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Preface

What is the maximum level a certain river is likely to reach over the next
25 years? What is the likely magnitude of the strongest earthquake to occur
during the life of a planned nuclear plant, or the speed of the strongest wind
a suspension bridge will have to stand? The present book does not deal with
such fundamental practical questions, but rather with some (arguably also
fundamental) mathematics which have emerged from the consideration of
these questions. All these situations can be modeled in the same manner.
The value Xt of the quantity of interest (be it water level or speed of wind)
at time t is a random variable. What can be said about the maximum value of
Xt over a certain range of t? In particular, how can we guarantee that, with
probability close to one, this maximum will not exceed a given threshold?

A collection of random variables (Xt)t∈T , where t belongs to a certain
index set T , is called a stochastic process, and the topic of this book is the
study of the supremum of certain stochastic processes, and more precisely to
find upper and lower bounds for these suprema. The key word of the book is

inequalities.

It is not required that T be a subset of the real line, and large parts of the
book do not deal directly with the “classical theory of processes” which is
mostly concerned with this situation. The book is by no means a complete
treatment of the hugely important question of bounding stochastic processes,
in particular because it does not really expand on the most basic and robust
results which are the most important for the “classical theory of processes”.
Rather, its specific goal is to demonstrate the impact and the range of modern
abstract methods, in particular through their treatment of several classical
questions which are not accessible to “classical methods”.

The most important idea about bounding stochastic processes is called
“chaining”, and was invented by A. Kolmogorov. This method is wonderfully
efficient. With little effort it suffices to answer a number of natural questions.
It is however not a panacea, and in a number of natural situations it fails
to provide a complete understanding. This is best discussed in the case of
Gaussian processes, that is processes for which the family (Xt)t∈T consists
of jointly Gaussian random variables (r.v.s). These are arguably the most
important of all. A Gaussian process defines in a canonical manner a distance
d on its index set T by the formula

vii



viii Preface

d(s, t) = (E(Xs −Xt)
2)1/2 . (0.1)

Probably the single most important conceptual progress about Gaussian pro-
cesses was the gradual realization that the metric space (T, d) is the key object
to understand them, irrelevant of the other possible structures of the index
set. This led R. Dudley to develop in 1967 an abstract version of Kolmgorov’s
chaining argument adapted to this situation. This provides a very efficient
bound for Gaussian processes. Unfortunately, there are natural situations
where this bound is not tight. Roughly speaking, one might say that “there
sometimes remains a parasitic logarithmic factor in the estimates”.

The discovery around 1985 (by X. Fernique and the author) of a precise
(and in a sense, exact) relationship between the “size” of a Gaussian process
and the “size” of this metric space provided the missing understanding in
the case of these processes. Attempts to extend this result to other processes
spanned a body of work which forms the core of this book.

A significant part of this book is devoted to situations where one has
to use some skills to “remove the last parasitic logarithm in the estimates.”
These situations occur with unexpected frequency in all kinds of problems. A
particularly striking example is as follows. Consider n2 independent uniform
random points (Xi)i≤n2 which are uniformly distributed in the unit square
[0, 1]2. We want to understand how far a typical sample is from being very
uniformly spread on the unit square. To measure this we construct a one to
one map π from {1, . . . , n2} to the vertices v1, . . . , vn2 of a uniform n × n
grid in the unit square. If we try to minimize the average distance between
Xi and vπ(i) we can do as well as about

√
log n/n but no better. If we try to

minimize the maximum distance between Xi and vπ(i), we can do as well as

about (log n)3/4/n but no better. The factor 1/n is just due to scaling. It is
the fractional powers of logn that require work.

Even though the book is largely self-contained, it mostly deals with rather
subtle questions such as the previous one. It also devotes considerable energy
to the problem of finding lower bounds for certain processes, a topic consid-
erably more difficult and less developed than the search for upper bounds.
Therefore it should probably be considered as an advanced text, even though
I hope that eventually the main ideas of at least Chapter 2 will become part
of every probabilist’s tool kit. In a sense this book is a second edition (or,
rather, a continuation) of the monograph [1], or at least of the part of that
work which was devoted to the present topic. I made no attempt to cover
again all the relevant material of [1]. Familiarity with [1] is certainly not a
prerequisite, and maybe not even helpful, because the way certain results are
presented there is arguably obsolete. The present book incorporates (with
much detail added) the material of a previous (and, in retrospect, far too
timid) attempt [2] in the same direction, but its goal is much broader. I
am really trying here to communicate as much as possible of my experience
working in the area of boundedness of stochastic processes, and consequently
I have in particular covered most of the subjects related to this area on which
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I ever worked, and I have included all my pet results, whether or not they
have yet generated activity. I have also included a number of recent results
by others in the same general direction. I find that these results are deep
and very beautiful. They are also sometimes rather difficult to access for the
non-specialist (or even for the specialists themselves). I hope that explaining
them here in a unified (and often simplified) presentation will serve a useful
purpose. Bitter experience has taught me that I should not attempt to write
about anything on which I have not meditated enough to make it part of my
flesh and blood (and that even this is very risky). Consequently this book
covers only topics and examples about which I have at least the illusion that I
might write as well as anybody else, a severe limitation. I can only hope that
it still covers the state-of-art knowledge about sufficiently many fundamental
questions to be useful, and that it contains sufficiently many deep results to
be of lasting interest.

A number of seemingly important questions remain open, and one of
my main goals is to popularize these. Of course opinions differ as to what
constitutes a really important problem, but I like those I explain in the present
book. Several of them were raised a generation ago in [1], but have seen little
progress since. One deals with the geometry of Hilbert space, a topic that can
hardly be dismissed as being exotic. These problems might be challenging. At
least, I made every effort to make some progress on them. The great news is
that when this book was nearly complete, Witold Bednorz and Rafa�l Lata�la
solved the Bernoulli Conjecture on which I worked for years in the early
nineties (Theorem 5.1.5). In my opinion this is the most important result in
abstract probability for at least a generation. I offered a prize of $ 5000 for the
solution to this problem, and any reader understanding this amazing solution
will agree that after all this was not such a generous award (specially since
she did not have to sign this check). But solving the Bernoulli Conjecture is
only the first step of a vast (and potentially very difficult) research program,
which is the object of Chapter 12. I now offer a prize of $ 1000 for a positive
solution of the possibly even more important problem raised at the end of
Chapter 12 (see also [3]). The smaller amount reflects both the fact that I am
getting wiser and my belief that a positive solution to this question would
revolutionize our understanding of fundamentally important structures (so
that anybody making this advance will not care about money anyway). I of
course advise to claim this prize before I am too senile to understand the
solution, for there can be no guarantee of payment afterwards.

I am very much indebted to Jian Ding and James Lee, who motivated me
to start this project (by kindly but firmly pointing out that they found [2]
far too difficult to read), and to Joseph Yukich, whose unflinching advice
helped me to make this text more of a book and less of a gigantic research
paper.

I must apologize for the countless inaccuracies and mistakes, small or big,
that this book is bound to contain despite all the efforts made to remove
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them. I was very much helped in this endeavor by a number of colleagues,
and in particular by Albert Hanen who read the entire book. Very special
thanks are also due to Tim Austin, Witold Bednorz, Jian Ding, Rafa�l Lata�la,
Nicholas Harvey, Joseph Lehec, Shahar Mendelson and Marc Yor (to whom I
owe in particular the idea of adding Appendix A). Of course, all the remaining
mistakes are my sole responsibility.

I am happy to acknowledge here the extraordinary help that I have re-
ceived over the last 10 years from Albert Hanen. During that period I wrote
over 2600 pages of book material. Albert Hanen has read every single of them
in complete detail, often in several versions, attempting with infinite patience
to check every single statement. He has corrected thousands of typos, hun-
dreds of mistakes and helped me clarify countless obscurities. Without his
endless labor of love, my efforts to communicate would have been signifi-
cantly less productive during this entire period. I am very grateful to him.

The untimely death of Marc Yor while this book was in production is
an irretrievable loss for Probability Theory. Marc had donated much time to
improve this work (as well as the author’s previous two books), and it is only
befitting that it be dedicated to his memory.
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1. Philosophy and Overview of the Book

1.1 Underlying Philosophy

This short chapter will describe the philosophy underlying this book, and
some of its highlights. This will be done using words rather than formulas, so
that the description is necessarily imprecise, and is only intended to provide
some insight into our point of view.

The practitioner of stochastic processes is likely to be struggling at any
given time with his favorite model of the moment, a model that will typically
involve a rather rich and complicated structure. There is a near infinite supply
of such models. Fashions come and go, and the importance with which we
view any specific model is likely to strongly vary over time.

The first advice the author received from his advisor Gustave Choquet
was as follows: Always consider a problem under the minimum structure in
which it makes sense. This advice will probably be as fruitful in the future as
it has been in the past, and it has strongly influenced this work. By following
it, one is naturally led to the study of problems with a kind of minimal and
intrinsic structure. Besides the fact that it is much easier to find the crux
of the matter in a simple structure than in a complicated one, there are not
so many really basic structures, so one can hope that they will remain of
interest for a very long time. This book is devoted to the study of a few of
these structures.

It is of course very nice to enjoy the feeling, real or imaginary, that one is
studying structures that might be of intrinsic importance, but the success of
the approach of studying “minimal structures” has ultimately to be judged
by its results. More often than not general principles are insufficient to answer
specific questions. Yet, as we shall demonstrate, the tools arising from this
approach have provided the final words to a number of classical problems.

1.2 Peculiarities of Style

The author has tried to make this book as self contained as he could, but
some readers may be disturbed to see that certain standard considerations
are given little or no attention. You will find rather little about “convergence”
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2 1. Philosophy and Overview of the Book

here, at least explicitly. There are no apparent σ-algebras, and measurabil-
ity is hardly mentioned at all. Essentially we prove inequalities, and for this
one can basically pretend that every index set is finite. This is why we shall
shamelessly consider suprema of families of r.v.s without ever defining “es-
sential supremum” or “separable processes”, and why (for example) when
studying convergence of random Fourier series, we put much more emphasis
on the estimates of finite partial sums than on convergence itself. All these
missing “details” belong to pre-1950 mathematics. While these are funda-
mentally important, there is already a plethora of material available about
them, which this author has no special competences to rewrite.

1.3 What This Book Is Really About

Readers (should there be any) who are trained in the classical theory of
processes (semi-martingales, etc.) may find it difficult to understand what
this book is all about.

For us a stochastic process is a collection of random variables (r.v.s)
(Xt)t∈T , where T is an index set. This index set may be, or not, a sub-
set of Rm. Most importantly, it may be a subset of Rm, but its structure as
a subset of Rm is of no help. A fundamental example of stochastic processes
is a random series

Xt =
∑

k≥1

ξkfk(t) , (1.1)

where fk are functions and ξk are independent random variables. The study
of such series will occupy a large part of this book.

Our main objective is the study of stochastic processes, and to find con-
ditions under which their trajectories are bounded or continuous.

Let us first discuss a very simple situation, processes (Xt)t∈T where T =
[0, 1]m, that satisfy the Kolmogorov conditions, that is

∀ s, t ∈ [0, 1]m , E|Xs −Xt|p ≤ d(s, t)α , (1.2)

where d(s, t) denotes the Euclidean distance and p > 0, α > m.
Kolmogorov’s chaining idea is to use successive approximations πn(t) of

a point t of T . Here it is natural to assume for example that πn(t) ∈ Gn

where Gn is the set of points x in [0, 1[ (the set which you might denote [0, 1)
if you are Anglo-Saxon) such that the coordinates of 2nx are integers. Thus
cardGn = 2nm.

For n ≥ 0, let us define

Un = {s ∈ Gn , t ∈ Gn+1 ; d(s, t) ≤ 3
√
m2−n} .

The somewhat arbitrary choice of the constant 3
√
m is related to the fact

that each point of T is within distance
√
m2−n of a point of Gn. A very
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important feature here is that even though there are 2nm choices for s and
2(n+1)m possible choices for t we have

cardUn ≤ K(m)2nm , (1.3)

where K(m) denotes a number depending only on m. This is due to the fact
that (ignoring “edge effects”) the space T is really “m-dimensional” and “the
same around each point”. Much of the work done in this book is to handle
situations where such a homogeneity does not occur, and these situations do
occur in classical problems. In Appendix A we give a self-contained proof that
processes satisfying (1.2) have a continuous version, and we explain several
more basic chaining results which might help to provide perspective. We also
discuss some classical tools such as the Garsia-Rodemich-Rumsey lemma [1].
This appendix is designed to be read independently of the rest of the book,
and now is probably the best time to study it.

1.4 Gaussian Processes and the Generic Chaining

This section gives an overview of Chapter 2. More generally, Section n gives
the overview for Chapter (n− 2).

The most important question considered in this book is the boundedness
of Gaussian processes. As we already noticed, the intrinsic distance (0.1)
points to the relevance of the metric space (T, d) where T is the index set.
This metric space is far from being arbitrary, since it is isometric to a subset
of a Hilbert space. (By its very nature, this introduction is going to contain
many statements, like the previous one, which, depending on the reader’s
background, may or may not sound obvious. The best way to obtain complete
clarification about these statements is to start reading from the next chapter
on.) Something properly extraordinary happens here. It is a deadly trap to try
to use the specific properties of the metric space (T, d). The proper approach
is to just think of it as a general metric space. Since there is only so much one
can do with a bare metric space structure, nothing can get really complicated
then.

One of the most important properties of Gaussian processes is the follow-
ing “increment condition”

∀u > 0 , P(|Xs −Xt| ≥ u) ≤ 2 exp

(
− u2

2d(s, t)2

)
, (1.4)

which simply expresses a (somewhat suboptimal) bound on the tail of the
Gaussian r.v. Xs−Xt. When proving regularity conditions on Gaussian pro-
cesses, this is actually the only property we shall use. There is an obvious
similarity between (1.4) and (1.2), and pursuing Kolmogorov’s ideas in the
present abstract setting led in 1967 to the celebrated Dudley’s bound. This is
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arguably the most important result about regularity of Gaussian processes,
so it deserves to be stated here. For any δ > 0,

E sup
d(s,t)≤δ

|Xs −Xt| ≤ L

∫ δ

0

√
logN(T, d, ε)dε . (1.5)

Here L is a number and N(T, d, ε) denotes the smallest number of balls for
the distance d, of radius ε, which is needed to cover T . A quick proof of this
bound in this exact form may be found in the self-contained Appendix A on
page 601.

If one thinks of chaining as a succession of steps that provide successive
approximations of the space (T, d), in the Kolmogorov chaining for each n
the “variation of the process during the n-th step is controlled uniformly over
all possible chains”.

In Section 2.2 we explain the basic idea of the generic chaining. The twist
over the classical method is simply that the “variation of the process during
the n-th step may depend on which chain we follow”. Once the argument
is properly organized, it is not any more complicated than the classical ar-
gument. It is in fact exactly the same, and requires no more energy than
most books spend e.g. to prove the continuity of Brownian motion by weaker
methods. Yet, while Dudley’s classical bound is not always sharp, the bound
obtained through the generic chaining is optimal, as will be explained later.

Many processes of importance do not have tails as simple to describe as in
(1.4). For example, when one controls these tails through Bernstein’s inequal-
ity, two distances rather than one get involved. To deal with that situation it
is convenient to formulate the generic chaining bound using special sequences
of partitions of the metric space (T, d), that we shall call admissible sequences
throughout the book.

To make the generic chaining bound useful, the basic issue is then to be
able to construct admissible sequences. These admissible sequences measure
an aspect of the “size” of the metric space. In Section 2.3 we introduce another
method to measure the size of the metric space, through the behavior of
certain “functionals”, that are simply numbers attached to each subset of the
entire space. The fundamental fact is that the measure of the size of the metric
space one obtains through admissible sequences and through functionals are
equivalent in full generality. This is proved in Section 2.3 for the easy part
(that the admissible sequence approach provides a larger measure of size than
the functional approach) and in Section 2.6 for the converse. This converse
is, in effect, a method to construct sequences of partitions in a metric space.
The point of this equivalence is that in practice, as will be demonstrated
throughout the book, it is much easier in concrete situations to guess the
size of a given space through the functional approach than the admissible
sequences approach.

In Section 2.4 we prove that the generic bound can be reversed for
Gaussian processes, therefore providing a characterization of their sample-
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boundedness. Gaussian processes are deeply related to the geometry of
Hilbert space. In some sense, a Gaussian process is nothing but a subset
of Hilbert space. A number of basic questions related to the geometry of
Hilbert space remain unanswered, such as how to relate certain measures of
size of a subset of Hilbert space with the corresponding measures of size of
its convex hull.

The conventional wisdom among mainstream probabilists has long been
that Dudley’s bound “suffices for all practical purposes” and that the cases
where it is not sharp are “exotic”. To dispel this belief, in Section 2.5 we inves-
tigate in detail the case of ellipsoids of a Hilbert space. Dudley’s bound fails
to explain the size of the Gaussian processes indexed by ellipsoids. Ellipsoids
will play a basic role in Chapter 4.

In Sections 2.6 we detail in the simplest case (which is also the most
important) the fundamental “partitioning scheme”, a method to construct
partitions in a general metric space. Interestingly the construction is quite
immediate, in that it is performed following a simple “greedy algorithm”.
It does, however, require some care to prove that the partition the algo-
rithm constructs possesses the properties we wish. This method, and its later
generalizations, are of fundamental importance. The good news is that the
statements of these later generalizations will require more abstraction, but
that their proofs will be absolutely identical to that of the fundamental case
of this section. A first generalization is given in Section 2.7.

1.5 Random Fourier Series and Trigonometric Sums, I

In Section 3.2 we investigate Gaussian processes in “the stationary case,”
where e.g. the underlying space is a compact group and the distance is trans-
lation invariant. This is relevant to the study of random Fourier series, which
are simply series of the type (1.1) where fk are characters of the group. The
basic example is that of series of the type

Xt =
∑

k≥1

ξk exp(2πikt) , (1.6)

where t ∈ [0, 1] and the r.v.s ξk are independent. The fundamental case where
ξk = akgk for numbers ak and independent Gaussian r.v.s (gk) is of great
historical importance. We prove some of the classical results of M. Marcus
and G. Pisier, which provide a complete solution in this case, and are also
quite satisfactory in the more general case (1.6) when the random coefficients
(ξk) are square-integrable. In Section 3.3 we explain a result of X. Fernique
on vector-valued random Fourier series, which had an important part in the
genesis of this book.
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1.6 Matching Theorems, I

Despite the fact demonstrated in Section 2.5 that the generic chaining is
already required to understand ellipsoids in Hilbert space, the misconception
that such oddities will not occur in “real” situations might persist. Chapter 4
makes the point that the generic chaining (or of course some equivalent form
of it) is already required to really understand the irregularities occurring in
the distribution ofN points (Xi)i≤N independently and uniformly distributed
in the unit square. These irregularities are measured by the “cost” of pairing
(=matching) these points with N fixed points that are very uniformly spread,
for various notions of cost.

In Section 4.3 we investigate the situation where the cost of a matching is
measured by the average distance between paired points. We prove the result
of Ajtai, Komlós, Tusnády, that the expected cost of an optimal matching is
at most L

√
logN/

√
N where L is a number. In Section 4.4 we investigate the

situation where the cost of a matching is measured instead by the maximal
distance between paired points. We prove the theorem of Leighton and Shor
that the expected cost of a matching is at most L(logN)3/4/

√
N . The factor

1/
√
N is simply a scaling factor, but the fractional powers of log are indeed

fascinating, and all the more since as we shall prove later in Chapter 6 that
they are optimal.

In Section 4.2 we provide a general background on matchings, and we
show that one can often reduce the proof of a matching theorem to the proof
of a suitable bound for a quantity of the type

sup
f∈F

∣∣∣
∑

i≤N

(f(Xi)−
∫

fdλ)
∣∣∣

where F is a class of functions on the unit square and λ is Lebesgue’s measure.
That is, we have to bound a complicated random process. The main issue
is to control in the appropriate sense the size of the class F . For this we
parametrize this class of functions by a suitable ellipsoid of Hilbert space
using Fourier transforms.

This approach illustrates particularly well the benefits of an abstract point
of view: we are able to trace the mysterious fractional powers of log back to
the geometry of ellipsoids in Hilbert space. This is why we start the chapter
with an investigation of these ellipsoids in Section 4.1. The philosophy of
the main result, the Ellipsoid Theorem, is that an ellipsoid is in some sense
somewhat smaller than what one might think at first. This is due to the fact
that an ellipsoid is sufficiently convex, and that, somehow, it gets “thinner”
when one gets away from its center. The Ellipsoid Theorem is a special case of
a more general result (with the same proof) about the structure of sufficiently
convex bodies, one that will have important applications in Chapter 16.

With the exception of Section 4.1, the results of Chapter 4 are not con-
nected to any subsequent material before Chapter 14.



1.8 Trees and the Art of Lower Bounds 7

1.7 Bernoulli Processes

In Chapter 5 we investigate Bernoulli processes, where the individual random
variables Xt are linear combinations of independent random signs, a special
case of the general setting (1.1). Random signs are obviously important r.v.s,
and occur frequently in connection with “symmetrization procedures”, a very
useful tool. Each Bernoulli process is associated with a Gaussian process in
a canonical manner, when one replaces the random signs by independent
standard Gaussian r.v.s. The Bernoulli process has better tails than the cor-
responding Gaussian process (it is “subgaussian”) and is bounded whenever
the Gaussian process is bounded. There is however a completely different
reason for which a Bernoulli process might be bounded, namely that the
sum of the absolute values of the coefficients of the random signs remains
bounded independently of the index t. A natural question is then to decide
whether these two extreme situations are the only fundamental reasons why
a Bernoulli process can be bounded, in the sense that a suitable “mixture”
of them occurs in every bounded Bernoulli process. This was the “Bernoulli
Conjecture” (to be stated formally on page 130), which has been so brilliantly
solved by W. Bednorz and R. Lata�la. The proof of their fundamental result
occupies much of this chapter. Many of the previous ideas it builds upon will
be further developed in subsequent chapters.

In Section 5.2 we describe an efficient method to organize chaining argu-
ments for Bernoulli processes. This method is an essential step of the proof
of the Bednorz-Lata�la theorem, but it also turns out to be very useful in
practical situations, and in particular in the study of random Fourier series.

In Section 5.3 we present some fundamental facts about Bernoulli pro-
cesses, which are the building blocks of the proof of the Bednorz-Lata�la the-
orem.

A linear combination of independent random signs looks like a Gaussian
r.v. when the coefficients of the random signs are small. We can expect that a
Bernoulli process will look like a Gaussian process when these coefficients are
suitably small. The purpose of Section 5.4 is to make this idea precise. The
following sections then complete the proof of the Bednorz-Lata�la theorem.

1.8 Trees and the Art of Lower Bounds

We describe different notions of trees, and show how one can measure the
“size” of a metric space by the size of the largest trees it contains, in a
way which is equivalent to the measures of size introduced in Chapter 2.
This idea played an important part in the history of Gaussian processes. Its
appeal is mostly that trees are easy to visualize. Building a large tree in a
metric space is an efficient method to bound its size from below. We perform
such an explicit construction in the toy case of certain ellipsoids as a warm-
up. We then use similar ideas to prove (using also one of the main results
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of Chapter 5) that the upper bounds obtained in the matching problems of
Chapter 4 are sharp: we prove lower bounds of the same order as these upper
bounds.

1.9 Random Fourier Series and Trigonometric Sums, II

In order to demonstrate the efficiency of the chaining method of Section 5.2,
we return in this chapter to the study of random Fourier series, but now
without making any assumption of integrability on the random coefficients,
which we simply assumed to be independent symmetric r.v.s. This chapter
also develops one of the fundamental ideas of this work: many processes can
be exactly controlled, not by using one or two distances, but by using an entire
family of distances. With these tools, we are able to give in full generality
necessary and sufficient conditions for convergence of random Fourier series.
These conditions can be formulated in words by saying that convergence is
equivalent to the finiteness of (a proper generalization of) a certain “entropy
integral”. We then give examples of application of the abstract theorems to
the case of ordinary random Fourier series.

1.10 Processes Related to Gaussian Processes

It is natural to expect that our increased understanding of the properties
of Gaussian processes will also bring information about processes that are,
in various senses, related to Gaussian processes. Such was the case with the
Bernoulli processes in Chapter 5.

It turns out that p-stable processes, an important class of processes, are
conditionally Gaussian, and in Section 8.1 we use this property to provide
lower bounds for such processes. Although these bounds are in general very
far from being upper bounds, they are in a sense extremely accurate (in
certain situations, where there is “stationarity”, these lower bounds can be
reversed). We are able to obtain these bounds rather easily, even in the most
difficult case, the case p = 1. Essentially more general results are proved later
in Chapter 11 for infinitely divisible processes, but the proofs are considerably
simpler in the case of p-stable processes.

Another natural class of processes that are conditionally Gaussian are
order 2 Gaussian chaos (which are essentially second degree polynomials of
Gaussian random variables). It seems at present a hopelessly difficult task
to give lower and upper bounds of the same order for these processes, but
in Section 8.2 we obtain a number of results in the right direction. Chaos
processes are also very instructive because there exists other methods than
chaining to control them (a situation which we do not expect to occur for
processes defined as sums of a random series).
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In Section 8.3 we study the tails of a single multiple order Gaussian chaos,
and present a deep result of R. Lata�la which provides a rather complete
description of these tails.

1.11 Theory and Practice of Empirical Processes

Let us first hurry to insist that despite the title this chapter covers only a very
special (yet of fundamental importance) topic about empirical processes: how
to control the supremum of the empirical process over a class of functions.

The fundamental theoretical question in this direction is whether there
exists a “best possible” method to control this supremum at a given size of the
random sample. In Section 9.1 we offer a natural candidate for such a “best
possible” method, in the spirit of the Bednorz-Lata�la result of Chapter 5.
Whether this natural method is actually optimal is a major open problem
(Problem 9.1.3), which could well be difficult. We then demonstrate again the
power of the chaining scheme of Section 5.2 by providing a sharper version
of Ossiander’s bracketing theorem with a very simple proof.

Does meditating on the “theoretically best possible” way to control the
empirical process provide help for the “practical” matter of controlling em-
pirical processes under actual sets of conditions that occur naturally in ap-
plications of this theory? In order to convince the reader that this might well
be the case, we selected (in a very arbitrary manner) two deep recent results,
of which we present somewhat streamlined proofs: in Section 9.3, a recent
theorem of G. Paouris and S. Mendelson, and in Section 9.4 a recent theorem
of R. Adamczak, A.E. Litvak, A. Pajor and N. Tomczak-Jaegermann.

1.12 Partition Scheme for Families of Distances

As we already pointed out in Chapter 7 the description of the size of the tail of
a r.v. often requires an entire sequence of parameters, and for processes that
consist of such r.v.s, the natural underlying structure is not a metric space,
but a space equipped with a suitable family of distances. In Section 10.1 we
extend the tools of Section 2.7 to this setting.

In Section 10.2 we apply these tools to the situation of “canonical pro-
cesses” where the r.v.s Xt are linear combinations of independent copies of
symmetric r.v.s with density proportional to exp(−|x|α) where α ≥ 1 (and
to considerably more general situations as discovered by R. Lata�la). In these
situations, the size of the process can be completely described as a function
of the geometry of the index space, a far reaching extension of the Gaussian
case.



10 1. Philosophy and Overview of the Book

1.13 Infinitely Divisible Processes

We study these processes in a much more general setting than what main-
stream probability theory has yet investigated: we make no assumption of
stationarity of increments of any kind and our processes are actually indexed
by an abstract set. These processes are to Lévy processes what a general
Gaussian process is to Brownian motion.

Our main tool to study infinitely divisible processes is a representa-
tion theorem due to J. Rosinski, which makes them appear as condition-
ally Bernoulli processes. Unfortunately they do not seem to be conditionally
Gaussian. Since we do not understand Bernoulli processes as well as Gaussian
processes, it is technically challenging to use this fact. Bringing in the tools
of Chapter 5, for a large class of these processes, we are able to prove lower
bounds that extend those given in Section 8.1 for p-stable process. These
lower bounds are not upper bounds in general, but we succeed in showing in
a precise sense that they are upper bounds for “the part of boundness of the
process which is due to cancellation”. Thus, whatever bound might be true
for the “remainder of the process” owes nothing to cancellation. The results
are described in complete detail with all definitions in Section 11.2.

1.14 The Fundamental Conjectures

In Chapter 12 we outlay a long range research program. We believe that it
might well be true in considerable generality that for processes of the type
(1.1) (as was proved in special cases in Chapter 11) “chaining explains all the
part of the boundedness which is due to cancellation”, and in Section 12.3 we
state a precise conjecture to that effect. Even if this conjecture is true, there
would remain to describe the “part of the boundedness which owes nothing
to cancellation”, and for this part also we propose sweeping conjectures,
which, if true, would revolutionize our understanding. At the heuristic level,
the underlying idea of these conjectures is that ultimately, a bound for a
stochastic process always arises from the use of the ‘union bound’ P(∪nAn) ≤∑

n P(An) in a simple situation, the use of basic principles such as linearity
and positivity, or combinations of these.

1.15 Convergence of Orthogonal Series; Majorizing
Measures

The old problem of characterizing the sequences (am) such that for each
orthonormal sequence (ϕm) the series

∑
m≥1 amϕm converges a.s. has re-

cently been solved by A. Paszkiewicz. Using a more abstract point of view,
we present a very much simplified proof of his results (due essentially to
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W. Bednorz). This leads us to the question of discussing when a certain con-
dition on the “increments” of a process implies its boundedness. When the
increment condition is of “polynomial type”, this is more difficult than in the
case of Gaussian processes, and requires the notion of “majorizing measure”.
We present several elegant results of this theory, in their seemingly final form
recently obtained by W. Bednorz.

1.16 Matching Theorems II: Shor’s Matching Theorem

This chapter continues Chapter 4. We prove a deep improvement of the Ajtai,
Komlós, Tusnády theorem due to P. Shor. Unfortunately, due mostly to our
lack of geometrical understanding, the best conceivable matching theorem,
which would encompass this result as well as those of Chapter 4, and much
more, remains as a challenging problem, “the ultimate matching conjecture”
(a conjecture which is solved in the next chapter in dimension ≥ 3).

1.17 The Ultimate Matching Theorem in Dimension ≥ 3

In this case, which is easier than the case of dimension 2 (but still apparently
rather non-trivial), we are able to obtain the seemingly final result about
matchings, a strong version of “the ultimate matching conjecture”. There
are no more fractional powers of logN here, but in a random sample of N
points uniformly distributed in [0, 1]3, local irregularities occur at all scales
between N−1/3 and (logN)1/3N−1/3, and our result can be seen as a precise
global description of these irregularities. Strictly speaking the proof does not
use chaining, although it is in the same spirit, and it remains to crystallize
the abstract principle that might lay behind it.

1.18 Applications to Banach Space Theory

Chapter 16 gives applications to Banach space theory. The sections of this
Chapter are largely independent of each other, and the link between them is
mostly that they all reflect past interests of the author. The results of this
chapter do not use those of Chapter 10. In Section 16.1, we study the cotype
of operators from �∞N into a Banach space. In Section 16.2, we prove a com-
parison principle between Rademacher (=Bernoulli) and Gaussian averages
of vectors in a finite dimensional Banach space, and we use it to compute the
Rademacher cotype-2 of a finite dimensional space using only a few vectors.
In Section 16.3 we discover how to classify the elements of the unit ball of
L1 “according to the size of the level sets”. In Section 16.4 we explain, given
a Banach space E with an 1-unconditional basis (ei), how to “compute” the
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quantity E‖
∑

i giei‖ when gi are independent Gaussian r.v.s, a further vari-
ation on the fundamental theme of the interplay between the L1, L2 and L∞

norms. In Section 16.5 we study the norm of the restriction of an operator
from �qN to the subspace generated by a randomly chosen small proportion
of the coordinate vectors, and in Section 16.6 we use these results to ob-
tain a sharpened version of the celebrated results of J. Bourgain on the Λp

problem. In Section 16.7, given a uniformly bounded orthonormal system, we
study how large a subset we can find on the span of which the L2 and L1

norms are close to each other. In Section 16.8, given a k-dimensional subspace
of Lp for 1 < p < 2 we investigate for which values of N we can embed nearly
isometrically this subspace as a subspace of �pN . We prove that we may choose
N as small as about k log k(log log k)2. A recent proof by G. Schechtman of
a theorem of Y. Gordon concludes this chapter in Section 16.9.

1.19 Appendix B: Continuity

Most of the book is devoted to the task of bounding stochastic processes.
The connoisseur knows this is the hard work, and that once it is understood
it is a simple matter to study continuity. This appendix samples some results
in the direction of moduli of continuity, in particular for Gaussian processes.

Reference

1. Garsia, A.M., Rodemich, E., Rumsey, H.: A real variable lemma and the conti-
nuity of path of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578
(1970/1971)



2. Gaussian Processes and the Generic
Chaining

2.1 Overview

The overview of this chapter is given in Chapter 1, Section 1.4. More generally,
Section 1.n is the overview of Chapter n− 2.

2.2 The Generic Chaining

In this section we consider a metric space (T, d) and a process (Xt)t∈T that
satisfies the increment condition:

∀u > 0 , P(|Xs −Xt| ≥ u) ≤ 2 exp

(
− u2

2d(s, t)2

)
. (1.4)

In particular this is the case when (Xt)t∈T is a Gaussian process and d(s, t)2 =
E(Xs −Xt)

2. Unless explicitly specified otherwise (and even when we forget
to repeat it) we will always assume that the process is centered, i.e.

∀t ∈ T , EXt = 0 . (2.1)

We will measure the “size of the process (Xt)t∈T ” by the quantity
E supt∈T Xt. (The reader who is impatient to understand why this quan-
tity is a good measure of the “size of the process” can peek ahead to Lemma
2.2.1 below.)

A side issue (in particular when T is uncountable) is that what is meant
by the quantity E supt∈T Xt is not obvious. An efficient method is to define
this quantity by the following formula:

E sup
t∈T

Xt = sup
{
E sup

t∈F
Xt ; F ⊂ T , F finite

}
, (2.2)

where the right-hand side makes sense as soon as each r.v. Xt is integrable.
This will be the case in almost all the situations considered in this book. For
the next few dozens of pages, we make the effort to explain in every case how
to reduce the study of the supremum of the r.v.s under consideration to the
supremum of a finite family, until the energy available for this sterile exercise
runs out, see Section 1.2.

M. Talagrand, Upper and Lower Bounds for Stochastic Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
Modern Surveys in Mathematics 60, DOI 10.1007/978-3-642-54075-2 2,

© Springer-Verlag Berlin Heidelberg 2014
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Let us say that a process (Xt)t∈T is symmetric if it has the same law as
the process (−Xt)t∈T . Almost all the processes we shall consider are sym-
metric (although for some of our results this hypothesis is not necessary).
The following justifies using the quantity E supt Xt to measure “the size of a
symmetric process”.

Lemma 2.2.1. If the process (Xt)t∈T is symmetric then

E sup
s,t∈T

|Xs −Xt| = 2E sup
t∈T

Xt .

Proof. We note that

sup
s,t∈T

|Xs −Xt| = sup
s,t∈T

(Xs −Xt) = sup
s∈T

Xs + sup
t∈T

(−Xt) ,

and we take expectations. �

Exercise 2.2.2. Consider a symmetric process (Xt)t∈T . Given any t0 in T
prove that

E sup
t∈T

|Xt| ≤ 2E sup
t∈T

Xt + E|Xt0 | ≤ 3E sup
t∈T

|Xt| . (2.3)

Generally speaking, and unless mentioned otherwise, the exercises have
been designed to be easy. The author however never taught this material in a
classroom, so it might happen that some exercises are not that easy after all
for the beginner. Please do not be discouraged if this should be the case. (In
fact, as it would have taken supra-human dedication for the author to write
in detail all the solutions, there is no real warranty that each of the exercise
is really feasible or even correct.) The exercises have been designed to shed
some light on the material at hand, and to shake the reader out of her natural
laziness by inviting her to manipulate some simple objects. (Please note that
it is probably futile to sue me over the previous statement, since the reader
is referred as “she” through the entire book and not only in connection with
the word “laziness”.)

In this book, we often state inequalities about the supremum of a symmet-
ric process using the quantity E supt∈T Xt simply because this quantity looks
typographically more elegant than the equivalent quantity E sups,t∈T |Xs −
Xt|. Of course, it is not always enough to control the first moment of
sups,t∈T |Xs − Xt|. We also need to control the tails of this r.v. Emphasis
is given to the first moment simply because, as the reader will eventually
realize, this is the difficult part, and once this is achieved, control of higher
moments is often provided by the same arguments.

Our goal is to find bounds for E supt∈T Xt depending on the structure of
the metric space (T, d). We will assume that T is finite, which, as shown by
(2.2), does not decrease generality.

Given any t0 in T , the centering hypothesis (2.1) implies
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E sup
t∈T

Xt = E sup
t∈T

(Xt −Xt0) . (2.4)

The latter form has the advantage that we now seek estimates for the expec-
tation of the non-negative r.v. Y = supt∈T (Xt −Xt0). Then,

EY =

∫ ∞

0

P(Y > u) du . (2.5)

Thus it is natural to look for bounds of

P
(
sup
t∈T

(Xt −Xt0) ≥ u
)
. (2.6)

The first bound that comes to mind is the “union bound”

P
(
sup
t∈T

(Xt −Xt0) ≥ u
)
≤
∑

t∈T

P(Xt −Xt0 ≥ u) . (2.7)

It seems worthwhile to draw right away some consequences from this bound,
and to discuss at leisure a number of other simple, yet fundamental facts.
This will take a bit over three pages, after which we will come back to the
main story of bounding Y . Throughout this work, Δ(T ) denotes the diameter
of T ,

Δ(T ) = sup
t1,t2∈T

d(t1, t2) . (2.8)

When we need to make clear which distance we use in the definition of the
diameter, we will write Δ(T, d) rather than Δ(T ). Consequently (1.4) and
(2.7) imply

P
(
sup
t∈T

(Xt −Xt0) ≥ u
)
≤ 2 cardT exp

(
− u2

2Δ(T )2

)
. (2.9)

Let us now record a simple yet important computation, that will allow us to
use the information (2.9).

Lemma 2.2.3. Consider a r.v. Y ≥ 0 which satisfies

∀u > 0 , P(Y ≥ u) ≤ A exp
(
− u2

B2

)
(2.10)

for certain numbers A ≥ 2 and B > 0. Then

EY ≤ LB
√
logA . (2.11)

Here, as in the entire book, L denotes a universal constant. We make the
convention that this constant is not necessarily the same on each occur-
rence. This convention is very convenient, but it certainly needs to get used
to, as e.g. in the formula supx xy − Lx2 = y2/L. This convention should be
remembered at all times.
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When meeting an unknown notation such as this previous L, the reader
might try to look at the index, where some of the most common notation is
recorded.

Proof of Lemma 2.2.3. We use (2.5) and we observe that since P(Y ≥ u) ≤ 1,
then for any number u0 we have

EY =

∫ ∞

0

P(Y ≥ u)du =

∫ u0

0

P(Y ≥ u)du+

∫ ∞

u0

P(Y ≥ u)du

≤ u0 +

∫ ∞

u0

A exp
(
− u2

B2

)
du

≤ u0 +
1

u0

∫ ∞

u0

uA exp
(
− u2

B2

)
du

= u0 +
AB2

2u0
exp
(
− u2

0

B2

)
, (2.12)

and the choice of u0 = B
√
logA completes the proof. 
�

Combining (2.11) and (2.9) we obtain that (considering separately the
case where cardT = 1)

E sup
t∈T

Xt ≤ LΔ(T )
√

log cardT . (2.13)

The following special case is fundamental.

Lemma 2.2.4. If (gk)k≥1 are standard Gaussian r.v.s then

E sup
k≤N

gk ≤ L
√
logN . (2.14)

Exercise 2.2.5. (a) Prove that (2.14) holds as soon as the r.v.s gk are cen-
tered and satisfy

P(gk ≥ t) ≤ 2 exp
(
− t2

2

)
(2.15)

for t > 0.
(b) For N ≥ 2 construct N centered r.v.s (gk)k≤N satisfying (2.15), and
taking only the values 0,±

√
logN and for which E supk≤N gk ≥

√
logN/L.

(You are not yet asked to make these r.v.s independent.)
(c) After learning (2.16) below, solve (b) with the further requirement that
the r.v.s gk are independent. If this is too hard, look at Exercise 2.2.7, (b)
below.

This is taking us a bit ahead, but an equally fundamental fact is that when the
r.v.s (gk) are jointly Gaussian, and “significantly different from each other”
i.e. E(gk − g�)

2 ≥ a2 > 0 for k �= �, the bound (2.14) can be reversed, i.e.
E supk≤N gk ≥ a

√
logN/L, a fact known as Sudakov’s minoration. Sudakov’s

minoration is a non-trivial fact, but it should be really helpful to solve Exer-
cise 2.2.7 below. Before that let us point out a simple fact, that will be used
many times.
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Exercise 2.2.6. Consider independent events (Ak)k≥1. Prove that

P
( ⋃

k≤N

Ak

)
≥ 1− exp

(
−
∑

k≤N

P(Ak)
)
. (2.16)

(Hint: P(∪k≤NAk) = 1−
∏

k≤N (1− P(Ak)).)

In words: independent events such that the sum of their probabilities is small
are basically disjoint.

Exercise 2.2.7. (a) Consider independent r.v.s Yk ≥ 0 and u > 0 with
∑

k≤N

P(Yk ≥ u) ≥ 1 . (2.17)

Prove that
E sup

k≤N
Yk ≥

u

L
.

(Hint: use (2.16) to prove that P(supk≤N Yk ≥ u) ≥ 1/L.)
(b) We assume (2.17), but now Yk need not be ≥ 0. Prove that

E sup
k≤N

Yk ≥
u

L
− E|Y1| .

(Hint: observe that for each event Ω we have E1Ω supk Yk ≥ −E|Y1|.)
(c) Prove that if (gk)k≥1 are independent standard Gaussian r.v.s then
E supk≤N gk ≥

√
logN/L.

Before we go back to our main story, it might be worth for the reader to
consider in detail consequences of an “exponential decay of tails” such as in
(2.10). This is the point of the next exercise.

Exercise 2.2.8. (a) Assume that for a certain B > 0 the r.v. Y ≥ 0 satisfies

∀u > 0 , P(Y ≥ u) ≤ 2 exp
(
− u

B

)
. (2.18)

Prove that

E exp
( Y

2B

)
≤ L . (2.19)

Prove that for a > 0 one has (x/a)a ≤ expx. Use this for a = p and x = Y/2B
to deduce from (2.19) that for p ≥ 1 one has

(EY p)1/p ≤ LpB . (2.20)

(b) Assuming now that for a certain B > 0 one has

∀u > 0 , P(Y ≥ u) ≤ 2 exp
(
− u2

B2

)
, (2.21)

prove similarly (or deduce from (a)) that E exp(Y 2/2B2) ≤ L and that for
p ≥ 1 one has

(EY p)1/p ≤ LB
√
p . (2.22)
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In words, (2.20) states that “as p increases, the Lp norm of an exponentially
integrable r.v. does not grow faster than p,” and (2.22) asserts that if the
square of the r.v. is exponentially integrable, then its Lp norm does not grow
faster than

√
p. (These two statements are closely related.) More generally

it is very classical to relate the size of the tails of a r.v. with the rate of
growth of its Lp norm. This is not explicitly used in the sequel, but is good
to know as background information. As the following shows, (2.22) provides
the correct rate of growth in the case of Gaussian r.v.s.

Exercise 2.2.9. If g is a standard Gaussian r.v. it follows from (2.22) that
for p ≥ 1 one has (E|g|p)1/p ≤ L

√
p. Prove one has also

(E|g|p)1/p ≥
√
p

L
. (2.23)

One knows how to compute exactly E|g|p, from which one can deduce (2.23).
You are however asked to provide a proof in the spirit of this work by deducing
(2.23) solely from the information that, say, for u > 0 we have (choosing on
purpose crude constants) P(|g| ≥ u) ≥ exp(−u2/3)/L.

You will find basically no exact computations in this book. The aim is
different. We study quantities which are far too complicated to be computed
exactly, and we try to bound them from above, and sometimes from below
by simpler quantities with as little a gap as possible between the upper and
the lower bounds, the gap being ideally only a multiplicative constant.

We go back to our main story. The bound (2.13) will be effective if the
variables Xt −Xt0 are rather uncorrelated (and if there are not too many of
them). But it will be a disaster if many of the variables (Xt)t∈T are nearly
identical. Thus it seems a good idea to gather those variables Xt which are
nearly identical. To do this, we consider a subset T1 of T , and for t in T we
consider a point π1(t) in T1, which we think of as a (first) approximation of
t. The elements of T to which corresponds the same point π1(t) are, at this
level of approximation, considered as identical. We then write

Xt −Xt0 = Xt −Xπ1(t) +Xπ1(t) −Xt0 . (2.24)

The idea is that it will be effective to use (2.7) for the variables Xπ1(t)−Xt0 ,
because there are not too many of them, and they are rather different (at
least in some global sense and if we have done a good job at finding π1(t)). On
the other hand, since π1(t) is an approximation of t, the variables Xt−Xπ1(t)

are “smaller” than the original variables Xt − Xt0 , so that their supremum
should be easier to handle. The procedure will then be iterated.

Let us set up the general procedure. For n ≥ 0, we consider a subset Tn

of T , and for t ∈ T we consider πn(t) in Tn. (The idea is of course that the
points πn(t) are successive approximations of t.) We assume that T0 consists
of a single element t0, so that π0(t) = t0 for each t in T . The fundamental
relation is
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Xt −Xt0 =
∑

n≥1

(
Xπn(t) −Xπn−1(t)

)
, (2.25)

which holds provided we arrange that πn(t) = t for n large enough, in which
case the series is actually a finite sum. Relation (2.25) decomposes the incre-
ments of the process Xt −Xt0 along the “chain” (πn(t))n≥0 (and this is why
this method is called “chaining”).

It will be convenient to control the set Tn through its cardinality, with
the condition

cardTn ≤ Nn (2.26)

where
N0 = 1 ; Nn = 22

n

if n ≥ 1 . (2.27)

The notation (2.27) will be used throughout the book. The reader who has
studied Appendix A will observe that the procedure to control Tn is rather
different here. This is a crucial point of the generic chaining method.

It is good to notice right away that
√
logNn is about 2n/2, which explains

the ubiquity of this latter quantity. The occurrence of the function
√
log x

itself is related to the fact that in some sense this is the inverse of the function
exp(−x2) that governs the size of the tails of a Gaussian r.v. Let us also
observe the fundamental inequality

N2
n ≤ Nn+1 ,

which makes it very convenient to work with this sequence.
Since πn(t) approximates t, it is natural to assume that

d(t, πn(t)) = d(t, Tn) = inf
s∈Tn

d(t, s) . (2.28)

For u > 0, (1.4) implies

P
(
|Xπn(t) −Xπn−1(t)| ≥ u2n/2d(πn(t), πn−1(t))

)
≤ 2 exp(−u22n−1) .

The number of possible pairs (πn(t), πn−1(t)) is bounded by

cardTn · cardTn−1 ≤ NnNn−1 ≤ Nn+1 = 22
n+1

.

Thus, if we denote by Ωu the event defined by

∀n ≥ 1 , ∀t , |Xπn(t) −Xπn−1(t)| ≤ u2n/2d(πn(t), πn−1(t)) , (2.29)

we obtain
P(Ωc

u) ≤ p(u) :=
∑

n≥1

2 · 22
n+1

exp(−u22n−1) . (2.30)

Here again, at the crucial step, we have used the “union bound”: indeed we
bound the probability that one of the events (2.29) fails by the sum of the
probabilities that the individual events fail. When Ωu occurs, (2.25) yields
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|Xt −Xt0 | ≤ u
∑

n≥1

2n/2d(πn(t), πn−1(t)) ,

so that
sup
t∈T

|Xt −Xt0 | ≤ uS

where
S := sup

t∈T

∑

n≥1

2n/2d(πn(t), πn−1(t)) .

Thus
P
(
sup
t∈T

|Xt −Xt0 | > uS
)
≤ p(u) .

For n ≥ 1 and u ≥ 3 we have

u22n−1 ≥ u2

2
+ u22n−2 ≥ u2

2
+ 2n+1 ,

from which it follows that

p(u) ≤ L exp
(
−u2

2

)
.

We observe here that since p(u) ≤ 1 the previous inequality holds not only
for u ≥ 3 but also for u > 0. (This type or argument will be used repeatedly.)
Therefore

P
(
sup
t∈T

|Xt −Xt0 | > uS
)
≤ L exp

(
− u2

2

)
. (2.31)

In particular (2.31) implies

E sup
t∈T

Xt ≤ LS .

The triangle inequality and (2.5) yield

d(πn(t), πn−1(t)) ≤ d(t, πn(t)) + d(t, πn−1(t))

≤ d(t, Tn) + d(t, Tn−1) ,

so that S ≤ L supt∈T

∑
n≥0 2

n/2d(t, Tn), and we have proved the fundamental
bound

E sup
t∈T

Xt ≤ L sup
t∈T

∑

n≥0

2n/2d(t, Tn) . (2.32)

Now, how do we construct the sets Tn? It is obvious that we should try to
make the right-hand side of (2.32) small, but this is obvious only because we
have used an approach which naturally leads to this bound. The “traditional
chaining method” (as used e.g. in Appendix A) chooses them so that

sup
t∈T

d(t, Tn)
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is as small as possible for cardTn ≤ Nn, where of course

d(t, Tn) = inf
s∈Tn

d(t, s) . (2.33)

Thus we define
en(T ) = en(T, d) = inf sup

t
d(t, Tn) , (2.34)

where the infimum is taken over all subsets Tn of T with cardTn ≤ Nn. (Since
here T is finite, the infimum is actually a minimum.) We call the numbers
en(T ) the entropy numbers. This definition is convenient for our purposes.
It is unfortunate that it is not consistent with the conventions of Operator
Theory, which uses e2n to denote what we call en, but we can’t help it if
Operator Theory gets it wrong. When T is infinite, the numbers en(T ) are
also defined by (2.34) but are not always finite (e.g. when T = R).

It is good to observe that (since N0 = 1) ,

Δ(T )

2
≤ e0(T ) ≤ Δ(T ) . (2.35)

Recalling that T is finite, let us then choose for each n a subset Tn of T with
cardTn ≤ Nn and en(T ) = supt∈T d(t, Tn). Since d(t, Tn) ≤ en(T ) for each t,
(2.32) implies the following.

Proposition 2.2.10 (Dudley’s entropy bound [2]). Under the incre-
ment condition (1.4), we have

E sup
t∈T

Xt ≤ L
∑

n≥0

2n/2en(T ) . (2.36)

We proved this bound only when T is finite, but using (2.2) it also extends
to the case where T is infinite, as is shown by the following easy fact.

Lemma 2.2.11. If U is a subset of T , we have en(U) ≤ 2en(T ).

Proof. Indeed, if a > en(T ), by definition one can cover T by Nn balls (for
the distance d) with radius a, and the intersections of these balls with U are
of diameter ≤ 2a, so U can be covered by Nn balls in U with radius 2a. �

The reader already familiar with Dudley’s entropy bound might not rec-
ognize it. Usually this bound is formulated as in (1.5) using covering numbers.
The covering number N(T, d, ε) is defined to be the smallest integer N such
that there is a subset F of T , with cardF ≤ N and

∀t ∈ T , d(t, F ) ≤ ε .

The covering numbers relate to the entropy numbers by the formula

en(T ) = inf{ε ; N(T, d, ε) ≤ Nn} .
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Indeed, it is obvious by definition of en(T ) that for ε > en(T ), we have
N(T, d, ε) ≤ Nn, and that if N(T, d, ε) ≤ Nn we have en(T ) ≤ ε. Conse-
quently,

ε < en(T ) ⇒ N(T, d, ε) > Nn

⇒ N(T, d, ε) ≥ 1 +Nn .

Therefore

√
log(1 +Nn)(en(T )− en+1(T )) ≤

∫ en(T )

en+1(T )

√
logN(T, d, ε) dε .

Since log(1 +Nn) ≥ 2n log 2 for n ≥ 0, summation over n ≥ 0 yields

√
log 2

∑

n≥0

2n/2(en(T )− en+1(T )) ≤
∫ e0(T )

0

√
logN(T, d, ε) dε . (2.37)

Now,

∑

n≥0

2n/2(en(T )− en+1(T )) =
∑

n≥0

2n/2en(T )−
∑

n≥1

2(n−1)/2en(T )

≥
(
1− 1√

2

)∑

n≥0

2n/2en(T ) ,

so (2.37) yields

∑

n≥0

2n/2en(T ) ≤ L

∫ ∞

0

√
logN(T, d, ε) dε .

Hence Dudley’s bound now appears in the familiar form

E sup
t∈T

Xt ≤ L

∫ ∞

0

√
logN(T, d, ε) dε . (2.38)

Of course, since log 1 = 0, the integral takes place in fact over 0 ≤ ε ≤ Δ(T ).
The right-hand side is often called Dudley’s entropy integral.

Exercise 2.2.12. Prove that
∫ ∞

0

√
logN(T, d, ε) dε ≤ L

∑

n≥0

2n/2en(T ) ,

showing that (2.36) is not an improvement over (2.38).

Exercise 2.2.13. Assume that for each ε > 0 we have logN(t, d, ε) ≤
(A/ε)α. Prove that en(T ) ≤ K(α)A2−n/α.
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Here of course K(α) is a number depending only on α. This, and similar
notation are used throughout the book. It is understood that such numbers
need not be the same on every occurrence and it would help to remember
this at all times. The difference between the notations K and L is that L is
a universal constant, i.e. a number that does not depend on anything, while
K might depend on some parameters, such as α here.

How does one estimate covering numbers (or, equivalently, entropy num-
bers)? The next exercise introduces the reader to “volume estimates”, a sim-
ple yet fundamental method for this purpose. It deserves to be fully under-
stood. If this exercise is too hard, you can find all the details below in the
proof of Lemma 2.5.5.

Exercise 2.2.14. (a) If (T, d) is a metric space, define the packing number
N∗(T, d, ε) as the largest integerN such that T containsN points with mutual
distances ≥ ε. Prove that N(T, d, ε) ≤ N∗(T, d, ε). Prove that if ε′ > 2ε then
N∗(T, d, ε′) ≤ N(T, d, ε).
(b) Let us denote by d the Euclidean distance in R

m, and by B the unit
Euclidean ball of center 0. Let us denote by Vol(A) them-dimensional volume
of a subset A of Rm. By comparing volumes, prove that for any subset A of
R

m,

N(A, d, ε) ≥ Vol(A)

Vol(εB)
(2.39)

and

N(A, d, 2ε) ≤ N∗(A, d, 2ε) ≤ Vol(A+ εB)

Vol(εB)
. (2.40)

(c)Conclude that

(
1

ε

)m

≤ N(B, d, ε) ≤
(
2 + ε

ε

)m

. (2.41)

(d) Use (c) to find estimates of en(B) for the correct order for each value of n.
(Hint: en(B) is about min(1, 2−2n/m). This decreases very fast as n increases.)
Estimate Dudley’s bound for B provided with the Euclidean distance.
(e) Use (c) to prove that if T is a subset of Rm and if n0 is any integer such
that m2−n0 ≤ 1 then for n > n0 one has en(T ) ≤ L2−2n/2men0(T ). (Hint:
cover T by Nn0 balls of radius 2en0(T ) and cover each of these by balls of
smaller radius using (c).)
(f) This part provides a generalization of (2.39) and (2.40) to a more abstract
setting, but with the same proofs. Consider a metric space (T, d) and a pos-
itive measure μ on T such all balls of a given radius have the same measure,
μ(B(t, ε)) = ϕ(ε) for each ε > 0 and each t ∈ T . For a subset A of T and
ε > 0 let Aε = {t ∈ T ; d(t, A) ≤ ε}, where d(t, A) = infs∈A d(t, s). Prove that

μ(A)

ϕ(2ε)
≤ N(A, d, 2ε) ≤ μ(Aε)

ϕ(ε)
.
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There are many simple situations where Dudley’s bound is not of the
correct order. Although this takes us a bit ahead, we give such an example in
the next exercise. There the set T is particularly appealing: it is a simplex in
R

m. Another classical example which is in a sense canonical occurs on page
44. Yet other examples based on fundamental geometry (ellipsoids in R

m)
are explained in Section 2.5.

Exercise 2.2.15. Consider an integer m and an i.i.d. standard Gaussian
sequence (gi)i≤m. For t = (ti)i≤m, let Xt =

∑
i≤m tigi. This is called the

canonical Gaussian process on R
m. Its associated distance is the Euclidean

distance on R
m. It will be much used later. Consider the set

T =
{
(ti)i≤m ; ti ≥ 0 ,

∑

i≤m

ti = 1
}
, (2.42)

the convex hull of the canonical basis. By (2.14) we have E supt∈T Xt =
E supi≤m gi ≤ L

√
logm. Prove that however the right-hand side of (2.36) is

≥ (logm)3/2/L. (Hint: For an integer k ≤ m consider the subset Tk of T
consisting of sequences t = (ti)i≤m ∈ T for which ti ∈ {0, 1/k}. Using part
(f) of Exercise 2.2.14 with T = A = Tk and μ the counting measure prove
that logN(Tk, d, 1/(L

√
k)) ≥ k log(em/k)/L and conclude. You need to be

fluent with Stirling’s formula to succeed.) Thus in this case Dudley’s bound
is off by a factor about logm. Exercise 2.3.4 below will show that in R

m the
situation cannot be worse than this.

The bound (2.32) seems to be genuinely better than the bound (2.36)
because when going from (2.32) to (2.36) we have used the somewhat brutal
inequality

sup
t∈T

∑

n≥0

2n/2d(t, Tn) ≤
∑

n≥0

2n/2 sup
t∈T

d(t, Tn) .

The method leading to the bound (2.32) is probably the most important
idea of this work. Of course the fact that it appears now so naturally does
not reflect the history of the subject, but rather that the proper approach
is being used. When using this bound, we will choose the sets Tn in order
to minimize the right-hand side of (2.32) instead of choosing them as in
(2.34). The true importance of this procedure is that as will be demonstrated
later, this provides essentially the best possible bound for E supt∈T Xt. To
understand that matters are not trivial, the reader should try, in the situation
of Exercise 2.2.15, to find sets Tn such that the right-hand side of (2.32) is
of the correct order

√
logm. It would probably be quite an athletic feat to

succeed at this stage, but the reader is encouraged to keep this question in
mind as her understanding deepens.

The next exercise provides a simple (and somewhat “extremal”) situation
showing that (2.32) is an actual improvement over (2.36).
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Exercise 2.2.16. (a) Consider a finite metric space (T, d). Assume that it
contains a point t0 with the property that for n ≥ 0 we have card(T \
B(t0, 2

−n/2)) ≤ Nn−1. Prove that T contains sets Tn with cardTn ≤ Nn and
supt∈T

∑
n≥0 2

n/2d(t, Tn) ≤ L. (Hint: Tn = {t0} ∪ {t ∈ T ; d(t, t0) > 2−n/2}.)
(b) Given an integer s ≥ 10, construct a finite metric space (T, d) with
the above property, such that cardT ≤ Ns and that en(T ) ≥ 2−n/2/L for
1 ≤ n ≤ s−1, so that Dudley’s integral is of order s. (Hint: this might be hard
if you really never though about metric spaces. Try then a set of the type
T = {a�f�; � ≤ M} where a� > 0 is a number and (f�)�≤M is the canonical
basis of RM .)

It turns out that the idea behind the bound (2.32) admits a technically
more convenient formulation.

Definition 2.2.17. Given a set T an admissible sequence is an increasing
sequence (An) of partitions of T such that cardAn ≤ Nn, i.e. cardA0 = 1
and cardAn ≤ 22

n

for n ≥ 1.

By an increasing sequence of partitions we mean that every set of An+1 is
contained in a set of An. Throughout the book we denote by An(t) the unique
element of An which contains t. The double exponential in the definition of
(2.27) of Nn occurs simply since for our purposes the proper measure of the
“size” of a partition A is log cardA. This double exponential ensures that
“the size of the partition An doubles at every step”. This offers a number of
technical advantages which will become clear gradually.

Theorem 2.2.18 (The generic chaining bound). Under the increment
condition (1.4) (and if EXt = 0 for each t) then for each admissible sequence
(An) we have

E sup
t∈T

Xt ≤ L sup
t∈T

∑

n≥0

2n/2Δ(An(t)) . (2.43)

Here of course, as always, Δ(An(t)) denotes the diameter of An(t) for d. One
could think that (2.43) could be much worse than (2.32), but is will turn out
that this is not the case when the sequence (An) is appropriately chosen.

Proof. We may assume T to be finite. We construct a subset Tn of T by
taking exactly one point in each set A of An. Then for t ∈ T and n ≥ 0, we
have d(t, Tn) ≤ Δ(An(t)) and the result follows from (2.32). �

Definition 2.2.19. Given α > 0, and a metric space (T, d) (that need not
be finite) we define

γα(T, d) = inf sup
t∈T

∑

n≥0

2n/αΔ(An(t)) ,

where the infimum is taken over all admissible sequences.

It is useful to observe that since A0(t) = T we have γα(T, d) ≥ Δ(T ).
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Exercise 2.2.20. (a) Prove that if d ≤ d′ then γ2(T, d) ≤ γ2(T, d
′) .

(b) More generally prove that if d ≤ Bd′ then γ2(T, d) ≤ Bγ2(T, d
′).

Exercise 2.2.21. (a) If T is finite, prove that γ2(T, d) ≤ LΔ(T )
√
log cardT .

(Hint: Ensure that Δ(An(t)) = 0 if Nn ≥ cardT .)
(b) Prove that for n ≥ 0 we have

2n/2en(T ) ≤ Lγ2(T, d) . (2.44)

(Hint: observe that 2n/2 max{Δ(A);A ∈ An} ≤ supt∈T

∑
n≥0 2

n/2Δ(An(t)).)
(c) Prove that, equivalently, for ε > 0 we have

ε
√
logN(T, d, ε) ≤ Lγ2(T, d) .

The reader should compare (2.44) with Corollary 2.3.2 below.

Combining Theorem 2.2.18 with Definition 2.2.19 yields

Theorem 2.2.22. Under (1.4) and (2.1) we have

E sup
t∈T

Xt ≤ Lγ2(T, d) . (2.45)

Of course to make (2.45) of interest we must be able to control γ2(T, d),
i.e. we must learn how to construct admissible sequences, a topic we shall
first address in Section 2.3.

Let us also point out, recalling (2.31), and observing that

|Xs −Xt| ≤ |Xs −Xt0 |+ |Xt −Xt0 | , (2.46)

we have actually proved

P
(
sup
s,t∈T

|Xs −Xt| ≥ Luγ2(T, d)
)
≤ 2 exp(−u2) . (2.47)

There is no reason other than the author’s fancy to feature the phantom
coefficient 1 in the exponent of the right-hand side, but it might be good
at this stage for the reader to write every detail on how this is deduced
from (2.31). The different exponents in (2.31) and (2.47) are of course made
possible by the fact that the constant L is not the same in these inequalities.

We note that (2.47) implies a lot more than (2.45). Indeed, for each p ≥ 1,
using (2.22)

E
(
sup
s,t
|Xs −Xt|

)p ≤ K(p)γ2(T, d)
p , (2.48)

and in particular

E
(
sup
s,t
|Xs −Xt|

)2 ≤ Lγ2(T, d)
2 . (2.49)

One of the ideas underlying Definition 2.2.19 is that partitions of T are re-
ally handy. For example, given a partition B of T whose elements are “small”
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for a certain distance d1 and a partition C whose elements are “small” for
another distance d2, then the elements of the partition generated by B and
C, i.e. the partition which consists of the sets B∩C for B ∈ B and C ∈ C, are
“small” for both d1 and d2. This is illustrated in the proof of the following
theorem, which applies to processes with a weaker tail condition than (1.4).
This theorem will be used many times (the reason being that a classical in-
equality of Bernstein naturally produces tail conditions such as in (2.50)).

Theorem 2.2.23. Consider a set T provided with two distances d1 and d2.
Consider a centered process (Xt)t∈T which satisfies

∀s, t ∈ T , ∀u > 0 ,

P(|Xs −Xt| ≥ u) ≤ 2 exp

(
−min

(
u2

d2(s, t)2
,

u

d1(s, t)

))
. (2.50)

Then
E sup

s,t∈T
|Xs −Xt| ≤ L(γ1(T, d1) + γ2(T, d2)) . (2.51)

This theorem will be applied when d2 is the �2 distance and d1 is the �∞
distance (but it sounds funny, when considering two distances, to call them
d2 and d∞).

Proof. We denote by Δj(A) the diameter of the set A for dj . We consider an
admissible sequence (Bn)n≥0 such that

∀t ∈ T ,
∑

n≥0

2nΔ1(Bn(t)) ≤ 2γ1(T, d1) (2.52)

and an admissible sequence (Cn)n≥0 such that

∀t ∈ T ,
∑

n≥0

2n/2Δ2(Cn(t)) ≤ 2γ2(T, d2) . (2.53)

Of course here Bn(t) is the unique element of Bn that contains t (etc.). We
define partitions An of T as follows. We set A0 = {T}, and, for n ≥ 1, we
define An as the partition generated by Bn−1 and Cn−1, i.e. the partition that
consists of the sets B ∩ C for B ∈ Bn−1 and C ∈ Cn−1. Thus

cardAn ≤ N2
n−1 ≤ Nn ,

and the sequence (An) is admissible. (Let us repeat here that the fundamental
inequality N2

n ≤ Nn+1 is the reason why it is so convenient to work with the
sequence Nn.) For each n ≥ 0 let us consider a set Tn that intersects each
element of An in exactly one point, and for t ∈ T let us denote by πn(t) the
element of Tn that belongs to An(t). To use (2.50) we observe that for v > 0
it implies
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P(|Xs −Xt| ≥ vd1(s, t) +
√
vd2(s, t)) ≤ 2 exp(−v) ,

and thus, given u ≥ 1, we have, since u ≥
√
u,

P
(
|Xπn(t) −Xπn−1(t)| ≥ u

(
2nd1(πn(t), πn−1(t)) + 2n/2d2(πn(t), πn−1(t))

))

≤ 2 exp(−u2n) , (2.54)

so that, proceeding as in (2.30), with probability ≥ 1− L exp(−u) we have

∀n , ∀t , |Xπn(t) −Xπn−1(t)| ≤ u
(
2nd1(πn(t), πn−1(t))

+ 2n/2d2(πn(t), πn−1(t))
)
. (2.55)

Now, under (2.55) we get

sup
t∈T

|Xt −Xt0 | ≤ u sup
t∈T

∑

n≥1

(
2nd1(πn(t), πn−1(t)) + 2n/2d2(πn(t), πn−1(t))

)
.

When n ≥ 2 we have πn(t), πn−1(t) ∈ An−1(t) ⊂ Bn−2(t), so that

d1(πn(t), πn−1(t)) ≤ Δ1(Bn−2(t)) .

Hence, since d1(π1(t), π0(t)) ≤ Δ1(B0(t)) = Δ1(T ), using (2.52) in the last
inequality, (and remembering that the value of L need not be the same on
each occurrence)

∑

n≥1

2nd1(πn(t), πn−1(t)) ≤ L
∑

n≥0

2nΔ1(Bn(t)) ≤ 2Lγ1(T, d) = Lγ1(T, d) .

Proceeding similarly for d2 shows that under (2.55) we obtain

sup
s,t∈T

|Xt −Xt0 | ≤ Lu(γ1(T, d1) + γ2(T, d2)) ,

and therefore using (2.46),

P
(
sup
s,t∈T

|Xs −Xt| ≥ Lu(γ1(T, d1) + γ2(T, d2))
)
≤ L exp(−u) , (2.56)

which using (2.5) implies the result. 
�

Exercise 2.2.24. Consider a space T equipped with two different distances
d1 and d2. Prove that

γ2(T, d1 + d2) ≤ L(γ2(T, d1) + γ2(T, d2)) . (2.57)

(Hint: given an admissible sequence of partitions An (resp. Bn) which be-
haves well for d1 (resp. d2) consider as in the beginning of the proof of The-
orem 2.2.23 the partitions generated by An and Bn.)
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Exercise 2.2.25 (R. Lata�la, S. Mendelson). Consider a process (Xt)t∈T

and for a subset A of T and n ≥ 0 let

Δn(A) = sup
s,t∈A

(E|Xs −Xt|2
n

)2
−n

.

Consider an admissible sequence of partitions (An)n≥0.
(a) Prove that

E sup
s,t∈T

|Xs −Xt| ≤ sup
t∈T

∑

n≥0

Δn(An(t)) .

(Hint: Use chaining and (A.11) for ϕ(x) = x2n .)
(b) Explain why this result implies Theorem 2.2.23. (Hint: Use Exercise 2.2.8.)

The following exercise assumes that you are familiar with the contents of
Appendix B. It develops the theme of “chaining with varying distances” of
Exercise 2.2.25 in a different direction. Variations on this idea will turn out
later to be fundamental.

Exercise 2.2.26. Assume that for n ≥ 0 we are given a distance dn on T
and a convex function ϕn with ϕn(0) = 0, ϕn(x) = ϕn(−x) ≥ 0. Assume
that

∀ s, t ∈ T , Eϕn

(Xs −Xt

dn(s, t)

)
≤ 1 .

Consider a sequence εn > 0 and assume that N(T, d0, ε0) = 1. Prove that

E sup
s,t∈T

|Xs −Xt| ≤
∑

n≥0

εnϕ
−1
n (N(T, dn, εn)) .

Prove that this implies Theorem B.2.3. (Hint: simple modification of the
argument of Theorem B.2.3.)

We now prove some more specialized results, which may be skipped at first
reading. This is all the more the case since for many processes of importance
the machinery of “concentration of measure” allows one to find very compe-
tent bounds for the quantity P(| supt∈T Xt − E supt∈T Xt| ≥ u). For example
in the case of Gaussian processes, (2.58) below is a consequence of (2.96)
and (2.45). The point of (2.58) is that it improves on (2.47) using only the
increment condition (1.4).

Theorem 2.2.27. If the process (Xt) satisfies (1.4) then for u > 0 one has

P
(

sup
s,t∈T

|Xs −Xt| ≥ L(γ2(T, d) + uΔ(T ))
)
≤ L exp(−u2) . (2.58)
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Proof. This is one of a very few instances where one must use some care when
using the generic chaining. Consider an admissible sequence (An) of partitions
with supt∈T

∑
n≥0 2

n/2Δ(An(t)) ≤ 2γ2(T, d) and for each n consider a set Tn

with card Tn ≤ Nn and such that every element A of An meets Tn. Let
Un = ∪q≤nTq, so that U0 = T0 and cardUn ≤ 2Nn, and the sequence (Un)
increases. For u > 0 consider the event Ω(u) given by

∀n ≥ 1 , ∀ s, t ∈ Un , |Xs −Xt| ≤ 2(2n/2 + u)d(s, t) , (2.59)

so that (somewhat crudely)

P(Ωc(u)) ≤ 2
∑

n≥1

(cardUn)
2 exp(−2(2n + u2)) ≤ L exp(−2u2) . (2.60)

Consider now t ∈ T . We define by induction over q ≥ 0 integers n(t, q) as
follows. We start with n(t, 0) = 0, and for q ≥ 1 we define

n(t, q) = inf
{
n ; n ≥ n(t, q − 1) ; d(t, Un) ≤

1

2
d(t, Un(t,q−1))

}
. (2.61)

We then consider πq(t) ∈ Un(t,q) with d(t, πq(t)) = d(t, Un(t,q)). Thus, by
induction, and denoting by t0 the unique element of T0 = U0, for q ≥ 0, it
holds

d(t, πq(t)) ≤ 2−qd(t, t0) ≤ 2−qΔ(T ) . (2.62)

Also, when Ω(u) occurs, using (2.59) for n = n(t, q), and since πq(t) ∈ Un

and πq−1(t) ∈ Un(t,q−1) ⊂ Un,

|Xπq(t) −Xπq−1(t)| ≤ 2(2n(t,q)/2 + u)d(πq(t), πq−1(t)) .

Assuming that Ω(u) occurs, we thus obtain

|Xt −Xt0 | ≤
∑

q≥1

|Xπq(t) −Xπq−1(t)|

≤
∑

q≥1

2(2n(t,q)/2 + u)d(πq(t), πq−1(t))

≤
∑

q≥1

2(2n(t,q)/2 + u)d(t, πq(t))

+
∑

q≥1

2(2n(t,q)/2 + u)d(t, πq−1(t)) . (2.63)

We now control the four summations on the right-hand side. First,

∑

q≥1

2n(t,q)/2d(t, πq(t)) ≤
∑

q≥1

2n(t,q)/2d(t, Tn(t,q))

≤
∑

n≥0

2n/2d(t, Tn) ≤ 2γ2(T, d) ,
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since by definition of n(t, q) we have n(t, q) > n(t, q−1) unless d(t, Tn(t,q−1)) =
0. Now, the definition of n(t, q) implies

d(t, πq−1(t)) = d(t, Un(t,q−1)) ≤ 2d(t, Un(t,q)−1) ,

so that
∑

q≥1

2n(t,q)/2d(t, πq−1(t)) ≤ 2
∑

q≥1

2n(t,q)/2d(t, Tn(t,q)−1) ,

and as above this is ≤ Lγ2(T, d). Next, (2.62) implies
∑

q≥1 d(πq(t), t) ≤
2Δ(T ) and

∑
q≥1 d(πq−1(t), t) ≤ 2Δ(T ). In summary, when Ω(u) occurs, we

have |Xt −Xt0 | ≤ L(γ2(T, d) + uΔ(T )). 
�
One idea underlying the proof (and in particular the definition (2.61) of
n(t, q)) is that for an efficient chaining the distance d(πn(t), πn+1(t)) decreases
geometrically. In Chapter 15 we shall later see situations where this is not
the case.

We will at times need the following more precise version of (2.56), in the
spirit of Theorem 2.2.27.

Theorem 2.2.28. Under the conditions of Theorem 2.2.23, for all values
u1, u2 > 0 we have

P

(
sup
s,t∈T

|Xs −Xt| ≥ L
(
γ1(T, d1) + γ2(T, d2) + u1D1 + u2D2

))

≤ L exp(−min(u2
2, u1)) , (2.64)

where for j = 1, 2 we set Dj =
∑

n≥0 en(T, dj).

We observe from (2.44) that en(T, d2) ≤ L2−n/2γ2(T, d2) so that by sum-
mation D2 ≤ Lγ2(T, d2) and similarly for D1. Thus (2.64) recovers (2.56).
Moreover, in many practical situations, one hasDj ≤ Le0(T, dj) ≤ LΔj(T ) =
LΔ(T, dj). Still, the occurrence of the unwieldy quantitiesDj makes the state-
ment of Theorem 2.2.28 a bit awkward. It would be pleasing if in the state-
ment of this theorem one could replace Dj by the smaller quantity Δj(T ).
Unfortunately this does not seem to be true. The reader might like to con-
sider the case where card T = Nn and d1(s, t) = 1 for s �= t to understand
where the difficulty lies.

Proof. There exists a partition Un of T into Nn sets, each of which have
a diameter ≤ 2en(T, d1) for d1. Consider the partition B′

n generated by
U0, . . . ,Un−1. These partitions form an admissible sequence such that

∀B ∈ B′
n , Δ1(B) ≤ 2en−1(T, d1) . (2.65)

Let us also consider an admissible sequence (C′n) which has the same property
for d2,
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∀C ∈ C′n , Δ2(C) ≤ 2en−1(T, d2) .

We define A0 = A1 = {T}, and for n ≥ 2 we define An as being the partition
generated by Bn−2 , B′

n−2 , Cn−2 and C′n−2, where Bn and Cn are as in (2.52)
and (2.53) respectively. Let us define a chaining πn(t) associated as usual
to the sequence (An) of partitions. (That is we select a set Tn which meets
every element of An in exactly one point, and πn(t) denote the element of
Tn which belongs to An(t).)

U = (2n + u1)d1(πn(t), πn−1(t)) + (2n/2 + u2)d2(πn(t), πn−1(t)) ,

so that (2.50) implies somewhat crudely that

P(|Xπn(t) −Xπn−1(t)| ≥ U) ≤ 2 exp(−2n −min(u2
2, u1)) .

For n ≥ 3 we have πn(t), πn−1(t) ∈ Bn−3(t), so that d1(πn(t), πn−1(t)) ≤
Δ1(Bn−3(t)), and πn(t), πn−1(t) ∈ B′

n−3(t) so that, using (2.65) in the last
inequality,

d1(πn(t), πn−1(t)) ≤ Δ1(B
′
n−3(t)) ≤ 2en−3(T, d1) .

Proceeding in the same fashion for d2 it follows that with probability at least
1− L exp(−min(u2

2, u1)) we have

∀n ≥ 3 , ∀t ∈ T , |Xπn(t) −Xπn−1(t)| ≤ 2nΔ1(Bn−3(t)) + 2n/2Δ2(Cn−3(t))

+ 2u1en−3(T, d1) + 2u2en−3(T, d2) .

This inequality remains true for n = 1, 2 if in the right-hand side one replaces
n− 3 by 0, and chaining (i.e. use of (2.25)) completes the proof. 
�

2.3 Functionals

To make Theorem 2.2.18 useful, we must be able to construct good admissible
sequences. In this section we explain our basic method. This method, and its
variations, are at the core of the book.

Let us recall that we have defined γa(T, d) as

γα(T, d) = inf sup
t∈T

∑

n≥0

2n/αΔ(An(t))

where the infimum is taken over all admissible sequences (An) of partitions
of T . Let us now define the quantity

γ∗
α(T, d) = inf sup

t∈T

∑

n≥0

2n/αd(t, Tn) ,

where the infimum is over all choices of the sets Tn with cardTn ≤ Nn.
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It is rather obvious that γ∗
α(T, d) ≤ γα(T, d). To prove this, consider an

admissible sequence (An) of partitions of T . Choose Tn such that each set of
An contains one element of Tn. Then for each t ∈ T

∑

n≥0

2n/αd(t, Tn) ≤
∑

n≥0

2n/αΔ(An(t)) ,

and this proves the claim. This is simply the argument of Theorem 2.2.18.
Now, we would like to go the other way, that is to prove

γα(T, d) ≤ K(α)γ∗
α(T, d) . (2.66)

This is achieved by the following result.

Theorem 2.3.1. Consider a metric space (T, d), an integer τ ′ ≥ 0 and for
n ≥ 0, consider subsets Tn of T with cardT0 = 1 and cardTn ≤ Nn+τ ′ =

22
n+τ′

for n ≥ 1. Consider numbers α > 0 , S > 0, and let

U =
{
t ∈ T ;

∑

n≥0

2n/αd(t, Tn) ≤ S
}
.

Then γα(U, d) ≤ K(α, τ ′)S.

Of course here K(α, τ ′) denotes a number depending on α and τ ′ only.
When U = T and τ ′ = 0, this proves (2.66), and shows that the bound (2.43)
is as good as the bound (2.32), if one does not mind the possible loss of a
constant factor. The superiority of the bound (2.43) is that it uses admissible
sequences, and as explained before Theorem 2.2.23 these are very convenient.

It is also good to observe that Theorem 2.3.1 allows us to control γα(U, d)
using sets Tn that need not be subsets of U .

It seems appropriate to state the following obvious consequence of (2.66).

Corollary 2.3.2. For any metric space (T, d) we have

γα(T, d) ≤ K(α)
∑

n≥0

2n/αen(T ) .

Exercise 2.3.3. Find a simple direct proof of Corollary 2.3.2. (Hint. You do
have to construct the partitions. If this is too difficult, try first to read the
proof of Theorem 2.3.1, and simplify it suitably.)

Exercise 2.3.4. Use (2.44) and Exercise 2.2.14 (d) to prove that if T ⊂ R
m

then ∑

n≥0

2n/2en(T ) ≤ L log(m+ 1)γ2(T, d) . (2.67)

In words, Dudley’s bound is never off by more than a factor about log(m+
1) in R

m.
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The following simple observation allows one to construct a sequence which
is admissible from one which is slightly too large. It will be used a great many
times.

Lemma 2.3.5. Consider α > 0, an integer τ ≥ 0 and an increasing sequence
of partitions (Bn)n≥0 with cardBn ≤ Nn+τ . Let

S := sup
t∈T

∑

n≥0

2n/αΔ(Bn(t)) .

Then we can find an admissible sequence (An)n≥0 such that

sup
t∈T

∑

n≥0

2n/αΔ(An(t)) ≤ 2τ/α(S +K(α)Δ(T )) . (2.68)

Of course (for the last time) here K(α) denotes a number depending on
α only (that need not be the same at each occurrence).

Proof. We set An = {T} if n < τ and An = Bn−τ if n ≥ τ so that cardAn ≤
Nn and ∑

n≥τ

2n/αΔ(An(t)) = 2τ/α
∑

n≥0

2n/αΔ(Bn(t)) .

Using the bound Δ(An(t)) ≤ Δ(T ), we obtain

∑

n≤τ

2n/αΔ(An(t)) ≤ K(α)2τ/αΔ(T ) . 
�

Exercise 2.3.6. Prove that (2.68) might fail if one replaces the right-hand
side by K(α, τ)S. (Hint: S does not control Δ(T ).)

Proof of Theorem 2.3.1. There is no other way than to roll up our sleeves
and actually construct a partition. For u ∈ Tn, let

V (u) = {t ∈ U ; d(t, Tn) = d(t, u)} .

(This is a well known construction, the sets V (u) are simply the closures of
the Voronöı cells associated to the points of Tn.) The sets V (u) cover U i.e.
U =

⋃
u∈Tn

V (u), but they are not disjoint. First find a partition Cn of U ,
with card Cn ≤ Nn+τ ′ , and the property that

∀C ∈ Cn , ∃u ∈ Tn , C ⊂ V (u) .

This cannot be the partitions we are looking for since the sequence (Cn) need
not be increasing. A more serious problem is that for t ∈ V (u) it might
happen that d(t, Tn) � Δ(V (u)), and hence that Δ(Cn(t)) � d(t, Tn), in
which case we have no control over Δ(Cn(t)). To alleviate this problem, we
will suitably break the sets of Cn into smaller pieces. Consider C as above,
let b be the smallest integer b > 1/α+ 1, and consider the set
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Cbn = {t ∈ C ; d(t, u) ≤ 2−bnΔ(U)} ,

so that Δ(Cbn) ≤ 2−bn+1Δ(U). Similarly, consider, for 0 ≤ k < bn, the set

Ck = {t ∈ C ; 2−k−1Δ(U) < d(t, u) ≤ 2−kΔ(U)} .

Thus Δ(Ck) ≤ 2−k+1Δ(U), and, when k < bn, and since C ⊂ V (u),

∀t ∈ Ck , Δ(Ck) ≤ 2−k+1Δ(U) ≤ 4d(t, u) ≤ 4d(t, Tn) .

Therefore,

∀k ≤ bn , ∀t ∈ Ck , Δ(Ck) ≤ 4d(t, Tn) + 2−bn+1Δ(U) . (2.69)

Consider the partition Bn consisting of the sets Ck for C ∈ Cn , 0 ≤ k ≤ bn,
so that cardBn ≤ (bn + 1)Nn+τ ′ . Consider the partition An generated by
B0 , . . . , Bn, so that the sequence (An) increases, and cardAn ≤ Nn+τ , where
τ depends on α and τ ′ only. (The reader is advised to work out this fact in
complete detail.) From (2.69) we get

∀A ∈ An , ∀t ∈ A , Δ(A) ≤ 4d(t, Tn) + 2−bn+1Δ(U) ,

and thus
∑

n≥0

2n/αΔ(An(t)) ≤ 4
∑

n≥0

2n/αd(t, Tn) +Δ(U)
∑

n≥0

2n/α−bn+1

≤ 4(S +Δ(U)) .

Since for t in U we have d(t, T0) ≤ S where T0 contains a unique point, we
have Δ(U) ≤ 2S, and the conclusion follows from Lemma 2.3.5. �

Exercise 2.3.7. In Theorem 2.3.1, carry out the correct dependence of
K(α, τ ′) upon τ ′.

Let us now explain the crucial idea of functionals (and the reason behind
the name). We will say that a map F is a functional on a set T if, to each
subset H of T it associates a number F (H) ≥ 0, and if it is increasing, i.e.

H ⊂ H ′ ⊂ T ⇒ F (H) ≤ F (H ′) . (2.70)

Intuitively a functional is a measure of “size” for the subsets of T . It
allows to identify which subsets of T are “large” for our purposes. Suitable
partitions of T will then be constructed through an exhaustion procedure
that selects first the large subsets of T .

When reading the words “measure of the size of a subset of T” the reader
might form the picture of the functional F (H) = μ(H) where μ is a measure
on T . For our purposes, this picture is incorrect, because our goal is to un-
derstand in a sense what are the smallest functionals which satisfy a certain
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property to be explained below, and these do not look at all like the measure
μ example. A first fundamental example of a functional is

F (H) = γ2(H, d) . (2.71)

A second, equally important, is the quantity

F (H) = E sup
t∈H

Xt

where (Xt)t∈T is a process indexed by T .
Now we wish to explain the basic property needed for a functional. That

this property is relevant is by no means intuitively obvious yet (but we shall
soon see that the functional (2.71) does enjoy this property). Let us first try
it in words: if we consider a set that is the union of many small pieces far
enough from each other, then this set is significantly larger (as measured by
the functional) than the smallest of its pieces. “Significantly larger” depends
on the scale of the pieces, and on their number. This is a kind of “growth
condition”.

First, let us explain what we mean by “small pieces far from each other”.
There is a scale, say a > 0 at which this happens. The pieces are small at
that scale: they are contained in balls with radius a/100. The balls are far
from each other: any two centers of such balls are at mutual distance ≥ a.
Wouldn’t you say that such pieces are “well separated”? Of course there is
nothing specific about the choice of the radius a/100, and sometimes the
radius has to be smaller, so we introduce a parameter r ≥ 4, and we ask that
the “small pieces” be contained in balls with radius a/r rather than a/100.
The reason why we require r ≥ 4 is that we want the following: two points
taken in different balls with radius a/r whose centers are at distance ≥ a
cannot be too close to each other. This would not be true for r = 2, so we
give ourselves some room, and take r ≥ 4. Here is the formal definition.

Definition 2.3.8. Given a > 0 and an integer r ≥ 4 we say that subsets
H1, . . . , Hm of T are (a, r)-separated if

∀� ≤ m, H� ⊂ B(t�, a/r) , (2.72)

where the points t1, t2, . . . , tm in T satisfy

∀� ≤ m, t� ∈ B(s, ar) ; ∀� , �′ ≤ m, � �= �′ ⇒ d(t�, t�′) ≥ a (2.73)

for a certain point s ∈ T .

Of course here B(s, a) denotes the closed ball with center s and radius a
in the metric space (T, d). A secondary feature of this definition is that the
small pieces H� are not only well separated (on a scale a), but they are in the
“same region of T” (on the larger scale ra). This is the content of the first
part of condition (2.73):

∀� ≤ m, t� ∈ B(s, ar) .
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Exercise 2.3.9. Find interesting examples of metric spaces for which there
are no points t1, . . . , tm as in (2.73), for all values of n (respectively all large
enough values of n).

Now, what do we mean by “the union of the pieces is significantly larger than
the smallest of these pieces”? In this first version of the growth condition,
this means that the size of this union is larger than the size of the smallest
piece by a quantity a

√
logN where N is the number of pieces. (We remind the

reader that the function
√
log y arises from the fact that this it in a sense the

inverse of the function exp(−x2).) Well, sometimes it will only be larger by a
quantity of say a

√
logN/100. This is how the parameter c∗ below comes into

the picture. Of course, one could also multiply the functionals by a suitable
constant (i.e. 1/c∗) to always reduce to the case c∗ = 1 but this is a matter
of taste.

Another feature is that we do not need to consider the case with N pieces
for a general value of N , but only for the case where N = Nn for some n.
This is simply because we care about the value of logN only within, say, a
factor of 2, and this is precisely what motived the definition of Nn. In order to
understand the definition below one should also recall that

√
logNn is about

2n/2.
It will be rather convenient to consider not only a single functional but

a whole sequence (Fn) of functionals, but at first reading one might assume
that Fn does not depend on n. So, consider a metric space (T, d) (that need
not be finite), and a decreasing sequence (Fn)n≥0 of functionals on T , that is

∀H ⊂ T , Fn+1(H) ≤ Fn(H) . (2.74)

Definition 2.3.10. We say that the functionals Fn satisfy the growth condi-
tion with parameters r ≥ 4 and c∗ > 0 if for any integer n ≥ 0 and any a > 0
the following holds true, where m = Nn+1. For each collection of subsets
H1, . . . , Hm of T that are (a, r)-separated we have

Fn

( ⋃

�≤m

H�

)
≥ c∗a2n/2 +min

�≤m
Fn+1(H�) . (2.75)

We observe that the functional Fn occurs on the left-hand side of (2.75),
while the smaller functional Fn+1 occurs on the right-hand side (which gives
us a little extra room to check this condition).

Exercise 2.3.11. Find example of spaces (T, d) where the growth condition
holds while Fn(H) = 0 for each n and each H ⊂ T . (Hint: use Exercise 2.3.9.)

We now note the non-obvious fact that condition (2.75) imposes strong
restrictions on the metric space (T, d), and we explain this now. We prove
that (2.75) implies that if a > 2−n/2F0(T )/c

∗, each ball B(s, ar) can be
covered by Nn+1 balls B(t, a). Consider points t1, . . . , tk in B(s, ar) such that
d(t�, t�′) ≥ a whenever � �= �′. Assume that k ≥ m = Nn+1 for a certain n ≥ 0.
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Taking H� = {t�}, and since Fn+1 ≥ 0, the separation condition implies
F0(T ) ≥ Fn(T ) ≥ c∗a2n/2. Consequently, if we assume that c∗a2n/2 > F0(T ),
we must have k < Nn+1. If k is as large as possible, the ball B(s, ar) is covered
by the balls B(t�, a) for � ≤ k, proving the claim.

Exercise 2.3.12. If r ≥ 4, prove that the preceding property yields the
inequality 2n/2en(T ) ≤ K(r)F0(T )/c

∗ +LΔ(T ). (Hint: Iterate the process of
covering a ball with radius ar by balls with radius a to bound the minimum
number N(T, d, ε) of balls with radius ε needed to cover T and use Exercise
2.2.13.) Explain why the term LΔ(T ) is necessary. (Hint: use Exercise 2.3.11.)

The following illustrates how we shall use the first part of (2.73).

Exercise 2.3.13. Let (T, d) be isometric to a subset of Rk provided with
the distance induced by a norm. Prove that in order to check that a sequence
of functionals satisfies the growth condition of Definition 2.3.10, it suffices to
consider the values of n for which Nn+1 ≤ (1 + 2/r)k. (Hint: it follows from
(2.41) that for larger values of n there are no points t1, . . . , tm as in (2.73).)

As we shall soon see, the existence of a sequence of functionals satisfying
the separation property will give us a lot more information than the crude
result of Exercise 2.3.12.

Before we come to this, what is the point of considering such sequences
of functionals? As the following result shows, decreasing sequences of func-
tionals satisfying the growth condition of Definition 2.3.10 are “built into”
the definition of γ2(T, d).

Theorem 2.3.14. For any metric space (T, d) there exists a decreasing se-
quence of functionals (Fn)n≥0 with F0(T ) = γ2(T, d) which satisfies the
growth condition of Definition 2.3.10 for r = 4 and c∗ = 1/2.

In words, one can find a decreasing sequence of functionals satisfying the
growth condition with F0(T ) as large as γ2(T, d).

Proof. This proof provides a good opportunity to understand the typical way
a sequence (Fn) of functionals might depend on n. For a subset H of T we
define

Fn(H) = inf sup
t∈H

∑

k≥n

2k/2Δ(Ak(t)) ,

where the infimum is taken over all admissible sequences (An) of partitions of
H. (The dependence on n is that the summation starts at k = n. This feature
will often occur.) Thus F0(T ) = γ2(T, d). To prove the growth condition
of Definition 2.3.10, consider m = Nn+1 and consider points (t�)�≤m of T ,
with d(t�, t�′) ≥ a if � �= �′. Consider sets H� ⊂ B(t�, a/4), and the set
H =

⋃
�≤m H�. Consider an admissible sequence (An) of H, and

I = {� ≤ m ; ∃A ∈ An , A ⊂ H�} .
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Since the sets (H�)�≤m are disjoint, we have card I ≤ Nn, and thus there
exists � ≤ m with � �∈ I. Then for t ∈ H�, we have An(t) �⊂ H�, so that
since An(t) ⊂ H, the set An(t) must meet a set H�′ for a certain �′ �= �, and
consequently it meets the ball B(t�′ , a/4). Since d(t, B(t�′ , a/4)) ≥ a/2, this
implies that Δ(An(t)) ≥ a/2. Therefore

∑

k≥n

2k/2Δ(Ak(t)) ≥
1

2
a2n/2 +

∑

k≥n+1

2k/2Δ(Ak(t) ∩H�) . (2.76)

Since A′
n = {A ∩H�;A ∈ An} is an admissible sequence of H�, we have by

definition
sup
t∈H�

∑

k≥n+1

2k/2Δ(Ak(t) ∩H�) ≥ Fn+1(H�) .

Hence, taking the supremum over t in H� in (2.76) we get

sup
t∈H�

∑

k≥n

2k/2Δ(Ak(t)) ≥
1

2
a2n/2 + Fn+1(H�) .

Since the admissible sequence (An) is arbitrary, we have shown that

Fn(H) ≥ 1

2
a2n/2 +min

�
Fn+1(H�) ,

which is (2.75) for c∗ = 1/2. �
The previous proof demonstrates how to use functionals Fn which actually

depend on n. This will be a very useful technical device. However it is not
really needed here, since we also have the following.

Theorem 2.3.15. The functionals Fn(H) = γ2(H, d) satisfy the growth con-
dition of Definition 2.3.10 for r = 8 and c∗ = 1/4.

Proof. The proof is almost the same as that of Theorem 2.3.14. Consider
points (t�)�≤m of T , with d(t�, t�′) ≥ a if � �= �′. Consider setsH� ⊂ B(t�, a/8),
and the set H =

⋃
�≤m H�. Consider an admissible sequence (An) of H, and

I = {� ≤ m ; ∃A ∈ An , A ⊂ H�} .

Since the sets (H�)�≤m are disjoint, we have card I ≤ Nn, and thus there
exists � ≤ m with � �∈ I. Then for t ∈ H�, we have An(t) �⊂ H�, so that
since An(t) ⊂ H, the set An(t) must meet a set H�′ for a certain �′ �= �, and
consequently it meets the ball B(t�′ , a/8). Since d(t, B(t�′ , a/8)) ≥ a/2, this
implies that Δ(An(t)) ≥ a/2. Therefore, since Δ(An(t)∩H�) ≤ Δ(H�) ≤ a/4,

∑

k≥0

2k/2Δ(Ak(t)) ≥
1

4
a2n/2 +

∑

k≥0

2k/2Δ(Ak(t) ∩H�) . (2.77)

From this point on the proof is identical to that of Theorem 2.3.14. 
�
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Our next result is fundamental. It is a kind of converse to Theorem 2.3.14.
The size of γ2(T, d) cannot be really larger than F0(T ) when the sequence
(Fn) of functionals satisfies the growth condition of Definition 2.3.10. Put it
another way, it says that in a sense F (H) = γ2(H, d) is the smallest functional
which satisfies the growth condition of Definition 2.3.10. This also explains
why we did not give any very simple example of functional satisfying the
growth condition. This seems to be the simplest example.

Theorem 2.3.16. Let (T, d) be a metric space. Assume that there exists a
decreasing sequence of functionals (Fn)n≥0 which satisfies the growth condi-
tion of Definition 2.3.10. Then

γ2(T, d) ≤
Lr

c∗
F0(T ) + LrΔ(T ) . (2.78)

This theorem and its generalizations form the backbone of this book. The
essence of this theorem is that it produces (by actually constructing them)
a sequence of partitions that witnesses the inequality (2.78). For this rea-
son, it could be called “the fundamental partitioning theorem.” The proof
of Theorem 2.3.16 is not really difficult, but since one has to construct the
partitions, it does require again to roll up our sleeves and even get a bit of
grease on our hands. Thus this proof will be better presented (in Section 2.6)
after the power of this principle has been demonstrated in Section 2.4 and
the usefulness of its consequences illustrated again in Section 2.5.

Exercise 2.3.17. Consider a metric space T consisting of exactly two points.
Prove that the sequence of functionals given by Fn(H) = 0 for each
H ⊂ T satisfies the growth condition of Definition 2.3.10 for r = 4
and any c∗ > 0. Explain why we cannot replace (2.78) by the inequality
γ2(T, d) ≤ LrF0(T )/c

∗.

Given the functionals Fn, Theorem 2.3.16 yields partitions, but it does
not say how to find these functionals. One must understand that there is
no magic. Admissible sequences are not going to come out of thin air, but
rather they will reflect the geometry of the space (T, d). Once this geometry
is understood, it is usually possible to guess a good choice for the functionals
Fn. Many examples will be given in subsequent chapters. It seems, at least
to the author, that it is much easier to guess the functionals Fn rather than
the partitions that witness the inequality (2.78). Besides, as Theorem 2.3.14
shows, we really have no choice. Functionals with the growth property are
intimately connected with admissible sequences of partitions.

2.4 Gaussian Processes and the Mysteries of Hilbert
Space

Consider a Gaussian process (Xt)t∈T , that is, a jointly Gaussian family of
centered r.v.s indexed by T . We provide T with the canonical distance
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d(s, t) =
(
E(Xs −Xt)

2
)1/2

. (2.79)

Recall the functional γ2 of Definition 2.2.19.

Theorem 2.4.1 (The Majorizing Measure Theorem). For some uni-
versal constant L we have

1

L
γ2(T, d) ≤ E sup

t∈T
Xt ≤ Lγ2(T, d) . (2.80)

The reason for the name is explained in Section 6.2. We can reformulate
this theorem by the statement

Chaining suffices to explain the size of a Gaussian process.

(2.81)

By this statement we simply means that (as witnessed by the left-hand side
inequality in (2.80)) the “natural” chaining bound for the size of a Gaussian
process (as witnessed by the right-hand side inequality in (2.80)) is of correct
order, provided of course one uses the best possible chaining. The author
believes that this is an occurrence of a much more general phenomenon,
several aspects of which will be investigated in later chapters.

The right-hand side inequality in (2.80) follows from Theorem 2.2.22. To
prove the lower bound we will use Theorem 2.3.16 and the functionals

Fn(H) = F (H) = sup
H∗⊂H,H∗finite

E sup
t∈H∗

Xt ,

so that Fn does not depend on n. To apply (2.78) we need to prove that
the functionals Fn satisfy the growth condition with c∗ a universal constant
and to bound Δ(T ) (which is easy). We strive to give a proof that relies on
general principles, and lends itself to generalizations.

Lemma 2.4.2 (Sudakov minoration). Assume that

∀p , q ≤ m, p �= q ⇒ d(tp, tq) ≥ a .

Then we have
E sup

p≤m
Xtp ≥

a

L1

√
logm . (2.82)

Here and below L1, L2, . . . are specific universal constants. Their values re-
main the same (at least within the same section).

Exercise 2.4.3. Prove that Lemma 2.4.2 is equivalent to the following state-
ment. If (Xt)t∈T is a Gaussian process, and d is the canonical distance, then

en(T, d) ≤ 2−n/2E sup
t∈T

Xt . (2.83)

Compare with Exercise 2.3.12.
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A proof of Sudakov minoration can be found in [5], p. 83. The same proof
is actually given further in the present book, and the ambitious reader may
like to try to understand this now, using the following steps.

Exercise 2.4.4. Use Lemma 8.3.6 and Lemma 16.8.10 to prove that for a
Gaussian process (Xt)t∈T we have en(T, d) ≤ 2−n/2E supt∈T |Xt|. Then use
Exercise 2.2.2 to deduce (2.83).

To understand the relevance of Sudakov minoration, let us consider the
case where EX2

tp ≤ 100a2 (say) for each p. Then (2.82) means that the bound
(2.13) is of the correct order in this situation.

Exercise 2.4.5. Prove (2.82) when the r.v.s Xtp are independent. (Hint: use
Exercise 2.2.7 (b).)

Exercise 2.4.6. A natural approach (“the second moment method”) to
prove that P(supp≤m Xtp ≥ u) is at least 1/L for a certain value of u is
as follows. Consider the r.v. Y =

∑
p 1{Xtp≥u}, prove that EY 2 ≤ L(EY )2,

and then use the Paley-Zygmund inequality (7.30) below to prove that
supp≤m Xtp ≥ a

√
logm/L1 with probability ≥ 1/L. Prove that this approach

works when the r.v.s Xt� are independent, but find examples showing that
this naive approach does not work in general to prove (2.82).

The following is a very important property of Gaussian processes, and one
of the keys to Theorem 2.4.1. It is a facet of the theory of concentration of
measure, a leading idea of modern probability theory. The reader is referred
to the (very nice) book of M. Ledoux [4] to learn about this.

Lemma 2.4.7. Consider a Gaussian process (Xt)t∈U , where U is finite and
let σ = supt∈U (EX

2
t )

1/2. Then for u > 0 we have

P
(∣∣∣sup

t∈U
Xt − E sup

t∈U
Xt

∣∣∣ ≥ u
)
≤ 2 exp

(
− u2

2σ2

)
. (2.84)

Let us stress in words what this means. The size of the fluctuations of
E supt∈U Xt is governed by the size of the individual r.v.s Xt, rather than
by the (typically much larger) quantity E supt∈U Xt.

Exercise 2.4.8. Find an example of a Gaussian process for which

E sup
t∈T

Xt � σ = sup
t∈T

(EX2
t )

1/2 ,

whereas the fluctuations of supt∈T Xt are of order σ, e.g. the variance of
supt Xt is about σ2. (Hint: T = {(ti)i≤n;

∑
i≤n t

2
i ≤ 1} and Xt =

∑
i≤n tigi

where gi are independent standard Gaussian. Observe first that (supt Xt)
2 =∑

i≤n g
2
i is of order n and has fluctuations of order

√
n by the central limit

theorem. Conclude that supt Xt has fluctuations of order 1 whatever the value
of n.)
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Proposition 2.4.9. Consider points (t�)�≤m of T . Assume that d(t�, t�′) ≥ a
if � �= �′. Consider σ > 0, and for � ≤ m a finite set H� ⊂ B(t�, σ). Then if
H =

⋃
�≤m H� we have

E sup
t∈H

Xt ≥
a

L1

√
logm− L2σ

√
logm+min

�≤m
E sup

t∈H�

Xt . (2.85)

When σ ≤ a/(2L1L2), (2.85) implies

E sup
t∈H

Xt ≥
a

2L1

√
logm+min

�≤m
E sup

t∈H�

Xt , (2.86)

which can be seen as a generalization of (2.82).

Proof. We can and do assume m ≥ 2. For � ≤ m, we consider the r.v.

Y� =
(
sup
t∈H�

Xt

)
−Xt� = sup

t∈H�

(Xt −Xt�) .

We set U = H� and for t ∈ U we set Zt = Xt −Xt� . Since H� ⊂ B(t�, σ) we
have EZ2

t = d(t, t�)
2 ≤ σ2 and, for u ≥ 0 equation (2.84) used for the process

(Zt)t∈U implies

P(|Y� − EY�| ≥ u) ≤ 2 exp
(
− u2

2σ2

)
.

Thus if V = max�≤m |Y� − EY�| then

P(V ≥ u) ≤ 2m exp
(
− u2

2σ2

)
, (2.87)

and (2.11) implies EV ≤ L2σ
√
logm. Now, for each � ≤ m,

Y� ≥ EY� − V ≥ min
�≤m

EY� − V ,

and thus
sup
t∈H�

Xt = Y� +Xt� ≥ Xt� +min
�≤m

EY� − V

so that
sup
t∈H

Xt ≥ max
�≤m

Xt� +min
�≤m

EY� − V .

We then take expectations and use (2.82). �

Exercise 2.4.10. Prove that (2.86) might fail if one allows σ = a. (Hint: the
intersection of the balls B(t�, a) might contain a ball with positive radius.)

Exercise 2.4.11. Prove that

E sup
t∈H

Xt ≤ La
√
logm+max

�≤m
E sup

t∈H�

Xt . (2.88)

Try to find improvements on this bound. (Hint: peek at (16.81) below.)
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Proof of Theorem 2.4.1. We fix r ≥ 2L1L2. To prove the growth condition
for the functionals Fn we simply observe that (2.86) implies that (2.75) holds
for c∗ = 1/L. Using Theorem 2.3.16, it remains only to control the term
Δ(T ). But

Emax(Xt1 , Xt2) = Emax(Xt1 −Xt2 , 0) =
1√
2π

d(t1, t2) ,

so that Δ(T ) ≤
√
2πE supt∈T Xt. �

The proof of Theorem 2.4.1 displays an interesting feature. This theorem
aims at understanding E supt∈T Xt, and for this we use functionals that are
based on precisely this quantity. This is not a circular argument. The content
of Theorem 2.4.1 is that there is simply no other way to bound a Gaussian
process than to control the quantity γ2(T, d). Of course, to control this quan-
tity in a specific situation, we must in some way gain understanding of the
underlying geometry of this situation.

The following is a noteworthy consequence of Theorem 2.4.1.

Theorem 2.4.12. Consider two processes (Yt)t∈T and (Xt)t∈T indexed by
the same set. Assume that the process (Xt)t∈T is Gaussian and that the pro-
cess (Yt)t∈T satisfies the condition

∀u > 0 , ∀s , t ∈ T , P(|Ys − Yt| ≥ u) ≤ 2 exp

(
− u2

d(s, t)2

)
,

where d is the distance (2.79) associated to the process Xt. Then we have

E sup
s,t∈T

|Ys − Yt| ≤ LE sup
t∈T

Xt .

Proof. We combine (2.49) with the left-hand side of (2.80). �
Let us now turn to a simple (and classical) example that illustrates well

the difference between Dudley’s bound (2.38) and the bound (2.32). Basically
this example reproduces, for a metric space associated to an actual Gaussian
process, the metric structure that was described in an abstract setting in Ex-
ercise 2.2.16. Consider an independent sequence (gi)i≥1 of standard Gaussian
r.v.s and for i ≥ 2 set

Xi =
gi√
log i

. (2.89)

Consider an integer s ≥ 3 and the process (Xi)2≤i≤Ns so the index set is
T = {2, 3, . . . , Ns}. The distance d associated to the process satisfies for
p �= q

1√
log(min(p, q))

≤ d(p, q) ≤ 2√
log(min(p, q))

. (2.90)

Consider 1 ≤ n ≤ s − 2 and Tn ⊂ T with cardTn = Nn. There exists
p ≤ Nn + 1 with p /∈ Tn, so that (2.90) implies d(p, Tn) ≥ 2−n/2/L (where
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the distance from a point to a set is defined in (2.33)). This proves that
en(T ) ≥ 2−n/2/L. Therefore

∑

n

2n/2en(T ) ≥
s− 2

L
. (2.91)

On the other hand, for n ≤ s let us now consider Tn = {2, 3, . . . , Nn, Ns},
integers p ∈ T and m ≤ s− 1 such that Nm < p ≤ Nm+1. Then d(p, Tn) = 0
if n ≥ m+ 1, while, if n ≤ m,

d(p, Tn) ≤ d(p,Ns) ≤ L2−m/2

by (2.90) and since p ≥ Nm and Ns ≥ Nm. Hence we have

∑

n

2n/2d(p, Tn) ≤
∑

n≤m

L2n/22−m/2 ≤ L . (2.92)

Comparing (2.91) and (2.92) proves that the bound (2.38) is worse than
the bound (2.32) by a factor about s.

Exercise 2.4.13. Prove that when T is finite, the bound (2.38) cannot be
worse than (2.32) by a factor greater than about log log cardT . This shows
that the previous example is in a sense extremal. (Hint: use 2n/2en(T ) ≤
Lγ2(T, d) and en(T ) = 0 if Nn ≥ cardT.)

Exercise 2.4.14. Prove that the estimate (2.67) is essentially optimal.
(Hint: if m ≥ exp(10s), one can produce the situation of Example 2.2.16 (b)
inside R

m.)

It follows from (2.92) and (2.32) that E supi≥1 Xi < ∞. A simpler proof
of this fact is given in Proposition 2.4.16 below.

Now we generalize the process of Exercise 2.2.15 to Hilbert space. We
consider the Hilbert space �2 = �2(N∗) of sequences (ti)i≥1 such that∑

i≥1 t
2
i <∞, provided with the norm

‖t‖ = ‖t‖2 =
(∑

i≥1

t2i

)1/2
. (2.93)

To each t in �2 we associate a Gaussian r.v.

Xt =
∑

i≥1

tigi (2.94)

(the series converges in L2(Ω)). In this manner, for each subset T of �2

we can consider the Gaussian process (Xt)t∈T . The distance induced on T
by the process coincides with the distance of �2 since from (2.94) we have
EX2

t =
∑

i≥1 t
2
i .
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The importance of this construction is that it is generic. All Gaussian
processes can be obtained in this way, at least when there is a countable
subset T ′ of T that is dense in the space (T, d), which is the only case of
importance for us. Indeed, it suffices to think of the r.v. Yt of a Gaussian
process as a point in L2(Ω), where Ω is the underlying probability space, and
to identify L2(Ω), which is then separable, and �2 by choosing an orthonormal
basis of L2(Ω).

Here is the place to make a general observation. It is not true that all
processes of interest can be represented as the sum of a random series as
in (2.94). Suppose, however, that one is interested in the boundedness of a
random series of functions, Xu =

∑
i≥1 ξifi(u) for u ∈ U . Then all that

matters is the set T of coefficients T = {t = (fi(u))i;u ∈ U}. For a sequence
t = (ti) we then define

Xt =
∑

i

tiξi (2.95)

and the fundamental issue becomes to understand the boundedness of the
process (Xt)t∈T . This is why processes of the type (2.95) play such an im-
portant role in this book.

A subset T of �2 will always be provided with the distance induced by �2,
so we may also write γ2(T ) rather than γ2(T, d). We denote by conv T the
convex hull of T , and we write

T1 + T2 =
{
t1 + t2 ; t1 ∈ T1 , t2 ∈ T2

}
.

Theorem 2.4.15. For a subset T of �2, we have

γ2(conv T ) ≤ Lγ2(T ) . (2.96)

For two subsets T1 and T2 of �2, we have

γ2(T1 + T2) ≤ L
(
γ2(T1) + γ2(T2)

)
. (2.97)

Proof. To prove (2.96) we observe that since Xa1t1+a2t2 = a1Xt1 + a2Xt2 we
have

sup
t∈conv T

Xt = sup
t∈T

Xt . (2.98)

We then use (2.80) to write

1

L
γ2(conv T ) ≤ E sup

conv T
Xt ≤ E sup

T
Xt ≤ Lγ2(T ) .

The proof of (2.97) is similar. �
We recall the �2 norm ‖ · ‖ of (2.93). Here is a simple fact.

Proposition 2.4.16. Consider a set T = {tk ; k ≥ 1} where

∀ k ≥ 1 , ‖tk‖ ≤ 1/
√
log(k + 1) .

Then E supt∈T Xt ≤ L.
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Proof. We have

P
(
sup
k≥1

|Xtk | ≥ u
)
≤
∑

k≥1

P(|Xtk | ≥ u) ≤
∑

k≥1

2 exp
(
−u2

2
log(k + 1)

)
(2.99)

since Xtk is Gaussian with EX2
tk
≤ 1/ log(k + 1). Now for u ≥ 2, the right-

hand side of (2.99) is at most L exp(−u2/L). �

Exercise 2.4.17. Deduce Proposition 2.4.16 from (2.32). (Hint: see Exer-
cise 2.2.16 (a).)

Combining with (2.98), Proposition 2.4.16 proves that E supt∈T Xt ≤ L,
where T = conv{tk; k ≥ 1}. The following shows that this situation is in a
sense generic.

Theorem 2.4.18. Consider a countable set T ⊂ �2, with 0 ∈ T . Then we can
find a sequence (tk), such that each element tk is a multiple of the difference
of two elements of T , with

∀ k ≥ 1 , ‖tk‖
√
log(k + 1) ≤ LE sup

t∈T
Xt

and
T ⊂ conv({tk ; k ≥ 1}) .

Proof. By Theorem 2.4.1 we can find an admissible sequence (An) of T with

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t)) ≤ LE sup
t∈T

Xt := S . (2.100)

We construct sets Tn ⊂ T , such that each A ∈ An contains exactly one
element of Tn. We ensure in the construction that T =

⋃
n≥0 Tn and that

T0 = {0}. (To do this, we simply enumerate the elements of T as (vn)n≥1

with v0 = 0 and we ensure that vn is in Tn.) For n ≥ 1 consider the set Un

that consists of all the points

2−n/2 t− v

‖t− v‖

where t ∈ Tn, v ∈ Tn−1 and t �= v. Thus each element of Un has norm 2−n/2,
and Un has at mostNnNn−1 ≤ Nn+1 elements. Let U =

⋃
k≥1 Uk. We observe

that U contains at most Nn+2 elements of norm ≥ 2−n/2. If we enumerate
U = {tk; k = 1, . . .} where the sequence (‖tk‖) is non-increasing, then if
‖tk‖ ≥ 2−n/2 we have k ≤ Nn+2 and this implies that ‖tk‖ ≤ L/

√
log(k + 1).

Consider t ∈ T , so that t ∈ Tm for some m ≥ 0. Writing πn(t) for the
unique element of Tn ∩An(t), since π0(t) = 0 we have

t =
∑

1≤n≤m

πn(t)− πn−1(t) =
∑

1≤n≤m

an(t)un(t) , (2.101)
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where

un(t) = 2−n/2 πn(t)− πn−1(t)

‖πn(t)− πn−1(t)‖
∈ U ; an(t) = 2n/2‖πn(t)− πn−1(t)‖ .

Since ∑

1≤n≤m

an(t) ≤
∑

n≥1

2n/2Δ(An−1(t)) ≤ 2S

and since un(t) ∈ Un ⊂ U we see from (2.101) that

t ∈ 2S conv(U ∪ {0}) .

This concludes the proof. �
It is good to meditate a little about the significance of Theorem 2.4.18.

First, we reformulate this theorem in a way which is suitable for general-
izations. Consider the class C of sets of the type C = conv{tk; k ≥ 1} and
for C ∈ C define the size s(C) as inf supk ‖tk‖

√
log(k + 1), where we as-

sume without loss of generality that the sequence (‖tk‖)k≥1 decreases, and
where the infimum is over all possible choices of the sequence (tk) for which
C = conv{tk; k ≥ 1}. Proposition 2.4.16 implies E supt∈C Xt ≤ Ls(C). The-
orem 2.4.18 implies that given a countable set T with 0 ∈ T we can find
T ⊂ C ∈ C with s(C) ≤ LE supt∈T Xt. In words, the size of T for the Gaus-
sian process is witnessed by the smallest size (as measured by s) of an element
of C containing T .

Also worthy of detailing is a remarkable geometric consequence of The-
orem 2.4.18. Consider an integer N and let us provide �2N (= R

N provided
with the Euclidean distance) with the canonical Gaussian measure μ, i.e. the
law of the i.i.d. Gaussian sequence (gi)i≤N . Let us view an element t of �2N as
a function on �2N by the canonical duality, so t is a r.v. Yt on the probability
space (�2N , μ). The processes (Xt) and (Yt) have the same law, hence they are
really the same object viewed in two different ways. Consider a subset T of
�2N , and assume that T ⊂ conv{tk; k ≥ 1}. Then for any v > 0 we have

{
sup
t∈T

t ≥ v
}
⊂
⋃

k≥1

{tk ≥ v} . (2.102)

The somewhat complicated set on the left-hand side is covered by a countable
union of much simpler sets: the sets {tk ≥ v} are half-spaces. Assume now
that for k ≥ 1 and a certain S we have ‖tk‖

√
log(k + 1) ≤ S. Then (2.99)

implies that for u ≥ 2

∑

k≥1

μ({tk ≥ Su}) ≤ L exp(−u2/L) .

Theorem 2.4.18 implies that may take S ≤ LE supt Xt. Therefore for v ≥
LE supt Xt, the fact that the set in the left-hand side of (2.102) is small (in
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the sense of probability) can be witnessed by the fact that this set can be
covered by a countable union of simple sets (half-spaces) the sum of the
probabilities of which is small.

Of course, one may hope that the two remarkable phenomena described
above occur (at least in some form) in many other settings, a topic to which
we shall come back many times.

Exercise 2.4.19. Prove that if T ⊂ �2 and 0 ∈ T , then (even when T is
not countable) we can find a sequence (tk) in �2, with ‖tk‖

√
log(k + 1) ≤

LE supt∈T Xt for all k and

T ⊂ conv{tk ; k ≥ 1} ,

where conv denotes the closed convex hull. (Hint: do the obvious thing, apply
Theorem 2.4.18 to a dense countable subset of T .) Denoting now conv∗(A)
the set of infinite sums

∑
i αiai where

∑
i |αi| = 1 and ai ∈ A, prove that

one can also achieve
T ⊂ conv∗{tk ; k ≥ 1} .

Exercise 2.4.20. Consider a set T ⊂ �2 with 0 ∈ T ⊂ B(0, δ). Prove that
we can find a sequence (tk) in �2, with the following properties:

∀ k ≥ 1 , ‖tk‖
√
log(k + 1) ≤ LE sup

t∈T
Xt , (2.103)

‖tk‖ ≤ Lδ , (2.104)

T ⊂ conv{tk ; k ≥ 1} , (2.105)

where conv denotes the closed convex hull. (Hint: copy the proof of The-
orem 2.4.18, observing that since T ⊂ B(0, δ) one may chose An = {T}
and Tn = {0} for n ≤ n0, where n0 is the smallest integer for which
2n0/2 ≥ δ−1E supt∈T Xt, and thus Un = ∅ for n ≤ n0. )

The purpose of the next exercise is to derive from Exercise 2.4.20 some
results of Banach space theory due to S. Artstein [1]. This exercise is more
elaborate, and may be omitted at first reading. A Bernoulli r.v. ε is such that
P(ε = ±1) = 1/2. (The reader will not confuse Bernoulli r.v.s εi with positive
numbers εk!)

Exercise 2.4.21. In this exercise we consider a subset T ⊂ R
N , where R

N

is provided with the Euclidean distance. We assume that for some δ > 0, we
have

0 ∈ T ⊂ B(0, δ) .

We consider independent Bernoulli r.v.s (εi,p)i,p≥1 and for q ≤ N we consider
the random operator Uq : RN → R

q given by

Uq(x) =
(∑

i≤N

εi,pxi

)

p≤q
.
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The purpose of the exercise is to show that there exists a number L such that
if

q ≥ δ−1E sup
t∈T

∑

i≤N

giti , (2.106)

then with high probability

Uq(T ) ⊂ B(0, Lδ
√
q) . (2.107)

(a) Use the subgaussian inequality (3.2.2) to prove that if ‖x‖ = 1, then

E exp

(
1

4

(∑

i≤N

εi,pxi

)2)
≤ L . (2.108)

(b) Use (2.108) and independence to prove that for x ∈ R
n and v ≥ 1,

P(‖Uq(x)‖ ≥ Lv
√
q‖x‖) ≤ exp(−v2q) . (2.109)

(c) Use (2.109) to prove that with probability close to 1, for each of the
vectors tk of Exercise 2.4.20 one has ‖Uq(tk)‖ ≤ Lδ

√
q and conclude.

The simple proof of Theorem 2.4.15 hides the fact that (2.96) is a near
miraculous result. It does not provide any real understanding of what is going
on. Here is a simple question.

Research problem 2.4.22. Given a subset T of the unit ball of �2, give a
geometrical proof that γ2(conv T ) ≤ L

√
log cardT .

The issue is that, while this result is true whatever the choice of T ,
the structure of an admissible sequence which witnesses that γ2(conv T ) ≤
L
√
log cardT must depend on the “geometry” of the set T .
A geometrical proof should of course not use Gaussian processes but only

the geometry of Hilbert space. A really satisfactory argument would give
a proof that holds in Banach spaces more general than Hilbert space, for
example by providing a positive answer to the following, where the concept
of q-smooth Banach space is explained in [6].

Research problem 2.4.23. Given a 2-smooth Banach space, is it true that
for each subset T of its unit ball γ2(conv T ) ≤ K

√
log cardT? More generally,

is it true that for each finite subset T one has γ2(conv T ) ≤ Kγ2(T )? (Here
K may depend on the Banach space, but not on T .)

Here of course we use the distance induced by the norm to compute the
γ2 functional.

Research problem 2.4.24. Still more generally, is it true that for a finite
subset T of a q-smooth Banach space, one has γq(conv T ) ≤ Kγα(T )?
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Even when the Banach space is �p, I do not know the answer to these problems
(unless p = 2!). (The Banach space �p is 2-smooth for p ≥ 2 and q-smooth
for p < 2, where 1/p+1/q = 1.) One concrete case is when the set T consists
of the first N vectors of the unit basis of �p. It is possible to show in this
case that γq(conv T ) ≤ K(p)(logN)1/q, where 1/p + 1/q = 1. We leave this
as a challenge to the reader. The proof for the general case is pretty much
the same as for the case p = q = 2 which was already proposed as a challenge
after Exercise 2.2.15.

2.5 A First Look at Ellipsoids

We have illustrated the gap between Dudley’s bound (2.38) and the sharper
bound (2.32), using the examples (2.42) and (2.89). Perhaps the reader deems
these examples artificial, and believes that “in all practical situations” Dud-
ley’s bound suffices. Before we prove Theorem 2.3.16 (thus completing the
proof of the Majorizing Measure Theorem 2.4.1) in the next section, we feel
that it may be useful to provide some more motivation by demonstrating
that the gap between Dudley’s bound (2.38) and the generic chaining bound
(2.32) already exists for ellipsoids in Hilbert space. It is hard to argue that
ellipsoids are artificial, unnatural or unimportant. Moreover, understanding
ellipsoids will be fundamental in several subsequent questions, such as the
matching theorems of Chapter 4.

Given a sequence (ai)i≥1 , ai > 0, we consider the ellipsoid

E =

{
t ∈ �2 ;

∑

i≥1

t2i
a2i
≤ 1

}
. (2.110)

Proposition 2.5.1. We have

1

L

(∑

i≥1

a2i

)1/2

≤ E sup
t∈E

Xt ≤
(∑

i≥1

a2i

)1/2

. (2.111)

Proof. The Cauchy-Schwarz inequality implies

Y := sup
t∈E

Xt = sup
t∈E

∑

i≥1

tigi ≤
(∑

i≥1

a2i g
2
i

)1/2

. (2.112)

Taking ti = a2i gi/(
∑

j≥1 a
2
jg

2
j )

1/2 yields that actually Y = (
∑

i≥1 a
2
i g

2
i )

1/2

and thus EY 2 =
∑

i≥1 a
2
i . The right-hand side of (2.111) follows from the

Cauchy-Schwarz inequality:

EY ≤ (EY 2)1/2 =

(∑

i≥1

a2i

)1/2

. (2.113)
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For the left-hand side, let σ = maxi≥1 |ai|. Since Y = supt∈E Xt ≥ |ai||gi| for
any i, we have σ ≤ LEY . Also,

EX2
t =
∑

i

t2i ≤ max
i

a2i
∑

j

t2j
a2j
≤ σ2 . (2.114)

Then (2.84) implies

E(Y − EY )2 ≤ Lσ2 ≤ L(EY )2 ,

so that
∑

i≥1 a
2
i = EY 2 = E(Y − EY )2 + (EY )2 ≤ L(EY )2. �

As a consequence of Theorem 2.4.1,

γ2(E) ≤ L

(∑

i≥1

a2i

)1/2

. (2.115)

This statement is purely about the geometry of ellipsoids. The proof we
gave was rather indirect, since it involved Gaussian processes. Later on, in
Theorem 4.1.11, we shall give a “purely geometric” proof of this result that
will have many consequences.

Let us now assume that the sequence (ai)i≥1 is non-increasing. Since

2n ≤ i ≤ 2n+1 ⇒ a2n ≥ ai ≥ a2n+1

we get ∑

i≥1

a2i =
∑

n≥0

∑

2n≤i<2n+1

a2i ≤
∑

n≥0

2na22n

and ∑

i≥1

a2i ≥
∑

n≥0

2na22n+1 =
1

2

∑

n≥1

2na22n ,

and thus
∑

n≥0 2
na22n ≤ 3

∑
i≥1 a

2
i . So we may rewrite (2.111) as

1

L

(∑

n≥0

2na22n

)1/2

≤ E sup
t∈E

Xt ≤
(∑

n≥0

2na22n

)1/2

. (2.116)

Proposition 2.5.1 describes the size of ellipsoids with respect to Gaus-
sian processes. Our next result describes their size with respect to Dudley’s
entropy bound (2.36).

Proposition 2.5.2. We have

1

L

∑

n≥0

2n/2a2n ≤
∑

n≥0

2n/2en(E) ≤ L
∑

n≥0

2n/2a2n . (2.117)
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The right-hand sides in (2.116) and (2.117) are distinctively different.
Dudley’s bound fails to describe the behavior of Gaussian processes on ellip-
soids. This is a simple occurrence of a general phenomenon. In some sense an
ellipsoid is smaller than what one would predict just by looking at its entropy
numbers en(E). This idea will be investigated further in Section 4.1.

Exercise 2.5.3. Prove that for an ellipsoid E of Rm one has

∑

n≥0

2n/2en(E) ≤ L
√
log(m+ 1)γ2(T, d) ,

and that this estimate is essentially optimal. Compare with (2.67).

The proof of (2.117) hinges on ideas which are at least 50 years old, and
which relate to the methods of Exercise 2.2.14. The left-hand side is the easier
part (it is also the most important for us). It follows from the next lemma,
the proof of which is basically a special case of (2.39).

Lemma 2.5.4. We have en(E) ≥ 1
2a2n .

Proof. Consider the following ellipsoid in R
2n :

En =

{
(ti)i≤2n ;

∑

i≤2n

t2i
a2i
≤ 1

}
.

Since En is the image of E by a contraction (namely the “projection on the
first 2n coordinates”) it holds that en(En) ≤ en(E).

Let us denote by B the centered unit Euclidean ball of R2n and by Vol
the volume in this space. Let us consider a subset T of En, with cardT ≤ 22

n

,
and ε > 0; then

Vol

(⋃

t∈T

(εB + t)

)
≤
∑

t∈T

Vol(εB + t) ≤ 22
n

ε2
n

VolB = (2ε)2
n

VolB .

On the other hand, since ai ≥ a2n for i ≤ 2n, we have a2nB ⊂ En, so that
VolEn ≥ a2

n

2nVolB. Thus when 2ε < a2n , we cannot have En ⊂
⋃

t∈T (εB + t).
Therefore en(En) ≥ ε. �
We now turn to the upper bound, which relies on a special case of (2.40).

Lemma 2.5.5. We have

en+3(E) ≤ 3max
k≤n

(a2k2
k−n) . (2.118)

Proof. We keep the notation of the proof of Lemma 2.5.4. First we show that

en+3(E) ≤ en+3(En) + a2n . (2.119)
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To see this, we observe that when t ∈ E , then

1 ≥
∑

i≥1

t2i
a2i
≥
∑

i>2n

t2i
a2i
≥ 1

a22n

∑

i>2n

t2i

so that (
∑

i>2n t2i )
1/2 ≤ a2n and, viewing En as a subset of E , we have

d(t, En) ≤ a2n . Thus if we cover En by certain balls with radius ε, the balls
with the same centers but radius ε+ a2n cover E . This proves (2.119).

Consider now ε > 0, and a subset Z of En with the following properties:

any two points of Z are at mutual distance ≥ 2ε (2.120)

cardZ is as large as possible under (2.120). (2.121)

Then by (2.121) the balls centered at points of Z and with radius ≤ 2ε cover
En. Thus

cardZ ≤ Nn+3 ⇒ en+3(En) ≤ 2ε . (2.122)

The balls centered at the points of Z, with radius ε, have disjoint interiors,
so that

cardZ Vol(εB) ≤ Vol(En + εB) . (2.123)

Now for t = (ti)i≤2n ∈ En, we have
∑

i≤2n t2i /a
2
i ≤ 1, and for t′ in εB, we

have
∑

i≤2n t′2i /ε
2 ≤ 1. Let ci = 2max(ε, ai). Since

(ti + t′i)
2

c2i
≤ 2t2i + 2t′2i

c2i
≤ 1

2

(
t2i
a2i

+
t′2i
ε2

)
,

we have

En + εB ⊂ E1 :=

{
t ;
∑

i≤2n

t2i
c2i
≤ 1

}
.

Therefore
Vol(En + εB) ≤ VolE1 = VolB

∏

i≤2n

ci

and comparing with (2.123) yields

cardZ ≤
∏

i≤2n

ci
ε
= 22

n ∏

i≤2n

max
(
1,

ai
ε

)
.

Assume now that for any k ≤ n we have a2k2
k−n ≤ ε. Then ai ≤ a2k ≤ ε2n−k

for 2k < i ≤ 2k+1, so that
∏

i≤2n

max
(
1,

ai
ε

)
=
∏

k≤n−1

∏

2k<i≤2k+1

max
(
1,

ai
ε

)

≤
∏

k≤n−1

(
2n−k

)2k
= 2

∑
k≤n(n−k)2k

≤ 22
n+2

since
∑

i≥0 i2
−i = 4.
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To sum up, if ε = maxk≤n a2k2
k−n, we have shown that

cardZ ≤ 22
n

· 22
n+2

≤ Nn+3 ,

so that en+3(En) ≤ 2ε. The conclusion follows from (2.119). �
Proof of Proposition 2.5.2. We have, using (2.118)

∑

n≥3

2n/2en(E) =
∑

n≥0

2(n+3)/2en+3(E)

≤ L
∑

n≥0

2n/2
(∑

k≤n

2k−na2k

)

≤ L
∑

k≥0

2ka2k
∑

n≥k

2−n/2

≤ L
∑

k≥0

2k/2a2k .

Since E is contained in the ball centered at the origin with radius a1, we have
en(E) ≤ a1 for each n. The result follows. �

2.6 Proof of the Fundamental Partitioning Theorem

In this section we prove Theorem 2.3.16.

Theorem 2.6.1. Assume that on the metric space (T, d) there exists a de-
creasing sequence of functionals (Fn)n≥0 that satisfies the growth condition
of Definition 2.3.10. Then we can find an increasing sequence of partitions
(An) with cardAn ≤ Nn+1 and

sup
t∈T

∑

n≥0

2n/2Δ(An(t)) ≤
Lr

c∗
F0(T ) + LrΔ(T ) . (2.124)

This is not exactly Theorem 2.3.16 because here we have cardAn ≤ Nn+1

rather than cardAn ≤ Nn, but Theorem 2.3.16 follows by combining Theo-
rem 2.6.1 with Lemma 2.3.5.

Replacing Fn by Fn/c
∗ it suffices to consider the case c∗ = 1, so we assume

this condition throughout this section.
Before going into the details let us first explain the principle of the con-

struction. We construct the increasing sequence (An) of partitions by in-
duction, starting of course with A0 = {T}. Together with C ∈ An, we will
construct a point tn,C of T , and an integer jn(C) in Z. We assume

C ⊂ B(tn,C , r
−jn(C)) , (2.125)
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so that in particular
Δ(C) ≤ 2r−jn(C) . (2.126)

Thus, we may think of jn(C) as keeping track of the diameter of C. More
accurately, jn(C) keeps track of a convenient upper bound for the diameter
of C, as it may well happen that Δ(C) is much smaller than 2r−jn(C). We
do not require that tn,C belongs to C.

To start the construction, we set A0 = {T}, and we choose any point
t0,T ∈ T . We then take for j0(T ) the largest possible integer such that T ⊂
B(t0,T , r

−j0(T )), so that

r−j0(T ) ≤ rΔ(T ) . (2.127)

Let us now assume that for a certain n ≥ 0 we have already constructed
the partition An with cardAn ≤ Nn+1. To construct An+1 we will split each
set of An in at most Nn+1 pieces according to Lemma 2.6.2 below. Since
N2

n+1 ≤ Nn+2 we will have cardAn+1 ≤ Nn+2, and in this manner we will
construct the corresponding increasing sequence of partitions An.

All the magic of course is in the procedure by which we will split a given
element of An into pieces and in the information that we gather while doing
so. To describe this procedure, let us fix C ∈ An, and let j = jn(C).

Lemma 2.6.2 (The Decomposition Lemma). Consider a subset C of
T , an integer n ≥ 0 and j ∈ Z. Let m = Nn+1. Assume that for a certain
tC ∈ T we have C ⊂ B(tC , r

−j). Then we can find m′ ≤ m and a partition
(A�)�≤m′ such that for each � ≤ m′ we have either

∃t� ∈ C , A� ⊂ B(t�, r
−j−1) , (2.128)

or else

r−j−12n/2−1 + sup
t∈A�

Fn+1(A� ∩B(t, r−j−2)) ≤ Fn(C) . (2.129)

Thus we split C into two kinds of pieces. Those that satisfy (2.128) are
of “smaller diameter” than C itself. For those that satisfy (2.129), we gain
some (still mysterious) control on the behavior of the functionals Fn. Two
noticeable features of this proof are that it is “algorithmic” (the construction
is obtained by repeating a basic simple step until the entire set C has been
used up) and “greedy” in that the basic simple step maximizes some simple
measure of “gain”.

Proof. The proof will show in fact that for � < m the set A� satisfies (2.128)
and that if � = m = m′ the set A� = Am satisfies (2.129). (The present
formulation is motivated by pedagogical reason, as it makes the exposition
easier in more complicated cases.) To avoid being distracted by secondary
issues, let us first assume that T is finite. By induction over 1 ≤ � ≤ m =
Nn+1 we construct points t� ∈ C and sets A� ⊂ C as follows.
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First, we set D0 = C and we choose t1 in C such that

Fn+1(C ∩B(t1, r
−j−2)) = sup

t∈C
Fn+1(C ∩B(t, r−j−2)) . (2.130)

We then set A1 = C ∩ B(t1, r
−j−1). The idea is simply that “we take the

largest possible piece of C” (it is in this sense that the method is “greedy”).
The reader notices that the radius of the balls in (2.130) is r−j−2 while
it is r−j−1 in the definition of A1. This is the main idea of the proof. A
“large piece” of C is a piece of the type A1 = C ∩ B(t1, r

−j−1) for which
Fn+1(C ∩B(t1, r

−j−2)) (rather than Fn+1(A1)) is large. This construction is
perfectly appropriate in order to use the growth condition of Definition 2.3.10,
as it naturally creates well separated “large” pieces (of which C∩B(t1, r

−j−2)
is the first one). The drawback of the construction is that the information we
produce “skips a level” since it pertains to smaller balls than those we would
like (with radius r−j−2 rather than r−j−1), and the key point of the proof
will be to show that we can at some stage recover the information about the
“skipped level”.

To continue the construction, assume now that t1 , . . . , t� and A1, . . . , A�

have already been constructed, and set D� = C\
⋃

1≤p≤� Ap. If D� = ∅, we
set m′ = � and the construction stops. Otherwise, we choose t�+1 in D� such
that

Fn+1(D� ∩B(t�+1, r
−j−2)) = sup

t∈D�

Fn+1(D� ∩B(t, r−j−2)) . (2.131)

We set A�+1 = D� ∩ B(t�+1, r
−j−1) and we continue in this manner until

either we stop or we construct

Dm−1 = C\
⋃

�<m

A� .

If Dm−1 is empty, the construction is finished. Otherwise we set Am = Dm−1,
so that A1, . . . , Am form a partition of C. In this manner we have partitioned
C in at most m pieces.

If � < m it is obvious by construction that (2.128) holds, so that to
finish the proof it suffices to show that (2.129) holds for � = m. The proof
relies on the growth condition. (Let us observe for future use that it actually
suffices for the proof that the growth condition holds whenever a is of the
type a = r−j′−1 for a certain j′ ∈ Z, and that other values of a are not
needed.) Then (2.73) rewrites as

∀� ≤ m, t� ∈ B(s, r−j) ; ∀� , �′ ≤ m, � �= �′ ⇒ d(t�, t�′) ≥ r−j−1 , (2.132)

and the content of the growth condition is that this implies (since c∗ = 1)

∀ � ≤ m, H� ⊂ B(t�, r
−j−2)

⇒ Fn

( ⋃

�≤m

H�

)
≥ r−j−12n/2 +min

�≤m
Fn+1(H�) . (2.133)
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Let us construct a point tm ∈ Am = Dm−1 as in (2.131) for � = m − 1.
All the points (t�)�≤m belong to C ⊂ B(tC , r

−j). For � < m we have by
construction

t�+1 ∈ D� = C\
⋃

1≤p≤�

Ap = C\
⋃

1≤p≤�

B(tp, r
−j−1) ,

and therefore d(t�+1, tp) ≥ r−j−1 for p ≤ �. Consequently these points satisfy
(2.132) for s = tC , and therefore (2.133) holds for H� = D�−1 ∩B(t�, r

−j−2),
where we recall that D0 = C. Since H� ⊂ C, we obtain

Fn(C) ≥ Fn

( ⋃

�≤m

H�

)
≥ r−j−12n/2 +min

�≤m
Fn+1(H�) . (2.134)

Now, it follows from (2.131) that for 1 ≤ � ≤ m− 1

sup
t∈D�

Fn+1(D� ∩B(t, r−j−2)) ≤ Fn+1(D� ∩B(t�+1, r
−j−2))

= Fn+1(H�+1) ,

and (2.130) implies that this is also true when � = 0. Since the sequence (D�)
decreases, this implies that for 0 ≤ � < m we have

sup
t∈Dm−1

Fn+1(Dm−1 ∩B(t, r−j−2)) ≤ Fn+1(H�+1)

and therefore

sup
t∈Dm−1

Fn+1(Dm−1 ∩B(t, r−j−2)) ≤ min
1≤�≤m

Fn+1(H�) .

Combining with (2.134) we finally obtain (since Am = Dm−1)

r−j−12n/2 + sup
t∈Am

Fn+1(Am ∩B(t, r−j−2)) ≤ Fn(C) , (2.135)

and this finishes the proof when T is finite. When T need not be finite, we
set ε = r−j−12n/2−1 and we replace (2.131) by

Fn+1(D� ∩B(t�+1, r
−j−2)) ≥ sup

t∈D�

Fn+1(D� ∩B(t, r−j−2))− ε , (2.136)

and rather than (2.135) we reach

r−j−12n/2 + sup
t∈Am

Fn+1(Am ∩B(t, r−j−2)) ≤ Fn(C) + ε .

Recalling the value of ε finishes the proof. 
�
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We now continue the construction proving Theorem 2.6.1. We split
the set C ∈ An into at most m pieces using the Decomposition Lemma
(Lemma 2.6.2), and we consider one of these pieces A.

If A = A� satisfies (2.128), we define jn+1(A) = j + 1 = jn(C) + 1 and
tn+1,A = t�, so that

A = A� ⊂ B(t�, r
−j−1) = B(tn+1,A, r

−jn+1(A)) .

Let us stress for further use that in that case tn+1,A ∈ C.
If A = A� satisfies (2.129), we define instead jn+1(A) = j(= jn(C)) and

tn+1,A = tn,C , so that

A ⊂ C ⊂ B(tn,C , r
−jn(C)) = B(tn+1,A, r

−jn+1(A)) .

This completes the basic procedure and the construction, and we turn to
the proof of (2.124). First we observe that for any t ∈ T , (2.126) implies

∑

n≥0

2n/2Δ(An(t)) ≤ 2
∑

n≥0

r−jn(An(t))2n/2 , (2.137)

and our objective is to bound the right-hand side. We fix t in T once and for
all. It turns out that in the right-hand side of (2.137) only certain terms really
contribute. We develop this idea in the next lemma. The basic observation is
simply that the sum of a geometric series can be basically bounded by either
the first or the last term of the series.

Lemma 2.6.3. Consider numbers (an)n≥0, an ≥ 0, and assume supn an <
∞. Consider α > 1 and define

I =
{
k ≥ 0 ; ∀n ≥ 0 , n �= k , an < akα

|k−n|} . (2.138)

Then ∑

n≥0

an ≤
2α

α− 1

∑

k∈I

ak . (2.139)

Proof. Let us write n ≺ k when ak ≥ anα
|n−k|. This relation is a partial

order: if n ≺ k and k ≺ p then ap ≥ anα
|p−k|+|k−n| ≥ anα

|p−n|, so that
n ≺ p. Let us observe that the set I defined above is the set of elements
k of N that are maximal, i.e. k ≺ k′ ⇒ k = k′. Since we assume that the
sequence (an) is bounded, there cannot exist an increasing sequence for the
order ≺. Consequently, for each n in N there exists k ∈ I with n ≺ k. Then
an ≤ akα

−|n−k|, and therefore

∑

n≥0

an ≤
∑

k∈I

∑

n≥0

akα
−|k−n| ≤ 2

1− α−1

∑

k∈I

ak . 
�
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We go back to the control of the right-hand side of (2.137). We recall
that r ≥ 4. To lighten notation we set j(n) = jn(An(t)), and we set an =
r−j(n)2n/2. This sequence is bounded because either j(n) > j(n−1) and then
a(n) ≤ a(n− 1), or else an ≤ F0(T ) by (2.129). Consider the set I provided
by Lemma 2.6.3 for α =

√
2. We observe the following fundamental relation:

k ∈ I , k ≥ 1⇒ j(k − 1) = j(k) , j(k + 1) = j(k) + 1 . (2.140)

Indeed, if j(k+1) = j(k), then ak+1 =
√
2ak, so that k �∈ I by the definition

of I, and if j(k−1) = j(k)−1 then ak−1 = (r/
√
2)ak ≥ 2ak, and again k �∈ I

by definition of I.

Lemma 2.6.4. Consider elements 1 ≤ k < k′ of I. Then

1

4r
ak ≤ Fk−1(Ak−1(t))− Fk′+1(Ak′+1(t)) . (2.141)

Proof. It follows from (2.125) that if we define A∗ := Ak′+1(t) and t∗ :=
tk′+1,A∗ then

A∗ ⊂ B(t∗, r−j(k′+1)) .

Moreover, since k′ ∈ I we have j(k′ + 1) = j(k′) + 1, and as noted we have
t∗ ∈ Ak′(t) ⊂ Ak(t). Also j(k′) ≥ j(k + 1), and j(k + 1) = j(k) + 1 since
k ∈ I and k ≥ 1. Consequently, j(k′ + 1) ≥ j(k) + 2 and therefore

A∗ ⊂ Ak(t) ∩B(t∗, r−j(k)−2) .

Moreover, since k ∈ I and k ≥ 1, we have j(k − 1) = j(k). By construction,
(2.129) used for n = k − 1 and C = An(t) = Ak−1(t) implies

r−j(k)−12(k−1)/2−1 + sup
u∈Ak(t)

Fk(Ak(t) ∩B(u, r−j(k)−2)) ≤ Fk−1(Ak−1(t)) ,

(2.142)
so that since r−j(k)−12(k−1)/2−1 ≥ ak/4r, (2.142) implies

1

4r
ak + Fk(A

∗) ≤ Fk−1(Ak−1(t)) . (2.143)

Since k ≤ k′ and since the sequence (Fn) decreases, we have Fk(A
∗) ≥

Fk′+1(Ak′+1(t)) and (2.143) proves (2.141). 
�
Proof of Theorem 2.6.1. Let

x(n) = Fn(An(t)) ,

so that (2.141) implies

1

4r
ak ≤ x(k − 1)− x(k′ + 1) .
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Moreover, since the sequence (Fn) of functionals decreases, and since the
sequence of sets (An(t)) decreases, the sequence (x(n)) decreases.

Let us assume first that I is infinite and let us enumerate I as an increasing
sequence (ki)i≥1. For i ≥ 1 let us define y(i) = x(ki), so that the sequence
(y(i)) decreases since the sequence (x(n)) decreases. For i ≥ 2 we have ki−1 ≥
ki−1 so that x(ki− 1) ≤ y(i− 1). Similarly, x(ki+1 +1) ≥ x(ki+2) = y(i+2).
Since ki ≥ 1 (2.141) implies

1

4r
aki ≤ y(i− 1)− y(i+ 2) . (2.144)

Since y(i) ≤ x(0) = F0(A0(t)) = F0(T ), summation of the inequalities (2.144)
yields ∑

i≥2

aki ≤ LrF0(T ) . (2.145)

It only remains to control ak1 . When k1 = 0, then a0 = r−j0(T ) ≤ rΔ(T ).
Otherwise k1 ≥ 1, and then (2.143) implies ak1 ≤ 4rF0(T ). This completes
the proof when I is infinite. Only small changes are required when I is finite,
and this is left to the reader. 
�

2.7 A General Partitioning Scheme

Theorem 2.6.1 admits considerable generalizations, which turn out to be
very useful. These generalizations admit basically the same proof as Theo-
rem 2.6.1. They require an extension of the “growth condition” of Definition
2.3.10. We consider a function

θ : N ∪ {0} → R
+ .

Definition 2.3.10 corresponds to the case θ(n) = 2(n−1)/2.
The condition we are about to state involves two new parameters β and

τ . Definition 2.3.10 corresponds to the case β = 1 and τ = 1. The parameter
τ ∈ N is of secondary importance. The larger τ , the more “room there is”.

Let us recall that since Definition 2.3.8, we say that sets (H�)�≤m are
(a, r) separated if there exist s, t1, . . . , tm for which

∀� ≤ m, t� ∈ B(s, ar) ; ∀� , �′ ≤ m, � �= �′ ⇒ d(t�, t�′) ≥ a , (2.146)

and
∀� ≤ m, H� ⊂ B(t�, a/r) .

Definition 2.7.1. We say that the functionals Fn satisfy the growth con-
dition if for a certain integer τ ≥ 1, and for certain numbers r ≥ 4 and
β > 0, the following holds true. Consider a > 0, any integer n ≥ 0, and set
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m = Nn+τ . Then, whenever the subsets (H�)�≤m of T are (a, r) separated in
the sense of Definition 2.3.8, then

Fn

( ⋃

�≤m

H�

)
≥ aβθ(n+ 1) + min

�≤m
Fn+1(H�) . (2.147)

In the right-hand side of (2.147), the term aβθ(n + 1) is the product of aβ ,
which accounts for the scale at which the sets H� are separated, and of the
term θ(n+1), which accounts for the number of these sets. The “linear case”
β = 1 is by far the most important. The role of the parameter τ is to give
some room. When τ is large, there are more sets and it should be easier to
prove (2.147).

The reader noticed that we call “growth condition” both the condition
of Definition 2.3.10 and the more general condition of Definition 2.7.1. It
is not practical to give different names to these conditions because we shall
eventually consider several more conditions in the same spirit. We shall always
make precise to which condition we refer.

We will assume the following regularity condition for θ. For some 1 < ξ ≤
2, and all n ≥ 0, we have

ξθ(n) ≤ θ(n+ 1) ≤ rβ

2
θ(n) . (2.148)

When θ(n) = 2(n−1)/2, (2.148) holds for ξ =
√
2. The main result of this

section is as follows.

Theorem 2.7.2. Under the preceding conditions we can find an increasing
sequence (An) of partitions of T with cardAn ≤ Nn+τ such that

sup
t∈T

∑

n≥0

θ(n)Δ(An(t))
β ≤ L(2r)β

(F0(T )

ξ − 1
+ θ(0)Δ(T )β

)
. (2.149)

In all the situations we shall consider, it will be true that F0({t1, t2}) ≥
θ(0)d(t1, t2)

β for any points t1 and t2 of T . (Since F1(H) ≥ 0 for any set H,
this condition is essentially weaker in spirit than (2.147) for n = 0.) Then
θ(0)Δ(T )β ≤ F0(T ).

The sequence (An) of Theorem 2.7.2 need not be admissible because
cardAn is too large. To construct good admissible sequences we will combine
Theorem 2.7.2 with Lemma 2.3.5.

Not surprisingly, the key to the proof of Theorem 2.7.2 is the following,
which is simply an adaptation of Lemma 2.6.2 to the present setting.

Lemma 2.7.3. If the functionals Fn satisfy the growth condition, then, given
integers n ≥ 0 and j ∈ Z, for any subset C of T such that

∃s ∈ T ; C ⊂ B(s, r−j) ,
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we can find a partition (A�)�≤m′ of C, where m′ ≤ m = Nn+τ , such that for
each � ≤ m′ we have either

∃t� ∈ C ; A� ⊂ B(t�, r
−j−1) , (2.150)

or else

1

2
r−β(j+1)θ(n+ 1) + sup

t∈A�

Fn+1(A� ∩B(t, r−j−2)) ≤ Fn(C) . (2.151)

The proof is nearly identical to the proof of Lemma 2.6.2 so it is left to the
reader.

Proof of Theorem 2.7.2. We construct the sequence of partitions (An) and
tn,A, jn(A) for A ∈ An as in Theorem 2.6.1, using the Decomposition Lemma
at each step. Since, however, there is no point in repeating the same proof,
we will organize the argument differently.

The basic idea is that (since we have “skipped levels”) we must keep track
not only of what we do in the current step of the construction but also of
what we do in the previous step. This is implemented by keeping track for
each set C ∈ An of three different “measures of its size”, namely

ai(C) = sup
t∈C

Fn(C ∩B(t, r−jn(C)−i)) ,

for i = 0, 1, 2. This quantity depends also on n, in the sense that if C ∈ An and
C ∈ An+1 than ai(C) need not be the same whether we see C as an element
of An or of An+1. To lighten notation we shall not indicate this dependence.
For technical reasons keeping track of the values aj(C) is not very convenient,
and instead we will keep track of three quantities bj(C) for j = 0, 1, 2, where
bj(C)(≥ aj(C)) is a kind of “regularized version” of aj(C). (These quantities
also depend on n.) We rewrite the conditions aj(C) ≤ bj(C):

Fn(C) ≤ b0(C) (2.152)

∀t ∈ C , Fn(C ∩B(t, r−jn(C)−1)) ≤ b1(C) (2.153)

∀t ∈ C , Fn(C ∩B(t, r−jn(C)−2)) ≤ b2(C) . (2.154)

We will also require the following two technical conditions:

b1(C) ≤ b0(C) (2.155)

and

b0(C)− 1

2
r−β(jn(C)+1)θ(n) ≤ b2(C) ≤ b0(C) . (2.156)

Moreover, the quantities bi will satisfy the following fundamental relation:
if n ≥ 0 , A ∈ An+1 , C ∈ An , A ⊂ C , then
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∑

0≤i≤2

bi(A) +
1

2
(1− 1

ξ
)r−β(jn+1(A)+1)θ(n+ 1)

≤
∑

0≤i≤2

bi(C) +
1

4
(1− 1

ξ
)r−β(jn(C)+1)θ(n) . (2.157)

As we shall show below in the last step of the proof, summation of these
relations over n ≥ 0 implies (2.149). Let us make a first comment about
(2.157). When jn+1(A) > jn(C), since r−βθ(n + 1) ≤ θ(n)/2 by (2.148) we
have

r−β(jn+1(A)+1)θ(n+ 1) ≤ 1

2
r−β(jn(C)+1)θ(n) , (2.158)

and in that case (2.157) is satisfied as soon as
∑

0≤i≤2 bi(A) ≤
∑

0≤i≤2 bi(C).
This is related to the idea, already made explicit in the proof of Theorem
2.6.1, that this case “does not matter”. It will be harder to satisfy (2.157)
when jn+1(A) = jn(C).

Before we go into the details of the construction, and of the recursive
definition of the numbers bj(C), we explain how this proof was found. It is
difficult here to give a “big picture” why the approach works. We simply
gather in each case the available information to make sensible definitions.
Analysis of these definitions in the two main cases below will convince the
reader that this is exactly how we have proceeded. Of course, when starting
such an approach, it is difficult to know whether it will succeed, so we simply
crossed our fingers and tried. The overall method seems powerful.

We now define the numbers bj(C) by induction over n. We start with

b0(T ) = b1(T ) = b2(T ) = F0(T ) .

For the induction step from n to n+1, let us first consider the case where,
when applying the Decomposition Lemma, the set A = A� satisfies (2.150).
We then define

b0(A) = b2(A) = b1(C) , b1(A) = min(b1(C), b2(C)) .

Relations (2.155) and (2.156) for A are obvious. To prove (2.152) for A, we
write

Fn+1(A) ≤ Fn+1(C ∩B(t�, r
−j−1))

≤ Fn(C ∩B(t�, r
−j−1)) ≤ b1(C) = b0(A) ,

using (2.153) for C. In a similar manner, we have, if t ∈ A, and since
jn+1(A) = j + 1,

Fn+1(A ∩B(t, r−jn+1(A)−1)) ≤ Fn+1(C ∩B(t, r−j−2))

≤ Fn(C ∩B(t, r−j−2))

≤ min(b1(C), b2(C)) = b1(A) ,
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and this proves (2.153) for A. Also, (2.154) for A follows from (2.152) for A
since b2(A) = b0(A).

To prove (2.157), we observe that
∑

0≤i≤2

bi(A) ≤ 2b1(C) + b2(C) ≤
∑

0≤i≤2

bi(C) , (2.159)

since b1(C) ≤ b0(C) by (2.155). We observe that, since jn+1(A) = jn(C)+ 1,
(2.158) holds and combining with (2.159) this proves (2.157).

Next, we consider the case where A = A� satisfies (2.151). We define

b0(A) = b0(C) ; b1(A) = b1(C) ; b2(A) = b0(C)− 1

2
r−β(j+1)θ(n+ 1) .

It is obvious that A and n+1 in place of C and n satisfy the relations (2.125),
(2.155) and (2.156). The relations (2.152) and (2.153) for A follow from the
fact that similar relations hold for C rather than A, that Fn+1 ≤ Fn, and
that the functional Fn+1 is increasing. Moreover (2.154) follows from (2.151)
and (2.152).

To prove (2.157), we observe that by definition

∑

0≤i≤2

bi(A) +
1

2
(1− 1

ξ
)r−β(j+1)θ(n+ 1)

= 2b0(C) + b1(C)− 1

2ξ
r−β(j+1)θ(n+ 1)

≤ 2b0(C) + b1(C)− 1

2
r−β(j+1)θ(n) , (2.160)

using the regularity condition (2.148) on θ(n) in the last inequality. But
(2.156) implies

b0(C) ≤ b2(C) +
1

2
r−β(j+1)θ(n) ,

so that (2.160) implies (2.157).
We have completed the construction, and we turn to the proof of (2.149).

By (2.157), for any t in T , any n ≥ 0, we have, setting jn(t) = jn(An(t))

∑

0≤i≤2

bi(An+1(t)) +
1

2
(1− 1

ξ
)r−β(jn+1(t)+1)θ(n+ 1)

≤
∑

0≤i≤2

bi(An(t)) +
1

4
(1− 1

ξ
)r−β(jn(t)+1)θ(n) .

Since bi(T ) = F0(T ) and since bi(A) ≥ 0 by (2.152) to (2.154), summation of
these relations for 0 ≤ n ≤ q implies

1

2
(1− 1

ξ
)
∑

0≤n≤q

r−β(jn+1(t)+1)θ(n+ 1) (2.161)

≤ 3F0(T ) +
1

4
(1− 1

ξ
)
∑

0≤n≤q

r−β(jn(t)+1)θ(n) (2.162)
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and thus

1

4
(1− 1

ξ
)
∑

0≤n≤q

r−β(jn(t)+1)θ(n) ≤ 3F0(T ) +
1

4
(1− 1

ξ
)r−β(j0(T )+1)θ(0) .

By (2.125), we have Δ(An(t)) ≤ 2r−jn(t), and the choice of j0(T ) implies
r−j0(T )−1 ≤ Δ(T ) so that, since ξ ≤ 2,

∑

n≥0

θ(n)Δβ(An(t)) ≤
L(2r)β

ξ − 1
(F0(T ) +Δβ(T )θ(0)) . 
�

Exercise 2.7.4. Write in complete detail the proof of Theorem 2.7.2 along
the lines of the proof of Theorem 2.6.1.

To illustrate how the parameter τ in Theorem 2.7.2 may be used we give
another proof of Theorem 2.3.1. Recall the definition 2.2.19 of γα(T, d).

Second proof of Theorem 2.3.1. We will use Theorem 2.7.2 with r = 4 , β = 1
and τ = τ ′ + 1. For n ≥ 0 and a subset A of U we define

Fn(A) = sup
t∈A

∑

k≥n

2k/αd(t, Tk) .

In order to check (2.147), consider m = Nn+τ ′+1, and assume that there exist
points t1 , . . . , tm of U such that

1 ≤ � < �′ ≤ m⇒ d(t�, t�′) ≥ a .

Consider then subsets H1 , . . . , Hm of U with H� ⊂ B(t�, a/4). By definition
of Fn+1, given any ε > 0, we can find u� ∈ H� such that

∑

k≥n+1

2k/αd(u�, Tk) ≥ Fn+1(H�)− ε .

Since d(t�, t�′) ≥ a for � �= �′, the open balls B(t�, a/2) are disjoint. Since
there are Nn+τ ′+1 of them, whereas cardTn ≤ Nn+τ ′ , one of these balls
cannot meet Tn. Thus there is � ≤ m with d(t�, Tn) ≥ a/2. Since u� ∈ H� ⊂
B(t�, a/4), the inequality d(u�, Tn) ≥ a/4 holds, and

∑

k≥n

2k/αd(u�, Tk) ≥ 2n/α
a

4
+
∑

k≥n+1

2k/αd(u�, Tk)

≥ 2n/α−2a+ Fn+1(H�)− ε .

Since u� ∈ H� this shows that

Fn

( ⋃

p≤m

Hp

)
≥ 2n/α−2a+ Fn+1(H�)− ε ,
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and since ε is arbitrary, this proves that (2.147) holds with θ(n+1) = 2n/α−2.
(Condition (2.148) holds only when α ≥ 1, which is the most interesting case.
We leave to the reader to complete the case α < 1 by using a different value
of r.) We have F0(U) ≤ S, and since d(t, T0) ≤ S for t ∈ U , and cardT0 = 1,
we have Δ(U) ≤ 2S. To finish the proof one simply applies Theorem 2.7.2
and Lemma 2.3.5. �

We now collect some simple facts, the proof of which will also serve as
another (easy) application of Theorem 2.7.2.

Theorem 2.7.5. (a) If U is a subset of T , then

γα(U, d) ≤ γα(T, d) .

(b) If f : (T, d)→ (U, d′) is onto and satisfies

∀x, y ∈ T , d′(f(x), f(y)) ≤ Ad(x, y) ,

for some constant A, then

γα(U, d
′) ≤ K(α)Aγα(T, d) .

(c) We have
γα(T, d) ≤ K(α) sup γα(F, d) , (2.163)

where the supremum is taken over F ⊂ T and F finite.

It seems plausible that with different methods than those used below one
should be able to obtain (b) and (c) with K(α) = 1, although there is little
motivation to do this.

Proof. Part (a) is obvious. To prove (b) we consider an admissible se-
quence of partitions An with supt

∑
n≥0 2

n/αΔ(An(t), d) ≤ 2γa(T, d). Con-
sider then sets Tn ⊂ T with cardTn ≤ Nn and card(Tn ∩ A) = 1 for each
A ∈ An so that supt∈T

∑
n≥0 2

n/αd(t, Tn) ≤ 2γα(T, d). We observe that

sups∈U

∑
n≥0 2

n/αd′(s, f(Tn)) ≤ 2Aγα(T, d), and we apply Theorem 2.3.1.
To prove (c) we essentially repeat the argument in the proof of Theorem

2.3.14. We define

γα,n(T, d) = inf sup
t∈T

∑

k≥n

2k/αΔ(Ak(t))

where the infimum is over all admissible sequences (Ak). We consider the
functionals

Fn(A) = sup γα,n(G, d)

where the supremum is over all finite subsets G of A. We will use Theo-
rem 2.7.2 with β = 1 , θ(n+1) = 2n/α−1 , τ = 1, and r = 4. (As in the proof
of Theorem 2.3.1 this works only for α ≥ 1, and the case α < 1 requires a dif-
ferent choice of r.) To prove (2.147), consider m = Nn+1 and consider points
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(t�)�≤m of T , with d(t�, t�′) ≥ a if � �= �′. Consider sets H� ⊂ B(t�, a/4)
and c < min�≤m Fn+1(H�). For � ≤ m, consider finite sets G� ⊂ H� with
γα,n+1(G�, d) > c, and G =

⋃
�≤m G�. Consider an admissible sequence (An)

of G, and
I = {� ≤ m ; ∃A ∈ An , A ⊂ G�}

so that, since the sets G� for � ≤ m are disjoint, we have card I ≤ Nn, and
thus there exists � ≤ m with � �∈ I. Then for t ∈ G�, we have An(t) �⊂ G�, so
An(t) meets a ball B(t�′ , a/4) for � �= �′, and hence Δ(An(t)) ≥ a/2; so that

∑

k≥n

2k/αΔ(Ak(t)) ≥
a

2
2n/α +

∑

k≥n+1

2k/αΔ(Ak(t) ∩G�)

and hence

sup
t∈G�

∑

k≥n

2k/αΔ(Ak(t)) ≥ a2n/α−1 + γα,n+1(G�, d) .

Since the admissible sequence (An) is arbitrary, we have shown that

γα,n(G, d) ≥ a2n/α−1 + c

and thus
Fn

( ⋃

�≤m

H�

)
≥ a2n/α−1 +min

�≤m
Fn+1(H�) ,

which is (2.147). Finally, we have F0(T ) = sup γα(G, d), where the supremum
is over all finite subsets G of T , and since Δ(G) ≤ γα(G, d), we have that
Δ(T ) ≤ F0(T ) and we conclude by Lemma 2.3.5 and Theorem 2.7.2. 
�

There are many possible variations about the scheme of proof of Theo-
rem 2.7.2. We end this section with such a version. This specialized result will
be used only in Section 16.8, and its proof could be omitted at first reading.

There are natural situations, where, in order to be able to prove (2.147),
we need to know that H� ⊂ B(t�, ηa) where η is very small. In order to apply
Theorem 2.7.2, we have to take r ≥ 1/η, which (when β = 1) produces a
loss of a factor 1/η. We will give a simple modification of Theorem 2.7.2 that
produces only the loss of a factor log(1/η).

For simplicity, we assume r = 4, β = 1, θ(n) = 2n/2 and τ = 1. We
consider an integer s ≥ 2.

Theorem 2.7.6. Assume that the hypotheses of Theorem 2.7.2 are mod-
ified as follows. Whenever t1 , . . . , tm are as in (2.146), and whenever
H� ⊂ B(t�, a4

−s), we have

Fn

( ⋃

�≤m

H�

)
≥ a2(n+1)/2 +min

�≤m
Fn+s(H�) . (2.164)
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Then there exists an increasing sequence of partitions (An) in T such that
cardAn ≤ Nn+1 and

sup
t∈T

∑

n≥0

2n/2Δ(An(t)) ≤ Ls(F0(T ) +Δ(T )) .

Now the reader observes that in the last term of (2.164) we have Fn+s(H�)
rather than the larger quantity Fn+1(H�). This will be essential in Sec-
tion 16.8. It is of course unimportant in the first term of the right-hand
side to have the exponent n+1 rather than n. We use n+1 to mirror (2.73).

Proof. We closely follow the proof of Theorem 2.7.2. For clarity we assume
that T is finite. First, we copy the proof of the Decomposition Lemma
(Lemma 2.6.2), and rather than obtaining (2.129) (which occurs exactly for
� = m) we now have

1

2
4−j−12(n+1)/2 + sup

t∈Am

Fn+s(Am ∩B(t, 4−j−1−s)) ≤ Fn(C) . (2.165)

Together with each set C in An, we construct numbers bi(C) ≥ 0 for 0 ≤ i ≤
s+ 1, such that

∀i , 1 ≤ i ≤ s+ 1 , bi(C) ≤ b0(C)

b0(C) ≥ bs+1(C) ≥ b0(C)− 1

2
4−jn(C)−12n/2

Fn(C) ≤ b0(C)

∀i , 1 ≤ i ≤ s+ 1 , ∀t ∈ C , Fn+i−1(C ∩B(t, 4−jn(C)−i)) ≤ bi(C) . (2.166)

The reader observes that (2.166) is not a straightforward extension of (2.154),
since it involves Fn+i−1 rather than the larger quantity Fn. We set bi(T ) =
F0(T ) for 0 ≤ i ≤ s + 1. For the induction from n to n + 1 we consider one
of the pieces A of the partition of C ∈ An and j = jn(C). If A = Am, we set

∀i , 0 ≤ i ≤ s , bi(A) = bi(C)

bs+1(A) = b0(A)−
1

2
4−j−12(n+1)/2 . (2.167)

Since jn+1(A) = jn(C), for i = s + 1 condition (2.166) for A follows from
(2.165) and (2.167) since Fn(C) ≤ b0(C) = b0(A). For i ≤ s, condition (2.166)
for A follows from the same condition for C since Fn+i ≤ Fn+i−1.

If A = A� with � < m we then set

bs+1(A) = b1(C) ; ∀i ≤ s , bi(A) = min(bi+1(C), b1(C)) .

Since jn+1(A) = jn(A)+1, condition (2.166) for i = s+1 and A follows from
the same condition for C and i = 1, while condition (2.166) for i ≤ s and A
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follows form the same condition for C and i + 1. Exactly as previously we
show in both cases that

∑

0≤i≤s+1

bi(A) +
1

2
(1− 1√

2
)4−jn+1(A)−12(n+1)/2

≤
∑

0≤i≤s+1

bi(C) +
1

4
(1− 1√

2
)4−jn(C)−12n/2 + εn+1

and we finish the proof in the same manner. �

2.8 Notes and Comments

It seems necessary to say a few words about the history of Gaussian processes.
I have heard people saying that the problem of characterizing continuity
and boundedness of Gaussian processes goes back (at least implicitly) to
Kolmogorov.

The understanding of Gaussian processes was long delayed by the fact that
in the most immediate examples the index set is a subset of R or R

n and
that the temptation to use the special structure of this index set is nearly
irresistible. Probably the single most important conceptual progress about
Gaussian processes is the realization, in the late sixties, that the boundedness
of a (centered) Gaussian process is determined by the structure of the metric
space (T, d), where d is the usual distance d(s, t) = (E(Xs − Xt)

2)1/2. It is
of course difficult now to realize what a tremendous jump in understanding
this was, since this seems so obvious a posteriori.

In 1967, R. Dudley obtained the inequality (2.36), which however cannot
be reversed in general. (Actually, as R. Dudley pointed out repeatedly, he
did not state (2.36). Nonetheless since he performed all the essential steps
it seems appropriate to call (2.36) Dudley’s bound. It simply does not seem
worth the effort to find who deserves the very marginal credit of having stated
(2.36) first.) A few years later, X. Fernique proved that in the “stationary
case” Dudley’s inequality can be reversed [3], i.e. he proved in that case the
lower bound of Theorem 2.4.1. This result is historically important, because
it was central to the work of Marcus and Pisier [7], [8] who build on it to solve
all the classical problems on random Fourier series. A part of their results
was presented in Section 3.2. Interestingly, now that the right approach has
been found, the proof of Fernique’s result is not really easier than that of
Theorem 2.4.1.

Another major contribution of Fernique (building on earlier ideas of C.
Preston) was an improvement of Dudley’s bound based on a new tool called
majorizing measures. Fernique conjectured that his inequality was essentially
optimal. Gilles Pisier suggested in 1983 that I should work on this conjecture.
In my first attempt I proved quite fast that Fernique’s conjecture held in the
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case where the metric space (T, d) is ultrametric. I was quite disappointed
to learn that Fernique had already done this, so I was discouraged for a
while. In the second attempt, I tried to decide whether a majorizing measure
existed on ellipsoids. I had the hope that some simple density with respect to
the volume measure would work. It was difficult to form any intuition, and I
really struggled in the dark for months. At some point I decided not to use the
volume measure, but rather a combination of suitable point masses, and easily
found a direct construction of the majorizing measure on ellipsoids. This of
course made it quite believable that Fernique’s conjecture was true, but I still
tried to disprove it. At some point I realized that I did not understand why
a direct approach to prove Fernique’s conjecture using a partition scheme
should fail, while this understanding should be useful to construct a counter
example. Once I tried this direct approach, it was only a matter of a few days
to prove Fernique’s conjecture. Gilles Pisier made two comments about this
discovery. The first one was “you are lucky”, by which he of course meant
that I was lucky that Fernique’s conjecture was true, since a counter example
would have been of limited interest. I am grateful to this day for his second
comment: “I wish I had proved this myself, but I am very glad you did it.”

Fernique’s concept of majorizing measures is very difficult to grasp at the
beginning, and was consequently dismissed by the main body of probabilists
as a mere curiosity. (I must admit that I myself did find it very difficult to
understand.) However, in 2000, while discussing one of the open problems
of this book with K. Ball (be he blessed for his interest in it!) I discovered
that one could replace majorizing measures by the totally natural variation
on the usual chaining arguments that was presented here. That this was not
discovered much earlier is a striking illustration of the inefficiency of the
human brain (and of mine in particular).

Some readers wondered why I do not mention Slepian’s lemma. Of course
this omission is done on purpose and must be explained. Slepian’s lemma is
very specific to Gaussian processes, and focusing on it seems a good way to
guarantee that one will never move beyond these. One notable progress made
by the author was to discover the scheme of proof of Proposition 2.4.9 that
dispenses with Slepian’s lemma, and that we shall use in many situations.
Comparison results such as Slepian’s lemma are not at the root of results such
as the majorizing measure theorem, but rather are (at least qualitatively) a
consequence of them. Indeed, if two centered Gaussian processes (Xt)t∈T

and (Yt)t∈T satisfy E(Xs − Xt)
2 ≤ E(Ys − Yt)

2 whenever s, t ∈ T , then
(2.80) implies E supt∈T Xt ≤ LE supt∈T Yt. (Slepian’s lemma asserts that this
inequality holds with constant L = 1.)

It may happen in the construction of Lemma 2.6.2 that C = A1. Thus it
may happen in the construction of Theorem 2.6.1 that a same set A belongs
both to An and An+1. When this is the case, the construction shows that
one has jn+1(A) = jn(A) + 1. It is therefore incorrect, as was done in the
first edition, to use in the construction a number j(A) depending only on A.
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I am grateful to J. Lehec for having pointed out this mistake. Fortunately,
the only change required in the proofs is to add the proper indexes to the
quantities of the type j(C).

In [9] the author presented a particularly simple proof of (an equivalent
form of) Theorem 2.4.1. It is also based on a partitioning scheme. For the
readers who are familiar with that proof, it might be useful to compare the
partitioning scheme of [9] with the partitioning scheme presented here. We
shall show that these schemes “produce the same pieces of T”, the difference
being that these are not gathered to form partitions in the same manner.
Consider a metric space (T, d) and a functional F (H) on T . Assume that for
a certain number r it satisfies the following growth condition. Given m ≥ 2,
k ∈ Z and points t1, . . . , tm of T , with d(t�, t�′) ≥ r−k, and subsets H� of
B(t�, r

−k−1) then

F (∪j≤mH�) ≥ r−k
√
logm+min

�≤m
F (H�) . (2.168)

Let us then perform the construction of Theorem 2.4.1 for the functionals
Fn = F . Let us define j0(T ) as in (2.127) and we partition T using the
Decomposition Lemma 2.6.2. That is, for j = j0,T we inductively construct
sets D�, and we pick t� in D� such that

F (D� ∩B(t�+1, r
−j−2)) = sup

t∈D�

F (D� ∩B(t, r−j−2)) ,

we set A�+1 = D� ∩ B(t�+1, r
−j−1) and D�+1 = D� \ A�+1. Assume that the

construction continues until we construct a non-empty last piece C = Am =
Dm−1, where m = N1. Let us get investigate what happens to this set C at
the next stage of the construction. Recall that we have defined j1(A) = j.
First, we find u1 in C with

F (C ∩B(u1, r
−j−2)) = sup

t∈C
F (C ∩B(t, r−j−2)) ,

we set A∗
1 = C ∩ B(t, r−j−1) and D∗

1 = C \ A∗
1, and we continue in this

manner. The point is that this construction is the exact continuation of the
construction by which we obtained A1, A2, etc. In consequence, if we consider
the sets A1, . . . , Am−1 together with the sets A∗

1, . . . , A
∗
m∗−1, where m

∗ = N2,
these pieces are simply obtained by continuing the exhaustion procedure by
which we constructed A1, . . . , Am−1 until m+m∗− 2 (etc.). Therefore, as in
[9] we construct all the pieces that are obtained by pursuing this exhaustion
procedure until the entire space is exhausted, and the same is true at every
level of the construction.

The generic chaining as presented here (and the use of a scheme where
the functional F might depend on the stage n of the construction) offers at
times considerable clarification over the previous approaches. This justifies
presenting a proof of Theorem 2.4.1 which is not the simplest we know.
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3. Random Fourier Series and Trigonometric
Sums, I

3.1 Translation Invariant Distances

The superiority of the generic chaining bound (2.45) over Dudley’s entropy
bound (2.36) is its ability to take advantage of the lack of homogeneity of the
underlying space metric space (T, d). When, however, there is homogeneity,
the situation should be simpler and Dudley’s bound should be optimal. A
typical such case is when T is a compact metrizable Abelian group and d is a
translation invariant distance, d(s+v, t+v) = d(s, t). At the expense of minor
complications, one may also consider the case where T is a subset with non-
empty interior in a locally compact group, but to demonstrate how simple
things are we treat only the compact case. We denote by μ the normalized
Haar measure of T , that is μ(T ) = 1 and μ is translation invariant. Thus, all
balls with a given radius have the same Haar measure.

