—solvent interactions that cause the diffusion coefficient to
drop so sharply near critical points are also central to spinodal decomposition. In many
phase separations, a homogeneous solution is cooled so that its equilibrium condition is
a two-phase mixture. As in the case discussed above, separation into these two phases
can begin as soon as the solution is cooled below its phase boundary or its “binodal.”
The region just below this phase boundary is metastable, waiting for events that cause
the phase separation. The phase separation begins with nucleation of small droplets
of the new phase; these droplets grow with time.

In the case of spinodal decomposition, the original solution is rapidly quenched, so
that the equilibrium condition drops suddenly through the binodal and below the

A,V Hexane-nitrobenzene >
. o5
Analine—cyclohexane o@;‘/ o
. . A
O Isobutyric acid—water "2 62

3.0 & Carbon tetrachloride—
perfluoromethylcyclohexane
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0-598" /
- S| /
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(TITe=1)

Fig. 6.3-4. Diffusion versus temperature near a consolute point. The classic theories shown
by the broken line are much less successful than the predictions of scaling laws (dotted line) or
of cluster diffusion (solid line). [From Cussler (1980), with permission.]
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spinodal curve. This spinodal curve, which lies within the two-phase region, is the lower
boundary of the metastable region. Below this curve, the solution is unstable and phase
separation is immediate. No small dust particles are needed to nucleate the phase sep-
aration; instead, the separation is spontaneous and fast.

We want to estimate the speed of this separation. Now, however, we do not begin with
an imposed chemical potential gradient as is the case in any diffusion experiment. Now,
we begin with a quenched system, which is initially homogeneous, of a constant but
unstable chemical potential. To describe this unstable system, we use the extended form
of Fick’s law given in Equation 6.3-1.

We can combine this with a mass balance to obtain

“ov
axl o D() v Gul
ot kgT  |dlnx,

(6.3-12)

Vx; — 2yx1V3x1

where 7y is the interfacial influence characterizing the phase separation. Note that we have
divided both sides of this second equation by the total concentration ¢, which is assumed
constant. Next, we define a perturbation x from the original solution concentration xq

X = X1 — X0 (6.3-13)

Inserting this into the previous relation, we find

ox_ Dy
ot _kBT

Oy 2 4
Vix —2yx10V > 6.3-14
(a 111X1>xm X VX100V X ( )

The first term in square brackets is the effect of diffusion; the second is the interfacial
influence.

The general solution of this equation for the concentration fluctuation is most easily
given as a Fourier series

x=2z [amplitude]; cos (2/7\U — ﬁi)e_t/f" (6.3-15)
- 1

where r is the distance from some point, A; is a characteristic distance, and 7, is a charac-
teristic parameter with the dimensions of time. The characteristic times are the key to this
problem. If a particular time is positive, the fluctuations in the concentration decay and the
solution stays homogeneous. If it is negative, then the concentration fluctuations grow
over time, and the phase separation proceeds. Thus our real interest is in the sign of these
characteristic times because they will govern whether spinodal decomposition does occur.

From the general characteristics of Fourier series, we may show that these times are

given by
GITH 21\ 2 2\
(a In x1>x)(K-> AV

These times may be negative and the phase separation immediate if the derivative (Op;/
01n x;),,, is negative. This derivative is positive at temperatures above the spinodal, even

 ksT
=5

(6.3-16)

Ti
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in the metastable region between the spinodal and the solubility limit (i.e. the binodal). It
is negative below the spinodal.

We are most interested in the shortest negative time suggested by Eq. 6.3-16 because
this time will correspond to the fluctuation that grows fastest. By setting 07;/0A; equal to
zero, we can show that the largest characteristic length is

12
YX10
Amax =4n| - —F——— (63-17)
[ @ /0 1nx1>xJ
and that
SkaT <6x1>2
Tmin = — — 6.3-18
Dox10 \Owi/ 4, ( )

While we don’t know the interfacial influence y, we do know the characteristic length
Amax in the original solution: it is nothing more than the size of the molecules or clusters.
Thus we can combine these last relations to obtain

kgTAZ
Tmin = ——y— o max (6.3-19)
27" Do (Opy /01n xy)

This gives the time characteristic of the fast spinodal decomposition.

The physical significance of this result may be clearer if we return to the case of
a regular solution defined by Eq. 6.3-6. Using the chemical potential derivative in Eq.
6.3-7, we find from Eq. 6.3-19 that

AZ
Tmin = e (6.3-20)

4T,
2n2D0 (1 - Txl.m)

Typical values might be Apax equal to 1077 cm, Dy equal to 10> cm?/sec, T equal to
300 K and 7 of 299 K. In this case, Tmin Will be [-10 %sec]: the phase separation will
effectively be immediate. This mechanism is rare in gases and ordinary liquids but
common in solid alloys and glasses.

Example 6.3-1: Diffusion through a consolute point Imagine a diaphragm cell of two
well-stirred compartments (see Example 2.2-4). One compartment contains water, and
the other contains triethylamine. Diffusion occurs across the diaphragm between the
two compartments. However, this experiment will be made at the consolute temperature
18.6 °C. As a result, somewhere within the diaphragm, the concentration must be that at
the consolute point, and the diffusion coefficient at that point will approach zero, as
shown in Fig. 6.3-2. What will happen in this experiment?

Solution 1f we make a mass between balance on a thin slice of the diaphragm,
we find that

0_—(1!’11__%
- dz 4z
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This means that there will be a steady-state flux across the diaphragm. When we combine
this result with Fick’s law we find

dC1
—Jj; = D(c¢1) — = constant
Ji=Dle1) o
At the consolute concentrations, D(c;) approaches zero, so dc;/dz must approach in-
finity. Thus, in this experiment, the flux behaves normally but the concentration gradient
reflects the unusual properties of the consulate point.

6.4 Solute—Boundary Interactions

When a solute diffuses through small pores, its speed may be affected by the size
and the chemistry of the pores. For example, a solute will diffuse faster through a large
straight pore than through a small crooked one. It may diffuse differently if it adsorbs on
the pore’s wall and then scoots along the wall at a faster rate than it moves in the bulk.

In this section, we explore these effects in more detail. In some cases our simple goal is
to organize experimental results. In other cases we may have more ambitious goals,
especially where the altered diffusion is the result only of a different geometry. These
cases involve a wide variety of possible mechanisms. Some of these are shown in Figure
6.4-1 for the special case of a cylindrical pore. In the simplest case, shown at the top of
the figure, a pressure drop along the pores causes a convective flow. In the second case,
where there is no pressure drop but a concentration difference, transport occurs by
diffusion. In these two cases, the properties of the fluid in the pores are the same as
those of the fluid in the bulk.

In other cases shown in Figure 6.4-1, the basic mechanism of transport changes. For
example, it may involve gas diffusion where the gas molecules collide more often with the
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Fig. 6.4-1. Pore diffusion effects, The pore size drops from the top of the figure to the bottom.
The selectivity is often larger for smaller pores.
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pore walls than with other gas molecules (“Knudsen diffusion”). In still other cases, gas
molecules may absorb on the walls and then diffuse (“surface diffusion”), or condense
within the pores and move as a liquid (“‘capillary condensation’’). When the pores are of
molecular dimensions, one solute may dissolve in solvent held in liquid-filled pores and
then diffuse by a “diffusion-solubility mechanism.” Such a variety of effects is hard to
discuss as anything but a long series of examples.

I have tried to force an organization on these examples as follows. In Section 6.4.1,
I have discussed the simplest empirical methods of organizing experimental results. In
Section 6.4.2, 1 have reviewed theories for solute diffusion in a solvent trapped within
cylindrical pores in an impermeable solid. In this case, solute—solvent interactions still
control diffusion; and the solid only imposes boundary conditions. Cases where the
interactions are between the diffusion solute and the pores’ boundaries are covered in
Section 6.4.3. Finally, cases not of cylindrical pores but of other composite structures are
described in Section 6.4.4.

6.4.1 Empirical Descriptions

Imagine a solute diffusing through the fluid-filled pores of the porous solid
shown schematically in Fig. 6.4-2. Because the solid itself is impermeable, diffusion takes
place only through the cramped and tortuous pores of the composite. Because the pores
are not straight, the diffusion effectively takes place over a longer distance than it would
in a homogeneous material. Because the solid is impermeable, diffusion occurs over
a smaller cross-sectional area than that available in a homogeneous material.

The effects of longer pores and smaller areas are often lumped together in the defi-
nition of a new, effective diffusion coefficient D

D
Deff = &— (6.4-1)
T

in which D is the diffusion coefficient in the bulk fluid, ¢ is the void fraction, and 7 is the
tortuosity. The tortuosity attempts to account for the longer distance traversed in the
pores. Tortuosities usually range between two and six, averaging about three. These
values can be rationalized because solutes diffuse in three directions instead of one, so
they diffuse about three times as far. Such rationalization is suspect. I have measured
tortuosities as high as ten, which I find hard to justify on geometrical arguments alone.
Moreover, the tortuosity measured for diffusion may not correlate closely with the

J@ @
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Fig. 6.4-2. Diffusion in a composite. When the particles are impermeable, a diffusing particle
must travel a longer path through a reduced cross-sectional area.
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tortuosity measured for flow. Still, the great advantage of the tortuosity is its simplicity:
it does give a simple number showing how much diffusion will be retarded in a porous
solid.

6.4.2 Diffusion in Large Cylindrical Pores

We next turn to diffusion of a solution held within an array of cylindrical pores.
Normally, these large pores are assumed to span a thin film, and to all be perpendicular
to the surfaces of the film. By “large pores,”” we imply that the solvent acts as a continuum
and that the solute diameter is much smaller than the pore diameter. Not surprisingly,
this idealized geometry has been the focus of considerable theoretical effort. In spite of
its idealizations, it does provide physical insight.

We first consider results for a gas. For large pores, gas transport through the pores
will be described by the Hagen—Poiseville law

- SdzAp
- 32ul

(6.4-2)

in which v is the superficial velocity, ¢ is the void fraction, u is the gas viscosity, Ap is
the pressure drop across the pore, and d and / are the pore’s diameter and length,
respectively. If we multiply each side of this equation by the concentration of species
1, we find

ecld2RT %
32u l

(6.4-3)

Scldz
32ul

n =e1y = |:

where Ac; (=Ap/RT) is the concentration difference of the ideal gas along the pore. If
instead, we have no overall pressure difference along the pores but only a partial pressure
difference, we have

. Ac
m=j,=[eD] = (6.4-4)
Finally, if the pores are extremely short, we have
eDI| Acy
=jh=|—|— 6.4-5
ny = { d ] / ( )

where d is the pore diameter. In this case, the limitations to diffusion are not actually in
the pore itself but in necking down to enter the pore. Details of this case are given in
Example 3.5-2.

In Equations 6.4-3 to 6.4-5, the quantity in square brackets is an apparent diffusion
coefficient. However, in Equation 6.4-3, it is actually due to convective flow, and
in Equation 6.4-5, it represents diffusion zo the pore, not diffusion in the pore. Only
Equation 6.4-4 actually describes diffusion in the pore. These differences seem obvious
in this theoretically based discussion. However, when we have experimental data,
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we may find that it is more difficult to decide which of the three cases is actually
occurring.

Similar subtleties occur for the transport of liquids in large pores. There is no exact
parallel to Equation 6.4-3 because a difference in pressure does not cause a difference in
concentration. There is a complete parallel to Equation 6.4-5, where the key is diffusion
to a very short pore. However, there are new complexities to diffusion within a pore.

To understand these complexities, we consider a solvent at concentration ¢, and
a solute at concentration ¢;. The solvent is much smaller than the pore’s diameter and
so can always be treated as a continuum, but the solute’s diameter 2R is a significant
fraction of the pore’s diameter d, i.e., A ( = 2R/d) is less than one but of order one. In this
case, the solvent’s flux is

2
&0 d

A
Ny = &CrVy) = |: 32’u 4

= (6.4-6)

This is much like the results for a gas, given in Equation 6.4-3.