It is very convenient in this setting to use as a “main parameter” the
function ε �→ μ(Bd(0, ε)). We recall that we defined N0 = 1 and Nn = 22

n

for n ≥ 1.

Theorem 3.1.1. Consider a continuous translation invariant distance d on
T . For n ≥ 0 define

εn = inf
{
ε > 0 ; μ(Bd(0, ε)) ≥ 2−2n = N−1

n

}
. (3.1)

Then
1

L

∑

n≥0

εn2
n/2 ≤ γ2(T, d) ≤ L

∑

n≥0

εn2
n/2 . (3.2)

Our first lemma shows that the numbers εn are basically the entropy
numbers, so that (3.2) simply states (as expected in this homogeneous case)
that γ2(T, d) is equivalent to Dudley’s integral.

Lemma 3.1.2. The entropy numbers en(T ) = en(T, d) satisfy

εn ≤ en(T ) ≤ 2εn . (3.3)

Proof. Since μ is translation invariant, all the balls of T with the same radius
have the same measure. Consequently if one can cover T by Nn balls with
radius ε then εn ≤ ε, and this proves the left-hand side inequality.

M. Talagrand, Upper and Lower Bounds for Stochastic Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
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To prove the converse we follow the “volumic” method of Exercise 2.2.14.
Consider n ≥ 1 and a subset S of T which is as large as possible, and such
that the balls B(t, εn) for t ∈ S are disjoint. Each of these balls has a measure
≥ N−1

n , so that N−1
n · cardS ≤ 1 and therefore cardS ≤ Nn. But since we

assumed S to be as large as possible, the balls centered at S with radius 2εn
cover T , so that the entropy number en(T, d) satisfies en(T, d) ≤ 2εn. 
�
Proof of Theorem 3.1.1. The right-hand side inequality follows from (3.3)
and Corollary 2.3.2.

To prove the left-hand side inequality we consider an admissible sequence
(An) of partitions of T with supt∈T

∑
n≥0 2

n/2Δ(An(t), d) ≤ 2γ2(T, d). We
construct by induction a decreasing sequence An ∈ An as follows. First we
choose A0 = T (there is no other choice). Having constructed An−1 we choose
An ⊂ An−1, An ∈ An with the largest possible measure for μ, so that, since
cardAn ≤ Nn we have μ(An) ≥ N−1

n μ(An−1), and since N2
n = Nn+1 we

obtain by induction that μ(An) ≥ N−1
n+1. Since d is translation invariant, it

follows from (3.1) that An cannot be contained in a ball with radius < εn+1,
and thus that Δ(An, d) ≥ εn+1.

Consider now t ∈ Ak, so that Ap(t) = Ap for each 0 ≤ p ≤ k and thus

∑

0≤n≤k

εn+12
n/2 ≤

∑

0≤n≤k

2n/2Δ(An, d) =
∑

0≤n≤k

2n/2Δ(An(t), d) ≤ 2γ2(T, d) .

Since ε0 ≤ Δ(A0, d) this completes the proof of the left-hand side inequality
of (3.2). The reader will of course object that there is no reason for which
the sets of An should be measurable for μ, but our argument works anyway
replacing “measure” by “outer measure”. 
�

Exercise 3.1.3. With the notation of Theorem 3.1.1 prove that for a con-
stant K depending only on α, for α ≥ 1 we have

1

K

∑

n≥0

εn2
n/α ≤ γα(T, d) ≤ K

∑

n≥0

εn2
n/α . (3.4)

The following theorem might look deceptively simple. It expresses however a
deep fact, and is at the root of the main result of this chapter, the Marcus-
Pisier theorem, Theorem 3.2.12.

Theorem 3.1.4. Consider a translation-invariant distance dω on T , that
depends on a random parameter ω. Assuming enough measurability and in-
tegrability consider the distance d given by

d(s, t) = (Edω(s, t)
2)1/2 . (3.5)

Then
(Eγ2(T, dω)

2)1/2 ≤ Lγ2(T, d) + L(EΔ(T, dω)
2)1/2 . (3.6)



3.2 The Marcus-Pisier Theorem 77

Proof. First we observe that d is indeed a distance, using the triangle in-
equality in L2 to obtain

(E(dω(s, t) + dω(t, u))
2)1/2 ≤ (Edω(s, t)

2)1/2 + (Edω(t, u)
2)1/2 .

Consider the sequence (εn) as in Theorem 3.1.1. For each n ≥ 1 let us set
Bn = Bd(0, εn), so that μ(Bn) ≥ N−1

n by definition of εn. Let us define

bn(ω) =
1

μ(Bn)

∫

Bn

dω(0, t)dμ(t) .

Markov inequality implies

μ({t ∈ Bn ; dω(0, t) ≤ 2bn(ω)}) ≥
1

2
μ(Bn) ≥

1

2
N−1

n ≥ N−1
n+1 ,

so that the number εn(ω) corresponding to the distance dω satisfies εn+1(ω) ≤
2bn(ω). Also, ε0(ω) ≤ Δ(T, dω), so that (3.2) implies

γ2(T, dω) ≤ L
∑

n≥0

εn(ω)2
n/2

≤ LΔ(T, dω) + L
∑

n≥0

εn+1(ω)2
(n+1)/2

≤ LΔ(T, dω) + L
∑

n≥0

bn(ω)2
(n+1)/2 . (3.7)

Now, the Cauchy-Schwarz inequality implies

bn(ω)
2 ≤ 1

μ(Bn)

∫

Bn

dω(0, t)
2dμ(t) ,

and since Edω(0, t)
2 ≤ ε2n for t ∈ Bn we have Ebn(ω)

2 ≤ ε2n, so that (3.6)
follows from (3.7), the triangle inequality in L2 and (3.2). 
�

Exercise 3.1.5. (a) Show that if T is an arbitrary metric space and dω an
arbitrary random metric, then (3.6) need not hold.
(b) Give examples showing that the last term is necessary in (3.6).

3.2 The Marcus-Pisier Theorem

A character χ on T is a continuous map from T to C such that |χ(t)| = 1
for each t and χ(s+ t) = χ(s)χ(t) for any s, t ∈ T . In particular χ(0) = 1. A
random Fourier series is a series

∑

i≥i

ξiχi
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where ξi is a complex-valued r.v. and χi is a (non-random) character. In this
section we consider only random Fourier series whose terms are symmetric in-
dependent r.v.s. We will study the convergence of such series when we return
to this topic in Chapter 7, and for now we concentrate on the central part of
this study, i.e. the study of finite sums

∑
i ξiχi, which we call trigonometric

sums. It is implicit when we write such a formula that i ranges over a finite
set. We denote by ‖ · ‖ the supremum norm of such a sum, so that

∥∥∑

i

ξiχi

∥∥ = sup
t∈T

∣∣∣
∑

i

ξiχi(t)
∣∣∣ .

The ultimate goal is to find upper and lower bounds for the quantity
E‖
∑

i ξiχi‖ that are of the same order in full generality. In the present sec-
tion we shall basically achieve this under the extra condition that the r.v.s
“ξi have L1 and L2 norms of the same order.”

Theorem 3.2.1. Assume that the r.v.s ξi are symmetric, independent, have
a second moment, and consider on T the distance d given by

d(s, t)2 =
∑

i

E|ξi|2|χi(s)− χi(t)|2 . (3.8)

Then (
E
∥∥∑

i

ξiχi

∥∥2
)1/2

≤ L

(
γ2(T, d) +

(∑

i

E|ξi|2
)1/2)

. (3.9)

Here we control the size of
∑

i ξiχi via (E‖
∑

i ξiχi‖2)1/2 rather than via
E‖
∑

i ξiχi‖ simply because this is the way this is done in [3]. It is known
that this makes no difference, as these two quantities are always “of the same
order” from general principles.

If Xt =
∑

i ξiχi(t), (3.8) implies E|Xs − Xt|2 ≤ d(s, t)2, but it does not
seem possible to say much more unless one assumes more on the r.v.s ξi,
e.g. that they are Gaussian. Therefore it is at first surprising to obtain a
conclusion as strong as (3.9). Theorem 3.2.1 is another deceptively simple
result on which the reader should meditate.

Throughout the book we denote by εi independent Bernoulli (=coin flip-
ping) r.v.s, that is

P(εi = ±1) =
1

2
.

(Thus εi is a r.v. while εi is a small positive number.)
Let us now explain the fundamental idea to obtain upper bounds for

E‖
∑

i ξiχi‖ when r.v.s ξi are symmetric: the sum
∑

i ξiχi has the same dis-
tribution as the sum

∑
i εiξiχi, where the Bernoulli r.v.s εi are independent

and independent of the r.v.s ξi. Therefore, if we work given the randomness
of the ξi we are dealing with a process of the type



3.2 The Marcus-Pisier Theorem 79

Xt =
∑

i

ai(t)εi . (3.10)

Such a process is called a Bernoulli process (the individual random variables
are linear combinations of independent Bernoulli r.v.s). The fundamental
class of Bernoulli processes will receive much attention in Chapter 5, and we
will learn how to produce very efficient bounds using chaining arguments.
For the time being we need only the simple and essential fact that Bernoulli
processes “have better tails than the corresponding Gaussian process.” This
is a consequence of the following simple (yet fundamental) fact, for which we
refer to [3] page 90, or to Exercise 3.2.3 below.

Lemma 3.2.2 (The Subgaussian Inequality). Consider independent
Bernoulli r.v.s εi (i.e. with P(εi = 1) = P(εi = −1) = 1/2)) and real numbers
ai. Then for each u > 0 we have

P
(∣∣∣
∑

i

εiai

∣∣∣ ≥ u
)
≤ 2 exp

(
− u2

2
∑

i a
2
i

)
. (3.11)

Exercise 3.2.3. (a) For λ ∈ R prove that

E expλεi = coshλ ≤ exp
λ2

2
.

(b) Prove that

E exp
(
λ
∑

i

εiai

)
≤ exp

(λ2

2

∑

i

a2i

)
,

and prove (3.11) using the formula P(X ≥ u) ≤ exp(−λu)E expλX for u > 0
and λ > 0.

Exercise 3.2.4. (a) Prove that

∥∥
∑

i

εiai
∥∥
p
≤ L

√
p
(∑

i

a2i

)1/2
.

(Hint: use (2.22).)
(b) For a r.v. X ≥ 0 prove that (EX2)2 ≤ EX EX3.
(c) Use (a) and (b) to prove that

E
∣∣∑

i

εiai
∣∣ ≥ 1

L

(∑

i

a2i

)1/2
. (3.12)

As a consequence of the subgaussian inequality (3.11), a process such as
(3.10) satisfies the increment condition (1.4) with respect to the distance d∗

given by

d∗(s, t)2 :=
∑

i

(ai(s)− ai(t))
2 ,



80 3. Random Fourier Series and Trigonometric Sums, I

and therefore from (2.49),

(
E sup

s,t∈T
|Xs −Xt|2

)1/2
≤ Lγ2(T, d

∗) . (3.13)

Let us now observe that (3.13) holds also for complex-valued processes (i.e.
the quantities ai(t) might be complex). This is seen simply by considering
separately the real and imaginary parts.

Proof of Theorem 3.2.1. Since for each character χ we have χ(0) = 1, it holds
that E|

∑
i ξiχi(0)|2 =

∑
i E|ξi|2, so it suffices to prove that

(
E sup

t,s

∣∣∣
∑

i

(ξiχi(t)− ξiχi(s))
∣∣∣
2
)1/2

≤ Lγ2(T, d) + L
(∑

i

E|ξi|2
)1/2

. (3.14)

Since the r.v.s ξi are symmetric the sum
∑

i ξiχi has the same distribution as
the sum

∑
i εiξiχi, where the Bernoulli r.v.s εi are independent and indepen-

dent of the r.v.s ξi. For clarity let us assume that the underlying probability
space is a product Ω × Ω′, with a product probability, and that if (ω, ω′) is
the generic point of this product, then ξi depends on ω only and εi depends
on ω′ only. For each ω define the distance dω on T by

dω(s, t)
2 =
∑

i

|ξi(ω)|2|χi(s)− χi(t)|2 ,

and observe that
Δ(T, dω)

2 ≤ 4
∑

i

|ξi(ω)|2 (3.15)

and
E dω(s, t)

2 =
∑

i

E|ξi|2|χi(s)− χi(t)|2 = d(s, t)2 . (3.16)

Next we observe using (3.13) that for each ω we have

E′ sup
t,s

∣∣∣
∑

i

(
εi(ω

′)ξi(ω)χi(t)− εi(ω
′)ξi(ω)χi(s)

)∣∣∣
2

≤ Lγ2(T, dω)
2 , (3.17)

where E′ denotes expectation in ω′ only.
The distances dω are translation-invariant, as follows from the facts that

χ(s+u) = χ(s)χ(u) and |χ(u)| = 1. The result then follows combining (3.6),
(3.16) and (3.17). 
�

Exercise 3.2.5. The present exercise deduces classical bounds for trigono-
metric sums from (3.9). It is part of the exercise to recognize that it deals
with trigonometric sums. We consider the case where T is the unit circle in
C, and where χi(t) = ti, the i-th power of t. We observe the bound
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|si − ti| ≤ min(2, |i||s− t|) . (3.18)

Let ci = E|ξi|2, and consider the distance d of (3.8), d(s, t)2 =
∑

i ci|si− ti|2.
Let b0 =

∑
|i|≤3 ci and for n ≥ 1, let bn =

∑
Nn≤|i|≤Nn+1

ci. Prove that

γ2(T, d) ≤ L
∑

n≥0

2n/2
√
bn , (3.19)

and consequently from (3.9)

E
∥∥
∑

i

ξiχi

∥∥ ≤ L
∑

n≥0

2n/2
√
bn . (3.20)

(Hint: Here since the group is in multiplicative form the unit is 1 rather than
0. Observe that d(t, 1)2 ≤

∑
i ci min(4, |i|2|t − 1|2). Use this bound to prove

that the quantity εn of Theorem 3.1.1 satisfies ε2n ≤ L
∑

i ci min(1, |i|22−2n+1

)
and conclude using (3.2). If you find this exercise too hard, you will find its
solution in Section 7.7.)

We now turn to the proof of lower bounds for trigonometric sums. We
start by a general principle. We denote by �x and �x the real part and the
imaginary part of a complex number x.

Lemma 3.2.6. Consider a complex-valued process (Xt)t∈T and assume that
both (�Xt)t∈T and (�Xt)t∈T are Gaussian processes. Consider the distance
d(s, t) = (E|Xs −Xt|2)1/2 on T . Then

γ2(T, d) ≤ LE sup
s,t∈T

|Xs −Xt| . (3.21)

Proof. Consider the distances d1 and d2 on T given respectively by

d1(s, t)
2 = E

(
�(Xs −Xt)

)2

and
d2(s, t)

2 = E
(
�(Xs −Xt)

)2
.

Combining the left-hand side of (2.80) with Lemma 2.2.1 implies

γ2(T, d1) ≤ LE sup
s,t∈T

|�Xs −�Xt| ≤ LE sup
s,t∈T

|Xs −Xt|

and similarly γ2(T, d2) ≤ LE sups,t∈T |Xs − Xt|. Since d ≤ d1 + d2, (2.57)
implies that γ2(T, d) ≤ LE sups,t∈T |Xs −Xt|. 
�

Exercise 3.2.7. Extend the Majorizing Measure Theorem 2.4.1 to the case
of complex-valued processes.
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Lemma 3.2.8. Consider a finite number of independent standard normal
r.v.s gi and complex numbers ai. Then

E
∥∥
∑

i

aigiχi

∥∥ ≥ 1

L
γ2(T, d) +

1

L

(∑

i

|ai|2
)1/2

, (3.22)

where d is the distance on T given by

d(s, t)2 =
∑

i

|ai|2|χi(s)− χi(t)|2 . (3.23)

Proof. First we observe that, since χ(0) = 1 for each character χ,

E
∥∥∑

i

aigiχi

∥∥ ≥ E
∣∣∑

i

aigi
∣∣ ≥ 1

L

(∑

i

|ai|2
)1/2

, (3.24)

where the last inequality is obtained by considering separately the real and
imaginary parts. Combining with (3.21) completes the proof. 
�

The following classical simple facts are also very useful.

Lemma 3.2.9 (The Contraction Principle). Consider independent and
symmetric r.v.s ηi valued in a Banach space, and numbers αi with |αi| ≤ 1.
Then

E
∥∥
∑

i

αiηi
∥∥ ≤ E

∥∥
∑

i

ηi
∥∥ . (3.25)

Proof. We consider the quantity E‖
∑

i αiηi‖ as a function of the numbers
αi. It is convex, therefore it attains its maximum at an extreme point of its
domain. For such an extreme point αi = ±1 for each i, and in that case the
left and right-hand sides of (3.25) coincide. 
�
Lemma 3.2.10. Consider complex vectors xi in a complex Banach space and
independent symmetric real-valued r.v.s ξi. Then, if εi denote independent
Bernoulli r.v.s we have

E
∥∥∑

i

ξixi

∥∥ ≥ E
∥∥∑

i

E|ξi|εixi

∥∥ . (3.26)

Proof. Assuming without loss of generality that the r.v.s ξi and εi are inde-
pendent we use the symmetry of the r.v.s ξi to write

E
∥∥∑

i

ξixi

∥∥ = E
∥∥∑

i

εi|ξi|xi

∥∥ .

In the right-hand side, taking the expectation in the randomness of the vari-
ables ξi inside the norm rather than outside can only decrease this quantity.


�
In particular, since E|g| =

√
2/π when g is a standard Gaussian r.v.,

E
∥∥
∑

i

εixi

∥∥ ≤
√

π

2
E
∥∥
∑

i

gixi

∥∥ . (3.27)
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Exercise 3.2.11. Prove that the inequality (3.27) cannot be reversed in gen-
eral. More precisely find a situation where the sum is of length n and the
right-hand side is about

√
logn times larger than the left hand side.

Theorem 3.2.12 (The Marcus-Pisier theorem [4]). Consider complex
numbers ai, independent Bernoulli r.v.s εi, and independent standard Gaus-
sian r.v.s gi. Then

E
∥∥∑

i

aigiχi

∥∥≤ LE
∥∥∑

i

aiεiχi

∥∥ . (3.28)

That is, in the setting of these random Fourier series, when xi = aiχi, we
can reverse the general inequality (3.27).

Proof. Consider a number c > 0. Then

E
∥∥
∑

i

aigiχi

∥∥≤ I + II , (3.29)

where
I = E

∥∥∑

i

aigi1{|gi|≤c}χi

∥∥

and
II = E

∥∥
∑

i

aigi1{|gi|>c}χi

∥∥ .

Let us define u(c) = (E(g1{|g|≥c})
2)1/2. Consider the distance d given by

(3.23). When ξi = aigi1{|gi|≥c}, the distance d′ given by (3.8) satisfies d′ =
u(c)d, so that γ2(T, d

′) = u(c)γ2(T, d) and (3.9) implies

II ≤ Lu(c)

(
γ2(T, d) +

(∑

i

|ai|2
)1/2)

.

Recalling the lower bound (3.22), it follows that we can choose c large enough
that II ≤ (1/2)E‖

∑
i aigiχi‖. We fix such a value of c. Then (3.29) entails

E
∥∥∑

i

aigiχi

∥∥ ≤ 2 · I .

Consider independent Bernoulli r.v.s εi, that are independent of the r.v.s gi,
so that by symmetry

I = E
∥∥∥
∑

i

aiεigi1{|gi|<c}χi

∥∥∥ .

The contraction principle (Lemma 3.2.9) used given the randomness of the
variables gi yields I ≤ cE‖

∑
i aiεiχi‖, which completes the proof. 
�
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Exercise 3.2.13. Show that (3.28) does not hold when χi are general maps
from T to C with |χi(t)| = 1, even if χi(0) = 1.

Combining (3.28) with (3.22) and recalling the distance d of (3.23) we obtain
the following fundamental result.

Corollary 3.2.14. We have

E
∥∥
∑

i

aiεiχi

∥∥ ≥ 1

L
γ2(T, d) +

1

L

(∑

i

|ai|2
)1/2

. (3.30)

Proposition 3.2.15. Consider complex numbers ai, independent symmetric
real valued random variables ξi and characters χi. Consider on T the two
distances given by

d1(s, t)
2 =
∑

i≥1

|ai|2(E|ξi|)2|χi(s)− χi(t)|2

and
d2(s, t)

2 =
∑

i≥1

|ai|2E ξ2i |χi(s)− χi(t)|2 .

Then

1

L

(
γ2(T, d1) +

(∑

i

|ai|2(E|ξi|)2
)1/2)

≤ E
∥∥∑

i

aiξiχi

∥∥ (3.31)

≤ L
(
γ2(T, d2) +

(∑

i

|ai|2Eξ2i
)1/2)

.

Proof. The right-hand side of (3.31) simply reproduces (3.9). The left-hand
side follows by combining (3.26) and (3.30). 
�

Exercise 3.2.16. Prove that the right-hand side of (3.31) is at most LA the
left-hand side where

A = sup
i

(Eξ2)1/2

E|ξi|
. (3.32)

As a consequence, we can claim that “when the r.v.s ξi behave well, we
know how to estimate the quantity E‖

∑
i aiξiχi‖”.

This concludes for now our study of trigonometric sums. We shall return
to this topic in Section 7.2, where we shall be able to estimate the quantity
E‖
∑

i aiξiχi‖ under the only assumption that the r.v.s ξi are independent and
symmetric. In Chapter 7 we shall also investigate the convergence of random
Fourier series. Let us simply mention here that for such a series where the
quantity A of (3.32) is bounded, Proposition 3.2.15 allows to show that the
necessary and sufficient condition for convergence is γ2(T, d2) <∞.

It is not always easy to estimate the quantity γ2(T, d) in concrete situa-
tions. The book of Marcus and Pisier [4] contains a thorough account (which
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we will not reproduce) of the link between the present results and the “clas-
sical ones”. To illustrate the problems that arise, consider for example the
case where T = {−1, 1}N and for i ≤ N and t = (ti)i≤N ∈ T , let χi(t) = ti.
For real numbers ai, it should be obvious that ‖

∑
i≤N aiεiti‖ =

∑
i≤N |ai|.

Combining with (3.9) and (3.30) we get

1

L

∑

i≤N

|ai| ≤ γ2(T, d) ≤ L
∑

i≤N

|ai| , (3.33)

where of course d(s, t)2 =
∑

i≤N a2i |χi(s)− χi(t)|2 = 4
∑

i≤N a2i1{ti 	=si}. The
following exercise is in fact quite challenging.

Exercise 3.2.17. Find a direct proof of (3.33).

Some basic questions however remain unanswered, such as the following.
Consider independent r.v.s δi = δi(ω) with P(δi = 1) = 1/2 and P(δi = 0) =
1/2 and complex numbers ai. Consider on T the distances given by

d(s, t)2 =
∑

i

|ai|2|χi(s)− χi(t)|2

and
dω(s, t)

2 =
∑

i

δi(ω)|ai|2|χi(s)− χi(t)|2 .

It follows from (3.26) that

1

2
E
∥∥
∑

i

aiεiχi

∥∥ ≤ E
∥∥
∑

i

aiεiδiχi

∥∥ . (3.34)

Denoting by Eε expectation in the r.v.s εi only, (3.9) implies

Eε

∥∥∑

i

aiεiδiχi

∥∥ ≤ Lγ2(T, dω) + L(
∑

i

|ai|2)1/2 .

Taking expectations and using (3.30) to bound the left-hand side of (3.34)
from below yields

γ2(T, d) ≤ L
(
Eγ2(T, dω) +

(∑

i

|ai|2
)1/2)

. (3.35)

Research problem 3.2.18. Find a direct proof of (3.35).

In other words we would like to prove (3.35) using (3.2), i.e. we would like to
be able to reverse inequality (3.6), at least in the present case.
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3.3 A Theorem of Fernique

The present section explains a result of Fernique on vector-valued random
Fourier series and some of its consequences. In a sense it is an appendix of
Section 3.2. It is presented in a separate section as an homage to X. Fernique’s
decisive contributions to the ideas presented in this volume.

We consider a compact Abelian group T and a complex Banach space E
(nothing is lost by assuming that E is finite-dimensional). We denote by ‖ · ‖
the norm of E. Consider (finitely many) vectors ai ∈ E and characters χi on
T . Consider independent standard Gaussian r.v.s gi. We are interested in the
sum

∑
i aigiχi(t), and more specifically in estimating the quantity

E sup
t∈T

∥∥∥
∑

i

aigiχi(t)
∥∥∥ . (3.36)

We denote by x∗ the generic element of the dual E∗ of E.

Theorem 3.3.1 ([2]). We have

E sup
t∈T

∥∥∥
∑

i

aigiχi(t)
∥∥∥ ≤ L

(
E
∥∥∥
∑

i

aigi

∥∥∥+ sup
‖x∗‖≤1

E sup
t∈T

∣∣∣
∑

i

x∗(ai)giχi(t)
∣∣∣
)
.

(3.37)

Here ‖x∗‖ denote the (dual) norm of x∗. The reader should observe that both
terms on the right-hand side are obviously lower bounds for the left-hand side.
The point of (3.37) is that it reduces the estimation of the left-hand side to
that of two simpler quantities.

Let us denote by E∗
1 the unit ball of E∗. For (x∗, t) ∈ E∗

1 × T we set
Xx∗,t =

∑
i x

∗(ai)giχi(t), so that the quantity (3.36) is

E sup
(x∗,t)∈E∗

1×T

|Xx∗,t| . (3.38)

The canonical distance on E∗
1 × T associated to the process (Xx∗,t) is given

by

d((x∗, s), (y∗, t))2 =
∑

i

|x∗(ai)χi(s)− y∗(ai)χi(t)|2 . (3.39)

On E∗
1 we consider the distance δ given by

δ(x∗, y∗)2 =
∑

i

|x∗(ai)− y∗(ai)|2 . (3.40)

Since |χi(t)| = 1, we have

d((x∗, t), (y∗, t)) = δ(x∗, y∗) . (3.41)

Given z∗ ∈ E∗
1 we consider the following distance on T :
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dz∗(s, t)2 =
∑

i

|z∗(ai)χi(s)− z∗(ai)χi(t)|2 , (3.42)

so that
d((x∗, t), (x∗, s)) = dx∗(s, t) . (3.43)

Given x∗, y∗, z∗ ∈ E∗
1 and s, t ∈ T , we have

d((x∗, s)(y∗, t)) ≤ d((x∗, s), (z∗, s)) + d((z∗, s), (z∗, t)) + d((z∗, t), (y∗, t))

= δ(x∗, z∗) + dz∗(s, t) + δ(y∗, z∗) . (3.44)

Proof of Theorem 3.3.1. We use Lemma 3.2.6 to obtain

γ2(E
∗
1 , δ) ≤ LE

∥∥∥
∑

i

aigi

∥∥∥ . (3.45)

Also, given z∗ ∈ E∗
1 , denoting by LS the right-hand side of (3.37) we have

E sup
t∈T

|Xz∗,t| = E sup
t∈T

∣∣∣
∑

i

x∗(ai)giχi(t)
∣∣∣ ≤ LS (3.46)

and Lemma 3.2.6 again implies

γ2(T, dz∗) ≤ LS . (3.47)

Since the distance dz∗ is translation invariant, combining (3.2) and (3.3)
yields ∑

n≥0

2n/2en(T, dz∗) ≤ LS . (3.48)

In the remainder of the proof we deduce from (3.44), (3.45) and (3.48) that

γ2(E
∗
1 × T, d) ≤ LS , (3.49)

which finishes the proof using Theorem 2.2.22. Let us consider an admissible
sequence (An) of partitions of E

∗
1 such that

sup
x∗∈E∗

1

∑

n≥0

2n/2Δ(An(x
∗), δ) ≤ LS . (3.50)

Given A ∈ An let us select a point z∗(n,A) ∈ A for which

en(T, dz∗(n,A)) ≤ 2 inf{en(T, dz∗) ; z∗ ∈ A} . (3.51)

We then construct a partition CA,n of T in Nn sets, each of which are of diam-
eter ≤ 4en(T, dz∗(n,A)) for the distance dz∗(n,A). We consider the partition B′

n

of E∗
1 ×T in sets of the type A×C where A ∈ An and C ∈ CA,n. Its cardinal-

ity is ≤ N2
n = Nn+1. Let us define Bn as the partition of E∗

1 ×T generated by
B′
1, . . . ,B′

n so that as usual the sequence (Bn) increases and cardBn ≤ Nn+2.
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Consider a point (x∗, t) ∈ E∗
1 × T . Then, denoting by Bn((x

∗, t)) the set of
Bn which contains the point (x∗, t), we have

Bn((x
∗, t)) ⊂ A× C ,

where A = An(x
∗) and C is the element of the partition CA,n that contains

t. Using (3.44) for z∗ ∈ A we obtain

Δ(Bn(x
∗, t), d) ≤ L(Δ(An(x

∗), δ) +Δ(C, dz∗)) . (3.52)

Now, using successively the definition of the partition CA,n and the choice of
z∗(n,A),

Δ(C, dz∗(n,A)) ≤ 4en(T, dz∗(n,A)) ≤ 8en(T, dx∗) ,

and therefore using (3.52) for z∗ = z∗(n,A) we get

Δ(Bn(x
∗, t), d) ≤ L(Δ(An(x

∗), δ) + en(T, dx∗)) .

It then follows from (3.47) and (3.48) that

∑

n≥0

2n/2Δ(Bn(x
∗, t), δ) ≤ LS ,

so that combining with Lemma 2.3.5 yields (3.49) and finishes the proof. 
�
The following question was open for a long time. It was instrumental

in formulating the Bernoulli conjecture of Chapter 5. With the notation of
Theorem 3.3.1, if εi are independent Bernoulli r.v.s, is it true that

E sup
t

∥∥∥
∑

i

εiaiχi(t)
∥∥∥ ≤ LE

∥∥∥
∑

i

εiai

∥∥∥+ L sup
x∗∈E∗

E sup
t∈T

∣∣∣
∑

i

εix
∗(ai)χi(t)

∣∣∣ ?

(3.53)

Exercise 3.3.2. After you have learned the statement of Theorem 5.1.5,
prove (3.53).

If you find this exercise too difficult, its solution can be found in [3].

3.4 Notes and Comments

The discovery by X. Fernique that Dudley’s bound could be reversed for
stationary Gaussian processes [1] was a major progress, with considerable
influence. In particular it opened the way to the work of M. Marcus and G.
Pisier on random Fourier series.
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Ecole d’été de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Math.,
vol. 480, pp. 1–96. Springer, Berlin (1975)
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4. Matching Theorems, I

We remind the reader that, before attacking any chapter, she should find
useful to read the overview of this chapter, which is provided in the ap-
propriate section of Chapter 1, in Section 1.6 in the present case. For the
present chapter this overview should help to understand the overall approach
and especially the ultimate goal of the first section.

4.1 The Ellipsoid Theorem

As pointed out after Proposition 2.5.2, an ellipsoid E is in some sense quite
smaller than what one would predict by looking only at the numbers en(E).
We will trace the roots of this phenomenon to a simple geometric property,
namely that an ellipsoid is “sufficiently convex”, and we will formulate a
general version of this principle for sufficiently convex bodies. The case of
ellipsoids already suffices to provide tight upper bounds on certain matchings,
which is the main goal of the present chapter. The general case is at the root of
certain very deep facts of Banach space theory, such as Bourgain’s celebrated
solution of the Λp-problem in Sections 16.5 and 16.6.

The ellipsoid E of (2.110):

E =

{
t ∈ �2 ;

∑

i≥1

t2i
a2i
≤ 1

}
(2.110)

is the unit ball of the norm

‖x‖E =

(∑

i≥1

x2
i

a2i

)1/2

. (4.1)

Lemma 4.1.1. We have

‖x‖E , ‖y‖E ≤ 1⇒
∥∥∥
x+ y

2

∥∥∥
E
≤ 1− ‖x− y‖2E

8
. (4.2)

Proof. The parallelogram identity implies

‖x− y‖2E + ‖x+ y‖2E = 2‖x‖2E + 2‖y‖2E ≤ 4

M. Talagrand, Upper and Lower Bounds for Stochastic Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
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so that
‖x+ y‖2E ≤ 4− ‖x− y‖2E

and ∥∥∥
x+ y

2

∥∥∥
E
≤
(
1− 1

4
‖x− y‖2E

)1/2

≤ 1− 1

8
‖x− y‖2E . 
�

Since (4.2) is the only property of ellipsoids we will use, it clarifies matters
to state the following definition.

Definition 4.1.2. Consider a number p ≥ 2. A norm ‖·‖ in a Banach space
is called p-convex if for a certain number η > 0 we have

‖x‖ , ‖y‖ ≤ 1⇒
∥∥∥
x+ y

2

∥∥∥ ≤ 1− η‖x− y‖p . (4.3)

Thus (4.2) implies that the Banach space �2 provided with the norm ‖·‖E
is 2-convex. For q < ∞ the classical Banach space Lq is p-convex where
p = min(2, q). The reader is referred to [5] for this result and any other
classical facts about Banach spaces. Let us observe that, taking y = −x we
must have

2pη ≤ 1 . (4.4)

In this section we shall study the metric space (T, d) where T is the unit
ball of a p-convex Banach space B, and where d is the distance induced on
B by another norm ‖ · ‖∼. This concerns in particular the case where T is
the ellipsoid (2.110) and ‖ · ‖∼ is the �2 norm.

Given a metric space (T, d), we consider the functionals

γα,β(T, d) =
(
inf sup

t∈T

∑

n≥0

(
2n/αΔ(An(t), d)

)β)1/β
, (4.5)

where α and β are positive numbers, and where the infimum is over all admis-
sible sequences (An). Thus, with the notation of Definition 2.2.19, we have
γα,1(T, d) = γα(T, d). For matchings, the important functionals are γ2,2(T, d)
and γ1,2(T, d) (but it requires no extra effort to consider the general case).
The importance of these functionals is that in certain conditions they nicely
relate to γ2(T, d) through Hölder’s inequality. For motivation we explain right
now how this is done, even though this may spoil for the acute reader the
surprise of how the terms

√
logN occur in Section 4.3.

Lemma 4.1.3. Consider a finite metric space T , and assume that cardT ≤
Nm. Then

γ2(T, d) ≤
√
mγ2,2(T, d) . (4.6)

Proof. Since T is finite there exists an admissible sequence (An) of T for
which
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∀t ∈ T ,
∑

n≥0

2nΔ(An(t), d)
2 ≤ γ2,2(T, d)

2 . (4.7)

Since cardT ≤ Nm, we may assume that Am(t) = {t} for each t, so
that in (4.7) the sum is really over n ≤ m − 1. Since

∑
0≤n≤m−1 an ≤√

m(
∑

0≤n≤m a2n)
1/2 by the Cauchy-Schwarz inequality, it follows that

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t), d) ≤
√
mγ2,2(T, d) . 
�

How to relate the functionals γ1,2 and γ2 by a similar argument is shown in
Lemma 4.4.6 below.

Of course one may wonder how it is possible, using something as simple
as the Cauchy-Schwarz inequality in Lemma 4.1.3 that one can ever get es-
sentially exact results. At a general level the answer is obvious: it is because
we use this inequality in the case of near equality. That this is indeed the
case for the ellipsoids of Corollary 4.1.7 below is of course a non-trivial fact
about the geometry of these ellipsoids.

Theorem 4.1.4. If T is the unit ball of a p-convex Banach space, if η is as
in (4.3) and if the distance d on T is induced by another norm, then

γα,p(T, d) ≤ K(α, p, η) sup
n≥0

2n/αen(T, d) . (4.8)

The following exercise stresses the point of this theorem.

Exercise 4.1.5. (a) Prove that for a general metric space (T, d), it is true
that

γα,p(T, d) ≤ K(α)
(∑

n≥0

(
2n/αen(T, d)

)p)1/p
, (4.9)

and that
sup
n

2n/αen(T, d) ≤ K(α)γα,p(T, d) . (4.10)

(b) Prove that it is essentially impossible in general to improve on (4.9).

In words, the content of Theorem 4.1.4 is that the size of T , as measured
by the functional γα,p is smaller than what one would expect when knowing
only the numbers en(T, d).

Corollary 4.1.6 (The Ellipsoid Theorem). Consider the ellipsoid E of
(2.110) and α ≥ 1. Then

γα,2(E) ≤ K(α) sup
ε>0

ε(card{i ; ai ≥ ε})1/α. (4.11)
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Proof. Without loss of generality we may assume that the sequence (ai) is
non-increasing. We apply Theorem 4.1.4 to the case ‖ · ‖ = ‖ · ‖E , and where
d is the distance of �2, and we get, using (2.118) in the last inequality,

γα,2(E) ≤ K(α) sup
n

2n/αen(E) ≤ K(α) sup
n

2n/αa2n .

Now, the choice ε = a2n implies

2n/αa2n ≤ sup
ε>0

ε(card{i ; ai ≥ ε})1/α. 
�

The restriction α ≥ 1 is inessential and can be removed by a suitable
modification of (2.118). The important cases are α = 1 and α = 2.

The following immediate reformulation is useful when the ellipsoid is de-
scribed by a condition of the type

∑
j b

2
jx

2
j ≤ 1 rather than by a condition of

the type
∑

i(xi/ai)
2 ≤ 1.

Corollary 4.1.7. Consider a countable set J , numbers (bi)i∈J and the el-
lipsoid

E =
{
x ∈ �2(J) ;

∑

j∈J

b2jx
2
j ≤ 1

}
.

Then

γα,2(E) ≤ K(α) sup
u>0

1

u
(card{j ∈ J ; |bj | ≤ u})1/α .

Proof. Without loss of generality we can assume that J = N. We then set
ai = 1/bi, we apply Corollary 4.1.6, and we set ε = 1/u. 
�

We give right away a striking application of this result. This application
is at the root of the results of Section 4.4.

Proposition 4.1.8. Consider the set L of functions f : [0, 1]→ R such that
f(0) = f(1) = 0, f is continuous on [0, 1], f is differentiable outside a finite
set and sup |f ′| ≤ 1. Then γ1,2(L, d2) ≤ L, where d2(f, g) = ‖f − g‖2 =
(∫

[0,1]
(f − g)2dλ

)1/2
.

Proof. The very beautiful idea (due to Coffman and Shor [3]) is to use the
Fourier transform to represent L as a subset of an ellipsoid. The Fourier
coefficients are defined for p ∈ Z by

cp(f) =

∫ 1

0

exp(2πipx)f(x)dx .

The key fact is the Plancherel formula,

‖f‖2 =
(∑

p∈Z

|cp(f)|2
)1/2

, (4.12)
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which states that the Fourier transform is an isometry from L2([0, 1]) into
�2
C
(Z). Thus, if

D = {(cp(f))p∈Z ; f ∈ L} ,
it suffices to prove that γ1,2(D, d) < ∞ where d is the distance induced
by �2

C
(Z). By integration by parts, and since f(0) = f(1) = 0, cp(f

′) =
−2πipcp(f), so that, using (4.12) for f ′, we get

∑

p∈Z

p2|cp(f)|2 ≤
∑

p∈Z

|cp(f ′)|2 ≤ ‖f ′‖2 ,

and since |c0(f)| ≤ ‖f‖2 ≤ 1, for f ∈ L we have

|c0(f)|2 +
∑

p∈Z

p2|cp(f)|2 ≤ 2 ,

so that D is a subset of the complex ellipsoid E in �2
C
(Z) defined by

∑

p∈Z

max(1, p2)|cp|2 ≤ 2 .

Viewing each complex number cp as a pair (xp, yp) of real numbers with
|cp|2 = x2

p + y2p yields that E is (isometric to) the real ellipsoid defined by

∑

p∈Z

max(1, p2)(x2
p + y2p) ≤ 2 ,

and the result follows from Corollary 4.1.7. 
�

Exercise 4.1.9. (a) For k ≥ 1 consider the space T = {0, 1}2k . Writing
t = (ti)i≤2k a point of T , consider on T the distance d(t, t′) = 2−j , where
j = min{i ≤ 2k; ti �= t′j}. Consider the set L of 1-Lipschitz functions on

(T, d) which are zero at t = (0, . . . , 0). Prove that γ1,2(L, d∞) ≤ L
√
k, where

of course d∞ denotes the distance induced by the uniform norm (Hint: use
(4.9) and Lemma 4.3.9 below.)
(b) Let μ denote the uniform probability μ on T and d2 the distance induced
by L2(μ). It can be shown that γ1,2(L, d2) ≥

√
k/L. (This is not very difficult

but requires a thorough understanding of Section 6.3.) Meditate upon the
difference with Proposition 4.1.8.

As pointed out, the Ellipsoid theorem, and the principle behind it, have
sweeping consequences. There might be more applications of this principle,
and this motivates us to give a general theorem, from which Theorem 4.1.4
will immediately follow. The proof of this more general result is identical to
the proof of Theorem 4.1.4 itself. Its statement is more complicated, but at
first reading one should assume below that θ(n) = B2np/α for some number
B > 0, the only case which is relevant for the main results of this book.
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Theorem 4.1.10. Under the hypotheses of Theorem 4.1.4, consider a se-
quence (θ(n))n≥0, such that

∀n ≥ 0 , θ(n) ≤ η
( 1

4en(T, d)

)p
(4.13)

and that, for certain numbers 1 < ξ ≤ 2 , r ≥ 4 we have

∀n ≥ 0 , ξθ(n) ≤ θ(n+ 1) ≤ rp

2
θ(n) . (4.14)

Then there exists an increasing sequence (An) of partitions of T satisfying
cardAn ≤ Nn+1 and

sup
t∈T

∑

n≥0

θ(n)Δ(An(t), d)
p ≤ L

(2r)p

ξ − 1
. (4.15)

Proof of Theorem 4.1.4. When θ(n) = B2np/α, condition (4.14) is automat-
ically satisfied with

ξ = min(2, 2p/α) and r = max(4, 21/p+1/α) ,

and condition (4.13) becomes

sup
n≥0

2n/αen(T, d) ≤ A , (4.16)

where (4A)p = η/B. Then (4.15) entails

sup
t∈T

∑

n≥0

2np/αΔ(An(t), d)
p ≤ K(α, p, η)Ap . (4.17)

The sequence (An) need not be admissible, but as usual we define an admis-
sible sequence (Bn) by Bn = {T} for n = 0, 1 and Bn = An−1 for n ≥ 1
to obtain an admissible sequence which (when there is equality in (4.16))
witnesses (4.8), completing the proof of Theorem 4.1.4. 
�

In the case of general functions θ(n), the important condition remains
(4.13), the technical condition (4.14) is a version of the technical condition
(2.148), and one should simply think of θ(n) as a regularized version of the
right-hand side of (4.13).

Proof of Theorem 4.1.10. We denote by ‖·‖ the norm of the p-convex Banach
space of which T is the unit ball. We shall use Theorem 2.7.2 for τ = 1 , β = p
and the functionals Fn = F given by

F (A) = 1− inf{‖v‖ ; v ∈ convA} . (4.18)

It should be obvious that F is a functional. In particular F (A) ≥ 0 since
A is a subset of the unit ball T of the Banach space. To prove that these
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functionals satisfy the growth condition (2.147) of Definition 2.7.1 we consider
n ≥ 0 , m = Nn+1, and points (t�)�≤m in T , such that d(t�, t�′) ≥ a whenever
� �= �′. Consider also sets H� ⊂ T ∩Bd(t�, a/r), where the index d emphasizes
that the ball is for the distance d rather than for the norm ‖ · ‖. Set

u = inf
{
‖v‖ ; v ∈ conv

⋃

�≤m

H�

}
= 1− F

( ⋃

�≤m

H�

)
, (4.19)

and consider u′ such that

u′ > max
�≤m

inf{‖v‖ ; v ∈ convH�} = 1−min
�≤m

F (H�) . (4.20)

Let us define u′′ := min(u′, 1). (Observe that unless we are in the very special
situation where F (H�) = 0 for some �, i.e. one of the sets H� consists of a
singleton of norm 1, we can already assume that u′ ≤ 1.) For � ≤ m consider
v� ∈ convH� with ‖v�‖ ≤ u′′. It follows from (4.3) that for �, �′ ≤ m,

∥∥∥
v� + v�′

2u′′

∥∥∥ ≤ 1− η
∥∥∥
v� − v�′

u′′

∥∥∥
p

. (4.21)

Moreover, since (v� + v�′)/2 ∈ conv
⋃

�≤m H�, we have u ≤ ‖v� + v′�‖/2, and
(4.21) implies

u

u′′ ≤ 1− η
∥∥∥
v� − v�′

u′′

∥∥∥
p

,

so that, using that u′′ ≤ 1 in the second inequality,

‖v� − v�′‖ ≤ u′′
(u′′ − u

ηu′′

)1/p
≤ R :=

(u′′ − u

η

)1/p
,

and hence the points w� := R−1(v� − v1) belong to T . Now, since H� ⊂
Bd(t�, a/r) we have v� ∈ Bd(t�, a/r), because the ball Bd(t�, a/r) is convex
since the distance d arises from a norm. Since r ≥ 4, we have d(v�, v�′) ≥ a/2
for � �= �′, and, since the distance d arises from a norm, we have d(w�, w�′) ≥
R−1a/2 for � �= �′. Therefore en+1(T, d) ≥ R−1a/4.

Since u′ − u ≥ u′′ − u = ηRp it follows that

u′ ≥ u+ η
( a

4en+1(T, d)

)p
.

Since u′ is arbitrary in (4.20) we deduce using (4.19)

F
( ⋃

�≤m

H�

)
≥ min

�≤m
F (H�) + η

( a

4en+1(T, d)

)p
,

and from (4.13) that

F
( ⋃

�≤m

H�

)
≥ min

�≤m
F (H�) + apθ(n+ 1) .
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This completes the proof of the growth condition (2.147). It follows from
Theorem 2.7.2 that we can find an increasing sequence (An) of partitions of
T with cardAn ≤ Nn+1 such that

sup
t∈T

∑

n≥0

θ(n)Δ(An(t))
β ≤ L(2r)β

(F0(T )

ξ − 1
+ θ(0)Δ(T )β

)
.

To complete the proof of (4.15) one observes that F0(T ) = F (T ) = 1 and
that θ(0)Δ(T )p ≤ θ(0)2pep0(T ) ≤ η2−p ≤ 1, using (4.13) for n = 0 and (4.4)
in the last inequality. 
�

The following generalization of Theorem 4.1.4 is a consequence of Theo-
rem 4.1.10. When applied to ellipsoids, it yields very precise results. It will
not be used in the sequel, and could be omitted at first reading.

Theorem 4.1.11. Consider β , β′ , p > 0 with

1

β
=

1

β′ +
1

p
. (4.22)

Then, under the conditions of Theorem 4.1.4 we have

γα,β(T, d) ≤ K(p, η, α)
(∑

n

(2n/αen(T, d))
β′
)1/β′

.

The case of Theorem 4.1.4 is the case where β′ = ∞. Theorem 4.1.11
allows e.g. to provide a purely geometrical (i.e. not using Gaussian processes
arguments) proof of (2.115) as follows. We choose α = 2, β = 1, β′ = p = 2
to obtain

γ2(T, d) ≤ L
(∑

n

(2n/2en(T, d))
2
)1/2

. (4.23)

Now (2.118) implies that for n ≥ 3,

en(T, d) ≤ L max
k≤n−3

a2k2
k−n ≤ Lmax

k≤n
a2k2

k−n ,

and since en(T, d) ≤ e0(T, d) ≤ Δ(T, d) ≤ 2a1 this inequality holds for each
n ≥ 0. Combining with (4.23) yields

γ2(T, d) ≤ L
(∑

n

max
k≤n

a22k2
2k−n

)1/2
. (4.24)

Now
∑

n

max
k≤n

a22k2
2k−n ≤

∑

n

∑

k≤n

a22k2
2k−n =

∑

k

∑

n≥k

a22k2
2k−n

≤ L
∑

k

a22k2
k ≤ L

∑

i≥0

a2i ,

so that indeed (4.24) implies (2.115).
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Proof of Theorem 4.1.11. For n ≥ 0 we set

d(n) = η
( 1

4en(T, d)

)p
.

We now implement the idea that θ(n) is a regularized version of this quantity.
We define a := p/(2α) , b := 2p/α (= 4a), and we set

θ(n) := min
(
inf
k≥n

d(k)2a(n−k) , inf
k≤n

d(k)2b(n−k)
)
.

We claim that
2aθ(n) ≤ θ(n+ 1) ≤ 2bθ(n) . (4.25)

For example, to prove the left-hand side, we note that

2a inf
k≥n

d(k)2a(n−k) ≤ inf
k≥n+1

d(k)2a(n+1−k)

2b inf
k≤n

d(k)2b(n−k) ≤ inf
k≤n

d(k)2b(n+1−k)

and we observe that θ(n + 1) is the minimum of the right-hand sides of
the two previous inequalities. Thus (4.14) holds for ξ = min(2, 2a) and r =
max(4, 2(b+1)/p) and by Theorem 4.1.10 we can find an increasing sequence
(An) of partitions of T with cardAn ≤ Nn+1 and

sup
t∈T

∑

n≥0

θ(n)Δ(An(t))
p ≤ K(α, p) . (4.26)

Now we use (4.22) and Hölder’s inequality to get

(∑

n≥0

(
Δ(An(t))2

n/α
)β)1/β ≤

(∑

n≥0

θ(n)Δ(An(t))
p
)1/p(∑

n≥0

2nβ
′/α

θ(n)β′/p

)1/β′

.

(4.27)
Defining c := β′/α, we have aβ′/p = c/2 and bβ′/p = 2c, so that

θ(n)−β′/p ≤
∑

k≥n

d(k)−β′/p2c(k−n)/2 +
∑

k≤n

d(k)−β′/p22c(k−n) (4.28)

and

∑

n≥0

2nβ
′/α

θ(n)β′/p
≤
∑

n,k;k≥n

d(k)−β′/p2c(k+n)/2 +
∑

n,k;k≤n

d(k)−β′/p2c(2k−n)

≤ K(c)
∑

k≥0

d(k)−β′/p2ck
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by performing the summation in n first. (The reader might wonder why the
brutish bound (4.28), which replaces the maximum of a sequence by the
sum of the terms allows to get a good bound. The basic reason is that in
a geometric series, the sum of the terms is of the same order as the largest
one.) Thus, recalling the value of d(k),

∑

n≥0

2nβ
′/α

θ(n)β′/p
≤ K(p, β, η)

∑

k≥0

(
2k/αek(T, d)

)β′

.

Combining with (4.26) and (4.27) concludes the proof. 
�

4.2 Matchings

The rest of this chapter is devoted to the following problem. Consider N
r.v.s X1, . . . , XN independently uniformly distributed in the unit cube [0, 1]d,
where d ≥ 2. Consider a typical realization of these points. How evenly dis-
tributed in [0, 1]d are the points X1, . . . , XN? To measure this, we will match
the points (Xi)i≤N with non-random “evenly distributed” points (Yi)i≤N ,
that is, we will find a permutation π of {1, . . . , N} such that the points Xi

and Yπ(i) are “close”. There are of course different ways to measure “close-
ness”. For example one may wish that the sum of the distances d(Xi, Yπ(i)) be
as small as possible (Section 4.3), that the maximum distance d(Xi, Yπ(i)) be
as small as possible (Section 4.4), or one can use more complicated measures
of “closeness” (Section 14.1). The case where d = 2 is very special, and is the
object of the present chapter. The case d ≥ 3 will be studied in Chapter 15.
The reader having never thought of the matter might think that the points
X1, . . . , XN are very evenly distributed. A moment thinking reveals this is
not quite the case, for example, with probability close to one, one is bound
to find a little square of area about N−1 logN that contains no point Xi.
This is a very local irregularity. In a somewhat informal manner one can say
that this irregularity occurs at scale

√
logN/

√
N . The specific feature of the

case d = 2 is that in some sense there are irregularities at all scales 2−j for
1 ≤ j ≤ L−1 logN , and that these are all of the same order. Of course, such
a statement is by no means obvious at this stage. In the same direction, a
rather deep fact about matchings is that

obstacles to matchings at different scales may combine

in dimension 2 but not in dimension ≥ 3 . (4.29)

It is difficult to state a real theorem to this effect, but this is actually seen
with great clarity in the proofs. The crucial estimates involve controlling sums
(depending on a parameter), each term of representing a different scale. In
dimension 2, many terms contribute to the final sum (which therefore results
in the contribution of many different scales), while in higher dimension only
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a few terms contribute. (The case of higher dimension remains non-trivial
because which terms contribute depend on the value of the parameter.) Of
course these statements are very mysterious at this stage, but we expect that
a serious study of the methods involved will gradually bring the reader to
share this view.

What does it mean to say that the non-random points (Yi)i≤N are evenly
distributed? When N is a square, N = n2, everybody will agree that the
N points (k/n, �/n), 1 ≤ k , � ≤ n are evenly distributed. More generally
we will say that the non-random points (Yi)i≤N are evenly spread if one
can cover [0, 1]2 with N rectangles with disjoint interiors, such that each
rectangle R has an area 1/N , contains exactly one point Yi, and is such that
R ⊂ B(Yi, 10/

√
N). To construct such points when N is not a square, one

can simply cut [0, 1]2 into horizontal strips of width k/N , where k is about√
N (and depends on the strip), use vertical cuts to cut such a strip into k

rectangles of area 1/N , and put a point Yi in each rectangle. There is a more
elegant approach that dispenses from this slightly awkward construction. It is
the concept of “transportation cost”. One attributes mass 1/N to each point
Xi, and one measures the “cost of transporting” the resulting probability
measure to the uniform probability on [0, 1]2. (In the presentation one thus
replaces the evenly spread points Yi by a more canonical object, the uniform
probability on [0, 1]2.) This approach does not make the proofs any easier, so
we shall not use it despite its aesthetic appeal.

The basic tool to construct matchings is the following classical fact.

Proposition 4.2.1. Consider a matrix C = (cij)i,j≤N . Let

M(C) = inf
∑

i≤N

ciπ(i) ,

where the infimum is over all permutations π of {1, . . . , N}. Then

M(C) = sup
∑

i≤N

(wi + w′
i) , (4.30)

where the supremum is over all families (wi)i≤N , (w′
i)i≤N that satisfy

∀i, j ≤ N , wi + w′
j ≤ cij . (4.31)

Thus, if cij is the cost of matching i with j, M(C) is the minimal cost of a
matching, and is given by the “duality formula” (4.30).

Proof. Let us denote by a the right-hand side of (4.30). If the families
(wi)i≤N , (w′

i)i≤N satisfy (4.31), then for any permutation π of {1, . . . , N},
we have ∑

i≤N

ciπ(i) ≥
∑

i≤N

(wi + w′
i)
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and taking the supremum over the values of wi and w′
i we get

∑

i≤N

ciπ(i) ≥ a ,

so that M(C) ≥ a.
The converse relies on the Hahn-Banach Theorem. Consider the subset C

of RN×N that consists of the vectors (xij)i,j≤N for which there exists numbers
(wi)i≤N , and (w′

i)i≤N such that

∑

i≤N

(wi + w′
i) > a (4.32)

∀i, j ≤ N , xij ≥ wi + w′
j . (4.33)

Then, by definition of a, we have (cij)i,j≤N �∈ C. Since C is an open convex
subset of R

N×N , we can separate the point (cij)i,j≤N from C by a linear
functional, i.e. we can find numbers (pij)i,j≤N such that

∀(xij) ∈ C ,
∑

i,j≤N

pijcij <
∑

i,j≤N

pijxij . (4.34)

Since by definition of C, and in particular (4.33), this remains true when
one increases xij , we see that pij ≥ 0, and because of the strict inequality in
(4.34) we see that not all the numbers pij are 0. Thus there is no loss of gen-
erality to assume that

∑
i,j≤N pij = N . Consider families (wi)i≤N , (w′

i)i≤N

that satisfy (4.32). Then if xij = wi + w′
j , the point (xij)i,j≤N belongs to C

and using (4.34) for this point we obtain

∑

i,j≤N

pijcij ≤
∑

i,j≤N

pij(wi + w′
j) . (4.35)

If (yi)i≤N are numbers with
∑

i≤N yi = 0, we have

∑

i,j≤N

pijcij ≤
∑

i,j≤N

pij(wi + yi + w′
j)

≤
∑

i,j≤N

pij(wi + w′
j) +

∑

i≤N

yi
(∑

j≤N

pij
)

(4.36)

as follows from (4.35), replacing wi by wi+yi. This inequality holds whenever∑
i≤N yi = 0, so that

∑

i≤N

yi = 0⇒
∑

i≤N

yi
(∑

j≤N

pij
)
= 0 ,

and this forces in turn all the sums
∑

j≤N pij to be equal. Since
∑

i,j≤N pij =
N , we have

∑
j≤N pij = 1, for all i. Similarly, we have

∑
i≤N pij = 1 for all

j, i.e. the matrix (pij)i,j≤N is bistochastic. Thus (4.35) becomes
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∑

i,j≤N

pijcij ≤
∑

i≤N

(wi + w′
i)

so that
∑

i,j≤N pijcij ≤ a. The set of bistochastic matrices is a convex set, so
the infimum of

∑
i,j≤N pijcij over this convex set is obtained at an extreme

point. The extreme points are of the type pij = 1{π(i)=j} for a permutation
π of {1, . . . , N} (a classical result known as Birkhoff’s theorem), so that we
can find such a permutation with

∑
i≤N ciπ(i) ≤ a. 
�

The following is a well-known, and rather useful, result of combinatorics.

Corollary 4.2.2 (Hall’s Marriage Lemma). Assume that to each i ≤
N we associate a subset A(i) of {1, . . . , N} and that, for each subset I of
{1, . . . , N} we have

card
(⋃

i∈I

A(i)
)
≥ card I . (4.37)

Then we can find a permutation π of {1, . . . , N} for which

∀i ≤ N , π(i) ∈ A(i) .

Proof. We set cij = 0 if j ∈ A(i) and cij = 1 otherwise. Using the notations
of Proposition 4.2.1, we aim to prove that M(C) = 0. Using (4.30), it suffices
to show that given numbers ui(= −wi) , vi(= w′

i) we have

∀i, ∀j ∈ A(i) , vj ≤ ui ⇒
∑

i≤N

vi ≤
∑

i≤N

ui . (4.38)

Adding a suitable constant, we may assume vi ≥ 0 and ui ≥ 0 for all i, and
thus

∑

i≤N

ui =

∫ ∞

0

card{i ≤ N ; ui ≥ t}dt (4.39)

∑

i≤N

vi =

∫ ∞

0

card{i ≤ N ; vi ≥ t}dt . (4.40)

Given t, using (4.37) for I = {i ≤ N ; ui < t} and since vj ≤ ui if
j ∈ A(i), we obtain

card{j ≤ N ; vj < t} ≥ card{i ≤ N ; ui < t}

and thus
card{i ≤ N ; ui ≥ t} ≤ card{i ≤ N ; vi ≥ t} .

Combining with (4.39) and (4.40) this proves (4.38). 
�
There are other proofs of Hall’s Marriage Lemma, based on different ideas,

see [2], § 2.
Another well-known application of Proposition 4.2.1 is the following “du-

ality formula”.
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Proposition 4.2.3. Consider points (Xi)i≤N and (Yi)i≤N in a metric space
(T, d). Then

inf
π

∑

i≤N

d(Xi, Yπ(i)) = sup
f∈C

∑

i≤N

(f(Xi)− f(Yi)) , (4.41)

where C denotes the class of 1-Lipschitz functions on (T, d), i.e. functions f
for which |f(x)− f(y)| ≤ d(x, y).

Proof. Given any permutation π and any 1-Lipschitz function f we have

∑

i≤N

f(Xi)− f(Yi) =
∑

i≤N

(f(Xi)− f(Yπ(i))) ≤
∑

i≤N

d(Xi, Yπ(i)) .

This proves the inequality ≥ in (4.41). To prove the converse, we use (4.30)
with cij = d(Xi, Yj), so that

inf
π

∑

i≤N

d(Xi, Yπ(i)) = sup
∑

i≤N

(wi + w′
i) , (4.42)

where the supremum is over all families (wi) , (w
′
i) for which

∀i , j ≤ N , wi + w′
j ≤ d(Xi, Yj) . (4.43)

Given a family (w′
i)i≤N , consider the function

f(x) = min
j≤N

(−w′
j + d(x, Yj)) . (4.44)

It is 1-Lipschitz, since it is the minimum of functions which are themselves
1-Lipschitz. By definition we have f(Yj) ≤ −w′

j and by (4.43) for i ≤ N we
have wi ≤ f(Xi), so that

∑

i≤N

(wi + w′
i) ≤

∑

i≤N

(f(Xi)− f(Yi)) . 
�

Corollary 4.2.2 and Proposition 4.2.3 are all we need in Sections 4.3 and
4.4, and both are fairly easy consequences of Proposition 4.2.1. Sadly, this
ease of use of Proposition 4.2.1 is the exception rather than the rule. In
Section 14.1 and in Chapter 15, we shall need other uses of Proposition 4.2.1,
and these will require considerable efforts. Since the difficulty is not related
to any further probabilistic considerations, but to the very nature of this
proposition, we briefly explain it now. In a sense, it is the main difficulty in
proving matching theorems beyond those of the next two sections.

Let consider points (Xi)i≤N and points (Yi)i≤N in a set T , and let us try
to match them so as to get a small value for

∑

i≤N

ψ(Xi, Yπ(i)) .
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Here ψ is a function T × T → R
+, which is a kind of “measure of distance”

between the arguments, but it certainly does not look like a distance in
general, and does not satisfy anything like a triangle inequality. It is natural
to assume that ψ(x, x) = 0. We use (4.30) with cij = ψ(Xi, Yj), so that

inf
π

∑

i≤N

ψ(Xi, Yπ(i)) = sup
∑

i≤N

(wi + w′
i) , (4.45)

where the supremum is over all families (wi) , (w
′
i) for which

∀i, j ≤ N , wi + w′
j ≤ ψ(Xi, Yj) . (4.46)

Given a family (w′
i)i≤N and the points (Yj)j≤N , we are again led to consider

the function
f(x) = min

j≤N
(−w′

j + ψ(x, Yj)) , (4.47)

so that (4.46) implies wi ≤ f(Xi) and (4.45) yields

inf
π

∑

i≤N

ψ(Xi, Yπ(i)) ≤ sup
∑

i≤N

(f(Xi) + w′
i) , (4.48)

where the supremum is over all families (w′
i). Assume now that the points Xi

form an i.i.d. sequence with distribution μ. To simplify, (and we shall always
be able to reduce to this exact situation) since the points Yi are uniformly
spread, we assume that N

∫
hdμ =

∑
i≤N h(Yi) for any function h, and quite

naturally we write

∑

i≤N

(f(Xi) + w′
i) =

∑

i≤N

(f(Xi)−
∫

fdμ) +
∑

i≤N

(w′
i + f(Yi)) . (4.49)

Since we assume that ψ(Yi, Yi) = 0, the definition (4.47) of f shows that
f(Yi) ≤ −w′

i, and the last term on the right-hand side of (4.49) is negative,
so that it has a chance to compensate the first term. Let us consider a number
A ≥ 0 and the class H(A) consisting of all functions of the type (4.47) for a
certain family (w′

i) of numbers, and for which
∑

i≤N f(Yi) +w′
i ≥ −A. Then

for such a function the last term in (4.49) is ≥ −A. This limits how it can
compensate the first term, so that there seems to be no other way than to
bound

sup
f∈H(A)

∣∣∣
∑

i≤N

(f(Xi)−
∫

fdμ)
∣∣∣ . (4.50)

Generally speaking, the study of expressions of this type

sup
f∈F

∣∣∣
∑

i≤N

(f(Xi)−
∫

fdμ)
∣∣∣ (4.51)

for a class of function F will be important in the present book, and in par-
ticular in Chapter 9. A bound on such a quantity is called a discrepancy
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bound because it bounds uniformly on F the “discrepancy” between the true
measure

∫
fdμ and the “empirical measure” N−1

∑
i≤N f(Xi). Finding such

a bound simply requires finding a bound for the supremum of the process
(|Zf |)f∈F , where the r.v.s Zf is given by

Zf =
∑

i≤N

(f(Xi)−
∫

fdμ) , (4.52)

a topic at the very center of our attention. Every matching theorem proved
in this book will be proved through a discrepancy bound.

Bounding a stochastic process, and in particular proving a discrepancy
bound always ultimately requires in some form an understanding of the ge-
ometry of the index set, which the author simply lacks in general in the case of
H(A). In the case of Proposition 4.2.3 the miracle is that all the information
about the construction (4.47) is contained in the fact that f is 1-Lipschitz,
but it is very unclear what happens already if e.g. ψ(x, y) = d(x, y)2. When
proving the matching theorems of Chapter 14 and Chapter 15 (and especially
in that latter case) it will be a significant task to figure out what usable in-
formation one can get about the class H(A).

4.3 The Ajtai, Komlós, Tusnády Matching Theorem

Theorem 4.3.1 ([1]). If the points (Yi)i≤N are evenly spread and the points
(Xi)i≤N are i.i.d. uniform on [0, 1]2, then (for N ≥ 2)

E inf
π

∑

i≤N

d(Xi, Yπ(i)) ≤ L
√
N logN , (4.53)

where the infimum is over all permutations of {1, . . . , N} and where d is the
Euclidean distance.

The term
√
N is just a scaling effect. There are N terms d(Xi, Yπ(i)) each

of which should be about 1/
√
N . The non-trivial part of the theorem is the

factor
√
logN . In Section 6.4 we shall show that (4.53) can be reversed, i.e.

E inf
π

∑

i≤N

d(Xi, Yπ(i)) ≥
1

L

√
N logN . (4.54)

We repeat that every matching theorem which we prove in this book is
deduced from a “discrepancy bound”, i.e. a bound on a quantity of the form
(4.51). This should be expected after the discussion which ends Section 4.2.
Let us state the “discrepancy bound” at the root of Theorem 4.3.1. Consider
the class C of 1-Lipschitz functions on [0, 1]2, i.e. of functions f that satisfy

∀x, y ∈ [0, 1]2 , |f(x)− f(y)| ≤ d(x, y) ,

where d denotes the Euclidean distance. We denote by λ the uniform measure
on [0, 1]2.
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Theorem 4.3.2. We have

E sup
f∈C

∣∣∣
∑

i≤N

(f(Xi)−
∫

fdλ)
∣∣∣ ≤ L

√
N logN . (4.55)

Research problem 4.3.3. Prove that the following limit

lim
N→∞

1√
N logN

E sup
f∈C

∣∣∣
∑

i≤N

(f(Xi)−
∫

fdλ)
∣∣∣

exists.

Theorem 4.3.2 is obviously interesting in its own right, and we shall show
soon how it is related to Theorem 4.3.1 through Proposition 4.2.3. Let us
first discuss it. As already pointed out, we simply think of the left-hand side
as E supf∈C |Zf |, where Zf is the random variable of (4.52). The first task is
to find nice tail properties for these r.v.s, here in the form of the celebrated
Bernstein’s inequality below. One then applies the methods of Chapter 2,
in the present case in the form of Theorem 4.3.6 below. In the end (and
because we are dealing with a deep fact) we shall have to prove some delicate
“smallness” property of the class C. In the present chapter, this smallness
property will always ultimately be derived from the ellipsoid theorem, in the
form of Corollary 4.1.7. In the case of Theorem 4.3.2, the (very beautiful)
strategy for the hard part of the estimates relies on a kind of 2-dimensional
version of Proposition 4.1.8 and is outlined on page 110.

Proof of Theorem 4.3.1. We recall (4.41), i.e.

inf
π

∑

i≤N

d(Xi, Yπ(i)) = sup
f∈C

∑

i≤N

(f(Xi)− f(Yi)) , (4.56)

and we simply write

∑

i≤N

(f(Xi)−f(Yi)) ≤
∣∣∣
∑

i≤N

(f(Xi)−
∫

fdλ)
∣∣∣+
∣∣∣
∑

i≤N

(f(Yi)−
∫

fdλ)
∣∣∣ . (4.57)

Next, we claim that

∣∣∣
∑

i≤N

(f(Yi)−
∫

fdλ)
∣∣∣ ≤ L

√
N . (4.58)

We recall that since (Yi)i≤N are evenly spread one can cover [0, 1]2 with N
rectangles Ri with disjoint interiors, such that each rectangle Ri has an area
1/N and is such that Yi ∈ Ri ⊂ B(Yi, 10/

√
N). Consequently

∣∣∣
∑

i≤N

(f(Yi)−
∫

fdλ)
∣∣∣ ≤
∑

i≤N

∣∣∣(f(Yi)−N

∫

Ri

fdλ)
∣∣∣ ,
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and since f is Lipschitz each term in the right-hand side is ≤ L/
√
N . This

proves the claim.
Now, using (4.56) and taking expectation

E inf
π

∑

i≤N

d(Xi, Yπ(i)) ≤ L
√
N + E sup

f∈C

∣∣∣
∑

i≤N

(f(Xi)−
∫

fdλ)
∣∣∣

≤ L
√

N logN

by (4.55). 
�

Let us now prepare for the proof of Theorem 4.3.2. The following fun-
damental classical result will allow us to control the tails of the r.v. Zf of
(4.52). It will be used many times.

Lemma 4.3.4 (Bernstein’s inequality). Let (Yi)i≥1 be independent r.v.s
with EYi = 0 and consider a number U with |Yi| ≤ U for each i. Then, for
v > 0,

P

(∣∣∣
∑

i≥1

Yi

∣∣∣ ≥ v

)
≤ 2 exp

(
−min

(
v2

4
∑

i≥1 EY
2
i

,
v

2U

))
. (4.59)

Proof. For |x| ≤ 1, we have

|ex − 1− x| ≤ x2
∑

k≥2

1

k!
= x2(e− 2) ≤ x2

and thus, since EYi = 0, for U |λ| ≤ 1, we have

|E expλYi − 1| ≤ λ2EY 2
i .

Therefore E expλYi ≤ 1 + λ2EY 2
i ≤ expλ2EY 2

i , and thus

E expλ
∑

i≥1

Yi =
∏

i≥1

E expλYi ≤ expλ2
∑

i≥1

EY 2
i .

Now, for 0 ≤ λ ≤ 1/U we have

P

(∑

i≥1

Yi ≥ v

)
≤ exp(−λv)E expλ

∑

i≥1

Yi

≤ exp

(
λ2
∑

i≥1

EY 2
i − λv

)
.

If Uv ≤ 2
∑

i≥1 EY
2
i , we take λ = v/(2

∑
i≥1 EY

2
i ), obtaining a bound

exp(−v2/(4
∑

i≥1 EY
2
i )). If Uv > 2

∑
i≥1 EY

2
i , we take λ = 1/U , and we

note that
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1

U2

∑

i≥1

EY 2
i −

v

U
≤ Uv

2U2
− v

U
≤ − v

2U
,

so that P(
∑

i≥1 Yi ≥ v) ≤ exp(−min(v2/4
∑

i≥1 EY
2
i , v/2U)). Changing Yi

into −Yi we obtain the same bound for P (
∑

i≥1 Yi ≤ −v). 
�

Corollary 4.3.5. For each v > 0 we have

P(|Zf | ≥ v) ≤ 2 exp

(
−min

(
v2

4N‖f‖22
,

v

4‖f‖∞

))
, (4.60)

where ‖f‖p denotes the norm of f in Lp(λ).

Proof. We use Bernstein’s inequality with Yi = f(Xi) −
∫
fdλ if i ≤ N and

Yi = 0 if i > N . We then observe that EY 2
i ≤ Ef2 = ‖f‖22 and |Yi| ≤

2 sup |f | = 2‖f‖∞. 
�
We can now state a general bound, from which we will deduce Theo-

rem 4.3.2.

Theorem 4.3.6. Consider a class F of functions on [0, 1]2 and assume that
0 ∈ F . Then

E sup
f∈F

∣∣∣
∑

i≤N

(f(Xi)−
∫

fdλ)
∣∣∣ ≤ L

(√
Nγ2(F , d2) + γ1(F , d∞)

)
, (4.61)

where d2 and d∞ are the distances induced on F by the norms of L2 and L∞

respectively.

Proof. Since Zf − Zf ′ = Zf−f ′ , combining Corollary 4.3.5 with Theo-
rem 2.2.23 we get, since 0 ∈ F , that

E sup
f∈F

∣∣∣
∑

i≤N

(f(Xi)−
∑

fdλ)
∣∣∣ ≤ E sup

f,f ′∈F
|Zf − Zf ′ |

≤ L
(
γ2(F , 2

√
Nd2) + γ1(F , 4d∞)

)
.

To conclude, we use that γ2(F , 2
√
Nd2) = 2

√
Nγ2(F , d2) and γ1(F , 4d∞) =

4γ1(F , d∞). 
�
To deduce Theorem 4.3.2 from Theorem 4.3.6, the difficulty is in control-

ling the �2 distance. It is not completely trivial to control the �∞ distance
but there is plenty of room.

We recall that for a metric space (T, d), the covering number N(T, d, ε)
denotes the smallest number of balls of radius ε that are needed to cover T .
Theorem 4.3.2 is a prime example of a natural situation where using covering
numbers does not yield the correct result. This is closely related to the fact
that, as explained in Section 2.5, covering numbers do not describe well the
size of ellipsoids. It is of course hard to formulate a theorem to the effect that
covering numbers do not suffice, but the claim should make more sense after
Exercise 4.3.11 below.
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Exercise 4.3.7. Prove that for each 0 < ε ≤ 1

logN(C, d2, ε) ≥
1

Lε2
. (4.62)

(Hint: Consider an integer n ≥ 0, and divide [0, 1]2 into 22n equal squares of
area 2−2n. For every such square C consider a number εC = ±1. Consider
then the function f ∈ C such that f(x) = εCd(x,B) for x ∈ C, where B
denotes the boundary of C. Prove that by appropriate choices of the signs εC
one may find at least exp(22n/L) such functions which are at mutual distance
≥ 2−n/L. You are permitted to peek at Lemma 6.3.1 below.)

We shall not apply Theorem 4.3.6 to F = C (it follows from Proposi-
tion 6.4.3 below that γ2(C, d2) = ∞), but rather to a sufficiently large finite
subset F of C, for which we shall need the crucial estimate γ2(F , d2) ≤
L
√
logN , and we try to outline the strategy which yields this estimate. In

an ideal world, we would not deal with the class C, but with the smaller
class C∗ of functions of C which are zero on the boundary of [0, 1]2. As
in Proposition 4.1.8, one may then parametrize C∗ as a subset of a cer-
tain ellipsoid using the Fourier transform, and then Corollary 4.1.7 yields
γ2,2(C∗, d2) ≤ L. Finally the simple use of Cauchy-Schwarz inequality in
(4.6) yields γ2(F , d2) ≤ L

√
log log cardF , which is the desired estimate. In

real life we must unfortunately deal with the class C. Even though C∗ is “the
main part” of C, and even though there is plenty of room to deal with the
“remaining part” of C, this creates complications, and taking care of these
requires about as much space and energy as the main argument.

Rather than the class C∗ we shall actually use as “main part of C” the
class C0 consisting of functions f : [0, 1]2 → R which are differentiable and
satisfy

sup
∣∣∣
∂f

∂x

∣∣∣ ≤ 1 ; sup
∣∣∣
∂f

∂y

∣∣∣ ≤ 1

∫
fdλ = 0 ; ∀u , 0 ≤ u ≤ 1 , f(u, 0) = f(u, 1) , f(0, u) = f(1, u) . (4.63)

The fact that the functions in C0 need not be 1-Lipschitz, but only
√
2-

Lipschitz is not important.
The main ingredient in controlling the �2 distance is the following 2-

dimensional version of Proposition 4.1.8 , where we use the functional γ2,2 of
(4.5), and where the underlying distance is the distance induced by L2([0, 1]2).

Proposition 4.3.8. We have γ2,2(C0, d2) <∞.

Proof. We represent C0 as a subset of an ellipsoid using the Fourier transform.
The Fourier transform associates to each function f on L2([0, 1]2) the complex
numbers cp,q(f) given by

cp,q(f) =

∫ ∫

[0,1]2
f(x1, x2) exp 2iπ(px1 + qx2)dx1dx2 . (4.64)
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The Plancherel formula

‖f‖2 =
(∑

p,q∈Z

|cp,q(f)|2
)1/2

(4.65)

asserts that Fourier transform is an isometry, so that if

D = {(cp,q(f))p,q∈Z ; f ∈ C0)} ,

it suffices to show that γ2,2(D, d) <∞ where d is the distance in the complex
Hilbert space �2

C
(Z×Z). Using (4.64), integration by parts and (4.63), we get

−2iπpcp,q(f) = cp,q

(∂f
∂x

)
.

Using (4.65) for ∂f/∂x, and since ‖∂f/∂x‖2 ≤ 1 we get
∑

p,q∈Z
p2|cp,q(f)|2

≤ 1/4π2. Proceeding similarly for ∂f/∂y, we get

D ⊂ E =
{
(cp,q) ∈ �2

C
(Z× Z) ; c0,0 = 0 ,

∑

p,q∈Z

(p2 + q2)|cp,q|2 ≤ 1
}
.

We view each complex number cp,q as a pair (xp,q, yp,q) of real numbers, and
|cp,q|2 = x2

p,q + y2p,q, so that

E =
{(

(xp,q), (yp,q)
)
∈ �2(Z× Z)× �2(Z× Z) ;

x0,0 = y0,0 = 0 ,
∑

p,q∈Z

(p2 + q2)(x2
p,q + y2p,q) ≤ 1

}
. (4.66)

For u ≥ 1, we have

card
{
(p, q) ∈ Z× Z ; p2 + q2 ≤ u2

}
≤ (2u+ 1)2 ≤ Lu2 .

We then deduce from Corollary 4.1.7 that γ2,2(E , d) <∞. 
�
We now turn to the control in the supremum norm. In order to avoid

repetition, we state a general principle (which was already known to Kol-
mogorov).

Lemma 4.3.9. Consider a metric space (T, d) and assume that for certain
numbers B and α ≥ 1 and each ε > 0 we have

N(T, d, ε) ≤
(B
ε

)α
. (4.67)

Consider the set B of 1-Lipschitz functions f on T with ‖f‖∞ ≤ B. Then
for each ε > 0 we have

N(B, d∞, ε) ≤ expK
(B
ε

)α
, (4.68)

where K depends only on α. In particular,

en(B, d∞) ≤ KB2−n/α . (4.69)
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Proof. By homogeneity we may and do assume that B = 1. Given h ∈ B and
an integer k, consider the set

A =
{
f ∈ B ; ‖f − h‖∞ ≤ 21−k

}
. (4.70)

We first show that

N(A, d∞, 2−k) ≤ exp(K02
αk) . (4.71)

Consider a subset C of A that is maximal with respect to the property that if
f1, f2 ∈ C and f1 �= f2 then d∞(f1, f2) > 2−k. Then each point of A is within
distance ≤ 2−k of C, so N(A, d∞, 2−k) ≤ cardC. From (4.67) there exists
a subset U of T with cardU ≤ 2α(k+2) such that each point of T is within
distance 2−k−2 of a point of U . If f1, f2 ∈ C and f1 �= f2, there is x ∈ T with
|f1(x)−f2(x)| > 2−k. Consider y ∈ U with d(x, y) ≤ 2−k−2. Then for j = 1 , 2
we have |fj(x) − fj(y)| ≤ 2−k−2 so that |f1(y) − f2(y)| > 2−k−1. Let C ′ be
the image of C through the map f �→ (f(x))x∈U , so that C ′ is a subset of
R

U . We have shown that any two distinct points of C ′ are at distance at least
2−k−1 of each other for the supremum norm. The cubes of edge length 2−k−2

centered at the points of C ′ have disjoint interiors, and (from (4.70)) are
entirely contained in a certain cube of edge length 22−k+2−k−1 = 18 ·2−k−2,
so that, by volume considerations, we have cardC ′ ≤ 18cardU , and this proves
(4.71).

We now prove by induction over k ≥ 1 that

N(B, d∞, 21−k) ≤ exp(K02
αk) . (4.72)

This certainly holds true for k = 1. For the induction step from k to k + 1,
we use the induction hypothesis to cover B by exp(K02

αk) sets A of the type
(4.70) and we use (4.71) for each of these sets. This completes the induction
since 2 · 2αk ≤ 2α(k+1). Finally, (4.68) follows from (4.72), and it implies
(4.69) (see Exercise 2.2.13). 
�

We apply the previous lemma to T = [0, 1]2 and

C1 = {f ∈ C ; ‖f‖∞ ≤ 2} .

It should be obvious that T = [0, 1]2 satisfies (4.67) for α = 2, so that (4.69)
implies that for n ≥ 0,

en(C1, d∞) ≤ L2−n/2 . (4.73)

Let us recall that the class C0 is defined just before (4.63) and observe (since
the functions in C0 are

√
2-Lipschitz) that C0 ⊂

√
2C1.

Proposition 4.3.10. We have

E sup
f∈C0

∣∣∣
∑

i≤N

f(Xi)
∣∣∣ ≤ L

√
N logN . (4.74)
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Proof. Consider the largest integer m with 2−m ≥ 1/N . By (4.73), and since
C0 ⊂

√
2C1, we may find a subset T of C0 with cardT ≤ Nm and

∀f ∈ C0 , d∞(f, T ) ≤ L2−m/2 ≤ L/
√
N .

Thus
E sup

f∈C0

∣∣∣
∑

i≤N

f(Xi)
∣∣∣ ≤ E sup

f∈T

∣∣∣
∑

i≤N

f(Xi)
∣∣∣+ L

√
N . (4.75)

To prove (4.74) it suffices to show that

E sup
f∈T

∣∣∣
∑

i≤N

f(Xi)
∣∣∣ ≤ L

√
N logN . (4.76)

Proposition 4.3.8 and Lemma 4.1.3 imply γ2(T, d2) ≤ L
√
m ≤ L

√
logN .

Using Corollary 2.3.2 and (4.73), and since en(T, d∞) = 0 for n ≥ m yields
γ1(T, d∞) ≤ L2m/2 ≤ L

√
N . Thus (4.76) follows from Theorem 4.3.6 and

this completes the proof. 
�

Exercise 4.3.11. Use Exercise 4.3.7 to convince yourself that covering num-
bers cannot yield better than the estimate γ2(T, d2) ≤ L logN .

We claimed that C0, which is somewhat smaller than C (see (4.63)), consti-
tutes “the main part” of C. We turn now to the control of the “remainder”, for
which there is plenty of room. This exceedingly un-exciting argument could
be skipped at first reading. (Rather, the reader is advised to save her energy
to think about Exercise 4.3.13 below.) We consider the class C2 of functions
of the type

f(x1, x2) = x1g(x2)

where g : [0, 1]→ R is 1-Lipschitz, g(0) = g(1) and |g| ≤ 1.

Proposition 4.3.12. We have

E sup
f∈C2

∣∣∣
∑

i≤N

(f(Xi)−
∫

fdλ)
∣∣∣ ≤ L

√
N .

Proof. First we want to bound N(C2, d∞, ε). For this we observe that for
any two functions g and g∗ we have |x1g(x2) − x1g

∗(x2)| ≤ d∞(g, g∗). We
then mimic the proof of the entropy estimate (4.68). The difference is that
now we are dealing with functions on [0, 1] rather than [0, 1]2, and that it
suffices to use about 1/ε points of [0, 1] to approximate each point of this
interval within distance ε. In this manner we obtain that for ε > 0 we have
N(C2, d∞, ε) ≤ exp(L/ε) and hence en(C2, d∞) ≤ L2−n. Thus Corollary 2.3.2
implies γ2(C2, d2) ≤ γ2(C2, d∞) ≤ L.

Consider now the largest integer m such that 2−m ≥ 1/N . We choose
T ⊂ C2 with cardT ≤ Nm and
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∀f ∈ C2 , d∞(f, T ) ≤ L2−m .

As in the proof of Proposition 4.3.10, we get γ1(T, d∞) ≤ Lm and we conclude
by Theorem 4.3.6, using an inequality similar to (4.75), with huge room to
spare. 
�
Proof of Theorem 4.3.2. We first observe that in (4.55) the supremum is
the same if we replace the class C of 1-Lipschitz functions by the class
of differentiable 1-Lipschitz functions. For a function f on [0, 1]2, we set
Δ = f(1, 1)− f(1, 0)− f(0, 1) + f(0, 0) and we decompose

f = f1 + f2 + f3 + f4 , (4.77)

where

f4(x1, x2) = x1x2Δ

f3(x1, x2) = x2(f(x1, 1)− f(x1, 0)−Δx1)

f2(x1, x2) = x1(f(1, x2)− f(0, x2)−Δx2)

f1 = f − f2 − f3 − f4 .

It is straightforward to check that f1(x1, 0) = f1(x1, 1) and f1(0, x2) =
f1(1, x2), so that if f is 2-Lipschitz and differentiable, f1 is L-Lipschitz, dif-
ferentiable, and f1 −

∫
f1dλ satisfies (4.63). We then write

∣∣∣
∑

i≤N

(
f(Xi)−

∫
fdλ
)∣∣∣≤
∑

j≤4

Dj

where Dj = |
∑

i≤N (fj(Xi) −
∫
fjdλ)|. We then deduce from Proposition

4.3.10 that E supf∈C D1 ≤ L
√
N logN and from Proposition 4.3.12 that

E supf∈C D2 ≤ L
√
N and E supf∈C D3 ≤ L

√
N . Since obviously E supf∈C D4 ≤

L
√
N this completes the proof. 
�

Exercise 4.3.13. Consider the space T = {0, 1}N provided with the distance
d(t, t′) = 2−j/2, where j = min{i ≥ 1; ti �= t′i} for t = (ti)i≥1. This space
somewhat resembles the unit square, in the sense that N(T, d, ε) ≤ Lε−2.
Prove that if (Xi)i≤N are i.i.d. uniformly distributed in T and (Yi)i≤N are
uniformly spread (in a manner which is left to the reader to define precisely)
then

1

L

√
N logN ≤ E inf

π

∑

i≤N

d(Xi, Yπ(i)) ≤ L
√
N logN , (4.78)

where the infimum is of course over all one to one maps π from {1, . . . , N} to
itself. (Hint: for the upper bound, covering numbers suffice, e.g. in the form
of (4.68). Probably the challenging lower bound cannot be proved before one
has meditated over the methods of Section 6.4.)
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4.4 The Leighton-Shor Grid Matching Theorem

Theorem 4.4.1 ([4]). If the points (Yi)i≤N are evenly spread and if
(Xi)i≤N are i.i.d. uniform over [0, 1]2, then (for N ≥ 2), with probability
at least 1− L exp(−(logN)3/2/L) we have

inf
π

sup
i≤N

d(Xi, Yπ(i)) ≤ L
(logN)3/4√

N
, (4.79)

and thus

E inf
π

sup
i≤N

d(Xi, Yπ(i)) ≤ L
(logN)3/4√

N
. (4.80)

To deduce (4.80) from (4.79) one simply uses any matching in the (rare)
event that (4.79) fails. We shall prove in Section 6.4 that the inequality (4.80)
can be reversed.

A first simple idea is that to prove Theorem 4.4.1 we do not care about
what happens at a scale smaller than (logN)3/4/

√
N . Consider the largest

integer �1 with 2−�1 ≥ (logN)3/4/
√
N (so that in particular 2�1 ≤

√
N . We

divide [0, 1] into little squares of side 2−�1 . For each such square, we are
interested in how many points (Xi) it contains, but we do not care where
these points are located in the square. We shall (as is the case for each
matching theorem) deduce Theorem 4.4.1 from a discrepancy theorem for a
certain class of functions. What we really have in mind is the class of functions
which are indicators of a union A of little squares of side 2−�1 , and such that
the boundary of A has a given length. It turns out that we shall have to
parametrize the boundaries of these sets by curves, so it is convenient to turn
things around and to consider the class of sets A that are the interiors of
curves of given length.

To make things precise, let us define the grid G of [0, 1]2 of mesh width
2−�1 by

G =
{
(x1, x2) ∈ [0, 1]2 ; 2�1x1 ∈ N or 2�1x2 ∈ N

}
.

A vertex of the grid is a point (x1, x2) ∈ [0, 1]2 with 2�1x1 ∈ N and
2�1x2 ∈ N. An edge of the grid is the segment between two vertices that are
at distance 2−�1 of each other. A square of the grid is a square of side 2−�1

whose edges are edges of the grid. Thus, an edge of the grid is a subset of the
grid, but a square of the grid is not a subset of the grid.

A curve is the image of a continuous map ϕ : [0, 1] → R
2. We say that

the curve is a simple curve if it is one-to-one on [0, 1[. We say that the curve
is traced on G if ϕ([0, 1]) ⊂ G, and that it is closed if ϕ(0) = ϕ(1). If C is
a closed simple curve in R

2, the set R
2 \ C has two connected components.

One of these is bounded. It is called the interior of C and is denoted by
o

C.
The key ingredient to Theorem 4.4.1 is as follows.
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Theorem 4.4.2. With probability at least 1−L exp(−(logN)3/2/L), the fol-
lowing occurs. Given any closed simple curve C traced on G, we have

∣∣∣
∑

i≤N

(
1 o
C
(Xi)− λ(

o

C)
)∣∣∣ ≤ L�(C)

√
N(logN)3/4 , (4.81)

where λ(
o

C) is the area of
o

C and �(C) is the length of C.

It will be easier to discuss the following result, which concerns curves of given
length going through a given vertex.

Proposition 4.4.3. Consider a vertex τ of G and k ∈ Z. Define C(τ, k) as
the set of closed simple curves traced on G that contain τ and have length
≤ 2k. Then, if k ≤ �1+2, with probability at least 1−L exp(−(logN)3/2/L),
for each C ∈ C(τ, k) we have

∣∣∣
∑

i≤N

(
1 o
C
(Xi)− λ(

o

C)
)∣∣∣ ≤ L2k

√
N(logN)3/4 . (4.82)

It would be easy to control the left-hand side if one considered only curves
with a simple pattern, such as boundaries of rectangles. The point however is
that the curves we consider can be very complicated, and of course, the longer
we allow them to be, the more so. Let us denote by F the class of functions
of the type 1 o

C
, where C ∈ C(τ, k). Then the left-hand side of (4.82) is

sup
F

∣∣∣
∑

i≤N

(f(Xi)−
∫

fdλ)
∣∣∣ .

To bound this quantity we shall use again Bernstein’s inequality, together
with Theorem 2.2.28 which is tailored to yields bounds in probability rather
than in expectation. The key point again is the control on the size of F for
the distance of L2(λ). The basis for this is to parametrize curves by Lipschitz
functions on the unit interval and to use Proposition 4.1.8. In contrast with
the previous section, no complications due to secondary terms mar the beauty
of the proof.

We first deduce Theorem 4.4.2 from Proposition 4.4.3.

Proof of Theorem 4.4.2. Since there are at most (2�1 +1)2 ≤ LN choices for
τ , we can assume with probability at least

1− L(2�1 + 1)2(2�1 + 4) exp(−(logN)3/2/L) ≥ 1− L′ exp
(
−(logN)3/2/L′)

that (4.82) occurs for all choices of C ∈ C(τ, k), for any τ and any k with
−�1 ≤ k ≤ �1 + 2.

Consider a simple curve C traced on G. Then, bounding the length of C
by the total length of the edges of G, we have
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2−�1 ≤ �(C) ≤ 2(2�1 + 1) ≤ 2�1+2 ,

so if k is the smallest integer for which �(C) ≤ 2k, then −�1 ≤ k ≤ �1 + 2, so
that we can use (4.82) and since 2k ≤ 2�(C) the proof is finished. 
�

Lemma 4.4.4. We have card C(τ, k) ≤ 22
k+�1+1

= Nk+�1+1.

Proof. A curve C ∈ C(τ, k) consists of at most 2k+�1 edges of G. If we move
through C, at each vertex of G we have at most 4 choices for the next edge,

so card C(τ, k) ≤ 42
k+�1

= Nk+�1+1. 
�
On the set of closed simple curves traced on G, we define the distance d1

by d1(C,C
′) = λ(

o

C Δ
o

C ′).

Proposition 4.4.5. We have

γ1,2(C(τ, k), d1) ≤ L22k . (4.83)

This is the main ingredient of Proposition 4.4.3; we shall prove it later. The
next lemma reveals how the exponent 3/4 occurs. It uses the fact that

√
d is

a distance whenever d is a distance.

Lemma 4.4.6. Consider a finite metric space (T, d) with cardT ≤ Nm.
Then

γ2(T,
√
d) ≤ m3/4γ1,2(T, d)

1/2 . (4.84)

Proof. Since T is finite there exists an admissible sequence (An) of T such
that

∀t ∈ T ,
∑

n≥0

(2nΔ(An(t), d))
2 ≤ γ1,2(T, d)

2 . (4.85)

Without loss of generality we can assume that Am(t) = {t} for each t, so
that in (4.85) the sum is over n ≤ m− 1. Now

Δ(A,
√
d) ≤ Δ(A, d)1/2

so that, using Hölder’s inequality,

∑

0≤n≤m−1

2n/2Δ(An(t),
√
d) ≤

∑

0≤n≤m−1

(2nΔ(An(t), d))
1/2

≤ m3/4
(∑

n≥0

(
2nΔ(An(t), d)

)2)1/4

≤ m3/4γ1,2(T, d)
1/2 ,

which concludes the proof. 
�
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Of course the real secret of the exponent 3/4 is that we shall use
Lemma 4.4.6 in situations where inequality (4.84) is basically an equality.
This will become apparent only in Section 6.5, where we prove that Theo-
rem 4.4.1 is in a sense optimal.

On the set of simple curves traced on G we consider the distance

d2(C1, C2) =
√
N
∥∥∥1 o

C1

− 1 o
C2

∥∥∥
2
=
(
Nd1(C1, C2)

)1/2
, (4.86)

so that
γ2(C(τ, k), d2) ≤

√
Nγ2(C(τ, k),

√
d1) .

When k ≤ �1 + 2 we have m := k + �1 + 1 ≤ L logN , so that combining
Proposition 4.4.5 with Lemmas 4.4.4 and 4.4.6 we obtain

γ2(C(τ, k), d2) ≤ L2k
√
N(logN)3/4 . (4.87)

Proof of Proposition 4.4.3. It relies on Theorem 2.2.28. On T = C(τ, k) con-
sider the process

XC :=
∑

i≤N

(1 o
C
(Xi)− λ(

o

C)) ,

the distance d2 given by (4.86) and distance δ given by δ(C,C ′) = 1 if C �= C ′

and δ(C,C ′) = 0 if C = C ′. We have XC −XC′ =
∑

i Yi where

Yi = 1 o
C
(Xi)− 1 o

C ′(Xi)− λ(
o

C) + λ(
o

C
′) ,

so that ‖Yi‖∞ ≤ 4δ(C,C ′) and
∑

i≤N EY 2
i ≤ d2(C,C

′)2. It then follows from
Bernstein’s inequality (4.59) that for u > 0 the process (XC) satisfies

P(|XC −XC′ | > u) ≤ exp

(
− 1

L
min

(
u2

d2(C,C ′)2
,

u

δ(C,C ′)

))
.

Using an admissible sequence (An) such that An(t) = {t} when n =
k + �1 + 1, Lemma 4.4.4 implies

γ1(T, δ) ≤ L log cardC ≤ L2k+�1 ≤ L2k
√
N . (4.88)

Moreover, since en(T, δ) ≤ 1 and en(T, δ) = 0 for n ≥ k + �1 + 1, we have

∑

n

en(T, δ) ≤ k + �1 + 1 . (4.89)

Also, from (4.83) and (4.10) we obtain en(T, d1) ≤ L22k2−n, so that
en(T, d2) ≤ L2k2−n/2

√
N and

∑

n≥0

en(T, d2) ≤ L2k
√
N . (4.90)
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Now we use (2.64), (4.87) and (4.88) to (4.90) to obtain

P
(
sup
C,C′

|XC −XC′ | ≥ L
(
2k
√
N(logN)3/4 + u1(k + �1 + 1) + u22

k
√
N
))

≤ exp(−min(u2
2, u1)) .

We now choose u1 = (logN)3/2 and u2 = (logN)3/4. Since �1 ≤ logN and
since XC′ = 0 when C ′ is the empty curve we obtain the desired bound. 
�

We turn to the proof of Proposition 4.4.5. It holds simply because the
metric space (C(τ, k), d1) is a Lipschitz image of a subset of the set L of
Proposition 4.1.8. In Lemma 4.4.7 we check the obvious fact that the func-
tionals γα,β behave as expected under Lipschitz maps, and in Lemma 4.4.8
we construct an actual Lipschitz map from a subset of L onto C(τk, d1), a
boring but completely elementary task.

Lemma 4.4.7. Consider two metric spaces (T, d) and (U, d′). If f : (T, d)→
(U, d′) is onto and satisfies

∀x , y ∈ T , d′(f(x), f(y)) ≤ Ad(x, y)

for a certain constant A, then

γα,β(U, d
′) ≤ K(α, β)Aγα,β(T, d) .

Proof. We proceed as in Theorem 2.7.5, (b). It is straight forward to extend
the second proof of Theorem 2.3.1 (given on page 66) to the case of γα,β . 
�

Lemma 4.4.8. There exists a map W from a subset T of L onto C(τ, k)
which for any f1, f2 ∈ T satisfies

d1(W (f0),W (f1)) ≤ L22k‖f0 − f1‖2 . (4.91)

Proof. Consider the subset L∗ of L consisting of the functions f for which
f(1/2) = 0. To f ∈ L∗ we associate the curve W (f) traced out by the map

u �→
(
τ1 + 2k+1f

(u
2

)
, τ2 + 2k+1f

(u+ 1

2

))
,

where (τ1, τ2) = τ . A curve in C(τ, k) can be parameterized, starting at
τ and moving at speed 1 along each successive edges. It is therefore the
range of a map of the type t �→ (τ1 + f1(t), τ

2 + f2(t)) where f1 and f2 are
Lipschitz maps from [0, 2k] to R with f1(0) = f2(0) = f1(2

k) = f2(2
k) = 0.

Considering the function f on [0, 1] given by f(u) = 2−k−1f1(2
k+1u) for

u ≤ 1/2 and f(u) = 2−k−1f2(2
k+1(u − 1/2)) for 1/2 ≤ u ≤ 1 proves that

C(τ, k) ⊂W (L∗). We set T = W−1(C(τ, k)). Consider f0 and f1 in T and the
map h : [0, 1]2 → [0, 1]2 given by
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h(u, v) =

(
τ1 +2k+1

(
vf0
(u
2

)
+ (1− v)f1

(u
2

))
,

τ2 +2k+1
(
vf0
(1 + u

2

)
+ (1− v)f1

(1 + u

2

)))
.

The area of h([0, 1]2) is at most
∫∫

[0,1]2
|Jh(u, v)|dudv, where Jh is the Jaco-

bian of h, and a straightforward computation gives

Jh(u, v) = 22k+1

((
vf ′

0

(u
2

)
+ (1− v)f ′

1

(u
2
)
)(

f0
(1 + u

2

)
− f1
(1 + u

2

))

−
(
vf ′

0

(1 + u

2

)
+ (1− v)f ′

1

(1 + u

2

))(
f0
(u
2

)
− f1
(u
2

)))
,

so that, since |f ′
0| ≤ 1 , |f ′

1| ≤ 1,

|Jh(u, v)| ≤ 22k+1

(∣∣∣f0
(u
2

)
− f1
(u
2

)∣∣∣+
∣∣∣f0
(1 + u

2

)
− f1
(1 + u

2

)∣∣∣
)

.

The Cauchy-Schwarz inequality implies

∫ ∫
|Jh(u, v)|dudv ≤ L22k‖f0 − f1‖2 . (4.92)

If x does not belong to the range of h, both curvesW (f0) andW (f1) “turn
the same number of times around x”. This is because “the number of times
the closed curve u �→ h(u, v) turns around x” is then a continuous function
of v, so that since it is integer valued, it takes the same value for u = 0 and

u = 1. Consequently either x ∈
o

W (f0) ∩
o

W (f1) or x �∈
o

W (f0) ∪
o

W (f1). Thus

the range of h contains
o

W (f0)Δ
o

W (f1), and (4.92) implies (4.91). 
�

Proof of Proposition 4.4.5. Combine Proposition 4.1.8 with Lemmas 4.4.7
and 4.4.8. 
�

It remains to deduce Theorem 4.4.1 from Theorem 4.4.2. This is a purely
deterministic argument, which is unrelated to any other material in the
present book. The basic idea is very simple, and to keep it simple we de-
scribe it in slightly imprecise terms. Consider a union A of little squares of
side 2−�1 and the union A′ of all the little squares that touch A. We want to
prove that A′ contains as many points Yi as A contains points Xi, so that
by Hall’s Marriage Lemma each point Xi can be matched to a point Yi in
the same little square, or in a neighbor of it. Since the points Yi are evenly
spread the number of such points in A′ is Nλ(A′). There may be more than
Nλ(A) points Xi in A, but (4.81) tells us that the excess number of points
cannot be more than a proportion of the length � of the boundary of A. The
marvelous fact is that we may also expect that λ(A′)− λ(A) is also propor-
tional to �, so that we may hope that the excess number of points Xi in A
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should not exceed N(λ(A′) − λ(A)), proving the result. A slight problem is
that the proportionality constant is not quite right to make the argument
work, but this difficulty is bypassed simply by applying the same argument
to a slightly coarser grid. A more serious problem is that when one tries to
describe precisely what is meant by the previous argument, without waving
hands but with complete proofs, one has to check a number of details. These
are completely elementary, but require patience. We find that the Leighton-
Shor Theorem deserves this effort, and we have written every step in full
detail as well as we could.

As a last preparation for this effort, we say that a simple curve C traced
on G is a chord if it is the range of [0, 1] by a continuous map ϕ where ϕ(0)
and ϕ(1) belong to the boundary of [0, 1]2. If C is a chord, ]0, 1[2\C is the
union of two regions R1 and R2, and (assuming without loss of generality
that no point Xi belongs to G),

∑

i≤N

(
1R1(Xi)− λ(R1)

)
= −

∑

i≤N

(
1R2(Xi)− λ(R2)

)
.

We define

D(C) =
∣∣∣
∑

i≤N

(1R1(Xi)− λ(R1))
∣∣∣ =
∣∣∣
∑

i≤N

(1R2(Xi)− λ(R2))
∣∣∣ .

If C is a chord, “completing C by following the boundary of [0, 1]2” produces

a closed simple curve C ′ on G such that either R1 =
o

C ′ or R2 =
o

C ′. The
length we add along each side of the boundary is less than the length of the
chord itself, so that �(C ′) ≤ 3�(C). Thus, the following is a consequence of
Theorem 4.4.2.

Theorem 4.4.9. With probability at least 1−L exp(−(logN)3/2/L), for each
chord C we have

D(C) ≤ L�(C)
√
N(logN)3/4 . (4.93)

Proof of Theorem 4.4.1. Consider a number �2 < �1, to be determined later,
and the grid G′ ⊂ G of mesh width 2−�2 . (This is the slightly coarser grid we
mentioned above.)

A union of squares of G′ is called a domain. Given a domain R, we denote
by R′ the union of the squares of G′ such one at least one of the 4 edges that
form their boundary is entirely contained in R (recall that squares include
their boundaries). The main argument is to establish that if (4.81) and (4.93)
hold, and provided �2 has been chosen appropriately, then for any choice of
R we have

Nλ(R′) ≥ card{i ≤ N ; Xi ∈ R} . (4.94)

We will then conclude with Hall’s Marriage Lemma. The basic idea to prove
(4.94) is to reduce to the case where R is the closure of the interior of a simple
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closed curve minus a number of “holes” which are themselves the interiors of
simple closed curves.

Let us say that a domain R is decomposable if R = R1 ∪ R2 where R1

and R2 are non-empty unions of squares of G′, and when every square of
G′ included in R1 has at most one vertex belonging to R2. (Equivalently,
R1∩R2 is finite.) We can write R = R1∪ . . .∪Rk where each Rj is undecom-
posable (i.e. not decomposable) and where any two of these sets have a finite
intersection. This is obvious by writing R as the union of as many domains
as possible, under the condition that the intersection of any of two of these
domains is finite. Then each of them must be undecomposable.

We claim that
1

4

∑

�≤k

λ(R′
�\R�) ≤ λ(R′\R) . (4.95)

To see this, let us set S� = R′
�\R�, so that by definition of R′

�, S� is the
union of the squares D of G′ that have at least one of the edges that form their
boundary contained in R� but are not themselves contained in R�. Obviously
we have S� ⊂ R′. When � �= �′, the sets R� and R�′ have a finite intersection,
so that a square D contained in S� cannot be contained in R�′ , since it has
an entire edge contained in R�. Since D is not contained in R� either, it is
not contained in R. Thus the interior of D is contained in R′\R, and since
this is true for any square D of S� and any � ≤ k, we have

λ
(⋃

�≤k

S�
)
≤ λ(R′\R) .

Moreover, a given square D of G′ can be contained in a set S� for at most 4
values of � (one for each of the edges of D), so that

∑

�≤k

λ(R′
� \R�) =

∑

�≤k

λ(S�) ≤ 4λ
(⋃

�≤k

S�
)
.

This proves (4.95).
To prove that (4.94) holds for any domain R, it suffices to prove that

when R is an undecomposable domain we have (pessimistically)

N

4
λ(R′\R) ≥ card{i ≤ N ; Xi ∈ R} −Nλ(R) . (4.96)

Indeed, writing (4.96) for R = R�, summing over � ≤ k and using (4.95)
implies (4.94).

We turn to the proof of (4.96) when R is an undecomposable domain.
The boundary S of R is a subset of G′. Inspection of the cases shows that:

If a vertex τ of G′ belongs to S, either 2 or 4 of (4.97)

the edges of G′ incident to τ are contained in S.
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Next we show that any subset S of G′ that satisfies (4.97) is a union
of closed simple curves, any two of them intersecting only at vertices of G′.
(This is simply the decomposition into cycles of Eulerian graphs.) To see this,
it suffices to construct a closed simple curve C contained in S, to remove
C from S and to iterate, since S\C still satisfies (4.97). The construction
goes as follows. Starting with an edge τ1τ2 in S, we find successively edges
τ2τ3, τ3τ4, . . . with τk �= τk−2, and we continue the construction until the
first time τk = τ� for some � ≤ k − 2 (in fact � ≤ k − 3). Then the edges
τ�τ�+1, τ�+1τ�+2, . . . , τk−1τk define a closed simple curve contained in S.

Thus the boundary of an undecomposable domain R is a union of closed
simple curves C1, . . . , Ck, any two of them having at most a finite intersection.

We next show that for each �, the set R is either contained in the closure

C∗
� of

o

C� (so that C� is then the “outer boundary” of R) or else
o

C� ∩R = ∅
(in which case

o

C� is “a hole” in R). Let us fix � and assume otherwise for
contradiction. Consider the domain R1 which is the union of the squares
of G′ that are contained in R but not in C∗

� , so that R1 is not empty by
hypothesis. Consider also the domain R2 that is the union of the squares of

G′ contained in R whose interiors are contained in
o

C�. Then R2 is not empty

either. Given a square of G′, and since
o

C� is the interior of C∗
� , either its

interior is contained in
o

C� or else the square is not contained in C∗
� . This

proves that R = R1 ∪R2. Next we show that the domains R1 and R2 cannot
have an edge of the grid G′ in common. Assuming for contradiction that such
an edge exists, it is an edge of exactly 2 squares A and B of G′. One of these
squares is a subset of R1 and the other is a subset of R2. Thus the edge must
belong to C� for otherwise A and B would be “on the same side of C�” and
they would both be subsets of R1 or both subsets of R2. Next, we observe
that this edge cannot be on the boundary of R because both A and B are
subsets of R. This contradicts the fact that C� is contained in the boundary of
R, therefore proving that R1 and R2 cannot have an edge in common. Since
R = R1∪R2, this in turn would imply that R is decomposable, contradicting
our assumption.

Without loss of generality we assume that C1 is the outer boundary of R,

and that for 2 ≤ � ≤ k we have R ∩
o

C� = ∅. The goal now is to prove that

R = C∗
1\
⋃

2≤�≤k

o

C� . (4.98)

It is obvious that R ⊂ C∗
1\
⋃

2≤�≤k

o

C� so that we have to show that D :=

(C∗
1\
⋃

2≤�≤k

o

C�) \ R is empty. We assume for contradiction that D is not
empty. Consider a square A of G′ which is contained in D, and a square A′

of G′ which has an edge in common with A. First, we claim that A′ ⊂ C∗
1 .

Otherwise, A and A′ would have to be on different sides of C1, which means
that their common edge has to belong to C1 and hence to the boundary of
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R. This is impossible because neither A nor A′ is then a subset of R. Indeed
in the case of A′ this is because we assume that A′ �⊂ C∗

1 , and in the case
of A this is because we assume that A ⊂ D. Exactly the same argument

shows that the interior of A′ cannot be contained in
o

C� for 2 ≤ � ≤ k. Indeed
then A and A′ would be on different sides of C� so that their common edge
would belong to C� and hence to the boundary of R, which is impossible since
neither A nor A′ is a subset of R. We have now shown that A and A′ lie on
the same side of each curve C�, so that their common edge cannot belong to
the boundary of R, and since A is not contained in R this is not the case of
A′ either. Consequently the definition of D shows that A′ ⊂ D, but since A
was an arbitrary square contained in D, this is absurd, and completes the
proof that D = ∅ and of (4.98).

Let R∼
� be the union of the squares of G′ that have at least one edge

contained in C�. Thus, as in (4.95), we have

∑

�≤k

λ(R∼
� \R) ≤ 4λ(R′\R)

and to prove (4.96) it suffices (recalling that we assume that no point Xi

belongs to G) to show that for each 1 ≤ � ≤ k we have

∣∣card
{
i ≤ N ; Xi ∈

o

C�

}
− λ(

o

C�)
∣∣ ≤ N2−4λ(R∼

� \R) . (4.99)

For � ≥ 2 , C� does not intersect the boundary of [0, 1]2. Each edge con-
tained in C� is in the boundary of R. One of the 2 squares of G′ that contain
this edge is included in R∼

� \R, and the other in R. Since a given square
contained in R∼

� \R must arise in this manner from one of its 4 edges, we
have

λ(R∼
� \R) ≥ 1

4
2−�2�(C�) . (4.100)

On the other hand, (4.81) implies

∣∣card
{
i ≤ N ; Xi ∈

o

C�

}
− λ(

o

C�)
∣∣ ≤ L�(C�)

√
N(logN)3/4 ,

so that (4.99) follows provided

2−�2 ≥ 26L√
N

(logN)3/4 , (4.101)

where L is the constant of (4.81).
When � = 1, (4.100) need not be true because parts of C1 might be traced

on the boundary of [0, 1]2. In that case we simply decompose C1 in a union
of chords and of parts of the boundary of [0, 1]2 to deduce (4.99) from (4.93).

Thus we have proved that (4.81) and (4.93) imply (4.94) provided that
(4.101) holds. Next, for a domain R, we denote by R∗ the set of points which
are within distance 2−�2 of R′, and we show that, provided
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2−�2 ≥ 20√
N

(4.102)

we have
card{i ≤ N ; Yi ∈ R∗} ≥ Nλ(R′) . (4.103)

This is simply because since the sequence Yi is widely spread, the points
Yi are centers of disjoint rectangles of area 1/N and diameter ≤ 20/

√
N .

There are at least Nλ(R′) points Yi such that the corresponding rectangle
intersects R′ (because the union of these rectangles cover R′) and (4.102)
implies that these little rectangles are entirely contained in R∗. Therefore
(4.94) and (4.103) imply

card{i ≤ N ; Yi ∈ R∗} ≥ card{i ≤ N ; Xi ∈ R} . (4.104)

Next, consider a subset I of {1, . . . , N} and let R be the domain that is
the union of the squares of G′ that contain at least a point Xi , i ∈ I. Then,
using (4.104),

card I ≤ card{i ≤ N ; Xi ∈ R} ≤ card{i ≤ N ; Yi ∈ R∗} . (4.105)

A point of R′ is within distance 2−�2 of a point of R. A point of R∗ is
within distance 2−�2+1 of a point of R. A point of R is within distance√
2 · 2−�2 ≤ 2−�2+1 of a point Xi with i ∈ I. Consequently each point of R∗

is within distance ≤ 2−�2+2 of a point Xi with i ∈ I. Therefore if we define

A(i) =
{
j ≤ N ; d(Xi, Yj) ≤ 2−�2+2

}
,

we have proved that {j ≤ N ;Yj ∈ R∗} ⊂
⋃

i∈I A(i), and combining with
(4.105) that

card
⋃

i∈I

A(i) ≥ card I .

Hall’s Marriage Lemma (Corollary 4.2.2) then shows that we can find a
matching π for which Yπ(i) ∈ Ai for any i ≤ N , so that

sup
i≤N

d(Xi, Yπ(i)) ≤ 2−�2+2 ≤ L√
N

(logN)3/4 ,

by taking for �2 the largest integer that satisfies (4.101) and (4.102). Since
this is true whenever (4.81) and (4.93) occur, the proof of (4.79) is complete.


�

4.5 Notes and Comments

The original proof of the Leighton-Shor theorem amount basically to perform
by hand a kind generic chaining in this highly non-trivial case, an incredi-
ble tour de force. A first attempt was made in [6] to relate (an important
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consequence of) the Leighton-Shor theorem to general methods for bounding
stochastic processes, but runs into technical complications. Then Coffman
and Shor [3] introduced the use of Fourier transforms and brought to light
the role of ellipsoids, after which it became clear that the structure of these
ellipsoids plays a central part in these matching results, a point of view sys-
tematically expounded in [8].

Chapter 14 is a continuation of the present chapter. The more difficult
material it contains is presented later for fear of scaring readers at this early
stage. A notable feature of the result presented there is that ellipsoids do not
suffice, a considerable source of complication.

One could wonder for which kind of probability distributions on the unit
square Theorem 4.3.1 remains true. The intuition is that the uniform distri-
bution considered in Theorem 4.3.1 is the “worst possible”. This intuition
is correct. This is proved in [7]. The proof is overall similar but one has to
find an appropriate substitute for Fourier transforms. The situation is differ-
ent for Theorem 4.4.1, as is shown by the trivial example of a distribution
concentrated at exactly two points at distance d (where the reader will show
that the best matching typically requires moving some of the random points
for a distance d).

Methods similar to those of this chapter may be used to obtain non-
trivial discrepancy theorems for various classes of functions, a topic which
is investigated in [8]. Let us mention one such result. We denote by λ the
uniform probability on the unit cube [0, 1]3, and by (Xi)i≤N independent
uniformly distributed r.v.s valued in this unit cube.

Theorem 4.5.1. Consider the class C of convex sets in R
3. Then

E sup
C∈C

| card{i ≤ N ; Xi ∈ C} −Nλ(C)| ≤ L
√
N(logN)3/4 .

The original results of [1] are proved using an interesting technique called
the transportation method. A version of this method, which avoids many of
the technical difficulties of the original approach is presented in [9]. With the
notation of Theorem 4.3.1, it is proved in [9] (a stronger version of the fact)
that with probability ≥ 9/10 one has

inf
π

1

N

∑

i≤N

exp
(Nd(Xi, Yπ(i))

2

K logN

)
≤ 2 . (4.106)

It has not been investigated whether this result could be obtained by the
methods presented here.

Since expx ≥ x, (4.106) implies that
∑

i≤N d(Xi, Yπi)
2 ≤ logN and hence

using the Cauchy-Schwarz inequality

∑

i≤N

d(Xi, Yπ(i)) ≤ L
√
N logN . (4.107)
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Moreover it implies also

max
i≤N

d(Xi, Yπ(i)) ≤ L logN/
√
N . (4.108)

It does not seem known whether one can achieve simultaneously (4.107) and
maxi≤N d(Xi, Yπ(i)) ≤ L(logN)3/4/

√
N . In this circle of idea, see the ulti-

mate matching conjecture on page 447.
For results about matching for unbounded distributions, see the work of

J. Yukich [10].
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5. Bernoulli Processes

5.1 Boundedness of Bernoulli Processes

Arguably Gaussian r.v.s are the central object of Probability theory, but
Bernoulli (= coin-flipping) r.v.s are also very useful. (We recall that ε is a
Bernoulli r.v. if P(ε = ±1) = 1/2.) In particular Bernoulli r.v.s are often
involved when one deals with symmetric r.v.s. We have already used this
procedure in Section 3.2.

Consider a subset T of �2 = �2(N∗), and i.i.d. Bernoulli r.v.s (εi)i≥1. The
Bernoulli process defined by T is the family (Xt)t∈T where Xt =

∑
i≥1 tiεi.

We have explained on page 46 the fundamental importance of processes of
this type for the study of random series of functions, and indeed the abstract
results we shall prove in this chapter (and in particular Theorem 5.2.1 below)
will be crucial for our understanding of random Fourier series with general
coefficients in Chapter 7.

We set
b(T ) := E sup

t∈T
Xt = E sup

t∈T

∑

i≥1

tiεi , (5.1)

a definition that mimics the case of Gaussian processes, where we defined

g(T ) = E sup
t∈T

∑

i≥1

tigi.

We observe that b(T ) ≥ 0, that b(T ) ≤ b(T ′) if T ⊂ T ′, and that b(T + t0) =
b(T ), where T + t0 = {t+ t0; t ∈ T}.

We would like to understand the value of b(T ) from the geometry of T , as
we did in the case of Gaussian processes. As we already observed in Chapter 3,
the subgaussian inequality (3.11) implies that if d denotes the distance in �2,
then the process (Xt)t∈T satisfies the increment condition (1.4):

P(|Xs −Xt| ≥ u) ≤ 2 exp
(
− u2

2d(s, t)2

)
, (1.4)

so that Theorem 2.2.22 implies

b(T ) ≤ Lγ2(T ) , (5.2)
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where we remind the reader that we often write γ2(T ) instead of γ2(T, d)
when d is the �2 distance. Since γ2(T ) ≤ Lg(T ) by Theorem 2.4.1, Bernoulli
processes “are smaller than the corresponding Gaussian processes”. This is
also a consequence of the following avatar of (3.27), with the same proof.

Proposition 5.1.1. We have

b(T ) ≤
√

π

2
g(T ) . (5.3)

Thus, we can bound a Bernoulli process by comparing it with a Gaussian
process, or equivalently by using (5.2). There is however a completely different
method to bound Bernoulli processes. We denote by ‖t‖1 =

∑
i≥1 |ti| the �1

norm of t. The following is trivial.

Proposition 5.1.2. We have

b(T ) ≤ sup
t∈T

‖t‖1 . (5.4)

Thus, we have found two very different ways in which we can bound
b(T ). To understand how different these was are, the reader can consider the
following two cases: T = {u, 0} where u �∈ �1 and T the unit ball of �1. The
following definition and proposition formalize the idea that we can also use
mixtures of the previous situations.

Definition 5.1.3. For a subset T of �2, we set

b∗(T ) := inf

{
γ2(T1) + sup

t∈T2

‖t‖1 ; T ⊂ T1 + T2

}
. (5.5)

Here of course T1 + T2 is the Minkowski sum

T1 + T2 = {t1 + t2 ; t1 ∈ T1, t2 ∈ T2} . (5.6)

Note that Xt1+t2 = Xt1 +Xt2 and hence

sup
t∈T1+T2

Xt ≤ sup
t∈T1

Xt + sup
t∈T2

Xt .

Taking expectation yields b(T ) ≤ b(T1+T2) ≤ b(T1)+b(T2). Combining with
(5.2) and (5.4), we have proved the following.

Proposition 5.1.4. We have

b(T ) ≤ Lb∗(T ) . (5.7)

It is natural to conjecture that the previous bound on b(T ) is sharp. This
was known as the Bernoulli Conjecture. It took nearly 25 years to prove it.
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Theorem 5.1.5 (The Bednorz-Lata�la theorem). There exists a univer-
sal constant L such that given any subset T of �2 we have

b∗(T ) ≤ Lb(T ) . (5.8)

The proof of Theorem (5.1.5) will consist in describing a procedure to
decompose each point t ∈ T as a sum T = t1 + t2 where ‖t2‖1 ≤ Lb(T ) and
T1 = {t1; t ∈ T} satisfies γ2(T1) ≤ Lb(T ). This procedure makes T naturally
appear as a subset of a sum T1+T2, even though T may be very different itself
from such a sum. The intrinsic difficulty is that this decomposition is neither
unique nor canonical. Another way to explain the difficulty is as follows.
Consider a set T1 with γ2(T1) ≤ 1, so that b(T1) ≤ L. To each point t of T1

let us associate a point ϕ(t) with ‖ϕ(t)‖1 ≤ 1, and let T = {t+ϕ(t); t ∈ T1}.
Thus b(T ) ≤ L. Now, we are only given the set T . How do we reconstruct
the set T1?

The next two sections introduce basic tools concerning Bernoulli pro-
cesses. These tools will be much used later on, and also in the proof of The-
orem 5.1.5. The rest of the chapter is then devoted to the completion of the
proof of this result. This proof is not very long. However the whole approach
involves several new and deep ideas, and a nearly magic way to fit them
together. The understanding of all this will likely require a real effort from
the reader. It should be most rewarding. If ever a proof in this book deserves
to be called truly deep and beautiful, this is the one. Should, however, this
proof turn out to be too difficult at first reading, the reader should not be
discouraged. The remainder of the book depends little on Theorem 5.1.5 and
on the material of the present chapter starting from Section 5.6.

5.2 Chaining for Bernoulli Processes

We cannot expect that an oracle will always reveal possible choices of the sets
T1 and T2 that witness the inequality b∗(T ) ≤ Lb(T ). We need a practical
method to bound b(T ). The basic idea is to use chaining, and, along each
chain, to use that, for any subset I of N∗,

P
(∣∣∣
∑

i≥1

εiai

∣∣∣ ≥ u+
∑

i∈I

|ai|
)
≤ P
(∣∣∣
∑

i 	∈I

εiai

∣∣∣ ≥ u
)
,

and then to use the subgaussian inequality to bound the last term. But how
do we organize the argument efficiently, and if possible, optimally? This is the
purpose of the next theorem. This theorem is the generalization of the generic
chaining bound (2.45) to Bernoulli processes: it organizes the chaining in a
optimal way, a statement which will be made precise in Proposition 5.2.5
below. This is not only a theoretical consideration: in Chapter 7 we shall
demonstrate the sweeping effectiveness of this result when applied to the
classical problem of convergence of random Fourier series.



132 5. Bernoulli Processes

The only negative point is that the theorem looks a bit complicated at
first glance, because it involves several new (and fundamental) ideas. We need
to state it before explaining it. We consider a number r ≥ 2.

Theorem 5.2.1. Consider a subset T of �2, and assume that 0 ∈ T . Con-
sider an admissible sequence of partitions (An) of T , and for A ∈ An con-
sider a number jn(A) ∈ Z with the following properties, where u ≥ 1 is a
parameter:

A ∈ An , B ∈ An−1 , A ⊂ B ⇒ jn(A) ≥ jn−1(B) , (5.9)

∀x, y ∈ A ∈ An ,
∑

i≥1

(
r2jn(A)(xi − yi)

2
)
∧ 1 ≤ u2n , (5.10)

where x ∧ y = min(x, y). Then

b∗(T ) ≤ L

(
u sup

x∈T

∑

n≥0

2nr−jn(An(x)) + sup
x∈T

∑

i≥1

|xi|1{2|xi|≥r−j0(T )}

)
. (5.11)

Moreover if εi are independent Bernoulli r.v.s, for any p ≥ 1 we have

(
E sup

x∈T

∣∣∑

i≥1

xiεi
∣∣p
)1/p

≤ K(p)u sup
x∈T

∑

n≥0

2nr−jn(An(x))

+ L sup
x∈T

∑

i≥1

|xi|1{2|xi|≥r−j0(T )} . (5.12)

We first point out the following simple consequence.

Corollary 5.2.2. Assume that moreover

∀x ∈ T , ‖x‖∞ < r−j0(T )/2 . (5.13)

Then
b∗(T ) ≤ Lu sup

x∈T

∑

n≥0

2nr−jn(An(x)) . (5.14)

Proof. In (5.11) the second term in the right-hand side is identically zero. 
�
Let us now comment on Theorem 5.2.1. Condition (5.9) is a mild technical

requirement. The central condition is (5.10). It could also be written

∀x, y ∈ A ∈ An ,
∑

i≥1

(xi − yi)
2 ∧ r−2jn(A) ≤ u2nr−2jn(A) . (5.15)

The point of writing (5.10) rather than (5.15) is simply that this is more in
line with the generalizations of this statement that we shall study later.

Let us imagine that instead of condition (5.15) we had the stronger con-
dition

∀x, y ∈ A ∈ An ,
∑

i≥1

(xi − yi)
2 ≤ u2nr−2jn(A) , (5.16)

and let us investigate what this would mean.
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Proposition 5.2.3. Consider a subset T of �2. Consider an admissible se-
quence of partitions (An) of T , and for A ∈ An consider a number jn(A) ∈ Z.
Assume that (5.9) and (5.16) hold, where u ≥ 1 is a parameter. Then

γ2(T ) ≤
√
u sup

x∈T

∑

n≥0

2nr−jn(An(x)) . (5.17)

Proof. It follows from (5.16) that

Δ(A) ≤
√
u2n/2r−jn(A) , (5.18)

and thus
sup
x∈T

∑

n≥0

2n/2Δ(An(x)) ≤
√
u sup

x∈T
2nr−jn(An(x)) . 
�

This has the following converse.

Proposition 5.2.4. Consider a subset T of �2. Then there exists an admis-
sible sequence of partitions (An) of T , and for A ∈ An a number jn(A) ∈ Z

such that (5.9) and (5.16) hold for u = 1 and supx∈T

∑
n≥0 2

nr−jn(An(x)) ≤
K(r)γ2(T ) .

Proof. Consider an admissible sequence of partitions (An) of T for which
supx

∑
n≥0 2

n/2Δ(An(x)) ≤ 2γ2(T, d). Define jn(A) as the largest integer

j ∈ Z for which Δ(A) ≤ 2n/2r−j , so that 2n/2r−jn(A) ≤ rΔ(A) and (5.9) is
obviously satisfied. Moreover supx∈T

∑
n≥0 2

nr−jn(An(x)) ≤ 2rγ2(T ) . 
�
The previous considerations show that we should think of the quantity

supx∈T 2nr−jn(An(x)) as a substitute for the quantity supx∈T 2n/2Δ(An(x)),
so that the occurrence of this quantity in the right-hand side of (5.17) is
not surprising. This method of controlling the size of a set A through the
parameter jn(A) is motivated by one of the leading ideas of this work, that
many processes require the use of “families of distances” to control them
in an optimal manner, a topic that we will develop gradually. The point of
Theorem 5.2.1 is that (5.10) is significantly weaker than condition (5.16),
because it requires a much weaker control on the large values of xi − yi. It is
of course difficult at this stage to really understand that this is a considerable
gain. Some comments that might help may be found on page 280.

The following result shows that in some sense Corollary 5.2.2 is optimal.

Proposition 5.2.5. Assume that 0 ∈ T ⊂ �2. Then we can find a sequence
(An) of admissible partitions of T and for A ∈ An a number jn(A) such that
conditions (5.13), (5.9) and (5.10) are satisfied for u = 1 and moreover

sup
x∈T

∑

n≥0

2nr−jn(An(x)) ≤ K(r)b∗(T ) . (5.19)
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This will be proved in Section 16.3. Of course, the situation is the same as for
the generic chaining bound for Gaussian processes. There is no magic wand
to discover the proper choice of the partitions An, and in specific situations
this can be done only by understanding the underlying combinatorics.

Also, we should point out one of the (psychological) difficulties in discov-
ering the proof of Theorem 5.1.5. Even though it turns out from Proposi-
tion 5.2.5 that one can find the partitions An such that (5.10) holds, when
proving Theorem 5.1.5 it seems necessary to use partitions with a weaker
property, which replaces the summation over all values of i in (5.10) by the
summation over the values in an appropriate subset Ωn(t) of N∗, see (5.25)
below.

In order to avoid repetition, we shall deduce Theorem 5.2.1 from a more
general principle, which will cover all our future needs (and in particular is one
of the keys to the proof of Theorem 5.1.5). This is going to look complicated at
first sight, but we shall show almost immediately how to use it. We consider a
measure space (Ω,μ) where μ is a σ-finite measure. It suffice for this chapter
to consider the case where Ω = N

∗ provided with the counting measure, but
the proofs are not any simpler in this special situation.

Theorem 5.2.6. Consider a countable set T of measurable functions on Ω,
a number r ≥ 2, and assume that 0 ∈ T . Consider an admissible sequence of
partitions (An) of T . For t ∈ T and n ≥ 0 consider an element jn(t) ∈ Z and
πn(t) ∈ T . Assume that π0(t) = 0 for each t and the following properties.
First, the values of jn(t) and πn(t) depend only on An(t):

∀s, t ∈ T , ∀n ≥ 0 ; s ∈ An(t)⇒ jn(s) = jn(t) ; πn(s) = πn(t) . (5.20)

The sequence (jn(t))n≥1 is non-decreasing:

∀t ∈ T , ∀n ≥ 0 , jn+1(t) ≥ jn(t) . (5.21)

When going from n to n + 1 the value of πn(t) can change only when the
value of jn(t) increases:

∀t ∈ T , ∀n ≥ 0 , jn(t) = jn+1(t)⇒ πn(t) = πn+1(t) . (5.22)

When going from n to n + 1, if the value of jn(t) increases, then πn+1(t) ∈
An(t):

∀t ∈ T , ∀n ≥ 0 , jn+1(t) > jn(t)⇒ πn+1(t) ∈ An(t) . (5.23)

For t ∈ T and n ≥ 0 we define Ωn(t) ⊂ Ω as Ω0(t) = Ω if n = 0 and

Ωn(t) =
{
ω ∈ Ω ; 0 ≤ q < n⇒ |πq+1(t)(ω)− πq(t)(ω)| ≤ r−jq(t)

}
. (5.24)

Let us consider a parameter u > 0 and assume that

∀t ∈ T , ∀n ≥ 0 ,

∫

Ωn(t)

(
r2jn(t)(t(ω)− πn(t)(ω))

2 ∧ 1
)
dμ(ω) ≤ u2n . (5.25)
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Then we can write T ⊂ T1 + T2 + T3 where 0 ∈ T1 and

γ2(T1, d2) ≤ L
√
u sup

t∈T

∑

n≥0

2nr−jn(t) (5.26)

γ1(T1, d∞) ≤ L sup
t∈T

∑

n≥0

2nr−jn(t) (5.27)

∀t ∈ T2 , ‖t‖1 ≤ Lu sup
t∈T

∑

n≥0

2nr−jn(t) . (5.28)

Moreover,
∀t ∈ T3 , ∃s ∈ T , |t| ≤ 5|s|1{2|s|≥r−j0(t)} . (5.29)

The term T3 of the decomposition is of secondary importance, and will be
easy to control. It is required because (5.25) says little about the functions
|s|1{|s|≥r−j0(T )}. The important statements are (5.26) to (5.28). The impor-
tant case is where u ≥ 1 although it changes nothing to the proof to assume
only u > 0. (Incidentally Theorem 5.2.1 also holds for u > 0 at the expense
of replacing u by

√
u in (5.11) and (5.12).)

Let us first give a slightly simpler (and weaker) statement.

Theorem 5.2.7. Consider a countable set T of measurable functions on Ω,
a number r ≥ 2, and assume that 0 ∈ T . Consider an admissible sequence of
partitions (An) of T , and for A ∈ An consider jn(A) ∈ Z, with the following
properties, where u > 0 is a parameter

A ∈ An , B ∈ An−1 , A ⊂ B ⇒ jn(A) ≥ jn−1(B) . (5.30)

∀ s, t ∈ A ∈ An ,

∫ (
r2jn(A)(s(ω)− t(ω))2

)
∧ 1dμ(ω) ≤ u2n . (5.31)

Then we can write T ⊂ T1 + T2 + T3 as in Theorem 5.2.6, where jn(t) =
jn(An(t)).

Condition (5.30) is a mild technical requirement. The central condition is
(5.31). If it were replaced by the stronger condition

∀ s, t ∈ A ,

∫
r2jn(t)(s(ω)− t(ω))2dμ(ω) ≤ u2n , (5.32)

this would simply mean Δ(A, d2) ≤
√
u2n/2r−jn(t). Again, the point is that

(5.31) requires a much weaker control of the large values of s− t than (5.32).

Proof. We deduce this result from Theorem 5.2.6. We set jn(t) = jn(An(t))
and we define

p(n, t) = inf
{
p ≥ 0 ; jn(t) = jp(t)

}
,

so that p(n, t) ≤ n and thus Ap(n,t) ⊃ An(t). We define tT = 0. For A ∈
An , n ≥ 1, we choose an arbitrary point tA in A. We define



136 5. Bernoulli Processes

πn(t) = tB where B = Ap(n,t)(t) ,

and we note that π0(t) = 0. When s ∈ An(t) we have Ap(s) = Ap(t) for p ≤ n
and thus p(n, s) = p(n, t) so that πn(s) = πn(t). Also, if jn+1(t) = jn(t) we
have p(n, t) = p(n + 1, t), so that πn(t) = πn+1(t). This proves that (5.20)
to (5.22) hold. Moreover, when jn(t) > jn−1(t) we have p(n, t) = n so that
πn(t) = tA for A = An(t), and thus πn(t) ∈ An(t) ⊂ An−1(t), and this proves
(5.23). Finally, (5.31) used for p = p(n, t) and B = Ap(n,t)(t) reads

∀s, s′ ∈ B ,

∫
r2jp(B)|s− s′|2 ∧ 1dμ ≤ u2p

and this is stronger than (5.25) since jp(B) = jn(A) = jn(t) and πn(t) =
tB ∈ B. The proof is complete. 
�

Corollary 5.2.8. Under the conditions of Theorem 5.2.1 we can write T ⊂
T1 + T2 + T3 where

γ2(T1, d2) ≤ L
√
u sup

x∈T

∑

n≥0

2nr−jn(An(x)) , (5.33)

γ1(T1, d∞) ≤ L sup
x∈T

∑

n≥0

2nr−jn(An(x)) , (5.34)

∀x ∈ T2 , ‖x‖1 ≤ Lu sup
x∈T

∑

n≥0

2nr−jn(An(x)) , (5.35)

and

∀x ∈ T3 , ∃y ∈ T , ∀ i ≥ 1 , |xi| ≤ 5|yi|1{2|yi|≥r−j0(T )} . (5.36)

Proof. This follows from Theorem 5.2.7 in the case Ω = N
∗ and where μ is

the counting measure. 
�
Proof of Theorem 5.2.1. It relies upon Corollary 5.2.8. Let us define S =
supx∈T

∑
n≥0 2

nr−jn(An(x)) and S∗ = supx∈T

∑
i≥1 |xi|1{2|xi|≥r−j0(T )}. Then

(5.33) implies that γ2(T1, d2) ≤ L
√
uS. Moreover ‖x‖1 ≤ LuS for x ∈ T2

by (5.35) while for x ∈ T3 we have ‖x‖1 ≤ LS∗ by (5.36). Consequently,
‖x‖1 ≤ L(uS + S∗) for x ∈ T2 + T3. This proves (5.11).

Let us then decompose 0 ∈ T as 0 = x1 + y1 where x1 ∈ T1 and y1 =
−x1 ∈ T2 + T3. Let T ′

1 = T1 − x1, T
′
2 = T2 + T3 − y1, so that γ2(T

′
1, d2) =

γ2(T1, d2) ≤ L
√
uS, 0 ∈ T ′

1 and

x ∈ T ′
2 ⇒ ‖x‖1 ≤ L(uS + S∗) . (5.37)

Moreover T ⊂ T ′
1 + T ′

2.
To prove (5.12) it suffices to prove this inequality when in the left-hand

side we replace T by either T ′
1 or T ′

2. In the case of T ′
1 this follows from (5.33),

since 0 ∈ T ′
1. In the case of T ′

2 this follows from (5.37) since
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(
E sup

x∈T ′
2

∣∣∑

i≥1

xiεi
∣∣p
)1/p

≤ sup
x∈T ′

2

∑

i≥1

|xi| = sup
x∈T ′

2

‖x‖1 . 
�

Although the following is not directly used in the proof of Theorem 5.2.6,
it is connected in the simplest possible case to some of the underlying ideas of
the proofs, and it might help the reader to spell out this simple interpolation
principle. It decomposes a function of L2 in its ’“peaky” part and its “spread
out” part.

Lemma 5.2.9. Consider f ∈ L2 and u > 0. Then we can write f = f1 + f2
where

‖f1‖2 ≤ ‖f‖2 , ‖f1‖∞ ≤ u ; ‖f2‖2 ≤ ‖f‖2 , ‖f2‖1 ≤
‖f‖22
u

. (5.38)

Proof. We set f1 = f1{|f |≤u}, so that the first part of (5.38) is obvious. We
set f2 = f1{|f |>u} = f − f1, so that

u‖f2‖1 =

∫
u|f |1{|f |>u}dμ ≤

∫
f2dμ = ‖f‖22 . 
�

Proof of Theorem 5.2.6. The principle of the proof is, given t ∈ T , to write
t(ω) = t1(ω) + t2(ω) + t3(ω) where one defines the values t1(ω), t2(ω), t3(ω)
from the values πn(t)(ω), n ≥ 1. A natural way to implement this strategy is
to write the chaining identity

t =
∑

n≥1

(πn(t)− πn−1(t)) ,

and to use Lemma 5.2.9 for each of the increments πn(t) − πn−1(t), with a
suitable value of u = u(t, n). The reader can find the proof of a special case
of Theorem 5.2.7 along this line in the second proof of Theorem 9.1.9 on page
276. It might be helpful to look at this proof before or in parallel with the
study of the present arguments.

At some point the author got the fancy idea that the approach outlined
above was not clean, and that one should define t1(ω) as πn(ω)(t)(ω) for a
cleverly chosen value of n(ω). In retrospect, and despite considerable efforts,
this does not make the proof any more intuitive. Maybe it is unavoidable
that the proof is not very simple. There seems to be a genuine difficulty
here: Theorem 5.2.1 is an immediate consequence of Theorem 5.2.7, and we
have already mentioned that it has sweeping consequences. The reader might
like to postpone reading the details of the present proof until she has found
enough motivation through the subsequent applications of this principle.

Certainly we may assume that

sup
t∈T

∑

n≥0

2nr−jn(t) <∞ , (5.39)
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and in particular that

∀t ∈ T , lim
n→∞

jn(t) =∞ . (5.40)

Let us also observe that using (5.20) and (5.25) we have

∀t ∈ T, ∀n ≥ 0, ∀s ∈ An(t),

∫

Ωn(t)

r2jn(t)(s(ω)− πn(t)(ω))
2 ∧ 1dμ(ω) ≤ u2n.

(5.41)
For t ∈ T and ω ∈ Ω, we define

m(t, ω) = inf
{
n ≥ 0 ; |πn+1(t)(ω)− πn(t)(ω)| > r−jn(t)

}

if the set on the right is not empty and m(t, ω) = ∞ otherwise. In words,
this is the first place at which πn(ω) and πn+1(ω) differ significantly. Thus

n < m(t, ω)⇒ |πn+1(t)(ω)− πn(t)(ω)| ≤ r−jn(t) , (5.42)

and we note from the definition (5.24) of Ωn(t) that

Ωn(t) = {m(t, ·) ≥ n} . (5.43)

From (5.22), when jn+1(t) = jn(t) we have πn+1(t) = πn(t). Thus, using also
(5.23) in the last implication,

πn+1(t) �= πn(t)⇒ jn+1(t) ≥ jn(t) + 1⇒ πn+1(t) ∈ An(t) . (5.44)

Consequently for m < m(t, ω) we have

|πm+1(t)(ω)− πm(t)(ω)| ≤ r−jm(t)1{jm+1(t)>jm(t)} .

Since r ≥ 2, we deduce from (5.42) that if n < m(t, ω) then

∑

n≤m<m(t,ω)

|πm+1(t)(ω)− πm(t)(ω)| ≤
∑

j≥jn(t)

r−j ≤ 2r−jn(t) . (5.45)

Let us define t1 by t1(ω) = πm(t,ω)(t)(ω) if m(t, ω) < ∞ and t1(ω) =
limn→∞ πn(t)(ω) if m(t, ω) = ∞. The limit exists from (5.45) and (5.40),
and since π0(t) = 0, using (5.45) with n = 0 we have

|t1(ω)| ≤ 2r−j0(T ) . (5.46)

We define T1 = {t1; t ∈ T}. For n ≥ 0, we define t1n by

t1n(ω) = πn∧m(t,ω)(t)(ω) ,

so that
∀ω , t1(ω) = lim

n→∞
t1n(ω) . (5.47)



5.2 Chaining for Bernoulli Processes 139

We aim now to show that if Un = {t1n ; t ∈ T}, then cardUn ≤ Nn. When
s ∈ An(t) we have πn(s) = πn(t) by (5.20). Since then Aq(s) = Aq(t) for
q ≤ n, we also have πq(s) = πq(t) for such values of q. The definition ofm(t, ω)
shows that for any n′, the points πq(t) for 0 ≤ q ≤ n′ entirely determine
whether or not it is true that m(t, ω) < n′. Consequently, when s ∈ An(t) we
have n ∧m(t, ω) = n ∧m(s, ω) for each ω, so that t1n = s1n. This proves that
cardUn ≤ cardAn ≤ Nn.

The next goal is to prove that the sets Un are in a sense approximations of
the set T1, both for the �2 and the �∞ norm. We note that t1(ω)− t1n(ω) = 0
if n ≥ m(t, ω), and by (5.45) that if n < m(t, ω), then

|t1(ω)− t1n(ω)| ≤
∑

n≤m<m(t,ω)

|πm+1(t)(ω)− πm(t)(ω)| ≤ 2r−jn(t) .

Thus ‖t1 − t1n‖∞ ≤ 2r−jn(t), and hence d∞(t1, Un) ≤ 2r−jn(t). Thus (5.27)
follows from Theorem 2.3.1 with α = 1.

We turn to the proof of (5.26). We observe that

t1n+1 − t1n = (πn+1(t)− πn(t))1{m(t,·)>n} .

Indeed, if m(t, ω) ≤ n then t1n(ω) = t1n+1(ω) = πm(t,ω)(ω) while if m(t, ω) > n
then t1n(ω) = πn(t)(ω) and t1n+1(ω) = πn+1(t)(ω). By definition of m(t, ω)

we have |πn+1(t) − πn(t)| ≤ r−jn(t) whenever m(t, ·) > n and also Ωn(t) =
{m(t, ·) > n} by (5.43). Therefore,

|t1n+1 − t1n| ≤ |πn+1(t)− πn(t)|1{|πn+1(t)−πn(t)|≤r−jn(t)}∩Ωn(t) .

Now if the right-hand side above is not 0 then πn+1(t) ∈ An(t) by (5.44) so
that using (5.41) in the fourth line,

‖t1n+1 − t1n‖22

≤
∫

Ωn(t)

|πn+1(t)(ω)− πn(t)(ω)|21{|πn+1(t)(ω)−πn(t)(ω)|≤r−jn(t)}dμ(ω)

≤
∫

Ωn(t)

(
πn+1(t)(ω)− πn(t)(ω)

)2 ∧ r−2jn(t)dμ(ω)

≤ u2nr−2jn(t) .

Thus ‖t1n+1− t1n‖2 ≤
√
u2n/2r−jn(t) and (5.39) implies that the sequence (t1n)

is a Cauchy sequence in �2, so that it converges to its limit, which is t1 from
(5.47), and hence limn→∞ ‖t1 − t1n‖2 = 0. Consequently

d2(t
1, Un) ≤ ‖t1 − t1n‖2 ≤ lim

q→∞
‖t1q − t1n‖2

≤
∑

m≥n

‖t1m+1 − t1m‖2 ≤
√
u
∑

m≥n

2m/2r−jm(t) . (5.48)
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Since
∑

n≥0

2n/2
∑

m≥n

2m/2r−jm(t) ≤
∑

m≥0

2m/2r−jm(t)
∑

n≤m

2n/2 ≤ L
∑

m≥0

2mr−jm(t) ,

we conclude by Theorem 2.3.1 again that (5.26) holds.
For t ∈ T , define Ξ(t) = {ω ; |t(ω)| ≤ r−j0(T )/2} and t3 = (t− t1)1Ξ(t)c .

Since for ω ∈ Ξ(t)c we have |t(ω)| ≥ r−j0(T )/2 and since |t1(ω)| ≤ 2r−j0(T )

by (5.46), we have |t3| ≤ 5|t|1Ξ(t)c , so that the set T3 = {t3 ; t ∈ T} satisfies
(5.29).

We set t2 := t− t1 − t3 = (t− t1)1Ξ(t), T2 = {t2; t ∈ T}, and we turn to
the proof of (5.28). We define

r(t, ω) = inf
{
n ≥ 0 ; |πn+1(t)(ω)− t(ω)| ≥ 1

2
r−jn+1(t)

}

if the set on the right is not empty and r(t, ω) =∞ otherwise. Thus,

n < r(t, ω)⇒ |πn+1(t)(ω)− t(ω)| < 1

2
r−jn+1(t) . (5.49)

Consequently, for 0 ≤ n < r(t, ω),

|πn+1(t)(ω)− πn(t)(ω)| ≤ |πn+1(t)(ω)− t(ω)|+ |πn(t)(ω)− t(ω)|

≤ 1

2
r−jn+1(t) + |πn(t)(ω)− t(ω)| . (5.50)

When n > 0 we use (5.49) for n− 1 to obtain

|πn(t)(ω)− t(ω)| ≤ r−jn(t)/2 . (5.51)

Let us fix ω ∈ Ξ(t). Then this inequality still holds true for n = 0 since

|π0(t)(ω)− t(ω)| = |t(ω)| ≤ r−j0(T )/2 = r−j0(t)/2 .

Thus for 0 ≤ n < r(t, ω), we have

|πn+1(t)(ω)− πn(t)(ω)| ≤
1

2
(r−jn+1(t) + r−jn(t)) ≤ r−jn(t) ,

and consequently r(t, ω) ≤ m(t, ω). When r(t, ω) = ∞ then m(t, ω) = ∞ so
that, recalling (5.40), t(ω) = limn→∞ πn(t)(ω) = t1(ω). Therefore we have
proved that

t2(ω) = t(ω)− t1(ω) =
∑

n≥0

(t(ω)− t1(ω))1{r(t,ω)=n} . (5.52)

Now, when n = r(t, ω), we have m(t, ω) ≥ n and, using (5.45), |πn(t)(ω)−
t1(ω)| ≤ 2r−jn(t). Consequently, using also (5.51),
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|t(ω)− t1(ω)| ≤ |t(ω)− πn(t)(ω)|+ |πn(t)(ω)− t1(ω)| ≤ 3r−jn(t) . (5.53)

Let us define t2n = (t− t1)1{r(t,·)=n}∩Ξ(t), so that t2 =
∑

n≥0 t
2
n by (5.52) and

by (5.53) it holds ‖t2n‖1 ≤ Lr−jn(t)μ({ω; r(t, ω) = n} ∩ Ξ(t)).
To finish the proof we show that μ({ω; r(t, ω) = n}∩Ξ(t)) ≤ Lu2n. Since

for ω ∈ Ξ(t) we have r(t, ω) ≤ m(t, ω), using (5.43) we get {ω; r(t, ω) =
n} ∩ Ξ(t) ⊂ Ωn(t) and therefore

μ({ω ; r(t, ω) = n} ∩ Ξ(t)) ≤ μ({ω ; r(t, ω) = n} ∩Ωn+1(t))

+ μ(Ωn(t) \Ωn+1(t)) . (5.54)

Now, since |πn+1(t)(ω)− t(ω)| ≥ r−jn+1(t)/2 when r(t, ω) = n, we have

1
4μ ({ω ; r(t, ω) = n} ∩Ωn+1(t))

≤
∫

Ωn+1(t)

r2jn+1(t)(πn+1(t)(ω)− t(ω))2 ∧ 1dμ(ω)

≤ u2n+1 ,

using (5.41) for n+ 1 rather than n in the last inequality. Since |πn(t)(ω)−
πn+1(t)(ω)| ≥ r−jn(t) for ω ∈ Ωn(t) \ Ωn+1(t) and since πn+1(t) ∈ An(t) by
(5.44) we have again from (5.41)

μ(Ωn(t) \Ωn+1(t)) ≤
∫

Ωn(t)

r2jn(t)|πn+1(t)(ω)− πn(t)(ω)|2 ∧ 1dμ(ω) ≤ u2n ,

and the proof is complete. 
�

5.3 Fundamental Tools for Bernoulli Processes

We start by a simple fact.

Lemma 5.3.1. For a subset T of �2 we have

Δ(T, d2) ≤ Lb(T ) . (5.55)

Proof. Assuming without loss of generality that 0 ∈ T , we have

∀t ∈ T , b(T ) ≥ Emax
(
0,
∑

i≥1

εiti

)
=

1

2
E
∣∣∣
∑

i≥1

εiti

∣∣∣ ≥
1

L
‖t‖2 ,

using symmetry in the equality and Khinchin’s inequality (3.12) in the last
inequality. This proves (5.55). 
�

The first fundamental fact about Bernoulli processes is a “concentration
of measure” result, which should be compared with Lemma 2.4.7.
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Theorem 5.3.2. Consider a subset T ⊂ �2 and assume that for a certain
t0 ∈ �2 we have T ⊂ B(t0, σ). Consider numbers (a(t))t∈T and let M be a
median of the r.v. supt∈T (

∑
i εiti + a(t)). Then

∀u > 0 , P
(∣∣∣sup

t∈T

(∑

i≥1

εiti + a(t)
)
−M

∣∣∣ ≥ u
)
≤ 4 exp

(
− u2

4σ2

)
. (5.56)

In particular, ∣∣∣E sup
t∈T

(∑

i≥1

εiti + a(t)
)
−M

∣∣∣ ≤ Lσ , (5.57)

and also

∀u > 0 , P
(∣∣∣sup

t∈T

∑

i≥1

εiti − b(T )
∣∣∣ ≥ u

)
≤ L exp

(
− u2

Lσ2

)
. (5.58)

This theorem has a short and almost magic proof, which can be found e.g
in [8], in [4] or in [3]. We do not reproduce this proof for a good reason: the
reader must face the fact that if she intends to become really competent about
the area of probability theory with which we are dealing here, she must learn
more about concentration of measure, and that this is better done by looking
at the previous references rather than just at the proof of Theorem 5.3.2.

When all the coefficients ti are small (say, compared to ‖t‖2), the r.v.∑
i≥1 tiεi resembles a Gaussian r.v., by the central limit theorem. Therefore

one expects that when, in some sense, the set T is small for the �∞ norm,
g(T ) (or, equivalently, γ2(T )) is not too much larger than b(T ). This is the
main idea of the next section, as well as the main idea of the following result,
which is our second fundamental tool about Bernoulli processes.

Theorem 5.3.3. Consider t1, . . . , tm in �2, and assume that

� �= �′ ⇒ ‖t� − t�′‖2 ≥ a . (5.59)

Assume moreover that
∀� ≤ m , ‖t�‖∞ ≤ b . (5.60)

Then

E sup
�≤m

∑

i≥1

εit�,i ≥
1

L
min
(
a
√
logm,

a2

b

)
. (5.61)

This should be compared with Lemma 2.4.2, which in the present language
asserts that

E sup
�≤m

∑

i≥1

git�,i ≥
a

L1

√
logm . (5.62)

This inequality will be the basis of the proof.
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Exercise 5.3.4. Convince yourself that in (5.61) the term a2/b is of the
correct order. (Hint: remember that

∑
i εit�,i ≤

∑
i |t�,i|. Look for examples

where t�,i ∈ {0, b}.)

The main step of the proof of Theorem 5.3.3 is as follows.

Proposition 5.3.5. The conclusion of Theorem 5.3.3 holds true if we as-
sume moreover that ‖t�‖2 ≤ 2a for each � ≤ m.

Proof. We recall the constant L1 of (5.62). By Lemma 5.3.1 we observe that
E sup�≤m

∑
i≥1 t�,iεi ≥ a/L, so that it suffices to prove (5.61) when a/b ≥

L1

√
log 2, for otherwise (5.61) holds automatically provided the constant L

is large enough. Consider the largest integer N ≤ m for which

L1

√
logN ≤ a

b
. (5.63)

Then N ≥ 2, and, distinguishing whether N = m or not, we obtain

a
√
logN ≥ 1

L
min
(
a
√
logm,

a2

b

)
. (5.64)

The plan is to prove that

E sup
�≤N

∑

i≥1

εit�,i ≥
1

L
a
√
logN , (5.65)

so that the result follows by combining with (5.64). The argument is related
to that of Theorem 3.2.12. Let us consider a parameter c > 0 and define
ξi = gi1{|gi|>c} and ξ′i = gi1{|gi|≤c}. Thus, using (5.62),

a

L1

√
logN ≤ E sup

�≤N

∑

i≥1

git�,i ≤ E sup
�≤N

∑

i≥1

ξ′it�,i + E sup
�≤N

∑

i≥1

ξit�,i . (5.66)

Copying the argument of (3.25) shows that

E sup
�≤N

∑

i≥1

ξ′it�,i ≤ cE sup
�≤N

∑

i≥1

εit�,i .

Therefore (5.66) shows that to prove (5.65) it suffices to prove that if c is
large enough we have

E sup
�≤N

∑

i≥1

ξit�,i ≤
a

2L1

√
logN . (5.67)

Consider a parameter λ > 0. Since the r.v. ξi is symmetric, we have

ϕc(λ) :=
1

λ2
(E expλξi − 1) =

1

2λ2
E(expλξi + exp(−λξi)− 2) ,
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and
E expλξi = 1 + λ2ϕc(λ) ≤ exp(λ2ϕc(λ)) . (5.68)

Since the function x �→ x−2(expx + exp(−x) − 2) increases on R
+, this

is also the case of ϕc. Also it is obvious from dominated convergence that
limc→∞ ϕc(x) = 0 for each x. We fix c large enough that

ϕc(16) ≤ V := 2−9L−2
1 (5.69)

and we proceed to prove (5.67) for this value of c. For each t ∈ �2 we have,
using that ϕc increases on R

+,

E expλξiti ≤ exp(λ2t2iϕc(|ti|λ)) ≤ exp(λ2t2iϕc(‖t‖∞λ)) ,

and thus

E expλ
∑

i≥1

ξiti =
∏

i≥1

E expλξiti ≤ exp(λ2‖t‖22ϕc(‖t‖∞λ)) .

In particular, since ‖t�‖22 ≤ 4a2 and ‖t�‖∞ ≤ b, whenever λ ≤ 16/b we get

E exp
(
λ
∑

i≥1

ξit�,i

)
≤ exp(4a2λ2V ) .

Using the inequality P(Z ≥ x) ≤ exp(−λx)E exp(λZ) for λ, x ≥ 0, we then
obtain

P
(∑

i≥1

ξit�,i ≥ x
)
≤ exp(−λx+ 4a2λ2V ) ,

and then
P
(
sup
�≤N

∑

i≥1

ξit�,i ≥ x
)
≤ N exp(−λx+ 4a2λ2V ) .

Consequently, for any y > 0 we have

E sup
�≤N

∑

i≥1

ξit�,i ≤ Emax
(
sup
�≤N

∑

i≥1

ξit�,i, 0
)
=

∫ ∞

0

P
(
sup
�≤N

∑

i≥1

ξit�,i ≥ x
)
dx

≤ y +

∫ ∞

y

N exp(−λx+ 4a2λ2V )dx

= y +
N

λ
exp(−λy + 4a2λ2V ) . (5.70)

Let us now make the choice

y =
a
√
logN

4L1
; λ =

y

8a2V
.
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This choice is legitimate because, since V = 2−9/L2
1, we have

λ =

√
logN

25L1aV
=

16L1

a

√
logN ≤ 16

b

from (5.63). Moreover

−yλ+ 4a2λ2V = − y2

16a2V
= − a2 logN

28L2
1V a2

= −2 logN .

Then (5.70) yields

E sup
�≤N

∑

i≥1

ξit�,i ≤ y +
1

Nλ
=

a
√
logN

4L1

(
1 +

1

4N logN

)
,

and since N ≥ 2 we have indeed proved (5.67) and completed the proof. 
�
Proof of Theorem 5.3.3. The proof relies on a simple iteration procedure.
As in the proof of Proposition 5.3.5, it suffices to consider the case where√
logm ≤ a/b. Let T = {t1, . . . , tm}. Consider a point t ∈ T and an integer

k ≥ −1. Assume that in the ball B(t, 2k+1a) we can find points u1, . . . , uN

with d(u�, u�′) ≥ 2ka whenever � �= �′. We can then use Proposition 5.3.5 for
the points u1 − t, . . . , uN − t, with 2ka instead of a and 2b instead of b to
obtain, using that

√
logN ≤

√
logm ≤ a/b in the last inequality,

b(T ) ≥ 1

L
min
(
2ka
√
logN,

22ka2

2b

)
≥ 1

L
2ka
√
logN .

ThusN ≤Mk := exp(L2−2kb(T )2/a2). Consequently every ball in T of radius
2k+1a can be covered by at mostMk balls of radius 2ka. Iteration of this result
shows that T can be covered by at most

∏
k≥−1 Mk balls of radius a/2. Since

t� �∈ B(t�′ , a/2) for � �= �′ we have m ≤
∏

k≥−1 Mk ≤ exp(Lb(T )2/a2), i.e.

b(T ) ≥ a
√
logm/L. 
�

Our last fundamental result is a comparison principle. Let us say that a
map θ from R to R is a contraction if |θ(s)− θ(t)| ≤ |s− t| for each s, t ∈ R.

Theorem 5.3.6. For i ≥ 1 consider contractions θi with θi(0) = 0. Then
for each (finite) subset T of �2 we have

E sup
t∈T

∑

i≥1

εiθi(ti) ≤ b(T ) = E sup
t∈T

∑

i≥1

εiti . (5.71)

A more general comparison result may be found in [5], Theorem 2.1. We
give here only the simpler proof of the special case (5.71) that we need.

Proof. The purpose of the condition θi(0) = 0 is simply to ensure that
(θi(ti)) ∈ �2 whenever (ti) ∈ �2. A simple approximation procedure shows
that it suffices to show that for each N we have
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E sup
t∈T

∑

1≤i≤N

εiθi(ti) ≤ E sup
t∈T

∑

1≤i≤N

εiti .

By iteration it suffices to show that E supt∈T

∑
1≤i≤N εiti decreases when t1

is replaced by θ1(t1). By conditioning on ε2, ε3, . . . , εN it suffices to prove
that for a subset T of R2 and a contraction θ we have

E sup
t∈T

(ε1θ(t1) + t2) ≤ E sup
t∈T

(ε1t1 + t2) .

To prove this it suffices to show that for s, s′ ∈ T we have

θ(s′1) + s′2 − θ(s1) + s2 ≤ 2E sup
t∈T

(ε1t1 + t2) . (5.72)

Now,

2E sup
t∈T

(ε1t1+t2) ≥ max(s′1+s′2−s1+s2, s1+s2−s′1+s′2) = s2+s′2+|s′1−s1| ,

so that (5.72) simply follows from the fact that θ(s′1)− θ(s1) ≤ |s′1− s1| since
θ is a contraction. 
�

5.4 Control in �∞ Norm

The main result of this section is as follows.

Theorem 5.4.1. There exists a universal constant L such that for any subset
T of �2 we have

γ2(T ) ≤ L
(
b(T ) +

√
b(T )γ1(T, d∞)

)
. (5.73)

We leave it as an exercise to the reader to prove that this result is actually a
consequence of Theorems 5.1.5 and 16.4.12. It is of interest however to give
a direct proof, so that we can learn to use some of the basic ideas of the
previous section before we plunge in the proof of Theorem 5.1.5.

Corollary 5.4.2. We have

b(T ) ≥ 1

L
min

(
γ2(T ),

γ2(T )
2

γ1(T, d∞)

)
. (5.74)

Proof. Denoting by L∗ the constant of (5.73), if b(T ) ≤ γ2(T )/(2L
∗) then

(5.73) implies

γ2(T ) ≤ γ2(T )/2 + L∗√b(T )γ1(T, δ∞) ,

hence b(T ) ≥ γ2(T )
2/4(L∗)2γ1(T, d∞). 
�
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Exercise 5.4.3. Find examples of situations where γ1(T, d∞) ≥ γ2(T ) and
b(T ) is of order γ2(T )

2/γ1(T, d∞). (Hint: try cases where ti ∈ {0, 1} for each
i and each t.)

Our main tool is as follows. It should be compared with Proposition 2.4.9.

Proposition 5.4.4. There exists constants L1 and L2 with the following
properties. Consider numbers a, b, σ > 0, vectors t1, . . . , tm ∈ �2, that sat-
isfy (5.59) and (5.60). For � ≤ m consider sets H� with H� ⊂ B2(t�, σ).
Then

b
( ⋃

�≤m

H�

)
≥ 1

L1
min
(
a
√
logm,

a2

b

)
− L2σ

√
logm+min

�≤m
b(H�) . (5.75)

The proof is identical to that of Proposition 2.4.9, if one replaces Lemmas
2.4.2 and 2.4.7 respectively by Theorem 5.3.3 and Theorem 5.3.2.

Corollary 5.4.5. There exists a constant L0 with the following property.
Consider a set D with Δ(D, d∞) ≤ 2a/

√
logm, and points t� ∈ D that satisfy

(5.59). Consider moreover sets H� ⊂ B2(t�, a/L0). Then

b
( ⋃

�≤m

H�

)
≥ a

L0

√
logm+min

�≤m
b(H�) . (5.76)

Proof. We observe that without loss of generality we may assume t1 = 0, so
that ‖t�‖∞ ≤ b = 4a/

√
logm for all � ≤ m and (5.75) used for σ = a/L0

gives

b
( ⋃

�≤m

H�

)
≥ 1

4L1
a
√
logm− aL2

L0

√
logm+min

�≤m
b(H�) ,

so that if L0 ≥ 8L1L2 and L0 ≥ 8L1 we get (5.76). 
�

Proof of Theorem 5.4.1. We consider an integer τ ≥ 1 to be specified later,
and an admissible sequence of partitions (Dn) of T such that

sup
t∈T

∑

p≥0

2pΔ(Dp(t), d∞) ≤ 2γ1(T, d∞) . (5.77)

The proof will rely on the application of Theorem 2.7.2 to the functionals

Fn(A) = sup
{
b(A ∩D) + Un(D) , D ∈ Dn+τ , A ∩D �= ∅

}
,

where
Un(D) = sup

t∈D

∑

p≥n

2pΔ(Dp+τ (t), d∞) .

Let us observe right away that Un+1(D) ≤ Un(D) and that Un(D) is an
increasing function of D.
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We now check that the functionals Fn satisfy the growth condition of
Definition 2.7.1 for a suitable value of the parameters. Consider m = Nn+τ+1

and points t1, . . . , tm of T such that

� �= �′ ⇒ ‖t� − t�′‖2 ≥ a , (5.78)

and consider setsH� ⊂ B2(t�, a/r), where r = 4L0 , L0 ≥ 1 being the constant
of Corollary 5.4.5.

Consider c < min�≤m Fn+1(H�), so that by definition of Fn for each � we
can find a set D� ∈ Dn+τ+1 such that H� ∩D� �= ∅ and

b(H� ∩D�) + Un+1(D�) > c . (5.79)

Each of the m sets D� is contained in one of the sets of Dn+τ . Since m =
Nn+τ+1 = N2

n+τ ≥ Nn+τ ·cardDn+τ , by the pigeon hole principle we can find
D ∈ Dn+τ such that the set

I = {� ≤ m ; D� ⊂ D}

satisfies card I ≥ Nn+τ . The definition of Fn implies

Fn

( ⋃

�≤m

H�

)
≥ b
(
D ∩

⋃

�∈I

H�

)
+ Un(D) . (5.80)

Now, for each � ∈ I, we have

Un(D) = 2nΔ(D, d∞) + Un+1(D) ≥ 2nΔ(D, d∞) + Un+1(D�) . (5.81)

Case 1. We have Δ(D, d∞) ≥ a2−n/2. Then, (5.80) and (5.81) show that if
�0 is an arbitrary element of I, we have, using (5.79) for � = �0 in the last
line,

Fn

( ⋃

�≤m

H�

)
≥ 2n/2a+ b(D�0 ∩H�0) + Un+1(D�0)

≥ 2n/2a+ c ,

and thus
Fn

( ⋃

�≤m

H�

)
≥ 2n/2a+ inf

�≤m
Fn+1(H�) . (5.82)

Case 2. We have Δ(D, d∞) ≤ a2−n/2, and thus Δ(D, d∞) ≤ a/
√
logNn.

We select an arbitrary subset J of I with cardJ = Nn. For � ∈ J we choose
arbitrarily u� ∈ H� ∩ D� ⊂ D, so that, since H� ⊂ B2(t�, a/r), we have
H� ⊂ B2(u�, 2a/r) = B2(u�, a/(2L0)) since r = 4L0. We observe that, since
r ≥ 4, by (5.78) we have d2(u�, u�′) ≥ a/2 for � �= �′.

We use Corollary 5.4.5 with m = Nn, H� ∩D� instead of H�, a/2 instead
of a and u� instead of t� to obtain
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b
(
D ∩

⋃

�∈I

H�

)
≥ b
(⋃

�∈J

(H� ∩D�)
)

≥ a

2L0

√
logNn + inf

�∈J
b(H� ∩D�) .

Combining with (5.80) and (5.81) we get

Fn

( ⋃

�≤m

H�

)
≥ 2n/2a

L
+ inf

�∈J
(b(H� ∩D�) + Un(D))

≥ 2n/2a

L
+ inf

�∈J
(b(H� ∩D�) + Un(D�))

≥ 2n/2a

L
+ inf

�∈J
Fn+1(H�)

≥ 2n/2a

L
+ inf

�≤m
Fn+1(H�) . (5.83)

Thus, this relation holds, whichever of the preceding cases occur. That is, we
have proved that the growth condition of Definition 2.7.1 holds with θ(n) =
2n/2/L, τ + 1 instead of τ and β = 1 and we can apply Theorem 2.7.2 for
these values of the parameters. By definition of F0 we have

F0(T ) ≤ b(T ) + U0(T )

and by (5.77) we have 2τU0(T ) ≤ 2γ1(T, d∞), so that

F0(T ) ≤ b(T ) + 2−τ+1γ1(T, d∞) .

Since Δ(T, d2) ≤ Lb(T ) by (5.55), we deduce from Lemma 2.3.5 and Theo-
rem 2.7.2 that

γ2(T ) ≤ L2τ/2
(
b(T ) + 2−τγ1(T, d∞)

)

and Theorem 5.4.1 follows by optimization over τ ≥ 1. 
�

5.5 Lata�la’s Principle

The following crucial result was first proved in [2], but it was not obvious
at the time how important this is. The simpler proof presented here comes
from [1].

Proposition 5.5.1. There exists a constant L1 with the following property.
Consider a subset T of �2 and a subset J of N

∗. Assume that for certain
numbers c, σ > 0 and that for an integer m the following holds:

∀ s, t ∈ T ,
∑

i∈J

(si − ti)
2 ≤ c2 , (5.84)
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t ∈ T ⇒ ‖t‖∞ <
σ√
logm

. (5.85)

Then provided

c ≤ σ

L1
, (5.86)

we can find m′ ≤ m + 1 and a partition (A�)�≤m′ of T such that for each
� ≤ m′ we have either

∃t� ∈ T , A� ⊂ B(t�, σ) , (5.87)

or else
bJ(A�) := E sup

t∈A�

∑

i∈J

εiti ≤ b(T )− σ

L

√
logm . (5.88)

In this statement there are two distances involved, the canonical distance
d2(s, t) =

∑
i≥1(si − ti)

2 and the smaller distance d2J(s, t) =
∑

i∈J(si − ti)
2.

In (5.84) we assume that the diameter of T is small for the small distance
dJ . We then produce these sets A� satisfying (5.87) with a small diameter
for the large distance d. This will turn out to be the key to Theorem 5.1.5,
although it will probably take some time for the reader to understand how
Proposition 5.5.1 fits into the picture. For the time being it suffices to un-
derstand that this proposition allows to split T into not too many pieces on
which extra information is gained.

Proof. Certainly we may assume that T cannot be covered by m balls of the
type B(t, σ). For t ∈ T set

Yt =
∑

i∈J

εiti ; Zt =
∑

i 	∈J

εiti , (5.89)

and define
α = inf

t1,...,tm∈T
E sup

t∈T\∪�≤mB(t�,σ)

Yt .

To prove the theorem we shall prove that provided the constant L1 of (5.86)
is large enough we have

α ≤ b(T )− σ

L

√
logm . (5.90)

Indeed, consider points t1, . . . , tm such that E supt∈T\∪�≤mB(t�,σ) Yt ≤
b(T )−σ

√
logm/L. The required partition is obtained by taking A� ⊂ B(t�, σ)

for � ≤ m and Am+1 = T \ ∪�≤mB(t�, σ).
We turn to the proof of (5.90). By definition of α, given points t1, . . . , tk ∈

T with k ≤ m, the r.v.

W = sup
t∈T\∪�≤kB(t�,σ)

Yt satisfies EW ≥ α . (5.91)
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Moreover, using (5.84) and (5.58) it satisfies

∀u > 0 , P(|W − EW | ≥ u) ≤ L exp
(
− u2

Lc2

)
. (5.92)

Let us consider independent copies (Y k
t )t∈T of the process (Yt)t∈T (which

are also independent of the r.v.s (εi)i≥1) and a small number ε > 0. First, we
consider W1 := supt∈T Y 1

t and we select a point t1 ∈ T (depending on the
r.v.s Y 1

t ) with
Y 1
t1 ≥W1 − ε . (5.93)

Next, we let W2 = supt∈T\B(t1,σ) Y
2
t and we find t2 such that

Y 2
t2 ≥W2 − ε . (5.94)

We proceed in this manner until we construct a last point tm. The next goal
is to bound from above and from below the quantity

S := Emax
k≤m

(Y k
tk + Ztk) . (5.95)

To find a bound from below, we write

max
k≤m

(Y k
tk + Ztk) ≥ max

k≤m
(Wk + Ztk)− ε ≥ min

k≤m
Wk +max

k≤m
Ztk − ε . (5.96)

Now, using (5.91) given the points t1, . . . , tk−1 implies that EWk ≥ α, because
the process (Y k

t ) is independent of t1, . . . , tk−1. Using (5.92) we obtain that
for all u > 0 we have P(Wk ≤ α−u) ≤ L exp(−u2/(Lc2)), so that proceeding
as in (2.87) we get

Emin
k≤m

Wk ≥ α− Lc
√
logm . (5.97)

Next, denoting by EJc expectation in the r.v.s (εi)i∈Jc only, we prove that

EJc max
k≤m

Ztk ≥
1

L
σ
√
logm . (5.98)

For this we observe that for s, t ∈ T with ‖s− t‖2 ≥ σ then, using (5.84),

∑

i 	∈J

(si − ti)
2 =
∑

i≥1

(si − ti)
2 −
∑

i∈J

(si − ti)
2 ≥ σ2 − c2 ≥ (σ/2)2 .

Thus (5.98) follows from (5.61). Taking expectation in (5.96) and letting
ε→ 0 we have proved that

S ≥ α+
(σ
L
− Lc

)√
logm . (5.99)

Consider now some numbers (a(t))t∈T and a median M ′ of the process
supt∈T (Yt + a(t)). Using (5.56), (5.84) we obtain
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∀u > 0 , P
(∣∣∣sup

t∈T
(Yt + a(t))−M ′

∣∣∣ ≥ u
)
≤ 4 exp

(
− u2

4c2

)
.

Proceeding as in (2.87) we get

Emax
k≤m

sup
t∈T

(Y k
t + a(t)) ≤M ′ + Lc

√
logm ,

and since by (5.57) we have |M ′−E supt∈T (Yt+a(t))| ≤ Lc we finally obtain

Emax
k≤m

sup
t∈T

(Y k
t + a(t)) ≤ E sup

t∈T
(Yt + a(t)) + Lc

√
logm . (5.100)

In particular, since Y k
t does not depend on the r.v.s (εi)i∈Jc , denoting now

by EJc

expectation given the r.v.s (εi)i∈Jc , (5.100) implies

EJc

max
k≤m

sup
t∈T

(Y k
t + Zt) ≤ EJc

sup
t∈T

(Yt + Zt) + Lc
√
logm .

Taking expectation yields

S ≤ Emax
k≤m

sup
t∈T

(Y k
t + Zt) ≤ b(T ) + Lc

√
logm ,

and combining with (5.99) we obtain

α+
(σ
L
− Lc

)√
logm ≤ b(T ) + Lc

√
logm ,

so that indeed (5.90) holds true provided the constant L1 of (5.86) is large
enough. 
�

5.6 Chopping Maps and Functionals

One of the most successful ideas about Bernoulli processes is that of chopping
maps. The basic idea is to replace the individual r.v.s εixi by a sum

∑
εi,jxi,j

where εi,j are independent Bernoulli r.v.s and where xi,j are “small pieces of
xi”. It is then easier to control the �∞ norm of the new process.

Given u ≤ v ∈ R we define the function ϕu,v as the unique continuous
function for which ϕu,v(0) = 0, which is constant for x ≤ u and x ≥ v and
has slope 1 between these values. Thus

ϕu,v(x) = min(v,max(x, u))−min(v,max(u, 0)) . (5.101)

Consequently |ϕu,v(x)| ≤ v−u, and |ϕu,v(x)−ϕu,v(y)| ≤ |x−y|, with equality
when u ≤ x, y ≤ v.

It is very useful to note that if u1 ≤ u2 ≤ · · · ≤ uk, then

ϕu1,uk
(x) =

∑

1≤�<k

ϕu�,u�+1
(x) . (5.102)
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This is simply because both the left-hand side and the right-hand side are
continuous, constant for x ≤ u1 and x ≥ uk, have slope 1 between these
values, and take the value 0 at 0.

Given a finite subset G of R we define

G− := {u ∈ G ; ∃v ∈ G , u < v} ,

and for u ∈ G− we define u+ = inf{v ∈ G ; u < v}. It will always be
implicitly assumed that cardG ≥ 2 so that G− �= ∅. The following is then
obvious but also essential.

Lemma 5.6.1. For each x, y ∈ R and each finite set G, we have

∑

u∈G−

|ϕu,u+(x)− ϕu,u+(y)| ≤ |x− y| . (5.103)

Moreover there is equality if minG ≤ x, y ≤ maxG.

In particular, since ϕu,u+(0) = 0, we have

∑

u∈G−

|ϕu,u+(x)| ≤ |x| . (5.104)

In the remainder of this chapter we consider independent Bernoulli r.v.s εx,i
for x ∈ R and i ∈ N

∗. These are also assumed to be independent of all other
Bernoulli r.v.s considered, in particular the εi.

Consider now for i ≥ 1 a finite set Gi ⊂ R . For t ∈ �2 we consider the
r.v.

Xt(Gi, i) :=
∑

u∈G−
i

εu,iϕu,u+(ti) . (5.105)

That is, the value ti is “chopped” into the potentially smaller pieces ϕu,u+(ti).
We do this for all values of i. We write G = (Gi)i≥1 and we consider the r.v.

Xt(G) :=
∑

i≥1

Xt(Gi, i) =
∑

i≥1

∑

u∈G−
i

εu,iϕu,u+(ti) . (5.106)

Observe that the series converges in L2 if t ∈ �2 thanks to (5.104). In this
manner to a Bernoulli process (Xt)t∈T we associate a new Bernoulli process
(Xt(G))t∈T . Another way to express this which we shall use at times is that
we replace T by the set

{
(ϕu,u+(ti))i∈N∗,u∈G−

i
; t ∈ T

}
,

so that the index set N∗ has been replaced by the larger index set {(i, u); i ∈
N

∗, u ∈ G−
i }. It follows from (5.103) and the inequality

∑
a2k ≤ (

∑
|ak|)2

that the canonical distance dG associated to the new process satisfies
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dG(s, t)
2 =

∑

i≥1,u∈G−
i

(ϕu,u+(si)− ϕu,u+(ti))
2 ≤ d(s, t)2 =

∑

i≥1

(si − ti)
2 .

(5.107)
The problem is that the reverse inequality is by no means true, and that a

set can very well be of small diameter for dG but not for d. This is in a sense the
main difficulty in using chopping maps. We shall discover soon how brilliantly
Bednorz and Lata�la bypassed this difficulty using Proposition 5.5.1.

The following is fundamental.

Proposition 5.6.2. For any family G and any finite set T ⊂ �2 we have

E sup
t∈T

Xt(G) ≤ b(T ) = E sup
t∈T

∑

i≥1

εiti . (5.108)

Proof. The families (εx,i) and (εiεx,i) have the same distribution, so that

E sup
t∈T

Xt(G) = E sup
t∈T

∑

i≥1,u∈G−
i

εu,iϕu,u+(ti)

= E sup
t∈T

∑

i≥1,u∈G−
i

εiεu,iϕu,u+(ti)

= E
(
Eε sup

t∈T

∑

i≥1

εiθi(ti)
)
, (5.109)

where θi(x) =
∑

u∈G−
i
εu,iϕu,u+(x), and where Eε means averaging only in

(εi)i≥1. We note that θi is a contraction, since

|θi(x)− θi(y)| ≤
∑

u∈G−
i

|ϕu,u+(x)− ϕu,u+(y)| ≤ |x− y|

by (5.103). The key point is (5.71) which implies

Eε sup
t∈T

∑

i≥1

εiθi(ti) ≤ E sup
t∈T

∑

i≥1

εiti = b(T ) .

Combining with (5.109) finishes the proof. 
�
Chopping maps were invented to prove the following, which illustrates well
their power. We denote by B1 the unit ball of �1.

Proposition 5.6.3. There exists a constant L such that for each subset T
of �2 we have, for ε > 0

ε
√
logN(T, εB2 + Lb(T )B1) ≤ Lb(T ) ,

where N(T,C) is the smallest number of translates of C that can cover T .
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Proof. Consider c > 0, and the map Ψc : �2 = �2(N∗) → �2(N∗ × Z) given
by Ψc(t) = ((ϕ�c,(�+1)c(ti))(i,�)). Applying in turn (an obvious adaptation of)
Proposition 5.6.2 and Theorem 5.3.3 yields

b(T ) ≥ b(Ψc(T )) ≥
1

L
min
(
ε
√
logN(Ψc(T ), εB2),

ε2

c

)
, (5.110)

because if m ≤ N(Ψc(T ), εB2), we can find points (t�)�≤m in Ψc(T ) with
‖t� − t�′‖ ≥ ε for � �= �′, and since ‖t‖∞ ≤ c for t ∈ Ψc(T ). Thus if we choose
c = ε2/(2Lb(T )) where L is as in (5.110) we get

b(T ) ≥ min
( 1
L
ε
√
logN(Ψc(T ), εB2), 2b(T )

)
,

so that Lb(T ) ≥ ε
√

logN(Ψc(T ), εB2). It then follows from (5.111) below
that

Ψc(x) ∈ Ψc(y) + εB2 ⇒ x ∈ y + 2εB2 +
4ε2

c
B1

and therefore

N(T, 2εB2 + 8Lb(T )B1) = N(T, 2εB2 +
4ε2

c
B1) ≤ N(Ψc(T ), εB2) . 
�

The following exercise helps explain the nice behavior of chopping maps
with respect to interpolation between �2, �∞ and �1 norms. It will be used
in Chapter 11. The elementary proof is better left to the reader. There is no
reason to believe that the constants are optimal, they are just a reasonable
choice.

Exercise 5.6.4. Prove that for x, y ∈ R we have

|x− y|21{|x−y|<c} + c|x− y|1{|x−y|≥c} ≤ 4
∑

�∈Z

|ϕc�,c(�+1)(x)− ϕc�,c(�+1)(y)|2.

(5.111)
and
∑

�∈Z

|ϕc�,c(�+1)(x)−ϕc�,c(�+1)(y)|2 ≤ |x− y|21{|x−y|<c} +2c|x− y|1{|x−y|≥c} .

(5.112)

Exercise 5.6.5. Deduce Proposition 5.6.3 from Theorem 5.1.5. (Hint: Ob-
serve that whenever T2 ⊂ aB1 we have

N(T1 + T2, εB2 + aB1) ≤ N(T1, εB2)

and use the Sudakov minoration Lemma 2.4.2.)

We are going to be confronted by the following situation. For i ≥ 1 we
consider finite sets Gi ⊂ G′

i. Letting G = (Gi)i≥1 and G′ = (G′
i)i≥1, we want

to compare the processes (Xt(G))t and (Xt(G′))t. We start by comparing the
associated distances.
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Proposition 5.6.6. (a) Assume that for a certain integer q

∀i ∈ N
∗ , ∀u ∈ G−

i , card([u, u+[∩G′
i) ≤ q , (5.113)

where u+ is the successor of u in Gi. Then

dG ≤
√
qdG′ . (5.114)

(b) Assume that

∀i ∈ N
∗ , minGi = minG′

i , maxGi = maxG′
i . (5.115)

Then
dG′ ≤ dG . (5.116)

Proof. Throughout the proof we write u an element of G−
i and u+ it successor

in Gi; and v an element of G′−
i and v+ its successor in G′

i. Thus, for s, t ∈ T
we have

dG(s, t)
2 =
∑

i≥1

∑

u∈G−
i

(ϕu,u+(si)− ϕu,u+(ti))
2 (5.117)

and
dG′(s, t)2 =

∑

i≥1

∑

v∈G′−
i

(ϕv,v+(si)− ϕv,v+(ti))
2 . (5.118)

Given i ∈ N
∗ and u ∈ G−

i let us define the set Gi,u = G′−
i ∩ [u, u+[. As u

varies in G−
i , one thus obtains disjoint subsets of G′−

i . The union of these
sets is G′−

i exactly when minGi = minG′
i and maxGi = maxG′

i.
Next, we observe from (5.102) that for any u ∈ G−

i ,

|ϕu,u+(si)− ϕu,u+(ti)| =
∑

v∈Gi,u

|ϕv,v+(si)− ϕv,v+(ti)| . (5.119)

Thus, using the inequality (
∑

k≤q ak)
2 ≤ q

∑
k≤q a

2
k, and since under con-

dition (5.113) we have cardGi,u ≤ q, we get then

dG(s, t)
2 ≤ q

∑

i≥1

∑

u∈G−
i

∑

v∈Gi,u

(ϕv,v+(si)− ϕv,v+(ti))
2 ≤ qdG′(s, t)2 ,

and we have proved (5.114). Next, using again (5.119) as well as the inequality
(
∑

k |ak|)2 ≥
∑

a2k we obtain

dG(s, t)
2 ≥
∑

i≥1

∑

u∈G−
i

∑

v∈Gi,u

(ϕv,v+(si)− ϕv,v+(ti))
2 ,

and we have observed that under (5.115) the right-hand side is exactly
dG′(s, t)2, so that we have proved (5.116) as well. 
�
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Proposition 5.6.7. Under (5.115) we have

E sup
t∈T

Xt(G′) ≤ E sup
t∈T

Xt(G) . (5.120)

Proof. This is a consequence of Proposition 5.6.2, and the only difficulty is in
the notation. Let us start with a simple observation. To lighten notation for
u < u′ let θ(u, u′) = −min(u′,max(u, 0)) so that (5.101) means ϕu,u′(x) =
min(u′,max(x, u)) + θ(u, u′). Next, we observe that

u ≤ v ≤ v′ ≤ u′ ⇒ ϕv,v′(x) = ϕv+θ(u,u′),v′+θ(u,u′)(ϕu,u′(x)) . (5.121)

Indeed, the right-hand side is zero for x = 0, is constant until ϕu,u′(x) reaches
the value v+ θ(u, u′), i.e.until x = v, then has a slope 1 and is constant after
ϕu,u′(x) passes the value v′ + θ(u, u′), i.e.after x = v′.

Let us start the main argument. Consider the set J = {(i, u) ; i ∈ N
∗, u ∈

G−
i }. Let

T ′ = {(ϕu,u+(ti))(i,u)∈J ; t ∈ T}
so that

E sup
t∈T

Xt(G) = E sup
s∈T ′

∑

j∈J

εjsj ,

where εj = εu,i for j = (i, u) ∈ J . For such a j let us define the set

G∗
j = (G′

i ∩ [u, u+]) + θ(u, u+) ,

so that, recalling the sets Gi,u = G′
i ∩ [u, u+[, we have

G∗−
j = Gi,u + θ(u, u+) (5.122)

when j = (i, u).
Denoting by (ε∗x,j)x∈R,j∈J a new sequence of independent Bernoulli r.v.s,

it follows from Proposition 5.6.2 that

E sup
s∈T ′

∑

j∈J

∑

v∈G∗−
j

ε∗v,jϕv,v+(sj) ≤ E sup
s∈T ′

∑

j∈J

εjsj = E sup
t∈T

Xt(G) . (5.123)

Recalling that j = (i, u), the left-hand side of (5.123) is then, using (5.122) in
the first line, the definition of T ′ in the second line, and (5.121) in the third
line,

E sup
s∈T ′

∑

i≥1

∑

u∈G−
i

∑

v∈Gi,u

ε∗v,(i,u)ϕv+θ(u,u+),v++θ(u,u+)(si)

= E sup
t∈T

∑

i≥1

∑

u∈G−
i

∑

v∈Gi,u

ε∗v,(i,u)ϕv+θ(u,u+),v++θ(u,u+)(ϕu,u+(ti))

= E sup
t∈T

∑

i≥1

∑

u∈G−
i

∑

v∈Gi,u

ε∗v,(i,u)ϕv,v+(ti) . (5.124)
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Now the sequence (ε∗v,(i,u)) is simply an independent sequence (εv,i) so the last

expression is E supt∈T

∑
i≥1

∑
u∈G−

i

∑
v∈Gi,u

εv,iϕv,v+(ti). Moreover (5.115)

ensures that G′−
i = ∪u∈G−

i
Gi,u so that

E sup
t∈T

∑

i≥1

∑

u∈G−
i

∑

v∈Gi,u

εv,iϕv,v+(ti) = E sup
t∈T

∑

i≥1

∑

v∈G′−
i

εv,iϕv,v+(ti) . (5.125)

Since this last quantity is E supt∈T Xt(G′), this concludes the proof. 
�
We are now ready to define the functionals which we will use to prove

Theorem 5.1.5. Of course, the motivation for these definitions will become
only gradually clear. These functionals depend on four parameters, two inte-
gers k ≤ h ∈ Z, (yes, h denotes an integer), a point w ∈ �2 and a subset I
of N∗. We fix an integer r ≥ 2, which will be chosen later on. First, for x ∈ R

and k ∈ Z we define the set

G(x, k) = {pr−k ; p ∈ Z , |pr−k − x| ≤ 4r−k} , (5.126)

and we observe right away that cardG(x, k) ≤ 9. We also observe that

minG(x, k) ≤ x− 3r−k ≤ x ≤ x+ 3r−k ≤ maxG(x, k) . (5.127)

Next, given k ≤ h ∈ Z and x ∈ R, we define the set

G(x, k, h) = {pr−h ; p ∈ Z , minG(x, k) ≤ pr−h ≤ maxG(x, k)} , (5.128)

and we observe that

minG(x, h, k) = minG(x, h) ; maxG(x, h, k) = maxG(x, h) . (5.129)

We note that G(x, k) = G(x, k, k) (so that cardG(x, k, k) ≤ 9) and that
G(x, k, h) increases with h. In words, G(x, k, h) consists of about 9 · 2h−k

points evenly spaced (with a spacing of 2−h) roughly centered on the point
x. The purpose of the parameter w ∈ �2 is that for the i coordinate we will
use the sets G(wi, k, h) which are roughly centered around wi.

Definition 5.6.8. For a set T ⊂ �2, integers k ≤ h, a point w ∈ �2 and a
subset I of N∗ we define

F (T, I, w, k, h) = E sup
t∈T

∑

i∈I

∑

u∈G(wi,k,h)−

εu,iϕu,u+(ti) . (5.130)

We denote by Δ(T, I, w, k, h) the diameter of T for the corresponding dis-
tance,

Δ(T, I, w, k, h)2 = sup
s,t∈T

∑

i∈I

∑

u∈G(wi,k,h)−

(ϕu,u+(si)− ϕu,u+(ti))
2 . (5.131)
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Even if we forget to mention it again, when writing these expressions it is
always assumed that h ≥ k. We note that decreasing I and increasing h
decreases the number of terms in the summation (5.130). This opens the
door to the use of Proposition 5.5.1.

Let us first point out some regularity properties of these functionals.

Lemma 5.6.9. If I ′ ⊂ I ⊂ N
∗, k′ ≥ k and h′ ≥ h then

F (T, I ′, w, k′, h′) ≤ F (T, I, w, k, h) (5.132)

and
Δ(T, I ′, w, k′, h′) ≤ Δ(T, I, w, k, h) . (5.133)

Proof. That F (T, I, w, k, h) is an increasing function of I follows from Jensen’s
inequality, by moving the expectation over the r.v.s εu,i for i ∈ I ′ \ I in-
side the supremum rather than outside. That F (T, I, w, k, h) is a decreas-
ing function of k′ follows similarly since for k ≤ k′ ≤ h it holds that
G(wi, k

′, h)− ⊂ G(wi, k, h)
−, by moving inside the supremum expectation

with respect to the r.v.s εu,i for u ∈ G(wi, k, h)
− \ G(wi, k

′, h)−. That
F (T, I, w, k, h) is a decreasing function of h follows from Proposition 5.6.7
and (5.129). The statements concerning Δ(T, I, w, k, h) are easier, using now
(5.116). 
�

Another key idea is that the distances corresponding to the functionals
(5.24) relate well to the distance considered in Theorem 5.2.6 (in the case
where μ is the counting measure). We formulate this now.

Lemma 5.6.10. Consider x, y, z ∈ R and assume that |y−x| ≤ 2r−k. Then

|y − z|2 ∧ r−2h ≤ 2
∑

u∈G(x,k,h)−

(ϕu,u+(y)− ϕu,u+(z))2 . (5.134)

Proof. First we reduce to the case where |y − z| ≤ r−h. To do this, assume
for example that y ≤ z ≤ x. Then replacing y by max(y, z − r−h) does not
change the left-hand side and decreases the right-hand side. In a second step
we use observe from (5.127) that minG(x, k, h) ≤ y, z ≤ maxG(x, k, h). Then
(5.103) implies that

|y − z| =
∑

u∈G(x,k,h)−

|ϕu,u+(y)− ϕu,u+(z)| .

Now, since |y − z| ≤ r−h, there are at most two non-zero terms in the right-
hand side, and (a+ b)2 ≤ 2(a2 + b2). 
�

We now state and prove the key step in the proof of Theorem 5.1.5.



160 5. Bernoulli Processes

Proposition 5.6.11. There exists a constant L2 with the following property.
Consider w,w′ ∈ �2, a set I ⊂ N

∗ and integers k ≤ h. Consider a subset T
of �2 such that Δ(T, I, w, k, h+ 2) ≤ c. Assume that

c ≤ σ

L2
; r−h−1

√
logm ≤ σ . (5.135)

Let
I ′ = {i ∈ I ; |wi − w′

i| ≤ 2r−k} . (5.136)

Then we can find m′ ≤ m + 1 and a partition (A�)�≤m′ of T such that for
each � ≤ m′ we have either

Δ(A�, I, w, k, h+ 1) ≤ σ (5.137)

or else

F (A�, I
′, w′, h+ 2, h+ 2) ≤ F (T, I, w, k, h+ 1)− σ

L

√
logm . (5.138)

The fundamental point of this result is that the hypothesis on T involves a
control ofΔ(T, I, w, k, h+2) rather than of the larger quantityΔ(T, I, w, k, h+
1). In words, each piece produced by this decomposition is either is such that
its diameter for the large distance is small, or else its properly measured size
for the functionals has decreased.

Proof. There is no loss of generality to assume for notational convenience
that I = N

∗. For i ∈ N
∗ consider the sets

Gi = G(wi, k, h+ 1) ,

and G = (Gi)i≥1. For i ∈ N
∗ \ I ′ let G′

i = Gi and for i ∈ I ′ define G′
i =

Gi ∪G(w′
i, h+ 2, h+ 2) and G′ = (G′

i)i≥1. The central object of the proof is
the process (Xt(G′))t∈T . The magic of this proof is that neither this process
nor the distances it induces are exactly what we need, but rather are related
to the quantities of interest through three inequalities which all turn out to
be in the right direction.

First we observe that since r ≥ 2 and h ≥ k,

G(w′
i, h+ 2, h+ 2) ⊂ [w′

i − 4r−h−2, w′
i + 4r−h−2] ⊂ [w′

i − r−k, w′
i + r−k]

and since |wi−w′
i| ≤ 2r−k for i ∈ I ′ it follows then that G(w′

i, h+2, h+2) ⊂
[wi− 3 · r−k, wi+3 · r−k] and consequently from (5.127) that the sets Gi and
G′

i satisfy (5.115). Therefore by (5.120) (used for I rather than N∗) we have

E sup
t∈T

Xt(G′) ≤ E sup
t∈T

Xt(G) = F (T, I, w, k, h+ 1) . (5.139)

Next, since cardG′
i = cardG(w′

i, h + 2, h + 2) ≤ 9 it is obvious that the
sets Gi and G′

i satisfy (5.113) with q = 16 (and even with q = 10). Thus
Proposition 5.6.6 implies that dG ≤ 4dG′ .
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Finally, since |wi − w′
i| ≤ 2r−k for i ∈ I ′ we have

|pr−h−2 − w′
i| ≤ 4r−h−2 ⇒ |pr−h−2 − wi| ≤ 2r−k + 4r−h−2 ≤ 3r−k

so that G(w′
i, h+2, h+2) ⊂ G(wi, k, h+2). In fact the points of the left-hand

set are consecutive points of the right-hand set, and hence obviously

Δ(T, I ′, w′, h+ 2, h+ 2) ≤ Δ(T,N∗, w, k, h+ 2) ≤ c . (5.140)

The proof now simply consists in applying Proposition 5.5.1 with σ′ = σ/8
instead of σ with the set of indices

J∗ = {(i, u) ; i ∈ N
∗, u ∈ G′−

i }

instead of N∗ and J given by

J = {(i, u) ; i ∈ I ′, u ∈ G(w′
i, h+ 2, h+ 2)−} ,

to the set T ′ ⊂ �2(J∗) given by

T ′ = {(ϕu,u+(ti))j ; t ∈ T , j = (i, u) ∈ J∗} .

Thus, with the notation of that proposition,

b(T ′) = E sup
t∈T

Xt(G′)

and, for A ⊂ T ,
bJ(A) = F (A, I ′, w′, h+ 2, h+ 2) ,

while dG′ is what corresponds to the �2 distance in Proposition 5.5.1. Now
(5.140) implies (5.84). Moreover (5.85) holds since r−h−1

√
logm ≤ σ by

(5.135). Also, (5.86), i.e. c ≤ σ′/L1 follows from c ≤ σ/L2 provided that
L2 = 8L1. Thus we can indeed apply Proposition 5.5.1. Those sets A� it
produces satisfying (5.87) have a diameter ≤ 2σ′ for the distance dG′ , so that
they have a diameter ≤ 8σ′ = σ for the distance dG , which is exactly the
distance used in computing the diameter in (5.137).

Moreover (5.88) means precisely that

F (A�, I
′, w′, h+ 2, h+ 2) ≤ E sup

t∈T
Xt(G′)− σ

L

√
logm . (5.141)

Therefore (5.138) is a direct consequence of (5.141) and (5.139). 
�

5.7 The Decomposition Lemma

Besides Proposition 5.6.11, we need another decomposition principle, which
is very similar to what we did in the Gaussian case. Here of course Δ denotes
the diameter for the �2 distance.
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Lemma 5.7.1. There exists a universal constant L3 with the following prop-
erty. Consider a set T ⊂ �2 and b, c > 0. Assume that ‖t‖∞ ≤ b for all t ∈ T .
Consider m with b

√
logm ≤ c. Then we can find m′ ≤ m and a partition

(A�)�≤m′ of T such that for each � ≤ m′ we have either

∀D ⊂ A� ; Δ(D) ≤ c

L3
⇒ b(D) ≤ b(T )− c

L

√
logm (5.142)

or else
Δ(A�) ≤ c . (5.143)

Proof. The proof is identical to the proof of Lemma 2.6.2, using now Corol-
lary 5.4.5 with a = b

√
logm/2. 
�

The following is an immediate consequence of Lemma 5.7.1, used with
b = r−h and J = {(i, u); i ∈ I, u ∈ G(wi, k, h)

−} instead of N∗.

Corollary 5.7.2. Consider a set T ⊂ �2 and w ∈ �2. Consider I ⊂ N
∗,

c > 0 and integers k ≤ h. Assume that r−h
√
logm ≤ c. Then we can find

m′ ≤ m and a partition (A�)�≤m′ of T such that for each � ≤ m′ we have
either

∀D ⊂ A� ; Δ(D, I, w, k, h) ≤ c

L3

⇒ F (D, I, w, k, h) ≤ F (T, I, w, k, h)− c

L

√
logm (5.144)

or else
Δ(A�, I, w, k, h) ≤ c . (5.145)

We can now state and prove the basic tool to construct partitions.

Lemma 5.7.3. There exists a number n0 with the following property. Con-
sider an integer n ≥ n0. Consider a set T ⊂ �2, a point w ∈ �2, a subset
I ⊂ N

∗, integers k ≤ j. Then we can find m ≤ Nn and a partition (A�)�≤m

such that for each � ≤ m we have either of the following properties:
(a) We have

D ⊂ A� ; Δ(D, I, w, k, j + 2) ≤ 1

L4
2(n+1)/2r−j−1 ⇒

F (D, I, w, k, j + 2) ≤ F (T, I, w, k, j + 2)− 1

L
2nr−j−1 , (5.146)

or
(b) There exists w� ∈ T such that for I� = {i ∈ I; |wi−w�,i| ≤ 2r−k} we have

F (A�, I�, w�, j + 2, j + 2) ≤ F (T, I, w, k, j + 1)− 1

L
2nr−j−1 , (5.147)

and in particular, using (5.132),
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F (A�, I�, w�, j + 2, j + 2) ≤ F (T, I, w, k, j)− 1

L
2nr−j−1 , (5.148)

or else
(c)

Δ(A�, I, w, k, j + 1) ≤ 2n/2r−j−1 . (5.149)

Here cases (a) and (c) are as in the Gaussian case. In case (c) the set is
of small diameter. In case (a) the small diameter subsets of the set have a
small value for the functional. This should not come as a surprise since these
cases are produced by the application of Lemma 5.7.1 which is identical to
what is done in the Gaussian case. The really new feature in case (b).

Proof. First we apply Corollary 5.7.2 with the same value of k, with h = j+2,
c = 2n/2r−j−1/L2, where L2 occurs in Proposition 5.6.11, and where m is the
largest integer m ≤ Nn−1 such that r−j−2

√
logm ≤ c. This produces pieces

(C�)�≤m′ with m′ ≤ m which satisfy either (5.144) or (5.145). Now, if n0 is
large enough we have

√
logm ≥ 2n/2/L and therefore c

√
logm ≥ 2nr−j−1/L.

Moreover, letting L4 =
√
2L2L3, we have c/L3 = 2(n+1)/2r−j−1/L4 so that

the pieces which satisfy (5.144) also satisfy (5.146). The other pieces C� satisfy
(5.145) i.e.Δ(C�, I, w, k, j + 2) ≤ c. We split each such piece by applying
Proposition 5.6.11 with the same value of k, with h = j, c = 2n/2r−j−1/L2,
with σ = 2n/2r−j−1, with w′ = w� any point of C�, and with now m the
largest integer m ≤ Nn−1−1 such that r−j−1

√
logm ≤ σ. Thus if n0 is large

enough we have
√
logm ≥ 2n/2/L and therefore σ

√
logm ≥ 2nr−j−1/L. Each

of the resulting pieces satisfies either (5.147) or (5.149). The total number of
pieces produced is ≤ N2

n−1 = Nn. 
�
We are now ready to prove the basic partition result by iterating Propo-

sition 5.7.3 in the spirit of the proof of Theorem 2.6.1. A remarkable new
feature of this construction is that the functionals we use depend on the set
we partition. We fix an integer κ ≥ 3 with 2κ/2 ≥ 2L4 and we set r = 2κ (so
that r is now a universal constant ≥ 8). One feature of the construction is
that when we produce a set satisfying (5.148) we do not wish to split it for a
while. So, we assign to each set A a “counter” p(A) that tells us how many
steps ago this set was produced satisfying (5.148). If (An) is an increasing
sequence of partitions, for A ∈ An and n > 0 we denote by A′ the unique
element of An−1 which contains A.

Consider a set T ⊂ �2 with 0 ∈ T . By induction over n ≥ 0 we construct
an increasing sequence (An) of partitions of T , with cardAn ≤ Nn. For
A ∈ An we construct a set In(A) ⊂ N

∗, a point wn(A) ∈ �2 and integers
kn(A) ≤ jn(A) ∈ Z, 0 ≤ pn(A) ≤ 4κ− 1, such that for each n ≥ 0,

∀A ∈ An , pn(A) = 0⇒ Δ(A, In(A), wn(A), kn(A), jn(A)) ≤ 2n/2r−jn(A) .
(5.150)

This condition is essential. When n > 0 and pn(A) > 0, it is replaced by
the following substitute:
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∀A ∈ An , pn(A) > 0⇒
Δ(A, In(A), wn(A), kn(A), jn(A)) ≤ 2(n−pn(A))/2r−jn(A)+2 . (5.151)

The next two conditions, for n > 0, are mild regularity conditions:

∀A ∈ An , jn−1(A
′) ≤ jn(A) ≤ jn−1(A

′) + 2. (5.152)

∀A ∈ An , pn(A) = 0⇒ jn(A) ≤ jn−1(A
′) + 1 . (5.153)

The next property says that “k, I, w do not change unless pn(A) = 1”:

∀A ∈ An , pn(A) �= 1⇒ kn(A) = kn−1(A
′) ;

In(A) = In−1(A
′) ; wn(A) = wn−1(A

′) . (5.154)

For n ≥ 0 let us define

Fn(A) := F (A, In(A), wn(A), kn(A), jn(A)) . (5.155)

Then we also have, for n ≥ 1,

pn(A) = 1⇒ Fn(A) ≤ Fn−1(A
′)− 1

L
2nr−jn(A) , (5.156)

pn(A) = 1⇒ wn(A) ∈ A′ (5.157)

and

pn(A) = 1⇒ In(A) =
{
i ∈ In−1(A

′) ; |wn(A)i−wn−1(A
′)i| ≤ 2r−kn−1(A

′)
}
.

(5.158)
Finally, the (all important) last requirement is as follows. If n > n0 and if
pn(A) = 0, either we have pn−1(A

′) = 4κ − 1 or jn(A) = jn−1(A
′) + 1 or

else

D ⊂ A , Δ(D, In(A), wn(A), kn(A), jn(A) + 2) ≤ 1

L4
2n/2r−jn(A)−1 ⇒

F (D, In(A), wn(A), kn(A), jn(A) + 2) ≤

F (A, In(A), wn(A), kn(A), jn(A) + 2)− 1

L
2nr−jn(A)−1 . (5.159)

A fundamental property of the previous construction is that for n ≥ 1 we
have

Fn(A) ≤ Fn−1(A
′) . (5.160)

First, if pn(A) �= 1 this follows form (5.152), (5.154) and (5.132). Next, if
pn(A) = 1 this is a consequence of (5.156).

To start the construction, for n ≤ n0 we set An = {T}, In(T ) = N
∗,

wn(T ) = 0, pn(T ) = 0, and kn(T ) = jn(T ) = j0, where j0 satisfies
Δ(T ) ≤ r−j0 . Conditions (5.150) and (5.152) to (5.158) are satisfied, while the
last requirement of the construction is automatically satisfied since n ≤ n0.
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Assuming that the construction has been done up to An, we fix an element
B of An, and we proceed as follows.

First, if 1 ≤ pn(B) < 4κ − 1, we do not split B, i.e. we decide that B ∈
An+1, and we simply set pn+1(B) = pn(B)+1, In+1(B) = In(B), wn+1(B) =
wn(B), kn+1(B) = kn(B), jn+1(B) = jn(B), and all our required conditions
hold. In the case of (5.151) this is because (n + 1) − pn+1(B) = n − pn(B).
And the last requirement is automatically satisfied since pn+1(B) �= 0.

Next, if pn(B) = 4κ−1, we do not split B either, but we set pn+1(B) = 0,
In+1(B) = In(B), wn+1(B) = wn(B), jn+1(B) = jn(B), kn+1(B) = kn(B).
To prove that (5.150) holds for B and n + 1, we write, using (5.151) for B
and n in the second line,

Δ(B, In+1(B), wn+1(B), jn+1(B), kn+1(B))

= Δ(B, In(B), wn(B), jn(B), kn(B))

≤ 2(n−4κ+1)/2r−jn(B)+2 = 2(n+1)/2r−jn+1(B) ,

since 2−2κ = r−2. It is then obvious that all our requirements are satisfied
(the last one holds since pn(B

′) = pn(B) = 4κ− 1).
Finally, if pn(B) = 0, we split B in at most Nn pieces using Lemma 5.7.3,

with I = In(B), w = wn(B), j = jn(B) and k = kn(B). There are three cases
to consider.

First, we are in case (a) of this lemma, the piece A produced by the lemma
has property (5.146). We define pn+1(A) = 0. We then set

In+1(A) = In(B), wn+1(A) = wn(B), jn+1(A) = jn(B), kn+1(A) = kn(B) .
(5.161)

All our conditions are satisfied. In the case of the last requirement this is
because (5.146) implies (5.159) (for n+ 1 rather than n).

Second, we are in case (b) of the lemma, the piece A = A� produced has
property (5.147). We set pn+1(A) = 1, and we define

jn+1(A) = jn(B) + 2 = kn+1(A) .

We define wn+1(A) = w� ∈ B = A′ and

In+1(A) = {i ∈ In(B) ; |wn+1(A)i − wn(B)i| ≤ 2r−kn(B)} .

It is then obvious that all the required conditions hold. Indeed (5.156) fol-
lows from (5.148), and the last requirement is automatically satisfied since
pn+1(A) �= 0.

Finally, we are in case (c) of the lemma, and the piece we produce has
property (5.149). We then set pn+1(A) = 0, jn+1(A) = jn(B) + 1 and we
define

In+1(A) = In(A) , wn+1(A) = wn(B) , kn+1(A) = kn(B) .
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All our conditions are satisfied. In the case of the last requirement this is
because jn+1(A) = jn(B) + 1. This finishes the construction.

Given t ∈ T and n ≥ 0, define then jn(t) := jn(An(t)). The fundamental
property is as follows.

Proposition 5.7.4. We have

∀t ∈ T ,
∑

n≥0

2nr−jn(t) ≤ L(r−j0 + b(T )) . (5.162)

To prepare for the proof, let us fix t ∈ T and define j(n) := jn(t) =
jn(An(t)) and a(n) = 2nr−j(n). Let us first observe that

∑
n≤n0

a(n) ≤ Lr−j0

so that it suffices to bound
∑

n≥n0
a(n). Let us recall (5.155) and define

F (n) := Fn(An(t)) ≥ 0 .

As a consequence of (5.160) the sequence (F (n))n≥0 is non-increasing, and
of course F (0) ≤ b(T ).

Let us define

J0 = {n0} ∪ {n ≥ n0 ; j(n+ 1) > j(n)} ,

which we enumerate as J0 = {n0, n1, . . . , }. We observe that j(n) = j(nk+1)
for nk + 1 ≤ n ≤ nk+1.

Let us further define

C∗ :=
{
k ≥ 0 ; ∀k′ ≥ 0 , a(nk) ≥ 2−|k−k′|a(nk′)

}
.

Once we know that the sequence (a(n)) is bounded, it will suffice, using
Lemma 2.6.3 twice, to bound

∑
k∈C∗ a(n), observing first that a(n + 1) =

2a(n) for n �∈ J0 to obtain that
∑

n≥n0
a(n) ≤ L

∑
k≥0 a(nk), and using the

lemma again to obtain that
∑

k≥0 a(nk) ≤ L
∑

k∈C∗ a(nk).
Let us further define p(n) := pn(An(t)). A good part of the argument is

contained in the following fact.

Lemma 5.7.5. Consider k ∈ C∗ with k ≥ 1 and assume that

nk − 1 ≤ n ≤ nk+1 + 1⇒ p(n) = 0 . (5.163)

Then
a(nk) ≤ L(F (nk)− F (nk+2)) . (5.164)

Proof. Let us first observe that by (5.153), for n ∈ J0 we have j(n + 1) =
j(n) + 1 when p(n+ 1) = 0, so that by (5.163) we have

j(nk+1 + 1) = j(nk+1) + 1 = j(nk + 1) + 1 = j(nk) + 2 . (5.165)

We also observe that we cannot have nk−1 ∈ J0 because then nk−1 = nk−1

and j(nk−1) < j(nk) so that a(nk−1) ≥ ra(nk)/2 > 2a(nk) and the choice
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k′ = k − 1 violates the fact that k ∈ C∗. Therefore j(nk − 1) = j(nk).
A key point is that we have also p(nk − 1) = p(nk) = 0, by (5.163). The
last requirement of the construction then shows that (5.159) holds true for
n = nk, which is the main ingredient of the proof.

Setting n∗ = nk+1 + 1 we recall (5.165): j(n∗) = j(nk) + 2. Now, by
definition of C∗, we have a(nk) ≥ a(nk+1)/2 so that

2nkr−j(nk) ≥ 2−1 · 2nk+1r−j(nk+1) ,

and thus, using again that j(nk+1) = j(nk) + 1,

2nk+1−nk ≤ 2r = 2κ+1

and therefore nk+1−nk ≤ κ+1, so that n∗ ≤ nk+κ+2. Using that 2κ/2 ≥ 2L4

and r = 2κ, we get

2n
∗/2r−j(n∗) ≤ 2(2+κ)/22nk/2r−j(nk)−2 ≤ 1

L4
2nk/2r−j(nk)−1 . (5.166)

Now, using (5.150) for n∗ instead of n and A = An∗(t) yields

Δ
(
An∗(t), In∗(An∗(t)), wn∗(An∗(t)), kn∗(An∗(t)), jn∗(An∗(t))

)

≤ 2n
∗/2r−j(n∗) ≤ 1

L4
2nk/2r−j(nk)−1 . (5.167)

Let us write D = An∗(t) and A = Ank
(t). We recall that j(n∗) = j(nk)+2

i.e. jn∗(An∗(t)) = jnk
(Ank

(t)) + 2 and we observe that from (5.154) we have

wn∗(An∗(t)) = wnk
(A) ; In∗(An∗(t)) = Ink

(A) ; kn∗(An∗(t)) = knk
(A) .
(5.168)

Therefore (5.167) yields

Δ(D, Ink
(A), wnk

(A), knk
(A), jnk

(A) + 2) ≤ 1

L4
2nk/2r−jnk

(A)−1 .

We can then use (5.159) for n = nk. Using again (5.168) this implies

F (n∗) ≤ F (nk)−
1

L
2nkr−jnk

(t) ,

i.e. a(nk) ≤ L(F (nk)− F (n∗)) ≤ L(F (nk)− F (nk+2)). 
�
Proof of Proposition 5.7.4. Let us examine the set of values of n for which
p(n) > 0. By construction, if p(n) = 1 then j(n) = j(n − 1) + 2 so that
n − 1 ∈ J0. Also by construction, if n ∈ J0 we have p(n) = 0 and p(n +
1) ∈ {0, 1}. Moreover, if p(n) = 1, then for n ≤ n′ ≤ n + 4κ − 2 we have
p(n′) = n′ − n+ 1 = p(n′ − 1) + 1 and also p(n+ 4κ− 1) = 0. In particular:

The set {n ; p(n) > 0} consists of disjoint intervals of cardinality 4κ− 1,

each of them starting to the right of a point of J0 . (5.169)
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Let us set
J1 =

{
n ≥ n0 ; p(n+ 1) = 1

}
,

so that for n ≥ n0, n ∈ J0 \ J1 we have p(n + 1) = 0. Using (5.132) and the
definitions, (5.156) implies that for n ∈ J1,

a(n) ≤ L(F (n)− F (n+ 1)) , (5.170)

and thus
∑

n∈J1

a(n) ≤ L
∑

n≥n0

(F (n)− F (n+ 1)) ≤ LF (n0) ≤ Lb(T ) . (5.171)

In particular, if C1 := {k ≥ 0;nk ∈ J1} we have
∑

k∈C1

a(nk) ≤ Lb(T ) . (5.172)

Let us now define C2 := {k ≥ 0;nk+1 ∈ J1}. Then (5.152) implies

a(nk+1) = 2nk+1r−j(nk+1) ≥ 2nkr−j(nk)−2 = a(nk)r
−2

and therefore (5.172) implies
∑

k∈C2

a(nk) ≤ Lb(T ) . (5.173)

Next let us define C3 = {k ≥ 0; p(nk−1) > 0}. Since p(nk) = 0 we then have
p(nk − 1) = 4κ− 1. Recalling that by construction p(n+ 1) = p(n) + 1 when
1 ≤ p(n) ≤ 4κ− 2, for k ∈ C3 we have p(nk − 4κ+ 1) = 1 i.e. nk − 4κ ∈ J1.
Moreover since obviously a(n+ 1) ≤ 2a(n) it follows from (5.171) that

∑

k∈C3

a(nk) ≤ Lb(T ) . (5.174)

Finally let C4 = C∗ \ (C1 ∪ C2 ∪ C3). Thus for k ∈ C4 we have p(nk − 1) =
p(nk +1) = p(nk+1+1) = 0. Now, the structure of the set {n; p(n) > 0} that
we described in (5.169) implies that (5.163) holds. Therefore (and taking into
account the case k = 0 for which Lemma 5.7.5 does not apply) (5.164) implies
that

∑
k∈C4

a(nk) ≤ L(r−j0 + b(T )). Combining with (5.172) to (5.174) this

show that
∑

k∈C∗ a(nk) ≤ L(r−j0 + b(T )).
It remains only to prove that the use of Lemma 2.6.3 is legitimate by

proving that a(n) ≤ L(r−j0 + b(T )) for n > n0. This is done by a much
simplified version of the previous arguments. We observe that by (5.170)
that this is the case if either p(n− 1) > 0 or p(n) > 0 (since then J1 contains
a point which is not much less than n). Since r > 4 we have a(n−1) > 2a(n)
when j(n) > j(n − 1). Since a(n0) ≤ Lr−j0 it thus it suffices to consider
the case where j(n − 1) = j(n) and p(n − 1) = p(n) = 0. But then the last
requirement of the construction shows that n satisfies (5.159). In particular
taking there D reduced to a single point shows that a(n) ≤ LF (n0) ≤ Lb(T ).


�
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Proof of Theorem 5.1.5. First we use Lemma 5.3.1 to find j0 such that r−j0 ≤
Lb(T ) while |ti| < r−j0/2 for t ∈ T and i ∈ N. We then perform the above
decomposition with this value of j0, and we obtain supt∈T

∑
n≥0 2

nr−jn(t) ≤
Lb(T ). The plan is to use (5.162) together with Theorem 5.2.6 when Ω = N

and μ is the counting measure. The choice of j0 implies that T3 = {0}.
We define the elements πn(A) for A ∈ An recursively as follows. We choose
π0(T ) = 0. When A ∈ An+1 and when jn+1(A) = jn(A

′) we simply take
πn+1(A) = πn(A

′). When pn+1(A) = 0 and jn+1(A) = jn(A
′)+1 we take for

πn+1(A) any point of A. Finally, when pn+1(A) = 1 we take for πn+1(A) =
wn+1(A) ∈ A′ using (5.157). Thus (5.23) holds, while (5.20) to (5.22) should
be obvious by construction. Let us consider the set

Jn(t) =
{
i ∈ N

∗ ; ∀q < n , |πq(t)i − πq+1(t)i| ≤ r−jq(t)
}
.

To apply Theorem 5.2.6 it suffices to prove (5.25) for u = L i.e. that

∀t ∈ T , ∀n ≥ 0 ,
∑

i∈Jn(t)

(ti − πn(t)i)
2 ∧ r−2jn(t) ≤ L2nr−2jn(t) . (5.175)

Let us define kn(t) := kn(An(t)) and wn(t) := wn(An(t)) and prove the
inequality

i ∈ Jn+1(t)⇒ |πn+1(t)i − wn(t)i| ≤ 2r−kn(t) . (5.176)

To see this, let J ′ = {0} ∪ {n; pn(t) = 1}. Then by construction we have
πn(t) = wn(t) for n ∈ J ′. Given n let us consider the largest n′ ∈ J ′ with
n′ ≤ n. Then by (5.154) we have wn(t) = wn′(t) = πn′(t) and kn(t) = kn′(t),
while for i ∈ Jn+1(t) we have

|πn+1(t)i − πn′(t)i| ≤
∑

j≥jn′ (t)

r−j ≤ 2r−jn′ (t) ≤ 2r−kn′ (t) = 2r−kn(t) .

(5.177)
Thus we have proved (5.176). Next we prove that Jn(t) ⊂ In(t) := In(An(t))
by induction over n. For the induction from n to n+ 1, the result is obvious
when pn+1(t) �= 1, for then In+1(t) = In(t) ⊃ Jn(t) ⊃ Jn+1(t). On the other
hand, when pn+1(t) = 1 then by construction πn+1(t) = wn+1(t) and (5.176)
implies that for i ∈ Jn+1(t) we have |wn+1(t)i − wn(t)i| ≤ 2r−kn(t). Thus
(5.158) concludes the proof that Jn+1(t) ⊂ In+1(t).

Now, the proof of (5.177) shows that |πn(t)i − πn′(t)i| ≤ 2r−kn(t) for
i ∈ Jn(t). Therefore the proof of (5.176) shows that we have also

i ∈ Jn(t)⇒ |πn(t)i − wn(t)i| ≤ 2r−kn(t) .

Hence since Jn(t) ⊂ In(t), (5.175) follows from (5.150) and (5.134). Thus
we have proved (5.25) and we can indeed apply Theorem 5.2.6 to obtain the
required decomposition. 
�
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5.8 Notes and Comments

An important result about empirical processes is Ossiander’s bracketing the-
orem that we shall prove in Section 9.1. This theorem was proved somewhat
later than Dudley’s theorem because it requires a genuinely new idea. We feel
somehow that Theorem 5.2.1 succeeds in carrying out the idea of Ossiander’s
theorem to a general setting, and this might explain why it is successful. Not
surprisingly, it will be very easy to deduce Ossiander’s theorem from The-
orem 5.2.1, see page 280. It is an interesting story that the author proved
Theorem 5.2.7 (in an essentially equivalent form) as early as [7], and in the
exact form presented here in [9], but did not understand then its potential as
a chaining theorem. The version of this work at the time the author received
[1] contained only Theorem 5.2.7, with a proof very similar to the proof of
Theorem 5.2.6 which we present here.

There exists a rather different proof of Proposition 5.3.5 which is given
in [6]. Probably the proof of [6] is more elegant and deeper than the proof
we give here, but the latter has the extra advantage to show the connection
between Proposition 5.3.5 and the Marcus-Pisier theorem, Theorem 3.2.12.

The present paragraph assumes that the reader is familiar with the mate-
rial of the next chapter. In the case of a metric space (T, d), one knows how
to identify simple structures (trees), the presence of which provides a lower
bound on γ2(T, d). One then can dream of identifying geometric structures
inside a set T ⊂ �2, which would provide lower bounds for b(T ) of the correct
order. Maybe this is a dream which is impossible to achieve. Not the least
remarkable feature of the Bednorz-Lata�la proof of Theorem 5.1.5 is that it
completely bypasses this problem.
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6. Trees and the Art of Lower Bounds

6.1 Introduction

The concept of tree presented in Section 6.2 is historically important in the
type of results presented in this work. The author discovered many of the
results he presents while thinking in terms of trees. One knows now how to
present these results and their proofs without ever mentioning trees, and
arguably in a more elegant fashion, so that trees are not used explicitly
elsewhere in this book. However it might be too early to dismiss this concept,
at least as an instrument of discovery. Let the reader judge by herself!

In Section 6.3 we present a lower bound for γ2(E) for certain ellipsoids E ,
without using Proposition 2.5.1, but rather some simple combinatorics. This
“exercise” is a preparation to the more delicate methods by which we prove
in the rest of the chapter that the upper bounds on matchings of Chapter 5
cannot be improved.

6.2 Trees

In this section we describe different ways to measure the size of a metric space.
We shall show that they are all equivalent to the functional γ2(T, d). It is
possible to consider more general notions corresponding to other functionals
considered in the book, but for simplicity we consider only the case of γ2.

In a nutshell, a tree is a certain structure that requires a “lot of space” to
be constructed, so that a metric space that contains large trees needs itself
to be large. At the simplest level, it already takes some space to construct in
a set A sets B1, . . . , Bn which are appropriately separated from each other.
This is even more so if the sets B1, . . . , Bn are themselves large (for example
because they themselves contain many sets far from each other). Trees are a
proper formulation of the iteration of this idea. The basic use of trees is to
measure the size of a metric space by the size of the largest tree (of a certain
type) which it contains. Different types of trees yield different measures of
size.

A tree T of a metric space (T, d) is a finite collection of subsets of T with
the following two properties.
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Given A,B in T , if A ∩B �= ∅ , then either A ⊂ B or else B ⊂ A . (6.1)

T has a largest element . (6.2)

The important condition here is (6.1), and (6.2) is just for convenience.
If A,B ∈ T and B ⊂ A, B �= A, we say that B is a child of A if

C ∈ T , B ⊂ C ⊂ A⇒ C = B or C = A . (6.3)

We denote by c(A) the number of children of A. Since our trees are finite,
some of their sets will have no children. It is convenient to “shrink these sets
to a single point”, so we will consider only trees with the following property

If A ∈ T and c(A) = 0 , then A contains exactly one point . (6.4)

A fundamental property of trees is as follows. Consider trees T1, . . . , Tm and
for 1 ≤ � ≤ m let A� be the largest element of T�. Assume that the sets A�

are disjoint, and consider a set A ⊃
⋃

�≤m A�. Then the collection of subsets
of T consisting of A and of

⋃
�≤m T� is a tree. The proof is straightforward.

This fact allows one to construct iteratively more and more complicated (and
larger) trees.

An important structure in a tree is a branch. A sequence A0, A1, . . . , Ak

is a branch if A�+1 is a child of A�, and if moreover A0 is the largest element
of T while Ak has no child. Then by (6.4) the set Ak is reduced to a single
point t, and A0, . . . , Ak are exactly those elements of T which contain t. So
in order to describe the branches of T it is convenient to introduce the set

ST = {t ∈ T ; {t} ∈ T } , (6.5)

which we call the “support” of T . Thus by considering all the sets {A ∈
T ; t ∈ A} as t varies in ST we obtain all the branches of T .

We now quantify our desired property that the children of a given set
should be far from each other in an appropriate sense. A separated tree is
a tree T such that to each A in T with c(A) ≥ 1 is associated an integer
s(A) ∈ Z with the following properties. First,

If B1 and B2 are distinct children of A, then d(B1, B2) ≥ 4−s(A) . (6.6)

Here of course d(B1, B2) = inf{d(x1, x2);x1 ∈ B1, x2 ∈ B2}. We observe that
in (6.6) we make no restriction on the diameter of the children of A. (Such
restrictions will however occur in the other notion of tree that we consider
later.) Second, we will also make the following purely technical assumption:

If B is a child of A , then s(B) > s(A) . (6.7)

Although this is not obvious now, the meaning of this condition is that
T contains no sets which are obviously irrelevant for the measure of its
size.
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To measure the size of a separated tree T we introduce its depth, i.e.

d(T ) := inf
t∈ST

∑

t∈A∈T
4−s(A)

√
log c(A) . (6.8)

Here and below we make the convention that the summation does not include
the term A = {t} (for which c(A) = 0). We observe that in (6.8) we have the
infimum over t ∈ ST . In words a tree is large if it is large along every branch.
We can then measure the size of T by

sup{d(T ) ; T separated tree ⊂ T} . (6.9)

The notion of separated tree we just considered is but one of many possible
notions of trees. As it turns out, this notion of separated tree does not seem
fundamental. Rather, the quantity (6.9) is used as a convenient intermediate
technical step to prove the equivalence of several more important quantities.
Let us now consider now another notion of trees, which is more restrictive
(and apparently much more important). An organized tree is a tree T such
that to each A ∈ T with c(A) ≥ 1 are associated an integer j = j(A) ∈ Z, a
point t ∈ T and points t1, . . . , tc(A) ∈ B(t, 4−j) with the properties that

1 ≤ � < �′ ≤ c(A)⇒ d(t�, t�′) ≥ 4−j−1

and that each ball B(t�, 4
−j−2) contains exactly one child of A. This should

be compared to Definition 2.3.8 for r = 4.
If B1 and B2 are distinct children of A in an organized tree, then

d(B1, B2) ≥ 4−j(A)−2 , (6.10)

so that an organized tree is also a separated tree, with s(A) = j(A) + 2,
but the notion of organized tree is more restrictive. (For example we have no
control over the diameter of the children of A in a separated tree.)

We define the depth d′(T ) of an organized tree by

d′(T ) = inf
t∈ST

∑

t∈A∈T
4−j(A)

√
log c(A) .

Another way to measure the size of T is then

sup{d′(T ) ; T organized tree ⊂ T} . (6.11)

If we simply view an organized tree T as a separated tree using (6.10),
then d(T ) = d′(T )/16 (where d(T ) is the depth of T as a separated tree).
Thus we have shown the following.

Proposition 6.2.1. We have

sup{d′(T ) ; T organized tree} ≤ 16 sup{d(T ) ; T separated tree} . (6.12)

The next result provides the fundamental connection between trees and
the functional γ2.
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Proposition 6.2.2. We have

γ2(T, d) ≤ L sup{d′(T ) ; T organized tree} . (6.13)

Proof. We consider the functional

Fn(A) = F (A) = sup{d′(T ) ; T ⊂ A , T organized tree} ,

where we write T ⊂ A as a shorthand for “∀B ∈ T , B ⊂ A”.
The main part of the argument is to prove that the growth condition

(2.147) holds true when r = 4, θ(n) = 2n/2−2, β = 1, τ = 1, and a is of the
type r−j−1. For this consider n ≥ 0 and m = Nn+1. Consider j ∈ Z , t ∈ T
and t1, · · · , tm ∈ B(t, 4−j) with

1 ≤ � < �′ ≤ m⇒ d(t� , t�′) ≥ 4−j−1 .

Consider sets H� ⊂ B(t�, 4
−j−2) and c < min�≤m F (H�). Consider, for

� ≤ m a tree T� ⊂ H� with d′(T�) > c and denote by A� its largest element.
Then it should be obvious that the tree T consisting of C =

⋃
�≤m H� (its

largest element) and the union of the trees T� , � ≤ m, is organized (with
j(C) = j, and A1, . . . , Am as children of C). Moreover ST =

⋃
�≤m ST�

.
Consider t ∈ ST , and let � with t ∈ ST�

. Then

∑

t∈A∈T
4−j(A)

√
log c(A) = 4−j

√
logm+

∑

t∈A∈T�

4−j(A)
√

log c(A)

≥ 4−j
√
logm+ d′(T�) ≥ 4−j

√
logm+ c .

Since
√
logm ≥ 2n/2, this proves the growth condition (2.147).

In the course of the proof of Theorem 2.7.2 we have noted that this the-
orem holds true as soon as the growth condition (2.147) holds true when
a is of the type r−j−1, and we have just proved that this is the case (for
r = 4, θ(n) = 2n/2−2, β = 1 and τ = 1). To prove (6.13) we then apply
Lemma 2.3.5 and Theorem 2.7.2. To control the diameter of T , we simply
note that if s, t ∈ T , and j is the largest integer with 4−j ≥ d(s, t), then the
tree T consisting of T, {t}, {s}, is organized with j = j(T ) and c(T ) = 2, so
d′(T ) ≥ 4−j

√
log 2. �

For a probability measure μ on a metric space (T, d), with countable
support, we define for each t ∈ T the quantity

Iμ(t) =

∫ ∞

0

√
log

1

μ(B(t, ε))
dε =

∫ Δ(T )

0

√
log

1

μ(B(t, ε))
dε .

The equality follows from the fact that μ(B(t, ε)) = 1 when B(t, ε) = T , so
that then the integrand is 0.
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Proposition 6.2.3. Given a metric space (T, d) we can find on T a proba-
bility measure μ, supported by a countable subset of T , and such that

sup
t∈T

Iμ(t) = sup
t∈T

∫ ∞

0

√
log

1

μ(B(t, ε))
dε ≤ Lγ2(T, d) . (6.14)

A probability measure μ on (T, d) such that the left-hand side of (6.14) is
usefully small is called a majorizing measure. The idea of this somewhat
unsatisfactory name is that such a measure can be used to “majorize” the
processes on T . The (in)famous theory of majorizing measures used the quan-
tity

inf
μ

sup
t∈T

Iμ(t) (6.15)

as a measure of the size of the metric space (T, d), where the infimum is over
all choices of the probability measure μ. Even though this method is in the
end equivalent to the use of the functional γ2, its use is technically quite more
challenging, so there seems to be no longer any use for this method in the
present context. In other contexts majorizing measures remain useful, and we
shall consider integrals such as the left-hand side of (6.14) (but with different
functions of μ(B(t, ε)) e.g. in (13.155).

Proof. Consider an admissible sequence (An) with

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t)) ≤ 2γ2(T, d) .

Let us now pick a point tn,A in each set A ∈ An, for each n ≥ 0. Since
card An ≤ Nn, there is a probability measure μ on T , supported by a count-
able set, and satisfying μ({tn,A}) ≥ 1/(2nNn) for each n ≥ 0 and each
A ∈ An. Then,

∀n ≥ 1 , ∀A ∈ An , μ(A) ≥ μ({tn,A}) ≥
1

2nNn
≥ 1

N2
n

so that given t ∈ T and n ≥ 1,

ε > Δ(An(t)) ⇒ μ(B(t, ε)) ≥ 1

N2
n

⇒
√
log

1

μ(B(t, ε))
≤ 2n/2+1 . (6.16)

Now, since μ is a probability, μ(B(t, ε)) = 1 for ε > Δ(T ), and then
log(1/μ(B(t, ε))) = 0. Thus
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Iμ(t) =

∫ ∞

0

√
log

1

μ(B(t, ε))
dε =

∑

n≥1

∫ Δ(An−1(t))

Δ(An(t))

√
log

1

μ(B(t, ε))
dε

≤
∑

n≥1

2n/2+1Δ(An−1(t)) ≤ Lγ2(T, d)

using (6.16). �

Proposition 6.2.4. If μ is a probability measure on T (supported by a
countable set) and T is a separated tree on T , then

d(T ) ≤ L sup
t∈T

Iμ(t) .

This completes the proof that the four “measures of the size of T” con-
sidered in this section, namely (6.9), (6.11), (6.15) and γ2(T, d) are indeed
equivalent.

Proof. The basic observation is as follows. The sets

B(C, 4−s(A)−1) = {x ∈ T ; d(x,C) < 4−s(A)−1}

are disjoint as C varies over the children of A (as follows from (6.6)), so that
one of them has measure ≤ c(A)−1.

We then proceed in the following manner, constructing recursively an
appropriate branch of the tree. This is a typical and fundamental way to
proceed when working with trees. We start with the largest element A0 of T .
We then select a child A1 of A0 with μ(B(A1, 4

−s(A0)−1)) ≤ 1/c(A0), and a
child A2 of A1 with μ(B(A2, 4

−s(A1)−1)) ≤ 1/c(A1), etc., and continue this
construction as long as we can. It ends only when we reach a set of T that
has no child, and hence by (6.4) is reduced to a single point t which we now
fix. For any set A with t ∈ A ∈ T , by construction we have

μ(B(t, 4−s(A)−1)) ≤ 1

c(A)

so that

4−s(A)−2
√
log c(A) ≤

∫ 4−s(A)−1

4−s(A)−2

√
1

logμ(B(t, ε))
dε . (6.17)

By (6.7) the intervals ]4−s(A)−2 , 4−s(A)−1[ are disjoint for different sets A
with t ∈ A ∈ T , so summation of the inequalities (6.17) yields

1

16
d(T ) ≤

∑

t∈A∈T
4−s(A)−2

√
log c(A) ≤

∫ ∞

0

√
1

logμ(B(t, ε))
dε = Iμ(t) . 
�
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In the rest of this chapter, we will implicitly use the previous method of
“selecting recursively the branch of the tree we follow” to prove lower bounds
without mentioning trees.

The following two exercises provide two more “measures of size” which
are equivalent to the four measures of size considered above.

Exercise 6.2.5 ([1]). For a metric space (T, d), define

δ2(T, d) = sup
μ

inf
t∈T

Iμ(t) ,

where the supremum is taken over all probability measures μ on T . (The
reader observes of course that the infimum and the supremum are not as in
(6.15).) Prove that δ2(T, d) is equivalent to γ2(T, d). (Hint: To prove that
γ2(T, d) ≤ Lδ2(T, d) one proves that the functionals Fn(A) := δ2(A, d) sat-
isfy the growth condition of Definition 2.3.10. For this, given probability
measures μ� on each of the pieces H�, one uses the probability measure
μ = m−1

∑
�≤m H�. To prove that δ2(T, d) ≤ Lγ2(T, d), given a probabil-

ity measure μ on T and an admissible sequence (An) of partitions of T , one
recursively constructs a decreasing sequence An ∈ An such that μ(An) is as
large as possible, and one estimates from above Iμ(t) where An = An(t).)

Exercise 6.2.6. For a metric space (T, d) define

χ2(T, d) = sup
μ

inf

∫ ∑

n≥0

2n/2Δ(An(t))dμ(t) ,

where the infimum is taken over all admissible sequences and the supremum
over all probability measures. Prove that this measure of size is equivalent to
γ2(T, d). It is obvious that χ2(T, d) ≤ γ2(T, d), but the converse is far from
trivial. (Hint: use the functionals Fn(A) = infμ

∫ ∑
k≥n 2k/2Δ(Ak(t))dμ(t),

where the infimum is over all admissible sequences, and the supremum is over
all probability measures supported by A. Prove that these functionals satisfy
the growth condition of (2.7.1) for τ = 3, β = 1, r = 4 and θ(n) = 2n/2/L.
Given the probability measures μ� on the pieces H� use the probability mea-
sure μ = m−1

∑
�≤Nm

μ� on their union. The key point is to prove that for

any admissible sequence one has
∫
Δ(An(t))dμ(t) ≥ a/L. If this is too dif-

ficult, came back to this exercise after you study the proof of Lemma 8.1.7
below.)

Exercise 6.2.7. For a tree T , recall the definition (6.5) of ST . Prove that
there is unique “canonical” probability measure μ on ST , defined by the
property that all the children of a given set A ∈ T have the same probability.
Prove that for each admissible sequence (An) of T one has

∫ ∑

n≥0

2n/2Δ(An(t))dμ(t) ≥
1

L
d(T ) .
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(You might find this challenging.) Explain why this provides another proof of
the result of the previous exercise. Prove that this same probability measure
provides a useful lower bound on the quantity δ2(T, d) of Exercise 6.2.5.

6.3 A Toy Lower Bound

Consider N ≥ 1 and the ellipsoid

E =
{
(xi)1≤i≤N ;

∑

i≤N

ix2
i ≤ 1

}
⊂ R

N . (6.18)

Combining Proposition 2.5.1 with the generic chaining bound (2.45) we ob-
tain

γ2(E) ≥
1

L

√
logN , (6.19)

where of course γ2(E) = γ2(E , d) where d is the Euclidean distance. This
fact is closely connected to the lower bounds we shall prove in the next two
sections. Here we have obtained it using the magic of Gaussian processes.
This will not be available in the next two sections, and we will have to use
geometry. To prepare for these forthcoming proofs we shall now give a direct
geometric proof of (6.19), by explicitly constructing a separated tree T in E
for which d(T ) ≥

√
logN/L.

The following classical result is used in many constructions.

Lemma 6.3.1. For each integer n the set {−1, 1}n contains a subset V with
cardV ≥ exp(n/8) such that any two distinct elements of V differ in at least
n/4 coordinates.

Proof. This is a standard counting argument. Consider the uniform prob-
ability P on {−1, 1}n, so that for P the coordinates functions εi are i.i.d.
Bernoulli r.v.s. Then, using the subgaussian inequality (3.2.2) we obtain

P
(∑

i≤n

(1− εi) ≤
n

2

)
= P
(∑

i≤n

εi ≥
n

2

)
≤ exp

(
−
(n
2

)2 1

2n

)
= exp

(
−n

8

)
.

Consequently the proportion of elements of {−1, 1}n that differ in at most n/4
coordinates from a given element is ≤ exp(−n/8). In terms of the Hamming
distance (i.e. the proportion of coordinates where two elements differ), this
means that balls of radius 1/4 have probability ≤ exp(−n/8). A maximal
subset of points at mutual distances ≥ 1/4 must then be of cardinality ≥
exp(n/8) since the balls of radius 1/4 centered at these points cover {−1, 1}n.


�
Let us fix an integer c. It will be chosen later, but we should think of it
as a universal constant. (We will end up by taking c = 6.) Consider also
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the largest integer r which is a power of 16 and for which 2c(r+1) ≤ N (so
that r � logN for N large enough, the only case we have to consider). Let
us denote as usual by ei the canonical basis of RN . For 1 ≤ k ≤ r we use
Lemma 6.3.1 with n = 2ck to construct a set Wk of vectors of the type

w = 2−ck
∑

2ck≤i<2ck+1

ziei (6.20)

with zi = ±1,
cardWk ≥ exp(2ck−3) , (6.21)

and (since |zi − z′i| ∈ {0, 2})

w,w′ ∈Wk , w �= w′ ⇒ d(w,w′) = ‖w − w′‖2 ≥ 2−ck
√
n = 2−ck/2 . (6.22)

The elements of Wk have a non-zero i-th coordinate only for i in the interval
[2ck, 2ck+1[. The purpose of the parameter c is to ensure that these intervals
are sufficiently disjoint from each other so that consecutive stages of the
construction do not interfere too much with each other.

For x ∈ R
N let us define ‖x‖E by ‖x‖2E :=

∑
i≤N ix2

i . It is then straight-
forward from (6.20) that

w ∈Wk ⇒ ‖w‖2 ≤ 2−ck/2 ; ‖w‖E ≤ 2 . (6.23)

Consider then the functions of the type

fq =
1

2
√
r

∑

k≤q

wk , (6.24)

where q is an integer ≤ r and wk ∈Wk. We observe from the second part of
(6.23) that fq ∈ E . We recall that B(f, a) denotes a ball for the �2 norm. We
claim (if c is properly chosen) that the collection T of sets of the following
type:

• the set E ,
• the sets Bq(fq) := B(fq,

1√
r
2−c(q+1)/2) ∩ E for all values of 1 ≤ q ≤ r − 1

and of fq,
• the sets {fr} for all possible choices of fr as in (6.24),

is the tree we are looking for. The purpose of the unimportant third class of
sets is just to satisfy (6.4).

Given fq, for w ∈Wq+1 let us define

fw := fq +
1

2
√
r
w .

Since ‖w‖2 ≤ 2−c(q+1)/2, it is straightforward (if c ≥ 2) that
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B
(
fw,

1√
r
2−c(q+2)/2

)
⊂ B
(
fq,

1√
r
2−c(q+1)/2

)
. (6.25)

Consider w′ ∈Wq+1, w
′ �= w. By (6.22) we have

d(fw, fw′
) ≥ 2−c(q+1)/2/2

√
r = 2−c(q+1)/2−1/

√
r .

Assuming c = 6, we have 2−c(q+2)/2 = 2−c(q+1)/2−3 and then we obtain the
following separation condition:

d

(
B
(
fw,

1√
r
2−c(q+2)/2

)
, B
(
fw′

,
1√
r
2−c(q+2)/2

))
≥ 1√

r
2−c(q+1)/2−2 .

(6.26)

It is not difficult to check that (6.25) and (6.26) suffice to imply that T is
indeed a tree. Since the notation is heavy, and since we are soon going to
give an alternate approach, we leave this task to the reader and we turn
to the control of the size of T . Given q < r and fq as in (6.24) the sets
Bq+1(f

w) for w ∈ Wq+1 are the children of the set A := Bq(fq), where we
recall that Bq(fq) = B(fq, 2

−c(q+1)/2/
√
r) ∩ E . It follows from (6.21) that

the number c(A) of children of A is at least 22
c(q+1)−3

and (6.26) implies (6.6)
with 4−s(A) = 2−c(q+1)/2−3/

√
r. (Observe that s(A) is an integer because

r is a power of 16.) Consequently by definition (6.8) we get indeed that
d(T ) ≥

√
r/L, and since r is about logN this completes our geometrical

proof of (6.19). Let us also observe that this quantity about
√
r is obtained

from r contributions of size about 1/
√
r. This helps to explain why the use

of the Cauchy-Schwarz inequality in Chapter 4 is successful.
The reader may of course wonder how one discovers the previous con-

struction. Being able to do this is really what we mean when we speak of
“understanding the geometry of the situation”.

In the next two sections, we will use a similar construction, but there is an
extra difficulty which we try now to describe at a high level. Imagine that the
points of E we try to construct represent the Fourier coefficients of a function.
We would like this function to be Lipschitz. A control in norm ‖ · ‖E (or a
similar norm) of these Fourier coefficients is then going to be necessary for
this, but it is not sufficient. Having constructed a Lipschitz function fq, we
will not be able to consider all possible values of w ∈Wq+1 to form a function
fq+1 = fw = fq + w/(2

√
s), because such a function need not be Lipschitz,

but only some of them. The set of w which we may use for this purpose
depends on fq. The notation becomes complicated, and we shall write the
argument without any mention of trees. The tree is nonetheless implicit, and
the main argument recursively determines one of its branches. We now detail
this argument in the setting of the previous construction (thereby providing
a new geometrical proof of (6.19)). The argument is simply, given fq, to prove
that (provided now c = 10), we can find w in Wq+1 for which
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γ2

(
E ∩B

(
fq,

1√
r
2−c(q+1)/2

))
≥ 1

L
√
r
+ γ2

(
E ∩B

(
fw,

1√
r
2−c(q+2)/2

))
.

(6.27)

Let us prove that this is possible. For w �= w′, it follows from (6.22) that

d(fw, fw′
) ≥ a :=

1√
r
2−c(q+1)/2−2 ,

while it follows from the first part of (6.23) that d(fq, f
w) ≤ 2a. Moreover,

for c = 10 we have 2−c(q+2)/2/
√
r = a/8, so that

B
(
fw,

1√
r
2−c(q+2)/2

)
= B(fw,

a

8
) .

We proved in Theorem 2.3.15 that the functional γ2 satisfies the growth
condition of Definition 2.3.10 with c∗ = 1/4, and the parameter r of this
definition (which is not the same as the parameter we use here) equal to 8.
We can then apply this growth condition with a as above and n = c(q+1)−3
(see (6.22)) to obtain

γ2

(
E∩B

(
fq,

1√
r
2−c(q+1)/2

))
≥ 1

L
√
r
+min

w∈W
γ2

(
E∩B

(
fw,

1√
r
2−c(q+2)/2

))
.

We then choose fq+1 = fw where w ∈W is a value that achieves the minimum
in the right-hand side. This completes the proof of (6.27).

We write the inequality (6.27) for fw = fq+1, and we sum over 1 ≤ q ≤
r − 1 to obtain (when r ≥ 2)

γ2(E) ≥ γ2

(
E ∩B

(
f1,

1√
r
2−c
))

≥
√
r

L
+ γ2

(
E ∩B

(
fr,

1√
r
2−c(r+1)/2

))
≥
√
r

L
,

which is the desired result.

Exercise 6.3.2. Prove that the ellipsoid E = {(xi)i≤N ;
∑

1≤i≤N i2/αx2
i ≤ 1}

satisfies γα(E) ≥
√
logN/K, where α ≥ 1.

6.4 Lower Bound for Theorem 4.3.2

Recalling that C denotes the class of functions that are 1-Lipschitz on the
unit square, we shall prove the following, where (Xi)i≤N are i.i.d. in [0, 1]2.

Theorem 6.4.1. We have

E sup
f∈C

∣∣∣
∑

i≤N

(
f(Xi)−

∫
fdλ
)∣∣∣ ≥

1

L

√
N logN . (6.28)
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In particular it follows from (4.58) that if the points Yi are evenly spread
then (provided N ≥ L),

E sup
f∈C

∣∣∣
∑

i≤N

(f(Xi)− f(Yi))
∣∣∣ ≥

1

L

√
N logN ,

so (4.41) implies that the expected cost of matching the points Xi and the
points Yi is at least

√
N logN/L.

Let us now explain the basic idea of our approach. Consider standard
Gaussian r.v.s (gi) and suppose that instead of the left-hand side of (6.28)
we want a lower bound for E supf∈C |

∑
i≤N gif(Xi)|. Let us think that we

first fix the r.v.s Xi. Then, denoting by D a subset of C and by Eg expectation
in the r.v.s gi only, Theorem 2.4.1 implies

Eg sup
f∈D

∣∣∣
∑

i≤N

gif(Xi)
∣∣∣ ≥

1

L
γ2(D, dX) , (6.29)

where dX is the “empirical distance” on D defined by

dX(f, f ′)2 =
∑

i≤N

(f(Xi)− f ′(Xi))
2 . (6.30)

Let us now assume that

∀ f, f ′ ∈ D , dX(f, f ′) ≥
√
N

2
‖f − f ′‖2 . (6.31)

Then Theorem 2.7.5 (b) implies

γ2(D, dX) ≥
√
N

2
γ2(D) , (6.32)

and (6.29) yields

Eg sup
f∈D

∣∣∣
∑

i≤N

gif(Xi)
∣∣∣ ≥

√
N

L
γ2(D) . (6.33)

The strategy is then to look for a set D with γ2(D) ≥
√
logN/L for which

(6.31) holds with probability close to 1. We will then use (5.74) to show that
in fact one even has, with obvious notation and probability close to 1

Eε sup
f∈D

∣∣∣
∑

i≤N

εif(Xi)
∣∣∣ ≥

√
N

L
γ2(D) , (6.34)

which is basically the bound we want. To find D, one must of course under-
stand the combinatorics of the situation, which are somewhat similar to what
happens in Section 6.2. It may help to point out from the start that (6.31) is
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really easy to satisfy (although actually writing every single detail will take
some space). To see this, let us divide [0, 1]2 into little squares of side 2−p.
Then, as soon as 2−2p is large compared to logN/N , each such little square
C contains about Nλ(C) points Xi. The simple argument goes as follows.
The r.v.s Zi = 1C(Xi)−λ(C) are centered, satisfy |Zi| ≤ 1 and EZ2

i ≤ λ(C),
so that Bernstein’s inequality (4.59) implies

P
(∣∣∣
∑

i≤N

Zi

∣∣∣ ≥
1

2
Nλ(C)

)
≤ 2 exp(−Nλ(C)/L) = 2 exp(−N2−2p) ,

and indeed with probability ≥ 1/2 for each such C we have |
∑

i≤N Zi| ≤
Nλ(C)/2 and hence

1

2
Nλ(C) ≤ card{i ≤ N ; Xi ∈ C} ≤ 3

2
Nλ(C) (6.35)

provided N2−2p is large compared to logN . Then (6.31) will automatically
hold “provided we can describe the class D without having to look at a scale
finer than 2−p”. There is all the room in the world in this argument, because
the class we shall construct can actually be described without looking at a
scale finer than, say, 2−p/10.

We now start the proof itself. Consider a parameter c ∈ N. This parameter
will be chosen later, and from now on we should think of it as of a universal
constant. We also consider a number r ∈ N to be chosen later (about logN).
For 1 ≤ k ≤ r and 1 ≤ � ≤ 2ck we consider the function f ′

k,� on [0, 1] defined
as follows:

f ′
k,�(x) =

⎧
⎪⎨

⎪⎩

0 unless x ∈ [(�− 1)2−ck, �2−ck[
1

2
√
r

for x ∈ [(�− 1)2−ck, (�− 1/2)2−ck[

− 1
2
√
r

for x ∈ [(�− 1/2)2−ck, �2−ck[ .

(6.36)

We define

fk,�(x) =

∫ x

0

f ′
k,�(y)dy . (6.37)

We now list a few useful properties of these functions. In these formulas
‖.‖2 denotes the norm in L2([0, 1]), etc. The proofs of these assertions are
completely straightforward and better left to the reader.

Lemma 6.4.2. The following holds true:

f ′
k,�(x) = 0 unless x ∈ [(�− 1)2−ck, �2−ck[ . (6.38)

The family (f ′
k,�) is orthogonal in L2([0, 1]) . (6.39)

‖f ′
k,�‖22 =

1

4r
2−ck . (6.40)
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‖f ′
k,�‖1 =

1

2
√
r
2−ck . (6.41)

‖fk,�‖1 =
1

8
√
r
2−2ck . (6.42)

‖f ′
k,�‖∞ =

1

2
√
r
; ‖fk,�‖∞ =

1

4
√
r
2−ck . (6.43)

‖fk,�‖22 =
1

48r
2−3ck . (6.44)

To prove Theorem 6.4.1 we will use the class of functions on [0, 1]2 of the
type

f =

√
r

16

∑

k≤r

2ck
∑

�,�′≤2ck

zk,�,�′fk,� ⊗ fk,�′ , (6.45)

where zk,�,�′ ∈ {0, 1,−1} and where f ⊗ g(x, y) = f(x)g(y). The sum
∑

k≤r

define f as a sum of r functions fk. Since fk,� ⊗ fk,�′ is zero outside the
little square [(� − 1)2−ck, �2−ck[×[(�′ − 1)2−ck, �′2−ck[, and since these little
squares are disjoint as � and �′ vary, the function fk is easy to visualize. It is
convenient to think of fk as quite larger that fk+1, and hence as quite larger
than

∑
k′>k fk′ . (This is literally true only when the coefficients zk,�,�′ are

±1.) How much larger is governed by the number c: the larger c, the larger
is fk relative to fk+1. Let us denote by D the class of functions f that are of
the type (6.45), and that are also 1-Lipschitz. We think of D as a subset of
the Hilbert space L2([0, 1]2). The central part of the argument is as follows.

Proposition 6.4.3. We can choose c being a universal constant such that

γ2(D) ≥
√
r

L
. (6.46)

One obstacle is that functions of the type (6.45) are not always 1-
Lipschitz. It shall require some care to ensure that we properly choose the
coefficients zk,�,�′ to ensure that we construct only functions that are 1-
Lipschitz. The next two lemmas prepare for this.

Lemma 6.4.4. A function f given by (6.45) satisfies

∥∥∥
∂f

∂x

∥∥∥
2
≤ 2−7 . (6.47)

Proof. First we write

∂f

∂x
(x, y) =

√
r

16

∑

k≤r

2ck
∑

�,�′≤2ck

zk,�,�′f
′
k,�(x)fk,�′(y) .

Using (6.39) and (6.40) we obtain, since z2k,�,�′ ≤ 1,
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∫ (∂f
∂x

)2
dx =

r

(16)2

∑

k≤r

22ck
∑

�,�′≤2ck

z2k,�,�′‖f ′
k,�‖22fk,�′(y)2

≤ 1

210

∑

k≤r

2ck
∑

�,�′≤2ck

fk,�′(y)
2 .

Integrating in y and using (6.44) yields

∥∥∥
∂f

∂x

∥∥∥
2

2
≤ 1

210

∑

k≤r

1

48r
≤ 2−14 . 
�

Lemma 6.4.5. Consider a function of the type

f =

√
r

16

∑

k≤q

2ck
∑

�,�′≤2ck

zk,�,�′fk,� ⊗ fk,�′ ,

where zk,�,�′ ∈ {0, 1,−1}. Then
∣∣∣
∂2f

∂x∂y

∣∣∣ ≤
2cq

25
√
r
. (6.48)

Proof. We note that

∂2f

∂x∂y
=

√
r

16

∑

k≤q

2ck
∑

�,�′≤2ck

zk,�,�′f
′
k,� ⊗ f ′

k,�′ ,

and we note from the second part of (6.43) that since the functions (f ′
k,�)�≤2ck

have disjoint supports, that second sum is ≤ 1/(4r) at every point. Also,∑
k≤q 2

ck ≤ 2cq+1. 
�
Proof of Proposition 6.4.3. By induction over q ≥ 0, for 0 ≤ q ≤ r we will
construct functions fq ∈ D with

fq =

√
r

16

∑

k≤q

2ck
∑

�,�′≤2ck

zk,�,�′fk,� ⊗ fk,�′ , (6.49)

where zk,�,�′ ∈ {0, 1,−1}, in such a manner that f0 = 0 and that for q ≤ r−1

γ2

(
D ∩B

(
fq,

1

27
√
r
2−c(q+1)

))
≥ 1

L
√
r
+ γ2

(
D ∩B

(
fq+1,

1

27
√
r
2−c(q+2)

))
.

(6.50)
Summation of these inequalities over 0 ≤ q ≤ r− 1 yields the result as in

Section 6.3.
Given fq, to construct fq+1 we need to construct the coefficients zq+1,�,�′ .

First, we need to ensure that fq+1 is 1-Lipschitz, which is the really new part
of the argument. For this let us consider the little squares of the type
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[(�− 1)2−c(q+1), �2−c(q+1)[×[(�′ − 1)2−c(q+1), �′2−c(q+1)[ (6.51)

for �, �′ ∈ N and 1 ≤ �, �′ ≤ 2c(q+1), so that there are 22c(q+1) such squares. To
ensure that fq+1 is 1-Lipschitz, it suffices to ensure that it is 1-Lipschitz on
each square (6.51). Let us say that the square (6.51) is dangerous if it contains
a point for which either |∂fq/∂x| ≥ 1/2 or |∂fq/∂y| ≥ 1/2. (The danger is
that on this square fq+1 might not be 1-Lipschitz.) We observe from the
definition that all functions f ′

k,� for k ≤ q are constant on the squares (6.51).
So on such a square the quantity ∂fq/∂x does not depend on x. Moreover it
follows from (6.48) that if (x, y) and (x, y′) belong to the same square (6.51)
then ∣∣∣

∂fq
∂x

(x, y)− ∂fq
∂x

(x, y′)
∣∣∣ ≤ |y − y′|2

cq−5

√
r
≤ 2−c−5

√
r

.

In particular if a square (6.51) contains a point at which |∂fq/∂x| ≥ 1/2,
then at each point of this square we have |∂fq/∂x| ≥ 1/4. Consequently
(6.47) implies, with room to spare, that at most 1/2 of the squares (6.51) are
dangerous. For these squares, we choose zq+1,�,�′ = 0, so that on these squares
fq+1 = fq will be 1-Lipschitz. Let us say that a square (6.51) is safe if it is
not dangerous, so that at each point of a safe square we have |∂fq/∂x| ≤ 1/2
and |∂fq/∂x| ≤ 1/2. Now (6.43) implies

∣∣∣
∂fq+1

∂x
− ∂fq

∂x

∣∣∣ =
∣∣∣
√
r

16
2c(q+1)

∑

�,�′≤2c(q+1)

zq+1,�,�′f
′
q+1,� ⊗ fq+1,�′

∣∣∣ ≤
1

27
√
r

and

∣∣∣
∂fq+1

∂y
− ∂fq

∂y

∣∣∣ =
∣∣∣
√
r

16
2c(q+1)

∑

�,�′≤2c(q+1)

zq+1,�,�′fq+1,� ⊗ f ′
q+1,�′

∣∣∣ ≤
1

27
√
r
,

so we are certain than on a safe square we have |∂fq+1/∂x| ≤ 1/
√
2 and

|∂fq+1/∂y| ≤ 1/
√
2, and hence that fq+1 is 1-Lipschitz. Let us denote by S

the collection of pairs (�, �′) such that the corresponding square (6.51) is safe,
so cardS ≥ 22c(q+1)−1. Lemma 6.3.1 produces a subset V of {−1, 1}S with

cardV ≥ 22
2c(q+1)−4

= N2c(q+1)−4 , (6.52)

and such that

any two distinct elements b and b′ of V differ it at least 22c(q+1)−3 places .
(6.53)

Any b ∈ V is a family (b�,�′)(�,�′)∈S . For such a b we define

f b = fq +

√
r

16
2c(q+1)

∑

�,�′∈S

b�,�′fq+1,� ⊗ fq+1,�′ .
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We will show that it works to take fq+1 = f b for an appropriate choice of b.
First, using (6.43),

‖f b−fq‖2 ≤ ‖f b−fq‖∞ ≤
√
r

16
2c(q+1) 1

16r
2−2c(q+1) ≤ 1

28
√
r
2−c(q+1) . (6.54)

In particular, if c ≥ 1,

B
(
f b,

1

27
√
r
2−c(q+2)

)
⊂ B
(
fq,

1

27
√
r
2−c(q+1)

)
. (6.55)

Also, if b �= b′, using (6.53) and (6.44),

‖f b − f b′‖22 ≥
r

28
22c(q+1)

∑

S

(b�,�′ − b′�,�′)
2‖fk,�‖2‖fk,�′‖2

≥ r

28
22c(q+1)4 · 22c(q+1)−3

( 1

48r

)2
2−6c(q+1)

≥ 1

222r
2−2c(q+1) ,

and therefore

‖f b − f b′‖ ≥ a :=
1

211
√
r
2−c(q+1) . (6.56)

We now choose c such that

1

27
√
r
2−c(q+2) ≤ a

8
,

i.e.
1

27
2−c ≤ 1

8 · 211 , (6.57)

e.g. c = 7. Then

B
(
f b,

1

27
√
r
2−c(q+2)

)
⊂ B
(
f b,

a

8

)
.

We proved in Theorem 2.3.15 that the quantity γ2 satisfies the growth con-
dition of Definition 2.3.10 with c∗ = 1/4, and the parameter r of this def-
inition (with again is not the same as the parameter we use here) equal to
8. We can then apply this growth condition with a = 2−c(q+1)−11/

√
r and

n = 2c(q + 1)− 5 (see (6.52)) to obtain

γ2

(
D∩B

(
fq,

1

27
√
r
2−c(q+1)

))
≥ 1

L
√
r
+min

b∈V
γ2

(
D∩B

(
f b,

1

27
√
r
2−c(q+2)

))
.

We then choose fq+1 = f b where b ∈ V is a value that achieves the minimum
in the left-hand side. This completes the proof of (6.50) and of the proposition.


�
Let us now prepare for the proof of Theorem 6.4.1. We fix N and we

choose r as the largest for which 2cr ≤ N1/100, so that r ≥ logN/L. We may
assume that N is sufficiently large.
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Lemma 6.4.6. Condition (6.31) occurs with probability ≥ 1/2.

Proof. Since there is huge room to spare, let us be a bit informal in the
proof. Divide [0, 1]2 in small subsquares of area about L2(logN)/N . Then if
L2 is large enough, with probability 1/2 each of these subsquares A contains
at least Nλ(A)/2 points Xi, where λ denotes the 2-dimensional Lebesgue
measure, as we proved in (6.35). Assume that we are in this situation. We
then claim that if f is a 1-Lipschitz function, with |f | ≤ 1, then

∫
f2dλ ≤ 2

N

∑

i≤N

f(Xi)
2 +

L
√
logN√
N

. (6.58)

First we observe that f2 is 2-Lipschitz since |f2(x) − f2(y)| = |f(x) −
f(y)||f(x) + f(y)| ≤ 2|f(x)− f(y)|. Then (6.58) holds because for each little
square A we have maxA f2−minA f2 ≤ L

√
logN/

√
N since f2 is 2-Lipschitz

and A is of diameter ≤ L
√
logN/

√
N . Indeed,

∫

A

f2dλ ≤ λ(A)max
A

f2 ≤ L
√
logN√
N

λ(A) + λ(A)min
A

f2 ,

and moreover

λ(A)min
A

f2 ≤ 2

N
card{i ≤ N ; Xi ∈ A}min

A
f2 ≤ 2

N

∑

i≤N

f(Xi)
21{Xi∈A} .

Consequently,

∫

A

f2dλ ≤ 2

N

∑

i≤N

f(Xi)
21{Xi∈A} +

L
√
logN√
N

λ(A) ,

and summation over A yields (6.58). Using (6.58) for (f − f ′)/2 rather than
f , and using the inequality

√
a+ b ≤

√
a+

√
b yields

‖f − f ′‖2 ≤
√
2

(
1

N

∑

i≤N

(f(Xi)− f ′(Xi))
2

)1/2

+ L
( logN

N

)1/4
. (6.59)

Next, we show that for f, f ′ in D, f �= f ′, we have

‖f − f ′‖2 ≥
1

L
√
r
2−2cr . (6.60)

To see this, consider (with obvious notation) the smallest integer q for which
there exists �1 and �2 with zq,�1,�2 �= z′q,�1,�2 . Let C be the square

C = [(�1 − 1)2−cq, �12−cq[×[(�2 − 1)2−cq, �22−cq[ .
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Let

f =

√
r

16

∑

k>q

2ck
∑

�,�′≤2ck

zk,�,�′fk,� ⊗ fk,�′ ,

and define f
′
similarly. The definition of q implies

f − f ′ =

√
r

16
2cq

∑

�,�′≤2cq

(zq,�,�′ − z′q,�,�′)fq,� ⊗ fq,�′ + f − f
′
,

and therefore, since |zq,�1,�2 − z′q,�1,�2 | ≥ 1,

‖f − f ′‖2 ≥ ‖(f − f ′)1C‖2 ≥
√
r

16
2cq‖fq,�1 ⊗ fq,�2‖2 − ‖f1C‖2 − ‖f

′
1C‖2 .

We note now that (6.44) implies ‖fk,� ⊗ fk,�′‖2 = 1/(48r)2−3ck, and in par-
ticular ‖fq,� ⊗ fq,�′‖2 = 1/(48r)2−3cq. Next we use the bound

‖f1C‖2 ≤
∑

k>q

√
r

16
2ck
∥∥∥
∑

�,�′

fk,� ⊗ fk,�′1C

∥∥∥
2
.

Since the functions fk,�⊗fk,�′ have disjoint support as � and �′ vary and since
only 22c(k−q) such functions are relevant in the sum

∑
�,�′ fk,� ⊗ fk,�′1C we

obtain, using also (6.44),

∥∥∥
∑

�,�′

fk,� ⊗ fk,�′1C

∥∥∥
2
=

2−3ck

48r
2c(k−q)

and thus

‖f1C‖2 ≤
√
r

16

1

48r
2−cq

∑

k>q

2−ck.

Combining these estimates we obtain

‖f − f ′‖ ≥
√
r

16

1

48r

(
2−2cq − 2 · 2−cq

∑

k>q

2−ck
)
≥ L√

r
2−2cq ≥ L√

r
2−2cr ,

and we have proved (6.60). Since 2−cr is about N−1/100, for large N (6.60)
implies

L
( logN

N

)1/4
≤ 1

10
‖f − f ′‖2 ,

and combining with (6.59) this completes the proof. 
�
Proof of Theorem 6.4.1. When (6.31) holds, using (6.32) and (6.46), we get

γ2(D, dX) ≥
√
N

L

√
r . (6.61)
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Now, Lemma 4.3.9 implies that en(D, d∞) ≤ L2−n/2. Moreover, since

cardD ≤ 2L22cr , we have en(D, d∞) = 0 for n ≥ 2cr + L. Then Corollary
2.3.2 implies that γ1(D, d∞) ≤ L2cr ≤ L

√
N by the choice of r and since

c = 7. We now appeal to (5.74) to obtain that if Eε denotes expectation in
the r.v.s εi only,

Eε sup
f∈C

∑

i≤N

εif(Xi) ≥ Eε sup
f∈D

∑

i≤N

εif(Xi) ≥
1

L

√
rN . (6.62)

Since the probability corresponding to the choice of the r.v.s Xi that this
holds is ≥ 1/2, taking expectation (and since Eε supf∈C

∑
i≤N εif(Xi) ≥ 0

because 0 ∈ C) we obtain

E sup
f∈C

∑

i≤N

εif(Xi) ≥
1

L

√
rN . (6.63)

It remains to use a “desymmetrization argument”. For f ∈ C we have
|
∫
fdλ| ≤ 1, and thus (6.63) implies (for N large enough)

E sup
f∈C

∑

i≤N

εi

(
f(Xi)−

∫
fdλ
)
≥ 1

L

√
rN .

Let us denote by Eε expectation given the r.v.s εi, and let I = {i ≤ N ; εi =
1}, J = {i ≤ N ; εi = −1}, so that

Eε sup
f∈C

∑

i≤N

εi

(
f(Xi)−

∫
fdλ
)
≤ Eε sup

f∈C

∣∣∣
∑

i∈I

(
f(Xi)−

∫
fdλ
)∣∣∣

+ Eε sup
f∈C

∣∣∣
∑

i∈J

(
f(Xi)−

∫
fdλ
)∣∣∣ .

Both terms on the right-hand side are ≤ E supf∈C |
∑

i∈N (f(Xi) −
∫
fdλ)|

by Jensen’s inequality, and consequently
√
rN/L ≤ E supf∈C |

∑
i∈N (f(Xi)−∫

fdλ)|. 
�

6.5 Lower Bound for Theorem 4.4.1

Theorem 6.5.1. If the points (Xi)i≤N are i.i.d. uniform over [0, 1]2 and the
points (Yi)i≤N are evenly spread, then

E inf
π

max
i≤N

d(Xi, Yπ(i)) ≥
(logN)3/4

L
√
N

. (6.64)

The proof will be strikingly similar in spirit to that of Theorem 6.4.1. The
main step is as follows.
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Theorem 6.5.2. Denoting by C the class of functions f : [0, 1]→ [0, 1] such
that f(0) = f(1) = 1/2, |f ′| ≤ 1, and by S the class of subgraphs

S(f) = {(x, y) ∈ [0, 1]2 ; y ≤ f(x)} ,

of the functions in C then

E sup
S∈S

∣∣∣
∑

i≤N

(1S(Xi)− λ(S))
∣∣∣ ≥

1

L

√
N(logN)3/4 . (6.65)

Proof of Theorem 6.5.1. We first observe that for any 1-Lipschitz function h
we have

card{i ≤ N ; Yi ∈ S(h)} ≤ Nλ(S(h)) + L
√
N . (6.66)

This is because by definition of an evenly spread family, each point Yi belongs
to a small rectangle Ri of area 1/N and of diameter ≤ 10/

√
N , and a pes-

simistic bound for the left-hand side above is the number of such rectangles
that meet S(h). These rectangles are entirely contained in the set of points
within distance L/

√
N of S(h), and since h is 1-Lipschitz, this set has area

≤ S(h) + L
√
N , hence the bound (6.66).

Consider now fix now f ∈ C and consider ε > 0. Since f is 1-Lipschitz,
the ε-neighborhood Sε(f) of S(f) in [0, 1]2 is contained in S(f +2ε). Indeed,
if (x, y) is within distance ε of (x′, y′) ∈ S(f), then y ≤ |y − y′| + y′ ≤
ε + f(x′) ≤ 2ε + f(x) since |f(x′) − f(x)| ≤ |x − x′| ≤ ε. In particular
λ(S(f + 2ε)) ≤ λ(S(f)) + 2ε and (6.66) implies

card{i ≤ N ; Yi ∈ Sε(f)} ≤ N(λ(S(f) + 2ε) + L
√
N . (6.67)

Let us consider S = S(f) ∈ S and let

D =
∑

i≤N

1S(Xi)−Nλ(S) = card{i ≤ N ; Xi ∈ S} −Nλ(S) .

Assume first D > L
√
N and let ε = (D − L

√
N)/(4N). Then

card{i ≤ N ; Xi ∈ S(f)} = Nλ(S(f)) +D ≥ N(λ(S(f) + 4ε) + L
√
N .

Consequently (6.67) implies

card{i ≤ N ; Yi ∈ Sε(f)} < card{i ≤ N ; Xi ∈ S(f)} ,

and therefore any matching must pair at least one point Xi ∈ S(f) with a
point Yj �∈ Sε(f), so that

max
i≤N

d(Xi, Yπ(i)) ≥ ε =
D

4N
− L

√
N

4N
.

Proceeding in a similar manner when D < −L
√
N we show that
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max
i≤N

d(Xi, Yπ(i)) ≥ ε =
|D|
4N

− L
√
N

4N
.

Taking the supremum over S = S(f) ∈ S yields

max
i≤N

d(Xi, Yπ(i)) ≥
1

4N
sup
S∈S

∣∣∣
∑

i≤N

(1S(Xi)− λ(S))
∣∣∣−

L
√
N

4N
.

Taking expectation and using (6.65) finishes the proof. 
�

Recalling the functions fk,� of (6.37), consider the functions of the type

f =
1

2
+
∑

1≤k≤r

∑

1≤�≤2ck

xk,�fk,� , (6.68)

where xk,� ∈ {−1, 0, 1}. Then f(0) = f(1) = 1/2. Consider the class D of
functions of this type for which |f ′| ≤ 1, and observe that then f is valued
in [0, 1]. The plan is to prove that for an appropriate choice of c and r then
(6.65) already holds for S the class of subgraphs S(f) for f ∈ D.

Not all the functions of the type (6.68) satisfy |f ′| ≤ 1, and we gather
first some information that will allow us to satisfy this condition.

Lemma 6.5.3. A function f of the type (6.68) satisfies

∫ 1

0

f ′(x)2dx ≤ 1

4
. (6.69)

Proof. Using (6.37) and (6.39) we obtain

∫ 1

0

f ′(x)2dx ≤
∑

k≤r

∑

�≤2ck

x2
k,�

1

4r
2−ck ≤ 1

4
. 
�

The following is an immediate consequence of (6.42).

Lemma 6.5.4. We have

∥∥∥
∑

k≤r

∑

�≤2ck

xk,�fk,�

∥∥∥
1
≤ 1

8
√
r

∑

k≤r

2−2ck
∑

�≤2ck

|xk,�| . (6.70)

Moreover if |xk,�| ≤ 1 and xk,� = 0 for k ≤ q then

∥∥∥
∑

k≤r

∑

�≤2ck

xk,�fk,�

∥∥∥
1
≤ 1

4
√
r
2−c(q+1) . (6.71)

The main ingredient in the proof of Theorem 6.5.2 is as follows, where we
view {1S(f); f ∈ D} as a subset of L2 = L2([0, 1]2).
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Proposition 6.5.5. If c is appropriately chosen then

γ2({1S(f) ; f ∈ D}) ≥
r3/4

L
. (6.72)

Proof. For f ∈ D let us define

D(f, ρ) = {1S(h) ; h ∈ D , ‖h− f‖1 ≤ ρ} . (6.73)

Let us observe that since we are dealing here with indicators of sets,

D(f, ρ) = {1S(h) ; h ∈ D , ‖1S(h) − 1S(f)‖2 ≤
√
ρ} (6.74)

is a ball of radius
√
ρ in L2. By induction over q (and provided that c has

been correctly chosen) we construct functions

fq =
∑

k≤q

∑

�≤2ck

xk,�fk,� , (6.75)

where xk,� ∈ {−1, 0, 1} and fq ∈ D, such that

γ2

(
D
(
fq,

1

4
√
r
2−c(q+1)

))
≥ 1

Lr1/4
+ γ2

(
D
(
fq+1,

1

4
√
r
2−c(q+2)

))
. (6.76)

Summation of these inequalities proves (6.75). For the construction we pro-
ceed as follows. We observe that f ′

q is constant on the intervals I� = [(� −
1)2−c(q+1), �2−c(q+1)[. We denote by J the set of integers � ≤ 2c(q+1) such that
|f ′

q| ≤ 1/
√
2 on I�. (The intervals I� for � ∈ J correspond to the “safe” small

squares in the proof of Proposition 6.4.3.) Then
∫
I�
f ′
q(x)

2dx ≥ 2−c(q+1)−1

for � �∈ J . Then Lemma 6.5.3 yields

cardJ ≥ 2c(q+1)−1 . (6.77)

We appeal to Lemma 6.3.1 to find a subset V of {0, 1}J with

cardV ≥ 22
c(q+1)−1−3 ≥ 22

c(q+1)−2

= Nc(q+1)−2 , (6.78)

such that any two distinct elements of V differ in at least cardJ/4 coordi-
nates. For b ∈ V we define

f b = fq +
∑

�∈J

b�fq+1,� ,

and we are going to show that one may choose for fq+1 one of the functions
f b for b ∈ V . From Lemma 6.5.4 we observe that

‖f b − fq‖1 ≤
1

8
√
r
2−c(q+1) (6.79)
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and therefore

D
(
f b,

1

4
√
r
2−c(q+2)

)
⊂ D
(
fq,

1

4
√
r
2−c(q+1)

)
. (6.80)

Also, for b �= b′ we have, using (6.42),

‖f b − f b′‖1 ≥
1

8
√
r
2−2c(q+1)2 · 1

4
cardJ ≥ a2 :=

1

25
√
r
2−c(q+1) . (6.81)

Keeping (6.74) in mind we now choose c so that

( 1

4
√
r
2−c(q+2)

)1/2
≤ a

8
,

i.e. 2−c/2 ≤ 2−3/2/8 (e.g. c = 9). We then appeal to Theorem 2.3.15 with
a = 2−5/2r−1/42−c(q+1)/2 and n = c(q + 1)− 3 to obtain

γ2

(
D
(
fq,

1

4
√
r
2−c(q+1)

))
≥ 1

Lr1/4
+min

b∈V
γ2

(
D
(
f b,

1

4
√
r
2−c(q+2)

))
. (6.82)

To obtain (6.76) we then choose fq+1 as f b for a value of b that gives the
minimum in the right-hand side. 
�

Proof of Theorem 6.5.2. Given N we choose again r as the largest for which
2cr ≤ N1/100, so that r ≥ logN/L. First we prove that with probability
≥ 1/2 we have

∀ f, h ∈ D , ‖f−h‖1 =

∫
|1S(f)−1S(h)|dλ ≤

4

N

∑

i≤N

|1S(f)(Xi)−1S(h)(Xi)| .

(6.83)
To see this we divide the unit square in little subsquares of area about
L logN/N where L is large enough that, with probability ≥ 1/2, (and using
of course Bernstein’s inequality) each of these subsquares C contains at least
Nλ(C)/2 points Xi. We then estimate pessimistically from below

1

N

∑

i≤N

|1S(f)(Xi)− 1S(h)(Xi)|

by the number of points Xi that are contained in little squares C that are
entirely contained in the domain S between the graphs of f and of h. The
number of such squares is at least N times the area of the region S ′ consisting
of the points of S that are at distance ≥ L

√
logN/

√
N of either the graph

of f or the graph of g, and

λ(S ′) ≥ λ(S)− L
√
logN√
N

= ‖f − h‖1 −
L
√
logN√
N

.
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In this manner we obtain

1

N

∑

i≤N

|1S(f)(Xi)− 1S(h)(Xi)| ≥
1

2
‖f − h‖1 −

L
√
logN√
N

. (6.84)

Since the rest of the proof is nearly identical to the case of Theorem 6.4.1 we
provide only the outline and leave the details to the reader. First, we prove
that

∀ f, h ∈ D , f �= h⇒ ‖f − h‖1 ≥
1

16
√
r
2−3cr ,

by proceeding very much as in the proof of (6.60). Combining with (6.84)
this proves (6.83).

We recall the distance dX of (6.30). We use Theorem 2.7.5 (b) to deduce
from (6.72) that, with probability at least 1/2,

γ2({1S(f) ; f ∈ D} , dX) ≥ r3/4
√
N

L
.

Next, we use Corollary 2.3.2, and the fact that cardD ≤ 32
cr ≤ 22

cr+1

to
obtain

γ1({1S(f) ; f ∈ D} , d∞) ≤ L2cr/2 ,

and since c = 9 this is much smaller than
√
N . We then deduce from (5.74)

that if Eε denotes expectation in the r.v.s εi only, with probability ≥ 1/2 we
have

Eε sup
S∈S

∣∣∣
∑

i≤N

εi1S(Xi)
∣∣∣ ≥

1

L

√
Nr3/4 .

We then take expectation and conclude with the same “desymmetrization”
argument as in the proof of Theorem 6.4.1. 
�
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7. Random Fourier Series and Trigonometric
Sums, II

7.1 Introduction

The topic of random Fourier series illustrates well the impact of abstract
methods, and it might be useful to provide an (extremely brief) history of
the topic.

In a series of papers in 1930 and 1932 R. Paley and A. Zygmund [6],
[7], [8] raised (among other similar problems) the question of the uniform
convergence of the series ∑

k≥1

akεk exp(ikx) (7.1)

uniformly over x ∈ [0, 2π], where ak are real numbers and εk are independent
Bernoulli r.v.s (and of course here i is not a summation index but i2 = −1).
Considering the numbers sp defined by s2p =

∑
2p≤n<2p+1 a2n they prove in

particular the necessity of the condition
∑

p sp <∞. Later, R. Salem and A.
Zygmund [9] proved that if the sequence (sp) is non-increasing the condition∑

p sp < ∞ suffices for uniform convergence of the random Fourier series.
The combination of these two results is remarkably sharp, but certainly does
not settle the problem of the convergence of the series (7.1).

It belonged to M. Marcus and G. Pisier to find necessary and suffi-
cient conditions for uniform convergence, along lines which have already
been largely been explained in Chapter 3. This requires, as a major concep-
tual step, the Dudley-Fernique characterization of boundedness of stationary
Gaussian processes. The conditions of Marcus and Pisier are of the type
γ2([0, 2π], d) <∞ for a certain distance d, and it is a non-trivial task (which
is thoroughly performed in [5]) to show that they improve on the “classical”
results of Paley, Salem and Zygmund. The results of [5] cover not only the
case of series of the type (7.1) but more general cases such as the series

∑

k≥1

akξk exp(ikx) (7.2)

where the independent symmetric r.v.s ξk satisfy
∑

k Eξ
2
k/(E|ξk|) < ∞ (and

many other situations). They still certainly however do not settle the problem
of the uniform convergence of the series (7.2) in full generality.

M. Talagrand, Upper and Lower Bounds for Stochastic Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
Modern Surveys in Mathematics 60, DOI 10.1007/978-3-642-54075-2 7,

© Springer-Verlag Berlin Heidelberg 2014
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In this chapter we (basically) complete the program outlined in Sec-
tion 3.2 of finding upper and lower bounds of the same order for the quantities
E‖
∑

i ξiχi‖ where χi are characters and ξi are independent symmetric r.v.s.
As a consequence we obtain necessary and sufficient conditions for the con-
vergence of random Fourier series in a very general setting (and in particular
the series (7.2)). These characterizations are in essence of the same nature
as the results of Marcus and Pisier. Unfortunately this means that is not al-
ways immediate to apply them in concrete situations, but we will illustrate at
length how this can be done. Fulfilling this program requires both technical
and conceptual advances compared to the work of Section 3.2. The greatest
technical challenge is to perform chaining in an essentially optimal way. For-
tunately, it has already been addressed in Theorem 5.2.1, and this will be
our first opportunity to demonstrate the power of this result. The conceptual
advance is the idea of “families of distances” which already appeared implic-
itly in Chapter 5. It is one of the central themes of this entire work, and we
turn to it now.

7.2 Families of Distances

Not all random processes of interest satisfy a condition as simple as (1.4) or
even (2.50). In certain natural situations, a precise description of the incre-
ments of a process cannot be achieved using only one or two distances, but
requires using a “family of distances.” This discovery has led to the possibil-
ity of describing exactly when certain large families of processes are bounded.
Quite interestingly, once the first surprise is passed and the right setting has
been found, it turns out that working with a family of distances is not more
difficult than working with a single distance.

Let us first explain this concept of “families of distances”. For each j ∈ Z

we consider a non-negative function ϕj(s, t) on T × T . Despite the fact that
we use the convenient terminology “family of distances” the map ϕj is not
usually a distance, but will be very often the square of a distance. In this
case, using the triangle inequality for

√
ϕj , for s, t1, t2 ∈ T and the inequality

(a+ b)2 ≤ 2(a2 + b2) we have

ϕj(t1, t2) ≤ 2(ϕj(t1, s) + ϕj(s, t2)) .

We will always assume that ϕj is symmetric,

ϕj(s, t) = ϕj(t, s) .

Often (and in particular in this chapter) the sequence (ϕj) will be non-
decreasing:

ϕj(s, t) ≤ ϕj+1(s, t) .

We have developed ways to measure the “size” of T when T is provided
with a single distance d, such as Dudley’s entropy integral

∑
n≥0 2

n/2en(T, d)
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or the functional γ2(T, d), and our purpose is to develop similar notions when
T is provided with “a family of distances”. In this chapter we deal with a
“homogeneous setting” so that entropy numbers suffice (as exemplified in
Theorem 3.1.1) and we shall explain only how to properly define the notion
that corresponds to entropy integrals. (Later, in Chapter 10 we shall learn
how properly generalize the quantity γ2(T, d).) Let us define (assuming these
numbers exist)

j0 = sup
{
j ∈ Z ; ∀ s, t ∈ T , ϕj(s, t) ≤ 1

}
, (7.3)

and for n ≥ 1 let us define jn as the largest integer j for which “there exists
a 2n-net of size Nn for the distance ϕj”, i.e.

jn = sup
{
j ∈ Z ; ∃U ⊂ T , cardU ≤ Nn = 22

n

,

∀ t ∈ T , ∃s ∈ U , ϕj(t, s) ≤ 2n
}
. (7.4)

We note that the sequence (jn) is increasing. To make sense out of these
definitions, let us consider the case where, for a given distance d on T one
has

ϕj(s, t) = 22jd(s, t)2 . (7.5)

Then, obviously,

j0 = sup{j ∈ Z ; 22jΔ(T, d)2 ≤ 1} ,

so that
2−j0−1 ≤ Δ(T, d) ≤ 2−j0 . (7.6)

Also, it should be obvious from (7.4) that for n ≥ 1

2n/2−jn−1 ≤ en(T, d) ≤ 2n/2−jn .

Consequently,

∑

n≥0

2n−jn−1 ≤
∑

n≥0

2n/2en(T, d) ≤
∑

n≥0

2n−jn .

Thus, in the present situation, the quantity

∑

n≥0

2n−jn (7.7)

is basically Dudley’s integral. It turns out that in the more general situation
where (7.5) may not hold, this quantity is a useful generalization of Dudley’s
integral.

Let us also make two simple observations. First, we are not going to
change much if we find it convenient to replace the definition (7.3) of j0 by,
for example,
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j0 = sup
{
j ∈ Z ; ∀ s, t ∈ T , ϕj(s, t) ≤ 1/4

}
.

Second, if we are in a translation-invariant situation, and in particular when
T is a compact group with Haar measure μ and unit element 0, we may then
define jn as

jn = sup
{
j ∈ Z ; μ({s ; ϕj(s, 0) ≤ 2n}) ≥ 2−2n = N−1

n

}
. (7.8)

In a special setting in Theorem 3.1.1 we proved that (7.8) is essentially the
same as (7.4). In this chapter we shall use only the definition (7.8), but our
first task is to prove that in the present general setting this is still basically
the same as (7.4). This argument is absolutely central to the whole approach,
so it is worth repeating it even though it is exactly the same as in case of
Theorem 3.1.1. Let us denote by j∗n the integer (7.8) and by jn the integer
(7.4). We assume that each function ϕj is the square of distance and is trans-
lation invariant, i.e. ϕj(t1, t2) = ϕj(t1 + s, t2 + s) for each t1, t2, s ∈ T . We
then prove that

jn ≤ j∗n ≤ jn+2 . (7.9)

First, consider the set U as in (7.4) for j = jn. Then T ⊂
⋃

s∈U{t ∈
T ;ϕj(s, t) ≤ 2n}, so that 1 ≤

∑
s∈U μ({t ∈ T ;ϕj(s, t) ≤ 2n}). Now, by

translation invariance,

μ({t ∈ T ; ϕj(s, t) ≤ 2n}) = μ({t ∈ T ; ϕj(0, t) ≤ 2n}) ,

and thus 1 ≤ cardU · μ({t ∈ T ;ϕj(0, t) ≤ 2n}) so that μ({s ∈ T ;ϕj(s, 0) ≤
2n}) ≥ N−1

n and j = jn ≤ j∗n.
It is the other direction which is fundamental. It is based on the “volume

argument” that we have used many times, and which we state as follows.

Lemma 7.2.1. Consider a subset B of T . Then there exists a subset U of
T with cardU ≤ 1/μ(B) such that whenever t ∈ T we can find s ∈ U with
t ∈ s+B −B, where B −B = {t1 − t2; t1, t2 ∈ B}.
Proof. Consider U as large as possible so that the sets s+B are disjoint for
s ∈ U . Since μ(s+B) = μ(B) we have cardU ·μ(B) ≤ 1. The maximality of U
implies that for each t ∈ T there exists s ∈ U for which (t+B)∩ (s+B) �= ∅.
Then t ∈ s+B −B. 
�

We continue the proof of (7.9). Consider then j ≤ j∗n and

B = {s ∈ T ; ϕj(s, t) ≤ 2n} ,

so that μ(B) ≥ 1/Nn. Consider the set U provided by Lemma 7.2.1. Observe
that if t ∈ s + B − B, then for some t1, t2 ∈ B we have t = s + t1 − t2 and
thus, using that ϕj is the square of a distance and translation invariance

ϕj(t, s) = ϕj(t− s, 0) = ϕj(t1 − t2, 0) = ϕj(t1, t2)

≤ 2(ϕj(t1, 0) + ϕj(0, t2)) ≤ 2n+2 ,

so that ϕj(s, t) ≤ 2n+2. Since cardU ≤ Nn ≤ Nn+2 this proves that j = j∗n ≤
jn + 2 and (7.9).
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7.3 Statement of Main Results

As in Section 3.2, our purpose is not to prove the most general possible
results, but to illustrate the concepts and the methods in a setting which is
not obscured by technicalities. Therefore we assume as in Section 3.2 that T
is a compact Abelian group with Haar measure μ. On the other hand, since
our results seem to provide a final answer to a number of old questions, we
will develop several versions of the basic result. We denote by G the set of
characters on T .

Consider independent r.v.s Zi valued in CG. That is, Zi = ξiχi where ξi
is a complex-valued r.v. and χi is a random character. Please note that we
do not assume that ξi and χi are independent r.v.s. The crucial property is

∀ s, t ∈ T , |Zi(s)− Zi(t)| = |Zi(s− t)− Zi(0)| , (7.10)

which holds since it holds for characters.
Our purpose is to study random trigonometric sums of the type

∑
i≥1 εiZi

where εi are independent Bernoulli r.v.s, independent of the Zi. For the time
being these sums will always be finite, so the convergence of the series poses
no problem. We set

Xt =
∑

i≥1

εiZi(t) . (7.11)

We aim to find upper and lower bounds for the quantity

E sup
t∈T

|Xt| = E
∥∥∑

i≥1

εiZi

∥∥ , (7.12)

where ‖ · ‖ denotes the supremum norm in the space of continuous functions
on T . The reason why we consider sums of the type

∑
i≥1 εiZi rather than∑

i Zi is that this amounts to consider sums of the type
∑

i Zi where the r.v.s
Zi are independent symmetric. We refer the reader to e.g. Proposition 8.1.5
of [1] for a detailed study of the “symmetrization procedure” in the setting
of random Fourier series, a procedure showing that the symmetric case is the
important one.

In order to avoid trivial situations we assume the following, where 1 de-
notes the unit of G, i.e. the character such that 1(s) = 1 for each s:

∀ i , Zi �∈ C1 a.s. (7.13)

The leading idea of our approach is that, given the randomness of the
Zi, then Xt =

∑
i≥1 εiaiχi(t) where ai are complex numbers and χi are

characters. We can then use (3.22) to obtain lower bounds, and chaining to
obtain upper bounds.

To give a more concrete example to which our setting applies, let us
consider complex numbers ai, only finitely many of which are not 0 and
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symmetric real-valued r.v.s ξi. We assume that ai = 0 if χi = 1. The problem
is then to obtain upper and lower bounds for

E
∥∥∑

i≥1

aiξiχi

∥∥ . (7.14)

This is the special case of (7.12) where Zi = a
i
ξiχi is a r.v. valued in CG.

These r.v.s are independent symmetric (since it is the case for the r.v.s ξi),
so that

∑
i≥1 Zi and

∑
i≥1 εiZi have the same distribution.

We provided a partial answer to the question of bounding the quantity
(7.14) in Section 3.2 under the condition that Eξ2i < ∞ for each i. Here we
shall not assume that Eξ2i < ∞. The r.v.s ξi might have “fat tails” and the
size of these tails governs the size of the quantity (7.14).

For s, t ∈ T and u ≥ 0 we consider the quantities

ϕ(s, t, u) =
∑

i≥1

E(|u(Zi(s)− Zi(t))|2 ∧ 1) , (7.15)

where x ∧ 1 = min(x, 1).
Given a number r ≥ 2, for j ∈ Z we define

ϕj(s, t) = ϕ(s, t, rj) . (7.16)

Thus ϕj is the square of a translation-invariant distance on T . This “family
of distances” is appropriate to estimate the quantity (7.12). For the purposes
of this section it suffices to consider the case r = 2. Other values of r are
useful for related purposes, so for consistency we allow the case r > 2, but
at first reading there is no reason not to assume that r = 2 (which changes
nothing to the proofs). We observe that ϕj+1 ≥ ϕj .

We also observe that since |Zi(t)| = |Zi(0)|,

ϕj(s, t) ≤ E
∑

i≥1

|2rjZi(0)|2 ∧ 1 ,

and since the sum is finite it follows from dominated convergence that there
exists j for which

sup
s,t∈T

ϕj(s, t) ≤
1

4
. (7.17)

Our first result is a lower bound for the sum ‖
∑

i≥1 εiZi

∥∥. It basically
states that this sum is typically as large as the “entropy integral” (7.7) (com-
puted of course for the previously defined “family of distances”).

Theorem 7.3.1. There exists a number α0 > 0 with the following property.
According to (7.17) we may define

j0 = sup
{
j ∈ Z ; ∀s, t ∈ T ; ϕj(s, t) ≤ 1/4

}
, (7.18)
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and, for n ≥ 1,

jn = sup
{
j ∈ Z ; μ({s ; ϕj(s, 0) ≤ 2n}) ≥ 2−2n = N−1

n

}
. (7.19)

(It may happen that jn =∞.) Then

P
(∥∥∑

i≥1

εiZi

∥∥ > 1

K

∑

n≥0

2nr−jn
)
≥ α0 , (7.20)

where K depends on r only.

The constant 1/4 in (7.17) is simply a convenient choice. Let us now
investigate a possible converse to Theorem 7.3.1. Since the quantities jn say
nothing about the large values of Zi, we cannot expect that the “entropy
integral”

∑
n≥0 2

nr−jn will control the tails of the r.v. ‖
∑

i≥1 εiZi‖. However,
as the following expresses, we control the size of ‖

∑
i≥1 εiZi‖ as soon as we

control the “entropy integral”
∑

n≥0 2
nr−jn and the size of the single r.v.∑

i≥1 εiZi(0).

Theorem 7.3.2. For n ≥ 0 consider numbers jn ∈ Z. Assume that

∀ s, t ∈ T , ϕj0(s, t) ≤
1

4
(7.21)

and
μ({s ; ϕjn(s, 0) ≤ 2n}) ≥ 2−2n = N−1

n . (7.22)

Then, for any p ≥ 1, we have

(
E
∥∥
∑

i≥1

εiZi

∥∥p
)1/p

≤ K

(∑

n≥0

2nr−jn +
(
E
∣∣
∑

i≥1

εiZi(0)
∣∣p
)1/p)

, (7.23)

where K depends only on r and p.

Here for clarity we give only a statement that measures the size of the r.v.∑
i≥1 εiZi(0) through its moments, but other statements using weaker ways

to control the size of this variable are possible and in fact necessary to prove
Theorem 7.3.4 below. Such a statement will be given in Lemma 7.6.5 below.

A surprising fact is that Theorem 7.3.2 is already of interest in the case
where Zi = aiχi where ai is a complex number and χi is a character. This
situation was investigated in detail in Chapter 3, but Theorem 7.3.2 provides
new information even in that case. This is part of an intriguing circle of facts
and questions which will be detailed later (on page 221).

Together with Theorem 7.3.1, Theorem 7.3.2 allows upper and lower
bounds for (E‖

∑
i≥1 εiZi‖p)1/p that are of the same order. Let us state the

result in the case of (7.14). From now on, K denotes a number that depends
only on r and p, and that need not be the same on each occurrence.
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Theorem 7.3.3. Assume that the r.v.s ξi are independent symmetric. If the
numbers jn are as in Theorem 7.3.1, then, for each p ≥ 1,

1

K

(∑

n≥0

2nr−jn +
(
E
∣∣∑

i≥1

aiξi
∣∣p
)1/p)

≤
(
E
∥∥∑

i≥1

aiξiχi

∥∥p
)1/p

≤ K
(∑

n≥0

2nr−jn +
(
E
∣∣∑

i≥1

aiξi
∣∣p
)1/p)

. (7.24)

Not the least remarkable feature of this result is that it assumes nothing
(beyond independence and symmetry) on the r.v.s ξi.

Estimates as in Theorem 7.3.3 open wide the door to convergence theo-
rems. We consider now independent r.v.s (Zi)i≥1 with Zi ∈ CG and we study
the convergence of the series

∑
i≥1 εiZi, where of course εi are independent

Bernoulli r.v.s independent of the randomness of the Zi (so that the notation∑
i≥1 εiZi no longer denotes a sum with finitely many terms). In this theorem

we take r = 2.

Theorem 7.3.4. The series
∑

i≥1 εiZi converges a.s (in the Banach space
of continuous functions on T provided with the uniform norm) if and only if
the following occurs. There exists j0 such that

∀ s, t ∈ T ,
∑

i≥1

E(|2j0(Zi(s)− Zi(t))|2 ∧ 1) ≤ 1 , (7.25)

and for n ≥ 1 there exists jn for which

μ
({

s ∈ T ;
∑

i≥1

E(|2jn(Zi(s)− Zi(0))|2 ∧ 1) ≤ 2n
})
≥ 1

Nn
, (7.26)

and ∑

n≥1

2n−jn <∞ . (7.27)

Moreover, when these conditions are satisfied, for each p ≥ 1 we have

E
∥∥
∑

i≥1

εiZi

∥∥p <∞⇔ E
∣∣
∑

i≥1

εiZi(0)
∣∣p <∞ .

Explicit examples of application of these abstract theorems will be given in
Section 7.7.

7.4 Proofs, Lower Bounds

Let us repeat that our approach will be to work given the r.v.s Zi. Then
Zi = aiχi where ai is a complex number and χi is a character. It is therefore
natural to consider the random distance
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dω(s, t)
2 =
∑

i

|Zi(s)− Zi(t)|2(=
∑

i

|ai|2|χi(s)− χi(t)|2) . (7.28)

It is understood in this notation that the letter ω alludes to the given random
choice of the Zi. The proof of Theorem 7.3.1 has then two steps.

• First we prove that, given the randomness of the Zi, the quantity

‖
∑

i

εiZi‖ = ‖
∑

i

εiaiχi‖

is often of order about γ2(T, dω).
• Then we prove that γ2(T, dω) is often of order

∑
n≥0 2

nr−jn .

The first part of this program is performed by the following.

Lemma 7.4.1. Consider complex numbers ai and characters χi of T . Then

P
(∥∥
∑

i≥1

εiaiχi

∥∥ ≥ 1

L
γ2(T, d)

)
≥ 1

L
, (7.29)

where the distance d is given by d(s, t)2 =
∑

i≥1 |ai|2|χi(s)− χi(t)|2.
Proof. The proof relies on the classical Paley-Zygmund inequality (sometimes
called also the second moment method): for a r.v. X ≥ 0,

P
(
X ≥ 1

2
EX
)
≥ 1

4

(EX)2

EX2
. (7.30)

We then simply combine this inequality with (3.9) and (3.22). 
�

Exercise 7.4.2. Prove (7.30). (Hint: let A = {X ≥ EX/2}. Show that
EX/2 ≤ E(X1A) ≤ (EX2P(A))1/2.)

The main step of the proof of Theorem 7.3.1 is to perform the second part
of the program, to show that γ2(T, dω) is typically as large as

∑
n≥0 2

n−jn .
An essential tool is the following fact, which provides an exponential control
of certain deviations of special sums of independent r.v.s from their means.
Of course, much more general and sharper results exist in the same direction,
but the simple form we provide suffices for our needs.

Lemma 7.4.3. Consider independent r.v.s (Wi)i≥1, with 0 ≤Wi ≤ 1.

(a) If 4A ≤
∑

i≥1 EWi, then

P
(∑

i≥1

Wi ≤ A
)
≤ exp(−A) .

(b) If A ≥ 4
∑

i≥1 EWi, then

P
(∑

i≥1

Wi ≥ A
)
≤ exp

(
−A

2

)
.
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Proof. (a) Since 1− x ≤ e−x ≤ 1− x/2 for 0 ≤ x ≤ 1, we have

E exp(−Wi) ≤ 1− EWi

2
≤ exp

(
−EWi

2

)

and thus

E exp
(
−
∑

i≥1

Wi

)
≤ exp

(
−1

2

∑

i≥1

EWi

)
≤ exp(−2A) .

We conclude with the inequality P(Z ≤ A) ≤ expA E exp(−Z).
(b) Observe that 1 + x ≤ ex ≤ 1 + 2x for 0 ≤ x ≤ 1, so, as before,

E exp
∑

i≥1

Wi ≤ exp 2
∑

i≥1

EWi ≤ exp
A

2

and we use now that P(Z ≥ A) ≤ exp(−A)E expZ. �
Before we apply this result, let us recall a simple classical lower bound. If

εi are independent Bernoulli r.v.s and bi are complex numbers, then

P
(∣∣∑

i≥1

εibi
∣∣ ≥ 1

L

(∑

i≥1

|bi|2
)1/2)≥ 1

L
. (7.31)

To see this we observe that by the subgaussian inequality the r.v. X =
|
∑

i≥1 εibi|2 satisfies EX2 ≤ L(
∑

i≥1 |bi|2)2 = L(EX)2, and we then apply
the Paley-Zygmund inequality (7.30).

As a first illustration of the use of Lemma 7.4.3 we prove the following,
which in a sense is a vast generalization of (7.31). The proof already reveals
the main flavor of the proof of Theorem 7.3.1.

Lemma 7.4.4. Consider independent complex-valued r.v.s Ui and indepen-
dent Bernoulli r.v.s εi that are independent of the r.v.s Ui. Assume that for
some number w > 0 we have

∑

i≥1

E(|wUi|2 ∧ 1) ≥ 1

4
. (7.32)

Then

P
(∣∣
∑

i≥1

εiUi

∣∣ ≥ 1

Lw

)
≥ 1

L
. (7.33)

Proof. We use Lemma 7.4.3 (a) with Wi = |wUi|2∧1 and A = 1/16 to obtain

P
(∑

i≥1

|wUi|2 ∧ 1 ≥ 1

16

)
≥ 1

L
,

so that in particular
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P
(∑

i≥1

|Ui|2 ≥
1

16w2

)
≥ 1

L
,

and the conclusion follows using (7.31) given the randomness of (Ui)i≥1. 
�
At this point we can try to explain in words the central idea of the (rest of
the) proof of Theorem 7.3.1. If a point s ∈ T satisfies

ϕjn+1(s, 0) ≥ 2n , (7.34)

Lemma 7.4.3 (a) shows that for most of the choices of the randomness of
the Zi, we will have

∑
i≥1 |rjn+1(Zi(s) − Zi(0))|2 ∧ 1 ≥ 2n−2, and thus

in particular dω(s, 0) ≥ 2n/2−1r−jn−1. The definition of jn shows that all
but very few of the points s satisfy (7.34). Thus for most of the choices of
the randomness of the Zi there will be only few points in T which satisfy
dω(s, 0) ≤ 2n/2−1r−jn−1, and this certainly contributes to make γ2(T, dω)
large. (To be precise, it should contribute by about 2nr−jn−1 to this quan-
tity). Using this information for many values of n at the same time carries the
day. What the explanation in words does not reflect is that all the estimates
fall very nicely into place.

Proof of Theorem 7.3.1. We assume that for a certain number M we have

P
(∥∥∑

i≥1

εiZi

∥∥ > M
)
≤ α0 . (7.35)

Our goal is to prove that

∑

n≥0

2nr−jn ≤ KM , (7.36)

where K depends on r only.
The value of α0 will be determined later, but we assume right away that

α0 <
1

2L0
,

where L0 is the constant of (7.33).
The first part of the argument is somewhat auxiliary. Its goal is to control

the value of j0. Since
∣∣∣
∑

i≥1

εi(Zi(s)− Zi(t))
∣∣∣ ≤ 2

∥∥∑

i

εiZi

∥∥ ,

(7.35) implies

∀ s, t ∈ T , P
(∣∣∣
∑

i≥1

εi(Zi(s)− Zi(t))
∣∣∣ ≥ 2M

)
≤ α0 <

1

2L0
. (7.37)
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Consequently (7.33) fails when Ui = Zi(s) − Zi(t) and 1/(L0w) = 2M ,
i.e. w = 1/(2ML0), and therefore Lemma 7.4.4 implies

∀ s, t ∈ T ,
∑

i≥1

E(|w(Zi(s)− Zi(t))|2 ∧ 1) <
1

4
. (7.38)

Let j∗ be the largest integer with rj
∗ ≤ w, so that (7.38) implies

∀ s, t ∈ T , ϕj∗(s, t) <
1

4
.

Consequently, j0 ≥ j∗. Also, the definition of j∗ implies r−j∗ ≤ r/w ≤ LrM ,
so that r−j0 ≤ r−j∗ ≤ LrM , the required control of j0.

We now start the central argument. We show how to bound the value of
γ2(T, dω) from below. Consider an integer n0 ≥ 5 and let us assume that
jn <∞ for n ≤ n0. Our goal is to prove that the event

∑

5≤n≤n0

2nr−jn ≤ Lrγ2(T, dω) (7.39)

has probability ≥ 3/4. The definition of jn implies

μ({s ; ϕjn+1(s, 0) ≤ 2n}) < N−1
n . (7.40)

Consider s ∈ T with

ϕjn+1(s, 0) =
∑

i≥1

E(|rjn+1(Zi(s)− Zi(0))|2 ∧ 1) ≥ 2n .

Then, using Lemma 7.4.3 (a) with Wi = |rjn+1(Zi(s) − Zi(0))|2 ∧ 1 and
A = 2n−2 we obtain

P
(∑

i≥1

|rjn+1(Zi(s)− Zi(0))|2 ∧ 1 ≤ 2n−2
)
≤ e−2n−2

≤ N−1
n−2 . (7.41)

Now, using that by (7.40) we integrate on a set of measure ≤ 1/Nn a quantity
≤ 1 in the first integral below, and using that from (7.41) the integrand is
≤ Nn−2 in the second integral below, we obtain

Eμ
({

s ∈ T ;
∑

i≥1

|rjn+1(Zi(s)− Zi(0))|2 ∧ 1 ≤ 2n−2
})

=

∫

T

P
(∑

i≥1

|rjn+1(Zi(s)− Zi(0))|2 ∧ 1 ≤ 2n−2
)
dμ(s)

=

∫

{ϕjn+1(s,0)<2n}
+

∫

{ϕjn+1(s,0)≥2n}

≤ 1

Nn
+

1

Nn−2
<

2

Nn−2
. (7.42)
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That is, the r.v. Y = μ({s ∈ T ;
∑

i≥1 |rjn+1(Zi(s) − Zi(0))|2 ∧ 1 ≤ 2n−2})
satisfies EY < 2/Nn−2, and by Markov’s inequality it then satisfies P (Y <
1/Nn−3) ≥ 1− 2Nn−3/Nn−2 = 1− 2/Nn−3. Thus the event Ωn defined by

μ
({

s ∈ T ;
∑

i≥1

|rjn+1(Zi(s)− Zi(0))|2 ∧ 1 ≤ 2n−2
})

<
1

Nn−3
(7.43)

satisfies P(Ωn) ≥ 1− 2/Nn−3. Consequently, the event

Ω = ∩5≤n≤n0Ωn

satisfies P(Ω) ≥ 3/4. Moreover, since

∑

i≥1

|rjn+1(Zi(s)−Zi(t))|2∧1 ≤
∑

i≥1

|rjn+1(Zi(s)−Zi(t))|2 = r2jn+2dω(s, t)
2 ,

(7.43) yields

μ
({

s ∈ T ; dω(s, 0) ≤ r−jn−12n/2−1
})

<
1

Nn−3
.

It follows that when Ω occurs the number εn = εn(ω) as in (3.1) satisfies
εn−3(ω) ≥ r−jn−12n/2−1 and (3.2) proves that (7.39) holds for ω ∈ Ω, and
hence with probability ≥ 3/4.

Having obtained the main information we are ready to conclude. We ob-
serve that (7.35) means

EPε

(∥∥∑

i≥1

εiZi

∥∥≥M

)
≤ α0 ,

so that since P(Ω) ≥ 3/4 we can fix ω ∈ Ω for which

Pε

(∥∥∑

i≥1

εiZi

∥∥≥M
)
≤ 2α0 . (7.44)

Given the r.v.s Zi, and since Zi(t) ∈ CG, the sum
∑

i≥1 εiZi is of the type∑
i≥1 aiεiχi, where ai is a complex number and χi is a character, so that

(7.44) reads

Pε

(∥∥∑

i≥1

aiεiχi

∥∥≥M
)
≤ 2α0 . (7.45)

Consequently if we assume also that 2α0 is less than the constant 1/L in the
right-hand side of (7.29), this inequality implies that γ2(T, dω) ≤ LM , and
since (7.39) holds for ω ∈ Ω, we get

∑

5≤n≤n0

2nr−jn ≤ Lrγ2(T, dω) ≤ LrM .
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Since r−j0 ≤ LrM , and since the sequence (jn) is non-decreasing we finally
get ∑

0≤n≤n0

2nr−jn ≤ LrM ,

and since n0 is arbitrary the proof is complete. 
�

7.5 Proofs, Upper Bounds

We start the proof of Theorem 7.3.2. The main step is as follows, where we
recall that Eε denotes expectation in the r.v.s εi only.

Theorem 7.5.1. For n ≥ 0 consider numbers jn ∈ Z, and consider a pa-
rameter v ≥ 1. Assume that

∀s, t ∈ T , ϕj0(s, t) ≤
v

4
(7.46)

∀n ≥ 1 , μ({s ; ϕjn(s, 0) ≤ v2n}) ≥ 2−2n = N−1
n . (7.47)

Then for each p ≥ 1 we can write

(
Eε sup

s∈T

∣∣
∑

i≥1

εi(Zi(s)− Zi(0))
∣∣p
)1/p

≤ Y1 + Y2 , (7.48)

where
(EY p

1 )
1/p ≤ K(r, p)

√
v
∑

n≥0

2nr−jn , (7.49)

and
Y2 ≤ K(r)

∑

i≥1

|Zi(0)|1{|Zi(0)|≥r−j0} . (7.50)

The statement of this result will be less surprising if we keep in mind that
it will ultimately follow from (5.12). It will then be a separate task to learn
how to control the term Y2.

We start the preparations for the proof of Theorem 7.5.1. We set A0 = T
and for n ≥ 1 we set

An = {s ∈ T ; ϕjn(s, 0) ≤ 2n} ,

so that by (7.22) we have μ(An) ≥ 1/Nn. We consider a parameter u ≥ 1.

Lemma 7.5.2. There exists a constant L with the following property. For
each n ≥ 0 consider the random subset Bn of An defined as follows:

Bn = Bn,u :=

{
s ∈ An ;

∑

i≥1

|rjn(Zi(s)− Zi(0))|2 ∧ 1 ≤ u2n+2

}
. (7.51)

Then for u ≥ L the event Ωn(u) defined by μ(Bn) ≥ 3μ(An)/4 satisfies

P(Ωn(u)) ≥ 1− 4 exp(−u2n+1) . (7.52)
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Proof. It follows from Lemma 7.4.3 (b), used with A = u2n+2 that

s ∈ An ⇒ P
(∑

i≥1

|rjn(Zi(s)−Zi(0))|2∧1 ≥ u2n+2
)
≤ exp(−u2n+1) . (7.53)

Consequently if δn = exp(−u2n+1), then Eμ(An\Bn) ≤ δnμ(An), so that
P(μ(An\Bn) ≥ μ(An)/4) ≤ 4δnby Markov’s inequality. Therefore the event
Ωn(u) defined by μ(Bn) ≥ 3μ(An)/4 satisfies (7.52). 
�
Proof of Theorem 7.5.1. We may assume that

∑
n≥0 2

nr−jn <∞ for there is
nothing to prove otherwise. Also, without loss of generality we may assume
that the sequence (jn) is non-decreasing. Then limn→∞ jn =∞. Given u ≥ 1
we recall the sets Bn = Bn,u and the event Ωn(u) of Lemma 7.5.2. Consider
the event

Ω(k) =
⋂

n≥0

Ωn(kv) , (7.54)

so that for k ≥ 1,
P(Ω(k)) ≥ 1− L exp(−k) . (7.55)

We assume that Ω(k) occurs, i.e that the sets

Bn =

{
s ∈ T ;

∑

i≥1

|rjn(Zi(s)− Zi(0))|2 ∧ 1 ≤ kv2n+2

}
, (7.56)

satisfy

∀n ≥ 0 , μ(Bn) ≥
3

4
μ(An) . (7.57)

We start the main chaining argument. This argument takes place given the
randomness of the Zi, so it helps to think of these as being fixed until further
notice. We then have to control the supremum of a Bernoulli process, and
the plan is to use Theorem 5.2.1 which organizes in an optimal manner the
chaining for such processes.

The first part of the chaining argument will use translation invariance in
a crucial manner and the fact that the sets Bn are not too small to construct
an appropriate sequence of covering of T by translates of the sets Cn :=
Bn − Bn. If follows from Lemma 7.2.1 that we can find a subset Tn of T
with cardTn ≤ 1/μ(Bn) and T ⊂ Tn + Cn. Since μ(B0) ≥ 3/4 we have
cardT0 = 1 and for n > 1 since μ(Bn) ≥ 3μ(An)/4 ≥ 1/(2Nn) we have
cardTn ≤ 2Nn. Now, the definition of Bn and the fundamental property
(7.10) show that Bn = −Bn, so that Cn = Bn + Bn. Consider s ∈ Cn,
so that s = t + t′ for t, t′ ∈ Cn. Thus |rjn(Zi(s) − Zi(0))| ≤ a + b, where
a = |rjn(Zi(t+ t′)−Zi(t)| = |rjn(Zi(t

′)−Zi(0))| and b = |rjn(Zi(t)−Zi(0))|.
Using the inequalities (a+ b) ∧ 1 ≤ a ∧ 1 + b ∧ 1 and |a+ b|2 ≤ 2|a|2 + 2|b|2
we obtain

s ∈ Cn = Bn +Bn ⇒
∑

i≥1

|rjn(Zi(s)− Zi(0))|2 ∧ 1 ≤ kv2n+4 ,
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and proceeding similarly,

s, s′ ∈ t+ Cn ⇒
∑

i≥1

|rjn(Zi(s)− Zi(s
′))|2 ∧ 1 ≤ kv2n+6 . (7.58)

In summary, we have succeeded to cover T by the sets t+Cn for t ∈ Tn. There
are not too many of these sets, and they are somewhat small by (7.58). This
provides the appropriate information about the “smallness” of T . Consider
the set T ∗ ⊂ �2 of all sequences of the type (Zi(s) − Zi(0))i≥1 for s ∈ T , so
that 0 ∈ T ∗. The introduction of this set is motivated by the obvious identity

sup
s∈T

∣∣∣
∑

i≥1

εi(Zi(s)− Zi(0))
∣∣∣ = sup

x∈T∗

∣∣∣
∑

i≥1

εixi

∣∣∣ . (7.59)

Our goal is to apply Theorem 5.2.1 to the set T ∗ and for this purpose we
construct the appropriate sequence of partitions. The idea of course is to use
the smallness information we have about T and carry it to T ∗. Starting with
B0 = {T ∗} we construct inductively an increasing sequence (Bn) of partitions
of T ∗ with the properties

cardBn ≤ Nn+2 , (7.60)

B ∈ Bn ⇒ ∀ x, y ∈ B ,
∑

i≥1

|rjn(xi − yi)|2 ∧ 1 ≤ kv2n+6 . (7.61)

For this, we simply observe from (7.58) that T ∗ can be covered by a family
of ≤ 2Nn sets with the property (7.61), so we can achieve that each element
of Bn satisfies (7.61) simply by partitioning each set of Bn−1 into at most
2Nn pieces that satisfy (7.61), and (7.60) then follows by induction from the
fact that 2Nn+1Nn ≤ Nn+2. We consider the admissible sequence (An) on
T ∗ given by An = {T ∗} for n ≤ 3 and An = Bn−2 for n ≥ 3. Then the
conditions of Theorem 5.2.1 are satisfied with jn(A) = j0 − 2 if A ∈ An

for n ≤ 2, jn(A) = jn−2 − 2 if A ∈ An for n ≥ 3, and with u = Lkv .
Consequently (5.12) yields

(
Eε sup

x∈T∗

∣∣
∑

i≥1

xiεi
∣∣p
)1/p

≤ K(r, p)
√
kv
∑

n≥0

2nr−jn

+ K(r) sup
x∈T∗

∑

i≥1

|xi|1{2|xi|≥r−j0(T∗)} . (7.62)

This is the basic step, and we now explain how to control the last term
above. For x = (Zi(s) − Zi(0))i≥1 ∈ T ∗, we have, since r ≥ 2 and since
j0(T

∗) = j0 − 2,

∑

i≥1

|xi|1{2|xi|≥r−j0(T∗)} ≤
∑

i≥1

|xi|1{|xi|≥2r−j0(T∗)−2} =
∑

i≥1

|xi|1{|xi|≥2r−j0} .
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Now |xi| = |Zi(s)− Zi(0)| ≤ |Zi(s)|+ |Zi(0)| = 2|Zi(0)|, so that
∑

i≥1

|xi|1{|xi|≥2r−j0} ≤ 2
∑

i≥1

|Zi(0)|1{|Zi(0)|≥r−j0}

and therefore
∑

i≥1

|xi|1{2|xi|≥r−j0(T∗)} ≤ 2
∑

i≥1

|Zi(0)|1{|Zi(0)|≥r−j0} .

Consequently (7.62) yields

(
Eε sup

x∈T∗

∣∣∑

i≥1

xiεi
∣∣p
)1/p

≤ K(r, p)
√
kv
∑

n≥0

2nr−jn

+ K(r)
∑

i≥1

|Zi(0)|1{|Zi(0)|≥r−j0} ,

i.e., using (7.59) we have proved that for ω ∈ Ω(k) we have

(
Eε sup

s∈T

∣∣∑

i≥1

εi(Zi(s)− Zi(0))
∣∣p
)1/p

≤ K(r, p)
√
kv
∑

n≥0

2nr−jn (7.63)

+ K(r)
∑

i≥1

|Zi(0)|1{|Zi(0)|≥r−j0} .

This finishes the main chaining argument.
We no longer assume that the r.v.s Zi are fixed, and we define

Y2 = K(r)
∑

i≥1

|Zi(0)|1{|Zi(0)|≥r−j0} ,

k(ω) = inf{k ∈ N
∗ ; ω ∈ Ω(k)}

and
Y1(ω) = K(r, p)

√
k(ω)v

∑

n≥0

2nr−jn ,

so that (7.63) implies

(
Eε sup

s∈T

∣∣∑

i≥1

εi(Zi(s)− Zi(0))
∣∣p
)1/p

≤ Y1 + Y2 .

Moreover since {
√
k(ω) ≤

√
k} ⊂ Ω(k) by definition of k(ω) and since the

sequence (Ω(k)) increases, (7.55) implies that Ek(ω)p/2 ≤ K(r, p). This proves
(7.49), which concludes the proof. 
�

To complete the proof of Theorem 7.3.2 we need to learn how to control
EY p

2 . The basic reason we shall succeed is that typically not too many of the
r.v.s |Zi(0)|1{|Zi(0)|≥r−j0} will be non-zero, and our first goal is to prove this.
We start with a simple fact.
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Lemma 7.5.3. For each character χ �= 1 we have
∫
|χ(s)− 1|2dμ(s) ≥ 3

4
. (7.64)

Proof. Consider t ∈ T and observe that by translation invariance of μ,
∫
|χ(s+ t)− 1|2dμ(s) =

∫
|χ(s)− 1|2dμ(s) .

Since, for any s ∈ T ,

|χ(t)− 1|2 = |χ(s+ t)− χ(s)|2 ≤ 2|χ(s+ t)− 1|2 + 2|χ(s)− 1|2 ,

we obtain

sup
t∈T

|χ(t)− 1|2 ≤ 4

∫
|χ(s)− 1|2dμ(s) .

Since we assume that χ �= 1 we can find t with χ(t) �= 1. Replacing if necessary
t by −t we can assume that χ(t) = exp(iθ) where 0 < θ ≤ π. Then for some
integer k we have 2π/3 ≤ kθ ≤ 4π/3 so that |χ(kt) − 1| ≥

√
3, and hence

supt∈T |χ(t)− 1|2 ≥ 3. 
�

Lemma 7.5.4. For any j ∈ Z we have

∑

i≥1

E(|rjZi(0)|2 ∧ 1) ≤ 2 sup
s,t∈T

∑

i≥1

E(|rj(Zi(s)− Zi(t))|2 ∧ 1) . (7.65)

In particular if j0 satisfies (7.21) (i.e. (7.46) for v = 1) then

∑

i≥1

E(|rj0Zi(0)|2 ∧ 1) ≤ 1

2
. (7.66)

One should stress the interesting nature of this statement: a control on the
size of the differences Zi(s) − Zi(t) implies a control of the size of Zi(0).
The hypothesis (7.13) that Zi �∈ C1 a.e. is essential here. Let us also note
that (7.66) implies that

∑
i P(|Zi(0)| ≥ r−j0) ≤ 1/2, so that in particular (as

promised earlier) typically not too many of the r.v.s |Zi(0)|1{|Zi(0)|≥r−j0} can
be non zero at the same time.

Proof. Assume that for a certain number C,

∀ s ∈ T ,
∑

i≥1

E
(
(r2j |Zi(s)− Zi(0)|2) ∧ 1

)
≤ C . (7.67)

Since Zi ∈ CG, we have Zi(s) = χ(s)Zi(0) for a certain character χ, and
since by (7.13) χ �= 1 a.e., (7.64) implies that a.e.

∫
|Zi(s)− Zi(0)|2dμ(s) ≥

3

4
|Zi(0)|2 .
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Using the concavity of the function x �→ x ∧ 1 and integrating (7.67) with
respect to s we obtain

∑

i≥1

E
((3

4
r2j |Zi(0)|2

)
∧ 1
)
≤ C ,

and in particular ∑

i≥1

E
((
|rjZi(0)|2

)
∧ 2
)
≤ 2C . 
�

We need now two elementary facts. To lighten notation in the next few
pages, K = K(p) denotes a number depending on p only.

Lemma 7.5.5. Consider independent centered complex valued r.v.s θi with
∑

i≥1

P(θi �= 0) ≤ 1/2 .

Then, for each p ≥ 1 we have
∑

i≥1

E|θi|p ≤ KE
∣∣∑

i≥1

θi
∣∣p . (7.68)

The intuition here is simply that there is no much cancellation in the sum∑
i θi because the typical number of non-zero values of θi is about 1.

Proof. Assume first that θi is real-valued. We then prove by induction on n
that ∑

i≤n

E|θi|p ≤ 2E
∣∣
∑

i≤n

θi
∣∣p . (7.69)

It is obvious that (7.69) holds for n = 1. Assuming it holds for n, consider
Ωn = {∃i ≤ n, θi �= 0}. Then P(Ωn) ≤ 1/2 by hypothesis, and

E
∣∣
∑

i≤n+1

θi
∣∣p = E1Ωn

∣∣
∑

i≤n+1

θi
∣∣p + E1Ωc

n

∣∣
∑

i≤n+1

θi
∣∣p . (7.70)

Now, since θn+1 is independent of both Ωn and
∑

i≤n θi, Jensen’s inequality
implies

E1Ωn

∣∣ ∑

i≤n+1

θi
∣∣p ≥ E1Ωn

∣∣∑

i≤n

θi
∣∣p = E

∣∣∑

i≤n

θi
∣∣p , (7.71)

and since for i ≤ n we have θi = 0 on Ωc
n,

E1Ωc
n

∣∣ ∑

i≤n+1

θi
∣∣p = E1Ωc

n
|θn+1|p = P(Ωc

n)E|θn+1|p ≥
1

2
E|θn+1|p ,

using independence in the second equality. Combining with (7.70) and (7.71)
and using the induction hypothesis, this proves (7.69) when θi is real-valued.
Using (7.69) separately for the real and imaginary parts then proves (7.68).


�
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Lemma 7.5.6. Consider independent r.v.s ηi ≥ 0 with
∑

i≥1 P(ηi > 0) ≤ 1.
Then for each p ≥ 1,

E
(∑

i≥1

ηi
)p ≤ K

∑

i≥1

Eηpi . (7.72)

Again, the intuition here is that the typical number of non-zero values of ηi
is about 1, so that (

∑
i≥1 ηi)

p is not much larger than
∑

i≥1 η
p
i

Proof. The starting point of the proof is the inequality

(a+ b)p ≤ ap +K(ap−1b+ bp) , (7.73)

where a, b ≥ 0. This is elementary, by distinguishing the cases b ≤ a and
b ≥ a. Let Sn =

∑
i≤n ηi, so that using (7.73) for a = Sn and b = ηn+1 and

taking expectation we obtain

ESp
n+1 ≤ ESp

n +K(ESp−1
n ηn+1 + Eηpn+1) . (7.74)

Let an = P(ηn > 0). From Hölder’s inequality we get

ESp−1
n ≤ (ESp

n)
(p−1)/p ; Eηn+1 ≤ a

(p−1)/p
n+1 (Eηpn+1)

1/p .

Using independence then implies

ESp−1
n ηn+1 = ESp−1

n Eηn+1 ≤ (ESp
n)

(p−1)/pa
(p−1)/p
n+1 (Eηpn+1)

1/p .

Now, for numbers a, b > 0 we have a(p−1)/pb1/p ≤ a+ b and consequently

ESp−1
n ηn+1 ≤ an+1ES

p
n + Eηpn+1 .

Combining with (7.74) yields

ESp
n+1 ≤ ESp

n(1 +Kan+1) +KEηpn+1 ≤ (ESp
n +KEηpn+1)(1 +Kan+1) .

In particular we obtain by induction on n that

ESp
n ≤ K

(∑

i≤n

Eηpi

)∏

i≤n

(1 +Kai) ,

which concludes the proof since
∑

i≥1 ai ≤ 1 by hypothesis. 
�
Finally, we observe a general fact. Combining the subgaussian inequal-

ity (3.11) with (2.22) yields the following, called Khinchin’s inequality: For
complex numbers (ai),

E
∣∣
∑

i≥1

εiai
∣∣p ≤ K(p)

(∑

i≥1

|ai|2
)1/2

. (7.75)

Our next result provides the required control of EY p
2 .
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Proposition 7.5.7. Let us consider the r.v.s

ηi := |Zi(0)|1{|Zi(0)|≥r−j0} . (7.76)

Then under (7.66) for each p ≥ 1 we have

(
E
(∑

i≥1

ηi
)p)1/p ≤ K

(
r−j0 +

(
E
∣∣∑

i≥1

εiZi(0)
∣∣p
)1/p)

. (7.77)

Proof. Let us define θi := Zi(0)1{|Zi(0)|≥r−j0} and θ′i := Zi(0) − θi =
Zi(0)1{|Zi(0)|<r−j0}. First, Khinchin’s inequality (7.75) implies

Eε

∣∣∑

i≥1

εiθ
′
i

∣∣p ≤ K
(∑

i≥1

|θ′i|2
)p/2

. (7.78)

Consider the r.v.s Wi = r2j0θ′2i , so that 0 ≤Wi ≤ 1 and
∑

i≥1 EWi ≤ 1/2 by
(7.66). Lemma 7.4.3 (b) provides the estimate P(

∑
i≥1 Wi ≥ t) ≤ exp(−t/2)

for t ≥ 1 and as in (2.18) this implies E
(∑

i≥1 Wi

)p/2 ≤ K. Consequently
taking expectation in (7.78) yields

E
∣∣∑

i≥1

εiθ
′
i

∣∣p ≤ Kr−j0p ,

and therefore (E|
∑

i≥1 εiθ
′
i|p)1/p ≤ Kr−j0 . Since θi = Zi(0) − θ′i it follows

that

(
E
∣∣∑

i≥1

εiθi
∣∣p
)1/p

≤ Kr−j0 +K
(
E
∣∣∑

i≥1

εiZi(0)
∣∣p
)1/p

. (7.79)

On the other hand, when θi �= 0 we have |rj0Zi(0)|2 ∧ 1 = 1, so that, again
from (7.66),

∑

i≥1

P(θi �= 0) ≤ 1

2
, (7.80)

and since ηi = |θi|, combining (7.79), (7.68) (used for εiθi rather than θi)
and (7.72) completes the proof. 
�

Proof of Theorem 7.3.2. We use Theorem 7.5.1 with v = 1. We raises (7.48)
to the power p, we use that (Y1+Y2)

p ≤ K(Y p
1 +Y p

2 ) and we take expectation.
It follows from (7.66) that we can use (7.77) to control EY p

2 . 
�
Let us now investigate the content of Theorem 7.3.3 in a now classical

case, discovered by M. Marcus and G. Pisier [5]. Assume that for complex
numbers ai we have ξi = aiθi where the r.v.s θi are symmetric and satisfy,
for a certain number 1 < p < 2
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P(|θi| ≥ u) ≤ Cu−p . (7.81)

Let us define the distance dp on T by

dp(s, t)
p =
∑

i≥1

|ai(χi(s)− χi(t))|p .

With the notation of Theorem 7.3.1 we have the following, where K denotes
a constant depending only on C, r and p, and 1/p+ 1/q = 1.

Proposition 7.5.8. Under the preceding conditions we have

∑

n≥0

2nr−jn ≤ Kγq(T, dp) .

Proof. Using (2.10) in the first line and (7.81) in the third line we obtain
that for v �= 0,

E(|vθi|2 ∧ 1) =

∫ 1

0

P(|vθi|2 ≥ t)dt

=

∫ 1

0

P
(
|θi| ≥

t1/2

|v|

)
dt

≤
∫ 1

0

C
|v|p
tp/2

dt

= K0(C, p)|v|p . (7.82)

Consider for n ≥ 0 the numbers εn as in Theorem 3.1.1, for the distance dp,
so that

μ({dp(s, 0) ≤ εn}) ≥ N−1
n , (7.83)

and
∑

n≥0 εn2
n/q ≤ K0(C, p)γq(T, dp) by (3.4). Now, using (7.82) for v =

air
j(χi(s)− χi(0)) and summing over i implies

ϕj(s, 0) ≤ K0(C, p)r
jpdp(s, 0)

p . (7.84)

Consider for each n the largest integer kn such that K0(C, p)(r
knεn)

p ≤ 2n,
so that

dp(s, 0) ≤ εn ⇒ ϕkn(s, 0) ≤ 2n .

Then (7.83) yields
μ({ϕkn(s, 0) ≤ 2n}) ≥ N−1

n ,

and therefore kn ≤ jn by definition of jn. Moreover, by definition of kn we
have K0(C, p)(r

kn+1εn)
p > 2n and therefore r−kn ≤ K2−n/pεn, so that

∑

n≥0

2nr−jn ≤
∑

n≥0

2nr−kn ≤ LK
∑

n≥0

2n/qεn . 
�
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In the case where

∀u ≥ 1 , P(|θi| ≥ u) ≥ 1

C
u−p , (7.85)

it is known (from the work of M. Marcus and G. Pisier [5]) that the following
converse to Proposition 7.5.8 is true (and we prove it in Exercise 8.1.6 below).

γq(T, dp) ≤ KE
∥∥
∑

i≥1

aiθiχi

∥∥ . (7.86)

Interestingly, it does not seem obvious how to deduce this from Theorem 7.3.3.
This deserves some detailed comments. In retrospect, basically the same ques-
tion arose earlier. Consider complex numbers ai and the distance d given by
d(s, t)2 =

∑
i≥1 |ai(χi(s)−χi(t))|2. Consider the numbers jn defined as in the

case of Theorem 7.3.2 for the sum
∑

i≥1 aiεiχi. Then this theorem implies

E
∥∥∑

i≥1

aiεiχi

∥∥≤ L
∑

n≥0

2nr−jn + L
(∑

i≥1

|ai|2
)1/2

,

On the other hand, it follows from (3.30) that

γ2(T, d) ≤ LE
∥∥
∑

i≥1

aiεiχi

∥∥ .

Moreover since |Zi(0)| = |ai|, (7.66) implies (
∑

i≥1 |ai|2)1/2 ≤ Lr−j0 . Conse-
quently,

γ2(T, d) ≤ L
∑

n≥0

2nr−jn . (7.87)

This inequality does not seem obvious to prove directly (i.e. without using
trigonometric sums) either. In particular, it would be very surprising if such a
proof did not use Theorem 5.2.1 (or and equivalent principle). In some sense,
one might be tempted to say that the upper bound in Theorem 7.3.3 is so
effective that it looks smaller than the more traditional lower bounds such as
(7.86).

7.6 Proofs, Convergence

In this part for simplicity we use only the case r = 2. After the hard work of
proving inequalities has been completed, the proof of Theorem 7.3.4 involves
only “soft arguments”. In order to avoid repetition we separate a part of
the argument that will be used again later. The following is a version of
Theorem 7.3.1 adapted to infinite sums. We recall the number α0 of this
theorem.
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Lemma 7.6.1. Consider an independent sequence (Zi)i≥1 with Zi ∈ CG,
and let Sk =

∑
1≤i≤k εiZi, where of course the εi Bernoulli r.v.s are inde-

pendent of the Zi. Assume that for each k we have

P(‖Sk‖ ≥M) ≤ α0 . (7.88)

For j ∈ Z define as usual

ϕj(s, t) =
∑

i≥1

E(|2j(Zi(s)− Zi(t))|2 ∧ 1) . (7.89)

Then we can find integers (jn)n≥0 such that

∀ s, t ∈ T , ϕj0(s, t) ≤ 1/4 (7.90)

μ({s ; ϕjn(s, 0) ≤ 2n}) ≥ N−1
n , (7.91)

and ∑

n≥0

2n−jn ≤ LM . (7.92)

Proof. Let us define

ϕk,j(s, t) =
∑

i≤k

E(|2j(Zi(s)− Zi(t))|2 ∧ 1) ,

so that
ϕj(s, t) = lim

k→∞
ϕk,j(s, t) . (7.93)

Using Theorem 7.3.1 for r = 2 implies that for each k we can find numbers
(jk,n)n≥0 for which

∀ s, t ∈ T ; ϕk,jk,0
(s, t) ≤ 1

4
,

and, for n ≥ 0,
μ({s ; ϕk,jk,n

(s, 0) ≤ 2n}) ≥ N−1
n

such that the following holds:

∑

n≥0

2n−jk,n ≤ LM . (7.94)

The conclusion will then follow by a straightforward limiting argument that
we detail now. Consider first any sequence (j∗n) such that

∑
n≥0 2

n−j∗n ≤
KM . Without loss of generality we may assume that jk,n ≤ j∗n simply by
replacing jk,n by min(jk,n, j

∗
n). Also, (7.94) shows that for each n, jk,n stays

bounded below independently of k. Thus we can find a sequence (k(q)) with
k(q) → ∞ such that for each n, jn = limq→∞ jk(q),n exists. By taking a
further subsequence if necessary, we may assume that
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0 ≤ n ≤ q ⇒ jk(q),n = jn .

Consequently

∀ s, t ∈ T ; ϕk(q),j0(s, t) ≤
1

4
, (7.95)

and
μ({s ; ϕk(q),jn(s, 0) ≤ 2n}) ≥ N−1

n (7.96)

for 1 ≤ n ≤ q, while, from (7.94),
∑

0≤n≤q

2n−jn =
∑

0≤n≤q

2n−jk(q),n ≤ LM .

Letting q → ∞ proves that
∑

n≥0 2
n−jn ≤ LM . On the other hand, (7.93)

implies ϕj(s, t) = limq→∞ ϕk(q),j(s, t). Together with (7.95) and (7.96) this
proves that

∀ s, t ∈ T ; ϕj0(s, t) ≤
1

4
,

and for each n,
μ({s ; ϕjn(s, 0) ≤ 2n}) ≥ N−1

n . 
�
To prove convergence of a series of independent symmetric r.v.s we shall use
the following.

Lemma 7.6.2. Consider independent symmetric Banach space valued r.v.s
Wi. Then the series

∑
i≥1 Wi converges a.s. if and only if it is a Cauchy

sequence in measure, i.e.

∀ δ > 0 , ∃k0 , k0 ≤ k ≤ n⇒ P
(∥∥ ∑

k≤i≤n

Wi

∥∥ ≥ δ
)
≤ δ . (7.97)

Proof. It suffice to prove that (7.97) implies convergence. Let Sk =
∑

i≤k Wi.
Then the Lévy inequality

P
(
sup
k≤n

‖Sk‖ ≥ a
)
≤ 2P(‖Sn‖ ≥ a)

(see [2], page 47, equation (2.6)) implies

P
(
sup
k
‖Sk‖ ≥ a

)
≤ 2 sup

n
P(‖Sn‖ ≥ a) ,

and starting the sum at an integer k0 as in (7.97) rather than at 1 we obtain

P
(
sup
k
‖Sk − Sk0‖ ≥ a

)
≤ 2 sup

n
P(‖Sn − Sk0‖ ≥ a) .

For a = δ the right hand side above is ≤ δ and this proves that

P( sup
k0≤k≤n

‖Sn − Sk‖ ≥ 2δ) ≤ 4δ ,

and in turn that a.s. the sequence (Sk(ω))k≥1 is a Cauchy sequence. 
�
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Corollary 7.6.3. If the r.v.s Wi are independent symmetric real-valued then
the series

∑
i≥1 Wi converges a.s. provided for some a > 0 (or, equivalently,

all a > 0) we have ∑

i≥1

E(W 2
i ∧ a2) <∞ . (7.98)

Proof. Since a2P(|Wi| ≥ a) ≤ E(W 2
i ∧ a2), the series

∑
i≥1 P(|Wi| ≥ a)

converges, and so does the series
∑

i≥1 Wi1{|Wi|>a} because a.s. it has only
finitely many non-zero terms. Thus it suffices to prove the convergence of
the series

∑
i≥1 Wi1{|Wi|≤a}, but symmetry and (7.98) imply that this series

converges in L2 and hence in measure. The conclusion then follows from
Lemma 7.6.2. 
�

Exercise 7.6.4. Prove the converse of Corollary 7.6.3.

In the next lemma, we assume again that only finitely many of the r.v.s Zi

are not zero. It will be applied to control partial sums.

Lemma 7.6.5. Consider numbers (jn)n≥0, consider v ≥ 1 and assume
(7.46) and (7.47). Consider a number w ≥ 2−j0 . Then the event

Ω =
⋂

i≥1

{|Zi(0)| ≤ w} (7.99)

satisfies

P(Ωc) ≤
∑

i≥1

P(|Zi(0)| ≥ w) (7.100)

and

E1Ω

∥∥∥
∑

i≥1

εiZi

∥∥∥ ≤ L
√
v
∑

n≥0

2n−jn + L
∑

i≥1

E|Zi(0)|1{2−j0≤|Zi(0)|≤w} . (7.101)

Proof. It is obvious that Ω satisfies (7.100). To prove (7.101) we apply The-
orem 7.5.1 with p = 1 to obtain

Eε sup
s∈T

∣∣
∑

i≥1

εi(Zi(s)− Zi(0))
∣∣ ≤ Y1 + Y2 , (7.102)

where
EY1 ≤ L

√
v
∑

n≥0

2n−jn , (7.103)

and
Y2 ≤ L

∑

i≥1

|Zi(0)|1{|Zi(0)|≥2−j0} . (7.104)

Since Ω is independent of the randomness of the sequence (εi),
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Eε1Ω sup
s∈T

∣∣∑

i≥1

εi(Zi(s)− Zi(0))
∣∣ = 1ΩEε sup

s∈T

∣∣∑

i≥1

εi(Zi(s)− Zi(0))
∣∣

≤ 1ΩY1 + 1ΩY2 . (7.105)

Now
1ΩY2 ≤ Y3 :=

∑

i≥1

|Zi(0)|1{2−j0≤|Zi(0)|≤w} .

Taking expectation in (7.105) yields

E1Ω sup
s∈T

∣∣∑

i≥1

εi(Zi(s)− Zi(0))
∣∣ ≤ L

√
v
∑

n≥0

2n−jn + EY3 . (7.106)

Also, ∣∣∑

i≥1

εiZi(0)| ≤
∣∣∑

i≥1

εiZi(0)1{|Zi(0)|≤2−j0}
∣∣+ Y2 ,

so that
1Ω

∣∣
∑

i≥1

εiZi(0)| ≤
∣∣
∑

i≥1

εiZi(0)1{|Zi(0)|≤2−j0}
∣∣+ Y3 .

Now, using the Cauchy-Schwarz inequality in the second line,

EEε

∣∣
∑

i≥1

εiZi(0)1{|Zi(0)|≤2−j0}
∣∣ ≤ E

(∑

i≥1

|Zi(0)|21{|Zi(0)|≤2−j0}

)1/2

≤
(
E
∑

i≥1

|Zi(0)|21{|Zi(0)|≤2−j0}

)1/2

≤ 2−j0
(∑

i≥1

E|2j0Zi(0)|2 ∧ 1
)1/2

≤ L
√
v2−j0 ,

where the last equality follows from (7.46) and Lemma 7.5.4. Combining with
(7.106) we obtain

E1Ω sup
s∈T

∣∣
∑

i≥1

εiZi(s)
∣∣ ≤ L

√
v
∑

n≥0

2n−jn + EY3 . 
�

Only the case v = 1 will be used in the present chapter. The case v ≥ 1 will
be used for later purposes.

Proof of Theorem 7.3.4. Assume first the convergence a.s. of the series∑
i≥1 εiZi. Let Sk =

∑
i≤k εiZi, so that the sequence (Sk) converges a.s.

Consequently, there exists M such that for each k we have that P(‖Sk‖ ≥
M) ≤ α0, where α0 is as in Theorem 7.3.1, and Lemma 7.6.1 implies (7.25)
to (7.27).
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Let us now turn to the proof of the converse, so we assume (7.25) to (7.27)
and our goal is to prove that the sequence (Sk) is a Cauchy sequence for the
convergence in measure. For k ≥ 1 let us define

ϕk,j(s, t) =
∑

i≥k

E(|2j(Zi(s)− Zi(t))|2 ∧ 1) .

(Warning: the subscript k in ϕk,j now means that the summation starts at k.)
Since (7.25) implies that ϕ1,j0(s, 0) <∞ for each s, and hence ϕ1,j(s, 0) <∞
for each s, for each j one has limk→∞ ϕk,j(s, 0) = 0. Consequently, given j,
there exists k for which μ(A) ≥ 3/4, where A = {s ∈ T, ϕk,j(s, 0) < 1/16}.
Given s and t in T , we have (A+s)∩(A+t) �= ∅, so that if u ∈ (A+s)∩(A+t)
then u− s ∈ A and u− t ∈ A. Using the inequality ϕk,j(s, t) ≤ 2ϕk,j(s, u) +
2ϕk,j(u, t) we then obtain

∀ s, t ∈ T , ϕk,j(s, t) ≤
1

4
. (7.107)

Thus, given j we have proved the existence of k for which (7.107) holds.
Consider δ > 0 and n0 large enough that

∑
n≥n0

2n−jn ≤ δ. Consider j∗ ≥ j0

large enough that 2n0−j∗ < δ/n0, and set j∗n = max(j∗, jn). Then

∑

n≥0

2n−j∗n ≤ n02
n0−j∗ +

∑

n≥n0

2n−jn ≤ 2δ .

Let us then find k for which

∀ s, t ∈ T , ϕk,j∗(s, t) ≤
1

4
. (7.108)

Next we observe that for each n ≥ 1,

μ
({

s ∈ T ; ϕk,j∗n ≤ 2n
})
≥ 1

Nn
. (7.109)

Indeed this follows from (7.108) if j∗n = j∗ and from (7.26) if j∗n = jn. Next, we
appeal to (7.65), but starting the sums at i = k rather than at i = 1. It then
follows from (7.108) that

∑
i≥k E(|2j

∗
Zi(0)|2 ∧ 1) ≤ 1/2, and, consequently∑

i≥1 P(|Zi(0)| ≥ 2−j∗) <∞.
The next step is to use Lemma 7.6.5 for v = 1, j∗n rather than jn and

w = 2−j∗0 , starting the sums at k rather than at 1. We observe that (7.46)
follows from (7.108) while (7.47) follows from (7.109). The last term in the
right-hand side (7.101) is 0 by the choice of w. Consequently this inequality
shows that the set Ω = ∩i≥1{|Zi(0)| ≤ 2−j∗0 } satisfies, for any k′ ≥ k

E1Ω‖Sk′ − Sk‖ = E1Ω

∥∥∥
∑

k≤i≤k′

εiZi

∥∥∥ ≤ L
∑

n≥0

2n−j∗n ≤ Lδ , (7.110)
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while
P(Ωc) ≤

∑

i≥k

P(|Zi(0)| ≥ 2−j∗0 ) . (7.111)

From (7.110) we infer that

P(‖Sk′ − Sk‖ ≥
√
δ) ≤ P(1Ω‖Sk′ − Sk‖ ≥ δ) + P(Ωc) ≤ L

√
δ + P(Ωc) ,

and (7.111) shows that for k large enough the right-hand side is ≤ L
√
δ.

This proves that the sequence (Sk) is a Cauchy sequence for the convergence
in measure, and Lemma 7.6.2 completes the proof of the convergence of the
series

∑
i≥1 εiZi.

The last statement of the theorem then follows from Theorem 7.3.2. 
�

7.7 Explicit Computations

In this section we give some examples of concrete results that follow from the
abstract theorems that we stated. The link between the abstract theorems
and the classical results of Paley and Zygmund and Salem and Zygmund has
been thoroughly investigated by Marcus and Pisier [4], and there is no point
to reproduce it here. Rather, we develop a specific direction that definitely
goes beyond these results. It was initiated in [11] and generalized in [1].
There is actually a seemingly infinite number of variations on the theme we
present. We shall consider only questions of convergence. We use the notation
of Exercise 3.2.5, so that T is the group of complex numbers of modulus 1,
and for t ∈ T , χi(t) = ti is the i-the power of t. We consider independent
r.v.s (Xi)i≥1 and complex numbers (ai)i≥1, and we are interested in the case
where

Zi(t) = aiXiχi(t) = aiXit
i . (7.112)

We make the following assumption
∑

i≥1

E(|aiXi|2 ∧ 1) <∞ . (7.113)

To study the convergence of the series, without loss of generality, we assume
that ai �= 0 for each i.

Theorem 7.7.1. Under the previous conditions, for n ≥ 0 there exists a
number λn such that

∑

i≥Nn

E
( |aiXi|2

λ2
n

∧ 1
)
= 2n , (7.114)

and the series
∑

i≥i aiεiXiχi converges uniformly a.s. whenever

∑

n≥0

2nλn <∞ . (7.115)
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As a consequence we obtain the following (which we leave as an exercise to
compare with (3.19)).

Corollary 7.7.2. If

∑

n≥0

2n/2
(∑

i≥Nn

|ai|2
)1/2

<∞ ,

then the series
∑

i≥1 aiεiχi converges uniformly a.s.

Proof. Since λ2
n ≤ 2−n

∑
i≥Nn

|ai|2 because |Xi| = |εi| = 1, (7.115) holds.

�

Proof of Theorem7.7.1. First we observe from (7.113) that for anyN the func-
tion Ψ(y) :=

∑
i≥N E(|yaiXi|2∧1) is continuous and satisfies limy→0 Ψ(y) = 0

and limy→∞ Ψ(y) = ∞, and this proves the existence of λn. The proof will
then rely on Theorem 7.3.4. Let us consider s ∈ T and let us assume that for
some integer n ≥ 1 we have

|s− 1| ≤ 1

Nn+1
. (7.116)

Let us observe the following inequality, for i ≥ 1,

|si − 1| ≤ i|s− 1| . (7.117)

We then write, for any integer j ∈ Z, using also that |si − 1| ≤ 2 in the last
line,

∑

i≥1

E(|2j(Zi(s)− Zi(0))|2 ∧ 1) =
∑

i≥1

E(|2jaiXi(s
i − 1)|2 ∧ 1)

≤
∑

0≤m<n

∑

Nm≤i<Nm+1

E(|2jiaiXi(s− 1)|2 ∧ 1)

+
∑

i≥Nn

E(|2j+1aiXi|2 ∧ 1) . (7.118)

From (7.114) we observe that

λn2
j+1 ≤ 1⇒

∑

i≥Nn

E(|2j+1aiXi|2∧1) ≤
∑

i≥Nn

E
( |aiXi|2

λ2
n

∧1
)
≤ 2n . (7.119)

Also, for i ≤ Nm+1 and m < n, (7.116) implies i|s − 1| ≤ Nm+1/Nn+1 ≤
Nn/Nn+1 = 1/Nn. Consequently, it follows from (7.114) again that

λm2j ≤ Nn ⇒
∑

Nm≤i<Nm+1

E(|2jiaiXi(s−1)|2∧1) ≤
∑

i≥Nm

E
( |aiXi|2

λ2
m

∧1
)
≤ 2m .

(7.120)
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Consider the largest integer jn which satisfies both λn2
jn+1 ≤ 1 and λm2jn ≤

Nn for each m < n. Using (7.118), (7.119) and (7.120) we then get

∑

i≥1

E(|2jn(Zi(s)− Zi(0))|2 ∧ 1) ≤
∑

0≤m<n

2m + 2n = 2n+1 . (7.121)

Moreover the definition of jn shows that either λn2
jn+2 ≥ 1 or λm2jn+1 ≥ Nn

for some m ≤ n, and thus

2−jn ≤ 4λn + 2
∑

0≤m<n

λm

Nn
. (7.122)

Let us denote by Un the set of points s that satisfy (7.116). Then μ(Un) ≥
1/πNn+1 (where μ is the Haar measure of T ), so that for n ≥ 1 we certainly
have μ(Un) ≥ 1/Nn+2. In particular we have proved that

μ
({

s ∈ T ;
∑

i≥1

E(|2jn(Zi(s)− Zi(0))|2 ∧ 1) ≤ 2n+1
})
≥ 1

Nn+2
,

while (7.115) and (7.122) imply that
∑

n≥0 2
n−jn <∞. Using Theorem 7.3.4

this completes the proof. 
�
The following provides a converse of Theorem 7.7.1 under a mild regularity

condition.

Theorem 7.7.3. Assume moreover that the sequence (Xi) is i.i.d. and that
for a certain number C > 0, one has

k ≤ m ≤ 2k ⇒ |ak| ≤ C|am| . (7.123)

Then (7.115) holds whenever the series
∑

i≥i aiεiXiχi converges uniformly
a.s.