However, the solute velocity v; is different than v, for two reasons. First, the solute
will not fit into the entire pore diameter but only into a smaller equivalent pore of
diameter (d— 2R). This implies that the void fraction for the solute will be smaller than
that for the solvent. Second, because the solute is forced to be more towards the center of
the pore, it will encounter average velocities somewhat higher than those averaged over
the entire diameter of the pore. One theory typical of efforts on this subject gives for the
solute velocity

Ao - -2 07177 (6.4-7)
V2
where / is the ratio of the diameter of the solute to that of the pore. Remember that in
this case, transport is by convective flow. This result is important in ultrafiltration.
The results for diffusion in large liquid-filled pores are different. In this case, which is
sometimes called hindered diffusion, the solute is modeled as a rigid sphere in a solvent
continuum that fills the pore. The solute’s transport is retarded by the viscous drag of the
solvent, which is affected by the proximity of the pore walls. The diffusion coefficient D
is given by:
D o i 1540+ 0(2) (6.4-8)
Dy 8
where Dy (= kgT/6mu Ro) is the Stokes—Einstein diffusion coefficient. When 4 = 0.1, the
diffusion coefficient D is roughly half that in bulk solution; when 1 = 0.2, Eq. 6.4-8 is
accurate to within about two percent.

6.4.3 Diffusion in Small Cylindrical Pores

Our next cases occur for small pores. By “‘small”” we mean that the pore diameter
is of the same order of magnitude as the molecular size of both solvent and solute. Thus we
can no longer approximate the solvent as a continuum. Under this heading, we consider
four topics: Knudsen diffusion, surface diffusion, capillary condensation, and sieving.
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Knudsen Diffusion

In Knudsen diffusion, diffusing molecules collide with the walls of the pores
much more frequently than they collide with other molecules. This type of transport is
dominant whenever the distance between molecular collisions is greater than the pore
diameter. This ratio of distances is defined as a dimensionless group, the Knudsen
number Kn:

Kn = (6.4-9)

/
d
in which /is now the mean free path and dis the pore diameter. If the Knudsen number is
small, diffusion has the same characteristics as it does outside of the pores, and it is
analyzed with the effective coefficients and tortuosities given earlier. If the Knudsen
number is large, diffusion is dominated by collisions with the boundaries; this requires
a different description.

For liquids, the mean free path is commonly a few angstroms, so the Knudsen
number is almost always small, and Knudsen diffusion is not important. In gases, the
mean free path / can be estimated from

 4kgT

2
nop

/

(6.4-10)

in which ¢ is the collision diameter of the diffusing species. This mean free path can be
large. For example, for air at room temperature and pressure, it is over 60 nm; for hydrogen
at 300 °C and 1 atm, it is over 200 nm. Because pores smaller than these values often exist,
for example, in porous catalysts, Knudsen diffusion can be a significant effect in gases.

When the mean free path and Knudsen number are large, the diffusion coefficient can
be quickly estimated by arguments that parallel those for the kinetic theory of rigid
spheres. This theory predicts that

Din = %dv (6.4-11)

where v is the molecular velocity. This prediction is the same as that in Eq. 5.1-5 but with
the mean free path / replaced by the pore diameter d. Because a molecule’s kinetic energy
(3mv?) must equal kT, we expect

o JHeT (6.4-12)
m

where m is the molecular mass. Thus the Knudsen diffusion coefficient is given by

DKn: §

d [2k3 T} ' (6.4-13)

m

Unlike gas diffusion outside of the pores, the Knudsen diffusion coefficient is indepen-
dent of pressure and of the molecular weight of any solvent species.
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Surface Diffusion

Like Knudsen diffusion, surface diffusion is much more important for gases
than for liquids. In surface diffusion, gas molecules adsorb on the solid pore walls. When
the adsorption is physical, the adsorption energy is less than kg7, and the adsorbed
solutes are highly mobile. When the adsorption involves more specific chemical inter-
actions (chemisorption), the adsorption energy is greater than kg7 and the adsorbed
species tend to be more tightly bound to specific sites. Such tightly bound species are
much less mobile than in physical adsorption, but instead are said to “hop” from one site
to the next.

Surface diffusion is most commonly measured in a form of diaphragm cell (cf. Section
5.5), with a sample of the porous solid serving as the diaphragm. This cell is used in two
ways. In the first way, we place a pure gas on one side of the diaphragm, and a vacuum on
the other side. We then measure concentration versus time to find the flux across the
membrane. In the second way, we place two binary gas mixtures of different composition
but the same pressure on the opposite sides of the diaphragm. Again, we measure
concentration changes and use these to find the fluxes of each gas. Note that these fluxes
will usually not be of equal magnitude.

From these results, we calculate the surface diffusion flux as follows. As a standard,
we measure the flux of a gas that we expect will not adsorb. This gas is most commonly
helium. Then, expecting that nonsurface diffusion will occur by the Knudsen mecha-
nism, we calculate the expected flux for the test gas from:

IM
Ji(nonsurface) = iy, Vm (6.4-14)
1

where M, is the molecular weight of species i. We now estimate the surface diffusion
flux as the difference between the experimental measurement and the nonsurface
estimate:

Ji(surface) = j, (experimental) —j, (nonsurface) (6.4-15)

Typically, the flux inferred for surface diffusion is less than half of that measured
experimentally.

Measurements of surface diffusion can be correlated in terms of random walk, surface
mobility, and surface diffusion coefficients. Correlations in terms of surface diffusion
coefficients are most similar to the type of analysis used in this book. The surface
diffusion coefficient Dy is defined with the equation

IDs d
Ji(surface) = — - % (6.4-16)
z

where /and A are the diaphragm thickness and cross-sectional area, respectively, and ¢,
is the surface concentration, in units of moles per area. Thus the surface diffusion co-
efficient has dimensions of (length)?/time, just like other diffusion coefficients.

Values of surface diffusion coefficients cluster around 10> cm?/sec, and so are similar
to values in liquids. However, these values vary widely. At room temperature, hydrogen
on tungsten has a value of 10”7 cm?/sec and propane on silica has a value of 10> cm?/sec.
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Surface diffusion coefficients are strong functions of temperature, a characteristic of
solids rather than liquids or gases. They are also strong functions of surface concentra-
tion: Typically, the surface diffusion coefficient increases sharply as surface coverage
increases.

Surface diffusion is often viewed as a step in gas—solid catalytic reactions. This
diffusion-based step is often fast relative to other, more selective chemical changes,
and hence it does not control the catalytic rate. As a result, surface diffusion is less
industrially important than the bulk diffusion described in the remainder of this book.

Capillary Condensation

While Knudsen diffusion and surface diffusion normally involve only gases,
capillary condensation involves the conversion from a gas into a liquid. It results from
the altered vapor pressure of a liquid inside a pore. This increased vapor pressure p is
given by the Kelvin equation

RTm 2 = 27 (6.4-17)
Do r

where po is the bulk vapor pressure, 7 is the surface tension, V is the solute’s molar

volume, and r is the radius of curvature of the liquid inside the pore. Once condensation

occurs, transport is by a combination of diffusion and convection across the pore. If the

pore completely fills with liquid, its apparent diffusion coefficient is

Do — pRT & | pr RT
cap — ~ 32 +—=
M 193 Mp

(6.4-18)

where p; and pp are the density and viscosity of the condensed liquid, and p is the mean
pressure across the pore. This diffusion coefficient is roughly parallel to that for Pouise-
ville flow of a vapor given in Equation 6.4-3 but with the liquid properties replacing those
of a gas and with the added factor in square brackets. When the pore separates a gas at
high pressure from one at low pressure, the result is more complex.

This transport can be dramatically faster than that due to diffusion alone and is an
unexpected delight where it occurs experimentally. However, capillary condensation is
rarely important for two reasons. First, it exists only when a surface tension exists and
hence will not work for gases above their critical temperatures. For example, capillary
condensation will not work for separating air at room temperature; it will work only
below 155 K, the critical temperature of oxygen. Capillary condensation might be used
to separate carbon dioxide and methane at room temperature, for the critical tempera-
ture of carbon dioxide is 304 K. Second, capillary condensation is rarely important
because it is a small effect. For example, water vapor in 100 nanometer pores showing
a surface tension of 72 dynes will condense at 100.2 °C, not 100 °C. This means that only
very small pores will be effective.

Molecular Seiving
The final way in which pores can be physically selective also hinges on the
relative sizes of the diffusing species and the pore. Now, both solute and solvent are
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of sizes comparable to the pore. Small molecules pass through the pores but big mole-
cules are retained.

This sieving mechanism is rare but may be highly selective. One case where it is
definitely involved is in transport of linear and branched alkanes into zeolites. The linear
alkanes diffuse into the zeolites about fifteen times faster than the branched ones do. The
reason is that the linear alkanes have a smaller cross-section which can fit into the pores
in the zeolite crystal. This difference in diffusion is exploited in some forms of pressure
swing adsorption. If thin zeolite layers can be produced commercially, they will have
considerable value.

More frequently sieving is postulated as an alternative to what almost certainly is
a diffusion—solubility mechanism. For example, sieving is sometimes asserted to be re-
sponsible for the selectivity of cellulose acetate reverse osmosis membranes. Sieving is
consistent with the slow transport of larger salt ions compared to smaller water mole-
cules. It seems inconsistent with the fast transport of larger phenol molecules compared
to smaller water molecules. I would view any new claims of a sieving with skepticism
unless the pores have dimensions like those of the solute and the solvent.

6.4.4 Periodic Composites

The cases of diffusion in solids discussed in the previous paragraphs involve
a simple geometry — cylindrical pores — and a spectrum of chemistry — surface diffusion,
capillary condensation, etc. In this last subsection, we want to discuss cases with a more
complex geometry but with simpler chemistry. We will assume that diffusion in each
phase will be the same as if it were the only phase present.
We quickly recognize that specifying the geometry only in terms of a void fraction and
a tortuosity will not always be sufficient. To illustrate this, we consider two cases of dif-
fusion in a composite membrane containing permeable flakes as shown in Figure 6.4-3.
In the two cases, the flakes are present at the same volume fraction ¢p. However, in the
case in Figure 6.4-3(a), the flakes are aligned perpendicularly to the membrane’s surface,
while in Figure 6.4-3(b), they are parallel. In the first case, the resistances to diffusion are
approximately in parallel so that the flux will be

Ji =11 - 9+ 60! (6419)
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Fig. 6.4-3. Diffusion through a suspension of impermeable flakes. The effective diffusion
coefficient varies sharply with orientations shown in (b), but is affected little by the
orientation in (a).
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where D and Dy are the diffusion coefficients in the continuous phase and in the flakes,
respectively. In the second case, the resistances are more nearly in series

= L )
N e

D ' Dg

(6.4-20)

In both cases the quantity in brackets is an effective diffusion coefficient for the com-
posite. The results are very different, showing that volume fraction alone is not enough
to describe the composite system.

More exact descriptions of these effects require more exact geometries. One such case
occurs when the composite consists of periodically spaced spheres like those shown in
Fig. 6.4-4. In this case, we assume that diffusion can take place both in the interstitial
region between the spheres and through the spheres themselves. The effective diffusion
coefficient D can be calculated from

_ (6.4-21)

in which D is the diffusion coefficient in the interstitial pores, Ds is the diffusion
coefficient through the spheres, and ¢ is the volume fraction of the spheres in the
composite material (Maxwell, 1873). Strictly speaking, this equation is valid only for
dilute suspensions. However, it is routinely applied to experiments with ¢ equal to as
high as 0.5 with reasonable agreement. Why this should be so is unclear.

Equation 6.4-21 is a fascinating result. It says that diffusion does not depend on the size
of the spheres but only on their volume fraction. It does not matter if the spheres are
birdshot or basketballs — the diffusion is the same if the volume fraction is the same.

A second interesting consequence of Eq. 6.4-21 is that the properties of the contin-
uous phase dominate the diffusion process. To demonstrate this, we imagine that the
spheres are impenetrable, so that Dy is zero. Then Eq. 6.4-21 becomes

Derr _ 1—¢
D 1142

(6.4-22)

If ¢ is 0.1, then D.g/D = 0.86. The diffusion is eighty-six percent of what it would be
without the spheres.

0.0 O
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Fig. 6.4-4. Diffusion through a periodic array of spheres. In this case, the spheres and the
surrounding continuum have different, nonzero permeabilities.