Proof. We use Theorem 7.3.4 to obtain a sequence (jn) with
∑

n≥0 2
n−jn <

∞ and

∀n ≥ 1 , μ
({

s ∈ T ;
∑

i≥1

E(|2jn(Zi(s)−Zi(0))|2∧1) ≤ 2n
})
≥ 1

Nn
. (7.124)

We will prove that (7.124) implies that

λn+3 ≤ LC22−jn , (7.125)

completing the proof. Since Zi(s) = aiXis
i, we deduce from (7.124) that we

can find s ∈ T with

|s− 1| ≥ 1

2Nn
(7.126)

and
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∑

i≥1

E(|2jnaiXi(s
i − 1)|2 ∧ 1) ≤ 2n . (7.127)

The idea is then to show that there are many values of i ≥ 22
n+3 for which

|si − 1| ≥ 1/4. Indeed we have

∑

2p≤i<2p+1

si = s2
p s2

p − 1

s− 1
,

so that using (7.126) ∣∣∣
∑

2p≤i<2p+1

si
∣∣∣ ≤ 4Nn ,

and hence if p ≥ 2n + 3
∣∣∣
∑

2p≤i<2p+1

(si − 1)
∣∣∣ ≥ 2p − 4Nn ≥ 2p−1 ,

so that ∑

2p≤i<2p+1

|si − 1| ≥ 2p−1 .

Since there are 2p terms on the left-hand side, each of which is ≤ 2, it follows
that

card Ip ≥ 2p−4 , (7.128)

where
Ip = {i ; 2p ≤ i < 2p+1 , |si − 1| ≥ 1/4} . (7.129)

Now, using (7.123), for i ∈ Ip we have |ai(si − 1)| ≥ |a2p |/4C and then

E(|2jnaiXi(s
i − 1)|2 ∧ 1) ≥ E

(∣∣∣
2jn−2

C
a2pX2p

∣∣∣
2

∧ 1
)
, (7.130)

and combining with (7.129),

∑

2p≤i<2p+1

E(|2jnaiXi(s
i − 1)|2 ∧ 1) ≥ 2p−4E

(∣∣∣
2jn−2

C
a2pX2p

∣∣∣
2

∧ 1
)
. (7.131)

Using (7.123) again, for 2p−1 ≤ i ≤ 2p we have |a2p | ≥ |ai|/C and thus

2p−4E
(∣∣∣

2jn−2

C
a2pX2p

∣∣∣
2

∧ 1
)
≥ 2−3

∑

2p−1≤i<2p

E
(∣∣∣

2jn−2

C2
aiXi

∣∣∣
2

∧ 1
)
. (7.132)

Combining with (7.131), summing over p ≥ 2n+3 and combining with (7.127)
yields

2−3
∑

i≥22n+2

E
(∣∣∣

2jn−2

C2
aiXi

∣∣∣
2

∧ 1
)
≤ 2n , (7.133)
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and, in particular,

∑

i≥Nn+3

E
(∣∣∣

2jn−2

C2
aiXi

∣∣∣
2

∧ 1
)
≤ 2n+3 .

By definition of λn this implies

2jn−2

C2
≤ 1

λn+3
.

This proves (7.125). 
�
To give a still more explicit example, we mention the following.

Theorem 7.7.4. If (Xi) denotes an i.i.d. sequence distributed like X, the
series

∑
i≥1

1
i εiXiχi converges uniformly a.s. if and only if

E|X| log log(|X|+ 3) <∞ . (7.134)

Proof. Since the sequence ak = 1/k satisfies (7.123), it suffices from Theo-
rems 7.7.1 and 7.7.3 to prove that (7.134) is equivalent to (7.115). The proof
uses standard methods, that are not related to the ideas of this work. It can
be found in Lemma 2.1 of [11]. 
�

7.8 Notes and Comments

The work of Marcus and Pisier on random Fourier series was extended by
Marcus [3] to more general situations (that involve the infinitely divisible
processes that we will study in Chapter 11). Marcus fails however to obtain
necessary and sufficient conditions. Obtaining these intrinsically requires the
ideas of “families of distances” as we used in Section 7.2. This is largely
done in the paper [10]. The arguments of this paper still require some weak
but unnecessary tail conditions, because the chaining is not organized in an
optimal way. We finally succeeded to remove then here.

In retrospect it might be hard to understand why the topic of random
Fourier series was so popular at one point. Nevertheless, this topic was his-
torically important. The author was lucky to investigate it. It was the ideal
setting to invent the concept of “families of distances” because this con-
cept was the most important missing ingredient between the Marcus-Pisier
work and the rather complete solution we present here. As the proof of the
Bednorz-Lata�la theorem demonstrates, this concept of families of distances
may have some lasting value.
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8. Processes Related to Gaussian Processes

8.1 p-Stable Processes

Consider a number 0 < p ≤ 2. A r.v. X is called (real, symmetric) p-stable if
for each λ ∈ R we have

E exp iλX = exp
(
−σp|λ|p

2

)
, (8.1)

where σ = σp(X) is called the parameter of X. The name “p-stable”
comes from the fact that if X1 , . . . , Xm are independent and p-stable, then∑

j≤m ajXj is p-stable, and

σp

(∑

j≤m

ajXj

)
=

(∑

j≤m

|aj |pσp(Xj)
p

)1/p

.

This is obvious from (8.1).
The reason for the restriction p ≤ 2 is that for p > 2 no r.v. satisfies (8.1).

The case p = 2 is the Gaussian case. Despite the formal similarity, the case
p < 2 is very different. It can be shown that

lim
s→∞

spP(|X| ≥ s) = cpσ
p (8.2)

where cp > 0 depends on p only. Thus X does not have moments of order p,
but it has moments of order q for q < p. We refer the reader to [5] for a proof
of this and for general background on p-stable processes.

A process (Xt)t∈T is called p-stable if, for every family (αt)t∈T for which
only finitely many of the numbers αt are not 0, the r.v.

∑
t αtXt is p-stable.

We can then define a (quasi) distance d on T by

d(s, t) = σ(Xs −Xt) . (8.3)

One can also define an equivalent distance by d(s, t) = (E|Xs − Xt|q)1/q,
where q < p.

A typical example of p-stable process is given by Xt =
∑

i≤n tiYi where
t = (ti)i≤n and (Yi)i≤n are independent p-stable r.v.s. It can in fact be
shown that this example is generic in the sense that “each p-stable process

M. Talagrand, Upper and Lower Bounds for Stochastic Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
Modern Surveys in Mathematics 60, DOI 10.1007/978-3-642-54075-2 8,
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(with a finite index set) can be arbitrarily well approximated by a process
of this type.” It is very instructive to consider the case where σ(Yi) = 1 for
each i, in which case the distance induced by the process is the �p distance,
d(Xs, Xt) = ‖s− t‖p.

Consider first the situation where T = {e1, e2, . . . , en}, the canonical basis
of �p. Then, using (8.2), we observe that for each � ≤ n there exists a set Ω�

of probability 1/n on which Xe� ≥ n1/p/C ′(p), so that since the sets Ω� are
independent, max�≤n Xe� is at least n1/p/C ′(p) on a set of probability about
1/2. It is then a simple matter to see that

E sup
t∈T

Xt ≥
n1/p

C(p)
, (8.4)

where C(p) does not depend on n. The metric space (T, d) consists on n points
within distance at most 2 of each other, so (8.4) is dramatically different from
the Gaussian case, where in that situation one has E supt Xt ≤ L

√
log n.

Consider now the situation where T = {(±1,±1, . . . ,±1)}. Then

E sup
t∈T

Xt = E
∑

i≤n

|Yi| = nE|Y1| . (8.5)

We observe that since cardT = 2n then for each ε > 0 we have

ε(logN(T, d, ε))1−1/p ≤ εn1−1/p .

Since the diameter of T is 2n1/p, for ε > 2n1/p we have N(T, d, ε) = 1
and the left-hand side above is 0. Consequently for each ε > 0 we have
ε(logN(T, d, ε))1−1/p ≤ 2n. In particular,

ε(logN(T, d, ε))1−1/p ≤ K(p)E sup
t

Xt , (8.6)

where K(p) depends on p only.
The previous two examples show that in contrast with the Gaussian case,

it seems unrealistic to hope to compute E supt∈T Xt as a function of the
geometry of (T, d) only. Yet, it turns out not only that (8.6) is true in general,
but also that one can extend the lower bound of the majorizing measure
Theorem 2.4.1 as follows.

Theorem 8.1.1. For 1 < p < 2, there is a number K(p) such that for any
p-stable process (Xt)t∈T we have

γq(T, d) ≤ K(p)E sup
t∈T

Xt ,

where q is the conjugate exponent of p, i.e. 1/q + 1/p = 1, and where d is as
in (8.3).
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At the heart of Theorem 8.1.1 is the fact that a p-stable process (Xt) can
be represented as a conditionally Gaussian process. That is, we can find two
probability spaces (Ω , P) , (Ω′ , P′) and a family (Yt)t∈T of r.v.s on Ω × Ω′

(provided with the product probability), such that

Given any finite subset U of T, the joint

laws of (Yt)t∈U and (Xt)t∈U are identical (8.7)

Given ω ∈ Ω , the process ω′ �→ Yt(ω, ω
′)

is a centered Gaussian process. (8.8)

This result holds for any value of p with 1 ≤ p < 2. A complete proof
is given in Section 11.3, in the more general setting of infinitely divisible
processes. A remarkable fact is that to prove Theorem 8.1.1 we do not need
to know precisely how the previous representation arises.

We denote by E′ integration in P′ only. Given ω, we consider the random
distance dω on T given by

dω(s, t) =
(
E′(Ys(ω, ω

′)− Yt(ω, ω
′))2
)1/2

. (8.9)

We define α by
1

α
:=

1

p
− 1

2
. (8.10)

Lemma 8.1.2. For all s, t ∈ T and ε > 0, we have

P(dω(s, t) ≤ εd(s, t)) ≤ exp
(
− bp
εα

)
(8.11)

where bp > 0 depends on p only.

Proof. Since the process Yt(ω, ·) is Gaussian, we have

E′ exp iλ(Ys − Yt) = exp
(
−λ2

2
d2ω(s, t)

)
.

Taking expectation, using (8.1), and since the pair (Ys, Yt) has the same law
as the pair (Xs, Xt), we get

exp
(
−|λ|

p

2
dp(s, t)

)
= E exp

(
−λ2

2
d2ω(s, t)

)
. (8.12)

Any r.v. Z satisfies

P(Z ≤ u) ≤ exp
(λ2u

2

)
E exp

(
−λ2

2
Z
)
.

Using this for Z = d2ω(s, t) and u = ε2d2(s, t), we get, using (8.12),

P(dω(s, t) ≤ εd(s, t)) ≤ exp
(1
2

(
λ2ε2d2(s, t)− |λ|pdp(s, t)

))
,

and the result by optimization over λ. 
�



236 8. Processes Related to Gaussian Processes

The content of (8.11) is that, given a pair (s, t), it is rare that dω(s, t)
is much smaller than d(s, t). Given two pairs (s, t) and (s′, t′) we however
know nothing about the joint distribution of the r.v.s dω(s, t) and dω(s

′, t′).
It is therefore quite surprising that the information contained in this lemma
suffices to deduce Theorem 8.1.1 from the majorizing measure Theorem 2.4.1.
This will done through the following abstract result about metric spaces.

Theorem 8.1.3. Consider a (finite) metric space (T, d) and a random dis-
tance dω on T . Assume that for some b > 0 we have

∀s, t ∈ T , ∀ε > 0 , P(dω(s, t) ≤ εd(s, t)) ≤ exp
(
− b

εα

)
, (8.13)

where α > 2. Then

P
(
γ2(T, dω) ≥

1

K
γq(T, d)

)
≥ 3

4
, (8.14)

where
1

q
=

1

2
− 1

α
,

and where K depends on α and b only.

Of course the number 3/4 plays no special role.

Proof of Theorem 8.1.1. Using Theorem 2.7.5 (c), we may assume that T is
finite. Consider the r.v. Z = supt∈T Yt. Then Theorem 2.4.1 implies

E′Z ≥ 1

L
γ2(T, dω) ,

and since E′Z ≥ 0, taking expectation in this inequality and using (8.14)
proves that EZ ≥ γq(T, d)/K(p). 
�

Let us now prepare for the proof of Theorem 8.1.3. Replacing d by b1/αd,
we can and do assume that b = 1. The following lemma explains how one
may use (8.13). It will not be directly used, as we shall need a more elaborate
version of the same idea.

Lemma 8.1.4. Under the hypotheses of Theorem 8.1.3, with probability ≥
1− exp(−2n+1) we have

en(T, dω) ≥
1

K
2−n/αen(T, d) .

Proof. Consider a < en(T, d). Consider a subset U of T maximal with respect
to the property that d(s, t) ≥ a for s, t ∈ U, s �= t. Then the balls of radius
a centered at the points of U cover T . Thus cardU > Nn by definition of
en(T, d). Consider a subset Tn of U with cardTn = Nn. It follows from (8.13)
that the event
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s, t ∈ Tn ⇒ dω(s, t) ≥ u2−n/αa (8.15)

has a probability ≥ 1 − N2
n exp(−2n/uα), so that one can find u depending

only on α so that this probability is ≥ 1 − exp(−2n+1), and when (8.15)
occurs, we have en(T, dω) ≥ u2−n/αa/2. 
�
Recalling the value of α this yields the following:

Corollary 8.1.5. With probability ≥ 1/2 we have

∑

n≥0

2n/2en(T, dω) ≥
1

K

∑

n≥0

2n/qen(T, d) .

This resembles (8.14), except that the γ functionals have been replaced by
the corresponding “entropy integrals”. But we will have to work quite harder
to capture the γ functionals themselves.

Exercise 8.1.6. The goal of the present exercise is to use Corollary 8.1.5 to
prove (7.86) (which is the original approach of [7]). Consider i.i.d. r.v.s (θi)
and assume that for simplicity that for u ≥ 1 we have P(|θi| ≥ u) ≥ u−p.
Consider numbers bi. Prove that for ε > 0 we have

P

((∑

i

θ2i b
2
i

)1/2
≤ ε
(∑

i

bpi

)1/p)
≤ exp

(
− L

εα

)
,

where 1/α = 1/p− 1/2. (Hint: find a bound for E exp(−λθ2i ) and proceed as
usual when proving an exponential inequality.) Conclude using (3.30).

Suppose now that we have pieces (H�)�≤m (where, say, m = Nn+3) that
are well separated for d, say the distance of any two of them is ≥ a. If we
choose a point t� in H�, we can as in Lemma 8.1.4 ensure that with large
probability dω(t�, t�′) ≥ 2−n/αa/K whenever � �= �′, but there is apparently
no way to bound dω(H�, H�′) from below. Still, it must be true in some sense
that “most of the points of H� and H�′ are at least at distance 2−n/αa/L
from each other”. One way to give a meaning to this idea is to bring in a
probability measure, and the next result is actually the crucial point of the
proof of Theorem 8.1.3.

Lemma 8.1.7. Under the hypothesis of Theorem 8.1.3, consider a probabil-
ity measure μ on T , and assume that for a certain number a and some n ≥ 0
we have

μ⊗2({(x, y) ∈ T 2 ; d(x, y) < a}) ≤ 1

Nn+3
. (8.16)

Then with probability ≥ 1 − 2/Nn+2, for each partition An of T with
cardAn ≤ Nn we have

∫
Δ(An(t), dω)dμ(t) ≥

2−n/αa

K
. (8.17)
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Proof. The proof has two distinct parts. In the first part, we prove that for
some number u depending on α only, if we consider the set

Bω = {(x, y) ∈ T 2 ; dω(x, y) ≤ ua2−n/α} , (8.18)

then the event Ω defined by

μ⊗2(Bω) ≤
1

Nn+2
(8.19)

has probability ≥ 1−2/Nn+2. For this consider B = {(x, y) ∈ T 2; d(x, y) ≤ a}
and C = T 2 \B, and observe that by hypothesis we have μ⊗2(B) ≤ 1/Nn+3.
Then

Eμ⊗2(Bω) ≤ μ⊗2(B) + E

∫

C

1{dω(x,y)≤ua2−n/α}dμ(x)dμ(y)

≤ μ⊗2(B) +

∫

C

E1{dω(x,y)≤ud(x,y)2−n/α}dμ(x)dμ(y)

≤ 1

Nn+3
+ exp

(
− 2n

uα

)
, (8.20)

so that by an appropriate choice of u depending on α only, we have
Eμ⊗2(Bω) ≤ 2/Nn+3 = 2/N2

n+2 and therefore P(μ⊗2(Bω) ≥ N−1
n+2) ≤

2/Nn+2.
The second part of the proof is to show that (8.19) implies (8.17). Let us

consider a partition An of T with cardAn ≤ Nn and the set

D =
⋃
{A ∈ An ; Δ(A, dω) ≤ ua2−n/α} .

Thus, if A ∈ An and A ⊂ D, then A2 ⊂ Bω and thus μ(A) ≤
√
μ⊗2(Bω) ≤

1/Nn+1. Since cardAn ≤ Nn we have μ(D) ≤ 1/2. Moreover, for t �∈ D we
have Δ(An(t), dω) ≥ u2−n/αa, and this completes the proof of (8.17). 
�

Proof of Theorem 8.1.3. To prove (8.14) we will prove that if a set U ⊂ Ω
satisfies P(U) ≥ 1/4, then

E(1Uγ2(T, dω)) ≥
1

K
γq(T, d) . (8.21)

Since U = {γ2(T, dω) < γq(T, d)/K} violates (8.21), we must have P(U) <
1/4, and this proves (8.14).

We fix U once and for all with P(U) ≥ 1/4. Given a probability measure
μ on T and n ≥ 0 we set

Fn(μ) = E
(
1U inf

A

∫

T

∑

k≥n

2k/2Δ(Ak(t), dω)dμ(t)
)
,
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where infA means that the infimum is taken over all admissible sequences
(An)n≥0 of T . Given A ⊂ T , we set

Fn(A) = sup
μ

Fn(μ) ,

where the supremum is over all probability measures μ supported by A. (The
reader may like to read Exercise 6.2.6 to motivate this definition.) Since∫
fdμ ≤ sup f , it holds that

inf
A

∫

T

∑

k≥0

2k/2Δ(Ak(t), dω)dμ(t) ≤ γ2(T, dω) ,

and therefore
F0(T ) ≤ E(1Uγ2(T, dω)) .

Next, we claim that
Δ(T, d) ≤ KF0(T ) . (8.22)

(Here and in the rest of the proof, K denotes a number depending on α
only, that need not be the same at each occurrence.) To see this, we simply
note that since A0 = {T}, we have A0(t) = T for each t, so that for each
probability μ on T we have F0(T ) ≥ F0(μ) ≥ E(1UΔ(T, dω)). Using the
bound E(f) ≥ aP(f ≥ a) when f ≥ 0, we obtain that for any ε > 0,

F0(T ) ≥ E(1UΔ(T, dω)) ≥ εΔ(T, d)P(U ∩ {Δ(T, dω) ≥ εΔ(T, d)}) . (8.23)

Consider now s, t ∈ T with d(s, t) ≥ Δ(T, d)/2, and ε depending on α only
with exp(−1/(2ε)α) = 1/8. Then using (8.13),

P(Δ(T, dω) ≥ εΔ(T, d)) ≥ P(dω(s, t) ≥ 2εd(s, t)) ≥ 7/8

and therefore P(U ∩ {Δ(T, dω) ≥ εΔ(T, d)}) ≥ 1/8 and finally F0(T ) ≥
Δ(T, d)/K.

Thus (8.21), and hence Theorem 8.1.3 will follow from Theorem 2.7.2
(used for r = 4, β = 1, θ(n) = 2n/q/K, ξ = 21/q and τ = 3) and Lemma 2.3.5
provided we prove that the functionals Fn satisfy the growth condition of
Definition 2.7.1. The purpose of taking τ = 3 is simply that this greatly
helps to check this condition, as will become apparent later. To prove the
growth condition, we consider a, n ≥ 0 , m = Nn+3, and points (t�)�≤m in T ,
with

� �= �′ ⇒ d(t�, t�′) ≥ a > 0 . (8.24)

We consider sets H� ⊂ B(t�, a/4), and we shall show that

Fn

( ⋃

�≤m

H�

)
≥ 2n/qa

K
+min

�≤m
Fn+1(H�) . (8.25)
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Consider c < min�≤m Fn+1(H�), and consider for each � a probability μ�

supported by H�, and such that Fn+1(μ�) > c. Consider

μ =
1

m

∑

�≤m

μ� . (8.26)

This is a probability, which is supported by H :=
⋃

�≤m H�. To prove (8.25),
it suffices to prove that

Fn(μ) ≥
2n/qa

K
+ c . (8.27)

Since inf(f(x) + g(x)) ≥ inf f(x) + inf g(x), we have

Fn(μ) ≥ I + II

where

I = Fn+1(μ) = E
(
1U inf

A

∫ ∑

k≥n+1

2k/2Δ(Ak(t), dω)dμ(t)
)

II = E
(
1U inf

A

∫
2n/2Δ(An(t), dω)dμ(t)

)
,

where both infima are over all admissible sequences (An) of T . Using (8.26),
we have

I ≥ 1

m

∑

�≤m

Fn+1(μ�) ≥ c

so all what remains to prove is that

II ≥ 2n/qa

K
. (8.28)

We observe that d(H�, H�′) ≥ a/2 for � �= �′, and thus

{(x, y) ∈ H2 ; d(x, y) < a/2} ⊂
⋃

�≤m

H2
� . (8.29)

Since μ(H�) = 1/m = 1/Nn+3 for each � this proves (8.16) (for a/2 rather
than a). Lemma 8.1.7 then implies that with probability ≥ 7/8 one has
infA

∫
2n/2Δ(An(t), dω)dμ(t) ≥ 2n(1/2−1/α)a/K, and this concludes the proof

of (8.28) and of the theorem. 
�
Our next result extends Theorem 8.1.3 to the case α = 2. This will in

turn have implications about 1-stable processes. We set M0 = 1 , Mn = 2Nn

for n ≥ 1. The sequence Mn = 22
2n

grows quite fast. Given a metric space
(T, d) we define

γ∞(T, d) = inf
B

sup
t∈T

∑

n≥0

2nΔ(Bn(t)) , (8.30)

where the infimum is taken over all increasing families of partitions (Bn) of
T with cardBn ≤ Mn. This new quantity is a kind of limit of the quantities
γα(T, d) as α→∞.
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Exercise 8.1.8. Consider the quantity γ∗(T, d) defined as

γ∗(T, d) = inf sup
t∈T

∑

n≥0

Δ(An(t)) , (8.31)

where the infimum is computed over all admissible sequences of partitions
(An). Prove that

1

L
γ∗(T, d) ≤ γ∞(T, d) ≤ Lγ∗(T, d) . (8.32)

(Hint: given an increasing sequence of partitions (Bn) with cardBn ≤ Mn

consider the increasing sequence of partitions (Am) given by Am = Bn for
2n ≤ m < 2n+1.)

The formulation (8.31) is more natural than the formulation (8.30). We do not
use because of the following technical difficulty: the corresponding function
θ(n) = 1 does not satisfy (2.149).

Theorem 8.1.9. Consider a finite metric space (T, d) and a random dis-
tance dω on T . Assume that

∀s, t ∈ T , ∀ε > 0 , P(dω(s, t) < εd(s, t)) ≤ exp
(
− 1

ε2

)
.

Then

P
(
γ2(T, dω) ≥

1

L
γ∞(T, d)

)
≥ 3

4
.

Proof. The proof of Theorem 8.1.9 closely follows that of Theorem 8.1.3,
so we indicate only the necessary modifications. It should be obvious that
Theorem 2.7.2 still holds when we replace Nn by Mn. We will use it in that
case for θ(n) = 2n/L, r = 4 and τ = 2. We define

Fn(μ) = E
(
1U inf

A

∫ ∑

k≥2n−1

2k/2Δ(Ak(t), dω)dμ(t)
)
.

Here, and everywhere in this proof, the infimum is over all admissible se-
quences (An)n≥0 of T . (Thus, as usual, cardAn ≤ Nn.) It suffices to prove
that under the condition (8.24) (with now m = Mn+2) the condition that
corresponds to (8.28) holds:

E

(
1U inf

A

∫ ∑

2n−1≤k<2n+1−1

2k/2Δ(Ak(t), dω)dμ(t)

)
≥ 2na

L
.

For this purpose it suffices to prove that for each 2n − 1 ≤ k < 2n+1 − 1 we
have

E
(
1U inf

A

∫
2k/2Δ(Ak(t), dω)dμ(t)

)
≥ a

L
. (8.33)



242 8. Processes Related to Gaussian Processes

As in the case of Theorem 8.1.3 we have

μ⊗2({(x, y) ∈ T 2 ; d(x, y) < a/2}) ≤ 1

Mn+2
. (8.34)

For k < 2n+1 − 1, we have k ≤ 2n+2 − 3, so Mn+2 ≥ Nk+3 and then (8.33)
follows from (8.34) and Lemma 8.1.7. 
�

As promised, we now apply Theorem 8.1.9 to 1-stable processes.

Theorem 8.1.10. For every 1-stable process (Xt)t∈T and t0 ∈ T we have

P
(
sup
t∈T

(Xt −Xt0) ≥
1

L
γ∞(T, d)

)
≥ 1

L
.

To understand the formulation of this theorem, we note that we cannot
use expectation to measure the size of supt∈T Xt, as is shown by (8.2). Also,
we observe that when T consists of two points t0 and t1, then

sup
t∈T

(Xt −Xt0) = max(Xt1 −Xt0 , 0)

is 0 with probability 1/2.

Lemma 8.1.11. If (Yt)t∈T is a Gaussian process then

P
(
sup
t∈T

(Yt − Yt0) ≥
1

2
E sup

t∈T
(Yt − Yt0)

)
≥ 1

L
.

Proof. This is a consequence of the Paley-Zygmund inequality (7.30) and
the fact that the r.v. Z = supt∈T (Yt − Yt0) satisfies EZ2 ≤ L(EZ)2 (a weak
consequence of (2.84)). 
�

Remark 8.1.12. Since EZ2 ≤ L(EZ)2, Lemma 8.1.11 shows that, assuming
Yt0 = 0 for some t0 ∈ T

P
(
sup
t∈T

Yt ≥
1

L

(
E(sup

t∈T
Yt)

2
)1/2) ≥ 1

L
. (8.35)

Proof of Theorem 8.1.10. Combining Theorems 8.1.9 and 2.4.1, we get

P
(
E′ sup

t∈T
(Yt(ω, ω

′)− Yt0(ω, ω
′)) ≥ 1

L
γ∞(T, d)

)
≥ 1

L
. (8.36)

Using Lemma 8.1.11 given ω, we obtain

P′
(
sup
t∈T

(Yt(ω, ω
′)− Yt0(ω, ω

′)) ≥ 1

L
E′ sup

t∈T
(Yt(ω, ω

′)− Yt0(ω, ω
′)
)
≥ 1

L
.

Combining with (8.36) and using Fubini theorem we finally obtain

P⊗ P′
(
sup
t∈T

(Yt(ω, ω
′)− Yt0(ω, ω

′)) ≥ 1

L
γ∞(T, d)

)
≥ 1

L
. 
�
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8.2 Order 2 Gaussian Chaos

Consider independent standard Gaussian sequences (gi), (g
′
j), i, j ≥ 1. Given

a double sequence t = (ti,j)i,j≥1 we consider the r.v.

Xt =
∑

i,j≥1

ti,jgig
′
j . (8.37)

The series converges in L2 as soon as
∑

i,j≥1 t
2
i,j < ∞, but for the present

purpose of proving inequalities, we may as well assume than only finitely
many coefficients ti,j are not 0. This random variable is called a (decou-
pled) order 2 Gaussian chaos. There is also a theory of non-decoupled chaos,∑

i>j≥1 ti,jgigj . For the present purposes, this theory reduces to the decou-
pled case using well understood arguments. For example, it is proved in [1]
that

E sup
t∈T

∣∣∣
∑

i 	=j

ti,jgigj +
∑

i≥1

ti,i(g
2
i − 1)

∣∣∣ ≤ LE sup
t∈T

∣∣∣
∑

i,j≥1

ti,jgig
′
j

∣∣∣ . (8.38)

Given a finite family T of double sequences t = (ti,j), we would like to
find upper and lower bounds for the quantity

S(T ) = E sup
t∈T

Xt . (8.39)

We will first study the tails of the r.v.s (8.37) (a result which will be consider-
ably extended in Section 8.3), and we will then use chaining to bound S(T ).
One fundamental feature of the present situation is that there is a method
radically different from chaining to bound this quantity. This method is re-
vealed just after Theorem 8.2.2. Thus there is a sharp contrast between chaos
and random series. For random series (as argued in Chapter 12) it seems
difficult to imagine bounds which do not rely on either chaining or simple
comparison properties.

The existence of the alternative method to bound chaos implies that the
bounds obtained from chaining are not in general optimal, although, as we
shall see, there are optimal under certain rather restrictive conditions.

We find it convenient to assume that the underlying probability space is
a product (Ω ×Ω′ , P = P0 ⊗ P′), so that

Xt(ω, ω
′) =

∑

i,j

ti,jgi(ω)g
′
j(ω

′) .

We denote by E′ integration in ω′ only (i.e. conditional expectation given ω).
Our first goal is the estimate (8.49) below on the tails of the r.v. Xt.

Conditionally on ω , Xt is a Gaussian r.v. and

E′X2
t =
∑

j≥1

(∑

i≥1

ti,jgi(ω)
)2

. (8.40)
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Consider the r.v.
σt = σt(ω) = (E′X2

t )
1/2 ,

and note that Eσ2
t = EX2

t . Then

σt = sup
α

∑

j≥1

αj

(∑

i≥1

ti,jgi(ω)
)

= sup
α

∑

i≥1

gi(ω)
(∑

j≥1

αjti,j

)
:= sup

α
gt,α , (8.41)

where the supremum is over the sequences α = (αj) with
∑

j≥1 α
2
j ≤ 1.

Let us define

‖t‖ = sup
α

(∑

i≥1

(∑

j≥1

αjti,j

)2)1/2

= sup

{∑

i,j≥1

αjβiti,j ;
∑

j≥1

α2
j ≤ 1 ,

∑

i≥1

β2
i ≤ 1

}
.

If we think of t as a matrix, ‖t‖ is the operator norm of t from �2 to �2.
We will also need the Hilbert-Schmidt norm of this matrix, given by

‖t‖HS =
(∑

i,j≥1

t2i,j

)1/2
.

We note that ‖t‖ ≤ ‖t‖HS by the Cauchy-Schwarz inequality. Also, recalling
the Gaussian r.v. gt,α of (8.41),

(Eg2t,α)
1/2 =

(∑

i≥1

(∑

j≥1

αjti,j

)2)1/2
≤ ‖t‖ ,

and since σt = supα gt,α, (2.84) implies that for v > 0,

P(|σt − Eσt| ≥ v) ≤ 2 exp
(
− v2

2‖t‖2
)

(8.42)

so that in particular
E(σt − Eσt)

2 ≤ L‖t‖2 .

Denoting by ‖ · ‖2 the norm in L2(Ω), we thus have ‖σt − Eσt‖2 ≤ L‖t‖,
so that |‖σt‖2 − Eσt| = |‖σt‖2 − |Eσt|| ≤ L‖t‖. Now

‖σt‖2 = (Eσ2
t )

1/2 = (EX2
t )

1/2 = ‖t‖HS , (8.43)

so that |Eσt − ‖t‖HS | ≤ L‖t‖ and (8.42) implies

P(|σt − ‖t‖HS | ≥ v + L‖t‖) ≤ 2 exp
(
− v2

2‖t‖2
)
. (8.44)
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Taking v = ‖t‖HS/4, and distinguishing the cases whether L‖t‖ ≤ ‖t‖HS/4
or not, we get

P
(
σt ≤

‖t‖HS

2

)
≤ L exp

(
−‖t‖

2
HS

L‖t‖2
)
. (8.45)

The random distance dω associated to the Gaussian process Xt (at given ω)
is

dω(s, t) = σs−t(ω) . (8.46)

Considering the two distances on T defined by

d∞(s, t) = ‖t− s‖ , d2(s, t) = ‖t− s‖HS (8.47)

we then have shown that

P
(
dω(s, t) ≤

1

2
d2(s, t)

)
≤ L exp

(
− d22(s, t)

Ld2∞(s, t)

)
. (8.48)

Let us prove another simple classical fact (proved first in [2]).

Lemma 8.2.1. For v ≥ 0 we have

P(|Xt| ≥ v) ≤ L exp

(
− 1

L
min
( v2

‖t‖2HS

,
v

‖t‖

))
. (8.49)

Proof. Given ω, the r.v. Xt is Gaussian so that

P′(|Xt| ≥ v) ≤ 2 exp
(
− v2

2σ2
t

)
,

and, given a > 0

P(|Xt| ≥ v) = EP′(|Xt| ≥ v) ≤ 2E exp
(
− v2

2σ2
t

)

≤ 2 exp
(
− v2

2a2

)
+ 2P(σt ≥ a) .

Since ‖t‖ ≤ ‖t‖HS , it follows from (8.44) that P(σt ≥ v + L‖t‖HS) ≤
L exp(−v2/2‖t‖2) and thus when a ≥ L‖t‖HS ,

P(σt ≥ a) ≤ L exp
(
− a2

L‖t‖2
)
.

Consequently,

P(|Xt| ≥ v) ≤ 2 exp
(
− v2

2a2

)
+ L exp

(
− a2

L‖t‖2
)
. (8.50)

To finish the proof we take a = max
(
L‖t‖HS ,

√
v‖t‖
)
and we observe that

the last term in (8.50) is always at most L exp(−v/(L‖t‖)). 
�
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As a consequence of (8.49), we have

P(|Xs −Xt| ≥ v) ≤ L exp
(
− 1

L
min
( v2

d22(s, t)
,

v

d∞(s, t)

))
(8.51)

and Theorem 2.2.23 implies the following.

Theorem 8.2.2. For a set T of sequences (ti,j), we have

S(T ) = E sup
t∈T

Xt ≤ L
(
γ1(T, d∞) + γ2(T, d2)

)
. (8.52)

We analyze now a very interesting example of set T . Given an integer n, we
consider

T = {t ; ‖t‖ ≤ 1 , ti,j �= 0⇒ i , j ≤ n} . (8.53)

Since ∑

i,j

tijgig
′
j ≤
(∑

i≤n

g2i

)1/2(∑

j≤n

g′2j

)1/2
‖t‖ ,

the Cauchy-Schwarz inequality implies that S(T ) ≤ n. On the other hand,
volume arguments show that logN(T, d∞, 1/4) ≥ n2/L, so that γ1(T, d∞) ≥
n2/L. It is also simple to prove that (see [5])

logN(T, d2,
√
n/L) ≥ n2/L ,

and that S(T ) is about n, γ1(T, d∞) is about n2 and γ2(T, d2) is about
n3/2. In this case (8.52) is not sharp, which means that there is no hope of
reversing this inequality in general. This is so despite the fact that we have
used a competent chaining method and that the bounds (8.51) are essentially
optimal (as follows e.g. from the left-hand side of (8.97) below). It can also be
shown that in the case where the elements t of T satisfy ti,j = 0 for i �= j the
bound (8.52) can be reversed. This is essentially proved in Theorem 10.2.8
below.

We now turn to a result involving a very special class of chaos, which we
will bound by a method which is different from both the method of Theo-
rem 8.2.2 and of the method used for the set (8.53). To lighten notation we
denote by tg the sequence (

∑
j≥1 ti,jgj)i≥1, by 〈·, ·〉 the dot product in �2 and

by ‖ · ‖2 the corresponding norm. For t = (ti,j) let us write

Y ∗
t :=

∑

i≥1

(∑

j≥1

ti,jgj

)2
= ‖tg‖22 = 〈tg, tg〉 =

∑

i≥1

∑

j,k≥1

ti,jti,kgjgk (8.54)

and

Yt := Y ∗
t − EY ∗

t =
∑

i≥1

∑

j 	=k

ti,jti,kgjgk +
∑

i≥1

∑

j≥1

t2i,j(g
2
j − 1) . (8.55)
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Theorem 8.2.3 ([3]). For any set T with 0 ∈ T we have

E sup
t∈T

|Yt| ≤ Lγ2(T, d∞)
(
γ2(T, d∞) + sup

t∈T
‖t‖HS

)
. (8.56)

This theorem belongs to the present section because Yt is an order 2 chaos,
as shown by (8.55). Let us define, with obvious notation,

Zt =
∑

i,j,k≥1

ti,jti,kgjg
′
k = 〈tg, tg′〉 .

The main step of the proof of Theorem 8.2.3 is as follows.

Proposition 8.2.4. Let U2 := E supt∈T ‖tg‖22. Then

E sup
t∈T

|Zt| ≤ LUγ2(T, d∞) . (8.57)

Proof of Theorem 8.2.3. Let us define V = supt∈T ‖t‖HS so that V 2 =
supt∈T ‖t‖2HS = supt∈T

∑
i,j≥1 t

2
i,j = supt∈T EY ∗

t . For t ∈ T we have

‖tg‖22 = Y ∗
t = Yt + EY ∗

t ≤ Yt + V 2 and thus

U2 ≤ V 2 + E sup
t∈T

|Yt| . (8.58)

Now, combining (8.38) and (8.55) we have

E sup
t∈T

|Yt| ≤ LE sup
t∈T

|Zt| , (8.59)

so that, combining with (8.58) and (8.57) we obtain

U2 ≤ V 2 + LUγ2(T, d∞) ,

and thus U ≤ L(V + γ2(T, d∞)). Plugging in (8.57) proves the result. 
�

Proof of Proposition 8.2.4. Without loss of generality we assume that T is
finite. Consider an admissible sequence (An) with

sup
t∈T

∑

n≥0

2n/2Δ(An(t)) ≤ 2γ2(T, d∞) ,

where the diameter Δ is for the distance d∞. For A ∈ An consider an element
tA,n ∈ A and define as usual a chaining by πn(t) = tAn(t),n. Since 0 ∈ T ,
without loss of generality we may assume that π0(t) = 0. We observe that

Zπn(t) − Zπn−1(t) = 〈(πn(t)− πn−1(t))g, πn(t)g
′〉

+ 〈πn−1(t)g, (πn(t)− πn−1(t))g
′〉 . (8.60)

Recalling that we think of each t as an operator on �2 let us denote by t∗ its
adjoint. Thus
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〈(πn(t)− πn−1(t))g, πn(t)g
′〉 = 〈g, (πn(t)− πn−1(t))

∗πn(t)g
′〉 . (8.61)

Here of course (πn(t) − πn−1(t))
∗πn(t)g

′ is the element of �2 obtained by
applying the operator (πn(t) − πn−1(t))

∗ to the vector πn(t)g
′. Let us now

consider the r.v.s W = supt∈T ‖tg‖2 and W ′ = supt∈T ‖tg′‖2. Then

‖(πn(t)−πn−1(t))
∗πn(t)g

′‖2 ≤ ‖(πn(t)−πn−1(t))
∗‖‖πn(t)g

′‖2 ≤ Δ(An(t))W
′.

It then follows from (8.61) that, conditionally on g′, the quantity 〈(πn(t) −
πn−1(t))g, πn(t)g

′〉 is simply a Gaussian r.v. G with (EG2)1/2 ≤ Δ(An(t))W
′.

Thus we obtain that for u ≥ 1

P
(
|〈(πn(t)− πn−1(t))g, πn(t)g

′〉| ≥ 2n/2uΔ(An(t))W
′) ≤ exp(−u22n/2) .

Proceeding in a similar fashion for the second term in (8.60) we get

P
(
|Zπn(t) − Zπn−1(t)| ≥ 2u2n/2Δ(An(t))(W +W ′)

)
≤ 2 exp(−u22n/2) .

Using that Zπ0(t) = 0, and proceeding just as in the proof of the generic
chaining bound (2.31), we obtain that for u ≥ L,

P
(
sup
t∈T

|Zt| ≥ Luγ2(T, d∞)(W +W ′)
)
≤ L exp(−u2) .

In particular the function R = supt∈T |Zt|/(W + W ′) satisfies ER2 ≤
Lγ2(T, d∞)2. Since EW 2 = EW ′2 = U2 the Cauchy-Schwarz inequality yields
(8.57). 
�

We return to the study of general chaos processes. When T is “small
for the distance d∞” it follows from (8.51) that the process (Xt)t∈T resem-
bles a Gaussian process, so that there should be a close relationship between
S(T ) = E supt∈T Xt and γ2(T, d2). The next result, where we recall the no-
tation (8.39), is a step in this direction. It should be compared with Theo-
rem 5.4.1.

Theorem 8.2.5. We have

γ2(T, d2) ≤ L
(
S(T ) +

√
S(T )γ1(T, d∞)

)
. (8.62)

The example (8.53) provides a situation where this inequality is sharp, since
then both the left-hand and the right-hand sides are of order n3/2. Combining
with Theorem 8.2.2, this implies the following.

Corollary 8.2.6. If we define

R =
γ1(T, d∞)

γ2(T, d2)
,

then
1

L(1 +R)
γ2(T, d2) ≤ S(T ) ≤ L(1 +R)γ2(T, d2) . (8.63)
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In particular, S(T ) is of order γ2(T, d2) when R is of order 1 or smaller.

Proof. The right-hand side is obvious from (8.52). To obtain the left-hand
side, we simply write in (8.62) that, since

√
ab ≤ (a+ b)/2,

√
S(T )γ1(T, d∞) =

√
S(T )Rγ2(T, d2)

≤ 1

2

( 1
L
γ2(T, d2) + LS(T )R

)

where L is as in (8.62), and together with (8.62) this yields

γ2(T, d2) ≤ LS(T ) +
1

2
γ2(T, d2) + LS(T )R . 
�

Theorem 8.2.5 relies on the following abstract statement.

Theorem 8.2.7. Consider a finite set T , provided with two distances d∞
and d2. Consider a random distance dω on T , and a number α > 0. Assume
that

∀s, t ∈ T , P
(
dω(s, t) ≥ αd2(s, t)

)
≥ α (8.64)

∀s, t ∈ T , P
(
dω(s, t) ≤ αd2(s, t)

)
≤ 1

α
exp
(
−α d22(s, t)

d2∞(s, t)

)
. (8.65)

Consider a number M such that

P(γ2(T, dω) ≤M) ≥ 1− α/2 . (8.66)

Then
γ2(T, d2) ≤ K(α)

(
M +

√
Mγ1(T, d∞)

)
, (8.67)

where K(α) depends on α only.

Proof of Theorem 8.2.5. By (8.48), the pair of distances d∞ and d2 of (8.47)
satisfies (8.65) whenever α is small enough. The formula (8.41) makes σt,
and hence σs−t, appear as the supremum of a Gaussian process. Applying
(8.35) to this process yields P(σs−t ≥ (Eσ2

s−t)
1/2/L) ≥ 1/L. Consider now

dω(s, t) = σs−t(ω) as in (8.46). Then Eσ2
s−t = ‖s − t‖22 = d2(s, t)

2, so that
(8.43) implies that (8.64) holds whenever α is small enough.

Next we prove that (8.66) holds for M = LS(T )/α. Since EE′ supt∈T Xt =
S(T ), and since E′ supt∈T Xt ≥ 0, Markov inequality implies

P
(
E′ sup

t∈T
Xt ≤ 2S(T )/α

)
≥ 1− α/2 .

Since LE′ supt∈T Xt ≥ γ2(T, dω) by Theorem 2.4.1, this proves that (8.66)
holds for M = LS(T )/α. Thus (8.62) is a consequence of (8.67). 
�
Proof of Theorem 8.2.7. We consider the subset U of Ω given by U =
{γ2(T, dω) ≤ M}, so that P(U) ≥ 1 − α/2 by hypothesis. Let us fix once
and for all an admissible sequence (Cn)n≥0 of partitions of T such that
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∀t ∈ T ,
∑

n≥0

2nΔ(Cn(t), d∞) ≤ 2γ1(T, d∞) .

We consider an integer τ ≥ 0, that will be chosen later. Given a probability
measure μ on T , we define

Fn(μ) = E

(
1U inf

A

∫ (∑

k≥n

2k/2Δ(Ak(t), dω) +
∑

�≥n

2�Δ(C�+τ (t), d∞)
)
dμ(t)

)
,

where the infimum is over all choices of the admissible sequence (Ak). Given
A ⊂ T , we define

Fn(A) = sup{Fn(μ) ; ∃C ∈ Cn+τ , μ(C ∩A) = 1} .

Thus, since
∫
f(t)dμ(t) ≤ supt∈T f(t), we get

F0(T ) ≤ E

(
1U inf

A

(
sup
t∈T

∑

k≥0

2k/2Δ(Ak(t), dω) + sup
t∈T

∑

�≥0

2�Δ(C�+τ (t), d∞)
))

≤ E
(
1U (γ2(T, dω) + 2−τ+1γ1(T, d∞))

)

≤ M + 2−τ+1γ1(T, d∞) , (8.68)

where in the second inequality we have used that

sup
t∈T

∑

�≥0

2�+τΔ(C�+τ (t), d∞) ≤ sup
t∈T

∑

k≥0

2kΔ(Ck(t), d∞) ≤ 2γ1(T, d∞) .

Consider n ≥ 0, and set m = Nn+τ+3. Consider points (t�)�≤m of T , with
d2(t�, t�′) ≥ 4a when � �= �′ and sets H� ⊂ B2(t�, a). We will prove later that
if τ ≥ τ0, where τ0 depends only on the value of the constant α, then

Fn

( ⋃

�≤m

H�

)
≥ 2n/2

K
a+min

�≤m
Fn+1(H�) . (8.69)

Here, as well as in the rest of this proof, K denotes a number depending on α
only, not necessarily the same at each occurrence. Using Theorem 2.7.2 with
r = 4 , θ(n) = 2n/2/L, and τ + 3 rather than τ , we then get

γ2(T, d2) ≤ K2τ/2(F0(T ) +Δ(T, d2)) . (8.70)

To bound Δ(T, d2), considering s, t ∈ T with d2(t, s) = Δ(T, d2), we obtain
from (8.64) that

P
(
dω(t, s) ≥ αΔ(T, d2)

)
≥ α .

Since γ2(T, dω) ≥ dω(t, s), and since 1 − α/2 + α > 1, it follows from (8.66)
that Δ(T, d2) ≤ LM . Thus (8.68) and (8.70) imply

γ2(T, d2) ≤ K2τ/2(M + 2−τγ1(T, d∞)) .

Optimization over τ ≥ τ0 then gives (8.67).
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We turn to the proof of (8.69). It closely resembles the proof of (8.25).
Consider c < inf� Fn+1(H�), and for � ≤ m consider a set C� ∈ Cn+τ+1 and
a probability measure μ� on H� ∩ C� such that Fn+1(μ�) > c. There are
only at most Nn+τ+1 possible values for the set C�. Since m = Nn+τ+3 ≥
Nn+τ+2Nn+τ+1, we can find a subset I of {1, . . . ,m} with card I ≥ Nn+τ+2

such that for all � ∈ I the set C� is the same element of Cn+τ+1. In particular
there exists an element C0 of Cn+τ such that for C� ⊂ C0 for � ∈ I. We define

μ =
1

card I

∑

�∈I

μ� ,

so that μ(
⋃

�≤m H� ∩ C0) = 1. Thus Fn(A) ≥ Fn(μ) and it suffices to prove
that

Fn(μ) ≥
2n/2

K
a+ c .

When t belongs to the support of μ, t belongs to C0 and therefore Cn+τ (t) =
C0. Proceeding as in the proof of Theorem 8.1.3, it suffices to prove that

2nΔ(C0, d∞) + E
(
1U inf

A

∫
2n/2Δ(An(t), dω)dμ(t)

)
≥ a2n/2

K
. (8.71)

Consider a number K1 large enough that αK2
1 ≥ 16 and 2 exp(−αK2

1/8) ≤
α2. Then for n ≥ 0 one has αK2

12
n−3 ≥ 2n+1 and thus

1

α
exp(−αK2

12
n−2) ≤ 1

α
exp(−αK2

1/8) exp(−αK2
12

n−3) ≤ α

2Nn+1
. (8.72)

If Δ(C0, d∞) > a2−n/2/K1, then (8.71) holds true, so that we may assume
that Δ(C0, d∞) ≤ a2−n/2/K1.

First, we prove that the event

μ⊗2
(
{(x, y) ∈ T 2 ; d2(x, y) ≥ a/2 , dω(x, y) ≤ a/2}

)
≤ 1

Nn+1
(8.73)

has a probability ≥ 1 − α/2. For this, let us denote by Y the left-hand side
of (8.73). Then, using (8.65) in the second line (and since μ is supported by
C0 so that d∞(x, y) ≤ a2−n/2/K1 for almost every pair (x, y)) and (8.72) in
the last inequality, we obtain

EY =

∫

{d2(x,y)≥a/2}
P(dω(x, y) ≤ a/2)dμ(x)dμ(y)

≤ 1

α
exp
(
−α (a/2)2

(a2−n/2/K1)2

)
=

1

α
exp(−αK2

12
n−2) ≤ α

2Nn+1
,

and thus as claimed P(Y ≤ 1/Nn+1) ≥ 1 − α/2. Next, as in the proof of
Lemma 8.1.7, since d2(x, y) ≥ a/2 when x and y belong to two different sets
H�, when (8.73) occurs we have
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μ⊗2({(x, y) ∈ T 2 ; dω(x, y) ≤ a/2}) ≤ 2

Nn+1
, (8.74)

and as in the second part of the proof of Lemma 8.1.7 we show that when
(8.74) occurs then for each admissible sequence A one has

∫
Δ(An(t), dω)dμ(t) ≥

a

L
,

and this finishes the proof. 
�
Let us give a simple consequence of Theorem 8.2.5. We recall the covering

numbers N(T, d, ε) of Section 1.2. We recall that S(T ) = E supt∈T Xt.

Proposition 8.2.8. There exists a constant L with the following property:

ε ≥ L
√
Δ(T, d∞)S(T )⇒ ε

√
logN(T, d2, ε) ≤ LS(T ) . (8.75)

A remarkable feature of (8.75) is that as, we shall now prove, the right-
hand side need not hold if ε ≤

√
Δ(T, d∞)S(T )/L (see however (8.79) be-

low). To see this, let us consider the example (8.53). For ε =
√
n/L we have

ε
√

log(N(T, d2, ε)) ≥ n3/2/L, while S(T ) ≤ Ln, so that the right-hand side
of (8.75) does not hold. Moreover, since Δ(T, d∞) = 2, ε is of the order of√

Δ(T, d∞)S(T ). This shows that the condition ε ≥ L
√
Δ(T, d∞)S(T ) in

(8.75) is rather precise.

Proof of Proposition 8.2.8. Assume first that T is finite, cardT = m, and
consider a number α with

α ≥ Δ(T, d∞) . (8.76)

Assume that for certain a number ε, we have

∀s, t ∈ T , s �= t , d2(s, t) = ‖t− s‖HS ≥ ε . (8.77)

Lemma 2.4.2 and Theorem 2.4.1 imply that γ2(T, d2) ≥ ε
√
logm/L (see

also Exercise 2.2.21). Moreover, γ1(T, d∞) ≤ Lα logm, as is witnessed by
an admissible sequence (An) such that if Nn ≥ m, then each set A ∈ An

contains exactly one point (see Exercise 2.2.21 (b)). Now (8.62) implies

ε

L

√
logm ≤ γ2(T, d2) ≤ L

(
S(T ) +

√
S(T )γ1(T, d∞)

)

≤ L
(
S(T ) +

√
S(T )α logm

)
. (8.78)

Let us denote by L2 the constant in the previous inequality. Now, if ε ≥
L3

√
αS(T ) where L3 = 2(L2)

2, we have
√

S(T )α logm ≤ ε
√
logm/L3, so

that (8.78) implies

ε

L2

√
logm ≤ L2S(T ) +

1

2L2
ε
√
logm

and therefore ε
√
logm ≤ LS(T ).
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If now T is given satisfying (8.76), consider T ′ ⊂ T that satisfies (8.77)
and has a cardinality m as large as possible. Then we have shown that if
ε ≥ L3

√
Δ(T, d∞)S(T ) we must have ε

√
logm ≤ LS(T ′) ≤ LS(T ). Since the

cardinality of T ′ is as large as possible, the balls centered at the points of T ′

of radius ε cover T , so that N(T, d2, ε) ≤ m. 
�
The proof of Proposition 8.2.8 does not use the full strength of Theo-

rem 8.2.7, and we propose the following as a very challenging exercise.

Exercise 8.2.9. Find a direct proof that under the conditions of Theo-
rem 8.2.7 one has

ε ≥ L
√
MΔ(T, d∞)⇒ ε

√
logN(T, d2, ε) ≤ LM ,

and use this result to find a more direct proof of Proposition 8.2.8. (Hint: it
helps to prove first that Δ(T, d∞) ≤ LM .)

For completeness let us mention the following, which should of course be
compared with (8.75).

Proposition 8.2.10. For each ε > 0, we have

ε(logN(T, d2, ε))
1/4 ≤ LS(T ) . (8.79)

In the previous example (8.53), both sides are of order n for ε =
√
n/L.

Research problem 8.2.11. Is it true that

ε
√
logN(T, d∞, ε) ≤ LS(T ) ? (8.80)

For a partial result, and a proof of Proposition 8.2.10, see [8].

It is interesting to observe that (8.80) would provide another proof of
(8.79). Indeed by (8.80) we would have

logN(T, d∞, α) ≤ L
S(T )2

α2
.

Now, if B is a ball B∞(t, α) of T for α = ε2/L′S(T ), since Δ(B∞(t, α), d∞) ≤
2α, for L′ large enough the right hand side of (8.75) holds and this inequality
implies

logN(B, d2, ε) ≤
S(T )2

ε2
.

Since N(T, d2, ε) ≤ N(T, d∞, α)maxB N(B, d2, ε), combining these yields

logN(T, d2, ε) ≤ L
(S(T )4

ε4
+

S(T )2

ε2

)

and this would prove (8.79).
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To conclude this section, we describe a way to control S(T ) from above,
which is really different from both the method of Theorem 8.2.2 and of The-
orem 8.2.3.

Given a convex balanced subset U of �2 (that is, λU ⊂ U for |λ| ≤ 1, or,
equivalently, U = −U), we define

g(U) = E sup
(ui)∈U

∑

i≥1

uigi

σ(U) = sup
(ui)∈U

(∑

i≥1

u2
i

)1/2
.

Given convex balanced subsets U and V of �2, we define

TU,V =
{
t = (ti,j) ; ∀(xi)i≥1 , ∀(yj)j≥1 ,

∑
ti,jxiyj ≤ sup

(ui)∈U

∑

i≥1

xiui sup
(vj)∈V

∑

j≥1

yjvj

}
.

This is a in a sense a generalization of the example (8.53) to other norms
than the Euclidean norm. It follows from (2.84) that, if w > 0,

P
(

sup
(ui)∈U

∑

i≥1

giui ≥ g(U) + wσ(U)
)
≤ 2 exp

(
−w2

2

)
,

so that (using that for positive numbers, when ab > cd we have either a > c
or b > d)

P

(
sup

(ui)∈U

∑
i≥1

giui sup
(vj)∈V

∑
g′jvj ≥ g(U)g(V )

+ w(σ(U)g(V ) + σ(V )g(U)) + w2σ(U)σ(V )

)

≤ 4 exp
(
−w2

2

)
. (8.81)

Now
sup

t∈TU,V

Xt ≤ sup
(ui)∈U

∑

i≥1

uigi sup
(vj)∈V

∑

j≥1

vjg
′
j ,

so that, whenever g(U), g(V ) ≤ 1 and σ(U), σ(V ) ≤ 2−n/2 (8.81) yields

P
(

sup
t∈TU,V

Xt ≥ (1 + 2−n/2w)2
)
≤ 4 exp

(
−w2

2

)
.

Changing w into 2n/2w, (8.81) yields

P
(

sup
t∈TU,V

Xt ≥ (1 + w)2
)
≤ 4 exp(−2n−1w2) . (8.82)
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Proposition 8.2.12. Consider for n ≥ 0 a family Cn of pairs of convex
balanced subsets of �2. Assume that card Cn ≤ Nn and that

∀(U, V ) ∈ Cn , g(U) , g(V ) ≤ 1 ; σ(U) , σ(V ) ≤ 2−n/2 .

Then, the set

T = conv

{⋃

n

⋃

(U,V )∈Cn

TU,V

}

satisfies S(T ) ≤ L.

Proof. This should be obvious from (8.82) since

P
(
sup
T

Xt ≥ w
)
≤
∑

n

∑

(U,V )∈Cn

P
(

sup
t∈TU,V

Xt ≥ w
)
. 
�

Having found three distinct way of controlling S(T ), one should certainly
ask whether there are more. It simply seems too early to even make a sensible
conjecture about what might be the “most general way to bound a chaos
process”.

8.3 Tails of Multiple Order Gaussian Chaos

In this section we consider a single order d (decoupled) Gaussian chaos, that
is a r.v. X of the type

X =
∑

i1,...,id

ai1,...,idg
1
i1 · · · g

d
id

, (8.83)

where ai1,...,id are numbers and gji are independent standard Gaussian r.v.s.
The sum is finite, each index i� runs from 1 to m. Our purpose is to estimate
the higher moments of the r.v. X as a function of certain characteristics of

A := (ai1,...,id)i1,...,id≤m . (8.84)

Estimating the higher moments of the r.v. X amounts to estimate its
tails, and it is self evident that this is a natural question. This topic runs into
genuine notational difficulties. One may choose to avoid considering tensors,
in which case one faces heavy multi-index notation. Or one may entirely avoid
multi-index notation using tensors, but one gets dizzy from the height of the
abstraction. We shall not try for elegance in the presentation, but rather to
minimize the amount of notation the reader has to assimilate. Our approach
will use a dash of tensor vocabulary, but does not require any knowledge of
what these are. In any case for the really difficult arguments we shall focus
on the case d = 3.
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Let us start with the case d = 2 that we considered at length in the
previous section. In that case one may think of A as a linear functional on
R

m2

by the formula

A(x) =
∑

i,j

ai,jxi,j , (8.85)

where x = (xi,j)i,j≤m is the generic element of Rm2

. It is of course understood

that in (8.85) the sum runs over i, j ≤ m. When we provide R
m2

with the
canonical Euclidean structure, the norm of A viewed as a linear functional
on R

m2

is simply

‖A‖{1,2} :=
(∑

i,j

a2i,j

)1/2
. (8.86)

This quantity was denoted ‖A‖HS in the previous section, but here we need
new notation. We may also think of A as a bilinear functional on R

m × R
m

by the formula

A(x, y) =
∑

i,j

ai,jxiyj , (8.87)

where x = (xi)i≤m and y = (yi)i≤m. In that case, if we provide both copies
of Rm with the canonical Euclidean structure, the corresponding norm of A
is

‖A‖{1}{2} := sup
{∣∣∣
∑

i,j

ai,jxiyj

∣∣∣ ;
∑

x2
i ≤ 1,

∑
y2j ≤ 1

}
, (8.88)

which is also the operator norm when one see A as a matrix, i.e. an operator
from R

m to R
m. One observes the inequality ‖A‖{1}{2} ≤ ‖A‖{1,2}.

Let us now turn to the case d = 3. One may think of A as a linear
functional on R

m3

, obtaining the norm

‖A‖{1,2,3} :=
(∑

i,j,k

a2i,j,k

)1/2
, (8.89)

or think of A as a trilinear functional on (Rm)3, obtaining the norm

‖A‖{1}{2}{3} := sup

{∣∣∣
∑

i,j,k

ai,j,kxiyjzk

∣∣∣ ;
∑

x2
i ≤ 1,

∑
y2j ≤ 1,

∑
z2k ≤ 1

}
.

(8.90)

One may also view A as a bilinear function on R
m2 × R

m by the formula

A(x, y) =
∑

i,j,k

ai,j,kxi,jyk , (8.91)

for x = (xi,j)i,j ∈ R
m2

and (yk) ∈ R
m. One then obtains the norm

‖A‖{1,2}{3} := sup
{∣∣∣
∑

i,j,k

ai,j,kxi,jyk

∣∣∣ ;
∑

x2
i,j ≤ 1,

∑
y2k ≤ 1

}
. (8.92)
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We observe the inequality

‖A‖{1}{2}{3} ≤ ‖A‖{1,2}{3} ≤ ‖A‖{1,2,3} . (8.93)

More generally, given a partition P = {I1, . . . , Ik} of {1, . . . , d} we may define
the norm

‖A‖P = ‖A‖I1,...,Ik (8.94)

by viewing A as a k-linear form C on F1 × · · · ×Fk where F� = R
mcard I� and

defining
‖A‖I1,...,Ik = ‖C‖{1}{2}···{k} , (8.95)

where of course the right-hand side is defined as in (8.90). When the partition
P ′ is finer than the partition P , then

‖A‖P′ ≤ ‖A‖P . (8.96)

The moments of the r.v. X of (8.94) are then evaluated by the following
formula.

Theorem 8.3.1 (R. Lata�la [4]). For p ≥ 1 we have

1

K(d)

∑

P
pcardP/2‖A‖P ≤ ‖X‖p ≤ K(d)

∑

P
pcardP/2‖A‖P , (8.97)

where P runs over all partitions of {1, . . . , d}.

A multidimensional array as in (8.84) will be called a tensor of order d
(the value of m may depend on the context). Let us denote by E1, . . . , Ed

copies of Rm. The idea is that Ek is the copy that corresponds to the k-th
index of A. Given a vector x ∈ Ed we may then define the contraction 〈A, x〉
as the tensor (bi1,...,id−1

) of order d− 1 given by

bi1,...,id−1
=
∑

i≤m

ai1,...,id−1,ixi .

The summation here is on the d-th index, as is indicated by the fact that
x ∈ Ed.

Exercise 8.3.2. Use the upper bound of (8.97) to generalize Theorem 8.2.2
to a set T of tensors of order d. (Hint: this assumes that you know how to
transform (8.97) in a tail estimate.)

If G is a standard Gaussian random vector valued in Ed, i.e. G = (gi)i≤m

where gi are independent standard r.v.s, then 〈A,G〉 is a random tensor
of order d − 1. We shall deduce Theorem 8.3.1 from the following fact, of
independent interest.
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Theorem 8.3.3. For all τ ≥ 1 we have

E‖〈A,G〉‖{1}···{d−1} ≤ K
∑

P
τ cardP−d+1‖A‖P , (8.98)

where P runs over all the partitions of {1, . . . , d}.
Here, as well as in the rest of this section, K denotes a number that depends
only on the order of the tensor considered and certainly not on τ .

If we think of A as a d-linear form on E1 × · · · ×Ed the left-hand side of
(8.98) is

E supA(x1, . . . , xd−1, G) ,

where the supremum is over all choices of x� with ‖x�‖ ≤ 1. Therefore the
issue to prove (8.98) is to bound the supremum of a certain complicated
Gaussian process.

The bound (8.98) has the mind-boggling feature that the powers of τ in
the right-hand side may have different signs. This feature will actually appear
very naturally in the course of the proof.

Corollary 8.3.4. For all p ≥ 1 on has

(
E‖〈A,G〉‖p{1}···{d−1}

)1/p ≤ K
∑

P
p(cardP−d+1)/2‖A‖P . (8.99)

Proof. As we just explained the r.v. Y = ‖〈A,G〉‖{1}···{d−1} is the supremum
of Gaussian r.v.s of the type

Z = A(x1, . . . , xd−1, G) ,

where in this formula we view A as a d-linear map on E1×· · ·×Ed and where
x� is a vector of length ≤ 1. Now, the formula

(
E
(∑

i

aigi

)2)1/2

=
(∑

i

a2i

)1/2
= sup

{∑

i

aixi ;
∑

i

x2
i ≤ 1

}

implies

(EZ2)1/2 = sup
‖x‖≤1

|A(x1, . . . , xd−1, x)| ≤ σ := ‖A‖{1}···{d−1}{d} .

It then follows from (2.84) that for u > 0 the r.v. Y satisfies

P(|Y − EY | ≥ u) ≤ 2 exp
(
− u2

2σ2

)
.

Then (2.22) implies
(E|Y − EY |p)1/p ≤ L

√
pσ ,

and since (E|Y |p)1/p ≤ E|Y |+ (E|Y − EY |p)1/p the result follows from (8.98)
used for τ = p1/2. 
�
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Proof of Theorem 8.3.1. First we deduce the upper bound of (8.97) from
(8.99) and induction over d. For d = 1, (8.97) reflects the growth of the
moments of a single Gaussian r.v. as captured by (2.22). Assuming that the
result has been proved for d− 1 we prove it for d. We consider the Gaussian
random vector G = (gdi ), and the order d− 1 random tensor

B = 〈A,G〉 = (bi1,...,id−1
) ,

where
bi1,...,id−1

=
∑

i≤m

ai1,...,id−1,ig
d
i .

Thus

X =
∑

i1,...,id

ai1,...,idg
1
i1 · · · g

d
id

=
∑

i1,...,id−1

bi1,...,id−1
g1i1 · · · g

d−1
id−1

.

Let us denote by E′ expectation given G. Then the induction hypothesis
applied to B implies

(E′|X|p)1/p ≤ K
∑

Q
pcardQ/2‖B‖Q , (8.100)

where the sum runs over all partitions Q of {1, . . . , d− 1}. We now compute
the p-th moment of both sides, using the triangle inequality in Lp to obtain

(E|X|p)1/p ≤ K
∑

Q
pcardQ/2(E‖B‖pQ)1/p . (8.101)

Let us fix Q and denote by I1, . . . , Ik its elements. We claim that

(
E‖B‖pQ

)1/p
=
(
E‖〈A,G〉‖pI1,...,Ik

)1/p ≤ Kp−k/2
∑

P
pcardP/2‖A‖P . (8.102)

Since k = cardQ, substitution of this equation in (8.101) finishes the proof
of the upper bound of (8.97). Let us now prove (8.102). For this for � ≤ k we

define F� = R
mcard I� and we define Fk+1 = Rm. Let us view A as a (k + 1)-

linear form C on the space F1×· · ·×Fk+1. Recalling (8.95) let us then apply
(8.99) to C (with d = k + 1). We then obtain the stronger form of (8.102),
where the summation in the right-hand side is restricted to the partitions P
whose restriction to {1, . . . , d− 1} is coarser than Q.

We have proved the upper bound of (8.97) and we turn to the proof of
the lower bound, which we shall prove only for p ≥ 2. First we observe that
for d = 1, this simply reflects the fact that for a standard Gaussian r.v. g
one has (E|g|p)1/p ≥ √p/L. (No, this has not been proved anywhere in this
book, but see Exercise 2.2.9.) Next we prove by induction on d that for each
d one has
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(E|X|p)1/p ≥
√
p

K
‖A‖{1,2,...,d} =

√
p

K

( ∑

i1,...,id

a2i1,...,id

)1/2
. (8.103)

For this we consider the random tensor B of order d− 1 given by

bi1,...,id−1
=
∑

i≤m

ai1,...,id−1,ig
d
i .

Applying the induction hypothesis to B given the r.v.s gdi , and denoting by
E′ expectation given these variables, we obtain

(E′|X|p)1/p ≥
√
p

K

( ∑

i1,...,id−1

b2i1,...,id−1

)1/2
.

We compute the norm in Lp of both sides, using that for p ≥ 2 one has
(E|Y |p)1/p ≥ (EY 2)1/2 to obtain (8.103) for d. (It is only at this place that a
tiny extra effort is required if p ≤ 2.)

Let us now prove by induction over k that

(E|X|p)1/p ≥ pk/2

K
‖A‖I1,...,Ik . (8.104)

The case k = 1 is (8.103). For the induction from k − 1 to k let us assume
without loss of generality that Ik = {r+1, . . . , d} and let us define a random
order d− r random tensor C by

cir+1,...,id =
∑

i1,...,ir

ai1,...,idg
1
i1 · · · g

r
ir ,

so that
X =

∑

ir+1,...,id

cir+1,...,idg
r+1
ir+1

· · · gdid .

Denoting now by E∼ expectation only in the r.v.s g�i for r + 1 ≤ � ≤ d, we
use (8.103) to obtain

(E∼|X|p)1/p ≥
√
p

K

( ∑

ir+1,...,id

c2ir+1,...,id

)1/2
.

Consequently, if xir+1,...,id are numbers with
∑

ir+1,...,id
x2
ir+1,...,id

≤ 1, one
gets

(E∼|X|p)1/p ≥
√
p

K

∣∣∣
∑

ir+1,...,id

cir+1,...,idxir+1,...,id

∣∣∣

=

√
p

K

∣∣∣
∑

i1,...,ir

di1,...,irg
1
i1 · · · g

r
ir

∣∣∣ , (8.105)
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where
di1,...,ir =

∑

ir+1,...,id

ai1,...,idxir+1,...,id .

We now compute the Lp norm of both sides of (8.105), using the induction
hypothesis to obtain

(E|X|p)1/p ≥ pk/2

K
‖D‖I1,...,Ik−1

,

where D is the tensor (di1,...,ir ). The supremum of the norms in right
hand side over the choices of (xir+1,...,id) with

∑
ir+1,...,id

x2
ir+1,...,id

≤ 1 is

‖A‖I1,...,Ik . (A formal definition of these norms by induction over k would be
based exactly on this property.) 
�

We now prepare for the proof of Theorem 8.3.3. We consider copies
E1, . . . , Ek of R

m and for vectors y� ∈ E�, y
� = (y�i )i≤m we define their

tensor product

y1 ⊗ · · · ⊗ yk =
(�=k∏

�=1

y�i�

)
,

which is simply the vector (zi1,...,ik) in R
mk

given by zi1,...,ik = y1i1 · · · y
k
ik
. Let

us consider for � ≤ m independent standard Gaussian vectors G� valued in
E� and let us fix vectors x� ∈ E�. For I ⊂ {1, . . . , k}, we use the notation

UI = y1 ⊗ · · · ⊗ yk ,

where y� = G� if � ∈ I and y� = x� otherwise. Thus U{1,...,k} = G1⊗· · ·⊗Gk

and U∅ = x1 ⊗ · · · ⊗ xk. We denote by ‖x‖ the Euclidean norm of a vector x
of E�.

Lemma 8.3.5. Consider a semi-norm α on R
mk

, and denote by Ik the col-
lection of non-empty subsets of {1, . . . , k}. Then

P

(
α(U{1,...,k} − U∅) ≤

∑

I∈Ik

4card IEα(UI)

)
≥ 2−k exp

(
−1

2

∑

�≤k

‖x�‖2
)
.

(8.106)

Proof. We start with the following observation. If μ denotes the canonical
Gaussian measure on R

m then for each compact symmetric body V of Rm

on has

μ(V + x) ≥ μ(V ) exp
(
−‖x‖

2

2

)
. (8.107)

Indeed, if λ denotes Lebesgue’s measure on R
m, then, using symmetry in the

second line, the parallelogram identity and convexity of the exponential in
the third line,
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μ(x+ V ) =

∫

x+V

exp
(
−‖y‖

2

2

)
dλ(y)

=

∫

V

exp
(
−‖x+ y‖2

2

)
dλ(y)

=

∫

V

1

2

(
exp
(
−‖x+ y‖2

2

)
+ exp

(
−‖x− y‖2

2

))
dλ(y)

≥
∫

V

exp
(
−‖x‖

2 + ‖y‖2
2

)
dλ(y)

= exp
(
−‖x‖

2

2

)
μ(V ) . (8.108)

To prove (8.106) for k = 1 we consider the set V = {y ∈ E1 ; α(y) ≤
4Eα(G1)}, so that by Markov’s inequality, μ(V c) ≤ 1/4 and consequently
μ(V ) ≥ 3/4. Then (8.107) implies

P(α(G1 − x1) ≤ 4Eα(G1)) = μ(V + x1) ≥
3

4
exp
(
−‖x

1‖2
2

)
,

which implies (8.106) for k = 1. For the induction proof from k − 1 to k we
consider the quantities

S =
∑

I∈Ik−1

4card Iα(UI∪{k})

and
T =

∑

I∈Ik−1

4card Iα(UI) .

In the case k = 2, the only case that we shall use, this is simply S = 4α(G1⊗
G2) and T = 4α(G1 ⊗ x2). We denote by Ek conditional expectation given
Gk and we consider the events

Ω1 = {α(U{k} − U∅) ≤ 4Eα(U{k})} ,

Ω2 = {α(U{1,...,k} − U{k}) ≤ EkS} ,

and
Ω3 = {EkS ≤ 4ES + ET} .

When these three events occur simultaneously, we have

α(U{1,··· ,k} − U∅) ≤ α(U{1,...,k} − U{k}) + α(U{k} − U∅)

≤ EkS + 4Eα(U{k})

≤ 4ES + ET + 4Eα(U{k})

=
∑

I∈Ik

4card IEα(UI) . (8.109)
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Next, we prove that

P(Ω1 ∩Ω3) ≥
1

2
exp
(
−‖x

k‖2
2

)
. (8.110)

For this we consider on Ek the semi-norms

α1(y) = α(x1 ⊗ · · · ⊗ xk−1 ⊗ y) ,

and
α2(y) =

∑

I∈Ik−1

4card IEα(WI) ,

whereWI = y1⊗· · · yk−1⊗y and y� = G� if � ∈ I and y� = x� otherwise. Thus
EkS = α2(G

k) and ET = α2(x
k). Since U{k}−U∅ = x1⊗· · ·⊗xk−1⊗(Gk−xk)

we have
Ω1 = {α1(G

k − xk) ≤ 4Eα1(G
k)} ,

Ω3 = {α2(G
k) ≤ 4Eα2(G

k) + α2(x
k)} .

Consider the convex symmetric set

V =
{
y ∈ Ek ; α1(y) ≤ 4Eα1(G

k) , α2(y) ≤ 4Eα2(G
k)
}
.

Then Markov’s inequality implies that P(Gk ∈ V ) ≥ 1/2, so that (8.107)
yields

P(Gk ∈ V + xk) ≥ 1

2
exp
(
−‖x

k‖2
2

)
. (8.111)

The triangle inequality implies

{Gk ∈ V + xk} ⊂ Ω1 ∩Ω3 ,

so (8.111) implies (8.110).
Finally we prove that if Pk denotes probability given Gk then

Pk(Ω2) ≥ 2−k+1 exp
(
−1

2

∑

�≤k−1

‖x�‖2
)
. (8.112)

For this we may think of Gk as a given deterministic vector of Ek. We then

consider on R
mk−1

the norm α′ given by α′(y) = α(y ⊗ Gk), where if y =
(yi1,...,ik−1

) and Gk = (gi) we define y ⊗ Gk = (wi1,...,ik) for wi1,...,ik =
yi1...ik−1

gik . We then observe that

Ω2 =
{
α′(G1 ⊗ · · · ⊗Gk−1 − x1 ⊗ · · · ⊗ xk−1) ≤ EkS

}
,

so that (8.112) follows from the induction hypothesis.
Since Ω1 and Ω3 depend on Gk only, combining (8.112) and (8.110)

proves that the probability that Ω1, Ω2, Ω3 occur simultaneously is at least
2−k exp(−

∑
�≤k ‖x�‖2/2). Combining with (8.109) completes the proof. 
�
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Having had all this fun with multi-indices and high-order tensors we turn
to the proof of Theorem 8.3.3. This will occupy the remainder of this section.
In order to make the ideas of this very deep result accessible we shall assume
that d = 3, and refer to Lata�la’s original paper for the general case. To cover
the case d = 3 we need only the cases k = 1 and k = 2 of Lemma 8.3.5.
We now draw consequences of this lemma. We recall the entropy numbers
en(T, d) of (2.34). The next result is classical, and is called “the dual Sudakov
inequality”. It is extremely useful.

Lemma 8.3.6. Consider a semi-norm α on R
m and a standard Gaussian

r.v. G valued in R
m. Then if dα is the distance associated with α, the unit

ball B of Rm satisfies

en(B, dα) ≤ L2−n/2Eα(G) . (8.113)

Proof. The case k = 1 of (8.106) implies

P(α(G− x) ≤ 4E(G)) ≥ 1

2
exp
(
−‖x‖

2

2

)
,

and, by homogeneity, for x ∈ B and τ > 0,

P(α(τG− x) ≤ 4τEα(G)) ≥ 1

2
exp
(
− 1

2τ2

)
. (8.114)

The proof then really follows the argument of Exercise 2.2.14. We repeat
this argument for the convenience of the reader. If ε = 4τEα(G) and U is
a subset of B such that any two points of U are at mutual distances ≥ 3ε
then the balls for dα of radius ε centered at the points of U are disjoint and
consequently (8.114) implies that cardU ≤ 2 exp(1/2τ2). But taking U as
large as possible the balls centered at U of radius 3ε cover B. Taking τ such
that 2 exp(1/2τ2) = 22

n

concludes the proof. 
�
Through the remainder of the section, we write

B =
{
x = (x1, x2) ∈ E1 × E2 ; ‖x1‖ ≤ 1, ‖x2‖ ≤ 1

}
. (8.115)

Lemma 8.3.7. Consider a subset T of 2B and a semi-norm α on R
m2

.
Consider the distance dα on T defined for x = (x1, x2) and y = (y1, y2) by

dα(x, y) = α(x1 ⊗ x2 − y1 ⊗ y2) . (8.116)

Let us define

α∗(T ) = sup
x∈T

(
Eα(x1 ⊗G2) + Eα(G1 ⊗ x2)

)
. (8.117)

Then
en(T, dα) ≤ L(2−n/2α∗(T ) + 2−nEα(G1 ⊗G2)) . (8.118)
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Proof. We deduce from (8.106) and homogeneity that for any τ > 0 one has

P
(
α(τ2G1 ⊗G2 − x1 ⊗ x2) ≤W

)
≥ 1

4
exp
(
− 1

2τ2

∑

�≤2

‖x�‖2
)
.

where

W = 4τ(Eα(x1 ⊗G2) + Eα(G1 ⊗ x2)) + 16τ2Eα(G1 ⊗G2) .

In particular when x = (x1, x2) ∈ T ⊂ 2B one has ‖x1‖2 + ‖x2‖2 ≤ 8 and
thus

P
(
α(τ2G1⊗G2−x1⊗x2) ≤ 4τα∗(T )+ 16τ2Eα(G1⊗G2)

)
≥ 1

4
exp
(
− 4

τ2

)
.

(8.119)
Let

ε = 4τα∗(T ) + 16τ2Eα(G1 ⊗G2) ,

and consider a subset U of T such that any two points of U are at mutual
distances ≥ 3ε for dα. Then the sets {z ∈ R

m2

;α(z−x1⊗x2) ≤ ε} for x ∈ U
are disjoint, so that (8.119) implies

cardU ≤ 4 exp(4τ−2) , (8.120)

and if one takes U maximal for the inclusion this proves that the covering
number N(T, dα, 3ε) is ≤ 4 exp(4τ−2). Choosing τ so that this quantity is
22

n

finishes the proof. 
�
Now we prove Theorem 8.3.3 in the case d − 1 = 1. The argument has

already been given at the beginning of the proof of Corollary 8.3.4 but we
repeat it for clarity. We simply write

‖〈A,G〉‖{1} = sup
‖x‖≤1

A(x,G) =
(∑

i

(∑

j

ai,jgj

)2)1/2
,

and use of the Cauchy-Schwarz inequality proves that

E‖〈A,G〉‖{1} ≤
(∑

i,j

a2i,j

)1/2
= ‖A‖{1,2} . (8.121)

Now we start the proof in the case d− 1 = 2. For a subset T of E1 × E2 we
define

F (T ) = E sup
x∈T

A(x1, x2, G) . (8.122)

Since all our spaces are finite dimensional, this quantity is finite whenever T
is bounded. The goal is to bound

F (B) = E‖〈A,G〉‖{1}{2} . (8.123)
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We consider the semi norm α on R
m2

given for z = (zi,j)i,j≤m by

α(z) =
(∑

k

(∑

i,j

ai,j,kzi,j

)2)1/2
. (8.124)

Then the corresponding distance dα on E1×E2 given by (8.116) is the canon-
ical distance associated to the Gaussian process Xx = A(x1, x2, G). This
semi-norm will be used until the end of the proof.

Using the Cauchy-Schwarz inequality, one obtains the relations

Eα(G1 ⊗ x2) ≤ ‖〈A, x2〉‖{1,3} (8.125)

Eα(x1 ⊗G2) ≤ ‖〈A, x1〉‖{2,3} (8.126)

Eα(G1 ⊗G2) ≤ ‖A‖{1,2,3} . (8.127)

Here, if A = (ai,j,k) and x2 = (x2
j ), then 〈A, x2〉 is the matrix (bi,k)

where bi,k =
∑

j ai,j,kx
2
j , and ‖〈A, x2〉‖{1,3} = (

∑
i,k b

2
i,k)

1/2, and to prove

(8.125) we simply observe that α(G1 ⊗ x2) = (
∑

k(
∑

i bi,kg
1
i )

2)1/2, so that
Eα(G1 ⊗ x2) ≤ (

∑
i,k b

2
i,k)

1/2 = ‖〈A, x2〉‖{1,3}, etc.

Lemma 8.3.8. For u = (u1, u2) ∈ E1 × E2 and T ⊂ 2B one has

F (u+ T ) ≤ F (T ) + 2‖〈A, u1〉‖{2,3} + 2‖〈A, u2〉‖{1,3} . (8.128)

Proof. We observe the identity

A(x1 + u1, x2 + u2, G) = A(x1, x2, G) +A(u1, x2, G)

+ A(x1, u2, G) +A(u1, u2, G) . (8.129)

We take the supremum over x ∈ T and then expectation to obtain (using
that EA(u1, u2, G) = 0)

F (T + u) ≤ F (T ) + C1 + C2 ,

where

C1 = E sup
‖x2‖≤2

A(u1, x2, G) ; C2 = E sup
‖x1‖≤2

A(x1, u2, G) .

We then apply (8.121) to the tensor 〈A, u1〉 to obtain C1 ≤ 2‖〈A, u1〉‖{2,3}
and similarly for C2. 
�

This results motivates the introduction on E1 × E2 of the norm

α∗(x) = ‖〈A, x1〉‖{2,3} + ‖〈A, x2〉‖{1,3} . (8.130)

Then (8.128) reads
F (u+ T ) ≤ F (T ) + 2α∗(u) . (8.131)

We denote by dα∗ the distance on E1 × E2 associated to the norm α∗.
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The semi-norm α∗ has another use: combining (8.117) with (8.125) and
(8.126) we observe the relation

α∗(T ) ≤ sup{α∗(x) ; x ∈ T} . (8.132)

Lemma 8.3.9. We have

en(2B, dα∗) ≤ L2−n/2‖A‖{1,2,3} . (8.133)

Proof. This is a consequence of Lemma 8.3.6 applied to the space E1×E2. A
standard Gaussian random vector valued in this space is of the type (G1, G2)
where G1 and G2 are standard Gaussian random vectors. Now, proceeding
as in (8.121) we get

E‖〈A,G1〉‖{2,3} ≤ ‖A‖{1,2,3} ,

and similarly E‖〈A,G1〉‖{1,3} ≤ ‖A‖{1,2,3}, so that

Eα∗(G1, G2) ≤ 2‖A‖{1,2,3} . 
�

We lighten notation by setting

S1 = ‖A‖{1,2,3} . (8.134)

Given a point y ∈ B and a, b > 0 we define

C(y, a, b) =
{
x ∈ B − y ; dα(0, x) ≤ a , dα∗(0, x) ≤ b

}
. (8.135)

We further define

W (a, b) = sup{F (C(y, a, b)) ; y ∈ B} . (8.136)

The center of the argument is as follows:

Lemma 8.3.10. For all values of a, b > 0 and n ≥ 0 we have

W (a, b) ≤ L2n/2a+ Lb+W (L2−n/2b+ L2−nS1, L2
−n/2S1) . (8.137)

Proof. Consider y ∈ B so that B−y ⊂ 2B and T = C(y, a, b) ⊂ 2B. It follows
from (8.132) that α∗(T ) ≤ b. Combining (8.118) and (8.127) we obtain that
en(T, dα) ≤ δ := L(2−n/2b+2−nS1). Using also (8.133) we find a partition of

T = C(y, a, b) into Nn+1 = 22
n+1

sets which are of diameter ≤ δ for dα and of
diameter ≤ δ∗ := L2−n/2S1 for dα∗ . Thus we can find points yi ∈ C(y, a, b)
for i ≤ Nn+1 such that

C(y, a, b) ⊂
⋃

i≤Nn+1

Ti , (8.138)



268 8. Processes Related to Gaussian Processes

where

Ti =
{
x ∈ E1 × E2 ; x ∈ C(y, a, b) , dα(yi, x) ≤ δ , dα∗(yi, x) ≤ δ∗

}
.

For x ∈ B − y we have x− yi ∈ B − (y + yi), so that

Ti − yi ⊂ C(y + yi, δ, δ
∗) (8.139)

and
Ti ⊂ yi + C(y + yi, δ, δ

∗) . (8.140)

Also, since yi ∈ B − y we have y + yi ∈ B, so that

F (C(y + yi, δ, δ
∗)) ≤W (δ, δ∗) ,

and combining with (8.140) and (8.131), and since α∗(yi) = dα∗(yi, 0) ≤ b
because yi ∈ C(y, a, b) we obtain

F (Ti) ≤W (δ, δ∗) + 2b . (8.141)

The conclusion then follows from (8.138) and the bound

F
( ⋃

i≤M

Ti

)
≤ La

√
logM +max

i≤M
F (Ti) ,

see (2.88). 
�

Proposition 8.3.11. For n ≥ 0 we have

W (a, b) ≤ L(2n/2a+ b+ 2−n/2S1) . (8.142)

Proof of Theorem 8.3.3 for d = 3. We set

S3 = ‖A‖{1}{2}{3}
S2 = ‖A‖{1}{2,3} + ‖A‖{2}{1,3} + ‖A‖{3}{1,2} .

Since α(x1 ⊗ x2) = sup{A(x1, x2, x3); ‖x3‖ ≤ 1}, we have dα(x, 0) ≤ S3 for
x ∈ B. Therefore B ⊂ C(0, S3, S2) so that

F (B) ≤W (S3, S2) ≤ L(2n/2S3 + S2 + 2−n/2S1) .

Recalling (8.123) and choosing n so that 2n/2 is about τ proves (8.98). 
�
Proof of Proposition 8.3.11. Changing n into n+ n0 where n0 is a universal
constant, (8.137) implies that for n ≥ n0 one has

W (a, b) ≤ L2n/2a+ Lb+W (2−n/2−2b+ 2−n−2S1, 2
−(n+1)/2S1) . (8.143)

Using this for a = 2−nS1 and b = 2−n/2S1, we obtain
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W (2−nS1, 2
−n/2S1) ≤ L2−n/2S1 +W (2−n−1S1, 2

−(n+1)/2S1) .

Summation of these relations for n ≥ r implies that for r ≥ n0

W (2−rS1, 2
−r/2S1) ≤ L2−r/2S1 . (8.144)

Using this relation we then deduce from (8.143) that

W (a, 2−n/2S1) ≤ L2n/2a+ L2−n/2S1 ,

and bounding the last term of (8.143) using this inequality yields (8.142). 
�

The proof of Theorem 8.3.3 for the general value of d does not require
any essentially new idea. It is more complicated to write because there are
more terms when witting the relation corresponding to (8.129). We strongly
encourage the reader to carry out this proof in the case d = 4, using (8.142)
and the induction hypothesis.

8.4 Notes and Comments

Our exposition of Lata�la’s result in Section 8.3 brings no new idea whatsoever
compared to his original paper [4]. (Improving the mathematics of Rafa�l
Lata�la seems extremely challenging.) Whatever part of the exposition might
be better than in the original paper draws heavily on J. Lehec’s paper [6].
This author found [4] very difficult to read, and included Section 8.3 in an
effort to make these beautiful ideas more accessible. It seems most probable
that Lata�la started his work with the case d = 3, but one has to do significant
reverse engineering to get this less technical case out of his paper.
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9. Theory and Practice of Empirical Processes

9.1 Discrepancy Bounds

Throughout this section we consider a probability space (Ω,μ), and (to
avoid well understood measurability problems) a countable bounded sub-
set of L2(μ), which, following the standard notation in empirical processes
theory, we will denote by F rather than T . (Since F is countable, there is no
need to really distinguish between L2(μ) and L2(μ).) To lighten notation we
set

μ(f) =

∫
fdμ .

Consider i.i.d. r.v.s (Xi)i≥1 valued in Ω, distributed like μ and

SN (F) := E sup
f∈F

∣∣∣
∑

i≤N

(f(Xi)− μ(f))
∣∣∣ . (9.1)

We have already seen in Chapter 4 the importance of evaluating such quan-
tities. In the present section we consider this question from a theoretical
perspective, and we try to focus on the fundamental problems this raises. Let
us first mention a basic result (which we already used in Chapter 5).

Proposition 9.1.1. If 0 ∈ F we have

SN (F) ≤ L
(√

Nγ2(F , d2) + γ1(F , d∞)
)
, (9.2)

where d2 and d∞ are the distances on F induced by the norms of L2 and L∞

respectively.

Proof. This follows from Bernstein’s inequality (4.59) and Theorem 2.2.23
just as in the case of Theorem 4.3.6. The requirement that 0 ∈ F is made
necessary by the absolute values in (9.1). 
�

There is however a very different bound, namely the inequality

SN (F) ≤ 2E sup
f∈F

∑

i≤N

|f(Xi)| . (9.3)

To see this we simply write

M. Talagrand, Upper and Lower Bounds for Stochastic Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
Modern Surveys in Mathematics 60, DOI 10.1007/978-3-642-54075-2 9,

© Springer-Verlag Berlin Heidelberg 2014
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SN (F) ≤ E sup
f∈F

∑

i≤N

|f(Xi)− μ(f)|

≤ E sup
f∈F

∑

i≤N

|f(Xi)|+N sup
f∈F

|μ(f)| ,

and we observe that the first term in the last line is ≥ than the second term
through Jensen’s inequality. The bound (9.3) does not involve cancellation,
and is of a really different nature than (9.2), which involves cancellation in
an essential way through Bernstein’s inequality.

Having two completely different methods (9.2) and (9.3) to control SN (F),
we can interpolate between them in the spirit of Proposition 5.1.4 as follows.

Proposition 9.1.2. Consider classes F ,F1 and F2 of functions in L2(μ),
and assume that F ⊂ F1 + F2. Assume that 0 ∈ F1. Then

SN (F) = E sup
f∈F

∣∣∣
∑

i≤N

(f(Xi)− μ(f))
∣∣∣ ≤ L

(√
Nγ2(F1, d2) + γ1(F1, d∞)

)

+ 2E sup
f∈F2

∑

i≤N

|f(Xi)| .

Proof. Since F ⊂ F1 + F2, it is clear that SN (F) ≤ SN (F1) + SN (F2). We
then use the bound (9.2) for the first term and the bound (9.3) for the second
term. 
�

Is there any other way to control SN (F) than the method of Proposition
9.1.2? This fundamental problem is related to the situation of Theorem 5.1.5.
We formalize it as follows.

Research problem 9.1.3. Consider a class F of functions in L2(μ) with
μ(f) = 0 for f ∈ F . Given an integer N , can we find a decomposition
F ⊂ F1 + F2 with 0 ∈ F1 such that the following properties hold:

γ2(F1, d2) ≤
L√
N

SN (F)

γ1(F1, d∞) ≤ LSN (F)

E sup
f∈F2

∑

i≤N

|f(Xi)| ≤ LSN (F) ?

In Chapter 12 we shall investigate further generalizations of this question.

Exercise 9.1.4. We say that a countable class F of functions is a Glivenko-
Cantelli class if

lim
N→∞

E sup
f∈F

∣∣∣
1

N

∑

i≤N

(f(Xi)− μ(f))
∣∣∣ = lim

N→∞

SN (F)
N

= 0 .
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Assuming that F is uniformly bounded, prove that F is a Glivenko-Cantelli
class if and only if for each ε > 0 one can find a decomposition F ⊂ F1 +F2

and an integer N0 such that F1 is finite and

N ≥ N0 ⇒ E sup
f∈F2

1

N

∑

i≤N

|f(Xi)| ≤ ε .

(Hint: use Theorem 6 of [12] for the “only if” part.)

The main result of this section is a kind of partial answer to Research
Problem 9.1.3, where we write γ2(F) rather than γ2(F , d2).

Theorem 9.1.5. Consider a countable class F of functions in L2(μ), with
μ(f) = 0 for f ∈ F . Then we can find a decomposition F ⊂ F1 + F2 where
0 ∈ F1,

γ2(F1, d2) ≤ Lγ2(F) (9.4)

γ1(F1, d∞) ≤ L
√
Nγ2(F) (9.5)

E sup
f∈F2

∑

i≤N

|f(Xi)| ≤ L(SN (F) +
√
Nγ2(F)) . (9.6)

It is of course a very mild restriction to assume that μ(f) = 0 for f ∈ F , since
we have SN (F) = SN (F∗) where F∗ = {f − μ(f); f ∈ F}. This restriction
allows for a slightly easier presentation.

The decomposition of Theorem 9.1.5 resembles that of Problem 9.1.3,
but uses the quantity γ2(F) rather than SN (F)/

√
N . Unfortunately, as the

following exercise shows, it need not be true that γ2(F) ≤ LSN (F)/
√
N ,

so that Theorem 9.1.5 does not solve Research problem 9.1.3. On the other
hand, Lemma 9.1.7 below shows that γ2(F) ≤ L supM SM (F)/

√
M .

Exercise 9.1.6. Given an integer N and a number A construct a finite class
F of functions such that ASN (F) ≤ γ2(F). (Hint: observe that the fact that
for all f ∈ F one has 0 ≤ f ≤ g for some g with

∫
|g|dμ <∞ limits the size

of SN (F) but does not limit the size of γ2(F).)

A good setting to illustrate the use of Theorem 9.1.5 is that of Donsker
classes, which are classes of functions on which the central limit theorem
holds uniformly. The precise definition of Donsker classes includes a number
of technicalities that are not related to the topic of this book and we refer e.g.
to [5] for this. Here we will concentrate on the essential issue of this theory,
the study of classes F for which

C(F) := sup
N

1√
N

SN (FN ) <∞ . (9.7)

The following easy fact demonstrates how Theorem 9.1.5 is related to
Research Problem 9.1.3.
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Lemma 9.1.7. If μ(f) = 0 for each f in F , we have γ2(F) ≤ LC(F).

Proof. Consider a finite subset T of F . By the ordinary central limit theorem,
the joint law of (N−1/2

∑
i≤N f(Xi))f∈T converges to the law of a Gaussian

process (gf )f∈T and thus

E sup
f∈T

gf ≤ C(F) . (9.8)

The construction of the process (gf )f∈T shows that for f1, f2 ∈ T we
have Egf1gf2 =

∫
f1f2dμ. Now we identify L2(μ) with �2(N∗) through the

choice of an arbitrary orthonormal basis. Since the law of a Gaussian process
is determined by its covariance, the left-hand side of (9.8) is exactly g(T ).
This shows that g(T ) ≤ C(F), and the result follows by Theorem 2.4.1 and
(2.163). 
�

We then have the following characterization of classes for which C(F) <
∞.

Theorem 9.1.8. Consider a class of functions F of L2(μ) and assume that
μ(f) = 0 for each f ∈ F . Then we have C(F) < ∞ if and only if there
exists a number A and for each N there exists a decomposition F ⊂ F1 +F2

(depending on N) where 0 ∈ F1 such that

γ2(F1, d2) ≤ A

γ1(F1, d∞) ≤
√
NA

E sup
f∈F2

∑

i≤N

|f(Xi)| ≤
√
NA .

Proof. The necessity follows from Lemma 9.1.7 and Theorem 9.1.5, while
sufficiency follows from Proposition 9.1.1. 
�

The proof of Theorem 9.1.5 has two essential ingredients, the first of which
is the following general principle.

Theorem 9.1.9. Consider a countable set T ⊂ L2(μ), and a number u > 0.
Assume that S = γ2(T, d2) <∞. Then there is a decomposition T ⊂ T1 + T2

where

γ2(T1, d2) ≤ LS ; γ1(T1, d∞) ≤ LSu (9.9)

γ2(T2, d2) ≤ LS ; T2 ⊂
LS

u
B1 . (9.10)

Here of course

T1 + T2 =
{
t1 + t2 ; t1 ∈ T1 , t2 ∈ T2

}
.
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In words, we can reconstruct T from the two sets T1 and T2. These two
sets are not really larger than T with respect to γ2. Moreover, for each of them
we have some extra information: we control γ1(T1, d∞), and we control the
L1 norm of the elements of T2. In some sense Theorem 9.1.9 is an extension of
Lemma 5.2.9, which deals with the case where T consists of a single function.

We will give two proofs of Theorem 9.1.9. The first proof relies on Theo-
rem 5.2.7. The second proof avoids the use of Theorem 5.2.7, but is essentially
based on the same argument, in a somewhat simpler setting. It is provided
only to help the reader form an intuition about what is going on.

First proof of Theorem 9.1.9. We denote by Δ2(A) the diameter of a set A
for the L2 norm. We consider an admissible sequence (An) of T such that

∀t ∈ T ,
∑

n≥0

2n/2Δ2(An(t)) ≤ 2S . (9.11)

We are going to apply Theorem 5.2.7 with r = 2 and μ the counting measure.
Consider a parameter u > 0. We define jn(A) as the largest integer for which

2n/22−jn(A) ≥ uΔ2(A) , (9.12)

so that
2n/22−jn(A) ≤ 2uΔ2(A) . (9.13)

Thus (5.30) is obvious and (9.12) shows that (5.31) holds for u′ = 1/u2 instead
of u. Thus the hypotheses of Theorem 5.2.7 are satisfied (for u′ = 1/u2 instead
of u), and we consider the decomposition T ⊂ T1 + T2 + T3 provided by this
theorem (using u′ instead of u). We observe that (9.11) implies

sup
t∈T

∑

n≥0

2n2−jn(An(t)) ≤ LuS . (9.14)

From (5.26) and (9.14) we obtain that γ2(T1, d2) ≤ LS, and (5.27) and (9.14)
yield γ1(T1, d∞) ≤ LuS, while (5.28) and (9.14) imply ‖t‖1 ≤ LS/u for t ∈ T2.

Next we prove that

t ∈ T3 ⇒ ‖t‖1 ≤ LS/u . (9.15)

Since 0 ∈ T , we have ‖s‖2 ≤ Δ2(T ) for s ∈ T . Using that |s|1{|s|≥v} ≤ s2/v

for v = 2−j0(T )−1, and since v ≥ uΔ2(T )/2 using (9.12) for n = 0, we get

‖s1{2|s|≥2−j0(T )}‖1 ≤ ‖s‖22/v ≤ LΔ2(T )/u .

Considering only the term n = 0 in (9.11) yields Δ2(T ) ≤ 2S, so that for any
s ∈ T we have ‖s1{2|s|≥2−j0(T )}‖1 ≤ LS/u and (5.29) implies (9.15).

Setting T ′
2 = T2 + T3, we have shown that ‖t‖1 ≤ LS/u for t ∈ T ′

2.
Now since T ⊂ T1 + T2 + T3, we have T ⊂ T1 + T ′

2 so that T ⊂ T1 + T ′′
2
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where T ′′
2 = T ′

2 ∩ (T − T1). We prove that the decomposition T ⊂ T1 + T ′′
2

satisfies the required properties. Since γ2(T, d2) ≤ LS and γ2(T1, d2) ≤ LS,
(2.97) implies that γ2(T −T1) ≤ LS. Consequently γ2(T

′′
2 , d2) ≤ LS, and also

T ′′
2 ⊂ T ′

2 ⊂ LSB1/u. 
�

Second proof of Theorem 9.1.9. The idea is simply to write an element of T
as the sum of the increments along a chain, and to apply Lemma 5.2.9 to
each of these increments. We will also take advantage of the fact that T is
countable to write each element of T as the sum of the increments along a
chain of finite length, but this is not an essential part of the argument.

As usual, Δ2(A) denotes the diameter of A for the distance d2. We con-
sider an admissible sequence of partitions (An)n≥0 as in (9.11).

Let us enumerate T as (tn)n≥0. By induction over n we pick points tn,A ∈
A for A ∈ An. We choose any point we want unless A = An(tn), in which
case we choose tn,A = tn. Thus each point t of T is of the type tn,A for some
n and A = An(t). Let us define πn(t) = tn,A where A = An(t). We observe
that πn(t) = t when t = tn. For n ≥ 1, let ft,n = πn(t)−πn−1(t), so that ft,n
depends only on An(t) and

‖ft,n‖2 ≤ Δ2(An−1(t)) . (9.16)

Using Lemma 5.2.9 with 2−n/2u‖ft,n‖2 instead of u we can decompose ft,n =
f1
t,n + f2

t,n where

‖f1
t,n‖2 ≤ ‖ft,n‖2 , ‖f1

t,n‖∞ ≤ 2−n/2u‖ft,n‖2 (9.17)

‖f2
t,n‖2 ≤ ‖ft,n‖2 , ‖f2

t,n‖1 ≤
2n/2

u
‖ft,n‖2 . (9.18)

Given t ∈ T we set g1t,0 = tT and g2t,0 = 0, while if n ≥ 1 we set

g1t,n = tT +
∑

1≤k≤n

f1
t,k , g2t,n =

∑

1≤k≤n

f2
t,k .

We set

T 1
n =
{
g1t,m ; m ≤ n , t ∈ T

}
; T 2

n =
{
g2t,m ; m ≤ n , t ∈ T

}

T1 =
⋃

n≥0

T 1
n ; T2 =

⋃

n≥0

T 2
n .

We have T ⊂ T1 + T2. Indeed, if t ∈ T , then t = tn for some n and we have
arranged that then πn(t) = t. Since π0(t) = tT we have

t− tT = πn(t)− π0(t) =
∑

1≤k≤n

πk(t)− πk−1(t) =
∑

1≤k≤n

ft,k ,

so that t = g1t,n + g2t,n ∈ T1 + T2.
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Since for j = 1, 2 the element gjt,n depends only on An(t), we have

cardT j
n ≤ N0 + · · · + Nn, so that cardT j

0 = 1 and cardT j
n ≤ Nn+1. Con-

sider t1 ∈ T1, so that t1 = g1t,m for some m and some t ∈ T . If m ≤ n we
have t1 = g1t,m ∈ T 1

n so that d(t1, T 1
n) = 0. If m > n we have g1t,n ∈ T 1

n , so
that, using (9.16) and (9.17) in the third inequality we get

d2(t
1, T 1

n) ≤ d2(g
1
t,m, g1t,n) ≤

∑

k>n

‖f1
t,k‖2 ≤

∑

k>n

Δ2(Ak−1(t)) . (9.19)

Hence
∑

n≥0

2n/2d2(t
1, T 1

n) ≤
∑

n≥0,k>n

2n/2Δ2(Ak−1(t))

≤ L
∑

k≥1

2k/2Δ2(Ak−1(t)) ≤ LS .

It then follows from Theorem 2.3.1 (used for τ ′ = 1) that γ2(T1, d2) ≤ LS.
The proof that γ2(T2, d2) ≤ LS is identical.

To control γ1(T1, d∞) we use the same approach. We replace (9.19) by

d∞(t1, T 1
n) ≤ d∞(g1t,m, g1t,n) ≤

∑

k>n

‖f1
t,k‖∞ ≤

∑

k>n

2−k/2uΔ2(Ak−1(t)) .

Hence
∑

n≥0

2nd∞(t1, T 1
n) ≤ u

∑

n≥0,k>n

2n−k/2Δ2(Ak−1(t))

≤ Lu
∑

k≥1

2k/2Δ2(Ak−1(t)) ≤ LuS ,

and it follows again from Theorem 2.3.1 that γ1(T1, d∞) ≤ LS. Finally, (9.18)
and (9.17) yield

‖g2t,n‖1 ≤
∑

k≥1

‖f2
t,k‖1 ≤

∑

k≥1

2k/2

u
Δ2(Ak−1(t)) ≤

LS

u
,

so that T2 ⊂ LB1/u. This completes the proof. 
�
Proof of Theorem 9.1.5. We use the decomposition of Theorem 9.1.9 with
u =

√
N . This produces a decomposition F ⊂ F1 + F2, where F1 satisfies

(9.4) and (9.5), while F2 ⊂ Lγ2(F)B1/
√
N . Moreover the construction is

such that F2 ⊂ F − F1, so that SN (F2) ≤ SN (F) + SN (F1). Combining
(9.4), (9.5) and (9.2) yields SN (F1) ≤ L

√
Nγ2(F). Consequently

E sup
f∈F2

∣∣∣
∑

i≤N

f(Xi)
∣∣∣ = SN (F2) ≤ SN (F) + L

√
Nγ2(F) .

Since
∫
|f |dμ ≤ Lγ2(F)/

√
N for f ∈ F2, equation (9.6) follows now from the

next result, which is the second major ingredient of the proof. 
�
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Theorem 9.1.10 (The Giné-Zinn Theorem [6]). For a class F of func-
tions with μ(f) = 0 for f in F we have

E sup
f∈F

∑

i≤N

|f(Xi)| ≤ N sup
f∈F

∫
|f |dμ+ 4E sup

f∈F

∣∣∣
∑

i≤N

f(Xi)
∣∣∣ . (9.20)

While simple, this is very useful. Let us observe that using Jensen’s inequal-
ity for the first term we also have the following (proving that (9.20) can
essentially be reversed)

N sup
f∈F

∫
|f |dμ+ 4E sup

f∈F

∣∣∣
∑

i≤N

f(Xi)
∣∣∣ ≤ 5E sup

f∈F

∑

i≤N

|f(Xi)| .

In order to avoid repetition, we will prove a more general fact. We consider
pairs (Ri, Xi) of r.v.s, with Xi ∈ Ω , Ri ≥ 0, and we assume that these
pairs are independent. We consider a Bernoulli sequence (εi)i≥1, that is an
i.i.d. sequence with P(εi = ±1) = 1/2. We assume that these sequences are
independent of the r.v.s (Ri, Xi). We assume that for each ω, only finitely
many of the r.v.s Ri(ω) are not zero.

Lemma 9.1.11. For a countable class of functions F we have

E sup
f∈F

∣∣∣
∑

i≥1

(
Rif(Xi)− E(Rif(Xi))

)∣∣∣ ≤ 2E sup
f∈F

∣∣∣
∑

i≥1

εiRif(Xi)
∣∣∣ (9.21)

and

E sup
f∈F

∑

i≥1

Ri|f(Xi)| ≤ sup
f∈F

∑

i≥1

E(Ri|f(Xi)|)+2E sup
f∈F

∣∣∣
∑

i≥1

εiRif(Xi)
∣∣∣ . (9.22)

Moreover, if E(Rif(Xi)) = 0 for each i ≥ 1, then

E sup
f∈F

∣∣∣
∑

i≥1

εiRif(Xi)
∣∣∣ ≤ 2E sup

f∈F

∣∣∣
∑

i≥1

Rif(Xi)
∣∣∣ . (9.23)

Proof of Theorem 9.1.10. We take Ri = 1 if i ≤ N and Ri = 0 if i ≥ N , and
we combine (9.22) and (9.23). 
�
Proof of Lemma 9.1.11. Consider an independent copy (Si, Yi)i≥1 of the se-
quence (Ri, Xi)i≥1, which is independent of the sequence (εi)i≥1. Jensen’s
inequality implies

E sup
f∈F

∣∣∣
∑

i≥1

(
Rif(Xi)− E(Rif(Xi))

)∣∣∣ ≤ E sup
f∈F

∣∣∣
∑

i≥1

(Rif(Xi)− Sif(Yi))
∣∣∣ .

Since the sequences (Rif(Xi)−Sif(Yi)) and (εi(Rif(Xi)−Sif(Yi))) of r.v.s
have the same law, we have
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E sup
f∈F

∣∣∣
∑

i≥1

(Rif(Xi)− Sif(Yi))
∣∣∣ = E sup

f∈F

∣∣∣
∑

i≥1

εi(Rif(Xi)− Sif(Yi))
∣∣∣

≤ 2E sup
f∈F

∣∣∣
∑

i≥1

εiRif(Xi)
∣∣∣

and we have proved (9.21). To prove (9.22), we write

∑

i≥1

Ri|f(Xi)| ≤
∑

i≥1

E(Ri|f(Xi)|) +
∑

i≥1

(
Ri|f(Xi)| − E(Ri|f(Xi)|)

)
,

we take the supremum over f and expectation, and we use (9.21) to get

E sup
f∈F

∑

i≥1

Ri|f(Xi)| ≤ sup
f∈F

∑

i≥1

E(Ri|f(Xi)|) + 2E sup
f∈F

∣∣∣
∑

i≥1

εiRi|f(Xi)|
∣∣∣ .

We then conclude with the comparison theorem for Bernoulli processes ([13],
Theorem 2.1), which implies

E sup
f∈F

∣∣∣
∑

i≥1

εiRi|f(Xi)|
∣∣∣ ≤ E sup

f∈F

∣∣∣
∑

i≥1

εiRif(Xi)
∣∣∣ .

To prove (9.23), we work conditionally on the sequence (εi)i≥1. Setting I =
{i ≥ 1; εi = 1} and J = {i ≥ 1; εi = −1}, we obtain

E sup
f∈F

∣∣∣
∑

i≤N

εiRif(Xi)
∣∣∣ ≤ E sup

f∈F

∣∣∣
∑

i∈I

Rif(Xi)
∣∣∣+ E sup

f∈F

∣∣∣
∑

i∈J

Rif(Xi)
∣∣∣ .

Now, since ERif(Xi) = 0, Jensen’s inequality implies

E sup
f∈F

∣∣∣
∑

i∈I

Rif(Xi)
∣∣∣ ≤ E sup

f∈F

∣∣∣
∑

i≥1

Rif(Xi)
∣∣∣ . 
�

The following is a very powerful practical method to control SN (F).

Theorem 9.1.12. Consider a countable class F of functions in L2(μ) with
0 ∈ F . Consider an admissible sequence (An) of partitions of F . For A ∈ An,
define the function hA by

hA(ω) = sup
f,f ′∈A

|f(ω)− f ′(ω)| . (9.24)

Assume that for a certain j0 = j0(F) we have

‖hF‖2 ≤
2−j0

√
N

. (9.25)

Assume that for each n ≥ 1 and each A ∈ An we are given a number jn(A) ∈
Z with
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∫
(22jn(A)h2

A) ∧ 1dμ ≤ 2n

N
(9.26)

and
A ∈ An+1 , B ∈ An ⇒ jn+1(A) ≥ jn(B) , (9.27)

and let
S = sup

f∈F

∑

n≥0

2n−jn(An(f)) . (9.28)

Then
SN (F) = E sup

f∈F

∣∣∣
∑

i≤N

(f(Xi)− μ(f))
∣∣∣ ≤ LS . (9.29)

It is instructive to rewrite (9.25) as
∫
22j0(F)h2

Fdμ ≤ 1/N in order to compare
it with (9.26).

Corollary 9.1.13. With the notation of Theorem 9.1.12 define now

S∗ = sup
f∈F

∑

n≥0

2n/2‖hAn(f)‖2 . (9.30)

Then
SN (F) ≤ L

√
NS∗ . (9.31)

This provide a bound for SN (F)/
√
N , and is useful in the study of Donsker

classes. The reader will observe that Δ(A) ≤ ‖hA‖2 for all A, so that (9.30)
implies that γ2(F , d2) ≤ S∗. This alone is however not sufficient to prove
(9.31).

Exercise 9.1.14. Given two (measurable) functions f1 ≤ f2 define the
bracket [f1, f2] as the set of functions {f ; f1 ≤ f ≤ f2}. Given a class F
of functions and ε > 0 define N[ ](F , ε) as the smallest number of brackets
[f1, f2] with ‖f2− f1‖2 ≤ ε which can cover F . Use Corollary 9.1.13 to prove
that

SN (F) ≤ L
√
N

∫ ∞

0

√
logN[ ](F , ε)dε . (9.32)

Inequality (9.32) is known as Ossiander’s bracketing theorem, and (9.31) is
simply the “generic chaining version” of it. The proof of Ossiander’s brack-
eting theorem requires a tricky idea beyond the ideas of Dudley’s bound.
In our approach, we deduce Ossiander’s bracketing theorem in a straightfor-
ward manner from Theorem 9.1.12, and Theorem 9.1.12 itself is a straightfor-
ward consequence of Theorem 5.2.1. None of these simple arguments involves
chaining. All the work involving chaining has already been performed in The-
orem 5.2.1. This is why we suggested in Section 5.8 that in some sense one
might say that Theorem 5.2.1 succeeds in extending the specific chaining ar-
gument of Ossiander’s bracketing theorem from a specific situation involving
brackets to a considerably more general setting.
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Proof of Corollary 9.1.13. We have already given similar arguments many
times. Define jn(A) as the largest integer j for which ‖hA‖2 ≤ 2n/2−j/

√
N ,

so that 2n/2−jn(A) ≤ 2
√
N‖hA‖2, and consequently

∑

n≥0

2n−jn(An(f)) ≤ 2
√
N
∑

n≥0

2n/2‖hAn(f)‖2 .

By definition of jn(A) we have ‖hA‖2 ≤ 2n/2−jn(A)/
√
N . This implies (9.26)

and the result then follows from Theorem 9.1.12. 
�
Proof of Theorem 9.1.12. Let us fix A ∈ An and consider the r.v.s Wi =
(22jn(A)hA(Xi)

2)∧ 1, so that by (9.26) we have
∑

i≤N EWi ≤ 2n. Consider a
parameter u ≥ 1. Then Lemma 7.4.3 (b) yields

P
(∑

i≤N

Wi ≥ u2n+2
)
≤ exp(−u2n+1) . (9.33)

Consider the event Ω(u) defined by

∀n ≥ 0 , ∀A ∈ An ,
∑

i≤N

22jn(A)hA(Xi)
2 ∧ 1 ≤ u2n+2 , (9.34)

so that (9.33) and the union bound yield P(Ω(u)) ≥ 1 − L exp(−u). Let us
consider independent Bernoulli r.v.s εi, that are independent of the Xi, and
let us recall that Eε denotes expectation in the r.v.s εi only. Given the r.v.s Xi

we consider the set T of all sequences of the type (ti)1≤i≤N = (f(Xi))1≤i≤N

for f ∈ F . To bound E supt∈T |
∑

i≤N εiti| we appeal to Theorem 5.2.1. We
observe that (5.9) is identical to (9.27), and that (5.10) (with 4u rather than
u) follows from (9.34) since |f(Xi) − f ′(Xi)| ≤ hA(Xi) for f, f ′ ∈ A. Also,
for f ∈ F we have |f(Xi)| ≤ hF (Xi), so that

|f(Xi)|1{2|f(Xi)|≥2−j0(F)} ≤ hF (Xi)1{2hF (Xi)≥2−j0(F)} .

We then use (5.12) with p = 1 to obtain

Eε sup
f∈F

∣∣
∑

i≤N

εif(Xi)
∣∣ ≤ Lu sup

f∈F

∑

n≥0

2n−jn(An(f))

+ L
∑

i≤N

hF (Xi)1{2hF (Xi)≥2−j0(F)} . (9.35)

The expectation of the last term is LN
∫
hF1{2hF≥2−j0(F)}. Now, since

h1{h≥v} ≤ h2/v, and using (9.25) in the last inequality,

N

∫
hF1{2hF≥2−j0(F)}dμ ≤ N2j0(F)+1

∫
h2
Fdμ ≤ 2−j0(F)+1 .

Consequently, taking expectation in (9.35) and using that P(Ω(u)) ≥ 1 −
L exp(−u) we obtain
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E sup
f∈F

∣∣∑

i≤N

εif(Xi)
∣∣ ≤ L sup

f∈F

∑

n≥0

2n−jn(An(f)) = LS ,

and we conclude the proof using (9.21) for Ri = 1 when i ≤ N and Ri = 0
otherwise. 
�

9.2 How to Approach Practical Problems

A practical problem is of the following type. You are given a class F with
certain properties and you try to bound

S = sup
f∈F

∣∣∣
∑

i≤N

(f(Xi)− Ef(Xi))
∣∣∣ .

(Of course, the reader may not agree with this definition of a practical prob-
lem. The point here is that one has to deal with a specific class rather than
trying to understand in general how to bound SN (F).) A first point is that
if we are only interested in bounding ES = SN (F) it is apparently always
good to use (9.21), which yields here

ES ≤ 2E sup
f∈F

∣∣∣
∑

i≤N

εif(Xi)
∣∣∣ . (9.36)

There are of course situations where this is not sufficient, e.g. when we are
interested, say, in bounding the probability that S is large. In that case, it
typically seems that one can proceed as well without (9.21). One just has
to work a little harder. A rather typical example of this situation will be
given when we present two different proofs of Proposition 14.5.1 below, one
that proceeds directly from Bernstein’s inequality, and one that uses a device
similar to (9.21). As we try here to avoid secondary complications, we will
only consider situations where we study SN (F) and we use (9.36).

To bound the right-hand side of (9.36) we think of the process as a
Bernoulli process conditionally on the r.v.s Xi and we use chaining. That
is, we have to bound along the chain the quantities

∣∣∣
∑

i≤N

εi(πn(f)(Xi)− πn−1(f)(Xi))
∣∣∣ .

For this we find a decomposition

πn(f)(Xi)− πn−1(f)(Xi) = vi + wi , (9.37)

and we write that by the subgaussian inequality, with probability Pε ≥ 1 −
exp(−L2n) we have
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∣∣∣
∑

i≤N

εi(πn(f)(Xi)− πn−1(f)(Xi))
∣∣∣ ≤
∑

i≤N

|vi|+ L2n/2
(∑

i≤N

w2
i

)1/2
. (9.38)

A specific way to find such a decomposition is to write vi = (πn(f)(Xi) −
πn−1(f)(Xi))1{i∈I} for a cleverly chosen subset I of {1, . . . , N}, in which case
(9.38) becomes

∣∣∣
∑

i≤N

εi(πn(f)(Xi)− πn−1(f)(Xi))
∣∣∣ ≤
∑

i∈I

|πn(f)(Xi)− πn−1(f)(Xi)|

+ L2n/2
(∑

i 	∈I

|πn(f)(Xi)− πn−1(f)(Xi)|2
)1/2

. (9.39)

This is of course what we have been doing since Chapter 5, and the reader
is probably disappointed to hear such an obvious advice. The reason we
repeat it is to insist that if Problem 9.1.3 has a positive answer there is
never any other way to proceed that the method we just described. And if
Problem 9.1.3 has “a positive answer for all practical purposes” (i.e. that
the only counterexamples are far-fetched and unnatural), then in natural
situations there will be no other way to proceed. This certitude might be of
great help in finding proofs. To demonstrate this, there seems to be no better
way (as we do in the next section) than a choosing a few deep results from
recent literature, and presenting the best proofs we can. Of course, there are
many other aspects to the theory of empirical processes, (even restricted to
its applications to Analysis and Banach Space theory), which it is beyond
the scope of this book to cover.

In the remainder of this chapter, we consider two facets of the following
problem. Consider independent r.v.s Xi valued in R

m. Denoting by 〈·, ·〉 the
canonical duality of Rm with itself, and T a subset of Rm, we are interested
in bounding the quantity

sup
t∈T

∣∣∣
∑

i≤N

(〈Xi, t〉2 − E〈Xi, t〉2)
∣∣∣ . (9.40)

9.3 The Class of Squares of a Given Class

The present section will culminate (after the proof of a simpler result in the
same spirit) in the proof of the following deep fact, due to S. Mendelson and
G. Paouris. The firm belief that there is no possible approach other than the
method explained in the previous section (and hence that matters just can’t
be very complicated) greatly helped the author to discover in a short time
the proof he presents. There is no claim whatsoever that this proof contains
any important idea which is not in the original proof. The point, which is of
course difficult to convey, is that it was so helpful to know beforehand which
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route to take. (It certainly also helped to know that the result was true!)
Given what we understand now, it simply seems very unlikely that we can
find any other really different method to prove this result, and moreover, if
the author is right with his conjectures, no such method exists at all.

As in the previous section we consider a probability space (Ω,μ), and
denote by (Xi)i≤N r.v.s valued in Ω of law μ.

Theorem 9.3.1 ([11]). Consider a (countable) class of functions F with
0 ∈ F . Assume that for a certain number q > 4 and a number C we have

∀ f ∈ F , ∀u > 0 , μ({|f | ≥ u}) ≤
(C
u

)q
. (9.41)

Moreover consider two distances d1 and d2 on F . Assume that given f, f ′ ∈
F , then

∀u > 0 , μ({|f − f ′| ≥ u}) ≤ 2 exp
(
−min

( u2

d2(f, f ′)2
,

u

d1(f, f ′)

))
. (9.42)

Let S = γ2(F , d2) + γ1(F , d1). Then

E sup
f∈F

∣∣∣
∑

i≤N

(f(Xi)
2 − Ef2)

∣∣∣ ≤ K
√
NCS +KS2 . (9.43)

Here and below, the number K depends on q only. The point of the theorem
is that we use information on the class F to bound the empirical process on
the class F2 = {f2; f ∈ F}.

To better understand the statement, let us observe from (9.42) that since
0 ∈ F , for any f in F we have

μ({|f | ≥ u}) ≤ 2 exp
(
−min

( u2

Δ(T, d2)2
,

u

Δ(T, d1)

))
, (9.44)

and that for large enough values of u this is much stronger than (9.41). The
point of (9.41) however is that we may have C � Δ(T, d2) and C � Δ(T, d1),
in which case for small values of u the inequality (9.41) is better than (9.44).

As an example of relevant situation, let us consider the case where Ω =
R

m and where μ is the canonical Gaussian measure on R
m, i.e. the law of an

independent sequence (gi)i≤m of standard Gaussian r.v.s. Let us recall that
we denote 〈·, ·〉 the canonical duality between R

m and itself. We observe that
μ is isotropic, that is ∫

〈t, x〉2dμ(x) = ‖t‖22 (9.45)

for any t ∈ R
m, where of course ‖t‖22 denotes the Euclidean norm of t. Thus

if Xi has law μ, then E〈Xi, t〉2 = ‖t‖22. Consider a subset T of Rm, which is
seen as a set F of functions on Ω through the canonical duality 〈·, ·〉. The
left-hand side of (9.43) is then simply
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E sup
t∈T

∣∣∣
∑

i≤N

(〈Xi, t〉2 − ‖t‖22)
∣∣∣ . (9.46)

A bound for this quantity is relevant in particular to the problem of signal
reconstruction, i.e. of (approximately) finding the transmitted signal t ∈ T
when observing only the data (〈Xi, t〉)i≤N , see [10] for details. In these ap-
plications one does not like to have 0 ∈ F , but one assumes instead that F
is symmetric (i.e. −f ∈ F if f ∈ F). It is simple to show that (9.43) still
holds in this case. (Let us also observe that (9.43) does not hold when F is
reduced to a single non-zero function.)

Now (1.4) implies that (9.42) holds when d2 is (twice) the Euclidean
distance and d1 = 0, so that we can bound the quantity (9.46) as in (9.43)
for S = γ2(T, d2). The reader can find in Theorem 9.3.7 below a self-contained
proof of a result sufficient to cover this case, yet significantly simpler than
Theorem 9.3.1.

Let us now briefly mention a generalization of the precedent example
to measures which are more general than the canonical Gaussian measure,
and for which one needs to consider a condition as (9.42) with d1 �= 0. Let
us say that a probability μ on R

m is log-concave if μ(λA + (1 − λ)B) ≥
μ(A)λμ(B)1−λ for any measurable sets A,B and any 0 ≤ λ ≤ 1. Let us
say that μ is unconditional if it is invariant under any change of signs of
the coordinates. Consider then an isotropic (as in (9.45)) unconditional, sign
invariant probability measure μ on R

m. Viewing elements t of Rm as functions
on the space (Rm, μ) through the canonical duality, a result of R. Lata�la
[8] proves (when combined with Bernstein’s inequality in the form (9.63)
below) that (9.42) holds where d2 is a constant multiple of the Euclidean
distance, and d1 a multiple of the �∞ distance. Therefore Theorem 9.3.1 is
also applicable to such measures.

Now, what is a possible strategy to prove Theorem 9.3.1? First, rather
than the left-hand side of (9.43) we shall bound E supf∈F |

∑
i≤N εif(Xi)

2|,
where (εi) are independent Bernoulli r.v.s, independent of the r.v.s (Xi).
Setting F2 = {f2; f ∈ F} we have to bound the empirical process on the
class F2. There is a natural chaining (πn(f)) on F , witnessing the value of
S = γ2(F , d2) + γ1(F , d1). There simply seems to be no other way than to
use the chaining (πn(f)

2) on F2, and to use the strategy (9.37), which we
shall use in the form (9.39). That is, to control the “increments along the
chain” ∑

i≤N

εi(πn(f)(Xi)
2 − πn−1(f)(Xi)

2) ,

let us think that the r.v.s (Xi) have already been chosen. We will then find
a set I ⊂ {1, . . . , N} (depending on n and on f) for which we control both
quantities ∑

i∈I

|πn(f)(Xi)
2 − πn−1(f)(Xi)

2| (9.47)

and



286 9. Theory and Practice of Empirical Processes

(∑

i 	∈I

|πn(f)(Xi)
2 − πn−1(f)(Xi)

2|2
)1/2

. (9.48)

Now, we may expect to use the deviation inequality (9.42) to sufficiently
control the sequences (|πn(f)(Xi)− πn−1(f)(Xi)|)i≤N , but since

πn(f)(Xi)
2 − πn−1(f)(Xi)

2

= (πn(f)(Xi)− πn−1(f)(Xi))(πn(f)(Xi) + πn−1(f)(Xi)) ,

it seems impossible to achieve anything unless we have some control of the
sequence (πn(f)(Xi) + πn−1(f)(Xi))i≤N , which most likely means that we
must gain some control of the sequence (f(Xi))i≤N for all f ∈ F . In fact we
shall prove in particular that

E sup
f∈F

(∑

i≤N

f(Xi)
2
)1/2

≤ K(C
√
N + S) ,

a formula which greatly contributes to explain the strange right-hand side in
(9.43).

Before we start the proof we must understand the tail behavior of sums∑
i≥1 aiYi where ai are numbers and where the independent r.v.s Yi satisfy

the tail condition (9.42). The methods are elementary and standard. The
results are of constant use.

Lemma 9.3.2. Consider a r.v. Y (not necessarily centered) and assume that
for two numbers A > 0 and B > 0 we have

∀u > 0 , P(|Y | ≥ u) ≤ 2 exp
(
−min

( u2

A2
,
u

B

))
. (9.49)

Then for each λ we have

0 ≤ λ ≤ 1/(2B)⇒ E expλ|Y | ≤ L exp(Lλ2A2) . (9.50)

Moreover when Y is centered and B ≤ A we also have

0 ≤ λ ≤ 1/(2B)⇒ E expλY ≤ exp(Lλ2A2) . (9.51)

Let us observe that (9.51) cannot hold without restriction on A as the case
A = 0 shows. The condition B ≤ A is always satisfied in practice.

Proof. We write

E expλ|Y | =
∫ ∞

0

P(expλ|Y | ≥ v)dv = 1 + λ

∫ ∞

0

exp(λu)P(|Y | ≥ u)du

(9.52)
and, since u2/A2 ≤ u/B for u ≤ A2/B, using (9.49) we get



9.3 The Class of Squares of a Given Class 287

λ

∫ A2/B

0

exp(λu)P(|Y | ≥ u)du ≤ 2λ

∫ ∞

0

exp(λu) exp
(
− u2

A2

)
du

≤ L exp(Lλ2A2) . (9.53)

Since u/B ≤ u2/A2 for u ≥ A2/B and since λ ≤ 1/(2B), using (9.49) again
we get

λ

∫ ∞

A2/B

exp(λu)P(|Y | ≥ u)du ≤ 2λ

∫ ∞

0

exp(λu) exp
(
− u

B

)
du

≤ 2λ

∫ ∞

0

exp
(
− u

2B

)
du = 4λB ≤ 2 .

Combining with (9.52) and (9.53) proves (9.50).
To prove (9.51) it suffices to consider the case |λ|A ≤ 1/4 for otherwise the

result follows from (9.50). Then 2|λ|B ≤ 1/2 and (9.50) used for 2λ rather
than λ implies E exp 2|λY | ≤ L. Since expx ≤ 1 + x + x2 exp |x| we have
E expλY ≤ 1 + λ2E(Y 2 exp |λY |). Using the Cauchy-Schwarz inequality on
the last term proves that E expλY ≤ 1 + Lλ2A2 since E exp 2|λY | ≤ L and
since EY 4 ≤ LA4 from (9.49) because B ≤ A. 
�

Lemma 9.3.3. Consider i.i.d. copies (Yi)i≤k of a r.v. Y which satisfies the
condition (9.49). Then for numbers (ai)i≤k and any u > 0 we have

P
(∣∣∣
∑

i≤k

aiYi

∣∣∣ ≥ u
)
≤ Lk exp

(
− 1

L
min
( u2

A2
∑

i≤k a
2
i

,
u

Bmaxi≤k |ai|

))
.

(9.54)

Proof. For any λ > 0 the left-hand side of (9.54) is at most

exp(−λu)E exp
(
λ
∑

i≤k

|ai||Yi|
)
= exp(−λu)

∏

i≤k

E exp(λ|ai||Yi|) ,

so that if 2Bλmaxi≤k |ai| ≤ 1 by Lemma 9.3.2 this is bounded by

exp(−λu)Lk exp
(
L1λ

2A2
∑

i≤k

a2i

)
.

As in the proof of Bernstein’s inequality (4.59) we conclude by taking

λ = min
( 1

2Bmaxi≤k |ai|
,

u

2L1A2
∑

i≤k a
2
i

)
. 
�

A convenient way to use (9.54) is the following, which is now obvious:

Lemma 9.3.4. Consider i.i.d. copies (Yi)i≤k of a r.v. Y which satisfies the
condition (9.49). If w > 0 and
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v = LA

√
w
∑

i≤k

a2i + LBwmax
i≤k

|ai| , (9.55)

then
P
(∣∣∣
∑

i≤k

aiYi

∣∣∣ ≥ v
)
≤ Lk exp(−w) . (9.56)

Exercise 9.3.5. Consider a centered r.v. Y which satisfies (9.49) with B ≤
A. Using (9.51) improve (9.54) into

P
(∣∣∣
∑

i≤k

aiYi

∣∣∣ ≥ u
)
≤ L exp

(
− 1

L
min
( u2

A2
∑

i≤k a
2
k

,
u

Bmaxi≤k |ai|

))
. (9.57)

We recommend that the reader studies the following exercise. The results
there are often needed.

Exercise 9.3.6. Given a probability μ, for a measurable function f we define
the following two norms (Orlicz norms).

‖f‖ψ1 = inf
{
A > 0 ;

∫
exp
( |f |
A

)
dμ ≤ 2

}
(9.58)

and

‖f‖ψ2 = inf
{
A > 0 ;

∫
exp
( f2

A2

)
dμ ≤ 2

}
. (9.59)

(a) Prove that ∫
exp |f |dμ ≤ 2k ⇒ ‖f‖ψ1 ≤ k . (9.60)

(Hint: Use Hölder’s inequality.)
(b) Prove that

∀u > 0 , P(|f | ≥ u) ≤ 2 exp(−u)⇒ ‖f‖ψ1 ≤ L

and
∀u > 0 , P(|f | ≥ u) ≤ 2 exp(−u2)⇒ ‖f‖ψ2 ≤ L .

(c) Prove that
‖f‖ψ1 ≤ L‖f‖ψ2 (9.61)

and
‖f1f2‖ψ1 ≤ ‖f1‖ψ2‖f2‖ψ2 . (9.62)

(d) On a rainy day, obtain a completely uninteresting and useless result by
computing the exact value of ‖g‖ψ2 where g is a standard Gaussian r.v.
(e) If (εi) denote independent Bernoulli r.v.s and (ai) denote real numbers
prove that
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∥∥∑

i

aiεi
∥∥
ψ2
≤ L
(∑

i

a2i

)1/2
.

(Hint: Use the subgaussian inequality (3.2.2).)
(f) Observe that any r.v. Y satisfies (9.49) with A = B = ‖Y ‖ψ1 and deduce
from (9.57) that if the r.v.s Yi are independent and centered then for v > 0
it holds

P

(∑

i≥1

Yi ≥ v

)
≤ exp

(
− 1

L
min
( v2∑

i≤N ‖Yi‖2ψ1

,
v

maxi≤N ‖Yi‖ψ1

))
. (9.63)

Then rewrite a self-contained proof of this inequality.
(g) Deduce from (9.57) that if the r.v.s Yi are independent and centered then
for v > 0 it holds

P

(∑

i≥1

Yi ≥ v

)
≤ exp

(
− v2

L
∑

i≤N ‖Yi‖2ψ2

)
. (9.64)

We recall the norm ψ2 of (9.59). We denote by dψ2 the associated distance.
Before proving Theorem 9.3.1 we prove the following simpler (and earlier)
result, corresponding to a case where d2 = dψ2 and d1 = 0, and where (9.41)
is replaced by a much stronger condition.

Theorem 9.3.7 ([7], [10]). Consider a (countable) class of functions F
with 0 ∈ F . Assume that

∀ f ∈ F , ‖f‖ψ2 ≤ Δ∗ . (9.65)

Then

E sup
F

∣∣∣
∑

i≤N

(f(Xi)
2 − Ef2)

∣∣∣ ≤ L
√
NΔ∗γ2(F , dψ2) + Lγ2(F , dψ2)

2 . (9.66)

We need one more simple fact.

Lemma 9.3.8. If u ≥ 1 then

P
(∑

i≤N

|f(Xi)| ≥ 2uN‖f‖ψ1

)
≤ exp(−uN) . (9.67)

Proof. By homogeneity we may assume ‖f‖ψ1 = 1. Then

E exp
∑

i≤N

|f(Xi)| ≤ 2N ≤ eN ,

so that P(
∑

i≤N |f(Xi)| ≥ N(u+ 1)) ≤ exp(−uN). 
�
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We now prepare the proof of Theorem 9.3.7. We consider an admissible
sequence (An) of partitions of F such that

∀ f ∈ F ,
∑

n≥0

2n/2Δ(An(f), dψ2) ≤ 2γ2(F , dψ2) . (9.68)

For each A ∈ An we choose a point fA ∈ A. (This is an unimportant detail,
but we can arrange that this point does not depend on n.) For A ∈ An with
n ≥ 1 we denote by A′ the unique element of An−1 that contains A. This
defines as usual a chaining in F , by choosing πn(f) = fA where A = An(f).

We consider Bernoulli r.v.s (εi) independent of the r.v.s (Xi). We denote
by n1 the largest integer with 2n1 ≤ N , so that N ≤ 2n1+1.

Lemma 9.3.9. Consider a parameter u ≥ 1 and the event Ω(u) defined by
the following conditions:

∀n , 1 ≤ n ≤ n1 , ∀A ∈ An ,∣∣∣
∑

i≤N

εi(fA(Xi)
2 − fA′(Xi)

2)
∣∣∣ ≤ Lu2n/2

√
NΔ∗Δ(A′, dψ2) (9.69)

∀n > n1 , ∀A ∈ An ,
∑

i≤N

(fA(Xi)− fA′(Xi))
2 ≤ Lu2nΔ(A′, dψ2)

2 . (9.70)

∀A ∈ An1 ,
∑

i≤N

fA(Xi)
2 ≤ LuNΔ∗2 . (9.71)

Then
P(Ω(u)) ≥ 1− L exp(−u) . (9.72)

Proof. We first prove that, given 1 ≤ n ≤ n1, and given A ∈ An the inequality
of (9.69) occurs with probability ≥ 1− L exp(−2u2n). We observe that

f2
A − f2

A′ = (fA − fA′)(fA + fA′) ,

and that the first factor fA−fA′ has ‖·‖ψ2 norm≤ Δ(A′, dψ2) while the second
factor (fA + fA′) has ‖ · ‖ψ2 norm ≤ 2Δ∗ since fA, fA′ ∈ F . Consequently
‖f2

A − f2
A′‖ψ1 ≤ 2Δ∗Δ(A′, dψ2) by (9.62) and the r.v. Yi = εi(fA(Xi)

2 −
fA′(Xi)

2) is centered and ‖Yi‖ψ1 ≤ 2Δ∗Δ(A′, dψ2). We use (9.63) to obtain
that for any v > 0,

P

(∣∣∣
∑

i≤N

Yi

∣∣∣ ≥ 2vΔ∗Δ(A′, dψ2)

)
≤ 2 exp

(
− 1

L
min
(v2
N

, v
))

. (9.73)

Since
√
N ≥ 2n/2 and u ≥ 1, for v = Lu2n/2

√
N , then v2/N ≥ Lu2n and

v ≥ Lu2n. This implies as we claimed that the inequality in (9.69) occurs
with probability ≥ 1− L exp(−2u2n).
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Next we prove that given n > n1 and A ∈ An the inequality in (9.70)
occurs with probability ≥ 1 − L exp(−2u2n). Since it is obvious from the
definition that ‖f2‖ψ1 ≤ ‖f‖2ψ2

, the function f = (fA−fA′)2 satisfies ‖f‖ψ1 ≤
Δ(A′, dψ2)

2. Also u2n/N ≥ 1 since n > n1. Using Lemma 9.3.8 for u2n/N
rather than u we obtain indeed that the right-hand side of (9.70) occurs with
probability ≥ 1− L exp(−2u2n).

Using again Lemma 9.3.8, and since ‖f2
A‖ψ1 ≤ ‖fA‖2ψ2

≤ Δ∗2, we
obtain that for any A ∈ An1 inequality (9.71) holds with probability
≥ 1− L exp(−2Nu).

Finally we use the union bound. Since cardAn ≤ Nn = 22
n

and in par-
ticular cardAn1 ≤ Nn1 ≤ 2N , and since

∑
n≥0 2

2n exp(−2u2n) ≤ L exp(−u)
the result follows. 
�
We consider the random norm W (f) given by

W (f) =
(∑

i≤N

f(Xi)
2
)1/2

. (9.74)

Lemma 9.3.10. On the event Ω(u) we have

∀ f ∈ F , W (f) ≤ L
√
u(γ2(F , dψ2) +

√
NΔ∗) . (9.75)

Proof. Given f ∈ F we denote by πn(f) the element fA where A = An(f). We
also observe that An−1(f) is the unique element A′ in An−1 which contains
A.

First, (9.70) implies that for n > n1 one has

W (πn(f)− πn−1(f)) ≤ L2n/2
√
uΔ(An−1(f), dψ2) . (9.76)

Moreover (9.71) implies W (πn1(f)) ≤ L
√
NuΔ∗. Writing f = πn1(f) +∑

n>n1
(πn(f) − πn−1(f)), using the triangle inequality for W and (9.68)

concludes the proof. 
�

Proof of Theorem 9.3.7. Let us recall the event Ω(u) of Lemma 9.3.9. First
we prove that when this event occurs then

sup
f∈F

∣∣∣
∑

i≤N

εif(Xi)
2

∣∣∣∣ ≤ Luγ2(F , dψ2)(γ2(F , dψ2) +
√
NΔ∗) , (9.77)

which by taking expectation and using (9.72) implies

E sup
f∈F

∣∣∣
∑

i≤N

εif(Xi)
2

∣∣∣∣ ≤ L
(√

NΔ∗γ2(F , dψ2) + γ2(F , dψ2)
2
)
,

and the conclusion by (9.21). Since 0 ∈ F we may assume that π0(f) = 0.
We deduce from (9.69) that for each n with 1 ≤ n ≤ n1, one has
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∣∣∣
∑

i≤N

εi(πn(f)(Xi)
2 − πn−1(f)(Xi)

2)
∣∣∣ ≤ Lu2n/2

√
NΔ∗Δ(An−1(f), dψ2) .

(9.78)
For n > n1 we write
∣∣∣
∑

i≤N

εi(πn(f)(Xi)
2 − πn−1(f)(Xi)

2)
∣∣∣ ≤
∑

i≤N

∣∣πn(f)(Xi)
2 − πn−1(f)(Xi)

2
∣∣ .

(9.79)
Recalling the random norm W (f) of (9.74), and since (a−b)2 = (a−b)(a+b),
using the Cauchy-Schwarz inequality the right-hand side of (9.79) is at most

W (πn(f)− πn−1(f))W (πn(f) + πn−1(f))

≤W (πn(f)− πn−1(f))(W (πn(f)) +W (πn−1(f)) , (9.80)

and from (9.76) and (9.75) this is at most

Lu2n/2Δ(An−1(f), dψ2)(γ2(F , dψ2) +
√
NΔ∗) .

Combining with (9.78) and summation over n using (9.68) proves (9.77) and
concludes the proof of Theorem 9.3.7. 
�

Exercise 9.3.11. When considering (9.58) one does not really follow the
strategy outlined in Section 9.2. Write an alternate (and slightly longer) proof
of Theorem 9.3.7 that would strictly follow this strategy.

We now turn to the proof of Theorem 9.3.1 itself. The highlight of this
theorem is that it uses only the weak condition (9.41) to control the “diam-
eter” of F . This makes the result difficult, so the first time reader should
probably jump now to Section 9.4. During the course of this proof, we shall
have to prove that certain inequalities hold whatever the choice of a certain
set I ⊂ {1, . . . , N}. The number

(
N
k

)
of such sets will be very relevant. To

control this number, we use the well known inequality
(
N

k

)
≤
(eN

k

)k
= exp(k log(eN/k)) . (9.81)

The value of k for which this number is about 22
n

is important, because then
the number of sets of cardinality k is about the cardinality of a partition
An that we use during the chaining. We gather properties of this number
through the following elementary lemma. We define again n1 as the largest
integer for which 2n1 ≤ N .

Lemma 9.3.12. For an integer n ≤ n1, let us define k(n) as the smallest
integer k(n) ≥ 1 such that

2n ≤ k(n) log(eN/k(n)) . (9.82)

Then for n < n1 we have
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k(n) ≥ 2⇒ 2(k(n)− 1) < k(n+ 1)⇒ k(n+ 1) ≥ 3

2
k(n) (9.83)

and
k(n+ 1) ≤ 8k(n) . (9.84)

Moreover, for k(n) > 1 and n < n1 we have

k(n) log(eN/k(n)) ≤ 2n+1 . (9.85)

Proof. The basic idea is that the function log(eN/x) varies slowly, so that
we expect that k(n) = 2nU(n) where U(n) varies slowly. The details however
require some work. Consider the function ϕ(x) = x log(eN/x) for x ≥ 0, so
that for x ≤ N we have ϕ(x) ≥ x. Then k(n) is defined as the smallest integer
such that 2n ≤ ϕ(k(n)), and k(n) ≤ N since n ≤ n1. For a > 0 we have

ϕ(ax) = aϕ(x)− ax log a ,

so that
ϕ(2x) < 2ϕ(x) . (9.86)

To prove (9.83) we observe that by definition of k(n),

ϕ(k(n)− 1) ≤ 2n ,

so that since k(n)−1 ≤ N , (9.86) implies ϕ(2(k(n)−1)) < 2n+1 ≤ ϕ(k(n+1))
and (9.83). Moreover, when k(n) > 1, we have k(n) ≤ 2(k(n) − 1), so that
ϕ(k(n)) ≤ ϕ(2(k(n)− 1)) ≤ 2n+1 and this proves (9.85).

To prove (9.84) we may assume k(n) ≤ N/8 for otherwise (9.84) holds
since k(n + 1) ≤ N . We then note that ϕ(x) ≥ x log(8e) for x ≤ N/8. Also,
since log 8 < 3 we have 6 log(8e) = 6(1 + log 8) ≥ 8 log 8 and hence for x ≤
N/8 we have 6ϕ(x) ≥ 8x log 8. Therefore ϕ(8x) = 8ϕ(x) − 8x log 8 ≥ 2ϕ(x),
so that since ϕ(k(n)) ≥ 2n we have ϕ(8k(n)) ≥ 2n+1 ≥ ϕ(k(n+ 1)) and this
proves (9.84). 
�

We will keep using the notation

ϕ(k) = k log(eN/k) ,

so that (9.81) becomes

(
N

k

)
≤
(eN

k

)k
= expϕ(k) . (9.87)

We observe that ϕ(k) ≥ k, that the sequence (ϕ(k)) increases, and thus
ϕ(k) ≥ ϕ(1) = 1 + logN .

We continue the preparations for the proof of Theorem 9.3.1. In the be-
ginning of the proof of Theorem 2.2.23 we have learned how to construct an
admissible sequence (An) of partitions of F which, for j = 1, 2 satisfies
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∀ f ∈ F ,
∑

n≥0

2n/jΔ(An(f), dj) ≤ 2γj(F , dj) . (9.88)

For each A ∈ An we choose a point fA ∈ A. This defines as usual a chaining
in F , by choosing πn(f) = fA where A = An(f). (Again we can arrange that
this point does not depend on n.) For A ∈ An with n ≥ 1 we denote by A′

the unique element of An−1 that contains A. To lighten notation, for n ≥ 1
and A ∈ An we write

δA = fA − fA′ , (9.89)

and for j = 1, 2 we define

Δj
A = Δ(A′, dj) . (9.90)

For a number u ≥ 0 we define

d(u, k) = 2C
(eN

k

)2/q
exp
( u

qk

)
, (9.91)

so that (9.41) implies

∀ f ∈ F , μ({|f | ≥ d(u, k)}) ≤ 2−q
( k

eN

)2
exp(−u/k) . (9.92)

In the next proposition we start to gather the information we need. Of
course, the usefulness of these conditions will only become clear gradually.
We recall that we denote by n1 the largest integer with 2n1 ≤ N , and we
recall the number k(n) of Lemma 9.3.12, defined for 0 ≤ n ≤ n1.

Proposition 9.3.13. Consider a number u ≥ L. Then with probability ≥
1 − L exp(−u) the following occurs. Consider any integer 0 ≤ n ≤ n1, any
integer k(n) ≤ k ≤ N and any subset I of {1, . . . , N} with card I = k. Then

A ∈ An ⇒ ∃i ∈ I , |fA(Xi)| < d(u, k) , (9.93)

n ≥ 1 , A ∈ An ⇒
∑

i∈I

|δA(Xi)| ≤ L(
√
uΔ2

A

√
kϕ(k) + uΔ1

Aϕ(k)) . (9.94)

Proof. First we claim that (9.93) occurs with probability ≥ 1 − L exp(−u)
for u ≥ L. Given A ∈ An we observe from (9.92) that for any i ∈ I,

P(|fA(Xi)| ≥ d(u, k)) ≤ 2−q
( k

eN

)2
exp(−u/k) ,

so that given a set I with cardinality k,

P(∀ i ∈ I, |fA(Xi)| ≥ d(u, k)) ≤ 2−qk
( k

eN

)2k
exp(−u)

= 2−qk exp(−u) exp(−2ϕ(k)) .
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Moreover, using (9.87), since ϕ(k) ≥ ϕ(k(n)) ≥ 2n and since

∑

k(n)≤k≤N

2−qk exp(−ϕ(k)) ≤ exp(−2n)
∑

k≥1

2−qk ≤ L exp(−2n) ,

so that

∑

n≥0

22
n ∑

k(n)≤k≤N

(
N

k

)
2−qk exp(−2ϕ(k)) ≤

∑

n≥0

22
n ∑

k(n)≤k≤N

2−qk exp(−ϕ(k))

≤ L
∑

n≥0

22
n

exp(−2n) ≤ L , (9.95)

and this proves the claim.
Next, we claim that (9.94) occurs with probability ≥ 1−L exp(−u). From

the hypothesis (9.42) the independent r.v.s δA(Xi) satisfy (9.49) for A = Δ2
A

and B = Δ1
A, so by Lemma 9.3.4 for any coefficients (ai) we then have

P

(∣∣∣
∑

i≤k

aiδA(Xi)
∣∣∣ ≥ LΔ2

A

√
uϕ(k)

∑

i≤k

a2i + LΔ1
Auϕ(k)max

i≤k
|ai|
)

≤ Lk exp(−uϕ(k)) . (9.96)

Consequently, the event Ωu on which

∣∣∣
∑

i∈I

aiδA(Xi)
∣∣∣ ≤ LΔ2

A

√
ukϕ(k) + LΔ1

Auϕ(k) (9.97)

for every choice of n ≥ 1, A ∈ An, every integer k with k(n) ≤ k ≤ N , every
set I ⊂ {1, . . . , N} with card I = k and every coefficients (ai)i∈I with ai = ±1
satisfies (using in the third line that Lk ≤ exp(L′ϕ(k)) since ϕ(k) ≥ k)

P(Ωc
u) ≤

∑

n≥1

cardAn

∑

k(n)≤k≤N

(
N

k

)
Lk exp(−uϕ(k))

≤
∑

n≥1

cardAn

∑

k(n)≤k≤N

Lk exp(−(u− 1)ϕ(k))

≤
∑

n≥1

22
n

exp(−(u− L)2n) , (9.98)

so that indeed P(Ωc
u) ≤ L exp(−u) for u ≥ L. Now, when (9.97) occurs for

each choice of ai = ±1 we have

∑

i∈I

|δA(Xi)| ≤ LΔ2
A

√
ukϕ(k) + LΔ1

Auϕ(k) . 
�

We need the following elementary fact.
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Lemma 9.3.14. In R
k there is a set U with cardU ≤ 5k consisting of vec-

tors of norm ≤ 1, with the property that x ∈ 2 convU whenever ‖x‖ ≤ 1.
Consequently,

∀x ∈ R
k , ∃a ∈ U ,

∑

i≤k

aixi ≥
1

2

(∑

i≤k

x2
i

)1/2
. (9.99)

Proof. It follows from (2.41) that there exists a subset U of the unit ball of
R

k with cardU ≤ 5k of the unit sphere such that every point of this ball is
within distance ≤ 1/2 of a point of U . Given a point x of the unit ball we
can inductively pick points u� in U such that ‖x −

∑
1≤�≤n 2

�−1u�‖ ≤ 2−n

and this proves that x ∈ 2 convU . Let us denote by 〈·, ·〉 the canonical dot
product on R

k. Given x ∈ R
k and using that x/‖x‖ ∈ 2 convU we obtain

that ‖x‖2 = 〈x, x〉 ≤ 2‖x‖ supa∈U 〈x, a〉 which proves (9.99). 
�

Using Lemma 9.3.14, for each 1 ≤ k ≤ N , and each subset I of {1, . . . , N} of
cardinality k, we construct a subset Sk,I of the unit ball of RI with cardSk,I ≤
5k, such that 2 convSk,I contains this unit ball. Consequently

x ∈ R
I ⇒ sup

a∈Sk,I

∑

i∈I

aixi ≥
1

2

(∑

i∈I

x2
i

)1/2
. (9.100)

Proposition 9.3.15. Consider a number u ≥ L. Then with probability ≥
1−L exp(−u) the following occurs. Consider any integer n. Then, if n ≤ n1,
for any subset I of {1, . . . , N} with card I = k(n),

A ∈ An ⇒
(∑

i∈I

δA(Xi)
2
)1/2

≤ L(
√
u2n/2Δ2

A + u2nΔ1
A) , (9.101)

while if n > n1,

A ∈ An ⇒
(∑

i≤N

δA(Xi)
2
)1/2

≤ L(
√
u2n/2Δ2

A + u2nΔ1
A) . (9.102)

Proof. We observe that (9.87) implies

log card
⋃

card I=k

Sk,I ≤ k log 5 + ϕ(k) ≤ 3ϕ(k) . (9.103)

We proceed exactly as in the case of (9.94) to obtain that for u ≥ L,
with probability ≥ 1 − exp(−u), for each set I with card I = k(n), each
sequence (ai) in Sk(n),I and each A in An we have, using in the second line
that ϕ(k(n)) ≤ L2n by (9.85),
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∣∣∣
∑

i∈I

aiδA(Xi)
∣∣∣ ≤ LΔ2

A

√
uϕ(k(n)) + LΔ1

Auϕ(k(n))

≤ LΔ2
A

√
u2n + LΔ1

Au2
n . (9.104)

Namely, (9.96) proves that for each set I with card I = k(n), each sequence
(ai) in Sk(n) and each A in An, the probability that (9.104) fails is at most

Lk(n) exp(−uϕ(k(n))) ≤ L2n exp(−u2n), and using (9.103) the sum of these
quantities over all choices of I, of the sequence (ai) and of A is ≤ L exp(−u)
for u ≥ L.

Using (9.100) this implies (9.101). In a similar manner for n > n1, (9.104)
occurs for k = N with probability ≥ 1 − exp(−u2n). This completes the
proof. 
�

In the remainder of this section we denote by Ω(u) the event that (9.93),
(9.94), (9.101) and (9.102) occur. Thus Propositions 9.3.13 and 9.3.15 imply
that P(Ω(u)) ≥ 1− L exp(−u).

We are now ready for the crucial step of gaining control over

sup
f∈F

∑

i≤N

f(Xi)
2 .

Without loss of generality we shall assume throughout the proof that F is
finite. We recall that S = γ1(T, d1) + γ2(T, d2) and the definition (9.91) of
d(u, k). We abandon all pretense to get a decent dependence in u by using
the trivial bound

d(u, k) ≤ 2C
(eN

k

)2/q
exp
(u
q

)
. (9.105)

(To get a decent dependence on u one simply has to use (9.44) rather than
(9.41) for the small values of k, a direction which we do not pursue.)

Proposition 9.3.16. Assume that Ω(u) occurs. Then for each set I ⊂
{1, . . . , N} and each f ∈ F we have, setting k = card I,

(∑

i∈I

f(Xi)
2
)1/2
≤ L

√
uγ2(F , d2) + Luγ1(F , d1) +KC exp(u/q)N2/qk1/2−2/q

≤ LuS +KC exp(u/q)N2/qk1/2−2/q . (9.106)

Proof. The proof we present is identical to the proof of the similar statement
in [11]. We shall use this statement only when k = N . This case follows from
the case k = k(n1) since k(n1) ≥ N/L, so that {1, . . . , N} can be covered
by L sets of cardinality n1. We shall prove the statement only in the case
k = k(n0) for some integer 1 ≤ n0 ≤ n1, and we let the reader convince herself
using (9.84) and the same covering argument as above that this implies the
general case. We consider any subset I of {1, . . . , N}, any numbers (vi)i∈I

such that
∑

i∈I v
2
i ≤ 1, and we aim to prove that
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∑

i∈I

vif(Xi) ≤ L
√
uγ2(F , d2) + Luγ1(F , d1) +KC exp(u/q)N2/qk1/2−2/q ,

(9.107)
where k = card I. The proof is a chaining argument. Since we assume that
F is finite, to prove (9.107) it suffices to consider the case where f = fA for
some A ∈ An2 where n2 ≥ n0 is large enough so that πn2(f) = f for each f .
Consider any integer m ≥ 0. Then we have the chaining identity

vif(Xi) = viπn2(f)(Xi) (9.108)

=
∑

m<n≤n2

vi(πn(f)(Xi)− πn−1(f)(Xi)) + viπm(f)(Xi) .

For each i ∈ I let us now choose any way we like an integer m = m(i) with
0 ≤ m(i) ≤ n2. (The idea will be to choose m = m(i) so that the term
πm(f)(Xi) is suitably small.) For 0 ≤ m ≤ n2 and 0 ≤ n ≤ n2 let us define

J(m) = {i ∈ I ; m(i) = m} ; I(n) = I \
⋃

m≥n

J(m) , (9.109)

so that i ∈ I(n) ⇔ m(i) < n, and summation of the identities (9.108) with
m = m(i) over i ∈ I yields the relation

∑

i∈I

vif(Xi) =
∑

1≤n≤n2

∑

i∈I(n)

vi(πn(f)(Xi)− πn−1(f)(Xi))

+
∑

0≤m≤n2

∑

i∈J(m)

viπm(f)(Xi) . (9.110)

Let us now turn things around: the previous relation holds whatever the sets
J(m), provided they define a partition of I, and provided I(n) is defined by
(9.109).

Let us define these sets in a way that suits our program. Define first n∗ as
the smallest integer for which k(n∗ + 1) ≥ 2, so that k(n∗) = 1. For n < n∗

let us set I∗(n) = ∅. For n∗ ≤ n ≤ n0 let us consider a subset I∗(n) of I with
card I∗(n) = k(n)− 1 such that

i �∈ I∗(n)⇒ |πn(f)(Xi)| ≤ d(u, k(n)) . (9.111)

This is possible by (9.93) and since πn(f) = fA for A = An(f). We observe
that I∗(n∗) = ∅ since card I∗(n∗) = k(n∗) − 1 = 0. For n ≥ n0 we define
I∗(n) = I. For n∗ ≤ n < n0 let us define J(n) = I∗(n + 1) \ I∗(n), so that
J(n∗) = I(n∗ + 1) and J(n) = ∅ for n ≥ n0. We observe that the sets J(n)
are disjoint, and form a partition of I. We define I(n) =

⋃
m≤n I

∗(m) =
I \
⋃

m≥n J(m), so that the second part of (9.109) holds, (9.110) holds and
becomes

∑

i∈I

vif(Xi) =
∑

n∗<n≤n2

∑

i∈I(n)

vi(πn(f)(Xi)− πn−1(f)(Xi))

+
∑

n∗≤n<n0

∑

i∈J(n)

viπn(f)(Xi) . (9.112)
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We shall bound separately each of the double sums in the right-hand side of
(9.112). We first bound the first sum. We observe that

δAn(f) = πn(f)− πn−1(f) , (9.113)

and that by the Cauchy-Schwarz inequality, and since
∑

i≤N v2i ≤ 1,

∣∣∣
∑

i∈I(n)

vi(πn(f)(Xi)− πn−1(f)(Xi))
∣∣∣ ≤
( ∑

i∈I(n)

δ2An(f)

)1/2
.

Using (9.83), we obtain that k(m) ≤ (2/3)−(n−m)k(n) when k(m)−1 > 0 and
m ≤ n. Thus card I(n) ≤

∑
m≤n card I

∗(m) ≤
∑

m≤n(k(m)− 1) ≤ Lk(n) for
all n. We deduce from (9.101) for n ≤ n1 and from (9.102) for n > n1 that

∣∣∣
∑

i∈I(n)

vi(πn(f)(Xi)− πn−1(f)(Xi))
∣∣∣ ≤ L(

√
u2n/2Δ2

An(f)
+ u2nΔ1

An(f)
) .

Since for j = 1, 2 we have
∑

n≥1 2
n/jΔj

An(f)
≤ Lγj(F , dj) by (9.88), we

obtain
∣∣∣
∑

n∗<n≤n2

∑

i∈I(n)

vi(πn(f)(Xi)− πn−1(f)(Xi))
∣∣∣ ≤ LuS . (9.114)

Next we bound the second double sum in the right-hand side of (9.112). We
write

∣∣∣
∑

i∈J(n)

viπn−1(f)(Xi)
∣∣∣ ≤ max

i∈J(n)
|πn−1(f)(Xi)|

∑

i∈J(n)

|vi| . (9.115)

We use (9.111) for n ≥ n∗ and since J(n) ∩ I∗(n) = ∅,

max
i∈J(n)

|πn(f)(Xi)| ≤ d(u, k(n)) . (9.116)

Now, by the Cauchy-Schwarz inequality

∑

i∈J(n)

|vi| ≤
√
cardJ(n)

( ∑

i∈J(n)

v2i

)1/2

and moreover cardJ(n) ≤ card I(n + 1) ≤ Lk(n + 1) ≤ Lk(n) by (9.84), so
that

∣∣∣
∑

i∈J(n)

viπn−1(f)(Xi)
∣∣∣ ≤ Ld(u, k(n))

√
k(n)
( ∑

i∈J(n)

v2i

)1/2
. (9.117)

Let us also observe from (9.83), and since k(n∗ + 1) = 2, k(n0) = k and
1− 4/q > 0,
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∑

n∗≤n≤n0

k(n)1−4/q ≤ Kk1−4/q . (9.118)

Since the sets J(n) are disjoint and k(n0) = k we obtain by the Cauchy-
Schwarz inequality, using also (9.105) and (9.118), and since

∑
i v

2
i ≤ 1,

∣∣∣
∑

n∗≤n≤n0

∑

i∈J(n)

viπn(f)(Xi)
∣∣∣ ≤ L

∑

n∗≤n≤n0

d(u, k(n))
√

k(n)
( ∑

i∈J(n)

v2i

)1/2

≤ L
( ∑

n∗≤n≤n0

k(n)d(u, k(n))2
)1/2

≤ LCN2/q exp(u/q)
( ∑

n∗≤n≤n0

k(n)1−4/q
)1/2

≤ KCN2/qk1/2−2/q exp(u/q) . (9.119)

Combining with (9.112) and (9.114) we have proved (9.107). 
�
Before proving Theorem 9.3.1 we need a last observation.

Lemma 9.3.17. Consider numbers (ci)i≤N , ci ≥ 0, and assume that for a
certain n ≤ n1, for each subset I of {1, . . . , N} with card I = k ≥ k(n) we
have ∑

i∈I

ci ≤ ϕ(k) . (9.120)

Then we can find a subset I of {1, . . . , N} with card I = k(n) − 1 such that
for any r > 0, ∑

i 	∈I

cri ≤ KN . (9.121)

Proof. Without loss of generality we may assume that the sequence (ci) is
non-increasing. Then for k ≥ k(n) we have

kck ≤
∑

i≤k

ci ≤ ϕ(k) = k log(eN/k) ,

so that ck ≤ log(eN/k) and
∑

k≥k(n) c
r
k ≤
∑

1≤k≤N (log(eN/k))r ≤ KN with
huge room to spare. 
�
Here is another, simpler, version of the same principle.

Lemma 9.3.18. Consider numbers (xi)i≤N and assume that for a certain
n ≤ n1, for each subset I of {1, . . . , N} with card I = k ≥ k(n) there is
i ∈ I with |xi| ≤ d(u, k). Then we can find a subset I of {1, . . . , N} with
card I = k(n)− 1 such that for any r > 0,

∑

i 	∈I

|xi|r ≤
∑

j≥k(n)

d(u, j)r . (9.122)
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Proof. Assuming, as we may, that the sequence (|xi|)i≤N is non-increasing,
it is obvious that |xj | ≤ d(u, j) for j ≥ k(n). 
�
Let us fix 1 < r < q/4, so that (9.105) implies

( ∑

1≤j≤N

d(u, j)2r
)1/2r

≤ KC exp(u/q)N1/2r . (9.123)

Using again (9.21), to conclude the proof of Theorem 9.3.1 it suffices to
prove the following, where we recall that Eε denotes expectation in the r.v.s
(εi) only.

Proposition 9.3.19. On Ω(u) we have

Eε sup
f∈F

∣∣∣
∑

i≤N

εif(Xi)
2
∣∣∣ ≤ Lu2 exp(u/q)S(

√
NC + S) . (9.124)

As explained before, we shall control “along the chain” the r.v.s

∑

i≤N

εi(fA(Xi)
2 − fA′(Xi)

2) . (9.125)

The basic principle is as follows.

Lemma 9.3.20. When the event Ω(u) occurs, then for each n ≥ 1 and each
A ∈ An we can write

fA(Xi)
2 − fA′(Xi)

2 = vi + wi , (9.126)

where
∑

i≤N

|vi| ≤ Ku(2n/2Δ2
A + 2nΔ1

A)
(
Su+ exp(u/q)C

√
N
)
, (9.127)

and where wi = 0 for n > n1 while for n ≤ n1

(∑

i≤N

w2
i

)1/2
≤ Ku exp(u/q)(Δ2

A +Δ1
A)
√
NC . (9.128)

Proof. It implements the strategy of (9.39): We shall find a suitable set I for
which

vi = (fA(Xi)
2 − fA′(Xi)

2)1I

is the “peaky part”, and

wi = (fA(Xi)
2 − fA′(Xi)

2)1Ic

is the “spread part”. We define si = fA(Xi) + fA′(Xi), so that

fA(Xi)
2 − fA′(Xi)

2 = siδA(Xi)
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and

(∑

i≤N

w2
i

)1/2
=
(∑

i∈I

s2i δA(Xi)
2
)1/2

;
∑

i≤N

|vi| =
∑

i∈I

|siδA(Xi)| . (9.129)

Let us assume first that n ≤ n1. We then deduce from (9.93), (9.123) and
Lemma 9.3.18 (used once for fA and once for fA′) that we can find a subset
I1 of {1, . . . , N} with card I1 = 2(k(n)− 1) and

(∑

i 	∈I1

s2ri

)1/2r
≤ K exp(u/q)N1/2rC . (9.130)

Next, since
√

kϕ(k) ≤ ϕ(k), we deduce from (9.94) that for any subset J of
{1, . . . , N} of cardinality k, we have

A ∈ An ⇒
∑

i∈J

|δA(Xi)| ≤ L(
√
uΔ2

A + uΔ1
A)ϕ(k) ≤ Lu(Δ2

A +Δ1
A)ϕ(k) .

Let r′ be the conjugate exponent of r. We then deduce from Lemma 9.3.17
that we can find a subset I2 of {1, . . . , N} with card I2 = k(n)− 1 and

(∑

i 	∈I2

δA(Xi)
2r′
)1/2r′

≤ Ku(Δ2
A +Δ1

A)N
1/2r′ . (9.131)

We define I = I1∪I2. Then (9.128) follows from (9.129), (9.130) and (9.131),
using Hölder’s inequality:

(∑

i 	∈I

s2i δA(Xi)
2
)1/2

≤
(∑

i 	∈I

s2ri

)1/2r(∑

i 	∈I

δA(Xi)
2r′
)1/2r′

.

Next, since I = ∅ when k(n) = 1 and card I ≤ 2k(n) when k(n) > 1,
(9.101) implies

(∑

i∈I

δA(Xi)
2
)1/2

≤ L(
√
uΔ2

A2
n/2 + uΔ1

A2
n) ≤ Lu(Δ2

A2
n/2 +Δ1

A2
n) ,

(9.132)
while, using (9.106) for k = N ,

(∑

i∈I

s2i

)1/2
≤
(∑

i≤N

s2i

)1/2
≤ LuS +K(expu/q)C

√
N , (9.133)

so that (9.127) follows from (9.129) and the Cauchy-Schwarz inequality in
the case n ≤ n1.

Assume now that n ≥ n1. We then define I = {1, · · · , N} and (9.127)
follows similarly, since then (9.132) and (9.133) now hold for I = {1, . . . , N}.


�
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Proof of Proposition 9.3.19. For f ∈ F consider the sequences (vi,f,n) and
(wi,f,n) obtained from Lemma 9.3.20 in the case A = An(f) so that

πn(f)(Xi)
2 − πn−1(f)(Xi)

2 = vi,f,n + wi,f,n , (9.134)

with

zf,n :=
∑

i≤N

|vi,f,n| ≤ Lu2 exp(u/q)(2n/2Δ2
An(f)

+ 2nΔ1
An(f)

)(S + C
√
N)

(9.135)
and

Zf,n :=
(∑

i≤N

w2
i,f,n

)1/2
≤ Lu2 exp(u/q)(Δ2

An(f)
+Δ1

An(f)
)C
√
N . (9.136)

Thus, given a parameter v ≥ 1 the subgaussian inequality (3.2.2) implies

Pε

(∣∣∣
∑

i≤N

εi(πn(f)(Xi)
2−πn−1(f)(Xi)

2)
∣∣∣ ≥ 2v2n/2Zf,n+zf,n

)
≤ exp(−v2n),

and proceeding as usual it suffices to show that

∑

n≥1

2n/2Zf,n + zf,n ≤ Lu2S exp(u/q)(S +
√
NC) .

But this follows from (9.88), (9.135) and (9.136). 
�

9.4 When Not to Use Chaining

In this section we work in the space R
n provided with the Euclidean norm

‖ ·‖. We denote by 〈·, ·〉 the canonical duality of Rn with itself. We consider a
sequence (Xi)i≤N of independent Rn-valued random vectors and we assume
that

‖x‖ ≤ 1⇒ E exp |〈Xi, x〉| ≤ 2 (9.137)

and
max
i≤N

‖Xi‖ ≤ (Nn)1/4 . (9.138)

Theorem 9.4.1 ([1], [2]). Assume N ≥ n. Then with probability ≥ 1 −
L exp(−(Nn)1/4)− L exp(−n) we have

sup
‖x‖≤1

∣∣∣
∑

i≤N

(〈x,Xi〉2 − E〈x,Xi〉2)
∣∣∣ ≤ L

√
nN . (9.139)

We refer the reader to [1] for various interpretations of this result.
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Generally speaking, chaining is rarely the way to go when dealing with the
unit ball B of Rn. This is because (recalling the entropy numbers (2.34)) in
the series

∑
k 2

k/2ek(B) (and in many others) the sum is basically equal to the
largest term (as seen e.g from Exercise 2.2.13 (d)). Trying to use chaining is
then an overkill, and simpler arguments yield shorter proofs. Being certain of
this greatly helped to organize the proofs of [1] the way we present now. (And,
again, knowing that the result is true greatly helped too.) This requires no
new idea whatsoever compared to [1], and similar arguments were actually
already given in [3]. We shall use Lemma 9.3.14 instead of chaining. The
difficult part of the proof of Theorem 9.4.1 is the control of the random
quantities

Ak := sup
‖x‖≤1

sup
card I≤k

(∑

i∈I

〈x,Xi〉2
)1/2

. (9.140)

Proposition 9.4.2. For u > 0, with probability ≥ 1− L exp(−u) we have

∀ k ≥ 1 , Ak ≤ L
(
u+

√
k log

(eN
k

)
+max

i≤N
‖Xi‖

)
. (9.141)

Corollary 9.4.3. If N ≤ n and max ‖Xi‖ ≤ u, then with probability ≥
1− L exp(−u) we have

sup
‖x‖≤1

∑

i≤N

〈x,Xi〉2 ≤ L(u2 +N) .

This shows that the condition N ≥ n in Theorem 9.4.1 is not a restriction,
since for N ≤ n and u = (Nn)1/4 we have L(u2 +N) ≤ L

√
Nn.

Proof. Use (9.141) for k = N . 
�

We prepare for the proof of Proposition 9.4.2. We first observe the fun-
damental identity

Ak = sup
‖x‖≤1

sup
card I≤k

sup
∑

i∈I a2
i≤1

∑

i∈I

ai〈x,Xi〉 = sup
card I≤k

sup
∑

i∈I a2
i≤1

∥∥∥
∑

i∈I

aiXi

∥∥∥ .

(9.142)
We recall the notation ϕ(k) = k log(eN/k), so that the quantity

√
k log(eN/k)

occurring in (9.141) is ϕ(k)/
√
k.

Lemma 9.4.4. Consider x ∈ R
n with ‖x‖ ≤ 1 and an integer 1 ≤ k ≤ N .

Then for u > 0, with probability ≥ 1 − L(k/eN)3k exp(−u) the following
occurs. For each set I ⊂ {1, . . . , N} with card I = m ≥ k we have

∑

i∈I

|〈Xi, x〉| ≤ 6ϕ(m) + u . (9.143)
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Proof. Given a set I with card I = m, (9.137) implies E exp
∑

i∈I |〈Xi, x〉| ≤
2m ≤ expϕ(m) and thus

P
(∑

i∈I

|〈Xi, x〉| ≥ 6ϕ(m) + u
)
≤ exp(−5ϕ(m)) exp(−u) .

Since there at most expϕ(m) choices for I by (9.87) the union bound implies
∑

card I≥k

P
(∑

i∈I

|〈Xi, x〉| ≥ 6ϕ(m) + u
)
≤
∑

m≥k

exp(−4ϕ(m)) exp(−u) .

Now we observe that ϕ(m) ≥ ϕ(k) for m ≥ k and that ϕ(m) ≥ m, so that
∑

m≥k

exp(−4ϕ(m)) ≤ exp(−3ϕ(k))
∑

m≥1

exp(−ϕ(m)) ≤ L exp(−3ϕ(k)) . 
�

We recall the sets Sk,I of (9.100).

Lemma 9.4.5. With probability ≥ 1−L exp(−u) the following occurs. Con-
sider disjoint subsets I, J of {1, . . . , N} with card I = m ≥ card J = k, and
consider any a ∈ Sk,J . Then

∑

i∈I

∣∣∣
〈
Xi,
∑

j∈J

ajXj

〉∣∣∣≤ (6ϕ(m) + u)
∥∥∥
∑

j∈J

ajXj

∥∥∥ . (9.144)

Proof. Given J and a ∈ Sk,J , the probability that (9.144) occurs for each
choice of I of cardinalitym and disjoint of J is at least 1−L(k/eN)3k exp(−u),
as is shown by using Lemma 9.4.4, used given the r.v.s Xj for j ∈ J and
for x = y/‖y‖, y =

∑
j∈J ajXj . There are at most expϕ(k) choices of J of

cardinality k and for each such J there are at most 5k choices for a. Moreover
∑

k≤N

(k/eN)3k5k expϕ(k) =
∑

k≤N

(k/eN)2k5k ≤
∑

k≥1

e−2k5k ≤ L .

The result then follows from the union bound. 
�
Corollary 9.4.6. For u > 0, with probability ≥ 1 − L exp(−u) the follow-
ing occurs. Consider disjoint subsets I, J of {1, . . . , N} with card I = m ≥
card J = k, and consider any sequence (ai)i∈J with

∑
i∈J a2i ≤ 1. Then

∑

i∈I

∣∣∣
〈
Xi,
∑

j∈J

ajXj

〉∣∣∣≤ L(ϕ(m) + u)Ak . (9.145)

Proof. With probability ≥ 1− L exp(−u), (9.144) occurs for every choice of
a ∈ Sk,J . We prove that then (9.145) holds. Since

∑
j∈J a2j ≤ 1 for a ∈ Sk,J ,

for each such sequence we then have
∑

i∈I

∣∣∣
〈
Xi,
∑

j∈J

ajXj

〉∣∣∣≤ (6ϕ(m) + u)Ak .

Now, each sequence (bj)j∈J with
∑

j∈J b2j ≤ 1 is in the convex hull of 2Sk,J ,
and this proves (9.145). 
�
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Proposition 9.4.7. When the event of Corollary 9.4.6 occurs, we have

∀ k ≥ 1 , A2
k ≤ max

i≤N
‖Xi‖2 + L(u+ ϕ(k)/

√
k)Ak . (9.146)

Proof of Proposition 9.4.2. We use that BAk ≤ (B2+A2
k)/2 with B = L(u+

ϕ(k)/
√
k) to deduce (9.141) from (9.146). 
�

Proof of Proposition 9.4.7. We fix once and for all an integer k. Consider a
subset W of {1, . . . , N} with cardW = k. Consider (ai)i∈W with

∑
i∈W a2i ≤

1. The plan is to bound

∥∥∥
∑

i∈W

aiXi

∥∥∥
2

=
∑

i∈W

a2i ‖Xi‖2 +
∑

i,j∈W,i 	=j

〈aiXi, ajXj〉 . (9.147)

First, we use the obvious bound for the first term:

∑

i∈W

a2i ‖Xi‖2 ≤ max
i≤N

‖Xi‖2 . (9.148)

For the second term, we use a standard “decoupling device”. Consider inde-
pendent Bernoulli r.v.s εi and observe that for i �= j we have E(1−εi)(1+εj) =
1, so that by linearity of expectation, and denoting by Eε expectation in the
r.v.s εi only,

∑

i,j∈W,i 	=j

〈aiXi, ajXj〉 = Eε

∑

i,j∈W,i 	=j

(1 + εi)(1− εj)〈aiXi, ajXj〉 .

Given (εi) observe that if I = {i ∈ I; εi = 1} and J = W \ I,

1

4

∑

i,j∈W,i 	=j

(1 + εi)(1− εj)〈aiXi, ajXj〉 =
∑

i∈I,j∈J

〈aiXi, ajXj〉

=
〈∑

i∈I

aiXi,
∑

j∈J

ajXj

〉
. (9.149)

We now think of (ai), I and J as fixed and we proceed to bound the right-
hand side of (9.149), by suitably grouping the terms depending on the values
of the coefficients (ai). Let κ = card I, and consider the largest integer �1 with
2�1 ≤ 2 card I = 2κ. Let us enumerate I = {i1, . . . , iκ} in such a way that the
sequence (|ais |)1≤s≤κ is non-increasing. For 0 ≤ � < �1, let I� = {i1, . . . , i2�}
and α� = |ai

2�
|, so that

α2
�2

� = α2
� card I� ≤

∑

i∈I�

a2i ≤ 1 ,

and thus
α� ≤ 2−�/2 . (9.150)
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Let us set I�1 = I and for 1 ≤ � ≤ �1 let us set I ′� = I� \ I�−1, so that since
|ai| ≤ α�−1 ≤ 2−�/2+1 we have

i ∈ I ′� ⇒ |ai| ≤ 2−�/2+1 . (9.151)

We set I ′0 = I0 so that (9.151) still holds for � = 0. The sets I ′� for 0 ≤ � ≤ �1
form a partition of I.

For 0 ≤ � ≤ �1 let us set y� =
∑

i∈I′
�
aiXi, so that

∑
i∈I aiXi =∑

0≤�≤�1
y�. Then for each vector x and each 0 ≤ � ≤ �1 we have

|〈y�, x〉| =
∣∣∣
〈∑

i∈I′
�

aiXi, x
〉∣∣∣ ≤

∑

i∈I′
�

|ai||〈Xi, x〉| ≤ 2−�/2+1
∑

i∈I′
�

|〈Xi, x〉| .

(9.152)
Let us then define similarly for 0 ≤ � ≤ �2 sets J� ⊂ J with cardJ� = 2�

for � < �2, sets J ′
� and elements z� =

∑
j∈J ′

�
ajXj so that

∑
j∈J ajXj =∑

0≤�≤�2
z�. Without loss of generality we assume card I ≥ card J . We write

〈∑

i∈I

aiXi,
∑

j∈J

ajXj

〉
=
〈 ∑

0≤�≤�1

y�,
∑

0≤�′≤�2

z�′
〉
= I + II , (9.153)

where
I =

∑

0≤�≤�1

〈
y�,
∑

0≤�′≤�

z�′
〉
; II =

∑

0≤�′≤�2

〈 ∑

0<�<�′

y�, z�′
〉
.

This identity is obvious if we observe that I =
∑

�′≤�〈y�, z�′〉 and II =∑
�′>�〈y�, z�′〉. We bound I. First we use (9.152) to obtain

∣∣∣
〈
y�,
∑

0≤�′≤�

z�′
〉∣∣∣ ≤ 2−�/2+1

∑

i∈I�

∣∣∣
〈
Xi,

∑

0≤�′≤�

z�′
〉∣∣∣ .

The key point is that
∑

0≤�′≤� z�′ =
∑

i∈J�
aiXi, so that we may use (9.145)

for I� and J�, and card I� = min(2�, card I) ≥ min(2�, card J) = cardJ� to
obtain (recalling that k = cardW ≥ cardJ so that Acard J ≤ Ak)

∑

i∈I�

∣∣∣
〈
Xi,

∑

0≤�′≤�

z�′
〉∣∣∣ ≤ L(u+ ϕ(2�))Ak ,

so that
I ≤ LAk

∑

0≤�≤�1

2−�/2(u+ ϕ(2�)) .

It is elementary to prove that the function x �→ x1/4 log(eN/x) increases for
1 ≤ x ≤ Ne−3. This implies that for 1 ≤ x ≤ y ≤ N we have

√
x log(eN/x) ≤ L(xy)1/4 log(eN/y) , (9.154)

since indeed this holds true with L = 1 when y ≤ Ne−3. This inequality
clearly remains true for x ≤ 2y rather than x ≤ y. Consequently, using
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(9.154) for y = k and x = 2� ≤ 2�1 ≤ 2κ ≤ 2k ≤ 2y, for � ≤ �1 we have
2�/2 log(eN/2�) ≤ L2�/4k1/4 log(eN/k) and thus

∑

0≤�≤�1

2−�/2ϕ(2�) =
∑

0≤�≤�1

2�/2 log(eN/2�) ≤ L
√
k log(eN/k) = Lϕ(k)/

√
k ,

so we finally obtain that I ≤ L(u+ϕ(k)/
√
k)Ak. The same argument proves

that this bound also holds for II (using now that card I�′−1 ≤ 2�
′−1 ≤ cardJ�′

if �′ ≤ �2).
So, we have proved that the right-hand side of (9.146) bounds the left-

hand side of (9.147), irrelevant of the choice of W with cardW = k and of
the (ai)i∈W . Recalling (9.142) this completes the proof. 
�

We complete the proof of Theorem 9.4.1 by reproducing the arguments
of [2] for the convenience of the reader. We consider a subset U of Rn with
cardU ≤ 5n, consisting of elements of norm ≤ 1 and such that its convex
hull contains the ball of Rn centered at the origin with radius 1/2. Thus

sup
‖x‖,‖y‖≤1/2

∣∣∣
∑

i≤N

(〈x,Xi〉〈y,Xi〉 − E〈x,Xi〉〈y,Xi〉)
∣∣∣

≤ sup
x,y∈U

∣∣∣
∑

i≤N

(〈x,Xi〉〈y,Xi〉 − E〈x,Xi〉〈y,Xi〉)
∣∣∣ . (9.155)

The plan is to assume that

∀ k ≥ 1 , Ak ≤ L(
√
k log(eN/k) + (Nn)1/4) , (9.156)

and to prove that then with probability ≥ 1 − exp(−n) the right-hand side
of (9.155) is ≤ L

√
Nn. This complete the proof of Theorem 9.4.1 because

Proposition 9.4.2 and (9.138) show that (9.156) occurs with probability ≥
1− L exp(−(Nn)1/4).

Consider a truncation level B ≥ 0 and define

Zi(x, y) = 〈x,Xi〉〈y,Xi〉1{|〈x,Xi〉〈y,Xi〉|≤B}

and
Yi(x, y) = 〈x,Xi〉〈y,Xi〉1{|〈x,Xi〉〈y,Xi〉|>B} ,

so that 〈x,Xi〉〈y,Xi〉 = Zi(x, y) + Yi(x, y). (This argument is yet another
instance of a decomposition in a “spread part” and a “picky part”. The peaky
part will be controlled as usual without using cancellations, i.e. we will control∑

i |Yi(x, y)|.) We bound the right-hand side of (9.155) by I + II + III, where

I = sup
x,y∈U

∣∣∣
∑

i≤N

(Zi(x, y)− EZi(x, y))
∣∣∣ , (9.157)
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II = sup
x,y∈U

∑

i≤N

|Yi(x, y)| , (9.158)

III = sup
x,y∈U

∑

i≤N

|EYi(x, y)| . (9.159)

The fun is to bound II. Let us fix x, y ∈ U and set

I = {i ≤ N ; |Yi(x, y)| > B} = {i ≤ N ; |Yi(x, y)| �= 0} .

Thus, if m = card I we have, using the Cauchy-Schwarz inequality in the
second inequality

mB ≤
∑

i∈I

|Yi(x, y)| ≤
(∑

i∈I

〈x,Xi〉2
)1/2(∑

i∈I

〈y,Xi〉2
)1/2

≤ A2
m , (9.160)

and thus from (9.156)

mB ≤ L1(m(log(eN/m))2 +
√
Nn) . (9.161)

We shall use this to bound m. Without loss of generality we assume from
Corollary 9.4.3 that N > n and then N >

√
Nn. Thus we may consider

the smallest integer k0 ≤ N such that k0(log(eN/k0))
2 >

√
Nn. Let us now

choose B = 2L1(log(eN/k0))
2, so that if m ≥ k0 then (9.161) implies

2L1m(log(eN/k0))
2 = mB ≤ L1(m(log(eN/m))2 +

√
Nn)

≤ L1(m(log(eN/k0))
2 +

√
Nn) ,

and thus
m(log(eN/k0))

2 ≤
√
Nn .

Since m ≥ k0 this is impossible by definition of k0, so that m < k0. By defini-
tion of k0, we have m(log(eN/m))2 ≤

√
Nn and thus by (9.156) that Am ≤

L(Nn)1/4, and finally by (9.160) and since
∑

i∈I |Yi(x, y)| =
∑

i≤N |Yi(x, y)|
that II ≤ L

√
Nn.

Next, since always II ≤
∑

i≤N ‖Xi‖2 ≤ N
√
Nn and since II ≤ L

√
Nn

when (9.156) occurs, i.e. with probability ≥ 1 − exp(−(Nn)1/4), we have
III ≤ E II ≤ L

√
Nn.

Finally, since (log x)2 ≤ L
√
x for x ≥ e,

√
Nn < k0(log(eN/k0))

2 ≤ Lk0
√

N/k0

and thus k0 ≥ n/L. Therefore, with huge room to spare,

B = 2L1(log(eN/k0))
2 ≤ L

√
N/n .

Since |Zi(x, y)| ≤ B and EZi(x, y)
2 ≤ L (using the Cauchy-Schwarz inequal-

ity and (9.137)), it follows from Bernstein’s inequality (4.59) that
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P
(∣∣∣
∑

i≤N

(Zi(x, y)− EZi(x, y))
∣∣∣ ≥ t

)
≤ 2 exp

(
−min

( t2

LN
,

t

L
√

N/n

))
.

The right-hand side is ≤ 5−3n for t = L
√
Nn. There are at most 52n choices

for the pair (x, y) ∈ U2, so that by the union bound I ≤ L
√
Nn with proba-

bility ≥ 1− exp(−n). This completes the proof of Theorem 9.4.1.

9.5 Notes and Comments

The paper [10] started the study of the left-hand side of (9.43) and proved the
bound (9.66). This paper brings out in particular the importance of the con-
trol of supf∈F (

∑
i≤N f(Xi)

2)1/2, and apparently is the first which contains a
version of Proposition 9.3.16. A crucial step is performed in [9], which deals
again with the case d1 = 0, and proves now (9.43) with Δ(T, dψ1) instead of
C, where dψ1 denotes of course the distance associated to the Orlicz norm
of (9.58). The point is that this quantity is often significantly smaller than
Δ(T, d2) (which basically coincides with Δ(T, dψ2) under (9.42)). The paper
[9] also makes a further step in the direction of Proposition 9.3.16.

Many of the ideas of the proof of Theorem 9.4.1 go back to a seminal
paper of J. Bourgain [4]. It would be nice if one could deduce this theorem
from a general principle such as Theorem 9.3.1, but unfortunately we do not
know how to do this, even when the sequence (Xi) is i.i.d.

References

1. Adamczak, R., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Quantitative
estimates of the convergence of the empirical covariance matrix in log-concave
ensembles. J. Am. Math. Soc. 23(2), 535–561 (2010)

2. Adamczak, R., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Sharp
bounds on the rate of convergence of the empirical covariance matrix. C. R.
Math. Acad. Sci. Paris 349(3–4), 195–200 (2011)

3. Adamczak, R., Lata�la, R., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.:
Tail and moment estimates for chaoses generated by symmetric random vari-
ables with logarithmically concave tails. Ann. Inst. Henri Poincaré Probab.
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10. Partition Scheme for Families of Distances

10.1 The Partition Scheme

The goal of the present section is to generalize to the setting of “families
of distances” the partitioning scheme of Section 2.7. In Section 10.2 we will
apply this tool to the study of “canonical processes”.

We consider a family of maps (ϕj)j∈Z, with the following properties:

ϕj : T × T → R
+ ∪ {∞} , ϕj ≥ 0 , ϕj(s, t) = ϕj(t, s) .

These maps play the role of a family of distances (although it probably would
be better to think of ϕj as the square of a distance rather than as of a
distance).

We recall that a functional F on a set T is a non-increasing map from the
subsets of T to R. We consider functionals Fn,j on T for n ≥ 0, j ∈ Z. We
assume

Fn+1,j ≤ Fn,j ; Fn,j+1 ≤ Fn,j . (10.1)

We define
Bj(t, c) = {s ∈ T ; ϕj(s, t) ≤ c} .

We will assume that the functionals satisfy a “growth condition”, that
is very similar in spirit to Definition 2.7.1. This condition involves as main
parameter an integer κ ≥ 4. We set r = 2κ−2, so that r ≥ 4. The role of r is as
in (2.73), the larger r, the weaker the growth condition. The reason why we
take r of the type r = 2κ−2 for an integer κ is purely technical convenience.

The growth condition, that also involves as secondary parameter an inte-
ger n0 ≥ 1, is as follows.

Definition 10.1.1. We say that the functionals Fn,j satisfy the growth con-
dition (for n0 and r) if the following occurs. Consider any j ∈ Z, any n ≥ n0

and m = Nn. Consider any sets (H�)1≤�≤m that are separated in the following
sense: there exist points t, t1, . . . , tm in T for which

∀� ≤ m, t� ∈ Bj(t, 2
n) , (10.2)

∀�, �′ ≤ m, � �= �′ , ϕj+1(t�, t�′) > 2n+1 (10.3)
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and H� ⊂ Bj+2(t�, 2
n+κ). Then

Fn,j

( ⋃

�≤m

H�

)
≥ 2nr−j−1 +min

�≤m
Fn+1,j+1(H�) . (10.4)

We have not made assumptions on how ϕj relates to ϕj+1; but we have
little chance to prove (10.4) unless Bj+2(t�, 2

n+κ) is quite smaller than
Bj+1(t�, 2

n+1).
To understand the preceding conditions we will carry out the case where

ϕj(s, t) = r2jd(s, t)2 (10.5)

for a distance d on T . The reader is encouraged to carry out the more general
case where ϕj(s, t) = rαjd(s, t)β for α, β > 0. Denoting by B(t, b) the ball for
d of center t and radius b, we thus have

Bj(t, c) = B(t, r−j
√
c) .

Thus in (10.3) we require that

∀�, �′ ≤ m, � �= �′ , d(t�, t�′) ≥ 2(n+1)/2r−j−1 := a . (10.6)

On the other hand, the condition H� ⊂ Bj+2(t�, 2
n+κ) means

H� ⊂ B(t�, 2
(n+κ)/2r−j−2) = B(t�, ηa) ,

for η = 2(κ−1)/2/r =
√
2/
√
r. Thus, as r gets larger, η gets smaller, and the

sets H� become better separated. Also, (10.4) reads as

Fn,j

( ⋃

�≤m

H�

)
≥ 2(n−1)/2a+min

�≤m
Fn+1,j+1(H�) ,

which strongly resembles (2.147) for θ(n) = 2n/2 and β = 1.

Theorem 10.1.2. Assume that the functionals Fn,j are as above, and in
particular satisfy the growth condition of Definition 10.1.1, and that, for some
j0 ∈ Z we have

∀s, t ∈ T , ϕj0(s, t) ≤ 2n0 . (10.7)

Then there exists an admissible sequence (An) and for each A ∈ An an integer
jn(A) ∈ Z such that

A ∈ An , C ∈ An−1 , A ⊂ C ⇒ jn−1(C) ≤ jn(A) ≤ jn−1(C) + 1 (10.8)

∀t ∈ T ,
∑

n≥n0

2nr−jn(An(t)) ≤ L(rFn0,j0(T ) + 2n0r−j0) (10.9)

∀n ≥ n0 , ∀A ∈ An , ∃tn,A ∈ T , A ⊂ Bjn(A)(tn,A, 2
n) . (10.10)



10.1 The Partition Scheme 315

To make sense out of this, we again carry out the case (10.5). Then (10.7)
means that Δ(T, d) ≤ r−j02n0/2, while (10.10) implies A ⊂ B(r−jn(A)2n/2)
and hence Δ(A, d) ≤ r−jn(A)2n/2+1. Moreover (10.9) implies

∀t ∈ T ,
∑

n≥n0

2n/2Δ(An(t), d) ≤ L(rFn0,j0(T ) + 2n0r−j0) .

Taking for j0 the largest integer such that Δ(T, d) ≤ r−j02n0/2, we get

∀t ∈ T ,
∑

n≥n0

2n/2Δ(An(t), d) ≤ Lr
(
Fn0,j0(T ) + 2n0/2Δ(T, d)

)
.

This relation resembles the relation one gets by combining (2.149) with
Lemma 2.3.5, and the parameter n0 plays a role similar to τ .

The proof of Theorem 10.1.2 follows closely the proof of Theorem 2.7.2,
and of course the reader should master this latter result before attempting
to read it. The proof relies on the following, where again the functionals are
as above.

Lemma 10.1.3 (The Decomposition Lemma). Consider a set C ⊂ T
and assume that for some tC ∈ T and some integers j ∈ Z and n ≥ n0 we
have C ⊂ Bj(tC , 2

n). Then we can find a partition (A�)�≤m′ of C, where
m′ ≤ m = Nn, such that for each � ≤ m′ we have either

∃t� ∈ C , A� ⊂ Bj+1(t�, 2
n+1) (10.11)

or else

2n−1r−j−1 + sup
t∈A�

Fn+1,j+1(A� ∩Bj+2(t, 2
n+κ)) ≤ Fn,j(C) . (10.12)

Proof. We consider ε = 2n−1r−j−1. We set D0 = C. First we choose t1 in D0

with

Fn+1,j+1(D0 ∩Bj+2(t1, 2
n+κ)) ≥ sup

t∈D0

Fn+1,j+1(D0 ∩Bj+2(t, 2
n+κ))− ε .

We then set A1 = D0 ∩Bj+1(t1, 2
n+1) and D1 = D0\A1. If D1 is not empty,

we choose t2 in D1 such that

Fn+1,j+1(D1 ∩ Bj+2(t2, 2
n+κ)) ≥ sup

t∈D1

Fn+1,j+1(D1 ∩Bj+2(t, 2
n+κ))− ε ,

and we set A2 = D1 ∩ Bj+1(t2, 2
n+1) and D2 = D1\A2. We continue in this

manner until either we exhaust C or we construct Dm−1. In the latter case
we set Am = Dm−1 and we stop the construction.

It is obvious by construction that if � < m then A� satisfies (10.11), so
that to conclude the proof we show that A = Am = Dm−1 satisfies (10.12).
Consider 1 ≤ � < m. By construction of t� we have, since A = Dm−1 ⊂ D�−1,
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∀t ∈ D�−1, Fn+1,j+1(A ∩Bj+2(t, 2
n+κ))

≤ Fn+1,j+1(D�−1 ∩Bj+2(t, 2
n+κ))

≤ Fn+1,j+1(D�−1 ∩Bj+2(t�, 2
n+κ)) + ε . (10.13)

Consider t ∈ A and set H� = D�−1 ∩ Bj+2(t�, 2
n+κ) for 1 ≤ � < m and

Hm = A ∩ Bj+2(t, 2
n+κ). By (10.13), for � < m we have Fn+1,j+1(Hm) ≤

Fn+1,j+1(H�) + ε and thus

inf
�≤m

Fn+1,j+1(H�) ≥ Fn+1,j+1(Hm)− ε .

Define tm = t. We have ϕj+1(t�, t�′) > 2n+1 for � �= �′, and t� ∈ C ⊂
Bj(tC , 2

n), so that (10.4) implies

Fn,j(C) ≥ Fn,j

( ⋃

�≤m

H�

)
≥ 2nr−j−1 + Fn+1,j+1(Hm)− ε

= 2nr−j−1 + Fn+1,j+1(A ∩Bj+2(t, 2
n+κ))− ε

and recalling the choice of ε this proves that (10.12) holds for A = Am. 
�
Proof of Theorem 10.1.2. Together with C ∈ An, for n ≥ n0 we construct
an integer jn(C) ∈ Z and a point tn,C ∈ T satisfying the following condition,
where j = jn(C):

C ⊂ Bj(tn,C , 2n) . (10.14)

To start the construction we pick an arbitrary point t0,T ∈ T and we
define An0 = {T} and jn0(T ) = j0. Thus (10.14) holds by (10.7).

To construct An+1 once An has been constructed, to each element C of
An we apply the Decomposition Lemma with j = jn(C) to split C inm′ ≤ Nn

pieces A1, . . . , Am′ . (Thus, since N2
n ≤ Nn+1, An+1 contains at most Nn+1

sets.) Let A be one of these sets.
When A satisfies (10.12), we set jn+1(A) = j = jn(C) and tn+1,A = tn,C ,

so that (10.14) for A follows from the same relation for C. On the other hand,
when A satisfies (10.11), we define jn+1(A) = j + 1 and tn+1,A = t�. Then
(10.14) for A follows from (10.11). Thus (10.10) holds, and since (10.8) holds
by construction, it remains only to prove (10.9).

Let us first observe that by construction, the following holds:

A ∈ An+1 , C ∈ An , A ⊂ C , jn+1(A) = jn(C)+1⇒ tn+1,A ∈ C . (10.15)

Let us fix once and for all a point u ∈ T and to lighten notation let
j(n) = jn(An(u)). Let an = 2nr−j(n). Consider the set

J = {n0} ∪
{
m > n0 ; j(m− 1) = j(m) , j(m+ 1) = j(m) + 1

}
.

Consider m ∈ J , m > n0 and n = m − 1. Then j(m − 1) = j(n), i.e.
j(n+1) = j(n), and it follows by construction that when we split C = An(u)



10.1 The Partition Scheme 317

according to the Decomposition Lemma, Am(u) = An+1(u) is a piece A� that
satisfies (10.12), i.e.

1

4r
am + sup

t∈Am(u)

Fm,j(m)+1(Am(u) ∩Bj(m)+2(t, 2
m+κ−1))

≤ Fm−1,j(m)(Am−1(u)) . (10.16)

Next, we prove that
∑

n≥n0
an ≤ 4

∑
n∈J an. To see this we simply observe

that if we define

I0 = {n0} ∪ {k > n0 ; ∀n ≥ n0 , n �= k , an < ak2
|k−n|} ,

then Lemma 2.6.3 used for α = 2 implies
∑

n≥n0
an ≤ 4

∑
n∈I0

an, while
obviously (as in (2.140)) I0 ⊂ J . Next, we apply again Lemma 2.6.3 to the
sequence (aj)j∈J . That is, if we enumerate J as a sequence (n�)�≥0, we define

I = {n0} ∪ {nk , k ≥ 1 ; ∀ s > 1 , s �= k , ans < ank
2|s−k|} .

Then Lemma 2.6.3 implies
∑

n∈J an ≤ 4
∑

n∈I an. The point of this construc-
tion is as follows. Consider m ∈ I, with m > n0, and the largest p for which
j(p) = j(m + 1), so that p ∈ J . Moreover, since m ∈ I we have ap < 2am,
which means 2pr−j(p) < 2m+1r−j(m) and since j(p) = j(m)+1 and r = 2κ−2

this means that p+1 ≤ m+κ−1. Let A∗ = Ap+1(u). Since j(p+1) = j(p)+1
it follows from (10.15) that t∗ := tp+1,A∗ ∈ Ap(u) ⊂ Am(u). Now, (10.10)
implies

A∗ = Ap+1(u) ⊂ Bj(p+1)(t
∗, 2p+1)

= Bj(m)+2(t
∗, 2p+1) ⊂ Bj(m)+2(t

∗, 2m+κ−1) ,

so that
Ap+1(u) = A∗ ⊂ Am(u) ∩Bj(m)+2(t

∗, 2m+κ−1)

and (10.16) implies

1

4r
am + Fm,j(m)+1(Ap+1(u)) ≤ Fm−1,j(m)(Am−1(u)) . (10.17)

For m ≥ n0 let us define x(m) = Fm−1,j(m)(Am−1(u)). This sequence is
decreasing from (10.1). Since m ≤ p + 1 and j(m) + 1 ≤ j(p + 2), (10.1)
implies Fm,j(m)+1(Ap+1(u)) ≥ x(p+ 2), so that for m ∈ I

1

4r
am ≤ x(m)− x(p+ 2) . (10.18)

If we number the elements of I \ {n0} as an sequence (m(i))i≥1, when m =
m(i) then p ≤ m(i+ 1) and therefore p+ 2 ≤ m(i+ 3). Thus

1

4r
am(i) ≤ x(m(i))− x(m(i+ 3)) .
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Summation of these relations, we obtain

∑

i≥1

am(i) ≤ Lrx(m(1)) ≤ LrFn0,j0 .

Since jn0(T ) = j0, we have an0 = 2−n0r−j0 and therefore

∑

i∈I

an ≤ L(rFn0,j0 + 2−n0r−j0) .

This completes the proof. 
�

10.2 The Structure of Certain Canonical Processes

In this section we prove a far reaching generalization of Theorem 2.4.1. We
consider independent, centered, symmetric r.v. (Yi)i≥1. We assume that

Ui(x) = − logP (|Yi| ≥ x) (10.19)

is convex. Since it is a matter of normalization, we assume that Ui(1) = 1.
Since Ui(0) = 0 we then have U ′

i(1) ≥ 1.
Given t = (ti)i≥1 ∈ �2, we define

Xt =
∑

i≥1

tiYi .

The condition t ∈ �2 is to ensure the convergence of the series. (Very little
of the results we will present is lost if one assumes that only finitely many of
the coefficients ti are not 0). The aim of this section is to study collections of
such r.v. as t varies over a set T , and in particular “to compute E supt∈T Xt

as a function of the geometry of T”. The case where Ui(x) = xp for a certain
p ≥ 1 was obtained by this author in [3] and we owe the present more general
setting to a further effort by R. Lata�la [1]. It is in truth a rather amazing
fact that this can be done at all at the present level of generality. Even the
question of understanding precisely the size of the tails of one single r.v Xt

is far from obvious. The definitions we are going to introduce represent the
outcome of many steps of abstraction, and the ideas behind them can be
understood only gradually.

A first idea “is to redefine the function Ui as x
2 for 0 ≤ x ≤ 1.” In order

to preserve convexity, we consider the function Ûi(x) (defined on all R) given
by

Ûi(x) =

{
x2 if 0 ≤ |x| ≤ 1

2Ui(|x|)− 1 if |x| ≥ 1 ,
(10.20)

so that this function is convex.
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Given u > 0, we define

Nu(t) = sup
{∑

i≥1

tiai ;
∑

i≥1

Ûi(ai) ≤ u
}

and
B(u) = {t ; Nu(t) ≤ u} .

Given a number r, we further define

ϕj(s, t) = inf{u > 0 ; s− t ∈ r−jB(u)} (10.21)

when the set in the right-hand side is not empty and ϕj(s, t) =∞ otherwise.
To get a feeling of what happens let us first carry out the meaning of

these definitions in simple cases. The simplest case is when Ui(x) = x2 for
all i. It is rather immediate then that

x2 ≤ Ûi(x) ≤ 2x2 ;

√
u

2
‖t‖2 ≤ Nu(t) ≤

√
u‖t‖2,

so that B2(0,
√
u) ⊂ B(u) ⊂ B2(0,

√
2u), where B2 denotes the ball of �2,

and
1

2
r2j‖s− t‖22 ≤ ϕj(s, t) ≤ r2j‖s− t‖22 , (10.22)

so we are basically in the situation of (10.5).
The second simplest example is the case where for all i we have Ui(x) = x

for x ≥ 0. In that case we have |x| ≤ Ûi(x) = 2|x| − 1 ≤ x2 for |x| ≥ 1. Thus
Ûi(x) ≤ x2 and Ûi(x) ≤ 2|x| for all x ≥ 0, and hence

∑

i≥1

a2i ≤ u⇒
∑

i≥1

Ûi(ai) ≤ u

and ∑

i≥1

2|ai| ≤ u⇒
∑

i≥1

Ûi(ai) ≤ u .

Consequently, we have Nu(t) ≥
√
u‖t‖2 and Nu(t) ≥ u‖t‖∞/2. Moreover,

if
∑

i≥1 Ûi(ai) ≤ u, writing bi = ai1{|ai|≥1} and ci = ai1{|ai|<1} we have
∑

i≥1 |bi| ≤ u (since Ûi(x) ≥ |x| for |x| ≥ 1) and
∑

i≥1 c
2
i ≤ u (since Ûi(x) ≥

x2 for |x| ≤ 1). Consequently

∑

i≥1

tiai =
∑

i≥1

tibi +
∑

i≥1

tici ≤ u‖t‖∞ +
√
u‖t‖2 ,

and we have shown that

1

2
max(u‖t‖∞,

√
u‖t‖2) ≤ Nu(t) ≤ (u‖t‖∞ +

√
u‖t‖2) ,
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and thus

1

2
{t ; ‖t‖∞ ≤ 1 , ‖t‖2 ≤

√
u} ⊂ B(u) ⊂ 2{t ; ‖t‖∞ ≤ 1 , ‖t‖2 ≤

√
u} .
(10.23)

In this case the functions ϕj have a genuinely more complicated structure
than in the case of (10.22).

The third simplest example is the case where for some p ≥ 1 and for
all i we have Ui(x) = xp for x ≥ 0, and the reader who truly wants to
understand what really is going on would do well to work out a version of the
general result in this special case. (The cases p > 2 and p < 2 offer significant
differences.)

Our first result provides suitable upper bounds for E supt Xt. We recall
that the definition (10.21) of the function ϕj involves the parameter r.

Theorem 10.2.1. Assume that there exists an admissible sequence (An) of
T ⊂ �2, and for A ∈ An an integer jn(A) ∈ Z such that

∀A ∈ An , ∀s, s′ ∈ A , ϕjn(A)(s, s
′) ≤ 2n+1 . (10.24)

Then
E sup

t∈T
Xt ≤ L sup

t∈T

∑

n≥0

2nr−jn(An(t)) . (10.25)

Let us first interpret this statement in the case where Ui(x) = x2 for each i.
Then (and more generally when Ui(x) ≥ x2/L for x ≥ 1) we have ϕj(s, t) ≤
Lr2j‖s−t‖22, so that (10.24) holds as soon as r2jn(A)Δ(A, d2)

2 ≤ 2n/L, where
of course d2 denotes the distance induced by the norm of �2. Taking for jn(A)
the largest integer that satisfies this inequality implies that the right-hand
side of (10.25) is bounded by Lr supt∈T

∑
n≥0 2

n/2Δ(An(t), d2). Taking the
infimum over the admissible sequences (An) this yields

E sup
t∈T

Xt ≤ Lrγ2(T, d2) .

Let us now interpret Theorem 10.2.1 when Ui(x) = x for each i. When
‖s − t‖∞ ≤ r−j/L, (10.23) implies ϕj(s, t) ≤ Lr2j‖s − t‖22, so that (10.24)
holds whenever rjn(A)Δ(A, d∞) ≤ 1/L and r2jn(A)Δ(A, d2)

2 ≤ 2n/L, where
of course d∞ denotes the distance induced by the norm of �∞. Taking for
jn(A) the largest integer that satisfies both conditions yields

r−jn(A) ≤ Lr
(
Δ(A, d∞) + 2−n/2Δ(A, d2)

)
,

so that (10.25) implies

E sup
t∈T

Xt ≤ Lr sup
t∈T

∑

n≥0

(
2nΔ(An(t), d∞) + 2n/2Δ(An(t), d2)

)
. (10.26)
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At the beginning of the proof of Theorem 2.2.23, we have explained how, given
two admissible sequences that behave well for two different distances, one can
construct an admissible sequence that behaves well for both distances. Thus
(10.26) implies

E sup
t∈T

Xt ≤ Lr
(
γ2(T, d2) + γ∞(T, d1)

)
. (10.27)

This resembles Theorem 2.2.23, and could actually be deduced from this
theorem and an appropriate version of Bernstein’s inequality.

It will be a simple adaptation of the proof of Theorem 2.2.22 to deduce
Theorem 10.2.1 from the following, that provides a sharp description of the
size of the tails of an individual r.v. Xt.

Proposition 10.2.2. If u > 0 , v ≥ 1, we have

P(Xt ≥ LvNu(t)) ≤ exp(−uv) . (10.28)

Proof of Theorem 10.2.1. We consider an arbitrary element t0 of T and we
set T0 = {t0}. For n ≥ 1 we consider a set Tn such that

∀A ∈ An , card(A ∩ Tn) = 1 .

For t ∈ T we define πn(t) by {πn(t)} = An(t) ∩ Tn. For any integer k and
any t in Tk we have

Xt −Xt0 =
∑

1≤n≤k

Xπn(t) −Xπn−1(t) . (10.29)

For v ≥ 1 consider the event Ωv defined by

∀n ≥ 1 , ∀s ∈ Tn , ∀s′ ∈ Tn−1 , |Xs −Xs′ | ≤ LvN2n(s− s′) , (10.30)

where L is as in (10.28). Then (10.28) and the fact that cardTn · cardTn−1 ≤
NnNn−1 ≤ 22

n+1

imply

P(Ωc
v) ≤ p(v) :=

∑

n≥1

22
n+1

exp(−v2n) . (10.31)

The definition of ϕj and (10.24) imply

∀s, s′ ∈ A ∈ An , s− s′ ∈ r−jn(A)B(2n+1) . (10.32)

Since πn(t), πn−1(t) ∈ An−1(t), using (10.32) for n− 1 rather than n yields

πn(t)− πn−1(t) ∈ r−jn−1(An−1(t))B(2n) ,

and the definition of B(u) implies
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N2n(πn(t)− πn−1(t)) ≤ 2nr−jn−1(An−1(t)) .

When the event Ωv occurs, using (10.30) for s = πn(t) and s′ = πn−1(t) we
get

|Xπn(t) −Xπn−1(t)| ≤ Lv2nr−jn−1(An−1(t)) .

Consequently (10.29) implies that for t ∈ Tk

|Xt −Xt0 | ≤ Lv
∑

1≤n≤k

2nr−jn−1(An−1(t)) ,

and thus
sup
t∈Tk

|Xt −Xt0 | ≤ Lv sup
t∈T

∑

1≤n≤k

2nr−jn−1(An−1(t)) ,

so that

P
(
sup
t∈Tk

|Xt −Xt0 | > Lv sup
t∈T

∑

1≤n≤k

2nr−jn−1(An−1(t))
)
≤ P(Ωc

v) ,

and using (10.31) we get (after a simple computation)

E sup
t∈Tk

|Xt −Xt0 | ≤ L sup
t∈T

∑

1≤n≤k

2nr−jn−1(An−1(t)) ,

which implies the conclusion since k is arbitrary. 
�

Exercise 10.2.3. (a) Use Proposition 10.2.2 to prove that if p ≥ 1 then
‖Xt‖p ≤ Lpr−jϕj(t).
(b) Deduce Theorem 10.2.1 from Exercise 2.2.25.

The proof of Proposition 10.2.2 requires several lemmas. For λ ≥ 0 we
define Vi(λ) = supx(λx − Ûi(x)), so that Vi(λ) < ∞ for λ < λi, where
λi = limx→∞ Ûi(x)/x ≥ 1 ∈]0,∞]. (The limit exists since Ûi is convex).
Moreover (taking x = 0), we have Vi ≥ 0, and Vi is convex with Vi(0) = 0.
Taking x = λ/2, and since Ûi(x) = x2 for x < 1, we observe that

λ ≤ 2⇒ Vi(λ) ≥
λ2

4
(10.33)

and taking x = 1 that
Vi(λ) ≥ λ− 1 . (10.34)

Lemma 10.2.4. For λ ≥ 0 we have

E expλYi ≤ expVi(Lλ) . (10.35)
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Proof. Since U ′
i(1) ≥ 1, for x ≥ 1 we have Ui(x) ≥ x, so that by (10.19) we

have P(|Yi| ≥ x) ≤ e−x and hence (using e.g. that x2 ≤ L exp |x|/6),

EY 2
i exp

|Yi|
2
≤ L .

The elementary inequality ex ≤ 1 + x+ x2e|x| yields that, if λ ≤ 1/2,

E expλYi ≤ 1 + λ2EY 2
i expλ|Yi| ≤ 1 + Lλ2 ≤ expLλ2 . (10.36)

Now since λ ≤ 1/2, we have λ2 ≤ 4Vi(λ), and since Vi is convex, Vi ≥ 0
and Vi(0) = 0 we have 4LVi(λ) ≤ Vi(4Lλ), so that Lλ2 ≤ Vi(4Lλ). This
completes the proof of (10.35) in the case λ ≤ 1/2.

Assume now that λ ≥ 1/2, and observe that

E expλ|Yi| = 1 + λ

∫ ∞

0

expλxP(|Yi| ≥ x)dx

≤ 1 + λ

∫ ∞

0

exp(λx− Ui(x))dx . (10.37)

We will prove that, for x ≥ 0,

λx− Ui(x) ≤
Vi(6λ)

2
− λx . (10.38)

Combining with (10.37), this yields

E expλ|Yi| ≤ 1 + λ

∫ ∞

0

exp
(Vi(6λ)

2
− λx

)
dx

= 1 + exp
Vi(6λ)

2
≤ 2 exp

Vi(6λ)

2
≤ expVi(6λ)

because (using (10.34) in the last inequality) Vi(6λ) ≥ Vi(3) ≥ 2, completing
the proof of (10.35).

To prove (10.38) we first consider the case where x ≤ 1. Then 4λx ≤ 4λ,
4λ ≤ 6λ − 1 (since λ ≥ 1/2) and 6λ − 1 ≤ Vi(6λ) by (10.34), so that
4λx ≤ Vi(6λ). Thus we have

λx− Ui(x) ≤ λx ≤ Vi(6λ)

2
− λx .

When x ≥ 1 we have Ui(x) ≥ Ûi(x)/2 and then

λx− Ui(x) ≤ λx− Ûi(x)

2
≤ Vi(4λ)

2
− λx

by definition of Vi. Since Vi(4λ) ≤ Vi(6λ) the proof is complete. 
�
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Lemma 10.2.5. We have

∑

i≥1

Vi

( u|ti|
Nu(t)

)
≤ u .

Proof. It suffices to show that given numbers xi ≥ 0, we have

∑

i≥1

u|ti|xi

Nu(t)
−
∑

i≥1

Ûi(xi) ≤ u . (10.39)

If
∑

i≥1 Ûi(xi) ≤ u, then by definition of Nu(t) we have
∑

i≥1 |ti|xi ≤ Nu(t)

so we are done. If
∑

i≥1 Ûi(xi) = θu with θ > 1, then (since Ûi(0) = 0

and Ûi is convex) we have
∑

i≥1 Ûi(xi/θ) ≤ u, so that by definition of Nu,∑
i≥1 |ti|xi ≤ θNu(t) and the left-hand side of (10.39) is in fact ≤ 0. 
�

Lemma 10.2.6. If v ≥ 1 we have

Nuv(t) ≤ vNu(t) . (10.40)

Proof. Consider numbers ai with
∑

i≥1 Ûi(ai) ≤ uv. For v ≥ 1 we have

Ûi(ai/v) ≤ Ûi(ai)/v, so that
∑

i≥1 Ûi(ai/v) ≤ u. By definition of Nu we then
have

∑
i≥1 tiai/v ≤ Nu(t) i.e.

∑
i≥1 tiai ≤ vNu(t). The definition of Nuv

then implies (10.40). 
�
Proof of Proposition 10.2.2. Since by Lemma 10.2.6 we have vNu(t)≥Nvu(t),
we can assume v = 1. Lemma 10.2.4 implies

P(Xt ≥ y) ≤ exp(−λy)E expλXt

≤ exp
(
−λy +

∑

i≥1

Vi(L0λ||ti||)
)
.

We choose y = 2L0Nu(t) , λ = 2u/y, and we apply Lemma 10.2.5 to get

−λy +
∑

i≥1

Vi(L0λti) ≤ −2u+ u = −u . 
�

Let us now turn to the converse of Theorem 10.2.1. We assume the fol-
lowing regularity conditions. For some constant C0, we have

∀i ≥ 1 , ∀s ≥ 1 , Ui(2s) ≤ C0Ui(s) . (10.41)

∀i ≥ 1 , U ′
i(0) ≥ 1/C0 . (10.42)

Here, U ′
i(0) is the right derivative at 0 of the function Ui(x). Condition (10.41)

is often called “the Δ2 condition”.
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Theorem 10.2.7. Under conditions (10.41) and (10.42) we can find r0 (de-
pending on C0 only) and a number K = K(C0) such when r ≥ r0, for each
subset T of �2 there exists an admissible sequence (An) of T and for A ∈ An

an integer jn(A) ∈ Z such that (10.24) holds together with

sup
t∈T

∑

n≥0

2nr−jn(An(t)) ≤ K(C0)rE sup
t∈T

Xt . (10.43)

Together with Theorem 10.2.1, this essentially allows the computation of
E supt∈T Xt as a function of the geometry of T . It is not very difficult to
prove that Theorem 10.2.7 still holds true without condition (10.42), and
this is done in [1]. But it is an entirely different matter to remove condition
(10.41). The difficulty is of the same nature as in the study of Bernoulli
processes. Now that the Bernoulli conjecture has been solved, on can hope
that this will eventually be done.

Let us interpret Theorem 10.2.7 in the case where Ui(x) = x2 for x ≥ 1.
In that case (and more generally when Ui(x) ≤ x2/L for x ≥ 1), we have

ϕj(s, t) ≥ r2j‖s− t‖22/L , (10.44)

so that (10.24) implies that Δ(A, d2) ≤ L2n/2r−jn(A) and (10.43) implies

sup
t∈T

∑

n≥0

2n/2Δ(An(t), d2) ≤ LrE sup
t∈T

Xt ,

and hence
γ2(T, d2) ≤ LrE sup

t∈T
Xt . (10.45)

Thus, we have proved (an extension of) Theorem 2.4.1.
Next consider the case where Ui(x) = x for all x. Then (10.23) im-

plies (10.44), and thus (10.45). It also implies that ϕj(s, t) = ∞ whenever
‖s − t‖∞ > 2r−j , because then rj(s − t) �∈ B(u) whatever the value of u.
Consequently, (10.24) implies that Δ(A, d∞) ≤ Lr−jn(A), and (10.43) yields

γ1(T, d∞) ≤ LrE sup
t∈T

Xt .

Recalling (10.27) (and since here r is a universal constant) we thus have
proved the following very pretty fact.

Theorem 10.2.8. Assume that the r.v.s Yi are independent, symmetric and
satisfy P(|Yi| ≥ x) = exp(−x). Then

1

L
(γ2(T, d2) + γ1(T, d∞)) ≤ E sup

t∈T
Xt ≤ L(γ2(T, d2) + γ1(T, d∞)) .

Corollary 10.2.9. If T is a set of sequences,

γ2(conv T, d2) + γ1(conv T, d∞) ≤ L(γ2(T, d2) + γ1(T, d∞)) . (10.46)
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Research problem 10.2.10. Given a geometrical proof of (10.46).

A far more general question occurs in Problem 10.2.15 below.

Exercise 10.2.11. Prove that it is not true that for a set T of sequences
one has

γ1(conv T, d∞) ≤ Lγ1(T, d∞) .

(Hint: consider the set T of coordinate functions on {−1, 1}k.)

We now prepare for the proof of Theorem 10.2.7.

Lemma 10.2.12. Under (10.41), given ρ > 0 we can find r0, depending on
C0 and ρ only, such that if r ≥ r0, for u ∈ R

+ we have

B(4ru) ⊂ ρrB(u) . (10.47)

Proof. We claim that for a constant C1 depending only on C0 we have

∀u > 0 , Ûi(2u) ≤ C1Ûi(u) . (10.48)

Indeed, it suffices to prove this for u large, where this follows from the Δ2

condition (10.41). Consider an integer k large enough that 2−k+2 ≤ ρ and let
r0 = Ck

1 . Assuming that r ≥ r0, we prove (10.47).
Consider t ∈ B(4ru). Then N4ru(t) ≤ 4ru by definition of B(4ru), so that

for any numbers (ai)i≥1 we have

∑

i≥1

Ûi(ai) ≤ 4ru⇒
∑

i≥1

aiti ≤ 4ru . (10.49)

Consider numbers bi with
∑

i≥1 Ûi(bi) ≤ u. Then by (10.48) we have

Ûi(2
kbi) ≤ Ck

1 Ûi(bi) ≤ rÛi(bi), so that
∑

i≥1 Ûi(2
kbi) ≤ ru ≤ 4ru, and

(10.49) implies
∑

i≥1 2
kbiti ≤ 4ru. Since 2k ≥ 4/ρ we have shown that

∑

i≥1

Ûi(bi) ≤ u⇒
∑

i≥1

bi
ti
ρr
≤ u ,

so that Nu(t/ρr) ≤ u and thus t/ρr ∈ B(u) i.e. t ∈ rρB(u). 
�

Theorem 10.2.13. Under Condition (10.42) we can find a number ρ > 0
with the following property. Given any points t1, . . . , tm in �2 such that

� �= �′ ⇒ t� − t�′ �∈ B(u) (10.50)

and given any sets H� ⊂ t� + ρB(u), we have

E sup
t∈

⋃
H�

Xt ≥
1

L
min(u, logm) + min

�≤m
E sup

t∈H�

Xt . (10.51)
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The proof of this statement is very similar to the proof of (2.89). The first
ingredient is a suitable version of Sudakov minoration, asserting that, under
(10.50)

E sup
�≤m

Xt� ≥
1

L
min(u, logm) (10.52)

and the second is a “concentration of measure” result that quantifies the
deviation of supt∈H�

Xt from its mean. Condition (10.42) is used there, to

assert that the law of Yi is the image of the probability ν of density e−2|x|

with respect to Lebesgue measure by a Lipschitz map. This allows to apply
the result of concentration of measure concerning ν first proved in [2]. Since
neither of these arguments is closely related to our main topic, we refer the
reader to [3] and [1].

Proof of Theorem 10.2.7. Consider ρ as in Theorem 10.2.13. If r = 2κ−2,
where κ is large enough (depending on C0 only), Lemma 10.2.12 shows that
(10.47) holds for each u > 0. We fix this value of r, and we prove that the
functionals Fn,j(A) = 2L0E supt∈A Xt, where L0 is the constant of (10.51),
satisfy the growth condition of Definition 10.1.1 for n0 = 1. Consider n ≥ 1,
and points (t�) for � ≤ m = Nn as in (10.3). By definition of ϕj+1 we have

� �= �′ ⇒ t� − t�′ �∈ r−j−1B(2n+1) . (10.53)

Consider then sets H� ⊂ Bj+2(t�, 2
κ+n). By definition of ϕj+2, we have

Bj+2(t�, 2
κ+n) = t�+r−j−2B(2κ+n). Using (10.47) for u = 2n (and since 2κ =

4r) we obtain that B(2κ+n) ⊂ ρrB(2n) and therefore H� ⊂ t�+ρr−j−1B(2n).
Since logm = 2n log 2 ≥ 2n−1, we can then appeal to (10.51) to obtain the
desired relation

Fn,j

( ⋃

�≤m

H�

)
≥ 2nr−j−1 +min

�≤m
Fn+1,j+1(H�)

that completes the proof of the growth condition.
Using (10.52) for n = 2 and homogeneity yields

s, t ∈ T , s− t �∈ aB(1)⇒ a

L0
≤ Emax(Xs, Xt) ≤ E sup

t∈T
Xt . (10.54)

Let us denote by j0 the largest integer such that r−j0 > L0E supt∈T Xt, so
that

r−j0 ≤ L0rE sup
t∈T

Xt . (10.55)

For s, t ∈ T , using (10.54) for a = r−j0 implies s − t ∈ r−j0B(1) and thus
ϕj0(s, t) ≤ 1, that is (10.7) holds for n0 = 1 and this value of j0. Thus we are
in a position to apply Theorem 10.1.2 to construct an admissible sequence
(An). Using (10.55), (10.9) implies

∀t ∈ T ,
∑

n≥1

2nr−jn(An(t)) ≤ LrE sup
t∈T

Xt .

Setting j0(T ) = j0, this yields (10.43) since then r−j0(An0 (t)) = r−j0 .
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To finish the proof, it remains to prove (10.24). By definition of Bj(t, u)
and of ϕj , we have

s ∈ Bj(t, u)⇒ ϕj(s, t) ≤ u⇒ s− t ∈ r−jB(u) .

Thus (10.10) implies

∀n ≥ 1 , ∀A ∈ An , ∀s ∈ A , s− tn,A ∈ r−jn(A)B(2n) .

Since B(u) is a convex symmetric set, we have

s− tn,A ∈ r−jn(A)B(2n), s′ − tn,A ∈ r−jn(A)B(2n) ⇒ s− s′

2
∈ r−jn(A)B(2n)

⇒ ϕjn(A)

(s
2
,
s′

2

)
≤ 2n ,

and finally

∀n ≥ 1 , ∀A ∈ An , ∀s, s′ ∈ A , ϕjn(A)

(s
2
,
s′

2

)
≤ 2n .

This is not exactly (10.24), but of course to get rid of the factor 1/2 it would
have sufficed to apply the above proof to 2T = {2t; t ∈ T} instead of T . 
�

Exercise 10.2.14. Prove that under conditions (10.41) and (10.42) we can
find an admissible increasing sequence An of partitions of T such that
supt∈T Δn(An(t)) ≤ K(C0)E supt∈T Xt, where Δn denotes the diameter for
the distance ‖Xs − Xt‖2n . That is, the upper bound of Exercise 2.2.25 can
be reversed.

As a consequence of Theorems 10.2.1 and 10.2.7, we have the following ge-
ometrical result. Consider a set T ⊂ �2, an admissible sequence (An) of T
and for A ∈ An an integer jn(A) such that (10.24) holds true. Then there is
an admissible sequence (Bn) of conv T and for B ∈ Bn an integer jn(B) that
satisfies (10.24) and

sup
t∈conv T

∑

n≥0

2nr−jn(Bn(t)) ≤ K(C0)r sup
t∈T

∑

n≥0

2nr−jn(An(t)) . (10.56)

Research problem 10.2.15. Give a geometrical proof of this fact.

This is a far-reaching generalization of Research Problem 2.4.22.

The following generalizes Theorem 2.4.18.

Theorem 10.2.16. Assume (10.41) and (10.42). Consider a countable sub-
set T of �2, with 0 ∈ T . Then we can find a sequence (xn) of vectors of �2

such that
T ⊂ (K(C0)E sup

t∈T
Xt) conv({xn ; n ≥ 2} ∪ {0})

and, for each n,
Nlogn(xn) ≤ 1 .
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The point of this result is that, whenever the sequence (xn)n≥2 satisfies
Nlog n(xn) ≤ 1, then E supn≥2 Xxn ≤ L. To see this, we simply write, by
(10.28), that for v ≥ 1,

P
(
sup
n≥2

|Xxn | ≥ Lv
)
≤
∑

n≥2

P(|Xxn | ≥ LvNlogn(xn))

≤
∑

n≥2

exp(−v logn) ≤ L exp(−v/2) . (10.57)

Proof. We consider a sequence of partitions of T as provided by Theorem
10.2.7. We choose t0,T = 0, and for A ∈ An , n ≥ 1 we select tn,A ∈ An,
making sure (as in the proof of Theorem 2.4.18) that each point of T is of
the form tn,A for a certain A and a certain n . For A ∈ An , n ≥ 1, we denote
by A′ the unique element of An−1 that contains A.

We define

uA =
tn,A − tn−1,A′

2n+1r−jn−1(A′)

and U = {uA;A ∈ An, n ≥ 1}. Consider t ∈ T , so that t = tn,A for some n
and some A ∈ An, and, since A0(t) = T and t0,T = 0,

t = tn,A =
∑

1≤k≤n

tk,Ak(t) − tk−1,Ak−1(t) =
∑

1≤k≤n

2k+1r−jk−1(Ak−1(t))uAk(t) .

Since
∑

k≥0 2
kr−jk(Ak(t)) ≤ K(C0)E supt∈T Xt by (10.43), this shows that

T ⊂ (K(C0)E sup
t∈T

Xt) convU .

Next, we prove that N2n+1(uA) ≤ 1 whenever A ∈ An. The definition of ϕj

and (10.24) imply

∀s , s′ ∈ A , s− s′ ∈ r−jn(A)B(2n+1) ,

and the homogeneity of Nu yields

∀s , s′ ∈ A ,N2n+1(s− s′) ≤ r−jn(A)2n+1 .

Since tn,A, tn−1,A′ ∈ A′, using this for n− 1 rather than n and A′ instead of
A we get

N2n(tn,A − tn−1,A′) ≤ 2nr−jn−1(A
′) ,

and thus N2n(uA) ≤ 1/2, so that N2n+1(uA) ≤ 1 using (10.40).
Let us enumerate U = (xn)n≥2 in such a manner that the points of the

type uA for A ∈ A1 are enumerated before the points of the type uA for A ∈
A2, etc. Then if xn = uA for A ∈ Ak, we have n ≤ N0 +N1 + · · ·+Nk ≤ N2

k

and therefore logn ≤ 2k+1. Thus Nlog n(xn) ≤ N2k+1(xn) = N2k+1(uA) ≤ 1.

�
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11. Infinitely Divisible Processes

11.1 A Well-Kept Secret

The reader having never worked with infinitely divisible processes is unlikely
to feel comfortable with formulas such as (11.6) below, so we explain here, in
an informal but essentially correct way what infinitely divisible processes re-
ally are, and why they fit so well with the other objects we study. Consider a
σ-finite measure space (Ω, ν). There is a canonical way to construct a count-
able random subset ofΩ, through a Poisson point process of intensity measure
ν. This is explained on page 340, but the exact properties of this subset are
not very important until one starts to prove theorems. Let us enumerate this
subset as a sequence (Zi)i≥1. Consider an independent Bernoulli sequence
(εi)i≥1. Consider a function t on (Ω, ν). Then, when

∫
min(t2, 1)dν < ∞,

one can show that the series Xt =
∑

i εit(Zi) converges a.s. An infinitely
divisible (symmetric, without Gaussian component) process is then simply
a collection of such r.v.s, for t ∈ T , where T a set of functions on Ω. Ob-
viously this absolutely canonical construction is connected with the idea of
empirical processes. Let us observe that given the randomness of the (Zi),
an infinitely divisible process is a Bernoulli process, a fact that will be used
in a fundamental way. For example, the “harmonic infinitely divisible pro-
cesses” considered in Theorem 11.2.1 are simply the following. Considering
a compact group T , the set G of continuous characters on T , and a σ-finite
measure ν on RG. Consider the sequence (Zi) associated to this measure as
above. Then Zi is the multiple of a character on T and the process (Xt)t∈T

is distributed as the process (
∑

i εiZi(t))t∈T . Given the choice of the r.v.s Zi

this process is then a random Fourier series and it is not surprising that the
complete understanding we have of these series bears on the study of such
processes.

Not only the previous definition of infinitely divisible processes is rather
direct, it also immediately brings forward what is (for the type of results we
consider) the fruitful point of view, to think of an infinitely divisible process
as a class of functions. Nonetheless, since the topic has a long history, we will
follow the traditional method of introducing infinitely divisible r.v.s through
the properties of their characteristic function, and we will develop the present
point of view only gradually.

M. Talagrand, Upper and Lower Bounds for Stochastic Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
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11.2 Overview of Results

We start by recalling some classical facts. A number of these facts will be
proved in Section 11.3. A reader needing more details can refer to her favorite
textbook.

A Poisson r.v. X of expectation a is a r.v. such that

∀n ≥ 0 ; P(X = n) =
an

n!
exp(−a) , (11.1)

and thus EX = a. Then, for any b ∈ C,

EbX = exp(−a)
∑

n≥0

bn
an

n!
= exp(−a(1− b)) , (11.2)

and in particular

E exp(iαX) = exp
(
−a(1− exp(iα))

)
. (11.3)

Consequently, the sum of two independent Poisson r.v.s is Poisson. Consider
now (finitely many) independent Poisson r.v.s Xk with EXk = ak, and num-
bers βk ≥ 0. Then, by independence,

E exp
(
iα
∑

k

βkXk

)
= exp

(
−
∑

k

ak(1− exp(iαβk))

)

= exp

(
−
∫

(1− exp(iαβ))dν(β)

)
, (11.4)

where ν is the discrete positive measure on R
+ such that for each β ∈ R

+ we
have ν({β}) =

∑
{ak;βk = β}. Let us observe the formula

E
∑

k

βkXk =
∑

k

βkak =

∫
βdν(β) .

We recall the notation x ∧ 1 = min(x, 1). We say that a r.v. X is positive
infinitely divisible if there exists a positive measure ν on R

+ such that

∫
(β ∧ 1)dν(β) <∞ , (11.5)

∀α ∈ R , E exp iαX = exp

(
−
∫

(1− exp(iαβ))dν(β)

)
. (11.6)

It is appropriate to think of X as a (continuous) sum of independent r.v.s of
the type βY where Y is a Poisson r.v. and β ≥ 0. This is a sum of quantities
that are ≥ 0 and there is no cancellation in this sum. The r.v. X need not
have an expectation. In fact, it has an expectation if and only

∫
βdν(β) <∞
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(and the value of this expectation is then
∫
βdν(β)). The reader need not be

very concerned with the case where X does not have an expectation because
our main results require technical conditions which imply that X has an
expectation.

Consider again a Poisson r.v. Y of expectation a and an independent copy
Y ′ of Y . Then (11.3) implies

E exp iα(Y − Y ′) = exp(−2a(1− cos(α)) . (11.7)

Thus, when a r.v. X is a sum of independent terms βk(Yk − Y ′
k) where Yk

and Y ′
k are independent Poisson r.v.s of expectation ak and βk ≥ 0, we have

E exp iαX = exp

(
−
∫

(1− cos(αβ))dν(β)

)
, (11.8)

where now ν is the discrete positive measure on R
+ such that ν({β}) =

2
∑
{ak;βk = β} for each β ∈ R

+. Let us observe the inequality

P(X �= 0) ≤ 2
∑

k

ak = |ν| , (11.9)

where |ν| denotes the total mass of ν.
We say that a r.v. X is infinitely divisible (real, symmetric, without Gaus-

sian component) if it satisfies (11.8) for a positive measure ν on R
+ such that

∫
(β2 ∧ 1)dν(β) <∞ . (11.10)

(We shall prove the existence of X in Section 11.3.) It is appropriate to think
of X as a continuous sum of independent r.v.s of the type β(Y − Y ′) where
Y and Y ′ are independent Poisson r.v.s with the same expectation. These
r.v.s are symmetric rather than positive, and there is a lot of cancellation
when one adds them. This is why the formula (11.8) makes sense under
the condition (11.10) rather than the much stronger condition (11.5). (The
essence of the proof that (11.8) makes sense under (11.10) is simply to bring
out cancellation through computation of second moments.) This dichotomy
no cancellation versus cancellation considerably influences the rest of this
chapter.

If T is a finite set, a stochastic process (Xt)t∈T is called (real, symmetric,
without Gaussian component) infinitely divisible if there exists a positive
measure ν on R

T such that
∫
RT (β(t)

2 ∧ 1)dν(β) <∞ for all t in T , and such
that for all families (αt)t∈T of real numbers we have

E exp i
∑

t∈T

αtXt = exp

(
−
∫

RT

(
1− cos

(∑

t∈T

αtβ(t)
))

dν(β)

)
. (11.11)

The positive measure ν is called the Lévy measure of the process. (It turns out
to be unique provided one assumes, which changes nothing, that ν({0}) = 0.)
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As a consequence of this formula, each of the linear combinations
∑

t∈T αtXt

is an infinitely divisible r.v. To get a feeling for this formula, consider the case
where ν consists of a mass a at a point β ∈ R

T . Then, in distribution, we
have (Xt)t∈T = (β(t)(Y − Y ′))t∈T where Y and Y ′ are independent Poisson
r.v.s of expectation a/2. One can then view the formula (11.11) as saying
that the general case is obtained by taking a (kind of continuous) sum of
independent processes of the previous type. Let us point out right away that
a lot of cancellation occurs when taking such sums.

Let us comment on our definition of infinitely divisible processes. It is
a very mild restriction to exclude Gaussian components, since these are so
well understood, as was seen in Chapter 2. Also, for the purpose of studying
the supremum of the process (Xt)t∈T , it is essentially not a restriction to
consider only the symmetric case, using the symmetrization procedure that
we have met several times, i.e. replacing the process (Xt)t∈T by the process
(Xt−X ′

t)t∈T where (X ′
t)t∈T is an independent copy of (Xt)t∈T . In summary,

our definition of infinitely divisible processes is the most general one for the
purpose of studying the supremum of such processes.

For the type of inequalities we wish to prove, it is not a restriction to
assume that T is finite, but it is still useful to consider also the case where
T is infinite. In that case, we still say that the process (Xt)t∈T is infinitely
divisible if (11.11) holds for each family (αt)t∈T such that only finitely many
coefficients are not 0. Now ν is a “cylindrical measure” that is known through
its projections on R

S for S finite subset of T , projections that are positive
measures (and satisfy the obvious compatibility conditions, see e.g. [6] on
how these projections can be glued together).

An infinitely divisible process indexed by T is thus parameterized by a
cylindrical measure on R

T (with the sole restriction that
∫
(β(t)2∧1)dν(β) <

∞ for each t ∈ T ). This is a huge class, and only some extremely special
subclasses have yet been studied in any detail. The best known such sub-
class is that of infinitely divisible processes with stationary increments. Then
T = R

+ and ν is the image of μ⊗ λ under the map (x, u) �→ (x1{t≥u})t∈R+ ,
where μ is a positive measure on R such that

∫
(x2∧1)dμ(x) <∞ and where

λ is Lebesgue measure. More likely than not a probabilist selected at random
(!) will think that infinitely divisible processes are intrinsically discontinuous.
This is simply because he has this extremely special case as a mental picture.
In a certain sense, the processes we study are to infinitely divisible processes
with stationary increments what general Gaussian processes are to Brownian
motion. As will be apparent later (through Rosinski’s representation) dis-
continuity in the case of processes with stationary increments is created by
the fact that ν is supported by the discontinuous functions t �→ x1{t≥u} and
is certainly not intrinsic to infinitely divisible processes. In fact, some lesser
known classes of infinitely divisible processes studied in the literature, such as
moving averages (see e.g. [2]) are often continuous. They are still very much
more special than the structures we consider.
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Continuity will not be studied here, and was mentioned simply to stress
that we deal with hugely general and complicated structures, and it is almost
surprising that so much can be said about them.

Next, we show that p-stable processes are a special case of infinitely di-
visible processes. Consider 1 ≤ p < 2 and denote by λ Lebesgue’s measure
on R

+. Consider a probability measure m on RT . Assume that

ν is the image of λ⊗m under the map (x, γ) �→ x−1/pγ . (11.12)

In that case, if the Lévy measure is given by (11.12), the process (Xt)t∈T is
p-stable. To see this, we observe the formula

∫

R+

(1− cos(ax−1/p))dλ(x) = C(p)|a|p ,

which is obvious through change of variable. Then, for each real θ we have

∫

RT

(
1− cos

(
θ
∑

t∈T

αtβ(t)
))

dν(β)

=

∫

RT

∫

R+

(
1− cos

(
θx−1/p

∑

t∈T

αtγ(t)
))

dλ(x)dm(γ)

= |θ|pσ
p

2
, (11.13)

where

σp = 2C(p)

∫

RT

∣∣∑

t∈T

αtγ(t)
∣∣pdm(γ) . (11.14)

Then (11.11) and (8.1) show that the r.v.
∑

t∈T αtX(t) is p-stable (so that
the process (Xt) is stable by definition).

The goal of the present chapter is, following our general philosophy, to
try to relate the size of the r.v. supt∈T Xt with a proper measure of “the size
of T”. The functions

ϕ(s, t, u) =

∫

RT

(
(u2|β(s)− β(t)|2) ∧ 1

)
dν(β) (11.15)

will help measure the size of T . Given a number r, we will consider the
functions

ϕj(s, t) = ϕ(s, t, rj) .

For example, in the case (11.12) of p-stable processes, using change of vari-
ables again, it is quite straightforward to prove that

ϕj(s, t) = C ′(p)(rjd(s, t))p , (11.16)

where the distance d is given by
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d(s, t)p =

∫
|β(s)− β(t)|pdm(β) . (11.17)

Motivated by Section 3.1 we may expect that our goal will be much easier
to reach when “there is stationarity”, and we will consider this case first. For
this we need to consider complex-valued infinitely divisible processes.

Let us assume for simplicity that T is an metrizable compact group. Let
us consider the dual G of T , i.e. the set of continuous characters on T . We
say that the process (Xt)t∈T is (complex valued, symmetric) harmonic in-
finitely divisible if there exists a positive σ-finite measure ν on CG ⊂ C

T

(provided with the σ-algebra generated by the coordinate functions) such
that

∫
CT |β(t)|2 ∧ 1dν(β) < ∞ for all t in T , and such that for all families

(αt)t∈T of complex numbers, finitely many of which only are not 0, we have

E exp i�
∑

t∈T

αtXt = exp

(
−
∫

CT

(
1− cos�

(∑

t∈T

αtβ(t)
))

dν(β)

)
, (11.18)

where �(z) denotes the real part of the complex number z. Of course this
seems a formidable formula, but in Section 11.1 we have already tried to
take the scare out of it. An example of process satisfying this condition is
Xt = β(t)(Y − Y ′) where β ∈ CG and where Y and Y ′ are independent
Poisson r.v.s of expectation a. Then ν has mass 2a at β, and as previously
independent sums of such r.v.s also satisfy (11.18).

We denote by μ the Haar measure on T , and we assume r = 2 for sim-
plicity. We recall that N0 = 1 and that Nn = 22

n

for n ≥ 1.

Theorem 11.2.1. There exists a number α1 > 0 with the following property.
Assume that the process (Xt)t∈T is harmonic infinitely divisible. Assume that
for each finite set S ⊂ T and a certain number M we have

P
(
sup
t∈S

|Xt| ≥M
)
≤ α1 . (11.19)

Then there exist integers jn for n ≥ 0 such that

∀ s, t ∈ T , ϕj0(s, t) ≤ 3 , (11.20)

and, for n ≥ 1,
μ({s ∈ T ; ϕjn(s, 0) ≤ 2n}) ≥ N−1

n , (11.21)

and ∑

n≥0

2n−jn ≤ LM . (11.22)

In words, if we control the size of the process (Xt)t∈T then we control the
size of T “as measured with the distances ϕj”.

We turn to a converse of this theorem. First we must observe that condi-
tions (11.20) and (11.21) are automatically satisfied when ν has a total mass
≤ 1 because then ϕj(s, t) ≤ 1, so that these conditions alone are certainly
not sufficient to imply much about the boundedness of the process (Xt)t∈T .
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Exercise 11.2.2. Given a number A > 0 construct examples of harmonic
infinitely divisible processes for which (11.22) holds for M = 1 but where

P
(
sup
t∈T

|Xt| ≥ A
)
≥ 1/2 .

On the other hand if U is a subset of CT , it is true in some sense that
“the part of ν supported by U influences the values of the process (Xt)t∈T

only on an event of probability ≤ 2ν(U)”. In the case of single r.v. this have
been shown in (11.9), and in the case of an entire process this will become
clear later. Thus we may expect at best that (11.22) suffices to control the
values of the process outside a set of small probability. The next theorem
asserts that this is the case.

Theorem 11.2.3. Consider a harmonic infinitely divisible process and num-
bers jn, n ≥ 0 that satisfy the conditions (11.20) and (11.21). Then for any
number w ≥ 2−j0 we can find an event Ω with the property that

P(Ωc) ≤ ν({β ; |β(0)| ≥ w}) (11.23)

such that for any finite subset S of T

E1Ω sup
s∈S

|Xs| ≤ L
∑

n≥0

2n−jn + L

∫

2−j0≤|β(0)|≤w

|β(0)|dν(β) . (11.24)

This of course is of interest only if
∑

n≥0 2
n−jn <∞. In that case the right-

hand side of (11.24) is finite for any value of w, but as w becomes large the
right-hand side of (11.23) becomes small (since because

∫
|β(0)|2 ∧ 1dν <∞

we have ν({β ; |β(0)| ≥ 1}) <∞). Theorem 11.2.3 is particularly satisfactory
in the situation where

∫

|β(0)|≥2−j0

|β(0)|dν(β) <∞ ,

since in that case one can take w =∞ and Ωc = ∅.
The two previous theorems together provide a complete understanding of

“when the process supt |Xt| is bounded”. Let us illustrate this in the simpler
case of “harmonic p-stable processes”. That is, we assume that there exists
a probability measure m on G such that if ν is the positive measure on CG
given by (11.12), then (11.18) holds, where the integral is on CG rather than
R

T . Then we have, where d is the distance (11.17), and where γq(T, d) is as
in Definition 2.2.19:

Corollary 11.2.4. If 1 < p < 2 then E supt∈T |Xt| < ∞ if and only if
γq(T, d) <∞. If p = 1, then supt∈T |Xt| <∞ a.s. if and only if there exists
a sequence (εn) such that

∑
n εn <∞ and

μ({s ∈ T ; d(s, t) ≤ εn}) ≥ N−1
n .
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To avoid ambiguities, let us stress that unless we deal with harmonic
infinitely divisible processes, which are complex-valued, we consider only real-
valued process. This is the case for all the forthcoming results.

One of our main results will be, in a sense, an extension of Theorem 11.2.1
to the case of infinitely divisible processes that are not necessarily harmonic.
Our main tool will be the use of Theorem 10.1.2 where ϕj(s, t) = ϕ(s, t, rj)
a certain value of r. Unfortunately, in order to be able to prove a suitable
growth condition related to these quantities, we need a technical condition on
ν. It is a major open problem to decide whether our result holds without this
technical condition. To a large extent, the difficulty seems the same as in the
Bernoulli conjecture (so that now that this conjecture has been solved one
may hope for eventual progress on this problem). It is part of a larger circle
of problems which are discussed in Chapter 12. We introduce this condition
now.

Definition 11.2.5. Consider δ > 0 and C0 > 0. We say that condition
H(C0, δ) holds if for all s, t ∈ T , and all u > 0 , v > 1 we have

ν({β ; |β(s)− β(t)| ≥ uv}) ≤ C0v
−1−δν({β ; |β(s)− β(t)| ≥ u}) .

Without loss of generality we assume that δ < 1.
Condition H(C0, δ) is certainly annoying, since it rules out important

cases, such as when ν charges only one point. A large class of measures ν
that satisfy condition H(C0, δ) can be constructed as follows. Consider a
measure μ on R, and assume that

∀u > 0 , ∀v > 1 , μ({x ; |x| ≥ uv}) ≤ C0v
−1−δμ({x ; |x| ≥ u}) . (11.25)

Consider a probability measure m on R
T , and assume that ν is the image of

μ⊗m under the map (x, γ) �→ xγ. Then ν satisfies condition H(C0, δ). This
follows from (11.25) and the formula

ν({β ; |β(s)− β(t)| ≥ u}) =
∫

μ({x ; |x||γ(s)− γ(t)| ≥ u})dm(γ) .

In particular condition H(C0, δ) holds when μ has density x−p−1 with respect
to Lebesgue’s measure on R

+ and 1 < p < 2.

Theorem 11.2.6. Under condition H(C0, δ), there exists a number r ≥ 4
(depending only on C0 and δ), an admissible sequence of partitions An and
for A ∈ An a number jn(A) ∈ Z such that (10.8) holds i.e.

A ∈ An , C ∈ An−1 , A ⊂ C ⇒ jn−1(C) ≤ jn(A) ≤ jn−1(C) + 1 (10.8)

together with

∀n ≥ 0 , ∀A ∈ An , ∀s, s′ ∈ A , ϕjn(A)(s, s
′) = ϕ(s, s′, rjn(A)) ≤ 2n+2

(11.26)

∀t ∈ T ,
∑

n≥0

2nr−jn(An(t)) ≤ KE sup
t∈T

Xt . (11.27)
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Here of course K denotes a number that depends on C0 and δ only and
that need not be the same at each occurrence. It is legitimate to use expecta-
tion to control the size of supt∈T Xt in (11.27) because H(C0, δ) implies that
all the variables Xt do have an expectation.

Of course the level of abstraction reached here might make it hard for the
reader to immediately understand the power of Theorem 11.2.6. As a first
illustration, let us prove that in the case where ν is obtained as in (11.12),
we recover Theorem 8.1.1. By change of variable, it is obvious that

∫

R+

((ax−1/p)2 ∧ 1)dλ(x) = C1(p)|a|p ,

so that

ϕ(s, t, u) =

∫

RT

∫

R+

((
x−1/pu|γ(s)− γ(t)|

)2 ∧ 1
)
dλ(x)dm(γ)

= C1(p)u
p

∫

RT

|γ(s)− γ(t)|pdm(γ) .

Using (11.13) and (11.14) when
∑

t∈T αtβ(t) = β(t) − β(s) and comparing
with (8.1) and (8.3) we obtain

ϕ(s, t, u) = C2(p)u
pdp(s, t) ,

so that (11.26) implies Δ(A, d) ≤ K2n/pr−jn(A), and (11.27) yields

∑

n≥0

2n/qΔ(An(t), d) ≤ KE sup
t∈T

Xt ,

where 1/q = 1− 1/p and thus γq(T, d) ≤ KE supt∈T Xt, which is the content
of Theorem 8.1.10.

In the present chapter we shall go much beyond the negative fact that the
inequality (11.27) of Theorem 11.2.6 cannot be reversed in general. To grab
the headline right away, let us state that shall prove in a very precise sense
in Theorem 11.2.10 below that

Theorem 11.2.6 exactly captures the part of the boundedness

that is due to cancellation . (11.28)

To give a slightly more precise statement we shall show that in distribution
we can write Xt = X ′

t +X ′′
t where

(a) the infinitely divisible process (X ′
t) is of a special type for which the

inequality (11.27) of Theorem 11.2.6 can be reversed,
(b) the boundedness of the infinitely divisible process (X ′′

t ) owes nothing to
cancellation.

We now start the description of a representation of infinitely divisible
processes invented by J. Rosinski ([4]). Not only this representation is an
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essential technical tool, but it will also help us in formulating our results,
and make the link with the point of view of Section 11.1. That is, it allows
to think in a natural manner of infinitely divisible processes as classes of
functions on a probability space, a fundamental shift of point of view which
brings a connection with the ideas of Section 9.1.

We denote Lebesgue’s measure on R
+ by λ. We consider a Poisson point

process Π on R
+ with intensity λ. That is, Π is a random subset of R+ with

the following properties. First, for any bounded Borel subset A of R+,

card(A ∩Π) is a Poisson r.v. of expectation λ(A) , (11.29)

and moreover

If A1, . . . , Ak are disjoint Borel sets, the r.v.s

(card(A� ∩Π))�≤k are independent . (11.30)

We denote by (τi)i≥i an increasing enumeration of Π. (Equivalently, (τi)i≥1

is the sequence of arrival times of a Poisson process of parameter 1, that is
τi = Γ1 + · · ·+Γi, where the sequence (Γk)k≥1 is i.i.d. and P(Γk ≥ u) = e−u.
The equivalence is however non-trivial and will not be used.)

Consider a measurable function G : R+×R
T → R

T . Consider a probabil-
ity measure m on R

T . We denote by (Yi)i≥1 an i.i.d. sequence of RT -valued
r.v.s, distributed like m, and by (εi)i≥1 a Bernoulli sequence. We assume that
the sequences (τi), (εi) and (Yi) are independent of each other, and that T
is finite.

Theorem 11.2.7 (Rosinski’s representation [4]). Denote by ν the im-
age measure of λ⊗m under G, and assume that it is a Lévy measure, i.e. that∫
RT (|β(t)|2 ∧ 1)dν(β) <∞ for each t in T . Then the series

∑
i≥1 εiG(τi, Yi)

converges a.e. in R
T and its law is the law of the symmetric infinitely divisible

process of Lévy measure ν.

In practice, we are not given λ and m, but ν. There are many ways to
represent ν as the image of a product λ ⊗ m under a measurable transfor-
mation. One particular method is very fruitful (and is also brought to light
in [4] among other interesting methods). Consider a probability measure m
such that ν is absolutely continuous with respect to m. There are of course
many possible choices, but, remarkably enough, the particular choice of m
does not seem relevant. Consider a Radon-Nikodym derivative g of ν with
respect to m and define G(u, β) = R(u, β)β where

R(u, β) = 1[0,g(β)](u) . (11.31)

For simplicity we write Ri = R(τi, Yi). Theorem 11.2.7 implies that the sum

∑

i≥1

εiRiYi (11.32)
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is distributed like the infinitely divisible process of Lévy measure ν. This
representation of the process will be called Rosinski’s representation. Let us
note that

Ri ∈ {0, 1} ; Ri is a non-increasing function of τi . (11.33)

Conditionally on the sequence (τi)i≥1, the sequence (RiYi)i≥1 is indepen-
dent. This sequence (τi) is a nuisance, but a secondary one. For all practical
purposes one can almost think as if τi = i. More precisely, it turns out that
the influence of the sequence (τi)i≥1 will be felt only through the following
two quantities (that exist from the law of large numbers)

α− = min
i≥1

τi
i
; α+ = max

i≥1

τi
i
. (11.34)

Conditionally in the sequences (τi)i≥1 and (Yi)i≥1, the process (11.32) is a
Bernoulli process. In particular, an infinitely divisible processes can be repre-
sented as a mixture of Bernoulli processes. This is essential for our approach.

Next, we describe a class of infinitely divisible process for which bounded-
ness owes nothing to cancellation Given a finite set T , we say that the process
(Xt)t∈T is positive infinitely divisible if there exists a positive measure ν on
(R+)T , such that

∀t ∈ T ,

∫
(β(t) ∧ 1)dν(β) <∞ ,

and that for each family (αt)t∈T of real numbers we have

E exp i
∑

t∈T

αtXt = exp
(
−
∫ (

1− exp(i
∑

t∈T

αtβ(t))
)
dν(β)

)
.

We will call ν the Lévy measure of the process. (it turns out to be unique
provided one assumes that ν({0}) = 0.) While by “infinitely divisible process”
we understand that the process is symmetric, a positive infinitely divisible
process is certainly not symmetric. It is positive since a r.v satisfying (11.6) is
positive. This also follows from another version of Rosinski’s representation,
which asserts that the process

∑

i≥1

RiYi(t) (11.35)

has the same law as (Xt)t∈T . This is also proved in [4] and later here in
Section 11.3. The representation (11.35) will also be called the Rosinski rep-
resentation of the positive infinitely divisible process. The important feature
here is that all terms in (11.35) are non-negative. There is no cancellation
in this sum, so that the boundedness of a positive infinitely divisible process
owes nothing to cancellation.
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Next, we show that certain (symmetric) infinitely divisible processes are
in a natural way dominated by a positive infinitely divisible process. Consider
a (symmetric) infinitely divisible process (Xt)t∈T with Lévy measure ν and
assume that

∀t ∈ T ,

∫
(|β(t)| ∧ 1)dν(β) <∞ .

Consider the positive measure ν′ on (R+)T which is the image of ν under the
map β �→ |β|, where |β|(t) = |β(t)|. Then

∀t ∈ T ,

∫
(β(t) ∧ 1)dν′(β) <∞

so ν′ is the Lévy measure of a positive infinitely divisible process that we
denote by (|X|t). If ν is the image of λ⊗m under the map (x, β) �→ R(x, β)β,
then, since R(x, β) ≥ 0 , ν′ is the image of λ⊗m under the map

(x, β) �→ |R(x, β)β| = R(x, β)|β| .

Thus if
∑

i≥1 εiRiYi is a Rosinski representation of the infinitely divisible
process (Xt), then

∑
i≥1 Ri|Yi| is a Rosinski representation of the positive

infinitely divisible process (|X|t). Hence

E sup
t∈T

Xt = E sup
t∈T

∑

i≥1

εiRiYi(t) ≤ E sup
t∈T

∑

i≥1

Ri|Yi(t)| = E sup
t∈T

|X|t .

It we control E supt∈T |X|t, we can certainly claim that we control
E supt∈T Xt in a way that involves no cancellation.

Let us now describe a completely different method to control E supt∈T Xt.
Consider a Borel subset Ω of RT with m(Ωc) = 0. On T consider the distance
d∞(s, t) given by d∞(s, t) = supβ∈Ω |β(s) − β(t)|, and the distance d2(s, t)
given by d22(s, t) =

∫
Ω
(β(s)− β(t))2dν(β).

Theorem 11.2.8. We have

E sup
t∈T

Xt ≤ L
(
γ2(T, d2) + γ1(T, d∞)

)
. (11.36)

A reader expert about infinitely divisible processes will wonder why she has
never seen anything even remotely resembling this result. This is because The-
orem 11.2.8 usually does not apply to the entire infinitely divisible process,
but only to the part “where the boundedness is explained by the cancella-
tion”. This statement will soon be made precise.

In the following definition as usual ν is the image of λ⊗m under the map
(x, β) �→ R(x, β)β.

Definition 11.2.9. We say that an infinitely divisible process is S-certified
if γ1(T, d∞) ≤ S and γ2(T, d2) ≤ S, where, for a certain set Ω ⊂ R

T with
m(Ωc) = 0, we have
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d∞(s, t) = sup
β∈Ω

|β(s)− β(t)| ,

and

d2(s, t) =
(∫

Ω

(β(s)− β(t))2dν(β)
)1/2

.

Thus, Theorem 11.2.8 asserts that if the process (Xt)t∈T is S-certified, then
E supt∈T Xt ≤ LS, so that we “certify that we control the size the process”.

We now come to the main result of this chapter, the Decomposition The-
orem for infinitely divisible processes.

Theorem 11.2.10 (The Decomposition Theorem). Consider an in-
finitely divisible process (Xt)t∈T , and assume that condition H(C0, δ) of Def-
inition 11.2.5 holds. Let S = E supt∈T Xt. Then we can write in distribution

Xt = X ′
t +X ′′

t

where both processes (X ′
t)t∈T and (X ′′

t )t∈T are infinitely divisible with the
following properties: (X ′

t) is KS-certified, and E supt∈T |X ′′|t ≤ KS.

In other words, we know two ways to control E supt∈T Xt. One way is
that the process is S-certified. The other way is that we already control
E supt∈T |X|t. Under condition H(C0, δ) there is no other method: every sit-
uation is a combination of these.

To prove this theorem, it will be convenient to adopt a different point of
view (that was outlined in Section 11.1). This will also bring to light the fact
that the present material is closely connected to the material of Section 9.1.
To make this more apparent, rather than considering β ∈ Ω ⊂ R

T as a
function of t ∈ T , we will think of t ∈ T as a function of β, by the formula
t(β) = β(t). Since ν is a Lévy measure, we have

∀t ∈ T ,

∫

Ω

(t(β)2 ∧ 1)dν(β) <∞ . (11.37)

Conversely, assume that we are given a (σ-finite) positive measure space
(Ω, ν) and a (countable) set T of measurable functions on Ω such that (11.37)
holds. Consider a probability measure m such that ν is absolutely continuous
with respect to m and a function g such that ν = gm. Consider an i.i.d.
sequence (Yi) distributed like m, and set Ri = 1[0,g(Yi)](τi). Then Rosinski’s
representation

Xt =
∑

i≥1

εiRit(Yi)

defines an infinitely divisible process (Xt)t∈T . Its Lévy measure ν̄ is the image
of ν under the map ω �→ (t(ω))t∈T . If, moreover,

∀t ∈ T ,

∫

Ω

(|t(β)| ∧ 1)dν(β) <∞ , (11.38)
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we can define a positive infinitely divisible process (|X|t)t∈T by

|X|t =
∑

i≥1

Ri|t(Yi)| .

The distances d2 and d∞ of Theorem 11.2.8 are simply the distances on T
induced by the norms of L2(ν) and L∞(ν) respectively.

Let us repeat: for the purpose of studying boundedness, an infinitely di-
visible process is essentially a class of functions on a measure space. This
idea is usually implemented in the literature by defining the process Xt as
“the stochastic integral of a function f(t, .) with respect to an independently
scattered symmetric infinitely divisible random measure without Gaussian
component”, but it is identical to what we do here.

We conclude our results on infinitely divisible processes by a “bracket-
ing theorem” in the spirit of Ossiander’s Theorem (Theorem 9.1.12). In this
theorem, we still think of T as a (countable) set of measurable functions on
(Ω,m).

Theorem 11.2.11. Consider an admissible sequence (An) of T , and for A ∈
An consider hA(ω) = sups,t∈A |t(ω)− s(ω)|. Assume that for A ∈ An we are
given jn(A) ∈ Z satisfying

A ∈ An , C ∈ An−1 , A ⊂ C ⇒ jn(A) ≥ jn−1(C) .

Assume that for some numbers r ≥ 2 and S > 0 we have

∀A ∈ An ,

∫ (
r2jn(A)h2

A ∧ 1
)
dν ≤ 2n (11.39)

∫
hT1{2hT≥r−j0(T )}dν ≤ S , (11.40)

and
∀t ∈ T ,

∑

n≥0

2nr−jn(An(t)) ≤ S . (11.41)

Then E supt∈T |Xt| ≤ LS.

Even though the principle of Theorem 11.2.11 goes back at least to [8], the
power of this principle does not seem to have been understood. To illustrate
this power, we will deduce from Theorem 11.2.10 a sample theorem of the
much more recent work by Marcus and Rosinski from [3].

11.3 Rosinski’s Representation

We start with some simple observations.
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Lemma 11.3.1. Consider a Borel function ϕ : R+ → R
+, and assume that∫

ϕ(x)dλ(x) <∞. Then

E
∑

i≥1

ϕ(τi) =

∫
ϕ(x)dλ(x) . (11.42)

Proof. When f is the indicator of a Borel set, (11.42) is a consequence of
(11.29). When f has a bounded support, (11.42) follows from linearity and
approximation, and this yields the general case using Fatou’s lemma. 
�

Corollary 11.3.2. Consider a countable set T , a probability measure m on
R

T , and an i.i.d. sequence (Yi) of law m, which is independent of the r.v.s τi.
Consider a Borel function ψ : R+×R

T → R
+. Then, whenever the right-hand

side is finite we have

E
∑

i≥1

ψ(τi, Yi) =

∫
ψ(x, y)dλ(x)dm(y) . (11.43)

Proof. Use (11.42) for the function ϕ(x) = Eψ(x, Y1) =
∫
ψ(x, y)dm(y). 
�

Lemma 11.3.3. Consider a continuous function ϕ : R+ → C. Then, for
each number a,

E
∏

τi<a

ϕ(τi) = exp
(
−
∫ a

0

(1− ϕ(x))dλ(x)
)
. (11.44)

Proof. Let us first assume that ϕ takes finitely many values on the interval
[0, a], so that there it a Borel partition (A1, . . . , Ak) of this interval and
numbers b1, . . . , bk such that ϕ(x) = bj for x ∈ Aj . Then

∏

τi≤a

ϕ(τi) =
∏

j≤k

b
card{i ; τi∈Aj}
j ,

and using (11.30),

E
∏

τi≤a

ϕ(τi) =
∏

j≤k

Eb
card{i ; τi∈Aj}
j .

Now card{i; τi ∈ Aj} is a Poisson r.v. of expectation λ(Aj) so that (11.2)
implies

Eb
card{i ; τi∈Aj}
j = exp(−(1− bj)λ(Aj)) ,

and (11.44) is proved in this case. The continuous case follows by approxi-
mation. 
�
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Theorem 11.3.4. Consider a finite set T , a probability measure m on R
T ,

and an i.i.d. sequence (Yi) distributed like m. Consider also an independent
Bernoulli sequence (εi), and assume that the sequences (Yi), (τi) and (εi) are
mutually independent. Consider a Borel function ψ : R+ × R

T → R
+. Then

if ∫
(ψ(x, y)2 ∧ 1)dλ(x)dm(y) <∞ (11.45)

the series
∑

k≥1 εkψ(τk, Yk) converges a.s. and its sum X satisfies

E exp(iX) = exp
(
−
∫

(1− cosψ(x, y))dλ(x)dm(y)
)
. (11.46)

If we assume further that
∫
(|ψ(x, y)| ∧ 1)dλ(x)dm(y) <∞ , (11.47)

then the series
∑

k≥1 ψ(τk, Yk) converges a.s. and its sum X satisfies

E exp(iX) = exp
(
−
∫

(1− exp(iψ(x, y))dλ(x)dm(y)
)
. (11.48)

Throughout this chapter we denote by Eτ expectation given the sequence
(τi)i≥1. The reader will carefully distinguish the notation Eτ , which means
expectation given τ from the notation Eε, which means expectation in ε
only.

Proof. Let us first assume (11.45), and define

ϕ(x) =

∫
cosψ(x, y)dm(y) . (11.49)

Then, given any a > 0, using first independence and then (11.44) in the last
step,

E exp
(
i
∑

τk≤a

εkψ(τk, Yk)
)
= EEε exp

(
i
∑

τk≤a

εkψ(τk, Yk)
)

= E
∏

τk≤a

cos(ψ(τk, Yk))

= EEτ
∏

τk≤a

cos(ψ(τk, Yk)) = E
∏

τk≤a

ϕ(τk)

= E exp
(
−
∫ a

0

(1− ϕ(x))dλ(x)
)
. (11.50)

Moreover, Corollary 11.3.2 and (11.45) imply

E
∑

i≥1

ψ(τi, Yi)
2 ∧ 1 =

∫
(ψ(x, y)2 ∧ 1)dλ(x)dm(y) <∞ . (11.51)
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Consequently for almost every realization of the sequence (τi) we have
Eτ
∑

i≥1 ψ(τi, Yi)
2 ∧ 1 < ∞, and Corollary 7.6.3 proves that the series∑

i≥1 εiψ(τi, Yi) converges a.s. To obtain (11.46) we simply let a → ∞ in
(11.50). This is justified in the left-hand side by dominated convergence (since
we take expected value of a function of modulus 1) and in the right-hand side
by (11.45) and the inequality

|1− ϕ(x)| ≤
∫
|1− cosψ(x, y)|dm(y) ≤ 2

∫
(ψ(x, y)2 ∧ 1)dm(y) ,

using that |1− cosx| ≤ 2(x2 ∧ 1).
Let us now assume (11.47). As in (11.50) we obtain

E exp
(
i
∑

τk≤a

ψ(τk, Yk)
)
= E exp

(
−
∫ a

0

(1− ϕ(x))dλ(x)
)
, (11.52)

where now

ϕ(x) =

∫
exp iψ(x, y)dm(y) (11.53)

satisfies

|1− ϕ(x)| ≤
∫
(|ψ(x, y)| ∧ 1)dm(y) . (11.54)

Corollary 11.3.2 and (11.47) imply that E
∑

i |ψ(τi, Yi)| ∧ 1 < ∞, and this
implies in turn that the series

∑
i≥1 ψ(τi, Yi) is absolutely convergent a.s. We

then conclude as before by letting a→∞ in (11.52), this being now justified
in the right-hand side by (11.54) and (11.47). 
�
Proof of Theorem 11.2.7. It suffices to prove for each t the convergence a.s.
of the series

∑
i≥1 εiG(τi, Yi)(t), since this implies the convergence a.s. of the

series
∑

i≥1 εiG(τi, Yi). This convergence follows from Theorem 11.3.4, used
for the functions ψ(x, y) = G(x, y)(t). Moreover, given numbers (αt)t∈T , the
right-hand side of (11.46) for the choice ψ(x, y) =

∑
t∈T αtG(x, y)(t) is

exp

(
−
∫ (

1− cos
(∑

t

αtG(x, y)(t)
))

dλ(x)dm(y)

)

= exp

(
−
∫ (

1− cos
(∑

t

αtβ(t)
))

dν(β)

)
.

Consequently the process (Xt)t∈T given by Xt =
∑

i≥1 εiG(τi, Yi)(t) is in-
finitely divisible with Lévy measure ν (by definition). 
�

In a similar manner, using now the case (11.47) one proves that the process
(11.35) has the same law as the process (Xt) in the case of positive infinitely
divisible processes.

Perhaps we can remove some of the mystery underlying Rosinski’s rep-
resentation if we observe that when Ri = 1{τi≤g(Yi)} the family of points
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{Yi;Ri �= 0} is exactly a Poisson point process of intensity measure ν, a fact
that we leave as a teaser to the reader. Rosinski’s representation in some
sense coincides with the representation Xt =

∑
i εiZi(t), where Zi is an enu-

meration of a Poisson point process of intensity measure ν, a representation
which must have been known for a very long time. The point of Rosinski’s
representation is that it cleverly visualizes the independence properties un-
derlying the Poisson point process (Zi). (All of this is made very clear in
Rosinski’s paper [5].)

Let us now investigate the case where G(x, y) = yx−1/p of (11.12).
Combining Theorem 11.2.7 and (11.13) we obtain that the process X =∑

k≥1 εkYkτ
−1/p
k satisfies

exp
(
i
∑

t

αtXt

)
= exp

(
−C(p)

∫ ∣∣∑

t

αtγ(t)
∣∣pdm(γ)

)
. (11.55)

Suppose now that the probability measure m is the image of a product θ⊗μ
under that map (x, y)→ xy, where x ∈ R and y ∈ R

T , and that
∫
|x|pdθ(x) =

1. Then it is immediate that
∫ ∣∣∑

t

αtγ(t)
∣∣pdm(γ) =

∫ ∣∣∑

t

αtγ(t)
∣∣pdμ(γ) .

Consequently, consider an i.i.d sequence (ηk) of law θ. Then the process

X =
∑

k≥1

εkηkYkτ
−1/p
k (11.56)

satisfies

exp
(
i
∑

t

αtXt

)
= exp

(
−C(p)

∫ ∣∣
∑

t

αtγ(t)
∣∣pdμ(γ)

)
. (11.57)

It is proved in [1], Theorem 5.2 that for any p-stable process on R
T there

exists a probability measure on R
T that satisfies (11.57), and we have just

proved that such a process admits the representation (11.56). In particular
we may choose ηk to be Gaussian, in which case (11.56) represents a p-stable
process as a mixture of Gaussian processes, as used in Section 8.1.

Theorem 11.2.7 admits a complex valued version, where now m is a mea-
sure on C

T and G : R+ × C
T → C

T . The statement “its law is the law of
the symmetric infinitely divisible process of Lévy measure ν” has now to be
understood as meaning that (11.18) holds. The necessary modifications of
the proof are left to the reader.

11.4 The Harmonic Case

In this section we prove Theorems 11.2.1 and 11.2.3. The basic idea is to use
Rosinski’s representation, so that given the sequence (τi) the process (Xt)
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is equal in distribution to the sum of a random Fourier series of the type
studied in Section 7.2. Theorems 11.2.1 and 11.2.3 will then be fairly easy
consequences of the results of Section 7.2. They do not use Theorem 10.1.2.
The rest of this chapter can be read independently of the results of the present
section.

We consider a probability measure m on CG such that ν is absolutely
continuous with respect tom, a Radon-Nikodym derivative g of ν with respect
tom and we define R(u, β) = 1[0,g(β)](u). We consider i.i.d. r.v.s (Yi) of lawm,
and Ri = R(τi, Yi). Then, by Rosinski’s Theorem 11.2.7 (or more precisely,
the complex version of this theorem explained at the end of the previous
section) the following holds:

For each t in T, the series
∑

i≥1

εiRiYi(t) converges a.s. (11.58)

Moreover, writing

X∗
t =
∑

i≥1

εiRiYi(t) , (11.59)

then for any countable set S ⊂ T ,

(Xt)t∈S has the same distribution as (X∗
t )t∈S . (11.60)

We start the arguments with four very simple facts, that are of constant
use when using Rosinski’s representation. The first one is obvious.

Lemma 11.4.1. Consider α > 0 and a non-increasing function θ on R
+.

Then

α
∑

i≥1

θ(αi) ≤
∫ ∞

0

θ(x)dλ(x) ≤ α
∑

i≥0

θ(αi) . (11.61)

Since R(x, β) ∈ {0, 1}, the following is also obvious.

Lemma 11.4.2. If h(0) = 0 then

h(R(x, β)β) = R(x, β)h(β) . (11.62)

Lemma 11.4.3. Consider a non-negative measurable function h on R
T , with

h(0) = 0. Then

E
∑

i≥1

h(RiYi) = E
∑

i≥1

Rih(Yi) =

∫
h(β)dν(β) . (11.63)

Proof. Since g is a density of ν with respect to m, this follows from (11.43)
used for the function ψ(x, y) = 1{x≤g(y)}h(y). 
�
We recall the quantities α− and α+ of (11.34).
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Lemma 11.4.4. Consider a non-negative measurable function h on R
T , with

h(0) = 0. Then

1

α+

∫

RT

h(β)dν(β)−
∫

RT

h(β)dm(β) ≤
∑

i≥1

Eτh(RiYi) ≤
1

α−

∫

RT

h(β)dν(β) .

(11.64)

Proof. Given β, the function θ(x) = h(R(x, β)β) is non-increasing since its
value is h(β) ≥ 0 for x ≤ g(β) and h(0) = 0 for x > g(β). Thus, using that
τi ≤ α+i in the first inequality, and (11.61) in the second one we get

∑

i≥1

h(R(τi, β)β) + h(β) ≥
∑

i≥0

h(R(α+i, β)β) ≥
1

α+

∫ ∞

0

h(R(x, β)β)dλ(x) .

Since Yi is distributed like m and since ν is the law of λ⊗m under the map
(x, β) �→ R(x, β)β, integrating both sides in β with respect to m yields the
left-hand side of (11.64). The right-hand side is similar. 
�

Proof of Theorem 11.2.1. There are some technical details involved in this
proof, but the overall idea is completely straightforward. Let us set

Zi = Ri(τi, Yi)Yi ,

so that given the sequence (τi) these r.v.s are independent. We will show
that by choosing a rather generic realization of the sequence (τi), and working
given this sequence we inherit from the hypothesis (11.19) enough information
on the partial sums of the series

∑
i εiZi to use Lemma 7.6.1 . The information

provided by this lemma is then brought back using (11.64).
First, we explain how to find a suitable realization of the sequence (τi).

Since limi→∞ τi/i = 1 a.s, we have P(α+ ≤ 2) > 0. Recalling the constant
α0 of Theorem 7.3.1, we define α1 = α0P(α

+ ≤ 2)/4. Let us assume that
the harmonic process (Xt)t∈T satisfies (11.19). Consider a dense subset U
of T , so that (11.19) implies P(supt∈U |Xt| ≥ M) ≤ α1. Recalling (11.59)
it follows from (11.60) that P(supt∈U |X∗

t | ≥ M) ≤ α1. Denoting by Pτ the
conditional probability given τ , the r.v. Y = Pτ ({supt∈U |X∗

t | ≥M}) satisfies
EY = P({supt∈U |X∗

t | ≥M}) ≤ α1. Consequently, using Markov’s inequality
and the definition of α1,

P({Y ≥ α0/2}) ≤
α1

α0/2
= P(α+ ≤ 2})/2 .

Therefore one can find a realization of the sequence (τi) for which α+ ≤ 2,
the series

∑
i εiRiYi converges P

τ a.s. for each t ∈ U , and moreover Y ≤ α0/2
i.e.

Pτ
(
sup
t∈U

|X∗
t | ≥M

)
≤ α0

2
. (11.65)
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We think now of this sequence (τi) as being fixed once and for all, so that
to lighten notation we write P rather than Pτ . Next, we prove that we control
the partial sums Sk

t =
∑

i≤k εiZi(t) uniformly over k. We claim that

∀ k ≥ 1 , P
(
sup
t∈U

|Sk
t | ≥M

)
≤ α0 . (11.66)

To see this, we set X
(k)
t =

∑
i>k εiZi(t), so that X∗

t = Sk
t +X

(k)
t where these

two terms are independent. Also, given numbers (x(t))t∈U we have

P
(
sup
t∈U

|x(t) +X
(k)
t | ≥ sup

t∈U
|x(t)|

)
≥ 1

2
. (11.67)

This is simply because for each t we have P(|x(t) +X
(k)
t | ≥ |x(t)|) ≥ 1/2 by

symmetry of the r.v. X
(k)
t . Using (11.67) for x(t) = Sk

t and using indepen-
dence yields

P
(
sup
t∈U

|X∗
t | ≥M

)
≥ 1

2
P
(
sup
t∈U

|Sk
t | ≥M

)
,

and combining with (11.65) proves (11.66). Since each Zi is a continuous
function on T we get

∀ k ≥ 1 , P
(
sup
t∈T

|Sk
t | ≥M

)
≤ α0 . (11.68)

This is the information we need to apply Lemma 7.6.1. Consider the sequence
(jn)n≥0 produced by this lemma. We observe that since r = 2 we have 2−j0 ≤
LM . In order to avoid a conflict of notation we denote by ϕ∗

j the quantities
(7.89), i.e.

ϕ∗
j (s, t) =

∑

i≥1

E(|2j(Zi(s)− Zi(t))
2| ∧ 1) .

We use the left-hand side of (11.64) with the function h(β) = |2j(β(s) −
β(t))|2 ∧ 1 to obtain (since α+ ≤ 2 and

∫
h(β)dν(β) = ϕj(s, t)) that

ϕj(s, t) ≤ 2

(∫
h(β)dm(β) + ϕ∗

j (s, t)

)
. (11.69)

Since h ≤ 1 we observe first that

ϕ∗
j (s, 0) ≤ 2n ⇒ ϕj(s, 0) ≤ 2n+2 , (11.70)

and also that
ϕ∗
j (s, t) ≤ 1/4⇒ ϕj(s, t) ≤ 5/2 ≤ 3 , (11.71)

and then (11.21) and (11.22) are consequences of (7.90) and (7.91) respec-
tively. 
�

We now prepare for the proof of Theorem 11.2.3.
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Lemma 11.4.5. We have

E
1√
α−

<∞ .

Proof. We write

P(α− < u) ≤
∑

i≥1

P(τi ≤ ui) =
∑

i≥1

P(card(Π ∩ [0, ui]) ≥ i) ,

and we show by elementary estimates that the first term dominates and that
the sum is ≤ Lu. 
�
Proof of Theorem 11.2.3. The idea is straightforward: to use Lemma 7.6.5
given the randomness of the sequence (τi). We apply the right-hand side of
(11.64) with the function h(β) = |2j(β(s)− β(t))|2 ∧ 1 to obtain

ϕ∗
j (s, 0) :=

∑

i≥1

E(|2j(Zi(s)− Zi(0))|2 ∧ 1) ≤ 1

α−ϕj(s, 0) .

Combining with (11.20) and (11.21) we obtain that for v = L/α−,

∀ s, t ∈ T , ϕ∗
j (s, t) ≤

v

4

and
μ({s ; ϕ∗

jn(s, t) ≤ v2n}) ≥ N−1
n .

That is, (7.46) and (7.47) hold for the value v = L/α−.
Consider the event

Ω =
⋂

i≥1

{|Zi(0)| ≤ w} .

We apply Lemma 7.6.5 given the randomness of the sequence (τi) and with
p = 1 to the sums Sk

t =
∑

1≤i≤k εiZi(t) and we let k →∞ to obtain

Eτ1Ω sup
s∈S

∣∣
∑

i

εiZi(s)
∣∣ ≤ L√

α−

∑

n≥0

2n−jn + L
∑

i

Eτ |Zi(0)|1{2−j0≤|Zi(0)|<w} .

(11.72)
Taking expectation in (11.72) and using Lemma 11.4.5 we obtain

E1Ω sup
s∈S

∣∣∑

i

εiZi(s)
∣∣ ≤ L

∑

n≥0

2n−jn + L
∑

i

E|Zi(0)|1{2−j0≤|Zi(0)|<w} .

(11.73)
Since, using (11.63) in the equality,

P(Ωc) ≤ E
∑

i≥1

P(|Zi(0)| ≥ w) = ν({β ; |β(0)| ≥ w})
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and since

∑

i

E|Zi(0)|1{2−j0≤|Zi(0)|<w} =

∫

{2−j0≤|β(0)|≤w}
|β(0)|dν(β)

by (11.63) again, the proof is complete. 
�
Proof of Corollary 11.2.4. The formula (11.16) proves that

ϕj(s, 0) ≤ 2n ⇔ d(s, 0) ≤ C ′′(p)2n/p−j

so that the existence of the integers jn that satisfy (11.21) and
∑

n≥0 2
n−jn <

∞ is equivalent to the existence of a sequence (εn) such that
∑

n≥0

2n(1−1/p)εn <∞ (11.74)

and
μ({s ∈ T ; d(s, 0) ≤ εn}) ≥ N−1

n . (11.75)

When p > 1, (3.4) shows that (11.74) and (11.75) are equivalent to γq(T, d) <
∞.

Assuming supt∈T Xt <∞ a.s., (11.19) holds for M large enough, so that
Theorem 11.2.1 implies that we can find the sequence (εn) which satisfies
(11.74) and (11.75) and this concludes the proof of the “only if” part.

To prove the converse, we assume first p > 1, so that then γq(T, d) <∞.
Moreover, since ν is given by (11.12) where m is supported by G (so that
γ(0) = 1 a.s. for m),

∫

|β(0)|>a

|β(0)|dν(β) =
∫

x−1/p≥a

x−1/pdx <∞ ,

and (11.24) used with w =∞ completes the proof in that case. When p = 1,
and since the set Ω of Theorem 11.2.3 does not depend on the finite set
S, denoting by S the essential supremum of the family supt∈S |Xt| over the
possible choices of S, (11.24) implies that given δ > 0 one can find a set Ω
with P(Ωc) < δ and E(1ΩS) < ∞, so that S < ∞ a.s. (which is what we
meant by supt∈T |Xt| <∞ a.s.) 
�

Exercise 11.4.6. Deduce from (11.24) the estimate P(S ≥ u) ≤ C(log u)/u
for a number C independent of u.

This is not sharp. In [7] the author proves that in fact P(S ≥ u) ≤ C/u for
a number C independent of u. One should of course wonder whether this
inequality can be obtained as a consequence of a general theorem such as
here.

Exercise 11.4.7. In the case p = 1, prove that the condition
∑

n εn < ∞
is equivalent to the condition γ∞(T, d) < ∞ where the quantity γ∞(T, d) is
defined in (8.30).
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11.5 Proof of the Decomposition Theorem

The proof of Theorem 11.2.6 requires the most work. We delay this proof until
the next section, and in the present section we prove all the other statements.

Proof of Theorem 11.2.8. Let us denote by Eτ and Pτ expectation and prob-
ability given the sequence (τi)i≥1. We will prove that

Eτ sup
t∈T

Xt ≤ L
( 1
√
α−

γ2(T, d2) + γ1(T, d∞)
)
. (11.76)

Taking expectation and using Lemma 11.4.5 then finishes the proof.
To prove (11.76), consider s, t ∈ T , and let Gi = εiRi(Yi(s) − Yi(t)).

Thus |Gi| ≤ d∞(s, t), and the right-hand side of (11.64) used for h(β) =
(β(s) − β(t))2 yields

∑
i≥1 E

τG2
i ≤ d2(s, t)

2/α−. Bernstein’s inequality
(Lemma 4.3.4) implies

Pτ
(∣∣
∑

i≥1

Gi

∣∣ ≥ v
)
≤ exp

(
− 1

L
min
( v2α−
d2(s, t)2

,
v

d∞(s, t)

))
,

so that (11.76) follows from Theorem 2.2.23. 
�
In the rest of this section, we always think of T as a set of functions over Ω.

The next result is in the spirit of the Giné-Zinn Theorem (Theorem 9.1.10).

Theorem 11.5.1. We have

E sup
t∈T

|X|t ≤ L
(
E sup

t∈T
|Xt|+ sup

t∈T

∫
|t(β)|dν(β)

)
.

Proof. As explained, if a Rosinski representation of Xt is
∑

i≥1 εiRit(Yi), a
Rosinski representation of |X|t is

∑
i≥1 Ri|t(Yi)|. We will need to use (11.64)

and a minor technical difficulty arises because 1/α− is not integrable. This
is why below we consider the first term separately. We write

E sup
t∈T

|X|t = E sup
t∈T

∑

i≥1

Ri|t(Yi)| ≤ I + II (11.77)

I = E sup
t∈T

R1|t(Y1)| ; II = E sup
t∈T

∑

i≥2

Ri|t(Yi)| . (11.78)

We control the term I as follows:

E sup
t∈T

R1|t(Y1)| = E sup
t∈T

|ε1R1t(Y1)| ≤ E sup
t∈T

∣∣∣
∑

i≥1

εiRit(Yi)
∣∣∣ = E sup

t∈T
|Xt| .

(11.79)
To control the term II, we denote by Eτ expectation at (τi)i≥1 given. Given
the sequence (τi), the pairs of r.v.s (Ri, Yi) are independent. We appeal to
(9.22) to get
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Eτ sup
t∈T

∑

i≥2

Ri|t(Yi)| ≤ sup
t∈T

∑

i≥2

EτRi|t(Yi)|+ 2Eτ sup
t∈T

∣∣∣
∑

i≥2

εiRit(Yi)
∣∣∣

≤ sup
t∈T

∑

i≥2

EτRi|t(Yi)|+ 2Eτ sup
t∈T

|Xt| . (11.80)

An obvious adaptation of the right-hand side inequality of (11.64) gives

∑

i≥2

EτRi|t(Yi)| ≤
1

α∗

∫
|t(β)|dν(β) , (11.81)

where α∗ = infi≥2 τi/i. Writing

P(α∗ < ε) ≤
∑

i≥2

P(τi ≤ εi) =
∑

i≥2

P(cardΠ ∩ [0, εi] ≥ i) ,

one sees through simple estimates that E(1/α∗)3/2 < ∞. We plug (11.81)
in (11.80), we take expectation, and we combine with (11.77), (11.78) and
(11.79) to conclude the proof. 
�
Proof of Theorem 11.2.10. We still think of T as a set of functions on (Ω,m).
Without loss of generality we may assume that 0 ∈ T , so that E supt∈T |Xt| ≤
2S by Lemma 2.2.1.

The main argument consists in constructing a decomposition T ⊂ T1+T4,
where γ1(T1, d∞) ≤ KS , γ2(T1, d2) ≤ KS, 0 ∈ T1 and

sup
t∈T4

∫
|t(β)|dν(β) ≤ KS .

Once this is done, it follows from Theorem 11.2.8 and Lemma 2.2.1 that
E supt∈T1

|Xt| ≤ KS. We may assume that T4 ⊂ T − T1, simply by replacing
T4 by T4∩(T−T1). Thus E supt∈T4

|Xt| ≤ E supt∈T1
|Xt|+E supt∈T |Xt| ≤ KS.

Theorem 11.5.1 then implies E supt∈T4
|X|t ≤ KS. Finally, the decomposition

Xt = X ′
t +X ′′

t is obtained by fixing a decomposition t = t1 + t2 for each t in
T with t1 ∈ T1 , t2 ∈ T4, and setting X ′

t = Xt1 , X
′′
t = Xt2 .

To decompose T as above we first use Theorem 11.2.6 to find a number
r (depending only on C0 and δ), an admissible sequence (An) of T and for
A ∈ An an integer jn(A) ∈ Z that satisfies (10.8) i.e.

A ∈ An , C ∈ An−1 , A ⊂ C ⇒ jn−1(C) ≤ jn(A) ≤ jn−1(C) + 1 (10.8)

and
∀s, t ∈ A ∈ An , ϕ(s, t, rjn(A)−1) ≤ 2n+2 (11.82)

∀t ∈ T ,
∑

n≥0

2nr−jn(An(t)) ≤ KS . (11.83)

We then use Theorem 5.2.7, with μ = ν and u = L. We consider the decom-
position T ⊂ T1 + T2 + T3 provided by this theorem. We set T4 = T2 + T3,
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so that T ⊂ T1 + T4. By (5.26), (5.27) and (11.83) we have γ2(T1, d2) ≤ KS
and γ1(T1, d∞) ≤ KS. Moreover (5.28), used for p = 1 implies ‖t‖1 ≤ KS
for t ∈ T2, as is obvious since

V 2jn+1(An+1(t))−jn(An(t))δn+1(An+1(t))
2 = 2n+3r−jn(An(t)) .

To conclude the proof it suffices to show that ‖t‖1 ≤ KS for t ∈ T3, and,
from (5.29), it suffices to show that ‖t‖1 ≤ KS for t = |s|1{2|s|≥r−j0(T )} and
s ∈ T . Now, since 0 ∈ T , using (11.82) for n = 0 and A = T yields

ν({β ; |s(β)| ≥ r−j0(T )/2}) ≤ 4

∫ (
(srj0(T ))2 ∧ 1

)
dν

≤ 4ϕ(s, 0, rj0(T )) ≤ 16 .

It follows from condition H(C0, δ) that for v ≥ 1 one has

ν({β ; |s(β)| ≥ vr−j0(T )/2}) ≤ 16C0v
−δ−1 ,

so that as in (2.5) we obtain ‖t‖1 ≤ Kr−j0(T ), and since r−j0(T ) ≤ KS by
(11.83), that ‖t‖1 ≤ KS. The proof is complete. 
�
Proof of Theorem 11.2.11. The plan is to use Theorem 5.2.1. The proof is
nearly identical to that of Theorem 9.1.12. First we deduce from (11.39) and
(11.64) that

∀A ∈ An ,
∑

i≥1

EτRi(r
2jn(A)hA(Yi)

2 ∧ 1) ≤ 2n

α−
. (11.84)

Consider a parameter u ≥ 1. Then since α− ≤ 1 Lemma 7.4.3 (b) implies

Pτ

(∑

i≥1

Ri(r
2jn(A)hA(Yi)

2 ∧ 1) ≤ u2n

α−

)
≥ 1− exp(−u2n−1) .

Consequently for u ≥ L the event Ω(u) given by

∀n ≥ 0 , ∀A ∈ An ,
∑

i≥1

Ri(r
2jn(A)hA(Yi)

2 ∧ 1) ≤ u2n

α−

satisfies P (Ω(u)) ≥ 1−L exp(−u). We observe the fundamental fact: if s, t ∈
A then

∑

i≥1

Ri(r
2jn(A)(t(Yi)− s(Yi))

2) ∧ 1 ≤
∑

i≥1

Ri(r
2jn(A)hA(Yi)

2) ∧ 1 ,

and therefore using (5.12) with p = 1 we obtain that when Ω(u) occurs

Eε sup
t∈T

∣∣∣
∑

i≥1

εiRit(Yi)
∣∣∣ ≤

Ku
√
α−

S+K
∑

i≥1

RihT (Yi)1{2hT (Yi)≥r−j0(T )} , (11.85)
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where K depends on r only. Since P(Ω(u)) ≥ 1 − L exp(−u), integrating in
the r.v.s Yi yields as usual

Eτ sup
t∈T

∣∣∣
∑

i≥1

εiRit(Yi)
∣∣∣ ≤

K
√
α−

S +K
∑

i≥1

EτRihT (Yi)1{2hT (Yi)≥r−j0(T )} ,

and taking expectation and using Lemma 11.4.5,

E sup
t∈T

∣∣∣
∑

i≥1

εiRit(Yi)
∣∣∣ ≤ KS +K

∑

i≥1

ERihT (Yi)1{2hT (Yi)≥r−j0(T )} . (11.86)

Now (11.63) yields

∑

i≥1

ERihT (Yi)1{2hT (Yi)≥r−j0(T )} =

∫
hT (β)1{2hT (β)≥r−j0(T )}dν(β) ,

and (11.40) proves that this quantity is ≤ KS. Combining with (11.86) proves
that E supt∈T |Xt| ≤ KS. 
�

We have imposed condition (11.40) in order to get clean statement. Its
use is simply to control the size of the last term in (11.85). This hypothesis
is absolutely inessential: this term is a.s. finite because the sum contains only
finitely many non-zero terms. Its size can then be controlled in specific cases
through specific methods (such as is required in the case p = 1 below).

As an application of Theorem 11.2.11, let us discuss (a part of) Theorem
2.1 of [3] (translated in our language). Consider a measured space (Ω, ν),
where ν is σ-finite, and a set T of measurable functions on Ω such that∫
t2 ∧ 1dν < ∞ for each t ∈ T . Then as explained this class of functions

defines an infinitely divisible process (Xt)t∈T . Consider a number q > 2 and
the conjugate exponent p. Assume that there is a distance d on T such that
γq(T, d) <∞. Assume moreover that for a certain function ψ(ω) the following
condition holds:

∀ s, t ∈ T , |t(ω)− s(ω)| ≤ ψ(ω)d(s, t) , (11.87)

and that, for all u > 0 and a number B we have

ν({ψ ≥ u}) ≤ Bp

up
. (11.88)

Then
E supXt ≤ K(p)Bγq(T, d) . (11.89)

To prove this consider an admissible sequence of partitions (An) of T such
that supt∈T

∑
n≥0 2

n/qΔ(An(t)) ≤ 2γq(T, d). It follows from (11.87) that for
A ∈ An the function hA(ω) := sups,t |s(ω)− t(ω)| satisfies

hA(ω) ≤ Δ(A, d)ψ(ω) . (11.90)
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We then observe that for u > 0 we have, using (11.88) in the inequality,

∫
(uψ)2 ∧ 1dν =

∫ 1

0

ν({(uψ)2 ≥ w})dw ≤
∫ 1

0

(Bu)p

wp/2
dw = (C(p)Bu)p .

(11.91)
For A ∈ An let us define jn(A) as the largest integer for which

2jn(A)Δ(A, d) ≤ 2n/p

BC(p)
.

We observe that (11.90) implies that 2jn(A)hA ≤ uψ for u = 2n/p/BC(p), so
that (11.91) implies (11.39). Moreover (11.88) implies that

∫
ψ1{ψ≥u}dν ≤ K(p)Bpu1−p ,

so that since hT ≤ Δ(T, d)ψ, using the choice u = 2−j0(T )−1Δ(T, d)−1 we
obtain

∫
hT1{2hT≥2−j0(T )}dν ≤ K(p)BpΔ(T, d)p−12j0(T )(p−1)

and since 2j0(T )Δ(T, d) ≤ K(p)/B by definition of j0(T ), the above integral
in bounded by

K(p)BΔ(T, d) ≤ S := K(p)Bγq(T, d) ,

and we have shown that (11.40) holds for this value of S. Moreover, as we
have done many times, the definition of jn(A) proves that (11.41) holds with
the same value of S, so that Theorem 11.5.1 proves (11.89). Moreover, using
the equivalence (8.32) of the quantity γ∞(T, d) with the quantity γ∗(T, d) of
(8.31) basically the same proof works in the case p = 1 and q = ∞ (except
that then one cannot use expectation to control the size of the supremum of
the process). Since there is nothing intrinsic in the choice of conditions such
as (11.87) and (11.88) one can of course imagine many other statements of
the same type.

It should also be mentioned that the bracketing theorem of [8] is already
sufficient to prove results such as (11.89).

11.6 Proof of the Main Lower Bound

In this section we prove Theorem 11.2.6. Let us recall that in the proof
of Theorem 8.1.1 we used in an essential way that p-stable processes can
be represented as a mixture of Gaussian processes. Here we will use in an
essential way that infinitely divisible processes can be represented as mixtures
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of Bernoulli processes. Since we do not understand Bernoulli processes as
well as we understand Gaussian processes we can expect that the proof of
Theorem 11.2.6 will be more difficult than the proof of Theorem 8.1.1. The
proof we present is very much simpler than the original proof of [8], but
still requires a real effort. Before we start this proof, we collect a number
of simple lemmas, aiming in particular at understanding the behavior of the
independent sequence (RiYi)i≥1.

We denote by Pτ conditional probability given the sequence (τi)i≥1, and
we recall the definition (11.15) of ϕ(s, t, u).

Lemma 11.6.1. Consider s, t ∈ T .
(a) Assume that 2α+ ≤ ϕ(s, t, u). Then

Pτ

(∑

i≥1

(
Riu

2(Yi(s)−Yi(t))
2
)
∧1 ≤ ϕ(s, t, u)

8α+

)
≤ exp

(
−ϕ(s, t, u)

8α+

)
. (11.92)

(b) If A ≥ 4ϕ(s, t, u)/α− then

Pτ

(∑

i≥1

(
Riu

2(Yi(s)− Yi(t))
2
)
∧ 1 ≥ A

)
≤ exp

(
−A

2

)
. (11.93)

Proof. We set Wi = (Riu
2(Yi(s) − Yi(t))

2) ∧ 1 and we define h(β) =
(u2(β(s) − β(t))2) ∧ 1, so that Wi = h(RiYi). Also, the definition of ϕ im-
plies

∫
h(β)dν(β) = ϕ(s, t, u). We then use Lemma 11.4.4 to get, using the

assumption 2α+ ≤ ϕ(s, t, u) of (a) in the first inequality,

1

2α+
ϕ(s, t, u) ≤ 1

α+
ϕ(s, t, u)− 1 ≤

∑

i≥1

EτWi ≤
1

α−
ϕ(s, t, u)

and we use Lemma 7.4.3 to conclude. 
�
We now explore some consequences of condition H(C0, δ). We recall that

K denotes a quantity depending on C0 and δ only.

Lemma 11.6.2. Assume condition H(C0, δ). Then for s, t ∈ T and u > 0 ,
we have, for any v ≥ 1,

ϕ(s, t, uv) ≥ v1+δ

K
ϕ(s, t, u) .

Proof. We write f(β) = |β(s)− β(t)|, so that

ϕ(s, t, u) =

∫ (
(u2f2(β)) ∧ 1

)
dν(β)

=

∫ 1

0

ν({β ; u2f2(β) ≥ x})dx

=

∫ 1/v2

0

ν({β ; u2f2(β) ≥ x})dx+

∫ 1

1/v2

ν({β ; u2f2(β) ≥ x})dx .
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Setting x = y/v2 in the first term and x = y2/v2 in the second term we get

ϕ(s, t, u) =
1

v2
ϕ(s, t, uv) +

1

v2

∫ v

1

2yν
({

β ; f(β) ≥ y

uv

})
dy . (11.94)

Now, for y ≥ 1, condition H(C0, δ) implies

ν
({

β ; f(β) ≥ y

uv

})
≤ C0y

−1−δν({β ; uvf(β) ≥ 1}) ≤ C0y
−1−δϕ(s, t, uv) .

Since we assume δ < 1, substitution in (11.94) yields

ϕ(s, t, u) ≤ K

v2
ϕ(s, t, uv)(1 +

∫ v

1

y−δdy) ≤ Kv−1−δϕ(s, t, uv) . 
�

Lemma 11.6.3. Assume condition H(C0, δ). Consider s, t ∈ T and u > 0.
Set

Wi = Ri|Yi(s)− Yi(t)| .
Then ∑

i≥1

Eτ (uWi1{uWi≥1})
1+δ/2 ≤ K

α−
ϕ(s, t, u) . (11.95)

Proof. We set f(β) = |β(s)−β(t)|, so that Wi = f(RiYi). Consider the func-
tion h(β) = (uf(β)1{uf(β)≥1})

1+δ/2, so that h(RiYi) = (uWi1{uWi≥1})
1+δ/2.

We use Lemma 11.4.4 to see that the left-hand side of (11.95) is bounded by

1

α−

∫

RT

h(β)dν(β) =
1

α−

∫

{uf(β)≥1}
(uf(β))1+δ/2dν(β) ≤ I + II

where

I =
1

α−
ν({β ; uf(β) ≥ 1}) ≤ 1

α−
ϕ(s, t, u)

II =
1

α−

∫ ∞

1

ν({β ; (uf(β))1+δ/2 ≥ x})dx .

Now, for x ≥ 1, condition H(C0, δ) implies

ν({β ; (uf(β))1+δ/2 ≥ x}) = ν({β ; uf(β) ≥ x1/(1+δ/2)})

≤ C0x
− 1+δ

1+δ/2 ν({β ; uf(β) ≥ 1})

and since ν({β ; uf(β) ≥ 1}) ≤ ϕ(s, t, u) the result follows. 
�
Lemma 11.6.4. Consider independent r.v.s (Vi)i≥1 such that Vi ≥ 0, and
consider 0 < δ < 2. Assume that for a certain number S > 0 we have

∑

i≥1

EV
1+δ/2
i ≤ S . (11.96)

Then
P
(∑

i≥1

Vi1{Vi≥1} ≥ 4S
)
≤ LS−δ/2 . (11.97)
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Proof. We may assume S ≥ 1, for there is nothing to prove otherwise. We
set

Ui = Vi1{1≤Vi≤S} − E(Vi1{1≤Vi≤S}) .

Since x1{x≥1} ≤ x1+δ, we have

∑

i≥1

E(Vi1{1≤Vi≤S}) ≤
∑

i≥1

EV
1+δ/2
i ≤ S,

so that
P
(∑

i≥1

Vi1{1≤Vi≤S} ≥ 4S
)
≤ P
(∑

i≥1

Ui ≥ 3S
)
.

Since

P
(∑

i≥1

Vi1{Vi≥1} ≥ 4S
)
≤ P
(∑

i≥1

Vi1{1≤Vi≤S} ≥ 4S
)
+
∑

i≥1

P(Vi ≥ S) ,

we obtain

P
(∑

i≥1

Vi1{Vi≥1} ≥ 4S
)
≤ P
(∑

i≥1

Ui ≥ 3S
)
+
∑

i≥1

P(Vi ≥ S) .

Now Markov’s inequality yields P(Vi ≥ S) ≤ S−(1+δ/2)EV
1+δ/2
i , so that

∑

i≥1

P(Vi ≥ S) ≤ 1

S1+δ/2

∑

i≥1

EV
1+δ/2
i ≤ S−δ/2 .

Also, we note that |Ui| ≤ S, so that since 1 − δ/2 ≥ 0 we have, using
in the second inequality that (a + b)c ≤ L(ac + bc) for c ≤ 2, and since

E(Vi1{Vi≥1})
1+δ/2 ≤ EV

1+δ/2
i ,

EU2
i ≤ S1−δ/2E|Ui|1+δ/2 ≤ LS1−δ/2EV

1+δ/2
i . (11.98)

Thus using (11.98) and (11.96) we get

P
(∑

i≥1

Ui ≥ 3S
)
≤ 1

9S2
E
(∑

i≥1

Ui

)2
=

1

9S2

∑

i≥1

EU2
i ≤ LS−δ/2 . 
�

Corollary 11.6.5. Assume condition H(C0, δ). Consider s, t ∈ T and u >
0. Then for S ≥ Kϕ(s, t, u)/α− we have

Pτ
(
u
∑

i≥1

Ri|Yi(s)− Yi(t)|1{u|Yi(s)−Yi(τ)|≥1} ≥ 4S
)
≤ LS−δ/2 . (11.99)

Proof. Let Wi = Ri|Yi(s)− Yi(t)|. Then, since Ri ∈ {0, 1}, we get

Vi := uWi1{uWi≥1} = uRi|Yi(s)− Yi(t)|1{u|Yi(s)−Yi(τ)|≥1} .
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Now (11.95) implies

∑

i≥1

EτV
1+δ/2
i ≤ K

α−
ϕ(s, t, u) ,

and the conclusion follows from (11.97) used for Pτ . 
�

Lemma 11.6.6. Consider a measure μ on R such that
∫
(x2∧1)dμ(x) <∞,

and a r.v. X that satisfies

∀α ∈ R , E exp iαX = exp
(
−
∫

R

(1− cosαx)dμ(x)
)
. (11.100)

Then ∫

R

(( x

2E|X|

)2
∧ 1
)
dμ(x) ≤ L . (11.101)

Proof. Since cosx ≥ 1− |x|, whenever 0 ≤ α ≤ 1/2E|X| we have

E cosαX ≥ 1− αE|X| ≥ 1

2
.

Now (11.100) implies that for such α,

1

2
≤ E cosαX = exp

(
−
∫

R

(1− cosαx)dμ(x)
)
,

and hence ∫

R

(1− cosαx)dμ(x) ≤ log 2 .

Averaging the previous inequality over 0 ≤ α ≤ 1/2E|X|, we get

∫

R

(
1− sin(x/(2E|X|))

x/(2E|X|)

)
dμ(x) ≤ log 2

and the result since y2 ∧ 1 ≤ L(1− (sin y)/y). 
�
The proof of Theorem 11.2.6 will rely upon the application of Theorem

10.1.2 to suitable functionals, and we turn to the task of defining these.
Consider an integer κ ≥ 6, to be determined later, and r = 2κ−4. Consider
the maps

ϕj(s, t) = ϕ(s, t, rj)

for j ∈ Z. From Lemma 11.6.2, we note that

ϕj+1(s, t) ≥
r1+δ

K
ϕj(s, t) . (11.102)

Given the sequences (τi)i≥1 , (Yi)i≥1, to each t ∈ T we can associate the
sequence S(t) = (RiYi(t))i≥1. To a subset A of T we can associate S(A) =
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{S(t) ; t ∈ A}. This is a random set of sequences. Since the process (11.32)
is distributed like (Xt), we have the identity

E sup
t∈T

Xt = Eb(S(T )) , (11.103)

where the notation b is defined in (5.1). We recall the notation (5.101).
For j ∈ Z we consider the map Ψj : �2(N) → �2(N × N) given by
Ψj(t) = (ψ�r−j ,(�+1)r−j (ti))(i,�). For a set of sequences U , we use the no-
tation bj(U) = b(Ψj(U)). Obvious changes to the proof of Proposition 5.6.2
show the fundamental fact that

b(U) ≥ bj(U) ≥ bj+1(U) . (11.104)

We will perform some constructions with the sets S(T ). These sets depend
on the randomness of τi and Yi. We must expect that, given this randomness,
at least for some values of t the sequence S(t) will not be well behaved, and
we must introduce a device to remove such sequences. We define a random
subset Z of T as a subset of T that depends on the sequences (τi)i≥1 and
(Yi)i≥1 and is such that for each t ∈ T the set {t ∈ Z} is an event (i.e. is
measurable). We should think of a random subset of T as a (small) set of
badly behaved points.

Let us fix once and for all a number α such that P(Ω0) ≥ 3/4, where

Ω0 =
{ 1
α
≤ α− ≤ α+ ≤ α

}
. (11.105)

Consider two decreasing sequences c(n), d(n) > 0, tending to 0. These will
be determined after we make some calculations, but we should think of them
as being fixed once and for all. Given a probability measure μ on a T , we
first define the number Fn,j(μ) as the supremum of the numbers c with the
following property: there exists a random subset Z of T with Eμ(Z) ≤ d(n)
for which

∀U ⊂ T , U ∩ Z = ∅ , μ(U) ≥ c(n)⇒ bj(S(U)) ≥ c1Ω0 . (11.106)

In words, this means that the set Z of badly behaved points is small in
average, and that, when Ω0 occurs, any subset U of T which is not too small
and contains no badly behaved points satisfies bj(S(U)) ≥ c.

Given a subset A of T , we then define

Fn,j(A) = sup{Fn,j(μ) ; μ(A) = 1} .

This is obviously an increasing function of A. Let us make a simple observa-
tion.

Lemma 11.6.7. If c < Fn,j(A) we can find a probability measure μ on A
and a random set Z ⊂ A with Eμ(Z) ≤ d(n) for which (11.106) holds.
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The new information here is that Z ⊂ A.

Proof. By definition of the functional Fn,j we can find a probability measure
μ on A and a random set Z ⊂ T with Eμ(Z) ≤ d(n) for which (11.106) holds
(so the point is to prove that we can take Z ⊂ A). We then have

∀U ⊂ T , U ∩ (Z ∩A) = ∅ , μ(U) ≥ c(n)⇒ bj(S(U)) ≥ c1Ω0 , (11.107)

as is seen by applying (11.106) to U∩A rather than U . Consequently, (11.106)
still holds if we replace Z by Z ∩A. 
�

Since we assumed c(n+ 1) ≤ c(n) and d(n+ 1) ≤ d(n), it is obvious that
Fn+1,j ≤ Fn,j ; and it follows from (11.104) that Fn,j+1 ≤ Fn,j .

Lemma 11.6.8. If d(n) ≤ 1/8 and c(n) ≤ 1/2, then Fn,j(T ) ≤ 2E supt∈T Xt

for all j ∈ Z.

Proof. Consider c < Fn,j(T ), a probability measure μ on T with Fn,j(μ) > c
and a random subset Z of T with Eμ(Z) ≤ d(n) that satisfy (11.106). Since
d(n) ≤ 1/8, then P(μ(Z) ≤ 1/2) ≥ 3/4 and thus P(Ω1) ≥ 1/2 where Ω1 =
Ω0 ∩ {μ(Z) ≤ 1/2}. Now, when μ(Z) ≤ 1/2 we have μ(T \ Z) ≥ 1/2 ≥ c(n)
and (11.106) implies bj(S(T\Z)) ≥ c1Ω1 and thus

bj(S(T )) ≥ c1Ω1 .

Since bj(S(T )) ≥ 0, taking expectation and since P(Ω1) ≥ 1/2 we get c ≤
2Ebj(S(T )), and using (11.104) that c ≤ 2Eb(S(T )) = 2E supt∈T Xt. 
�

Lemma 11.6.9. Assuming condition H(C0, δ), and r ≥ K, there exists j =
j0 ∈ Z such that

∀s, t ∈ T , ϕj−1(s, t) ≤ 1 (11.108)

r−j ≤ 4rE sup
t∈T

Xt . (11.109)

Proof. Consider s, t ∈ T . By Lemma 2.2.1 we have

E|Xs −Xt| ≤ 2E sup
t∈T

Xt := 2S .

Defining μ as the image of ν under the map β �→ β(s)− β(t), (11.11) implies
that the r.v. X = Xs − Xt satisfies (11.100). From (11.101) we get that
ϕ(s, t, 1/(4S)) ≤ L. Consider the largest integer j such that r−j ≥ 4S, so
that ϕj(s, t) ≤ L and r−j ≤ 4rS. It then follows from (11.102) that if r ≥ K
we have ϕj−1(s, t) ≤ 1. 
�

Let us observe that for any fixed number u, δ(s, t) = ϕ(s, t, u) is the
square of a distance on T , so that for elements s, s′ and t of T ,

ϕ(s, s′, u)1/2 ≤ ϕ(s, t, u)1/2 + ϕ(s′, t, u)1/2 ,
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and the inequality (a+ b)2 ≤ 2(a2 + b2) implies

ϕ(s, s′, u) ≤ 2(ϕ(s, t, u) + ϕ(s′, t, u)) . (11.110)

The following is the crucial step of the proof of Theorem 11.2.6. We recall
that r = 2κ−2.

Proposition 11.6.10. There exists a number K1, depending on C0 and δ
only, and sequences (d(n))n≥0 and (c(n))n≥0, also depending on C0 and δ
only, tending to 0 as n→∞, such that if n ≥ K1 and κ ≥ K1, the functionals
K1Fn,j satisfy the growth condition of Definition 10.1.1.

Proof of Theorem 11.2.6. We choose n0 ≥ K1 large enough that d(n0) ≤ 1/8
and c(n0) ≤ 1/2, and depending only on C0 and δ. Consider the value of j0
constructed in Lemma 11.6.9, so that 2n0r−j0 ≤ KE supt∈T Xt by (11.109)
and Fn0,j0(T ) ≤ LE supt∈T Xt by Lemma 11.6.8. We then apply Theorem
10.1.2 with these values of j0 and n0. We observe that for n ≥ n0 (11.26)
follows from (10.10) and (11.110). Finally for A ∈ An with n ≤ n0 we define
jn(A) = j0 − 1, and (11.108) shows that (11.26) remains true for n ≤ n0.
This choice implies that

∑
n≤n0

2nr−jn(An(t)) ≤ K2n0r−j0+1 ≤ K2n0r−j0

and (11.27) follows from (10.9). This completes the proof of Theorem 11.2.6.

�

Proof of Proposition 11.6.10. Let us assume that we are given points (t�)�≤m,
as in (10.3), where m = Nn, and consider sets H� ⊂ Bj+1(t�, 2

n+κ).
The basic idea is that we want to apply (5.76) to the setsH ′

� := Ψj(S(H�)).
After all, the points t� for � ≤ m are far from each other, so that the points
u� := Ψj(S(t�)) should also be far from each other. Also, since the points of
H� are close to t�, the points of H

′
� should be close to u�. Unfortunately, none

of this is literally true:

(a) It is not always true that the points u� := Ψj(S(t�)) for � ≤ m are far
from each other.
(b) It is not true that all the points of H ′

� are close to u�.

Fortunately, sufficiently of it is true:

(c) It is very likely that sufficiently many of the points u� are far from each
other, so that it will suffice to work using only the corresponding values of �.
(d) For most of the points t of H� it is true that Ψj(S(t)) is close to u�.

The exceptional bad points of H� will be absorbed into a suitable random
set (which is the main purpose of introducing random sets).

We turn to the proof of (c) above. Since ϕj(t�, t�′) ≥ 2n for � �= �′, using
(11.92) for u = rj yields

Pτ
(∑

i≥1

(
Ri(Yi(t�)− Yi(t�′))

2
)
∧ r−2j ≤ 2nr−2j

8α+

)
≤ exp

(
− 2n

8α+

)
.
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Recalling (11.105), we have

P
(
Ω0 ∩

{∑

i≥1

(
Ri(Yi(t�)− Yi(t�′))

2
)
∧r−2j ≤ 2nr−2j

8α

})
≤ exp

(
− 2n

8α

)
.

(11.111)
It follows from (5.111) that

|x− y|2 ∧ c2 ≤ 4
∑

�∈Z

|ψc�,c(�+1)(si)− ψc�,c(�+1)(ti)|2

and using this for c = r−j implies

∑

i≥1

(
Ri(Yi(t�)− Yi(t�′))

2
)
∧ r−2j ≤ 4‖Ψj(S(t�))− Ψj(S(t�′))‖22 .

Let us fix a number p once and for all such that 2−p ≤ 1/(32α). Then (11.111)
implies (rather roughly)

P
(
Ω0 ∩ {‖Ψj(S(t�))− Ψj(S(t�′))‖2 ≤ 2(n−p)/2r−j}

)
≤ exp(−2n−p+2) .

Consider the event Ω1 defined as

Ω0 ∩ {∃� < �′ ≤ Nn−p ; ‖Ψj(S(t�))− Ψj(S(t�′))‖2 ≤ 2(n−p)/2r−j} .

Then
P(Ω1) ≤ N2

n−p exp(−2n−p+2) ≤ exp(−2n−p+1) .

In words, even though (a) fails, with overwhelming probability at least the
first Nn−p of the points u� are at mutual distances ≥ 2(n−p)/2r−j . Consider
the random subset Z ′′ defined by Z ′′ = T if Ω1 occurs and Z ′′ = ∅ otherwise.
The purpose of this random set is to exclude the event Ω1. For any probability
μ we have

Eμ(Z ′′) ≤ P(Z ′′ �= ∅) = exp(−2n−p+1) . (11.112)

Next we turn to the realization of (d) above. By definition of Bj , for
t ∈ H� ⊂ Bj+1(t�, 2

n+κ), we have ϕj+1(t, t�) ≤ 2n+κ. Since r = 2κ−2, (11.102)
implies ϕ(s, t, rj) = ϕj(t, t�) ≤ K2nr−δ. Now we use (11.93) given Ω0, with
A = K2nrδ and since on the event Ω0 it holds that α− ≥ 1/α we obtain

P
(
1Ω0

∑

i≥1

(
Ri(Yi(t)− Yi(t�))

2
)
∧ r−2j ≥ K2nr−δr−2j

)
≤ exp(−2nr−δ) .

(11.113)
Using similarly (11.99) with S = K2nr−δ and u = rj we get

P
(
1Ω0

∑

i≥1

Ri|Yi(t)− Yi(t�)|1{|Yi(t)−Yi(t�)|≥r−j} ≥ K2nr−δr−j
)

≤ K2−nδ/2rδ
2/2 . (11.114)
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Consider K1 large enough that (11.113) and (11.114) hold for K = K1. Let
us say that a point t ∈

⋃
�≤m H� is regular if, when � is the index for which

t ∈ H�, we have

∑

i≥1

(
Ri(Yi(t)− Yi(t�))

2
)
∧ r−2j ≤ K12

nr−δr−2j (11.115)

and
∑

i≥1

Ri|Yi(t)− Yi(t�)|1{|Yi(t)−Yi(t�)|≥r−j} ≤ K12
nr−δr−j . (11.116)

Thus, (11.113) and (11.114) imply that the probability that Ω0 occurs and

that a given point t is not regular is at most exp(−2nr−δ) +K2−nδ/2rδ
2/2.

Consider the random set Z ′′′ defined as

Z ′′′ =
{
t ∈
⋃

�≤m

H� ; t is not regular
}
,

if Ω0 occurs and Z ′′′ = ∅ otherwise. Using Fubini’s theorem, for each proba-
bility measure μ on T we get

Eμ(Z ′′′) =

∫
P({t ∈ Z ′′′})dμ(t) ≤ exp(−2nr−δ) +K2−nδ/2rδ

2/2 . (11.117)

Now we turn to the proof of the growth property itself. Consider c <
min�≤m Fn+1,j+1(H�). Since Fn+1,j+1 ≤ Fn+1,j , using Lemma 11.6.7 we can
find for each � ≤ m a probability measure μ� with μ�(H�) = 1, a random
subset Z� of H� with E(μ�(Z�)) ≤ d(n+ 1) satisfying

U ⊂ H�\Z� , μ�(U) ≥ c(n+ 1)⇒ bj(S(U)) ≥ c1Ω0 . (11.118)

Assuming n ≥ p, we define

μ :=
1

Nn−p

∑

�≤Nn−p

μ� ; Z
′ :=

⋃

�≤Nn−p

Z� .

Since μ�(H�) = 1 and the sets H� are disjoint, for any set Y ⊂ T we have

μ(Y ) =
1

Nn−p

∑

�≤Nn−p

μ�(Y ∩H�) . (11.119)

In particular since Z� ⊂ H�,

μ(Z ′) =
1

Nn−p

∑

�≤Nn−p

μ�(Z�)

and thus Eμ(Z ′) ≤ d(n+1). We consider the random set Z = Z ′ ∪Z ′′ ∪Z ′′′,
so that, combining with (11.112) and (11.117),
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Eμ(Z) ≤ d(n+1)+exp(−2n−p+1)+exp(−2nr−δ)+K2−nδ/2rδ
2/2 . (11.120)

This finishes the construction of the appropriate random set, and we turn
to the question of bounding Fn,j(

⋃
�≤m H�) from below. Consider a set U ⊂⋃

�≤m H�, with U ∩ Z = ∅, and assume that

μ(U) ≥ c(n+ 1) +
1

Nn−p−1
. (11.121)

Our goal is to bound bj(S(U)) from below. Let us define

I = {� ≤ Nn−p ; μ�(U) ≥ c(n+ 1)} .

Using (11.119) for Y = U implies

μ(U) ≤ 1

Nn−p
cardI + c(n+ 1) ,

so that (11.121) implies card I ≥ Nn−p/Nn−p−1 ≥ Nn−p−1. Let U� = U ∩H�,
so that μ�(U) = μ�(U�), and since U� ∩ Z� ⊂ U ∩ Z = ∅, (11.118) yields

∀� ∈ I , bj(S(U�)) ≥ c1Ω0 .

We define H ′
� = Ψj(S(U�)), so that b(H ′

�) = bj(S(U�)). We define u� =
Ψj(S(t�)). Since U∩Z ′′ = ∅, U consists only of regular points, so that (11.115),
(11.116) and (5.112) imply that if t ∈ U� then

‖Ψj(S(t))− Ψj(S(t�))‖22 ≤ Kr−δ2nr−2j ,

so that Ψj(S(t)) ∈ B(u�,Kr−δ/22n/2r−j) and consequently

H ′
� ⊂ B(u�,Kr−δ/22n/2r−j) . (11.122)

Denoting by K0 the constant of (11.122) and L0 the constant of (5.76), we
now choose once and for all r = 2κ−2 where κ is the smallest integer such
that K0r

−δ/2 ≤ 2−p/2/L0, so that (11.122) implies

H ′
� ⊂ B(u�, 2

(n−p)/2r−j/L0) . (11.123)

When Ω1 occurs we have Z ′′ = T . Since U �= ∅ and U ∩Z ′′ = ∅, the event
Ω1 does not occur, i.e.

∀� < �′ ≤ Nn−p , ‖u� − u�′‖2 ≥ 2(n−p)/2r−j .

We appeal to (5.76) with m = Nn−p−1 and a = r−j2(n−p)/2 to obtain

b
(⋃

�∈I

H ′
�

)
≥
(
c+

1

K1
2nr−j

)
1Ω0 .
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Since

b
(⋃

�∈I

H ′
�

)
= b
(
Ψj

(
S(
⋃

�∈I

U�)
))
≤ b
(
Ψj(S(U)

)
= bj(S(U)) ,

this implies

bj(S(U)) ≥ b
(⋃

�∈I

H ′
�

)
≥
(
c+

1

K1
2nr−j

)
1Ω0 . (11.124)

Motivated by (11.121), we now define

c(n) =
∑

q≥n

1

Nq−p−1

and, motivated by (11.120),

d(n) =
∑

q≥n

(
exp(−2q−p+1) + exp(−2qr−δ) +K2−qδ/2rδ

2/2
)
.

With these choices (11.120) implies that Eμ(Z) ≤ d(n), and (11.121)
means that μ(U) ≥ c(n). We have proved that this latter conditions, together
with U ⊂

⋃
�≤m H� and Z ∩ U = ∅ implies (11.124). The definition of the

functionals Fn,j then yields

Fn,j(μ) ≥ c+
1

K1
2nr−j ,

and therefore

Fn,j

( ⋃

�≤m

H�

)
≥ c+

1

K1
2nr−j .

Thus the growth condition (10.4) holds for the functionals K1Fn,j , and this
completes the proof of Proposition 11.6.10 and Theorem 11.2.6. 
�
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Processes, Theory and Applications, pp. 401–415. Birkhäuser, Basel (2001)
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12. The Fundamental Conjectures

12.1 Introduction

Proving the conjectures presented in the present chapter would revolutionize
our understanding of stochastic processes in the abstract setting (as devel-
oped in this work). The author believes that these conjectures are an excellent
long term research project. Some have been formulated very recently, so it is
of course a bit dangerous to include them here (even though the author has
thinly disguised the most outrageous of these conjectures as research prob-
lems). They are however so beautiful that this must be done. Just in case
one of these conjectures has been clumsily (and wrongly) formulated let us
explain the basic idea (which is likely to be more robust than any precise
formulation). It is simply that to bound a process of the type of those con-
sidered below, there seems to be only three ways to proceed: using the union
bound, taking a convex hull, using positivity, and, of course the combinations
of these. Maybe of course this is wishful thinking, and (as e.g. in the case of
the example (8.53) about Gaussian chaos) there are fundamentally different
methods to bound these processes, but they remain to be imagined.

12.2 Selector Processes

Given a number 0 < δ < 1, we consider i.i.d. r.v.s (δi)i≤M with

P(δi = 1) = δ ; P(δi = 0) = 1− δ . (12.1)

The r.v.s δi are often called selectors, because they allow to select a random
subset J of {1, . . . ,M} of cardinal about δM , namely the set {i ≤M ; δi = 1}.
The most interesting case is δ ≤ 1/2. These variables will be used in a funda-
mental way in Sections 16.5 and 16.6. The importance of selector processes
goes however well beyond these specific uses. This is because in some sense the
preceding method approximates the construction of N independent random
points (Xj)j≤N in a probability space (Ω,μ). To explain this, let us assume
for clarity that μ has no atoms. Let us then divide Ω into M small pieces Ωi

of equal measure, where M is much larger than N . Consider then selectors
(δi)i≤M where δ in (12.1) is given by δ = N/M . When δi = 1 let us choose
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a point Yi in Ωi. Since Ωi is small, how we do this is not very important,
but let us be perfectionist and choose Yi according to the conditional prob-
ability that Yi ∈ Ωi. Then the collection of points {Yi; δi = 1} resembles a
collection (Xj)j≤N ′ where the points (Xj) are independent uniform in Ω and
where N ′ =

∑
i≤M δi. For M large, N ′ is nearly a Poisson r.v. of expectation

δM = N . So a more precise statement is that selector processes approximate
the operation of choosing N ′ independent random points in a probability
space, where N ′ is a Poisson r.v. Many problems are “equivalent”, where
one considers this random number of points (Xj)j≤N ′ , or a fixed number of
points (Xj)j≤N (the so-called Poissonization procedure).

In particular, it is essentially the same problem to relate (at a given value
of N) the geometry of a class F of functions on a probability space (Ω,μ)
with the quantity

E sup
f∈F

∣∣∣
∑

i≤N

(f(Xi)− Ef)
∣∣∣ , (12.2)

and to try to relate the geometry of a set T of sequences t = (ti)i≤M with
the quantity

E sup
t∈T

∣∣∣
∑

i≤M

ti(δi − δ)
∣∣∣ . (12.3)

It is really a matter of taste whether to use the “continuous setting” of (12.2)
or the “discrete setting” of (12.3). We have chosen mostly to use the discrete
setting in view of the combinatorial formulations of Section 12.5. However,
since Theorem 11.2.6 is to date the main support for the conjectures of the
next section, we have given at the end of this section a similar conjecture in
the “continuous” setting that would be a direct generalization of this result.

We will call a family of r.v.s of the type
∑

i≤M ti(δi − δ) where t varies
over a set of sequences a “selector process”.

12.3 The Generalized Bernoulli Conjecture

How should one bound a quantity of the type (12.3), and, in particular, how
should one bound the tails of a r.v. of the type

∑
i≤M ti(δi − δ)? A first

thought is to use Bernstein’s inequality (4.59), which in the present case
yields in particular

P

(∣∣∣
∑

i≥1

ti(δi − δ)
∣∣∣ ≥ v

)
≤ 2 exp

(
−1

4
min

(
v2

δ
∑

i≤M t2i
,

v

maxi≤M |ti|

))
.

(12.4)
Combining with Theorem 2.2.23, (12.4) implies a first bound on selector
processes. If T is a set of sequences, then

E sup
t∈T

∣∣∣
∑

i≤M

ti(δi − δ)
∣∣∣ ≤ L(

√
δγ2(T, d2) + γ1(T, d∞)) . (12.5)
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The following simple lemma is very useful when dealing with selector
processes.

Lemma 12.3.1. Consider a fixed set I. If u ≥ 6δ card I we have

P
(∑

i∈I

δi ≥ u
)
≤ exp

(
−u

2
log

u

2δ card I

)
. (12.6)

Proof. We are dealing here with the tails of the binomial law and (12.6)
follows from the Chernov bounds. For a direct proof, considering λ > 0 we
write

E expλδi ≤ 1 + δeλ ≤ exp(δeλ)

so that we have
E expλ

∑

i∈I

δi ≤ exp(δeλcard I)

and
P
(∑

i∈I

δi ≥ u
)
≤ exp(δeλcard I − λu) .

We then take λ = log(u/(2δcard I)), so that λ ≥ 1 since u ≥ 6δ card I and
δeλcard I = u/2 ≤ λu/2. 
�

Exercise 12.3.2. In the setting of Lemma 12.3.1 above, prove that Bern-
stein’s inequality is sharp (in the sense that the logarithm of the bound it
provides is of the correct order) only for u of order δ card I.

After noticing in this exercise that Bernstein’s inequality is often not sharp,
one is lead to think that the bound (12.5) will not be very useful for studying
selector processes. This is wrong, but this misconception delayed the formu-
lation of the following conjectures for many years.

Conjecture 12.3.3. Consider a set T of sequences, and

S := E sup
t∈T

∣∣∣
∑

i≤M

ti(δi − δ)
∣∣∣ . (12.7)

Then we can write T ⊂ T1 + T2 where

γ2(T1, d2) ≤
LS√
δ
; γ1(T1, d∞) ≤ LS , (12.8)

and
E sup

t∈T2

∑

i≤M

|ti|δi ≤ LS . (12.9)

Combining with (12.5), (12.8) implies

E sup
t∈T1

∣∣∣
∑

i≤M

ti(δi − δ)
∣∣∣ ≤ LS . (12.10)



374 12. The Fundamental Conjectures

In words, chaining as in (12.5) explains the boundedness of the process over
the set T1, while (as follows from (12.9)) the boundedness of the process over
T2 owes nothing to cancellation. The subtle point is that this does not say
that bounds such as those of Lemma 12.3.1 are not useful in the study of
selector processes. These bounds are useful to control quantities such as the
left-hand side of (12.9) which can be though of as the “difficult part” of the
process, and which we shall try to study later.

Conjecture 12.3.3 implies that every selector process is a mixture of these
two types of processes, and is a version of our unproven belief that for
selector processes

chaining explains all the part of

boundedness which is due to cancellation.

This formulation in words does not capture the full strength of Conjec-
ture 12.3.3, since it is a special type of chaining that is used in (12.5).

Exercise 12.3.4. Prove that a positive answer to Conjecture 12.3.3 implies a
positive answer to Problem 9.1.3, at least when F is a finite class of functions
and the underlying measure space has no atoms.

As we shall show, Conjecture 12.3.3 is equivalent to the following, which is
less intuitive but maybe more amenable to attack.

Conjecture 12.3.5. Consider a number δ ≤ 1/2 and a set T of sequences
t = (ti)i≤M with 0 ∈ T . Define S as in (12.7). Then we can find an admissible
sequence (An) of partitions of T and for A ∈ An a number jn(A) such that

A ∈ An , B ∈ An−1 , A ⊂ B ⇒ jn(A) ≥ jn−1(B) , (12.11)

∀x, y ∈ A ∈ An ,
∑

i≤M

|2jn(A)(xi − yi)|2 ∧ 1 ≤ 1

δ
2n (12.12)

and
∀ t ∈ T ,

∑

n≥0

2n−jn(An(t)) ≤ LS . (12.13)

There is a rather subtle point in the formulation of Conjecture 12.3.5. Con-
ditions (12.11) and (12.12) together with

∀ t ∈ T ,
∑

n≥0

2n−jn(An(t)) ≤ C . (12.14)

do not imply that S = E supt∈T |
∑

i≤M ti(δi − δ)| ≤ LC. An example is
obtained with T = {(ti)i≤M ;

∑
i≤M |ti| ≤ 1}. Then Theorem 16.3.1 used

with τ such that 2−τ � δ proves that these conditions hold for C = Lδ,
while (when Mδ ≥ 1), S is about 1 here. However knowing that (12.13)
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holds for the value S of (12.7) suffices to prove that T admits the striking
decomposition of Conjecture 12.3.3.

Now we explain why when δ = 1/2, Conjecture 12.3.5 is equivalent to
the validity of Theorem 5.1.5 and hence holds true. (The name of generalized
Bernoulli conjecture arises from the fact that the statement of Theorem 5.1.5
was known as the Bernoulli conjecture before it was proved.) When δ = 1/2
the r.v.s εi = 2(δi − δ) are independent Bernoulli r.v.s, so

S =
1

2
E sup

t∈T

∣∣∣
∑

i≤M

tiεi

∣∣∣ . (12.15)

Moreover, taking the expectation inside the supremum, and since Eδi = 1/2,
(12.9) proves that supt∈T

∑
i≤M |ti| ≤ LS, and thus when δ = 1/2, Conjec-

ture 12.3.3 implies Theorem 5.1.5. Conversely, Proposition 5.2.5 shows that
when δ = 1/2, Theorem 5.1.5 implies Conjecture 12.3.5 (which as we later
show is equivalent to Conjecture 12.3.3).

We now investigate “the stability of Conjecture 12.3.3 with respect to
convex hulls”. Since

E sup
t∈T

∣∣∣
∑

i≤M

ti(δi − δ)
∣∣∣ = E sup

t∈conv T

∣∣∣
∑

i≤M

ti(δi − δ)
∣∣∣ ,

if Conjecture 12.3.3 is true, then the decomposition T ⊂ T1 + T2 it pro-
vides must also hold for conv T . Combining with (12.5) we see that Conjec-
ture 12.3.3 can be true only if the following problem has a positive answer.

Research problem 12.3.6. Consider a set T of sequences and assume that
for a certain number S > 0,

γ2(T, d2) ≤
S√
δ
; γ1(T, d∞) ≤ S .

Is it true that one can write conv T ⊂ T1 +T2 where T1 and T2 satisfy (12.8)
and (12.9)?

Corollary 10.2.9 shows that the answer is positive in the case δ = 1/2, even
by taking T2 = {0}. The following exercise shows however that for a positive
solution to Problem 12.3.6, one cannot always choose T2 reduced to one point.

Exercise 12.3.7. Prove that it is not true that if T is a set of sequences for
which

γ2(T, d2) ≤
A√
δ
; γ1(T, d∞) ≤ A ,

then

γ2(conv T, d2) ≤
LA√
δ
; γ1(conv T, d∞) ≤ LA .

(Hint: use Exercise 10.2.11 and choose δ appropriately small.)
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A negative answer to Problem 12.3.6 would disprove Conjecture 12.3.3, but
not the following weaker version.

Conjecture 12.3.8. Consider a set T of sequences, and S as in (12.7). Then
it is possible to write T ⊂ conv(T1 ∪ T2) where T1 and T2 satisfy (12.8) and
(12.9).

Just as Conjecture 12.3.3, Conjecture 12.3.8 is a weaker but still valid for-
mulation of the unproven principle that “chaining explains the part of the
process which is due to cancellation”.

Proof that Conjecture 12.3.5 implies Conjecture 12.3.3. Assume that (12.11)
to (12.13) hold true. Then Theorem 5.2.7 (used for r = 2 and u = 1/δ) im-
plies that we can find a decomposition T ⊂ T1 + T ′

2 + T3 such that (12.8)
holds while

∀ t ∈ T ′
2 , ‖t‖1 ≤

LS

δ
, (12.16)

and (5.29) holds, i.e.

∀t ∈ T3 , ∃s ∈ T , |t| ≤ 5|s|1{2|s|≥2−j0(T )} . (12.17)

Consider s ∈ T and set J = {i ≤ M ; |si| ≥ 2−j0(T )−1}. Our next goal is to
prove that

∑

i∈J

|si| ≤
LS

δ
, (12.18)

so that combining with (12.17) we get

t ∈ T3 ⇒ ‖t‖1 ≤
LS

δ
. (12.19)

To prove (12.18), we first observe that using (12.12) with n = 0, x = s and
y = 0 yields card J ≤ 4/δ. Considering a subset J ′ of J , the definition of S
shows that E|

∑
i≤M si(δi − δ)| ≤ S, and Jensen’s inequality implies

E
∣∣∣
∑

i∈J ′

si(δi − δ)
∣∣∣ ≤ S . (12.20)

The event Ω = {∀j ∈ J ′; δj = 0} satisfies

P(Ω) = 1− (1− δ)card J ′
≥ 1− exp(−δ card J) ≥ 1− exp(−4)

and since

E
∣∣∣
∑

i∈J ′

si(δi − δ)
∣∣∣ ≥ E1Ω

∣∣∣
∑

i∈J ′

si(δi − δ)
∣∣∣ = δP(Ω)

∣∣∣
∑

j∈J ′

sj

∣∣∣ ,

(12.20) proves that |
∑

j∈J ′ sj | ≤ LS/δ and since J ′ is an arbitrary subset of
J this implies (12.18) and hence (12.19). Consequently setting T ′′

2 = T ′
2 + T3
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we then obtain T ⊂ T1 + T ′′
2 while (using also (12.16)) ‖t‖1 ≤ LS/δ for

t ∈ T ′′
2 . Combining (12.10) and the definition of S yields

E sup
t∈T−T1

∣∣∣
∑

i∈J

ti(δi − δ)
∣∣∣ ≤ LS .

Setting T2 = (T − T1) ∩ T ′′
2 , we then further have

E sup
t∈T2

∣∣∣
∑

i∈J

ti(δi − δ)
∣∣∣ ≤ LS ,

while still T ⊂ T1 + T2. Then since ‖t‖1 ≤ LS/δ for t ∈ T2, using (a simple
modification of) the Giné-Zinn Theorem 9.1.10 we then obtain (12.9). 
�
Sketch of proof that Conjecture 12.3.3 implies Conjecture 12.3.5. Consider
the sets T1 and T2 as in Conjecture 12.3.3. The only property we shall use
for those sets is that γ2(T1, d2) ≤ LS/

√
δ and supt∈T2

∑
i≤N |ti| ≤ LS/δ.

This second relation follows from (12.9), by moving the expectation inside
the supremum. Then if either T = T1 or T = T2 one may find an admissi-
ble sequence of partitions as in Conjecture 12.3.5. For T1 this follows from
Proposition 5.2.4, and for T2 this follows from Theorem 16.3.1 with δ � 2−τ .
To prove that one can find an admissible sequence of partitions which works
for T1 + T2 one reproduces the arguments of Proposition 5.2.5. 
�

Sets which satisfy (12.9) will be discussed in the next section. Before we
do this, we discuss the case where T consists of one single sequence. Of course,
such a case is an exercise, but a non trivial one. We find it convenient to move
for this to a “symmetrized” version of the process, i.e. to r.v.s of the type∑

i≤M tiεiδi where (εi) are independent Bernoulli r.v.s.

Proposition 12.3.9. There exists a constant L with the following property.
Assume that for a number S we have

P
(∑

i≤M

tiεiδi ≥ S
)
≤ exp(−B) , (12.21)

for some B ≥ L. Then we can decompose t = (ti)i≤M as t = t1 + t2 + t3

where

card{i ≤M ; t3i �= 0} ≤ L

δ
exp(−B) , (12.22)

‖t1‖2 ≤
LS√
δB

, ‖t1‖∞ ≤ LS

B
, ‖t2‖1 ≤

LS

δ
. (12.23)

The following proposition explains why this lends credibility to conjec-
ture 12.3.5. (One must be very weary however that, as Theorem 8.2.2 shows,
the global behavior of a family of r.v.s may not reflect the tail behavior of
the individual r.v.s.)
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Proposition 12.3.10. There exists ε0 > 0 such that if for some S > 0 a
sequence (tk) = (tki )i≤M satisfies

∑

k≥1

P
(∑

i≤M

tki εiδi ≥ S
)
≤ ε0 , (12.24)

then we can find a subset J of {1, . . . ,M} with cardJ ≤ L/δ such that
T = {tk1{i 	∈J}; k ≥ 1} satisfies the conditions of Conjecture 12.3.3.

The reason for the set J in the above is that (12.24) implies

P
(
sup
k≥1

∑

i≤M

tki εiδi ≥ S
)
≤ ε0 , (12.25)

but provides no control of the quantity E supk≥1

∑
i≤M tki εiδi. This can be

seen e.g. in the case where tki = 0 for i ≥ 2 and all k. On the other hand, the
contribution of such “small” sets of coordinates as J is essentially trivial, as
the following exercise shows.

Exercise 12.3.11. Consider a set T of sequences t = (ti)i≤N and define
t∗i = supt∈T |ti|. If cardJ ≤ 1/δ, prove that

δ

L

∑

i∈J

t∗i ≤ E sup
t∈T

∣∣∣
∑

i∈J

tiεiδi

∣∣∣ ≤ δ
∑

i∈J

t∗i . (12.26)

(Hint: The right-hand side inequality is obvious. To prove the left-hand side,
for i ∈ J consider the event Ωi given by δi = 1 and δj = 0 for j �= i. Observe
that these events are disjoint and that P(Ωi) ≥ δ/L.)

Proof of Proposition 12.3.10. We choose ε0 = exp(−L) where L is the con-
stant of Proposition 12.3.9. For k ≥ 1 we define Bk by

P
(∑

i≤M

tki εiδi ≥ S
)
= exp(−Bk) ,

so that
∑

k≥1 exp(−Bk) ≤ ε0 and in particular Bk is large enough that we

can use Proposition 12.3.9. Therefore we can write tk = tk,1+tk,2+tk,3 where

card{i ≤M ; tk,3i �= 0} ≤ L

δ
exp(−Bk) , (12.27)

‖tk,1‖2 ≤
LS√
δBk

, ‖tk,1‖∞ ≤ LS

Bk
, ‖tk,2‖1 ≤

LS

δ
. (12.28)

We define
J = {i ≤M ; ∃k ≥ 1 , tk,3i �= 0} ,

so that (12.25) and (12.27) imply that cardJ ≤ L/δ. Thus it suffices to show
that
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T := {tk,1 + tk,2 ; k ≥ 1}
satisfies the conditions of Conjecture 12.3.3. Let T1 = {tk,1; k ≥ 1} and
T2 = {tk,2; k ≥ 1}. It is then obvious from (12.28) that ‖t‖1 ≤ LS/δ for t ∈ T2,
so that it suffices to prove (12.8). Assuming without loss of generality that the
sequence (Bk) increases, we have k exp(−Bk) ≤

∑
p≥1 exp(−Bp) ≤ ε0 ≤ 1/2

and thus Bk ≥ log(2k) ≥ log(k + 1). Then (12.28) implies

‖tk,1‖2 ≤
LS√

δ log(k + 1)
; ‖tk,1‖∞ ≤ LS

log(k + 1)
.

We are essentially in the situation of Exercise 2.2.16, so it should then be
obvious that γ2(T1, d2) ≤ LS/

√
δ and γ1(T1, d∞) ≤ LS. 
�

Proof of Proposition 12.3.9. We may assume without loss of generality that
the sequence (|ti|)i≤M decreases. The simple idea is that for certain integers
i0 and i1 we have

t3i = ti for i ≤ i0 ; t3i = 0 for i > i0

t2i = ti for i0 < i ≤ i1 ; t2i = 0 otherwise

t1i = ti for i > i1 ; t1i = 0 for i ≤ i1 .

We denote by A a parameter that will be chosen later to be a large enough
constant. We define i0 as the largest integer i0 ≥ 0 such that

i0 ≤
A

δ
exp(−B) . (12.29)

We define i1 as the largest integer for which

∑

i0<i≤i1

|ti| ≤
AS

δ
. (12.30)

The proof is complete if i1 = M , so we assume from now on that this is not
the case. Then ∑

i0<i≤i1+1

|ti| ≥
AS

δ
. (12.31)

We shall prove that if A is a large enough constant,

|ti1+1| ≤
LS

B
(12.32)

and ∑

i>i1

t2i ≤
LS2

δB
, (12.33)

and these complete the proof. We shall use many times the following obser-
vation. If X and Y are independent symmetric r.v.s then
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P(X + Y ≥ S) ≥ 1

2
P(X ≥ S) . (12.34)

The first step of the argument is to prove that

|ti0 | ≤ S . (12.35)

Arguing by contradiction, let us assume that |ti| > S for i ≤ i0, and let us
consider the event Ω defined by

∃i ≤ i0 ; δi = 1 .

Denoting by Pε the probability given the choice of the r.v.s δi, it should be
clear by using (12.34) that when Ω occurs one has

Pε

(∑

i

tiεiδi ≥ S
)
≥ 1

4
.

Consequently,

1

4
P(Ω) =

1

4
(1− (1− δ)i0) ≤ P

(∑

i

tiεiδi ≥ S
)
≤ exp(−B) .

Since we certainly may assume that B ≥ 2, this implies 1− (1− δ)i0 ≥ δi0/L
and thus

i0δ ≤ L exp(−B) ,

and this contradicts the definition of i0 provided that the parameter A has
been chosen a large enough constant. Thus (12.35) is proved. We now fix A
in this manner, and we assume, as we may, that A ≥ 2.

Since we assume that the sequence (|ti|) decreases, we deduce from (12.30)
that

|ti1 | ≤
AS

δ(i1 − i0)
. (12.36)

To prove (12.32) (and even the better inequality |ti1 | ≤ LS/B) we prove that

δ(i1 − i0) ≥
B

L
. (12.37)

Let us lighten notation by setting

J = {i0 + 1, . . . , i1 + 1} , (12.38)

so that card J = i1 − i0 + 1, and (12.31) means

∑

i∈J

|ti| ≥
AS

δ
. (12.39)

Consider the r.v.
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X =
∑

i∈J

|ti|δi ,

so that
EX = δ

∑

i∈J

|ti| ≥ AS .

Now
EX2 = (EX)2 + (δ − δ2)

∑

i∈J

t2i ≤ (EX)2 + δ
∑

i∈J

t2i .

Since |ti| ≤ S for i ∈ J , assuming A ≥ 1, we have

δ
∑

i∈J

t2i ≤ Sδ
∑

i∈J

|ti| = SEX ≤ (EX)2 ,

and EX2 ≤ 2(EX)2. The Paley-Zygmund inequality then implies

P
(
X ≥ EX

2

)
≥ (EX)2

4EX2
≥ 1

8
,

and in particular P(X ≥ AS/2) ≥ 1/8. Meanwhile, since E(
∑

i∈J δi) =
δ cardJ we have

P
(∑

i∈J

δi ≥ 16δ card J
)
≤ 1

16

by Markov’s inequality. Hence the event Ω given by

X ≥ AS

2
;
∑

i∈J

δi ≤ 16δ cardJ

satisfies P(Ω) ≥ 1/16. Now, given the r.v.s δi,

Pε

(∑

i∈J

tiεiδi ≥ X
)
≥ 2−

∑
i∈J δi ,

and assuming A ≥ 2, so that X ≥ S on Ω,

1

16
2−16δ card J ≤ P

(∑

i∈J

tiεiδi ≥ S
)
.

Using (12.34) again,

1

32
2−16δ card J ≤ P

(∑

i≤M

tiεiδi ≥ S
)
≤ exp(−B) .

Since cardJ = i1− i0+1 and since i1 > i0 by (12.35) this proves (12.37) and
we turn to the proof of (12.33). Denoting by L0 the constant of (12.32) we
may assume that
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C :=
∑

i>i1

t2i ≥
2L2

0S
2

δB
, (12.40)

for there is nothing to prove otherwise. Consider the smallest integer i2 such
that ∑

i1<i<i2

t2i ≥
C

2B
.

Then, since by (12.32) |ti| ≤ L0S/B for i > i1,

∑

i1<i<i2

t2i ≤
∑

i1<i<i2−1

t2i + t2i2−1 ≤
C

2B
+

L2
0S

2

B2
≤ C

B
.

Continuing in this manner we construct as long as possible disjoint sets J�,
� ≤ m such that

C

2B
≤
∑

i∈J�

t2i ≤
C

B
. (12.41)

Then Cm/2B ≤ C i.e. m ≤ 2B. Also, since we construct as many of these
sets as possible, there are not enough ti’s left to construct one more set, so
that we have

C −m
C

B
≤ C

2B
,

and in particular, assuming as we may B ≥ 21

B

2
≤ m ≤ 2B . (12.42)

Consider now the r.v.s Y� =
∑

i∈J�
εiδiti, so that

EY 2
� = δ

∑

i∈J�

t2i ≥
δC

2B
.

Next we try to bound EY 4
� . First, using the subgaussian inequality, EεY

4
� ≤

L(EεY
2
� )

2 = L(
∑

i∈J�
δ2i t

2
i )

2. Expending the square and taking expectation

yields, since Eδ2i = Eδ4i = δ,

EY 4
� ≤ LEY 2

� + δ
∑

i∈J�

t4i .

Using (12.32) in the first inequality and (12.40) in the second inequality, for
i > i1,

t2i ≤
L2
0S

2

B2
≤ δC

2B
≤ EY 2

� ,

so that
δ
∑

i∈J�

t4i ≤ EY 2
� δ
∑

i∈J�

t2i = (EY 2
� )

2 ,
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and therefore EY 4
� ≤ L∗(EY 2

� )
2. The Paley-Zygmund inequality then implies

P
(
Y 2
� ≥

δC

2L∗B

)
≥ 1

8
, (12.43)

and moreover the r.v.s (Y�) are independent. The independent events Ω� =
{Y 2

� ≥ δC/2L∗B} for � ≤ m all have probability ≥ 1/8. Consider an integer
n ≤ m/16. Then (assuming B, and hence m large enough), with probability
at least 1/2 at least n of the m events (Ω�)�≤m will occur. That is, the event
Ω defined by

∃I ⊂ {1, . . . ,m} ; card I = n , � ∈ I ⇒ |Y�| ≥ D :=

√
δC

2L∗B

satisfies P(Ω) ≥ 1/2.
Let us now consider Bernoulli r.v.s (η�)�≤m that are independent of all

the r.v.s considered so far, so that, with obvious notation, when Ω occurs,

Pη

(∑

�∈I

η�|Y�| ≥ nD
)
≥ 2− card I = 2−n .

Using (12.34) we obtain

Pη

(∑

�≤m

η�|Y�| ≥ nD
)
≥ 2−n−1 ,

and since P(Ω) ≥ 1/2,

P
(∑

�≤m

η�|Y�| ≥ nD
)
≥ 2−n−2 . (12.44)

We observe that in distribution, if J =
⋃

�≤m J�, we have

∑

i∈J

tiεiδi =
∑

�≤m

η�|Y�| .