6.4 | Solute—Boundary Interactions 199

Now consider the other limit in which diffusion through the spheres is extremely
rapid, so that Dy— oo . In this case,

Der  1+2¢
D 1—¢

(6.4-23)

If ¢ is still 0.1, then D.g/D is 1.33. Thus changing the diffusion coefficient in the spheres
from zero to infinity changes D.g/D only by a factor of 1.6.

The results for impermeable spheres have been extended to impermeable cylinders
and impermeable flakes. For impermeable cylinders aligned periodically and parallel to
the membrane’s surfaces, the result is

Defle_()zS
D 1+¢

(6.4-24)

Again, the relative diffusion coefficient (D.g/D) is independent of D and of the cylin-
ders’ size. As in the case of the spheres, it doesn’t matter whether the cylinders are carbon
nanotubes or millimeter-sized glass fibers: the only variable is their volume fraction. The
change in diffusion for cylinders is smaller than that for spheres but only slightly. The
continuous phase still dominates diffusion.

The result for flakes is more complicated because it includes two limits. In both limits,
the flakes are aligned parallel to the membrane surfaces. In the first limit, the flakes are so
dilute that they do not overlap. The result is similar to that for spheres or cylinders

Der 1
D 1+oag

(6.4-25)

where o is the aspect ratio of the flakes. This ratio, equal to the flakes’ intermediate
dimension divided by the shortest dimension, characterizes the flakes’ shape.

The second limit occurs when the flakes overlap, even though they may still be dilute.
In this limit, ¢ may still be much less than one, but a¢ is greater than one. In this case, the
effective diffusion coefficient is given by

Derr _ 1
R )

(6.4-26)

Like the results for spheres and cylinders, Eq. 6.4-26 does not depend on flake size:
10 mm clay flakes will give the same result as 10 cm dead leaves when the volume fraction
and the aspect ratio are equal. However, unlike the previous results, the effective diffu-
sion coefficient depends not on the first power of the volume fraction but on the square.
This is because the flakes both increase the tortuosity and reduce the cross-sectional area
available for diffusion. Moreover, these effects can be significantly larger than those for
other shapes: a factor of ten is not uncommon.

6.4.5 Graham’s Law

To conclude this section, we turn to Graham’s law which states that at constant
pressure the ratio of fluxes of two diffusing gases in a porous medium is proportional to
the inverse square root of their molecular weights. This law, based on Graham’s original
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experiment described in Section 2.1, has limited application, but the inverse square root
dependence is characteristic of a wide range of situations. Thus this discussion gives us
a chance to compare and contrast the wide range of solute-boundary interactions. It
provides a summary of diffusion in composite media.

Before we begin our discussion, we review three characteristics of the kinetic theory of
gases. First, the actual velocity of gas molecules u; is of course proportional to the
temperature

1
5 mit; = ksT (6.4-27)

where m; is the molecular mass and kg is Boltzman’s constant. Rearranging

ks T
Ui =/ ke (6.4-28)
m

Second, the mean-free path /; must be related to the total concentration ¢;, which is in
turn related to the pressure

(g &)t = Cl _ %T (6.4-29)

where d is the molecular diameter. Note that ¢; is the number of molecules per volume.
Third, the number of molecular collisions per area per time {; is given by

C,- = CilU; (64-30)

We will use these three results to discuss five special cases.

The five cases of interest are shown schematically in Figure 6.4-5. In these cases, two
volumes are separated by some sort of porous medium. The volumes are bounded by
pistons which are normally fixed. Each volume normally contains a different gas. How-
ever, the transport mechanisms between the volumes may be very different.

We first consider diffusion at constant volume, illustrated schematically in Figure 6.4-
5(a). When the diameter of the pores is much larger than the mean free path, this is the
common case discussed in detail throughout this book. If one volume initially contains
only nitrogen and the other initially contains only hydrogen, diffusion will occur
between the two volumes until their concentrations are equal. During this time,

n =nm (64-31)

where “1”” and “2” represent nitrogen and hydrogen, respectively. Each flux depends on the
same gas phase diffusion coefficient which is proportional to the square root of the har-
monic average of molecular weights. Second, we consider the familiar case of convection
shown in Figure 6.4-5(b). Now a mixed gas flows from left to right. Because the convective
velocity of both gases is the same, the ratio of the fluxes is just the ratio of the concentrations

m_,,=m (6.4-32)

C1 (&)

V) =

Diffusion is not involved in this second case.
The third case, in Figure 6.4-5(c), is Knudsen diffusion where the capillary diameter is
less than the mean free path. This is the case where a diffusing molecule collides much
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(a) Constant volume diffusion
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(c) Knudsen diffusion
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Fig. 6.4-5. Graham’s law and related phenomena. All these cases involve gases. Many show
a flux proportional to the inverse square root of the gas’s molecular weight.

more frequently with the capillary walls than with other diffusing molecules. The diffu-
sion coefficient for each species is proportional to the inverse square root of its molecular
weight. Thus the ratio of fluxes is given by
m_ (6.4-33)
n nm
While this result does give the expected form, it actually is not Graham’s law.

To explore Graham’s law, we turn to the case shown in Figure 6.4-5(d). In
this case, the capillary is again large so that collisions are intermolecular and not
with the capillary walls. Now, however, the pistons bounding the volumes are mobile,
moved to insure that the pressure on both sides of the capillary is equal. In this par-
ticular case, because the hydrogen is more mobile than the nitrogen, the pistons
must both be moved to the left. Thus in this case, there is a convective velocity, and
this case is very different from the conventional diffusion analysis in Figure 6.4-5(a).

To analyze this fourth case, we recognize that because the pressure is constant,
there is no net momentum transfer between the left and the right volumes. Thus

momentum of momentum of
nitrogen = hydrogen
time time
momentum of | | collisions of momentum of | | collisions of
nitrogen nitrogen = hydrogen hydrogen
collision time collision time

mvi{) = man, (6.4-34)
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Combining with Equation 6.4-30
(myuy)ervy = (mauz)eava (6.4-35)

Note that the velocities ©; and v; are very different. The molecular velocity u; is sonic,
perhaps around 10* cm/sec. The diffusion velocity v; is much slower, perhaps around 1
cm/sec. Rearranging the above, we find

mo_an _ mi (6.4-36)
np (2] miuy

Inserting the molecular velocities from Equation 6.4-28, we find
oo (6.4-37)
ny m

This inverse square root relation, suggested in 1829, is Graham’s law.

Interestingly, there is still another, closely related mechanism called “‘effusion”
which gives the same result for different reasons. In this case, shown in Figure 6.4-
5(e), the capillary is replaced by an orifice of zero thickness. Molecules now don’t diffuse
through a capillary, but just fly through the orifice. They don’t collide either with
other molecules or with the capillary walls. In this case, we can show that for a circular
hole,

1
o 1 o 1 P1 2kBT 2 6.4-38

nl_4clul_4<kBT)[m1 (0439)
A similar relation will exist for species “2.”” If the pressures on both sides of the orifice are
equal, we see that

oo (6.4-39)
np m
This relation, called “Graham’s law of effusion,’ has still another physical basis than the
cases discussed earlier.

At this point, you can be pretty confused by the nuances of these cases. To help you to
keep them distinct, consider the summary shown in Table 6.4-1. As the table shows,
many mechanisms can give similar results for different reasons, showing the subtlety of
the apparently simple mechanism of diffusion.

Example 6.4-1: Diffusion in a porous catalyst Imagine a catalyst sphere with 30 percent
voids to be used for the dehydrogenation reaction

CHg — C,Hy + H;

At 300 °C and 1 atmosphere, the effective diffusion coefficient of ethane in a 0.5-cm
sphere is 0.06 cm?/sec. What is the tortuosity?

Solution The chemical reaction produces a ternary mixture of ethane, eth-
ylene, and hydrogen. Such a mixture may require consideration of the multicomponent
diffusion equations in Chapter 7. However, if conversion is low, the diffusion coefficient
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Table 6.4-1 Graham’s Law and Related Phenomena

Effect Key idea Flux Ratio Remarks
ny | ny
Diffusion (Constant No Flow -1 Not Graham’s Law
Volume Diffusion)
Convection Flow c1 /¢ Not Graham’s Law
Knudsen Diffusion Pore Smaller Than - Not Graham’s Law
2
Mean-Free Path —
n
Diffusion (Constant Flow — Graham’s Law!
Pressure Diffusion) —
ny
Effusion Across Orifice Not Graham’s Law

can be estimated with the same precision as for a mixture of ethane and ethylene. From
Eq. 5.1-1, we find

p_ 186 10° T2 (1 /My + 1/0,)"2
- 2
PoH,Q

1.86-10°(573)"7(1/28 4 1/26)'/?
(1)[(4.23 + 4.16) /2]7(0.99)
The tortuosity is then (cf. Eq. 6.4-1)
_&eD (0.3)0.4 cm?/sec B
Deir 0.06cm?/sec

This value is typical.

=0.40 cmz/ sec

2.0

Example 6.4-2: Pores in cell walls Some experiments on living cells suggests that there
are pores 3 nm in diameter in the cell wall. Estimate the diffusion coefficient at 37 °C
through such a pore for a solute 0.5 nm in diameter.

Solution To find the solute’s diffusion coefficient in bulk solution, we use the
Stokes—Einstein equation to find Dy. Combining this with Eq. 6.4-7, we find

_ keT 9 (2Ry\, (2R 2Ry
D= {1+8( . )1( . ) _1,54( d)+-.}
13810 '°g em?/sec” K (310K)
67(0.01g/cmsec)(2.5 - 10°° cm)

20600 )+

=(9.1-10 %cm?/sec)(1 —0.33 —0.26 + - - -)

=3.7- 1076cm2/sec
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Note that we have implicitly assumed that the pore is filled with water by using the
viscosity of water in this estimate.

Example 6.4-3: Diffusion of hydrogen in small pores Find the steady diffusion flux at
100 °C and 1 atm for hydrogen diffusing into nitrogen through a plug effectively 0.6 cm
thick with 13-nm pores. Then estimate the flux through 18.3 um pores.

Solution The mean free path for hydrogen can be found from Eq. 6.4-10:

4T

! 2
o' p

_ 4(1.38-107""gem?’/sec’ K)(373K)
7(2.83-10 % cm)*(1.01 - 10° g/cm sec”)

= 800 nm

This mean free path is greater than the pore diameter, so the Knudsen number is large.
Thus diffusion takes place in the Knudsen regime. For steady-state transport, the flux is
found by applying Equation 6.4-13

Ac
m = [Dkal =
1
2(831 - 107gem’) i Imol (273K
7 373K 3 3
_ |13-10"'cm sec mol 22.4-10°cm” \373K
3 2g/sec 0.6cm

=0.42- 10 ’mol/cm” sec

There are two interesting features of this result. First, hydrogen molecules spend their
time colliding with pore walls, not with nitrogen molecules. Consequently, the properties
of nitrogen do not appear in the calculation. Second, we have assumed that the pores are
as long as the plug is thick, so the pores are implicitly taken to be straight. Any tortuosity
would reduce the flux.

For the 18.3 pm pores, the mean free path is much less than the pore diameter, and the
Knudsen number is small. In this case, the flux equation contains the usual diffusion
coefficient calculated from Eq. 5.1-1:

) Ac
m =jy = D=
Ls6- 10-@73) 2 (Lh L) (L Imol (273K
- 201 " 280 22.4-10°em’ \273K
B 2.92 4 3.68)° 0.6cm
latm<+> (0.80)

=6.1-10"mol/cm” sec

This flux is greater than that in the Knudsen limit.
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Example 6.4-4: Effective diffusion in an inhomogeneous gel The diffusion coefficient of
KCI through a protein gel is 6107 cm?/sec. However, the gel is not homogeneous,
because it contains water droplets about 10 2 cm in diameter that are separated by only
2-1072 cm. The diffusion in these water droplets is about 2 - 10> cm?/sec. What is the
diffusion in the homogeneous gel?

Solution The volume fraction of water can be found by considering a unit
cell, 2 - 102 ¢cm on a side s, drawn around each 1072 ¢cm droplet:

2 \3
A 4 (10 cm>
3 [
—Tr 3 2
b =3 = — 0.065

Y (2-10%cm)’?
The diffusion in the gel is found from Eq. 6.4-21.