Let us assume if possible that nD ≥ S. Then, combining (12.44) with (12.34)
we obtain

1

2
2−n−2 ≤ 1

2
P
(∑

i∈J

tiεiδi ≥ S
)
≤ P
(∑

i≤M

tiεiδi ≥ S
)
≤ exp(−B) .

Since n ≤ m/16 ≤ B/16 this is impossible. Therefore nD ≤ S, which implies
(12.33) and completes the proof. 
�

One cannot argue that Proposition 12.3.9 provides much support for Con-
jecture 12.3.3. In our view, greater support is provided by Theorem 11.2.6,
and we formulate now a conjecture closely related to Conjecture 12.3.3 which
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is motivated by this theorem. Consider a σ-finite measure space (Ω, ν) and an
enumeration (Zi) of a Poisson point process of intensity measure ν. Consider
i.i.d. Bernoulli r.v.s εi. For a function t in L2(ν) the series Xt =

∑
i εit(Zi)

converges a.s. We denote by d2 the distance induced by the norm of L2(ν)
and by d∞ the distance induced by the supremum norm.

Conjecture 12.3.12. Given a set T of functions in L2(ν), let S = E supt∈T |Xt|.
Then we can write T ⊂ T1 + T2 where

γ2(T1, d2) ≤ LS ; γ1(T1, d∞) ≤ LS

and
E sup

t∈T2

∑

i≥1

|t(Zi)| ≤ LS .

The condition that t ∈ L2(ν) is inessential, and the r.v. Xt is well defined
as soon as |t| ∧ 1 ∈ L2(ν). This condition t ∈ L2(ν) is used in the previous
statement only to ensure integrability of Xt and to get a simple formulation.

12.4 Positive Selector Processes

If Conjecture 12.3.3 is true, it reduces the study of selector processes to the
study of positive selector processes, as follows from (12.9). That is, we have
to understand the quantity

Eδ(T ) := E sup
t∈T

∑

i≤M

tiδi (12.45)

where T is a set of sequences t = (ti)i≤M with ti ≥ 0. Whether or not
Conjecture 12.3.3 is true, the study of positive selector processes is in any
case fundamental, since, following the same steps as in the previous section,
it is essentially the same problem as understanding the quantity

E sup
f∈F

∑

i≤N

f(Xi)

when F is a class of non-negative functions. The complicated nature of the
tails of the r.v.s

∑
i≤M ti(δi− δ) (as exemplified e.g. in Lemma 12.3.1) makes

it difficult to imagine in function of which geometrical characteristics of T one
should evaluate the left-hand side of (12.45). We shall discuss in Section 12.6
the case where T consists of indicator of sets, and in particular we shall give
concrete examples which illustrate this point.

An important feature of positive selector processes is that we can use
positivity to construct new processes from processes we already know how to
bound. Given a set T we denote by solidT its “solid convex hull”, i.e. the set
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of sequences (si)i≤M for which there exists t ∈ conv T such that si ≤ ti for
each i ≤M . It should be obvious that

sup
t∈solidT

∑

i≤M

tiδi = sup
t∈T

∑

i≤M

tiδi , (12.46)

so that in particular

Eδ(solidT ) = E sup
t∈solidT

∑

i≤M

tiδi = E sup
t∈T

∑

i≤M

tiδi = Eδ(T ) .

Thus, to bound Eδ(T ) is suffices to find a set T ′ for which T ⊂ solidT ′ and
such that we control Eδ(T ′). We know one sure way to bound Eδ(T ), namely
the straightforward use to the union bound, an idea which we formalize now.

Definition 12.4.1. Given a number S ≥ 0 we define the class T (S) of sets
T by the following property

∫ ∞

S

∑

t∈T

P
(∑

i≤M

tiδi ≥ u
)
du ≤ S . (12.47)

An important example of set in T (S) is
{
t ;
∑

i≤M

ti ≤ S
}

because then the sum in (12.47) is zero for each u > S.

Proposition 12.4.2. If T ∈ T (S) then Eδ(T ) ≤ 2S.

Proof.

Eδ(T ) =
∫ ∞

0

P
(
sup
t∈T

Xt ≥ u
)
du ≤ S +

∫ ∞

S

∑

t∈T

P
(∑

i≤M

tiδi ≥ u
)
du ≤ 2S . 
�

Consequently, we obtain a method to bound Eδ(T ) for any set T of sequences.
Simply, if T ⊂ solidT ′ for a certain T ′ ∈ T (S), then Eδ(T ) ≤ 2S. We can
believe, optimistically, that this method is optimal, even though at the present
time this is little more than wishful thinking, supplemented by a lack of
imagination to invent methods to bound positive selector processes.

Research problem 12.4.3. Does there exist a universal constant L such
that for any set T of sequences one can find a set T ′ ∈ T (S) for S = LEδ(T )
with T ⊂ solidT ′?
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12.5 Explicitly Small Events

We would like to explain a new direction of investigation that became appar-
ent during the writing of [3]. Ultimately, we would like to prove theorems of
the type of Theorem 2.4.1, which gives a complete description of the quantity
E supt∈T Xt as a function of the geometry of the metric space (T, d) for many
processes, and this is what motivates the conjectures of the previous sections.
But in the mean time is there a way to gather some understanding even if
we do not yet have the hope to fully understand the situation? As explained
after Theorem 2.4.18, a consequence of this result is that for any Gaussian
process we can find a jointly Gaussian sequence (uk) such that

{
sup
t∈T

|Xt| ≥ LE sup
t∈T

|Xt|
}
⊂
⋃

k≥1

{uk ≥ 1} (12.48)

and moreover ∑

k≥1

P(uk ≥ 1) ≤ 1

2
.

The sets {uk ≥ 1} are simple concrete witnesses that the event on the left-
hand side of (12.48) has a probability at most 1/2. The existence of these
witnesses is a non-trivial information, even though it is not as good as the
information provided by Theorem 2.4.1. (Let us observe in particular that
this information is rather easy to deduce from Theorem 2.4.1, but that it
does not seem easy to go the other way around.)

In the setting of positive selector processes, the same idea would require
that for some universal constant L and each set T of sequences t = (ti)i≥1,
ti ≥ 0, there exist simple witnesses that the event

sup
t∈T

∑

i≤M

δiti ≥ LE sup
t∈T

∑

i≤M

δiti (12.49)

has a probability at most 1/2.
There is a simple and natural choice for these witnesses. For a finite subset

I of {1, . . . ,M}, let us consider the event HI defined by

HI = {∀i ∈ I, δi = 1} ,

so that P(HI) = δcard I . The events HI play the role that the half-spaces play
for Gaussian processes in (12.48).

Definition 12.5.1. An event Ω is δ-small if we can find a family G of subsets
I of {1, . . . ,M} with ∑

I∈G
δcard I ≤ 1/2 (12.50)

and
Ω ⊂

⋃

I∈G
HI . (12.51)
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Of course, the choice of the constant 1/2 in (12.50) is rather arbitrary. The
relation (12.51) makes “explicit” the fact that Ω is small (hence the title of
the section). The first thing to understand is that there exists sets of small
probability which do not look at all like δ-small sets. A typical example is as
follows. Let us consider two integers k, r, and r disjoint subsets I1, . . . , Ir of
1, . . . ,M , each of cardinality k. Let us consider the set

A = {(δi)i≤M ; ∀ � ≤ r , ∃i ∈ I� , δi = 1} . (12.52)

It is straightforward to see that P(A) = (1− (1− δ)k)r. In particular, given
k, one can chose r large so that P(A) is small. We leave as teaser to the
reader to prove that the set A is not 1/k small. (Hint: A carries a probability
measure ν such that ν(HI) ≤ k− card I for each I. A complete proof can be
found in [4].)

Research problem 12.5.2. Is it true that we can find a universal constant
L such that for any class of sequences T as in (12.49), the event

{
sup
t∈T

∑

i≤M

δiti ≥ LE sup
t∈T

∑

i≤M

δiti

}
(12.53)

is δ-small?

Even proving that the set (12.53) is αδ-small, where α is some universal
constant would be of interest. The main result of Section 12.6 is a positive
answer to this problem when T consists of indicators of sets.

Proposition 12.5.3. If Problem 12.4.3 has a positive answer, then so does
Problem 12.5.2.

In view of (12.46) this proposition is an immediate consequence of the fol-
lowing.

Proposition 12.5.4. For T ∈ T (S) the event

{
sup
t∈T

∑

i≤M

δiti ≥ LS
}

is δ-small.

Lemma 12.5.5. Consider t = (ti)i≤M and v > 0. Assume that

P
(∑

i≤M

tiδi ≥ v
)
≤ 1

16
. (12.54)

Then we can find a family G of subsets of {1, . . . ,M} for which

{∑

i≤M

tiδi ≥ Lv
}
⊂
⋃

I∈G
HI
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and ∑

I∈G
δcard I ≤ 10P

(∑

i≤M

tiδi ≥ v
)
.

Proof of Proposition 12.5.4. By definition of the statement T ∈ T (S), (12.47)
holds, so that in particular

∑

t∈T

P
(∑

i≤M

tiδi ≥ 21S
)
≤ 1

20
. (12.55)

For each t ∈ T we find a family Gt as in Lemma 12.5.5, used for v = 21S.
The union G of these families as t varies over T satisfies the requirements of
Proposition 12.5.4. 
�
Proof of Lemma 12.5.5. We may and do assume that the sequence (ti) is
non-increasing. Consider the largest integer i0 such that

1− (1− δ)i0 = P(∃i ≤ i0, δi = 1) ≤ P
(∑

i≤M

tiδi ≥ v
)
,

so that

P
(∑

i≤M

tiδi ≥ ti0+1

)
≥ P(∃i ≤ i0 + 1, δi = 1)

= 1− (1− δ)i0+1 > P
(∑

i≤M

tiδi ≥ v
)

and in particular ti0+1 < v and so ti < v for i > i0. Also, since 1− (1−δ)i0 ≤
P(
∑

i≤M tiδi ≥ v) ≤ 1/16, we have 15/16 ≤ (1 − δ)i0 ≤ exp(−δi0) and

δi0 ≤ 1/10 and thus 1−(1−δ)i0 ≥ δi0/2 and finally δi0 ≤ 2P(
∑

i≤M tiδi ≥ v).
Moreover

{∑

i≤M

tiδi ≥ v
}
⊂
⋃

i≤i0

H{i} ∪
{ ∑

i0<i≤M

tiδi ≥ v
}
. (12.56)

Since ti ≤ v for i > i0, then, as we have used many times, the r.v. X =∑
i0<i≤M tiδi satisfies EX

2 ≤ (EX)2 + vEX. The Paley-Zygmund inequality
then shows that we must have EX ≤ 2v, for otherwise we would have P(X ≥
v) ≥ 1/8, while in fact we have P(X ≥ v) ≤ P(

∑
i≤M tiδi ≥ v) ≤ 1/16. It is

then proved in [4], Theorem 11.1 that we can find a family G of subsets of
{1, . . . ,M} for which {X ≥ Lv} ⊂

⋃
I∈G HI and

∑
I∈G δcard I ≤ 8P(X ≥ v).

Consider the family G′ = G ∪ {{i}; i ≤ i0}. Then (12.56) shows that
{∑

i≤M

tiδi ≥ v
}
⊂
⋃

I∈G′

HI ,

while ∑

I∈G′

δcard I ≤ i0δ +
∑

I∈G
δcard I ≤ 10P

(∑

i≤M

tiδi ≥ v
)
. 
�
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The proof of Theorem 11.1 of [4] is complicated, so we do not reproduce
it here, but rather we hope that a creative reader will invent a clean proof of
Lemma 12.5.5.

Part of the beauty of Problem 12.5.2 is that possibly the best way to
approach it is through a natural question of a more general nature. To for-
mulate this more general question, we need to consider the law P of the
sequence (δi)i≥0 in {0, 1}M . With some abuse of notation, we will denote
by (δi)i≤M the generic point of {0, 1}M . We define an abstract operation as
follows. Given a set D ⊂ {0, 1}M and an integer q, let us define the set D(q)

as the subset of {0, 1}M consisting of the sequences (δi)i≤M such that the set
{i ≤ M ; δi = 1} cannot be covered by q sets of the type {i ≤ M ; δi = 1} for
δ ∈ D, or more formally,

∀(δ1i )i≤M , . . . , (δqi )i≤M ∈ D , ∃i ≤M , δi = 1 , ∀� ≤ q , δ�i = 0 .

The link with Problem 12.5.2 is that if D is the set consisting of the
sequences (δi)i≤M for which supt∈T

∑
i≤M δiti ≤ S, where S is a me-

dian of the left-hand side, then P(D) ≥ 1/2, while, due to positivity, if
(δ1i )i≤M , (δ2i )i≤M , . . . , (δqi )i≤M ∈ D, then for t ∈ T ,

∑

i≤M

ti max
�≤q

δ�i ≤
∑

�≤q

∑

i≤M

δ�i ti ≤ qS .

Now, if (δi) �∈ D(q) we can find (δ1i )i≤M , (δ2i )i≤M , . . . , (δqi )i≤M ∈ D for which

δi ≤ max�≤q δ
(�)
i , so that

∑
i≤M δiti ≤ qS. Consequently,

{
sup
t∈T

∑

i≤M

δiti > qS
}
⊂ D(q) . (12.57)

Research problem 12.5.6. Prove (or disprove) that there exists an integer
q with the following property. Consider any value of δ, any value of M and
any subset D of {0, 1}M with P(D) ≥ 1− 1/q. Then the set D(q) is δ-small.

If the occurrence of the condition P(D) ≥ 1− 1/q puzzles the reader, she
should realize that we simply look for ε > 0 small and q large such that D(q)

is δ-small whenever P(D) ≥ 1− ε.
To understand this problem, it help to analyze a simple example. Consider

the case where, for some integer k, we have D = {(δi)i≤M ;
∑

i≤M δi = k}.
Then

D(q) =
{
(δi)i≤M ; ;

∑

i≤M

δi ≥ kq + 1
}
⊂
⋃

I∈G
HI ,

where G = {I ⊂ {1, . . . ,M}; card I = kq + 1}. Thus, using the elementary
inequality
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(
n

k

)
≤
(en
k

)k
(12.58)

we obtain ∑

I∈G
δcard I =

(
M

kq + 1

)
δkq+1 ≤

( eMδ

kq + 1

)kq+1

. (12.59)

It is elementary to show that when P(D) ≥ 1/2 one has k ≥ δM/L. It then
follows that if q is a large enough universal constant, the right-hand side of
(12.59) is ≤ 1/2. Of course one has to believe that this simple case is “ex-
tremal” i.e. “the worst possible”. This is part of the beauty of Problem 12.5.6:
it “suffices” to invent a new type of set D to solve it negatively!

A positive solution to Problem 12.5.6 will be rewarded by a $ 1000 prize,
even if it applies only to sufficiently small values of δ. It seems probable that
progress on this problem requires methods unrelated to those of this book.
A simple positive result in the right direction is provided in the next section.

The author has spent considerable energy on Problem 12.5.6. A sequence
of conjectures of increasing strength, of which a positive answer to (a weak
version of) Problem 12.5.6 is the weakest, can be found in [4]. Here we shall
only state one of them, in an attempt to convey the beauty of these questions.
Until the end of the present section, the arguments will be a bit sketchy, since
all the details are provided in [4], and our only goal is to advertise for this
paper. The reader who finds the material too demanding should simply move
to the next section. Let us say that a subset D of {0, 1}M is a downset if
y = (yi)i≤m ∈ D ⇒ x = (xi)i≤m ∈ D whenever xi ≤ yi for all i ≤ M .
Consider any set D and the smallest downset D′ which contains D. Then it
is obvious from the definition that D′(q) = D(q). This implies that it suffices
to solve Problem 12.5.6 when D is a downset, and explains why in the next
problem we consider only downsets.

In words, one may reformulate Problem 12.5.6 by saying that “the set of
points far from D is δ-small”, where points are far from D if they belong to
D(q) for large q. The purpose of the next construction is introduce a related
idea which dispenses with the consideration of the strange sets D(q). Consider
a number 0 < α ≤ 1, which one should think of as a universal constant. For
x = (xi)i≤M ∈ {0, 1}M let θx,α be the product probability on {0, 1}M such
that on the factor of rank i, the weight of 1 is xiα ∈ {0, α}. Instead of thinking
that “the points far away from D are those in D(q)” we instead think “that
the points x far away from D are those for which θx,α(D) is small”. The
relationship between these two ideas is as follows.

Lemma 12.5.7. Given 0 < α < 1 there exists an integer q with the property
that for each downset D and any x,

θx,α(D) ≥ 1− 1/q ⇒ x �∈ D(q) . (12.60)

Proof. For a finite set I, denote by λI,α the product probability on {0, 1}I
which gives weight α to 1 on each factor. The key to the proof is the following
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fact. Given 0 < α < 1 one can find an integer q with the following property.
Given any subset B of {0, 1}I one has λI,α(B) ≥ 1− 1/q ⇒ B(q) = ∅. This is
not very difficult, and we will leave this as a teaser for the energetic reader.
The proof can be found in [4]. As a hint, let us just say that when α = 1/2,
one may take q = 2.

Fixing x, let I = {i ≤ M ;xi = 1}, and let DI be the projection of D
onto {0, 1}I . For y ∈ {0, 1}I , let us define y∗ ∈ {0, 1}M by y∗i = yi if i ∈ I
and yi = 0 otherwise. Let D∗ = {y ∈ {0, 1}I ; y∗ ∈ D}. Then the definition
of θx,α shows that θx,α(D) = λI,α(D

∗). Also, since D is a downset, we have
D∗ = DI , and thus θx,α(D) = λI,α(DI).

Using the observation at the beginning of the proof for B = DI , this

shows that if θx,α(D) = λI,α(DI) ≥ 1 − 1/q, then D
(q)
I = ∅. In particular

the element y of {0, 1}I with all components equal to 1 is not in D
(q)
I . This

means that we can find y1, . . . , yq ∈ DI such that for all i ∈ I, one of the
components y�i is 1. Going back to the definition of D(q), this shows in turn
that x �∈ D(q). 
�

Research problem 12.5.8. Does there exist a universal constant α > 0
with the following property. Consider any values of δ and M , any downset D
and any probability measure ν on {0, 1}M . Assume that

∀ I ⊂ {1, . . . ,M} , ν(HI) ≤ (αδ)card I . (12.61)

Then
P(D) ≤

∏

x∈{0,1}M

θx,α(D)ν({x}) . (12.62)

First we explain the nature of this problem. Recalling that θx,α(D) =
λJ,α(DJ) where J = {i ≤ M ;xi = 1} and DJ is the projection of D onto
{0, 1}J , the right-hand side of (12.62) is a product of powers of “measures
of projections of D.” Of course, the smaller the power attached to a given
projection, the closer the corresponding term is to 1 and the less this term
matters. The condition (12.61) ensures that the powers attached to these
projections “are scattered across very different directions”, in the sense that
the sum of the powers attached to the projections on {0, 1}J where J is a
supset of any given set I is

∑
x∈HI

ν({x}) = ν(HI) which does not exceed

(αδ)card I by (12.61). The main difficulty of the problem is to gain an under-
standing of the probability measures ν which satisfy (12.61). The purpose of
this condition is going to be explained soon in more detail.

In some sense Problem 12.5.8 is more appealing than Problem 12.5.6.
Not only does it dispense with the strange set D(q) but it requests a single
inequality. In the next page or so we investigate the relationship between both
problems with the goal of proving that a positive solution to Problem 12.5.8
implies a positive solution of a weaker form of Problem 12.5.6. This weaker
form involves a weakening of the notion of δ-small set, and we explain this
first. The condition (12.51), i.e. Ω ⊂

⋃
I∈G HI implies
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1Ω ≤
∑

I∈G
βI((δ)

− card I1HI
) , (12.63)

where βI := δcard I satisfies
∑

I∈G βI ≤ 1/2. This information is not as good
as (12.51), but nonetheless it is of the same nature, a concrete witness of the
smallness of Ω. (One may observe that the right-hand side has an integral
≤ 1/2 for P.)

Let go back to the problem of comparing Problem 12.5.6 with Prob-
lem 12.5.8, and let us assume that the latter has a positive solution. Let
0 < α < 1 be the number provided by this solution, and let q be then pro-
vided by Lemma 12.5.7. Let us consider a down set D with P(D) ≥ 1− 1/q

and a probability measure ν which satisfy (12.61). Since θ
ν({x})
x,α = 1 when

ν({x}) = 0, and since ν is a probability, (12.62) implies that we can find
x with ν({x}) > 0 and P(D) ≤ θx,α(D). Lemma 12.5.7 shows that then
x �∈ D(q), and hence that ν is not carried by D(q).

In summary, if Problem 12.5.8 has a positive solution, we find an integer
q such that, given a downset with P(D) ≥ 1 − 1/q, a probability measure ν
supported by D(q) must fail (12.61). We have already observed that if D(q)

carries a probability measure which satisfies (12.61) it cannot be δ-small. It
turns out that when D(q) carries no such measure, one can find coefficients
αI ≥ 0 with

∑
I⊂{1,...,M} αI ≤ 1 and

1D(q) ≤
∑

I 	=∅
αI(αδ)

− card I1HI
, (12.64)

and, in particular, setting βI = 2− card IαI , we have
∑

I 	=∅ βI ≤ 1/2, and
(12.64) implies

1D(q) ≤
∑

I 	=∅
βI(αδ/2)

− card I1HI
(12.65)

which is exactly the concrete smallness condition (12.63), at the expense of
replacing δ by αδ/2 (which arguably is not a dramatic weakening).

The proof of (12.64) relies on the Hahn-Banach theorem. Consider the
class C of functions f on {0, 1}M for which there exists coefficients αI with∑

I⊂{1,...,M} αI ≤ 1 and f ≤
∑

I αI(αδ)
− card I1HI

. We prove by contradic-
tion that we must have 1D(q) ∈ C. Otherwise we could use the Hahn-Banach
theorem to separate C and 1D(q) , that is to find a linear functional ϕ on
the space of all functions on {0, 1}M such that, for each f ∈ C, we have
ϕ(f) < ϕ(1D(q)). Since 0 ∈ C we may as well assume that ϕ(1D(q)) = 1.
Since f ∈ C whenever f ≤ 0, we see then that ϕ is given by a positive mea-
sure on D(q). The fact that ϕ((αδ)− card I1HI

) < 1 for each I shows that
ϕ(1HI

) < (αδ)card I , so that the restriction ν of ϕ to D(q) is a probability ν
which satisfies (12.61). This contradiction proves that 1D(q) ∈ C. That is, one
can find coefficients αI as in (12.64).

The main difficulty in Problem 12.5.8 is that it is unclear how to take
advantage of condition (12.61). An obvious example of probability measure
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which satisfies this condition is the product probability when 1 is given weight
αδ on each factor. A less obvious example is given by the following.

Exercise 12.5.9. Prove (12.61) when ν is uniform on the set

{
(δi)i≤M ;

∑

i≤M

δi = k
}
,

where k ≤ αδM . (Hint: try first the case k = 1, or see [4].)

It is proved in [4] that for such a probability measure ν, (12.62) holds for
each downset D.

Exercise 12.5.10. Consider the set D = {(δi)i≤M ;
∑

i≤M δi ≤ δM}, and
assume that δM ∈ N. Consider ν as in Exercise 12.5.9, where k ≤ δM .
(a) Prove that θx,α(D) = 1 if and only if

∑
i≤M xi ≤ δM .

(b) Observe that ν({x}) > 0 if and only if
∑

i≤M xi = k.
(c) Prove that the right-hand side of (12.62) is equal to 1.

12.6 Classes of Sets

In this section we consider positive selector processes in the simpler case
where T consists of indicators of sets. That is, we consider a class J of
subsets of {1, . . . ,M} and we try to bound the quantity

Eδ(J ) := E sup
J∈J

∑

i∈J

δi .

We first give a few simple facts before proving the main result of this section,
Theorem 12.6.4.

Proposition 12.6.1. Assume that for some number S we have

∑

J∈J

(δ card J
S

)S
≤ 1/2 . (12.66)

Then
Eδ(J ) = E sup

J∈J

∑

i∈J

δi ≤ LS . (12.67)

Proof. We first observe that by (12.66) we have δ card J ≤ S whenever J ∈ J ,
so that u ≥ 6δ cardJ whenever u ≥ 6S. We then simply use Lemma 12.3.1
to obtain that for u ≥ 6S we have

P
(
sup
J∈J

∑

i∈J

δi ≥ u
)
≤
∑

J∈J
P
(∑

i∈J

δi ≥ u
)
≤
∑

J∈J

(2δ cardJ
u

)u/2
,

and we integrate using (12.66) and simple estimates. 
�
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For a class of sets J of sets, let us define Sδ(J ) as the infimum of the numbers
S for which (12.66) holds. Thus (12.67) simply means

Eδ(J ) ≤ LSδ(J ) . (12.68)

Exercise 12.6.2. Prove that inequality (12.68) cannot be reversed. That is,
given A > 0 construct a class J of sets for which AEd(J ) ≤ Sδ(J ). (Hint:
consider the class J of subsets of a given set J .)

Given a class J of sets and two integers n and m let us define the class
J (n,m) as follows:

∀J ∈ J (n,m) , ∃J1, . . . , Jn ∈ J ; card
(
J \
⋃

�≤n

J�

)
≤ m . (12.69)

Then for each realization of the r.v.s (δi) one has
∑

i∈J

δi ≤ m+
∑

�≤n

∑

i∈J�

δi

and consequently
Eδ(J (n,m)) ≤ nEδ(J ) +m . (12.70)

Combining (12.70) and (12.68) one obtains

Eδ(J (n,m)) ≤ LnSδ(J ) +m . (12.71)

In particular, taking n = 1, for two classes I and J of sets one has

I ⊂ J (1,m)⇒ Eδ(I) ≤ LSδ(J ) +m ,

and thus
Eδ(I) ≤ L inf{Sδ(J ) +m ; I ⊂ J (1,m)} , (12.72)

where the infimum is over all classes of sets J for which I ⊂ J (1,m). The
following (very) challenging exercise disproves a most unfortunate conjecture
stated in [2] and [4], which overlooked the possibility of taking n ≥ 2 in
(12.71).

Exercise 12.6.3. Using the case n = 2, m = 0 of (12.71), prove that the
inequality (12.72) cannot be reversed. That is, given A > 0, construct a class
of sets I such that AEδ(I) ≤ Sδ(J ) +m for each class of sets J and each m
for which I ⊂ J (1,m).

In words, we can prove that (12.72) cannot be reversed because we have found
a genuinely different way to bound Eδ(I), namely (12.71) for n = 2.

In the same line as Exercise 12.6.3 it seems worth investigating whether
given a number A we can construct a class of sets I such that AEδ(I) ≤
nS(J ) +m whenever I ⊂ J (n,m). This seems plausible, because we have a
(seemingly) more general way to bound E(I) than (12.70), namely the “solid
convex hull” method of Section 12.4.

In the remainder of this section we prove the following.
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Theorem 12.6.4 ([2]). When T is a class of indicators of sets, Prob-
lem 12.5.2 has a positive solution.

To prove this result, we consider a class J of subsets of {1, . . . ,M} and an
integer n. We assume that the event

{
sup
J∈J

∑

i∈J

δi ≥ n
}

(12.73)

is not δ-small. The goal is to prove that

E sup
J∈J

∑

i∈J

δi ≥ n/L0 . (12.74)

Before this, we deduce Theorem 12.6.4 from (12.74). We prove that the event

{
sup
J∈J

∑

i∈J

δi ≥ 2L0E sup
J∈J

∑

i∈J

δi

}
(12.75)

is δ-small. Consider the smallest integer n ≥ 2L0E supJ∈J
∑

i∈J δi > 0. Then
(12.74) fails and the event (12.75) coincides with the event {supJ∈J

∑
i∈J δi ≥

n}. So it must be δ-small since (12.74) fails, proving Theorem 12.6.4.
We turn to the proof of (12.74). We fix n once and for all, and we define

J ′ = {J ′ ⊂ {1, . . . ,M} ; cardJ ′ = n , ∃J ∈ J , J ′ ⊂ J} . (12.76)

We observe that
{
sup
J∈J

∑

i∈J

δi ≥ n
}
=
{
sup
J∈J ′

∑

i∈J

δi ≥ n
}
. (12.77)

For an integer 1 ≤ k ≤ n we set

d(k) = 2
(4enδ

k

)k
. (12.78)

Lemma 12.6.5. Assume that the event (12.77) is not δ-small. Then there
exists a probability measure ν on J ′ with the following property. For each set
A with 1 ≤ cardA ≤ n we have

ν({J ∈ J ′ ; A ⊂ J}) ≤ d(cardA) . (12.79)

Proof. This will follow from the Hahn-Banach theorem. For such a set A
consider the function fA on J ′ given by

fA(J) =
1

d(cardA)
1{A⊂J} .

To prove the existence of ν it suffices to prove that any convex combination
of functions of the type fA takes at least one value < 1, since then by the
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Hahn-Banach theorem there exists a probability measure ν on J ′ for which∫
fAdν ≤ 1 for each A, and therefore ν satisfies (12.79). Suppose, for contra-

diction, that this is not the case, so that there exist coefficients αA ≥ 0 of
sum 1 for which

∀J ∈ J ′ ,
∑

A

αAfA(J) =
∑

A⊂J

αA

d(cardA)
≥ 1 . (12.80)

For 1 ≤ k ≤ n let Gk be the collection of all the sets A for which cardA = k
and αA ≥ 2k+1δk. Since

∑
A αA = 1 we observe that cardGk ≤ δ−k2−k−1,

and thus ∑

k≥1

δk cardGk ≤
1

2
. (12.81)

We claim that
∀J ∈ J ′ ; ∃k ≤ n , ∃A ∈ Gk ; A ⊂ J . (12.82)

Indeed, otherwise we can find J ∈ J ′ for which

A ⊂ J , cardA = k , k ≤ n⇒ αA < 2k+1δk

and thus, using the definition of d(k) and (12.58),

∑

A⊂J

αA

d(cardA)
<
∑

1≤k≤n

(
n

k

)
2k+1δk

d(k)
≤ 1 .

This contradicts (12.80) and proves (12.82). Consider G =
⋃

1≤k≤n Gk, which
satisfies (12.50) from (12.81). Consider (δi)i≤M such that

∑
i∈J δi ≥ n for

some J ∈ J ′. Then (12.82) proves that J contains a set A ∈ G, so that
(δi)i≤M ∈ HA, and we have shown that the event (12.77) is contained in
∪I∈GHI . Thus the event (12.77) is δ-small, a contradiction which finishes the
proof. 
�

Lemma 12.6.6. Assume that the event (12.77) is not δ-small. Then this
event has a probability ≥ exp(−Ln).

Proof. Consider the probability ν on the set J ′ of (12.76) as in (12.79) and
the r.v. (depending on the random input (δi)i≤M )

Y = ν({J ∈ J ′ ; ∀ i ∈ J , δi = 1}) = ν({J ; (δi) ∈ HJ})

=

∫
1{(δi)∈HJ}dν(J) .

Obviously the event (12.77) contains the event Y > 0. The plan is to use the
Paley-Zygmund inequality in the weak form

P(Y > 0) ≥ (EY )2

EY 2
, (12.83)



12.6 Classes of Sets 397

which is a simple consequence of the Cauchy-Schwarz inequality. First,

EY = E

∫
1{(δi)∈HJ}dν(J) =

∫
P(HJ)dν(J) = δn , (12.84)

since ν is supported by J ′ andcard J = n for J ∈ J ′. Next,

Y 2 = ν⊗2({(J, J ′) ; (δi) ∈ HJ , (δi) ∈ HJ ′})
= ν⊗2({(J, J ′) ; (δi) ∈ HJ ∩HJ ′}) ,

so that, proceeding as in (12.84), and since P((δi) ∈ HJ ∩HJ ′) = δcard(J∪J ′),

EY 2 =

∫
δcard(J∪J ′)dν(J)dν(J ′) . (12.85)

Now, the choice A = J ∩ J ′ shows that

δcard(J∪J ′) ≤
∑

A⊂J

δ2n−cardA1{A⊂J ′}

and therefore, using (12.84) and (12.83), and again (12.58),

∫
δcard(J∪J ′)dν(J ′) ≤

∑

A⊂J

δ2n−cardAν({J ′ ; A ⊂ J ′})

≤
∑

0≤k≤n

(
n

k

)
δ2n−kd(k)

≤ 2δ2n
∑

0≤k≤n

(2en
k

)2k
. (12.86)

An elementary computation shows that the last term dominates in the sum,
so that the right-hand side of (12.86) is less than ≤ δ2n expLn, and recalling
(12.85) this proves that EY 2 ≤ exp(Ln)(EY )2 and completes the proof using
(12.83). 
�
Proof of (12.74). Consider the r.v. X = supJ∈J

∑
i∈J δi. We assume that

the event {X ≥ n} is not δ-small. Combining Lemmas 12.6.5 and 12.6.6 we
have proved that

P(X ≥ n) ≥ exp(−L1n) . (12.87)

From this fact alone we shall bound from below S := EX. Using Markov’s
inequality, we know that P(D) ≥ 1/2, whereD = {X ≤ 2S}. Recalling the set
D(q) defined on page 389, given two integers q and k ≥ 0 we define similarly
D(q,k) as the set of sequences (δi)i≤M for such that given any sequences
(δ�i )i≤M ∈ D for � ≤ q, then

card{i ≤M ; δi = 1, ∀ � ≤ q , δ�i = 0} ≥ k + 1 .
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Thus D(q,0) = Dq, and as in (12.57) one proves that

{X ≥ 2qS + k} ⊂ D(q,k) . (12.88)

The heart of the matter is Theorem 3.3.1 of [1] which asserts that since
P(D) ≥ 1/2 we have

P(D(q,k)) ≤ 2q

qk
.

Comparing with (12.87) and (12.88) then yields

2qS + k ≥ n⇒ exp(−L1n) ≤
2q

qk
.

Let us fix q with q ≥ exp(2L1), so that q is now an universal constant. Let
us assume that 2qS+ k ≥ n. Then exp(−L1n) ≤ 2q/qk so that exp(−L1n) ≤
2q exp(−2L1k) and thus 2k−n ≤ L, so that k ≤ n/2+L. Then n ≤ 2qS+k ≤
2qS+n/2+L2 and thus S ≥ (n−L)/L. We have proved that S ≥ n/L when
n ≥ n0, where n0 is a universal constant. This finishes the proof in that
case. We finish now the proof when n ≤ n0. Since our assumption is that
the event X ≥ n is not δ-small, the larger event X ≥ 1 is not δ-small. This
implies obviously that the set I =

⋃
J∈J J satisfies δ card I ≥ 1/2, so that

P(Ω) ≥ 1/L, where Ω = {∃i ∈ I, δi = 1}. Now X ≥ 1Ω so that taking
expectation we get S ≥ P(Ω) ≥ 1/L, which finishes the proof. 
�
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13. Convergence of Orthogonal Series;
Majorizing Measures

13.1 Introduction

An orthonormal sequence (ϕm)m≥1 on a probability space (Ω,P ) is a se-
quence such that Eϕ2

m = 1 for each n and Eϕmϕn = 0 for m �= n. A classical
question asks which are the sequences (am) for which the series

∑

m

amϕm (13.1)

converges a.s. whatever the choice of the orthonormal sequence (ϕm) and of
the probability space. (See Section 13.7 for comments on this question.) Since
the series

∑
m≥1 amεm must converge, where εm are independent Bernoulli

r.v.s, we have
∑

m≥1 a
2
m <∞. As we shall see, the condition

∑
m≥1 a

2
m <∞

is however far from sufficient: there exists an orthonormal sequence (ϕm) and
coefficients am such that

∑
m≥1 a

2
m <∞ and the series

∑
m≥1 amϕm diverges

everywhere.
Let us consider the set

T =
{∑

m≤n

a2m ; n ≥ 1
}
. (13.2)

Since
∑

m≥1 a
2
m <∞ we may assume without loss of generality that T ⊂]0, 1].

We may also assume that am �= 0 for each m. Let us denote by In the family
of the 2n dyadic intervals ](i − 1)2−n, i2−n] for 1 ≤ i ≤ 2n. For a point
t ∈]0, 1], we denote by In(t) the unique interval of In that contains t.

Theorem 13.1.1 (A. Paszkiewicz [7]). Given the sequence (am), and
hence the set T , the following are equivalent.
(a) The series (13.1) converges a.e. for every choice of the orthonormal se-
quence (ϕn).
(b) There exists a probability measure μ on T such that

sup
t∈T

∑

n≥0

1√
2nμ(In(t))

<∞ . (13.3)

(c) There exists a number B such that for every probability measure μ on T
one has
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∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ B . (13.4)

(d) There exists a number B′ such that for each process (Xt)t∈T which sat-
isfies

∀ s, t ∈ T , E(Xs −Xt)
2 ≤ |s− t| , (13.5)

we have
E sup

s,t∈T
|Xs −Xt| ≤ B′ . (13.6)

(e) For each process (Xt)t∈T which satisfies (13.5), limk→∞ Xtk exists a.s.
where tk =

∑
m≤k a

2
m.

At this stage, this theorem should look completely mysterious, and it is
the purpose of this chapter to clarify the underlying issues. Also, it is not
immediately obvious how to recover the following classical results on the
present formulation. Doing this right away will help us get a feeling for the
conditions of Theorem 13.1.1. On a less positive note, it will also illustrate
that working with these conditions is not as easy as what one would like it
to be.

Corollary 13.1.2 (Radmacher-Menchov [6], [8]). If

∑

m≥1

a2m(logm)2 <∞ , (13.7)

then for each choice of the orthonormal sequence (ϕm) the series
∑

m amϕm

converges a.s.

Proof. We shall prove that (c) is satisfied. We consider a probability measure
μ on T , and we aim to bound the left-hand side of (13.4). The plan is for
each n to split the sum

∑
I∈In

√
2−nμ(I) in several suitable pieces, and to

bound each of them using the Cauchy-Schwarz inequality (each time using
that for a disjoint family I of intervals,

∑
i∈I μ(I) = μ(∪I∈II)). But, first,

we must reformulate (13.7). For n ≥ 1 let tn =
∑

1≤m≤n a
2
m. For k ≥ 0 let

uk = t
22k

, so that

∑

k≥0

22k(uk+1 − uk) =
∑

k≥0

∑

22k<m≤22k+1

22ka2m ≤ L
∑

m≥2

a2m(logm)2 <∞ .

(13.8)
In particular, we have uk+1 − uk ≤ C2−2k so that if t∗ =

∑
m≥1 a

2
m, then

t∗ − uk =
∑

r≥k(ur+1 − ur) ≤ C2−2k.

We now fix k and consider 2k ≤ n < 2k+1 and turn to the task of splitting
the sum

∑
I∈In

√
2−nμ(I) in suitable pieces. Consider I ∈ In with μ(I) > 0.

We claim that at least one of the following four cases must occur: either I
contains a point up for k − 1 ≤ p ≤ 2k or contains t∗; or else I ⊂]0, uk−1];
or else I ⊂]u�, u�+1] for some k − 1 ≤ � ≤ 2k; or finally I ⊂]u2k, t

∗]. To see
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this we simply observe that if the interval I does not contain either the point
t∗ or one of the points up for k − 1 ≤ p ≤ 2k, then it must be contained in
one the intervals created when removing these points from [0, 1], but, since
μ(I) > 0, it cannot be contained in the interval ]t∗, 1] because μ(]t∗, 1]) = 0,
so that it is contained in one of the other intervals left.

Consequently for 2k ≤ n < 2k+1 we may write

∑

I∈In

√
2−nμ(I) = I + II + III +

∑

k−1≤�≤2k

V (�) , (13.9)

where

• I is the sum over I ⊂]0, uk−1]. This sum has at most 22
k−1

non-zero terms,

because when μ(I) > 0, I must contain a point tm with m ≤ 22
k−1

. The

Cauchy-Schwarz inequality implies then that the sum is ≤ 2−n/222
k−2 ≤

2−2k−2

.
• II is the sum over the intervals I that contain a point up for p ≤ 2k or that

contain the point t∗. This sum has at most 2k + 1 terms and is bounded
as above.

• III is the sum over the intervals contained in ]u2k, t
∗]. Here we use that, if

u ≤ v, ∑

I∈In,I⊂]u,v]

√
2−nμ(I) ≤

√
v − u

√
μ(]u, v]) . (13.10)

This is simply the Cauchy-Schwarz inequality, since the sum has at
most 2n(v − u) terms, and since

∑
I⊂]u,v] μ(I) ≤ μ(]u, v]). Thus III ≤√

t∗ − u2k ≤ C2−k.
• V (�) is the sum over the intervals I ⊂]u�, u�+1], which, as witnessed by

(13.10), is bounded by
√
u�+1 − u�

√
μ(]u�+1 − u�]).

Summation of the inequalities (13.9) over n with 2k ≤ n < 2k+1 and then
over k yields that for a certain number C ′

∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ C ′ +

∑

k≥1

2k
∑

k−1≤�≤2k

V (�) .

Now, ∑

k≥1

2k
∑

k−1≤�≤2k

V (�) ≤
∑

�≥0

V (�)
∑

k−1≤�

2k ≤ 4
∑

�≥0

2�V (�) ,

and ∑

�≥0

2�V (�) ≤
∑

�≥0

2�
√

u�+1 − u�

√
μ(]u�+1 − u�]) <∞

using (13.8) and the Cauchy-Schwarz inequality. 
�
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Corollary 13.1.3 (Tandori [10]). If for each choice of the orthonormal
sequence (ϕm) the series

∑
m amϕm converges a.s. then

∑

m≥1

a2m log(2/am)2 <∞ . (13.11)

Before we start the proof, it is useful to spell out an elementary principle
that we will use several times during the course of the present chapter. We
denote by λ Lebesgue’s measure on [0, 1].

Lemma 13.1.4. Consider a collection W of disjoint sub-intervals of [0, 1] of
the type ]u, v], and assume that for a number d > 0 we have

∀W ∈ W , λ(W ) ≤ d . (13.12)

For W ∈ W, denote by λW the restriction of Lebesgue’s measure to W and
consider a measure θW concentrated on W . Assume moreover that for a num-
ber δ we have

∀W ∈ W , |θW (W )− λ(W )| ≤ δ . (13.13)

Let θW =
∑

W∈W θW and λW =
∑

W∈W λW . Then for each interval I ⊂
[0, 1] we have

|θW(I)− λW(I)| ≤ 2d+ δ cardW . (13.14)

Proof. We observe that

|θW(I)− λW(I)| ≤
∑

W∈W
|θW (I)− λW (I)| .

For each W ∈ W we have |θW (I) − λW (I)| ≤ d + δ since 0 ≤ λW (I) =
λ(I ∩W ) ≤ λ(W ) ≤ d and 0 ≤ θW (I) ≤ θW (W ) ≤ d + δ by (13.13). There
are at most two intervals W ∈ W which contain an endpoint of I. For the
others, we have θW (I) = λW (I) = 0 if I ∩W = ∅ and

|θW (I)− λW (I)| = |θW (W )− λW (W )| ≤ δ

if W is entirely contained in I. 
�
Proof of Corollary 13.1.3. The first task is to reformulate (13.11) in a suit-
able way. Let t0 = 0 and for n ≥ 1 let tn =

∑
m≤n a

2
m. For k ≥ 0 let

Uk = {m ; 2−2k+1

< a2m ≤ 2−2k} .

The point of this definition is of course that log(2/am) is about 2k form ∈ Uk.
Let

bk :=
∑
{a2m ; m ∈ Uk} =

∑
{a2m ; 2−2k+1

< a2m ≤ 2−2k} .

Since log(2/am) ≤ L2k for m ∈ Uk, it suffices to prove that
∑

k≥0 2
2kbk <∞.

Defining J = {k ≥ 2; bk ≥ 2−4k}, it even suffices to prove that



13.1 Introduction 403

∑

k∈J

22kbk <∞ . (13.15)

The principle of the proof is to apply (13.4) to a suitable probability
measure, which we construct now. For k ∈ J consider the probability measure
μk on T given by μk({tn}) = a2n/bk if n ∈ Uk and μk({tn}) = 0 if n �∈ Uk.
Consider numbers (αk)k∈J with αk ≥ 0 and

∑
k αk = 1, such that all but

finitely many of these numbers are not 0. Consider the probability measure
μ =
∑

k αkμk. Consider n with 2k−1 ≤ n < 2k. We write

∑

I∈In

√
2−nμ(I) ≥ √αk

∑

I∈In

√
2−nμk(I) . (13.16)

The key fact is the inequality

∑

I∈In

√
2−nμk(I) ≥

1

2

√
bk . (13.17)

Once this is proved, we sum (13.16) over 2k−1 ≤ n < 2k, and then over k to
obtain, using also (13.4) in the first inequality:

B ≥
∑

n≥0

∑

I∈In

√
2−nμ(I) ≥ 1

4

∑

k∈J

√
αk2

k
√
bk ,

and since the sequence αk is arbitrary with
∑

αk = 1 then
∑

k∈J 22kbk ≤
16B2 and (13.15) follows.

To prove (13.17) it suffices to prove that if 2k−1 ≤ n < 2k then for each
I ∈ In

μk(I) ≤
2−n+1

bk
, (13.18)

because then
√
2−nμk(I) ≥ μk(I)

√
bk/2, from which (13.17) follows by sum-

mation over I ∈ In. Consider the family W consisting of the intervals
W =]tm−1, tm] for m ∈ Uk, and let θW consist of the mass a2m at tm. Since

λ(]tm−1, tm]) = a2m, (13.12) holds with d = 2−2k and (13.13) holds for δ = 0.
With the notation of Lemma 13.1.4, we have bkμk = θW . Thus (13.14) implies

bkμk(I) ≤ λW(I) + 2d ≤ λ(I) + 2d ≤ 2−n+1

because λ(I) = 2−n and d = 2−2k ≤ 2−n−1 for n < 2k. This proves (13.18)
and hence (13.17) and completes the proof. 
�

The necessary condition (13.11) is by no means sufficient for the con-
vergence of each series

∑
m≥1 amϕm. This is obvious from Theorem 13.4.1

below.
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Exercise 13.1.5. Prove that the conditions (13.11) and (13.7) are equiv-
alent when the sequence (am) is non-increasing. Consequently, (13.11) is a
necessary and sufficient condition so that one can find a permutation π such
that the series

∑
m aπ(m)ϕ(m) converges a.s. for each orthonormal sequence

(ϕm).

Exercise 13.1.6. For a finite subset T of ]0, 1], consider the following quan-
tity M(T ). If cardT = 1, we set M(T ) = 0. Otherwise, let n(T ) be the largest
integer such that there exists I ∈ In(T ) for which T ⊂ I. Call IT this interval.
Define then

M(T ) = inf sup
t∈T

∑

n≥n(T )

1√
2nμ(In(t))

,

where the infimum is computed over all choices of probability measures on
T . Now, IT is the union of two intervals I1 and I2 of In(T )+1. Explain how
to compute M(T ) when you know M(T ∩ Ij) for j = 1, 2. In this manner the
quantity M(T ) can be “computed recursively”.

We now describe our approach to Theorem 13.1.1. The following is an
obvious consequence of orthonormality.

Lemma 13.1.7. For t =
∑

m≤n a
2
m ∈ T , let us define

Xt =
∑

m≤n

amϕm . (13.19)

Then
∀ s, t ∈ T , E(Xs −Xt)

2 = |s− t| . (13.20)

This makes it obvious that (e) implies (a). It also motivates the following.

Definition 13.1.8. If T is a subset of [0, 1] we say that the process (Xt)t∈T

is orthonormal if it satisfies (13.20) and if moreover EXt = 0 for each t.

The main ingredient in the proof of Theorem 13.1.1 is the following result.

Theorem 13.1.9 (W. Bednorz [4]). Consider a finite subset T of [0, 1]
and define

F ∗(T ) = supE sup
t∈T

Xt , (13.21)

where the supremum is taken over all orthonormal processes indexed by T .
Then for each probability measure μ on T we have

∑

n≥0

∑

I∈In

√
2−nμ(I) < L(1 + F ∗(T )) . (13.22)

Our first task it to make the link between Theorem 13.1.1 and Theo-
rem 13.1.9.
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Lemma 13.1.10. If the process (Xt)t∈T is orthonormal, then

t1 ≤ t2 ≤ t3 ≤ t4 ∈ T ⇒ E(Xt4 −Xt3)(Xt2 −Xt1) = 0 . (13.23)

Proof. Consider t1 ≤ t2 ≤ t3 ∈ T . Then

t3 − t1 = E(Xt3 −Xt1)
2

= E(Xt3 −Xt2)
2 + E(Xt2 −Xt1)

2 + 2E(Xt3 −Xt2)(Xt2 −Xt1)

= t3 − t2 + t2 − t1 + 2E(Xt3 −Xt2)(Xt2 −Xt1) ,

so that we have proved

t1 ≤ t2 ≤ t3 ∈ T ⇒ E(Xt3 −Xt2)(Xt2 −Xt1) = 0 . (13.24)

We use (13.24) to write

0 = E(Xt4 −Xt3)(Xt3 −Xt1)

= E(Xt4 −Xt3)(Xt2 −Xt1) + E(Xt4 −Xt3)(Xt3 −Xt2)

= E(Xt4 −Xt3)(Xt2 −Xt1) ,

using again (13.24) in the third inequality. 
�
We will also need a classical result of Tandori [11]. This lemma really

brings out the strength of the statement “for every orthonormal sequence...”

Lemma 13.1.11. Assume that the sequence (an) has the property that for
every orthonormal sequence (ϕn), the series

∑
m≥1 amϕm converges a.e.

Then there exists a number A such that for each orthonormal sequence (ϕn)
we have

E sup
n≥1

( ∑

1≤m≤n

amϕm

)2
≤ A . (13.25)

Proof. For 1 ≤ p ≤ q let us define

V (p, q) = E sup
p≤n≤q,ϕ

( ∑

p≤m≤n

amϕm

)2
, (13.26)

where the supremum is also over all orthonormal sequences. Let us assume
for contradiction that (13.25) fails i.e. that limq→∞ V (1, q) = ∞. Then for
each p we have limq→∞ V (p, q)2 =∞ and therefore we can find an increasing
sequence (p(k)) such that V (p(k), p(k + 1)) ≥ 2 for each k. By definition of
V (p, q) we can then find an orthonormal sequence (ϕm,k)m≥1 for which

W (k) := max
p(k)≤n≤p(k+1)

∣∣∣
∑

p(k)≤m≤n

amϕm,k

∣∣∣

satisfies EW (k)2 ≥ 1. Let us define the function
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θk =
W (k)2

EW (k)2
,

so that Eθk = 1 and θk is a density. We observe that for p(k) < m ≤
p(k + 1) we have |amϕm,k| ≤ 2W (k), since amϕm,k =

∑
p(k)≤s≤m asϕs,k −∑

p(k)≤s≤m−1 asϕs,k. Consequently ϕm,k = 0 when θk = 0. For p(k) < m ≤
p(k + 1) we may then define ϕ′

m = ϕm,k/
√
θk. Since

∫
ϕ′
mϕ′

m′θkdP =

∫
ϕmϕm′dP ,

the functions (ϕ′
n)p(k)≤n<p(k+1) still form an orthonormal sequence after a

suitable change of density, and satisfy

max
p(k)≤n≤p(k+1)

∣∣∣
∑

p(k)≤m≤n

amϕ′
m

∣∣∣ =
W (k)√

θk
= (EW (k)2)1/2 ≥ 1 . (13.27)

We can moreover assume that Eϕ′
m = 0. To see this we replace the sequence

(ϕ′
m)p(k)≤m<p(k+1) by the sequence (εϕ′

m)p(k)≤m<p(k+1) where ε is a Bernoulli
r.v. independent of all the r.v.s ϕ′

m.
We consider now a sequence (ψm)m≥1 with the following properties. For

each k ≥ 1, the sequence (ψm)p(k)≤m<p(k+1) is a copy of the sequence
(ϕ′

m)p(k)≤m<p(k+1). Moreover these sequences are globally independent as
k varies. Since Eϕ′

m = 0 for each m, the sequence (ψm)m≥k(1) is orthonor-
mal. We complete in any way we like in an orthonormal sequence (ψm)m≥1.
It follows from (13.27) that the series

∑
m≥1 amψm diverges a.s. This contra-

diction shows that (13.25) holds and concludes the proof. 
�

Corollary 13.1.12. Under the hypothesis of Lemma 13.1.11 for each or-
thonormal process (Xt)t∈T on has

E sup
s,t∈Tk

|Xs −Xt| ≤ 2
√
A . (13.28)

Proof. We set tp =
∑

1≤m≤p a
2
m, so that Tk = {t1, t2, . . . , tk}. It follows from

Lemma 13.1.10 that the sequence (ϕm)2≤m≤k given by

ϕm = a−1
m (Xtm −Xtm−1)

is an orthonormal sequence. It can be extended in an orthonormal sequence
(ϕm)m≥1. If p ≤ q then Xtq −Xtp =

∑
p<m≤q amϕm, so that

sup
s,t∈Tk

|Xs −Xt| ≤ sup
p,q

∣∣∣∣
∑

p<m≤q

amϕm

∣∣∣∣ ≤ 2 sup
n

∣∣∣∣
∑

1≤m≤n

amϕm

∣∣∣∣

and (13.25) implies (13.28). 
�
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Assuming Theorem 13.1.9 we are now ready to prove the “hard part” of
Theorem 13.1.1.

Theorem 13.1.13. If the series (13.1) converges a.e. for each choice of the
orthonormal sequence (ϕn) or if (d) holds, then there exists a number B such
that for each probability measure μ on T one has

∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ B . (13.29)

Proof. Assuming first that the series (13.1) converges a.e. for each choice
of the orthonormal sequence (ϕn), it follows from (13.28) that the quantity
F ∗(T ) of (13.21) satisfies F ∗(T ) ≤ 2

√
A.

Consequently Theorem 13.1.9 implies that for each probability measure
μ on Tk one has

∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ B := L(1 +

√
A) .

It then should be obvious that this implies the same inequality for each
probability measure μ on T .

Assuming now that (d) holds, one has F ∗(T ) ≤ B′ and the proof is the
same. 
�

We shall also use the following, which is a special case of an important
result of Fernique, of which we will prove the general form in Lemma 13.5.10
below.

Lemma 13.1.14. Consider a finite set T ⊂ [0, 1], and assume that for each
probability measure μ on T one has

∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ B . (13.30)

Then there is a probability measure μ on T for which

sup
t∈T

∑

n≥0

1√
2nμ(In(t))

≤ B . (13.31)

Proof. Let us denote byM(T ) the set of probability measures on T , and for
μ ∈M(T ) let us consider the function

fμ(t) :=
∑

n≥0

1√
2nμ(In(t))

.

Since the function x �→ 1/
√
x is convex, the map μ �→ fμ is convex. Conse-

quently the class C of functions f on T that satisfy
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∃μ ∈M(T ) ; ∀ t ∈ T , fμ(t) ≤ f(t)

is convex. For each probability measure ν on T , there exists f in C with∫
fdν ≤ B. This is because this is true for f = fν by (13.30). Consequently

by the Hahn-Banach theorem, there exists f ∈ C such that f ≤ B, which is
the content of the lemma. 
�

Proposition 13.1.15. If condition (c) of Theorem 13.1.1 holds, so does con-
dition (b).

Proof. Consider the subset Tk of T that consists of the k smallest points of
T . Combining (c) with Lemma 13.1.14 we obtain a probability measure μk

on Tk for which

sup
t∈Tk

∑

n≥0

1√
2nμk(In(t))

≤ LB . (13.32)

From here the proof is basically a compactness argument. Let us consider
t∗ =

∑
m≥1 a

2
m, so that T ∗ = T ∪ {t∗} is compact. Taking a subsequence

if necessary, we may assume that the sequence (μk) converges weakly as
k → ∞ to a probability measure μ′ on T ∗. Since the sets I ∩ T ∗ for I ∈ In
are compact, it follows from (13.32) that

sup
t∈T

∑

n≥0

1√
2nμ′(In(t))

≤ LB . (13.33)

It might happen that μ′({t∗}) > 0, and then μ′ is not supported by T . We
modify μ′ to take care of this problem. Consider a sequence tp ∈ T with
tp ∈ Ip, where Ip is the unique interval of Ip that contains t∗ (here we use
the fact that the interval of Ip are of the type ]u, v], so that an interval of
this type that contains t∗ must meet T ). Consider a probability measure μ
on T such that for each C ⊂ T we have

μ(C) ≥ 1

2
μ′(C ∩ T ) +

∑
{2−p−1 ; p ≥ 1 , tp ∈ C} .

Then, for I ∈ In we have μ(I) ≥ μ′(I)/2 if t∗ �∈ I, while if t∗ ∈ I then
μ(I) ≥ 2−n−1. It is then immediate to check that μ satisfies (13.3). 
�

13.2 Chaining, I

To complete the proof of Theorem 13.1.1 (still assuming Theorem 13.1.9) we
would like to control the supremum of a stochastic process under condition
(13.5). Rather than controlling the increments of the process “exponentially
well” as in the case e.g. of Gaussian processes, we only have a “second moment
control”. As we shall see this creates significant differences. In this section
we develop a chaining scheme adapted to this case, in a considerably more
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general setting than that required for the purpose of Theorem 13.1.1. We
consider a finite metric space (T, d) and we try to bound a process (Xt)t∈T

which satisfies
∀ s, t ∈ T , E(Xs −Xt)

2 ≤ d(s, t)2 . (13.34)

Consider a sequence (Tn)n≥0 of subsets of T . We assume that cardT0 = 1,
and we denote by t0 the unique element of T0. We assume that for each n ≥ 1
we are given a map θn : Tn → Tn−1. Since we assume that T is finite, it is no
much of a restriction to assume that Tm = T for a certain (large) integer m.
We define πm(t) = t for each t and recursively πn−1(t) = θn(πn(t)). First, as
usual, we write

|Xt −Xt0 | ≤
∑

1≤n≤m

|Xπn(t) −Xπn−1(t)| . (13.35)

Using the inequality xy ≤ x2+y2 it is rather natural to write that, for s ∈ Tn,
and introducing a parameter cn(s)

|Xs −Xθn(s)| ≤
d(s, θn(s))

cn(s)
+ d(s, θn(s))cn(s)

(
Xs −Xθn(s)

d(s, θn(s))

)2

.

Let us assume for simplicity that for numbers εn > 0 we have

∀ s ∈ Tn , d(s, θn(s)) ≤ εn . (13.36)

Then

|Xs −Xθn(s)| ≤
εn

cn(s)
+ εncn(s)

(
Xs −Xθn(s)

d(s, θn(s))

)2

.

Using this for s = πn(t), and recalling that πn−1(t) = θn(πn(t)), we obtain

|Xπn−1(t) −Xπn(t)| ≤
εn

cn(πn(t))
+
∑

s∈Tn

εncn(s)

(
Xs −Xθn(s)

d(s, θn(s))

)2

.

We then deduce from (13.35)

|Xt −Xt0 | ≤
∑

1≤n≤m

εn
cn(πn(t))

+
∑

1≤n≤m

∑

s∈Tn

εncn(s)

(
Xs −Xθn(s)

d(s, θn(s))

)2

. (13.37)

Let us now set
S = sup

t∈T

∑

1≤n≤m

εn
cn(πn(t))

, (13.38)

S∗ =
∑

1≤n≤m

∑

s∈Tn

εncn(s) . (13.39)

Then (13.37) yields
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sup
t∈T

|Xt −Xt0 | ≤ S +
∑

1≤n≤m

∑

s∈Tn

εncn(s)

(
Xs −Xθn(s)

d(s, θn(s))

)2

. (13.40)

Taking expectation and using (13.34) we obtain the following important re-
lation.

Lemma 13.2.1. Recalling (13.38) and (13.39) we have

E sup
t∈T

|Xt −Xt0 | ≤ S + S∗ . (13.41)

Corollary 13.2.2. We have

E sup
t∈T

|Xt −Xt0 | ≤ L
∑

n≥1

εn
√
cardTn . (13.42)

Proof. Choose cn(t) = 1/
√
cardTn for t ∈ Tn. 
�

Exercise 13.2.3. We recall that N(T, d, ε) denotes the smallest number of
balls of radius ≤ ε needed to cover T . Deduce from (13.42) that if the process
(Xt)t∈T satisfies (13.34) then

E sup
s,t∈T

|Xs −Xt| ≤ L

∫ Δ(T,d)

0

√
cardN(T, d, ε)dε .

We recall the notation In(t) of Theorem 13.1.1.

Corollary 13.2.4. Consider a countable subset T of [0, 1]. Assume that for
a certain integer n0 ≥ 0 and a certain I0 ∈ In0 we have T ⊂ I0. Consider a
probability measure μ on T such that

A := sup
t∈T

∑

n≥n0

1√
2nμ(In(t))

<∞ .

Then for each process (Xt)t∈T that satisfies (13.5) we have

E sup
s,t∈T

|Xs −Xt| ≤ LA. (13.43)

Proof. Since the process satisfies (13.5) it satisfies (13.34) for d(s, t) =√
|s− t|. The plan is to use (13.41) and we construct the relevant chaining.

We construct inductively for n ≥ n0 a set Tn ⊂ T such that cardTn ∩ I = 1
whenever I ∈ In and I ∩ T �= ∅, and such that moreover Tn−1 ⊂ Tn. When
s is the unique point of Tn ∩ I, let us then set

cn(s) =
√
μ(I) .

Let us moreover define the map θn : Tn → Tn−1 in the canonical manner.
That is, if s is the unique point of Tn ∩ I where I ∈ In, there is a unique
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I ′ ∈ In−1 with I ⊂ I ′, and a unique point s′ in Tn−1 ∩ I ′. We then set
θn(s) = s′. We have |s − θn(s)| = |s − s′| ≤ 2−(n−1), so that d(s, θn(s)) =√
|s, θn(s)| ≤ εn := 2−(n−1)/2, i.e. (13.36) holds for this value of εn.
Considering an arbitrary integer m, we now use the bound (13.40) for Tm

rather than T . Then, for t ∈ Tm, we have

∑

1≤n≤m

εn
cn(πn(t))

=
∑

1≤n≤m

2−(n−1)/2

√
μ(In(t))

≤ 2A ,

so that S ≤ 2A. Also, integrating the inequality

∀ t ∈ T ,
∑

n≥n0

1√
2nμ(In(t))

≤ A

with respect to μ we obtain
∑

n≥n0

∑

I∈In

2−n/2
√

μ(I) ≤ A .

This means that S∗ ≤ LA. Consequently the bound (13.41) implies

E sup
s,t∈Tm

|Xs −Xt| ≤ LA ,

and since m is arbitrary, this proves (13.43). 
�
Proof that (b) implies (e). Let us consider the point t∗ =

∑
m≥1 a

2
m =

limk→∞ tk, the supremum of T . Let us consider an integer n0 and the unique
I0 ∈ In0 with t∗ ∈ I0. Consider the set T ′ = T ∩ I0, so that tk ∈ T ′ for k
large enough. Then

sup
t∈T ′

∑

n≥n0

1√
μ(In(t))

≤ A∗ := sup
t∈T

∑

n≥0

1√
μ(In(t))

.

Consequently, the probability measure μ′ on T ′ given for B ⊂ T ′ by μ′(B) =
μ(B ∩ T ′)/μ(T ′) = μ(B ∩ I0)/μ(I0) satisfies

sup
t∈T ′

∑

n≥n0

1√
μ′(In(t))

≤ A∗√μ(I0) .

The bound (13.43) used for T ′ and μ′ then implies that for each process
(Xt)t∈T which satisfies (13.5) satisfies

E sup
s,t∈T ′

|Xs −Xt| ≤ LA∗√μ(I0) .

Now for n0 large enough μ(I0) is arbitrarily small since ∩ε>0(T∩]t∗−ε, t∗]) =
∅. Consequently,

lim
n→∞

E sup
k,�≥n

|Xtk −Xt� | = 0 .

This concludes the proof. 
�
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13.3 Proof of Bednorz’s Theorem

The next paragraph attempts to take some mystery out of the following
proofs. In case the reader finds it confusing rather than helpful, she should
just try to read the proofs themselves.

One might think that it is very difficult to construct processes that sat-
isfy as precise a constraint as being orthonormal, but this is not quite true.
Consider the probability space [0, 1] provided with Lebesgue’s measure. A
canonical orthonormal process is given by Bt = 1[0,t] ∈ L2([0, 1]) (forgetting
for the moment the requirement that EBt = 0). Consider an orthonormal
basis (ψn)n≥1 (the Haar basis is particularly appropriate), and a subset S of
N. Let us denote by 〈·, ·〉 the canonical duality of L2 with itself. A process
which satisfies

∀ s, t ∈ [0, 1] , E(Xs −Xt)
2 =
∑

n∈S

〈ψn, Bt −Bs〉2 , (13.44)

is just as good for our purposes as on orthonormal process, because one can
very easily find a process (Yt) for which

∀ s, t ∈ [0, 1] , E(Ys − Yt)
2 =
∑

n 	∈S

〈ψn, Bt −Bs〉2 .

Assuming without loss of generality that the process (Yt) is independent of
the process Xt, the process (Xt+Yt)t∈[0,1] is then orthonormal. Moreover the
operation of adding (Yt) behaves well with respect to supremum. In words,
one “completes” a process as in (13.44) to make it orthonormal. A special case
of this procedure occurs in Lemma 13.3.2 below. It is possible to formulate the
constructions below as the constructions of processes satisfying a condition of
the type (13.44), and to “complete them into orthonormal processes” at the
end of the construction. We have chosen another route, which is to “complete
these processes along the way”. This is at first a bit more mysterious, but
allows for simpler notation.

The main step in the proof of Bednorz’s theorem is, given a finite subset
T of ]0, 1], to relate the “size” of T with the size of the four sets Tj = T ∩ Ij
where for 1 ≤ j ≤ 4, Ij is the interval ](j−1)/4, j/4]. The reason why we use
4-adic partitions is that we are certain that “T1 is far apart from T3”(etc.).
On the other hand we cannot say the same about, say, T1 and T2 since T1

might be located to the very right of I1 and T2 might be located to the very
left of I2. (This is why dyadic partitions would not work.)

Definition 13.3.1. Consider an interval J =]c, d] ⊂ [0, 1], and J = [c, d].
We say that the process (Xt)t∈J is normalized if EXt = 0, Xc = Xd = 0 and

∀ s, t ∈ J , s < t , E(Xs −Xt)
2 = t− s− (d− c)−1(t− s)2 . (13.45)
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The reason behind the formula in the right-hand side of (13.45) will be ex-
plained soon. We fix the finite set T ⊂]0, 1] once and for all. For an interval
J =]c, d] ⊂ [0, 1] we consider the quantity

F (J) = supE sup
t∈T∩J

Xt , (13.46)

where the first supremum is taken over all normalized processes indexed by
J = [c, d]. Although Xc = 0 is defined, in (13.46) the supremum is only over
T ∩ J , not over T ∩ J . We define F (J) = 0 when T ∩ J = ∅. We recall the
quantity F ∗(T ) of (13.21).

Lemma 13.3.2. We have F (]0, 1]) ≤ F ∗(T ).

Proof. Consider a normalized process (Xt)t∈[0,1]. Consider a centered r.v. Z,
independent of this process, and such that EZ2 = 1. Then the process Yt =
Xt + tZ is orthonormal. Using the definition of F ∗ in the first inequality and
using Jensen’s inequality (taking the expectation in Z inside the supremum)
in the second inequality yields

F ∗(T ) ≥ E sup
t∈T

Yt ≥ E sup
t∈T

Xt ,

and since the normalized process (Xt) is arbitrary this proves that F (]0, 1]) ≤
F ∗(T ). 
�
We state now the main step in the proof of Bednorz’s theorem.

Proposition 13.3.3. Consider I =]0, 1] and for j = 1, 2, 3, 4 consider Ij =
](j − 1)/4, j/4] and numbers αj ≥ 0 such that

∑
j≤4 αj = 1. Then

F (I) ≥
∑

1≤j≤4

√
αjF (Ij) . (13.47)

Moreover if for each 1 ≤ j ≤ 4 we have αj ≥ 1/400 and T ∩ Ij �= ∅ then

F (I) ≥
∑

1≤j≤4

√
αjF (Ij) +

1

80
. (13.48)

The first task is to understand how we relate normalized processes on
the intervals Ij with a normalized process on I. Consider the probability
space [0, 1] provided with Lebesgue’s measure. The archetypical example of
normalized process is given by the formula

Wt = 1[0,t] − t . (13.49)

Consider now the algebra S of subsets of [0, 1] generated by the intervals Ij
for 1 ≤ j ≤ 4, and denote by ES conditional expectation with respect to this
algebra. We define
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V ′
t = Wt − ESWt ; Vt = ESWt , (13.50)

so that Wt = V ′
t + Vt and Vt is S-measurable, while ES(V

′
t ) = 0. We observe

that if ESf = 0 and f ′ is S-measurable, then E(f + f ′)2 = Ef2 +Ef ′2. Thus,
if s ≤ t,

t− s− (t− s)2 = E(Ws −Wt)
2 = E(V ′

s − V ′
t )

2 + E(Vs − Vt)
2 . (13.51)

Let us consider the function

ϕ(x) = x− 4x2 , (13.52)

and for t ∈ I and 1 ≤ j ≤ 4 let us define

tj = max(min(t, j/4), (j − 1)/4) ∈ Ij = [(j − 1)/4, j/4] .

We observe that for 0 ≤ s ≤ t ≤ 1 the interval ]s, t] is the disjoint union of
the intervals ]sj , tj ] for 1 ≤ j ≤ 4. In particular t− s =

∑
j≤4 t

j − sj .
We claim that

E(V ′
s − V ′

t )
2 =

∑

1≤j≤4

ϕ(tj − sj) . (13.53)

This is because, assuming without loss of generality that s ≤ t,

E(V ′
s − V ′

t )
2 = E(1[s,t] − ES1[s,t])

2 = E1[s,t] − E(ES1[s,t])
2 ,

while t − s =
∑

j≤4(t
j − sj) and ES1[s,t] = 4

∑
j≤4(t

j − sj)1Ij , so that

E(ES1[s,t])
2 = 4

∑
j≤4(t

j − sj)2. This proves the claim. We then conclude
from (13.51) that

t− s− (t− s)2 =
∑

1≤j≤4

ϕ(sj − tj) + E(Vs − Vt)
2 . (13.54)

In due time we shall use the following elementary property of the process
(Vt)t∈I , which is a consequence of the definition Vt = ES(1[0,t] − t).

Lemma 13.3.4. We have

inf
t∈I1

E(Vt1I4) ≥ −
1

16
; inf

t∈I2
E(Vt1I1) ≥

1

8

inf
t∈I3

E(Vt1I2) ≥
1

16
; inf

t∈I4
E(Vt1I3) ≥ 0 . (13.55)

Proof. We simply observe that for t ∈ I1 and x ∈ I4 we have Vt(x) = −t ≥
−1/4, for x ∈ I1 and t ∈ I2 we have Vt(x) = 1− t ≥ 1/2 etc. 
�
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To prove Proposition 13.3.3 we consider normalized processes (Y j
t )t∈Ij

for

1 ≤ j ≤ 4. (We remind the reader that in particular EY j
t = 0.) From these

we shall construct a suitable normalized process on I. The construction will
involve an auxiliary process (Zt)t∈T and a r.v τ ∈ {1, 2, 3, 4}. Throughout
the proof we assume the following:

The processes Y j
t are independent of each other and of the r.v.s Zt and τ ,

(13.56)
∀ j ≤ 4 ; P(τ = j) = αj , (13.57)

and
EZt = 0 ; E(Zs − Zt)

2 = E(Vs − Vt)
2 . (13.58)

We do not assume that Zt and τ are independent. When αj = 0, for t ∈ I

let us define U j
t = Y j

tj . Otherwise we define

U j
t =

1
√
αj

1{τ=j}Y
j
tj , (13.59)

and we observe that, using the independence of τ and Y in the second equality,
and that the process Y j is normalized in the third one,

E(U j
s −U j

t )
2 =

1

αj
E1{τ=j}(Y

j
tj −Y j

sj )
2 = E(Y j

tj −Y j
sj )

2 = ϕ(tj−sj) . (13.60)

This formula remains true even when αj = 0, since then U j
t = Y j

tj . We define

St =
∑

1≤j≤4

U j
t . (13.61)

It follows from (13.56) and the fact that Y j and Y j′ are independent for

j �= j′ that then EU j
sU

j′

t = 0, so that

E(Ss − St)
2 =

∑

1≤j≤4

E(U j
s − U j

t )
2 =

∑

1≤j≤4

ϕ(tj − sj) . (13.62)

The process (St) is the important part of this construction. We then transform
this process into a normalized process by adding (Zt).

Lemma 13.3.5. The process

Xt = St + Zt (13.63)

is normalized.

Proof. It follows from (13.56) that ESsZt = 0, so that

E(Xs −Xt)
2 = E(Ss − St)

2 + E(Zs − Zt)
2 ,

and the result follows from (13.54), (13.58) and (13.62). 
�
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Lemma 13.3.6. Assume that T ∩ Ij �= ∅ for each j ≤ 4. Then

E sup
t∈T

Xt ≥
∑

1≤j≤4

(√
αjE sup

t∈T∩Ij

Y j
t + inf

t∈T∩Ij
E1{τ=j}Zt

)
. (13.64)

Proof. First, we observe that, using that T ∩ Ij �= ∅ in the last inequality,

E sup
t∈T

Xt =
∑

1≤j≤4

E1{τ=j} sup
t∈T

Xt

=
∑

1≤j≤4

E sup
t∈T

1{τ=j}Xt

≥
∑

1≤j≤4

E sup
t∈T∩Ij

1{τ=j}Xt . (13.65)

Let us fix j ≤ 4 with αj �= 0 and denote by Ej conditional expectation given

the r.v.s Y j
t . Then Jensen’s inequality implies

E sup
t∈T∩Ij

1{τ=j}Xt ≥ E sup
t∈T∩Ij

Ej1{τ=j}Xt . (13.66)

Let us fix t ∈ Ij , so that then tj = t. Since 1{τ=j}1{τ=j′} = 0 for j′ �= j we
have by definition of Xt

1{τ=j}Xt =
1
√
αj

1{τ=j}Y
j
t + 1{τ=j}Zt .

Using the independence of τ and Yj in the first equality, and the independence

of Y j
t from τ and Z in the second equality, we get

Ej1{τ=j}Xt =
√
αjY

j
t + Ej1{τ=j}Zt =

√
αjY

j
t + E1{τ=j}Zt . (13.67)

To conclude we simply use that supt(yt + zt) ≥ supt yt + inft zt, and thus

E sup
t∈T∩Ij

Ej1{τ=j}Xt ≥
√
αjE sup

t∈T∩Ij

Y j
t + inf

t∈T∩Ij
E1{τ=j}Zt . 
�

Lemma 13.3.7. Even when T ∩ Ij = ∅ for some j ≤ 4, if the process (Zt)
is independent of τ we have

E sup
t∈T

Xt ≥
∑

j∈J

√
αjE sup

t∈T∩Ij

Y j
t , (13.68)

where J = {j ≤ 4; Ij �= ∅}.
Proof. Since E supt∈T 1{τ=j}Xt ≥ 0 because E1{τ=j}Xt = 0 for each t, as in
(13.65) we obtain

E sup
t∈T

Xt ≥
∑

j∈J

E sup
t∈T∩Ij

1{τ=j}Xt .

Since τ and Zt are independent, and since EZt = 0, then (13.67) implies
Ej1{τ=j}Xt =

√
αjY

j
t , and the conclusion from (13.66). 
�



13.3 Proof of Bednorz’s Theorem 417

Proof of Proposition 13.3.3. To prove (13.47) we simply choose Zt indepen-
dent of τ and we use (13.68) since by definition F (I) = 0 when I ∩ T = ∅.
It remains only to prove (13.48). We shall use (13.64) with an appropriate
choice of the process (Zt). To simplify the notation we assume without loss
of generality that the underlying probability space is [0, 1] provided with
Lebesgue’s measure, and that for j ≤ 4,

]0, 1/100] ∩ {τ = j} =](n(j)− 1)/400, n(j)/400] , (13.69)

where n(1) = 4, n(2) = 1, n(3) = 2, n(4) = 3. This is possible since we assume
P (τ = j) = αj ≥ 1/400 for each j. Let us then define Zt(x) ≡ 0 for x > 1/100
and for x ≤ 1/100 let us define Zt(x) = 10Vt(100x), where Vt is defined in
(13.50).

The fundamental relation is, recalling that Ij =](j − 1)/4, j/4],

E1{τ=j}Zt =
1

10
E1In(j)

Vt .

The proof is straight forward by change of variable:

E1{τ=j}Zt = 10

∫

{t=j}∩]0,1/100]

Vt(100x)dx = 10

∫

In(j)/100

Vt(100x)dx

=
1

10

∫

In(j)

Vt(x)dx =
1

10
E1In(j)

Vt . (13.70)

It then follows from Lemma 13.3.4 that

∑

1≤j≤4

inf
t∈Ij

E1{τ=j}Zt =
1

10

∑

1≤j≤4

inf
t∈Ij

E1In(j)
Vt ≥

1

10

(
− 1

16
+

1

8
+

1

16

)
=

1

80
,

and combining with (13.64) this completes the proof, since it is also obvious
(using again change of variable) that (13.58) holds. 
�

Corollary 13.3.8. Consider I ∈ Im and the four intervals Ij of Im+2 for
j = 1, 2, 3, 4 which it contains. Consider numbers αj ≥ 0 such that

∑
j≤4 αj =

1. Then
F (I) ≥

∑

1≤j≤4

√
αjF (Ij) . (13.71)

Moreover if for each 1 ≤ j ≤ 4 we have αj ≥ 1/400 and T ∩ Ij �= ∅ then

F (I) ≥
∑

1≤j≤4

√
αjF (Ij) + 2−m/2 1

80
. (13.72)

Proof. A first method is to repeat the proof of Proposition 13.3.3. There
is really nothing to change, and we chose to prove Proposition 13.3.3 sim-
ply because the notation is simpler. A second method is to deduce Corol-
lary 13.3.8 from Proposition 13.3.3 using a scaling argument. Namely, if we
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denote by FT (J) the quantity (13.46) to indicate the dependence in T , it
suffices to prove that for a > 0 and b ∈ R we have, with obvious no-
tation FaT+b(aJ + b) =

√
aFT (J). This follows from the fact that if the

process (Xt)t∈aJ+b is normalized on the interval aJ + b then the process
Yt = a1/2X(t−b)/a is normalized on the interval J . 
�
We now turn to the task of combining the estimates (13.48). Our next goal
is as follows. We recall that In denotes the family of 2n dyadic intervals
of length 2−n. Theorem 13.1.9 is a consequence of Lemma 13.3.2 and the
following.

Proposition 13.3.9. Consider a finite set T ⊂ [0, 1]. Then, given a proba-
bility measure μ on T we have

1

80

∑

n≥0

∑

I∈In

2−n/2
√
μ(I) ≤ F (]0, 1]) . (13.73)

As a preparation for the proof, we fix a probability measure μ on T and
for n ≥ 0 we define I∗2n as the collection of intervals I ∈ I2n that have the
following property:

I ′ ∈ I2n+2 , I ′ ⊂ I ⇒ μ(I ′) ≥ μ(I)/400 . (13.74)

We then define
Mn = 2−n

∑{√
μ(I) ; I ∈ I∗2n

}
.

Lemma 13.3.10. We have
∑

n≥0

Mn ≤ 80F (]0, 1]) . (13.75)

Proof. We define F (J) = 0 when J ∩ T = ∅. We prove that for each n ≥ 0
we have

∑

I∈I2n

√
μ(I)F (I) ≥ 1

80
Mn +

∑

I∈I2n+2

√
μ(I)F (I) . (13.76)

Summation of these inequalities over n ≥ 0 then yields (13.75). To prove
(13.76) we observe first that if I ∈ I2n then

√
μ(I)F (I) ≥

∑

I′⊂I,I′∈I2n+2

√
μ(I ′)F (I ′) . (13.77)

This simply follows from (13.71) with αj = μ(Ij)/μ(I), where the elements
of I2n+2 contained in I are denoted by I1, I2, I3, I4. On the other hand, when
I ∈ I∗2n we can now use (13.72) with m = 2n to obtain, since 2−n = 2−m/2,

√
μ(I)F (I) ≥

∑

I′⊂I,I′∈I2n+2

√
μ(I ′)F (I ′) +

1

80
2−n
√
μ(I) . (13.78)

Summation of the inequalities (13.77) and (13.78) over I ∈ I2n completes the
proof of (13.76). 
�
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The following will complete the proof of Proposition 13.3.9.

Lemma 13.3.11. We have
∑

n≥0

∑

I∈In

2−n/2
√
μ(I) ≤ 2S(μ) := 2

∑

n≥0

∑

I∈I2n

2−n
√

μ(I) , (13.79)

and
S(μ) ≤ 10 + 10

∑

n≥0

Mn . (13.80)

Lemma 13.3.12. Consider numbers αj ≥ 0 for j = 1, 2, 3, 4 such that∑
1≤j≤4 αj = 1. Then

min
1≤j≤4

αj ≤
1

400
⇒ 1

2

∑

1≤j≤4

√
αj ≤

9

10
. (13.81)

Proof. Assume for example that α1 ≤ 1/400. Then since
√
α2+

√
α3+

√
α4 ≤√

3(α2 + α3 + α4) ≤
√
3,

1

2

∑

1≤j≤4

√
αj ≤

1

2

( 1

20
+
√
3
)
≤ 9

10
. 
�

Proof of Lemma 13.3.11. The proof of (13.79) is immediate because the
quantity

∑
I∈In

2−n/2
√
μ(I) decreases with n (by the inequality

√
a+

√
b ≤√

2
√
a+ b). For I ∈ I2n let

w(I) = 2−n−1
∑{√

μ(J) ; J ⊂ I , J ∈ I2n+2

}
.

First, we observe that

S(μ) = 1 +
∑

n≥0

∑

I∈I2n

w(I) . (13.82)

This is simply because on the right all the terms in the summation that
defines S(μ) occur in one of the terms w(I), except the term for n = 0, which
is equal to 1 since μ is a probability. Let us now observe that, given n ≥ 0,

∑

I∈I2n

w(I) =
∑

I∈I∗
2n

w(I) +
∑

I 	∈I∗
2n

w(I) . (13.83)

It follows from Lemma 13.3.11 that for I �∈ I∗2n we have

w(I) <
9

10
2−n
√

μ(I) . (13.84)

Consequently, by summation of the relations (13.84),
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∑

n≥0

∑

I 	∈I∗
2n

w(I) ≤ 9

10
S(μ) .

Combining with (13.82) and (13.83) we thus obtain

S(μ) ≤ 1 +
9

10
S(μ) +

∑

n≥0

∑

I∈I∗
2n

2−n
√

μ(I) ≤ 1 +
9

10
S(μ) +

∑

n≥0

Mn .

This completes the proof. 
�

13.4 Permutations

One may also ask the following question. What are the sequences (am) such
that for any permutation π and any orthonormal sequence (ϕm) the series∑

m aπ(m)ϕm converges a.e.? The answer to this question was also discovered
by A. Paszkiewicz, and is announced in [7]. Given the sequence (am) and the
permutation π of N we define the set

Tπ =
{ ∑

1≤m≤n

a2π(m) ; n ≥ 1
}
. (13.85)

We also consider the numbers

bk :=
∑
{a2m ; 2−2k+1

< a2m ≤ 2−2k} . (13.86)

Without loss of generality we assume that
∑

m a2m ≤ 1.

Theorem 13.4.1. For a sequence (am) the following are equivalent.
(f) For every permutation π and every orthonormal sequence (ϕm) the series∑

m aπ(m)ϕm converges a.e.
(g) We have ∑

k≥1

2k
√

bk <∞ . (13.87)

(h) There exists π such that

∑

n≥0

√
2−n card{I ∈ In ; I ∩ Tπ �= ∅} <∞ . (13.88)

(i) Condition (13.88) holds for each π.

This should be compared with Corollary 13.1.3. When the series
∑

m amϕm

converges a.s. whatever the choice of the orthonormal sequence ϕm, Corol-
lary 13.1.3 asserts that

∑
k≥1 2

2kbk < ∞. The stronger hypothesis of The-
orem 13.4.1 implies the stronger conclusion (13.87). One should also note
that (13.88) is basically a condition on the covering numbers of Tπ, where
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the distance d(s, t) =
√
|s− t| has been replaced by a slightly larger distance

associated to the sequence of partitions In.
Theorem 13.4.1 will turn out to be a corollary of Theorem 13.1.1. More-

over, as we explain now, the idea behind it is very clear, which greatly facili-
tates the discovery of its proof. It is not very difficult to prove the equivalence
of (g) to (i), and this is what we will do first. Condition (13.88) is the natural
“covering number condition”. The basic idea is that the more sophisticated
conditions of Theorem 13.1.1 are equivalent to this condition “when the set
T is homogeneous”. Therefore to prove that (f) implies (h) the idea will be
to construct π so that Tπ is “as homogeneous as possible”.

Let us prove “the easy part” of Theorem 13.4.1.

Proposition 13.4.2. Conditions (g) to (i) of Theorem 13.4.1 are equivalent.

Proof. It suffices to prove that conditions (g) and (h) are equivalent when π
is the identity, because the value of bk does not depend on which order we
consider the elements am.

We first prove that (g) implies (h). For n ≥ 1 define Jn as the set of
dyadic intervals I ∈ In for which T ∩ I �= ∅. We shall prove that

∑

n≥0

√
2−n cardJn <∞ . (13.89)

Let us as usual enumerate T as a sequence tn =
∑

1≤m≤n a
2
m, and let t∗ =∑

m≥1 a
2
m. Define

Wk = {tn ; max(a2n, a
2
n+1) > 2−2k} ∪ {t1, t∗} ,

Vk =
⋃
{[tn, tn+1] ; a

2
n+1 = tn+1 − tn ≤ 2−2k} ⊂ [0, 1] .

Denoting Lebesgue’s measure by λ, we deduce from (13.86) that

λ(Vk) ≤
∑

r≥k

br , (13.90)

while, since
∑

m≥1 a
2
m ≤ 1,

cardWk ≤ 2 + 2 · 22
k

. (13.91)

Consider 2k+1 ≤ � < 2k+2 and an interval I ∈ J�, so that I ∩ T �= ∅. The
basic observation is that one of the following occurs: either

I ∩Wk �= ∅ (13.92)

or else
I ⊂ Vk . (13.93)
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To prove this, we assume I ∩Wk = ∅ and we prove (13.93). We observe first
that if I ∈ I� then I meets T by definition, so that either t1 ∈ I, or t∗ ∈ I,
or else

I ⊂
⋃

n≥1

[tn, tn+1] . (13.94)

Since we assume that I ∩Wk = ∅, we have in particular that t1, t
∗ �∈ I and

thus (13.94) holds. Consider an interval [tn, tn+1] which meets I. Then either
tn or tn+1 belongs to I, for otherwise I ⊂]tn, tn+1[, contradicting the fact
that I ∩ T �= ∅. Since I ∩Wk = ∅ it cannot happen that both tn and tn+1

belong to Wk. Thus a
2
n+1 ≤ 2−2k , so that [tn, tn+1] ⊂ Vk by definition of Vk.

Thus every interval [tn, tn+1] which meets I is a subset of Vk. Then (13.94)
proves (13.93).

There are at most cardWk intervals I which satisfy (13.93). Consequently,
and since λ(I) = 2−� for I ∈ I�,

cardJ� ≤ cardWk + 2�λ(Vk) ≤ 2 + 2 · 22
k

+ 2�
∑

r≥k

br ,

so that √
cardJ� ≤ 2 + 2 · 22

k−1

+ 2�/2
√∑

r≥k

br .

This holds whenever 2k+1 ≤ � < 2k+2 and therefore

∑

2k+1≤�<2k+2

2−�/2
√
cardJ� ≤ L2−2k22

k−1

+ L2k
√∑

r≥k

br ,

from which (13.89) follows by summation over k ≥ 1. This concludes the
proof that (g) implies (h).

Now we prove that (h) implies (g). For this we recall (13.17) and the
measure μk there, and using the Cauchy-Schwarz inequality we obtain that
for 2k−1 ≤ n < 2k we have

1

2

√
bk ≤

∑

I∈In

√
2−nμk(I) =

∑

I∈Jn

√
2−nμk(I) ≤

√
2−n cardJn ,

and we sum over n and then over k. 
�

The next goal is to complete the proof of Theorem 13.4.1. First we prove
that (i) implies (f). This is because each set Tπ satisfies condition (c) of
Theorem 13.1.1, as follows from the Cauchy-Schwarz inequality:

∑

I∈In

√
2−nμ(I) ≤

√
2−n card{I ∈ In ; I ∩ Tπ �= ∅} .
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Now we come to the main argument, the proof that (f) implies (g). The
proof is based on a recursive construction. This construction is performed by
induction and requires the formulation of an adequate induction hypothesis,
to which we turn now.

Given a finite set U let us denote by T (U) the collection of sets of the
type

T =
{ ∑

1≤m≤n

ρ(m) ; 1 ≤ n ≤ q
}

where ρ is a one-to map from {1, . . . , q} into U . In other words, to construct
T ∈ T (U) we pick distinct elements u1, u2, . . . , uq of U and we take T =
{u1, u1 + u2, . . . , u1 + u2 + · · ·+ uq}. For such a set T we denote by t∗(T ) its
largest element. We prove the following.

Proposition 13.4.3. There exists a universal constant L∗, an integer n0

and a sequence (εk)k≥n0 of positive numbers such that
∑

k≥n0
εk < ∞ with

the following property. Consider a finite set J ⊂ {n0, n0 + 1, . . . , } with the
property that

k < k′ ∈ J ⇒ k′ − k ≥ 4 . (13.95)

Consider a finite set U ⊂ R
+, and assume that

∑
{u ∈ U} ≤ 1/2 . (13.96)

Consider a partition of U in sets (Uk)k∈J . Assume that

u ∈ Uk ⇒ 2−2k+1

≤ u ≤ 2−2k , (13.97)

and set
bk =

∑
{u ; u ∈ Uk} . (13.98)

Then there exists a set T ∈ T (U) and a probability measure μ on T with the
following property. Consider x ∈ [0, 1] with x+ t∗(T ) ≤ 1. Then

∑

n≥0

∑

I∈In,I−x⊂[0,t∗(T )]

√
2−nμ(I − x) ≥ 1

L∗

∑

k∈J

(2k
√
bk − εk) . (13.99)

The number 4 in (13.95) is simply a convenient choice whose relevance
will became apparent at the very end of the present section.

Let us first complete the proof of Theorem 13.4.1 i.e. prove that (f)
implies (g). We argue by contradiction, and we assume that (g) fails, i.e.∑

k≥1 2
k
√
bk =∞. Consider the set V = {a2m;m ≥ 1}.

Next we construct by induction finite sets Vs ⊂ V with maxVs+1 <
minVs, sets Ts ∈ T (Vs) and probability measures μs on Ts with the following
property: Consider x ∈ [0, 1] with x+ t∗(Ts) ≤ 1. Then

∑

n≥0

∑

I∈In,I−x⊂[0,t∗(T )]

√
2−nμs(I − x) ≥ 2s . (13.100)
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To perform the construction, having constructed Vs, consider ks such that

2−2ks
< u for u ∈ Vp. Then find a subset J of {ks, ks+1, . . .} which satisfies

(13.95) and
∑

k∈J (2
k
√
bk − εk) ≥ 2s+1L∗. To find Vs+1 we then use Proposi-

tion 13.4.3 with Uk = ∅ for k < ks and Uk = {a2m; 2−2k+1

< a2m ≤ 2−2k} for
k ≥ ks.

By construction for s ≥ 1 we have Ts = {
∑

1≤m≤n a
2
rm,s

;n ≤ qs} where
the integers rm,s for s ≥ 1 and n ≤ qs are all distinct. Consider then a
permutation π with the property that for each s the integers rm,s, 1 ≤ m ≤ qs
occur as π(js + 1), . . . , π(js + qs) for consecutive integers js + 1, . . . , js + qs.
Then for each s we have xs + Ts ⊂ Tπ for a certain xs ∈ [0, 1]. In particular
xs + t∗(Ts) ≤ 1. Given s, (13.100) proves that the probability measure ν on
Tπ given by ν(C) = μs(C − xs) satisfies

∑

n≥0

∑

I∈In

√
2−nν(I) ≥ 2s .

By Theorem 13.1.1, there exists an orthonormal sequence (ϕm) such that the
series

∑
m aπ(m)ϕm does not converge a.s. so that (f) fails and the proof of

Theorem 13.4.1 is complete.

Proof of Proposition 13.4.3. The proof is by induction over cardJ . We choose

εk = 2k+1 · 2−2k−3

. (13.101)

The reason for this choice will of course become apparent in due time, but
let us mention that there is plenty of room in the construction.

When cardJ = 1, i.e. J = {k}, all the elements u of U satisfy 2−2k+1 ≤
u ≤ 2−2k . We built T by using the elements of U in any order we wish. So
for convenience let us assume that U = {u1, . . . , uq}, and let tn =

∑
m≤n um.

Consider the probability measure μ on T such that μ({tn}) = un/b, where
b is the sum of the elements of U (so that b = t∗(T )). The idea is that for
n ≤ 2k − 2, at the scale 2−n the probability μ looks uniform on the interval
[0, b] because the distance between two consecutive elements of T is smaller
than 2−n−2. In particular for I ∈ In and any x we should have

bμ(I − x) � λ((I − x) ∩ [0, b]) .

To implement the idea we appeal to Lemma 13.1.4, for the family W of
intervals of the type W =]tn−1, tn] for 1 ≤ n ≤ q (and t0 = 0). We define
θW as consisting of the mass un = tn − tn−1 at the point tn. Then (13.12)

holds for d = 2−2k and (13.13) holds for δ = 0. Since θW = bμ and λW is the
restriction of λ to [0, b], (13.14) implies that for any interval J

|bμ(J)− λ(J ∩ [0, 1])| ≤ 2d . (13.102)

Moreover for n ≤ 2k − 2 we have d = 2−2k ≤ 2−n−2 = λ(I − x)/4 and
(13.102) used for J = I − x implies that if I − x ⊂ [0, b]
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bμ(I − x) ≥ λ(I − x)− 2d ≥ 2−n−1 ,

so that √
2−nμ(I − x) ≥ 2−n−1

√
b

. (13.103)

Assume now that
b ≥ 4 · 2−2k−1

(13.104)

and that n ≥ 2k−1. Thus b ≥ 4 · 2−n. We claim that when x+ b ≤ 1 then

card{I ∈ In ; I − x ⊂ [0, b]} = card{I ∈ In ; I ⊂ [x, x+ b]} ≥ 2n−1b .
(13.105)

To see this we first observe that [x, x + b] ⊂ [0, 1] since x + b ≤ 1. Next,
consider the smallest integer i1 with x ≤ i12

−n and the largest integer i2
with i22

−n ≤ x+ b. Then i12
−n − x ≤ 2−n and x+ b− i22

−n ≤ 2−n so that

b− (i2 − i1)2
−n ≤ 2 · 2−n ≤ b

2
,

and thus i2−i1 ≥ 2n−1b, which implies (13.105). Consequently, using (13.103)
yields ∑

I∈In,I−x⊂[0,b]

√
2−nμ(I − x) ≥ 1

4

√
b . (13.106)

Summation over 2k−1 ≤ n ≤ 2k − 2 then yields

∑

n≥0

∑

I∈In,I−x⊂[0,b]

√
2−nμ(I − x) ≥ 2k−5

√
b ≥ 2−5(2k

√
b− εk) . (13.107)

Now, it follows from (13.101) that even when (13.104) fails, (13.107) is still
satisfied since then the right-hand side is ≤ 0. This finishes the proof in the
case where card J = 1.

Let us now turn to the induction step. To bring out the idea, we first
give the proof without checking all the details, to which we will come back
later. We denote by k0 the smallest element of J and J∗ = J \ {k0}, the set
to which we will apply the induction hypothesis. We note in particular that
k0 ≥ n0, and the purpose of this parameter n0 is simply to ensure that k0 is
large enough. For k ∈ J let bk be the sum of the elements of Uk. If

bk0 < 4 · 2−2k0−2

, (13.108)

we simply apply the induction hypothesis to J∗, and this completes the in-
duction in this case because then 2k0

√
bk0 − εk0 ≤ 0 from (13.101). So we

assume that (13.108) fails, i.e.

bk0 ≥ 4 · 2−2k0−2

. (13.109)
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(Here we should point out that there is huge room in the choice of the value

4·2−2k0−2

.) Let us enumerate Uk0 = {u1, . . . , uq}. To each m ≤ q we associate
the weight

αm = um/bk0 . (13.110)

We (shall prove that we can) partition each of the sets Uk, k ∈ J∗ into sets
Uk,m for m ≤ q in such a way that the sums

∑
{v; v ∈ Uk,m} are essentially

proportional to αm, i.e.

αmbk − 2−2k ≤ bk,m :=
∑
{v ; v ∈ Uk,m} ≤ αmbk + 2−2k . (13.111)

We then apply the induction hypothesis to each set Vm =
⋃

k∈J∗ Uk,m to
obtain a probability measure μm on a certain set Tm ∈ T (Vm) with the
property that for t∗m = t∗(Tm) and any x with x+ t∗m ≤ 1, then

∑

n≥0

∑

I∈In,I−x⊂[0,t∗m]

√
2−nμm(I − x) ≥ 1

L∗

∑

k∈J∗

(2k
√

bk,m − εk) . (13.112)

Let us next describe in words the construction of T . We denote by t∗m =
t∗(Tm) the largest element of Tm. We construct the elements of T in turn,
each time adding a new element of U to the previously constructed element
of T . We start with u1, the first element of U1. We then number the elements
of V1 as v1, v2, . . . in the order in which we use them to construct T1, and the
first elements of T are u1, u1 + v1, u1 + v1 + v2, . . ., until we use up all the
elements of V1 and obtain the element y1 = u1 + t∗1. We next add up u2 to
obtain y1 + u2. We then add the elements of V2, in the order that they are
used to construct T2, until we reach the point y2 := y1 + u2 + t∗2. We then
add u3 and then start adding the elements of V3, etc.

Formally, we construct points ym and xm as follows. First, we set y0 = 0,
and x1 = u1. Assuming that ym−1 has been constructed and m ≤ q, we set
xm = ym−1 + um and ym = xm + t∗m = ym−1 + um + t∗m. We consider then
the set T that consists of all the points xm for 1 ≤ m ≤ q and xm + wm

where 1 ≤ m ≤ q and wm ∈ Tm. We note that yq = t∗(T ) is the largest
element of T . It should be obvious by construction that T ∈ T (U). We then
consider the probability measure μ =

∑
1≤m≤q αmνm, where νm is the image

of μm under the map y �→ xm + y. Thus μm is supported by the interval
]xm, ym] ⊂]ym−1, ym].

We now claim that, given x with x+ t∗(T ) ≤ 1,

∑

n≥0

∑

I∈In,I−x⊂[0,t∗(T )]

√
2−nμ(I − x) ≥ I +

∑

1≤m≤q

II(m) , (13.113)

where

I =
∑

2k0−2≤n<2k0−1

∑

I∈In,I−x⊂[0,t∗(T )]

√
2−nμ(I − x) (13.114)
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and
II(m) =

∑

n>0

∑

I∈In,I−x⊂[xm,xm+t∗m]

√
2−nμ(I − x) . (13.115)

As we shall see,

t∗m ≤ 2−2k0−1

, (13.116)

so that none of the intervals x+[xm, xm+ t∗m] can contain an interval I ∈ In
for n < 2k0−1. As the intervals x + [xm, xm + t∗m] are disjoint as m varies,
the terms in the summations (13.114) and (13.115) are all different, and each
occurs in the left-hand side of (13.113). This proves (13.113).

Now we use (13.112) to obtain that, since μ ≥ αmνm,

II(m) ≥ √αm

∑

n>0

∑

I∈In,I−x⊂[xm,xm+t∗m]

√
2−nνm(I − x)

=
√
αm

∑

n>0

∑

I∈In,I−x−xm⊂[0,t∗m]

√
2−nμm(I − x− xm)

≥
√
αm

L∗

∑

k∈J∗

(2k
√

bk,m − εk) . (13.117)

Using (13.111) and the inequality
√
x− y ≥

√
x−√y yields

II(m) ≥
√
αm

L∗

∑

k∈J∗

(2k
√
αmbk − 2k · 2−2k−1

− εk) ,

so that (since
∑

m≤q

√
αm ≤

√
q),

∑

m≤q

II(m) ≥ 1

L∗

∑

k∈J∗

2k
√

bk −
√
q

L∗

∑

k∈J∗

(εk + 2k2−2k−1

) . (13.118)

To conclude the proof we shall show that at scale 2−n where n < 2k0−1 then μ
looks uniform on the interval [0, t∗], so that the same argument as in the case
card J = 1 proves that I ≥ 2k0

√
bk/L, and combining with (13.118) finishes

the argument.
Let us now complete the details. First we fix k and we construct the sets

Uk,m in (13.111). We recall that bk =
∑
{v; v ∈ Uk}. We proceed recursively.

We consider a U ′
k,1 a subset of Uk as large a possible with respect to the fact

that
∑
{v; v ∈ U ′

k,1} ≤ α1bk. Since each element of Uk is ≤ 2−2k this implies
that

α1bk − 2−2k ≤
∑
{v ; v ∈ U ′

k,1} ≤ α1bk

We then repeat this procedure on Uk \ U ′
k,1 to construct U ′

k,2, etc. In this
manner we may not use all the elements of Uk. We label the remaining ele-
ments in any order, and we add as many as we can to U ′

k,1 to get a set Uk,1

which still satisfies (13.111). We then add as many possible elements to U ′
k,2,
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etc, and it should be clear that there is enough space so that we can find a
proper place for each element of Uk.

Next, since

t∗m =
∑
{v ; v ∈ Um} =

∑

k∈J∗

∑
{v ; Uk,m} =

∑

k∈J∗

bk,m ,

it follows from (13.111) that
∣∣∣t∗m − αm

∑

k∈J∗

bk

∣∣∣ ≤ δ :=
∑

k∈J∗

2−2k . (13.119)

Since
∑

k bk ≤ 1/2 by (13.96), this implies (for n0 and hence k0 large enough)

t∗m + um ≤ um +
αm

2
+ δ ≤ 1

4
2−2k0−1

, (13.120)

because

αm =
um

bk0

≤ 1

4
2−2k0−1

, (13.121)

since um ≤ 2−2k0
while bk0 satisfies (13.109). In particular we have proved

(13.116).
Next, we set b =

∑
k∈J bk = bk0 +

∑
k∈J∗ bk, and our goal is to prove that

n < 2k0−1 ; I ∈ In , I − x ⊂ [0, b]⇒ bμ(I − x) ≥ 2−n−1 . (13.122)

The proof relies on Lemma 13.1.4. Since um = αmbk0 , (13.119) implies

|t∗m + um − αmb| ≤ δ . (13.123)

Consider the family W of the intervals of the type W =]ym−1, ym] for 1 ≤
m ≤ q, and define θW = bνm, which is supported by ]xm, ym] and hence by
W . Since λ(W ) = ym− ym−1 = um+ t∗m, (13.123) implies (13.13). Moreover,

from (13.120), (13.12) holds for d := 2−2k0−1−2. Since λW is the restriction
of Lebesgue’s measure to [0, b], it follows from Lemma 13.1.4 that

|bμ(I − x)− λ((I − x) ∩ [0, b])| ≤ 2d+ qδ .

To prove (13.122) it suffices to prove that when n0 is large enough the right-
hand side 2d + qδ is ≤ 2−n−1. First since n < 2k0−1 we have 2d ≤ 2−n−2.

Since we assume that u ≥ 2−2k+1

for u ∈ Uk, we have

q = cardU0 ≤ 22
k0+1

bk0 ≤ 22
k0+1

, (13.124)

and (13.95) implies that (when n0 large enough),

qδ ≤ 22
k0+1 ∑

k≥k0+4

2−2k ≤ 2 · 22
k0+1−2k0+4

≤ 2 · 2−2k0+1

≤ 2−n−2 ,

and this completes the proof of (13.122).
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We can now finish the proof of Proposition 13.4.3. To bound from below
the term I of (13.114), we proceed as in the case k = 1. Condition (13.109)

ensures that b ≥ bk0 ≥ 4 · 2−2k0−2

, and for n ≥ 2k0−1, (13.105) implies that
there exist at least b2n−1 many intervals I ∈ In with I − x ⊂ [0, b]. If now
n < 2k0−1, (13.122) proves that for I − x ⊂ [0, b] we have

√
2−nμ(I − x) ≥

2−n−1/
√
b. Consequently, for 2k0−2 ≤ n < 2k0−1 we have

∑

I∈In,I−x⊂[0,t∗(T )]

√
2−nμ(I − x) ≥ 1

L

√
b

and (13.114) yields

I ≥ 1

L0
2k0
√
b ≥ 1

L0
2k0
√

bk0 .

Combining with (13.118) and choosing L∗ = L0 we obtain

I +
∑

m≤q

II(m) ≥ 1

L∗

∑

k∈J

2k
√

bk −
1

L∗
√
q
∑

k∈J∗

(εk + 2k2−2k) .

This completes the induction provided

εk0 ≥
√
q
∑

k∈J∗

(εk + 2k2−2k) ,

for which it suffices, recalling (13.124) and (13.95) that

εk0 ≥ 22
k0
∑

k≥k0+4

(εk + 2k2−2k) ,

a relation which is satisfied for n0 large enough by the choice εk = 2k+1·2−2k−3

of (13.101). 
�

13.5 Chaining, II

We have seen the relevance of the processes (Xt) indexed by a subset of [0, 1]
and for which E(Xs − Xt)

2 ≤ |s − t|. Other conditions than control of the
second moment are also natural.

Definition 13.5.1. We say that a function ϕ : R → R is a Young function
if ϕ(0) = 0, ϕ(−x) = ϕ(x), ϕ is convex and ϕ �≡ 0.

On a metric space (T, d) one may then consider processes (Xt)t∈T that satisfy
the condition

∀ s, t ∈ T , Eϕ
(Xs −Xt

d(s, t)

)
≤ 1 . (13.125)
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This condition is quite natural, because given the process (Xt)t∈T , it is simple
to show that the quantity

d(s, t) = inf
{
u > 0 ; Eϕ

(Xs −Xt

u

)
≤ 1
}

(13.126)

is a quasi-distance on T , for which (13.125) is satisfied. On the other hand, it
would also be natural to consider processes where the size of the “increments”
Xs −Xt is controlled by a distance d in a different manner, e.g. for all u > 0

P(|Xs −Xt| ≥ ud(s, t)) ≤ ψ(u) ,

for a given function ψ, see [12]. This question has received considerably less
attention than the condition (13.125), but we leave its investigation for an-
other day.

What are natural conditions that will ensure that we control the size of
the process (Xt)t∈T under (13.125)? In the remainder of this chapter we shall
briefly consider this question. The material of this section is self contained,
but the reader might do well to master first the simpler ideas of Section B.2
to provide perspective. For simplicity we consider only the case where T is
finite.

We say that a sequence T = (Tn)n≥0 of subsets of T is admissible if it
satisfies

card T0 = 1 (13.127)

and
card Tn ≤ ϕ(4n) . (13.128)

Let us consider the following quantities

S(T ) = sup
t∈T

∑

n≥0

4nd(t, Tn) , (13.129)

and

S∗(T ) =
∑

n≥1

∑

s∈Tn

4nd(s, Tn−1)

ϕ(4n)
. (13.130)

In the case where ϕ(x) = exp(x2) − 1, which corresponds to Gaussian pro-
cesses, we have cardTn ≤ exp(42n), and the quantity (13.129) is then basi-
cally the right-hand side of (2.32) (the difference is that we change n into
4n). The new feature here is the quantity S∗(T ), which was not needed in
the Gaussian case, or more generally in the case where one has “exponential
tails”. The formulation of the following theorem is due again to W. Bednorz,
although statements of this type have a long history.

Theorem 13.5.2. Consider a process that satisfies (13.125). Then, for each
sequence T of admissible sets we have

E sup
s,t∈T

|Xs −Xt| ≤ L(S(T ) + S∗(T )) . (13.131)
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It is not required here that EXt = 0.

Proof. For n ≥ 1 let us define a map θn : Tn → Tn−1 such that for s ∈ Tn

one has
d(s, θn(s)) = d(s, Tn−1) . (13.132)

We may assume that S(T ) <∞ for otherwise there is nothing to prove. This
implies that for large m, Tm is a good approximation of T and in particular
since T is finite, there exists m with T = Tm. Let us consider such a value
of m. For t ∈ T we define πm(t) = t, and we define recursively πn−1(t) =
θn(πn(t)), so that (13.132) implies

d(πn(t), πn−1(t)) = d(πn(t), Tn−1) . (13.133)

We observe the following inequality: for x, y > 0,

y

x
≤ 1 +

ϕ(y)

ϕ(x)
. (13.134)

This is obvious if y ≤ x, and if x ≤ y this follows from the fact that ϕ(x) ≤
xϕ(y)/y by convexity of ϕ. We use (13.134) with y = |Xs−Xθn(s)|/d(s, θn(s))
and x = 4n to obtain (since ϕ(y) = ϕ(|y|)),

|Xs −Xθn(s)| ≤ 4nd(s, θn(s)) +
4nd(s, θn(s))

ϕ(4n)
ϕ
(Xs −Xθn(s)

d(s, θn(s))

)
.

Using this for s = πn(t) and (13.35) yields, if T0 = {t0},

|Xt −Xt0 | ≤
∑

n≥1

4nd(πn−1(t), πn(t))

+
∑

n≥1

∑

s∈Tn

4nd(s, θn(s))

ϕ(4n)
ϕ
(Xs −Xθn(s)

d(s, θn(s))

)
, (13.135)

and consequently,

sup
t∈T

|Xt −Xt0 | ≤ sup
t∈T

∑

n≥1

4nd(πn−1(t), πn(t))

+
∑

n≥1

∑

s∈Tn

4nd(s, θn(s))

ϕ(4n)
ϕ
(Xs −Xθn(s)

d(s, θn(s))

)
. (13.136)

Taking expectation and using (13.125) yields

E sup
t∈T

|Xt −Xt0 | ≤ sup
t∈T

∑

n≥1

4nd(πn−1(t), πn(t)) + S∗(T ) . (13.137)

Now, recalling (13.133),
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d(πn−1(t), πn(t)) = d(πn(t), Tn−1)

≤ d(t, Tn−1) + d(t, πn(t))

≤ d(t, Tn−1) +
∑

k≥n

d(πk(t), πk+1(t)) .

Thus, using that
∑

n≤k 4
n ≤ 4k+1/2 we get

∑

n≥1

4nd(πn−1(t), πn(t)) ≤
∑

n≥1

4nd(t, Tn−1) +
∑

n≥1

4n
∑

k≥n

d(πk(t), πk+1(t))

=
∑

n≥1

4nd(t, Tn−1) +
∑

k≥1

(∑

n≤k

4n
)
d(πk(t), πk+1(t))

≤
∑

n≥1

4nd(t, Tn−1) +
1

2

∑

k≥1

4k+1d(πk(t), πk+1(t))

≤
∑

n≥1

4nd(t, Tn−1) +
1

2

∑

n≥1

4nd(πn−1(t), πn(t)) ,

so that recalling (13.129) we get

∑

n≥1

4nd(πn−1(t), πn(t)) ≤ 2
∑

n≥1

4nd(t, Tn−1) = 8
∑

n≥0

4nd(t, Tn) ≤ 8S(T ) .

(13.138)
Combining with (13.137) this finishes the proof. 
�

Interestingly, the previous proof does not use (13.128)!

Corollary 13.5.3. Define e∗0 = Δ(T, d) and for n ≥ 1 define

e∗n = inf{ε > 0 ; ∃U ⊂ T , cardU ≤ ϕ(4n) , ∀ t ∈ T , d(t, U) ≤ ε} .
(13.139)

Then
E sup

s,t∈T
|Xs −Xt| ≤ L

∑

n≥0

4ne∗n . (13.140)

Proof. Consider an arbitrary point t0 of T , and for n ≥ 1 consider a subset
Tn of T with cardTn ≤ ϕ(4n) and d(t, Tn) ≤ 2e∗n. It is then obvious that the
quantities S(T ) and S∗(T ) of (13.129) and (13.130) satisfy

S(T ) ≤ L
∑

n≥0

4ne∗n ; S∗(T ) ≤ L
∑

n≥0

4ne∗n . 
�

Exercise 13.5.4. We recall that the covering number N(T, d, ε) is the small-
est number of balls of radius ε that covers T . Deduce from Corollary 13.5.3
that

E sup
s,t∈T

|Xs −Xt| ≤ L

∫ Δ(T,d)

0

ϕ−1(N(T, d, ε))dε . (13.141)
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The bound (13.141) is called the metric entropy bound. It is of fundamental
importance. A more direct proof of this inequality is given in Section B.2.
Numerous applications can be found e.g. in the recent book of Michel Weber
[13].

The bound of Theorem 13.5.2 raises two questions: How to construct
admissible sequences? How sharp is this result?

Definition 13.5.5. For a metric space (T, d) let

S(T, d, ϕ) = sup
{
E sup

s,t∈T
|Xs −Xt|

}
, (13.142)

where the supremum is taken over all the processes which satisfy (13.125).

The reader will need this definition throughout the rest of this chapter. We
reformulate (13.131) as

S(T, d, ϕ) ≤ L(S(T ) + S∗(T )) , (13.143)

and the question arises to which extent this inequality is sharp for the best
possible choice of T . W. Bednorz has recently discovered a rather general
setting where this is the case.

Definition 13.5.6. Consider p > 1. A distance d on a metric space is called
p-concave if dp is still a distance, i.e.

d(s, t)p ≤ d(s, v)p + d(v, t)p . (13.144)

A p-concave distance satisfies an improved version of the triangle inequality.

Lemma 13.5.7. If the distance d is p-concave, then for s, t, v ∈ T we have

d(s, v)− d(t, v) ≤ d(s, t)
(d(s, t)
d(t, v)

)p−1

. (13.145)

Proof. We have
d(s, v)p ≤ d(t, v)p + d(s, t)p ,

so that since (crudely) (1 + x)1/p ≤ 1 + x for x ≥ 0,

d(s, v) ≤ d(t, v)
(
1 +

d(s, t)p

d(t, v)p

)1/p
≤ d(t, v) + d(s, t)

(d(s, t)
d(t, v)

)p−1

. 
�

Theorem 13.5.8 (W. Bednorz [2]). If the distance d is p-concave, then
for each probability measure μ on T one has

∫

T

dμ(t)

∫ Δ(T,d)

0

ϕ−1
( 1

μ(B(t, ε))

)
dε ≤ K(p)S(T, d, ε) , (13.146)

where S(T, d, ε) is defined in (13.142).
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The relevance of this result to the question of whether (13.143) can be re-
versed will only become apparent later. We prepare the proof with the fol-
lowing.

Lemma 13.5.9. Consider s, t ∈ T . Then for each probability measure μ on
T one has

∫

T

dμ(ω)

∫ max(d(s,ω),d(t,ω))

min(d(s,ω),d(t,ω))

1

μ(B(ω, 3ε))
dε ≤ K(p)d(s, t) . (13.147)

Proof. Let A = {ω ∈ T ; d(t, ω) ≤ d(s, ω)}. Since B(ω, 3ε) ⊃ B(t, 2ε) for
ε ≥ d(t, ω), it suffices to prove that

∫

A

dμ(ω)

∫ d(s,ω)

d(t,ω)

1

μ(B(t, 2ε))
dε ≤ K(p)d(s, t) . (13.148)

Let
A0 = {ω ∈ A ; d(t, ω) ≤ 2d(s, t)} .

Then, since d(s, ω) ≤ d(s, t) + d(t, ω),

∫

A0

dμ(ω)

∫ d(s,ω)

d(t,ω)

1

μ(B(t, 2ε))
dε

=

∫
1{d(t,ω)≤ε≤d(s,ω)}1{d(t,ω)≤2d(s,t)}

1

μ(B(t, 2ε))
dεdμ(ω)

≤
∫

1{d(t,ω)≤ε}1{ε≤3d(s,t)}
1

μ(B(t, 2ε))
dεdμ(ω)

≤
∫

1{ε≤3d(s,t)}
μ(B(t, ε))

μ(B(t, 2ε))
dε ≤ 3d(s, t) . (13.149)

Next, for n ≥ 1 let

An = {ω ∈ A ; 2nd(s, t) ≤ d(t, ω) ≤ 2n+1d(s, t)} .

It follows from (13.145) that for ω ∈ An,

d(s, ω) ≤ d(t, ω) + 2−n(p−1)d(s, t) ,

so that
∫ d(s,ω)

d(t,ω)

1

μ(B(t, 2ε))
dε ≤ 2−n(p−1)d(s, t)

1

μ(B(t, 2n+1d(s, t)))
,

and consequently

∫

An

dμ(ω)

∫ d(s,ω)

d(t,ω)

1

μ(B(t, 2ε))
dε ≤ 2−n(p−1)d(s, t) .

The result follows by summation over n ≥ 1 and combining with (13.149).

�
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Proof of Theorem 13.5.8. On the probability space (T, μ) consider the pro-
cess (Xt)t∈T given by

Xt(ω) = c

∫ Δ(T,d)/2

d(t,ω)

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε , (13.150)

where the constant c ≤ 1 will be determined later. Choosing s = ω and t
with d(s, t) ≥ Δ(T, d)/2 we first observe that

sup
s,t∈T

|Xs(ω)−Xt(ω)| ≥ c

∫ Δ(T,d)/2

0

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε ,

and thus

E sup
s,t∈T

|Xs −Xt| ≥ c

∫

T

dμ(ω)

∫ Δ(T,d)/2

0

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε . (13.151)

Next, letting a(ω) = min(d(s, ω), d(t, ω)) and b(ω) = max(d(s, ω), d(t, ω)),
we have

|Xs(ω)−Xt(ω)| = c

∫ b(ω)

a(ω)

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε .

Since b(ω) − a(ω) ≤ d(s, t), we have c(b(ω) − a(ω))/d(s, t) ≤ 1. Using the
convexity of ϕ in the second inequality, and Jensen’s inequality in the third
inequality,

ϕ
(Xs(ω)−Xt(ω)

d(s, t)

)

= ϕ

(
c(b(ω)− a(ω))

d(s, t)

1

b(ω)− a(ω)

∫ b(ω)

a(ω)

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε

)

≤ c(b(ω)− a(ω))

d(s, t)
ϕ

(
1

b(ω)− a(ω)

∫ b(ω)

a(ω)

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε

)

≤ c

d(s, t)

∫ b(ω)

a(ω)

1

μ(B(ω, 3ε))
dε . (13.152)

Lemma 13.5.9 implies that we may choose c = c(p) depending on p only such
(13.125) holds. Combining (13.151) with the definition of S(T, d, ϕ) we then
obtain

sup
ω∈T

∫ Δ(T,d)/2

0

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε ≤ K(p)S(T, d, ϕ) ,

and change of variable then completes the proof. 
�
Our next result is a more general form of Lemma 13.1.14.
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Lemma 13.5.10. Assume that

the function x �→ ϕ−1(1/x) is convex . (13.153)

Assume that for each probability measure μ on T one has

∫

T

dμ(t)

∫ Δ(T,d)

0

ϕ−1
( 1

μ(B(t, ε))

)
dε ≤ B . (13.154)

Then there exists a probability measure μ on T for which

sup
t∈T

∫ Δ(T,d)

0

ϕ−1
( 1

μ(B(t, ε))

)
dε ≤ B . (13.155)

Proof. We copy the proof of Lemma 13.1.14. Let us denote byM(T ) the set
of probability measures on T . The class C of functions on T that satisfy

∃μ ∈M(T ) ; ∀ t ∈ T , fμ(t) :=

∫ Δ(T,d)

0

ϕ−1
( 1

μ(B(t, ε))

)
dε ≤ f(t)

is convex. For each probability measure ν on T , there exists f in C with∫
fdν ≤ B. This is because this is true for f = fν by (13.154). Consequently

by the Hahn-Banach theorem, there exists f ∈ C such that f ≤ B, which is
the content of the lemma. 
�

Condition (13.153) is inessential and is imposed only for simplicity. It is
the behavior of ϕ−1 at zero that matters.

Our next result uses a probability measure as in (13.135) to construct
a suitable admissible net. There is a genuine difficulty in this construction,
namely that the measure of the balls B(t, ε) can greatly vary for a small vari-
ation of t. This difficulty has been bypassed in full generality by an argument
of W. Bednorz, which we present now. This argument is so effective that the
difficulty might no longer be noticed. Without loss of generality, we assume

ϕ(1) = 1 , (13.156)

but (13.153) is not required.

Theorem 13.5.11 (W. Bednorz, [1]). Consider a probability measure μ
on T , and let

B = sup
t∈T

∫ Δ(T,d)

0

ϕ−1
( 1

μ(B(t, ε))

)
dε . (13.157)

Then there is an admissible sequence T of subsets of T for which

S(T ) ≤ LB ; S∗(T ) ≤ LB . (13.158)
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A probability μ on (T, d) as in (13.157) is traditionally called a majorizing
measure. Theorems 13.5.2 and 13.5.11 below show that indeed such a mea-
sure can be used to “majorize” processes on T . Technically any probability
measure on T is a majorizing measure, although when using this name one
unusually implicitly assume that the resulting bound on the process is of
interest. The importance of majorzing measures has greatly decreased since
the invention of the generic chaining, since they seem no longer of any use in
the context of Gaussian processes, see Section 6.2.

The proof of Theorem 13.5.11 is based on the functions εn(t) defined for
n ≥ 0 as

εn(t) = inf
{
ε > 0 ; μ(B(t, ε)) ≥ 1

ϕ(4n)

}
. (13.159)

This quantity is well defined since ϕ(4n) ≥ 1 for n ≥ 0.

Lemma 13.5.12. We have

μ(B(t, εn(t))) ≥
1

ϕ(4n)
; (13.160)

|εn(s)− εn(t)| ≤ d(s, t) , (13.161)

∀ t ∈ T ,
∑

n≥0

4nεn(t) ≤ 2B . (13.162)

Proof. First, (13.160) is obvious, and since B(t, ε) ⊂ B(s, ε+d(s, t)), εn(s) ≤
εn(t) + d(s, t) and (13.161) follows. Next, since

ε < εn(t)⇒ ϕ−1
( 1

μ(B(t, ε))

)
> 4n ,

we have

B ≥
∑

n≥0

∫ εn(t)

εn+1(t)

ϕ−1
( 1

μ(B(t, ε))

)
dε ≥

∑

n≥1

4n(εn(t)− εn+1(t)) .

Now,

∑

n≥0

4n(εn(t)− εn+1(t)) =
∑

n≥0

4nεn(t)−
∑

n≥0

4n−1εn(t) ≥
1

2

∑

n≥0

4nεn(t) . 
�

Lemma 13.5.13. For each n ≥ 0 there exists a subset Tn of T that satisfies
the following conditions:

card Tn ≤ ϕ(4n) . (13.163)

The balls B(t, εn(t)) for t ∈ Tn are disjoint . (13.164)

∀ t ∈ T , d(t, Tn) ≤ 4εn(t) . (13.165)

∀ t ∈ Tn , ∀ s ∈ B(t, εn(t)) , εn(s) ≥
1

2
εn(t) . (13.166)
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Proof. We define D0 = T and we choose t1 ∈ D0 such that εn(t1) is as
small as possible. Assuming that we have constructed Dk−1 �= ∅, we choose
tk ∈ Dk−1 such that εn(tk) is as small as possible and we define

Dk =
{
t ∈ Dk−1 ; d(t, tk) ≥ 2(εn(t) + εn(tk))

}
.

The construction continues as long as possible. It stops at the first integer
p for which Dp = ∅. We define Tn = {t1, t2 . . . , tp}. Consider tk, tk′ ∈ Tn

with k < k′. Then by construction, and since the sequence (Dk) decreases,
tk′ ∈ Dk, so that

d(tk′ , tk) ≥ 2(εn(tk′) + εn(tk)) ,

and therefore the balls B(tk, εn(tk)) and B(tk′ , εn(tk′)) are disjoint. This
proves (13.164) and (13.160) implies (13.163). To prove (13.165) consider
t ∈ T and the largest k ≥ 1 such that t ∈ Dk−1. Then by the choice of tk we
have εn(t) ≥ εn(tk). Since by definition of k we have t �∈ Dk the definition of
Dk shows that

d(t, tk) ≤ 2(εn(t) + εn(tk)) ≤ 4εn(t) ,

and since tk ∈ Tn this proves (13.165).
Finally, consider tk and s ∈ B(tk, εn(tk)). If s ∈ Dk−1 then εn(s) ≥ εn(tk)

and (13.166) is proved. Otherwise, the unique k′ such that s ∈ Dk′−1 and
s �∈ Dk′ satisfies k′ < k. Since s ∈ Dk′−1 but s �∈ Dk′ , the definition of this
set shows that

d(s, tk′) ≤ 2(εn(s) + εn(tk′)) ,

and since d(s, tk) ≤ εn(tk) we get

d(tk, tk′) ≤ d(s, tk) + d(s, tk′) ≤ εn(tk) + 2(εn(s) + εn(tk′)) . (13.167)

On the other hand, since k′ < k then tk ∈ Dk−1 ⊂ Dk′ so the definition of
this set implies

d(tk, tk′) ≥ 2(εn(tk) + εn(tk′)) ,

and comparing with (13.167) completes the proof of (13.166). 
�
Proof of Theorem 13.5.11. For n ≥ 0 we consider the set Tn provided by
Lemma 13.5.13, so cardT0 = 1. Combining (13.162) and (13.165) we obtain

∑

n≥0

4nd(t, Tn) ≤ 8B ,

and this proves that S(T ) ≤ 8B.
Next, since μ(B(s, εn(s)) ≥ 1/ϕ(4n) by (13.160) and since d(s, Tn−1) ≤

4εn−1(s) by (13.165), for n ≥ 1 we have

∑

s∈Tn

d(s, Tn−1)

ϕ(4n)
≤ 4
∑

s∈Tn

∫

B(s,εn(s))

εn−1(s)dμ(t) .
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Now, combining (13.161) and (13.166) for t ∈ B(s, εn(s)) implies

εn−1(s) ≤ εn−1(t) + εn(s) ≤ εn−1(t) + 2εn(t) ,

and since the balls B(s, εn(s)) are disjoint for s ∈ Tn this yields

∑

s∈Tn

4nd(s, Tn−1)

ϕ(4n)
≤ 4n+1

∫

T

(εn−1(t) + 2εn(t))dμ(t) .

Summation over n ≥ 1 and use of (13.162) conclude the proof. 
�
For a metric space (T, d) we define M(T, d, ϕ) as the infimum over all

probability measures μ on T of the quantity

sup
t∈T

∫ Δ(T,d)

0

ϕ−1
( 1

μ(B(t, ε))

)
dε . (13.168)

Combining Theorems 13.5.2, 13.5.8 and 13.5.11, we have proved the following.

Theorem 13.5.14. If the distance d is p-concave, then

S(T, d, ϕ) ≤ LM(T, d, ϕ) ≤ K(p)S(T, d, ϕ) . (13.169)

This allows in principle to compute S(T, d, ϕ) although the determination of
the quantity M(T, d, ϕ) is by no means easy.

What happens when we do not assume that the distance is p-concave?
This situation will be briefly discussed in the next section, and we end up
the present section by discussing two more specialized questions. A striking
feature of Theorem 13.1.1 is that even though we studied processes that
satisfied E(Xs − Xt)

2 = d(s, t) where d is the usual distance on the unit
interval, we ended up considering the sequence In of partitions of this unit
interval, and, implicitly, the distance δ given by δ(s, t) = 2−n where n is the
largest integer for which s, t belong to the same element of In. This distance
is ultrametric, i.e. it satisfies

∀ s, t, v ∈ T , δ(s, t) ≤ max(δ(s, v), δ(t, v)) . (13.170)

Note that in particular a distance is ultrametric if and only if it is p-concave
for all p. Ultrametric distances are intimately connected to increasing se-
quences of partitions, because the balls of a given radius form a partition in
a ultrametric space. As the following shows, the occurrence of an ultrametric
structure is very frequent.

Theorem 13.5.15 (W. Bednorz [3]). Let us assume that the Young func-
tion ϕ satisfies

∀ k ≥ 1 ,
∑

n>k

4n

ϕ(4n)
≤ C

4k

ϕ(4k)
. (13.171)
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Consider an admissible sequence T of subsets of (T, d). Then there exists a
ultrametric distance δ ≥ d and an admissible sequence T ∗ of subsets of (T, δ)
such that

S(T ∗) + S∗(T ∗) ≤ K(C)(S(T ) + S∗(T )) , (13.172)

where K(C) depends on C only.

In words, this means that if the existence of an admissible net provides a
bound for processes that satisfy the increment condition (13.125), then there
is an ultrametric distance δ greater than d such that the processes satisfying
the increment condition (13.125) for this greater distance basically still satisfy
the same bound.

Proof. Let T = (Tn)n≥0. In a first step we prove that we may assume that the
sequence (Tn) increases. Define T ′

0 = T0 and for n ≥ 1 define T ′
n = ∪k<nTk.

Thus
cardT ′

n ≤
∑

k<n

ϕ(4k) ≤
∑

k<n

4k−nϕ(4n) ≤ ϕ(4n) ,

so that the sequence T ′ = (T ′
n)n≥1 is admissible. Since d(t, T ′

n) ≤ d(t, Tn−1)
for n ≥ 1, it follows that S(T ′) ≤ 4S(T ). Next, we observe that for n ≥ 2,
and since T ′

n ⊂ ∪k<nTk,

∑

s∈T ′
n

d(s, T ′
n−1) ≤

∑

k<n

∑

s∈Tk

d(s, T ′
n−1) ≤

∑

k<n

∑

s∈Tk

d(s, Tk−1) ,

because Tk−1 ⊂ T ′
n−1 for k < n. For n = 1, d(s, T ′

n−1) = 0 for s ∈ T ′
1 = T0.

Thus, using (13.171) in the last line,

S∗(T ′) =
∑

n≥1

∑

s∈T ′
n−1

4nd(s, T ′
n−1)

ϕ(4n)

≤
∑

n≥2

∑

k<n

∑

s∈Tk

4nd(s, Tk−1)

ϕ(4n)

=
∑

k≥1

∑

s∈Tk

d(s, Tk−1)
∑

n>k

4n

ϕ(4n)

≤ CS(T ) .

In summary, the sequence T ′ is admissible and increasing, and satisfies
S(T ′) ≤ 4S(T ) and S∗(T ′) ≤ CS∗(T ). Therefore replacing T by T ′ we now
assume that the sequence (Tn) increases. Let us consider the points πn(t) as
in the proof of Theorem 13.5.2. Since the sequence (Tn) increases, we have
πk(t) = t for t ∈ Tn and k ≥ n. Given s, t ∈ T , let us consider the largest
integer m for which πm(s) = πm(t) and define

δ(s, t) = 2max
(∑

k≥m

d(πk(t), πk+1(t)),
∑

k≥m

d(πk(s), πk+1(s))
)
. (13.173)
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It is straightforward to check that this defines a ultrametric distance. More-
over, since t = πn(t) for n large enough, the triangle inequality implies

d(t, πm(t)) ≤
∑

k≥m

d(πk(t), πk+1(t)) ,

so that
δ(s, t) ≥ 2max

(
d(t, πm(t)), d(s, πm(s))

)
≥ d(s, t) ,

because d(s, t) ≤ d(s, πm(s)) + d(t, πm(s)) = d(s, πm(s)) + d(t, πm(t)).
Consider now t ∈ T and s = πn(t) ∈ Tn. Then πk(t) = πk(s) for k ≤ n,

and πk(s) = s for k ≥ n. Consequently the definition of δ shows that

δ(t, Tn) ≤ 2
∑

k≥n

d(πk(t), πk+1(t)) . (13.174)

Interchanging as usual the sums over k and n
∑

n≥0

4nδ(t, Tn) ≤
∑

k≥0

d(πk(t), πk+1(t))
∑

n≤k

4n ≤
∑

k≥0

4kd(πk(t), πk+1(t)) ,

and (13.138) proves that if we denote by T ∗ the sequence (Tn) seen as an
admissible sequence in the metric space (T, δ), then S(T ∗) ≤ LS(T ).

Now, if t ∈ Tn+1 we have πk(t) = t for k ≥ n + 1 and thus (13.174) and
(13.133) yields δ(t, Tn) ≤ 2d(πn+1(t), πn(t)) = 2d(πn+1(t), Tn) = 2d(t, Tn).
This implies that S∗(T ∗) ≤ 2S∗(T ). 
�

The conclusion of Theorem 13.5.15 is not true without some kind of con-
dition on ϕ such as (13.171). A counter example is provided in [9] in the case
ϕ(x) = x.

Another topic that we would like to briefly investigate is to which extend
we can improve (13.131) by requiring a stronger integrability condition on
sups,t |Xs −Xt|. For a Young function ϕ, and a r.v. X let us define

‖X‖ϕ = inf{u > 0 ; Eϕ(X/u) ≤ 1} , (13.175)

so that the distance of (13.126) is simply ‖Xs −Xt‖ϕ. It would be nice if we
could replace the left-hand side of (13.131) by

∥∥∥ sup
s,t∈T

|Xs −Xt|
∥∥∥
ϕ
,

but unfortunately this is not true. However we have the following (which is
a special case of a general principle, see [9]).

Proposition 13.5.16. Assume that for a Young function ψ we have

x ≥ ϕ−1(1) = 1 , y ≥ 1⇒ ϕ(xy) ≥ ϕ(x)ψ(y) . (13.176)

Then we may replace (13.131) by
∥∥∥ sup
s,t∈T

|Xs −Xt|
∥∥∥
ψ
≤ L(S(T ) + S∗(T )) . (13.177)
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In particular we may improve the metric entropy bound (13.141) into

∥∥∥ sup
s,t∈T

|Xs −Xt|
∥∥∥
ψ
≤ L

∫ Δ(T,d)

0

ϕ−1(N(T, d, ε))dε . (13.178)

Proof. Proceeding as in (13.135) we observe that for each number a > 0 we
have

sup
t∈T

|Xt −Xt0 | ≤ a sup
t∈T

∑

n≥1

4nd(πn−1(t), πn(t))

+
∑

n≥1

∑

s∈Tn

b(n, s)ϕ
(Yn,s

a

)
, (13.179)

where we lighten notation by writing

b(n, s) =
4nd(s, θn(s))

ϕ(4n)
; Yn,s =

|Xs −Xθn(s)|
d(s, θn(s))

.

Let us define

h(ω) = inf

{
a > 0 ;

∑

n≥1

∑

s∈Tn

b(n, s)ϕ
(Yn,s(ω)

a

)
≤ 2S∗(T )

}
, (13.180)

so that (13.179) implies

sup
t∈T

|Xt(ω)−Xt0(ω)| ≤ h(ω) sup
t∈T

∑

n≥1

4nd(πn−1(t), πn(t)) + 2S∗(T ) ,

and recalling (13.138) it suffices to prove that ‖h‖ψ ≤ 2. We deduce
from (13.180)

∑

n≥1

∑

s∈Tn

b(n, s)ϕ
(Yn,s(ω)

h(ω)

)
= 2S∗(T ) . (13.181)

Recalling that ϕ(1) = 1 (so that ϕ(x) ≤ 1 for |x| ≤ 1) and that the sum of
the coefficients b(n, s) for s ∈ Tn and n ≥ 1 is S∗(T ),

∑

n≥1

∑

s∈Tn

b(n, s)ϕ
(Yn,s(ω)

h(ω)

)
1{Yn,s≤h(ω)} ≤ S∗(T ) ,

and comparing with (13.181),

∑

n≥1

∑

s∈Tn

b(n, s)ϕ
(Yn,s(ω)

h(ω)

)
1{Yn,s(ω)|>h(ω)} ≥ S∗(T ) . (13.182)

Now, (13.176) implies that ϕ(y/h(ω)) ≤ ϕ(y)/ψ(h(ω)) for y ≥ 1 and h(ω) ≥
1. Using this for y = Ys,n(ω), (13.182) implies
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1{h(ω)≥1}ψ(h(ω))S
∗(T ) ≤

∑

n≥1

∑

s∈Tn

b(n, s)ϕ(Ys,n(ω)) .

Since the expected value of the right-hand side is ≤ S∗(T ), taking expectation
implies E1{h(ω)≥1}ψ(h(ω)) ≤ 1. Since taking x = y = 1 in (13.176) proves
that ψ(1) ≤ 1, it follows that Eψ(h) ≤ 2, so Eψ(h/2) ≤ 1 and ‖h‖ψ ≤ 2. 
�

Condition (13.176) is essentially optimal, as the following challenging ex-
ercise shows.

Exercise 13.5.17. Investigate the necessary conditions on the function ψ
so that for any metric space and any process (Xt)t∈T that satisfies (13.125)
one has

∥∥∥ sup
s,t∈T

|Xs −Xt|
∥∥∥
ψ
≤ L

∫ Δ(T,d)

0

ϕ−1(N(T, d, ε))dε . (13.183)

(Hint. Consider N and the space T of cardinality N where any two distinct
points are at distance 1. Consider ε < 1 and consider disjoint events (Ωt)t∈T

with P(Ωt) = ε/N . Apply (13.183) to the process (Xt)t∈T given by Xt =
ϕ−1(N/ε)1Ωt .)

13.6 Chaining, III

We now briefly discuss the problem of the boundedness of processes that
satisfy (13.125) in a general metric space, when the distance is not assumed
to be p-concave.

In all the examples of chaining we have used, the interpolation points
πn(t) converge geometrically towards t. This feature is not always optimal.
To understand this, consider a toy example, the unit interval with the usual
distance.

Proposition 13.6.1. Consider a process (Xt)t∈[0,1] that satisfies

∀ s, t ∈ [0, 1] , E|Xs −Xt| ≤ |s− t| . (13.184)

Then
E sup

0≤s,t≤1
|Xs −Xt| ≤ 1 . (13.185)

Proof. If 0 ≤ t1 < . . . < tn ≤ 1, then

E sup
�<�′

|Xt� −Xt′�
| ≤ E

∑

1≤�<n

|Xt�+1
−Xt� | ≤

∑

1≤�≤n

t�+1 − t� ≤ 1 . 
�

Exercise 13.6.2. Prove that if μ is a probability measure on [0, 1] then

∫ 1

0

dt

∫ 1

0

1

μ(B(t, ε))
dε =∞ .
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Exercise 13.6.3. Review the proof of Theorem 13.5.2 to show that when
ϕ(x) = |x|, then one can improve (13.131) into

E sup
s,t∈T

|Xs −Xt| ≤ LS∗(T ) .

Exercise 13.6.4. On [0, 1] consider the distance δ given by d(s, t) = 2−n,
where n is the largest such that s, t belong to the same dyadic interval of
length 2−n. Construct an unbounded process (Xt) on ([0, 1], δ) that satisfies
(13.125). Compare the covering numbers of (T, δ) and (T, d) where T = [0, 1]
and d is the usual distance.

What happens in Proposition 13.6.1 is that one can joint two elements of
the space by a long chain of small steps (and this is not the case in the setting
of Exercise 13.6.4). A somewhat similar phenomenon occurs when T = [0, 1]p

is provided with the usual distance d. Which are the functions ϕ such that
the processes satisfying (13.125) are bounded? In that situation the covering
numbers N(T, d, ε) behave like ε−p, so Corollary 13.5.3 implies that it suffices
that ∑

n

2−nϕ−1(2np) <∞ .

This, however, is not sharp. It is proved in [9] that the necessary and sufficient
condition is

∑
n 2

−nϕ′(2n(1−p)) <∞ (and that this condition is weaker than
the previous one, which is not obvious). We do not reproduce these results,
which unfortunately are still waiting to receive their first application.

There is some kind of “connectivity” in the structure of [0, 1]p that ex-
plains the previous results. This phenomenon does not exist when the dis-
tance is ultrametric, as Exercise 13.6.4 shows. There are of course situations
where both aspects are present, e.g. if one takes a product of [0, 1]p with a
ultrametric space. Not surprisingly, these situations are “intermediate” be-
tween the “connected case” and the ultrametric case. Complete computations
are performed in [9] in such a genuinely non-trivial instance. The compli-
cated necessary and sufficient conditions found in this case probably indicate
that no simple complete description of the metric spaces for which condi-
tion (13.125) implies boundedness can be found, even in the “homogeneous
situation” where covering numbers suffice.

13.7 Notes and Comments

Il y a les questions qui se posent, et les questions que l’on se pose.
Henri Poincaré

This is a fundamental thought. I feel that unfortunately many of the problems
considered in the chapter belong to the second category rather than the first.
What is the point of determining the sequences (am) as in Theorem 13.2?
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Of course one might say (and the author agrees) that it is worth the effort
to determine the best possible condition on these sequences (am) just to
make sure that we understand what is going on. As for solving any practical
problem, that is, determining whether an actual orthonormal series converges,
it is very unlikely that this series has been chosen by a clever adversary
making matters as bad as possible. Matters should typically be much better
than this “worst case” study.

Similarly, how important is the question of studying boundedness of pro-
cesses under the increment conditions (13.125)? The author undertook the
systematic study [9] because he wanted to work on the problem of bounded-
ness of Gaussian processes, and felt that he had no chance unless he under-
stood really well majorizing measures. The strategy worked, but the author
does not feel that these are important questions, and covered only the part of
the theory which is made irresistibly attractive by the recent work of W. Bed-
norz, who found these very clean and seemingly final arguments. Section 13.5
follow very closely those of his corresponding papers.

In his formidable paper [7], A. Paszkiewicz writes: “ Only classical meth-
ods will be used. A reader who knows only the classical proofs of Rademacher-
Menshov and Tandori theorems ([5] Chap. 8) is as much prepared to study
this paper as a reader who knows contemporary theory, e.g. the generic chain-
ing.” It is tempting to paraphrase him, and to say that the reader who know
only contemporary theory is as much prepared to study Bednorz’s theorem
than a reader who also knows classical theory. The reader will of course decide
by herself which approach she prefers.

Let us stress that a particularly important contribution of W. Bednorz
is to have brought to light the technical importance of (13.4), after which
everything becomes much easier.

Let us finally point out that when the Young function ϕ as in Section 13.5
has “polynomial growth” rather than “exponential growth”, it does not seem
possible to characterize the size of T according to majorizing measures in
terms of the size of the trees it contains, as we did in Section 6.2.
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10. Tandori, K.: Über die divergenz der Orthogonalreihen. Publ. Math. Drecen 8,
291–307 (1961)
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14. Matching Theorems, II: Shor’s Matching
Theorem

14.1 Introduction

This chapter continue Chapter 4, which should be fresh in the reader’s mind
before attempting to penetrate the more difficult material presented here. In
particular the notion of “evenly spread” points is explained on page 101. The
main result is as follows.

Theorem 14.1.1 (P. Shor). Consider evenly spread points (Yi)i≤N of
[0, 1]2. Set Yi = (Y 1

i , Y
2
i ). Consider i.i.d. points (Xi)i≤N uniform over [0, 1]2

and set Xi = (X1
i , X

2
i ). Then with probability ≥ 1 − LN−10 there exists a

matching π such that

∑

i≤N

|X1
i − Y 1

π(i)| ≤ L
√
N logN (14.1)

sup
i≤N

|X2
i − Y 2

π(i)| ≤ L

√
logN

N
. (14.2)

The power N10 plays no special role, and (14.1) and (14.2) show that
Theorem 14.1.1 improves upon Theorem 4.3.1. The difference of course is
that in Theorem 4.3.1 we know only that |X2

i − Y 2
π(i)| ≤ L

√
logN/N in

average over i while now we know this for each i ≤ N .
A remarkable feature of Theorem 14.1.1 is that both coordinates do not

play the same role. Following this idea, one may ask the following.

Research problem 14.1.2 (The ultimate matching conjecture). Prove
or disprove the following. Consider α1, α2 > 0 with 1/α1+1/α2 = 1/2. Then
with high probability we can find a matching π such that, for j = 1, 2, we
have

∑

i≤N

exp

(√
N

logN

|Xj
i − Y j

π(i)|
L

)αj

≤ 2N .

Noting that

∑

i≤N

exp a4i ≤ 2N ⇒ max
i≤N

|ai| ≤ L(logN)1/4 ,
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shows that the case α1 = α2 = 4 would provide a very neat common gen-
eralization of Theorems 4.3.1 and 4.4.1, while the case “α1 = 2, α2 = ∞”
(when suitably formulated) would be much stronger than Theorem 14.1.1. In
Chapter 15 we shall prove a suitable version of this conjecture in dimension
d ≥ 3. In dimension 2, a partial result in the direction of Problem 14.1.2 is
as follows.

Theorem 14.1.3. Consider a number 0 < α < 1/2, an integer N ≥ 2, and
evenly spread points (Yi)i≤N of [0, 1]2. Set Yi = (Y 1

i , Y
2
i ). Consider i.i.d..d

points (Xi)i≤Nuniform over [0, 1]2 and set Xi = (X1
i , X

2
i ). Then with proba-

bility ≥ 1− LN−10 there exists a matching π such that

∑

i≤N

exp

(√
N

logN

|X1
i − Y 1

π(i)|
K(α)

)α

≤ 2N (14.3)

sup
i≤N

|X2
i − Y 2

π(i)| ≤ K(α)

√
logN

N
. (14.4)

Since exp |x|α ≥ |x|/K(α), it follows from (14.3) that

∑

i≤N

|X1
i − Y 1

π(i)| ≤ L
√
N logN . (14.5)

Of course (14.4) and (14.5) show that Theorem 14.1.3 improves upon The-
orem 14.1.1. We leave it to the reader to show that when α increases, the
conclusion of Theorem 14.1.3 becomes stronger. A special case of the ultimate
matching conjecture is to prove Theorem 14.1.3 for α = 2 (which is a nice
research problem by itself). We shall not prove Theorem 14.1.3 here. The
proof is based on the same ideas as the proof of Theorem 14.1.1 but is more
technical. It can be found in [2]. It is quite simpler than the original proof
of this result [1] (which did not reach as good a value of α). We decided this
time to present the simpler case of Theorem 14.1.1, since the reader really
desperate to see the proof of Theorem 14.1.3 can probably find it easily.

14.2 The Discrepancy Theorem

The proof of Theorem 14.1.1 relies again on Proposition 4.2.1 and a “discrep-
ancy theorem” of the same nature as (4.55), but for a more complicated class
of functions. This is Theorem 14.2.1 below. It requires some preparations to
state this discrepancy theorem.

To prove Theorem 14.1.1 we do not care about what happens at a scale
less than

√
logN/

√
N . We shall later choose an integer p with 2−p about√

logN/
√
N , with the idea of dividing the unit square into 22p equal little
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squares, and we think of each of these little squares a single point. This mo-
tivates to introduce the set G = {1, . . . , 2p}2, each point of G corresponding
to a little square. So G is now our model for the unit square [0, 1]2. (The
reader observes that the notation G does not have the same meaning as in
Chapter 4.) We forget about the unit square until the near end of the present
section, on page 470, when we will come back to it and complete the proof of
Theorem 14.1.1 by easy arguments. We turn our attention to proving match-
ing theorems in G.

We want to match random points (Ui)i≤N of G to “evenly spread” points
(Zi)i≤N of G. Since 22p may not divide N , we may not be able to put the
same number of points Zi at each point of G. For (k, �) ∈ G, let us introduce

n(k, �) = card{i ≤ N ; Zi = (k, �)} , (14.6)

so that ∑

(k,�)∈G

n(k, �) = N . (14.7)

Since 2−p is about
√
logN/

√
N , N/22p is about logN , and hence large, and

since we try to make the points (Zi) evenly spread, we can certainly arrange
that for a certain integer m0 we have

m0 ≤ n(k, �) ≤ 2m0 . (14.8)

We note that (14.7) implies

N2−2p−1 ≤ m0 ≤ N2−2p . (14.9)

We shall always assume that
m0 ≥ p . (14.10)

It is natural to consider on G the probability measure μ given by

μ({(k, �)}) = n(k, �)

N
. (14.11)

Thus for a function h on G, we have

∫
hdμ =

1

N

∑

(k,�)∈G

n(k, �)h(k, �) . (14.12)

For all practical purposes, one may think to μ as the uniform measure on
G. The reader should not be disturbed that we shall consider i.i.d. r.v.s (Ui)
of law μ rather than uniform. This simply corresponds to the fact that each
point of G will not represent exactly a little square of side 2−p but rather a
slightly different domain, as will become clear later.
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We consider the class H of functions h : G→ R such that
∑

|h(k, �+ 1)− h(k, �)| ≤ 22p (14.13)

∀ k, � , |h(k + 1, �)− h(k, �)| ≤ 1 . (14.14)

The summation in (14.13) is over 1 ≤ k ≤ 2p , 1 ≤ � ≤ 2p − 1. To lighten
notation we will not mention any more that it is always understood that when
a quantity such as h(k, � + 1) − h(k, �) occurs in a summation, we consider
only the values of � with �+ 1 ≤ 2p. In a similar manner, when the quantity
|h(k + 1, �) − h(k, �)| occurs in a condition, it is alway understood that we
consider only the values of k for which k + 1 ≤ 2p.

It is not obvious yet that the class H of functions is related to a matching
problem, although of course the discussion at the end of Section 4.2 makes it
less surprising. Let us also keep in mind that we are dealing with a difficult
problem, so patience is required from the reader in this section, and things
can become clear only gradually.

The central ingredient to our approach is the following.

Theorem 14.2.1. Consider independent r.v.s Ui valued in G, of law μ.
Then, with probability ≥ 1− exp(−46p), we have

∀h ∈ H ,
∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ L

√
pm0 2

2p . (14.15)

We shall explain soon how to turn this result in a matching theorem. The
larger the class H in (14.15), the better the matching theorem one gets. It is
therefore a natural question to wonder for which classes of functions a result
such as Theorem 14.2.1 might be true.

Research problem 14.2.2. Consider two functions θ1(x) ≥ x, θ2(x) ≥ x.
Consider the class H of functions h : G→ R such that
∑

θ1(|h(k + 1, �)− h(k, �)|) +
∑

θ2(|h(k, �+ 1)− h(k, �)|) ≤ 22p . (14.16)

What are the conditions on θ1 and θ2 so that

E sup
h∈H

∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ K

√
pm0 2

2p (14.17)

for a constant K independent of p?

Of particular interest is the case θ1(x) = x(log(3 + x))1/2 and θ2(x) = x.
A positive answer (and significant extra work) would allow to prove Theo-
rem 14.1.3 for α = 2.

We shall outline the proof of Theorem 14.2.1 on page 453, when we start
its proof, but we first prove that it implies a matching theorem (from which
Theorem 14.1.1 will easily follow). In the following statement we denote by
U1
i and U2

i the components of Ui, and similarly for Zi.
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Theorem 14.2.3. There exists a number L0 with the following property.
Assume that

p ≤ m0

L0
. (14.18)

Consider points (Zi)i≤N in G and assume that for each (k, �) ∈ G we have
card{i ≤ N ;Zi = (k, �)} = n(k, �) = Nμ({(k, �)}). Consider points (Ui)i≤N

in G and assume that (14.15) holds. Then we can find a permutation π of
{1, . . . , N} for which ∑

i≤N

|U1
i − Z1

π(i)| ≤ N , (14.19)

∀i ≤ N , |U2
i − Z2

π(i)| ≤ 1 . (14.20)

It is unimportant to have N rather than LN in (14.19).
We now follow the steps which we outlined at the end of Section 4.2. In

the specific situation here it cleans up matters to take advantage of the fact
that a number of the points Zi are located at a given point of G (which is
what we do in (14.24) below), so we repeat the general argument from the
beginning. Let us then start the proof of Theorem 14.2.3 until we run into
the main difficulty.

Beginning of the proof of Theorem 14.2.3. The first steps of the proof are
somehow canonical. The author cannot imagine how one could possible pro-
ceed otherwise. Proposition 4.2.1 (used with cij = |U1

i −Z1
j | if |U2

i −Z2
j | ≤ 1

and cij very large otherwise) implies that the smallest value of the left-hand
side of (14.19) among all permutations that satisfy (14.20) is given by

M1 = sup
∑

i≤N

(wi + w′
i) , (14.21)

where the supremum is taken over all families (wi), (w
′
i) for which

∀i, j ≤ N , |U2
i − Z2

j | ≤ 1⇒ wi + w′
j ≤ |U1

i − Z1
j | . (14.22)

We fix families (wi), (w
′
i) satisfying (14.22), and such that the supremum

is attained in (14.21). We consider the function h′ on G given by

h′(k, �) = min
j

{
|k − Z1

j | − w′
j ; |�− Z2

j | ≤ 1
}
.

When τ = (k, �) ∈ G we define h′(τ) = h′(k, �). By (14.22) we have h′(Ui) ≥
wi and thus (14.21) implies

M1 ≤
∑

i≤N

(h′(Ui) + w′
i) . (14.23)

For (k, �) ∈ G, we define

u(k, �) = − 1

n(k, �)

∑
{w′

i ; Zi = (k, �)} , (14.24)
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so that ∑

i≤N

w′
i = −

∑

G

n(k, �)u(k, �) . (14.25)

Consider the function h on G given by

h(k, �) = inf
{
|k − r|+ u(r, s) ; |�− s| ≤ 1

}
. (14.26)

Given (r, s) and j with Zj = (r, s) we can find j′ with Zj′ = Zj = (r, s) and
−w′

j′ ≤ u(r, s). Comparing the definitions of h and h′ proves that h′ ≤ h.
Consequently (14.23) and (14.25) imply

M1 ≤
∑

i≤N

h(Ui)−
∑

k,�

n(k, �)u(k, �) . (14.27)

Using (14.12) and (14.27) we get

M1 ≤
∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣−
∑

k,�

n(k, �)(u(k, �)− h(k, �)) . (14.28)

To pursue now it must occur that
∑

k,�

n(k, �)(u(k, �)− h(k, �)) small ⇒ the function h behaves well, (14.29)

so that we may have a chance that with high probability, for all possible
functions h arising in this manner, the quantity |

∑
i≤N (h(Ui) −

∫
hdμ)| is

small, and consequently the right-hand side of (14.28) remains bounded. The
difficulty (which is generic when deducing matching theorems from Proposi-
tion 4.2.1) is to find a usable way to express that “h behaves well”. In the
present case, this difficulty is solved by the following result.

Proposition 14.2.4. Consider numbers u(k, �) for (k, �) ∈ G = {1, . . . , 2p}2,
and consider the function h of (14.26), i.e.

h(k, �) = inf
{
u(r, s) + |k − r| ; (r, s) ∈ G , |�− s| ≤ 1

}
. (14.30)

Then
∀ k, � , |h(k + 1, �)− h(k, �)| ≤ 1 (14.31)

and

m0

∑

k,�

|h(k, �+ 1)− h(k, �)| ≤ L
∑

k,�

n(k, �)(u(k, �)− h(k, �)) . (14.32)

So, when the left-hand side of (14.29) is small, h behaves well in the
sense that m0

∑
k,� |h(k, �+ 1)− h(k, �)| is also small. This is of course what

motivated the introduction of the class H and of (14.13). The proof of Propo-
sition 14.2.4 is elementary, and is rather unrelated with the main ideas of this
work. It is given at the very end of the present chapter, in Section 14.6.
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End of the proof of Theorem 14.2.3. We continue from (14.28). Define

B = 2−2p
∑

|h(k, �+ 1)− h(k, �)| , (14.33)

and B′ = B + 1 so that B′ ≥ 1 and h/B′ ∈ H. Then (14.15) implies

∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ L

√
pm0 2

2pB′ , (14.34)

whereas (14.32) and (14.33) imply

∑
n(k, �)(u(k, �)− h(k, �)) ≥ m0

L

∑
|h(k, �+ 1)− h(k, �)|

=
m02

2p

L
B .

Combining with (14.28) and (14.34) we get, since B′ = B + 1,

M1 ≤ L
√
pm0 2

2pB′ − m0

L
22pB

≤ B22p
(
L
√
pm0 −

m0

L

)
+ L

√
pm02

2p . (14.35)

Consequently if the constant L0 in (14.18) is large enough, the first term is
negative, so that (14.35) implies as desired that M1 ≤ L

√
pm02

2p ≤ m02
2p ≤

N using (14.18) and (14.9). 
�

14.3 Decomposition of Functions of H

We now outline the proof of Theorem 14.2.1. The main difficulty is to control
γ2(H, d2), where d2 is the distance in �2(G), or, equivalently the Euclidean
distance on R

G. Ideally this should be done by using a suitable sequence
of functionals and Theorem 2.3.16. However, to find these functionals one
needs to understand the underlying geometry, which unfortunately the author
does not. The difficulty is to figure out how to use condition (14.13). (This
is a good place to repeat that as of today, the Ellipsoid theorem is only
instance of a clear geometric picture in this circle of ideas.) Being unable to
produce the “correct” argument, we must then resort to “ad hoc” arguments.
These are sufficient to prove Theorem 14.2.1, but they entail a small loss of
information, which prevents using these arguments to provide the solution to
Problem 14.2.2. To keep things simple we of course keep our outline of proof
a bit imprecise. The basic idea is to decompose a function h of H as a sum∑

j≥0 hj where the functions hj satisfy (14.14), and rather than (14.13), the

condition
|h(k, �+ 1)− h(k, �)| ≤ 2j . (14.36)
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This is condition becomes less stringent as j grows, but we also manage
to achieve that the support of hj is small, with a cardinal not larger than
2−2j cardG. Proving this decomposition requires only a discrete version of
the classical Vitali’s covering lemma.

We have different coefficients in (14.14) and (14.36), but this is only a
matter of scaling, and it is appropriate to think of a function satisfying these
two conditions as a kind of Lipschitz function. How do we use that the sup-
port of hj is small? We all know that a subset of small measure of the unit
square is contained in a disjoint union of rectangles of small measure, and it
is not difficult to prove a discrete version of this principle (which is given on
page 459). In this manner we can decompose each function hj as a sum of
functions on small sub-rectangles of G, each of them being a kind a Lipschitz
function, with the essential information that the sum of the cardinalities of
these sub-rectangles is at most about 2−2j cardG. For each of these pieces
we are basically in the situation of Theorem 4.3.2 (for a smaller value of
N). We cannot use that theorem directly, but we essentially copy its proof.
This is done in the central Proposition 14.3.3. The Fourier transform is then
replaced by the discrete Fourier transform. Unfortunately, as in the case of
Theorem 4.3.2, we also have to spend a significant part of the proof con-
trolling lower order terms. The proofs contain a number of small technical
ideas, the mastery of which the reader should eventually find most profitable.
One of these ideas in particular (symmetrization) is not small at all but fun-
damental, and the author feels that the two different proofs he presents of
Proposition 14.5.1 below are quite instructive as to the efficiency of this de-
vice.

We start now the detailed proofs. We recall the constant L0 of (14.18).
We define p as the largest integer for which

p22p ≤ N

2L0
, (14.37)

so that p22p ≥ N/L. We note that (14.18) is a consequence of (14.9).
Moreover, taking logarithm yields p ≤ L logN and therefore since 2−p ≤
L
√
p/
√
N ,

2−p ≤ L

√
logN√
N

, (14.38)

and also since log 2 < 1 and exp(−2p) = (2−2p)1/ log 2,

exp(−2p) ≤ L

N
. (14.39)

We consider the class H1 consisting of the functions h : G→ R such that

∀k, � , |h(k + 1, �)− h(k, �)| ≤ 1 ; |h(k, �+ 1)− h(k, �)| ≤ 1 . (14.40)

Given an integer j ≥ 2, for a number V > 0 we consider the class Hj(V ) of
functions h : G→ R such that
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∀k, � , |h(k + 1, �)− h(k, �)| ≤ 1 , |h(k, �+ 1)− h(k, �)| ≤ 2j (14.41)

card{(k, �) ∈ G ; h(k, �) �= 0} ≤ V . (14.42)

Proposition 14.3.1. If h ∈ H we can decompose

h =
∑

j≥1

hj where h1 ∈ LH1 and hj ∈ LHj(2
2p−j) for j ≥ 2 . (14.43)

Thus, we can decompose h as a sum of terms that satisfy simple condi-
tions, and that will be studied separately.

We will denote by I an interval of {1, . . . , 2p}, that is a set of the type

I = {k ; k1 ≤ k ≤ k2} .

Lemma 14.3.2. Consider a map f : {1, . . . , 2p} → R
+, a number a > 0 and

A =
{
k ; ∃I , k ∈ I ,

∑

k′∈I

f(k′) ≥ acard I
}
.

Then

cardA ≤ L

a

∑

k∈A

f(k) .

Proof. This uses a discrete version of the classical Vitali covering theorem
(with the same proof). Namely, a family I of intervals contains a disjoint
family I ′ such that

card
I∈I

⋃
I ≤ L card

I∈I′

⋃
I = L

∑

I∈I′

card I .

We use this for I = {I;
∑

k′∈I f(k
′) ≥ acard I}, so that A =

⋃
I∈I I and

cardA ≤ L
∑

I∈I′ card I. Since
∑

k′∈I f(k
′) ≥ acard I for I ∈ I ′, and since

the intervals of I ′ are disjoint and contained in A, we have a
∑

I∈I′ card I ≤∑
k′∈A f(k′). 
�

Proof of Proposition 14.3.1. We consider h ∈ H, and for j ≥ 2 we define

B(j) =
{
(k, �) ; ∃I , � ∈ I ,

∑

�′∈I

|h(k, �′ + 1)− h(k, �′)| ≥ 2jcard I
}
.

We claim that when r, s, � ≤ 2p, then

(r, s) �∈ B(j)⇒ |h(r, �)− h(r, s)| ≤ 2j |�− s| . (14.44)

To see this, assuming for specificity that s < �, we note that

|h(r, �)− h(r, s)| ≤
∑

�′∈I

|h(r, �′ + 1)− h(r, �′)| < 2jcard I
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where I = {s, s+1, . . . , �−1}, and where the last inequality follows from the
fact that s ∈ I and (r, s) �∈ B(j).

Using Lemma 14.3.2 for each � and summing over � we obtain

cardB(j) ≤ L

2j

∑

(k,�)∈B(j)

|h(k, �+ 1)− h(k, �)| .

Now (14.13) implies
∑

k,� |h(k, �+ 1)− h(k, �)| ≤ 22p, and therefore we get

cardB(j) ≤ L12
2p−j . (14.45)

We consider the smallest integer j0 such that L12
−j0 < 1/4, so that L1 ≤

2j0−2 and hence for j ≥ j0 we have

cardB(j) ≤ 22p−j+j0−2 , (14.46)

and in particular B(j) �= G. For j ≥ j0 we define

gj(k, �) = min
{
h(r, s) + |k − r|+ 2j |�− s| ; (r, s) �∈ B(j)

}
.

The idea here is that gj is a regularization of h. The larger j, the better gj
approximates h, but this comes at the price that the larger j, the less regular
gj is. We will simply use these approximations to write

h = (h− gj0) + (gj0 − gj0+1) + · · ·

to obtain the desired decomposition (14.43).
It is obvious that for (k, �) �∈ B(j) we have gj(k, �) ≤ h(k, �), and that

|gj(k + 1, �)− gj(k, �)| ≤ 1 (14.47)

|gj(k, �+ 1)− gj(k, �)| ≤ 2j , (14.48)

since gj is the minimum of functions that satisfy the same properties. Con-
sider (r, s) �∈ B(j). Then (14.44) yields

|h(r, �)− h(r, s)| ≤ 2j |�− s| ,

while the first part of (14.41) yields

|h(r, �)− h(k, �)| ≤ |k − r| ,

and thus we have proved that

(r, s) �∈ B(j)⇒ |h(k, �)− h(r, s)| ≤ |k − r|+ 2j |�− s| . (14.49)

This implies that gj(k, �) ≥ h(k, �). Consequently, since we already observed
that gj(k, �) ≤ h(k, �) for (k, �) �∈ B(j), we have proved that
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(k, �) �∈ B(j)⇒ gj(k, �) = h(k, �) . (14.50)

We define h1 = h−gj0 , and we prove first that h1 ∈ LH1. We want to bound
|h(k, �) − h(r, s)|. From (14.50) this quantity is 0 if both (k, �) and (r, s)
belong to B(1), so we may assume that say (r, s) �∈ B(1). Combining (14.47)
and (14.48) as in the proof of (14.49) we obtain that |g1(k, �) − g1(r, s)| ≤
|k − r| + 2|� − s|, and combining with (14.49) for j = 1 we obtain that
|h1(k, �)− h1(r, s)| ≤ 2|k − r|+ 4|�− s|, and we have proved that h1 ∈ 4H1.
For j > 1 we define hj = gj+j0−2 − gj+j0−1 so that, by (14.50), and since
B(j + j0 − 1) ⊂ B(j + j0 − 2),

hj(k, �) �= 0⇒ (k, �) ∈ B(j + j0 − 2) ,

and thus from (14.46) that

card{(k, �) ; hj(k, �) �= 0} ≤ 22p−j .

Combining with (14.47) and (14.48) we obtain hj ∈ LHj(2
2p−j).

Now for j > 2p we have B(j) = ∅ (since for each k and � we have
|h(k, � + 1) − h(k, �)| ≤ 22p by (14.13)), so that then gj = h from (14.50).
Consequently hj = 0 for large j and thus h =

∑
j≥1 hj . The proof is complete.


�
The central step in the proof of Theorem 14.2.1 is as follows.

Proposition 14.3.3. Consider 1 ≤ k1 ≤ k2 ≤ 2p , 1 ≤ �1 ≤ �2 ≤ 2p and
R = {k1, . . . , k2} × {�1, . . . , �2}. Assume that

�2 − �1 + 1 = 2−j(k2 − k1 + 1) . (14.51)

Consider independent r.v.s Ui valued in G, of law μ. Then, with probability at
least 1−L exp(−50p), the following occurs. Consider any function h : G→ R,
and assume that

h(k, �) = 0 unless (k, �) ∈ R . (14.52)

(k, �) , (k + 1, �) ∈ R⇒ |h(k + 1, �)− h(k, �)| ≤ 1 (14.53)

(k, �) , (k, �+ 1) ∈ R⇒ |h(k, �+ 1)− h(k, �)| ≤ 2j (14.54)

∀(k, �) ∈ R , |h(k, �)| ≤ 2(k2 − k1) . (14.55)

Then ∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ L2j/2

√
pm0 cardR , (14.56)

where m0 is as in (14.8) and (14.9).



458 14. Matching Theorems, II: Shor’s Matching Theorem

In order to understand the absolute necessity of condition (14.55) in this
theorem, the reader should consider the case where j = 0, k1 = k2 and
�1 = �2. In that case h satisfies (14.52) to (14.54) if (and only if) h(k, �) = 0
unless (k, �) = (k1, �1) = (k2, �2). The function h is then determined by
the value a it takes at the point (k1, �1) and the left-hand side of (14.56) is
|a|| card{i ≤ N ;Ui = (k0, �0)}−Nμ({(k, �)})|, so that (14.56) holds for every
value of a only when Nμ({(k, �)}) = card{i ≤ N,Ui = (k0, �0)}, and this is
not true in general.

We will also use the following, in the same spirit as Proposition 14.3.3,
but very much easier.

Proposition 14.3.4. Consider 1 ≤ k1 ≤ k2 ≤ 2p , 1 ≤ �0 ≤ 2p and R =
{k1, . . . , k2} × {�0}. Assume that

k2 − k1 + 1 ≤ 2j . (14.57)

Consider independent r.v.s Ui valued in G, of law μ. Then, with probability at
least 1−L exp(−50p), the following occurs. Consider any function h : G→ R,
and assume that

h(k, �) = 0 unless (k, �) ∈ R . (14.58)

(k, �) , (k + 1, �) ∈ R⇒ |h(k + 1, �)− h(k, �)| ≤ 1 (14.59)

∀(k, �) ∈ R , |h(k, �)| ≤ 2(k2 − k1) . (14.60)

Then
∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ L

√
m0(k2−k1+1)3/2 ≤ L2j/2

√
m0 cardR . (14.61)

Proof of Theorem 14.2.1. In Proposition 14.3.3 there are (crudely) at most
24p choices for the quadruplet (k1, k2, �1, �2). Thus with probability at least
1−L exp(−46p), the conclusions of Proposition 14.3.3 are true for all values
of k1, k2, �1 and �2, and the conclusions of Proposition 14.3.4 hold for all
values of k1, k2 and �0. We assume that this is the case in the remainder of
the proof.

First we show that if h ∈ H1 then

∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ L

√
pm0 2

2p . (14.62)

The proof relies on the case k1 = �1 = 1 and k2 = �2 = 2p of Proposi-
tion 14.3.4. The function h satisfies (14.53) and (14.54) and hence |h(k, �)−
h(1, 1)| ≤ 2p+1 for each (k, �) ∈ G. Consequently the function h∗(k, �) =
h(k, �) − h(1, 1) satisfies (14.55), (14.53) and (14.54). Therefore h∗ satisfies
(14.62) and consequently this is also the case for h.

Using now the decomposition (14.43) of a function in H provided by
Proposition 14.3.1, it suffices to show that if h ∈ Hj(2

2p−j) then
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∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ L

√
pm0 2

2p−j/2 . (14.63)

We think of j as being fixed once and for all. The idea is to use (14.56) for
the functions h1R where R is a suitable rectangle, and to recover (14.63) by
summation of the corresponding inequalities over a suitable disjoint family
of rectangles. The most difficult point is to ensure that the functions h1R

satisfy (14.55). In fact, rather than (14.55) we shall prove that

∀(k, �) ∈ R , |h(k, �)| ≤ L(k2 − k1) , (14.64)

which suffices by homogeneity.
For j ≤ q ≤ p we consider the partition D(q) of G consisting of the sets

of the type

{a2q + 1, . . . , (a+ 1)2q} × {b2q−j + 1, . . . , (b+ 1)2q−j} , (14.65)

where a and b are integers with 0 ≤ a < 2p−q and 0 ≤ b < 2p−q+j . For
3 ≤ q ≤ j, we define D(q) as the partition consisting of the sets of the type

{a2q + 1, . . . , (a+ 1)2q} × {b} (14.66)

where 0 ≤ a < 2p−q and 1 ≤ b ≤ 2p.
We observe that if q′ > q , R′ ∈ D(q′) and R ∈ D(q), then either R ⊂ R′

or R ∩R′ = ∅.
Fixing a function h ∈ Hj(2

2p−j), we consider the set C = {(k, �);h(k, �) �=
0} so cardC ≤ 22p−j . We proceed to the following construction. Keeping in
mind that the sequence (D(q)) of partitions increases, so that D(p) consists
of the largest rectangles, we first consider the set U(p) that is the union of
all rectangles R ∈ D(p) such that

card (R ∩ C) ≥ 1

8
cardR . (14.67)

Then we consider the union U(p− 1) of all the rectangles R ∈ D(p− 1) that
are not contained in U(p) and that satisfy (14.67), and we continue in this
manner until we construct U(3). Since the sets U(p) , . . . , U(3) are disjoint
and each is a union of disjoint sets satisfying (14.67), we get

∑

3≤q≤p

cardU(q) ≤ 8cardC ≤ 22p−j+3 . (14.68)

Moreover
C ⊂

∑

1≤q≤p

U(q) . (14.69)

This is simply because if (k, �) ∈ C and (k, �) ∈ R ∈ D(3) then if (k, �) �∈⋃
q≥4 U(q) we have R ⊂ U(3) since (14.67) holds because cardR = 8. We

also note that
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R ∈ D(q) , q ≤ p− 1 , R ⊂ U(q)⇒ card (R ∩ C) ≤ 1

2
cardR . (14.70)

Indeed if R′ ⊃ R and R′ ∈ D(q+1), then cardR′ ≤ 4cardR. Since R ⊂ U(q)
we have R′ �⊂ U(q + 1), so that

card (R ∩ C) ≤ card (R′ ∩ C) ≤ 1

8
card R′ ≤ 1

2
cardR .

Now (14.69) implies

h =
∑

h1R , (14.71)

where the summation is over 3 ≤ q ≤ p , R ∈ D(q) and R ⊂ U(q). Writing
R = {k1, . . . , k2} × {�1, . . . , �2} as in Proposition 14.3.3, we observe that by
construction (14.51) holds for q ≥ j, that (14.57) holds for 3 ≤ q ≤ j, and
that the function h1R satisfies (14.52) to (14.54).

We turn to the proof of (14.64). We start by the typical case, R ∈
D(q) , 3 ≤ q < p. Then (14.70) implies that there exists (k0, �0) ∈ R with
h(k0, �0) = 0, and (14.41) implies, using also (14.51),

|h(k, �)| = |h(k, �)− h(k0, �0)| ≤ |h(k, �)− h(k, �0)|+ |h(k, �0)− h(k0, �0)|
≤ 2j |�− �0|+ |k − k0| ≤ 2(k2 − k1) ,

and this proves (14.64).
Next we consider the case q = p so that R ∈ D(p) and R = {1, . . . , 2p} ×

{b2p−j + 1, . . . , (b+ 1)2p−j + 1}. Given an integer r, define

R′ = G ∩ ({1, . . . , 2p} × {b2p−j + 1− r, . . . , (b+ 1)2p−j + 1 + r}) .

Then, for r ≤ 2p, we have cardR′ ≥ 2pr/L, so that if 2pr/L > 22p−j , R′

contains a point (k, �′) with h(k, �′) = 0. Then R contains a point (k, �) with
|�− �′| ≤ r, so that the second part of (14.41) implies

|h(k, �)| ≤ r2j .