2 1 1 1
L o —— =
Dt Dy +D d)(DS D)

Ds D Dy D

1 1
2
+— —2(0.065 -
6-10""cm?/sec 2 10~ cm’/sec D ( )<2 10 cm?*/sec D)

b 2 iooes(— L 1
2-10cem¥sec D 2-10 "cm’/sec D

Solving, we find that D equals about 5 - 107 cm?/sec.

6.5 A Final Perspective

At the start of this book, we argued that the simplest way to look at diffusion was as
a dilute solution of a particular solute moving through a homogeneous solvent. Such an
argument led to the idea of a diffusion coefficient, a particular property of solute and solvent.

In this chapter, we have discussed the effects on the diffusion coefficient of the solute’s
interaction with other parts of the system. Sometimes the solute’s flux is coupled with
that of other solutes. Sometimes, the solute combines with solvent molecules, but near
consolute points it avoids them. In a porous medium, the solute’s diffusion may be
slowed or accelerated; it may collide with pore walls during Knudsen diffusion, or be
adsorbed in surface diffusion. In every case, the changes in diffusion can be major.

In describing these effects, scientists have used many methods. For example, the
mathematics leading to the equation for hindered diffusion poses, for me, a truly for-
midable exercise. Obtaining the results of diffusion in composite media required the
genius of Clerk Maxwell. However, these descriptions are limited by the particular
models of the diffusion process. For example, the ideas of hydration are certainly in-
exact. The hindered diffusion equation depends on the model of a rigid solute sphere in
a solvent continuum. Almost all of these estimates mean making major approximations.

As a result, I believe that the results in this chapter are best applied when using your
scientific judgement. I do not think any of the ideas are gospel. Instead, they are
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approximations, subject to corrections found in future research. I wish you luck in
finding these corrections.

bl S

AN

—_

13.
14.
15.
16.

= e YA

Questions for Discussion

For a 1-1 electrolyte, does the faster ion control diffusion?

For a 1-1 electrolyte, does the faster ion control conduction?

Why is proton diffusion so rapid?

Why does the diffusion of a soap suddenly drop as the soap concentration is
increased?

What is “isodermic association”? How does it affect diffusion?

Compare diffusion vs. solute concentration of HCI in excess NaCl and of
sodium acetate in excess NaCl.

Why does the diffusion coefficient go to zero at a consolute point?

Does Brownian motion change near a consolute point?

What is spinodal decomposition?

What is the Knudsen number?

Compare the variation of the diffusion coefficient with pore diameter for small
and for large pores.

Compare this variation with pressure in small and large pores.

What is the change in diffusion caused by ten volume percent impermeable spheres?
What is it by the same concentrations of cylinders?

What is it for the same concentration of flakes whose aspect ratio is 30?
What is Graham’s law?

Problems

You are studying a thin film of 310 stainless steel that apparently is without pores. You
clamp this film in a diaphragm cell, put a hydrogen pressure of 0.43 atmospheres on
one side, and measure the much smaller hydrogen pressure on the other side. You find
the data shown below [N. R. Quick and H. H. Johnson, Metal Trans. A., 10A, 67
(1979)]. These data show that the flux depends on the square root of hydrogen pres-
sure, a dependence known as Sievert’s law. This is believed to occur because molecular
hydrogen dissociates into atomic hydrogen within the film. Use your knowledge of
diffusion to justify this conclusion.

o- Hydrogen
} 649 K

/

1014 © 561 K
/

1013 - } 493 K

1012

1011

Ll v vvond a0l
0.001 0.01 0.1 1.0
Input pressure (atm)

—_
=
o

Steady-state flux (atoms H/cm? sec)
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2. The ion diffusion coefficients at 25°C of Na™, K", Ca’*, and CI” are 1.33, 1.9,
0.79, and 2.0 (all times 10~ ecm?/sec). Find the diffusion coefficients and trans-
ference numbers for NaCl, KCl, and CaCl, in water and in excess KCl. Answer:
In water, the diffusion coefficients are 1.60, 1.95, and 1.32 respectively, all in 10°°
cm?/sec.

3. Calculate the diffusion coefficient at 25°C of NH4OH versus concentration. The
relevant ionic diffusion coefficients are Dnps = 1.96 and Doy = 5.28 cmz/sec. The
pK, of the NHJ is 9.245. Estimate the diffusion coefficient of the NH,OH molecule
from the Wilke—Chang correlation.

4. The uptake of drugs from the intestinal lumen is often strongly influenced by diffu-
sion. For example, consider a water-insoluble steroid for birth control that is solu-
bilized in detergent micelles. These micelles, aggregates of steroid and soap, have
a molecular weight of 24,000, an aggregation number of 80, a diameter of 26 ang-
stroms, and a charge of —27. The counter ion is Na™. (a) What is the diffusion
coefficient of the micelle in water at 37 °C? Answer: 1.10 - 107> cm?/sec. (b) What
isitin 0.1-M NaCl? Assume the micelle concentration is relatively low. Answer: 2.5 -
107° cm?/sec.

5.  Electrolyte solutions can be highly nonideal. In these solutions, the flux equation for
a 1-1 univalent electrolyte is often written as

) Dycr
— =——V
Jr =gy YHT

where the chemical potential ut is given by
0
pr = pr + RT In crpr

and the activity coefficient y in water at 25 °C is estimated from the Debye—Hiickel
theory:

Inyp = —1.02clT/2

where ¢t is in moles per liter. Using the values in Table 6.1-1, estimate the variation
with concentration of the diffusion coefficient of potassium chloride and compare it
with the experimental values (J. Zasadzinski).

6. The analytical ultracentrifuge takes a homogeneous solution of a large solute — like
a buffered protein — and subjects it to a strong centrifugal field, at perhaps 100,000
rpm. The force exerted on a protein molecule is approximately mw?r, where m is the
molecular mass, corrected for buoyancy; w is the centrifuge’s angular velocity; and r is
its radius. (a) Parallel the development of the Nernst—Plank equations (Eq. 6.1-5) to
derive an extended form of Fick’s law that includes centrifugal force. (b) Calculate the
steady-state concentration profile that would exist in very long ultracentrifuge experi-
ments when diffusion and centrifugal force are balanced. You may not be able to
complete the integration involved; go as far as you can.

7. The following data have been reported for e-caprolactam diffusing in water at 25 °C
[E. L. Cussler and P. J. Dunlop, Austral. J. Chem., 19, 1661 (1966)]:



208

6/ Diffusion of Interacting Species

¢(mol/dm?) D(10°cm?/sec)
0.0514 0.8671
0.0515 0.8669
0.500 0.6978
0.991 0.5254
1.998 0.4160
3.003 0.3311

This solute is believed to dimerize by forming hydrogen bonds. Estimate the equilib-
rium constant X for this reaction. (G. Jerauld) Answer: about 0.5 M.

Each molecule of sucrose in dilute aqueous solution is believed to combine with
about four molecules of water. Such hydration has two effects. First, it increases
the size of the sucrose solute and thus retards diffusion. Second, it increases the
mole fraction of sucrose and hence may accelerate diffusion. (a) Estimate how the
measured diffusion coefficient of sucrose differs from that of the unhydrated sucrose.
In this estimate, take the hydrated sucrose diffusion coefficient at infinite dilution
as 5.21 - 107 cm?/sec, its molecular weight as 342, and its solid density as 1.59 g/cm®.
Answer: about 5.7 - 10°® cm?/sec. (b) Assume that the diffusion coefficient is given
by Eq. 6.2-46 times a viscosity correction. Find how the coefficient varies with
concentration.

A. Vignes [Ind. Engr. Chem. Fund., 5, 189 (1966)] suggested that the concentration
dependence of many liquid diffusion coefficients can be predicted with the equation

Olny,
D=Dy(1
°< +61nx1)

Dy = D}’ D}

where D; is the diffusion coefficient of a trace of species 1 in excess species 2 and D is
that of a trace of species 2 in excess species 1. (a) Test the Vignes equation using the
following data for ethanol (1) and water (2) at 25°C [B. R. Hammond and R. H.
Stokes, Trans. Faraday Soc., 49, 890 (1953)]:

X1 D(10 °cmy/sec) O0lny,
1+
Oln x;
0.0 1.24 1.00
0.1 0.66 0.76
0.2 0.41 0.41
0.4 0.42 0.355
0.6 0.64 0.53
0.8 0.94 0.77
1.0 1.31 1.00

(b) Using these same data, calculate Dy from Eq. 6.3-11. Compare how these quan-
tities vary with concentration.
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10.

11.

12.

13.

14.

At the consolute temperature of a regular solution, the diffusion coefficient is approx-
imately given by

D= Do(l — 4X1XQ)V

where D is a constant and Xx; is the mole fraction of species i. Assume that the
exponent y equals 0.5. Note that D is zero when x; = x; = 0.5. The volume average
velocity is zero, and the total concentration c is constant. Imagine that you are letting
pure solute (x; = 1) diffuse through a long thin capillary into an equally large volume
of pure solvent (x; = 0). You analyze your data as

‘\‘b|

J1 = (c10—cu)

Show that D equals Dg/2.

You are separating globular proteins by gel permeation chromatography. One protein
has a diameter of 34 angstroms. How much will its diffusion coefficient be reduced by
diffusion in 417-angstrom pores?

The diffusion coefficients in water at 20 °C of hemoglobin and of catalase are 6.9 - 10~
cm?/sec and 4.1 - 1077 cm?/sec, respectively. They are 4.3 - 10'° cm?/sec and 1.8 - 10°'°
cm?/sec across a porous membrane. Estimate the pore size in this membrane. Answer:
30 nm.

Porous catalyst particles are often made by compressing the powdered catalyst into
a particle, the pore structure of which can be controlled by the compression process.
You are the engineer in charge of quality control at a catalyst manufacturing facility. You
are making catalyst with pore sizes around 3 micrometers in diameter. Unfortunately,
electron micrographs show one batch of product with pore sizes that are much smaller —
about 550 angstroms in diameter. Paradoxically, the catalyst still has the same surface
area per volume. The bad batch of particles was to be used in a diffusion-controlled
oxidation at 400 °C and 1 atmosphere total pressure. As an estimate of the extent to which
these particles will perform off-standard, calculate the diffusion coefficient of O, in the
two different cylindrical pores. (S. Balloge) Answer: 0.13 cm?/sec in small pores.

To estimate the pore size of a porous membrane, you plan to study the flux through the
membrane caused by a single gas on the feed side and a vacuum on the permeate side.
The pores in the membrane are near-circular cylinders formed by etching radiation
tracks. At high feed pressure, you expect normal laminar flow following the Hagen—
Poiseuille equation. At low feed pressure, you expect Knudsen diffusion. How do you
expect the flux to vary with pressure in each of these cases? (Remember that the
viscosity of dilute gases is independent of pressure.)
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CHAPTER 7

Multicomponent Diffusion

Throughout this book, we have routinely assumed that diffusion takes place in
binary systems. We have described these systems as containing a solute and a solvent,
although such specific labels are arbitrary. We often have further assumed that the solute
is present at low concentration, so that the solutions are always dilute. Such dilute
systems can be analyzed much more easily than concentrated ones.

In addition to these binary systems, other diffusion processes include the transport of
many solutes. One group of these processes occurs in the human body. Simultaneous
diffusion of oxygen, sugars, and proteins takes place in the blood. Mass transfer of bile
salts, fats, and amino acids occurs in the small intestine. Sodium and potassium ions
cross many cell membranes by means of active transport. All these physiological pro-
cesses involve simultaneous diffusion of many solutes.

This chapter describes diffusion for these and other multicomponent systems. The
formalism of multicomponent diffusion, however, is of limited value. The more elabo-
rate flux equations and the slick methods used to solve them are often unnecessary for an
accurate description. There are two reasons for this. First, multicomponent effects are
minor in dilute solutions, and most solutions are dilute. For example, the diffusion of
sugars in blood is accurately described with the binary form of Fick’s law. Second, some
multicomponent effects are often more lucid if described without the cumbersome equa-
tions splattered through this chapter. For example, the diffusion of oxygen and carbon
dioxide in blood is better described by considering explicitly the chemical reactions with
hemoglobin.

Nonetheless, some concentrated systems are best described using multicomponent dif-
fusion equations. Examples of these systems, which commonly involve unusual chemical
interactions, are listed in Table 7.0-1. They are best described using the equations derived in
Section 7.1. These equations can be rationalized using the theory of irreversible thermo-
dynamics, a synopsis of which is given Section 7.2. In most cases, the solution to multi-
component diffusion problems is automatically available if the binary solution is available;
the reasons for this are given in Section 7.3. Some values of ternary diffusion coefficients
are given in Section 7.4 as an indication of the magnitude of the effects involved. Finally,
tracer diffusion is detailed as an example of ternary diffusion in Section 7.5.

7.1 Flux Equations for Multicomponent Diffusion

Binary diffusion is often most simply described by Fick’s law relative to the
volume average velocity »°:

—ji =" —v) = DVe; (7.1-1)

211
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Table 7.0-1 Systems with large multicomponent effects

Type of System Examples

Solutes of very different sizes Hydrogen—methane—argon
Polystyrene—cyclohexane—toluene

Solutes in highly nonideal Mannitol-sucrose-water

solutions Acetic acid—chloroform—water

Concentrated electrolytes Sodium sulfate—sulfuric acid—water
Hydrogen chloride—polyacrylic acid—water

Concentrated alloys Zinc—cadmium-silver

Chromium-nickel-cobalt

In many cases, multicomponent diffusion is described by generalizing this equation to an
n-component system:

n—1
—ji=a’ —v) = j§1 D;Vc; (7.1-2)

in which the D;; are multicomponent diffusion coefficients. The relation between these
coefficients and the binary values is not known except for the dilute-gas limit, given for
ternary diffusion in Table 7.1-1. In general, the diffusion coefficients are not symmetric
(D;;# Dj;). The diagonal terms (the D) are called the “‘main term” diffusion coefficients,
because they are commonly large and similar in magnitude to the binary values. The off-
diagonal terms (the D), called the “cross-term’ diffusion coefficients, are often ten
percent or less of the main terms. Each cross term gives a measure of the flux of one
solute that is engendered by the concentration gradient of a second solute.

For an n-component system, this equation contains (n — 1)* diffusion coefficients.
This implies that one component must be arbitrarily designated as the solvent n. Because
of the Onsager reciprocal relations discussed in Section 7.2, the coefficients are not all
independent but instead are subject to certain restraints:

n—1n—1 a:ul n—1 n—1 a#z
DI I e Dp=2 X (= D 7.1-3
j=li=1 <aci>c’k%i,nalj " j=1i=1 <ack a#k.nalj g ( )
where
%
= (50' + ch1> (7.1-4)

where V; is either a partial molar or partial specific volume, depending on whether the
concentration is in moles per volume or mass per volume. These restraints reduce the
number of diffusion coefficients required to describe diffusion to (%) [7(n — 1)] for an
n-component system. However, because application of these restraints requires detailed
thermodynamic information that is rarely available, the restraints are frequently impos-
sible to apply, and by default the system is treated as having (n — 1)* independent
diffusion coefficients.

Equation 7.1-2 is the most useful form of the multicomponent flux equations. Because
of an excess of theoretical zeal, many who work in this area have nurtured a glut of
alternatives. These zealots most commonly use different driving forces or reference
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Table 7.1-1 Ternary diffusion coefficients: known functions of binary
values for ideal gases

Aerz“‘)@
D — Diy D3
1=
V1 + V2 + )3
| D12D13 D1aDas Di3Das
_ ( | 1 ) }
y (e =
Dis — "\Di, D
2= -
M1 + 2 + V3
| D12D13 D12D2s Di3Das
_ ( 1 ) ) i
Do — )2 Dy Dy
1 =
M1 + V2 V3
|D12D13 - D12D2; Di3Das
Nty Ve 1
Doy — Dy Dy
0 =
I Y2 V3
|D12D13 D12D23 Di3Das

velocities. Unfortunately, most of their answers are of limited value. The exception is
for some metal alloys.

The best alternative to Eq. 7.1-2 is the Maxwell-Stefan equation for dilute gases:
nolyy;

Vy, = X
yl j:1 lej

(vj =) (7.1-5)

This equation has two major advantages over Eq. 7.1-2. First, these diffusion coefficients
are the binary values found from binary experiments or calculated from the Chapman—
Enskog theory given in Section 5.1. Second, the Stefan-Maxwell equations do not re-
quire designating one species as solvent, which is sometimes an inconvenience when
using Eq. 7.1-2.

These advantages can be compromised for multicomponent liquid mixtures. There,
the nonideal solutions require a somewhat different form

A=
RT jEI D/” (VI - Vl) (7~1'6)

For an ideal solution in which
W= + RT In x; (7.1-7)

this reduces to the ideal gas form. The new 77 ;; are a new set of diffusion coefficients often
believed to be more closely related to the binary form. This belief seems to me to rest more
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on faith than on data. Still, some researchers believe that this Maxwell-Stefan formula-
tion is superior to Equation 7.1-2 because it does not require designating a solvent.

At the same time, the Maxwell-Stefan form has a serious disadvantage. It is difficult
to combine with mass balances without designating one of the species as a solvent.
Moreover, in many cases we benefit from identifying transport in one direction as
occurring by diffusion and in the other direction as dominated by convection. When 1
use the Maxwell-Stefan form, I can lose this physical insight. Thus in practice, the
advantage of this form is often lost. As a result, I feel Eq. 7.1-2 remains the most useful
form of flux equation. We next examine the origins of these equations more carefully
using irreversible thermodynamics.

7.2 Irreversible Thermodynamics

The multicomponent flux equations given in Eq. 7.1-2 are empirical general-
izations of Fick’s law that define a set of multicomponent diffusion coefficients. Because
such definitions are initially intimidating, many have felt the urge to rationalize the origin
of these equations and buttress this rationale with ““more fundamental principles.” This
emotional need is often met with derivations based on irreversible thermodynamics.

Because the derivation of irreversible thermodynamics is straightforward, it seems on
initial reading to be extremely valuable. After all those years of laboring under the re-
straint of equilibrium, the treatment of departures from equilibrium seems like a new
freedom. Eventually one realizes that although irreversible thermodynamics does give the
proper form of the flux equations and clarifies the number of truly independent coeffi-
cients, this information is of little value because it is already known from experiment.
Irreversible thermodynamics tells us nothing about the nature and magnitude of the
coefficients in the multicomponent equations, nor the resulting size and nature of the
multicomponent effects. These are the topics in which we are interested. As a result,
irreversible thermodynamics has enjoyed an overoptimistic vogue, first in chemical phys-
ics, next in engineering, and then in biophysics. Subsequently, it has been deemphasized as
its limitations have become recognized. Because irreversible thermodynamics is of limited
utility in describing multicomponent diffusion, only the barest outline will be given here.

7.2.1 The Entropy Production Equation

Three basic postulates are involved in the derivation of Eq. 7.1-2 (Fitts, 1962).
The first postulate states that thermodynamic variables such as entropy, chemical
potential, and temperature can in fact be correctly defined in a differential volume of
a system that is not at equilibrium. This is an excellent approximation, except for systems
that are very far from equilibrium, such as explosions. In the simple derivation given
here, we assume a system of constant density, temperature, and pressure, with no net
flow or chemical reaction. More complete equations without these assumptions are
derived elsewhere (e.g., Haase, 1969).

The mass balance for each species in this type of system is given by
aC,'

E:_v.ni:_v.h (7.2-1)
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In this continuity equation, we use the fact that at no net flow and constant density, n;
equals j;, the flux relative to the volume or mass average velocity. We also imply that the
concentration is expressed in mass per unit volume. The left-hand side of this equation
represents solute accumulation, and the right-hand side represents the solute diffusing in
minus that diffusing out. The energy equation is similar:

paﬂz ~V.q-V- I Hj, (7.2-2)
ot i=1
where ¢ is the conductive heat flux, and H, is the partial specific enthalpy. The left-hand
side of this relation is the accumulation, the first term on the right-hand side is the energy
conducted in minus that conducted out, and the second term is the energy diffusing in
minus that diffusing out. Because we are assuming an isothermal system, ¢ is presumably
zero; we include it here so that the equation will look more familiar.
By parallel arguments, we can write a similar equation for entropy:

pa—S: V- Jy+o (7.2-3)
ot
By analogy, the term on the left must be the entropy accumulation. The first term on
the right includes J;, which is entropy in minus entropy out by both convection
and diffusion. The second term on the right, g, gives the entropy produced in the
process. This entropy production, which must be positive, is the quantitative measure
of irreversibility in the system and represents a novel contribution of irreversible
thermodynamics.
To find the entropy production, we first recognize that in this isothermal system,

A ~ A ] n
4G = dfi = Td§ = % ude; (7.2-4)

in which p; is the partial Gibbs free energy per unit mass, not the usual form of chemical
potential; and p is the total mass density. This equation suggests that

oS 0H n» o

pTo =P — BHig, (7.2-5)
Combining with Egs. 7.2-1 and 7.2-2

pT%—f: —V-q—V~é)1 Hj; —él (V- j;) (7.2-6)
However,

w(V-ji) = V- (Hi = TS))j; = (J; - Vi) (7.2-7)

Combining Egs. 7.2-6 and 7.2-7,

08 g 1.1 1a.
®_y. {?ﬁ% S,»J,-] A (7.2:8)
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By comparison with the entropy balance, Eq. 7.2-3, we see that the entropy flux is

+ % S (7.2-9)

J, =
K P}

~ s

The first and second terms on the right-hand side are the entropy flux by conduction and
by diffusion, respectively.
The entropy production can also be found by comparing Egs. 7.2-3 and 7.2-8:

1 n

TV (7.2-10)

o=——
Ti=1

The terms in this equation have units of energy per volume per time per temperature.
Not all the fluxes and gradients in Eq. 7.2-1 are independent, because

n
.lel- =0 (7.2-11)
fan

and, because the pressure and temperature are constant,
n
'21 ¢V, =0 (7.2-12)
i=

Using these restraints, we can rewrite Eq. 7.2-10 in terms of n — 1 fluxes and gradients

relative to any reference velocity. In particular, for the mass average velocity, we can
show that

1n—l‘

7= _?iglj’”

Xi (7.2-13)
with the more general driving forces X; given by
n—1 Ci
X, =X (5i]~+ —f> Vi, (7.2-14)
= cn)

Strictly speaking, Eqgs. 7.3-13 and 7.3-14 apply only to the mass average reference ve-
locity and j; should be the flux relative to this velocity. Other reference velocities can also
be used with other general forces. For example, for the volume average velocity, we may
show that

1 n-1 .
a:—?igl,,-x? (7.2-15)
where j; is now relative to the volume average velocity, where
n—1
X? = ,51 iV (7.2-16)

and where the o; are given by Eq. 7.1-4. Eq. 7.2-15 is identical with Eq. 7.2-13 for
a system of constant density, when the partial specific volumes all equal the reciprocal
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of the density, and volume and mass fractions are identical. We will use the volume
average velocity and the associated fluxes and forces in the remainder of this chapter
because these forms are those commonly used for fluids.

7.2.2 The Linear Laws

The second postulate in the derivation of irreversible thermodynamics is that
a linear relation exists between the forces and fluxes in Eq. 7.2-15

n—1
—ji = ;51 LX), (7.2-17)

where the L;; have the mind-bending name of ““Onsager phenomenological coefficients.”
These L;; are strong functions of concentration, especially in dilute solution, where they
approach zero as ¢;— 0. The linear law can be derived mathematically by use of a Taylor
series in which all but the first terms are neglected, but because I am unsure when this
neglect is justified, I prefer to regard the linear relation as a postulate.

7.2.3 The Onsager Relations

The third and final postulate is that the L; are symmetric, that is,
Lj=1L; (7.2-18)

These symmetry conditions, called the Onsager reciprocal relations (Onsager, 1931), can
be derived by means of perturbation theory if ““microscopic reversibility” is valid. The
physical significance of microscopic reversibility is best visualized for a binary collision
in which two molecules start in some initial positions, collide, and wind up in some new
positions. If the velocities of these molecules are reversed and if microscopic reversibility
is valid, the two molecules will move backward, retracing their paths through the col-
lision to regain their original initial positions, just like a movie running backward. Those
unfamiliar with the temperament of molecules running backward may be mollified by
recalling that the symmetry suggested by Eq. 7.2-18 has been verified experimentally.
Thus we can accept Eq. 7.2-18 as a theoretical result or as an experimentally verified
postulate.