Assuming that we choose r as small as possible with 2pr/L > 22p−j , we then
have

|h(k, �)| ≤ L22p−j2−p2j ≤ L2p ,

and (14.41) shows that this remains true for each point (k, �) of R, completing
the proof of (14.64).

Consequently for R ∈ D(q) , R ⊂ U(q) and j ≤ q ≤ p we can use (14.56),
which implies

∣∣∣
∑

i≤N

(h1R(Ui)−
∫

h1Rdμ)
∣∣∣ ≤ L

√
pm0 2

j/2cardR . (14.72)

Moreover for 3 ≤ q ≤ j this inequality remains true from (14.61). Recalling
(14.71), summation of these inequalities over R ∈ D(q) , R ⊂ U(q) yields
(14.63) and completes the proof. 
�
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14.4 Discrete Fourier Transform

We turn to the proof of Proposition 14.3.3. This proposition is a close cousin of
Theorem 4.3.2. There is a “main contribution” that comes from the functions
h for which

∀k, � , h(k1, �) = h(k2, �) ; h(k, �1) = h(k, �2) (14.73)

and there are “second-order contributions”. To bring this out, one uses a
discrete version of the decomposition (4.77). Since this is really tedious, we
shall not give all the details, which present no difficulty.

The following is closely related to Proposition 4.3.8 and its relevance to
Theorem 14.2.1 should be obvious.

Proposition 14.4.1. Consider integers q1, q2 ≤ 2p, and the class G of func-
tions h : G′ = {0, . . . , q1} × {0, . . . , q2} → R that satisfy

∀� ≤ q2 , h(0, �) = h(q1, �) (14.74)

∀k ≤ q1 , h(k, 0) = h(k, q2) , (14.75)

as well as

∀k, � , |h(k + 1, �)− h(k, �)| ≤ 1 ; |h(k, �+ 1)− h(k, �)| ≤ 2j (14.76)

∀k, � , |h(k, �)| ≤ 2q1 . (14.77)

Assume that
2−j−1q1 ≤ q2 ≤ 2−j+1q1 . (14.78)

Then
γ2(G, d) ≤ L

√
p2j/2q1q2 (14.79)

and
en(G, d) ≤ 2−n/22j/2q1q2 , (14.80)

where d is the Euclidean distance on R
G′
.

Proof. The idea is (again) to use the Fourier transform to reduce to the
study of certain ellipsoids. Consider the groups H1 = Z/q1Z , H2 = Z/q2Z,
and their product H := H1 ⊗H2. Consider the canonical map ψ from G′ to
H. Given a function h on H the function h ◦ ψ on G′ satisfies (14.74) and
(14.75).

Consider the class G∗ of functions h from H = H1 ⊗H2 to R that satisfy
(14.76) and (14.77), where now k ∈ H1, � ∈ H2 and where 1 denotes the
image of 1 ∈ Z in either H1 or H2. Then G is exactly the class of functions
h ◦ ψ for h ∈ G∗. For a function h on H let us denote by ‖h‖∗ its norm
in L2(μ), where μ is the uniform probability measure of H, and by d∗ the
corresponding distance. It is straightforward that for two functions h1 and
h2 on H one has
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‖h1 ◦ ψ − h2 ◦ ψ‖22 ≤ 2q1q2‖h1 − h2‖2∗ ,

where on the left-hand side the norm is for the Euclidean distance. Therefore,
it suffices to prove the estimates

γ2(G∗, d∗) ≤ L2j/2
√
pq1q2 (14.81)

and
en(G∗, d∗) ≤ 2−n/22j/2

√
q1q2 . (14.82)

For this we use the Fourier transform in the group H = H1 ⊗ H2. For
integers r1 and r2, we define

cr1r2(h) =
1

q1q2

∑

(k,�)∈H1⊗H2

exp
(
2iπ
(r1
q1

k +
r2
q2

�
))

h(k, �) , (14.83)

and we have the Plancherel formula

‖h‖2∗ =
∑

0≤r1<q1,0≤r2<q2

|cr1r2(h)|2 . (14.84)

Changing k into k + 1 in (14.83) we get

cr1r2(h) = exp
(
2iπ

r1
q1

) 1

q1q2

∑

H1⊗H2

exp
(
2iπ
(r1
q1

k +
r2
q2

�
))

h(k + 1, �)

and thus
(
exp
(
−2iπ r1

q1

)
−1
)
cr1r2(h)

=
1

q1q2

∑

(k,�)∈H1⊗H2

exp
(
2iπ
(r1
q1

k +
r2
q2

�
))

(h(k + 1, �)− h(k, �)) .

Using (14.84) for the function h′(k, �) = h(k+1, �)−h(k, �) and the first part
of (14.76) we get

∑

0≤r1<q1,0≤r2<q2

∣∣∣1− exp
(
−2iπ r1

q1

)∣∣∣
2

|cr1r2(h)|2 = ‖h′‖2∗ ≤ 1 .

We now use that for 0 ≤ r1 < q1 we have

∣∣∣1− exp
(
−2iπ r1

q1

)∣∣∣ ≥
1

Lq1
min(r1, q1 − r1)

to get ∑

0≤r1<q1,0≤r2<q2

1

Lq21
min(r1, q1 − r1)

2
∣∣cr1r2(h)

∣∣2 ≤ 1 .
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Proceeding in the same manner with the second variable, and combining with
the previous inequality we get

∑

0≤r1<q1,0≤r2<q2

dr1,r2 |cr1r2(h)|2 ≤ 1 , (14.85)

where

dr1,r2 =
1

Lq21
min(r1, q1 − r1)

2 +
1

L22jq22
min(r2, q2 − r2)

2 .

Since d0,0 = 0 condition (14.85) does not control c0,0, but (14.77) shows
that |c0,0| ≤ 2q1 and thus c20,0/8b

2
0,0 ≤ 1/2. Therefore, since 22jq22 ≤ Lq21 by

(14.78), we have
∑

0≤r1<q1,0≤r2<q2

|cr1r2(h)|2
b2r1,r2

≤ 1 , (14.86)

were b20,0 = 8q21 while for (r1, r2) �= (0, 0),

1

b2r1,r2
=

1

Lq21
min(r1, q1 − r1)

2 +
1

Lq21
min(r2, q2 − r2)

2 .

The Plancherel formula (14.84) describes G∗ as isometric to a subset of the
ellipsoid E in C

q1q2 defined by (14.86) so that it suffices to prove the estimates
(14.81) and (14.82) for E rather than G∗. The key point is the following: for
each t > 0,

card{(r1, r2) ; b2r1,r2 ≥ t} ≤ Lq21
t

. (14.87)

To prove this we observe first that b2r1,r2 ≤ L0q
2
1 for all values of r1 and r2,

so that it suffices to prove (14.87) when t < L0q
2
1 , since the left-hand side is

0 otherwise. When b2r1,r2 ≥ t then

min(r1, q1 − r1) ≤
Lq1√

t
and min(r2, q1 − r2) ≤

Lq1√
t
.

There are at most L(1+q1/
√
t) choices for both r1 and r2. But since t < L0q

2
1

and hence 1 ≤ L
1/2
0 q1/

√
t, we have

1 +
q1√
t
≤ (1 + L

1/2
0 )

q1√
t
,

and thus there are at most L′q1/
√
t choices for each of r1 and r2, and this

proves (14.87).
It follows from (14.87) that if we reorder the numbers b2r1,r2 as a non-

increasing sequence (a2i )1≤i≤q1q2 then for each i ≥ 1 (using (14.78) in the
second inequality) we have
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a2i ≤
Lq21
i
≤ L2jq1q2

i
, (14.88)

and moreover the ellipsoid E defined by (14.86) is isometric to the ellipsoid
of Cq1q2 given by

∑

1≤i≤q1q2

|xi|2
a2i

≤ 1 .

We leave it to the reader to check that in the case of complex ellipsoids (2.118)
yields

en+3(E) ≤ 3max
k≤n

a2k+12k−n .

Now (14.88) implies that a2k ≤ L2−k/22j/2
√
q1q2 and therefore en+3(E) ≤

L2j/2
√
q1q2 maxk≤n 2

k/2−n and this proves (14.82). Moreover since q1q2 ≤
22p, we have

∑
i≤q1q2

1/i ≤ Lp and (14.88) implies

∑

1≤i≤q1q2

a2i ≤ Lp2jq1q2 ,

and (2.115) proves (14.81). 
�

14.5 Main Estimates

The following formally states the control of the main contribution in Propo-
sition 14.3.3.

Proposition 14.5.1. Consider 1 ≤ k1 ≤ k2 ≤ 2p , 1 ≤ �1 ≤ �2 ≤ 2p and
assume that (14.51) holds. Let R = {k1, . . . , k2} × {�1, . . . , �2}. Consider
independent r.v. Ui valued in G, with P(Ui = (k, �)) = n(k, �)/N . Then,
with probability at least 1− L exp(−50p), the following occurs. Consider any
function h : G→ R that satisfies (14.73), i.e.

∀k, � , h(k1, �) = h(k2, �) ; h(k, �1) = h(k, �2) . (14.73)

and assume that moreover

h(k, �) = 0 unless (k, �) ∈ R , (14.89)

(k, �) , (k + 1, �) ∈ R⇒ |h(k + 1, �)− h(k, �)| ≤ 1 , (14.90)

(k, �) , (k, �+ 1) ∈ R⇒ |h(k, �+ 1)− h(k, �)| ≤ 2j , (14.91)

∀(k, �) ∈ R , |h(k, �)| ≤ 2(k2 − k1 + 1) . (14.92)

Then ∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ L2j/2

√
pm0 cardR . (14.93)
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We shall present two proofs of this proposition. The first one relies on
Bernstein’s inequality. Is pretty straightforward, but the control in the supre-
mum norm becomes a bit of a nuisance, and although all the required esti-
mates are essentially trivial, putting all of them together takes a page or so
of calculations. After this first proof, we shall present a second proof using
a fundamental method called symmetrization. This method replaces (most
of) the use of Bernstein’s inequality by the use of the subgaussian inequality.
The comparison of both proofs is quite instructive.

Lemma 14.5.2. With probability ≥ 1− exp(−100p) we have

∀ (k, �) ∈ G , card{i ≤ N ; Ui = (k, �)} ≤ Lm0 . (14.94)

Proof. We are here talking about the tails of the Binomial law. The r.v.s
Yi = 1{Ui=(k,�)}−μ({(k, �)}) satisfy EYi = 0, |Yi| ≤ 1 and EY 2

i ≤ μ({(k, �)}),
where

μ({(k, �)}) = n(k, l)

N
≤ 2m0 . (14.95)

Thus Bernstein’s inequality (4.59) implies

P
(∑

i≤N

Yi ≥ u
)
≤ exp

(
− 1

L
min
( u2

2m0
, u
))

.

Since m0 ≥ p, the choice u = Lm0 implies that with probability at least
1 − exp(−102p) we have

∑
i≤N Yi ≤ Lm0, and using (14.95) again (14.94)

holds for a given value of (k, �), and the result follows. 
�
First proof of Proposition 14.5.1. We denote by G the class of functions on
G that satisfy conditions (14.89) to (14.92). To lighten notation we write

s = k2 − k1 + 1 .

Consider the distance δ on R given by

δ((k, �), (k′, �′)) = |k − k′|+ 2j |�− �′| .

Then the functions of G are 1-Lipschitz for this distance. We leave it to the
reader to check that the space (R, δ) satisfies (4.67) with α = 2 and B = Ls,
so that (4.69) implies en(G, d∞) ≤ Ls2−n/2. Consider then the largest integer
m such that

2m ≤ pm0 cardR (14.96)

and a subset T of G with card T ≤ Nm and

∀t ∈ G , d∞(t, T ) ≤ Ls2−m/2 . (14.97)

The core of the proof is to deduce from Theorem 2.2.28 that with probability
≥ 1− exp(−100p) we have
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sup
h∈T

∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ L2j/2

√
pm0 cardR . (14.98)

A first observation is that (14.8) implies

∫
h2dμ =

∑

k,�

n(k, �)

N
h2(k, �) ≤ 2m0

N

∑

k,�

h2(k, �) .

Consequently, given h and h′, the r.v.s Zi = (h(Ui)−
∫
hdμ)−(h′(Ui)−

∫
h′dμ)

satisfy EZi = 0, EZ2
i ≤ 2m0d(h, h

′)2/N and |Zi| ≤ 2d∞(h, h′). We then
deduce from Bernstein’s inequality (4.59) that the r.v.s Yh =

∑
i≤N (h(Ui)−∫

hdμ) satisfy the condition

∀u > 0,P(|Yh − Yh′ | ≥ u) ≤ 2 exp

(
−min

(
u2

Lm0d(h, h′)2
,

u

Ld∞(h, h′)

))
.

In other words, the condition (2.50) of Theorem 2.2.28 is satisfied with d1 :=
Ld∞ and d2 = L

√
m0d. In order to apply this theorem we estimate the

various quantities it involves.
Since en(G, d∞) ≤ Ls2−n/2, we have en(T, d∞) ≤ Ls2−n/2 and moreover

en(T, d∞) = 0 for n ≥ m, so that Corollary 2.3.2 implies γ1(T, d∞) ≤ Ls2m/2.
Now, since d1 = Ld∞, we have γ2(T, d1) ≤ Lγ2(T, d∞) and en(T, d1) ≤
Len(T, d∞) so that

γ1(T, d1) ≤ Ls2m/2 ; D1 =
∑

n≥0

en(T, d1) ≤ Ls . (14.99)

Proposition 14.4.1 implies

γ2(T, d) ≤ L2j/2
√
p cardR

∀n ≥ 0 , en(T, d) ≤ L2j/22−n/2 cardR .

Thus, and since d2 = L
√
m0d,

γ2(T, d2) ≤ L2j/2
√
pm0 cardR ; D2 =

∑

n≥0

en(T, d2) ≤ L2j/2
√
m0 cardR .

(14.100)
Consequently, using (14.99) and (14.100), Theorem 2.2.28 implies

P
(

sup
h,h′∈T

|Yh − Yh′ | ≥ LU
)
≤ exp(−min(u2

2, u1)) , (14.101)

where

U = s2m/2 + 2j/2
√
pm0 cardR+ u1s+ u22

j/2√m0 cardR .

We choose u1 = 100p and u2 = 10
√
p, so that the right-hand side of (14.101)

is ≤ exp(−100p). We observe from (14.51) that
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s = k2 − k1 + 1 = 2j/2
√
cardR ,

and using (14.96) we obtain that s2m/2 ≤ L2j/2
√
m0p cardR. Also, and since

p ≤ m0, we have p ≤ √
m0p and sp ≤ L2j/2

√
m0p

√
cardR. Consequently

U ≤ L2j/2
√
m0p cardR. Since 0 ∈ C we may assume that 0 ∈ T , and we

have proved that (14.98) holds with the required probability.
In the last step we deduce from (14.98) that we can actually control the

supremum over all h ∈ G. Consider two functions h, h∗ ∈ G. Since h and h∗

are 0 outside R, we have

∣∣∣
∑

i≤N

(h(Ui) −
∫

hdμ)−
∑

i≤N

(h∗(Ui)−
∫

h∗dμ)
∣∣∣

≤
∑

i≤N

|h(Ui)− h∗(Ui)|+N

∫
|h− h∗|dμ

≤ ‖h− h∗‖∞(card{i ≤ N ; Ui ∈ R}+NA) , (14.102)

where A = P(Ui ∈ R) = μ(R). Therefore, since for each h ∈ G we can find
h∗ in T with ‖h− h∗‖∞ ≤ Ls2m/2, we obtain

sup
h∈G

∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ sup

h∈T

∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ (14.103)

+ Ls2−m/2(card{i ≤ N ; Ui ∈ R}+NA) .

Since P(Ui = (k, �)) = μ({(k, �)}) = n(k, �)/N ≤ 2m0/N , we have NA ≤
2m0 cardR. With probability at least 1−exp(−100p) the event (14.94) occurs
and then

card{i ≤ N ; Ui ∈ R} ≤ Lm0 cardR.

The last term in the right-hand side of (14.103) is then at most

Ls2−m/2m0 cardR = L2−m/22j/2m0(cardR)3/2 .

Since L2m/2 ≥
√
pm0 cardR by definition of m, the above quantity is ≤

L2j/2
√

m0/p cardR ≤ L2j/2
√
pm0 cardR. This finishes the proof. 
�

The second proof of Proposition 14.5.1 relies on the following, where εi
denote independent Bernoulli r.v.s independent of the r.v.s Ui.

Proposition 14.5.3. Using the notation of Proposition 14.5.1, let us denote
by G the class of functions on G that satisfy conditions (14.89) to (14.92).
Then with probability ≥ 1− L exp(−100p), we have

sup
g∈G

∣∣∣
∑

i≤N

εih(Ui)
∣∣∣ ≤ L2j/2

√
pm0 cardR . (14.104)
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Proof. Proposition 14.4.1 implies

γ2(G, d) ≤ L2j/2
√
p cardR ; Δ(G, d) ≤ L2j/2 cardR . (14.105)

Let us assume that the event of Lemma 14.5.2 occurs. Let us think of the
points Ui as being fixed and consider the random distance dω on G given by

dω(h, h
′)2 =

∑

i≤N

(h(Ui)− h′(Ui))
2 , (14.106)

so that (14.94) implies dω(h, h
′) ≤ L

√
m0d(h, h

′) and we get from (14.105)

γ2(G, dω) ≤ L2j/2
√
pm0 cardR ; Δ(G, dω) ≤ L2j/2

√
m0 cardR . (14.107)

Denoting by Pε the conditional probability given the r.v.s Ui, the subgaussian
inequality (3.2.2) implies that the process Xh =

∑
i≤N εih(Ui) satisfies the

increment condition

Pε(|Xh −Xh′ | ≥ u) ≤ 2 exp
(
− u2

dω(h, h′)2

)
.

Since 0 ∈ G, Theorem 2.2.27 then implies

Pε

(
sup
h∈G

∣∣∣
∑

i≤N

εih(Ui)
∣∣∣ ≥ L(γ2(G, dω) + uΔ(G, dω))

)
≤ exp(−u2) .

Consequently, taking u = L
√
p, we obtain

Pε

(
sup
h∈G

∣∣∣
∑

i≤N

εih(Ui)
∣∣∣ ≥ L2j/2

√
pm0 cardR

)
≤ exp(−100p) . (14.108)

This inequality holds provided the event of Lemma 14.5.2 occurs, which is
the case with probability ≥ 1− exp(−100p). This completes the proof. 
�

This of course was simpler than the first proof of Proposition 14.5.1, but
the difficult point, i.e. the control of γ2(G, d) is the same. Moreover, some
work remains to be done.

Second proof of Proposition 14.5.1. We consider a sequence (U ′
i) that is dis-

tributed like the sequence (Ui), but is independent of this sequence and of
the sequence (εi). Then, with probability ≥ 1 − exp(−100p) we have both
(14.104) and

sup
h∈G

∣∣∣
∑

i≤N

εih(U
′
i)
∣∣∣ ≤ L2j/2

√
pm0 cardR ,

and consequently

sup
h∈G

∣∣∣
∑

i≤N

εi(h(Ui)− h(U ′
i))
∣∣∣ ≤ L2j/2

√
pm0 cardR .
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Now comes the beautiful part: the families (
∑

i≤N εi(h(Ui) − h(U ′
i)))h and

(
∑

i≤N (h(Ui)−h(U ′
i)))h have the same distributions, so that with probability

≥ 1− L exp(−100p) we have

sup
h∈G

∣∣∣
∑

i≤N

(h(Ui)− h(U ′
i))
∣∣∣ ≤ L2j/2

√
pm0 cardR . (14.109)

The rest of the proof is basically to integrate in U ′ and to use Jensen’s
inequality to move this integral inside the supremum and the absolute value.
For the argument it is clearer to assume that the underlying probability space
is a product with a generic point (ω, ω′) provided with a product probability
P⊗ P′ so that the r.v.s Ui depend only on ω while the r.v.s U ′

i depend only
on ω′. The exceptional event Ξ where (14.109) fails satisfies P ⊗ P′(Ξ) ≤
L exp(−100p). By Fubini’s theorem there exists an event Ω, depending only
on ω such that P(Ω) ≥ 1− L exp(−50p) and, for each ω ∈ Ω we have

P′(Ξω) ≤ L exp(−50p) , (14.110)

where
Ξω = {ω′ ; (ω, ω′) ∈ Ξ} .

We fix ω ∈ Ω and we denote by E′ expectation in ω′ only. Thus

E′ sup
h∈G

∣∣∣
∑

i≤N

(h(Ui)− h(U ′
i))
∣∣∣ ≤ I + II ,

where

I = E′1Ξc
ω
sup
h∈G

∣∣∣
∑

i≤N

(h(Ui)− h(U ′
i))
∣∣∣ ≤ L2j/2

√
pm0 cardR ,

whereas, using that |h(Ui)| ≤ L2p by (14.92),

II = E′1Ξω sup
h∈G

∣∣∣
∑

i≤N

(h(Ui)− h(U ′
i))
∣∣∣ ≤ LN2pP′(Ξω) .

Combining (14.39) with (14.110) we obtain that II ≤ L and thus, using
Jensen’s inequality, we prove that for ω ∈ Ω,

sup
h∈G

∣∣∣
∑

i≤N

(h(Ui)−
∫

hdμ)
∣∣∣ ≤ E′ sup

h∈G

∣∣∣
∑

i≤N

(h(Ui)−h(U ′
i))
∣∣∣ ≤ L2j/2

√
pm0 cardR .


�
The second-order contributions in Proposition 14.3.3 can e.g. be taken

care of by combining as previously the use of Bernstein’s inequality with the
following easy result.
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Proposition 14.5.4. Consider an integer q, and the class G of functions
h : {1, . . . , q} → R that satisfy

∀k ≤ q − 1 , |h(k + 1)− h(k)| ≤ 1

∀k ≤ q , |h(k)| ≤ 2q .

Then

N(G, d∞, ε) ≤ exp
(Lq

ε

)
(14.111)

and
γ2(G, d) ≤ Lq3/2 , (14.112)

where d denotes the Euclidean distance in R
q and d∞ the supremum distance.

Proof. First, (4.69) implies (14.111). This implies in turn that en(G, d∞) ≤
Lq2−n, and Corollary 2.3.2 yields γ2(G, d∞) ≤ Lq. Since d ≤ √

qd∞ on G,
this implies (14.112). 
�
Proof of Theorem 14.1.3. In this last part of the proof we go back from our
model G of the unit square to the unit square itself. This takes some care but
is completely elementary. Consider an integer N ≥ 2 and an integer p, that
will be determined later. For (k, �) ∈ G we consider the point

a(k, �) = ((2k − 1)2−p−1 , (2�− 1)2−p−1) ∈ [0, 1]2 .

These are the centers of 22p little squares C(k, �) of side 2−p that divide
[0, 1]2. To lighten notation, for τ = (k, �) ∈ G we write a(τ) = a(k, �) and
C(τ) = C(k, �). This notation will be used in particular for τ = Ui or τ = Zi.

Consider evenly spread points (Yj)j≤N , a map η : {1, . . . , N} → G such
that

Yj ∈ C(η(j)) , (14.113)

so that
d(Yj , a(η(j))) ≤

√
22−p−1 ≤ 2−p (14.114)

and set
n(k, �) = card{j ≤ N ; η(j) = (k, �)} , (14.115)

the number of points Yj that belong to C(k, �). To avoid trivial complications,
we assume that no point Yj belongs to the boundary of a little square C(k, �),
so that

∑
n(k, �) = N . The points Yj are evenly spread, so that these points

are centers of non-overlapping rectangles of area 1/N and diameter at most
20/
√
N . It should be clear that for N and N2−2p large enough, each square

C(k, �) contains about the same number of points Yi, so that, for a certain
integer m0, we have

m0 ≤ n(k, �) ≤ 2m0 . (14.116)
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Since with our choice of p, the quantity N2−2p is about logN , (14.116) holds
for N large enough. We consider N points (Zj) of G such that exactly n(k, �)
of them are located at the point (k, �). We can assume by (14.114) that these
points are labeled in a way that d(Yj , a(Zj)) ≤ 2−p.

Consider points Xi independently uniformly distributed over [0, 1]2. We
claim that we can find independently distributed points Ui of G such that
P(Ui = (k, �)) = n(k, �)/N and d(Xi, a(Ui)) ≤ L2−p. To see this we recall that
by our definition, the fact that the points (Yj)j≤N are uniformly spread means
there exists a partition of [0, 1]2 into N rectangles (Rj)j≤N of area 1/N , each

with a width and a height of order 1/
√
N , and each containing exactly one

point Yj . For (k, �) ∈ G we define the domain D(k, �) as the union of the sets
Rj for which η(j) = (k, �). It follows from (14.115) that there are n(k, �) such
rectangles, so that D(k, �) has area n(k, �)/N . We define Ui = (k, �) when
Xi ∈ D(k, �), so that the r.v.s Ui are i.i.d. and P (Ui = (k, �)) = n(k, �)/N .
Moreover, when Ui = (k, �) then Xi ∈ D(k, �) so that there exists j with
Xi ∈ Rj and η(j) = (k, �), and

d(Xi, a(Ui)) = d(Xi, a(k, �)) ≤ d(Xi, Yj) + d(Yj , a(η(j)) ≤ L2−p,

using (14.113) and that d(Xi, Yj) ≤ Δ(Rj) ≤ L/
√
N .

Let us write Xi = (X1
i , X

2
i ), Yi = (Y 1

i , Y
2
i ), and for τ ∈ G let us write

a(τ) = (a(τ)1, a(τ)2). Thus, by definition of a(τ), if τ = (k, �) we have a(τ)1 =
2−p−1(2k − 1) and a(τ)2 = 2−p−1(2�− 1). Thus, for j = 1, 2 we have

|a(Ui)
j − a(Zi′)

j | = 2−p|U j
i − Zj

i′ | . (14.117)

For j = 1, 2 we have

|Xj
i − Y j

i′ | ≤ |X
j
i − a(Ui)

j |+ |a(Ui)
j − a(Zi′)

j |+ |a(Zi′)
j − Y j

i′ |
≤ d(Xi, a(Ui)) + |a(Ui)

j − a(Zi′)
j |+ d(a(Zi′), Yi′)

≤ L2−p + 2−p|U j
i − Zj

i′ | , (14.118)

using (14.117) in the last line.
Theorems 14.2.1 and 14.2.3 imply that with probability ≥ 1 − LN−10,

there is a permutation π of {1, . . . , N} for which

∑

i≤N

|U1
i − Z1

π(i)| ≤ LN (14.119)

∀i ≤ N , |U2
i − Z2

π(i)| ≤ 1 . (14.120)

Recalling that 2−p ≤ L
√
logN/

√
N by (14.38) this proves Theorem 14.1.1.


�
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14.6 Proof of Proposition 14.2.4

It remains only to prove Proposition 14.2.4, and the next lemmas prepare for
this.

Lemma 14.6.1. Consider numbers (vk)k≤2p and (v′k)k≤2p . Consider the
numbers

g(k) = inf
{
vr + |k − r| ; 1 ≤ r ≤ 2p

}
, (14.121)

and the numbers g′(k) defined from the sequence (v′k) the way the numbers
g(k) are defined from the sequence (vk). Then

∑

k≤2p

|g(k)− g′(k)| ≤
∑

k≤2p

(
vk + v′k − g(k)− g′(k) + |vk − v′k|

)
. (14.122)

Proof. Obviously g(k) ≤ vk and g′(k) ≤ v′k. If g
′(k) ≥ g(k), then

g′(k)− g(k) ≤ v′k − g(k) = v′k − vk + vk − g(k)

≤ |v′k − vk|+ vk − g(k) + v′k − g′(k) .

A similar argument when g(k) ≥ g′(k) and summation finish the proof. 
�
We consider numbers u(k, �) for (k, �) ∈ G, and h(k, �) as in (14.30). We

set
v(k, �) = min{u(k, s) ; |�− s| ≤ 1} , (14.123)

so that
h(k, �) = inf

{
v(r, �) + |k − r| ; 1 ≤ r ≤ 2p

}
. (14.124)

We observe that v(k, �) ≤ u(k, �).

Lemma 14.6.2. We have

m0

∑

k≤2p,�<2p

|v(k, �+ 1)− v(k, �)| ≤ 10
∑

k,�≤2p

n(k, �)(u(k, �)− v(k, �)) .

(14.125)

Proof. We observe that |a− b| = a+ b− 2min(a, b), and that

v(k, �) ≤ min(u(k, �+ 1), u(k, �))

v(k, �+ 1) ≤ min(u(k, �+ 1), u(k, �)) .

Thus

|u(k, �+ 1)− u(k, �)| = u(k, �) + u(k, �+ 1)− 2min(u(k, �+ 1) , u(k, �))

≤ u(k, �)− v(k, �) + u(k, �+ 1)− v(k, �+ 1) .

By summation we get
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∑

k≤2p,�<2p

|u(k, �+ 1)− u(k, �)| ≤ 2
∑

k,�≤2p

(u(k, �)− v(k, �))

and since m0 ≤ n(k, �),

m0

∑

k≤2p,�<2p

|u(k, �+1)−u(k, �)| ≤ 2
∑

k,�≤2p

n(k, �)(u(k, �)−v(k, �)) . (14.126)

Now

|v(k, �)− u(k, �)| ≤ |u(k, �+ 1)− u(k, �)|+ |u(k, �− 1)− u(k, �)|

so that

|v(k, �+ 1)− v(k, �)| ≤ |v(k, �+ 1)− u(k, �+ 1)|+ |u(k, �+ 1)− u(k, �)|
+ |u(k, �)− v(k, �)|
≤ |u(k, �− 1)− u(k, �)|+ 3|u(k, �+ 1)− u(k, �)|
+ |u(k, �+ 2)− u(k, �+ 1)| .

Then (14.125) follows by summation from (14.126). 
�
Proof of Proposition 14.2.4. Given 1 ≤ � < 2p, we use Lemma 14.6.1 for
vk = v(k, �), and v′k = v(k, � + 1), where v(k, �) is given by (14.123). Thus
g(k) = h(k, �) and g′(k) = h(k, �+ 1). Summing the inequalities (14.122) for
1 ≤ k ≤ 2p we get

∑

k≤2p,�<2p

|h(k, �+ 1)− h(k, �)| ≤ 2
∑

k,�

(v(k, �)− h(k, �))

+
∑

k,�

|v(k, �)− v(k, �+ 1)| .

Using (14.125), and since m0 ≤ n(k, �) we get

m0

∑

k≤2p,�<2p

|h(k, �+ 1)− h(k, �)| ≤ 2
∑

k,�

n(k, �)(v(k, �)− h(k, �))

+ 10
∑

k,�

n(k, �)(u(k, �)− v(k, �))

≤ 12
∑

k,�

n(k, �)(u(k, �)− h(k, �)) ,

using that h(k, �) ≤ v(k, �) ≤ u(k, �) in the last line. This proves (14.32), and
(14.31) is obvious. 
�
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14.7 Notes and Comments

Shor’s original proof of Theorem 14.1.1 establishes more than this theorem,
since it produces a matching “on line”. The point of presenting our arguments
is of course that basically the same approach proves Theorem 14.1.3.

The expert might wonder why in the proof of Proposition 14.5.1, I have
first monkeyed around with Bernstein’s inequality instead of using sym-
metrization right away. The power of the symmetrization method has been
understood a long time ago through the work of many (and it is used in many
places in this book). However this method seemed really like an overkill to
prove something like Theorem 4.3.2, and this gave rise to the temptation of
proving all the matching theorems without using it. In the end I decided in
the case of Proposition 14.5.1 to keep both the approach using Bernstein’s
inequality and the approach using symmetrization, if only to demonstrate
the power of the symmetrization method.
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15. The Ultimate Matching Theorem in
Dimension ≥ 3

15.1 Introduction

In this chapter we continue the study of matchings, but in dimension d ≥ 3
rather than 2. We consider i.i.d. r.v.s (Xi)i≤N uniformly distributed over
the set [0, 1]d. We want to match these points to “evenly spread” points
(Yi)i≤N . Here we say that (Yi)i≤N are evenly spread if one can cover [0, 1]d

with N rectangular boxes with disjoint interiors, such that each box R has
a d-dimensional volume 1/N , contains exactly one point Yi, and is such that
R ⊂ B(Yi, 10

√
d/N1/d). The cost of a matching will be measured by a rather

general function ϕ. For simplicity of notation we state and prove our results
only for d = 3. No further ideas are needed to cover the case d ≥ 4. We
denote by λ(A) the Lebesgue measure of a subset A of R3. The entire chapter
is devoted to the proof of the following result.

Theorem 15.1.1 ([2]). Consider a convex function ϕ ≥ 0 on R
3, with

ϕ(0) = 0, which is allowed to take infinite values. Assume that it satisfies
the following conditions.

∀u ≥ 1 , λ({ϕ ≤ u}) ≥ log u , (15.1)

ϕ(±x1,±x2,±x3) = ϕ(x1, x2, x3) , (15.2)

ϕ(26, 0, 0) ≤ 22
25

; ϕ(0, 26, 0) ≤ 22
25

; ϕ(0, 0, 26) ≤ 22
25

. (15.3)

Then, with probability ≥ 1−LN−10 there exists a permutation π of {1, . . . , N}
such that

1

N

∑

i≤N

ϕ
(Xi − Yπ(i)

LN−1/3

)
≤ 1 . (15.4)

We shall start to discuss how to prove this result in Section 15.2, but in the
rest of the present section we discuss the meaning of the theorem itself.

Let us first give an example. Consider α1, α2, α3 ∈]0,∞] with

1

α1
+

1

α2
+

1

α3
= 1 ,

and the function

M. Talagrand, Upper and Lower Bounds for Stochastic Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
Modern Surveys in Mathematics 60, DOI 10.1007/978-3-642-54075-2 15,
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ψ(x1, x2, x3) = exp(|x1|α1 + |x2|α2 + |x3|α3)− 1 .

Here, we define |x|∞ = 0 if |x| < 1 and |x|∞ =∞ if |x| ≥ 1. We have

{ψ ≤ u} ⊃
{
(x1, x2, x3) ; ∀ j ≤ 3 , |xj | <

(1
3
log(1 + u)

)1/αj
}
,

and consequently

λ({ψ ≤ u}) ≥ 1

3
log(1 + u) .

The function ϕ(x) = ψ(x/27) satisfies ϕ(26, 0, 0) ≤ e − 1 (etc.) and since
λ({ϕ ≤ u}) = (27)3λ({ψ ≤ u}) it satisfies the conditions of Theorem 15.1.1.
The corresponding result proves in this setting the “ultimate matching con-
jecture” of Problem 14.1.2.

The special case α1 = α2 = α3 = 3 is essentially the case where
ϕ(x) = exp(‖x‖3)− 1. It was proved earlier by J. Yukich using the so-called
transportation method (unpublished), but the transportation method seems
powerless to prove anything close to Theorem 15.1.1. This special case shows
that with probability ≥ 1−N−10 we can find a matching for which

∑

i≤N

exp(Nd(Xi, Yπ(i))
3/L) ≤ 2N ,

so that in particular
∑

i≤N d(Xi, Yπ(i)) ≤ LN2/3 (since x ≤ expx) and

for each i, exp(Nd(Xi, Yπ(i))
3/L) ≤ 2N , so that maxi≤N d(Xi, Yπ(i)) ≤

LN−1/3(logN)1/3 (a result first obtained by J. Yukich and P. Shor in [1]).
Let us try to explain in words the difference between the situation in

dimension 3 and in dimension 2. In dimension 2, there are irregularities at
all scales in the distribution of a random sample (Xi)i≤N of [0, 1]2, and these
irregularities combine to create the mysterious fractional powers of logN . In
dimension 3, no such phenomenon occurs, but there are still irregularities at
many different scales. Cubes of volume about A/N with a deficit of points Xi

exist for A up to about logN . The larger A, the fewer such cubes, in a way
which is captured in Theorem 15.1.1 in an essentially optimal manner. The
essential feature of dimension≥ 3 is that, as we will detail below, irregularities
at different scales cannot combine.

Let us now discuss the conditions of Theorem 15.1.1. Condition (15.2) is
satisfied in the most natural examples. We feel that it might well be only a
matter of technical work to remove this condition altogether, but since the
elementary nature of this work would not be in the line of the main ideas
of this book, we have not attempted this. It is good to observe that (15.2)
implies

∀ j ≤ 3 , |xj | ≤ yj ⇒ ϕ(x) ≤ ϕ(y) (15.5)

because then x is in the convex hull of the points (±y1,±y2,±y3).
Condition (15.3) is rather mild. It prevents the set {ϕ ≤ 22

25} to be too
thin in one direction. It is in some sense necessary. To prove this we show
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the following. Given any number A, we can find a number a > 0 such that
if a function ϕ satisfies ϕ(x) = ∞ for |x1| > a then (15.4) where L = A
fails with probability ≥ 1/2 ≥ AN−10 for some value of N . Indeed, given
N and Y , the probability that ϕ(|Xi − Y |/AN−1/3) <∞ is λ([0, 1]3 ∩ (Y +
AN−1/3{ϕ <∞}) and this is≤ 2AaN−1/3. Consequently if a is small enough,
we can choose N ≥ 1 for which N2AaN−1/3 ≤ 1/2 and AN−10 < 1/2.
Then with probability ≥ 1/2 > AN−10 there exists no i ≤ N for which
ϕ(|Xi − Y1|/AN−1/3) < ∞ and then no permutation π for which (15.4)
holds.

The crucial condition of Theorem 15.1.1 is (15.1). This condition is also
necessary. That is, if (15.4) holds for a constant L0, then for u large enough
we must have

λ({ϕ ≤ u}) ≥ log u

L
. (15.6)

The idea to prove this is very simple, at least when explained at the most basic
level. Let us fix u and set U = {ϕ ≤ u}. If the set U has too small measure,
there are so many disjoint sets of the type x + N−1/3U which are entirely
contained in [0, 1]3, that one of them will contain no point Xi. On the other
hand there is a point Yj inside x + (1/2)N−1/3U and the cost of matching
this very point to a point Xi is already sufficient to make (15.4) impossible.
Of course there are many details to take care of, and, most importantly, one
must get really quantitative. Nonetheless it is perfectly true that (15.6) holds
because its failure creates obstacles to the existence of a good matching at a
given scale. The situation is then as follows: if there in no obstacle to a good
matching at any given scale, then (15.6) holds, and then Theorem 15.1.1
proves that good matchings exist. In word this justifies the second part of
the claim (4.29):

obstacles to matchings at different scales do not combine if d ≥ 3 .

This is fundamentally different from what happens in dimension 2.
We now start the rigorous proof that when (15.4) holds for a constant L0

and each N this implies (15.6). This proof occupies the rest of the present
section. Consider N large (to be specified later) and a subset F of [0, 1]3,
maximal with respect to the property that the sets x+2N−1/3L0U for x ∈ F
are disjoint and entirely contained in [0, 1]3. Let us assume for the moment
that

cardF ≥ exp(2(2L0)
3λ(U)) . (15.7)

Consider the event ΩN defined by

∃x ∈ F ; ∀ i ≤ N , Xi �∈ x+ 2N−1/3L0U .

We are first going to prove that (provided N is large enough) we have

P(ΩN ) ≥ 1/4 . (15.8)
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For this we use the standard device of comparing the set {X1, . . . , XN} with
a realization of a Poisson point process Π on [0, 1]3 of intensity 2N . For each
subset A of [0, 1]3 we have P(Π ∩ A = ∅) = exp(−2Nλ(A)). Now for x ∈ F
we have x + 2N−1/3L0U ⊂ [0, 1]3 and Nλ(x + 2N−1/3L0U) = (2L0)

3λ(U)
and therefore

P((x+ 2N−1/3L0U) ∩Π = ∅) = exp(−2(2L0)
3λ(U)) ≥ 1

cardF
. (15.9)

The events (15.9) are independent as x varies over F , because the corre-
sponding sets x + 2N−1/3L0U are disjoint. When considering m(= cardF )
independent events, each occurring with probability ≥ 1/m, the probability
that at least one of then occurs is ≥ 1− (1− 1/m)m ≥ 1− 1/e ≥ 1/2. Thus
P(Ω) ≥ 1/2, where the event Ω is defined by

∃x ∈ F , (x+ 2N−1/3L0U) ∩Π = ∅ . (15.10)

Consider a sequence (Xi)i≥1 that is i.i.d. uniformly distributed over [0, 1]3.
For M ≥ 1 define

pM := P(∃x ∈ F ; ∀ i ≤M , Xi �∈ x+ 2N−1/3L0U) ,

so that pN = P(ΩN ). Now we have

P(Ω| cardΠ = M) = pM ,

because given that cardΠ = M the set Π has the same distribution as the
set {X1, . . . , XM}. Thus

P(Ω ∩ {cardΠ = M}) = pMP(cardΠ = M) .

Obviously the sequence (pM ) decreases. Consequently

pNP(cardΠ ≥ N) = pN
∑

M≥N

P(cardΠ = M)

≥
∑

M≥N

pMP(cardΠ = M)

=
∑

M≥N

P(Ω ∩ {cardΠ = M})

= P(Ω ∩ {cardΠ ≥ N})
≥ P(Ω)− P(cardΠ < N) .

Since cardΠ is a Poisson r.v. of expectation 2N , for N large enough
P(cardΠ < N) ≤ 1/4. Since P(Ω) ≥ 1/2 this implies (15.8).

Let us now assume that ΩN occurs, and let x ∈ F such that x +
2N−1/3L0U contains no point Xi for i ≤ N . Using (15.3), we observe that for
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u ≥ 22
25

the set U contains the points (±26, 0, 0), (0,±26, 0, 0) and (0, 0±26).
Since U is convex it contains the set [−24, 24]3. Consequently (assuming with-
out loss of generality that L0 ≥ 10), the set x+N−1/3L0U contains the point
Yj which belongs to the small box R that contains x. Consider a permuta-
tion π of {1, . . . , N}. Then for i = π−1(j) we have Xi �∈ x+2N−1/3L0U and
Yπ(i) = Yj ∈ x+N−1/3L0U , so that Xi−Yπ(i) �∈ N−1/3L0U , and this implies

ϕ
(Xi − Yπ(i)

L0N−1/3

)
≥ u .

In particular for each permutation π of {1, . . . , N} we have

1

N

∑

i≤N

ϕ
(Xi − Yπ(i)

L0N−1/3

)
≥ u

N
.

Thus, since we assume that (15.4) occurs with probability ≥ 1 − LN−10 we
must have u ≤ N .

In conclusion we have shown that (15.7) implies u ≤ N , and thus

N < u⇒ cardF ≤ exp(2(2L0)
3λ(U)) . (15.11)

To use this we fix N as the largest integer for which N < u (so that N ≥
u−1 ≥ u/2) and we turn towards the study of lower bounds for cardF . Since
we assume that the cardinality of F is maximal, for every point y ∈ [0, 1]3,
either the set y+2N−1/3L0U intersects the boundary of [0, 1]3 or it intersects
a set x+2N−1/3L0U for some x in F . Consequently if we denote by D(u) the
diameter of U , every point y of [0, 1]3 is either within distance 2N−1/3L0D(u)
of the boundary of [0, 1]3 or belongs to a set x + 4N−1/3L0U . The volume
of the set of points within distance 2N−1/3L0D(u) of the boundary of [0, 1]3

is ≤ LL0D(u)N−1/3; the volume of the union of the sets x+ 4N−1/3L0U is
≤ (4L0)

3N−1λ(U) cardF . Since the union of these two domains cover [0, 1]3,
the sum of their volumes is ≥ 1, and thus

LL0N
−1/3D(u) + (4L0)

3N−1λ(U) cardF ≥ 1 . (15.12)

We recall from (15.3) that for u ≥ 22
25

we have U ⊃ V := [−24, 24]3. It
is then clear that for any z ∈ R

3 the convex hull W of z and U satisfies
λ(W ) ≥ 2d(0, z). Since U is convex for any z ∈ U we have λ(U) ≥ λ(W ) ≥
2d(0, z) i.e. U ⊂ B(0, λ(U)/2) and hence D(u) ≤ λ(U). If it happens that
LL0N

−1/3D(u) ≥ 1/2 then λ(U) ≥ D(u) ≥ N1/3/L, i.e. λ(U) is of order
u1/3 and the proof is finished. Otherwise (15.12) implies

cardF ≥ N

27L3
0λ(U)

,

and comparing with (15.11) and since N ≥ u/2 we obtain

u ≤ LL3
0λ(U) exp(2(2L0)

3λ(U)) ,

and this finishes the proof of (15.6).
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15.2 The Crucial Discrepancy Bound

The proof shares some superficial features with the approach of Section 14.1.
It is certainly not needed for the reader to have looked at this section before
reading the present chapter, but it is essential to review the discussion at the
end of Section 4.2, since the difficulty described there is probably the main
obstacle we face.

We are not interested in what happens at scales less that N−1/3 so that
we replace [0, 1]3 with the set G = {1, . . . , 2p}3, and we think of each point
of G as representing a small cube of side 2−p (although in the end, as in
Section 14.1 it will represent a slightly different region). Here we will have
23p � N/L, where L is a large constant that we shall choose later. The generic
element of G will be denoted by τ . We will try to match (random) points
(Ui)i≤N in G to given “evenly spread” points (Zi)i≤N . Since 23p may not
divide N , we may not put the same number of points Zi at each point of G,
so we denote

n(τ) = card{i ≤ N ; Zi = τ} . (15.13)

Since we try to make the points Zi evenly spread, and since the ratio N/23p

will be a large number, we certainly may assume that there exists a certain
integer m0 for which

∀ τ ∈ G , m0 ≤ n(τ) ≤ 2m0 . (15.14)

Let us observe that by summation of the relations (15.14) over τ ∈ G we get

m02
3p ≤ N ≤ 2m02

3p . (15.15)

We consider the probability measure μ on G given by

∀ τ ∈ G , μ({τ}) = n(τ)

N
, (15.16)

so that

∀ τ ∈ G ,
m0

N
≤ μ({τ}) ≤ 2m0

N
. (15.17)

Thus μ is nearly uniform. To each function w : G → R we associate the
function hw : G→ R given by

hw(τ) = inf{w(τ ′) + ϕ(τ − τ ′) ; τ ′ ∈ G} . (15.18)

We observe that since ϕ(0) = 0 we have

hw ≤ w , (15.19)

and we define

Δ(w) =

∫
(w − hw)dμ ≥ 0 . (15.20)

The crucial ingredient for Theorem 15.1.1 is the following discrepancy bound.
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Theorem 15.2.1. Consider an i.i.d. sequence of r.v.s (Ui)i≤N distributed
like μ. Then with probability ≥ 1− L exp(−100p) the following occurs:

∀w ,
∣∣∣
∑

i≤N

(
hw(Ui)−

∫
hwdμ

)∣∣∣ ≤ L
√
m02

3p(Δ(w) + 1) . (15.21)

As we explained in Section 4.2 the essential difficulty in a statement of
this type is to understand which kind of information on the function hw we
may obtain from the fact that Δ(w) is given. In very general terms there is
not choice: we must extract information to the effect that such functions “do
not vary widely” so that we may bound the left-hand side of (15.21) with
overwhelming probability. It is precisely because the whole procedure goes
through several non-trivial stages that it occupies all the forthcoming sections
of this chapter. In still rather general terms, we shall prove that control of
Δ(w) implies a kind of local Lipschitz condition on hw. This is the goal of
Section 15.4. This local Lipschitz condition implies in turn a suitable control
on the coefficients of a Haar basis expansion of hw, and this will allow us
to conclude. The proof does not explicitly use chaining, although it is in a
similar spirit. The formulation in an abstract setting of the principle behind
this proof is a possible topic for further research.

In the remainder of this section, we first prove a matching theorem related
to the bound (15.21), and we then use Theorem 15.2.1 to complete the proof
of Theorem 15.1.1.

Theorem 15.2.2. There exists a constant L1 such that the following occurs.
Assume that

m0 ≥ L1 . (15.22)

Consider points (Ui)i≤N as in (15.21). Then there exists a permutation π of
{1, . . . , N} for which ∑

i≤N

ϕ(Ui − Zπ(i)) ≤ N . (15.23)

For further use, the reader will observe that the following proof does not use
that ϕ is convex, but only that ϕ(0) = 0 and ϕ ≥ 0.

Proof. First we deduce from Proposition 4.2.1 that

inf
π

∑

i≤N

ϕ(Ui − Zπ(i)) = sup
∑

i≤N

(wi + w′
i) , (15.24)

where the supremum is over all families (wi)i≤N and (w′
i)i≤N for which

∀ i, j ≤ N , wi + w′
j ≤ ϕ(Ui − Zj) . (15.25)

Given such families (wi) and (w′
i), for τ ∈ G let us then define

h(τ) = inf
j≤N

(−w′
j + ϕ(τ − Zj)) ,
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so that from (15.25) we obtain wi ≤ h(Ui) and thus
∑

i≤N

(wi + w′
i) ≤

∑

i≤N

(h(Ui) + w′
i) . (15.26)

For τ ∈ G we define

w(τ) = inf{−w′
j ; Zj = τ} ,

so that
h(τ) = inf{w(τ ′) + ϕ(τ − τ ′) ; τ ′ ∈ G} , (15.27)

and consequently, recalling the notation (15.18),

h(τ) = hw(τ) .

Also,
−w(τ) = sup{w′

j ; Zj = τ} ,
so that, using (15.16),

−Nμ({τ})w(τ) ≥
∑
{w′

j ; Zj = τ} ,

and thus by summation of these inequalities over τ ∈ G,

∑

i≤N

w′
i ≤ −N

∫
wdμ . (15.28)

Consequently

∑

i≤N

(h(Ui) + w′
i) ≤

∑

i≤N

h(Ui)−N

∫
wdμ

≤
∑

i≤N

(
h(Ui)−

∫
hdμ
)
−N

∫
(w − h)dμ

=
∑

i≤N

(
h(Ui)−

∫
hdμ
)
−NΔ(w) . (15.29)

Now (15.21) implies, since h = hw,

∑

i≤N

(
h(Ui)−

∫
hdμ
)
≤ L

√
m02

3p(Δ(w) + 1) , (15.30)

and combining with (15.26) and (15.29) we have proved that all families (wi)
and (w′

i) as in (15.25) satisfy
∑

i≤N

(wi + w′
i) ≤ L

√
m02

3p(Δ(w) + 1)−NΔ(w) .

Recalling that N ≥ m02
3p by (15.15), we obtain that for m0 ≥ L1 the right-

hand side is ≤ N . 
�
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We end this section by completing the proof of Theorem 15.1.1. The
argument basically reproduces the proof of Theorem 14.1.3 on page 470.

Proof of Theorem 15.1.1. Consider an integer N ≥ 2 and an integer p, that
will be determined later. For (τ) = (τ j)j≤3 ∈ G we consider the point

a(τ) = ((2τ j − 1)2−p−1)j≤3 ∈ [0, 1]3 .

These points are the centers of 23p little cubes C(τ) of side 2−p that divide
[0, 1]3.

Consider evenly spread points (Yi)i≤N and a map η : {1, . . . , N} → G
such that

Yi ∈ C(η(i)) . (15.31)

Consequently,

d(Yi, a(η(i))) ≤ Δ(C(η(i))) ≤
√
32−p−1 ≤ 2−p . (15.32)

We denote
n(τ) = card{i ≤ N ; η(i) = τ} , (15.33)

the number of points Yi “assigned to τ”. (In the generic case where no point
Yi belongs to the boundary of a little cube C(τ) this is simply the number of
points Yi contained in C(τ).) Thus

∑
τ n(τ) = N . The points Yi are evenly

spread, so that by definition these points are centers of non-overlapping rect-
angular boxes Ri of volume 1/N and diameter at most 20/N1/3. It should
be clear that for N ≥ L and N2−3p ≥ L, each cube C(τ) contains about the
same number of points Yi. To give a formal proof one simply bounds from
below (respectively form above) the number of points Yi assigned to C(τ)
by the number of boxes Ri which are entirely contained (respectively which
intersect) C(τ), and the difference of these two numbers is not large because
the cubes C(τ) are then much bigger that the boxes Ri. Consequently, for a
certain integer m0, we have

m0 ≤ n(τ) ≤ 2m0 , (15.34)

and (15.15) impliesm0 ≥ N2−3p−1. Let us then choose p as the largest integer
for which N2−3p−1 ≥ L1, where L1 is the constant of (15.22), so that (15.22)
holds and

23p ≥ N

L
. (15.35)

This implies in particular that 1−L exp(−100p) ≥ 1−LN−1/10. We consider
N points (Zi) of G such that exactly n(τ) of them are located at the point τ .
We may assume by (15.32) that these points are labeled in such a way that

d(Yi, a(Zi)) ≤ 2−p . (15.36)

Consider points Xi independently uniformly distributed over [0, 1]3. We
claim that we can find independently distributed points Ui of G such that
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P(Ui = τ) = μ({τ}) = n(τ)/N and d(Xi, a(Ui)) ≤ L2−p. For τ ∈ G we define
the domain D(τ) as the union of the sets Ri (the little box containing Yi)
for which η(i) = τ . From (15.33) there are n(τ) such boxes, so that D(τ)
has volume n(τ)/N . We define Ui = τ when Xi ∈ D(τ), so that the r.v.s Ui

are i.i.d. and P (Ui = τ) = μ({τ}) = n(τ)/N . Moreover, when Ui = τ then
Xi ∈ D(τ) so that there exists � with Xi ∈ R� and η(�) = τ , and

d(Xi, a(Ui)) = d(Xi, a(τ)) ≤ d(Xi, Y�) + d(Y�, a(η(�)) ≤ L2−p , (15.37)

using (15.32), that d(Xi, Y�) ≤ Δ(R�) ≤ L/N1/3 and (15.35).
Let us write Ui = (U j

i )j≤3, Vi = (V j
i )j≤3, and for τ ∈ G let us write

a(τ) = (a(τ)j)j≤3. Thus, by definition of a(τ), if τ = (τ j)j≤3 we have a(τ)
j =

2−p−1(2τ j − 1) . Consequently, for j ≤ 3 we have

|a(Ui)
j − a(Zi′)

j | = 2−p|U j
i − Zj

i′ | . (15.38)

Let us write Xi = (Xj
i )j≤3, Yi = (Y j

i )j≤3. For j ≤ 3 we have

|Xj
i − Y j

i′ | ≤ |X
j
i − a(Ui)

j |+ |a(Ui)
j − a(Zi′)

j |+ |a(Zi′)
j − Y j

i′ |
≤ d(Xi, a(Ui)) + |a(Ui)

j − a(Zi′)
j |+ d(a(Zi′), Yi′)

≤ L

N1/3
(1 + |U j

i − Zj
i′ |) , (15.39)

using (15.36) and (15.37) in the last inequality, and since 2−p ≤ LN−1/3 by
(15.35).

Theorems 15.2.1 and 15.2.2 imply that with probability ≥ 1 − LN−10,
there is a permutation π of {1, . . . , N} for which

∑

i≤N

ϕ(Ui − Zπ(i)) ≤ N . (15.40)

Using (15.5) and convexity, (15.39) implies

ϕ
(Xi − Yπ(i)

2LN−1/3

)
≤ 1

2
ϕ((1, 1, 1)) +

1

2
ϕ(Ui − Zπ(i)) .

We recall that ϕ((1, 1, 1)) ≤ L from (15.3). Summation over i ≤ N and the
fact that ϕ(x/L) ≤ ϕ(x)/L by convexity of ϕ proves Theorem 15.1.1. 
�

15.3 Cleaning up ϕ

It is difficult to work with a function ϕ as general as that of Theorem 15.1.1.
In this section we extract the information we shall use about ϕ. We prove
that we can replace ϕ by a certain function ϕ∗, with the properties given
in Proposition 15.3.1 below. This will be very convenient but is purely a
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technical point, and the present section does not contain any essential idea
towards the proof of Theorem 15.2.1.

Throughout the rest of this chapter we define

Mk = 22
k+25

(= Nk+25) .

Since log 2 ≥ 1/2 we deduce from (15.1) that

λ({ϕ ≤Mk}) ≥ 2k+24 . (15.41)

For k ≥ 0 let us define m1(k) as the largest integer in Z for which

ϕ(2m1(k)+6, 0, 0) ≤Mk ,

so that m1(k) ≥ 0 by (15.3). Also, the sequence (m1(k)) is obviously non-
decreasing. We define m2(k) andm3(k) similarly, and by (15.2) and convexity
we obtain

ϕ(±2m1(k)+4,±2m2(k)+4,±2m3(k)+4) ≤Mk ,

so that
16
∏

j≤3

[−2mj(k), 2mj(k)] ⊂ {ϕ ≤Mk} . (15.42)

The definition of m1(k) implies ϕ(2m1(k)+7, 0, 0) ≥Mk, so that (15.5) imply
ϕ(x) > Mk whenever |x1| > 2m1(k)+7 and consequently

{ϕ ≤Mk} ⊂
∏

j≤3

[−2mj(k)+7, 2mj(k)+7] .

Therefore
λ({ϕ ≤Mk}) ≤ 224+

∑
j≤3 mj(k) .

Comparing with (15.41) we obtain

∑

j≤3

mj(k) ≥ k . (15.43)

For each k ≥ 0 we construct for j ≤ 3 numbers nj(k) ≥ 0 with the following
properties: each sequence (nj(k))k≥0 is non-decreasing and

nj(k) ≤ mj(k) ;
∑

j≤3

nj(k) = k . (15.44)

The construction is immediate using (15.43). Let us observe that

nj(k) ≤ nj(k + 1) ≤ nj(k) + 1 . (15.45)

We define
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Sk =
∏

j≤3

[−2nj(k), 2nj(k)] , (15.46)

so that (15.42) implies
16Sk ⊂ {ϕ ≤Mk} . (15.47)

We also observe from (15.45) that

Sk+1 ⊂ 2Sk . (15.48)

Proposition 15.3.1. There exists a function ϕ∗ with ϕ∗(0) = 0 that satisfies
the following properties:

∀x , ϕ∗(2x) ≥ ϕ(x) , (15.49)

{ϕ∗ ≤Mk} ⊃ 8Sk , (15.50)

{ϕ∗ ≤Mk} ⊂ 16Sk , (15.51)

the set {ϕ∗ ≤ u} is convex for each u > 0 , (15.52)

∀x , ϕ∗(x) = ϕ∗(−x) , (15.53)

u ≥ 4M1 ⇒
3

4
{ϕ∗ ≤ u} ⊂

{
ϕ∗ ≤ u

4

}
. (15.54)

The function ϕ∗ (that need not be convex) crystallizes the properties of ϕ we
need.

For j ≤ 3 we construct a function θj as follows. For q ≥ nj(1) let us denote
by kj(q) the smallest integer k such that nj(k) = q. When q > limk→∞ nj(k),
no such integer exists, and we set kj(q) =∞. We observe using (15.45) that
kj(q + 1) ≥ kj(q) + 1, and, from the last part of (15.44), that kj(q) ≥ q. We
define the function θj on the interval [2nj(1),∞[ such that θj(2

q) = logMkj(q)

for q ≥ nj(1) and that θj is affine between the values 2q and 2q+1. When
kj(q + 1) =∞ this means that θj(u) =∞ for u > 2q. We claim that

θj has a slope ≥ 224 . (15.55)

To see this we simply observe that Mkj(q+1) ≥ Mkj(q)+1 = M2
kj(q)

, so that

the slope of θj on the interval [2q, 2q+1] is at least

2−q logMkj(q) ≥ 2−q logMq ≥ 224 .

Let us then define the function ψj : R→ R
+ ∪ {∞} as follows:

ψj(x) = |x|2−nj(1)−3M1 if |x| ≤ 2nj(1)+3 , (15.56)

ψj(x) = exp θj

( |x|
8

)
if |x| ≥ 2nj(1)+3 . (15.57)

In particular we observe that

|x| = 2nj(1)+3 ⇒ ψj(x) = M1 . (15.58)
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Lemma 15.3.2. We have

ψj

(3
4
x
)
≤ max

(
M1,

1

4
ψj(x)

)
. (15.59)

Proof. We may assume that ψj(3x/4) ≥ M1, for there is nothing to prove
otherwise. The definition of ψj implies that y := 3|x|/4 satisfies y ≥ 2nj(1)+3,
so that y/8 ≥ 2nj(1). Since we have shown that θj has a slope ≥ 224 on the
interval [2nj(1),∞[, we have

θj

(4
3

y

8

)
≥ 224

(1
3

y

8

)
+ θj

(y
8

)
= 219|x|+ θj

(y
8

)
,

so that

ψj(x) = exp θj

(x
8

)
= exp θj

(4
3

y

8

)
≥ exp(219|x|)ψj

(3x
4

)
.

Now,

ψj

(3
4
x
)
> M1 ⇒ ψj(x) > M1 ⇒ |x| ≥ 2nj(1)+3 ≥ 8 ,

so that

ψj(x) ≥ exp(222)ψj

(3
4
x
)
≥ 4ψj

(3
4
x
)
. 
�

Proof of Proposition 15.3.1. We define

ϕ∗(x1, x2, x3) = max
j≤3

ψj(xj) , (15.60)

so that ϕ∗(0) = 0 and (15.52) holds since the sets {ψj ≤ u} are intervals.
Next, to prove (15.50) it suffices to prove that

{θj ≤ logMk} ⊃ [−2nj(k), 2nj(k)] . (15.61)

This is true because if q = nj(k), then kj(q) ≤ k by definition of kj(q), and
then θj(2

q) = logMkj(q) ≤ logMk. To prove (15.51) it suffices to prove that

{θj ≤ logMk} ⊂ [−2nj(k)+1, 2nj(k)+1] . (15.62)

This holds because if q = nj(k) + 1 then kj(q) > k, and then θj(2
q) =

logMkj(q) > Mk.
To prove (15.54) we observe simply from Lemma 15.3.2 that

ϕ∗
(3
4
x
)
≤ max

(
M1,

1

4
ϕ∗(x)

)
.

We turn to the proof of (15.49). Consider x ∈ R
3 and let a = ϕ(x). We

assume first that a > M1, and let k ≥ 1 such that Mk < a ≤ Mk+1. Then
(15.47) yields

16Sk ⊂ {ϕ ≤Mk} ⊂ {ϕ < a} ,
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so that, using (15.48),
8Sk+1 ⊂ {ϕ < a} ,

and thus x �∈ 8Sk+1 and 2x �∈ 16Sk+1. Since {ϕ∗ ≤ Mk+1} ⊂ 16Sk+1 we
obtain that ϕ∗(2x) ≥Mk+1 > ϕ(x).

Assume next that a ≤ M1. We may assume that x ∈ 8S1 for otherwise
2x �∈ 16S1 and ϕ∗(2x) > M1 by (15.51). We then write x = αy with 0 ≤ α ≤ 1
and y on the boundary of 8S1. That is, y = (y1, y2, y3) where |yj | ≤ 2nj(1)+3

and equality for at least one 1 ≤ j ≤ 3. Then ϕ∗(y) = M1 from (15.58) and
definition of ϕ∗ and ϕ(y) ≤ M1 by (15.47), so that ϕ∗(y) ≥ ϕ(x). Moreover
(15.56) implies ϕ∗(x) = αϕ∗(y) ≥ αϕ(y) ≥ ϕ(x) using convexity of ϕ and
since ϕ(0) = 0. Finally it is obvious that ϕ∗(2x) ≥ ϕ∗(x) by construction. 
�

In the remainder of this chapter we prove that Theorem 15.2.1 holds when
ϕ is replaced by ϕ∗. Since ϕ∗(x) ≥ ϕ(x/2), and since as noted the proof of
Theorem 15.2.2 does not use the convexity of ϕ, we may then replace (15.40)
by
∑

i≤N ϕ((Ui−Zπ(i))/2) ≤ N , and this suffices instead of (15.40) to prove
Theorem 15.1.1.

To lighten notation we assume from now on that ϕ = ϕ∗ satisfies
(15.50) to (15.54).

15.4 Geometry

The real work towards the proof of Theorem 15.2.1 starts here. In this section
we carry out the task of finding some “regularity” of the functions hw (defined
in (15.18)) for which Δ(w) is not too large. In other words, we understand
some of the underlying “geometry” of this class of functions.

This regularity is a kind of “local Lipschitz condition”, which is expressed
in Theorem 15.4.2 below. We will comment on this theorem in more details
when we state it.

We define

sj(k) = min(p, nj(k)) ; s(k) =
∑

j≤3

sj(k) . (15.63)

It follows from (15.44) that nj(k) ≤ k, so that

k ≤ p⇒ sj(k) = nj(k) (15.64)

and also using (15.44),
k ≤ p⇒ s(k) = k . (15.65)

We consider the collection Pk of subsets of G of the form

∏

j≤3

{1 + bj2
sj(k), . . . , (bj + 1)2sj(k)} (15.66)
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for bj ∈ N, 0 ≤ bj ≤ 2p−sj(k) − 1. There are 23p−s(k) such sets, which form
a partition of G. Each of this sets has cardinality 2s(k). Let us say that two
such sets are adjacent if for all j ≤ 3 the corresponding values of bj differ
by at most 1. Thus a set is adjacent to itself, and to at most 26 other sets.
Given an integer q, let us say that two sets of Pk are q-adjacent if for each
j ≤ 3 the corresponding values of bj differ by at most q. Thus that are at
most (2q+1)3 sets which are q-adjacent to a given set. The elementary proof
of the following is better left to the reader.

Lemma 15.4.1. (a) If C,C ′ in Pk are adjacent, and if τ ∈ C, τ ′ ∈ C ′ then
τ − τ ′ ∈ 2Sk.
(b) If τ ∈ C ∈ Pk, A ⊂ τ + qSk, A ∈ Pk, A and C are q-adjacent.

Let us also observe that

C ∈ Pk ⇒ cardC = 2s(k) . (15.67)

Given Δ ≥ 0 we define the class S(Δ) of functions on G by

S(Δ) =
{
hw ; Δ(w) =

∫
(w − hw)dμ ≤ Δ

}
. (15.68)

We say that a subset A of G is Pk-measurable if it is a union of sets
belonging to Pk. The main result of this section is as follows.

Theorem 15.4.2. Given Δ ≥ 1, for every function h ∈ S(Δ) we can find
a partition (Bk)k≥1 of G such that Bk is Pk-measurable, and such that for
each C ∈ Ck := {C ∈ Pk;C ⊂ Bk}, we can find a number z(C) such that the
following properties hold:

∑

k≥1

∑

C∈Ck

2s(k)z(C) ≤ L23pΔ , (15.69)

k ≥ 1 , C ∈ Ck ⇒Mk ≤ z(C) ≤Mk+1 , (15.70)

For every k ≥ 1, if C ∈ Ck and if C ′ ∈ Pk is adjacent to C, then

τ ∈ C , τ ′ ∈ C ′ ⇒ |h(τ)− h(τ ′)| ≤ z(C) . (15.71)

Let us stress that (15.71) holds in particular for C ′ = C.
The idea of the partition Bk is simply that it locally defines a “scale” at

which we study the behavior of h. Any point τ of G belongs to some Bk, and
the scale relevant to τ is given by the partition Pk. defines the scale relevant
to τ . We should think of condition (15.71) as locally controlling the variations
of h, by the quantities z(C). The scale at which this occurs is local. Condition
(15.70) controls the size of the numbers z(C), depending on the local scale
at which the bound (15.71) holds. It is the restriction z(C) ≤ Mk+1 which
is essential, the lower bound is purely technical. Finally the global size of
the weighted quantities z(C) is controlled by (15.69). Of course each of these
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precise quantitative controls will become essential in its turn. Probably the
reader finds this is terribly complicated, but it seems to be in the very nature
of the problem that one must use this idea of varying local scale in some
form.

In the remainder of this chapter, we shall use the information provided
by Theorem 15.4.2 to prove Theorem 15.2.1.

We now start the proof of Theorem 15.4.2, which will occupy us until
the end of the present section. This proof is fortunately not as formidable as
the statement of the theorem itself, and again we have tried to write it in
great detail as well as we could. By definition of S(Δ) we can find a function
w : R→ G such that

∀ τ ∈ G , h(τ) = inf{w(τ ′) + ϕ(τ − τ ′) ; τ ′ ∈ G} , (15.72)

while ∫
(w − h)dμ ≤ Δ . (15.73)

For each τ and τ ′ in G we have

h(τ) ≤ w(τ ′) + ϕ(τ − τ ′) ,

so that
w(τ ′) ≥ h(τ)− ϕ(τ − τ ′) .

Let us then define

ĥ(τ ′) = sup{h(τ)− ϕ(τ − τ ′) ; τ ∈ G} ,

so that
h ≤ ĥ ≤ w . (15.74)

Moreover, ∫
(ĥ− h)dμ ≤

∫
(w − h)dμ ≤ Δ . (15.75)

For C in Pk let us define

y(C) = min
C

ĥ(τ)−max
C

h(τ) . (15.76)

Thus, for τ ∈ C we have y(C) ≤ ĥ(τ)− h(τ) and, using (15.67),

2s(k)y(C) ≤
∑

τ∈C

(ĥ(τ)− h(τ)) . (15.77)

Let q = 32. For C ∈ Pk we set

x(C) = max{y(C ′) ; C ′ ∈ Pk , C ′ is q -adjacent to C} . (15.78)
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For k ≥ 2 we denote by Dk the union of all the sets in Pk for which x(C) ≥
Mk/2. Thus Dk is Pk-measurable and D� is empty for � large enough. For
k ≥ 2 we define

Bk = Dk \
⋃

�>k

D� .

We define B1 = G \
⋃

�≥2 D�. Thus Bk is Pk-measurable (B1 is even P2-
measurable). Let us note from the definition

� > k ⇒ Bk ∩D� = ∅. (15.79)

The sets Bk form the partition we are looking for. We recall the notation
Ck = {C ∈ Pk, C ⊂ Bk}. Our next goal is to prove that following, which is
the main step towards (15.69).

Lemma 15.4.3. We have

∑

k≥2

∑

C∈Ck

2s(k)x(C) ≤ Lq323pΔ . (15.80)

Proof. When C ∈ Ck, we have x(C) ≥Mk/2 and by definition of x(C) there
exists θ(C) ∈ Pk which is q-adjacent to C and such that x(C) = y(θ(C)) ≥
Mk/2. Thus

∑

k≥2

∑

C∈Ck

2s(k)x(C) =
∑

k≥2

∑

C∈Ck

2s(k)y(θ(C)) . (15.81)

Let us define
Lk =

⋃
{θ(C) ; C ∈ Ck} ,

so that Lk is Pk-measurable. Let us observe an important property: if C ′ ∈ Pk

and C ′ ⊂ Lk, then y(C ′) ≥Mk/2 and C ′ is q-adjacent to a certain C ∈ Ck.
Next, consider C ′ ∈ Pk, C

′ ⊂ Lk, and assume that C ′ = θ(C) for a
certain C ⊂ Ck. Then C is q-adjacent to C ′ = θ(C). Thus there at most
(2q + 1)3 such sets C. In summary, given C ∈ Ck, we have C ′ = θ(C) ∈ Pk

and C
′ ⊂ Lk, and moreover there are at most (2q + 1)3 sets C ′′ for which

θ(C ′′) = C ′. Consequently,

∑

k≥2

∑

C∈Ck

2s(k)y(θ(C)) ≤ (2q + 1)3
∑

k≥2

∑

C∈Pk,C⊂Lk

2s(k)y(C) . (15.82)

Now, it follows from (15.77) that

∑

C∈Pk,C⊂Lk

2s(k)y(C) ≤
∑

τ∈Lk

(ĥ(τ)− h(τ)) . (15.83)

Our next (and crucial) step is to prove that the sets Lk are disjoint. For this,
we consider C ∈ Pk, C ⊂ Lk, and we prove that if k′ < k we have C∩Lk′ = ∅.
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We recall that y(C) ≥ Mk/2, and we proceed by contradiction. Assume if
possible that we can find C ′ ∈ Pk′ , C ′ ⊂ C, C ′ ⊂ Lk′ . Then by definition,
C ′ is q-adjacent to an element C∼ of Bk′ . Consider the element C∗ of Pk

that contains C∼. Then since k′ ≤ k, C∗ is q-adjacent to C, because Pk is a
coarser partition of G than Pk′ . Since y(C) ≥Mk/2, this proves by definition
of Dk that C∗ ⊂ Dk. Then C∗ ∩ Bk′ = ∅ by (15.79). Since C∼ ⊂ C∗ this
contradicts the fact that C∼ ⊂ Bk′ , and completes the proof that C∩Lk′ = ∅,
and hence Lk ∩ Lk′ = ∅.

Since the sets Lk are disjoint,

∑

k≥2

∑

C∈Pk,C⊂Lk

2s(k)y(C) ≤
∑

τ

(ĥ(τ)− h(τ)) ≤ L23p
∫
(ĥ− h)dμ . (15.84)

Combining with (15.81) and (15.82) proves (15.80). 
�
For C ∈ Ck, k ≥ 2, we set

z(C) = min(2x(C),Mk+1) ≥Mk .

If C ∈ C1 we set z(C) = M2. Thus (15.70) holds, and since 2s(1) card C1 ≤
2s(1) cardP1 = 3p, (15.69) follows from (15.80) since Δ ≥ 1.

We turn to the proof of (15.71), the core of Theorem 15.4.2. In that part
of the argument, we view G as a subset of R3. We start with a preliminary
result.

Lemma 15.4.4. If x ∈ [1, 2p]3 we can find A ∈ Pk such that A ⊂ x+ Sk.

Proof. If x = (xj)j≤3, consider for j ≤ 3 an integer bj with 0 ≤ bj ≤ 2p−sj(k)−
1 and

1 + bj2
sj(k) ≤ xj ≤ 1 + (bj + 1)2sj(k) .

Then

{1 + bj2
sj(k), . . . , (bj + 1)2sj(k)} ⊂ [xj − 2sj(k), xj + 2sj(k)] ,

so that the set (15.66) is entirely contained in x+ Sk. 
�
We are now ready to prove ”half” of (15.71).

Lemma 15.4.5. If k ≥ 1, C ∈ Ck, C ′ ∈ Pk are adjacent and τ ∈ C, τ ′ ∈ C ′,
then

h(τ ′) ≤ h(τ) + z(C) . (15.85)

Proof. Since z(C) ≥Mmax(k,2) there is nothing to prove unless

h(τ ′)− h(τ) ≥Mmax(k,2) ,

so we assume that this is the case in the rest of the argument.
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It follows from (15.72) that for some ρ ∈ G we have

h(τ) = w(ρ) + ϕ(τ − ρ) . (15.86)

We define
u = max(h(τ ′)− h(τ), ϕ(τ − ρ)) ,

so that u ≥Mmax(k,2). We set

U = {ϕ ≤ u} .

This is a convex set, and (15.53) implies that U = −U . Since u ≥Mk, (15.50)
implies 8Sk ⊂ U . Also, since C and C ′ are adjacent by Lemma 15.4.1 (a), we
have τ ′ − τ ∈ 2Sk, and consequently,

τ ′ − τ ∈ U

4
.

Since ϕ(τ − ρ) ≤ u we have τ − ρ ∈ U , so that τ ′− ρ = τ ′− τ + τ − ρ ∈ 5U/4
and therefore ρ− τ ′ ∈ 5U/4 by (15.53). Consequently,

ρ+ τ ′

2
∈ τ ′ +

5U

8
;
ρ+ τ ′

2
∈ ρ+

5U

8
. (15.87)

Here of course (ρ+ τ ′)/2 need not be a point of G. We define

V =
ρ+ τ ′

2
+

U

8
,

so that (15.87) implies

V ⊂
(
τ ′ +

3U

4

)
∩
(
ρ+

3U

4

)
. (15.88)

Since u ≥ M2 ≥ 4M1 it follows from (15.54) that ϕ(x) ≤ u/4 for x ∈ 3U/4.
Consequently if ρ′ ∈ G ∩ V we have ϕ(ρ′ − τ ′) ≤ u/4 and ϕ(ρ′ − ρ) ≤ u/4.
Thus

ĥ(ρ′) ≥ h(τ ′)− ϕ(τ ′ − ρ′) ≥ h(τ ′)− u

4
.

Also, by (15.72) we have

h(ρ′) ≤ w(ρ) + ϕ(ρ′ − ρ) ≤ w(ρ) +
u

4
.

Thus, using (15.86) in the second line,

min
ρ′∈V ∩G

ĥ(ρ′)− max
ρ′∈V ∩G

h(ρ′) ≥ h(τ ′)− w(ρ)− u

2

= h(τ ′)− h(τ) + ϕ(τ − ρ)− u

2

≥ max(h(τ ′)− h(τ), ϕ(τ − ρ))− u

2

=
u

2
. (15.89)
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Consider the largest integer � ≥ 1 such that u ≥M�. Since u ≥Mmax(k,2) we
have � ≥ max(k, 2), and by definition of � we have u < M�+1. We then use
(15.50), (15.51) and (15.48) to obtain

8S� ⊂ U ⊂ 32S� . (15.90)

Thus

V =
ρ+ τ ′

2
+

U

8
⊃ ρ+ τ ′

2
+ S� ,

and Lemma 15.4.4 shows that there exists A ∈ P� with A ⊂ V . It then follows
from (15.76) and (15.89) that y(A) ≥ u/2. Also, since τ ′− τ ∈ U/4, we have,
using (15.88) in the first inclusion,

V ⊂ τ ′ +
3U

4
⊂ τ + U ⊂ τ + 32S� . (15.91)

Since � ≥ k, and since C ∈ Pk, there is a unique set D ∈ P� with C ⊂ D,
and since A ⊂ V and τ ∈ C, (15.91) and Lemma 15.4.1 imply that D and
A are q-adjacent for q = 32. Consequently the definition of x(D) shows that
x(D) ≥ y(A) ≥ u/2 ≥M�/2, and therefore D ⊂ D� by definition of D�. It is
impossible that � > k, because the inclusion D ⊂ D� contradicts the fact that
C ⊂ D and C ⊂ Bk (see (15.79)). When k = 1, since � ≥ max(k, 2) = 2 > k,
we have already obtained a contradiction proving that u ≤M2. When k ≥ 2,
since � ≥ k, we then have � = k. Thus D = C and then x(C) = x(D) ≥ u/2.
Also, u < M�+1 = Mk+1, so that u ≤ min(2x(C),Mk+1) ≤ z(C), completing
the proof of (15.85). 
�

Finally it remains to prove that, with the notation of (15.71),

h(τ) ≤ h(τ ′) + z(C) . (15.92)

For this, we repeat the previous argument, exchanging the roles of τ and τ ′,
up to (15.91), which we replace by

V ⊂ τ +
3U

4
⊂ τ + U ⊂ τ + 32S� ,

and we finish the proof in exactly the same manner. 
�

15.5 Probability, I

To prove a discrepancy bound involving the functions of the class S(Δ) of
Theorem 15.4.2, we must understand “how they oscillate”. They are two
sources for such oscillations.

• The function h oscillates within each set C ∈ Ck
• The function h oscillates when it changes set C.



15.5 Probability, I 495

In the present section, we take care of the first type of oscillation. We show
that we can reduce the proof of Theorem 15.2.1 to that of Theorem 15.5.7
below, that is to the case where h is constant on each set C ∈ Ck. This is
significantly easier then the proof of Theorem 15.5.7 itself, but already bring
to light the use of the various conditions of Theorem 15.4.2. We elaborate
more about this fundamental point after the statement of Proposition 15.5.1
below. Throughout the rest of the proof, for τ ∈ G we consider the r.v.

Yτ = card{i ≤ N ; Ui = τ} −Nμ({τ}) , (15.93)

where Ui are i.i.d. r.v.s on G with P(Ui = τ) = μ(τ). We recall the number
m0 of (15.34). It is good to note right away that

EY 2
τ ≤ Nμ({τ}) ≤ 2m0 ,

so that we may think of |Yτ | as being typically of size about
√
m0.

We state the main result of this section.

Proposition 15.5.1. With probability ≥ 1−L exp(−100p) the following hap-
pens. Consider any Δ ≥ 1, and a partition (Bk)k≥1 of G such that Bk is Pk-
measurable, and for each C ∈ Ck := {C ∈ Pk;C ⊂ Bk}, consider a number
z(C) such that the following properties hold:

∑

k≥1

∑

C∈Ck

2s(k)z(C) ≤ L23pΔ , (15.94)

k ≥ 1 , C ∈ Ck ⇒ z(C) ≤Mk+1 . (15.95)

Then ∑

k≥1

∑

C∈Ck

z(C)
∑

τ∈C

|Yτ | ≤ L23p
√
m0Δ . (15.96)

This result is closely connected to Theorem 15.4.2. It will allow to reduce
the proof of this theorem to the case where h is constant on each C ∈ Ck.
Let us explain in words a very simple, yet central idea about why Proposi-
tion 15.5.1 is true. First, since cardC = 2s(k) for C ∈ Ck, the expectation
of the left-hand side of (15.96) is about

∑
k≥1

∑
C∈Ck

2s(k)z(C)
√
m0, so to

obtain (15.96) it is needed to control the weighted averages of the numbers
z(C) as in (15.94). This however does not suffice, because for a few values of
C the corresponding quantities

∑
τ∈C |Yτ | are going to be abnormally large.

This however does not influence too much the sum (15.96) because the corre-
sponding coefficient z(C) cannot be too large by (15.95). The proof consists
in quantifying this idea, and one may wonder why everything fits so well in
the computations.

We need first to understand the properties of this family (Yτ ) of r.v.s and
other related entities. This is the motivation behind the following definition.
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Definition 15.5.2. Consider a finite set V . We say that a family (Yv)v∈V

is of type B(N) if there exists a probability space (Ω, θ), i.i.d. r.v.s (Wi)i≤N

valued in Ω, of law θ, and functions ψv on Ω, |ψv| ≤ 1, with disjoint support,
such that

1

2 cardV
≤ θ({ψv �= 0}) ≤ 2

cardV
, (15.97)

and for which

Yv =
∑

i≤N

(
ψv(Wi)−

∫
ψvdθ

)
. (15.98)

The family (Yτ )τ∈G is of type B(N). The following crucial property will
simply follow from Bernstein’s inequality.

Lemma 15.5.3. Consider any family (Yv)v∈V of type B(N) and numbers
(ηv)v∈V with |ηv| ≤ 1. Then for u > 0 we have

P
(∣∣∣
∑

v∈V

ηvYv

∣∣∣ ≥ u
)
≤ 2 exp

(
− 1

L
min
(
u,

u2 cardV

N
∑

v∈V η2v

))
. (15.99)

Proof. Consider the r.v.s Wi and the functions ψv as in Definition 15.5.2. We
define

Si =
∑

v∈V

ηvψv(Wi) .

Since the functions ψv have disjoint support, we have |Si| ≤ 1 and also

E(Si − ESi)
2 ≤ ES2

i ≤
2

cardV

∑

v∈V

η2v .

Since
∑

v∈V ηvYv =
∑

i≤N (Si−ESi), and since |Si| ≤ 1, (15.99) follows from
Bernstein’s inequality (4.59). 
�

We prepare the proof with two lemmas which limit the possible size of the
quantities

∑
τ∈C |Yτ | for C ∈ Ck. It is convenient to distinguish the cases of

“small k” and “large k”. These are the cases k ≤ k0 and k ≥ k0 for an integer
k0 which we define now. If 23p < M2 we define k0 = 0. Otherwise we define
k0 as the largest integer with Mk0+2 ≤ 23p−k0 , so that Mk0+3 ≥ 23p−k0−1.
Therefore 2k0+27 ≤ 3p− k0 and 2k0+28 ≥ 3p− k0 − 1, so that

p

L
≤ 2k0 ≤ Lp . (15.100)

In particular for N large enough, and hence for p large enough, we have
k0 ≤ p. Since s(k) = k for k ≤ p we then have s(k) = k for k ≤ k0.

We first take care of the values k ≥ k0. This is the easiest case because for
these values the individual sums

∑
τ∈C |Yτ | for C ∈ Pk are not really larger

than their expectations, as the following shows.
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Lemma 15.5.4. With probability ≥ 1 − L exp(−100p) the following occurs.
Consider k0 ≤ k ≤ p. Then if C ∈ Pk we have

∑

τ∈C

|Yτ | ≤ L2s(k)
√
m0 . (15.101)

Proof. For τ in C consider ητ = ±1, and for τ �∈ C let ητ = 0. Then since
cardC = 2s(k), we have

∑
τ∈G η2τ = 2s(k) so that, using (15.99) for V = G,

and since cardV = 23p and N ≤ 2m02
3p,

P
(∑

τ∈G

ητYτ ≥ u
)
≤ 2 exp

(
− 1

L
min
(
u,

u2

m02s(k)

))
.

Thus, if A ≥ 1 is a parameter,

P
(∑

τ∈G

ητYτ ≥ A
√
m02

s(k)
)
≤ 2 exp

(
−A2s(k)

L

)
.

Crudely, there are most 23p choices for C ∈ Pk. Using that k0 = s(k0) and
(15.100),

p ≤ L2k0 = L2s(k0) ≤ L2s(k) . (15.102)

Given C ∈ Pk, there are 2cardC = 22
s(k)

choices for the signs (ητ )τ∈C . Con-
sequently, with probability at least

1− L exp
((

L− A

L

)
2s(k)
)

we have
∑

τ∈C ητYτ ≤ A
√
m02

s(k) whatever the choice of C ∈ Pk and of

the signs (ητ )τ∈C , and thus
∑

τ∈C |Yτ | ≤ A
√
m02

s(k) for each C ∈ Pk. Since

2s(k) ≥ p/L by (15.102) we then obtain that if A is a large enough constant
this holds for all k0 ≤ k ≤ p with probability ≥ 1− L exp(−100p). 
�

We now turn to the case k ≤ k0. The situation is more complicated
because some of the quantities

∑
τ∈C |Yτ | can be quite larger than their

expectations, and we have to quantify this. We shall use the following well
known elementary fact: (

n

k

)
≤
(en
k

)k
. (15.103)

Lemma 15.5.5. With probability ≥ 1 − L exp(−100p) the following occurs.
Consider k ≤ k0 and let qk = "23p−k/Mk+2#. Then if B is the union of qk
sets in Pk we have ∑

τ∈B

|Yτ | ≤ Lqk2
k√m0 . (15.104)

We may think of (15.104) as allowing
∑

τ∈C |Yτ | for C ∈ Pk, C ⊂ B to

be (in average over C ⊂ B) about 2k times larger than what it should be.
Fortunately, the larger k, the smaller qk.
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Proof. Since k ≤ k0 we have Mk+2 ≤ 23p−k and thus qk ≥ 1. Since "x# ≥
1⇒ "x# ≥ x/2 this yields

qk ≥
23p−k

2Mk+2
.

Consequently, using the definition of k0 in the first inequality and (15.100)
in the last one,

2kqk ≥
23p

2Mk+2
≥ 23p

2Mk0+2
≥ 2k0

2
≥ p

L
. (15.105)

For τ in B consider ητ = ±1, and for τ �∈ B set ητ = 0. Then since
cardB = 2s(k)qk ≤ 2kqk, we have

∑
τ∈G η2τ ≤ 2kqk. We use (15.99) with

V = G so that cardV = 23p. It implies, using (15.15) in the second line

P
(∑

τ∈G

ητYτ ≥ u
)
≤ 2 exp

(
− 1

L
min
(
u,

u223p

N2kqk

))

≤ 2 exp

(
− 1

L
min
(
u,

u2

m02kqk

))
.

Consequently, given a parameter A ≥ 1, and choosing u = A
√
m0qk2

k,
we obtain

P
(∑

τ∈G

ητYτ ≥ u
)
≤ 2 exp

(
−A

L
qk2

k
)
. (15.106)

Using (15.103) there are

(
23p−k

qk

)
≤
(
e23p−k

qk

)qk

≤ (LMk+2)
qk ≤ exp(L2kqk)

choices for B. Given B, there are 2cardB ≤ 22
kqk choices for the signs (ητ )τ∈B .

Consequently with probability at least

1− L exp
((

L− A

L

)
qk2

k
)

we have
∑

τ∈B ητYτ ≤ u whatever the choice of B and of the signs (ητ )τ∈B .
Taking for A a large enough constant, and using (15.105) the result follows.


�

Proof of Proposition 15.5.1. We assume that the events described in Lem-
mas 15.5.5 and 15.5.4 occur, and we prove (15.96). First, since for k ≥ k0
and C ∈ Ck we have

∑
τ∈C |Yτ | ≤ L2s(k)

√
m0,

∑

k≥k0

∑

C∈Ck

z(C)
∑

τ∈C

|Yτ | ≤ L
√
m0

∑

k≥k0

∑

C∈Ck

2s(k)z(C) . (15.107)
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Next, consider k ≤ k0. We claim that

∑

C∈Ck

z(C)
∑

τ∈C

|Yτ | ≤ L2k
√
m0

∑

C∈Ck

z(C) + L
√
m02

3pMk+1

Mk+2
. (15.108)

Summation of these inequalities for 1 ≤ k ≤ k0, and combining with (15.107)
proves (15.96). To prove (15.108), let us enumerate as C1, C2, . . . , the ele-
ments of Ck, in decreasing order of w(C) :=

∑
τ∈C |Yτ |. For clarity we assume

that there are at least qk such elements (since it should be obvious how to
proceed when this is not the case). Then (15.104) used for B = ∪�≤qkC�

implies ∑

�≤qk

w(C�) =
∑

τ∈B

|Yτ | ≤ Lqk2
k√m0 ,

and since qkw(Cqk) ≤
∑

�≤qk
w(C�) we deduce that w(Cqk) ≤ L2k

√
m0 and

consequently w(C�) ≤ L2k
√
m0 for � ≥ qk. Therefore, and since z(C) ≤Mk+1

for C ∈ Ck,
∑

C∈Ck

z(C)
∑

τ∈C

|Yτ | =
∑

�≥1

z(C�)w(C�)

=
∑

�≤qk

z(C�)w(C�) +
∑

�>qk

z(C�)w(C�)

≤ Mk+1

∑

�≤qk

w(C�) + L2k
√
m0

∑

C∈Ck

z(C) . (15.109)

Since ∑

�≤qk

w(C�) ≤ L2k
√
m0qk ≤ L

√
m0

23p

Mk+2
,

we have proved (15.96). 
�
Let us denote by L0 the constant in (15.69).

Definition 15.5.6. Consider Δ > 1. We define the class S∗(Δ) of functions
h : G → R such that we can find a partition (Bk)k≥1 of G where Bk is Pk-
measurable, and recalling the definition Ck := {C ∈ Pk;C ⊂ Bk},

for each k ≥ 1 , h is constant on each set C ∈ Ck , (15.110)

and for each C ∈ Ck, we can find a number z(C) with the following three
properties: ∑

k≥1

∑

C∈Ck

2s(k)z(C) ≤ L02
3pΔ , (15.111)

k ≥ 1 , C ∈ Ck ⇒Mk ≤ z(C) ≤Mk+1 , (15.112)

if C ∈ Ck and if C ′ ∈ Pk is adjacent to C and such that for k′ > k, we have
C ′ �⊂ Bk′ , then

τ ∈ C , τ ′ ∈ C ′ ⇒ |h(τ)− h(τ ′)| ≤ z(C) . (15.113)
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Let us stress the difference between (15.113) and (15.71). In (15.113), C ′
k is

adjacent to Ck as in (15.71) but satisfies the further condition that Ck �⊂ Bk′

for k′ ≥ k.
In the rest of this chapter we shall prove the following.

Theorem 15.5.7. Consider an i.i.d sequence of r.v.s (Ui)i≤N distributed
like μ. Then with probability ≥ 1 − L exp(−100p) the following occurs: for
Δ ≥ 1, whenever h ∈ S∗(Δ),

∣∣∣
∑

i≤N

(
h(Ui)−

∫
hdμ
)∣∣∣ ≤ L

√
m02

3pΔ . (15.114)

Let us observe right away the following fundamental identity, which is obvious
from the definition of Yτ :

∑

i≤N

(
h(Ui)−

∫
hdμ
)
=
∑

τ∈G

h(τ)Yτ . (15.115)

Proof of Theorem 15.2.1. Consider a function h ∈ S(Δ), the sets Bk and the
numbers z(C) as provided by Theorem 15.4.2. Consider the function h∗ on
G defined as follows: if C ∈ Ck, then h∗ is constant on C, and the value of
this constant is the average value of h on C, i.e.

∫
C
hdμ =

∫
C
h∗dμ. Then,

using (15.71) for C ′ = C yields that |h − h∗| ≤ z(C) on C. Consequently
Proposition 15.5.1 implies that with probability ≥ 1− exp(−100p),
∣∣∣
∑

τ∈G

h(τ)Yτ −
∑

τ∈G

h∗(τ)Yτ

∣∣∣≤
∑

k≥1

∑

C∈Ck

z(C)
∑

τ∈C

|Yτ | ≤ L
√
m02

3pΔ .

Therefore, using Theorem 15.5.7, it suffices to prove that h∗ ∈ S∗(Δ). Using
the same sets Bk and the same values z(C) for h∗ as for h it suffices to
prove (15.113). Consider C and C ′ as in this condition, and τ ∈ C, τ ′ ∈ C ′.
Consider k′ such that τ ′ ∈ C ′′ ∈ Ck′ . Then we have k′ ≤ k, for otherwise
C ′ ⊂ C ′′ ⊂ Bk′ , and we assume that this is not the case. Thus C ′′ ⊂ C ′, and
consequently by (15.71) for ρ ∈ C and ρ′ ∈ C ′′ we have |h(ρ)−h(ρ′)| ≤ z(C).
Averaging ρ over C and ρ′ over C ′′ proves that |h∗(τ)− h∗(τ ′)| ≤ z(C). 
�

15.6 Haar Basis Expansion

The strategy to prove Theorem 15.5.7 is very simple. We write an expansion
h =

∑
v av(h)v along the Haar basis, where av(h) is a number and v is a

function belonging the Haar basis. (See the details in (15.120) below.) We
then write
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∣∣∣
∑

i≤N

(
h(Ui)−

∫
hdμ
)∣∣∣ ≤

∑

v

|av(h)|
∣∣∣
∑

i≤N

(
v(Ui)−

∫
vdμ
)∣∣∣

=
∑

v

|av(h)||Yv| , (15.116)

where Yv =
∑

i≤N (v(Ui) −
∫
vdμ). In the right hand side we will bound

separately the sums corresponding to functions v “of the same size”. It should
be pointed out that the reason such an approach works at all (while it fails
in dimension 2) is that “the obstacles at different scales cannot combine”, so
that the scales can be separated as above. The first task is to understand the
size of the coefficients av(h), of course as a function of the coefficients z(C)
of Definition 15.5.6. This is done in Proposition 15.6.2 below, and the final
work of controlling the sum in (15.116) is the purpose of the next and last
section.

For 1 ≤ r ≤ p+ 1 we define the class H(r) of functions on {1, . . . , 2p} as
follows.

H(p+ 1) consists of the function that is constant equal to 1 . (15.117)

For 1 ≤ r ≤ p, H(r) consists of the 2p−r functions fi,r for 0 ≤ i < 2p−r that
are defined as follows:

fi,r(σ) =

⎧
⎪⎨

⎪⎩

1 if i2r < σ ≤ i2r + 2r−1

−1 if i2r + 2r−1 < σ ≤ (i+ 1)2r

0 otherwise

(15.118)

In this manner we define a total of 2p functions. These functions are orthogo-
nal in L2(θ) where θ is the uniform probability on {1, . . . , 2p}, and thus form
a complete orthogonal basis of this space. Let us note that

∫
f2
i,rdθ = 2−p+min(r,p) . (15.119)

For 1 ≤ q1, q2, q3 ≤ p+1, let us denote by V(q1, q2, q3) the set of functions
of the type v = f1 ⊗ f2 ⊗ f3 where fj ∈ H(qj) for j ≤ 3. The functions
v ∈ V(q1, q2, q3) have disjoint supports. As q1, q2, q3 take all possible values,
these functions form a complete orthogonal system of L2(ν), where

ν denotes the uniform probability on G .

Consequently, given any function h on G, we have the expansion

h =
∑

1≤q1,q2,q3≤p+1

∑

v∈V(q1,q2,q3)

av(h)v , (15.120)

where
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av(h) =

∫
hvdν∫
v2dν

. (15.121)

Setting q∗j = min(qj , p) and recalling (15.119) we obtain that for v ∈
V(q1, q2, q3) ∫

v2dν = 2q
∗
1+q∗2+q∗3−3p ≥ 1

L
2q1+q2+q3−3p . (15.122)

The decomposition (15.120) then implies

∣∣∣
∑

τ∈G

h(τ)Yτ

∣∣∣ ≤
∑

1≤q1,q2,q3≤p+1

∑

v∈V(q1,q2,q3)

|av(h)|
∣∣∣
∑

τ∈G

v(τ)Yτ

∣∣∣ . (15.123)

This will be our basic tool to prove Theorem 15.5.7, keeping (15.115) in mind.
Fixing q1, q2, q3, the main effort will be to find competent bounds for

∑

v∈V(q1,q2,q3)

|av(h)|
∣∣∣
∑

τ∈G

v(τ)Yτ

∣∣∣ . (15.124)

Since we think of q1, q2 and q3 as fixed, we lighten notation by writing

V = V(q1, q2, q3) ; Yv =
∑

τ∈G

v(τ)Yτ . (15.125)

We observe that since qj ≤ p+ 1 we have qj − 1 ≤ q∗j ≤ qj and thus

23p−q1−q2−q3 ≤ cardV = 23p−q∗1−q∗2−q∗3 ≤ L23p−q1−q2−q3 . (15.126)

Recalling Definition 15.5.2, a first observation is as follows.

Lemma 15.6.1. The family of r.v.s (Yv)v∈V belongs to B(N).

Proof. This relies on the fact that the functions v ∈ V have disjoint supports,
and is really obvious from the definition:

Yv =
∑

i≤N

(
v(Ui)−

∫
vdμ
)
. 
�

Recall Definition 15.5.6 of the class S∗(Δ). The next task is, given a function
h ∈ S∗(Δ), to gather information about the coefficients av(h). This informa-
tion will of course depend on the information we have about h, that is the
sets Bk and the coefficients z(C). We think of h as fixed, and for k ≥ 0 we
consider the function Rk on G defined as follows:

Rk = 0 outside Bk . (15.127)

If C ∈ Ck then Rk is constant = z(C) on C . (15.128)

These functions will be essential for the rest of this chapter. We may think
of them as the parameters which governs “the size of h”, and we should keep
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in mind that they depend on h. We observe that since ν(C) = 2s(k)−3p for
C ∈ Pk, ∑

C∈Ck

2s(k)z(C) = 23p
∫

Rkdν , (15.129)

and thus from (15.111)
∑

k≥0

∫
Rkdν ≤ LΔ . (15.130)

Our basic bound is as follows.

Proposition 15.6.2. Consider v ∈ V(q1, q2, q3), and j ≤ 3 such that qj ≤ p.
Then, setting q = q1 + q2 + q3,

|av(h)| ≤ L23p−q+qj
∑

nj(�)<qj

2−nj(�)

∫
|v|R�dν . (15.131)

This means than on the right-hand side the summation is taken only over
those values of � for which nj(�) < qj . The reason why only these terms
appear is closely related to the fact that h is constant on the elements C
of Ck and that av(1C) = 0 for C ∈ Pk as soon as qj ≤ nj and qj ≤ p
for some j ≤ 3. Let us also observe that |v| ∈ {0, 1} so that

∫
|v|R�dν is

simply the integral of R� on the support of v. A fundamental idea is that
Proposition 15.6.2 offers three different bounds (one for each value of j) for
|av(h)|. We will choose properly between these bounds.

In view of (15.121) and (15.122), to prove Proposition 15.6.2 is suffices to
show that ∣∣∣

∫
vhdν

∣∣∣ ≤ 2qj
∑

nj(�)<qj

2−nj(�)

∫
|v|R�dν . (15.132)

The proof ultimately relies on a simple principle, to which we turn now.
We say that a subset of N∗ is a dyadic interval if it is of the type {r2q +
1, . . . , (r + 1)2q} for some integers r, q ≥ 0. The essential property is that
given two dyadic intervals I and J with cardJ ≥ card I, we have

I ∩ J �= ∅ ⇒ I ⊂ J .

Lemma 15.6.3. Consider a dyadic interval I and a partition Q of I into
dyadic intervals. Assume that to each J ∈ Q is associated a number z(J).
Consider a function g : I → R. Assume that whenever J, J ′ ∈ Q are adjacent
and card J ≥ cardJ ′,

σ ∈ J , σ′ ∈ J ′ ⇒ |g(σ)− g(σ′)| ≤ z(J) . (15.133)

Then for all σ, σ′ in I we have

|g(σ)− g(σ′)| ≤ 2
∑

J∈Q
z(J) . (15.134)
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Let us insist that (15.133) holds in particular if J = J ′ ∈ Q.
Proof. Let us enumerate Q as J1, J2, . . . in a way that J�+1 is immediately
to the right of J�. Without loss of generality we may assume that σ ≤ σ′. If
for some J ∈ Q we have σ, σ′ ∈ J , then (15.133) implies |g(σ)−g(σ′)| ≤ z(J)
and hence (15.134). Otherwise we have σ ∈ J�1 and σ′ ∈ J�2 for some �1 < �2.
For �1 < � < �2 consider a point σ� ∈ J�. Let σ�1 = σ and σ�2 = σ′. Then

|g(σ′)− g(σ)| = |g(σ�2)− g(σ�1)| ≤
∑

�1≤�<�2

|g(σ�+1)− g(σ�)| . (15.135)

Moreover, it follows from (15.133) (distinguishing whether card J�+1 ≥
card J� or the other way around) that

|g(σ�+1)− g(σ�)| ≤ z(I�) + z(I�+1) . (15.136)

Combining with (15.135) completes the proof. 
�
Proof of (15.132). Without loss of generality we assume that j = 1. By
definition of the class V(q1, q2, q3), v is of the type f1 ⊗ f2 ⊗ f3. Also,
ν = ν1⊗ν2⊗ν3, where νj is the uniform probability on {1, . . . , 2p}. Therefore

∫
vhdν =

∫ (∫
f1hdν1

)
f2f3dν2dν3 ,

and consequently

∣∣∣
∫

vhdν
∣∣∣ ≤
∫ ∣∣∣
∫

f1hdν1

∣∣∣|f2f3|dν2dν3 . (15.137)

Let us fix τ2 and τ3 in {1, . . . , 2p}. We shall prove that, setting g(σ) =
h(σ, τ2, τ3),
∣∣∣
∑

σ

g(σ)f1(σ)
∣∣∣ ≤ 2q1

∑

�;n1(�)<q1

2−n1(�)
∑

1≤σ≤2p

|f1(σ)|R�(σ, τ
2, τ3) := 2q1S ,

(15.138)
or, equivalently,

∣∣∣
∫

h(σ, τ2, τ3)f1(σ, τ
2, τ3)dν1(σ)

∣∣∣

≤ 2q1
∑

�;n1(�)<q1

2−n1(�)

∫
|f1(σ)|R�(σ, τ

2, τ3)dν1(σ) .

Therefore, using Fubini’s theorem,
∫ ∣∣∣
∫

f1hdν1

∣∣∣|f2f3|dν2dν3 ≤ 2q1
∑

�;n1(�)<q1

2−n1(�)

∫
|v|R�dν ,

and combining with (15.137) yields the result.
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We turn to the proof of (15.138). Recalling the definition of the class
V(q1, q2, q3), f1 is of the type fi,r given by (15.118) for r = q1 ≤ p and a
certain value of i. Let us consider the dyadic interval

I = {i2r + 1, . . . , (i+ 1)2r} ,

so that f1(σ) = 0 for σ �∈ I, and

∣∣∣
∑

σ

g(σ)f1(σ)
∣∣∣ =
∣∣∣

∑

i2r<σ≤i2r+2r−1

(g(σ)− g(σ + 2r−1))
∣∣∣ . (15.139)

(It is here that we use that q1 ≤ p.) Therefore to prove (15.138), and since
r = q1, it suffices to prove that

i2r < σ ≤ i2r + 2r−1 ⇒ |g(σ)− g(σ + 2r−1)| ≤ 2S ,

or even that
σ, σ′ ∈ I ⇒ |g(σ)− g(σ′)| ≤ 2S . (15.140)

This we shall deduce from Lemma 15.6.3. Consider the map ψ : {1, . . . , 2p} →
G given by ψ(σ) = (σ, τ2, τ3), and let I∗ = ψ(I). Assume first

∃� , n1(�) ≥ r = q1 , ∃C ∈ C� , C ∩ I∗ �= ∅ . (15.141)

Since C ∈ P�, J = ψ−1(C) is a dyadic interval with cardJ = 2n1(�) ≥ 2q1 =
card I, and since I ∩ J �= ∅ because C ∩ I∗ �= ∅ by (15.141), we have I ⊂ J .
Now h is constant on C, so g is constant on J ⊃ I and (15.140) holds true.
So we may assume that (15.141) fails, i.e.

∀�, C ∈ C� , C ∩ I∗ �= ∅ ⇒ n1(�) < q1 . (15.142)

We consider the partition Q of I that consists of the sets of the type ψ−1(C),
where, for some � ≥ 1, C ∈ C� and C ∩ I∗ �= ∅. When J = ψ−1(C) ∈ Q we
set z(J) = z(C). We define

S∗ =
∑{

z(J) ; J ∈ Q
}

=
∑{

z(C) ; C ∩ I∗ �= ∅ , C ∈
⋃

�≥1

C�
}
. (15.143)

We now prove that Condition (15.133) follows from (15.113). When J, J ′ ∈ Q
are adjacent we have J = ψ−1(C) and J ′ = ψ−1(C ′) where C and C ′ are
adjacent and C ∈ C�, C ′ ∈ C�′ . When moreover cardJ ≥ cardJ ′ we may
assume that � ≥ �′. Indeed, when card J > cardJ ′ we have � > �′, and when
card J = cardJ ′ we can exchange J and J ′ if necessary. Then C ′ �⊂ Bk for
k > �, and then by (15.113) we have |h(τ)− h(τ ′)| ≤ z(C) = z(I) for τ ∈ C
and τ ′ ∈ C ′ and this proves (15.133).
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Lemma 15.6.3 then implies that |g(σ) − g(σ′)| ≤ 2S∗ for each σ, σ′ ∈ I.
Recalling the quantity S of (15.138) we now prove that S∗ = S, finishing the
proof of (15.140) and of the lemma.

We observe that if C ∈ C� is such that C ∩ I∗ �= ∅, then J = ψ−1(C) is
a dyadic interval with J ∩ I �= ∅. Moreover since (15.142) implies cardJ =
2n1(�) ≤ card I = 2q1 we have J ⊂ I, so that card(C ∩ I∗) = 2n1(�). Conse-
quently,

z(C) = 2−n1(�)
∑

σ∈J

|f1(σ)|R�(σ, τ
2, τ3) (15.144)

because there are 2n1(�) non-zero terms in the summation, and for each of
these terms |f1(σ)| = 1 and R�(σ, τ

2, τ3) = z(C). Summation of the relations
(15.144) over C ∈

⋃
�≥1 C� with C ∩ I∗ �= ∅ then proves that S = S∗. 
�

15.7 Probability, II

We go back to the problem of bounding the quantities (15.124):

∑

v∈V(q1,q2,q3)

|av(h)||Yv| . (15.145)

We think of q1, q2 and q3 as fixed, and we write q = q1 + q2 + q3, V =
V(q1, q2, q3). The plan is to combine the bound of Proposition 15.6.2 with
probabilistic estimates. Computation of EY 2

v shows that we should think of
|Yv| as being typically of size about

√
m02

q/2. The trouble of course comes
from the fact that some of the quantities |Yv| are much larger than their
typical values. Our first goal is to provide a simple argument showing than
none of these quantities is larger than about p times its typical value. It will
settles the case q ≥ p.

Lemma 15.7.1. With probability ≥ 1 − L exp(−100p) the following occurs:
for each choice of qj, j ≤ 3 we have

max
v∈V

|Yv| ≤ Lp
√
m02

q/2 . (15.146)

Proof. Since the family (Yv)v∈V belongs to B(N) by Lemma 15.6.1, it follows
from (15.96) that for u > 0,

P(|Yv| ≥ u) ≤ 2 exp

(
− 1

L
min
(
u,

u2 cardV

N

))
.

Now, using (15.99) and (15.15) we have cardV/N ≥ 2−q−1/m0, so that

P(|Yv| ≥ u) ≤ 2 exp

(
− 1

L
min
(
u,

u2

m02q

))
, (15.147)
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and

P(max
v∈V

|Yv| ≥ u) ≤ 2 cardV exp

(
− 1

L
min
(
u,

u2

m02q

))
. (15.148)

Since cardV ≤ 23p, the result follows. 
�

Lemma 15.7.2. Assume (15.146). Then for h ∈ S∗(Δ) we have

∑ ∑

v∈V(q1,q2,q3)

|av(h)||Yv| ≤ L23p
√
m0Δ , (15.149)

where the first summation is over 1 ≤ q1, q2, q3 ≤ p+ 1, q1 + q2 + q3 ≥ p.

Proof. First, if q1 = q2 = q3 = p + 1, then Yv =
∑

τ∈G Yτ = 0 for the
unique element v of V(q1, q2, q3). Next, given v ∈ V(q1, q2, q3) with q = q1 +
q2 + q3 < 3(p + 1), we use the bound (15.132). We choose j ≤ 3 such that
qj ≤ q/3 < p + 1. Thus qj ≤ p. We use the trivial bound nj(�) ≥ 0 and we
get ∣∣∣

∫
vhdν

∣∣∣ ≤ 2q/3
∑

�≥1

∫
|v|R�dν ,

and, recalling (15.121) and (15.122),

|av(h)| ≤ L23p−2q/3
∑

�≥1

∫
|v|R�dν .

Thus, since the functions v ∈ V(q1, q2, q3) have disjoint support and satisfy
|v| ≤ 1, and using (15.130),

∑

v∈V(q1,q2,q3)

|av(h)| ≤ L23p−2q/3Δ .

Combining with (15.146) yields

∑

v∈V(q1,q2,q3)

|av(h)||Yv| ≤ Lp23p−q/6√m0Δ .

Now there are at most q3 possible choices of q1, q2, q3 for which q1+q2+q3 = q.
To conclude we simply use that p

∑
q≥p q

32−q/6 ≤ L. 
�
The previous argument does a lot better than taking care only of the val-

ues of q ≥ p, but for small values of q we need to be much more sophisticated
anyway. From now on we always assume that q ≤ p. The following lemma is
closely connected to Lemmas 15.5.5 and 15.5.4. It controls the possible num-
ber of quantities |Yv| which are larger than 2k/2 times their typical values. It
might help to know right now that the crucial case of this lemma is k ∼ q.
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Lemma 15.7.3. With probability ≥ 1 − exp(−100p) the following occurs.
Consider q1, q2, q3 with q = q1 + q2 + q3 ≤ p. Consider any k ≤ q ≤ p and
r := "cardV/Mk+2#. Then, if r ≥ 1, for each subset W of V = V(q1, q2, q3)
with cardW = r we have

∑

v∈W

|Yv| ≤ Lr
√
m02

k/22q/2 . (15.150)

Moreover, if r = 0 then

max
v∈V

|Yv| ≤ L
√
m02

k/22q/2 . (15.151)

Proof. Assume first that r ≥ 1, so that cardV/r ≤ 2Mk+2. Let us first prove
that r2k ≥ p/L. If Mk+2 ≤ 2p this holds because cardV ≥ 23p−q ≥ 22p, so
that r ≥ 2p. If Mk+2 ≥ 2p this holds because then 2k ≥ p/L.

For v ∈ W consider ηv = ±1, and let ηv = 0 if v �∈ W . Then
∑

v η
2
v =

cardW = r. Since cardV = 23p−q, (15.99) implies (since N ≤ 23p+1m0)

P
(∣∣∣
∑

v∈V

ηvYv

∣∣∣ ≥ u
)
≤ 2 exp

(
− 1

L
min
(
u,

u2

2qm0r

))
. (15.152)

There are at most
(
cardV

r

)
≤
(
e cardV

r

)r

≤ 2L2kr

choices ofW , and givenW , there are at most 2r choices for the signs (ηv)v∈W .
Consider a parameter A ≥ 1. For u = Ar

√
m02

k/22q/2, since 2q/2+k/2 ≥ 2k,
we have min(u, u2/2qm0r) ≥ A2kr, so with probability ≥ 1 − exp(2kr(L −
A/L)) we have

∑
v∈W ηvYv ≤ u for each choice of W and (ηv), and hence∑

v∈W |Yv| ≤ u for each choice of W . Therefore, since r2k ≥ p/L it suffices

to take for A a large enough constant to obtain 1 − exp(2kr(L − A/L)) ≥
1− L exp(−100p).

Finally assume that r = 0 so that 22p ≤ cardV ≤Mk+2 and thus p ≤ L2k.
Moreover since k ≤ q for u =

√
m02

k/22q/2 we have min(u, u2/(m02
q)) ≥ 2k

and the result then follows from (15.148). 
�

Lemma 15.7.4. Assume that the event of Lemma 15.7.3 occurs. Then for
each numbers (av)v∈V , av > 0 and any value of k ≤ q ≤ p we have

∑

v∈V

av|Yv| ≤ L
√
m02

k/2+q/2

(∑

v∈V

av +
cardV

Mk+2
max

v
av

)
. (15.153)

It is correct to think of the last term as an annoying but lower order term.

Proof. Let r = "cardV/Mk+2#. If r = 0, the result follows immediately from
(15.151), so we may assume that r ≥ 1. Let us enumerate V as {v1, . . .} in
such a way that the sequence (|Yv� |) is non-increasing. Then (15.150) implies
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r|Yvr | ≤
∑

�≤r

|Yv� | ≤ Lr
√
m02

q/2+k/2 ,

and thus |Yv� | ≤ L
√
m02

q/2+k/2 for � ≥ r. We then use that

∑

�≤r

av� |Yv� | ≤ max
v∈V

av
∑

�≤r

|Yv� | ≤ Lr
√
m02

k/22q/2 max
v∈V

av ,

and ∑

�>r

av� |Yv� | ≤ max
�>r

|Yv� |
∑

v∈V

av ≤ L
√
m02

k/22q/2
∑

v∈V

av . 
�

Inequality (15.153) is our fundamental tool to control the size of the quan-
tities Yv. To apply it we will split the sum in (15.145) into several pieces, which
we define now. We define k0 = "q/4#, and we define k1 as the largest integer
k such that

∀ j ≤ 3 , nj(k) < qj . (15.154)

Thus
k1 =

∑

j≤3

nj(k1) ≤
∑

j≤3

(qj − 1) ≤ q − 3 . (15.155)

In particular, since q ≤ p,

k ≤ k1 ⇒ s(k) = k . (15.156)

We define

Vk1 =
{
v ∈ V ;

∫
|v|Rk1dν �= 0

}
. (15.157)

For k > k0 we define Vk recursively:

Vk =
{
v ∈ V ;

∫
|v|Rkdν �= 0

}
\ Vk+1 . (15.158)

Finally we define
Vk0 = V \ Vk0+1 . (15.159)

The following bound is pretty crude but sufficient.

Lemma 15.7.5. For k0 < k ≤ k1 we have

cardVk ≤ LΔ
23p−k

Mk
. (15.160)

Proof. The support of Rk is the union of the sets C ∈ Ck, so that when∫
|v|Rkdν �= 0 there exists C ∈ Ck with

∫
C
|v|Rkdν �= 0. The support of v is

a product I1 × I2 × I3 of dyadic intervals with card Ij = 2qj , while the sets
C ∈ Pk are products of dyadic intervals J1 × J2 × J3 where cardJj = 2nj(k).
Since k ≤ k1 we have nj(k) < qj for each j ≤ 3, so that if the support
of v meets a set C ∈ Pk it contains it entirely. Consequently cardVk ≤
card Ck. Since s(k) = k, combining (15.112) and (15.111) yields that card Ck ≤
LΔ23p−k/Mk. 
�
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Let us set

βk(= βk(h)) =

∫
Rkdν , (15.161)

so that using (15.130) we obtain

∑

k≥1

βk ≤ LΔ . (15.162)

Lemma 15.7.6. Assume that k0 < k ≤ k1, and assume that the event of
Lemma 15.7.3 occurs. Then

∑

v∈Vk

|av(h)||Yv| ≤ L
√
m02

3p2(k−q)/6(βk + βk−1)

+ L
√
m02

3p
(
Δ

22q

Mk−1
+

2q

Mk+1

)
. (15.163)

In this bound the crucial term is the factor 2(k−q)/6, that will sum nicely
over q ≥ k. There is plenty of room for the second order quantities represented
by the second term.

Proof. We recall the bound (15.131):

|av(h)| ≤ L23p−q+qj
∑

nj(�)<qj

2−nj(�)

∫
|v|R�dν .

When v ∈ Vk we know by definition of Vk that for k + 1 ≤ � ≤ k1 we have∫
|v|R�dν = 0. Consequently,

|av(h)| ≤ L23p−q+qj
∑

�≤k,nj(�)<qj

2−nj(�)

∫
|v|R�dν . (15.164)

We choose j such that

qj − nj(k) ≤
1

3

∑

j′≤3

(qj′ − nj′(k)) =
1

3
(q − s(k)) =

1

3
(q − k) .

Using that nj(k − 1) ≥ nj(k) − 1 we get for � = k or � = k − 1 that
2qj−nj(�) ≤ L2(q−k)/3. Using the crude bound qj − nj(�) ≤ q for � ≤ k − 2,
(15.164) yields

|av(h)| ≤ L23p2−2q/3−k/3

∫
|v|(Rk +Rk−1)dν + L23p

∑

�≤k−2

∫
|v|R�dν .

(15.165)
Since R� ≤M�+1, we have, using that

∫
|v|dν = 2k−3p for v ∈ Vk,

∑

�≤k−2

∫
|v|R�dν ≤ LMk−1

∫
|v|dν ≤ L2q−3pMk−1 , (15.166)
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and therefore
∑

v∈Vk

|av(h)| ≤ L23p2−2q/3−k/3(βk + βk−1) + L2qMk−1 cardVk .

Using (15.160), and since Mk = M2
k−1, we obtain

∑

v∈Vk

|av(h)| ≤ L23p2−2q/3−k/3(βk + βk−1) + L23pΔ
2q

Mk−1
. (15.167)

Also, as in (15.166) we have
∑

�≤k

∫
|v|R�dν ≤ L2q−3pMk+1 and thus

|av(h)| ≤ L2qMk+1 . (15.168)

To conclude we use the bound (15.153) with av = av(h) for v ∈ Vk and av = 0
otherwise. We note that cardV ≤ 23p−q, Mk+2 = M2

k+1, and we use crude

bounds such as 2k/2+q/2 ≤ 2q for the secondary terms. 
�
It remains to take care of the case k = k0, but (because k0 ≤ q/4) this

term is not critical and does not need great care, as the following shows.

Lemma 15.7.7. Assume that the event of Lemma 15.7.3 occurs, and recall
that k0 = "q/4#. Then

∑

v∈Vk0

|av(h)||Yv| ≤ L
√
m02

3p
(
2−q/24Δ+

22q

Mk0+1

)
. (15.169)

Proof. We use the bound (15.131). We choose j such that qj ≤ q/3 and we
observe that for v ∈ Vk0 we have

∫
|v|R�dν �= 0⇒ � ≤ k0 to obtain

v ∈ Vk0 ⇒ |av(h)| ≤ L23p2−2q/3
∑

�≤k0

∫
|v|R�dν .

Consequently, using (15.161) and (15.162),
∑

v∈Vk0

|av(h)| ≤ L23p2−2q/3Δ

and, since R� ≤M�+1 and
∫
|v|dν = 2k0−3p, we have (crudely)

max
v∈Vk0

|av(h)| ≤ L2qMk0+1 .

We now use (15.153) for k = k0 and with av = av(h) for v ∈ Vk0 and av = 0
otherwise to obtain

∑

v∈Vk0

|av(h)||Yv| ≤ L
√
m02

3p
(
2k0/2−q/6Δ+

22q

Mk0+1

)
,

and the result since k0 ≤ q/4. 
�
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Combining Lemmas 15.7.6 and 15.7.7 we obtain the following.

Proposition 15.7.8. Assume that the event of Lemma 15.7.3 occurs. Then

∑

v∈V

|av(h)||Yv| ≤ L
√
m02

3p
(
2−q/24Δ+

∑

k0≤k≤k1

(A(k, q) +B(k, q))
)
,

(15.170)
where

A(k, q) := A(k, q, h) = 2(k−q)/6(βk + βk−1) . (15.171)

B(k, q) := Δ
22q

Mk−1
+

2q

Mk+1
. (15.172)

Proof of Theorem 15.5.7. We assume that the events of Lemmas 15.7.1 and
15.7.3 occur. We then prove that (15.114) holds. Combining (15.115) and
(15.123), we have to prove that

∑

3≤q≤3p+3

∑

q1+q2+q3=q

∑

v∈V(q1,q2,q3)

|av(h)||Yv| ≤ L
√
m02

3pΔ . (15.173)

Lemma 15.7.2 takes care of the summation over q ≥ p. Control of the sum-
mation for q ≤ p will be obtained by summing the inequalities (15.170) and
interchanging the summation in k and q. Given q there are at most q3 possible
values of (q1, q2, q3) with q = q1 + q2 + q3, and

∑

q≥1

q32−q/24 ≤ L .

Also, ∑

q≥1

∑

k≥k0

q3B(k, q) ≤ L(1 +Δ) ≤ LΔ ,

because k0 = "q/4# and Mk is doubly exponential in k. It remains only to
take care of the contribution of the term A(k, q). For this we have to be more
sophisticated in counting the number of triples (q1, q2, q3) for which this term
occurs. Recalling (15.154) and that

∑
j≤3 nj(k) = k, we observe that there

are at most (q − k)3 such triples. Now,

∑

q≥1

∑

k≤q

(q − k)32(k−q)/12(βk + βk+1) =
∑

k≥0

(βk + βk+1)
∑

q≥k

(q − k)32(k−q)/12

≤ L
∑

k≥0

(βk + βk+1)

≤ LΔ ,

using (15.162) in the last line. 
�
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16. Applications to Banach Space Theory

16.1 Cotype of Operators from C(K)

We start by recalling some basic definitions. More background can be found
in classical books such as [6] or [29].

Given an operator U (i.e. a continuous linear map) from a Banach space
X to a Banach space Y and a number q ≥ 2, we denote by Cg

q (U) its Gaussian
cotype-q constant, that is, the smallest number A (possibly infinite) for which,
given any integer n, any elements x1, . . . , xn of X, we have

(∑

i≤n

‖U(xi)‖q
)1/q

≤ AE
∥∥∑

i≤n

gixi

∥∥ .

Here, (gi)i≤n are i.i.d. standard Gaussian r.v.s, the norm of U(xi) is in Y
and the norm of

∑
i≤n gixi is in X.

The occurrence of the quantity

E
∥∥
∑

i≤n

gixi

∥∥ = E sup

{∑

i≤n

gix
∗(xi) ; x

∗ ∈ X∗ , ‖x∗‖ ≤ 1

}

suggests that results on Gaussian processes will bear on this notion. This
is only true to a small extent. Because of the statement “for any elements
x1, x2, . . . , xn”, geometry dominates. Geometry dominates less in the case
when X is a space of continuous functions on a compact space. Then the
theory of processes really bears on the notion of cotype. We specialize to this
case in the present section.

Given a number q ≥ 2, we define the Rademacher cotype-q constant
Cr

q (U) as the smallest number A (possibly infinite) such that, given any
integer n, any elements (xi)i≤n of X, we have

(∑

i≤n

‖U(xi)‖q
)1/q

≤ AE
∥∥∑

i≤n

εixi

∥∥ , (16.1)

where (εi)i≤n are i.i.d. Bernoulli r.v.s. The name “Rademacher cotype” stems
from the fact that Bernoulli r.v.s are usually (but inappropriately) called
Rademacher r.v.s in Banach space theory. Since Bernoulli processes are tricker
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than Gaussian processes we expect that Rademacher cotype will be harder
to understand than Gaussian cotype. This certainly seems to be the case.

Given q ≥ 1, we define the (q, 1)-summing norm ‖U‖q,1 of U as the
smallest number A (possibly infinite) such that, for any integer n, any vectors
x1, . . . , xn of X we have

(∑

i≤n

‖U(xi)‖q
)1/q

≤ A sup

{∑

i≤n

|x∗(xi)| ; x∗ ∈ X∗ , ‖x∗‖ ≤ 1

}
. (16.2)

For an operator W from Y to another Banach space we have

‖W ◦ U‖q,1 ≤ ‖W‖‖U‖q,1 . (16.3)

The proof is immediate. These quantities are related as follows.

Proposition 16.1.1. We have

Cg
q (U) ≤

√
π

2
Cr

q (U) (16.4)

‖U‖q,1 ≤ Cr
q (U) . (16.5)

Proof. To prove (16.4) we simply observe that (3.27) implies

E
∥∥
∑

i≤n

εixi

∥∥ ≤
√

π/2E
∥∥
∑

i≤n

gixi

∥∥ .

To prove (16.5) we observe that

∥∥∑

i≤n

εixi

∥∥ = sup

{∑

i≤n

εix
∗(xi) ; x

∗ ∈ X∗ , ‖x∗‖ ≤ 1

}

≤ sup

{∑

i≤n

|x∗(xi)| ; x∗ ∈ X∗ , ‖x∗‖ ≤ 1

}
. 
�

In the rest of this section we specialize to the case where X is the space
�∞N of sequences x = (xj)j≤N provided with the norm

‖x‖ = sup
j≤N

|xj | .

It is possible to show that similar results hold in the case where X = C(W ),
the space of continuous functions over a compact topological space W . This is
deduced from the caseX = �∞N using a reduction technique which is unrelated
to the methods of this book, see [16].

The proof of (16.5) amounts to apply the inequality (5.4). One should then
expect that questions about the exact relationship between the quantities
Cg

q (U) (related to Gaussian processes) and the one hand and Cr
q (U) and

Uq,1(U) (related to Bernoulli processes) on the other hand will be related
through Theorem 5.1.5.
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Theorem 16.1.2. Given q ≥ 2 and an operator U from �∞N to a Banach
space Y , we have

√
2

π
max(Cg

q (U), ‖U‖q,1) ≤ Cr
q (U) (16.6)

≤ Lmax(Cg
q (U), ‖U‖q,1) .

We observe right away that the left-hand side inequality is a consequence
of Proposition 16.1.1. It does not appear to be known whether this result
holds for operators between any two Banach spaces.

Proposition 16.1.3. Consider vectors (xi)i≤n in �∞N . Then we can find a
decomposition xi = x′

i + x′′
i such that

E
∥∥
∑

i≤n

gix
′
i

∥∥ ≤ LE
∥∥
∑

i≤n

εixi

∥∥ (16.7)

and

sup

{∑

i≤n

|x∗(x′′
i )| ; x∗ ∈ �1N , ‖x∗‖1 ≤ 1

}
≤ LE

∥∥
∑

i≤n

εixi

∥∥ . (16.8)

Proof of Theorem 16.1.2. We shall prove that

Cr
q (U) ≤ L(Cg

q (U) + ‖U‖q,1) , (16.9)

from which the right-hand side inequality of (16.6) follows.
Let us consider a decomposition xi = x′

i + x′′
i as in Proposition 16.1.3.

Then (∑

i≤n

‖U(x′
i)‖q
)1/q

≤ LCg
q (U)E

∥∥∑

i≤n

εixi

∥∥ (16.10)

(∑

i≤n

‖U(x′′
i )‖q
)1/q

≤ L‖U‖q,1E
∥∥∑

i≤n

εixi

∥∥ . (16.11)

Since ‖U(xi)‖ ≤ ‖U(x′
i)‖+ ‖U(x′′

i )‖, the triangle inequality in �qn implies

(∑

i≤n

‖U(xi)‖q
)1/q

≤
(∑

i≤n

‖U(x′
i)‖q
)1/q

+
(∑

i≤n

‖U(x′′
i )‖q
)1/q

,

and combining with (16.10) and (16.11), this proves (16.9). 
�
Proof of Proposition 16.1.3. Let us write xi = (xij)1≤j≤N . For 1 ≤ j ≤ N ,
consider tj ∈ R

n given by tj = (xij)i≤n. Let t0 = 0 and consider T =
{t0, t1, . . . , tN}, so that

b(T ) = Emax
(
0, sup

1≤j≤N

∑

i≤n

εixij

)
≤ E
∥∥∑

i≤n

εixi

∥∥ . (16.12)
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Theorem 5.1.5 provides for 0 ≤ j ≤ N a decomposition tj = t′j+t′′j , where
t′j = (x′

ij)i≤n, t
′′
j = (x′′

ij)i≤n, and

E sup
0≤j≤N

∑

i≤n

gix
′
ij ≤ Lb(T ) (16.13)

∀j ≤ N ,
∑

i≤n

|x′′
ij | ≤ Lb(T ) . (16.14)

Since t0 = 0 = t′0+ t′′0 , for each 0 ≤ j ≤ N we can replace t′j by t′j − t′0 and t′′j
by t′′j − t′′0 , so that we may assume that t′0 = t′′0 = 0. For i ≤ n, we consider
the elements x′

i = (x′
ij)j≤N and x′′

i = (x′′
ij)j≤N of �∞N . Thus xi = x′

i + x′′
i .

Next we observe that in the quantity

sup

{∑

i≤n

|x∗(x′′
i )| ; ‖x∗‖1 ≤ 1

}
,

by convexity the supremum is attained at an extreme point of the unit ball
of (�∞N )∗ = �1N . These extreme points are the canonical basis vectors, so that
(16.14) implies (16.8).

Lemma 2.2.1 implies that when the process (Xt)t∈T is symmetric and
Xs = 0 for some s, then

E sup
t∈T

|Xt| ≤ E sup
s,t∈T

|Xs −Xt| = 2E sup
t∈T

Xt .

Using this for Xt =
∑

i≤n gixi when t = (xi)i≤n and T = {t′0, t′1, . . . , t′N}
yields (using that Xt′0

= 0 since t′0 = 0),

E
∥∥
∑

i≤n

gix
′
i

∥∥ = E sup
0≤j≤N

∣∣
∑

i≤n

gix
′
ij

∣∣ ≤ 2E sup
0≤j≤N

∑

i≤n

gix
′
ij ≤ Lb(T ) . 
�

The following very interesting question was raised by S. Kwapien (private
communication).

Research problem 16.1.4. Does there exist a universal constant L with
the following property. Given any Banach space E and elements x1, . . . , xn

of E, we can write xi = x′
i + x′′

i where

E
∥∥
∑

i≤n

gix
′
i

∥∥≤ LE
∥∥
∑

i≤n

εixi

∥∥ ; max
ηi=±1

∥∥
∑

i≤n

ηix
′′
i

∥∥≤ LE
∥∥
∑

i≤n

εixi

∥∥ .

When E = �∞N , Proposition 16.1.3 provides a positive answer when E =
�∞N . A positive answer to Problem 16.1.4 in general would allow to extend
Theorem 16.1.2 to the case of operators between any two Banach spaces.

In the rest of this section we turn to another topic, the computation of
Cg

q (U) (still in the case where X = �∞N ). S. Montgomery-Smith discovered an
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effective approach to this computation, using again the theory of Gaussian
processes. We denote by Hq(U) the quantity

Hq(U) = sup

{(∑

i≤n

‖U(xi)‖q
)1/q
}
,

where the supremum is taken over all n and all families (xi)i≤n with xi =∑
k≥2 aikuk, where uk ∈ �∞N , the elements (uk)k≥2 have disjoint supports,

‖uk‖∞ ≤ 1, and the numbers aik satisfy

∀k ≥ 2 ,

n∑

i=1

a2ik ≤
1

log k
. (16.15)

Theorem 16.1.5 (S. Montgomery-Smith [17]). For all U : �∞N → Y we
have

1

L
Hq(U) ≤ Cg

q (U) ≤ LHq(U) .

Proof. Suppose first that for i ≤ n the elements xi satisfy xi =
∑

k≥2 aikuk,
where the elements (uk)k≥2 of �∞N have disjoint support, ‖uk‖∞ ≤ 1, and
(16.15) holds. Then, defining uk = (ukj)j≤N , we have

∥∥∑

i≤n

gixi

∥∥ = sup
j≤N

∣∣∣
∑

i≤n

gi
∑

k≥2

aikukj

∣∣∣ = sup
j≤N

∣∣∣
∑

k≥2

Xkukj

∣∣∣ ,

where Xk =
∑

i≤n giaik.
Since the elements uk have disjoint support and ‖uk‖∞ ≤ 1, for each j

we have
∑

k≥2 |ukj | ≤ 1, and hence supj≤N |
∑

k≥2 Xkukj | ≤ supk |Xk|. Now
the r.v.s Xk are Gaussian and by (16.15) we have EX2

k ≤ 1/ log k. Thus
E supk≥2 |Xk| ≤ L by Proposition 2.4.16, and therefore E‖

∑
i≤n gixi‖ ≤ L.

Hence (∑

i≤n

‖U(xi)‖q
)1/q

≤ LCg
q (U) ,

and thus Hq(U) ≤ LCg
q (U).

We now turn to the proof of the converse inequality. Consider for i ≤ n
elements xi in �∞N , xi = (xij)j≤N and

S := E
∥∥
∑

i≤n

gixi

∥∥ = E sup
j≤N

∣∣∣
∑

i≤n

gixij

∣∣∣ ≥ E sup
T

∑

i≤n

giti

where
T = {0} ∪ {tj = (xij)i≤n ; 1 ≤ j ≤ N} .

Since 0 ∈ T , by Theorem 2.4.18 we can find a sequence (ak)k≥2 of points of
�2n, with ‖ak‖2 ≤ 1/

√
log k, for which

T ⊂ LS conv({ak ; k ≥ 2} ∪ {0}) .
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Consequently, for each j ≤ N , we can find numbers (ujk)k≥2 with tj =∑
k≥2 ujkak and

∀j ≤ N ,
∑

k≥2

|ujk| ≤ LS .

Writing ak = (aik)i≤n, the condition tj =
∑

k≥2 ujkak means

∀j ≤ N , ∀i ≤ n , xij =
∑

k≥2

ujkaik ,

so that
∀i ≤ n , xi =

∑

k≥2

aikuk, (16.16)

where uk = (ujk)j≤N . We observe that

∑

i≤n

a2ik = ‖ak‖22 ≤
1

log k
.

When we fix the numbers aik, the quantity
∑

i≤n ‖U(
∑

k≥2 aikuk)‖q is a
convex function of the numbers (ujk)j≤N,k≥2. On the set

{
∀j ≤ N ,

∑

k≥2

|ujk| ≤ LS

}
,

the maximum of this function is attained at an extreme point (vjk)j≤N,k≥2.
By extremality, for each j, there is at most one value of k for which vjk �= 0,
and of course |vjk| ≤ LS. Thus if we define vk = (vjk)j≤N , this means that
the elements (vk)k≥2 have disjoint supports and satisfy ‖vk‖ ≤ LS. Hence

(∑

i≤n

‖U(xi)‖q
)1/q

=
(∑

i≤n

∥∥U
(∑

k≥2

aikuk

)∥∥q)1/q

≤
(∑

i≤n

∥∥U
(∑

k≥2

aikvk
)∥∥q)1/q

≤ LSHq(U) ,

where the first inequality follows from the choice of the numbers (vjk)j≤N,k≥2

and the second inequality from the definition of Hq(U). This completes the
proof. 
�

Theorem 16.1.5 is the starting point of a rather complete theory for the
cotype of operators from �∞N . We will refer the reader to [25] for a full devel-
opment. Here we will simply indulge in proving Theorems 16.1.10 and 16.1.11
below to enjoy a nice

√
log logN “exact” term and illustrate how precise and

non-trivial matters can get.
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For a function f on a space provided with a positive measure μ, let us
consider the quantity

‖f‖q,1 =

∫ ∞

0

(
μ({|f | ≥ t})

)1/q
dt . (16.17)

It can be shown to be equivalent to a norm, and defines the space Lq,1(μ),
q ≥ 1 (that will occur again in Section 16.6 below).

We start by collection a few simple facts. We first note, using (2.5) in the
first equality, and change of variable in the second one,

‖f‖pp =

∫ ∞

0

μ({|f |p ≥ t})dt =
∫ ∞

0

ptp−1μ({|f | ≥ t})dt .

Proposition 16.1.6. If p < q then

‖f‖q,1 ≤ K(p, q)‖f‖1−p/q
∞ ‖f‖p/qp , (16.18)

where K(p, q) depends only on p and q and K(1, q) = 1. Moreover, if μ is a
probability measure, then

q < p ⇒ ‖f‖q,1 ≤ K(p, q)‖f‖p (16.19)

and
‖f‖q ≤ K(q)‖f‖q,1 . (16.20)

Proof. To prove (16.18), if q′ = q/(q − 1) denotes the conjugate exponent of
q, by Hölder’s inequality we have

‖f‖q,1 =

∫ ‖f‖∞

0

(
μ({|f | ≥ t})

)1/q
dt

≤
(∫ ‖f‖∞

0

t(1−p) q′
q dt
)1/q′(∫ ∞

0

tp−1μ({|f | ≥ t})dt
)1/q

≤ K(p, q)‖f‖1−p/q
∞ ‖f‖p/qp ,

since (p − 1)q′/q = (p − 1)/(q − 1) < 1 and (1 + (1 − p)q′/q)/q′ = 1 − p/q.
Obviously when p = 1 this holds for K(q, 1) = 1.

To prove (16.19), assuming without loss of generality that ‖f‖p = 1, we
have μ({|f | ≥ t}) ≤ min(1, t−p) and ‖f‖q,1 ≤ K(p, q) by (16.17).

To prove (16.20), assuming without loss of generality that ‖f‖q,1 = 1, by
(16.17) we have

tμ({|f | ≥ t})1/q ≤
∫ t

0

μ({|f | ≥ u})du ≤ 1 ,

so that
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tq−1μ({|f | ≥ t}) = (tμ({|f | ≥ t})1/q)q−1(μ({|f | ≥ t}))1/q

≤ (μ({|f | ≥ t}))1/q ,

and thus

‖f‖qq =

∫ ∞

0

qtq−1μ({|f | ≥ t})dt ≤ q

∫ ∞

0

(μ({|f | ≥ t})1/qdt ≤ q ,

using (16.17) again. 
�
In the next few pages, we find it convenient to view an element of �∞N as

a function on {1, . . . , N}. Thus, for x = (xj)j≤N ∈ �∞N , |x|p is the element
(|xj |p)j≤N of �∞N .

Proposition 16.1.7. Consider a probability measure μ on {1, . . . , N} and
q ≥ 1. Then the canonical injection Id : �∞N ↪→ Lq,1(μ) satisfies ‖Id‖q,1 ≤ 1.

Proof. Consider elements (xi)i≤n of �∞N , xi = (xij)j≤N , and assume that

∀x∗ ∈ �1N = (�∞N )∗ ,
∑

i≤n

|x∗(xi)| ≤ ‖x∗‖ .

Therefore,

∀j ≤ N ,
∑

i≤n

|xij | ≤ 1 , (16.21)

which, viewing xi as a function on {1, . . . , N} (which basically means identi-
fying xi and Id(xi)) we simply write as

∑

i≤n

|xi| ≤ 1 . (16.22)

From (16.22) we have ‖xi‖∞ ≤ 1, so that, still viewing xi as a function on
{1, . . . , N}, (16.18) implies

‖xi‖qq,1 ≤
∫
|xi|dμ ,

and thus
∑

i≤n ‖xi‖qq,1 ≤ 1 by (16.22) and since μ is a probability. 
�
The importance of the previous example stems from the fact that it is

essentially “generic” as the following factorization theorem, due to G. Pisier,
shows.

Theorem 16.1.8. Given an operator U : �∞N → Y , there is a probability
measure μ on {1, . . . , N} such that if we denote by V the operator U as seen
operating from Lq,1(μ) to Y then

‖V ‖ ≤ L‖U‖q,1 . (16.23)
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We refer the reader to [18] for a proof. This result witnesses the value of
‖U‖q,1 (within the multiplicative constant L). Indeed, by (16.3) and Propo-
sition 16.1.7 we have

‖U‖q,1 = ‖V ◦ Id‖q,1 ≤ ‖V ‖‖Id‖q,1 ≤ ‖V ‖ .

Here is a simple fact.

Lemma 16.1.9. If M ≥ 2, for a positive measure μ on {1, . . . ,M} and
functions (xi)i≤n on {1, . . . ,M}, we have

∑

i≤n

|xi|2 ≤ 1⇒
∑

i≤n

‖xi‖22,1 ≤ L logMμ({1, . . . ,M}) .

Proof. By homogeneity we can and do assume that μ is a probability mea-
sure. Consider the probability measure μ′ on {1, . . . ,M} which is the sum of
μ/2 and of point masses 1/(2M) a each point of {1, . . . ,M}. With obvious
notation we have ‖x‖2,1,μ ≤

√
2‖x‖2,1,μ′ . Thus we may assume without loss

of generality that μ gives mass ≥ 1/(2M) to each point of {1, . . . ,M}. We
shall prove that this implies

∀x , ‖x‖22,1 ≤ L logM‖x‖22 ,

which conclude the proof since
∑

i≤n ‖xi‖22 ≤ 1. We set t0 = 0 and for � ≥ 1,
we define

t� = sup{t ; μ({|x| ≥ t}) ≥ 2−�} ,

so that
t� < t < t�+1 ⇒ 2−�−1 ≤ μ({|x| ≥ t}) ≤ 2−� (16.24)

and thus

‖x‖2,1 =

∫ ∞

0

√
μ({|x| ≥ t}) dt ≤

∑

�≥0

2−�/2(t�+1 − t�) . (16.25)

If �0 is the smallest integer with 2−�0 < 1/2M , for � ≥ �0 we have t� = t�0 =
‖x‖∞, because μ gives mass ≥ 1(2M) to each point 1, . . . ,M . Consequently
the sum in (16.25) has in fact at most (�0 + 1) terms. Since (t�+1 − t�)

2 ≤
t2�+1 − t2� , using (16.25), the Cauchy-Schwarz inequality and (16.24) we get

‖x‖22,1 ≤ (�0 + 1)
∑

�≥0

(t2�+1 − t2�)2
−�

≤ 4(�0 + 1)
∑

�≥0

∫ t�+1

t�

tμ({|x| ≥ t}) dt

= 2(�0 + 1)‖x‖22 . 
�
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Theorem 16.1.10. For an operator U from �∞N to any Banach space Y , we
have, for N ≥ 3

Cr
q (U) ≤ L

√
log logN‖U‖2,1 .

Proof. Consider the probability measure provided by Theorem 16.1.8, and
the operator V as in that theorem. Then

Cr
q (U) = Cr

q (V ◦ Id) ≤ ‖V ‖Cr
q (Id) .

Thus it suffices to prove that Cr
q (U) ≤ L

√
log logN when U = Id is the

canonical injection from �∞N to L2,1(μ), where μ is any probability measure on
{1, . . . , N}. Combining Theorem 16.1.2 and Proposition 16.1.7, it suffices to
show that Cg

2 (U) ≤ L
√
log logN , and, using Theorem 16.1.5, that H2(U) ≤

L
√
log logN . To prove this consider elements (uk)k≥2 of �∞N with disjoint

supports, ‖uk‖∞ ≤ 1, and numbers (aik)i≤n,k≥2 such that

∀k ≥ 2 ,
∑

i≤n

a2ik ≤
1

log k
. (16.26)

Set xi =
∑

k≥2 aikuk. We want to prove that

∑

i≤n

‖xi‖22,1 ≤ L log logN . (16.27)

We observe that there are at most N of the elements uk that are not zero
(since they have disjoint support). By renumbering them, we may assume
that k ≥ N + 2⇒ uk = 0. For � ≥ 0, we set

xi,� =
∑

M�≤k<M�+1

aikuk , (16.28)

where M� = 22
�

(so that M0 = 2 and M� = N� for � ≥ 1). Consider the
smallest integer �0 such that M�0 ≥ N + 2. Then

xi =
∑

0≤�≤�0

xi,� ,

so that, since ‖ · ‖2,1 is equivalent to a norm, we have

‖xi‖2,1 ≤ L
∑

0≤�≤�0

‖xi,�‖2,1 ,

and, by the Cauchy-Schwarz inequality,

∑

i≤n

‖xi‖22,1 ≤ L(�0 + 1)
∑

0≤�≤�0,i≤n

‖xi,�‖22,1 .
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Therefore it suffices to prove that
∑

�≤�0,i≤n ‖xi,�‖22,1 ≤ L. Denoting by S�

the union of the supports of the vectors uk for M� ≤ k < M�+1, we observe
that the sets S� are disjoint, so that it suffices to prove that

∑

i≤n

‖xi,�‖22,1 ≤ Lμ(S�) . (16.29)

First we prove that for each � we have

∑

i≤n

|xi,�|2 ≤ L2−� . (16.30)

We set xi,� = (xi,�,j)j≤N and uk = (ukj)j≤N . Consider j ≤ N . By (16.28), if
j does not belong to the support of any uk, the numbers xi,�,j are 0 for each
i. Otherwise, since the supports of the elements uk are disjoint, j belongs
to the support of a unique element uk0 . If either k0 < M� or k0 ≥ M�+1,
by (16.28) the numbers xi,�,j are again 0 for each i. If M� ≤ k0 < M�+1

then (16.28) implies that for each i ≤ n we have |xi,�,j | ≤ aik0 , so that∑
i≤n x

2
i,�,j ≤ 1/ log k0 ≤ L2−� by (16.26), and since k0 ≥ M�. This proves

(16.30).
Since ‖uk‖∞ ≤ 1 we have |ukj | ≤ 1. Since the vectors uk have disjoint sup-

port ‖xi,�‖1,2 = ‖
∑

M�≤k<M�+1
aikuk‖2,1 increases with |ukj |, so that to prove

(16.29) we may assume without loss of generality that |ukj | ∈ {0, 1}. The span
of the elements |xi,�| , i ≤ n in �∞N consists of functions on {1, . . . , N} that
are constants on the sets {|uk| = 1} for M� ≤ k < M�+1, and that are zero
outside the union of these sets. If we identify each of these sets {|uk| = 1}
to a point, we are in a situation where the underlying measured space has
at most M�+1 points, and since logM�+1 ≤ 2�+1, Lemma 16.1.9 and (16.30)
imply (16.29). 
�

Theorem 16.1.11. Let μ be the uniform probability measure on {1, . . . , N}.
Then for N ≥ 3 we have

Cg
2 (U) ≥ 1

L

√
log logN ,

where U is the canonical injection from �∞N into L2,1(μ).

In summary, we have shown that ‖U‖2,1 ≤ 1, and that both Cg
2 (U) and

Cr
2 (U) are of order

√
log logN . In particular the bound of Theorem 16.1.10

cannot be improved in general.

Proof. To avoid messy details we shall assume that N is of the type N =
(p− 3)22

p

for some p ≥ 4. For 2 ≤ j ≤ p− 2 we consider disjoint sets Sj with

card Sj = 22
j+2

, and S =
⋃

2≤j≤p−2 Sj .

Consider the probability measure ν on S that gives mass 1/((p−3) card Sj)
to each point of Sj . The mass of each point of S is a multiple of N−1, so that
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L2,1(ν) is isometric to a subspace of L2,1(μ), and it suffices to prove that the
canonical injection V from �∞(S) into L2,1(ν) satisfies

H2(V ) ≥
√
p

L
. (16.31)

We consider the family X consisting of all the elements x of �∞(S) of the
following type. The element x takes only the values 0 and 2k for 3 ≤ k ≤ 2p−2.
For each such value of k there is unique 2 ≤ j ≤ p−2 for which 2j−1 < k ≤ 2j .
Then the set {x = 2k} consists of exactly 2−2k−2jcard Sj = 22

j+2−2k−2j

points of Sj . This is possible because this number is an integer since 2j+2 −
2j − 2k ≥ 2j+2 − 2j − 2j+1 ≥ 0. Thus ν({x = 2k}) = 2−2k−2j/(p− 3), and

‖x‖2,1 ≥
∑

3≤k≤2p−2

∫ 2k

2k−1

√
ν({|x| ≥ t}) dt ≥

∑

3≤k≤2p−2

2k−1
√
ν({|x| = 2k})

≥
∑

2≤j≤p−2

∑

2j−1<k≤2j

2k−1 2−k−j

√
p− 3

=
p− 3

4
√
p− 3

≥
√
p

L
. (16.32)

Let us consider the family F consisting of the elements of �∞(S) of the
type x/

√
M , where x ∈ X and M = cardX . Then (16.32) implies

∑

y∈F
‖y‖22,1 ≥

p

L
. (16.33)

For x ∈ X , the average value of x2 on the set Sj is
∑

2j−1<k≤2j

22k2−2k−2j = 2−j−1 .

For y ∈ F let us write y = (yk)k∈S . By symmetry the quantity
∑

y∈F y2k is
independent of k ∈ Sj , so that

∀k ∈ Sj ,
∑

y∈F
y2k = 2−j−1 . (16.34)

We can and do assume that the sets Sj are consecutive intervals. In that case,
for k ∈ Sj we have log k ≤ L2j , and (16.34) implies

∀k ∈ Sj ,
∑

y∈F
y2k ≤

L

log k
. (16.35)

Let us denote by (uk) the canonical basis of �∞(S). Then

y =
∑

k∈S

ykuk ,

and the elements uk have disjoint supports. Combining with (16.33) and
(16.35) we have indeed shown that H2(V ) ≥ √p/L. 
�
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16.2 Computing the Rademacher Cotype-2 Constant

When U is an operator between two finite dimensional Banach spaces X and
Y , we recall the definition (16.1) of the Rademacher cotype-2 constant Cr

2(U)
of U . One may ask “how many vectors of X are needed in general to compute
Cr

2 (U)” within a constant factor L. That is, how large should n be so that
one can find (x1, . . . , xn) in X with

(∑

i≤n

‖U(xi)‖2
)1/2

>
1

L
Cr

2(U)E
∥∥
∑

i≤n

εixi

∥∥ .

This question is motivated in particular by a result of N. Tomczak-
Jaegermann [29] who proved that N vectors suffice to compute the Gaussian
cotype-2 constant of U , where N is the dimension of X. Similar questions in
various settings are also investigated e.g. in [10], and we consider only the
case q = 2 simply because this is the most difficult. We will approach this
question through a comparison principle between Gaussian and Rademacher
averages which is of interest in its own right.

Consider a Banach spaceX of dimensionN ≥ 3, and its dualX∗. Consider
elements x1, . . . , xn inX and assume without loss of generality that they span
X.

Consider the norm ‖ · ‖2 on X such that its unit ball is the set

{∑

i≤n

αixi ;
∑

i≤n

α2
i ≤ 1

}
.

Let us also denote by ‖ · ‖2 the dual of this norm on X∗. It will be clear for
the notation in which space we compute the norm, so no confusion will arise.
Thus

‖x∗‖2 = sup

{∣∣∣x∗
(∑

i≤n

αixi

)∣∣∣ ;
∑

i≤n

α2
i ≤ 1

}

=
(∑

i≤n

x∗(xi)
2
)1/2

. (16.36)

This norm arises from the dot product given by

(x∗, y∗) =
∑

i≤n

x∗(xi)y
∗(xi) .

Consider an orthonormal basis (e∗j )j≤N of X∗ for this dot product. Then

x∗ =
∑

j≤N

(x∗, e∗j ) e
∗
j ; ‖x∗‖22 =

∑

j≤N

(x∗, e∗j )
2 .

Thus
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‖x‖2 = sup{|x∗(x)| ; ‖x∗‖2 ≤ 1}

= sup

{∣∣∣
∑

j≤N

βje
∗
j (x)
∣∣∣ ;
∑

j≤N

β2
j ≤ 1

}
=
(∑

j≤N

e∗j (x)
2
)1/2

.

We note that
∑

i≤n

‖xi‖22 =
∑

i≤n

∑

j≤N

e∗j (xi)
2

=
∑

j≤N

∑

i≤n

e∗j (xi)
2 = N , (16.37)

using (16.36) with x∗ = e∗j in the last equality.
It is of interest to consider a subset T of X as a subset of the Hilbert space

(X, ‖ · ‖2). One can then define the usual quantity g(T ), that is concretely
given by

g(T ) = E sup
t∈T

∑

j≤N

gje
∗
j (t) , (16.38)

where (gi)j≤N are independent standard normal r.v. (Interestingly, this for-
mula will not be needed in the sequel.)

Lemma 16.2.1. If T = {x1, . . . , xn} then

g(T ) ≤ L
√
log(N + 1) . (16.39)

When the sequence (‖xi‖2)i≥1 is non-increasing, and if M = "N logN#, the
set T ′ = {xi ; M ≤ i ≤ n} satisfies

g(T ′) ≤ L . (16.40)

Proof. Both results are based on the fact that if T = {tk ; k ≥ 1} then

g(T ) ≤ L sup
k≥1

(
‖tk‖2

√
log(k + 1)

)
,

as shown in Proposition 2.4.16. We observe that ‖xi‖2 ≤ 1 by definition of
the unit ball of ‖ · ‖2. Assuming without loss of generality that the sequence
(‖xi‖2)i≥1 is non-increasing, we see from (16.37) that ‖xi‖2 ≤

√
N/i. Thus

g(T ) ≤ L sup
k≥1

(
min
(
1,

√
N

k

)√
log(k + 1)

)
≤ L
√
logN

g(T ′) ≤ L sup
k≥1

(√
N

M + k

√
log(k + 1)

)
≤ L

√
N

M
logM ≤ L . 
�

In the next statement, we define T = {x1, . . . , xn}, and, for a subset I of
{1, . . . , n} we define TI as the collection of vectors xi for i outside I,

TI = {xi ; i ≤ n , i �∈ I} . (16.41)
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Theorem 16.2.2. We have

E
∥∥∑

i≤n

gixi

∥∥ ≤ LE
∥∥∑

i≤n

εixi

∥∥(1 + g(T )) . (16.42)

More generally, for any subset I of {1, . . . , n} we have

E
∥∥∑

i 	∈I

gixi

∥∥ ≤ LE
∥∥∑

i 	∈I

εixi

∥∥
(
1 +

E‖
∑

i≤n gixi‖
E‖
∑

i 	∈I gixi‖
g(TI)

)
. (16.43)

Of course (16.42) is the special case of (16.43) where I = ∅. Using (16.39)
we see that (16.42) improves the classical inequality

E
∥∥∑

i≤n

gixi

∥∥≤ L
√
logNE

∥∥∑

i≤n

εixi

∥∥ . (16.44)

Corollary 16.2.3. There exists a subset I of {1, . . . , n} such that card I ≤
N log(N + 1) and that either of the following holds true

E
∥∥
∑

i 	∈I

gixi

∥∥ ≤ 1

2
E
∥∥
∑

i≤n

gixi

∥∥ (16.45)

or else
E
∥∥∑

i 	∈I

gixi

∥∥ ≤ LE
∥∥∑

i 	∈I

εixi

∥∥ . (16.46)

Proof. By (16.40) we can find a set I with the required cardinality such that
g(TI) ≤ L, so that if (16.45) fails, (16.46) follows from (16.43). 
�

Corollary 16.2.4. Consider an operator U from X to Y , and vectors (xi)i≤n

of X such that

AE
∥∥∑

i≤n

εixi

∥∥ <
(∑

i≤n

‖U(xi)‖2
)1/2

. (16.47)

Then we can find vectors (yj)j≤M of X such that

A

L
E
∥∥
∑

j≤M

εjyj
∥∥ <
(∑

j≤M

‖U(yj)‖2
)1/2

(16.48)

and M ≤ N logN log logN .

For every A < Cr
2(U), there exists vectors x1, . . . , xn such that (16.47) is

satisfied, and (16.48) means that within the loss of a constant factor one can
take n = M . In other words, the “Rademacher cotype-2 constant of U can
essentially be computed on M vectors”.

Of course, one should ask whether it would actually suffice to consider
LN vectors.
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Proof. The first part of the proof consists of showing that we can find a subset
J of {1, . . . , n} with cardJ ≤M and

E
∥∥∑

i 	∈J

gixi

∥∥ ≤ LE
∥∥∑

i≤n

εixi

∥∥ . (16.49)

To this aim, consider the largest integer k0 with 2k0 ≤
√
logN , so that

k0 ≤ log logN . Using Corollary 16.2.3, by induction over k, for k ≤ k0 we
construct subsets Ik of {1, . . . , n} with card Ik ≤ N logN and either

E
∥∥ ∑

i 	∈I1∪...∪Ik

gixi

∥∥ ≤ 1

2
E
∥∥ ∑

i 	∈I1∪...∪Ik−1

gixi

∥∥ (16.50)

or else
E
∥∥ ∑

i 	∈I1∪...∪Ik

gixi

∥∥ ≤ LE
∥∥ ∑

i 	∈I1∪...∪Ik−1

εixi

∥∥ . (16.51)

If at one step (16.51) holds, we then stop the construction, and we define
J = I1 ∪ . . . ∪ Ik. Thus cardJ ≤ kN logN ≤ M and E‖

∑
i 	∈J gixi‖ ≤

LE‖
∑

i 	∈J εixi‖ ≤ LE‖
∑

i≤n εixi‖, so that (16.49) holds. If, on the other
hand, (16.51) never occurs during the construction, we continue this con-
struction until k = k0, and we define now J = I1 ∪ . . . ∪ Ik0 . Thus
card J ≤ k0N logN ≤M and, iterating (16.50),

E
∥∥
∑

i 	∈J

gixi

∥∥ ≤ 2−k0E
∥∥
∑

i≤n

gixi

∥∥ .

Combining with (16.44) this implies

E
∥∥
∑

i 	∈J

gixi

∥∥ ≤ 2−k0L
√
log(N + 1)E

∥∥
∑

i≤n

εixi

∥∥ ,

and this proves (16.49) by the choice of k0.
Now that we have proved (16.49) we consider 2 cases.

Case 1. We have

∑

i∈J

‖U(xi)‖2 ≥
1

2

∑

i≤n

‖U(xi)‖2 .

Then

A

2
E
∥∥∑

i∈J

εixi

∥∥ ≤ A

2
E
∥∥∑

i≤n

εixi

∥∥ < 1

2

(∑

i≤n

‖U(xi)‖2
)1/2

≤
(∑

i∈J

‖U(xi)‖2
)1/2

,

and this proves (16.48).

Case 2. We have
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∑

i 	∈J

‖U(xi)‖2 ≥
1

2

∑

i≤n

‖U(xi)‖2 .

Then (16.47) yields

A

2
E
∥∥∑

i≤n

εixi

∥∥ <
(∑

i 	∈J

‖U(xi)‖2
)1/2

and combining with (16.49) we obtain

A

L
E
∥∥
∑

i 	∈J

gixi

∥∥ <
(∑

i 	∈J

‖U(xi)‖2
)1/2

, (16.52)

which implies that the Gaussian cotype-2 constant of U is≥ A/L. To conclude
the proof, we use that this Gaussian cotype-2 constant of U “can be computed
on N vectors [29]”, so that from (16.52) we can find N vectors y1 , . . . , yN
of X such that

A

L
E
∥∥
∑

j≤N

gjyj
∥∥ ≤
(∑

j≤N

‖U(yj)‖2
)1/2

,

which by (5.3) implies (16.48). 
�
We turn to the proof of Theorem 16.2.2. It will use the following general

principle, where we recall that N0 = 1 and that Nn = 22
n

for n ≥ 1.

Lemma 16.2.5. Consider a set T provided with two distances d and d′.
Assume that for a certain number S and every n ≥ 0, every ball Bd(t, a) of
T can be covered by Nn sets of d′-diameter at most aS2−n/2. Then

γ1(T, d
′) ≤ LSγ2(T, d) .

Proof. Consider an admissible sequence (Bn) of T with

∀t ∈ T ,
∑

n≥0

2n/2Δ(Bn(t), d) ≤ 2γ2(T, d) .

We construct by induction an increasing sequence of partitions (Cn) satisfying

card Cn ≤ Nn+2 (16.53)

∀C ∈ Cn , ∃B ∈ Bn , C ⊂ B , Δ(C, d′) ≤ S2−n/2Δ(B, d) . (16.54)

First, we set C0 = {T}. We note that using the hypothesis for a = Δ(T, d)
and n = 0 we have

Δ(T, d′) ≤ SΔ(T, d) . (16.55)
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Thus (16.54) is true for n = 0. Assuming that Cn has been constructed, we
split each element C of Cn as follows. First we split C in the sets C ∩B , B ∈
Bn+1. Then we split each set C ∩B in Nn+1 pieces C ′ such that

Δ(C ′, d′) ≤ S2−(n+1)/2Δ(C ∩B, d) .

This is possible by hypothesis, and this completes the construction of Cn+1.
Clearly, Cn+1 consists of at most Nn+2 ·N2

n+1 = Nn+3 sets and it is obvious
that (16.53) and (16.54) hold for n+ 1. A consequence of (16.54) is that

∀t , Δ(Cn(t), d
′) ≤ S2−n/2Δ(Bn(t), d)

and thus
∑

n≥0

2nΔ(Cn(t), d
′) ≤ S

∑

n≥0

2n/2Δ(Bn(t), d)

≤ 2Sγ2(T, d) .

Using (16.55) and Lemma 2.3.5 then yields the result. 
�
Proof of Theorem 16.2.2. We prove (16.43). On X∗ consider the norm ‖ · ‖I
given by

‖x∗‖I = sup
i 	∈I
|x∗(xi)| .

We now appeal to the dual Sudakov minoration inequality (Lemma 8.3.6):
for n ≥ 0 the unit ball of (X∗, ‖ · ‖2) can be covered by Nn balls for ‖ · ‖I
of radius Lg(TI)2

−n/2. Thus, recalling the set TI of (16.41), Lemma 16.2.5
implies

γ1(X
∗
1 , dI) ≤ Lg(TI)γ2(X

∗
1 , ‖ · ‖2) ,

where dI is the (quasi-) distance associated to the norm ‖ · ‖I and where X∗
1

is the unit ball of X∗. Applying Theorem 2.4.1 to the process given for x∗

in X∗
1 by Xx∗ =

∑
i≤n gix

∗(xi) yields γ2(X
∗
1 , ‖ · ‖2) ≤ LE‖

∑
i≤n gixi‖, and

consequently

γ1(X
∗
1 , dI) ≤ Lg(TI)E

∥∥
∑

i≤n

gixi

∥∥ . (16.56)

Consider now the set

T∼ = {(x∗(xi))i 	∈I ; x∗ ∈ X∗
1} .

It should be obvious that

g(T∼) = E
∥∥
∑

i 	∈I

gixi

∥∥ ; b(T∼) = E
∥∥
∑

i 	∈I

εixi

∥∥ ;

γ1(T
∼, d∞) = γ1(X

∗
1 , dI) . (16.57)

We appeal to Theorem 5.4.1 to obtain
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g(T∼) ≤ L
(
b(T∼) +

√
b(T∼)γ1(T∼, d∞)

)
. (16.58)

Let us write

A = g(TI)
E‖
∑

i≤n gixi‖
E‖
∑

i 	∈I gixi‖
,

so that (16.56) and (16.57) imply γ1(T
∼, d∞) ≤ Lg(T∼)A and combining

with (16.58),

g(T∼) ≤ L
(
b(T∼) +

√
b(T∼)g(T∼)A

)
.

Using the inequality
√
xy ≤ cx+ y/c, we conclude that

g(T∼) ≤ Lb(T∼) + Lb(T∼)A+
1

2
g(T∼) ,

so that g(T∼) ≤ L(1 +A)b(T∼). 
�

16.3 Classifying the Elements of B1

In this section we prove Proposition 5.2.5. For this we need in particular to
cover the case T = B1 = {t ∈ �1; ‖t‖1 ≤ 1}. This relies on an important fact,
a kind of classification of the elements of B1, Theorem 16.3.1 below. This
result will also be also used a number of times in the forthcoming sections.

In order to avoid repetition, we consider the situation of a general mea-
sured space (Ω,μ), in which case

B1 =

{
f ∈ L1(μ) ;

∫
|f |dμ ≤ 1

}
.

The parameter τ in the forthcoming theorem is of secondary importance. In
this section we need only the case τ = 0. We use the notation a∧b = min(a, b).

Theorem 16.3.1. For any integer τ ∈ Z there exists an admissible sequence
of partitions (Cn) of B1, and for each C ∈ Cn an integer �(C) ∈ Z, such that
if we set

�(f, n) = �(Cn(f)) (16.59)

we have

∀ f ∈ B1 ,

∫
(2�(f,n)f)2 ∧ 1dμ ≤ 2n+τ , (16.60)

and
∀f ∈ B1 ,

∑

n≥0

2n−�(f,n) ≤ 10 · 2−τ . (16.61)
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We note that (16.60) implies

∀f ∈ B1 , μ
({
|f | > 2−�(f,n)

})
≤ 2n+τ . (16.62)

A first (and partial) understanding of the meaning of this result is that we
classify the functions f of B1 according to the values of the integers �(f, n)
for which

μ
({
|f | > 2−�(f,n)

})
� 2n+τ .

Lemma 16.3.2. For any number a ∈ R we have

∑

k∈Z

(2k+2a2) ∧ 2−k ≤ 8|a| . (16.63)

Proof. Without loss of generality we assume that a > 0. Consider the smallest
integer k0 such that 2k0+1a ≥ 1, so that 2k0a ≤ 1. Now,

∑

k∈Z

(2k+2a2) ∧ 2−k ≤
∑

k<k0

2k+2a2 +
∑

k≥k0

2−k = 2k0+2a2 + 2−k0+1 ≤ 8a . 
�

Proof of Theorem 16.3.1. Given f ∈ B1 and n ≥ 0 we define k(n, f) as the
largest integer in Z such that

∫
(2k(f,n)f)2 ∧ 1dμ ≤ 2n+τ . (16.64)

(If no such integer exists, we leave to the reader to make the small necessary
modifications to the proof.) Thus

∫
(2k(f,n)+1f)2 ∧ 1dμ ≥ 2n+τ ,

and therefore
∫
(2k(f,n)+2f2) ∧ 2−k(n,f)dμ ≥ 2n−k(f,n)+τ . (16.65)

It is obvious by construction that the sequence (k(n, f))n is non-decreasing.
We observe first from (16.65) that when the set Bk = {n ≥ 0; k(f, n) = k}
is not empty it has a largest element. Let us consider a subset J of N with
the following property. For each k ∈ Z, if the set Bk = {n ≥ 0; k(f, n) = k}
is not empty, then J ∩ Bk consists exactly of the largest element of Bk. All
the values k(f, n) for n ∈ J are different. Then, gathering the terms on the
left-hand side according to which set Bk they belong to, we get

∑

n≥0

2n−k(f,n) ≤ 2
∑

n∈J

2n−k(f,n) .
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Moreover summing (16.65) over the values of n ∈ J and using (16.63) we
obtain

∑

n∈J

2n−k(f,n)+τ ≤
∫ ∑

k∈Z

(2k+2f2) ∧ 2−kdμ ≤ 8

∫
|f |dμ ≤ 8 ,

so finally ∑

n≥0

2n−k(f,n)+τ ≤ 8 .

Let us then define �(f, n) = min(k(f, n), τ + 2n) so that

∑

n≥0

2n−�(f,n)+τ ≤ 10 . (16.66)

We observe the inequality h2 ∧ 1 ≤ |h|, so that since f ∈ B1

∫
(2n+τf)2 ∧ 1dμ ≤ 2n+τ

∫
fdμ ≤ 2n+τ ,

and the definition of k(n, f) implies k(f, n) ≥ n+ τ and therefore

τ + n ≤ �(f, n) ≤ τ + 2n . (16.67)

We define C0 = {B1}, and �(B1) = τ . Consider the partition Cn of B1 induced
by the following equivalence relation: f and f ′ are equivalent if and only if
�(f,m) = �(f ′,m) for each m ≤ n. The sequence (Cn) increases. Moreover
since �(f,m) can take at most m+ 1 values,

card Cn ≤ (n+ 1)! ≤ Nn , (16.68)

so that the sequence (Cn) is admissible.
By definition of Cn, if C ∈ Cn there exists �(C) such that �(f, n) = �(C)

whenever f ∈ C. Consequently for f ∈ C, we have �(Cn(f)) = �(C) = �(f, n),
so that (16.59) holds. Also (16.60) holds by construction. Finally (16.61)
follows from (16.66). 
�

As the crude inequality (16.68) shows, the use of admissible sequences
is not really canonical for a “classification result” such as Theorem 16.3.1
(one could consider sequences of partitions with a much smaller cardinality).
This however suffices for the applications, and we have not yet found uses for
sharper results.

Proof of Proposition 5.2.5. We will prove it only when r = 2. By homogene-
ity we may assume that b∗(T ) = 1, so that T ⊂ T1 + B1 where γ2(T1) ≤ 1.
Consider an admissible sequence (Bn) of T1 such that

sup
x∈T1

∑

n≥0

2n/2Δ(Bn(x)) ≤ 2 , (16.69)
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and for B ∈ Bn let us define kn(B) as the largest integer k for which Δ(B) ≤
2n/2−k. Consider an admissible sequence (Cn) of partitions of B1 and the
numbers �(C) as provided by Theorem 16.3.1 for τ = 0. For each x in T let
us choose ϕ(x) ∈ T1 and ψ(x) ∈ B1 such that x = ϕ(x) + ψ(x). For B ∈ Bn

and C ∈ Cn let us define

B ∗ C = {x ∈ T ; ϕ(x) ∈ B , ψ(x) ∈ C} .

There are at most N2
n such sets and they form a partition of Dn of T .

The sequence (Dn) increases. For D = B ∗ C in Dn let us set j∗n(D) =
min(kn(B), �(C)). Therefore j∗n(Dn(x)) = min(kn(Bn(ϕ(x))), �(Cn(ψ(x))))
satisfies

∑

n≥0

2n−j∗n(Dn(x)) ≤
∑

n≥0

2n−kn(Bn(ϕ(x))) +
∑

n≥0

2n−�(Cn(ψ(x))). (16.70)

By definition of kn(B) we have 2n/2−kn(B) ≤ 2Δ(B), so that 2n−kn(B) ≤
2n/2+1Δ(B), and (16.62), (16.70) and (16.69) prove that

∑

n≥0

2n−j∗n(Dn(x)) ≤ L . (16.71)

Since x = ϕ(x) + ψ(x), for any x, y ∈ D = B ∗ C we have

(2j
∗
n(D)|x− y|) ∧ 1 ≤ (2j

∗
n(D)|ϕ(x)− ϕ(y)|) ∧ 1 + (2j

∗
n(D)|ψ(x)|) ∧ 1

+ (2j
∗
n(D)|ψ(y)|) ∧ 1 , (16.72)

and using the triangle inequality in �2 we obtain, using also (16.60) in the
last inequality,

‖(2j
∗
n(D)|x− y|) ∧ 1‖2 ≤ ‖(2j

∗
n(D)|ϕ(x)− ϕ(y)|) ∧ 1‖2 + ‖(2j

∗
n(D)|ψ(x)|) ∧ 1‖2

+ ‖(2j
∗
n(D)|ψ(y)|) ∧ 1‖2

≤ 2k(B)Δ(B) + ‖(2�(C)|ψ(x)|) ∧ 1‖2
+ ‖(2�(C)|ψ(y)|) ∧ 1‖2
≤ 3 · 2n/2 ≤ 2(n+4)/2 . (16.73)

We now define An = Dn−4 for n ≥ 4 and An = {T} if n ≤ 3. Since we assume
0 ∈ T we have ‖t‖∞ ≤ L for each t ∈ T . We then consider the smallest integer
j∗ such that 2−j∗−1 > L, and we set jn(T ) = j∗ for n ≤ 3 to conclude the
proof. 
�

16.4 1-Unconditional Bases and Gaussian Measures

Consider a Banach space E with a basis (ei)i≥1, and independent standard
normal r.v.s gi. (There is little loss of generality to assume that E is finite
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dimensional, in which case no knowledge of basis theory is required.) How
do we “compute” E‖

∑
i≥1 giei‖? We first deduce a possible answer from

Theorem 2.4.18. We denote by x∗ an element of the dual E∗ of E.
To lighten notation in this section we write

an :=
1√

log(n+ 1)
. (16.74)

Theorem 16.4.1. Consider a Banach space E with a basis (ei)i≥1 and set
S = E‖

∑
i≥1 giei‖. Assume that S < ∞. Then we can find a sequence x∗

n ∈
E∗ such that for each n we have

(∑

i≥1

x∗
n(ei)

2
)1/2

≤ an (16.75)

and
‖x‖ ≤ LSN (x)

where N (x) := supn |x∗
n(x)| .

The point is that ‖x‖ ≤ LSN (x) while (using Proposition 2.4.16)

ESN
(∑

i≥1

giei

)
≤ LS = LE

∥∥∥
∑

i≥1

giei

∥∥∥ .

In words, given a norm ‖ · ‖, if we are only interested in the quantity S =
E‖
∑

i≥1 giei‖, our norm is in a sense equivalent to a norm of the type SN ,
where N (x) = supn |x∗

n(x)| for a sequence (x∗
n) that satisfies (16.75).

Proof of Theorem 16.4.1. Consider the set of sequences

T = {(x∗(ei))i≥1 ; ‖x∗‖ ≤ 1} .