7.2.4 The Flux Equations

Using these three postulates, we can easily complete the derivation of the mul-
ticomponent flux equations from irreversible thermodynamics. We first rewrite Eq. 7.2-
17 in terms of concentration gradients. Because the V; are partial extensive quantities,

T Vi¥e =0 (7.2-19)
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Those less well versed in thermodynamics can get the same result by assuming that the
partial molar volumes are constant. As a result, only n — 1 concentration gradients are
independent:

n—1

ou

Vi = % (i) " (7.2-20)
J=1 acl Ckgjm

Note that the concentrations that are held constant in this differentiation differ from

those that are commonly held constant in partial differentiation. If we combine Egs.

7.2-16, 7.2-17, and 7.2-20, we obtain

n—1
—ji = Z DV (7.2:21)
j=
where

n—1n—1 a:ul
D;=%2 X L, — 7.2-22
y="2's ,ka;d(acj)t ) (7.2:22)

where the oy, are those given by Eq. 7.1-4. Thus, by starting our argument with conser-
vation equations plus an equation for entropy production, we have derived multicom-
ponent diffusion equations using only three postulates.

We still know nothing from this theory about the diffusion coefficients D;; we must
evaluate these from experiment. Finding these coefficients commonly requires solving
the flux equations with the techniques developed in the next section.

7.3 Solving the Multicomponent Flux Equations

In general, solving the multicomponent diffusion problems is not necessary if
the analogous binary problem has already been solved (Toor, 1964; Stewart and Prober,
1964). We can mathematically convert the multicomponent problem into a binary prob-
lem, look up the binary solution, and then convert this solution back into the multicom-
ponent one. In other words, multicomponent problems usually can be solved using
a cookbook approach; little additional work is needed. Some use this cookbook to
convert fairly comprehensible binary problems into multicomponent goulash that is
harder to understand than necessary.

In this section, we first give the results for ternary diffusion and then for the general
approach. By starting with the ternary results, we hope to help those who need to solve
simple problems. They should not have to dig through the matrix algebra unless they
decide to do so.

7.3.1 The Ternary Solutions

A binary diffusion problem has a solution that can be written as

Ac] = AC]()F(D) (7.3-1)
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In this, Ac; is a concentration difference that generally varies with position and time,
Acy 1s some reference concentration difference containing initial and boundary condi-
tions, and F(D) is the explicit function of position and time. For example, for the
diaphragm cell, the binary solution is (see Example 2.2-4)

(cip—c1a) = (15— ¢} e ™ (7.3-2)

where ¢!, and ¢y; are the concentrations in the diaphragm-cell compartment i at times
zero and ¢, respectively, f is the cell calibration constant, and D is the diffusion
coefficient. By comparison of Eqgs. 7.3-1 and 7.3-2, we see that Ac; is ¢i1p — ¢14, Acyg 18
Ay — ¥, and F(D)is e P,

Every binary diffusion problem has an analogous ternary diffusion problem that is
described by similar differential equations and similar initial and boundary conditions.
The differential equations differ only in the form of Fick’s law that is used. The con-
ditions are also parallel. For example, in a binary problem the solute concentration may
be fixed at a particular boundary, so in the corresponding ternary problem, solute
concentrations will also be fixed at the corresponding boundary. When this is true,
the ternary diffusion problems have the solutions

Aci = P F(o1)+P12F(02) (7.3-3)
and
Acy = Py F(01)+ P k(o)) (7.3-4)

in which the concentration differences Ac; and Acg are the dependent and independent
values in the binary problem, F(D) is again the solution to the binary problem, and the
values of ¢; and P; are given in Table 7.3-1 (Cussler, 1976). The o; are the eigenvalues
(with relative weighting factors p) of the diffusion-coefficient matrix and hence are a type
of pseudobinary diffusion coefficient.

The calculation of the ternary diffusion profile is now routine. For example, the result
for solute 1 in the diaphragm cell will be

0 0 0 0
(D11 — a2)(c 13— ¢14) + Dia(cyp — CzA)e—o.dr

0] — 03

ClB —Clga =

0 0 0 0
n (D11 —a1)(¢cip — €14) + Dialczp — CzA)e—ozdl
0y — 01

(7.3-5)

The results for the second solute can be found from Eq. 7.3-4 or by rotating the indices in
Eq. 7.3-5.

Example 7.3-1: Fluxes for ternary free diffusion Find the fluxes and the concentration
profiles in a dilute ternary free-diffusion experiment. In such an experiment, one ternary
solution is suddenly brought into contact with a different composition of the same
ternary solution. Find the flux and the concentrations versus position and time at small
times.
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Table 7.3-1 Factors for solution of ternary diffusion problems

Eigenvalues
o1 =4[D11 + Dy + \/(Dll — D)+ 4D13Dy1]

oy =3[Di1 + Dy — \/(Dll ~ D)+ 4D12 Dy]

Weighting factors

D —oc D
P = (7)“ + (
g — 02 o] —

D Dy —
Py = ( 21 )ACIO + ( 22 — 0]
o) — 0] 2 — 0]

Note: For further definitions, see Egs. 7.1-2, 7.3-1, 7.3-3, and 7.3-4.

Solution When the two solutions come in contact for only a short time, they
are effectively infinitely thick. The binary solution of this problem is (see Eq. 2.3-15)

€1 — €10

z
erf
Clo — €10 V4Dt

in which ¢¢ and ¢, are the concentrations where the solutions are contacted (at z= 0)
and far into one solution (at z= ), respectively, z and ¢ are the position and time,
and D is the binary diffusion coefficient. By comparison with Eq. 7.3-1, we see that Ac;
1S ¢1 — ¢10, AC10 1S €1 — €19 and F(D) equals the error function of z/\/4_Dt. As a result
the concentration profile for solute 1 will be

(D11 — 02)(c1 — c10) + D12(€250 — €20) erf 2
o] — 02 Vot

01—010:{

(D11 — 1) (c1eo — ¢10) + D12(c200 — €20) z
f
+{ 0y — 01 e Voot

The close similarity between this result and that for the diaphragm cell is obvious.
The fluxes can be found in the same manner as the concentration profile. Because the
solutions are dilute, there is negligible convection induced by diffusion, so
6c1 662

—nm = —j :DHE‘FDUE
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Combining this with Egs. 2.3-17, 7.3-3, and 7.3-4,

—22/40'1[
Vot
6—22/4021

/oot

where again the P; are given in Table 7.3-1. These results are complex algebraically but
straightforward conceptually.

—j1 = (D11P1i+D12Par)

+(D11Pi2+Di2P)

7.3.2 The General Solution

We now turn from the detail of ternary diffusion to the more general solution of
the multicomponent problems. The general solution of these equations is most easily
presented in terms of linear algebra, a notation that is not used elsewhere in this book. In
this presentation, we consider the species concentrations as a vector of ¢ and the mul-
ticomponent diffusion coefficients as a matrix D.

In matrix notation, the multicomponent flux equations are

—j=D-Vc (7.3-6)
The continuity equations for this case are

%f + (V) =-V.j (7.3-7)

These are subject to the initial and boundary conditions

Ac(x, y, z, t = 0) = Acy (7.3-8)
Ac(B, 1) =0 (7.3-9)
Oc

(b, =0 (7.3-10)

where B and b represent two boundaries of the system. Note that the boundary con-
ditions on all concentrations must have the same functional form. This is a serious
restriction only for the case of simultaneous diffusion and chemical reaction.

We now assume that there exists a nonsingular matrix ¢ that can diagonalize D:

g1 00...

1 00‘20...
L D1=0=100aq;... (7.3-11)

S

where {1 is the inverse of £ and ¢ is the diagonal matrix of the eigenvalues of the
diffusion coefficient matrix D. The assumption that D can be put into diagonal form
is not necessary for a general mathematical solution, but because this assumption is
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valid for all cases encountered in practice, it is used here. For the case of ternary
diffusion,

| Dy, | Dy — g
Dzz — 0] D21
Dy — 0 | D> |
(= |:l‘ll tlz] _ Dpp _ LDy —o (7.3-12)
= by tn {1 (0'2 —Dzzﬂ {1 (61 _Dll>:|
o1 — Dy ar — Dy
Correspondingly,
| Dy 1 a1 — Dy
01— Dx Dy
02— Dn Dy
fh thn D : D :
-1 12 02 — D1
= = = (7.3-13)
- [12]1 I~ } det(z) det(z)
where
g1 — 02 0y — 0]
det (1) = = 7.3-14
0 01 —Dx» 03— Dy ( )
Remember that the product of 7 and its inverse 5‘1 is the unit matrix.
We now use this new matrix { to define a new combined concentration ¥
c=t-¥ (7.3-15)

We combine Egs. 7.3-6, 7.3-7, and 7.3-15 and premultiply the equation by {1 to obtain

— 4V WY =6 V¥ (7.3-16)
which represents a set of scalar equations

oY;

ot +V- VOLIJ,' =0;- quji (73_17)

In this operation, we have made the assumption that D and hence both 7 and ¢ are not
functions of composition. - B B

The initial and boundary conditions can also be written in terms of the new combined
concentration \V:

A¥(x, p,2,0)=A¥) =1 Ay (7.3-18)

A¥(B,1) =0 (7.3-19)
¥

o (b,1)=0 (7.3-20)

Oz
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Thus a set of coupled differential equations has been separated into uncoupled equations
written in terms of the new concentration V.
Equations 7.3-16 through 7.3-20 have exactly the same form as the associate binary

diffusion problem:

a >

§+V e = DVP¢, (7.3-21)
which has the same initial and boundary conditions for each species as those given in
Eqgs. 7.3-8 through 7.3-10. If this binary problem has the solution

AC] = F(D)AC]O (73-22)
then Eqs. 7.3-17 through 7.3-20 must have the solution
A"P,‘ = F(O',')AIPI‘() (73-23)

where the eigenvalue o, is substituted everywhere that the binary diffusion coefficient
occurs in the binary solution. If we rewrite our solution in terms of the actual concen-
trations, we find that

Ac=1-Flo) -1 Ac (7.3-24)

Thus we know the concentration profiles in the multicomponent system in terms of its
binary analogue. The results for the ternary case are given in Eqgs. 7.3-3 and 7.3-4.
Many find this derivation difficult to grasp, even after they apparently understand every
step. Their trouble usually stems from a mathematical, not physical, problem. They do not
see why the derivation is more than a trick, a slick invention. The reason is that Eq. 7.3-17
and its associated conditions are shown to be mathematically the same as the binary
solution. If we change the symbol W; to ¢, Eq. 7.3-17 and Eq. 7.3-21 are exactly the same.
The physical circumstances in the multicomponent problem may be more elaborate, but the
identity of the differential equations signals that the mathematical solutions are identical.

Example 7.3-2: Steady-state multicomponent diffusion across a thin film In steady-state
binary diffusion, we found that the solute’s concentration varied linearly across a thin film.
Will solute concentrations vary linearly in the multicomponent case? What will the flux be?

Solution By comparison with Eq. 2.2-9, we see that

z

(1 —c) = (7) (c11 = c10)
By comparing this with Eq. 7.3-22, we see that F(D) equals (z//). From Eq. 7.3-24, for the
multicomponent case,

z

= (500 = (o

Thus the concentration profile of each solute remains linear. The flux is
—j=D-Ve

(A%

I
IS
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or

. n=1pD..
Ji=E = (co—ci)
=11
Note that a solute’s flux can be in the opposite direction to that expected if other
gradients exist in the system.

7.4 Ternary Diffusion Coefficients

In this section, we report a variety of values for ternary diffusion coefficients.
These coefficients support the generalizations given at the beginning of this chapter that
multicomponent effects were significant when the system was concentrated and con-
tained interacting species. These interactions can originate from chemical reactions,
from electrostatic coupling, or from major differences in molecular weights.

Typical diffusion coefficients for gases are shown in Table 7.4-1. These values are not
experimental, but are calculated from the Chapman—Enskog theory (see Section 5.1) and
from Table 7.1-1. The first two rows in the table show how the values of D, and D,; are
larger as the solution becomes concentrated. The second and third rows refer to the same
solution but with a different species chosen as the solute. The difference in the diffusion
coefficients illustrates why ternary diffusion coefficients can be difficult to interpret. The
final three rows are other characteristic situations.

Table 7.4-1 Ternary diffusion coefficients in gases at 25°C

System Dy Dy, D5, D,
Hydrogen (x; = 0.05)
Methane (x, = 0.05) 0.78 —0.00 0.03 0.22

Argon (x3 = 0.90)

Hydrogen (x; = 0.2)
Methane (x, = 0.2) 0.76 —0.01 0.12 0.25
Argon (x3 = 0.6)

Argon (x; = 0.6)
Methane (x, = 0.2) 0.64 —0.39 —0.12 0.37
Hydrogen (x; = 0.2)

Carbon dioxide (x; = 0.2)
Oxygen (x, = 0.2) 0.15 —0.00 —0.01 0.19
Nitrogen (x3 = 0.6)

Hydrogen (x; = 0.2)
Ethylene (x, = 0.2) 0.56 0.00 0.11 0.13
Ethane (x3 = 0.6)

Benzene (x; = 0.2)
Cyclohexane (x, = 0.2) 0.028 0.000 0.001 0.026
Hexane (x3 = 0.6)

Note: All coefficients have units of square centimeters per second and are calculated from the
equations in Table 7.1-1.
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Ternary diffusion coefficients in liquids and solids cannot be found from binary
values, but only from experiments. When experiments are not available, which is usually
the case, one can make estimates by assuming that the Onsager phenomenological
coefficients are a diagonal matrix; that is,

Ljiz;i=0 (7.4-1)

In addition, we can assume that the main-term coefficients are related to the binary
values given by

Dl‘Ci
L= <RT> (7.4-2)

where D, is the coefficient of species 7 in the solvent. These assumptions can be combined
with Eq. 7.1-4 and Eq. 7.2-20 to give

D;c;\ n=1 C]Vi a.ul
oo (PN (54 6T (O 4
i <RT> I=1 (51+ Cn Vn) (ac/ Chtjn (7 3)

This is equivalent to saying that ternary effects result from activity coefficients. I rou-
tinely use this equation for making initial estimates.

Experimental values of ternary diffusion coefficients characteristic of liquids are
shown in Table 7.4-2. In cases like KCl-NaCl-water, KCl-sucrose-water, and tolu-
ene—chlorobenzene-bromobenzene, the cross-term diffusion coefficients are small, less
than ten percent of the main diffusion coefficients. In these cases, we can safely treat the
diffusion as a binary process.

The cross-term diffusion coefficients are much more significant for interacting sol-
utes. In cases like HBr—K Br—water and H,SO,~Na,SO4—water, this interaction is ionic;
in other cases, it may involve hydrogen-bond formation. Cross-term diffusion coeffi-
cients and the resulting ternary effects should be especially large in partially miscible
systems, where few measurements have been made.

The ternary diffusion coefficients in metals shown in Table 7.4-3 have the largest
cross-term values. As a result, the flux of one component in an alloy can be against its
concentration gradient, from low concentration into higher concentration. These effects
are especially interesting when they are superimposed on the elaborate phase diagrams
characteristic of alloys because they can lead to local phase separations that dramatically
alter the material’s properties. As in gases and liquids, the methods of estimating ternary
diffusion coefficients are risky. One must either rely on relations like Eq. 7.4-3 or
undertake the difficult experiments involved. As a result, many avoid ternary diffusion
even when they suspect it is important.

7.5 Tracer Diffusion

Imagine we want to study the diffusion of steroids like progesterone through
human blood. The amounts of these steroids will be very small, making direct chemical
analysis difficult. As a result, we synthesize steroids that contain carbon 14 as
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Table 7.4-2 Ternary diffusion coefficients in liquids at 25 °C*

System

Dll

D12

D21

1.5-M KCI (1)
1.5-M NaCl (2)
H,0 (3)

0.10-M HBr (1)
0.25-M KBr (2)
H,0 (3)°

1-M H,S04 (1)
1-M Nast4 (2)
H,0 (3)°

0.06 g/cm® KCI (1)
0.03 g/cm® sucrose (2)
H,0 (3)°

2-M urea (1)
O-M'* C-tagged urea (2)
H,0 (3)

32 mol% hexadecane (1)
35 mol% dodecane (2)
33 mol% hexane (3)*

25 mol% toluene (1)
50 mol% chlorobenzene (2)
25 mol% bromobenzene (3)"

0.326 g/cm? benzene (1)
0.265 g/cm® propanol 2
Carbon tetrachloride (3)'

5 wt% cyclohexane (1)
5 wt% polystyrene (2)
90 wt% toluene (3)’

1.80

5.75

2.61

1.78

1.24

1.03

1.85

1.64

2.03

0.33

0.05

—0.04

0.02

0.01

0.23

—0.06

0.78

—0.09

0.10

-2.20

—0.51

0.07

0.00

0.27

—0.05

0.17

—0.02

1.39

1.85

0.91

0.50

1.23

0.97

1.80

1.33

0.09

Notes: “All values X 107> square centimeters per second. °P. J. Dunlop, J. Phys. Chem., 63, 612
(1959). °A. Reojin, J. Phys. Chem., 76,3419 (1972). “R. P. Wendst, J. Phys. Chem., 66, 1279 (1962).
°E. L. Cussler and P. J. Dunlop, J. Phys. Chem., 70, 1880 (1966).”J. G. Albright and R. Mills, J.
Phys. Chem., 69, 3120 (1966). °T. K. Kett and D. K. Anderson, J. Phys. Chem., 73, 1268 (1969).
3. K. Burchard and H. L. Toor, J. Phys. Chem., 66, 2015 (1962). R. A. Graff and T. B. Drew,
IEC Fund., 7,490 (1968) (data at 200 °C). /E. L. Cussler and E. N. Lightfoot, J. Phys. Chem., 69,

1135 (1965).

a radioactive label. We then measure the steroid concentration, and calculate diffusion

coefficients from these concentration measurements.

This measurement of tracer diffusion in dilute solution is a good strategy. Such a use
of radioactive tracers provides a near-unique opportunity for a specific chemical analysis
in highly dilute solution. Such analysis is especially important in biological systems,
where complex chemistry may compromise analysis. Moreover, in dilute solution, the
diffusion coefficients found with radioactive tracers are almost always indistinguishable
from those measured in other ways. Exceptions occur in those systems in which the
solute moves by a jump mechanism like that for protons (see Fig. 6.1.-1) or in which
the solute’s molecular weight is significantly altered by the isotopic mass.
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Fig. 7.5-1. Binary and tracer diffusion at 25 °C. The tracer diffusion coefficient equals the
binary coefficient only in certain special cases. All coefficients are X 107> square centimeters
per second. [From Mills (1965), with permission.]

In concentrated solution, tracer diffusion is a much more complex process which may
not provide coefficients identical with those in the binary system. This is illustrated by
the data in Fig. 7.5-1. In this figure, we see that the diffusion coefficients using different
radioactive isotopes can differ from each other and from the binary diffusion coefficient.
On reflection, we realize that this is not surprising; the diffusion of radioactively tagged
benzene in untagged benzene is obviously a different process than the diffusion of tagged
cyclohexane in benzene.

Explaining these differences requires more careful definitions (Albright and Mills,
1965). Binary diffusion occurs with two chemically distinct species. In contrast, intra-
diffusion occurs with three distinguishable species. One of these species is chemically
different. The other two species are very similar, for they have the same chemical for-
mula, the same boiling point, the same viscosity, and so forth. They differ only in their
isotopic composition or their assymetrical structure. Nonetheless, this means that intra-
diffusion involves three species.

There are two important special cases of intradiffusion. The first, tracer diffusion, is
the limit when the concentration of one similar species is small. This is the usual situation
when one uses radioactive isotopes, for high concentrations of radioactive material are
expensive, risky, and unnecessary. The second special case, self-diffusion, occurs when
the system contains a radioactively tagged solute in an untagged but otherwise chemi-
cally identical solvent. This system may also contain traces of other solutes and so still may
have more than two components. These different definitions are identified in Fig. 7.5-1.

The best available description of these various forms of diffusion is supplied by the
multicomponent equations developed earlier in this chapter. Indeed, tracer diffusion is
a simple example by which you can test your understanding of these ideas. To begin this
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description, we define the tracer as species 1, the identical unlabeled compound as species
2, and the different species as the solvent 3. The flux equations for this system are then

_.il = D11VC1 (75-1)
—Jj» =D Ver+DnVe, (7.5-2)

The coefficient D1, is zero because the tracer concentration ¢ is always near zero. When
¢1 and ¢, are both very small, Dy is the tracer diffusion coefficient of species 1 in species
3. When c¢; is very small, Dy, is the self-diffusion coefficient of species 1 in species 2. We
will imitate the literature and relabel the coefficient D;; as D*, a reminder that it is often
radioactively tagged.

We can also reach conclusions about the coefficients D>, and D»;. Since species 1 is
always present at vanishingly small concentrations, D,, must be the binary diffusion
coefficient D of species 2 in solvent 3. This has other implications. The total flux of
species 1 and 2 must be the sum of the fluxes above

— (j1+ Jo) = (D11+ D21)Ver + DV
= (D" + Dy)Ve; + DV, (7.5-3)

But now imagine that our radiation detector is broken, so we can’t measure c¢;; we can
only measure (¢; + ¢»). We can still measure the binary diffusion coefficient D using the
relation

— (i +J) = DV(c1+c2) (7.5-4)
By comparing Eqgs. 7.5-3 and 7.5-4, we see that
Dy =D-D" (7.5-5)

Thus in this special case of ternary diffusion, the four diffusion coefficients can be written
in terms of two: the tracer and the binary. This reduction to two coefficients is a conse-
quence of the chemical identity of the solutes 1 and 2.

The physical reasons why the tracer and the binary coefficients are different can
most easily by seen for the case of a dilute gas mixture of a tagged solute 1, an
untagged solute 2, and a solvent 3. Diffusion in this system is described in terms of
solute—solvent collisions and solute—solute collisions. Solute—solvent collisions are char-
acterized by collision diameters o3 and ¢;5. Solute—solute collisions are described by
o1, and ¢1,. With these diameters and energies, the binary diffusion coefficient can be
shown from Table 7.1-1 to be a function only of solute—solvent collisions:

D22 =D= D(023, 0'23) = D(013,0'13) (75-6)

On the other hand, the intradiffusion coefficient D* is seen from this table to be
a weighted harmonic average of solute—solvent and solute—solute collisions:

Dn=0 = V3 Y1+ (7.5-7)

D(0623,023) D(012,012)
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Fig. 7.5-2. Binary diffusion predicted from tracer diffusion. In general, binary diffusion cannot
be predicted from tracer diffusion and activity data using empirical relations like Eq. 7.5-8. The
data, for chloroform—carbon tetrachloride at 25 °C, are square centimeters per second. [From
Kelly, Wirth, and Anderson (1971), with permission.]

Note that when (y; + y,) is nonzero, D* is not equal to D. In the limit of infinite dilution,
both y, and y, approach zero, and D* equals D.

Many investigators have tried to discover empirical connections between binary
diffusion and intradiffusion. The most common is the assertion that

D= D*<1 + al““) (7.5-8)

61n(:1

in which D is the binary diffusion coefficient, D* is the intradiffusion coefficient mea-
sured with a radioactive tracer, and the quantity in parentheses is the increasingly
familiar activity correction for diffusion. This empirical assertion is often buttressed
by theoretical arguments, especially those based on the irreversible thermodynamics
described in Section 7.2. Equation 7.5-8 does not always work experimentally, as shown
by the results in Fig. 7.5-2.

Why Eq. 7.5-8 sometimes fails is illustrated by the case of dilute gases. Binary diffu-
sion involves only solute—solvent interactions. Intradiffusion and tracer diffusion are the
result not only of solute—solvent interactions but also of solute—solute interactions. Thus
D* contains different information than D, information characteristic of dynamic colli-
sions as well as equilibrium activities. This difference means in general that D* cannot be
found only from D and activity coefficients.