We observe that E|
∑

i gix
∗(ei)| = E|x∗(

∑
i giei)| ≤ E‖

∑
i giei‖ ≤ S, so that

T ⊂ �2. As usual, for a sequence t = (ti)i≥1 ∈ �2 we write Xt =
∑

i≥1 tigi.
Keeping in mind the duality formula

‖x‖ = sup{x∗(x) ; ‖x∗‖ ≤ 1} , (16.76)

we get S = E‖
∑

i≥1 giei‖ = E sup‖x∗‖≤1

∑
i≥1 x

∗(xi)gi = E supt∈T Xt. To
conclude, we apply Theorem 2.4.18 to a dense countable set T ′ of T to obtain
a sequence yn = (yn,i)i≥1 with ‖yn‖2 ≤ an and T ′ ⊂ LS conv{yn;n ≥ 1},
and where yn is moreover a multiple of the difference of two elements of T .
This last condition implies that there exists x∗

n in E∗ with yn = (x∗
n(ei))i≥1,

i.e. yn,i = x∗
n(ei). Thus (16.75) follows from ‖y‖2 ≤ an. Moreover, when

x =
∑

i≥1 xiei we obtain from (16.76) that
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‖x‖ = sup
{∑

i≥1

x∗(ei)xi ; ‖x∗‖ ≤ 1
}
= sup

{∑

i≥1

tixi ; (ti) ∈ T
}

= sup
{∑

i≥1

tixi ; (ti) ∈ T ′
}
≤ LS sup

{∑

i≥1

yn,ixi ; n ≥ 1
}

= LS sup
{∑

i≥1

x∗
n(ei)xi ; n ≥ 1

}
= LS sup

n≥1
x∗
n(x) .

This finishes the proof. 
�

Suppose now that the basis (ei)i≥1 is 1-unconditional for the norm ‖·‖, in
the sense that the quantity ‖

∑
i≥1 xiei‖ is invariant under changes of signs

of any number of coordinates xi. (We shall abuse terminology and simply
describe this situation by saying that “the norm is 1-unconditional”.) Then
Theorem 16.4.1 is still true, but is not satisfactory because the norm N it
produces is not 1-unconditional. In the present section we provide a version
of Theorem 16.4.1 which is adapted to the case where the norm ‖ · ‖ is 1-
unconditional.

Theorem 16.4.2. Consider a Banach space E with a 1-unconditional basis
(ei)i≥1. Assume that E‖

∑
i≥1 giei‖ = S < ∞. Then we can find a sequence

(In) of subsets of N∗ with the following properties:

∀n ≥ 1 , card In ≤ log(n+ 1) , (16.77)

and

∀x ∈ E , x =
∑

i≥1

xiei , ‖x‖ ≤ LS sup
n≥1

an

(∑

i∈In

x2
i

)1/2

. (16.78)

To explain this result, when x =
∑

i≥1 xiei, let us define

N (x) = sup
n≥1

an

(∑

i∈In

x2
i

)1/2

.

This norm is 1-unconditional and (16.78) implies ‖x‖ ≤ LSN (x). Moreover,
as will follow from Lemma 16.4.4 below, we have EN (

∑
i≥1 giei) ≤ L. In

words, given a 1-unconditional norm ‖·‖, if we are only interested in the quan-
tity S = E‖

∑
i≥1 giei‖, our norm is in a sense equivalent to a 1-unconditional

norm of the type SN .

Exercise 16.4.3. In the statement of Theorem 16.4.2 prove that one may
instead request card In ≥ log(1 + n) and replace (16.78) by

‖x‖ ≤ LS sup
n≥1

(
1

card In

∑

i∈In

x2
i

)1/2

.

(Hint: one is permitted to add more sets In!)
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Lemma 16.4.4. Assume that the sets In satisfy (16.77). Then if (gi) are
independent standard Gaussian r.v.s we have

E sup
n≥1

an

(∑

i∈In

g2i

)1/2

≤ L . (16.79)

Proof. For each i we have E exp(g2i /4) ≤ 2, so that for any set I,

E exp
(1
4

∑

i∈I

g2i

)
≤ 2card I ,

and, for v ≥ 8 card I,

P
(∑

i∈I

g2i ≥ v
)
≤ 2card I exp

(
−v

4

)
≤ exp

(
−v

8

)
.

Now, (16.77) implies that for w2 ≥ 8, we have, using of course the value
(16.74) of an,

P

(
sup
n≥1

an

(∑

i∈In

g2i

)1/2

≥ w

)
≤
∑

n≥1

P

(∑

i∈In

g2i ≥ w2 log(n+ 1)

)

≤
∑

n≥1

exp
(
−w2 log(n+ 1)

8

)
,

and the last sum is ≤ L exp (−w2/L) for w large enough. 
�

Exercise 16.4.5. If the sets In satisfy card In ≥ log(n+ 1), prove that

E sup
n≥1

(
1

card In

∑

i∈In

x2
i

)1/2

≤ L .

Exercise 16.4.6. Given a finite subset I of N∗, and a number a > 0, let us
define B2(I, a) as the set of elements with support in I and with �2 norm
≤ a, i.e.

B2(I, a) =
{
x ∈ �2 ; i �∈ I ⇒ xi = 0 ;

∑

i∈I

x2
i ≤ a2

}
. (16.80)

Find an other proof of Lemma 16.4.4 by constructing a sequence (uk) with
‖uk‖ ≤ Lak and

⋃

n≥1

B2(In, an) ⊂ conv{uk ; k ≥ 1} .

(Hint: the Euclidean unit ball of Rd is contained in the convex hull of a set
of 5d vectors of length ≤ 2. This follows from (2.41) with ε = 1/2. Use this
for each ball B2(I, a) in the left-hand side above.)
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We recall that for T ⊂ �2 we write

g(T ) = E sup
t∈T

Xt = E sup
t∈T

∑

i≥1

tigi .

It does not hurt to present another proof of Lemma 16.4.4 based on a general
principle that we spell out now.

Proposition 16.4.7. Consider subsets Tn of �2, and assume that for certain
numbers bn we have ‖x‖ ≤ bn for x ∈ Tn. Then

g
(⋃

n≥1

Tn

)
≤ sup

n

(
g(Tn) + 2bn

√
log(n+ 1)

)
+ L sup

n
bn . (16.81)

This is a generalization of Proposition 2.4.16 which we recover when the sets
Tn consist of a single point.

Proof. We may assume each set Tn to be finite. Lemma 2.4.7 (i.e. the con-
centration inequality for the supremum of a Gaussian process) implies

P
(
sup
Tn

Xt ≥ g(Tn) + u
)
≤ 2 exp

(
− u2

2b2n

)

so that

P
(
sup
Tn

Xt ≥ g(Tn) + 2bn
√

log(n+ 1) + ubn

)
≤ 2 exp

(
−u2

2
− 2 log(n+ 1)

)

and thus

P

(
sup
⋃

Tn

Xt ≥ sup
n

(
g(Tn) + 2bn

√
log(n+ 1)

)
+ u sup

n
bn

)
≤ L exp

(
−u2

2

)
,

and in turn

g
(⋃

n

Tn

)
≤ sup

n

(
g(Tn) + 2bn

√
log(n+ 1)

)
+ L sup

n
bn . 
�

Second proof of Lemma 16.4.4. Since for x ∈ B2(I, a) we have

∑

i≥1

xigi ≤ a

(∑

i∈I

g2i

)1/2

,

using the Cauchy-Schwarz inequality in the second inequality below we obtain

g(B2(I, a)) ≤ aE

(∑

i∈I

g2i

)1/2

≤ a
√
card I . (16.82)
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We recall the notation an = 1/
√
log(n+ 1). Let Tn = B2(In, an), so that

g(Tn) ≤ an
√
card In ≤ 1 by (16.82) and (16.77). Thus (16.81) implies

g
(⋃

n

B2(In, an)
)
= g(∪nTn) ≤ L . 
�

We start the proof of Theorem 16.4.2 with a simple observation.

Lemma 16.4.8. Assume that the norm ‖ · ‖ is 1-unconditional and let S =
E‖
∑

i≥1 gixi‖. Then the set

T =
{
(x∗(ei))i≥1 ; x∗ ∈ E∗ , ‖x∗‖ ≤ 1

}
(16.83)

satisfies

∀ y ∈ T ,
∑

i≥1

|yi| ≤ 2S . (16.84)

Proof. Denote by ηi the sign of gix
∗(ei), so that

∑

i≥1

|gi||x∗(ei)| =
∑

i≥1

|x∗(giei)| =
∑

i≥1

ηix
∗(giei)

= x∗
(∑

i≥1

ηigiei

)
≤
∥∥∑

i≥1

ηigiei
∥∥ =
∥∥∑

i≥1

giei
∥∥ .

Taking expectation completes the proof since E|gi| =
√

2/π ≥ 1/2. 
�
Let us now recall the notation B1 = {y ∈ �2;

∑
i≥1 |yi| ≤ 1} and let

us state the main step in the proof of Theorem 16.4.2, where we use the
notation (16.80).

Theorem 16.4.9. Consider a subset T of �2. Assume that for a certain
number S we have γ2(T, d2) ≤ S and T ⊂ SB1. Then there exist sets In such
that card In ≤ log(n+ 1) with

T ⊂ LS conv
⋃

n≥1

B2(In, an) , (16.85)

where convZ denotes the closed convex hull of Z.

Proof of Theorem 16.4.2. We recall the set T of (16.83). Lemma 16.4.8 im-
plies that T ⊂ 2SB1. Moreover Theorem 2.4.1 implies that γ2(T ) ≤ Lg(T ),
whereas

g(T ) = E sup
‖x∗‖≤1

x∗
(∑

i≥1

giei

)
= E
∥∥∑

i≥1

giei
∥∥ = S .

Theorem 16.4.9 provides sets In that satisfy (16.77) and T ⊂ LST1, where
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T1 = conv
⋃

n≥1

B2(In, an) .

Thus, by duality, if x =
∑

i≥1 xiei ∈ E, we have for any k

∥∥∥∥
∑

i≤k

xiei

∥∥∥∥ ≤ LS sup
t∈T1

∑

i≤k

tixi ≤ LS sup
n≥1

an

(∑

i∈In

x2
i

)1/2

and this proves (16.78) since ‖x‖ = supk ‖
∑

i≤k xiei‖ (a property which is
part of the definition that (ei) is a basis). 
�
Proof of Theorem 16.4.9. By homogeneity we may assume that S = 1. We
recall that we denote by Δ2(A) the diameter of A for the distance induced
by �2. We consider an admissible sequence (Bn) with

sup
t∈T

∑

n≥0

2n/2Δ2(Bn(t)) ≤ 2 . (16.86)

We consider the admissible sequence (Cn) provided by Theorem 16.3.1 when
τ = 0, Ω = N

∗ and μ is the counting measure. We consider the increas-
ing sequence of partitions (An)n≥0 where An is generated by Bn and Cn,
so cardAn ≤ Nn+1. The numbers �(t, n) of (16.59) depend only on An(t).
Therefore

s ∈ An(t)⇒ �(s, n) = �(t, n) . (16.87)

For every A ∈ An, we pick an arbitrary element x(A) = (xi(A))i≥1 of A,
and we set

Jn(A) =
{
i ∈ N

∗ ; |xi(A)| > 2−�(x(A),n)
}
,

so that card Jn(A) ≤ 2n by (16.62). For n ≥ 1 and A ∈ An, consider the
unique element B ∈ An−1 such that A ⊂ B, and set

In(A) = Jn(A)\Jn−1(B)

so that card In(A) ≤ 2n and

i ∈ In(A)⇒ |xi(B)| ≤ 2−�(x(B),n−1) . (16.88)

We define I0(T ) = J0(T ) and F as the family of pairs (In(A), 2
−n/2) for

A ∈ An and n ≥ 0. The heart of the argument is to prove that

T ⊂ L conv
⋃

F
B2(I, a) . (16.89)

So let us fix t ∈ T and for n ≥ 1 define In(t) = In(An(t)). We observe that
since x(An−1(t)) ∈ An−1(t), it follows from (16.87) (used for s = x(An−1(t))
and n− 1 rather than n) that

�(x(An−1(t)), n− 1) = �(t, n− 1) .
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Using (16.88) for B = An−1(t) implies

‖x(An−1(t))1In(t)‖∞ ≤ 2−�(t,n−1) , (16.90)

and thus, since card In(t) ≤ 2n,

‖x(An−1(t))1In(t)‖2 ≤ 2n/2−�(t,n−1) .

Since t, x(An(t)) ∈ An−1(t) we have ‖t − x(An−1(t))‖2 ≤ Δ2(An−1(t)) and
thus

‖t1In(t)‖2 ≤ c(t, n) := Δ2(An−1(t)) + 2n/2−�(t,n−1) , (16.91)

and hence
t1In(t) ∈ 2n/2c(t, n)B2(In(t), 2

−n/2) . (16.92)

For each t ∈ T we define c(t, 0) = 1. Since t ∈ T ⊂ B1 and cardJ0(T ) =
card I0(t) ≤ 20 = 1, (16.92) also holds for n = 0. We claim now that

t =
∑

n≥0

t1In(t) . (16.93)

Since by construction the sets (In(t))n≥0 are disjoint, it suffices to show that
the support of t is contained in the union of the supports of the ti’s, i.e. that

|ti| > 0⇒ i ∈
⋃

n≥0

In(t) =
⋃

n≥0

In(An(t)) =
⋃

n≥0

Jn(An(t)) . (16.94)

To prove this, consider i with |ti| > 0 and n large enough so that Δ2(An(t)) <
|ti|/2. Then for all x ∈ An(t) we have |xi− ti| ≤ |ti|/2 and hence |xi| > |ti|/2.
Since �(x, n) ≥ n − 3 by (16.61), if n is large enough, for all x ∈ An(t) we
have 2−�(x,n) < |xi|. This holds in particular for x = x(An(t)). Thus, by
definition of Jn(A) this shows that i ∈ Jn(An(t)). This proves (16.94) and
hence (16.93).

Thus we have written t =
∑

n≥0 tn where

tn := t1In(t) ∈ b(t, n)B2(In(t), 2
−n/2) , (16.95)

for b(t, n) = 2n/2c(t, n). By (16.86) and (16.61) we have
∑

n≥0 b(t, n) ≤ L.

Let us write (16.95) as tn = b(t, n)un where un ∈ B2(In(t), 2
−n/2). Then

t =
∑

n

tn =
∑

n

b(t, n)un = A
∑

n

αnun ,

where A =
∑

n b(t, n) and αn = b(t, n)/A, so that
∑

n αn = 1. This completes
the proof of (16.89).

We now enumerate all the sets of the type In(A) for n ≥ 0 and A ∈ An as
a single sequence (Ik)k≥1, in a special way, as follows. Let Mn =

∑
0≤k≤n Nk,

so that Mn+1 −Mn = Nn+1 ≥ cardAn. We enumerate the elements of the
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type In(A) for A ∈ An using the integers Mn+1 < k ≤ Mn+2, and, allowing
repetition if necessary, using all these integers. Thus if In(A) = Ik then

Nn+1 < Mn+1 < k ≤Mn+2 = N0 + · · ·+Nn+2 ≤ Nn+3 − 1

and thus, since 2n ≤ logNn+1 = 2n+1 log 2 ≤ 2n+1,

2n ≤ log(k + 1) ≤ 2n+3 .

In particular,

ak =
1√

log(k + 1)
≥ 2−n/2−2

and B(In(A), 2
−n/2) ⊂ 4B(Ik, ak), so that (16.89) proves (16.85). Finally we

have card Ik = card In(A) ≤ 2n ≤ log(k + 1). 
�

Consider a set T , and the following properties: γ2(T, d2) ≤ 1; T ⊂ B1;
γ1(T, d∞) ≤ 1 (where d∞ denotes the distance associated with the supremum
norm). Numerous relations exist between these properties, a theme that we
started exploring in Chapter 5. We pursue its investigation in the rest of this
section, a circle of ideas closely connected to the investigations of Section 16.5
below. The essence of Theorem 16.4.10 below is that the conditions T ⊂ B1

and γ1(T, d∞) ≤ 1 taken together are very restrictive.
For I ⊂ N

∗ and a > 0, we define B∞(I, a) as the set of elements of support
in I and of �∞ norm ≤ a, i.e.

B∞(I, a) =
{
x = (xi)i≥1 ; i �∈ I ⇒ xi = 0 ; i ∈ I ⇒ |xi| ≤ a

}
. (16.96)

We have
x ∈ B∞(I, a)⇒

∑

i≥1

x2
i ≤ a2card I

and thus, recalling the sets B2(I, a) of (16.80), this implies

B∞(I, a) ⊂ B2(I, a
√
card I) . (16.97)

Theorem 16.4.10. Consider a set T ⊂ SB1, and assume that γ1(T, d∞) ≤
S. Then we can find subsets In of N∗ with card In ≤ log(n+ 1), for which

T ⊂ LS conv
⋃

n≥1

B∞

(
In,

1

log(n+ 1)

)
. (16.98)

Let us observe that (16.97) and (16.98) imply that

T ⊂ LS conv
⋃

n≥1

B2(In, an) ,

As Lemma 16.4.4 shows, this implies that γ2(T, d2) ≤ LS. The information
provided by (16.98) is however very much stronger than this. In Theorem
16.4.12 below we provide a direct and more general proof that γ2(T, d2) ≤ L.
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Proof. By homogeneity we may assume that S = 1. We proceed as in the
proof of Theorem 16.4.9, but we may now assume

∀t ∈ T ,
∑

n≥0

2nΔ∞(An(t)) ≤ 2 .

Using (16.90) rather than (16.91) we get

‖t1In(t)‖∞ ≤ c(t, n) := Δ∞(An−1(t)) + 2−�(t,n−1)

so that
t1In(t) ∈ 2nc(t, n)B∞(In(t), 2

−n)

and the proof is finished exactly as before. 
�

Exercise 16.4.11. Assume that the r.v.s Yi are independent, symmetric
and satisfy P(|Yi| ≥ x) = exp(−x). Consider a Banach space E with a 1-
unconditional basis (ei), and assume that S = E‖

∑
i≥1 Yiei‖ <∞. Then we

can find a sequence (In) of subsets of N
∗ with card In ≤ log(n+ 1) and

∀x ∈ E , x =
∑

i≥1

xiei , ‖x‖ ≤ LS sup
n≥1

1

log(n+ 1)

∑

i∈In

|xi| .

(Hint: copy the proof of Theorem 16.4.2 using Theorems 10.2.8 and 16.4.10.)

As we have explained, under the conditions of Theorem 16.4.10, we have
γ2(T, d2) ≤ LS. It is of course of interest to give a more direct (and more
general) proof of this fact. This is the purpose of the next result, where we
go back to the general setting of a measured space (Ω,μ).

Theorem 16.4.12. Consider a measured space (Ω,μ) and T ⊂ SB1, such
that γ1(T, d∞) <∞. Then

γ2(T, d2) ≤ L
√
Sγ1(T, d∞) . (16.99)

Proof. Consider τ ∈ Z to be chosen later, and consider the admissible se-
quence (Cn) as provided by Theorem 16.3.1. As T is a class of functions we
denote its generic element by f . By homogeneity we may assume that S = 1.

Consider an admissible sequence of partitions (Bn) such that

sup
f∈T

∑

n≥0

2nΔ∞(Bn(f)) ≤ 2γ1(T, d∞) .

Consider the partition An generated by Bn and Cn. As in the proof of Theo-
rem 16.4.9 it satisfies cardAn ≤ Nn+1, and

sup
f∈T

∑

n≥0

2nΔ∞(An(f)) ≤ 2γ1(T, d∞) . (16.100)

Moreover, the numbers �(f, n) depend only on An(f).
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Consider g, h ∈ An(f), and set Δ = Δ∞(An(f)), so that ‖g − h‖∞ ≤ Δ.
Thus

‖g − h‖2 ≤ ‖min(|g − h|, Δ)‖2
≤ ‖min(|g|, Δ)‖2 + ‖min(|h|, Δ)‖2 . (16.101)

Now
min(|f |, Δ) ≤ Δ1{|f |≥2−�(f,n)} + |f |1{|f |≤2−�(f,n)}

and, using (16.62) and (16.60) in the second line we get,

‖min(|f |, Δ)‖2 ≤ Δ
√
μ({|f | ≥ 2−�(f,n)}) + ‖|f | ∧ 2−�(f,n)‖2

≤ LΔ2n/2+τ/2 + L2n/2−�(f,n)+τ/2 . (16.102)

Therefore, combining with (16.101),

Δ2(An(f)) ≤ L
(
2n/2+τ/2Δ∞(An(f)) + 2n/2−�(f,n)+τ/2

)
.

Combining (16.100) and (16.61) yields

∑

n≥0

2n/2Δ2(An(f)) ≤ L(2τ/2γ1(T, d∞) + 2−τ/2) .

Since Δ2(T ) ≤ L, appealing to Lemma 2.3.5 and choosing τ appropriately
finishes the proof. 
�

16.5 Restriction of Operators

Consider q > 1, the space �qN , and its canonical basis (ei)i≤N . Consider a
Banach space X and an operator U : �qN → X. We will give (surprisingly
mild) conditions under which there are large subsets J of {1, . . . , N} such
that the norm ‖UJ‖ of the restriction UJ to the span of the vectors (ei)i∈J is
much smaller than the norm of U . We first compute this norm. We denote by
X∗

1 the unit ball of the dual of X, by p the conjugate exponent of q. Setting
xi = U(ei), we have

‖UJ‖ = sup

{∑

i∈J

αix
∗(xi) ;

∑

i∈J

|αi|q ≤ 1 , x∗ ∈ X∗
1

}
(16.103)

= sup

{(∑

i∈J

|x∗(xi)|p
)1/p

; x∗ ∈ X∗
1

}
.

The set J will be constructed by a random choice. Specifically, given a number
0 < δ < 1, we consider (as in Section 12.2) i.i.d. r.v.s (δi)i≤N with
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P(δi = 1) = δ ; P(δi = 0) = 1− δ , (16.104)

and we set J = {i ≤ N ; δi = 1}. Thus (16.103) implies

‖UJ‖p = sup
t∈T

∑

i≤N

δi|ti|p , (16.105)

where
T = {(x∗(xi))i≤N ; x∗ ∈ X∗

1} . (16.106)

For a subset T of RN , we set

|T |p = {(|ti|p)i≤N ; t ∈ T} .

Thus, if T is the set (16.106) we may rewrite (16.105) as

‖UJ‖p = sup
t∈|T |p

∑

i≤N

δiti . (16.107)

This brings forward the essential point: to control E‖UJ‖p we need informa-
tion on the set |T |p. On the other hand, information we might gather from
the properties of X as a Banach space is likely to bear on T rather than
|T |p. The link between the properties of T and |T |p is provided in Theo-
rem 16.5.1 below, which transfers a certain “smallness” property of T into
an appropriate smallness property of |T |p.

Before we state this theorem we make a simple observation: interchanging
the supremum and the expectation, we have

E‖UJ‖p ≥ sup
t∈T

E
(∑

i≤N

δi|ti|p
)
= δ sup

t∈T

∑

i≤N

|ti|p . (16.108)

This demonstrates the relevance of the quantity

sup
t∈T

∑

i≤N

|ti|p = sup
‖x∗‖≤1

∑

i≤N

|x∗(ei)|p , (16.109)

and why we need to control it from above if we want to control E‖UJ‖p from
above.

We recall from (16.96) that for a subset I of {1, . . . , N} and for a > 0 we
write

B∞(I, a) =
{
(ti)i≤N ; i �∈ I ⇒ ti = 0 , ∀i ∈ I , |ti| ≤ a

}
.

The following is closely related to Theorem 16.4.10.

Theorem 16.5.1. Consider a subset T of RN with 0 ∈ T . Assume that there
exists an admissible sequence (Bn) of T such that

∀t ∈ T ,
∑

n≥0

2nΔp(Bn(t), d∞) ≤ A (16.110)
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and let

B = max

(
A, sup

t∈T

∑

i≤N

|ti|p
)

. (16.111)

Then we can find a sequence (In)n≥1 of subsets of {1, . . . , N} with

card In ≤
LB

A
log(n+ 1) , (16.112)

and

|T |p ⊂ K(p)A conv
⋃

n≥1

B∞

(
In,

1

log(n+ 1)

)
. (16.113)

Proof. The proof resembles that of Theorems 16.4.9 and 16.4.10 (but may
be read independently). Consider the largest integer τ for which 2τ ≤ B/A.
Since B ≥ A, we have τ ≥ 0, and 2−τ ≤ 2A/B.

The set |T |p is a subset of the ball W of L1(μ) of center 0 and radius B,
where μ is the counting measure on {1, . . . , N}, and the first step of the proof
is to take full advantage of this. Homogeneity and Theorem 16.3.1 provide us
with an admissible sequence of partitions (Dn) of |T |p and for each D ∈ Dn

an integer �∗(D) ∈ Z, such that if for t ∈ |T |p we set

�∗(t, n) = �∗(Dn(t)) (16.114)

then

∀t ∈ |T |p , card {i ≤ N ; ti ≥ 2−�∗(t,n)} ≤ 2n+τ ≤ 2nB

A
(16.115)

∀t ∈ |T |p ,
∑

n≥0

2n−�∗(t,n) ≤ 12 · 2−τB ≤ LA . (16.116)

Consider the canonical map ϕ : T → |T |p given by ϕ((ti)i≤N ) = (|ti|p)i≤N .
We consider on T the admissible sequence of partitions (Cn) where Cn consists
of the sets ϕ−1(D) where D ∈ Dn. For t ∈ T we define �(t, n) = �∗(ϕ(t), n),
and this number depends only on Cn(t). Moreover, we deduce from (16.115)
and (16.116) respectively that

∀t ∈ T , card {i ≤ N ; |ti|p ≥ 2−�(t,n)} ≤ 2nB

A
(16.117)

∀t ∈ T ,
∑

n≥0

2n−�(t,n) ≤ LA . (16.118)

The sequence of partitions An generated by Bn and Cn is increasing and
card An ≤ Nn+1. Moreover since An(t) ⊂ Bn(t), (16.110) implies

∀t ∈ T ,
∑

n≥0

2nΔp(An(t), d∞) ≤ A , (16.119)

and furthermore the integer �(t, n) depends only on An(t).
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After these preparations we start the main construction. For A ∈ An , n ≥
0, let us choose in an arbitrary manner un(A) ∈ A, and set πn(t) = un(An(t)).
We write πn(t) = (πn,i(t))i≤N and we define

I0(t) = {i ≤ N ; |π0,i(t)|p ≥ 2−�(t,0)} . (16.120)

For n ≥ 1 we further define

In(t) = {i ≤ N ; |πn,i(t)|p ≥ 2−�(t,n) , |πn−1,i(t)|p < 2−�(t,n−1)} .

It is good to observe right now that In(t) depends only on An(t), so that
there are at most cardAn ≤ Nn+1 sets of this type. Next, since |ti−πn,i(t)| ≤
Δ(Bn(t), d∞) we have limn→∞ |ti − πn,i(t)| = 0 and thus

{i ≤ N ; |ti| �= 0} ⊂
⋃

n≥0

In(t) . (16.121)

Finally we note from (16.117) that

card In(t) ≤
2nB

A
. (16.122)

The definition of In(t) show that, for n ≥ 1 and i ∈ In(t), we have

|ti| ≤ |ti − πn−1,i(t)|+ |πn−1,i(t)|
≤ Δ(An−1(t), d∞) + 2−�(t,n−1)/p

and hence

|ti|p ≤ K(p)(Δ(An−1(t), d∞)p + 2−�(t,n−1)) := c(t, n) . (16.123)

Since 0 ∈ T , this remains true for n = 0 if we define c(t, 0) = Δ(T, d∞)p, so
that, finally,

n ≥ 0 , i ∈ In(t)⇒ |ti|p ≤ c(t, n) . (16.124)

Moreover (16.119) and (16.118) imply

∀t ∈ T ,
∑

n≥0

2nc(t, n) ≤ K(p)A . (16.125)

We consider the family F of all pairs (In(t), 2
−n) for t ∈ T and n ≥ 0,

and we prove that

|T |p ⊂ K(p)A conv
⋃

(I,a)∈F
B∞(I, a) . (16.126)

For this we simply write, using (16.121)
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|t|p =
∑

n≥0

2nc(n, t)un , (16.127)

where, using (16.124),

un =
1

2nc(n, t)
|t|p1In(t) ∈ B∞(In(t), 2

−n) .

Then (16.127) and (16.125) prove that |t|p ∈ K(p)A conv∪(I,a)∈FB∞(I, a)
and (16.126).

Let us now enumerate all the sets of the type In(t) for n ≥ 0 and t ∈ T as
a single sequence (Ik)k≥1, in a way that if n < n′ the sets of the type In(t)
are enumerated before the sets of the type In′(t′). Then if Ik = In(t), since
In(t) depends only on An(t), and since cardAn ≤ Nn+1, we have

k ≤ N1 + · · ·+Nn+1 ≤ Nn+2 − 1

and thus k + 1 ≤ Nn+2 = 22
n+2

so that

1

log(k + 1)
≥ 2−n−2

and thus B∞(In(t), 2
−n) ⊂ 4B∞(Ik, 1/ log(k + 1)), so that (16.126) implies

(16.113).
Furthermore, by labeling several times if necessary certain elements In(t)

we may also assume that when In(t) = Ik then k ≥ Nn, and (16.122) implies
then (16.112). 
�

The smallness criterion provided by (16.113) is perfectly adapted to the
control of E‖UJ‖p.

Theorem 16.5.2. Consider the set T = {(x∗(ei));x
∗ ∈ X∗

1} of (16.106),
and assume that (16.110) and (16.111) hold. Consider ε > 0 and δ ≤ 1 such
that

δ ≤ A

BεN ε logN
. (16.128)

Then if the r.v.s (δi)i≤N are as in (16.104) and J = {i ≤ N ; δi = 1}, for
v > 0 we have

P

(
‖UJ‖p ≥ vK(p)

A

ε logN

)
≤ L exp

(
− v

L

)

and in particular

E‖UJ‖p ≤ K(p)
A

ε logN
. (16.129)
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Proof. The magic is that

sup
t∈B∞(I,a)

∑

i≤N

δiti ≤ a
∑

i∈I

δi ,

so that (16.113) implies

sup
t∈|T |p

∑

i≤N

δiti ≤ K(p)A sup
n≥1

1

log(n+ 1)

∑

i∈In

δi , (16.130)

and that the right-hand side can be controlled by using the union bound. For
n ≥ 1 we have card In ≤ L0 log(n+ 1)B/A so that

δ card In ≤
L0 log(n+ 1)

εN ε logN
.

We recall the inequality (12.6): If u ≥ 6δ card I,

P
(∑

i∈I

δi ≥ u
)
≤ exp

(
−u

2
log

u

2δ card I

)
.

Considering v ≥ 6, we use this inequality for u = L0v log(n+ 1)/(ε logN) ≥
6δN ε card In ≥ 6δ card In to obtain

P

(∑

i∈In

δi ≥
L0v log(n+ 1)

ε logN

)
≤ exp

(
−L0v log(n+ 1)

2ε logN
log(N ε)

)

= exp
(
−L0v log(n+ 1)

2

)
. (16.131)

Thus, if we define the event

Ω(v) : ∀n ≥ 1 ,
∑

i∈In

δi ≤
L0v log(n+ 1)

ε logN
,

we obtain from (16.131) that P(Ω(v)c) ≤ L exp(−v/L). When Ω(v) occurs,
for n ≥ 1 we have

1

log(n+ 1)

∑

i∈In

δi ≤
v

ε logN
.

Then (16.130) and (16.107) imply ‖UJ‖p ≤ K(p)vA/(ε logN). 
�

A drawback of Theorem 16.5.2 is that the quantity (16.109), namely
supt∈T

∑
i≤N |ti|p (and hence B) might be too large. It might be sometimes

to our advantage to change the norm (as little as we can) to decrease this
quantity. For this, given a number C > 0, we denote by ‖ · ‖C the norm on
X such that the unit ball of the dual norm is
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{
x∗ ∈ X∗ ; ‖x∗‖ ≤ 1 ,

∑

i≤N

|x∗(xi)|p ≤ C

}
. (16.132)

This definition of course ensures that for the norm ‖·‖C the quantity (16.109)
is now ≤ C. Another very nice feature is that the set TC of (16.106) corre-
sponding to the new norm is smaller than the set T corresponding to the
original norm, so that we will be able to prove that TC is small in the sense
of (16.110) simply because T is already small in this sense. This will be done
by using the geometric properties of the original norm, and we shall not have
to be concerned with the geometric properties of the norm ‖ · ‖C .

Theorem 16.5.3. Consider 1 < q ≤ 2 and its conjugate exponent p ≥
2. Consider a Banach space X such that X∗ is p-convex (see Definition
4.1.2). Consider vectors x1, . . . , xN of X, and S = maxi≤N ‖xi‖. Denote
by U the operator �qN → X such that U(ei) = xi. Then, for a number
K(η, p) depending only on p and on the constant η in Definition 4.1.2, if
B = max(K(η, p)Sp logN,C), and if for some ε > 0,

δ ≤ Sp

BεN ε
≤ 1 , (16.133)

we have

E‖UJ‖pC ≤ K(η, p)
Sp

ε
, (16.134)

where J is as in Theorem 16.5.2.

In the situations of interest, S will be much smaller than ‖U‖C , so that
(16.134) brings information. It is remarkable that the right-hand side of
(16.134) does not depend on ‖U‖C but only on S = maxi≤n ‖U(ei)‖.

Lemma 16.5.4. Consider the (quasi) distance d∞ on X∗
1 defined by

d∞(x∗, y∗) = max
i≤N

|x∗(xi)− y∗(xi)| .

Then
ek(X

∗
1 , d∞) ≤ K(p, η)S2−k/p(logN)1/p (16.135)

or, equivalently, for ε > 0,

logN(X∗
1 , d∞, ε) ≤ K(p, η)

(S
ε

)p
logN . (16.136)

Here X∗
1 is the unit ball of X∗, N(X∗

1 , d∞, ε) is the smallest number of balls
for d∞ of radius ε needed to cover X∗

1 and ek is defined in (2.34).
It would be nice to have a simple proof of this statement. The only proof

we know is somewhat indirect. It involves geometric ideas. First, one proves
a “duality” result, namely that if W denotes the convex hull of the points
(±xi)i≤N , to prove (16.136) it suffices to show that
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logN(W, ‖ · ‖, ε) ≤ K(p, η)
(S
ε

)p
logN . (16.137)

This duality result is proved in [3], Proposition 2, (ii). We do not reproduce
the simple and very nice argument, which is not related to the ideas of this
work.

The proof of (16.137) involves more geometrical ideas. Briefly, since X∗ is
p-convex, it is classical that “X is of type p, with a type p constant depending
only on p and η” as proved in [14], and then the conclusion follows from a
beautiful probabilistic argument of Maurey, which is reproduced e.g. in [27],
Lemma 3.2. 
�

Proof of Theorem 16.5.3. We combine (16.135) with Theorem 4.1.4 (used for
α = p) to obtain

γp,p(X
∗
1 , d∞) ≤ K(p, η)S(logN)1/p ,

i.e. there exists an admissible sequence (Bn) on X∗
1 for which

∀t ∈ X∗
1 ,
∑

n≥0

2nΔp(Bn(t), d∞) ≤ K(p, η)Sp logN := A . (16.138)

The set TC corresponding to the norm (16.132) is

TC =

{
(x∗(xi))i≤N ; ‖x∗‖ ≤ 1 ,

∑

i≤N

|x∗(xi)|p ≤ C

}
.

It follows from (16.138) that this set satisfies (16.110), and since
∑

i≤N |ti|p ≤
C for t ∈ TC , it also satisfies (16.111) for B = max(A,C). We then conclude
with Theorem 16.5.2. 
�

To conclude this section, we describe an example showing that Theo-
rem 16.5.3 is very close to being optimal in certain situations. Consider
two integers r,m and N = rm. We divide {1, . . . , N} into m disjoint sub-
sets I1, . . . , Im of cardinality r. We consider 1 < q ≤ 2 and the operator
U : �qN → �qm = X such that U(ei) = ej for i ∈ Ij , where (ei)i≤N , (ej)j≤m

are the canonical bases of �qN and �qm respectively. Thus S = 1. It is classical
[14] that X∗ = �pm is p-convex. Consider δ with δr = 1/m. Then

P(∃j ≤ m ; ∀i ∈ Ij , δj = 1) = 1−
(
1− 1

m

)m
≥ 1

L
,

and when this event occurs we have ‖UJ‖ ≥ r1/p, since ‖
∑

i∈Ij
ei‖ = r1/q

and ‖UJ(
∑

i∈Ij
ei)‖ = r‖ej‖ = r. Thus

E‖UJ‖p ≥
r

L
. (16.139)
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On the other hand, let us try to apply Theorem 16.5.3 to this situation, so
that xi = ej for i ∈ Ij . Then we must take C large enough that ‖ · ‖C = ‖ · ‖.
Since ∑

i≤N

|x∗(xi)|p = r
∑

j≤m

|x∗(ej)|p

can be as large as r for ‖x∗‖ ≤ 1, one has to take C = r. Then B = r
whenever K(q) logN ≤ r. Let us choose ε = 1/(2r) so that for large m

δ =
1

m1/r
≤ Sp

BεN ε
=

1

rεN ε
=

1

rεmεrε
.

Thus (16.139) shows that (16.134) gives the exact order of ‖UJ‖ in this case.

16.6 The Λ(p)-Problem

We denote by λ the uniform measure on [0, 1]. Consider functions (xi)i≤N on
[0, 1] such that

∀i ≤ N , ‖xi‖∞ ≤ 1 (16.140)

the sequence (xi)i≤N is orthogonal in L2 = L2(λ) . (16.141)

Consider a number p > 2. J. Bourgain [2] proved the remarkable fact that
there exists a subset J of {1, . . . , N} with card J = N2/p, for which we have
an estimate

∀(αi)i∈J ,
∥∥
∑

i∈J

αixi

∥∥
p
≤ K(p)

(∑

i∈J

α2
i

)1/2
, (16.142)

where ‖ · ‖p denotes the norm in Lp(λ). The most interesting case of applica-
tion of this theorem is the case of the trigonometric system. Even in that case,
no simpler proof is known. Bourgain’s argument is probabilistic, showing in
fact that a random choice of J works with positive probability.

We will give a sharpened version of (16.142), proving that instead of
(16.142) one may even require

∀(αi)i∈J ,
∥∥
∑

i∈J

αixi

∥∥
p,1
≤ K(p)

(∑

i∈J

α2
i

)1/2
, (16.143)

where the norm in the left-hand side is in the space Lp,1(λ) and is defined in
(16.17). This is stronger than (16.142) by (16.20).

We consider r.v.s δi as in (16.104) with δ = N2/p−1, and J = {i ≤
N ; δi = 1}.

Theorem 16.6.1. Consider p < p1 < ∞ and p < p′ < 2p. Then there
is a r.v. W ≥ 0 with EW ≤ K such that for any numbers (αi)i∈J with∑

i∈J α2
i ≤ 1 we can write
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f :=
∑

i∈J

αixi = f1 + f2 + f3 (16.144)

where
‖f1‖p1 ≤W (16.145)

‖f2‖2 ≤W
√

logNN1/p−1/2 ; ‖f2‖∞ ≤WN1/p′
(16.146)

‖f3‖2 ≤WN1/p−1/2 ; ‖f3‖∞ ≤WN1/p . (16.147)

Here, as well as in the rest of this section, K denotes a number depending
only on p, p′ and p1, that need not be the same on each occurrence. To
understand Theorem 16.6.1, it helps to keep in mind that by (16.18), for any
function h we have

‖h‖p,1 ≤ K(p)‖h‖2/p2 ‖h‖1−2/p
∞ . (16.148)

Thus (16.147) implies ‖f3‖p,1 ≤ KW while (16.146) implies ‖f2‖p,1 ≤
KWN−1/K . Since ‖f1‖p,1 ≤ K‖f1‖p1 by (16.19), (16.144) implies ‖f‖p,1 ≤
KW , so that we have the estimate

∀(αi)i∈J ,
∥∥
∑

i∈J

αixi

∥∥
p,1
≤ KW

(∑

i∈J

α2
i

)1/2
. (16.149)

Moreover, since P(cardJ ≥ N2/p) ≥ 1/L, with positive probability we have
both cardJ ≥ N2/p and W ≤ K and in this case we obtain (16.143).

Furthermore Theorem 16.6.1 lets us guess the exact reason why we cannot
increase p in (16.142). This can be due only to the fact that we may have near
equality for both parts of condition (16.144), i.e. the function f of (16.144)
might take a value about N1/p on a set of measure about 1/N . We believe
(but cannot prove) that the lower order term f2 is not needed in (16.144).

We consider the operator U : �2N → Lp given by U(ei) = xi, and we
denote by UJ its restriction to �2J .

We choose once and for all p2 > p1. (This might be the time to mention
that there is some room in the proof, and that some of the choices we make
are simply convenient and in no way canonical.) We consider on Lp2 the
norms ‖ · ‖(1) and ‖ · ‖(2) such that the unit ball of the dual norm is given
respectively by

{
x∗ ∈ Lq2 ; ‖x∗‖q2 ≤ 1 ,

∑

i≤N

x∗(xi)
2 ≤ N1/2−1/p

}
. (16.150)

{
x∗ ∈ Lq2 ; ‖x∗‖q2 ≤ 1 ,

∑

i≤N

x∗(xi)
2 ≤ N1−2/p

}
, (16.151)

where q2 is the conjugate exponent of p2. These are sets of the type (16.132)
in the case X = Lp2 .
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Lemma 16.6.2. We have

E‖UJ‖(1) ≤ K ; E‖UJ‖(2) ≤ K
√

logN .

Proof. We recall the classical fact that Lq2 is 2-convex [14], so that we may
apply Theorem 16.5.3 to the case X = Lp2 , where the value of p in that
theorem is taken equal to 2. We observe that it suffices to prove the result
for N large enough. We choose S = 1, C = N1/2−1/p and ε = 1/2 − 1/p. In
this case S2/ε ≤ K, and for N large enough B = max(C,K(η) logN) = C,
so that

δ = N2/p−1 ≤ 1

BεN ε
, (16.152)

and (16.134) proves that E‖UJ‖2(1) ≤ K

Next, we choose S = 1 and C = N1−2/p and ε = 1/ logN . In this case
S2/ε ≤ L logN , and, for N large enough, B = max(C,K(η, p) logN) = C, so
that (16.152) holds again, and (16.134) proves now that E‖UJ‖2(2) ≤ K logN .


�
We recall the norm of (9.59):

‖f‖ψ2 = inf

{
c > 0 ;

∫
exp

(
f2

c2

)
dλ ≤ 2

}
, (9.59)

and we denote by ‖ · ‖∗ψ2
the dual norm.

We consider a = N−1/p′
, b = N1/p′−1/p, and the norm ‖ · ‖(3) on Lp such

that the unit ball of the dual norm is the set

Z =

{
x∗ ∈ Lq(λ) ; ‖x∗‖1 ≤ a , ‖x∗‖∗ψ2

≤ b ;
∑

i≤N

x∗(xi)
2 ≤ N1−2/p

}
,

(16.153)
where q is the conjugate exponent of p.

Lemma 16.6.3. We have E‖UJ‖(3) ≤ L.

This uses arguments really different from those of Lemma 16.6.2, and the
proof will be given at the end of this section.

Lemma 16.6.4. Consider a bounded measurable function f . Assume that
‖f‖(1) ≤ 1 , ‖f‖(2) ≤

√
logN , ‖f‖(3) ≤ 1. Then we may write f = f1 + f2 +

f3, where
‖f1‖p1 ≤ K (16.154)

‖f2‖2 ≤ K
√

logNN1/p−1/2 ; ‖f2‖∞ ≤ KN1/p′
(16.155)

‖f3‖2 ≤ KN1/p−1/2 ; ‖f3‖∞ ≤ KN1/p . (16.156)
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Proof of Theorem 16.6.1. This is an obvious consequence of the previous
three lemmas, with

W = ‖UJ‖(1) +
1√

logN
‖UJ‖(2) + ‖UJ‖(3) .

Indeed, for any numbers (αi)i∈J with
∑

i∈J α2
j ≤ 1, the function f =

W−1
∑

i∈J αixi satisfies the hypotheses of Lemma 16.6.4, since
∑

i∈J αixi

is of the type UJ(y) for y ∈ �2N and ‖y‖2 ≤ 1. 
�
Before we prove Lemma 16.6.4, we need to understand how we will use

the information that ‖f‖(j) ≤ 1. This is through duality. Assume that we
are given norms N� for � ≤ 3 (say) on a finite dimensional space E, and
denote by B� the corresponding unit ball. Denote by N ∗

� the dual norms
on E∗and by B∗

� the corresponding unit ball. Consider the norm N ∗ on E∗

whose unit ball is the set ∩�≤3B
∗
� . Then the unit ball of dual norm N of N ∗

on E is the convex hull of the set ∪�≤3B�. This is immediate from the Hahn-
Banach theorem. In particular we can write any x ∈ E as x =

∑
�≤3 x� with∑

�≤3N�(x�) ≤ N (x), and in particular N (x�) ≤ N (x) for each �. (If we are
given the sets B∗

� rather than the norm N�, we simply use the information
N�(x�) ≤ A on the form |x∗(x)| ≤ A for x∗ ∈ B∗

� .) In the following proof we
use this fact for E the span of the vectors (xi)i≤N and N each of the norms
‖ · ‖(j), j ≤ 3.

Proof of Lemma 16.6.4. The intuitive idea is that f1 corresponds to the small
values of f , f2 to the intermediate values and f3 to the large values. This
idea will be carried out by studying the three functions

f1{|f |≤c1} ; f1{c1≤|f |≤c2} ; f1{|f |≥c2}

for appropriate values of c1 and c2. Namely we will prove that

‖f1{|f |≤c1}‖p1 ≤ K , (16.157)

f1{c1≤|f |≤c2} = g1 + g2 (16.158)

where ‖g1‖p1 ≤ K , ‖g2‖∞ ≤ 6N1/p′
and ‖g2‖2 ≤ 2

√
logNN1/p−1/2, and

finally
f1{|f |≥c2} = g3 + g4 , (16.159)

where ‖g3‖2 ≤ KN1/p−1/2 , ‖g3‖∞ ≤ KN1/p, and ‖g4‖p1 ≤ K. Combining
(16.159), (16.157) and (16.158) finishes the proof.

Relation (16.157) will be a consequence of the hypothesis that ‖f‖(1) ≤ 1.
Relation (16.158) will be a consequence of the hypothesis that ‖f‖(2) ≤ logN ,
and relation (16.159) will be a consequence of the hypothesis that ‖f‖(3) ≤ 1.
Unfortunately the details of the proof are messy and tedious.

Since ‖f‖(1) ≤ 1, by duality we may write f = u1 + u2 where ‖u1‖p2 ≤ 1

and u2 =
∑

i≤N βixi with
∑

i≤N β2
i ≤ N1/p−1/2. By (16.140) and (16.141)

we have ‖u2‖22 ≤ N1/p−1/2. The obvious inequality
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λ({|f | ≥ t}) ≤ λ
({
|u1| ≥

t

2

})
+ λ
({
|u2| ≥

t

2

})
(16.160)

implies
λ({|f | ≥ t}) ≤ K(t−p2 + t−2N1/p−1/2) ≤ Kt−p2

for t ≤ c1 = Nα, where α(p2 − 2) = 1/2− 1/p. This proves (16.157).
Since ‖f‖(2) ≤

√
logN , by duality we may write f = v1 + v2, where

‖v1‖p2 ≤
√
logN and v2 =

∑
i≤N βixi, with

∑
i≤N β2

i ≤ (logN)N2/p−1, so

that ‖v2‖2 ≤
√
logNN1/p−1/2. Let c2 = 3N1/p′

. We next show that

|f |1{c1≤|f |≤c2} ≤ 2|v1|1{|v1|≥c1/2} + 2|v2|1{|v2|≤2c2} (16.161)

:= h1 + h2 .

To see this, we may assume that c1 ≤ c2, for there is nothing to prove
otherwise. Assume first that |v2| > 2c2. Then if |f | = |v1 + v2| ≤ c2, we have
|v1| > c2 so that since |f | ≤ c2, then |f | ≤ c2 ≤ |v1|1{|v1|≥c2} and hence
(16.161) holds true since c2 ≥ c1. Hence to prove (16.161) we may assume
that |v2| ≤ 2c2. Since |f | ≤ |v1| + |v2|, we are done if |v1| ≤ |v2|, since then
|f | ≤ 2|v2| and |f | ≤ 2|v2|1{|v2|≤2c2}. If, on the other hand, |v1| ≥ |v2|, then
|f | ≤ 2|v1|, so |f |1{c1≤|f |} ≤ 2|v1|1{|v1|≥c1/2}, finishing the proof of (16.161).

Since ‖v1‖p2 ≤
√
logN , we have

λ({|v1| ≥ t}) ≤ (logN)p2/2t−p2 .

Since p2 > p1, a straightforward computation based on the formula

‖h‖p1
p1

=

∫
p1t

p1−1λ({|h| ≥ t})dt (16.162)

yields ‖h1‖p1 ≤ K (and there is lot of room since in fact ‖h1‖p1 ≤ KN−γ

for some γ > 0). Next we observe that ‖h2‖∞ ≤ 2c2 ≤ 6N1/p′
and ‖h2‖2 ≤

2‖v2‖2 ≤ 2
√
logNN1/p−1/2. Then (16.161) implies (16.158).

Since ‖f‖(3) ≤ 1, by duality we may write f = w1 + w2 + w3 with

‖w1‖∞ ≤ a−1 = N1/p′
, ‖w2‖ψ2 ≤ b−1 = N1/p−1/p′

and w3 =
∑

i≤N βixi

with
∑

i≤N β2
i ≤ N2/p−1.

Thus
‖w3‖2 ≤ N1/p−1/2 (16.163)

and, using (16.140)

‖w3‖∞ ≤
∑

i≤N

|βi| ≤ N1/2
(∑

i≤N

β2
i

)1/2
≤ N1/p .

We note that
|f |1{|f |≥c2} ≤ 3|w3|+ 2|w2|1{|w2|≥c2/3} . (16.164)
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To see this, we first observe that this is obvious if |w2| > c2/3, because then
|w1| ≤ N1/p′

= c2/3 ≤ |w2|, so |f | ≤ |w3| + 2|w2|. If now |w2| ≤ c2/3,
since |w1| ≤ c2/3, when |f | ≥ c2, we must have |w3| ≥ c2/3 and hence
|f | ≤ |w1|+ |w2|+ |w3| ≤ 2c2/3+ |w3| ≤ 3|w3|, finishing the proof of (16.164).

By definition of ‖ · ‖ψ2 , and since ‖w2‖ψ2 ≤ b−1, we have

∫
exp(w2

2b
2)dλ ≤ 2

so that
λ({|w2| ≥ t}) ≤ 2 exp(−t2b2) . (16.165)

Since p′ < 2p we have 1/p − 1/p′ < 1/p′ and recalling the values of b and
c2 one checks from (16.165) and (16.162), with huge room to spare, that
h3 = 2|w2|1{|w2|≥c2/3} satisfies ‖h3‖p1 ≤ K. Thus from (16.164) we obtain
(16.159). 
�

We turn to the proof of Lemma 16.6.3.

Lemma 16.6.5. When (gi)i≤N are independent standard Gaussian r.v.s,
given a set I we have

E
∥∥
∑

i∈I

gixi

∥∥
ψ2
≤ L

√
card I .

Proof. We have

E

∫
exp

(
∑

i∈I gixi)
2

3 card I
dλ =

∫
E exp

(
∑

i∈I gixi)
2

3 card I
dλ ≤ L (16.166)

because for each t ∈ [0, 1] , g =
∑

i∈I gixi(t) is a Gaussian r.v. with Eg2 ≤
cardI.

For u ≥ 1, we have ef
2/u ≤ 1+ef

2

/u. We use this for u =
∫
exp f2dλ and

integrate to get
∫
exp(f2/u)dμ ≤ 2, so that by definition ‖f‖ψ2 ≤

√
u ≤ u,

i.e.

‖f‖ψ2 ≤
∫

exp f2dλ .

Taking f = (3 card I)−1/2
∑

i∈I gixi and combining with (16.166) yields the
result. 
�
Proof of Lemma 16.6.3. The beginning of the proof uses arguments similar
to the Giné-Zinn Theorem (Theorem 9.1.10). We recall the set Z of (16.153),
and we set

T = {(x∗(xi)
2)i≤N ; x∗ ∈ Z}

so that
∑

i≤N ti ≤ N1−2/p for t ∈ T , and hence δ
∑

i≤N ti ≤ 1. Thus
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E‖UJ‖2(3) = E sup
t∈T

∑

i≤N

δiti

≤ 1 + E sup
t∈T

∑

i≤N

(δi − δ)ti .

Consider an independent sequence (δ′i)i≤N distributed like (δi)i≤N . Then,
by Jensen’s inequality we have

E sup
t∈T

∣∣∣
∑

i≤N

(δi − δ)ti

∣∣∣ ≤ E sup
t∈T

∣∣∣
∑

i≤N

(δi − δ′i)ti

∣∣∣ .

Consider independent Bernoulli r.v.s (εi)i≤N , independent of the r.v. δi
and δ′i. Since the sequences (δi − δ′i)i≤N and (εi(δi − δ′i))i≤N have the same
distribution,

E sup
t∈T

∣∣∣
∑

i≤N

(δi − δ′i)ti

∣∣∣ = E sup
t∈T

∣∣∣
∑

i≤N

εi(δi − δ′i)ti

∣∣∣

≤ 2E sup
t∈T

∣∣∣
∑

i≤N

εiδiti

∣∣∣

= 2E sup
t∈T

∣∣∣
∑

i∈J

εiti

∣∣∣

≤
√
2πE sup

t∈T

∣∣∣
∑

i∈J

giti

∣∣∣

≤ LE sup
t∈T

∑

i∈J

giti ,

using Proposition 5.1.1 and Lemma 2.2.1, and since 0 ∈ T . Since E cardJ =
N2/p and ab = N−1/p it suffices to show that given a set I we have

E sup
t∈T

∑

i∈I

giti = E sup
x∗∈Z

∑

i∈I

gix
∗(xi)

2 ≤ Lab
√
card I . (16.167)

We have |x∗(xi)| ≤ a since ‖x∗‖1 ≤ a and ‖xi‖∞ ≤ 1, so that for a fixed set
I we have

d1(x
∗, y∗) :=

(∑

i∈I

(
x∗(xi)

2 − y∗(xi)
2
)2)1/2

≤ 2a
(∑

i∈I

(
x∗(xi)− y∗(xi)

)2)1/2
:= 2ad2(x

∗, y∗) .

Thus
γ2(Z, d1) ≤ Laγ2(Z, d2)

and, by Theorem 2.2.18 and Theorem 2.4.1, we have
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E sup
x∗∈Z

∑

i∈I

gix
∗(xi)

2 ≤ LaE sup
x∗∈Z

x∗
(∑

i∈I

gixi

)
. (16.168)

Now, by definition of Z, for x∗ ∈ Z we have ‖x∗‖∗ψ2
≤ b, where ‖ · ‖∗ψ2

is the
dual norm of the ‖ · ‖ψ2 norm, and thus

sup
x∗∈Z

x∗
(∑

i∈I

gixi

)
≤ b
∥∥
∑

i∈I

gixi

∥∥
ψ2

.

Combining with Lemma 16.6.5 this proves (16.167) and hence Lemma 16.6.3.

�

Remark. One can also deduce (16.168) from the classical comparison theo-
rems for Gaussian r.v.s, see [12].

16.7 Proportional Subsets of Bounded Orthogonal
Systems

As in the previous section, we consider a sequence (xi)i≤N of functions on a
probability space (e.g. [0, 1] with Lebesgue’s measure) that satisfies (16.140)
and (16.141), i.e. (xi)i≤N is an orthogonal sequence with ‖xi‖∞ ≤ 1. We are
now interested in finding a large subset J of {1, . . . , N} such that on the span
of (xi)i∈J we know how to bound the L2 norm by a suitable multiple of the
L1 norm.

Theorem 16.7.1 ([8]). Assume that, for some number τ > 0

∀ i ≤ N , ‖xi‖2 ≥ τ . (16.169)

Then, given any integer 1 < k < N there exists a set J ⊂ {1, . . . , N} with
card J ≥ N − k such that for every (αi)i∈J ,

∥∥∥
∑

i∈J

αixi

∥∥∥
2
≤ Lκ(log κ)5/2

∥∥∥
∑

i∈J

αixi

∥∥∥
1
, (16.170)

where κ = τ−1
√

N/k
√
log k.

To gain a first understanding of this inequality, let us observe that since
‖xi‖∞ ≤ 1, given numbers (αi)i≤N the function f =

∑
i≤N αixi satis-

fies ‖f‖∞ ≤
√
N(
∑

i≤N α2
i )

1/2. Moreover from (16.169) it satisfies ‖f‖2 ≥
τ(
∑

i≤N α2
i )

1/2. The easy inequality ‖f‖22 ≤ ‖f‖∞‖f‖1 then proves that

∥∥∥
∑

i≤N

αixi

∥∥∥
2
≤ τ−1

√
N
∥∥∥
∑

i≤N

αixi

∥∥∥
1
, (16.171)

which is (better than) the “case k = 0” of (16.170). Let us now consider
an example proving that (16.171) is essentially optimal. Assume that the
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underlying measure space is the group {−1, 1}n provided with the uniform
measure. For i ≤ n let us denote by εi the n-th coordinate function, and
for a subset I of 1, . . . , n let εI =

∏
i∈I εi. The N = 2n functions εI form

an orthonormal system. Moreover
∑

I εI =
∏

i≤n(1 + εi) is zero everywhere

except on the set of measure 2−n = 1/N where it takes the value N . Thus we
cannot have a better constant than

√
N in (16.171). It is quite remarkable

that even a rather small value of k allows a considerable improvement on this
estimate. (Indeed (16.170) starts to improves upon (16.171) when k is about
(logN)5 log logN . One might of course wonder what happens for smaller
values of k.)

A particular case of (16.170) is when card J is a proportion of N , i.e.
when cardJ = cN . In that case, the coefficient in the right-hand side is basi-
cally (with a coefficient depending on c but not on N)

√
logN(log logN)5/2.

When c is small enough, it is proved in [28] that the better estimate√
logN

√
log logN holds true. The method of [28] does not seem to extend

to the case where c is not small. It is known (and explained in [8]) that
the factor

√
logN is necessary. The term in

√
log logN is probably parasitic,

and of course it is debatable how interesting it is to reduce such terms to
the smallest possible power when one does not know how to eliminate them
altogether.

The basis for the approach to Theorem 16.7.1 is to try first to control the
norm Lp rather than the norm L1.

Theorem 16.7.2. Under the hypothesis of Theorem 16.7.1, for every 1 <
k < N there exists a subset J of {1, . . . , N} with card J = k such that for
every (αi)i∈J one has

∥∥∥
∑

i∈J

αixi

∥∥∥
2
≤ L
√
N/k

√
log k

τ(p− 1)5/2

∥∥∥
∑

i∈J

αixi

∥∥∥
p
. (16.172)

The idea to deduce Theorem 16.7.1 is simply to take p close enough to 1 that
on the span of the vectors (xi)i∈J the L1 and Lp norm are within a factor 2
of each other. The point of using the Lp norm in Theorem 16.7.2 is that we
will be able to use its convexity properties. The use of the convexity property
of the Lp norm in the present approach explains why the estimate of [28] is
better than the present estimate in its range (i.e. cardJ a small proportion of
N): rather than using an auxiliary Lp norm, the method of [28] is to exhibit
some “directions of smoothness” in certain spaces where the norm itself is
not smooth, and extra information is gained this way.

To prove Theorem 16.7.2 it turns out that, rather than assuming (16.140)
and (16.141), it is more convenient instead to assume

‖xi‖2 = 1 ; ‖xi‖∞ ≤ 1

τ
, (16.173)

which changes nothing, replacing xi by xi/‖xi‖2.
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Let us first explain the basic geometrical principle on which the approach
to Theorem 16.7.1 is based. We denote

E the span of x1, . . . , xN . (16.174)

Given a parameter ρ > 0 we consider the following norm on E:

‖y‖∼ρ := (‖y‖2p + ρ−2‖y‖22)1/2 . (16.175)

We denote by B(ρ) the ball of E for ‖ · ‖∼ρ centered at 0 and of radius 1. We
denote by 〈x, y〉 the dot product in L2 of two vectors in E, and we observe
that since the sequence (xi) is orthonormal from (16.173),

∀ y ∈ E ;
∑

i≤N

〈xi, y〉2 = ‖y‖22 . (16.176)

Our first lemma provides a criteria under which we can compare the L2 and
the Lp norms as in (16.170).

Lemma 16.7.3. Consider k ≤ N and i1, . . . , ik ∈ {1, . . . , N}. (These in-
dexes need not be distinct.) Assume that

sup
y∈B(ρ)

∣∣∣∣
k∑

j=1

(
〈xij , y〉2 −

‖y‖22
N

)∣∣∣∣≤
kρ2

2N
. (16.177)

Let
J = {1, . . . , N} \ {i1, . . . , ik} . (16.178)

Then
∀ (αi)i∈J ;

∥∥∥
∑

i∈J

αixi

∥∥∥
2
≤ ρ
∥∥∥
∑

i∈J

αixi

∥∥∥
p
. (16.179)

Proof. Consider y =
∑

i∈J αixi. Then 〈xij , y〉 = 0 for j ≤ k, so that

∣∣∣∣
k∑

j=1

(
〈xij , y〉2 −

‖y‖22
N

)∣∣∣∣=
k‖y‖22
N

.

Consequently (16.177) implies that for such a y

y ∈ B(ρ)⇒ ‖y‖22 ≤
ρ2

2
,

and, by homogeneity,

‖y‖22 ≤
ρ2

2
‖y‖∼2

ρ =
ρ2

2
‖y‖2p +

1

2
‖y‖22 . 
�
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We shall prove that for a suitable choice of ρ the relation (16.177) holds
with probability ≥ 1/2 when the indexes i1, . . . , ik are chosen independently
at random, uniformly over {1, . . . , N}. The main estimate, Proposition 16.7.4
below, will involve a 2-convex Banach space E, that is with the property that

‖x‖, ‖y‖ ≤ 1⇒
∥∥∥
x+ y

2

∥∥∥ ≤ 1− η‖x− y‖2 , (16.180)

for some number η > 0. We denote by T2(E
∗) the type-2 constant of the dual

E∗ of E, that is the smallest constant for which the inequality

E
∥∥∥
∑

i≤m

giyi

∥∥∥ ≤ T2(E
∗)
(∑

i≤m

‖yi‖2
)1/2

(16.181)

for any vectors y1, . . . , ym of E∗, where of course g1, . . . , gm are independent
standard Gaussian r.v.s. (For convenience we use the same notation for the
norms of E and E∗ since this does not create ambiguities.) We denote as
usual by εi independent Bernoulli r.v.s.

Proposition 16.7.4. Consider a Banach space E such that (16.180) and
(16.181) hold. Consider k ≥ 2 and vectors z1, . . . , zk in E∗ with ‖zj‖ ≤ 1.
Then

E sup
y∈E,‖y‖≤1

∣∣∣
∑

j≤k

εjzj(y)
2
∣∣∣ ≤ Lη−2T2(E

∗)
√

log k sup
‖y‖≤1

(∑

j≤k

zj(y)
2
)1/2

.

(16.182)

It is important in (16.182) to obtain an explicit and sharp dependence in η
and T2(E

∗). We shall use (16.182) when the space E is endowed with the
norm ‖ · ‖∼ρ for an appropriate value of ρ. (This norm is 2-convex because Lp

is 2-convex so that the norm ‖ · ‖∼ρ is a “Hilbert sum” of 2-convex norms, see
[14]). In that case η and T2(E

∗) depend on p, and the sharp dependence of
(16.182) in these quantities yields a sharp dependence of the estimate (16.182)
in p. This is essential to obtain the factor (p− 1)−5/2 in Theorem 16.7.2, and
in turn to obtain Theorem 16.7.1 through the correct choice of p.

Until the end of the proof of Proposition 16.7.4 we fix the vectors (zj)j≤k.
Without loss of generality we may assume that

max
j≤k

‖zj‖ = 1 ,

so that

S := sup
‖y‖≤1

(∑

j≤k

zj(y)
2
)1/2

≥ 1 . (16.183)

We denote by T the unit ball of E and we consider on T the distance given
by

d̂(y, y′)2 =
∑

j≤k

(zj(y)
2 − zj(y

′)2)2 . (16.184)
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We shall prove that

γ2(T, d̂ ) ≤ Lη−2T2(E
∗)S
√

log k , (16.185)

from which (16.182) follows, using the subgaussian inequality (3.2.2) and the
generic chaining bound of Theorem 2.2.18.

The proof of (16.185) is a small variation of the proof of the Ellipsoid
Theorem, Theorem 4.1.10. A technical difficulty is however that the balls
for d̂ are not convex sets. To bypass this problem, we shall replace d̂ by a
larger, but better behaved distance. The definition of this new distance is the
purpose of the next lemma.

Lemma 16.7.5. Consider on T the quantity d(y, y′) given by

d(y, y′)2 =
∑

j≤k

(zj(y)− zj(y
′))2(zj(y)

2 + zj(y
′)2) , (16.186)

and the distance d on T given by

d(y, y′) = inf
∑

1≤r≤n

d(yr, yr+1) ,

where the infimum is taken over all n and sequences y = y1, . . . , yn+1 = y′ in
T . Then

d̂(y, y′) ≤ 2d(y, y′) ≤ 2d(y, y′) , (16.187)

and
d(y, y′) ≤ 2d(y, y′) . (16.188)

It is elegant to use the distance d, but the proof of (16.188) is somewhat
tricky. It is possible to dispense with the use of d and to work directly with
d, which can be shown to satisfy the following substitute of the triangle
inequality: d(x, y) ≤ 4(d(x, z) + d(x, y)) (and moreover the balls for d are
sufficiently convex in the sense of (16.196) below), see [21] for the details and
Section 16.10 below for more comments. The drawback of this approach is
that one has to check that Theorem 2.3.14 is still true in this setting, which
however offers no difficulty.

Proof. The proof will use many times the relation

√
a2 + b2 ≤ |a|+ |b| ≤

√
2
√
a2 + b2 . (16.189)

Consider the function f(a, b) = |a− b|
√
a2 + b2, so that

d(y, y′)2 =
∑

j≤k

f(zj(y), zj(y
′))2 . (16.190)

First we observe that
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|a2 − b2| ≤ |a− b|(|a|+ |b|) ≤
√
2|a− b|

√
a2 + b2 =

√
2f(a, b) , (16.191)

and using (16.190) this proves that d̂(y, y′) ≤
√
2 d(y, y′) and, since d̂ is a

distance, that d̂(y, y′) ≤
√
2d(y, y′). Also, it is obvious by definition that

d(y, y′) ≤ d(y, y′) so only (16.188) remains to be proved. Given numbers
a1, . . . , an+1 we prove that

f(a1, an+1) ≤ 2
∑

1≤r≤n

f(ar, ar+1) . (16.192)

First, if ab ≥ 0, then

f(a, b) = ||a| − |b||
√
a2 + b2 ≤ ||a| − |b|| · ||a|+ |b|| = |a2 − b2| , (16.193)

while if ab < 0 then, using the right-hand side of (16.189) in the left-hand
side inequality,

f(a, b) = (|a|+ |b|)
√
a2 + b2 ≤

√
2(a2 + b2) ≤

√
2f(a, b) . (16.194)

Thus when a1an+1 ≥ 0 then (16.192) follows from (16.193), (16.191) and the
triangle inequality |a21− a2n+1| ≤

∑
1≤r≤n |a2r − a2r+1| in R. When a1an+1 < 0

there must exist 1 ≤ m ≤ n with amam+1 < 0, and then

a21 + a2n+1 ≤ a2m + a2m+1 +
∑

r 	=m

|a2r − a2r+1| ,

so that (16.192) follows from (16.191) and (16.194).
Using (16.192) and (16.190) proves that for y1, . . . , yn+1 ∈ T ,

d(y1, yn+1) ≤ 2
∑

1≤r≤n

d(yr, yr+1) ,

and this implies (16.188). 
�
Rather than (16.185) we shall prove that

γ2(T, d) ≤ Lη−2T2(E
∗)S
√

log k , (16.195)

which suffices since d̂ ≤ 2d. The great advantage of d over d̂ is that the balls
for d are almost convex, as the next lemma shows.

Lemma 16.7.6. For every y ∈ T and ε > 0 we have

convBd(y, ε) ⊂ Bd(y, 2ε) . (16.196)

Proof. In view of (16.187) and (16.188) we have

Bd(y, ε) ⊂ {y ∈ T ; d(y, y′) ≤ 2ε} ⊂ Bd(y, 2ε) ,
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so that it suffices to prove that given y′ ∈ T the set

{y ∈ T ; d(y, y′)2 ≤ 4ε2}

is convex. For this it suffices to prove that for any a the function f(x) =
(x− a)2(x2 + a2) is convex. Now,

f(x) = (x2 − 2ax+ a2)(x2 + a2) = x4 − 2ax3 + 2a2x2 − 2a3x+ a4 ,

so that

f(x)′′ = 12x2 − 12ax+ 4a2 = 12(x− a/2)2 + a2 ≥ 0 . 
�

On E we consider the norm

‖y‖∞ = max
j≤k

|zj(y)| . (16.197)

Given an element w of E we also consider on E the weighted �2 norm ‖ · ‖w
given by

‖y‖2w =
∑

j≤k

zj(y)
2zj(w)

2 . (16.198)

We recall the quantity S of (16.183).

Lemma 16.7.7. For y, y′ in T we have

d(y, y′)2 ≤ 4‖y − y′‖2w + 2S2‖y − y′‖2∞(‖y − w‖2 + ‖y′ − w‖2) . (16.199)

Proof. We use the inequalities zj(y)
2 ≤ 2zj(y − w)2 + 2zj(w)

2 and

∑

j≤k

(zj(y)− zj(y
′))2zj(y − w)2 ≤ ‖y − y′‖2∞

∑

j≤k

zj(y − w)2

≤ S2‖y − y′‖2∞‖y − w‖2

to obtain

d(y, y′)2 ≤ 4‖y − y′‖2w + 2S2‖y − y′‖2∞(‖y − w‖2 + ‖y′ − w‖2) ,

and the conclusion since d ≤ d by (16.187). 
�
We recall the entropy numbers defined in (2.34). We denote by dw and d∞
the distances on T associated to the norms ‖ · ‖w and ‖ · ‖∞ respectively.

Lemma 16.7.8. For w ∈ T we have

en(T, dw) ≤ L2−n/2T2(E
∗)S . (16.200)
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Proof. Consider independent standard r.v.s (gj)j≤k. Then dw is the canon-
ical distance associated to the Gaussian process on E∗ defined by Xy =∑

j≤k gjzj(w)zj(y). Using successively the definition of T2(E
∗), the fact that

‖zj‖ ≤ 1 and the definition (16.183) of S we obtain

E sup
‖y‖≤1

Xy = E
∥∥∥
∑

j≤k

gjzj(w)zj

∥∥∥

≤ T2(E
∗)
(∑

j≤k

zj(w)
2‖zj‖2

)1/2

≤ T2(E
∗)
(∑

j≤k

zj(w)
2
)1/2

≤ T2(E
∗)S . (16.201)

The conclusion then follows from Sudakov’s minoration (2.82). (Alternatively,
one may combine (2.44) with Theorem 2.4.1.) 
�

Lemma 16.7.9. We have

en(T, d∞) ≤ L2−n/2η−1T2(E
∗)
√

log k . (16.202)

This is basically Lemma 16.5.4, the difference being that the dependence
in the modulus of convexity has been carried out explicitly (and also the
dependence on T2(E

∗) but this part is immediate). Figuring this out requires
to go into the details of Proposition 2 of [3]. These details are provided in [8]
on page 1079.

Exercise 16.7.10. (a) Using Lemma 16.7.5 prove that d̂ ≤ LSd∞. Using
(16.202) prove that

en(T, d̂) ≤ L2−n/2η−1T2(E
∗)S
√

log k .

(b) What is the parasitic factor you expect when using Dudley’s integral to

bound γ2(T, d̂) using the previous inequality? How do you expect to reduce
this factor using convexity as in Theorem 4.1.4? (Hint: one expects an extra
factor log k, which one should reduce to

√
log k using convexity. The remark-

able feature of (16.185) is that this extra factor
√
log k itself has disappeared.

The remaining factor
√
log k already occurs in the entropy estimate.)

Proof of (16.195). We set r = 8. We consider the largest integer n0 such that
22

n0 ≤ (1 + 2r)k. We consider the functionals

Fn(A) = 1− inf{‖y‖ ; y ∈ convA}+ η
max(n0 + 1− n, 0)

log k
. (16.203)

We shall prove that they satisfy the growth condition of Definition 2.3.10
with
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c∗ =
η2

LST2(E∗)
√
log k

. (16.204)

Since n0 ≤ L log k and η ≤ 1 we have F0(T ) ≤ L and the conclusion then
follows from Theorem 2.3.16.

To prove the growth condition, it follows from Exercise 2.3.13 that it suf-
fices to consider the case where n ≤ n0. We copy the proof of Theorem 4.1.10.
We consider 0 ≤ n ≤ n0,m = Nn+1, and points (t�)�≤m in T , such that
d(t�, t�′) ≥ a whenever � �= �′. Consider also sets H� ⊂ T ∩Bd(t�, a/r), where
the index d emphasizes that the ball is for the distance d rather than for the
norm ‖ · ‖ of E. Set

u = inf
{
‖v‖ ; v ∈ conv

⋃

�≤m

H�

}
, (16.205)

and consider u′ such that

u′ > max
�≤m

inf{‖v‖ ; v ∈ convH�} . (16.206)

Let us define u′′ := min(u′, 1). For � ≤ m consider v� ∈ convH� with ‖v�‖ ≤
u′′. It follows from (16.180) that for �, �′ ≤ m,

∥∥∥
v� + v�′

2u′′

∥∥∥ ≤ 1− η
∥∥∥
v� − v�′

u′′

∥∥∥
2

. (16.207)

Moreover, since (v� + v�′)/2 ∈ conv
⋃

�≤m H�, we have u ≤ ‖v� + v�′‖/2, and
(16.207) implies

u

u′′ ≤ 1− η
∥∥∥
v� − v�′

u′′

∥∥∥
2

,

so that, using that u′′ ≤ 1 in the second inequality,

‖v� − v�′‖ ≤ u′′
(u′′ − u

ηu′′

)1/2
≤ R :=

(u′′ − u

η

)1/2
,

and hence the points v� belong to T ′ := RT + v1.
To lighten notation let

A = T2(E
∗)S ; B = η−1T2(E

∗)
√

log k .

Since the distances d∞ and dv1 both arise from a norm, we deduce from
Lemmas 16.7.8 and 16.7.9 that we can cover T ′ with Nn sets that are of
diameter ≤ L2−n/2AR for dv1 and of diameter ≤ L2−n/2BR for d∞.

Now, sinceH� ⊂ Bd(t�, a/r) it follows from (16.196) that v� ∈ Bd(t�, 2a/r).
Since r = 8, we have 2a/r ≤ a/4 so that since d(t�, t

′
�) ≥ a for � �= �′ we have

d(v�, v�′) ≥ a/2. There are Nn+1 such points v�, so two of them must fall
inside one of the Nn sets we constructed in the previous paragraph. Using
(16.199) for y, y′ equal to these two points, and w = v1 we obtain the relation



570 16. Applications to Banach Space Theory

a2

4
≤ L(R22−nA2 + S22−nB2R4) ≤ Lmax(R22−nA2, S22−nB2R4) ,

so that

R2 ≥ 1

L
min
(a22n

A2
,
a2n/2

SB

)
.

Since
a22n

A2
+

1

log k
≥ a2n/2

A
√
log k

we obtain

R2 +
1

log k
≥ 1

L
min
( a2n/2

A
√
log k

,
a2n/2

SB

)
≥ a2n/2

LSB
, (16.208)

because A
√
log k ≤ SB. Since u′ − u ≥ u′′ − u = ηR2 it follows that

u′ +
η

log k
≥ u+ η

a2n/2

LSB
,

and hence

1− u+
η

log k
≥ 1− u′ + η

a2n/2

LSB
.

Since u′ is arbitrary in (16.206) we deduce using also (16.205) that

1− inf
{
‖v‖ ; v ∈ conv

⋃

�≤m

H�

}
+

η

log k

≥ 1−max
�≤m

inf{‖v‖ ; v ∈ convH�}+ η
a2n/2

LSB

i.e.

Fn

( ⋃

�≤m

H�

)
≥ min

�≤m
Fn+1(H�) + η

a2n/2

LSB
.

This completes the proof of the growth condition (2.147) for the value c∗ of
(16.204). We have proved (16.185) and hence Proposition 16.7.4. 
�

We now complete the proof of Theorem 16.7.2 along well understood lines.

Proposition 16.7.11. Consider a Banach space E such that (16.180) and
(16.181) hold. Consider a random vector Z valued in E∗, with ‖Z‖ ≤ 1, and
i.i.d. copies (Zi)i≤k of Z. Let

D = η−2T2(E
∗)
√
log k , (16.209)

and
σ2 = sup

y∈E,‖y‖≤1

EZ(y)2 . (16.210)

Then

E sup
y∈E,‖y‖≤1

∣∣∣
∑

j≤k

(Zj(y)
2 − EZ(y)2)

∣∣∣ ≤ L(D2 +Dσ
√
k) . (16.211)
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Proof. We use (9.21) (of course with Ri = 1 if i ≤ k and Ri = 0 if i > k) and
we take expectation in the r.v.s εi using (16.182) to obtain

U := E sup
y∈E,‖y‖≤1

∣∣∣
∑

j≤k

(Zj(y)
2 − EZ(y)2)

∣∣∣

≤ 2E sup
‖y‖≤1

∣∣∣
∑

j≤k

εjZj(y)
2
∣∣∣

≤ LDE
(
sup

‖y‖≤1

∑

j≤k

Zj(y)
2
)1/2

. (16.212)

Now
sup

‖y‖≤1

∑

j≤k

Zj(y)
2 ≤ kσ2 + sup

‖y‖≤1

∣∣∣
∑

j≤k

(Zj(y)
2 − EZ(y)2)

∣∣∣ ,

so that using the Cauchy-Schwarz inequality to put the expectation inside
the square root in the right-hand side of (16.212) yields

U ≤ LD(U + kσ2)1/2 ≤ LD
√
U + LDσ

√
k ≤ U

2
+

(LD)2

2
+ LDσ

√
k . 
�

Proof of Theorem 16.7.2. We use Proposition 16.7.11 for the space E of
(16.174) endowed with the norm (16.175), where the parameter ρ will be
chosen later.

It is proved in [4] that for two functions f, g in Lp,

∥∥∥
f + g

2

∥∥∥
2

p
+

p(p− 1)

8

∥∥∥
f − g

2

∥∥∥
2

p
≤ 1

2
(‖f‖2p + ‖g‖2p) ,

and this implies that the norm (16.175) satisfies (16.180) with η ≥ (p− 1)/8.
Also, T2(E

∗) ≤ L
√
q = L

√
p/(p− 1), where q is the conjugate exponent of

p, because this bound is already true for Lp. Consequently the quantity D of
(16.209) satisfies

D ≤ L(p− 1)−5/2
√

log k . (16.213)

We apply Proposition 16.7.11 to the random vector Z such that for i ≤ N ,
P(Z = xi) = 1/N . We think of Z as being valued in E∗. Then (16.176)
implies EZ(y)2 = ‖y‖22/N , and the quantity σ of (16.210) satisfies

σ2 ≤ sup
‖y‖≤1

‖y‖22
N

≤ ρ2

N
,

because ‖y‖22 ≤ ρ2 when ‖y‖ = ‖y‖∼ρ ≤ 1 by (16.175). Thus σ ≤ ρ/
√
N . Since

‖Z‖ ≤ τ−1 by (16.173), (16.211) implies by homogeneity

E sup
y∈E,‖y‖≤1

∣∣∣
∑

j≤k

(Zj(y)
2 − EZ(y)2)

∣∣∣ ≤ L(τ−2D2 + τ−1Dρ
√

k/N) . (16.214)
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Let us consider a parameter C and ρ = C
√
N/kD/τ . We substitute Dτ−1 =

ρ
√

k/N/C in the right-hand side of (16.214) to see that we may chose

ρ =
L

τ

√
N

k
D ≤ L

√
N/k

√
log k

τ(p− 1)5/2
,

so that this right-hand side of (16.214) is ≤ kρ2/4N . With this choice, we can
find (through a realization of the r.v. Z) indexes i1, . . . , ik as in Lemma 16.7.3,
and this concludes the proof. 
�

Proof of Theorem 16.7.1. It remains simply to choose p appropriately. to
prove that (16.170) follows from (16.172). We leave to the reader to deduce
from Hölder’s inequality that for 1 < p < 2 and θ = (2 − p)/p, then for any
function f ,

‖f‖p ≤ ‖f‖θ1‖f‖1−θ
2 .

Consequently, if ‖f‖2 ≤ a‖f‖p then ‖f‖2 ≤ a‖f‖θ1‖f‖1−θ
2 and hence ‖f‖2 ≤

a1/θ‖f‖1. Assume now that a = a(p) is of the type a = κ(p − 1)−5/2. Then,
since for p ≤ 3/2 we have 1/θ = 1 + 2(p− 1)/(2− p) ≤ 1 + 4(p− 1), we get
then

a1/θ = (p− 1)−5/(2θ)κ1/θ ≤ (p− 1)−5/2κ1+4(p−1) .

Assuming that κ ≥ 3, let us then take p = 1 + 1/(2 log κ) to obtain
a1/θ ≤ Lκ(log κ)5/2, so that ‖f‖2 ≤ Lκ(log κ)5/2‖f‖1. Using this for
κ = L

√
N/k

√
log k/τ proves Theorem 16.7.1. 
�

16.8 Embedding Subspaces of Lp into �pN

Given a k-dimensional subset X of Lp = Lp([0, 1]), what is the smallest value
of N such that X is 2-isomorphic to a subset of �pN? Here we shall study the
case 1 < p < 2, which turns out to the most difficult one. We recall that for
two Banach spaces E and F (say, of the same finite dimension) we define
their Banach-Mazur distance as inf{‖T‖‖T−1‖} where the infimum is taken
over all choices of the isomorphism T between E and F . We shall prove the
following.

Theorem 16.8.1 ([26]). A k-dimensional subspace of Lp is within Banach-
Mazur distance 2 of a subspace of �pN where

N ≤ Kk log k(log log k)2 . (16.215)

Here, as well as in the rest of the section, K denotes a number depending
on p only. We shall not attempt to track the dependence of K on p, but let
us say that the dependence obtained through our methods is unsatisfactory,
since the value of K blows up as p→ 2.
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How sharp is Theorem 16.8.1? It does not seem to be known if one could
in fact take N a multiple of k. An educated guess is that the factor log k
cannot be removed when one uses a random method of the type we shall use.
(There are no reasons to believe that this factor log k is necessary, but for the
time being, no other method seems to exist, except in very special cases, see
[23] for the case p even integer.) On the other hand it seems most likely that
the factor log log k is parasitic. The lame excuse we make up for presenting
such an imperfect result is that it has stood unimproved for quite a while,
and that the proof we present is instructive (and hopefully easier to follow
than the original proof).

Theorem 16.8.1 is one of the most difficult (and pretty) results of this
work. The reader may find in Theorem 15.3 of [12] a proof of the weaker esti-
mate N ≤ Kk(log k)3 rather than (16.215) using only Dudley’s bound rather
than the generic chaining. The key ingredient to the proof of Theorem 16.8.1
is the following.

Theorem 16.8.2. Consider a probability measure μ on {1, . . . ,M} and as-
sume that

∀ i ≤M , μi := μ({i}) ≤ 2

M
. (16.216)

Consider a k-dimensional subspace G of Lp(μ), and assume that it admits a
basis (ψj)j≤k orthogonal in L2(μ), such that if we write ψj = (ψj,i)i≤M then
for each i ≤ M one has

∑
j≤k ψ

2
j,i = 1 and moreover ‖ψj‖22 = 1/k for each

j ≤ k. Then

E sup
x∈G,‖x‖p≤1

∣∣∣
∑

i≤M

μiεi|xi|p
∣∣∣ ≤ K

√
k logM

M

(
log logM + log

M

k

)
. (16.217)

Here of course x = (xi)i≤M , and (εi)i≤M is an independent Bernoulli se-
quence. The relevance of this statement to the problem at hand is that it
will allow us to nicely embed G into a space of dimension about M/2 simply
by dropping each coordinate at random with probability 1/2. Iteration of
this procedure will then yield Theorem 16.8.1. We have nothing new to say
on this part of the proof, which we will recall at the end of the section for
completeness.

Consider
T = {(|xi|p)i≤M ;x ∈ G, ‖x‖p ≤ 1}

and the distance d′ on T given by

d′(s, t)2 =
∑

i≤M

μ2
i (si − ti)

2 . (16.218)

The plan is to bound γ2(T, d
′) and to use Theorem 2.2.22. Let us define

νi = max
(
μi,

1

M(logM)3

)
. (16.219)
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As a technical device, we consider instead of d′ the distance d given by

d(s, t)2 =
∑

i≤M

μiνi(si − ti)
2 , (16.220)

where νi is given in (16.219). Of course, the reason for this, and for many
other technical devices we shall use will become apparent only in due time
(the fact that νi ≥ 1/M(logM)3 is used crucially in (16.245) below). Since
d′ ≤ d, we have γ2(T, d

′) ≤ γ2(T, d), and we shall bound γ2(T, d).
Let us start with a simple observation.

Lemma 16.8.3. If G is as in Theorem 16.8.2 then for x ∈ G we have

∀ i ≤M , |xi| ≤ k1/p‖x‖p . (16.221)

Proof. We recall that (k1/2ψj)j≤k is an orthonormal basis of G. If x =∑
j≤k αjψj , then ‖x‖2 = k−1/2(

∑
j≤k α

2
j )

1/2, so that, since xi =
∑

j≤k αjψj,i

for each i ≤M , the Cauchy-Schwarz inequality implies

|xi| ≤
(∑

j≤k

α2
j

)1/2(∑

j≤k

ψ2
j,i

)1/2
= k1/2‖x‖2 , (16.222)

since we assume that
∑

j≤k ψ
2
j,i = 1 for each i. Now, using (16.222) in the

second inequality, and since p ≤ 2,

‖x‖22 ≤ max
i≤M

|xi|2−p‖x‖pp ≤ k1−p/2‖x‖2−p
2 ‖x‖pp ,

so that ‖x‖2 ≤ k1/p−1/2‖x‖p, and combining with (16.222) completes the
proof. 
�

We observe from (16.221) and since νi ≤ 2/M that, when ‖x‖p ≤ 1,

∑

i≤M

μiνix
2p
i ≤ 2k

M

∑

i≤M

μi|xi|p ≤
2k

M
,

so that d(t, 0) ≤
√

2k/M for each t ∈ T and thus

Δ(T, d) ≤ K
√
k/M ≤ K . (16.223)

For n ∈ Z we define

cn =
2n

M(logM)4
. (16.224)

For a subset A of T we define

F ′
n(A) = 1− sup

μ(I)≤cn

inf
t∈A

∑

i∈I

μiti , (16.225)
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where the supremum is taken over all the subsets I of {1, . . . ,M} with μ(I) ≤
cn. This is an increasing function of A, and obviously F ′

n+1(A) ≤ F ′
n(A). We

consider an integer n1 and we further define

Fn(A) = F ′
n(A) +

1

n1
max(n1 − n, 0) . (16.226)

In this manner we define an decreasing sequence of functionals on T , and
F0(T ) ≤ 2. The objective is to prove the following.

Proposition 16.8.4. We can find an integer n1, an integer s such that

s ≤ K
(
log logM + log

M

k

)
, (16.227)

and a number c∗ with

c∗ =
1

K

√
M

k logM
(16.228)

such that the sequence (Fn) of functionals satisfies the following growth con-
dition. Consider n ≥ 0 and m = Nn+1. Then, whenever the subsets (H�)�≤m

of T are far apart in the sense that there exist s0, t1, . . . , tm ∈ T such that

∀� ≤ m, t� ∈ B(s0, 4a) ; ∀� , �′ ≤ m, � �= �′ ⇒ d(t�, t�′) ≥ a , (16.229)

and
∀� ≤ m, H� ⊂ B(t�, a4

−s) , (16.230)

we have
Fn

( ⋃

�≤m

H�

)
≥ c∗a2n/2 +min

�≤m
Fn+s(H�) . (16.231)

The non-standard growth condition (16.231) is adapted to Theorem 2.7.6.
This theorem implies (when applied to the functionals (c∗)−1Fn and using
also (16.223))

γ2(T, d) ≤ Ks(c∗)−1 ≤ Ks

√
k logM

M
, (16.232)

and this proves Theorem 16.8.2. We fix once and for all s as the smallest for
which

2−s ≤ k

M(logM)6+4/(2−p)
, (16.233)

so that (16.227) holds.
We will deduce Proposition 16.8.4 from the following.

Proposition 16.8.5. Consider n ≥ 0 and a > 0 such that

a22n ≥ k

M logM
, (16.234)
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and define τ > 0 by

τ :=
2

cn+s
= 2−n−s+1M(logM)4 . (16.235)

Consider points (t�)�≤m of T which satisfy (16.229). For each � we write
t� = (t�,i)i≤M . Consider a subset I of {1, . . . ,M} with

μ(I) ≤ cn =
2n

M(logM)4
. (16.236)

and define

S := max
�≤m

∑

i 	∈I

μit�,i1{t�,i≥τ} . (16.237)

Then

S2 ≥ Ma22n

Kk logM
. (16.238)

Proof of Proposition 16.8.4. Since (T, d) is a subset of the M -dimensional
normed space L2(μ), the ball B(s0, 4a) can be covered by LM balls of radius
a/4, and therefore there may exist points t1, . . . , tm as in (16.229) only when
Nn+1 ≤ LM , i.e. n ≤ L logM . We can then choose n1 such that n1 ≤ L logM
such that it suffices to prove (16.231) in the case n < n1. In that situation
the last term of (16.226) forces that Fn+1(A) ≤ Fn(A)− 1/n1, and (16.231)
is automatically satisfied unless

c∗a2n/2 ≥ 1

n1
≥ 1

L logM
. (16.239)

If the constantK of (16.228) is large enough, (16.239) implies (16.234). There-
fore to prove (16.231) it suffices to prove that when (16.234) occurs then

F ′
n

( ⋃

�≤m

H�

)
≥ c∗a2n/2 +min

�≤m
F ′
n+s(H�) . (16.240)

Consider a subset I of {1, . . . ,M} as in (16.236). Combining (16.237) and
(16.238) we may then fix � ≤ m for which

∑

i∈J

μit�,i ≥ a2n/2
1

K0

√
M

k logM
, (16.241)

where
J = {i �∈ I ; t�,i ≥ τ} (16.242)

is disjoint from I. Since
∑

i≤M μit�,i ≤ 1 we have

μ(J) ≤ 1/τ =
2n+s−1

M(logM)4
, (16.243)
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so that, with lots of room,

μ(I ∪ J) ≤ cn+s =
2n+s

M(logM)4
. (16.244)

Consider t ∈ H�. The Cauchy-Schwarz inequality implies

∑

i∈J

μi|t�,i − ti| ≤
√∑

i∈J

μi

νi

√∑

i≤M

μiνi(t�,i − ti)2 ≤
√∑

i∈J

μi

νi
d(t�, t) .

Now, since νi ≥ 1/(M(logM)3),

√∑

i∈J

μi

νi
≤
√∑

i∈J

μi

√
M(logM)3 =

√
μ(J)

√
M(logM)3 .

Finally, since μ(J) ≤ 1/τ and d(t�, t) ≤ a4−s by (16.230),

∑

i∈J

μi|t�,i − ti| ≤
√

1/τ
√
M(logM)3d(t�, t)

≤ 2n/22s/2a4−s ≤ a2n/22−s . (16.245)

Recalling the constant K0 of (16.241) and using (16.233), since k ≤ M we
have with plenty of room that for M ≥ K

2−s ≤ k

M(logM)6+4/(2−p)
≤ 1

2K0

√
M

k logM
,

and consequently from (16.245),

∑

i∈J

μi|t�,i − ti| ≤
a2n/2

2K0

√
M

k logM
.

Since this occurs for each t ∈ H�, recalling (16.241) we obtain

inf
t∈H�

∑

i∈J

μiti ≥
a2n/2

2K0

√
M

k logM
.

Therefore

inf
t∈H�

∑

i∈I∪J

μiti ≥
a2n/2

K

√
M

k logM
+ inf

t∈H�

∑

i∈I

μiti

≥ a2n/2

K

√
M

k logM
+ inf

t∈
⋃

�′≤m H�′

∑

i∈I

μiti , (16.246)
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and since I is arbitrary, using (16.244) this proves (16.240) and completes
the proof. 
�

The overall strategy to prove Proposition 16.8.5 is clear. We have to show
that if S is small, there is not “enough room” in G so that one can find all
these points t� in T which satisfy d(t�, t�′) ≥ a for � �= �′. The program is to
prove some “smallness” of BG,p for various distances in the form of entropy
estimates, and then to relate these distances with the distance d on T .

We start this program by proving suitable entropy estimates. Given r > 1
we define

BG,r =
{
x ∈ G ;

∑

i≤M

μi|xi|r ≤ 1
}
. (16.247)

Given a subset W of {1, . . . ,M}, we consider the distance dW,r on G
induced by the semi-norm

α(x) := αW,r(x) :=
(∑

i∈W

μi|xi|r
)1/r

. (16.248)

When W = {1, . . . ,M} we will write dr for the distance dW,r, which is simply
the distance induced by Lr(μ), of unit ball (16.247). There is a simple reason
why one should consider the distances dW,r. In order to say anything at all
about the quantity S of (16.238), one must prove that the separation property
(16.229) does not occur entirely from the coordinates in I, so it will be helpful
to control what happens on sets of coordinates that are not too large.

The following estimates will be crucial in the proof of Proposition 16.8.5.

Proposition 16.8.6. We have

en(BG,p, d2) ≤ K(2−nk log k)1/p−1/2 . (16.249)

Moreover, recalling the distance dW,r induced by the semi-norm (16.248), we
have

en(BG,p, dW,p) ≤ K(2−nk log kμ(W ))1/p (16.250)

and
en(BG,p, dr) ≤ K2−n/p(k log k)1/p−1/2

√
kr . (16.251)

The meaning of these estimates is not very intuitive. In the range 2−nk ≥
1 we do not know how to do better. When 2−nk ≤ 1 one could get much
better estimates by using that G is of dimension k and Exercise 2.2.14, (e).
These better estimates will not be needed.

The proof of Proposition 16.8.6 takes the next three pages or so. It will
be an opportunity to learn some of the most useful methods to bound en-
tropy numbers. These methods will be further used in the proof of Proposi-
tion 16.8.5.
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Lemma 16.8.7. Consider a subset W of {1, . . . ,M} and recall the distance
dW,r on G induced by the semi-norm (16.248). Then

en(BG,2, dW,r) ≤ K2−n/2
√
krμ(W )1/r . (16.252)

Proof. The proof is based on the dual Sudakov inequality (8.3.6). Since
(k1/2ψj)j≤k is an orthonormal basis of L2(μ), when (gj)j≤k are independent
standard Gaussian r.v.s the vector

∑
j≤k k

1/2gjψj is a standard Gaussian

vector on G (seen as a subspace of L2(μ)). Now,

Eα
(∑

j≤k

k1/2gjψj

)
= k1/2E

(∑

i∈W

μi

∣∣∣
∑

j≤k

gjψj,i

∣∣∣
r)1/r

≤ k1/2
(∑

i∈W

μiE
∣∣∣
∑

j≤k

gjψj,i

∣∣∣
r)1/r

. (16.253)

Since we assume that
∑

j≤k ψ
2
j,i = 1, the r.v.

∑
j≤k gjψj,i is standard Gaus-

sian so that

E
∣∣∣
∑

j≤k

gjψj,i

∣∣∣
r

≤ (Lr)r/2,

and substitution in (16.253) yields that the left-hand side is ≤ L
√
krμ(W )1/r,

and use of (8.3.6) completes the proof. 
�

Lemma 16.8.8. Consider r > 2. Then

en(BG,2, dr) ≤ K(r)(2−nk log k)1/2−1/r . (16.254)

This has a tendency to improves on (16.252) in the case where 2−nk ≥ 1
(which is the important one) because 1/2− 1/r < 1/2.

Proof. Consider h > r and define θ, 0 ≤ θ ≤ 1 by

1

r
=

1− θ

2
+

θ

h
.

It follows from Hölder’s inequality that ‖x‖r ≤ ‖x‖1−θ
2 ‖x‖θh. Consequently for

x, y ∈ BG,2 we have dr(x, y) ≤ 2dh(x, y)
θ and using (16.252) in the second

inequality implies

en(BG,2, dr) ≤ 2en(BG,2, dh)
θ ≤ 2(K2−n/2

√
kh)θ .

Now

β :=
1

2
− 1

r
=

θ

2

(
1− 2

h

)
,

so that if h ≥ 4, and since 1/(1− x) ≤ 1 + 2x for 0 ≤ x ≤ 1/2,

2β ≤ θ = 2β
1

1− 2/h
≤ 2β +

8β

h
.
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Thus if 2−n/2
√
kh ≤ 1 we have (2−n/2

√
kh)θ ≤ (2−n/2

√
kh)2β , while if

2−n/2
√
kh ≥ 1 we have

(2−n/2
√
kh)θ ≤ (2−n/2

√
kh)2β(hk)4β/h ,

and the choice h = r log k completes the proof since then (hk)4β/h ≤
(hk)4/h ≤ K(r) because β ≤ 1 and also Kθ ≤ K(r). 
�

The following classical property of the entropy numbers is fundamental.

Lemma 16.8.9. Consider two distances d1 and d2 on R
m that arise from

semi-norms, of unit balls U1 and U2 respectively. Then for any set T ⊂ R
m

one has
en+1(T, d2) ≤ 2en(T, d1)en(U1, d2) . (16.255)

Proof. Consider a > en(T, d1) so that we can find points (t�)�≤Nn of T such
T ⊂ ∪�≤Nn(t� + aU1). Consider b > en(U1, d2), so that we can find points
(u�)�≤Nn for which U1 ⊂ ∪�≤Nn(u� + bU2). Then

T ⊂
⋃

�,�′≤Nn

(t� + au�′ + abU2) .

Let
I = {(�, �′) ; �, �′ ≤ Nn , (t� + au�′ + abU2) ∩ T �= ∅} ,

so that card I ≤ N2
n = Nn+1. For (�, �

′) ∈ I let v�,�′ ∈ (t� + au�′ + abU2) ∩ T .
Then

T ⊂
⋃

(�,�′)∈I

(v�,�′ + 2abU2) ,

so that en+1(T, d2) ≤ 2ab. 
�
The following very useful result of N. Tomczak-Jaegermann is weaker than
the duality results of [3] which we used in the previous section. Since the
proof takes only a few lines, we give it for convenience.

Lemma 16.8.10. Consider on R
m a distance dV induced by a norm of unit

ball V , and let V ◦ be the polar set of V , i.e. the unit ball of the dual norm
under the canonical duality of Rm with itself. Denote by B2 the Euclidean
ball of Rm and by d2 the Euclidean distance. Assume that for some numbers
α ≥ 1, A and n∗ we have

0 ≤ n ≤ n∗ ⇒ en(B2, dV ) ≤ 2−n/αA . (16.256)

Then
0 ≤ n ≤ n∗ ⇒ en(V

◦, d2) ≤ 16 · 2−n/αA . (16.257)
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Proof. Consider n ≤ n∗. Using (16.255) in the first inequality and (16.256)
in the second one we obtain

en+1(V
◦, dV ) ≤ 2en(V

◦, d2)en(B2, dV ) ≤ 2−n/α+1Aen(V
◦, d2) . (16.258)

Let us now denote by 〈·, ·〉 the canonical duality of Rm with itself, so that if
y ∈ V and z ∈ V ◦ we have 〈y, z〉 ≤ 1. Consider x, t ∈ V ◦, and a = dV (s, t).
Then x− t ∈ 2V ◦ and x− t ∈ aV , so that

‖x− t‖22 = 〈x− t, x− t〉 ≤ 2a ,

and thus d2(x, t)
2 ≤ 2dV (s, t). Consequently en+1(V

◦, d2)
2 ≤ 2en+1(V

◦, dV ).
Combining with (16.258),

en+1(V
◦, d2)

2 ≤ 2−n/α+2Aen(V
◦, d2) ,

from which (16.257) follows by induction over n. 
�
Proof of Proposition 16.8.6. We use (16.254) for r = p∗, the conjugate expo-
nent of p, so that 1/2− 1/p∗ = 1/p− 1/2 and we then use Lemma 16.8.10 to
obtain (16.249). Next we use (16.255) to obtain

en+1(BG,p, dW,r) ≤ 2en(BG,p, d2)en(BG,2, dW,r) . (16.259)

We then use (16.249) and (16.252) to obtain

en(BG,p, dW,r) ≤ K2−n/p(k log k)1/p−1/2
√
kr(μ(W ))1/r .

Taking r = p yields (16.250) and taking W = {1, . . . ,M} yields (16.251). 
�

This finishes for the time being our consideration of entropy estimates.
We now define p0 as the conjugate exponent of logM and we observe that
since k ≤M ,

0 ≤ u ≤ k ⇒ up0 ≤ Lu . (16.260)

(It is of course this property which motivates the definition of p0.) We further
define

q = p logM . (16.261)

We need the following elementary fact.

Lemma 16.8.11. Consider η > 0, a subset W of {1, . . . ,M} and x, y ∈
BG,p. Consider a number A with

A ≥
∑

i∈W

μi|xi|p1{|xi|≥η} ; A ≥
∑

i∈W

μi|yi|p1{|yi|≥η} . (16.262)

Then

∑

i∈W

μiνi(|xi|p − |yi|p)2 ≤ K
ηp

M
+K(max

i∈W
νi)‖x− y‖pqA1/p0 . (16.263)
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In particular, taking η = 0,

∑

i∈W

μiνi(|xi|p − |yi|p)2 ≤ K(max
i∈W

νi)‖x− y‖pq . (16.264)

This lemma performs the second part of our program. If t = (|xi|p)i≤M

and t′ = (|yi|p)i≤M then the left-hand side of (16.263) is relevant to the
estimation of d(t, t′)2 =

∑
i≤M μiνi(|xi|p−|yi|p)2, so that one might say that

this inequality relates the distance d on T with the norm ‖ · ‖q on BG,q.

Proof. Let W1 = {i ∈ W ; |xi| ≤ η, |yi| ≤ η} and W2 = W \W1. For i ∈ W1

we have (|xi|p − |yi|p)2 ≤ (|xi|p + |yi|p)2 ≤ 2ηp(|xi|p + |yi|p) so that since
νi ≤ 2/M ,

∑

i∈W1

μiνi(|xi|p − |yi|p)2 ≤
4ηp

M

∑

i∈W1

μi(|xi|p + |yi|p) ≤
8ηp

M
. (16.265)

Next, we observe that for u, v ∈ R one has

(|u|p − |v|p)2 ≤ K|u− v|p(|u|p + |v|p) .

To prove this we may assume that 0 ≤ v ≤ u and we use that up ≤ vp+p(u−
v)up−1 and that (u− v)2u2p−2 ≤ |u− v|pup since p ≤ 2. Consequently, using
in the second line Hölder’s inequality with exponents logM and p0 (and since
q = p logM)

∑

i∈W2

μiνi(|xi|p − |yi|p)2 ≤ K(max
i∈W

νi)
∑

i∈W2

μi|xi − yi|p(|xi|p + |yi|p)

≤ K(max
i∈W

νi)‖x− y‖pq
(∑

i∈W2

μi(|xi|pp0 + |yi|pp0)
)1/p0

. (16.266)

Next we observe that for i ∈W2 we have

|xi|p + |yi|p ≤ 2(|xi|p1{|xi|≥η} + |yi|p1{|yi|≥η}) ,

since one of the terms on the right-hand side in not zero. Consequently, using
(16.221) and (16.260),

∑

i∈W2

μi(|xi|pp0 + |yi|pp0) ≤ KA ,

and combining with (16.266) completes the proof. 
�
We now begin the proof of Proposition 16.8.4. Consider the points (t�)�≤m

as in (16.229), and for � ≤ m let x� ∈ BG,p such that t� = (|x�
i |p)i≤M . This

notation will be used until the end of the proof.
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Lemma 16.8.12. If M ≥ K we can find a subset V of {1, . . . ,m}, with
cardV ≥ Nn−2 and the following properties:

�, �′ ∈ V , � �= �′ ⇒ a2

2
≤
∑

i 	∈I

μiνi(t�,i − t�′,i)
2 . (16.267)

�, �′ ∈ V ⇒ ‖x� − x�′‖q ≤ K(2−nk logM)1/p . (16.268)

�, �′ ∈ V ⇒
∑

i∈I

μi|x�
i − x�′

i |p ≤
Kk logM

M(logM)4
. (16.269)

In particular (16.267) shows that the separation property (16.229) basically
occurs outside I. The role of the other two conditions will became apparent
soon.

Proof. Let

I0 =
{
i ∈ I ; μi ≥

1

M(logM)3

}
,

so that (16.236) implies that card I0 ≤ 2n/ logM . Next we claim that for
M ≥ K we can partition {1, . . . ,m} into Nn sets V which satisfy (16.268)
and (16.269) as well as

�, �′ ∈ V ⇒
∑

i∈I0

μiνi(t�,i − t�′,i)
2 ≤ a2

4
. (16.270)

To see this, for each of the properties (16.268) to (16.270) we prove that
we can partition {1, . . . ,m} into ≤ Nn−2 sets V which satisfy this property.
Since N3

n−2 ≤ Nn this proves the claim.
We first observe that (16.251) used for r = q = p logM implies

en(BG,p, dq) ≤ K(2−nk logM)1/p ,

and using this for n−2 rather than n shows that we can partition {1, . . . ,m}
into Nn−2 sets V that satisfy (16.268).

Next, using (16.250) for W = I yields

en(BG,p, dI,p) ≤ K(2−nk log kμ(I))1/p ≤ K

(
k log k

M(logM)4

)1/p

,

and using this for n−2 rather than n proves that we can partition {1, . . . ,m}
into Nn−2 sets V that satisfy (16.269).

To prove that we can partition {1, . . . ,m} into Nn−2 sets which satisfy
(16.270) we simply use (16.229) and a dimensionality argument. Namely, we
consider the space E of sequences (yi)i∈I0 , provided with the norm ‖y‖2 =∑

i∈I0
μiνiy

2
i . For t = (ti)i≤M ∈ T let us write π(t) = (ti)i∈I0 . Consider points

s0 and t� as in (16.229). In E the ball B(π(s0), 4a) can be covered by Lcard I0
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balls of radius a/4, so in particular this ball can be partitioned in ≤ Lcard I0

sets of diameter ≤ a/2. This proves that we can partition {1, . . . ,m} into
≤ Lcard I0 sets which satisfy (16.270). Since card I0 ≤ 2n/ logM , we have
Lcard I0 ≤ Nn−2 for M ≥ K.

This completes the construction of the sets V . Since m = Nn+1 = N2
n

and there are at most Nn sets V , we can find such a set V with cardV ≥ Nn.
This set satisfies (16.268) and (16.269) and we have to show that it satisfies
(16.267).

Let us define I ′ = I \ I0. Using (16.264) for W = I ′, and since νi ≤
1/M(logM)3 for i ∈ W we obtain, using (16.268) in the second inequality
and (16.234) in the third inequality that for �, �′ ∈ V we have

∑

i∈I′

μiνi(t�,i − t�′,i)
2 ≤

K‖x� − x�′‖pq
M(logM)3

≤ K2−nk logM

M(logM)3
≤ Ka2

logM
.

Combining this inequality with (16.270) we then obtain that for M ≥ K we
have

�, �′ ∈ V ⇒
∑

i∈I

μiνi(t�,i − t�′,i)
2 ≤ a2

2
. (16.271)

Since by (16.229) one has
∑

i≤M μiνi(t�,i − t�′,i)
2 ≥ a2 for � �= �′ we have

proved (16.267). 
�
We recall the quantity τ of (16.235) and we define η > 0 by

ηp = τ .

Recalling the quantity S of (16.237) we then have

S = max
�≤M

∑

i 	∈I

μit�,i1{t�,i≥τ} = max
�≤M

∑

i 	∈I

μi|x�
i |p1{|x�

i |≥η} . (16.272)

Lemma 16.8.13. If M ≥ K have

�, �′ ∈ V , � �= �′ ⇒ a2

4
≤ K

M
‖x� − x�′‖pqS . (16.273)

This is a significant progress because now the separation pertains to points
of G, for a simple norm.

Proof. Using (16.263) we obtain

�, �′ ∈ V ⇒
∑

i 	∈I

μiνi(t�,i − t�′,i)
2 ≤ K

ηp

M
+

K

M
‖x� − x�′‖pqS1/p0 . (16.274)

Then, using (16.235) in the first inequality, (16.233) in the second one, and
(16.234) in the last one,
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K
ηp

M
= K

τ

M
≤ K2−n−s(logM)4 ≤ K2−n k

M(logM)2
≤ K

logM
a2 .

In particular for M ≥ K we have Kηp/M ≤ a2/4. Combining with (16.267)
and (16.274) we have shown that for M ≥ K we have

�, �′ ∈ V , � �= �′ ⇒ a2

4
≤ K

M
‖x� − x�′‖pqS1/p0 , (16.275)

and, consequently using (16.268),

a2

4
≤ K

M
2−nk logMS1/p0 . (16.276)

Using (16.234) again we obtain S1/p0 ≥ 1/K(logM)2. Since p0 is the con-
jugate exponent of logM , for M ≥ K we have p0 ≤ 1 + 2/ logM . Since
(logM)1/ logM ≤ K this implies

S ≥ 1

(K logM)2p0
≥ 1

K(logM)2
(16.277)

and
S1/p0 = S × S−1/ logM ≤ KS . (16.278)

Combining with (16.275), this proves (16.273). 
�
Let us fix �0 ∈ V and for � ∈ V define y� = x� − x�0 . These points are

far apart from (16.273). We are now going to show that they belong to a
rather small special subset of G. For r ≥ 1 let us denote by Br the unit ball
of Lr(μ). Considering 0 ≤ ξ ≤ 1, let us define

U(ξ, η) = ξBp + (Bp ∩ ηB∞) . (16.279)

Lemma 16.8.14. We have y� ∈ 2U(ξ, η) where ξ = (3S)1/p.

Proof. We deduce from (16.269), using (16.277) in the second inequality, that
for M ≥ K

� ∈ V ⇒
∑

i∈I

μi|y�i |p ≤
kK logM

M(logM)4
≤ S . (16.280)

Next, we observe the inequality

|u− v|p1{|u−v|≥2η} ≤ 2p(|u|p1{|u|≥η} + |v|p1{|v|≥η}) ,

that follows simply from the fact that |u− v| ≤ 2max(|u|, |v|). Using this for
u = x�

i and v = x�0
i and combining with the definition of S this implies that

for � ∈ V ,
∑

i 	∈I

μi

∣∣∣
y�i
2

∣∣∣
p

1{|y�
i |≥2η} ≤ 2S . (16.281)
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Let us then define u = (ui)i≤M by ui = y�i1{|y�
i |<2η} if i �∈ I and ui = 0

otherwise. Thus u/2 ∈ ηB∞ ∩ Bp, and combining (16.280) with (16.281)
shows that ‖y�/2 − u/2‖pp ≤ 3S. This proves indeed that y� ∈ 2U(ξ, η) for

ξ = (3S)1/p. 
�
To take advantage of the fact that the points (y�)�∈V are far from each

other for dq from (16.273), we need information about the covering numbers
of the sets G∩U(ξ, η) for this distance. This is the purpose of the next (and
crucial) estimate.

Proposition 16.8.15. Consider n ≥ 0 such that

η ≤ ξ2/(2−p)(2−nk logM)1/p . (16.282)

Then
en(G ∩ U(ξ, η), dq) ≤ Kξ(2−nk logM)1/p . (16.283)

Let us stress the point here. An element x ∈ G ∩ U(ξ, η) can be written as
x = x1 + x2 where x1 ∈ ξBp and x2 ∈ Bp ∩ ηB∞. There is a priori no reason
why one should have such a decomposition with x1, x2 in G.

Proof. The interpolation formula ‖f‖2 ≤ ‖f‖1−p/2
∞ ‖f‖p/2p implies

Bp ∩ ηB∞ ⊂ η1−p/2B2 . (16.284)

We consider L2(μ) in canonical duality with itself, and the polar V of U(ξ, η).
Let p∗ be the conjugate exponent of p. Consider the distance dV induced by
the norm of unit ball V , so that, using (16.279) and (16.284),

dV (x, y) = sup{〈x− y, z〉 ; z ∈ U(ξ, η)} ≤ ξdp∗(x, y) + η1−p/2d2(x, y) ,
(16.285)

and therefore

en(BG,2, dV ) ≤ ξen(BG,2, dp∗) + 2η1−p/2 .

Using (16.254) for r = p∗ yields

en(BG,2, dp∗) ≤ K(2−nk logM)1/p−1/2 ,

and consequently,

en(BG,2, dV ) ≤ Kξ(2−nk logM)1/p−1/2 + 2η1−p/2 ,

so that, when (16.282) holds,

en(BG,2, dV ) ≤ Kξ(2−nk logM)1/p−1/2 .

Now (16.282) holds for n ≤ n∗ for a certain integer n∗ and (16.257) of
Lemma 16.8.10 implies that for these values of n,
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en(G ∩ U(ξ, η), d2) ≤ Kξ(2−nk logM)1/p−1/2 . (16.286)

Finally we deduce from (16.255) that

en+1(G ∩ U(ξ, η), dq) ≤ 2en(G ∩ U(ξ, η), d2)en(BG,2, dq) ,

and we use (16.286) for the first term and (16.252) for r = q and W =
{1, . . . ,M} for the second term. 
�
Proof of Proposition 16.8.4. We rewrite (16.282) as

τ = ηp ≤ (ξp)2/(2−p)2−nk logM ,

and, recalling the value of τ from (16.235), and since ξp = 3S, this holds
provided

2−n−s+1M(logM)4 ≤ (3S)2/(2−p)2−nk logM . (16.287)

It then follows from (16.277) and (16.233) that this relation is satisfied when
M ≥ K. Consequently, we know from (16.283) that

en−3(G ∩ U(ξ, η), dq) ≤ Kξ(2−nk logM)1/p .

Since cardV = Nn−2 we can find � and �′ in V , � �= �′ such that

‖x� − x�′‖q ≤ Kξ(2−nk logM)1/p .

Consequently, using (16.273) in the first inequality and since ξp = 3S,

a2 ≤ K

M
‖x� − x�′‖pqS ≤

K

M
S22−nk logM ,

so that

S2 ≥ Ma22n

Kk logM
,

which is the minoration of S we have been looking for. 
�

Let us end this section with a sketch of the proof of Theorem 16.8.1.
Denoting by Λ the left-hand side of (16.217) we can find a choice of the
sequence (εi) for which card{i ≤M ; εi = 1} ≤M/2 and

sup
x∈BG,p

∣∣∣
∑

i≤M

μiεi|xi|p
∣∣∣ ≤ Λ . (16.288)

Consequently

sup
x∈BG,p

∣∣∣
∑

i≤M

μi(1 + εi)|xi|p − ‖x‖pp
∣∣∣ ≤ Λ , (16.289)

and if we define the norm N (x) by N (x)p =
∑

i≤N (1 + εi)|xi|p, we have
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|N (x)p − ‖x‖pp| ≤ Λ‖x‖pp ,

and
(1− Λ)1/p ≤ N (x) ≤ ‖x‖p(1 + Λ)1/p .

In particular for Λ ≤ 1/2, the Banach-Mazur distance between the spaces
(G, ‖ · ‖p) and (G,N (·)) is ≤ KΛ2. The space (G,N (·)) is isomorphic to
a subspace of a space Lp(μ′) where μ′ is supported by a set of cardinality
M ′ ≤ M/2. A theorem of D. Lewis [13] asserts that one can make a change
of density in the space Lp(μ′) to ensure the existence of a sequence ψj as in
Theorem 16.8.2. By splitting the atoms of mass ≥ 2/M ′ one can finally find
a subspace G′ of Lp(μ′′) within Banach-Mazur distance KΛ2 of G, which
satisfies the conditions of Theorem 16.8.2 for M ′′ ≤ 3M/4. This is the basic
step of “dimension reduction”. Iteration of this step yields Theorem 16.8.1.
We refer to [12] for the details (which are straightforward).

16.9 Gordon’s Embedding Theorem

One should think that there are many other potential applications of the
material presented in this book to Banach Spaces, but new ideas take a long
time to percolate. The following can be obtained as a particularly elegant
application of Theorem 2.4.1. For any integer n, we denote by ‖ · ‖2 the
Euclidean norm on R

n.

Theorem 16.9.1 (Gordon’s embedding theorem [7]). Consider two in-
tegers n and m. Denote by Sm−1 the unit sphere of Rm. Consider a norm
‖ · ‖ on R

n, and assume that ‖ · ‖ ≤ ‖ · ‖2. Denote by Xt the canonical Gaus-
sian process on R

m, and by (ej)j≤n the canonical basis of Rn. Then for every
subset T of Sm−1 there is a linear operator U : Rm → R

n such that

∀t ∈ T , 1− Lε ≤ ‖U(t)‖ ≤ 1 + Lε

where

ε =
E supt∈T Xt

E‖
∑

j≤n gjej‖
.

Gordon’s original proof does not use Theorem 2.4.1. Theorem 16.9.1 was
rediscovered by G. Schechtman [22], whose approach we follow here. Dis-
cussing all the remarkable consequences of this statement in Banach Space
Theory goes beyond the purpose of this work, and we refer to [22] and refer-
ences therein for this.

Proof. Consider independent standard Gaussian random variables (gi)i≥1,
(gij)i,j≥1, and for t = (t1, . . . , tm) ∈ R

m define Ct ∈ R
n by

Ct =
∑

i≤m,j≤n

tigijej =
∑

j≤n

ej

(∑

i≤m

gijti

)
,
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so that the law of Ct in R
n is the same for all t ∈ Sm−1, because in that

case the sequence (
∑

i≤m gijti)j≤m is an independent sequence of standard

normal r.v. Moreover, for the same reason, when t ∈ Sm−1 we have

E‖Ct‖ = E
∥∥∥
∑

j≤n

gjej

∥∥∥ . (16.290)

We fix t0 ∈ T , and for t ∈ Sm−1 we define

Yt = ‖Ct‖ − ‖Ct0‖ ,

so that EYt = 0. The key of the proof is to establish the inequality

∀u > 0 , ∀s, t ∈ Sm−1 , P(|Ys − Yt| ≥ u) ≤ 2 exp
(
− u2

L‖s− t‖22

)
. (16.291)

Once this is proved, we proceed as follows. Since Yt0 = 0, it follows from
Theorem 2.4.12 that

E sup
t∈T

|Yt| ≤ LE sup
t∈T

Xt . (16.292)

It follows from Lemma 8.1.11 that

P
(
‖Ct0‖ ≥

1

2
E‖Ct0‖

)
≥ 1

L
,

and combining with (16.290) and (16.292), we see that we find a realization
of the r.v. such that

sup
t∈T

|‖Ct‖ − ‖Ct0‖| ≤ LE sup
t∈T

Xt

‖Ct0‖ ≥
1

2
E‖Ct0‖ =

1

2
E
∥∥∥
∑

j≤n

gjej

∥∥∥ .

The operator U given by U(t) = Ct/‖Ct0‖ then satisfies our requirements.
The proof of (16.291) given by G. Schetchman is very beautiful. First, we

note that for any x ∈ R
n and any b ∈ R

m the r.v.s ‖x + Cb‖ and ‖x − Cb‖
have the same law because the distribution of Cb is symmetric, and thus

E‖x+ Cb‖ = E‖x− Cb‖ ,

and also

P
(∣∣‖x+ Cb‖ − ‖x− Cb‖

∣∣ ≥ u
)

(16.293)

≤ P
(∣∣‖x+ Cb‖ − E‖x+ Cb‖

∣∣ ≥ u

2

)
+ P
(∣∣‖x− Cb‖ − E‖x− Cb‖

∣∣ ≥ u

2

)

= 2P
(∣∣‖x+ Cb‖ − E‖x+ Cb‖

∣∣ ≥ u

2

)
.
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Now,

‖x+ Cb‖ = sup
{
x∗(x+ Cb) ; x

∗ ∈W
}
= sup

{
Zx∗ ; x∗ ∈W

}
,

where W is the unit ball of the dual of the Banach space (RN , ‖ · ‖), and
where Zx∗ = x∗(x + Cb). The crucial fact now is that Lemma 2.4.7 remains
true when the Gaussian process Zt is not necessarily centered, provided one
replaces the condition EZ2

t ≤ σ2 by the condition E(Zt − EZt)
2 ≤ σ2. Such a

property is formally stated in the case of Bernoulli processes in (5.56). In the
Gaussian case, as in Lemma 2.4.7, it simply takes its roots in the remarkable
behavior of the canonical Gaussian measure on R

k with respect to Lipschitz
functions [11]. We have

E(Zx∗ − EZx∗)2 = E(x∗(Cb))
2 =

∑

i≤m,j≤n

x∗(ej)
2b2i .

Since we assume that ‖ · ‖ ≤ ‖ · ‖2, for x∗ ∈ W , we have |x∗(ej)| ≤ 1, and
thus E(Zx∗ − EZx∗)2 ≤ ‖b‖22. We can then deduce from the extension of
Lemma 2.4.7 mentioned above that

P
(∣∣‖x+ Cb‖ − E‖x+ Cb‖

∣∣ ≥ u

2

)
≤ 2 exp

(
− u2

8‖b‖22

)
,

and combining with (16.293) yields

P
(∣∣‖x+ Cb‖ − ‖x− Cb‖

∣∣ ≥ u
)
≤ 4 exp

(
− u2

8‖b‖22

)
. (16.294)

Consider finally s and t in Sm−1. Writing a = (s+ t)/2 and b = (s− t)/2 we
notice that

Cs = Ca + Cb ; Ct = Ca − Cb .

Most importantly, since ‖s‖ = ‖t‖, the vectors a and b are orthogonal, so
that by the rotational invariance property of Gaussian measures the random
vectors Ca and Cb are independent, and (16.291) follows using (16.294) for
x = Ca conditionally on Ca. 
�

The one objection one might raise against the previous proof is that
(16.291) is a rather immediate consequence of an equally beautiful, but much
older argument that G. Pisier [19] used to prove the very form of concen-
tration of measure which is the cornerstone of the previous proof. Pisier’s
argument goes as follows. Consider a, b ∈ Sm−1 and assume that they are
orthogonal. Consider a number v and the function

ϕ(θ) = exp v(‖Ca cos θ+b sin θ‖ − ‖Ca‖) .

Differentiation and Gaussian integration by parts (using that ‖ · ‖ ≤ ‖ · ‖2)
yield (after a few lines of computation) the inequality
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ϕ′(θ) ≤ Lv2| sin θ|ϕ(θ)

and since ϕ(0) = 1 by integration

ϕ(θ) ≤ expLθ2v2 . (16.295)

Now, given s, t ∈ Sm−1 we can find b ∈ Sm−1 orthogonal to t with s =
t cos θ+b sin θ, and then (with the proper choice of θ modulo 2π) θ2 ≤ ‖s−t‖2
so that from (16.295)

exp v(‖Cs‖ − ‖Ct‖) ≤ expLv2‖s− t‖2 ,

from which (16.291) follows.

16.10 Notes and Comments

The idea of using convexity through the functionals (4.18) (or previous incar-
nations of the same idea) has been successful in a number of situations. First
of course is the Ellipsoid theorem, Theorem 4.1.4, which clarifies the proof of
several matching theorems as in explained in Chapter 4. The second occur-
rence was in Rudelson’s paper [21]. Rudelson discovered and proved the result
of [21] alone, but his original argument for the proof of the crucial probabilis-
tic estimate was significantly more complicated than the proof which appears
in [21]. The argument which is published in [21] was produced by this author
after seeing the original proof. It is essentially the proof of Proposition 16.7.4
in the case where the norm is the Euclidean norm. (It is written of course in
[21] using “pre-generic chaining techniques”.) Despite Rudelson’s very clear
statement about this origin of his argument, it has been referred in several
subsequent papers as “Rudelson’s argument”. It has been used in particular
under this name in [9], [8] and [5]. Unfortunately the arguments of [5] use a
false claim about the convexity of certain balls and are incorrect as written.
See also [30].

In the case of the Euclidean norm, Proposition 16.7.4 has been essen-
tially superseded by the non-commutative Khinchin’s inequalities [15] and
further results in the same direction, see e.g. [24] for a review. In the simplest
form, the non-commutative Khinchin’s inequality asserts that for self-adjoint
operators (Ai) on R

d, and for p ≥ 2,

E tr
(∑

i≥1

giAi

)2p
≤ (Lp)ptr

(∑

i≥1

A2
i

)p
, (16.296)

where tr denotes the trace. (This version with the correct growth of the
constants goes back to G. Pisier’s work [20].) Now, since the operators Ai are
self-adjoint, so is

∑
i giAi and thus ‖

∑
i giAi‖2p ≤ tr(

∑
i giAi)

2p. Moreover,
tr(
∑

i≥1 A
2
i )

p ≤ dσ2p where σ2 = ‖
∑

i≥1 A
2
i ‖. Thus (16.296) yields



592 16. Applications to Banach Space Theory

E
∥∥∑

i

giAi

∥∥2p ≤ (Lp)pdσ2p ,

and in particular E‖
∑

i giAi‖ ≤ L
√
pd1/2pσ. Taking p about log d yields

E
∥∥
∑

i≥1

giAi

∥∥ ≤ Lσ
√
log d . (16.297)

In particular, if we denote by 〈·, ·〉 the dot product in R
d, and if

T = {(〈x,Ai(x)〉)i≥1 ; ‖x‖ ≤ 1} ,

then γ2(T, d2) ≤ Lσ
√
log d. It would be quite interesting to find a direct

“geometrical” proof of this statement.
When (zi) are vectors in R

d with ‖zi‖ ≤ 1, and Ai(x) = zi〈zi, x〉, then
A2

i (x) = ‖zi‖2zi〈zi, x〉 and σ ≤ (sup‖x‖≤1〈zi, x〉2)1/2, so that (16.297) yields

E sup
x≤1

gi
∑

i

〈x, zi〉2 ≤ L
√

log d
(
sup

‖x‖≤1

〈zi, xi〉2
)1/2

,

to be compared with Proposition 16.7.4. Also relevant are the very strong
deterministic results of [1].
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A. Appendix: What This Book Is Really
About

A.1 Introduction

The present book is designed to be read with little prior knowledge, but it
might also help to discuss a few classical results, in the perspective of what
is done in this book. This appendix is self-contained, even though this entails
some repetition from the main body of work.

A.2 The Kolmogorov Conditions

Since Kolmogorov invented chaining, it is appropriate to start with pro-
cesses that satisfy the so-called Kolmogorov conditions (1.2), that is processes
(Xt)t∈T where T = [0, 1]m, for which

∀ s, t ∈ [0, 1]m , E|Xs −Xt|p ≤ d(s, t)α . (1.2)

where d(s, t) denotes the Euclidean distance and p > 0, α > m. Let us try to
prove that such processes are continuous (i.e. have a continuous version).

Chaining uses successive approximations πn(t) of the points t of T . When
T = [0, 1]m and we use the Euclidean distance, it is natural to assume that
πn(t) ∈ Gn, whereGn is the set of points x in [0, 1]m such that the coordinates
of 2nx are integers �= 0. Thus cardGn = 2nm. For n ≥ 0, let us define

Un = {(s, t) ; s ∈ Gn , t ∈ Gn+1 , d(s, t) ≤ 3
√
m2−n} , (A.1)

so that we have the crucial property

cardUn ≤ K(m)2nm , (A.2)

where K(m) denotes a number depending only on m, which need not be the
same on each occurrence. Consider then the r.v.

Yn = max{|Xs −Xt| ; (s, t) ∈ Un} , (A.3)

so that, using that for a finite family of numbers Vi ≥ 0, it holds
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(max
i

Vi)
p ≤
∑

i

V p
i , (A.4)

we get

EY p
n ≤ E

∑

(s,t)∈Un

|Xs −Xt|p ≤ K(m,α)2n(m−α) ,

since E|Xs−Xt|p ≤ K(m,α)2−nα for (s, t) ∈ Un and using (A.2). To proceed
one needs to distinguish whether or not p ≥ 1. For specificity we assume
p ≥ 1. Since, as we just proved, ‖Yn‖p := (E|Y |p)1/p ≤ K(m, p)2n(m−α)/p the
triangle inequality in Lp yields

∥∥
∑

n≥k

Yn

∥∥
p
≤ K(m, p, α)2k(m−α)/p . (A.5)

To avoid having to explain what is “a version of the process”, and since we
care only about inequalities, let G =

⋃
n≥0 Gn. We claim that

sup
s,t∈G;d(s,t)≤2−k

|Xs −Xt| ≤ 3
∑

n≥k

Yn . (A.6)

Combining with (A.5) we then obtain

∥∥∥ sup
s,t∈G;d(s,t)≤2−k

|Xs −Xt|
∥∥∥
p
≤ K(m, p, α)2k(m−α)/p , (A.7)

a sharp inequality from which it is then simple to prove (with some loss of
sharpness) results such as the fact that for 0 < β < α−m one has

E sup
s,t∈G

|Xs −Xt|p
d(s, t)β

<∞ . (A.8)

To prove (A.6), for each n and each u ∈ T = [0, 1]m denote by πn(u) a point
of Gn which is as close to u as possible, so that d(u, πn(u)) ≤

√
m2−n, and in

particular d(πn(u), πn+1(u)) ≤ 2
√
m2−n, so that (πn(u), πn+1(u)) ∈ Un and

|Xπn(u) −Xπn+1(u)| ≤ Yn .

Also, when d(s, t) ≤ 2−k,

d(πk(s), πk(t)) ≤ d(s, πk(s)) + d(s, t) + d(t, πk(t)) ≤ 3
√
m2−k ,

so that (πk(s), πk(t)) ∈ Uk and

|Xπk(s) −Xπk(t)| ≤ Yk .

To prove (A.6) we may assume without loss of generality that s, t ∈ Gm

for some m ≥ k, so that s = πm(s) and t = πm(t). We then use the previous
inequalities and the identities
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Xs −Xt = Xs −Xπk(s) +Xπk(s) −Xπk(t) +Xπk(t) −Xt ,

and, for u ∈ {s, t},

Xu −Xπk(u) = Xπm(u) −Xπk(u) =
∑

k≤n<m

Xπn+1(u) −Xπn(u) .

Thus, chaining not only proves that the process (Xt) has a continuous ver-
sion, it also provides the very good estimate (A.7). One reason for which
everything is so easy in this case is that not only we bound the size of the
terms Xπn+1(u) −Xπn(u) independently of u, but also that the size of these
terms decreases like a geometric series.

A.3 More Chaining in R
m

One may also consider situations more general than (1.2), for example situ-
ations such as

∀n ≥ 0 , ∀ s, t ∈ T , d(s, t) ≤ 3
√
m2−n ⇒ Eϕ

( |Xs −Xt|
cn

)
≤ dn , (A.9)

where ϕ is a convex function ≥ 0 with ϕ(0) = 0, and cn, dn are numbers.
Of course the factor 3

√
m is to simplify the statement of the forthcoming

inequality (A.13) and is not important. Equivalently, one may consider con-
ditions such as

∀ s, t ∈ T , Eϕ
( |Xs −Xt|
ψ(d(s, t))

)
≤ θ(d(s, t)) . (A.10)

where ψ and θ are functions. We follow exactly the same method as pre-
viously, but instead of (A.4) we use now that for r.v.s Vi ≥ 0 we have
ϕ(maxi Vi) ≤

∑
i ϕ(Vi), so that

ϕ(Emax
i

Vi) ≤ Eϕ(max
i

Vi) ≤
∑

i

Eϕ(Vi)

and hence
Emax

i
Vi ≤ ϕ−1

(∑

i

Eϕ(Vi)
)
. (A.11)

Therefore the r.v. Yn of (A.3) satisfies

EYn ≤ cnϕ
−1(2nmdn) , (A.12)

and combining with (A.6),

E sup
s,t∈G,d(s,t)≤2−n

|Xs −Xt| ≤
∑

k≥n

ckϕ
−1(2kmdk) . (A.13)



598 A. Appendix: What This Book Is Really About

Of course in the case (A.10) one may write the right-hand side as an integral.
The key again to this result is (A.2), which expresses the nice homogeneity
of T when provided with the Euclidean distance. However here the series in
(A.13) has no reason to converge like a geometric series, so we already are
being more sophisticated than in the case of the Kolmogorov conditions.

In the left-hand side of (A.13) we would like to do better than controlling
the expectation, but one really needs some regularity of the function ϕ for
this. It suffices here to say that when ϕ(x) = |x|p for p ≥ 1 we may replace
the expectation by the norm of Lp, proceeding exactly as we did in the case
of the Kolmogorov conditions.

A.4 The Garsia-Rodemich-Rumsey Lemma

We all like to have at our disposal robust tools which will handle most situa-
tions in a mechanical manner, but the comfort they provide should not make
us blind to their shortcomings. It may help to discuss one popular such tool
here, the Garsia-Rodemich-Rumsey (GRR) lemma [35]. (The reader who has
not used this lemma before may skip this discussion.) This lemma had some
fundamental historical importance. It directly influenced Fernique’s discovery
of the “majorizing measures” approach to regularity of Gaussian processes,
and this entire book in turn. Our discussion will be very informal. Let us
quote a form of this lemma as in [106] p. 60. We use again the notation
T = [0, 1]m, and we are again in the setting with “homogeneity”. The point
we are going to make is that (even in this simplest setting where there is
“homogeneity of T”) the method based on this form of the lemma, while
effective in certain situations, does not even do as well as the most basic
chaining method explained above.

Lemma A.4.1. Consider two non-decreasing functions ϕ, ψ on R
+ with

ϕ(0) = ψ(0) = 0. Consider a continuous function u on T . Assume that

J :=

∫

T×T

ϕ
( |u(x)− u(y)|

ψ(d(x, y))

)
dxdy <∞ . (A.14)

Then, for a constant K depending on m only and each s, t ∈ T ,

|u(s)− u(t)| ≤ K

∫ 2d(s,t)

0

ϕ−1
(KJ

x2m

)
ψ(dx) . (A.15)

The way this is used is by considering the function u(x) = Xx for a given
realization of the process, and the finiteness of J is obtained by assuming
that

EJ =

∫

T×T

Eϕ
( |Xx −Xy|
ψ(d(x, y))

)
dxdy <∞ .
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The main drawback of Lemma A.4.1 is the power 2m in the denominator
in the right-hand side. When studying Gaussian processes, where often ϕ−1

behaves like
√
log, this does not matter (but in that case the GRR lemma

does not give better results than chaining in the most straightforward fashion
as we performed above). It matters when ϕ has a polynomial behavior. For
example, assume that the process (Xt) satisfies

∀s, t ∈ T , Eϕ
( |Xs −Xt|
ψ(d(s, t))

)
≤ 1 , (A.16)

so that we are in the situation (A.9) with dn = 1 and cn = ψ(K(m)2−n). The
process (Xt)t∈T is sample-continuous under the condition

∑
n cnϕ

−1(2nm) <
∞, which is equivalent to

∫ 1

0

ϕ−1
(K(m)

xm

)
ψ(dx) <∞ , (A.17)

where x appears at the power m (rather than 2m) in the denominator. We
do not see how this could be deduced from Lemma A.4.1.

This being said, the principle behind the use of the GRR inequality is
of fundamental importance (and is implicitly the key to the results of Sec-
tion 13.5). In the situation here, to prove sample-boundedness of a process,
the method is to find a suitable probability measure θ on T × T such that
the finiteness of ∫

T×T

ϕ
( |u(x)− u(y)|

ψ(d(x, y))

)
dθ(x, y) (A.18)

implies the boundedness of supx,y∈T |u(x)−u(y)|. It is explained in particular
in [114] why this method is in a sense optimal. The point however is that to
make full use of the method one must consider probabilities θ which are quite
different from the uniform probability used in GRR. It is precisely because
the special form of the conditions (1.2) allows just this that the GRR lemma
can be used to prove (A.8) for these processes, as is done in [10], but this
success seems accidental.

A.5 Chaining in a Metric Space

Suppose now that we want to study the uniform convergence on [0, 1] of a
random Fourier series Xt =

∑
k≥1 akgk exp(2πikt) where (gk) are indepen-

dent standard Gaussian r.v.s. Then the natural distance on [0, 1] is of little
use, it is much more relevant to consider the distance given by

d(s, t)2 = E|Xs −Xt|2 =
∑

k

|ak|2| exp(2iπks)− exp(2iπkt)|2 . (A.19)

The space (T = [0, 1], d) is in a sense homogeneous, because d is translation
invariant, but there is no reason that it looks in any way “finite dimensional”.
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Let us consider therefore an abstract situation, that of metric space (T, d)
and of a process (Xt)t∈T which satisfies

∀ s, t ∈ T , Eϕ
( |Xs −Xt|

d(s, t)

)
≤ 1 , (A.20)

where ϕ is convex function with ϕ(0) = 0, ϕ ≥ 0. This situation is canonical
because we may define

d(s, t) = inf
{
a > 0 ; Eϕ

( |Xs −Xt|
a

)
≤ 1
}
. (A.21)

To find a substitute for the sets Gn of Section A.2 we use the covering num-
bers. For ε > 0 we define the covering number N(T, d, ε) as the smallest
integer N such that T can be covered by N balls of radius ε, or equivalently,
such that there exists a set V ⊂ T with cardV ≤ N and such that each
point of T is within distance ε of V . Let us denote by Δ(T ) the diameter of
T , defined as Δ(T ) = sups,t∈T d(s, t), and observe that N(T, d,Δ(T )) = 1.
Consider the largest integer n0 with Δ(T ) ≤ 2−n0 . For n ≥ n0 consider a
set Tn ⊂ T with cardTn = N(T, d, 2−n) such that each point of T is within
distance 2−n of a point of Tn. For each x ∈ T and each n ≥ 0 we consider a
point πn(x) ∈ Tn with d(x, πn(x)) ≤ 2−n and we consider

Un = {(s, t) ; s ∈ Tn , t ∈ Tn+1 , d(s, t) ≤ 3 · 2−n} ,

so that

cardUn ≤ cardTn cardTn+1 ≤ cardT 2
n+1 = N(T, d, 2−n−1)2 .

This bound is crude, but we cannot do much better in general. It should be
compared to (A.2). Using (A.11) the r.v.

Yn = max{|Xs −Xt| ; (s, t) ∈ Un}

satisfies
EYn ≤ 3 · 2−nϕ−1(N(T, d, 2−n−1)2) ,

and exactly as in the case of the Kolmogorov conditions we obtain

E sup
d(s,t)≤2−n

|Xs −Xt| ≤ L
∑

k≥n

2−kϕ−1(N(T, d, 2−k−1)2) ,

where L is a number, which one usually writes in the integral form

E sup
d(s,t)≤δ

|Xs −Xt| ≤ L

∫ δ

0

ϕ−1(N(T, d, ε)2)dε . (A.22)

This simple and general bound is also very handy. It is worth to state its
consequences for Gaussian processes, that is, when the family (Xt)t∈T is
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jointly Gaussian centered. In that case one uses canonical distance d on the
index set given by d(s, t) = (E(Xs−Xt)

2)1/2. The tail properties of Gaussian
r.v.s then imply that (A.20) holds for the function ϕ(x) = exp(x2/L)− 1, in
which case ϕ−1(x) = L

√
log(1 + x). Inequality (A.22) is then easily shown

to be equivalent to the following more elegant formulation (Dudley’s bound):

E sup
d(s,t)≤δ

|Xs −Xt| ≤ L

∫ δ

0

√
logN(T, d, ε)dε . (A.23)

This very general inequality is effective even in simple situations.

Exercise A.5.1. Prove that the previous bound gives the correct modulus
of continuity for Brownian motion on [0, 1].

One drawback of (A.22) is that one would like to have an integrand
ϕ−1(N(T, d, ε)) rather than ϕ−1(N(T, d, ε)2). Interestingly, it does not ap-
pear to be known whether this is true in general or not. This is known for
δ = Δ(T ), a result which requires simply to define πn(t) in a smarter way.
This is explained in the self-contained Section B.2, which we advise the reader
to study next. Theorem B.2.4 there provides a partial result for smaller val-
ues of δ. The arguments of Section B.2 are more sophisticated than those of
the present section but are still simple.

The main issue of the generic chaining is however in a different direction.
Namely the covering numbers do not provide a fine enough description of a
metric space, because they do not take in account the “local irregularities”.
Let us try to explain this in terms of the fundamental chaining identity:

Xt −Xπ0(t) =
∑

n≥0

Xπn+1(t) −Xπn(t) . (A.24)

When performing the chaining using covering numbers, one basically bounds
the size of the term Xπn+1(t)−Xπn(t) independently of t. The generic chaining
bounds allows the size of this term to depend on t, a subtle but sometimes
crucial difference.

A.6 Two Classical Inequalities

Consider standard Brownian motion (Bt)t≥0 on R
+ and let

B∗
t = sup

0≤s≤t
|Bs| . (A.25)

Consider a r.v. X, which may or may not be a stopping time. Classical
inequalities estimate from above the moments ‖B∗

X‖p for p ≥ 1, and we would
like to briefly discuss such inequalities from our abstract point of view, as an
illustration of what it might lead to. Let us hurry to say that the results of
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this investigation are not spectacular. In some sense there is “considerable
room” in these classical inequalities, and the power of the modern methods
is certainly better demonstrated in tighter situations. Still, the “abstract”
approach does bring a different light, for better or for worse.

When one tries to understand what makes a result about Brownian mo-
tion “really work” there are usually multiple answers, because Brownian mo-
tion has so many facets. Our discussion largely follows the paper [10]. Our
emphasis here is to show that obtaining very precise inequalities does not
require undue work (provided one stays away from the GRR inequality), so
we assume more than in [10], namely we assume

∀ p ≥ 1 , ∀ s, t , 0 ≤ s ≤ t , ‖Bt −Bs‖p ≤
√
t− s

√
p . (A.26)

A basic fact is then as follows.

Lemma A.6.1. If the process (Bt)t≥0 satisfies (A.26) and B0 = 0 then for
each p ≥ 1 and each a > 0 we have, using the notation (A.25), and denoting
by L a universal constant,

‖B∗
a‖p ≤ L

√
p
√
a . (A.27)

Proof. This is chaining of the most brutish type, which actually copies the
case of the Kolmogorov conditions. We write

B∗
a ≤
∑

n≥0

Yn , (A.28)

where
Yn = sup

0≤k<2n
|Bk2−na −B(k+1)2−na| ,

and
‖Bk2−na −B(k+1)2−na‖p ≤ L

√
p
√
a2−n/2 ,

from (A.26). Using (A.4), we obtain ‖Yn‖p ≤ L
√
p
√
a2n/p−n/2. We then use

(A.28) and the triangle inequality in Lp to obtain (A.27) when p ≥ 4, from
which the general case follows. 
�

Theorem A.6.2. Consider a non-decreasing process (B∗
t ) on R

+ and as-
sume that for each p ≥ 1,

∀ t > 0 , ‖B∗
t ‖p ≤

√
tp . (A.29)

Consider a r.v X ≥ 0, a scaling factor a ≥ 0 and the sets

A0 = {X ≤ a} ; for n ≥ 1 , An = {a2n−1 < X ≤ a2n} . (A.30)

Then for each p ≥ 1 we have

‖B∗
X‖p ≤ L

√
pa
(∑

n≥0

2np/2P(An)
(
log

e

P(An)

)p/2)1/p
. (A.31)
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Combining with Lemma A.6.1 this yields precise information on the process
(A.25). There is of course no simple expression of the right-hand side in
general, but let us give some consequences of this bound. It is natural to
assume that a has been chosen such that P(A0) ≥ 1/2. Let us write I = {n ≥
1;P(An) ≥ e−np}, so that

∑

n≥1

2np/2P(An)
(
log

e

P(An)

)p/2
=
∑

n∈I

+
∑

n 	∈I

:= I + II .

For n ∈ I we have log(e/P(An)) ≤ Lnp, so that

I ≤ Lppp/2
∑

n≥1

2np/2np/2P(An) .

Also, the function x �→ x(log(e/x))p increases for x ≤ e−p so that

II ≤
∑

n≥1

e−np(Lnp)p/2 ≤ (Lp)p/2 .

We then obtain the inequality

‖B∗
X‖p ≤ L

√
ap+ Lp

√
a
(∑

n≥1

2np/2np/2P(An)
)1/p

,

and thus, using the notation log+ x = max(log x, 0),

‖B∗
X‖p ≤ L

√
ap+ Lp

√
a
∥∥∥
(X
a

log+
X

a

)1/2∥∥∥
p
.

Lemma A.6.3. If a r.v. Y satisfies ‖Y ‖p ≤
√
p for each p ≥ 2, then for

each event A we have

‖Y 1A‖p ≤ L
√
pP(A)1/p

√
log

e

P(A)
. (A.32)

Proof. Consider conjugate exponents a, b. Then Hölder’s inequality yields

E|Y |p1A ≤ ‖|Y |p‖a‖1A‖b = ‖Y ‖pap‖1A‖b ,

so that
‖Y 1A‖p ≤ ‖Y ‖apP(A)1/pb ≤

√
apP(A)1/pb .

Now
P(A)1/pb = P(A)1/pP(A)−1/pa ,

and the second term is ≤ L for a = log(e/P(A)) ≥ 1. 
�
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Proof of Theorem A.6.2. The key point is the inequality

B∗
X ≤

∑

n≥0

B∗
a2n1An ,

an obvious consequence of the fact that the process (B∗
t ) increases. Since the

sets An are disjoint,

‖
∑

n≥0

B∗
a2n1An‖pp =

∑

n≥0

‖B∗
a2n1An‖pp .

Bounding the terms in the right-hand side using the hypothesis (A.29) and
(A.32) then concludes the proof. 
�
The methods we used are very general, and there is no doubt that they apply
to more general “functionals of Brownian motion” than the supremum.

Assume now that X is a stopping time, and that (B∗
t ) is as in (A.25),

where (Bt) is Brownian motion. In that case the Burkholder-Davis-Gundy
inequality states that

‖B∗
X‖p ≤ L

√
p‖X‖p . (A.33)

The usual proofs of this inequality heavily rely on the martingale property
of Brownian motion. However, as we show now, (A.33) also holds for pro-
cesses that satisfy a certain condition on their increments, irrespective of the
martingale property.

Theorem A.6.4. Consider a process (Yt)t∈R+ with Y0 = 0, and a r.v. X ≥
0. Assume that for each s > 0 the following two properties hold:

P(∃t ≥ s, Yt �= Ys) ≤ P(X ≥ s) , (A.34)

∀u > 0 , ∀ t > s , P(|Yt − Ys| ≥ u) ≤ 2P(X ≥ s) exp
(
− u2

2(t− s)

)
. (A.35)

Then, for each p ≥ 1 we have

∥∥sup
t≥0

|Yt|
∥∥
p
≤ L

√
p‖X‖p . (A.36)

The relevance of this result to (A.33) is that, if (Bt) denotes standard Gaus-
sian motion and X is a stopping time, the process Yt = Bmin(t,X) satisfies
the hypotheses of Theorem A.6.4. (Unfortunately, one does not expect to find
many other natural examples of processes which satisfy these hypotheses.)
Theorem A.6.4 is a simple consequence of the following fact, interesting in
its own right.

Lemma A.6.5. Consider for n ≥ 0 r.v.s Zn ≥ 0, and assume that for num-
bers bn ≥ 0 and each u > 0 we have
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P(Zn ≥ u) ≤ bn exp
(
−u2

2n

)
. (A.37)

Then for each p ≥ 1 we have

∥∥
∑

n≥0

Zn

∥∥
p
≤ L

√
p
(
1 +
∑

n≥1

bn2
np/2
)1/p

. (A.38)

Proof of Theorem A.6.4. Consider a scaling factor a > 0 and for n ≥ 0 the
r.v.s

W0 = sup
t≤a

|Yt| ; for n ≥ 1 , Wn = sup
a2n−1≤t≤a2n

|Yt − Ya2n−1 | , (A.39)

and observe that obviously

sup
t≥0

|Yt| ≤
∑

n≥0

Wn . (A.40)

The key property of the r.v.s Wn is

∀u > 0 , P(Wn ≥ u) ≤ bn exp
(
− u2

La2n

)
, (A.41)

where b0 = 2 and bn = 2P(X ≥ a2n−1) for n ≥ 1. This is proved from (A.34)
and (A.35) using a chaining argument about as straightforward as that of
Lemma A.6.1. As this type of chaining argument is developed right at the
beginning of Chapter 2 we do not reproduce the details here. Use of (A.38)
and (A.40) then yields

∥∥sup
t≥0

|Yt|
∥∥
p
≤ L

√
p
√
a
(
1 +
∑

n≥0

bn2
np/2
)1/p

.

Now ∑

n≥0

bn2
np/2 ≤ 2

∑

n≥0

2np/2P(X ≥ a2n−1) ≤ LpE(X/a)p/2 .

To prove (A.36) we choose a small enough that 1 ≤ 2E(X/a)p/2. 
�
Proof of Lemma A.6.5. The plan is to bound E(

∑
n Zn)

p from above. First,
we observe that for a r.v Z ≥ 0,

EZp = p

∫ ∞

0

tp−1P(Z ≥ t)dt ≤ 1 +
∑

k≥1

2(k+1)pP(Z ≥ 2k) , (A.42)

simply by writing that P(Z ≥ t) ≤ P(Z ≥ 2k) for 2k ≤ t ≤ 2k+1. Next,
consider numbers α(n, k) ≥ 0 and assume that
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∀ k ≥ 1 ,
∑

n≥0

α(n, k) ≤ 1 , (A.43)

so that, using (A.37) in the second inequality,

P
(∑

n≥0

Zn ≥ 2k
)
≤
∑

n≥0

P(Zn ≥ α(n, k)2k)

≤
∑

n≥0

bn exp
(
−α(n, k)222k

2n

)
. (A.44)

Combining with (A.42) and exchanging the order of summation we obtain

E
(∑

n≥0

Zn

)p
≤ 1 +

∑

n≥0

bn
∑

k≥1

2(k+1)p exp
(
−α(n, k)222k

2n

)
. (A.45)

Now we choose the numbers α(n, k) in order to control these latter sums.
Define cn by 22cn = p2n, and define

α(n, k) = 0 if k ≤ cn + 100 ; α(n, k) = 2cn−k
√
k − cn if k > cn + 100 .

We observe that cn−� = cn − �/2, so that given k, and denoting by n∗ the
largest integer n for which cn + 100 ≤ k, we get

∑

n≥0

α(n, k) ≤
∑

�≥0

2cn∗−k−�/2
√

k − cn∗ + �/2 ≤ 1 ,

and this proves (A.43). Moreover, recalling that 22cn = p2n,

∑

k>cn+100

2(k+1)p exp
(
−α(n, k)222k

2n

)

=
∑

k>cn+100

2(k+1)p exp(−p(k − cn))

= 2(cn+1)p
∑

k>cn+100

2p(k−cn) exp(−p(k − cn))

≤ L2p(cn+1) . (A.46)

Also,

∑

k≤cn+100

2(k+1)p exp
(
−α(n, k)222k

2n

)
≤

∑

k≤cn+100

2(k+1)p ≤ 2 · 2p(cn+100) ,

and using (A.45) and since 22cn = p2n we have proved that

E
(∑

n≥0

Zn

)p
≤ 1 +

∑

n≥0

bn(Lp2
n)p/2 . 
�



B. Appendix: Continuity

B.1 Introduction

When trying to prove “regularity” of a stochastic process, the most difficult
task is to prove boundedness. For this reason the main body of the book
contains no results about continuity. Mainstream probabilists are however
adamant about the need of studying continuity of stochastic processes. We
shall give a few typical results in this direction. We do not strive for maximum
generality or sharpness. Rather, we show what can be done with our methods,
and we try to state results which can conceivably be useful as such. The next
section requires only Section A.5 as a prerequisite, while Section B.3 requires
the main results of Chapter 2.

B.2 Continuity Under Metric Entropy Conditions

Consider a Young function ϕ, that is, a convex function with ϕ(0) = 0,
ϕ(x) = ϕ(−x) ≥ 0. Given a metric space (T, d) we are interested in the
continuity of processes (Xt)t∈T that satisfy condition (A.20), i.e.

∀ s, t ∈ T , Eϕ
(Xs −Xt

d(s, t)

)
≤ 1 . (A.20)

Recalling (A.21) we may also write this condition as ‖Xs−Xt‖ϕ ≤ d(s, t). The
case of Lemma B.3.1 below is essentially the case where ϕ(x) = exp(x2)− 1.
This theorem generalizes easily to the case where instead ϕ(x) = exp |x|α−1,
or to more general functions “with exponential growth.” What we have in
mind in the present section is the more difficult case of “polynomial growth”,
e.g. ϕ(x) = |x|p for p > 1. For the convenience of the reader this section
uses only Section A.5 as a prerequisite, but let us point out that considerably
more elaborate arguments (in a somewhat different direction) are given in
Chapter 13. Since we know only very few natural situations where these so-
phisticated arguments are needed, we shall only consider here “metric entropy
conditions”. Let us repeat the bound (A.22) for convenience:

M. Talagrand, Upper and Lower Bounds for Stochastic Processes,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
Modern Surveys in Mathematics 60, DOI 10.1007/978-3-642-54075-2,
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E sup
d(s,t)≤δ

|Xs −Xt| ≤ L

∫ δ

0

ϕ−1(N(T, d, ε)2)dε . (A.22)

The problem with this bound is the occurrence of N(T, d, ε)2 rather than
N(T, d, ε).

Research problem B.2.1. Is it true in full generality that

E sup
d(s,t)≤δ

|Xs −Xt| ≤ L

∫ δ

0

ϕ−1(N(T, d, ε))dε ? (B.1)

And if this fails, what is the worst possible value of the left-hand side given
ϕ and the numbers N(T, d, ε)?

It seems very unlikely that (B.1) holds in general. In particular, it one further
assumes that (say) d(s, t) ≥ δ/10 for s, t ∈ T , s �= t, then (B.1) would imply
that E supd(s,t)≤δ |Xs − Xt| ≤ Lδϕ−1(N(T, d, δ/10)). This does not seem to
be true, but examples are hard to construct. The bound (B.10) below, which
holds under mild regularity conditions on ϕ is not very far from (B.1). It is
even conceivable that this bound is optimal in some sense.

The chaining argument that leads to (A.22) (and which is given in Sec-
tion A.5) is really brutal, and our first goal is to improve it. Without loss
of generality we assume that T is finite. We consider the largest integer n0

such that Δ(T ) ≤ 2−n0 and for n ≥ n0 we consider a subset Tn of T with
cardTn = N(T, d, 2−n) such that each point of T is within distance ≤ 2−n of
a point of Tn. (So that Tn0 consists of a unique point t0.) For n ≥ n0 we con-
sider a map θn : Tn+1 → Tn such that d(θn(t), t) ≤ 2−n for each t ∈ Tn. Since
we assume that T is finite, we have T = Tm when m is large enough. We fix
such an m, and we define πn(t) = t for each t ∈ T and each n ≥ m. Starting
with n = m we then define recursively πn(t) = θn(πn+1(t)) for n ≥ n0. The
point of this construction is that πn+1(t) determines πn(t) so that there are
at most N(T, d, 2−n−1) pairs (πn+1(t), πn(t)), and the bound (A.11) implies

E sup
t∈T

|Xπn+1(t) −Xπn(t)| ≤ 2−nϕ−1(N(T, d, 2−n−1)) . (B.2)

Using the chaining identity

Xt −Xπn(t) =
∑

k≥n

Xπk+1(t) −Xπk(t) ,

we have proved the following.

Lemma B.2.2. We have

E sup
t∈T

|Xt −Xπn(t)| ≤
∑

k≥n

2−kϕ−1(N(T, d, 2−k−1)) . (B.3)

Taking n = n0 this yields the following:
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Theorem B.2.3. We have

E sup
s,t∈T

|Xs −Xt| ≤ L

∫ Δ(T )

0

ϕ−1(N(t, d, ε))dε . (B.4)

Since d(πn+1(t), πn(t)) ≤ 2−n by construction, it follows by decreasing
induction over n that d(t, πn(t)) ≤ 2−n+1. Therefore

d(πn(s), πn(t)) ≤ 2−n+2 + d(s, t) ,

and consequently

E sup
d(s,t)≤2−n+2

|Xs−Xt| ≤ E sup
s,t∈Tn,d(s,t)≤2−n+3

|Xs−Xt|+2E sup
t∈T

|Xt−Xπn(t)| .

(B.5)
We know from (B.3) how to control the second term, but the first one is
challenging. One may crudely apply (A.11) to this term, and (choosing of
course for n the largest with 2−n+2 ≥ δ, so that 2−n ≥ δ/4) we obtain that
for any δ > 0,

E sup
d(s,t)≤δ

|Xs−Xt| ≤ Lδϕ−1(N(T, d, δ/4)2)+L

∫ δ

0

ϕ−1(N(t, d, ε))dε . (B.6)

The problem with the bound (B.6) is of course that there is no reason
why the term δϕ−1(N(t, d, δ/4)2) should be small, even if the integral in the
right-hand side converges. We shall prove the following improvement of (B.6).

Theorem B.2.4. For each δ > 0, each number 2 ≤ A ≤ N(T, d, δ/4) + 1
and each process (Xt)t∈T which satisfies (13.125) one has

E sup
d(s,t)≤δ

|Xs −Xt| ≤ Lδ
log(N(T, d, δ/4))

logA
ϕ−1(AN(T, d, δ/4))

+ L

∫ δ

0

ϕ−1(N(T, d, ε))dε . (B.7)

It is known in full generality that processes satisfying (A.20) are automat-
ically sample-continuous when the entropy integral is finite in (B.4). The
known proof is unsavory, and we refer to [58] for it. In the usual cases, (B.7)
provides a cleaner approach to this result.

Corollary B.2.5 (Continuity of processes under the metric entropy
condition). Let us assume that the function ϕ as in Theorem B.2.4 satisfies
the following regularity condition for N large enough, where C is a number,

inf
2≤A≤N

logN

logA
ϕ−1(AN) ≤ Cϕ−1(N) logϕ−1(N) . (B.8)
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Then for each process (Xt)t∈T on a metric space, which satisfies (A.20) and
for each α > 0 there exists a number δ for which

E sup
d(s,t)≤δ

|Xs −Xt| ≤ α . (B.9)

For example, (B.8) is satisfied when ϕ(x) = |x|p, as is shown by the choice
A = 2. In Proposition B.2.6 below we prove that actually (B.8) always hold
under minimum regularity conditions.

Proof. Combining (B.8) and (B.7) we get

E sup
d(s,t)≤δ

|Xs −Xt| ≤ Lδϕ−1(N(T, d, δ/4)) log
(
ϕ−1(N(T, d, δ/4))

)

+ L

∫ δ

0

ϕ−1(N(T, d, ε))dε . (B.10)

Let f(ε) = ϕ−1(N(T, d, ε)). The integral
∫Δ(T )

0
f(ε)dε converges, so that

given 0 < a < 1 there are arbitrarily small values of ε for which f(ε) ≤
a/(ε log(1/ε)). Then f(ε) ≤ 1/ε so that εf(ε) log(f(ε)) ≤ a is arbitrarily
small. Thus there exist arbitrarily small values of δ for which the first term
on the right-hand side of (B.10) is arbitrarily small. 
�

Proposition B.2.6. Assume that the function

f(x) := logϕ−1(expx)

is concave. Then (B.8) holds.

Since it is reasonable to assume that ϕ(x) ≥ x and hence that f(x) ≤ x,
the hypothesis that f is concave is most reasonable.

Proof. Letting N = expU and A = expB we have to prove that for U large
enough we have

inf
1≤B≤U

U

B
exp f(U +B) ≤ Cf(U) exp f(U) . (B.11)

Now, since f is concave, we have f(U +B) ≤ f(U) + f ′(U)B and Uf ′(U) ≤
f(U)− f(0), so that for large U we have f(U +B) ≤ f(U) + 2Bf(U)/U and
the left-hand side of (B.11) is at most

inf
1≤B≤U

U

B
exp(f(U) + 2Bf(U)/U) ,

so that (B.11) follows by taking B = max(1, U/f(U)). 
�

We turn to the proof of Theorem B.2.4.
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Lemma B.2.7. Consider a number A ≥ 1 and an integer p with Ap ≥
cardTn. Given n and c > 0 there exists a set Un ⊂ T 2

n with the following
properties

cardUn ≤ A cardTn , (B.12)

(s, t) ∈ Un ⇒ d(s, t) ≤ Lcp . (B.13)

sup
s,t∈Tn,d(s,t)≤c

|Xs −Xt| ≤ 2 sup
(s,t)∈Un

|Xs −Xt| . (B.14)

Proof. We perform the following construction of a decreasing sequence (V�)�≥1

of subsets of Tn and of a sequence (r�)�≥1 of integers, 1 ≤ r� ≤ p. We first set
V1 = Tn and choose any t1 ∈ V1. Since cardV1 ≤ cardTn ≤ Ap there exists
an integer r ≤ p for which

card{s ∈ V1 ; d(t1, s) ≤ rc} ≤ Ar , (B.15)

because r = p satisfies this conditions. We consider the smallest integer r1 ≥ 1
which satisfies (B.15) and we define

B1 = {s ∈ Tn ; d(s, t1) ≤ (r1 − 1)c} .

We observe that
cardB1 ≥ Ar1−1 .

If r1 > 1 this follows from the definition of r1, while if r1 = 1 this is obvious
because cardB1 ≥ 1 since t1 ∈ B1. We then set V2 = Tn \B1 = V1 \B1, and
we continue this procedure. We pick any point t2 ∈ V2 and we consider the
smallest integer 1 ≤ r2 ≤ p for which

card{s ∈ V2 ; d(t2, s) ≤ r2c} ≤ Ar2 ,

so that as before
cardB2 ≥ Ar2−1 .

We then set
B2 = {s ∈ V2 , d(s, t2) ≤ (r2 − 1)c} . (B.16)

We define V3 = V2 \B2 and we continue in this manner until Tn is exhausted.
Thus, for � ≥ 1 we have

cardB� ≥ Ar�−1 (B.17)

and
card{s ∈ V� ; d(t�, s) ≤ r�c} ≤ Ar� . (B.18)

Since the sets B� are disjoint, (B.17) implies

∑

�≥1

Ar�−1 ≤
∑

�≥1

cardB� ≤ cardTn ,
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and thus ∑

�≥1

Ar� ≤ A cardTn . (B.19)

We define Un as the set of pairs (t�, s) for � ≥ 1 with s ∈ V� and d(t�, s) ≤ cr�.
Thus (B.18) and (B.19) imply (B.12), while (B.13) holds since r� ≤ p. It
remains only to prove (B.14). Consider s, t ∈ Tn with d(s, t) ≤ c and let �
be the largest integer such that both s and t belong to V�. For definitiveness,
assume that s �∈ V�+1 so that since V�+1 = V� \ B� we have s ∈ B� i.e.
d(t�, s) ≤ (r� − 1)c, and since d(s, t) ≤ c we have d(t�, t) ≤ r�c and therefore
by definition of Un we have (t�, s) ∈ Un and (t�, t) ∈ Un. Moreover, |Xs−Xt| ≤
|Xs −Xt� |+ |Xt −Xt� |. This proves (B.14) and completes the proof. 
�
Let us also observe that the smallest integer p with Ap ≤ cardTn satisfies
Ap−1 ≥ cardTn so that, when A ≤ 1 + cardTn and cardTn ≥ 2,

p ≤ 1 +
log cardTn

logA
≤ L

log cardTn

logA
. (B.20)

Proof of Theorem B.2.4. We may assume that N(T, d, δ/2) ≥ 2, for otherwise
Δ(T ) ≤ δ and the result follows (B.4). Consider the largest integer n with
δ ≤ 2−n+2, so that δ/4 ≤ 2−n ≤ δ/2, and in particular 2 ≤ cardTn =
N(T, d, 2−n) ≤ N(T, d, δ/4). We use Lemma B.2.7 for this value of n and
c = 2−n+3, and the smallest possible value of p, which satisfies (B.20) since
cardTn ≥ N(T, d, δ/2) ≥ 2. We use (A.11) to obtain, using also (B.12) and
(B.13),

E sup
(s,t)∈Un

|Xs −Xt| ≤ L2−npϕ−1(AN(T, d, 2−n)) .

Since δ/4 ≤ 2−n ≤ δ/2, it follows from (B.14) that

E sup
s,t∈T,d(s,t)≤2−n+3

|Xs −Xt| ≤ Lδpϕ−1(AN(T, d, δ/4)) .

On the other hand, from (B.3),

E sup
t∈T

|Xt−Xπn(t)| ≤
∑

k≥n

2−kϕ−1(N(T, d, 2−k−1)) ≤ L

∫ δ

0

ϕ−1(N(T, d, ε))dε .

We combine with (B.5) and (B.20) to conclude the proof. 
�
The second part of the following exercise assumes that you know well the

material of Chapter 13.

Exercise B.2.8. When ϕ(x) = xp for some p > 1, improve (B.7) by replac-
ing the left-hand side by

(
E sup

s,t∈T,d(s,t)≤ck

|Xs −Xt|p
)1/p

.

Generalize this fact in the spirit of Proposition 13.5.16.
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B.3 Continuity of Gaussian Processes

It is worth insisting that by far the most important result concerning con-
tinuity of Gaussian processes is Dudley’s bound (A.23). However since the
finiteness of the right hand side of (A.23) is not necessary for the Gaussian
process to be continuous, there are situations where this bound is not ap-
propriate. The purpose of the present section is to show that a suitable form
of the generic chaining allows to capture the exact modulus of continuity of
a Gaussian process with respect to the canonical distance in full generality.
Not surprisingly, the modulus of continuity is closely related to the rate at
which the series

∑
n 2

n/2Δ(An(t)) converges uniformly on T for a suitable
admissible sequence (An). Our first result shows how to obtain a modulus of
continuity using the generic chaining. The idea of the proof is simply to use
(B.5), and to evaluate the last term using the generic chaining rather than
plain chaining.

Lemma B.3.1. Consider a metric space (T, d) and a process (Xt)t∈T which
satisfies the increment condition (1.4):

∀u > 0 , P(|Xs −Xt| ≥ u) ≤ 2 exp

(
− u2

2d(s, t)2

)
. (1.4)

Assume that there exists a sequence (Tn) of subsets of T with cardTn ≤ Nn

such that for certain integer m, and a certain number B one has

sup
t∈T

∑

n≥m

2n/2d(t, Tn) ≤ B . (B.21)

Consider δ > 0. Then, for a number u ≥ 1, with probability ≥ 1−exp(−u22m)
we have

∀ s, t ∈ T , d(s, t) ≤ δ ⇒ |Xs −Xt| ≤ Lu(2m/2δ +B) . (B.22)

Proof. We assume T finite for simplicity. For n ≥ m and t ∈ T denote by
πn(t) an element of Tn such that d(t, πn(t)) = d(t, Tn). Consider the event
Ω(u) defined by

∀n ≥ m+ 1 , ∀ t ∈ Tn , |Xπn−1(t) −Xπn(t)| ≤ Lu2n/2d(πn−1(t), πn(t)) ,

and
∀ s′, t′ ∈ Tm , |Xs′ −Xt′ | ≤ Lud(s′, t′)2m/2 . (B.23)

Then, as usual, we have P(Ω(u)) ≥ 1−exp(−u22m). Now, when Ω(u) occurs,
for any t ∈ T and any k ≥ 0, using chaining as usual and (B.21) we get

|Xt −Xπm(t)| ≤ LuB . (B.24)

Moreover, using (B.21) again,



614 B. Appendix: Continuity

d(t, πm(t)) ≤ d(t, Tm) ≤ B2−m/2 ,

so that, using (B.24),

d(s, t) ≤ δ ⇒ d(πm(s), πm(t)) ≤ δ + 2B2−m/2

⇒ |Xπm(s) −Xπm(t)| ≤ Lu(δ2m/2 +B) .

Combining with (B.24) proves that |Xs−Xt| ≤ Lu(δ2m/2+B) and completes
the proof. 
�

Exercise B.3.2. Deduce Dudley’s bound (A.23) from Lemma B.3.1

We now turn to our main result, which allows to exactly describe the
modulus of continuity of a Gaussian process in term of certain admissible
sequences. It implies in particular the remarkable fact (discovered by X. Fer-
nique) that for Gaussian processes the “local modulus of continuity” (as in
(B.25)) is also “global”.

Theorem B.3.3. Consider a Gaussian process (Xt)t∈T , with canonical as-
sociated distance d given by (0.1). Assume that S = E supt Xt < ∞. For
k ≥ 1 consider δk > 0 and assume that

∀ t ∈ T ; E sup
{s∈T ;d(s,t)≤δk}

|Xs −Xt| ≤ 2−kS . (B.25)

Let n0 = 0 and for k ≥ 1 consider an integer nk for which

L1S2
−nk/2−k ≤ δk . (B.26)

Then we can find an admissible sequence (An) of partitions of T such that

∀ k ≥ 0 ; sup
t∈T

∑

n≥nk

2n/2Δ(An(t)) ≤ LS2−k . (B.27)

Conversely, given an admissible sequence (An) as in (B.27), and defining
now δ∗k = S2−nk/2−k, with probability ≥ 1− exp(−u2) we have

sup
{s,t∈T ;d(s,t)≤δ∗k}

|Xs −Xt| ≤ Lu2−kS . (B.28)

The abstract formulation here might make it hard at first to grab the
power of the statement. The numbers δk describe the (uniform) modulus of
continuity of the process. The numbers nk describe the uniform convergence
(over t) of the series

∑
n≥0 2

n/2Δ(An(t)). Both are related by the relation

δk ∼ S2−nk/2−k. The first part of the theorem assumes only the “local”
modulus of continuity (B.25), while the converse provides a uniform modulus
of continuity (B.28).
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Proof. Let us set L1 = 2L0 where L0 is the constant of (2.80). By induction
over k we construct an admissible sequence (An)n≤nk

such that

1 ≤ p ≤ k ⇒ sup
t∈T

∑

np−1<n≤np

2n/2Δ(An(t)) ≤ 2L0S2
−p . (B.29)

For k = 1 the existence of the sequence (An)n<n1 follows from the left-hand
side of (2.80), so we turn to the induction step from k to k+1. Using (B.29) for
p = k we deduce that for each t ∈ T , 2nk/2Δ(Ank

(t)) ≤ 2L0S2
−k = L1S2

−k,
so that, using (B.26), Δ(Ank

(t)) ≤ L1S2
−nk/2−k ≤ δk. Consequently, for any

element B of Ank
we have Δ(B) ≤ δk, so that considering any element t of

B we have

E sup
s∈B

Xs = E sup
s∈B

(Xs −Xt) ≤ E sup
{s∈T ;d(s,t)≤δk}

|Xs −Xt| ≤ S2−k .

Using again (2.80) we obtain for each B ∈ Ank
an admissible sequence

(AB,n)n≥0 for which

∀ t ∈ B ,
∑

n≥0

2n/2Δ(AB,n(t)) ≤ L0S2
−k . (B.30)

For nk < n ≤ nk+1 we simply define An as the collection of all sets in one of
the partitions AB,n−1 where B ∈ Ank

, so that cardAn ≤ Nn−1 cardAnk
≤

N2
n−1 ≤ Nn, and since An(t) ⊂ AB,n−1(t) it follows from (B.30) that

sup
t∈T

∑

nk<n≤nk+1

2n/2Δ(An(t)) ≤
∑

n≥nk

2n/2Δ(AB,n−1(t)) ≤ 2L0S2
−k .

This completes the induction and the construction of the sequence (An) since
(B.29) implies (B.27).

It remains to prove the “conversely” part. For this for each n ≥ 0 we
simply consider a subset Tn of T such that

∀A ∈ An , card(Tn ∩A) = 1 .

We then use Lemma B.3.1 for m = nk and B = S2−k. 
�
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132. Talagrand, M.: Majorizing measures: the generic chaining. Ann. Probab. 24,

1049–1103 (1996)
133. Talagrand, M.: The Glivenko-Cantelli problem, ten years later. J. Theor.

Probab. 9, 371–384 (1996)
134. Talagrand, M.: A general lower bound for Gaussian chaos. J. Theor. Probab.

11, 157–179 (1998)
135. Talagrand, M.: Selecting a proportion of characters. Isr. J. Math. 108, 275–284

(1999)
136. Talagrand, M.: Majorizing measures without measures. Ann. Probab. 29, 411–

417 (2001)
137. Talagrand, M.: Gaussian averages, Bernoulli averages, and Gibbs’ measures.

Random structures and algorithms (Poznan, 2001). Random Struct. Algo-
rithms 21(3–4), 197–204 (2002)

138. Talagrand, M.: Vapnik-Chervonenkis type conditions and uniform Donsker
classes of functions. Ann. Probab. 31(2), 1565–1582 (2003)

139. Talagrand, M.: Selector processes on classes of sets. Probab. Theory Relat.
Fields 135(4), 471–486 (2006)

140. Talagrand, M.: The Generic Chaining. Springer Monographs in Mathematics.
Springer, Berlin (2005). viii+222 pp. ISBN: 3-540-24518-9

141. Talagrand, M.: Are many small sets explicitly small? In: STOC’10—
Proceedings of the 2010 ACM International Symposium on The-
ory of Computing, pp. 13–35. ACM, New York (2010). Available at
http://research.microsoft.com/apps/video/dl.aspx?id=137091

142. Talagrand, M., Yukich, J.: The integrability of the square exponential trans-
portation cost. Ann. Appl. Probab. 3, 1100–1111 (1993)
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