Example 7.5-1: Tracer and binary diffusion of hydrogen and benzene Find the tracer
diffusion coefficient of '*C-tagged benzene in gas mixtures of hydrogen and benzene. At
25 °C, the binary diffusion coefficient is 0.40 cm?/sec, and the self-diffusion coefficient of
benzene is 0.03 cm?/sec.
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Fig. 7.5-3. Binary versus tracer diffusion of hydrogen gas and benzene vapor. The benzene is
the species tagged with radioactivity. The differences between the binary and tracer values are
unusually large in this case.

Solution To be consistent with the preceding development, let species 1, 2,
and 3 be radioactively tagged benzene, untagged benzene, and hydrogen, respectively.
Then, from Eq. 7.5-6, we see that the binary coefficient is

D = 0.40 cm’/sec

This coefficient is independent of concentration. The tracer diffusion coefficient is found
from Eq. 7.5-7
v

3 1—y;

040 0,03

D=

This result is shown versus hydrogen concentration in Fig. 7.5-3. In this case, the binary
and tracer values differ by an unusually large amount, a consequence of the exceptional
mobility of hydrogen.

7.6 Conclusions

Diffusion frequently occurs in multicomponent systems. When these systems are
dilute, the diffusion of each solute can be treated with a binary form of Fick’s law. In
concentrated solutions, the fluxes and concentration profiles deviate significantly from
binary expectations only in exceptional cases. These exceptions include mixed gases con-
taining hydrogen, mixed weak electrolytes, partially miscible species, and some alloys.

When multicomponent diffusion is significant, it is best described with a generalized
form of Fick’s law containing (n — 1)? diffusion coefficients in an n-component system.
This form of diffusion equation can be rationalized using irreversible thermodynamics.
Concentration profiles in these multicomponent cases can be directly inferred from the
binary results. However, multicomponent diffusion coefficients are difficult to estimate,
and experimental values are fragmentary. As a result, you should make very sure that
you need the more complicated theory before you attempt to use it.
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Questions for Discussion

In what multicomponent mixture can diffusion be accurately described with the
binary form of Fick’s law?
When are multicomponent diffusion coefficients different from the binary values?
What is a cross-term diffusion coefficient?

When can diffusion in one phase go from low concentration to higher concen-
tration?

What is an advantage and a disadvantage of the Fick’s law form of ternary
diffusion equations (Eq. 7.1-2)?

What is an advantage and a disadvantage of the Maxwell-Stefan form of
ternary diffusion equations (Eq. 7.1-5)?

What are the Onsager reciprocal relations?

Will multicomponent effects be greatest in gases, liquids, or solids?

How can you find a ternary concentration profile if you know the solution of an
analogous binary one?

When will tracer diffusion equal binary diffusion?

Imagine a system of equimolar amounts of hydrogen and ethylene containing
a trace of tritium. The diffusion coefficient of tritium would not equal the
diffusion coefficient of hydrogen. Explain why without using equations.
Diffusion of two gases in a porous medium can be treated as ternary diffusion,
where the third species is the porous medium itself. Write and simplify equa-
tions for this case.

Problems

Imagine a thin membrane separating two large volumes of aqueous solution. The mem-
brane is 0.014 cm thick and has a void fraction of 0.32. One solution contains 2-M
H,SO,4 and the other 2-M Na,SO,. As a result, there is no gradient of sulfate across the
membrane. Ternary diffusion coefficients for this system are given in Table 7.4-2. What
is the sulfate flux? Answer: 5.6 - 1077 mol/cm? sec.

A solution of 12 mol% hexadecane (1), 55 mol% dodecane (2), and 33 mol % hexane
(3) is diffusing at 25 °C in a diaphragm cell into a solution of 52 mol% hexadecane (1),
15 mol% dodecane (2), and 33 mol% hexane (3). The cell constant of the cell is 3.62
cm 2, and the ternary diffusion coefficients are

Dy =1.03, D, =023,
Dy =027, Dy =097

all times 107 cmz/sec. Plot the concentration differences Ac; and Ac, versus time.

In a two-bulb capillary diffusion apparatus like that in Fig. 3.1-2, one bulb contains
75% H, and 25% CgHg, and the other contains 65% H,, 34.9% CgHg, and 0.1%
radioactively tagged CsHg. The system is at 0°C. We can measure diffusion in one of
two ways. First, we can measure the concentration change of all the benzene using
a gas chromatograph. Second, we can measure the concentration difference of the
radioactive isotopes. How different are these results? To answer this problem, let 1 be
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tracer, 2 be untagged benzene, and 3 be hydrogen solvent. (a) Find the ternary diffu-
sion coefficients assuming that the radioactive concentration is much less than the
nonradioactive. (b) Using the binary solution, write out the ternary one. (¢) Combine
parts (a) and (b) to find Ac; and Ac, versus ftz, where f is the cell constant of this
apparatus.

4. An iron bar containing 0.86 mol% carbon is joined with a bar containing 3.94 mol%
silicon. The two bars are then heated to 1,050 °C for 13 days; under these conditions,
there is only one equilibrium phase, FCC austenite. Calculate the carbon concentration
profile under these conditions using the values in Table 7.4-3. Remember that these
coefficients are relative to the solvent average velocity.

5. In practical work, air is often treated as if it is a pure species. This problem tests the
accuracy of this assumption for diffusion. Imagine a large slab of an isotropic porous
solid centered at z=0. To the left, at z<0, the solid’s pores initially contain pure
hydrogen; to the right, at z> 0, they initially contain pure air. If air were really a single
component, then the mole fraction of hydrogen y; would vary as follows (see Section
2.3, assuming that the total molar concentration c is a constant.):

= 1 (1 erfi>
175 V4D1

Because air is really a mixture, the exact solution involves ternary diffusion coefficients
that can be calculated from Table 7.1-1. Calculate the ternary concentration profile
and compare it with the binary one (S. Gehrke).

6. You are using the diaphragm cell to study diffusion in the ternary system sucrose(1)—
KCI1(2)-water(3). Instead of measuring the concentration differences of each species
in these experiments, you find it convenient to measure the overall density and re-
fractive-index differences, defined as

Ap = HiAp, + HyAp,
An = RiAp| + R:Ap,

In separate experiments, you find H;=0.379, H,=0.602, R;=0.1414, and
R, =0.1255. You find the calibration constant of the cell to be 0.462 cm 2. Other
relevant data are in the following table: [E. L. Cussler and P. J. Dunlop, J. Phys.
Chem., 70, 1880 (1966)]:

Exp. 20 Exp. 26 Exp. 24 Exp. 22
Ap'® 0.0000 0.00277 0.01111 0.01500
Ap*® 0.0150 0.01250 0.00313 0.00000
An° 86.33 89.88 89.96 97.21
Ap° 0.00904 0.00856 0.00609 0.00569
An 28.24 33.56 46.34 55.38
Ap 0.00293 0.00299 0.00279 0.00315
10p¢ 0.627 0.620 0.9526 1.0598

Use these data to calculate the four ternary diffusion coefficients, and compare them
with the following values found with the Gouy interferometer: D, = 0.497, D, = 0.021,
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D>, = 0.069, Dy, = 1.775 (all times 10> cmz/sec). Answer: Dy = 0.498, D, = 0.022,
Dy; = 0.071, Dy, = 1.776 (all times 10> cm?/sec).

7. Ternary diffusion effects are expected to be common in the molten silicates that occur
in the center of the Earth. In a study of one such melt, Spera and Trial [Science 259, 204
(1993)] report for 40 mol% CaO (1)-20 mol% Al,03;—40 mol% SiO, at 1500 K that

Dy = (10.0 = 0.10) - 10 "ecm?/sec; Dy; = (—2.8 * 0.8) - 10~ cm?/sec;
Dy = (—4.2 + 0.8) - 10 "em’/sec; Dy = (7.3 + 0.4) - 10” "em?/sec;

Large coefficients like these provide a good chance to check the Onsager
reciprocal relations (cf. Eq. 7.2-18):

Ly =Ly
This is equivalent to
Dyyoun + Dyroy = Dipoy + Dopong

These authors also estimate that

ap = 8.15- 1007 /kg; opp = 4.25-10°T /kg;
oy =4.25-10°T/kg; oz = 4.00- 10°J /kg;

Do the Onsager relations hold?
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CHAPTER 8§

Fundamentals of Mass Transfer

Diffusion is the process by which molecules, ions, or other small particles
spontaneously mix, moving from regions of relatively high concentration into regions
of lower concentration. This process can be analyzed in two ways. First, it can be de-
scribed with Fick’s law and a diffusion coefficient, a fundamental and scientific descrip-
tion used in the first two parts of this book. Second, it can be explained in terms of a mass
transfer coefficient, an approximate engineering idea that often gives a simpler descrip-
tion. It is this simpler idea that is emphasized in this part of this book.

Analyzing diffusion with mass transfer coefficients requires assuming that changes in
concentration are limited to that small part of the system’s volume near its boundaries. For
example, in the absorption of one gas into a liquid, we assume that gases and liquids are
well mixed, except near the gas—liquid interface. In the leaching of metal by pouring acid
over ore, we assume that the acid is homogeneous, except in a thin layer next to the solid
ore particles. In studies of digestion, we assume that the contents of the small intestine are
well mixed, except near the villi at the intestine’s wall. Such an analysis is sometimes called
a “lumped-parameter model” to distinguish it from the “distributed-parameter model”
using diffusion coefficients. Both models are much simpler for dilute solutions.

If you are beginning a study of diffusion, you may have trouble deciding whether to
organize your results as mass transfer coefficients or as diffusion coefficients. I have this
trouble too. The cliché is that you should use the mass transfer coefficient approach if the
diffusion occurs across an interface, but this cliché has many exceptions. Instead of
depending on the cliché, I believe you should always try both approaches to see which
is better for your own needs. In my own work, I have found that I often switch from one
to the other as the work proceeds and my objectives evolve.

This chapter discusses mass transfer coefficients for dilute solutions; extensions to
concentrated solutions are deferred to Section 9.5. In Section 8.1, we give a basic defini-
tion for a mass transfer coefficient and show how this coefficient can be used experimen-
tally. In Section 8.2, we present other common definitions that represent a thicket of
prickly alternatives rivaled only by standard states for chemical potentials. These various
definitions are why mass transfer often has a reputation with students of being a difficult
subject. In Section 8.3, we list existing correlations of mass transfer coefficients; and in
Section 8.4, we explain how these correlations can be developed with dimensional anal-
ysis. Finally, in Section 8.5, we discuss processes involving diffusion across interfaces,
a topic that leads to overall mass transfer coefficients found as averages of more local
processes. This last idea is commonly called mass transfer resistances in series.

8.1 A Definition of a Mass Transfer Coefficient

The definition of mass transfer is based on empirical arguments like those used
in developing Fick’s law in Chapter 2. Imagine we are interested in the transfer of mass

237
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from some interface into a well-mixed solution. We expect that the amount transferred is
proportional to the concentration difference and the interfacial area:

rate of mass | K interfacial concentration (8.1-1)
transferred ) — area difference ‘
where the proportionality is summarized by k, called a mass transfer coefficient. If we

divide both sides of this equation by the area, we can write the equation in more familiar
symbols:

Nl:k(cli—cl) (8.1-2)

where N, is the flux at the interface and ¢;; and ¢, are the concentrations at the interface
and in the bulk solution, respectively. The flux N; includes both diffusion and convec-
tion; it is like the total flux n; except that it is located at the interface. The concentration
c1; 18 at the interface but in the same fluid as the bulk concentration c¢;. It is often in
equilibrium with the concentration across the interface in a second, adjacent phase; we
will defer discussion of transport across this interface until Section 8.5.

The physical meaning of the mass transfer coefficient is clear: it is the rate constant for
moving one species from the boundary into the bulk of the phase. A large value of &k
implies fast mass transfer, and a small one means slow mass transfer. The mass tranfer
coefficient is like the rate constant of a chemical reation, but written per area, not per
volume. As a result, its dimensions are of velocity, not of reciprocal time. Those learning
about this subject sometimes call the mass transfer coefficient the “‘velocity of diffusion.”

The flux equation in Eq. 8.1-2 makes practical sense. It says that if the concentration
difference is doubled, the flux will double. It also suggests that if the area is doubled, the
total amount of mass transferred will double but the flux per area will not change. In
other words, this definition suggests an easy way of organizing our thinking around
a simple constant, the mass transfer coefficient k.

Unfortunately, this simple scheme conceals a variety of appr